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The paper describes some findings from a programming task book project. The book contains tasks 

on arithmetic (operations, calculating the value of numeric expressions, common fractions etc), 

number theory (factors, prime numbers, GCD, LCM, Euclid algorithm), constructions in planar 

geometry, algebra (linear equations and inequalities, systems of linear equations, polynomials), 

some types of nonroutine tasks. The paper also brings up the necessary information processing that 

is not explicit when mathematical tasks are solved by paper-and-pencil method: parsing of 

algebraic expressions, finding the coordinates of intersection points by planar constructions, 

programming of algorithms for the tasks that appear in textbooks only in the form of one single 

numerical example. Some warnings are given about the impact of ”brute force“ computer solutions 

of reasoning-oriented tasks. 

Keywords: teaching of programming, factorization, algebraic manipulation, geometry 

constructions, nonstandard tasks  

INTRODUCTION 

All developed countries complain about lack of specialists of Information Technology, including 

programmers. The universities try to take in more IT students and prepare more IT specialists. In 

order to create the necessary prerequisites, countries experiment with introduction of elements of 

programming in the school syllabus. Thereby it is quite natural that programming will be taught by 

the teachers of mathematics (in many countries their training contains certain amount of 

programming) and even as a part of the mathematics subject. Using mathematics-oriented tasks can 

help the mathematics teacher to enter the world of programming education. Mathematics textbooks 

contain many tasks that can be easily reformulated as programming tasks. On the other hand, to 

prepare more people for IT studies, the algorithmic side of the subject could be brought into greater 

attention in the teaching of mathematics.  

The first major initiative on using programming in teaching of mathematics was LOGO 

programming (Papert, 1980; Feurzeig & Papert, 2011). LOGO creates a microworld for 

mathematical experiments. Later the most popular school programming language has been Scratch 

(Scratch; Benton, Hoyles, Kalas, & Noss, 2016). There exist tens of publications about projects on 

teaching concrete topics of mathematics using LOGO, Scratch or similar languages. They describe 

nice programming tasks that are often not just mathematics but can be solved using some 

mathematical knowledge. Some analyse of learning mathematics through programming is given in 

(Misfeldt & Ejsing-Duun, 2015). The tasks of our task book are taken directly from the 

mathematics textbooks. In every chapter of the task book the student should implement or use for 

solving the tasks the textbook algorithms and solution methods. 

Exploring the exercises and theory in textbooks, we see that some problem types are presented 

together with solution algorithms (like long multiplication or division, operations with fractions, 

solution of linear equations, some constructions in geometry). However, other (also completely 

algorithmic) types are presented just with particular numeric examples (Lints, 1981, page 182): 
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How to measure 7 litres of water using 3- and 5-litre vessels? 

One of the possible reasons for this is that the algorithm can be too labour-intensive to execute by 

hand. In such a case, execution of algorithms on the computer facilitates developing more 

algorithms for Basic School mathematics. This article describes a project for creating a task book of 

programming tasks based on the mathematics tasks from the textbooks for grades 1-8 in Estonian 

schools (age of 7-16 years). The task book formulates programming problems that correspond to 

different task types in mathematics.  

The author has tried to include in the task book not only the most interesting or most important task 

types but all the task types that have considerable algorithmic character. The resulting task set is the 

author’s answer to the question, What is the algorithmic content of the Basic School mathematics? 

Unfortunately, this answer is too voluminous for such a short paper. The paper gives a brief 

overview of the themes of the tasks and concentrates then on the issues that can be not very obvious 

for the teachers but can be important when using the tasks. We consider some issues of expression 

manipulation and geometry construction tasks, discuss the possibility of solving reasoning-oriented 

tasks by “brute force” programming and point to the algorithms for the task types that appear in the 

textbooks in the form of one single numerical example. 

