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Abstract
Structural health monitoring systems are based on suitable sensor techniques allowing online and offline supervision of
technical systems. The quantification of sensors/measurement devices is a key issue for qualifying their effectiveness and
efficiency and therefore to ensure safe operations. Probability of detection serves as a performance measure for quanti-
fying the reliability of conventional nondestructive testing procedures taking into account statistical variability of sensor-
based measurements. For vibration-based supervision approaches and fault detection and isolation methods, the prob-
ability of detection approach cannot be applied similarly. This results mainly from the complexity of the dynamical beha-
vior of systems monitored in relation to faults, sensors position (observability), and the related feature extraction or
monitoring task. In this contribution, probability of detection evaluation of vibration-based fault detection of elastic
mechanical structures to be monitored is developed. Beside a principal discussion of the problem serving as introduc-
tion, an example using different sensor types in combination with mechanical modifications of an elastic beam is pre-
sented. The a90/95-criteria representing probability of 90% detection at a confidence level of 95% is examined to the
measurements and related outcomes. Based on the analysis of a suitably chosen feature (like eigenfrequency or band
power) and dependent on the mechanical modes considered, the efficiency and deficiency of the different combinations
are shown. Based on the proposed approach, a new insight into the usefulness of different sensor type and fault position
combination becomes possible. To improve the detection quality, suitable assumptions in combination with sensor/infor-
mation fusion are applied to feature-based analysis as detection task using vibration measurements. In addition, based on
an experimental evaluation, it can be concluded that a suitable fault-feature probability of detection analysis can be suc-
cessfully implemented as a new reliable measure for vibration-based fault detection and isolation approaches.
Furthermore, decision fusion as the combination of different measurements will allow the improvement of results.
Dependent on noise analysis, a trade-off between flaw size detection and probability of falsely characterizing a fault with
a90/95 reliability level can be attained.
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Introduction

The presence of defects in systems/components may
affect its structural and functional integrity. From this,
it can be concluded that the structural/functional integ-
rity as well as the quality of detection and diagnosis
approaches are connected. In the last decades, several
fault detection and isolation (FDI) techniques are
implemented to detect changes, faults, and local defects.
These methods can be grouped into four categories: sig-
nal-based, model-based, data-driven, and hybrid
approaches. Signal-based approaches utilize output

signals. Here, fault detection modules often compare
raw or filtered signals to thresholds and conclude the
presence of faults. Faults are defined as the occurrence
of unacceptable changes to given healthy measures,
indicators, and other suitable characteristics describing
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the regular status of the system monitored. Model-
based approaches use, beside output signals, input sig-
nals and requires a model to be built (parameter identi-
fication), to be assumed (observer), or to be suitably
established.1,2 Data-driven approaches formulate impli-
cit relationships by trained models through analysis of
fault-free data obtained during regular operations.2

These models are used to estimate the behavior of vari-
ables to be compared to those obtained from measure-
ments.3 Hybrid approaches combine model-based and
model-free techniques.4

Signal-based methods are widely adopted. The main
idea is to extract relevant process characteristics from
analyzed sensor data and combine this with further
knowledge (clearly related to specific health states of
the system).5 Condition-monitoring frameworks
involve data acquisition and normalization, feature
extraction, and, if required, the development of statisti-
cal models. Feature extraction is performed in time,
frequency, and time–frequency domain transforming a
measured signal to a new representative form to make
classification tasks easier, or more reliable.

Classification-related performance indices (PI) are
important to evaluate FDI approaches. For this, related
measures like detection rate (DR) or false alarm rate
(FAR) are evaluated based on the confusion matrix.
When discussing the effects of varying tuning para-
meters, the complete precision values of the receiver
operating characteristic curve (ROC) can be used for
evaluation.6 Typical evaluation considers a single set of
numbers describing also the uncertainty of statements.
Fault tolerant control systems apply FDI techniques
and reconfigure controllers to enhance the entire system
reliability.7,8 Reliability evaluation of FDI schemes
itself still remains an open problem.

