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Abstract
We provide a faithful translation of Hans Richter’s important 1949 paper ‘Verzerrungstensor, Verzerrungsdeviator und
Spannungstensor bei endlichen Formänderungen’ from its original German version into English, complemented by an
introduction summarizing Richter’s achievements.
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1. Introduction
In this paper, we continue our efforts to translate Hans Richter’s early work on nonlinear elasticity theory (see
Graban et al. [1]). Richter’s second article in the field, entitled ‘Verzerrungstensor, Verzerrungsdeviator und
Spannungstensor bei endlichen Formänderungen’ (‘Strain tensor, strain deviator and stress tensor for finite
deformations’) [2], was published in Zeitschrift für Angewandte Mathematik und Mechanik in 1949 and con-
cerns the axiomatic foundations of nonlinear elasticity. More precisely, Richter is concerned with introducing
deductively a family of strain tensors for which he lays down an axiomatic structure.
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In order to provide the context for Richter’s work, we briefly recapitulate what can be said, and what is
generally accepted, about strain tensors, following Truesdell and his school after 1955. The concept of strain
is of fundamental importance in continuum mechanics. In linearized elasticity, it is assumed that the Cauchy
stress tensor σ is a linear function of the symmetric infinitesimal strain tensor

ε = sym ∇u = sym(∇ϕ − ) = sym(F − ) ,

where ϕ : � → R
n is the deformation of an elastic body with a given reference configuration � ⊂ R

n, ϕ(x) =
x + u(x) with the displacement u, F = ∇ϕ is the deformation gradient, sym ∇u = 1

2 (∇u + (∇u)T) is the
symmetric part of the displacement gradient ∇u and is the identity tensor. In geometrically nonlinear elasticity,
on the other hand, a vast number of different ‘strains’ have been employed in the past in order to conveniently
express nonlinear constitutive relations. In particular, it is common practice to choose a stress–strain pair such
that a given constitutive law can be expressed in terms of a linear relation between stress and strain [3–5].1 In
these cases, the strain tensor is generally a nonlinear function of the deformation gradient.

Although the specific definition of what exactly the term ‘strain’ encompasses varies throughout the lit-
erature, it is commonly assumed [7, p. 230] (cf. Hill [8, 9], Bertram [10] and Norris [11]) that a (spatial or
Eulerian) strain takes the form of a primary matrix function of the left Biot stretch tensor V =

√
FFT of the

deformation gradient F ∈ GL+(n), i.e. an isotropic tensor function E : Sym+(n) → Sym(n) from the set of
positive definite tensors to the set of symmetric tensors of the form2

E(V ) =
n∑

i=1

e(λi) · ei ⊗ ei for V =
n∑

i=1

λi · ei ⊗ ei (1)

with a strictly monotone scale function e : (0, ∞) → R, where ⊗ denotes the tensor product, λi are the eigenval-
ues and ei are the eigenvectors of V . In addition, the normalization requirements e(1) = 0 and e′(1) = 1 are typi-
cally required to hold as well, with the former ensuring that the strain vanishes if and only if the deformation gra-
dient describes a pure rotation, i.e. if and only if F ∈ SO(n), where SO(n) = {Q ∈ GL(n) | QTQ = , det Q = 1}
denotes the special orthogonal group. This property, in turn, ensures that the only strain-free deformations are
rigid body movements [14].

1.1. Richter’s general definition of strain

We now turn to Richter’s original development, which precedes the work of Truesdell. Based on the polar
decomposition F = V R = RU with R ∈ SO(3) and U , V ∈ Sym+(3) of the deformation gradient F ∈ GL+(3),
as well as a certain notion of superposition (which is described in more detail in the following section), Richter
arrives at a fully general definition of Eulerian as well as Lagrangian strain tensors. Expressed in terms of
the principal matrix logarithm log : Sym+(n) → Sym(n) on the set Sym+(n) of positive definite symmetric
matrices, Richter’s definition is given by

E(F) = f̃ (log V ) ∈ Sym(3) (Eulerian strains), (2a)

Ê(F) = f̃ (log U) ∈ Sym(3) (Lagrangian strains), (2b)

where f̃ : Sym(3) → Sym(3) is any differentiable and invertible (i.e. injective) primary matrix function3 of the
form (1) with f̃ (0) = 0 and f̃ ′(0) = 1. In particular, due to the invertibility of the principal matrix logarithm,
Richter’s definition is indeed equivalent to the contemporary definition (equation (1)) of a general strain tensor;
note that since e(1) = f̃ (0) and e′(1) = f̃ ′(0) for f̃ = e ◦ exp and e = f̃ ◦ log, the stated normalization
requirements are equivalent as well.

Similar to Richter, we will mostly focus on the Eulerian family (2a) in the following; analogous considera-
tions can, of course, be applied to the Lagrangian family as well. First, note that the invertibility of f̃ implies
the equivalence

E(F) = 0 ⇐⇒ log V = 0 ⇐⇒ V = ⇐⇒ F ∈ SO(3) ,
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Figure 1. Transition function f̃ for the Almansi strain tensor T = 1
2 ( −B−1).

thus E(∇ϕ) ≡ 0 if and only if ϕ is a rigid body movement [14]. Furthermore, Richter’s definitions (equations
(2a) and (2b)) naturally contain a number of commonly employed strains, including the material and spatial
Hencky strain tensors [12, 15–22]

E0 = log V = log
(√

FFT
)

, Ê0 = log U = log
(√

FTF
)

, (3)

which have often been considered to be the natural or true strains in nonlinear elasticity [23–26], as well as the
Seth-Hill [7, 27, 28] and Doyle-Ericksen [29] strain tensor families

E(m) = 1

2m

(
V 2m − ) = 1

2m
(Bm − ) , Ê(m) = 1

2m

(
U2m − ) = 1

2m
(Cm − ) . (4)

However, Richter’s definition (equations (2a) and (2b)) is significantly more general and includes, for example,
the Bažant strain tensor [30], given by 1

2 (V − V−1); note that for f̃ (λ) = 1
2 (eλ − e−λ) or, equivalently, f̃ −1(x) =

log(x + √
x2 + 1),

f̃ (log V ) = 1

2

(
exp(log V ) − exp(log V )−1

) = 1

2
(V − V−1) . (5)

Another example is the (Eulerian) Almansi strain tensor [31], attributed to Trefftz in a review of Richter’s article
by Moufang, which is given by T = 1

2 ( − B−1) with B = V 2 and corresponds to the choice f̃ (λ) = 1
2 (1 − e−2λ)

for the transition function f̃ in equation (2a) (see Figure 1).
Observe that Richter’s strain tensors are isomorphic to each other4 in the sense that, for any pair E1, E2 of

strain tensors in the family (2a), there exists an invertible, isotropic mapping ζ : Sym(3) → Sym(3), such that

E1 = ζ (E2) ; (6)

since E1 = f̃1(log V ) and E2 = f̃2(log V ) for suitable invertible functions f̃1, f̃2, it suffices to choose ζ = f̃1 ◦ f̃ −1
2 .

We also note that a strain tensor E of the form (2a) is tension-compression symmetric, i.e. satisfies E(V−1) =
−E(V ), if and only if f̃ is odd, i.e. if f̃ (λ) = −̃f (−λ).

