
Analysis and Abstraction of
Graph Transformation Systems

via Type Graphs

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaft

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von

Dennis Nolte
aus

Willich

1. Gutachter: Prof. Dr. Barbara König
2. Gutachter: Prof. Dr.Andrea Corradini

Tag der mündlichen Prüfung: 25. Juni 2019

Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der
Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor.

DOI:
URN:

10.17185/duepublico/70359
urn:nbn:de:hbz:464-20190821-100424-8

Alle Rechte vorbehalten.

https://duepublico2.uni-due.de/
https://duepublico2.uni-due.de/
https://doi.org/10.17185/duepublico/70359
https://nbn-resolving.org/urn:nbn:de:hbz:464-20190821-100424-8

To my family and friends

Analysis and Abstraction of Graph Transformation Systems via Type Graphs.
© 2019 Dennis Nolte - All rights reserved.

This thesis is based on the following original publications:

. Chapter 1. Introduction:

[Nol17] D. Nolte. “Analysis and Abstraction of Graph Transformation
Systems via Type Graphs”. In: STAF 2017 Doctoral Symposium.
Vol. 1955. CEUR Workshop Proceedings. 2017.

. Part I. Preliminaries and Foundations:

[KN+18] B. König, D. Nolte, J. Padberg, and A. Rensink. “A Tutorial on
Graph Transformation”. In: Graph Transformation, Specifications,
and Nets – In Memory of Hartmut Ehrig. Ed. by R. Heckel and G.
Taentzer. LNCS 10800. Springer, 2018, pp. 1–22. doi: 10.1007/978-3-
319-75396-6_5.

. Part II. Termination Analysis of Graph Transformation Systems:

[BK+15] H. J. S. Bruggink, B. König, D. Nolte, and H. Zantema. “Proving
Termination of Graph Transformation Systems Using Weighted Type
Graphs over Semirings”. In: Proc. of ICGT ’15 (International Confer-
ence on Graph Transformation). 2015, pp. 52–68. doi: 10.1007/978-
3-319-21145-9_4. arXiv: 1505.01695 [cs.LO].

[ZNK16] H. Zantema, D. Nolte, and B. König. “Termination of Term Graph
Rewriting”. In: Proc. of WST ’16 (Workshop on Termination). 2016.

. Part III. Specifying Graph Languages:

[CKN17] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Proc. of ICGT ’17 (International Conference
on Graph Transformation). LNCS 10373. Springer, 2017, pp. 73–89.
doi: 10.1007/978-3-319-61470-0_5. arXiv: 1704.05263 [cs.FL].

[CKN19] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Journal of Logical and Algebraic Methods
in Programming Vol. 104 (2019), pp. 176–200. doi: 10.1016/j.jlamp.
2019.01.005.

. Part IV. Abstract Object Rewriting:

[CH+19] A. Corradini, T. Heindel, B. König, D. Nolte, and A. Rensink. “Rewrit-
ing Abstract Structures: Materialization Explained Categorically”.
In: Foundations of Software Science and Computation Structures.
Ed. by M. Bojańczyk and A. Simpson. Cham: Springer International
Publishing, 2019, pp. 169–188. doi: 10.1007/978-3-030-17127-8_10.
arXiv: 1902.04809 [cs.LO].

A complete list of the author’s publications can be found on page 215.

v

https://doi.org/10.1007/978-3-319-75396-6_5
https://doi.org/10.1007/978-3-319-75396-6_5
https://doi.org/10.1007/978-3-319-21145-9_4
https://doi.org/10.1007/978-3-319-21145-9_4
https://arxiv.org/abs/1505.01695
https://doi.org/10.1007/978-3-319-61470-0_5
https://arxiv.org/abs/1704.05263
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1007/978-3-030-17127-8_10
https://arxiv.org/abs/1902.04809

Abstract

The aim of this thesis is to analyse graph specification frameworks based on type
graphs and show their applicability for verification techniques based on formal
language theory. In order to specify and analyse the behaviour of dynamically
evolving systems it is important to use suitable specification languages which
support practical verification methods. Many concurrent and distributed systems
can be modelled by graphs and graph transformation rules. However, graph-like
structures introduce an additional level of complexity, compared to rule-based
systems where states have either a word or tree structure. In particular, many
complex models induce infinite state spaces, such that explicit verification often
fails, since this requires the construction of the entire state space. Therefore, it is
necessary to also put a focus on abstraction mechanisms.
Graph abstractions are used in many frameworks for over-approximation of

graph transformation systems. These frameworks use abstractions that implicitly
specify graph languages and there exist various approaches which try to find an
abstraction that is fine enough to enable successful verification, but coarse enough
to efficiently implement abstract graph rewriting. This work introduces a general
framework which can be suitably instantiated, in order to obtain methods usable
in practice.

First, a basic graph specification framework based on type graphs is introduced.
The framework is subsequently refined to an approach based on weighted type
graphs which can be used for termination analysis of graph transformation systems.

Second, it is shown how three different refinements of the basic framework influ-
ence decidability, expressiveness and closure properties of type graph specification
languages. Among these refinements, multiply annotated type graphs are discussed
which build the foundation for graph specification frameworks expressive enough
to specify strongest postconditions.

Finally, by exploiting universal properties from category theory, a general frame-
work for abstract object rewriting is introduced in which strongest postconditions
can be computed for annotated objects in an arbitrary topos. A concrete instance
of the framework, namely the multiply annotated type graph, is implemented in a
prototype tool to substantiate the practicability of the framework.

Preface

Over the last four years, I had the pleasure to conduct research as a PhD student
in the theoretical computer science group of Barbara König at the University
of Duisburg-Essen. Most of the results which were worked out, presented and
published during this time are summarized in this thesis. Before I present these
results, I would like to make some short remarks concerning the origins of the
material as well as express my gratitude to all those wonderful people who
accompanied me on this adventure called research.

Origins of the Material
The tutorial chapter for graph transformation (Chapter 3) as well as the three
main parts (Parts II to IV) of this thesis are based on some of my joint publications
with other authors. Except for our work presented in [BK+15] and [KN+18],
I created initial drafts for all remaining publications, which later served as a
basis for the respective final versions. During the writing process of each paper I
contributed the majority of examples and structured the text to generate an
easy to follow flow of thoughts. In this thesis, I streamlined the material with
respect to a fixed notation. In every chapter, I added several examples, added
more explanations and rewrote text passages whenever I had the feeling that they
were written too densely in the respective publication due to the page restrictions.
In every main part, I added an additional preliminary section such that this thesis
becomes self-contained i.e. the consultation of other literature is not mandatory,
to be able to understand the corresponding chapters.

I will now comment on the three main parts and my contributions in the creation
process of the referenced publications in more detail.

Part II: Termination Analysis of Graph Transformation Systems
The termination analysis approach based on weighted type graphs, as presented
in Chapter 5, is a collaboration with Sander Bruggink, Barbara König and Hans
Zantema. It was the first topic I started contributing on and is a generalization of
an approach introduced by my co-authors in [BKZ14]. The theoretical background
was already worked out in detail, however, the implementation in the tool Grez
lacked the capability to produce results whenever non-linear arithmetic expressions
were involved. I extended the SMT encodings used by Grez to overcome this issue
and generated examples and termination proofs for several graph transformation
systems. Later on, in [ZNK16], we extended the weighted type graph approach
to work for term rewriting systems as well. I contributed substantially in the
development of the basic version interpretation for term graph productions and
in the two transformation encodings, namely the number and function encoding.
The results of this work are summarized in Chapter 6, though, compared to the
original publication, I added a section to properly introduce term rewriting systems.
Furthermore, I was responsible for all results of the experiments summarized in
Appendix B.

Preface

Part III: Specifying Graph Languages
Part III of this thesis is based on a joint work with Andrea Corradini and Bar-
bara König. During a research stay in Pisa, we worked out several frameworks
based on type graphs. I investigated decidability and closure properties for these
frameworks and wrote down our results, which were then accepted as a conference
paper [CKN17]. Later, in a special issue journey version [CKN19], we integrated
the proofs in the main text, added additional examples/explanations and I pro-
vided a non-trivial proof for the non-closure of annotated type graphs under the
complement operation.

Part IV: Abstract Object Rewriting
The idea for a general abstract rewriting framework arose during discussions
between Barbara König and Arend Rensink over a decade ago. At some point,
during our own search for an abstraction mechanism suitable for the verification
of systems, sketches from these discussions reappeared, including additional notes
from Tobias Heindel. Together with Andrea Corradini we were able to work out
a materialization category for objects in an arbitrary topos. Before we got the
general framework, I already had worked out a concrete instance in form of the
materialization construction for graphs. Later on, I wrote down the connection
between the terminal object of our materialization category and the notion of
partial map classifiers. As a follow up, we then generalised our work on annotated
type graphs to the abstract rewriting of annotated objects. The results, which are
explained in Part IV of this thesis, got accepted as a conference paper [CH+19].
The paper was nominated for the EATCS best paper award.

Acknowledgements
Research is a continuous process. It can be educational, exciting, frustrating,
satisfying, tedious and illuminating, but in the end it is a path chosen by those
who seek to learn and share knowledge beyond the already discovered. The sharing
aspect of research teaches us an important lesson: The journey to wisdom is one
that the researcher does not travel alone. Many astounding people accompanied
and supported me during my adventure and I want to mention them here.
First and foremost, I would like to express my gratitude to Barbara König for

her support and guidance as well as for offering me the opportunity to conduct
research under her supervision. She introduced me to graph transformation and
provided me the freedom to follow my intuition and develop my own ideas. I rarely
got stuck in this process since she was always there to answer my questions. Our
fruitful discussions played a major role in every breakthrough result achieved with
respect to the theoretical problems I tackled. Thanks to her, I got to know many
other researchers and I got the chance to work with them too.

Among these researchers, I am greatly indebted to Andrea Corradini for acting
as the second assessor of this thesis. I will never forget the inspiring one month
research stay in Pisa, where we worked on the foundations of this topic that
subsequently led to multiple successful publications. I admire the patience he
showed in answering my questions, while he simultaneously introduced me to
various categorical notions.

x

Furthermore, I would like to thank all my co-authors with which I have collab-
orated in several publications, namely (in alphabetical order) Sander Bruggink,
Tobias Heindel, Maxime Nederkorn, Julia Padberg, Arend Rensink and Hans
Zantema. I enjoyed working with every one of them.

I consider myself lucky that I was given the chance to be member of a theo-
retical computer science group with an awesome working atmosphere and lots
of illuminating discussions during lunch. Therefore, I would like to acknowledge
my former and present colleagues: Harsh Beohar, Benjamin Cabrera, Richard
Eggert, Matthias Hülsbusch, Henning Kerstan, Christina Mika-Michalski, Sebastian
Küpper, Lars Stoltenow and Jan Stückrath.

Special thanks go to my friend and former colleague Christoph Blume for
sharing his experience in the graduation process with me. Including him, all of
my colleagues were so kind to provide valuable comments on early drafts of this
thesis.
Additionally, I would like to thank my elite tutor team: Rebecca Bernemann,

Philip Garus, Marleen Matjeka and Matthias Schaffeld. They reliably supported
me in my teaching assistance duties for several years, such that I had enough time
to efficiently conduct my research.
Finally, I want to express my gratitude to Tamara, our families and friends

for their encouragement and assistance during the whole time. I will be forever
grateful to you. Without your support I would not be who I am today.

Thank you all.

xi

Contents

Abstract vii

Preface ix

1. Introduction 1
1.1. Context . 1
1.2. Contributions . 4
1.3. Structure of this Thesis . 6

I. Preliminaries and Foundations 11

2. Foundations 13
2.1. Basic Notation . 13
2.2. Basic Category Theory . 15

3. Graphs and Graph Transformation 23
3.1. Graphs and Graph Morphisms 24
3.2. Graph Transformation Systems 25

3.2.1. Graph Rewriting via Graph Gluing 25
3.2.2. Graph Transformation the Categorical Way 30

4. Type Graph Languages 33
4.1. Type Graphs and Graph Languages 33
4.2. Examples . 34

II. Termination Analysis of Graph Transformation Systems 37

Motivation of Part II 39

5. Weighted Type Graphs over Semirings 41
5.1. Additional Preliminaries - Termination and Semirings 41

5.1.1. Termination Analysis of Rewriting Systems 41
5.1.2. Matrix Interpretations for String Rewriting 42
5.1.3. Ordered Semirings . 43

5.2. Weighted Type Graphs . 45
5.3. Using Strongly Ordered Semirings 48
5.4. Examples . 50
5.5. Grez . 53

6. Terms, Term Rewriting and Term Graph Encodings 55
6.1. Additional Preliminaries - Terms and Term Graphs 55

6.1.1. Terms and Term Rewriting 56
6.1.2. Term Graph Rewriting 59

6.2. Interpreting Term Rewriting in Term Graph Rewriting 61

Contents

6.3. From Term Graph Rewriting to Graph Transformation Systems 65
6.3.1. Function Encoding . 65
6.3.2. Number Encoding . 67

6.4. Experiments . 68

Conclusion of Part II 71
Related Work . 71
Open Questions . 72

III. Specifying Graph Languages 73

Motivation of Part III 75

7. Pure Type Graphs, Restriction Graphs and Type Graph Logic 77
7.1. Additional Preliminaries - Retracts and Cores 77
7.2. Type Graph and Restriction Graph Languages 78

7.2.1. Closure and Decidability Properties 79
7.2.2. Closure under Double-Pushout Rewriting 79
7.2.3. Relating Type Graph and Restriction Graph Languages 80

7.3. Type Graph Logic . 81
7.3.1. Closure and Decidability Properties for Type Graph Logic 82

8. Annotated Type Graphs 85
8.1. Additional Preliminaries - Ordered Monoids 85
8.2. Annotations and Multiplicities 86
8.3. Multiply Annotated Graphs . 89

8.3.1. Local vs. Global Annotations 92
8.3.2. Decidability Properties for Multiply Annotated Graphs 93
8.3.3. Deciding Language Inclusion for Annotated Type Graphs 94
8.3.4. Closure Properties for Multiply Annotated Graphs . . . 99

Conclusion of Part III 101
Related Work . 101
Open Questions . 102

IV. Abstract Object Rewriting 103

Motivation of Part IV 105

9. Materialization Category 107
9.1. Additional Preliminaries - More Categorical Concepts 107

9.1.1. Topoi, Subobject Classifiers and Partial Map Classifiers 107
9.1.2. Slice Categories and Final Pullback Complements . . . 109

9.2. Object Languages . 111
9.3. Materialization . 112

9.3.1. Materialization Category and Existence of Materialization112
9.3.2. Characterizing the Language of Rewritable Objects . . . 113
9.3.3. Rewriting Materializations 115

xiv

Contents

10.Rewriting Annotated Objects 117
10.1. Additional Preliminaries - Annotated Objects 117
10.2. Annotation Properties . 119
10.3. Abstract Rewriting of Annotated Objects 121

10.3.1. Abstract Rewriting and Soundness 121
10.3.2. Completeness . 122

Conclusion of Part IV 127
Related Work . 127
Open Questions . 127

V. Tools and Applications 129

11.DrAGoM 131
11.1. An Introduction to DrAGoM 131
11.2. Implementing Categorical Notions 134

11.2.1. Concrete Construction of the Materialization 134
11.2.2. Computation of Annotations 136

11.3. Other Verification Tools . 138

12.Evaluation 141
12.1. Thesis Examples . 141
12.2. Invariant Check for Colorability 142

12.2.1. 2-Colorability with Path Extension 143
12.2.2. 3-Colorability with Node Replacement 143

12.3. Invariant Check for a Rail System 144
12.4. Invariant Check for Subgraph Containment 146
12.5. Overview of the Results . 147

VI. Conclusion 149

13.Conclusion and Future Work 151
13.1. Summary and Conclusion . 152
13.2. Future Work . 154

VII.Appendix 155

A. Proofs 157
A.1. Proofs of Chapter 5 . 157
A.2. Proofs of Chapter 6 . 160
A.3. Proofs of Chapter 7 . 162
A.4. Proofs of Chapter 8 . 167
A.5. Proofs of Chapter 9 . 177
A.6. Proofs of Chapter 10 . 184
A.7. Proofs of Chapter 11 . 195

xv

Contents

B. Termination Analysis Experiments 199
B.1. Termination Proofs of Chapter 6 200

C. DrAGoM Documentation 203
C.1. Tutorial: How to Use DrAGoM 203
C.2. The GXL Format for Multiply Annotated Type Graphs 210
C.3. The SGF Format for Graph Transformation Systems 213

References 215

Nomenclature 227

Index 233

xvi

“For there is nothing either good or bad, but thinking
makes it so.”

William Shakespeare (1564-1616)

1
Introduction

Due to the rising complexity of systems it is natural to ask for ways to model them
on an intuitive level and analyse them efficiently. Many concurrent and distributed
systems, especially those with a dynamically evolving topology, can be modelled
by graphs and graph transformation rules. While graph transformation leads to a
natural way to model dynamically evolving systems, the question arose, how to
verify these systems. Work on the verification of dynamic, graph-like structures
has shown that they introduce an additional level of complexity, compared to
rule-based systems where states have either a word or tree structure. But since
these latter structures posses a well-established theory that has been successfully
used for verification in the past, the main idea is to generalize rewriting techniques
from strings and trees in the theory of formal languages to the setting of graph-like
structures.

1.1. Context
The theory of formal languages plays an important role in computer science and
there exists a large number of applications for this theory, for instance in the design
of communication protocols, compiler construction and parsing. The theory can be
efficiently used to represent states as sets of words or trees and it offers symbolic
manipulation techniques, for instance in form of grammars, to rewrite and analyse
the specified context. In this way the theory can also be applied for verification
purposes. Here we concentrate on automata/formal-language based verification
techniques, i.e. analysis techniques used in the class of regular languages. In
verification some typical methods are (non-)termination analysis [EZ15; GHW04],
reachability analysis [FO97], regular model checking [BJ+00] and counterexample-
guided abstraction refinement [CG+03]. Using reachability analysis for example,
one can prove the absence of erroneous states.
While the theory of formal languages is worked out very well in string and

tree/term rewriting, it is often non-trivial to solve the same problems when it
comes to graph rewriting. Therefore, it is natural to ask for generalizations of these
verification techniques to the framework of graph rewriting and additionally to a
theory of graph languages, where these techniques can be applied. The analysis
of pointer structures, in the research field of heap analysis, is just one example,

1. Introduction

where the adequate specification of sets of graphs in combination with verification
techniques is needed. For this purpose, one needs a specification formalisms for
graph languages with suitable closure properties, positive results for decidability
problems (such as membership, language inclusion and emptiness) and computable
pre- and postconditions. Instead of just tinkering with fitting existing specification
formalisms for any given verification problem, we try to achieve a different main
goal here: One contribution of this thesis is help to understand the essence of
some selected graph specification languages, which grant them the possibility to
adapt the verification techniques.

The Type Graph Framework
We focus on specification languages based on type graphs, where the language of a
type graph T consists of all graphs that can be mapped homomorphically into T
(with potentially extra constraints to extend the framework). Many specification
formalisms that are usually used in abstract graph transformation [SWW11] and
verification, are based on type graphs. Usually, one assumes that the rules and
the graphs to be rewritten are typed. This idea serves the purpose of introducing
constraints on the applicability of the rules and therefore type graphs can be
understood as a form of labelling. However, this is different from the point of view
used throughout this thesis, where graphs and rules remain untyped (even while
working with labelled graphs) and the type graphs are simply meant to represent
a possibly infinite set of graphs. Type graphs retain a nice intuition from regular
languages when it comes to specifying graph languages. The language of a given
finite state automaton M can be interpreted as the set of all string graphs that
can be mapped homomorphically to M (respecting initial and final states).

Double-Pushout Graph Rewriting
The rewriting formalism for graphs and graph-like structures that we use through-
out this thesis is the double-pushout (DPO) approach [CM+97]. Although it
was originally introduced for graphs [EPS73], it is well-defined in any category.
However, certain standard results for graph rewriting require that the category has
“good” properties. The category of graphs is an elementary topos—an extremely
rich categorical structure—but weaker conditions on categories, for instance adhe-
sivity, have been studied [LS05; EH+04; EGH+13]. Since we are interested in the
verification of graphs which may model specific systems, the advantage in using
DPO lies in the fact that deletion in unknown contexts is forbidden per default.
Therefore, by using DPO instead of other approaches like single-pushout (SPO),
we can ensure that the application of our rules never cause unwanted side-effects,
which could lead to inadequate models of the described system.

Application Scenarios for Graph Specification Languages
In order to better motivate our approach, we will explain how specification
languages for graphs can help in system verification. Assume that we are given a
graph transformation system, specified by a set R of DPO rules [Ehr79], which
generates a transition system on graphs. A transition between two graphs G,H is
denoted by G⇒R H. Then we can consider the following application scenarios:

2

1.1. Context

Invariant Analysis Assume that we are given a graph language L. The aim is to
show that for every transition G⇒R H with G ∈ L it always holds that H ∈ L.
We also say that L is closed under rewriting.

One way to show this is to compute the strongest postcondition of L wrt. R,
i.e., PostR(L) = {H | ∃G ∈ L : G⇒R H} and prove that PostR(L) ⊆ L.

Reachability Analysis Given a fixed language I0 of initial graphs, the aim is to
compute all graphs which are reachable from I0 in any number of steps. One can
compute Ii+1 = Ii ∪ PostR(Ii) for successive indices i and terminate whenever
Im+1 = Im for some m. Since in an infinite state space such analyses usually
do not terminate in a finite number of steps, it is necessary to use widening
respectively overapproximation techniques to ensure termination.

Termination Analysis The aim is to check if a given graph transformation system
R is uniformly terminating. For this we specify the language L of all possible
graphs and assign weights, which are elements of a well-founded relation, to the
graphs G ∈ L to be rewritten. Afterwards, one shows that the assigned weight of
the graph decreases with every rule application.

Non-Termination Analysis Here we ask whether there exists any graph G from
which there is an infinite sequence of rewriting steps, i.e., whether there are
non-terminating computations. A solution to this problem given in [EZ15] (for
term rewriting systems) is to find a non-empty language L of graphs such that (i)
every G ∈ L contains at least one left-hand side, i.e., a rewriting step is possible;
(ii) for every G ∈ L, whenever G⇒R H then H ∈ L holds, i.e., the language L
is closed under rewriting for all rules in the rewriting system R. With these two
properties one can prove that from every graph in L there exists a non-terminating
sequence of rewriting steps.

Counterexample-Guided Abstraction Refinement The well-known CEGAR ap-
proach (see for instance [HJ+04]) is a static analysis technique which starts with a
coarse initial abstraction which is then refined step-by-step by eliminating spurious
counterexamples. One starts with a finite set of local formulas to abstract the
state space. Then one looks for spurious counterexamples (i.e. runs that exist in
the abstraction, but not in reality) in order to generate additional logical formulas
and to refine the abstract state space. Instead of a logic it is in principle also
possible to use other specification mechanisms. We will not go into detail, but
CEGAR requires computation of strongest postconditions/weakest preconditions,
inclusion and so-called Craig interpolation.
In order to actually implement a scenario as above, one needs the required

constructions (computation of postconditions, . . .), decision procedures (closure
under rewriting, inclusion, . . .) and closure properties (union, . . .). On the other
hand, if a specification language with the required properties is provided, one can
implement all the procedures described above where the methods are called as
“black boxes”, without any need to know what is going on under the hood.

Needless to say that expressiveness, decidability and efficiency are also a major
issue. The current state-of-the-art is such that for graph transformation there is
no single specification language that is suitable for all such purposes.

3

1. Introduction

1.2. Contributions
In the following we illustrate the main contributions of this thesis:

– (Part II) Termination Analysis of Graph Transformation Systems. Proving
the termination property of a rewriting system, e.g. the absence of rewriting
or derivation sequences of infinite length, is an undecidable problem in general
[Plu98]. Nonetheless, given a rewriting system (for instance in graph rewriting),
one can try several methods in parallel to possibly find a solution for the specific
termination problem. One possible approach of proving termination is to construct
a monotone function that measures structural properties of the graphs to be
rewritten. Afterwards one shows that the value of such a function (or weight
assigned to the graph) decreases with every rule application. This is usually
achieved by computing the weights directly on the left-hand side and right-hand
side of every rule in the rewriting system.

We introduce a technique based on type graphs which are weighted over different
kinds of semirings, to check if a given graph transformation system is uniformly
terminating, i.e. independently of the initial graph the rules of the system can only
be applied a finite number of times. This technique was inspired by an existing
method based on matrix interpretations for proving termination in string, cycle
and term rewriting systems [EWZ08]. The type graph is used to specify the set of
all possible graphs by finite means and at the same time assign weights to the
graphs to be rewritten. Depending on the semiring chosen for the computation,
we are able to prove termination for graph transformation systems consisting of
rules that can be applied up to an exponential number of times.

The new termination analysis technique has been implemented (among others)
in a prototype Java-based tool named Grez. The tool concurrently runs several
algorithms to prove the termination of a given graph transformation system.
Grez is able to employ an SMT solver, to solve inequalities resulting from this
method. The inequalities encode all possible morphisms from the given rule graphs
(both left- and right-hand side) into potential weighted type graph candidates.
The variables, used in these encodings, represent weights for each element of the
type graph. Therefore, whenever the SMT solver returns a valid solution for the
inequalities, it gives rise to the weights assigned to the type graph such that it
becomes a witness for the termination proof.

Furthermore, we translate term rewriting systems from the Termination Prob-
lems Database (TPDB) into graph transformation systems and let Grez auto-
matically prove termination. We investigate two different encodings (namely the
function and number encoding) in two possible rewriting interpretations (called
basic and extended version) of term rewrite rules into graph transformation rules
that preserve the termination property, i.e. whenever the graph transformation
system terminates, so does the term rewriting system.

– (Part III) Specifying Graph Languages. We analyse decidability and closure
properties for graph languages specified by type graphs. While not being as
expressive as recognizable graph languages, we prove positive results with respect
to decidability problems for the two simplest cases of specification formalisms,
namely type graph languages and restriction graph languages. A type graph language
contains all graphs which allow a homomorphism into a given type graph, whereas a
restriction graph language includes all graphs that do not contain an homomorphic

4

1.2. Contributions

image of a given type graph. We extend the formalism in two different ways: First,
we introduce boolean connectives between type graphs to generate a type graph
logic and second, we increase the expressiveness of the type graph itself, by adding
annotations to the type graph elements.

In case of the type graph logic, one already obtains the desired closure properties
for free since they are semantically given by the logical conjunction, disjunction
and negation operators. However, it is still impossible to compute postconditions
within this formalism. This is due to the fact that one can not express the existence
of a subgraph (here the right hand-side graph from a graph transformation rule)
in every graph contained in the specified graph language.
Therefore, we define a framework of annotated type graphs, to generate an ab-

stract framework, from which formalisms based on type graphs can be instantiated.
Each type graph is enriched with a set of annotations, and annotations can be
parametrized. For instance, in one of the settings, the annotations are used to
globally count all elements that can be mapped to the elements in the type graph.
This is different from UML multiplicities, which are locally specified on the edges.

By adding annotations to the type graph, the expressiveness is too powerful,
such that the language inclusion problem becomes hard to decide. We only obtain
positive results for the language inclusion problem by restricting the analysed graph
languages to graphs up to a given pathwidth (equivalent to [Blu14]). However, by
adding annotations to the formalism, we are able to compute postconditions of
rule applications, which was impossible in the other refinements of the type graph
specification language. In addition, we investigate closure under rule application,
i.e. invariant checking for our frameworks.

– (Part IV) Abstract Object Rewriting. Finally, by exploiting universal properties
from category theory, we introduce a materialization construction (similar to
[SRW02]) for our annotated type graph framework. A basic observation is that
in most specification frameworks an abstract rewriting step is performed by
computing the (strongest) postcondition in two steps: by first materializing the
left-hand side of the rule to be applied (also called shift in some specification
formalisms), followed by adding the right-hand side (existentially quantified).
Therefore, the notion of annotated type graphs is lifted to a more general framework
of annotated abstract objects in an arbitrary topos.

For the purely structural aspects of our materialization construction we will use
partial map classifiers in a topos and its slice categories. We furthermore relate the
construction to the fundamental construction of final pullback complements [DT87].
Even though the materialization fully specifies the set of objects which explicitly
contain a copy of the left-hand side of a rule, there still can be objects in this
set which can not be rewritten. Therefore, we refine the materialization into a
rewritable materialization, which specifies the set of all rewritable objects with
respect to the rule to be applied. However, the abstract object retrieved by the
abstract derivation step can only be used to specify the strongest postcondition
as long as the information about the explicit copy of the right hand-side is given.
To solve this issue we explain how all objects in the construction can be endowed
with annotations and how these annotations can be rewritten.

We give properties for the annotations which need to be satisfied to be able to
compute the strongest postconditions in this generalized abstract setting.
Finally, being able to compute postconditions for the specification of graph

5

1. Introduction

languages by using annotated type graphs, we implement verification techniques
for this formalism in a prototype Java-tool called DrAGoM. We benchmark the
techniques of the tool with respect to some worked examples.

1.3. Structure of this Thesis
The structure of this thesis is as follows1:

The thesis begins with a preliminaries and foundations part (Part I) to remind
the reader of basic mathematical definitions. The notation that is going to be used
is fixed and concepts related to category theory and graph transformation are
recalled as a preparation for later parts to come. The main contributions of this
thesis are split into the three main Parts II-IV, each having their own motivation
and conclusion section. This way, the parts can be read independently2 and in
any order, while each of them contribute to a larger research context, namely
the analysis and abstraction of graph transformation systems via type graphs.
The theoretical results, introduced in the Chapters 8-10, have been implemented
into DrAGoM, a tool which is introduced and evaluated in Part V. In Part VI the
thesis ends with a conclusion where all contributions are evaluated in the overall
context. All proofs, experimental results on termination analysis, a nomenclature
and an index are given in the appendix of this thesis.

The content of the chapters (grouped by their respective part) is the following:

Part I – Preliminaries and Foundations

Chapter 2 – Foundations
In Chapter 2 we recall and fix mathematical notations. The definitions in
this chapter are used throughout the thesis, whereas additional preliminary
sections in the different parts might extend these basic concepts. In order
to establish the background theory (especially needed in Part IV), we
additionally give an introduction to some basic notions of category theory
at the end of the chapter.

Chapter 3 – Graphs and Graph Transformation
This chapter introduces the kind of graphs that will be used in this thesis.
Furthermore we give a tutorial on graph transformation that explains the
so-called double-pushout approach to graph transformation in a rigorous,
but non-categorical way, using a gluing construction. Afterwards, we relate
this gluing construction to its categorical counterpart.

Chapter 4 – Type Graph Languages
In this chapter we learn how type graphs can be used to specify (possibly
infinite) sets of graphs by finite means. We are interested in (pure) type
graphs, where the corresponding language consists of all graphs that can be
mapped homomorphically to a given type graph. After giving the formal
definition of type graph languages we present several examples of special
cases of these languages.

1See also the dependency graph in Figure 1.1 on page 9
2Exception: It is recommended (but not required) to read Chapter 8 of Part III before reading
Chapter 10 of Part IV, as the introduced concepts are related to each other.

6

1.3. Structure of this Thesis

Part II – Termination Analysis of Graph Transformation Systems

Chapter 5 – Weighted Type Graphs over Semirings
This chapter presents techniques, based on so-called weighted type graphs,
for proving uniform termination of graph transformation systems. These
type graphs can be used to assign weights to graphs and to show that these
weights decrease in every rewriting step in order to prove termination. We
present an example involving counters and discuss the implementation in a
tool called Grez.

Chapter 6 – Terms, Term Rewriting and Term Graph Encodings
In Chapter 6 we discuss two natural ways to interpret term rewrite rules
as term graph rewrite productions. Afterwards we introduce an approach
to transform term graph rewriting to graph transformation, in such a way
that termination of the term graph rewrite system can be concluded from
termination of the resulting graph transformation system, to be proved by
Grez. We propose two such transformations: the function encoding and
the number encoding. We discuss the two transformations and report about
experiments.

Part III – Specifying Graph Languages

Chapter 7 – Pure Type Graphs, Restriction Graphs and Type Graph Logic
In this chapter we investigate two more formalisms for specifying type graph
languages, i.e. sets of graphs, based on type graphs. First, we study languages
specified by restriction graphs and their relation to type graphs. Second, we
extend this basic approach to a type graph logic. We present decidability
results and closure properties for both formalisms.

Chapter 8 – Annotated Type Graphs
In Chapter 8 we endow type graphs with annotations, thus making graph
languages more expressive. In particular we will use ordered monoids in order
to annotate graphs. Similar to the previous chapter, we present decidability
results and closure properties. This time we put a little more focus on the
language inclusion problem, for which we introduce the notion of a counting
cospan automaton functor to solve the problem.

Part IV – Abstract Object Rewriting

Chapter 9 – Materialization Category
In this chapter we focus on the so-called materialization of left-hand sides
from abstract objects, a central concept in abstract rewriting. We have a
look at an accessible, general explanation of how materializations arise from
universal properties and categorical constructions, in particular partial map
classifiers, in a topos. Furthermore, we refine the materialization construction
to a rewritable materialization by exploiting the notion of final pullback
complements.

7

1. Introduction

Chapter 10 – Rewriting Annotated Objects
In Chapter 10 we combine the previously introduced materialization con-
struction with the concept of enriching graphs with annotations from ordered
monoids to create a framework of abstract rewriting for annotated objects.
We define properties of annotations which can be used to give a precise char-
acterization of strongest postconditions, which are effectively computable
under certain assumptions.

Part V – Tools and Applications

Chapter 11 – DrAGoM
This chapter gives an overview over the prototype tool DrAGoM which is a
tool to handle and manipulate multiply annotated type graphs. The main
application of DrAGoM is to automatically compute strongest postconditions
to check invariants of graph transformation systems in the framework of
abstract graph rewriting. We have a look at the basic functionalities and
give an overview of a typical user interaction with the software. Afterwards,
we investigate how the categorical notions of the previous chapters can be
implemented and have a look at other tool approaches.

Chapter 12 – Evaluation
In this chapter we present different case studies which we have conducted
using the tool DrAGoM. First, we compare the generated output with the
expected results of examples from previous chapters. Second, we provide
runtime results for several invariant checks and stress test the tool with
respect to language inclusion checks of increasing graph sizes. At the end of
the chapter, an overview of the case study results and a summary of the
tool’s practicability are provided.

Part VI – Conclusion

Chapter 13 – Conclusion and Future Work
In Chapter 13 we draw the thesis to a close. We summarize the main
theoretical contributions and discuss how they fit into the broader scientific
context of this thesis. Finally, we provide suggestions of potential next steps
for future work, resulting from the contribution.

8

1.3. Structure of this Thesis

Chapter 1
Introduction

I - Preliminaries and Foundations

Chapter 3
Graphs

and Graph
Transformation

Chapter 2
Foundations

Chapter 4
Type Graph
Languages

III - Specifying
Graph Languages

Chapter 7
Pure Type
Graphs,

Restriction
Graphs

and Type
Graph Logic

Chapter 8
Annotated

Type Graphs

II - Termination
Analysis of GTS

Chapter 5
Weighted Type
Graphs over
Semirings

Chapter 6
Terms, Term
Rewriting and
Term Graph
Encodings

IV - Abstract
Object Rewriting

Chapter 9
Materialization

Category

Chapter 10
Rewriting
Annotated
Objects

V - Tools and Application

Chapter 11
DrAGoM

Chapter 12
Evaluation

Chapter 13
Conclusion and
Future Work

Figure 1.1.: Dependency graph of this thesis. The dotted arrows visualize prereq-
uisites with respect to the chapters. It is recommended to read the
chapter(s) at the source of an arrow first before reading its target.

9

Part I.

Preliminaries and Foundations

“Do not worry about your difficulties in Mathematics.
I can assure you mine are still greater.”

Albert Einstein (1879-1955)

2
Foundations

In this chapter we will remind the reader of basic mathematical definitions and
afterwards give a short introduction to a mathematical formalism called category
theory, which is an alternative to set theory.

Please note, that the purpose of this chapter is not to give a full introduction to
basic mathematical concepts nor to category theory, but rather fix the notation
that is going to be used. Therefore, it is assumed that the reader at least has
a thorough mathematical and computer science background on the level of an
undergraduate degree at a university. At the same time, by describing the necessary
concepts, the thesis becomes self-contained such that the consultation of other
literature is not mandatory, to be able to understand the upcoming chapters.

Likewise, for readers who are familiar with standard mathematical/categorical
concepts and the basics of graph rewriting, it is possible to skip this Part I of the
thesis and immediately proceed to one of the main Parts II-IV, without missing
any important results. A complete list of used symbols together with an index is
given at the end of the thesis.

2.1. Basic Notation
We start by fixing the notation of the fundamental logical statements which are
being used in computer science. Afterwards, we recall the basic concepts of set
theory and conclude this subsection with a reminder about the definitions of some
mathematical structures.

Logical Operators

For the standard logical operations we will use the following symbols:

∧ for conjunction ∨ for disjunction
=⇒ for implication ⇐⇒ for bi-implication
∃ for existential quantification ∀ for universal quantification.

2. Foundations

Set

The membership relation is denoted by ∈, i.e. whenever an element x is a
member of a set X we will simply write x ∈ X. We use X = Y to denote that
two sets are equal, X ⊆ Y to denote that X is a subset of Y or equal and we use
X ⊂ Y to denote that X is a strict subset of Y , i.e. inclusion holds but the sets
are not equal. Their corresponding negations are denoted by /∈, 6=, 6⊂ and *. We
denote by N0 the set of natural numbers {0, 1, 2, . . .}, including 0, and by N the
natural numbers without 0. The symbol ∅ is used to denote the empty set, i.e. a
set without any element. The powerset of X is denoted by P(X).

For two sets X and Y , the relative complement is denoted by X \Y , i.e. X \Y =
{x ∈ X | x /∈ Y }, the union is denoted by X∪Y , i.e. X∪Y = {z | z ∈ X∨z ∈ Y }
and the intersection is denoted by X ∩ Y , i.e. X ∩ Y = {z | z ∈ X ∧ z ∈ Y }. The
cartesian product X × Y is the set X × Y = {(x, y) | x ∈ X ∧ y ∈ Y } of ordered
pairs, which are denoted by round parentheses. For n ∈ N, Xn = X × . . . ×X,
denotes the n-ary cartesian product of X. The disjoint union X1

⊎
X2 for two

sets X1 and X2 is the set X1
⊎
X2 =

⋃
i∈I
{(x, i) | x ∈ Xi} with I = {1, 2}.

Relation

For an arbitrary set X a subset R ⊆ X ×X is called (homogeneous) relation
on X. We denote by R−1 the inverse relation of R. The relation R is reflexive if
and only if for all x ∈ X we have (x, x) ∈ R; it is transitive if and only if for all
x, y, z ∈ X we have (x, y) ∈ R ∧ (y, z) ∈ R =⇒ (x, z) ∈ R; it is symmetric if and
only if for all x, y ∈ X we have (x, y) ∈ R =⇒ (y, x) ∈ R and it is antisymmetric
if and only if for all x, y ∈ R we have (x, y) ∈ R ∧ (y, x) ∈ R =⇒ x = y. The
transitive closure of R is denoted R+, i.e. the smallest relation on X that contains
R and is transitive.

Order

For an arbitrary set X, a preorder ≤ on X is a binary relation on X which
is reflexive and transitive. A preorder ≤ is total if for all x, y ∈ X either x ≤ y
or y ≤ x (or both) holds. If a preorder ≤ is antisymmetric it is called a partial
order . If a preorder ≤ is symmetric it is called an equivalence and will be denoted
by ≡. We denote by X/ ≡ the quotient set of all equivalence classes of X by
≡. Furthermore [x]≡ denotes the equivalence class of x ∈ X with respect to ≡,
i.e. [x]≡ = {y ∈ X | x ≡ y}. In the following we omit the subscripts in the
equivalence class [x]≡ and simply write [x] whenever ≡ is clear from the context.
If ≤ is an order, then we denote by < its strict subrelation e.g. x < y if and only
if x ≤ y ∧ x 6= y. An order is well-founded if it does not allow infinite, strictly
decreasing sequences x0 > x1 > x2 > · · · .

Function

A binary relation f ⊆ X ×Y , which satisfies the requirement that for all x ∈ X
there exists a unique y ∈ Y such that (x, y) ∈ f holds, is called a (total) function
from X to Y and is denoted by f : X → Y . For a function f : X → Y we call
X the domain, Y the codomain and given any x ∈ X we write f(x) (instead
of y) for the unique element satisfying (x, f(x)) ∈ f . We call f(x) the image of
x ∈ X under f : X → Y and say that y ∈ Y has a preimage under f : X → Y if

14

2.2. Basic Category Theory

there exists an x ∈ X with f(x) = y. A function f : X → Y is injective if for all
x1, x2 ∈ X we have f(x1) = f(x2) =⇒ x1 = x2 and it is surjective if every y ∈ Y
has a preimage under f . A function f : X → Y is bijective if it is both, injective
and surjective, and we denote by f−1 : Y → X the inverse of a bijective function.
The domain restriction of a function f : X → Y to a set Z ⊆ X is denoted by the
function f |Z : Z → Y with f |Z = f ∩ Z × Y .

Monoid

For a non-empty set X, a binary operator ⊕ : X × X → X and an element
e ∈ X a 3-tuple (X,⊕, e) is called monoid if the operator ⊕ is associative, i.e. for
all x, y, z ∈ X we have x⊕ (y ⊕ z) = (x⊕ y)⊕ z and e is the unit with respect
to ⊕, i.e. for all x ∈ X we have e⊕ x = x⊕ e = x. A monoid (X,⊕, e) is called
a commutative monoid if the operator ⊕ is commutative, i.e. for all elements
x, y ∈ X we have x⊕ y = y ⊕ x.

Lattice

Let ≤ be a preorder and X,Y be two sets with Y ⊆ X. An upper bound of Y
is an element x ∈ X such that for all y ∈ Y we have y ≤ x. An upper bound
x ∈ X is called least upper bound (or join; or supremum) if for each upper bound
u ∈ X we have x ≤ u. Likewise, a lower bound is an element x ∈ X such that for
all y ∈ Y we have x ≤ y. A lower bound x ∈ X is called greatest lower bound (or
meet; or infimum) if for each lower bound ` ∈ X we have ` ≤ x. We denote the
least upper bound of a set by

∨
Y and the greatest lower bound by

∧
Y if it exists.

For a set consisting of only two elements y1, y2 ∈ Y we will sometimes write y1∨y2
instead of

∨
{y1, y2} for the least upper bound and y1 ∧ y2 instead of

∧
{y1, y2} for

the greatest lower bound. Note that a set may have many upper/lower bounds, or
none at all, but at most one least upper/greatest lower bound.

A preordered set (X,≤) is called a lattice if for all subsets Y ⊆ X there exists a
least upper bound

∨
Y and a greatest lower bound

∧
Y . Moreover, if X is finite,

then X has a unique minimal element ⊥ =
∧
X (called bottom) and a unique

maximal element > =
∨
X (called top). For the special case Y = ∅ we have∨

∅ = ⊥ and
∧
∅ = >.

2.2. Basic Category Theory
Category theory is a mathematical framework which is used to describe abstract
structures. The theory does not focus on elements, like it is done in set theory,
but rather focuses on collections of elements (here called objects) and the relations
between these collections (also called arrows or morphisms). In this chapter we
have a look at the basic categorical concepts which are used throughout this thesis.
Please note that the definitions and explanations given in this chapter are not
meant to give a full overview to the topic of category theory but rather covers the
essential constructions needed in this thesis. At the end of this chapter we give
some literature recommendation for the interested reader, who would like to learn
more about category theory. We start by defining what a category is.

15

2. Foundations

Definition 2.1 (Category). A category is a 4-tuple C = (O,M, ◦, id) which
consists of

• a class O whose elements are called objects (or C-objects).

• a class M(A,B) for all objects A,B ∈ O whose elements are called
arrows or morphisms (sometimes referred to as C-arrows/C-morphisms).
Each morphism f ∈ M(A,B) has a domain dom(f) = A alongside a
codomain cod(f) = B and we will write f : A→ B.

• a composition function ◦ : M(B,C) × M(A,B) → M(A,C) for all
objects A,B,C ∈ O which assigns to any morphisms f ∈M(A,B) and
g ∈ M(B,C) their composed morphism g ◦ f : A → C. Furthermore,
the composition of morphisms f : A → B, g : B → C and h : C → D
must be associative, i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f).

• a class id of identity morphisms with idA ∈ M(A,A) for all objects
A ∈ O. The identity morphisms must be the neutral elements with
respect to composition, i.e. for all morphisms f : A→ B it holds that
f ◦ idA = f and idB ◦ f = f .

Example 2.2. The classic example of a category is Set. This category consists
of sets as objects and functions as morphisms, and the composition operation is
the usual composition of functions. Another example is the category Rel where
the objects are sets, but in contrast to Set, the morphisms are (binary) relations
which do not need to be functions.

We will use the category Set as a running example in this chapter to provide
the reader, who is not familiar with category theory, some intuition behind the
concepts which are described in the following.

Definitions and proofs in category theory extensively use the notion of commuting
diagrams. Diagrams can be visualized as directed graphs, which makes it easier
for the reader to "chase" required commuting properties within the visualisation.

Definition 2.3 (Diagram). Let C be a category. A diagram in C is a subclass
of C-objects O′ and a subclass of C-morphismsM′, where for every f ∈M′
we have dom(f) ∈ O′ and cod(f) ∈ O′. A diagram commutes if for every
two well defined sequences of compositions f1 ◦ . . . ◦ fn and g1 ◦ . . . ◦ gm of
morphisms inM′ where dom(fn) = dom(gm) and cod(f1) = cod(g1) we have
f1 ◦ . . . ◦ fn = g1 ◦ . . . ◦ gm.

Example 2.4. Let the following diagram D consist of the objects {A,B,C,D,E}
and arrows {f : A→ B, g : A→ C, h : B → D, i : C → D, j : B → E, k : E → D}.
The diagram D (depicted below right) commutes if and only if the following two
equations hold:

h ◦ f = i ◦ g and k ◦ j = h.

As a consequence from above equations we get

i ◦ g = h ◦ f = k ◦ j ◦ f

A B

C D E

f

g h
i

j

k

16

2.2. Basic Category Theory

With category theory focusing on morphisms rather than elements, there exist
special types of morphisms, which play important roles in their categories.

Definition 2.5 (Monomorphism, Epimorphism, Isomorphism). Let C be a
category and f : A→ B be a C-morphism.

• f is called monomorphism (or mono), if for all morphisms g1 : X → A
and g2 : X → A with f ◦ g1 = f ◦ g2 it follows that g1 = g2.

• f is called epimorphism (or epi), if for all morphisms h1 : B → Y and
h2 : B → Y with h1 ◦ f = h2 ◦ f it follows that h1 = h2.

• f is called isomorphism (or iso), if there exists a morphism g : B → A
such that g ◦ f = idA and f ◦ g = idB.

Example 2.6. In the category Set, the monomorphisms are injective functions,
epimorphisms are surjective functions and isomorphisms are bijective functions.

We will denote monomorphisms by A� B, epimorphisms by A � B and
isomorphisms by A ∼−→ B.
Category theory gives rise to categorical constructions which can be used

to either create new categories based on given categories or define objects via
the concept of universal properties. By using universal properties for object
specifications, category theory remains abstract in the sense that it describes
objects by their properties instead by the way how they are constructed. This
leads to the ability to reuse constructions in several categories.
In this thesis, we will use the notion of products for some constructions. In-

tuitively, the product of two objects is the most general object which admits a
morphism to each of them.

Definition 2.7 (Product). Let C be a category with some objects A1 and A2.
A product of A1 and A2 is an object A1×A2 together with a pair of morphisms
π1 : (A1 ×A2)→ A1, π2 : (A1 ×A2)→ A2 (called projection morphisms) such
that the following universal property is fulfilled:
For every object X and pair of morphisms
f1 : X → A1, f2 : X → A2 there exists a
unique morphism f : X → (A1 ×A2) such
that π1 ◦ f = f1 and π2 ◦ f = f2, i.e., the
diagram to the right commutes.

X

A1 ×A2A1 A2

f
f1 f2

π1 π2

Example 2.8. In the category Set, the product is the cartesian product.

The category-theoretical dual notion of the product is the coproduct. Dual
notions in category theory usually have the same definitions as their corresponding
counterpart, with the difference that all morphisms are reversed. Essentially, the
coproduct of two objects is the least specific object to which each of them admits a
morphism. Products and coproducts, if they exist, are unique up to isomorphism.

17

2. Foundations

Definition 2.9 (Coproduct). Let C be a category with some objects A1 and
A2. A coproduct of A1 and A2 is an object A1 ⊕A2 if there exist morphisms
i1 : A1 → (A1 ⊕ A2), i2 : A2 → (A1 ⊕ A2) (called embedding morphisms or
injection morphisms) such that the following universal property is fulfilled:
For every object X and pair of morphisms
f1 : A1 → X, f2 : A2 → X there exists a
unique morphism f : (A1 ⊕A2)→ X such
that f ◦ i1 = f1 and f ◦ i2 = f2, i.e., the
diagram to the right commutes.

X

A1 ⊕A2A1 A2

f
f1 f2

i1 i2

Example 2.10. In the category Set, the coproduct is the disjoint union.

Another example for a special kind of object satisfying a universal property is
given in the following definition of initial, and terminal objects.

Definition 2.11 (Terminal object and initial object). A terminal object in a
category C is an object 1 of C satisfying the following universal property:
For every C-object A, there exists a unique morphism !A : A→ 1.

The dual concept to terminal objects are initial objects. An initial object in
a category C is an object 0 of C satisfying the following universal property:
For every C-object A, there exists a unique morphism ?A : 0→ A.

Example 2.12. In the category Set the terminal object is any one-element set
and the initial object is the empty set ∅ (which only admits the empty function).

An initial and a terminal object, if they exist, are unique up to unique isomor-
phism. Therefore, we can speak of the initial and the final object of a category.
The terminal object will play an important role in several chapters of this thesis
as the membership of an object to a language, i.e. a set of objects, is determined
by the existence of a morphism, as we will see in Chapter 4. Therefore, using a
terminal object which admits a morphism from any object, one can easily specify
the set consisting of all objects.
As described above, category theory focuses on morphisms instead of plain

objects. This concept can be used to abstract the already abstract notion by
category theory itself. Thus, instead of just analysing the morphisms between
objects in a category, category theory introduces functors as structure preserving
morphisms between categories.

Definition 2.13 (Functor). Let C and D be two categories. A functor
F : C → D from C to D assigns to each C-object A a D-object F(A)
and to each C-morphism f : A → B a D-morphism F(f) : F(A) → F(B)
such that the following conditions are satisfied:

• F preserves composition, i.e. for all composable morphisms f and g it
holds that F(f ◦ g) = F(f) ◦ F(g).

• F preserves identities, i.e. for all C-objects it holds that F(idA) = idF(A).

The identity functor of a category C is denoted by IdC.

18

2.2. Basic Category Theory

The notion of functors can be abstracted again to the notion of natural transfor-
mation, i.e., morphisms between functors. We will define and use the notion of
natural transformation in Chapter 9.

One of the main concepts of this thesis are graph transformation systems, i.e.,
sets of graph transformation rules. In Section 3.2 we will learn how a gluing
construction can be used to rewrite graphs. The gluing construction can be
generalized to the idea of pushouts in the sense of category theory. Therefore, we
now introduce pushouts, being the fundamental constructions on which graph
rewriting is based on. The relation between the notion of pushouts and the gluing
construction will be explained in Section 3.2.2.
Pushouts are constructed from pairs of morphisms f : A→ B and g : A→ C

which share the same domain. Such a pair of morphisms is also called span and we
will sometimes simply write B �f−A −g� C to indicate the span. The universal
property of pushouts essentially states that the pushout is the most general way
to complete a commutative square with two given morphisms.

Definition 2.14 (Pushout (PO)). Given morphisms f : A→ B and g : A→ C
in a category C, a pushout (D, f ′, g′) over f and g is
defined by a pushout object D and two morphisms
f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f , such
that the universal property is fulfilled: For all objects
X and morphisms h : B → X and k : C → X with
k ◦ g = h ◦ f , there is a uniqe morphism x : D → X
such that x ◦ g′ = h and x ◦ f ′ = k, i.e. the diagram
to the right commutes.

A B

C D

X

f

g g′

f ′ h

k

x

Example 2.15. In the category Set, the pushout object D over the morphisms
f : A→ B and g : A→ C can be constructed as the quotient set B⊎C/ ≡, where
≡ is the smallest equivalence relation with f(a) ≡ g(a) for all a ∈ A. The pair of
morphisms f ′ : C → D and g′ : B → D is defined by f ′(c) = [c] for all c ∈ C and
g′(b) = [b] for all b ∈ B.
For instance, let the sets A = {a, b, c}, B = {1, 2, 3} and C = {4, 5, 6} be given.

Furthermore let f : A→ B and g : A→ C be defined as

f(a) = 1 g(a) = 4
f(b) = 1 g(b) = 5
f(c) = 3 g(c) = 6.

The smallest equivalence relation ≡ yields
the classes [1] = [4] = [5] = {1, 4, 5},
[2] = {2} and [3] = [6] = {3, 6}.
Therefore, the pushout object can be de-
fined as the set D = {[1], [2], [3]} along-
side the two morphisms f ′ : C → D
with f ′(x) = [x] and g′ : B → D with
g′(x) = [x]. The resulting pushout is de-
picted in the commuting diagram to the
right.

a
b

c

1
2

3

4
5

6

[1]
[2]

[3]

f

f ′

g g′

A B

C D

19

2. Foundations

The generic definition of pushouts via universal properties can take various
forms. For instance, another prototypical example is the supremum or join, where
– given two elements x, y of a partially ordered set (X,≤) – we ask for a third
element z with x ≤ z, y ≤ z and such that z is the smallest element which satisfies
both inequalities. There is at most one such z, namely z = x ∨ y, the join of x, y.

The dual notion of pushouts are pullbacks. Pullbacks can be constructed from
pairs of morphisms f : C → D and g : B → D which share the same codomain.
These pairs are called cospan and are the dual notion of spans. Likewise, we will
sometimes write B −g�D �f− C to indicate the cospan. Pushouts and pullbacks,
if they exist, are unique up to isomorphism.

Definition 2.16 (Pullback (PB)). Given morphisms f : C → D and g : B → D
in a category C, a pullback (A, f ′, g′) over f and g is
defined by a pullback object A and two morphisms
f ′ : A → B and g′ : A → C with f ◦ g′ = g ◦ f ′, such
that the universal property is fulfilled: For all objects
X and morphisms h : X → B and k : X → C with
f ◦ k = g ◦ h, there is a uniqe morphism x : X → A
such that f ′ ◦ x = h and g′ ◦ x = k, i.e. the diagram
to the right commutes.

A B

C D

X

f ′

g′ g

f

h

k

x

Example 2.17. In the category Set, the pullback object A over the morphisms
f : C → D and g : B → D is the set A = {(c, d) | f(c) = g(b)} ⊆ C × B, i.e.,
A can be constructed as a subset of the cartesian product C × B. The pair of
morphisms f ′ : A→ B and g′ : A→ C is defined as the corresponding projections,
e.g., f ′((c, b)) = b and g′((c, b)) = c.

For example, let the sets B = {1, 2, 3}, C = {4, 5, 6} and D = {a, b, c} be given.
Furthermore let f : C → D and g : B → D be defined as

f(4) = a g(1) = a

f(5) = b g(2) = b

f(6) = b g(3) = c.

Then the pullback object is defined as
the set A = {(4, 1), (5, 2), (6, 2)} along-
side the two morphisms f ′ : A→ B with
f ′((x, y)) = y and g′ : A → C with
g′((x, y)) = x. The pullback is depicted
in the commuting diagram to the right.

(4,1)
(5,2)

(6,2)

1
2

3

4
5

6

a
b

c

f ′

f

g′ g

A B

C D

A generalization of a pullback yields the notion of limits, as the limit of a cospan
(if it exists) is a pullback. In the context of this thesis we do not use the notion of
limit but will require the existence of finite limits in Chapter 9 to define a special
class of categories named Topos (see Definition 9.4).
Another class of important categories are so-called adhesive categories. Many

types of graphical structures which are being used in computer science are known
to be examples of adhesive categories, including a category of graphs which we
will extensively use later in this thesis. Adhesive categories provide a vast amount

20

2.2. Basic Category Theory

of structure ensuring properties, guaranteed to hold in any adhesive category,
which can be used to analyse the structures within such a category more easily.

Definition 2.18 (Adhesive category). A category C is adhesive if and only
if the following three conditions are satisfied:

• C has pullbacks • C has pushouts along monomorphisms

• pushouts of monomorphisms are pullbacks
and pushouts are stable under pullbacks,
i.e., given the cube depicted to the right,
where the bottom face is a pushout along
monomorphisms (also called van Kampen
square) and the back faces are pullbacks:
the front faces are pullbacks if and only if
the top face is a pushout.

A′ // //
~~

~~

��

��

B′~~

~~

��

��

C ′ // //
��

��

D′��

��

A // //
~~

~~

B}}

}}

C // // D

Graph rewriting (which we will discuss in Section 3.2.2) is an instance of a
generalised notion of rewriting defined categorically. This rewriting mechanism,
that we will be using, is the well known notion of the double-pushout rewriting,
which can be used in arbitrary adhesive categories [CM+97; LS05]. A production
(or rule) is a span L← I → R in a category C.

Definition 2.19 (Double-pushout rewriting). Let p : L ← I → R be a
production in a category C and let m : L → X be a morphism (also called
match) for an object X in C. Then the object X
rewrites to an object Y in C via production p
(and match m), written X p,m=⇒ Y , if there exists
a diagram consisting of morphisms (shown to the
right) in which both squares are pushouts. The
morphism n is called co-match.

L

m
��

Ioo

��

// R

n
��

X Coo // Y

Note that in the situation above there is not necessarily an object C, making
the left-hand square a pushout. If the object C exists, we say that the gluing
condition is satisfied. The gluing condition alongside the gluing construction for
graph rewriting will be discussed in the next chapter.

If C is an adhesive category (and thus if it is a topos [LS06]) and the production
consists of monos, then all remaining arrows of double-pushout diagrams of
rewriting are monos [LS05] and the result of rewriting—be it the object Y or the
co-match n—is unique (up to a canonical isomorphism).
This ends the summary of basic categorical definitions and brief explanations

needed later in this thesis. The interested reader, who would like to learn more
about the topic of category theory, is invited to have a look into A Taste of
Category Theory for Computer Scientists by Benjamin C. Pierce [Pie88], which
provides a good starting point for computer scientists who would like to explore
the topic. Afterwards, to further consolidate the readers knowledge, one can
consult the free available book Abstract and Concrete Categories - The Joy of
Cats [AHS09] or the book Categories for the Working Mathematician by Saunders
Mac Lane [Mac71]. Of course, there exist many more good introductions.

21

“As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.”

Arthur Cayley (1821-1895)

3
Graphs and Graph Transformation

A substantial part of computer science is concerned with the transformation of
structures, the most well-known example being the rewriting of words via Chomsky
grammars, string rewriting systems [DJ90] or transformations of the tape of a
Turing machine. The focus of this thesis is on systems where transformations are
rule-based and rules consist of a left-hand side (the structure to be deleted) and a
right-hand side (the structure to be added).

If we increase the complexity of the structures being rewritten, we next encounter
trees or terms, leading to term rewriting systems (see also Chapter 6). The next
level is concerned with graph rewriting [Roz97], which – as we will see below –
differs from string and term rewriting in the sense that we need a notion of
interface between left-hand and right-hand side, detailing how the right-hand side
is to be glued to the remaining graph.
Graph rewriting is a flexible and intuitive, yet formally rigorous, framework

for modelling and reasoning about dynamical structures and networks. Such
dynamical structures arise in many contexts, be it object graphs and heaps,
UML diagrams (in the context of model transformations [EE+15]), computer
networks, the world wide web, distributed systems, etc. They also occur in other
domains, where computer science methods are employed: social networks, as well as
chemical and biological structures. Specifically concurrent non-sequential systems
are well-suited for modelling via graph transformation, since non-overlapping
occurrences of left-hand sides can be replaced in parallel. For a more extensive
list of applications see [EE+99].
Note that in the context of this chapter we use the terms graph rewriting and

graph transformation interchangeably. We will avoid the term graph grammar ,
since that emphasizes the use of graph transformation to generate a graph language,
here the focus is just on the rewriting aspect. The specification of graph languages
will be investigated in Chapter 4.

In the following, we first recall the basic notion of directed edge-labelled multi-
graphs and graph morphisms. Afterwards, graph transformation systems and their
correspondence to category theory will be explained in detail.

3. Graphs and Graph Transformation

3.1. Graphs and Graph Morphisms
We start by defining graphs, where we choose to consider directed, edge-labelled
graphs where parallel edges are allowed. Other choices would be to use hypergraphs
(where an edge can be connected to any number of nodes) or to add node labels.
Both versions can be easily treated by our rewriting approach. Throughout the
thesis, we assume the existence of a fixed set Λ from which we take our edge labels.

Definition 3.1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled
graph is a tuple G = (V,E, src, tgt, lab), where V is a finite set of nodes, E is
a finite set of edges, src, tgt : E → V assign to each edge a source and a target
node, and lab : E → Λ is a labeling function.

Given a graph G, we denote its components by VG, EG, srcG, tgtG, labG, unless
otherwise indicated. Given an edge e ∈ EG, the nodes srcG(e), tgtG(e) are called
incident to e. The empty graph, i.e. a graph with V = E = ∅, is denoted ∅.
Example 3.2. Let VG = {v1, v2}, EG = {e1, e2, e3} and Λ = {A,B} be given.
A graphical representation of the graph G with

srcG(e1) = v1 srcG(e2) = v1 srcG(e3) = v2

tgtG(e1) = v2 tgtG(e2) = v2 tgtG(e3) = v2

labG(e1) = A labG(e2) = B labG(e3) = A

is depicted to the right.

G =
v1 v2

A

B
A

A central notion in graph rewriting is a graph morphism. Just as a function
is a mapping from a set to another set, a graph morphism is a mapping from a
graph to a graph. It maps nodes to nodes and edges to edges, while preserving the
structure of a graph. This means that if an edge is mapped to an edge, there must
be a mapping between the source and target nodes of the two edges. Furthermore,
labels must be preserved.

Definition 3.3 (Graph morphism). Let G, H be two graphs. A graph mor-
phism ϕ : G→ H is a pair of mappings ϕV : VG → VH , ϕE : EG → EH such
that for all e ∈ EG it holds that

• srcH(ϕE(e)) = ϕV (srcG(e)),

• tgtH(ϕE(e)) = ϕV (tgtG(e)) and

• labH(ϕE(e)) = labG(e).

A graph morphism ϕ is called injective (surjective) if both mappings ϕV , ϕE
are injective (surjective). Whenever ϕV and ϕE are bijective, ϕ is called an
isomorphism. If there exists an isomorphism ϕ : G1 → G2, we say that G1, G2
are isomorphic and write G1 ∼= G2. The composition of two graph morphisms
is again a graph morphism. Graph morphisms are composed by composing
both component mappings. Composition of graph morphisms is denoted by ◦.

In the following we omit the subscripts in the functions ϕV , ϕE and simply
write ϕ. Furthermore, the negation of G1 ∼= G2 will be denoted by G1 � G2.

24

3.2. Graph Transformation Systems

Example 3.4. Consider the following graphs G and H. Note that the numbers
written at the nodes are not part of the graph: they are just there to indicate the
morphism from G to H.

