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Abstract
We provide a faithful translation of Hans Richter’s important 1948 paper ‘‘Das isotrope Elastizitätsgesetz’’ from its original
German version into English. Our introduction summarizes Richter’s achievements.
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Introduction

Shortly after the second World War, in a series of papers [1–4] from 1948–1952, Hans Richter (1912–
1978) laid down his general format of isotropic nonlinear elasticity based on a rather modern approach
with direct tensor notation. By translating his work ‘‘Das isotrope Elastizitätsgesetz’’ [1], we aim to make
his development, which precedes later work in the field by several decades, accessible to the international
audience.
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Let us briefly summarize Richter’s achievement in this paper. He uses, for the time, rather advanced
methods of matrix analysis (including the theory of primary matrix functions [5]) and employs the left
polar decomposition [6–8] of the deformation gradient F = VR into a stretch V 2 Sym+(3) and a rota-
tion R 2 SO(3). For Richter, the ‘‘physical stress tensor’’ is the Cauchy stress tensor s 2 Sym(3). From
the coaxiality between s and V for an isotropic response, he deduces the representation formula for iso-
tropic tensor functions (the Richter representation, see (2.6) of his text)

s = g1(I1, I2, I3) � 1+ g2(I1, I2, I3) � V + g3(I1, I2, I3) � V 2 ð1Þ

(predating the Rivlin–Ericksen representation theorem [9] by seven years) where gi, i = 1, 2, 3 are scalar
valued functions of the invariants In, n = 1, 2, 3, with

I1 = tr(V ), I2 =
1

2
tr(V 2), I3 = detV :

Alongside, Richter introduces the logarithmic stretch tensor L = logV without citing the previous work
of Hencky [10–18]. He then turns to the question of what happens if the relation (1) is derived from a
stored energy W (I1, I2, I3), i.e. when (1) is consistent with hyperelasticity. He obtains the correct repre-
sentation (see (3.11) in his text)

s =
∂W

∂I3

� 1 +
1

I3

� ∂W

∂I1

� V +
1

I3

� ∂W

∂I2

� V 2, W = W (I1, I2, I3): ð2Þ

In the next section, Richter introduces the multiplicative split of the elastic stretch V into volume-
preserving (isochoric) parts and volume change (see (4.1) in his text)

V =
V

(detV )
1
3

� ( detV )
1
3 � 1 ð3Þ

and he observes that the logarithmic stretch tensor additively separates both contributions by using the
classical deviator operation (see (4.2) in his text) such that

logV = dev logV +
1

3
tr( logV ) � 1 = log

V

(detV )
1
3

� �
+

1

3
log detV � 1, devX = X � 1

3
(X ) � 1: ð4Þ

He also observes that the invariants based on the logarithmic stretch tensor satisfy certain algebraic rela-
tions, cf. Criscione et al. [19]. In Richter’s fifth section, he introduces the volumetric-isochoric split

W (F) = Wiso dev logVð Þ+ Wvol tr( logV )ð Þ

= Wiso log
V

( detV )
1
3

� �� �
+ Wvol log detVð Þ= eW iso

V

( detV )
1
3

� �
+ eW vol( detV )

of the stored energy (often erroneously attributed to Flory [20]) and he immediately obtains the impor-
tant result:

An isotropic energy is additively split into volumetric and isochoric parts if and only if the mean Cauchy
stress 1

3
trs is only a function of the relative volume change detV . In that case,

1

3
trs =

1

detV
�W 0

vol( log detV ) = eW 0

vol(detV ): ð5Þ

This result has been rediscovered and rederived multiple times [21–26]. In addition, Richter shows that
this property of the volumetric-isochoric split is invariant under a change of the reference temperature.
Finally, he poses the question as to whether a linear relation between s and V in the form (the Hooke’s
law as he perceives it)

s = 2m(V � 1) + ltr(V � 1) � 1, ð6Þ
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where m . 0 is the shear modulus and l is the second Lamé parameter, can be consistent with hyperelas-
ticity. A short calculus reveals that (6) is hyperelastic if and only if 2m = l, i.e. for a Poisson ratio n = 1

3
(which is approximately satisfied for many metals, e.g. aluminum). For all other values of n, Hooke’s
law is incompatible with the hyperelastic approach and Richter proposes to use instead (the quadratic
Hencky energy [10, 27])

