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1 Introduction

1.1 Motivation

"Itis time for parents to teach young people early on that in diversity there
is beauty and there is strength." (Angelou 1994)

This powerful quote from Maya Angelou highlights the importance of diversity and
postulates to educate young people. Although she argues from a civil and women
rights perspective, the discussion about diversity has a long tradition in a lot of disci-
plines and many parallels across them. In the tradition of group learning, researchers
discussed about how to perform groupings of learners. One of the most famous ap-
proaches, the jigsaw method by Aronson et al. (1978), had the goal to adjust the mixing
of ethnicity in classrooms with a high multi-cultural background. Therefore, it em-
ploys individual strengths and empowers young students by reducing the resistance
to work with each other.

The research in computer-supported collaborative learning (CSCL) picked up the dis-
cussion about forming learning groups with respect to a specific goal. Therefore,
the jigsaw method has been adopted for (digital) learning environments (Hinze et al.
2002). A lot of attention has been spent on the question whether homogeneous or
heterogeneous groupings perform better according to a specific target, for example
the learning outcome or the knowledge gain. Although this idea is scientifically cor-
rect, it has two flaws: (1) the learning outcome of a group is usually measured as a sum
or average of individual scores; (2) heterogeneity is often measured as a performance
characteristics, which determines heterogeneity in terms of skills. It can be seen as
common sense that heterogeneous groups perform better in terms of knowledge gain
or learning outcome. However, if this is reduced to skill, this leads to a stigmatiza-
tion of weak learners, but also to a lack of fostering of strong learner. Statistically,
in a group of weak and strong learners, the maximum (relative) learning gain will be
probably observed on the side of the weak learners.

This motivates the question, if there are other ways to form groups without stigma-
tizing weak learners, and with having a heuristic or goal setting that is beneficial for
everyone. Managing diversity has a lot of potential in many disciplines and fields.
Organizational or institutional diversity can support companies in many ways. For
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example, merging different perspectives and utilizing individual experiences from dif-
ferent (cultural) backgrounds can lead to more integrity and better acceptance on all
stakeholder parties. The potential of diversity has been highlighted a lot during the
last years.

Diversity seems to be a powerful and overloaded term (Fardon 2003), of which its con-
notation differs from field to field. Exploring diversity in research has been a topic
particularly in the humanities or organizational sciences. In educational research, di-
versity was important in terms of ethnical diversity, historically from the approaches
by Aronson. During the last decades, educational research has focused a lot in explor-
ing the 21st century skills. The modern society and the digital age posed new chal-
lenges for employers and particularly for employees. In the educational field there
has been a shift from traditional teaching to modern, student-centered approaches,
which involve critical thinking, creativity, problem solving competencies - metacog-
nitive skills that complement pure memory skills. The primary goal of the educational
system is not anymore just mediating and transferring domain knowledge. The goal
is to foster competencies that enable learners to extend their knowledge by their own,
to ask questions or to scrutinize common things in order to uncover the potential for
continuous improvement or growth. It is rather to provide means and mind tools for
learners in order to extend their knowledge and construct their own reality.

Some organizations like the National Research Council of the USA identify these 21st
century skills as key competencies for the future (Council 1996). Gago et al. (2004)
even predict in their report Europe Needs More Scientists a major crisis in the produc-
tion of human resources for science and technology . On the one hand, with respect
to OECD data, the amount of technical and scientific jobs in Europe has a tendency to
increase (OECD et al. 2003). On the other hand, the number of students with a degree
in science, technology and engineering decreases. This can be overcome by imple-
menting science programmes and fostering science education. Particularly schools,
which enables young students to experience and study science in a systematic way,
by asking questions, carrying out experiments, and collecting results in a scientific
manner.

"They may remember pleasure, joy, success, excitement — or a feeling of
failure, boredom, of not understanding counter-intuitive concepts and
abstract ideas with no relevance to their daily lives and a constant struggle
to find strategies to arrive at exercise solutions without deep thinking or
real understanding." (Gago et al. 2004)

To cause learners to stay in sciences needs to connect their positive learning expe-
riences and good outcome with positive affective components. The teachers work
to create the learning designing and to orchestrate the learning scenario s/he cre-
ates the conditions within the classroom to influence this outcome. Apart from the
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teacher, we, as experts and researchers in the educational domain, expect from the
students that they are the 21st century learners, being able to manage and plan their
own learning, to divide task planning, create learning agendas and being aware of so-
cial aspects. We expect a lot on the cognitive and metacognitive level. The higher the
learning outcome the higher the responsibilities for each party.

With the rise of internet and communication technology (ICT), the demand for using
ICT in educational contexts grew. The research area of Technology Enhanced Learn-
ing (TEL) is not a synonym for e-learning. The field brings together the disciplines
of learning science, pedagogy and computer science in order to create mechanisms
and (digital) tools to support learning. The triangular relation between the three dis-
ciplines involved highlights that it refers to learning and teaching 'with’ technology
rather than learning 'through’ technology. It exploits individual and social factors from
the learning science and defines software tools that are useful for teaching and learn-
ing, for cognition and metacognition, digital mind tools and diagnostic functions, and
much more.

Scientific learning has shown a lot of potential in the research of TEL. Computer-
supported Inquiry Learning (CoSIL) environments follow the idea of inquiry-based
learning (IBL) with digital tools, which support scientific inquiry on the part of the
learners and teachers. The work of this thesis is contextualized within the Go-Lab
project, which aims in promoting inquiry-based science education on a large scale.
Go-Lab can be seen as a pedagogical middleware, which provides tools to structure
and orchestrate inquiry-based learning. The teacher creates a so called inquiry learn-
ing space (ILS), which is a customized learning environment that can be seen as a
structured collection of apps (embeddable applications), online science laboratories
and learning resources. Each ILS is structured as subsequent inquiry phases, which
follow best practices of IBL. A variety of online tools and cognitive scaffolds can be
added to the ILS. Such tools can help learners, for example, to structure their learn-
ing, to ask questions, to externalize knowledge, or to support the scientific processes.
The experimentation, as the most distinctive phase in scientific inquiry, is supported
by a federation of online laboratories. A high number of virtual and remote laborato-
ries can be embedded into the Go-Lab ecosystem.

The construction of knowledge is often seen as a key ingredient to learning. In ad-
dition to the aforementioned aspects of using explicit knowledge representations to
support inquiry, possibilities to make use of the assessment of knowledge in a way that
it is integrated into the learning design have been investigated as well. One thread of
existing research on small group learning has addressed positive effects of grouping
learners with complementary knowledge, another one has focused on representing
and visualizing knowledge distributions to facilitate cognitive group awareness. Cog-
nitive group awareness can be seen as the perception or awareness of learners about
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their co-learners’ knowledge states, assumptions, opinions or interests. Such infor-
mation, presented to the learners in form of cognitive group awareness tools, implic-
itly guides learners through discovery processes and support communication, coor-
dination and reflection of collaborative processes (Janssen and Bodemer 2013; Bode-
mer and Dehler 2011). Although a combination of knowledge-based grouping, rep-
resentation of knowledge, and mirroring of knowledge states seems obvious, this has
been investigated rarely. As part of this work, visualizations of individual and group
knowledge have been created and provided. Such tools have the potential to support
metacognition and organization but also help to initialize group processes and learn-
ing.

A shift in teaching practices could be observed, but also in the use of intelligent tech-
nologies and orchestration of e-learning. With the acceptance of constructivism as
the predominant paradigm in teaching, the traditional teaching methods are more
and more replaced by student-centered approaches, where students do active explo-
ration and discovery. This shift to more active forms of learning could be observed
in the field of e-learning as well. Former applications usually had the function to dis-
tribute static materials to the learners, in their role as consumers. Modern approaches
demand the learners to externalize their knowledge and to challenge them. Their role
changes to prosumers, where they create their own learning objects in more coherent
and demanding learning scenarios, with active exploration and engagement.

The aim of this thesis is to explore diversity as a given and observable aspect in class-
rooms and to develop approaches to make use of knowledge diversity in computer-
supported inquiry-based learning scenarios. The practical use of diversity poses new
challenges in the frame of this research in the field of inquiry-based science education.
This comprises the operationalization of knowledge and knowledge diversity, which
is a precondition for algorithmic approaches or the empirical evaluation of these con-
cepts. Externalizations of knowledge and the processed knowledge model can be fur-
ther integrated into learning scenarios. On the one hand, this work explores meth-
ods to support the orchestration of group learning by automatically forming groups
based on knowledge models. This work presents a method based on knowledge di-
versity, where learners are grouped according to satisfy the condition of having com-
plementary knowledge. However, the field of artificial intelligence (Al) is facing the
challenge, that many highly optimized algorithms produce output with a good perfor-
mance in the application domain, but the underlying models and results are not ex-
plainable. Therefore, many researchers adopted the topic to develop explainable Als
(XAI). Corresponding to this work, the semantic group formation has the goal to cre-
ate a human-interpretable model of the group knowledge as a basis for the group for-
mation with the result of a clear model that explains the formation. Cognitive group
awareness tools Therefore, as part of this thesis, a group awareness tool has been de-
veloped, which takes the output of the group formation and utilizes the learner model
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as an explicit tool that guides learners through the collaboration phase in inquiry-
based learning scenario.

1.2 Problem Statement

Tobin (1990) cited Novak (1988) in order to frame the problems of science learning
and knowledge building explicitly:

"The science laboratory has always been regarded as the place where stu-
dents should learn the process of doing science. But summaries of re-
search on the value of laboratory for learning science did not favor labo-
ratory over lecture-demonstration [...] and more recent studies also show
an appalling lack of effectiveness of laboratory instruction [...] our studies
showed that most students in laboratories gained little insight either re-
garding the key science concepts involved or toward the process of knowl-
edge construction."

The results from Novak highlight the challenges for inquiry-based science education.
Particularly the science lab, as crucial and distinctive its role may be, contains a lot of
distractors and confusions, which complicates learning and knowledge building on
the part of the students.

Web-based inquiry learning environments such as Go-Lab structure the scientific pro-
cess and support learners by providing cognitive scaffolds and mind tools to external-
ize and to structure their knowledge. In such environments and associated learning
scenarios, learners are more active and produce learner-generated content inside the
environment, such as texts, concept maps, hypotheses or observations. Such active
productions reflect - to some extent - knowledge on the part of the learners. This the-
sis explored how these productions in order to infer and represent knowledge can be
facilitated. By employing methods of semantic extraction and natural language pro-
cessing, individual and group knowledge models are created to explore approaches
which facilitate these knowledge models. Whether scaffolds can be provided for learn-
ers in order to support knowledge creation has been investigated in this work.

Go-Lab promotes a special kind of blended learning, where classroom scenarios are
accompanied by a virtual learning environment. The Go-Lab portal provides support
mechanisms, teaching materials and the digital tools to generate content in the con-
text of inquiry-based learning. In contrast to pure online courses, such augmented
classroom scenarios are more likely to be influenced by social factors. The research
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on diversity has shown in a lot of fields, how different social, ethnical or other char-
acteristics can be facilitated to impact and to improve learning. Methods like the jig-
saw approach from the field of collaborative learning have demonstrated their use-
fulness for a diverse classroom. However, in the debate on diversity in a classroom
context, knowledge is underrepresented as a factor for learning and is often seen as a
black box. As part of this thesis, knowledge diversity is defined and operationalized in
inquiry-based learning scenarios with online learning environments. Observing that
a diversity is given in classrooms, mechanisms to make use of this and to improve
learning are explored. This assembly of knowledge diversity as a group characteristic
requires to define a knowledge model on the individual or the group level and func-
tions as an operationalized expression of knowledge diversity. Methods such as Jig-
saw require the pedagogical model to be adapted in order to prepare the group work.
This demands the teacher to resemble and distribute the learning materials accord-
ing to a specific role schema, for instance when it comes to the formation of experts
in Jigsaw. Although this mechanism relies on the idea of grouping learners regarding
complementarity, this is only achieved by the specific pedagogical design. A grouping
method could be more flexible and easy to orchestrate, when the teachers do not have
to care about a distribution of learning materials and roles. In addition, it would be
more plausible to facilitate the knowledge diversity that is already given and use this
as a criterion for group formation.

Many learning environments such as Go-Lab, show heterogeneity in a lot of ways:
the apps used in the scenarios, the structure or the format of the learner-generated
content. In order to define individual or group knowledge models, a normalization
of the data needs to take place. To quantify diversity of knowledge, representations
of knowledge and an operationalization of the (knowledge) diversity need to be dis-
cussed and refined. Based on this operationalization, support mechanisms can be
defined in an individual or in a group context. These mechanisms can be scaffolds
directed to an individual or affecting a whole cohort, for example, automatic group
formation. The characteristics of a grouping can affect the learning outcome, for ex-
ample the debate homogeneous versus heterogeneous groupings. However, this work
wants to shift the attention from the heterogeneously skilled groups to a different kind
of grouping. Having high- and low-achievers leads to a stigmatizing of learners but
also to an unbalanced situation. Besides fostering low-achievers, this thesis advo-
cates for maximizing the learning gain for high-achievers as well, without designating
one of them as less valuable. Therefore, knowledge diversity is employed, as a given
characteristic of cohorts, to build a semantic group formation algorithm. In this group
formation, the knowledge diversity is maximized for all groups in order to stimulate a
maximized knowledge gain for everyone. This follows the idea to group learners with
respect to knowledge complementarity. Assuming that the learners have a comple-
mentary knowledge (and assuming that there is some common ground), each learner
may have something distinctive to contribute to the learning.



1.3 Structure of this Thesis

However, creating algorithms that know about the complementarity of knowledge
does not necessarily lead to benefits for learning. Therefore, mechanisms to visual-
ize and mirror these information states about knowledge back to the learners have
been investigated and integrated into the learning scenario. The concept of cognitive
group awareness is employed in order to create tools that make the knowledge com-
plementarity of learners explicit. This shifts the idea of automatic group formation,
that is usually handled as a black box for learners and teachers, to a glass box model.
Such explainable models are highly of interest, as they are interpretable and build up
trust on the part of the users involved.

The work of this thesis has been evaluated in classroom settings using the Go-Lab
learning environment. For every evaluation, Go-Lab inquiry learning spaces have
been created. To evaluate the group formation approaches, for each study two ILS
have been constructed, one for an individual phase, one for a collaboration phase.
To facilitate a diversity of topics and to foster discussion and argumentation, the sce-
nario is situated in the field of renewable energies. In another study, the mechanism
of visualizing and feeding back a shared knowledge model to individual learners has
been explored. In this case, an ILS about an introduction to cryptography has been
created.

1.3 Structure of this Thesis

The first chapter motivates computer-supported inquiry-based learning with online
laboratories and highlights the importance of knowledge diversity in this field. Chap-
ter 2 describes the state of the art in the research on inquiry-based learning and learn-
ing analytics, with a focus on semantic analyses in order to create individual and
group knowledge models.

The approach of this thesis consists of two parts: technical architecture in chapter 3
and knowledge management approaches in chapter 4. The first part is dedicated to
elaborate architectures for learning analytics, which have been used during the Go-
Lab project. The Go-Lab learning analytics infrastructure was part of two publica-
tions, the first described the main components (Hecking et al. 2014), and the second
one lined out a rapid prototyping approach for learning analytics apps based on a
visual pipes-and-filters framework in Go-Lab (Manske et al. 2014). Finally, this ar-
chitecture has been used to collect data during the first two years of Go-Lab and
analyzed the learning processes and how teachers used Go-Lab for authoring their
inquiry learning spaces (Manske et al. 2015a). In the second part (chapter 4), the
concept of shared group knowledge models and knowledge diversity is introduced.
This model is constructed through an automated semantic extraction. The idea of
knowledge diversity is In this chapter, several approaches to facilitate knowledge and
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knowledge diversity in the context of Go-Lab are presented. This section is based on
the publications of the concept cloud (Manske and Hoppe 2016) and group formation
(Manske et al. 2015c; Manske and Hoppe 2016).

The subsequent chapters summarize three experimental studies in order to exploit
the use of knowledge diversity and heterogeneity in classroom settings, contextual-
ized in the Go-Lab project and its (technical) ecosystem. In the first study, a group
formation based on performance characteristics and skills has been created, where
the learning outcome of homogeneous groupings has been compared with heteroge-
neous groupings (chapter 5). In this study, the Go-Lab infrastructure has been used
to create performance measures based on the actual learning artifacts that students
created individually. The groups have been assigned automatically based on these
measures. This chapter is based on the publication in the proceedings of the Confer-
ence on Computer-Supported Collaborative Learning (Manske et al. 2015c).

In the second study (chapter 6), the use of a shared knowledge model has been eval-
uated om a classroom study. The interactive visualization of the shared knowledge
model functions as an innovative scaffold, which represents cognitive information
of the class in a condensed form. The displayed knowledge elements have been ex-
tracted automatically with different semantic technologies. Two different dynamic
and automatic extraction methods have been evaluated in this study and compared
to a static case and a control group without the scaffold. This chapter is based on the
publication in the proceedings of the International Conference on Advanced Learning
Technologies (Manske and Hoppe 2016)

In the final study (chapter 7), the knowledge models that have been elaborated in this
thesis have been used as an input for the (automatic) semantic group formation. In
addition to this, a group awareness visualization based on the output of the group for-
mation is used to support the collaborative processes. This tool-chain that supports
facilitates cognitive group awareness and supports the orchestration of group learning
through explainable algorithms and models. This was done by showing a visualization
as a cognitive group awareness tool (CGAT), which had a dedicated learning phase in
the learning design. Based on theses approaches, a classroom experiment has been
conducted. This chapter is based on a conference paper for the International Confer-
ence on Collaboration Technologies and Social Computing (Erkens et al. 2019).

Finally, chapter 8 summarizes the outcome of this thesis and characterizes the contri-
butions to the field of technology enhanced learning (TEL) and computer-supported
collaborative learning (CSCL).
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The following chapter gives an overview of the scientific background. The thesis is
contextualized in the research area of inquiry-based science education and inquiry-
based learning with online laboratories. The approach of managing diversity to create
conditions that influence learning positively is based on the field of learner modeling
and knowledge representations. These are mainly influenced by the research done in
intelligent tutoring systems. The extraction of knowledge from the learners in order to
perform the modeling of diverse knowledge was lately discussed in the uprising field
of learning analytics. Managing diversity is twofold: on the one hand, teachers can
be supported through methods that help to orchestrate group learning, particularly
through automatic group formation. On the other hand it might be a useful tool to
mirror the diversity into the learning situation. The field of cognitive group aware-
ness discusses how visualizations of knowledge can be used in small learning groups
in order to reduce organizational aspects of group work. The applications and ex-
perimental studies are situated in the European project Go-Lab (2012-2016) and uti-
lize the Go-Lab ecosystem, including the Go-Lab virtual learning environment. Here,
learning activities with the respective processes and learner-generated artifacts are
tracked through a learning analytics architecture, which has been developed as part
of this thesis (compare section 3). This architecture serves as a basic platform for the
implemented technologies and applications.

2.1 Scientific Inquiry and Inquiry-based Learning

In contrast to traditional education based teacher-centered methods, in modern ped-
agogy several other approaches exist, which are student-centered and involve active
learning. "Scientific inquiry requires the use of evidence, logic, and imagination in
developing explanations about the natural world" (Newman Jr et al. 2004). The Na-
tional Research Council of the United States of America defines inquiry as the follow-
ing (Council 1996):

"Inquiry is a multifaceted activity that involves making observations; pos-
ing questions; examining books and other sources of information to see
what is already known; planning investigations; reviewing what is already
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known in light of experimental evidence; using tools to gather, analyze,
and interpret data; proposing answers, explanations, and predictions; and
communicating the results. Inquiry requires identification of assump-
tions, use of critical and logical thinking, and consideration of alternative
explanations.”

The role and importance of science laboratories have been pointed out quite fre-
quently and developed throughout the majority of science curricula (Hofstein 2004;
Eilks et al. 2013; Lunetta et al. 2005). Experimentation in a science lab incorporates so-
cial processes, senses and active learning. Many science educators understand con-
structivism as a theoretical model for science teaching (Lunetta 1998) and consider
it as a dominant paradigm in the field of science education research (Lakatos 1970).
Sigel (1978) defines constructivism the following:

"Constructivism refers to that process of constructing, in effect, creating
a concept which serves as a guideline against which objects or people
can be gauged. During the course of interactions with objects, people,
or events the individual constructs a reality of them... This mental con-
struction then guides subsequent actions with the object or events."

In a science laboratory, the students interact with the lab equipment, investigate and
build their own understanding based on their experience. These concepts were build
historically on constructivist theories. They emphasize that learning is, according to
their view, an individual, active and interpretative process. Tobin (1990) highlights
the positive opportunities that come from a constructivist perspective: "Laboratory
activities appeal as a way to learn with understanding and, at the same time, engage
in a process of constructing knowledge by doing science". However, the science lab-
oratory has been criticized in science education research. Although the distinctive
role for scientific discovery has been acknowledged, the lab has been seen as con-
fusing and unstructured (Hodson 1993). Research has found evidence that there is a
gap between learning goals and learning outcomes (Goodlad 1983; Lunetta et al. 2007;
Hodson 1993, 2001; Wilkinson and Ward 1997). Many teachers do not find that their
stated lesson aims to be addressed during the lessons that involved laboratory work
(Hodson 2001). This criticism highlights the need for support mechanisms tailored to
scientific inquiry (see section 2.1.1).

Barrow (2006) described that during the historical development of the term inquiry
and the concept describing it, there have been different discussions and a thematic

shift towards scientific inquiry. Several attempts to define the term have been made,

complemented by operationalizations and pedagogical models of inquiry-based learn-
ing and inquiry-based science education.

In an early historical perspective, John Dewey recommended the inclusion of inquiry
into science curricula. Dewey points out that "science teaching has suffered because
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science has been so frequently presented just as so much ready-made knowledge, so
much subject-matter of fact and law, rather than as the effective method of inquiry
into any subject-matter" (Dewey 1910). At this time, the common practice in science
education was teacher-centered, passing instruction in a passive, lecture-style way.
He further states out that "when our schools truly become laboratories of knowledge-
making, not mills fitted out with information-hoppers, there will no longer be need to
discuss the place of science in education."

Jerome Seymour Bruner, one of the pioneers in cognitive psychology, viewed sen-
sation and perception as being active processes. Bruner (1961) outlined in his early
works the act of discovery the positive aspects of "the experience of learning through
discoveries that one makes for oneself". In his paper, he focused on learning through
making discoveries on an individual level. Bruner illustrated this in an experiment
with children, who had to remember pairs of words and recall them later. A second
group of children were told to remember them by producing a word-pair or idea in a
way that it makes sense to them. The word pairs included juxtapositions of words that
reflected different individual preferences of the children. Bruner points out that in this
second group, the recall was much higher. The design of this experiment, particularly
the characterization of the groups implies criticism to traditional, teacher-centered
pedagogy, which does not put emphasis on individual construction of knowledge.
Bruner has been criticized for excluding social processes from learning in his work.
However, it can be seen as one of the early influential works for IBL as it shows the
potential of shifting the role of teaching and learning towards a constructivists per-
spective (Bruner 1987; Dobber et al. 2017).

These "historical" constructivist approaches tended to have limitations. While the
work by Bruner focused on individual learning excluding social factors, the work by
Dewey mainly put emphasis on active learning and excluded passive stimuli for learn-
ing. Itis important to state out that modern inquiry-based learning is based on socio-
constructivist approaches or socio-cultural models that do not exclude passive learn-
ing or social factors (Kruckeberg 2006; O’loughlin 1992). Saunders (1992) lists four
important features of effective science programs that directly stem from the construc-
tivist perspective and that have shown to enhance learning: hands-on investigative
labs, active cognitive involvement, group work, and higher-level assessment. This sets
a baseline for the design of learning scenarios and tasks that have been used in the ex-
perimental studies as part of this thesis.

The field of epistemology is a central philosophy of the foundation of knowledge that
underlies scientific methods. This applies both for the foundation of scientific ap-
proaches and for scientific learning. Scientific discovery learning is defined by de Jong
and Lazonder (2014a) as "a method of learning in which knowledge acquisition is
based on the induction of domain rules through structured experimentation." This

11
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definition connects socio-constructivists perspective with epistemic aspects of knowl-
edge building in a modern approach for scientific learning (Scardamalia and Bereiter
1991).

The emphasis on knowledge about a domain to be investigated requires the learners
to be able to express, construct and externalize their knowledge (van Joolingen and
Zacharia 2009; Scardamalia and Bereiter 1991). Particularly in computer-supported
inquiry activities, this involves tools for expressing knowledge. Usually, these tools are
specific to inquiry activities, such as conceptualization, hypothesis formulation, plan-
ning and observing of experimental activities, or drawing conclusions. These tools
provide representations that are a medium of the inquiry process for the learners and
can help structuring the (inquiry) learning activities (cf. section 2.1.1).

van Joolingen and Zacharia (2009) summarized the elements in the learning environ-
ment that can sustain inquiry processes:

* The mission of an inquiry activity motivates learners and provides a goal. This
does not only involve a domain, but also incentives to ask questions and to il-
lustrate a goal setting.

* The source of information for experiments, such as simulations or science labo-
ratories.

* The tools for expressing knowledge which enable learners to externalize, com-
municate and negotiate their knowledge, for example through creating models
or explanations.

* The cognitive and social scaffolds, which help students to perform inquiry pro-
cesses that they usually would not be able to perform.

These four elements are relevant aspects for the underpinning of this thesis. The
first and the second aspect influence the design of learning scenarios for the exper-
imental studies as part of this work. The third and the fourth aspect, tools for ex-
pressing knowledge and cognitive scaffolds, are crucial for the conceptual part of this
work. The proposed approaches for knowledge diversity take such knowledge repre-
sentations and models from inquiry activities as an input in order to generate results
that can enhance learning through facilitating knowledge diversity. Frameworks for
inquiry-based learning suggest best practices for the design of scenarios, they define
how to structure IBL activities, and help to orchestrate inquiry-based science educa-
tion. The following section describes frameworks and models for IBL with a focus on
the inquiry cycle, which has been adapted for Go-Lab.

12
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2.1.1 Inquiry Cycle

Contrasting to traditional teaching methods, in IBL learners pose questions and an-
swer them through scientific discovery and with the use of scientific methods. The
activities and phases which are typical for scientific approaches are connected to epis-
temic practices and are reflected in cyclic models. Inquiry-based learning ("IBL") is a
pedagogical method and form of active learning that combines scientific processes
with discovery learning based on epistemic aspects such as observation, evaluation
and knowledge building. One of the goals is to encourage young people to work
in scientific jobs and thus become the next generation of researchers and scientists
(Gago et al. 2004; Council 1996). Research has shown that discovery-led, structured
teaching, incorporating feedback, working examples, scaffolding, and elicited expla-
nations, goes along with an improved learning gain compared to other teaching prac-
tices, such as explicit instructions or unassisted discovery (Alfieri et al. 2011). Several
models of inquiry-based learning have been created in order to define best practices
for teaching.

Dewey described education as the collaborative reconstruction of experience. Fur-
thermore, he states out that scientific learning should be authentic to science practice
(Dewey 1959, 1910). Garrison et al. (1999) picked this idea up and presented the model
of practical inquiry. This model incorporates socio-constructivist principles ("shared
world" and "social presence") with a model of guidance (discourse and reflection). In
contrast to learning by design, it contains a view on "teacher presence", which advo-
cates adaptive planning by the teacher and emphasizes the role of the teacher as an
mediator.

The knowledge-building community model can be seen as a much more open ended
version, where knowledge construction through collaborative inquiry is a collective
goal of the learners. Scardamalia and Bereiter (1994) incorporated principles of con-
structionism, socio-cultural activities and apprenticeship into this model. The idea
of Computer-Supported Intentional Learning Environments (CSILE) is that schools
use internet and communication technology to function as knowledge-building com-
munities comparable to knowledge-advancing enterprises (Scardamalia and Bereiter
2006). However, this model was not intended to be a pure model for inquiry-based
learning, although it shares a lot of common aspects.

A widely adopted model for web-based IBL is the Inquiry Cycle. This model has been
used as a pedagogical foundation in the Go-Lab project (cf. section 2.2.3), which is the
target web-based IBL platform for the work of this thesis. The inquiry cycle (IC) struc-
tures learning activities in a circular flow. Figure 2.1 shows such a circular inquiry
model by White and Frederiksen (1998). Each sub-activity (phase) is called inquiry
phase. Each phase in this cycle has certain activities and subphases bound to peda-
gogical decisions about the particular inquiry-related task or problem. The goal of this
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cycle was to create an instructional model that corresponds - in essence - to scientific
methods:

"This instructional cycle of getting students to make predictions, do ex-
periments, formulate laws, and investigate the generality of laws resem-
bles the classic conception of the scientific method. We thereby created
a correspondence between the phases of the instructional cycle and the
process of scientific inquiry. As students participate in the instructional
cycle, they are introduced to the construction of scientific theories as well
as to a conception of what scientific inquiry entails." (White 1993)

Question

/-

N\

Predict

/

Experiment

Figure 2.1: The inquiry cycle by White and Frederiksen (1998).

The structure of the inquiry activities can vary depending on the concrete model that
has been chosen. In online learning environments, these models differ depending on
the concrete approach. For example, in Go-Lab, inquiry activities are structured as
subsequent phases and represent a linearization of a cycle and do not contain mul-
tiple cycles. There is not a single inquiry cycle that has been accepted as a predomi-
nant model - More than 32 different cycles exist in the literature. Pedaste et al. (2015)
provide a review of 32 articles that described inquiry phases or cycles. By analyzing
these articles, five distinct phases have been identified: orientation, conceptualiza-
tion, investigation, conclusion and discussion. This synthesized framework is used as
a pedagogical basis for structured and scaffolded inquiry activities, such as the Go-Lab
project. They described the subphases and suggested for each phase specific cogni-
tive scaffolds are typical for supporting learners in their inquiry processes. A cognitive
scaffold can be a (pedagogical) tool or an app as the digital counterpart of such tool,
which serves as a support function in the inquiry process. Such cognitive scaffolds

14



2.1 Scientific Inquiry and Inquiry-based Learning

can be, for example, texts, hypotheses, or concept maps.
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Figure 2.2: The synthesized model of inquiry cycles according to Pedaste et al. (2015).

Figure 2.2 shows the model that has been created as a synthesis of existing approaches
of inquiry cycles by Pedaste et al. (2015). Each arrow lines out a possible transition be-
tween phases in the design of an inquiry activity. It consists of the following phases:

Orientation. The phase of orientation mainly serves the purpose to catch the atten-
tion and to attract the curiosity of the learners. By introducing big ideas of science or
outlining challenges in a problem statement, students’ interest on a particular topic
will be raised. Typical for such a phase are learning materials that engage learners to
further explore a topic and to get in touch with scientific-oriented questions. These
questions can be picked up or concretized in the next phase, the conceptualization.

Conceptualization. One of the key aspects of scientific learning is asking questions
(Hofstein et al. 2005; Windschitl et al. 2008; Crawford 2000). The phase of conceptu-
alization consists of steps that are preceding the experimentation, particularly in ask-
ing questions and generating hypotheses. In this phase it is helpful to use mind tools
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which help structuring and externalizing the learners’ knowledge. Tools which sup-
port the externalization of knowledge are concept maps or learner-generated texts. In
anideal case, the transition to the experimentation phase is smooth when the learners
have the ability to articulate or externalize their (domain) knowledge. One of the chal-
lenges for learners in this phase of IBL is the formulation or verification of hypothe-
ses. This results from a lack of scientific vocabulary, missing operators or quantifiers,
the difficulty to express scientific processes, and relations between variables (Dun-
bar 1993; Sandoval and Reiser 2004; Quintana et al. 2004). Windschitl et al. (2008)
found out that many students believed "that hypotheses function as guesses about
outcomes, but are not necessarily part of a larger explanatory framework. They be-
lieved that science studies culminate in 'conclusions’ that merely summarize trends
in the data, and many thought that making claims that attempt to link data with un-
observable processes was recklessly speculative.”

Investigation. The investigation phase is a central part of IBL: learners conduct an
experiment in order to test their hypotheses. Figure 2.3 shows the subphases and ac-
tivities during the investigation phase. Depending on the openness of inquiry, the
planning can involve the design of an experiment, defining the parameter variations
or methods to explore specific aspects. The experimentation can take place in a real
science laboratory, but the advances in computer-supported inquiry learning also in-
troduced virtual and remote science laboratories. Alternatively, a variety of prepared
data sets from real experiments, which are significant to science, can be a embedded.
Including data sets instead of online laboratories puts a focus on analytical and inter-
pretative activities. For example, the data from the ATLAS experiment at CERN have
been made accessible for learning (Barnett et al. 2012).

Exploration

Data

Planni Ob ti P Analysi
aniung ser?fa ion m —— nalysis

Experimentation -

Figure 2.3: Activities of the investigation phase according to Pedaste et al. (2015).

A central part of IBL is experimentation and investigation. In traditional IBSE this
was done using real laboratories. With the advent of online learning, web-based in-
quiry learning environments cover the digital counterparts of science laboratories,
particularly virtual and remote laboratories. Broader definitions also include data sets
(de Jong et al. 2014), which can be useful to support methodological competencies
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and evaluation skills, without demanding all of the skills needed for open discovery
from the learners.

Conclusion. Based on the previous phase, the learners connect explanations with
scientific knowledge in order to draw conclusions from the inquiry activity. Such ex-
planations or conclusions might lead to new insights, a new or refined theory. The
inferences from the data might be based on hypotheses, data, models or research
questions.

Discussion. The discussion can contain the two subphases communication and re-
flection. Communication involves activities to disseminate the findings of certain
phases or the conclusions of the inquiry to the other learners. Reflective activities
are mainly viewed "as an internal process (...) focused on the inquiry-based learning
process and communication on domain-related outcomes of this process" (Pedaste
etal. 2015).

Scaffolding and Guidance in IBL

The role of supporting learners in inquiry-based learning has been highlighted quite
frequently (Kirschner et al. 2006; Reid et al. 2003). Mayer (2004) points out drastically
"that the formula constructivism = hands-on activity is a formula for educational dis-
aster." Without a thought-out concept of how to guide learners through their inquiry
or discovery, they might not be able to find or filter the appropriate information or
approach the content to be learned. However, there is a difference between discovery
learning and inquiry-based learning, where the latter is already highly scaffolded, for
example, through the inquiry cycle (Hmelo-Silver et al. 2007).

Although computer supported inquiry learning (CoSIL) has demonstrated its useful-
ness, the research in this area points out that learning with such environments poses
challenges for many students due to the complexity of these environments. This de-
pends on - but does not exceed - the difficulty to find all variables involved in physical
phenomena, to identify all relations corresponding to these variables, or to select the
right parameters to manipulate and vary in an experiment (Azevedo 2005; Scheiter
and Gerjets 2007; Swaak and de Jong 1996; Zacharia and Olympiou 2011; Marshall
and Young 2006).

Apart from the challenged posed through the complexity of the learning environ-
ment, there are cognitive and metacognitive challenges for the learners (Zacharia et al.
2015). Pedaste and Sarapuu (2006) proposed a support system for inquiry learning in
such an environment. The web-based inquiry-learning environment "Hiking Across
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Estonia" was enriched by a support system for learners that increased the problem-
solving ability and analytical skills. Due to the nature of scientific discovery, students
are facing problems particularly in the fields of hypothesis generation, the design of
experiments, interpreting data collected during the experiments or in advance, and
the regulation of learning (de Jong and van Joolingen 1998).

Vygotsky developed - with respect to Piaget’s stages of child development - the zone of
proximal development (Vygotsky 1980). While Piaget sees more the individual explo-
ration as the main part in childrens’ learning, Vygotsky incorporates social factors and
knowledge co-construction into his theory. Assuming that there are certain things a
learner can achieve with the own knowledge, and there are certain things that can-
not be achieved, the zone of proximal development is usually outlined as in between
these two areas. With help or guidance, the learner can extend the own abilities to
achieve the goal or to solve a task. Although this concept has caught a lot of attention
from cognitive and developmental psychologists, it has been criticized a lot for a weak
operationalization of the main constructs of the zone, such as guidance or the term
development itself (Wertsch 1984; Tudge 1992; Bruner 1984). However, the idea be-
hind the zone of proximal development underlines the role and effect of scaffolding
for learning.

The Cambridge handbook (Sawyer 2005) of the learning sciences has a broad defini-
tion of scaffolding: "Scaffolding is the help given to a learner that is tailored to that
learner’s needs in achieving his or her goals of the moment." Furthermore, it states
that "effective learning environments scaffold students’ active construction of knowl-
edge in ways similar to the way that scaffolding supports the construction of a build-
ing." The term scaffolding raised a lot of discussions about the less precise meaning
and the divergent use in different contexts. Puntambekar and Hubscher (2005) found
out that the notion of scaffolding changed from the aforementioned metaphor of the
construction site to features of "diagnosis, calibrated support, and fading." In latest
research in the field of computer-supported inquiry-learning, there is a consensus
that guidance is the more general term in this typology (de Jong 2006; Lazonder and
Harmsen 2016; Lazonder 2014). Scaffolds are seen as more specific features: "scaf-
folds explain or take over the difficult parts of the activity; when the learner’s skill level
increases, the scaffolding is gradually removed so that the learner eventually performs
the activity without assistance" (Lazonder and Harmsen 2016). The frequently cited
classification by Quintana et al. (2004) has been consolidated and refined by de Jong
and Lazonder (2014a). Lazonder and Harmsen (2016) amended this schema and con-
ducted a meta-analysis to create a typology of guidance:

Process constraints. Process constraints are a less specific type of guidance, where
the learning process itself runs under certain restrictions. Such guidance mechanisms
restrict the number of pathways, of features, or the series of subtasks or elements the
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learner investigates (Lazonder and Harmsen 2016; White 1993; Rieber and Parmley
1995). For inquiry-based learning, this could mean that the learner takes part in cer-
tain sub-activities without any possible alternatives or "detours" through a given and
fixed pathway. For Go-Lab, this is enforced (a) by the learning design, and (b) through
particular apps and their configuration. By designing an ILS with respect to specific
inquiry phases and the apps that define the corresponding activities, a structure of the
learning process is already given. The constraints do not restrict all pathways as the
learner is allowed to jump forth and back in the navigation that comes from the phase
structure. Besides this, the apps can be configured further. For example, a concept
mapping tool can be configured to contain predefined concept and relation labels.

Status overviews. Learner progress, states of inquiry or knowledge can be displayed
to the learners in the form of status overviews. Typically, such information does not
interfere with the idea of inquiry learning, so it should not display any instructions
or direct learning materials, but make the learning progress visible. These tools are
usually embedded "on demand", so the learners decide how to use the information
from the status overview for further processing. For example, a tool that visualizes
the contributions to a certain learner-generated content by the participants in a col-
laborative scenario. Status overviews can be realized as performance dashboards,
which are monitoring tools displaying progress information about learners, for ex-
ample knowledge evolution or learning progress. SimQuest offered a monitoring tool
in which learners could review, compare and replay their experiments (van Joolingen
and de Jong 2003).

Prompts. Lazonder and Harmsen (2016) describe prompts as "timed cues, either
given by a human being or embedded within the learning environment, that remind
the learner to perform a particular action." In contrast to status overviews, prompts
are more specific and direct the learners action to perform (what to do) a certain task
without giving too detailed instructions (how to do it). Typically, such directive in-
structions are timed and preceded by a certain event or action pattern. Prompts are
more specific than status overviews because they tell the learner what to do (but not
how to do it) at appropriate moments during the inquiry. They have a long tradition in
inquiry-based learning. A typical distinction is between cognitive and metacognitive
scaffolds (Wichmann and Leutner 2009; Wichmann et al. 2010).

Heuristics. According to Holton and Clarke (2006), guidance through heuristics “re-
lates to the development of heuristics for learning or problem solving, that transcend
specific content." In addition to prompts, "heuristics remind learners to perform an
action and point out possible ways to perform that action" (Lazonder and Harmsen
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2016). An example for heuristics is VOTAT ("vary-one-thing-at-a-time"), which sug-
gests strategies for parameter variation in the experimental design or the experiment-
ing behavior of the learner. In the case of VOTAT, research has shown that presenting
the heuristics explicitly can facilitate more self-regulation in students (Veermans et al.
2006).

Scaffolds. Scaffolds can restrict the comprehensiveness of tasks or can reduce the
cognitive load and complexity in a domain, give hints towards possible solutions as
well as provide affordances to perform actions (Podolefsky et al. 2013; Hmelo-Silver
etal. 2007). In summary, cognitive scaffolds bridge the gap between open inquiry and
strict teacher-centric education, weakening the barriers and challenges that scientific
learning poses upon the students. The "hypothesis scratchpad" is one example of a
(cognitive) scaffold helping learners to generate hypotheses. This is achieved by pro-
viding a certain prestructuring of hypotheses that includes already predefined condi-
tions, variables and relations (de Jong 2006). Particularly cognitive scaffolds help to
structure learners’ knowledge and therefore are externalizations of their knowledge.
Section 2.1.2 presents some cognitive scaffolds that relate to knowledge models.

Explanations. Explanations are a low-level type of guidance, which offers learners
a concrete specification of how to perform an action. An explanation can be timed
or not, integrated into a specific phase, or could be performed before the use of com-
plex systems. Therefore, explanations offer the most specific type of guidance. The
SIMQUEST notebook was a tool to display (background) information directly to the
learners without directly spoiling the inquiry (Veermans 2002). However, such a scaf-
fold can be useful, if the learner has no prior or just a little knowledge in the domain
of the inquiry.

Apart from this typology of guidance, other characterizations of learner support exist
in the literature. Podolefsky et al. (2013) subdivided mechanisms of guidance into im-
plicit and explicit scaffolds. Applied to this scheme, prompts, heuristics, and explana-
tions count as explicit, while process constraints are more implicit. Other distinctive
features of guidance mechanisms have been introduced by de Jong and Njoo (1992):
They differentiate support regarding the unobtrusiveness and subtlety. Overt support
is presented directly to the learners in a way that it is immediately recognizable as a
means of guidance, for example in a help file. Covert mechanisms are more subtle
and unobtrusive. This could be realized through slight and gradual changes to the
learning environment, for example a fading out of the guidance to increase the com-
plexity of the learning environment. Particularly for scientific discovery learning, Reid
et al. (2003) extended the typology through experimental support, interpretative sup-
port, and reflective support. Interpretative support targets to support the access and
activation of knowledge in order to build a coherent understanding. Particularly, this
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has an effect on the construction of hypotheses, which requires learners to grasp the
systematic dependencies and relations of variables and parameters in a certain do-
main for a successful inquiry. Experimental support provides tools to guide learners
through the challenging task of predicting and observing outcomes of an experiment,
or to draw reasonable conclusions. The knowledge integration and abstraction of the
discoveries can be improved and ex-post through reflective support. In order to ab-
stract and reflect, it facilitates mechanisms to target the learners’ self-awareness and
the awareness of the learning process.