Structural health monitoring (SHM) is the process
of implementing a damage detection and characteriza-
tion strategy for monitoring engineering structures.9,10

Damage in this context describes physical changes that
adversely affects the system performance.10 The field of
SHM increasingly has become an essential aspect of
industrial practice to ensure the quality of products,
safe operations, improved maintenance, and to save
cost. Many engineering structures are approaching or
exceeding their initial design life, making SHM rele-
vant.11 In SHM, monitoring is mainly applied online
for large structures.10 Nondestructive testing (NDT) in
contrast is usually applied offline after damage localiza-
tion, though it is used for in situ monitoring of struc-
tures like pressure vessels, rails, aircraft components,
among others. Safety-critical and high capital expendi-
ture elastic structures have a wide application range in
mechanical, civil, and aerospace fields. These include
structures like turbomachinery, blades and towers of
wind turbines, aircraft fuselages, bridges, skyscrapers,

among others. These systems are susceptible to changes
caused by material specific properties like cracks (in
metals, fibers etc.) or delamination (composites).
Vibration monitoring of these elastic structures is com-
mon in industrial practice. Vibration-based SHM oper-
ates on the principle that structural defects result in
changes in dynamical properties. Fault identification is
mainly based on displacement, velocity, or acceleration
measurements at a single point;12 however, useful
assessments may include observable effects and multi-
point measurements. It should be noted that the evolu-
tion of the damage and changes in the dynamics of the
structure act on different time scales.12 The evolution
of the damage is slower compared to the vibration of
the structure, except for impact damage. Despite the
advances in SHM, questions remain. These include the
transition from theory to practical implementation,
early detection of faults, and reliability assessment of
diagnostic statements.1,9 The dynamics of vibrating sys-
tems changes due to different effects like altering of the
structure possibly leading to changes in the mass, stiff-
ness, and damping properties. Finally, decisions about
the existence of changes (fault detection) and/or specific
faults (diagnosis) have to be made. Making reliable
decisions is of importance. Current FDI approaches
utilize classification-related performance measures.
These performance measures are subject to uncertain-
ties; hence, the reliability is not quantified. Conversely,
conventional NDT approaches use the probability of
detection (POD) concept as a reliability measure. The
emergence of SHM led analysts to ponder how to inte-
grate POD in SHM systems. In comparison to NDT,
SHM systems are mounted permanently and should
provide reproducible results. Aging of the structure
leads to adverse effects. In Aldrin et al.,13 Monte Carlo
simulation of flaw size as a function of time is pro-
posed. The results demonstrate the sensitivity of flaws
to degradation of SHM system. In NDT, uncertainties
are associated with human factors, variations in the
interface between the structure and transducer, crack
form and shape, and local structure properties, while
SHM uncertainties are environmental conditions, aging
effects in the structure, and damage morphology.14 In
Mendrok and Uhl,15 experiments are undertaken on an
aluminum frame to ascertain the POD capabilities of a
modal filter-based damage detection SHM system. Ten
accelerometers are mounted on various positions on
the frame. An impulse test is carried on the specimen
and the obtained damage index values and the corre-
sponding damage sizes are the input data to determine
POD curve. However, individual sensor-POD charac-
terization is neglected. Also, variations in fault position
and the effect on the POD curve are not considered.
Model-assisted POD is proposed in Aldrin et al.16 and
Mueller et al.17 utilizing numerical models; however,
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numerical efforts and computational time problems
have to be solved for convenient applications in prac-
tice. Also, the ability of these models to simulate real
faults remains as open tasks. The POD approach typi-
cally quantifies a sensor/filtering technique in combina-
tion with mostly static measurements. Implementing
this measure in the field of vibration-based SHM is dif-
ficult. Difficulties result from the complexity of dyna-
mical behavior in relation to faults, sensors position
(observability), related data analysis procedures, and
the system under consideration. The POD approach
usually uses a so-called POD curve, constructed by
plotting the accrual of flaws detected against the flaw
size or produce a response over a threshold.18,19 The
POD theory as required is briefly repeated in the next
section.

