
#2016/01 

Pauline Rossi 

Strategic Choices in Polygamous 
Households: Theory and Evidence from Senegal



EDITOR-IN-CHIEF 

Martin Karlsson, Essen 

MANAGING EDITOR 

Daniel Avdic, Essen 

EDITORIAL BOARD 

Boris Augurzky, Essen 
Jeanette Brosig-Koch, Essen 
Stefan Felder, Basel  
Annika Herr, Düsseldorf 
Nadja Kairies-Schwarz, Essen  
Hendrik Schmitz, Paderborn 
Harald Tauchmann, Erlangen-Nürnberg 
Jürgen Wasem, Essen 

CINCH SERIES 

CINCH – Health Economics Research Center 
Weststadttürme Berliner Platz 6-8 
45127 Essen 

Phone  +49 (0) 201  183 - 6326 
Fax      +49 (0) 201  183 - 3716 
Email: daniel.avdic@uni-due.de 
Web: www.cinch.uni-due.de 

All rights reserved. Essen, Germany, 2016 

The working papers published in the Series constitute work in progress circulated to stimulate discussion and 
critical comments. Views expressed represent exclusively the authors’ own opinions and do not necessarily 
reflect those of the editors.

mailto:daniel.avdic@uni-due.de


#2016/01 

Pauline Rossi 

Strategic Choices in Polygamous 
Households: Theory and Evidence from
Senegal





Pauline Rossi*

Strategic Choices in Polygamous 
Households: Theory and Evidence from
Senegal 

Abstract 
This paper proposes a strategic framework to account for fertility choices in polygamous 
households. A theoretical model specifies the main drivers of fertility in the African context 
and describes how the fertility of one wife might impact the behavior of her co-wives. It 
generates predictions to test for strategic interactions. Exploiting original data from a 
household survey and the Demographic and Health Surveys in Senegal, empirical tests show 
that children are strategic complements. One wife raises her fertility in response to an 
increase by the other wife, because children are the best claim to resources controlled by 
the husband. This result is the first quantitative evidence of a reproductive rivalry between 
co-wives. It suggests that the sustained high level of fertility in Africa does not merely reflect 
women's lack of control over births, as is often argued, but also their incentives to have 
many children. This paper also contributes to the literature on household behavior as one of 
the few attempts to open the black box of non-nuclear families. 
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1 Introduction

Many parents in the developing world rely on offspring to secure their economic futures.

Children mitigate the lack of insurance markets and social safety nets by taking care of

parents in old age and during times of need. Banerjee and Duflo (2011) state that, for the

poor, children represent ”an insurance policy, a savings product as well as some lottery

tickets”. In the African context, fertility decisions are crucial ones. In fact, for women, they

are literally a matter of life or death. On the one hand, women’s economic security critically

depends on their ability to have children (Bledsoe 1990). On the other hand, women put

their lives in jeopardy each time they give birth. In Sub-Saharan Africa, the lifetime risk

of maternal death is 1 in 38 against 1 in 3,700 in developed countries. Each year, 180,000

women die from causes related to childbirth or pregnancy in the region (WHO, UNICEF,

UNFPA and The World Bank 2014). 1 Maternal mortality is the second main cause of female

excess mortality, leading to a large number of ”missing women” (Anderson and Ray 2010).

Deaton (2013) claim that these health inequalities are one of the great injustices of the world

today.

To design efficient reproductive health policies, it is necessary to understand how people

make fertility decisions. In African countries, where polygamy 2 is widespread, the unit of

decision is not clear. Figure 1 shows that polygamy in Sub-Saharan Africa is not a marginal

phenomenon limited to a small elite. Between one third and one half of married women are

engaged to a polygamous husband in the so-called ”polygamy belt”, an area between Senegal

in the west and Congo in the east (Jacoby 1995).

Economists have devoted little effort to understanding the decision process over ferti-

1. It amounts to approximately half of the deaths related to AIDS in the same age group (aid-
sinfo.unaids.org).

2. Polygamy is a marriage that includes more than two partners. It encompasses both polygyny, in which
a man has several wives, and polyandry, in which a woman has several husbands. Throughout this paper, I
use the term polygamy to refer to the former situation, which is by far the most practiced form of polygamy.
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lity in polygamous households, although evidence provided by other disciplines is rather

puzzling. Anthropologists have qualitatively documented that children are the main stake

in polygamous unions and claimed that a strong reproductive rivalry exists between co-

wives (Jankowiak, Sudakov, and Wilreker 2005). However, demographers have established a

negative correlation between fertility and polygamy at the micro level: women engaged in

polygamous unions tend to have fewer children than other women (Lesthaeghe 1989). This

empirical result is at first sight in contradiction with the idea of co-wives competing for more

children. The economic literature is of little help to formalize the intra-household decision

making because all theoretical models assume that fertility is a joint decision of only two

spouses, and that the husband and the wife necessarily have the same number of children. 3

These models are inadequate in polygamous households because the behavior of one couple

cannot be analyzed without taking into account what happens in the other couples of the

same union.

The goal of this paper is to propose a simple framework to test for strategic interactions in

polygamous households. I build upon anthropologists’ and demographers’ findings to set up

a model of fertility choices. The unitary view of the household is obviously inadequate when

the crux of the matter is the interaction between members. As for collective models, they

may be ruled out by various sources of inefficiencies such as social norms and information

asymmetries. 4 I opted for a non-cooperative approach, in which each member maximizes her

own utility taking the actions of others as given. To the best of my knowledge, there is no

theoretical paper modeling strategic interactions in non-nuclear households. This paper aims

at opening the way by focusing on a specific, but fundamental, decision: children.

3. For a review of the literature, see Doepke and Kindermann (2014).
4. In Zambia, Ashraf, Field, and Lee (2014) show that even in monogamous couples, husbands and wives

are not able to achieve efficient fertility outcomes. The few studies testing the efficiency of other outcomes
in the African context have come to the same conclusion: Udry (1996) on agricultural production in Burkina
Faso, Dercon and Krishnan (2000) on risk sharing in Ethiopia and Duflo and Udry (2004) on resource
allocation in Cote d’Ivoire.
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The theoretical part sheds light on the different forces driving fertility. It distinguishes

three potential mechanisms through which polygamy might have an impact on fertility.

First, an overbidding effect; it reflects the competition between co-wives, who care about the

relative number of children, driving fertility upwards. Second, a substitution effect; it comes

from the side of the husband, who cares about his total number of children, imposing some

limits on the fertility of each wife. Third, an exposure effect; according to demographers, the

intensity of exposure to pregnancy risk is lower in polygamous unions than in monogamous

ones, which drives fertility downwards. The last effect exists independently of the fertility of

the other wife, whereas the first two effects have a strategic component. Since these forces go

in opposite directions, it is a priori not clear whether polygamy should increase or decrease

fertility, nor whether children should be strategic complements or substitutes.

These questions have to be solved empirically, and the model provides some guidance to

think about the identification strategy. It is closed to a difference in difference framework

using duration data. First, to identify the total impact of polygamy on fertility, I look at

the change in first wives’ birth spacing before and after the second marriage. Second, to

identify the type of strategic interactions, I test if first wives react differently depending on

who they face as a competitor. To do so, I exploit the variation in the timing of the second

marriage, in particular in the husband’s and wife’s ages at marriage, which determine how

much time ahead the second wife has to give birth to children. The idea is to use the length

of this time period as a predictor of her final number of children. Indeed, demographers

have shown that it influences significantly completed fertility in the African context, where

most couples have only access to traditional birth control methods. In the end, an order of

magnitude of each effect can be estimated by comparing the birth rates of the same woman

in the monogamous stage and in the polygamous stage. The main advantage of this strategy

is to include individual fixed effects to deal properly with endogeneity issues related to time-

invariant unobserved heterogeneity. Formally, I estimate a duration model of birth intervals
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with a baseline hazard specific to each woman. This specification allows fertility choices

and the occurrence and timing of the second marriage to be jointly determined by some

unobserved characteristics of the spouses, provided that they do not vary with time. The

key identification assumption is similar to a common trend assumption. It states that, in the

absence of the second marriage, the evolution of birth spacing over the life-cycle should have

been the same for all women. I test and validate this assumption on births that occurred

before the second marriage.

Implementing such a strategy requires information that is not available in standard sur-

veys. In particular I need to observe all spouses in a given union, and to know the dates of

successive marriages as well as the birth dates of all children. I exploit original data from

a Senegalese household survey that provides information on a husband and all co-wives,

even if they do not live in the same household, and detailed information on the timing of

marriages and births. I carry out the tests on Senegalese data, but my framework may fit

with the reality of other countries as soon as co-wives have (i) competing reproductive in-

terests, and (ii) some imperfect control over fertility. Both conditions seem likely to hold

throughout Africa, but further research is needed to determine to what extent the behavior

of polygamous households is culturally specific.

I find that first wives lengthen birth spacing in the polygamous stage. It means that the

upward force (the overbidding effect) is dominated by a combination of the downward forces

(the substitution effect and the exposure effect). The second result is that birth spacing leng-

thens less when the second wife’s reproductive period is longer. So a predictor of the second

wife’s number of children drives the first wife’s fertility upwards. Last, there is suggestive

evidence that second wives intensify birth spacing when they face a more fertile competitor,

too. All this is consistent with a strategic complementarity, indicating that the overbidding

effect dominates the substitution effect. Thus, my framework brings together the result of

demographers that, on average, fertility is lower in polygamous unions, and the claim by
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anthropologists that the reproductive rivalry between co-wives is strong.

As far as I know, this paper provides the first quantitative evidence that co-wife rivalry has

a detectable impact on fertility decisions. This result has strong implications for reproductive

health policies in Africa. The general view is that women lack control over fertility, either

because they have no access to birth control methods or because they obey their husbands

who like large families. This paper shows that women also have economic incentives to want

many children. They trade the costs of child-bearing and child-rearing off for a safe future

because they have no option but to rely on their children to protect their economic security.

The benefits of promoting women’s autonomy would thus be far reaching. It would improve

maternal and child health, reduce gender inequality and help birth control efforts.

The outline of the paper is as follows. Section 2 provides background on fertility in polyga-

mous unions. Section 3 presents the Senegalese data and some descriptive statistics. Section

4 sets up the model and derives testable predictions. Section 5 describes the empirical stra-

tegy, and Section 6 reports the results of the empirical tests. Section 7 deals with robustness

tests and alternative models of fertility choices. Section 8 discusses policy implications and

Section 9 concludes.

2 Polygamy and Fertility

2.1 Qualitative evidence: co-wife reproductive rivalry

Conflicts between co-wives are pervasive in polygamous societies: co-wife rivalry is a

recurring theme in African novels 5 and it has been thoroughly studied by anthropologists

and sociologists working on polygamous ethnic groups. Jankowiak, Sudakov, and Wilreker

(2005) gathered information on co-wife interactions in 69 polygamous systems from all over

5. See for instance books by China Achebe, Sefi Atta, Mariama Ba, Fatou Diome, Buchi Emecheta,
Aminata Saw Fall and Ousmane Sembene.
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the world (among which 39 are in Africa) to identify the determinants of co-wife conflict and

cooperation. They conclude that conflict is widespread and primarily caused by competing

reproductive interests. They note that ”reproductive vitality, women’s age in the marriage,

and the presence or absence of children influence a woman’s willingness to enter in or avoid

forming some kind of pragmatic cooperative relationship with another co-wife.”Thus, conflict

is less prevalent when one wife cannot have children.

In the African context, Fainzang and Journet (2000) have documented that wives in

polygamous unions overbid for children. Women commonly resort to marabouts to increase

their own chances to get pregnant and to cause infertility or stillbirths for the co-wife. In most

extreme cases, aggressions may jeopardize children’s lives. Indeed, child mortality is found

to be higher in polygamous households and co-wife rivalry is considered as one important

risk factor (Strassman 1997, Areny 2002).

There are many reasons why wives care so much about their number of children, relative

to the number of children of their co-wives. This difference defines social status, authority

over co-wives and husband’s respect (Fainzang and Journet 2000). It may also be inter-

preted as a sign of husband’s sexual and emotional attention, which clearly matters for

the wife’s well-being when jealousy is rife (Jankowiak, Sudakov, and Wilreker 2005). In an

economic perspective, the relative number of children directly determines the wife’s share

in husband’s resources. It is particularly important in case of widowhood because in most

African countries, a man’s bequest is to be shared among his children. The surviving wives

generally have little control over inheritance other than through their own children (United

Nations 2001, Lambert and Rossi 2014). In polygamous unions, each wife needs therefore

to ensure that enough children are born to secure current and future access to husband’s

resources.
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2.2 Quantitative evidence: lower fertility in polygamous unions

Although the reproductive rivarly has been qualitatively documented, quantitative evi-

dence is very scarce. Demographers have been working on the relationship between polygamy

and fertility for a long time, but their theoretical framework does not take into account strate-

gic behaviors. They assume that a regime of natural fertility prevails in Sub-Saharan Africa.

It implies that a woman’s fertility is mostly determined by factors influencing the length

and the intensity of her exposure to pregnancy risk: men’s and women’s ages at marriage,

imperatives for widows or divorcees to remarry, breastfeeding practices, post-partum taboos

etc. This framework emphasizes the importance of biological constraints and social norms,

leaving little room for individual choices.

Demographers working on Sub-Saharan Africa have established that, at the woman level,

fertility is lower in polygamous unions than in monogamous ones (see Chapter 7 by Pebley

and Mbugua in Lesthaeghe (1989) or Garenne and van de Walle (1989) and Lardoux and

van de Walle (2003) for specific studies on Senegal). This empirical regularity is first explained

by infertile unions. On the one hand, women with low fecundity are over-represented in

polygamous unions because infertility is a common motive for taking another wife. On the

other hand, polygamous marriage may be a way for widowed or divorced women to fulfill

the obligation to remarry. In such ”safety nets” unions, spouses generally do not aim at

giving birth to children. This composition effect partly explains the difference in fertility

between monogamous and polygamous unions. The second explanation is the difference in

the timing of marriage: junior wives tend to get married older, and to an older husband.

Consequently, these couples have shorter reproductive periods, which mechanically translates

into fewer children in a natural fertility regime. The last explanation is about the frequency

of intercourse, which is lower in polygamous unions. Indeed, a rule of rotation between the

wives for marital duties is implemented and highly monitored. Wives have to share the

husband’s bed time, which lengthens the period of time before getting pregnant. This is
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especially true when spouses do not co-reside and the husband pays his wives regular visits.

Also, the non-susceptible period following the birth of a child is longer in polygamous unions

because the availability of alternative partners makes it easier for husbands to observe the

post-partum abstinence.

Interestingly, some results in the study by Lardoux and van de Walle (2003) on Senegalese

data cannot be rationalized in the natural fertility framework. First, the authors expected

that post-partum abstinence would reduce the likelihood of simultaneous births by co-wives

and foster alternate births. In fact, they find a strong positive association between each

wife’s probability of child-bearing during a given year. Strategic choices may well explain

this pattern: if the wife targets a relative number of children, she gets pregnant as soon as

her rival does to keep pace with her. The other unexpected result is that the presence of

a wife who is past her fecund years impacts positively the fertility of the younger wives.

The authors had hypothesized the opposite relationship assuming that the older wife would

claim her share of bed time and enforce the compliance with intercourse taboos. In a strategic

framework, this might be interpreted as a hint that junior wives are catching up with an

older wife who already gave birth to many children.

To my knowledge, there is no empirical study providing evidence that the fertility beha-

vior of a wife impacts the choices of her co-wife. This paper attempts to fill in this gap.
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3 Data and Descriptive Statistics

3.1 Data

3.1.1 Poverty and Family Structure (PSF)

Most empirical tests are carried out on original data from a household survey entitled

”Poverty and Family Structure” (PSF) conducted in Senegal in 2006-2007. 6 It is a nationally

representative survey conducted on 1,800 households spread over 150 primary sampling units

drawn randomly among the census districts. About 1,750 records can be exploited.

The main advantage is that all spouses of the household head were surveyed, even if they

do not co-reside. This is very important because approximately one fourth of women do not

live with their husbands. Standard household surveys only gather information on co-residing

spouses. So typically, information is missing in incomplete unions, and the sample of complete

unions is selected. Here, I have information on husband and all co-wives, whatever the

residence status. There remain two selection biases: the sample is restricted (i) to household

heads and their spouses, and (ii) to currently married people. 7

The goal of the survey was to obtain, in addition to the usual information on individual

characteristics, a comprehensive description of the family structure. In particular it registered

the dates of birth for all living children below 25, even if they do not live with their parents.

