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Abstract

Neural approaches to automated essay
scoring have recently shown state-of-the-
art performance. The automated essay
scoring task typically involves a broad no-
tion of writing quality that encompasses
content, grammar, organization, and con-
ventions. This differs from the short an-
swer content scoring task, which focuses
on content accuracy. The inputs to neu-
ral essay scoring models – ngrams and
embeddings – are arguably well-suited to
evaluate content in short answer scoring
tasks. We investigate how several basic
neural approaches similar to those used for
automated essay scoring perform on short
answer scoring. We show that neural ar-
chitectures can outperform a strong non-
neural baseline, but performance and op-
timal parameter settings vary across the
more diverse types of prompts typical of
short answer scoring.

1 Introduction

Deep neural network approaches have recently
been successfully developed for several educa-
tional applications, including automated essay as-
sessment. In several cases, neural network ap-
proaches exceeded the previous state of the art on
essay scoring (Taghipour and Ng, 2016).

The task of automated essay scoring (AES)
is generally different from the task of auto-
mated short answer scoring (SAS). Essay scor-
ing generally focuses on writing quality, a
multidimensional construct that includes ideas
and elaboration, organization, style, and writ-
ing conventions such as grammar and spelling
(Burstein et al., 2013). Short answer scoring, by
contrast, typically focuses only on the accuracy

of the content of responses (Burrows et al., 2015).
Analyzing the rubrics of prompts from the Auto-
mated Student Assessment Prize shared tasks on
AES and SAS, while there is some overlap across
essay scoring and short answer scoring, there are
three main dimensions of differences:

1. Response length. Responses in SAS tasks
are typically shorter. For example, while
the ASAP-AES data contains essays that
average between about 100 and 600 to-
kens (Shermis, 2014), short answer scoring
datasets may have average answer lengths of
just several words (Basu et al., 2013) to al-
most 60 words (Shermis, 2015).

2. Rubrics focus on content only in SAS vs.
broader writing quality in AES.

3. Purpose and genre. AES tasks cover persua-
sive, narrative, and source-dependent reading
comprehension and English Language Arts
(ELA), while SAS tasks tend to be from sci-
ence, math, and ELA reading comprehen-
sion.

Given these differences, the feature sets for
AES and SAS systems are often different, with
AES incorporating a larger set of features to cap-
ture writing quality (Shermis and Hamner, 2013).
Nevertheless, deep learning approaches to
AES have thus far demonstrated strong per-
formance with minimal inputs consisting of
unigrams and word embeddings. For exam-
ple, Taghipour and Ng (2016) explore simple
LSTM and CNN-based architectures with re-
gression and evaluate on the ASAP-AES data.
Alikaniotis et al. (2016) train score-specific
word embeddings with several LSTM archi-
tectures. Dong and Zhang (2016) demonstrate
that a hierarchical CNN architecture produces
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strong results on the ASAP-AES data. Recently,
Zhao et al. (2017) show state-of-the-art perfor-
mance on the ASAP-AES dataset with a memory
network architecture.

In this work, we investigate whether deep neural
network approaches with similarly minimal fea-
ture sets can produce good performance on the
SAS task, including whether they can exceed a
strong non-neural baseline. Unigram embedding-
based neural network approaches to essay scor-
ing capture content signals from their input fea-
tures, but the extent to which they capture other as-
pects of writing quality rubrics has not been estab-
lished. These approaches as implemented would
seem to lend themselves even better to the purely
content-focused rubrics in SAS, where content
signals should dominate in achieving good human-
machine agreement. On the other hand, recurrent
neural networks may derive some of their predic-
tive power in AES from more redundant signals in
longer input sequences (as sketched by Taghipour
and Ng (2016)). As a result, the shorter responses
in SAS may hinder the ability of recurrent net-
works to achieve state-of-the-art results.