G =
1 2 3 4

A B

B

C ϕ
−→

1

2

3,4
A

B

D

C = H

Here the edges of G are mapped with respect to their corresponding source and
target node mappings. Note that the graph morphism ϕ is not surjective, since the
D-labelled edge in H is not targeted. Furthermore, the morphism ϕ is not injective
since the nodes 3 and 4 of the graph G are mapped to the same node in H and
the two B-labelled edges in G are mapped to the same edge in H.

Graph morphisms are needed to identify the match of a left-hand side of a rule
in a (potentially larger) host graph. As we will see next, they are also required for
other purposes, such as graph gluing and graph transformation rules.

3.2. Graph Transformation Systems
Graph rewriting has been introduced in the early 1970’s, where one of the seminal
initial contributions was the paper by Ehrig, Pfender and Schneider [EPS73].
Since then, there have been countless articles in the field: many of them are
foundational, describing and comparing different graph transformation approaches
and working out the (categorical) semantics. Others are more algorithmic in nature,
describing for instance methods for analysing and verifying graph transformation.
Furthermore, as mentioned earlier at the beginning of this chapter, there have
been a large number of contributions on applications, many of them in software
engineering [EE+99], but in other areas as well, such as the recent growing interest
from the area of biology in connection with the Kappa calculus [DF+12].
The aim of this subchapter is not to give a full overview over all possible

approaches to graph transformation and all application scenarios. Instead, we give
a condensed version that can be easily and concisely defined and explained. For
basic graph rewriting, we rely on the Double-Pushout Approach (DPO) [CM+97;
EPS73], which is one of the most well-known approaches to graph transformation,
although clearly not the only one, and which will be explained in Section 3.2.2.
The central construction for the rewriting process, that we here call graph

gluing, is an alternative way to describe a pushout. We will stick with the name
graph gluing for now and in the definition we do not use the notion of pushouts,
although we will afterwards explain the relation to the categorical notion.

3.2.1. Graph Rewriting via Graph Gluing
An intuitive explanation for the graph gluing construction is to think of two graphs
G1, G2 with an overlap I. Now we glue G1 and G2 together over this common
interface I, obtaining a new graph G1 +I G2. This intuition is adequate in the
case where the embeddings of I into the two graphs (called ϕ1, ϕ2 below) are
injective, but not entirely when they are not. In this case one can observe some
kind of merging effect that is illustrated in the examples below.

25

3. Graphs and Graph Transformation

Graph gluing is described via factoring through an equivalence relation.

Definition 3.5 (Graph gluing). Let I,G1, G2 be graphs with graph mor-
phisms ϕ1 : I → G1, ϕ2 : I → G2, where I is called the interface. We assume
that all node and edge sets are disjoint.

Let ≡ be the smallest equivalence relation on VG1 ∪EG1 ∪ VG2 ∪EG2 which
satisfies ϕ1(x) ≡ ϕ2(x) for all x ∈ VI ∪ EI .

The gluing of G1, G2 over I (written as G = G1 +ϕ1,ϕ2 G2, or G = G1 +I G2
if the ϕi morphisms are clear from the context) is a graph G with:

VG = (VG1 ∪ VG2)/ ≡ EG = (EG1 ∪ EG2)/ ≡

srcG([e]≡) =
{

[srcG1(e)]≡ if e ∈ EG1

[srcG2(e)]≡ if e ∈ EG2

tgtG([e]≡) =
{

[tgtG1(e)]≡ if e ∈ EG1

[tgtG2(e)]≡ if e ∈ EG2

labG([e]≡) =
{

labG1(e) if e ∈ EG1

labG2(e) if e ∈ EG2

where e ∈ EG1 ∪ EG2 .

Note that the gluing is well-defined, which is not immediately obvious since
the mappings srcG, tgtG, labG are defined on representatives of equivalence classes.
The underlying reason for this is that ϕ1, ϕ2 are morphisms.

Example 3.6. We now explain this gluing construction via some examples.

Let the two graph morphisms ϕ1 : I → G1 and
ϕ2 : I → G2 to the right be given, where both
ϕ1 and ϕ2 are injective. Since the interface I
is present in both graphs G1 and G2, we can
glue the two graphs together to construct a
graph G1 +I G2 depicted on the bottom right
of the square.

1 2
B

1 2
B C

1 2
B

A

1 2
B

A

C

ϕ1

ϕ2

I G1

G2 G1 +I G2

1 2 1,2
B

1 2
A

1,2

A

B

ϕ1

ϕ2

I G1

G2 G1 +I G2

Now let the graph morphisms ϕ1 : I → G1
and ϕ2 : I → G2 to the left be given, where
only ϕ2 is injective. In the graph G1, the
interface nodes of I are merged via ϕ1. The
gluing graph G1 +IG2 is constructed by merg-
ing all nodes in G1, G2, resulting in an A-
labelled loop, together with the original B-
labelled loop. This graph is depicted at the
bottom right of the square.

We are now ready to define graph transformation rules, also called productions.
Such a rule consists of a left-hand side graph L and a right-hand side graph R.

26

3.2. Graph Transformation Systems

However, as indicated in the introduction, this is not enough. The problem is
that, if we simply remove (a match of) L from a host graph, we would typically
have dangling edges, i.e., edges where either the source or the target node (or
both) have been deleted. Furthermore, there would be no way to specify how the
right-hand side R should be attached to the remaining graph.

Hence, there is also an interface graph I related to L and R via graph morphisms,
which specify what is preserved by a rule.

Definition 3.7 (Graph transformation rule). A (graph transformation) rule
ρ consists of three graphs L, I,R and two graph morphisms L�ϕL− I −ϕR�R.

Given a rule ρ, all nodes and edges in L that are not in the image of ϕL are
called obsolete. Similarly, all nodes and edges in R that are not in the image of
ϕR are called fresh.
After finding an occurrence of a left-hand side L in a host graph (a so-called

match), the effect of applying a rule is to remove all obsolete elements and add
all fresh elements. As indicated above, the elements of I are preserved, providing
us with well-defined attachment points for R.
While this explanation is valid for injective matches and rule morphisms, it

does not tell the full story in case of non-injective morphisms. Here, rules might
split or merge graph elements. Using the graph gluing defined earlier, it is easy to
give a formal semantics of rewriting.

The intuition is as follows: given a rule as in Definition 3.7 and a graph G, we
ask whether G can be seen as a gluing of L and an (unknown) context C over
interface I, i.e., whether there exists C such that G ∼= L+I C. If this is the case,
G can be transformed into H ∼= R+I C.

Definition 3.8 (Graph transformation). Let ρ = (L �ϕL− I −ϕR� R) be a
rule. We say that a graph G is transformed via ρ into a graph H (symbolically:
G⇒ρ H) if there is a graph C (the so-called context) and a graph morphism
ψ : I → C such that:

G ∼= L+ϕL,ψ C H ∼= R+ϕR,ψ C

This situation can be depicted by the diagram to the
right. The morphism m is called the match, n the
co-match.

L

m
��

I
ϕLoo

ϕR //

ψ
��

R

n
��

G CηL
oo

ηR
// H

Depending on the morphisms ϕL and ϕR one can obtain different effects:
whenever both ϕL and ϕR are injective, we obtain standard replacement. Whenever
ϕL is non-injective we specify splitting, whereas a non-injective ϕR results in
merging.
We now consider some examples. First, we illustrate the straightforward case

where indeed the obsolete items are removed and the fresh ones are added, see
Figure 3.1a. Somewhat more elaborate is the case when the right leg ϕR of a rule
is non-injective, which causes the merging of nodes, see Figure 3.1b.

27

3. Graphs and Graph Transformation

1 21 2
A

1 2
B

1

2A

C
1

2

C
1

2B

C

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(a) Application of a rule

1 21 2 1,2

1 2
A

1 2
A

1,2
A

ϕL ϕR

m ψ

ηRηL

n

L I R

G C H

(b) Non-injective right leg ϕR

Figure 3.1.: Graph transformation rule examples

Different from string or term rewriting, in graph rewriting it may happen that
we find a match of the left-hand side, but the rule is not applicable, because no
context as required by Definition 3.8 exists. There are basically two reasons for
this: either the rule removes a node, without removing all edges connected to that
node (dangling edge condition, see Figure 3.2a), or the match identifies two graph
elements which are not preserved (identification condition) (see Figure 3.2b).

Fact 3.9 (Gluing condition [Ehr79]). Let L �ϕL− I −ϕR� R be a graph
transformation rule and let m : L → G be a match. Then a context C and
a morphism ψ : I → C such that G ∼= L +ϕL,ψ C exist if and only if the
following holds:

• Dangling edge condition: Every node v ∈ VL, whose image m(v) is
incident to an edge e ∈ EG which is not in the image of m, is not
obsolete (i.e. in the image of ϕL).

• Identification condition: Whenever two elements x, y ∈ VL ∪ EL with
x 6= y satisfy m(x) = m(y), then neither of them is obsolete.

However, even if the context exists, there might be cases where it is non-unique.

11
A

1A

C

1

C

ϕL

m ψ

ηL

L I

G C

(a) Dangling edge condition example

11
A

1
A ?

ϕL

m ψ

ηL

L I

G C

(b) Identification condition example

Figure 3.2.: Gluing condition examples

28

3.2. Graph Transformation Systems

This happens in cases where ϕL, the left leg of a rule, is non-injective. In this case
one can for instance split nodes (see the rule in Figure 3.3a) and the question
is what happens to the incident edges. By spelling out the definition above, one
determines that this must result in non-determinism. Either, we do not split
(Figure 3.3b) or we split and each edge can non-deterministically “choose” to
stay either with the first or the second node (Figures 3.3c–3.3d). Each resulting
combination is a valid context and this means that a rule application may be
non-deterministic and generate several (non-isomorphic) graphs. In many papers
such complications are avoided by requiring the injectivity of ϕL.

1

2
3

A

1,2 3
A 1

2
3

A

A

ϕL ϕR
L

I R

(a) Rule with non-injective left leg ϕL

1

2
3

A

1,2 3
A

1,2
3

A

B 1,2
3

A

B

ϕL

m ψ

ηL

L
I

G C

(b) Valid context (i)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(c) Valid context (ii)

1

2
3

A

1,2 3
A

1,2
3

A

B

1 3

2

A

B

ϕL

m ψ

ηL

L
I

G C

(d) Valid context (iii)

Figure 3.3.: Non-injective left leg rule with three valid contexts

Finally, we can introduce the notion of a graph transformation system that is
used in this thesis.

Definition 3.10 (Graph transformation system). A graph transformation
system R is a set of graph transformation rules.

In the next subsection, we relate the two notions of graph gluing and pushouts.
Afterwards we introduce one of the most popular formalisations of graph transfor-
mation systems, namely the Double-Pushout Approach.

29

3. Graphs and Graph Transformation

3.2.2. Graph Transformation the Categorical Way
A considerable part of graph transformation theory is concerned with making the
results independent of the specific graph structure under consideration (see [LS05;
Löw93]). This however depends on the use of category theory. Therefore, we will
consider the category GraphΛ having Λ-labeled graphs as objects and graph
morphisms as arrows. The set of its objects will be denoted by |GraphΛ|. The
categorical structure induces an obvious preorder on graphs, defined as follows.

Definition 3.11 (Homomorphism preorder). Given graphs G and H, we
write G→ H if there exists a graph morphism from G to H in GraphΛ. The
relation → is a preorder (i.e. it is reflexive and transitive) and we call it the
homomorphism preorder on graphs. We write G 9 H if G → H does not
hold. Graphs G and H are homomorphically equivalent, written G ∼ H, if
both G→ H and H → G hold.

Example 3.12. Consider the following three graphs G1, G2 and G3:

A AA

A

G2 G3

G1

As evident from the picture we get G2 ∼ G3, and both G1 → G2, G1 → G3 but
G2 9 G1, G3 9 G1. Furthermore it holds that Gi → Gi for all i ∈ {1, 2, 3}. Note
that, the fusion of two nodes (while turning in-between binary edges into loops)
and the graph expansion in form of adding additional graph structures, lead to a
graph which is larger (or equal) in the homomorphism preorder, i.e. these steps
preserve the existence of a morphism between the old and the modified graph.

We will revisit the homomorphism preorder in Chapter 7 when we investigate the
notion of core graphs. There, we show that two graphs can only be homomorphically
equivalent if they share a common subgraph structure.

As described in Section 2.2, category theory relies on so-called universal proper-
ties where, given some objects, one defines another object that is in some relation
to the given object and is – in some sense – the most general object which is
in this relation. In the case of graphs, the order relation is given by the homo-
morphism preorder →, i.e., graph morphisms. Graph gluing can alternatively be
characterized via the categorical notion of pushout (cf. Definition 2.14).

Fact 3.13 (Pushouts and the gluing construction [EE+06]). Let I,G1, G2 be
graphs with graph morphisms ϕ1 : I → G1, ϕ2 : I → G2 as in Definition 3.5.
Then the equation G ∼= G1 +ϕ1,ϕ2 G2 holds if and only if G is a pushout.

30

3.2. Graph Transformation Systems

Intuitively, the pushout characterization says that G should be a graph where
the “common” parts of G1, G2 must be merged (since the square commutes), but
it should be obtained in the most general way by merging only what is absolutely
necessary and adding nothing superfluous. This corresponds to saying that for
any other merge H, G is more general and H can be obtained from G by further
merging or addition of graph elements (expressed by a morphism from G to H).
Please note that in GraphΛ, pushouts can be constructed componentwise for

nodes and edges in the category Set. The source and target functions of the
pushout graph are then uniquely determined by the pushout property of the node
set in the pushout graph.
Graph transformation systems are widely used for modeling the evolution of

parallel and distributed systems where the states are represented by graphs, and
the behaviour is modeled by the application of local transformation rules to the
state graph. One of the most popular formalisations of graph transformation
systems is the Double-Pushout Approach (DPO) [Ehr79], where a transformation
rule is represented as a pair of graph morphisms with the same source, and the
application of a rule to a given graph is modeled with a construction involving
two pushouts in the category of graphs. Therefore, our double-pushout rewriting
is an instance of Definition 2.19 (also compare with Definition 3.8) in the category
GraphΛ. We do not impose any injectivity constraint on the rule morphisms or
to the match, hence graph transformation is non-deterministic.

The specifics such as the dangling edge condition in Proposition 3.9 are typical
to the double-pushout approach that we are following here, i.e., it is forbidden to
remove a node that is still attached to an edge, which is not deleted and in this
case, the rule is not applicable. In other approaches, such as the single-pushout
(or SPO) approach [Löw93] however, the deletion of a node to which an undeleted
edge is attached, is possible. In this case all incident edges are deleted as well. In
contrast to DPO, SPO is based on partial graph morphisms. This is also called
deletion in unknown contexts.

For more information on the topic of graph transformation a standard reference
is the “Handbook of Graph Grammars and Computing by Graph Transformation”,
which appeared in three volumes (foundations [Roz97] – applications, languages
and tools [EE+99] – concurrency, parallelism and distribution [EK+99]). Strongly
related to our definitions is the chapter on DPO rewriting by Corradini et al.
[CM+97], which is based on the categorical definitions. The well-known book
“Fundamentals of Algebraic Graph Transformation” by Ehrig et al. [EE+06]
revisits the theory of graph rewriting from the point of view of adhesive categories,
a general categorical framework for abstract transformations. In an introductory
section it defines the construction of pushouts via factorization, equivalent to our
notion of graph gluing.

31

“Coffee is a language in itself.”
Jackie Chan (1954-present)

4
Type Graph Languages

In this chapter we study a specification formalism based on type graphs, where a
type graph T represents all graphs that can be mapped homomorphically to T ,
potentially taking into account some extra constraints. Type graphs are common
in graph rewriting [CMR96; Roz97]. Usually, one assumes that all items, i.e., rules
and graphs to be rewritten, are typed, introducing constraints on the applicability
of rules. Hence, type graphs are in a way seen as a form of labelling. This is
different from our point of view, where graphs (and rules) are – a priori – untyped
(but labeled) and type graphs are simply a means to represent sets of graphs.

There are various reasons for studying languages based on type graphs: First,
they are reasonably simple with many positive decidability results and they have
not yet been extensively studied from the perspective of specification formalisms.
Second, other specification mechanisms – especially those used in connection
with verification and abstract graph transformation [Ren04a; SRW02; SWW11] –
are based on type graphs: abstract graphs are basically type graphs with extra
annotations. Third, while not being as expressive as recognizable graph languages,
they retain a nice intuition from regular languages: given a finite state automaton
M one can think of the language of M as the set of all string graphs that can be
mapped homomorphically to M (respecting initial and final states).

4.1. Type Graphs and Graph Languages
A type graph language contains all graphs that can be mapped homomorphically
to a given type graph.

Definition 4.1 (Type graph language). Let T be a Λ-labelled graph. Its type
graph language L(T) is defined as:

L(T) = {G | G→ T}.

Even if the graphs used for specifying type graph languages are just ordinary
graphs, we will in the following call them type graphs in order to emphasize their
role.

4. Type Graph Languages

Example 4.2. The following type graph T over the edge label set Λ = {A,B}
specifies a type graph language L(T) consisting of infinitely many graphs where no
graph in the language contains a B-loop and every target node of a B-edge is not
incident to an A-edge or the source of another B-edge.

L(BA) =
{
∅ , , A B ,

A

A , . . .
}

Specifying graph languages using type graphs gives us the possibility to forbid
certain graph structures by not including them into the type graph. For example,
no graph in the language of Example 4.2 can contain a B-loop or an A-edge
incident to the target of a B-edge. However, it is not possible to force some
structures to exist in all graphs of the language, since the morphism to the type
graph need not be surjective. This point will be addressed with the notion of
annotated type graph in Chapter 8.

4.2. Examples
We have a look at some special cases, to convey a better understanding for the
specification of graph languages via our notion of type graphs. We start with some
type graphs which play an important role in the category GraphΛ, namely the
corresponding initial and final object.

Example 4.3. The category GraphΛ has an initial object containing no nodes
and edges, i.e. it is the empty graph ∅. For any non-empty graph object G in
GraphΛ we get G9 ∅, i.e. if G 6= ∅ it implies G /∈ L(∅). However, in case of
G = ∅, there exists a unique morphisms ϕ : ∅ → ∅ and therefore L(∅) = {∅}.
Please note, since the empty graph is the initial object in GraphΛ it immediately
follows that for any type graph T there exists a unique morphisms ϕ : ∅→ T , i.e.
for all T it follows that ∅ ∈ L(T). Due to this fact, it is impossible to specify an
empty graph language in the framework of pure type graphs. Especially T ∈ L(T)
always holds since T ∼= T guarantees us the existence of an isomorphism.

While the initial object specifies a type graph language consisting only of one
graph (the empty graph itself), its dual notion in form of the terminal object can
be used to specify the language consisting of all graphs.

Example 4.4. The category GraphΛ has a final object, which we denote by TΛ
R,

consisting of one node (called flower node R) and one loop for each label in Λ.
For any graph object G in GraphΛ there exists a unique
morphism ϕ : G → TΛ

R which maps all nodes in VG to
the flower node R and all edges to the corresponding loop
with the same label. Therefore L(TΛ

R) = |GraphΛ|. The
graph TΛ

R for Λ = {A,B,C} is depicted to the right.

TΛ
R = A

B

C

We will use the flower node R extensively in Chapter 5 where we want to prove
uniform termination of a graph transformation system, i.e. the absence of any
infinite derivation sequence independent of the starting graph. For this purpose
our type graphs will always contain a flower node R to be able to specify the set
of all possible starting graphs.

34

4.2. Examples

Another interesting class of graph languages are type graph languages which
can be described in a dual notion by specifying that a certain subgraph structure
is not contained in any graph of the language.

Example 4.5. Consider the following type graph T depicted to the below right.
This type graph plays a special role as it specifies a
graph language that could alternatively be described
by the following property: L(T) contains all graphs G
over the edge label set Λ = {A,B} that do not contain

T =
1 2

A,BA B

such a node, which is both, the target of an A-labelled edge and the source of a
B-labelled edge at the same time. In fact, any graph G ∈ L(T) can be mapped to
the type graph T by using the following function ϕV : VG → VT for each v ∈ VG:

ϕV (v) =


1, if v is the target of an A-labeled edge
2, if v is the source of a B-labeled edge
2, otherwise

Type graph languages which can be described in a dual notion are specified by
a type graph T , for which there exists a partner graph R, such that the pair of
R and T forms a so-called duality pair. We will consider these pairs and further
explain the special role of the second graph R (also called restriction graph) in
Chapter 7.

Example 4.6. Consider the following type graph T depicted to the below right.
This type graph plays a special role for complexity rea-
soning. The type graph language L(T) consists of all
3-colorable graphs, a problem which is known to be NP-
complete. Every Λ-labeled edge represents a set of edges,
one for each label in Λ. The color of each type graph node
indicates one of the three colors for the coloring of the
graph node that is mapped into it.

T =
Λ

Λ

ΛΛΛΛ

Finally, as a last example we show that different type graphs can specify the
same graph language.

Example 4.7. Let the following two type graphs T1 and T2 over Λ = {A,B} be
given.

T1 = A

A

B

T2 = B

A

B

Due to the fact that both type graphs T1 and T2 consist of a flower node R over
the label set Λ, we can deduce that L(T1) = L(T2). Please note, that T1 and T2
are not isomorphic (T1 � T2) but they are homomorphically equivalent (T1 ∼ T2).

The last example gives rise to the question, if there exists a unique minimal
representation alongside homomorphically equivalent type graphs which specifies
the same language. This idea is similar to asking for a minimal deterministic finite
automata in the field of regular languages. The answer to this question alongside
an investigation of decidability and closure properties for type graph languages
will be discussed in Chapter 7.

35

Part II.

Termination Analysis of Graph
Transformation Systems

Motivation of Part II

The question of termination is one of the most fundamental problems studied
in every computational formalism, for instance the halting problem for Turing
machines. For graph transformation systems there has been some work on ter-
mination, but this problem has received less attention than, e.g., confluence or
reachability analysis. There are several applications where termination analysis is
essential: one scenario is termination of graph programs, especially for programs
operating on complex data structures. Furthermore, model transformations, for
instance of UML models, usually require functional behaviour, i.e., every source
model should be translated into a unique target model. This requires termination
and confluence of the model transformation rules.

There is a huge body of termination results in string and term rewriting [Ter03]
from which one can draw inspiration. Still, adapting these techniques to graph
transformation is often non-trivial. A helpful first step is often to modify these
techniques to work with cycle rewriting [ZBK14; SZ15], which imagines the two
ends of a string to be glued together, so that rewriting is performed on a cycle.
In [BKZ14] it was shown how to adapt methods from string rewriting [Zan95;

KW08] which resulted in a technique based on weighted type graphs, that was
implemented in the tool Grez. Despite its simplicity the method is quite powerful
and finds termination arguments also in cases which are difficult for humans to
comprehend. However, there are some examples (see for instance the example
discussed in Section 5.4) where this technique fails. The corresponding techniques
in string rewriting can be seen as matrix interpretations of strings in certain
semirings, more specifically in the tropical and arctic semiring. Those semirings
can be replaced by the arithmetic semiring (the natural numbers with addition
and multiplication) in order to obtain a powerful termination analysis method for
string rewriting [HW06; EWZ08].
Here we generalize this method to graphs. Due to their non-linear nature, we

have to abandon matrices and instead state a different termination criterion that
is based on weights of morphisms of the left-hand and right-hand sides of rules
into a type graph.

By introducing weighted type graphs we generalize the matrix-based interpreta-
tions for string rewriting in two ways: first, we transform graphs instead of strings
and second, we consider general semirings. Our techniques work for so-called
strictly and strongly ordered semirings, which have to be treated in a slightly
different way.

For termination issues an extensive database of benchmarks has been developed,
the so-called Termination Problems Database (short: TPDB). The TPDB consists
of a great number of term rewriting systems which can be used to benchmark new
termination proof concepts and is often used in workshops aimed at termination
competitions. Therefore, for testing our weighted type graph approach, it is natural
to filter a suitable selection from this database and try to convert them into graph
transformation systems while preserving termination proving arguments.

We investigate how to interpret a (left-linear non-collapsing) term rewrite rule
as a term graph production. We argue that there are two natural ways to do so.
One is called the basic version and the other one is called the extended version,

coinciding with the version as studied in [CD11].
We then observe that conceptually there is a strong relationship between term

graph rewriting and graph transformation systems. We propose two transforma-
tions from term graph productions to graph transformation rules, namely the
function encoding and the number encoding. For both we prove soundness, for
the latter also completeness under mild conditions.
Last, for a selection of 201 term rewriting systems, we apply Grez on four

variants: both the function encoding and the number encoding on both the ba-
sic and the extended version of interpreting term rewriting systems on term graphs.

Outline:
After recalling the basic theory in Section 5.1 we introduce termination analysis
based on weighted type graphs in Section 5.2 and Section 5.3. We will discuss an
extended example in Section 5.4, followed by a presentation of the implementation
in the termination tool Grez in Section 5.5. In Section 6.1 we recall terms and
term graph rewriting. In Section 6.2 we present and discuss the basic and extended
version to interpret term rewriting rules as term graph rewriting productions.
In Section 6.3 we present the function encoding and the number encoding to
transform term graph rewriting to graph transformation, and prove the relevant
properties. Finally, we present our experiments on the term rewriting systems
from the TPDB in Section 6.4. All proofs can be found in Appendix A.1 and A.2.

“It is the weight, not numbers of experiments that is
to be regarded.”

Isaac Newton (1642-1727)

5
Weighted Type Graphs over Semirings

In this chapter we introduce techniques for proving uniform termination of graph
transformation systems, based on matrix interpretations for string rewriting. We
generalize this technique by adapting it to graph rewriting instead of string
rewriting and by generalizing to ordered semirings. In this way we obtain a
framework which includes three variants of type graphs; namely, the tropical type
graphs, the arctic type graphs and the arithmetic type graphs. These weighted
type graphs can be used to assign weights to graphs and to show that these
weights decrease in every rewriting step in order to prove termination.

5.1. Additional Preliminaries - Termination and Semirings
The weighted type graph technique is strongly influenced by matrix interpretations
for proving termination in string, cycle and term rewriting systems [HW06; SZ15;
EWZ08]. We will generalize this technique, resulting in a technique for graph
transformation systems that has a distinctly different flavour than the original
method. In order to point out the differences later and motivate the choices, we
will recall the basic concept of proving termination for a rewriting system and
introduce matrix interpretations for string rewrite systems first. Afterwards, we
introduce ordered semirings which are used to assign weights to the rule morphisms
of a graph transformation system.

5.1.1. Termination Analysis of Rewriting Systems
Termination, i.e. the absence of infinite computations, is a desirable property that
is required in many applications. Algorithms that manipulate data structures
or model transformation are just two applications where termination of the
computation process plays an important role. Both of these example applications
can be modelled using graph transformation systems in a natural way. The
termination property for graph transformation systems is defined as follows.

Definition 5.1 (Termination and uniform termination). A graph transforma-
tion system is terminating if it does not allow infinite transformation sequences
from a fixed set of initial graphs and it is called uniformly terminating if it is
terminating for all graphs.

5. Weighted Type Graphs over Semirings

With respect to graph transformation systems, all variants of the termination
problem, termination on all graphs as well as termination on a fixed set of initial
graphs, are undecidable [Plu98]. This fact follows quite directly from the halting
problem. Nonetheless, it is important to develop semi-decision procedures which
are able to decide as many instances as possible of the termination problem.
One basic approach to prove termination of a rewriting system, is to assign the
rewritable objects to elements of a well-founded set.

Definition 5.2 (Termination analysis). Let R be a set of rewriting rules.
Then R is terminating if and only if there exists an evaluation function | · |
and a well-founded order ≤ such that for any object A which can be rewritten
to another object B (short A⇒R B) it holds that |A| > |B|.

Since the rewritten object’s value decreases with every rule application, we can
deduce the uniform termination property from the fact that the order is well-
founded. Therefore, there does not exist an infinity, strictly decreasing sequence
and the objects assigned to the lowest values can not be rewritten any further.

5.1.2. Matrix Interpretations for String Rewriting
We are working in the context of string rewrite systems, where a rule is of the
form ` → r, where `, r are both strings over a given alphabet Σ. For instance,
consider the alphabet Σ = {a, b} and a string rewriting rule aa→ aba. Starting
from an example word aaa we can do the following derivation steps:

aaa⇒ abaa⇒ ababa or
aaa⇒ aaba⇒ ababa

However, in both derivations the word ababa can not be rewritten anymore
(ababa 6⇒). Therefore, the rewriting rule aa→ aba is terminating for the initial
word aaa. We would like to know if the rewriting rule (or a rewriting system
consisting of several such rules) is terminating independent of a given initial word,
i.e., uniformly terminating.
In termination analysis of string rewriting, strings are assigned to elements in

a well-founded set and it has to be shown that each rule application leads to a
decrease with respect to this order (see Definition 5.2). In [HW06] the well-founded
order is based on square matrices over the natural numbers N0. The order is
defined as follows:

Let A,B be two square matrices A,B over N0 of equal dimension n. We write
A > B if A1,1 > B1,1 and Ai,j ≥ Bi,j for all indices i, j with 1 ≤ i, j ≤ n, i.e., we
require that the entries in the upper left corner are strictly ordered, whereas the
remaining entries may also be equal. It holds that A > B implies A · C > B · C
and C ·A > C ·B for a matrix1 C > 0 of appropriate dimension.

Every letter of the alphabet a ∈ Σ is associated with a square matrix A = [a] > 0
(where all matrices have the same dimension n). Similarly every word w = a1 . . . an
is mapped to a matrix [w] = [a1] · . . . · [an], which is obtained by taking the matrices
of the single letters and multiplying them. If we can show [`] > [r] for every rule

1Here 0 denotes the matrix with all entries zero.

42

5.1. Additional Preliminaries - Termination and Semirings

`→ r, then termination is implied by the considerations above and by the fact
that the order ≤ on N0 is well-founded.

Example 5.3. For the rule aa→ aba take the following matrices (as in [HW06]):

[a] =
(

1 1
1 0

)
[b] =

(
1 0
0 0

)
with

[aa] =
(

1 1
1 0

)
·
(

1 1
1 0

)
=
(

2 1
1 1

)
and

[aba] =
(

1 1
1 0

)
·
(

1 0
0 0

)
·
(

1 1
1 0

)
=
(

1 1
1 1

)
Since we found matrices [a] and [b] such that [aa] > [aba] holds, the rewriting rule
aa→ aba is uniformly terminating.

For cycle rewriting a similar argument can be given, which is based on the idea
that the trace, i.e., the sum of the diagonal, of a matrix decreases [SZ15].

A natural question to ask is how such matrices can be obtained. We will discuss
in Section 5.5 how SMT solvers can be employed to automatically generate the
required weights.

In the following, we will generalize this method in two ways: we will replace the
natural numbers by an arbitrary semiring – an observation that has already been
made in the context of string rewriting – and we will make the step from string
to graph rewriting.

5.1.3. Ordered Semirings
We continue by defining semirings, the algebraic structures in which we will
evaluate the graphs occurring in transformation sequences, and orders on them.
We are interested in two types of ordered semirings: strongly ordered semirings
and strictly ordered semirings.

Definition 5.4 (Semiring). A semiring is a 5-tuple (S,⊕,⊗, 0, 1), where S is
the (finite or infinite) carrier set, (S,⊕, 0) is a commutative monoid, (S,⊗, 1)
is a monoid, ⊗ distributes over ⊕ and 0 is an annihilator for ⊗. That is, the
following laws hold for all x, y, z ∈ S:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) 0⊕ x = x x⊗ 0 = 0
(x⊗ y)⊗ z = x⊗ (y ⊗ z) x⊕ 0 = x 0⊗ x = 0
(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z) 1⊗ x = x x⊕ y = y ⊕ x
z ⊗ (x⊕ y) = (z ⊗ x)⊕ (z ⊗ y) x⊗ 1 = x

A semiring 〈S,⊕,⊗, 0, 1〉 is commutative if ⊗ is commutative.

We will often confuse a semiring with its carrier set, that is, S can refer to both
the semiring 〈S,⊕,⊗, 0, 1〉 itself and its carrier set. In order to come up with
termination arguments, we need a partial order on the semirings that has to be
compatible with its operations.

43

5. Weighted Type Graphs over Semirings

Definition 5.5 (Ordered semiring). A structure (S,⊕,⊗, 0, 1,≤) is an ordered
semiring if (S,⊕,⊗, 0, 1) is a semiring and ≤ is a partial order on S such that
for all x, y, u, z ∈ S:

• x ≤ y implies x⊕ z ≤ y ⊕ z, x⊗ z ≤ y ⊗ z and z ⊗ x ≤ z ⊗ y for z ≥ 0.

The ordered semiring S is strongly ordered, if

• x < y, z < u implies x⊕ z < y ⊕ u; and

• z > 0, x < y implies x⊗ z < y ⊗ z and z ⊗ x < z ⊗ y.

The strongly ordered semiring S is strictly ordered, if in addition x < y implies
x⊕ z < y ⊕ z for all z ∈ S.

We will denote by Σ (
∏
) the generalised sum of ⊕ (generalised product of ⊗).

Example 5.6. We consider examples of semirings used in termination proving:

Strictly ordered semirings:

• The natural numbers form a semiring (N0,+, ·, 0, 1,≤), where ≤ is the
standard ordering of the natural numbers. We will call this semiring the
arithmetic semiring (on the natural numbers). This is a strictly ordered
semiring because both < and ≤ are monotone in + and ·

Strongly ordered semirings:

• The tropical semiring (on the natural numbers) is:

TN0 = (N0 ∪ {∞},min,+,∞, 0,≤),

where ≤ is the usual ordering of the natural numbers. The tropical semiring
is not strictly ordered, because, for example, 2 < 3 but min(1, 2) 6< min(1, 3).
It is however still strongly ordered.

• The arctic semiring (on the natural numbers) is

TN0 = (N0 ∪ {−∞},max,+,−∞, 0,≤),

where ≤ is the usual ordering of the natural numbers. Like the tropical
semiring, the arctic semiring is not strictly ordered, but strongly ordered.

All semirings above are commutative.

We will in the following restrict ourselves to commutative semirings, since we
are assigning weights to graphs by multiplying weights of nodes and edges, and
nodes and edges are typically unordered. Furthermore, in the following chapters,
we focus exclusively on uniform termination, i.e., there is only a set of graph
transformation rules, but no fixed initial graph, and the question is whether the
rules terminate on all graphs. To abstract the set of all weighted graphs we will
extend the concept of type graph languages from Chapter 4.

44

5.2. Weighted Type Graphs

5.2. Weighted Type Graphs
Similar to mapping a word to a matrix, we will associate weights to graphs, by
typing them over a type graph with weights from a semiring.

Definition 5.7 (Weighted type graph). Let an ordered semiring S be given.
A weighted type graph T over S is a graph with a weight function wT : ET → S
and a designated flower node RT ∈ VT , such that for each label A ∈ Λ there
exists a designated edge eA with srcT (eA) = RT , tgtT (eA) = RT , labT (eA) = A
and wT (eA) > 0.

For a graph G, we denote with flT (G) (or just fl(G) if T is clear from the
context) the unique morphism from G to T that maps each node v ∈ VG of G
to the flower node RT and each edge e ∈ EG, with labT (e) = A, to eA. Note
that, for a morphism c : G→ H, it is always the case that flT (H)◦ c = flT (G).

Note that every matrix A of dimension n can be associated with an (unlabelled)
type graph with nodes 1 . . . n, where an edge from node i to j is assigned weight
Ai,j (or does not exist if Ai,j = 0). Hence our idea of weighted type graphs is
strongly related with the matrices of Section 5.1.2.
Example 5.8. The matrix A shown below left specifies the weighted type graph
T shown below right. In our approach, only matrix elements with a weight greater
than 0 induce an edge in the weighted type graph T .

A =

1 2 3
2 0 0
0 1 0

 T =

1

2

2

3

1

The node RT is also called the flower node, since the loops attached to it look
like a flower. Those loops correspond to the matrix entries at position (1, 1) and
similar to those entries they play a specific role. Note that the flower structure
also ensures that every graph can be typed over T (compare with the terminal
object in the category GraphΛ in Example 4.4, which is exactly such a flower).

Based on the weighted type graphs we are now ready to define how the weight
of a graph G ∈ L(T) can be computed. To do so, we first assign weights to the
typing morphisms. With a bit of notation overloading, we assign a weight to each
morphism t : G→ T with codomain T and arbitrary domain G as follows.

Definition 5.9 (Weight of a morphism). Let T be a weighted type graph
and let t : G→ T be a graph morphism. Then the weight of t is obtained by
multiplying the weights of the edges in the image of t, i.e.,

wT (t) =
∏
e∈EG

wT (t(e)).

That is, we multiply the weights of all edges in the image of t with respect to
the ⊗-operator of the underlying semiring.

Finally, the weight of a graph G with respect to T is defined by summing up
the weights of all morphisms from G to T with respect to ⊕.

45

5. Weighted Type Graphs over Semirings

Definition 5.10 (Weight of a graph). Let G be a graph. The weight of G
is the sum of the weights of the morphisms from G into the weighted type
graph T , i.e.,

wT (G) =
∑

tG : G→T
wT (tG).

That is, we sum up the weights of all morphisms from G to T with respect to
the ⊕-operator of the underlying semiring.

The subscript T of wT will be omitted if it is clear from the context.

Example 5.11. We give a small example for the weight of a graph.

Consider for instance the type graph T to the right.
Edges are labelled a, b and the weights, in this case
natural numbers, are given as superscripts. Consider
also the left-hand side L of rule ρ below, consisting of
two a-edges (the graph rewriting analogue of the string
rewriting rule aa→ aba considered in Section 5.1.2).

T =

a1

b1

a1

a1

ρ =
1 2

a a

1 2 1 2
a b a

There are five morphisms ti : L→ T with 0 ≤ i ≤ 4, each having weight 1, as they
are calculated by multiplying the weights of two a-edges which also have weight 1.

• t0 = fl(L) is the flower morphism and maps all nodes to the left node of T .
In this situation we have wT (t0) = 1 · 1 = 1.

• t1 is the morphism that maps the first interface node and the middle node
to the left node of T and the second interface node to the right node of T .
In this case we have wT (t1) = 1 · 1 = 1.

• t2 is the morphism that maps the first interface node to the right node of T
and the second interface node together with the middle node to the left node
of T . In this case we have wT (t2) = 1 · 1 = 1.

• t3 is the morphism that maps the first and second interface node to the right
node of T and the middle node to the left node of T . In this case we have
wT (t4) = 1 · 1 = 1.

• t4 is the morphism that maps the first and second interface node to the left
node of T and the middle node to the right node of T . In this case we have
wT (t3) = 1 · 1 = 1.

Hence the weight of L with respect to T is

wT (L) = wT (t0) + wT (t1) + wT (t2) + wT (t3) + wT (t4)
= 1 + 1 + 1 + 1 + 1
= 5

More details on the usage of these weights are given in Example 5.15.
If we glue two graphs G1, G2 in order to obtain G, the weight of G can be

obtained from the weights of G1, G2.

46

5.2. Weighted Type Graphs

Lemma 5.12. Let S be an ordered commutative semiring and T a weighted
type graph over S.
(i) Whenever S is strongly ordered, for all

graphs G, flT (G) : G → T exists and
wT (flT (G)) > 0.

(ii) Given the following diagram, where the
square is a pushout and G0 is discrete, it
holds that wT (t) = wT (t◦ϕ1)⊗wT (t◦ϕ2).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t(po)

Since property (ii) above only holds if G0 is discrete we restrict to discrete graphs I
in the rule interface.2

While the process of obtaining the weight of a graph corresponds to calculating
the matrix of a word and summing up all its entries, we also require a way to be
more discriminating, i.e., to access separate matrix entries. Evaluating a string-like
graph would mean to fix its entry and exit node within the type graph (similarly
to fixing two matrix indices). However, in graph rewriting, we have interfaces
of arbitrary size. Hence, we do not index over pairs of nodes, but over arbitrary
interface graphs, and compute the weight of a graph L with respect to a typed
interface I.

Definition 5.13 (Weight of a morphism wrt. an interface morphism). Let
ϕ : I → L and t : I → T be graph morphisms, where T is a weighted type
graph. We define:

wt(ϕ) =
∑

tL : L→T
tL◦ϕ=t

wT (tL).
L I

T

ϕ

ttL

Finally, we can define what it means that a rule is decreasing, analogous to the
condition [`] > [r] introduced in Section 5.1.2. In addition we also introduce non-
increasingness, a concept that will be needed for the so-called relative termination
arguments.

Definition 5.14 (Non-increasing and decreasing rules). Let a graph transfor-
mation rule ρ = L�ϕL− I −ϕR�R, an ordered commutative semiring S and
a weighted type graph T over S be given.

(i) The rule ρ is non-increasing if for all tI : I → T it holds that wtI (ϕL) ≥
wtI (ϕR).

(ii) The rule ρ is decreasing if it is non-increasing, and wfl(I)(ϕL) > wfl(I)(ϕR).

Example 5.15. We come back to Example 5.11 and check whether rule ρ is
decreasing. For this we have to consider the following four interface morphisms
t : I → T from the two-node interface into the weighted type graph T :

2Compare also with the “stable under pushouts” property of [BKZ14].

47

5. Weighted Type Graphs over Semirings

• The flower morphism fl(I) which maps both interface nodes to the left node of
T . In this case we have wfl(I)(ϕL) = wT (t0) + wT (t4) = 2 > 1 = wfl(I)(ϕR).

• Furthermore there are three other interface morphisms t1, t2, t3 : I → T
mapping the two interface nodes either both to the right node of T , or the first
interface node to the left and the second interface node to the right node of T ,
or vice versa. In all these cases we have wti(ϕL) = wT (ti) = 1 = wti(ϕR).

Hence, the rule is decreasing. Note also that these weights correspond exactly to
the weights of the multiplied matrices in Example 5.3.

Finally, we have to show that applying a decreasing rule also decreases the
overall weight of a graph. For a non-increasing rule the weight might remain the
same.

Lemma 5.16. Let S be a strictly ordered commutative semiring and T a
weighted type graph over S. Furthermore, let ρ be a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).

(ii) If ρ is decreasing, then wT (G) > wT (H).

From this lemma we can prove our main theorem that is based on the well-
known concept of relative termination [Ges90; Zan03]: if we can find a type graph
for which some rules are decreasing and the rest is non-increasing, we can remove
the decreasing rules without affecting termination. We are then left with a smaller
set of rules for which termination can either be shown with a different type graph
or with some other technique entirely.

Theorem 5.17 (Relative termination based on strictly ordered semirings).
Let S be a strictly ordered commutative semiring with a well-founded order ≤
and T a weighted type graph over S. Let R be a set of graph transformation
rules, partitioned in two sets R< and R=. If all rules of R< are decreasing
and all rules of R= are non-increasing then R is terminating if and only if
R= is terminating.

A special case of the theorem is when R= = ∅. Then the statement of the
theorem is that a graph transformation system R is terminating if all its rules are
decreasing with respect to a strictly ordered commutative semiring S and type
graph T over S.

5.3. Using Strongly Ordered Semirings
In the last section the semirings were required to be strictly ordered. In this
section we consider what happens when we weaken this requirement and also
allow non-strictly ordered semirings, which must however be strongly ordered.
This allows us to work with the tropical and arctic semiring from Example 5.6.
It turns out that we obtain similar results to Theorem 5.17 if we strengthen the
notion of decreasingness.

48

5.3. Using Strongly Ordered Semirings

Definition 5.18 (Strongly decreasing rules). Let a rule ρ = L�ϕL−I−ϕR�R,
an ordered commutative semiring S and a weighted type graph T over S be
given. The rule ρ is strongly decreasing (with respect to T) if for all tI : I → T
it holds that wtI (ϕL) > wtI (ϕR).

Using this notion of decreasingness we can also formulate a termination argument,
which is basically equivalent to the termination argument presented in [BKZ14].

Lemma 5.19. Let S be a strongly ordered commutative semiring and T a
weighted type graph over S. Furthermore, let ρ be a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).

(ii) If ρ is strongly decreasing, then wT (G) > wT (H).

Now it is easy to prove a theorem analogous to Theorem 5.17, using Lemma 5.19
instead of Lemma 5.16.

Theorem 5.20 (Relative termination based on strongly ordered semirings).
Let S be a strongly ordered commutative semiring with a well-founded order ≤
and T a weighted type graph over S. Let R be a set of graph transformation
rules, partitioned in two sets R< and R=. If all rules of R< are strongly
decreasing and all rules of R= are non-increasing, then R is terminating if
and only if R= is terminating.

In this way we have recovered the termination analysis from [BKZ14], however
spelt out differently. In order to explain the connection, let us consider what
it means for a rule ρ = L �ϕL− I −ϕR� R to be non-increasing in the tropical
semiring where ⊕ is min and ⊗ is + i.e., for each t : I → T into a weighted type
graph T it must hold that

min
tL : L→T
tL◦ϕL=t

wT (tL) ≥ min
tR : R→T
tR◦ϕR=t

wT (tR)

wT (tL) is the weight of the morphism tL, obtained by summing up (via +) the
weights of all edges in the image of tL.

A different way of expressing that the minimum of the first set is larger or
equal than the minimum of the second set, is to say that for each morphism
tL : L→ T with tL ◦ ϕL = t there exists a morphism tR : R→ T with tR ◦ ϕR = t
and wT (tL) ≥ wT (tR).

Similarly, a rule ρ = L�ϕL− I −ϕR�R is non-increasing in the arctic semiring
where ⊕ is max and ⊗ is + whenever for each t : I → T into a weighted type
graph T it holds that

max
tL : L→T
tL◦ϕL=t

wT (tL) ≥ max
tR : R→T
tR◦ϕR=t

wT (tR)

where again, wT (tL) is the weight of the morphism tL, obtained by summing up
(via +) the weights of all edges in the image of tL.

49

5. Weighted Type Graphs over Semirings

A different way of expressing that the maximum of the first set is larger or
equal than the maximum of the second set, is to say that for each morphism
tR : R→ T with tR ◦ ϕR = t there exists a morphism tL : L→ T with tL ◦ ϕL = t
and wT (tL) ≥ wT (tR). These are exactly the notions of tropically and arctically
non-increasing of [BKZ14].
In hindsight, comparing the results of Theorems 5.17 and 5.20 we notice the

following: as underlying semiring S we can take either a strictly ordered or a
strongly ordered one, but if we choose a strongly ordered semiring, the termination
argument becomes slightly harder to prove because for every morphism from the
left-hand side to the type graph there must exist a compatible, strictly smaller
morphism from the right-hand side to the type graph.

5.4. Examples
We give examples to show that with a weighted type graph over a strictly ordered
semiring (such as the arithmetic semiring), we can prove termination on some
graph transformation systems where strongly ordered semirings fail. We start with
a graph transformation system for which a termination argument can be found
using both variants. Then we will modify some rules and explain why weighted
type graphs over strongly ordered semirings can not find a termination argument
for the modified system.

Example 5.21. As an example we take a system consisting of several counters,
which represent their current value by a finite number of bits. Each counter may
possess an incr marker, that can be consumed to increment the counter by 1.
One possible graph describing a
state of such a system is given
by G. This is just one possible
initial graph, since we really show
uniform termination, i.e., termi-
nation on all initial graphs, even
those that do not conform to the
schema indicated by G.

G = . . .

. . .

1 0

0 0 1 1

1 0 1

incr

incr

count

count
count

We consider the graph transformation system {ρ1, ρ2, ρ3, ρ4}, adapted from
[SZ15], consisting of the following four rules:

ρ1 =
1 2

0 count
incr

1 2 1 2
1 count

ρ2 =
1 2

1 count
incr

1 2 1 2
c count

ρ3 =
1 2

0 c

1 2 1 2
1 0

ρ4 =
1 2

1 c

1 2 1 2
c 0

50

5.4. Examples

Each counter may increment at most once. Rules ρ1 and ρ2 specify that a
counter (represented by a count-labelled edge) may increment its least significant
bit by 1 if an incr marker was not consumed yet. If the least significant bit is 1,
the bit is marked by a label c, to remember that a carry bit has to be passed to
the following bit. Rule ρ3 increments the next bit of the counter by 1 (if it was 0
before), while rule ρ4 shifts the carry bit marker over the next 1.
The fact that this graph transformation system
is uniformly terminating can be shown using
a weighted type graph over either a strictly or
strongly ordered semiring. For example, using a
non-relative termination argument, we evaluate
the rules with respect to the weighted type graph
Ttrop over the tropical semiring.

Ttrop = count0

incr2

00

c2

11

A relative termination argument is even easier: the rules ρ1 and ρ2 can be
removed due to the decreasing number of incr-labelled edges. Then we can remove
ρ3 due to the decreasing number of c-labelled edges (which remain constant in
ρ4) and afterwards remove ρ4 since it decreases 1-labelled edges. With all rules
removed, the graph transformation system has been shown to terminate uniformly.
We now consider the arithmetic semiring and
again use a non-relative termination argument:
we evaluate the rules with respect to the weighted
type graph Tarit, where all weights are just in-
creased by one with respect to Ttrop. That is due
to the fact, that we are working in the arithmetic
semiring and hence have to make sure that all
weights of flower edges are strictly larger than 0.

Tarit = count1

incr3

01

c3

12

Example 5.22. We will now modify rules ρ1 and ρ2 in order to give an exam-
ple where weighted type graphs over tropical and arctic semirings fail to find a
termination argument.

Consider the graph transformation system {ρ′1, ρ′2, ρ′3, ρ′4} consisting of rules ρ3
and ρ4 from Example 5.21 with two additional new rules:

ρ′1 =
1 2

0 count
1 2 1 2

1 count

ρ′2 =
1 2

1 count
1 2 1 2

c count

ρ′3 =
1 2

0 c

1 2 1 2
1 0 (= ρ3)

ρ′4 =
1 2

1 c

1 2 1 2
c 0 (= ρ4)

With respect to Example 5.21, the counter may increment its value not only once
but several times, until the least significant bit is permanently marked by the
carrier bit label c. This will eventually happen, since counters are never extended
by additional digits and carry bits finally accumulate and can not be processed.

We now give a relative termination argument, to show uniform termination of
this graph transformation system. The termination of this system is not obvious
as the numbers of the labels c, 0 and 1 increase and decrease depending on the

51

5. Weighted Type Graphs over Semirings

rules used for the derivation. First, we
evaluate the rules with respect to the
following weighted type graph T ′ over
the arithmetic semiring. Consider for in-
stance rule ρ′1 and the following four in-
terface morphisms:

T ′ =

count1
01

c1

11

11

02

count1
02

c2

12

• t0 = fl(I) : I → T ′ is the flower morphism and maps both interface node to
the left node of T ′. In this situation we have wt0(ϕL) = 1 · 1 + 1 · 2 = 3 >
2 = 1 · 1 + 1 · 1 = wt0(ϕR) (there are two ways to map the left-hand side in
such a way that both interface nodes are mapped to the left node, resulting
in weight 3; similar for the right-hand side, where we obtain weight 2).

• t1 : I → T ′ is the morphism that maps the first interface node to the right
node of T ′ and the second interface node to the left node of T ′. In this case
we have wt1(ϕL) = 1 · 2 = 2 ≥ 2 = 1 · 2 = wt1(ϕR).

• t2 : I → T ′ is the morphism that maps the first interface node to the left
node of T ′ and the second interface node to the right node of T ′. In this case
we have wt2(ϕL) = 0 ≥ 0 = wt2(ϕR), since there are no possibilities to map
either the left-hand or the right-hand side.

• t3 : I → T ′ is the morphisms that maps both interface node to the right node
of T ′. Here we have wt3(ϕL) = 0 ≥ 0 = wt3(ϕR) (again, there are no fitting
matches of the left-hand and right-hand side).

Hence ρ′1 is decreasing. Similarly we can prove that ρ′2 is decreasing and ρ′3, ρ′4 are
non-increasing, which means that ρ′1, ρ′2 can be removed. To show termination of
the remaining rules ρ′3, ρ′4 we can simply use the weighted type graph Tarit from
Example 5.21 again.

We found a relative termination argument for Example 5.22 using a weighted
type graph over the arithmetic semiring. However, there is no way to obtain a
termination argument with a weighted type graph over either tropical or arctic
semirings: in these cases the weight of any graph is linear in the size of the graph
(since we use only addition and minimum/maximum to determine the weight of a
graph). If we have an interpretation where at least one rule is decreasing, and the
other rules are non-increasing, then in any derivation, the number of applications
of the decreasing rules is at most linear in the size of the initial graph.

However, if we start with a counter which consists of n bits (all set to 0), we
obtain a derivation in which all of the rules are applied at least 2n times. This
means that it is principally impossible to find a proof with weighted type graphs
over the tropical or arctic semiring, even using relative termination.

The last two examples were inspired by string rewriting and the example rules
could easily be encoded into a string grammar. We give another final example
and prove termination using a weighted type graph over the arithmetic semiring.
We now switch from strings to trees, staying with a scenario where reductions of
exponential length are possible. In addition we discard the count-label as each
counter will be represented by a node with no incoming edge and we will exploit
the dangling edge condition.

52

5.5. Grez

Example 5.23. We interweave our counters into a single treelike structure. Each
path from a root node to a leaf can be interpreted as a counter.
One possible graph describing a state of
the modified system is given by Ĝ. Each
counter shares a number of bits with other
counters, where the least significant bit is
shared by all counters. Again this is just
one possible initial graph, since we prove
uniform termination.

Ĝ =

. . .

. . . 0
0

00

1

1

1
1

0

Let the following graph transformation system {ρ̂1, ρ̂2, ρ̂3, ρ̂4, ρ̂5, ρ̂6} be given:

ρ̂1 =
1

0
1 1

1 ρ̂2 =
1

1
1 1

c

ρ̂3 = 1

2
3

0

0
c 1

2
3

1

2
3

1

0
0 ρ̂4 = 1

2
3

0

1
c 1

2
3

1

2
3

1

1
0

ρ̂5 = 1

2
3

1

0
c 1

2
3

1

2
3

c

0
0 ρ̂6 = 1

2
3

1

1
c 1

2
3

1

2
3

c

1
0

The rules ρ̂1 and ρ̂2 increment the shared least significant bit by 1. These two
rules can only be applied at the root of the tree (due to the dangling edge condition
of the DPO approach), as long as the edge is either labelled 0 or 1. By applying the
rules ρ̂3, . . . , ρ̂6, a carrier bit can be passed to the next bit. Proving termination of
this graph transformation system is non-trivial. By applying for instance ρ̂6, the
value of the counters containing interface node 1 does not change, while the other
counter values decrease. We evaluate the
rules with respect to the following weighted
type graph T̂ over the arithmetic semiring.
We can prove that ρ̂1 and ρ̂2 are decreas-
ing and ρ̂3, . . . , ρ̂6 are non-increasing, which
means that ρ̂1, ρ̂2 can be removed using a
relative termination argument.

T̂ =

11

01

c1

11

02

12

02

c2

The rules ρ̂3 and ρ̂4 can be removed due to the decreasing number of c-labelled
edges, which remain constant in ρ̂5 and ρ̂6. Afterwards we can remove ρ̂5, ρ̂6 since
they decrease the number of 1-labelled edges. The graph transformation system has
been shown to terminate uniformly, since there are no rules left.

5.5. Grez
The erstwhile question of how to find suitable weighted type graphs has been
left open so far. Instead of manually searching for a suitable type graph we
employ a satisfiable modulo theories (SMT) solver (in this case Z3) that can solve
inequations over the natural numbers.
We fix a number n of nodes in the type graph and proceed as follows: take

a complete graph T with n nodes, i.e., a graph with an edge for every pair
i, j ∈ {1, . . . , n} of nodes and every edge label a ∈ Λ. Every edge e in this graph
is associated with a variable xe. The task is to assign weights to those variables
such that rules can be shown as either decreasing or non-increasing.

53

5. Weighted Type Graphs over Semirings

Now, for every rule ρ = L�ϕL− I −ϕR�R and every map t : I → T we obtain
an inequation: ∑

tL : L→T
tL◦ϕL=t

∏
e∈EL

xtL(e) ≥
∑

tR : R→T
tR◦ϕR=t

∏
e∈ER

xtR(e)

If we want to show that ρ is decreasing and t is the flower morphism ≥ has to be
replaced by >.

Doing this for each rule and every map t gives us equations that can be used as
input for an SMT-solver. We consider the weights as natural numbers only up to a
given bound by restricting the length of the corresponding bit-vectors. Note that
we would be outside the decidable fragment of arithmetics otherwise since the
equations would contain multiplication of variables (as opposed to multiplication
of constants and variables). By using a bit-vector encoding the SMT-solver Z3
can reliably find a solution (if it exists) and especially such solutions are found
for the examples discussed in Section 5.4. Any solution gives us a valid weighted
type graph.

A prototype Java-based tool, called Grez, has been written and was introduced
in [BKZ14]. Given a graph transformation systemR, the tool tries to automatically
find a proof for the uniform termination of R. The tool supports relative termina-
tion and runs different algorithms (which are chosen by the user) concurrently to
search a proof. If one algorithm succeeds in finding a termination argument for at
least one of the rules, all processes are interrupted and the corresponding rule(s)
will be removed from R. The algorithms are then executed on the smaller set of
rules and this procedure is repeated until all rules have been removed. Afterwards
Grez generates the full proof which can be saved as a PDF-file.

Grez provides both a command-line interface and a graphical user interface.
The tool supports the integration of external tools, such as other termination tools
or SMT-solvers. Grez can use any SMT-solver which supports the SMT-LIB2
format [BST10]. Grez generates the inequation described above in this format
and passes it, either through a temporary file or via direct output stream, to the
SMT-solver. The results are parsed back into the termination proof, as soon as
the SMT-solver terminates and produces a model for the formula.
We ran the tool on all examples of this chapter using a Windows workstation

with a 2, 67 Ghz, 4-core CPU and 8 GB RAM. All proofs were generated in less
than 1 second. The tool, a user manual [Bru15] and the examples from this chapter
can be downloaded from the Grez webpage.3

3Grez homepage: www.ti.inf.uni-due.de/research/tools/grez

54

www.ti.inf.uni-due.de/research/tools/grez

“Problems are often stated in vague terms. . . because
it is quite uncertain what the problems really are.”

John von Neumann (1903-1957)

6
Terms, Term Rewriting and Term Graph

Encodings
In the previous Chapter 5 we studied termination analysis inspired by matrix
interpretations on string rewriting and cycle rewriting. In this chapter we will focus
on term rewriting instead and describe ways to encode term rewriting systems into
graph transformation systems while preserving termination proving arguments, i.e.
termination of the term rewriting system can be concluded from the termination
of the corresponding graph transformation system. Furthermore, we can benefit
from an existing large database of term rewriting systems which we can use as
case studies for our previously introduced weighted type graph technique.

We will introduce term graph rewriting as a natural way to apply term rewriting
to graphs. Term graph rewriting provides an efficient way to implement term
rewriting. We discuss two natural ways to interpret term rewrite rules as term
graph rewrite productions: one in which implicit unraveling of the term graph
is allowed and one in which it is not. We provide techniques to automatically
prove termination of term graph rewriting and apply them to term rewriting
systems in both ways. The main approach is to transform term graph rewriting
to a graph transformation system and then apply the tool Grez from Section 5.5
for proving termination of the graph transformation system. We discuss two such
transformations and report about experiments.

6.1. Additional Preliminaries - Terms and Term Graphs
When trying to express algorithms in specific domains (that have certain structures
and/or properties), string rewriting systems are not suited very well for describing
semantics in domains by means of homomorphisms. Like string rewriting, term
rewriting can describe grammars, but it additionally offers mechanics to describe
processes in functional programming or analyse logic programs [Mar94]. Therefore,
term rewriting systems play an important role in various areas, such as abstract
data type specifications. In order to understand the remainder of this chapter we
introduce the basics of terms and term rewriting systems. A good introduction
on terms and term rewriting is given in [DJ90] and a comprehensive overview of
research in the area of term rewriting can be found in [Ter03].

6. Terms, Term Rewriting and Term Graph Encodings

6.1.1. Terms and Term Rewriting
In term rewriting the following three basic concepts are essential: terms, substitu-
tion and matching. We start by defining terms.

Definition 6.1 (Signature and terms). Let X be a countable set of variables
x, y, z, . . ., let 2 be a special symbol denoting an empty space and let F be a
signature, i.e. a set of function symbols {f, g, . . .} each having a fixed arity
given by a mapping ar : F → N0.

The set of terms over the signature F is the least set T (F ,X) satisfying:

• If x ∈ X , then x ∈ T (F ,X).

• If a ∈ F is a constant symbol (i.e., ar(a) = 0), then a ∈ T (F ,X).

• If f ∈ F is a n-ary function symbol (i.e., ar(f) = n > 0) and t1, . . . , tn ∈
T (F ,X), then f(t1, . . . , tn) ∈ T (F ,X).

For a term t ∈ T (F ,X) the set Var(t) contains all variables occurring in t.

• We say that a term t is ground if Var(t) = ∅.

• The term t is called linear if it does not contains multiple occurrence of
the same variable.

A context is a term containing one occurrence of 2 and is denoted by C[]. If
a term t ∈ T (F ,X) is replacing 2 the result is denoted by C[t] ∈ T (F ,X)
and t is called a subterm of C[t].

The function root : T (F ,X)→ F ∪X returns the symbol labeling the root of
t, i.e., root(t) = t if t ∈ X and root(f(t1, . . . , tn)) = f if f ∈ F .

Example 6.2. Let X = {x, y} and F = {f, g, a} with ar(f) = 2, ar(g) = 1 and
ar(a) = 0 be given. We give the following examples:

• The expression f(f(a, g(a))) is not a term in T (F ,X) since the occurence
of the outer function symbol f is used as if it had arity 1.

• t = f(f(x, a), y) is a term (t ∈ T (F ,X)), which is linear but not ground
and the root is root(t) = f .

• The term t′ = f(x, a) is a subterm of t with the context C[] = f(2, y).
We have t = C[t′].

In term rewriting, not only 2 but also the variables of a term t, can be seen as
abstract representations of subterms. These subterms do not have to be ground
and could still consist of variables. Variables play an important role when it comes
to matches between terms. In term rewriting, a match is a mapping between terms
which preserves function symbols and identifies variables in the source term with
subterms in the target term. The identification of a variable with a term is also
called substitution.

56

6.1. Additional Preliminaries - Terms and Term Graphs

Definition 6.3 (Substitution and homomorphic extension). Let T (F ,X) be
a set of terms over the signature F with a set of variables X . A substitution
is a mapping σ : X → T (F ,X). Substitutions are homomorphically extended
to mappings from terms to terms σ̄ : T (F ,X)→ T (F ,X) by:

σ̄(x) = σ(x) and σ̄(f(t1, . . . , tn)) = f(σ̄(t1), . . . , σ̄(tn))

By using substitutions σ̄, we can define matches between terms. Matches are
used to identify an occurrence of a (possibly not ground) left-hand-side term `,
from a term rewriting rule `→ r, within a term t that is supposed to be rewritten.

Definition 6.4 (Match). A term ` matches a term t if there exists a substi-
tution σ̄ : T (F ,X)→ T (F ,X) such that t = σ̄(`). The substitution σ̄ is also
called matcher of t against `.

Example 6.5. Let T (F ,X) be the set of terms from Example 6.2 and let the
following three terms `1, `2, t ∈ T (F ,X) be given:

`1 = f(x, g(y)) `2 = f(x, a) t = f(f(x, a), g(a))

Then the term `1 matches the term t by the substitution σ(x) = f(x, a) and
σ(y) = a which leads to t = σ̄(`1). The term `2 can not be matched with t due
to the constant a (the second argument in f(x, a)) which can not be substituted
to g(a).

We are now ready to define term rewrite rules. Like in many rewrite systems
these rules consist of two elements from the corresponding framework which are
related by a rewriting relation.

