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Zusammenfassung

Stochastische Methoden sind in der Finanzbranche weit verbreitet und werden z.B. in
der stochastischen Modellierung und Simulation, der risikoneutralen Bewertung, der
Derivatebewertung und vielen weiteren Anwendungen eingesetzt. Unter den Rahmenbe-
dingungen von Solvency II müssen Versicherungsunternehmen adäquat kapitalisiert sein
um jene aus Solvency II erwachsenen Kapitalanforderungen, zum Schutze der Aktionäre
und Versicherungsnehmer, zu erfüllen. Daher müssen zwei wesentliche Größen betrach-
tet werden; das vorhandene Risikokapital (bzw. die Basiseigenmittel) und das benötigte
Risikokapital. Im Allgemeinen werden diese Größen anhand der Mittelwerte von sto-
chastischen Simulationen berechnet und folglich wird ein Economic Scenario Generator
(ESG) verwendet, um die potentielle Entwicklung von Risikofaktoren der Ökonomie und
des Finanzmarktes im Zeitverlauf zu simulieren. Für die Berechnung des vorhandenen
Risikokapitals (definiert als die Differenz zwischen dem Marktwert der Vermögenswerte
abzüglich der Verbindlichkeiten) wird ein stochastische Cash-Flow Projektionsmodell
verwendet, um eine marktkonsistente Bewertung der Vermögenswerte und der Verbind-
lichkeiten, unter Verwendung von risikoneutralen Szenarien, durchzuführen. Die Berech-
nung des benötigten Risikokapitals erfolgt anhand der Wahrscheinlichkeitsverteilung des
vorhandenen Risikokapitals über einen einjährigen Zeithorizont mithilfe eines Risikoma-
ßes. Beispielsweise wird die Solvency Capital Requirement (SCR) anhand des Value-at-
Risk zum Konfidenzniveau 99,5% gemessen.

Zunächst haben wir einen Überblick über die bestehende Literatur gegeben. Hierbei
haben wir festgestellt, dass die allermeisten Autoren sich bei ihrer Betrachtung hinsicht-
lich der Verwendung stochastischer Methoden im Rahmen von Solvency II auf eine der
drei Modellkomponenten des interne Partialmodells, also dem Inputmodell, dem Be-
wertungsmodell und dem Risikomodell, konzentrieren. In dieser Arbeit wollten wir ein
internes Partialmodell mit allen Komponenten aufbauen und Schritt für Schritt zeigen,
wie wir mit stochastischen Methoden eine marktkonsistente Bewertung vornehmen und
das benötigte Risikokapital berechnen können.

Für das Inputmodel haben anstatt eines akademisch bevorzugten einfachen ESG Mo-
dells, mit einem Ein-Faktor Zinsmodells und einem durch eine geometrische Brownsche
Bewegung getriebenen Aktienmodell, ein komplexeres Modell entwickelt, welches in der
Praxis besser geeignet ist. Für die Modellierung des Zinssatzes haben wir das erweiterte
Drei-Faktoren-Modell von Cox-Ingersoll-Ross, das die drei Hauptkomponenten der Zinss-
trukturkurve erfassen kann, verwendet. Wir haben den Preis von Nullkupon-Optionen
mithilfe der Fourier-Transformation der charakteristischen Funktion einer Linearkom-
bination von Zustandsvariablen sowie einer anschließender Bewertung von Swaptions
anhand einer stochastischen Durationsapproximation hergeleitet. Für die Modellierung
von Aktien haben wir ein stochastisches Volatilitätsmodell (Heston-Modell) zusammen
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mit der oben beschriebenen stochastischen Zinsmodellierung verwendet. In ähnlicher
Weise haben wir die geschlossene Form der diskontierten charakteristischen Funktion
des logarithmierten Aktienpreises ermittelt, indem wir ein System von gewöhnlichen
Differentialgleichungen lösen, welches von einer affinen partiellen Differentialgleichung
stammt. Anschließend haben wir den Preis von europäischen Optionen ebenfalls an-
hand Fouriertechniken hergeleitet. Zusätzlich haben wir die Methode der Erzeugung
ökonomischer Szenarien mithilfe einer Monte Carlo Simulation, unter Verwendung eines
Euler Diskretisierungsschemas und Varianzreduktionstechniken formuliert.

Für das Bewertungsmodell haben wir ein stochastisches Cashflow-Projektionsmodell
entwickelt, um die Entwicklung der Bilanz sowie des aus Kuponanleihen und Aktien
bestehenden Vermögensportfolios und des aus überschussberechtigten Lebensversiche-
rungsverträgen bestehenden Passivportfolios zu erfassen. Anschließend haben wir eine
marktkonsistente Bewertung der Vermögenswerte und Verbindlichkeiten vorgenommen,
die auf den vom stochastischen Modell projizierten Cashflows und den Input risikoneu-
traler ökonomischen Szenarien basiert. Darüber hinaus haben wir die Managementregeln
modelliert. Beispielsweise haben wir eine konstante Asset-Allocation-Strategie entwi-
ckelt, um das Asset-Portfolio wieder ins Gleichgewicht zu bringen. Wir haben den nicht
realisierten Gewinn und Verlust durch Modellierung des Buchwerts und des Marktwerts
von Vermögenswerten berücksichtigt. Darüber hinaus haben wir den MUST-Fall für die
Überschussbeteiligung zwischen Anteilseigner und Versicherungsnehmer modelliert.

Für das Risikokapitalmodell haben wir zunächst die verschachtelte stochastische Simu-
lation (

”
Nested Stochastic Simulation“) implementiert, um das benötigten Risikokapital

zu bestimmen. Da für die verschachtelte Simulation eine hohe Rechenzeit erforderlich ist,
haben wir auch die Proxy-Methoden

”
Least Squared Monte Carlo“ (LSMC),

”
Replica-

ting Portfolio“ und
”
Curve Fitting“ untersucht. Insbesondere haben wir eine allgemeine

Strategie entwickelt, um ein gutes replizierendes Portfolio zusammenzustellen. Hierbei
haben wir zuerst den Aufbau eines Asset-Pools beschrieben. Danach haben wir die Kon-
struktion von Sensitivitätssätzen durch Rekalibrierungs- oder Neugewichtungstechniken
veranschaulicht. Als nächstes haben wir ein Kalibrierungsverfahren vorgeschlagen, bei
dem sowohl die Optimierungsmethode der kleinsten Quadrate als auch die Auswahl von
Teilmengen anhand bestimmter Kriterien verwendet werden, um das optimale Replika-
tionsportfolio auszuwählen und das benötigte Risikokapital zu berechnen.

Schließlich haben wir anhand einer empirischen Anwendung den gesamten Prozess
von der Kalibrierung der ESG-Modelle anhand von realen Marktdaten, der Erzeugung
und Validierung der ökonomischen Szenarien, der marktkonsistenten Bewertung sowie
der Bestimmung des SCR durch die verschachtelte Simulation und des replizierenden
Portfolios, illustriert.
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Abstract

Stochastic methods, such as stochastic modeling and simulation, risk neutral valuation,
derivative pricing, etc., are widely used in the finance industry. Under Solvency II
framework, in order to protect the benefit of shareholder and policyholder, the insurance
company should be adequately capitalized to fulfill the capital requirement for solvency.
Therefore, two main quantities are taken into account, i.e. the available capital (or basic
own funds) and the required capital. In general, these two quantities are calculated by
means of stochastic simulation and hence an Economic Scenario Generator (ESG) is used
to simulate the potential evolution of risk factors of the economies and financial markets
over time. For the calculation of available capital (defined as the difference between the
market value of assets and liabilities), the stochastic cash flow projection model is used
to perform the market consistent valuation of assets and liabilities given the risk neutral
scenarios. For the calculation of required capital, the probability distribution of available
capital over a one-year time horizon and a risk measure based on such distribution is
taken into account. For instance, the Solvency Capital Requirement (SCR) is measured
by the Value-at-Risk at confidence level of 99.5%.

We began by reviewing the existing literature and found that most authors used
stochastic methods in risk management under Solvency II framework on one of the
three components of the partial internal model, i.e. the input model, the valuation
model or the risk capital model. In this thesis, we aimed to build a partial internal
model including all components and show how we can use stochastic methods to do
market consistent valuation and calculate the required capital.

For the input model, instead of using academic preferred simple ESG models, e.g. one
factor short rate interest rate model along with geometric Brownian motion equity model,
we developed advanced models that are more suitable in practice. For the modeling of
interest rate, we used the extended three-factor Cox-Ingersoll-Ross model, which is able
to capture the three main principle components of yield curve. We derived the pricing of
zero coupon options by Fourier transformation of the characteristic function of the linear
combination of state variables and subsequently the pricing of swaption using stochastic
duration approximation. For the modeling of equity, we used the stochastic volatility
model (Heston model) along with above-mentioned stochastic interest rate. Similarly,
we first showed the closed-form of discounted characteristic function of log equity price
by solving a system of Ordinary Differential Equations (ODEs) resulting from an affine
Partial Differential Equation (PDE). We then derived the price of European options
by Fourier techniques as well. In addition, we formulated the method of generating
economic scenarios by using Monte Carlo simulation with Euler discretization scheme
and variance reduction technique of antithetic variates.

For the valuation model, we built a stochastic cash flow projection model to capture
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the development of balance sheet as well as the asset portfolio consisting of coupon bonds
and stocks and the liability portfolio consisting of German traditional participating
life insurance contracts. We then derived market consistent valuation of assets and
liabilities based on the cash flows projected by the stochastic model along with the
input of risk neutral economic scenarios. Furthermore, we modeled the management
rules. For instance, we developed a constant asset allocation strategy to rebalance the
asset portfolio. We considered the unrealized gain and loss by modeling the book value
and market value of assets. Additionally, we modeled the MUST-case for the investment
surplus distribution between shareholders and policyholders.

For the risk capital model, we first implemented the nested stochastic simulation to
determine the required risk capital. Since nested simulation requires high computational
time, we also investigated the proxy methods of least squared Monte Carlo, replicating
portfolio and curve fitting. In particular, we developed a general strategy to construct
a good replicating portfolio. First, we described the construction of asset pool. Second,
we illustrated the construction of sensitivity sets through recalibration or reweighting
techniques. Third, we proposed a calibration procedure, by using the least square op-
timization and subset selection with certain criteria, to select the optimal replicating
portfolio and calculate the required capital.

Finally, we performed an empirical application to illustrate the full process, including
the calibration of ESG models to real market data, economic scenario generation and
validation, market consistent valuation and determination of SCR by nested simulation
and replicating portfolio.
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1. Introduction

1.1. Motivation

Risk management plays an increasingly important role for companies and financial in-
stitutions, as they need to deal with an ever increasing dimension of risks necessitated
by the complicated developments of economy. In insurance industry, the regulators of
European Union had been developing the new risk based supervisory regime Solvency
II since last decades and came into force on 1 January 2016. It reflects new risk man-
agement practices and requires more elaborate risk management systems for insurers.
Furthermore, the rating agencies have paid extensive attention to risks and risk man-
agement in the insurance sector, e.g. Standard & Poors has added a formal evaluation
of insurer enterprise risk management (ERM) as one of the new category for the overall
rating decision since 2005. The importance of adequate and holistic risk management
system was also highlighted by the financial crisis in 2007-08 as one of the main con-
tributing factor of which was the poor risk management practices at banks. Therefore,
the insurance companies need to establish a holistic enterprise risk management sys-
tem to better manage the risks and comply the risk-based regulatory and rating agency
requirements according to new risk management standards such as the international
standard of risk management, ISO 31000. There are various risks to which insurance
sector is exposed, such as market risk, underwriting risk, credit risk etc. Our motivation
is to see how we can quantify such risks by means of stochastic methods for the purpose
of risk management.

For quantifying these risks, an internal model is usually used to model the risks and
afterwards a risk measure is required to measure the risk. The internal model is based
on application of stochastic methods, such as stochastic modeling and simulation, risk
neutral valuation, derivative pricing etc. In the mean while, there is a variety of risk
measures with different confidence levels that could be chosen to measure the risk. Under
Solvency II framework, the Solvency Capital Requirement (SCR), which corresponds to
the Value-at-Risk at confidence level of 99.5% of available capital over a one-year time
horizon, is chosen to measure the total risk. It means that the quantities of available
capital and SCR should be quantified.

In general these two quantities are calculated by means of stochastic simulation. An
Economic Scenario Generator (ESG) is used to simulate the potential evolution of risk
factors of the economies and financial markets over time. For the stochastic modeling
and calibration of ESG, stochastic techniques such as the risk neutral valuation and
derivative pricing need to be adapted. There are two types of ESG scenarios that are
used, the market consistent risk neutral scenarios and the real world scenarios.
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For the calculation of available capital (defined as the difference between the market
value of assets and liabilities), the stochastic cash flow projection model is used to
perform the market consistent valuation of assets and liabilities with usage of risk neutral
scenarios.

For the calculation of required capital, the probability distribution of available capital
over a one-year time horizon and a risk measure based on such distribution should be
taken into account. In principle, the so called nested stochastic simulation should be
applied to get the probability distribution, however, it results quite high computational
time and is not quite practical to use this approach. Therefore, the proxy methods such
as replicating portfolio are taken into consideration.

In order to demonstrate the usage of stochastic methods in risk management described
above, we build a partial internal model to illustrate the calculation of available capital
and SCR. We develop an ESG consisting of the interest rate model and equity model.
We then generate the economic scenarios after calibrating the ESG models to the market
data. Furthermore, we develop a stochastic cash flow projection model to capture the
evolution of balance sheet and cash flows of assets and liabilities, where the asset portfolio
consists of coupon bonds and stocks while the liability portfolio consists of traditional life
insurance products with profit sharing and interest rate guarantee. Besides the nested
stochastic simulation, we also develop the proxy method of replicating portfolio that is
widely used in insurance industry to determine the SCR and compare it to the nested
simulation to check the estimation quality.

1.2. Literature Review and Contribution

In the literature, there are many applications of stochastic methods in risk management
in insurance. In the beginning of literature review, we need to figure out the following
questions:

• What is risk?

• How to manage risk or what is the process of risk management for an insurance
company?

– What kinds of requirements should be considered?

– What kinds of risk management standards could be followed?

• In which part of risk management process we need to apply the stochastic methods?

Risk can be defined in a variety of ways. The definitions are mainly based on proba-
bility or uncertainty. Probability based definitions of risk (see e.g. Kaplan and Garrick
(1981), Aven (2010), Hansson (2012)) could be formalized by a triplet (A,C, P ) (see
Aven (2011)), where A is the events, C and P are the corresponding consequences and
probabilities of A. Probability is a tool for expressing the uncertainty. However, it
lacks the informative description of the uncertainties related to the event. Therefore,
the definitions of risk with uncertainties beyond the probabilities should be considered.
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Similarly they could be described with another triplet (A,C, U), where U is the uncer-
tainty, examples of these definitions could be seen e.g. ISO (2009a,b), Holton (2004),
Aven and Renn (2009).

The insurance company should have an enterprise wide risk management process ac-
cording to the required risk management standards as well as compliance with the re-
quirements from stakeholders such as regulatory and rating agencies. Therefore, we need
to review the regulatory and rating agency requirements as well as the enterprise risk
management process.

For the regulatory requirements, we need to consider the Solvency II framework (see
Directive 2009/138/EC (2009), Directive 2014/51/EU (2014)) in European Union, which
could be dividend into three pillars, i.e. quantitative requirements, qualitative require-
ments and disclosure requirements. Pillar I contains harmonised rules of valuation of
assets and liabilities including technical provisions, own funds, solvency capital require-
ment, minimum capital requirement and investment in securitisation positions (see Del-
egated Regulation (2015, Chapter II-VIII) or Directive 2009/138/EC (2009, Chapter
VI)). Pillar II contains the rules relating to supervisory review system, system of gover-
nance, risk management system and Own Risk and Solvency Assessment (ORSA) (see
Directive 2009/138/EC (2009, Chapters III-IV), Delegated Regulation (2015, Chapters
IX-XI)). Pillar III contains the rules relating to public disclosure, regular supervisory
reporting, transparency (see Delegated Regulation (2015, Chapters XII-XIV)).

Furthermore, the rating agencies, such as Standard & Poors, Moody’s and A. M.
Best, assess the ratings of the enterprise risk management (see e.g. Standard & Poors
(2005b), Standard & Poors (2013), Moody’s Research Methodology (2004), Harris (2009)
), as part of the overall rating of an insurance company. Consequently, the insurance
company should also fulfill the requirements or criteria from rating agencies in order to
get a strong rating, especially when the insurance company has been listed on the stock
exchanges.

The well-established risk management processes in the literature are IRM standard
(AIRMIC, ALARM, IRM (2002)), COSO ERM framework (Committee of Sponsoring
Organizations of the Treadway Commission (2004)), ISO 31000 (ISO (2009b)), ERM
framework proposed by ERM Committee of the American Academy of Actuaries (2013).
AIRMIC, Alarm, IRM (2010) describe a structured approach to ERM by considering
the requirements of ISO 31000. Following the international standard ISO 31000 (ISO
(2009a), ISO (2009b)) and AIRMIC, Alarm, IRM (2010), we review the risk manage-
ment process combined with the Solvency II framework and focus on the risk assessment
consisting of risk identification, risk analysis and risk evaluation, which is highly related
to Pillar I, e.g the market consistent valuation, available capital and required capi-
tal. The risk analysis tools could be established by using internal model (see Directive
2009/138/EC (2009)) for the quantification of risk. Aven (2011, Section 8.2) presents
a model based framework for risk assessment. Therefore, the stochastic methods are
mainly applied in the step of (quantitative) risk assessment.

Up to now, we have answered the above listed questions. In the next step, we need to
consider how we could construct a partial internal model in the process of risk assessment.
We then need to figure out further questions:
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• How to mimic an insurance company using a stochastic model?

• How to do market consistent valuation?

• How to determine the SCR?

In order to mimic an insurance company, the Asset-Liability framework, including the
balance sheet, asset and liability models as well as the related management rules should
be built.

First of all, a simplified balance sheet should be constructed to reflect the most im-
portant items of the real balance sheet of the insurance company. For instance, Bauer
et al. (2006), Kling et al. (2007) and Bauer et al. (2009) give simplified balance sheet
consisting of asset and liability sides, where asset side is the market value of asset port-
folio and liability side consists of two parts, the book value of policyholder’s account and
reserve account (a hybrid determined as the difference between a market value and book
value). Similar balance sheet could be seen in e.g. Grosen and Jørgensen (2000), Reuß
et al. (2013), Burkhart et al. (2014) for life insurance companies. A more general balance
sheet is proposed by Gerstner et al. (2008), they separate the policyholder’s account into
actuarial reserve and allocated bonus. Furthermore, they separate the reserve account
to company account called equity and a buffer account called free reserve for the future
bonus payment to achieve more stable return of the policyholders.

Secondly, the asset model is used for modeling the development of asset portfolio for
the asset side. In practice, the asset portfolio consists of the various financial assets, such
as the treasury bonds, corporate bonds, stocks, real estate etc. Since the asset allocation
depends on the evolution of financial market, the management rules for determining the
proportion of financial asset classes are usually considered. Therefore, asset allocation
strategy should be defined to reflect the management rules in the asset model. The
constant strategic asset allocation, i.e. keeping constant proportion of market value
of bonds and stocks, is widely adopted, e.g. Kling et al. (2007), Bauer et al. (2009),
Gerstner et al. (2008), Reuß et al. (2013), Burkhart et al. (2014). Moreover, the book
value might not be equal to the market value due to local GAAP accounting rules,
which leads to unrealized gain and losses (UGL). In practice, the company may realize
some of the gains to get higher returns and release the losses in the equity investments.
Therefore, the corresponding management rules should be incorporated as well, see e.g.
Reuß et al. (2013).

Thirdly, the liability model is used for modeling the development of insurer’s liabili-
ties for the liability side. In practice, the liability portfolio consists of different insurance
products, such as endowment policies, life annuities, unit-link products etc. For the
sake of simplicity, Kling et al. (2007), Bauer et al. (2006) and Bauer et al. (2009) use
the participating single-premium term-fix insurance (ignoring any charges and mortality
rates), which is an image of the life insurance company’s general financial situation, and
hence the evolution of corresponding liability portfolio could be served as the develop-
ment of the insurer’s liabilities. Gerstner et al. (2008), Seemann (2009) use liability
portfolios including participating endowment assurance with and without surrender op-
tions by considering mortality rates. Reuß et al. (2013) and Burkhart et al. (2014) use
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traditional participating life insurance contracts (endowment assurance) by considering
the charges and mortality rates in their liability portfolio.

Finally, the management rules for the surplus participation should be considered,
since the profit or bonus should be shared between the policyholders and shareholders
for the traditional participating life insurances. There are several sources of surplus,
namely the investment surplus, risk surplus, cost surplus and other surplus as described
in German Minimum Surplus Participation (Mindestzuführungsverordnung - MindZV).
Most literatures such as Bauer et al. (2006), Grosen and Jørgensen (2000), Gerstner
et al. (2008), Kling et al. (2007) focus on investment surplus. Burkhart et al. (2014)
considers the cost surplus as well by introducing the cost model. For the investment
surplus distribution mechanism, a point to point guarantee framework is used by Briys
and de Varenne (1997), i.e. a fixed guaranteed interest as well as bonus determined a
certain fraction of financial gains are that received by the policyholders. The cliquet-
style guarantee is considered in Grosen and Jørgensen (2000) and Gerstner et al. (2008)
using the average interest principle, Bauer et al. (2006) and Kling et al. (2007) for
MUST-case and IS-case etc. The MUST-case considers only obligatory payments to
the policyholders as required in the German market. The IS-case reflects closely the
behavior of typical life German insurance companies over the last few years.

Given the asset-liability framework, we could then proceed to do the market consis-
tent valuation of assets and liabilities through a stochastic cash flow projection model,
i.e. the stochastic modeling and simulation of the development of balance sheet and
future cash flows generated from the Asset-Liability framework. There are a number
of papers that relate to the development of such models in the recent years, such as
Briys and de Varenne (1997), Grosen and Jørgensen (2000), Bacinello (2001), Grosen
and Jørgensen (2002), Bacinello (2003), Tanskanen and Lukkarinen (2003), Bauer et al.
(2006), Kling et al. (2007), Gerstner et al. (2008), Graf et al. (2011), Bauer et al. (2009),
Reuß et al. (2013), Burkhart et al. (2014).

The inputs of the stochastic cash flow projection model are the economic scenarios
generated by an ESG. The economic scenarios include the financial market risk factors
such as the risk free yield curve, option implied volatilities of interest rates, equity returns
and dividends, credit spreads, transition probabilities among credit ratings, property
returns, inflation rates etc. Therefore, the interest rate model, equity model, credit
model, property model and inflation model are usually required. For instance, these
models are all included in the market leading ESGs providers such as Barrie & Hibbert
ESG and Conning ESG. In academic, most of the literature focuses on the interest rate
and equity models. The most widely used combinations are the classic short rate models
(Vasicek, Cox-Ingersoll-Ross, Hull-White) for the stochastic interest rate along with
geometric Brownian motion for the stock or asset portfolio, see e.g. Bauer et al. (2010),
Burkhart et al. (2014), Reuß et al. (2013), Jørgensen (2001), Briys and de Varenne
(1997), Gerstner et al. (2008), De Felice and Moriconi (2005), Jørgensen (2001), Rühlicke
(2013), DAV (2015) and de Boer (2009) etc. Rühlicke (2013) further considers the Cox-
Ingersoll-Ross model for interest rate and Heston model for the equity. In practice, the
ESG providers use either the short rate models or market model for the interest rate, e.g.
extended three factor Cox-Ingersoll-Ross model (CIR3++) in Conning’s ESG (Conning
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(2012)), extended two factor Black-Karasinski model and Libor Market Model in Barrie
& Hibbert’s ESG (see Morrison (2007), Barrie & Hibbert (2010)). Both Conning’s ESG
and the Barrie & Hibbert’s ESG use the stochastic volatility jump diffusion (SVJD)
model for equity modeling (see Conning (2012), Lawson (2011)). The German Actuarial
Society DAV (2015) constructs a benchmark ESG with Hull-white model for interest
rate and geometric Brownian motion model for the stock and property.

After the market consistent valuation, we need to further determine the capital re-
quirements, which could be measured by a risk measure. Therefore, we first review the
axiomatic approach to risk measures used for the determination of capital requirements.
The literature review of risk measures could be seen e.g. Szegö (2002) from a prob-
abilistic perspective, Albrecht (2004) from an actuarial perspective and Föllmer and
Weber (2015) from an perspective of capital requirement. The textbook of Föllmer and
Schied (2011) offers mathematical insights into risk measures. Heyde et al. (2007) make
a very important contribution to the concept of risk measures by introducing natural
risk statistics. This concept bridges the gap between risk measures and statistics by
defining natural risk statistics on a sample space in contrast to a probability space.

In general, the so called nested stochastic simulation should be applied (see Gordy
and Juneja (2010), Broadie et al. (2011), Bauer et al. (2010)), i.e. it requires Monte-
Carlo simulation based market consistent valuation for each real world path in one year
horizon. Since the SCR corresponds to the 99.5%-quantile of random loss, the number
of simulation should be large to reduce the estimation error of the quantile. It then
results quite high computational time and is not quite practical to use this approach by
obtaining the results in required time lines. Consequently, a number of proxy methods
have been developed to make the calculation more practical. For instance, the methods
of replicating portfolio, curve fitting and least square Monte-Carlo simulation etc are
applied in the insurance industry.

All the proxy approaches are based on finding a linear combination of basis functions
to approximate the present value of future profits. The valuation function could be
approximated by a function of risk factors, and hence a curve could be used to fit the
valuation function. One example of curve fitting is the Swiss Solvency Test (SST) stan-
dard formula that applies Delta-(Gamma) curve fitting (see FINMA (2012)). The least
square Monte Carlo approach was first introduced by Longstaff and Schwartz (2001),
who use least squares regression on a countable set of basis functions to approximate
the conditional expectation. Bauer et al. (2009) apply the idea and propose a faster
approach for the calculation of required risk capital under Solvency II. The replicating
portfolio consists of a set of financial assets that could be used as a computationally
efficient proxy to evaluate the PVFP under real world in one year horizon. An intro-
duction to this approach is given by Oechslin et al. (2007) and Boekel et al. (2009).
Seemann (2009), Erixon and Tubis (2008) and Kalberer (2007) use replicating portfolio
for valuation and hedging of life insurance products. Burmeister and Mausser (2009)
and Burmeister et al. (2010) apply the trading restrictions as further constrains to get
a relative smaller effective replicating portfolio.

After answering the further questions, we summarized that a partial internal model
could be constructed with three main components, namely the input model, the valuation
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model and the risk model. The structure of such partial internal model is illustrated in
Figure 1.1, which gives the interrelationship among the main components as well as the
main sub-components.

Figure 1.1.: Structure of a partial internal model.

After reviewing the literature, we could figure out that most authors use stochastic
methods on specific component of the partial internal model. In this thesis, we aim to
build a partial internal model including all components and show step by step how we
can use stochastic methods to do market consistent valuation and calculate the required
capital by the valuation model and risk model using the economic scenarios generated
by the input model.

First of all, instead of using academic preferred simple financial ESG models, e.g. one
factor short rate model along with geometric Brownian motion equity model, we intro-
duce the more advanced models that are used more widely in practice. We implement
the extended multi-factor Cox-Ingersoll-Ross model for modeling the interest rates as
Conning (2012). Additionally, we also implement the stochastic volatility Heston model
joint with the above stochastic interest rate. Afterwards, we calibrate the models to real
market data for both the risk neutral and real world measures, which is more meaningful
especially under the current low interest rate environment.

Secondly, we integrate the valuation model introduced in Burkhart et al. (2014) and
Reuß et al. (2013) into the framework of Bauer et al. (2009) for doing not only the
market consistent valuation but also the determination of required capital.

Thirdly, we develop a general strategy and describe in details how to select an opti-
mal replicating portfolio to calculate the required capital, including the construction of
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financial asset pool, subset selection techniques etc.
Finally, we illustrate the full process from the ESG model calibration to market data,

scenario generation, market consistent valuation and determination of SCR by nested
simulation and proxy methods.

1.3. Structure

Chapter 2 starts with the definition of risk. Afterwards we review briefly the road from
Solvency I to Solvency II, and give a short description to the three-pillars of Solvency
II, namely the quantitative requirements, qualitative requirements and disclosure re-
quirements. Besides the regulatory requirements, we further address the rating agency
requirements for the overall rating decision. We proceed to the construction of the Enter-
prise Risk Management system while considering these requirements. Consequently, the
concepts of risk management, risk management process based on international standard
ISO 31000 are discussed.

Chapter 3 reviews the axiomatic approach to risk measures used for the determination
of capital requirements.

Chapter 4 presents the Economic Scenario Generator. We first describe the interest
rate model, including the bond and swaption pricing, model calibration and estimation
under risk neutral and real world. We then further provide the mathematical description
of equity model, including the European option pricing and model estimation.

Chapter 5 focuses on the market consistent valuation of assets and liabilities. We first
set up the mathematical framework for the risk neutral valuation. Under the framework,
we present a stochastic cash flow projection model, i.e. the stochastic modeling and
simulation of the development of balance sheet and future cash flows generated from
the Asset-Liability framework. Consequently, the balance sheet for modeling the most
important balance sheet items, asset model and liability model for modeling the asset
portfolio and liability portfolio, are then given. In addition, the management rules of
e.g. the asset allocation strategies, unrealized gains and losses, surplus distribution, are
described. In the end of Chapter 5 we then derive the computation of Market Consistent
Embedded Value.

Chapter 6 focuses on the risk modeling for the SCR calculation. We start the method
of nested stochastic simulation, which requires Monte-Carlo simulation based market
consistent valuation for each real world path in one year horizon. Due to the high
computational time of nested simulation in practice, we further present a number of
proxy methods, such as replicating portfolio, curve fitting and least square Monte-Carlo
simulation etc. In particular, Chapter 7 gives more details about replicating portfolio
by presenting a general strategy and describing step by step for constructing a ‘good’
replicating portfolio.

Chapter 8 illustrates the application. We first describe the required market data,
to which we calibrate the ESG models. After calibration, we generate the scenarios
and proper validations are performed to check the quality of scenarios. Then we do
the market consistent valuation based on the stochastic cash flow projection model. In
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addition to the nested simulation for the calculation of SCR, we conduct the proxy
method of replicating portfolio and check the approximation error of SCR by comparing
to the result of nested simulation.