Children who died are also reported but there is no information on the timing of deaths. As

a result, a woman’s complete birth history for surviving children is available only if all her

children are under 25 years old. Moreover, detailed information is collected on the marital

history of all spouses: age at first marriage, date of current union, having or not broken

unions, date of termination of latest union. Therefore, I am able to retrace the timing of

6. Detailed description in Vreyer, Lambert, Safir, and Sylla (2008). Momar Sylla and Matar Gueye of
the Agence Nationale de la Statistique et de la Démographie of Senegal (ANSD), and Philippe De Vreyer
(University of Paris-Dauphine and IRD-DIAL), Sylvie Lambert (Paris School of Economics-INRA) and Abla
Safir (now with the World Bank) designed the survey. The data collection was conducted by the ANSD.

7. There is very limited information on co-widows.
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marriages and to identify children from previous unions. The main weakness of PSF is that

there is no information on fertility preferences.

The PSF sample consists of 1,317 unions: 906 monogamous unions and 411 polygamous

unions, among which 321 with two wives, 66 with three wives and 24 with four wives.

Roughly one half of women are engaged in a polygamous union, a proportion in line with

demographers’ estimations (see Chapter 27 by Antoine in Caselli, Vallin, and Wunsch (2002)).

3.1.2 Demographic and Health Surveys (DHS)

To get complementary information, I exploit the Demographic and Health Surveys (DHS)

collected in Senegal in 1992, 1997, 2005 and 2010. 8 They contain stratified samples of house-

holds in which all mothers aged 15 to 49 are asked about their reproductive history, including

children who left the household or who are dead at the time of the survey. Male questionnaires

are further applied to all eligible men in a sub-sample of these households. 9

DHS contain relevant data that is missing in PSF, in particular information on fertility

preferences of husbands and wives. Respondents are asked how many children they would

like to have, or would have liked to have, in their whole life, irrespective of the number they

already have.

However, the main drawback is that the DHS sample of husbands and wives is not

representative of all Senegalese unions. Indeed, a spouse is not surveyed if (i) she does not

co-reside, or (ii) she is above the age limit, 50 for women, 60 for men in the last two waves. As

a result, only one woman in five in the mother’s record has a match with a male questionnaire.

This is an issue especially in polygamous unions, because all wives of a given husband are

not systematically observed. For instance, in bigamous unions, both wives are found in the

8. Three other surveys were conducted in Senegal in 1986, 1999 and 2012-13, but I do not consider them,
because in 1986 and 2012-13, there is no information on men, and in 1999, the quality of data does not meet
the criteria of standard DHS.

9. In 1992 and 1997, men should be older than 20 to be eligible, whereas in 2005 and 2010, they should
be between 15 and 59 years old. The proportion of households selected to administer male questionnaires
was 33%, except in 1997, when it was 75%.
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sample in only half of the cases.

The DHS sample consists of 5,254 unions. The proportion of union types is similar to PSF:

one half of women are in polygamous unions, and bigamous unions represent approximately

80% of polygamous unions.

3.2 Descriptive statistics on fertility in current union

I compute the descriptive statistics on completed fertility using PSF data on women over

45 years old. I consider surviving children born in the current union. Figure 2 shows the

distribution for monogamous, senior and junior wives. Junior wives stand out with a large

proportion (30%) having no child with their current husband. Those women are probably

engaged in a kind of safety net union. The proportion of childless women is similar for

monogamous and first wives. It contradicts the hypothesis that husbands would take another

wife when the first one is infertile; it rather supports the idea that husbands would repudiate

an infertile wife, who would then end as a junior wife in another union.

Table 1 confirms and specifies these remarks by regressing the number of children on the

union type. Women engaged in a polygamous union have, on average, one child fewer than

women in a monogamous union. The whole gap is driven by junior wives: they have, on

average, 2.5 children fewer. As for senior wives, they have the same number as monogamous

ones. In line with demographers’ findings, roughly half of the gap between junior wives and

the others is explained by infertile unions. When I restrict the sample to women having

at least one child with their current husband, the difference decreases down to 1.4 children.

Another explanation put forward in the literature review deals with the length of the couple’s

reproductive period. I construct a proxy T = min (45- wife’s age at marriage; 60-husband’s

age at marriage) reflecting the difference in age at fertility decline between men and women.

As expected, it is an important driver of women’s completed fertility. 10 After controlling for

10. In Appendix A, Table A.1, I test whether husband’s and wife’s age at marriage are negatively correlated
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T , there remains a gap of approximately one child. This last figure is unchanged if I control

for having children from previous unions.

If I disentangle the results by mother’s rank in polygamous unions, I find that fertility

decreases as the number of wives increases. The first column of Table A.2 in Appendix A

shows that, controlling for T and children from previous unions, and excluding childless

women, the number of children decreases with the mother’s rank. Findings are similar when

I consider birth spacing. In column 2, I report the estimates of a Cox duration model of

birth intervals, and I find that the higher the rank of the mother, the longer the durations

between births.

Turning to men’s total fertility, it is more complicated to avoid censoring issues because

older men may still have the opportunity to take another fertile wife. When I restrict the

sample to unions in which all wives are above 45, and the husband is above 60, figures are

consistent with statistics computed on women’s side. On average, monogamous men have 5

children, men with two wives 7.6 children, and men with three wives 9.7 children. 11

3.3 Descriptive statistics on preferences

I compute the descriptive statistics on fertility preferences using DHS. Table 2 shows that

preferences of men and women differ considerably. Women would like to have, on average,

5.7 children, whereas men want 9 children. Medians are respectively 5 and 7. Within couples,

a husband wants on average 3.1 children more than his wife. Preferences are aligned in only

13% of the cases; in almost two thirds of couples, the husband wants strictly more children

to the number of children, controlling for the union status, and differentiating between spouses with a small
and a large age difference. The idea of the test is that, if the age difference between spouses is small, the
length of the reproductive period should be driven by the wife’s age at marriage, not by the husband’s age
at marriage. Indeed, in this case, the wife is expected to reach the end of her reproductive life sooner than
the husband. If the age difference between spouses is large, it should be the opposite. Signs are in line with
predictions: when the age difference is small (resp. large), only the wife’s (resp. husband’s) age at marriage
is significantly, negatively correlated to the number of children.

11. I do not report the average for unions with four wives because there are too few data points.
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than his wife. As pointed out by Field, Molitor, and Tertilt (2015), in polygamous unions,

the discrepancy in preferences does not necessarily translate into a conflict, because men and

women can realize their fertility individually. The data also indicates that, in the Senegalese

context, being childless reflects an inability to conceive rather than a choice. Only 0.6% of

husbands and 0.8% of wives report wanting no child at all.

I exploit DHS to identify the predictors of the ideal number of children of men and

women (cf. Table A.3 in Appendix A). Since there is no information on preferences in PSF,

I will use this set of predictors when empirical tests require controlling for preferences of

the husband and the wife. Appendix A provides a detailed discussion of the predictors. Two

results are worth highlighting here. On the wife’s side, there is no difference between the

preferences of women engaged in a monogamous or a polygamous union. On the husband’s

side, the ideal number of children is much larger for polygamous men than for monogamous

ones. If I consider the raw average, monogamous husbands want 7.6 children against 12.2 for

polygamous husbands. The gap goes down to 2.7 children when I control for the whole set

of predictors, but it remains significant. So there is a positive correlation between a man’s

taste for a large family and his likelihood to take a second wife.

3.4 Descriptive statistics on the timing of unions

The timing of unions plays a key role in my framework. Table 3 provides some descriptive

statistics on ages at the husband’s first and second marriages. Women tend to marry much

older husbands: the median age at marriage is 17 for first wives against 28 for their husbands.

The second marriage generally takes place around 12 years later: the husband is 40, the first

wife 29, and the second wife 22. But the variation in the timing of the second marriage is

large: it ranges from within 6 years in the first quartile, to after 16 years in the last quartile.

First wives may be still very young when the rival arrives (below 24 years old in the first

quartile) or already quite old (above 36 in the last quartile). The situation of second wives
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is even more diverse. Around one third have already been married, which explains why the

age at marriage is so large in the last quartile (31 years old), while others are very young

(below 17 in the first quartile). I will exploit this variation in the empirical tests.

Note that in the vast majority of polygamous unions, the wives’ reproductive periods

overlap. In 70% of the cases, both wives were younger than 35 years old as the second

marriage took place; in 83% they were younger than 40 years old. That is why I focus on

unions with fecund wives in the core of the paper. In Appendix B5, I consider cases in which

the first wife was past her fecund years as the second wife arrived.

I do not report statistics on the third and fourth marriages because there are too few

observations. In the theoretical part, I consider a model with two players, and in the empirical

part, I am interested in the impact of the second marriage. I could easily extend the model

to three or four wives, but I would lack power to perform empirical tests on the third and

fourth marriages.

4 The Model

4.1 A simple model of fertility choices

I propose a model of fertility choices in which the decision-maker is the woman, and the

choice variable is the birth rate, λ. In concrete terms, it means that women choose to give

birth every x years, where x = 1
λ
. At date T , the couple reaches the end of the reproductive

period with n = λ.T children. 12 Note that there is no uncertainty in this framework: λ

is a frequency and λ.T is the realized number of children. I do not explicitly model the

intertemporal evolution of fertility choices and outcomes, although a dynamic stochastic

model would better reflect the true decision process. There is a trade-off between realism and

12. The number of children is therefore not necessarily an integer. Leung (1991) proposed to consider the
number of children as a flow of child services in efficiency units when a continuous measure of family size is
needed.
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tractability. Most dynamic stochastic models do not generate closed-form solutions and the

predictions derived from comparative dynamics vary from model to model (see the survey

by Arroyo and Zhang (1997)). Since the aim of this paper is to evidence noncooperative

behaviors, I chose the simplest framework that allowed me to describe how the choices of

one wife might be impacted by the fertility of other wives.

The choice is determined by three drivers: how many children the wife wants, how many

children the husband wants and what is feasible in terms of biological constraints and social

norms. First, the wife faces a standard economic trade-off between the benefits and costs

of children, which leads to an optimal number of children for the mother (see Appendix B1

for an explicit modeling). Second, even if the wife is the only decision-maker, the husband’s

objective influence the outcome by entering the wife’s utility. The idea is that husbands are

adversely affected if the birth rate is far from their wishes, and wives internalize such a loss,

be it because of altruism, love or fear of a punishment. So women incur a cost to deviate

from the husband’s objective. Third, in the African context, women’s control over birth

spacing is limited. Women can bring forward or delay the next birth by varying the extent of

breastfeeding, since breastfeeding reduces fertility and is often associated with abstinence. 13

But women cannot ensure extremely long nor extremely short birth intervals using such a

traditional birth control method. To account for this constraint, I introduce a natural birth

rate λnat, in reference to demographers’ concept of natural fertility, and a cost to deviate

from this level. The nature of the cost is not exactly the same on each side of the threshold.

If λ > λnat, the woman incurs a health cost generated by frequent pregnancies as well as a

psychological cost for transgressing social norms. 14 If λ < λnat, the cost is related to acquiring

and implementing modern contraceptives; it might be an economic cost, an opportunity cost

13. See Jayachandran and Kuziemko (2011) for a detailed discussion on the correlation between breastfee-
ding duration and the length of postpartum insusceptibility.

14. Fainzang and Journet (2000) document that pregnancies in quick succession are frowned upon in West
Africa. The mother is despised for giving in to her husband at the expense of the youngest child’s health.
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of time or a psychological cost to hide contraceptives from the husband or the community

(Ashraf, Field, and Lee 2014).

4.1.1 When polygamy is banned

I start by considering societies in which polygamy is banned, in order to set up the key

forces driving fertility choices. The next section will describe how this setting is modified

when polygamy is an option. In monogamous societies, I denote nidw the number of children

wanted by the wife, and nidh the number wanted by the husband. They are specific to each

couple and reflect innate preferences of each spouse. They may be correlated with each other,

and correlated with T , the length of the couple’s reproductive period. As shown in descriptive

statistics and in line with the literature on Africa (Westoff 2010), nidh is generally greater than

nidw . I also denote λnatm the natural birth rate of monogamous couples.

A simple way to put some structure on the optimization problem is to assume that

the wife minimizes a weighted sum of distances: distance to her objective, distance to the

husband’s objective, and distance to the natural rate. Formally, she chooses λ maximizing:

u(n) = −(n− nidw )2 − θh(n− nidh )2 − θn((λ− λnatm ).T )2 s.t. n = λ.T. (1)

θh ≥ 0 and θn ≥ 0 capture the intensity of marital and natural constraints, respectively.

The third term corresponds to the accrual of instantaneous deviations from the natural rate

during the whole reproductive period,
∫ T

0
(λ− λnatm )dt. It can be rewritten (n− nnat) where

nnat = λnatm .T is the number of children that would be born in a natural fertility regime.

Payoffs are paid at the end of the reproductive period to ensure time consistency. 15

15. At date 0, the woman solves the maximization problem and chooses λ∗. Suppose that she can update
her choice at date t. She already has λ∗.t children, and maximizes over λ′:

−(n− nidw )2 − θh(n− nidh )2 − θn(t.(λ∗ − λnatm ) + (T − t).(λ′ − λnatm ))2 s.t. n = λ∗.t+ λ′.(T − t)

It is equivalent to maximizing Equation 1 over λ = λ∗.t+λ′.(T−t)
T . Therefore λ = λ∗ = λ′.
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The first order condition gives an optimal birth rate: 16

λNS =
nidw + θhnidh + θnnnat

(1 + θh + θn).T
. (2)

Hence the optimal number of children, nNS = λNS.T , is a weighted average of nidw , nidh and

nnat. The optimal birth rate and the optimal number of children increase with nidw , nidh and

λnatm . An increase in T raises the final number of children, but reduces the birth rate. Last,

the impact of a variation in θh and θn depends on the relative size of nidw , nidh and nnat.

From this simple model, I derive a testable implication. In monogamous societies, the

final number of children should be a weighted average of the wife’s preferences, the husband’s

preferences and a natural number proportional to marriage duration. I estimate the model

using DHS data on monogamous couples, focusing on older ones. The first column of Table

4 suggests that my framework is relevant. The three drivers nidw , nidh and T are significantly

correlated to total fertility, accounting for 36% of the variance. This is virtually the largest

share in variance that can be explained by a linear probability model in this setting. 17

The constant is not significantly different from zero. 18 The estimation I get for the natural

birth rate is sensible: one birth every three years. Given that T = 26 years on average, it

corresponds to approximately 8 children for the average couple. These numbers are consistent

with estimates produced by demographers. Using data from various populations in the world,

Henry (1961) concludes that the completed fertility for a woman married at 20 years old

is between 6 and 11. More specifically, in Africa, Hertrich (1996) reports that the most

widespread norm advocates birth intervals of three years. The natural number of children

16. I use the superscripts NS for Non-Strategic because there is no strategic interaction here.
17. Indeed, the dependent variable is an integer. Assuming that the true data generating process is a

Poisson model of parameter µ, then a LPM could explain at most V(µ)/[E(µ) + V(µ)]. In my sample, the
empirical counterparts of E(µ) and V(µ) are respectively 6.44 and 2.65, leading to an upper bound of 0.30
for the R2.

18. Yet, the constant is rather large in magnitude and negative. One explanation is that I consider women
between 40 and 50 years old who may still have an additional child. There are not enough observations to
restrict the sample to an older age bracket.
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significantly constrains fertility choices: θn is estimated to be around three. Last, the order

of magnitude of θh is one half, but I cannot reject the hypothesis that the preferences of the

husband and those of the wife have the same weight.

However, this framework fails to account for behaviors in polygamous unions. Indeed,

when I estimate the model on polygamous couples, in the second column, the fit is not as

good. The R2 drops to 0.14 and the preferences of the wife are no longer significant, so that

I can no longer get consistent estimates of the parameters. Something seems to be missing,

and I claim in the next section that the missing element is the fertility of the other wife.

As suggestive evidence, I added the preferences and the length of reproductive period of

the co-wife as additional drivers. 19 Both have a positive and large effect on the completed

fertility of the index wife, although not significant; more importantly, the R2 increases up to

0.30, which is close to the level observed in monogamous unions.