To explore the effectiveness of neural network
architectures on SAS, we use the basic architec-
ture and parameters of Taghipour and Ng (2016)
on three publicly available short answer
datasets: ASAP-SAS (Shermis, 2015), Pow-
ergrading (Basu et al., 2013), and SRA
(Dzikovska et al., 2016, 2013). While these
datasets differ with respect to the length and
complexity of student responses, all prompts
in the datasets focus on content accuracy. We
explore how well the optimal parameters for
AES from Taghipour and Ng (2016) fare on these
datasets, and whether different architectures and
parameters perform better on the SAS task.

2 Datasets

The three datasets we use cover different kinds of
prompts and vary considerably in the length of the
answers as well as their well-formedness. Table 1
shows basic statistics for each dataset. Figures 1,
2 and 3 show examples for each of the datasets.

2.1 ASAP-SAS

The Automated Student Assessment Prize Short
Answer Scoring (ASAP-SAS) dataset1 contains
10 individual prompts, covering science, biology,

1https://www.kaggle.com/c/asap-sas

and ELA. The prompts were administered to U.S.
high school students in several state-level assess-
ments. Each prompt has an average of 2,200 indi-
vidual responses, typically consisting of one or a
few sentences. Responses are scored by two hu-
man annotators on a scale from 0 to 2 or 0 to 3
depending on the prompt (Shermis, 2015). Fol-
lowing the guidelines from the Kaggle competi-
tion, we always use the score assigned by the first
annotator.

2.2 Powergrading

The Powergrading dataset (Basu et al., 2013) con-
tains 10 individual prompts from U.S. immigra-
tion exams with about 700 responses each. Each
prompt is accompanied by one or more reference
responses. As responses are very short (typically a
few words – see Figure 2) and because the percent-
age of correct responses is very high, responses in
the Powergrading dataset are to some extent repet-
itive. The Powergrading dataset tests models’ abil-
ity to perform well on extremely short responses.

The Powergrading dataset was originally
used for the task of (unsupervised) clustering
(Basu et al., 2013), so that there are no state-of-
the-art scoring results available for this dataset.
For simplicity, we use the first out of three binary
human-annotated correctness scores.

2.3 SRA

The SRA dataset (Dzikovska et al., 2012) became
widely known as the dataset used in SemEval-
2013 Shared Task 7 “The Joint Student Response
Analysis and 8th Recognizing Textual Entailment
Challenge” (Dzikovska et al., 2013). It consists
of two subsets: Beetle, with student responses
from interacting with a tutorial dialogue system,
and SciEntsBank (SEB) with science assessment
questions. We use two label sets from the shared
task: the 2-way labels classify responses as cor-
rect or incorrect, while the 5-way labels provide
a more fine-grained classification of responses
into the categories non domain, correct, par-
tially correct incomplete, contradictory and irrel-
evant. In contrast with most SAS datasets, the
SRA dataset contains a large number of prompts
and with relatively few responses per prompt (see
Table 1). Following the procedure from the shared
task, we train models for each SRA dataset (Bee-
tle, SEB) across all responses to all prompts.
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ASAP - Prompt 1
QUESTION: After reading the groups procedure, describe what additional information you would need in order to replicate the
experiment. Make sure to include at least three pieces of information.

SCORING RUBRIC FOR A 3 POINT RESPONSE: The response is an excellent answer to the question. It is correct, complete,
and appropriate and contains elaboration, extension, and/or evidence of higher-order thinking and relevant prior knowledge.
There is no evidence of misconceptions. Minor errors will not necessarily lower the score.
STUDENT RESPONSES:

• 3 points: Some additional information you will need are the material. You also need to know the size of the contaneir to
measure how the acid rain effected it. You need to know how much vineager is used for each sample. Another thing that
would help is to know how big the sample stones are by measureing the best possible way.

• 1 point: After reading the expirement, I realized that the additional information you need to replicate the expireiment
is one, the amant of vinegar you poured in each container, two, label the containers before you start yar expirement and
three, write a conclusion to make sure yar results are accurate.

• 0 points: The student should list what rock is better and what rock is the worse in the procedure.

Figure 1: ASAP-SAS example: Question, partial scoring rubric, and example student responses for
Prompt 1. (Spelling errors in the student responses are in the original. Source text used in the prompt is
omitted here for space reasons.)