Chapter 9 gives the conclusions and suggestions for further work.
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2. Insurance Enterprise Risk
Management

2.1. Risk

Risk can be defined in a variety of ways. Hansson (2012) describes quantitative senses of
risk defined as the probability or statistical expectation value of an unwanted event which
may or may not occur. Aven (2011) gives a more broad review of the common definitions
of risk. The definitions of risk, besides based on expected values or probabilities, could
be based on uncertainty. In general, the risk defined as expected value is misleading as
it losses the information about the events with low probabilities and high consequences.
Take the nature catastrophe as an example, it happens in low probability but could
lead to extreme consequences. Special attention should be paid for it even though the
expected value might be small. That means both severity and frequency of the nature
catastrophe should be taken into account.

In line with this idea, the definitions of risk based on probability are suggested. Aven
(2011) uses a triplet (A,C, P ) to define the risk, where A is the events, C and P are
the corresponding consequences and probabilities of A. The P could be referred to
frequentist probability or subjective (or knowledge-based) probability. The frequentist
probability is interpreted as relative frequency, which is the relative fraction of times of
occurrence of event on an infinite number of repetitions of the statistical experiment. One
example for the risk definition based on frequentist probability is Kaplan and Garrick
(1981). On the other hand, the subjective probability is referred to Bayesian probability
by specifying the prior probability based on a state of background knowledge. See for
example Aven (2010).

Probability is a tool for quantifying the uncertainty. However, this value of probabil-
ity may loss the information for describing the uncertainty. Therefore, the uncertainties
beyond the probabilities should be considered as mentioned by Aven (2011). The In-
ternational Organization for Standardization (ISO) (ISO (2009a,b)) defines the risk as
“risk is the effect of uncertainty on objective”. ISO (2009b) gives the note that “risk
is often expressed in terms of a combination of the consequences of an event (including
changes in circumstances) and the associated likelihood of occurrence”. Holton (2004)
refers the risk is “exposure to a proposition of which one is uncertain”. One more exam-
ple about risk definition through uncertainty is given by Aven and Renn (2009) “Risk
is uncertainty about and severity of the consequences (or outcomes) of an activity with
respect to something that humans value”. Similar to the definition based on probability
(A,C, P ), all these definitions based on uncertainty could be described with another
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triplet (A,C, U), where U is the uncertainty.
After understanding the concept of risk, we start to discuss how to manage the risks

in insurance, such as underwriting risk, market risk, credit risk and operational risk
etc. In order to manage the risk better, the enterprise wide risk management is usually
taken into account. The enterprise risk management (ERM) should be risk based and
comply the regulatory and rating agency requirements. In the following sections, we
will first describe the regulatory and rating agency requirements and the enterprise risk
management based on these requirements and risk management standards by ISO.

2.2. Risk-based Regulatory and Rating Agency
Requirements

The regulatory requirements play an important role for the risk management for an insur-
ance company. The insurance supervision in European Union started firstly in 1970s with
first non-life insurance Directive (Directive 73/239/EEC) and first life assurance Direc-
tive (Directive 79/267/EEC). With amendments in the 1990s (Directives 88/357/EEC,
90/619/EEC, 92/49/EEC and 92/96/EEC) and mostly recently (life assurance Direc-
tive 2002/83/EC and non-life insurance Directive 2002/13/EC), the supervisory regime
Solvency I was completed in 2002. The Solvency I mainly focused on the underwriting
risk and had structure weakness. According to the examination of Müller Report (see
Müller (1997)), it does not account for all risks.

In order to remedy the weakness of Solvency I, the Solvency II project was initi-
ated. It has been divided into two phases (see European Commission (2002), European
Commission (2003)).

In the first phase, the general design of a future solvency system was determined by
conducting several studies on a number of areas. There were two important general
studies in the first phase, namely the KPMG report (see KPMG (2002)) and Sharma
Report (see Conference of the Insurance Supervisory Services of the Member States of
the European Union (2002)). In the KPMG report, it concludes with recommendations
for a three-pillar approach, which is similar to Basel II (The New Basel Capital Accord,
see Basel Committee on Banking Supervision (2001)) that is adapted by the banking
sector. The Sharma Report concludes that the capital requirement and solvency levels
should be more risk-sensitive, a range of early-warning tools is needed to detect the
potential threats to the solvency, internal factors such as quality management, corporate
governance practices and risk management systems should be paid more attention.

In the second phase, details of the system such as specific rules and guidelines were
further developed. The new rules have been created by following the Lamfalusssy process
(see The Committee of Wise Men’s (2001), Commission of the European Communities
(2004)). It is a four-level legislative process, each of which focuses on a certain stage
of the legislative process. At Level 1, the European Parliament and Council of the
European Union adopt a piece of legislation, containing framework principles, with im-
plementing powers being delegated to the second level (see The Committee of Wise Men’s

11



2. Insurance Enterprise Risk Management

(2001)). For Solvency II project, Solvency II Directive (Directive 2009/138/EC (2009))
was adopted. It was further amended by Omnibus II Directive (Directive 2014/51/EU
(2014)). At Level 2, The European Commission enacted the delegated act with imple-
menting details of framework Directives and Regulations. Between Level 2 and Level 3,
there is Level 2.5, which binds the technical standards developed by the European Insur-
ance and Occupational Pensions Authority (EIOPA) (before called as the Committee of
European Insurance and Occupational Pension Supervisors (CEIOPS)). At Level 3, the
EIOPA develops supervisory guidelines and recommendations. At Level 4, the European
Commission monitors unit implementation of the EU regulations in close co-operation
with Member States and EOIPA.

On the 1st of January 2016, the new supervisory regime Solvency II framework
came into force. As proposed by KPMG Report, Solvency II (European Commission
(2002, p. 28)) is dividend into three pillars as Basel II1. As the supplement of Directive
2009/138/EC, Delegated Regulation (Delegated Regulation (2015)) specifies more de-
tailed implementing rules for the three pillars, based on which an overview of the three
pillars of Solvency II could be given in Figure 2.1.

Pillar I: 
Quantitative Requirements 

 
- Valuation of assets and 
liabilities, including technical 
provision 
- Own funds 
- Solvency Capital Requirement 
- Minimum Capital Requirement 

Pillar II: 
Qualitative  Requirements 

 
- Supervisory view system 
- Governance  
- Risk Management System 
- Own Risk and Solvency 
Assessment 
 

Pillar III: 
Disclosure Requirements 

 
- public disclosure 
- regular supervisory reporting 
- transparency 
 

Solvency II 

Figure 2.1.: The three-pillars approach of Solvency II.

Pillar I of Solvency II sets out the quantitative requirements. It contains harmonised

1Note that compared to Basel II, the Solvency II focuses more on a holistic risk management approach
rather than on management of single risks independently (see Eling et al. (2007)). More detailed
comparison of Basel II/III and Solvency II could be seen in Gatzert and Wesker (2012).
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rules of valuation of assets and liabilities including technical provisions, own funds, sol-
vency capital requirement, minimum capital requirement and investment in seculariza-
tion positions (see Delegated Regulation (2015, Chapter II-VIII) or Directive 2009/138/EC
(2009, Chapter VI)).

The starting point in Solvency II is the economic balance sheet, where the assets
and liabilities should be valued according to market consistent principles. The market
consistent valuation allows for the comparison and disclosure of the balance sheet in
a harmonized manner. For instance, the Market Consistent Embedded Value (MCEV)
should be calculated and disclosed by the life insurances. The technical provisions, which
correspond to the expected amount that another undertaking would require to take over
and fulfill the underlying obligations (see Directive 2009/138/EC (2009, p. 6)), should
also be calculated consistently as the valuation of assets and other liabilities. In order
to do the right valuation of liabilities, a risk free yield curve is used to price embedded
options and guarantees. Therefore, the methodologies for the determination of relevant
risk free interest rate term structure need to be specified. According to Delegated Reg-
ulation (2015, Chapter VIII, Section 4) (see also the technical specification by EIOPA
(2014)), the basic risk free interest rate term structure should be constructed based on
swap rates (from deep, liquid and transparent financial market) or rates of government
bonds with adjustment of credit spreads, extrapolation to the ultimate forward rate,
as well as considering the long term guarantee measure2, e.g. volatility adjustment or
matching adjustment.

In order to absorb the unexpected financial losses and to cover risks inherent to the
insurance business, the own funds corresponding to the amount of sufficient financial
resources should be hold by the insurance undertakings. The own funds consist of
basic own funds (the excess of assets over liabilities valued as described above, plus
the subordinated liabilities, see Directive 2009/138/EC (2009, Article 88)) and ancillary
own funds (items other than basic own funds that can be called up to absorb losses, see
Directive 2009/138/EC (2009, Article 89)). Own funds shall be further classified into
three tiers according to some characteristics and features such as permanent availability,
subordination, sufficient duration etc (Directive 2009/138/EC (2009, Article 93-97)).

For the capital requirements in Solvency II, the Minimum Capital Requirement (MCR)
and Solvency Capital Requirement (SCR) shall be covered by the eligible amount of own
funds. The Solvency Capital Requirement, which corresponds to the Value-at-Risk of
the basic own funds of an insurance or reinsurance undertaking subject to a confidence
level of 99.5% over a one-year period (see Directive 2009/138/EC (2009, Article 101)),
could be calculated by the standard formula or an internal model. The calculation of
Minimum Capital Requirement (MCR) could be seen in Directive 2009/138/EC (2009,
Article 129), it should be calibrated to 85% Value-at-Risk of basic own funds in one
year horizon. More detailed implementing mathematical formula of MCR is given in
Delegated Regulation (2015, Chapter VI, Article 248).

Pillar II of Solvency II sets out the qualitative requirements. It contains the rules

2The long-term guarantee measures for insurance products with long-term guarantees were first dis-
cussed in EIOPA (2013) and adopted in Omnibus II Directive to reduce so called ’artificial volatility’.
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relating to supervisory review system, system of governance, risk management system
and Own Risk and Solvency Assessment (ORSA) (see Directive 2009/138/EC (2009,
Chapters III-IV), Delegated Regulation (2015, Chapters IX-XI)).

The supervisory review system (see Directive 2009/138/EC (2009, Article 36)) is es-
sential for Solvency II since the complexity of insurance business and risk management
techniques in the future will be such that no formulas or models could capture the situa-
tion fully (see Linder and Ronkainen (2004, p. 471)). It also specifies the aspects related
to the calculation of capital add-ons that may be imposed for supervisory purposes. Fur-
thermore, an effective system of governance (see Directive 2009/138/EC (2009, Chapter
II, Section 2)) should be in place by undertakings to provide for sound and prudent
management of the business. It mainly contains the risk management system, internal
control, internal audit and actuarial function. As part of risk management system, the
undertakings should conduct its Own Risk and Solvency Assessment (ORSA) after the
risks are identified and quantified in Pillar I under risk management system.

Pillar III of Solvency II sets out disclosure requirements. It contains the rules re-
lating to public disclosure, regular supervisory reporting, transparency (see Delegated
Regulation (2015, Chapters XII-XIV)).

The extensive attention has been paid to risks and risk management in insurance by
the rating agencies for their rating analysis. Since 2005 along with the existing categories
of competitive position, management and corporate strategy, operating performance,
capitalization, liquidity, investments, and financial flexibility, Standard & Poors (2005a)
has added a formal evaluation of insurer enterprise risk management (ERM) as one
new category for the rating process. The overall rating decision is then based on the
combination of the quality in each of these categories.

For the purpose of evaluating risk management, Standard & Poors (see Standard &
Poors (2005b), Standard & Poors (2013)) look at the companies’ ERM in five main
components, i.e. the risk management culture, risk control, emerging risk management,
risk models and strategic management. Standard & Poors (2013) describes how each of
these components is assessed by some criteria and then combined to derive the insurer’s
ERM score.

Similarly other rating agencies assess the ratings with the enterprise risk management,
see e.g. Moody’s Research Methodology (2004), Harris (2009) for the rating agency
Moody’s and A. M. Best (2013) for the rating agency A. M. Best.

Therefore, the insurance company should also fulfill the requirements or criteria related
the five components in order to get strong rating, especially when the insurance company
has been listed on the stock exchanges.

After the discussion of the regulatory and rating agency requirements, in the next
section we start to construct an enterprise risk management system while fulfilling these
requirements.
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2.3. Enterprise Risk Management

2.3.1. Risk Management and Enterprise Risk Management

Given the definition of risk in Section 2.1, we proceed do discuss the risk management.
The concept of risk management in current usage began in the early 1950s as men-
tioned in Vaughan and Vaughan (2008). One of the earliest references in literature was
Gallagher (1956), in which the author proposed the idea that someone within the or-
ganization should be responsible for managing the organization’s pure risks. There are
various ways to define risk management.

ISO (2009a) defines risk management as coordinated activities to direct and control
an organization with regard to risk. Rejda (2008) defines risk management is a process
that identifies loss exposures faced by an organization and selects the most appropri-
ate techniques for treating such exposures. Vaughan and Vaughan (2008) defines risk
management is a scientific approach to dealing with risks by anticipating possible losses
and designing and implementing procedures that minimize the occurrence of loss or the
financial impact of the losses that do occur.

Traditional risk management is focused on the specific individual risks. More recently,
the concept of enterprise risk management has been drawn great attention. Compared
to traditional risk management, ERM is a more holistic approach to integrate the man-
agement of all types of risks. Casualty Actuarial Society Enterprise Risk Management
Committee (2003) defines the ERM as “the discipline by which an enterprise in any
industry assesses, controls, exploits, finances, and monitors risks from all sources for
the purpose of increasing the enterprise’s short- and long-term value to its stakehold-
ers”. Furthermore, Committee of Sponsoring Organizations of the Treadway Commis-
sion (2004) (COSO) defines ERM as “a process, effected by an entity’s board of directors,
management and other personnel, applied in strategy setting and across the enterprise,
designed to identify potential events that may affect the entity, and manage risk to be
within its risk appetite, to provide reasonable assurance regarding the achievement of
entity objectives.” Hopkin (2010) illustrates more definitions of ERM and summarize the
definition of ERM requires three components: 1) a ERM process; 2) identification of the
outputs of the process; and 3) the intended impact of those outputs for e.g. risk-based
decision making.

2.3.2. Risk Management Process

There are many ways to describe the ERM process. The well-established risk manage-
ment processes are IRM standard (AIRMIC, ALARM, IRM (2002)) , COSO ERM frame-
work (Committee of Sponsoring Organizations of the Treadway Commission (2004)),
ISO 31000 (ISO (2009b)), ERM framework proposed by ERM Committee of the Amer-
ican Academy of Actuaries (2013). AIRMIC, Alarm, IRM (2010) describe a structured
approach to ERM by considering the requirements of ISO 31000. Here we follow the in-
ternational standard ISO 31000 (ISO (2009a), ISO (2009b)) and AIRMIC, Alarm, IRM
(2010).
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The graphical illustration could be seen in Figure 2.2. In the following we will describe
in greater detail for each step of the risk management.
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Figure 2.2.: The risk management process. (See ISO (2009b))

Communication and consultation

The communication and consultation are continual and iterative processes that organi-
zation conducts to provide, share or obtain information, and to engage in dialog with
stakeholders regarding the management of risk (see ISO (2009b, Section 3.2.1)).

It shows up during all stages of the risk management process and should be planned in
early stage. The communication and consultation should be effective in order to ensure
the smooth implementation of risk management process and the basis and reasons for
the decision making are understood by the stakeholders.

The communication and consultation with stakeholders are important, as stakeholders
may have different perceptions or views on a risk that may have a significant impact of
decisions making.

Establish the context

By establishing the context, it includes the internal and external, risk management con-
texts as well as the setting of risk criteria:

• Establishing the external context : It focuses on the objectives and concerns of
external stakeholders (e.g. regulators, rating agencies, external audits etc). The

16
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external context can include cultural, political, legal, regulatory, financial and
economic environments etc.

• Establishing the internal context : It focuses on the objectives of the organization.
The internal context can include the organization’s culture and structure, gover-
nance, policies, strategies, internal stakeholders etc.

• Establishing the context of the risk management process : It focuses on how to
establish the risk management processes. The context of the risk management
process can include the definition of objectives, strategies, scope and parameters
of the risk management activities, the definition of risk assessment methodologies
etc.

• Defining risk criteria: It focuses on defining the risk criteria for the risk assess-
ment by considering organization’s objectives, regulatory, rating agencies and other
requirements. The criteria could include how to define likelihood, measure conse-
quences, acceptable level of risks etc.

Risk Assessment

The risk assessment consists of risk identification, risk analysis and risk evaluation.
In order to manage risk effectively, all sources of risk to which the organization is

exposed should be identified. The risk identification is the process of finding, recognizing
and describing risks (ISO (2009b, Section 3.5.1)), the tools and techniques that are suited
to its objectives should be applied by the organization. For an insurance organization,
the sources of risk could be aggregated into six main risk categories (see Delegated
Regulation (2015)):

• non-life underwriting risk: non-life premium and reserve risk, catastrophe risk and
lapse risk;

• life underwriting risk: longevity, mortality, disability, life expense, revision, lapse,
life catastrophe;

• health underwriting risk;

• Market risk: interest rate risk, equity risk, property risk, spread risk, concentration
risk and currency risk;

• Counterparty default risk;

• Operational risk.

Furthermore, the sources of emerging risk should also be anticipated, since they may
develop to large risk in the future quickly.

After the risk identification, the next step is risk analysis, which involves the under-
standing and definition of risk. It is the process to comprehend the nature of risk and
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determine the level of risk. It provides the input for risk evaluation, risk treatment as
well as the decision making.

The risk analysis tools could be established by using several methods for the quantifi-
cation of risk. The most two common methods are standard formula and internal model
(see Directive 2009/138/EC (2009)). Furthermore, the stress tests, reverse stress tests
and hybrid methods with combination of prior methods are also mentioned in ERM
Committee of the American Academy of Actuaries (2013).

For the method of standard formula, the Solvency Capital Requirement is calculated
as the sum of Basic Solvency Capital Requirement, capital requirement of operational
risk, the adjustment for loss-absorbing capacity of technical provisions and deferred taxes
(see Directive 2009/138/EC (2009, Article 103)). The Basic Solvency Capital Require-
ment comprise individual risk modules, which are aggregated by so called “square-root
formula” using linear correlation matrix (see Directive 2009/138/EC (2009, Annex IV).
The risk modules are the main risk categories as mentioned in the previous paragraphs,
each of them shall be calibrated as 99.5% Value-at-Risk in one year horizon. More de-
tails about the standard formula could be seen in Directive 2009/138/EC (2009, Article
103-111) and Delegated Regulation (2015, Chapter V)). The square-root formula is cor-
rect if the risk categories are normally distributed (see Pfeifer and Strassburger (2008)),
however, this is not the case in real world. For instance, Sandström (2007) shows that
outcome could be problematic if the marginal distribution are skewed. Furthermore, the
overall SCR would be underestimated if the dependency structures are based on heavy
tailed copula.

Therefore, in order to better measure the required capital, the usage of more sophisti-
cated partial and full internal models are preferred. However, the calculation of Solvency
Capital Requirement using the internal model must be approved by supervisory authori-
ties (see Directive 2009/138/EC (2009, Article 112)). For the approval of internal model,
there are many requirements, i.e. use test, statistical quality standards, calibration stan-
dards, profit and loss attribution, validation standards, and documentation standards
should be fulfilled (see Directive 2009/138/EC (2009, Articles 120-127)). Besides the
calculation of capital requirement for Solvency II by the regulation, the rating agency
measures of required capital (e.g. 99.97% confidence interval for AA rating) or measures
defined by organization internally in line with risk strategy could be calculated based
on the internal model.

In addition, the capital adequacy that is assessed by the solvency ratio (i.e. the ratio
of available capital to the required capital) could be derived as well. These two quan-
tities are usually calculated by means of stochastic simulation. Therefore, an Economic
Scenario Generator (ESG) will be used to simulate the potential evolution of risk factors
of the economies and financial markets over time. Two types of ESG scenarios are used,
namely the market consistent risk neutral scenarios and real world scenarios.

For the calculation of available capital (defined as the difference between the market
value of assets and liabilities), the stochastic cash flow projection model with usage of
risk neutral scenarios is used for the market consistent valuation of assets and liabilities.

For the calculation of required capital, the probability distribution of available capital
in one year horizon and a risk measure based on such distribution should be taken
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into account. There are various of risk measures with different confidence level of risk
could be chosen to measure the risk. For instance, the Solvency Capital Requirement is
measured by the Value-at-Risk at confidence level of 99.5%.

After the risk analysis, the outcomes of which should then be used for the process
of risk evaluation. It examines the level of risk by the consequences and likelihood
and assists the decision making by considering the organizations’ risk attitude and risk
criteria. It also includes the risk appetite, risk tolerance, risk acceptance etc (see ISO
(2009b)).

Risk Treatment

Risk treatment is the process to modifying risk (see ISO (2009b, Section 3.8.1)). Risk
treatments are sometimes referred to risk mitigation when dealing with negative conse-
quences. It includes the risk control, risk mitigation, risk avoidance, risk sharing (risk
transfer) and risk financing etc.

Monitoring and review

Monitoring is the activity of continual checking, supervising, critically observing or
determining the status in order to identify change from the performance level required
or expected (see ISO (2009b, Section 3.8.2.1)). Review is the activity of determining
the suitability, adequacy and effectiveness of the subject matter to achieve established
objectives (see ISO (2009b, Section 3.8.2.2)).

The monitoring and review should take place in all stages of the risk management
process. It involves the risk reporting for providing information and recording with
respect to the current stage of risk, the creation of risk profile for the description of any
sorts of risks, the risk management audit for determining the adequacy and effective
of risk management framework by the evidence obtained from systematic, independent
and documented process.
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In this chapter, we review the axiomatic approach to risk measures used for the determi-
nation of capital requirements. The literature review of risk measures could be seen e.g.
Szegö (2002) from a probabilistic perspective, Albrecht (2004) from an actuarial per-
spective and Föllmer and Weber (2015) from a perspective of capital requirement. The
textbook of Föllmer and Schied (2011) offers mathematical insights into risk measures.

3.1. Risk Measures on a Probability Space

Let (Ω,F ,P) be a probability space, where Ω is the sample space, F is a σ-algebra on
Ω, P is a probability measure on the measurable space (Ω,F).

Let X be a random variable defined as a function X : Ω→ R with X−1 : B → F where
B is the Borel σ-algebra on Ω. Let FX(x) := P(X ≤ x) be the distribution function of
X, for a non-continuous distribution function FX the α quantile may not be uniquely
defined. Therefore we introduce the lower and upper α quantile for univariate random
variable X by:

qlα(X) = inf{x : P(X ≤ x) ≥ α} x ∈ R (3.1)

quα(X) = inf{x : P(X ≤ x) > α} x ∈ R (3.2)

Evidently, qlα(X) ≤ quα(X), and the equality qlα(X) = quα(X) holds if and only if P(X ≤
x) = α for at most one x (see Acerbi and Tasche (2002)). Therefore, if FX is strictly
increasing and continuous, the lower quantile and upper quantile are same and the
quantile can expressed by the inverse function F−1

X (·) of F ,

qα(X) = F−1
X (α) (3.3)

In the following, we will use F (·) as the short notation of FX(·) and F−1(·) as the short
notation of F−1

X (·).

Definition 3.1.1 (Risk Measure). Let X := L∞(Ω,F ,P) be the space of all bounded
measurable random variables on (Ω,F), a risk measure is a mapping from X into R, i.e.

ρ : X = L∞(Ω,F ,P)→ R (3.4)

The risk measures could be classified into different classes. The main classes are mon-
etary risk measure, convex risk measure, coherent risk measure, distortion risk measure,
spectral risk measure etc. Each of them fulfills certain properties of risk measure. Before
we discuss the different classes of risk measures mentioned in the literature, we first give
a variety of properties of risk measure for the purpose of classification.
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Definition 3.1.2 (Properties of risk measure). For a risk measure ρ : X → R, it has
the properties of: 1

(A.1) translation invariance if for m ∈ R and X ∈ X , we yield:

ρ(X +m) = ρ(X) +m. (3.5)

(A.2) monotonicity if for X ≤ Y and X, Y ∈ X , we yield:

ρ(X) ≤ ρ(Y ). (3.6)

(A.3) convexity ρ if for all 0 ≤ λ ≤ 1 and X, Y ∈ X , we yield:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ). (3.7)

(A.4) positive homogeneity if for all λ ≥ 0 and X ∈ X , we yield:

ρ(λX) = λρ(X). (3.8)

(A.5) subadditivity if for any X, Y ∈ X , we yield:

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (3.9)

(A.6) law invariance if for all X and Y with the same distribution under probability
measure P, we yield:

ρ(X) = ρ(Y ) (3.10)

(A.7) comonotonic additivity if X and Y are comonotonic, we yield

ρ(X + Y ) = ρ(X) + ρ(Y ) (3.11)

where random variables are comonotonic if and only if

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 for all (ω1, ω2) ∈ Ω× Ω (3.12)

(A.8) continuity if for d ∈ R it satisfies

lim
d→0

ρ((X − d)+) = ρ(X+), lim
d→∞

ρ(min(X, d)) = ρ(X), lim
d→−∞

ρ(max(X, d)) = ρ(X)

(3.13)

where (X − d)+ = max(X − d, 0).

1Note that the notations are different compared to Artzner et al. (1999). Artzner et al. (1999) define
the risk measure on portfolios by profit and loss value functions. Here we define the risk measure
on loss functions.
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(A.9) scale normalization if ρ(1) = 1, in which 1 represents the degenerate random
variable which equals 1 with probability 1.

Translation invariance (A.1) is motivated by the interpretation of ρ(X) as a capital
requirement, a amount of sure loss m is added, the capital requirement will be increased
by m.

Monotonicity (A.2) is the minimum requirement for a reasonable risk measure and it
states that the risk measure is increasing for higher risk (loss).

The convexity property (A.3) translates the diversification principle. Markowitz
(1952) and later the CAPM model introduce the concepts of diversification. The diver-
sifiable or unsystematic risk can be diversified by a variety of securities in the portfolio,
while the non-diversifiable or systematic risk can not be diversified. Therefore, diversi-
fication can reduce the risk or keep the same risk. In other words, diversification should
not increase risk. Suppose one investor has two possible investment strategies X and
Y . If one diversifies, i.e. puts the proportion of λ into X and 1− λ into Y , it will lead
to the outcome of λX + (1 − λ)Y . The risk of λX + (1 − λ)Y should be smaller than
maximum risk of X or Y . Using a risk measure ρ, the mathematical translation is that:

ρ(λX + (1− λ)Y ) ≤ max(ρ(X), ρ(Y )) for 0 ≤ λ ≤ 1 (3.14)

(3.14) is the weaker version (3.7) due to λρ(X) + (1 − λ)ρ(Y ) ≤ max(ρ(X), ρ(Y ))
for 0 ≤ λ ≤ 1. Therefore, the convexity property gives the idea of the diversification
principle. Note that under the property of translation invariance (A.1) and monotonicity
(A.2), (3.14) is equivalent to (3.7) (see Föllmer and Schied (2011)).

Positive homogeneity (A.4) states that the risk of a financial position is proportional
to the size of the position. Combined with the property of translation invariance (A.1),
one can standardize the model by centering (subtracting the mean) and scaling (dividing
by the standard deviation). The advantage of standardization is that the standardized
data are easier to visualize, compare and do further statistical analysis. Note that when
the risk grows in a non-linear way, one may not insist on positive homogeneity.

Subadditivity (A.5) means that “a merger does not create extra risk” (See Artzner
et al. (1999)). It shows that the aggregate risk is bounded by the sum of the individual
risks. Under the condition of positive homogeneity (A.4), the property of subadditiv-
ity (A.5) is equivalent to convexity (A.3) (see Föllmer and Schied (2011)). Therefore,
subadditivity (A.5) also means the diversification when the ρ is positive homogeneous
(A.4).

Law invariance (A.6) means that the risk of a position is only determined by the
distribution. The risk measure does no depend on the dependence structure of the risks.

Comonotonic additivity states the idea that the risk should be simply added up when
there is no way forX to work as a hedge for Y 2. If two random variables are comonotonic,
then X(ω) and Y (ω) move in the same direction as the state ω changes, that means
they can not hedge against each other, leading to the additivity of risks.

The continuity (A.8) is important. Nonfulfilment of the continuity property implies
that even small change in the data can lead to big difference of risk measures.

2X and Y may hedge, if they are negative correlated.
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For more interpretation of the properties, we refer to Föllmer and Schied (2011).
Given the properties of risk measure, we start to describe different classes of risk

measures. Fist of all, we start the monetary risk measure first initiated by Artzner et al.
(1999).

Definition 3.1.3 (Monetary Risk Measure). A risk measure is called a monetary risk
measure if it satisfies the properties of translation invariance (A.1) and monotonicity
(A.2).

The monetary risk measure could be viewed as minimum capital, i.e. the amount
needs to be raised in order to make the financial position acceptable from the point
of view of regulators (see Föllmer and Weber (2015)). One example of monetary risk
measure is the popular Value-at-Risk.

As monetary risk measure only fulfills to two properties, more potentially desirable
properties need to be considered. We start with the coherent risk measure by considering
additional properties.

Definition 3.1.4 (Coherent Risk Measure). (Artzner et al. (1999)) A risk measure is
called a coherent risk measure if it satisfies the properties of translation invariance (A.1),
monotonicity (A.2), positive homogeneity (A.4) and subadditivity (A.5).

Artzner et al. (1999) show that a risk measure is coherent if and only if there exists
a family Q of probability measures on the finite set of all possible states at a future
date, such that ρ(X) = supQ∈Q{EQ[X]}. Delbaen (2000) extends the results from finite
dimensional space to the space of bounded measure functions L∞(Ω,F ,P).

Proposition 3.1.1 (Delbaen (2000)). A risk measure is coherent if and only if there
exists a norm closed and convex set of probability measure Q, all absolutely continuous
with respect to P, such that

ρ(X) = sup
Q∈Q
{EQ[X]}, X ∈ X = L∞(Ω,F ,P).

In some cases the risk might increase in nonlinear way with the size of position.
Therefore it contradicts the property of positive homogeneity (A.4), Föllmer and Schied
(2002) replace the properties of positive homogeneity (A.4) and subadditivity (A.5) to
convexity (A.3) and propose the convex risk measure.