This contribution extends the first results and ideas
of the authors published in Ameyaw et al.20,21 In addi-
tion to these publications, in this article, the theory of
the new approach is completely developed, the results
presented are extended, and a new discussion regarding
different combination approaches, POD view to FDI,
and POD-based noise analysis of fault diagnosis sys-
tems is added. The fusion approach establishes clearly
the theory and considers all sensors in the combination
process. The POD view to fault diagnosis discusses in
detail the detection task and quantification metric for
reliability evaluation of sensors. Noise analysis based
on POD is introduced in this work to determine FAR
for a selected sensor threshold. The article is organized
as follows: a brief theory of the POD measure is intro-
duced. This is followed by explaining the experimental
setup required for illustration of the effects. Results and
a new approach to fuse POD values are given. A POD
view to fault diagnosis is presented, followed by a POD
perspective to noise analysis and finally the conclusion.

POD

According to previous studies,14,18,19 the POD
approach allows a general assessment of the reliability
of NDT methods and lately SHM systems. The aim of
the a90=95 criteria is to specify a damage size, which can
be detected/missed applying a specific method to be
evaluated, taking into account statistical variability of
the sensor and measurement properties. The United
States Air Force (USAF), National Aeronautics and
Space Administration (NASA), as well as many
authors consider MIL-HDBK-1823A (updated version
of MIL-HDBK-1823) as the state-of-the-art and con-
temporary guide for POD studies.22,23 This article
adapts the method and utilizes extracted features as
response. It is worth mentioning that this research
focuses on fault detection. Here, classical sensors in

combination with a vibration-oriented system response
analysis are utilized. Difficulties associated with obser-
vable effects, faults and sensor positions, and the nonu-
niqueness of the POD curve characteristics for which
not so much attention is given in literature with respect
to these combinations are demonstrated. Data used in
producing POD curves are categorized by the main
variables to be combined in the POD approach. These
data are the following:

1. Hit/miss: produce binary statement or qualitative
information about the existence of a flaw.

2. Flaw size versus response (a vs â): systems which
also provide some quantitative measure of size of
target.

A typical and useful criteria for detection at a 90%
POD level with 95% confidence level is the so-called
flaw size detectability. In the derivation of the POD
curve, first, a regression analysis of the data gathered
has to be realized.19,24,25 Let x ¼ f ðaÞ and y ¼ f ðâÞ, the
regression equation for a line of best fit to a given data
set is given by

y ¼ b + mx ð1Þ

where m is the slope and b the intercept. Here, the 95%
Wald confidence bounds on y is constructed by

y a¼0:95ð Þ ¼ y + 1:645ty ð2Þ

where 1.645 is z-score of 0.95 for a one-tailed standard
normal distribution and ty the standard deviation of
the regression line. The delta method is a statistical
technique used to transition from regression line to
POD curve.19 The confidence bounds are computed
using the covariance matrix for the mean and standard
deviation POD parameters m and s, respectively. To
estimate the entries, the covariance matrix for para-
meters and distribution around the regression line needs
to be determined. This is done using the Fisher’s infor-
mation matrix I. The information matrix is derived by
computing the maximum likelihood function f of the
standardized deviation z of the regression line values.
The entries of the information matrix are calculated by
the partial differential of the logarithm of the function f
using the parameters ofYðm; b; tÞ of the regression line.