Definition 6.6 (Term rewrite rule, redex and contractum). A term rewrite
rule is an ordered pair `→ r, where `, r ∈ T (F ,X) are called the left-hand-side
and right-hand-side respectively and the following two properties hold:

• ` /∈ X (the left hand side is not a variable), and

• Var(r) ⊆ Var(`) (there is no extra variable in the right-hand-side)

A term rewrite rule `→ r is called left-linear if ` is linear, right-linear if r is
a linear and it is called linear if both ` and r are linear terms. The rule is
called collapsing if the right-hand-side is a single variable (r ∈ X).

Given a substitution σ̄, an instance σ̄(`) of the left-hand-side ` of a term
rewriting rule `→ r is called a redex (reducible expression) of the rule and
an instance σ̄(r) of the right-hand-side is called a contractum.

Example 6.7. The term rewrite rule f(x, x)→ f(g(x), a) is right-linear and non-
collapsing. For the substitution σ(x) = g(a) the ground term σ̄(`) = f(g(a), g(a))
is a redex and the ground term σ̄(r) = f(g(g(a)), a) is a contractum.

57

6. Terms, Term Rewriting and Term Graph Encodings

Finally, we define term rewriting systems. Term rewriting systems play an
important role in various areas, for instance for the analysis and implementation
of abstract data type specifications, i.e. checking the consistency of properties or
used for theorem proving. Just like in other rewriting frameworks, a term rewriting
system is a set of rewrite rules.

Definition 6.8 (Term rewriting system). A Term Rewriting System is a pair
R = (F , R) such that F is a signature and R is a set of rewrite rules over the
signature F .

A term rewriting system R = (F , R) is called left-linear, right-linear or linear
if each rule `→ r ∈ R has the corresponding property. On the other hand, R
is called collapsing if at least one of the rules `→ r ∈ R is collapsing.

In the following we will simply denote a term rewriting system R by its set of
rewrite rules R whenever the signature F is clear from the context. A rewriting
step is now based on replacing a redex by a corresponding contractum within
the same context. Given a term rewriting system R = (F , R) we define the
(one-step) rewrite relation →R as the set of all possible rewriting steps over terms
in T (F ,X).

Definition 6.9 (Rewriting relation). Let a term rewriting system R = (F , R)
be given. A term t ∈ T (F ,X) can be rewritten to a term u ∈ T (F ,X)
(written t→R u and called a rewriting step) if there exists a term rewriting
rule ` → r ∈ R together with a substitution σ : X → T (F ,X) such that
t = C[σ̄(`)] and u = C[σ̄(r)], i.e. a redex is replaced by a corresponding
contractum within the same shared context.

Example 6.10. Consider the following linear, non-collapsing term rewriting
system R = (F , R) which consists of the two rules ρ1, ρ2 ∈ R:

ρ1 = f(a, x, y)→ h(x, y) and ρ2 = g(b, y)→ a

Let t ∈ T (F ,X) be the term t = f(g(b, a), h(z, z), b). Then the following rewriting
steps are possible, where the matched subterm is underlined and the applied rule
is written above the rewriting relation:

f(g(b, a), h(z, z), b) ρ2→R f(a, h(z, z), b) ρ1→R h(h(z, z), b)

In implementing term rewriting, an obvious optimization is to share common
subterms. In this way the objects to rewrite are not terms represented by trees,
but by directed graphs. For finite terms the directed graphs are acyclic, but in
many applications, in particular in functional programming ([PE93]), it makes
sense to also allow cycles, by which after unfolding the represented term is infinite.
These graphs are called term graphs, and rewriting on term graphs has been
extensively studied, see e.g. [Plu99; CD11], sometimes under the name of jungle
rewriting [HKP88; CR93].

58

6.1. Additional Preliminaries - Terms and Term Graphs

6.1.2. Term Graph Rewriting
We will now focus on term graphs where every node is labeled by an operation
symbol, and the outgoing edges of such a node are numbered from 1 to the arity
of the operation symbol.

Definition 6.11 (Term graph). A term graph over a signature F is a triple
(V, lb, succ) in which

• V is a finite set of nodes (vertices),

• lb : V → F is a partial function, called labeling, and

• succ : V → V ∗ is a partial function, called successor, having the same
domain as lb, such that for every v ∈ V for which succ(v) is defined, the
length of succ(v) is equal to the arity of lb(v): |succ(v)| = ar(lb(v)).

A (term graph) morphism ϕ : (V, lb, succ) → (V ′, lb′, succ′) is a function
ϕ : V → V ′ such that for all v ∈ V where lb(v) is defined, lb′(ϕ(v)) = lb(v)
and succ′(ϕ(v)) = ϕ(v1) · · ·ϕ(vn) with succ(v) = v1 · · · vn.

This definition coincides with the one given in [CD11]. If succ(v) = (v1, . . . , vn)
then we see (v, v1), . . . , (v, vn) as the n outgoing edges of v. Note that swapping
two outgoing edges changes the term graph since edges are ordered. For specifying
ground term graphs we are interested in the case where lb and succ are total, but
for defining term graph rewriting it is convenient to allow also partial functions.
Furthermore, in the various definitions of term graphs within the literature there
are some syntactical variations, in particular whether or not a term graph is
assumed to have a root node. In this chapter we will investigate term graphs that
are not required to have a root. Term graphs are a direct extension of finite terms.

Definition 6.12 (Term graph of a term). For a finite linear term t (that
is, every variable occurs at most once in t) its term graph TG(t) is defined
inductively together with root(t) as follows:

• For a constant a the term graph TG(a) consists of a single node v for
which succ(v) = ε and lb(v) = a, and root(a) = v.

• For a variable x the term graph TG(x) consists of a single node v for
which succ(v) and lb(v) are both undefined, and root(x) = v.

• For a term t = f(t1, . . . , tn) let Vi be the set of nodes of the term graph
of ti, and root(ti) = vi ∈ Vi, for i = 1, . . . , n. Then the set of nodes of
the term graph TG(t) is defined to be the disjoint union of V1, . . . , Vn
and a fresh node v. For nodes in V1, . . . , Vn, the functions lb and succ
are maintained, and succ(v) = v1 · · · vn, lb(v) = f and root(t) = v.

For a finite non-linear term t its term graph TG(t) is defined in the same
way, with the only difference that the occurrences of a variable are not taken
disjoint, but shared.

59

6. Terms, Term Rewriting and Term Graph Encodings

Example 6.13. We construct the term graph for the
term t = f(a(x), h(y, z), c). The corresponding term graph
TG(t) is depicted on the right, where the numbers on
outgoing edges from a node v indicate the order in succ(v).

f

ha c

21 3

1 2

Conversely, term graphs can be unraveled to terms: starting from a node v, we
build a term with lb(v) as its root, and for each of its |succ(v)| successors generate
the corresponding argument by applying the same process on the corresponding
element of succ(v). If the term graph is acyclic, this yields a finite term, but as
soon as a node is visited that has been visited before, the resulting term will be
infinite.
Just as in term rewriting, a term graph transformation rule consists of a left-

hand side and a right-hand side, and the basic idea is that an occurrence of a
left-hand side may be replaced by the corresponding right-hand side. Now left-
hand sides and right-hand sides are term graphs themselves, and an occurrence of
a left-hand side may be defined as an injective morphism from the left-hand side
to the term graph to be rewritten. However, for a precise description some extra
information is required: which nodes of the left-hand side correspond to nodes in
the right-hand side, and what to do with the remainder of the left-hand side.

Definition 6.14 (Term graph production, term graph rewrite systems). A
term graph production p = L←` I →r R is a span consisting of three term
graphs L, I and R, called the left-hand side, the interface and the right-hand
side respectively, together with two interface morphisms ` and r which specify
the correspondence of the nodes in L and R.

A term graph rewrite system (TGRS) is a set of (term graph) productions.

In our setting for v ∈ I the partial functions lb and succ are defined for `(v) in L
if and only if they are defined for r(v) in R.1

Since the double-pushout approach is a standard approach for describing graph
transformations in several settings (as discussed in Chapter 3) we can use it to
describe term graph rewriting.

Definition 6.15 (Term graph rewriting step). A term graph G transforms
to a term graph H by a production p = L←` I →r R (written G⇒p H) if
and only if an injective morphism g : L→ G, a term graph D and morphisms
h : R→ H, i : I → D, dg : D → G and dh : D → H exist such that both the
left square and the right square in the diagram below are pushouts.

L I R

G D H

` r

g i h

dg dh

(po) (po)

1This condition is necessary to avoid non-local unification of terms that might occur otherwise.

60

6.2. Interpreting Term Rewriting in Term Graph Rewriting

6.2. Interpreting Term Rewriting in Term Graph Rewriting
We will now focus on left-linear (left-hand sides of all rules are linear) and non-
collapsing (right-hand sides of rules are no variables) term rewriting systems and
investigate natural ways to interpret them as term graph rewriting systems. They
have to be non-collapsing, since we restrict to injective morphisms in the rule.
In order to apply a term rewriting rule, that is, a rule t→ u in which t and u

are finite terms, to a term graph, there are two natural ways to proceed. In both
ways in the corresponding production L←` I →r R, the term graph L is the term
graph of t. The right-hand side corresponds to the term graph of u, where nodes
for every variable that occurs in t, but not in u, are added. The main difference is
in the interface I: roughly speaking in the basic version it is as small as possible,
while in the extended version it is nearly a full copy of L. It is necessary to also
add the additional interface structure to R in the extended version.
To motivate and define the two versions, let us first investigate what is really

needed. The basic idea is that a part of the graph to be rewritten coincides with t,
and that this is replaced by u. For doing so, the interface should at least contain
the root of t and the variables of t.

Definition 6.16 (Basic version). A term graph production L ←` I →r R
based on a term rewriting rule t→ u is in the basic version if it satisfies the
following properties:

• The left-hand side L is the term graph TG(t)

• The interface I consists of the nodes of the term graph L of t that
correspond to the root of t and to the variables in t.

• The functions lb and succ are undefined for the nodes in I.

• The right-hand side R is the union of TG(u) with the nodes of I
representing variables.

• The mappings `, r map each of the nodes in I to the corresponding copy
in L respectively R.

Via the two rule morphisms ` and r the node v ∈ I corresponding to the root
of t is mapped to the node v′ ∈ L representing the same root of t via `. Likewise
v is mapped to the node v′′ ∈ R representing the root of u via r. Every node in I
corresponding to a variable in t is mapped to the corresponding node in L and it
is similar mapped to R if the variable occurs in u.
For string rewriting, that is, term rewriting in which all symbols are unary,

termination of cycle rewriting as studied in [ZBK14; SZ15] coincides with termi-
nation of term graph rewriting systems in the basic version; the argument that
symbols of other arity, not occurring in the rewrite system, do not influence the
termination property, is similar to the argument given in [BKZ14].
The other, extended version, exactly corresponds to the version as presented

in [CD11], where it is shown that for orthogonal term rewriting systems, there
is a correspondence between term graph rewriting and term rewriting on the
corresponding unraveled (possibly infinite) terms.

61

6. Terms, Term Rewriting and Term Graph Encodings

Definition 6.17 (Extended version). A term graph production L←` I →r R
based on a term rewriting rule t→ u is in the extended version if it satisfies
the following properties:

• The left-hand side L is the term graph TG(t)

• The interface I is a copy of L, in which only the outgoing edges from
the root are removed, that is, lb and succ are undefined for the node
corresponding to the root of t

• For all nodes except the root of t, I is a copy of L in which for all nodes
succ and lb is defined, and by ` : I → L every node and edge is mapped
to itself.

• The right-hand side R is the union of TG(u) with the interface I.

• The morphism r : I → R maps every node or edge of the interface to
the corresponding item in R.

For a term rewriting system R we will denote by Rb(Re) the corresponding term
graph rewriting systems in the basic (extended) version.

Example 6.18. We interpret the term rewriting system R = {ρ} with the rule
ρ = f(a(x), c) → h(x). Then Rb = {ρb} and Re = {ρe} are the corresponding
sets of productions where the interface morphisms are denoted by the node positions:

Rb Re

f

a c

1 2
h f

a c

1 2
a c

h

a c

Termination is also called strong normalization and is usually abbreviated to
SN. For a term rewriting system R we will write:

• SN(R) if R is terminating on finite terms,

• SNb(R) if Rb is terminating on finite term graphs,

• SNe(R) if Re is terminating on finite term graphs.

Since terms can be interpreted as term graphs, every infinite reduction of terms
gives rise to an infinite reduction of term graphs in both versions. Further every
step in the basic version can be mimicked by a step in the extended version. Hence
if we have an infinite reduction in the basic version, then this also yields an infinite
reduction in the extended version, in which left-over remainders of the left-hand
sides, are ignored. This yields

SNe(R) =⇒ SNb(R) =⇒ SN(R)

for all right-linear term rewriting systems R.

62

6.2. Interpreting Term Rewriting in Term Graph Rewriting

The following example inspired by [Toy87] shows that right-linearity is essential
for the last implication. The term rewriting system

R = {f(0, 1, x)→ f(x, x, x), a→ 0, a→ 1}

is non-terminating in term rewriting as f(0, 1, a) rewrites in three steps to itself:

f(0, 1, a) ρ1→R f(a, a, a) ρ2→R f(0, a, a) ρ3→R f(0, 1, a)

But this cannot be mimicked in term graph rewriting without doing unraveling:
our techniques easily prove SNb.
For both implications the converse does not hold, as we will show now by

counterexamples. The single rule f(g(x))→ g(f(x)) is the standard example of a
string rewrite system that is terminating on strings but not on cycles, see [ZBK14],
so this satisfies SN but not SNb.
For the other implication, we consider the following single term rewrite rule

ρ = f(g(x)) → f(x) interpreted in both, the basic version Rb = {ρb} (shown
below left) and the extended version Re = {ρe} (shown below right) where the
interface morphisms are again denoted by the node positions:

Rb Re

f

g

f f

g g

f

g

f

g

g

1

2

3

f

g

g

1

2

3

(extended step)
⇒

Now let the term graph depicted in the left part
of the picture to the right be given. We have three
nodes 1, 2, 3 with lb(1) = f , lb(2) = lb(3) = g, and
succ(1) = 2, succ(2) = 3 and succ(3) = 2. In the
extended version, an injective morphism from L
to this graph is obtained by mapping the root of
L to 1, and the two nodes below it to 2 and 3
respectively. By applying the rule, the outgoing
f -edge from 1 is removed, the rest of the left-hand
side remains, and due to the right-hand side an edge from 1 to 3 is added, resulting
in the graph depicted in the right part of the picture. As this graph is isomorphic
to the original one, we see that this can be repeated forever, and the single rule
f(g(x))→ f(x) does not satisfy SNe.

In contrast, in the basic version the rule does not apply, since the middle node 2
has an incoming edge that is not in the left-hand side, and is not part of the
interface. Hence, due to the dangling edge condition, the rule cannot be applied.

An elementary argument for proving termination of the term rewriting system
f(g(x))→ f(x) is by counting the number of g’s: in every step the number of g’s
strictly decreases, so this cannot go on forever. As we will see later, this termination
argument also holds for proving SNb. Hence our single rule f(g(x))→ f(x) does
not satisfy SNe but satisfies SNb.
As we observed, every step in the basic version can be mimicked by a step in

the extended version. Conversely, after doing a number of unraveling steps, a step

63

6. Terms, Term Rewriting and Term Graph Encodings

in the extended version can be mimicked by a step in the basic version. Here
unraveling means that if a node has more than one incoming edge, a new node
may be created having the same outgoing edges as the original node, while one of
the incoming edges points to the new

f

g

g

f

g

g

g

f

g

g

(unravel)
⇒

(basic step)
⇒

node, and the others point to the orig-
inal node. In the example this can be
done for the middle node as depicted
in the picture to the right, after which
a step in the basic version can be done
yielding the same result as when ap-
plying the step in the extended version
directly.
It is worth to mention that the pushout complement for termgraphs, which is

computed when a term graph production is applied on a term graph, may not be
unique. Consider for instance the term rewrite rule ρ = a→ b interpreted as the
following term graph production (for this example, both versions look the same):

a b

Applying this term graph production to the term graph representing a single
constant a, results in two possible rewrite step scenarios. In the following, the
term graphs of the pushout complements are highlighted in the dashed boxes:

a

a

(PO) (PO)

b

b

a

a

(PO)

a

b

7

Please note that both term graphs in the dashed boxes, shown in the diagrams
above left and above right, make the left square a pushout. However, only for the
unlabelled node there exists a corresponding right-hand side pushout diagram
resulting in the term graph representing a single constant b. In [CD11] the
authors provide properties which ensure the existence of pushouts and pushout
complements for the application of term graph productions. These properties
are guaranteed to hold by using so-called evaluation rules, which are term graph
productions satisfying requirements that make them suitable to represent term
rewrite rules. In the following, we restrict our term graph productions to be in the
basic version or extended version. Therefore, similar to evaluation rules, our term
graph productions are based on term rewrite rules (for which we want to show
termination) and the existence of minimal pushout complements is guaranteed,
i.e. those term graphs where as many nodes as possible remain unlabelled.

Our next step is to transform term graph productions in the basic version and
extended version into graph transformation rules which can be analysed by the
tool Grez (see Section 5.5). If the graph transformation system is proven to
be terminating by Grez, we want to deduce termination of the original term
rewriting system.

64

6.3. From Term Graph Rewriting to Graph Transformation Systems

6.3. From Term Graph Rewriting to Graph
Transformation Systems

We propose two transformations from term graphs to graphs now, both having
the property that an infinite reduction in term graph rewriting translates to
an infinite graph transformation reduction. The main goal is not to develop
techniques specific for term graph rewriting systems, but to apply translations to
graph transformation systems for which the tool Grez can be applied. Hence if a
tool such as Grez can prove termination of the translated graph transformation
system, then we have a proof that the original term graph rewrite system is
terminating. The graphs in the graph transformation systems on which Grez can
be applied differ in three ways from term graphs: nodes may have any number of
outgoing edges, these outgoing edges are not numbered, and the labels are not in
the nodes but on the edges. We now define two transformations from term graphs
to graphs, more precisely, we will transform a term graph production to a graph
transformation rule in such a way that reductions are preserved.

6.3.1. Function Encoding
The first transformation is called function encoding. The structure of the graph
remains the same. The idea is that for a node labeled by a function symbol f of
arity n ≥ 1, the label of this node is removed, and the n ordered outgoing edges
in the term graph are labeled by f1, . . . , fn, respectively. In order to preserve
constants, we introduce a fresh node c(v), for every node v ∈ V for which lb(v) is
a constant; we write c(V) for the set of all fresh nodes.

Definition 6.19 (Function encoding). For a signature F we define the set
FF = {fi | f ∈ F , 1 ≤ i ≤ ar(f)} ∪ {f | f ∈ F , ar(f) = 0}. Furthermore,
for a term graph (V, lb, succ) over F we define the function encoded graph
F (V, lb, succ) = (V ∪ c(V), E, src, tgt, lab) over F , by

• E = {ev,i | v ∈ V, 1 ≤ i ≤ ar(lb(v))} ∪ {ev | v ∈ V, ar(lb(v)) = 0)},

• src(ev,i) = v for v ∈ V, 1 ≤ i ≤ ar(lb(v)),
src(ev) = v if ar(lb(v)) = 0,

• tgt(ev,i) = wi for v ∈ V, 1 ≤ i ≤ ar(lb(v)) and succ(v) = w1w2 · · ·wn,
tgt(ev) = c(v) if ar(lb(v)) = 0,

• lab(ev,i) = lb(v)i for v ∈ V, 1 ≤ i ≤ ar(lb(v)),
lab(ev) = lb(v) if ar(lb(v)) = 0.

If ϕ : (V, lb, succ)→ (V ′, lb′, succ′) is a term graph morphism, then the graph
morphism F (ϕ) : F (V, lb, succ)→ F (V ′, lb′, succ′) is defined by

• F (ϕ)(v) = ϕ(v) and
F (ϕ)(c(v)) = c(ϕ(v)) for v ∈ V ,

• F (ϕ)(ev,i) = eϕ(v),i and
F (ϕ)(ev) = eϕ(v) for every edge ev,i and ev in F (V, lb, succ).

If ρ = L ←` I →r R is a term graph production, then we define the graph
transformation rule by F (ρ) = F (L) �F (`)− F (I) −F (r)� F (R).

It is straightforward to check that the above definition turns F into a functor.

65

6. Terms, Term Rewriting and Term Graph Encodings

Example 6.20. Let the term rewriting rule ρ = f(a(x), c)→ h(x) and the term
graph productions ρb and ρe from Example 6.18 be given. The graph transformation
rules F (ρb) and F (ρe) look as follows, where the interface morphisms are denoted
by the node labels:

F (ρb) : x

r
f2

f1
a

c r x r x
h

F (ρe) :
β

α x

γ

r
f2

f1
a

c

β

xα

γ

r

a

c

β

xα

γ

r

a

c
h

Theorem 6.21 (Termination argument via function encoding). Let P be a
set of term graph productions and let ρ = L ←` I →r R be a production
from P . Let G,H be term graphs such that G⇒ρ H, then F (G)⇒F (ρ) F (H).
Hence, if {F (ρ) | ρ ∈ P} is terminating, then P is terminating as well.

However, we cannot conclude termination of the graph transformation system
obtained by the function encoding, if the corresponding term graph rewriting
system is terminating: by definition in a term graph a node labeled by f of arity n
has exactly n numbered outgoing edges that all get distinct labels when applying
F . Applying the corresponding graph transformation system to a graph having
nodes not satisfying this requirement may lead to an infinite reduction not having
a counterpart in the term graph world. As an example consider the term rewriting
system consisting of two rules ρ1 : f(a, b)→ f(b, b) and ρ2 : f(b, a)→ f(a, a). One
can prove that both the basic version and the extended version of the corresponding
term graph rewriting system is terminating, for instance by applying the tool Grez
on the number encoding of these systems, to be defined in the next subsection.

However, the transformation for the basic version, using the function encoding,
yields a graph transformation system {F (ρb1), F (ρb2)} with an infinite reduction.
The graph transformation system looks as follows, where the interface morphisms
are denoted by the node labels:

F (ρb1) :
r

f2

f1
a

b r r
f2

f1
b

b

F (ρb2) :
r

f2

f1
b

a r r
f2

f1
a

a

f2

f1

f2
a

b

a

f2

f1

f2
a

b

b

⇒F (ρb1)

⇐F (ρb2)

Using the above graph trans-
formation rules, the graph to the
right yields an infinite derivation
sequence as there exists a cycle. So
we conclude that the function en-
coding for proving termination of
term graph rewriting systems is sound by Theorem 6.21, but not complete.

66

6.3. From Term Graph Rewriting to Graph Transformation Systems

6.3.2. Number Encoding
The reason why the function encoding is not complete is that in a graph the
node corresponding to the root node of the left-hand side may have more than
one outgoing fi-edge for the same i, since this root node is part of the interface.
Instead in the number encoding for non-unary symbols extra nodes and edges are
added by which it is forced that the node with the numbered outgoing edges is
not part of the interface, and hence is not allowed to have dangling edges.

Definition 6.22 (Number encoding). For a signature F in which m is the
greatest occurring arity, we define FN = F ∪ {1, 2, . . . ,m}. Furthermore,
for a term graph (V, lb, succ) over F we define the number encoded graph
N(V, lb, succ) = (V × {0, 1}, E, src, tgt, lab) over FN by

• E = {ev,i | v ∈ V, 0 ≤ i ≤ ar(lb(v))},

• src(ev,0) = (v, 0) for v ∈ V ,
tgt(ev,0) = (v, 1) for v ∈ V if ar(lb(v)) 6= 1,
tgt(ev,0) = (succ(v), 0) for v ∈ V if ar(lb(v)) = 1,
lab(ev,0) = lb(v) for v ∈ V ,

• src(ev,i) = (v, 1) for v ∈ V , 1 ≤ i ≤ ar(lb(v)), ar(lb(v)) ≥ 2,
tgt(ev,i) = (succ(v)i, 0) for v ∈ V , 1 ≤ i ≤ ar(lb(v)), ar(lb(v)) ≥ 2,
lab(ev,i) = i for v ∈ V , 1 ≤ i ≤ ar(lb(v)), ar(lb(v)) ≥ 2.

If ϕ : (V, lb, succ)→ (V ′, lb′, succ′) is a term graph morphism, then the graph
morphism N(ϕ) : N(V, lb, succ)→ N(V ′, lb′, succ′) is defined by

• N(ϕ)(v, i) = (ϕ(v), i) for (v, i) ∈ V × {0, 1},

• N(ϕ)(ev,i) = eϕ(v),i for every edge ev,i in N(V, lb, succ).

If ρ = L ←` I →r R is a term graph production, then we define the graph
transformation rule by N(ρ) = N(L) �N(`)−N(I) −N(r)�N(R).

Again, it is straightforward to check that above definition turns N into a functor.
Note that the nodes (v, 1) and the edges ev,1 do not occur if ar(lb(v)) = 1; these
nodes and edges may be ignored respectively removed.
Example 6.23. Let the term rewriting rule ρ = f(a(x), c) → h(x) and the
term graph productions ρb and ρe from Example 6.18 be given. Using the number
encoding, the corresponding graph transformation rules N(ρb) and N(ρe) look as
follows, where the interface morphisms are denoted by the node labels:

N(ρb) : x

r

f

2

1 a

c r x r x
h

N(ρe) :
β

α x

γ

r

f

2

1 a

c

β

xα

γ

r

a

c

β

xα

γ

r

a

c
h

Our main result now states, that we can preserve the termination property
between term graph rewriting and graph transformation by using the number
encoding on productions in a basic version. The rules of the basic number encoding
automatically conform to the requirements of the following theorem.

67

6. Terms, Term Rewriting and Term Graph Encodings

Theorem 6.24 (Termination argument via basic number encoding). Let P
be a set of term graph productions, obtained by encoding term rewrite rules,
all having an interface which consists only of the root and variable nodes.
Then P is terminating on term graphs if and only if the graph transformation
system N(P) = {N(ρ) | ρ ∈ P} is terminating.

Therefore, we can conclude that we have soundness and completeness for the
basic number encoding, since in this case the rules conform to the requirement of
the theorem. For the extended number encoding the question of completeness is
still open, but we can exploit soundness for our termination proofs.

The remainder of this chapter is devoted to automatically proving termination
of term rewriting systems, interpreted as term graph rewriting systems in both
versions (basic and extended) and converted into graph transformation systems
using both encodings (function and number).

6.4. Experiments
We use term rewriting systems from the Termination Problems Database2 (short:
TPDB). The TPDB is a collection of termination problems and is used for
benchmarks in termination competitions. We encode some term rewriting systems
to graph transformation systems using both, the interpretations of the basic
version and the extended version together with the number and function encoding.
Afterwards we try to prove termination of the resulting graph transformation
systems by using the weighted type graph technique over ordered semirings from
Chapter 5. The following termination proof examples were found by our prototype
Java-based tool Grez (see also Section 5.5). An overview of the experiment
statistics is given in Appendix B. Furthermore, a complete list of all analyzed term
rewriting systems and their results can be found in Appendix B.1. The interface
morphisms in the following examples will always be denoted by letters written
next to the nodes.

Example 6.25. As a first example we take the term rewriting system called 273.
This term rewriting system R = {ρ} where ρ is defined as

ρ : g(x, a, b)→ g(b, b, a)

satisfies all three properties SN, SNb and SNe. Termination of R follows since the
number of b’s as third argument of the function g strictly decreases in each rewriting
step. The transformation for the basic version, using the function encoding, results
in the corresponding graph transformation system F (Rb) = {F (ρb)}, where F (ρb)
is depicted below.

F (ρb) :
x

r
g3

g1

g2
a

b
r x r

x

g3

g1

g2
b

a

b

2http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB/file/d43b82fe816c/TRS_Standard
3TPDB/TRS_Standard/Various04/27.xml

68

http://cl2-informatik.uibk.ac.at/mercurial.cgi/TPDB/file/d43b82fe816c/TRS_Standard

6.4. Experiments

We evaluate the rule of F (Rb) with respect
to the following weighted type graph Ttrop
over the tropical semiring. The weights are
written as superscripts. There is only one
possible morphism for the left-hand side
graph L into Ttrop which maps every node
to the left node of Ttrop.

Ttrop =

(g1|g2|a|b)0

g31

a0

g30

For the right-hand side graph R, every node can be mapped to the left node
of Ttrop, but there exists another morphism. The target of the g3-labeled edge
can be mapped to the right node of Ttrop. Therefore in this situation we get
wt(ϕL) = min(1) = 1 > 0 = min(1, 0) = wt(ϕR) where t : I → Ttrop maps all
interface nodes to the left node of Ttrop. Therefore the graph transformation system
F (Rb) is terminating, proving SNb(R) by Theorem 6.21.
We found a termination proof for the corresponding graph transformation system

F (Rb) using the function encoding of the basic version. We now use the same
termination proof technique for the function encoding of the extended version. In
the basic version, only the root node and the nodes representing variables are part
of the interface graph. The graph transformation system in the extended version
preserves almost everything from the left-hand side graph. The result of applying
the transformation for the extended version, using the function encoding, is the
following graph transformation system F (Re) = {F (ρe)}:

F (ρe) :

γ

α β

x

δ

r
g3

g1

g2
a

b
r

γ

α β

x

δ

a

b
r

x

α β

γ δ

g3

g1

g2
b

a

b

a

b

To prove termination of the graph transformation system F (Re) we simply use
the weighted type graph Ttrop over the tropical semiring again. There is still only
one possible morphism for the left-hand side graph L which maps all nodes to the
left node of Ttrop. The weight for the right-hand side graph R remains 0 as the
weight of the additional a-, and b-labeled edges do not increase the weight since
only the g3-labeled edges have a weight of 1. The graph transformation system
F (Re) is terminating, proving SNe(R) by Theorem 6.21.

Example 6.26. As a next example we take the term rewriting system called z174.
This term rewriting system R = {ρ1, ρ2, ρ3}
for the three rules defined to the right sat-
isfies SN and SNb, but not SNe. The term
rewriting system R is terminating, as fol-
lows from proving SNb as we will do now.

ρ1 : f(x, a(b(y)))→ f(c(d(x)), y)
ρ2 : f(c(x), y)→ f(x, a(y))
ρ3 : f(d(x), y)→ f(x, b(y))

The transformation for the basic version, using the number encoding, results in
the corresponding graph transformation system N(Rb) = {N(ρb1), N(ρb2), N(ρb3)},
where N(Rb) is depicted below.

4TPDB/TRS_Standard/Zantema_05/z17.xml

69

6. Terms, Term Rewriting and Term Graph Encodings

N(ρb1) : x

y

r

1

2

f

a b

x

y

r

y

x

r 2

1f
c d

N(ρb2) :
y

x

r 2

1f
c

x

y

r

x

y

r

1

2

f

a

N(ρb3) :
y

x

r 2

1f
d

x

y

r

x

y

r

1

2

f

b

We evaluate the rules of N(Rb) with respect
to the following weighted type graph T over
the arithmetic semiring. Again the weights
are written as superscripts. We can prove
that N(ρb1) and N(ρb2) are non-increasing
and N(ρb3) is decreasing, which means that

T =

(a|b|d|f |1)1

(c|2)2 a2

(f |1)1 (b|c|d|f |2)1

(b|d|f |1)1

a2

N(ρb3) can be removed using a relative termination argument. Due to the decreasing
number of b-labeled edges in rule N(ρb1), which remain constant in N(ρb2), we can
remove N(ρb1). Afterward we can remove N(ρb2) since it decreases the number of
c-labeled edges. The graph transformation system N(Rb) is terminating, since
there are no rules left. This proves SNb(R) by Theorem 6.24.

Last we show that SNe(R) does not hold by giving the infinite reduction below,
only using ρe3 at every step.

f

d c

d

1 2
f

d b

c

d

1 2
f

d b

b

cd

1 2ρe3⇒
ρe3⇒

ρe3⇒. . .

Other remarkable examples, which are listed in the table of Appendix B.1, are
the term rewriting system called Ex261Composition5, 019 6, enger-nloop-toOne7

and 2.30 8. In the basic version all can be shown terminating for both the function
and number encoding. The picture becomes more interesting if we restrict to
the arithmetic semiring. Here, we can easily show termination with the function
encoding, but not with the number encoding, for which the SMT solver does not
return a solution. Hence, even though it is not complete, the function encoding has
its right to exist: since it is simpler, termination proofs for the function encoding
are often found in substantially less time than for the number encoding.

5TPDB/TRS_Standard/Applicative_05/Ex2_6_1Composition.xml
6TPDB/TRS_Standard/AotoYamada_05/019.xml
7TPDB/TRS_Standard/EEG_IJCAR_12/enger-nonloop-toOne.xml
8TPDB/TRS_Standard/SK90/2.30.xml

70

Conclusion of Part II

Over the years, automatically proving termination has been a central topic in
rewriting research. Although it is widely agreed that term graph rewriting is the
way to go for efficient implementation of term rewriting, quite surprisingly hardly
any effort has been done in automatically proving termination of term graph
rewriting. One reason could be that for term graph rewriting it is substantially
harder since techniques strongly exploiting the term structure do not apply, like
path orders and dependency pairs. Being close to graph transformation systems, in
the previous chapters we studied how to transform term graph rewriting systems
to graph transformation systems, in order to apply automated techniques for
proving termination of graph transformation systems. In its turn, these techniques
were inspired by and closely related to matrix interpretations of string and cycle
rewriting. The weighted type graph approach does not subsume previous intro-
duced termination analysis methods, but rather complements them. In practice
one should always try several methods in parallel threads, as it is done in our
termination tool Grez. As a side effect, by applying our transformations to a
selection of term rewriting systems from the TPDB, we provided a substantial
set of test cases for automatically proving termination of graph transformation
systems.

Related Work
There is some work on termination analysis for graph transformation systems,
often using rather straightforward counting arguments. Some work is specifically
geared to the analysis of model transformations, taking for instance layers into
account.

The weighted type graphs over general semirings technique and their application
to the termination analysis of graph transformation systems is a generalization of
the tropical and arctic weighted type graph based approach of the paper [BKZ14].
The paper [BH+05] considers high-level replacement units (hlru), which are

transformation systems with external control expressions. The paper introduces a
general framework for proving termination of such hlrus, but the only concrete
termination criteria considered are node and edge counting, which are subsumed
by the weighted type graph method (for more details see [BKZ14]).
In [EE+05] layered graph transformation systems are considered, which are

graph transformation systems where interleaving creation and deletion of edges
with the same label is prohibited and creation of nodes is bounded. The paper
shows such graph transformation systems are terminating.

Another interesting approach encodes graph transformation systems into Petri
nets [VV+06] by introducing one place for every edge label and transforming
rules into transitions. Whenever the Petri net terminates on all markings, we can
conclude uniform termination of the original graph transformation rules. Note that
Example 5.22 can not be handled in this way by Petri nets. Starting with three
edges labelled 0, 1, count, rule ρ′2 transforms them into three labels 0, c, count,
which, via rule ρ′3, are again transformed into 0, 1, count. On the other hand
[VV+06] can handle negative application conditions in a limited way, a feature
we did not consider here.

Another termination technique via forward closures is presented in [Plu95]. Note
that the example discussed in this paper (termination of a graph transformation
system based on the string rewriting rules ab→ ac, cd→ db) can be handled by
our tool via tropical type graphs.
Furthermore in [Plu18] a modular termination analysis technique based on

sequential critical pairs for hypergraph transformation systems is introduced,
which resembles to a relative termination argumentation.

Not only termination techniques but also the interpretations of term rewriting
systems as term graph rewriting systems has been studied in other publications
as well. Traditionally, term graph rewriting is considered modulo unraveling,
by which the extended version is natural. But when splitting up steps in this
extended version into its building blocks of unraveling steps and basic steps, the
basic version is more natural.
When restricting to unary symbols the basic version exactly corresponds to

cycle rewriting as investigated in [ZBK14; SZ15].
Termination of term graph rewriting in the extended version is closer to infinitary

termination of rewriting than to termination. Infinitary rewriting and its infinitary
termination have been studied in [KV03; KS+05; KV05; Zan08].

Open Questions
Naturally, integration of (negative) application conditions to the graph transfor-
mation rules is an interesting direction for future work. Furthermore techniques for
pattern counting, i.e. whether a given graph transformation rule always decreases
the number of occurrences of a given subgraph, seems like a promising approach
which could be investigated in more detail.

Another area of future research that might be of great interest is non-uniform
termination analysis, i.e., to analyse whether the rules terminate only on a
restricted set of graphs. In applications it is often the case that rules do not
always terminate, but they terminate on all input graphs of interest (lists, cycles,
trees, etc.). For this, it will be necessary to find a suitable way to characterize
graph languages that is useful for the application areas and integrates well with
termination analysis.

With respect to the encoding between term graph rewriting systems and graph
transformation systems the question of completeness for Theorem 6.24 in case of
the extended number encoding is still open.

Part III.

Specifying Graph Languages

Motivation of Part III

Formal languages in general and regular languages in particular play an important
role in computer science. They can be used for pattern matching, parsing, verifi-
cation and in many other domains. For instance, verification approaches such as
reachability checking, counterexample-guided abstraction refinement [CG+03] and
non-termination analysis [EZ15] could be directly adapted to graph transformation
systems if one had a graph specification formalism with suitable closure properties,
computable pre- and postconditions and inclusion checks. Inclusion checks are
also important for checking when a fixpoint iteration sequence stabilizes.
While regular languages for words and trees are well-understood and can be

used efficiently and successfully in applications, the situation is less satisfactory
when it comes to graphs. Although the work of Courcelle [CE12] presents an ac-
cepted notion of recognizable graph languages, corresponding to regular languages,
this is often not useful in practice, due to the sheer size of the resulting graph
automata. Many specification formalisms that are usually used in abstract graph
transformation [SWW11] and verification, are based on type graphs. For instance,
shape graphs [Ren04a] can be seen as type graphs with additional annotations.
Other formalisms, such as application conditions [Ren04b; HP05] and first-order
or second-order logics, feature more compact descriptions, but there are problems
with expressiveness, undecidability issues or unsatisfactory closure properties.1
There are many approaches for specifying graph languages. One cannot say that
one is superior to the other, usually there is a tradeoff between expressiveness and
decidability properties, furthermore they differ in terms of closure properties.

Hence, it seems that there exists no one-fits-all solution. However, it is important
to study and compare specification formalisms (i.e., automata, grammars and
logics) that allow to specify potentially infinite sets of graphs. Therefore, our goal
in this Part III is to study some selected graph specification languages and classify
them according to their properties.
In fact, we investigate three different formalisms based on type graphs: first,

restriction graphs R, where the language consists of all graphs that do not admit
a homomorphic image of R. We also discuss the connection between type graph
and restriction graph languages. Then, in order to obtain a language with better
boolean closure properties, we study type graph logic, which consists of type
graphs enriched with boolean connectives (negation, conjunction, disjunction).
Finally, we consider annotated type graphs, where the annotations constrain the
number of items mapped to a specific node or edge, somewhat similar to the
proposals from abstract graph rewriting mentioned above.

In all three cases we are interested in closure properties (such as closure under
union, intersection, complementation and rule application) and in decidability
issues (such as decidability of the membership, emptiness and inclusion problems)
and in expressiveness.

1A more detailed overview over related formalisms is given in the conclusion of Part III on
page 101.

Outline:
After introducing additional preliminaries in Section 7.1, in Section 7.2 we consider
an alternative specification formalism aside from type graph languages, namely
the restriction graph language of a graph R, consisting of all graphs to which there
is no homomorphism from R. In Section 7.3, in order to obtain languages with
better boolean closure properties, we study type graph logic, which consists of type
graphs enriched with boolean connectives. Finally, in Section 8.1 we introduce
ordered monoids which are used to define annotations and multiplicities for graphs
in Section 8.2. In Section 8.3 we consider multiply annotated type graphs which
are annotated with sets of pairs of multiplicities. We investigate closure and
decidability properties for all three frameworks in their corresponding subsections.
All proofs can be found in Appendix A.3 and A.4.

“High achievement always takes place in the framework
of high expectation.”

Charles Kettering (1876-1958)

7
Pure Type Graphs, Restriction Graphs

and Type Graph Logic

In this chapter we introduce two frameworks of graph languages. One that is
characterized by a somewhat dual property of the type graph languages (intro-
duced in Chapter 4) and one which is enriched by boolean operators. After a
short additional preliminary section which introduces the notion of cores, we
define restriction graph languages which include all graphs that do not contain a
homomorphic image of a given restriction graph. Next, we discuss for type graph
languages and restriction graph languages some properties such as closure under
set operators, decidability of emptiness and inclusion, decidability of closure under
rewriting via double-pushout rules, and discuss the relationship between these
two classes of graph languages. Finally, we introduce a logic based on type graphs
and analyse the closure and decidability properties of this framework as well.

7.1. Additional Preliminaries - Retracts and Cores
We revisit the concept of retracts and cores from [NT00]. They are a convenient
way to minimize type graphs, and can be obtained from any graph of the class by
considering so-called retracts which further reduce the graph. In [CM77], retracts
were also studied under the name of folding to minimize conjunctive queries in
relational database systems. The intuition behind a retract is, to find a proper
subgraph structure of a host graph, which admits a total homomorphism from the
host while mapping the subgraph structure to the host via an identity morphism.

Definition 7.1 (Retract and core). A graph H is called a retract of a graph
G if H is a subgraph of G and in addition there exists a morphism ϕ : G→ H,
which is the identity when restricted to H, i.e., ϕ|H = idH . A graph H is
called a core of G, written H = core(G), if it is a retract of G and has itself
no proper retracts.

7. Pure Type Graphs, Restriction Graphs and Type Graph Logic

Example 7.2. The graph H is a retract of G, where the inclusion δ is indicated
by the numbers under the nodes, while morphism ϕ is indicated by the numbers
over the nodes:

G = 1 2 3 4

5 6

A

A

B

B

B ϕ
�
δ

1, 5

1

2, 4

2

3, 6

3
A B = H

Since the graph H does not have a proper retract it is also a core of G.

Cores are the minimal representatives of homomorphism equivalence classes,
as all graphs G,H with G ∼ H have a unique core up to isomorphism [NT00].
Therefore, for all type graphs describing the same type graph language, it makes
sense to speak of the core. Please note, that the computation of the core is an
NP-hard problem. This can be easily seen from a reduction from 3-colourability:
Let T be a “triangle” graph with three nodes and edges connecting all pairs of
distinct nodes (cf. Example 4.6). A graph G is 3-colourable if and only if the core
of G]T (the disjoint union of G and T) is T . Therefore, in [KNN18] we employed
SAT- and SMT-solvers to efficiently compute core graphs.

7.2. Type Graph and Restriction Graph Languages
As explained in Chapter 4 specifying graph languages using type graphs gives us
the possibility to forbid certain graph structures by not including them into the
type graph. Another way (possibly more explicit) to specify languages of graphs
not including certain structures, is the following one.

Definition 7.3 (Restriction graph language). Let R be a Λ-labelled graph.
Its restriction graph language LR(R) is defined as:

LR(R) = {G | R9 G}.

Hence, LR(R) includes all graphs G that do not contain a homomorphic image
of R. Restriction graph languages provide another way of representing graph
languages that is in several respects dual to type graphs.
Even if the graphs used for specifying restriction graph languages are just

ordinary graphs, we will in the following call them restriction graphs in order to
emphasize their role.

Example 7.4. The following restriction graph R over the edge label set Λ = {A,B}
specifies the language LR(R) consisting of those graphs which do not contain an
A-labelled loop and a B-labelled loop at the same time:

LR(A B) =
{
∅ , A , B , A B , . . .

}

We will consider the relationship between the class of languages introduced
in Definitions 4.1 and 7.3 in Section 7.2.3. Next, we investigate closure and
decidability properties for both classes of languages.

78

7.2. Type Graph and Restriction Graph Languages

7.2.1. Closure and Decidability Properties
Graph languages specified by either a type graph or a restriction graph enjoy
similar decidability properties. We compare the two classes of languages with
respect to decidability of the membership, emptiness and language inclusion
problem.

Proposition 7.5 (Decidability results for type/restriction graph languages).
For a graph language L characterized by a type graph T (i.e. L = L(T)) or by
a restriction graph R (i.e. L = LR(R)) the following problems are decidable:

1. Membership, i.e. for each graph G it is decidable if G ∈ L holds.

2. Emptiness, i.e. it is decidable if L = ∅ holds.

Furthermore, language inclusion is decidable for both classes of languages:

3. Given type graphs T1 and T2, L(T1) ⊆ L(T2) holds iff T1 → T2.

4. Given restriction graphsR1 andR2, LR(R1) ⊆ LR(R2) holds iffR1 → R2.

Type graph and restriction graph languages enjoy the following complementary
closure properties with respect to set operators. Note that the product in the
category of graphs is obtained by taking separately the (cartesian) products of
nodes and edges, which induce the other components in a unique way. Similarly,
coproducts of graphs are built by taking coproducts (disjoint unions) of nodes
and edges in the category of sets.

Proposition 7.6 (Closure properties of type/restriction graph languages).
Type graph languages are closed under intersection (by taking the product of
type graphs) but not under union or complement.
Restriction graph languages are closed under union (by taking the coproduct
of restriction graphs) but not under intersection or complement.

7.2.2. Closure under Double-Pushout Rewriting
Next, we discuss how we can show that a graph language L is closed under a
given graph transformation rule ρ = (L�ϕL− I −ϕR�R). Given a graph language
L, we say that it is closed under a rule ρ (also called invariant) if membership in
L is preserved by the application of ρ, that is, for all graphs G and H such that
G⇒ρ H, it holds that G ∈ L implies H ∈ L. For both type graph languages and
restriction graph languages, separately, we characterize sufficient and necessary
conditions which show that closure under rule application is decidable.

The condition for restriction graph languages is related to a condition already
discussed in [HW95]. It is sufficient to check if for each overlap H of the right-hand
side and the restriction graph S that S is already present in the predecessor of H,
that is, the graph obtained by applying the rule backwards. If this is the case, then
the absence of the homomorphic image of S is an invariant which is maintained
by rule application.

79

7. Pure Type Graphs, Restriction Graphs and Type Graph Logic

Proposition 7.7 (Closure under DPO rewriting for restriction graphs). A
restriction graph language LR(S) is closed under a rule ρ = (L�ϕL−I−ϕR�R)
if and only if the following condition holds: for
every pair of morphisms α : R→ F , β : S →
F which are jointly surjective, all graphs E
that we obtain by applying the rule ρ with
(co-)match α backwards to F , satisfy S → E.

L

��

I
ϕLoo

ϕR //

��

R

α
��

S

β��ww
E C ′oo // F

Closure under rewriting for a graph language, specified by a type graph, is
decidable as long as the type graph is a core.

Proposition 7.8 (Closure under DPO rewriting for type graphs). A type
graph language L(T) is closed under a rule ρ = (L�ϕL−I−ϕR�R) if and only if
for each morphism tL : L→ core(T) there exists a morphism tR : R→ core(T)
such that tL ◦ ϕL = tR ◦ ϕR, that is:

L I R

core(T)

⇔L(T) is closed under application of ρ

ρ

∀tL

ϕL ϕR

∃tR

To conclude this subsection, we show that the only if part (⇒) of Proposition 7.8
cannot be weakened by considering morphisms to the type graph T , instead of
to core(T). We give a counterexample which shows that there exist type graphs,
which are closed under a set of rules R but the diagram to the above right does
not commute for all possible morphisms tL : L→ T . In fact, consider the following
type graph T and the rule ρ:

ρ =
1 2

A
1 2 1 2

B
T =

A

B

A

The type graph T contains the flower node, i.e., it has T {A,B}
R

as subgraph.
This ensures that each graph G, edge-labeled over Λ = {A,B}, is in the language
L(T), and thus by rewriting any graph G ∈ L(T) into a graph H using ρ it is
guaranteed that H ∈ L(T). However there is a morphism tL : L → T , the one
mapping the A-labeled edge of L to the left A-labeled edge of T , such that there
exists no morphism tR : R→ T satisfying tL ◦ ϕL = tR ◦ ϕR. Namely, by mapping
the binary A-labelled edge in L to the non-loop edge in T . Due to the absence of
a parallel B-labelled edge the diagram can not commute.

7.2.3. Relating Type Graph and Restriction Graph Languages
Both type graph and restriction graph languages specify collections of graphs
by forbidding the presence of certain structures. This is more explicit with the
use of restriction graphs, though. A natural question is how the two classes of
languages are related. A partial answer to this is provided by the notion of duality

80

7.3. Type Graph Logic

pairs and by an important result concerning their existence, presented in [NT00].1
Intuitively a duality pair consists of a type graph and a restriction graph whose
graph languages are equivalent.

Definition 7.9 (Duality pair). Given two graphs R and T , we call T the
dual of R if for every graph G it holds that G→ T if and only if R9 G. In
this case the pair (R, T) is called a duality pair.

Clearly, we have that (R, T) is a duality pair if and only if the restriction graph
language LR(R) coincides with the type graph language L(T).

Example 7.10. Let Λ = {A,B} be given. The following is a duality pair:

(R, T) =
(

1 2 3
A B ,

1 2
A,BA B

)

Since node 1 of T is not the source of a B-labeled edge and node 2 is not the target
of an A-labeled edge, for every graph G we have G→ T iff it does not contain a
node which is both the target of an A-labeled edge and the source of a B-labeled
edge. But it contains such a node if and only if R→ G.

One can identify the class of restriction graphs for which a corresponding type
graph exists which defines the same graph language.

Fact 7.11 (Duality pair construction [NT00]). Results from [NT00] state2that
given a core graph R, a graph T can be constructed such that (R, T) is a
duality pair if and only if R is a tree.

Thus we have a precise characterisation of the intersection of the classes of type
and restriction graph languages: L belongs to the intersection if and only if it is
of the form L = LR(R) and core(R) is a tree. The results from [NT00] can be
used to construct a type graph T from a given restriction graph R. It is worth
mentioning that the construction of T from R contains two exponential blow-ups.
However, the results stated in [NT00] can not be used to derive a construction of
R from T .

All this can be interpreted by saying that type graphs have limited expressiveness
if used to forbid the presence of certain structures.

7.3. Type Graph Logic
In this section we investigate the possibility to define a language of graphs using a
logical formula over type graphs. Such a logic could alternatively also be defined
based on restriction graphs. A related logic, for injective occurrences of restriction
graphs, is studied in [OEP08], where the authors also give a decidability result
via inference rules.

1Note that in [NT00] graphs are simple, but it can be easily seen that for our purposes the
results can be transferred straightforwardly.

2This refers to Lemma 2.3, Lemma 2.5 and Theorem 3.1 in [NT00].

81

7. Pure Type Graphs, Restriction Graphs and Type Graph Logic

We start by defining the syntax and semantics of a type graph logic (TGL).

Definition 7.12 (Syntax and semantics of TGL). A TGL formula F over a
fixed set of edge labels Λ is formed according to the following grammar:

F := T | F1 ∨ F2 | F1 ∧ F2 | ¬F, where T is a type graph.

Each TGL formula F denotes a graph language L(F) ⊆ |GraphΛ| defined
by structural induction as follows:

L(T) = {G ∈ |GraphΛ| | G→ T} L(¬F) = |GraphΛ| \ L(F)
L(F1 ∧ F2) = L(F1) ∩ L(F2) L(F1 ∨ F2) = L(F1) ∪ L(F2)

Example 7.13. Let the following TGL formula F over Λ = {A,B} be given:

F = ¬ A ∧ ¬ B

The graph language L(F) consists of all graphs which do not consist exclusively of
A-edges or of B-edges, i.e., which contain at least one A-labeled edge and at least
one B-labeled edge, something that can not be expressed by pure type graphs.

With respect to the closure properties we get more positive results when using
the TGL formula instead of a pure type graph, which we will show next.

7.3.1. Closure and Decidability Properties for Type Graph Logic
Using pure type graphs to specify the type graph language we got negative results
with respect to the closure under union and complement (see Proposition 7.6). In
the case of the type graph logic we can use the semantics of the formulae to get
positive results for all the desired closure properties.

Proposition 7.14 (Closure properties of TGL). Graph languages L(F) char-
acterized by a TGL formula F , are closed under union, intersection and
complement.

We now present some positive results for graph languages over TGL formulas
with respect to decidability problems. Due to the conjunction and negation
operator, the emptiness (or unsatisfiability) check is not as trivial as it is for
pure type graphs. Note also that thanks to the presence of boolean connectives,
inclusion can be reduced to emptiness.

Proposition 7.15 (Decidability properties of TGL). For a graph language
L(F) characterized by a TGL formula F , the following problems are decidable:

• Membership, i.e. for all graphs G it is decidable if G ∈ L(F) holds.

• Emptiness, i.e. it is decidable if L(F) = ∅ holds.

• Language inclusion, i.e. given two TGL formulas F1 and F2 it is decidable
if L(F1) ⊆ L(F2) holds.

82

7.3. Type Graph Logic

As already mentioned in the introduction of Part III, the different specification
frameworks have the purpose to be used for verification. Therefore, it is natural to
ask for a framework which is able to compute weakest preconditions and strongest
postconditions, i.e. given a graph language and a set of rules, we want to specify
the language of all successors (or the language of all predecessors) in our formalism.
However, neither type graphs nor the type graph logic can count and hence can
not express that all items of the newly created right-hand occur exactly once. The
computation of postconditions is impossible in these frameworks.
Therefore, in the next chapter we will improve the expressiveness of the type

graphs themselves, rather than using an additional logic to do so.

83

“Truth is ever to be found in simplicity, and not in the
multiplicity and confusion of things.”

Isaac Newton (1642-1727)

8
Annotated Type Graphs

In this chapter we will equip graphs with additional annotations, thus making our
graph languages more expressive. As explained in the introduction of Part III, this
idea was already used similarly in abstract graph rewriting [Ren04a]. In contrast
to most other approaches, we will investigate the problem from a categorical point
of view. Another reason for considering annotated type graphs is that they are a
suitable formalism for computing post-conditions, a task which is studied in more
detail in Chapter 10.

8.1. Additional Preliminaries - Ordered Monoids
We will annotate each type graph with pairs of annotations, denoting upper and
lower bounds for nodes and edges. A graph will belong to the corresponding
language only if it has a morphism to the type graph satisfying such bounds.
The bounds of the type graph are elements from an ordered monoid, i.e. a

monoid which comes equipped with a partial order for its elements.

Definition 8.1 (Ordered monoid). An ordered monoid (M,+,≤) consists of
a setM, a partial order ≤ and a binary operation + such that

• (M,+, 0) is a monoid.

• The partial order is compatible with the monoid operation, in particular
a ≤ b implies a+ c ≤ b+ c and c+ a ≤ c+ b for all a, b, c ∈M.

An ordered monoid is commutative if + is commutative.

We denote by Mon the category having ordered monoids as objects and monoid
homomorphisms which are monotone as arrows. In the following we will sometimes
denote an ordered monoid by its underlying set.

Definition 8.2 (Homomorphisms of ordered monoids). LetM1,M2 be two
ordered monoids. A map h : M1 →M2 is called monotone if a ≤ b implies
h(a) ≤ h(b) for all a, b ∈ M1. It is called a homomorphism if in addition
h(0) = 0 and h(a+ b) = h(a) + h(b).

8. Annotated Type Graphs

Example 8.3. Let n ∈ N and take Mn = {0, 1, . . . , n, ∗} (zero, one, . . . , n,
many) with 0 ≤ 1 ≤ · · · ≤ n ≤ ∗ and addition as monoid operation with the
proviso that for x, y ∈ Mn, we have x + y = ∗ if the sum is larger than n. In
addition x+ ∗ = ∗ for all x ∈Mn.

Furthermore, given a set S and an ordered monoid (M,+,≤), it is easy to check
that (MS ,+,≤) is an ordered monoid, where the elements of the exponentiation
MS = {a : S →M} are functions from S toM and both, the partial order and
the monoidal operation, are taken pointwise. An ordered monoid likeMn (the
monoid given in the previous Example 8.3) can be used to count the number of
nodes or edges contained in a graph. However, there are other monoids, which can
for instance be used to specify whether there exists a path between two nodes.
The following path monoid PG is useful if we want to annotate a graph with

information over which paths are present. Note that due to the folding caused by
the abstraction, a path in the type graph does not necessarily imply the existence
of a corresponding path in a graph of the language. Hence annotations based on
such a monoid can yield useful additional information.

Example 8.4. Given a graph G and the transitive closure E+
G ⊆ VG × VG of the

edge relation EG = {(srcG(e), tgtG(e)) | e ∈ EG}. The path monoid PG of G has
the carrier set P(E+

G), i.e. the powerset of the transitive closure E+
G . The partial

order is simply set inclusion and the monoid operation is defined as follows: given
P0, P1 ∈ PG, we have

P0 + P1 = {(v0, vn) | ∃v1, . . . , vn−1 : (vi, vi+1) ∈ Pji ,
i ∈ {0, . . . , n− 1}, j0 ∈ {0, 1}, ji+1 = 1− ji}

That is, new paths can be formed by concatenating alternating path fragments
from P0, P1. It is obvious to see that + is commutative and one can also show
associativity. P = ∅ is the unit.

Using ordered monoids we are now ready to define annotations for our graphs
and how they are used to make graph languages more expressive.

8.2. Annotations and Multiplicities
The annotations are defined, in general, as elements of an ordered monoid, and
in the concrete case that we use as running example they are functions mapping
nodes and edges of the type graph to corresponding multiplicities. This idea has
earlier been proposed in [Kön99]. Please note that the following formal definition
of our annotations can easily be extended to a functor for objects from an arbitrary
given category to Mon.

Definition 8.5 (Annotations). Given a functor A : GraphΛ → Mon, an
annotation based on A for a graph G is an element a ∈ A(G). We assume
that for each graph G there is a standard annotation based on A that we
denote by sG, thus sG ∈ A(G).

86

8.2. Annotations and Multiplicities

An annotation functor assigns an ordered monoid to every graph. We write Aϕ,
instead of A(ϕ), for the action of functor A on a graph morphism ϕ. To make
this notion of an annotation functor easier to understand we introduce a concrete
instance of the functor A in form of the functor Bn.

Definition 8.6 (Multiplicities). Given an ordered monoidMn = {0, . . . , n, ∗}
with n ∈ N0 we define the functor Bn : GraphΛ →Mon as follows:

• for every graph G, Bn(G) = {a : (VG ∪ EG)→Mn} =MVG∪EG
n ;

• for every graph morphism ϕ : G→ G′ and a ∈ Bn(G),
we have Bnϕ(a) ∈ Bn(G′) with:

Bnϕ(a)(y) =
∑

ϕ(x)=y
a(x), where x ∈ (VG ∪ EG) and y ∈ (VG′ ∪ EG′)

Notice that, if y is not in the image of ϕ, Bnϕ(a)(y) = 0.

Annotations based on the functor Bn are called multiplicities.
For a graph G, its standard multiplicity sG ∈ Bn(G) is defined as the

function which maps every node and edge of G to 1.

The action of the functor Bn on a morphism transforms a multiplicity by
summing up (inMn) the values of all items of the source graph that are mapped
to the same item of the target graph. Please note, that in the specific case of
the functor Bn (our running example in this thesis) the ordered monoid is not
Mn but the set of possible annotation functions from the graph items to Mn.
Therefore an annotation based on a functor Bn associates every node or edge of a
graph with a number (or the top value ∗).
Example 8.7. Let the following graphs G and G′ with multiplicities a ∈ B3(G)
be given. The multiplicity of each graph element is indicated by the element of
M3 = {0, 1, 2, 3, ∗} shown in the brackets. Furthermore, let ϕ : G→ G′ be a graph
morphism indicated by the numbers above the nodes.

G =
[1] [2] [2] [1] [1]

1 2 3 4 5

A[2]

A[0] B[∗] B[1] ϕ
−→ 1, 2 3, 4, 5A B = G′

Let a′ = B3
ϕ(a). We compute a′(y) for each element y ∈ G′

by summing up the multiplicities of all preimages, i.e. they
build the sum of all a(x) ∈ B3(G) for which ϕ(x) = y.
The annotation a′ is depicted on the right.

[3] [∗]
A[2] B[∗]

Some of the results that we will present in the rest of the chapter will hold for
annotations based on a generic functor A, some only for annotations based on
functors Bn, i.e. for multiplicities.

Note that the multiplicity functor Bn is only one of many possible instances of
our generic annotation functor A. For instance, we can consider an annotation
functor which records the out-degree of a node or we can consider an annotation
functor based on the path monoid from Example 8.4. Such a path annotation
functor T is defined below.

87

8. Annotated Type Graphs

Definition 8.8 (Path annotation). The functor T : GraphΛ → Mon is
defined as follows:

• for every graph G, T (G) = PG;

• for every graph morphism ϕ : G→ G′ and P ∈ T (G), we have Tϕ(P) ∈
PG′ with:

Tϕ(P) = {(ϕ(v), ϕ(w)) | (v, w) ∈ P}.

For a graph G, its standard annotation sG ∈ T (G) is the transitive closure of
the edge relation, i.e., sG = E+

G .

Equipping a type graph with an annotation makes our specified graph languages
more expressive since it gives rise to additional properties which need to be satisfied
by all graphs contained in the language.

Definition 8.9 (Graph languages of annotated type graphs). We say that a
graph G with standard annotation sG ∈ A(G) is represented by an annotated
type graph T [a] with a ∈ A(T) whenever there exists a morphism ϕ : G→ T
such that Aϕ(sG) ≤ a. We will write G ∈ L(T [a]) in this case.

Example 8.10. Consider the annotated type graph T [PT] with the path annotation
PT = {(1, 2), (2, 3)} ∈ T (T) shown to the right.
As evident from the picture we will denote the
possible existence of a path between nodes by
additional dashed parallel edges. Therefore, the

T [PT] =
1 2 3

annotated type graph T [PT] specifies a graph language consisting of standard
annotated graphs G[sG] for which there exists a graph morphism ϕ : G→ T such
that there may exist a path between nodes that are being mapped to the type graph
nodes 1 and 2 and similar to the nodes 2 and 3, but there must not be a path between
the nodes in G which are mapped to the type graph nodes 1 and 3. For instance,
the graph G[sG] (shown below to the left) with sG = {(1, 2), (3, 4)} ∈ T (G) satisfies
the condition in T , i.e. G ∈ L(T [PT]), due to the fact that there exists a graph
morphism ϕ : G→ T for which we get Tϕ(sG) ⊆ PT .

G[sG] =
1 2 3 4

G′[sG′] =
1 2 3

However, the standard annotated graph G′[s′G] (shown above to the right) is not
included in the graph language specified by T [PT], i.e. G′ /∈ L(T [PT]), since the
standard annotation s′G = {(1, 2), (2, 3)(1, 3)} ∈ T (G′) describes a path from node
1 to node 3 due to the transitive closure of the edge relation.

Please note that compared to the pure type graph languages L(T) from Chap-
ter 4 we do not have the property that a type graph T is always contained in
its own specified language (see also Example 4.3). For instance, in Example 8.10
above we have G′ ∼= T but since G′ /∈ L(T [PT]) we can conclude T /∈ L(T [PT]).

Furthermore, a type graph may not only have a single annotation but it can be
equipped with a set of annotations, as we will see in the upcoming sections.

88

8.3. Multiply Annotated Graphs

8.3. Multiply Annotated Graphs
The type graphs which we are going to consider are enriched with a set of pairs
of annotations. Each pair can be interpreted as establishing a lower and an upper
bound to what a graph morphism can map to the graph. The motivation for
considering multiple (pairs of) annotations rather than a single one is mainly to
ensure closure under union.