Definition 3.1.5 (Convex Risk Measure). (Föllmer and Schied (2002)) A risk measure
is called a convex risk measure if it satisfies the properties of translation invariance (A.1),
monotonicity(A.2) and convexity (A.3).

The convex risk measure has a dual representation for scenario analysis, which is
formulated in the following proposition.

Proposition 3.1.2. (Föllmer and Schied (2011)) A convex risk measure can be repre-
sented as

ρ(X) = sup
Q∈M
{EQ[X]− α(Q)} ∀X ∈ X (3.15)
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where M is the set of all probability measures on (Ω,F) that are absolutely continuous
with respect to P and α :M→ R∪{+∞} is the penalty function such that infQ∈M α(Q) ∈
R.

The elements of M can be interpreted as possible scenarios or probabilistic models
(different probability measures), ρ(X) is then computed as the worst case expectation
taken over all these scenarios Q ∈ M and penalized by α(Q). If one sets the penalty
function α(Q) = 0 for Q ∈ Q where Q is a subset of of M defined in Proposition
3.1.1 and α(Q) = +∞ for others, then the risk measure possess the property of positive
homogeneity. Therefore, coherent risk measure is a special case of convex risk measure,
i.e. a convex risk measure turns to be coherent risk measure if the property of positive
homogeneity (A.4) is satisfied.

If the risk measure needs to be law invariant and comonotonic additive, the distortion
risk measure introduced by Wang et al. (1997) comes into play.

Definition 3.1.6 (Distortion Risk Measure). (Wang et al. (1997)) A risk measure is
called distortion risk measure if it satisfies the properties of monotonicity (A.2), law
invariance (A.6), comonotonic additivity (A.7), continuity (A.8) and scale normalization
(A.9).

Proposition 3.1.3. A distortion risk measure ρ can be represented as a Choquet integral
representation

ρg(X) =

∫ 0

−∞
[g(SX(x))− 1]dx+

∫ ∞
0

g(SX(x))dx

where SX(x) = P(X > x) and g : [0, 1] −→ [0, 1] is a nondecreasing function with
g(0) = 0 and g(1) = 1.

Proposition 3.1.4. A distortion risk measure ρ is subadditive (A.5) if and only if the
distortion function g(x) is concave.

Proof. The proof is given in Wirch and Hardy (1999).

Therefore, whenever the distortion function of a distortion risk measure is concave,
the risk measure is also a coherent risk measure.

Proposition 3.1.5. A distortion risk measure ρ can also be represented as

ρg(X) = E[Xg′(SX(X))] =

∫ 1

0

g′(1− x)F−1(x)dx

where g′ is the first derivative of the distortion function and SX(x) = P(X > x).
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Proof. According to the Proposition 3.1.3, the distortion can be represented as follows:

ρg(X) =

∫ 0

−∞
[g(SX(s))− 1]ds+

∫ ∞
0

g(SX(s))ds

=

∫ 0

−∞
[g(1− F (s))− 1]ds+

∫ ∞
0

g(1− F (s))ds

=

∫ 0

−∞
[g(1− F (s))− g(1− F (−∞))]ds−

∫ ∞
0

[g(1− F (∞))− g(1− F (s))]ds

=

∫ 0

−∞
ds

∫ s

−∞
dg(1− F (t))−

∫ ∞
0

ds

∫ ∞
s

dg(1− F (t))

=

∫ 0

−∞
dg(1− F (t))

∫ 0

t

ds−
∫ ∞

0

dg(1− F (t))

∫ t

0

ds (3.16)

= −
∫ 0

−∞
tdg(1− F (t))−

∫ ∞
0

tdg(1− F (t))

= −
∫ ∞
−∞

tdg(1− F (t))

=

∫ ∞
−∞

tg′(1− F (t))F ′(t)dt

= E[Xg′(1− F (X)] = E[Xg′(SX(X))] (3.17)

where (3.16) we change the order of integration. Then by setting F (t) = x, we have3

ρg(X) = E[Xg′(SX(X))] = −
∫ ∞
−∞

tdg(1− F (t)) =

∫ 1

0

g′(1− x)F−1(x)dx.

By considering the g′(1 − x) as a weight function, Proposition 3.1.5 shows that the
distortion risk measure can be calculated as a weighted sum of quantiles.

Definition 3.1.7 (Spectral Risk Measure). (Acerbi (2002)) Let F−1
X be the inverse

function of FX
4, a risk measure is called a spectral risk measure if

ρφ(X) =

∫ 1

0

φ(x)F−1
X (x)dx (3.18)

where φ is an admissible risk spectrum i.e. a non-negative, non-decreasing and normal-
ized with ||φ|| =

∫ 1

0
φ(x)dx = 1. Note that φ can be interpreted as a weight function

reflecting an investor’s (subjective) risk aversion.

3When F (x) is not continuous, we can prove it by separating the integral into finite or infinite intervals
according to the discontinuous points.

4Here F−1
X is defined as F−1

X := inf{x : P(X ≤ x) ≥ α}, it can also be any other sensible definition for
the inverse of FX , see Acerbi (2002).
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Proposition 3.1.6. (Kusuoka (2001)) A spectral risk measure coincides with a coherent,
law invariance (A.6) and comonotonic additivity (A.7) risk measure.

Proposition 3.1.6 implies that the spectral risk measure is a subclass of coherent risk
measure. Furthermore, the spectral risk measure is highly related to the distortion risk
measure by setting the distortion function g(x) as a function of risk spectrum φ(x). The
relationship could be seen in Proposition 3.1.7.

Proposition 3.1.7. Let φ be a piecewise continuous admissible spectrum. Then ρg = ρφ
is a coherent distortion risk measure with concave distortion function satisfying g′(1 −
u) = φ(u). (See Gzyl and Mayoral (2006)).

Proof. It follows immediately from the Proposition 3.1.5 and
∫ 1

0
g′(1− x)dx = 1.

In the following, we give some examples of risk measures which are popular in financial
industry and see which properties they can fulfill and which kinds of risk measure they
are

Example 3.1.1 (Examples of risk measures).

• Value at Risk. The Value at Risk is given by

VaRα(X) = qα(X) (3.19)

for 0 < α < 1. VaR satisfies all the properties except the convexity (A.3) and
subadditivity (A.5). Therefore, it is a monetary risk measure and distortion risk
measure, but not coherent or convex or spectral risk measure (see also Denuit et al.
(2005)).

• Standard Deviation based risk measure.

Stdc(X) := c · Std(X) + E(X) for Std(X) > 0

Stdc(X) satisfies (A.1), subadditivity (A.5), positive homogeneity (A.4), convexity
(A.3), law invariance (A.6), continuity (A.8) and scale normalization (A.9). How-
ever, it is not monotonous (see the counterexample in Kalkbrener (2005)5) and is
not comonotonic additive.

• Tail VaR. Tail-VaR 6 is defined as

TVaRα(X) = (1− α)−1

∫ 1

α

VaRα(X)dx = (1− α)−1

∫ 1

α

qα(X)dx (3.20)

TVaR satisfies all the properties except the continuity w.r.t weak topology. It is
in the class of convex, coherent, spectral and distortion risk measure.

5Actually, for X ≤ Y , if Std(X) > Std(Y ) + (E(Y ) − E(X))/c, then Stdc(X) > Stdc(Y ), i.e. when
Std(X) is much larger Std(Y ), the Stdc may not fulfill the monotonic property.

6It is also called as expected shortfall (see Acerbi and Tasche (2002)), however, it is different with tail
conditional expectation TCEα(X) = E(X | X > V aRα), which is not coherent in general. TCE and
TVaR coincide for all α only if FX is continuous.
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3. Risk Measures

• Distortion risk measure. According to the Proposition 3.1.5, both the VaR and
TVaR are all distortion risk measures by setting different distortion functions.

(i) The distortion function of VaR is

g(x) =

{
0 if x < 1− α
1 if x ≥ 1− α

The first derivative at 1−x of g(x) then can be calculated as g′(1−x) = 1{x=α}.

(ii) The distortion function of TVaR is

g(x) =

{
x

1−α if x < 1− α
1 if x ≥ 1− α

The first derivative at 1− x of g(x) for TVaR then can be calculated as

g′(1− x) =

{
1

1−α if x > α

0 if x ≤ α

(iii) Wang’s Distortion function (see Wang (2002)). Let α be a pre-selected secu-
rity level. let λ = Φ−1(α), the distortion function

gλ(x) = Φ(Φ−1(x) + λ) (3.21)

where Φ is the standard normal distribution. When α > 0.5, the distortion
function is non-decreasing and concave. According to the Proposition 3.1.4
the corresponding risk measure WTλ(X) is also a coherent risk measure and
also a spectral risk measure. The first derivative at x of gλ(x) then can be
calculated as

g′λ(x) = φ(Φ−1(x) + λ)
∂(Φ−1(x) + λ)

∂x

=
1√
2π

exp

[
−(Φ−1(x) + λ)2

2

]
∂Φ−1(x)

∂x

= exp

[
−λ

2

2
− λΦ−1(x)

]
1√
2π

exp

[
−(Φ−1(x))2

2

]
∂Φ−1(x)

∂x

= exp

[
−λ

2

2
− λΦ−1(x)

]
∂Φ(Φ−1(x))

∂x

= exp

[
−λ

2

2
− λΦ−1(x)

]
where φ the density function of standard normal distribution. Therefore
g′λ(1 − x) = exp[−λ2/2 − λΦ−1(1 − x)]. The motivation of WTλ(X) is that
it contains all the information of the data, while VaR is determined only by
a quantile and TVaR only reflects losses exceeding the quantile and conse-
quently losses the information below the quantile. Furthermore, the TVaR is
calculated by setting the same weights to the tail and it may be not suitable
for low frequency but high severity losses.
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(iv) The beta family of distortion risk measures, proposed by Wirch and Hardy
(1999), utilizes the incomplete beta functions:

g(x) = Ix(a, b) =

∫ x

0

1

β(a, b)
ta−1(1− t)b−1dt (3.22)

where β(a, b) is the beta function with a, b > 0. The Harrel Davis (HD)
estimator of VaR (Harrell and Davis (1982)) is a special case of it by setting
a = (n+1)p+1 and b = (n+1)(1−p)+1, where n is the number of empirical
data.

(v) The Proportional Harzard (PH) transform is a special case of the beta-
distortion by setting a = 1/γ and b = 1. The corresponding risk measure
is

g(x) = u
1
γ (3.23)

The distortion function is concave when γ > 1.

(vi) The exponential distortion (ED) function:

g(x) =
1− e−hx

1− e−h
(3.24)

The distortion function is concave when h > 0. The first derivative at 1− x
is

g′(1− x) =
he−h(1−x)

1− e−h
(3.25)

The comparison of different kinds of distortion functions with various of param-
eter sets is shown in Figure 3.1. The distortion risk measure may not fulfill the
property of subadditivity, for instance when choosing γ < 1 for PH transform, the
corresponding distortion function would be convex, and the distortion risk measure
based on PH transform is not subadditive. However, we are more interested in the
property of subadditivity. Therefore, we consider the criteria for the choice of a
distortion function is checking if it is concave, continuous and differentiable. The
distortion function of VaR is discontinuous at point 1−α and is not concave, which
determines that VaR does not fulfill property of subaddtivity by Proposition 3.1.4.
The distortion function of TVaR is not differentiable at 1−α, it losses information
by setting weights only to the tail, see also the weight function g′(1 − x) plot in
Figure 3.2. Compared with the shorts of distortion functions for VaR and TVaR,
the distortion functions of Wang transform, PH transform and exponential distor-
tion are all continuous and differentiable. Furthermore, by making them fulfill the
concavity, we should choose λ > 0 and α > 0.5 for Wang’s transform, γ > 1 for
PH transform, and h > 0 for exponential distortion function.

Figure 3.2 illustrates the selected distortion function with specified parameters and
their corresponding weight functions. Higher value of tangency (first derivative)
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Figure 3.1.: Comparison of different kinds of distortion functions with various of param-
eter sets.

near 0 in distortion function will lead to higher weights in the tail. By choosing
different kinds of distortion function and corresponding parameter sets, we can
obtain a variety of weight functions to take into account the severities of extreme
values.

3.2. Risk Measures on the Sample Space

Heyde et al. (2007) make a very important contribution to the concept of risk measures by
introducing natural risk statistics. This concept bridges the gap between risk measures
and statistics by defining natural risk statistics on a sample space in contrast to a
probability space as in (3.4).

Let Rn denote the sample space associated to (Ω,F ,P), and x̃ = {x1, . . . , xn} ∈ Rn

be a collection of observations on the random variable X, where xi = X(wi).

Definition 3.2.1 (Risk Statistic). (Heyde et al. (2007))A risk statistic ρ̂ is a mapping
from sample space Rn into R, i.e.

ρ̂ : Rn −→ R. (3.26)

Similar to risk measure, we define the associated properties of risk statistics.
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Figure 3.2.: Comparison of different kinds of distortion functions and its corresponding
weights function g′(1− x).

Definition 3.2.2 (Properties of Risk Statistic). For a risk statistic ρ̂ : Rn → R, it have
the the properties of:

(B.1) translation invariance if for m ∈ R and x̃ ∈ Rn, we yield:

ρ̂(x̃+m1) = ρ̂(x̃) +m ∀x̃ ∈ Rn (3.27)

where 1 = (1, 1, . . . , 1)′.

(B.2) monotonicity if for x̃ ≤ ỹ, where x̃ ≤ ỹ means xi ≤ yi for all i = 1, . . . , n, we yield:

ρ̂(x̃) ≤ ρ̂(ỹ). (3.28)

(B.3) convexity if for all 0 ≤ λ ≤ 1 and x̃, ỹ ∈ Rn, we yield:

ρ(λx̃+ (1− λ)ỹ) ≤ λρ̂(x̃) + (1− λ)ρ̂(ỹ). (3.29)

(B.4) positive homogeneity if for all λ ≥ 0 and x̃ ∈ Rn, we yield:

ρ̂(λx̃) = λρ̂(x̃). (3.30)

(B.5) subadditivity if for any x̃, ỹ ∈ Rn, we yield:

ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ). (3.31)
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(B.6) Permutation invariance if for any permutation (i1, . . . , in), we yield:

ρ̂((x1, . . . , xn)) = ρ̂((xi1 , . . . , xin)) (3.32)

(B.7) comonotonic additivity if x̃ and ỹ are comonotonic, we yield

ρ̂(x̃+ ỹ) = ρ̂(x̃) + ρ̂(ỹ) (3.33)

where x̃ and ỹ are comonotonic if and only if (xi − xj)(yi − yj) ≥ 0, for any i 6= j.

(B.8) continuity if for any x̃ ∈ Rn, ε > 0 and ỹ satisfying |yi − xi| < ε for i = 1, . . . , n,
we yield:

|ρ̂(x̃)− ρ̂(ỹ)| < ε (3.34)

(B.9) scale normalization if ρ(1) = 1, where 1 = (1, 1, . . . , 1)′.

(B.10) comonotonic subadditivity if x̃ and ỹ are comonotonic, we yield:

ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ) (3.35)

(B.11) weak continuity if dk(Fx̃, Fỹ) → 0, then ỹ converges to x̃, where dk denotes the
weak-metric. 7

(B.12) continuity w.r.t wasserstein metric if dw(Fx̃, Fỹ)→ 0, then ỹ converges to x̃, where
dw denotes the wasserstein metric.

Properties (B.1)-(B.9) can be considered as the counterpart of the properties (A.1)-
(A.9) in terms of data. Note that the combination of Property (B.1), (B.2) and (B.4)
imply the Property of (B.8).

Similar to the law invariance Property (A.6), the permutation invariance Property
(B.6) means that if x̃ and ỹ have the same empirical distribution, then the risk statistic
should be the same for the given x̃ and ỹ.

The property of (B.8) can also be extend to the continuity w.r.t to a probability metric,
i.e. (B.11) and (B.12). The comonotonic subadditivity Property (B.10) relaxes the
comonotonic additivity Property (B.7). Property (B.10) is consistent with the prospect
theory of risk in psychology when the preference is only specified by the comonotonic
random variables (see Heyde et al. (2007)).

Definition 3.2.3 (Natural Risk Statistic). (Heyde et al. (2007))A risk statistic is called
a natural risk statistic, if it fulfills the properties of translation invariance (B.1), mono-
tonicity (B.2), positive homogeneity (B.4), permutation invariance (B.6), comonotonic
subadditivity (B.10).

7Such as Kolmogorov metric.
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By means of natural risk statistics, Heyde et al. (2007) bridge the gap to statistics
and all the statistical concepts can be applied. The following representation theorem
shows that the risk statistics can be represented by L-statistics.

Theorem 3.2.1. Let x(1), . . . , x(n) be the order statistics for the observation x̃. If ρ̂ is
a natural risk statistic, then there exists a set of weights W = {w̃ = (w1, . . . , wn)} ⊂ Rn

with each w̃ ∈ W satisfying
∑n

i=1wi = 1 and wi ≥ 0 for i = 1, . . . , n such that

ρ̂(x̃) = sup
w̃∈W

{
n∑
i=1

wix(i)

}
,∀x̃ ∈ Rn (3.36)

Proof. For the proof and more details, see Heyde et al. (2007).

3.3. Robustness of Risk Measures

As described in Chapter 1, certain tests and standards should be fulfilled for the approval
of internal model (see Directive 2009/138/EC (2009, Articles 120-127)). CEIOPS (2009)
gives further details on the requirements for the approval of internal model, in which the
requirement of robustness of a model is explicitly mentioned. The objective of internal
model is the determination of capital requirement, which is measured by a risk measure
with certain confidence level. Therefore, in this section we discuss the robustness of risk
measure.

In order to discuss the concept of robustness, we first start with the definition of
statistical functional.

Definition 3.3.1 (Statistical Functional). (see Fernholz (1983, p. 5)) Let x1, . . . , xn
be a sample from a population with distribution function F . Let Tn = Tn(x1, . . . , xn)
be a statistic. If Tn can be written as a functional T of the empirical distribution Fn,
say Tn = T (Fn), where T does not depend on n, then T will be called as a statistical
functional. More precisely, T is a functional defined on F,

T : F −→ R (3.37)

where F denotes the set of all distributions.

For a distribution based or law invariant risk measure ρ, it could be written as a sta-
tistical functional (see Föllmer and Knispel (2013)), i.e. ρ(X) = Tρ(F ). Furthermore,
given the empirical distribution Fn based on sample data from historical data or gener-
ated by Monte Carlo simulation, ρ(X) could be estimated by Tρ(Fn). For instance, the
distortion risk measure in Example 3.1.1 could be estimated by

ρg(X) = T (Fn) =

∫ 1

0

g′(1− x)F−1
n (x)dx (3.38)

g′(1− x) = 1{x=α} for VaR and g′(1− x) = 1
1−α if x > α and 0 if x ≤ α for TVaR. If Fn

in (3.38) is replaced by F , we obtain the associated risk measures.
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The robustness of risk measure then can be related to the continuity of statistical
functional. Here, the robustness means that if the risk measure is insensitive to the
small variations of distribution function. Actually according to Definition 3.3.1 if Fn is
in a neighborhood of F , then the statistical functional T (F ) can be approximated with
T (Fn). It leads to consider of F as a “point” in F. We therefore now investigate the
continuity for statistical functionals defined on F.

Definition 3.3.2 (Continuity of statistical functional). (see Kiesel et al. (2016)) Let F̄ ⊂
F be a convex class of distribution functions on R containing all degenerate distributions.
A functional T defined on F is continuous at F ∈ F̄ if

T (G)− T (F ) = o(1) as d(G,F )→ 0, F,G ∈ F̄

where d(G,F ) denotes the distance of two distribution G and F .

Examples for d may be the Kolmogorov distance, Wasserstein distance, L2-distance,
on F. The VaR is weak continuous w.r.t to weak topology (see Huber (1981, Theorem
3.1)). However, the TVaR is not weak continuous as shown in Kiesel et al. (2016,
Example 2).

Kiesel et al. (2016) then propose to use a right metric with respect to which the statis-
tical functionals associated with important risk measures are continuous. Therefore, the
Wasserstein metric (the definition could be seen in Bickel and Freedman (1981), Mal-
lows (1972), and convenient representation on the real line Salvemini (1943), Dall’ Aglio
(1956)) is taken into account. Wasserstein metric has nice properties such as scaling
property, convexity, sub-additivity etc and is a one-ideal metric (see Bickel and Freed-
man (1981)). The VaR and TVaR are continuous w.r.t W1-Wasserstein metric, see
Krätschmera and Zähle (2011). Furthermore, they show that the L-statistical func-
tional are continuous w.r.t Wasserstein metric, which indicates that the trimmed mean,
mean and TVaR are also continuous w.r.t to Wasserstein metric.

The weak continuity of statistical functional is related to qualitative robustness for
statistics could be represented by Tn as described in Huber (1981). In the following we
discuss further the quantitative robustness. It concerns how greatly a small deviation
in the distribution F changes the statistical functional Tn. We start with the von Mises
expansion. von Mises (1947) uses a Taylor expansion to approximate the statistical
functionals. Let F,G ∈ F̄, the Taylor expansion in the first order is given by

T (G) = T (F ) + T ′F (G− F ) +Rem(G− F ), (3.39)

where Rem(G−F ) is the remainder term and T ′F is the Gateaux derivative or von Mises
derivative is defined as

T ′F (G− F ) =
d

dt
T (F + t(G− F ))|t=0, (3.40)

if there exists a measurable function φF (x) independent of G such that

T ′F (G− F ) =

∫
φF (x)d(G− F )(x). (3.41)
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The function φF (x) is uniquely defined up to an additive constant, and should be nor-
malized by making

∫
φF (x)dF (x) = 0. It is called influence function or influence curve

by Hampel (1974) and is defined as

φF (x) =
d

dt
T (F + t(δx − F )) |t=0 , (3.42)

where δx is the function of the point mass one at x. The influence curve is useful in
assessing the robustness of an estimator, since it measures the effect on Tn by adding
one more observation with value x to a very large sample (see Hampel (1974)).

Huber (1981, p. 56) gives the influence function of α-quantile, i.e. T (F ) = F−1(α).
If F has nonzero finite derivative f at F−1(α), i.e. all the quantile values are uniquely
determined, then

φF (x, V aRα) =

{
α−1

f(F−1(α))
for x < F−1(α)

α
f(F−1(α))

for x > F−1(α)
. (3.43)

Therefore φF (x, V aRα) is bounded. In contrast, influence function of Tail-VaR is un-
bounded with value

φF (x, TV aRα) =

{
F−1(α)− TV aRα(F ) for x < F−1(α)

x
1−α − TV aRα(F )− α

1−αF
−1(α) for x > F−1(α)

, (3.44)

see e.g. Heyde et al. (2007, Section 8.3), Cont et al. (2010).
The von Mises expansion (3.39) could be used to analyze the asymptotic behavior.

For G = Fn, the expansion could be written as:

√
n(T (Fn)− T (F )) =

√
n

(
1

n

∫
φF (x)d(Fn − F ) +Rem(Fn − F )

)
=

1√
n

n∑
i=1

φF (xi) +
√
nRem(Fn − F ). (3.45)

If

0 < E(φF (X))2 = A(F, T ) <∞ (3.46)

and

√
nRem(Fn − F )→ 0, in probability (3.47)

then the central limit theorem and Slutsky’s lemma imply that

√
n(T (Fn)− T (F ))→ N(0, A(F, T )) in distribution,

as n→∞ (see Fernholz (1983)). To satisfy the condition (3.47), the Fréchet derivative
and the Hadamard (or compact) derivative (see more details in Fernholz (1983)) need
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to be considered. Note that the differentiability of statistical functional is also helpful
for using bootstrap.

Subsequently one can discuss the quantitative robustness of T according to the behav-
ior of its asymptotic bias and variance in some neighborhood Pε (e.g. Lévy neighborhood)
of the model distribution F0. For instance, Huber (1981) gives the maximum bias

b1(ε) = sup
F∈Pε
|T (F )− T (F0)|,

and maximum variance
v1(ε) = sup

F∈Pε
A(F, T ).
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4. Economic Scenario Generator

In the context of Solvency II, an Economic Scenario Generator (ESG) is used to generate
economic scenarios for calculation of Market Consistent Embedded Value (MCEV) and
determination of Solvency Capital Requirement (SCR). There are two types of ESG
scenarios are used, the market consistent risk neutral scenarios and real world scenarios.
For the calculation of MCEV, the risk neutral scenarios are used for the market consistent
valuation of assets and liabilities. For the determination of SCR, the real-world scenarios
including all relevant risk factors are used to calculate the distribution of shareholders’
net asset in one year horizon.

The economic scenarios include the financial market risk factors such as the risk free
yield curve, option implied volatilities of interest rates, equity returns and dividends,
credit spreads, transition probabilities among credit ratings, property returns, inflation
rates etc. Therefore, the interest rate model, equity model, credit model, property model
and inflation model are usually required.

There are two types of interest rate models that are used widely in the industry, i.e.
short rate model and market model. The short rate model is based on modeling the
instantaneous spot rate (short rate) through a one or multivariate dimensional diffusion
process. It is convenient since all the fundamental quantities such as rates and bonds
could be defined as a function of short rate process. Especially for the family of Affine
Term Structure Models (ATSMs), which are widely used due to their analytical tractable
formula for calculating the bond prices (see Duffie and Kan (1996)). The classical
one factor interest rate models such as the Vasicek Model (See Vasicek (1977)), the
Cox-Ingersoll-Ross (CIR) model (See Cox et al. (1985)) are all affine models. The
one factor model could be extended by adding a deterministic shift on the short rate
in order to fit perfectly the initial yield curve, for instance the Hull White extended
Vasicek model (see Hull and White (1990)) and the extended CIR model (CIR++)
(see Brigo and Mercurio (2006, p. 102, Seciton 3.9)). In addition, multi-factor models
are used to capture the main factors of yield curve (e.g. level, slope and curvature),
such as multi-factor Cox-Ingersoll-Ross model (see Chen and Scott (1993)). The market
model is modeling directly on the forwrd-LIBOR rates or forward swap rates via multi-
dimensional diffusion processes. The main advantage is that such models, i.e. lognormal
forward-LIBOR model and lognormal forward-swap model, are compatible with the
well-established market formulas for basic derivatives, i.e. caps and swaptions. More
descriptions of short rate models and market model we refer the book Brigo and Mercurio
(2006).

In practice, the market leading ESG providers use either the short rate models or
market model. For instance, the extended two factor Black-Karasinski model (Morrison
(2007)) and Libor Market Model (LMM) are implemented in the Barrie & Hibbert ESG.
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1 In contrast, a special case of multi-factor affine term structure model, i.e. the extended
three factor Cox-Ingersoll-Ross model (CIR3++), is implemented in GEMS, which is a
ESG provided by Conning. 2

There are many popular models for modeling the equity price. The Black-Scholes
model is the most classical model, which has the closed form of option price. Never-
theless, it has the main drawback that the stock return is normally distributed and the
volatility is constant, which is not consistent with the empirical studies of skewed stock
returns as well as time-varying volatilities. In order to overcome the drawback, popular
stochastic volatility models such as Heston model (see Heston (1993)) as well as stochas-
tic jump diffusion model (see Bates (1996), Pan (2002), Bates (2006)) considering jumps
in the stock returns are taken into account. In practice, both GEMS by Conning and
the Barrie & Hibbert ESG use the stochastic volatility jump diffusion (SVJD) model for
equity modeling (see Conning (2012), Lawson (2011)).

The credit risk spreads could be modeled by the so called Jarrow-Lando-Turnbull
(JLT) model (see Jarrow et al. (1997)). The transition matrices are time dependent
under risk neutral measure for JLT model, it leads to time dependent credit spreads.
Therefore, there is a lack of stochastic spreads (transition probabilities) for the JLT
model. One extension could be modeling the risk premia by the Cox-Ingersoll-Ross
process (see Arvanitis et al. (1998) and Dubrana (2011)). In practice, GEMS by Conning
uses so called “Corporate Yield Model” based on Feldhütter and Lando (2008) and the
Barrie & Hibbert ESG uses the extension of JLT model by allowing the risk premia to
be stochastic (see Morrison (2003)).

In the following we build a simple ESG by choosing the extended multi-factor Cox-
Ingersoll-Ross model for modeling the interest rates and Heston model for modeling
the equity index and ignoring the other risk factors. The calibration and simulation of
both models under risk neutral measure and real world measure are shown in the next
sections.

4.1. Interest rate model

In this section, we describe the extended multi-factor Cox-Ingersoll-Ross model for the
modeling of interest rates. The dynamics of short rate is driven by N dimensional
vector of state-variable X1(t), . . . , XN(t). A constant shift on the short rate δ0 is added
to allow negative interest rates. Furthermore, a deterministic shift term δ(t) could be
further added in order to fit the initial yield curve at the current time exactly if necessary.
In all, the short rate dynamics under real world measure is

r(t) = δ(t) + δ0 +
N∑
i=1

Xi(t),

dXi(t) = κ′i(θ
′
i −Xi(t))dt+ σi

√
Xi(t)dW

P
i (t), (4.1)

1www.barrhibb.com
2www.conning.com
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4. Economic Scenario Generator

where W P
1 (t), . . . ,W P

N(t) are independent Wiener processes. According to the Girsanov
Theorem, we could change the short rate dynamics from real world measure to risk
neutral measure by applying

dWQ
i (t) = dW P

i (t) +
λ0
i + λ1

iXi(t)

σi
√
Xi(t)

dt. (4.2)

Plugging (4.2) into (4.1), we then get:

r(t) = δ(t) + δ0 +
N∑
i=1

Xi(t),

dXi(t) = κi(θi −Xi(t))dt+ σi
√
Xi(t)dW

Q
i (t), (4.3)

where the Wiener processes WQ
1 (t), . . . ,WQ

N (t) are independent and

κ′i = κi − λ1
i , θ′i =

κiθi + λ0
i

κi − λ1
i

for i = 1, . . . , N,

where λ0
i , λ

1
i are the parameters for market price of risk. Note that there are two

parameters for the market price of risk to make the speed and mean reversion parameters
κi and θi to be different between risk neutral and real world measure. Hence it is more
flexible to fit better under two different measures.