From

z ¼ y� b + mxð Þð Þ
t

ð3Þ

and

f ¼
Yn

i¼1

1

2p
e�

1
2

zð Þ2 ð4Þ
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the information matrix I can be computed as

Iij ¼ �E
∂

∂Yi∂Yj

log fð Þ
� �

ð5Þ

The inverse of the information matrix yields f as

f ¼ I�1 ¼
s2

b sbsm sbst

smsb s2
m smst

stsb stsm s2
t

2
4

3
5 ð6Þ

The mean m and standard deviation s of the POD
curve are calculated by m ¼ ðc� bÞ=m, where c is the
decision threshold and s ¼ t=m. The cumulative distri-
bution F is calculated as

F ¼ 1

2
1 + erf

x�mffiffi
2
p

s

h i
ð7Þ

The POD function is derived as

POD að Þ ¼ F
a�m

s

� �
ð8Þ

Using this formula, the POD curve can be set up for
varying flaw sizes.

Adaptation and application of POD in vibration-based
fault diagnosis

The idea of this article is to adapt standard POD mea-
surement and implementation strategy to vibration-
based health monitoring and therefore integrate vibra-
tion analysis results (as shown in Figure 1).

Conventional NDT approaches apply statistical analy-
sis and show the relationship between signal strength â

and the size a of the flaw initially causing measure-
ments. The time and cost involved in POD analysis
have given rise to model-assisted POD (MAPOD) to
improve the effectiveness of POD models with little or
no specimen testing by utilizing model-generated
data.26 Two MAPOD methods exist.27 The transfer
function approach is a physics-based method that
transfers the computed POD curve for a specific pro-
cess to another with different parameters.28 The second
method utilizes physics-based models to propagate
directly the uncertainty of a given set of assessment/
examination parameters. The idea of this article is to
discuss fault diagnostics from a POD-oriented view.
Experiments have to be carried out including variations
of faults (denoted by a) to ascertain the influence of
faults on the observed value. The observed value is thus
an aggregation of the signature of the system and fault.

Since SHM systems are permanently mounted, data
are continuously recorded. Through signal processing,
suitable features (e.g. eigenfrequencies and band power)
are extracted from time series data. The feature extrac-
tion task reduces noise effects. Uncertainty in measured
data is accounted by constructing prediction bounds.
The prediction bounds ensure that for every new 100
observations, 95 of them should fall within the bounds.
Currently, classification approaches are used in moni-
toring vibrating systems (illustrated in Figure 1) but
incapable of quantifying vibration-based fault measure-
ments. However, the POD measure from the NDT and
material testing field can be effectively implemented in

Figure 1. General idea.
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vibration-based fault diagnosis to quantify sensor-
related measurements and therefore be used alongside
known classification approaches.

Experimental results

Using a simple benchmark test rig, the principal prob-
lem associated with implementation of POD in
vibration-based SHM is demonstrated. The experimen-
tal system to be considered for illustration is an elastic
beam. Acceleration, displacement, and strain measure-
ments are taken. As features, band power and eigenfre-
quency analysis are carried out on the first two modes
of the mechanical system. The obtained results and the
analysis are discussed in detail.

Experimental setup

The experiment is carried out on an elastic mechanical
beam using the test rig in Figure 2. An elastic steel beam
of dimensions 545 3 30 3 5 mm is clamped on one
side. The beam length is divided into five equal parts
(Figure 3) defining sensors position. Piezoelectric accel-
erometers are attached at three positions (P1, P2, and
P3) on the beam. Two strain gauges are bonded onto
the beam at positions P1 and P3. Two displacement
measurements are taken at the two positions (P2, P4)
using noncontact laser sensors. The beam can be excited
manually or by modal hammer.

Injected faults as changes to be investigated

In this article, changes within the elastic mechanical
structures are assumed as changes due to varying mass,
so here additive masses are applied to modify the exist-
ing initial system to simulate a fault (due to mass
change). Two cases of point mass placement are exam-
ined. Case I involves placing the point mass at midpoint

of positions 2 and 3. Case II involves the placement of
point mass at the midpoint of positions 3 and 4. These
masses are added to the specified locations. For every
incrementally placed mass (Figure 4), the beam is
excited and the corresponding data are recorded.

