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Abstract

In this paper we derive a novel fourth-order gauge-invariant phenomenological model of infinitesimal rate-independent

gradient plasticity with isotropic hardening and Kröner’s incompatibility tensor inc(εp) := Curl [(Curl εp)T], where εp is

the symmetric plastic strain tensor. Here, gauge-invariance denotes invariance under diffeomorphic reparametrizations

of the reference configuration, suitably adapted to the geometrically linear setting. The model features a defect energy

contribution that is quadratic in the tensor inc(εp) and it contains isotropic hardening based on the rate of the plastic

strain tensor ε̇p. We motivate the new model by introducing a novel rotational invariance requirement in gradient

plasticity, which we call micro-randomness, suitable for the description of polycrystalline aggregates on a mesoscopic

scale and not coinciding with classical isotropy requirements. This new condition effectively reduces the increments of the

non-symmetric plastic distortion ṗ to their symmetric counterpart ε̇p = sym ṗ. In the polycrystalline case, this condition

is a statement about insensitivity to arbitrary superposed grain rotations. We formulate a mathematical existence result

for a suitably regularized non-gauge-invariant model. The regularized model is rather invariant under reparametrizations

of the reference configuration including infinitesimal conformal mappings.
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1. Introduction

In recent years growing attention has been paid to extending continuum plasticity theories towards the incorpo-
ration of the experimentally observed size effects in small scales (see e.g. [1–4]). This extension is mainly done
via the introduction of certain gradient terms, making the plastic evolution in some sense non-local. Perhaps the
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Table 1. Summary of the model by Aifantis et al. [5–7] based on the accumulated equivalent plastic strain γp. Depending on the sign

of 1γp, the model describes process-dependent hardening (1γp < 0) or softening (1γp > 0) owing to non-local effects.

sym ∇u = ε = εe + εp, εp ∈ Sym (3)

σy = σ0 + µ k2 γp − µL2
c 1γp, σy is the current yield stress

Lc > 0 material length scale

σ0 > 0 the initial yield stress

k2 can be taken negative for local softening behaviour

γp :=
∫ t

0

∥∥ε̇p

∥∥ ds the accumulated equivalent plastic strain.

earliest such phenomenological model is due to Aifantis et al. [5–8], [95–98] and [135, 136] who directly incor-

porated the Laplacian 1γp in the flow stress, where γp :=
∫ t

0

∥∥ε̇p

∥∥ ds is a measure of accumulated equivalent

plastic strain1 (see Table 1 for a summary).
Other variants of the Aifantis model also based on the accumulated plastic strain were proposed later through

the principle of virtual power by Fleck and Hutchinson [10], Gudmundson [11], and generalized by Gurtin and
Anand [12].

While there are numerous proposals of such gradient enhanced phenomenological models, either based on
the multiplicative decomposition

F = Fe · Fp (1)

(see e.g. [13–16]), or based on the geometrically linearized corresponding additive decomposition

ε = εe + εp (2)

(see e.g. [5–7, 10–12, 17–21], [100–103, 108–109, 113]), no general consensus has been reached as to which
variables describing the plastic evolution should be employed and how they should be combined with their
partial derivatives in space. For example, a dependence of the plastic flow rule directly via the infinitesimal
plastic strain variable εp is sometimes excluded, because the backstress variable εp is not gauge-invariant.2

However, if εp is not allowed to appear itself in the equations, then linear kinematic hardening á la Prager is
excluded from the onset, whereas the modelling of classical linear isotropic hardening remains possible because
it is based on

∥∥ε̇p

∥∥, which is invariant under reparametrization of the reference configuration (gauge-invariance),
see Section 3.1 in this paper.

With the use of an evolution equation for the symmetric plastic strain tensor εp being traditional, there are
also approaches that focus directly on the plastic distortion p (which is a non-symmetric variable), thus allowing
for the so-called plastic spin3 (see [22, p. 493 and (91.7) and (91.10)] and also [23–28], [129]). The connection
between the two approaches is simple: we can always identify εp := sym p. As it will turn out subsequently, the
introduction of the plastic distortion p will make our modelling framework much more transparent: on the one
hand, the passage from the multiplicative decomposition to the additive decomposition via formal geometric
linearization is easier and the discussion of invariance conditions becomes clearer, even if in the end we obtain
a model for the plastic strain tensor εp = sym p only.

Our aim with this paper is to present a rational modelling environment for gradient plasticity with respect
to the small strain framework and the additive decomposition which incorporates certain insights learned from
the multiplicative decomposition.

Let us therefore collect what the model should be able to do. It should:

• incorporate energetic hardening (owing to geometrically necessary dislocations (GNDs)) related to the
energetic length scale Lc;

• incorporate non-local hardening (backstress and Bauschinger effects);
• satisfy appropriate invariance conditions (objectivity, referential isotropy, independence of reference

configuration, gauge-invariance, elastic isotropy, elastic frame-indifference, etc.);
• allow, in principle, for plastic spin [16, 26, 29–33]);
• satisfy an extended positive dissipation principle and therefore be thermodynamically admissible;
• be able to be cast in a convex analytical framework;
• support a well-posedness result in both the rate-independent and the rate-dependent cases;
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• have physical meaningful and transparent boundary conditions for the plastic variables.

In this paper, we propose such a model, which, in the end, has a certain resemblance with the early model
proposed by Menzel and Steinmann [20] and we show its well-posedness in the rate-independent case with a
suitable regularization. Our derivation of the model based on invariance principles is, to the best of the authors’
knowledge, entirely new. The model is derived through a process of linearization of some state variables in
the finite strain case. The derivation of a linear model from a finite strain one is not new in the context of
elasto-plasticity. For instance, Mielke and Stefanelli [34] used 0-convergence to derive rigorously a model of
linearized plasticity as the limit of some finite strain plasticity model.

The mathematical well-posedness of our model seems to be interesting in its own right. Once more, the
convex analytical framework, based on incorporating the postulate of maximum plastic dissipation (PMDP),4

put forward initially by Moreau [39] and used later by many authors (e.g. [16, 31–33, 40–45]), proves to be
ideally suited. For that purpose, our “additive” model also admits a finite strain parent model by Krishnan and
Steigmann [46], who did not consider, however, the incorporation of (non-local) kinematic hardening.

Decisive for our new strain gradient plasticity model is the introduction of Kröner’s incompatibility tensor
inc (see [47–52], [118]) as an inhomogeneity measure acting on the symmetric plastic strain εp = sym p. This
incompatibility tensor is given by

inc(sym p) := Curl([Curl sym p]T) (3)

and it coincides to first order with the Riemann–Christoffel curvature tensor R in the metric characterized by the
finite plastic strain tensor Cp := Fp

TFp (De Wit [53]). In fact, considering the non-symmetric plastic distortion
Fp in the multiplicative decomposition (1) and writing Fp = 1l + p, the connection is

R(Fp
TFp) = R((1l + p)T(1l + p)) = R(1l + 2 sym p + pTp) = 2 inc(sym p) + h.o.t., (4)

where5

R
i
jkl(Cp) :=

∂0i
jl

∂xk

−
∂0i

jk

∂xl

+ 0m
jl 0

i
mk − 0m

jk 0
i
ml, (5)

with

0l
ij :=

1

2
gkl

[
∂gki

∂xj

+
∂gjk

∂xi

−
∂gij

∂xk

]

being the Christoffel symbols of the second kind in the metric Cp = (gij) whose inverse is C−1
p = (gij).

Assume that we change the reference configuration by a smooth invertible map

ψ : ξ 7→ x(ξ ), (6)

then the plastic distortion Fp in the multiplicative decomposition (1) should transform according to

Fp(x) −→ Fp(x(ξ ))
∂x(ξ )

∂ξ
= F̃p(ξ ) ∇ξψ(ξ ). (7)

Based on the Riemann–Christoffel curvature tensor R in (5), we may form a “true scalar” quantity, namely the
so-called Lanczos scalar ∑

ijkl

R
i
jkl · Ri

jkl =: ‖R‖2
R81 , (8)

which is form-invariant under a change of the reference configuration in the sense that

∥∥Rx(Fp(x)TFp(x))
∥∥2

=
∥∥Rξ ((F̃p(ξ ) ∇ξψ(ξ ))T(F̃p(ξ ) ∇ξψ(ξ )))

∥∥2
, (9)

(see Lanczos [54, (2.3)]) where Rx and Rξ denote the Riemann–Christoffel curvature tensor expressed in
coordinates x and ξ , respectively. Moreover, if we consider the transformation

Fp(x) −→ F̂p := Q(x)Fp(x), with arbitrary Q(x) ∈ O(3), (10)
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then we have the direct invariance condition for the Riemann–Christoffel curvature tensor

Rx(Fp(x)TFp(x)) = Rx(Fp(x)TQ(x)TQ(x)Fp(x)) = Rx((Q(x)Fp(x))TQ(x)Fp(x))

= Rx(F̂p(x)
T
F̂p(x)). (11)

The form-invariance property (9) is inherited in its geometric linearization, now by the inc-operator, in
the form of a direct invariance condition for the complete operator (and not just the “Lanczos”-type scalar

‖incx sym p‖2):
incx(sym p(x)) = incx(sym(p(x) + ∇xϑ(x)) ∀ϑ(x) ∈ C∞(R3, R

3), (12)

where we have identified ψ(x) = x + ϑ(x). In fact, from the identity (see [55, Proposition 2.1])

∇ axl(skew ∇ϑ) =
1

2
∇ curl ϑ = (Curl sym ∇ϑ)T, (13)

taking the Curl on both sides, we obtain

0 = Curl
(1

2
∇ curl ϑ

)
= Curl

[
(Curl sym ∇ϑ)T

]
= inc(sym ∇ϑ), (14)

which shows (12). Of course (12) implies that

‖incx(sym p(x))‖2 = ‖incx(sym(p(x) + ∇xϑ(x))‖2 ∀ϑ(x) ∈ C∞(R3, R
3), (15)

mirroring property (9) for the Lanczos-type scalar.
In addition, the direct invariance condition (11) for R under rotation fields Q(x) ∈ SO(3) translates to an

invariance condition on the inc-operator as well. We write Q(x) = 1l + A(x) + h.o.t. with A(x) ∈ so(3) and in
terms of the infinitesimal plastic distortion, we consider

p(x) −→ A(x) + p(x) ∀A(x) ∈ so(3)

and we have the invariance condition

incx(sym p(x)) = incx(sym(A(x) + p(x))) ∀ A(x) ∈ so(3). (16)

For both tensors R and inc we note the Saint-Venant compatibility condition and its linearization:

ψ(x) = x + ϑ(x) and Cp = FT
p Fp = 1l + εp + h.o.t (17)

Cp = FT
p Fp ∈ Sym+(3)symmetric positive definite

R(Cp) = 0 ⇔ Cp = ∇ψT∇ψ

See e.g. Ciarlet-Laurent [56, Theorem 1.1]

≈ inc(sym p) = 0 ⇔ sym p = sym ∇ϑ

in simply connected domains (see [56–59]). For more properties of the inc-operator, we refer the reader to [50,
59, 60].