4.1.1. Pricing zero coupon bonds and swaptions

The zero coupon bond is the most basic interest rate instrument. We start to price the
zero coupon bond. Since the model is in the family of affine model, the zero coupon
bond could then be priced as (see Duffie and Kan (1996), Dai and Singleton (2000)),

P (t, T ) = eC(t,T )−
∑N
i=1B

Xi (t,T )Xi(t). (4.4)

Given the money market account Mt = exp{
∫ t

0
r(s)ds}, then P (t,T )

Mt
is a martingale under

risk neutral measure Q with the numeraire Mt. Therefore, applying the Ito’s formula
to dP (t,T )

Mt
, then the drift term of dP (t,T )

Mt
should be zero according to the martingale

representation theorem (see Bingham and Kiesel (2004)). Then we will have the ordinary
differential equations (ODEs):

∂BXi(t, T )

∂t
= κiB

Xi(t, T ) +
1

2
BXi(t, T )2σ2

i − 1 BXi(T, T ) = 0,

∂C(t, T )

∂t
=

N∑
i=1

θiκiB
Xi(t, T ) + δ(t) + δ0 C(T, T ) = 0.

By solving the ODEs we could have:

BXi(t, T ) =
2(ehi(T−t) − 1)

2hi + (κi + hi)(ehi(T−t) − 1)
, (4.5)

C(t, T ) = −
∫ T

t

δ(s) + δ0 ds+
N∑
i=1

CXi(t, T ), (4.6)
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where

hi =
√
κ2
i + 2σ2

i ,

CXi(t, T ) =
2κiθi
σ2
i

log

[
2hie

(κi+hi)(T−t)/2

2hi + (κi + hi)(ehi(T−t) − 1)

]
.

As we described before, the shift term δ(t) is used to fit exactly the zero-coupon
curve observed in the market. The determination of shift we follow the CIR++ model
introduced in Brigo and Mercurio (2006, p.102). Let

δ̃(t0, t0 + t) = fM(t0, t0 + t)−
N∑
i=1

fXi(t0, t0 + t)− δ0,

be the difference between market instantaneous forward rate and the sum of factor
instantaneous forward rate fXi for state variable Xi at time t0 for time to maturity t.
Under the current time t0 = 0, then the δ(t) is defined as

δ(t) = δ̃(0, t) = fM(0, t)−
N∑
i=1

fXi(0, t)− δ0,

where

fXi(0, t) = −∂ lnPXi(0, t)

∂t
=

2κiθi(e
thi − 1)

2hi + (κi + hi)(ethi−1)
+Xi(0)

4h2
i e
thi

[2hi + (κi + hi)(ethi − 1)]2
.

Therefore, we have e−
∫ T
0 δ(s)+δ0 ds = PM(0, T )/

∏N
i=1 P

Xi(0, T ), where PM(0, T ) is the
market zero coupon bond price with maturity T and PXi(t, T ) is the zero coupon bond
price of single factor Xi(t), i.e.

PXi(t, T ) = eC
Xi (t,T )−BXi (t,T )Xi(t).

We now could get the explicit bond-price for the extended multi-factor CIR,

P (t, T ) = ξX(t, T )
N∏
i=1

PXi(t, T ),

where ξX(t, T ) is the extended term on the bond price

ξX(t, T ) = e−
∫ T
t δ(s)+δ0 ds =

PM(0, T )
∏N

i=1 P
Xi(0, t)

PM(0, t)
∏N

i=1 P
Xi(0, T )

.

Given the bond price, we now start to consider the European option on zero-coupon
bond. For an European call option on zero coupon bond with option expiration T and
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the bond maturity S > T with payoff HT = (P (T, S)−K)+, the price is given by:

ZBC(t, T, S,K) = EQ[Mt
HT

MT

|Ft]

= P (t, T )EQT [HT |Ft]
= P (t, T )EQT [(P (T, S)−K)+|Ft]
= P (t, T )EQT [(P (T, S)1A|Ft]−KP (t, T )QT (A)

= P (t, S)EQS [1A|Ft]−KP (t, T )QT (A)

= P (t, S)QS(A)−KP (t, T )QT (A),

where QT is the T -forward measure and A is the exercise region, which satisfies{
(X1, . . . , XN) ∈ A

∣∣∣∣ N∑
i=1

BXi(T, S)Xi(T ) ≤ Z

}
(4.7)

with Z = − lnK + C(T, S). As we know the
∑N

i=1B
Xi(t, T )Xi(T ) is a linear function

of the N -state variables, more precisely a linear combination of non-central random
χ2 variables. The linear combination of non-central random variables is not non-central
distributed any more, and therefore it is not straightforward to calculate the probabilities
QS(A) and QT (A). Longstaff and Schwartz (1992) suggest that bivariate numerical
integrations should be used to calculate these probabilities. Chen and Scott (1992)
develop a method reduce the bivariate integration to one-dimensional integral.

Here we refer to the method proposed by Chen and Scott (1995), who use Fourier
transformation and characteristic functions to reduce the multi-dimensional integration
to univariate integration. Given a probability distribution function G(y) = P (Y ≤ y),
the corresponding characteristic function could be given as

Ψ(u) =

∫ ∞
−∞

eiuydG(y) =

∫ ∞
−∞

eiuyg(y)dy, (4.8)

where g(y) is the probability density function of G(y). In the multi-factor CIR models,
each state variable has a non-central χ2 distribution, which has a probability density
function and a closed form for the characteristic function. The characteristic function
of linear combination of independent state variables could be calculated as the product
of characteristic functions for single state variable, i.e.

Ψ(u) =

∫ ∞
−∞

. . .

∫ ∞
−∞

eiu
∑N
i=1B

Xi (T,S)Xi(T )g1(BX1(T, S)X1(T )) . . . gN(BXN (T, S)XN(T ))

dBX1(T, S)X1(T ) . . . dBXN (T, S)XN(T )

= Ψ1(BX1(T, S)u) . . .ΨN(BXN (T, S)u).

Suppose that the probability density function exists, one can use an inverse Fourier
transform of the characteristic function to recover the probability density function,

g(y) =
1

2π

∫ ∞
−∞

Ψ(u)e−iuydu.
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Furthermore, if the random variables are non-negative, as it is in the CIR model, the
probability function can be calculated by a version of the Fourier inversion formula as
stated in Chen and Scott (1995),

P (Y ≤ y) =
1

π

∫ ∞
−∞

sinuy

u
Ψ(u)du. (4.9)

In the CIR model, for the single process under T -forward measure QT , i.e. using
T -bond P (t, T ) as the numeriare, the density function of the Xi(t) conditional on Xi(s),
s ≤ t ≤ T , is given by (see Brigo and Mercurio (2006, p.67))

pTXi(t)|Xi(s)(yi) = pχ2(νi,λi(t,s))/qi(t,s)(yi) = qi(t, s)pχ2(νi,λi(t,s))(qi(t, s)yi)

qTi (t, s) = 2[ψi + φi(t− s) +BXi(t, T )],

λTi (t, s) =
4φi(t− s)2Xi(s)e

hi(t−s)

qi(t, s)
,

where

νi =
4κiθi
σ2
i

,

φi(t− s) =
2hi

σ2
i (e

hi(t−s) − 1)
,

ψi =
κi + hi
σ2
i

.

Hence the density function of the Xi(T ) conditional on Xi(t) is:

pTXi(T )|Xi(t)(yi) = pχ2(νi,λi(t,s))/qi(T,t)(yi) = qi(T, t)pχ2(νi,λi(T,t))(qi(T, t)yi),

qTi (T, t) = 2[ψi + φi(T − t) +BXi(T, T )] = 2[ψi + φi(T − t)],

λTi (T, t) =
4φi(T − t)2Xi(t)e

hi(T−t)

qTi (T, t)
.

Under measure QS, the density function of Xi(t) conditional on Xi(s), s ≤ t ≤ S, is
given by

pSXi(t)|Xi(s)(yi) = pχ2(νi,λi(t,s))/qi(t,s)(yi) = qi(t, s)pχ2(νi,λi(t,s))(qi(t, s)yi),

qSi (t, s) = 2[ψi + φi(t− s) +BXi(t, S)],

λSi (t, s) =
4φi(t− s)2Xi(s)e

hi(t−s)

qSi (t, s)
.

Hence the distribution of the Xi(T ) conditional on Xi(t) is:

pSXi(T )|Xi(t)(yi) = pχ2(νi,λi(T,T ))/qi(T,t)(yi) = qi(T, t)pχ2(νi,λi(T,t))(qi(T, t)yi)

qSi (T, t) = 2[ψi + φi(T − t) +BXi(T, S)],

λSi (T, t) =
4φi(T − t)2Xi(t)e

hi(T−t)

qSi (T, t)
.
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Given the characteristic function for the non-central χ2 (see Johnson and Kotz (1970)):

F (u, ν, λ) = E[eiux] = (1− 2iu)−
1
2
νe

iuλ
1−2iu , (4.10)

where ν is the degrees of freedom parameters, and λ is the non-central parameter, we
could get the characteristic function of each state variable Xi(T ) conditional on Xi(t) as

ΨT
i (u) = EQT

t [eiuXi(t)] = F (u/qTi (T, t), νi, λ
T
i (T, t))

and hence the characteristic function of the linear combination of
∑M

i=1 B
Xi(T, S)Xi(T )

can be given by:

ΨT (u) = EQT
t

[
eiu

∑N
i=1B

Xi (T,S)Xi(T )
]

=
N∏
i=1

ΨT
i (BXi(T, S)u)

=
N∏
i=1

F

(
BXi(T, S)u

qTi (T, t)
, νi, λ

T
i (T, t)

)
.

Therefore, as the case of multi-factor CIR model, we get (see Chen and Scott (1995)):

ZBC(t, T, S,K) = P (t, S)

(
1

π

∫ ∞
−∞

sinuZ

u
ΨS(u)du

)
−KP (t, T )

(
1

π

∫ ∞
−∞

sinuZ

u
ΨT (u)du

)
= P (t, S)

(
2

π

∫ ∞
0

sinuZ

u
Re(ΨS(u))du

)
−KP (t, T )

(
2

π

∫ ∞
0

sinuZ

u
Re(ΨT (u))du

)
, (4.11)

where Z is defined in (4.7), i.e. Z = − lnK + C(T, S) where C(T, S) is calculated by
(4.6) and

ΨS(u) =
N∏
i=1

F

(
BXi(T, S)u

qSi (T, t)
, νi, λ

S
i (T, t)

)
, (4.12)

ΨT (u) =
N∏
i=1

F

(
BXi(T, S)u

qTi (T, t)
, νi, λ

T
i (T, t)

)
. (4.13)

Another way to calculate the bond option price is to get the characteristic function of
lnP (T, S) proposed in Carr and Madan (1999) or Lee (2004). As mentioned above we
have known the conditional characteristic function of

∑N
i=1B

Xi(T, S)Xi(T ), therefore

g(u, t, T, S) = EQT
t

[
eiu lnP (T,S)

]
= EQT

t

[
eiuC(T,S)−iu

∑N
i=1B

Xi (T,S)Xi(T )
]

= eiuC(T,S)ΨT (−u).

Furthermore, let
ct(k) = exp{ak}ZBC(t;K,S, T )
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be the dampened call price, where k is the log strike k = lnK and a > 0 is the dampening
coefficient. Then we have the Fourier transform of ct(k),

ζ(u, t, T, S) =

∫ ∞
−∞

eiukct(k)dk

=

∫ ∞
−∞

eiukeakEQ
t

[
e−

∫ T
t rsds(elnP (T,S) − ek)+dk

]
= P (t, T )EQT

t

[∫ ∞
−∞

eiukeak(elnP (T,S) − ek)+dk

]
= P (t, T )EQT

t

[∫ ∞
−∞

eiukeak(elnP (T,S) − ek)+dk

]
= P (t, T )EQT

t

[∫ lnP (T,S)

−∞
eiukeak(elnP (T,S) − ek)dk

]

= P (t, T )EQT
t

[(
e(iu+a+1) lnP (T,S)

iu+ a
− e(iu+a+1) lnP (T,S)

iu+ a+ 1

)]
= P (t, T )EQT

t

[
e(iu+a+1) lnP (T,S)

(iu+ a)(iu+ a+ 1)

]
= P (t, T )

g(−i(iu+ a+ 1), t, T, S)

(iu+ a)(iu+ a+ 1)
.

The price of call option can now be calculated by a single integration by using inverse
transform,

ZBC(t;T, S,K) =
exp{−a lnK}

2π

∫ ∞
−∞

exp{−iu lnK}ζ(u, t, T, S)du

=
exp{−a lnK}

π

∫ ∞
0

Re[exp{−iu lnK}ζ(u, t, T, S)]du. (4.14)

Note that the pricing of European call option on zero coupon bond based on (4.14)
is faster than (4.11) proposed by Chen and Scott (1995) since only one integration is
required. However, it requires the dampening coefficient a and one needs to determine
an appropriate choice of a.

Finally, the European put option on zero coupon bonds could be calculated according
to the Put-Call-Parity, i.e.

ZBP (t;T, S,K) = ZBC(t;T, S,K)− (P (t, S)−KP (t, T )) .

For the extended multi-factor Cox-Ingersoll-Ross model, there is no analytical formula
for the pricing of European swpation. There are several approximation methods for the
pricing of swaption. Munk (1999) introduces the method called stochastic duration
approximation, which approximate the swaption as a zero-bond option with maturity
equal to stochastic duration of the zero bond. Singleton and Umantsev (2002) propose
a method which is based on approximation on the excise region using straight-line seg-
ments. Then the probability of the exercise can be easily calculated according Fourier
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transformation we already had described above. Schrager and Pelsser (2006) also pro-
pose an approximation method which is based on the derivation of approximate swap
rate of dynamics. All the numerical comparison about the quality of the approximations
according to Monte Carlo simulations can be seen in Zheng (2009).

Here we describe the stochastic duration approximation by Munk (1999). Consider
dynamics of the prices of the zero coupon bond maturing at time T for the affine term
structure model under measure Q,

dP (t, T ) = P (t, T )

[
µ(t, T ) +

N∑
j=1

vj(t, T )dWQ
j (t)

]

where W1, . . . ,WN are independent standard Brownian motions, with drift term µ(t, T ),
and the diffusion terms vj(t, T ). Again we denote T = {Tα, Tα+1, ..., Tβ} as the set of
payment times, and the year fraction τ = {τα+1, . . . , τβ}, which τi the difference between
Ti−1 to Ti, i = α + 1, . . . , β. Furthermore, we set ci = Kτi for i = α + 1, . . . , β − 1 and
cβ := 1 +Kτi. Apply the Ito’s formula,

d

β∑
i=α+1

ciP (t, Ti) =

β∑
i=α+1

ciP (t, Ti)µ(t, Ti)dt+

β∑
i=α+1

ciP (t, Ti)
N∑
j=1

vj(t, Ti)dW
Q
j (t)

=

β∑
i=α+1

ciP (t, Ti)

[
β∑

i=α+1

w(t, Ti)µ(t, Ti)dt+
N∑
j=1

(
β∑

i=α+1

w(t, Ti)vj(t, Ti)

)
dWQ

j (t)

]

where Munk (1999) introduces the weights

w(t, Ti) =
ciP (t, Ti)∑β

i=α+1 ciP (t, Ti)

that are non-negative and sum to one. Then he defines the stochastic duration D(t)
of the coupon bond as the time to maturity of the zero-coupon bond having the same
relative volatility as the coupon bond, i.e. the same instantaneous variance of relative
price changes. More formally, D(t) is given by

N∑
j=1

vj(t, t+D(t))2 =
N∑
j=1

(
β∑

i=α+1

w(t, Ti)vj(t, Ti)

)2

. (4.15)

For the general properties of stochastic duration and the approximation errors we refer
to Munk (1999). Here we only give the formula approximate the price of swaptions using
the stochastic duration.

Let ZBC(t;Tα, T,K) be the time t price of a European call option maturing at time
Tα, written on a zero-coupon bond paying one dollar at time T (bond maturity T ),
and having an exercise price K. Let CBC(t;Tα, K) be the time t price of a European
call option maturing at time Tα with coupon payments ci at future times Tα+1, . . . , Tβ,
written on a coupon bond and having an exercise price K. Similarly, denote by CBP
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the European put option on coupon bond. Then we have the following approximation
(see Munk (1999)):

CBC(t, Tα, K) ≈ CBCapp(t, Tα, K) ≡ ηZBC(t, Tα, t+D(t), K/η), (4.16)

where D(t) is the stochastic duration defined in (4.15), and

η =

β∑
i=α+1

ciP (t, Ti)

P (t, t+D(t))
.

Furthermore, the swaption can be viewed as an option on a coupon bond. i.e.

PS(t, T , K) = EQ
t

D(t, Tα)

[
P (Tα, Tα)− P (Tα, Tβ)−

β∑
i=α+1

τiKP (Tα, Ti)

]+


= P (t, Tα)EQT
t

[1− P (Tα, Tβ)−
β∑

i=α+1

τiKP (Tα, Ti)

]+


= P (t, Tα)EQT
t

[1−
β∑

i=α+1

ciP (Tα, Ti)

]+


= CBP (t, Tα, 1)

≈ ηZBP (t, Tα, t+D(t), 1/η). (4.17)

For the extended multi-factor CIR model, we could have

dP (t, T ) = P (t, T )

[
µ(t, T )−

N∑
j=1

σj

√
Xj(t)B

Xj(t, T )dWQ
j (t)

]

by applying Ito’s formula with vj(t, T ) = −σj
√
Xj(t)B

Xj(t, T ). Therefore, we can get
the D(t) under enxtended multi-factor model according the equation of (4.15).

4.1.2. Model calibration

To estimate the multi-factor CIR model, we follow the state-space approach described
in Chen and Scott (1993) and Geyer and Pichler (1999).

Let RM denote the historical continuous compounded spot rates bootstrapped from
the swap rates. The difference between the market and model spot rates is captured
in the measurement error. The measurement equation for the state-space model for the
multi-factor CIR model could be written as:

RM(t, T ) = δ0 −
∑N

i=1 C
Xi(t, T )

T − t
+

∑N
i=1 B

Xi(t, T )Xi(t)

T − t
+ uT εT (t). (4.18)
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Note that the shift term δ(t) is not taken into account in the Kalman filter estimation
based on historical data, since δ(t) only refers to the current time in order to fit the initial
yield curve. uT is a constant and εT (t) are independent standard normal variables for
all T and t.

For the construction of transition equation, some approximation should be made to
use standard linear Kalman filter, since the transition density for a single process is the
non-central χ2 density (see Cox et al. (1985)). Following Chen and Scott (1993) and
Geyer and Pichler (1999), a normal transition density is used as a good approximation
of the exact transition density by matching the first two moments. We now need to
calculate the first two moments, i.e. the conditional expectation and variance for the
exact transition density. By applying the Ito’s formula to d(eκ

′
itXi(t)), we have

d(eκ
′
itXi(t)) = eκ

′
itdXi(t) + d(eκ

′
it)Xi(t) = eκ

′
itκ′iθ

′
idt+ eκ

′
itσi
√
Xi(t)dW

P(t), (4.19)

and integrate on both side,

eκ
′
itXi(t) = eκ

′
isXi(s) + κ′iθ

′
i

∫ t

s

eκ
′
iudu+ σi

∫ t

s

eκ
′
iu
√
Xi(u)dW P(u). (4.20)

Therefore, the expectation of Xi(t) conditional on Xi(s) is:

E[Xi(t)|Xi(s)] = θ′i

(
1− e−κ′i(t−s)

)
+ e−κ

′
i(t−s)Xi(s) (4.21)

Furthermore, by applying the Ito’s isometry 3 and then the corresponding conditional
variance could be calculated

Var[Xi(t)|Xi(s)] =
θ′iσi

2

2κ′i

(
1− e−κ′i(t−s)

)2

+
σi

2

κ′i

(
e−κ

′
i∆t − e−2κ′i(t−s)

)
Xi(s). (4.22)

Given the first two moments of exact transition density, i.e. non-central χ2 density,
we use a normal density by matching these first two moments approximate the exact
density. Under small discrete time interval, the transition equation for the state-space
model is

Xi(t) = θ′i

(
1− e−κ′i∆t

)
+ e−κ

′
i∆tXi(t−∆t) +Hi(t)ηi(t), (4.23)

where ηi(t) are independent standard normal variables for all i, t and independent of
εT (t). Hi(t)

2 is the conditional variance of the state variable given as:

Hi(t)
2 = Var[Xi(t)|Xi(t−∆t)]

=
θ′iσi

2

2κ′i

(
1− e−κ′i∆t

)2

+
σi

2

κ′i

(
e−κ

′
i∆t − e−2κ′i∆t

)
Xi(t−∆t). (4.24)

3E[(
∫ t
s
eκ

′
iu
√
Xi(u)dW P(u))2|Xi(s)] = E[(

∫ t
s
e2κ

′
iuXi(u)du)|Xi(s)] =

∫ t
s
e2κ

′
iuE[Xi(u)|Xi(s)]du.
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The initial updating moments of state variables at time 0 are the unconditional mo-
ments of state variables, i.e.

E[Xi(0)] = lim
t→∞

E[X(t)] = θ′i, (4.25)

Var[Xi(0)] = lim
t→∞

Var[X(t)] =
θ′iσi

2

2κ′i
, (4.26)

which do not depend on the initial value of Xi due to the stationary property of Xi.
Under the assumption of normality of transition density and given initial values, we

could then follow the main steps for performing the standard linear Kalman filter al-
gorithm in Appendix C. Furthermore, since there is an extra non-negative restriction
on state variable Xi(t) ≥ 0, we modify the Kalman filter by assuming that there is no
negative updating of state variable, i.e. at|t = max(at|t, 0).

Consequently, an approximate Kalman filter is used to estimate the unobservable
state variables and the model parameters are estimated by applying a quasi maximum
likelihood estimator in a state space model.

Besides fitting to the historical spot rates, the model should also calibrate to the
market ATM swaption prices with different option expiries and swap tenor at cut-off
date. The market swaption prices are calculated by the Black-like formula given the
swaption implied volatilities by (A.5). The model swaption prices could be calculated
by the stochastic duration approximation given in (4.17) for the multi-factor extended
CIR model.

In the end, we construct the object function of the optimization problem as minimizing
the negative log-likelihood of quasi maximum likelihood through Kalman filter and a
penalty on the the mean squared error of model and market ATM swaption prices with
different swap tenors and option expires.

min
Θ

{
− lnL(Θ) + w

(
1

n

n∑
i=1

(Pmod
i (Θ)− Pmkt

i )2

)}
(4.27)

4.2. Equity model

In this section, we describe the Heston model introduced by Heston (1993) for modeling
the equity index. We start the dynamics of equity index under risk neutral measure:

dS(t)

S(t)
= (r(t)− q)dt+

√
v(t)

(
ρdWQ

v (t) +
√

1− ρ2dWQ
s (t)

)
, S(0) > 0,

dv(t) = κv(θv − v(t))dt+ σv
√
v(t)dWQ

v (t), v(0) > 0,

where dWQ
s (t)dWQ

v (t) = 0. The v(t) represents the variance rather than the standard
deviation, which follows a mean reversion square root process, i.e. the CIR process (see
Cox et al. (1985)). The constraint 2κvθv ≥ σ2

v is usually considered to make sure that
the zero can not be reached. Furthermore, the dynamics of short rate r(t) is given in
(4.3) with dWQ

s (t)dWQ
i (t) = 0 and dWQ

v (t)dWQ
i (t) = 0 for i = 1, . . . , N .

47



4. Economic Scenario Generator

Now we consider the dynamic of the logarithm of S(t), i.e. s(t) = lnS(t),

ds(t) =d lnS(t) =
1

S(t)
dS(t) +

1

2

(
− 1

S(t)2
d〈S(t)〉

)
=(r(t)− q)dt+

√
v(t)

(
ρdWQ

v (t) +
√

1− ρ2dWQ
s (t)

)
+

1

2

(
− 1

S(t)2

)(
v(t)S(t)2

)
dt

=

(
r(t)− q − 1

2
v(t)

)
dt+

√
v(t)

(
ρdWQ

v (t) +
√

1− ρ2dWQ
s (t)

)
.

Therefore, the model is affine in terms of s(t) and v(t) and we rewrite the dynamics
under risk neutral measure as:

ds(t) = (r(t)− q − 1

2
v(t))dt+

√
v(t)

(
ρdWQ

v (t) +
√

1− ρ2dWQ
s (t)

)
, (4.28)

dv(t) = κv(θv − v(t))dt+ σv
√
v(t)dWQ

v (t), v(0) > 0. (4.29)

It is important that the model is written to be affine, since we could get closed pricing
form of European options that will be discussed in the next section.

Now we need to get the dynamics under real world measure. According to the Girsanov
Theorem, the change of measure could be done by applying

dWQ
s (t) = dW P

s (t) +
λ0
s + λ1

sv(t)√
1− ρ2

√
v(t)

dt, (4.30)

dWQ
v (t) = dW P

v (t) +
λ0
v + λ1

vv(t)

σv
√
v(t)

dt. (4.31)

Therefore, the dynamics under real world measure could be derived by plugging (4.30)
and (4.31) into (4.28) and (4.29),

ds(t) = (r(t)− q + a+ bv(t))dt+
√
v(t)(ρdW P

v (t) +
√

1− ρ2dW P
s (t)),

dv(t) = κ′v(θ
′
v − v(t))dt+ σv

√
v(t)dW P

v (t), v(0) > 0,

with dW P
v (t)dW P

s (t) = 0 and where

a =
ρ

σv
λ0
v + λ0

s,

b =
ρ

σv
λ1
v + λ1

s −
1

2
,

κ′v = κv − λ1
v,

θ′v =
κvθv + λ0

v

κv − λ1
v

.

4.2.1. Pricing European options

Given the state vector X(t) = [s(t), v(t), X1(t), . . . , XN(t)], in order to price the Euro-
pean option by Heston model with stochastic interest rate, the discounted characteristic
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function of log price s(t) = lnS(t) is needed, which is defined as follows

φHCIR(u;X(t), t, T ) = EQ
(

exp

(
−
∫ T

t

r(s)ds+ ius(T )

) ∣∣∣∣Ft) . (4.32)

According to the law of iterated expectations, φHCIR(t)
Mt

is a martingale, for t < `

EQ
[
φHCIR(u, `, T )

M`

∣∣∣∣Ft] = EQ

E
Q
(

exp
(
−
∫ T
`
r(s)ds+ ius(T )

) ∣∣∣∣F`)
M`

∣∣∣∣Ft


= EQ

exp
(
−
∫ T
`
r(s)ds+ ius(T )

)
M`

∣∣∣∣Ft
 =

φHCIR(u, t, T )

Mt

then dφHCIR(u,t,T )
Mt

should has no drift and we have the following partial differential equa-
tion (PDE),

0 =
∂φ

∂t
+ (r − q − 1

2
v)
∂φ

∂s
+ κv(θv − v)

∂φ

∂v
+

N∑
j=1

κj(θj −Xj)
∂φ

∂Xj

+
1

2
v
∂2φ

∂s2

+
1

2
σ2
vv
∂2φ

∂v2
+

1

2

N∑
j=1

σ2
jXj

∂2φ

∂X2
j

+ ρσvv
∂2φ

∂s∂v
− rφ, (4.33)

subject to terminal condition φHCIR(u;X(t), T, T ) = exp(ius(T )).
Since the PDE is affine, according to Duffie et al. (2000), the discounted characteristic

function has the following closed form:

φHCIR(u;X(t), τ) = exp

(
Ā(u, τ) + B̄(u, τ)s(t) +

N∑
j=1

C̄j(u, τ)Xj(t) + D̄(u, τ)v(t)

)
,

(4.34)

for τ = T − t. We then get the following Riccati ordinary differential equations (ODEs)
by substituting φ into the PDE (4.33):

∂B̄(τ)

∂τ
= 0, B̄(u, 0) = iu,

∂C̄j(τ)

∂τ
= B̄(τ)− κjC̄j(τ) +

1

2
σ2
j C̄

2
j (τ)− 1, C̄j(u, 0) = 0,

∂D̄(τ)

∂τ
=

1

2
B(τ)(B̄(τ)− 1) + (ρσvB̄(τ)− κv)D̄(τ) +

1

2
σ2
vD̄

2(τ), D̄(u, 0) = 0,

∂Ā(τ)

∂τ
= κvθvD̄(τ) +

N∑
i=1

κiθiC̄i(τ) + (δ(T − τ) + δ0)(B̄(τ)− 1)− qB̄(τ), Ā(u, 0) = 0.
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We then follow the techniques of proof for Lemma 5.1 of Grzelak and Oosterlee (2011)
to solve these ODEs and get:

B̄(u, τ) = iu,

C̄j(u, τ) =
1− e−Djτ

σ2
j (1−Gje−Djτ )

(κj −Dj), j = 1, . . . , N,

D̄(u, τ) =
1− e−Dvτ

σ2
v(1−Gve−Dvτ )

(κv − σvρiu−Dv),

Ā(u, τ) =
κvθv
σ2
v

[
τ(κv − σvρiu−Dv)− 2 ln

(
1−Gve

−Dvτ

1−Gv

)]
+

N∑
j=1

κjθj
σ2
j

[
τ(κj −Dj)− 2 ln

(
1−Gje

−Djτ

1−Gj

)]
+ (iu− 1)

∫ T

t

δ(s) + δ0 ds− iuqτ,

Dj =
√
κ2
j + 2σ2

j (1− iu), j = 1, . . . , N,

Dv =
√

(σvρiu− κv)2 − (iu− 1)iuσ2
v ,

Gj =
κ−Dj

κ+Dj

, j = 1, . . . , N,

Gv =
κv − σvρiu−Dv

κv − σvρiu+Dv

.

Note that the value of D̄(u, τ) is consistent with the corresponding part of Heston

(1993) by setting G̃v = 1/Gv and it leads to the formula of D̄(u, τ) depends on eDvτ .
The reason for preferring of e−Dvτ here is that it is more numerical stable (see Albrecher
et al. (2006)).

Let C(t;T,K) = EQ[exp(−
∫ T
t
r(t)dt)(ST −K)+] be the price of European call option

with maturity T and strike K at time t. Furthermore, following Carr and Madan (1999),
we define the dampened call price ct(k) = exp{ak}C(t; ek, T ), where k = lnK, and with
dampening coefficient a > 0 for the dampened call transform. According to Lee (2004,
Theorem 4.2 and 4.3), we have:

ζc(u; t, T ) =

∫ ∞
−∞

eiukct(k)dk =
φ(u− (a+ 1)i,X(t), T − t)
a2 + a− u2 + i(2a+ 1)u

.