Results

The analysis is carried out for the first and second mode
for each situation of mass placement (cases I and II). In
Figure 5, time series data for different sensors used in
the experiment are given. The regression analysis, confi-
dence bounds, prediction bounds, and the POD charac-
terization for each sensor are carried out. The strategy
to map the data to the POD curve is shown (Figure 6).
In Figure 6, a graphical representation of the flaw size
versus response approach elaborated earlier is given. It
involves setting threshold values and fitting trendline to
the data. Confidence and prediction bounds are con-
structed on both sides of the line of best fit. Probability
density functions at each flaw size are established. The
area above the decision threshold is used to construct
the POD curve.

It should be stressed that the focus of the work is on
fault diagnosis and not on classical material testing
approaches. The results are given in Table 1. From the
results, it becomes evident that the a90=95 POD

Figure 2. Test rig (Chair SRS, UDuE) consisting of a one side
clamped elastic beam with bonded strain gauges, laser sensors,
and accelerometers.

Figure 3. Sensor positions relative to beam length.

Figure 4. Mechanical beam modification using additive mass.
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quantification is different depending on sensor type
and mode considered. Based on fault position, sensor
location relative to fault, sensor type, and the mode
considered, different results are obtained. The numbers
indicate the maximum mass that can be missed with a
90% POD at a 95% confidence level. The lowest
masses (a) represent best results, so the sensor detects
least mass change. The worst (b) POD sensor character-
ization represents worst results so the sensor requires
large fault (here: mass) values to be detected with a90=95

reliability. To explore the nonuniqueness of a feature

for POD analysis, as additional feature, band power is
also extracted. The band power (here: 0-500 Hz) repre-
sents the average power utilizing the Euclidean norm.
Analysis for this feature is given in Figures 7 and 8.
The results are compared with the eigenfrequency
results (Table 1).

It can be concluded that the POD of vibration-based
analysis of elastic structures strongly depends on sensor
type (dynamic range differs for each sensor), sensor
position (same sensor at different positions produce dif-
ferent results), fault position (case I or II), and attribute

Figure 5. Signals of different sensors.

Figure 6. Strategy from data to POD curve.

Figure 7. Regression analysis related to band power.

Figure 8. POD related to band power feature.
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selected (eigenfrequency or band power). Consequently,
it can be stated that general statements about the use-
fulness of related sensors are not possible. Depending
on effects, measurement options, features considered,
and sensor type, the choice becomes sophisticated and
task-specific.

Fusion of results to combine individual
FDI-statements

In the case of nonreliable statements (the use of one
sensor and feature is not suitable to ensure confident
health status statements), decision fusion of the results
from different sensors or features may be an option for
improving reliability. This section details a new
approach used to improve the POD characterization of
each sensor-/vibration-based statement by decision
fusion using several sensors. To fuse the detection
results of the sensors related to their POD and a90=95

value, the Bayesian Combination Rule (BCR) can be
applied. The BCR also known as Bayes belief integra-
tion or Bayesian belief method is a well-known and
commonly used fusion technique based on conditional
probability.

To set up the conditional probabilities of each classi-
fier for each class, first, the confusion matrix has to be
calculated. The confusion matrix Ck for each classifier
ek with k ¼ 1; . . . K, where K is the total number of con-
sidered classifiers, is defined as

Ck ¼

C11 C12 . . . C1M

C21 C22 . . . C2M

..

. ..
. . .

. ..
.

CM1 CM2 . . . CMM

2
6664

3
7775 ð9Þ

where i; j ¼ 1; . . . M with M as the number of classes.
The element Cij is the number of samples, where the

classifier ek has assigned class j and the actual class of
the sample is i.

Using the elements of the confusion matrix, the
probability that sample x belongs to class i, if the classi-
fier ek assigns x to class j, can be calculated using

Pij ¼ P x 2 i ek xð Þ ¼ jjð Þ ¼
Ck

ijPM
i¼1

Ck
ij

ð10Þ

For each classifier ek , the probability matrix Pk is set
with

Pk ¼

P11 P12 . . . P1M

P21 P22 . . . P2M

..