With these preliminaries, both tensors R and inc qualify as incompatibility measures on positive-definite
symmetric plastic strains Cp = FT

pFp in the geometrically nonlinear and on symmetric plastic strains εp = sym p

in the geometrically linear settings, respectively.
In a purely phenomenological context, we have another way to measure the incompatibility of the plastic

distortion Fp itself via the so-called dislocation density tensor Curl x Fp(x) (see for instance [15, 16]). Following
the works of Davini and Parry [61], Cermelli and Gurtin [14] and Epstein [62], [125–128] it has been shown
that the differential operator (the “true dislocation density tensor”)6

1

det Fp

(Curl Fp) FT
p = det Fe(CurlC F−1

e )F−T
e , (18)
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Table 2. We need to realize that Curl p is a “sharper” incompatibility measure than inc(sym p).

Curl p = 0 ⇒ p = ∇ϑ

⇒ inc(sym p) = inc(sym ∇ϑ) = 0

inc(sym p) = 0 ⇒ sym p = sym ∇ϑ

/⇒ p = ∇ϑ but

⇒ p = ∇ϑ + A(x), A(x) ∈ so(3)

/⇒ Curl p = 0

(where CurlC means taking the spatial Curl with respect to the current configuration) is also form-invariant
under arbitrary coordinate transformation of the reference placement (see [14, (1.4) on p. 1542]).7 This property
is easily understood from (18)2, which is invariant under reparametrization of the reference system anyway.

From now on, we assume plastic incompressibility, i.e. det Fp = 1 and tr p = 0. Either

(Curl x Fp) FT
p linearized through Fp = 1l + p turns into Curl x p (19)

or
R(Fp

TFp) linearized through Fp = 1l + p turns into inc(sym p). (20)

Therefore, in the geometrically linear setting, two measures of incompatibility of the infinitesimal plastic dis-
tortion p are used in the literature. Some authors use the tensor Curl p (see [16, 17, 64, 65]) while others use
inc(sym p) (see [20]). See Table 2.

Concerning the invariance of the curvature tensor R observed in (9), we note that under a change of reference
placement Fp(x) −→ F̃p(ξ ) ∇ψ(ξ ), we obtain directly the form-invariance of the true dislocation density tensor

(Curl Fp) FT
p as well, meaning that

(Curl x Fp) FT
p = (Curl ξ (F̃p(ξ ) ∇ψ(ξ ))) (F̃p(ξ ) ∇ψ(ξ ))T, (21)

where Curl x and Curl ξ are the Curl expressed in coordinates x and ξ , respectively. Therefore, the expression∥∥∥(Curl x Fp) FT
p

∥∥∥
2

is also a true scalar quantity. Accordingly, in the linearized setting we consider as in (12)

p(x) −→ p(x) + ∇ϑ(x) (22)

and we obtain directly the invariance

Curl p(x) = Curl
[
p(x) + ∇ϑ(x)

]
, (23)

similar to (12).

Concerning superposition of rotation fields, we note that for Fp −→ Q Fp for Q ∈ O(3) where Q is a
homogeneous rotation, we have

(Curl (Q Fp))(Q Fp)T = Q (Curl Fp)FT
p Q

T
. (24)

Similarly, in the linearized setting we consider p(x) −→ A + p(x) for every A ∈ so(3) with A a constant
skew-symmetric matrix and we obtain

Curl p(x) = Curl
[
A + p(x)

]
. (25)

We have the relation
ψ(x) = x + ϑ(x) and Fp = 1l + p

(Curl Fp)FT
p = 0 ⇔ Fp = ∇ψ ≡ Curl p = 0 ⇔ p = ∇ϑ (26)

in simply connected domains and under appropriate regularity conditions (see [66, Section 59]).
The difference between the two incompatibility measures for the linearized setting, inc(sym p) on the one

hand and Curl p on the other hand, is the invariance property under superposed infinitesimal rotations. While
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inc(sym p) allows to superpose any inhomogeneous infinitesimal rotation field A(x), Curl p allows to superpose

only homogeneous infinitesimal rotation fields A.
In single-crystal gradient plasticity, it is typically Curl Fp which is used, whereas it is debatable whether

Curl Fp is a good state-variable for polycrystalline material without texture.
In the following, we use a set of invariance conditions that allow us to decide between using Curl or inc.

It is clear, however, that assuming a set of invariance requirements is already a constitutive requirement and
therefore subject to discussion.8 In all these developments, beyond the discussion on which invariance principles
are applied, it is our aim to clearly state and show, which kind of modelling restrictions will be obtained from
them.

Our contribution is structured as follows: after introducing in Section 2 some notation, operators and func-
tion spaces used throughout the paper, we set the stage in Section 3 with two important invariance conditions
on which our model will be tested. Namely, the gauge-invariance known as invariance under compatible
transformations of the reference system, and a novel rotational invariance postulate for polycrystals, called
micro-randomness. In Section 4, we first present few models of gradient plasticity with Kröner’s incompati-
bility tensor which fail our invariance conditions, then we introduce our novel fourth-order phenomenological
model which, though it fails also the gauge-invariance condition, is invariant with respect to a subclass of
reparametrizations of the reference configurations, including the infinitesimal conformal group. The new model
is then formulated using the convex analytical framework leading to mathematical strong and weak formula-
tions. Finally an existence result for the weak formulation is obtained in the same framework as in [40–45, 77,
78, 86, 113, 117].

Let us next fix some notation and definitions which will also make the paper more clear and readable.

2. Some notational agreements and definitions

Let� be a bounded domain in R
3 with Lipschitz continuous boundary ∂�, which is occupied by an elastoplastic

body in its undeformed configuration. Let 0 be a smooth subset of ∂� with non-vanishing two-dimensional
Hausdorff measure. A material point in � is denoted by x and the time domain under consideration is the
interval [0, T].

For every a, b ∈ R
3, we let 〈a, b〉

R
3 denote the scalar product on R

3 with associated vector norm ‖a‖2

R
3 =

〈a, a〉
R

3 . We denote by R
3×3 the set of real 3 × 3 tensors. The standard Euclidean scalar product on R

3×3 is

given by 〈A, B〉
R

3×3 = tr
[
ABT

]
, where BT denotes the transpose tensor of B. Thus, the Frobenius tensor norm

is ‖A‖2 = 〈A, A〉
R

3×3 . In the following, we omit the subscripts R
3 and R

3×3. The identity tensor on R
3×3 will

be denoted by 1l, so that tr(A) = 〈A, 1l〉. We let GL(3) := {X ∈ R
3×3 | det(X ) 6= 0} denote the group of

invertible 3 × 3 square matrices; GL+(3) := {X ∈ R
3×3 | det(X ) > 0}; SO(3) := {X ∈ GL(3) | X X T =

1l, det[X ] = 1} is the Lie group of rotations in R
3 whose Lie algebra is the set so(3) := {X ∈ R

3×3 | X T = −X }

of skew-symmetric tensors. We let Sym (3) := {X ∈ R
3×3 | X T = X } denote the set of symmetric tensors

and sl(3) := {X ∈ R
3×3 | tr (X ) = 0} be the Lie algebra of traceless tensors. For every X ∈ R

3×3, we set
sym(X ) = 1

2

(
X + X T

)
, skew (X ) = 1

2

(
X − X T

)
and dev(X ) = X − 1

3
tr (X ) 1l ∈ sl(3) for the symmetric part, the

skew-symmetric part and the deviatoric part of X , respectively. Quantities which are constant in space will be

denoted with an overbar, e.g., A ∈ so(3) for the function A : R
3 → so(3), which is constant with constant A.

The body is assumed to undergo deformations. Its behaviour is governed by a set of equations and
constitutive relations. The following is a list of variables and parameters used throughout the paper:

• ϕ is the deformation of the body;
• u(x, t) = ϕ(x, t) − x is the displacement of the macroscopic material points;
• F = ∇ϕ = 1l + ∇u is the deformation gradient;
• Fp = 1l + p is the plastic distortion which is a non-symmetric tensor with unit determinant, that is,

Fp ∈ SL(3);
• Fe = 1l + e is the elastic distortion which is a non-symmetric tensor;
• Cp := FT

p Fp = 1l + εp + · · · is the positive-definite plastic metric;

• Ce := FT
e Fe = 1l + εe + · · · is the positive-definite elastic strain tensor;
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• p is the infinitesimal plastic distortion variable which is a non-symmetric second-order tensor, incapable
of sustaining volumetric changes; that is, p ∈ sl(3); the tensor p represents the average plastic slip; p is
not gauge-invariant, whereas the rate ṗ is;

• e = ∇u − p is the infinitesimal elastic distortion which is a non-symmetric second-order tensor and is a
state-variable;

• εp = sym p is the symmetric infinitesimal plastic strain tensor, which is also trace free, εp ∈ sl(3); εp is
not gauge-invariant; the rate ε̇p = sym ṗ is gauge-invariant; εp is not a state-variable;

• skew p is called plastic rotation or plastic spin and is not a state-variable;
• εe = sym (∇u − p) is the symmetric infinitesimal elastic strain tensor and is a state-variable;
• σ is the Cauchy stress tensor which is a symmetric second-order tensor and is gauge-invariant;
• σ0 is the initial yield stress for plastic strain and is gauge-invariant;
• σy is the current yield stress for plastic strain and is gauge-invariant;
• f is the body force;
• Curl p = − Curl e = α is Nye’s dislocation density tensor (see (18) for the definition of α), satisfying the

so-called Bianchi identities Divα = 0 and is gauge-invariant;
• R is the Riemann–Christoffel curvature tensor, see (5);

• ‖R‖2 is the Lanczos-type scalar;
• inc(sym p) = inc(εp) = − inc(εe) is Kröner’s second-order incompatibility tensor and is gauge-invariant;

• γp =

∫ t

0

‖sym ṗ‖ ds is the accumulated equivalent plastic strain and is gauge-invariant;

• γ̃p =

∫ t

0

‖ṗ‖ ds is the accumulated equivalent plastic distortion and is gauge-invariant.