The price of call option can now be calculated by a single integration,

C(t;K,T ) =
exp{−a lnK}

π

∫ ∞
0

Re[exp{−iu lnK}ζc(u; t, T )]du. (4.35)

Similarly, with the corresponding damped put price pt(k) = exp{−ak}P (t; ek, T ), we
have

ζp(u; t, T ) =

∫ ∞
−∞

eiukpt(k)dk =
φ(u− (−a+ 1)i,X(t), T − t)
a2 − a− u2 + i(−2a+ 1)u

.
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The price of put option can now be calculated by a single integration,

P (t;K,T ) =
exp{a lnK}

π

∫ ∞
0

Re[exp{−iu lnK}ζp(u; t, T )]du. (4.36)

4.2.2. Model calibration

The calibration of equity model is separated into two steps. First of all, the model
is calibrated under risk neutral measure to the market observed European put and
call options prices with different strikes and maturities. The calibration is done by
minimizing the mean squared error of model and market European option prices, where
the model European Call and Put option prices are calculated by (4.35) and (4.36) for
the Heston model.

In the next step, the parameters for market price of risk are estimated by maximum
likelihood estimation in closed-form proposed by Aı̈t-Sahalia and Kimmel (2007).

4.3. Monte Carlo simulation

The MCEV can be considered as a path-dependent complexity structured product based
on all kinds of the risk factors. It does not have analytical formula and usually should be
priced with Monte-Carlo techniques. Therefore, once the models in ESG are calibrated
under risk neutral measure, one needs to do the Monte-Carlo simulation to generate all
kinds of risk factors. In order to be path identical, the same random seed should be used
for the random number generation for all models with same random number generation
method. Due to the complexity of MCEV, the limited number of scenarios (e.g. 5000)
are used the MCEV calculation and hence the variance reduction techniques such as
antithetic variates might be applied during the simulation process.

There are many ways for the discretization of stochastic differential equations (SDE)
for Monte Carlo simulation. Since the conditional distribution of square root process
follows non-central χ2 distribution, it is possible to do exact simulation of the CIR
process, which could be seen in Glasserman (2004, Section 3.4). In addition, the exact
simulation of Heston stochastic volatility model called Broadie-Kaya scheme could be
seen in Broadie and Kaya (2006). However, the Broadie-Kaya scheme has some practical
drawbacks for simulation under risk neutral measure, such as complex and more time-
consuming. The usage of acceptance-rejection sampling might “scramble” random paths
when parameters are perturbed as mentioned in Andersen (2008) and might lead some
problems if one needs to combine the variance reduction techniques. The simplest way
is to use the Euler discretization scheme to get around these drawbacks. However, for
the simulation of square root process with Euler discretization, some modification (see
e.g. Lord et al. (2010)) should be done to prevent the value to be negative and make
the computation of square root possible. Furthermore, Andersen (2008) proposes some
schemes for efficient simulation of Heston model.

In this thesis, we use the simple Euler discretization scheme with partial truncation
for the Monte Carlo simulation under risk neutral measure. Furthermore, the antithetic
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variates (see Glasserman (2004, Section 4.2)) technique is used to reduce the variance,
which is easy to implement under Euler discretization scheme.

The Euler scheme for the square root diffusion processes in interest rate model is:

Xi(t+ ∆t)−Xi(t) = κi(θi −Xi(t))∆t+ σi
√
Xi(t)+

√
∆tZi, (4.37)

where Zi, i = 1, . . . , N are independent standard Gaussian random variables. Here we
take the positive part of Xi(t), Xi(t)

+ = max(0, Xi(t)) inside the square root, since the
value of Xi(t) produced by Euler discretization might be negative (see partial truncation
in Lord et al. (2010)). Compared to the original path, the antithetic path could be

generated by pairing the standard Gaussian random variable Zi with Z̃i = −Zi,

X̃i(t+ ∆t)− X̃i(t) = κi(θi − X̃i(t))∆t+ σi

√
X̃i(t)+

√
∆tZ̃i, (4.38)

which represents the reflection of original path that may result lower variance.
Similarly, the Euler scheme for the equity model is:

s(t+ ∆t)− s(t) = (r(t)− q − 1

2
v(t))∆t+

√
v(t)+

√
∆t
(
ρZv +

√
1− ρ2Zs

)
(4.39)

v(t+ ∆t)− v(t) = κv(θv − v(t))∆t+ σv
√
v(t)+

√
∆tZv, (4.40)

where v(t)+ = max(0, v(t)) and Zs and Zv are independent standard Gaussian random
variables, which are independent with Zi as well. For the antithetic path,

s̃(t+ ∆t)− s̃(t) = (r(t)− q − 1

2
ṽ(t))∆t+

√
ṽ(t)+

√
∆t
(
ρZ̃v +

√
1− ρ2Z̃s

)
(4.41)

ṽ(t+ ∆t)− ṽ(t) = κv(θv − ṽ(t))∆t+ σv
√
ṽ(t)+

√
∆tZ̃v, (4.42)

where Z̃v = −Zv and Z̃s = −Zs.
For the real world simulation, the exact simulation scheme is used for the Monte Carlo

simulation under real world in order to avoid generating negative values of the square
root process, especially when the nested simulation is performed.
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Under Solvency II framework, in order to protect the benefit of shareholder and poli-
cyholder, the insurance company should be adequately capitalized to fulfill the capital
requirement for solvency. Therefore, two main components should be taken into account,
the available capital and the solvency capital requirement.

The available capital is the amount of financial resources available to absorb the
potential or unexpected financial losses. Under solvency II, it is called as “own fund”
(see Directive 2009/138/EC (2009, Article 87-99)). The own funds consist of basic own
funds (the excess of assets over liabilities, plus the subordinated liabilities, see Directive
2009/138/EC (2009, Article 88)) and ancillary own funds (items other than basic own
funds that can be called up to absorb losses, see Directive 2009/138/EC (2009, Article
89)). In this thesis, we ignore the subordinated liabilities and ancillary own funds.
Therefore, the basic own funds is the same as own funds.

The available capital is defined as the difference between the market value of assets
and liabilities. Therefore, the available capital is assumed to be equal to the basic own
funds (BOF). In general, the market consistent valuation of assets is straight forward
since the market values (prices) of financial instruments in the investment portfolio could
either be observable in capital market (mark-to-market) or replicable by a combination
of market observable financial instruments (combination of market-to-market and mark-
to-model). However, this is not the case for the market consistent valuation of liabilities
since the life insurance contracts in the liability portfolio usually contain the embedded
options and guarantees. Therefore, a stochastic model (mark-to-model) is generally used
to perform the market consistent valuation of the life insurance company.

In order to ensure that the market consistent values of life companies could be compa-
rable, the so called Market Consistent Embedded Value (MCEV) from the shareholders’
perspective is developed. CFO Forum (2009) gives the definition of MCEV that it is a
measure of the consolidated value of the shareholders’ interests in the covered business.
This is very similar to available capital, in this thesis we follow the same assumption
mentioned in paper Bauer et al. (2009) that these two quantities are identical.

Based on the stochastic model, the valuation of shareholder’s interest is in line with the
valuation of traded financial instruments, by calculating the sum of expected discounted
future shareholder’s cash flows using the risk neutral valuation. The stochastic model
and the risk neutral valuation are discussed in greater detail in the following sections.
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5.1. Risk neutral valuation

In order to do the risk neutral valuation, there should exist a risk neutral (equivalent
martingale) measure, under which every asset earns the same expected return as the risk
free rate regardless of risk preference and could be valued by taking the present value of
its expected payoff.

The existence of equivalent martingale measure should fulfill some requirements. For
the discrete time, the no arbitrage condition should be fulfilled. For the continuous
model, the condition “No Free Lunch With Vanishing Risk” (NFLVR) (see Delbaen and
Schachermayer (1994)) should be satisfied followed by the “Fundamental Theorem of
Asset Pricing” (see Bingham and Kiesel (2004), Theorem 6.1.2), i.e. for a financial
market model with bounded prices, there exists an equivalent martingale measure if and
only if the condition NFLVR holds.

Furthermore, in order to ensure that all cash flows could be evaluated, the market
should be complete as well, i.e. any contingent claim is attainable.1 The condition of
completeness of the market could follow Theorem 6.1.5 of Bingham and Kiesel (2004),
i.e. if the strong equivalent martingale measure is the unique martingale measure, then
the financial market is complete.

Under these conditions, we describe the mathematical framework in the following
section for the risk neutral valuation.

5.1.1. Mathematical Framework

The setup of mathematical framework follows Bergmann et al. (2009) and Bauer et al.
(2009). It is assumed that investors can trade continuously in a frictionless arbitrage
free market for the risk neutral valuation. Furthermore, let T be the largest maturity
of life insurance contracts in the liability portfolio and let (Ω,F ,P,F = (Ft)t∈[0,T ]) be a
complete filtered probability space. The Ω is the sample space of all possible outcomes
and P is the real world measure. The σ-algebra Ft represents all information about
the financial market up to time t and the F represents the information flow evolving
with time. We assume further that (Ω,F ,P,F = (Ft)t∈[0,T ]) fulfills the ‘usual condition’,
i.e. F0 contains all P-null sets of F and F is right-continuous (see Bingham and Kiesel
(2004), p. 153).

The uncertainty of the insurance company’s future profits is mainly influenced by the
uncertainty of the financial risk factors in the capital market, e.g. interest rates, equity
returns etc. Therefore, the so called state process, which is a d-dimensional sufficiently
regular Markov process Y = (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ], is introduced to capture
the uncertainty of the financial market. Consequently, all risk factors and risky assets in
the market can be expressed in terms of Y . In particular, it is assumed that there exists
numéraire process (Mt)t∈[0,T ] with Mt =

∫ t
0
rs ds, where rs = r(Ys) is the instantaneous

risk-free interest rate at time t.

1A contingent claim is called attainable if there exists at least one admissible trading strategy that
could be replicated. See Bingham and Kiesel (2004), Definition 6.1.8.
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Furthermore, a stochastic cash flow projection model defined in Section 5.2 is given to
generate the future profits ft at time t depending on the development of financial market
up to time t for t = 0, . . . , T . Since shareholders’ cash flows are assumed to be paid out
in discrete times t ∈ {0, 1, . . . , T} as described in Section 5.2, we model the future profits
as a sequence of random variables X = (X1, . . . , XT ) where Xt = ft(Ys, 0 ≤ s ≤ t), i.e.
Xt is Ft-measurable, t = 1, . . . , T . Note that the cash flow process Xt is not Markov, as
Xt depends on Ys, 0 ≤ s ≤ t not only just on Yt.

Finally, we assume that there is a risk neutral probability measure Q equivalent to P
so that the present value of future profits can be evaluated as expected sum of discounted
cash flows w.r.t to numéraire process (Mt)t∈[0,T ].

5.1.2. Valuation at t = 0

Based on the mathematical framework, we can calculate market consistent value of the
cash flows at t = 0 denoted by V0 under risk neutral measure Q at time t = 0 according
the risk neutral valuation formula (see Bingham and Kiesel (2004), Theorem 6.1.14):

V0 := EQ

[
T∑
t=1

exp

(
−
∫ t

0

ru du

)
Xt

]
︸ ︷︷ ︸

=:PV0

, (5.1)

where PV0 is the sum of discounted cash flows. We see that V0 is expressed as the
expectation of PV0.

There are two ways to estimate V0, i.e. Monte Carlo simulation and Certainty Equiva-
lent approach. In general, V0 can not be computed analytically due to complex insurance
liabilities with embedded options and guarantees. Therefore, it is common to compute
V0 by means of Monte Carlo simulation. However, if there are no embedded options
and guarantees, the cash flows Xt depend linearly on the development of assets such
as traditional non participating life insurance, the Monte Carlo simulation is then not
necessary and estimation could be replaced by Certainty Equivalent approach using a
deterministic Certainty Equivalent scenario to estimate the V0. Note that we apply the
same management rules for these two approaches.

First of all, let us give the definition of Certainty Equivalent scenario (see Oechslin
et al. (2007)). It assumes that the (total) returns of assets are the same as the risk free
forward rates implied by the reference risk free rate at t = 0 and the cash flows are
discounted by the same risk free reference rate. Let XCE

t be the shareholder’s future
cash flows in the Certainty Equivalent scenario. In consequence, V0 is given by

V̂0(CE) :=
T∑
t=1

XCE
s

(1 + rr(0, t))t
, (5.2)

where rr(0, t) is the risk free annually compounded spot rate at time 0 with maturity t.
Furthermore, if there are embedded options and guarantees in the insurance liabilities,

the cash flows depend non-linearly or asymmetrically on the development of assets such
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as traditional life insurance with profit sharing, and then the Monte Carlo simulation is
needed.

Let K0 be simulated sample paths under risk neutral measure Q, then we get the
estimation of V0 through Monte Carlo simulation by averaging the sum of discounted
cash flows over all K0 sample paths, i.e.

V̂0(K0) :=
1

K0

K0∑
k=1

T∑
t=1

exp

(
−
∫ t

0

r(k)
u du

)
X

(k)
t︸ ︷︷ ︸

:=PV
(k)
0

(5.3)

where r
(k)
u is the realization of instantaneous risk-free interest rate at time u for sample

path k and PV
(k)

0 is the sum of discounted cash flows in the k-th sample path. The

estimator V̂0(K0) is unbiased, i.e.

EQ[V̂0(K0)] = V0. (5.4)

Furthermore, according to the “Strong Law of Large Numbers” (SLLN), the estimator

V̂0(K0) is also consistent since it convergences with probability 1 (almost surely) to V0,
i.e.

P( lim
K0→∞

V̂0(K0) = V0) = 1. (5.5)

As described above, the difference of Monte Carlo simulation and certainty equivalent
approach rises from the embedded options and guarantees. Given the present value of
future cash flows calculated both by certainty scenario and Monte Carlo simulation, the
resulting difference based on these two approaches leads to the time value of financial
options and guarantees.

5.2. Stochastic cash flow projection model

In order to perform the market consistent valuation of assets and liabilities, especially
when there are embedded options and guarantees in the insurance liabilities, a stochas-
tic cash flow projection model, i.e. the stochastic modeling and simulation of the de-
velopment of balance sheet and future cash flows generated from the Asset-Liability
framework, should be taken into account. There are a number of papers relate to the
development of such models in the recent years, such as Briys and de Varenne (1997),
Grosen and Jørgensen (2000), Bacinello (2001), Grosen and Jørgensen (2002), Bacinello
(2003), Tanskanen and Lukkarinen (2003), Bauer et al. (2006), Kling et al. (2007), Ger-
stner et al. (2008), Graf et al. (2011), Bauer et al. (2009), Reuß et al. (2013), Burkhart
et al. (2014).

In the next subsections, we start with the balance sheet for modeling the most impor-
tant balance sheet items. Afterwards, the asset model and liability model are given for
the modeling of the asset portfolio in the asset side and liability portfolio in the liability
side. In the meanwhile, the management rules of e.g. the asset allocation strategies,
unrealized gains and losses, surplus distribution, are described.
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5.2.1. Balance sheet

The starting point of the stochastic model is the balance sheet. Therefore, a simplified
balance sheet should be constructed to reflect the most important items of the real
balance sheet of the insurance company. Following Bauer et al. (2006), Kling et al.
(2007) and Bauer et al. (2009), we give the insurer’s simplified balance sheet at time t in
Table 5.1. The asset side of the the balance sheet is the market value of asset portfolio

Assets Liabilities
MVAt Lt

Rt

Table 5.1.: The simplified balance sheet at time t.

MVAt. The liability side of the balance sheet consists of two parts. The first part Lt is the
book value of policyholder’s account value or policy reserve (see Grosen and Jørgensen
(2000)) at time t consisting of actuarial reserve and bonus reserve. The second part Rt

is the reserve account, which is a hybrid determined as the difference between a market
value and book value, i.e.

Rt = MVAt − Lt. (5.6)

The difference between the book value of assets and liabilities is the shareholder’s equity,
i.e. Et = BVAt − Lt.

Similar balance sheet could be seen in e.g. Grosen and Jørgensen (2000), Reuß et al.
(2013), Burkhart et al. (2014) for life insurance companies. A more general balance
sheet is proposed by Gerstner et al. (2008), they separate the policyholder’s account
into actuarial reserve and allocated bonus (the part of surpluses that have been credited
the policyholder’s account through surplus distribution). Furthermore, they separate
the reserve account to company account called equity and a buffer account called free
reserve for the future bonus payment to achieve more stable return of the policyholders.

5.2.2. Asset model

In the asset side, the asset model is used for modeling the development of asset portfolio.
In practice, the asset portfolio consists of the various financial assets, such as the treasury
bonds, corporate bonds, stocks, real estate etc. Here we assume that the life insurance
company only invests the money in coupon bonds and stocks, i.e. the asset portfolio
consists of coupon bonds and stocks. Since the asset allocation depends on the evolution
of financial market, the management rules for determining the proportion of the different
financial asset classes are usually considered. Therefore, asset allocation strategy should
be defined to reflect the management rules in the asset model. The constant strategic
asset allocation, i.e. keeping constant proportion of market value of bonds and stocks,
is widely adopted, e.g. Kling et al. (2007), Bauer et al. (2009), Gerstner et al. (2008),
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Reuß et al. (2013), Burkhart et al. (2014) with slightly difference on the allocation among
coupon or zero coupon bonds. Furthermore, the book value might not be equal to the
market value due to local GAAP accounting rules, which leads to unrealized gain and
losses (UGL). In practice, the company may realize some of the gains to get higher
returns and release the losses in the equity investments. Therefore, the corresponding
management rules should be incorporated as well. Here we follow the same management
rules as in Reuß et al. (2013).

In the projection of stochastic model, incoming and outgoing cash flows occur in each
year. The incoming cash flows include the premium payments at the start of year, the
coupon payments and repayments of nominal for the coupon bonds at maturity at the
end of year, the dividends of stocks at the end of year, and the capital contribution from
shareholders. In contrast, the outgoing cash flows include the (dividends) payments of
shareholder’s profit and the benefit payments to the policyholders at the end of year. At
the end of year, with the fulfillment of paying cash flows to shareholders and policyholders
the asset portfolio is rebalanced based on market value with a constant strategic asset
allocation such that:

• The proportion of market value of stocks in the asset portfolio is pSAA.

• The proportion of market value of coupon bonds in the asset portfolio is 1 −
pSAA. If additional coupon bonds need to be bought, the corresponding amount
is withdrawn from bank account and invested in coupon bonds yield at par with
term TB. When the longest remaining term of insurance contracts is less than TB,
then the coupon bonds with term the same as longest remaining term of insurance
contracts are invested. If bonds need to be sold, they are sold proportionally to
the market values of the different bonds in the existing portfolio.

The minimum participation rate is based on the earnings on book values according
to the German regulation. The earnings on book values are usually not the same as the
earnings on market values due to local GAAP accounting rules, since the assets such
as coupon bonds and stocks have differences between market value and book value and
hence results in unrealized gains and losses (UGL). The book value of coupon bond is
always assumed to be the nominal amount and the book value of single stock is the
market value of stock when the stock was bought and entered into the existing portfolio.
The management rule for UGL is assumed that a ratio pUGL of the UGL of stocks is
realized. More precisely, pUGL of the UGL of stocks is realized annually if the UGL is
positive, i.e. there exists unrealized gains. However, if the UGL of stocks is negative, i.e.
there exists unrealized losses, pUGL = 100% of the UGL is realized annually according
to the legal framework that unrealized losses on stocks are not possible.

Let MVA−t and MVA+
t be the market values of asset portfolio before and after the

in/out cash flows shXt (dividends or capital contributions) payments of shareholder’s
profit and the benefit payments phXt to the policyholders. Furthermore, let BVA−t and
BVA+

t be the corresponding book values of the asset portfolio before and after the in/out
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cash flows shXt and benefit payments phXt. That is:

MVA+
t = MVA−t − shXt − phXt, (5.7)

BVA+
t = BVA−t − shXt − phXt. (5.8)

The market value of asset portfolio MVA−t at the end of year t consists of market value
of assets (coupon bonds and stocks) and the cashes including the dividends of stocks
received at the end of year t and the nominal repayments of coupon bonds at maturity
at the end of year t, as well as the cash flows of premium received at the beginning
of year CF P

t−1 that invested in the bank account earning at one year risk free annually
compounded spot rate rr(t− 1, t). Therefore, we have:

MVA−t = NS
t−1 · MVSt +

T̃t−1∑
i=t+1

NCB
t−1,i · MVCBt(i)

+NS
t−1Div(t− 1, t) +NCB

t−1,t · MVCBt(t) + CF P
t−1(1 + rr(t− 1, t))

where NS
t−1 is the number of stocks at time t−1 and NCB

t−1,i is the number of coupon bonds
at time t − 1 with maturity i determined by the constant strategic asset allocation at
the end of year t−1. Furthermore, T̃t−1 = min{TB + t−1, T} is the maximum maturity
at time t− 1. MVSt is the market value of stock at time t and MVCBt(i) is the market
value of coupon bond at time t with maturity i. Note that MVCBt(t) = 1 since the
coupon bond is expired at maturity time t, i.e. nominal repayment of coupon bond at
maturity at the end of year t.

We also consider the unrealized gain and loss for the stock. Let UGLSt = MVSt− BVSt
be the unrealized gain or loss for the stock at time t. We assume that pUGL of the UGLSt
is realized if UGLSt is positive and 100% is realized if UGLSt is negative. The realization
is done by selling the corresponding amount of stocks and then receives cash flows of
UGLCFt = pUGL · UGLSt.

Actually, the market value after payment of cash flows and re-balancing at the begin-
ning of year t (end of year t− 1) is given by:

MVA+
t−1 = NS

t−1 · MVSt−1 +

T̃t−1∑
i=t

NCB
t−1,i · MVCBt−1(i). (5.9)

Let MVIt and BVIt be the investment earnings based on market value and book value
between year t− 1 and t, i.e.

MVIt = MVA−t − MVA+
t−1, (5.10)

BVIt = BVA−t − BVA+
t−1. (5.11)

It could be further decomposed into the earnings on asset backing shareholder’s eq-
uity and assets backing liabilities, i.e. BVIt = BVIAbEt + BVIAbLt . Furthermore, the
corresponding return on the book value is could be written as:

BVrt =
BVIt

BVA−t−1 + CF P
t−1

. (5.12)
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5.2.3. Liability model

In the liability side, the liability model is used for modeling the development of insurer’s
liabilities. In practice, the liability portfolio consists of different insurance products, such
as endowment policies, life annuities, unit-link products etc. For the sake of simplicity,
Kling et al. (2007), Bauer et al. (2006) and Bauer et al. (2009) use the participating
single-premium term-fix insurance (ignoring any charges and mortality rates), which
is an image of the life insurance company’s general financial situation, and hence the
evolution of corresponding liability portfolio could be served as the development of the
insurer’s liabilities. Gerstner et al. (2008), Seemann (2009) use liability portfolios in-
cluding participating endowment assurance with and without surrender options by con-
sidering mortality rates. Reuß et al. (2013) and Burkhart et al. (2014) use traditional
participating life insurance contracts (endowment assurance) by considering the charges
and mortality rates in their liability portfolio.

In order to better reflect the life insurance company’s liabilities but still keep simplicity,
we use traditional participating life insurance contracts (endowment assurance) with a
cliquet style guarantee ignoring any costs and the surrender options for the construction
of liability portfolio. The contract pays a guaranteed benefit G (sum assured) to a
policyholder now aged x at the end of the year of death, if death occurs during the next
n years, or after n years if the life is still alive. The technical interest rate for pricing is
set to be the same as the guaranteed interest rate g (See Section 2.1 of Eling and Holder
(2012)). Furthermore, we do not consider any charges such as initial acquisition charge
and administration charge etc.

According to the actuarial principle of equivalence (see e.g. Bowers et al. (1997)), the
premium payable annually in advance throughout the duration of the contract is given
by:

Px,n =
Ax:n

äx:n

G (5.13)

where Ax:n is the expected present value of payment of the contract with sum assured of
1, which is payable not on death but at the end of the year of death. äx:n is the expected
present value of premiums paying annual amount of 1 at the start of each year. They
are calculated as follows:

Ax:n =

(
1

1 + g

)n
npx +

n−1∑
k=0

(
1

1 + g

)k+1

kpx qx+k (5.14)

äx:n =
n−1∑
k=0

(
1

1 + g

)k
kpx, (5.15)

where qx is the mortality rate in one-year for age x and kpx is the survival probability
in k years for age x.

During the lifetime of the contract, the insurer should set aside the provision or
actuarial reserve to meet the future payment of guaranteed benefit. Note that liability
portfolio consists of contracts issued to policyholders with different age and duration at
different inception dates. Let ARx,n,t0

t be the actuarial reserve at time t of a contract
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with n year duration issued to a policyholder aged x incepted at the beginning of year
t0 + 1, it could be calculated recursively as:

ARx,n,t0
t =

(ARx,n,t0
t−1 + Px:n) · (1 + g)−Gqx+t−t0−1

px+t−t0−1

(5.16)

for t = t0 + 1, . . . , t0 + n and ARx,n,t0
t0 = 0.

For the traditional German participating life insurance contracts, besides the minimum
interest rate of g should be guaranteed on the actuarial reserves, German regulation
requires that a minimum participation rate δ of the earnings on book values should be
credited to the policyholder’s account. The part of surplus Spx,n,t0t to policyholder due
to minimum participation, denoted by PSx,n,t0t , as well as the guaranteed interest rate
g are credited to a bonus reserve account BRx,n,t0

t , i.e.

BRx,n,t0
t = BRx,n,t0

t−1 (1 + g) + PSx,n,t0t , (5.17)

for t = t0 + 1, . . . , t0 + n and BRx,n,t0
t0 = 0.

The policyholder’s account value is the sum of actuarial reserve and bonus reserve, i.e.
AV x,n,t0

t = ARx,n,t0
t + BRx,n,t0

t . In the event of a claim, that is if the policyholder dies
during the lifetime of the contract or he/she is still alive at maturity of the contract, the
benefit phX

x,n,t0
t consists of bonus reserve and the guaranteed benefit G should be paid

out to the policyholder, i.e. phX
x,n,t0
t = G + BRx,n,t0

t . The sum of benefit payments to
the policyholders are then defined as phXt.

Let lx,n,t0t be the number of policyholders at time t aged x at inception date t0 and
duration n. The number of policyholders at end of year t depends on the number of
policyholder at the beginning of year t and the mortality rate qx+t during the year.

lx,n,t0t = lx,n,t0t−1 (1− qx+t−t0−1) (5.18)

for t = t0 + 1, . . . , t0 + n and lx,n,t0t0+n = 0 at the maturity date. Note that for the
simplification, we assume that actual (best estimate) second-order mortality rate is
the same as the first-order mortality rates used for the premium calculations, i.e. the
mortality rates are based on DAV 2008 T (German standard mortality table).

The total population of the portfolio at time t is

l(t) =
t∑

t0=t−n+1

∑
x

∑
n

lx,n,t0t (5.19)

5.2.4. Surplus distribution

For the traditional participating life insurances, the profit or bonus will be shared be-
tween the policyholders and shareholders. Therefore, the management rules for the
surplus participation should be considered. There are several sources of surplus, namely
the investment surplus, risk surplus, cost surplus and other surplus as described in
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MindZV2. Most literatures such as Bauer et al. (2006), Grosen and Jørgensen (2000),
Gerstner et al. (2008), Kling et al. (2007) focus on investment surplus. Burkhart et al.
(2014) consider the cost surplus as well by introducing the cost model.

For the investment surplus distribution mechanism, a point to point guarantee frame-
work is used by Briys and de Varenne (1997), i.e. a fixed guaranteed interest as well as
bonus determined a certain fraction of financial gains are received by the policyholders.
The cliquet-style guarantee is considered in Grosen and Jørgensen (2000), Bauer et al.
(2006), Gerstner et al. (2008), Bauer et al. (2006), Kling et al. (2007) etc. Grosen and
Jørgensen (2000) consider the cliquet-style guarantees and use the average interest prin-
ciple. Their mechanism is that a fixed faction of the reserve quote Rt/Lt over the target
buffer ratio is credited as bonus rate to the policyholder’s account, only if such rate
exceed the the guaranteed rate. Gerstner et al. (2008) follow this mechanism of Grosen
and Jørgensen (2000). Bauer et al. (2006) describe two cases, namely the MUST-case
and IS-case. The MUST-case considers only obligatory payments to the policyholders
as required in the German market. The IS-case reflects closely the behavior of typical
life German insurance companies over the last few years. In order to keep surplus stable,
especially in years with adverse market conditions, the insurance companies accumulate
hidden reserves by crediting a target rate of interest to policyholder each year. There-
fore, the IS-case sets a target ratio of interest that is credited to policyholder if the
reserve quote Rt/Lt is within a given range. The surplus will be reduced or increased
whenever the reserve quote is out of range (see more details in Bauer et al. (2006), Kling
et al. (2007)).

In order to keep simplicity, we follow the MUST-case for the surplus distribution
and only consider the investment surplus, i.e. the difference between actual investment
earnings on book value of assets backing liabilities and the amount Igt credited to the
policyholder account due to profit sharing and guaranteed interest rate

Spt = BVIAbLt − Igt =
t∑

t0=t−n+1

∑
x

∑
n

[ (
ARx,n,t0

t−1 +BRx,n,t0
t−1 + Px:n

)
lx,n,t0t−1

]
· (BVrt − g).

(5.20)

According to the German regulatory, a minimum surplus participation rate δ (based on
MindZV) of the earnings on book values should be credited the policyholders’ account.

PSt = max(δ · BVIAbLt − Igt , 0)

The remaining part of surplus shXt goes to shareholders, which represents the in/out
cash flow payment to shareholders. shXt could be positive and negative referring to
dividends and capital contributions respectively. If it is negative, we assume that the
insurance company does not exercise its limited liability (put) option (see Gatzert and
Schmeiser (2008)).