. ..
. . .

. ..
.

PM1 PM2 . . . PMM

2
6664

3
7775 ð11Þ

The diagonal values ði ¼ jÞ are the same as the preci-
sion value for this class. Based on the probability
matrix of each classifier, a combined belief value belðiÞ
for each class i is determined for each sample with the
formula

bel ið Þ ¼

QK
k¼1

Pijk

PM
i¼1

QK
k¼1

Pijk

ð12Þ

where jk is the assigned class of classifier ek for the con-
sidered sample x. The maximum of the belief values is
used to make a decision for one of the classes.

In the case of fault detection, normally the precision
value is used as a performance measure, which is con-
sidered in the fusion process. Here, the measurable
POD values for specific masses are assumed as replace-
able for the precision value, because both define a per-
formance measure about the reliability of an

Table 1. Measure: Eigen frequencies (modes 1 and 2) and band power.

Point mass between P2 and P3 (case I) Point mass between P3 and P4 (case II)

Sensor Mode 1 a90=95

POD (g)
Mode 2 a90=95

POD (g)
Band power a90=95

POD (g)
Mode 1 a90=95

POD (g)
Mode 2 a90=95

POD (g)
Band power a90=95

POD (g)

ACC 1 at P1 74.04 48.15a 45.28b 52.21 9.915 84.56b

ACC 2 at P2 74.04 55.78 34.63 52.15 9.293a 22.78
ACC 3 at P3 74.04 72.59b 20.20a 52.15 13.36 17.29a

SG 1 at P1 85.19 72.38 29.34 52.15 11.07 28.69
SG 2 at P3 126.70b 62.23 34.37 54.08b 9.394 27.93
Laser 1 at P1 67.30a 61.03 27.64 52.10a 43.49b 25.54
Laser 2 at P4 74.04 – 23.44 52.15 – 25.85

ACC: accelerometer; P: position; POD: probability of detection; SG: strain gauge.
aBest results.
bWorst results.
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assignment. Therefore, the POD of each sensor and
feature for specific faults (here: masses denoted as
a90=95 values for the considered sensor–feature combi-
nation) can be used to calculate the belief values
according to the BCR. In Table 2, the POD of the
seven sensors for the corresponding a90=95 values is
given. To explain the combination using POD values,
the fusion of the sensors ACC 1 and ACC 2 is consid-
ered as example. To calculate the belief values, it has to
be known which sensor detected the fault and which
failed. Assuming ACC 1 detected a fault, ACC 2 did
not, the values used for belief value calculation are
denoted as P1 ¼ PODACC1

20:20g and P2 ¼ PODACC2
20:20g. The

belief value for the mass of 20.20 g is calculated by

bel 20:20gð Þ ¼ P1 � 1� P2ð Þ
P1 � 1� P2ð Þ+ 1� P1ð Þ � P2

ð13Þ

In the same way, the belief values for the other
masses can be calculated. Extending the fusion to all
sensors, the number of detection combinations ascends.

The resulting belief values for different detection
combinations, as example if five of the seven sensors
detected a fault (e.g. 0 0 1 1 1 1 1 means the first two
sensors (ACC 1 and ACC 2) did not detect a fault, all
other did), are shown in Figure 9. Depending on which
five of the seven sensors detect the fault, the belief val-
ues vary. Although, all belief values increase for
increasing masses. This means that the probability that
a fault with a higher mass is present is higher in case of
five sensors detecting a fault. In Figure 10, a selection
of different detection combinations is presented. For
selection of the best and worst sensor-/feature-based
statement, results according to Table 2 are considered.
For example, 4B means the four best sensors have
detected a fault, the others did not. In case of 6B, 5B,
and 4B, all belief values are close to 100%, while in
case of 1W, 2W, and 3W, all belief values are close to
0% (see Figure 10). For the other cases, a symmetry
can be seen, for example, the curve of 5W corresponds
to 100% minus the curve of 2B.