Levels of inquiry

One of the main challenges for the orchestration of IBL is the degree of freedom ex-
posed to the learners. While they are far away from a research-oriented daily practice,
it is quite difficult for them to pose questions, choose appropriate methods for inves-
tigation and most obviously to verbalize and formalize their approaches and results.
The degrees of freedom in IBL, the so-called levels of IBL range from "confirmation in-
quiry" to "open inquiry" (Banchi and Bell 2008). Confirmation inquiry aims for intro-
ducing inquiry skills such as collecting data. Therefore, the question, the method and
also the results are known in advance to focus on the particular inquiry skill. This kind
of inquiry activity is suitable for novices in laboratories as it is limited to a single com-
ponent in a scientific processes, particularly the data collection. Structured inquiry
adds another degree of freedom on part of the learners when they have to find their
own explanation for the evidence from their data collection. The next level, guided
inquiry, does not prescribe the procedure - students choose their own method for
the investigation. This involves, for example, hypothesis creation, data analysis and
drawing conclusions. The open inquiry is the most challenging level, where the learn-
ers have to pose their own questions and develop their own procedure. The open-
ness in both the learning and scientific context, the lack of cognitive tools, and the
missing cross-domain knowledge demanded in scientific processes limits the useful-
ness of such IBL. The irregularity to traditional teaching approaches and the variety of
skills, on a cognitive as well as on a metacognitive level, create a tension for teachers’
practice. Yoon et al. (2012) highlight the role of hypothesis-based inquiry, which is an
important approach to promote science skills, critical thinking and problem solving
skills. Difficulties in inquiry-based science education "on the lesson" and "under the
lesson" occur due to the complexity of IBL, but these issues have to be addressed in
teacher education programs. Therefore, open inquiry is not common in regular sci-
ence curricula (Roth and Bowen 1995; Hofstein 2004). However, science fairs are to
some extent forms of open inquiry in science classrooms. Some examples of these
science fairs are the "European Union Contest for Young Scientists"!, the "Intel Inter-

'EU Contest for Young Scientists (EUCYS): http://ec.europa.eu/research/eucys/index.cfm,
retrieved 2018-08-27.
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national Science and Engineering Fair"?, or "Jugend forscht"3, a national competition

in Germany. Roth and Bowen (1995) have shown an successful embedding of open
inquiry into science classes and investigated in knowledge construction and how stu-
dents’ understanding changed over time. The students were introduced to the topic
following the model of cognitive apprenticeship and were assigned to small groups.
Therefore, their work is quite inspirational for this thesis, as Roth and Bowen inves-
tigated in small groups in inquiry-based learning scenarios and found out that the
knowledge construction was influenced positively. When students had different un-
derstandings of concepts, they negotiated about it. However, such IBSE do not rely on
virtual learning environments and do not facilitate ICT. These results and conclusions
form a conceptual baseline, but the transfer to the digital world can be done to some
extent only, with limitations.

2.1.2 Cogpnitive Scaffolds and Guidance in IBL

Knowledge is often seen as a necessary requirement for doing inquiry and tools to
externalize mental models, such as concept mapping, have the potential to scaffold
the learning activity and the particular learning process. The so-called cognitive scaf-
folds support the learners in their inquiry process (see section 2.1.1). According to van
Joolingen (1998), cognitive tools, "defined here as instruments that support or per-
form cognitive processes for learners in order to support learning, can bridge the dif-
ference between open learning environments, like discovery learning environments
and traditional supportive instructional environments."

Typically, such cognitive scaffolds do not simply (pre-)structure the process, but fur-
thermore integrate into more atomic activities, for example the creation of hypothe-
ses, the structuring of knowledge through concept mapping or in the form of a free
text. Beyond this, for the learners these are powerful tools to express their knowledge.
As tools to externalize the knowledge, they support the verbalization and operational-
ization of the target representation. They are specific in the semantics and syntactic
structure of each tool, as they are connected to particular scientific inquiry activities
and enable the learners to operate on domain knowledge.

Concept Mapping

Concept mapping (Novak 1984) is a technique for externalizing knowledge structures
in the form of semantic networks. Combined with computer-based representations

2About Intel ISEF: https://student.societyforscience.org/intel-isef, retrieved 2018-08-
27.
3Jugend Forscht: https://www. jugend-forscht.de/, retrieved 2018-08-27.
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and tools (Novak and Cafas 2004; Canas et al. 2004), concept mapping has perme-
ated many areas and various scenarios of technology-enhanced learning. Schwendi-
mann (2015) provides a quite comprehensive overview of pedagogical applications
and functions of concept mapping with a special focus on knowledge integration. He
distinguishes the activities of map generation, interpretation and revision and dis-
cusses the correspondence of knowledge integration processes with certain concept
mapping activities. E.g., concept mapping can be used for "knowledge elicitation"
and thus as a test of the learner’s understanding of a certain knowledge domain. Ac-
cordingly, the extension and refinement of concept maps corresponds to a further
differentiation of knowledge.

Concept maps reflect the structure of domain knowledge of individual learners. Ac-
cording to Stoddart et al. (2000) these artifacts are particularly well suited as an add-on
to other types of test to identify and diagnose students’ knowledge. Figure 2.4 shows
a concept map that has been created in Go-Lab. In the analysis of concept maps,
we have to distinguish semantic and structural aspects. The "semantic richness" of
a concept map (possibly in terms of concepts and relations) could be determined by
comparison to a domain ontology. In the structural perspective, we would use graph-
based measures to characterize features such as the complexity, cohesion or density
of a map. We employed several of these measures for the assessment of concept map-
ping skills in section 5. The concepts and relations used in a concept maps can be
prescribed through the learning design as an approach to guide the learner.

Concept Mapper
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Figure 2.4: A concept map created in Go-Lab.
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Hypothesis

Klahr and Dunbar (1988) describe scientific discovery as a dual search problem in the
two spaces, "hypothesis space" and "experimentation space". Furthermore they state
out that "search in the hypothesis space is guided both by prior knowledge and by
experimental results. Search in the experiment space may be guided by the current
hypothesis, and it may be used to generate information to formulate hypotheses."
This highlights that both formulating and reformulating hypotheses encode learners’
knowledge.

Van Joolingen and de Jong (1993) describe the process of hypothesis generation as
"traversing variable and relation space", which are the two sub-spaces of the hypoth-
esis space according to the model by Klahr and Dunbar (1988). For this purpose, they
created a software tool, the hypothesis scratchpad, to support the process of hypoth-
esis generation by offering a prestructured format of hypotheses. Additionally, the
hypothesis scratchpad displays the variables and qualitative relations in the given do-
main (van Joolingen et al. 2005). An example of such a hypothesis in the context of
buoyancy could be: "If object’s density is smaller than liquid’s density, then the object
will float."

In contrast to previously specified hypothesis, this enables the learner to explore the
relations between variables and also to define key variables for the experimentation.
The recent research using the scratchpad also involved the students’ propositions re-
garding the hypotheses (van Joolingen et al. 2005) or the respective confidence. Such
belief meters are relevant to the research in knowledge construction (Lajoie et al.
2001). However, we exclude beliefs from our optimistic knowledge modeling approach
(cf. section 4), as we assume that learners only express their knowledge if they have a
certain degree of confidence about a concept. In essence, we identify the two spaces
"variables" and "relations" as a relevant part of the knowledge model behind a hy-
pothesis. In the context of IBL and the inquiry cycle, the generation of a hypothesis is
specific to the conceptualization phase. Figure 2.5 shows a hypothesis in the hypoth-
esis scratchpad.

Texts by Learners

Wiki tools are usually asynchronously collaborative tools for writing and editing texts.
Wiki tools are platforms for the collaborative editing and publishing of the texts, the
published web site is called a wiki and the text is called wiki article. The most popular
example of a wiki is Wikipedia®, which is an encyclopedia that has been created by
around 35 million users with the MediaWiki software. MediaWiki is the underlying

4Wikimedia Foundation, Wikipedia, https://www.wikipedia.org/, retrieved 2018-11-09.
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Figure 2.5: The hypothesis scratchpad displaying a single hypothesis: "IF object den-
sity decreases THEN buoyancy increases". The confidence meter next to
the hypothesis is set to 50 %.

technical platform. However, as part of this work we do not investigate the technical
challenges for wikis, as we are focusing on knowledge representations and tools for
learners to express their knowledge.

Such wikis have been used as knowledge management platforms (Girard and Girard
2015; Andrus 2005), encoding explicit and tacit knowledge. A lot of research inves-
tigated wikis as educational tools, both for teaching and learning (Parker and Chao
2007; Boulos et al. 2006; Duffy 2006). They have shown to improve collaborative learn-
ing (Augar et al. 2004). Particularly in the context of communities of practice, wikis
demonstrated their usefulness when functioning as a knowledge management tool
for the community. Inquiry-based learning has many parallels to this approach and
particularly in the inquiry phase of conceptualization, they can be used to structure
the learners knowledge, both in collaborative and individual learning phases. Figure
2.6 shows a learner-generated text in the wiki tool that is used in Go-Lab. Similar to
other wiki tools, the Go-Lab wiki supports multiple pages. The data can be shared
across a learning group or separated for an individual use.

One of the key concepts of wikis is to create an explicit revision of a document. In
asynchronously collaborative platforms such as MediaWiki, a user who edits a doc-
ument locks the document. When the user finished editing the document, the new
revision is stored inside the platform and the lock is released. For simple texts in an
individual learning scenario, this is sometimes seen as a lot of overhead, particularly
for quick notes by learners. Therefore, other alternatives to wiki tools, can be pro-
vided.

In contrast to the wiki texts, simple free texts usually do not necessarily have a struc-
ture of revisions. Therefore, it is difficult to track progress of learners or assign con-
tributions in a collaborative setting. However, the main relevance for this work is sit-
uated in the knowledge representation itself. A text contains a certain number of key

25



2 State of the Art
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Osmotic power, salinity gradient power or blue energy is the energy
available from the difference in the salt concentration between seawater
and river water. Two practical methods for this are reverse electrodialysis
(RED) and pressure retarded osmosis (PRO). Both processes rely on
osmosis with ion specific membranes. The key waste product is brackish
water. This byproduct is the result of natural forces that are being
harnessed: the flow of fresh water into seas that are made up of salt water.
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Figure 2.6: Overview of the wiki pages created by a learner (left); one of these wiki
pages about osmotic power plants in detail (right).

concepts the learner wants to express. One of the challenges for this work is to extract
the key concepts from a text, despite of the nature as a wiki or a free text, and use this
as an appropriate knowledge representation.

2.1.3 Experimentation and Online Laboratories

Online laboratories have a special role in the field of inquiry-based learning. The
use of simulations and virtual science laboratories has a lot of benefits. The non-
exhaustive list of positive aspects comprises (1) an easy setup of experiments he broad
availability of complex; (2) expensive laboratories, which can be simulated; (3) the in-
tegration into online learning environments; (4) enabling self-regulated and lifelong
learning. On a superficial level, online labs are the digital counterpart of real, phys-
ical laboratories. But from a constructivist perspective, they do not fulfill the same
needs. The degree of interaction is influencing the learning outcome. Wise and Okey
(1983) have shown that the use of manipulative activities have been far more effective
in terms of learning gain and achievement than observing and reading about phe-
nomena in books.

Online laboratories can be categorized into virtual laboratories, remote laboratories
and data sets (de Jong et al. 2014). A virtual laboratory is the simulation of a science
laboratory. It can be distinguished from a pure simulation as it also simulates the lab-
oratory equipment. Typically, the learners have to deal with similar equipment as in
a real science laboratory. Figure 2.7 shows the "splash lab" from Go-Lab, which en-
ables learners to conduct experiments about buoyancy. The equipment in this case

26



2.1 Scientific Inquiry and Inquiry-based Learning

contains different materials and different liquids. A virtual lab like this lab for buoy-
ancy experimentation simplifies the parameter variations on part of the learners. It
also contains a tool to capture and visualize the measurement data, which supports
the data interpretation and enables the learner to capture bigger data sets in the same
time. The collection of bigger data sets and the reduction of experimental errors make
the physical phenomena more transparent.

Splash: Virtual Buoyancy Laboratory
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Figure 2.7: The splash lab for buoyancy.

A remote laboratory (sometimes also called "web lab") is the digital extension of a
real, physical lab, which is made accessible for the learners through a remote access,
typically through a web interface. This scenario of how to operate a remote lab is com-
parable to the "control of robots used in remote manufacturing” (Ma and Nickerson
2006), where the learners rather operate the robot than the things to be manufactured.
A reason for this is an encapsulation of operations for each lab, as it is necessary to
minimize or to sandbox specific error sources in order to preserve the maintainabil-
ity of a lab. In a completely remote and autonomous setting, no one will have the
chance or will be responsible to change a light bulb or to repair certain things. Addi-
tionally, a remote lab is a dedicated physical resource, which allows only for a unique
access. Remote laboratories pose many pragmatic challenges for the maintenance,
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the deployment and the access of laboratories (Garcia-Zubia et al. 2006; Gustavsson
et al. 2007a; Garcia-Zubia et al. 2009; Sancristobal et al. 2011; Ordufa et al. 2012; San-
tana et al. 2013). These pragmatic issues also affect the software engineering practice.
Therefore, it has been elaborated as a technical approach to deploy remote laborato-
ries through a specific gateway in order to scale it up (Melkonyan et al. 2014). Figure
2.8 shows a radioactivity lab with an embedded view of the experimental results. This
example highlights another positive use case for remote experimentation, which re-
gards safety issues and the expense of equipment.

Radioactivity Lab SetParameters  Results  Webcam | English Experiment #21491: Radioactivity over Time

Source: Strontium-90

Figure 2.8: A screenshot of the radioactivity lab by the University of Queensland. It
contains a control to specify the experimental parameters and an embed-
ded result view of the experimental data.

Data sets are static experimental data that are provided to learners. Although this
seems to be the case of an online laboratory with the least interest, it also has an in-
teresting use when it comes to real world experimentation. For example, the ATLAS
experiment from the Large Hedron Collider at CERN provided data sets that are highly
relevant for recent research (Barnett et al. 2012). By handing this out to students, who
are not able to conduct such -in a lot of ways- extremely demanding experiments,
they can still draw conclusions and learn about data interpretation in this motivating
context. Figure 2.9 show the HYPATIA analysis tool, which is used to analyze the data
from the ATLAS experiment at CERN.

Apart from these obvious and pragmatic reasons to use a virtual laboratory, research
could confirm the positive effects on students’ science learning through simulations
(Chang et al. 2008; Huppert et al. 2002; Ingerman et al. 2009; van der Meij and de Jong
2006; Zacharia and Constantinou 2008; Zacharia and Anderson 2003; Zacharia 2005).
Computer simulations successfully enhance traditional instruction and are an effec-
tive way to prepare laboratory activities (Rutten et al. 2012). In combination with sup-
port mechanisms, the outcome of learning with simulations and virtual labs could
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be even improved. By actively relating multiple representations and integrating ex-
ternal sources of information before using interactive visualizations and simulations,
the learning performance can be improved (Bodemer et al. 2005; Bodemer and Dehler
2011).

* + - +
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Figure 2.9: A screenshot of the HYPATIA tool to analyze the data set from the ATLAS
experiment at CERN.

Compared to traditional instruction, learning with simulations can lead to a better
conceptual learning and potentially helps the students to maintain their knowledge
over a longer period (Deslauriers and Wieman 2011). In contrast to real, physical sci-
ence laboratories, there are many positive aspects in conjunction with learning pro-
cesses. Virtual labs have the potential to improve the conceptual understanding by
making invisible things visible, for example magnetic or electric fields. Such visual
representations of abstract objects make physical phenomena more transparent for
the learners (Olympiou et al. 2013). Particularly, simulations promote scientifically
accurate concepts, which emphasizes certain phenomena and supports students in
their data interpretation (Zacharia and Anderson 2003).
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Scalise et al. (2011) remark that the "development of science simulations and virtual
laboratory software is in its infancy". The use of ICT has a lot of benefits, proven by
a broad number of studies in research around simulations and inquiry-based learn-
ing. Still, the desired learning outcome will be achieved through a diversification of
teaching methods, which goes hand in hand with applying frameworks of IBL, incor-
porating the positive effects of ICT with effective guidance.

However, experimentation, discovery and inquiry are challenging for learners (cf. sec-
tion 2.1.1). While unassisted discovery does not seem to be beneficial for learners,
feedback, worked examples, and guidance mechanisms seem to improve learning (Al-
fieri et al. 2011). In contrast to traditional self-guided learning approaches such as the
Piagetian theories (Piaget and Cook 1952; Piaget 1970), rich information and inquiry
environments have the potential to enhance science learning and improve scientific
inquiry. Marusi¢ and SliSko (2012) argue that the Piagetian and Vygotskian visions
on learning can go hand in hand through class management, highlighting the impor-
tance of collaborative learning. Smetana and Bell (2012) published a critical analysis
of the research literature about computer simulations in science education and con-
cluded:

"Computer simulations are most effective when they (a) are used as sup-
plements; (b) incorporate high-quality support structures; (c) encourage
student reflection; and (d) promote cognitive dissonance. Used appropri-
ately, computer simulations involve students in inquiry-based, authentic
science explorations."

The upcoming section shows examples of computer-supported inquiry-based learn-
ing environments that encompass such supportive features and mechanisms of guid-
ance.
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2.2 Web-based Learning Environments for
Inquiry-based Learning

The technical focus of the thesis is in the Go-Lab system, which provides flexible and
powerful authoring tools for creating and enrolling virtual learning environments in
the context of inquiry-based science education with online laboratories. However, the
work of Go-Lab has been inspired by other projects for computer supported inquiry
learning (COSIL), in which other software platforms have been created. The consor-
tium of the Go-Lab project consists of institutes that took part (beside other projects)
in the ROLE project (Faltin et al. 2013), the SCY project (de Jong et al. 2010), and differ-
ent activities using and creating online laboratories. ROLE was mainly focused around
personalized learning environments with a powerful sandbox, in which learners and
educators could create these learning environments. This mainly inspired and influ-
enced the authoring and run-time of the Go-Lab learning environment, mainly the
technical platform Graasp, which has its origins in the ROLE project.

Inquiry-based learning activities are usually structured learning activities that imple-
ment an inquiry cycle model (cf. section 2.1.1) (Kuhlthau et al. 2007; Pedaste et al.
2015). Co-Lab was a collaborative inquiry-learning environment using remote and
virtual experiments. The inquiry process has been structured in five phases close to
scientific processes: analysis, hypothesis generation, experiment design, data inter-
pretation, and conclusion (van Joolingen et al. 2005). Similar to Co-Lab, environments
such as WISE (Slotta and Linn 2009), SCY-Lab (de Jong et al. 2010), or JuxtaLearn
(Haya et al. 2015) have explicit and rarely flexible IBL models. Despite following a
well-known predefined model may be helpful, especially to support novice teachers
or students, the use of a rigid model constrains the teachers’ chances to customize it
to their learning contexts, and some students may have difficulties to adapt it them-
selves (Dillenbourg 2002).

2.2.1 SCY

The SCY project ("Science Created by You") was much more specific for inquiry-based
learning, as it featured an innovative web-based platform, the SCY-Lab, as a rich tool-
box for IBL. Figure 2.10 shows the user interface for the learner. The Lab consists
of different tools to support the inquiry process through web quests, concept map-
ping, system dynamics, hypothesis construction, and more. In this active learning
approach, the students create artifacts by using the web-based tools. These learning
objects emerge through the whole learning process. As the learning objects emerge
throughout the process and made available for other tools and also for other learn-
ers, they follow the idea of "emerging learning objects", so-called ELOs. The SCY-Lab
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Figure 2.10: The user interface of the SCY-Lab, the user interacts with a SCY-Dynamics
ELO (Geraedts et al. 2011).

was not limited to individual learning, it also supports collaborative learning and col-
laborative construction of ELOs. An example of such a tool that has been evaluated
in the SCY project was a real-time synchronous collaborative concept mapping tool
("SCY-Mapper"). Besides performing tasks in synchronous collaboration tools, learn-
ers were able to collaborate through artifacts. The ELOs can be found via search and
then be forked by other individual learners, which is an asynchronous collaboration
through the artifact. On the software level, each ELO could be accessed through a
particular tool. Each ELO consists of data and metadata, based on the LOM standard,
that describe the learning context of the LO (de Jong et al. 2010; Hodgins and Duval
2002). In total, an instance of SCY-Lab was a collection of ELOs and resources for
each learner, while the learning activities are prestructured and visualized in SCY-Lab
through a so-called "mission map". The mission map is a special kind of implement-
ing an inquiry-cycle, which explicitly outlines different pathways through the cycle.
This preserves a certain degree of freedom for the learner without limiting them to
a linear sequence of activities. However, it also scaffolds the process as it explicitly
outlines the order of certain activities in a predecessor-/successor-relation.

In SCY, learning activities are grouped in Learning Activity Spaces (LASs), which are a
conceptual unit that combine activities and ELOs (de Jong et al. 2010). "A Learning Ac-
tivity Space (LAS) is defined as a coherent and intuitive set of activities supported with
specific tools and scaffolds. The input and output of a LAS are described in terms of
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a set of artifacts created by students (further called emerging learning objects (ELOs)"
(Lejeune et al. 2009a). Such LASs can represent inquiry (sub-)phases, for example "Ex-
periment”, where the learner collects data from an experiment and creates an ELO
that contains the data set. Such an ELO, which is central for a LAS, is called "anchor
ELO". The LASs are combined into a learning scenario, the mission, while all possible
sequences are outlined in the mission map, which is a directed graph and also visual-
ized in the user interface to guide learners through the inquiry process. Additionally,
itis possible to have different iterations of inquiry cycles or even completely different
cycles. An adapted version of the "Eco Mission" was using four different inquiry cycles
in different domains, namely a) nutrients and primary production, b) the role of light
in ecosystems, c) relationships between trophic levels, d) pH and aquatic ecosystems
(Pedaste et al. 2013).

The first SCY mission was the design of a CO; friendly house. Figure 2.11 shows the
learning scenario of this mission as a composition of LASs, where each LAS groups
collaborative or individual learning activities. The activities are related to the scien-
tific inquiry process, for example, the creation of a hypothesis. The duration of the
whole learning scenario is approximately 20 hours and the learner productions are
mainly done on the SCY-Lab. Since the experiment is conducted offline, data has to
be captured through dedicated data collection tools and imported into SCY-Lab. The
group activities in this scenario are based on the jigsaw approach (Aronson et al. 1978;
Geraedts et al. 2010).

The definition of learning activity spaces is not limited to inquiry-based learning, it
can be seen as an abstraction and grouping of activities, emerging learning objects,
tools, and scaffolds in the field of science learning. Other examples are design-based
learning or argumentative knowledge construction that can be modeled through LASs
(Lejeune et al. 2009b). The creation of learning activity spaces has been supported by
software tools for graph-based modeling, such as SCY-SE based on FreeStyler (Wein-
brenner et al. 2009; Lejeune et al. 2009a). This approach integrates with an IMS-LD
editor for scripting the learning design (Harrer et al. 2007), which mainly targets the
community of educational designers (Wichmann and Leutner 2009). The scripting of
learning design has a long tradition in the field of CSCL, particularly with the purpose
of reusability and exchangeability of learning scripts, but it is out of focus of this thesis,
as we employ more implicit and intuitive mechanism of learning design as facilitated
by Go-Lab (cf. section 2.2.3).

However, the SCY-Lab lacks in the flexibility that instructors or teachers can easily
create their own learning spaces with reasonable efforts. The absence of graphical
authoring tools for the SCY missions and missing facilities to deploy learning spaces
(which involves Java packaging mechanisms and server redeployments) hinder teach-
ers to create custom learning environments. The existing learning scenarios do not
cover a variety of topics that align well with the curricula across the countries of the
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Figure 2.11: The learning design of the first mission in SCY (Geraedts et al. 2010).
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institutes of the SCY consortium. During the project, 13 different LASs have been cre-
ated as part of the pedagogical specification that can be grouped and composed to
create a mission (de Jong et al. 2010). By the end of the project, 4 missions have been
delivered officially. For accomplishing the first SCY mission, students have to spend
around 20 hours on this mission, which shows the drawbacks that might prevent a
wider curricular support and a large-scale implementation of inquiry-based science
education. Apart from the difficulty of educational design, the experimentation was
not supported through the system in a way that it can be extended easily by other
laboratories than the ones created by SCY. A lack of interfacing and standardization
prevents the extension through new online laboratories and simulations and makes
this approach less generic.

2.2.2 ROLE

The technical platform for the Go-Lab learning environment is Graasp, developed by
the REACT group at Ecole Polytechnique Fédérale de Lausanne (EPFL). Graasp has its
origins in the ROLE project:
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"Graasp is a ROLE Tool developed to enable Agile Knowledge Manage-
ment in general and Personal Learning Environment creation in particu-
lar. It enforces the concept of contextual shared spaces with fine privacy
settings and recommendation of relevant peers, resources and apps from
the cloud for teamwork or self directed learning activities. It also enables
the construction and exploitation of Web app bundles."

This description highlights the nature of the platform, which focuses on flexibility
and personalization. Each personal environment, a space, is a structured collection
of apps, assets and actors. The space itself can be structured by adding sub-spaces.
The apps are applications that support the specific context of the space, for exam-
ple calculators or graphic formula widgets in scientific contexts. The available wid-
gets were listed in the ROLE widget store and could be immediately integrated into
the own (learning) spaces or added to widget bundles that could be distributed ex-
ternally in a compound format. Figure 2.12 shows an example of the widget store.
Although ROLE primarily focused the research area of personalized learning envi-
ronments (PLEs), many use-cases were in scientific domains and integrated remote
science laboratories through its advanced, flexible and pluggable widget architecture
based on the Open Social standard. Therefore it was possible, to develop learning
spaces for inquiry-based learning scenarios through the main platform of ROLE, the
ROLE sandbox. An example of the ROLE sandbox can be seen in figure 2.13.
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Figure 2.12: ROLE widget store.

SROLE Consortium, Graasping the Basics of ROLE Graasp (2012-02-16), http://role-project.
archiv.zsi.at/index.html%3Fp=2413.html, retrieved 2018-11-01.
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Figure 2.13: ROLE sandbox: the left bar contains a list of widgets and members of the
space. The main part contains widgets that can be re-arranged on the
canvas.

One of the relevant aspects of the ROLE sandbox was that it was highly customizable.
The user could rearrange the space with the embedded widgets, plug in and add new
widgets as they were necessary, but also share the environment with other users. This
lifts the idea of a personalized learning space to a higher abstraction as the users pro-
duce collaborative (shared) spaces that can be organized in a flexible way in different
use cases. Another purpose could be web conferencing. The widget store contained
a plugin to a video conferencing tool and the whole space can be used to incorporate
tools for the specific domain the conference is about, but also organizational tools as a
collaborative notepad or a space to share files. Many research challenges throughout
the ROLE project were on a software engineering level in the fields of personalized
learning environments, pluggable architectures (widgets), software interfaces (open
standards, such as OpenSocial), and mobile technologies. Also the field of contextual
metadata for the tracking of user activities has been exploited throughout the project,
resulting in the so-called contextual attention metadata format ("CAM"). This format
was a relational logging format that integrates contextual information, for example
about the learning environment.
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2.2.3 Go-Lab

Go-Lab is a European project aiming at promoting IBL with online laboratories (labs)
for STEM education at school (de Jong et al. 2014). During the project (2012 - 2016),
Go-Lab implemented inquiry-based science education in more than 1000 schools all
over Europe. The Go-Lab online learning environment is a single entry point to ac-
cess online laboratories and to create inquiry learning spaces (ILS). ILS are rich open
educational resources that can be collaboratively created in the Graasp social media
platform, shared in the Golabz open repository, and exploited by the students ei-
ther as standalone resources or embedded in open social or educational platforms
(Rodriguez-Triana et al. 2014).

Go-Lab provides a single entry point to create and run learning spaces. Figure 2.14
shows the connection of the different subsystems of Go-Lab. First, the user browses
the Go-Lab portal, which is an inventory of embeddable applications ("apps"), online
laboratories ("labs") and inquiry learning spaces ("ILS"). The user, typically a teacher
who wants to facilitate inquiry-based science education, identifies either a pre-made
scenario ready-to-use in the form of an ILS, adapts it to his or her needs, or creates
an own ILS from scratch. When the teacher browses the labs, s/he can select a lab
according to the individual preference regarding the curriculum, target group or age.
When selected, the Go-Lab portal has a button to create an ILS. The authoring process
then takes place in another system, Graasp. The systems are seamlessly connected
through and the entities to be shared described through RDE The authoring platform
allows the teacher to share the ILS with the learners in order to run the learning sce-
nario. This sharing is in form of a URL that can be distributed through any established
communication channel that the teacher wants to make use of.
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Figure 2.14: Go-Lab provides a single entry point to create and run learning spaces.
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Figure 2.15: The Go-Lab Portal is an inventory for apps, labs and ILS.

The Go-Lab Portal

Golabz.eu, the Go-Lab portal, is the entry point for the creation of inquiry learning
spaces. Technically, the platform is a content management system based on Drupal®,
which lists apps, labs and published ILS in its inventory. It is directly connected to
the Go-Lab learning environment (Graasp, see section 2.2.3) in order to create own
instances as copies from published ILS or to use apps and labs in a standalone mode.
A faceted search based on a metadata scheme that has been developed through the
projects enables filtering of the displayed items. Therefore it is possible, for example,
to view all German ILS, or even to narrow that down to a certain subject, domain or
target age range (see figure 2.15b).

By the end of October 2018, the inventory of Go-Lab listed 565 labs, 40 apps, and 885
inquiry learning spaces published to the platform. Besides the inventory, unofficial or
external apps and labs can be embedded into the learning environment without being
listed on Golabz. Also the number of the ILS used is much higher than the number of
ILS published.

5The Drupal Association, Drupal Open Source CMS, https://www.drupal.org/, accessed: 2018-
11-01.
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The Go-Lab Learning Environment

The Go-Lab learning environment is conceptually and technically based on the ROLE
sandbox, which has been described in the previous section 2.13. It is mainly organized
as a development to create personal learning spaces, comparable to a folder or direc-
tory with arbitrary content. Each learning environment is structured as a space, which
is in line with the Graasp / ROLE concept of spaces. However, the personalization fea-
tures are on the level of the creator of the space, usually the teacher or instructor of
the educational or learning scenario.

Graasp in the context of Go-Lab can be seen as a continuous development of the ROLE
tool with respect to inquiry-based learning. Go-Lab adds a pedagogical middleware
to the Graasp environment, which helps to implement and scale up inquiry-based
science education with online laboratories. Figure 2.16 shows how this middleware
bridges the gap between platforms and inquiry-based science education.

Inquiry-based Science Education

Go-Lab: “Pedagogical Middleware”

Cognitive Scaffolds Inquiry Apps Online Labs

Figure 2.16: Go-Lab acts as a pedagogical middleware for IBSE.

The model for inquiry-based learning in Go-Lab is a synthesized model of inquiry cy-
cles (see section 2.1.1) that has been flattened to subsequent inquiry phases. Although
the literature identifies different sequences, models or names of phases to structure
the inquiry learning process, the main idea is always to encourage the students to
develop their own questioning, figure out their own responses by making proper hy-
potheses and designing proper experiments, and reflect on the observations. A rec-
ommended model within Go-Lab takes the following phases into consideration: Ori-
entation, Conceptualization, Investigation, Conclusion, and Discussion (Pedaste et al.
2015).
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Graasp provides teachers with arecommended process model and a collection of sup-
porting tools that can be adapted according to the needs of the learning scenario. Still,
during the learning activity, a student might or might not follow this structure. The se-
quence of phases followed by the student corresponds to a model that represents the
learning process. The degrees of freedom given to teachers and students in the de-
sign and enactment of ILS make Go-Lab an interesting example for applying analytic
methods of process discovery. One of the tasks in this field is to extract process mod-
els and find deviations from this model in concrete process instances (van der Aalst
2011). These deviations might be used as indicators to enforce process awareness and
reflection on part of the learners, which is seen as beneficiary in inquiry learning (Gar-
rison 2003) besides process-oriented guidance mechanisms (Zacharia et al. 2015).

Cognitive Scaffolds in Go-Lab

In Go-Lab, the degree to which scaffolding is added and faded is defined by the teacher
and not restricted to or by the Go-Lab environment. The term of cognitive tools or
scaffolds has been defined in a general way: "The basic idea of most cognitive tools is
to boost the performance of learning processes by providing information about them,
by providing templates, or by constraining the learner’s interaction with the learning
environment" (van Joolingen et al. 2007). Some of the apps in the Go-Lab inventory
serve the purpose to support and to scaffold the (inquiry) learning process. When
we refer to cognitive scaffolds, we point at concrete, embeddable apps to support the
inquiry process, knowledge representation or construction. In the Go-Lab inventory,
these apps are called "Inquiry Learning Apps" if they are connected to inquiry activ-
ities for learner support. The non-exhaustive list of inquiry learning apps in Go-Lab
contains the following apps that are useful during the according inquiry phases:

Conceptualization: Concept Mapper, Hypothesis Scratchpad, GoModel (System Dy-
namics), Wiki Tool, Question Scratchpad

Investigation: Experimental Design Tool, Observation Tool, Table Tool, Experimen-
tal Error Calculator

Conclusion: Conclusion Tool, Report Tool, Wiki Tool, Data Viewer

Discussion: Question Scratchpad, Wiki Tool, Input Box

Not all of these apps directly represent knowledge. The Experimental Design Tool is
highly specific and bound to the design of an experiment. It uses variables that are
already defined through other scaffolds, for example the hypothesis scratchpad, and
it provides the user with means to specify parameter variations. The Data Viewer is
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a tool intended to display data sets that have been collected during the experimenta-
tion. This is quite useful for learners to have an visualization of the experimental data
in order to relate multiple representations (Bodemer and Dehler 2011).

Another category of cognitive tools to support learners in doing inquiry are monitor-
ing tools to help students keep track of their learning process or experiments (de Jong
2006). In Go-Lab, such tools for process awareness exist (Manske et al. 2015a), but are
not highlighted in this section, as they do not directly influence or rely on the concept
of knowledge diversity, but possibly complement the effects regarding group aware-
ness (cf. section 7).

The following apps are highlighted in this section as they are tools to express learners
knowledge (cf. section 2.1.2) and were used for the approach of this thesis (see sec-
tion 4). The Go-Lab concept mapper is typically used during the conceptualization
phase as an externalization of learners’ knowledge. Concepts and relation names can
be predefined by the teacher, but are not restricted to it. In an optimal case, they en-
code key concepts and their respective relations, but we saw in our experiments, that
sometimes learner use more natural language and whole sentences for relations or
concepts. This makes the identification of knowledge more difficult and shifts the role
of this scaffold to the direction of a note pad. The hypothesis scratchpad can be used
by learners in order to create hypotheses using a drag and drop approach with pre-
scribed or free text blocks. Predefined quantifiers and operators help to prestructure
hypotheses. However, we could observe that learners use free text blocks, similar to
the concept mapping, to write full sentences in the hypothesis editor. Therefore, the
identification of key concepts is quite similar to the extraction from learner-generated
texts. In our Go-Lab scenarios, we used two tools to let learners write texts: an input
box, which is a very minimalistic plain text input field, and a wiki tool. The input box
implicates learners to write short answers or texts. The wiki tool (see figure 2.6) has
a document-oriented user interface and wiki markup to format and connect texts. In
contrast to a plain text tool, this implies and motivates to write more elaborated texts,
for example reports, conclusions or reflections. The use of this tool can vary depend-
ing on the use case. Go-Lab supports, similar to other apps, different modalities to
embed the tool, for instance in a specific inquiry phase or as a general tool in the
"tools" panel (bottom bar in an ILS).
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2.3 Learning Analytics

The interdisciplinary field of the learning sciences exposed a rich theoretical under-
pinning and understanding of learning. Many theories have been advanced to frame
conditions for effective learning, for example how effective learning design impacts
learning. Apart from this area, learning analytics (LA) emerged from different disci-
plines as an educational research field and set up a new paradigm in this area. In
contrast to the learning sciences, the roots in artificial intelligence, statistical analysis
and business intelligence foreshadow data-driven approaches and narratives to ex-
plain aspects of learning. Often, LA stands for the usage of computational (analysis)
methods on learning data to inform different stakeholders with the aim to improve
learning processes and environments (Ferguson 2012). Three types of computational
methods used in LA are distinguished to categorize analytical approaches and objects
of interests (Hoppe 2017):

1. Product analysis is focused on the products of learning, particularly learner-
generated content. The analysis of content can be performed using text mining
or other techniques of artifact analysis.

2. Process analysis is based on action sequences and traces that help to reenact
the (whole) learning situation. The analysis of processes can be performed us-
ing methods of sequence analysis, for example sequential pattern mining or se-
quence alignment.

3. Social network analysis (SNA) relies on social structures, for example interac-
tions between learners or learners and artifacts in collaborative learning scenar-
ios. These structures are typically represented as graphs, where SNA employs
methods of graph theory for the analysis.

Figure 2.17 presents an overview of the three types and examples of the respective
methods for each category. In the context of this dissertation, which is situated in
the Go-Lab project, network analysis has minor relevance due to its design principles
and the lack of explicit (social) relations. The analysis of learning Processes following a
model of learning phases in IBL has been applied using methods of sequential pattern
mining (Manske et al. 2015a). Content-based analyses (1) have so far received less ex-
plicit attention from an LA perspective. Although we employ some techniques based
on network analysis, they primarily target the content of certain objects. For example,
concept maps have a structure that is comparable to a network of concepts, which
makes it possible to employ network measurements to assess concept map quality.
Additionally, we used network text analysis to create a text network from a learner-
generated text in order to identify key concepts.
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Figure 2.17: The trinity of LA according to Hoppe (2017).

2.3.1 Process Analysis

Although process modeling has its origin in the field of business processes, it has been
also applied to learning contexts. For instance, learning processes can be modeled
and structured through learning design and process mining, similar to budiness pro-
cess models (Bergenthum et al. 2012; Miao and Hoppe 2011). Particularly for con-
structivist learning approaches, the role of learning design and the specification of
learning flows have been discussed (Lejeune et al. 2009a; Harrer et al. 2007).

Modeling learning processes as a basis of learning design can be applied to differ-
ent learning approaches including inquiry-based learning. IBL can be a successful
pedagogical approach, if effective support is offered to the students at various lev-
els (de Jong et al. 2013): first, activities are structured in successive phases; second, in
each phase scaffolding tools supporting the activities are provided; and third, relevant
cues are given to the students when necessary.

2.3.2 Product Analysis

The analysis of products with semantic technologies have so far received less explicit
attention from an LA perspective, although computational linguistics techniques have
been successfully applied to the analysis of collaborative learning processes (Rosé
et al. 2008). The OpenEssayist-System (Whitelock et al. 2013, 2015) uses linguistic ap-
proaches to analyze text-based artifacts generated by learners. While the outcome of
the system aims to adapt learners to write essays with a specific structure, it under-
represents epistemic aspects of learning analytics. Students are forced to think about
why the system produces a certain outcome, but it does not provide any help by de-
livering explanatory models. To support the revision or the evaluation of students’
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learning outcomes effectively, learning analytics applications might need to process
learner-generated content automatically. The processing of text-based representa-
tions, e.g., wiki articles, highlights the importance of semantic technologies for LA.
Several systems use semantic technologies to represent knowledge. The Xerox Incre-
mental Parser (XIP) Dashboard uses approaches of Natural Language Processing to
aggregate salient sentences of scholarly papers, providing a variety of analytics to the
students (Simsek et al. 2014). The Debate Dashboard (Quinto et al. 2010) focused on
distributed knowledge management. A central aspect is an argument mapping tool
with a visual component to support collaborative work and collective sense-making.
To effectively provide scaffolds for the students’ interaction with learner-generated
content, the design of LA interventions as proposed by Wise (2014) can serve as a
point of reference. An LA intervention can be defined as a frame in which analytic
tools, data, and reports are gathered and used. Wise formulates four design principles
for the successful integration of LA tools: The smooth integration of LA results into
the learning environment; the agency in interpreting and responding to analytics in
terms of supporting and not detracting learners; setting up a frame to give learners a
comparison point when interpreting results from analytics; and the chance to discuss
and negotiate the LA results in a dialogue. These statements have been extended by
Harrer and Gohnert (2015) adding the two principles scope, focusing on contextually
relevant information for the learner, and representational consistency, i.e. adapting
the interface to the learning environment. Apart from the question of what data to
visualize, how to support pedagogical interventions and present them to learners, the
nature of knowledge and its implications to learning is relevant. Epistemic aspects are
framing research in learning analytics (Knight et al. 2013). Dimensions of epistemic
beliefs highlight the learner’s view on what is to be learned, particularly classifying
knowledge on part of the students (Mason et al. 2010, 2011).

The design of the concept cloud was influenced by Wise’s framework for learning an-
alytics interventions and incorporates Mason'’s epistemic beliefs and aspects to foster
reflective behavior on part of the learner and connect the visual items to students’
knowledge. Similar to the OpenEssayist system, it uses a tag-cloud-like visualization
to display key concepts used in the learning spaces, particularly the learner-generated
content. Such representations support the user in monitoring a large number of items
and thus provide a medium the learner can manipulate and interact with (Qiu et al.
2007), reducing navigational paths (Rivadeneira et al. 2007).

2.3.3 Learner and Knowledge Models

According to Bull and Kay (2010), "open learner models are learner models that can be
viewed or accessed in some way by the learner, or by other users (e.g. teachers, peers,
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parents)." The user can investigate the learner model and particularly try to under-
stand why the system inferred the model. As a consequence, the user can intervene
on certain things. This process is seen to improve metacognitive skills on part of the
learners (Bull and Kay 2013). However, such models usually lack in a certain amount
of transparency on how the system builds a model. This can lead to a disagreement
between user and system, which cannot be resolved.

In the field of (open) learner modeling, the dimensions and aspects of what to analyze
and model can differ, and different aspects can be taken into account. For success-
ful scientific inquiry, knowledge has been emphasized as one of the key ingredients.
Therefore, we focus on the field of learner modeling with respect to open learner mod-
els that encompass learners’ knowledge. In the field of intelligent tutoring systems,
open learner models have shown positive effects regarding metacognitive skills and
learners’ self-regulation (Bull et al. 2010; Mitrovic and Martin 2007; Long and Aleven
2013). Mitrovic and Martin (2007) conclude:

"Students appreciated having access to their models, and they felt this fea-
ture contributed to their understanding of the domain. Performance of
less able students becomes significantly better than that of their peers of
similar abilities without access to their models."