4.1.2 When polygamy is allowed

How does the eventuality of polygamy impact the framework described above ? The si-

tuation is best modeled as a game with two players, wife 1 and wife 2, characterized by their

preferences nidw,i and their reproductive period Ti. The husband is not a player but he has

some preferences nidh and a type, monogamous (m) or polygamous (p). At t = 0, a couple

is formed between the husband and wife 1. If the husband is of type m, the union remains

monogamous and wife 2 never enters the game. If the husband is of type p, wife 2 enters at

date S so that the timing is split into a monogamous stage until t = S and a polygamous

stage after t = S. At t = 0, the first wife only knows nidw,1, nidh and T1. She has some beliefs

about the risk of polygamy, and in case of polygamy, about nidw,2, T2 and S. In particular,

she believes that her husband is of type p with probability π, and of type m with proba-

bility (1 − π). As long as the second marriage has not taken place, the first wife ignores

19. I observe the preferences and the length of reproductive period of the co-wife only in a very small
sample: bigamous unions in which both wives are found and are in their first union (41 observations).
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her husband’s type. She chooses λ0 taking into account her expectations. When the second

marriage takes place, the type p is revealed and all information become public: S, T2 and

nidw,2. 20 The two wives play a simultaneous, non-cooperative game. The first wife chooses λ1

and the second wife chooses λ2. Payoffs are paid when both reproductive periods are over.

One important assumption in this setting is that the union type, the date of the second

marriage and the characteristics of the second wife are given ex-ante. They may well be

correlated with nidw,1, nidh and T1. Therefore, they may be correlated with λ0. But the model

rules out any reverse causality: the occurrence and characteristics of the second marriage

should not be caused by fertility choices made during the monogamous stage. The rationale

for this assumption is that no specific pattern of fertility in the first years of marriage predicts

polygamy, as shown by empirical tests presented in the robustness section. 21 What seems to

drive polygamy is the husband’s willingness and ability to pay for a second wife. Having two

wives is a sign of success but it comes at a cost. Boltz and Chort (2015) have examined the

strategies of first wives to impede or delay the second marriage. All consist in preventing the

husband from saving, and there seems to be no strategy relying on fertility.

How does the presence of another wife affect the three drivers of fertility ? First, the

wife’s objective depends not only on her own preferences, but also on the final number of

children of the co-wife, n−i. I assume that the wife targets (nidw,i + εin−i) children, where

εi ≥ 0 is a woman-specific parameter capturing the intensity of co-wife rivalry. Appendix

B1 describes in detail how the wife’s objective is determined. The key assumption is that

n−i raises the marginal benefit of children for woman i. It reflects the reproductive rivalry

documented in the literature review. Intuitively, women care about their relative number of

children, so one wife wants more children when her co-wife has more children. Second, the

husband’s objective with a given wife is impacted too. I assume that the husband targets a

20. In Appendix B2, I relax the assumption that nidw,2 is observed by the first wife.
21. An extreme case is when the first wife turns out to be infertile. As mentioned above, I exclude infertile

unions from the theoretical and empirical analysis.
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total number of children nidh and is indifferent to the allocation between wives. For him, all

children are perfect substitutes. So his objective with wife i is (nidh − n−i). Third, building

upon the demography literature, I assume that the natural birth rate is lower in polygamous

unions than in monogamous ones: λnatm > λnatp , where λnatp is the rate for polygamous couples.

I further define nnat1 = λnatm .S+λnatp .(T1−S) and nnat2 = λnatp .T2. Formally, the utility function

of wife i is: 22

u(ni, n−i) = −(ni − εin−i − nidw,i)2 − θhi (ni + n−i − nidh )2 − θni (ni − nnati )2. (3)

In the polygamous stage, the second wife chooses λ2 maximizing:

u(n2, n1) = −(n2 − ε2n1 − nidw,2)2 − θh2 (n2 + n1 − nidh )2 − θn2T2.(λ2 − λnatp ))2 s.t. n2 = λ2.T2.

λ∗2 is the optimal birth rate of second wives, and n∗2 = λ∗2.T2, their optimal number of children.

Turning to the first wife, λ0 is the birth rate chosen in the monogamous stage. At date

S, the first wife has λ0.S children, and she is able to update her choice. Her final number of

children is given by n1 = λ0.S + λ1.(T1 − S). So she maximizes over λ1:

u(n1, n2) = −(n1 − ε1n2 − nidw,1)2 − θh1 (n1 + n2 − nidh )2 − θn1 (S.(λ0 − λnatm ) + (T1 − S).(λ1 − λnatp ))2

s.t. n1 = λ0.S + λ1.(T1 − S).

λ∗1(λ0) is the optimal birth rate of first wives in the polygamous stage. At t = 0, the first

wife chooses λ0 that maximizes her expected utility given her beliefs about S, nidw,2 and T2:

(1− π)× u(λ0.T1, 0) + π × E[u(λ0.S + λ∗1(λ0).(T1 − S), n2)].

22. The predictions of the model can be derived with more general functional forms (cf. Appendix B3).
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4.2 Finding the equilibrium in bigamous unions

I solve the problem by backward induction: focusing on the polygamous stage, I determine

the best response of each wife and compute the equilibrium of the static game. Then I turn

to the monogamous stage and determine the optimal initial birth rate.

4.2.1 Polygamous stage: best responses and Nash equilibrium

Taking the first-order condition for wife i when the other plays n−i, I find:

n∗i = nNSi + n−i.Bi for i = 1, 2,

where nNSi =
nid
w +θhi n

id
h +θni n

nat
i

1+θhi +θni
is the optimal choice in the absence of strategic interactions,

and Bi =
εi−θhi

1+θhi +θni
is the strategic response. Bi will play a key role in the analysis because its

sign determines if children are strategic complements or substitutes. The sign of Bi is given

by the difference between εi which captures the intensity of co-wife rivalry, and θhi which is

the weight given to husband’s preferences. If εi > θhi , then Bi > 0 and ni is increasing in n−i.

The Nash equilibrium is the intersection of both best responses. I get:

n∗i = (nNSi + nNS−i .Bi)×
1

1−B1.B2

for i = 1, 2. (4)

I further impose that εi ∈ [0, 1] so that Bi ∈]− 1, 1] and (1−B1.B2) ≥ 0. If (1−B1.B2) = 0,

there is no equilibrium. It happens when εi = 1, θhi = θni = 0 for i = 1, 2, meaning that

the rivalry effect is not offset by any kind of marital or biological constraint. The number

of children of both wives is pushed to infinity. Another extreme case is when Bi → −1

for i = 1, 2. It happens when εi = θni = 0 and θhi is very large, meaning that only the

husband’s objective is driving fertility choices. Here, there is an infinite number of equilibria:

(n1, n2) s.t. n1 + n2 = nidh . Both cases are easily ruled out by the fact that fertility choices
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are not free from any biological constraints, so θni is never equal to zero.

Note that the equilibrium of the static game is fully determined by nNS1 , nNS2 , B1 and

B2. Whatever λ0, first wives adjust their birth rate after the second marriage; they choose

λ∗1(λ0) such that λ.0S + λ∗1(λ0).(T1 − S) = n∗1 = (nNS1 + nNS2 .B1)× 1
1−B1.B2

.

4.2.2 Monogamous stage: back to t = 0

At t = 0, first wives maximize over λ0:

(1− π)× u(λ0.T1, 0) + π × E[u(n∗1, n
∗
2)].

Since u(n∗1, n
∗
2) does not depend on λ0, the maximization problem boils down to the problem

in monogamous societies. The optimal initial birth rate is:

λ∗0 =
nidw + θhnidh + θnnnat0

(1 + θh + θn).T1

=
nNS0

T1

,

where nnat0 = λnatm .T1. In Appendix B4, I compare the equilibrium and the outcome maxi-

mizing total welfare. Consistently with most non-cooperative models, I find that household

members are unable to reach an optimal allocation.

We can prove that an equilibrium exists as soon as Bi ≥ 0 for i = 1, 2. If we come back

to the Nash equilibrium described above, it exists if and only if λ∗i ≥ 0 for i = 1, 2. For the

second wife, it is the case when B2 ≥ 0. For the first wife, it is the case when n∗1(S) ≥ λ∗0.S,

which is true when B1 ≥ 0. 23 In other words, whatever the length of the monogamous period,

the first wife always wants more children than she currently has at the time of the second

marriage.

One testable implication is that π should not influence the optimal initial birth rate.

Holding everything else constant, women with different beliefs should take the same decision

23. f(S) = n∗1(S)− λ∗0.S is monotonic, and f(0) and f(T1) are both non-negative, so f(S) ≥ 0 for all S.
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in the monogamous stage. One way to test the model is to come up with an estimate of π for

each woman and to examine whether it influences birth spacing in the monogamous period.

In Appendix D, Table D.1, I regress the union status on potential predictors of polygamy

using the sample of monogamous and first wives older than 45 years old. I use this regression

to predict the probability of a second marriage for women younger than 45 years old. Table

D.2 shows that the predicted probability has no significant impact on birth spacing. However,

the power of this test is limited because there is no strong predictor of polygamy (R2 = 0.16

in the first stage).

The prediction that expectations about the second period do not influence choices in the

first period is driven by two assumptions: (i) the second marriage is not caused by fertility

choices, and (ii) the game is simultaneous. In the basic model, I only consider the case when

S < T1, meaning that first wives have some time left to update their number of children.

In an extension of the model, I include the eventuality that S ≥ T1 which corresponds to a

sequential game. In this case, expectations play a key role (cf. Appendix B5).

4.3 Comparative statics

4.3.1 Main predictions

From this simple model, I derive a test for strategic interactions. The key quantity of

interest is the difference in first wives’ optimal birth rates before and after the second mar-

riage. The advantage of looking at the change in birth rate is to get rid of time-invariant

unobservable characteristics of spouses, as explained in the empirical strategy. We have:

λ∗1 − λ∗0 =
n∗1 − nNS0

T1 − S
=

n∗2.B1

T1 − S
− θn1

1 + θh1 + θn1
× (λnatm − λnatp ). (5)

The term can be decomposed into (i) an exposure effect, − θn1
1+θh1 +θn1

× (λnatm − λnatp ), that

is always negative; and (ii) a strategic effect,
n∗
2

T1−S × B1, that might be positive or negative
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depending on the sign of B1. Recalling that the sign of B1 is given by (εi− θhi ), the strategic

effect is further split into a positive overbidding effect, driven by (ε × n∗2), and a negative

substitution effect, driven by (−θh × n∗2).

First, I am interested in the sign of λ∗1 − λ∗0. If it is negative, birth intervals lengthen

after the second marriage. It happens when the positive force, the overbidding effect, is not

large enough to compensate the negative forces, the sum of the substitution effect and the

exposure effect. If B1 < 0, birth spacing is unambiguously longer in the polygamous stage.

If B1 > 0, the second marriage causes a lengthening of birth spacing if and only if the global

strategic response is weaker than the change in natural fertility.

Prediction 1 First wives should lengthen birth spacing after the second marriage iff the

exposure effect dominates the strategic effect.

Second, I predict how λ∗1−λ∗0 should evolve with T2. Using Equation 5, I find that
∂λ∗1−λ∗0
∂T2

has the same sign as B1. In the case of a negative strategic effect, birth spacing should

lengthen more when T2 is longer. In the case of a positive effect, it should lengthen less (if

λ∗1−λ∗0 < 0) or shorten more (if λ∗1−λ∗0 > 0) when T2 is longer. The prediction is illustrated

in Figure 3.

Prediction 2 In the case that first wives shorten birth spacing after the second marriage:

they should shorten more when the reproductive period of the second wife is longer. In the

case that first wives lengthen birth spacing after the second marriage: they should lengthen

less when the reproductive period of the second wife is longer iff the strategic effect is positive.

4.3.2 Secondary predictions

The model also predicts how the second wife’s birth spacing should be affected by the

duration of the first wife’s reproductive period split into the monogamous stage (S) and the
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polygamous one (T1 − S). Substituting the value of n∗2 from Equation 4 into λ∗2 =
n∗
2

T2
, I find

that
∂λ∗2

∂(T1−S)
and

∂λ∗2
∂S

have the same sign as B2.

Prediction 3 The duration of the monogamous period and the time left before the end of

the first wife’s reproductive period should impact birth spacing of second wives in the same

direction. They should shorten birth spacing iff the strategic effect is positive.

Last, I am able to derive predictions on the equilibrium number of children. Using the

closed form for n∗1 in Equation 4, I find that
∂n∗

1

∂T2
has the same sign as B1 while

∂n∗
1

∂T1
> 0 and

∂n∗
1

∂S
> 0. Similarly, for second wives,

∂n∗
2

∂(T1−S)
and

∂n∗
2

∂S
have the same sign as B2, while

∂n∗
2

∂T2
> 0.

Prediction 4 The number of children of first wives should increase with their own repro-

ductive period and with the duration of the monogamous period. It should also increase with

the second wife’s reproductive period iff the strategic effect is positive.

Prediction 5 The number of children of second wives should increase with the duration of

their own reproductive period. The duration of the monogamous period and the time left before

the end of the first wife’s reproductive period should impact fertility in the same direction.

They should raise the second wife’s completed fertility iff the strategic effect is positive.

The main weakness of secondary predictions is that I cannot account for unobserved

heterogeneity in the corresponding empirical tests. I report the results as suggestive evidence

of strategic interactions, but the empirical strategy focuses on the change in first wives’ birth

spacing. The notations of the model and the predictions are summarized in Tables 5 and 6.

5 Empirical Strategy

The goal of the empirical strategy is to test the validity of the model. In particular, it

aims at (i) identifying the total impact of polygamy on fertility and (ii) identifying the sign
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of the strategic effect. Tests are carried out on the sub-sample of first wives younger than 45

because I do not know the complete birth history of older women, as explained in Section

3.1.

5.1 Preliminary evidence on raw data

Before turning to the econometric specifications, Table 7 presents some descriptive sta-

tistics on the average birth intervals of first wives before and after the second marriage. The

first column reports the statistics for the whole sample of first wives: birth intervals increase

by six months, from 37.6 months in the monogamous stage up to 43.6 months in the polyga-

mous stage. The sample is further split on the median T2 into those facing a weak competitor

(short T2, column two) and those facing a strong competitor (long T2, column three). Birth

intervals rise by almost 10 months for the former, whereas the magnitude is halved and the

increase is no longer significant for the latter. Note that both groups display very similar

birth intervals in the monogamous period: 37.8 and 37.1 months, not significantly different

from each other.

The analysis of raw data provides a first hint that polygamy reduces fertility, and dif-

ferentially so according to the type of second wife. It also suggests that the timing of the

second marriage is not correlated with the history of previous births.

These preliminary results will be confirmed and strengthened by the identification stra-

tegy presented below. I consider two specifications: a linear model with fixed effects and a du-

ration model with individual baseline hazards. Through the explicit modeling of unobserved

heterogeneity, they allow a causal interpretation under credible identification assumptions.
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5.2 Econometric specifications

The main idea is to take advantage of the panel structure of the data. Indeed, I observe

several birth intervals for a given woman i, some of them occurring before and others after

the second marriage. 24

The dependent variable is the duration between births j and (j + 1), denoted ti,j and

measured in months. The vector xi,j contains observed time-varying explanatory variables:

woman’s age and age squared at birth j. I also include a dummy for each birth rank j ∈ [2, J ]

where J is the highest parity observed; the reference category consists of intervals after the

first birth. The term νi is meant to capture all the determinants of birth intervals that may

vary across women, but not across birth ranks for a given woman. I use robust standard

errors clustered at the woman level to account for the correlation between the error terms

related to the different birth intervals of the same woman.

In a first step, I estimate the total impact of a change in union status, from monogamous

to polygamous. The covariate of interest is the dummy Afteri,j, which is is equal to one if the

second wife had arrived when the child (j+ 1) was conceived by woman i. This specification

allows me to test Prediction 1. In a second step, I test if the impact is heterogenous by

interacting Afteri,j with T2,i, the reproductive period of the second wife faced by woman i.

It provides an empirical test for Prediction 2. I include monogamous wives in the sample to

improve the accuracy of the estimators. They do not contribute to estimating the impact

of polygamy, because After is always equal to zero for them, but they help estimating the

coefficients on xi,j and on the birth rank dummies. As a robustness test, I check that estimates

are very similar if I exclude monogamous wives (cf. Table D.3, columns 5 and 6).

24. The impact of the second marriage on the first wife’s fertility is identified on women with at least two
births before the second marriage and at least one birth after the second marriage. It is the case for roughly
40% of first wives. In the end, 330 birth intervals contribute to the identification.
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5.2.1 Linear model with fixed effects

I start with a linear model to get a sense of magnitude of the effects. The specifications

satisfy:

ti,j = α0.Afteri,j + β.xi,j + ηj + νi + εi,j,

ti,j = α1.Afteri,j + α2.Afteri,j × T2,i + β.xi,j + ηj + νi + εi,j,

where εi,j is an idiosyncratic error term, and ηj is equal to one for birth rank j. In these

specifications, I only consider non-censored durations (i.e. closed intervals). I will turn to

duration models in the next section to deal more properly with censoring. νi is treated as a

woman fixed effect. I estimate α0, α1 and α2 using the within estimation method.