THEMES OF THE TASKS 

A large part of the algorithmic content of school mathematics is presented explicitly in the form of 

algorithms for various types of standard tasks or example solutions. In arithmetic and algebra, the 

textbooks formulate, for example, algorithms for long multiplication or division, factorization of 

integers, operations with fractions, solution of linear equations and equation systems, operations 

with monomials and polynomials. Basic school geometry contains algorithms for bisection of a 

segment or an angle, for construction of parallel or orthogonal line, construction of a triangle from 

given three elements. Obviously, we can reword these problems as programming tasks and require 

writing programs that do the same work. At the time of writing this paper, our collection of 

mathematics-inspired programming tasks contains 194 items extracted from about 20 Estonian 

textbooks of different authors. The order of tasks mirrors the places where the underlying 

mathematical formulation of the task first appears in a textbook for the respective grade. In many 

cases, the tasks contain more than one variant and some of them can belong to the textbook(s) of 

higher grade(s). Often the tasks on a mathematical topic begin with a series of preparatory 

technical tasks. For example, the chapter on geometry constructions begins with drawing segments, 

rays and lines based on two given points and with drawing circles with a given centre and a given 

radius or passing through a given point. Some of the subsequent tasks require finding the 

coordinates of intersection points of two lines, of a line and a circle, and of two circles. Using 

subroutines for these tasks, it is possible to program school algorithms for bisection of a segment or 

an angle, for drawing a parallel or an orthogonal line, etc.   

The tasks contain computerized variants of tasks from the following topics of the mathematics 

syllabus:     

1. Arithmetic: operations, calculating the value of numeric expressions, decimal digits, 

equalities and inequalities; 

2. Number theory: factors, prime numbers, GCD, LCM, Euclid algorithm; 

3. Constructions in planar geometry. Different classes of triangles and quadrangles; 

4. Common fractions; 

5. Linear equations and inequalities, systems of linear equations; 

6. Operations with monomials and polynomials; 
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7. Solution of some types of nonstandard tasks, using  

a) nested loops, 

b) breadth-first search. 

There are also some smaller topics containing (comparatively routine) tasks on 

8. Calendar, weekdays, clock; 

9. Units of measurement. 

Our task book does not contain programming technique exercises that belong to general 

introductory programming courses. We assume that, before solving our tasks, students have 

completed a course/chapter on the technical side of programming in some language. The tasks are 

oriented not to “toy” languages (Logo, Scratch etc) but for “proper” programming (Python, Java, C 

etc). Working on our tasks also requires more mathematics than studied in grades 1, 2, … that 

correspond to the underlying textbook tasks. By integration of subjects of programming and 

mathematics the task book can be used as a source of programming tasks for students. But the 

teacher can also use a store of implemented solutions for demonstrations or organization of student 

experiments. Partially or defectively implemented solutions can be used for focusing the attention 

on special cases in definitions or algorithms. 

In the following sections of the paper we discuss the task settings and investigate what additional 

mathematics and algorithms are necessary for computerized solution of problems in particular 

topics. Programs for the arithmetic and algebra tasks should combine Basic School mathematics 

with parsing of expressions. Geometry constructions use the drawing commands. But they are based 

on coordinates of the points. We establish what amount of analytic geometry would have to be 

implemented for different construction steps. We describe yet the algorithms for solution of two 

types of nonroutine problems from the textbooks and analyse the impact of programming on 

reasoning-oriented tasks. 

ARITHMETIC AND ALGEBRA. PARSING AND EXPRESSION MANIPULATION 

We discuss here the tasks that belong to computer algebra. The first major topic of our exercises is 

calculation of the value of arithmetic expressions composed of integers. We start with first-grade 

exercises containing only one operation, like 2 + 5, 4 − 1, etc. The tasks of higher grades contain 

expressions of growing complexity. In our usual paper and pencil calculations and expression 

manipulations, we extract decimal numbers, operation signs, parentheses and variables in the 

expressions almost without formulating explicit rules for this. The textbooks contain explicit rules 

for the order of operations. Some books can give a list of operation signs and tell that letters of the 

Latin alphabet represent variables. To solve the same tasks on a computer we should formulate the 

syntactic rules explicitly, apply some general or task-specific algorithm for parsing the expression, 

and finally implement a calculation algorithm that solves the actual problem. For learning to use 

syntactic restrictions we have included tasks with various contents of expressions (different sets of 

possible operation signs, possibility of unary operations, parentheses). For organization of 

calculation process we recommend implementing both bottom-up and top-down approaches. Note 

here also that some programming languages have standard functions (for example, eval in Python) 

that count the value of an expression immediately. For learning/creating the necessary algorithms, 

our tasks prohibit application of such functions. 