1.2. Richter’s superposition principle

Richter obtains his general definitions (equations (2a) and (2b)) deductively from 3 axioms. Most importantly, he
assumes that any strain tensor satisfies a superposition principle (postulate V3) in the case of coaxial stretches.
More specifically, for V1, V2 ∈ Sym+(3) such that V1V2 = V2V1, let E1 = E(V1) and E2 = E(V2) denote the
corresponding strains. Then Richter’s superposition postulate states that for E = E(V1V2),

f (E1) + f (E2) = f (E) (7)

for some primary matrix function f , which depends on (and, in fact, determines) the specific choice of a strain
mapping F �→ E(F). This requirement is well known [12, 15, 16, 22, 32, 33] to be satisfied for f (λ) = λ and
E = log V , since5

log(V1V2) = log V1 + log V2 if V1V2 = V2V1 . (8)
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However, Richter’s condition (equation (7)) is more general, allowing for an arbitrary choice of f . This
generalization is what allows for any E of the form (2a) to be considered a (Eulerian) strain tensor, since the
representation

E = f̃ (log V ) (9)

implies that (7) is satisfied for f = f̃ −1. The somewhat unusual superposition principle (7) is thereby reduced to
the better-known condition (8). As an example, consider again the Almansi strain tensor E = 1

2 ( − B−1). Then
for f̃ (λ) = 1

2 (1 − e−2λ) and f (x) = f̃ −1(x) = − 1
2 log(1 − 2x),

E = 1

2
( − B−1) = 1

2

( − exp(log(V−2))
) = f̃ (log V ) (10)

and f (E1) + f (E2) = f (̃f (log V1)) + f (̃f (log V2))

= log V1 + log V2 = log(V1V2) = f (̃f (log(V1V2))) = f (E) (11)

if V1V2 = V2V1.

1.3. The strain deviator

After giving a general definition of strain, Richter poses the following problem: given an arbitrary strain map-
ping F �→ E(F), find an associated tensor-valued mapping F �→ D(F) that is invariant with respect to pure
scaling transformations (i.e. D(λF) = D(F)), reduces to D = E if the deformation does not change the volume
(i.e. D(F) = E(F) if det F = 1) and coincides with the usual deviatoric strain tensor dev ε = ε − 1

3 tr(ε) · for
infinitesimal deformations. From these conditions, Richter deduces the expression

D(F) = f −1(dev f (E(F))) = f −1(dev log V ) , (12)

where f is given by (7) via the particular choice of the strain E. His deduction is based on the observation that
the matrix logarithm naturally separates the isochoric and volumetric response, i.e. that

log V = dev(log V ) + 1

3
tr(log V ) · = log

(
V

det V 1/3

)
+ 1

3
log(det V ) · . (13)

In particular, if D is defined by (12), then

D(λF) = f −1(dev log(λV )) = f −1(dev log V ) = D(F)

and, if det F = det V = 1,
D(F) = f −1(dev log V ) = f −1(log V ) = E(F) .

1.4. Richter’s stress tensor

In the following, we confine our attention to the setting of Cartesian coordinates. In that case, Richter proposes
the use of the Cauchy stress tensor σ and derives the necessary relations for the work corresponding to the
displacement of surface elements. As a result, he obtains the formula

ejσ = ∂W

∂j
· + 2

∂W

∂k
· L + 3

∂W

∂l
· L2 , (14)

where W (F) = W (j, k, l) is the isotropic energy potential in terms of the three invariants

j = tr L , k = tr(L2) and l = tr(L3)

of the logarithmic strain L = log V . Equation (14), which had already been given by Richter in an earlier (1948)
article [34, page 207, equation (3.9)], can also be restated as a more common expression for the Kirchhoff stress
τ in hyperelasticity. Using the notation

Ŵ (log V ) = W (F) = W (j, k, l) = W
(
tr(log V ), tr

(
(log V )2

)
, tr
(
(log V )3

))
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and the equalities

Dlog V (j) = DL(tr L) = ,

Dlog V (k) = DL

(
tr
(
L2
)) = DL

(‖L‖2
) = 2L ,

Dlog V (l) = DL

(
tr
(
L3
)) = 3L2 ,

we find

Dlog V Ŵ (log V ) = ∂W

∂j
· + 2

∂W

∂k
· L + 3

∂W

∂l
· L2 . (15)

Since

ej = etr(log V ) = elog(det V ) = det V = det F , (16)

equation (14) can therefore be written as

τ = det F · σ = Dlog V Ŵ (log V ) , (17)

where τ = det F · σ is the Kirchhoff stress tensor. Formula (14) has been rediscovered several times [8, 9,
35–37] and is closely connected to Hill’s inequality [8], which is equivalent to the condition that the elastic
energy potential W (F) = Ŵ (log V ) is convex with respect to the logarithmic strain tensor log V . In particular,
this convexity of Ŵ is sufficient for W to satisfy the Baker–Ericksen inequalities [38–40].

In the following, we provide a new translation of Richter’s original 1949 article. For the sake of readability,
the notation was updated to more closely match current usage; a complete list of the changes made can be
found in the appendix. The same updated notation has also been employed in translating the review of Richter’s
work by Ruth Moufang in Zentralblatt für Mathematik und ihre Grenzgebiete as well as a MathSciNet review
by William Prager. Apart from these notational changes, all equations, as well as the equation numbering, are
identical to Richter’s originally published version of the article. All numbered footnotes are part of the original
article as well, whereas comments by the translators are marked as such.

Notes

1. See Truesdell and Noll [6, p. 347]: ‘Various authors […] have suggested that we should select the strain [tensor] afresh for each
material in order to get a simple form of constitutive equation. […] Every invertible stress relation T = f (B) for an isotropic
elastic material is linear, trivially, in an appropriately defined, particular strain [tensor f (B)].’

2. Note that more general definitions can be found in the literature as well [12, 13]; for example, Truesdell and Toupin [13, p. 268]
consider ‘any uniquely invertible isotropic second order tensor function of [the left Cauchy-Green deformation tensor B = FFT]’
to be a strain tensor.

3. Here and throughout, we will identify the primary matrix function with its associated scale function and write, for example,
f̃ (V ) = ∑n

i=1 f̃ (λi) · ei ⊗ ei.
4. See Truesdell and Toupin [13, p. 268]: ‘…any [tensor] sufficient to determine the directions of the principal axes of strain and

the magnitude of the principal stretches may be employed and is fully general.’ Truesdell and Noll [6, p. 348] also argue that
there ‘is no basis in experiment or logic for supposing nature prefers one strain [tensor] to another.’

5. It can easily be shown [22, 32] that under suitable normalization requirements, the only strain tensor satisfying the condition
E(V1V2) = E(V1) + E(V2) for all coaxial stretches V1, V2 is the logarithmic Hencky strain E(V ) = E0(V ) = log V .
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Abstract
Postulates are laid down that have to be satisfied on forming the strain tensor, the strain deviator and the stress tensor,
and thus the general form of these tensors is deduced in arbitrary coordinates. The mixed-variant logarithmic strain
tensor proves the simplest definition of the strain tensor. The deviator may be formed in the usual manner, and the
invariants of it characterize the strain in an invariant way. If the stress tensor is defined accordingly, the form of the
general law of elasticity continues to be invariant to coordinate transformations.