Under the identification assumptions specified below, the linear model predicts that po-

lygamy causes an average change in birth intervals by α0 months. In the theoretical model,

this quantity is given by (1/λ∗1− 1/λ∗0). If α0 > 0, birth spacing lengthens in the polygamous

stage. Moreover, the change in case of T2 = 0 is predicted to be α1; each additional year in

T2 translates into α2 additional months. If α2 < 0, birth spacing lengthens less (if α0 > 0)

or shorten more (if α0 < 0) when T2 is longer.

5.2.2 A duration model of birth intervals with individual hazards

Now I turn to duration models, which are closer in spirit to the theoretical model and

better suited to the nature of the dependent variable. They make it possible to exploit

information from right-censored durations (i.e. time intervals between the birth of the latest

child and the date of the survey). Another advantage of duration models is that Afteri,j may

vary within a spell j, and not only across spells. It captures more precisely the date of the
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change than in the linear model. 25 Formally, I consider a mixed proportional hazard model

with multi-spell data. The hazard functions satisfy:

θ(t|xi,j, vi) = θ0(t, νi)× exp(α′0.Afteri,j + β′.xi,j + η′j),

θ(t|xi,j, vi) = θ0(t, νi)× exp(α′1.Afteri,j + α′2.Afteri,j × T2,i + β′.xi,j + η′j).

In these specifications, the baseline hazard θ0 is specific to each woman. There is no restriction

on the interaction of νi with the elapsed duration t in the hazard function. Moreover, no

assumption on the tail of the distribution of the unobservables is needed. The main technical

assumption is the proportional hazard assumption that I tested and failed to reject (cf. Figure

D.1 in Appendix D). I estimate α′0, α′1 and α′2 using a stratified partial likelihood. 26

In proportional hazard models, coefficients are interpreted as hazard ratios. exp(α′0) mea-

sures the hazard ratio between births occurring after and births occurring before the second

marriage. In the theoretical model, it corresponds to λ∗1/λ
∗
0. If exp(α′0) < 1, birth spacing

lengthens in the polygamous stage. The hazard ratio after-before also satisfies exp(α′1) ×

exp(α′2.T2). If exp(α′2) > 1, the ratio increases with T2. It means that birth spacing lengthens

less (if exp(α′0) < 1) or shortens more (if exp(α′0) > 1) when T2 is longer.

Note that the duration model predicts hazard rates while the linear model predicts dura-

tions. The higher the hazard rate, the shorter the duration. So the predictions of both models

are consistent if their estimates have opposite signs. In particular we should have α > 0 if

and only if exp(α′) < 1.

25. An alternative identification strategy would be to rely on the timing-of-events methodology developed
by Abbring and van den Berg (2003) that would exploit the variation in the union status occurring within
a spell. Unfortunately, I only observe the year of the second marriage so there are large measurement errors
when I split the spell into two intervals measured in months.

26. The method is described in more details in Appendix C. In the same way as in linear models, it is
based on a suitable transformation that eliminates the ν.
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5.3 Identification assumptions

Both specifications allow the explanatory variables and ν to be dependent. It means

that fertility choices and the occurrence and timing of the second marriage may be jointly

determined by some unobserved characteristics, provided that these characteristics are fixed

over time (e.g. husband’s taste for a large family). This does not seem a strong assumption

given that time-invariant characteristics available in the data already explain 45% of the

variance in T2. 27

The key identification assumption is a strict exogeneity condition: the idiosyncratic error

term ε should be uncorrelated with After and T2 of all past, current and future spells of the

same individual. It corresponds in part to the assumption of the theoretical model that the

second marriage is not caused by fertility choices in the monogamous stage. It also entails

a condition on the evolution of fertility during the woman’s life. In the model, I abstract

from such dynamics by assuming that natural birth rates were constant in time. In fact,

birth rates tend to evolve with the life-cycle. Using a fixed effect specification, I find that

the same woman (i) at a given age, has longer intervals if the birth rank is higher, and (ii)

at a given rank, has shorter birth intervals if she is older, up to a certain age above which

the relationship is reversed. Since After is mechanically correlated with birth ranks and

woman’s age, I need to control for such life-cycle effects to prevent my tests from capturing

spurious dynamics. Therefore I include woman’s age and age squared at birth and a dummy

for each birth rank as controls. 28 This solves the issue as long as the effect of the life-cycle

does not differ between polygamous and monogamous wives, nor among polygamous wives

depending on the timing of the second marriage. I call this assumption the common life-

cycle assumption. It is close to the common trend assumption in a difference-in-difference

27. The main drivers are ethnic and regional variations, features of the husband’s childhood (polygamy
of his father, child fostering) and characteristics of the first marriage (age of the spouses, having broken
unions). The analysis is performed on non-barren first wives older than 45 years old (124 observations).

28. The impact of birth ranks and the impact of After are separately identified because the second marriage
takes place at different parities for different women.
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framework. In the same way, it is testable on births that occurred before the second marriage.

In the robustness section, I will present empirical tests to provide support for these

assumptions. In particular, I will show that the evolution of birth spacing is the same for

all women during the monogamous stage. I will also conduct placebo tests to check that the

difference after-before exactly coincides with the second marriage.

6 Results

6.1 Main results

Testing Predictions 1 and 2 Table 8 reports the estimation of the linear model with

fixed effects. Polygamy causes a significant increase in birth intervals, by seven months. The

impact is highly heterogeneous: 14 months for first wives facing a weak competitor against

zero for those facing a strong competitor. These estimates are in line with the raw data.

The econometric model further predicts that intervals lengthen by approximately two years

when T2 = 0, and that an increase by one year in T2 reduces this change by one month. So

intervals lengthen less when the second wife has more time ahead to give birth to children.

The coefficient on the interaction term is significant at 10%.

The duration model with individual hazard gives similar results. Table 9 reports exp(α′).

The hazard ratio after-before is lower than one, although not significant. 29 It suggests that

birth rates are lower after the second marriage, i.e. intervals are longer. Next, the hazard

ratio on the interaction term is larger than one, and significant at 5%, meaning that birth

spacing lengthens less when T2 is longer.

Going back to Equation 5, these empirical results imply that λ∗1 < λ∗0 while B1 > 0. The

overall impact of the second marriage is negative because the exposure effect is large enough

29. The p-value is 0.16. The ratio becomes significant at conventional levels when the specification is
slightly modified (cf. Table D.3 discussed in the robustness checks).
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to dominate the positive strategic effect. Since the strategic effect is proportional to n∗2, it is

only possible when n∗2 is not too large, more precisely when n∗2 <
θn.(λnat

m −λnat
p ).(T1−S)

ε1−θ1h
. I need

to make further assumptions on the values of the parameters to assess whether this condition

is likely to hold in the majority of households. I use estimations on monogamous unions for

θh ≈ 1/2, θn ≈ 3 and λnatm ≈ 1/3. Under the additional assumption that λnatp = λnat
m

2
and

ε = 1, the condition rewrites n∗2 < (T1 − S). This is verified in 90% of households. 30

6.2 Secondary results

6.2.1 Second wives

What about second wives ? In this section, I provide suggestive evidence that they do

behave strategically too. However, the test is less conclusive because I only observe second

wives in the polygamous stage. So it is not possible to account for unobserved determinants

of fertility. One might be worried that some of those are correlated to the type of marriage

the woman ends up in. To mitigate the omitted variable issue, I control for a wide range

of characteristics: the predictors of the ideal number of children identified in Table A.3,

characteristics of husband’s occupation (income and a dummy for the public sector) which

were not available in DHS but are likely to influence preferences, co-residence status, having

children from previous unions and having dead children from current union. I estimate a Cox

model of birth intervals with a baseline hazard common to all women. I include durations

between marriage and first birth, because they convey useful information on second wives’

reactions. I exclude women having no child with the current husband to mitigate the issue

of infertile unions.

Testing Prediction 3 The idea, again, is to test if the second wife responds to the

length of the first wife’s reproductive period. If her strategic response is also positive, I

30. The distribution of the second wife’s final number of children (excluding infertile unions) is Q1 = 2,
Q2 = 4 and Q3 = 6 while the distribution of T1 − S in the same sample is Q1 = 9, Q2 = 16 and Q3 = 22.
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should observe that birth intervals are shorter when S and (T1−S) are longer. When I know

the complete birth history of the first wife, I can deduce nini, the number of children she

had at the time of the second marriage. Prediction 3 would be modified to state that birth

intervals of second wives should be shorter when nini is higher, holding (T1 − S) constant.

nini is much more informative than S because it captures the optimal birth rate of the first

wife. 31 Table 10 summarizes the test using S in column 1 and nini in column 2. Signs are

in line with expectations. The hazard rate is positively correlated with all predictors of the

first wife’s completed fertility: (T1 − S), S and nini. If I break down the effects by birth

ranks, they are particularly strong on the duration between marriage and first birth. All this

suggests that second wives also intensify their fertility when they face a more fertile rival.

6.2.2 Completed fertility

To test the predictions on the total number of children, I consider the sub-sample of

women over 45 years old, who have reached the end of their reproductive life, in order to

avoid censoring issues. I focus on unions in which at least one child was born. Since there

is only one observation per woman, sample sizes are reduced. As described above, I control

for many determinants of fertility to mitigate potential omitted variable issues, but this is

not as satisfactory as panel data analysis. Under this caveat, looking at completed fertility

provides circumstantial evidence that the impact of strategic interactions on birth spacing

patterns translates into sizeable differences in terms of total number of children.

Testing Prediction 4 Starting with first wives, Table 11 shows that the number of

children increases with the duration of their own reproductive period, with the duration of

the monogamous period, and with the duration of the co-wife’s reproductive period. First

wives are predicted to eventually have two children fewer when the second wife has a short

31. Empirically, the duration of the monogamous period is a strong predictor of the number of children
already born at the time of the second marriage. If I regress nini on S and no constant, I find a coefficient
of 0.24 highly significant. It corresponds to one birth every four years on average, or five children in 20 years
of marriage.
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time left before fertility decline (less than 10 years).

Testing Prediction 5 Turning to second wives, although the sample of women over

45 years old is small, Table 12 suggests that their own reproductive period has a positive

impact on completed fertility. Moreover, second wives have three children fewer when the

monogamous period was short (below the median), which left little time for the first wife

to have many children. And they have two children fewer when the first wife has no time

left to react after the second marriage. Both effects are consistent with a positive strategic

response of second wives.

To sum up, all empirical tests point to children being strategic complements in poly-

gamous unions: characteristics raising the fertility of one wife intensify the fertility of her

co-wife.

6.3 More empirical evidence based on the gender of children

So far, I have considered only the quantity of children, putting quality aside. Nonetheless,

it might be argued that co-wife rivalry is also about children’s characteristics such as, for

instance, educational achievement, social success, commitment to norms or responsibility

taken in the family welfare. According to the literature on Africa, one characteristic plays a

key role: gender. Having sons substantially improves women’s status and security (Lesthaeghe

1989). It is particularly true in patrilineal ethnic groups, and where the influence of the

Islamic law is strong, like in Senegal where 95% of the population is Muslim. A previous work

on monogamous unions shows that Senegalese women have a stronger preference for sons

when the current husband already has children from ex-wives, either divorced or deceased

(Lambert and Rossi 2014). The explanation rests on the rivalry for inheritance between the

husband’s children. In presence of children from ex-wives, current wives need a son to secure

access to their late husbands’ resources in case of widowhood. The same rationale might be

at play in polygamous households, and even exacerbated by the rivalry for current resources,
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be it material or emotional.

The hypothesis I want to test in this section is that the gender of children matters in

polygamous households. Ideally, I would like to predict how the birth of a boy vs. a girl

impacts the subsequent optimal birth rate of both wives, and whether this effect depends

on the gender composition of the other wife. However, my model of fertility choices lacks a

true time dimension to adequately account for the uncertainty related to a child’s gender.

Therefore, I build on the above-mentioned work on the rivalry with ex-wives to derive the

following predictions regarding co-wives in bigamous unions. On the one hand, the arrival

of a second wife should exacerbate the preference for sons of first wives. Indeed, they move

from a situation in which no other child can compete with their own offspring, to a situation

with rivals. So the necessity to have a son should be stronger in the polygamous stage. On

the other hand, the behavior of the second wife should depend on the gender composition of

the first wife’s children, boys representing a more serious threat than girls. The second wife’s

fertility should therefore increase more with the number of boys than with the number of

girls already born to the first wife.

To test the prediction on the change in son preference of first wives, I rely on a duration

model of birth intervals with individual baseline hazards. I introduce a dummy No son equal

to one if the woman had no son at the time of the index birth. This variable varies across

births and captures the impact of having only daughters vs. at least one son on the next

interval, holding birth rank and age at birth constant. If the hazard ratio is larger than one,

meaning that having only daughters decreases the expected interval, then one can infer the

existence of son preference. 32 Then I interact the gender composition with the dummy After

to test whether the arrival of the second wife has an impact on son preference. Results are

reported in Table 13. Son preference exists in the monogamous stage: the hazard ratio on

32. Rossi and Rouanet (2015) discuss in more details how to infer the existence of gender preferences using
duration models of birth intervals.

36



No son is significantly greater than one. 33 But it is substantially exacerbated by the second

marriage: the hazard ratio on the interaction term, capturing the difference in son preference

before and after, is equal to two. Controlling for life-cycle dynamics, the same woman is

predicted to display much larger son preference once her rival has arrived than she used to

do.

Regarding the prediction on second wives, I assume that the baseline hazard is common

to all women, and that all unobserved heterogeneity is accounted for by the controls. I split

nini, the first wife’s number of children at the time of the second marriage, into Boysini,

her number of boys and Girlsini, her number of girls. Table 14 shows that second wives

react more to the number of boys than to the number of girls. Hazard ratios on Boysini

and Girlsini are both larger than one, but the former is 60% larger than the latter and only

Boysini has a significant impact.

Both tests suggest that co-wife rivalry raises the relative value of sons against daughters.

It is an additional piece of evidence that potential and realized fertility outcomes of one wife

influence the behavior of the other wife.

7 Robustness and Placebo Tests

7.1 Robustness checks

I start by checking that the main results are robust to changes in the duration model

specification. Results are reported in Table D.3 in Appendix D. In columns 1 and 2, I esti-

mate the impact of polygamy on the very next birth interval rather than the impact on all

subsequent intervals. Coefficients are larger in magnitude and more significant than in the

baseline specification. One interpretation is that the difference between λnatm and λnatp would

33. As shown in Lambert and Rossi (2014), the effect is mostly driven by monogamous unions in which
the husband has children from ex-wives.
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tend to die out as spouses get older. The exposure effect would be strong at the beginning

of the polygamous stage, and would gradually disappear over time. 34

In columns 3 and 4, I exclude first wives with more than one co-wife, and in columns 5

and 6, I exclude monogamous wives. In columns 7 and 8, I impose that After = 1 for the

whole spell during which the second marriage takes place, which is the approximation made

in the linear model. Estimates are very similar to the baseline results in terms of magnitude.

The hazard ratio after-before, which is close to significance in the baseline specification, is

significant at 10% when I focus on bigamous unions, and significant at 1% when After does

not vary within a spell.

A last concern is that I do not observe deceased children, which might lead me to ove-

restimate the true duration between successive births. I check in columns 9 and 10 that the

main findings still hold when I restrict the sample to women who lost no child. Estimates

are even slightly larger in magnitude and more significant.

7.2 Testing identification assumptions

First I test the assumption that the occurrence and characteristics of the second marriage

are not caused by fertility choices in the monogamous stage. The idea is to examine the

empirical relationship between λ0 on the one hand, and the union type, S and T2 on the

other hand. 35 According to the model, these characteristics are unknown in the monogamous

stage so they cannot directly influence λ0. However, they might be correlated with nidw,1, nidh

and T1 and hence with λ0. For instance, the descriptive statistics have shown that polygamous

husbands report wanting more children. One way to test the model is to regress λ0 on the

union type, S and T2, controlling for nidw,1, nidh and T1. If there is no reverse causality, the

34. Another explanation is based on learning effects. In a more complex dynamic game, the preferences
of each wife would be private information and both wives would update their beliefs as and when the other
wife gives birth. Such a setting is beyond the scope of this paper, but it could help explaining the dynamic
reaction of first wives.

35. Ideally I would implement the same test with nidw,2 but I do not observe the preferences in PSF.
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correlation should be nil.