For isotropic media, the fourth-order isotropic elasticity tensor Ciso : Sym(3) → Sym(3) is given by

CisoX = 2µ dev sym X + κ tr(X )1l = 2µ sym X + λ tr(X )1l (27)

for any second-order tensor X , where µ and λ are the Lamé moduli satisfying

µ > 0 and 3λ+ 2µ > 0, (28)

and κ > 0 is the bulk modulus. These conditions suffice for pointwise ellipticity of the elasticity tensor in the
sense that there exists a constant m0 > 0 such that

∀X ∈ R
3×3: 〈sym X , Ciso sym X 〉 ≥ m0 ‖sym X‖2 . (29)

For every X ∈ C1(�, R
3×3) with rows X1, X2, X3, we use in this paper the definition of Curl X in [16, 67]:

Curl X =

(
curl X1 − −
curl X2 − −
curl X3 − −

)
∈ R

3×3, (30)

for which Curl ∇v = 0 for every v ∈ C2(�, R
3). Note that the definition of Curl X above is such that

(Curl X )Ta = curl (X Ta) for every a ∈ R
3 and this clearly corresponds to the transpose of the Curl of a

tensor as defined in [17, 22].
For

A =

(
0 −a3 a2

a3 0 −a1

−a2 a1 0

)
∈ so(3),

we consider the operator axl : so(3) → R
3 and anti : R

3 → so(3) through

axl(A) := (a1, a2, a3)T , A. v = (axl A) × v, (anti(v))ij = εjik vk , ∀ v ∈ R
3, (31)
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(axl A)k = −
1

2

3∑

i,j=1

εijk Aij =
1

2

3∑

i,j=1

εkij Aji, (32)

Aij =

3∑

k=1

−εijk (axl A)k =: anti(axl A)ij, (33)

axl(anti(v))k = vk , (34)

where εijk is the totally antisymmetric third-order Levi-Civita permutation tensor defined by

εijk :=

{
1 if {i, j, k} = {1, 2, 3}, {2, 3, 1} or {3, 1, 2},
−1 if {i, j, k} = {2, 1, 3}, {1, 3, 2} or {3, 2, 1},
0 if an index is repeated.

Hence, the operators axl : so(3) → R
3 and anti : R

3 → so(3) are canonical identifications of so(3) and R
3.

Note that,

(axl skew A)k =
1

2

3∑

i,j=1

εkij skew(A)ji =
1

4

3∑

i,j=1

εkijAji −
1

4

3∑

i,j=1

εkijAji

=
1

2

3∑

i,j=1

εkijAji ∀ A ∈ R
3×3. (35)

The following function spaces and norms will also be used later.

H(Curl; �, R
3×3) :=

{
X ∈ L2(�, R

3×3) | Curl X ∈ L2(�, R
3×3)

}
,

‖X‖2
H(Curl;�) := ‖X‖2

L2(�)
+ ‖Curl X‖2

L2(�) , ∀X ∈ H(Curl;�, R
3×3), (36)

H(Curl; �, E) :=
{

X : � → E | X ∈ H(Curl; �, R
3×3)

}
,

for E := sl(3) or Sym (3) ∩ sl(3).
We also consider the space

H0(Curl; �, 0, R3×3) (37)

as the completion in the norm in (36) of the space {q ∈ C∞(�, 0, R
3×3) | q × n|0 = 0}. Therefore, this space

generalizes the tangential Dirichlet boundary condition

q × n|0 = 0 (38)

to be satisfied by the plastic distortion p or the plastic strain εp := sym p. Whenever, 0 = ∂�, we simply write

H0(Curl; �, R
3×3). The space

H0(Curl; �, 0, E)

is defined as in (36).
The divergence operator Div on second-order tensor-valued functions is also defined row-wise as

Div X =

(
div X1

div X2

div X3

)
. (39)

Further properties of Kröner’s incompatibility tensor inc can be found in the appendix.
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3. Discussion of some invariance conditions in plasticity

3.1. Gauge-invariance: invariance under compatible transformations of the reference system

Since the modelling should be invariant with respect to the used coordinate system, we may introduce the
gauge-invariance condition.

Consider again the multiplicative split F(x) = Fe(x)Fp(x) and perform a compatible change of the reference
configuration, i.e., set x = ψ(ξ ). Then we have upon transforming to new coordinates

F(ψ(ξ )) ∇ξψ(ξ ) = Fe(ψ(ξ )) Fp(ψ(ξ )) ∇ξψ(ξ ). (40)

Therefore, we require our new model to be form-invariant under

F(x) −→ F(ψ(ξ ))∇ξψ(ξ ) ∀ψ ∈ C∞(R3, R3)

Fp(x) −→ Fp(ψ(ξ ))∇ξψ(ξ ) (Finite Gauge-Invariance)
. (FGI)

Performing a geometrical linearization, we obtain

F(x) = Fe(x)Fp(x) −→ ∇u = e(x) + p(x)

and the finite gauge-invariance (FGI) translates into direct invariance under

∇u(x) −→ ∇u(ξ ) + ∇ϑ(ξ ) ∀ϑ ∈ C∞(R3, R3)

p(x) −→ p(ξ ) + ∇ϑ(ξ ) (Linear Gauge-Invariance)
, (LGI)

which is also known as translational gauge-invariance (see [68–70]).

3.2. Micro-randomness: a novel rotational invariance postulate for polycrystals

Polycrystals can be viewed as random aggregates of single crystals, which at sufficiently large scales can be
viewed as isotropic.

Imagine a given initial distribution Fp(x, 0) of grains and subject the polycrystal to a given mechanical
loading which alters the plastic state. The result will be recorded in the history t → Fp(x, t).

Now consider a randomly rotated initial distribution of grains and plastic distortions via

F̃p(x, 0) := Q(x)Fp(x, 0) with Q(x) ∈ SO(3) . (41)

At a sufficiently large scale we are not able to discern this rotational rearrangement and we are led to assume
that the new plastic history under the same given loading as before should be

t → F̃p(x, t) := Q(x)Fp(x, t) . (42)

This is essentially a new invariance requirement to be imposed on our model for the polycrystal. It means
that, up to the initially different inhomogeneous rotation of the grains, the response is the same. As rotations
are involved, one might take this as a statement of classical isotropy. However, this would be misguided because
classical isotropy is concerned with rigidly rotating the whole (polycrystalline) sample, whereas here each
individual grain is rotated differently9 (see the explanation in Figure 1).

Considering now the geometrically linear setting, we compare the initial infinitesimal plastic distortion
p(x, 0) with solution t → p(x, t) versus p(x, 0) + A(x) with its time evolution t → p̃(x, t). Our micro-randomness
invariance condition postulates in the geometrically linear setting that

p(x, 0) → p̃(x, 0) = p(x, 0) + A(x) ⇒
p(x, t) → p̃(x, t) = p(x, t) + A(x) ∀t > 0

(Linear Micro-Random) (LMR)
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Figure 1. The micro-random model does not resolve a scale smaller than L̂c (blue-filled balls). Inside the blue-filled balls, we have

crystallites; if we want to model what happens inside there, we can still try to model this with an isotropy assumption. This is our

isotropic Curl p-model with spin (see Table 6). In reality however, the orientation of the crystallites matters.

and in the finite deformation setting that

Fp(x, 0) → F̃p(x, 0) = Q(x) Fp(x, 0) ⇒

Fp(x, t) → F̃p(x, t) = Q(x) Fp(x, t) ∀t > 0
(Finite Micro-Random) . (FMR)

In addition, we are aware of the fact that determining exact initial conditions for the rotations of grains in a
polycrystal is practically impossible. Therefore, the influence of considering different initial grain distributions
should be minimized in order to obtain a suitable effective model. Our micro-randomness invariance condition
ensures that the effect of different initial conditions shows only as an “offset” of an otherwise unique response,
as seen above.

Note that

F(x) = Fe(x) Fp(x) = Fe(x) Q(x)TQ(x)︸ ︷︷ ︸
= 1l

Fp(x)

∇u = e(x) + p(x) = e + AT(x) + A(x)︸ ︷︷ ︸
= 0

+p(x)





Q(x) = exp(A(x)), (43)

thus the invariance condition connected to micro-randomness reads in the finite strain case

(F, Fe, Fp) −→ (F, FeQ
T(x), QFp(x)) ∀ Q(x) ∈ SO(3), (44)



Ebobisse and Neff 139

Table 3. Invariance conditions for infinitesimal gradient plasticity.

Objectivity/Linearized frame-indifference:

{
∇u −→ A + ∇u,

p −→ A + p
A ∈ so(3)

Linearized gauge-invariance:

{
∇u −→ ∇u + ∇ϑ ,

p −→ p + ∇ϑ
ϑ ∈ C∞(R3, R3)

Linearized micro-randomness: p −→ p + A(x) A(x) ∈ so(3)

Isotropy:





h : R
3 → R −→ h] with h](ξ ) := h(QTξ ),

φ : R
3 → R

3 −→ φ] with φ](ξ ) := Qφ(QTξ ),

S : R
3 → R

3×3 −→ S] with S](ξ ) := Q S(QTξ ) QT
Q ∈ O(3)

while in the geometrically linear context, we need to require the invariance

(∇u, e, p) −→ (∇u, e + AT(x), A(x) + p(x)) ∀ A(x) ∈ so(3). (45)

3.3. Isotropy in geometrically linear models

Whereas the above invariance conditions can be characterized by additive operators, for classical isotropy we
need the group of rotations Q ∈ O(3). We define isotropy in geometrically linear models to be form-invariance
under simultaneous change of spatial and referential coordinates by a rigid rotation. In this case, scalar functions
h : R

3 → R, vector fields φ : R
3 → R

3 and second-order tensor fields S : R
3 → R

3×3 are transformed as
follows:

h −→ h] with h](ξ ) := h(QTξ ),

φ −→ φ] with φ](ξ ) := Qφ(QTξ ),

S −→ S] with S](ξ ) := Q S(QTξ ) QT.





(46)

It can be shown (see [72]) that

Curl ξ
[
p](ξ )

]
= Q

(
Curl x p(x)

)
QT and incξ

[
sym p](ξ )

]
= Q incx

[
sym p(x)

]
QT. (47)

Therefore, both our incompatibility measures are properly isotropic and therefore all our presented models,
based on Curl p or inc(sym p), respectively, are fully isotropic.

A summary of the invariance conditions for infinitesimal gradient plasticity is presented in Table 3.

4. Some models of gradient plasticity with Kröner’s incompatibility tensor

Before we introduce and analyze our “ideal” model designed from the set of requirements presented in the
introduction, we found that it is more interesting to first present those few models we first considered with an
emphasis on the difficulties and shortcomings of those models both from the mechanical and mathematical
points of view. Let us first make it clear that the approach used to analyze those models as well as our model in
Section 4.3 is through a convex analytical framework and variational inequalities developed by Han and Reddy
[40] for classical plasticity and quite often used for models of gradient plasticity (see [16, 31, 32, 41, 42]) as
well.