PG - PROMPT 1
QUESTION: What is one right or freedom from the First Amendment of the U.S. Constitution?

REFERENCE RESPONSES: STUDENT RESPONSES:
• speech

• religion

• assembly

• press

• petition the government

• correct: freedom of speech

• correct: free speech

• correct: freedom to talk freely

• correct: freedome of religeon

• incorrect: the right to bear arms

• incorrect: life

Figure 2: Powergrading example: Question, reference responses, and example student responses for
Prompt 1.

SRA - BEETLE dataset
QUESTION: What are the conditions that are required to make a bulb light up

REFERENCE RESPONSES: the bulb and the battery are in a closed path
STUDENT RESPONSES:

• correct: a complete circuit of electricty

• incorrect: connection to a battery

Figure 3: SRA example: Question, reference response, and example student responses from Beetle
subset.
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Dataset # prompts Scores /
Labels

# train
responses (mean)

# dev
responses (mean)

# test
responses (mean)

Mean length
(train)

ASAP-SAS 10 0/1/2(/3) 1363 341 522 48.4
PG 10 0/1 418 140 140 3.9
SRA Beetle 47 2 or 5-way 3153 (67.1) 788 (16.8) 449 (9.4) 9.8
SRA SEB 135 2 or 5-way 2968 (29.4) 1001 (7.4) 540 (4.0) 12.5

Table 1: Overview of the datasets used in this work. Since we train prompt-specific models for ASAP-
SAS and PG, we report the mean number of responses per set per prompt. For SRA, we train one model
per label set across prompts and report the overall number of prompts per set as well as the mean number
of responses per prompt per set (in parentheses).

3 Experiments

3.1 Method
We carried out a series of experiments across
datasets to discern the effect of specific parame-
ters in the SAS setting. We took the best parame-
ter set from Taghipour and Ng (2016) as our refer-
ence since it performed best on the AES data. We
looked at the effect of varying several important
parameters to discern the effectiveness of each for
SAS:

• the role of the mean-over-time layer,
which was crucial for good performance in
Taghipour and Ng (2016)

• the utility of pretrained embeddings

• the contribution of features derived from a
convolutional layer

• the needs for network representational capac-
ity via recurrent hidden layer size

• the role of bidirectional architectures for
short response lengths

• regression versus classification

• the effect of attention

To explore the effect of specific parameters, we
trained models on the training set and evaluated
on the development set only. Following these ex-
periments, we trained a model on the training and
development sets and evaluated on the test set. We
report prompt-level results for this model in Sec-
tion 3.6.

For evaluation, we use quadratic weighted
kappa (QWK) for the ASAP-SAS and Powergrad-
ing datasets. Because the class labels in the SRA
dataset are unordered, we report the weighted F1
score, which was the preferred metric in the Se-
meval shared task (Dzikovska et al., 2016).

3.2 Baseline

As a baseline system, we use a supervised learner
based on a hand-crafted feature set. This baseline
is based on DkPro TC (Daxenberger et al., 2014)
and relies on support vector classification using
Weka (Hall et al., 2009). We preprocess the data
using the ClearNlp Segmenter 2 via DKPro Core
(Eckart de Castilho and Gurevych, 2014). The
features used in the baseline system comprise a
commonly used and effective feature set for the
SAS task. We use both binary word and character
uni- to trigram occurrence features, using the top
10,000 most frequent ngrams in the training data,
as well as answer length, measured by the number
of tokens in a response.

3.3 Neural networks

We work with the basic neural network architec-
ture explored by Taghipour and Ng (2016) (Figure
4).3 First, the word tokens of each response are
converted to embeddings. Optionally, features are
extracted from the embeddings by a convolutional
network layer. This output forms the input to an
LSTM layer. The hidden states of the LSTM are
aggregated in either a “mean-over-time” (MoT)
layer or attention layer. The MoT layer simply
averages the hidden states of the LSTM across
the input. We use the same attention mechanism
employed in Taghipour and Ng (2016), which in-
volves taking the dot product of each LSTM hid-
den state and a vector that is trained with the net-
work. The aggregation layer output is a single vec-
tor, which is input to a fully connected layer. This
layer computes a scalar (regression) or class label
(classification).