W (F) = m dev logV 2
�� ��+

2m + 3l

6
tr2( logV )

with the induced stress-strain law

s � detF = t = 2m logV + ltr( logV ) � 1, ð7Þ

where t is the Kirchhoff stress tensor.
We will briefly discuss the constitutive relation (6). In order to check hyperelasticity of the Cauchy

stress-stretch relation in this case,
we use the representation, consistent with (2),

s(V ) =
2m

J
DV W (V ) � V , J = detV , ð8Þ

and consider the energy W (F) = 2mdetV ½tr(V )� 4�. Then s(V ) = 2m(V � 1) + 2m(V � 1) � 1.
Since tr½s(V )�= 8mtr(V � 1) and tr½s(a1)�= 24m(a� 1), the Cauchy stress tensor given by (6) with

2m = l is injective (but not bijective, since for tr(s) = � K+\� 24m there does not exist a stretch
V 2 Sym+(3) such that (s(V )) = � K+). Furthermore, note that

½tr(V )�2 = (l1 + l2 + l3)2 = l2
1 + l2

2 + l2
3 + 2(l1l2 + l1l3 + l2l3) = tr(B) + 2tr(CofB), ð9Þ

where li are the singular values of the deformation gradient F. Then

2m detV ½tr(V )� 4�= 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det (B)

p
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr(B) + 2tr(Cof B)

p
� 4g= 2m

ffiffiffiffi
I3

p
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 + 2I2

p
� 4g

= W (I1, I2, I3), I1 = tr(B), I2 = tr(Cof B), I3 = detB:
ð10Þ

For this energy, the weak empirical inequalities [28] ∂W
∂I1

. 0 and ∂W
∂I2

. 0 are satisfied. The principal

Cauchy stresses are given by si = 2m � li � 1 + (l1 + l2 + l3 � 3)ð Þ, which shows that the tension-
extension (TE) inequalities and the Baker–Ericksen (BE) inequalities [29], given by

0\
∂si

∂li

= 2m � 1 + 1ð Þ= 4m and 0\(si � sj)(li � lj) = 2m(li � lj)
2

respectively, are satisfied as well. We also note that W (V ) = 2m � detV � ½tr(V )� 4� is the Shield transfor-
mation [30] of W �(F) = 2m � ½tr(V�1)� 4�, where

W �(F) = 2m
1

l1

+
1

l2

+
1

l3

� 4

� �
= g(l1, l2,l3) ð11Þ

has the Valanis–Landel form1 [31] and g is convex in (l1, l2, l3); the TE inequalities are satisfied as well.
Richter’s paper is not only written in German, but his notation strongly relies on German fraktur let-

ters, which makes reading his original work rather challenging. In our faithful translation of his paper,
we have therefore updated the notation to more current conventions; a complete list of notational
changes is provided in the Appendix. Richter’s original equation numbering has been maintained
throughout.

Graban et al. 2651



Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ORCID iD

Eva Schweickert https://orcid.org/0000-0002-8445-9403

Note

1. This calculus shows that the Valanis–Landel form is not invariant under the Shield transformation. In addition, the map-
ping U 7!TBiot = DU W (U ) of the stretch U =

ffiffiffiffiffiffiffiffiffi
FTF
p

to the Biot stress tensor TBiot is strictly monotone.
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The isotropic law of elasticity

By Hans Richter in Haltingen (Lörrach)

Zeitschrift für Angewandte Mathematik und Mechanik, vol. 28, 1948, pp. 205–209

Received 2 February 1948; accepted

Abstract
From the demands of isotropy and because of the existence of thermodynamic potentials, a general form of the three-
dimensional law of elasticity is stated. In doing so, the logarithmic matrix of relative elongations is used, which permits the
separation of the variation of the volume and that of the shape by simply forming the deviator. The resilience energy is
exactly the sum of the energy of the variation of the volume and that of the shape, if the average tension depends only on
the variation of the volume. For finite deformations, the law of Hooke is permissible only in the case n = 1

3
.

Aus der Forderung der Isotropie und der Existenz der thermodynamischen Potentiale wird für das räumliche
Elastizitätsgesetz eine allgemeine Form angegeben, wobei die logarithmische Dehnungsmatrix verwendet wird, bei der
die Trennung in Volum- und Gestaltänderung durch gewöhnliche Deviatorbildung möglich ist. Die elastische Energie ist
genau dann die Summe aus Volum- und Gestaltänderungsenergie, wenn die mittlere Spannung nur von der
Volumänderung abhängt. Das Hookesche Gesetz ist für endliche Verzerrungen nur bei n = 1

3
zulässig.