4.1. An irrotational model with linear kinematic hardening

In this section, we present a model with linear kinematic hardening and Kröner’s incompatibility tensor where
the plastic variable is symmetric, i.e. a model with no plastic spin. The goal is to find the displacement field u
and the infinitesimal plastic strain εp in some suitable function spaces such that the content of Table 4 holds. (A
modified version of this model is presented in Table 5.)
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Table 4. The model with linear kinematic Prager-type hardening and Kröner’s incompatibility tensor. The boundary conditions on

εp cannot be specified from the structure of the model. The problem with this model is the presence of the norm
∥∥εp

∥∥2
which is not

linearized gauge-invariant. A careful analysis of the model in the spirit of Section 4.3 will lead to single out the necessity of an L2-control

of Curl εp, which is also not a priori controlled in the model. Altogether, well-posedness of the model remains unclear. A modified

version of this model is presented in Table 5. This model is micro-random, i.e. invariant with respect to p → p + A(x), A(x) ∈ so(3),

but not linearized gauge-invariant, i.e. not invariant with respect to p → p + ∇ϑ , ϑ ∈ C∞(R3, R).

Additive split of distortion: ∇u = e + p

Additive split of strain: sym ∇u = εe + εp, εe := sym e and εp := sym p

Equilibrium: Div σ + f = 0 with σ = Cisoεe

Free energy: 1
2 〈Cisoεe, εe〉 + 1

2 µ k1

∥∥εp

∥∥2
+ 1

2 µ L̂4
c

∥∥inc(εp)
∥∥2

Yield condition: φ(6E) := ‖dev6E‖ − σ0 ≤ 0

where 6E := σ +6kin +6inc with 6kin := −µ k1εp,

6inc := −µ L̂4
c inc(inc εp) ∈ Sym(3)

Dissipation inequality:

∫

�
〈6E, ε̇p〉 dx ≥ 0

Dissipation function: D(q) := σ0 ‖q‖

Flow law in primal form: 6E ∈ ∂D(ε̇p)

Flow law in dual form: ε̇p = λ
dev6E

‖dev6E‖
, λ =

∥∥ε̇p

∥∥

KKT conditions: λ ≥ 0, φ(6E) ≤ 0, λφ(6E) = 0

Boundary conditions for εp: to be specified

Function space for εp: εp(t, ·) ∈ L2(�, Sym(3)), inc(εp) ∈ L2(�, Sym(3))

4.2. A fully isotropic model with isotropic hardening and plastic spin

The model is described completely in Table 6.

4.3. An irrotational model with isotropic hardening

In this section, we discuss a variant of the previous model with linear kinematic hardening replaced by isotropic
hardening. The new model will be invariant under linear referential isotropy (LRIso), linear micro-random
(LMR), linear gauge-invariance (LGI), linear elastic objectivity, linear elastic isotropy.

4.3.1. Derivation of the model.

The balance equation. The conventional macroscopic force balance leads to the equation of equilibrium

Div σ + f = 0 (48)

in which σ is the infinitesimal symmetric Cauchy stress and f is the body force.

Constitutive equations. The constitutive equations are obtained from a free-energy imbalance together with a
flow law that characterizes plastic behaviour. The total strain ε is additively decomposed into elastic and plastic
components εe and εp, so that

ε = εe + εp (49)

with the plastic strain incapable of sustaining volumetric changes; that is, tr εp = 0.
The strain–displacement relation is given by

ε = sym ∇u =
1

2
(∇u + ∇uT). (50)
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Table 5. The model with linear kinematic Prager-type hardening and Kröner’s incompatibility tensor. The simple regularization term∥∥Curl εp

∥∥2
allows us to justify the boundary conditions on εp. The problem with this model is the presence of the norms

∥∥εp

∥∥2
and∥∥Curl εp

∥∥2
which are both not linearized gauge-invariant. Altogether, well-posedness of this modified model is obtained as in Section

4.3, with the difference that uniqueness of the weak solution is obtained without any additional regularity assumption. This model is

micro-random, i.e. invariant with respect to p → p + A(x), A(x) ∈ so(3), but not linearized gauge-invariant, i.e. not invariant with

respect to p → p + ∇ϑ , ϑ ∈ C∞(R3, R).

Additive split of distortion: ∇u = e + p

Additive split of strain: sym ∇u = εe + εp, εe := sym e and εp := sym p

Equilibrium: Div σ + f = 0 with σ = Cisoεe

Free energy: 1
2 〈Cisoεe, εe〉 + 1

2 µ k1

∥∥εp

∥∥2
+ 1

2 µ L2
c

∥∥Curl εp

∥∥2
+ 1

2 µ L̂4
c

∥∥inc(εp)
∥∥2

Yield condition: φ(6E) := ‖dev6E‖ − σ0 ≤ 0

where

6E := σ +6kin +6curl +6inc, 6kin := −µ k1εp

6curl := −µL2
c sym Curl sym Curl εp ∈ Sym(3)

6inc := −µ L̂4
c inc(inc εp) ∈ Sym(3)

Dissipation inequality:

∫

�
〈6E, ε̇p〉 dx ≥ 0

Dissipation function: D(q) := σ0 ‖q‖

Flow law in primal form: 6E ∈ ∂D(ε̇p)

Flow law in dual form: ε̇p = λ
dev6E

‖dev6E‖
, λ =

∥∥ε̇p

∥∥

KKT conditions: λ ≥ 0, φ(6E) ≤ 0, λφ(6E) = 0

Boundary conditions for εp: εp × n|∂� = 0 and (Curl εp)T × n|∂� = 0

Function space for εp: εp(t, ·) ∈ L2(�, Sym(3)), inc(εp) ∈ L2(�, Sym(3))

Table 6. A fully isotropic model with isotropic hardening and plastic spin. The model is fully isotropic because it is form-invariant

under the ]-transformation defined in (46). The model is also linearized gauge-invariant, i.e. invariant with respect to p → p + ∇ϑ ,

ϑ ∈ C∞(R3, R), but not micro-random, i.e. not invariant with respect to p → p + A(x), A(x) ∈ so(3).

Additive split of distortion: ∇u = e + p, εe = sym e, εp = sym p

Equilibrium: Div σ + f = 0 with σ = Cisoεe

Free energy:
1

2
〈Cisoεe, εe〉 +

1

2
µ k2 |γ̃p|2 +

1

2
µ L2

c ‖Curl p‖2

Yield condition: φ(6E, g) := ‖dev6E‖ − (σ0 − g) ≤ 0 where g := −µ k2γ̃p

6E := σ +6curl,

6curl := −µ L2
c Curl Curl p

Dissipation inequality:

∫

�

[
〈6E, ṗ〉 + g ˙̃γ p〉

]
dx ≥ 0

Dissipation function: D(ε̇p, ˙̃γ p) :=

{
‖ṗ‖ if ‖ṗ‖ ≤ ˙̃γ p,

∞ otherwise

Flow law in primal form: (6E, g) ∈ ∂D(ε̇p, ˙̃γ p)

Flow law in dual form: ṗ = λ
dev6E

‖dev6E‖
, ˙̃γ p = λ = ‖ṗ‖

KKT conditions: λ ≥ 0, φ(6E, g) ≤ 0, λφ(6E, g) = 0

Boundary conditions for p: p × n|0 = 0, Curl p × n|∂�\0 = 0

Free-energy density. In this model the free-energy density is considered in the additively separated form

W(u, εp, inc εp, γp) : = We(εe)︸ ︷︷ ︸
elastic energy

+ Winc(inc εp)︸ ︷︷ ︸
mesoscopic

incompatibility

+ Wiso(γp)︸ ︷︷ ︸
isotropic hardening

energy (SSD-related)

, (51)
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where

We(εe) :=
1

2
〈εe, Cisoεe〉 = µ

∥∥sym ∇u − εp

∥∥2
+

1

2
λ tr[∇u − εp]2,

Winc(inc εp) :=
1

2
µ L̂4

c

∥∥inc εp

∥∥2
=

1

2
µ L̂4

c

∥∥Curl[(Curl εp)T]
∥∥2

,

Wiso(γp) :=
1

2
µ k2 |γp|

2,





(52)

and λ, µ are the Lamé moduli with µ > 0 and 3λ+ 2µ > 0, L̂c ≥ 0 is an energetic length scale and k2 > 0 is a
positive non-dimensional isotropic hardening constant, γp is the isotropic hardening variable (the accumulated
equivalent plastic strain).

From the local free-energy imbalance

d

dt
W ≤ 〈σ , ∇ut〉 = 〈σ , ε̇〉 ⇔

d

dt
W − 〈σ , ε̇e〉 − 〈σ , ε̇p〉 ≤ 0

⇔
d

dt
W(u, εp, D2εp, γp) ≤ 0 for u fixed

where the second equivalence is obtained using arguments from thermodynamics which give the elasticity
relation

σ = Cisoεe = 2µ (sym ∇u − εp) + λ tr(sym ∇u − εp)1l. (53)

Therefore, we obtain
〈σ , ε̇p〉 − µ L̂4

c〈inc εp, inc ε̇p〉 − µ k2 γp γ̇p ≥ 0. (54)

Now, integrating (54), we arrive at

0 ≤

∫

�

[
〈σ , ε̇p〉 − µ L̂4

c 〈 inc(inc εp)︸ ︷︷ ︸
∈Sym(3)

, ε̇p〉 − µ k2 γp γ̇p −

3∑

i=1

div
(
µ L̂4

c ε̇p i ×
[
Curl inc εp

]T

i

)

−

3∑

i=1

div
(
µ L̂4

c

[
Curl ε̇p

]T

i
×
[
inc εp

]
i

)]
dx

=

∫

�

[
〈σ − µ L̂4

c inc(inc εp), ε̇p〉 − µ k2 γp γ̇p

]
dx (55)

−

3∑

i=1

µ L̂4
c

∫

∂�

〈ε̇p i ×
[
Curl inc εp

]T

i
, n〉 dS −

3∑

i=1

µ L̂4
c

∫

∂�

〈
[
Curl ε̇p

]T

i
×
[
inc εp

]
i
, n〉 dS.

In order to obtain a global reduced dissipation inequality one needs to choose suitable boundary conditions
for which the following two equations are satisfied

3∑

i=1

∫

∂�

〈ε̇p i × n,
[
Curl inc εp

]T

i
〉 dS = 0. (56)

3∑

i=1

∫

∂�

〈
[
Curl ε̇p

]T

i
× n,

[
inc εp

]
i
〉 dS = 0. (57)

The simplest lower order boundary conditions to satisfy (56) and (57) are

εp × n|∂� = 0 and
[
Curl εp

]T
× n|∂� = 0. (58)

Other possible boundary conditions to satisfy the equations (56) and (57) are given in Table 7.
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Table 7. Possible boundary conditions for (56) and (57) to be satisfied.

boundary conditions for (56) boundary conditions for (57)

[Curl inc εp
]T

× n|∂� = 0 (inc εp) × n|∂� = 0

εp × n|0 = 0 and
[
Curl inc εp

]T
× n|∂�\0 = 0

[
Curl εp

]T
× n|0 = 0 and inc εp × n|∂�\0 = 0.