The task book contains several chapters with expression manipulation tasks (operations with 

fractions, solution of equations, inequalities and equation systems, operations with monomials and 

polynomials). The textbooks present detailed algorithms for solution of many task types and the 
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programs should just implement them. But the students discover also that some textbook algorithms 

are not complete. They leave some decisions to the user (e.g., what unknown to isolate first, …). 

Some algorithms are not described explicitly but should be extracted from a series of examples.  

For expression manipulation tasks we use the same expression treatment instruments as in 

arithmetic but do not need any new tools outside of school mathematics algorithms. The input data 

of number theory tasks (factorization, prime numbers, GCD, LCM, Euclid algorithm, etc.) consist 

of one or more integers. The programs for these tasks do not need syntactic supplements. For them 

it is sufficient to implement just the known mathematical algorithms.  

GEOMETRY CONSTRUCTIONS 

In the context of mathematics education, programming of geometry construction algorithms means 

programming of some construction blocks of a dynamic geometry system. The student learns what 

mathematics is working inside programs like Geogebra. Considering ruler and compass versus 

computerised solution of elementary mathematics construction problems, we discover that they are 

based on different information and even on different mathematics. Constructions with paper and 

pencil belong to Basic School mathematics while writing respective computer programs in general-

purpose programming languages requires application of analytic geometry.  

Classical ruler and compass constructions do not require any calculations. The intermediate and 

final results of the constructions are received and used in their graphical form. For drawing a line or 

a circle we can place the edge of the ruler, or the needlepoint of the compass, at a freely chosen 

point on a plane, at a point belonging to a curve or at an intersection point of two curves. The task 

of construction of a point can be completed simply by declaring that the answer is the intersection 

point of certain two curves.   

In programming languages the commands for elementary construction steps (like drawing a point, 

segment or circle) are based on coordinates, for example, circle(centre,radius). Points, 

lines and circles can be drawn only when the program “knows” their numerical parameters. This 

means that information processing of the program that utilises a construction algorithm differs 

significantly from information processing of the student who makes the same construction on paper. 

For example, the program for bisection of the angle 𝐴𝐵𝐶 can consist of the following steps (Figure 

1): 

1) Draw the circle 𝑐1 with centre 𝐵 and radius  𝑅1 = 𝑚𝑖𝑛(|𝐴𝐵|, |𝐶𝐵|). 

2) Let 𝐷 be the intersection point of 𝐴𝐵 and 𝑐1. Find coordinates of 𝐷. 

3) Choose the radius 𝑅2 > 𝑅1, 

4) Draw the circle 𝑐2 with centre at 𝐷 and radius 𝑅2. 

5) Let 𝐸 be the intersection point of 𝐶𝐵 and 𝑐1. Find coordinates of 𝐸. 

6) Draw the circle 𝑐3 with centre at 𝐸 and radius 𝑅2. 

7) Let 𝐹 be the intersection point of 𝑐2 and 𝑐3. Find coordinates of 𝐹. 

8) Draw the line through 𝐵 and 𝐹 – bisector of 𝐴𝐵𝐶. 

In ruler and compass construction, the calculation steps 2, 5 and 7 are not necessary and the 

minimum of two radiuses in step 1 can be found on paper without calculating the values of radiuses.  
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Figure 1. Construction of angle bisector 

Note the possibility of an intermediate approach, implementing an interactive program that does not 

calculate the coordinates of 𝐷, 𝐸 and 𝐹 but asks the user to point them by mouse (like in dynamic 

geometry). However, our task book contains only tasks for completely automated solution. 

To demonstrate the coordinate-driven character of the drawing commands, we start the chapter on 

constructions with elementary tasks on drawing of points, segments and circles using different input 

data (for example, drawing the circle with a given centre and one point on the circle or radius). A 

particular task can require one or more commands, depending on the programming language. 

Crucial tasks for modelling ruler and compass constructions are finding the coordinates of 

intersection point(s) of two lines, a line and a circle and two circles, but also finding the distance 

between two points. The first task requires solution of a linear system of equations and the fourth 

uses the Pythagorean theorem. They should be feasible for school students. The second and third 

tasks are normal exercises in university analytic geometry courses, but their worked solutions 

should be comprehensive. We have included web links to the theory and detailed mathematical 

solutions of both tasks so that they can be converted to (branching) programs that find the 

coordinates. We recommend finalizing the programs for the technical tasks described here in the 

form of subroutines (functions) that can be used in subsequent constructions. This makes the jump 

from ruler and compass constructions to their computer implementations easier.  