En supposant l’isotropie et l’existence des potentiels thermodynamiques, on donne une forme générale de la loi de
l’élasticité en se servant d’une matrix logarithmique d’allongement. Ce procédé permet une séparation des changements
de volume et de forme par une simple formation de déviateur. Si la tension moyenne ne dépend que du changement de
volume, l’énergie d’élasticité est la somme des énergies de changement du volume et de la forme. La loi de Hooke n’est
admissible que pour n = 1

3
.

1. Definitions

In the generalization of Hooke’s law, a material is called purely elastic if the Cauchy stresses depend in
a uniquely reversible way on the stretches. Strictly speaking, however, it is necessary to discuss the heat
transfer that occurs in the tensile test; in particular, it is necessary to distinguish between an adiabatic
and isothermal law of elasticity. This choice also clarifies what is meant by strains, since strains on the
adiabat resp. isotherm can be referred e.g. to the initial state, for which the stresses disappear com-
pletely. The strains can also be referred to a stress-free initial state at an arbitrarily chosen initial tem-
perature Y0 instead. Then the stress-free state at another temperature Y corresponds, in the case of an
isotropic material, to uniform stretches in all directions, i.e. the thermal expansion. In this manner the
law of thermal expansion is included in the elastic law. Of course, the affected material must be assumed
not to change permanently by changes in temperature within the considered temperature range.

Thus, we assume a stress-free state at a temperature Y0. Let the deformation of the material into
another state be characterized by the matrix F and the related stresses by the stress tensor s.2 We call
the material ideally elastic if s depends uniquely on F and Y. The material is said to be isotropic if this
dependence is invariant under Euclidean rotations.

When solving the problem of finding the most general form of this dependence, one appropriately
operates with matrices, where the following abbreviations are used:

XT is the matrix obtained by reflecting X over its main diagonal. (X )ik is the entry in the ith row and
the kth column of X. detX is the determinant of X. trX is the sum of the elements on the main diagonal
of X: called the trace of X. 1 is the identity tensor. If f (x) =

P
an � xn, then, assuming convergence,

f (X ) =
P

anX n.
Recall the following simple statements:

tr(X � Y ) = tr(Y � X ): ð1:1Þ

tr(X � d log Y ) = tr(X � Y�1 � dY ) ð1:2Þ
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if X commutes with Y, but not necessarily with dY.

logðdetX ) = tr( logX ), ð1:3Þ

if logX is well defined.

For a pure rotation R: RRT = 1:

For a pure stretch V : V = VT:
ð1:4Þ

Every X can be represented in the form:

X = V � R, ð1:5Þ

where the multiplication is to be read in its functional notation from right to left.

2. Consequence of isotropy

According to (1.5), F can be interpreted as a rotation R followed by a stretch V, where the principal
stretch directions of the latter are rotated against those of the coordinate axes. For the case of isotropic
materials, the application of R must not have any influence on s. Therefore, s is a function of V and
Y. For a given F, we can find V by using (1.4) and (1.5) by

FFT = VRRTVT = V 2: ð2:1Þ

The most general coaxial relation between s and V that fulfills the invariance under rotations is now,
obviously,

s = f (V ; I1, I2, I3,Y), ð2:2Þ

where In are the invariants3 of V.
Instead of V, one can also use a uniquely invertible function of V. As we will see later on, it is appro-

priate to use the logarithmic stretch

L = logV , ð2:3Þ

which is always defined because of the positive eigenvalues of V. We denote the invariants of L by

j = tr(L), k = tr(L2) and l = tr(L3): ð2:4Þ

Further, from (1.3) and (2.1) we obtain: j = 1
2
tr( log (FFT)) = 1

2
log ( det (FFT)) = log ( detF).

Instead of (2.2), we can now write

s = f (L; j, k, l,Y): ð2:5Þ

Here, tr(s), tr(sL) and tr(sL2) are functions of j, k, l and Y due to (2.5). If we now define the invariants
f1, f2 and f3 as the solutions to the system of equations

tr(s) = f1tr(1) + f2tr(L) + f3tr(L
2)

tr(sL) = f1tr(L) + f2tr(L
2) + f3tr(L

3)

tr(sL2) = f1tr(L
2) + f2tr(L

3) + f3tr(L
4)

with, in general, nonvanishing determinant, then we have for

X = f1 � 1 + f2 � L + f3 � L2 : tr(sLn) = tr(XLn) with n = 0, 1, 2:

Since s is coaxial to L, it is completely determined by tr(s), tr(sL) and tr(sL2). Therefore, s [ X holds; i.e.

s = f1(j, k, l,Y) � 1+ f2(j, k, l,Y) � L + f3(j, k, l,Y) � L2: ð2:6Þ
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Hence, we have found the most general isotropic relation. Using V instead of L, we would correspond-
ingly obtain:

s = g1(In,Y) � 1+ g2(In,Y) � V + g3(In,Y) � V 2: ð2:7Þ

3. Consequence of the potential

The internal energy of the material per unit volume in the initial state is denoted by

E = E(j, k, l,Y); ð3:1Þ

the entropy is denoted by

S = S(j, k, l,Y): ð3:2Þ

Then the free energy W takes the form

W = E �Y � S = W (j, k, l,Y): ð3:3Þ

If dA is now the differential of the work done by the element of volume, then

dA = � dE +Y � dS = � dW � S � dY: ð3:4Þ

Thus for isothermal elastic changes, we have

dA = � (dW )Y= const:; ð3:5Þ

whereas for adiabatic changes

dA = � (dE)S = const:, ð3:6Þ

where Y has to be eliminated in (3.1) and (3.2), so that E appears as a function of j, k, l and S.
In order to calculate dA, we transition from a deformation F to the neighboring deformation F + dF.

Since a pure rotation has no influence on dA, we can assume that F is a pure stretch. Let e1, e2 and e3

be the unit vectors in the principal stretch directions of V, which can be interpreted as coordinate vec-
tors. Let s1, s2 and s3 be the components of s in these directions. We can use the rectangular parallele-
piped spanned by Ve1, Ve2 and Ve3 as the volume element, which is generated by the stretch V applied
to the unit cube. Let us now consider the side that starts from Ve1 and which is spanned by Ve2 and
Ve3. Besides an infinitesimal tilting and change of the surface, this side undergoes a displacement in the
e1-direction with the magnitude e1 � ((V + dF)e1 � Ve1) = e1dFe1 = (dF)11 in the transition from V to
V + dF. The work done on the considered side is therefore

� s1 � (dF)11 � (V )22 � (V )33 = � det (V ) � (dF)11 � s1

(V )11

:

Thus the entire work done by the volume element is

dA = � det (V ) �
X3

v = 1

(dF)vv � sv

(V )vv

= � det (V ) � tr(sV�1F): ð3:7Þ

The deformation V + dF now corresponds to a stretch V + dV , where due to (2.1),

(V + dV )2 = (V + dF)(V + dFT)

or

V � dV + dV � V = V � dFT + dF � V :
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Multiplying the left side of the equation by sV�2, taking the trace and using (1.1), we find

2tr(sV�1dV ) = tr(sV�1dFT) + tr(sV�1dF) = 2tr(sV�1dF),

since s is symmetric and coaxial to V. From (3.7) we therefore obtain

dA = � det (V ) � tr(s _V�1dV ): ð3:8Þ

Hence, due to (1.2), (1.3) and (2.4):

dA = � ej � tr(sdL): ð3:8*Þ

If we substitute this expression into the isothermal relation (3.5) and use (2.6), then it follows:

ej � ½f1tr(dL) + f2(trLdL) + f3tr(L
2dL)�= ∂W

∂j
dj +

∂W

∂k
dk +

∂W

∂l
dl:

Since, by (2.4),

dj = tr(dL), dk = 2tr(LdL) and dl = 3tr(L2dL),

we finally conclude that

ejf1 =
∂W

∂j
, ejf2 = 2

∂W

∂k
, ejf3 = 3

∂W

∂l

and therefore, with (2.6),

sej =
∂W

∂j
� 1 + 2

∂W

∂k
� L + 3

∂W

∂l
� L2, W = W (j, k, l,Y): ð3:9Þ

Accordingly, from (3.6) we obtain for the adiabatic law:

sej =
∂E

∂j
� 1+ 2

∂E

∂k
� L + 3

∂E

∂l
� L2, E = E(j, k, l, S): ð3:10Þ

If we want to omit the introduction of L and use V directly when formulating the law of elasticity, then
we appropriately use the following as the invariants of V:

I1 = tr(V ), I2 = 1
2
tr(V 2), I3 = det (V ):

Furthermore, according to (2.7), (3.5) and (3.8), an analogous computation leads to the law of elasticity
in the form

s =
∂W

∂I3

� 1 +
1

I3

� ∂W

∂I1

� V +
1

I3

� ∂W

∂I2

� V 2, W = W (In,Y) ð3:11Þ

and a corresponding formulation with E(I1, I2, I3, S) instead of W.