Table 8. The irrotational model with isotropic hardening and Kröner’s incompatibility tensor. The terms in the free-energy density

are not enough to guarantee the minimum regularity required, i.e. εp ∈ H(Curl) and (Curl εp)T ∈ H(Curl), in order to justify

mathematically the boundary conditions εp × n|∂� = 0 and (Curl εp)T × n|∂� = 0.

Additive split of strain: sym ∇u = εe + εp

Equilibrium: Div σ + f = 0 with σ = Cisoεe

Free energy:
1

2
〈Cisoεe, εe〉 +

1

2
µ k2 |γp|2 +

1

2
µ L̂4

c

∥∥inc εp

∥∥2

Yield condition: φ(6E, g) := ‖dev6E‖ − (σ0 − g) ≤ 0 where g := −µ k2γp

6E := σ +6inc,

6inc := −µ L̂4
c inc inc εp = Curl

([
Curl Curl [(Curl εp)T]

]T)

Dissipation inequality:

∫

�

[
〈6E, ε̇p〉 + g γ̇p〉

]
dx ≥ 0

Dissipation function: D(ε̇p, γ̇p) :=

{
σ0

∥∥ε̇p

∥∥ if
∥∥ε̇p

∥∥ ≤ γ̇p,

∞ otherwise

Flow law in primal form: (6E, g) ∈ ∂D(ε̇p, γ̇p)

Flow law in dual form: ε̇p = λ
dev6E

‖dev6E‖
, γ̇p = λ =

∥∥ε̇p

∥∥

KKT conditions: λ ≥ 0, φ(6E, g) ≤ 0, λφ(6E, g) = 0

Boundary conditions for εp: εp × n|∂� = 0, (Curl εp)T × n|∂� = 0

However, these boundary conditions cannot be mathematically justified from the free-energy density W
considered so far: both terms in (56) and (57) are not automatically well-defined as boundary traces. In fact,
one needs to show that εp ∈ H(Curl) and (Curl εp)T ∈ H(Curl). This information is missing from the energy.

We only know that εp ∈ L2 (due to isotropic hardening) and inc εp = Curl[(Curl εp)T] ∈ L2. The missing piece

of information to proceed is Curl εp ∈ L2.
Thus, one needs to modify the model by adding a new regularizing term in the free-energy density W , which

is physically meaningful in the sense that it does satisfy some invariance properties. The unmodified model is
summarized in Table 8.

We will consider the additional term

Wcurl(Curl p) :=
1

2
µ L2

c

∥∥dev sym Curl εp

∥∥2
, (59)

which is motivated in the following section.

4.3.2. Conformal gauge-invariance: the regularization term dev sym Curl εp.

We show subsequently that the model with the regularizing term dev sym Curl εp allows for a mathematical
existence proof. However, what about the invariance conditions, notably gauge-invariance?

It is easy to see that

p → dev sym Curl εp = dev sym Curl sym p
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is micro-random whereas it is not linear gauge-invariant, i.e.

p → p + ∇ϑ

dev sym Curl sym(∇ϑ + p) 6= dev sym Curl sym p ∀ϑ ∈ C1(�, R3).
(60)

Let us now determine those mappings ϑ : R
3 → R

3 that are still “allowed” for gauge-invariance, in the sense
that

dev sym Curl sym(∇ϑ + p) = dev sym Curl sym p.

Automatically, these mappings satisfy the identity inc(sym ∇ϑ) = 0. Moreover, by linearity we should have

dev sym Curl sym ∇ϑ = 0. (61)

However, because tr(Curl S) = 0 for all smooth symmetric tensor fields S ∈ Sym(3) (see (109) in the appendix),
the latter is equivalent to

sym Curl sym ∇ϑ = 0.

This implies that for some non-constant skew-symmetric tensor field A : � → so(3) we have

Curl sym ∇ϑ(x) = A(x) ⇔ (Curl sym ∇ϑ)T = −A(x). (62)

Taking the Curl on both sides leads to

Curl [(Curl sym ∇ϑ)T] = − Curl A(x) ⇔ 0 = inc(sym ∇ϑ) = − Curl A(x). (63)

Thus, A(x) = A is a constant skew-symmetric matrix, according to an observation in [72]. Reinserting into
(62), we must have

Curl sym ∇ϑ(x) = A. (64)

We observe that (see [73])

Curl (ζ (x1, x2, x3) · 1l) =

(
0 −ζ,3 ζ,2

ζ,3 0 −ζ,1

−ζ,2 ζ,1 0

)
ζ : R

3 → R

and with ζ (x1, x2, x3) = a x1 + b x2 + c x3, we obtain

Curl ((ax1 + bx2 + cx3) · 1l) =

(
0 −c b
c 0 −a

−b a 0

)
.

Hence, a solution to (64) can be obtained in the format

sym ∇ϑ(x1, x2, x3) = ζ (x1, x2, x3) · 1l. (65)

On taking again the deviatoric part of the latter we arrive at

dev sym ∇ϑ(x1, x2, x3) = 0. (66)

This is equivalent to

∇ϑ(x) = ζ (x1, x2, x3) · 1l + A(x1, x2, x3) with A : R
3 → so(3). (67)

The solution to (66) can be given in closed form. In fact, taking Curl on both sides of (67), together with the
fact that Curl (ζ (x1, x2, x3) · 1l) ∈ so(3), one obtains A(x1, x2, x3) = Â ∈ so(3) constant skew-symmetric matrix.
In addition, using the operators axl and anti defined in (31), a general solution to (66) is obtained in the form

φc(x) :=
1

2

(
2〈axl

(
Ŵ
)
, x〉 x − axl

(
Ŵ
)

‖x‖2
)

+
[̂
ζ · 1l + Â

]
x + η̂, (68)
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Figure 2. Infinitesimal conformal mappings φc : R
3 → R

3 that locally leave shapes invariant: a prototype elastic deformation in the

sense that the corresponding stress deviator dev σ (∇φc) = 0. Shown is the coarse grid deformation. Reproduced with permission

from [74].

where Â, Ŵ ∈ so(3) are arbitrary constant skew-symmetric matrices and ζ̂ , η̂ ∈ R
3 are arbitrary constant

vectors.
The mappings in (68) are called infinitesimal conformal mappings φc (see [74]). The mappings x → φc(x)

locally preserve the shape of infinitesimal cubes but are globally inhomogeneous.
If we consider x → φc(x) as elastic displacement, then, according to the von Mises J2-criterion, these

mappings alone never lead to plasticity because

dev σ = dev
(
2µ sym ∇φc + λ tr(∇φc · 1l

)
= 2µ dev sym ∇φc = 0.

Gathering our findings, we have obtained that the regularization term (59) is invariant with respect to the
infinitesimal conformal group and infinitesimal conformal mappings φc do not induce irreversible processes.

There is still another solution to
sym Curl sym ∇ϑ = 0. (69)

Clearly, (69) will be satisfied also if already

Curl sym ∇ϑ = 0,

which, in turn, is satisfied for sym ∇ϑ = ∇v ∈ Sym(3), with v : R
3 → R

3. Such a vector can be taken as
v = ∇h(x1, x2, x3) with any scalar function h : R

3 → R. Then, (69) is satisfied. Thus, another solution to (69) is
given by

ϑ(x1, x2, x3) = ∇h(x1, x2, x3), h : R
3 → R.

Altogether, solutions to (69) are represented by

ϑ(x) = φc(x)︸︷︷︸
“conformal”

+ ∇h︸︷︷︸
“potential”

as the new invariance group. We collect our finding in the following theorem.

Theorem 4.1 (Nullspace of dev sym Curl sym Grad). The nullspace of the operator dev sym Curl sym Grad
is given by

ϑ(x) =
1

2

(
2〈axl

(
Ŵ
)
, x〉 x − axl

(
Ŵ
)

‖x‖2
)

+
[̂
ζ · 1l + Â

]
x + η̂ + ∇h(x),

where Â, Ŵ ∈ so(3) are arbitrary constant skew-symmetric matrices, ζ̂ , η̂ ∈ R
3 are arbitrary constant vectors

and h : R
3 → R is any scalar function.

It is remarkable, that the seemingly similar regularization term ‖Curl sym p‖2 =
∥∥Curl εp

∥∥2
only allows for

invariance under “potential” mappings ϑ = ∇h.
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Figure 3. Five states of a single crystal: (a) unstrained; (b) elastically bent; (c) plastically bent; (d) polygonized; (e) recrystallized. For

the polygonized crystal, we observe large structures that are rotated against each other with a “zone” separating those blocks. Using

plainly Curl p as the underlying defect measure would energetically penalize these configurations. Therefore, it seems appropriate to

use inc(sym p) as a “weaker” defect measure which would allow for low-energy configurations such as that in (d). Reproduced with

permission from [75].

In order to be able to describe polygonization (see Figure 3(d)), the plasticity model should energetically
favour configurations in which there are blocks of many homogeneous rotations.

In this respect, the new term 1
2
µ L2

c ‖dev sym Curl sym p‖2 = 1
2
µ L2

c ‖sym Curl sym p‖2 energetically
favours those configurations, which locally only rotate. The generated natural second-order backstress will be
of the type

6curl = µ L2
c sym Curl(sym Curl εp).

Now, looking at the invariance of the energy for which sym Curl(sym ∇ϑ) = 0 versus the invariance of the
backstress in the strong formulation for which sym Curl(sym Curl(sym ∇ϑ) = 0, it is clear that the invariance
of the energy implies the invariance of backstress, but not vice versa.

Remark 4.1. Note that the mapping p → dev sym Curl sym p = sym Curl εp does not have any geometric
meaning connected to the incompatibility of the plastic distortion p like Curl p or connected to the incompat-
ibility of the plastic strain tensor εp = sym p like inc(sym p). The simpler term Curl sym p has been used by
Gurtin and Anand [17] as the only energetic contribution in their irrotational gradient plasticity model.