Table D.4 in Appendix D reports the estimates of a Cox proportional hazard model. The

first column deals with the occurrence of polygamy. I compare the birth rates of first wives

before the second marriage to the birth rates of monogamous wives. I construct a dummy

”Future first wives” indicating if the mother is in a polygamous union at the time of the

survey. I restrict the sample to women over 40 to ensure that most women in the reference

category ”monogamous wives” will remain the sole wife in this union. Controlling specifically

for marriage duration and predictors of preferences, I find that first wives do behave like

monogamous wives as long as the second wife has not arrived. So there is no evidence that

some specific fertility patterns would drive the likelihood of polygamy. The second column is

about the timing of polygamy. I consider first wives before the second marriage and I test if

T2 and S are systematically correlated with birth rates. Again, holding T1 and predictors of

preferences constant, I find that choices in the monogamous stage do not predict the timing

of the second marriage.

Second, I turn to dynamic effects. The identification assumption is that intervals may

depend on birth ranks, but the effect of birth ranks should not depend on the occurrence

and timing of polygamy. It is possible to test if this holds during the monogamous stage using

a duration model with individual hazards. Results are reported in Table D.5 in Appendix D.

In the first column, I interact birth rank dummies with ”Future first wives” to compare the

effect of the life-cycle between monogamous wives and first wives before the second marriage.

I find that the hazard ratio between birth j and the reference category (first birth) is lower

than one and decreases as j rises, meaning that the higher the rank, the longer the birth

interval. On the other hand, this pattern is the same no matter the union type. Coefficients

on the interaction terms are close to one, and never significantly different from one. In the

second column, I restrict the sample to future first wives in the monogamous stage and I

interact birth rank dummies with T2. Again, there is no evidence of an heterogeneous birth

39



rank effect.

Another way to ensure that the ratio after-before is not capturing spurious dynamics is to

run a placebo test. The idea is to replace the true date of the second marriage S by alternative

cut-offs: the mean, the first quartile and the last quartile taken from the distribution of S in

the sample. I consider two specifications: the baseline with all intervals, and the specification

using only the very next birth interval. If the coefficient on After was purely driven by

a decline in fertility over time, it should remain stable whatever the cut-off. Table D.6 in

Appendix D reports the new ratios: they are much closer to one than the baseline ratio, and

never significantly different from one. Therefore, the placebo test suggests that the change

in first wives’ birth spacing precisely coincides with the second marriage. 36

A last test provides some level of reassurance that the results are not driven by life-cycle

effects. Since T2 is correlated with T1 (coefficient=0.56) and with S (coefficient=-0.43), the

heterogenous effect along T2 could in principle capture the variation in other timing variables.

In fact, the ratio on the interaction term with T2 remains unchanged when I control for After

interacted with S and with T1. It is equal to 1.08 and significant at 10%. It proves that the

different reactions of first wives cannot be explained by the different moments at which the

second marriage took place in their own lives. They are really driven by the variation in the

second wife’s age at marriage.

7.3 Alternative models without strategic interactions

There are other frameworks describing fertility choices in polygamous unions that do not

rely on strategic interactions. Could they provide an alternative explanation for my results ?

For instance, in Lardoux and van de Walle (2003), the natural birth rate is the only driver

36. Another placebo test focuses on monogamous wives. It assigns to them a virtual date of second marriage
and checks that the ratio after-before is equal to one. For instance, assuming that the second marriage would
take place 10 years after the first one (the average length of S), I get a ratio of 1.07 which is not significantly
different from one (p-value=0.64, table available upon request).
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of fertility, and it may differ across wives depending on sexual favoritism. The authors hypo-

thesize that husbands may play favorites, hence generating differential birth rates between

co-wives. They further explain that husbands are more likely to favor the youngest wife so

that the natural rate of a given wife would decrease with her age and increase with the age

of her co-wife. One testable implication is that, controlling for her own age, the birth rate of

first wives should be lower when they face a younger rival. It implies that λ1 should decrease

with T2, which is at odds with empirical findings.

In the same vein, birth rates might simply reflect living arrangements. According to PSF

data, husbands are less likely to live with their second wives when T2 is shorter. Indeed,

older second wives might be living in the house of a deceased husband or with an adult son.

Further analysis of the data shows that T2 has no significant impact on the probability to

live with the first wife. All in all, husbands tend to spend more time with the first wife when

T2 is shorter, which should raise the exposure to pregnancy risk. This story predicts, again,

a negative correlation between λ1 and T2.

Another story focuses on a time-varying determinant of fertility that might influence

polygamy: husband’s income. Suppose that (i) polygamy is caused by an income shock bene-

fiting the husband, (ii) richer men can afford younger second wives, and (iii) richer men want

more children. Then the first wife’s reaction would be spuriously correlated with T2 through

the change in husband’s objective. However, Table A.3 in Appendix A shows that wealth

is negatively correlated with ideal family size. Ceteris paribus, men in the highest wealth

quintile report wanting two children fewer than men in the lowest quintile. It is consistent

with the idea that, in developing countries, children are best modeled as insurance rather

than normal goods. A change in income is likely to impact the level of risk aversion as well as

the access to alternative insurance mechanisms. If anything, a positive income shock should

decrease the number of children wanted by the husband. The spurious correlation between

T2 and (λ1 − λ0) would therefore be negative.
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Overall, the empirical results cannot be explained by a potential unobserved heterogeneity

in the exposure effect nor by income shocks; if they were indeed at play, these mechanisms

would only attenuate my prediction.

8 Discussion

Although fertility choices are private decisions, they are a concern for policy makers. In

many developing countries, the high level of fertility generates strong health costs: frequent

pregnancies raise the risk of maternal and child mortality (Conde-Agudelo and Belizan 2000,

Conde-Agudelo, Rosas-Bermudez, and Kafury-Goeta 2006). Controlling population growth is

another rationale for state intervention (Dasgupta 1995). African governements have become

more and more aware of this issue. In 1976, lowering the level of fertility was a target for

only 25% of African countries, while that proportion increased up to 83% in 2013 (United

Nations 2013). Measures are generally taken on the supply-side to increase access to family

planning services and to birth control methods. However, identifying the determinants of the

demand for children is crucial to design adequate policies. By providing a simple framework

to analyze which forces drive fertility, this paper shows that policy makers should definitely

take into account the structure of households.

Policy recommendations to curb fertility have generally been designed for monogamous

societies. They build on the fact that, on average, wives want fewer children than their hus-

bands, and fewer children than they would have in a natural fertility regime. For instance,

Sen (1999) argues that the main drivers of fertility transition are improving women’s bar-

gaining power and facilitating access to birth control methods. In my framework, it means

alleviating the marital and natural constraints weighing on monogamous women. Indeed, the

lower θh and θn, the closer nNS to nidw , and therefore, in general, the lower nNS.

However, these standard recommendations might be counterproductive in polygamous
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societies, because they overlook reproductive externalities. Empirical tests carried out in

this paper show that, in Senegal, polygamy is associated with lower birth rates at the micro

level. This is because the overbidding effect is dominated by the combination of substitution

effect and exposure effect. But this might change if women’s choices are less constrained by

husbands and social norms. Indeed, the negative correlation between polygamy and fertility

is driven by the marital and natural constraints. If θh and θn decrease, the relative magnitude

of the overbidding effect rises. It makes it more likely to observe an overall positive impact

of polygamy on fertility. The correlation might also become positive if couples comply less

with intercourse taboos regulating marital duties. In this case, the gap between λnatm and λnatp

might be closed and the exposure effect would disappear.

Note that, at the macro level, polygamy has always been associated with higher fertility

(Lesthaeghe 1989). This institution is indeed closely related to early marriages and quick re-

marriages of women. Although the natural birth rate is lower, the length of women’s exposure

to marriage is maximized, so that, overall, fertility is higher in polygamous societies. When

taking into account the general equilibrium effects on the marriage market, my framework

does not suggest that promoting polygamy could help curbing fertility.

A key lever to lengthen birth spacing in polygamous societies is acting on the causes of co-

wife reproductive rivalry, that is decreasing ε. Tackling the emotional dimension is probably a

long-term endeavor, but policy makers could start by reducing women’s economic reliance on

children. One way ahead is to give more opportunities for self-support to women. Concretely,

it means easing labor market restrictions and constraints stemming from social norms to

improve female labor force participation. Another recommendation would be to reform family

law in order to improve women’s status in terms of property rights and inheritance rights;

for instance by entitling wives to a significant share of the husband’s bequest irrespective of

the number of children.

Policy makers could also take advantage of the reproductive externalities in polygamous
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societies. If they manage to curb the fertility of one wife, it would reduce the fertility of

the other wife. For instance, raising girls’ age at marriage, by passing a bill or extending

schooling, would reduce the length of their reproductive period, and therefore the number of

children they will give birth to. It would also change the behavior of their future co-wives,

because they would face different junior wives, with a shorter T2. Thus, keeping girls in school

can potentially impact all women, even those who have already started giving birth.

In practice, women’s empowerment is a multi-dimensional process, and all parameters

in my framework may evolve simultaneously. Any policy supporting women’s self-reliance

is likely to influence how much say they have in family choices, starting with fertility and

marriage. The bottom line of this paper is that policy makers should care about improving

not only women’s control over fertility, but also more generally improving their autonomy.

9 Conclusion

This paper proposes a strategic framework to account for fertility choices in polygamous

unions. Using data from Senegal, it shows that children of co-wives are strategic complements.

Exposing such reproductive externalities may have strong implications for reproductive

health policies in Africa. The general consensus is that giving women a greater say in fer-

tility decisions and more efficient means to implement them are key drivers of the fertility

transition. I claim that these standard recommendations might be inefficient in polygamous

societies, as long as co-wife rivalry generates incentives for women to want many children.

Women’s empowerment must be understood in a much broader sense: disassociating women’s

status and economic security from their offspring is a prerequisite for curbing the demand

for children.

More generally, policy makers should take into account strategic interactions in the house-

hold when designing policy instruments. As already noted by Alderman, Chiappori, Haddad,
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Hoddinott, and Kanbur (1995), the unitary view of the household may ignore or obscure im-

portant policy issues that are especially relevant in the context of developing economies. So

far, the economic literature has focused exclusively on nuclear families, but this is just one

living arrangement among others, which does not prevail in most developing countries, and

tends to lose momentum in developed countries. This paper is one of the few attempts to

open the black box of non-nuclear families. Although polygamy is to some extent specific to

Africa, having children with multiple partners is not. Further research is needed to expand

the analysis to developed countries and to other decisions such as allocation of resources,

investment in children and wealth transmission.
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Figures and Tables

Figure 1: Incidence of polygamy in Africa

Incidence of polygamy
Percentage of married women

over 50%
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missing

The map shows the percentage of married women, aged 15 to 49, engaged to a polygamous husband. Estimates
for the early 2000s (the exact year depends on the country).
Source: Tabutin and Schoumaker (2004) and Tertilt (2005).
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Figure 2: Number of children in current union, by union type
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Data: PSF. Sample: married women over 45 years old. Distribution of the number of living children in current
union, by union type. Mono= monogamous wives (231 obs), Poly 1st= senior wives (205 obs) and Poly 2+=
junior wives (162 obs).
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Figure 3: Theoretical change in first wives’ birth rate
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The graph plots the first wife’s realized number of children λ.t as a function of time. In the monogamous
stage, between t = 0 and t = S, the wife targets nNS and hence chooses λ0. At date S, the polygamous stage
starts. The wife updates her choice and chooses λ1 in order to reach n∗1 at the end of her reproductive period
T1. n∗1 can be above or below nNS depending on the sign and magnitude of the strategic response. According
to the model, the change in birth rate should depend on the reproductive period of the other wife T2. When
the strategic response is positive, λ1 should be higher when T2 is longer; indeed, an increase in T2 means
more time for the second wife to have children, which raises the fertility of the both wives at equilibrium.

51



Table 1: Number of children in current union, by union type

Sample All At least one child

Constant (Monogamous union) 5.074*** 5.074*** 5.477*** 3.687*** 4.364***
(0.183) (0.170) (0.157) (0.338) (0.373)

Polygamous union -1.071***
(0.232)

Senior wife 0.188 0.138 -0.130 -0.139
(0.250) (0.230) (0.228) (0.225)

Junior wife -2.512*** -1.370*** -0.933*** -0.948***
(0.260) (0.270) (0.279) (0.276)

T 0.081*** 0.059***
(0.013) (0.014)

Children from previous unions -1.236***
(0.312)

Observations 674 674 568 551 550

Data: PSF. Sample: women over 45 years old. In the last three columns, I restrict the sample to women

having at least one child with their current husband. Dep. Var.: number of children in current union. T =

min (45- wife’s age at marriage; 60-husband’s age at marriage): length of the couple’s reproductive period.

OLS regression. Significance levels : * p<0.10, ** p<0.05, *** p<0.01.

Table 2: Ideal number of children

Dep. var. nidw nidh nidh − nidw
Sample Wives Husbands Couples

Mean 5.7 9.0 3.1
Std. Dev. 2.3 5.7 5.6
Q1 4 5 0
Q2 5 7 2
Q3 7 10 5

Observations 2535 2291 1824

Data: DHS, waves 2005 and 2010. Weights. nidw and nidh are the ideal number of children reported by women

and men, respectively. The last column shows the difference between these numbers within a couple. The

number of observations is different in each column because statistics are computed on the sample of indivi-

duals who gave a numerical answer for the first two columns, and on the sample of couples in which both

spouses gave a numerical answer for the last column. ”Non-numerical answer” means that the respondent

answered ”I don’t know” or any non-numerical statement (e.g. ”it is up to God”) to the question ”How many

children would you like to have, or would you have liked to have, in your whole life ?”.
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Table 3: Timing of unions

Median age Husband 1st wife 2nd wife

First marriage 28 (Q1=24; Q3=32) 17 (Q1=15; Q3=21) na
Second marriage 40 (Q1=34; Q3=46) 29 (Q1=24; Q3=36) 22 (Q1=17; Q3=31)

Data: PSF. Sample: polygamous unions (411 unions). Median ages of husband and wives at husband’s first

and second marriages. If I restrict the sample to bigamous unions (321 unions), all median ages increase by

one year.

Table 4: Estimating the model on monogamous and polygamous unions

Sample Monogamous Polygamous

nidw 0.232** -0.024
(0.092) (0.096)

nidh 0.128** 0.067*
(0.064) (0.039)

T 0.205*** 0.188***
(0.046) (0.047)

Constant -1.083 1.785
(0.985) (1.302)

R2 0.36 0.14
pval nidw = nidh 0.36 0.39
Observations 109 151

Structural parameters
θh 0.55 na
θn 2.77 na
λnat 0.32 na
nnat (mean) 8.30 na

Data: DHS. Weights. Sample: women over 40, having at least one child. Women with broken unions are

excluded because I only observe the date of first marriage, so I am able to deduce the timing of successive

marriages only when all wives are in the first marriage. I also restrict the sample to husbands with no broken

union. Dep. Var.: total number of births. T = min (45- wife’s age at marriage; 60-husband’s age at marriage).

nnat = λnat × mean(T ) with mean(T ) = 26. OLS regression. Significance levels : * p<0.10, ** p<0.05, ***

p<0.01.

For polygamous unions, the model specification is not right. Since the coefficient on nidw is not significantly

different from zero, I cannot compute the estimates of the structural parameters.
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Table 5: Summary of main notations

Dependent variables
λ∗0 First wife’s birth rate in the monogamous stage
λ∗1 First wife’s birth rate in the polygamous stage
λ∗2 Second wife’s birth rate in the polygamous stage
n∗1 First wife’s completed fertility
n∗2 Second wife’s completed fertility

Explanatory variables
T1 Length of first wife’s reproductive period
T2 Length of second wife’s reproductive period
S Length of the monogamous stage

Parameters
θhi Weight on marital constraint in the utility of wife i
θni Weight on natural constraint in the utility of wife i
εi Intensity of co-wife rivalry for wife i

Bi Strategic response of wife i (Bi =
εi−θhi

1+θhi +θni
)

Table 6: Summary of predictions

Label Statement Test

Main predictions
Prediction 1 λ∗1 − λ∗0 < 0 iff the exposure effect dominates the strategic effect. Tables 8 and 9

Prediction 2
∂λ∗1−λ∗0
∂T2

> 0 iff the strategic effect is positive. Tables 8 and 9

Secondary predictions

Prediction 3
∂λ∗2
∂S > 0 and

∂λ∗2
∂(T1−S) > 0 iff the strategic effect is positive. Table 10

Prediction 4
∂n∗

1
∂T2

> 0 iff the strategic effect is positive.
∂n∗

1
∂T1

> 0,
∂n∗

1
∂S > 0. Table 11

Prediction 5
∂n∗

2
∂S > 0 and

∂n∗
2

∂(T1−S) > 0 iff the strategic effect is positive.
∂n∗

2
∂T2

> 0. Table 12
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Table 7: Birth intervals before and after the second marriage, by type of competitor

Birth intervals in months Whole sample Weak competitor Strong competitor

Before 37.6 37.8 37.1
(21.0) (21.9) (19.0)

nb obs. 216 147 69

After 43.6 47.4 41.8
(26.2) (31.1) (23.6)

nb obs. 184 58 126

Difference after-before 6.0** 9.6*** 4.7
(2.4) (3.6) (3.5)

Data: PSF. Sample: first wives below 45 years old, for whom the complete birth history is known, having at

least one child from current union; the sample is further split on the median T2 (20 years) into those facing

a weak competitor in the second column (T2 below the median) and those facing a strong competitor in the

third column (T2 above the median). T2 = min (45-second wife’s age at marriage; 60-husband’s age at second

marriage). Statistics: average birth intervals in months, non-censored durations, standard deviations are in

parentheses. The last line reports the difference after-before, standard errors are in parentheses, significance

levels: * p<0.10, ** p<0.05, *** p<0.01.