Hoppe and Ploetzner (1999) identified cognitive models of collaborative learning as
important to the research in the field of CSCL. The use of such analytical models
can provide intelligent run-time support for collaborative learning, for example in
the field of automatic group formation and problem solving. They used an open
framework for multiple student modeling, which contains the three different mod-
eling methods "overlay", "bug library", and "perturbation method" (Hoppe 1995).
These three models can be analyzed and integrated. Overlay models are simple and
optimistic additive models. In the case of an overlay model, knowledge can be in-
tegrated as the union of individual portions of knowledge. A student model of type
overlay is then the subset of all knowledge items. In their modeling approach, Hoppe
and Ploetzner (1999) declared a knowledge item as a certain topic a student knows, or
a skill the student dominates. For the work of this thesis, we highlight that the inte-
gration does not necessarily take individual portions into account, but also works for
more heterogeneous settings, for instance, integrating for a single learner knowledge
from different artifacts. This is the case for Go-Lab scenarios, where learners usually
have different knowledge externalizations or learner-generated artifacts such as texts,
concept maps and hypotheses. A buggy model is a model in which rules for errors are
encoded. Particularly when dealing with potentially wrong knowledge items, things
that are "mistaken" or do not relate to a correct understanding, such models are nec-
essary.

Hoppe and Ploetzner (1999) identified knowledge complementarity as a useful base
line for knowledge integration and collaborative scenarios, where learners benefit
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from each others knowledge. The definition of knowledge complementarity has been
emphasized as useful to trigger cooperative situations with the following notion based
on the predicates can_help, knows and has_difficulties:

can_help(Sy,S2, T) IF knows(S,,T) & has_dif ficulties(S,, T).

In this definition, a relatively clear definition of knowledge complementarity within
an overlay model is given. When student S; knows about a topic 7, and student S,
does not, they are complementary regarding topic 7. In this cooperative setting, this
means that student S; can help S,. Following this definition, we can add that S; and
S, are diverse regarding T. However, in this simple model, the complementarity does
not lead to a quantifiable measure for groups, particularly for group diversity.

Openness, besides the idea of making the model accessible to learners and teachers,
has another important connotation. In tutoring systems, learner models are often
defined as deviations from a predefined path or in accordance to erroneous behav-
ior to match buggy rules. In model tracing approaches by Anderson (1984) the stu-
dent is basically forced to stick with the model the system accounted the learner to.
Such modeling approaches are limiting the set of scenarios. The context of this the-
sis is situated in the Go-Lab project, which enables open and flexible inquiry-based
learning scenarios. We do not want to restrict the knowledge models with reference
models or reference frames that need a high level of specification. Therefore, we need
open models that can be defined additively, but also optimistically without the need
of overspecification. Open overlay models satisfy this condition and will play a role in
the knowledge management and integration approach of this work (see section 4).

2.3.4 Architectures for Learning Analytics

Current architectures for learning analytics software systems are being developed in
different contexts. This incorporates business analytics and also data mining tools
(Kraan et al. 2013). Most of the tools are designed for specific types of learning en-
vironments like learning management systems (LMS). LMS platforms such as Black-
board’ and Desire to Learn® offer their own bundled learning analytics software so-
lutions, which are dedicated to the end user exclusively and hence not extendable.
Fortenbacher et al. (2013) developed the LeMo tool ("Learning process Monitoring")
which is capable of descriptive analysis of resource usage and student activity as well
as more complex analysis like the identification of frequent learning traces. This tool
offers several connectors to learning management systems from different vendors.
However, the connector fetches a snapshot from the target LMS and converts the data

“Blackboard Inc., Blackboard LMS: http://www.blackboard. com, accessed: 2018-04-02.
8D2L Corporation, Desire to Learn LMS: https://www.d21. com, accessed: 2018-04-02.
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set into the LeMo data model. This leads to a static analysis, which makes it difficult
to place direct interventions. To achieve a near-realtime analysis of the learner data
requires a direct forwarding of new learner data, but also a feedback channel to inte-
grate and place the interventions in the learning environment.

PSLC datashop (Koedinger et al. 2010) is a more research oriented platform that en-
ables sharing of large learning data sets. Although the focus is on effective data man-
agement, it also offers some analysis and visualization tools. Another platform ded-
icated to analysts is the CRUNCH infrastructure . It offers an analytics workspace to
create analyses and reports based on R scripts®. Scripts can be run as cron jobs or re-
leased as public web services. Particularly the web services are intended to be reused
by other users of CRUNCH. Tools like the PSLC datashop and CRUNCH are more fo-
cused on the development and reuse of analytics services and data. They can be used
to develop and test analytics services very well, but do not provide direct feedback
mechanisms for teachers or students on their own.

More emphasis on analytics systems for intelligent user feedback comes naturally
from intelligent tutoring systems research (ITS). Throughout the MiGen project a lay-
ered architecture for intelligent feedback is presented (Gutierrez-Santos et al. 2010).
Feedback is produced when activity data flows through an analysis layer, where sev-
eral components analyze different aspects of the learner behavior. A dedicated aggre-
gation layer combines the analysis results to alearner model, whereas a feedback layer
presents personalized scaffolds to the learner. All the mentioned systems serve differ-
ent aspects of learning analytics. The challenge is to fulfill requirements of learning
analytics architectures and to integrate different approaches into one open and ex-
tendable infrastructure in order to prevent fragmentation.

The Open Learning Analytics project (Siemens et al. 2011) advocates modular systems
that allow openness of process, algorithms, and technologies which is an important
feature in a heterogeneous field as learning analytics. This should also be the line
followed by the analytics architecture in Go-Lab presented in this paper. Two exist-
ing learning analytics infrastructures that also go into this direction are the analyt-
ics services of the Metafora platform (Harrer 2013) and the ROLE sandbox (Renzel
and Klamma 2013). The Metafora platform is a web-based multi-tool environment
for complex learning activities in small groups. It uses heterogeneous and decentral-
ized components for action logging, analysis of group behavior across the usage of
multiple tools and user feedback. The ROLE sandbox is a platform for Personalized
Learning Environments (PLEs). Its analytics system uses widely accepted protocols
and standards for action log data and web services in order to achieve interoperabil-
ity of data sets and services. This system implements a pipeline based processing of
action logs in which it is also possible to enrich action logs with context information

9The R Foundation, The R Project for Statistical Computing, https://www.r-project.org/, ac-
cessed: 2019-06-02.
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and metadata. The ROLE interoperability framework has been used to track activ-
ities through the communication between embedded OpenSocial widgets. A dedi-
cated analytics widget fetches the learner data from other widgets, enriches contex-
tual metadata ("CAM" format) and exports them into the activity database (Govaerts
et al. 2011). However, supporting and facilitating client-side activity tracking harbors
several risks. First, enabling applications to listen to activity data without a control
mechanism can be seen as a privacy concern. Second, with an open repository of
widgets, where external developers can add their own applications, there is a need for
arich interface and well defined protocol for the description of activities in a way that
analytics applications can make use of it.

2.3.5 Integration of Learning Analytics Applications

The definition of learning analytics by Ferguson (2012) highlights the origin and close-
ness to business intelligence systems. Business intelligence systems are often charac-
terized through the clear separation of the end user system and the analytics platform.
In our case, the end user systems are the connected learning portals, e.g. the Go-Lab
portal, while the analytics platform contains the workbench for the creation of work-
flows and their visual gadget representation. The syndication of different gadgets in
a single view or web page corresponds to the idea of analytics dashboards to enable
better informed decisions.

This idea of embedding learning analytics gadgets in the context of online-learning
has been shown in Malzahn et al. (2013). There, two courses in vocational training in
a learning system based on the Liferay portal have been compared. The output pro-
duced through the analytical methods was represented as a gadget in the portal. In
comparison, the novelty in our approach is based on the flexibility in the choice of dif-
ferent target platforms supporting connectivity of standardized gadgets, e.g. following
the OpenSocial specification. Since the rise of integrated personal learning environ-
ments, the syndication of social media and learning management systems becomes
more important. Gadget platforms like OpenSocial, which plug into social network-
ing platforms, are well suited for this purpose. Examples of collaborative learning
systems using OpenSocial are ROLE (Govaerts et al. 2011) and Graasp (Bogdanov et al.
2012). Following the approaches of ROLE, Graasp as the platform for Go-Lab, also
uses OpenSocial to provide a pluggable application architecture (Govaerts et al. 2013a;
Gillet et al. 2013a). The case study of the learning analytics architecture for Go-Lab is
presented in section 3.

In more recent research by the group of Ulrik Schroeder at RWTH Aachen, a rich ar-
chitecture and an underlying model for learning analytics has been created (Chatti
et al. 2012). The Open Learning Analytics Platform was intended to integrate indica-
tors for learning analytics within a target learning management system (Chatti et al.
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2017), which enables teachers or instructors of online learning to use analytics for
their respective learning environments. The learning analytics platform is specifically
designed to interface the learning management system, with an own relational action
logging format comparable to the CAM-format.

2.4 Computer Supported Collaborative Learning

Collaborative learning can be seen as "a situation in which two or more people learn
or attempt to learn something together" (Dillenbourg 1999). Although this definition
seems to be broad and general, it lines out some characteristics of the field. How-
ever, there is no consensus about a precise definition (Dillenbourg 1999). With the
rise of digital technologies, the field of Technology Enhanced Learning (TEL) inves-
tigated the impact of technology on learning. This led to new challenges for learn-
ing and teaching within the integration of computer-support, but also brought out
new opportunities and novel applications. Computer-supported Collaborative learn-
ing (CSCL), an emerging branch of learning sciences and computer-supported coop-
erative work (CSCW) has drawn a lot of attention in research since the 1990s (Stahl
et al. 2006). As one of the important land marks in the research, the CSCL conference
series has been started in 1995. The research in this area focused on sharing and con-
struction of knowledge through social interaction and processes within a technology-
supported learning environment, mainly underpinned by theories of constructivist
epistemology and social cognitivism (Resta and Laferriere 2007). "For many educa-
tors and researchers, CSCL appears to be one of the most promising ways, not only
to promote, but also to achieve desired changes in teaching and learning practices"
(Lipponen 1999).

2.4.1 Artifacts in CSCL

As a highly interdisciplinary and emerging field, the community of CSCL proclaims a
new paradigm of research on instructional technology, which is in different from ear-
lier approaches (Koschmann 1996). However, as CSCL is based on learning sciences,
the field has a particular view on learning as a research subject. The framing condi-
tions of learning, when and how learning takes place, have been discussed throughout
the community. The assumptions underlying this research are usually in contrast to
traditional learning theories that observe learning as something that "takes place in-
side the learner and only inside the learner" (Simon 2001). Furthermore, Simon (2001)
points out two facets that define a baseline for learning: (a) the learning activity ("ac-
tive learning period") and (b) the role of the learning environment. The latter relies on
the assumption that certain aspects of an environment (in a broad sense) can enhance
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the abilities and willingness to learn actively. Throughout both facets, different kinds
of artifacts incur and exist in the process of learning. This view of CSCL as an artifact-
mediated research discipline has been elaborated by Stahl (2002) as a new paradigm
of learning research. Koschmann (2002) is often cited in this context:

"CSCL is a field of study centrally concerned with meaning and the prac-
tices of meaning-making in the context of joint activity, and the ways in
which these practices are mediated through designed artifacts."

In the research of CSCL, (physical and virtual) artifacts play a central role (Stahl et al.
2014). In his original work about a theoretical framework for CSCL, Stahl (2002) pro-
vided a very broad definition of the term artifact: "An artifact is a meaningful ob-
ject created by people for specific uses". In addition to the aforementioned notion
of artifacts as learner-generated objects, the term "artifacts" consists of the following
specifications in the context of CSCL according to Stahl et al. (2014); Overdijk et al.
(2012); Dimitriadis (2012); Ludvigsen et al. (2015); Kienle and Wessner (2006); Suthers
(2006):

Technical artifacts are technological components or parts of a technical infrastruc-
ture that enables or supports the collaboration. Examples are web applications that
support the communication, for example (digital) chat tools that are available in the
learning environment. These artifacts are sometimes connected to agents in order
to support the inherent communication or the learning by placing interventions or
actions throughout the agent-artifact-connection(Overdijk et al. 2012).

Intersubjective artifacts Intersubjectivity is mainly characterized as interactions
at the interpersonal level, where cognitive processes and activities may be distributed
across members of a social group (Hollan et al. 2000; Suthers 2006). This attributes the
interaction between individuals, or between an individual and information objects in
the context of learning. According to Koschmann et al. (2005), this involves messages
which have been produced in computer-mediated exchanges. Therefore, intersubjec-
tive artifacts mediate communication. Suthers (2006) states out that "intersubjective
learning further specifies that the process of meaning making is itself constituted of
social interactions."

Instructional artifacts Accordingto Stahl et al. (2014), instructional artifacts present
"domain topics, lessons, guidance, scaffolding or scripting". They motivate and di-
rect the collaboration. In this sense, they organize work (Sutter 2002) and provide a
frame for the learning activity. While providing direct instruction is a common prac-
tice in tradition teaching, the field of CSCL aims to make collaboration more effec-
tive. Dillenbourg (2002) states out that "free collaboration does not systematically
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produce learning." In order to improve collaboration processes, scripting emerged
as a common approach to mediate instructions and artifacts in CSCL (Fischer et al.
2006). CSCL scripting is based on the concept of social cooperation from educational
psychology, which fosters, according to Weinberger et al. (2005), "the processes of col-
laborative knowledge construction as well as learning outcomes." Dillenbourg and
Jermann (2007) define a script in the context of CSCL:

"A script describes the way students have to collaborate: task distribu-
tion or roles, turn taking rules, work phases, deliverables, etc. This con-
tract may be conveyed through initial instructions or encompassed in the
learning environment."

The development and facilitation of scripts through run-time and orchestration of
collaboration have been investigated by many researchers (Weinberger et al. 2005;
Kobbe et al. 2007; Harrer and Malzahn 2006; Tchounikine 2008; Dillenbourg et al.
2009a; Dimitriadis 2012). Efforts to adapt scripting languages from other fields such
as IMS LD to collaborative scenarios led to new scripting languages and respective
software tools to develop the script instances (Miao et al. 2005). However, in the field
of CSCL, scripting posed a debate about the complexity and risks of facilitating and
orchestrating such instructional artifacts in regular teaching practices (Dillenbourg
2002). For example, scripting raises the risk to disturb natural interactions or prob-
lem solving processes of learners. In addition to the complexity of the interaction
itself, this boils down to an important aspect in this context: for a pedagogical setting,
in which technology-supported learning takes place, the presentation of instructions
plays a crucial role. An explicit scripting is less important than an environment to me-
diate communication and instruction. The concept of instructional artifacts also ap-
pears in the context of instructional technologies, particularly in the field of research
on mathematics education (Meira 1998; Evans and Wilkins 2011). Instructional de-
vices play an important role in mathematics education and pose an activity-oriented
and a knowledge-oriented view on instructional artifacts, where tool mediation ac-
cording to Vygotsky’s theory of cognitive development plays a central role (Dixon-
Krauss 1996). Although we created a distinction to technical artifacts, the facilita-
tion and embedment into a pedagogical setting through instructions cannot be com-
pletely decoupled from technical artifacts. However, modern approaches of scripting
CSCL contain an explication of the tool mediation and explicit transitions between
artifacts through the scripting language (Dillenbourg 2015). In contrast to this, Go-
Lab does not use any explicit scripting of collaboration that is facilitated or mediated
through technical artifacts (de Jong et al. 2014).

Learning artifacts are the products of learning, the interaction between learners
and the learning environment, including intermediate and final representations of
these products. While some traditional definitions see learning artifacts as physical
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objects in order to support the learning of others (Sherin et al. 2004), in the context
of technology-enhanced learning this definition can be extended to (technological)
tools. In the context of IBL environments such as SCY-Lab or Go-Lab (compare sec-
tion 2.2), each learning activity is bound to a certain learning object. In this case, the
artifacts of learning are the products of scaffolds or (inquiry) apps, and therefore the
output of the technical artifacts. In line with the research in the field of IBL we do not
limitate learning artifacts to technological or physical artifacts, but also include fi-
nal and intermediate products of learning, for example scientific arguments (Bell and
Linn 2000), experimental data, hypotheses, or documents (Lejeune et al. 2009b). In
this sense, learning artifacts are mainly learner-generated, but could be also prepared
by teachers or through an instructional design (Lejeune et al. 2009a). An example of
a prepared learning artifact in Go-Lab is an experimental design (created through an
experimental design tool), where the variables are already entered by the teacher. In
this example, the ILS already contains a learning artifact (experimental design), which
is an intermediate, but not the final product.

Knowledge artifacts While Dillenbourg (1999) argues, that learning is often seen
as a side-product of problem-solving, a lot of emphasis has been put in the facet of
knowledge construction, particularly framed by group processes (Resta and Laferriere
2007; Stahl et al. 2006). Externalizations of knowledge, such as concept maps, can be
seen both as knowledge artifacts and learning artifacts, if they are explicit products of
the learning. This is the case for tasks that facilitate such a knowledge artifact con-
struction, which is prototypical for some inquiry-based learning designs (see section
2.2.3).

In summary, CSCL scenarios can be seen as a composition and orchestration of these
artifacts, which structure, facilitate and mediate communication and learning. Re-
search in CSCL is investigating the conditions and environments in which collabo-
ration takes place. The definitions above imply that the dependency on interactions
in a social and observable context demands a research paradigm that is not only re-
stricted to a quantitative research in controlled (laboratory) conditions. It is neces-
sary to have qualitative and mixed studies of learning practices in order to "explore
the understanding of the participants in collaborative learning" (Stahl 2002). To cre-
ate arich understanding of the activities and processes, this might involve a variety of
evaluation methods and data collection approaches that enhances traditional empir-
ical research methodology. According to Wise and Schwarz (2017), this microgenesis,
where fine-grained observations of interactions during the collaborative processes in
the moment of meaning-making is specific and now classical to the research field of
CSCL. Such methods and research paradigms also intersect with the newer discipline
of learning analytics (see section 2.3).
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2.4.2 Group Formation

Group formation is a key aspect of CSCL because it can affect the way people work
together towards a common goal and eventually the learning outcome itself. Col-
laborative activities are expected to promote learning through common knowledge
building and the social interaction among users (Stahl et al. 2006). However, collab-
oration alone does not ensure knowledge gain or successful practice (Jermann et al.
2001). Usually the task of group formation is carried out by the teacher who uses his
experience on pre-defined criteria that may refer to students’ social skills, gender, mo-
tivation or knowledge background (Ounnas et al. 2009). This complicated process re-
quires time and does not always lead to success.

Based on the availability of student performance data in computerized learning en-
vironments, (semi-) automatic or algorithmic approaches to group formation have
been suggested. For example, Balmaceda et al. (2014), define group formation as a
weighted constraint satisfaction problem (WCSP) depending on the characteristics
of students such as personality traits, team roles, and social relationships. Also net-
work analysis techniques have been employed for analyzing the interaction of users
through a learning platform and clustering students based on their similarity (Sadeghi
and Kardan 2014). As one of the most sophisticated technical solutions so far, the
GroupAL algorithm (Konert et al. 2014) allows for optimizing group composition ac-
cording to a variety of features, with the option of choosing between homogeneity and
heterogeneity for each of these features. The "MoodlePeers" plugin is an adaptation
of the GroupAL algorithm to the Moodle LMS (Konert et al. 2016). It integrates the as-
sessment of personal traits, attitude and skills into Moodle, which is then used to cal-
culate an optimal grouping. In order to detect "soft skills" such as the attitude towards
learning, the learners have to fill out a questionnaire first, which is implemented as a
part of the Moodle plugin.

The role of group homogeneity in collaborative classroom activities has been a subject
of various studies. There are indications that heterogeneity of knowledge is beneficial
for group performance (Webb et al. 2002; Kizilcec 2013). However a certain baseline of
background knowledge appears to be required for the collaboration to be beneficial
(Gijlers and de Jong 2005). In prior work it could be observed that the positive ef-
fects of diversity had an impact on the performance of learning groups (Chounta et al.
2014). However, it is crucial to define goals for the algorithm of an automatic group
formation in order to evaluate the quality of the output. For instance, such goals can
be an optimization of the differences among groups in order to guarantee a fairness of
the algorithm (Konert et al. 2014), certain conditions to create a specific type of learn-
ing scenario, or a desired pedagogical goal (Hoppe and Ploetzner 1999; Mujkanovic
etal. 2012).
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Former automatic or algorithmic approaches to group formation used skill- or score-
based diversity on a variety of performance characteristics (Manske et al. 2015c; Kon-
ert et al. 2014). It is debatable, whether the score-based approaches can be used to
form heterogeneous groups in terms of knowledge diversity. The Concept Cloud has
presented both a technical and pedagogical approach how to incorporate semantic
analyses with inquiry-based learning in Go-Lab (Manske and Hoppe 2016). Although
the (automatic) formation of learning groups is in the interest of CSCL, less research
has been put into knowledge-based groupings. Apart from skills and criteria, former
approaches utilized analytic models following learners’ knowledge complementarity
(Hoppe and Ploetzner 1999). In this sense, computational methods have been used in
order to create learners scenarios that benefit from knowledge diversity.

2.4.3 Cognitive Group Awareness

In the research of CSCL, fostering and facilitating different kinds of awareness has al-
ways been of interest. The key aspects of group awareness are, according to Bodemer
and Dehler (2011) "the knowledge and perception of behavioral, cognitive, and social
context information on a group or its members." They further state out that this field
encompasses "the development of tools that implicitly guide learners’ behavior, com-
munication, and reflection by the presentation of information on a learning partner or
a group". A framework by (Fransen et al. 2011) includes behavioral, social and cogni-
tive aspects of group awareness. Cognitive group awareness is proposed as a "suitable
means in order to support learners in using their cognitive capacities for meaningful
individual and collaborative learning activities" (Bodemer 2011).

Cognitive group awareness tools (CGATs) provide learners with cognitive information
on others that is usually not directly observable and that suggests performing specific
behaviors (Janssen and Bodemer 2013). Traditionally, research in group awareness
was focused on distant, computer-mediated communication situations. However, the
benefits of group awareness are not limited to computer-mediated communication.
Furthermore, it can enhance situations in which information is exposed that is not
even visible in face-to-face situations. Group awareness tools typically target cogni-
tive and social variables. For instance, these tools have the following functions: (i)
highlight or list significant aspects of learning materials and resources to organize co-
learners’ communication, (ii) provide cognitive information on learning partners to
facilitate grounding and partner modeling processes (Dillenbourg and Betrancourt
2006; Bodemer and Scholvien 2014). While the first function supports information fil-
tering and coordination, the second one enables co-learners to easily compare said
cognitive information. This draws their attention to specific constellations such as
conflicting opinions or knowledge differences, which can be enhance the planning
of tasks or initiate negotiation of a shared understanding. Particularly for visualizing
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knowledge differences, it was shown that the visualization of knowledge distributions
in such tools can lead to a significant improvement of learning processes (Erkens et al.
2016a). One reason is that the visualization of knowledge distributions causes cogni-
tive regulation as co-learners adapt their questioning behavior in help seeking based
on the visualized levels of knowledge. They prefer to ask questions on topics with own
missing knowledge visualized, and also take into account that their learning partner
is knowledgeable on the topic, if this information is given (Dehler et al. 2011; Erkens
et al. 2016b; Erkens and Bodemer 2017).

Another function of CGATs is that visualized knowledge distributions cause cognitive
elaboration. Making learners aware of deficits in learning partners’ knowledge makes
them not only give more or longer explanations (Dehler et al. 2011; Erkens and Bode-
mer 2017), but also more elaborated explanations (Dehler Zufferey et al. 2010; Erkens
and Bodemer 2018). Taken together with the findings of complementary group for-
mation, we can conclude that particularly co-learners in groups with complementary
knowledge distribution can profit from the additional visualization of this distribu-
tion. First, knowledge acquisition might be optimized, since the visualization allows
learners to regulate the requests of explanations in terms of asking targeted questions
on missing knowledge and receiving explanations on it. Second, cognitive elabora-
tion might be better, since learners explain more elaborated, if they are aware of their
learning partners’ knowledge gaps. Third, they might better prioritize topics to be
discussed and thereby better sequence their communication, since knowing about
shared and unshared knowledge resources can trigger discussions about topics, with
which only one learner in a group is familiar (Schittekatte and van Hiel 1996). Accord-
ing to Wise and Schwarz (2017), group awareness tools help to prioritize the learners’
agency:

"By making people aware of the qualities of their peers, characteristics
of the contributions made thus far, or the knowledge development of the
group collectively, these tools put the learners’ agency to the front of CSCL
focus and afford desirable actions among willful learners."

To exploit the potential of these three benefits, we formed groups of learners with
complementary knowledge. To assess the learners’ knowledge, methods from infor-
mation mining and learning analytics provide efficient solutions that can be applied
to educational data such as essays or homework (Erkens et al. 2016a). Especially text
mining techniques can used to convert semi- or unstructured text data into a struc-
tured, numerical format (Miner et al. 2012). The structured data can, in turn, be used
for grouping learners based on complementary knowledge. For instance, Erkens et al.
(2016a) used Euclidian distances and grouped learners starting from the highest dif-
ference downwards to form learning groups. Although they found a relation between
distance and knowledge acquisition and a suitability of text mining values to illus-
trate degrees to which learners wrote on specific topics (Erkens and Bodemer 2018),
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this procedure brought in small classrooms the problem that the average distance of
these groups was not higher than it was in randomly assigned groups. We tackle this
problem by creating the semantic group formation algorithm that assigns a diversity
score to each grouping and selects the set of groups that satisfies two conditions: to-
tal coverage of knowledge items is maximized in the set, and overlap is minimized
(Manske and Hoppe 2017). This approach is described in detail in section 4.4.2.

In summary, semantic technologies (e.g., text analysis methods, computer linguistics
or Al-driven approaches) and group awareness tools have a high potential to enrich
learning and teaching in the field of CSCL. These tools can be used to form groups of
real complementary knowledge and to visualize the cognitive information resulting
from learner-generated artifacts or even from complementary learning material. In
this regard, such mechanisms are likely to facilitate or improve cognitive group aware-
ness. Particularly the exploration of the combination of both (knowledge-based) ap-
proaches is still underexplored and thus part of this thesis.
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Derived from the literature about learning analytics, we define an architecture for Go-
Lab, that enables learning analytics to support learners and teachers. Go-Lab serves
as a pedagogical middleware for promoting inquiry-based science education using
online laboratories. Using the Go-Lab system, learners create artifacts, which express
and externalize their knowledge to some extent. To enable knowledge integration and
to define scaffolds that use knowledge representations and open learner models, we
design an architectural layer for learning analytics in Go-Lab (see figure 3.1).

This chapter is mainly built upon three publications, which document my work of
creating an architecture for learning analytics in Go-Lab (Hecking et al. 2014; Manske
et al. 2014). This architecture has been employed to analyze the use of ILS in Go-Lab
with the goal to get a (desired) sequence of phases in an ILS and the deviations in the
creation process (Manske et al. 2015a).

Inquiry-based Science Education

Learning Analytics Infrastructure

Go-Lab: “Pedagogical Middleware”

Cognitive Scaffolds Inquiry Apps Online Labs

Figure 3.1: The conceptual model of this architectural approach.
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3.1 Architecture for Learning Analytics

The analysis of the increasing amount of educational data at large scale in order to
improve learning processes has become a growing research topic in the recent years
(Drachsler and Greller 2012). The emerging field of learning analytics brings together
different fields, i.e., business intelligence, web analytics, educational data mining and
recommender systems (Ferguson 2012). Apart from that, there has also been research
focused on the pedagogical and epistemological aspects of learning analytics (Knight
et al. 2013). However, solutions to support web-based learning environments as a
whole with analytics services on the technical level are still underrepresented in the
field. There exist learning analytics systems tailored for special use cases. Especially
in web-based learning environments with flexible authoring facilities, that are not
bound to a single domain, the set of different learning scenarios, which can be sup-
ported by analytics features, is unpredictable. Hence, instead of presenting a closed
software system for a limited set of analytics tasks, the aim of this work is to design
an analytics infrastructure for web-based learning environments, which functions as
a general framework for several aspects of learning analytics. This comprises log-
ging mechanisms for student actions, data storage and retrieval as well as intelligent
user feedback. Algorithms for data analysis are implemented as independent software
agents which makes the infrastructure flexible and extendable. The work is based on
current achievements in the ongoing EU project Go-Lab on personalized online ex-
periments with virtual and remote labs for usage in school. To achieve this, Go-Lab
offers a web-based platform (Govaerts et al. 2013a), which allows teachers to set up
reusable inquiry learning scenarios for students in an easy way. Consequently the de-
scriptions in this work concentrate on analytics for this platform. The following sec-
tions describe general characteristics and aspects of architectures to enable learning
analytics.

3.1.1 Functional Characteristics of a General Learning Analytics
Infrastructure

There are various opportunities to use the Go-Lab environment to create inquiry sce-
narios with virtual and remote labs. This requires the possibility to create custom an-
alytics solutions as well as the offering of general services by integrating existing sys-
tems. While many systems meet the demand of modularity, they dismiss the chance
to tailor learning analytics to multiple stakeholders. Analytics services can be used for
ex-post analysis by researchers to get insights into learning processes or to design new
guidance mechanisms. In contrast to the perspective of ex-post analyses, the learners
can also immediately benefit from such systems, typically through interventions.
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Action Logging

Before an analysis can be performed, the user activities need to be captured through
the system, which can be achieved through action logging. Action logs must consis-
tently reflect the users’ actions in the system. This comprises user access to resources
as well as specific actions when using web apps. The analytics system observes the
learners’ actions and thus interpolates their trajectories, which are then persisted in
the form of an action log file. Each action that is captured is called an action log,
whereas the whole log file can be used to reenact the interaction of learners within
the system. Such actions are differentiated from logs that capture the current state of
a system, learner or any other entity related to such a system.

The logs have to be in a common and well-defined format, an action log protocol, so
that analysis methods can be developed independently. Typical aspects of actions that
exist in most of the action logging formats are subject ("who"), verb ("does what"), ob-
ject ("with which entity") and time ("when"). These basic characteristics are needed to
describe an action. Particularly for larger environments or sandboxes, it is necessary
to encode the learning context, for example parameters of the learning environment
or the learning design, into the log protocol. The context might also consist of activi-
ties bound to the context, which is of interest in the arise of social network platforms
in education. Due to the simple nature of action logs, there was not a need to create
one unified protocol. However, the rise of learning analytics, social network platforms
and the approach to provide cross-platform analytics led to the design of unified pro-
tocols. The "Common Format" (De Groot et al. 2007) was an XML-based representa-
tion schema to import log files from several learning environments into one reposi-
tory. The activity streams protocol aimed to integrate activity protocols from different
social web applications similar to Facebook (Snell and Prodromou 2017). The format
is JSON-based and contains in addition to the common fields flexible placeholders for
extensions.

During the development of the Go-Lab system, another architectural approach to a
storage system with a custom JSON-based logging format for action logs has been ad-
vanced, the concept of a learning record store (LRS) and the xAPI format 1. The LRS
can be seen as a generalization of action logging that includes a data store that vali-
dates and accepts logs in the xAPI format (Bakharia et al. 2016). The xAPI format ("ex-
perience API"), captures the above mentioned typical aspects of actions and can be
extended through so-called recipes that describe the action format. One of the goals
is to create micro formats that contain detailed descriptions of the particular aspect
in the action log. This can be achieved by providing URIs for each entity that point to
a web resource with a description of the entity. Following this approach, it is possible

1pAdvanced Distributed Learning (ADL) Initiative, XAPI standard. https://github.com/adlnet/
xAPI-Spec. Retrieved: 2020-02-10.
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to get a detailed picture of the learning activity from an external perspective, which
is beneficial for open data or developers of learning analytics applications. However,
there are weaknesses in the technical approach such as key names that are not valid
to a pure JSON standard and the lack of a reference implementation during the design
of the Go-Lab architecture. With respect to the flexibility, current implementations of
learning record stores do not foresee extendable learning analytics APIs.

Notifications and User Feedback

According to the target and scope of learning analytics, this can be either seen "in-
stitutionally" in a way that it provides general insights in learning, or "directly" that
individually and immediately addresses the users that are involved in the learning
scenario through the learning environment or the learning analytics platform. In this
direct approach, learning analytics can be conceived as a cyclic process in which anal-
ysis and feedback steps are interleaved with learning. Referring to the learning ana-
lytics cycle, Clow (2012) describes the key to the successful application of learning
analytics as "Closing the loop by feeding back this product to learners through one
or more interventions". Therefore, appropriate channels for the feedback need to
be established. To produce immediate results in the form of interventions, analysis
components should be triggered in such way, that notifications can be generated on
time to be fed back to the learners. Tools that operate with notifications, such as scaf-
folds that adapt or (re-)present the interventions, have to be able to handle different
kinds of notifications ranging from prompts to reconfiguration of tools to provide tai-
lored guidance mechanisms. An example of such an environment that was capable
of adapting tools according to the specific guidance was the SCY-Lab (de Jong et al.
2010). The multi-agent architecture analyzed learners emerging learning objects and
according to the configured level of guidance, the concept mapping tool has been re-
configured in order to propose specific concepts through agent-based notifications.
Other examples are monitoring tools that provide feedback to the user and thus pro-
vide interventions more implicitly by rendering data and dragging the attention of
the user to specific aspects through analytics. Thus, better informed decisions can be
made by the user.

Ex-post Analysis

In contrast to immediate interventions, a collection of data over a certain period of
time is required for many analytics tasks. The scope, target and stakeholders of the
ex-post analytics can vary. An example of a learning dashboard that is facilitated in
an ex-post analytics setting is the learning analytics dashboard (LAD) by Kim et al.
(2016). In this case, learners use the dashboard after the learning phase to review
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type : "prompt", // other possible types are "configuration" or "resource."
importance : "8", // importance level with range [1, ..., 10].
target : {
type : "app",
id : "provider_id-actor_id-generator_id" // unique id to address a particular app.
Yo
content : {
text : "This is an example message" // message content if notification type is "
prompt".
url : "http:\\..." // url if notification type is "resource".
configuration : {
specific_config_parameter : "config_value"

}

Figure 3.2: An example of a notification message for a prompt that contains arbitrary
or tool-specific configuration parameters.

their online learning behavior patterns. Other examples comprise of ex-post analysis
tools that can be used retrospectively by the end user of the learning environment,
for example by teachers who want to acquire more insights about the learning sce-
nario. This is particularly the case, when a teacher wants to improve the own teaching
practices through systematic observation. In contrast to these individual cases that
directly affect the two main stakeholders of learning scenarios, such analytics can be
placed at a larger scale. In order to improve a learning environment as a whole, the
retrospective analysis of large data sets can be used for providing decision support to
educational designers. Additionally, they are also very important as research and val-
idation instruments. Learning analytics and educational data mining can be used in
such cases to acquire knowledge about the learners at a larger scale. The intervention
does not immediately affect the same learners that produce the data, but following
generations of learners. Another reason for long time storage of data is to use real
data sets for the data driven development of new analytics and guidance components
and the comparison of algorithms on different data sets (Verbert et al. 2012a). These
tasks require an adequate data management where data from different sources can
be aggregated for analysis purposes. In order to be open, the gathered data must be
accessible by various analytics technologies that might already exist outside the in-
frastructure. However, such openness might have implications on the level of privacy,
particularly for the provision of benchmark data or comparative analytics when sen-
sitive information such as grades are presented to teachers.
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3.1.2 Go-Lab Learning Analytics Architecture

The Go-Lab Learning Analytics Server provides four interfacing components for the
different aspects of data acquisition, the provision of an analysis infrastructure, and
mechanisms to provide a technical infrastructure for feedback and interventions in
the Go-Lab portal. These interfaces are the action logging service, the notification bro-
ker, the analytics service interfaces, and the web server interface for deploying learning
analytics apps (see figure 3.3).

Logs of learners’ activities are the main data source for learning analytics as stated out
in the previous chapter. According to the concrete implementation of action logging
on the tool level, the action logs approximate the learning activities, for example by
tracking the construction of concept maps or hypotheses. The action logging service
establishes an endpoint for clients to push event logs of user activities to the server. In
the Go-Lab portal, user tracking is handled by the ILS tracking agent. This agent col-
lects logs that are generated when a learner interacts with apps or learning resources
and sends it to the mentioned logging service, if the privacy setting allows for it. Ac-
tion logs are encoded in the well-defined Activity Streams protocol (cf. figure 3.4). In
order to keep the client server communication transparent, the action logging client
API encapsulates the complexity of sending logs to the server in the right format and
can be used by every client component as a JavaScript library. This library handles the
injection of metadata based on the context the particular app occurs in.
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Figure 3.3: The Go-Lab Learning Analytics Server.
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The second interface enables the ability to feed analysis results back to the client side
for intervention. For this purpose, the notification broker is a dedicated endpoint
to establish a channel back to the Go-Lab portal. Clients, i.e., guidance apps in the
portal, can register for certain message types by establishing a connection with the
notification broker by using the notification client API. This API uses the WebSockets
technology based on socket.io? to enable a bi-directional communication. Display-
ing a message that has been created by the backend is completely handled on the
client then. However, the notification mechanism relies on a multi-agent subsystem
around a shared memory, as outlined in the next section. This agent architecture al-
lows agents to register trigger on certain message patterns (i.e., represented as tuples)
which immediately notify them in order to process the data and write responses back
into the shared space.

For enabling different kind of learning analytics applications, the analytics services
provide interfaces that facilitate different subsystems depending on the certain modal-
ity. For real-time access, the agent-based subsystem is used. However, processing data
such as real-time updates of learner models is challenging in terms of scalability, as
the agents have to hold the data structures during the sessions. Therefore, singleton
analytics services have been established that have the ability to aggregate large data
sets. For applications such as the usage statistics for online labs over time, it is not
necessary to keep the (intermediate) results or states updated, therefore, such services
operate on-demand. Finally, micro-services contribute to the analytics infrastructure
in Go-Lab. The analytics workbench subsystem is able to execute workflows in the
external format (cf. section 3.2).

The fourth interfacing component is a web server, that is necessary to deploy learning
analytics apps that can be embedded into the Go-Lab learning environment. This
holds for the applications created with the analytics workbench subsystem (cf. section
3.2) as well. However, this subsystem is retrieving data necessary for the execution of
the workflows through the data warehouse API, which provides access to action logs,
artifacts and aggregated data of both sources.

Another component for the acquisition of data is the artifact retrieval. This service is
not directly exposed externally, it is accessed internally through the data warehouse
API. This service can be considered as an adapter to different external data sources
which allows the internal analytics components to gather artifacts from databases, e.g.
metadata repositories. A typical application of this service is to retrieve a list of topics
for a specific resource such as an online laboratory from the Go-Lab lab repository
(Govaerts et al. 2013a). Another application is the reconstruction of artifacts based on
action logs. The retrieved topics in the particular domain can be facilitated to adapt

2Socket.IO enables real-time bidirectional event-based communication using WebSockets: https:
//socket.io/. Retrieved: 2020-02-10.
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scaffolds or to create a better understanding of the analytics or the corresponding con-
texts.

{

"published": "2014-03-28T15:28:36.6462Z",

"actor": {
"objectType": "person",
"id": "elb8948f -321e-78ca-d883-80500aae71b5",
"displayName": "sven"

1,

"verb": "update",

"object": {
"objectType": "concept",
"id": "alad6ace-c722-ffa9-f58e-b4169acdb4eld",
"content": "osmosis"

},

"target": {
"objectType": "conceptMap",
"id": "4b8f69e3-2914-3ala-454e-f4c157734bd1",
"displayName": "my first concept map"

1,

"generator": {
"objectType": "application",
"url": "http://www.golabz.eu/content/go-lab-concept-mapper",
"id": "c9933ad6-dd4a-6f71-ce84-fbl676ea3aac",
"displayName": "ut.tools.conceptmapper"

},

"provider": {
"objectType": "ils",
"url": "http://graasp.epfl.ch/metawidget/1/b387b6f",
"id": "10548c30-72bd-0bb3-33d1-9c748266de45",
"inquiryPhase" : "Conceptualization",
"inquiryPhaseName" : "conceptualization phase",
"inquiryPhaseId" : "c7723ad6-dd4a-6f71-ce84-fbl1676ea3bbd",
"displayName": "EnergyCity - Group Phase"

}

}

Figure 3.4: An example of an action log in the Activity Streams format.
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Agent-Based Analytics Infrastructure

The service interfaces for action logging, notifications, analytics and artifact retrieval
are connected internally in the learning analytics infrastructure. The internal compo-
nents are depicted in figure 3.3. The architectural approach is based on a multi-agent
system with a distributed shared memory following the Tuple Spaces concept. The
implementation uses the SQLSpaces framework (Weinbrenner 2012), which provides
a shared memory for agent coordination, communication, and a workspace for analy-
ses. Basically it can be seen as a blackboard through which agents exchange messages
in the form of tuples as flat ordered collections of data. The basic operations are read
for reading tuples of specific type, write for writing a concrete tuple and fake for read-
ing and removing a specific tuple in an atomic transaction. Software agents, for exam-
ple an agent that analyzes artifacts produced in inquiry learning spaces, can register
listeners by specifying certain tuple templates. Each template tuple can be defined
by the length of the tuple, concrete values or abstract data types on each positional
argument. Whenever a tuple that matches such a template is added to the space, the
SQLSpaces will actively notify the agent that subscribed by registering the callback on
the template. This enables a loose coupling of components because data exchange
and communication is completely mediated by the shared memory, manifesting an
implicit protocol for agent communication. Agents can be designed to perform anal-
yses and data acquisition autonomously or on demand. This approach has been used
successfully in other inquiry learning environments (Giemza et al. 2007). Although
the shared memory is persistent, for Go-Lab it is intended as a temporary storage
of tuples. For persistent data storage we rely on a (light-weight) data warehouse ap-
proach (Inmon 2005). This is a common way to aggregate heterogeneous data from
different sources for analytics purposes. The action logging broker (figure 3.3) writes
incoming activity logs to the shared memory for direct analysis and agent communi-
cation, but also into the data warehouse for a long-term storage. In the data ware-
house these activity logs can be enriched by resource content gathered by the arti-
fact retrieval service, for example contextual metadata such as inquiry learning space
information. The data warehouse adds a layer for accessing the long-term memory
of Go-Lab action logs and artifacts by providing methods for data aggregation and a
NoSQL-oriented query language. The data in the data warehouse can then be used
for long-term ex-post learning analytics and is available for specialized analysis tools
and apps.