The main goal of our construction chapter is creation of computer programs that model on screen 

the Basic School ruler and compass algorithms. We saw that, compared to original tasks, this can 

require additional calculations. The programs should also be capable of handling special cases 

because the textbook algorithms do not speak about coincidence of points, vertical and horizontal 

lines, etc. On the other hand, for some tasks the coordinate-based solution can be simpler than doing 

the same without coordinates. For example, the midpoint of a segment can be received without any 

construction.  We can get the coordinates of the midpoint (as an average) and then use just one 

command to draw the point. The same can be done for drawing a parallel or an orthogonal line. 

Together with any task requiring modelling the ruler and compass construction we can ask for a 

possible easier way to get the result. 
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REPLACING ASTERISKS OR LETTERS WITH NUMBERS 

Many textbooks contain entertainment-style tasks requiring students to replace asterisks or letters 

with decimal digits and to get a known mathematical structure, for example, a long multiplication 

scheme as in the left part of Figure 2 (Telgmaa &Nurk, 2002, page 82). 

 

Figure 2. Task of restoring long multiplication 

The idea behind such tasks is to make the student analyse what can we conclude about the digits 

when we take into account the operations between the numbers. For example, our first conclusion 

can be that the first digit of the first factor should be 1. Otherwise, the first subsum would be a 3-

digit number. Further, the first digit of the first subsum can only be 2 or 3 and the second digit of 

the second subsum can only be 5 or 0. Only the combination of 2 and 5 gives the sum 7, etc.  

Consider now what do we get if we ask the student to write a computer program that solves this 

task. The coarsest approach would be choosing eight variables for the digits replacing the eight 

asterisks in the figure (Fig 2 right) and writing eight nested loops where the variables 𝑎, … , ℎ take 

the values from 1 to 9 for the first digits of the numbers and from 0 to 9 for the remaining variables. 

For each combination of the values of 𝑎, … , ℎ the program should check whether multiplication of 

10𝑎 + 𝑏 with 52 gives the subsums and the final result that correspond to the values of other 

variables. In reality we only need 7 loops, as 𝑑 = ℎ. The task can be solved already by this brute 

force approach. Execution of the body of the loop 107 times is possible even using a regular laptop. 

However, the program can be significantly accelerated. The subsums and the product are defined by 

the values of the factors. We can seek for 𝑎 and 𝑏 such that multiplication of 10𝑎 + 𝑏 with 52 gives 

a 3-digit result where the subsums are 2-digit numbers and the second digit is 7. These conditions 

can be expressed as 52(10𝑎 + 𝑏) < 1000, , 2(10𝑎 + 𝑏) < 100, 5(10𝑎 + 𝑏) < 100 and 

𝑚𝑜𝑑(𝑑𝑖𝑣(52(10𝑎 + 𝑏), 10), 10) = 7.  

For general evaluation of the situation we can tell: 

1) The conditions for the digits in long multiplication and other similar schemes are easily 

expressible in programming languages; 

2) The structure of the program is trivial and the program works quickly; 

3) Using the loops can be successfully combined/accelerated with using the logically derived 

conditions; 

4) If the student implements only a part of the conditions in the program, then the extraneous 

solutions can be quite easily recognised and removed. 

From this we can conclude that programming is a powerful instrument for solution of tasks of this 

and similar types. Solving such tasks can persuade students to learn programming. On the flip side, 

solution by computer allows replacing mathematical thinking with quite routine composing of the 

loops. Even more, if the student finds a program for some other task of this type, then it would be 



 

ICTMT 14 Essen 7 

 

quite easy to adapt. In some sense, using computers can ruin a nice type of bonus problems in the 

textbooks. The teachers must be prepared at least for permanent modification of task conditions. 

TASKS WITH HIDDEN ALGORITHMIC ESSENCE 

We investigate here another type of nonstandard tasks that can be solved by programming. As early 

as in the grade 1 textbook (Lints, 1981, page 182), we find the following task:  

 How to measure 7 litres of water using 3- and 5-litre vessels? 