Table 8: Change in first wives’ birth spacing: linear model

Birth intervals Whole sample Weak compet. Strong compet. Interaction
in months (1) (2) (3) (4)

After 6.988** 14.000*** 0.698 25.613**
(3.491) (4.975) (4.260) (10.280)

After * T2 -0.994*
(0.513)

Controls Birth rank dummies, mother’s age and age squared at birth j
Woman FE Yes
Observations 1715 1509 1508 1715
Clusters 597 525 532 597

Data: PSF. Sample: monogamous and first wives below 45 years old, for whom the complete birth history

is known, having at least one child from current union; first wives are further split on the median T2 (20

years) into those facing a weak competitor in the second column (T2 below the median) and those facing

a strong competitor in the third column (T2 above the median). Dep. var.: duration between births j and

(j + 1). Non-censored durations. Extreme values are excluded (larger than seven years, top 5%); results are

qualitatively similar when I include them. T2 = min (45-second wife’s age at marriage; 60-husband’s age at

second marriage). After is a time-varying variable indicating if the second wife had arrived when the child

(j + 1) was conceived. Linear estimation with woman fixed effects; robust standard errors of the coefficients

are in parentheses (clustered at the woman level). Significance levels: * p<0.10, ** p<0.05, *** p<0.01.
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Table 9: Change in first wives’ birth spacing: duration model

Hazard ratios Total impact Heterogenous impact

After 0.770 0.201**
(0.143) (0.140)

After * T2 1.077**
(0.036)

Controls Birth rank dummies, mother’s age and age squared at birth j
Baseline hazard Woman-specific
Observations 2483 2483
Clusters 716 716

Data: PSF. Sample: monogamous and first wives below 45 years old, for whom the complete birth history is

known, having at least one child from current union. Dep. var.: duration between births j and (j + 1). T2 =

min (45-second wife’s age at marriage; 60-husband’s age at second marriage). After is a time-varying variable

indicating if the second wife has arrived. Stratified partial likelihood estimation with baseline hazards specific

to each woman; Breslow method to handle ties among non-censored durations. Robust standard errors of

the coefficients are in parentheses (clustered at the woman level). Significance levels (for hazard ratio = 1):

* p<0.10, ** p<0.05, *** p<0.01.
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Table 10: Second wives’ birth spacing

Hazard ratios Using S Using nini
T2 0.961 0.874*

(0.032) (0.063)
T1 − S 1.011 1.166***

(0.015) (0.063)
S 1.043***

(0.015)
nini 1.258**

(0.119)

Specific controls Predictors of preferences
Additional controls Yes
Baseline hazard Common to all women
Observations 446 213
Clusters 119 64

Data: PSF. Sample: second wives, below 45 years old, for whom the complete birth history is known, having

at least one child from current union. In column 2, I focus on unions in which the complete birth history

of the first wife is known to be able to compute nini, the first wife’s number of children as the second wife

arrived. Dep. var.: duration between births j and (j + 1). Duration between marriage and first birth is also

included. T2 = min (45-second wife’s age at marriage; 60-husband’s age at second marriage); S = (husband’s

age at second marriage - husband’s age at first marriage); (T1 − S) = min (45-first wife’s age at marriage;

60-husband’s age at first marriage)-S. Predictors of preferences: religion (husband and wife), ethnic group

(husband and wife), education (husband and wife), rural dummy (husband and wife), income (husband),

employment status (wife), birth cohort (husband and wife), region of residence, age at marriage (husband

and wife), be in first marriage (husband and wife). Additional controls: co-residence status, work in public

sector (husband), at least one child from previous union (husband and wife), having at least one dead child

from current union, mother’s age and age squared at birth j, a dummy for each j. Cox estimation with a

baseline hazard common to all women. Breslow method to handle ties among non-censored durations. Robust

standard errors of the coefficients are in parentheses (clustered at the woman level). Significance levels (for

hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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Table 11: First wives’ completed fertility

Dep. var. n∗1
T1 0.220 0.245

(0.198) (0.189)
S 0.056 0.114**

(0.069) (0.048)
T2 0.023

(0.073)
T low2 -2.098***

(0.761)

T high2 0.580
(0.684)

Specific controls Predictors of preferences
Additional controls Yes
Woman FE No
Observations 101

Data: PSF. Sample: first wives over 45 years old who were younger than 45 years old as the second wife

arrived, having at least one child from current union. Dep. var.: number of children in current union. S =

(husband’s age at second marriage - husband’s age at first marriage); T1 = min (45-first wife’s age at marriage;

60-husband’s age at first marriage); T2 = min (45-second wife’s age at marriage; 60-husband’s age at second

marriage); T low2 : T2 is below Q1 (10 years) and Thigh2 : T2 is above Q3 (22 years). Predictors of preferences:

religion (husband and wife), ethnic group (husband and wife), education (husband and wife), rural dummy

(husband and wife), income (husband), employment status (wife), birth cohort (husband and wife), region of

residence, age at marriage (husband and wife), be in first marriage (husband and wife). Additional controls:

co-residence status, work in public sector (husband), at least one child from previous union (husband and

wife), having at least one dead child from current union. OLS estimation. Significance levels : * p<0.10, **

p<0.05, *** p<0.01.
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Table 12: Second wives’ completed fertility

Dep. var. n∗2
T2 0.074 0.334*

(0.244) (0.160)
S 0.040

(0.107)
T1 − S 0.013

(0.157)
Slow -3.354**

(1.013)
(T1 − S)low -2.307

(1.753)

Specific controls Predictors of preferences
Additional controls Yes
Woman FE No
Observations 48

Data: PSF. Sample: second wives over 45 years old, having at least one child from current union. Dep. var.:

number of children in current union. T2 = min (45-second wife’s age at marriage; 60-husband’s age at second

marriage); S = (husband’s age at second marriage - husband’s age at first marriage); Slow: S is below the

median (9 years). (T1 − S) = min (45-first wife’s age at marriage; 60-husband’s age at first marriage)-S;

(T1 − S)low: T1 − S = 0. Predictors of preferences: religion (husband and wife), ethnic group (husband and

wife), education (husband and wife), rural dummy (husband and wife), income (husband), employment status

(wife), birth cohort (husband and wife), region of residence, age at marriage (husband and wife), be in first

marriage (husband and wife). Additional controls: co-residence status, work in public sector (husband), at

least one child from previous union (husband and wife), having at least one dead child from current union.

OLS estimation. Significance levels : * p<0.10, ** p<0.05, *** p<0.01.
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Table 13: Testing changes in son preference of first wives

Hazard ratios First wife’s birth rate

After 0.693*
(0.143)

No son 1.383***
(0.164)

After * No son 2.135*
(0.846)

Controls Birth rank dummies, mother’s age and age squared at birth j
Baseline hazard Woman-specific
Observations 2397
Clusters 695

Data: PSF. Sample: monogamous and first wives below 45 years old, for whom the complete birth history is

known, having at least one child from current union; I exclude first wives with more than one co-wife. Dep.

var.: duration between births j and (j + 1). After is a time-varying variable indicating if the second wife

has arrived. No son is a dummy equal to one if the woman had no son among her first j births. Stratified

partial likelihood estimation with baseline hazards specific to each woman; Breslow method to handle ties

among non-censored durations. Robust standard errors of the coefficients are in parentheses (clustered at

the woman level). Significance levels (for hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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Table 14: Testing if second wives react to the gender composition of first wives’ children

Hazard ratios Second wife’s birth rate

Boysini 2.266***
(0.406)

Girlsini 1.430
(0.452)

Specific controls T2, (T1 − S) and predictors of preferences
Additional controls Yes
Baseline hazard Common to all women
Observations 151
Clusters 46

Data: PSF. Sample: second wives, below 45 years old, for whom the complete birth history is known, having

at least one child from current union. I focus on bigamous unions in which the complete birth history of the

first wife is known to be able to observe the gender composition of the first wife’s children at the time of

the second marriage. Dep. var.: duration between births j and (j + 1). Duration between marriage and first

birth is also included. Boysini and Girlsini measure the number of boys and girls born to the first wife as

the second wife arrived. T2 = min (45-second wife’s age at marriage; 60-husband’s age at second marriage);

S = (husband’s age at second marriage - husband’s age at first marriage); (T1−S) = min (45-first wife’s age

at marriage; 60-husband’s age at first marriage)-S. Predictors of preferences: religion (husband and wife),

ethnic group (husband and wife), education (husband and wife), rural dummy (husband and wife), income

(husband), employment status (wife), birth cohort (husband and wife), region of residence, age at marriage

(husband and wife), be in first marriage (husband and wife). Additional controls: co-residence status, work

in public sector (husband), at least one child from previous union (husband and wife), having at least one

dead child from current union, mother’s age and age squared at birth j, a dummy for each j. Cox estimation

with a baseline hazard common to all women. Breslow method to handle ties among non-censored durations.

Robust standard errors of the coefficients are in parentheses (clustered at the woman level). Significance

levels (for hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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Appendix: For online publication

Appendix A: Additional descriptive statistics

A1. Realized fertility

Table A.1: Impact of ages at marriage on total fertility

Threshold for large age difference 15 years 18 years

Age wife -0.078*** -0.087***
(0.027) (0.022)

Age husband -0.011 0.000
(0.027) (0.021)

Age wife * Large age difference 0.021 0.040
(0.048) (0.059)

Age husband * Large age difference -0.049 -0.104*
(0.044) (0.055)

Specific controls Union type
Additional controls Yes
Nb obs 564

F-test (p-val)
Age wife + Age wife * Large=0 0.165 0.413
Age husband+ Age husband * Large=0 0.093* 0.045**

Data: PSF. Sample: women over 45 years old. Dep. var.: number of children in current union. Age means age

at marriage; Union type: monogamous, senior wife, junior wife; Large age difference is dummy equal to 1 if the

age difference between spouses is larger than 15 years in column 1 or 18 years in column 2. These thresholds

correspond roughly to the difference in ages at fertility decline between men and women. Additional controls:

co-residing with husband, education, area of residence, at least one child from previous union, being in first

marriage, employment status, ethnic group. OLS estimation. Significance levels : * p<0.10, ** p<0.05, ***

p<0.01.
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Table A.2: Fertility in current union, by mother’s rank

Dep. var. Number of children Birth intervals
Estimation OLS Cox (hazard ratios)

rank1 -0.134 0.889**
(0.226) (0.046)

rank2 -0.870*** 0.783***
(0.294) (0.041)

rank3 -1.222** 0.696***
(0.533) (0.075)

rank4 -1.467 0.561**
(1.065) (0.149)

Controls T and children from previous unions
Observations 550 3717

Data: PSF. Sample: in column 1, women over 45 years old having at least one child with current husband.

In column 2, women below 45 years old, having at least one child with current husband, and for whom the

complete birth history is known. Reference category: monogamous wives. Dep.var: in column 1, number of

children in current union. In column 2, duration between births j and (j + 1). T = min (45- wife’s age

at marriage; 60-husband’s age at marriage). In column 1: OLS estimation; the unit of observation is the

woman. In column 2: Cox estimation; the unit of observation is the birth; Breslow method to handle ties

among non-censored durations; robust standard errors clustered at the woman level. Significance levels (for

hazard ratio= 1 in the Cox estimation): * p<0.10, ** p<0.05, *** p<0.01.

In both regressions, the coefficient on rank1 is significantly different from the coefficients on all other ranks,

but the coefficients on rank2, rank3, and rank4 are not significantly different from one another (pair-wise

F-tests). Since there are few women of rank 3 and 4, the estimates are very imprecise.
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A2. Fertility preferences

I compute the descriptive statistics on fertility preferences using the most recent DHS

waves (2005 and 2010), which were conducted in the same years as the PSF survey (2006-

2007). Table A.3 below reports the predictors of the ideal number of children, for men and

women separately. First, socio-economic status is clearly negatively correlated with the ideal

family size: educated and wealthier men and women, as well as urban men, want fewer

children. This is also the case for younger cohorts. Then, marital history matters: men and

women who got married younger, and men who got married more than once, want more

children. Household heads and their wives display on average the same preferences as other

members. 37 Last, there is some variation across religions – the ideal family size is smaller for

Christians – ethnic groups and regions.

Note that a sizeable proportion of the respondents gave a non-numerical answer to the

question ”How many children would you like to have, or would you have liked to have ?”.

23% of women and 31% of men answered ”I don’t know” or any non-numerical statement

such as ”It is up to God”. As a result, I know the ideal number of children for both spouses

in a bit more than one half of the couples (55%). The selection is not random: those couples

are more ”westernized” than couples in which at least one spouse has a non-numerical ideal

family size. Table A.4 below shows that couples in which both spouses report their ideal

number of children are more urban, richer and more educated. The proportion of Christians

is larger, as well as the proportion of monogamous unions. They belong to younger cohorts

and got married older. There is also some variation across regions - they are more likely

to live in Dakar, Saint-Louis, Fatick, Kolda or Kaffrine, and less likely to live in Diourbel,

Kaolack, Thies or Louga - and across ethnic groups - the proportion of Serer and Jola is

37. Since the PSF sample is restricted to household heads, I ran the same regression on the sub-sample
of household heads in DHS. Predictors of the ideal number children are the same as in the whole sample,
except that age at first marriage and being in first marriage are no longer significant for men, while being
employed becomes significant for women.
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larger while that of Fula is smaller.

One may wonder whether respondents rationalize ex-post their fertility behavior, and

report that they would have wanted exactly the same number of children as they actually

have had. This would be an issue when I use the reported ideal number as a proxy for innate

preferences, because it would be driven by the outcome of the whole decision process. To

assess the validity of such a concern, I restrict the sample to older couples (all wives above

40, husbands above 50) and I compare the ideal family size to the realized one. Ideal and

realized numbers coincide for only 10% of husbands and 17% of wives. Over one third of

men and one half of women declare that they would have wanted fewer children than they

actually have had. Such figures provide some level of assurance that the scope for ex-post

rationalization is limited.
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Table A.3: Predictors of the ideal number of children

Sample Husbands Wives

Christian -1.731*** -0.935***
(0.481) (0.209)

Other religion -0.437 0.351
(1.311) (0.650)

Serere -0.259 0.434**
(0.402) (0.198)

Poular -0.891** 0.224*
(0.352) (0.131)

Mandingue -0.337 -0.000
(0.417) (0.240)

Sarakole -1.908* 0.290
(1.024) (0.509)

Diola -0.728 -0.146
(0.550) (0.235)

Other ethnic group -0.356 0.138
(0.512) (0.202)

No education 0.821*** 0.421***
(0.295) (0.119)

Rural 0.937*** 0.187
(0.341) (0.138)

Wealth index -0.555*** -0.246***
(0.138) (0.052)

Employed -0.265 0.158
(0.419) (0.110)

Head or head’s spouse 0.295 -0.187
(0.289) (0.114)

Age at first marriage -0.073*** -0.041***
(0.022) (0.014)

Being in first marriage -0.727** -0.047
(0.352) (0.146)

Monogamous union -2.709*** -0.123
(0.479) (0.117)

Constant 14.739*** 7.055***
(1.286) (0.419)

Cohort Fixed Effect Yes Yes
Region Fixed Effect Yes Yes
Observations 1928 2523
R2 0.26 0.15

Data: DHS, waves 2005 and 2010. Weights. Sample: respondents who gave a numerical answer to the question

”How many children would you like to have, or would you have liked to have, in your whole life ?” Dep. var:

ideal number of children. Reference categories are ”Muslims” for the religion and ”Wolof” for the ethnic group.