4.3.3. Derivation of the modified model.

Now with the additional term Wcurl(Curl p) :=
1

2
µ L2

c

∥∥dev sym Curl εp

∥∥2
=

1

2
µ L2

c

∥∥sym Curl εp

∥∥2
in the
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free-energy density W, if we repeat the derivation above starting from the free-energy imbalance, we obtain

0 ≤

∫

�

[
〈σ − µ L2

c sym Curl(sym Curl εp) − µ L̂4
c inc(inc εp), ε̇p〉 − µ k2 γp γ̇p

]
dx (70)

−

3∑

i=1

µ L2
c

∫

∂�

〈ε̇p i × n, (sym Curl εp)i〉 dS −

3∑

i=1

µ L̂4
c

∫

∂�

〈ε̇p i × n,
[
Curl inc εp

]T

i
〉 dS

−

3∑

i=1

µ L̂4
c

∫

∂�

〈
[
Curl ε̇p

]T

i
× n,

[
inc εp

]
i
〉 dS

=

∫

�

[
〈6E, ε̇p〉 + gγ̇p

]
dx −

3∑

i=1

µ L2
c

∫

∂�

〈ε̇p i × n, (sym Curl εp)i〉 dS (71)

−

3∑

i=1

µ L̂4
c

∫

∂�

〈ε̇p i × n,
[
Curl inc εp

]T

i
〉 dS −

3∑

i=1

µ L̂4
c

∫

∂�

〈
[
Curl ε̇p

]T

i
× n,

[
inc εp

]
i
〉 dS

where

6E := σ +6curl +6inc, g = −µ k2 γp,

6curl := −µ L2
c sym Curl(sym Curl εp), (second-order non-local backstress)

6inc := −µ L̂4
c inc(inc εp)

= −µ L̂4
c Curl

([
Curl Curl

[
Curl εp

]T
]T)

(fourth-order non-local backstress).

Now assuming again the simplest lower order boundary conditions

εp × n|∂� = 0 and
[
Curl εp

]T
× n|∂� = 0, (72)

which will be clearly defined as Sobolev traces through a choice of a suitable function space for the plastic
strain variable εp, will guarantee the insulation-type conditions

3∑

i=1

∫

∂�

〈ε̇p i × n, (sym Curl εp)i〉 dS = 0, (73)

3∑

i=1

∫

∂�

〈ε̇p i × n,
[
Curl inc εp

]T

i
〉 dS = 0, (74)

3∑

i=1

∫

∂�

〈
[
Curl ε̇p

]T

i
× n,

[
inc εp

]
i
〉 dS = 0, (75)

from which we obtain the global reduced dissipation inequality
∫

�

[
〈6E, ε̇p〉 + g γ̇p

]
dx ≥ 0. (76)

The flow law. We consider the set of admissible (elastic) generalized stresses

E := {(6E, g) | ‖dev6E‖ − (σ0 − g) ≤ 0, g ≤ 0}, (77)

whose interior Int(E) is the elastic domain while its boundary ∂E is the yield surface. The constant σ0 is the
initial yield stress of the material. The flow law in its primal form reads as follows:

(6E, g) ∈ ∂D(ε̇p, γ̇p) (78)
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where

D(q,β) := sup{〈6E, q〉 + gβ | (6E, g) ∈ E}

= sup{〈6E, q〉 + g β | ‖6E‖ ≤ σ0 − g, g ≤ 0}

=

{
σ0 ‖q‖ if ‖q‖ ≤ β,
∞ otherwise.

(79)

Here, ∂D(0̇p) denotes the subdifferential of the function D at 0̇p. That is,

(6E, g) ∈ ∂D(ε̇p, γ̇p) ⇔ 〈6E, q − ε̇p〉 + g(β − γ̇p) ≤ D(q,β) − D(ε̇p, γ̇p) ∀ (q,β). (80)

Now using convex analysis, we obtain

(6E, g) ∈ ∂D(ε̇p, γ̇p) ⇔ (ε̇p, γ̇p) ∈ ∂IE (6E, g) = NE (6E, g), (81)

where IE is the indicator function of the set E of admissible generalized stresses and NE (6E, g) is the normal
cone of the set E at (6E, g).

The condition (81)2 is called the dual form of the flow law, which in the case of smoothness of the yield
surface ∂E at (6E, g) gives for some scalar parameter λ ≥ 0

ε̇p = λ
dev6E

‖dev6E‖
and γ̇p = λ =

∥∥ε̇p

∥∥ (82)

together with the Karush–Kuhn–Tucker (KKT) complementary conditions:

λ ≥ 0, φ(6E, g) ≤ 0 and λφ(6E, g) = 0.

Note that with this choice, the global dissipation inequality (76) is satisfied.

4.3.4. Mathematical strong formulation of the model,

Taking into account the free-energy density W in (51) together with the additional term in (59) and the constraint
‖q‖ ≤ β in the definition of the dissipation function D in (79), the model is strongly formulated as follows.
Find:

(i) the displacement u ∈ H1(0, T ; H1
0(�,0, R3));

(ii) the infinitesimal plastic strain εp ∈ H1(0, T ; L2(�, sl(3) ∩ Sym(3))) with

sym Curl εp ∈ H1(0, T ; L2(�, Sym(3) ∩ sl(3)));

inc εp = Curl[(Curl εp)T] ∈ H1(0, T ; L2(�, R3×3));

inc inc εp = Curl
([

Curl Curl [(Curl εp)T]
]T
)

∈ H1(0, T ; L2(�, R3×3));

(iii) the internal isotropic hardening variable γp ∈ H1(0, T ; L2(�));

such that the content of Table 9 holds.

4.3.5. Weak formulation of the model.

To obtain the weak formulation of the model, we consider the equilibrium in its weak formulation. That is, for
every v ∈ H1

0(�, R3) we have

∫

�

〈Ciso(sym ∇u − εp), sym(∇v − ∇u̇)〉 dx =

∫

�

f (v − u̇) dx. (83)

On the other hand, for every q ∈ C∞(�, sl(3) ∩ Sym(3)) such that

q × n|∂� = 0 and (Curl q)T × n|∂� = 0
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Table 9. The new regularized irrotational model with isotropic hardening and Kröner’s incompatibility tensor. Also in this case, the

boundary condition on εp necessitates at least εp, (Curl εp)T ∈ H(Curl; �, R
3×3). The model is micro-random, i.e. invariant with

respect to p → p + A(x), A(x) ∈ so(3) and invariant under infinitesimal conformal mappings p → p + ∇φc with dev sym ∇φc = 0.

Additive split of strain: sym ∇u = εe + εp

Equilibrium: Div σ + f = 0 with σ = Cisoεe

Free energy:
1

2
〈Cisoεe, εe〉 +

1

2
µ k2 |γp|2 +

1

2
µ L2

c

∥∥sym Curl εp

∥∥2
+

1

2
µ L̂4

c

∥∥inc εp

∥∥2

Yield condition: φ(6E, g) := ‖dev6E‖2 − (σ0 − g) ≤ 0 where g := −µ k2γp

6E := σ +6curl +6inc,

6curl := −µL2
c sym Curl (sym Curl εp)

6inc := −µ L̂4
c inc inc εp = Curl

[
Curl Curl [Curl εp]T

]T

Dissipation inequality:

∫

�

[
〈6E, ε̇p〉 + g γ̇p〉

]
dx ≥ 0

Dissipation function: D(ε̇p, γ̇p) :=

{
σ0

∥∥ε̇p

∥∥ if
∥∥ε̇p

∥∥ ≤ γ̇p,

∞ otherwise

Flow law in primal form: (6E, g) ∈ ∂D(ε̇p, γ̇p)

Flow law in dual form: ε̇p = λ
dev6E

‖dev6E‖
, γ̇p = λ =

∥∥ε̇p

∥∥

KKT conditions: λ ≥ 0, φ(6E, g) ≤ 0, λφ(6E, g) = 0

Boundary conditions for εp: εp × n|∂� = 0, (Curl εp)T × n|∂� = 0

and for every β ∈ L2(�), integrate (80) over � using the pair of functions (q,β) and get
∫

�

D(q,β) dx ≥

∫

�

D(ε̇p, γ̇p) dx +

∫

�

[
〈σ +6curl +6inc, q − ε̇p〉 + g (β − γ̇p)

]
dx (84)

=

∫

�

[
〈σ − µ L2

c sym Curl(sym Curl εp) − µ L̂4
c inc inc εp, q − ε̇p〉

−µ k2 γp (β − γ̇p)
]

dx.

Now integrating by parts the two terms 〈sym Curl(sym Curl εp), q− ε̇p〉 once and 〈inc inc εp, q− ε̇p〉 twice, using
the boundary conditions

(q − ε̇p) × n|∂� = 0 and (Curl (q − ε̇p))T × n|∂� = 0,

we obtain from (84) that
∫

�

D(q,β) dx ≥

∫

�

D(ε̇p, γ̇p) dx +

∫

�

〈Ciso(sym ∇u − εp), q − ε̇p〉 dx

−µ k2

∫

�

γp(β − γ̇p) dx − µ L2
c

∫

�

〈sym Curl εp, sym Curl(q − ε̇p)〉 dx

−µ L̂4
c

∫

�

〈inc εp, inc(q − ε̇p)〉 dx. (85)

Adding (85) to the weak formulation of the equilibrium in (83), we obtain the weak formulation of our model
of gradient plasticity with isotropic hardening and Kröner’s incompatibility tensor

∫

�

[
〈Ciso(sym ∇u − εp), (sym ∇v − q) − (sym ∇u̇ − ε̇p)〉 + µ k2γp(β − γ̇p)

+µ L2
c 〈sym Curl εp, sym Curl(q − ε̇p)〉 + µ L̂4

c〈inc εp, inc(q − ε̇p)〉
]

dx

+

∫

�

D(q,β) dx −

∫

�

D(ε̇p, γ̇p) dx ≥

∫

�

f (v − u̇) dx. (86)
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That is,
a(w, z − ẇ) + j(z) − j(ẇ) ≥ 〈 l, z − ẇ〉, (87)

where

a(w, z) :=

∫

�

[
〈Ciso(sym(∇u − p)), sym ∇v − q〉 + µ k2 γp β +

+ µ L2
c 〈sym Curl εp, sym Curl q〉 + µ L̂4

c〈inc εp, inc q〉
]

dx, (88)

j(z) :=

∫

�

D(q,β) dx, (89)

〈l, z〉 :=

∫

�

fv dx, (90)

for w = (u, εp, γp) and z = (v, q,β).

4.3.6. Existence result for the weak formulation.

We prove the existence result for the weak formulation (86) by closely following the approach by now classical,
which uses the abstract machinery developed by Han and Reddy in [40] for mathematical problems in geomet-
rically linear classical plasticity and used, for instance, in [16, 31, 32, 41, 42] and [103, 109, 130] for models of
gradient plasticity. Precisely, we will need the following theorem.