Definition 8.11 (Multiply annotated graphs). Let A : GraphΛ →Mon be
a functor. A multiply annotated graph G[M] (over A) is a graph G equipped
with a finite set of pairs of annotations M ⊆ A(G)×A(G), such that ` ≤ u
for all (`, u) ∈M . We will write G[`, u] as an abbreviation of G[{(`, u)}].
An arrow ϕ : G[M] → G′[M ′], also called a legal morphism, is a graph

morphism ϕ : G → G′ such that for all (`, u) ∈ M there exists (`′, u′) ∈ M ′
with Aϕ(`) ≥ `′ and Aϕ(u) ≤ u′.

In case of annotations based on Bn, we will often call a pair (`, u) a double
multiplicity.

Example 8.12. Consider the following multiply annotated graphs (over B2)
G[`, u] and H[`′, u′], both having one double multiplicity.

G[`, u] =
[1,1] [1,∗]

A [0,1]
H[`′, u′] =

[1,∗]
A [0,∗]

Referring to the picture, for example G[`, u] is defined as follows: If e is the
single edge of G, labelled by A, then `, u : {e, srcG(e), tgtG(e)} → M2, and in
particular `(e) = 0, `(srcG(e)) = `(tgtG(e)) = 1, u(e) = u(srcG(e)) = 1, and
u(tgtG(e)) = ∗. Thus multiplicities are represented by writing the lower and upper
bounds next to the corresponding graph elements. Note that there is a unique,
obvious graph morphism ϕ : G→ H, mapping both nodes of G to the only node of
H. Concerning multiplicities, by adding the lower and upper bounds of the two
nodes of G, one obtains the interval [2, ∗] which is included in the interval of
the node of H, [1, ∗]. Similarly, the double multiplicity [0, 1] of the edge of G is
included in [0, ∗]. Therefore, since both B2

ϕ(`) ≥ `′ and B2
ϕ(u) ≤ u′ hold, we can

conclude that ϕ : G[`, u]→ H[`′, u′] is a legal morphism.

Multiply annotated graphs and legal morphisms form a category.

Lemma 8.13. The composition of two legal morphisms is a legal morphism.

We are now ready to define how a graph language L(T [M]) looks like.

Definition 8.14 (Graph languages of multiply annotated type graphs). We
say that a graph G is represented by a multiply annotated type graph T [M]
whenever there exists a legal morphism ϕ : G[sG, sG]→ T [M], i.e., there exists
(`, u) ∈ M such that ` ≤ Aϕ(sG) ≤ u. We will write G ∈ L(T [M]) in this
case.

89

8. Annotated Type Graphs

It follows from the definition that whenever M = ∅, then we get L(T [M]) = ∅. In
the special case of the functor Bn, the graph language L(T [M]) coincides with
L(T) from Definition 4.1, if there exists a double multiplicity (`, u) ∈M which
assigns [0, ∗] to every node and edge in T .

Note that pure type graph languages L(T) are always infinite if T 6= ∅. However,
if we use annotations based on Bn, then a graph language L(T [M]) is finite up
to isomorphism if there does not exist a double multiplicity (`, u) ∈ M with u
assigning the upper bound ∗ to at least one node or edge in T .

Example 8.15. Let the standard annotated type graph T [sT , sT] in the figure
below be given. As evident from the figure, the resulting graph language L(T [sT , sT])
only contains one graph, that is T , up to isomorphism.

∅
G0 G1

A

G2

AA

G3

[1, 1]
A [1, 1]T [sT , sT] =

Both, G0 and G1 do not satisfy the lower bound of the A-labelled loop of T [sT , sT].
Furthermore, for G3 one would need to map both of its A-labelled loops to the
single loop of T [sT , sT]. Since annotations (in this case the standard annotation 1)
are summed up, we would violate the upper bound of the targeted loop. Only for
the graph G2 (which represents T [sG, sG]) there exists a legal morphism into the
annotated type graph, which respects all lower and upper bounds.

Multiply annotated type graphs have a higher expressiveness compared to pure
type graphs and restriction graphs, since one can enforce certain structures to
appear in the language, by increasing the lower bounds as thresholds. The aim of
this thesis is to find specification mechanisms, which are useful for the verification
of systems. Before investigating decidability results and closure properties for
the graph languages specified by multiply annotated type graphs, we show some
example properties, that can be expressed by annotated type graphs.

Example 8.16. In order to illustrate the use of annotated type graphs in appli-
cations, we model a client-server scenario with the following specification:

• There exists exactly one server.

• An arbitrary number of users can connect to the server, even using multiple
connection sessions at the same time.

• There exists one user with special administrative rights.

• At least one user is always connected to the server.

• The server can host an arbitrary number of files from which at most one
can be edited at the same time.

90

8.3. Multiply Annotated Graphs

The scenario above can be modelled using an annotated type graph T1[`, u] (see
below). We will use the following edge labels: A-labelled loops for administrative
rights, C-labelled edges for connections between users and the server and E-labelled
edges which are pointing to the file that is currently edited. The left-hand node
represents users, the middle node the server and the right-hand node files.

Now we extend the requirements of our specification:

• The user with the administrative rights is always connected to the server.

• There has to be at least one file on the server.

We use the annotated type graph T2[`′, u′] (depicted below to the right), to model
the extended scenario.

T1[`, u] =
[1, ∗] [1, 1] [0, ∗]

A [1, 1]

C [1, ∗] E [0, 1]
T2[`′, u′] = [1, 1] [1, 1] [1, ∗]

[0, ∗]

A [1, 1]

C [1, 1]

C [0, ∗]

E [0, 1]

Since the second scenario is more restrictive than the first,
there exist graphs in L(T1[`, u]), which do not fulfill the
additional requirements of the extended specification. For
instance the graph G shown to the right is such a model,
which describes that there exists a user with administrative
rights but he is not connected to the server.

A

C

In contrast to type graph languages, core graphs can not be used to minimize
annotated type graphs since they do not preserve graph languages specified by
multiply annotated type graphs.
Example 8.17. Consider the following annotated type graph T [`, u] together
with the corresponding core graph core(T) alongside the unique graph morphism
ϕ : T → core(T). We annotate the core with the double multiplicity (`′, u′) =
(B2

ϕ(`),B2
ϕ(u)) such that ϕ′ : T [`, u]→ core(T)[`′, u′] becomes a legal morphism in

the framework of annotated type graphs. Then graph G is a witness for the fact
that L(T [`, u]) 6= L(core(T)[`′, u′]) since G ∈ L(core(T)[`′, u′]) but G /∈ L(T [`, u]).

[1, 1] [1, 1] [1, 1]
A [0, 1] A [0, 1]

T [`, u] =
[2, 2] [1, 1]

A [0, 2] = core(T)[`′, u′]

A

A

G =

ϕ′

The double multiplicity (`′, u′) = (B2
ϕ(`),B2

ϕ(u)) is not the only possibility to
annotate core(T). However, by either increasing `′ or decreasing u′, the morphism
ϕ′ will no longer be legal and one could easily find a graph contained in L(T [`, u])
but not in L(core(T)[`′, u′]). On the other hand, by either decreasing `′ or increasing
u′ the graph G remains as a witness for the fact that the language is not preserved.
Therefore, we can conclude that there can not exist an annotated core graph
core(T)[`′, u′] of T [`, u] specifying the same language.

91

8. Annotated Type Graphs

8.3.1. Local vs. Global Annotations
Note that our multiplicities are global, i.e., we count all items that are mapped to
a specific item in the type graph. This holds also for edges, as opposed to UML
multiplicities, which are local wrt. the classes which are related by an edge (i.e.,
an association). Consider for instance two nodes A,B which might also represent
classes in an UML class diagram. Assume that these nodes are connected by an
edge with UML multiplicity 1 at both endpoints. This means that each instance
of A has exactly one outgoing edge to an instance of B. (In other words: if we
restrict to edges going to B-nodes, each A-node has out-degree 1.) A symmetric
condition holds for instances of B. However, there could be many instances of both
A and B and hence many edges between such instances. Similar local multiplicity
constraints are considered in [Ren04a; BB+08].
We will show that it is not straightforward to integrate such annotations into

our framework, since they are not always functorial in the sense of Definition 8.5.
We will demonstrate this with an example.

Example 8.18. For the sake of this example we assume that we have local
annotations restricting the out-degree of a node. For instance in the graph T
below on the left there can be at most two edges going from a fixed instance of
x to any instance of u. Formally, an annotation for a graph T is a function
a : VT ×ET → N0, where a(v, e) is an upper bound for the number of instances of
e ∈ ET attached to a fixed instance of v ∈ VT .
Now consider the morphism ϕ : T → T ′ below, which is denoted by the node

labels. The question is – given the annotation for T – how to determine the
annotation for T ′. Naturally, this should be done in such a way that the existence
of a legal morphism implies language inclusion.
Hence, the standard procedure would be
to first add up the local multiplicities
(for instance 2 + 1 = 3, since u, v are
mapped to the same node) and then
take the maximum over all multiplicities
(max{3, 2} = 3).
Formally this can be written as

x

y

u

v

w

2

1

2

3
x, y u, v, w

ϕ−→

Aϕ(a)(v2, e2) =
∨

ϕ(v1)=v2

∑
ϕ(e1)=e2

a(v1, e1).

However, if we try to do this in our framework, the functor does not preserve
composition, i.e. Aη◦ψ(a) 6= Aη(Aψ(a)). We consider the following counterexample
where η ◦ ψ = ϕ and ϕ is the morphism which we just considered:

x

y

u

v

w

2

1

2

2

2x, y v, w

u

4
x, y u, v, w

3
x, y u, v, w

ψ−→ η−→

η ◦ ψ = ϕ

6=

The main problem is that the maximum does not distribute over the sum and
we get max{2 + 1, 2} = 3 6= 4 = max{2, 2}+ max{1, 2}.

92

8.3. Multiply Annotated Graphs

This counterexample of course calls for an extension of our abstract annotation
framework. One solution might be to allow lax functors, but a generalization of
our results is not straightforward. (For instance, the proof of the closure under
intersection, Proposition 8.33, requires functoriality.) An alternative solution is to
define the annotations in a way such that they yield a functor. We will introduce a
similar local annotation, which fits into our annotation framework, in Chapter 10.

8.3.2. Decidability Properties for Multiply Annotated Graphs
We now address some decidability problems for languages defined by multiply
annotated graphs. We obtain positive results, under mild assumptions, with respect
to the membership and emptiness problems. However, for decidability of language
inclusion we only obtain partial results.

For the membership problem we can enumerate all graph morphisms ϕ : G→ T
and check if there exists a legal morphism ϕ : G[sG, sG]→ T [M], i.e. if there exists
a pair of annotations (`, u) ∈M with ` ≤ Aϕ(sG) ≤ u. Clearly, this is decidable if
the functor is computable and the partial order is decidable, which is certainly
true if A = Bn. The emptiness check is somewhat more involved, since we have to
take care of “illegal” annotations.

Proposition 8.19 (Emptiness check for languages specified by multiply
annotated graphs). For a graph language L(T [M]) characterized by a multiply
annotated type graph T [M] over Bn the emptiness problem is decidable:
L(T [M]) = ∅ iff M = ∅ or for each (`, u) ∈ M there exists an edge e ∈ ET
such that `(e) ≥ 1 and (u(src(e)) = 0 or u(tgt(e)) = 0).

Language inclusion can be deduced from the existence of a legal morphism
between the two multiply annotated type graphs.

Proposition 8.20 (Language inclusion and legal morphisms). The existence
of a legal morphism ϕ : T1[M]→ T2[N] implies L(T1[M]) ⊆ L(T2[N]).

Example 8.21. Consider the annotated type graphs T1[`, u] and T2[`′, u′] from
Example 8.16. Since the more restrictive annotated type graph T2[`′, u′] models the
same scenario as T1[`, u], the two languages should be included into each other.
Indeed, by Proposition 8.20 it holds that L(T2[`′, u′]) ⊆ L(T1[`, u]), since we can
easily find a legal graph morphism ϕ : T2[`′, u′]→ T1[`, u].

Please note, that this condition is sufficient but not necessary, as shown by the
following counterexample. Let the following two multiply annotated type graphs
T1[M1] and T2[M2] over B1 be given where |M1| = |M2| = 1:

T1[M1] =
[1, ∗]

T2[M2] =
[1, 1] [0, ∗]

Clearly we have that the languages L(T1[M1]) and L(T2[M2]) are equal as both
contain all discrete non-empty graphs. Thus L(T1[M1]) ⊆ L(T2[M2]), but there
exists no legal morphism ϕ : T1[M1] → T2[M2]. In fact, the upper bound of the
first node of T2 would be violated if the node of T1 is mapped by ϕ to it, while
the lower bound would be violated if the node of T1 is mapped to the other node.

93

8. Annotated Type Graphs

8.3.3. Deciding Language Inclusion for Annotated Type Graphs
In this section we show that if we allow only bounded graph languages consisting of
graphs up to a fixed pathwidth, the language inclusion problem becomes decidable
for annotations based on Bn. Pathwidth is a well-known concept from graph theory
that intuitively measures how closely a graph resembles a path. A more formal
definition is given below. We start by giving the notion of tree decompositions and
path decompositions which were introduced in [RS83; RS86].

Definition 8.22 (Tree and path decomposition). Let G = (V,E, src, tgt, lab)
be a graph. A tree decomposition of G is a pair TG = 〈T,X〉, where T is a
tree and X = {Xt1 , . . . , Xtn} is a family of subsets of V , called bags, indexed
by the nodes of T , such that:

• for each node v ∈ V , there exists a node t of T such that v ∈ Xt;

• for each edge e ∈ E, there is a node t of T such that all nodes v attached
to e are in Xt;

• for each node v ∈ V , the graph induced by the nodes {t | v ∈ Xt} is a
subtree of T .

A path decomposition PG = 〈T,X〉 of a graph G is a tree decomposition where
T is a path.

The treewidth and the pathwidth of a graph can be used to measure how similar
the graph is to a tree or to a path. Please note that in the following definition
we always decrement the width of a tree decomposition by 1, to ensure that trees
have treewidth 1, paths have pathwidth 1 and discrete graphs have treewidth and
pathwidth 0.

Definition 8.23 (Width, treewidth and pathwidth). The width of a tree
decomposition TG = 〈T,X〉 is w(TG) =

(
maxt∈T |Xt|

)
− 1. The pathwidth

pw(G) and the treewidth tw(G) of a graph G are defined as follows:

• pw(G) = min{w(PG) | PG is a path decomposition of G},

• tw(G) = min{w(TG) | TG is a tree decomposition of G}.

Example 8.24. Consider the graph G shown below to the left. Please note that
the graph G contains a 3-clique. One possible decomposition of G is the path
decomposition PG shown below to the right which has width w(PG) = 2, due to the
fact that the largest bag consists of three nodes.

G =
1 2 4 5

3 PG =
32 41 2 4 5

For all possible path decompositions this width is the smallest possible since the
three nodes of the 3-clique always have to be in the same bag. Therefore, the graph
G has the pathwidth pw(G) = 2.

94

8.3. Multiply Annotated Graphs

The following proof for the decidability of the language inclusion problem is
based on the notion of recognizability, which will be described via automaton
functors that were introduced in [BK08]. We start with the main result and explain
step by step the arguments that will lead to decidability.

Proposition 8.25 (Language inclusion and bounded pathwidth). The lan-
guage inclusion problem is decidable for graph languages of bounded pathwidth
characterized by multiply annotated type graphs over Bn. That is, given k ∈ N
and multiply annotated type graphs T1[M1] and T2[M2], it is decidable whether
L(T1[M1])≤k ⊆ L(T2[M2])≤k, with L(T [M])≤k = {G ∈ L(T [M]) | pw(G) ≤ k}.

Our automaton model, given by automaton functors, reads cospans (i.e., graphs
with interfaces) instead of single graphs. Therefore in the following, the category
under consideration will be Cospanm(GraphΛ), i.e. the category of cospans of
graphs where the objects are discrete graphs J,K and the arrows are cospans
c : J → G← K where both graph morphisms are injective [BK08]. We will refer to
the graph J as the inner interface and to the graph K as the outer interface of the
cospan c. Although in general interfaces could also be non-discrete, discrete graphs
suffice in order to glue graphs and hence we restrict to discrete interfaces. We
will sometimes abbreviate the cospan c : J → G← K to the short representation
c : J # K. Composition of two cospans c1, c2 where the outer interface of c1
matches the inner interface of c2 is done via pushouts and denoted by c1; c2.

Definition 8.26 (Composition of cospans). Let c1 : J −ψL� G �ψR− I and
c2 : I −ψ′L�G′ �ψ′R−K be two cospans in the category
Cospanm(GraphΛ). The cospan com-
position c1; c2 : J −f◦ψL�H �g◦ψ′R− K
is defined by the commuting diagram
shown to the right, where the middle
square is a pushout.

I

J G (PO) G′ K

H

ψR ψ′L

ψL

f g

ψ′R

According to [BB+13] a graph has pathwidth k iff it can be decomposed into
cospans where each middle graph of a cospan has at most k + 1 nodes.
Our main goal is to build an automaton which can read all graphs of our

language step by step, similar to the idea of finite automata reading words in formal
languages. Since graphs are per se monolithic, we use cospan (de)composition as
a means to split graphs into smaller entities. In particular, graph automata read
cospans in place of alphabet symbols. Such an automaton can be constructed
for an unbounded language, where the pathwidth is not restricted. However, we
obtain a finite automaton only if we restrict the pathwidth.

Then we can use well-known algorithms for finite automata to solve the language
inclusion problem. Note that, if we would use tree automata instead of finite
automata, our result could be generalized to graphs of bounded treewidth.

We will first introduce the notion of automaton functor (which is a categorical
automaton model for so-called recognizable arrow languages) and which is inspired
by Courcelle’s theory of recognizable graph languages [CE12].

95

8. Annotated Type Graphs

Definition 8.27 (Automaton functor [BK08]). An automaton functor C is a
functor C : Cospanm(GraphΛ)→ Rel that maps every object J (i.e., every
discrete graph) to a finite set C(J) (the set of states of J) and every cospan
c : J # K to a relation C(c) ⊆ C(J) × C(K) (the transition relation of c).
In addition there is a distinguished set of initial states I ⊆ C(∅) and a
distinguished set of final states F ⊆ C(∅). The language LC of C is defined as
follows:

A graph G is contained in LC if and only if there exist states q ∈ I
and q′ ∈ F which are related by C(c), i.e. (q, q′) ∈ C(c), where
c : ∅ → G ← ∅ is the unique cospan with empty interfaces and
middle graph G.

Languages accepted by automaton functors are called recognizable.

As a warm-up let us show an example of an automaton functor, which accepts
the pure type graph language determined by a graph T . This graph language has
been considered before in [BK08].

Example 8.28. Let T be a fixed type graph and let L(T) be its type graph language,
i.e. the set of all graphs G for which a morphism f : G→ T exists. We show that
L(T) is recognizable, as it is accepted by the automaton functor CT defined as
follows. The automaton functor CT maps every discrete
graph J to the set of states CT (J) consisting of all
morphisms fJ : J → T . For a cospan c : J → G ← K,
CT (c) is the relation on C(J) × C(K) that relates a
morphism fJ : J → T to a morphism fK : K → T (i.e.
(fJ , fK) ∈ CT (c)) whenever there exists a morphism
f : G→ T such that f ◦ ψL = fJ and f ◦ ψR = fK (see the
diagram to the right).

J G

T

K
ψL ψR

fJ fK
f

Intuitively, a graph is read step-by-step and we always record the current state
via a morphism J → T . Then, whenever we see a new slice G′ of our graph (with
inner interface J and outer interface K) we check locally whether we can extend
the map into T , resulting in K → T as the new state.

The initial and final states are defined as I = F = CT (∅) = {f∅}, where
f∅ : ∅→ T is the unique morphism from the empty graph to T .
It follows immediately from the definition that CT accepts L(T). In fact, a graph

G is accepted by CT iff only the states f∅ ∈ I and f∅ ∈ F are related by CT (c),
where c : ∅→ G← ∅. But this holds if and only if there is a morphism f : G→ T ,
as the two additional conditions required above (f ◦ ψL = f∅ and f ◦ ψR = f∅)
trivially hold.

As a proof obligation, it would remain to show that CT is well defined as a
functor from Cospanm(GraphΛ) to Rel, i.e. it preserves identities and arrow
composition. This follows easily from the proof of Proposition 8.31 presented below,
where a more complex functor is considered.

We will now define an automaton functor for a type graph T [M] over Bn. The
following construction is an extension of Example 8.28, where we count nodes and
edges in addition.

96

8.3. Multiply Annotated Graphs

Definition 8.29 (Counting cospan automaton). Let T [M] be a multiply
annotated type graph over Bn. We define an automaton functor CT [M] (for
T [M]) with CT [M] : Cospanm(GraphΛ)→ Rel as follows:

• For each object J of Cospanm(GraphΛ) (thus J is a finite discrete
graph), CT [M](J) = {(f, b) | f : J → T, b ∈ Bn(T)} is its finite set of
states

• I ⊆ CT [M](∅) is the set of initial states with I = {(f : ∅ → T, 0)},
where 0 is the constant 0-function

• F ⊆ CT [M](∅) is the set of final states with F = {(f : ∅ → T, b) |
∃(`, u) ∈M : ` ≤ b ≤ u}

Let c : J −ψL�G�ψR−K be an arrow in the cat-
egory Cospanm(GraphΛ) with discrete interface
graphs J and K where both graph morphisms
ψL : J → G and ψR : K → G are injective. Two
states (f : J → T, b) and (f ′ : K → T, b′) are in
the relation CT [M](c) if and only if there exists a
morphism h : G → T such that the diagram to
the right commutes and for all x ∈ VT ∪ ET the
following equation holds:

J G K

T

c : J # K

f

ψL

∃h

ψR

f ′

b′(x) = b(x) + |{y ∈ (G \ ψR(K)) | h(y) = x}|

The set G \ ψR(K) consists of all elements of G which are not targeted by
the morphism ψR, i.e. G \ ψR(K) = (VG \ ψR(VK)) ∪ (EG \ ψR(EK)).

Instead of LCT [M] and CT [M] we just write LC and C if T [M] is clear from the
context. The intuition behind the construction is to count for each item x of
T , step by step, the number of elements that are being mapped from a graph
G (which is in the form of a cospan decomposition) to x, and then check if the
bounds of a pair of annotations (`, u) ∈M of the multiply annotated type graph
T [M] are satisfied. We give a short example before moving on to the results.

Example 8.30. Let the following multiply annotated type graph (over B2) T [`, u]
and the cospan (c : ∅→ G← ∅) with G ∈ L(T [`, u]) be given:

T [`, u] =
[0,1] [1,∗]

A [0,2] B [0,∗] c : ∅ A B ∅

We will now decompose the cospan c into two cospans c1, c2 with c = c1; c2 in the
following way:

∅ A B ∅

c1 c2

c

We let our counting cospan automaton parse the cospan decomposition c1; c2 step
by step now to show how the annotations for the type graph T evolve during the

97

8. Annotated Type Graphs

process. According to our construction, every element in T has multiplicity 0 in the
initial state of the automaton. We then sum up the number of elements within the
middle graphs of the cospans which are not part of the right interface. Therefore
we get the following parsing process:

∅ A B ∅

[0] [0]
A[0] B[0]

[1] [0]
A[1] B[0]

[1] [2]
A[1] B[1]

f1 f2 f3

q1 q2 q3

We visited three states q1, q2 and q3 in the automaton with (q1, q2) ∈ C(c1) and
(q2, q3) ∈ C(c2). Since C is supposed to be a functor we get that C(c1); C(c2) = C(c)
and therefore (q1, q3) ∈ C(c) also holds. In addition we have q1 ∈ I and since the
annotation function b ∈ B2(T) in q3 = (f3, b) satisfies ` ≤ b ≤ u we can infer that
q3 ∈ F . Therefore we can conclude that G ∈ LC holds as well.

We still need to prove that C is indeed a functor. Intuitively this shows that accep-
tance of a graph by the automaton is not dependent on its specific decomposition.

Proposition 8.31 (Functoriality of C). Let two cospans c1 : J → G ← K
and c2 : K → H ← L be given and let idG : G → G ← G be the identity
cospan.
The mapping CT [M] : Cospanm(GraphΛ)→ Rel is a functor, i.e.

1. CT [M](idG) = idCT [M](G)

2. CT [M](c1; c2) = CT [M](c1); CT [M](c2)

The language accepted by the automaton LC is exactly the graph language
L(T [M]).

Proposition 8.32 (Language of C). Let the multiply annotated type graph
T [M] (over Bn) and the automaton functor C : Cospanm(GraphΛ) → Rel
for T [M] be given. Then LC = L(T [M]) holds, i.e. for a graph G we have
G ∈ L(T [M]) if and only if there exist states i ∈ I ⊆ C(∅) and f ∈ F ⊆ C(∅)
such that (i, f) ∈ C(c), where c : ∅→ G← ∅.

Therefore we can construct an automaton for each graph language specified by
a multiply annotated type graph T [M], which accepts exactly the same language.
In case of a bounded graph language this automaton will have only finitely many
states. Furthermore we can restrict the label alphabet, i.e., the cospans by using
only atomic cospans, adding a single node or edge (see [BB+12; Blu14]). Once these
steps are performed, we obtain conventional non-deterministic finite automata
over a finite alphabet and we can use standard techniques from automata theory
to solve the language inclusion problem directly on the finite automata.

98

8.3. Multiply Annotated Graphs

8.3.4. Closure Properties for Multiply Annotated Graphs
Extending the expressiveness of the type graphs by adding multiplicities gives
us positive results in case of closure under union and intersection. Here we use
constructions that rely on products and coproducts in the category of graphs.
Closure under intersection holds for the most general form of annotations. From
T1[M1], T2[M2] we can construct an annotated type graph (T1 × T2)[N], where N
contains all annotations which make both projections πi : T1 × T2 → Ti legal.

Proposition 8.33 (Closure under intersection). Graph languages specified
by annotated graphs are closed under intersection.

We can prove closure under union for the case of annotations based on the
functor Bn. Here we take the coproduct (T1 ⊕ T2)[N], where N contains all
annotations of M1, M2, transferred to T1 ⊕ T2 via the injections ij : Tj → T1 ⊕ T2.
Intuitively, graph items not in the original domain of the annotations receive
annotation [0, 0].

In order to show closure under union for graph languages specified by annotated
type graphs over Bn, we depend on two lemmata given in Appendix A.4. Please
note that this result can be generalized for annotations over a functor A whenever
they satisfy the mild assumptions stated in Lemma L.3 and Lemma L.5.

Proposition 8.34 (Closure under union). Graph languages specified by
multiply annotated graphs over functor Bn are closed under union.

Finally, we can prove that graph languages specified by annotated type graphs
are not closed under complement for the case of annotations based on the func-
tor Bn.

Proposition 8.35 (Non-closure under complement). Graph languages spec-
ified by multiply annotated graphs over functor Bn are not closed under
complement.

The main reason for this is, that there exist languages specified by multiply
annotated type graphs based on Bn for which there exists no finite type graph
which specifies the complement language. A counterexample is given in the proof
found in Appendix A.4.

99

Conclusion of Part III

Our results from Part III on decidability and closure properties for the investigated
specification frameworks are summarized in the following table. In the case where
the results hold only for bounded pathwidth, the checkmark is in brackets. The
results for the general case are still open.

Pure TG Restr. Gr. TG Logic Annot. TG
G ∈ L? 3 3 3 3

Decidability L = ∅? 3 3 3 3

L1 ⊆ L2? 3 3 3 (3)
L1 ∪ L2 7 3 3 3

Closure Prop. L1 ∩ L2 3 7 3 3

|GraphΛ| \ L 7 7 3 7

Invariant Checking (DPO) 3 3

In order to be able to use these formalisms extensively in applications, it is
necessary to provide a mechanism to compute weakest preconditions and strongest
postconditions. That is, given a graph language and a set of rules, we want to
specify the language of all successors (or the language of all predecessors) in
our formalism. This is not feasible for pure type graphs or the type graph logic,
since neither formalism can count and hence can not express that all items of the
newly created right-hand occur exactly once. Hence, in Chapter 10 we characterize
strongest postconditions in the setting of annotated type graphs. This requires
a materialization construction (discussed in the upcoming Chapter 9), similar
to [SRW02], which is characterized abstractly, exploiting universal properties in
category theory.
After characterizing the computation of postconditions for annotated type

graphs, we can settle the invariant checking (at least for the case of bounded
pathwidth) in the framework of multiply annotated type graphs. In Chapter
10, given a graph transformation rule we compute the postcondition of a graph
language L specified by multiply annotated type graphs and afterwards check
whether it is included in L for bounded pathwidth. This gives us a procedure for
invariant checking.

Related Work
We review some of the more well-known approaches for specifying graph languages.
While it is impossible to elaborate the advantages and disadvantages of each
specification formalism in detail (some of these are current research questions) we
will highlight some interesting points.

Note that our approach has a limited expressiveness compared to many other
approaches, which is also witnessed by the fact that annotated type graphs can
be encoded into graph automata. On the other hand, we have several closure
properties and positive decidability results, which makes the formalisms interesting
for verification.
Recognizable graph languages [Cou90; CE12], which are the counterpart to

regular word languages, are closely related with monadic second-order graph logic.

If one restricts recognizable graph languages to bounded treewidth (or pathwidth
as we did), one obtains satisfactory decidability properties. On the other hand, the
size of the resulting graph automata is often quite intimidating [BB+12; Blu14]
and hence they are difficult to work with in practical applications. The use of
nested application conditions [HP05], equivalent to first-order logic [Ren04b],
has a long tradition in graph rewriting and they can be used to compute pre-
and postconditions for rules [Pen09]. However, satisfiability and implication are
undecidable for first-order logic.
A notion of grammars corresponding to context-free (word) grammars are

hyperedge replacement grammars [Hab92]. Many aspects of the theory of context-
free languages can be transferred to the graph setting.

In heap analysis the representation of pointer structures to be analyzed requires
methods to specify sets of graphs. Hence both the TVLA approach by Sagiv,
Reps and Wilhelm [SRW02], as well as separation logic [OHe07; DOY06] provide
formalisms for characterizing graph languages, both based on logic. In [SRW02]
heaps are represented by graphs, annotated with predicates from a three-valued
logics (with truth values yes, no and maybe).
A further interesting approach are forest automata [AH+13] that have many

interesting properties, but are somewhat complex to handle.
In [RR+09] the authors study an approach called Diagram Predicate Framework

(DPF), in which type graphs have annotations based on generalized sketches. This
formalism is intended for modelling languages based on Meta Object Facility
(MOF) and allows more complex annotations than our framework.

Open Questions
One open question that remains is whether language inclusion for annotated
type graphs is decidable if we do not restrict to bounded pathwidth. Additionally,
invariant checking for the type graph logic is still open. As discussed in Section 8.3.1,
our edge annotations are global, as opposed to the local multiplicities that find
use in UML. Local annotations only partially fit into our framework as we will
see in Chapter 10, but they are of course quite relevant. Hence, to study the
possibility to fully integrate such multiplicities and investigate the corresponding
decidability and closure properties is another problem left open.

Part IV.

Abstract Object Rewriting

Motivation of Part IV

Abstract interpretation [Cou96] is a fundamental static analysis technique that
applies not only to conventional programs but also to general infinite-state systems.
Shape analysis [SRW02], a specific instance of abstract interpretation, pioneered
an approach for analyzing pointer structures that keeps track of information about
the “heap topology”, e.g., out-degrees or existence of certain paths. One central
idea of shape analysis is materialization, which arises as companion operation to
summarizing distinct objects that share relevant properties. Materialization, also
known as partial concretization, is also fundamental in verification approaches
based on separation logic [CR08; CD+11; LRC15], where it is also known as rear-
rangement [OHe12], a special case of frame inference. Shape analysis—construed
in a wide sense—has been adapted to graph transformation [Roz97]. Motivated by
earlier work of shape analysis for graph transformation [SWW11; BW07; Bac15;
BR15a; RZ10; Ren04a], we want to put the materialization operation on a new
footing, widening the scope of shape analysis.
A natural abstraction mechanism for transition systems with graphs as states

“summarizes” all graphs over a specific shape graph. Thus a single graph is used
as abstraction for all graphs that can be mapped homomorphically into it, similar
to the concept of graph languages specified via type graphs (see Chapter 4).
Further annotations on shape graphs, such as cardinalities of preimages of its
nodes and general first-order formulas, enable fine-tuning of the granularity of
abstractions. While these natural abstraction principles have been successfully
applied in previous work [SWW11; BW07; Bac15; BR15a; RZ10; Ren04a], their
companion materialization constructions are notoriously difficult to develop, hard
to understand, and are redrawn from scratch for every single setting. Thus, we
set out to explain materializations based on mathematical principles, namely
universal properties (in the sense of category theory). In particular, we will use
partial map classifiers in the topos of graphs (and its slice categories) which cover
the purely structural aspects of materializations; this is related to final pullback
complements [DT87], a fundamental construction of graph rewriting [Löw10;
CH+06]. Annotations of shape graphs are treated orthogonally via op-fibrations.

Our main goal in Part IV is to define a rewriting formalism for graph abstractions
that lifts double-pushout rule-based rewriting from single graphs to multiply
annotated type graphs (introduced in Chapter 8). In this context the type graphs
specifying the language will be referred to as abstract graphs. Abstract graphs
cannot be rewritten in the same way as ordinary graphs, since an occurrence
of the left-hand side might represent additional structure apart from the match,
which cannot simply be deleted. Hence it is necessary to materialize a copy of
the left-hand side. It is, in slightly different forms, present in all the approaches
cited above. To achieve the goal of defining a general rewriting framework, we
do not restrict ourselves to the category GraphΛ, but will introduce both, the
materialization construction and the abstract rewriting step, to work for (abstract)
objects in an arbitrary topos C.

Outline:
First, in Section 9.1, we introduce topoi and additional preliminaries in the

form of categorical constructions such as partial map classifiers, final pullback
complements and slice categories. Furthermore, in Section 9.2, we generalise our
concept of type graph languages to languages of abstract objects in an arbitrary
category. We define a materialization construction categorically in Section 9.3.1,
that enables us to concretize an instance of a left-hand side of a production in
a given abstract object. This construction is refined in Section 9.3.2 where we
restrict to materializations that satisfy the gluing condition and can thus be
rewritten via the production. In Section 9.3.3 we present the main result about
materializations showing that we can fully characterize the co-matches obtained
by rewriting. Afterwards, in Section 10.1 we extend abstract rewriting to abstract
objects enriched with the annotations from Chapter 8. In Section 10.2 we define
properties for annotations which need to be satisfied in order to achieve soundness
and completeness of our abstract rewriting steps. Finally, in Section 10.3 we
show that abstract rewriting with annotations is sound and, with additional
assumptions regarding the properties, complete. We furthermore derive strongest
post-conditions for the case of graph rewriting with annotations. All proofs can
be found in Appendix A.5 and A.6.

“The inventor...looks upon the world and is not con-
tented with things as they are. He wants to improve
whatever he sees, he wants to benefit the world; he is
haunted by an idea. The spirit of invention possesses
him, seeking materialization.”

Alexander Graham Bell (1847-1922)

9
Materialization Category

In this chapter, we characterize a materialization operation for so-called abstract
objects in a topos in terms of partial map classifiers, which gives us a sound and
complete description of all occurrences of right-hand sides of rules obtained by
rewriting an abstract object. The materialization yields an object which specifies
a language consisting of all objects with a concrete instance of a left-hand side
from a production.

9.1. Additional Preliminaries - More Categorical Concepts
Since this chapter presupposes familiarity with the topos structure of graphs
and several additional concepts from category theory (in particular elementary
topoi, subobject and partial map classifiers, final pullback complements and slice
categories) we start with some definitions and results related to elementary topoi.

9.1.1. Topoi, Subobject Classifiers and Partial Map Classifiers
First, we define the categorical concept of subobject classifiers. Intuitively, a
subobject classifier is a morphism which maps the subobjects of an object X to
truth values, i.e. assigning “true“ to the elements of the subobject to be classified
and “false“ to all other elements of X. Hence, a subobject classifier in a category
C maps objects into a so-called truth value object. The structure of a truth value
object depends on the category where the subobject classifier is defined.

Definition 9.1 (Subobject classifier). Let C be a category where 1 is the
terminal object and for each object X ∈ C let !X : X → 1
be the unique arrow from X into the terminal object. A
mono true : 1� Ω is a subobject classifier if for every mono
i : X � Y in C there exists a unique arrow χi : Y → Ω such
that the diagram to the right is a pullback. In this case object
Ω is called the truth value object.

X //
i //

!X
��

Y

χi
��

1 // true
// Ω

(PB)

Example 9.2. In Set the subobject classifier true : 1 � Ω is simply the em-
bedding of {1} into the two-element set Ω = {0, 1}. A subset X ⊆ Y can be
characterized via its characteristic function χX : Y → {0, 1}.

9. Materialization Category

Example 9.3. In the category GraphΛ, where the objects are labelled graphs
over the label alphabet Λ, the subobject classifier
true is shown to the right where every Λ-labelled
edge represents several edges, one for each λ ∈ Λ.
The subobject classifier true from the terminal

true : Λ � Λ

Λ Λ
Λ

object 1 to Ω allows us to single out a subgraph X of a graph Y , by mapping Y to
Ω in such a way that all elements of X are mapped to the image of true.

The category of graphs GraphΛ is an elementary topos, which is an extremely
rich categorical structure. The notion of elementary topoi [Joh02; Law70] is used
in logic and it abstracts from the structure of the category of sets.

Definition 9.4 (Elementary topos). An elementary topos is a category which
has finite limits, is cartesian closed and has a subobject classifier.

We will often omit the qualifier “elementary” and simply talk about topoi.
In addition we will use the notion of natural transformations, which provides a

way of transforming a functor into another functor while respecting the internal
structure of the categories involved. Therefore, similar to functors being the
abstract notion of morphisms between categories, natural transformations are the
abstract notion of morphisms between functors.

Definition 9.5 (Natural transformation). Let C,D be two categories and
let F and G be functors from C to D. A natural transformation η : F .→ G is
a family of arrows from F to G that assigns to
every C-object X a D-arrow ηX : F(X) → G(X)
such that for any C-arrow f : X → Y the diagram
to the right commutes in D. The morphism ηX is
also called component of η on X.

F(X) ηX //

F(f)
��

G(X)

G(f)
��

F(Y) ηY // G(Y)

Every elementary topos has so-called partial map classifiers [CL03]. Informally,
a partial map classifier for a partial map (m, f) : X ⇀ Y works similar to a
subobject classifier, with the difference, that neither the truth value object nor the
domain of the classifier morphism are fixed for the category. Instead, both need to
be constructed from the codomain object Y of the partial map, by constructing
an object F(Y) via a functor F and describing the morphism between Y and
F(Y) via the monic component ηY : Y � F(Y) of a natural transformation η.

Definition 9.6 (Partial map classifier). Let C be a category with pullbacks.
A partial map (m, f) : X ⇀ Y in C is a span X m

� Z
f→ Y where m : Z � X

is a mono. A partial map classifier (F , η) is a functor
F : C → C together with a natural transformation
η : IdC

.→ F such that for each object Y of C with the
component ηY : Y � F(Y) the following holds: for
each partial map (m, f) : X ⇀ Y there exists a unique

Z //
m //

f
��

X

ϕ(m,f)
��

Y //
ηY // F(Y)

(PB)

arrow ϕ(m, f) : X → F(Y) such that the diagram to the right is a pullback.

108

9.1. Additional Preliminaries - More Categorical Concepts

Example 9.7. In Set the functor F enriches each set Y with an additional
element ?, i.e., F(Y) = Y + {?}. Then a partial map p : X ⇀ Y corresponds to
a total map p′ : X → F(Y) such p′(x) = p(x) if p(x) is defined and p′(x) = ?
otherwise.
Example 9.8. We now consider a more involved example in the category GraphΛ.
Let the partial map (m, f) : G ⇀ H (depicted below left) and a corresponding span
G

m
� P

f→ H (depicted below on the right) be given. We use a single edge label,
which is omitted. All graph morphisms are indicated by black and white nodes and
the thickness of the edges.

(m, f): /
m f

G� P → H

The partial map classifier object F(H) alongside the component of the natural
transformation ηH : H � F(H) is depicted below right. Intuitively, the functor F
enriches the codomain H of the partial map
(m, f) : G ⇀ H by an additional structure which
can be interpreted as the “false“ classification of
a subobject classifier. The natural transformation
component ηH maps the graph H to the “true“ part
of F(H). As a result the resulting morphism ϕ(m, f)
of the pullback diagram classifies every element in
G which is defined in the partial map to be “true“
and “false“ otherwise.

m

f
ϕ(m, f)

ηH

(PB)

9.1.2. Slice Categories and Final Pullback Complements
The objects in the materialization category that we will introduce in Chapter 9.3,
are materializations of the left-hand side of a production over a fixed abstract
object A. We can use slice categories in connection with subobject classifiers to
specify this behaviour. The slice category C ↓ A, of a category C over an object
A, has morphisms with codomain A as objects and commutative triangles as
morphisms.

Definition 9.9 (Slice category). The slice category C ↓ A of a category C
over an object A ∈ C has the arrows f ∈ C such
that cod(f) = A as objects. An arrow g : f → f ′ in
C ↓ A, with f : X → A and f ′ : Y → A, is an arrow
g : X → Y ∈ C such that the diagram to the right
commutes.

X
g

//

f

Y

f ′��

A

Please note that the terminal object of a slice category C ↓ A is the identity
arrow idA : A� A. The existence of a subobject classifier in a slice category over
a topos directly follows from the following theorem [MM94].

Theorem 9.10 (Slice category over a topos [MM94]). For any object A in a
topos C, the slice category C ↓ A is also a topos.

The subobject classifier in the slice category can be constructed as follows.

109

9. Materialization Category

Fact 9.11 (Subobject classifier in slice category [MM94]). Let C be a topos
with subobject classifier true : 1 � Ω and truth
value object Ω. For any object A ∈ C let A × Ω
be the product with projections π1 : A × Ω → A
and π2 : A × Ω → Ω. Then a subobject classifier
trueA of the slice category C ↓ A is the unique
mono trueA : A � A × Ω such that the diagram
to the right commutes.

Axx

idA

��

true ◦ !

��

��

trueA
��

A× Ω

π1
{{

π2
##

A Ω

Example 9.12. In order to provide an example for a subobject classifier in a slice
category, we consider again the category GraphΛ, with a single edge label which
is omitted. Let A = be the base graph for the slice category GraphΛ ↓ A of
graph morphisms into A. The subobject classifier trueA : A� A×Ω for this slice
category is the following graph morphism:

trueA:

Given arrows α,m as in the diagram below, we can construct the most general
pullback, called final pullback complement [DT87; CH+06].

Definition 9.13 (Final pullback complement). A pair of arrows I γ→ F
β→ G

is a final pullback complement (FPBC) of another pair I α→ L m→ G if

• they form a pullback square

• for each pullback G m← L α′← I ′
γ′→ F ′

β′→ G and
arrow f : I ′ → I such that α ◦ f = α′, there
exists a unique arrow f ′ : F ′ → F such that
β ◦ f ′ = β′ and γ ◦ f = f ′ ◦ γ′ both hold (see
the diagram to the right).

L

m
��

Iα
oo

γ

��

I ′

α′

ww

f
oo

γ′

��

G F
β
oo

(FPBC)

F ′

β′

gg

f ′
oo

Example 9.14. Consider the following pair of graph morphisms I α
� L

m
� G in

the category GraphΛ:

α m

I � L� G

The final pullback complement I γ→ F
β→ G is de-

picted in the diagram to the right. Please note that
for the pair of graph morphisms I α

� L
m
� G there

does not exist a pushout complement due to the dan-
gling edge condition. However, for the final pullback
complement construction, all edges attached to the
left black node in G are removed.

α

m γ

β

(FPBC)

Final pullback complements and subobject classifiers are closely related to
partial map classifiers (see Definition 9.6 and [DT87, Corollary 4.6]): a category

110

9.2. Object Languages

has FPBCs (over monos) and a subobject classifier if and only if it has a partial
map classifier. These exist in all elementary topoi.

Proposition 9.15 (Final pullback complements, subobject and partial map
classifiers). Let C be a category with finite limits. Then the following are
equivalent:

(1) C has a subobject classifier true : 1� Ω and final pullback complements
for each pair of arrows I α→ L

m
� G where m is a mono;

(2) C has a partial map classifier (F : C→ C, η : IdC
.→ F).

In the next section, we will generalize the concepts of type graph languages to
languages of arbitrary objects in a category C.

9.2. Object Languages
The main theme of Part IV is “simultaneous” rewriting of entire sets of objects
of a category by means of rewriting a single abstract object that represents a
collection of structures—the language of the abstract object. The simplest example
of an abstract structure is a plain object of a category to which we associate the
language of objects that can be mapped to it.

Definition 9.16 (Language of an object). Let A be an object of a category C.
Given another object X, we write X 99K A whenever there exists an arrow
from X to A. We define the language1of A, denoted by L(A), as the set
L(A) = {X ∈ C | X 99K A}.

Whenever X ∈ L(A) holds we will say that X is abstracted by A, and A is called
the abstract object. Type graphs are an instance of abstract objects alongside
their corresponding language (cf. Chapter 4). Therefore, we will sometimes refer
to type graphs as abstract graphs. We will also need to characterize a class of
(co-)matches which are represented by a given (mono) (co-)match.

Definition 9.17 (Language of a mono). Let ϕ : L� A be a mono in C.
The language of ϕ is the set of monos m with domain
L such that ϕ factors through m and the square on
the right is a pullback:

L(ϕ) = {m : L� X | X 99K A,
such that the square to the above right is a pullback}.

L��

idL
��

// m // X

∃ψ
��

L // ϕ
// A

(PB)

Intuitively, for any arrow (L m
� X) ∈ L(ϕ) we have X ∈ L(A) and X has a

distinguished subobject L which corresponds precisely to the subobject L� A.
In fact ψ restricts and co-restricts to an isomorphism between the images of L in

1Here we assume that C is essentially small, so that a language can be seen as a set instead of
a class of objects.

111

9. Materialization Category

X and A. Intuitively, for graphs, no nodes or edges in X outside of L are mapped
by ψ into the image of L in A.

9.3. Materialization
Given a production p : L � I � R, an abstract object A and an arrow from
L to A (ϕ : L → A), we want to rewrite the so-called materialization of ϕ in
order to characterize all successors of objects in L(A), obtained by rewriting via p
at a match compatible with ϕ. In a sense, we want to lift DPO rewriting to
the level of abstract objects. For this purpose, we will now categorically define
a materialization construction, that enables us to concretize an instance of a
left-hand side L of a production p in a given abstract object A. Afterwards, we
will refine the construction in a way such that we restrict to materializations that
satisfy the gluing condition and can thus be rewritten via p. Last, we present
the main result of this chapter, which allows us to fully characterize the co-
matches obtained by rewriting. Please note that in the following we only consider
productions where both morphisms are monos.

9.3.1. Materialization Category and Existence of Materialization
From now on we assume C to be an elementary topos. Let A ∈ C be an abstract
object specifying a language of objects L(A) and let L be the left-hand side of a
production with L 99K A. We want to find a way to materialize objects with a
concrete image of L from A. To this end we consider the following category.

Definition 9.18 (Materialization). Let ϕ : L→ A be an arrow in C.
The materialization category for ϕ, denoted Matϕ, has as
objects all factorizations L� X → A of ϕ whose

first factor L� X is a mono, and as
arrows from a factorization L� X → A to another

one L� Y → A, all arrows f : X → Y in C
such that the diagram to the right comprises
a commutative triangle and a pullback square.

L

ϕ

��

��

idL
��

// // X

f
��

L // //

ϕ

77Y

(PB)

// A

If Matϕ has a terminal object it is denoted by L� 〈ϕ〉 → A and is called
the materialization of ϕ.

Sometimes we will also call 〈ϕ〉 the materialization of ϕ, omitting the arrows.
Since we are working in a topos by assumption, the slice category over A provides

us with a convenient setting to construct materializations. Note in particular
that in the diagram in Definition 9.18 above, the span X � L� L is a partial
map from X to L in the slice category over A. Hence the materialization 〈ϕ〉
corresponds to the partial map classifier for L in this slice category.

Proposition 9.19 (Existence of materialization). Let ϕ : L→ A be an arrow
in C, and let ηϕ : ϕ→ F(ϕ), with F(ϕ) : Ā→ A, be the partial map classifier
of ϕ in the slice category C↓A (which also is a topos)2. Then L ηϕ→ Ā

F(ϕ)→ A
is the materialization of ϕ, hence 〈ϕ〉 = Ā.

112

9.3. Materialization

As a direct consequence of Proposition 9.15 and Proposition 9.19 (and the fact
that final pullback complements in the slice category correspond to those in the
base category [Löw10]), the terminal object of the materialization category can
be constructed for each arrow of a topos by taking final pullback complements.

Corollary 9.20 (Construction of the materialization). Let ϕ : L→ A be an
arrow of C and let trueA : A� A×Ω be the subobject classifier in the slice
category C ↓ A mapping from idA : A→ A to the
projection π1 : A × Ω → A (see also Fact 9.11).
Then the terminal object L

ηϕ
� 〈ϕ〉 ψ→ A in the

materialization category consists of the arrows
ηϕ, ψ = π1 ◦ χηϕ , where L

ηϕ
� 〈ϕ〉

χηϕ→ A× Ω is the
final pullback complement of L ϕ→ A

trueA
� A× Ω.

L

ϕ

��

//
ηϕ
// 〈ϕ〉

χηϕ
��

ψ

""

A //trueA
// A× Ω π1

//

(FPBC)

A

Example 9.21. We construct the materialization L
ηϕ
� 〈ϕ〉 ψ→ A for the morphism

ϕ : L→ A of graphs with a single (omitted)
egde label:

ϕ:

In particular, the materialization is obtained
as a final pullback complement as depicted
to the right (compare with the corresponding
diagram in Corollary 9.20). Note that edges

ηϕ

ϕ χηϕ

trueA

ψ

π1

(FPBC)

which are not in the image of ηϕ resp. trueA are dashed.

This construction corresponds to the usual intuition behind materialization: the
left-hand side and the edges that are attached to it are “pulled out” of the given
abstract graph. The concrete construction in the category GraphΛ is spelled out
in Chapter 11, so that we can implement the construction in a tool.

We can summarize the result of our constructions in the following proposition,
which states that the materialization characterizes all objects X, abstracted over
A, which contain a (mono) occurrence of the left-hand side compatible with ϕ.

Proposition 9.22 (Language of the materialization). Let ϕ : L→ A be an
arrow in C and let L

ηϕ
� 〈ϕ〉 → A be the corresponding materialization. Then

L(L
ηϕ
� 〈ϕ〉) = {L mL

� X | ∃ψ : (X → A). (ϕ = ψ ◦mL)}.

9.3.2. Characterizing the Language of Rewritable Objects
A match obtained through the materialization of the left-hand side of a production
from a given object may not allow a DPO rewriting step because of the gluing
condition. However, there may exist objects abstracted by the materialization for
which there exist successors by the application of the production. We illustrate
this problem with an example.

2[Fre72, Theorem 2.31].

113

9. Materialization Category

Example 9.23. Consider the materialization L� 〈ϕ〉 → A from Example 9.21
and the production p : L � I � R
shown in the diagram to the right. It
is easy to see that the pushout com-
plement of morphisms I � L� 〈ϕ〉
does not exist.
Nevertheless there exist factorizations
L � X → A abstracted by 〈ϕ〉 that
could be rewritten by p, for instance
the factorization L� L→ A.

?

L
�
〈ϕ〉

L� I � R

Therefore, we want to find the largest subobject (subsequently called 〈〈ϕ,ϕL〉〉)
of 〈ϕ〉, abstracting all objects X that
can be rewritten via a production
L� I � R and a match ϕL : L→ X.
The logical relation between the lan-
guages is depicted in the Venn digram
shown to the right. Consequently, we
consider the following subcategory of
the materialization category. L(A)

〈ϕ〉 - Abstraction

〈〈ϕ, ϕL〉〉 - Abstraction

Definition 9.24 (Materialization subcategory of rewritable objects). Let
ϕ : L → A be an arrow of C and let ϕL : I � L be a mono (corresponding
to the left leg of a production). The materialization subcategory of rewritable
objects for ϕ and ϕL, denoted MatϕLϕ , is the full subcategory of Matϕ con-
taining as objects all factorizations L m

� X → A of ϕ, where m is a mono
and I ϕL

� L
m
� X has a pushout complement.

Its terminal element, if it exists, is denoted by L nL
� 〈〈ϕ,ϕL〉〉 → A and is

called the rewritable materialization.

We next show that the subcategory MatϕLϕ has a terminal object.

Proposition 9.25 (Construction of the rewritable materialization). Let
ϕ : L → A be an arrow and let ϕL : I � L be a mono of C. Then the
rewritable materialization of ϕ w.r.t. ϕL exists and can be constructed as the
following factorization L nL

� 〈〈ϕ,ϕL〉〉
ψ◦α−→ A of ϕ. In the diagram shown below

to the left, F is obtained as the final pullback complement of I ϕL
� L� 〈ϕ〉,

where L� 〈ϕ〉 ψ→ A is the materialization of ϕ (Definition 9.18). Next the
diagram shown below to the right L nL

� 〈〈ϕ,ϕL〉〉
β
� F is the pushout of the

span L ϕL
� I � F and α is the resulting mediating arrow.

L
ϕ

~~

��

��

I
��

��

oo
ϕLoo

A 〈ϕ〉ψ
oo F

(FPBC)

oooo

(9.1) L
ϕ

~~

��

��

L
��

nL
��

oo
idLoo I

��

��

oo
ϕLoo

A 〈ϕ〉ψ
oo 〈〈ϕ,ϕL〉〉ooαoo Foo

β
oo uuii

(PO)

(9.2)

114

9.3. Materialization

Example 9.26. We come back to the running example (see Example 9.23) and,
as in Proposition 9.25, we determine the final pullback complement I � F � 〈ϕ〉
of I ϕL
� L� 〈ϕ〉 (see diagram below left) and obtain 〈〈ϕ,ϕL〉〉 by taking the pushout

over L� I � F (see diagram below right).

L
�
〈ϕ〉

L� I

(FPBC)

F

I
�

F

L� I

(PO)

〈〈ϕ, ϕL〉〉

It remains to be shown that L� 〈〈ϕ,ϕL〉〉 → A represents every factorization
which can be rewritten. As before we obtain a characterization of the rewritable
objects, including the match of the left-hand side L into the rewritable material-
ization 〈〈ϕ,ϕL〉〉, as the language of an arrow.

Proposition 9.27 (Language of the rewritable materialization). Assume
there is a production p : L ϕL

� I
ϕR
� R and let L nL

� 〈〈ϕ,ϕL〉〉 be the match for
the rewritable materialization for ϕ and ϕL. Then we have

L(L nL
� 〈〈ϕ,ϕL〉〉) = {L mL

� X | ∃ψ : (X → A). (ϕ = ψ ◦mL ∧X
p,mL=⇒)}

where X p,mL=⇒ denotes that the object X can be rewritten.

9.3.3. Rewriting Materializations
In the next step we will now rewrite the rewritable materialization 〈〈ϕ,ϕL〉〉 with
the match L

nL
� 〈〈ϕ,ϕL〉〉, resulting in a co-match R � B. In particular, we

will show that this co-match represents all co-matches that can be obtained by
rewriting an object X of L(A) at a match compatible with ϕ.

Proposition 9.28 (Rewriting abstract matches). Let a match nL : L� Ã
and a production p : L� I � R be given. Assume that Ã is rewritten along
the match nL, i.e., (L nL

� Ã) p⇒ (R nR
� B). Then

L(R nR
� B) = {R mR

� Y | ∃(L mL
� X) ∈ L(L nL

� Ã) :
(
(L mL
� X) p⇒ (R mR

� Y)
)
}

Example 9.29. We can rewrite the materialization L� 〈〈ϕ,ϕL〉〉 → A as follows:

L
�
〈〈ϕ

,ϕ
L 〉〉

C B

(PO) (PO)

115

9. Materialization Category

If we combine Prop. 9.27 and Prop. 9.28, we immediately obtain the following
corollary that characterizes the co-matches obtained from rewriting a match
compatible with ϕ : L→ A.

Corollary 9.30 (Co-match language of the rewritable materialization). Let
ϕ : L→ A and a production p : L ϕL

� I
ϕR
� R be given. Assume that 〈〈ϕ,ϕL〉〉

is obtained as the rewritable materialization of ϕ and ϕL with the match
L

nL
� 〈〈ϕ,ϕL〉〉 (see Proposition 9.25) and let (L nL

� 〈〈ϕ,ϕL〉〉) p⇒ (R nR
� B).

Then
L(R nR

� B) = {R mR
� Y |∃(L mL

� X), (X ψ→ A) :(
ϕ = ψ ◦mL ∧ (L mL

� X) p⇒ (R mR
� Y)

)
}

This result does not yet enable us to construct post-conditions for languages
of objects. The set of co-matches can be fully characterized as the language of
a mono, which can only be achieved by fixing the right-hand side R and thus
ensuring that exactly one occurrence of R is represented. However, as soon as we
forget about the co-match, this effect is gone and can only be retrieved by adding
annotations, which we will do in the next chapter.

116

“The only kind of writing is rewriting.”
Ernest Hemingway (1899-1961)

10
Rewriting Annotated Objects

In this chapter we endow abstract objects with annotations, with the overall goal
to be able to specify post-conditions for abstract rewriting steps. In particular,
we will use ordered monoids enhanced with a subtraction operation to annotate
objects. Furthermore, we will instantiate the materialization construction from the
previous chapter in this framework to rewrite abstract objects with annotations.
For this purpose, we specify how annotations can be computed within pushout
constructions. We start by introducing the annotations for the abstract objects.

10.1. Additional Preliminaries - Annotated Objects
We will annotate each abstract object with pairs of annotations, denoting upper
and lower bounds (see also Chapter 8). An object will belong to the corresponding
language only if it has a legal arrow to the abstract object satisfying such bounds.
We enrich ordered monoids (introduced in Chapter 8.1) with a subtraction op-
eration, which we will need to define annotations for pushout objects. Similar
annotations have already been studied in [Kön00] in the context of type systems.

Definition 10.1 (Ordered monoid with subtraction). A tuple (M,+,−,≤),
where (M,+,≤) is an ordered monoid and − is a binary operation onM, is
called an ordered monoid with subtraction.
We say that subtraction is well-behaved whenever for all a, b ∈ M it holds
that a− a = 0 and (a− b) + b = a whenever b ≤ a.

For now subtraction is just any operation, without specific requirements. Later
we will concentrate on specific subtraction operations and demand that they are
well-behaved. In the following we will consider only commutative monoids.

Definition 10.2 (Subtraction preserving maps). LetM,M′ be two ordered
monoids with subtraction. The category of ordered monoids with subtraction
and monotone maps is called Mon−.
We say that a map h : M→M′ preserves subtraction if h(a−b) = h(a)−h(b).

10. Rewriting Annotated Objects

We first have a look at some examples for ordered monoids with subtraction.
We already introduced examples for ordered monoids in Chapter 8, which we now
enrich with a subtraction operation.

Example 10.3. Let n ∈ N and letMn = {0, 1, . . . , n, ∗} be the ordered monoid
from Example 8.3. Then subtraction is truncated subtraction, i.e. x − y = 0 if
x ≤ y. Furthermore ∗ − x = ∗ for all x ∈ {0, 1, . . . , n}. It is easy to see that
subtraction is well-behaved.

Given a set S and an ordered monoid with subtractionM, it is easy to check
that also MS is an ordered monoid with subtraction, where the elements are
functions from S to M and the partial order, the monoidal operation and the
subtraction are taken pointwise.
As another example we extend the path monoid to an ordered monoid with

subtraction.

Example 10.4. Given a graph G, let PG be the path monoid from Example 8.4
and P0, P1 ∈ PG. Then subtraction simply returns the first parameter: P0−P1 = P0.

We will now formally define annotations for objects via a functor from a given
category to Mon−.

Definition 10.5 (Annotations for objects). Given a category C and a functor
A : C→Mon−, an annotation based on A for an object X ∈ C is an element
a ∈ A(X). We write Aϕ, instead of A(ϕ), for the action of functor A on a
C-arrow ϕ. Similar to Definition 8.5, we assume that for each object X there
is a standard annotation based on A that we denote by sX , thus sX ∈ A(X).

It can be shown quite straightforwardly that the forgetful functor mapping an
annotated object X[a], with a ∈ A(X), to X is an op-fibration (or co-fibration
[Jac99]), arising via the Grothendieck construction.
In Chapter 8 we already introduced two annotation functors for the category

GraphΛ based on the ordered monoidMn and the path monoid PG respectively,
i.e. the multiplicity functor Bn (see Definition 8.6) and the path annotation
functor T (see Definition 8.8). As another example we consider the following
local annotation functor Sn, based on the ordered monoidMn, which records the
out-degree of a node and where the action of the functor is to take the supremum
instead of the sum.

Definition 10.6 (Node out-degree annotation). Given n ∈ N, we define the
functor Sn : GraphΛ →Mon− as follows: For every graph G, Sn(G) =MVG

n .
For every graph morphism ϕ : G→ H and a ∈ Sn(G), we have Snϕ(a) ∈MVH

n

with:
Snϕ(a)(w) =

∨
ϕ(v)=w

a(v), where v ∈ VG and w ∈ VH

For a graph G, its standard annotation sG ∈ Sn(G) is defined as the function
which maps every node of G to its out-degree (or ∗ if the out-degree is larger
than n).

118

10.2. Annotation Properties

Example 10.7. Let the following graphs G and H with node out-degree annota-
tions a ∈ S3(G) be given. The out-degree of each node is indicated by the element
of M3 = {0, 1, 2, 3, ∗} shown in the brackets. Furthermore, let ϕ : G → H be a
graph morphism indicated by the numbers above the nodes.

G =
[0] [3] [0] [1] [0]

1 2 3 4 5B

B
A B ϕ

−→ 1, 2, 4 3, 5BA = H

Let a′ = S3
ϕ(a). We compute a′(w) for each node w ∈ VH by

taking the supremum of all a(v) ∈ S3(G) for which ϕ(v) = w.
The annotation a′ is depicted on the right. [3] [0]

BA

10.2. Annotation Properties
In the following we will consider only annotations satisfying certain properties in
order to achieve soundness and completeness of our abstract rewriting steps.

Definition 10.8 (Properties of annotations). Let A : C → Mon− be an
annotation functor, together with standard annotations. We say that the

• Homomorphism property holds if whenever ϕ is a mono, then Aϕ is a
monoid homomorphism, preserving also subtraction.

• Adjunction property holds if whenever ϕ : A� B is a mono, then
– Aϕ : A(A) → A(B) has a right adjoint redϕ : A(B) → A(A), i.e.,

redϕ is monotone and satisfies a ≤ redϕ(Aϕ(a)) for a ∈ A(A) and
Aϕ(redϕ(b)) ≤ b for b ∈ A(B).1

– redϕ is a monoid homomorphism that preserves subtraction.
– it holds that redϕ(sB) = sA, where sA, sB are standard annotations.

Furthermore, assuming that Aϕ has a right adjoint redϕ, we say that the

• Pushout property holds, whenever for each pushout as
shown in the diagram to the right, with all arrows monos
where η = ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2, it holds that for every
d ∈ A(D):

d = Aψ1(redψ1(d)) + (Aψ2(redψ2(d))−Aη(redη(d))).2

A //
ϕ2
//

η

��

ϕ1
��

C��

ψ2
��

B //
ψ1
// D

We say that the pushout property for standard annotations holds if we
replace d by sD, redψ1(d) by sB, redψ2(d) by sC and redη(d) by sA.

• Beck-Chevalley property holds if whenever the square
shown to the right is a pullback with ϕ1, ψ2 mono, then
it holds for every b ∈ A(B) that

Aϕ2(redϕ1(b)) = redψ2(Aψ1(b)).