Feedback Mechanisms and Example Case

The previously described feedback loop enables direct and immediate interventions
through the Go-Lab system. In order to implement such a feedback system, an in-
terplay between logging and notifying is necessary. It incorporates a cycle of logging
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user actions to the infrastructure, analyzing these events through agents, and notify-
ing end points in the application context of the user. This section outlines the typical
information flow when feedback should be given to a student directly by scaffolding
apps. Figure 3.5 depicts the complete data flow of a cycle logging and notifying an
app in the portal. This feedback loop can be outlined in the following example: a
student uses a concept mapping tool and receives guidance in form of a prompt that
recommends a specific concept that has not been used yet. The concept mapping app
uses the notification API to subscribe to the notification broker by providing a unique
client ID. Thus, the notification API registers a listener for messages from the learn-
ing analytics server, which is initialized on the startup of the application. Whenever
the student modifies the concept map, the action is logged by the corresponding app.
The user tracking agent ("AngeL.A") takes these logs (1.2) and sends them to the action
logging service (2), which itself delegates the log to the action logging broker (3). The
logging is prevented by the tracking agent, if it is configured to preserve full privacy
with a "do not track" mode. The action logging broker stores the received logs in the
data warehouse for long-term storage but also writes the logs as tuples into the shared
memory (SQLSpaces). The action logs contain a unique ID for the app that sends the
logs. A dedicated concept mapping analysis agent listens for tuples that have been
sent by corresponding apps, and hence is triggered whenever action logs from these
apps are written into the SQLSpaces (5). When the agent detects that the student con-
structs a concept map in an inappropriate way, e.g. the user only adds a few sparsely
connected concepts, it sends a concept recommendation message back to the app
by inserting a notification tuple into the SQLSpaces (6). Therefore, it uses the unique
client ID, which can be extracted from the action logs. The notification agent will be
triggered by the SQLSpaces when a notification tuple is written into the space (7). The
notification broker holds socket connections to all the connected clients. This agent
uses the notification broker to send the message to the right client (8). Because the
client app is registered with its unique ID as a listener, the broker can choose the right
socket connection to emit the message (9). The final handling and displaying of the
concept recommendation is under the responsibility of each particular app. How-
ever, the notification API comprises methods for internationalization and displaying
of agent prompts.

Integration of an External Analytics Framework

The data warehouse layer and the analytics services enable other external analyt-
ics tools to be integrated into or to be connected to the infrastructure. To allow for
a visual specification of complex analysis workflows, our analytics infrastructure is
integrated with an analytics workbench that has been developed in the finished EU
project SiSOB (2011-2013). The SiSOB project was devoted to assess the social impact
of science using network models and techniques from social network analysis (SNA)
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Figure 3.5: Information flow in the feedback loop of the Go-Lab learning analytics in-
frastructure. Not all the components are displayed in this figure.
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that go beyond classical bibliometric methods. A technical outcome of the project
was a web-based visual environment for the composition and execution of analysis
workflows, including a variety of visualization techniques (Gohnert et al. 2013). The
analytics workbench from the SiSOB project has been extended in order to execute
analysis workflows based on external specifications and integrated the system that it
uses the data warehouse layer of the learning analytics infrastructure in Go-Lab as
data sources. In addition, the workflows can be automatically converted into portable
and embeddable applications, which makes it a rapid prototyping platform for learn-
ing analytics micro services and apps in Go-Lab. In this sense, each app will be de-
ployed along with a specific micro-service, which contains a representation of the an-
alytics workflow. Enabling the visual creation of analytics workflows supports both
novices and experts, which extends the target groups of learning analytics in Go-Lab,
enforcing a multi-stakeholder perspective. A separation of analysis (the authoring of
workflows) and target platform (displaying the results) helps to address different tar-
get groups such as students, teachers, researchers and lab owners. This modification
and integration is described in more detail in section 3.2 of this work.

3.1.3 Privacy

To support the analysis of learning activities, Go-Lab captures action logs through
a well-defined logging format and defines interfaces in its architecture (see section
3.1.2). However, the logging of user activities, particularly in a learning context, ex-
ploits data of high sensitivity and inhibits the risk of privacy violations. Two design
decisions affect the Go-Lab architecture in order to ensure privacy. First, the artifact
storage has been separated from the Go-Lab learning analytics infrastructure. There-
fore, the retrieval of user actions and artifacts are separated from each other. The log
retrieval can be performed server-side using the data warehouse API of the learning
analytics infrastructure. The allocated methods allow analysts to retrieve action logs
from different and multiple spaces and time windows. Thus, action log analysis can
be facilitated to acquire a global view on usage and behavioral characteristics of learn-
ers. The artifact retrieval is always contextualized in an inquiry learning space, which
separates this clearly from the action log analysis. Client-side apps are able to retrieve
artifacts and process them client-side or server-side through the learning analytics in-
frastructure under consideration of action logs. However, combining action logs and
artifacts requires a learning analytics app for the retrieval to be added (explicitly) to
an ILS.

The second mechanism to ensure privacy is an interface to directly control the flow
of action logs from the inquiry learning space to the server. Go-Lab employs ways to
opt out the logging of learning activities explicitly (Vozniuk et al. 2014). The creator
of an ILS, usually the teacher, has the freedom to turn off the logging of user activities
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("tracking"). To make this choice of tracking transparent, a tracking agent, namely
"AngelA", is characterized as a member of the ILS, which can be removed from or
added to the list of members in the ILS (see figure 3.6). This realizes the user inter-
face metaphor of locking someone out of the classroom and it facilitates common and
well-known mechanisms of managing the members of an inquiry learning space.
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Figure 3.6: The tracking agent AngeL.A is a member of an ILS.

The Go-Lab action logging API defines Angel.A as a logging target. In this architecture,
Angel A intercepts the action logging and serves as a single point of logging. Each
action log is enriched through the API with contextual information, for example the
name of the actor or the ILS ID. Therefore, it employs the OpenSocial API to redirect
logs through the backend of Graasp to AngeLA. If the teacher decided to have a "do
not track" mode, where the logging is disabled, all action logs are withdrawn. If not,
the action logs are then forwarded to the learning analytics infrastructure.

However, such a mechanism does not only provide transparency in handling privacy
issues. The analytics system needs to have information about the disabling of logging
itself. If the logging gets disabled during a run, this leads to inconsistent traces and
false observations. Therefore, the traces need to be flagged as "logging: false". Other-
wise it is not possible from the perspective of the learning analytics infrastructure to
differentiate the data from experiments that regularly ended. However, indicators as
the session time might help to identify incorrect or inconsistent data but there won't
be any clear evidence.
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3.2 Prototyping and Embedding of Learning
Analytics Applications

Modern learning environments such as the Go-Lab portal are nowadays often facil-
itating mechanisms of learning analytics to support multiple stakeholders such as
learners, teachers and researchers. This creates specific challenges to employ the
stakeholders with appropriate mechanisms for data analysis and the embedding into
the learning environment and possibly into different target platforms (cf. section
3.1.2). It is obvious that teachers and students, being the main stakeholders of the
Go-Lab portal, are not able to perform complex analysis tasks in specialists environ-
ments such as RStudio or SPSS. However, visual languages or simplified interfaces
(e.g. using wizards) are helpful in order to facilitate analytics and guide users through
the formulation of such tasks.

In this section, a framework to create reusable learning analytics components that are
portable to different target platforms is proposed. The logic of each analysis compo-
nent is specified in a separate web-based visual environment (or "workbench") from
where it is later exported to the target environments in form of a widget-based dash-
board displaying embeddable applications. Such embeddable applications are called
"apps", "gadgets" or "widgets" in this context and are usually embedded through a
specific container such as provided by OpenSocial. Although the approach is more
generic, this mechanism is demonstrated in the context of the Go-Lab portal. An ex-
ample shows how such analytics apps can be created and used to support collabora-
tive learning while the Go-Lab environment itself is non-collaborative.

3.2.1 Analytics Workbench

Initially, the analytics workbench (Gohnert et al. 2013) has been developed during
the SiSOB project with the goal to observe science activities through analytical meth-
ods. It offers an analysis framework that integrates a wide range of analysis tools
and libraries with a user interface that also allows non computer experts to use the
full power of the workbench. This is achieved by a pipes-and-filters user interface
metaphor, where users create explicit representations of analysis pipelines in a visual
language. These workflows usually end in visualizations of the corresponding results,
for example a force-based network visualization. However, the original mechanisms
are mainly focused on (social) network analysis, for example, to create and visualize
citation networks. Therefore, this work also explains the extensions in order to provide
Go-Lab specific data processing and analytics methods.
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Architecture

As a result of these requirements of the SiSOB project, the workbench combines a
multi-agent system as computational backend with a web-based user interface. This
user interface comprises explicit representation of analysis workflows as the main
building blocks. Analysis workflows are composed graphically using a visual language
based on a pipes-and-filters metaphor. In this language the modules ("filters") rep-
resent individual analysis steps and the connections ("pipes") between the modules
represent the data flow. Such modules can filter, transform or process data and pass it
through the pipes to the next filter. See figure 3.10 for an example of this workflow rep-
resentation. In this example, centrality measures are filters that are used to enrich the
data with certain measures. On the technical level, the workbench is divided into two
parts: (1) the computational backend, which is realized as a multi-agent system, and
(2) the frontend, which is implemented as a web-based user interface using modern
web technologies.

In the computational backend, each of the filters in the analysis workflow corresponds
to a single agent in the multi-agent system. The multi-agent system in the frame-
work of the analytics workbench uses a SQLSpaces server (Weinbrenner 2012). The
SQLSpaces framework is an open source implementation of the Tuple Space concept
(Gelernter 1985), which especially focuses on heterogeneous multi-agent systems in
terms of language heterogeneity. The communication between the components of the
system (agents) is based upon a simple protocol that consists of tuples that are writ-
ten into a certain space as medium of communication. In this sense, tuples define an
implicit and application-specific protocol for the communication in the multi-agent
system. Elements in the tuples can be used to characterize the function of a tuple or
how it can be interpreted. Agents itself register callbacks at the tuple space using cer-
tain patterns in order to get notified when a particular tuple matches the request. In
the protocol of the analytics workbench, the two main elements are command tuples
to control the execution of a workflow, and data tuples, which are used to transfer data
between agents. Since all steps of the analysis processes are encapsulated in individ-
ual agents, the functionality of the workbench can be easily extended by adding new
agents. With this approach, it is easy to implement new filters for data input, data
transformation or visualization of workflow results. All the components are loosely
coupled through the system. The only requirement for an agent is a connection to the
SQLSpaces server and the accompanying tuple-based communication protocol. This
is, for the analytics workbench, encapsulated in a dedicated agent API.

For the frontend, a custom web server based on Node.js is used to provide the user
interface and to connect the user interface to the computational backend. This is
achieved by transforming the external format of the workflow representation, which
has been created in the user interface, into command tuples to trigger and control the
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workflow execution in the agent system of the computational backend. Additionally,
it presents the results of the analysis processes to the users. Most of the filters consist
of a Java agent connected to the workbench framework, and a description to display
the specific parameters of filters in the frontend. In case of output filters that visualize
results, it incorporates interfaces for displaying the visualization in a web browser and
for offering interactive data exploration to the users.

Data Exchange Formats and Standards

The workbench uses its own internal formats to represent graph and data table in-
formation in each phase of the analysis. Both are based on a JSON structure with
two main sections: metadata and data. The metadata section contains supplemen-
tary information to enrich the available data. This is the case for calculations such as
centrality measures, which are added to the data as annotations to enrich the origi-
nal data set rather than removing the previous data. Therefore, as an internal format
it was necessary to allow for annotations. However, for internal data flow and as an
external exchange format, the analytics workbench supports widely used standards
such as Graph Modelling Language (GML) for network data and comma separated
value (CSV) files for data tables.

3.2.2 Go-Lab-specific Extensions to the Analytics Workbench

The existing analytics workbench has been extended in this work to allow the visual
creation of learning analytics apps that can be embedded and contextualized in target
learning environments such as the Go-Lab inquiry learning spaces using portable for-
mats. This section presents a short overview of the extensions to the analytics work-
bench. First, it is required to adapt the data formats to meet the requirements of the
Go-Lab project (action log import). Second, a mechanism to create apps from ana-
lytics workflows needs to be implemented. In contrast to the analytics workbench,
which allows to import data from static contexts, the aim of this work is to contextual-
ize the learning analytics apps inside the learning environment. Therefore, dynamic
import facilities need to be established, which demands for a certain flexibility in the
filter description. Thus, it is necessary to enable parametric input in order to take
context (such as the current ID of the inquiry learning space) into account. Finally,
the backend of the workbench needs to be modified in order to trigger the external
execution of workflows through the apps, because the apps themselves are integrated
into a widget container (e.g. OpenSocial) without a direct connection to the backend
of the analytics workbench.
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Data Format Extensions

The use cases of the analytics workbench of the SiSOB project are typically restricted
to the analysis of network structures, for example by creating citation networks. How-
ever, in Go-Lab, network structures are of less interest by the nature of the (non-
collaborative) learning scenarios. The typical entities to be analyzed in the context
of Go-Lab are traces of learners. The traces are typically captured through event log-
ging in the Go-Lab portal. For analyzing log data, the workbench has been extended
to support the JSON-based ActivityStreams format, which is used by OpenSocial com-
pliant platforms. ActivityStreams follow an "actor - verb - object - target" metaphor,
which represents information about who did what with which object on which artifact
(cf. section 3.1.1).

Learning Analytics App Creation

The process of creating a learning analytics application can be summarized through
the following steps (cf. figure 3.7):

1. Workflow creation This consists of connecting specific data sources, filters, for-
mat converters, analytical methods and algorithms in order to create a func-
tioning analysis workflow. The workflow is created in the user interface of the
analytics workbench. A typical definition of a workflow comprises a source and
a sink. The data source can be an import from common, public examples, but
for the Go-Lab case it connects to the learning analytics infrastructure to im-
port log data. In many cases, the sink is a visualization of the analysis results,
for example a force-based graph layout highlighting centrality measures in an
artifact network of a learning platform. However, in order to continue with the
next step, the workflow needs to be correct in terms of consistency regarding the
data flow (i.e., corresponding formats) and thus executable.

2. App export After the creation of the workflow, it can be exported as an app. A
templating engine creates a file that can be rendered or embedded in the target
platform, for example as an OpenSocial gadget. The gadget file is hosted in the
integrated web server of the workbench and can be accessed through a web link
shown to the user. Figure 3.8 shows the technical implementation of the app
creation for the case of OpenSocial (cf. section 3.2.2).

3. Embedding The embedding of the app through the accessible link depends on
the target platform. Gadget containers like Apache Shindig® provide the possi-
bility to embed the gadget file directly through a link. This is the common way

3The Apache Software Foundation, Apache Shindig: https://shindig.apache.org/. Retrieved:
2020-03-16.
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Figure 3.7: The process of widget creation: a predefined workflow (1), which creates a
visualization through an output filter (2), can be transformed into a widget.
This widget can be embedded into the target learning environment such as
Go-Lab (3).

for platforms based on OpenSocial like Graasp, which is the technical basis for
the Go-Lab learning environment. The Graasp platform integrates an Apache
Shindig to render the gadget files. However, the mechanisms to embed applica-
tions require a certain degree of integration, particularly for accessing the con-
textual parameters such as the identifier of the specific inquiry learning space
the app is running in (cf. section 3.2.2).

Multi-Contextuality and Parameterization

Apart from the changes to the mode of execution, specifically the additional user in-
terface controls to create an app, the contextualization of workflows into the target
learning environment is crucial. While workflows in the analytics workbench operate
on static data sets, the integrated analysis of learning spaces from within those spaces
requires the access to contextual parameters and the corresponding data. When creat-
ing a workflow, data sources are explicitly connected through filters in the workbench.
The requirement of such a flexible system for portable and reusable apps calls for
multi-contextuality of learning analytics applications and workflows. As an example,
consider a workflow which merges concept maps and visualizes the aggregated graph.
The data source might be either all concept maps in the data warehouse or all concept
maps from the context of the app, which is the specific learning space in a portal. To
achieve this, dynamic context variables (e.g. "$session.id") have been introduced to
parameterize workflows independent of static values. The context wrapper of the app
engine will inject the particular context and replace all dynamic context parameters
at run-time, for instance, when the app triggers the workflow execution. However, the
injection needs interfaces to access environment-specific functions such as retrieving
alist of users or IDs. Therefore, each context wrapper contains specific libraries to ac-
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cess these functions and provides interfaces to the learning environment. As the data
might change during the run-time, this needs to be fetched dynamically.

Backend Services

The modifications to the analytics workbench comprise two major changes to the
backend services: (1) a hosting of apps, and (2) services for external workflow exe-
cution. Apps, created by the templating mechanism (section 3.2.2) are persisted in
specific file formats and kept on the workbench server. Standards like OpenSocial use
servers in order to read and render file formats such as OpenSocial gadget XML files
that represent embeddable apps in a standardized format. Therefore, the workbench
server needs to act as a web server to make those files accessible by external contain-
ers, for example the gadget container from the Go-Lab portal. Therefore, the analytics
workbench has been modified in order to host and deploy gadget XML files for the
corresponding containers that can fetch the specific app code and render it inside the
target system. Additionally, to provide learning analytics as a service, workflows need
to be executed directly through the backend (without directing the frontend of the
workbench). Each app has a persistent representation of the corresponding workflow
in it. The workbench has been extended with a REST web service interface to accept
the external format of workflows. Their external and parameterized representation
will be rendered to a concrete JSON-based format and sent as a parameter to the web
service interface. This service interface takes the workflow and executes it directly in
the backend. The response contains the necessary information for the app to display
the result, i.e., the visualization output. In summary, the gadget within the OpenSocial
container bridges the two decoupled platforms Go-Lab and the analytics workbench.
Thus, it is possible for novices or non-experts in analytics to create and deploy analyt-
ics services for such external platforms without the need to modify the backend of the
learning environment.

Visual Framework

When initialized, an app triggers the execution of its embedded workflow through the
workbench web service interface, which results in a particular data visualization. The
visualization framework of the analytics workbench is web-based and contains re-
sources consisting of HTML code, JavaScript libraries and the relevant analytics data
sets to be visualized. The app picks up the created resources, and injects them into its
rendering context. The visualizations are implemented using the D3.js* library, which
delivers dynamic web-based visualizations using the SVG standard, HTML5 and CSS.

4D3.js, Mike Bostock (2019): https://d3js.org/. Retrieved: 2020-03-16.
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Figure 3.8: The technical implementation of the app creation through the analytics
workbench.

{"wiring":{

var mappings = {
"Ssession.id"

var injectOSContext
var injectContext

Following this approach, the visualization is created dynamically by triggering a work-
flow execution, instead of presenting static, pre-calculated results. Therefore, it is
possible to refresh the results simply by repeating the analytics workflow execution
on the workbench server and updating the visualization. This enables updating visu-
alizations dynamically when the data inside the context changes without limitations
to the analytics platform.

App Templates

When a user of the analytics workbench creates a workflow that can be visualized,
the "export app" button in the user interface of the workbench triggers a templating
engine, which creates a concrete instance of the app by using template files and li-
braries. Figure 3.8 shows this process for OpenSocial gadgets that are used for the
Go-Lab learning environment. The templating engine includes three elements in the
app: (1) the code to execute a workflow via REST interface of the workbench, (2) a
persisted external format of the workflow, (3) libraries to provide access to the con-
text of the container (cf. section 3.2.2). When the templating engine finishes the app
creation, the file can be accessed through an URL. The app itself is hosted in an web
server extension of the workbench. In Go-Lab, such URLs can be added to an ILS
easily.
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3.2.3 Applications in Go-Lab Using the Learning Analytics
Workbench

In the context of the Go-Lab environment, teachers embed predefined analysis work-
flows in the form of OpenSocial gadgets into their personal learning space, in order to
compose a set of analysis tools to support monitoring and supervision. The following
section outlines two use cases of the proposed system. The intention of these example
cases is not to introduce novel or advanced analysis algorithms, but to show the flex-
ibility of such a system. It covers different areas of learning analytics by connecting
different methods such as artifact and social network analysis in predefined work-
flows that can be handed over to novices. This will be demonstrated by an analysis of
concept maps created by students. The first example (Concept Map Aggregation) has
been used in a study about group formation presented in chapter 5. The second ap-
plication has been provided to teachers but not been used in empirical evaluations.

Analyzing Individual and Aggregated Concept Maps

Concept maps have been used as an instructional tool in inquiry-based learning con-
texts that supports the students to structure, conceptualize and externalize their sci-
entific knowledge by explicating concepts and their relations (compare section 2.1.2).
The Go-Lab learning environment provides a concept mapping tool as one of the ex-
isting scaffolds in order to support inquiry activities. The concept mapper makes use
of the existing APIs to connect to the learning analytics infrastructure, particularly for
logging all actions. The traces consist of actions like adding, removing and labeling
of concepts and relations. From such a sequence of actions, the states of concept
maps can be reproduced at any point in time on the server side. These log protocols
and reconstructed concept maps are a valuable source of data to gain insights on how
the individuals structured their own knowledge, but also to assess the group knowl-
edge of a whole learning group (i.e., a class using Go-Lab) for example by applying
methods of social network analysis (Clariana et al. 2013; Hoppe et al. 2012). In this
approach, an aggregation of concept maps are used to make statements about the
knowledge state of a whole learning group. Formally, a concept map can be seen as a
multi-graph with labeled nodes and edges. Aggregating concept maps can be opera-
tionalized as the union of such graphs. Thus, it means to overlay all individual concept
maps. The resulting multi-graph of this operation contains all concepts (nodes) and
relations (edges between nodes) that occur in at least one individual concept map. As
concept maps can be seen as an externalization or explication of a mental model, this
operation presents the group knowledge in one representation. Figure 3.9 shows an
example of the embedded app in an inquiry learning space in Go-Lab displaying the
aggregated concept map. Section 4.2 shows a more general approach of shared group
knowledge models.
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Figure 3.9: Network derived by aggregating individual concept maps. Node size corre-
sponds to betweenness centrality.

To quantify the group knowledge about certain concepts, the number of occurrences
of concepts and relations in the set of individual maps are counted and assigned
as node attributes in the aggregated map. Such a quantification can be interpreted
as a measure of consensus or - as an inverted measure - to identify singularities in
the knowledge model. Additionally, centrality measures known from the field of so-
cial network analysis like degree, betweenness, closeness, and eigenvector centrality
(Wasserman 1994), among others, can be calculated to get additional weighting pa-
rameters of concepts (Clariana et al. 2013; Hoppe et al. 2012).

The whole process involves (1) data import, (2) aggregation of concepts, (3) calcu-
lating centrality measures, and (4) visualizing the aggregated graph in a force-based
visualization. Figure 3.10 shows the workflow in the user interface of the analytics
workbench, where the user has several degrees of freedom to parametrize the work-
flow, for example, by setting the artifact type to "concept map". The first step in this
workflow is the data acquisition. The "artifact importer" is one of the Go-Lab specific
extensions to import artifacts directly from the Go-Lab learning analytics server. The
workflow shown includes the context variable "$session.id" in order to contextualize
the workflow to retrieve the ID from the inquiry learning space the app runs in.

The second step is to aggregate all the individual concept maps by performing the
union operation as described above. The aggregation operator can be either the union
or the intersection of the graphs. The matching of edge labels can be omitted, which
is a practical relaxation due to differences in creating concept maps. Learners might
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Figure 3.10: Centrality calculation of aggregated concept maps as a pipes-and-filters
workflow.

use inverse relation, for example, "increase" versus "decrease", which leads to inverse
directions of vertices. To automate this, it needs additional knowledge to be encoded
into the system in order to perform a semantic matching of the labels. Therefore, this
can be eased by omitting the edge labels for the aggregation. As a third step, a cen-
trality calculation is added as a single component that has been part of the regular
workbench filters, which takes the aggregated graph as an input. At the end of the
workflow, the results are visualized using the Dwyer force-directed graph visualiza-
tion technique (Dwyer 2009). It arranges nodes automatically on the screen based on
physical models of attractive and repulsive forces that are assigned to each node. The
size of each node is either determined by the number of occurrences or any of the
specified node measures such as the centrality. The visual interpretation of the results
is dedicated to the teacher and (apart from the interpretation of centrality) quite intu-
itive. However, the assembly of the particular workflow requires some expert knowl-
edge. This lines out the use of separating the two steps of creating the workflow in
an expert platform (analytic workbench) and delivering the app through the Go-Lab
ecosystem for novices. Once the workflow has been constructed, its internal represen-
tation can be stored and reused to execute the process several times without consult-
ing the user interface of the workbench again. With the export as OpenSocial gadgets,
predefined workflows can be embedded and executed from any widget container like
ROLE or Graasp if the context injection for parameters like session IDs is present in

79



3 Technical Architecture

libraries of the app. Thus, the app itself only displays the visual results while hiding
the complexity of the analysis workflow behind it.

Comparing a Concept Map with a Reference Map

A common task in the analysis of concept maps is the comparison of concept maps
created by students with an expert concept map. Such an expert map can be a concept
map created by an expert (Conlon 2004) or a domain ontology (Hoppe et al. 2012). The
comparison to the expert map first needs to retrieve the aggregated concept map. For
this task, most of the filters from the previous example can be reused. The only change
affects the centrality filter, which has been replaced with a "Graph Comparison" filter.
This filter takes two graphs as input and returns the union, similar to the previously
described "Graph Aggregator". Unlike the Graph Aggregator it can only handle two
graphs as input. It checks which relations between concepts occur exclusively in one
of the two graphs and which relations can be observed in both graphs. Thus, it high-
lights the differences between the first (a student map or an aggregated concept map)
and the second input (expert concept map). The output of this filter is an aggregated
graph with edges decorated with attributes indicating whether the edge exists only in
graph 1, only in graph 2, or in both graphs. The visualization component uses these
attributes to color the edges accordingly. An example of the output of this workflow is
shown in figure 3.11, which compares a student map with an expert map. In analogy
to the first example, the visual results of the comparison of the aggregated concept
map and a reference map can be very useful for a teacher to uncover potential short-
comings in the group knowledge of the learning group.

3.2.4 Limitations

The approach of creating portable apps from analysis workflows as presented in this
work is particularly helpful for the rapid prototyping of learning analytics apps. It
helps to kick-start the delivery of analytics to novices in this field, particularly teach-
ers and students, who can benefit from insights. Additionally, analysts are supported
in developing workflows using existing analytical methods. The framework automati-
cally creates apps that are embeddable in portal systems, such as the Go-Lab learning
environment. The Go-Lab environment is based on the Graasp system, which uses
Apache Shindig as an OpenSocial container to render the apps and provide interop-
erability. However, several limitations exist.

As a first limitation, privacy issues might exist - depending on the widget container
of the target platform the app needs to be embedded into. Privacy and rights man-
agement on the level of data access is not intended to provide a fine-grained differ-
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Figure 3.11: Comparison of two concept maps. Edges that only occur in the expert
map are green. Edges exclusively in the student map are blue. Brown
connections are created both by students and the expert.

entiation of roles in OpenSocial (Apache Shindig). Thus, an app is either allowed to
retrieve all data in a space or none. As a second limitation, the execution of workflows
creates a performance bottleneck on the workbench server. The workbench is a single
server to execute workflows, which makes use of a multi-agent system in its backend
(SQLSpaces). However, for each filter in a workflow, an agent gets instantiated, which
might limit the capacities of the system, particularly of the shared memory, with many
users accessing and using the web service to execute workflows. This can be prevented
by further decoupling the system and creating micro services for specific reoccurring
workflows. As a side note, this system is intended for the rapid prototyping of learning
analytics app and not for a large scale implementation.

The presented framework system provides lots of possibilities to embed applications
of learning analytics into portal systems to support different stakeholders. The ex-
ample applications demonstrate the possibilities of such open and flexible systems.
It is easy to extend the templating system with little programming efforts to support
and target more platforms. In addition to many already existing analytical methods
in form of filters and data converters, the workbench can be easily extended to fur-
ther push the boundaries to open learning analytics platforms. Besides the obvious
stakeholders of learning analytics in Go-Lab, namely students and teachers, it gives
researchers, institutions and authorities the opportunity to explore their data sets and
to conduct analyses with the means of conserving the freedom of decision.
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3.3 Analysis of the Go-Lab Environment

Go-Lab provides teachers and instructors with a specific inquiry model to structure
their classroom activities according to a set of phases (Pedaste et al. 2015) rather than
a cyclic model (see section 2.2.3). This sequence is not fixed to the prescribed phases,
it can be customized and modified by teachers. This affects the number of phases,
the names and corresponding functions regarding the inquiry activity. For example, a
teacher might split the conceptualization phase into two phases question and hypoth-
esis. Additionally, resources, apps and labs can be integrated in these phases. From
the theoretical point of view, the resulting pedagogical structure enriched by apps, on-
line labs and learning resources constitutes the tfeacher model. In practice, the teacher
model is represented by an inquiry learning space in the Go-Lab environment. Then,
the students are expected to go through the different phases and their content, either
sequentially or moving back and forth between them. This choice for a pathway or
trajectory within an ILS might be dependent on their personal preference, learning
flow, or the specification of the task in the learning environment.

Two years after the Go-Lab project has been started, many learning spaces have been
created and used for learning, teaching, development and testing. The purpose of
this work is to analyze how teachers and students adapt and follow the inquiry-based
learning approach that has been proposed in the project. Therefore, the 102 most
frequently used ILS have been selected and evaluated in an exploratory study. Conse-
quently, a processing chain has been defined and the corresponding analytical model
for this work has been applied to different, heterogeneous data sources available in
Go-Lab. A general architecture to integrate, filter and analyze contextual, activity-
, and artifact-related data has been utilized to generate higher abstractions such as
the learning process models (LPM). Furthermore, different metrics have been applied
to determine deviations from the intended models ("out-of-order" behaviors) of stu-
dents and teachers. The results from the data analyses have implications for teachers,
researchers and pedagogical instructors in the field of inquiry learning. The work pre-
sented in this chapter is based on a publication for the International Conference on
Computers in Education (ICCE) in 2015 (Manske et al. 2015a).

3.3.1 Data Analysis and Processing Chain

This section describes the different data sources and analysis procedures used to ob-
tain the results presented in this work. An overview of the data collection and process-
ing is provided in figure 3.12. The architecture of Go-Lab consists of a flexible backend
with services for the collection and aggregation of action logs (cf. section 3.1.2). This
can be facilitated to capture traces of learners in the Go-Lab learning environment.
The analytics architecture consists of an abstraction to retrieve aggregated log data
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("data warehouse API"). In addition, contextual data from the Go-Lab learning spaces
have been used to complement the behavioral aspects of learners’ data. The compo-
sition of such combined analysis workflows as micro services and the embedding of
visual results for learners, teachers and researchers in the context of Go-Lab has been
described in section 3.2. For our analysis, we utilize this architecture for the collection
and processing of data, as well as the embedment of analytics apps for the proposed
prototypes (cf. section 3.4).

Data Sources

The analysis is mainly built upon two different data sources: action logs (behavioral)
and Go-Lab inquiry learning spaces from Graasp (contextual). The contextual data
from learning spaces contain information about the authoring of each space, partic-
ularly which apps, resources and online labs have been used in which phase. In sum-
mary, the log data capture the learners’ behavior, while the contextual data represent
the teachers’ specification as a pedagogical and instructional reference frame for the
learners.

In our statistics we count online labs as a special type of app — in most cases there is
exactly one lab per ILS. In the Go-Lab portal, teachers usually start to define an ex-
periment as a central component for the ILS. Thus, they are adding a single online lab
that corresponds to the experiment to the space, which has been communicated as
the foreseen process in creating ILS from the Go-Lab portal. However, the difference
between resources and apps is quite important: while apps and online labs are prede-
fined by Go-Lab or third-party app and lab providers, the resources represent learning
materials. Such materials are usually selected or even created by teachers and added
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to the space explicitly, which represents a different degree of customization on the
part of the teachers. Although the action logs captured by the system are contextu-
alized within the ILS (e.g., identifier), the combination with the contextual data from
the spaces completes the picture that is drawn throughout this analysis.

Data Set and Preprocessing

The raw data set consists of 2826 existing inquiry learning spaces in Graasp. First,
these spaces have been ranked according to the user activity registered, i.e., based on
the amount of action logs. Spaces that do not seem to be related to "real" Go-Lab
classroom activities (development, demo, testing spaces) need to be filtered out. To
determine which learning spaces have been used frequently, a threshold based on typ-
ical values for classroom size and a minimum amount of action logs per user has been
defined. This restricts the set to those learning spaces, in which at least every ILS is vis-
ited and an app has been used. The product leads to a threshold of 500 actions and 10
users per space as a minimal requirement to be included in the filtered set of learning
spaces. This indicates a minimum of activity to be useful for further processing and
to draw meaningful conclusions from the results. Examples of actions that have been
captured through the learning analytics infrastructure are either space-related activ-
ities such as logging in to an ILS, starting an app, changing a phase, or tool-specific
activities such as adding a concept to a concept map or creating a hypothesis. After the
filtering, which was based on these criteria, has been performed, the Cleaned ILS Set
has been made up by 102 ILS that hold a certain degree of activity.

Data Processing and Analytics

For the exploratory analysis, generic metrics that describe the ILS have been used.
This comprises the amount of user activity, the type of learning phases and the tools
that have been used. To indicate the volume of activity in an ILS, the number of
logged user actions per ILS has been employed. Thus, a high number of logs indi-
cates a high volume of user activity, which points to a more active ILS. The number
and the particular sequence of phases has been used to describe and characterize
the learning spaces. The Go-Lab platform provides and thus recommends five typical
inquiry phases (orientation, conceptualization, investigation, conclusion and discus-
sion), but the teacher may customize the structure of the ILS. This can be achieved
by introducing new phases, by removing or by renaming existing ones according to
the planning of the inquiry-based learning activity. A coding scheme for the inquiry
phases has been created using this typical inquiry model, while additional categories
for non-standard or non-default phases have been added. Apart from this, Graasp as
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the technical platform of Go-Lab provides an exceptional space that does not corre-
spond to an inquiry phase. The so-called "Vault" is a subspace used to store learner-
generated artifacts (e.g. concept maps) that are created from the different apps in-
side an ILS. The vault subspace is an interface (particularly for teachers) to access and
manage all the learner-generated content that belongs to an inquiry activity. This can
be understood as a graphical and technical interface to the artifact storage. For the
analysis, the existence of a vault space was used as a binary variable to describe the
structure of the ILS, along with the number of inquiry phases and their respective se-
quence. Furthermore, the teachers can add learning resources, apps and online labs
to an ILS in order to design and structure the activity. The number of resources, apps
and labs is used as metrics for the description of the ILS.

Based on the aforementioned metrics, a descriptive analysis of the data set has been
conducted. Moreover, the ILS of the data set have been clustered using the metrics
as attributes following a k-means clustering. The results of the descriptive analysis
are presented in the following section. Finally, by analyzing the tools and resources
added to the different phases, a collection of design trends and lessons learned can
be derived from the results. The Go-Lab approach induces a specific, recommended
inquiry model for which we have investigated, whether teachers adapt or customize
their spaces. This analysis puts a global view on the contextualized observation of
learners’ behavior in inquiry activities within the reference frame of teachers’ spec-
ifications for ILS. This combined study of the two perspectives -the teacher and the
learning process model- may provide insights on deviations of students’ practice. From
the run-time perspective, these deviations from the actual learning processes or se-
quences of phases can be measured to determine "out-of-order" behavior relative to
the pedagogical specification by the teacher, which has been created during the de-
sign of the ILS.
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Figure 3.13: Activity during the pilot phases, based on the aggregated number of ac-
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to 2015/05/17
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3.3.2 Results

The cleaned data set that has been used for this analysis consists of 102 ILS built by
teachers who have used the Go-Lab platform for inquiry activities. The aforemen-
tioned metrics have been used to filter out inactive spaces or spaces with a low num-
ber of participants. The teachers were able to plan the activities in various phases as
well as to choose and distribute tools and resources in the ILS. The activity volume of
the learning spaces ranged from 500 to 16426 logs (on average 2672 logs per space).
Figure 3.13 shows the distribution of action logs over time.

Number of Inquiry Phases

The majority of the learning spaces (60.78%) have been created using the recom-
mended scheme that consists of the five inquiry phases promoted in Go-Lab as a
default: Orientation, Conceptualization, Investigation, Conclusion and Discussion.
However, there were cases where the teachers deviated, customized or enriched the
original model, either using less (three phases as a minimum) or more phases (eight
phases as a maximum) for the planned activity. In those cases, additional phases such
as "Data interpretation" have been created. Such a phase can be seen as a subphase
of the investigation, which is still compliant to the Go-Lab inquiry model. The recom-
mended model is a synthesis of various inquiry models from the literature (Pedaste
et al. 2015). In some of the cases teachers split the original phases into multiple sub-
phases either because each phase was too long or to give more emphasis on certain
processes. Due to the user interface of the inquiry learning platform, adding many
resources to a single phase forces learners to scroll a lot as the content (resources
and apps) is aligned vertically inside each phase. In one of the examples, a lecture
about electronic circuits was planned as a three-phase activity (orientation, concep-
tualization, and investigation). In another example, a teacher organized a lecture on
Foucault’s proof of Earth Rotation as a five-phase activity (orientation, conceptual-
ization, investigation, conclusion and discussion) that was further divided into sub-
phases, which resulted in a total number of eight phases in the ILS. The teacher in-
troduced the additional phases of exploration, experimentation and data interpreta-
tion as subphases of the investigation phase, which led to the following sequence of
phases: orientation, conceptualization, investigation, exploration, experimentation,
data interpretation, conclusion, and discussion. From the descriptive statistics, over-
all, 3.92% of the ILS were planned with less than 5 phases and 35.29% involved more
than 5 inquiry phases.
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Figure 3.14: Histograms showing the distribution of phases, applications and re-
sources used in the design over the learning spaces.

Descriptive Statistics of Inquiry Learning Spaces

In the design of Go-Lab learning spaces, the teachers are able to choose the appli-
cations and resources for their lectures freely. On average, each ILS made use of 15
items: 6 (Mean = 5.81, o = 2.489, N = 102) of them were applications while 9 items
(Mean =9.08, o = 8.946, N = 102) were learning resources of various types (pictures,
videos etc.). Figure 3.14 displays the distribution of the number of phases, applica-
tions and resources, used over the ILS. The 57% of the ILS integrated more than 5
applications while the 55% of the spaces used more than 5 resources. Out of the 102
learning spaces that we studied, only 27 allowed the use of the vault. The vault al-
lowed the permanent and visible contribution of students to the learning space but it
was not widely used as means of promoting reflection or participation.

The descriptive statistics for the ILS are displayed in table 3.1. The analysis of the re-
sults shows there is a statistically significant, but weak, correlation between the num-
ber of applications used in an ILS and the number of logs recorded during the activity
(o =0.215, p < 0.05). This indicates that student activity in an ILS increases with the
number of available applications. Furthermore, the number of resources correlates
significantly but in a negative way with the number of phases (o = —0.233, p < 0.05).
This indicates that teachers tend to distribute the available resources over the various
phases.

Table 3.1: Descriptive statistics for the ILS of the study.

logs phases items apps resources
Average 2761.58 5.44 14.892 581 9.08
Min 500 3 1 0 0
Max 16426 8 48 10 42
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Clustering

The aforementioned metrics have been used as attributes of the learning spaces in or-
der to cluster the ILS of the data set using a k-means clustering approach. The num-
ber of extracted clusters was set to 3 as estimated by a plot-based method (Everitt
and Hothorn 2009). The main objective was to find related groups in the data set and
discover potential dependencies between factors that describe ILS. The results of the
cluster analysis provided one dominating cluster of learning spaces (cluster 2) and two
smaller but nonetheless distinctive ones (clusters 1 and 3) shown in figure 3.15. The
multivariate clustering presented in this figure displays the first two principal compo-
nents that explain 73.92% of the point variability. Cluster 1 consisted of 8 out of 102
spaces and cluster 3 consisted of 5 out of 102 spaces. The spaces of these two clusters
integrated a vault in their structure and made use of a great number of resources and
applications. In particular, Cluster 3 consisted of the learning spaces with the biggest
number of resources. The vault is a special space that stores learner-generated arti-
facts, which are also counted as resources in the calculations. Therefore, this cluster
consists of the spaces which follow a more active learning approach that make use
of apps that let learners create artifacts. Cluster 2 contained 89 learning spaces. The
majority of these spaces did not include a vault in their structure and the number of
resources was similar to the number of the applications used. This can be charac-
terized as the normal use of Go-Lab ILS. The cluster analysis does not provide any
further indication with respect to the inquiry phases in the learning spaces. However,
it can be observed that the existence of a vault has an effect that is depicted on the
statistics.

T T T T
4 2 0 2

Figure 3.15: Results of the cluster analysis based on the metrics from the descriptive
statistics of the learning spaces as presented in table 3.1.
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Figure 3.16: Average use of resources and applications per phase in the learning
spaces.

In order to gain an insight with respect to the design of inquiry phases, the use of re-
sources and applications within the various phases has been studied. This analysis is
based on the hypothesis that different inquiry phases serve different purposes. There-
fore, the use of resources and applications should vary depending on the objective of
the inquiry phase. Figure 3.16 presents the average number of resources and applica-
tions used per inquiry phase. Overall, resources are mostly used in the orientation and
conceptualization phases. In all other phases of the recommended IBL model (inves-
tigation, conclusion and discussion) as well as in other phases (i.e. phases introduced
by teachers) the applications have a higher usage. This is particularly interesting since
itindicates a shift into more active learning processes, where the students are encour-
aged to participate. The teachers do not focus on distributing their own resources
around the classroom, but promote the active involvement of students through the
use of applications.

Learning Process Sequences

The previous analyses provided an overview of the teachers’ specifications of the learn-
ing spaces, particularly of how teachers created and edited the ILS. The teacher might
or might not change the ordered sequence of recommended phases. Complementary
to this, the following examinations focus more on the perspective of the learners and
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how the spaces have been used actually. This consists of the analysis of the deviations
from the designated learning process, which has been specified as subsequent phases
in the Go-Lab ILS. Then, a learner might or might not follow this specifications, which
has been operationalized for this analysis. Therefore the static number of phases and
their respective sequence have been coded for each ILS. The learner might then fol-
low this sequence or deviate from this specification. To measure and quantify this,
different parameters that can be linked to deviations ("out-of-order behavior") have
been extracted and calculated. We characterize the run-time behavior or trajectory of
the learner as a sequence of actions within a model predefined by the teacher. The
learning process sequence ("LPS") is then a coding of the (ordered) phase sequences
each learner visited subsequently. Considered as an example, a teacher creates an ILS
that consists of the three phases: orientation, conceptualization and investigation.
For each learner who runs the ILS, a single LPS is created from the action log protocol.
All the logs will be aggregated and folded in order to represent the transition between
the phases rather than a fine-grained log sequence of tool actions. Within this ex-
ample, the LPS [0,1,2,1] encodes for a single learner the visiting of the phases in the
presented order: orientation, conceptualization, investigation, conceptualization. In
this example, the learner jumped back from the investigation to the conceptualization
phase. Such sequences deviate from the actual specification by the teacher and might
indicate such an out-of-order behavior.