Theorem 4.2. (Han and Reddy [40, Theorem 6.19]). Let Z be a Hilbert space and let W be a non-empty
closed convex subset of Z. Consider the following problem: find w ∈ H1([0, T]; Z) with w(0) = 0 such that for
almost every t ∈ [0, T], ẇ(t) ∈ W and

a(w, z − ẇ) + j(z) − j(ẇ) ≥ 〈`, z − ẇ〉 for every z ∈ W. (91)

Assume that the following hold:

1. the bilinear form a is symmetric, continuous on Z and coercive on W, i.e. there exist C > 0 and α > 0
such that

a(w, z) ≤ C ‖w‖Z ‖z‖Z ∀w, z ∈ Z and a(z, z) ≥ α ‖z‖2
Z ∀z ∈ W; (92)

2. ` ∈ H1([0, T]; Z′) with `(0) = 0;
3. the functional j is non-negative, convex, lower continuous and positively 1-homogeneous on Z, i.e. j(sz) =

|s| j(z) ∀s ∈ R, ∀z ∈ Z.

Then the problem (91) has a solution w ∈ H1([0, T]; Z).
Therefore, the problem is then reduced to finding a suitable Hilbert space Z and its subset W such that the

bilinear form a(·, ·) and the functionals j and ` satisfy the assumptions of Theorem 4.2.
The choices of function spaces for the displacement variable u and the isotropic hardening variable γp are

straightforward as
u ∈ H1

0(�, R3) and γp ∈ L2(�).

For the plastic strain variable εp, we first need to introduce the space

Hinc (Curl , �; sl(3) ∩ Sym(3)) := {q ∈ L2(�, sl(3) ∩ Sym(3) | (Curl q)T ∈ H(Curl , �; R
3×3)}

:= {q ∈ H(�, sl(3) ∩ Sym(3) | inc q ∈ L2(Curl , �; R
3×3)} (93)

equipped with the norm

‖q‖2
inc := ‖q‖2

L2(�)
+
∥∥(Curl q)T

∥∥2

H(Curl;�)
= ‖q‖2

L2 +
∥∥(Curl q)T

∥∥2

L2 +
∥∥Curl[(Curl q)T]

∥∥2

L2

= ‖q‖2
H(Curl;�) + ‖inc q‖2

L2(�) . (94)
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Let us mention that spaces of functions involving the inc-operator were already used in the literature and we
refer the interested reader, for instance, to the papers [60, 76].

We also consider the closure Hsym, inc (Curl , �, ∂�; sl(3) ∩ Sym(3)) of the linear subspace

{
q ∈ C∞(�, Sym(3)) | tr q = 0, q × n|∂� = 0 and (Curl q)T × n|∂� = 0

}

in the norm

‖q‖2
symcurl, inc := ‖q‖2

L2 + ‖sym Curl q‖2
L2 + ‖inc q‖2

L2 . (95)

Motivated by the well-posedness question for models of infinitesimal gradient plasticity (especially for models
dictated by invariance under infinitesimal rotations) [16, 31, 77–79], infinitesimal Cosserat elasticity [74, 80,
81], infinitesimal Cosserat elasto-plasticity [82–85] and infinitesimal relaxed micromorphic [86–88], Bauer
et al. [89, 90] (see also Neff et al. [91–94]) derived a new inequality extending Korn’s first inequality to
incompatible tensor fields, namely there exists a constant C(�) > 0 such that

∀ X ∈ H(Curl ; �, R
3×3), X × n|∂� = 0 : (96)

‖X‖L2(�) ≤ C(�)
(

‖sym X‖L2(�) + ‖Curl X‖L2(�)

)
.

Now, if we apply the incompatible Korn-type inequality to X = (Curl q)T for q ∈ C∞(�, Sym(3)) with
(Curl q)T × n|∂� = 0, we obtain

‖Curl q‖L2(�) =
∥∥(Curl q)T

∥∥
L2(�)

≤ C(�)
(∥∥∥sym

(
(Curl q)T

)∥∥∥
L2(�)

+
∥∥Curl[(Curl εp)T]

∥∥
L2(�)

)

= C(�)
(
‖sym Curl q‖L2(�) + ‖inc q‖L2(�)

)
, (97)

then we have the decisive identity

Hsym, inc (Curl , �, ∂�; sl(3) ∩ Sym(3))

≡
{
q ∈ H0(Curl , �, ∂�; sl(3) ∩ Sym(3)), (Curl q)T ∈ H0(Curl , �, ∂�; R

3×3)
}

(98)

=
{
q, (Curl q)T ∈ H(Curl , �, R3×3), tr q = 0 a.e. in �, q × n|∂� = (Curl q)T × n|∂� = 0

}

with the norms ‖·‖inc and ‖·‖symcurl, inc being equivalent.
Now, we set

V : = H1
0(�; R

3), (99)

Q : =
{
q ∈ Hinc (Curl , �; sl(3) ∩ Sym(3)) | q × n|∂� = 0 and (Curl q)T × n|∂� = 0

}
, (100)

3 : = L2(�), (101)

Z : = V × Q ×3, (102)

W : = {z = (v, q,β) ∈ Z | ‖q‖ ≤ β}, (103)

equipped with the norms

‖v‖V := ‖∇v‖L2(�) , ‖q‖Q := ‖q‖inc , ‖β‖3 = ‖β‖L2(�) ,

‖z‖2
Z := ‖v‖2

V + ‖q‖2
Q + ‖β‖2

3 for z = (v, q,β) ∈ Z. (104)
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Let us prove the coercivity of the bilinear form a(·, ·) on the closed convex set W, where the constraint ‖q‖ ≤ β
in W plays a crucial role. Let, therefore, z = (v, q,β) ∈ W. Then,

a(z, z) ≥ m0 ‖sym(∇v) − q‖2
2 + µ k2 ‖β‖2

L2 + µ L2
c ‖sym Curl q‖2 + µ L̂4

c ‖inc q‖2
L2

(m0 > 0 is from (29))

= m0

[
‖sym(∇v)‖2

2 + ‖q‖2
L2 − 2〈sym(∇v), p〉

]
+ µ k ‖β‖2

L2

+µ L2
c ‖sym Curl q‖2 + µ L̂4

c ‖inc q)‖2
L2

≥ m0

[
‖sym(∇v)‖2

L2 + ‖q‖2
L2 − θ ‖sym(∇v)‖2

L2 −
1

θ
‖q‖2

L2

]
+

1

2
µ k2 ‖β‖2

2

+
1

2
µ k2 ‖q‖2

L2 + µ L2
c ‖sym Curl q‖2

L2 + µ L̂4
c ‖inc q‖2

L2

(using Young’s inequality and ‖q‖ ≤ β from W )

= m0(1 − θ) ‖sym(∇v)‖2
2 +

[
m0

(
1 −

1

θ

)
+

1

2
µ k2

]
‖q‖2

2 +
1

2
µ k2 ‖β‖2

2

+µ L2
c ‖sym Curl q‖2

L2 + µ L̂4
c ‖inc q‖2

L2 .

Thus, choosing θ such that
2 m0

2 m0 + µ k2

≤ θ < 1, and using the classical Korn’s first inequality, there exists

some positive constant K(m0, µ, k2,�) > 0 such that

a(z, z) ≥ K
[
‖v‖2

V + ‖q‖2
L2 + ‖β‖2

3 + µ L2
c ‖sym Curl q‖2

L2 + µ L̂4
c ‖inc q‖2

L2

]
(105)

≥ C
[
‖v‖2

V + ‖q‖2
Q + ‖β‖2

3

]
= C ‖z‖2

Z ∀z = (v, q,β) ∈ W ,

where C = C(m0, µ, k2,�, Lc, L̂c) > 0. For the second inequality in (105), we used the inequality (97) obtained
as a consequence of the Korn-type inequality for incompatible tensor fields in Neff et al. [91–94].

Thus, assuming that the body is initially unloaded and undeformed, which corresponds to assuming that
f (x, 0) = 0 for almost all x ∈ � with homogeneous initial conditions, we obtained the following existence result
for the weak formulation (86) of our model.

Theorem 4.3. Under the choices of the Hilbert space Z and the closed convex subset W in (99)–(103) with
the norms in (104) and the functionals a, j and ` in (88)–(90), the weak formulation (86) when written as
the variational inequality of the second kind (91) has a solution w = (u, εp, γp) in H1([0, T]; Z) with ẇ ∈

L2([0, T]; W).

Remark 4.2. Uniqueness of the strong solution is obtained as in [33] provided the following further
assumptions are satisfied:

sym Curl
(
sym Curl εp

)
∈ L2(�, Sym(3) ∩ sl(3)) (106)

Curl
(

[Curl Curl [Curl εp]T]T
)

∈ L2(�, R3×3).

5. Discussion

It remains a difficult task to reconcile mathematical and physical requirements. Indeed, the incorporation of
Kröner’s incompatibility tensor inc εp is physically transparent and the novel model is micro-random and gauge-
invariant. Micro-randomness is useful for polycrystals and gauge-invariance is a generally physically necessary
requirement. However, using integration by parts in order to arrive at a global reduced dissipation inequality,
the following lowest-order boundary conditions

εp × n|∂� = 0 and (Curl εp)T × n|∂� = 0 (107)

impose themselves.
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From a mathematical point of view these expressions are, however, not well-defined as boundary traces
through a control of the given free energy. In order to give them a well-defined meaning, we resorted to adding
an additional term in the free energy, namely

1

2
µ L2

c

∥∥dev sym(Curl εp)T
∥∥2

=
1

2
µ L2

c

∥∥sym(Curl εp)T
∥∥2

,

the equality here is due to the fact that tr(Curl S) = 0 forever This term provides the missing boundary control
for (107) by the Korn-type inequality for incompatible tensor fields in [89–94]. However, the additional term
breaks the gauge-invariance of the model, while it satisfies the micro-randomness condition.

On the positive side, the invariance under the diffeomorphism group (gauge-invariance) is replaced by the
invariance under infinitesimal conformal group (both statements adapted to our geometrically linear setting).

At the moment, we do not know how to set up a theory that is fully gauge-invariant and micro-random,
while at the same time being mathematically well-posed. Consider, e.g., a model with plastic spin and add
1
2
µ L2

c ‖Curl p‖2 (see Table 6). This choice does not provide any control of ‖Curl sym p‖2 =
∥∥Curl εp

∥∥2

necessary for well-posedness of (107).
A preliminary conclusion could be that the micro-randomness assumption, which effectively reduces the

flow law to the six-dimensional space of symmetric plastic strains εp, is to be critically seen in gradient plasticity
approaches which are also supposed to satisfy gauge-invariance.

Notes

1. Cf. e.g. Hill [9, p. 30].

2. Aifantis wrote in [6, p. 218]: “…In conformity with established results - that the plastic strain rate ε̇p is a state variable, rather

than the strain εp itself.”

3. The plastic spin in the finite deformation flow theory of plasticity is defined as the skew-symmetric part of the so-called plastic

distortion rate, i.e. Wp := skew(ḞpF−1
p ), whereas its counterpart in the small strain theory is simply skew(ṗ), where p is the

non-symmetric infinitesimal plastic distortion.