A
ϕ2
//

��

ϕ1
��

C��

ψ2
��

B
ψ1
// D

(PB)

1This amounts to saying that the forgetful functor is a bifibration when we restrict to monos,
see [Jac99, Lem. 9.1.2].

2Note that the brackets are essential, for instance inM3 we have 2+(2−1) = 3 6= ∗ = (2+2)−1.

119

10. Rewriting Annotated Objects

Note that the multiplicity functor from Definition 8.6 satisfies all properties
above. In particular, for a given injective graph morphism ϕ : G� H the right
adjoint redϕ : MVH∪EH

n →MVG∪EG
n to Bnϕ is defined as follows: given an anno-

tation b ∈ MVH∪EH
n , redϕ(b)(x) = b(ϕ(x)), i.e., redϕ simply provides a form of

reindexing (see also Lemma L.5 in Appendix A.4).
The functors from Definition 8.8 and 10.6 satisfy both the homomorphism

property and the pushout property for standard annotations, but do not satisfy
all the remaining requirements (see Lemma L.6, L.7 and L.8 in Appendix A.6).
We will now introduce objects with two annotations, giving lower and upper

bounds, which we will call doubly annotated objects. Therefore, doubly annotated
objects are a generalization of annotated type graphs (see Definition 8.11) where
the set of annotations consist of only one pair of annotations. Alternatively we
could allow several pairs of annotations for objects, as in Chapter 8, yielding
multiply annotated objects, however for the sake of simplicity we will only assume
a single annotation.

Definition 10.9 (Doubly annotated object). Given a topos C and a functor
A : C→Mon−, a doubly annotated object A[a1, a2] is an object A of C with
two annotations a1, a2 ∈ A(A). An arrow ϕ : A[a1, a2]→ B[b1, b2], also called
a legal arrow, is a C-arrow ϕ : A→ B such that Aϕ(a1) ≥ b1 and Aϕ(a2) ≤ b2.

The language of a doubly annotated object A[a1, a2] (also called the language
of objects which are abstracted by A[a1, a2]) is defined as follows:

L(A[a1, a2]) = {X ∈ C | there exists a legal arrow ϕ : X[sX , sX]→ A[a1, a2]}

Note that legal arrows are closed under composition (analogous to Lemma 8.13).
Several examples of doubly annotated objects can be found in Section 8.3, where
we considered an instance of the annotation functor in the category GraphΛ.

Another annotation property is the isomorphism property which – in contrast to
the properties mentioned earlier – is defined specifically for standard annotations
of doubly annotated objects.

Definition 10.10 (Isomorphism property). Let A : C → Mon− be an
annotation functor together with standard annotations. Then the functor A
satisfies the isomorphism property if the following holds:

Whenever ϕ : X[sX , sX]→ Y [sY , sY] is legal, then ϕ is an isomorphism, i.e.
L(Y [sY , sY]) contains only Y itself (and objects isomorphic to Y).

The multiplicity functor from Definition 8.6 satisfies the isomorphism property,
however the path annotations (Definition 8.8) and the node out-degree annotations
(Definition 10.6) violate this requirement: For instance, there exists a graph
morphism ϕ : G→ H mapping a discrete graph G which consists of two nodes into
a discrete graph H consisting of a single node. Clearly, ϕ : G[sG, sG]→ H[sH , sH]
is legal if we consider standard annotations for both functors, however ϕ is not an
isomorphism.

120

10.3. Abstract Rewriting of Annotated Objects

10.3. Abstract Rewriting of Annotated Objects
We will now show how to actually rewrite annotated objects. The challenge is
both to find suitable annotations for the materialization and to “rewrite” the
annotations.

10.3.1. Abstract Rewriting and Soundness
We first describe how the annotated rewritable materialization is constructed and
then we investigate its properties.

Definition 10.11 (Construction of annotated rewritable materialization).
Let p : L ϕL

� I
ϕR
� R be a production and let A[a1, a2] be a doubly annotated

object. Furthermore let ϕ : L→ A be an arrow.
We first construct the factorization L

nL
� 〈〈ϕ,ϕL〉〉

ψ→ A, obtaining the
rewritable materialization 〈〈ϕ,ϕL〉〉 from Definition 9.24. Next let M contain
all maximal1elements of the set

{(a′1, a′2) ∈ A(〈〈ϕ,ϕL〉〉)2 | AnL(sL) ≤ a′2,
a1 ≤ Aψ(a′1),Aψ(a′2) ≤ a2}.

Then the doubly annotated objects 〈〈ϕ,ϕL〉〉[a′1, a′2] with (a′1, a′2) ∈M are the
annotated rewritable materializations for A[a1, a2], ϕ and ϕL.

Note that in general there are several materializations, differing for the an-
notations only, or possibly none. The definition of M ensures that the upper
bound a′2 of the materialization covers the annotations arising from the left-hand
side. We can not use a corresponding condition for the lower bound, since the
materialization might contain additional structures, hence the arrow nL is only
semi-legal. A more symmetric condition will be studied in Section 10.3.2.

Proposition 10.12 (Annotated rewritable materialization is terminal). Let
p : L ϕL

� I
ϕR
� R be a production and let L mL

� X be the match of L in an object
X such that X p,mL=⇒ , i.e., X can be rewritten. Assume that X is abstracted by
A[a1, a2], witnessed by ψ. Let ϕ = ψ ◦mL and let L nL

� 〈〈ϕ,ϕL〉〉
ψ′→ A be the

corresponding rewritable materialization. Then there exists an arrow ζA and a
pair of annotations (a′1, a′2) ∈M for 〈〈ϕ,ϕL〉〉 (as described in Definition 10.11)
such that the diagram below commutes and the square is a pullback in the
underlying category. Furthermore the triangle consists of legal arrows. This
means in particular that ζA is legal.

L[sL, sL]
��

idL
��

//
mL // X[sX , sX]

ζA
��

ψ
// A[a1, a2]

L[sL, sL] // nL
// 〈〈ϕ,ϕL〉〉[a′1, a′2]

(PB)
ψ′

77

1Maximal means maximality w.r.t. the interval order (a1, a2) v (a′1, a′2) ⇐⇒ a′1 ≤ a1, a2 ≤ a′2.

121

10. Rewriting Annotated Objects

Once we have performed the materialization, we will now show how to rewrite
annotated objects. Note that we cannot simply take pushouts in the category of
annotated objects and legal arrows, since this would result in taking the supremum
of annotations, when instead we need the sum (subtracting the annotation of the
interface I, analogous to the inclusion-exclusion principle).

Definition 10.13 (Abstract rewriting step ;). Let p : L ϕL
� I

ϕR
� R be a

production and let A[a1, a2] be an annotated abstract object. Furthermore let
ϕ : L→ A be a match of a left-hand side, let nL : L� 〈〈ϕ,ϕL〉〉 be the match
obtained via materialization and let (a′1, a′2) ∈M (as in Definition 10.11).
Then A[a1, a2] can be transformed to B[b1, b2] via p whenever there are

arrows such that the two squares below are pushouts in the base category
and b1, b2 are defined as:

bi = AϕB (ci) + (AnR(sR)−AnR◦ϕR(sI)) for i ∈ {1, 2}

where c1, c2 are maximal annotations such that:

a′1 ≤ AϕA(c1) + (AnL(sL)−AnL◦ϕL(sI))
a′2 ≥ AϕA(c2) + (AnL(sL)−AnL◦ϕL(sI))

L[sL, sL]
��

nL
��

I[sI , sI]oo
ϕLoo //

ϕR //
��

nI
��

R[sR, sR]
��

nR
��

〈〈ϕ,ϕL〉〉[a′1, a′2] C[c1, c2]oo
ϕAoo //

ϕB // B[b1, b2]

In this case we write A[a1, a2] p,ϕ; B[b1, b2] and say that A[a1, a2] makes an
abstract rewriting step to B[b1, b2].

We will now show soundness of abstract rewriting, i.e., whenever an object X
is abstracted by A[a1, a2] and X is rewritten to Y , then there exists an abstract
rewriting step from A[a1, a2] to B[b1, b2] such that Y is abstracted by B[b1, b2].
Assumption: In the following we will require that the homomorphism property
as well as the pushout property for standard annotations hold (cf. Definition 10.8).

Proposition 10.14 (Soundness for ;). The relation ; is sound, i.e. if
X ∈ L(A[a1, a2]) (witnessed via a legal arrow ψ : X[sX , sX]→ A[a1, a2]) and
X

p,mL=⇒ Y , then there exists an abstract rewriting step A[a1, a2] p,ψ◦mL; B[b1, b2]
such that Y ∈ L(B[b1, b2]).

10.3.2. Completeness
The conditions that we imposed so far are too weak to guarantee completeness,
that is the fact that every object represented by B[b1, b2] can be obtained by
rewriting an object represented by A[a1, a2]. This can be clearly seen by the fact
that the requirements hold also for the singleton monoid and, as discussed before,
the graph structure of B is insufficient to characterize the successor objects or
graphs.

122

10.3. Abstract Rewriting of Annotated Objects

Hence we will now strengthen our requirements in order to obtain completeness.
Assumption: In addition to the assumptions of Section 10.3.1, we will need
that subtraction is well-behaved and that the adjunction property, the isomor-
phism property, the pushout property and the Beck-Chevalley property hold (cf.
Definition 10.8).
The multiplicities from Definition 8.6 satisfy all these properties. We will now
modify the abstract rewriting relation and allow only those abstract annotations
for the materialization that reduce to the standard annotation of the left-hand side.

Definition 10.15 (Abstract rewriting step ↪→). Given ϕ : L → A, assume
that B[b1, b2] is constructed from A[a1, a2] via the construction described in
Definition 10.11 and 10.13, with the modification that the set of annotations
from which the set of maximal annotations M of the materialization 〈〈ϕ,ϕL〉〉
are taken, is replaced by:

{(a′1, a′2) ∈ A(〈〈ϕ,ϕL〉〉)2 | rednL(a′i) = sL for i ∈ {1, 2},
a1 ≤ Aψ(a′1),Aψ(a′2) ≤ a2}.

In this case we write A[a1, a2] p,ϕ↪→ B[b1, b2].

Due to the adjunction property we have AnL(sL) = AnL(rednL(a′2)) ≤ a′2 and
hence the set M of annotations of Definition 10.15 is a subset of the corresponding
set of Definition 10.13. We give a small example of an abstract rewriting step.
Example 10.16. Consider the diagram shown below which depicts an abstract
rewriting step. Elements without annotation are annotated by [0, ∗] by default and
those with annotation [0, 0] are omitted. Furthermore elements in the image of the
match and co-match are annotated by the standard annotation [1, 1] to specify the
concrete occurrence of the left-hand and right-hand side.

[1, 1]
C [1, 1]

[1, 1]
[1, 1]

[1, 1]

A [1, 1]

B [1, 1]

[1, 1]

D

D
D

D

C [1, 1]
[1, 1]

D

D
D

D

[1, 1]
[1, 1]

D

D
D

D
A [1, 1]

B [1, 1]

[1, ∗]
C [1, 1]D

ϕL ϕR

ϕA ϕB

nL nI nR

ϕ

A← L� I � R

〈〈ϕ,ϕL〉〉� C � B

First, the concrete instance of the left hand side L is materialized out of the
abstract graph A (shown to the left), resulting in the rewritable materialization
〈〈ϕ,ϕL〉〉 alongside the match nL. Please note that the materialization only consists
of one C-labelled loop since there is only a standard annotated C-labelled loop
available in A and we omitted all additional edges which would have the annotation
[0, 0]. The rewriting step then replaces the unique C-labelled loop by the concrete
instance of the right-hand side R of the rule, resulting in the annotated type graph
B. The annotation of the context C gets carried over during the rewriting process
since all morphisms are monos.

123

10. Rewriting Annotated Objects

The variant of abstract rewriting introduced in Def. 10.15 can be proven to be
sound and complete, assuming the extra requirements stated above.

Proposition 10.17 (Soundness for ↪→). The relation ↪→ is sound, i.e. if
X ∈ L(A[a1, a2]) (witnessed via a legal arrow ψ : X[sX , sX]→ A[a1, a2]) and
X

p,mL=⇒ Y , then there exists an abstract rewriting step A[a1, a2] p,ψ◦mL↪→ B[b1, b2]
such that Y ∈ L(B[b1, b2]).

Proposition 10.18 (Completeness for ↪→). The relation ↪→ is complete, i.e. if
A[a1, a2] p,ϕ↪→ B[b1, b2] and Y ∈ L(B[b1, b2]), then there exists X ∈ L(A[a1, a2])
(witnessed via a legal arrow ψ : X[sX , sX] → A[a1, a2]) such that X p,mL=⇒ Y
and ϕ = ψ ◦mL.

Finally, we can show that annotated objects of this kind are expressive enough
to construct a strongest post-condition. For the construction we now allow several
annotations for objects, analogous to Definition 8.11, such that we can represent
the strongest post-condition with a single (multiply) annotated object B[N] where
N is a set of annotations. The structure of the object B is always the same since
the structure is dependent on the arrow ϕ, but not on the annotation of the
abstract object A.

Corollary 10.19 (Strongest post-condition). Let A[a1, a2] be an annotated
object and let ϕ : L → A. We obtain (several) abstract rewriting steps
A[a1, a2] p,ϕ↪→ B[b1, b2], where we always obtain the same object B. Now let
N = {(b1, b2) | A[a1, a2] p,ϕ↪→ B[b1, b2]}. Then the strongest post-condition is
the language of the multiply annotated object B[N], i.e.

L(B[N]) = {Y | ∃(X ∈ L(A[a1, a2]),witnessed by ψ),
(L mL
� X) : (ϕ = ψ ◦mL ∧X

p,mL=⇒ Y)}

We conclude with a worked example which shows that, thanks to the result
above, multiply annotated type graphs can be used for verification methods such
as invariant checking.

Example 10.20. In the following, we give an example for the computation of
a postcondition. We specify an online-shop scenario using an annotated abstract
graph with the following edge label semantics:

C : The connection of a customer node to the online-shop.

M : The market relation describing which items are purchasable in the shop.

P : The possession relation describing which items are purchased by a customer.

$: One $-coin of the currency used by customers to buy items in the shop.

Now, we would like to model the following situation: Exactly one of many customers
has established a connection to an online-shop. At least one of the customers has
a $-coin to purchase items and the online-shops have an arbitrary number of items

124

10.3. Abstract Rewriting of Annotated Objects

available. A customer can be in possession of an arbitrary number of items. Graphs
modelling this specification can for instance be part of the language described by
the following annotated abstract graph A[a1, a2]:

A[a1, a2] = [1, ∗]
[1, 1]

[0, ∗]C [1, 1] M [0, ∗]

P [0, ∗]

$ [1, ∗]

The following graph transformation production ρ : L� I � R specifies, that a
customer, who is in possession of at least one $-coin and who is connected to the
online shop, can purchase one of the items in stock in exchange for the currency.
The production morphisms are indicated by the node positions:

ρ = C M

$

C C

P

Please note, that there exists only one possibility to map the left-hand side graph
L of the production ρ into the abstract graph A. We now depict the rewritable
abstract graph 〈〈ϕ,ϕL〉〉[a′1, a′2] consisting of the abstract graph A (upper part), the
left-hand side graph L (lower part) and the additional edges introduced in the
construction of Prop. 9.25 alongside a maximal pair of annotations (a′1, a′2) ∈M
conforming to Definition 10.15:

〈〈ϕ,ϕL〉〉[a′1, a′2] =

[0, ∗]
[0, 0]

[0, ∗]C [0, 0] M [0, ∗]

P [0, ∗]

$ [0, ∗]

[1, 1]
[1, 1]

[1, 1]C [1, 1] M [1, 1]

$ [1, 1]

C [0, 0] M [0, ∗]
P [0, ∗]

$ [0, ∗]

$ [0, ∗] $ [0, ∗]

C [0, 0]

C [0, 0]

M [0, ∗]

M [0, ∗]

P [0, ∗]
P [0, ∗]

All elements in 〈〈ϕ,ϕL〉〉[a′1, a′2] annotated with [0, 0] cannot be the target of a legal
morphism and therefore can be removed to simplify the graphical representation. If
a node annotated with [0, 0] is removed this way, all incident edges are removed as
well independently of their annotation. We apply the production ρ to the simplified
rewritable abstract graph 〈〈ϕ,ϕL〉〉[a′1, a′2] (shown below to the left) resulting in the
abstract graph B[b1, b2] (shown below, to the right):

125

10. Rewriting Annotated Objects

[0, ∗] [0, ∗]
P [0, ∗]

$ [0, ∗]

[1, 1]
[1, 1]

[1, 1]C [1, 1] M [1, 1]

$ [1, 1]

M [0, ∗]
P [0, ∗]$ [0, ∗]

$ [0, ∗] $ [0, ∗]
M [0, ∗]

P [0, ∗] P [0, ∗]

〈〈ϕ, ϕL〉〉[a′1, a′2]

⇒ρ

[0, ∗] [0, ∗]
P [0, ∗]

$ [0, ∗]

[1, 1]
[1, 1]

[1, 1]C [1, 1]

P [1, 1]

M [0, ∗]
P [0, ∗]$ [0, ∗]

$ [0, ∗] $ [0, ∗]
M [0, ∗]

P [0, ∗] P [0, ∗]

B[b1, b2]

We can use the postcondition for an invariant check of the graph language
L(A[a1, a2]) with respect to the production ρ. In fact, the annotated abstract graph
B[b1, b2] specifies (a part of) the strongest postcondition and
therefore the graph G ∈ L(B[b1, b2]), shown to the right, is
a witness for the fact that the graph language L(A[a1, a2]) is
not closed under application of ρ since G /∈ L(A[a1, a2]) due
to a missing $-coin edge in G, which is required by A[a1, a2].

C

P

Please note that the simplification of the visual representation does not influence
the computation of the strongest postcondition, however, it might hide information
which is necessary to argue that the computed rewritable materialization is
contained in the initial graph language. We illustrate this effect in a small example.

Example 10.21. Let the graph transformation rule ρ = L ← I → R and the
annotated type graph T [a1, a2] shown below be given. Let ϕ : L → T match the
single node of L with the left node of T [a1, a2]:

ρ = � � T [a1, a2] =
[0, 1] [0, 1]

A [1, 1]

We construct the rewritable materialization
〈〈ϕ,ϕL〉〉[a′1, a′2], shown to the right, with a
maximal pair of annotations (a′1, a′2) ∈ M
conforming to Definition 10.15. For the
non-simplified version of the rewritable
materialization 〈〈ϕ,ϕL〉〉[a′1, a′2] there clearly

〈〈ϕ,ϕL〉〉[a′1, a′2] =
[0, 0]

[0, 1][1, 1]

A [1, 1]

A [0, 0]

exists a non-monic legal morphism into the annotated type graph T [a1, a2]. However,
simplifying the visual representation results in the annotated type graph shown
below left from which we can not infer the existence of a legal morphism anymore,
since the lower bound of the A-labeled edge in T [a1, a2] can not be satisfied:

[1, 1] [0, 1]
6−→

[0, 1] [0, 1]
A [1, 1]

126

Conclusion of Part IV

We have described a rewriting framework for abstract graphs that also applies to
objects in any topos, based on existing work for graphs [SWW11; BW07; Bac15;
BR15a; RZ10; Ren04a]. In particular, we have given a blueprint for materialization
in terms of the universal property of partial map classifiers. This is a first theoretical
milestone towards shape analysis as a general static analysis method for rule-based
systems with graph-like objects as states. Soundness and completeness results for
rewriting of abstract objects with annotations in an ordered monoid provide an
effective verification method for the special case of graphs (cf. Example 10.20).
The results from Chapters 8,9 and 10, i.e. the materialization construction and
the computation of rewriting steps of abstract graphs enriched with annotations
have been implemented in the prototype tool DrAGoM which we will introduce in
the upcoming chapters.

Related Work
The idea of shape graphs together with shape constraints was pioneered in
[SRW02] where the constraints are specified in a three-valued logic. A similar
approach was proposed in [SWW11], using first-order formulas as constraints.
In partner abstraction [Bau06; BW07], cluster abstraction [Bac15; BR15a], and
neighbourhood abstraction [RZ10] nodes are clustered according to local criteria,
such as their neighbourhood and the resulting graph structures are enriched with
counting constraints, similar to our constraints. The idea of counting multiplicities
of nodes and edges is also found in canonical graph shapes [Ren04a].

Open Questions
The extension of annotations with logical formulas is the natural next step, which
will lead to a more flexible and versatile specification language, as described in
previous work [SRW02; SWW11]. The logic can possibly be developed in full
generality using the framework of nested application conditions [HP05; LO14]
that applies to objects in adhesive categories. This logical approach might even
reduce the proof obligations for annotation functors.
Another open question is how to integrate widening or similar approximation

techniques, which collapse abstract objects. Ideally, such techniques would lead to
finite abstract transition systems that (over-)approximate the typically infinite
transitions systems of graph transformation systems.

Part V.

Tools and Applications

“Machines take me by surprise with great frequency.”
Alan Turing (1912-1954)

11
DrAGoM

In this chapter we describe the prototype tool called DrAGoM (abbreviation for:
Directed Abstract Graphs over Multiplicities) which is a software to handle and
manipulate multiply annotated type graphs (introduced in Chapter 8). The main
idea of DrAGoM is to be able to automatically check invariants of graph transfor-
mation systems, in abstract graph rewriting. For this purpose, we implemented
the categorical notions introduced in Chapter 10 for the category of multiply
annotated type graphs and legal morphisms.
First, in Section 11.1, we give an overview of the general functionalities of

DrAGoM. A detailed explanation for the installation and usage of the tool can be
found in Appendix C.1. Afterwards, in Section 11.2 we describe how the categorical
notions of Part IV are implemented as a concrete instance for our annotated
type graph framework. We close this chapter with a comparison to other graph
verification tools in Section 11.3.

11.1. An Introduction to DrAGoM
The implementation of DrAGoM started in Spring 2016 as a prototype tool to
visualize graphs contained in a graph language specified by an annotated type
graph. In Fall 2018 the prototype tool was used as a base to build a new tool on
top of it. Given a graph language specified by a multiply annotated type graph,
we implemented techniques which are able to construct an abstract graph that
specifies the strongest postcondition with respect to a graph transformation rule.
To this end, we created DrAGoM.

To compute the strongest postcondition, DrAGoM uses the materialization
construction introduced in Chapter 9 to extract a concrete instance of the left-
hand side graph out of the abstract graph in every possible way. Afterwards,
DrAGoM can perform a language inclusion check (see Proposition 8.20) to verify
if the computed postcondition is already covered by the initial graph language.
This way, the tool is able to check for invariants.

11. DrAGoM

The DrAGoM-User Workflow
In this section we describe the typical workflow of a user interaction with DrAGoM.
The workflow which we refer to is depicted in Figure 11.1. First, we explain the
meaning of all elements in the shown flowchart:

Dialog Box A dialog that offers different functionalities which
depend on the current user-interaction.

Algorithm/Construction An automatic process which performs
several serial steps once started.

Visualization The visualization of a created or modified data
structure is updated and displayed.

External File A file from which data structures can be loaded
from or to save data structures into.

User The user who initializes the workflow. This is the flowcharts
start point.

Choice A point where either the user (symbol shown to the left)
or an algorithm (symbol shown to the right) makes a choice.

Flow The control flow (solid arrow) and object flow (dashed
arrow) of the flow diagram.

Fork Splits the control flow into several parallel independent
subflows illustrating different tasks.

Join Continues the main control flow once all subflows finish their
tasks and reach the join node.

Algorithm Symbol Symbol which indicates the usage of an
algorithm (see also Section 11.2).

In the following we will describe the flowchart (see Figure 11.1) in more detail.
The interaction starts with the user who initializes DrAGoM. Before the tool

can start with the analysis, the user needs to create (or load) an annotated type
graph (short: ATG) and a graph transformation system (short: GTS).
Annotated type graphs can be directly created via the user interface. After

the creation, the user can add additional multiplicities to extend the annotated
type graph to a multiply annotated type graph. For loading and storing multiply
annotated type graphs, DrAGoM uses the Xml based standard Graph eXchange
Language1 (Gxl) [Win02; KRW02; HS+06]. An example for the file format, of an
encoded multiply annotated type graph, is given in Appendix C.2.

1See also http://www.gupro.de/GXL/

132

http://www.gupro.de/GXL/

11.1. An Introduction to DrAGoM

DrAGoM

Load ATG

 Create
ATG

GXL
File

SGF
File

Load GTS

Create
 GTS

Add another
multiplicity

Add another
DPO rule

GXL
File

SGF
File

 Materialize Post-
 conditions

Check
 Language

Inclusion

Invariant Check
 Algorithm

Add
Annotation

 Rewritable
Refinement

 Materialize
Left-Hand

Side

Materialization
 Construction

 Rewriting
 Step

Shift
 Annotation

Postcondition
 Construction

GXL
File

 Rewritable
 Materialization

Strongest
Postcondition

Proceed

Save
GTS

Save
ATG

Proceed

Proceed Proceed

Invariant Check Materialize

All
rules

checked

 Annotated
Type Graph

 Graph
Transformation

System

Next
rule

No
legal
morphism
found

Invariant

ATG Reader GTS Reader

Create ATG Add Rule

Add
Multiplicity

ATG Writer GTS Writer

Select Base
Morphism

ATG WriterShow
Postcondition

Show
Proof

User

Figure 11.1.: UML flowchart of a typical user interaction with DrAGoM

133

11. DrAGoM

Likewise, graph transformation systems can be directly created via the user
interface. The user can create a graph transformation rule which is added to an
empty graph transformation system. This process can be repeated until all rules
have been added. For loading and storing graph transformation systems, DrAGoM
uses the Simple Graph Format (Sgf) [Bru15]. Unlike other text-based formats,
such as XML-derived formats, which are mainly designed to be easily parsed
by a computer program, the Sgf format is designed to be easily written, read
and maintained in source form by the user. An example for the file format of an
encoded graph transformation system, can be found in Appendix C.3.
Once both data structures, the multiply annotated type graph and the graph

transformation system, are created, the user can choose to either compute a
rewritable materialization or to let DrAGoM perform an invariant check.

For the case that the user wants to compute the rewritable materialization, the
currently displayed graph transformation rule is used for the construction. The user
can select a semi-legal base morphism (if there are any) and afterwards DrAGoM
automatically computes the rewritable materialization. This materialization can
be used as an input for the computation of the strongest postcondition. The
materialization algorithm alongside the postcondition algorithm are explained in
more detail in Section 11.2. The user can choose to save the multiply annotated type
graph which specifies the strongest postcondition in the Gxl format. Furthermore,
the user can choose to let DrAGoM perform a language inclusion check with respect
to the computed postcondition and the initial annotated type graph.
If the user chooses to let DrAGoM perform an invariant check instead, both

algorithms, the materialization construction (for all semi-legal base morphisms)
and the postcondition construction, are performed in sequence. The gearwheel
symbols in the algorithm steps indicate that these two tasks resemble the two
constructions depicted on the right side of the diagram. Afterwards, a language
inclusion check is used to possibly find a legal morphism from the graph specifying
the postcondition to the graph that specifies the initial graph language. If such
a legal morphism can not be found, the corresponding multiply annotated type
graphs are displayed and DrAGoM is unable to prove that the initial specified graph
language is an invariant for the given graph transformation system. Otherwise, the
algorithm is restarted until every rule of the graph transformation system is checked.
If for all rules and every semi-legal base morphism there exists a corresponding
legal morphism for the postcondition graph, then all legal morphisms are displayed
as a proof to the user.

11.2. Implementing Categorical Notions
The computation of the materialization and its annotations, which was described
categorically for an arbritrary topos C in Chapter 9, needs to be implemented in
DrAGoM as a concrete instance for our annotated type graph framework.

11.2.1. Concrete Construction of the Materialization
We define a concrete construction of the materialization 〈ϕ〉 in the category
GraphΛ. Even though GraphΛ is a topos, we do not use the notions of subobject
classifiers or partial map classifiers for the following step-by-step construction:

134

11.2. Implementing Categorical Notions

Definition 11.1 (Concrete construction of the materialization). Let two
graphs L = (VL, EL, srcL, tgtL, labL) and A = (VA, EA, srcA, tgtA, labA) over
a fixed edge label alphabet Λ be given and let ϕ : L → A be a fixed graph
morphism.

First we define the function ψV : (VL
⊎
VA)→ VA which maps the nodes of

L and A to the nodes of A with respect to ϕ:

ψV (x) =
{
ϕV (x) if x ∈ VL
x otherwise

We construct Ã = (V,E, src, tgt, lab) in the following way:

V = VL
⊎
VA

E = EL
⊎
{(e, s, t, l) ∈ EA × V × V × Λ |

srcA(e) = ψV (s) ∧ tgtA(e) = ψV (t) ∧ labA(e) = l}

src : E → V src(x) =
{
s if x = (e, s, t, l)
srcL(x) otherwise

tgt : E → V tgt(x) =
{
t if x = (e, s, t, l)
tgtL(x) otherwise

lab : E → Λ lab(x) =
{
l if x = (e, s, t, l)
labL(x) otherwise

This concludes the construction of the graph Ã.
We now define the embedding graph morphism
α : L → Ã where α(x) = x to get the diagram
shown to the right.

L Ã A
α

ϕ

To get a valid factorization L � Ã → A of ϕ, we define the morphism
ψ : Ã→ A with ψ = (ψV , ψE) where ψE : E → EA is given by:

ψE(x) =
{
e if x = (e, s, t, l)
ϕE(x) otherwise (i.e. x ∈ EL)

Obviously ψ ◦ α = ϕ holds. The object L α
� Ã

ψ→ A
is a factorization of L ϕ→ A and the diagram shown
to the right commutes.

L Ã A
α

ϕ

ψ

Next, we prove that the above constructed object L α
� Ã

ψ→ A is the terminal
object in the materialization category Matϕ, i.e. we have Ã = 〈ϕ〉.

Proposition 11.2 (Constructed materialization is terminal). Let L ϕ→ A be
a fixed graph morphism in GraphΛ. Then the factorization L

α
� Ã

ψ→ A
from Definition 11.1 is the terminal object in the category Matϕ.

Therefore, the construction of Definition 11.1 is a guideline which tells us how
to implement a materialization algorithm step-by-step. Since we are working with

135

11. DrAGoM

injective rule morphisms, it is straightforward to refine this construction into one
for the rewritable materialization 〈〈ϕ,ϕL〉〉. This can be achieved by removing all
edges incident to nodes which are not contained in the codomain of the left-hand
side morphism of the rule and by subsequently restricting the domain of the
embedding morphism ψ, i.e. we obtain ψ′ : 〈〈ϕ,ϕL〉〉 → A with ψ′ = ψ|〈〈ϕ,ϕL〉〉.

11.2.2. Computation of Annotations
Once the rewritable materialization 〈〈ϕ,ϕL〉〉 is created, we can annotate its
elements. To enrich the rewritable materialization, with a set of maximal pairs of
annotations (a1, a2) ∈ M which conform Definition 10.15, DrAGoM employs the
SMT solver Z3. The reason behind this approach is the fact that a brute-force
search for valid multiplicities is too costly with respect to computation time.
Instead, we encode the problem of annotation computation into an SMT formula.
Let A[M ′] be a multiply annotated type graph and let L α

� 〈〈ϕ,ϕL〉〉
ψ′→ A be

the factorization which contains the rewritable materialization 〈〈ϕ,ϕL〉〉 of a given
fixed graph morphism L

ϕ→ A. We encode the problem into an SMT formula which
yields a model in form of a maximal pair of annotations (a1, a2) whenever the
two morphisms α : L[sL, sL] � 〈〈ϕ,ϕL〉〉[a1, a2] and ψ′ : 〈〈ϕ,ϕL〉〉[a1, a2] → A[M ′]
are legal. We illustrate the encoding based on 〈〈ϕ,ϕL〉〉 from Example 9.29.

Example 11.3. Let the factorization L[sL, sL] α
� 〈〈ϕ,ϕL〉〉[`, u] ψ

′
→ A[b1, b2] from

Example 9.29 overM3 be given (we only denote multiplicities):

[1, 1] [1, 1]

[1, 1]

[`1, u1]
[`3, u3]

[`7, u7]

[`2, u2]
[`4, u4]

[`8, u8]
[`5, u5]

[`6, u6]
[0, ∗]

[1, 2]

First, we encode the set of graph elements and our searched annotation functions.
We use the SMT-LIB2 format [BST10] where operators are used in prefix notation.

(declare-datatypes () ((X x1 . . . xN))) | X = V〈〈ϕ,ϕL〉〉 ∪ E〈〈ϕ,ϕL〉〉
(declare-fun low (X) Int) | ` : X → N0

(declare-fun up (X) Int) | u : X → N0

For our encoding, we do not distinguish between nodes and edges in the rewritable
materialization. Instead, we simply refer to graph elements x ∈ 〈〈ϕ,ϕL〉〉 for the
two annotation functions `, u : 〈〈ϕ,ϕL〉〉 →M3, where `(x) = `x and u(x) = ux in
the visualized graph above.
Next, we ensure that the codomain of the functions only consists of values inM3,
i.e.,M3 = {0, 1, 2, ∗} where ∗ will be represented by the value 3. Furthermore, we
encode that for the pair of annotations ` ≤ u holds (see also Definition 8.11):

(assert (forall ((x X)) (>= (low x) 0))) | ∀x (0 ≤ `(x))
(assert (forall ((x X)) (<= (up x) 3))) | ∀x (u(x) ≤ ∗)
(assert (forall ((x X)) (<= (low x) (up x)))) | ∀x (`(x) ≤ u(x))

136

11.2. Implementing Categorical Notions

Instead of encoding the morphisms α and ψ′, we use them to compute sets of nodes
and edges with specific requirements. According to Definition 10.15 all elements in
the image of α are annotated with the standard annotation [1, 1]. In our example,
α(L) = {x1, x2, x3} and therefore we add the following six constraints:

(assert (= (low x1) 1)) | `(x1) = 1
(assert (= (low x2) 1)) | `(x2) = 1
(assert (= (low x3) 1)) | `(x3) = 1

(assert (= (up x1) 1)) |u(x1) = 1
(assert (= (up x2) 1)) |u(x2) = 1
(assert (= (up x3) 1)) |u(x3) = 1

Since we search for maximal pairs of annotations we set up the following constraints
for all remaining elements x̄ ∈ (〈〈ϕ,ϕL〉〉 \ α(L)), i.e. elements which are not part
of the left-hand side image: All remaining elements x̄ for which b2(ψ′(x̄)) = ∗,
receive the upper bound u(x̄) = ∗. In a similar way, the remaining elements x̄ for
which b1(ψ′(x̄)) = 0, receive the lower bound `(x̄) = 0. In our example this yields
the constraint for x7:

(assert (= (low x7) 0)) | `(x7) = 0 (assert (= (up x7) 3)) |u(x7) = ∗

Last, we encode constraints for the remaining elements x̄ ∈ (〈〈ϕ,ϕL〉〉 \ α(L))
which are mapped onto type graph elements t ∈ A with a multiplicity value b with
0 < b < ∗: In case of b1(t) = b, if x̄ ∈ ψ′−1(t) and for the number of left-hand
side image elements α(L) in ψ′−1(t) we have |α(L) ∩ ψ′−1(t)| ≥ b, then `(x̄) = 0.
Otherwise, the sum of all corresponding lower bounds in ψ′−1(t) must be equal to
b. Similarly the sum of all upper bounds in ψ′−1(t) must be equal to b2(t). For our
running example we get the following constraints:

(assert (= (low x4) 0)) | `(x4) = 0
(assert (= (low x5) 0)) | `(x5) = 0

(assert (= (low x6) 0)) | `(x6) = 0
(assert (= (low x8) 0)) | `(x8) = 0

(assert (= (sum (up x2) (up x4) (up x5) (up x6) (up x8)) 2))
|u(x2) + u(x4) + u(x5) + u(x6) + u(x8) = 2

This completes the SMT encoding. Whenever the solver finds a model, we get a
pair of annotations (`, u) which yields a legal morphism ψ′ and the pair is maximal
in the sense that we exactly hit all desired bounds, i.e. (`, u) ∈ M conforming
Definition 10.15. We then extend the SMT formula to exclude all previously found
models and check for its satisfiability until the formula gets unsatisfiable. In each
iteration step we collect another maximal pair. In our example we receive the
following four pairs of annotations for the rewritable materialization 〈〈ϕ,ϕL〉〉[M]:

〈〈ϕ,ϕL〉〉[`, u] =

[1, 1]
[1, 1]

[0, ∗]

[1, 1]
[0, 1]

[0, 0]
[0, 0]

[0, 0] 〈〈ϕ,ϕL〉〉[`′′, u′′] =

[1, 1]
[1, 1]

[0, ∗]

[1, 1]
[0, 0]

[0, 1]
[0, 0]

[0, 0]

137

11. DrAGoM

〈〈ϕ,ϕL〉〉[`′, u′] =

[1, 1]
[1, 1]

[0, ∗]

[1, 1]
[0, 0]

[0, 0]
[0, 1]

[0, 0] 〈〈ϕ,ϕL〉〉[`′′′, u′′′] =

[1, 1]
[1, 1]

[0, ∗]

[1, 1]
[0, 0]

[0, 0]
[0, 0]

[0, 1]

In practice, DrAGoM uses an optimization where, in case of a universal quantifi-
cation, we substitute the variable with every possible instance (e.g. with every
element) and take the conjunction of the resulting formulas. This is possible since
we always quantify over finite sets.

11.3. Other Verification Tools
Please note that DrAGoM is not supposed to be a universally applicable verifica-
tion tool for abstract graph rewriting, but rather an evidence for the fact that
the specification framework based on multiply annotated type graphs can be
implemented. Of course, there exist implementations of various other frameworks
and verification techniques, both for graph transformation systems and abstract
graph rewriting. In this section, we spotlight some of these tools and sketch their
functionalities and approaches.
The tool groove2 was originally created to support the use of graphs for

modeling the design-time, compile-time, and run-time structure of object-oriented
systems [Ren03], but since then has grown to be a full-fledged general-purpose
graph transformation tool. The emphasis lies on the efficient exploration of
the state space, given a particular graph transformation system. While doing
so, groove recognizes previously visited graphs modulo isomorphism, avoiding
duplication during their exploration. For verification purposes, groove has a
built-in model checker that can run temporal logic queries over the state space.

For infinite state systems there exist implementations for verification purposes
that do not depend on the exploration of the entire state space. Instead abstract
interpretation can be used to over-approximate these systems. The tool augur23

uses a technique called abstract unfolding and is based on so-called Petri graphs
[BCK01] which are an over-approximation that consists of a hypergraph and
an (attributed) Petri net. augur2 verifies properties of graph transformation
systems by using regular expressions, first order logic and coverability checking
techniques for (attributed) Petri nets. Furthermore, the abstraction can be refined
via counterexample-guided abstraction refinement [KK06; CG+03].

For recognizable graph languages, the tool suite raven4 provides verification
techniques based on formal language theory for the notion of a so-called graph
automaton [Blu14] which is a finite automaton to process graphs instead of
words. raven uses binary decision diagrams to symbolically encode the graph
automaton and therefore the state space. Some functionalities of raven are the
computation of pre-defined classes of automata, the computations of their union

2groove homepage: http://groove.cs.utwente.nl/
3augur2 homepage: http://www.ti.inf.uni-due.de/research/tools/augur2/
4raven homepage: https://www.uni-due.de/theoinf/research/tools_raven.php

138

http://groove.cs.utwente.nl/
http://www.ti.inf.uni-due.de/research/tools/augur2/
https://www.uni-due.de/theoinf/research/tools_raven.php

11.3. Other Verification Tools

and product automata, membership checks for the corresponding languages of
cospan decomposed graphs, and invariant checks for graph transformation systems.

Then there exist other implementations which are designed for the analysis of
pointer programs [Ren04a] and for shape analysis [SRW02]. In [SWW10; SW11]
and [SWW11] the authors mention an implementation based on the source code
of the shape analysis tool tvla5 [BL+07]. Given a shape graph, a set of shape
productions and a set of forbidden patterns, the implementation constructs
the set of reachable shape graphs where each graph is represented as a logical
structure based on three-valued logic. If a reached shape graph contains the
forbidden pattern, a counterexample in form of the respective derivation sequence
is returned.

The tool juggrnaut6 [HJ+15] uses hyperedge replacement grammars to specify
pointer program structures and their abstractions. The grammar rules are used in
two directions: a backward applications of the rule abstracts a subgraph of the
heap into a single nonterminal edge and a forward application can materialize
parts of the heap.
Another abstraction mechanism, called partner abstraction, is represented in

[Bau06] and implemented in the tool hiralysis. The graph structures are over-
approximated by the labels of adjacent nodes. This approach has been extended
to so-called cluster abstractions in [BR15a], where the information about possible
edges between partners is stored using three-valued logic. The tool astra7 [BR15b]
uses the cluster abstraction approach and can be used for the static analysis and
verification of topological structures in dynamic communication systems.

5tvla homepage: http://www.cs.tau.ac.il/~tvla/
6juggrnaut homepage: https://moves.rwth-aachen.de/research/projects/juggrnaut/
7astra homepage: http://www.rw.cdl.uni-saarland.de/~rtc/astra/

139

http://www.cs.tau.ac.il/~tvla/
https://moves.rwth-aachen.de/research/projects/juggrnaut/
http://www.rw.cdl.uni-saarland.de/~rtc/astra/

“It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.”

Richard P. Feynman (1918-1988)

12
Evaluation

To evaluate the practicability of the framework based on multiply annotated type
graphs, we conduct different case studies using DrAGoM. We focus on runtime
results for invariant checking and test the limits of DrAGoM’s inclusion checks
with respect to graph sizes. First, we evaluate the output based on examples of
this thesis, to check if the materializations and strongest postconditions coincide
with the theoretical results. Afterwards, we perform invariant checks for graph
languages specified by annotated type graphs and discuss the correctness of the
results.

All tests in this chapter were performed on a machine running a 64-bit version
of Windows 10 on an Intel Xeon e3-1505m v6 processor and 16 GB RAM. All
case studies are available in the source archive on the DrAGoM homepage.

12.1. Thesis Examples
To showcase correct results for the implemented base functionalities in DrAGoM,
we use two examples from previous chapters, namely Examples 10.16 and 10.20,
to compare the output with the formerly expected results.
For all upcoming case studies in this chapter, we indicate rule morphisms by

the numbers below the nodes. Furthermore, in some case studies we might omit
edge labels to simplify the visual representation.

Abstract Rewriting Step for Example 10.16
Let the graph transformation rule ρ and the annotated type graph T [`, u] over
the label alphabet Λ = {A,B,C,D} from Example 10.16 be given.

The computation of the rewritable materialization and the subsequent compu-
tation of the annotated type graph which specifies the strongest postcondition
takes DrAGoM a few milliseconds. The output of the postcondition construction is
the following annotated type graph T ′ρ[a1, a2]:

T ′[a1, a2] =
[1, 1]

C [0, 0]D [0, ∗]

[0, ∗]

C [0, 0]

D [0, ∗] C [0, 0]

D [0, ∗] [1, 1]

A [1, 1]

B [1, 1]

12. Evaluation

As evident from the picture above, we illustrate the concrete instance of the right-
hand side graph R by using regular drawn edges and black nodes, whereas freshly
introduced graph elements are drawn as gray colored nodes and bidirectional
dashed edges. We will use these visual semantics for the remainder of this chapter.
The simplification of the computed annotated type graph T ′[a1, a2] coincides

with the expected result from Example 10.16. Furthermore, the invariant check
yields no positive answer and terminates within a few milliseconds, as the initial
graph language does not contain graphs with A-labelled or B-labelled edges.
The graph transformation rule and the annotated type graph of this case study
are provided in the source archive on the DrAGoM homepage1 as files named
SimpleExample.sgf and SimpleExample.gxl respectively.

Invariant Check for Example 10.20
Let the graph transformation rule ρ and the annotated type graph A[a1, a2] from
Example 10.20 be given. The invariant check of DrAGoM yields no positive answer
within a few milliseconds and shows the following strongest postcondition graph
T ′ρ[b1, b2] which only consists of one pair of multiplicities:

T ′ρ[b1, b2] =

[0, ∗]
[0, 0]

[0, ∗]C [0, 0] M [0, ∗]

P [0, ∗]

$ [0, ∗]

[1, 1]
[1, 1]

[1, 1]C [1, 1]

C [0, 0]

M [0, ∗]

P [0, ∗]

P [1, 1]
$ [0, ∗]

$ [0, ∗]

C [0, 0]

C [0, 0]

M [0, ∗]

M [0, ∗]

P [0, ∗]
P [0, ∗]

Please note that the simplification of T ′ρ[b1, b2] coincides with the simplified
result postulated in Example 10.20. Furthermore, thanks to DrAGoM, we can
conclude that the pair of multiplicities (b1, b2) is the only maximal pair which
conforms to Definition 10.15. The corresponding files of this case study are named
WorkedExample.sgf and WorkedExample.gxl.

12.2. Invariant Check for Colorability
In this section we perform invariant checks for graph language examples inspired
by [Blu14]. Type graphs are expressive enough to specify languages consisting
of all k-colorable graphs, i.e., all graphs which can be colored using maximal
k different colors, such that every pair of adjacent nodes never share the same
color. Type graph languages can be simulated using annotated type graphs by
annotating every element with the multiplicity pair [0, ∗]. Hence, we let DrAGoM
perform an invariant check for 2-colorability and 3-colorability.

1DrAGoM homepage: https://www.uni-due.de/theoinf/research/tools_dragom.php

142

https://www.uni-due.de/theoinf/research/tools_dragom.php

12.2. Invariant Check for Colorability

12.2.1. 2-Colorability with Path Extension
The 2-coloring problem can be solved in linear time. The main idea is to assign
one of the two colors to a node v1 and subsequently color all adjacent nodes
with the opposite color. This process is repeated for the neighbours of v1 until
every node in the graph received a color. If no colored node has been assigned to
both colors in this process, the graph is 2-colorable. It is easy to see that every
2-colorable graph is bipartite. Therefore, we can use the complete graph with two
nodes as a type graph, to specify the set of 2-colorable graphs. Each node in the
type graph resembles a partition of all nodes which share the same color.

Let the following graph transformation system R = {ρ1, ρ2} and the annotated
type graph T [`, u] over a label alphabet Λ with |Λ| = 1 be given. We omit the
single edge label:

ρ1 =
1 2 1 2 1 2

T [`, u] = [0, ∗] [0, ∗]
[0, ∗]

[0, ∗]
ρ2 =

1 2 1 2 1 2

The invariant check takes a few milliseconds and yields no positive answer for
the language of the annotated type graph T [`, u] with respect to rule ρ1. The
annotated type graphs T ′ρ1 [a1, a2] and T ′ρ2 [b1, b2] (both computed by DrAGoM)
specify the strongest postconditions for the respective rules. Both annotated type
graphs contain only one pair of multiplicities since the annotation bounds [0, ∗]
are always the unique possible maximal pair of multiplicities:

T ′ρ1 [a1, a2] =

[0, ∗] [1, 1]

[0, ∗] [1, 1]

[1, 1]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]
[1, 1]

[1, 1]

T ′ρ2 [b1, b2] =

[0, ∗] [1, 1]

[0, ∗] [1, 1]

[1, 1]

[1, 1]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[1, 1]

[1, 1]

[1, 1]

Clearly the annotated type graph T ′ρ1 [a1, a2] is not bipartite (and hence not
2-colorable) due to the triangle subgraph on the right side. Performing an invariant
check for rule ρ2 only, yields a positive answer. DrAGoM is able to compute the legal
morphism from T ′ρ2 [b1, b2] to T [`, u] within milliseconds. The graph transformation
system and annotated type graph of this case study are provided as files named
2-Colorability.sgf and 2-Colorability.gxl.

12.2.2. 3-Colorability with Node Replacement

Next, we perform an invariant check for the language of an annotated type graph
which consists of all 3-colorable graphs. The 3-coloring problem is known to be
NP-complete. The corresponding type graph without annotations was already
considered in Example 4.6 and coincides with the complete graph which consists
of three nodes.
Let the following graph transformation rule ρ and the annotated type graph

T [`, u] be given. The rule morphisms are indicated by the numbers below the
nodes. Similar to the 2-colorability case study we use a single edge label which we
omit for the sake of simplicity:

143

12. Evaluation

ρ =

1 2

3 4

1 2

3 4

1 2

3 4

T [`, u] =

[0, ∗] [0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗][0
, ∗

][0, ∗]

[0, ∗]

The invariant check finishes after a few milliseconds and yields a positive answer
for the language of the annotated type graph T [`, u] with respect to rule ρ. DrAGoM
finds and investigates 6 different base morphisms and subsequently computes the
strongest postconditions for each of them. In all cases the annotated type graph
T ′ρ[a1, a2] (shown below) which specifies the postcondition is the same graph up
to isomorphism and it contains one pair of multiplicities:

T ′ρ[a1, a2] =

[1, 1] [1, 1]

[1, 1] [1, 1]

[1, 1]

[1, 1] [1, 1]

[1, 1] [1, 1]

[0, ∗]

[0, ∗]

[0, ∗]

[1, 1]
[1, 1]

[1, 1]

[1, 1]

[1, 1]

[1, 1]
[1, 1] [1, 1]

[1, 1]

[1, 1] [1, 1]

[1, 1][1, 1]

[1, 1]

[1, 1]

[1, 1]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0
,∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0, ∗]

[0
,∗]

The outer nodes of the left-hand side graph of the rule can be colored with two
alternating colors such that the third color remains for the inner node. Likewise,
using the same 2-color scheme for the interface nodes of the right-hand side graph,
we can color the inner rectangle with the complemented colors such that the third
color again remains for the node in the center. Therefore, the graph language
L(T [`, u]) is indeed an invariant for the graph transformation rule ρ. The graph
transformation system is provided in the file named 3-Colorability.sgf and
the file of the annotated type graph is named 3-Colorability.gxl.

12.3. Invariant Check for a Rail System
We increase the number of rules, edge labels and possible base morphisms for our
next case study. The following case study is inspired by [DG17]. We specify a rail
system using an annotated type graph with the following edge label semantics:

T : The track of the rail net. P : The position of a train.
F : The train is fast. A : The train is accelerating.
S : The train is slow. B : The train is put on the brakes.

Now, we would like to model the following situation: Three trains are using the
rail network which is infinitely large. Each train must be at one position and they

144

12.3. Invariant Check for a Rail System

can travel fast or slow. Furthermore each train can accelerate or brake to switch
between these states. The graph language of this specification is specified by the
following annotated abstract graph T [`, u]:

T [`, u] =

[1, 1]
S [0, ∗]

B [0, ∗]A [0, ∗]

F [0, ∗]
[1, 1]

S [0, ∗]

B [0, ∗]A [0, ∗]

F [0, ∗]
[1, 1]

S [0, ∗]

B [0, ∗]A [0, ∗]

F [0, ∗]

[1, ∗]T [0, ∗]

P [1, 1] P [1, 1]

P [1, 1]

To specify the movement of the trains alongside their accelerations and brakes,
we use the following graph transformation system R = {ρi | 1 ≤ i ≤ 7}:

ρ1 = 1 2 3TPF 1 2 3TF 12 3T P F

ρ2 = 1 2 3TPF 1 2 3T 12 3T P B

ρ3 = 1 2 3TPB 1 2 3T 12 3T P S

ρ4 = 1 2 3TPS 1 2 3TS 12 3T P S

ρ5 = 1 2 3TPS 1 2 3T 12 3T P A

ρ6 = 1 2 3TPA 1 2 3T 12 3T P B

ρ7 = 1 2 3TPA 1 2 3T 12 3T P F

The rules in R have the following semantics: A fast train can travel over the
tracks (ρ1) or brake (ρ2). While the train is put on brake it still travels over the
tracks but becomes slow (ρ3). Similar to a fast train, a slow train can travel over
the tracks (ρ4) or it accelerates (ρ5). During the acceleration the train can brake
again (ρ6) or it can further accelerate to become fast (ρ7).

The invariant check again finishes after a few milliseconds and yields a positive
answer for the language of the annotated type graph T [`, u] with respect to the
graph transformation system R. DrAGoM finds and investigates 3 different base
morphisms for each of the 7 rules. In all cases the annotated type graph which
specifies the postcondition consists of 9 annotations, 7 nodes and 48 edges.
Please note, that the main purpose of this case study was to increase the

complexity of the invariant check, to stress test DrAGoM. Since the scenario does
not forbid states where a train is fast, slow, accelerating and braking at the same
time, the rule application boils down to a simple edge relabelling over multiple
flower graphs of the specific train state loop labels A,B, F and S. Therefore, the
graph transformation system clearly is an invariant.
However, if we restrict the states of the trains in the annotated type graph

T [`, u] (i.e. annotate the edges labelled A,B, F and S, by annotation bounds
[0, 1]), the language is no longer an invariant for R. The application of rule ρ7 on a
train which is already fast and accelerating would result in a graph which contains

145

12. Evaluation

two F -labelled loops. Clearly such a graph is not part of the restricted language
and DrAGoM is not able to prove the invariant for such a restricted scenario.
The source archive files for the graph transformation system and annotated

type graph of this case study are named RailTrack.sgf and RailTrack.gxl
respectively.

12.4. Invariant Check for Subgraph Containment
In this last case study we increase the size of the initial graph. The following
example is inspired by [Blu14].
The framework of multiply annotated type graphs is expressive enough to

specify graph languages which contain all graphs with a specific subgraph. For
instance, an annotated materialization is able to specify exactly the set of graphs
which contain a concrete image of the left-hand side of a rule. Therefore, we can
use the materialization construction for any given graph S over the final object
TΛ

R of the category GraphΛ(cf. Example 4.4), to compute an annotated type
graph which specifies the subgraph containment language, i.e. the set of all graphs
which contain S as subgraph.

Let the following graph transformation rule ρ and the subgraph S over the edge
label alphabet Λ = {A,B} be given:

ρ =
1 2

A

1 2 1 2
A S =

A

B B

The materialization construction of S over the flower graph T {A,B}
R

takes DrAGoM
a few milliseconds and results in the following annotated type graph T [`, u] which
specifies the initial subgraph containment language for S. Every Λ-labelled edge
in the following graph represents a set of edges, one for each label in Λ:

T [`, u] =
[1, 1]

Λ [0, ∗]

[0, ∗]
Λ [0, ∗]

[1, 1]
Λ [0, ∗]

[1, 1]
Λ [0, ∗]

A
[1
,1]

B [1, 1]

B [1, 1]

Λ [0, ∗]

Λ [0, ∗]

Λ [0, ∗]
Λ [0, ∗]

Λ [0, ∗]

Λ
[0
,∗]

The invariant check of T [`, u] with respect to the rule ρ finishes after 4 hours 38
minutes 27 seconds and yields a positive answer. DrAGoM finds and investigates
14 different base morphisms and computes the strongest postcondition for each
of them. It is worth to mention that the computation of the rewritable material-
ization and the strongest postcondition both take a few milliseconds. However,
the inclusion check of the postcondition graphs into the initial annotated type
graph T [`, u] is very costly. A multiply annotated type graph which specifies the
postcondition consists of 4 pairs of multiplicities, 6 nodes and 78 edges. Since
the annotated type graph T [`, u] consists of 4 nodes and 35 edges, DrAGoM has
to check a huge number of possible embedding morphisms to prove that the
languages are included.

146

12.5. Overview of the Results

Please note that DrAGoM employs the sufficient condition from Proposition 8.20
for the inclusion check, i.e., the tool tries to find a legal embedding morphism from
the postcondition graph into the initial annotated type graph. However, finding a
morphism from an input graph into another graph (even if the target graph is
fixed) is NP-complete. DrAGoM uses a brute-force approach to find possible graph
morphisms and checks their legality. Hence, it is not surprising that the inclusion
check is the bottleneck in this approach.

The graph transformation system and annotated type graph of this case study
are provided as files named SubTriangle.sgf and SubTriangle.gxl.

12.5. Overview of the Results
We summarize the results of the case studies which we conducted using DrAGoM.
The following table shows the important key values for each experiment. Please
note that the initial annotated type graph (ATG) T [`, u] always started with one
pair of multiplicities:

Case Study GTS R ATG T [`, u] Post ATG T ′[M] Result
Name |Λ| |R| |VT | |ET | |V ′T | |E′T | |M | Invariant Runtime

SimpleExample 4 1 1 2 3 10 1 7 < 1s
WorkedExample 4 1 3 4 12 18 1 7 < 1s
2-Colorability 1 2 2 2 5 10 1 7 < 1s
3-Colorability 1 1 3 6 12 46 1 3 < 1s
RailTrack 6 7 4 16 7 48 9 3 < 1s
SubTriangle 2 1 4 35 6 78 4 3 4h 38m

The generated outputs for all case studies conform to the expected results.
The runtime results for invariant checking seem promising. However, as the last
case study shows, the inclusion checks become too costly for larger initial graph
sizes. This is due to the fact that a brute-force approach for the computation of
legal morphisms is not efficient. Therefore, further exploration of the abstract
state space yields no hope for efficiency unless the postcondition graphs can be
simplified.
On the other hand, further tests on 100 randomly generated annotated type

graphs (consisting of 10−20 nodes, 10−40% edge existence probability, minimum
10 multiplicities onMn where 2 ≤ n ≤ 5) showed that the SMT encodings for
the computation of annotated rewritable materializations scales well. In one of
these tests, an initial multiply annotated type graph using a single edge label
consisted of 14 nodes, 72 edges and 64 multiplicities overM2. DrAGoM computed
a rewritable materialization (for the single rule of the subgraph containment case
study in Section 12.4) within 7 seconds. In the process, DrAGoM found 47 possible
semi legal base morphisms to extract the left-hand side from. One of the computed
rewritable materializations consisted of 16 nodes, 92 edges and 2048 annotations.
Therefore, we can conclude that the prototype tool DrAGoM shows that con-

crete instances of the general framework for abstract annotated objects can be
implemented. The efficiency for computations of legal morphisms needs to be
tweaked. Overall, DrAGoM can be used for strongest postcondition computations
and for invariant checks of multiply annotated type graphs, up to sizes similar to
the rail system case study of Section 12.3.

147

Part VI.

Conclusion

“If I’d had some set idea of a finish line, don’t you
think I would have crossed it years ago?”

Bill Gates (1955-present)

13
Conclusion and Future Work

The overall aim of this thesis was to analyse graph specification frameworks based
on type graphs and show their applicability for verification techniques based on
formal language theory. We first sum up the main contributions of the Parts II-IV
and discuss how they fit into this aim. Overall, the results of the main parts can
be summarized as follows:

Part II - Termination Analysis of Graph Transformation Systems
• A termination analysis approach for graph transformation systems

based on weighted type graphs (Chapter 5).
• An interpretation for term rewriting systems to graph transformation

systems which preserves termination arguments (Chapter 6).

Part III - Specifying Type Graph Languages
• An overview of closure and decidability properties for four graph

specification frameworks based on type graphs (Chapters 7 and 8).

Part IV - Abstract Object Rewriting
• A construction for rewritable materializations for objects in an arbitrary

topos (Chapter 9).
• A general framework to rewrite annotated objects and compute strongest

postconditions (Chapter 10).

All these results originate from one simple idea: to use type graphs not only for
typing purposes but also for the specification of graph languages. This change of
perspective led to a basic graph specification framework which paved the path
for several refinements. In this thesis, two of these refinements were successfully
applied to verification techniques, i.e. weighted type graphs for termination analysis
and multiply annotated type graphs for invariant checking. However, the key
contribution of this thesis is a generalization of the type graph specification
language to a framework of rewritable annotated objects. This framework can be
instantiated to concrete specification languages for which strongest postconditions
can be computed.

13. Conclusion and Future Work

13.1. Summary and Conclusion
Detailed descriptions of related work and open questions were already provided
in the conclusion chapters of the respective Parts II-IV. Therefore, in this section,
we instead focus on the significance of the accomplished results. Furthermore, we
discuss how these results fit into the broader scientific context and point out the
possible research directions to where this thesis can lead.

In this thesis we focused on specification languages based on type graphs, where
the language of a type graph T consists of all graphs that can be mapped ho-
momorphically into T (with potentially extra constraints in refined frameworks).
Many specification formalisms that are usually used in abstract graph transfor-
mation and verification, are based on type graphs. There exists no one-fits-all
solution and different frameworks are suited well for different verification purposes.
Inspired by matrix interpretations of string and cycle rewriting we first tried to
adapt the basic idea of type graph languages to termination analysis for graph
transformation systems.

Achievements in Termination Analysis
We describe the impact that the introduced termination approach and the encod-
ings have on the automatic proving of termination, which has been a central topic
in rewriting research over the last years.
In Part II of this thesis we introduced a new termination analysis technique

for graph transformation systems based on the notion of weighted type graphs
over different kinds of semirings. The weighted type graphs have the purpose
to not only specify the language of all graphs, but also to assign weights to all
graphs contained in this language. Then rules of the graph transformation system
can be classified according to whether their application decreases the weight
of every graph, or at least does not increase it. Please note that the weighted
type graph approach does not subsume previous introduced termination analysis
methods, but rather complements them. With respect to graph transformation
systems, all variants of the termination problem, termination on all graphs as
well as termination on a fixed set of initial graphs, are undecidable. Therefore,
in practice one should always run several methods in parallel, when trying to
prove the termination property of a rewriting system. Hence, by providing another
termination technique, we contributed another piece to the bigger puzzle, to
further increase chances for a successful termination analysis.
Furthermore, we studied how to transform term graph rewriting systems to

graph transformation systems. Although it is widely agreed that term graph
rewriting is the way to go for efficient implementation of term rewriting, quite
surprisingly hardly any effort has been done in automatically proving termination
of term graph rewriting. One reason could be that for term graph rewriting it is
substantially harder since techniques strongly exploiting the term structure do
not apply, such as path orders and dependency pairs. Being able to transform
termination problems from term graph rewriting to graph transformation systems,
our technique works subsequently for term rewriting systems as well. As a side
effect, by applying our transformations to a selection of term rewriting systems
from the Termination Problems Database, we provide a substantial set of test
cases for automatically proving termination of graph transformation systems.

152

13.1. Summary and Conclusion

In the end, these results show us that it is worthwhile to build bridges be-
tween different kinds of rewriting systems to profit from established techniques.
Verification techniques from the theory of formal languages are worked out very
well in string and tree/term rewriting, but it is often non-trivial to use these
techniques when it comes to graph rewriting. Therefore, it is natural to ask for
generalizations of these verification techniques to the framework of graph rewriting
and additionally to a theory of graph languages, where these techniques can be
applied.

Graph Specification Frameworks based on Type Graphs
We tried to understand the essence of some selected graph specification languages,
which grant them the possibility to use verification techniques from the theory of
formal languages. In Part III, we classified several extensions of the basic type graph
specification framework with respect to their decidability and closure properties.
In order to be able to use type graph formalisms extensively in applications, it is
necessary to provide a mechanism to compute weakest preconditions and strongest
postconditions. That is, given a graph language and a set of rules, we want to
specify the language of all successors (or the language of all predecessors) in our
formalism. We found out that this is not feasible for pure type graphs, restriction
graphs or the type graph logic, since neither formalism can count and hence can
not express that all items of the newly created right-hand side occur exactly once.
Hence, we characterized strongest postconditions in the setting of annotated type
graphs. To cover specification frameworks based on type graphs with different
annotations, we investigated the properties from a categorical point of view, thus
we used notions from category theory to achieve general results.