2https://github.com/clir/clearnlp
3The networks are implemented in Keras and use the

Theano backend.
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Figure 4: The basic neural architecture explored
in this work for short answer scoring.

3.4 Setup, training, and evaluation

The text is lightly preprocessed as input to the neu-
ral networks following Taghipour and Ng (2016).
The text is tokenized with the standard NLTK tok-
enizer and lowercased. All numbers are mapped
to a single <num> symbol.4 Each response is
padded with a dummy token to uniform length, but
these dummy tokens are masked out during model
training.

For the ASAP-SAS and Powergrading datasets,
prior to training, we scale all scores of responses
to [0, 1] and use these scaled scores as input to
the networks. For evaluation, the scaled scores are
converted back to their original range. The SRA
class labels are used as is.

We fix a number of neural network parame-

4It may be the case that relevant content information is
thus ignored. However, since many numbers occur with units
of measurement, e.g. 1g, we do not have word embeddings
for them either and so the embeddings would simply be ran-
dom initializations. We leave a full exploration of this issue
to future work.

ters for our experiments. For pretrained embed-
dings, in preliminary experiments the GloVe 100
dimension vectors (Pennington et al., 2014) per-
formed slightly better than a selection of other off-
the-shelf embeddings, and hence we use these for
all conditions that involve pretrained embeddings.
Embeddings for word tokens that are not found
in the embeddings are randomly initialized from a
uniform distribution. The convolutional layer uses
a window length of 3 or 5 and 50 filters. We use a
mean squared error loss for regression models and
a cross-entropy loss for classification models. To
train the network, we use RMSProp with ρ set to
0.9 and learning rate of 0.001. We clip the norm
of the gradient to 10. The fully connected layer’s
bias is initialized to the mean score for the training
data, and the layer is regularized with dropout of
0.5. We use a batch size of 32, which provided a
good compromise between performance and run-
time in preliminary experiments.

To obtain more consistent results and improve
predictive performance, we evaluate the models
by keeping an exponential moving average of the
model’s weights during training. The moving av-
erage weights wEMA are updated after each batch
by

wEMA −= (1.0− d) ∗ (wEMA − wcurrent).

d is a decay rate that is updated dynamically at
each batch by taking into account the number of
batches so far:

min(decay, (1 + #batches)/(10 + #batches))

where decay is a maximum decay rate, which we
set to 0.999. This decay rate updating procedure
allows the weights to be updated quickly at first
while stabilizing across time.

All models are trained for 50 epochs for pa-
rameter exploration on the development set (Sec-
tion 3.5) and 50 epochs for the final mod-
els on the test set (Section 3.6). Following
Taghipour and Ng (2016), for our parameter ex-
ploration experiments on the development set, we
report the best performance across epochs. When
we train final models on the combined training and
development set and evaluate on the test set, we
report the results from the last epoch.

During development, we observed that even af-
ter employing best practices for ensuring repro-
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ducibility of results5, there was still some small
variation between runs of the same parameter set-
tings. The reasons for this variability were not
clear.

3.5 Parameter exploration results

Our focus in this section is comparing different
architecture and parameter choices for the neural
networks with the best parameters from Taghipour
and Ng (2016). Table 2 shows the results of our
experiments on the development set for ASAP-
SAS and Powergrading, and Table 3 shows the
corresponding results for SRA.

Does the mean-over-time layer improve per-
formance? Taghipour and Ng (2016) demonstrate
a large performance gain with the mean-over-
time layer that averages the LSTM hidden states
across the response tokens. Comparing “T&N
best” with “no MoT” across the datasets, we see
mixed results. The mean-over-time layer per-
forms relatively well across datasets, but achieves
the best results only on the SRA-SEB dataset.
We hypothesized that the mean-over-time layer
is helpful when the input consists of longer re-
sponses (as was the case for the essay data
in Taghipour and Ng (2016)). We computed the
Pearson’s correlation on the ASAP-SAS data be-
tween the difference on each prompt of the two
conditions and the mean response length in the de-
velopment set. However, the correlation was mod-
est at 0.437.