2Mindestzuführungsverordnung (MindZV) - Verordnung über die Mindestbeitragsrückerstattung in
der Lebensversicherung. http://www.bafin.de/SharedDocs/Aufsichtsrecht/DE/Verordnung/

MindZV_080404_va.html
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The dividends or profits on assets backing liabilities are

LXt =

{
Spt − PSt if Spt > PSt

0 if Spt ≤ PSt
, (5.21)

and the dividends on assets backing required capital or shareholder’s equity are defined
as:

RCXt =


BVIAbEt if Spt > PSt

BVIAbEt − (PSt − Spt) if Spt ≤ PSt ≤ BVIt − Igt
0 if BVIt − Igt ≤ PSt

, (5.22)

If capital contribution is required then the value is defined as:

ct = max{Lt − MVA−t , 0}, (5.23)

where

Lt = AVt =
t∑

t0=t−n+1

∑
x

∑
n

AV x,n,t0
t . (5.24)

Therefore shXt could be given by

shXt = LXt + RCXt − ct. (5.25)

The investment earnings need to be distributed to all policyholders. In order to simplify
the distribution, we assume that the earnings are distributed such that all policyholders
receive the same total yield on their account.

Therefore, the surplus credited a single policyholder is calculated as

PSx,n,t0t = (ARx,n,t0
t−1 +BRx,n,t0

t−1 + Px:n) ·max(δ · BVrt − g, 0).

5.3. Market consistent embedded value

According to the Market-Consistent Embedded Value Principles (See CFO Forum (2009)),
the Market Consistent Embedded Value (MCEV) could be defined as follows:

MCEV := FS +RC + RCPV FPCE − TV FOG− CoC − CoNHR (5.26)

where:

• FS: Free surplus allocated to the covered business (Principle 4)

• RC: Required capital (Principle 5)

• RCPV FPCE: Present value of future profits of post taxation shareholder cash flows
from the in-force covered business and the assets backing the associated liabilities
(Principle 6)
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• TV FOG: Time value of financial options and guarantees (Principle 7)

• CoC: Frictional cost of required capital (Principle 8)

• CoRNHR: Cost of residual non hedgeable risks (Principle 9)

Following Talanx AG (2016), the CoC is defined as the difference between the amount
of required capital and the present value of future releases of the required capital in
the certainty equivalent scenario, allowing for future after-tax investment income on the
associated assets. If the tax rate is assumed to be 0, then CoC could be defined as:

CoC : = RC0 − RCPV FPCE

= RC0 −
T∑
t=1

RCXCE
t − cCEt

(1 + rr(0, t))t
− RCCE

T

(1 + rr(0, T ))T
, (5.27)

where RCXCE
t is the profit on the assets backing the required capital and cCEt is the capital

contribution based on certainty equivalent scenario. RCCE
T is the residual required

capital at end.
We assume that at time t = 0, the market value is equal to book value and hence

there is no UGL at time t = 0. The free surplus is always added to be required capital
and assumed to be 0. Furthermore, we ignore the CoRNHR and then we have:

MCEV = NAV + V IF

= RC + PV FP − TV FOG− CoC
= RC0 + LPV FPCE +

((
LPV FP Stoch + RCPV FP Stoch

)
−
(
LPV FPCE + RCPV FPCE

))
+ RCPV FPCE −RC0

= LPV FP Stoch + RCPV FP Stoch (5.28)

where

LPV FP Stoch = EQ

(
T∑
t=1

LXt

Bt

)
, (5.29)

RCPV FP Stoch = EQ

(
T∑
t=1

RCXt − ct
Bt

+
RCT
BT

)
, (5.30)

If we combine these two together, we can write the MCEV as:

BOF0 = AC0 = MCEV0 = EQ

(
T∑
t=1

Xt

Bt

)
, (5.31)

where

Xt =

{
shXt if t ∈ 1, . . . , T − 1

shXt +RCT if t = T
.
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Furthermore, the company’s future obligations in the policyholder’s account are given
by:

MVL0 = EQ

(
T∑
t=1

(
−
CF P

t−1

Bt−1

+
phXt

Bt

))
. (5.32)

If all cash flows are properly captured by the cash flow projection model, the following
relationship holds:

AC0 + MVL0 = MVA0. (5.33)

The leakage test should be performed to check if (5.33) is satisfied when the Monte Carlo
simulation is used to estimate the value of AC0 and MVL0.
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For the Solvency Capital Requirement (SCR), the distribution of available capital at
t = 1 is taken into account. Directive 2009/138/EC (2009, Article 101) describes the
calculation of SCR: “the SCR shall correspond to the Value-at-Risk of the basic own
funds of an insurance and reinsurance undertaking subject to a confidence level of 99.5%
over a one-year period”.

As mentioned in Chapter 5, the basic own funds is assumed to be the same as available
capital. Let AC1 be the value of available capital at t = 1 and

L := BOF0 −
1

1 + rr(0, 1)
BOF1 = AC0 −

1

1 + rr(0, 1)
AC1 (6.1)

be the one-year loss function at t = 1. The SCR is calculated as:

SCR : = VaRα(L)

= inf{x ∈ R : P[L > x] ≥ 1− α} = inf{x ∈ R : P[L ≤ x] ≥ α}, (6.2)

where α represents the confidence level and is set to be equal to 99.5%. Therefore, the
SCR is just the α quantile of L.

The SCR reflects that the probability of loss L exceeds the SCR is less or equal to
1 − α. Furthermore, the solvency ratio defined as the available capital over required
capital (i.e. AC0/SCR) is used to compare the solvency among insurance companies.
The solvency ratio should be larger than 100%. If not, the supervisor will require actions
and the rating of the company will be affected.

In the previous chapter, we know that the AC0 or MCEV is actually the present value
of future profits (PVFP), i.e. sum of present value of future profits for required capital
and asset backing liabilities calculated stochastically, under certain conditions1, which
needs to be determined by stochastic models through Monte-Carlo simulation. Therefore
in the following we focus on the calculation of PVFP. Furthermore, in order to estimate
the SCR, the so called nested stochastic simulation should be applied, i.e. it requires
Monte-Carlo simulation based market consistent valuation for each real world path at
t = 1. Since the SCR is the 99.5%-quantile of random loss, the number of simulation
should be large to reduce the estimation error of the quantile. It then results quite high
computational time and is not quite practical to use this approach by obtaining the
results in required time lines. Consequently, a number of proxy methods have been de-
veloped to make the calculation more practical. For instance, the methods of replicating
portfolio, curve fitting and least square Monte-Carlo simulation etc are applied in the
insurance industry.

1More generally, the MCEV would be the PVFP calculated stochastically plus some deterministic
parts.
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6.1. Available capital at t = 1

In addition to the calculation of AC0, we also need the distribution of AC1 under real
world measure for the determination of Solvency Capital Requirement. Therefore, we
evaluate the PVFP at t = 1 denoted by V1, conditional on one year evolution of the
financial market under real world measure, i.e.

V1 = EQ

[
T∑
t=2

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣Ys, 0 ≤ s ≤ 1

]
+X1 (6.3)

= EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣Ys, 0 ≤ s ≤ 1

]
. (6.4)

Here we assume that the profit of the first year (denoted by X1) has not been paid to
shareholders yet and is included in the PVFP at t = 1. As mentioned before, the PVFP
is the same as available capital, therefore we have AC1 = V1.

The corresponding P-distribution of V1 could then be given by the cumulative distri-
bution function as:

FV1(x) := P(V1 ≤ x). (6.5)

Furthermore, in order to determine the SCR, the α-quantile should be taken into
consideration for the calculation of VaR:

qα(V1) = inf{x : P(V1 ≤ x) ≥ α}. (6.6)

Note that the α is set to be 0.5% for the computation of V aR99.5% defined in (6.2).
In practice, the calculation of AC1 does not depend on the whole continuous history

of financial market up to t = 1, all necessary information can be contained in the state
of financial market at certain discrete times. Bauer et al. (2009) introduce so-called
Markov State Variables, and assume that (Y1, D1), where D1 ∈ Rm, contains all the
information we need from F1. Then V1 can be written as:

V1 = EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣Ys, 0 ≤ s ≤ 1

]

= EQ


T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt︸ ︷︷ ︸

=:PV1

∣∣∣∣∣∣∣∣∣∣
(Y1, D1)

 (6.7)

V1 is calculated under risk neutral measure Q at time t = 1, which is dependent on
(Y1, D1). After one year evolution of risk factors under real world measure, we change
back to the risk neutral measure Q as t = 0. Here we assume that there is only one risk
neutral measure Q both at time t = 1 and t = 0 if we do not change the market price of
risk parameters. 2

2Note that in practice, different realizations of (Y1, D1), e.g. (Y
(i)
1 , D

(i)
1 ) would have different risk
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6.2. Nested simulation

In Section 5.1.2, we have given the valuation formula at t = 0. Since calculation of V0

could be performed by means of Monte Carlo simulation, the determination of distri-
bution of V1 could also be performed by Monte Carlo simulation, i.e. we first generate
N outer real world scenarios up to t = 1 and then for each real world scenario we
generate K1 inner risk neutral scenarios to calculate the V1 conditional on the financial
market up to t = 1. This kinds of simulation is called full nested simulation and is quite
computationally expensive if one chooses efficient large number of N and K1.

Gordy and Juneja (2010) show how to choose optimal relative smaller number of
inner simulation K1 can still yield accurate estimates such as VaR and analyze how to
allocate the computational budget for the inner and outer simulations by minimizing
the mean square error of resultant estimator. Furthermore, they introduce a jackknife
technique to reduce the bias in the estimator. Instead of using a constant number of inner
samples, i.e. allocating the computational burden uniformly across all scenarios, Broadie
et al. (2011) show an algorithm to allocate sequentially the computational effort in the
inner simulation based on marginal changes in the risk estimator. For instance, larger
numbers of inner simulations are employed for the corresponding real world outer paths
that might have a greater expected marginal change to the risk measure. Bauer et al.
(2010) apply screening procedure, which screens out those scenarios that are unlikely to
be in the tail of distribution and generate more inner simulations per real world outer
scenario for the survived scenarios during the screening process, to get more reliable
(smaller length of confidence interval) and efficient estimation of SCR based on nested
simulation. Instead of generating new inner risk neutral scenarios for each real world
outer scenarios, Bergmann et al. (2009) use so called basis scenarios (i.e. the set of risk
neutral scenarios at t = 0 used to calculate V0) to approximate the real world scenarios
and hence avoid the change of measure from real world to risk neutral measure.

In the following we describe in greater detail how the nested simulation procedure is
performed. First of all, we simulate N outer scenarios under the real world measure P
for the evolution of financial market up to t = 1. Then the PVFP at t = 1 conditional
on the financial market development for scenario i can be written as

V
(i)

1 : = EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣Ys = Y (i)
s , 0 ≤ s ≤ 1

]

= EQ


T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣ (Y1, D1) = (Y
(i)

1 , D
(i)
1 )︸ ︷︷ ︸

=:PV
(i)
1

 . (6.8)

neutral (no arbitrage pricing) measure Q(i)
1 , since one might adjust the start yield curve and long

term option volatility at t = 1 considering the extrapolation to ultimate forward rate and ultimate
forward volatility as t = 0 for each realization and require different re-calibration.
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Then we can estimate the distribution function F of V1 by the empirical distribution
function

F̂ (x;N) :=
1

N

N∑
i=1

1{V (i)
1 ≤x}

. (6.9)

By the Glivenko-Cantelli theorem we have that

‖F̂ (x,N)− F‖∞ = sup
x∈R
|F̂ (x,N)− F (x)| → 0 P a.s. as N →∞. (6.10)

0 1 2 3 4 5

60
80

10
0

12
0

14
0

time

va
lu

e

P Q

Figure 6.1.: Nested simulations

The same as the calculation of V0 described in 5.1.1, V
(i)

1 should also be computed
numerically by means of Monte Carlo simulation. Therefore, in the second step we
perform inner simulation for each real world outer scenario, i.e. we simulate K

(i)
1 risk

neutral inner scenarios per real world outer scenario i. Figure 6.1 shows the idea of
nested simulation. Then V

(i)
1 could be evaluated by taking the average of the sum of

discounted future profits generated by the inner scenarios K
(i)
1 , i.e.

V̂
(i)

1 (K
(i)
1 ) :=

1

K
(i)
1

K
(i)
1∑

k=1

T∑
t=1

exp

(
−
∫ t

1

r(i,k)
u du

)
X

(i,k)
t︸ ︷︷ ︸

=:PV
(i,k)
1

, i = 1, . . . , N. (6.11)
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Now we use the empirical distribution function G to estimate the distribution function
F of V1 . It is constructed by putting a mass 1/N for the each realization of V̂

(i)
1 (K

(i)
1 )

estimated by inner simulation per real world scenario, therefore it can be represented
as:

Ĝ(x;K
(1)
1 , . . . , K

(N)
1 , N) :=

1

N

N∑
i=1

1{V̂ (i)
1 (K

(i)
1 )≤x}. (6.12)

where 1{·} is the indicator function.

Let us denote ũ = (u1, . . . , uN) = (V̂
(i)

1 (K
(i)
1 ), . . . , V̂

(N)
1 (K

(N)
1 )) by the realizations

of random variable V1. Let u(1), . . . , u(N) be the corresponding order statistics with
u(1) ≤ . . . ≤ u(N). Then the quantile could be estimated as:

q̂α(ũ) = u(dNαe), (6.13)

where dxe is the smallest integer not less than x, i.e. dxe = min {n ∈ Z | n ≥ x}.
Since our interest is the efficient estimation of SCR, we now start to analyze the errors

when estimating the quantiles of PVFP at t = 1 approximated by nested simulation.
There are two sources of error accrued during the nested simulation. Firstly, only N
real world outer scenarios are used to estimate the distribution. Secondly, only K

(i)
1 risk

neutral inner scenarios are used to estimate the PVFP at t = 1 conditional on outer
scenario i.

To analyze the influence of the errors on the estimation of SCR, the mean square error
of the α quantile of PVFP at t = 1 are taken into account.

We now decompose the mean square error of α-quantile into variance and squared
bias:

E
[
(q̂α(ũ)− qα(V1))2] = Var[q̂α(ũ)] + (E [q̂α(ũ)− qα(V1)])2 . (6.14)

In order to get the approximation of bias and variance, the random error as well as the
joint distribution to V1 need to be clarified. We then follow the analysis of Gordy and
Juneja (2010). First of all, the number of inner scenarios are set to be constant for

simplicity, i.e. K
(i)
1 = K1.3 As we describe before, the V1(Y1, D1) needs to be estimated

via inner simulations, in which each inner scenario k gives an unbiased estimate of it.
Then the V1(Y1, D1) could be approximated by taking the average over all inner scenarios:

Ṽ1(Y1, D1) =
1

K1

K1∑
k=1

T∑
t=1

exp

(
−
∫ t

1

r(k)
u du

)
X

(k)
t

∣∣∣∣(Y1, D1). (6.15)

It is associated with a zero mean random error εK1(Y1, D1) ≡ Ṽ1(Y1, D1) − V1(Y1, D1).
By the law of large numbers,

Ṽ1(Y1, D1)→ V1(Y1, D1) and εK1(Y1, D1)→ 0 as K1 →∞. (6.16)

3Broadie et al. (2011) call this kind of nested simulation as uniform sampling and they propose so
called sequential sampling nested simulation by choosing non constant number of inner scenarios
sequential under certain criteria.
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Define ε̃(K1) := ε(K1)
√
K1 and let gN(·, ·) be the joint probability density function of

V1 and ε̃(K1). According to the Proposition 2 of Gordy and Juneja (2010), the bias and
variance could be approximated as:

E [q̂α(ũ)]− qα(V1) =
θ(α)

K1f(qα(V1))
+ oK1(1/K1) +ON(1/N) + oK1(1)ON(1/N), (6.17)

Var [q̂α(ũ)] =
α(1− α)

(N + 2)f 2(qα(V1))
+ON(1/N2) + oK1(1)ON(1/N), (6.18)

where f is the density function of V1 and

θ(α) = −1

2

∫ ∞
−∞

z2 ∂

∂u
gN(u, z)dz

∣∣∣∣
u=qα(V1)

= −1

2

d

du

[
f(u)E [Var(ε̃(K)|(Y1, D1))|V1 = u]

]∣∣∣∣
u=qα(V1)

. (6.19)

Equation (6.17) shows that the approximation of bias is based on the number of inner
simulation K1 as well as the number of outer simulation N , since the bias turns to zero
if K1 → ∞ and N → ∞. However, the approximation of variance in (6.18) is mainly
based on the number of outer simulation N , since the variance turns to zero if N →∞.

Gordy and Juneja (2010) then determine the optimal K1 and N for the computational
budget allocation by minimizing the mean square error. Bauer et al. (2009) apply the
same methodology for the estimation of SCR by considering the number of risk neutral
simulation at t = 0 for the calculation of MCEV. The result is that one can use larger
number of outer scenarios and relative smaller inner scenarios to perform the nested
simulation.

Finally we summarize the procedure of nested simulation as follows:

1. Generate N outer scenarios under real world measure up to time t = 1.

2. For each outer real world scenario i:

• Generate K(i) inner scenarios under risk neutral measure.

• For each inner risk neutral scenario k, compute the sum of discounted future
profits PV

(i,k)
1 .

• Evaluate the PVFP at t = 1 conditional on outer scenario i, V̂
(i)

1 (K(i)), by

taking the average of PV
(i,k)

1 for k = 1, . . . , K(i) over all inner risk neutral
scenarios.

6.3. Proxy approaches

In Section 6.2 we have discussed the nested simulation. Although one can choose optimal
number of outer and inner scenarios by minimizing the mean square of error for the
resultant risk measure, it still requires quite high computational effort and is not suitable
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to apply by achieving the results in required deadline. In this section, we discuss so called
proxy approaches to make the calculation faster and hence more practical. There are
several proxy approaches applied in the insurance industry, i.e.

• curve fitting

• least-square Monte-Carlo

• replicating portfolio

All the proxy approaches are based on finding a linear combination of basis functions
to approximate the PVFP. Let ek(Y1, D1) be the k-th basis function, then the finite
linear combination of basis functions V A1 is used to approximate value of V1, i.e.

V1 ≈ V A1 =
M∑
k=1

βkek(Y1, D1) (6.20)

where M is the number of basis functions. The basis functions for replicating portfolio
are financial assets. The basis functions for curve fitting and least square Monte-Carlo
are the risk factors.

In the following, we describe in more detail of these proxy methods.

6.3.1. Curve fitting

The insurance company uses stochastic cash flow projection model (e.g. Prophet ALS)
to calculate the PVFP. The corresponding inputs are risk neutral scenarios consisting of
all kinds of risk factors. Therefore, we can approximate the valuation function by a fitted
function of risk factors. Let RFt(Yt, Dt) ∈ Rn be all the input risk factors conditional
on (Yt, Dt) for the calculation of PVFP. Since the calculation of PVFP in the stochastic
cash flow projection model only depends on the risk factors, we have

V0 ≈ V ACF0 =
M∑
k=1

βkek(RF0(Y0, D0)) =
M∑
k=1

βkek(RF0) (6.21)

V1 ≈ V ACF1 =
M∑
k=1

βkek(RF1(Y1, D1)) =
M∑
k=1

βkek(RF1), (6.22)

under the assumption that the stochastic model does not change from t = 0 to t = 1.
We now describe how to run the curve fitting step by step. First of all, we generate

NCF (small, e.g. 50) outer scenarios under the real world measure P form t = 0 to t = 1.
Subsequently, for each outer scenario i, we change from the real world measure P to risk
neutral measure Q, and generate K1 inner scenario from t = 1 to t = T . Afterwards, we
compute the realized sum of discounted future profits V̂

(i)
1 (K1). Then we determine the

coefficients β = (β1, . . . , βM) by running the curve fitting:

β̂ = argminβ∈RM


NCF∑
i=1

(
V̂

(i)
1 (K1)−

M∑
k=1

βkek(RF
(i)
1 )

)2
 (6.23)
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Finally, the estimated coefficients β̂ are used to approximate V1:

V1 ≈ V ACF1 (RF1) ≈ V̂ A
CF

1 (RF1) =
M∑
k=1

β̂ek(RF1). (6.24)

In practice, one could use predefined stressed scenario sets at t = 0 by changing one
risk factor (e.g yield curve, equity volatility, swaption volatility) instead of generating
new real world scenarios to represent the different combination of risk factors. Therefore,
we could generate NCF,Sensi risk neutral stressed scenario sets at t = 0. Subsequently,
for each stressed scenario set i, we generate K0 inner scenario from t = 0 to t = T .
Afterwards, we compute the realized sum of discounted future profits V̂

(i)
0 (K0). Then

we determine the coefficients β = (β1, . . . , βM) by running the curve fitting:

β̂ = argminβ∈RM


NCF,Sensi∑

i=1

(
V̂

(i)
0 (K0)−

M∑
k=1

βkek(RF
(i)
0 )

)2
 (6.25)

Finally, we use the estimated coefficients β̂ to get the approximation of V0 and V1:

V0 ≈ V ACF0 (RF0) ≈ V̂ A
CF

0 (RF0) =
M∑
k=1

β̂ek(RF0) (6.26)

V1 ≈ V ACF1 (RF1) ≈ V̂ A
CF

1 (RF1) =
M∑
k=1

β̂ek(RF1). (6.27)

Note that there is usually no linear relationship between risk factors and the PVFP.
It is not clear to which risk factors to be used and which function to be used for the
interpolation. Furthermore, it often requires cross terms among risk factors due to the
complexity of the stochastic liability model. In practice first and second of cross terms
are considered only.

One example of curve fitting is the Swiss Solvency Test (SST) standard formula applies
Delta-(Gamma) curve fitting (see FINMA (2012)). It approximates the V1 by the second
order Taylor expansion as follows:

V1 = V (RF1) ≈V (RF0) +
d∑
i=1

∂V (RF0)

∂RF i
(RF i

1 −RF i
0)

+
1

2

d∑
i=1

d∑
j=1

∂2V (RF0)

∂RF iRF j
(RF i

1 −RF i
0)(RF j

1 −RF
j
0 ). (6.28)

The coefficients are the first and second derivatives, which represent the sensitivities of
V with respect to the risk factors. These could be estimated through sensitivity analysis,
i.e. using the change in V with respect to changes in the risk factors. Therefore, numbers
of stressed (sensitivity) scenario sets should be constructed. Technical description of the
Delta-Gamma approximation is referred to Cardi and Rusnak (2007) and the formal
procedure is referred to FINMA (2012).

In the end we also summarize the procedure of curve fitting approach as follows:
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1. Generate N outer scenario sets (risk neutral scenario sets at time t = 1 based on
the recalibration of realized real world path up to time t = 1, or stressed scenario
sets)

2. For each outer scenario i:

• Generate K inner scenarios.

• Evaluate the PVFP by taking the average of the sum of discounted cash flows
over all inner scenarios.

3. Determine the coefficients β = (β1, . . . , βM) by running the curve fitting.

4. Calculate the approximated value of V1.

6.3.2. Least Square Monte Carlo

The least square Monte Carlo approach was first introduced by Longstaff and Schwartz
(2001), who use least squares regression on a countable set of basis functions to approx-
imate the conditional expectation. Bauer et al. (2009) apply the idea and propose a
faster approach for the calculation of required risk capital under Solvency II.

Assume that the conditional expectation V1 is an element of the Hilbert space

L2(Ω, σ(Y1, D1),P),

then it has a countable orthonormal basis and the conditional expectation could be
represented as a linear function of the elements of the basis (see Longstaff and Schwartz
(2001) and Bauer et al. (2009)). Therefore, one can replace the conditional expectation
in (6.7) for calculation of V1 by a finite combination of basis functions as follows:

V1 ≈ V ALSMC
1 (Y1, D1) =

M∑
k=1

βkek(Y1, D1) (6.29)

where the sequence of basis functions (ek(Y1, D1)) is assumed to linearly independent
(orthogonal) and complete on the Hilbert space.

We now describe how to run the least square Monte Carlo step by step. First of
all, we generate N outer scenarios under the real world measure P form t = 0 to t = 1.
Subsequently, for each outer scenario i, we change back from the real world measure P to
risk neutral measure Q, and then extend the path by generating an inner scenario from
t = 1 to t = T . Afterwards, we compute the realized sum of discounted future profits
PV

(i)
1 of this path. Then we determine the coefficients β = (β1, . . . , βM) by running the

least square regression:

β̂(N) = argminβ∈RM

{
N∑
i=1

(
PV

(i)
1 −

M∑
k=1

βkek(Y
(i)

1 , D
(i)
1 )

)}
(6.30)
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Finally, we use the estimated coefficients β̂(N) to get the approximation of V1:

V1 ≈ V ALSMC
1 (Y1, D1) ≈ V A

LSMC,(N)
1 (Y1, D1) =

M∑
k=1

β̂
(N)
k ek(Y1, D1) (6.31)

In addition, we have the following convergence for the approximation calculated by
the least square Monte Carlo:

V ALSMC
1 → V1 as M →∞, and

V A
LSMC,(N)
1 → V ALSMC

1 as N →∞.

For the proof we refer to Proposition 3.1 of Bauer and Ha (2013).
In the end we also summarize the procedure of least square Monte Carlo approach as

follows:

1. Generate N outer scenarios under real world measure up to time t = 1.

2. For each outer real world scenario i:

• Change back from the real world measure P to risk neutral measure Q.

• Extend the path by generating an inner scenario from t = 1 to t = T under
risk neutral measure.

• Compute the sum of discounted future profits PV
(i,k)

1 .

3. Determine the coefficients β = (β1, . . . , βM) by running the least square regression.

4. Calculate the approximated value of V1 by V A
LSMC,(N)
1 (Y

(i)
1 , D

(i)
1 ).

6.3.3. Replicating portfolio

The replicating portfolio consists of a set of financial assets could be used as a computa-
tionally efficient proxy to evaluate the PVFP under real world at t = 1. It is motivated
by no arbitrage pricing that if one portfolio of assets (e.g. bond and stock) has identical
cash flows with a given asset (e.g option) in all states, then we say this given asset
could be replicated by the portfolio of assets. This indicates a replicating portfolio could
be used to approximate the original liability of a life insurance company that sells life
insurance contracts containing embedded options and guarantees, if this portfolio could
replicate the liability cash flows in all states.

An introduction of the approach is given by Oechslin et al. (2007). Oechslin et al.
(2007) illustrate how to use replicating portfolio to the market consistent valuation and
management of option and guarantees embedded in the life insurance contracts. Given
a pool of candidate assets that could be evaluated easily, they find a linear combination
of these assets in order to replicate the liability cash flows. The weights for the linear
combination of assets could be determined by minimizing a metric, which measures the
distance between the cash flows of replicating portfolio and the original liability. Fur-
thermore, some constraints could also be incorporated in the optimization of the weights
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to force market-consistent and the certainty-equivalent values of the original cash flows
of liability could be matched exactly by the replicating portfolio. Oechslin et al. (2007)
finally give a case study based on a real traditional life insurance portfolio consisting of
products such as single and regular premium endowments, deferred annuities and term
insurances, which are mostly profit sharing with policyholders.

Boekel et al. (2009) give an introduction of replicating portfolio as well. They illustrate
how to derive the replicating portfolio, including the determination of the replication
methods, selection of economic scenarios, definition of asset pool and practical constrains
as well as the fitting methodology and criteria.

Seemann (2009) follows the framework proposed by Oechslin et al. (2007) for the
constructing of replicating portfolio. The replicating portfolio approach is applied to
German products such as single premium endowment with profit-sharing and interest
rate guarantee as well as combining the surrender and mortality risk. In addition, Erixon
and Tubis (2008) and Kalberer (2007) use replicating portfolio approach for the hedging
and valuation of unit-link products with investment guarantee.

Burmeister and Mausser (2009) and Burmeister et al. (2010) focus on constructing
a replicating portfolio including a relative smaller number of assets. An effective repli-
cating portfolio should not only match closely to the original liability under various
market conditions but also be quickly priced and easily interpret the relation to the
liability. Clearly, small portfolio is easier to meet the above criteria and is more robust
to the unanticipated or stressed market conditions. Burmeister and Mausser (2009) and
Burmeister et al. (2010) apply the trading restrictions as further constrains to get a
relative smaller effective replicating portfolio.

Let C = {C1, . . . , CK} be the asset pool of financial assets, where Ck be the k-th
candidate asset in the asset pool. Let CFt,Ck be the cash flow generated by the candidate
Ck at time t.

Let G ⊆ C be a subset of C, which represents the set of assets in a selected replicating
portfolio. Let wG = {wk} for Ck ∈ G be the weights of the candidate assets in the
selected replicating portfolio, where wk is the weight for the candidate Ck in G.

Let ZG = (ZG
1 , . . . , Z

G
T ) be the cash flows of the replicating portfolio, where ZG

t is the
cash flow of the replicating portfolio at time t. It is calculated as the weighted sum of
cash flows of candidate assets in the replicating portfolio, i.e. ZG

t =
∑

k∈GwkCFt,Ck .
We consider to replicate the cash flows of future profits by the cash flows generated by
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a portfolio of financial assets, i.e. we replicate X = (X1, . . . , XT ) by ZG:

V1 = EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
Xt

∣∣∣∣∣ (Y1, D1)

]

≈ EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
ZG
t

∣∣∣∣∣ (Y1, D1)

]

= EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)(∑
k∈G

wkCFt,Ck

)∣∣∣∣∣ (Y1, D1)

]

=
∑
k∈G

wk EQ

[
T∑
t=1

exp

(
−
∫ t

1

ru du

)
CFt,Ck

∣∣∣∣∣ (Y1, D1)

]
︸ ︷︷ ︸

:=V
Ck
1 (Y1,D1)

. (6.32)

Therefore, the PVFP at t = 1 could be approximated by the replicating portfolio G:

V1 ≈ V ARP1 =
∑
k∈G

wkV
Ck

1 (Y1, D1). (6.33)

Analog to t = 1, we could replicate the V0 by the replicating portfolio G:

V0 ≈ V ARP0 =
∑
k∈G

wkV
Ck

0 (Y0, D0). (6.34)

The objective is to find out an optimal replicating portfolio G∗ and the corresponding
optimal weights, which can match the cash flows X as well as possible, i.e.

min
wG, G

d(X,ZG) (6.35)

where d is the norm that measures the distance between X and ZG. For instance, one
can choose d as L2-norm.

According to no arbitrage pricing, if a portfolio of assets has the same cash-flows
as another asset or liability, then their price has to be the same for there to be no
arbitrage. If not, there exists arbitrage opportunity. Therefore, if the cash flows of
replicating portfolio ZG are identical with the cash flows of future profits X, then V ARP1

equals to V1. The more detailed theoretical foundation of replicating portfolio could be
seen in Natolski and Werner (2017).
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7.1. General strategy

We have introduced the replicating portfolio in Section 6.3.3 as the approximation of
PVFP for the calculation of SCR. In this chapter, we develop a general strategy and
describe step by step how to construct a ‘good’ replicating portfolio.