A First Step Towards a General Framework
The key contribution of this thesis is the general framework introduced in Part IV.
We have described a rewriting framework for abstract graphs that also applies to
objects in any topos. In particular, we have given a construction for materialization
in terms of the universal property of partial map classifiers in slice categories. This
is a first theoretical milestone towards shape analysis as a general static analysis
method for rule-based systems with graph-like objects as states. Soundness and
completeness results for rewriting of abstract objects with annotations in an
ordered monoid provide an effective verification method for the special case of
graphs. Please note that this general framework is not to be confused with a one-
fits-all solution. It is a blueprint from which instances of graph based specification
languages, with computable postconditions, decidability of membership and closure
under intersection, can be generated. The other properties depend on the used
type of annotation. Furthermore, we have shown how annotated type graphs over
multiplicities, one concrete instance of the general framework, can be implemented
and used for verification purposes. The prototype tool DrAGoM witnesses the
practicability of the level of abstraction with respect to invariant checking. However,
the framework reaches its limits when it comes to further exploration of the state
space. So far, the general framework does not provide techniques to collapse
abstract objects derived via rewriting steps.

153

13. Conclusion and Future Work

13.2. Future Work
Many interesting open questions connected to the individual contributions were
already formulated in their respective chapters. Apart from these open questions,
this thesis sets the starting point for a large set of possible next steps. The
most interesting directions originate from the main contribution, i.e. the general
framework for specification languages based on annotated type graphs.
First and foremost, the evaluation on DrAGoM showed how important it is to

find widening or similar approximation techniques for the general framework,
which collapse the abstract objects. Ideally, such techniques would lead to finite
abstract transition systems that (over-)approximate the typically infinite transi-
tions systems of graph transformation systems. We have already shown that the
notion of cores does not apply to the framework of annotated type graphs over
multiplicities.
If such an approximation technique is provided, DrAGoM can be efficiently

applied to further verification techniques such as reachability analysis or non-
termination analysis. The optimization and extension of DrAGoM would still serve
the purpose to witness the practicability of further extensions. Among these
optimizations, the computation of legal morphisms could be outsourced to SAT
or SMT solvers. We showcased in [KNN18] how morphism computations (for core
constructions) can efficiently be encoded using SAT and SMT solvers.
Another possible direction would be to further extend the general framework

with respect to other types of annotations. The extension of annotations with
logical formulas is just one possible next step, which could lead to a more flexible
and versatile specification language. Furthermore, to build a bridge to applications
used in practice, it is worth investigating how local multiplicities, which find use
in UML, can be fully integrated into the general framework. For the practicability
of the concrete instances it would be necessary to investigate how decidability
and closure properties behave in such a refinement. Then it is also natural to
ask which of the already established specification frameworks would end up as a
concrete instance of such an extension.

Furthermore, since we managed to generalise specification frameworks based on
annotated type graphs, it is worth to investigate if there exist other undiscovered
generalisations for abstraction frameworks based on non graph-like structures.
The take-home message of this thesis is: It is fine to generate ad-hoc solutions for
specific problems - but from time to time one needs to take a higher perspective
and try to organize the zoo of different established specification frameworks.

154

Part VII.

Appendix

A
Proofs

A.1. Proofs of Chapter 5
Lemma 5.12. Let S be an ordered commutative semiring and T a weighted type
graph over S.
(i) Whenever S is strongly ordered, for all

graphs G, flT (G) : G → T exists and
wT (flT (G)) > 0.

(ii) Given the following diagram, where the
square is a pushout and G0 is discrete, it
holds that wT (t) = wT (t ◦ ϕ1)⊗ wT (t ◦ ϕ2).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t(po)

Proof.

(i) flT (G) exists by construction. Furthermore, since wT (e) > 0 for all edges in
the range of flT (G), it holds that flT (G) > 0.

(ii) Since G0 is discrete and the square is a pushout, the edge set EG is (isomor-
phic to) the disjoint union of EG1 and EG2 . Thus:

wT (t) =
∏
e∈EG

wT (t(e)) =
∏

e∈EG1

wT ((t ◦ ϕ1)(e))⊗
∏

e∈EG2

wT ((t ◦ ϕ2)(e))

= wT (t ◦ ϕ1)⊗ wT (t ◦ ϕ2).

To prove Lemma 5.16 we give the following additional Lemma L.1.

Lemma L.1. Let a pushout PO consisting of objects G0, G1, G2, G be given.
Then there exists a bijection between pairs
of commuting morphisms t1 : G1 → T ,
t2 : G2 → T and morphisms t : G → T
(see diagram to the right). For each t we
obtain a unique pair of morphisms t1, t2
by composing with ϕ1 and ϕ2, respectively.
Conversely, for each pair t1, t2 of morphisms

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t

t1

t2

(po)

with t1 ◦ ψ1 = t2 ◦ ψ2 we obtain a unique t : G→ T as mediating morphism.
In this case we will write medPO(t1, t2) = t and med−1

PO(t) = 〈t1, t2〉.

Proof. It is straightforward to verify that medPO and med−1
PO are indeed inverse

to each other and hence both are bijections.

A. Proofs

Lemma 5.16. Let S be a strictly ordered commutative semiring and T a weighted
type graph over S. Furthermore, let ρ be a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).

(ii) If ρ is decreasing, then wT (G) > wT (H).

Proof. Let ρ = L�ϕL− I −ϕR�R. The rewriting step G⇒ρ H is depicted below
on the left.
For every possibility to type G via tG : G → T , there exists a morphism

tC = tG ◦ ψL : C → T and we obtain tH : H → T as mediating morphism of the
right-hand pushout PO2 (see diagram on the right).

L I R

G C H

ϕL ϕR

m c n

ψL ψR

PO1 PO2

L I R

G C H

T

ϕL ϕR

m c n

ψL ψR

tG

tC
tL tR

tH

Now we have (compare with the diagram above on the right):

wT (G) =
∑

tG : G→T
w(tG) (A.1)

=
∑

tC : C→T

∑
tL : L→T

tL◦ϕL=tC◦c

w(medPO1(tC , tL)) (A.2)

=
∑

tC : C→T

∑
tL : L→T

tL◦ϕL=tC◦c

(
w(tL)⊗ w(tC)

)
(A.3)

=
∑

tC : C→T

(
w(tC)⊗

∑
tL : L→T

tL◦ϕL=tC◦c

w(tL)
)

(A.4)

=
∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕL)

)
(A.5)

where
(A.2) follows from the fact that med is a bijection (see Lemma L.1),
(A.3) is an application of the equation w(t) = w(t◦ϕ1)⊗w(t◦ϕ2) of Lemma 5.12,
(A.4) follows from distributivity and
(A.5) holds by definition. Symmetrically, we have

wT (H) =
∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕR)

)
.

Using this, we can prove the two parts of the lemma.

(i) Since ρ is non-increasing, it holds by definition that wtC◦c(ϕL) ≥ wtC◦c(ϕR)
for all tC : C → T , and thus w(tC)⊗ wtC◦c(ϕL) ≥ w(tC)⊗ wtC◦c(ϕR). From
this it follows that wT (G) ≥ wT (H).

158

A.1. Proofs of Chapter 5

(ii) Since ρ is decreasing, and thus non-increasing, it holds by definition that
wtC◦c(ϕL) ≥ wtC◦c(ϕR) for all tC : C → T . Additionally, it holds by assump-
tion that wfl(I)(ϕL) > wfl(I)(ϕR). Since wT (fl(C)) > 0 by definition, and S
is a strictly ordered semiring, we have that

wT (fl(C))⊗ wfl(I)(ϕL) > wT (fl(C))⊗ wfl(I)(ϕR)

(we take tC = fl(C) and tC ◦ c = fl(I)). From these two facts it follows that
wT (G) > wT (H) (again using the fact that S is a strictly ordered semiring).

Theorem 5.17 (Relative termination based on strictly ordered semir-
ings). Let S be a strictly ordered commutative semiring with a well-founded order
≤ and T a weighted type graph over S. Let R be a set of graph transformation
rules, partitioned in two sets R< and R=. If all rules of R< are decreasing and
all rules of R= are non-increasing then R is terminating if and only if R= is
terminating.

Proof.
⇒: It is an immediate consquence of R being terminating that its subset R= is
also terminating.
⇐: For a rule ρ and transition G⇒r H, it holds that wT (G) > wT (H) if ρ ∈ R<
and wT (G) ≥ wT (H) if ρ ∈ R= (by Lemma 5.16). From this it follows that each
infinite transition sequence of R ends in an infinite transition sequence of R=,
which do not exist by assumption.

Lemma 5.19. Let S be a strongly ordered commutative semiring and T a weighted
type graph over S. Furthermore, let ρ be a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).

(ii) If ρ is strongly decreasing, then wT (G) > wT (H).

Proof. The proof proceeds analogously to the proof of Lemma 5.16. For non-
increasing rules the proof is exactly the same.
For strongly decreasing rules we have to show∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕL)

)
>

∑
tC : C→T

(
w(tC)⊗ wtC◦c(ϕR)

)
This holds since wtC◦c(ϕL) > wtC◦c(ϕR) for all tC , hence the properties of strongly
ordered semirings allow us to conclude.

159

A. Proofs

A.2. Proofs of Chapter 6
Theorem 6.21 (Termination argument via function encoding). Let P be
a set of term graph productions and let ρ = L←` I →r R be a production from P .
Let G,H be term graphs such that G⇒ρ H, then F (G)⇒F (ρ) F (H). Hence, if
{F (ρ) | ρ ∈ P} is terminating, then P is terminating as well.

Proof. The only effect of applying F (ρ) is that the numbered outgoing edges of a
node labeled by f of arity n, which are labeled by f1, . . . , fn, and the label of the
node is removed. By doing this operation on every node, the term graph rewrite
step G⇒ρ H can be fully mimicked by F (G)⇒F (ρ) F (H). This is due to the fact
that ρ, due to our restrictions on rules, will only add a label and successor nodes
if the previous label and successor nodes have been removed. Hence no unification
and non-local effects take place.
Hence we obtain that any infinite reduction of a term graph transforms by F

to an infinite reduction of graph transformation steps.

Theorem 6.24 (Termination argument via basic number encoding). Let
P be a set of term graph productions, obtained by encoding term rewrite rules,
all having an interface which consists only of the root and variable nodes. Then
P is terminating on term graphs if and only if the graph transformation system
N(P) = {N(ρ) | ρ ∈ P} is terminating.

Proof. (sketch) Let (V, lab, succ) be a term graph and ρ = L ←` I →r R be a
production. LetG,H be term graphs such thatG⇒ρ H. ThenN(G)⇒N(ρ) N(H),
similar to the argument in the proof of Theorem 6.21. So an infinite P -reduction
on term graphs gives rise to an infinite N(P)-reduction on graphs.

Conversely, assume there is an infinite N(P)-reduction on graphs. In the original
graph mark every edge that is eventually part of a match with a left-hand side in
some step of the reduction. As non-marked edges are never touched, they stay
forever in the reduction and may be removed, while the rest is still part of an
infinite reduction. Next remove the finite initial part containing marked edges
that have not yet been rewritten.

Hence in the remaining infinite reduction all edges are created by the replacement
of a left-hand side by a right-hand side. As all edges in right-hand sides satisfy
the following properties, the same holds for any graph in the remaining infinite
reduction:

• for every edge from v to w labeled by a symbol f of arity unequal to 1, the
set of incoming edges of w only consists of this single edge, and the set of
outgoing edges from w consists of exactly ar(f) edges, labeled 1, 2, . . . , ar(f)
(hence no edges if ar(f) = 0), and

• for every edge from v to w labeled by a number i, the set of incoming edges
of v only consists of a single edge labeled by a symbol f , and the set of
outgoing edges from v is exactly 1, 2, . . . , ar(f).

Now, there may still be nodes that have more than one outgoing edge labeled
by (function) symbols. This can be avoided by the following argument: let the
weight of a node with k symbol-labeled outgoing edges be k−1 if k > 0, otherwise

160

A.2. Proofs of Chapter 6

it is 0. Let the weight of a graph be the sum of the weight of its nodes. Take a
graph with infinite reduction with minimal weight. If this weight is strictly larger
than 0, then there is a node with k > 1 outgoing symbol-labeled edges. Due to
the shape of the rules, during the whole infinite reduction this node preserves k
outgoing symbol-labeled edges, and hence matches left-hand sides only at the root
or at a variable. Hence we still get an infinite reduction if we add a fresh node
without ingoing edges, taking over one of the outgoing symbol-labeled outgoing
edges from our special node. But now the adjusted graph has a lower weight,
contradicting minimality.

Hence the graph with infinite reduction with minimal weight has weight 0, hence
it is the number encoding of a corresponding term graph. After these adjustments,
we obtain an infinite rewriting sequence of graphs, where all graphs will be of
the shape N(G) for a term graph G, and every reduction step is of the shape
N(G′)⇒N(ρ) N(H ′). This gives rise to a P -reduction of G.

161

A. Proofs

A.3. Proofs of Chapter 7
Proposition 7.5 (Decidability results for type/restriction graph lan-
guages). For a graph language L characterized by a type graph T (i.e. L = L(T))
or by a restriction graph R (i.e. L = LR(R)) the following problems are decidable:

1. Membership, i.e. for each graph G it is decidable if G ∈ L holds.

2. Emptiness, i.e. it is decidable if L = ∅ holds.

Furthermore, language inclusion is decidable for both classes of languages:

3. Given type graphs T1 and T2, L(T1) ⊆ L(T2) holds iff T1 → T2.

4. Given restriction graphs R1 and R2, LR(R1) ⊆ LR(R2) holds iff R1 → R2.

Proof.

1. To decide whether G ∈ L(T) (or G ∈ LR(R)) holds, we need to check
for the existence of a morphism ϕ : G → T (or for the non-existence of a
morphism ϕ : R→ G), which is obviously possible because graphs are finite.
Nevertheless, note that this problem is NP-complete. For instance, searching
for a morphism from any graph into the 3-clique is equivalent to deciding if
the graph is 3-colourable.

2. The emptiness problem is almost trivial. If L = L(T) for a type graph T ,
then L(T) 6= ∅ because it holds ∅ ∈ L(T) (recall that ∅ is the initial object
of GraphΛ).
If instead L = LR(R) for a restriction graph R, then L = ∅ if and only
if R = ∅. In fact, if R = ∅ then R → G for all G ∈ GraphΛ, and thus
LR(R) = ∅. Instead if R 6= ∅ then clearly R9 ∅, thus ∅ ∈ LR(R) 6= ∅.

3. We show that L(T1) ⊆ L(T2) iff T1 → T2, which is decidable.
⇒: Assume L(T1) ⊆ L(T2) holds. Since T1 ∈ L(T1) holds then T1 ∈ L(T2)
also holds and therefore T1 → T2.
⇐: Assume T1 → T2 holds, and let G ∈ L(T1). Therefore G→ T1, and by
transitivity G→ T2, thus G ∈ L(T2).

4. We show that LR(R1) ⊆ LR(R2) iff R1 → R2.
⇒: Assume that LR(R1) ⊆ LR(R2) holds. Equivalently, we obtain that
{G | R2 → G} = LR(R2) ⊆ LR(R1) = {G | R1 → G}, where we wrote L
for the complement language (|GraphΛ| \ L). Therefore, since obviously
R2 → R2, we obtain R1 → R2.
⇐: Assume that R1 → R2 holds and that G ∈ LR(R1), which means R1 9 G.
If G 6∈ LR(R2), then we have R2 → G and, by transitivity, R1 → G, which
is a contradiction.

Proposition 7.6 (Closure properties of type/restriction graph languages).
Type graph languages are closed under intersection (by taking the product of type
graphs) but not under union or complement.
Restriction graph languages are closed under union (by taking the coproduct of
restriction graphs) but not under intersection or complement.

162

A.3. Proofs of Chapter 7

Proof. From the universal property of the product T1 × T2, it follows that for
any graph G we have G → T1 × T2 if and only if G → T1 and G → T2. Hence,
given two type graphs T1 and T2 we get immediately the following equality:
L(T1) ∩ L(T2) = L(T1 × T2).
Dually, given two restriction graphs R1 and R2, we now show that we obtain
LR(R1)∪LR(R2) = LR(R1 ⊕R2), where ⊕ denotes coproduct in GraphΛ. In fact,
G 6∈ LR(R1 ⊕ R2) iff R1 ⊕ R2 → G iff (by the universal property of coproducts)
R1 → G and R2 → G iff G 6∈ LR(R1) and G 6∈ LR(R2) iff G 6∈ LR(R1) ∪ LR(R2).
For the negative results, we will show counterexamples using the following

graphs over Λ = {A,B}:

GA =
A

GB =
B

First, we show by contradiction that type graph languages are not closed under
union. Let the two type graph languages L(GA) and L(GB) be given. Assume
that there exists a type graph T such that L(T) = L(GA) ∪ L(GB). The type
graph language L(GA) contains all graphs which do not have any B-labelled edge,
and L(GB) contains all graphs which do not have any A-labelled edge. Since
GA, GB ∈ L(GA) ∪ L(GB), we would have GA → T and GB → T , and since type
graph languages are closed under coproduct ⊕ this implies that there exists a
morphism GA ⊕GB → T , i.e. GA ⊕GB ∈ L(T). However, GA ⊕GB is neither in
L(GA) nor in L(GB), thus yielding a contradiction.
Now we show by contradiction that there is no restriction graph R such that
LR(R) = LR(GA)∩LR(GB). In fact, if such an R exists then LR(R) ⊆ LR(GA), and
thus R → GA by Proposition 7.5(4), and LR(R) ⊆ LR(GB), and thus R → GB.
But R → GA means that R has no B-edges, and R → GB that it has no A-
edges, thus R must be discrete. This implies that GA 9 R and GB 9 R, i.e.
R ∈ LR(GA) ∩ LR(GB), but clearly R 6∈ LR(R) yielding a contradiction.

The lack of closure under complement immediately follows from these negative
results and the fact that union can be expressed using intersection and complement,
and dually.

Proposition 7.7 (Closure under DPO rewriting for restriction graphs).
A restriction graph language LR(S) is closed under a rule ρ = (L�ϕL− I −ϕR�R)
if and only if the following condition holds: for
every pair of morphisms α : R→ F , β : S → F
which are jointly surjective, all graphs E that
we obtain by applying the rule ρ with (co-)match
α backwards to F , satisfy S → E.

L

��

I
ϕLoo

ϕR //

��

R

α
��

S

β��ww
E C ′oo // F

Proof.
⇐: Let G,H with G⇒ρ H. By contraposition we show that H 6∈ LR(S) implies
G 6∈ LR(S).
Since G ⇒ρ H we have the following DPO diagram (below, on the left).

Furthermore, since H 6∈ LR(S), there exists a morphism β′ : S → H. Now take the
joint image F of R and S in H, i.e., factor the morphisms α′, β′ into R→ F � H
and S → F � H, where the arrows R→ F , S → F are jointly surjective.1

1This is also known as pair factorization, see for instance [EE+06].

163

A. Proofs

L

��

I
ϕLoo

ϕR //

��

R

α′

��

S

β′��

G Coo // H

L

��

I
ϕLoo

ϕR //

��

R

α
��

S

β��ww
E��

��

C ′��

��

oo // F��

��

G Coo // H

Since we are working in a topos, the pushouts split into pushouts (see the proof
of Lemma 4.6 in [LS05] in combination with Corollary 9.5 in [Hei09], i.e. the
fact that pushouts are stable under pullback in any topos). This is depicted in
the diagram above on the right. Now, E is obtained from F by applying rule ρ
backwards. Hence, the condition implies that there exists a morphism S → E and
this means that there is a morphism S → G, which implies G 6∈ LR(S).
⇒: Assume that LR(S) is closed under rewriting via a rule ρ. We show that the
condition holds. Let α : R → F , β : S → F be a pair of morphisms which are
jointly surjective and assume that E is obtained from F by applying ρ backwards.
Now, since E ⇒ρ F and F 6∈ LR(S), we infer that E 6∈ LR(S), otherwise we

would have a counterexample to closure under rewriting. Hence there exists a
morphism S → E.

To prove Proposition 7.8 we recall the following lemma from [NT00].

Lemma L.2 (Lemma 2.1 of [NT00]). Let T be a graph and core(T) be a
core of T . Then for each morphism f : T → core(T) there exists a morphism
f ′ : core(T)→ T such that f ◦ f ′ = idcore(T). Vice versa, for each morphism
g′ : core(T)→ T there exists a morphism g : T → core(T) such that g ◦ g′ =
idcore(T).

Proof. Let f : T → core(T) and g′ : core(T)→ T be arbitrary morphisms. Then,
h = f ◦ g′ is an automorphism of core(T). Therefore, the morphisms f ′ = g′ ◦ h−1

and g = h−1 ◦ f satisfy f ◦ f ′ = g ◦ g′ = idcore(T).

Proposition 7.8 (Closure under DPO rewriting for type graphs). A type
graph language L(T) is closed under a rule ρ = (L�ϕL− I −ϕR� R) if and only
if for each morphism tL : L→ core(T) there exists a morphism tR : R→ core(T)
such that tL ◦ ϕL = tR ◦ ϕR, that is:

L I R

core(T)

⇔L(T) is closed under application of ρ

ρ

∀tL

ϕL ϕR

∃tR

Proof.
⇒: Let tL : L → core(T), and let n : I → core(T) be defined as n = tL ◦ ϕL.
Consider the diagram below to the left, where the top span is the rule, and the
two squares are built as pushouts (A is the pushout of ϕL and n; B is the pushout
of ϕR and n).

164

A.3. Proofs of Chapter 7

Arrow A→ core(T) is uniquely determined because the left square is a pushout
and id ◦ n = tL ◦ϕL. This arrow witnesses that A ∈ L(T) (because core(T)→ T),
and thus by assumption B ∈ L(T), because obviously A⇒ρ B. Therefore we know
that B → T , and thus that there is an arrow g : B → core(T). In general, this arrow
does not make the lower right triangle commute, but given that we also have an
arrow f : core(T)→ B as the base of the right pushout, it follows that B ∼ core(T)
and hence core(B) ∼= core(core(T)) = core(T). Therefore by Lemma L.2, we know
that there is an arrow g′ : B → core(T) such that g′ ◦ f = idcore(T) (in particular,
g′ = (g ◦ f)−1 ◦ g). Therefore, in the diagram below to the left also the lower right
triangle commutes, and arrow tR = g′◦m : R→ core(T) satisfies tL◦ϕL = tR ◦ϕR.
⇐: Assume that G ∈ L(T) witnessed by morphism tG : G → T , and that
G is rewritten to H via rule ρ = (L �ϕL− I −ϕR� R). Also, let t be any arrow
from T to core(T). This gives us the diagram below right, where the two squares
are pushouts, and the left triangle commutes by taking for C → core(T) the
composition t ◦ tG ◦ ψL.

L

��

tL

..

I
ϕLoo

ϕR //

n
��

R

m

��

A

""

core(T) f
//oo

id
��

B

g′||

core(T)

L

m
��

I
ϕLoo

ϕR //

n
��

R

m′

��

tR
pp

G

t◦tG ##

C
ψR //

ψLoo

��

H

tH{{

core(T)

By assumption, since t ◦ tG ◦ m : L → core(T), there exists tR : R → core(T)
such that t ◦ tG ◦m ◦ ϕL = tR ◦ ϕR. This means that the square consisting of
I, C,R, core(T) commutes, that is t◦ tG ◦ψL ◦n = t◦ tG ◦m◦ϕL = tR ◦ϕR. Hence
there exists a mediating morphism tH : H → core(T), which implies H ∈ L(T)
because core(T)→ T .

Proposition 7.14 (Closure properties of TGL). Graph languages L(F)
characterized by a TGL formula F , are closed under union, intersection and
complement.

Proof. Boolean closure properties come for free, due to boolean connectives.

Proposition 7.15 (Decidability properties of TGL). For a graph language
L(F) characterized by a TGL formula F , the following problems are decidable:

• Membership, i.e. for all graphs G it is decidable if G ∈ L(F) holds.

• Emptiness, i.e. it is decidable if L(F) = ∅ holds.

• Language inclusion, i.e. given two TGL formulas F1 and F2 it is decidable
if L(F1) ⊆ L(F2) holds.

Proof.
Membership:
The membership problem for graph languages over TGL formulae is decidable
since it is decidable for every type graph language L(T). We simply build the
syntax tree of the formula F and search for morphisms ϕi : G→ Ti at the leaves of

165

A. Proofs

the tree. Afterwards we pass the boolean results up to the root to decide whether
G ∈ L(F) holds.
Emptiness:
In order to show whether L(F) = ∅ holds, we transform F into disjunctive
normal form (DNF). It is sufficient to check whether all conjunctions of the form
(T0 ∧ ¬T1 ∧ · · · ∧ ¬Tn) are unsatisfiable. We can assume that there is at most one
positive type graph in every conjunction, since type graph languages are closed
under conjunction/intersection (see Proposition 7.6). Furthermore we can even
assume that there is exactly one positive type graph, since we can always add TΛ

\

(the flower graph).
Now we have:

L(T0 ∧ ¬T1 ∧ . . . ∧ ¬Tn) = ∅
⇐⇒ L(T0 ∧ ¬(T1 ∨ . . . ∨ Tn)) = ∅
⇐⇒ L(T0) ∩ L(T1 ∨ . . . ∨ Tn) = ∅
⇐⇒ L(T0) ⊆ L(T1 ∨ . . . ∨ Tn)
⇐⇒ L(T0) ⊆ L(T1) ∪ . . . ∪ L(Tn)
⇐⇒ ∃ϕ : T0 → Tk for some index 1 ≤ k ≤ n

Therefore, it is sufficient to check whether for each conjunction (T0∧¬T1∧· · ·∧¬Tn)
in the DNF of F , there exists a morphism ϕ : T0 → Tk for some 1 ≤ k ≤ n.
Inclusion:
The language inclusion problem can be reduced to the aforementioned emptiness
problem. To solve the language inclusion we use the following equivalence:

L(F1) ⊆ L(F2) ⇐⇒ L(F1 ∧ ¬F2) = ∅

Since the emptiness problem is decidable we can conclude that the language
inclusion problem is decidable as well.

166

A.4. Proofs of Chapter 8

A.4. Proofs of Chapter 8
Lemma 8.13. The composition of two legal morphisms is a legal morphism.

Proof. Let ϕ1 : T1[M1] → T2[M2] and ϕ2 : T2[M2] → T3[M3] be two legal mor-
phisms in the category of multiply annotated graphs. Since ϕ1 is legal we get
that for all (`1, u1) ∈ M1 there exists (`2, u2) ∈ M2 such that `2 ≤ Aϕ1(`1) and
Aϕ1(u1) ≤ u2 hold. Furthermore ϕ2 is legal and therefore we get that for all
(`2, u2) ∈M2 there exists (`3, u3) ∈M3 such that `3 ≤ Aϕ2(`2) and Aϕ2(u2) ≤ u3
hold as well. We define ϕ : T1[M1]→ T3[M3] to be the composed morphism with
ϕ = ϕ2 ◦ ϕ1 and due to the fact that A is a functor which preserves monotonicity,
we get the following two inequalities:

`2 ≤ Aϕ1(`1)
⇒ Aϕ2(`2) ≤ Aϕ2(Aϕ1(`1))
⇒ `3 ≤ Aϕ2(`2) ≤ Aϕ2◦ϕ1(`1)
⇒ `3 ≤ Aϕ(`1)

Aϕ1(u1) ≤ u2

⇒ Aϕ2(Aϕ1(u1)) ≤ Aϕ2(u2)
⇒ Aϕ2◦ϕ1(u1) ≤ Aϕ2(u2) ≤ u3

⇒ Aϕ(u1) ≤ u3

Since both `3 ≤ Aϕ(`1) and Aϕ(u1) ≤ u3 hold, the morphism ϕ is legal.

Proposition 8.19 (Emptiness check for languages specified by multiply
annotated graphs). For a graph language L(T [M]) characterized by a multiply
annotated type graph T [M] over Bn the emptiness problem is decidable: L(T [M]) =
∅ iff M = ∅ or for each (`, u) ∈M there exists an edge e ∈ ET such that `(e) ≥ 1
and (u(src(e)) = 0 or u(tgt(e)) = 0).

Proof.
⇐: Assume that M = ∅, in this case L(T [M]) is clearly empty as well. Assume
that there is an annotation (`, u) ∈M such that `(e) ≥ 1 and (u(src(e)) = 0 or
u(tgt(e)) = 0) for some edge e ∈ ET . Then no graph can satisfy these lower and
upper bounds, since we are forced to map at least one edge to e, but are not
allowed to map any node to the source respectively target node. If this is true for
all annotations, the language of the type graph must be empty.

⇒: Let L(T [M]) = ∅ and we assume by contradiction that M 6= ∅ and there exists
one annotation (`, u) ∈M such that for every edge e ∈ ET with `(e) ≥ 1 we have
u(src(e)) ≥ 1 and u(tgt(e)) ≥ 1).
Now take T [`, u] and remove from T all edges and nodes x with u(x) = 0,

resulting in a graph T ′. If a node is removed all incident edges are removed as well.
Note that in such a case only edges e with `(e) = 0 will be removed (due to the
condition above). Next define `′ = `|T ′ and u′ = u|T ′ . Due to the considerations
above there exists a legal morphism (an embedding) T ′[`′, u′]→ T [`, u], since the
removed items had a lower bound of 0. Furthermore each remaining item has an
upper bound of at least 1, i.e., it represents at least one node or edge.

Now construct a graph G from T ′ by proceeding as follows: starting with T ′ as
base graph, for every node v with `′(v) = k add k− 1 isolated nodes (zero isolated
nodes if k = 0). For every edge e with `′(e) = k add k − 1 parallel edges between
src(e), tgt(e). Clearly, there is a morphism ϕ : G→ T ′ obtained by mapping every
item to the item from which it originated.

167

A. Proofs

Mapping G[sG, sG] to T ′ via ϕ will give us an annotation Bnϕ(sG). By construc-
tion, this annotation will coincide with the lower bound ` in all cases, but for the
case where there is a node v with `(v) = 0. In this case Bnϕ(sG)(v) = 1, but this is
covered by the upper bound which is at least 1. Hence ϕ : G[sG, sG]→ T ′[`′, u′] is
a legal morphism, and by composing it with morphism T ′[`′, u′]→ T [`, u] we get
G ∈ L(T [M]), thus L(T [M]) 6= ∅, as desired.

Proposition 8.20 (Language inclusion and legal morphisms). The exis-
tence of a legal morphism ϕ : T1[M]→ T2[N] implies L(T1[M]) ⊆ L(T2[N]).

Proof. Every graph G ∈ L(T1[M]) has a legal morphism ϕ′ : G[sG, sG]→ T1[M].
Whenever there exists a legal morphism ϕ : T1[M] → T2[N] between the two
multiply annotated type graphs, we obtain the morphism η : G[sG, sG]→ T2[N]
with η = ϕ ◦ϕ′ which is legal due to Lemma 8.13. Therefore G ∈ T2[N] holds and
we can conclude that L(T1[M]) ⊆ L(T2[N]) also holds.

Proposition 8.25 (Language inclusion and bounded pathwidth). The
language inclusion problem is decidable for graph languages of bounded pathwidth
characterized by multiply annotated type graphs over Bn. That is, given k ∈ N
and multiply annotated type graphs T1[M1] and T2[M2], it is decidable whether
L(T1[M1])≤k ⊆ L(T2[M2])≤k, with L(T [M])≤k = {G ∈ L(T [M]) | pw(G) ≤ k}.

Proof. The proof is given in Section 8.3.3.

Proposition 8.31 (Functoriality of C). Let two cospans c1 : J → G ← K
and c2 : K → H ← L be given and let idG : G→ G← G be the identity cospan.

The mapping CT [M] : Cospanm(GraphΛ)→ Rel is a functor, i.e.
1. CT [M](idG) = idCT [M](G)

2. CT [M](c1; c2) = CT [M](c1); CT [M](c2)

Proof.
1. The identity relation idCT [M](G) consists of all pairs (i, i) with i ∈ CT [M](G).
Let the two states i, j ∈ CT [M](G) be given with i = (f1 : G → T, b1) and
j = (f2 : G → T, b2). The pair (i, j) is in the relation CT [M](idG) if and only
if there exists a morphism h : G → T such that, for all2 x ∈ T the equation
b2(x) = b1(x) + |{y ∈ (G \ id(G)) | h(y) = x}| holds and the following diagram
commutes:

G G G

T

idG : G# G

f1

id

∃h

id

f2

Since the diagram commutes we obtain that f1 = f2 since f1 = h ◦ id = f2 holds
and for all x ∈ T the annotation functions b1 and b2 are equal due to the following
equation:

b2(x) = b1(x) + |{y ∈ (G \ id(G)) | h(y) = x}|
2We write x ∈ T as an abbreviation for x ∈ VT ∪ ET .

168

A.4. Proofs of Chapter 8

= b1(x) + |{y ∈ ∅ | h(y) = x}| = b1(x) + 0 = b1(x)

This is equivalent to i = j and therefore for all i ∈ CT [M](G) the following equation
holds:

CT [M](idG) = {(i, j) ∈ CT [M](G)× CT [M](G) | i = j}
= idCT [M](G)

Therefore CT [M](idG) = idCT [M](G) holds, as clearly all states (i, i) meet the
condition.
In the following part let c1 : J−g1�G�g2−K and c2 : K−g′1�H�g′2−L be given and
let c = c1; c2 with c : J−j1◦g1�G′�j2◦g′2−L be the composed morphism of c1 and c2.

2.” ⊆ ” : Let (i, j) ∈ CT [M](c1; c2) be given with i ∈ CT [M](J) and j ∈ CT [M](L) such
that i = (f1 : J → T, b1) and j = (f3 : L→ T, b3). Then there exists a morphism
h : G′ → T such that b3(x) = b1(x) + |{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}| holds
for all x ∈ T and the following diagram commutes:

J G K H L

G′

T

c1 : J # K c2 : K # L

f1

g1 g′1 g′2

j1 j2

∃h

g2

f3

To prove that (i, j) ∈ CT [M](c1); CT [M](c2) follows from the above properties, we
need to show that there exists a k ∈ CT [M](K) where k = (f2 : K → T, b2) such
that (i, k) ∈ CT [M](c1) and (k, j) ∈ CT [M](c2). Let f2 = h ◦ j1 ◦ g2 = h ◦ j2 ◦ g′1.
Then there must exist two morphisms h1 : G → T , h2 : H → T such that the
following six properties hold:

(i, k) ∈ CT [M](c1)


(1) h1 ◦ g1 = f1
(2) h1 ◦ g2 = f2
(3) ∀x ∈ T b2(x) = b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}|

(k, j) ∈ CT [M](c2)


(4) h2 ◦ g′1 = f2
(5) h2 ◦ g′2 = f3
(6) ∀x ∈ T b3(x) = b2(x) + |{y ∈ (H \ g′2(L)) | h2(y) = x}|

We define h1, h2 to be h1 = h ◦ j1 and h2 = h ◦ j2 which already satisfy the
following four properties:

(1) h1 ◦ g1 = h ◦ j1 ◦ g1 = f1 (4) h1 ◦ g′1 = h ◦ j2 ◦ g′1 = f2

(2) h1 ◦ g2 = h ◦ j1 ◦ g2 = f2 (5) h1 ◦ g′2 = h ◦ j2 ◦ g′2 = f3

We define b2 with respect to property (3), such that for all x ∈ T the equation
b2(x) = b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}| holds. It remains to show property
(6): we conduct the proof by first showing the following equation (7) for all x ∈ T ,
from which we can easily derive (6) afterwards:

169

A. Proofs

|{y ∈ (G \ g2(K)) | h1(y) = x}|+ |{y ∈ (H \ g′2(L)) | h2(y) = x}|
=|{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}| (7)

Since the morphisms j1 and j2 are both injective and G′ is the pushout object
of G and H over the common graph K we get that G′ = j1(G \ g2(K))] j2(H).
Subtracting all elements x ∈ L that are being mapped into H on both sides of
the equation, we get that G′ \ (j2 ◦ g′2)(L) = j1(G \ g2(K))] j2(H \ g′2(L)) holds
as well. Using this fact we can prove equation (7) which holds for all x ∈ T :

|{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}|
=|{y ∈

(
j1(G \ g2(K))] j2(H \ g′2(L))

)
| h(y) = x}|

=|{y ∈ j1(G \ g2(K)) | h(y) = x}] {y ∈ j2(H \ g′2(L)) | h(y) = x}|
=|{y ∈ G \ g2(K) | (h ◦ j1)(y) = x}] {y ∈ H \ g′2(L) | (h ◦ j2)(y) = x}|
=|{y ∈ G \ g2(K) | h1(y) = x}] {y ∈ H \ g′2(L) | h2(y) = x}|
=|{y ∈ (G \ g2(K)) | h1(y) = x}|+ |{y ∈ (H \ g′2(L)) | h2(y) = x}|

Using equation (7) we conclude that property (6) always holds for all x ∈ T :

b3(x) = b1(x) + |{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}|
= b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}|+ |{y ∈ (H \ g′2(L)) | h2(y) = x}|
= b2(x) + |{y ∈ (H \ g′2(L)) | h2(y) = x}|

Therefore (i, j) ∈ CT [M](c1); CT [M](c2) holds as well.

2.” ⊇ ” : Let two pairs (i, k) ∈ CT [M](c1) and (k, j) ∈ CT [M](c2) be given with
i ∈ CT [M](J), k ∈ CT [M](K) and j ∈ CT [M](L) such that i = (f1 : J → T, b1),
k = (f2 : K → T, b2) and j = (f3 : L → T, b3). Then in addition there exist two
morphisms h1 : G→ T and h2 : H → T such that for all x ∈ T the two equations
b2(x) = b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}| and
b3(x) = b2(x) + |{y ∈ (H \ g′2(L)) | h2(y) = x}| both hold and the following
diagram commutes:

J G K H L

T

c1 : J # K c2 : K # L

f1

g1 g′1

f2

g′2

∃h1 ∃h2

g2

f3

To prove that (i, j) ∈ CT [M](c1; c2) is satisfied from the properties gained so far,
we need to show that b3(x) = b1(x) + |{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}| holds
and that there exists a morphism h : G′ → T such that the following diagram
commutes:

170

A.4. Proofs of Chapter 8

J G K H L

G′

T

(PO)

c1 : J # K c2 : K # L

f1

g1 g′1

j1 j2

g′2

h1

∃h

h2

g2

f3

The morphism h : G′ → T exists and is unique due to the universal property of
pushouts. From the two equations b2(x) = b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}|
and b3(x) = b2(x) + |{y ∈ (H \ g′2(L)) | h2(y) = x}| we can derive the following
equation which holds for all x ∈ T :

b3(x) = b1(x) + |{y ∈ (G \ g2(K)) | h1(y) = x}|+ |{y ∈ (H \ g′2(L)) | h2(y) = x}|

Using the results of equation (7) from the previous proof direction, we directly
can conclude that b3(x) = b1(x) + |{y ∈ (G′ \ (j2 ◦ g′2)(L)) | h(y) = x}| also holds
and therefore (i, j) ∈ CT [M](c1; c2) holds, which completes this proof.

Proposition 8.32 (Language of C). Let the multiply annotated type graph
T [M] (over Bn) and the automaton functor C : Cospanm(GraphΛ) → Rel for
T [M] be given. Then LC = L(T [M]) holds, i.e. for a graph G we have G ∈ L(T [M])
if and only if there exist states i ∈ I ⊆ C(∅) and f ∈ F ⊆ C(∅) such that
(i, f) ∈ C(c), where c : ∅→ G← ∅.

Proof. We will prove the following equality:

G ∈ L(T [M]) ⇐⇒ ∃i ∈ I ⊆ C(∅), ∃j ∈ F ⊆ C(∅) : (i, j) ∈ C(c)

"⇒": Since (c : ∅ → G ← ∅) ∈ L(T [M]) holds, there exists a legal morphism
ϕ : G→ T and a pair of multiplicities (`, u) ∈M such that ` ≤ Bnϕ(sG) ≤ u holds.
Let (i, j) be i = (f1 : ∅ → T, 0) ∈ I and j = (f2 : ∅ → T,Bnϕ(sG)) ∈ F which
are clearly in the relation C(c), i.e. (i, j) ∈ C(c) since for all x ∈ T the equation
Bnϕ(sG)(x) = 0 + |{y ∈ (G \ g2(∅)) | ϕ(y) = x}| = |{y ∈ G | ϕ(y) = x}| holds by
definition and the following diagram commutes:

∅ G ∅

T

c : ∅# ∅

f1

g1

ϕ

g2

f2

"⇐": There exists i ∈ I ⊆ C(∅) and j ∈ F ⊆ C(∅) with i = (f1 : ∅ → T, 0) and
j = (f2 : ∅→ T, b) such that (i, j) ∈ C(c) holds. Therefore, there exists a pair of
multiplicities (`, u) ∈M with ` ≤ b ≤ u and we get that there exists a morphism
ϕ : G→ T such that the following diagram commutes:

171

A. Proofs

∅ G ∅

T

c : ∅# ∅

f1

g1

∃ϕ

g2

f2

For all x ∈ T the following equation holds:

b(x) = 0 + |{y ∈ (G \ g2(∅)) | ϕ(y) = x}|
= |{y ∈ G | ϕ(y) = x}|
= Bnϕ(sG)(x)

From ` ≤ b ≤ u we can infer that ϕ : G→ T is a legal morphism due to the fact
that ` ≤ Bnϕ(sG) ≤ u holds as well, and therefore G ∈ L(T [M]).

Proposition 8.33 (Closure under intersection). Graph languages specified
by annotated graphs are closed under intersection.

Proof. Let two multiply annotated type graphs T1[M1] and T2[M2] be given. Let
T1 × T2 be the usual product graph in the underlying category GraphΛ.

We now consider the multiply annotated type graph (T1× T2)[N] where the set
of annotations N is defined as follows:

N = {(`, u) | `, u ∈ A(T1 × T1) such that
π1 : (T1 × T2)[`, u]→ T1[M1] is legal and
π2 : (T1 × T2)[`, u]→ T2[M2] is legal}

Therefore for each (`, u) ∈ N there exist (`1, u1) ∈M1 and (`2, u2) ∈M2 such
that the following four properties hold:

Aπ1(`) ≥ `1 Aπ1(u) ≤ u1

Aπ2(`) ≥ `2 Aπ2(u) ≤ u2

(T1 × T2)[N]

π1
xx

π2
&&

T1[M1] T2[M2]

We will now prove the following equality:

L(T1[M1]) ∩ L(T2[M2]) = L((T1 × T2)[N])

⊆: Let G ∈ L(T1[M1]) ∩ L(T2[M2]). Then there exist two legal morphisms
ϕ1 : G[sG, sG]→ T1[M1] and ϕ2 : G[sG, sG]→ T2[M2]. Due to the universal prop-
erty of pullbacks in the underlying category GraphΛ, there exists a unique graph
morphism η : G→ T1 × T2 such that the following diagram commutes:

G[sG, sG]

ϕ1

��

ϕ2

��

η

��

(T1 × T2)[N]

π1
xx

π2
&&

T1[M1] T2[M2]

172

A.4. Proofs of Chapter 8

Since ϕi = πi ◦ η with i ∈ {1, 2} is a legal morphism, there exist annotations
(`1, u1) ∈M1 and (`2, u2) ∈M2 such that the following inequalities hold:

`1 ≤ Aϕ1(sG) = Aπ1◦η(sG) = Aπ1(Aη(sG)) ≤ u1

`2 ≤ Aϕ2(sG) = Aπ2◦η(sG) = Aπ2(Aη(sG)) ≤ u2

Therefore the pair (Aη(sG),Aη(sG)) is one of the annotations in N and we can
conclude that G ∈ L((T1 × T2)[N]) holds.

⊇: We now assume G ∈ L((T1×T2)[N]) holds. Then there exists a legal morphism
η : G[sG, sG] → (T1 × T2)[N] with a pair of annotations (`, u) ∈ N such that it
holds that ` ≤ Aη(sG) ≤ u. For each such pair (`, u) ∈ N we have two legal
morphisms π1 : (T1 × T2)[`, u] → T1[M1] and π2 : (T1 × T2)[`, u] → T2[M2], by
construction. We obtain two morphisms ϕ1 : G[sG, sG]→ T1[M1] with ϕ1 = π1 ◦ η
and ϕ2 : G[sG, sG]→ T2[M2] with ϕ2 = π2 ◦ η, which are legal due to Lemma 8.13.
Therefore we can conclude that G ∈ (L(T1[M1]) ∩ L(T2[M2])).

To prove Proposition 8.34 we need the following two Lemma L.3 and Lemma L.5
alongside a reduction operation given in Definition A.4.

Lemma L.3. Assume that we are working with annotations over Bn.
Let i : A[M] → T [N] and ϕ : G[sG, sG] → T [N] be
two legal graph morphisms where i is injective. Let
(`, u) ∈M be one of the double multiplicities of the
graph A. Whenever Bnϕ(sG) ≤ Bni (u), we can deduce
that there exists a graph morphism ζ : G→ A with
i ◦ ζ = ϕ, i.e. the diagram commutes.

G[sG, sG]
ϕ

��

ζ

yy

A[M] //
i
// T [N]

Proof. The morphisms ζ exists if all elements of the form ϕ(x) with x ∈ G
are in the range of i. For such an x we have 1 = sG(x) ≤ Bnϕ(sG)(ϕ(x)), since
Bnϕ(sG)(ϕ(x)) is the sum of the sG-annotations of all preimages of x. Furthermore
Bnϕ(sG)(ϕ(x)) ≤ Bni (u)(ϕ(x)). But Bni (u)(y) = 0 for all y ∈ T that are not in the
range of i, since the empty sum evaluates to 0. But since Bni (u)(ϕ(x)) ≥ 1, we
can conclude that ϕ(x) has a preimage under i.

In addition, we need the concept of reduction: the reduction operation shifts
annotations over morphisms in the reverse direction.

Definition A.4 (Reduction). Let A be an (annotation) functor. For a mor-
phism ϕ : G→ G′ and a monoid element a′ ∈ A(G′) we define the reduction
of a′ to G as follows:

redϕ(a′) =
∨
{a | Aϕ(a) ≤ a′}.

In the case of multiplicities, the reduction operator satisfies the needed property
given in the next Lemma L.5. Further annotation properties which depend on the
reduction operation are given in Definition 10.8.

173

A. Proofs

Lemma L.5. Assume that we are working with annotations over Bn. If
ϕ : G→ H is injective, we obtain the following equality for all x ∈ G:

redϕ(a′)(x) = a′(ϕ(x))

Furthermore, if ϕ : G → G′ is injective, it holds that redϕ(Bnϕ(a)) = a for
every a ∈ Bn(G).

Proof. Straightforward from the definition of multiplicities (Definition 8.6).

Proposition 8.34 (Closure under union). Graph languages specified by mul-
tiply annotated graphs over functor Bn are closed under union.

Proof. Let two multiply annotated type graphs T1[M1] and T2[M2] be given. Let
T1⊕T2 be the usual coproduct graph in the underlying category GraphΛ, together
with the embedding morphisms i1 : T1 → T1 ⊕ T2 and i2 : T2 → T1 ⊕ T2:

T1[M1]
&&

i1 &&

T2[M2]
xx

i2xx

T1 ⊕ T2[N]

We define the set of annotations N for (T1 ⊕ T2)[N] using the following two sets:

N1 = { (Bni1(`1),Bni1(u1)) | (`1, u1) ∈M1}
N2 = {(Bni2(`2),Bni2(u2)) | (`2, u2) ∈M2}

Finally we define N = N1 ∪N2.

By this definition, for all elements x ∈ T1 and for all (`, u) ∈ M1 there exists
(`1, u1) ∈ N1 such that Bni1(`)(i1(x)) = `1(i1(x)) and Bni1(u)(i1(x)) = u1(i1(x)).
This makes i1 a legal morphism since N1 ⊆ N . The same holds for i2 analogously.
We will now prove the following equality:

L(T1[M1]) ∪ L(T2[M2]) = L((T1 ⊕ T2)[N])

⊆: Let G ∈ (L(T1[M1]) ∪ L(T2[M2])). Then there exists at least one legal
morphism ϕ1 : G[sG, sG] → T1[M1] or ϕ2 : G[sG, sG] → T2[M2]. We assume that
G ∈ L(T1[M1]). Let η : G[sG, sG]→ (T1 ⊕ T2)[N] be the composed morphism of
i1 and ϕ1 with η = i1 ◦ ϕ1. Then η is legal due to Lemma 8.13 and therefore
G ∈ L((T1 ⊕ T2)[N]) holds. The proof for the case where G ∈ L(T2[M2]) works in
the same way.
⊇: We now assume G ∈ L((T1 ⊕ T2)[N]). Then, there exists a legal morphism

η : G[sG, sG]→ (T1 ⊕ T2)[N] with an annotation (`, u) ∈ N and ` ≤ Bnη (sG) ≤ u.
For each (`, u) ∈ N , we know that the pair belongs to N1 or N2. Assume that
(`, u) ∈ N1. Then there exists (`1, u1) ∈ M1 such that ` = Bni1(`1), u = Bni1(u1).
Hence Bnη (sG) ≤ u = Bni1(u1). From Lemma L.3 it follows that there exists a graph
morphism ζ1 : G→ T1 with η = i1 ◦ ζ1 such that the following diagram commutes
in the underlying category GraphΛ:

174

A.4. Proofs of Chapter 8

G[sG, sG]

ζ1xx

η

��

T1[M1]
&&

i1 &&

T2[M2]
xx

i2xx

(T1 ⊕ T2)[N]

We need to prove that ζ1 is a legal graph morphism in the category of multiply
annotated graphs. We get that Bnη (sG) = Bni1◦ζ1

(sG) = Bni1(Bnζ1
(sG)) and since i1

is injective, the following inequality holds due to the fact that redϕ is monotone
and redϕ(Bnϕ(a)) = a holds for every a ∈ Bn(G), whenever ϕ is injective (cf.
Lemma L.5):

Bni1(`1) ≤ Bnη (sG) ≤ Bni1(u1)
⇒ Bni1(`1) ≤ Bni1(Bnζ1(sG)) ≤ Bni1(u1)
⇒ redi1(Bni1(`1)) ≤ redi1(Bni1(Bnζ1(sG))) ≤ redi1(Bni1(u1))
⇒ `1 ≤ Bnζ1(sG) ≤ u1

Therefore ζ1 : G[sG, sG]→ T1[M1] is a legal morphism and we can conclude that
G ∈ L(T1[M1]). For a legal morphism η : G[sG, sG] → (T1 ⊕ T2)[N] with a pair
(`, u) ∈ N2 we get a similar proof which shows that G ∈ L(T2[M2]). Summarizing,
in all cases G ∈ (L(T1[M1]) ∪ L(T2[M2])) holds.

Proposition 8.35 (Non-closure under complement). Graph languages speci-
fied by multiply annotated graphs over functor Bn are not closed under complement.

Proof. We show that there exist languages specified by annotated type graphs for
which there exists no finite type graph which specifies the complement language.
For a counterexample we use the multiply annotated type graph T [`, u] (depicted
below, on the left) and we observe that for the graph H below on the right, it
holds that H ∈ L(T [`, u]):

T [`, u] =
[1,∗] [1,1]

A [1,1]A [1,∗] H = AA

Now assume, that graph languages specified by annotated type graphs are closed
under complement and let L(T ′[M]) = L(T [`, u]) be the complement language,
represented by a multiply annotated type graph T ′[M]. We consider the sub-
language L′ ⊂ L(T ′[M]) of the complement language which contains all graphs
Gn with a fixed number n ∈ N0 of discrete A-labeled loops, that is:

L′ =
{
∅
(G0)

,
(G1)

A

,
(G2)

A A

,
(G3)

A A A

, . . .
}

175

A. Proofs

Indeed for n ∈ N0 and a graph Gn ∈ L′ we obtain that Gn /∈ L(T [`, u]) since
there exists no morphism which can fulfill the lower bound of the right node in
T [`, u]. Therefore L′ ⊂ L(T [`, u]) holds. We show that there can not exist a finite
graph T ′[M] with the following two properties:

1. for all n ∈ N0 and Gn ∈ L′, there exists an annotation (`n, un) ∈ M such
that there exists a legal morphism ϕn : Gn[sGn , sGn]→ T ′[`n, un].

2. for all graphs H ′ ∈ L(T [`, u]) we have that H ′ /∈ L′.

We first show that given any n ∈ N0, whenever there exists an annotation
(`n, un) ∈ M and a legal morphism ϕn : Gn[sGn , sGn] → T ′[`n, un] which fulfils
property (1), where ϕn is non-injective, then property (2) becomes unsatisfiable.

Assume that the legal morphism ϕn : Gn[sGn , sGn]→ T ′[`n, un] is non-injective
and maps at least two nodes of Gn (denoted by n1, n2) to the same target node t
in T ′[`n, un]. Then the upper bound un(t) must be greater than or equal to 2.
Then, there exists a graph H ′ ∈ L(T [`, u]) that allows a legal morphism into

T ′[`n, un] which can be constructed in the following way: Let H ∈ L(T [`, u]) be
the graph defined earlier. Then construct H ′ as the disjoint union of H and Gn−2.
The graph H ′ is an element of L(T [`, u]) since we can map all additional n− 2
nodes with an A-labeled loop to the left node in T [`, u].
Now, in order to show that H ′ ∈ L(T ′[`n, un]), consider the two nodes n1 and

n2 of Gn which are both mapped to t via ϕn. The two nodes of H can both be
mapped to t since the upper bound of t admits such a morphism. The former
non-looping edge and the loop are mapped to the target loops of n1 and n2
respectively. Now map the remaining n− 2 nodes with loops in H ′ by mimicking
the mapping of the nodes with loops of Gn via ϕn, except n1 and n2. This gives
us the same annotations on T ′ as those generated by ϕn, which are consequently
within the bound [`n, un].

Hence the morphism from H ′ to T ′[`n, un] is legal, H ′ ∈ L(T ′[`n, un]) holds and
therefore property (2) does not hold. We conclude that all ϕn must be injective
to guarantee that there exists no graph H ′ ∈ L(T [`, u]) that is also contained in
the complement language.
However, to ensure that the morphisms ϕn : Gn → T ′[`n, un] are injective for

any n ∈ N0, the type graph T ′ would need to consist of at least n different nodes
with A-labeled loops attached to them. Since there are infinitely many graphs Gn
there can not exist a type graph T ′[M] with a finite number of nodes. We conclude
that there exists no finite graph T ′[M] specifying the complement language of
L(T [`, u]).

176

A.5. Proofs of Chapter 9

A.5. Proofs of Chapter 9
The following result is known, we give the proof sketch for the convenience of the
reader, since the construction plays an important role in Chapter 9 and Chapter 10.

Proposition 9.15 (Final pullback complements, subobject and partial
map classifiers). Let C be a category with finite limits. Then the following are
equivalent:

(1) C has a subobject classifier true : 1� Ω and final pullback complements for
each pair of arrows I α→ L

m
� G where m is a mono;

(2) C has a partial map classifier (F : C→ C, η : IdC
.→ F).

Sketch. We just report the corresponding constructions from [DT87], omitting
the proofs of the relevant properties.

(1) ⇒ (2) The component ηY : Y � F(Y) of the natural transformation η at
object Y ∈ C is obtained as the final pullback complement of Y !Y→ 1 true

� Ω,
as shown in Diagram (A.6).

(2) ⇒ (1) We first observe that, given a partial map classifier (F , η), the subob-
ject classifier is obtained as 1 η1

� F(1).

We show how to construct a final pullback complement: Given I α→ L
m
� G,

consider the components of the natural transformation at I and L, and
arrow F(α) : F(I) → F(L), as in (A.7). The mono L m

� G can be seen
as a partial map G

m
� L

idL
� L from G to L, and this induces a unique

arrow ϕ(m, idL) making the square a pullback. Now let G h← P → F(I) be
the pullback of G ϕ(m,idL)−→ F(L) F(α)←− F(I). It is easy to see that there is
an induced mono (mediating arrow) n : I � P and it can be shown that
I

n
� P h→ G is the final pullback complement of I α→ L

m
� G.

Y

!Y
��

//
ηY // F(Y)

χηY
��

1 // true
// Ω

(FPBC)

(A.6)

L��

m

��

""

ηL ""

I
αoo

��

η

��

!!

ηI

!!

L
??

idL

??

��

m
��

F(L) F(I)
F(α)

oo

G
ϕ(m,idL)

<<

P
h

oo

==

(A.7)

Proposition 9.19 (Existence of materialization). Let ϕ : L → A be an
arrow in C, and let ηϕ : ϕ→ F(ϕ), with F(ϕ) : Ā→ A, be the partial map classifier
of ϕ in the slice category C↓A (which also is a topos)3. Then L ηϕ→ Ā

F(ϕ)→ A is
the materialization of ϕ, hence 〈ϕ〉 = Ā.

Proof. Let L m
� X α→ A be an object of Matϕ, i.e. a factorization such that

ϕ = α ◦ m. Note that this defines a partial map (m, idL) : α ⇀ ϕ in C ↓ A

177

A. Proofs

consisting of the span α m
� ϕ

idL→ ϕ. Since ηϕ : ϕ → F(ϕ) is the component of
the partial map classifier, there exists a unique arrow ϕ(m, idL) : X → 〈ϕ〉 from
α : X → A to F(ϕ) : 〈ϕ〉 → A for which the left square in the following diagram
is a pullback and the right triangle commutes. The latter holds since ϕ(m, idL) is
an arrow in the slice category.

L

ϕ
%%

// m //
��

idL
��

X

ϕ(m,idL)
��

α // A

L // ηϕ
// 〈ϕ〉

(PB)

F(ϕ)

NN

Corollary 9.20 (Construction of the materialization). Let ϕ : L → A be
an arrow of C and let trueA : A� A× Ω be the subobject classifier in the slice
category C ↓ A mapping from idA : A→ A to the
projection π1 : A×Ω→ A (see also Fact 9.11). Then
the terminal object L

ηϕ
� 〈ϕ〉 ψ→ A in the materializa-

tion category consists of the arrows ηϕ, ψ = π1 ◦ χηϕ,
where L

ηϕ
� 〈ϕ〉

χηϕ→ A× Ω is the final pullback com-
plement of L ϕ→ A

trueA
� A× Ω.

L

ϕ

��

//
ηϕ
// 〈ϕ〉

χηϕ
��

ψ

""

A //trueA
// A× Ω π1

//

(FPBC)

A

Proof. Straightforward from Propositios 9.15 and 9.19 (and the fact that final
pullback complements in the slice category correspond to those in the base category
[Löw10]).

Proposition 9.22 (Language of the materialization). Let ϕ : L→ A be an
arrow in C and let L

ηϕ
� 〈ϕ〉 → A be the corresponding materialization. Then

L(L
ηϕ
� 〈ϕ〉) = {L mL

� X | ∃ψ : (X → A). (ϕ = ψ ◦mL)}.

Proof. We show that the two sets are included into each other:

• (⊆) Given the materialization L
ηϕ
� 〈ϕ〉 g→ A of a C-arrow ϕ : L → A,

let L mL
� X be a mono in the language L(L

ηϕ
� 〈ϕ〉), i.e., it holds that

(L mL
� X) ∈ L(L

ηϕ
� 〈ϕ〉). Spelling out Definition 9.17 we obtain the

following commuting diagram where the square is a pullback:

L //
mL //

��

idL
��

X

f
��

ψ

L

ϕ

99
//
ηϕ
// 〈ϕ〉

(PB)
g
// A

Then we define ψ = g ◦ f : X → A and observe that the following equation
holds:

ϕ = g ◦ ηϕ = g ◦ ηϕ ◦ idL = g ◦ f ◦mL = ψ ◦mL

178

A.5. Proofs of Chapter 9

• (⊇) Let the mono L mL
� X be a factorization of the C-arrow ϕ : L→ A, i.e.

there exists an arrow ψ : X → A such that ϕ = ψ ◦mL. By terminality of
the materialization L

ηϕ
� 〈ϕ〉 → A there exists an arrow X → 〈ϕ〉 such that

the following diagram commutes and the square is a pullback:

L //
mL //

��

idL
��

X

��

ψ

L

ϕ

99
//
ηϕ
// 〈ϕ〉

(PB)

// A

Therefore (L mL
� X) ∈ L(L

ηϕ
� 〈ϕ〉) holds.

Proposition 9.25 (Construction of the rewritable materialization). Let
ϕ : L→ A be an arrow and let ϕL : I � L be a mono of C. Then the rewritable
materialization of ϕ w.r.t. ϕL exists and can be constructed as the following
factorization L nL

� 〈〈ϕ,ϕL〉〉
ψ◦α−→ A of ϕ. In the diagram shown below to the left, F

is obtained as the final pullback complement of I ϕL
� L� 〈ϕ〉, where L� 〈ϕ〉 ψ→ A

is the materialization of ϕ (Definition 9.18). Next the diagram shown below to
the right L nL

� 〈〈ϕ,ϕL〉〉
β
� F is the pushout of the span L ϕL

� I � F and α is the
resulting mediating arrow.

L
ϕ

~~

��

��

I
��

��

oo
ϕLoo

A 〈ϕ〉ψ
oo F

(FPBC)

oooo

(A.8) L
ϕ

~~

��

��

L
��

nL
��

oo
idLoo I

��

��

oo
ϕLoo

A 〈ϕ〉ψ
oo 〈〈ϕ,ϕL〉〉ooαoo Foo

β
oo uuii

(PO)

(A.9)

Proof. First note that in Diagram (A.8), F is obtained as the final pullback
complement of I ϕL

� L� 〈ϕ〉, where L� 〈ϕ〉 ψ→ A is the materialization of ϕ
(Definition 9.18). Arrow I � F is monic because it is reflected, while F � 〈ϕ〉 is
monic by properties of final pullback complements since ϕL : I � L is monic (see
[CH+06]).
In Diagram (A.9) L nL

� 〈〈ϕ,ϕL〉〉
β
� F is the pushout of the span L ϕL

� I � F .
Since the right square is a pushout and the outer square commutes, there is a
unique arrow α : 〈〈ϕ,ϕL〉〉 → 〈ϕ〉 making the diagram commute. Note that arrow
L

nL
� 〈〈ϕ,ϕL〉〉 is indeed monic, as pushouts preserve monos in a topos, and α is

monic because topoi have effective unions. Therefore the rewritable materialization
L

nL
� 〈〈ϕ,ϕL〉〉 ψ◦α−→ A is an object of Matϕ, and clearly it is also an object of

the subcategory MatϕLϕ , as by Diagram (A.9) I ϕL
� L

nL
� 〈〈ϕ,ϕL〉〉 has a pushout

complement.
We next prove that the left square of Diagram (A.9) is a pullback, to show that

α is the unique arrow from the rewritable materialization to the materialization
in Matϕ. Let the diagram below to the right be given. We already know that the
inner square commutes and therefore ηϕ ◦ idL = α ◦ nL. We will now show that
the pullback property for the inner square holds:

179

A. Proofs

For any other objectX and two arrows f : X → L and
g : X → 〈〈ϕ,ϕL〉〉 where the outer square commutes,
there exists a unique arrow h : X → L such that
f = idL◦h and g = nL◦h. It is clear that h = f by this
assumption. Since α is a mono, it is a left-cancellative
arrow e.g. for any two arrows f1, f2 : X → 〈〈ϕ,ϕL〉〉
we get that α ◦ f1 = α ◦ f2 implies f1 = f2.

X
h

$$

f

""

g

$$

L
��

nL
��

//
idL // L

��

ηϕ
��

〈〈ϕ,ϕL〉〉 // α // 〈ϕ〉

(PB)

We obtain the following equation: α ◦ g = ηϕ ◦ f = ηϕ ◦ idL ◦ h = α ◦ nL ◦ h,
which implies that g = nL ◦ h since α is a mono. Hence the inner square is a
pullback. Now let L p

� X
q→ A be an object of MatϕLϕ , i.e. a factorization of ϕ

such that the pushout complement of I ϕL
� L

p
� X exists, and let I � C � X be

such a pushout complement. Then the following Diagram (A.10) commutes, where
g : X → 〈ϕ〉 is the unique arrow making the left square a pullback by finality of
the materialization, and the right square is a pullback because it is a pushout
along a mono. From the pasting lemma (pullback version) we can conclude that
the composed square is a pullback as well.