The following measures have been considered: (1) the number of inversions in the
learning process sequence, (2) length of the LPS with repetitions, (3) length of the LPS
without repetitions, and (4) number of phase omissions. In this context, an inver-
sion is the jump to a non-successive phase. This quantifies the moves through the ILS
that are against the natural order of the phases in a teacher’s specification, for exam-
ple, from an experiment back to the conceptualization. Complementary to this, if the
length of the LPS without repetitions is smaller than the number of phases specified,
at least one phase has been omitted by the learner. Figure 3.17 shows the distribution
of LPS lengths (without repetitions) across the static number of phases in the ILS spec-
ified by the teacher. Only few learners followed strictly the recommended sequence
and omitted at least one phase. With a lower number of phases, it seems to be more
likely that learners follow the sequence defined by the teacher. For instance, with a
three-phase specification of the ILS, roughly 80% of the learners have a LPS length of
3. Even with the recommended model (5 phases), less than half of the learners follow
this specification.

Figure 3.18 is dedicated to the distribution of omissions of inquiry phases on the part
of the learners. The right chart relates the number of visited phases and the num-
ber of omitted phases -both by the learners- to the number of phases specified by the
teacher. It demonstrates a clear trend: with an increase in phases specified goes an
increase in the chance of having deviations in the learning process sequences from
the design. This is particularly the case for omissions of phases by the learners. The
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Figure 3.17: Absolute (left) and relative (right) number of LPS of a specific length with-
out repetitions (color coded), aggregated by the number of phases per ILS.

left chart shows a more detailed view about the phases that have been omitted, ag-
gregated by the number of phases specified in the ILS. The phase "other" is a special
coding for spaces that do not directly refer to the inquiry cycle. In practice, this has
been used for additional information or monitoring. Spaces are named, for exam-
ple, "dashboard" or "reflection" and are usually for self-reflection, self-monitoring or
metacognitive activities such as the planning of the learning.

Contrary to our expectations, the orientation phase is one of the more frequently
skipped phases. This might indicate that the learners focus more on the tasks in other
phases that are either more motivating or activating — orientation phases usually are
typically very general descriptions for the students or a collection of motivational re-
sources. Videos, for example, might have been skipped as a consequence of bad in-
ternet connectivity. Conceptualization and investigation phases are rarely omitted,
which seems to be obvious with regards to the approach of inquiry-based learning
and the fact that both phases usually contain inquiry apps and scaffolds that produce
learner-generated content. This can be, for example, an online lab for the experimen-
tation and inquiry apps such as the concept mapper or the hypothesis scratchpad
for the conceptualization phase. Another peak is the discussion phase that has been
present in spaces with more than four phases on the one hand, but then frequently
skipped on the other hand. A possible reason might be that such phases could po-
tentially be carried out to (pure) classroom activities and teachers might not really see
the need for ICT support in this phase. Due to typical time or room constraints when
dealing with ICT in classrooms, such activities might take place outside the Go-Lab
environment and are therefore not reflected in the data captured through the learning
analytics infrastructure. In some self-reports from teachers it has been declared that
due to bad internet connections the introductory video has been projected and shown
in classroom. Practical workarounds like those for weak ICT infrastructure might yield
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to such singularities and possibly explain some of the examples.
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Figure 3.18: Left: distribution of average phase omissions aggregated by the number
of phases in ILS. Right: number of phases visited and number of omis-
sions related to the number of phases in the ILS design.

The charts displayed in figure 3.19 emphasize on the inversions in the LPS. The left di-
agram in this figure presents a distribution of the average number of inversions across
different lengths of LPS. The LPS is counted with repetitions in this case. This dia-
gram shows that a proportionality between the learning process sequence length and
the average number of inversions is likely. The relative proportionality shows that the
pedagogical design, for instance, the number of phases in an ILS plays a subordinate
role - in contrast to the actual learning sequence. In this sense, this relation expresses
that with the length of the LPS there is a nearly linear increase in the number of inver-
sions, independent of the teachers’ specification. A reason for this might be found in a
lack of process awareness on the part of the learners. However, such awareness com-
ponents might play an important role in guiding learners through inquiry activities as
stated out in section 2.1.1.

Furthermore, the results obtained from the pedagogical specification of ILS have been
compared to the actual run-time behavior. Thus, the comparison served to find devia-
tions between the ILS model (teacher-defined) and the recommendations (by Go-Lab)
provided to the teachers regarding the use of the apps and labs. This provides some
insights on deviations from the default inquiry model in the authoring perspective.
From the run-time perspective, the deviations from the actual learning process se-
quences of phases can be measured to determine "out-of-order" behavior relative to
the pedagogical specification of the teacher. The chart on the right-hand side of figure
3.15 shows the distribution of phase sequences lengths (i.e. the number of sequential
phases) that are extracted from the actual learning process models of the learners. It
points out that most of the scenarios contain 5 or 6 phases. Additionally, a large num-
ber of students have LPS with a length much longer than the recommended model.
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Figure 3.19: Left: Average number of inversions depending on the length of the LPS
(domain axis). Right: Number of students depending on the LPS length
aggregated by number of phases specified.

The line color in the chart corresponds to the number of phases in the ILS specifica-
tion, while the color code of the graph areas indicates the number of students.

3.3.3 Discussion

The analytic results of this work point out that (structured) inquiry-based learning
induces a shift to learning activities where students are encouraged to actively par-
ticipate. In 39.22% of the ILS, teachers took advantage of the possibility of customiz-
ing the inquiry sequence to their needs. In these spaces, there is a high number of
deviations of the learning sequence from the specification. Therefore, appropriate
apps would be necessary in order to support teachers and students to regulate and
intervene in case of out-of-order behaviors during the learning process. For example,
apps for monitoring the learning process might help teachers to be aware of the stu-
dents’ activity and to identify out-of-order behavior based on the metrics used for this
work.

Figure 3.20 shows two prototypes of supportive apps for process awareness of teach-
ers and students. Both applications have been developed based on the findings of
this work using the learning analytics infrastructure from the Go-Lab project. The vi-
sualizations are based on the action logs of the learners that are aggregated using the
data warehouse API (cf. section 3.1.2). The app on the left-hand side is a monitoring
tool for teachers which provides an overview of the phase sequences of each student.
The app allows the teacher to uncover deviations in the sequence of phases as well as
in the time spent per phase (e.g., a short time devoted to an experimentation phase
in comparison to the recommended value). The statistics presented in the analysis
have shown that a lot of students omitted phases during their run of an ILS, which
can be monitored with such an application. As the app visualizes real-time data that
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Figure 3.20: Go-Lab apps to provide process awareness for teachers (left) and learners
(right).

has been logged into the system, it can be used for on-site monitoring during a class-
room activity, which helps the teacher to spot sequences of interest and thus to place
a pedagogical intervention in case it is needed.

Complementary to the teachers, students need to be aware of their own learning pro-
cesses in order to adopt inquiry models in a useful way. To achieve this, cognitive
scaffolds to foster process awareness and self-reflection are necessary. The right-hand
side of figure 3.20 shows an app suitable for learners to display a detailed learning pro-
cess sequence. The app displays an interactive learning process visualization, which
provides information about the process sequence on two levels (phases and apps)
as well as the time spent by the student in each phase. The outer circles (light vio-
let) display the phases and the corresponding phase transitions as connecting arrows.
The size of the outer circles indicates the relative time spent in each phase, which is
also displayed next to the caption. Inside each phase, the transitions between appli-
cations are displayed as the enclosed circles (dark violet). With this visualization, a
student can evaluate the deviations of the own learning process from the suggested
model and compare the times spent in the different phases. For the purpose of reen-
actment and reflection, the visualization contains a "replay" functionality to animate
the history of transitions.

Guiding learners can be seen as one of the (beneficial) main ingredients of the Go-Lab
approach for inquiry-based learning. Inquiry apps to support learners’ activities are
promoted throughout the Go-Lab portal to be used in inquiry learning spaces. How-
ever, there was an upcoming debate about the necessary amount of instructions and
guidance mechanisms in inquiry-based learning, pointing out the danger of going for
less is better (Kirschner et al. 2006). As a consequence, both the learning design and
the learning process need to be aligned to each other. Even though, support tools
for monitoring processes can help to facilitate process awareness mechanisms to im-
prove learning, metacognitive or reflective skills. From the analysis of the learning
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spaces and the distribution of artifacts (apps and resources) that were used in the ILS
creation, it was evident that teachers consider the use of more apps while they keep
the use of resources limited. Although the average number of applications and re-
sources added to an ILS is similar, the majority of spaces use a minimum number of
resources and they tend to increase the number of applications. Furthermore, the use
of resources is negatively correlated with the number of inquiry phases. This implies
that teachers tend to create ILS without adding a balanced amount of resources (such
as external learning materials) to the phases, but to use more apps inside the phases.
However, as a limitation to this work, it cannot be observed or captured through this
large data analysis whether the teachers used learning materials that are not stored in
the platform, for example, printed materials or text books. Maybe, this is also due to
the fact that applications lead to an increase in students’ activity and therefore appli-
cations are perceived as a way to support and encourage students to act and take the
initiative. Of course, interactive experiments, inquiry apps or scaffolds provided by
Go-Lab are promoted to teachers and might act as a selling point. Differences in the
design of the learning spaces might have many reasons. Starting from the attractive-
ness of the provided applications, experiments and public examples of ILS in Go-Lab,
this might also be rooted the expert level of the teachers in using ICT or facilitating
technology-enhanced learning. Such aspects need deeper investigations that take the
user’s perspective into account.

3.4 Conclusion

The work presented in this chapter is one of the first attempts to describe a general
learning analytics infrastructure that can be adapted to a wide range of scenarios.
In other analytics fields such as business analytics those infrastructures are already
quite elaborated. In the relatively novel and emerging field of learning analytics such
general architectures are starting out. With this work we aimed to draw attention to
the challenges and requirements of general approaches for analytics infrastructures
in web-based learning environments and proposed our solution as part of the Go-
Lab environment. The backend components of the infrastructure are implemented
as a multi-agent system, in which agents communicate implicitly through a shared
workspace.

Additionally, it features a flexible architecture for creating and deploying micro ser-
vices and portable analytics apps. The platform used for the creation of analytics
apps offers a visual language to specify the workflows. This allows for a flexible in-
tegration of new functionality, for example new analysis algorithms or visualizations.
Well-defined data formats, protocols and interfaces enable communication channels
for action logging, feedback mechanisms and data access from analytics tools that use
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the Go-Lab learning analytics server. In Go-Lab, the analytics workbench has been
used to create the first prototypes of learning analytics apps that are presented in sec-
tion 3.2.3. The architecture has been extended to build static code bundles based on
the multi-agent that could be integrated on a deeper level into the Go-Lab learning
analytics infrastructure. The presented infrastructure has been employed to analyze
the activity of learners and teachers in the context of inquiry-based learning with on-
line experimentation in Go-Lab. Our study is based on more than 100 inquiry learning
spaces and combines heterogeneous data sources with various filters, metrics and in-
dicators. The results show trends in the design of teachers’ ILS, e.g., in terms of num-
ber of phases, apps and resources per phase. The models induced by teachers can be
further evaluated taking into consideration parameters such as the functional type of
apps regarding the inquiry process (e.g., apps for reflection, metacognition, etc.) and
the concrete types of resources a learning space is composed of.

Additionally, the results point out that although most of the teachers adopt the rec-
ommended inquiry model, a significant number adapts it according to the needs im-
posed by the learning context. Noteworthy that, students often do not follow the
teachers’ model. These deviations might originate from a lack of process awareness
that could be overcome through appropriate scaffolds. The detection of "out-of-order’
behavior is a complex task and possibly includes a variety of indicators. To support
process awareness, we have proposed prototype applications for students and teach-
ers. In the future work we will validate our prototypes regarding the interpretability
of the rich representations of learning processes. Other metrics such as dynamic time
warping could be useful to measure the costs to match an actual learning sequence
into a sequence specification. Such a metric will involve different kinds of deviations
(inversions, insertions, repetitions, etc.). As a continuation, first participatory design
studies with teachers will show their usefulness and provide some further input on the
indicators. This involves particularly a more integrated usage of the metrics and indi-
cators in rich representations that go further than a simple mirroring of values. From
the perspective of learners, this can be useful to support self-reflection and metacog-
nition, fostering 21st century learning skills as well as helping teachers to support such
competencies.

In summary, the architecture fulfills the requirements for creating and serving flexible
and portable learning analytics applications. However, the first data-driven observa-
tion of the portal-usage (learning and teaching) using the architecture show that there
is a need for process and cognitive awareness. Knowledge management approaches
have the potential to support both aspects. We employ specific learning scenarios (in-
dividual and group work) in the context of inquiry-based learning in Go-Lab that can
make use of learners knowledge. Therefore, the next chapter describes the concep-
tualization and implementation of knowledge management approaches, particularly
based on knowledge diversity and a shared group knowledge model.
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"Diversity may appear to be a straightforward concept which can be quickly
and painlessly measured. This is because most people have a ready intu-
itive grasp of what is meant by diversity and have little difficulty in accept-
ing, say, that tropical rain forests are more diverse than temperate wood-
lands or that there is a high diversity of organisms in coral reefs. Yet diver-
sity is rather like an optical illusion." (Magurran 1988)

The construction of knowledge, both in an individual and a social context, has shown
its importance from the history of inquiry-based learning up to modern approaches
(compare section 2.2). Therefore, we identified knowledge (co-)construction as one
of the key aspects of the foundation of this work. The field of computer supported
collaborative learning defines one of the key challenges as the definition of precondi-
tions for the successful orchestration of collaborative learning scenarios or knowledge
building. Particularly for the formation of learning groups, there has been a debate
about different characteristics of learners in each group and how to benefit from dif-
ferences. The suggestion to form heterogeneous learning groups became quite pop-
ular in the line of CSCL research. The apparent consensus about the benefits of het-
erogeneous groupings influenced the area of automatic group formation in a way that
many systems define heterogeneity as a criterion or goal for the groupings. However,
an evaluation of the group performance is highly dependent on the quality measure
of the learning outcome. For example, when using learning gain per group for an eval-
uation, studies suggest that heterogeneous groups perform better (see section 5). But
on an individual level, particularly weaker students benefit from such group constella-
tions. The idea of heterogeneous groupings leads to a political discussion about inclu-
siveness and fairness of learning as well. Particularly ideals of internal differentiation
of learner groups foresee that everyone should benefit from learning, including stu-
dents with higher skills. We argue from an inclusive point of view that there should be
possible groupings of learners that lead to a learning gain for everyone. A key towards
achieving this goal is to advance from heterogeneity in skills to a successful manag-
ing of knowledge diversity, where the group dynamics and learning processes are ini-
tialized through utilizing and facilitating the differences in knowledge positively. We
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move from stigmatizing learners ("low achievers") to exploit diversity. This work fo-
cuses on characterizing the diversity of cognitive aspects on the part of the learners,
namely through measuring the knowledge diversity of a cohort. The measurement of
diversity, as highlighted in the introductory quote by Magurran (1988), is a challenging
task as the term diversity has a weak operationalization. This work presents case stud-
ies and exploratory studies where knowledge diversity of learning groups has been ex-
ploited in order to support learning through "semantic group formation" or through
visualizations of group knowledge models ("concept cloud"). Stoyanov et al. (2017)
used a group concept map "as a group’s common cognitive construct can consolidate
individual differences and serves as a tool for managing diversity in groups of partici-
pants.” This thesis presents a more generic approach, as it defines an operationalized
model of knowledge and diversity in conjunction with an open learner model that is
suitable for inquiry-based science education, where learners express their knowledge
through different and heterogeneous representations and artifacts.

Section 4.1 summarizes the use of diversity across different disciplines. Traditionally,
there has been a seamless transition and sometimes a synonymous usage of hetero-
geneity and diversity. The next section spots the differences and integrates it into a
working definition of diversity. Section 4.1.2 reflects on different knowledge represen-
tations that can be used in order to operationalize the term knowledge. The subse-
quent section, 4.1.3, focuses on an operationalization of knowledge and knowledge
diversity. This can be used to define computational models for knowledge, which can
be integrated into inquiry-based learning scenarios.

4.1 Facilitating Knowledge Diversity

There is a current movement in different disciplines towards an increased diversity as
it seems to be promising in many applications which range from social over workplace
to educational settings. While social and educational sciences investigated in cultural
and ethnic aspects of diversity, the research of this work is focused on knowledge di-
versity. Knowledge (co-)construction has been highlighted as one of the key aspects
in CSCL research. In order to create learning scenarios that benefit from knowledge
diversity, exploratory work is needed that is driven by the question of how we can op-
erationalize and facilitate knowledge diversity.

4.1.1 Heterogeneity and Diversity of Learning Groups
The meaning and use of the term heterogeneity is manifold and varies in different

disciplines and domains such as chemistry or computer science. The work of this dis-
sertation is situated in the field of technology enhanced learning, therefore it focuses
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on learning contexts. There is no consensus in the research of TEL and CSCL about
the term knowledge diversity. However, in these communities there is a (traditional)
debate about heterogeneity in learning, and the terms diversity and heterogeneity are
often used interchangeably. This section aims to bring clarity into the debate by de-
riving a working definition of knowledge diversity from the literature in the contexts
of diversity management and learning.

The constructs of heterogeneity and diversity also appear in pedagogical areas such
as the field of group learning. Particularly to characterize the goal of the grouping,
heterogeneity and homogeneity can be defined. Such groupings can have advantages
or disadvantages, depending on the pedagogical goal or specification (Barkley et al.
2014). When Dillenbourg (1999) defined conditions for collaborative learning in his
work, he suggested to take heterogeneity into account. As a caveat, he distinguished
symmetry and heterogeneity: "two learners may have a similar degree of expertise
but different viewpoints of the task". This view on heterogeneity shows how collab-
orative learning is connected to discourse. Trimbur (1989) pinpoints heterogeneity
to consensus and difference in group discussions as important characteristics of col-
laborative learning. However, Weinberger and Fischer (2006) criticize the concept of
heterogeneity regarding group learning conditions: "At best, only some learners may
benefit from knowledge co-construction scenarios while others are left behind. CSCL
may contribute to a more homogeneous participation, e.g., by representing the dis-
course history on a discussion board." This emphasizes the importance of finding
more inclusive characteristics to group learners. Furthermore, it shows the poten-
tial of open learner models in the context of CSCL and knowledge co-construction,
which frame the research on inquiry-based learning.

Diversity is a term that has been used a lot in different fields, encompassing research,
political discussions, organizations and economy. One would expect a consensus
about the definitions and meanings of diversity or diversity management. However,
Harrison and Klein (2007a) state out that "diversity has often been studied in an in-
determinate manner; (...) the substantive or constitutive definition of diversity often
is not clearly specified." Although the introductory quote by Magurran (1988) is from
another discipline, it shows the difficulty of finding a definition. Depending on the
variable, the extent of how diverse two individuals are, can even have more subordi-
nate aspects, that span their own spaces over the set of characteristics.

Diversity with respect to learning is usually referring to a social construct. Social psy-
chologist Aronson designed the jigsaw technique originally as a teaching method in
order to force integration of racially and ethnically diverse groups and to overcome
social barriers that are a consequence of this diversity (Aronson 2002; Ziegler 1981).
A situation in which learning should take place usually underlies certain conditions.
In this case, ethnicity as one possibility of diversity can influence the learning. With
the jigsaw method, Aronson tried to manage the diversity and use it in a way to design
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learning which overcomes the barriers in order to create a beneficial learning situa-
tion for all the participants.

In the field of cognitive and administrative sciences, there has been a discourse about
cognitive versus demographic diversity. Research has shown the greater impact of
cognitive diversity on the decision-making processes and on the team performance
(Jehn et al. 1999; Williams and O’Reilly III 1998; Miller et al. 1998; Schilpzand 2010).
Knowledge can be seen as one of the possible manifestations of cognition. Therefore,
we investigate in one facet of cognitive diversity, the knowledge diversity.

Ryan (2006) highlights the differences in dimension of the term diversity, and that
all categories of differences have to be considered: "race/ethnicity constitutes only
one dimension of difference. Many other kinds of diversity pervade our schools and
communities." Besides obvious or demographic aspects, this can be transferred to the
context of (creative) problem solving or to the level of decision making. Diversity can
also mean having "diverse viewpoints on the problem" (Falk and Johnson 1977). Di-
verse viewpoints can exist, for example, because of differences in knowledge. The field
of knowledge management has investigated in the processes of knowledge building
and emphasizes the importance of diversity. Close to the idea of the aforementioned
Jigsaw approach is the idea of having dedicated experts on specific topics. "The term
‘expertise diversity’ refers to differences in the knowledge and skill domains in which
members of a group are specialized as a result of their work experience and education”
(van der Vegt and Bunderson 2005). To compose learning scenarios that use expertise
in a certain topic in a way that learners are grouped regarding knowledge comple-
mentarity has shown success (see section 2.3.3). Therefore, we state out that an oper-
ationalization of diversity needs to take the idea of knowledge complementarity into
account. Learners should be maximally diverse regarding their knowledge, if their
knowledge is complementary. Figure 4.1 shows a comparison of knowledge distri-
butions of homogeneous (high and low), heterogeneous and complementary groups
regarding the knowledge of learning partners in dyadic groups. This can be seen as
a baseline to distinguish the different connotations of heterogeneity and diversity in
order to create a terminology of the work in this thesis.

Topic A I Topic A [ Topic A [ Topic A ]
Topic B I Topic B [ Topic B [ Topic B —
Homogeneous groups (left: hom. high; right: hom. low) Complementary group

Figure 4.1: Comparison of knowledge distributions in homogeneous, heterogeneous
and complementary groups regarding two topics A and B of two learning
partners (dyadic groups).
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In this sense, diversity can be seen as a property that is given for a certain learning
group. It cannot be seen as an output parameter of learning, but it defines the input
for groupings. Therefore, this work proposes the use of diversity in a given setting and
facilitates it in order to improve learning. Particularly the field of diversity manage-
ment does not only take individual differences as given and accepts them, but goes
further towards utilizing these differences in a constructive way to contribute to the
success of a business. Cox (1994) emphasizes the benefits of managing diversity:

»Planning and implementing organizational systems and practices to man-
age people so that the potential advantages of diversity are maximized
while its potential disadvantages are minimized."

This work by Cox is contextualized in the research of cultural diversity in workplaces.
Of course, the aspects to be included in diversity do not only exceed cultural aspects.
This concept can be applied to knowledge diversity as well. Cox highlighted the dy-
namics of diversity: rather than attempting to have a separation of concerns, he de-
scribed an integrated approach of the different aspects and dimensions (Cox 1994).
In research of diversity in the organizational and academic fields, knowledge was of-
ten mentioned as one of the diversity dimensions, but has not been discussed and
researched in depth so far. Andresen (2007) described a first step in using knowledge
as a dimension of diversity. However, social diversity in classrooms is a different issue
and not part of the main work presented in this thesis. While the traditional work
in the field of diversity in organizations claims that an increased knowledge is the
consequence of utilizing diversity (Olsen and Martins 2012), we facilitate knowledge
as a component or dimension of diversity. It is important to spot the weaknesses in
handling heterogeneity in educational contexts as it has been done, and furthermore
move forward to a notion of diversity, which makes use of the differences in order to
improve a certain outcome. Diversity management is the art of optimizing situatively
the heterogeneity and homogeneity to achieve set goals. Therefore we manage knowl-
edge diversity by creating learning scenarios, which will benefit from the diversity.
This is in line with the notion of knowledge complementarity, which can be a baseline
for collaborative learning (compare section 2.3.3). We define knowledge diversity as a
quantified difference in knowledge, a measure for the degree of complementarity of
the knowledge of two learners.

4.1.2 Knowledge Representations

Anderson (2013) wrote in his general theory of cognition ACT-R about two different
types of knowledge: declarative and procedural. Declarative knowledge (e.g., learning
the rules of how to play football) comes first, and procedural knowledge comes after
(e.g., putting those facts and rules in practice to gain football skills). One of the key
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Figure 4.2: Left: "If it thunders, it lightens.", right: "it thunders without lightning".
Compare Sowa (2011).

aspects in dealing with knowledge is to find appropriate representations. Depending
on the distinctive type of knowledge, it can be modeled in different ways: declarative
knowledge can be represented as a network of concepts, while procedural knowledge
can be better represented as a set of rules (Ramirez and Valdes 2012). Focusing on IBL
applications like Go-Lab, where the learners actively create artifacts such as concept
maps, hypotheses, or texts, they externalize their knowledge about a certain domain
(Erkens et al. 2016a; O’Donnell et al. 2002). Such representations can be reduced to
a textual representation and used as a model to express declarative knowledge with-
out major loss of information in the context of inquiry-based learning (Manske and
Hoppe 2016).

However, textual representations of knowledge are unstructured data in the sense that
they do not have a predefined underlying model or are not organized in a predefined
manner. To make use of knowledge through automated methods, irregularities and
ambiguities need to be eliminated. Apart from the creation of a model for the (declar-
ative) knowledge externalized in learner-generated artifacts, one of the key challenges
for the field of Knowledge Representation (KR) is to perform automated reasoning (to
make inferences, for example) on knowledge. This work focuses on the modeling of
knowledge, and not on automated reasoning. Although certain operations on the final
model (measures of diversity) were performed, this approach should not be consid-
ered as "reasoning" as it would be the case for knowledge representation models in
artificial intelligence for building intelligent systems (Russell and Norvig 2016). There
are a variety of knowledge representation models such as semantic networks, rules,
logic, frames, and ontologies.

Semantic networks are a starting point to build a "network of concepts and topics",
which is a common knowledge representation method for declarative and object-
oriented knowledge (Helbig 2006). Charles Peirce proposed in 1869 existential graphs,
a simple system and syntax for first-order logics, which also models simple seman-
tic structures, e.g. relations between concepts. Figure 4.2 shows relations between
the concepts thunder and lightning modeled in a visual form of existential graphs
(Sowa 2011). Existential graphs share many concepts with semantic networks, but
are slightly different. Semantic networks are diagrams with nodes and links between
them, representing logical sentences (Russell and Norvig 2016). The idea behind se-
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Figure 4.3: The trinity of methods for Learning Analytics in the context of this thesis.

mantic networks is that we can express with them the “taxonomic structure of cate-
gories of concepts and the relations between them” (Grimm et al. 2007). In this notion,
semantic networks are useful to represent the network consisting of concepts and top-
ics. The topics and subtopics can be seen as categories which encode a type of taxon-
omy with concepts as leaf nodes, and the “is-a” relationship between the nodes. Text
networks are networks extracted from texts using a “network text analysis” approach
(Hecking and Hoppe 2015). Approaches like this demonstrate the possibility to cre-
ate semantic representations of knowledge by using automated, computational mod-
els. This is further explained in the context of semantic extraction in section 4.2.3. In
summary, this can be seen as a technological and methodological foundation of this
work.

4.1.3 Operationalizing Knowledge Diversity

Miel (1952) and Thelen (1954) point out the potential of cooperative learning in het-
erogeneous conditions — assuming that in a cooperative classroom everyone takes
part, and that everyone’s contribution to the group is valuable. Taking into account
that diversity is a property of cohorts and the individual differences (based on the di-
versity dimensions) can be utilized in order to contribute to the positive output of the
group, namely learning success, we argue that knowledge diversity plays an important
role in CSCL. While the notion of diversity comes from the field of inclusive pedagogy
or cultural, social or organizational diversity, the term is neither well-defined nor op-
erationalized in the field of CSCL. However, as part of this thesis, a working definition
of knowledge diversity is given, and an operationalization in the form of measures of
knowledge diversity is proposed. Using these measures, knowledge diversity is quan-
tified in order to specify desired output settings that can serve as useful constraints
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or as criteria for automatic group formation. In addition to rendering such a model
to group characteristics, this can be used for making knowledge of learners visible
(Manske and Hoppe 2016), which is one of the key challenges in CSCL (Lipponen
1999). The term “diversity” is usually referred by many authors under different but
related nouns such as “heterogeneity”, “dissimilarity”, and “dispersion”. This makes
it difficult to understand its precise meaning. Taking a broad definition of diversity,
we aim to clarify the “meaning of differences within objects of a unit” (Harrison and
Klein 2007a). Therefore, we define diversity as “the distribution of differences among
the members [learners] of a unit [learning group] with respect to a common attribute
[knowledge]...” (Harrison and Klein 2007a). Tsui et al. (1992) tried to operationalize
the calculation of work group diversity by computing individual distances for each
variable or dimension, regardless of the underlying metric. More formalized, let S de-
note a collection of objects. In this work, the elements of S are learners, but in other
contexts they can be as diverse as required. Taking two members of S, i and j (learn-
ers), we assume that a distance or dissimilarity measure between them d(i, j) is given
(Weitzman 1992). This distance measure satisfies:

d(i,j)>=0,d(i,i)=0,d(i,j) =d(j, .

The choice of concrete distance measure is tied to a particular knowledge model (for
instance, distance-based measures on ontologies). For any pair of elements (there
are n-(n—1)/2 of such pair elements) that belong to S, we have a distance measure
(non-negative and symmetric) that can serve as a metric to express the dissimilarities
between the pair i and j. This distance measure forms the primitive for quantifying
the diversity of elements (learners) of a given set (learning group) S. It will allow us to
quantify the diversity between any pair of learners in terms of their knowledge about
a certain topic. A distance Matrix contains all pairwise distances of the whole group
of learners.

Depending on the knowledge representation the implementation of a distance mea-
sure d(i, j) can vary. The vast majority of the literature talks about diversity in terms
of dissimilarity alluding the intuitive inverse relationship between diversity and simi-
larity: the more dissimilar two objects are, the more diverse they are. Certainly, this is
only a valid approach if the notion of (dis)similarity is more easily accessible than the
notion of diversity (Nehring and Puppe 2002). Many similarity measures have been
proposed, such as those based on information content (Resnik 1999), distance-based
measurements (Lee et al. 1993; Rada et al. 1989), Dice and cosine coefficients (Frakes
and Baeza-Yates 1992). Each of them is tied to a particular model and thus renders
certain requirements. For instance, distance-based measures of concept similarity as-
sume that the domain is represented as a network, while Dice and cosine coefficients
are applicable only when the objects are represented as numerical feature vectors (Lin
1998). Based on this operationalization of diversity, we can calculate and assess a di-
versity score to a cohort or grouping using a certain diversity measure. Figure 4.4 visu-
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Figure 4.4: Left: absolute complement of A. Right: relative complement of A in B.

alizes the absolute and the relative complement of sets. This outlines, how the notion
of complementarity can be used within a set-based knowledge representation, which
has been facilitated in section 4.4.2 for the diversity measure.

4.1.4 Learner Models for Representing Knowledge Diversity

We operationalized the diversity regardless of the specific representation of knowl-
edge. We derived a formalization of diversity by calculating distances between in-
dividuals in a given space. According to the knowledge modeling approaches men-
tioned before (see section 4.1.2), we set this to the knowledge space. The knowledge
space is -in an overlay model- the set of all knowledge items. The knowledge of a
learner is then defined as a subset of this space. We also chose an optimistic approach,
in which we utilize the paradigms and work by Hoppe and Ploetzner (1999), where we
set knowing as a binary predicate, which models if a student knows something. We
assume that when a learner writes about a specific key concept, that s/he has a cer-
tain confidence about the topic and that this topic is part of his or her knowledge. We
are aware, that this assumption has limitations and is not representative for all real
cases, where learners write about concepts that they misunderstood. However, for
the challenging task of inquiry, we assume that learners’ confidence is 'high enough’
and that they only manage to proceed when they have a certain degree of knowledge
in the mentioned topics. Chapter 7 presents the investigation of text mining quality
and describes how this approximates the knowledge of the learners.

Learners and their respective knowledge representations can be also modeled in dif-
ferent ways, as mentioned in section 2.3.3. However, we aim for scalability in differ-
ent ways. The field of intelligent tutoring systems has shown how to model cognitive
states of learners in a very accurate way. Usually, these approaches involve a lot of ef-
forts to predefine all possible states. In open inquiry-learning scenarios like in Go-Lab,
itisimpossible to determine all possible outcomes. Therefore, we employ such an op-
timistic method that renders knowledge as knowledge items mentioned by learners.
We relate that to inquiry-based learning as these knowledge items are key concepts
in the science domains for the specific scenarios. Therefore, we can define a learner
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model as an overlay, similar to the aforementioned approach. Simplified, a learner in
this model is then represented by a set of key concepts, s/he has used in the learning
scenario. These key concepts will be extracted automatically through semantic meth-
ods, which is described in the following section. The knowledge space is then relative
to the science domain and the knowledge of all learners in the cohort. It can be de-
fined as the union of all learner models. Reference models can be integrated as well,
but serve more as a filter in order to restrict the knowledge space, rendering all other
items outside the space as irrelevant.
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4.2 Shared Group Knowledge Models

The previous sections in this thesis outlined an operationalization of knowledge di-
versity. In inquiry-based science education as promoted by Go-Lab, learners actively
participate in scientific experiments and create artifacts throughout the process as
externalization of their knowledge structures (O’'Donnell et al. 2002). In this section,
a conceptual framework will be created to transfer the different learner-generated
artifacts into knowledge items and thus into measurable knowledge diversity. The
conceptual framework aims to promote shared group knowledge models as a specific
type of learner models for a whole learning group. Such models can be used to sup-
port learners and teachers in (self-)reflective monitoring processes or in collaborative
learning.

While it is not a novelty in learning sciences to create conditions for learning which fa-
cilitate knowledge, the use of computational methods from learning analytics and se-
mantic technologies is relatively new and advances the knowledge approaches known
to this field. While traditional approaches demand the detailed assessment of arti-
facts, observation of individual work and performance, this work makes use of con-
tent analysis techniques, particularly using semantic extraction of knowledge from
learner-generated content in order to create knowledge models. Specific for inquiry-
based learning is the use of inquiry apps and scaffolds (cf. section 2.1.2) which help
learners to externalize and structure mental models, for example in concept maps.
Those artifacts carry information that can be automatically processed using computa-
tional methods of learning analytics that help extracting semantic information. Thus,
knowledge structures of the learners can be explicitly processed and transformed into
computational models that support learners and teachers. This computational ap-
proach is contrary to early learning analytics, which focused on performance- and
activity-oriented data that has been processed using methods of descriptive statistics.
One of the examples of such an application is the student activity meter (Govaerts
et al. 2012) which visualizes the level of activity of learners over time. Although such
applications provide valuable insights, such information is difficult to transform into
actionable results or interventions if they are not directly coupled to learning design.
As a caveat, learners are usually novices in the interpretation of such complex visual-
izations.

Besides the challenges that come with the difficulty of interpreting, such statistics
mainly focus on supporting the ex-post analysis phase on the part of the teachers.
Many guidance mechanisms targeting students are often scaffolds on a micro-level,
for example, prompts inside a specific tool (cf. section 2.1.1). Such mechanisms de-
mand a high degree of adaptation and encode very narrow domain knowledge - or
match simple and hard-coded interaction patterns. In this sense, it takes a lot of ef-
forts to adapt systems to effectively provide scaffolding. However, the Go-Lab ap-
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proach calls for more general mechanisms to support students and teachers in order
to achieve a large-scale implementation in schools. In contrast to the use of micro-
scaffolds, this workflow aims to enforce critical thinking, to initialize reflective pro-
cesses and to use representations of knowledge structures that are connected to the
actual learner productions and thus to the learning outcomes. The importance of
these scaffolds has been pointed out for the engagement (Leeman-Munk et al. 2014)
and the support (de Jong et al. 2014) of the learner as well as for fostering critical think-
ing and the development of 21st century skills (Wheeler et al. 2008). In addition to this
framework, applications that make use of the shared group knowledge model will be
demonstrated in the next sections. In the following chapters 6 and 7, the evaluations
of these applications are presented.

4.2.1 Conceptual Framework for Group Knowledge Models

The underlying conceptual framework for the creation of shared group knowledge
models is presented in this section. The framework is organized in layers as shown
in figure 4.5. The layer on top of this framework represents the pedagogical model
of inquiry-based science education that is orchestrated in classrooms using ICT. This
layered model bridges from the pedagogy over to technology, particularly using se-
mantic extraction and integration. The arrows show the information flow that con-
nects the learner productions with analytics leading to the shared group knowledge
model ("Concept Cloud Data Model"). In such inquiry-based learning scenarios pro-
moted by Go-Lab, students actively create artifacts in the subsequent inquiry phases.
The phases prestructure the inquiry activities in terms of the inquiry process and by
providing specific inquiry apps and cognitive scaffolds to support learning activities
and processes. Concept mapping is a typical activity in the conceptualization phase,
while the hypothesis scratchpad supports learners in asking questions (cf. section
2.1.2). Text editors and wiki tools are used across all phases for note taking, document-
ing of observations or writing of conclusions. Most of the learner-generated content
that has been created using these apps is text-based or in a format that can be eas-
ily reduced to a textual representation without a major loss of information. Within
the previously described optimistic approach for the open learner model, concepts
contribute most to this model, although, edges in concept maps show important rela-
tions between (scientific) concepts. However, as a rule of a common denominator of
the different artifact types, structural information such as the relations is withdrawn.
The third layer facilitates format- and artifact-type specific concept extractors. Each
artifact consists of a set of knowledge items that refer to specific concepts in the do-
main of the inquiry learning space. These concepts are extracted from the artifacts
and added to each learner model, which is a collection of all concepts used in all
phases by a student. Thus, such a learner model contains all knowledge items of a
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Figure 4.5: Conceptual framework for shared group knowledge models.

student that are relevant to the respective science domain. The aggregation of learn-
ers’ knowledge models is called a shared group knowledge model, which serves as a
basis for further applications, for example to form learning groups based on (diverse)
group knowledge ("semantic group formation") or to display the group knowledge as
a cognitive scaffold ("concept cloud app").

4.2.2 Architectural Approach for Shared Knowledge Models

The concept cloud framework comprises two main parts: (a) the client framework
to create applications, and (b) the concept cloud server, which provides a REST end-
point to request the concept cloud data model for given resources (cf. figure 4.6).

The server provides a simple REST API for all client applications. The main usage and
semantics of the web service interface is to send learner-generated content, the arti-
facts form the learning environment, as well as (optional) configuration parameters
to the REST endpoint. The simple semantics of the API (send contextualized artifacts,
retrieve the concept cloud data model) masks a complex and distributed backend as
a composition of different text analytics services following the principle convenience
over configuration. For different applications and artifact types preconfigured extrac-
tors and service connectors exist. Each artifact will be processed by a specific extractor
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Figure 4.6: Concept cloud architecture. The main parts are (a) the concept cloud
client, and (b) concept cloud server with a connector for third party cloud
services.

which facilitates a set of text analytics services, to produce a list of key concepts. All
concepts are aggregated into the data model in the response of the REST call.

The client framework consists of necessary adapters to be embedded into an already
existing infrastructure such as the Go-Lab learning analytics server. The VLE connec-
tor is a set of client APIs to integrate within a virtual learning environment ("VLE").
The connector is responsible for fetching artifacts from the corresponding backend,
for example Graasp in the case of Go-Lab. The main functions of the VLE connec-
tor are to (1) connect to the artifact storage, (2) to retrieve and process metadata, (3)
to preprocess artifacts, and (4) to provide caching. This is mapped to a CRUD con-
troller, which performs create, read, update and delete operations on the artifact stor-
age. In addition to the CRUD operations to interact with the artifact storage, parsers
are needed to understand metadata and to extract content in the form of basic con-
tent types (hypotheses, concept maps, lists of terms, free texts). This encompasses,
for example, a mapping from a hypothesis to a list of terms. This content is then de-
livered to the server, which further processes the content and extracts the semantic
information using integrated extractors or third-party services.
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4.2.3 Data Model and Extractors

The conceptual model defines a processing chain in order to create a shared group
knowledge model that can be further used by applications to facilitate and manage
knowledge diversity, such as the semantic group formation or the concept cloud app
that visualizes this shared group knowledge model. To achieve this, each learner-
generated artifact is processed using semantic technologies. However, different ar-
tifact types (e.g., concept map, text) have different technical formats and need their
own mechanisms for the extraction of relevant concepts. The general mechanism of
the concept extraction can be outlined as the following: each artifact will be mapped
from the own technical format to an intermediate representation that is readable for
the extractors, particularly a simple text (without markup or metadata) or a token list.
Artifact types with a low structure (texts, PDFs) are mapped to plain text that can be di-
rectly submitted to the semantic extractors. To make use of the content, markup and
metadata is withdrawn, particularly from PDF files. Highly structured artifacts that
usually contain a predefined set of operators or terms (concept maps, hypotheses, ex-
perimental designs) are transformed into the token lists after removing the structural
aspects (i.e., edges, relations, quantifiers, reasoning). For example, after the removal
of those structures, in concept maps the list of nodes will be kept, and in hypotheses
the list of parameters will remain. Then, the intermediate format will be submitted to
the semantic extractor that further reduces the input to a list of concepts. In summary,
this is a mapping from the artifact type to a concept list that represent the artifact’s in-
herent knowledge items. In a next step, all artifacts from all students are aggregated
into a unified data model that contains all concepts and acts as the shared group
knowledge model. Although the mapping leads to a sacrifice of structural aspects
as the relations in concept maps, the aggregation can be considered as a common
denominator that represents and encodes a majority of declarative knowledge. This
unification is consistent with the premise of an optimistic learner modeling approach
that has been presented as a foundation of this operationalization. In addition, rela-
tions can’t be displayed or represented in the loose structure of a tag cloud. For the
semantic extraction of concepts from the text-based artifacts (i.e., the intermediate
format), the following semantic technologies have been employed: (1) DBpedia Spot-
light (Mendes et al. 2011), (2) AlchemyAPI (Turian 2013), and (3) Text2Network (Heck-
ing and Hoppe 2015). The characteristics of the different extractors are described in
the following subsections.

DBpedia Spotlight

The concept extraction approach using DBpedia Spotlight targets to identify domain
vocabulary and specific terminology. DBpedia Spotlight uses an ontology as a knowl-
edge source. Unstructured texts are matched with the underlying ontology using nat-
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ural language processing technologies in order to annotate and extract concepts with
entities from the ontology. This knowledge source enables a context-aware extraction
of terms to an extent which it enables disambiguation of terms from different spe-
cific contexts. The ontology has been created within the DBpedia project, which uses
multilingual data extracted from Wikipedia:

"The DBpedia project extracts structured information from Wikipedia edi-
tions in 97 different languages and combines this information into a large
multilingual knowledge base covering many specific domains and gen-
eral world knowledge. The knowledge base contains textual descriptions
(titles and abstracts) of concepts in up to 97 languages." (Mendes et al.
2012)

For every Wikipedia page, DBpedia creates a URI for the correspondence between
entity and Wikipedia page. The URIs are enriched by properties that are extracted
through DBpedia and stored as RDF triples. Such triples are used to model seman-
tic data using subject—predicate—object expressions, for example "Konrad Zuse is a
Person". As RDF in DBpedia this would be modeled as the following, whereas each
element of the triple refers to a URI:

<http://dbpedia.org/resource/Konrad_Zuse>
<http://www.w3.0rg/1999/02/22-rdf -syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>

This example clarifies the heavy use of URIs in order to link and disambiguate data
correctly. All of the URIs corresponding to the three used entities have different name
spaces. The first element points to the resource "Konrad Zuse" as the subject, where
the predicate classifies this as a "type"-relation with the object "Person". The URIs
can be accessed via API or the web in order to browse the linked data such as other
persons or other attributes of "Konrad Zuse". Data set version 3.8 of DBpedia consists
of 1.89 billion RDF triples in 111 languages'.