Do pretrained embeddings with tuning outper-
form fixed or randomly initialized embeddings?
On all datasets, the pretrained embeddings with
tuning (among the “T&N best” parameters) per-
formed better than fixed pretrained or learned em-
beddings.6 Tuned embeddings were especially
important for the ASAP-SAS and Powergrading
datasets.

Does a convolutional layer produce useful fea-
tures for the SAS task? The results for convo-
lutional features are mixed: convolutional fea-
tures contribute small performance improvements
on Powergrading and one of the SRA label sets
(SRA SEB 2-way).

Can smaller hidden layers be used for the SAS
task? Although LSTMs with smaller hidden states

5The Numpy random seed was set. Since we used
Theano, in run scripts, we used PYTHONHASHSEED=0.

6We also did experiments with a much larger number of
epochs for the “learned” condition, but performance did not
approach that of the tuned embeddings.

often outperformed the 300-dimensional LSTM
in the T&N best parameter set (compare ‘T&N
best’ performance with performance for ‘LSTM
dims’ conditions), the improvements were all
quite small.

Do bidirectional LSTMs improve performance?
Bidirectional LSTM architectures produced solid
gains over the T&N best parameters on ASAP-
SAS, Powergrading, and two of the four SRA label
sets.

Can classification improve performance? The
T&N model used regression. While the labels in
SRA allow only for classification, ASAP-SAS and
PG work with both regression and classification.
However, we found consistently better results us-
ing regression.

Can attention improve performance? The at-
tention mechanism we considered in this paper
yielded strong performance improvements over
the mean-over-time layer on all datasets except
SRA-SEB 5-way. The largest improvements were
on Powergrading and SRA-Beetle 5-way, where
increases were almost 3 points weighted F1.

We also report the results of the combinations
of individual parameters that performed well on
the development data at the bottom of Table 2
and Table 3. While these combinations performed
better than any individual parameter variation on
ASAP-SAS and Powergrading, the combination
performed worse on three of the four label sets in
the SRA data. These results underscore that these
parameters do not always produce additive effects
in practice.

We examined the predictions from the baseline
system and the T&N system for the ASAP-SAS
development set and conducted a brief error analy-
sis. In general, across the 10 prompts, it can be ob-
served that when the baseline system is incorrect
it tends to under-predict the scores, whereas the
T&N system tends to slightly over-predict scores
when it is incorrect. These effects are typically
small, but consistent.

3.6 Test performance

We selected the top parameter settings on the de-
velopment set and trained models on the full train-
ing set (i.e. training and development sets) for
each dataset:

• ASAP-SAS: 250-dimensional bidirectional
LSTM, attention mechanism
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ASAP-SAS Powergrading

Experiment Condition Emb CNN Dim Dir MoT Att Mean QWK Mean QWK

Benchmark Baseline 0.6529 0.9049
T&N best tun no 300 uni yes no 0.7381 0.8724

MoT no MoT tun no 300 uni no no 0.7197 0.8753

Embeddings fixed fix no 300 uni yes no 0.7126 0.8376
learned lea no 300 uni yes no 0.6687 0.8482

CNN win len 5 tun len 5 300 uni yes no 0.7224 0.8748

Directionality bi tun no 300 bi yes no 0.7396 0.8798

LSTM dims 50 tun no 50 uni yes no 0.7169 0.8514
100 tun no 100 uni yes no 0.7341 0.8567
150 tun no 150 uni yes no 0.7377 0.8797
200 tun no 200 uni yes no 0.7343 0.8669
250 tun no 250 uni yes no 0.7429 0.8547

Classification tun no 300 uni yes no 0.7164 0.8299

Attention T&N-sum tun no 300 uni no yes 0.7436 0.9005

Best combination ASAP-SAS tun no 250 bi no yes 0.7439
Best combination PG tun len 5 150 bi no yes 0.9036

Table 2: Parameter experiment results on ASAP-SAS and Powergrading on the development set.
“Baseline” is the baseline non-neural system. “T&N best” is the best-performing parameter set in
Taghipour and Ng (2016): tuned embeddings (here, GLOVE 100 dimensions), 300-dimensional LSTM,
unidirectional, mean-over-time layer. Scores are bolded if they outperform the score for the “T&N best”
parameter setting.