Es werden Postulate aufgestellt, denen bei der Bildung des Verzerrungstensors, des Verzerrungsdeviators und des Span-
nungstensors zu genügen ist, und hieraus die allgemeine Gestalt dieser Tensoren in beliebigen Koordinaten abgeleitet.
Als einfachste Definition des Verzerrungstensors erscheint die gemischt-variante logarithmische Deformationsmatrix,
wo der Deviator in üblicher Weise gebildet werden kann, und wo die Invarianten des letzteren die Beanspruchung
invariant charakterisieren. Bei entsprechender Definition des Spannungstensors bleibt die Gestalt des allgemeinen Elas-
tizitätsgesetzes invariant gegen Koordinatentransformation.

On établit des postulats pour la formation du tenseur de déformation, du déviateur de déformation et du tenseur de
tension. La forme générale de ces tenseurs en coordonnées arbitraires en est déduite. La matrice logarithmique (mixte-
variante) de déformation fournit la plus simple définition du tenseur de déformation. Le déviateur peut être formé
comme de coutume et ses invariantes caractérisent la sollicitation d’une maniére invariante. Le tenseur de tension étant
défini conformément, la forme de la loi générale d’élasticité reste invariante dans toute transformation de coordonnées.

1. Introduction
In the theory of finite elastic or plastic deformations, one generally considers the strain tensor which results
from calculating the difference of the squares of the line elements in the deformed and initial state for general
coordinates.1 The use of this characterization of the state of strain is, of course, not compulsory. On the contrary,
a more detailed analysis shows that this usual definition of the strain tensor is not particularly well adapted to
the problem of studying finite deformations. The problem of deducing a deviator, which only characterizes the
change of shape without regarding the volume change, from the usual strain tensor, already leads to peculiar
difficulties and ambiguities [41]. The underlying reason for this is that the treatment of finite deformations has
been approached too closely to the case of infinitesimal strains, where any deformation can be split into a pure
stretch and a pure rotation by additive decomposition into a symmetric and a skew symmetric part. However,
for finite deformations, this additive decomposition is no longer possible; it is replaced by a multiplicative
decomposition of the general deformation into a rotation and a stretch, with these factors no longer being
commutative. Thus, any attempt to establish definitions by additive decomposition must lead to fundamental
difficulties.

In this paper we want to proceed – in a sense axiomatically – by imposing on the necessary definitions certain
a priori requirements we consider appropriate. Then, we demonstrate that among these admissible definitions,
certain choices appear particularly natural.

2. Notation and lemmas

2.1. Notation

1. By Latin capital letters A, B, . . . , we denote elements of the space of 3 × 3-matrices.2 aik = (A)ik is the
entry in the i-th row and the k-th column. det A is the determinant of A. tr(A) is the trace of A, i.e. the sum
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of the elements on the main diagonal. AT is the matrix obtained by reflecting A across its main diagonal.
is the identity matrix. A−1 is the inverse of A.

2. Latin lower case letters x, y, . . . denote vectors: x = (x1, x2, x3). 〈x, y〉 is the inner product. x×y is the cross
product.

3. Ax results from applying A to x: (Ax)i = ∑
aik xk .

4. Products BA are read from right to left: (BA)x = B(Ax).
5. If f (x) = ∑

bn · xn, then, assuming convergence: f (A) = ∑
bn An;

df (A) = f (A + dA) − f (A), which coincides with f ′(A)dA only if A · dA = dA · A.3

2.2. Lemmas

(2.1) tr(A1 A2 · · · An) is invariant under cyclic permutations of the factors.
(2.2) Each invariant of A under affine transformation A → BAB−1 is a function of the three invariants j = tr(A),

k = tr(A2) and l = tr(A3). The characteristic equation of A is:

λ3 − j · λ2 + 1

2

(
j2 − k

)
λ −

(
1

3
l − 1

2
jk + 1

6
j3

)
= 0 .

(2.3) We have f (BAB−1) = Bf (A)B−1.
(2.4) If A has positive real eigenvalues, then log A is well defined and tr(log A) = log(det A).
(2.5) If BA = AB, then tr(B df (A)) = tr(Bf ′(A)dA) even if B · dA = dA · B does not hold.
(2.6) In Cartesian coordinates, a pure stretch V is symmetric with positive eigenvalues.
(2.7) In Cartesian coordinates, a Euclidean transformation R satisfies RRT = .
(2.8) Any A with det A �= 0 can be uniquely represented in the form A = V · R, i.e. as the composition mapping

of a Euclidean transformation and a pure stretch. If det A > 0, then R is a direct transformation, i.e. a pure
Euclidean rotation.

(2.9) We have 〈x, Ay〉 = 〈y, ATx〉.
(2.10)Let y = M x be a coordinate transformation which maps A onto A#. A is a

twice-contravariant tensor if A# = M AMT · (det M)n,
twice-covariant tensor if A# = (M−1)TAM−1 · (det M)n,
contravariant-covariant tensor if A# = M AM−1 · (det M)n,
covariant-contravariant tensor if A# = (M−1)TAMT · (det M)n.

A is called a proper tensor if n = 0 holds; if n �= 0, then A is called a tensor density. (The coincidence
of this somewhat uncommon representation of the tensor property with the usual one immediately results
from symbolically setting (A)ik = xi yk , where x and y are contravariant or covariant vectors).

(2.11)Let x′ = M x and y′ = M y; then x′ × y′ = det M · (M−1)T(x × y).

3. The strain tensor
We now consider which requirements can be justifiably imposed on the strain tensor. Afterwards we will study
the feasibility of these requirements.

Let F be the matrix that maps the neighbourhood of a point x̂ to the neighbourhood of its image x under F:

dx = F d x̂ . (3.1)

F is the Jacobian matrix

(F)ik = ∂xi

∂̂xk
, det F > 0 (3.2)

and indicates the attained state of distortion. For plastic materials, where the state of stress depends not only on
the current state of distortion but also on the path leading to it, specifying only F is not sufficient, whereas for
elastic materials, F suffices to characterize the distortion. For anisotropic materials, the rotation contained in F
is essential as well. In this case, F itself needs to be used for describing the strain, whereas every strain tensor
when, like the common one, eliminates a Euclidean rotation is unsuitable. Consequently, such strain tensors are
only meaningful for isotropic materials.
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3.1. Postulates

Thus, under the explicit assumption of applicability to isotropic materials, a strain tensor E(F) associated with
F shall now be defined.4 Whereas F is not a tensor since F relates two different configurations, we want to
require the tensor property for E. Hence, we obtain the first postulate.

V1. E is a tensor determined by F and the matrices of the metric in x̂ and x.

Furthermore, the irrelevant rotation contained in F shall be disregarded for E, i.e. E shall not change if a
Euclidean rotation R is performed in x̂ prior to the application of F. Instead, one could also require that a
rotation being performed subsequent to F in x shall not influence the strain tensor. This would imply that F is
considered a distortion in x̂ with a subsequent irrelevant rotation. We want to denote the tensor being associated
with x̂ by Ê. The study of E and Ê is completely analogous and thus, in the following, we restrict ourselves
to the study of E and only mention the analogous results of Ê, where the corresponding quantities are marked
by .̂

The above property of E and Ê is expressed by the next postulate.

V2. E(F R) = E(F), resp. Ê(RF) = Ê(F).