DBpedia Spotlight is a semantic technology to analyze a text and to extract concepts
from it. This is based on the DBpedia ontology and facilitates disambiguation using
the context of the linked data. In natural languages, concepts can be misinterpreted
as their surface form is not unique. For example, the surface form keystone might refer
to an architecture, to a town in Colorado or several other meanings. The surface form
of a URI represents the concept in natural language. When we refer to concept extrac-
tion and respectively to the results of the extraction as concepts, we refer to the surface
form of the corresponding URI. Therefore, we define concept extraction in the context
of this work as the retrieval of relevant URIs which characterize a certain source text.
Then, the URIs are projected to their surface forms for the output of concepts for our

'DBpedia, Data Set 3.8 (2015). https://wiki.dbpedia.org/data-set-38. Retrieved: 2020-04-06.
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algorithms. However, the results of this extraction are then limited to concepts that
have a corresponding Wikipedia (respectively DBpedia) entry. As a consequence, the
concepts that have been extracted typically represent domain knowledge or declara-
tive knowledge. Procedural knowledge items can hardly be represented through this.
The (internal) concept extraction of DBpedia Spotlight works in four stages:

1. The spotting stage uses a lexicalization data set prepared from DBpedia. It uses
the LingPipe Exact Dictionary-Based Chunker? in order to identify potential
mentionings of DBpedia resources. This NLP pipe is based on the Aho—Corasick
algorithm, which uses a finite-state machine to match multiple elements from
a dictionary (Commentz-Walter 1979). The algorithm outputs all matches in-
cluding substrings. This is necessary for spotting compound terms, which is
not possible through greedy matching algorithms.

2. During the candidate selection, possible resources (URIs) are linked to possible
surface forms. This step provides a preranking of the candidates in order to
employ a "default sense" in a similar way as Wikipedia does. This serves as a
direct preprocessing for the next stage.

3. During the disambiguation stage, concrete resources are selected and linked to
the surface form. To select the correct URI, the disambiguation uses a vector
space model of the resource occurrences in the DBpedia corpus. Itis areduction
to a ranking problem with a TF-IDF-like scoring.

4. The configuration stage employs the configuration by the user in order to define
metrics and filters to generate the concrete annotations. This encompasses, a
confidence for the candidate selection, a specific entity type, SPARQL queries,
and more program parameters.

AlchemyAPI

AlchemyAPI is a service API based on a deep learning approach for text analysis and
natural language processing (Turian 2013). The goal of AlchemyAPI was to provide
NLP-as-a-service. In this sense, it contained several APIs for different text analysis
tasks. However, most of the APIs were not multilingual or did not support the targeted
languages of Go-Lab. In addition to this, there are only a few technical details known
that explain the concrete mechanisms of the NLP in AlchemyAP]I, as this is a propri-
etary interface. This work employed AlchemyAPI for the extraction of keyphrases from
a given text. AlchemyAPI has been acquired by IBM3 and moved into parts of Watson’s

Zalias-i (2011), LingPipe API http://alias-i.com/lingpipe/docs/api/com/aliasi/dict/
ExactDictionaryChunker.html, retrieved: 2019-06-01.

3IBM, AlchemyAPI anouncement: https://www.ibm.com/cloud/blog/announcements/
bye-bye-alchemyapi, retrieved: 2019-06-01.
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cognitive service API, in particular into the natural language processing and the dis-
covery API.

In contrast to the DBpedia spotlight approach, AlchemyAPI has the capabilities to ex-
tract key phrases from a text. On the one hand this leads to a more diverse aggregation.
On the other hand it displays knowledge items that cannot be expressed in a single
domain concept. Such phrases might be connected to procedural and metacognitive
knowledge items.

Text2Network

Text2Network is web service that employs network-text-analysis (NTA) for the extrac-
tion of key concepts (Hecking and Hoppe 2015). The service uses a technical imple-
mentation of the NTA approach using the DKPro framework (Gurevych et al. 2007)
and Apache UIMA 4. NTA is a method that is intended to extract conceptual networks
that represent mental models from texts. Such networks are characterized by a set
of concepts and pairwise relations (Carley 1997). In the implemented approach, con-
cepts are extracted using the Stanford part-of-speech tagger (Manning et al. 2014) and
chunking® in order to create meaningful noun phrases from the output of the tagger.
An entity resolution step helps to identify similar concepts, based on text similarity.
For a threshold of 0.7, similar nodes are merged. A relation between two concepts is
established if both words co-occur in a sliding window of a certain size.

However, this approach has some limitations. First, a plain NTA approach is not able
to identify compound terms without the existence of an external knowledge source
for co-occurrences, e.g., in a specific corpus. The sliding window approach splits,
for example, Caesar cipher into both terms Caesar and cipher, because the part-of-
speech tagger does not have the knowledge about this unique compound concept.
Second, the relations between nodes are based on proximity in a sentence, which
is error-prone to using relative and demonstrative pronouns. A disambiguation is
not part of the process chain and even competing to the entity resolution, which
is based on string similarity. To achieve the desirable result of spotting compound
terms, a dictionary-based approach has been implemented. In the application (com-
pare chapter 7), an ontology has been used to create the dictionary for the application
domain automatically. Such a method helps to bridge science-related concepts that
are externalized in knowledge sources like DBpedia to text networks. Following this
approach, the dictionary has been enriched by synonyms in order to improve the pre-
cision.

*Apache, Apache UIMA (2013). https://uima.apache.org/, retrieved 2019-06-01.
SApache, OpenNLP Chunker (2019). https://opennlp.apache.org/docs/1.7.1/apidocs/
opennlp-tools/opennlp/tools/chunker/Chunker.html, retrieved 2019-06-01.
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Figure 4.7: Concept cloud app: the data is (translated) from a student in experimental
condition C2.

4.3 Concept Cloud

The concept cloud app is an application of the shared group model introduced in this
chapter. It serves as an open learner model as mentioned in section 2.3.3. It represents
the knowledge of learners, in particular the knowledge of the whole cohort of learners
in an aggregated form. The visualization of the knowledge can be used for diagnostic
functions on the part of the learners, but it can also support the teacher by providing a
summary-like functionality for the aggregation of all learner-generated content. The
approach has been presented at the International Conference on Advanced Learning
Technologies (ICALT) in the year 2016 and published in the proceedings (Manske and
Hoppe 2016). An evaluation of the concept cloud app within a classroom experiment
is presented in chapter 6.

The aim of this app is to present a visualization of the shared group knowledge model
to support learners and teachers. Following the conceptual model and the process-
ing approach presented in this work, this application can be conceived as a learning
analytics tool open to be used by learners and teachers. The app makes use of the
technical infrastructure presented in chapter 3.1.2 and is embedded into the Go-Lab
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learning environment. Depending on the specification and preference by the teacher,
this can be integrated into the learning design explicitly as a cognitive scaffold, or im-
plicitly as a reflection tool. Additionally, the monitoring of the group knowledge model
has the potential to support the supervision on the part of the teacher. In the evalu-
ated scenario, the app has been used as a cognitive scaffold by the students during
the conceptualization phase in a Go-Lab activity. Figure 4.7 shows the concept cloud
from a student’s perspective with data from a learning space. In the following section,
some of the design principles and aspects of the approach of the concept cloud are
given.

Visualization of cognitive information The concept cloud app is a tool designed
to directly present the information from the data model created by the concept cloud
framework (cf. section 4.2.2). It contains a knowledge model of the whole group of
learners using a Go-Lab ILS. In such an ILS, each phase might have a dedicated num-
ber of production tools, in which the learner creates artifacts such as concept maps,
wiki texts or hypotheses. These artifacts are analyzed using semantic technologies as
described in section 4.2.3. The concept cloud displays an aggregation of the concepts
of all learners. It uses the known visual metaphor of a tag cloud, where more fre-
quent tags have a bigger font size. To render the tag cloud from the aggregated data,
a third-party tag cloud library is used. The Word cloud layout® is based on a layouting
algorithm by Jonathan Feinberg (Steele and Iliinsky 2010).

Besides the size of the concepts, the colors also carry information. This enables the
learner to have cognitive information about the whole group, and to get additional
information about the use or absence of certain concepts in the ILS. Although the
concept cloud does not judge about the correctness of the content, the usefulness
as a cognitive scaffold to support inquiry processes and knowledge construction has
been demonstrated. The contextualized information includes the phase in which the
concept occurred, as well as questions for the learners to reflect on. Figure 4.8 shows
the information displayed as a tooltip. These questions are selected randomly from
a catalog based on literature research. However, first trials have shown that the stu-
dents did not use the on-demand features such as reflective questions. Therefore, this
feature has been removed from the productive version that has been used in the eval-
uation presented in chapter 6.

Color scheme One of the main design principles of the concept cloud app was to
have a learning analytics tool that supports learners through content analysis. Rather
than visualizing descriptive characteristics and judging about the correctness or per-
formance of the learners, which gives an illusion of understanding learning processes,

5Word cloud layout, Jason Davies. http://www. jasondavies.com/word-cloud/, retrieved: 2016.
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Figure 4.8: The concept cloud displaying contextual information.

this application is supposed to support knowledge construction and provide useful
cognitive information. To make this distinction explicit, we use a certain color scheme
exclusively for learners and not for teachers. Although we apply a traffic light color
scheme, the information displayed does not correspond to performance characteris-
tics. The colors refer to the usage of concepts across the different inquiry phases by
the student. Red means that the student has not used the concept while others did
so. A concept is marked green when the learner has used the concept consistently in
all inquiry phases and production tools. Yellow color is used when the extracted con-
cept has been used by the learner in at least one production tool, but not in all. As
a limitation of this work, the color scheme that has been chosen restricts the target
group to people without red—green color blindness. However, the study that has been
conducted was based on the concept cloud with this scheme (see 6). In more recent
work, another color scheme has been user in order to eliminate these shortcomings.
An example of the other color scheme is shown in the outlook of this work (chapter
8.4).

User roles and multiple stakeholders The information displayed is dependent on
the role of the user. The concept cloud distinguishes between two roles in the Graasp
ecosystem, namely teacher and learner. The view in the role of the learner shows the
terms the student used from an "ego-perspective". The terms used (1) throughout
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Figure 4.9: The teacher’s view displays the concept cloud evolution.

all production tools are displayed green, (2) in at least one tool is shown in yellow,
and (3) in no tool at all is highlighted in red. The multiplicities regarding the occur-
rences of terms in the whole class are displayed, but not personalized. In contrast,
the teacher is able to see the names corresponding to the mentions. A support func-
tion is embedded to highlight students that deviate from the average. However, this
mechanism is not intended to assess learning outcome or other performance char-
acteristics of the learners. This is also achieved by omitting a color scheme for the
teacher. The colors displayed in the teacher’s view are in a neutral gray, still showing
the occurrences through the font size and an explicit display. In addition to the mo-
mentary concept cloud, the teacher has the opportunity to review previous versions
of the concept cloud. Whether a new version of the concept cloud model is created,
depends on the settings of the caching. For every time slice (default: 1 minute) during
the editing, one snapshot is created. Figure 4.9 shows the evolution of the concept
cloud. A simple bar chart shows the number of concepts in the cloud, but also pro-
vides means to select a previous snapshot to be displayed.

Flexibility, interoperability, and transparency Go-Lab provides a rich, technical
infrastructure to interact with. As presented in section 3.1.2, the Graasp architecture
includes a widget container (Apache Shindig) to render and embed external apps. It
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embeds a layer for the persistence of application data from within the container. In
order to retrieve the learners’ artifacts from the Graasp data storage, the concept cloud
needs to be connected through client libraries (VLE connector, cf. section 4.2.2). Each
concept cloud app retrieves all artifacts of the learners, and normalizes the format
or the data structures of the content. For example, different apps produce textual
content, in particular the so-called "Input Box", but also the Wiki app. Afterwards, the
concept cloud uses the REST interface of the concept cloud server for the extraction
of concepts and aggregates the results. The resulting data is then visualized using the
aforementioned layouting algorithm.

Contrary to the ROLE sandbox, Go-Lab does not provide any general mechanism or
layer for interoperability as part of the system. The openness to third party apps that
can be integrated into the Go-Lab ecosystem, and the general nature of data exchange
in Apache Shindig lead to a weak specification of application data. Although Go-Lab
defined general libraries for storage (CRUD) and a certain metadata format, the con-
tent format of each app is specified by the app developer. The retrieval of artifacts is
implemented in a library specific for the concept cloud system, for instance the con-
cept cloud app and the semantic group formation app. This library contains content
extractors in the sense of data normalization in order to communicate with the text
analysis engines on the server.

Privacy The concept cloud performs an analysis of all learner-generated artifacts
using the concept cloud server. Due to the design of privacy mechanisms, the con-
cept cloud does not store the artifacts on the server. After each request, the original
artifact is discarded and only the aggregated data model is kept on the server (which
can be deactivated as well). This approach was compliant with the design of privacy
in Go-Lab (Vozniuk et al. 2014). However, storing the model has a huge impact on
the performance and the technical scalability of the concept cloud app, which is de-
scribed in the next paragraph.

Scalability The concept cloud is scalable in different dimensions. First, it does not
rely on a domain model or a reference solution, because it is creating a dynamic over-
lay model based on the extracted concepts. The idea of this approach is to display
cognitive information in form of a shared group knowledge model. The optimistic ap-
proach (cf. section 4.1.4) approximates and infers knowledge by the mentioning of a
particular concept. With the instructions, we prompt learners to critically reflect the
occurrence of particular concepts. For example, displaying a red concept in big let-
ters draws a learner’s attention to a specific concept that has not been used solving a
task such as writing a wiki text. Therefore, we exclude the correctness by design and
improve the scalability, as we exclude the authoring efforts of writing reference solu-
tions. However, the design of the group awareness tool presented in section 7 uses a
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domain model. The results of the extraction have been augmented using an ontology
that assigns topics (to be accurate: labeled topics with a URI) to a particular concept.
That was necessary to prepare the targeted visualization. However, such a domain
model does not claim to act as a filter for correctness.

Second, this approach has built-in multi-language support. Go-Lab is used in more
than 1000 schools across Europe. To facilitate ICT and to orchestrate inquiry-based
science education in an international context, multi-language support is a require-
ment per se. Therefore, the concept cloud automatically detects the language of the
text in order to use an appropriate extraction mechanism. With DBpedia Spotlight
and AlchemyAPI (cf. section 4.2.3), internationalization and text input in multiple
languages is supported. Although DBpedia is using a linked data approach in or-
der to provide a multilingual mapping between URIs (Auer et al. 2007), the quality of
the underlying ontology based on Wikipedia data varies depending on the language
(Lewoniewski et al. 2016). This might have an effect on the text extraction quality.

Third, technical scalability and caching matter for the usage in class. In a prototyp-
ical classroom activity, the learners are all working at the same task at one point in
time. Although this is more of an optimistic view and not necessarily the case in class-
room, most of the learners are in a same activity in a certain time slice. Considering
the data processing approach of the concept cloud this has implications for the per-
formance of the concept cloud. In the first instance, this produces a high load of the
production system (Graasp) and the school network. If every concept cloud instance
fetches all artifacts by all learners, this will cause many requests. For example, if each
of the 30 students creates 5 artifacts, this will lead to a total number of 4500 objects
to be retrieved from the storage of the Graasp server. There are 150 artifacts in total
(305 = 150 artifacts) and for 30 concept clouds to be displayed, there are 4500 ob-
jects (30- 150 = 4500) requested from the storage API. With the assumption that most
of these requests occur in the same time slice, this might produce a bottleneck in the
network. However, processing the texts in order to perform semantic analysis will also
produce a high load for the third party cloud services. Therefore, the concept cloud
introduces a caching. It only creates one concept cloud per time slice and only if it is
requested by a user who opened the concept cloud app (client-side). Then, the whole
retrieval mechanism and processing is only initiated, if the client cloud does not find
a recent version. The time slice is not a fixed parameter, it can be set flexibly accord-
ing to the teacher. A smaller value creates shorter time windows, resulting in more
concept cloud versions, more traffic, and less caching. The default value is set to one
minute. Also bigger values of the time window should not drastically influence the
results. During the interaction with the concept cloud, the learners do not work on
the production tools, so that the data model does not change. Setting the time win-
dow will affect the analytics view, showing a more detailed evolution of the concept
cloud.

120



4.4 Group Formation

4.4 Group Formation

Group learning is not a characteristic of the Go-Lab learning approach per se. How-
ever, collaboration is in the nature of inquiry-based learning. In Go-Lab scenarios,
collaborative learning can take place, but is not mediated or supported by the sys-
tem. Then, group learning has to be orchestrated in the classroom, with the inquiry-
learning space as a shared resource. However, we defined approaches that augment
the Go-Lab layer with computer-supported mechanisms to have automatic group for-
mation based on learner-generated content that has been created using the Go-Lab
system.

As Go-Lab does not support groups by default, there is no notion of groupings in the
system. Particularly the user management on the part of the underlying Graasp plat-
form does not handle groups. However, group work can be emulated on the concep-
tual level. Using a group ID as a shared login similar to an individual login helps to
circumvent the shortcomings of the Go-Lab learning environment on the technical
level. The collaboration is then coordinated in the classroom setting, while the ICT
is used to support the orchestration and initialization the collaboration, for example,
by displaying the groupings, giving instructions or even displaying learner or group
models. In the first approaches for skill-based group formation in Go-Lab (cf. chapter
5), this mediation is done externally based on the data in the learning analytics server.
For the semantic group formation (see section 4.4.2), this is realized using an app for
group support and group formation that is embedded into the learning space. On the
architectural level, it is integrated into the learning analytics infrastructure following
the concept cloud approach.

Learning scenario The envisioned learning scenario for group formation in Go-Lab
is a two-phase design. Initially, learners use Go-Lab individually in order to create
artifacts to express their knowledge or demonstrate their skills. These artifacts are
processed and interpreted by the system. We employ two different pedagogical goals
and respective learner models as a baseline for group formation. The first approach, a
skill-based group formation, infers skills from the analysis of the learner-generated ar-
tifacts and builds heterogeneous and homogeneous groups. We used this approach to
test how groups, depending on the heterogeneity, perform regarding learning gain.

The second approach, semantic group formation, takes the learner-generated objects
and creates a shared group knowledge model from the approach of this work rather
than inferring skills. Using this knowledge model, groups are formed satisfying a dif-
ferent criterion, namely knowledge complementarity. This follows the more inclusive
view on diversity, which emphasizes that we do not group highly-skilled students with
low-achievers, but assumes that we can define groupings where all learners benefit
from each other, as they have different levels of expertise.
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4.4.1 Skill-based Group Formation

This section covers the framework for the skill-based group formation. The model
consists of a composition of several features that correspond to performance related
characteristics such as learners’ skills like text writing or concept mapping. Com-
plementary to the skills, affective components, particularly motivational scores have
been included into the feature set of the model. In this part of the work, an overview
of all measurements used and their backgrounds is provided. The conceptual model
has been applied in an experiment using the Go-Lab environment. This experiment
is described in section 5. This exploratory work is tailored to the scenario of the eval-
uation and thus does not provide an exhaustive set of features that suits all possible
scenarios. This is rather a cutout of several features that have been identified as rel-
evant for this particular Go-Lab learning space in the frame of this group formation
scenario presented.

Group Formation Processing Chain

We define a heterogeneous learning group as a learning group, where each member
has different performance characteristics. The learners produce artifacts during an
inquiry-based learning scenario as described in the experimental setting. The arti-
facts, particularly learning objects, and the assessment of motivational scores form
the data set for the group assignment. These characteristics span a feature space. The
vector, which contains the scores for a single student, is called feature vector and is
an element of the feature space. To use simple Euclidean distance measurements in
such a vector space, the feature vectors are normalized.

In total, we capture the performance characteristics through six artifact-related and
three motivational scores, leading to a nine-dimensional feature space. In terms of
classroom size, the dimension is too high to produce meaningful clusters. To tackle
this curse of dimensionality, we perform a feature selection to minimize the dimen-
sion to a plausible number derived from the number of students and groups.

Features for the Group Formation

To decide whether a group is heterogeneous or homogeneous, different performance
characteristics that serve as features for the group formation have been captured.
These incorporate not only artifact-based assessments on concept maps and small
texts, but also motivational assessments based on the SMTSL questionnaire (Tuan
et al. 2005). The following section lines out different measurements of these perfor-
mance characteristics. However, for the experimental study of the skill-based group
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formation, a subset of these features has been consulted, which is presented in chap-
ter 5. Although the composition covers all of the skill categories presented in the fol-
lowing, the number of features is restricted in the experiment due to a low sample size
compared to the relatively high dimensionality.

Concept maps Concept mapping can be characterized as a technique for the exter-
nalization of knowledge structures (cf. section 2.1.2). A learner creates a concept map
by connecting concepts that are considered important for a given domain by labeled
relations. Since concept maps reflect individual learners’ structures of domain knowl-
edge, these artifacts are particularly suitable to characterize students in addition to
knowledge tests (Stoddart et al. 2000). In order to use the concept maps of students
as parameters for group formation, a quantification or rating of the learner-generated
artifacts is needed. One approach is to compare a concept map to a reference map
created by a teacher, tutor or (domain) expert (Conlon 2004; McClure et al. 1999). This
requires a matching of concepts between both maps by comparing labels. This can be
done automatically by using computer linguistic methods (Conlon 2004; Hoppe et al.
2012). However, this is not trivial and can lead to a wrong matching. For the study pre-
sented in section 5 it was important to measure the impact of the group formation on
student performance as accurately as possible. Therefore a manual processing step
has been introduced in order to avoid biases introduced by an automatic matching.
However, the processing of concept maps among other artifacts for the knowledge-
based approaches (semantic group formation, concept cloud) has been performed by
using semantic technologies.

Formally, concept maps were described as multi-graphs and thus can be character-
ized using measures from (social) network analysis (cf. section 3.2.3). A concept map
cm consists of a set of concepts Ng and a set of relations Es. Each concept map is
compared to an expert map (e.g., by a teacher) with the concepts N and relations EE.
Five different measures were calculated, whereas the last one is a combined measure
based on a regression model:

Node precision Node precision measures the ratio between correctly defined con-
cepts and student concepts. Correctly defined concepts are student concepts
that can be matched to the expert concept map.

|Ns|N|Ng|

nplem) = =Ny

Node recall This measure indicates to which extent the concepts in the expert map
are covered by the student map.

[NsIN|NE]|

nricm) = INg]
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Edge precision Edge precision characterizes the fraction of connections (edges) in
the student concept map that can be also found in the expert concept map.

|Es|N|EE]|

eplem) = =g

Edge recall Edge recall is defined as the fraction of edges in the expert concept map
that can be found in the student concept map.

|Es|N|EE|

er(cm) = B

HEW measure Hoppe et al. (2012) introduced a quality indicator for concept maps
based on the comparison of a concept map to a given ontology. Such an on-
tology extends a static expert map by inferred items such as synonyms. The
measure was obtained based on empirical observations of structural properties
that correlate with expert quality judgments.

[Ns| + 7|Eg| |Ns|-|[EsnEg|
1+3|NsNNg| 1+6|EsNEE]| 1+6|Eg|-INsNNg|*

hew(cm) =

As such, this set of measures is limited regarding a reliable assessment of the students’
actual skills, as it rarely covers domain knowledge. However, these measures con-
tribute to the creation of heterogeneous and homogeneous student groups by provid-
ing discriminating factors of learners that match performance criteria. In this sense,
the features do not necessarily answer the question of which students produce better
concept maps but they give insights into which students produce different concept
maps, and thus have different characteristics. The approach of semantic group for-
mation incorporates knowledge models into the grouping (cf. section 4.4.2).

Text writing Since text analytics and approaches of text mining still had huge deficits
regarding the automatic evaluation of artifact quality or writing skills, a non-automatic
measurement for the text quality characteristics has been used. Those shortcomings
specifically occur in short learner-generated texts in STEM fields (Leeman-Munk et al.
2014), while promising technologies to extract structural semantic information such
as DBpedia Spotlight put their focus on representing declarative knowledge (Manske
and Hoppe 2016). As a caveat, there is a difference between automatic quality assess-
ment of learner-generated texts and an automatic extraction of keywords. Particularly
(automated) semantic technologies have the potential to produce much better results,
which is presented in section 7.9. The assessment of text quality used in this work has
been performed by measuring the concept coverage based on teacher solutions and
manual coding of the concepts from the student and teacher solutions. The coverage
simply counts the ration between correct learner concepts and teacher concepts. An-
other feature extracted is the number of concepts in the student text and the number
of words.
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Motivation Curiosity or personal preferences might have an impact on the learning
results, particularly in collaborative science-learning. It is obvious that motivation is
one of the key ingredients for a successful group work. However, a variety of moti-
vational components have been identified in the literature. To measure motivation
towards science, Tuan et al. (2005) developed a questionnaire using six scales: self-
efficacy, active learning strategies, science learning value, performance goal, achieve-
ment goal, and learning environment stimulation.

To assess science motivation suited to the Go-Lab scenario that has been evaluated in
section 5, the SMTSL questionnaire has been shortened. In the version used it mea-
sures three different categories of motivation: (a) self efficacy, (b) science learning
value, and (c) learning environment stimulation. Although motivation is one of the
features used for the clustering, it can be seen more as a filter or a side condition to
ensure that each group consists of enough motivated students. The questionnaire
also consists of items that are of interest regarding group activities. For example, the
category self efficacy contains the item: "During science activities, I prefer to ask other
people for the answer rather than think for myself." For the featurization, a score is as-
signed to each category corresponding to the underlying scale of the questionnaire.
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4.4.2 Semantic Group Formation

The learning spaces in Go-Lab help to orchestrate inquiry-based learning activities
which are structured in subsequent inquiry phases. Spaces can be enriched with re-
sources and supportive apps to scaffold the activity. Specific apps enable the students
to generate knowledge artifacts such as texts, concept maps or hypotheses. Due to the
heterogeneity between different artifacts of these types, the interpretation of learner-
generated content is challenging for students and teachers, which underlines the need
for an aggregated representation of the content to support learning and knowledge
building on an epistemic level (Zhang et al. 2009; Wilson 1996). The use of compu-
tational methods of semantic extraction has the potential to support students and
teachers in understanding and reflecting on their activities in the Go-Lab environ-
ment (Manske and Hoppe 2016). Particularly when it comes to the orchestration of
heterogeneous learning groups, it is challenging for a teacher to compose groups of
complementary knowledge.

To meet this objective, a framework system to enable semantic extraction from learner-
generated artifacts has been proposed (Manske and Hoppe 2016). Facilitating this
approach and the given Go-Lab environment, an app and an algorithm for group for-
mation in this sense have been developed. The semantic group formation uses se-
mantic extraction from learner-generated content to create heterogeneous learning
groups in terms of knowledge diversity. In contrast to former score-based quantita-
tive approaches (Manske et al. 2015c), this follows the idea that a group benefits from
its students’ complementarity and diversity (Hoppe and Ploetzner 1999). Figure 4.10
shows the idea of grouping learners regarding knowledge complementarity. Tradi-
tional approaches for group learning, such as the Jigsaw approach by Aronson et al.
(1978), rely on the idea that learners complement each other by having different areas
of expertise. The original Jigsaw model consists of three different group phases. For
the first phase, Jigsaw groups are created, where each learner has an individual topic
or task referring to his or her field of expertise. After a certain time, each expert will
be assigned to an expert group, which consists of all experts for a certain topic. Dur-
ing the second phase, the experts exchange their knowledge and results, or elaborate
further on the tasks. Finally, for the third phase, the experts go back into their Jigsaw
group and report on the results. To retain the findings, this phase might be enriched
by additional tasks.

However, the approach of the semantic group formation goes beyond the Jigsaw model,
as it provides a more general approach that does not need an adaptation of the ped-
agogical design (different tasks for different experts in Jigsaw). Further, the semantic
group formation quantifies knowledge and knowledge diversity by analyzing learner-
generated content. As a consequence of not changing the pedagogical model, all
the students have the same prerequisites when finishing the individual phase (expert
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Figure 4.10: The goal of semantic group formation is to maximize knowledge comple-
mentarity.

phase in Jigsaw). Since the semantic group formation performs an optimal grouping
regarding the knowledge diversity, this leads to a fair and explainable group forma-
tion. Thus, the semantic group formation relies on the principles of analytic models
(Hoppe and Ploetzner 1999) and Jigsaw (Aronson et al. 1978). The expert knowledge
that is usually created during the expert phase in Jigsaw is assigned by the semantic
extraction. Then, the semantic group formation algorithm calculates groupings that
benefit of situations of complementary knowledge, but with the flexibility of a variable
group size.

Data Model

In this section, an algorithm for semantic group formation and the developed app that
facilitates this algorithm in Go-Lab is described. It follows and advances the approach
of score-based grouping (Manske et al. 2015c¢). In the former approach, features have
been extracted automatically from student artifacts using quality indicators. In this
sense, a skill is a composition of scores that represents artifact-specific features, e.g.,
the complexity of a student’s concept map, or the number of teacher-defined key con-
cepts covered by a student’s text. A deficit in this approach is that similar scores do not
imply similar fields of knowledge. Therefore, heterogeneity rather refers to diversity
in skills than to diversity in knowledge. To effectively form groups, the knowledge di-
versity over all groupings is maximized.

Depending on the approach of the shared group knowledge model (cf. section 4.2),
each artifact type needs its own mechanism to extract the relevant concepts. The gen-
eral approach for a concept extractor is to map an artifact to a list of concepts that
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represent its knowledge items. All concepts of each student are aggregated into a uni-
fied data model. The data model mainly represents the relation Rcc over the sets of
learners (L), artifacts (A), phases (P), and extracted concepts (C):

RcccLxAxPxC

On the technical level this data model is encoded in a structured JSON-based format
with contextual information corresponding to the virtual learning environment and
redundancy, e.g., for a client-side/hybrid caching module and retrieval.

Semantic Group Formation App

The semantic group formation app (see figure 4.11) has been implemented using web
technologies and has been integrated into the Go-Lab environment. The app pro-
vides additional information to the teacher such as the participation of learners (e.g.,
artifacts that are not produced or required artifacts). If the app is present in a Go-Lab
learning space, it can be used to calculate a group formation. Based on the learner-
generated content in the space it creates a concept cloud and the corresponding data
model. Following an optimistic learner model approach (cf. section 4.1.4), the data
model approximates the total knowledge of the cohort providing an upper bound. To
perform the group formation, the data model is then retrieved from the server and
used to calculate the optimal groupings.

The design of the group formation app has been influenced by several pragmatic de-
cisions. In such a heterogeneous environment as Go-Lab, teachers have the flexibility
to orchestrate learning spaces according to their own and their students’ needs. How-
ever, learners do not necessarily perform all tasks they have been prompted to. Some
of them produce minimal or non-existent solutions or leave out several tasks. How-
ever, a group formation app that will be used in large-scale implementation projects
such as Go-Lab has to produce valuable output in most of the cases. Therefore, the
app has several degrees of freedom to deal with missing artifacts or even with the
exclusion of specific learners from the grouping algorithm. Teachers might want to
specify that certain artifacts shall be replaced with another solution (from another stu-
dent or an artifact from the teacher). Therefore, the app provides information about
the state of missing artifacts and the percentage of participation in certain tasks. Apart
from the grouping, this app provides valuable information to monitor the progress of
learners in terms of artifact creation and participation in the different inquiry phases.

Two of the big challenges for algorithms that are used to support orchestration of
learning, are trust and transparency of the used representations and data structures.
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Figure 4.11: The user interface of the semantic group formation app.

This problem of a missing interpretability is persistent in different fields, where au-
tomated decision making takes place, for example in machine learning (Doshi-Velez
and Kim 2017). Modern approaches of machine learning and artificial intelligence
reach out into our everyday lives and have a big societal impact (Abdul et al. 2018).
Apart from the urgent need in many fields to provide cutting edge and high perfor-
mance algorithms to achieve near-realtime behavior, explainable AI (XAl) is another
recent trend in the research (Adadi and Berrada 2018). In other fields like educational
technology, there seems to be a consensus that a weaker algorithm (in terms of preci-
sion or accuracy) is preferable when the results have a better interpretability. Beyond
the developers and researchers, teachers and students as the first-class stakeholders
need to have trust in the technological artifacts in order to adopt technology in their
working practices. This has two practical implications:

1. We do not use a greedy algorithm to form groups. Greedy algorithms might
produce only a local optimum, which makes it difficult to trust the results in
a setting, where the teacher might have some better knowledge about his or her
learning group.

2. Interpretable visualizations of the results and the approach of the algorithm it-
self are needed. Therefore we designed a visual representation that helps to ex-
plain the results by explicitly showing the knowledge complementarity and the
knowledge overlap. As a consequence of the interpretability, unwanted, miss-
ing or incorrect results might raise the need on the part of the teacher to place
corrections, which can be done in the web interface. This can be achieved, for
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example, by adding synonyms for concepts, as well as by editing or excluding
particular student artifacts.

Group Formation App
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Figure 4.12: An explicit representation of the shared and distinct concepts in the se-
mantic group formation app.

The visual representation of the entities in the group formation can be seen in figure
4.12. It shows the distribution of knowledge items in a learning group of three stu-
dents (B09, B11, and B20). Some concepts are used by several students and thus over-
lap, which is indicated by the concept location and color. The relatively small overlap
and the magnitude of unique concepts in this group stand for a high knowledge diver-
sity according to the presented definition. This visualization helps to identify distinct
and unique concepts and also explains the results of the algorithm. Such a visualiza-
tion of cognitive information can be used in combination with instructions as part
of the educational or pedagogical design as a cognitive group awareness tool. This
approach has been evaluated using the semantic group formation and an additional
visualization that makes the distinction of learners’ knowledge easily quantifiable by
displaying knowledge differences in a bar chart (cf. section 7).

Diversity Score

The measure for the diversity of a cohort is the product of the groups’ diversity scores.
The groups’ diversity scores follow a model where the complementarity of knowledge
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4.4 Group Formation

items between two students in terms of the concepts they used influences the scoring
positively. While similarity scores such as the Jaccard index quantify the overlap of two
sets, their complement can be used to characterize the diversity, namely the Jaccard
distance. This operationalization quantifies the diversity based on the complement
of sets. All pairwise calculated diversities between two students’ concept sets con-
tribute to the group diversity score D(g). The following formula for the diversity of a
cohort L is constructed based on these premises (with J(a, b) representing the Jaccard
similarity of pairs of students in the student group Sg)

]-_](ayb)
C

pw=[]D@=]] X

gelL g€l a,beSy

The weighting C is calculated as the number of possible (pairwise) combinations of
students. This normalizes the sum of all diversity scores inside a group respecting
that the number of students per group might differ. Otherwise, the scoring leads to
major benefits of diversity scores for bigger groups caused by a combinatorial explo-
sion. The number of all pairs of students in a group Sg corresponds to the binomial
coefficient.

=[Sl - (n=1)-n
2 2

According to the definition of complement from set theory, the calculated diversity
measure using the Jaccard index as proposed, characterizes the relative complement
of the sets. Of course, it would be possible to reformulate the calculations based on an
absolute complement that considers the whole set of concepts from all learners. How-
ever, from an application perspective, it is desirable to create learning scenarios and
situations in which the participants benefit from the group knowledge model. This
is mediated through social interaction, particularly in explicit knowledge exchange
phases and does not necessarily need the whole class as a reference point or as a
continuum for the knowledge (cf. section 7). This is different for individual cases
of learner support, where the diversity inside a class can be measured to quantify the
knowledge distribution without explicitly relying on social interactions.

Algorithmic Complexity

For the estimation of the run-time complexity, we exclude the case of the random
sampling for simplicity reasons, as it only introduces a constant factor. To estimate
the number of possible groupings for the group formation, we reduce this to a parti-
tioning problem of sets. The pairwise diversity scores are calculated in advance in a
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diversity matrix using Jaccard distance. As the Jaccard distance is based on calculating
an intersection and union of two sets, which can be done in O(m - logn) (Baeza-Yates
2004), the diversity calculation step can be performed in O(n3logm). With the precal-
culated results, the calculation of the diversity for each partition can be boiled down
to a lookup of pairwise scores in the matrix, which contributes as constant time O(1)
to the complexity. However, in total, the systematic partitioning of the groups con-
tributes the most to the computational complexity.

Let L be the set of learners with L = {s1, s,..., S;}, and n = |L| be the number of learn-
ers. The bounds of the allowed group sizes are given by a and b, where a is the lower
bound and b is the upper bound of the group sizes. In this sense, for the allowed group
size k is a < k < b. Furthermore, the flexible group size allows different numbers of
partitions n, with p < n, < g. The minimal partition size p and the maximal partition
size q are calculated as follows:

=l 13

The Stirling Number of the Second Kind can be used to calculate the count of all parti-
tions within the given bounds. It is defined as follows: Stirling Numbers of the Second
Kind, denoted by S(n, k), is the number of ways of partitioning a set of n elements into
k non-empty subsets (Abramowitz and Stegun 1965). The closed form of the generat-
ing functions to calculate the numbers is the following:

1 & k
, —— _1 _ I%7)
S(n, k) i iz=0( )k l(i)l

Within the scenario of forming groups, for example, creating dyads from 10 students
will lead to a partition into 5 subsets. The Stirling Number of the Second Kind quan-
tifies the different ways to form the groups. Consequently, the flexibility of the group
size adds up the different kinds of partitioning related to the given group boundaries
p and q. Therefore, the total number of partitions N can be calculated as

q
N= S(n, k)
k=p

Corcino et al. (1999) provide an asymptotic approximation for the Stirling Number of
the Second Kind with S(n, k) ~ ’%, so we can conclude that the run-time complexity
of this algorithm is roughly estimated by

(%)
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4.4 Group Formation

Example. For a group of 9 students (n = 9), a teacher specified that the group size
should be between 2 and 3. With a =2 and b =3 follows p = [3] =3, = | 3] = 4.

With §(9,3) = 3025, and S(9,4) = 7770, this results in 10795 possible partitionings of
the set of students:

4
N=) S(nk) =59,3)+S50,4) =10795
k=3
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4.4.3 Comparison

In this chapter, the approach of semantic group formation has been presented. Al-
though Go-Lab is not collaborative per se, it has been shown how group formation
can be applied to inquiry-based learning scenarios in Go-Lab. The main benefit of
this work is the provision of tools for teachers to manage knowledge diversity in class-
rooms. On an argumentative level applying such algorithms in a group formation
scenario is more plausible than a score-based group formation. Although the seman-
tic complementarity induces a heterogeneity (in knowledge), the differences in skills
or scores do not necessarily represent this. However, on a semantic level different
concepts might be grouped to similar or even synonymous terms. In future work,
ontologies or other external knowledge representations might be used to tackle this
issue of incorporating semantic closeness. According to the visualization of the group
compositions in the presented "Semantic Group Formation App", similar visualiza-
tions that explicitly show semantic closeness or knowledge complementarity can be
presented to the learners in a group learning scenario following Bodemer’s idea of
cognitive group awareness (Bodemer and Dehler 2011).

The main focus of this chapter was to better quantify the notion of heterogeneity
in knowledge and to operationalize the concept of knowledge diversity. Therefore,
a group formation algorithm that forms groups based on the complementarity of stu-
dents’ knowledge with the goal to maximize the overall coverage and minimize the
overlap has been implemented. The grouping has been visualized with respect to the
group members’ shared knowledge. The user-interface has been evaluated with a fo-
cus on this visualization in a small expert group (6 instructors familiar with Go-Lab) in
a questionnaire. The experts’ questionnaire aimed at evaluating the user experience
regarding the visualization of the student models and the shared knowledge inside
learning groups. This was generally perceived as relatively useful by the experts (M =
2.20, SD = 0.84, 1 = useful, 4 = not useful). Negative aspects are the color scheme and
the comparability across different groups, as the interface does not allow reviewing
groups in parallel. However, the approach to feed back the cognitive information into
the learning scenario has been evolved to a cognitive group awareness tool (CGAT) in
order to benefit from knowledge complementarity in the sense that an explicit knowl-
edge exchange phase has been implemented. Thus, the learner can make use of this
constellation during this phase, for example, by asking each other questions and by
initializing a fruitful collaboration (cf. section 7).

As a limitation of this work, a focus has been put on skill-based heterogeneity and
knowledge-based diversity in the comparison. However, other measures for diversity
and heterogeneity exist in the literature. Entropy measures have been applied to mea-
sure the diversity in population distributions (White 1986). In the field of ecology, the
types of species are of interest and accordingly the operationalization of diversity in
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this area. There, itis a common task to measure and quantify the variations of species,
particularly the effective number of species, the so-called "true diversity". A variety of
definitions and ways to calculate diversity exist. While there have been efforts to cre-
ate a unified notion and interpretation of diversity measures based on entropy (Hill
1973), a consensus of different measures is not generally given. They are even de-
clared as being conflicting in their notion and behavior as far as being meaningless
(Hurlbert 1971). However, the different diversity indices imply their own interpreta-
tion of “diversity” and many have been applied in other fields than ecology. A popular
measure is the Gini index for (individual) diversity, which exists in a variety of forms
such as the extended Gini and the Gini decomposition that are used for inequality of
other distributional phenomena that incorporate a custom weighting (Lerman and
Yitzhaki 1984; Xu 2003; Taagepera and Lee Ray 1977). This index can be used to char-
acterize "the degree of diversity of each individual from all other members" (Ceriani
and Verme 2015). In contrast to the knowledge management approach presented in
this thesis, such measures quantify how one individual contributes to the sum, i.e., it
lines out a distribution of inequality. Thus, it rather renders a divergence than a com-
plementarity, which is supposed be the desired operational model for diversity in the
foreseen learning scenarios. Particularly, such measures cannot be easily adapted to
meet the goal criteria used for the group formation algorithm and though optimize
the output. Still, such measures have the potential to serve as a quality indicator for
imbalance. However, the diversity scoring presented in this thesis as part of the se-
mantic group formation tends to balance the diversity scores across the groups (com-
pare section 7).
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Group Formation

There is an increasing interest in student-centered teaching methods with small group
learning as an important ingredient. In this section, we present a study in which
the performance of heterogeneous and homogeneous learning groups has been com-
pared in a technology-enhanced classroom setting in the area of STEM learning. The
group formation was based on learning analytics results that were considered in a
semi-automatic formation process. The analytic methods used incorporated differ-
ent artifact-related characteristics, but also motivational features as input. We ob-
served that the heterogeneous groups outperformed the homogeneous ones in dif-
ferent ways. The results of the study are analyzed using quantitative and qualitative
approaches on both the individual and the group level. This section is based on a
publication for the CSCL conference in 2015 (Manske et al. 2015c).