4. Transition to the deviators

The introduction of the logarithmic stretch L now proves to be not only appropriate to formulate the
law of elasticity as simply as possible, but using L also allows for the decomposition of a deformation
into a shape change and volume change by simply taking the deviatoric part, i.e. the same approach as
for infinitesimal strains, whereas a corresponding decomposition in terms of V is highly inconvenient.
To see this, we decompose the general stretch V into a shape-changing stretch Vg and a volume-changing
stretch Vv, i.e. we demand:

V = Vg � Vv = Vv � Vg with detVg = 1 and Vv = b � 1 with b . 0: ð4:1Þ

Graban et al. 2657



Obviously, (4.1) uniquely determines such a decomposition for each V with detV . 0; namely, for
given V,

b =
ffiffiffiffiffiffiffiffiffiffiffi
detV

3
p

and Vg = b�1 � V :

Since Vg commutes with Vv, we can take the logarithm of (4.1):

L = Lg + Lv with Lg = logVg and Lv = logVv: ð4:2Þ

Then, by (1.3), we obtain:

tr(Lg) = log ( detVg) = 0, Lv = logb � 1, tr(Lv) = 3 logb:

If, in general, we denote by devD the deviator corresponding to the symmetric matrix D, i.e.

devD = D� 1

3
trD � 1, ð4:3Þ

we can finally write:

Lg = dev L and Lv =
1

3
j � 1: ð4:4Þ

Thus the change of shape is indeed characterized by the deviator of L. For infinitesimal strains we have
L’V � 1, so that devL turns into the usual deformation deviator.

If we now introduce the invariants of devL:

y = tr((dev L)2) and z = tr((dev L)3), ð4:5Þ

then

y = k � 1

3
j2 and z = l � jk +

2

9
j3:

We can use j, y and z instead of j, k and l as variables. Then j characterizes the change of volume,
whereas y and z characterize the change of shape. As one can easily calculate, (3.9) leads to the formula

1

3
ejtrs =

∂W

∂j

ej � devs = � y
∂W

∂z
� 1 + 2

∂W

∂y
� dev L + 3

∂W

∂z
(dev L)2

9>>=
>>; ð4:6Þ

where, in contrast to (3.9), W = W (j, y, z,Y) now holds.
A corresponding formula results from (3.10).
Without proof, let us remark that y and z cannot take on all possible values independently of each

other, but are restricted by the condition

0 ł
z2

y3
ł

1

6
:

5. Decomposable elasticity laws

In the elasticity theory of infinitesimal strains the elastic energy can be interpreted as the sum of the energy
of the volume and shape change. Since the change of volume is represented by j and the change of shape is
represented by y and z, this decomposition is possible for the case of finite strains if and only if

W = Wvol(j,Y) + Wiso(y, z,Y),
resp: E = Evol(j, S) + Eiso(y, z, S)

�
ð5:1Þ

holds. Then with (4.6):
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1

3
ej � trs =

∂Wvol

∂j
(j,Y):

Thus the average stress depends only on j, i.e. on the change of volume. If, vice versa, tr s depends only
on j, then by (4.6) we obtain

∂2W

∂j∂y
=

∂2W

∂j∂z
= 0,

which also leads to the form of W in (5.1). Consequently, we can state: The elastic energy can be decom-
posed into the energy of change of volume and of change of shape if and only if the mean stress depends only
on the change of volume.

6. Transition to a new reference temperature

We referred the deformations to the stress-free state at a certain temperature Y0. Now we assume
another temperature Y1 is to be used as initial temperature instead of Y0. For s = 0, the temperature
Y1 corresponds to a certain deformation V1 with logV1 = L1. V1 is a scalar multiple of the identity ten-
sor; thus devL1 = 0, y1 = z1 = 0. Then with (4.6):

∂W

∂j
(j1, 0, 0,Y1) = 0,

which leads to the law of thermal expansion:

j1 =u(Y1): ð6:1Þ

Since bF = FV�1
1 is the matrix corresponding to the deformation F with respect to the new initial state,

we thus have bV = VV�1
1 , bL = L� L1 and hence

bj = j� j1, by = y, bz = z: ð6:2Þ

In formula (4.6), we can now replace j by bj if we simultaneously substitute W with

bW (bj, y, z,Y) = e�j1 �W (bj + j1, y, z,Y) = e�u(Y1) �W (bj +u(Y1), y, z,Y): ð6:3Þ

In particular, it follows that the decomposition of the elastic energy, which was discussed in Section 5, is
independent of the choice of the reference temperature.