Furthermore, we additionally require a superposition principle for coaxial pure stretches via the next postulate.

V3. Let V1 and V2 be two coaxial stretches: V1 V2 = V2 V1. Let E1 = E(V1), E2 = E(V2) and E = E(V1 V2).
Then there exists an invertible function f (x) such that f (E1) + f (E2) = f (E). The function f may depend
on the coordinate system.

Finally, we must require that the new definition transitions into the classical one for infinitesimal strains. This is
ensured by the limit property

V4. For infinitesimal deformations + dF in Cartesian coordinates, the strain tensor turns into
1
2 (dF + (dF)T) + o(dF).5

3.2. The realization of the postulates in Cartesian coordinates

For the sake of simplicity, we first want to assume Cartesian coordinates. We denote an original point and its
image under the deformation by p and q. The deformation matrix is now denoted by F. The corresponding strain
tensors are E0 and Ê0.

According to (2.8) we can write

F = V R = RU with U = R−1 V R . (3.3)

To find this decomposition, we first consider the term F FT. For x �= 0 we have: 0 < 〈FTx, FTx〉, which,
using Lemma (2.9), yields: 0 < 〈x, F FTx〉. Thus, the symmetric matrix F FT is positive definite and therefore
obviously has a positive definite square root V =

√
F FT. Then R can be represented in the form R = V−1 F.

Correspondingly, we have U2 = FTF.
By V2, we have E0(F) = E0(V ), resp. Ê0(F) = Ê0(U). Therefore, we can restrict ourselves to strain tensors

which are defined for pure stretches.
Now let V be a pure infinitesimal stretch: V = + dV . Then by V4 the equalities E0( + dV ) = dV + o(dV )

and E0( + λdV ) = λdV + o(dV ) hold for any positive number λ. Postulate V3 then yields

f (dV + o(dV )) + f (λdV + o(dV )) = f ((1 + λ)dV + o(dV )).

Since this equation must hold for every λ and dV , it follows that f (x) = x + o(x) for x sufficiently small.6 Thus,
if we set Z = f (E0), then for infinitesimal stretchings we obtain: Z( + dV ) = dV + o(dV ).

Now let V again be a finite pure stretching. Then because of the positive eigenvalues of V we can set:

L = log V ; respectively, L̂ = log U : ‘logarithmic strain tensor’. (3.4)

We then have: 1
n L = log n

√
V and thus for n sufficiently large: n

√
V = + 1

n L+o( 1
n ). Hence, Z( n

√
V ) = 1

n L+o( 1
n ).

In addition, we have Z(V ) = n · Z( n
√

V ) = L + n · o( 1
n ) by postulate V3. Since the left-hand side of this equation
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is independent of n, we can let n tend to infinity and obtain: Z(V ) = L. In particular, this implies that f (x) is
uniquely determined up to an arbitrary factor.

Consider the inverse function f −1. Since L is a uniquely invertible function of V and consequently one of
V 2 = F FT, we finally have:

E0 = f −1(L) = h(V ) = k(F FT) ; resp. Ê0 = f −1
(̂
L
) = h(U) = k

(
FTF

)
. (3.5)

Conversely, the ansatz (3.5) always satisfies the postulates V2 and V3, where f is uniquely chosen as the inverse
function of f −1, whereas satisfying the limit condition V4 requires that for small x we have:

f −1(x) = x + o(x) ; h(1 + x) = x + o(x) ; k(1 + x) = 1

2
x + o(x) . (3.5a)

Indeed, we then have for infinitesimal deformations F = + dF:

F FT = +
(

dF + dF
T
)

+ o(dF) , V =
√

F FT = + 1

2

(
dF + dF

T
)

+ o(dF) ,

L = log V = 1

2

(
dF + dF

T
)

+ o(dF) .

Thus for every f −1 satisfying (3.5a): E0 = 1
2 (dF + dF

T
) + o(dF) .

Every strain tensor which is compatible with our postulates is thus identified with a function of the logarith-
mic strain tensor. Based on our postulates, E0 = L appears as the simplest definition of the strain tensor, since
here the superposition principle is satisfied with f (x) ≡ x. As we shall later see, this definition will also appear
as the simplest one for taking the deviator.

If, in addition, a Euclidean rotation R1 is performed subsequently to F, then because of R1 F = R1 V R =
R1 V R−1

1 · R1 R the stretch V turns into R1 V R−1
1 . We obtain the same transition if a Euclidean coordinate trans-

formation q1 = R1 q is performed. According to (2.3), E0 then turns into h(R1 V R−1
1 ) = R1 E0 R−1

1 . Thus, the
axes of E0 are simply rotated along for subsequent application of R1. If we identify the last formula with the
result of a coordinate transformation, we conclude from (2.10) that E0 transforms like a tensor; since R−1

1 = RT
1 ,

there is no distinction with respect to co-contra-variance. Clearly, we obtain a corresponding result for Ê0.

3.3. Extension to curvilinear coordinates

We now proceed from Cartesian coordinates q to arbitrary coordinates x: x = x(q). For a neighbourhood of
the undeformed material, let d x̂ = M̂ d q̂, for the corresponding neighbourhood in the deformed material let
dx = M dq. M̂ and M are the Jacobian matrices of x = x(q) in x̂ and x, respectively.

For a line element in x we obtain, using (2.9): dq = 〈M−1dx, M−1dx〉 = 〈dx, (M−1)TM−1dx〉. Hence,

G = GT = (M MT)−1 (3.6a)

is the matrix of the metric in x. Correspondingly,

Ĝ = (M̂ M̂T)−1 (3.6b)

defines the metric in x̂.
The deformation of the material now appears as: dx = M F M̂−1d̂x. Thus, F is changed to

F = M F M̂−1 , (F)ik = ∂xi

∂̂xk
. (3.7)

Conversely,

F = M−1F M̂ and FT = M̂TFT(M−1)T , (3.7*)
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from which we immediately obtain:{
V 2 = F FT = M−1F Ĝ−1FT(M−1)T

U2 = FTF = M̂TFTGF M̂ .
(3.8)

Using the last two formulae, the matrices F, V and U associated with Cartesian coordinates can be expressed
in terms of F and the transformation matrices M and M̂ .

3.3.1. Case of the non-mixed tensor. We first assume that the strain tensor E is defined twice-contravariant and
satisfies the postulates V1 to V4. Then (2.10) implies:

E = M E0 MT ,

where E0 is one of the tensors from (3.5).
To study the particular shape of E0, we consider the special case where F is a pure stretch V in the coordinate

axes and coaxial to M . Hence,

V =
(

λ1 0
λ2

0 λ3

)
and M =

(

1 0


2
0 
3

)
.

Then, because of (3.5), E is again given in the principal axis and has the eigenvalues 
v ·h(λv). The superposition
principle now requires the existence of a function f (x), whose coefficients may contain the 
v, such that:

f (
2
v h(λv)) + f (
2

v h(μv)) = f (
2
v h(λvμv)) (3.9)

for arbitrary λv and μv. Therefore,

f (
2
v h(λ)) = Cv · log λ , Cv = Cv(
1, 
2, 
3) .