• Powergrading: CNN features with win-
dow length 5, 150-dimensional bidirectional
LSTM, attention mechanism

• SRA: Because of the decreased performance
of the combined best individual parameters
on the development data, we use a 300-
dimensional unidirectional LSTM with atten-
tion mechanism.

These models are “T&N tuned” in Table 4,
which appear along with the non-neural baseline
system. On ASAP-SAS, the “T&N tuned” pa-
rameter configuration outperformed the baseline
system and the “T&N best” parameters. The
tuned system does not reach the state-of-the-art
Fisher-transformed mean score on the ASAP-
SAS dataset (Ramachandran et al., 2015)7, which,
like the winner of the ASAP-SAS competition
(Tandalla, 2012), employed prompt-specific reg-
ular expressions. Other top performing sys-
tems used prompt-specific preprocessing and
ensemble-based approaches over rich feature
spaces (Higgins et al., 2014).

7Ramachandran et al. (2015) state that their mean QWK
is 0.0053 higher than the Tandalla result, so in Table 4 we
report that score truncated to 3 decimal places rather than the
rounded result reported in Ramachandran et al. (2015).

On the Powergrading dataset, the “T&N tuned”
system did not match the performance of the base-
line system, consistent with the results on the
development set (Table 2). It appears that on
the very short and redundant data in this dataset,
the character- and n-gram based system can learn
somewhat more efficiently than the neural sys-
tems.

On the SRA datasets, the “T&N tuned” model
outperformed the baseline and the “T&N best”
settings on average across prompts, by a larger
margin than the other datasets. On the SRA
data, as on the ASAP-SAS data, a gap re-
mains between the tuned model’s performance
and the state of the art. On SRA, this may
be partly due to the use of “question indi-
cator” features by the top performing systems
(Heilman and Madnani, 2013; Ott et al., 2013).

The performance improvement over the base-
line system was larger on the development sets
than on the test sets. Part of the reason for this
is that the test set evaluation procedure likely did
not choose the best-performing epoch for the neu-
ral models.
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SRA
Beetle

SRA
SEB

2-way 5-way 2-way 5-way

Experiment Condition Emb CNN Dim Dir MoT Att Mean
wF1

Mean
wF1

Mean
wF1

Mean
wF1

Benchmark Baseline 0.7438 0.5815 0.7011 0.5415
T&N best tun no 300 uni yes no 0.7805 0.6184 0.7386 0.6175

MoT no MoT tun no 300 uni no no 0.7803 0.6163 0.7384 0.6159

Embeddings fixed fix no 300 uni yes no 0.7803 0.6119 0.7112 0.5730
learned lea no 300 uni yes no 0.7396 0.5929 0.7285 0.5855

CNN win len 3 tun no 300 uni yes no 0.7786 0.6048 0.7431 0.5874

Directionality bi tun no 300 bi yes no 0.7699 0.6461 0.7511 0.6171

LSTM dims 50 tun no 50 uni yes no 0.7603 0.5954 0.7395 0.5992
100 tun no 100 uni yes no 0.7679 0.6192 0.7341 0.5925
150 tun no 150 uni yes no 0.7816 0.6168 0.7389 0.6039
200 tun no 200 uni yes no 0.7768 0.6186 0.7336 0.6080
250 tun no 250 uni yes no 0.7663 0.6106 0.7334 0.6160

Attention T&N-sum tun no 300 uni no yes 0.7915 0.6469 0.7454 0.5941

Combination tun no yes 0.7691 0.6246 0.7308 0.6109

Table 3: Parameter experiment results on SRA datasets on the development set. “wF1” is the weighted
F1 score. “Baseline” is the baseline non-neural system. “T&N best” is the best-performing parameter set
in Taghipour & Ng (2016): tuned embeddings (here, GLOVE 100 dimensions), 300-dimensional LSTM,
unidirectional, mean-over-time layer. Scores are bolded if they outperform the score for the “T&N best”
parameter setting.