4. The PMPD, which was derived independently in classical infinitesimal theory of plasticity from the so-called Drucker’s postulate

by von Mises [35], Taylor [36], Hill [37] and Mandel [38] (and later as a consequence of Il’iushin’s postulate of plasticity in

strain space) has the form 〈σ − σ∗, ε̇p〉 ≥ 0, where σ is the actual stress tensor, ε̇p is the plastic strain-rate tensor and σ∗ is

any admissible stress tensor. The PMPD is equivalent to the associated flow rule in the dual formulation in the local theory of

plasticity. The maximal dissipation (associated flow rule) simplifies the modelling framework and facilitates the mathematical

treatment.

5. Note that Ri
jkl

is both geometrically and physically nonlinear.

6. The role of that tensor has been critically discussed by Acharya [63].

7. Note that Gurtin uses a different definition of the Curl operator. We have the relation Curl Fp = [Curl Gurtin Fp]T (see [22]).

8. Only time-objectivity requirements are not to be discussed.

9. Rotating grains against each other (see Neff et al. [71]) in a polycrystal changes the eigen-stresses along grain boundaries.

Therefore, our new invariance requirement cannot be a fundamental law of nature but may rather serve to concentrate on some

effective macroscopic features in a homogenized model.
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[85] Neff, P, Chełmiński, K, Müller, W, and Wieners, C. A numerical solution method for an infinitesimal elastic–plastic Cosserat

model. Math Mod Meth Appl Sci 2007; 17(8): 1211–1239.

[86] Neff, P, Ghiba, I-D, Lazar, M, and Madeo, A. The relaxed linear micromorphic continuum: well-posedness of the static problem

and relations to the gauge theory of dislocations. Quart J Mech Appl Math 2015; 68: 53–84.

[87] Neff, P, Jeong, J, Münch, I, and Ramezani, H. Mean field modeling of isotropic random Cauchy elasticity versus microstretch

elasticity. Z Angew Math Phys 2009; 60(3): 479–497.

[88] Neff, P. Existence of minimizers for a finite-strain micromorphic elastic solid. Proc Roy Soc Edinb A 2006; 136: 997–1012.

[89] Bauer, S, Neff, P, Pauly, D, and Starke, G. New Poincaré-type inequalities, C R Math 2014; 352(4): 163–166.

[90] Bauer, S, Neff, P, Pauly, D, and Starke, G. Dev-Div-and DevSym-devCurl-inequalities for incompatible square square tensor

fields with mixed boundary conditions. ESAIM Control Optim Calc Var 2016; 22(1): 112–133.

[91] Neff, P, Pauly, D, and Witsch, KJ. On a canonical extension of Korn’s first and Poincaré’s inequalities to H(Curl) motivated by

gradient plasticity with plastic spin. C R Math 2011; 349(23–24): 1251–1254.

[92] Neff, P, Pauly, D, and Witsch, KJ. On a canonical extension of Korn’s first and Poincaré’s inequalities to H(Curl). J Math Sci (NY)

2012; 185(5): 721–727.

[93] Neff, P, Pauly, D, and Witsch, KJ. Maxwell meets Korn: A new coercive inequality for tensor fields with square integrable exterior

derivatives. Math Meth Appl Sci 2012; 35(1): 65–71.

[94] Neff, P, Pauly, D, and Witsch, KJ. Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor

fields. J Diff Equ 2014; 258(4): 1267–1302.

[95] Aifantis, EC. On the role of gradients in the localization of deformation and fracture. Int J Engng Sci 1992; 30: 1279–1299.

[96] Aifantis, EC. Gradient plasticity. In: Lemaitre, J (ed.) Handbook of Materials Behavior Models, pp. 281–297. New York:

Academic Press, 2001.

[97] Aifantis, EC. Update on a class of gradient theories. Mech Mater 2003; 35: 259–280.

[98] Aifantis, EC. Gradient material mechanics: Perspectives and prospects. Acta Mech 2014; 225: 999–1012.

[99] Alber, HD. Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations with Internal Variables (Lecture

Notes in Mathematics, vol. 1682). Berlin: Springer, 1998.

[100] Anand, L, Gurtin, ME and Reddy, BD. The stored energy of cold work, thermal annealing, and other thermodynamic issues in

single crystal plasticity at small length scales. Int J Plasticity 2015; 64: 1–25.

[101] Bardella, L. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations. J

Mech Phys Solids 2006; 54: 128–160.

[102] Bardella, L. Some remarks on the strain gradient crystal plasticity modelling, with particular reference to the material length

scale involved. Int J Plasticity 2007; 23: 296–322.

[103] Bargmann, S, Reddy, BD, and Klusemann, B. A computational study of a model of single-crystal strain gradient viscoplasticity

with a fully-interactive hardening relation. Int J Solids Struct 2014; 51(15–16): 2754–2764.



Ebobisse and Neff 157

[104] Basak, A, and Gupta, A. Plasticity in multi-phase solids with incoherent interfaces and junctions. Cont Mech Therm 2016;

28(1–2): 423–442.

[105] Basak, A, and Gupta, A. Influence of a mobile incoherent interface on the strain-gradient plasticity of a thin slab. Int J Solid

Struct 2017; 108: 126–138.

[106] Bertram, A. An alternative approach to finite plasticity based on material isomorphism. Int J Plasticity 1998; 52: 353–374.

[107] Casey, J. A convenient form of the multiplicative decomposition of the deformation gradient. Math Mech Solids 2016; 22(3):

528–537.

[108] Chiricotto, M, Giacomelli, L, and Tomassetti, G. Dissipative scale effects in strain-gradient plasticity: the case of simple shear.

SIAM J Appl Math 2016; 76(2): 688–704.

[109] Djoko, JK, Ebobisse, F, McBride, AT, and Reddy, BD. A discontinuous Galerkin formulation for classical and gradient plasticity.

Part 2: Algorithms and numerial analysis. Comput Meth Appl Mech Engng 2007; 197: 1–22.

[110] Epstein, M. Self-driven dislocations and growth. In: Steinmann, P and Maugin, GA (eds) Mechanics of Materials Forces

(Advances in Mechanics and Mathematics, vol. 11), pp. 129–139. New York: Springer, 2005.

[111] Eringen, AC. Mechanics of micromorphic continua. In: Kröner, E (ed.) IUTAM Symposium: Mechanics of Generalized Continua,

Berlin, 1968, pp. 18–35. Berlin: Springer, 1968.

[112] Eringen, AC. Microcontinuum Field Theories. I. Foundations and Solids. Berlin: Springer, 1998.

[113] Giacomini, A, and Lussardi, L. A quasistatic evolution for a model in strain gradient plasticity. SIAM J Math Anal 2008; 40(3):

1201–1245.

[114] Grandi, D and Stefanelli, U. Finite plasticity in PTP. Part I: constitutive model. Cont Mech Thermodym 2017; 29(1): 97–116.

[115] Gupta, A, Steigmann, DJ, and Stölken, JS. On the evolution of plasticity and incompatibility. Math Mech Solids 2007; 12:

583–610.

[116] Gupta, A, Steigmann, DJ, and Stölken, JS. Aspects of the phenomenological theory of elastic–plastic deformation. J Elasticity

2011; 104: 249–266.

[117] Kratochvil, J. Finite strain theory of crystalline elastic-inelastic materials. J Appl Phys 1971; 42: 1104–1108.
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Appendix

Let us first establish that

tr Curl S = 0 ∀S : R
3 → Sym(3) smooth tensor field. (108)

In fact, recalling that (Curl S)ij =
∑3

kl=1 εikl Sjl,k we have

tr(Curl S) =
∑

i

(Curl S)ii =
∑

i

∑

kl

εikl Sjl,k

= (S13,2 − S12.3) + (S21,3 − S23,1) + (S32,1 − S31,2) = 0, (109)

because S ∈ Sym(3) and hence, S13,2 = S31,2, S12,3 = S21,3 and S23,1 = S32,1.
The following are some further properties of Kröner’s incompatibility tensor defined by

inc(εp) := Curl[(Curl εp)T]. (110)

For the convenience of the reader, we note that

inc(εp) ∈ Sym(3) since εp ∈ Sym(3) ; (111)

inc(inc(εp)) ∈ Sym(3) ; (112)

tr(inc(εp)) = 1 tr(εp) − div(Div εp) = − div(Div εp) since εp ∈ sl(3); (113)

tr(inc(inc εp) = −1 div(Div εp). (114)

As (112) follows from (111), let us establish here the identities (111)-(114) for the reader’s convenience. First
of all, in components

(Curl εp)ij := εjkl (εp)il,k ⇔ (Curl εp)T
ij := εikl (εp)jl,k .

Hence,
(inc εp)ij = Curl[(Curl εp)T]ij = εjkl (Curl εp)T

il,k = εjkl εimn (εp)ln,mk . (115)

Now, note that (εp)ln,mk = (εp)nl,km. Therefore,

(inc εp)ij = εjkl εimn (εp)ln,mk = εjmn εikl (εp)nl,km = εjmn εikl (εp)ln,mk = (inc(εp))ji, (116)

which establishes (111). Now,

tr(inc(εp)) = (inc(εp))ii = εikl εimn (εp)ln,mk . (117)

Using the identity

εikl εimn = δkm δln − δkn δlm (see, for instance, [22, epsilon-delta identity (1.20)]),

we obtain

tr(inc(εp)) = δkm δln (εp)ln,mk − δkn δlm (εp)ln,mk = (εp)ll,mm − (εp)lk,lk

= (εp)ll,mm − (εp)kl,lk = 1tr(εp) − (Div εp)k,k

= 1tr(εp) − div(Div εp) = − div(Div εp), (118)

which establishes (113). Thus, from (113), it follows that if εp is a divergence-free tensor or Div εp is a
divergence-free vector field, then inc(εp) becomes trace-free, that is, inc(εp) ∈ sl(3). Now, to establish (114),
note that

Div Curl X = 0 ∀X ∈ C2(�, R
3×3).

This trivially follows from our definitions of Curl and Div of a second tensor field as row-wise operations.
Hence, Div(inc εp) = 0. Thus, using (113), we find that

tr(inc(inc εp)) = 1tr(inc εp) − div(Div(inc εp)) = 12(tr(εp) −1(div(Div εp)))

= −1(div(Div εp)) = − div(Div1εp), (119)

where 12 = 1(1) denotes the bi-Laplacian operator. Therefore, the tensor inc(inc εp) is trace-free if one of the
following conditions are satisfied:
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(i) εp is a divergence-free tensor field;
(ii) Div εp is a divergence-free vector field;
(iii) div(Div εp) is a harmonic function;
(iv) εp is an harmonic tensor field;
(v) 1εp is a divergence-free tensor field;
(vi) Div(1εp) is a divergence-free vector field.
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