The key to finding the solution is that by filling the 3-litre vessel from a full 5-litre vessel, 2 litres of 

water remain. Adding it to 5 litres we get 7 litres. There are some other tasks of similar kind in this 

textbook and in textbooks for higher grades. The textbooks formulate the tasks with concrete 

numbers of different coins/vessels/… and their sizes. They rely on ingenuity of the brightest 

students and do not speak about solving such tasks in a general case.  

Educated programmers and students who have trained for programming olympiads know that such 

tasks can be solved using breadth-first search. Every stage in water measuring process can be 

described by a triplet of numbers (𝑎, 𝑏, 𝑐) where 𝑎 ∈ {0, … , 3} is the amount of liquid in the 3-litre 

vessel, 𝑏 ∈ {0, … , 5}  is the amount of liquid in the 5-litre vessel and 𝑐 is the amount of liquid in the 

vessel for the result. The algorithm finds consecutively the stages that can be reached with 0, 1, 2, 

etc., steps (pouring operations). The initial stage (0, 0, 0) corresponds to 0 steps. With step 1 we can 

get (3, 0, 0) and (0, 5, 0). From them we can get with step 2 the stages (0,3,0), (0,0,3), (3,5,0), 

(3,2,0) and (0,0,5). Further we can construct the stages that need 3, 4, 5, … steps. The task is solved 

when we get to a stage where the third component is 7. There is no need to construct stages where 

the third component is higher than 7+5. The search can be finished when at some 𝑛𝜖𝑁 no stage gets 

this number of steps. Our textbook task has two 5-step solutions: (0,0,0), (0,5,0), (0,0,5), (0,5,5), 

(3,2,5), (3,0,7) or the same with last two stages (0, 0, 10), (3, 0, 7). 

The preceding paragraph shows that this task type has a solution algorithm. However, school 

mathematics does not present such tasks in an algorithmic manner for two reasons. The algorithm 

uses a data structure (multi-dimensional array) that is too complex for Basic School. Further, the 

necessary solution time and the required amount of memory grow quickly with increasing input 

data. The calculation can be executed by hand only if the amount of input data is fairly limited and 

the number of necessary steps is small. Solving the tasks on a computer has also restrictions of the 

same kind but the examples from textbooks are computer-solvable. We can demonstrate their 

algorithmic character. Unfortunately, we must state here again that using computers can change the 

status of reasoning-oriented tasks.  

CONCLUSIONS 

Our project of conversion of mathematics tasks to programming exercises gave us about 200 quite 

natural-looking programming problems. From the perspective of mathematics education: 

 Considering mathematical problems as programming tasks is a much better demonstration of the 

idea of an algorithm. Instead of nondeterministic sets of conversion rules (for operations with 

fractions or polynomials, for solution of equations and equation systems, etc.), we see these 

rules being executed in the order that is prescribed by the program. It is possible to change the 

order and compare different variants.  

 Programming of solution algorithms requires a fairly detailed understanding of mathematical 

theory – definitions and possible special cases, textbook algorithms. It is possible to check this 

understanding by supplementing the tasks with test data for complex cases.  
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Many schools and teachers use computer algebra and dynamic geometry software in 

mathematics teaching. Programming of tasks that correspond to the commands of such 

programs tells the students what is inside of mathematical software.  

 It is possible to emphasize details of algorithms (for example, checking only the numbers up to 

square root of 𝑛 by finding the factors of 𝑛) and the computational complexity. Note that for 

paper and pencil calculations this can be more important than for using computers.  

 Execution of algorithms on a computer enables them to be applied to much bigger numbers and 

bigger data. It also facilitates development or at least discussion of solution algorithms for some 

new types of problems. 

Some issues need attention of the teachers.  

 In case of certain topics, the program should do some work that is not explicit in paper-and-

pencil solutions (understanding of expressions, calculation of coordinates on the plane). This 

can require some new algorithms and new mathematical knowledge. When supervising such 

programming, the teacher should have a clear understanding of potential needs that may arise.  

 The teacher must know which algorithms have incomplete or example-based formulations 

available for students in textbooks.   

 Some reasoning-oriented tasks, which are quite common in textbooks, can be solved by rather 

trivial or standard programs. The teachers should be informed about such opportunities. 

 On the other hand, programming can help the teachers when they have need to create fresh 

versions of tasks mentioned in last two sections. Programming enables to evaluate the existence 

and number of solutions of new versions.   
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