Ly

Figure 5.1: The collaboration took place off-the-system when the students experi-
mented in small groups within the Go-Lab learning environment.
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5.1 Experimental Setting

This section covers the experimental setting of the study. First, we describe the Go-
Lab platform which will be explained in line with the implemented scenario. Apart
from the technical system, we explain the didactic goals and the production of learn-
ing objects by the students during this scenario. These artifacts were used for the
assignment of groups and the assessment of performance characteristics.

The learning activity was split up into two phases: the first phase consisted of individ-
ual student work for the initial assessment of performance characteristics. The tasks
that the students had to carry out involved writing a short text to describe a simula-
tion, and creating a concept map from different learning resources. A motivational
questionnaire captured their interest and motivation in science. These characteris-
tics served as an input for the group formation, which was used in the second phase
of the study. Here, the students performed an inquiry-based learning task in groups.
The task objective was the online experimentation with a virtual lab of an osmotic
power plant.

Phase 1: Individual Work (90 min)

Questionnaire — motivation

Creation of artifacts
- CM
- Wikis student skKills

Phase 2: Group Work (90 min)
Knowledge test (pre)

Knowledge Exchange: Concept Map Aggregation
Online experimentation (Osmotic Power)

Creation of artifacts: group report & CM

Knowledge test (post)

Assessment & Analytics
Artifacts and interactions

Figure 5.2: The design of the study consists of two parts: the results of the individual
phase have been used to form groups for the second phase.

The outcome of the second phase was both a concept map and a written report per
group. The concept map should describe the parameter model of the power plant,
and for the report the students had to formulate a short summary about their find-
ings. This was supposed to include a critical reflection about the usefulness of osmotic
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5 Evaluation of the Skill-based Group Formation

Table 5.1: The features presented in this table have been used as a basis for the skill-
based group formation.

CM: CM: Wiki: Motivation: Motivation:

Learner  Cluster HEW Node Recall Coverage SelfEfficacy SLV Group
S1 0 0 0.10 0 0.9 0.63 G5
S2 2 0.02 0.10 0.7 0.1 0.75 G4
S3 0 0.12 0.3 0.8 0.7 0.38 G2
S4 0 001 O 0.1 0.6 0.25 G6
S5 2 0.42 0.40 0.3 0.6 1 G3
S6 2 0.42 0.50 0.4 0 0.75 G2
S7 0 0.28 0.3 0.2 0.3 0 Gl
S8 0 0.001 0.20 0.5 0.7 0.63 G5
S9 2 0.36  0.40 0.5 0.1 0.5 G4
S10 0 0.14 0.20 0.6 0.7 0 G6
S12 1 1 1 0.3 0.5 0.5 G3
S13 2 0.66 0.60 1 0.6 0.75 Gl
S14 2 0.58 0.50 0.6 0.3 0.63 G4
S15 1 0.54 0.50 0 0.8 0.63 Gl
S16 0 0.41 0.40 0.5 0.4 0.25 G5
S17 1 0.55 0.60 0.1 1 0.13 G2

power under different aspects, e.g. sustainability, effectiveness and dependence of
the location. Four explicit assignments guided the students through the scenario and
provided a scaffold for the report. However, no formal structure was given in order to
promote an open-ended range of possible solutions. The schema in figure 5.2 sum-
marizes the design of the experiment. This schema represents how learner-generated
artifacts are used within the two-phase design in order to extract features such as mo-
tivational or skill-related scores. Then, the group formation is based on this featur-
ization, whereas the operationalization follows the description in section 4.4.1 of this
work.

Only the most distinctive features have been selected using a variance-based dimen-
sion reduction to deal with a relatively small set of learners. The following features
have been used for the group formation in this study: (1) HEW-measure, (2) node re-
call, (3) motivation: self efficacy, (4) motivation: science learning value (SLV), and (5)
wiki term coverage. The third category of science motivation is left out as it is not
distinctive. The learners’ score in the category "learning environment stimulation” is
inverse to the "science learning value" score and thus does not provide any additional
value to the input of the clustering. Table 5.1 shows these features and the respective
results of the clustering and the group formation. Groups G1-G3 are heterogeneous
groups (selection from different clusters) and groups G4-G6 are homogeneous groups
(each group is selected from the same cluster).
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5.2 Learning Scenario and Goals

The calculation of the actual group formation is based on a k-means clustering us-
ing the aforementioned five features. These features were fed into the clustering as
an input for the k-means algorithm with three clusters due to a desired group size
of three. However, the number of students in the experiment was 16, which cannot
be divided equally into triads. Therefore, two dyads (G3 and G6) were created. The
three clusters represent different skill-related characteristics derived from the used
features. Our underlying definition is that a heterogeneous group consists of differ-
ent characteristics, whereas a homogeneous group is composed of learners with sim-
ilar skills. Therefore, these clusters have been used to assign groups the following:
Heterogeneous groups are formed using a selection from different clusters, while ho-
mogeneous groups are created by sampling from within a cluster of equally skilled
learners. In the procedure of the experiment, heterogeneous groups are created first
by a random selection from different clusters, whereas the third group (G3) is a dyad
to balance the group sizes for the two conditions with a total of 16 learners. After-
wards, homogeneous groups are created by a selection of the remaining students and
grouped within same clusters. Cluster 2 only consisted at this point of three learners,
which immediately formed a triad G4, while cluster 0 was randomly divided into two
homogeneous groups (G5 and G6).
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Figure 5.3: The web-based learning environment with the interactive osmotic power
plant simulation (a), and a student using the concept mapper in this envi-
ronment during the study (b).

5.2 Learning Scenario and Goals

Figure 5.3 shows a screenshot of the inquiry learning space of the environment, which
has been used for this study, from the students’ perspective. The learning activity con-
sisted of different inquiry phases, which are displayed as "tabs" in the navigation bar
of the web environment and thus define a guided path through the inquiry process.

The main goal of our learning scenario is to understand the mechanism of osmotic
power and how the location of an osmotic power plant influences the power genera-
tion. The learning scenario demands multidisciplinarity from the students in a way
that knowledge from different subject domains such as biology, chemistry and physics
is used. Also competencies from different fields such as text writing, metacognitive
skills, concept mapping and inquiry skills are released during this experiment.

Critical thinking skills are demanded in the second phase of the study, where the stu-
dents perform the group work task. At the beginning of the group phases, they get
confronted with the “aggregated concept map” of all students (Manske et al. 2014),
which can be seen as a union of all concept maps represented as graphs. Figure 5.4
shows the approach of aggregating concept maps and figure 5.5 presents the aggre-
gated concept map of the individual maps from the experiment. Such a structure
contains useful and useless concepts and possibly wrong connections. This enforces
a critical group discussion about the correctness of specific parts. In the following,
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Concept Map 2

Concept Map n

Concept Map 1

Aggregated graph
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occurrences)

Figure 5.4: The conceptual model of the concept map aggregation.

students take this knowledge to create a new concept map capturing the parameter
model of an osmotic power plant, while they are also confronted with some ecological
factors of osmotic power and sustainability. Explicit assignments guide them through
this scenario although they have to structure a final report by themselves.

Such a complex and multidisciplinary scenario, which incorporates different skills
and competencies, possibly leads to a big diversity of the results. The students pro-
vide a non-standardized report as a final result, which does not allow a simple and
automated assessment. However, the benefits are in the qualitative evaluation of the
reports and the group observations, which shows that it is possible to track different
competencies and to have a detailed view on the students’ performances.
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Figure 5.5: The aggregated concept map of the individual maps from the experiment.
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5.3 Results

In this study we aimed to explore how group formation affects the practice of students
and their performance in collaborative learning activities. To that end, we formed ho-
mogeneous and heterogeneous student groups using a multidimensional clustering
schema based on artifact-related characteristics and personal traits such as motiva-
tional scores, as described above. In order to evaluate the practice of students we used
both a qualitative (expert observations) and a quantitative approach (learning analyt-
ics). In order to assess the students’ performance, we carried out pre knowledge and
post knowledge tests. In the following paragraphs, we present the results of the anal-
ysis and discuss the findings of the study.

5.3.1 Quantitative Analysis

The interaction of students with the learning platform was recorded in log files. We
used the log files to extract metrics of the students’ activity and further explore any
possible relation with qualitative characteristics and the overall knowledge gain. The
scores of the knowledge tests ranged from 0 to 35 points and we used them to assess
the learning outcome. Additionally, we defined the activity metrics portrayed in table
5.2 in order to evaluate the interaction of students with the learning platform.

Table 5.2: Activity metrics extracted from action log files.

category name description
learning platform #actions number of actions
duration (min) overall duration

avgtimegap (sec) time gap between consecutive actions (avg.)

concept map #concepts number of created concepts
#relations number of drawn relations
#add number of added objects
#update number of updates
#delete number of deleted objects

Table 5.3 shows the results of the knowledge tests per group. According to the re-
sults, the heterogeneous groups appeared to have a higher knowledge gain than the
homogeneous groups. The heterogeneous groups improved their score in the post
knowledge test on an average of 33% while the homogeneous groups improved their
score about 20%. In the current study, group homogeneity does not ensure that the
members of a group share similar knowledge background. For example, the members
of group G2 that is considered heterogeneous, scored similarly in the pre knowledge
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test (pre-STDEV = 0.5). On the other hand, the pre test scores of the members of group
G6 that is considered homogeneous, portray a big deviation (pre-STDEV = 6.50).

Table 5.3: Results of the pre and post knowledge tests for the groups.

Heterogeneous Groups Homogeneous Groups

avg avg
(het.) G4 G5 G6 (hom.)
Pre-test score 16.00 15.33 15.50 15.61 12.67 18.67 12.50 14.61
Pre-STDEV 1.41 4.78 0.50 2.23 2.05 1.70 6.50 3.42
Post-test score 23.33 23.00 23.50 23.28 16.17 24.00 15.00 18.39
Post-STDEV 3.40 4.90 0.50 2.93 3.32 1.47 5.00 3.26
Avg gain 7.33 7.67 8.00 7.67 3.50 5.33 2.50 3.78

Gl1 G2 G3

The results of the knowledge tests were studied in comparison with the metrics of user
activity. However, we were not able to draw any plausible conclusion for possible re-
lations. The groups’ activity, as portrayed in the log files of the learning platform, was
similar for all groups (see table 5.4). A common hypothesis made in similar studies is
that collaboration quality and knowledge gain are usually depicted in activity metrics,
i.e. intense activity will lead to a solution of better quality (Kahrimanis et al. 2011).
This hypothesis however was not confirmed in this study.

Table 5.4: Group activity metrics for heterogeneous and homogeneous groups.

Heterogeneous Homogeneous
Gl G2 G3 G4 G5 G6
#actions 30 57 56 38 56 60

duration (min) 23.82 48.42 21.67 16.77 25.67 29.75
avgtimegap (sec) 49.28 52.94 23.64 27.19 28 30.25

#concepts 13 28 24 19 23 29
#relations 10 25 28 12 23 27
#add 13 24 24 17 24 26
#update 12 24 28 14 23 27
#delete 0 6 1 2 2 4

5.3.2 Qualitative Analysis

During the group phase of the study, the users had to create a concept map based on
what they had learned and to write a report. A teacher rated both the concept maps
and the reports of the groups. This way, we wanted to ensure the findings from the
pre and post knowledge tests. The concept maps were rated in a [0, 8] range and the
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reports were rated within the range [0, 12]. The ratings of the teachers for the con-
cept maps and the work reports are presented in table 5.5. The results of the ratings
with respect to group homogeneity confirm the findings of the knowledge tests. The
heterogeneous groups are higher graded than the homogeneous ones for both the
concept maps (21.4%) and the final work reports (29.6%).

Table 5.5: Teacher ratings of the concept maps and work reports per group.

Heterogeneous groups Homogeneous Groups

Gl G2 G3 avg(Gl.3) G4 G5 G6 avg(G4_6)
Concept Map Scores 4 7 3 4.67 1 2 2 1.67
Report Scores 10 11 6  9.00 2 6 4 400

The practice of the students was recorded in transcripts by two experts who attended
the study. In addition, a third expert took general notes of the activity (e.g. notes
about the timeline and events that might affect the activity). From the analysis of the
transcripts, we identified three main group types: (a) Type A: One student operates
the computer, the others comment or guide him verbally, (b) Type B: Group members
change roles frequently regarding typing and directing and (c) Type C: One student is
actively involved in the task, the others watch silently or do not pay attention.

Two out of three heterogeneous groups (G1 and G3) were identified as type B. The
experts stated that even though they started out shyly, they managed to create a com-
mon ground and share responsibilities and tasks. They were enthusiastic about the
activity until the end and seemed to enjoy it. For the group G3 in particular, the ex-
perts noted that they did not communicated openly (talking or arguing, etc.) and
sometimes they were hesitant to act. Towards the end of the activity they did not in-
teract between each other, but they carried on working separately even though they
shared the use of the computer. This group scored highest in the post knowledge test
and the maximum knowledge gain. The third heterogeneous group (G2) was identi-
fied as type C. According to the experts’ observations, one particular student took over
the activity but continuously tried to involve the other members by giving detailed ex-
planations on every step of the process.

For the homogeneous groups, two were identified as type A (G4 and G5). According to
the transcripts, the students of both groups were hesitant in the beginning. For group
G4, it took them a considerable effort to start communicating and one student took
action in order to move forward with the activity. In group G5 one student appeared
to be more aggressive and active and dominated the activity from the start. Gradually
all students began to participate within their groups. For group G4, however, it was
too late to catch up while group G5 lost motivation towards the end. We think that
the time the individuals needed to coordinate with the rest of the group members was
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critical and in the end this is depicted in the learning outcome. The third homoge-
neous group (G6) was identified by experts as type C. According to the experts’ obser-
vations, one group member carried out the whole task while the other one was silently
watching. Despite the fact that the active student tried to involve the other member
in the activity, there was no collaboration or argumentation. Group G6 had the lowest
score on average in the post knowledge tests and also had the least knowledge gain.

It is worth mentioning that the groups which were identified as type C had the max-
imum group deviation in the pre knowledge tests (Pre-STDEV, see table 5.3). This
practically means that in both groups there was a “strong” student who eventually
dominated the activity. However, in the case of the heterogeneous group the knowl-
edge gain of group average was higher than in the case of the homogeneous group.
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5.3.3 Discussion

In this work, the effect of group formation strategies on students’ collaboration and
the learning outcome have been discussed. Analysis showed that the heterogeneous
groups increased their performance and appeared to have a higher knowledge gain
than the homogeneous groups. On an individual level, the students who were mem-
bers of heterogeneous groups had a knowledge gain of 33% on average while the
students who formed homogeneous groups improved their individual performance
of about 20% with respect to the pre tests. This finding was also confirmed by the
teacher ratings of the concept maps and the group reports. Heterogeneous groups
were graded higher than homogeneous groups for the quality of the concept maps
they provided through the learning platform and for the quality of the written re-
ports.

In order to assess the group activity with respect to collaboration quality, we used ac-
tivity transcripts where experts recorded their observations. The experts stated that
the students of heterogeneous groups adjusted their practice easier than the students
of homogeneous groups. They undertook roles and responsibilities faster and without
conflicts. Even in the case when they didn’t seem to communicate on a satisfactory
level, they managed to carry out the task efficiently. On the other hand, homogeneous
groups needed more time in order to create a common ground and to collaborate
effectively. In some cases it was even seemed to be impossible since some of the stu-
dents lost interest and others were unable to carry out the task in time.

Additionally, we used the log files of the learning platform to define metrics of user
activity. To that end, we followed popular approaches where activity metrics were in-
troduced as indicators of good collaboration quality or efficient group practice (Kah-
rimanis et al. 2010). However, it was not able to prove any relation between activity
metrics and the learning outcome. The group practice was similar in most cases with
respect to activity metrics and group homogeneity. It should be kept in mind that, due
to the study setup, one could argue that the activity metrics do not reflect group work
or collaborative practice and therefore it should not be expected to find a correlation
with the overall group picture.

5.4 Conclusion

To tackle the issue of how to engage students in sciences and capture their interest,
we propose the usage of rich inquiry-based learning scenarios, as demonstrated in
the Go-Lab project. Incorporating online learning with classroom presence leads to
blended learning scenarios. This gives the opportunity to take the collaborative parts
of the learning into the classroom, with all its benefits and challenges for the teacher.
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5 Evaluation of the Skill-based Group Formation

We propose a way to support the group orchestration through the application of learn-
ing analytics, particularly the analysis of learning objects and assessed motivation.
Finally, we conducted an experiment and applied methods of sequence and log file
analysis to validate our hypotheses through multi-level analysis.

The analysis of the presented results indicates that heterogeneous groups outperform
the homogeneous ones and achieve a higher knowledge gain. Thus, there is no ben-
efit of choosing homogeneous groups in terms of performance. Even when having
a group with only good performing students, they still do not perform significantly
better than heterogeneous groups. Nevertheless, they don’t compensate the weaker
performance in the other homogeneous groups with weaker characteristics. For the
class average, heterogeneous groups are better in sum, while it also covers basic prin-
ciples of fairness, which is reflected by a lower diversity between the groups’ perfor-
mances. Fairness is both a principle that can influence the motivation of studentsin a
further way but also underpins pedagogical decisions and thus is one of the important
steps towards successful internal differentiation of learner groups. The results of this
study cannot be generalized due to the small number of participants; however they
can serve as indications for group formation.
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6 Evaluation of the Concept Cloud
App

Explicit visual representations of domain knowledge have the potential to support
students who are engaged in scientific inquiry learning activities on an epistemic
level. This can be facilitated by using computational methods for the extraction of
concepts from student generated knowledge artifacts such as hypotheses, concept
maps, or wiki articles. We propose an application of this approach in the context
of inquiry learning with online science laboratories. The "concept cloud" is a scaf-
fold to render cognitive information in the sense of an awareness tool. As a cognitive
awareness tool, the “concept cloud” presents domain concepts and key phrases to
the learners in order to help them reflect on their own learning and knowledge build-
ing processes. As part of a learning analytics tool set, the concept cloud also sup-
ports teachers in supervising their students’ knowledge building from an epistemic
perspective. The approach has been tested in a classroom scenario with 84 secondary
high school students. This section is based on a publication for the International Con-
ference on Advanced Learning Technologies (ICALT) in 2016, which has been honored
with a best paper award (Manske and Hoppe 2016).

Figure 6.1: Individual work with the Go-Lab environment during this study.
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6 Evaluation of the Concept Cloud App

6.1 Experimental Setting

The concept cloud aims at supporting students’ reflection and epistemic aspects. It
is expected that students revisit and edit their generated artifacts and modify them
after spending time on the concept cloud. Therefore, the sequence of actions have
been analyzed in order to find these revision patterns. Additionally to the structure,
a condition to ensure a temporal closeness to the concept cloud visit has been de-
fined. Regarding these patterns, the time spent on the concept cloud, depending on
the different experimental conditions, has been investigated as well as descriptive and
activity-related statistics that might have implications on the learning activity. The
learners have been assigned to several experimental conditions:

C1: no concept cloud (control group)
C2: concept cloud with DBPedia Spotlight extraction
C3: concept cloud with AlchemyAPI extraction

C4: static concept cloud (pre-rendered) without updates

Condition C1 is defined as the control group. In this condition, the learners did not see
the concept cloud and therefore had no additional cognitive information in this learn-
ing space. To restrict possible confounding factors, hints to reflect about the gener-
ated content have been displayed and placed in the learning space in a similar way as
in the other experimental groups. The conditions C2 and C3 use semantic extraction
and represent cognitive information as described in the approach (compare section
4.3). In both conditions, different extractors were used: C2 uses the DBPedia spotlight
engine, and C3 uses AlchemyAPI. The engine using DBPedia Spotlight extracts do-
main terminology for which a Wikipedia article exists, which is useful particularly in
STEM fields. AlchemyAPI extracts key phrases from the given input. A more detailed
description of the extractors can be found in section 4.2.3. C4 can be seen as a sec-
ond control group, which also uses a tag cloud. Here, a non-interactive visualization
that consists of a static, pre-rendered image of the concept cloud from the prior run
of C2 has been used. Therefore, this condition shows a comparable visualization (on
the content level) that does not correctly match the input from the learner-generated
artifacts, although the tasks and the expected results are the same. However, differ-
ences are on the level of interactivity. The learners do not get any details such as the
information in which phases a particular concept occurs, or a notice about the ex-
act number of term occurrences across the learning group (only approximated as the
concept size implies this).
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6.2 Learning Scenario

6.2 Learning Scenario

The classroom experiment was conducted at a German secondary school in three
computer science classes and three didactic lessons each. 84 students aged fourteen
to eighteen years participated in the experiment. The objective of the learning sce-
nario for this study was to learn about basic encryption algorithms and the complexity
of decryption. Central to the ILS was an online lab to illustrate and practice encryption
algorithms. Figure 6.2 shows the inquiry learning space used in this experiment.

The ILS has been tested in a classroom setting as a pre-study setting (n=15). In a pre-
vious version of the ILS, we included the concept cloud as a separate inquiry phase.
During the Go-Lab project, there was a tendency to make such a reflection phase ex-
plicit in the design of an ILS and to provide on-demand tools for learners to reflect
on their learning and their artifacts (Mdeots et al. 2016). However, we found out in
the first trial that such on-demand tools have not been used more than superficially,
although the learners have been prompted to use it (Schneegass et al. 2016). For a
meaningful use of the concept cloud, we would have expected a certain retention time
on the app, as well as activity triggered by the concept cloud. This could have been a
revision of previously created content by the learners.

During the activity, each student created four short wiki articles, one concept map,
and a set of hypotheses. These artifacts were used for the assessment of performance
characteristics. The class was split up into experimental groups C2 (n=20), C3 (n=14),
and C4 (n=10) and control group C1 (n=40). In the test conditions C2, C3, and C4, the
concept cloud appeared in the ILS for the students. In the aforementioned pre-study
we found out that it is necessary to force the students to actively engage with the app.
Elsewise, if they only have it on demand in an additional phase that is optional for
them, they might skip it. The control group C1 used a similar ILS without the concept
cloud, but still with the instructions to reflect about previously created artifacts. The
teacher was advised to monitor the classroom activity and to stay passive.

6.3 Results

In the ILS about cryptography that has been used to carry out this study, the learn-
ers had to create artifacts first. Afterwards, they were instructed to visit the concept
cloud app that was embedded into the ILS design. After spending time on it, they
could move forward in the ILS. The concept cloud has been calculated dynamically
in conditions C2 and C3, whereas C4 has used a static, precalculated version of the
concept cloud that is equal to the one from C2. We assume that the learners see a rel-
atively similar concept cloud, due to the fact that the task progression in the lessons
has been synchronized explicitly by the teacher. Although the conceptual model for
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Figure 6.2: The Go-Lab ILS featured a cryptography lab and content about basic en-
cryption.

the semantic extraction is the same for both conditions C2 and C3, the semantic ex-
tractors used are different. In C2, DBpedia Spotlight has been used, while C3 used
AlchemyAPI. As a consequence, the information that has been presented to the learn-
ers was different. In contrast to the DBpedia engine (C2), the AlchemyAPI version
(C3) is capable of extracting phrases that are not exclusively declarative. For example,
phrases that encodes a procedural aspects like "needs brute force" (original: "bendotigt
brute force") or "26 trials" (original: "26 Versuche") have been extracted using this
API. Visualizing such information encodes and transports another kind of knowledge
(procedural). However, this extraction leads to a lower degree of aggregation, because
the phrases cannot be matched due to more differences, only the phrase "alphabet"
occurred multiple times. In total, 32 concepts (compound phrases; 71 terms in the
visualization) have been displayed to learners in the AlchemyAPI version of the con-
cept cloud for this study. In the DBpedia version, 22 concepts (25 terms) have been
displayed where most of the terms occurred several times. A higher degree of aggre-
gation leads to differences in the (visualized) size of concepts due to the number of
occurrences. This might put a preference for learners to reflect on larger concepts
while disregarding smaller concepts (e.g., "symmetric encryption"). However, these
concepts might relate to the cases where most of the learners have problems with.

152



6.3 Results

Contrary, a lower degree of aggregation poses the problem of dealing with a higher
number of concepts, therefore, having a higher cognitive load when using the con-
cept cloud.

AVG Number of Tool Actions (per Student)
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Figure 6.3: App-related user activity: number of revision patterns, concept cloud, con-
cept mapper, wiki and hypothesis tool actions.

An important aspect when dealing with these explicit knowledge representations is
to find out if students use them to cheat the system. For example, they could use all
the important concepts that have been used by the majority to create artifacts such
as concept maps that contain these key concepts without a deeper level of under-
standing or reflection. Therefore, we analyzed students’ action sequences to detect
this behavior. Indicators for this are certain revision patterns that involve produc-
tions. We investigated revision patterns (a) without non-productive actions, (b) with
production-only actions, (c) patterns separated per artifact, (d) time spent on each
revision, (e) concept occurrences in the concept cloud and each artifact, and (f) se-
quences of added and revised concepts.

These metrics and indicators have been applied to the sequence of learners’ activities.
A revision pattern occurs, when in the action sequence after the visit of the concept
cloud (cc) a jump to an prior tool occurs (toolVisit). However, this broad definition of
a revision pattern is chosen, to include revisions that show more a revisiting behav-
ior, where learners go back to an artifact after they have seen the concept cloud and
then spent some time to align their mental state with the artifact without changing it.
Metric (a) detects such action patterns in the semantic of [cc, toolVisit, phaseChange],
which indicates such a case of a non-productive revision as mentioned before, when
considering the metric for the time spent (d). For the time-based metric, a threshold
has been defined according to the observation in the classroom. A student who does
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6 Evaluation of the Concept Cloud App

not interact with the concept cloud leaves the visualization in less than 30 seconds. A
productive action would be marked, depending on the tool, as [cc, toolVisit, tool+], for
adding data such as a concept to the tool. Exemplary, the following revision pattern
has been extracted for a learner: ["WI+","CC","HY+"]. This encodes the sequence of
adding a new revision for the wiki and then switching to the concept cloud app. The
CC only occurs in the sequence, if the indicator observed a certain time spent on the
concept cloud. Afterwards, the learner goes back to the hypothesis scratchpad and
adds a new version. As the hypothesis occurs prior to the concept cloud app in the
sequence of phases, this indicates that the learner switched back in the phases and
revised the set of hypotheses in the scratchpad. In the data set, the patterns have
been isolated for each tool (c) in order to distinguish a more general revision behavior
from a targeted refinement of specific artifacts. Indicator (f) represents the revision
sequences for each tool. However, this analysis is only possible in the groups, where
revision patterns could be extracted (C2 and C3). The control group (C1) and the pre-
rendered concept cloud (static; C4) do not provide interactivity, user actions could not
be tracked in those conditions. Therefore, a measurement based on the action logging
was not possible in these groups. Although hypotheses play a major role in IBL sce-
narios, there are no relevant findings regarding the artifact analysis of hypotheses for
this experiment. We could not observe any significant findings regarding revisions af-
ter using the concept cloud, because none of the hypotheses that have been created
previously have been discarded.

When investigating the produced artifacts, it turned out that students who used the
concept cloud in the proper way created better concept maps regarding the coverage
of key concepts. We argue that a meaningful usage pattern would incorporate time
and certain consecutive actions. An ideal use of the concept cloud would be the fol-
lowing example: a student creates an artifact during the learning scenario that is later
followed by a reflection period when she uses the concept cloud. After a certain time,
she revisits the artifact and a) leaves it because she is satisfied with the relative qual-
ity compared to others, or b) edits the artifact and proceeds with the learning activity.
A problematic pattern can be characterized as an oscillation between artifact mod-
ifications and the concept cloud, which indicates the aforementioned “cheating the
system”-behavior. However, not a single case could be observed using this pattern on
the data from the experiment.

When we compare the ideal use cases of the concept cloud with the non-ideal cases
leaving out the “mock”-condition C4, (50 non-ideal, 14 ideal cases), we observe major
differences in the artifact creation. Concept maps have been created after using the
concept cloud. This implies that the results of the terms visualized in the app might
influence the creation of the map. The average number of concepts per concept map
is with 5.04 significantly lower compared to the average of 11.29 in the ideal group
(p < 0.01, unpaired two-tailed t-test). In all of the cases of ideal usages, the concept
maps were only with a few exceptions composed of relevant terminology according
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6.4 Conclusion

to the learning design (defined by the teacher), which implies that the concept map
quality in terms of coverage increases proportionally to the number of concepts. In
conclusion, concept maps created by “ideal” concept cloud users are likely to be bet-
ter than the maps from students who did not spend any or at least not enough time
on the concept cloud.

According to Wilson (1996), the development of epistemic fluency, and the ability
to become epistemically fluent, is potentially supported through rich information
sources. The concept cloud can be seen as such a rich information source, but only
when the learners participate actively. This seems to be in line with the findings about
generative knowledge construction from Wittrock et al. (1990). Concept mapping sce-
narios can be enhanced using the concept cloud application as an additional cogni-
tive scaffold. The finds from the experiment indicate that this combination supports
learners’ knowledge construction. Following this, the concept cloud is likely to be a
useful scaffold in combination with other production tools or inquiry apps.

6.4 Conclusion

In this work, the use of semantic technologies for learning analytics, particularly to
support the guidance of students, has been described. This section presents the eval-
uation of the concept cloud app, which has been designed based on the conceptual
framework presented in section 4. It facilitates the concept of semantic extraction
from learner-generated artifacts and aggregates knowledge items into a shared group
knowledge model. Therefore, the concept cloud app aims at supporting knowledge
construction and reflection on the part of the students. For teachers, it gives insights
into knowledge structures of the students in a learning group and therefore it serves
as a learning analytics tool for them.

The idea of content-related reflection is facilitated when it comes to the idea of teacher-
led inquiry. Teachers perceive and design their own teaching as an experiment, simi-
lar to an inquiry-based learning approach and further develop their teaching materi-
als (Emin-Martinez et al. 2014; Clark et al. 2011). The concept cloud app supports this
idea with the information presented. In contrast to "regular" mode where learner arti-
facts are processed, the concept cloud can be used to visualize the extracted concepts
from teaching materials. This supports teachers in the supervision and reflection of
their own materials, which might positively influence their planning and orchestra-
tion of learning materials by reviewing the usage of specific concepts across the differ-
ent inquiry phases. This has the potential to uncover potential inconsistencies about
key concepts that are relevant for a didactic unit or across different lessons. Future
evaluations need to prove the use of this application to support teacher-led inquiry
and its impact on the teaching quality.
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6 Evaluation of the Concept Cloud App

The conducted experiment demonstrated how learning analytics applications in con-
junction with inquiry apps support and scaffold learners in their knowledge construc-
tion, and teach them epistemic fluency on their way to become 21st century learners.
This idea is in line with the concept of relating multiple representations. Further, this
concept comprises the active integration of static and dynamic information into ex-
ternal representations. Bodemer et al. (2005) found out that this results in better per-
formance and potentially leads to a more systematic and goal-oriented experimenta-
tion in computer-supported inquiry-based learning.
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7 Evaluation of the Semantic Group
Formation and Group Awareness

One thread of existing research on small group learning has addressed positive ef-
fects of grouping learners with complementary knowledge, another one has focused
on representing and visualizing knowledge distributions to improve cognitive group
awareness. Although a combination of both seems obvious, this has not yet been in-
vestigated. Semantic group formation and cognitive group awareness are two con-
cepts that go hand in hand. The grouping is based on learners knowledge comple-
mentarity, which aims at supporting the initialization of collaborative processes, of
grounding phases, and acts as a transparent and explainable model of the grouping.
The information that is responsible for the results of the algorithm, namely the group
knowledge models, can be used to form the basis of cognitive group awareness tools
(CGAT). Thus, the work presented in this section, combined both approaches, namely
the semantic group formation as described in section 4.4.2 and a variant of a grouping
and representing tool (Erkens et al. 2016a).

An experimental study in a real classroom setting to investigate the effects of support
and the level of visualization of co-learners’ knowledge has been conducted. This has
been evaluated in a 2x2 mixed design approach with the following dimensions: The
levels of support have the conditions with group awareness and without group aware-
ness; the level of visualization is high or low.

The work presented in this section is based on the publication in the proceedings of
the CollabTech conference (Erkens et al. 2019). A detailed observation of one third
of the learning groups (6 out of 18) is presented with an analysis of the communica-
tion and coordination behavior of the knowledge exchange, where the learners gain
cognitive information throughout the group awareness tool. In addition, this thesis
presents an evaluation of the semantic group formation regarding the goal criteria
set for the semantic group formation, as described in section 4.4.2. This is driven
by the question, if semantic extraction has the potential to approximate and repre-
sent knowledge accordingly. As a hypothesis, the distributions of the targeted score
(knowledge diversity) are fair and even, if this information is used to form groups.
Further, it has been qualitatively examined to what extent learners with group aware-
ness support differ from learners without such support regarding the structuring of
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7 Evaluation of the Semantic Group Formation and Group Awareness

their communication and to which extent it can be traced back to the level of own
knowledge and to the knowledge distribution in the learning group.

Figure 7.1: The second phase was organized as group work with a shared resource.

7.1 Experimental Setting

The study has been conducted in a real classroom setting with 59 high school students
of a German upper secondary school. The 59 students have been distributed across
three classes of different sizes. Each class has been supervised by the teacher and
three researchers. However, the materials in the Go-Lab environment were intended
to serve as a self-regulated learning scenario. The learners used the Go-Lab learning
environment during the lessons. The sample had to be reduced to 45 after excluding
certain students due to absence in one of the parts (26 men; 19 women; mean age:
M =16.33, SD = 0.67).

The study was split up into two sessions, each of them had a duration of 90 minutes
(two lessons). The first session was organized as an individual phase using the Go-
Lab environment. During the work in this environment, the learners created artifacts
such as concept maps and wiki texts (cf. section 7.1.1). This was mainly intended
for the learners to acquire knowledge and to collect data as input for the semantic
group formation, and thus, for the cognitive group awareness tool. The second ses-
sion was organized as a collaborative phase. The learners were assigned to the groups
from the semantic group formation and shared one access to the Go-Lab environ-
ment. Therefore, most of the collaboration took place inside the classroom, while the
learner-generated artifacts were stored in the Go-Lab portal. In the beginning of the
collaboration phase, the learners used the group awareness tool and had an explicit
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7.1 Experimental Setting

knowledge exchange phase. Figure 7.2 shows the overview of the study design with
respect to the sessions and to the artifacts created by learners. The student-generated
artifacts have been used as a basis for the second session: (1) to apply the seman-
tic group formation algorithm, which forms groups for the collaborations in the sec-
ond session, and (2) to visualize the knowledge of all learning partners (see section
7.1.2).The schema of the two phases is inspired by the study presented in section 5.
The main differences are the used group formation algorithm (semantic group for-
mation) and a more explicit knowledge exchange phase based on the group awareness
information.

Phase 1: Individual Work (90 min)

Creation of artifacts
- Wikis

- Concept map

- Individual notes

Phase 2: Group Work (90 min)

Group 1 | Group, ?,

{ Group3

Knowledge exchange
based on the group awareness visualizations

Online experimentation (Osmotic Power)

Creation of artifacts: group report & notes

Assessment & Analytics
Knowledge distribution and
system performance

Figure 7.2: The schema of the two phases and the data collection in this experiment.

For conducting the study, the students have been randomly assigned to the control
group or experimental group, and have been further divided into dyadic or triadic
learning groups based on the semantic group formation algorithm that has been de-
scribed in the section 4.4.2. Due to the limited ICT resources in the school (techni-
cal defects of computers and network equipment) it was preferred to build triadic
groups in the larger cohort. To test the hypotheses, a 2 x 2 mixed factorial design
with randomly assigned group membership as a between-subject factor (CGAT’ vs.
"No CGAT’) has been used. Learners were asked to self-assess their questioning and
explanation behavior (as a dependent variable). Additionally, a detailed observation
of three learning groups from each condition regarding their respective sequences
and communication patterns has been made in order to verify the hypothesis that
the group awareness information presented has an impact on the collaboration.
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7.1.1 Learning Scenario

In the first part of the study, each student had access to a prepared inquiry learning
space in the Go-Lab environment (de Jong et al. 2014). The specific learning space en-
gaged learners with a project on the issue of energy transition and renewable energies.
As amotivation, the learners took the role of a member of the city council of "EnergyC-
ity", a fictional city. The learning scenario was driven by a decision problem, where
the learners had to decide whether EnergyCity should build an osmotic power plant.
This design is similar to the scenario of the skill-based group formation approach, de-
scribed in section 5. Changes were made in order to increase the knowledge diversity
and to have a better integration of the group awareness information into the learning
design. The narrative of the individual phase was that the learner will be interviewed
by a local newspaper. The interview was intended to act as a preparation for the de-
cision, but also to introduce argumentative components to foster a discussion and to
prepare arguments in advance. To have grounded arguments, the students were pro-
vided with learning materials on several related topics, such as osmosis and renewable
energies.

Individual phase The tasks of the individual part have been structured as follows:
First, learners were asked to write down answers to certain interview questions of a
local newspaper. These questions were related to more general topics such as "renew-
able energy" and "climate change". In parallel, the learners had access to the learning
materials. Furthermore, the learners had to create a concept map on "diffusion and
osmosis", which is about the physical background of the osmotic power plant. This
was necessary to prepare the work with the simulation, as some of the parameters
were not part of the standard curriculum, for example "permeability" of a membrane.
Afterwards, the learners had to write another short text on general assumptions of the
possible functioning of osmotic power plants. The tools to create (wiki) texts are, in
contrast to the previous version of Go-Lab, always present as an overlay that can be
hidden on demand (see figure 7.3).

Collaboration phase In the second session, which was conducted one week later,
students had another 90 minutes to learn collaboratively in their assigned learning
groups. In contrast to the individual phase, each group had access to a single com-
puter. Therefore, the collaboration was situated in-class, but the products were pro-
vided within the web-based Go-Lab environment. The instructions presented in the
ILS posed several collaborative tasks.

At the beginning of the collaboration, the learners have been instructed to had ex-
change their knowledge about certain topics. The goal of this phase was to create
a shared understanding within each group about osmosis, green and blue energy,
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Figure 7.3: The learners used the Go-Lab environment and performed concept map-
ping and text writing tasks within the ILS.

but also to exchange opinions. Based on the experimental condition (with/without
group awareness) they were supported in this process with a group awareness visual-
ization (for an example, see figure 7.5). This visualization presents the knowledge dis-
tribution, for instance a quantification of the relative knowledge differences of the co-
learners in each topic, visually represented as a bar chart. The control group also re-
ceived a visualization in form of a topic list, but without the bar chart. Leaving out the
visualization completely inhibits the risk of producing possible confounding factors.
This phase was restricted to 10 minutes. Afterwards the learners were instructed to
collaboratively write a text on the relevance of salt and fresh water for osmotic power
plants. For the preparation of the experimentation in the IBL setting, the learners had
to create hypothesis regarding the use of an osmotic power plant and the effectiveness
of the energy production. They received guiding questions to support the experimen-
tation in the laboratory. Finally, the decision problem framing this scenario could be
concluded in a final assignment, where the learners wrote a statement for the city
council as a wiki text.
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Figure 7.4: During the group phase, the learners had to create hypotheses (left) regard-
ing the osmotic power plant and to solve tasks using the simulation (right).

7.1.2 Group Formation
Grouping of learners with semantic group formation

The grouping is based on the algorithm of semantic group formation described in
more detail in section 4.4.2 and published in Manske and Hoppe (2017). The algo-
rithm takes the learner-generated artifacts as an input and creates an optimal group-
ing as an output. Therefore, it uses the presented architecture to automatically re-
trieve all artifacts, to process them, and to extract knowledge items using seman-
tic technologies for keyword extraction (cf. section 4.2.3). Although the use case
for text extraction is similar to the concept cloud approach, there are some changes
in the configuration. The extraction used was an NTA-based extraction using a do-
main dictionary. It has been enriched by an ontology, which added synonyms to
the dictionary. The dictionary-based approach was necessary to render the concept-
topic-relation, which is used for the group awareness tool. The initial dictionary was
hand-coded in order to create a gold standard for the evaluation of text analytics ap-
proaches. This dictionary includes the topics. A topic, can be seen as a labeled cat-
egory in this context. This induces a relation, where a certain concept is subsumed
by the corresponding category. Also, synonyms have been added to the dictionary
in a preprocessing step using DBPedia. The dictionary is simply structured as triples
(term,concept,category), for example ("CO2","carbon dioxide","Consequences").
This renders "CO2" as a synonym of the concept "carbon dioxide", which is grouped
at the category "Consequences".
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Based on the extracted knowledge items, the semantic group formation algorithm cal-
culates the optimal grouping according to a diversity measure as described in section
4.4.2. This resulted in 18 learning groups with a complementary knowledge distri-
bution: eight groups in the control condition, of which four were assigned to triads
and four to dyads, and ten groups in the experimental condition, of which six were
assigned to triads and four to dyads. Further, the results have been used to visualize
knowledge distributions.

Knowledge Exchange

During the individual phase of the study, the learners created artifacts, which have
been processed by the semantic group formation. The group formation produces an
optimal grouping based on knowledge diversity. According to this, the knowledge
distribution in each group is diverse. For the second phase of this study, the group
awareness visualization is constructed from the underlying data model, which has
been created through the semantic group formation. This emphasizes the seamless
connection between the model for the grouping algorithm and the cognitive infor-
mation that is displayed as a group awareness tool. The visualization is represented
as a grouped bar chart, which displays the knowledge distribution within each learn-
ing group. This provides more detailed information compared to presenting the pure
diversity score only. Each group of bars represents a the distribution per category
(topic) in the knowledge model. For each category, a certain number of concepts are
part of the overlay model. The bar length represents the relative number of concepts
matched by the particular learner. The length has been normalized according to the
maximal values inside each learning group.

As the experiment uses the group awareness support as a dependent variable, two
conditions that influence the information provided have to be distinguished:

1. CGAT: Learning groups in the experimental condition had additionally infor-
mation on their learning partner(s) available. This is presented as bar charts
displaying the knowledge distribution for each topic.

2. No CGAT: As members of the control group should exchange their knowledge
without group awareness support, they were provided with a (static) list of top-
ics corresponding to the individual learning phase. This corresponds to the la-
beling of the y-axis in the group awareness visualization.

Additionally, concrete absolute or relative (percentage) numbers have been removed
from the chart. Otherwise learners might have difficulties with the concrete quan-
tification of the items. By design of this study, it is more relevant to see if there are
knowledge differences in a particular topic, on which the learners can negotiate and
discuss. Thus, focusing rather on the relative differences to learning partners than
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Figure 7.5: Example visualization of a learning group from the experiment with cogni-
tive group awareness support.

on the correct quantification of the algorithm might help to reduce the cognitive load
for the learners and prevent a possible bias that results from challenging the system.
Figure 7.5 shows an example of the group awareness tool from the experiment, which
displays the knowledge distribution of a triadic group.