By differentiation with respect to λ, we obtain


2
v f ′(
2

v h(λ)) · h′(λ) = Cv · 1

λ
. (3.10)

In particular, if we set λ = 1, then (3.5a) implies 
2
v · f ′(0) = Cv. Therefore, the normalization f ′(0) = 1 yields:

f ′(
2
v h(λ)) = 1

λ · h′(λ)
.

The right-hand side of this equation is independent of 
v. We must therefore have f ′(x) ≡ f ′(0) = 1, which
implies that h(λ) = log λ. Then E0 = log V = L and thus

E = M LMT.

Conversely, this definition of E satisfies all postulates V1 to V4 for arbitrary F and M , since the superposition
principle is purely additive for L and therefore transfers to an additive law in terms of E for multiplication with
M from the left and with MT from the right.

Hence, there is only one possibility to define a non-mixed tensor E such that our postulates are satisfied,
namely: E = M LMT.

Since L = log V = 1
2 log V 2, and due to (3.8), we finally obtain

E = 1

2
M log

(
M−1F G−1F M−1

)
M . (3.11)
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Correspondingly, we find

Ê = 1

2
M̂ log

(
M̂ FT GF M̂

)
M̂ .

If we expand the logarithm for sufficiently small stretches into a power series, then we will see that E and
Ê indeed only depend on F, Ĝ and G. However, the representation by these matrices is very inconvenient.
Moreover, the invariants of E are different from those of E0. This is unpleasant because e.g. in the theory
of elasticity of finite deformations it must be assumed that the thermodynamic quantities like internal energy
entropy etc. are functions of the invariants of strain. Now, if these quantities are changed under coordinate
transformations, additional difficulties will emerge. Then it is also no longer possible to describe the character
of the deformation independently of the choice of coordinates by using the invariants (see Section 4).

Of course, the corresponding considerations hold also for the case where E or Ê is twice-covariant.
Therefore, it will be sufficient to waive the symmetry advantage associated with non-mixed tensors.

3.3.2. Case of the mixed tensor. In the case where E is covariant-contravariant, (2.10) implies: E = (M−1)TE0 MT.
Because of (2.3), E automatically satisfies the superposition principle with the same f (x) as E0. In particular,
the uniquely determined, normalized f (x) is independent of the choice of coordinates. Furthermore, E has the
same invariants as E0. Every function of E, whose coefficients depend on the invariants of E, transforms to the
same function of E0.

From the simplest definition E0 = L, we now obtain for arbitrary coordinates: L∗ = (M−1)TLMT or, because
of (3.4) and (3.8):

L∗ = 1

2
(M−1)T log

(
M−1FTĜ−1FT(M−1)T

)
MT

or

L∗ = 1

2
log

(
GF Ĝ−1FT

)
: ‘logarithmic strain tensor’. (3.12)

L∗ satisfies the superposition principle with f (x) ≡ x.
The most general strain tensor satisfying our postulates is then given by

E = f −1(L∗) = h
(√

GF Ĝ−1FT
)

= k
(
GF Ĝ−1FT

)
, (3.13)

where f −1, h and k satisfy the conditions (3.5a).
Completely analogously, one obtains

Ê = f −1
(̂
L∗) = h

(√
FTGF Ĝ−1

)
= k(FT GF Ĝ−1) , L̂∗ = 1

2
log

(
FTGF Ĝ−1

)
.

Up to an arbitrary factor, the function f (x) of the superposition principle is the inverse function of x = f −1(y).
In the case where E and Ê are contravariant-covariant, it is convenient to proceed correspondingly:⎧⎨⎩

L∗ = 1
2 log

(
F Ĝ−1FTG

)
and

L̂∗ = 1
2 log

(
Ĝ−1FTGF

)
.

(3.12a)

Every other relation remains unchanged.

3.4. Computation of the dilatation v

The dilatation being associated with F is v = det F; thus, with (3.7*):

v = (det M)−1 · det M̂ · det F .
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However, (3.6), (3.12) and (3.12a) yield:

det(e2L∗
) = det G · (det Ĝ

)−1 · (det F)2 = v2 .

Hence, due to (2.4):

log v = tr(L∗) = tr(̂L∗) (3.14a)

or by (3.13)

log v = tr(f (E)) = tr(f (̂E)) . (3.14b)

3.5. Relation to the usual strain tensor

The usual definition11 of the strain tensor T , resp. T̂ , is8

ds2 − d̂s2 = 2〈dx, T dx〉 = 2〈d̂x, T̂ d̂x〉 .

Now, together with (2.9), we get

ds2 = 〈dx, Gdx〉 = 〈F d̂x, GF d̂x〉 = 〈d̂x, FTGF d̂x〉
and, correspondingly,

d̂s2 = 〈dx, (F−1)TĜF−1dx〉 = 〈d̂x, Ĝ d̂x〉 .

Hence,

2T = G − (F Ĝ−1FT)−1 and 2T̂ = FTGF − Ĝ .

In order to identify the type of co-contra-variance, we use equation (3.8) to rewrite:

2T = (
M−1

)T · ( − MT(F−1)TĜF−1M
) · M−1 = (M−1)T · ( − V−2) · M−1 (3.15)

and, correspondingly,

2T̂ = (
M̂−1

)T · (U2 − )M̂−1. (3.15a)

Thus, according to (2.10), T and T̂ are twice-covariant symmetric tensors. The superposition principle is not
satisfied for these tensors and the invariants change under coordinate transformation. However, the combined
tensors T G−1, G−1T , Ĝ−1T̂ and T̂ Ĝ−1 satisfy all the established postulates V1 to V4. From (3.15) we infer for
the superposition principle that one has to set13 f (x) = − 1

2 log(1 − 2x) with respect to T G−1 and G−1T , but
f (x) = 1

2 log(1 + 2x) with respect to Ĝ−1T̂ and T̂ Ĝ−1.
Hence, with (3.14),

v2 = (
det

( − 2T G−1
))−1 = (

det
( − 2G−1T

))−1

= det
( + 2Ĝ−1T̂

) = det
( + 2T̂ Ĝ−1

)
for the dilatation v.

4. The strain deviator

4.1. Postulates

The strain deviator D shall be derived from the strain tensor and only characterize the change of shape associated
with the deformation. The required postulates immediately follow.

D1. If two deformations differ only by a scaling, then they have the same D.

D2. If the deformation does not change the volume, then D = E.
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4.2. Realization of the postulates

A scaling in the undeformed or deformed state has the form λ , λ > 0, with the volume dilatation λ3. If we set

F = v
1
3 · v− 1

3 F = v
1
3 · F1 ,

then postulate D1 yields: D(F) = D(F1). Since F1 is not associated with a volume dilatation, we have: D(F) =
E(F1) = f −1(L∗

1), where L∗
1 = − 1

3 log v · + L∗ according to (3.12) and (3.12a). Using (3.13) and (3.14a), we
conclude that

D = f −1

(
L∗ − 1

3
tr L∗ ·

)
= f −1

(
f (E) − 1

3
tr f (E) ·

)
.

The common deviator of a matrix A is denoted by

dev A = A − 1

3
tr A · . (4.1)

With this notation, we can reformulate the strain deviator as:

D = f −1(dev L∗) = f −1(dev f (E)) . (4.2)

Correspondingly,

D̂ = f −1(dev L̂∗) = f −1(dev f (̂E)) .