L
ϕ

~~

��

ηϕ
��

L
��

p
��

oooo I
��

��

oo
ϕLoo

A 〈ϕ〉ψ
oo X

q

ff

g
oo

(PB)

Coooo

(PB)

(A.10)

InnϕL

��

��

��

��

��
L��

ηϕ
��

I
��

��

oo
ϕLoo

=

〈ϕ〉 Foooo

(FPBC)

C

γ

__\\

(A.11)

Combining the outer pullback of Diagram (A.10) with the final pullback com-
plement of Diagram (A.8) we get Diagram (A.11). By Definition 9.13 there exists
a unique arrow γ such that the diagram commutes (especially the lower triangle
and the square to the right).

By composing the arrows γ : C → F from Diagram (A.11) and β : F � 〈〈ϕ,ϕL〉〉
from Diagram (A.9) we get the arrow c = β ◦ γ : C → 〈〈ϕ,ϕL〉〉 shown in the
commuting Diagram (A.12) where the right square is a pushout. The universal
property of pushouts gives us a unique mediating arrow δ : X → 〈〈ϕ,ϕL〉〉. To
show that δ defines an arrow in Matϕ from L

p
� X

q→ A to the rewritable
materialization L nL

� 〈〈ϕ,ϕL〉〉
ψ◦α−→ A we need to prove that q = ψ ◦ α ◦ δ (which is

easily checked by diagram chasing) and that the left square is a pullback.

L��

nL
��

L
��

p
��

oooo I
��

��

oooo

〈〈ϕ,ϕL〉〉 X
δoo

(?)

Coooo

c

gg

(PO)

(A.12) L
��

��

L
��

nL
��

oooo L
��

p
��

oooo

〈ϕ〉 〈〈ϕ,ϕL〉〉ooαoo

(PB)

X
δoo

g

gg

(PB)

(A.13)

In order to show that the square marked (?) is a pullback we consider Dia-
gram (A.13). The left square is a pullback as we have shown earlier, and the
outer square is a pullback by Diagram (A.10). From the pasting lemma (pullback
version) we can conclude that the right square is a pullback. Also note that the
diagram clearly commutes as the three arrows at the bottom are all unique.

180

A.5. Proofs of Chapter 9

Proposition 9.27 (Language of the rewritable materialization). Assume
there is a production p : L ϕL

� I
ϕR
� R and let L nL

� 〈〈ϕ,ϕL〉〉 be the match for the
rewritable materialization for ϕ and ϕL. Then we have

L(L nL
� 〈〈ϕ,ϕL〉〉) = {L mL

� X | ∃ψ : (X → A). (ϕ = ψ ◦mL ∧X
p,mL=⇒)}

where X p,mL=⇒ denotes that the object X can be rewritten.

Proof. We show that the two sets of arrows are included in one another:

• (⊇) Let L mL
� X such that there exists an arrow ψ with ϕ = ψ ◦mL and

X
p,mL=⇒ . Then L

mL
� X

ψ→ A is an object of the materialization category
of rewritable objects (since the production can be applied, the pushout
complement exists) and we obtain a unique arrow X → 〈〈ϕ,ϕL〉〉 that creates
a pullback L,L,X,A. Hence mL ∈ L(L nL

� 〈〈ϕ,ϕL〉〉).

• (⊆) Assume that mL ∈ L(L nL
� 〈〈ϕ,ϕL〉〉). This implies the existence of an

arrow X → 〈〈ϕ,ϕL〉〉 such that the left square in Diagram (A.14) is a pullback.
The arrow ψ : X → A is given by composing X → 〈〈ϕ,ϕL〉〉

α
� 〈ϕ〉 → A and

by retracing the construction of 〈〈ϕ,ϕL〉〉 (see Proposition 9.25) it can be
shown that ϕ = ψ ◦mL.
Furthermore we constructed the outer square in Diagram (A.14) as a pushout,
which is therefore also a pullback.

L��

��

L��

mL
��

oooo I��

��

oo
ϕL
oo

〈〈ϕ,ϕL〉〉 Xoo

(PB)

Fww
jj

(A.14)
InnmL◦ϕL

��

��

{{

��

��

X

��

C

��

oooo

=

〈〈ϕ,ϕL〉〉 Foooo

(PB) =

(A.15)

Now we take the pullback of X → 〈〈ϕ,ϕL〉〉� F and obtain the pullback
object C with the corresponding arrows (See Diagram (A.15)). Since the
outer square commutes, we get a unique arrow I � C due to the property of
pullbacks. Note that I � C is a mono since I � F is a mono. All we need
to show is that C is the pushout complement for our rewritable object X.

In order to show that it is a pushout we consider
the diagram to the right. The bottom square is a
Van Kampen square4, furthermore the left square
is trivially a pullback, the front square is a pullback
according to Diagram (A.14) and the right square
is a pullback by construction (see Diagram (A.15)).
Then it follows from classical pullback splitting
that the back square is also a pullback. Finally it
follows from the properties of adhesive categories
that the top square is a pushout.

I // //
��

��

��

��

Czz

zz

��

L // //
��

��

X

��

I // //
��

��

F{{

{{

L // // 〈〈ϕ,ϕL〉〉

4Since every topos is adhesive, the Van Kampen square property holds. For more details see
[LS05].

181

A. Proofs

Therefore X can be rewritten. The existence of the pushout complement is
guaranteed using the described construction. This completes the proof.

Proposition 9.28 (Rewriting abstract matches). Let a match nL : L� Ã
and a production p : L� I � R be given. Assume that Ã is rewritten along the
match nL, i.e., (L nL

� Ã) p⇒ (R nR
� B). Then

L(R nR
� B) = {R mR

� Y | ∃(L mL
� X) ∈ L(L nL

� Ã) :
(
(L mL
� X) p⇒ (R mR

� Y)
)
}

Proof.

• (⊆) Assume that (L nL
� Ã) p⇒ (R nR

� B) and let mR ∈ L(R nR
� B) where

mR : R� Y . That is we have the diagram below, where the bottom squares
are pushouts and the remaining squares are pullbacks (the squares in the
back are actually pushouts as well).

L��

idL

��

Ioooo // //
��

idI

��

R��

idR

��

��

mR
��

Y

��

L��

nL
��

Ioooo // //
��

��

R��

nR
��

Ã Coooo // // B

Now take the pullback of C � B and Y → B, obtaining Z, which gives us
I → Z as mediating arrow into the pullback object (see diagram below). In
the right cube the right square is a pullback, the back square is trivially
pullback and the front square is a pullback by construction. This means
that the left square is also a pullback by pullback splitting. Due to the Van
Kampen square property this implies that the top square is a pushout. Since
all pushouts along monos are pullbacks in adhesive categories, the arrow
I → Z must be a mono.
Finally, take the pushout of I � Z and I � L, resulting in X, which give
us X → Ã as a mediating arrow.

L��

idL

��

��

mL��

Ioooo // //
��

idI

��

��

��

R��

idR

��

��

mR
��

X

��

Zoooo // //

��

Y

��

L��

nL
��

Ioooo // //
��

��

R��

nR
��

Ã Coooo // // B

This illustrates that (L mL
� X) p⇒ (R mR

� Y). Since in the left cube the
back square is trivially a pullback and the right square is a pullback as well
(see argument above), the front and left squares are pullbacks as well. This
implies that (L mL

� X) ∈ L(L nL
� Ã), as required.

182

A.5. Proofs of Chapter 9

• (⊇) Assume that (L mL
� X) p⇒ (R mR

� Y) and (L mL
� X) ∈ L(L nL

� Ã)
hold. Together with the fact that (L nL

� Ã) p⇒ (R nR
� B), this results in

the diagram below (without the dotted arrows), where the top and bottom
squares of the cubes are all pushouts and the vertical squares are pullbacks.

L��

idL

��

��

mL��

Ioooo // //
��

idI

��

��

��

R��

idR

��

��

mR
��

X

��

Zoooo // //

��

Y

��

L��

nL
��

Ioooo // //
��

��

R��

nR
��

Ã Coooo // // B

Due to the Van Kampen square property and the fact that pushout com-
plements of mono arrows are unique, the object Z can be constructed in
two ways: either by taking the pullback of X → Ã and C � Ã or by taking
the pushout complement of I � L, L� X as shown above. Hence there
must be an arrow Z → C arising from the pullback and the front and right
square of the left cube are pullbacks as well.
Now the arrow Y → B is obtained as a mediating arrow into the pushout
object and the front and right faces of the right cube are again pullbacks.
This implies that (R mR

� Y) ∈ L(R nR
� B), as desired.

Corollary 9.30 (Co-match language of the rewritable materialization).
Let ϕ : L→ A and a production p : L ϕL

� I
ϕR
� R be given. Assume that 〈〈ϕ,ϕL〉〉 is

obtained as the rewritable materialization of ϕ and ϕL with the match L nL
� 〈〈ϕ,ϕL〉〉

(see Proposition 9.25) and let (L nL
� 〈〈ϕ,ϕL〉〉) p⇒ (R nR

� B). Then
L(R nR

� B) = {R mR
� Y |∃(L mL

� X), (X ψ→ A) :(
ϕ = ψ ◦mL ∧ (L mL

� X) p⇒ (R mR
� Y)

)
}

Proof. Straightforward from Propositions 9.27 and 9.28.

183

A. Proofs

A.6. Proofs of Chapter 10

Lemma L.6. The multiplicity functor from Definition 8.6 satisfies the ho-
morphism property, the pushout property, the adjunction property, the Beck-
Chevalley property and the isomorphism property.

Proof.

Homomorphism property: Assume ϕ : A→ B to be an injective graph morphism.
We first show that Bnϕ preserves the unit, which is a map a : VA ∪EA →Mn

with a(x) = 0 for all x ∈ VA ∪EA. For y ∈ VB ∪EB we have the annotation
Bnϕ(a)(y) =

∑
ϕ(x)=y a(x). Either y has a unique preimage x with a(x) = 0

and in this case the result is 0. Or y has no preimage, in which case we have
the empty sum and the result is also 0.
Next, we show that Bnϕ preservers the monoid operation: let two annotations
a1, a2 ∈ VA ∪EA →Mn be given. Then for the monoid operation we have
Bnϕ(a1 + a2)(y) =

∑
ϕ(x)=y(a1(x) + a2(x)). We distinguish two cases:

• Either y has a unique preimage x and then the result is

a1(x) + a2(x) =
∑

ϕ(x)=y
a1(x) +

∑
ϕ(x)=y

a2(x) = Bnϕ(a1)(y) + Bnϕ(a2)(y)

• Or y has no preimage under ϕ and we obtain

0 = 0 + 0 =
∑

ϕ(x)=y
a1(x) +

∑
ϕ(x)=y

a2(x) = Bnϕ(a1)(y) + Bnϕ(a2)(y)

Preservation of subtraction can be shown analogously.
Note that preservation of the monoid operation (but not preservation of
subtraction) holds for any (also non-injective) graph morphism.

Adjunction property: Assume that ϕ : A→ B is an injective graph morphism.
• First we show that the right adjoint of Bnϕ : Bn(A) → Bn(B) is the

functor redϕ : Bn(B) → Bn(A) where for b : VB ∪ EB →Mn we have
redϕ(b)(x) = b(ϕ(x)) (for x ∈ VA ∪ EA). Clearly, redϕ is monotone.
Furthermore for a ∈ Bn(A) and x ∈ VA∪EA we can show the following,
using the fact that ϕ is injective:

redϕ(Bnϕ(a))(x) = Bnϕ(a)(ϕ(x)) =
∑

ϕ(x′)=ϕ(x)
a(x′) = a(x)

Finally for b ∈ Bn(B) and y ∈ VB ∪ EB we have:

Bnϕ(redϕ(b))(y) =
∑

ϕ(x)=y
redϕ(b)(x) =

∑
ϕ(x)=y

b(ϕ(x))

=
{
b(y) if y ∈ img(ϕ)
0 otherwise

}
≤ b(y)

184

A.6. Proofs of Chapter 10

• We have to show that redϕ is a monoid homomorphism that preserves
subtraction.
Let b : VB ∪ EB →Mn be the unit map that satisfies b(y) = 0 for all
y ∈ VB ∪ EB. Then redϕ(b)(x) = b(ϕ(x)) = 0 for all x ∈ VA ∪ EA, i.e.,
redϕ(b) is also the unit map.
Furthermore for b1, b2 : VB ∪ EB →Mn we have

redϕ(b1 + b2)(x) = (b1 + b2)(ϕ(x)) = b1(ϕ(x)) + b2(ϕ(x))
= redϕ(b1)(x) + redϕ(b2)(x)

Preservation of subtraction can be shown analogously.
• redϕ preserves standard annotations:

redϕ(sB)(x) = sB(ϕ(x)) = 1 = sA(x).

Pushout property: Assume that we have a pushout as in Definition 10.8 (pushout
property) and let d ∈ Bn(D). We have to show that

d = Bnψ1(redψ1(d)) + (Bnψ2(redψ2(d))− Bnη (redη(d)))

Let y ∈ VD ∪ ED, then we obtain:

Bnψ1(redψ1(d))(y) + (Bnψ2(redψ2(d))(y)− Bnη (redη(d))(y))

=
∑

ψ1(x1)=y
d(ψ1(x1)) +

(∑
ψ2(x2)=y

d(ψ2(x2))−
∑

η(x0)=y
d(η(x0))

)
We distinguish the following cases:

• y has a (unique) preimage x1 under ψ1, but no preimage under ψ2.
This means that y has no preimage under η as well. In this case we
obtain∑
ψ1(x1)=y

d(ψ1(x1)) = d(y),
∑

ψ2(x2)=y
d(ψ2(x2)) =

∑
η(x0)=y

d(η(x0)) = 0,

from which the required equality follows.
• y has a (unique) preimage x2 under ψ2, but no preimage under ψ1.

This case is analogous to the previous one.
• y has a (unique) preimage x1 under ψ1 and a (unique) preimage x2

under ψ2. Hence it must also have a (unique) preimage x0 under η such
that ϕ1(x0) = x1, ϕ2(x0) = x2. In this case we obtain∑

ψ1(x1)=y
d(ψ1(x1)) =

∑
ψ2(x2)=y

d(ψ2(x2)) =
∑

η(x0)=y
d(η(x0)) = d(y),

yielding the result d(y) + (d(y)− d(y)) = d(y).

Beck-Chevalley property: First, observe that since the square from Definition 10.8
(Beck-Chevalley property) is a pullback, we can assume that the elements
(vertices and edges) of A are as follows:

VA ∪ EA = {(x1, x2) | x1 ∈ VB ∪ EB, x2 ∈ VC ∪ EC , ψ1(x1) = ψ2(x2)}

185

A. Proofs

Now let b : VB ∪ EB →Mn and x2 ∈ VC ∪ EC . Then we have:

Aϕ2(redϕ1(b))(x2) =
∑

ϕ2((x′1,x′2))=x2

b(ϕ1((x′1, x′2)))

=
∑

ψ1(x′1)=ψ2(x2)
b(ϕ1((x′1, x2))) =

∑
ψ1(x′1)=ψ2(x2)

b(x1) = Aψ1(b)(ψ2(x2))

= redψ2(Aψ1(b))(x2)

Isomorphism property: Assume that ϕ : X[sX , sX] → Y [sY , sY] is a legal mor-
phism. Then, since the standard annotation sY is a lower and upper bound,
every element Y must have exactly one preimage in X under ϕ. This is
equivalent to the fact that ϕ is an isomorphism.

Lemma L.7. The path annotation functor from Definition 8.8 satisfies the
homorphism property and the pushout property for standard annotations.

Proof.

Homomorphism property: Assume ϕ : A→ B to be an injective graph morphism.
First observe that Tϕ(∅) = ∅.
Now let P0, P1 ∈ T (A), we have to show that Tϕ(P0 +P1) = Tϕ(P0)+Tϕ(P1).
(⊆) Let (w0, wn) ∈ Tϕ(P0 + P1) where w0, wn ∈ VB. Then w0, wn have

(unique) preimages v0, vn ∈ VA with ϕ(v0) = w0, ϕ(vn) = wn and
(w0, wn) ∈ (P0 + P1). Then there exist vertices v1, . . . , vn−1 ∈ VA such
that (vi, vi+1) ∈ Pji , ji ∈ {0, 1}, ji+1 = 1− ji, i ∈ {0, . . . , n− 1}. This
implies that (ϕ(vi), ϕ(vi+1)) = (wi, wi+1) ∈ Tϕ(Pji). By definition of
the monoid operation + we have (w0, wn) ∈ (Tϕ(P0) + Tϕ(P1)).

(⊇) Let (w0, wn) ∈ (Tϕ(P0) + Tϕ(P1)). Then there exist w1, . . . , wn−1 ∈ VB
such that (wi, wi+1) ∈ Tϕ(Pji) with ji ∈ {0, 1}, ji+1 = 1 − ji where
i ∈ {0, . . . , n− 1}.
Hence there are preimages vj00 , v

j0
1 , v

j1
1 , . . . , v

jn−1
n−1 , v

jn−1
n ∈ VA of the wi.

In particular ϕ(vji) = wi and (vjii , v
ji
i+1) ∈ Pji . Then since we have

ϕ(vjii) = wi = ϕ(vji+1
i) and ϕ is injective, we can infer vjii = v

ji+1
i . This

means that (v0, vn) ∈ (P0 +P1) by definition of the monoid operation +.
Finally, this implies that (w0, wn) = (ϕ(v0), ϕ(vn)) ∈ Tϕ(P0 + P1).

Furthermore Tϕ trivially preserves subtraction:
Tϕ(P0 − P1) = Tϕ(P0) = Tϕ(P0)− Tϕ(P1).

Pushout property for standard annotations: Consider the pushout of injective
graph morphisms depicted below where η = ψ0 ◦ ϕ0 = ψ1 ◦ ϕ1:

A //
ϕ1
//

η

��

ϕ0
��

B1��

ψ1
��

B0 //
ψ0
// D

We have to show that

sD = Tψ1(sB0) + (Tψ2(sB1)− Tη(sA)) = Tψ1(sB0) + Tψ2(sB1)

186

A.6. Proofs of Chapter 10

(⊆) Let (v0, vn) ∈ sD. This means that there exists a path in graph D,
consisting of edges e0, . . . , en−1 ∈ ED, from v0 to vn. In particular
s(ei) = vi, t(ei) = vi+1.
Since D is a pushout, each edge has a preimage in B0 or in B1 (or in
both). Hence we can group consecutive edges according to the origin
of their preimages and we can (possibly non-uniquely) choose indices
i0 = 0, . . . , ik = n+ 1 such that ei` , . . . , ei`+1−1 have preimages in Bj`
where ` ∈ {0, . . . , k − 1}, j` ∈ {0, 1} and j`+1 = 1− j`.
Now assume that the preimages of the ei are f0, . . . , fn−1 ∈ EB0 ∪EB1

where ψ0(fi) = ei and ψ1(fi) = ei whenever ψ0 respectively ψ1 are
defined on fi.
Since ψ0, ψ1 are injective, the edges fi` , . . . , fi`+1−1 form a path in Bj` ,
hence (s(fi`), t(fi`+1−1)) ∈ sBj` . This implies that

(vi` , vi`+1) = (s(ei`), t(ei`+1−1)) = (s(ψj`(fi`)), t(ψj`(fi`+1−1)))
= (ψj`(s(fi`)), ψj`(t(fi`+1−1))) ∈ Tψj` (sBj`)

Hence, by the definition of the monoid operation + we can infer that
(v0, vn) ∈ Tψ1(sB0) + Tψ2(sB1).

(⊇) Let (v0, vn) ∈ Tψ1(sB0) + Tψ2(sB1). Hence there are v1, . . . , vn−1 ∈ VD
such that (vi, vi+1) ∈ T (sBji) with ji ∈ {0, 1}, ji+1 = 1 − ji where
i ∈ {0, . . . , n− 1}.

This means that there are preimages wj00 , w
j0
1 , w

j1
1 , . . . , w

jn−1
n−1 , w

jn−1
n of

the vi. In particular wji ∈ VBj and ψj(wji) = vi. Furthermore there
exists a path from wjii to wjii+1 in Bji . Hence there must also be a path
from vi = ψji(wjii) to vi+1 = ψji(wjii+1) in D. This in turn implies that
there is a path from v1 to vn in D and hence (v1, vn) ∈ D.

Lemma L.8. The local annotation functor from Definition 10.6 satisfies the
homorphism property and the pushout property for standard annotations.

Proof.

Homomorphism property: Assume ϕ : A→ B to be an injective graph morphism.
We first show that Snϕ preserves the unit, which is a map a : VA → Mn

with a(v) = 0 for all v ∈ VA. For w ∈ VB we have Snϕ(a)(w) =
∨
ϕ(v)=w a(v).

Either w has a unique preimage v with a(v) = 0 and in this case the result
is 0. Or w has no preimage, in which case we have the empty supremum
and the result is also 0.
We show that Snϕ preservers the monoid operation: let a1, a2 ∈ VA →Mn.
Then we have Snϕ(a1 + a2)(w) =

∨
ϕ(v)=w(a1(v) + a2(v)). We distinguish two

cases:
• Either w has a unique preimage v and then the result is

a1(v) + a2(v) =
∨

ϕ(v)=w
a1(v) +

∨
ϕ(v)=w

a2(v) = Snϕ(a1)(w) + Snϕ(a2)(w)

187

A. Proofs

• Or w has no preimage under ϕ and we obtain

0 = 0 + 0 =
∨

ϕ(v)=w
a1(v) +

∨
ϕ(v)=w

a2(v) = Snϕ(a1)(w) + Snϕ(a2)(w)

Preservation of subtraction can be shown analogously.

Pushout property for standard annotations: In the following we will use the
function out : V →Mn to assign to a vertex v ∈ V its out-degree, respec-
tively m if the out-degree is larger than n.
Assume that we have a pushout as in Definition 10.8. We show:

sD = Snψ1(sB) + (Snψ2(sC)− Snη (sA))

Now let w ∈ VD and we distinguish the following cases:
• w has a (unique) preimage under ψ1, but no preimage under ψ2. This

means that w has no preimage under η as well. In this case we have
out(w) = out(v) and furthermore:

sD(w) = out(w) = out(v) = sB(v) =
∨

ψ1(v)=w
sB(v) = Snϕ(sB)(w)

Also Snψ2
(sC)(w) = 0 and Snη (sA)(w) = 0 which completes this case.

• w has a (unique) preimage under ψ2, but no preimage under ψ1. This
case is analogous to the previous case.

• w has a (unique) preimage v1 under ψ1 and a (unique) preimage v2
under ψ2. Hence it must also have a (unique) preimage v0 under η such
that ϕ1(v0) = v1, ϕ2(v0) = v2.
Due to the properties of a pushout out(w) = out(v1)+(out(v2)−out(v0))
holds. (Note that due to the placement of the brackets, the left-hand
side equals m if and only if the right-hand side equals m.)
Hence we obtain:

sD(w) = out(w) = out(v1) + (out(v2)− out(v0))
= sB(v1) + (sC(v2)− sA(v0))
=

∨
ψ1(v)=w

sB(v) +
(∨
ψ2(v)=w

sC(v)−
∨

η(v)=w
sA(v)

)
= Snψ1(sB)(w) + (Snψ2(sC)(w)− Snη (sA)(w))

Lemma L.9.
1. The pushout property for standard annotations implies that for every

mono ϕ : A� B we have Aϕ(sA) ≤ sB.
2. The adjunction property and the Beck-Chevalley property imply that

redϕ(Aϕ(a)) = a for ϕ : A� B, a ∈ A(A).
3. The pushout property and the adjunction property imply the pushout

property for standard annotations.

4. The adjunction property implies redϕ◦ψ = redψ ◦ redϕ for A ψ
� B

ϕ
� C.

188

A.6. Proofs of Chapter 10

Proof.

1. Consider the pushout below.

A //
ϕ
//

��

ϕ
��

��

idA
��

B��

idB
��

A // ϕ
// B

According to the pushout property for standard annotations we have

sB = Aϕ(sA) + (AidB (sB)−Aϕ(sA)) ≥ Aϕ(sA),

since AidB (sB)−Aϕ(sA) ≥ 0 (0 is the bottom element).

2. First, consider the identity morphism idA : A� A: then, for a ∈ A(A) we
have a ≤ red idA(AidA(a)) = red idA(a) and red idA(a) = AidA(red idA(a)) ≤ a.
Hence red idA(a) = a.
Since ϕ : A→ B is a mono, the following diagram is a pullback.

A //
idA //

��

idA
��

A��

ϕ

��

A // ϕ
// B

(PB)

From the Beck-Chevalley property it follows that

redϕ(Aϕ(a)) = red idA(AidA(a)) = a.

3. Consider a pushout of A,B,C,D as in the pushout property for standard
annotations with η = ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2. Due to the pushout property and
the adjunction property we have

sD = Aψ1(redψ1(sD)) + (Aψ2(redψ2(sD))−Aη(redη(sD)))
= Aψ1(sB) + (Aψ2(sC)−Aη(sA))

4. We have to show that redϕ◦ψ, redψ ◦ redϕ are both left adjoints of Aϕ◦ψ,
then the result follows from the fact that adjoints are unique. This is obvious
for redϕ◦ψ and in the other case we obtain for c ∈ A(C):

Aϕ◦ψ(redψ(redϕ(c))) = Aϕ(Aψ(redψ(redϕ(c))))
≤ Aϕ(redϕ(c))
≤ c

and similarly for the other inequality.

189

A. Proofs

Proposition 10.12 (Annotated rewritable materialization is terminal).
Let p : L ϕL

� I
ϕR
� R be a production and let L mL

� X be the match of L in an
object X such that X p,mL=⇒ , i.e., X can be rewritten. Assume that X is abstracted
by A[a1, a2], witnessed by ψ. Let ϕ = ψ ◦mL and let L nL

� 〈〈ϕ,ϕL〉〉
ψ′→ A be the

corresponding rewritable materialization. Then there exists an arrow ζA and a pair
of annotations (a′1, a′2) ∈M for 〈〈ϕ,ϕL〉〉 (as described in Definition 10.11) such
that the diagram below commutes and the square is a pullback in the underlying
category. Furthermore the triangle consists of legal arrows. This means in particular
that ζA is legal.

L[sL, sL]
��

idL
��

//
mL // X[sX , sX]

ζA
��

ψ
// A[a1, a2]

L[sL, sL] // nL
// 〈〈ϕ,ϕL〉〉[a′1, a′2]

(PB)
ψ′

77

Proof. The existence of the arrow ζA follows from the fact that L� 〈〈ϕ,ϕL〉〉 → A
is the rewritable materialization (see Definition 9.24). This makes the left-hand
square a pullback. We show that there exists a pair (a′1, a′2) ∈ M (for M as in
Definition 10.11) for which a′1 ≤ AζA(sX) ≤ a′2.
It holds that Aψ′(AζA(sX)) = Aψ(sX) ≥ a1 and Aψ′(AζA(sX)) ≤ a2. Further-

more AnL(sL) = AζA(AmL(sL)) ≤ AζA(sX) (using functoriality, Lemma L.9(1.)
and monotonicity). Then either (AζA(sX),AζA(sX)) ∈ M or it is subsumed by
another, maximal, pair (a′1, a′2) ∈ M . In both cases this is the desired pair of
annotations.

Proposition 10.14 (Soundness for ;). The relation ; is sound, i.e. if
X ∈ L(A[a1, a2]) (witnessed via a legal arrow ψ : X[sX , sX] → A[a1, a2]) and
X

p,mL=⇒ Y , then there exists an abstract rewriting step A[a1, a2] p,ψ◦mL; B[b1, b2]
such that Y ∈ L(B[b1, b2]).

Proof. Since X p,mL=⇒ Y we have that (L mL
� X) p⇒ (R mR

� Y) for some co-match
mR. We set ϕ = ψ ◦mL and Corollary 9.30 implies that (R mR

� Y) ∈ L(R nR
� B)

where (L nL
� 〈〈ϕ,ϕL〉〉) p⇒ (R nR

� B) and 〈〈ϕ,ϕL〉〉 is the rewritable materialization
with L nL

� 〈〈ϕ,ϕL〉〉
ψ′→ A (such that ψ′◦ζA = ψ). This situation can be summarized

in the diagram from the proof of Proposition 9.28 which is depicted below in a
simplified form, but with added annotations.

L[sL, sL]
��

mL
��

��

nL

��

I[sI , sI]oo
ϕLoo //

ϕR //
��

mI
��

R[sR, sR]
��

mR
��

��

nR

��

X[sX , sX]

ζA
��

Z[sZ , sZ]oo
ϕXoo //

ϕY //

ζC
��

Y [sY , sY]

ζB
��

〈〈ϕ,ϕL〉〉[a′1, a′2] C[c1, c2]oo
ϕAoo //

ϕB // B[b1, b2]

Due to Proposition 10.12 there exists a pair of annotations (a′1, a′2) ∈ M and a
legal arrow ζA : X[sX , sX]→ 〈〈ϕ,ϕL〉〉[a′1, a′2]. Furthermore we assume c1, c2, b1, b2
as in Definition 10.13.

190

A.6. Proofs of Chapter 10

It is left to show that ζC and in particular ζB are legal morphisms.
To show that ζC is legal, we observe that, due to functoriality, the homomorphism
property and the pushout property for standard annotations, we have:

AϕA(AζC (sZ)) + (AnL(sL)−AnL◦ϕL(sI))
= AζA(AϕX (sZ)) + (AζA(AmL(sL))−AζA(AmL◦ϕL(sI)))
= AζA(AϕX (sZ) + (AmL(sL)−AmL◦ϕL(sI)))
= AζA(sX)

Since a′1 ≤ AζA(sX) ≤ a′2 we know from Definition 10.13 that there is a (maximal)
annotation (c1, c2) satisfying the respective inequalities, i.e., c1 ≤ AζC (sZ) ≤ c2,
which implies that ζC is legal.

Second, to show that ζB is legal, we observe that due to the pushout property
for standard annotations, the homomorphism property and functoriality:

AζB (sY) = AζB (AϕY (sZ) + (AmR(sR)−AmR◦ϕR(sI)))
= AζB (AϕY (sZ)) + (AζB (AmR(sR))−AζB (AmR◦ϕR(sI)))
= AϕB (AζC (sZ)) + (AnR(sR)−AnR◦ϕR(sI))

Since ζC is legal and we have c1 ≤ AζC (sZ) ≤ c2, we obtain from the definition of
b1, b2 and monotonicity that b1 ≤ AζB (sY) ≤ b2.

Proposition 10.17 (Soundness for ↪→). The relation ↪→ is sound, i.e. if
X ∈ L(A[a1, a2]) (witnessed via a legal arrow ψ : X[sX , sX] → A[a1, a2]) and
X

p,mL=⇒ Y , then there exists an abstract rewriting step A[a1, a2] p,ψ◦mL↪→ B[b1, b2]
such that Y ∈ L(B[b1, b2]).

Proof. We modify the proof of Proposition 10.12, on which Proposition 10.14
relies. We have to show that there always exists a pair of annotations (a′1, a′2) ∈M
for which we have a legal arrow ζA : X[sX , sX]→ 〈〈ϕ,ϕL〉〉[a′1, a′2]. (The rest of the
proof of Proposition 10.14 proceeds as before.)
As in Proposition 10.12 we show that (AζA(sX),AζA(sX)) is an annotation

(a′1, a′2) which satisfies a1 ≤ Aψ(a′1) andAψ(a′2) ≤ a2. Since the square consisting of
idL,mL, ζA, nL is a pushout, we use the Beck-Chevally property and the adjunction
property to prove rednL(AζA(sX)) = AidL(redmL(sX)) = redmL(sX) = sL holds.
Hence either (AζA(sX),AζA(sX)) or an annotation subsuming it is contained in
the set M of Definition 10.15.

Proposition 10.18 (Completeness for ↪→). The relation ↪→ is complete, i.e.
if A[a1, a2] p,ϕ↪→ B[b1, b2] and Y ∈ L(B[b1, b2]), then there exists X ∈ L(A[a1, a2])
(witnessed via a legal arrow ψ : X[sX , sX] → A[a1, a2]) such that X p,mL=⇒ Y and
ϕ = ψ ◦mL.

Proof. Since there is a rewriting step from A[a1, a2] to B[b1, b2] we obtain 〈〈ϕ,ϕL〉〉
as the materialization (with L

nL
� 〈〈ϕ,ϕL〉〉

ψ′→ A where ϕ = ψ′ ◦ nL) and the
following two pushouts below.

L[sL, sL]
��

nL
��

I[sI , sI]oo
ϕLoo //

ϕR //
��

nI
��

R[sR, sR]
��

nR
��

Y [sY , sY]
xx

ζBxx

〈〈ϕ,ϕL〉〉 [a′1, a′2] C[c1, c2]oo
ϕAoo //

ϕB // B[b1, b2]

191

A. Proofs

Furthermore (a′1, a′2) ∈M and

a′1 ≤ AϕA(c1)+(AnL(sL)−AnL◦ϕL(sI)) AϕA(c2)+(AnL(sL)−AnL◦ϕL(sI)) ≤ a′2

bi = AϕB (ci) + (AnR(sR)−AnR◦ϕR(sI)) for i ∈ {1, 2}

The arrow ζB is legal and witnesses Y ∈ L(B[b1, b2]), i.e. b1 ≤ AζB (sY) ≤ b2.

• We first observe that there is a unique maximal pair (c1, c2) satisfying the
above inequalities, in particular ci = redϕA(a′i). We have

a′i

= [PO property]
AϕA(redϕA(a′i)) + (AnL(rednL(a′i))−AnL◦ϕL(rednL◦ϕL(a′i))
= [rednL(a′i) = sL, Definition of M (from Definition 10.15)]
AϕA(redϕA(a′i)) + (AnL(sL)−AnL◦ϕL(sI))

Furthermore let c1 be an annotation satisfying above inequality. Then:

redϕA(a′1)
≤ [Mon.]

redϕA(AϕA(c1) + (AnL(sL)−AnL◦ϕL(sI)))
= [Adj. prop.]

redϕA(AϕA(c1)) + (redϕA(AnL(sL))− redϕA(AnL◦ϕL(sI)))
= [Lemma L.9(2.)]
c1 + (redϕA(AnL(sL))− redϕA(AnL◦ϕL(sI)))
= [Funct.]
c1 + (redϕA(AnL(sL))− redϕA(AϕA◦nI (sI)))
= [Lemma L.9(2.)]
c1 + (redϕA(AnL(sL))−AnI (sI))
= [Beck-Chevalley]
c1 + (AnI (redϕL(sL))−AnI (sI))
= [Adj. prop.]
c1 + (AnI (sI)−AnI (sI))
= [Subtr. well-behaved]
c1

And similarly redϕA(a′2) ≥ c2 for an annotation c2 satisfying above equality.

• We will next show that there exists a mono
mR : R � Y with (R mR

� Y) ∈ L(R nR
� B).

We do this by taking the pullback of the
arrows nR, ζB , obtaining the diagram shown
to the right.

R′[s′R, s′R]
��

mR
��

ι // R[sR, sR]
��

nR
��

Y [sY , sY] ζB // B[b1, b2]

According to the Beck-Chevalley property we have

Aι(sR′) = Aι(redmR(sY)) = rednR(AζB (sY)).

192

A.6. Proofs of Chapter 10

We know that b1 ≤ AζB(sY) ≤ b2 since ζB is legal and it follows with
monotonicity of rednR that

rednR(b1) ≤ Aι(sR′) ≤ rednR(b2).

Next, we show that rednR(b1) = rednR(b2) = sR:

rednR(bi)
= [Definition]

rednR(AϕB (ci) + (AnR(sR)−AnR◦ϕR(sI)))
= [Adj. prop.]

rednR(AϕB (ci)) + (rednR(AnR(sR))− rednR(AnR◦ϕR(sI)))
= [Lemma L.9(2.)]

rednR(AϕB (ci)) + (sR −AϕR(sI))
= [Beck-Chevalley]
AϕR(rednI (ci)) + (sR −AϕR(sI))
= [Adj. prop.]
AϕR(rednI (redϕA(a′i))) + (sR −AϕR(sI))
= [Lemma L.9(4.)]
AϕR(redϕL(rednL(a′i))) + (sR −AϕR(sI))
= [rednL(a′i) = sL, Definition of M]
AϕR(redϕL(sL)) + (sR −AϕR(sI))
= [Adj. prop.]
AϕR(sI) + (sR −AϕR(sI))
= [Subtr. well-behaved]
sR

The last equality holds since redϕR(sR) = sI and hence due to the adjunction
property AϕR(sI) = AϕR(redϕR(sR)) ≤ sR.
This means that ι is a legal arrow and we can infer from the isomorphism
property that it is an iso, without loss of generality we can assume that it is
the identity. Hence (R mR

� Y) ∈ L(R nR
� B).

• Since (L nL
� 〈〈ϕ,ϕL〉〉) p⇒ (R nR

� B) we can infer from Corollary 9.30 that
there exists a match mL : L� X where (L mL

� X) ∈ L(L nL
� 〈〈ϕ,ϕL〉〉) and

(L mL
� X) p⇒ (R mR

� Y). This situation can be summarized in the diagram
from the proof of Proposition 9.28 which is depicted below with added
annotations.

L[sL, sL]
��

mL
��

��

nL

��

I[sI , sI]oo
ϕLoo //

ϕR //
��

mI
��

R[sR, sR]
��

mR
��

��

nR

��

X[sX , sX]

ζA
��

Z[sZ , sZ]oo
ϕXoo //

ϕY //

ζC
��

Y [sY , sY]

ζB
��

〈〈ϕ,ϕL〉〉[a′1, a′2] C[c1, c2]oo
ϕAoo //

ϕB // B[b1, b2]

193

A. Proofs

It is left to show that ζC and in particular ζA are legal.

• For ζC we show that, due to the adjunction property, the Beck-Chevally
property and monotonicity:

AζC (sC) = Aζ(redϕY (sY)) = redϕB (AζB (sY)) ≥ redϕB (b1)

and similarly Aζ(sC) = redϕB (AζA(sY)) ≤ redϕB (b2).
Therefore, redϕB(b1) ≤ Aζ(sC) ≤ redϕB(b2) holds and it is only left to
show that redϕB (bi) = ci for i ∈ {1, 2}. In particular, we have to show that
redϕB (AϕB (ci) + (AnR(sR)−AnL◦ϕR(sI)) = ci and this is analogous to the
proof concerning the left-hand square above.

• Now, we show that ζA is legal:

AζA(sX)
= [PO prop. for std. ann.]
AζA(AϕX (sZ) + (AmL(sL)−AmL◦ϕL(sI)))
= [Homom. prop.]
AζA(AϕX (sZ)) + (AζA(AmL(sL))−AζA(AmL◦ϕL(sI)))
= [Funct.]
AϕA(AζC (sZ)) + (AnL(sL)−AnL◦ϕL(sI))
≥ [Mon.]
AϕA(c1) + (AnL(sL)−AnL◦ϕL(sI))
≥ [Definition of c1]
a′1

Similarly AζA(sX) ≤ a′2.

Hence we have found mL : L� X such that X ∈ L(〈〈ϕ,ϕL〉〉[a′1, a′2]) (witnessed by
ζA) andX

p,mL=⇒ Y . Since, due to the materialization ψ′ : 〈〈ϕ,ϕL〉〉[a′1, a′2]→ A[a1, a2]
is a legal arrow, we have that X ∈ L(A[a1, a2]), witnessed by ψ := ψ′ ◦ ζA and it
holds that ψ ◦mL = ψ′ ◦ ζA ◦mL = ψ′ ◦ nL = ϕ.

Corollary 10.19 (Strongest post-condition). Let A[a1, a2] be an annotated
object and let ϕ : L→ A. We obtain (several) abstract rewriting steps A[a1, a2] p,ϕ↪→
B[b1, b2], where we always obtain the same object B. Now let N = {(b1, b2) |
A[a1, a2] p,ϕ↪→ B[b1, b2]}. Then the strongest post-condition is the language of the
multiply annotated object B[N], i.e.

L(B[N]) = {Y | ∃(X ∈ L(A[a1, a2]),witnessed by ψ),
(L mL
� X) : (ϕ = ψ ◦mL ∧X

p,mL=⇒ Y)}

Proof. Straightforward from Propositions 10.17 and 10.18.

194

A.7. Proofs of Chapter 11

A.7. Proofs of Chapter 11
Proposition 11.2 (Constructed materialization is terminal). Let L ϕ→ A

be a fixed graph morphism in GraphΛ. Then the factorization L α
� Ã

ψ→ A from
Definition 11.1 is the terminal object in the category Matϕ.

Proof. Given the factorization L α
� Ã

ψ→ A of L ϕ→ A from Definition 11.1 with
ϕ = ψ ◦ α. The morphism α : L→ Ã is the embedding morphism from L into Ã
and by the construction of Ã there exists a second embedding morphism γ : A→ Ã
with img(α) ∩ img(γ) = ∅ and

γ(x) =
{
x if x ∈ VA
(x, srcA(x), tgtA(x), labA(x)) if x ∈ EA

It is easy to see that γ is well-defined.

Let L β
� G

g→ A be another factorization of
L

ϕ→ A with ϕ = g ◦ β. If the object L α
� Ã

ψ→ A
is the terminal object in the materialization
category, there must exist a unique graph
morphism f : G → Ã such that the diagram to
the right commutes and the square is a pullback.

(PB)

L G

L Ã

A
β g

id

α

ϕ

γ

f
ψ

Define f = (fV , fE) in the following way:

fV : VG → VÃ fV (x) =
{
αV ◦ β−1

V (x) if x ∈ img(βV)
γV ◦ gV (x) otherwise

fE : EG → EÃ fE(x) =
{
αE ◦ β−1

E (x) if x ∈ img(βE)(
gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x)

)
otherwise

Note that since β is an injection, the element β−1(x) is unique whenever x is in
the image of β.

We will next prove that f preserves the structure of G, i.e., that it is a well-defined
graph morphism. We need to prove that the following three properties hold for
every edge x ∈ EG:

fV (srcG(x)) = srcÃ(fE(x)) (A.16)
fV (tgtG(x)) = tgtÃ(fE(x)) (A.17)

labG(x) = labÃ(fE(x)) (A.18)

There are the following two cases:

Case 1: Suppose x ∈ img(β). Then there exists y ∈ L such that x = βE(y). In
this case we obtain

fV (srcG(x)) = αV (β−1
V (srcG(x))) = αV (β−1

V (srcG(βE(y))))
= αV (β−1

V (βV (srcL(y)))) = αV (srcL(y)) = srcÃ(αE(y))
= srcÃ(αE(β−1

E (x))) = srcÃ(fE(x))

195

A. Proofs

labG(x) = labG(βE(y)) = labL(y) = labÃ(αE(y))
= labÃ(αE(β−1

E (βE(y)))) = labÃ(αE(β−1
E (x)))

= labÃ(fE(x))

The case of the target function (tgt) is equivalent to the source function (src).
Case 2: Whenever x /∈ img(β), we get that

fE(x) =
(
gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x)

)
.

Since x /∈ img(β) we obtain the following equations:

srcÃ(fE(x)) = srcÃ
(
(gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x))

)
= fV (srcG(x))

labÃ(fE(x)) = labÃ
(
(gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x))

)
= labG(x)

Again, the case of the target function is equivalent to the case of the source
function.
Therefore f : G→ Ã is a graph morphism.

We now prove that the following three properties hold for f :

ψ ◦ f = g (A.19)
f ◦ β = α (A.20)

∀x ∈ G, x /∈ img(β) =⇒ f(x) /∈ img(α) (A.21)

Properties (A.20) and (A.21) together ensure that every element of img(α) has
a unique preimage under f , which – together with the commutativity of the square
– guarantees that it is a pullback.

Proof of (A.19): Assume x ∈ img(β). Since ψ ◦ α = ϕ = g ◦ β we get:

(ψ ◦ f)(x) = ψ(f(x)) = ψ(α(β−1(x))) = ϕ(β−1(x)) = g(β(β−1(x))) = g(x)

Assume x /∈ img(β). Then x is either a node or an edge of G.
First we assume that x ∈ VG and x /∈ img(βV). Since ψV ◦ γV = idV we get:

(ψV ◦ fV)(x) = ψV (fV (x)) = ψV (γV (gV (x))) = idV (gV (x)) = gV (x)

Now assume x ∈ EG and x /∈ img(βE):

(ψE ◦ fE)(x) = ψE
(
(gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x))

)
= gE(x)

Proof of (A.20): Since β is a mono, we get that for all x ∈ L, there exists a unique
y ∈ img(β) such that β(x) = y and β−1(y) = x. By the construction of f , the
following equation holds:

(f ◦ β)(x) = f(β(x)) = f(y) = (α ◦ β−1)(y) = α(β−1(y)) = α(x)

Proof of (A.21): Let x ∈ G be given and x /∈ img(β). Then x is either a node or
an edge of G. First we assume that x ∈ VG. Then fV (x) = γV ◦ gV (x). By the

196

A.7. Proofs of Chapter 11

construction of Ã it follows that img(α) ∩ img(γ) = ∅ and therefore we get that
fV (x) /∈ img(α).
Now assume x ∈ EG and fE(x) =

(
gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x)

)
. By

the construction of Ã we have that all edges of EÃ are either of the form (e, s, t, l),
with (e, s, t, l) /∈ img(α) or an edge from EL and therefore in img(α). We get that
fE(x) /∈ img(α).

To prove that f is unique, we show that any other morphism f ′ : G → Ã,
satisfying the properties (A.19), (A.20) or (A.21), equals f . We show equality by
checking that f(x) = f ′(x) for all x ∈ G.

Case 1: Suppose x ∈ img(β). Then there exists an element y ∈ L such that
β(y) = x and we obtain:

f ′(x) = f ′(β(y)) (A.20)= α(y) = α(β−1(x)) = f(x)

Case 2: Suppose x /∈ img(β) and x is a node of G (e.g. x /∈ img(βV)). If
f ′V (x) ∈ VL = img(αV), we would get that x ∈ img(βV), due to property (A.21),
which is a contradiction. We can hence conclude that f ′V (x) ∈ VA, which implies
γV (ψV (f ′V (x))) = f ′V (x), and furthermore:

f ′V (x) = γV (ψV (f ′V (x))) (A.19)= γV (gV (x)) = fV (x)

Case 3: Suppose x /∈ img(β) and x is an edge of G (e.g. x /∈ img(βE)). If
f ′E(x) ∈ EL = img(αE), we would get that x ∈ img(βE), due to property (A.21),
which is a contradiction. We can hence conclude that f ′E(x) ∈ EA, which implies
that fE(x) must be of the form (e, s, t, l) ∈ EÃ. We will now show that

(e, s, t, l) = (gE(x), fV (srcG(x)), fV (tgtG(x)), labG(x)),

which implies f ′E(x) = fE(x).

gE(x) (A.19)= ψE(f ′E(x)) = ψE(e, s, t, l) = e

fV (srcG(x)) = srcÃ(fE(x)) = srcÃ((e, s, t, l)) = s

fV (tgtG(x)) = tgtÃ(fE(x)) = tgtÃ((e, s, t, l)) = t

labG(x) = labÃ(fE(x)) = labÃ((e, s, t, l)) = l

Hence the graph morphism f : G→ Ã exists and it is unique for all factorizations
L

β
� G

g→ A of L ϕ→ A with ϕ = g ◦ β. Therefore the constructed object
L

α
� Ã

ψ→ A is the terminal object in the materialization category, i.e. Ã = 〈ϕ〉.

197

B
Termination Analysis Experiments

The Termination Problems Database (short: TPDB) consists of a folder named
TRS Standard, which contains a total of 1498 term rewriting systems. In our
framework we are interested in non-collapsing left-linear term rewriting systems.
Only 621 of these systems are both left-linear and non-collapsing. We discarded
386 of the term rewriting systems that exceeded tractability for the resulting
graph transformation systems. Another 34 were left out since they were obviously
non-terminating. Of the 201 remaining term rewriting systems 95 are right-linear.

Experimental Results (Overview)
We ran Grez on 201 examples (including the examples of this paper) using a
Windows workstation with a 2, 67 Ghz, 4-core CPU and 8 GB RAM. We used the
weighted type graph technique over ordered semirings (see Chapter 5) and tried to
find weighted type graphs which consist of 2 nodes. For all graph transformation
systems, where Grez could find a termination proof, the weighted type graphs
were generated within a few seconds. Some term rewriting systems satisfy SN but
not SNb due to cycles. Therefore, using the type graph technique, it is impossible
to prove termination for these examples. To summarize the results, we present
the following table:

Termination Analysis using Grez
TPDB (Standard) 1498

Left-linear + Non-Collapsing 621
Too Many Rules (> 9) -235

Generated Graphs Too Large -151
Non-Terminating -34
Tested Total 201

No Result Found 84
Terminating Total 117 24

Terminating using
117 115 24 24

Number Function Number Function
Encoding Encoding Encoding Encoding

Version Basic Extended

B. Termination Analysis Experiments

B.1. Termination Proofs of Chapter 6
Version Basic Extend Version Basic Extend
Encoding N F N F Encoding N F N F
TPDB Term Rewriting System TPDB Term Rewriting System
AG01/3.15 3 7 7 7 EEGIJCAR12/emmes-nloop-ex11 3 3 7 7

AG01/3.23 3 3 7 7 EEGIJCAR12/emmes-nloop-ex22 7 7 7 7

AG01/3.24 3 3 7 7 EEGIJCAR12/enger-nloop-expayet 7 7 7 7

AG01/3.26 7 7 7 7 EEGIJCAR12/enger-nloop-isDNat 3 3 7 7

AG01/3.31 7 7 7 7 EEGIJCAR12/enger-nloop-isList-List 3 3 7 7

AG01/3.33 3 3 7 7 EEGIJCAR12/enger-nloop-isList 3 3 7 7

AG01/3.35 7 7 7 7 EEGIJCAR12/enger-nloop-isTrueList 3 3 7 7

AG01/3.37 3 3 7 7 EEGIJCAR12/enger-nloop-swapX 3 3 7 7

AG01/3.38 3 3 7 7 EEGIJCAR12/enger-nloop-swapXY 3 3 7 7

AG01/3.42 7 7 7 7 EEGIJCAR12/enger-nloop-swapXY2 3 3 7 7

AG01/3.47 3 3 7 7 EEGIJCAR12/enger-nloop-swapdecr 3 3 7 7

AG01/3.49 3 3 7 7 EEGIJCAR12/enger-nloop-toOne 3 3 7 7

AG01/3.52 7 7 7 7 EEGIJCAR12/enger-nloop-unbound 3 3 7 7

AG01/3.7 3 3 7 7 EEGIJCAR12/enger-nloop-while-lt 3 3 7 7

AotoYamada05/019 3 3 7 7 GTSSK07/cade01 3 3 7 7

AotoYamada05/025 3 3 7 7 GTSSK07/cade03 3 3 7 7

Applicative05/Ex261Composition 3 3 7 7 GTSSK07/cade05t 3 3 7 7

AProVE04/forwardinst 3 3 7 7 GTSSK07/cade07 3 3 7 7

AProVE04/forwardinst2 3 3 7 7 GTSSK07/cade09 7 7 7 7

AProVE04/IJCAR1 3 3 7 7 GTSSK07/cade10 7 7 7 7

AProVE04/Liveness6.1 7 7 7 7 GTSSK07/cade11 3 3 7 7

AProVE04/Liveness6.2 7 7 7 7 HirokawaMiddeldorp04/n002 7 7 7 7

AProVE04/rta2 3 3 7 7 HirokawaMiddeldorp04/n004 7 7 7 7

AProVE04/rta3 3 3 7 7 HirokawaMiddeldorp04/n005 7 7 7 7

AProVE07/otto03 3 3 7 7 HirokawaMiddeldorp04/n006 7 7 7 7

AProVE07/otto07 3 3 7 7 HirokawaMiddeldorp04/n008 7 7 7 7

AProVE07/thiemann27 3 3 7 7 HirokawaMiddeldorp04/t007 3 3 3 3

AProVE10/andIsNat 3 3 7 7 HirokawaMiddeldorp04/t008 7 7 7 7

AProVE10/challengefab 3 3 7 7 HirokawaMiddeldorp04/t010 3 3 3 3

AProVE10/double 3 3 7 7 HirokawaMiddeldorp04/t011 7 7 7 7

AProVE10/downfrom 3 3 7 7 MixedTRS/5 3 3 7 7

AProVE10/ex1 3 3 7 7 MixedTRS/motivation 3 3 7 7

AProVE10/ex2 3 3 7 7 MixedTRS/test1 7 7 7 7

AProVE10/ex3 3 3 7 7 MixedTRS/while 3 3 7 7

AProVE10/ex5 3 3 7 7 Rubio04/aoto 3 3 7 7

AProVE10/halfdouble 7 7 7 7 Rubio04/bn122 7 7 7 7

AProVE10/isList 3 3 7 7 Rubio04/division 3 3 7 7

AProVE10/isNat 3 3 7 7 Rubio04/lescanne 7 7 7 7

AProVE10/scnp 3 3 7 7 Rubio04/lindau 7 7 7 7

AProVE10/Zan06-03-mod 7 7 7 7 Rubio04/mfp90b 3 3 3 3

Beerendonk07/4 3 3 7 7 Rubio04/mfp95 3 3 3 3

Der95/03 3 3 7 7 Rubio04/nestrec 7 7 7 7

Der95/04 3 3 7 7 Rubio04/p266 3 3 7 7

Der95/06 7 7 7 7 Rubio04/prov 3 3 7 7

Der95/07 7 7 7 7 Rubio04/revlist 3 3 7 7

Der95/08 7 7 7 7 Rubio04/test4 3 3 7 7

Der95/09 7 7 7 7 Rubio04/test829 3 3 7 7

Der95/13 7 7 7 7 Secret05TRS/cime4 3 3 7 7

Der95/18 7 7 7 7 Secret05TRS/matchbox1 3 3 7 7

Der95/27 7 7 7 7 Secret06TRS/4 7 7 7 7

200

B.1. Termination Proofs of Chapter 6

Version Basic Extend Version Basic Extend
Encoding N F N F Encoding N F N F
TPDB Term Rewriting System TPDB Term Rewriting System
SK90/2.08 7 7 7 7 StratRemmixed05/n001 7 7 7 7

SK90/2.15 3 3 7 7 StratRemmixed05/test830 3 3 7 7

SK90/2.17 3 3 7 7 TCSR04/Ex15Luc06GM 7 7 7 7

SK90/2.20 3 3 7 7 TCSR04/Ex15Luc06iGM 7 7 7 7

SK90/2.21 7 7 7 7 TCSR04/Ex15Luc06L 7 7 7 7

SK90/2.24 3 3 7 7 TCSR04/Ex18Luc06GM 7 7 7 7

SK90/2.28 3 3 7 7 TCSR04/Ex18Luc06iGM 7 7 7 7

SK90/2.30 3 3 3 3 TCSR04/Ex18Luc06L 3 3 3 3

SK90/2.37 3 3 3 3 TCSR04/Ex12Luc02cGM 7 7 7 7

SK90/2.40 7 7 7 7 TCSR04/Ex1GL02aL 7 7 7 7

SK90/2.49 3 3 7 7 TCSR04/Ex1GM99GM 7 7 7 7

SK90/2.51 3 3 7 7 TCSR04/Ex1Zan97L 7 7 7 7

SK90/2.56 3 3 3 3 TCSR04/Ex23Luc06GM 7 7 7 7

SK90/4.06 7 7 7 7 TCSR04/Ex23Luc06L 3 3 3 3

SK90/4.16 3 3 7 7 TCSR04/Ex24GM04L 7 7 7 7

SK90/4.17 7 7 7 7 TCSR04/Ex24Luc06GM 7 7 7 7

SK90/4.22 7 7 7 7 TCSR04/Ex25Luc06L 3 3 3 3

SK90/4.33 3 3 7 7 TCSR04/Ex44Luc96bGM 7 7 7 7

SK90/4.35 3 3 3 3 TCSR04/Ex44Luc96biGM 7 7 7 7

SK90/4.36 3 3 7 7 TCSR04/Ex44Luc96bL 3 3 7 7

SK90/4.37 3 3 7 7 TCSR04/Ex4715Bor03L 3 3 3 3

SK90/4.41 3 3 3 3 TCSR04/Ex4777Bor03GM 7 7 7 7

SK90/4.44 3 3 3 3 TCSR04/Ex6GM04C 7 7 7 7

SK90/4.46 3 3 3 3 TCSR04/Ex6GM04GM 3 3 3 3

SK90/4.50 3 3 7 7 TCSR04/Ex6GM04iGM 3 3 7 7

SK90/4.56 3 3 3 3 TCSR04/Ex6GM04L 3 3 3 3

StratRemAG01/4.14 7 7 7 7 TCSR04/Ex6Luc98L 3 3 3 3

StratRemAG01/4.16 3 3 7 7 TCSR04/Ex9BLR02L 3 3 3 3

StratRemAG01/4.2 7 7 7 7 TCSR04/Ex9Luc04GM 7 7 7 7

StratRemAG01/4.20 3 3 7 7 TCSR04/Ex9Luc04L 3 3 7 7

StratRemAG01/4.20a 3 3 7 7 TCSR04/ExConcZan97GM 7 7 7 7

StratRemAG01/4.21 3 3 7 7 TCSR04/ExConcZan97L 3 3 3 3

StratRemAG01/4.22 3 3 7 7 TCSR04/LOFLnosorts-noandL 3 3 3 3

StratRemAG01/4.32 3 3 7 7 Various04/02 7 7 7 7

StratRemAG01/4.37 3 3 7 7 Various04/22 3 3 7 7

StratRemAG01/4.37a 3 3 7 7 Various04/25 3 3 3 3

StratRemAG01/4.7 3 3 7 7 Various04/27 3 3 3 3

StratRemCSR05/Ex14AEGL02 7 7 7 7 Zantema05/z04 7 7 7 7

StratRemCSR05/Ex1GL02a 7 7 7 7 Zantema05/z13 7 7 7 7

StratRemCSR05/Ex1GM99 3 3 7 7 Zantema05/z14 7 7 7 7

StratRemCSR05/Ex1Zan97 7 7 7 7 Zantema05/z15 7 7 7 7

StratRemCSR05/Ex44Luc96b 7 7 7 7 Zantema05/z16 7 7 7 7

StratRemCSR05/Ex6GM04 7 7 7 7 Zantema05/z17 3 7 7 7

StratRemCSR05/Ex6Luc98 7 7 7 7 Zantema05/z18 7 7 7 7

StratRemCSR05/Ex9BLR02 7 7 7 7 Zantema05/z23 7 7 7 7

StratRemCSR05/ExConcZan97 7 7 7 7 Zantema05/z24 7 7 7 7

StratRemmixed05/bn111 7 7 7 7 Zantema05/z27 7 7 7 7

StratRemmixed05/ex1 7 7 7 7 Zantema05/z28 7 7 7 7

StratRemmixed05/ex2 7 7 7 7 Zantema15/delta 3 3 7 7

StratRemmixed05/ex3 7 7 7 7 Zantema15/ex14 3 3 7 7

StratRemmixed05/ex4 7 7 7 7 Legend: 3= Proof found, 7= No solution found

201

C
DrAGoM Documentation

C.1. Tutorial: How to Use DrAGoM
The following tutorial provides an overview of the basic functionalities in DrAGoM.
A detailed user manual, the API documentation, a pre-compiled version of the
tool alongside the source code and additional informations can be found on the
DrAGoM homepage1.

System Requirements, Third-Party Libraries and Installation
DrAGoM has been implemented in Java. For the usage of DrAGoM a Java Runtime
Environment (JRE) of version 1.8 or higher is required. The tool offers a graphical
user interface (GUI) which allows the user to create and manipulate graph
transformation systems and multiply annotated type graphs. Since DrAGoM is
written in Java, it can be used on Linux, MacOS and Windows.
DrAGoM depends on the following two third-party libraries:

Z3-Java A Java library of the Z3 theorem prover from Microsoft Research.

JGoodies A Java library which offers reliable building blocks for Java applications.

DrAGoM is distributed under the terms of the 3-clause BSD open source license.
The third-party library JGoodies is distributed under relaxed terms (2-clause) of
the BSD license and Z3-Java is licensed under the MIT license.

The standard DrAGoM distribution is a pre-compiled .jar file that contains
all required libraries except for the native library of the Z3 release, since these
libraries depend on the user’s operating system. DrAGoM calls the external SMT
solver Z3 to compute annotations for the rewritable materialization (see also
Section 11.2.2). Therefore the user has to download a Z3 release which fits the
used operating system. The operating system’s search path has to include the
folder which contains the libz3java dynamic link library.

To compile DrAGoM from source instead, the user needs to configure the project’s
library dependencies. All required external libraries are provided in the resource
folder of the source code archive on the DrAGoM homepage. A detailed description
of the dependencies can be found in the DrAGoM program documentation, also
available on the homepage.
In most operating systems, double-clicking on the dragom.jar file will open

DrAGoM in GUI-mode (see Figure C.1). Otherwise, the GUI can be directly started
from the command-line via

java -jar dragom.jar
1DrAGoM homepage: https://www.uni-due.de/theoinf/research/tools_dragom.php

https://www.uni-due.de/theoinf/research/tools_dragom.php

C. DrAGoM Documentation

Figure C.1.: DrAGoM GUI

In some Linux operating systems, DrAGoM might not be able to immediately
locate the folder containing the libz3java library. To help the tool find the required
library the user should set the global variable named LD_LIBRARY_PATH to
point to the corresponding folder path, i.e., DrAGoM is launched by typing

LD_LIBRARY_PATH=<PATH_TO_LIBRARY_FOLDER> java -jar dragom.jar

Figure C.2.: DrAGoM Add-Rule dialog

204

C.1. Tutorial: How to Use DrAGoM

The Main Window and Main Menu
The main window of DrAGoM, which is shown in Figure C.1, has a simple and
clean design. The idea behind this puristic presentation is to not overtax the user’s
first impression after launching DrAGoM. In the beginning, the main window only
allows interaction with the main menu, i.e., the system bar displayed at the top
of the screen. DrAGoM’s main menu contains the following menus and options:

System Includes commands to generate or load graph transformation systems
and multiply annotated type graphs.

• The option ”New. . . ” offers commands to open the Add-Rule dia-
log (see Figure C.2) or the Create-Annotated-Type-Graph dialog (see
Figure C.3).

• The options ”Load. . . ” and ”Save. . . ” offer commands to load/save
graph transformation systems in the Sgf format or to load/save mul-
tiply annotated type graphs in the Gxl format. All commands in
the option ”Save. . . ” become available, once a corresponding data
structure has been loaded/created.

• The option ”Exit” closes DrAGoM.

Algorithms Includes commands to compute rewritable materializations, strongest
postconditions or to let DrAGoM perform an invariant check. DrAGoM employs
the SMT solver Z3 to compute annotations for the rewritable materialization.
If the required native libraries were not found during the booting process,
all commands in the Algorithms menu are disabled.

• The option ”Compute. . . ” offers commands to construct a rewritable
materialization and the strongest postcondition. To enable the con-
struction for the rewritable materialization, the user has to create/load
a graph transformation system and an annotated type graph first. A
strongest postcondition can be constructed once the rewritable materi-
alization has been created.

• The option ”Invariant check” is available if and only if the user created
or loaded both, a graph transformation system and an annotated type
graph. This option causes DrAGoM to perform an invariant check.

Help Includes commands to provide further information.
• The option ”Visit website. . . ” redirects the user to the DrAGoM home-

page, where the user can find additional information.
• The option ”About. . . ” opens a dialog with additional information with

respect to the current version and the DrAGoM license.