So what is a ‘good’ replicating portfolio? Are there any criteria for judgment of the
quality of replicating portfolio? Of course the answer is yes. As we described before the
motivation of replicating portfolio is used to replicate the cash flows of future profits.
Hence, the first criterion is the quality of cash flow matching. If the cash flow could be
replicated very well, then we say the replicating portfolio is a computationally efficient
proxy to the PVFP. Therefore, the second criterion is the (in sample) calibration error
for determining the replicating portfolio. After the calibration of replicating portfolio, it
is further applied to approximate the PVFP under real world at t = 1 for the estimation
of SCR. Therefore, the next criterion is that the estimation error of SCR. Furthermore,
with sufficient large pool of candidate assets, the likelihood of getting an effective repli-
cating portfolio would be higher. However one should not select all these assets into the
replicating portfolio, which is not robust and usually causes the problem of over fitting
and large long short positions or offsetting effects. Consequently the further two criteria
are the robustness and offsetting effects. We now summarize all the criteria as follows:

(i) the quality of cash flow matching

(ii) the calibration error

(iii) the estimation error of SCR

(iv) the robustness and over fitting

(v) long short positions and offsetting effects

For criterion (i), in order to match the cash flows of future profits, we create a
sufficient large pool of candidate assets containing different kinds of assets 1 to increase
the likelihood of cash flow matching. However, in practice it is quite challenging for
replicating the cash flows in each year for each risk neutral scenario since the cash flows

1Typically the candidate assets are functions in one risk factor only. However, the cash-flows which
need to be approximated are typically functions of whole portfolios of risk factors. For instance, the
embedded option and guarantees are based on whole portfolio. Therefore, the cross term of financial
assets could be introduced.
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might be complicated due to options and guarantees, dynamic surrender values and
costs etc. Actually we are more interested in the approximation quality of PVFP, and
hence it is reasonable to aggregate the cash flows over all years, i.e. match the sum of
discounted cash flows.

The criterion (ii) is highly related to the criterion (i). If the present value of cash
flows could be matched very well, then the calibration error would be small and hence
the fitting quality is good. In addition, the fitting quality should also be validated by
the out of sample test. Note that besides the basis set, more stressed sensitivity risk
neutral scenario sets might be taken into account as calibration scenarios. Furthermore,
we apply the subset selection procedure to select the most significant candidate assets
into the replicating portfolio.

The calibration scenarios consists of basis scenario set (or more sensitivity scenario sets
as well) might still not be able to cover the evolution of possible financial market states
in future. In such case, though the criterion (ii) could be fulfilled with small calibration
errors, it does not mean that it leads to small estimation error of SCR. Therefore, in
order to get smaller estimation error of SCR as for criterion (iii), we need to first analyze
the real world scenarios of risk factors (or historical time series of risk factors) such as
yield curve, swaption etc. Afterwards, we construct (artificial) risk neutral sensitivity
scenario sets to cover the possible financial market states and combine these scenario
sets as the calibration scenarios. Note that the construction of artificial sensitivity risk
neutral scenario sets usually requires new calibration in practice or applies weighted
Monte-Carlo techniques on the risk neutral basis set (see Avellaneda et al. (2001))

For criterion (iv), in order to avoid over fitting to get more robust results, we limit the
number of candidate assets in the replicating portfolio. For criterion (v), high collinearity
of candidate assets in asset pool could lead to strong offset effect if one longs and shorts
these assets simultaneously. Therefore, one should avoid large long short positions,
especially on assets with high multi-collinearity. For the reduction of large long-short
positions, one could apply shrinkage method e.g. LASSO by setting constraints on the
weights or simply define selection criterion when performing the subset selection.

With the consideration of the above criteria, we propose the following general strategy
to get a ‘good’ replicating portfolio and afterwards the estimation of SCR:

1. Construct a pool of standard financial assets.

2. Construct the calibration scenarios.

3. Perform the calibration procedure:

• Define the cost function of the optimization problem for determining the
weights of replicating portfolio.

• Optimization procedure: (weighted) least square optimization, mixed integer
quadratic programming, subset selection techniques, shrinkage method etc.

• Out of sample test.

4. Select the replicating portfolio with given criteria.
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5. Evaluate the PVFP at t = 1 conditional on each real world scenario.

6. Estimate the SCR.

7.2. Construction of the pool of financial assets

In this section, we construct the asset pool with different kinds of assets, which might be
selected into the replicating portfolio. The purpose of replicating portfolio is that using
a linear combination of candidate assets to match the liability cash flows. That means
the cash flows of liability could be decomposed into simple cash flows generated by the
standard financial assets. For instance, the cash flows of immediate annuity or endow-
ment products could be represented as zero coupon bonds, the minimum interest rate
guarantee products as interest rate option, unit-link products linked to equity portfolio
as the equity index and options. Furthermore, the candidate assets in the asset pool
should be priced in closed form in order to evaluate the replicating portfolio very fast.

Therefore, the pool of financial assets should ideally include all types of assets (traded
and synthetic assets) that could replicate the cash flows of future profits. Since these
cash flows might depend on the risk factors such as interest rates, equity etc, the assets
based on these risk factors are taken into account and listed as below:

• interest rate related assets

– risk free zero coupon bonds with different maturities

– total return indices of zero coupon bond

– total return indices of constant maturity zero coupon bond

– Interest rate (receiver) swaps with different strikes

– (Receiver) swaption with different option expiries and swap tenors

• equity related assets

– total return indices of equity at different years

– European (put) options with different option maturities and strikes

Note that we choose receiver swaption and European put option, since the life insur-
ance product with guaranteed interest rate is more likely to be put style option from
shareholder’s point of view. The mathematical definition of these financial assets and
the corresponding cash flow payments could be seen in the Appendix A.

7.3. Construction of calibration scenarios

7.3.1. Construction of sensitivity scenario sets through recalibration

In order to do the sensitivity analysis of MCEV or the estimation of SCR, the sensitivity
scenario sets would be used. The sensitivity scenario sets could be e.g.:
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• interest rate +50bps

• interest rate -50bps

• swaption volatility +25%

• equity volatility +25%

Given the stressed market input data, the recalibration is usually required. In practice,
it costs some time for the recalibration of all ESG models and generates the new scenario
set by fulfilling all the criteria such as martingale tests.

Alternatively, one could construct sensitivity scenario sets by changing specific cali-
brated parameters in order to avoid recalibration.

7.3.2. Construction of artificial scenario set through reweighting

Avellaneda et al. (2001) use the weighted Monte Carlo to correct the price mis-specifications
in the simulation by assigning “probability weights” to the simulated paths. Hörig and
Wechsung (2014) follow this re-weighting technique for targeting any arbitrary volatility
assumptions. Here we apply this idea to construct a new sensitivity scenario set by
re-weighting the risk neutral scenarios of basis or sensitivity scenario set.

Let Q be the risk neutral measure and H be the attainable contingent claim with
maturity time T , then the fair price of H could be given by the risk neutral valuation
formula:

πH(0) = EQ
[
exp

(
−
∫ T

0

ru du

)
H

]
= EQ [PVH ] , (7.1)

where the PVH is the present value of H. Then πH(0) could be approximated by Monte
Carlo simulation as

πH(0) ≈ 1

K

K∑
i=1

exp

(
−
∫ T

0

r(i)
u du

)
H(i) =

1

K

K∑
i=1

PV
(i)
H . (7.2)

Let Q̃ be a new risk neutral measure which is absolutely continuous with respect to Q.
According to the Radon-Nikodým Theorem (see Williams (1991, p. 145)) there exists
an (nonnegative) F -measurable function (random variable) g such that

Q̃(A) =

∫
A

dQ̃ =

∫
A

gdQ ∀A ∈ F (7.3)

where g = dQ̃
dQ is called the Radon-Nikodým derivative and

EQ[g] =

∫
gdQ =

∫
dQ̃
dQ

dQ =

∫
dQ̃ = 1. (7.4)

The fair price of H under risk neutral measure Q̃ is:

π̃H(0) = EQ̃ [PVH ] =

∫
PVH dQ̃ =

∫
PVH · g dQ = EQ [PVH · g] . (7.5)

81



7. Replicating portfolio

Consequently, π̃H(0) could be approximated as

π̃H(0) ≈ 1

K

K∑
i=1

PV
(i)
H g(i), (7.6)

where 1
K

∑K
i=1 g

(i) = 1 since EQ[g] = 1. Therefore, we could see that the fair price of H

under risk neutral measure Q̃ could be estimated by averaging the present values over
all risk neutral scenarios under Q multiplied by the respective weights.

Let C1, . . . , CN be the target (stressed market) prices of financial assets for the sen-
sitivity scenario set representing the stressed financial market state. In general, given
the target prices, the re-calibration process should be performed and a new risk neutral
scenario set should be generated through Monte-Carlo simulation under the calibrated
risk neutral measure Q̃. However, as we described before, we can apply the weighted
Monte Carlo techniques to avoid the re-calibration and re-generation of scenarios.

Let PV
(i,j)
C be the present value of cash flows for the risk neutral scenario i of the j-th

financial asset. We need to determine the weights (g(1), . . . , g(K)) such that the expected
value of the present values should coincide (either exactly or within tolerance) target
price of j-th financial asset, i.e. the price relationship as follows holds:

Cj =
1

K

K∑
i=1

g(i)PV
(i,j)
C =

K∑
i=1

piPV
(i,j)
C for j = 1, . . . , N, (7.7)

where pi is the normalized version of g(i), i.e. pi = g(i)/K.
In general, there are many solutions for the linear equations (7.7) since usually the

number of simulation K is larger than the number of target financial assets N . We
could follow the criterion proposed by Avellaneda et al. (2001) for finding the weights
by minimizing the Kullback-Leibler relative entropy between the posterior measure with
non-uniformly sampling and the prior measure with uniformly sampling. The prior cor-
responds to the information available for the risk neutral measure Q while the posterior
reconciles the prior information with the target prices. It means that besides fulfilling
price relationship (7.7), we try to keep the weights for non-uniformly sampling as close as
possible to the uniformly sampling. Therefore under linear constraints (7.7), the weights
are determined by minimizing the relative entropy:

D(p|q) =
k∑
i=1

pi log(
pi
qi

) = logK +
K∑
i=1

pi log pi (7.8)

where qi = 1/K for uniformly sampling. Avellaneda et al. (2001) reformulate this
optimization problem by a min-max program as follows by introducing the Lagrange
multipliers:

min
λ

max
p

{
− logK −

K∑
i=1

pi log pi +
N∑
j=1

λj

(
K∑
i=1

piPV
(i,j)
C − Cj

)}
(7.9)
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The maximum of p for each λ is realized by Boltzmann-Gibbs form:

pi =
1

ζ(λ)
exp

(
N∑
j=1

PV
(i,j)
C λj

)
(7.10)

where ζ(λ) is the normalized factor defined as ζ(λ) =
∑K

i=1 exp
(∑N

j=1 PV
(i,j)
C λj

)
. Then

the optimization turns to minimize:

min
λ

{
log(ζ(λ))−

N∑
j=1

λjCj

}
. (7.11)

Equation (7.11) is a nonlinear optimization program which could be solved by L-BFGS,
simplex method etc. Note that it is local optimization and might convergence to a local
minimum.

In addition, it is possible that there are no solution for the linear equations (7.7) if
Q does not contain enough information. Consequently, instead of matching the target
prices exactly by solving linear equations (7.7), we could determine the weights by
minimizing the least square errors:

min
g


(

1

K

K∑
i=1

g(i)PV i,j
C − Cj

)2


s.t.

1

K

K∑
i=1

g(i) = 1

g(i) ≥ 0 for i = 1, . . . , K. (7.12)

It is an optimization problem that could be solved by quadratic programming.
Finally we summarize the process how to construct the artificial sensitivity set by

re-weighting the given risk neutral scenario set.

1. Set the target (stressed) market input data: initial yield curve, European option
prices or implied volatility, swaption implied volatilities.

2. Map these market input data to corresponding prices of financial assets

• initial yield curve 7→ risk free zero coupon bonds

• European option implied volatilities 7→ European option prices

• swaption implied volatilities 7→ Swaption prices

3. Compute the present value PV
(i,j)
C for each risk neutral scenario under Q of each

financial asset.

4. Determine the weights for the risk neutral scenarios.
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7.4. Calibration procedure

7.4.1. Definition of criteria and objective functions

In Section 6.3.3 we introduced the replicating portfolio and Section 7.1 pointed out the
criteria for constructing a ‘good’ replicating portfolio. In this section, we now define the
criteria precisely in mathematically and then combine them into the objective function.

For criterion (i) (the quality of cash flow matching), we could use a metric d(X,ZG) to
measure the distance between the two random variables of cash flows, X = (X1, . . . , XT )
and ZG = (ZG

1 , . . . , Z
G
T ). If we only consider the cash flow matching, then objective

function could be given as:

min
wG, G

d(X,ZG) (7.13)

Therefore, the objective is only to find out an optimal replicating portfolio G∗ and the
corresponding optimal weights, which can match the cash flows X as well as possible.

In order to consider the criterion (iii) (the estimation of SCR), a replicating portfolio
that could replicate the cash flows under different market condition is preferred. There-
fore, not only the basis scenario set but also the further stressed sensitivity scenario sets
or artificial scenario sets should be considered as the calibration scenarios.

Let Qj be a risk neutral measure derived by the calibration to different market data
(market consistent or stressed market data). For instance, Q0,Basis is the risk neutral
measure derived by the calibration to market consistent data at t = 0 . Q0,Stress is a
risk neutral measure derived by the calibration to the stressed marked data at t = 0,
e.g. 50 basis points decrease of reference yield curve, 25% increase of swpation volatility
etc. Q1,(i) is a risk neutral measure derived by the calibration to market data at t = 1
conditional on the financial market development for real world path i up to t = 1.

Let XQj and ZQj ,G be the corresponding random variables under the probability mea-
sure Qj. Then the objective function turns to be:

min
wG, G

J∑
j=1

qQjd(XQj , ZQj ,G), (7.14)

where J is the number of scenario sets and qQj is the weight for different probability
measures. Equation (7.14) gives the objective function for cash flow replication under
different market conditions without any further constrains.

Now we denote the realization of a random variable by the corresponding lower case
letter. Note that a random variable is always denoted by a upper case letter. For
instance, xit is the realization of Xt.

Let x
i,Qj
t be the i-th realization of X

Qj
t simulated under the probability measure Qj,

i = 1, . . . , KQj . KQj is the number of realization for the Monte-Carlo simulation. If we
choose d as the L2 norm, then the optimization can be explicitly written as:

min
wG, G

J∑
j=1

KQj∑
i=1

T∑
t=1

qi,Qj ,t
(
x
i,Qj
t − zi,Qj ,Gt

)2

, (7.15)
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where qi,Qj ,t is the weights at time t for scenario i under probability measure Qj. There-
fore (7.15) gives the weighted least square optimization of cash flow replication for dif-
ferent types of risk neutral scenarios representing different market conditions without
any constrains.

In practice, the good matching of cash flow at each time period could not be achieved
easily due to complexity of liability cash flows and the MCEV calculation mainly focus on
the present value of cash flows. Furthermore, the criterion (ii) (calibration error) is also
measured by the difference of PVFP and the value of replicating portfolio, d(V0, V A

RP
0 ).

The value of PVFP and replicating portfolio are both calculated by averaging the present
values.

Therefore one can determine the replicating portfolio with objective function on
matching the present value instead of matching cash flows at each period. Then the
dimensions of the optimization problem could be reduced to J×KQj . Note that besides
using the present value, i.e. the sum of discounted cash flows, one could also use the
accumulated terminal cash flows, see Oechslin et al. (2007) and Boekel et al. (2009).

Let XPV and ZG
PV be the present value (sum of the discounted cash flows) of future

profits and the replicating portfolio CG, i.e.

ZG
PV =

T∑
t=0

exp

(
−
∫ t

0

ru du

)
ZG
t , (7.16)

XPV =
T∑
t=0

exp

(
−
∫ t

0

ru du

)
Xt. (7.17)

Let x
i,Qj
PV be the i-th realization of XPV simulated under the risk neutral measure Qj,

i = 1, . . . , KQj . Let z
i,Qj ,G
PV be the i-th realization of ZG

PV simulated under the risk neutral
measure Qj, i = 1, . . . , KQj .

The optimization problem turns to be:

min
wG, G

J∑
j=1

KQj∑
i=1

qi,Qj
(
x
i,Qj
PV − z

i,Qj ,G
PV

)2

, (7.18)

where qi,Qj be the weights for the i-th realization under risk neutral measure Qj.
The optimization problem could be separated in two steps, i.e. select an appropriate

set of candidate assets from the asset pool and then do the linear regression to determine
the weights. It is identical to the variable or subset selection problem in linear regression.
Therefore, the subset selection techniques could be applied to solve (7.18). See Miller
(2002).

Furthermore, in the linear regression, with the larger number of assets selected into
the replicating portfolio, the overall fit will be increased. The optimization tends to
produce a replicating portfolio with large number of assets, which leads to over fitting
and offset effects of long short positions.

In order to control the over fitting and the long-short positions for criterion (iv) and
(v), one solution is that setting cardinality constraints, i.e. specify the maximum number
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of assets NG could be selected into the replicating portfolio G. Then we still need to find
out the optimal G with smallest the sum of squared error. Therefore, we reformulate
the optimization problem as:

min
wG, G

J∑
j=1

KQj∑
i=1

qi,Qj
(
x
i,Qj
PV − z

i,Qj ,G
PV

)2

s.t.

yn ∈ {0, 1} n = 1, . . . , NPool

NPool∑
n=1

yn ≤ NG, (7.19)

where NPool is the number of assets in the asset pool. yi is the binary variable, yn = 1
means that candidate asset Cn is selected and yn = 0 means that Cn is not selected.
Therefore, the optimization problem is reformulated to be a Mixed Integer Quadratic
Programming (MIQP) (7.19). It could be solved by branch-and bound algorithm, see
e.g. Bonami and Lejeune (2009), who use such approach to solve MIQP in the portfolio
optimization problems.

The other solution is that using shrinkage method or regularization by setting upper
limit on the total size of position when performing least square optimization for the
replicating portfolio. Burmeister and Mausser (2009) add the trading restrictions, i.e.
the linear constraints on the weights of replicating portfolios, to obtain small replicating
portfolios as well as avoiding the offsetting effects of long short positions. Burmeister
et al. (2010) extend the methodology by using instrument-dependent trading costs, which
is more effective when constructing replicating portfolios.

min
w

J∑
j=1

KQj∑
i=1

qi,Qj
(
x
i,Qj
PV − z

i,Qj ,G
PV

)2

s.t.∑
k∈G

ak|wk| ≤ b, (7.20)

where ak > 0 represents a trading cost specific to candidate asset Ck and

z
i,Qj ,G
PV =

T∑
t=1

exp

(
−
∫ t

0

ru du

)(∑
k∈G

wkCF
i,Qj
t,k

)
.

For instance, ak could account both correlation between PVFP and asset Ck and the
ratio of standard deviations of the asset Ck and PVFP, i.e. asset with higher correlation
and lower standard deviation will be less penalized.

Actually, the optimization problem (7.20) could be mapped into the shrinkage method
called LASSO (Least Absolute Shrinkage and Selection Operator) introduced by Tib-
shirani (1996), who uses a penalty of L1 norm of coefficients of predict variables for
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ordinary least squares regression. There are many methods for solving the LASSO and
hence we could apply them for solving optimization problem (7.20).

Note that further constraints could be taken into consideration. For instance, Oechslin
et al. (2007) mention that it makes sense that the market consistent and the certainty
equivalent values of the replicating portfolio match the respective original value. So one
can set some constrains for this specific purpose. Furthermore, it is also possible to
add constraints to consider that the average cash flows at each time point of replicating
portfolio could match the respective original PVFP cash flows.

7.4.2. Selection of candidate assets for replicating portfolio

In general all candidate assets should not be chosen into the replicating portfolio, since
it leads to over fitting and larger variance in the prediction. Furthermore, a replicat-
ing portfolio should be meaningful and have clear interpretation, which is easier to be
achieved with small subset of candidate assets. Therefore we only choose a subset of
candidates while the coefficients of the selected candidates are estimated by least squares
regression.

The selection of replicating portfolio is now turned into the subset selection with linear
regression. More description of subset selection and shrinkage method could be seen in
Appendix B.
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Given the mathematical descriptions in previous chapters, we illustrate the application
of a constructed partial internal model for the market consistent valuation and the
determination of capital requirements.

First of all, we calibrate the interest rate model and equity model to the market
data. Given the calibrated parameters, we then generate the risk neutral and real world
scenarios. The martingale tests are performed to validate the quality of risk neutral
scenarios. The simulated and historical distributions of total returns of zero coupon
bonds and equity are also compared in order to check if the real world scenarios could
mimic the historical behavior, especially if the worst economic movements are captured.
Finally, we perform the market consistent valuation of the life insurance portfolio and
determine the risk capital based on nested simulation. Since the nested simulation
requires high computational efforts in practice, the proxy method of replicating portfolio
is taken into account. Given a pool of candidate assets, we illustrate the procedure how
to select the optimal replicating portfolio with subset variable selection strategy and use
such replicating portfolio to determine the required risk capital.

8.1. Model calibration

The ESG models are calibrated to market data. In this paper, we use the market data
for the economy of EUR on the cut-off date of 12/31/2014 as an illustration.

8.1.1. Calibration of interest rate model

Before the calibration of interest rate model, we start to see the historical behavior
of interest rates. Figure 8.1 shows the historical continuous compounded spot rates
(bootstrapped from the swap rates quoted form Bloomberg) with different maturities.

The market data are only available from 1999 for the economy of EUR. We could see
in Figure 8.1 that the interest rates are much lower after year 2010, i.e. we enter into the
lower interest rate environment. The interest rates are lowest on the cut-off date during
the observed period of historical data. They have all decreasing trends, especially the
long term rates for the available historical data. According to the principle component
analysis of the historical spot rates, there are three main components, 92.87% for the
level, 6.43% for the slope, and 0.49% for the curvature, see Figure 8.2. These three
factors are necessary to characterize the most of the variation of the bond returns as
founded by Litterman and Scheinkman (1991).

The three factor CIR model could capture these three main principle components (see
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Figure 8.1.: The continuous compounded spot rates bootstrapped from historical daily
data of swap rates up to 12/31/2014.
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Figure 8.2.: PCA of the historical continuous compounded spot rates.
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Chen and Scott (1993)). Furthermore, by using a constant shift δ0 < 0 on the short rate,
it allows interest rates to be negative, which is necessary for the current low interest rate
environment. Furthermore, it is plausible to assume the interest rates are mean reverting
according to the economic theory. There are also statistical evidence that the short term
rates revert to the long-term average yields with a strong tendency (see e.g. van den End
(2013)). Though the available historical data of swap rates do not show strong evidence
of mean reversion, we think it is due to short period of data and the mean reversion
property for the three factor CIR model is still meaningful. Regarding to the choosing
of time horizon for the real world estimation, we prefer to use longest historical data to
better capture the volatility of interest rates.

For the risk neutral calibration of interest rate model on the cutoff date 12/31/2014,
the following market data are used:

1. Swap rates from the deep, transparent, liquid market on the cutoff date.

2. ATM swpation implied volatilities on the cutoff date.

The swap rates quoted from Bloomberg (see Table 8.1) are used to derive the risk free
yield curve on the cutoff date. In order to be most consistent with market data, we use
the swap rates up to 30 years without considering volatility adjustment. Furthermore,
we assume that the swap rate is risk free and there is no credit risk adjustment. For
the interpolation among the missing buckets and extrapolation after 30 years, the Smith
Wilson methodology is applied (see Smith and Wilson (2001)). The extrapolation pa-
rameter is optimized such that at year 60, the difference to the ultimate forward rate
(4.2%) is smaller than one basis point. The risk free yield curve is then illustrated in
Figure 8.3.

For capturing the interest rate volatilities, we also calibrate to the instruments of
ATM swaption implied volatilities (see Table 8.2).

As we described before, the asset portfolio consists of coupon bonds with maturity
up to 10 years, we do not consider the swaption with swap tenor larger than 10 years.
Furthermore, the implied volatilities with larger tenor and larger option expires are more
important, we therefore minimize the mean square error of market and model swaption
prices that implicitly put more weights on swaption with large swap tenor and option
expires.

Generally, the parameters of the interest rate model (i.e. extended three factor CIR
model) could be estimated by two steps. First of all, the parameters of κi, θi, σi andXi(0)
could be estimated by minimizing the mean squared errors between the market swaption
prices and the model swaption prices. Secondly, the parameters related to the market
price of risk λ0

i and λ1
i are then estimated by the method of quasi maximum likelihood

using Kalman filter. However, there are many parameters for the three factor model. It
is easily to convergence a local minimum which has good fit to the market swaption prices
but with very poor fit to the historical data through maximum likelihood. Therefore,
here we estimate the parameters based on maximizing the log-likelihood through Kalman
filter as well as minimizing the sum of squared errors for the selected (Receiver-) swaption
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Table 8.1.: The market data of swap rates from Bloomberg. The values are in percent.

Bloomberg Ticker Maturity Swap Rate
EUR003M CMPL Index 0.2500 0.0780
EUR006M CMPL Index 0.5000 0.1710
EUSA1 CMPL Index 1.0000 0.1615
EUSA2 CMPL Index 2.0000 0.1750
EUSA3 CMPL Index 3.0000 0.2211
EUSA4 CMPL Index 4.0000 0.2844
EUSA5 CMPL Index 5.0000 0.3600
EUSA7 CMPL Index 7.0000 0.5280
EUSA10 CMPL Index 10.0000 0.8120
EUSA12 CMPL Index 12.0000 0.9765
EUSA15 CMPL Index 15.0000 1.1480
EUSA20 CMPL Index 20.0000 1.3210
EUSA25 CMPL Index 25.0000 1.4120
EUSA30 CMPL Index 30.0000 1.4610

Table 8.2.: The market data of ATM swaption volatilities (Bloomberg Tickers with prefix
EUSV) on 12/31/2014. The values are in percent.

swap tenor
option expiry 1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y
1Y 345.20 93.62 84.30 80.32 74.17 66.57 57.85 46.81 43.47
2Y 192.79 88.13 77.75 72.70 68.64 60.14 53.42 44.09 41.22
3Y 136.00 82.66 73.39 67.23 62.03 54.65 49.57 41.97 39.45
4Y 108.29 74.79 67.51 61.07 56.20 50.18 46.33 39.88 37.76
5Y 86.63 65.84 59.27 54.31 50.66 46.41 43.57 37.93 36.03
7Y 58.30 50.22 47.20 44.55 42.79 39.90 39.86 35.67 33.83
10Y 42.34 41.66 41.15 40.13 39.28 36.06 38.36 34.65 32.48
15Y 37.15 37.36 37.57 37.25 36.84 34.41 37.06 32.99 30.52
20Y 34.19 36.65 36.72 36.39 35.94 33.32 35.57 31.43 28.37
25Y 35.07 34.85 34.69 34.17 33.60 31.20 33.25 29.03 26.65
30Y 33.42 34.41 34.01 33.49 32.79 29.87 31.25 28.06 25.99
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Figure 8.3.: The risk free zero coupon curve on the cut-off date of 13/31/2014.

prices. In summary, the following data are used for the calibration of the extended three
factor CIR model:

• The market ATM Swaptions with option expires of 2Y, 5Y, 10Y, 15Y, 20Y and
swap tenors of 2Y, 5Y, 10Y conditioned on the final date (sum of option expiry
and swap ternor) between 5Y and 30Y, are chosen to be calibrated.

• The monthly historical data of continuous compounded spot rates (bootstrapped
from the swap rates) with time to maturities of 3M, 6M, 1Y, 2Y, 5Y, 7Y, 10Y,
15Y, 20Y, 25Y, 30Y.

The λ0
i is set to be 0. 1 The target of long term mean reversion is assumed to be

4.2%. The shift term δ(t) of extended three factor CIR model is determined such that
the model initial yield curve fits the market initial risk free yield curve on the cutoff date
exactly.

The calibrated results are illustrated in Figure 8.4 and Figure 8.5. Figure 8.4 gives
the comparison of historical observed spot rate and the forecasted spot rate through
Kalman filter. We could see that forecasted spot rates are quite comparable to the
historical observed spot rates for almost all terms, with only small deviation in terms of
1 and 2 years. Additionally, Figure 8.5 shows the comparison of the model calculated
ATM swaption implied volatilities and prices based on the calibrated parameters and the
market observed values with selected option expiries and swap tenors . We see that the

1If we set these values to be non zero, the fitting results are only improved slightly. Therefore, we set
them to be zero to keep simplicity.
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Figure 8.4.: The comparison of the observed spot rates and predicted spot rates by the
Kalman Filter for the selected terms (time to maturities).
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93



8. Application

ATM swaption volatilities fit well for large option expires along with large swap tenors,
while swaption implied volatilities could not be fitted very well for small option expiries
and swap tenors, especially the implied volatilities with 2Y (5Y) option expiry and 5Y
(2Y) swap tenor. It is acceptable, since we put more weights on long term volatilities.

Table 8.3 and Table 8.4 give the estimated parameters. We compute the standard
errors of parameters by estimating the covariance matrix (or inverse of the Fisher infor-
mation matrix) followed by Chen and Scott (1993, p. 9, eq.(4)) based on the log-likelihood
function. The estimated standard errors of parameters for κj, θj, σj for j = 1, 2, 3 and
the parameters of uT are all small, while the standard errors are relative large for the
market price of risk parameters λ1

j . The large uncertainty for the λj estimates is proba-
bly not surprising, given that the short period of available historical data and they are
typically poorly estimated even with larger sample.
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Figure 8.6.: The factor loadings of state variables.

The estimates of the risk-premia parameters λ1
j have the expected negative sign as in

Chen and Scott (1993) and Geyer and Pichler (1999), Bolder (2001). The factor loadings
of the three factors are illustrated in Figure 8.6. For the first factor, it has weak mean
reversion (κ′1 = 0.0085) and low volatility (σ1 = 0.030) (see Table 8.3). In agreement
with Chen and Scott (1993) and Litterman and Scheinkman (1991) we conclude that
the first factor may represent a ‘general level’ of interest rates which is closely related
to the yield with the longest maturity.