7. Validity of Hooke’s law

Due to the formulae found previously, one can impose a wide variety of requirements on the law of elasticity,
in particular with respect to the dependence on temperature, and verify if these requirements can be satisfied.
Let us now consider the question whether the common law byHooke remains valid for finite strains.

Using the Lamé constants, Hooke’s law takes the form

s = l � tr(V � 1) � + 2m � (V � 1) ð7:1Þ

or

s = (l � I1 � 3l� 2m) � 1 + 2m � V : ð7:2Þ

It is obvious that (7.1) is actually derived from the general formula (3.9) for small L.
In order for the isothermal law of elasticity (7.2) to remain valid for finite strains, the following equa-

tions must be fulfilled according to (3.11):

lI1 � 3l� 2m =
∂W

∂I3

, 2mI3 =
∂W

∂I1

and 0 =
∂W

I2

:
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This is only possible if l = 2 _m, which corresponds to the Poisson ratio n = 1
3
. For all other values of n,

Hooke’s law cannot be used for finite strains. Instead, one can use the corresponding logarithmic law

sej = lj � 1+ 2mL, ð7:3Þ

which, in the isothermal case, corresponds to the decomposable energy

W =
l

2
_j2 + mk =

l

2
+

m

3

� �
� j2 + m � y:

Notes

2. F is the Jacobian matrix: bx = F dx. s is the physical stress tensor at the point bx.
3. It is easy to see that here, one of the invariants In can be omitted, in contrast to the subsequent formula (2.7).

Appendix

Our notation Richter’s notation Meaning

X, Y A, B arbitrary 3× 3-matrices
XT A transpose of X
(X)ik (A)ik entry in the ith row and the kth column of X
det X jAj determinant of X
trX A trace of X
1 E identity tensor
X�1 A

�1 inverse of X
F A Jacobian matrix (state of strain)
R R pure Euclidean rotation
V S pure stretch
s P stress tensor (state of stress)
Y Y temperature
I1, I2, I3 I1, I2, I3 invariants of V
L L logarithmic stretch: L = log V
j, k, l j, k, l invariants of L: j = tr(L), k = tr(L2), l = tr(L3)
f1, f2, f3 f1, f2, f3 coefficient functions
g1, g2, g3 g1, g2, g3 coefficient functions
X X X = f1 � 1 + f2 � L + f3 � L2

E u internal energy
S s entropy
W f free energy
dA dA differential of the work
e1, e2, e3 e1, e2, e3 unit vectors in the principal stretch directions of V
s1, s2, s3 s1, s2, s3 components of s in the principal stretch directions of V
Vg , Vv Sg , Sv stretch in shape, stretch in volume
b b stretch factor of the stretch in volume Vv

Lg , Lv Lg , Lv Lg = log Vg , Lv = log Vv

D D arbitrary symmetric matrix
dev D fD common deviator of D
y, z y, z invariants of dev L: y = tr((devL)2), z = tr((dev L)3)
Wvol, Evol F, U volumetric energies
Wiso, Eiso G, V isochoric energies
Y0 resp. Y1 Y0 resp. Y1 reference temperatures

1 [index] 1 indicates the correspondence to the temperature Y1

u u logarithmic thermal expansionbF A
0 deformation with respect to the initial state at Y1c 0 indicates the correspondence to the deformation bF

l, m l, m Lamé constants
n m = 1

n
Poisson modulus

2660 Mathematics and Mechanics of Solids 24(8)



This text is made available via DuEPublico, the institutional repository of the University of
Duisburg-Essen. This version may eventually differ from another version distributed by a
commercial publisher.

DOI: 10.1177/1081286519847495
URN: urn:nbn:de:hbz:465-20220408-093005-4

All rights reserved.

Graban, Kai; Schweickert, Eva; Martin, Robert J.; Neff, Patrizio, A commented translation of Hans Richter’s early work 
“The isotropic law of elasticity”, Mathematics and Mechanics of Solids, 24(8), 2649 - 2660
https://doi.org/10.1177/1081286519847495

This publication is with permission of the rights owner freely accessible due to an Alliance licence 
and a national licence (funded by the DFG, German Research Foundation) respectively.

© 2019 SAGE Publications .

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.1177/1081286519847495
https://nbn-resolving.org/urn:nbn:de:hbz:465-20220408-093005-4