Conversely, the postulates D1 and D2 are obviously satisfied for this definition as well. If F is multiplied by
λ > 0, then L∗ turns into L∗ + log λ · . Thus, dev L∗ and consequently D are left unchanged. If, additionally,
v = 1, then (3.14a) implies tr L∗ = 0, hence L∗ = dev L∗ and consequently D = f −1(L∗) = E. Note also that D
is automatically a tensor if we use E as a mixed tensor. This observation suggests a preference towards mixed
tensors over non-mixed tensors.

Taking the deviator is simplest for E = L∗, where D = L∗. Thus, the use of the logarithmic strain tensor also
allows the common deviator procedure for arbitrary coordinates.

It should additionally be noted that for infinitesimal strains in Cartesian coordinates the new notion of the
deviator turns into the original one. If F = + dF is an infinitesimal deformation, then L = 1

2 (dF + (dF)T ) +
o(dF), therefore (4.2), together with (3.5a), yields

D = dev L + o(dev L) = dev

(
1

2

(
dF + (dF)T

))+ o(dF) .

For the common mixed strain tensor T G−1, we found in Section 3.5 that f (x) = − 1
2 log(1 − 2x), thus f −1(y) =

1
2 (1 − e−2y) and v = (det( − 2T G−1))−

1
2 . Moreover, L∗ = − 1

2 log( − 2T G−1) and hence
2 dev L∗ = − log( − 2T G−1) − 2

3 log(v) · . Therefore, we finally obtain:9

D = (
det

( − 2T G−1
))− 1

3 ·
(

T G−1 − 1

2
·
[
1 − 3

√
det( − 2T G−1)

]
·
)

. (4.3)

Correspondingly,

D̂ = (
det

( + 2T̂ Ĝ−1
))− 1

3 ·
(

T̂ Ĝ−1 − 1

2
·
[

3

√
det

( + 2T̂ Ĝ−1
)− 1

]
·
)

. (4.3a)
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4.3. The strain invariants

To characterize the state of strain through invariants, we choose the dilatation (or a function of the same) as the
first suitable invariant of E, whereas the other two invariants characterize the change of shape, i.e. they will be
left unchanged by additional scaling. Since for the use of the mixed tensors — which is assumed in the following
— every invariant of E is also an invariant of L∗, we can choose tr L∗ as the first invariant by (3.14a). According
to section 2, the other two invariants must be invariants of dev L∗. From this we conclude that the state of strain
is characterized by {

j = tr L∗ for the dilatation

y = tr
(
(dev L∗)2

)
, z = tr

(
(dev L∗)3

)
for the change of shape.

(4.4)

Since L∗ = (U−1)TLUT, we have y = tr((dev L)2) and z = tr((dev L)3), therefore y and z characterize the change
of shape independently of the choice of coordinates.

Because of tr(dev L) = 0, the characteristic equation of dev L according to Lemma (2.2) is

x3 − y

2
x − z

3
= 0 . (4.5)

In order for this equation to have three real roots, the quantity

ζ = z2

y3
(4.6)

must satisfy the condition

0 ≤ ζ ≤ 1

6
. (4.7)

The geometrical meaning of ζ results from the following observation. Let V be an arbitrary pure stretch. Then
we can identify V with the n-fold application of the pure stretch Vn = n

√
V . Here, Ln = log n

√
V = 1

n ·log V = 1
n L;

thus, dev Ln = 1
n dev L and consequently yn = 1

n2 · y and zn = 1
n3 z. From this we infer that ζn = z2

n
y3

n
= ζ . –

Conversely, if ζ1 = ζ2 for two stretches V1 and V2, then y1 = λ2 y and z1 = λ3 z. Then according to (4.5), the
eigenvalues of V1 are the λth power of the eigenvalues of V2. Thus, disregarding a possible rotation, we have
V1 = Vλ

2 . Hence, we can think of V1 and V2, up to a modification of the principal axes, as resulting from the
same infinitesimal stretch (using the inverse for negative λ). This means that ζ determines the character of the
deformation.

The uniaxial and volume-preserving stretch is represented in suitably rotated Cartesian coordinates by

V =
⎛⎝λ 0 0

0 λ− 1
2 0

0 0 λ− 1
2

⎞⎠ .

Then

L = dev L = log λ ·
⎛⎝1 0 0

0 − 1
2 0

0 0 − 1
2

⎞⎠ .

Thus, y = log2 λ · 3
2 and z = log3 λ · 3

4 , which results in ζ = 1
6 .

On the other hand, we obtain for a volume-preserving simple shear

F =
(

1 λ 0
0 1 0
0 0 1

)
and thus V 2 = F FT =

⎛⎝1 + λ2 λ 0
λ 1 0
0 0 1

⎞⎠ .

For the eigenvalues of V 2, the characteristic equation yields: λ1 = 1, λ2 · λ3 = 1. For the eigenvalues of L we
thus have: μ1 = 0, μ2 + μ3 = 0. This implies y > 0, z = 0; therefore ζ = 0. Hence, we have found that:
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ζ = z2

y3 determines the character of the deformation. The extreme value ζ = 0 corresponds to

simple shearing and the other extreme value ζ = 1
6 to uniaxial stretching.

The amount of change of shape at infinitesimal strains is usually characterized by
√

tr D2. We have just
shown that D ≈ dev L for infinitesimal deformations, hence

√
y is identified as the amount of change of shape

at infinitesimal deformations.
On the other hand, if V is a finite scaling, then

√
y = n · √

yn, as demonstrated above. Since for sufficiently
large n, yn represents the amount of change of shape for the infinitesimal strain n

√
V , it is reasonable to use√

y = n
√

yn as a measure of the amount of change of shape resulting from an n-fold application of n
√

V , i.e. for
V . From this we finally conclude:

√
y characterizes the amount of change of shape.

5. The stress tensor
The stress tensor σ̃ must characterize the state of stress in the point x of the deformed configuration such that,
for a suitable definition of a surface element dA in x, the force acting on dA is given by σ̃ dA. Even though the
components of σ̃ can, of course, also be expressed in the coordinates of x̂ by using the transformation formulae
(transition into Lagrangian coordinates), σ̃ remains associated with dA. The attempt to directly connect the
stresses directly with dÂ in the reference configuration, i.e. to construct σ̂ , is unnatural from a physical point of
view.10 We will therefore refrain from such an approach.

5.1. Postulates

For Cartesian coordinates, the stress matrix σ yields the force d̃f0 acting on a surface element dA0 in the point
q in the form: d̃f0 = σ dA0. In general, it can be assumed that external forces acting on the material do not
generate volume-dependent torques. Then it is well known that σ is symmetric. However, this symmetry does
not need to be assumed in the following.

For arbitrary curvilinear coordinates, it is necessary to define a surface element dA suitably as the trans-
formed element of dA0. Then the stress tensor σ̃ shall be constructed such that the force acting on the surface
element is again given by σ̃ dA. Applying a translation by the vector dz to the surface element corresponds to
the work 〈dz, σ̃ dA〉. From this, we deduce the following postulates:

P1. σ̃ is a tensor or a tensor density.
P2. For the surface element, we have dA = H dA0, where H must be suitably chosen.
P3. If the surface element is displaced by dz, then the corresponding work is dW = 〈dz, σ̃ dA〉.