4 Discussion

Our results establish that the basic neural architec-
ture of pretrained embeddings with tuning across
model training and LSTMs is a reasonably effec-
tive architecture for the short answer content scor-
ing task. The architecture performs well enough to
exceed a non-neural content scoring baseline sys-
tem in most cases.

Given the diversity of prompts in SAS, there
was a good deal of variation in the effectiveness
of parameter choices in this neural architecture.
Still, some basic trends emerged. First, pretrained
embeddings tuned across model training were cru-
cial for competitive performance on most datasets.
Second, neural models for SAS generally bene-
fit from similar size hidden dimensions as mod-
els for AES. Only the Powergrading dataset, with
very short answers and a small vocabulary for each
prompt, benefitted from a significantly smaller
LSTM dimensionality. The relationship between
task, rubrics, vocabulary size, and the represen-
tational capacity of neural models for SAS need
further exploration.

Third, a mean-over-time aggregation mecha-
nism on top of the LSTM generally performed

well, but notably this mechanism was not nearly
as important as in the AES task. Mean-over-time
produced competitive results on many prompts,
but contrary to Taghipour and Ng (2016), bidi-
rectional LSTMS and attention produced some of
the best results, which is consistent with results
for neural models on other text classification tasks
(e.g., Longpre et al. (2016)).

Research is needed to explain these emerging
differences in effective neural architectures for
AES vs. SAS, including model-specific factors
such as the interaction of an LSTM’s integration of
features over time and the redundancy of predic-
tive signals in essays vs. short answers, along with
data-specific factors such as the consistency of
human scoring, the demands of different rubrics,
and the homogeneity or diversity of prompts in
each setting. At the same time, different from the
AES task, the family of neural architectures ex-
plored here needs further augmenting to achieve
state-of-the-art results on the SAS task. More-
over, more experiments are needed to document
how well neural systems perform relative to highly
optimized non-neural systems. While further pa-
rameter optimizations and different architectures
may yield better results, it may be the case that the
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Dataset Prompt Baseline T&N best T&N tuned State of
the art

ASAP-SAS

1 0.719 0.784 0.795
2 0.719 0.742 0.718
3 0.592 0.702 0.684
4 0.688 0.697 0.700
5 0.752 0.821 0.830
6 0.775 0.774 0.790
7 0.606 0.638 0.648
8 0.571 0.566 0.554
9 0.760 0.791 0.777

10 0.691 0.681 0.735

Mean 0.687 0.720 0.723
MeanFisher 0.693 0.728 0.732 0.776

PG

1 1.000 1.000 1.000 -
2 0.866 0.897 0.844 -
3 0.743 0.597 0.614 -
4 0.926 0.903 0.887 -
5 0.930 0.759 0.759 -
6 0.930 0.880 0.906 -
7 0.831 0.831 0.881 -
8 0.985 0.970 1.000 -

13 0.576 0.553 0.554 -
20 0.949 0.949 0.949 -

Mean 0.873 0.834 0.839 -

SRA

Beetle 2-way 0.742 0.776 0.790 0.845
Beetle 5-way 0.583 0.630 0.633 0.715
SEB 2-way 0.661 0.670 0.712 0.773
SEB 5-way 0.503 0.521 0.533 0.643

Mean 0.622 0.649 0.667 0.744

Table 4: Test set results for all datasets across prompts. Scores for ASAP-SAS and PG are QWK.
MeanFisher is the Fisher-transformed mean QWK used in the ASAP-SAS competition. Scores for SRA
are weighted F1 scores.

SAS task of content scoring with relatively short
response sequences requires neural approaches to
employ a larger set of features (Pado, 2016) or a
greater level of prompt-specific tuning, or pairing
with methods from active learning (Horbach and
Palmer, 2016).
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