Table 2. POD results for case I—band power feature.

Sensor POD (20.20 g) POD (23.44 g) POD (27.64 g) POD (29.34 g) POD (34.37 g) POD (34.63 g) POD (45.28 g)

ACC 1 48.6 61.8 71.6 74.0 83.9 84.8 90.0
ACC 2 63.5 71.2 83.2 84.8 89.7 90.0 96.1
ACC 3 90.0 95.0 97.1 97.6 98.8 98.9 99.5
SG 1 74.5 83.9 85.8 90.0 94.4 94.7 95.8
SG 2 64.2 75.5 84.3 85.7 90.0 91.1 96.0
Laser 1 77.7 87.1 90.0 91.6 94.5 95.4 98.1
Laser 2 85.5 90.0 93.7 95.3 97.2 98.1 99.2

ACC: accelerometer; POD: probability of detection; SG: strain gauge.

Figure 9. Belief values for different detection combinations,
when five of seven sensors detect a fault.

Figure 10. Belief values for different detection combinations,
selected by the best (B) or worst (W) sensors detecting the
fault.
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Considering the case 2B, which means the two best
sensor-/feature-based statement (with the lowest a90=95

value) are detecting a fault, all other five sensors are
not, it is more probable that there is a small fault than
a bigger one, because if the better sensor-/feature-based
statement has detected a fault, it could be that the fault
is too small to be detected by the other sensors (with
higher a90=95 value). However, if the mass would be
larger, the other sensors should also have detected the
fault. If there is a higher number of sensors detecting a
fault (like in case 5W), the belief values increase for
increasing masses, because a larger fault is easier to
detect.

Using the introduced fusion approach, the probabil-
ity of the presence of a specific mass (as fault) can be
obtained based on the individual performance and
assignments of the sensor-/feature-based statement.

POD view to FDI

SHM systems applied to vibrating elastic structures
usually denote monitoring dynamical systems. Arising
questions are related to the reliability of measurements.
Consequently, this also affects related diagnostics state-
ments about diagnosis and therefore strongly affects
the reliability of vibration-based measurements. The
POD-strategy introduced now allows the quantification
of vibration-based measurements (here: fault size).
Further, a new adaption of POD measure is proposed
and implemented with respect to the integration of the
vibration analysis. Conventional NDT approaches
apply statistical analysis and use the relationship
between signal strength â and the size a of the target
initially causing the measurement. The variation of this
can be discussed from a FDI-oriented view. In SHM,
additional data analysis is required to convey informa-
tion about the signal’s attributes. The response is a
feature-based response. The output sensor values for
varied fault size have to be recorded. Through signal
processing, suitable features have to be extracted and
used as response. Four possible graphs (a vs â, a vs
logðâÞ, log a vs â, log a vs log â) have to be plotted. The
graph with best linearity, uniform variance, and uncor-
related observations is selected.

The detection task corresponds to the response
threshold value e. This can be obtained from the regres-
sion line, confidence bounds, and 90% probability den-
sity (Figure 11). From the general equation of the
confidence bounds equation (2), the values of slope,
gradient, and standard deviation can be measured
directly from the regression line. However, the size a
generating a90=95 value can be obtained from the regres-
sion line in combination with the POD curve as indi-
cated in Figure 11. The threshold e defines the response

detection value, beyond which the fault can be detected
with a a90=95 reliability. The a90=95 value d quantifies the
threshold size. The threshold e permits reliability certifi-
cation of the response value for a specific sensor and
the subsequent quantification of the response in terms
of fault size. The results for this example indicate that a
response of 0.14 dBW is the threshold value e, which
corresponds to a fault size d of 4.88 g. From the
demonstrated consideration, it can be stated that this is
a new and significant insight for task-/application-spe-
cific quantification of sensors and serves as detection
and quantification metric for reliability evaluation of
sensors. This new view to a classical problem as well as
classical solutions should improve monitoring/fault
detection system designers to learn about the complex-
ity of the problem and therefore to improve detection
systems by choosing the right combination of task, sen-
sor, feature, and sensor position.