5.2. The realization of the postulates

As a numerical quantity, dW must be invariant under coordinate transformation. Hence,

〈dz, σ̃ dA〉 = 〈dz0, σ dA0〉 (5.1)

if dz0 = M−1dz is the corresponding translation vector in Cartesian coordinates. Now we obtain with postulate
P2 and (2.9):

〈dz0, σ dA0〉 = 〈M−1dz, σ H−1 dA〉 = 〈dA,
(
H−1

)T
σ T M−1dz〉 = 〈dz,

(
M−1

)T
σ H−1dA〉.

Since dz and dA are arbitrary vectors, the comparison with (5.1) yields:

σ̃ = (
M−1

)T
σ H−1. (5.2)

Equation (2.10) indicates that σ̃ is either (α) twice-covariant for H = M · √(det G)n or (β) covariant-
contravariant for H = (M−1)T ·√(det G)n.
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In fact, dA is contravariant in case (α) and covariant in case (β). If we choose the length of dA as the
geometrical quantity of the surface element, then we have to set n = 0. As a consequence, σ̃ is a proper tensor.
Namely, in the cases (α) and (β) we have:

σ̃ = (M−1)Tσ M−1 (5.2α)

and

σ̃ = (M−1)Tσ MT. (5.2β)

In case (α), we then have dA = M dA0. If the surface element dA0 is generated by the vectors dx10 and dx20, then
dA0 = dx10 × dx20 = M−1dx1 × M−1dx2 or, using (2.11): dA0 = √

det G · MT (dx1 × dx2). Hence,

dA =
√

det G · G−1(dx1 × dx2) . (5.3α)

On the other hand, in case (β) we obtain

dA =
√

det G · (dx1 × dx2) . (5.3β)

Clearly, it does not matter whether one prefers to use contravariant or covariant dA for calculations. As shown
by (5.3), however, the covariant definition (β) yields the simpler formula, although in this case, symmetry of σ̃
does not follow from the symmetry of σ . On the other hand, all invariants of σ̃ still remain unchanged under
coordinate transformation.

5.3. The power for infinitesimal strains

Now we assume that in a spatial neighbourhood of q, a homogeneous state of stress defined by σ occurs.
Suppose that a closed volume V has the boundary surface F with the surface elements dA0. We now apply a
homogeneous infinitesimal deformation +dF in the neighbourhood of q. As a result, the surface element dA0 is
displaced by the vector dF r0, provided that r0 was its original distance from the origin. Since, due to symmetry,
the simultaneous infinitesimal rotation and distortion of the surface element do not require any power, the entire
work with respect to the volume is given by

V · dW =
∫∫
V

〈dF r0, σ dA0〉 =
∫∫
V

〈σ T dF r0, dA0〉

=
∫∫∫

V

div(σ T dF r0)dV =
∫∫∫

V

tr(σ T dF)dV .

Hence, the work per unit volume is

dW = tr(σ T dF) . (5.4)

If +dF is an infinitesimal radial scaling, i.e. dF = dλ · with the dilatation dV
V = 3 ·dλ, then dW = dλ · tr σ T =

dV
V · 1

3 tr σ T. If the hydrostatic stress σ occurs, then dW = dV
V · σ . For non-symmetric σ , the hydrostatic stress is

represented by 1
3 tr σ T as well, which is why 1

3 tr σ T is called the mean stress σ .
For arbitrary coordinates, according to (5.2), the mean stress is given by

σ = 1

3
tr σ T = 1

3
tr
(
HTσ̃ TM

) = 1

3
tr
(
M HTσ̃ T

)
,

thus in the cases (α) and (β),

σ = 1

3
tr(G−1σ̃ T) = 1

3
tr(̃σ G−1) (5.5α)
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and

σ = 1

3
tr σ̃ T = 1

3
tr σ̃ . (5.5β)

Again, the mixed-variant definition (β) yields the simpler formula.
The infinitesimal deformation + dF corresponds to the deformation + dF in arbitrary coordinates

according to: M ( + dF)d̃f0 = ( + dF)M d̃f0. Thus, dF = M−1dF M and, due to (5.2) and (5.4),

dW = tr
(
HTσ̃ TM M−1dF M

) = tr
(
M H σ̃ dF

)
.

In the cases (α) and (β), we find

dW = tr
(
G−1σ̃ TdF

) = tr
(

dF
T
σ̃ G−1

)
(5.4α)

and

dW = tr
(
σ̃ TdF

) = tr
(

dF
T
σ̃
)

. (5.4β)

Again, we obtain a simpler result for definition (β).

5.4. Invariance of the law of elasticity

For isotropic materials in Cartesian coordinates the law of elasticity has the form7

ejσ = ∂E

∂j
+ 2

∂E

∂k
L + 3

∂E

∂l
L2 for j = tr L , k = tr L2 and l = tr L3 ,

where E is the elastic potential per unit volume of the initial state.14

If we want this simple form to hold for arbitrary coordinates as well, then σ̃ and L must have the same mixed
invariance, since the invariants and functional dependences are transferred only in this case. Therefore, and due
to the reasons already mentioned, it appears most practical to define both σ̃ and E as covariant-contravariant,
which is the reason why this variance has been emphasized in the definition of E in Chapter 3.

2. Review by Ruth Moufang (Zentralblatt für Mathematik und ihre Grenzgebiete)
Hencky introduced the logarithms of the principal strains as quantities of strain for the finite deformation of
isotropic materials. Here, this definition of the strain tensor is recovered as a special case of a characteriza-
tion based on the following postulates, where F is the matrix of the linear transformation of the coordinate
differentials and G is the fundamental tensor of the metric:

1. The strain tensor E(F) is determined by the matrix F and, apart from F, only depends on G.
2. If R is a rotation, then E(F R) = E(F).
3. A superposition principle holds such that for two coaxial stretches V1 and V2 and the corresponding strain

tensors E1 = E(V1), E2 = E(V2), E3 = E(V1 V2), there exists a uniquely invertible function f (x) with
f (E1) + f (E2) = f (E3).

4. For infinitesimal deformations + dF in Cartesian coordinates, the strain tensor turns into
1
2 (dF + dF

T
) + o(dF), where o(x) denotes the usual symbol and FT denotes the transpose of the matrix F

in general.

If F, in Cartesian coordinates, is split into a product of a pure stretch V with 3 real positive eigenvalues and a
Euclidean transformation, then the above postulates yield E = f −1(log V ), where f −1(x) is the inverse function
of f (x) and attains the form x + o(x) for small x. In the simplest case, one has to set f ≡ x ≡ f −1, which leads
to Hencky’s approach. Moving to curvilinear coordinates then yields a covariant, contravariant or mixed tensor
at choice. In the latter case, E = f −1(L∗) with L∗ = 1

2 log(GF Ĝ−1FT), where Ĝ is the fundamental tensor with
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respect to the end position. Here, in general, both f and f −1 are tensor-valued functions of a tensor, e.g. given in
the form of a convergent infinite series with a tensorial argument. – Then the logarithm of the volume dilation is
given by tr f (E), i.e. the trace of f (E). – The otherwise common strain tensor introduced by Trefftz12 satisfies the
above postulates for the superposition function f (x) = − 1

2 log(1 − 2x). – The strain deviator D is deduced from
the strain tensor by the requirements that two deformations which differ only by a similarity transformation have
the same deviator and that the tensor of a volume-preserving deformation is equal to its deviator. If, in general,
the common deviator operation with respect to E is denoted by dev E, then D = f −1(dev L∗). The discussion of
the characteristic equation corresponding to dev L gives some indication of the physical meaning of the relation
between tr(dev L3)2 and tr(dev L2)3 and indicates that

√
tr(dev L2) can generally be considered a measure for the

change of shape in agreement with the usual definition for infinitesimal deformations. – The author refers the
stresses to the undeformed surface element and defines the stress tensor via the requirements that

(1) in Cartesian coordinates, the force dA0 acting on a surface element d̃f0 is given by d̃f0 = σ dA0;
(2) in curvilinear coordinates, σ̃ is a tensor (or a tensor density);
(3) translating the surface element by dz corresponds to the work dW = 〈dz, σ̃ dA〉.
These conditions yield a representation of σ̃ in terms of σ as a mixed or twice-contravariant tensor. However, in
the former case, σ̃ is no longer symmetric along with σ . – Computing the power for infinitesimal strain yields
the known formulae and shows the advantage of using mixed tensors.