OLS estimation. Significance levels : * p<0.10, ** p<0.05, *** p<0.01.
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Table A.4: Balancing tests between couples declaring a numerical vs. non-numerical ideal
family size

Sample Numerical Non-numerical p-value
ideal family size ideal family size

Rural 0.540 0.658 0.000
Wealth index 3.010 2.756 0.000
Monogamous union 0.708 0.622 0.000
Head or head’s spouse 0.622 0.675 0.001
No education (husband) 0.538 0.699 0.000
No education (wife) 0.637 0.791 0.000
Employed (husband) 0.884 0.925 0.000
Employed (wife) 0.409 0.408 0.969
Age (husband) 41.055 43.061 0.000
Age (wife) 30.451 31.664 0.000
Age at first marriage (husband) 27.105 26.354 0.000
Age at first marriage (wife) 18.481 17.450 0.000
Being in first marriage (husband) 0.655 0.566 0.000
Being in first marriage (wife) 0.858 0.878 0.102
Christian (husband) 0.046 0.018 0.000
Christian (wife) 0.054 0.022 0.000

Observations 1824 1484

Data: DHS, waves 2005 and 2010. Weights. The first column present descriptive statistics of couples in which

both spouses report her ideal number of children. The second column present the same statistics for couples

in which at least one spouse gave a non-numerical answer to the question ”How many children would you like

to have, or would you have liked to have, in your whole life ?” The third column reports the p-value of the

t-tests comparing the means in both sub-samples: a low p-value indicates that they are statistically different

with respect to the corresponding covariate.
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Appendix B: Extensions of the model

B1. Determining the wife’s objective

Following Jayachandran and Kuziemko (2011), I assume that women face a standard

economic trade-off modeled by a function v(n) = q(n) − c(n) where q(n) and c(n) measure

respectively the benefits and costs of having n children for the mother. v(n) captures the

total net gain and is assumed to display an inverted u-shape. Several factors shape the

trade-off: the wife’s individual characteristics and, in a context of polygamy, the number

of children of her co-wives, n−i. According to the literature review, wives care about their

relative number of children, compared to the co-wives. It must therefore be the case that

co-wives’ fertility enters the trade-off. More precisely, I assume that n−i raises the marginal

benefit of children for woman i. It reflects the idea that children are more valuable when

co-wives have themselves many children. I consider the following parametric forms:

c(ni) = γin
2
i and q(ni, n−i) = ni.(αi + βin−i).

The parameters γi > 0, αi > 0 and βi ≥ 0 are specific to each woman. The marginal benefit

of children is assumed to be a linear function of n−i. This assumption enables a simple closed

form solution for the Nash equilibrium. It will be relaxed in Appendix B3.

The first-order condition gives the optimal number of children of woman i:

αi + βin−i
2γi

.

I denote nidw,i = αi/2γi the wife’s ideal number of children in case of monogamy. Further, εi =

βi/2γi measures by how much the wife’s objective increases when a co-wife has an additional

child; it captures the intensity of co-wife rivalry. In the end, wife i targets (nidw,i + εin−i)

children.
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B2. Relaxing the assumption that information on preferences is complete

When I model the interaction between both wives as a non-cooperative, simultaneous

game, I implicitly assume that each player knows the payoff of the other player. In my

context, it means that each wife knows the ideal number of children of the other. From

the second wife’s perspective, it might seem reasonable to assume that she infers nidw,1 from

the behavior of the first wife in the monogamous stage. She observes S and the number of

children as she enters the household, so she is able to deduce the optimal initial birth rate

of the first wife, and hence her preferences. Things are not as straightforward from the first

wife’s perspective, who only observes T2, but has no piece of evidence to infer nidw,2.

In this extension, I consider that nidw,2 is private information of the second wife. To simplify

the notations, let me call l = nidw,2 the type of the second wife, and f(l) the density, defined

on an interval I ∈ R+. The first wife knows the distribution of types in the population of

second wives. I denote n2(l) the strategy played by a second wife of type l. From section

4.2.1, the best response of a second wife of type l when the first wife plays n1 is:

n2(t) = nNS2 (l) +B2.n1, (6)

where nNS2 (l) =
l+θh2n

id
h +θn2 n

nat
2

1+θh2 +θn2
.

What is the best response of first wives when second wives of type l play n2(l) ? First

wives maximize their expected utility:

E[u(n1, n2(l)] =

∫
I

u(n1, n2(l))f(l)dl.

When n2(l) is considered as given, ∂u
∂n1

is linear in n1 and in n2(l), so the FOC gives:

n1 = nNS1 +B1

∫
I

n2(l)f(l)dl. (7)
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The Nash equilibrium is the intersection of all best responses. Plugging the expression of

n2(l) from Equation 6 into Equation 7, I get:

n∗1 = (nNS1 +B1E[nNS2 ])× 1

1−B1.B2

,

n∗2(l) = (nNS2 (l) +B2.n
NS
1 +B1.B2(E[nNS2 ]− nNS2 (l)))× 1

1−B1.B2

,

where E[nNS2 ] =
∫
I lf(l)dl+θh2n

id
h +θn2 n

nat
2

1+θh2 +θn2
.

Under incomplete information, comparative statics described in the paper are still valid.

The first wife responds to the preferences of the average second wife. 38 This framework can

be easily extended to relax the assumption that nidw,1 is known by the second wife.

B3. Relaxing the assumptions on functional forms

In this section, I investigate whether the predictions of the model remain valid with more

general functional forms. Instead of a weighted sum of distances, the wife’s utility is assumed

to satisfy:

u(ni, n−i) = v(ni, n−i, n
id
w,i)− θhiH(ni, n−i, n

id
h )− θni N(ni, n

nat
i ).

v(.) is the total net gain of children for the wife. Consistently with Appendix B1, I assume

that it is concave in ni, and that the cross-derivative with respect to ni and n−i is positive.

H(.) is the cost to deviate from the husband’s objective. I assume that it is convex in ni, and

that the cross-derivative with respect to ni and n−i is positive. N(.) is the cost to deviate

from the natural level. I assume that it is convex in ni and does not depend on n−i.

38. In theory, I could investigate whether the assumption of complete information is likely to hold by
testing if n∗1 depends on nidw,2. In practice, the DHS sample of complete bigamous unions is too small to
perform a credible test.
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In such a general framework, there is no closed form for the key dependent variables, but

I can still predict that children are strategic complements iff:

bi =
∂2v

∂ni∂n−i
− θhi

∂2H

∂ni∂n−i
> 0.

In the basic model, ∂2v
∂ni∂n−i

= 2εi and ∂2H
∂ni∂n−i

= 2 so the condition boils down to εi − θhi > 0.

When considering more general forms, one needs to compare the impact of an additional

child born to the co-wife on the marginal net gain from children to the mother and the

impact on the marginal net cost related to the husband’s constraint.

The predictions on how the reproductive period of one wife should impact fertility choices

of her co-wife are still valid if we replace the condition Bi > 0 by the more general one stated

above. 39 In particular, I find that
∂n∗

1

∂T2
and

∂λ∗1−λ∗0
∂T2

have the same sign as b1 while
∂n∗

2

∂S
,

∂n∗
2

∂(T1−S)
,

∂λ∗2
∂S

and
∂λ∗2

∂(T1−S)
have the same sign as b2. Overall, the empirical tests for strategic interactions

are not driven by specific functional forms.

B4. Welfare analysis

In this section, I compare the Nash equilibrium and the outcome maximizing total welfare.

I focus on two quantities of interest: the total number of children (N = n1 + n2) and the

relative number of children (∆ = n1 − n2). I consider the simple case when parameters are

the same for both wives: θh1 = θh2 = θh, θn1 = θn2 = θn and ε1 = ε2 = ε.

From equation 4, I derive the quantities at equilibrium:

N∗ = n∗1 + n∗2 =
N id + 2θhnidh + θnNnat

1− ε+ 2θh + θn
,

∆∗ = n∗1 − n∗2 =
∆id + θn∆nat

1 + ε+ θn
,

39. One difficulty is that bi may vary with the values of ni and n−i.
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where N id = nid1 + nid2 , Nnat = nnat1 + nnat2 , ∆id = nid1 − nid2 and ∆nat = nnat1 − nnat2 .

I further define the total welfare function as W (n1, n2) = u1(n1, n2) + u2(n2, n1), where

ui(ni, n−i) is the utility of wife i. By maximizing W (n1, n2) over n1 and n2, I find:

NOpt = nOpt1 + nOpt2 =
(1− ε)N id + 4θhnidh + θnNnat

(1− ε)2 + 4θh + θn
,

∆Opt = nOpt1 − nOpt2 =
(1 + ε)∆id + θn∆nat

(1 + ε)2 + θn
,

The same elements drive N and ∆ when I maximize total welfare and when I compute the

Nash equilibrium. But the weights given to each element differ. The table below summarizes

the drivers and their weights in both cases.

Weight on each driver Nash equilibrium Welfare-maximizing outcome

Drivers of N

N id/(1− ε) (1−ε)
(1−ε)+2θh+θn

(1−ε)2
(1−ε)2+4θh+θn

nidh
2θh

(1−ε)+2θh+θn
4θh

(1−ε)2+4θh+θn

Nnat θn

(1−ε)+2θh+θn
θn

(1−ε)2+4θh+θn

Drivers of ∆

∆id/(1 + ε) (1+ε)
(1+ε)+θn

(1+ε)2

(1+ε)2+θn

∆nat θn

(1+ε)+θn
θn

(1+ε)2+θn

Compared to the welfare-maximizing outcome, the total number of children at equilibrium

depends too much on the preferences of the wives,N id/(1−ε), and too little on the preferences

of the husband, nidh . The relative number of children depends too much on the difference in

wives’ natural fertility, ∆nat, and too little on the difference in wives’ preferences, ∆id.

To sum up, if wives were to agree on maximizing total welfare instead of maximizing

their own utility, the total number of children would be closer to the husband’s preferences.
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The relative number of children would reflect more the difference in wives’ preferences and

less the difference in natural fertility.

Are there too many or too few children at equilibrium ? We have:

N∗ −NOpt =
(N

id

1−ε − n
id
h ).2θh(1− ε2) + (N

id

1−ε −N
nat).θNε(1− ε) + (Nnat − nidh ).2θhθn

((1− ε)2 + 4θh + θn)(1− ε+ 2θh + θn)
.

The comparison between N∗ and NOpt depends on the relative values of N id

1−ε , n
id
h and Nnat.

In particular, if N id

1−ε ≥ Nnat ≥ nidh , then N∗ ≥ NOpt; whereas if N id

1−ε ≤ Nnat ≤ nidh , then

N∗ ≤ NOpt. The first statement is all the more likely to hold as ε rises. In the empirical tests,

I found that ε is large enough to induce a positive strategic reaction. One plausible value for

ε is therefore its upper bound. When ε = 1, we have:

N∗ −NOpt =
N id.(4θh + θn) + (Nnat − nidh ).2θhθn

(2θh + θn)(4θh + θn)
.

Using the values of the parameters estimated on monogamous unions (θh ≈ 1/2 and θn ≈ 3),

it means that N∗ ≥ NOpt if and only if N id ≥ 3
5
(nidh −Nnat). This condition is likely to hold in

the vast majority of cases given that preferences in polygamous unions are on average 5 or 6

children for each wife, and 12 children for the husband. To sum up, a deficit of children would

be observed at equilibrium only when nidh reaches uncommonly high values. In general, the

non-cooperative model leads to a surplus of children with respect to the outcome maximizing

total welfare.

B5. Relaxing the assumption that the game is simultaneous

So far, I have considered that either the first wife always remains in a monogamous union,

or a second wife arrives at date S and both wives play a simultaneous game. In fact, when the

first wife is relatively old as the second marriage takes place, the game is not simultaneous,

but sequential. Indeed, the first wife has already given birth to n1 = λ0.T1 children, and she
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can no longer update this quantity. Then the second wife chooses her best response to n1,

and payoffs are paid when the reproductive period of the second wife is over. Therefore, if

T1 ≤ S, the interaction between both wives is best described by a Stackelberg leadership

model. 40

To account for the possibility of a late second marriage, I create a new husband’s type,

late polygamous. The first wife’s belief about the probability of polygamy, π, is split into πa

the probability of late polygamy, and πb the probability of early polygamy. At t = 0, first

wives consider three scenarios: no strategic interaction, sequential game, and simultaneous

game. Keeping the notations of section 4.2.1, first wives maximize their expected utility over

λ0:

(1− π)× u(λ0.T1, 0) + πa × E[u(λ0.T1, n2(λ0.T1))] + πb × E[u(n∗1, n
∗
2)],

where n2(λ0.T1) is the best response of the second wife when she faces a first wife with λ0.T1

children. As already noted above, u(n∗1, n
∗
2) does not depend on λ0.

To find the subgame perfect Nash equilibrium, I solve the game by backward induction.

I start by considering the last stage of the sequential game. Building on section 4.2.1, I

know that n2(n1) = nNS2 + B2.n1. First wives anticipate the reaction of second wives. Let

me compute the best strategy of first wives for a given T2 (which determines nNS2 ). They

maximize u(n1, n
NS
2 (T2) +B2.n1). The FOC gives:

nst1 (T2) =
nidw (1−B2ε1) + θh1n

id
h (1 +B2) + θn1n

nat
0 + nNS2 (T2)(ε1(1−B2ε1)− θh1 (1 +B2))

(1−B2ε1)2 + θh1 (1 +B2)2 + θn1
. (8)

Note that nst1 increases with T2 if and only if Bst
1 = ε1(1 − B2ε1) − θh1 (1 + B2) ≥ 0. In

the simultaneous game, I found that n∗1 increases with T2 if and only if ε1 − θh1 ≥ 0. To

40. In the rest of the section, I use the superscripts st to denote the equilibrium quantities when I introduce
the Stackelberg interaction in the basic model.
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understand the difference, one needs to consider the cross-derivative of u1(.) with respect to

n1 and n2. When n2 is taken as exogenous, I have:

∂2u1

∂n1∂n2

= 2(ε1 − θh1 ).

When n2 depends on n1 in such a way that ∂n2

∂n1
= B2, the expression is:

∂2u1

∂n1∂n2

= 2(ε1 × (1− ε1B2)− θh1 × (1 +B2)).

When n2 is fixed, having one more child for the first wife means that her relative number

of children increases by one unit, and that the total number of children of the husband

increases by one unit. Whereas when n2 depends on n1, having one more child for the first

wife means that the second wife will have B2 additional children. So her relative number of

children increases by (1− ε1B2), and the total number of children of the husband increases

by (1 +B2). 41

Now, first wives do not know T2 before the second marriage takes place. But they have

some information about the timing of events that can be exploited to refine the expectation

about T2. Indeed, it can be shown that E[T2|T1, Th] is increasing in (Th − T1), where Th is

the length of the husband’s reproductive period at t = 0. The intuition is that the expected

value of T2 depends on S: the later the second marriage takes place in the husband’s life, the

shorter the time left to the second wife to have children. T2 cannot be larger than (Th − S).

Moreover, S ≥ T1 in the sequential scenario so that T2 is bounded above by (Th − T1). 42

41. I rewrite Bst1 = B1(1 + θh1 + θn1 ) − B2(θh1 + ε21). It may be the case that Bst1 < 0 even if B1 ≥ 0, for
instance when B2 is much larger than B1. The intuition is that, when the second wife reacts very strongly to
an increase in n1, the increase in the relative number is small compared to the increase in the total number of
children. On the other hand, when B1 ≥ B2 ≥ 0, then Bst1 ≥ 0. In other words, when the strategic response
of the second wife is not stronger than the one of the first wife, the first wife is always better off raising her
number of children when she faces a more fertile rival.

42. The formal proof is as follows. Denote L = Th − T1 the length of the time period between the end of
the first wife’s reproductive life and the end of the husband’s reproductive life. In the sequential game, this
is the length of the second stage, when the second wife arrives and has children. Denote µ a random variable
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First wives maximize on n1 their expected utility, E[u(n1, n
NS
2 (T2) +B2.n1)]. The deriva-

tive of u(.) is linear in T2 so I can write the equilibrium number of children using Equation

8:

nst1 = nst1 (E[T2|T1, Th]).

Since E[T2|T1, Th] is increasing in (Th − T1), nst1 is also increasing in (Th − T1) as long as

Bst
1 ≥ 0.

Let me come back to t = 0 and consider the optimal initial birth rate under the three

scenarios that I mentioned above: (i) no strategic interaction: λ0 =
nNS
0

T1
; (ii) sequential

game: λ0 =
nst
1

T1
; and (iii) simultaneous game: indifferent between any λ0 ≥ 0. The first-order

condition is a weighted average of the first-order condition under no strategic interaction

(weight (1− π)) and the first-order condition of the sequential game (weight πa). As result,

the optimal initial birth rate λst0 lies between
nNS
0

T1
and

nst
1

T1
.