Graph Transformation System Creation
The user can select System -> New. . . -> Graph transformation rule from the
main menu, to create a new graph transformation system. The Add-Rule dialog
appears, which is displayed in Figure C.2. The dialog contains three graph panels
which can be used to create the left-hand side, the right-hand side and the interface
graph of a double-pushout graph transformation rule.

205

C. DrAGoM Documentation

By double clicking on the interface graph panel, a node is added to the interface
graph and two corresponding nodes are added to the left-hand side graph and
right-hand side graph respectively. The same holds for loops, which are added
via a right click on an existing node, and directed binary edges, which are added
via a drag and drop movement from the source node to the target node while
pressing the right mouse button. This intuitive interaction works similarly for the
left-hand side and right-hand side graph panels. Elements added to either side
only belong to the corresponding graph. All interface elements are drawn black
and white, elements which only belong to the left-hand side are colored blue and
elements which belong only to the right-hand side are colored yellow.

Please note that edge labels are determined during their creation. The user can
enter the edge label that one wants to use for the next edge, by entering the label
into the text field which can be found at the top of the dialog.

To complete the creation process, the user can hit the Apply button located at
the bottom of the dialog. The created rule now is displayed in the top part of the
main window and it generates a new graph transformation system which consists
of the single rule. A right click on the rule panel shows a pop up menu where
the user has the option to either add a new rule, delete the currently displayed
rule or switch between the displayed rules of our graph transformation system.
Furthermore, the option to save the graph transformation system is now enabled
in the main menu.

Figure C.3.: DrAGoM Create-Annotated-Type-Graph dialog

Multiply Annotated Type Graph Creation
Next, we explain how one can create an annotated type graph. For this purpose the
user selects System -> New. . . -> Annotated type graph from the main menu. The
Create-Annotated-Type-Graph dialog appears, which is displayed in Figure C.3.

206

C.1. Tutorial: How to Use DrAGoM

Before the user can create the graph structure, one needs to define a name for
the new annotated type graph and choose a value m which represents the value
∗ (many) of the ordered monoidMn (see also Example 8.3 and Definition 8.6).
Subsequently, the user fills out the corresponding text fields which are located in
the General Properties section on the top left of the dialog. Once the user filled
out both text fields, a click on the Use button confirms the choice. Now the graph
panel on the right side of the dialog gets enabled such that the user can create
the annotated type graph.

The graph creation works similar to the creation of graphs for the graph trans-
formation rule. Please note that multiplicities for graph elements are determined at
the moment they are added to the graph. The values are taken from the respective
combo boxes which are located in the Element Properties section on the left side
of the dialog.

As soon as the user hits the Apply button, the annotated type graph is displayed
in the bottom left corner of the main window. The option to save multiply
annotated type graphs is now enabled in the system bar. The user can double
click on the graph panel to maximize its view or right click on it to open a pop
up menu.
The first option in the pop up menu is to add a multiplicity to the annotated

type graph, i.e. to turn the annotated type graph into a multiply annotated type
graph. If the user chooses this option the Add-Multiplicity dialog appears, which
is shown in Figure C.4.

Figure C.4.: DrAGoM Add-Multiplicity dialog

To edit multiplicities for graph elements, the user can select the elements in the
graph panel of this dialog. Every time that the user selects an element, two entries
in the lists, which are located in the Graph Elements section on the left side of the
dialog, are highlighted. The first list shows the element’s corresponding identifier

207

C. DrAGoM Documentation

while the second list shows the current multiplicity to be added to the element.
The default value for all elements is [0,m] which corresponds to the annotation
bounds [0, ∗].
To change the multiplicity of an element one can select the desired bounds

in the combo boxes in the Multiplicity section located at the bottom left of the
dialog. Afterwards, the user can hit the Add multiplicity button to overwrite the
selected elements annotation bounds with the ones selected in the combo boxes.
Once the user is done, the dialog can be closed by hitting the Apply button.

DrAGoM will check if the new multiplicity was already covered by an existing one
in the set of annotations for this multiply annotated type graph. If it was not
covered yet, the created multiplicity is added to the set, otherwise it is discarded
and we get a notification.
The two remaining options in the pop up menu of the annotated type graph

panel, allows the user to delete existing multiplicities from the set of available
annotations or to switch the currently displayed multiplicity.

Rewritable Materialization Construction
Now, that the user has created both, a graph transformation system and a multiply
annotated type graph, the option to compute rewritable materializations gets
enabled in the menu bar (Algorithms -> Compute. . . -> Materialization). The
graph transformation rule and the multiply annotated type graph displayed in
the main window are being used for the computation. To proceed the user needs
to choose a semi-legal base morphism ϕ from the left-hand side graph of the
rule to the annotated type graph. The Select-Base-Morphism dialog appears (see
Figure C.5) which displays the set of available morphisms. DrAGoM filters the set
of morphisms to only contain semi-legal ones. If there does not exist a semi-legal
morphism, no graph contained in the graph language can be rewritten since none
of them contain a concrete instance of the left-hand side.

The user can select the semi-legal base morphism by choosing a corresponding
entry in the combo box, located at the top of the dialog. Afterwards, the user can
press the Apply button, which initializes the materialization algorithm explained
in Section 11.2.1. The rewritable materialization is displayed in the main window
and the option to compute the strongest postcondition is enabled.
A right click on the materialization graph panel shows a pop up menu with

options to either switch the currently displayed multiplicity for the rewritable
materialization or to simplify its visualization. The simplification hides all elements
annotated [0, 0] and all edges with a hidden source or target node.

Invariant Checking
To perform an invariant check the user chooses (Algorithms -> Invariant check).
DrAGoM checks for all rules in the graph transformation system and for all semi-
legal base morphisms if the language of the constructed postcondition is included
in the initial graph language specified by the multiply annotated type graph. For
the inclusion check, DrAGoM uses the sufficient condition from Proposition 8.20.
Whenever DrAGoM finds legal morphisms between the corresponding multiply
annotated type graphs, we can infer the inclusion. However, if DrAGoM fails to find
a legal morphism the inclusion could still hold. In this case, the rule, the rewritable

208

C.1. Tutorial: How to Use DrAGoM

Figure C.5.: DrAGoM Select-Base-Morphism dialog

materialization and the strongest postcondition graph with the multiplicity for
which the check fails are displayed in the main window. Otherwise, in case of a
successful check, the Invariant-Proof dialog appears (see Figure C.6) in which the
user can see every found legal morphism by choosing a rule and base morphism
via the combo boxes located at the top of the dialog.

Figure C.6.: DrAGoM Invariant-Proof dialog

209

C. DrAGoM Documentation

C.2. The GXL Format for Multiply Annotated Type Graphs
In this section we give an example for the Gxl encoding of a multiply annotated
type graph. The annotated graphs are stored into .gxl-files. A detailed description
of the Gxl format can be found on the website at http://www.gupro.de/GXL/.
Let the following multiply annotated type graph T [M] be given, with the

set of double multiplicities M = {(`1, u1), (`2, u2)} over the annotation functor
B3, i.e. the multiplicity of each graph element is indicated by an element of
M3 = {0, 1, 2, 3, ∗}:

T [`1, u1] =
[1, ∗] [1, 3] [0, ∗]

A [1, 1]

B [1, ∗] C [0, 1]
T [`2, u2] =

[2, 3] [∗, ∗] [0, 2]

A [0, 2]

B [2, 2] C [0, 3]

The multiply annotated type graph T [M] is encoded in the following Gxl format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd">
<gxl>

<graph id="AbstractGraph">

<node id="limit">
<attr name="limit">

<int>4</int>
</attr>

</node>

<node id="n0">
<attr name="min">

<seq>
<int>1</int>
<int>2</int>

</seq>
</attr>
<attr name="max">

<seq>
<int>4</int>
<int>3</int>

</seq>
</attr>

</node>

<node id="n1">
<attr name="min">

<seq>
<int>1</int>
<int>4</int>

</seq>
</attr>
<attr name="max">

210

http://www.gupro.de/GXL/

C.2. The GXL Format for Multiply Annotated Type Graphs

<seq>
<int>3</int>
<int>4</int>

</seq>
</attr>

</node>

<node id="n2">
<attr name="min">

<seq>
<int>0</int>
<int>0</int>

</seq>
</attr>
<attr name="max">

<seq>
<int>4</int>
<int>2</int>

</seq>
</attr>

</node>

<edge id="e0" from="n0" to="n0">
<attr name="label">

<string>A</string>
</attr>
<attr name="min">

<seq>
<int>1</int>
<int>0</int>

</seq>
</attr>
<attr name="max">

<seq>
<int>1</int>
<int>2</int>

</seq>
</attr>

</edge>

<edge id="e1" from="n0" to="n1">
<attr name="label">

<string>B</string>
</attr>
<attr name="min">

<seq>
<int>1</int>
<int>2</int>

211

C. DrAGoM Documentation

</seq>
</attr>
<attr name="max">

<seq>
<int>4</int>
<int>2</int>

</seq>
</attr>

</edge>

<edge id="e2" from="n1" to="n2">
<attr name="label">

<string>C</string>
</attr>
<attr name="min">

<seq>
<int>0</int>
<int>0</int>

</seq>
</attr>
<attr name="max">

<seq>
<int>1</int>
<int>3</int>

</seq>
</attr>

</edge>

</graph>
</gxl>

As evident from the encoding shown above, the Gxl format uses identifiers
to encode the structure of the type graph. For completeness sake, we depict the
identifier reference for each element of the encoded type graph T [M]:

T =
n0 n1 n2

e0

e1 e2

212

C.3. The SGF Format for Graph Transformation Systems

C.3. The SGF Format for Graph Transformation Systems
In this section we give an example for the Sgf encoding of a graph transformation
system. The graph transformation systems are stored into .sgf-files, where one
file in the Sgf format can contain several graph transformation systems at the
same time. A formal description of the Sgf format is given in [Bru15].

Let the following graph transformation system R = {ρ1, ρ2} be given, where ρ1
and ρ2 are depicted below:

ρ1 =
1 2

A

B C

1 2
A

1 2
A

D E F

ρ2 =
1

A

B

1 1
C

The Sgf format represents a double-pushout rule using a corresponding morphism
from the left-hand side graph to the right-hand side graph instead of saving two
rule morphisms and the interface graph. Please note that the Sgf format only
supports injective rule morphisms. In the encoding, nodes are introduced implicitly
via edge definitions, in contrast to distinct nodes which need to be added explicitly
in the respective graph encoding.
The graph transformation system R is encoded in the following Sgf format:

leftGraph0 = graph {
e0:A(v0,v2);
e1:B(v0,v1);
e2:C(v1,v2);

};

rightGraph0 = graph {
e0:A(v0,v2);
e1:D(v0,v1);
e2:E(v1,v3);
e3:F(v3,v2);

};

Morphism0 = morphism from leftGraph0 to rightGraph0 {
v0 => v0;
v2 => v2;
e0 => e0;

};

leftGraph1 = graph {
e0:A(v1,v0);
e1:B(v1,v1);
node v2;

};

213

C. DrAGoM Documentation

rightGraph1 = graph {
e0:C(v1,v0);

};

Morphism1 = morphism from leftGraph1 to rightGraph1 {
v0 => v0;

};

Rule0 = rule {
left = leftGraph0;
right = rightGraph0;
morphism = Morphism0;

};

Rule1 = rule {
left = leftGraph1;
right = rightGraph1;
morphism = Morphism1;

};

result = gts {
rules = [

Rule1,
Rule0

];
};

For the sake of completeness, we depict the identifier reference for each element
of the encoded graph transformation system result = {Rule0, Rule1}:

Rule0 =
v0 v1 v2

e0

e1 e2
v0 v2

e0
v0 v1 v3 v2

e0

e1 e2 e3

Rule1 =
v0 v1 v2

e0
e1

v0 v0 v1
e0

214

References

Publications of Dennis Nolte

[CH+19] A. Corradini, T. Heindel, B. König, D. Nolte, and A. Rensink. “Rewrit-
ing Abstract Structures: Materialization Explained Categorically”.
In: Foundations of Software Science and Computation Structures.
Ed. by M. Bojańczyk and A. Simpson. Cham: Springer International
Publishing, 2019, pp. 169–188. doi: 10.1007/978-3-030-17127-8_10.
arXiv: 1902.04809 [cs.LO].

[CKN19] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Journal of Logical and Algebraic Methods
in Programming Vol. 104 (2019), pp. 176–200. doi: 10.1016/j.jlamp.
2019.01.005.

[KNN19] B. König, M. Nederkorn, and D. Nolte. “CoReS: A Tool for Comput-
ing Core Graphs via SAT/SMT Solvers”. In: Journal of Logical and
Algebraic Methods in Programming (2019). Submitted.

[KNN18] B. König, M. Nederkorn, and D. Nolte. “CoReS: A Tool for Comput-
ing Core Graphs via SAT/SMT Solvers (Tool Presentation Paper)”.
In: Proc. of ICGT ’18 (International Conference on Graph Transfor-
mation). LNCS 10887. Springer, 2018, pp. 37–42. doi: 10.1007/978-
3-319-92991-0_3.

[KN+18] B. König, D. Nolte, J. Padberg, and A. Rensink. “A Tutorial on
Graph Transformation”. In: Graph Transformation, Specifications,
and Nets – In Memory of Hartmut Ehrig. Ed. by R. Heckel and G.
Taentzer. LNCS 10800. Springer, 2018, pp. 1–22. doi: 10.1007/978-
3-319-75396-6_5.

[CKN17] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Proc. of ICGT ’17 (International Conference
on Graph Transformation). LNCS 10373. Springer, 2017, pp. 73–89.
doi: 10.1007/978-3-319-61470-0_5. arXiv: 1704.05263 [cs.FL].

[Nol17] D. Nolte. “Analysis and Abstraction of Graph Transformation
Systems via Type Graphs”. In: STAF 2017 Doctoral Symposium.
Vol. 1955. CEUR Workshop Proceedings. 2017.

[ZNK16] H. Zantema, D. Nolte, and B. König. “Termination of Term Graph
Rewriting”. In: Proc. of WST ’16 (Workshop on Termination). 2016.

[BK+15] H. J. S. Bruggink, B. König, D. Nolte, and H. Zantema. “Proving
Termination of Graph Transformation Systems Using Weighted Type
Graphs over Semirings”. In: Proc. of ICGT ’15 (International Confer-
ence on Graph Transformation). 2015, pp. 52–68. doi: 10.1007/978-
3-319-21145-9_4. arXiv: 1505.01695 [cs.LO].

https://doi.org/10.1007/978-3-030-17127-8_10
https://arxiv.org/abs/1902.04809
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1007/978-3-319-92991-0_3
https://doi.org/10.1007/978-3-319-92991-0_3
https://doi.org/10.1007/978-3-319-75396-6_5
https://doi.org/10.1007/978-3-319-75396-6_5
https://doi.org/10.1007/978-3-319-61470-0_5
https://arxiv.org/abs/1704.05263
https://doi.org/10.1007/978-3-319-21145-9_4
https://doi.org/10.1007/978-3-319-21145-9_4
https://arxiv.org/abs/1505.01695

References

All References
[AH+13] P. A. Abdulla, L. Holík, B. Jonsson, O. Lengál, C.Q. Trinh, and T.

Vojnar. “Verification of Heap Manipulating Programs with Ordered
Data by Extended Forest Automata”. In: Proc. of ATVA ’13. LNCS
8172. 2013, pp. 224–239 (cit. on p. 102).

[AHS09] J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete
Categories: The Joy of Cats. Dover books on mathematics. Dover
Publications, 2009 (cit. on p. 21).

[Bac15] P. Backes. “Cluster Abstraction of Graph Transformation Systems”.
PhD thesis. Saarland University, 2015 (cit. on pp. 105, 127).

[BR15a] P. Backes and J. Reineke. “Analysis of Infinite-State Graph Transfor-
mation Systems by Cluster Abstraction”. In: ed. by Deepak D’Souza,
Akash Lal, and Kim Guldstrand Larsen. Vol. 8931. LNCS. Springer
Berlin Heidelberg, 2015, pp. 135–152 (cit. on pp. 105, 127, 139).

[BR15b] P. Backes and J. Reineke. “ASTRA: A Tool for Abstract Interpreta-
tion of Graph Transformation Systems”. In: ed. by Bernd Fischer and
Jaco Geldenhuys. Vol. 9232. LNCS. Springer International Publishing,
2015, pp. 13–19 (cit. on p. 139).

[BCK01] P. Baldan, A. Corradini, and B. König. “A Static Analysis Technique
for Graph Transformation Systems”. In: vol. 2154. LNCS. Springer-
Verlag, 2001, pp. 381–395 (cit. on p. 138).

[BST10] C. Barrett, A. Stump, and C. Tinelli. “The SMT-LIB Standard –
Version 2.0”. In: Proc. of the 8th International Workshop on Satisfia-
bility Modulo Theories (SMT ’10). Edinburgh, Scotland. July 2010
(cit. on pp. 54, 136).

[Bau06] J. Bauer. “Analysis of Communication Topologies by Partner Ab-
straction”. PhD thesis. Saarland University, 2006 (cit. on pp. 127,
139).

[BB+08] J. Bauer, I. Boneva, M. E. Kurbán, and A. Rensink. “A Modal-
Logic Based Graph Abstraction”. In: Proc. of ICGT ’08. LNCS 5214.
Springer, 2008, pp. 321–335 (cit. on p. 92).

[BW07] J. Bauer and R. Wilhelm. “Static Analysis of Dynamic Communica-
tion Systems by Partner Abstraction”. In: Proc. of SAS ’07. LNCS
4634. Springer, 2007, pp. 249–264 (cit. on pp. 105, 127).

[Blu14] C. Blume. “Graph Automata and Their Application to the Verifica-
tion of Dynamic Systems”. PhD thesis. University of Duisburg-Essen,
2014 (cit. on pp. 5, 98, 102, 138, 142, 146).

[BB+12] C. Blume, H. J. S. Bruggink, D. Engelke, and B. König. “Efficient
Symbolic Implementation of Graph Automata with Applications to
Invariant Checking”. In: Proc. of ICGT ’12. LNCS 7562. Springer,
2012, pp. 264–278 (cit. on pp. 98, 102).

[BB+13] C. Blume, H. J. S. Bruggink, M. Friedrich, and B. König. “Treewidth,
Pathwidth and Cospan Decompositions with Applications to Graph-
Accepting Tree Automata”. In: Journal of Visual Languages & Com-
puting 24.3 (2013), pp. 192–206 (cit. on p. 95).

216

References

[BL+07] I. Bogudlo, T. Lev-Ami, T. Reps, and M. Sagiv. “Revamping TVLA:
Making Parametric Shape Analysis Competitive”. In: Computer
Aided Verification. Ed. by Werner Damm and Holger Hermanns.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 221–225
(cit. on p. 139).

[BH+05] P. Bottoni, K. Hoffman, F. Parisi Presicce, and G. Taentzer. “High-
Level Replacement Units and their Termination Properties”. In:
Journal of Visual Languages and Computing 16.6 (2005), pp. 485–507
(cit. on p. 71).

[BJ+00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. “Regular Model
Checking”. In: Computer Aided Verification. Springer Berlin Heidel-
berg, 2000, pp. 403–418 (cit. on p. 1).

[Bru15] H. J. S. Bruggink. Grez User Manual. www.ti.inf.uni-due.de/research/
tools/grez. 2015 (cit. on pp. 54, 134, 213).

[BK08] H. J. S. Bruggink and B. König. “On the Recognizability of Arrow
and Graph Languages”. In: Proc. of ICGT ’08. LNCS 5214. Springer,
2008, pp. 336–350 (cit. on pp. 95, 96).

[BK+15] H. J. S. Bruggink, B. König, D. Nolte, and H. Zantema. “Proving
Termination of Graph Transformation Systems Using Weighted Type
Graphs over Semirings”. In: Proc. of ICGT ’15 (International Confer-
ence on Graph Transformation). 2015, pp. 52–68. doi: 10.1007/978-
3-319-21145-9_4. arXiv: 1505.01695 [cs.LO] (cit. on p. ix).

[BKZ14] H. J. S. Bruggink, B. König, and H. Zantema. “Termination Analysis
of Graph Transformation Systems”. In: Proc. of TCS 2014. Vol. 8705.
LNCS. Springer, 2014 (cit. on pp. ix, 39, 47, 49, 50, 54, 61, 71).

[CD+11] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. “Composi-
tional Shape Analysis by Means of Bi-Abduction”. In: Journal of the
ACM 58.6 (2011), 26:1–26:66 (cit. on p. 105).

[CM77] A. K. Chandra and P. M. Merlin. “Optimal Implementation of Con-
junctive Queries in Relational Data Bases”. In: Proceedings of the
Ninth Annual ACM Symposium on Theory of Computing. STOC ’77.
Boulder, Colorado, USA: ACM, 1977, pp. 77–90 (cit. on p. 77).

[CR08] B. E. Chang and X. Rival. “Relational inductive shape analysis”. In:
Proc. of POPL ’08. ACM, 2008, pp. 247–260 (cit. on p. 105).

[CG+03] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
“Counterexample-guided abstraction refinement for symbolic model
checking”. In: Journal of the ACM 50.5 (2003), pp. 752–794 (cit. on
pp. 1, 75, 138).

[CL03] J. R. B. Cockett and S. Lack. “Restriction categories II: partial map
classification”. In: TCS 294.1–2 (2003), pp. 61–102 (cit. on p. 108).

[CD11] A. Corradini and F. Drewes. “Term graph rewriting and parallel term
rewriting”. In: Proceedings of the 6th International Workshop on
Computing with Terms and Graphs (Termgraph). Vol. 48. Electronic
Proceedings in Theoretical Computer Science. 2011, pp. 3–18 (cit. on
pp. 40, 58, 59, 61, 64).

217

www.ti.inf.uni-due.de/research/tools/grez
www.ti.inf.uni-due.de/research/tools/grez
https://doi.org/10.1007/978-3-319-21145-9_4
https://doi.org/10.1007/978-3-319-21145-9_4
https://arxiv.org/abs/1505.01695

References

[CH+06] A. Corradini, T. Heindel, F. Hermann, and B. König. “Sesqui-pushout
rewriting”. In: Proc. of ICGT ’06 (International Conference on Graph
Transformation). LNCS 4178. Springer, 2006, pp. 30–45 (cit. on
pp. 105, 110, 179).

[CH+19] A. Corradini, T. Heindel, B. König, D. Nolte, and A. Rensink. “Rewrit-
ing Abstract Structures: Materialization Explained Categorically”.
In: Foundations of Software Science and Computation Structures.
Ed. by M. Bojańczyk and A. Simpson. Cham: Springer International
Publishing, 2019, pp. 169–188. doi: 10.1007/978-3-030-17127-8_10.
arXiv: 1902.04809 [cs.LO] (cit. on p. x).

[CKN17] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Proc. of ICGT ’17 (International Conference
on Graph Transformation). LNCS 10373. Springer, 2017, pp. 73–89.
doi: 10.1007/978-3-319-61470-0_5. arXiv: 1704.05263 [cs.FL]
(cit. on p. x).

[CKN19] A. Corradini, B. König, and D. Nolte. “Specifying Graph Languages
with Type Graphs”. In: Journal of Logical and Algebraic Methods
in Programming Vol. 104 (2019), pp. 176–200. doi: 10.1016/j.jlamp.
2019.01.005 (cit. on p. x).

[CMR96] A. Corradini, U. Montanari, and F. Rossi. “Graph Processes”. In:
Fundamenta Informaticae 26.3/4 (1996), pp. 241–265 (cit. on p. 33).

[CM+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Löwe. “Algebraic Approaches to Graph Transformation—Part I:
Basic Concepts and Double Pushout Approach”. In: Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 1:
Foundations. Ed. by G. Rozenberg. World Scientific, 1997. Chap. 3
(cit. on pp. 2, 21, 25, 31).

[CR93] A. Corradini and F. Rossi. “Hyperedge replacement jungle rewriting
for term-rewriting systems and logic programming”. In: Theoretical
Computer Science 109 (1993), pp. 7–48 (cit. on p. 58).

[Cou90] B. Courcelle. “The Monadic Second-Order Logic of Graphs I. Recog-
nizable Sets of Finite Graphs”. In: Information and Computation 85
(1990), pp. 12–75 (cit. on p. 101).

[CE12] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic, A Language-Theoretic Approach. Cambridge University
Press, June 2012 (cit. on pp. 75, 95, 101).

[Cou96] P. Cousot. “Abstract Interpretation”. In: ACM Computing Surveys
28.2 (1996) (cit. on p. 105).

[DF+12] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Kriv-
ine, C. D. Thompson-Walsh, and G. Winskel. “Graphs, Rewriting
and Pathway Reconstruction for Rule-Based Models”. In: Proc. of
FSTTCS ’12. Vol. 18. LIPIcs. Schloss Dagstuhl – Leibniz Center for
Informatics, 2012 (cit. on p. 25).

218

https://doi.org/10.1007/978-3-030-17127-8_10
https://arxiv.org/abs/1902.04809
https://doi.org/10.1007/978-3-319-61470-0_5
https://arxiv.org/abs/1704.05263
https://doi.org/10.1016/j.jlamp.2019.01.005
https://doi.org/10.1016/j.jlamp.2019.01.005

References

[DJ90] N. Dershowitz and J.-P. Jouannaud. “Rewrite Systems”. In: Formal
Models and Semantics, Handbook of Theoretical Computer Science.
Ed. by Jan van Leeuwen. Vol. B. Elsevier, 1990. Chap. 6, pp. 243–320
(cit. on pp. 23, 55).

[DOY06] D. Distefano, P. W. O’Hearn, and H. Yang. “A Local Shape Analysis
based on Separation Logic”. In: Proc. of TACAS ’06. LNCS 3920.
Springer, 2006, pp. 287–302 (cit. on p. 102).

[DG17] J. Dyck and H. Giese. “K-Inductive Invariant Checking for Graph
Transformation Systems”. In: Graph Transformation. Ed. by Juan
de Lara and Detlef Plump. Vol. 10373. LNCS. Cham: Springer, 2017,
pp. 142–158 (cit. on p. 144).

[DT87] R. Dyckhoff and W. Tholen. “Exponentiable morphisms, partial
products and pullback complements”. In: Journal of Pure and Applied
Algebra 49.1-2 (1987), pp. 103–116 (cit. on pp. 5, 105, 110, 177).

[Ehr79] H. Ehrig. “Introduction to the Algebraic Theory of Graph Grammars
(A Survey)”. In: Graph-Grammars and Their Application to Computer
Science and Biology. Vol. 73. LNCS. Springer, 1979, pp. 1–69 (cit. on
pp. 2, 28, 31).

[EE+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. “Termination Criteria for Model Transformation”. In: Proc.
of FASE 2005. Vol. 3442. LNCS. Springer, 2005 (cit. on p. 71).

[EE+06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Al-
gebraic Graph Transformation. Monographs in Theoretical Computer
Science. Springer, 2006 (cit. on pp. 30, 31, 163).

[EE+99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds. Handbook
of Graph Grammars and Computing by Graph Transformation, Vol.2:
Applications, Languages and Tools. World Scientific, 1999 (cit. on
pp. 23, 25, 31).

[EE+15] H. Ehrig, C. Ermel, U. Golas, and F. Hermann. Graph and Model
Transformation – General Framework and Applications. Monographs
in Theoretical Computer Science. Springer, 2015 (cit. on p. 23).

[EGH+13] H. Ehrig, U. Golas, F. Hermann, et al. “Categorical Frameworks
for Graph Transformation and HLR Systems Based on the DPO
Approach”. In: Bulletin of EATCS 3.102 (2013), pp. 111–121 (cit. on
p. 2).

[EH+04] H. Ehrig, A. Habel, J. Padberg, and U. Prange. “Adhesive High-
Level Replacement Categories and Systems”. In: Proc. of ICGT ’04
(International Conference on Graph Transformation). LNCS 3256.
2004, pp. 144–160 (cit. on p. 2).

[EK+99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, eds.
Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Vol.3: Concurrency, Parallellism, and Distribution. World
Scientific, 1999 (cit. on p. 31).

219

References

[EPS73] H. Ehrig, M. Pfender, and H. Schneider. “Graph grammars: An
algebraic approach”. In: Proc. 14th IEEE Symp. on Switching and
Automata Theory. 1973, pp. 167–180 (cit. on pp. 2, 25).

[EWZ08] J. Endrullis, J. Waldmann, and H. Zantema. “Matrix Interpreta-
tions for Proving Termination of Term Rewriting”. In: Journal of
Automated Reasoning 40.2–3 (2008), pp. 195–220 (cit. on pp. 4, 39,
41).

[EZ15] J. Endrullis and H. Zantema. “Proving non-termination by finite
automata”. In: RTA ’15. Vol. 36. LIPIcs. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 160–176 (cit. on pp. 1, 3, 75).

[Fre72] P. Freyd. “Aspects of Topoi”. In: Bulletin of the Australian Mathe-
matical Society 7.1 (1972), pp. 1–76 (cit. on p. 113).

[FO97] L. Fribourg and H. Olsén. “Reachability sets of parameterized rings as
regular languages”. In: Proceedings of Infinity ’97. Vol. 9. Electronic
Notes in Theoretical Computer Science. Elsevier, 1997 (cit. on p. 1).

[Ges90] A. Geser. “Relative Termination”. PhD thesis. Universität Passau,
1990 (cit. on p. 48).

[GHW04] A. Geser, D. Hofbauer, and J. Waldmann. “Match-bounded string
rewriting”. In: Applicable Algebra in Engineering, Communication
and Computing 15.3–4 (2004), pp. 149–171 (cit. on p. 1).

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. LNCS
643. Springer, 1992 (cit. on p. 102).

[HKP88] A. Habel, H.-J. Kreowski, and D. Plump. “Jungle Evaluation”. In:
Proc. Recent Trends in Data Type Specification. Vol. 332. LNCS.
Springer, 1988, pp. 92–112 (cit. on p. 58).

[HP05] A. Habel and K.-H. Pennemann. “Nested Constraints and Applica-
tion Conditions for High-Level Structures”. In: Formal Methods in
Software and Systems Modeling. Essays Dedicated to Hartmut Ehrig,
on the Occasion of His 60th Birthday. LNCS 3393. Springer, 2005,
pp. 294–308 (cit. on pp. 75, 102, 127).

[HW95] R. Heckel and A. Wagner. “Ensuring consistency of conditional
graph rewriting – a constructive approach”. In: Proc. of the Joint
COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and
Computation. Vol. 2. ENTCS. 1995 (cit. on p. 79).

[Hei09] T. Heindel. “A Category Theoretical Approach to the Concurrent
Semantics of Rewriting – Adhesive Categories and Related Concepts”.
PhD thesis. Universität Duisburg-Essen, Sept. 2009 (cit. on p. 164).

[HJ+15] J. Heinen, C. Jansen, J.-P. Katoen, and T. Noll. “Verifying pointer
programs using graph grammars”. In: Science of Computer Program-
ming 97 (2015), pp. 157–162 (cit. on p. 139).

[HJ+04] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. “Ab-
stractions from Proofs”. In: Proc. of POPL ’04. ACM, 2004, pp. 232–
244 (cit. on p. 3).

220

References

[HW06] D. Hofbauer and J. Waldmann. “Termination of String Rewriting
with Matrix Interpretations”. In: Proc. of RTA ’06. LNCS 4098. 2006,
pp. 328–342 (cit. on pp. 39, 41–43).

[HS+06] R. C. Holt, A. Schürr, S. E. Sim, and A. Winter. “GXL: A graph-
based standard exchange format for reengineering”. In: Science of
Computer Programming 60.2 (2006), pp. 149–170 (cit. on p. 132).

[Jac99] B. Jacobs. Categorical Logic and Type Theory. Vol. 141. Studies in
Logic and the Foundation of Mathematics. Elsevier, 1999 (cit. on
pp. 118, 119).

[Joh02] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Com-
pendium. Vol. 1. Clarendon Press, 2002 (cit. on p. 108).

[KS+05] R. Kennaway, P. Severi, R. Sleep, and F.-J. de Vries. “Infinitary
Rewriting: From Syntax to Semantics”. In: Processes, Terms and
Cycles: Steps on the Road to Infinity:Essays Dedicated to Jan Willem
Klop on the Occasion of His 60th Birthday. Vol. 3838. LNCS. Springer,
2005 (cit. on p. 72).

[KV03] R. Kennaway and F.-J. de Vries. “Infinitary rewriting”. In: Term
Rewriting Systems, by Terese. Cambridge University Press, 2003,
pp. 668–711 (cit. on p. 72).

[KV05] J. W. Klop and R. C. de Vrijer. “Infinitary Normalization”. In: We
Will Show Them! Essays in Honour of Dov Gabbay. Vol. 2. College
Publications, 2005, pp. 169–192 (cit. on p. 72).

[Kön99] B. König. “Description and Verification of Mobile Processes with
Graph Rewriting Techniques”. PhD thesis. Technische Universität
München, 1999 (cit. on p. 86).

[Kön00] B. König. “A general framework for types in graph rewriting”. In:
Proc. of FST TCS ’00. LNCS 1974. Springer-Verlag, 2000, pp. 373–
384 (cit. on p. 117).

[KK06] B. König and V. Kozioura. “Counterexample-guided Abstraction
Refinement for the Analysis of Graph Transformation Systems”. In:
vol. 3920. LNCS. Springer, 2006, pp. 197–211 (cit. on p. 138).

[KNN18] B. König, M. Nederkorn, and D. Nolte. “CoReS: A Tool for Comput-
ing Core Graphs via SAT/SMT Solvers (Tool Presentation Paper)”.
In: Proc. of ICGT ’18 (International Conference on Graph Transfor-
mation). LNCS 10887. Springer, 2018, pp. 37–42. doi: 10.1007/978-
3-319-92991-0_3 (cit. on pp. 78, 154).

[KNN19] B. König, M. Nederkorn, and D. Nolte. “CoReS: A Tool for Comput-
ing Core Graphs via SAT/SMT Solvers”. In: Journal of Logical and
Algebraic Methods in Programming (2019). Submitted.

[KN+18] B. König, D. Nolte, J. Padberg, and A. Rensink. “A Tutorial on
Graph Transformation”. In: Graph Transformation, Specifications,
and Nets – In Memory of Hartmut Ehrig. Ed. by R. Heckel and G.
Taentzer. LNCS 10800. Springer, 2018, pp. 1–22. doi: 10.1007/978-
3-319-75396-6_5 (cit. on p. ix).

221

https://doi.org/10.1007/978-3-319-92991-0_3
https://doi.org/10.1007/978-3-319-92991-0_3
https://doi.org/10.1007/978-3-319-75396-6_5
https://doi.org/10.1007/978-3-319-75396-6_5

References

[KW08] A. Koprowski and J. Waldmann. “Arctic Termination ... Below Zero”.
In: Proceedings of the 19th Conference on Rewriting Techniques and
Applications (RTA). Ed. by A. Voronkov. Vol. 5117. LNCS. Springer,
2008, pp. 202–216 (cit. on p. 39).

[KRW02] B. Kullbach, V. Riediger, and A. Winter. “An Overview of the
GXL Graph Exchange Language”. In: Software Visualization. Ed.
by Stephan Diehl. Vol. 2269. Lecture Notes in Computer Science.
Springer, 2002, pp. 324–336 (cit. on p. 132).

[LS05] S. Lack and P. Sobociński. “Adhesive and Quasiadhesive Categories”.
In: RAIRO – Theoretical Informatics and Applications 39.3 (2005)
(cit. on pp. 2, 21, 30, 164, 181).

[LS06] S. Lack and P. Sobociński. “Toposes are adhesive”. In: International
conference on graph transformation, ICGT ’06. Vol. 4178. Springer,
2006, pp. 184–198 (cit. on p. 21).

[LO14] L. Lambers and F. Orejas. “Tableau-Based Reasoning for Graph
Properties”. In: Proc. of ICGT ’14. LNCS 8571. Springer, 2014,
pp. 17–32 (cit. on p. 127).

[Law70] F.W. Lawvere. “Quantifiers and sheaves”. In: Actes du Congrès
International des Mathématiciene. 1970, pp. 329–334 (cit. on p. 108).

[LRC15] H. Li, X. Rival, and B. E. Chang. “Shape Analysis for Unstructured
Sharing”. In: Proc. of SAS ’15. LNCS 9291. Springer, 2015, pp. 90–
108 (cit. on p. 105).

[Löw93] M. Löwe. “Algebraic approach to single-pushout graph transforma-
tion”. In: Theoretical Computer Science 109 (1993), pp. 181–224
(cit. on pp. 30, 31).

[Löw10] M. Löwe. “Graph Rewriting in Span-Categories”. In: Proc. of ICGT
’10. LNCS 6372. Springer, 2010, pp. 218–233 (cit. on pp. 105, 113,
178).

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics, Vol. 5. New York: Springer-Verlag, 1971,
pp. ix+262 (cit. on p. 21).

[MM94] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A
First Introduction to Topos Theory. Universitext. Springer New York,
1994 (cit. on pp. 109, 110).

[Mar94] M. Marchiori. “Logic programs as term rewriting systems”. In: Al-
gebraic and Logic Programming. Ed. by Giorgio Levi and Mario
Rodríguez-Artalejo. Berlin, Heidelberg: Springer Berlin Heidelberg,
1994, pp. 223–241 (cit. on p. 55).

[NT00] J. Nešetřil and C. Tardif. “Duality Theorems for Finite Structures
(Characterising Gaps and Good Characterisations)”. In: Journal of
Combinatorial Theory, Series B 80 (2000), pp. 80–97 (cit. on pp. 77,
78, 81, 164).

[Nol17] D. Nolte. “Analysis and Abstraction of Graph Transformation
Systems via Type Graphs”. In: STAF 2017 Doctoral Symposium.
Vol. 1955. CEUR Workshop Proceedings. 2017.

222

References

[OHe07] P. W. O’Hearn. “Resources, Concurrency and Local Reasoning”.
In: Theoretical Computer Science 375.1–3 (May 2007). Reynolds
Festschrift, pp. 271–307 (cit. on p. 102).

[OHe12] P. W. O’Hearn. “A Primer on Separation Logic (and Automatic
Program Verification and Analysis)”. In: Software Safety and Security:
Tools for Analysis and Verification. Vol. 33. NATO Science for Peace
and Security Series. 2012, pp. 286–318 (cit. on p. 105).

[OEP08] F. Orejas, H. Ehrig, and U. Prange. “A Logic of Graph Constraints”.
In: Proc. of FASE ’08. LNCS 4961. Springer, 2008, pp. 179–198
(cit. on p. 81).

[Pen09] K.-H. Pennemann. “Development of Correct Graph Transformation
Systems”. PhD thesis. Universität Oldenburg, May 2009 (cit. on
p. 102).

[Pie88] B. C. Pierce. A Taste of Category Theory for Computer Scientists.
CMU-CS. Carnegie Mellon University, Computer Science Department,
1988 (cit. on p. 21).

[PE93] M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Program-
ming and Parallel Graph Rewriting. Addison-Wesley, 1993 (cit. on
p. 58).

[Plu95] D. Plump. “On termination of graph rewriting”. In: Graph-Theoretic
Concepts in Computer Science. LNCS 1017. Springer, 1995, pp. 88–
100 (cit. on p. 72).

[Plu98] D. Plump. “Termination of graph rewriting is undecidable”. In: Fun-
damenta Informaticae 33.2 (1998), pp. 201–209 (cit. on pp. 4, 42).

[Plu99] D. Plump. “Term Graph Rewriting”. In: Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools. Ed. by G. Rozenberg. World Scientific, 1999
(cit. on p. 58).

[Plu18] D. Plump. “Modular Termination of Graph Transformation”. In:
Graph Transformation, Specifications, and Nets - In Memory of
Hartmut Ehrig. Ed. by Reiko Heckel and Gabriele Taentzer. Vol. 10800.
Lecture Notes in Computer Science. Springer, 2018, pp. 231–244 (cit.
on p. 72).

[Ren03] A. Rensink. “The GROOVE Simulator: A Tool for State Space
Generation”. In: Applications of Graph Transformations with Indus-
trial Relevance. Ed. by John L. Pfaltz, Manfred Nagl, and Boris
Böhlen. Vol. 3062. Lecture Notes in Computer Science. Springer,
2003, pp. 479–485 (cit. on p. 138).

[Ren04a] A. Rensink. “Canonical Graph Shapes”. In: Proc. of ESOP ’04. LNCS
2986. Springer, 2004, pp. 401–415 (cit. on pp. 33, 75, 85, 92, 105, 127,
139).

[Ren04b] A. Rensink. “Representing First-Order Logic using Graphs”. In: Proc.
of ICGT ’04. LNCS 3256. Springer, 2004, pp. 319–335 (cit. on pp. 75,
102).

223

References

[RZ10] A. Rensink and E. Zambon. “Neighbourhood Abstraction in
GROOVE”. In: Proc. of GraBaTs ’10 (Workshop on Graph-Based
Tools). Vol. 32. Electronic Communications of the EASST. 2010 (cit.
on pp. 105, 127).

[RS86] N. Robertson and P. D Seymour. “Graph minors. II. Algorithmic
aspects of tree-width”. In: Journal of Algorithms 7.3 (1986), pp. 309–
322 (cit. on p. 94).

[RS83] N. Robertson and P. D. Seymour. “Graph minors. I. Excluding a
forest”. In: Journal of Combinatorial Theory, Series B 35.1 (1983),
pp. 39–61 (cit. on p. 94).

[Roz97] G. Rozenberg, ed. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.1: Foundations. World Scientific, 1997
(cit. on pp. 23, 31, 33, 105).

[RR+09] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. “A Diagrammatic
Formalisation of MOF-Based Modelling Languages”. In: Proc. of
TOOLS EUROPE ’09. LNBIP 33. Springer, 2009, pp. 37–56 (cit. on
p. 102).

[SZ15] D. Sabel and H. Zantema. “Transforming Cycle Rewriting into String
Rewriting”. In: 26th International Conference on Rewriting Tech-
niques and Applications (RTA’15). Ed. by Maribel Fernandez. Vol. 36.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015,
pp. 285–300 (cit. on pp. 39, 41, 43, 50, 61, 72).

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via
3-Valued Logic”. In: TOPLAS (ACM Transactions on Programming
Languages and Systems) 24.3 (2002), pp. 217–298 (cit. on pp. 5, 33,
101, 102, 105, 127, 139).

[SWW10] D. Steenken, H. Wehrheim, and D. Wonisch. “Towards A Shape Anal-
ysis for Graph Transformation Systems”. In: CoRR abs/1010.4423
(2010) (cit. on p. 139).

[SWW11] D. Steenken, H. Wehrheim, and D. Wonisch. “Sound and Complete
Abstract Graph Transformation”. In: Proc. of SBMF ’11. LNCS 7021.
Springer, 2011, pp. 92–107 (cit. on pp. 2, 33, 75, 105, 127, 139).

[SW11] D. Steenken and D. Wonisch. “Using shape analysis to verify graph
transformations in model driven design”. In: Aug. 2011, pp. 457–462
(cit. on p. 139).

[Ter03] Terese. Term Rewriting Systems. Vol. 55. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003 (cit. on
pp. 39, 55).

[Toy87] Y. Toyama. “Counterexamples to Termination for the Direct Sum
of Term Rewriting Systems”. In: Information Processing Letters 25
(1987), pp. 141–143 (cit. on p. 63).

[VV+06] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer.
“Termination Analysis of Model Transformations by Petri Nets”. In:
Proc. of ICGT 2006. Vol. 4178. LNCS. Springer, 2006 (cit. on p. 71).

224

References

[Win02] A. Winter. “Exchanging Graphs with GXL”. In: Graph Drawing. Ed.
by Petra Mutzel, Michael Jünger, and Sebastian Leipert. Vol. 2265.
Lecture Notes in Computer Science. Springer, 2002, pp. 485–500
(cit. on p. 132).

[Zan95] H. Zantema. “Termination of Term Rewriting by Semantic Labelling”.
In: Fundamenta Informaticae 24.1/2 (1995), pp. 89–105 (cit. on p. 39).

[Zan03] H. Zantema. “Termination”. In: Term Rewriting Systems. Ed. by
Marc Bezem, Jan Willem Klop, and Roel de Vrijer. Cambridge
University Press, 2003. Chap. 6 (cit. on p. 48).

[Zan08] H. Zantema. “Normalization of Infinite Terms”. In: Proceedings of the
19th Conference on Rewriting Techniques and Applications (RTA).
Ed. by A. Voronkov. Vol. 5117. LNCS. Springer, 2008, pp. 441–455
(cit. on p. 72).

[ZBK14] H. Zantema, H. J. S. Bruggink, and B. König. “Termination of cycle
rewriting”. In: Proceedings of Joint International Conference, RTA-
TLCA 2014. Ed. by G. Dowek. Vol. 8560. LNCS. Springer, 2014,
pp. 476–490 (cit. on pp. 39, 61, 63, 72).

[ZNK16] H. Zantema, D. Nolte, and B. König. “Termination of Term Graph
Rewriting”. In: Proc. of WST ’16 (Workshop on Termination). 2016
(cit. on p. ix).

225

Nomenclature

Category Theory Symbols

C An arbitrary category, page 16

C ↓ A Slice category of a category C over an object A, page 109

Set Category of sets and functions, page 16

Rel Category of sets and relations, page 16

Mon Category of ordered monoids and monoid morphisms, page 85

Mon− Category of ordered monoids with subtraction, page 117

Matϕ Materialization category over a mono ϕ, page 112

MatϕLϕ Materialization subcategory of rewritable objects, page 114

GraphΛ Category of Λ-labeled graphs and graph morphisms, page 30

|GraphΛ| Set of objects from GraphΛ, page 30

Cospanm(GraphΛ) Category of discrete graphs and cospans, page 94

O A class O of objects, page 16

M A classM of arrows (or morphisms), page 16

id A class id of identity arrows, page 16

dom(f) Domain of an arrow f , page 16

cod(f) Codomoain of a arrow f , page 16

f ◦ g Arrow composition, page 16

A� B A monomorphism from A to B, page 17

A� B An epimorphism from A to B, page 17

A
∼−→ B An isomorphism between A and B, page 17

A ⇀ B A partial map from A to B, page 108

A .→ B A family of arrows from A to B, page 108

A 99K B Denoting existence of an arrow from A to B, page 111

A×B Product object of two objects A and B, page 17

A⊕B Coproduct object of two objects A and B, page 18

1 Terminal object in a category, page 18

0 Initial object in a category, page 18

Nomenclature

!A Unique morphism from an object A to 1, page 18

?A Unique morphism from 0 to an object A, page 18

Ω Truth value object in a category, page 107

true A subobject classifier, page 107

trueA A subobject classifier in a slice category over A, page 109

F : C→ D A functor F from a category C to a category D, page 18

IdC An identity functor from C to C, page 18

C An automaton functor C, page 96

CT [M] A counting cospan automaton functor CT [M], page 97

η A natural transformation between functors, page 108

ηA A component of a natural transformation η on A, page 108

B �f−A −g� C A span, i.e. pair of arrows f : A→ B, g : A→ C, page 19

B −g�D �f− C A cospan, i.e. pair of arrows f : C → D, g : B → D, page 20

p : L← I → R A production (or rule) p in a category, page 21

X
p,m=⇒ Y Rewriting step from X to Y via rule p at match m, page 21

X
p,m=⇒ Denoting that X can be rewritten via p at m, page 115

; Abstract rewriting relation, page 122

↪→ Modified abstract rewriting relation, page 123

Graph Symbols

Λ Set of edge labels, page 24

VG Finite set of nodes of a graph G, page 24

EG Finite set of edges of a graph G, page 24

srcG Source function mapping an edge to its source node, page 24

tgtG Target function mapping an edge to its target node, page 24

labG Labeling function for the edges of G, page 24

∅ The empty graph, page 24

ϕ Graph morphism with components ϕV and ϕE , page 24

ϕ ◦ ψ Graph morphism composition [(ϕ◦ψ)(x) = ϕ(ψ(x))], page 24

G ∼= H Denoting that the graphs G,H are isomorphic, page 24

G � H Denoting that the graphs G,H are not isomorphic, page 24

228

Nomenclature

G+I H Gluing of G and H over a common interface I, page 26

→ Homomorphism preorder, page 30

G→ H Denoting existence of a morphism from G to H, page 30

G9 H Denoting non-existence of a morphism from G to H, page 30

G ∼ H Homomorphically equivalent graphs G and H, page 30

core(G) A core graph of G, page 77

(R, T) A duality pair, page 81

TG Tree decomposition of a graph G, page 94

PG Path decomposition of a graph G, page 94

w(TG) Width of a tree decomposition TG, page 94

tw(G) Treewidth of a graph G, page 94

pw(G) Pathwidth of a graph G, page 94

c : J # K Short cospan representation of c : J → G← K, page 95

c1; c2 Composition of cospans via pushouts, page 95

Graph Transformation Symbols

ρ A graph transformation rule, page 27

L�ϕL− I −ϕR�R A double-pushout graph transformation rule, page 27

G⇒ρ H Graph transformation step from G to H via rule ρ, page 27

C The context graph C in a DPO rewriting step, page 27

R A graph transformation system, i.e., a set of rules ρ, page 29

Termination Analysis Symbols

wT Weight function of a type graph T , page 45

RT Flower node of type graph T , page 45

flT (G) Flower morphism from graph G to type graph T , page 45

wt(ϕ) Weight of a morphism ϕ wrt. a morphism t, page 47

R< Set of decreasing rules, page 48

R= Set of non-increasing rules, page 48

X Countable set of variables, page 56

F Signature, page 56

T (F ,X) Set of terms over the signature F , page 56

229

Nomenclature

Var(t) Set of variables occuring in a term t, page 56

C[t] Context around a subterm t, page 56

2 Empty space symbol, page 56

σ A substitution of variables to terms, page 57

σ̄ Homomorphically extended substitution, page 57

R A term rewriting system, page 58

Rb A term graph rewriting system (basic version), page 62

Re A term graph rewriting system (extended version), page 62

→R Rewrite relation of term rewriting system R, page 58

TG(t) Term graph of a term t, page 59

p = L←` I →r R A term graph production, page 60

SN(R) Strong normalization of term rewriting system R, page 62

SNb(R) Strong normalization of Rb, page 62

SNe(R) Strong normalization of Re, page 62

Graph Language and Object Language Symbols

T A type graph, page 33

TΛ
R The flower graph over the label set Λ, page 34

L(T) A type graph language specified by T , page 33

L(T [a]) Type graph language by an annotated graph T [a], page 88

L(T [M]) Language by a multiply annotated graph T [M], page 89

L(T [M])≤k k-bounded language of L(T [M]), page 94

R A restriction graph, page 78

LR(R) A restriction graph language specified by R, page 78

L(T1) ⊆ L(T2) Language inclusion of type graph languages, page 79

L(T1) ∪ L(T2) Union of type graph languages, page 82

L(T1) ∩ L(T2) Intersection of type graph languages, page 82

LC Language of an automaton functor C, page 96

LCT [M] Language of counting cospan automaton functor, page 97

L(A) Object language of an abstract object A, page 111

L(ϕ) Mono language of a monomorphism ϕ, page 111

230

Nomenclature

Materialization Symbols

L� X → A Factorization in the materialization category, page 112

L� 〈ϕ〉 → A Materialization of ϕ : L→ A, page 112

〈ϕ〉 Short representation of L� 〈ϕ〉 → A, page 112

〈〈ϕ,ϕL〉〉 Rewritable materialization of ϕ : L→ A,ϕL : I → L, page 114

Annotation Symbols

A Generic annotation functor, page 86

Aϕ Alternative representation denoting A(ϕ), page 86

sG A standard annotation for a graph G, page 86

Mn Natural number monoid (up to n), page 86

Bn Multiplicities over ordered monoidMn, page 87

Sn Node out-degree annotation over ordered monoidMn, page 118

PG Path monoid of the graph G, page 86

T Path annotation functor over ordered monoid PG, page 87

G[M] A multiply annotated graph G, page 89

Logical Symbols

∧ Conjunction, page 13

∨ Disjunction, page 13

=⇒ Implication, page 13

⇐⇒ Bi-implication, page 13

∃ Existential quantification, page 13

∀ Universal quantification, page 13

Other Symbols

∈, /∈ Membership relation and its negation, page 14

=, 6= Equality relation and its negation, page 14

⊆,* Subset relation and its negation, page 14

⊂, 6⊂ Strict subset relation and its negation, page 14

∅ The empty set, page 14

P(X) The powerset of a set X, page 14

N0 Set of natural numbers with zero, i.e. {0, 1, 2, . . .}, page 14

231

Nomenclature

N Set of natural numbers without zero, i.e. {1, 2, . . .}, page 14

X \ Y Relative complement, i.e. {x ∈ X | x /∈ Y }, page 14

X ∪ Y Union, i.e. {z | z ∈ X ∨ z ∈ Y }, page 14

X ∩ Y Intersection, i.e. {z | z ∈ X ∧ z ∈ Y }, page 14

X × Y Cartesian product, i.e. {(x, y) | x ∈ X ∧ y ∈ Y }, page 14

Xn n-ary cartesian product, i.e. n-times X × . . .×X, page 14

XY Exponentiation, i.e. {f : Y → X}, page 86

X1
⊎
X2 Disjoint union, i.e.

⋃
i∈I
{(x, i) | x ∈ Xi}, page 14

R,R−1 Binary relation R and its inverse R−1, page 14

R+ Transitive closure R+ of a relation R, page 14

≤ Order relation, page 14

< Strict subrelation of ≤, page 14

≡ Equivalence relation, page 14

X/ ≡ Quotient set of all equivalence classes of X by ≡, page 14

[x]≡ Equivalence class of an element x w.r.t. ≡, page 14

f : X → Y Function with domain X and codomain Y , page 14

f(x) Image of the input value x, page 14

f |Z Function f with a domain restriction to a set Z, page 15∨
X Least upper bound (or join, or supremum) of X, page 15∧
X Greatest lower bound (or meet, or infimum) of X, page 15

> Maximal element (also called top element), page 15

⊥ Minimal element (also called bottom element), page 15

⊕ Abstract addition-operator, page 43

⊗ Abstract multiplication-operator, page 43

Σ Generalised sum of ⊕, page 44∏
Generalised product of ⊗, page 44

232

Index

Abstract Concepts
Abstract graph, 111
Abstract match, 115
Abstract object, 107
Abstract rewriting, 122

Adhesive Category, 20
Annotation, 86

Multiplicity, 87
Out-degree annotation, 118
Path annotation, 87
Standard annotation, 86

Annotation Properties
Adjunction property, 119
Beck-Chevalley property, 119
Homomorphism property, 119
Isomorphism property, 120
Pushout property, 119

Arrows, see Category, Morphisms
Automaton Functor, 96

Boolean Connectives, 75
Bottom, 15

Category, 16
Arrows, 16
Codomain, 16
Domain, 16
Identity class, 16
Objects, 16

Classifier
Partial map classifier, 108
Subobject classifier, 107

Closure Properties
Closed under a rule, 79
Complement, 79
Intersection, 79
Union, 79

Codomain, 14, 16
Component, 108
Context, 27, 56
Contractum, 57
Coproduct, 17
Core, 77
Cospan, 20
Counting Cospan Automaton, 97

Decidability Properties
Emptyness, 79
Language inclusion, 79
Membership, 79

Diagram, 16
Domain, 14, 16
Domain Restriction, 15
Double-Pushout Rewriting, 21, 31
Doubly Annotated Object, 120
Dual, 81
Duality Pair, 81

Elementary Topos, see Topos
Embedding, 18
Empty Set, 14
Epimorphism, see Morphisms
Equivalence

Equivalence class, 14
Quotient set, 14

Exponentiation, 86

Factorization, 112
Final Pullback Complement, 110
Flower Node, 34, 45
Folding, 77
Function, 14
Function Properties

Bijective, 15
Injective, 15
Surjective, 15

Functor, 18

Global Annotation, 92
Gluing Condition, 21, 28

Dangling edge condition, 28
Identification condition, 28

Gluing Construction, 19, 26
Graph, 24
Graph Grammar, 23
Graph Language

Restriction graph language, 78
Type graph language, 33

Graph Transformation, 27
Graph Transformation Rule, 27
Graph Transformation System, 29
Greatest Lower Bound, 15

Index

Homomorphically Equivalent, 30
Homomorphism

Graph homomorphism, 24
Monoid homomorphism, 85

Homomorphism Preorder, 30

Identity
Identity arrow, 16
Identity functor, 108

Image, 14
Infimum, 15
Initial Object, 18
Injection, see Morphisms
Interface, 26

Inner interface, 94
Outer interface, 94

Invariant, 79
Isomorphism, see Morphisms

Join, 15

Lattice, 15
Least Upper Bound, 15
Legal Morphism, 89
Limit, 20
Local Annotation, 92
Logical Operator, 13

Match, 27, 57
Materialization, 112
Materialization Category, 112
Matrix, 42
Meet, 15
Membership Relation, 14
Mono Language, 111
Monoid, 15

Ordered monoid, 85
Monomorphism, see Morphisms
Monotone Morphisms, 85
Morphisms, 16

Injection, 18
Legal morphism, 89
Projection, 17
Semi-legal morphism, 121
Epimorphism, 17
Graph morphism, 24
Isomorphism, 17, 24
Monomorphism, 17
Term graph morphism, 59

Multiplicity, 87

Multiply Annotated Graph, 89

Natural Numbers, 14
Natural Transformation, 108

Object Language, 111
Order

Equivalence, 14
Partial order, 14
Preorder, 14

Ordered Monoid, 85
Ordered Monoid Subtraction, 117
Ordered Semiring, 44

Strictly ordered
Arithmetic semiring, 44

Strongly ordered
Arctic semiring, 44
Tropical semiring, 44

Partial Map, 108
Partial Map Classifier, 108
Partial Order, see Order
Path Decomposition, 94
Path Monoid, 86
Pathwidth, 94
Powerset, 14
Preimage, 14
Preorder, see Order
Product, 17
Production, 21
Projection, see Morphisms
Pullback, 20
Pushout, 19

Quantifiers
Existencial quantifier, 13
Universal quantifier, 13

Recognizable Graph Language, 96
Redex, 57
Relation, 14
Relation Properties

Antisymmetric, 14
Reflexive, 14
Symmetric, 14
Transitive, 14

Relative Complement, 14
Relative Termination Analysis, 48
Restriction Graph, 78
Restriction Graph Language, 78

234

Index

Retract, 77
Rewritable Materialization, 114
Rewriting Systems

Cycle rewrite system, 43
Graph rewrite system, 23, 29
String rewrite system, 42
Term graph rewrite system, 60
Term rewriting system, 58

Rule, 21
Rule Attributes

Decreasing rule, 47
Non-increasing rule, 47
Strongly decreasing rule, 49

Satisfiable Modulo Theories, 53
Semiring, see Ordered Semiring
Set, 14
Set Operation

Cartesian product, 14
Disjoint union, 14
Intersection, 14
Union, 14

Signature, 56
Slice Category, 109
SMT Solver, 53
Span, 19
Strongest Post-Condition, 124
Subobject Classifier, 107
Subset, 14
Substitution, 57
Subtraction Preservation, 117
Supremum, 15

Term Graph, 59
Term Graph Encodings

Function encoding, 65
Number encoding, 67

Term Graph Production, 60
Term Interpretation Versions

Basic version, 61
Extended version, 62

Term Rewrite Rule, 57
Collapsing, 57
Left-linear, 57
Linear, 57
Right-linear, 57

Terminal Object, 18
Termination Analysis, 41
Termination Problems Database, 68
Terms, 56

Ground terms, 56
Linear terms, 56

Tools
Grez, 54
DrAGoM, 131

Top, 15
Topos, 108
Transitive Closure, 14
Tree Decomposition, 94
Treewidth, 94
Truth Value Object, 107
Type Graph, 33
Type Graph Language, 33
Type Graph Logic, 82

Uniform Termination, 41
Unit, 15
Universal Property, 17
Unraveling, 60

Weighted Type Graph, 45
Weights

Weight of a graph, 46
Weight of a morphism, 45
Weight of a rule morphism, 47

Well-Behaved Subtraction, 117
Width, 94

235

	Abstract
	Preface
	Introduction
	Context
	Contributions
	Structure of this Thesis

	Preliminaries and Foundations
	Foundations
	Basic Notation
	Basic Category Theory

	Graphs and Graph Transformation
	Graphs and Graph Morphisms
	Graph Transformation Systems
	Graph Rewriting via Graph Gluing
	Graph Transformation the Categorical Way

	Type Graph Languages
	Type Graphs and Graph Languages
	Examples

	Termination Analysis of Graph Transformation Systems
	Motivation of Part II
	Weighted Type Graphs over Semirings
	Additional Preliminaries - Termination and Semirings
	Termination Analysis of Rewriting Systems
	Matrix Interpretations for String Rewriting
	Ordered Semirings

	Weighted Type Graphs
	Using Strongly Ordered Semirings
	Examples
	Grez

	Terms, Term Rewriting and Term Graph Encodings
	Additional Preliminaries - Terms and Term Graphs
	Terms and Term Rewriting
	Term Graph Rewriting

	Interpreting Term Rewriting in Term Graph Rewriting
	From Term Graph Rewriting to Graph Transformation Systems
	Function Encoding
	Number Encoding

	Experiments

	Conclusion of Part II
	Related Work
	Open Questions

	Specifying Graph Languages
	Motivation of Part III
	Pure Type Graphs, Restriction Graphs and Type Graph Logic
	Additional Preliminaries - Retracts and Cores
	Type Graph and Restriction Graph Languages
	Closure and Decidability Properties
	Closure under Double-Pushout Rewriting
	Relating Type Graph and Restriction Graph Languages

	Type Graph Logic
	Closure and Decidability Properties for Type Graph Logic

	Annotated Type Graphs
	Additional Preliminaries - Ordered Monoids
	Annotations and Multiplicities
	Multiply Annotated Graphs
	Local vs. Global Annotations
	Decidability Properties for Multiply Annotated Graphs
	Deciding Language Inclusion for Annotated Type Graphs
	Closure Properties for Multiply Annotated Graphs

	Conclusion of Part III
	Related Work
	Open Questions

	Abstract Object Rewriting
	Motivation of Part IV
	Materialization Category
	Additional Preliminaries - More Categorical Concepts
	Topoi, Subobject Classifiers and Partial Map Classifiers
	Slice Categories and Final Pullback Complements

	Object Languages
	Materialization
	Materialization Category and Existence of Materialization
	Characterizing the Language of Rewritable Objects
	Rewriting Materializations

	Rewriting Annotated Objects
	Additional Preliminaries - Annotated Objects
	Annotation Properties
	Abstract Rewriting of Annotated Objects
	Abstract Rewriting and Soundness
	Completeness

	Conclusion of Part IV
	Related Work
	Open Questions

	Tools and Applications
	DrAGoM
	An Introduction to DrAGoM
	Implementing Categorical Notions
	Concrete Construction of the Materialization
	Computation of Annotations

	Other Verification Tools

	Evaluation
	Thesis Examples
	Invariant Check for Colorability
	2-Colorability with Path Extension
	3-Colorability with Node Replacement

	Invariant Check for a Rail System
	Invariant Check for Subgraph Containment
	Overview of the Results

	Conclusion
	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	Appendix
	Proofs
	Proofs of Chapter 5
	Proofs of Chapter 6
	Proofs of Chapter 7
	Proofs of Chapter 8
	Proofs of Chapter 9
	Proofs of Chapter 10
	Proofs of Chapter 11

	Termination Analysis Experiments
	Termination Proofs of Chapter 6

	DrAGoM Documentation
	Tutorial: How to Use DrAGoM
	The GXL Format for Multiply Annotated Type Graphs
	The SGF Format for Graph Transformation Systems

	References
	Nomenclature
	Index