Ruth Moufang (Frankfurt am Main, 1950)

3. Review by William Prager (MathSciNet)
To define strain in a continuous medium which undergoes a finite deformation, the author starts with the matrix
F which represents the mapping of a neighbourhood of a point x̂ in the undeformed medium on to a neigh-
bourhood of the corresponding point x in the deformed medium: dx = F d̂x. In a plastic material, the history
of deformation is important and, hence, the knowledge of F alone is not sufficient. For an elastic material, on
the other hand, F completely characterizes the deformation. For an anisotropic elastic material, the rigid body
rotation contained in F is important, and F itself must be used to describe the deformation. For an isotropic
elastic material, however, this rigid body rotation is unessential; the strain tensor is then obtained by eliminat-
ing this rigid body rotation in a suitable manner. The author proceeds to establish postulates which should be
satisfied by any acceptable definition of the strain tensor E. First of all, it must be possible to build up this
tensor from the elements of the matrix F. Secondly, the tensor should not be influenced by a rigid body rotation
which precedes the deformation characterized by the matrix F. Thirdly, if V1 and V2 denote pure stretches with
coincident principal axes, E1 = E(V1) and E2 = E(V2) the corresponding strain tensors and E = E(V1 V2) the
strain tensor corresponding to the deformation characterized by V1 V2(= V2 V1), there should exist a monotonic
function f (E) such that f (E1)+ f (E2) = f (E). Finally, the definition of the strain tensor should reduce to the cus-
tomary one when infinitesimal deformations are considered. The author introduces a logarithmic strain tensor
and shows that it satisfies these postulates.

William Prager (1949)

4. Footnote by Clifford Truesdell and Richard Toupin
Later [1949] Richter worked out various special properties of [log V ] and [log U]. Noticing that the condition of
vanishing in uniform dilatation does not determine a unique strain measure, Richter proposed a set of axioms,
including a superposition principle for coaxial stretches, and showed that there are at x and X unique distor-
tion tensors that satisfy them. This corrects an early attempt by Moufang [41]. Richter’s distortion tensors are
complicated algebraic functions of e and E, respectively.

Clifford Truesdell and Richard Toupin (1960) [13, p. 270]

5. Footnote by Clifford Truesdell and Walter Noll
The first attempts at mathematical treatment of Cauchy’s idea [of an elastic material], apparently, are those of
Reiner [42], Richter [34] and Gleyzal [43]; Richter [44] was the first to observe that the reduction follows at
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once from a simple and natural requirement of invariance, which is, in fact, a special case of the principle of
material frame-indifference.

Clifford Truesdell and Walter Noll (1965) [6, p. 119]

Notes

1. See R. Moufang. Volumtreue Verzerrungen bei endlichen Formänderungen. Zeitschrift für Angewandte Mathematik und
Mechanik 1947; 25/27: 209–214 [41].

2. Whether or not a matrix is a tensor is determined by (2.10).
3. However, see (2.5).
4. The notation E(F) does not mean that E is a function of F in the sense of (2.5), but merely indicates that E is associated with F.
5. As usual, y = o(x) means that: lim(y/x) = 0 .
6. Since with f every multiple of f also satisfies postulate V3, f ′(0) can be normalized to 1.
7. See H. Richter: Das isotrope Elastizitätsgesetz. Zeitschrift für Angewandte Mathematik und Mechanik 1948; 28(7/8): 205–209

[34].
8. See, e.g., Moufang [14].
9. Cf. the somewhat different construction by Moufang [41].
10. Translators’ remarks: The stress σ̂ described here, connecting the surface element dÂ to the occurring forces, corresponds to the

first Piola–Kirchhoff stress.
11. Translators’ remarks: Here, T = 1

2 ( − B−1), T̂ = 1
2 (C − ).

12. Translators’ remarks: ‘Trefftz’s strain tensor’ is the ‘Almansi strain tensor’ 1
2 ( − B−1) in the current configuration.

13. Translators’ remarks: f (T) = f ( 1
2 ( − B−1) = − 1

2 log( − 2 · 1
2 ( − B−1)) = − 1

2 log(B−1) = log V for f (x) = − 1
2 log(1 − 2x).

14. Translators’ remarks: ejσ = det F · σ = τ is the Kirchhoff stress tensor.
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Appendix: List of Symbols

Changes made to Richter’s notation

Our notation Richter’s notation

A, B A, B/C arbitrary 3 × 3 matrices
aik, (A)ik aik , (A)ik entry in the ith row and kth column of A
det A |A| determinant of A
tr A {A} trace of A
AT A transpose of A

E identity tensor
A–1 A–1 inverse of A
x, y, . . . x, y, … vectors
F, F A, B jacobian matrices (deformation gradients)
x̂ x̂ preimage of x under F
E(F), E B(A), B strain tensor corresponding to F
R R pure Euclidean rotation
V S pure stretcĥ ̂ indicator of a tensor associated with the reference configuration x̂
V1, V2 S1, S2 coaxial stretches
E1, E2 V1, V2 strain tensors E(V1), E(V2)
f f uniquely invertible function with f(E1) + f(E2) = f(E)
o o function with y = o(x): lim y

x = 0
p, q h, y original point and its image under the deformation F
E0 W strain tensor with respect to F
Z Z Z = f(E0)
L L logarithmic strain tensor: L = log V
f−1 g inverse function of f
h, k h, k functions: h(x) = f –1(log(x)), k(x) = h(

√
x)

M U jacobian matrix of x = x(q)
G G metric fundamental tensor
L∗ L∗ logarithmic strain tensor in curvilinear coordinates
v v dilatation associated with F: v = det F
T T ‘common’ strain tensor, T = 1

2 ( − B–1), Almansi strain tensor
D D strain deviator (change of shape)
dev A Q̃ common deviator of the matrix A: dev A = A − 1

3 tr(A) ·
ζ ζ ζ characterizes the kind of loading
σ P0 cauchy stress tensor
σ̃ P stress tensor in curvilinear coordinates
dA df surface element
d̃f 0 dk0 force acting on dA0 at q
H C constant
dW dA differential of the expended work
V V volume
F F surface of V
σ = 1

3 trσ σ hydrostatic stress, mean stress
〈x, y〉 x · y scalar product
|x|2 x2 squared length of a vector
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