7.1.3 Observation

During the knowledge exchange, 6 out of 18 groups have been observed in detail
to learn more about their collaboration processes, in particular regarding the group
awareness information. This was imposed by the question, whether the information
influences or fosters the structuring of the knowledge exchange and if this is depen-
dent on a certain knowledge level and a knowledge distribution. In each of the classes,
one group with CGAT support and one group without support ((No CGAT’) has been
selected randomly. For the coding, one researcher has been assigned to a fixed group
and evaluated each utterance of the students with regard to their type. For the coding,
there were several differentiations:

* type: question (Q) or explanation (E),

* purpose: content-related (C) and organizational (O),
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* topic: the particular topic / item in the visualization.

The codings have been transcribed in a temporal order as a sequence of timestamped
actions. For example, if student S1 asks a content-related question on osmosis (Os)
and student S2 answers this question. Afterwards, S1 explains that they will have to
write this down into a wiki tool. In this case, the coding is S1: QCOs, S2: ECOs, S3:
EOOs. Using the coding of sequences helps to answer the research questions that
have been posed:

1. To which extent influence group awareness tools the learners’ structuring of
communication?

2. Does the level of knowledge or the knowledge distribution in a group influence
the communication and structuring?

Regarding the first research question, an observation of the actual communication se-
quences can be useful. It can be reasonably assumed that the learners usually struc-
ture the communication about the topics in the chronological order of their appear-
ance in the tool. The deviations from this order might give hints if the tool influences
learners’ self-regulated determination of sequencing. Itis questionable, whether these
deviations are imposed by other factors or patterns that emerge from a certain level of
knowledge or a knowledge distribution.

To investigate the first question, charts representing this sequencing have been cre-
ated. These line charts represent the order, in which students have talked about top-
ics in relation to the position of the topic in the group awareness tool. For the second
question, the number of coded questions and explanations in combination with the
level of visualized knowledge has been analyzed. This can be used to identify, whether
alearner had a low displayed knowledge and asked many questions or vice versa. The
results from the observation are described in section 7.3.

7.2 Results from the Semantic Group Formation

Semantic group formation is quite different compared to more traditional approaches
of algorithms, which create heterogeneous and homogeneous groups. To evaluate the
algorithm, the goal criteria set by the design need to be revisited. Three goal criteria
for the semantic group formation are given:

1. Optimal diversity of the grouping.
2. Fairness of the distribution of diversity scores.

3. A good approximation of learner knowledge through semantic extraction (text
extraction quality).
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4. Monotonicity: with a higher number of students given as an input, the average
diversity increases.

The first criterion, the optimal diversity, is related to the pedagogical specification of
this approach. Groupings are created and favorized, if the learners are complemen-
tary regarding their knowledge. Therefore, the term knowledge diversity has been in-
troduced and operationalized. The algorithm fulfills the first criterion, if it creates
an optimal grouping regarding the combined diversity of all groups. As described in
section 4.4.2, the diversity score of the grouping is calculated as the product of all
groups’ diversity scores. However, in a real classroom setting, algorithms such as this
have to deal with a relatively small number of students, and therefore they will have
to create a few small groups. As a consequence, the algorithm has been designed to
select a global optimum rather than a local optimum (like a greedy algorithm would
select this). Although the asymptotic approximation of the run-time complexity is
quite high, there was no need to optimize the run-time behavior in order to find an
optimum at all. As the algorithm scans all possible partitionings and calculates scores
for all groupings, the proof of the optimality is trivial and therefore omitted in this
work.

The second criterion tackles the differentiation between the diversity of the grouping
and the groups’ diversity and is related to the fairness of the algorithm. Although it
creates a globally optimal grouping, there might exist groupings where some groups
have a high diversity score while others don't. Therefore, an evaluation of this fairness
criterion has been performed in the next section 7.2.1.

As a third criterion for the quality of the group formation, the knowledge extraction
quality needs to be investigated. The assumption that the algorithm can be used to
approximate the learners’ knowledge through semantic extraction is questionable to
this extent, where the sufficient and correct concepts can be extracted from the text.
Only if that is guaranteed, such a mechanism approximates the learners’ knowledge,
which is a prerequisite for the cognitive group awareness. If the extraction does not
work properly, the group awareness information displayed to the learners is also in-
correct, which affects the pedagogical design. The evaluation of the text extraction
quality is shown in section 7.2.3.

7.2.1 Distribution of Diversity Scores

The semantic group formation algorithms optimizes the general diversity of the whole
cohort. The diversity of the cohort is defined as the product of all group diversities.
With the assumption that a higher diversity leads to a better learning situation (in
analogy to Jigsaw approaches), it is aspirable to reduce the probability of outliers re-
garding diversity in a grouping. This is in line with the goal setting to create a more
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inclusive and fair algorithm. The term unfair refers to an imbalance on the individ-
ual level or for a given minority, e.g. a single group. Thus, such an algorithm should
not penalize a certain group to satisfy calculatory conditions, for example, to have a
better overall score. Therefore, the formula for diversity has been derived in a way
that it is stable regarding outliers. However, this aspect is evaluated by analyzing the
distribution of diversities. Figure 7.6 shows the distribution of the diversity scores of
the all groups from the classroom experiment. The diversity scores for all groups are
situated densely around the average, without having outliers. Although the experi-
mental results presented in this figure show that the algorithm does not scatter the
diversity scores of the groups a lot, it is questionable if this statement can be general-
ized. Therefore, the next section presents a benchmark that investigates the question
of generalizability of the criterion fairness.

Frequency
4
1

T T T T T ]
00 02 04 06 08 10

Diversity

Figure 7.6: The diversity scores per group are not scattered, but distributed closely
around the average.

7.2.2 Benchmark of the Diversity Distribution

Although it seems counter-intuitive, there is a focus on simulating smaller cohorts, be-
cause the degrees of freedom, namely the number of possible partitionings are much
smaller. Therefore it is less probable to find a good solution according to all the cri-
teria with a suitable diversity score. This evaluation has been done using a synthetic
benchmark that emulates the classroom setting for a particular cohort size, ranging
from n =6...11, with a variation in the size of the envisioned grouping in dyads or
triads. In the cases where it does not add up (e.g. no multiples of the group size), the
algorithm balances with the next possible grouping size not equal one.
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The benchmark itself is a repeated simulation of the group formation. A test set for the
overlay knowledge model in the size similar to former experiments has been created
(30 concepts in total). In each run of the simulation, the learners were assigned a ran-
dom set of knowledge items as a subset from the overlay model. An important output
parameter is the diversity of each group in the grouping. According to the aforemen-
tioned goal criteria, a good grouping has quite similar groups in terms of performance
characteristics. The performance measure for the semantic group formation is diver-
sity. An unwanted grouping will be any grouping with a high diversity of the grouping,
but a big variation between the diversity of the inherent groups. For each parameter
(group size ranges from 2 to 3, number of students ranges from 6 to 11), the simulation
performed 100 group formation runs to create the data set.

distributions of diversity score distributions of diversity score
group size: 2 group size: 3

TR I R

- | |

-

Figure 7.7: The diversity scores per group are not scattered, but distributed closely
around the average.

Figure 7.7 shows the distributions of diversity scores across the groups depending on
the envisioned group size. Each box plot displays the median and error indicators that
characterize the distributions. First of all, it is positive that there are no outliers. Most
of the values for diversity are in a good range.

Besides the question of fairness regarding the distribution of diversity scores across
groups in a grouping, there is another aspect that should be considered. Particularly
in the field of Cognitive Group Awareness research, it is usual to group learners in
dyads, because this makes partner modeling more simple and puts the focus for every
participant on one partner (Erkens et al. 2016a).

Although the figures presented above indicate, that there is not a big difference be-
tween the groupings into dyads and triads, figure 7.8 confirms this hypothesis. Partic-
ularly with an increasing n, both averages have a tendency to increase and the stan-
dard deviation remains in the interval between o = 0.051 and o = 0.088. The average is
higher in most cases for the dyads, which is plausible because the number of possible
groupings is higher for this case. This is in line with the assumption that with a higher
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number of students the algorithm will produce a more diverse grouping (monotonic-
ity). The biggest differences in the comparison of averages and standard deviations
can be observed for the cases n=6 and n=9. This is caused by a relatively big difference
in the number of possible groupings due to the number of groups depending on the
group size.

StDev Average Group Diversity
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Figure 7.8: Average group diversity and standard deviation of all runs, triads versus
dyads.

7.2.3 Text Extraction Quality

Evaluating the quality of the text extraction is crucial for this work. Between the two
experimental parts of this study, there is a high interdependence. The Semantic Group
Formation forms groups and outputs a shared group knowledge model, which is used
to create the group awareness information. Both steps rely on text extraction, because
the input of the algorithm is a set of learner-generated artifacts, such as texts or con-
cepts maps. In order to create the knowledge model, these artifacts are processed (cf.
section 4.2.2) and relevant concepts are extracted (cf. section 4.2.3).

Texts created by 22 students from the experiment have been used to create a man-
ual coding which serves as a gold standard for this benchmark (cf. section 7.1.2). In
relation to this the quality of automatic semantic extraction approaches is checked in
comparison to the gold standard. To assess the quality of the text analysis approaches,
recall, precision and the F-measure have been used on the sets of extracted con-
cepts of each method (automatic extraction) compared to the set of relevant concepts
(manual coding). Precision quantifies the positive predictive value ("true positive ac-
curacy"), which is the fraction of relevant concepts among the extracted concepts.
Recall, sometimes called sensitivity or true positive rate, is the fraction of relevant
concepts extracted compared to all relevant concepts. The F-measure is a weighted
harmonic mean of precision and recall, which combines both aspects. However, in
a context of computer linguistics and the evaluation of semantic extraction, recall is
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Figure 7.9: The used text mining shows the highest F1 and F0.5 scores compared to
related approaches.

often seen as more relevant for benchmarks as it highlights the correctness of extrac-
tion methods by quantifying the rate of true positives in all positives. Therefore, the
F0.5-Score has been employed, which is a weighted harmonic mean that doubles the
impact of recall. The text analysis approaches used for this benchmark are: (1) net-
work text analysis (‘NTA'), (2) dictionary-based NTA ('NTA-Dictionary’), (3) ontology-
enriched NTA (‘ontology’), and (4) DBPedia Spotlight. The ontology-enriched NTA
is a regular NTA which uses an ontology created by domain experts in order to in-
crease the accuracy of the automatic semantic extraction. The ontology encodes the
domain knowledge structured as synonym-term-category triplets in the domain of
the learning context. More details about the DBPedia Spotlight extraction can be
found in section 4.2.3. The results (cf. table 7.1) indicate that the ontology-enriched
NTA performed best in precision (84.4%), recall (44,2%), and F-measure (F0.5-score
56,6%, F0.5-score 69,6%). Figure 7.9 shows a box plot of the comparison of the differ-
ent methods.

7.3 Results from the Group Awareness

The main contribution of this part of the thesis is defined in the (technology-based)
approach of facilitating knowledge diversity. Particularly for this chapter, this is achieved
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Table 7.1: Quality of the evaluated text extraction methods.

Extraction Method Precision Recall F1-Score F0,5-Score

NTA-Ontology 0.843710211 0.441778457 0.566124775 0.696458921
NTA-Dictionary 0.510026738 0.272666765 0.381111613 0.465575159
NTA 0.348203232 0.353617506 0.380015414 0.380159693
DBPedia Spotlight  0.585997469 0.473666792 0.518386091 0.555032681

by using a shared group knowledge model for the semantic group formation. Al-
though the previous section outlined performance characteristics of the group for-
mation and the corresponding algorithm, the results from the group awareness are of
high interest for this work. The work presented is based on the joint publication and
summarizes the empirical results from Erkens et al. (2019) which are relevant for the
conclusion of this study.

7.3.1 Observation of Communication Sequences

To investigate the first research question regarding the structuring of communication,
a line chart visualizing the sequencing of communication based on the aforemen-
tioned coding scheme has been created. Figure 7.10 shows the line chart. The x-axis
represents the chronological order of the topics mentioned by the students. The y-axis
shows the order of the topics as displayed in the group awareness tool. If the learners
discuss the topics exactly as presented through the tool, the chart would correspond
to the identity function (diagonal). To better illustrate deviations in the sequencing,
the identity has been included into every chart as a dark gray line. Another differentia-
tion has been made between an initial mentioning of a topic (light gray) and multiple
mentionings (gray).

The results indicate, that the learning groups without CG AT tend to follow the given
structure, for instance the given list of topics in the visualization, when organizing
their knowledge exchange. This means that, although this is not a group awareness
tool or a direct instruction, it implicitly prescribes the behavior of learners. In con-
trast, groups supported by the CGAT tend to deviate from this order. However, this
does not apply to the CGAT group in class C, which shows a similar pattern as the
groups without CGAT support. The content of the visualization illustrates that this is
a special case, as the visualization indicates that the learners did not have any knowl-
edge on the first topic ("Brownian molecular motion") and had a highly complemen-
tary knowledge on the second topic ("development of power demand"). Apparently,
the learners have talked at first about the only topic with missing knowledge and then
about the topic with the greatest differences before continuing with osmosis, but also
in a chronological order.

171



7 Evaluation of the Semantic Group Formation and Group Awareness

8 8 8
7 7 7 »
6 6 —%—— 6 /
/
) 5 5 4 —%— 5
with 4 - 4 . 4
CGAT | : @ﬁt :
2 2 2
1 1 +# 1 +x 4
0 T T T 0 T T i 1 0 T
12 3 45 6 7 123 4567 8 12 3 4 5 6 7
8 8 8
7 7 7
6 ! }:’ 6 /74 6
5 - —— 5 5
without |4 4 // \ 4
CoAT |2 N
1 / 1w 1
0 T — 0 T 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 7.10: Communication sequences of groups with CGAT and without CGAT. X-
axes represent the order, in which students talked about topics, y-axes
represent the position of topics in the list. Classes are A, B, C from left to
right.

To pursue the second question regarding the sequencing, the number of content-
related and organizational questions and explanations have been counted and com-
pared to the respective level of knowledge per topic. The level of knowledge can be
inferred from the visual distance of the bars in the group awareness visualization. If
the length of a bar is less than 50% of a co-learner’s bar, then the student’s knowl-
edge is classified as low level. Vice versa, the co-learner would be classified as having
a high level of knowledge. Although only the CGAT groups (with GA support) have a
visual display of the knowledge, the data from the groups without group awareness
have been calculated through the system and have been considered to support the
evaluation as well.

Table 7.2 presents the resulting numbers of the questions and explanations. There are
almost no differences between students of both experimental groups, since in both
groups learners asked nearly the same number of the questions. This might have been
biased through the clear instructions about the decision problem and the clear goal,
which might have influenced the learners in articulating their own discourse.

By taking own levels of knowledge into account, differences can be found: Students
in the CGAT groups asked content-related questions in 71% of the cases (10 out of
14 questions), in which the bar in the visualization was less than 50%. In the groups
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without CGAT it was just in 46% of the cases (6 out of 13 questions). Regarding the dis-
tribution of knowledge in the whole group, similar values in both experimental groups
suggest that there are no differences concerning the impact of knowledge distribution
on content-related questions. Furthermore, there has been even a counter-intuitive
finding: in both conditions, the learners explained more in the cases, in which they
had been classified with low knowledge. As the time span between the two experi-
mental phases was quite big, the learners had potentially enough time to close the
gaps in their own knowledge, if discovered during the first, individual phase. How-
ever, this was not in control of the experiment, which makes it impossible to draw
any conclusions about this. In contrast, students in the 'No CGAT’ groups only an-
swered in 10% of the cases (1 explanation out of 10) questions, if their bar length was
higher than the questioner’s bar length and in 50% of the cases, if their bar was the
same or higher than the learning partners’ bars. This indicates that without an appro-
priate visualization of cognitive information, the learners tend to underestimate their
knowledge. Therefore, such group awareness tools have the potential to support the
communication in the group processes. In addition, the tool helps to put organiza-
tional aspects into the background: students without support seem to focus slightly
more on organizational issues than students with GA support: In the CGAT group,
42% of the questions (10 out of 24 questions) and 12% of the explanations (8 out of
68 explanations) were about the organization of communication. In the 'No CGAT’
groups, 55% of the questions (16 out of 29 explanations) and 25% of the explanations
(18 out of 71 explanations) were about the organization of communication.

Table 7.2: The number of questions and explanations depending on the own knowl-
edge level and the knowledge distribution.

CGAT No CGAT
classA classB classC total classA classB classC total
(n=3) (n=3) (n=3) ®m=9) m=3) (n=2) (n=3) (n=3)

# content-related questions 3 7 4 14 7 5 1 13
(a) bar length <50% 1 6 3 10 3 2 1 6
(a) bar length >50% 2 1 1 4 4 3 0 7
(b) smaller bar than the other(s) 1 4 0 5 1 2 1 4
(b) in the middle 1 0 3 4 3 0 0 3
(b) longer bar than the other(s) 1 3 1 5 3 3 0 6
# content-related explanations 22 12 26 60 12 8 33 53
(a) bar length <50% 7 10 19 36 7 5 24 36
(a) bar length >50% 15 2 7 24 5 3 9 17
(b) smaller bar than the other(s) 6 5 7 18 3 5 18 26
(b) in the middle 5 2 11 18 5 0 3 8
(b) longer bar than the other(s) 11 6 7 24 4 3 12 19
(c) smaller bar than the questioner 0 3 1 4 3 2 0 5
(c) same bar as the questioner 2 2 0 4 3 0 1

(c) longer bar than the questioner 1 6 2 0 1 0 1
# organizational questions 3 2 5 10 7 5 4 16
# organizational explanations 2 1 5 6 8 4 18
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7.3.2 Impact of the Group Awareness on the Created Artifacts

It could be observed that displaying group awareness information had an impact on
the communication and coordination of the groups, particularly the sequencing of
topics. In addition to this, it seems plausible that the presentation of cognitive infor-
mation might have had an impact on the learner-generated artifacts itself. Arguing
that the group awareness tool provided a guideline for the communication about par-
ticular topics, this might have influenced the group work regarding the decision task.
During the collaboration, the groups could take notes in a wiki tool. For the final as-
sessment, they created a short essay-like text that contained an argumentation and a
positioning regarding the decision. In total, there was not a big difference between
the average word count in the wikis. The following table shows the average wiki word
count:

Table 7.3: Average word count in total and without groups with missing members.

Average Wiki Word Count
CGAT NOCGAT
All groups  60.86 58.37
No missing 61.65 33.66

In conjunction with the observation, there were two interesting details that explain
the learning processes a bit better. In full awareness of the low sample size, it is valu-
able to see qualitative indications that help to understand the group processes guided
through awareness tools. It could be observed that the learners negotiated about the
topics and tried to find a common ground on their knowledge. This applied for the
group without group awareness as well. To prevent any confounding effects, a list of
topics has been displayed, in particular, the labeling of the domain axis in the group
awareness tool (the category labels). This led to a similar mode of group work in the
case without support tools. The main difference that could be observed was a differ-
ent order of the topics. This possibly explains the low differences between the perfor-
mances of the groups.

However, another bias has been introduced due to the absence of several persons.
A few groups (triads) missed a single person that attended the first phase and had
been assigned, but did not show up. These groups have been included into the eval-
uation, because the corrected diversity could be recalculated, but the groups were
marked as missingin the table below 7.4. It was symptomatic that exactly these groups
with missing persons wrote the longest wiki texts in the control group without the
group awareness tool. A possible explanation for this behavior is that they had to
compensate the missing person by producing more detailed explanations in the wiki
tool. Working in dyads tends to be more effective than working in triads. Additionally,
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the absence of the group awareness tool might have saved coordination time and ef-
forts, which might have improved their efficiency. To further investigate, whether this
phenomenon has its roots in the knowledge exchange phase or much later, would be
helpful to clarify this question. Unfortunately, this analysis is not possible with the
data set available. The wiki tool only produces a new revision, when the learner ex-
plicitly clicks on the save-button. Nearly all texts have only one revision, which makes
itimpossible to make any detailed statement about the creation time.

Moreover, there were groups with missing students that had group awareness support.
That means, the missing learners were still represented as bars in the visualization of
the group awareness tool. The missing opportunity to clarify or ground their knowl-
edge based on the (incomplete) information could have led to a worse performance
in terms of wiki writing. Table 7.4 shows the full data set of the word count and the
corresponding diversity. No correlation between diversity and word count could be
observed. However, for future research about the mechanisms of group awareness, it
might be interesting to see in more detail, how these communication processes are
mediated through group awareness tools. To accomplish this, a fine grained observa-
tion and a detailed action logging of user events is necessary.

Table 7.4: Average word count per group.

Group Participants Missing | Diversity | AVG Word Count
ANoCGAT1 | ["A12","A2","A24"] 0.86 29.50
ANoCGAT2 | ["A14","A21","A9"] 0.83 47.33
ANoCGAT3 | ["A19","A20","A23"] | A20 0.80 82.33
ANoCGAT4 | ["A1","A6","A7"] 0.80 17.80
BNoCGAT1 | ["B15","B3","B9"] B3 0.77 50.80
BNoCGAT2 | ["B14","B6","B7"] B14 0.69 144.50
CNoCGAT1 | ["C4","C8","C9"] 0.68 31.00
CNoCGAT2 | ["C2","C6"] 0.81 42.67
ACGAT1 ["A10","A13","A5"] 0.89 50.50
ACGAT2 ["A17","A4","A8"] 0.79 52.00
ACGAT3 ["A11","A16","A3"] | All 0.76 89.67
ACGAT4 ["A15","A18","A22"] 0.75 63.50
BCGAT1 ["B11","B12","B8"] 0.80 132.00
BCGAT2 ["B13","B16","B5"] | B5 0.76 16.00
BCGAT3 ("B10","B4"] 0.80 68.33
BCGAT4 ["B1","B2"] 0.76 34.50
CCGAT1 "C1","C10","C3"] 0.64 28.00
CCGAT2 ["C5","C7"] 0.65 64.33
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7.4 Discussion

The conducted study aimed to investigate the impact of providing groups, which have
been formed to maximize knowledge complementarity, with group awareness infor-
mation during a knowledge exchange. The information displayed to the learners was
generated through semantic extraction as a part of the group formation algorithm.
The presented results indicate that especially learners who do not have the group
awareness support tend to ask more questions when they lack knowledge or when
their partners have a higher knowledge. In addition, they also tend to give more ex-
planations when they have a well-grounded expertise or when their co-learner lacks
expertise. Findings of qualitative analyses of communication patterns and sequences
in the knowledge exchange show on the one hand that the level of own knowledge
impacts questioning behavior as learners in the learning groups with support asked
more often questions in such cases in which their own missing knowledge was visu-
alized. This indicates an improved cognitive regulation in CGAT groups. On the other
hand, the results indicate that the knowledge distribution impacts explaining behav-
ior as learners with group awareness support answered questions more often when
they had more knowledge than the questioner. Thus, knowledge distributions were
not more important in the CGAT groups than in the control group. However, the visu-
alization of the knowledge appears to foster the decision to answer a question. These
results are in accordance with former results that the level of own missing knowledge
guides cognitive regulation and that knowledge distribution guides explaining behav-
ior (Dehler et al. 2011).

Learners without available group awareness information mainly followed a chrono-
logical order of the topics displayed. Contrary, learners with group awareness sup-
port deviate from such a sequencing of topics in the knowledge exchange. However,
the question remains which other factors influence the sequencing of co-learners in
the groups with group awareness support. One possible explanation might be de-
rived from the visualizations of the sequences: Learners with group awareness sup-
port talked more often multiple times about certain topics, especially on the topic
"osmosis". since that was of fundamental importance to fulfill the first collaborative
task of writing a short text on the potential meaning of salt and fresh water for osmotic
power plants. This implies that learners with group awareness support had this task
more in mind, related osmosis to other topics and thus better integrated contents of
learning material in their exchange of knowledge. Further research should examine
to what extent content-related information might be an influential factor, and what
value it adds on learning when combined (or not) with group awareness information.
Moreover, the differences between groups of two and three learners have not been
investigated. This might be relevant regarding co-learners’ behavior and should be
considered in future studies.
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7.4 Discussion

Overall, such an approach of using semantic extraction seems suitable to collect, trans-
form, and visualize cognitive information from educational data to support teachers
in their challenging task to form knowledge-complementary groups and to visualize
learners’ cognitive information for better group awareness. The results have shown
that the semantic group formation is a suitable algorithm to fulfill the goals that were
set. Compared to the question about heterogeneity and homogeneity in certain skills,
an approach based on knowledge diversity promises to be more inclusive. This can
also be found in the analysis of the algorithm, particularly the relatively even distri-
bution of diversity scores for different conditions, rendering the result of the seman-
tic group formation as being fair. The concept of group awareness closes the gap of
transparency and interpretability of algorithms. Many methods and structures in Al
are criticized for the difficulty of understanding, interpreting, and explaining of their
results. In contrast, the semantic group formation creates human-understandable
knowledge models that even explain the algorithm. Following the concept of group
awareness, cognitive information about knowledge distributions can be integrated
into the learning scenario. The setting for this study shows an example of how to or-
chestrate learning tools in order to create a workflow from knowledge extraction over
knowledge visualization to group awareness as a part of the learning design. Further-
more, the results of this work show that the use of such a workflow has the potential to
improve learning. However, the psychological and social processes during the collab-
oration phase are very complex and some of the results advise to reenact the scenario
with a more detailed level of analysis focusing on the metacognitive aspects.
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8 Conclusion

Scaffolding and guiding learners has a long tradition for scientific inquiry and inquiry-
based learning. Virtual learning environments and the growing availability of online
science laboratories pose new challenges for supporting learners. On the one hand,
Go-Lab provides a pedagogical middleware and technological interfaces to effectively
promote and orchestrate inquiry-based science education. On the other hand, the
magnitude of singleton solutions and decoupling of platforms demand strong tech-
nical interfaces that bridge the different technologies in order to support scaffolding
and guidance on the architectural level. The rising field of learning analytics investi-
gates in how to support learning and knowledge construction through computational
methods.

8.1 Contribution of this Work

The first contribution of this thesis is the creation of an architecture for learning ana-
lytics in Go-Lab based on state of the art technologies and standards. The main goal
of this architecture is to support a computational level of learning analytics through
interfaces and APIs, but also to connect a conceptual level of scaffolding and guid-
ance to the technical framework. The design of the learning analytics server as part
of this work has been proven to enrich the Go-Lab infrastructure. It has been used to
capture learning processes on the level of apps and ILS during the project time. After
two years of using it, we evaluated how teachers and learners used it, based on the
learning analytics data. The analysis of the learning processes has been used to give
recommendations and to synthesize a recommended inquiry model that incorporates
the pedagogical approaches and the end-user perspectives. We found out that there
is a need to further support learners through guidance mechanisms and through fos-
tering process awareness and cognitive group awareness.

The second contribution is to provide mechanisms that facilitate the given infrastruc-
ture in order to support learners. The concept cloud app is a cognitive scaffold which
presents a shared group knowledge model and enables reflective thinking with respect
to the knowledge state. We augment the technical layer of Go-Lab in order to incorpo-
rate classroom-collaboration support through automatic group formation. For scien-
tific inquiry, knowledge plays an important role, for example when asking questions,
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8.2 Discussion

posing problems, designing experiments and evaluating the observations. Advancing
the technical challenges of the architectural approach to pedagogical challenges of
the classroom management, we highlight the role of knowledge diversity as well. In
nearly every science class, different people know different things. Without stigmatiz-
ing weak learners, nearly everyone can learn something from each other. Therefore,
managing knowledge diversity has the potential to improve learning in terms of the
learning outcome, but also by creating a more inclusive view about knowledge and
performance. The semantic group formation does not create heterogeneous groups
with high-achievers and low-performers, it creates groups of complementary knowl-
edge. Such learning scenarios that incorporate this kind of groupings also live from
the dynamics of the groupings. For this purpose, we wanted to incorporate the infor-
mation of knowledge diversity naturally into the learning scenario. To achieve this, we
created a cognitive group awareness tool which used the knowledge diversity from the
group formation in order to display the complementarity of a group to the learners.

Third, three classroom studies have been carried out using the Go-Lab learning en-
vironment in order to evaluate the concepts and effects of skill-based and semantic
group formation, cognitive group awareness and cognitive scaffolding.

8.2 Discussion

Although this work contributes to the interdisciplinary fields of CSCL, Learning Ana-
lytics and Technology-Enhance Learning in a way that it provides (technical) solutions
to better manage and facilitate knowledge diversity in classrooms in order to create a
more inclusive setting, this work has some limitations.

Algorithmic complexity We are aware that the algorithms proposed for automatic
group formation have a high run-time complexity. The focus of this work is not in
delivering a high-performance algorithm for group formation in this case. The nature
of the experimental and pedagogical settings in a classroom does not demand a high
scalability, as typical classroom sizes do not exceed 30. As a consequence of pragmatic
issues regarding the group size, the semantic group formation allows a flexible group-
ing. The algorithm has a lower and an upper bound for the allowed group size. This
increases the complexity of the algorithm to some extent, also regarding the asymp-
totic approximation. However, to be able to deal with a higher number of students,
the algorithm takes several samples by creating random bi-partitions (default: 3) of
the set and calculates the diversity for each set as usual. In the end, the sample with
the best overall diversity score is taken.
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Pragmatic issues for classroom experiments Additionally, pragmatic issues that
typically occur in classroom settings introduce new challenges for the algorithm. To
scale up and implement technology-enhanced learning at scale, facilitators and re-
searchers need to incorporate the needs of the important stakeholders, foremost teach-
ers and students (Rodriguez-Triana et al. 2015). A typical cliché that teachers draw
for researchers in learning sciences is that they are not aware of their working prac-
tice, which is true to some extent. This can be circumvented by collecting require-
ments directly from the stakeholders (Rodriguez-Triana et al. 2015) and by facilitating
a participatory design process, as it has been implemented within the Go-Lab project
(Heintz et al. 2014). This shifts the focus of us researchers towards more practical and
pragmatical aspects, for example, in the design of the semantic group formation app
in the context of Go-Lab. Selected aspects are:

1. Flexible group size. A cohort cannot always be divided into dyads. It is naive to
believe that. In fact, with an even number of students, on the day of the trial
students might be absent due to several reasons such as illness. Therefore it
is more important to provide a flexible group size that ranges between bounds
rather than having a fixed size. Apart from this, ICT resources are limited (e.g.,
access to computers), so that the group size needs to be set higher. However, the
group size influences the collaboration, and the flexibility of the algorithm also
its computational complexity.

2. Missing artifacts. During our experiments we found out that students some-
times just did not deliver. Although they have been prompted, they forgot, in-
tentionally skipped certain tasks, or even had technical difficulties, for exam-
ple due to a bad internet connection. Therefore we enabled the teacher to take
control of all the mechanisms of the algorithm. The triggering of the group for-
mation calculation can be performed by the teacher, but also the addition of
missing artifacts or quickly setting existing artifacts as references. Since the re-
sults of the algorithm are visual, the teacher does not lose the control over a
black box. By re-running the algorithm through the web-interface, the teacher
has the chance to control the results ex-post.

3. No dependency of reference solutions. Automatically checking the correctness
of learner-generated content has always been of interest in many disciplines
such as automated programming assessments. Typical approaches for check-
ing learner-generated content rely on reference solutions. Teachers do not want
to or do not have the time to develop and include reference solutions carefully.
However, in a large-scale implementation such as Go-Lab, it is impossible to
provide reference solutions by members of the consortium. Go-Lab provides
through its inventory more than 1000 learning spaces® with individual tasks.

1Golabz provides 1008 available spaces (2019-06-03). https://www.golabz.eu/spaces, retrieved
2019-06-03.
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Most of them are created by teachers and not by members of the Go-Lab con-
sortium. Therefore, we envisioned to create methods and scaffolds that deal
without reference solutions in order to provide a more scalable approach. Still,
it is possible to deal with reference solutions on demand, which was done in
both group formation approaches. The semantic group formation app enabled
the teacher to create an overlay model by adding his or her own artifacts as a
reference solution.

These are only a few examples of pragmatic aspects that have driven the research par-
ticularly for this thesis, and also for the whole Go-Lab project in order to conduct a
successful large-scale implementation in more than 1000 schools across Europe dur-
ing the project time from 2012 to 2016 (Govaerts et al. 2013a).

Learning outcomes and research paradigms In some of the evaluations, we used
learning gain to measure the outcome of the setting and to get a quality indicator
to quantify learning. The evaluations presented as part of this thesis usually took 3
to 4 lessons in school. On the one hand, such classroom studies are closer to real-
ity and the expectations of teaching and learning than common laboratory studies
on learning. On the other hand, such a time span is not enough to quantify learn-
ing outcome. We are aware that learning takes more time and demands higher level
competencies that cannot be emulated in such a short time (Anderson and Arsenault
2005). The question about how to evaluate learning and how to conduct research in
learning sciences was a persistent debate across different disciplines and communi-
ties. Researchers focused rather on spotting differences of approaches than on find-
ing a compliant or synergetic discourse (Johnson and Onwuegbuzie 2004). This de-
bate also takes roots in the field of learning sciences, where quantitative research is
usually done in a controlled laboratory setting. This suggests the legitimate criticism
on how to transfer findings to a pedagogical context in a complex classroom setting
with many social parameters and variables. Brown (1992) highlights the need for a
paradigm change when creating complex interventions in classroom settings:

"There was also a dramatic change in what 'subjects’ were required to
learn, even in laboratory settings, and an awakening to the fact that real-
life learning inevitably takes place in a social context, one such setting
being the classroom. Psychologists are creatures of their time, and the
methods they use to attack such durable problems as learning must be
reconsidered in the light of theory change."

Seidman (2006) advocates for more qualitative research, in particular methods based
on interviews, which involve multiple stakeholders. These could be in our case both
the teachers and the students. He argues that the quantitative paradigm is still pre-
dominant in educational research and sometimes referred to as being the scientific
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standard. Even in the field of CSCL and Learning Sciences, which supports qualitative
research methods such as observations per se, Jeong and Hmelo-Silver (2010) found
out that most of the research is quantitative. In the meta-study, less than 63% of the
studies that investigated face-to-face collaboration have been evaluated following a
qualitative approach. For other modalities it was even less.

To make real quantitative statements about learning processes, it needs bigger sam-
ples than in the studies presented. However, qualitative methods like detailed class-
room observations used in the evaluation of the group awareness (see section 7) or
the analysis of complete learning traces (cf. sections 3.4 and 6) have the potential to
gain new insights through their exploratory nature. Combining the paradigms of qual-
itative and quantitative approaches leads to a "third wave" of research methodology
using mixed methods (Johnson and Onwuegbuzie 2004).

Teacher-led inquiry The concept cloud has demonstrated its usefulness as a cog-
nitive tool for learners in the context of IBL. It represents a shared group knowledge
model of the learners. As such, it can be seen as a "summary" of alesson. As discussed
in the debate of teacher-led inquiry, teaching can also be the subject of an inquiry
process. There are certain parameters like learning resources, activities, aspects of
orchestration, instructions, and many more that lead to a certain learning outcome.
Teachers might use this representation to find common misunderstandings, weak-
nesses in learning materials or a focus shift. However, in the research of TEL and IBL
there has not been much work done on investigating teacher-led inquiry. Moreover,
there is a lack of support tools for this particular endeavor.

In analogy, the same applies for group formation. The semantic group formation has,
in contrast to other group formation algorithms, a clear output that is interpretable
by humans. This shared knowledge model that visualizes knowledge overlap and
complementarity can be used as a part of the instructional design, as presented in
the evaluation of the semantic group formation and the cognitive group awareness
(cf. section 7). However, this work is only the tip of the iceberg. Such cognitive
group awareness information about knowledge can be useful in other contexts as
well (workplace learning), and also to outline a cognitive or competency-based de-
velopment over time. A fundamental understanding of the visualizations and results
of such approaches requires a basic understanding of algorithms and the associated
mechanisms. Particularly the Al-enhanced methods demand for an interpretability
to gain trust and to be adopted in a computer-supported learning (and teaching) en-
vironment. This is in line with the discussion about explainable Al, which advocates
the development of algorithms (in the context of Al and machine learning) that are
human-interpretable (Abdul et al. 2018).
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8.3 Publications

Figure 8.1 shows the conceptual model of this work, presented as a layered archi-
tecture. Each layer of this framework is connected to a specific set of publications
used for this thesis. The upper layer (architecture) was dedicated to the definition of a
learning analytics architecture and the interfaces to the Go-Lab ecosystem as well as
the embedding of learning analytics applications. It contains all publications which
are connected to the architectural approach: (Govaerts et al. 2013a; Hecking et al.
2014; Manske et al. 2014; Vozniuk et al. 2014).

LA Embedding LA Privacy
Architecture Apps (ITHET 2014)
(ICWL 2014) (ICALT 2014)

IBL Process GF Problemin
Analysis Go-Lab
(ICCE 2015) (CSCL 2015)

Semantic
Group Concept Cloud (((::f)ﬁzlié GC:
Formation (ICALT 2016) 2019)
(ICALT 2017)

Figure 8.1: The three layer model of the contributions and the connection of the pub-
lications for this thesis.

Architectural Go-Lab Portal
approaches (ICWL 2013)

Problem Student
. modelingin IL
Framing (AIED2015)

ConceptCloud

(ICALT 2016)

Applications /| Sl G
Studies (cscL 2015)

The second layer of the framework includes the publications that encompass the prob-
lem framing (Manske et al. 2015b, a, c; Manske and Hoppe 2016). The inquiry model
as a basic pedagogical layer has been analyzed in the first learning analytics evaluation
of the system. Knowledge is one of the key components in inquiry, and the modeling
of knowledge can be seen as one of the distinctive features of this work, including
applications of cognitive and metacognitive scaffolding, performance prediction and
group formation. The problem framing has been mapped to a conceptual model in
figure 8.2.

The application layer shows use cases and their respective evaluation in classroom
studies. The evaluation of skill-based and semantic (knowledge-based) group for-
mation shows effective methods for extracting skills and knowledge from learner-
generated artifacts in heterogeneous inquiry learning scenarios. The evaluation of
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the concept cloud as a cognitive tool using shared group knowledge has shown that it
successfully scaffolds learning, particularly concept mapping. Such knowledge mod-
els can be visualized and represented as cognitive group awareness tools in order to
feed back the knowledge diversity actively into the learning scenarios. This framework
of the thesis incorporates mechanisms to effectively manage knowledge diversity in
inquiry-based science education.
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Group CCasa
Knowledge Cognitive
Models Scaffold

Concept Cloud Semantic ]
(ICALT 2016) B

IBL Process Process i
e ) Embedding
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Group
. Awareness

model into IBL Support
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GF Problemin
Go-Lab
(cscL 2015)

Orchestr of Group
GF Learning Layer
in Go-Lab

Semantic GF .
(ICALT 2017 & sy Semantic

CollabTech score Group
2019) Formation

Figure 8.2: The conceptual elements and problems the publications targeted.

8.4 Outlook

The Go-Lab architecture offered a variety of interfaces to connect a learning analytics
infrastructure to support the mechanisms to manage knowledge diversity. However,
many modern systems used XAPI as an interfacing standard to transfer activity state-
ments to a learning record store. In order to support external applications for further
analytics, such mechanisms can be taken into account.

The management of knowledge has shown a lot of benefits, particularly when knowl-
edge models are created and presented as open learner models. The idea of cognitive
group awareness has shown an interesting use case of how to interweave computer-
supported mechanisms with classroom collaboration and demonstrated how collab-
oration can be initialized. The notion of knowledge underlay the simple assumption,
that concepts, the learners are talking about, are used correctly. Current discussions
in the field semantic analyses try to build more intelligent and advanced models. The
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use of ontologies can improve this, by inferring knowledge from a given ontology. For
example, in the context of IBL, Wikipedia represents a lot of knowledge. Rather than
just spotting keywords on Wikipedia-based ontologies such as DBpedia, intelligent
mechanism can draw conclusions about how certain aspects are presented by learn-
ers. Particularly in the field of hypothesis generation, the concept of "qualitative rea-
soning" could be included to check the plausibility of the input.

Additionally, the dictionary that was used for the CGAT study was created manually.
Using knowledge sources such as Wikipedia, which categorize topics in a (pseudo-
)yhierarchy, can be used to extract topics and their respective categories flexibly. As a
consequence, this approach scales for all IBL scenarios without having a prescribed
ontology. Extraction methods such as Explicit Semantic Analysis in conjunction with
a Wikipedia category graph can be facilitated to support this idea.

As presented in this approach, managing knowledge diversity incorporated learners
knowledge, and excluded other variables of diversity. A lot of the research has been
investigated in the different dimensions in organizational or economic research. In-
corporating other aspects similar to more traditional work in research on diversity
might unveil even more potential of diversity management in classrooms. Managing
diversity hopefully leads to more inclusive classrooms and a less stigmatizing peda-
gogy. Apart from schools, there are other educational contexts that start to let digiti-
zation thrive. Particularly companies that operate in the STEM fields have an interest
that their apprentices acquire scientific skills. Bringing such approaches into their ap-
prenticeship programs will be challenging but promising for companies. This might
become a new take on learning and teaching with the support digitization.

Certificates (VET)

Supervision Support Intelligent Contextualized
(Concept Cloud) Information Access

titration

ujaisunelq

@ evonik|

lionennxopal

v
I

Ionye

a g Resource
Recommendations

Curriculum

Figure 8.3: The concept cloud app adapted to the VET context, enriched by mecha-
nisms of contextualized intelligent information access.
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Additionally, digitization and digital transformation offer many new opportunities for
vocational education and training (VET). Although the integration of digital hard-
ware and software tools in educational contexts introduces new challenges for learn-
ers and facilitators, the provision of well-adapted technologies has the potential to
support learning and teaching using intelligent technologies. In this spirit, the knowl-
edge management approaches that have been conceptualized and presented in this
work, can be transferred to other contexts and target domain. As part of an ongoing
work, the concept cloud application that has been presented in chapter 4.3 is cur-
rently transferred into the context of chemical industry. It has been advanced regard-
ing the color scheme to support certain types of color-blindness, but furthermore, it
bridges learners content to semantic technologies providing intelligent contextual-
ized information access. Figure 8.3 shows a prototype of the concept cloud within a
VET scenario. The concepts are extracted from formal transcripts of records that are
used for the certification of apprentices and filled out by them. The results are dis-
played in a similar visualization that highlights the differences and comparison to the
curriculum. In addition, for each concept the interactive visualization provides infor-
mation access by displaying a summary that has been automatically extracted from
DBpedia and links to external learning resources. Using such information accesses,
knowledge management technologies like this can be used to further discover and
automatically link open educational resources and thus provide easy and free access
to knowledge sources.
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