Noise analysis-based discussion

The observed signal is an aggregation of the character-
istics of the system to be considered combining signa-
tures, errors, and noise effects. Classical POD methods
usually evaluate independently the healthy state or infer
noise from data not associated with target size.19,24

This article, however, incorporates both approaches by
measuring the healthy and defective states. Both states
are combined/plotted, and the effect of the selected
response decision threshold ðythÞ on the probability of
false positive (PFP) for a specific sensor is inferred from
the noisy data. Noise here refers to healthy state data

Figure 11. Detection task.
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since it is not related to flaw size. To illustrate this rela-
tions here as example, accelerometer-based measure-
ments at position 2 filtered as band power (Figure 12)
are used.

A x2 (chi-square) test is undertaken to identify the
nature of noise distribution. Various distributions are
tested, with the Gaussian distribution emerging most
plausible. The x2 produced a p-value of 0.94, thereby
rejecting the null-hypothesis that the distribution is
non-Gaussian. A regression analysis is carried out on
the noisy data and the mean mnoise and standard devia-
tion snoise are calculated (Figure 13). The PFP is the
percentage of healthy data that the system classifies as
damage. For a Gaussian noise distribution, the PFP is
computed as

PFP ¼
ð‘

yth

1ffiffiffiffiffiffi
2p
p

ŝnoise

e
� y�m̂noiseð Þ2

2ŝ2
noise dy

The distribution with regard to PFP is illustrated in
Figure 14 (shaded red area relative to the selected deci-
sion threshold).

Trade-off between PFP and POD

Using (as example) the accelerometer-based measure-
ments at position 2 filtered as band power data
(Figure 12) and assuming the sensors decision thresh-
old (0) based on assumed Gaussian distribution, the
point (1) results, denoting with (2) a related PFP.
Assuming as threshold the a90=95 criteria, the point (3)

results, denoting with (4) a related maximum fault size
to be missed. Figure 15 (as example) shows that based
on the sensor property, the decision value can be
obtained, here â ¼ 343. From the distribution, the
character of the noisy data can be obtained. Assuming
Gaussian distribution, the point (1) can be obtained,
denoting number (2) with a resulting PFP of 0.12.

Figure 12. Accelerometer at position 2 band power data.

Figure 13. Noise analysis.

Figure 14. PFP for a specific decision threshold.
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Assuming the a90=95 criteria, the point (3) is defined so
the maximum fault size to miss (here: 24.68 g) can be
obtained.

Changing the sensor includes changing the distribu-
tion character (here: Gaussian) and the decision thresh-
old. Other sensors will result in different distribution
characters and different values. The character of the
introduced strategy remains. Changing the assumption
(here: relevant criteria a90=95), a different value for the
connection between the a90=95 criteria and the obtained
Gaussian characteristic (point 3) results, so that the
fault size (4) is always affected.

Summary and conclusion

This article focuses on introducing a novel POD-
oriented view to vibration-based diagnosis typically
using sensor types. The measurements used are accel-
eration, strain, and displacement (laser sensors). The
results indicate that the POD characterization depends
on the sensor position, fault position, and the feature
selected. The sensor type has an effect on the POD due
to the fact that performance specifications vary for dif-
ferent sensors. The a90=95 criteria representing probabil-
ity of 90% at a confidence level of 95% is successfully
implemented in vibration-based FDI as a reliability
measure. The new insight introduced allows task-/
application-specific quantification of sensors relative to
vibration-based monitoring/diagnosis of faults. Using
the novel fusion approach introduced, the probability

of the existence of a fault can be obtained based on the
individual performance and assignments of the sensor-/
feature-based statement. Noise analysis allows a deci-
sion threshold to be selected which permits a suitable
trade-off between the POD and PFP.
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