How does nst1 compare to nNS0 ? It depends on the sign ofBst
1 and on the relative magnitude

of nidw,1 and nidh . The case that seems the most consistent with empirical evidence is B1 ≈

B2 ≥ 0 (implying that Bst
1 ≥ 0) and nidw,1 ≤ nidh . In this case, nst1 ≥ nNS0 . When the strategic

reaction is similar for both wives, and the husband wants more children than the first wife,

the likelihood of a sequential game raises the initial birth rate. The first wife intensifies her

fertility to improve her position in the event of a late second marriage.

It is possible to test for such a strategic overshooting by comparing the choices of women

representing the entry date of the second wife, and ν a random variable such that (µ + ν) is the exit date
of the second wife. The only assumption on their distributions f(µ) and g(ν) is that both have a positive
support. Using these notations, I can rewrite T2 = min(ν,max(L − µ, 0)). T2 can never be larger than L.
When L increases, it enlarges the widow of opportunity for a second wife to enter and exit after a substantial
period of time. Intuitively, an increase in L can only raise the expected value of T2. Formally, we have:

E[T2|L] =

∫ +∞

0

∫ +∞

0

min(ν,max(L− µ, 0))g(ν)f(µ)dνdµ.

Let L′ ≥ L, then min(ν,max(L′ − µ, 0)) ≥ min(ν,max(L− µ, 0)) ∀ (µ, ν). So E[T2|L′] ≥ E[T2|L].
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more or less exposed to the risk of a late second marriage. The idea is to exploit the variation

in (Th − T1), which is driven by the age difference between the first wife and the husband.

When they have a very large age difference, then (Th − T1) = 0 because the length of the

reproductive period of the couple (T1) is determined by the length of the husband’s period

(Th). It is very unlikely that the husband is still alive and fertile when the first wife is past

her own reproductive years. On the contrary, when the age difference is low, then (Th − T1)

may be as large as 15 years, which leaves time for a potential rival to have many children.

In Table B.1 below, I test whether the fertility of monogamous wives is indeed higher

if the age difference with the husband is lower. It is crucial in this test to control for the

preferences of each spouse because their age difference is correlated to their ideal family

size. 43 On the other hand, I do not need information on the timing of unions since I consider

anticipations. This is why I perform the test on DHS instead of PSF.

Regarding completed fertility, the prediction is verified. The first column shows that,

controlling for T1 and the preferences of each spouse, (Th−T1) has a positive and significant

impact on the final number of children. In column 2, I investigate whether the effect is truly

linear or driven by the difference between women not exposed at all and the others. I create

three categories of women depending on their exposure to the risk of a late second marriage:

not exposed if (Th − T1) = 0, weakly exposed if (Th − T1) is below the median; strongly

exposed if (Th − T1) is above the median. I find that women not exposed have significantly

fewer children than the others. Also, among exposed women, the degree of exposure matters:

strongly exposed women have more children than weakly exposed ones.

Regarding birth spacing, the effect of (Th − T1) is of predicted sign, although not signifi-

cant. In the last column, I interact (Th − T1) with different ranks of birth; the impact is all

43. Since I consider only the monogamous stage, I can not rely on a specification with fixed effects. So
there could be other omitted variables such as the wife’s bargaining power. Using a cross-section of nations,
Cain (1984) shows that the median age difference between spouses is positively correlated to total fertility
rate. If age difference is a proxy for women empowerment at the household level, then a low (Th−T1) would
be correlated with a high θh1 , and hence with a large nNS1 . This would create an attenuation bias.
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the larger as the rank is high, and it is significant after birth 5. One interpretation is that

wives update upwards the relative likelihood of a late marriage as time passes by. 44

Table B.1: Testing strategic overshooting

Dep. var. Total number of births Birth intervals
Estimation OLS Cox (hazard ratios)

nidw 0.195** 0.229** 1.023* 1.024*
(0.095) (0.092) (0.013) (0.013)

nidh 0.119** 0.145*** 1.031*** 1.030***
(0.059) (0.052) (0.005) (0.005)

T1 0.281*** 0.612*** 0.994 0.996
(0.054) (0.114) (0.017) (0.017)

Th − T1 0.131** 1.009
(0.056) (0.007)

Th − T1 below median 1.585**
(0.710)

Th − T1 above median 2.783**
(1.073)

(Th − T1)× {j = 1, 2} 1.003
(0.008)

(Th − T1)× {j = 3, 4} 1.010
(0.011)

(Th − T1)× {j ≥ 5} 1.028**
(0.014)

pval test below=above 0.141
Controls No Yes Yes Yes
Observations 109 109 2768 2768
Clusters na na 768 768

Data: DHS. Weights. Sample: women in first union, monogamous, at least one child. In columns 1 and 2, I

restrict to women over 40. Dep.var: in column 1 and 2, number of births; in column 3 and 4, duration between

births j and (j+ 1). T1= min (45-first wife’s age at marriage; 60-husband’s age at marriage). Th−T1 = (60 -

husband’s age at marriage - T1). The median is 7 years. In column 2, the reference category is Th−T1 = 0 (16

obs). Controls: in column 2, husband’s and wife’s age at marriage; in columns 3 and 4, wife’s age at marriage

and a dummy for each j. In columns 1 and 2: OLS estimation; the unit of observation is the woman. In

columns 3 and 4: Cox estimation; the unit of observation is the birth; baseline hazard common to all women;

Breslow method to handle ties among non-censored durations; robust standard errors clustered at the woman

level. Significance levels (for hazard ratio = 1 in the Cox estimation): * p<0.10, ** p<0.05, *** p<0.01.

44. In the model, to keep things simple, I assume that the ratio πa

1−π remains constant over the monogamous
stage. The idea is that, even if the probability of an early second marriage (πb) decreases as time goes by, it
does not change the relative likelihood of a late marriage compared to the likelihood of no second marriage.
In fact, first wives seem to consider that (1 − π) is fixed, and that the decreasing risk of an early second
marriage is fully converted into a rising risk of late marriage.

78



Appendix C: Stratified partial likelihood estimation

This section draws on Ridder and Tunali (1999), and on the chapter ”Duration Models:

Specification, Identification, and Multiple Durations” by Gerard van den Berg in Heckman

and Leamer (2001).

I consider a mixed proportional hazard model with multi-spell data. It means that several

durations, indexed by j, are generated by a single individual i, which is characterized by a

vector of observed explanatory variables x and an unobserved heterogeneity term ν. It is

possible to identify the impact of x on the hazard function under very weak conditions

(in addition to the proportional hazard assumption) if x varies between spells for a given

individual while ν does not. Formally, the hazard function satisfies:

θ(t|xi,j, vi) = θ0(t, νi). exp(β.xi,j).

In this specification, the baseline hazard θ0 is allowed to differ across individuals. There is

no restriction on the interaction of ν with the elapsed duration t in the hazard function.

Moreover, x and ν may be dependent. We do not need any assumption on the tail of the

distribution of the unobservables.

The intuition underlying the estimation method is to construct a Cox partial likelihood

within individuals (or strata) by ordering the uncensored durations. For each duration ti,k,

we can compute the probability that item k fails at ti,k given that exactly one item in i fails

at ti,k. It satisfies:

θ(ti,k|xi,k, vi)
Σj∈Ri(k)θ(ti,k|xi,j, vi)

=
exp(xi,kβ)

Σj∈Ri(k) exp(xi,jβ)
,

where Ri(k) is the set of observations in i at risk when k fails. This expression can be written

for each spell of each individual; the product gives the stratified partial likelihood.
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The main caveat with multi-spell data is the issue of censoring. If all individuals are

observed for the same period of time, then the right-censoring variable is not independent

from previous durations, and therefore not independent from the current duration (because

durations are jointly determined by the unobserved heterogeneity). This violates a standard

assumption in duration analysis. It is not the case here: women are subject to censoring at

the date of the survey, but they have different starting points corresponding to the date of

first birth. So I do not follow them for a fixed time.

Appendix D: Robustness Tests
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Figure D.1: Testing the proportional hazard assumption (log-log plot)

-1
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ln
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))

]
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ln(t)

After = 0 After = 1

Data: PSF. Sample: first wives below 45 years old, for whom the complete birth history is known, having
at least one child from current union. The log-log plot graphs −ln(−ln(S(t))) against ln(t) for the category
After = 0 (birth intervals occurring before the second marriage) and for the category After = 1 (birth
intervals occurring after the second marriage). Estimates are adjusted for covariates: a dummy for each j,
mother’s age and age squared at birth j. As shown by the graph, the curves are parallel, meaning that the
proportional hazard assumption is not violated.
Another way to test the proportional hazard assumption is to follow the procedure developed by Grambsch
and Therneau (1994) and based on the Schoenfeld (1980) partial residuals. I fail to reject the assumption, both
in the regression estimating the impact of After (p-value=0.30) and in the regression with the interaction
term After × T2 (p-value=0.51).
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Table D.1: Predictors of polygamy

Sample Polygamous union
Husband’s father is polygamous 0.079

(0.065)
Fostered before age 15 (wife) -0.029

(0.087)
Fostered before age 15 (husband) 0.092

(0.078)
Age at first marriage (wife) 0.002

(0.007)
Age at first marriage (husband) -0.009

(0.006)
Income (husband) 0.006

(0.010)
Work in public sector (husband) 0.091

(0.096)
No education (wife) -0.055

(0.090)
No education (husband) 0.143*

(0.080)
Rural household -0.006

(0.089)
Children from previous unions (wife) -0.308

(0.247)
Children from previous unions (husband) -0.144

(0.135)
Being in first marriage (wife) -0.128

(0.235)
Being in first marriage (husband) -0.242*

(0.130)
Never worked (wife) 0.013

(0.076)
Serere (wife) 0.028

(0.179)
Poular (wife) -0.115

(0.200)
Diola -0.438

(0.271)
Mandingue (wife) 0.079

(0.241)
Sarakole (wife) -0.129

(0.447)
Serere (husband) -0.093

(0.182)
Poular (husband) 0.017

(0.201)
Mandingue (husband) -0.057

(0.244)
Sarakole (husband) 0.145

(0.391)
Christian (wife) -0.004

(0.342)
Christian (husband) 0.005

(0.347)
Cohort dummies Yes
Region dummies Yes
Observations 1928
Pseudo R2 0.16

Data: PSF. Sample: monogamous and first wives, older than 45 years old, having at least one child from

current union. Dep. var: being in a polygamous union at the time of the survey. Probit estimation. Marginal

effects are reported. The average predicted probability of polygamy is 45%. Significance levels : * p<0.10, **

p<0.05, *** p<0.01.
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Table D.2: Testing if the risk of polygamy influences birth spacing

Hazard ratios Monogamous stage

π̂ 0.858
(0.623)

Specific controls T and predictors of preferences
Additional controls Yes
Baseline hazard Common to all women
Observations 986
Clusters 299

Data: PSF. Sample: monogamous and senior wives before the second marriage, below 45 years old, for whom

the complete birth history is known, having at least one child from current union. Dep. var.: duration between

births j and (j+ 1). π̂ is the predicted probability of a second marriage (cf. Probit estimation in Table D.1).

Predictors of preferences: religion (husband and wife), ethnic group (husband and wife), education (husband

and wife), rural dummy (husband and wife), income (husband), employment status (wife), birth cohort

(husband and wife), region of residence, age at marriage (husband and wife), be in first marriage (husband

and wife). Additional controls: co-residence status, work in public sector (husband), at least one child from

previous union (husband and wife), having at least one dead child from current union, mother’s age and

age squared at birth j, a dummy for each j. Cox estimation with a baseline hazard common to all women.

Breslow method to handle ties among non-censored durations. Robust standard errors of the coefficients are

in parentheses (clustered at the woman level). Significance levels (for hazard ratio = 1): * p<0.10, ** p<0.05,

*** p<0.01.
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Table D.4: Testing if polygamy is caused by choices in the monogamous stage

Hazard ratios Occurrence Timing

Future first wives 0.953
(0.154)

T2 0.909
(0.067)

S 0.910
(0.065)

Specific controls T1 and predictors of preferences
Additional controls Yes
Baseline hazard Common to all women
Observations 477 222
Clusters 106 83

Data: PSF. Sample: in column 1, monogamous and senior wives before the second marriage, between 40 and

45 years old, for whom the complete birth history is known, having at least one child from current union. In

column 2, senior wives before the second marriage, below 45 years old, for whom the complete birth history

is known, having at least one child from current union; I restrict the analysis to bigamous unions. Dep. var.:

duration between births j and (j + 1). ”Future first wives” is equal to 1 if the woman is in a polygamous

union at the time of the survey. Ti= min (45- age at marriage of wife i; 60-husband’s age at marriage with

wife i). S = (husband’s age at second marriage - husband’s age at first marriage). Predictors of preferences:

religion (husband and wife), ethnic group (husband and wife), education (husband and wife), rural dummy

(husband and wife), income (husband), employment status (wife), birth cohort (husband and wife), region of

residence, age at marriage (husband and wife), be in first marriage (husband and wife). Additional controls:

co-residence status, work in public sector (husband), at least one child from previous union (husband and

wife), having at least one dead child from current union, mother’s age and age squared at birth j, a dummy

for each j. Cox estimation with a baseline hazard common to all women. Breslow method to handle ties

among non-censored durations. Robust standard errors of the coefficients are in parentheses (clustered at

the woman level). Significance levels (for hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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Table D.5: Testing the common life-cycle assumption

Hazard ratios Between polygamous Among polygamous
and monogamous wives wives

{j = 2} 0.237*** 0.128***
(0.034) (0.071)

{j = 3} 0.066*** 0.018***
(0.016) (0.017)

{j = 4} 0.015*** 0.005**
(0.006) (0.011)

Future first wives * {j = 2} 0.842
(0.168)

Future first wives * {j = 3} 0.844
(0.227)

Future first wives * {j = 4} 1.121
(0.414)

T2 × {j = 2} 0.995
(0.028)

T2 × {j = 3} 1.004
(0.034)

T2 × {j = 4} 0.946
(0.091)

Controls Mother’s age and age squared at birth j
Baseline hazard Woman-specific
Observations 1411 207
Clusters 571 94

Data: PSF. Sample: in column 1, monogamous and senior wives before the second marriage, below 45 years

old, for whom the complete birth history is known, having at least one child from current union. In column

2, senior wives before the second marriage, below 45 years old, for whom the complete birth history is known,

having at least one child from current union. Dep. var.: duration between births j and (j + 1). Birth ranks

higher than 4 are excluded because there is not enough observations in each cell. The reference category

is j = 1. ”Future first wives” is equal to 1 if the woman is in a polygamous union at the time of the

survey. T2 = min (45-second wife’s age at marriage; 60-husband’s age at second marriage). Stratified partial

likelihood estimation with baseline hazards specific to each woman; Breslow method to handle ties among

non-censored durations. Robust standard errors of the coefficients are in parentheses (clustered at the woman

level). Significance levels (for hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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Table D.6: Placebo test: alternative cut-offs S

Hazard ratios Baseline: true S S = 10 years (mean) S = 6 years (Q1) S = 13 years (Q3)
Next int. All int. Next int. All int. Next int. All int. Next int. All int.

After 0.557** 0.770 0.668 0.848 0.791 0.992 0.863 0.920
(0.142) (0.143) (0.170) (0.140) (0.191) (0.162) (0.211) (0.199)

Controls Birth rank dummies, mother’s age and age squared at birth j
Baseline hazard Woman-specific
Observations 2286 2483 2285 2483 2165 2483 2353 2483
Clusters 699 716 703 716 688 716 712 716

Data: PSF. Sample: monogamous and first wives below 45 years old, for whom the complete birth history

is known, having at least one child from current union. Dep. var.: duration between births j and (j + 1). In

odd-numbered columns, I consider all intervals in the monogamous stage, and the very next interval after

the second marriage. In even-numbered columns, I consider all intervals. After is a time-varying variable

indicating if the index birth occurred after S. In column 1, S is the observed length of the monogamous

period. In the last three columns, I run Placebo tests using alternative cut-offs, respectively the mean,

the first quartile and the last quartile taken from the distribution of S in the sample. Stratified partial

likelihood estimation with baseline hazards specific to each woman; Breslow method to handle ties among

non-censored durations. Robust standard errors of the coefficients are in parentheses (clustered at the woman

level). Significance levels (for hazard ratio = 1): * p<0.10, ** p<0.05, *** p<0.01.
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