The second factor has stronger mean reversion (κ′2 = 0.281) and a rather large volatility
(σ2 = 0.045) compared to first factor. It relates to the ‘slope’ of the term structure. The
third factor has strongest mean reversion (κ′2 = 0.866) with largest volatility (σ3 =
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Table 8.3.: The estimated parameters of the extended three factor CIR model. The
estimated standard errors are in parentheses. δ0 = −0.07.

factor 1 factor 2 factor 3
κ 0.004 0.01949 0.86616

(0) (7e-05) (0.00538)
θ 0.18673 0.06504 0.0236

(8e-05) (0.00033) (0.00014)
σ 0.03029 0.04505 0.06931

(0.00031) (3e-04) (0.01838)
λ1 -0.00447 -0.26155 -0.18049

(0.00606) (0.01478) (0.08269)

Table 8.4.: The additional parameters of the extended three factor CIR model

factor 1 factor 2 factor 3
X0 0.0458 0.0001 0.0253
λ0 0.0000 0.0000 0.0000
κ′ 0.0085 0.2810 1.0467
θ′ 0.0881 0.0045 0.0195

Table 8.5.: The estimated parameters of error term uT in 4.18.

terms u (S.E.)
0.25 0.0025 (8e-04)
0.5 0.0015 (4e-04)
1 0.0017 (0)
2 0.0025 (1e-04)
5 0.0022 (2e-04)
7 0.0014 (1e-04)
10 8e-04 (1e-04)
15 0.0017 (1e-04)
20 0.0021 (5e-04)
25 0.002 (3e-04)
30 0.0026 (1e-04)
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0.069). The value of factor loading decreases sharply for the short term maturities,
which indicates the third factor is mainly relevant for the short maturities.

8.1.2. Calibration of equity model

For the calibration of equity Heston model, we follow the description in Section 4.2.2.
The model is first calibrated to the market European option prices under the risk neutral
measure, by minimizing the mean squared error between the model and market European
option prices (see Table 8.6).
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Figure 8.7.: The available historical data of EuroStoxx (Bloomberg Ticker: SX5E Index),
the corresponding volatility index (Bloomberg Ticker: V2X index) and 1-
week Euribor (in percent) as instantaneous short rate (Bloomberg Ticker:
EUR001W Index) up to 12/31/2014.

The calibration results of the Heston model are illustrated in Figure 8.8, which com-
pares the model calculated European option prices to the market observed European
option prices for different strikes and maturities (1Y to 5Y). The root mean squared
relative error between model and market European option prices is 0.4%.

In the next step, the parameters of market price of risk are estimated by the maximum
likelihood method under the real world measure. Two of these parameters λ0

v and λ0
s

are set to be zero for keeping simplicity and without losing the fitting quality.
Let y(t) = log S(t)−

∫ t
0
r(s)ds be the excess log-return over the risk free rate, then we
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Table 8.6.: The market prices of European options for EuroStoxx (Bloomberg Ticker:
SX5E Index) on 12/31/2014 with index value of 3146.43.

maturity
Type strike 1 2 3 4 5
Call 2500 629.0 618.4 617.1 622.5 626.8
Call 2600 549.0 549.1 556.4 567.5 576.4
Call 2700 473.0 484.2 500.0 516.3 529.3
Call 2800 401.5 423.8 447.8 468.7 485.4
Call 2900 335.3 368.4 399.6 424.5 444.8
Call 3000 274.9 317.9 355.1 383.6 407.0
Call 3100 221.2 272.2 314.9 346.2 372.2
Call 3200 174.4 231.7 278.1 311.9 340.1
Call 3300 134.6 195.7 244.9 280.6 310.5
Call 3400 101.7 164.1 215.2 252.2 283.2
Call 3500 75.1 136.9 188.6 226.3 258.3
Call 3600 54.1 113.4 164.7 202.9 235.5
Call 3700 38.2 93.5 143.7 181.7 214.7
Call 3800 26.4 76.6 124.8 162.6 195.5
Put 2500 84.6 161.1 232.1 303.7 364.1
Put 2600 104.6 191.8 271.5 348.5 413.2
Put 2700 128.6 226.7 314.8 397.0 465.6
Put 2800 157.1 266.4 362.5 449.0 521.2
Put 2900 190.8 310.8 414.0 504.5 580.1
Put 3000 230.5 360.2 469.7 563.4 641.7
Put 3100 276.7 414.5 529.1 625.8 706.3
Put 3200 330.0 473.9 592.4 691.2 773.7
Put 3300 390.2 537.9 659.2 759.6 843.5
Put 3400 457.2 606.5 729.3 830.7 915.9
Put 3500 530.7 679.2 802.5 904.7 990.2
Put 3600 609.6 755.5 878.5 981.0 1066.9
Put 3700 693.6 835.5 957.4 1059.5 1145.5
Put 3800 781.8 918.6 1038.7 1140.2 1225.8
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have

dy(t) = (−q + bv(t))dt+
√
v(t)(ρdW P

v (t) +
√

1− ρ2dW P
s (t)),

dv(t) = κ′v(θ
′
v − v(t))dt+ σv

√
v(t)dW P

v (t), v(0) > 0,

with dW P
v (t)dW P

s (t) = 0.
The y(t) could be calculated using the historical data of equity index (EuroStoxx)

and instantaneous short rate (1-Week Euribor). For the instantaneous volatility state
variable v(t), we use the so-called an unadjusted Black-Scholes proxy (see Aı̈t-Sahalia
and Kimmel (2007)), i.e. using the implied volatility of a short-maturity at-the-money
option instead of the true instantaneous volatility state variable. Since the V2X index
measures the 30-day implied volatility of the EuroStoxx, we then set v(t) = V2X2(t).
The corresponding historical data could be seen in Figure 8.7. We could see that V2X
index is mean reversion and non-negative, it indicates that it is suitable to use the
Cox-Ingersoll-Ross process to the model the volatility state variable v(t).

We then can follow the maximum likelihood estimation procedure proposed by Aı̈t-
Sahalia and Kimmel (2007) with state variables (y(t), v(t)) to estimate the risk premia
parameters λ1

v, λ
1
s. All the calibrated parameters are shown in Table 8.7 and 8.8.

Table 8.7.: The calibrated parameters of the Heston model.

κv θv σv v0 q ρ
5.4144 0.0461 0.7054 0.0494 0.0307 -0.6411

Table 8.8.: The calibrated parameters for market prices of risks of Heston model as well
as the implied other parameters.

λ0
v λ1

v λ0
s λ1

s a b κ′v θ′v
0.0000 1.9437 0.0000 2.2779 0.0000 0.0111 3.4707 0.0719

8.2. Scenario generation

8.2.1. Risk neutral scenarios

Given the calibrated parameters, the risk neutral scenarios could be generated for the
market consistent valuation through Monte Carlo simulation. Here we use the standard
Euler scheme to generate the scenarios. The time step is chosen to be 0.004, i.e. 250
time steps per year. Furthermore, the Antithetic Variates (see e.g. Glasserman (2004))
is used for the variance reduction. We choose the number of risk neutral simulation is
10000 (i.e. 5000 pairs).

Before the usage of risk neutral scenarios for market consistent valuation, we need to
do the validation of the risk neutral scenarios. First of all, the martingale test should
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Figure 8.8.: Comparison of the model calculated and market observed European option
prices for different strikes and maturities (1Y-5Y).

be performed for the scenarios in order to check the risk neutrality by validating if the
discounted assets are martingale.

The deflated total return indices should be 1 for different years under risk neutral
measure. Therefore if the martingale property is fulfilled, then the true value of 1
should be in the confidence interval (95%) of the deflated TRI based on Monte Carlo
simulation. The assets of total return indices such as the total return indices (TRI) of
constant maturity zero coupon bond (CM ZCB) with maturities 1Y, 5Y and 10Y, as
well as the total return index of equity, are taken into account for the martingale test.
Figure 8.9 illustrates the results of martingale test of the 10000 risk neutral antithetic
scenarios. The results show that the scenarios fulfill the martingale test property.

Secondly, we check the pricing quality of swaptions through Monte Carlo simulation.
We compare the model and Monte Carlo based ATM receiver swaption prices with
different option expiries and swap tenors. The comparison results could be seen in Table
8.9. The relative errors of MC prices with respect to model prices are all less than 1.9%.
The root mean squared relative error between Monte Carlo and model receiver swaption
prices is 0.9%. All the Monte Carlo based swaption prices are in the 95% confidence
interval.

Lastly, we check further the pricing quality of European option prices through Monte
Carlo simulation. We compare the model and Monte Carlo based European put prices
with different option expiries and swap tenors. The comparison results could be seen
in Table 8.10. The relative errors of MC prices with respect to model prices are all
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Figure 8.9.: Martingale test of the risk neutral antithetic scenarios.

less than 3.3%. The root mean squared relative error between Monte Carlo and model
put European option prices is 1.17%. All the Monte Carlo based swaption prices are in
the 95% confidence interval. Note that the relative error could be reduced with larger
number of simulation and smaller time step.

Based on the martingale tests and Monte Carlo pricing quality of options, we conclude
that the risk neutral scenarios are acceptable for the market consistent valuation.
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Table 8.9.: Comparison of model and Monte Carlo based ATM receiver swaption prices
for different swap tenors and option expiries.

Option Expiry Swap Tenor Model Price MC Price Rel. Error 95% CI
5 2 0.0123 0.0124 1.1% (0.0121, 0.0126)

10 2 0.0163 0.0163 0.4% (0.016, 0.0167)
15 2 0.0180 0.0179 -0.5% (0.0175, 0.0184)
20 2 0.0185 0.0185 0% (0.018, 0.019)
2 5 0.0185 0.0187 0.9% (0.0183, 0.019)
5 5 0.0288 0.0293 1.6% (0.0287, 0.0299)

10 5 0.0382 0.0384 0.4% (0.0375, 0.0392)
15 5 0.0422 0.0419 -0.6% (0.0409, 0.043)
20 5 0.0432 0.0432 0% (0.042, 0.0445)
2 10 0.0343 0.0346 0.9% (0.0338, 0.0353)
5 10 0.0530 0.0540 1.9% (0.0529, 0.0552)

10 10 0.0696 0.0699 0.3% (0.0682, 0.0716)
15 10 0.0764 0.0759 -0.7% (0.0738, 0.078)
20 10 0.0779 0.0779 0% (0.0754, 0.0804)

Table 8.10.: Comparison of the model and Monte Carlo based equity option put prices
for different strikes and maturities.

Strike Maturity Model Price MC Price Rel. Error 95% CI
2500 1 70 72 3.3% (68, 76)
2800 1 146 148 1.5% (143, 153)
3100 1 270 272 0.6% (266, 278)
3500 1 525 529 0.7% (522, 535)
3800 1 774 778 0.6% (772, 785)
2500 2 154 159 3% (153, 164)
2800 2 264 268 1.7% (261, 275)
3100 2 414 419 1.2% (411, 427)
3500 2 676 682 0.9% (674, 690)
3800 2 911 918 0.7% (909, 927)
2500 3 233 237 1.5% (230, 244)
2800 3 364 368 1% (360, 376)
3100 3 530 533 0.7% (525, 542)
3500 3 799 801 0.3% (792, 811)
3800 3 1031 1033 0.2% (1023, 1043)
2500 4 306 306 -0.1% (299, 313)
2800 4 452 452 -0.1% (443, 460)
3100 4 628 626 -0.2% (617, 636)
3500 4 903 899 -0.4% (889, 910)
3800 4 1134 1130 -0.3% (1119, 1141)
2500 5 372 375 0.7% (367, 383)
2800 5 529 531 0.5% (522, 541)
3100 5 712 713 0.2% (703, 723)
3500 5 990 990 0% (979, 1001)
3800 5 1221 1219 -0.2% (1208, 1231)101
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8.2.2. Real world scenarios

Given the calibrated parameters, the real world scenarios in one year horizon could
also be generated for the determination of risk capital. The summary statistics of the
simulated spot rates in one year horizon for different terms could be seen in Table 8.11.
The values are compared to the spot rates on cutoff date t = 0. We have lower average
spot rates in short terms (smaller than 5 years) compared to t = 0 value, which indicates
that the expected interest rate would be lower or even to be negative in one year horizon.
2 These statistics are also shown in graphically in Figure 8.10.

Table 8.11.: Summary statistics of simulated spot rates (in percent) at t = 1 for different
terms.

0.25 0.5 1 2 5 7 10 15 20 25 30
t=0 0.08 0.17 0.16 0.18 0.36 0.53 0.82 1.18 1.37 1.47 1.52

Mean -0.04 0.04 0.07 0.15 0.42 0.61 0.92 1.28 1.46 1.56 1.61
Std 0.91 0.87 0.81 0.74 0.67 0.66 0.65 0.63 0.61 0.59 0.56
Min -3.19 -2.97 -2.73 -2.35 -1.69 -1.39 -1.05 -0.69 -0.46 -0.31 -0.19

0.5% -2.14 -1.99 -1.84 -1.59 -1.15 -0.95 -0.61 -0.20 0.05 0.20 0.30
1% -1.98 -1.81 -1.66 -1.44 -1.04 -0.80 -0.47 -0.06 0.17 0.32 0.42
5% -1.46 -1.32 -1.20 -1.01 -0.63 -0.42 -0.10 0.29 0.51 0.64 0.73

25% -0.66 -0.55 -0.48 -0.36 -0.05 0.15 0.46 0.84 1.04 1.15 1.21
50% -0.09 -0.00 0.04 0.12 0.39 0.58 0.89 1.25 1.44 1.53 1.58
75% 0.54 0.60 0.59 0.63 0.86 1.04 1.34 1.69 1.86 1.94 1.98
95% 1.52 1.53 1.44 1.40 1.57 1.74 2.02 2.35 2.50 2.56 2.56
99% 2.29 2.24 2.09 1.99 2.12 2.27 2.54 2.84 2.97 3.00 2.99

99.5% 2.59 2.55 2.40 2.20 2.29 2.46 2.73 3.02 3.15 3.18 3.17
Max 3.69 3.53 3.25 3.04 3.04 3.20 3.47 3.75 3.85 3.86 3.81

The proportional of variances for the first three components based on the principle
component analysis of the simulated spot rates are 92.76%, 7.23% and 0.01%, which are
comparable to the values based on historical spot rates, i.e. 92.87%, 6.43%, 0.49%.

Furthermore, we compute the one year absolute changes of the spot rates with different
maturities of the historical data, i.e. the difference of spot rates at time t and t− 1, for
t before than 12/31/2014. And we calculate the absolute changes of the simulated spot
rates in one year horizon and compare them to the historical changes in order to check if
the simulated spot rates could cover the one year historical changes. Figure 8.12 shows
the comparison results. We could see that simulated absolute changes cover the range
of historical changes for maturities larger than 5Y. For the short term maturities, the
simulated 1Y changes do not cover the historical 1Y changes, which is still reasonable due
to the interest rate is already quite low on the cutoff date. From the historical data, the
large absolute decrease relates to high interest rate at one year before, for instance, the

2Actually we have observed the negative interest rates in year 2015 under the current low interest rate
environment.
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largest absolute decrease 4.6% of the 3M spot rates happened between dates 10/07/2008
(5.34%) and 10/06/2009 (0.74%). Therefore, instead of absolute changes in one year,
we compare the one year returns of constant maturity zero coupon bond, especially for
the short term spot rates, the results are illustrated in Figure 8.13. We could then see
that the simulated one year returns could cover all the lower tails of the historical 1 year
returns.

For the Heston model, we compare the simulated and historical state variables (S(t), v(t))
as displayed in Figure 8.11. S(t) is the equity price index sx5e and v(t) is the squared
value of the volatility index v2x. The range of historical data is from 07/01/1999 to
12/31/2014. Both of the distributions are comparable, the simulated data could cover
the range of historical values. The range of simulated one year excess total return is
(-81%, 106%) and the range of historical one year excess total return is (-50%, 62%).
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Figure 8.10.: The simulated spot rates at t = 1.
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Figure 8.11.: Boxplots of simulated and historical state variable (S(t), v(t)).
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Figure 8.12.: Comparison of historical and simulated absolute change of spot rates in 1
year.
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Figure 8.13.: Comparison of historical and simulated one year returns of constant ma-
turity zero coupon bond.
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8.3. Market consistent valuation

Given the risk neutral scenarios generated by the interest rate and equity model, we
start to do the market consistent valuation of the stochastic cash flow projection model
in Section 5.2 for a life insurance company.

The liability portfolio consists of identical traditional participating life insurance con-
tracts with a cliquet style guarantee ignoring any costs and the surrender options. For
simplicity, we assume that all policyholders are 50 years old at inception date of the con-
tract. For each contract, the guaranteed rate is g = 1.75% and the guaranteed benefit
G = 20 TEUR (Thousand Euros).

The liability portfolio is built up at the valuation date t = 0, such that there are 1000
new policies for each duration n = 1, . . . , 10 entering into the portfolio. Hence, we have
the portfolio at the beginning of projections with remaining time to maturities 1 to 10
years.

The asset portfolio consists of stocks and coupon bonds. We set the proportion of
market value of stocks pSAA = 5% and bond maturity TB = 10 years for the constant
asset allocation strategy. The coupon bond portfolio at t = 0 is constructed with
coupon bonds at par with time to maturities 1 to 10 years proportionally on market
value. Furthermore, we assume that pUGL = 20% is realized if the unrealized gain and
loss for the stock UGLSt is positive and 100% is realized if UGLSt is negative.

Based on the setting as described before, the market consistent valuation could be
performed for the life insurance company. In order to check all the cash flows are
properly captured the cash flow projection model, the leakage test is performed to check
if the relationship (5.33) is satisfied. Figure 8.14 shows the results for the leakage test,
we see that mean value of AC0 + MVL0 − MVA0 convergences to 0 and is in the 95%
confidence interval as well. Therefore, the market consistent valuation is fine according
to the leakage test.

We now calculate the AC0 or MCEV through Monte Carlo simulation, the value
is 3072.57 TEUR with standard error of 14.18 and therefore 95% confidence interval
(3044.78, 3100.36) TEUR. The standard error of AC0 is relative small compared to the
value of AC0. Figure 8.15 displays the density plot of present value of shareholder’s
future profits, which indicates that the corresponding distribution is left heavy tailed.
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Figure 8.15.: The density plot of the present value of shareholder’s future profits PV0.
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8.4. Risk modeling

In this section, we perform nested simulation and the proxy method of replicating port-
folio to estimate the SCR.

8.4.1. Nested simulation

For the nested simulation, the number of outer and inner simulation needs to be pre-
defined. Here the number of outer simulation is chosen to be 10000 and the number of
inner simulation is chosen to be 5000 with 250 time steps per year, which is the same as
risk neutral simulation at t = 0.

The estimated 0.5% quantile of AC1 is 1436.9. As we know that the AC0 is the MCEV
at t = 0 with value 3072.57 TEUR and one-year risk free rate rr(0, 1) = 0.1615%.
Therefore, the estimated SCR based on nested simulation is 1638 TEUR.

8.4.2. Replicating portfolio

For the replicating portfolio, we follow the general strategy described in Chapter 7.
We first construct a pool of financial assets. Under the cut-off date of 12/31/2014,

the following assets are selected into the asset pool:

• Receiver swaptions with option expiries 1Y to 10Y, swap tenor 1Y to 10Y and
strikes of 0.5%, 1.0%, 2.0%, 3.0%, 4.0%.

• European put options with time to maturities 1, . . . , 10 years and moneyness of
0.5, 0.75, 1.0, 1.25, 1.5.

• Total return indices of equity at year end of 2015, . . . , 2024 years.

• Total return indices of constant maturity zero coupon bond with time to maturity
1, . . . , 10 at year end of 2015, . . . , 2024.

Second, we construct different risk neutral scenarios sets for the calibration of repli-
cating portfolio.

Given the calibrated parameters in Section 8.1, we could generate a set of risk neu-
tral scenarios by means of Monte Carlo simulation. We call such risk neutral scenario
set as a basis set. Besides the basis set, further sensitivity sets are usually required to
better calibrate the replicating portfolio. Here we simply modify some of the calibrated
parameters and then do Monte Carlo simulation to construct further sensitivity sets of
risk neutral scenarios without doing recalibration. By modifying corresponding param-
eters, following sensitivity scenarios are taken into account for calibration of replicating
portfolio:

1. The interest rate shift-up sensitivity set (i.e. the parameter of X1(0) is added by
50 bps).
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2. The interest rate shift-down sensitivity set (i.e. the parameter of X1(0) is sub-
tracted by 50 bps).

3. The interest rate volatility sensitivity set (i.e. the parameters of σj for j = 1, 2, 3
are increased by 25%).

4. The equity volatility sensitivity set (i.e. the mean reversion parameter θv is in-
creased by 25%).
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Figure 8.16.: Comparison of spot rates and equity price in one year horizon under risk
neutral and real world measure.

We then construct the risk neutral calibration scenarios for replicating portfolio by
combining the basis set and further sensitivity sets.

If the risk factors of real world scenarios could be covered sufficiently by the risk
factors of risk neutral calibration scenarios, then it is more possible to get a replicating
portfolio with smaller error estimation of SCR.

We therefore compare the risk factors of risk neutral calibration scenarios to the real
world scenarios. Figure 8.16 illustrates the comparison of box-plots of main risk factors,
i.e. the spot rates with different terms and the equity prices, at t = 1 under risk neutral
and real world measure.

The real world scenarios of spot rates at t = 1 could be fully covered by the risk
neutral scenarios of spot rates. The coverage of equity prices is considered to be fine as
well. There are two reasons. First, the uncovered range of equity prices focuses mainly
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on the right tail that does not affect the estimation of SCR. Second, the equity risk is a
small proportion since only 5% of the portfolio is invested in equity.

Before the subset selection, the linear dependency should be checked by calculating
the rank of matrix with all candidate assets in the asset pool. If the rank is smaller
than the number of candidate assets, then there exists linear dependency or perfect
multicollinearity among the candidate assets. Therefore, the pre-selection of candidate
assets should be performed.

Third, we perform the calibration procedure. We determine the replicating portfolio
by matching the present values of replicating portfolio and PVFP, i.e. using cost function
of sum squared error of the present values as given in (7.18). The subset selection
techniques could be applied to perform the optimization procedure.

Now we start to do the subset selection with method of backward selection. Note that
one could also use method of sequential replacement, which convergences faster but with
more computation time. Compared to backward selection, the forward selection turns
to select some candidate assets that their estimated weights are not quite significant in
the final selected portfolio, since once the asset is selected in then it could not be drawn
out any more.

For each risk neutral scenario set, it consists of 5000 pairs of antithetic scenarios. In
each pair of antithetic scenarios, the two scenarios are driven by the same random seed,
therefore only one of them should be taken into account for the calibration scenarios.
These selected 5000 scenarios for each set are further split into two parts: the first 4000
(80% of the selected antithetic scenarios) into the calibration set and the others into the
validation set.

Since the asset prices with different types are in different orders of magnitude. For
instance, the order to magnitude (measured on a 10-base logarithmic scale) of European
option prices is usually 2 to 3, while order to magnitude of swaption prices is usually -2
to -3. It leads to different order of magnitude of the estimated weights. Let NC be the
number of asset types of all assets in the asset pool C and Cj be the set of assets with
type j. For a given replicating portfolio G with weight wk for candidate asset Ck ∈ G,
the Long-Short-Position (LSP) is then defined as

LSP =
1

NC

NC∑
j=1

|
∑

Ck∈Cj wk|∑
Ck∈Cj |wk|

,

in order to consider magnitudes of weights with different asset types, as well as the
offsetting effect in the same type.

Figure 8.17 illustrates the selection criterion (see definitions in B.2 ), i.e. the R-squared
(R2), adjusted R-squared, Mallows’Cp, BIC, LSP and Out-of-Sample (OOS) R-squared,
for determining the number of candidate assets into the replicating portfolio. We see
that the R-squared, adjusted R-squared are monotonic increasing and the Mallows’Cp is
monotonic decreasing along with the number of assets. It is not sufficient to choose such
single criterion to determine the number of candidate assets. We therefore construct a
total index as the combination of In-Sample R-squared, Out-of-Sample R-squared and
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LSP, i.e.

TotalIndex = R2 +R2
OOS + c · LSP (8.1)

where c is the penalty coefficient for LSP. We assume that the penalty is applied only if
fitting quality is acceptable, i.e. R-squared value larger than 0.9. Mathematically, c is
assumed to be 0.1 if R-squared is larger than 0.9 and 0 for the others.

Figure 8.18 illustrates the total index and 0.5%-Quantile of AC1 approximated by the
selected replicating portfolios with different number of candidate assets. The dashed
horizontal line is the 0.5%-Quantile of AC1 based on nested simulation. The vertical
line represents the number of candidate assets with maximum value of total index.

By maximizing the total index, we choose 42 candidate assets for replicating portfolio.
Figure 8.19 gives the comparison of QQ-plot, density plot and boxplot of the value of
selected replicating portfolio and the sum of discounted shareholder’s future profits for
calibration scenarios with different scenario types. The results show that the fitting
quality is quite good for the in sample calibration. Figure 8.20 shows the shares of asset
type of the selected replicating portfolio based on calibration scenarios with different
scenario types. The proportion related to equity assets is around 5.5% (calculating the
proportion based on taking absolute values of shares), which is comparable with the
shares of equity in the asset portfolio. Furthermore, we see that the PVFP is most
sensitive to the shift of interest rates.

8.4.3. Comparison of SCRs

Now we proceed to compare the resulting AC1 based on the nested simulation and
replicating portfolio. They are high correlated with correlation coefficient of 96.5%. The
corresponding density plots, boxplots as well as the QQ-plot are illustrated in Figure
8.21. We see that the distributions of AC1 based on replicating portfolio and nested
simulation are quite similar, especially in the lower tail for determining 0.5% quantile.

In addition, we calculate the 0.5% quantile of AC1, consequently the SCR and solvency
ratio by the methods of nested simulation and replicating portfolio. As shown in Table
8.12, the SCR calculated by the value of replicating portfolio is 1655 TEUR. The SCR
calculated by nested simulation is 1638 TEUR. The percentage difference is 1.04%.

Table 8.12.: Comparison of the SCRs determined by nested simulation and replicating
portfolio.

SCR Solvency Ratio
RP 1655 1.86
NS 1638 1.88

Therefore, we conclude that the proxy method of replicating portfolio for calculating
the SCR is quite well compared to the method of nested simulation.
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9. Conclusions

In this thesis, we have illustrated the application of stochastic methods in risk manage-
ment under solvency II framework.

We started with the concept of risk and then proceeded to discuss to the risk manage-
ment in the insurance sector under the enterprise wide risk management system, which
should consider the risk based regulatory and rating agency requirements, as well as
the risk management standards by ISO. We figured out that the stochastic methods are
mainly applied in the risk assessment in the enterprise risk management process for the
quantification of risk. We then focused on giving a detailed description of quantifying
the risk of an insurance company, i.e. doing market consistent valuation and determin-
ing the Solvency Capital Requirement under Solvency II framework, through a partial
internal model by means of stochastic methods. The partial internal model separates
into three components: input model, valuation model and risk capital model.

For the input model, we developed a simple ESG consisting of interest rate and equity
models to generate the economic scenarios. For the modeling of interest rate, we used
the extended three-factor Cox-Ingersoll-Ross model, which is able to capture the three
main principle components of yield curve. Since it is an affine model, we first derived the
pricing formula of zero coupon bonds in a closed form. We then derived the pricing of
zero coupon options by Fourier transformation of the characteristic function of the linear
combination of state variables and subsequently the pricing of swaption using stochastic
duration approximation. For the modeling of equity, we used the Heston model along
with stochastic interest rate from above model to better capture the equity volatility.
Similarly, we first showed the closed-form of discounted characteristic function of log
equity price by solving a system of ODEs resulting from an affine PDE. Afterwards,
we derived the price of European options by Fourier techniques as well. Finally, we
described the Euler discretization scheme and variance reduction technique of antithetic
variates for economic scenario generation .

For the valuation model, we built a stochastic cash flow projection model to capture
the development of balance sheet as well as the asset portfolio consisting of coupon
bonds and stocks and the liability portfolio consisting of participating life insurance
contracts. We then did market consistent valuation of assets and liabilities based on
the cash flows projected by the stochastic model along with the input of risk neutral
economic scenarios. Furthermore, we modeled the management rules. For instance,
we developed a constant asset allocation strategy to rebalance the asset portfolio. We
considered the unrealized gain and loss by modeling the book value and market value of
assets. Additionally, we modeled the MUST-case for surplus distribution for the profit
sharing between shareholder and policyholders, etc.

For the risk capital model, we first implemented the nested stochastic simulation to
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determine the required risk capital. Since nested simulation requires high computational
time, we also investigated the proxy methods of least squared Monte Carlo, replicating
portfolio and curve fitting. In particular, we developed a general strategy to construct
a good replicating portfolio. First, we described the construction of asset pool. Second,
we illustrated the construction of sensitivity sets through recalibration or reweighting
techniques. Third, we proposed a calibration procedure, by using the least square op-
timization and subset selection with certain criteria, to select the optimal replicating
portfolio and calculate the required capital.

Finally, we performed an empirical application to illustrate how to conduct market
consistent valuation and required risk capital calculation through the partial internal
model. We first calibrated the ESG models to the real market data and then generated
the economic scenarios through Monte Carlo simulation. We did appropriate validations
by doing the martingale tests for risk neutrality, the comparison of model and market
option prices, the comparison of simulated and historical distributions of risk factors
etc. Afterwards, we performed the market consistent valuation with leakage-test for
checking the correctness of all cash flows projection. We calculated the available capital
as the average of sum of discounted shareholder’s cash flows generated by the stochastic
model. We further estimated the required capital by the nested simulation as well
as the replicating portfolio proxy method by following the general strategy. We then
illustrated that the replicating portfolio method produces a good approximation of SCR
by comparing it to nested simulation method.

There are many further studies to extend the current research. For the input model,
as the credit spread risk is quite important in practice, one could further investigate a
stochastic credit spread model and integrate into the ESG. For valuation model, one
could consider more life products such as life annuities, costs and lapse as well as more
management rules for surplus distribution. One could then perform sensitivity analyses
for some parameters such as the guaranteed interest rates. For the risk model, one could
implement all proxy methods and compare the results. Regarding to the replicating
portfolio, instead of subset selection, one could also investigate the shrinkage method
of LASSO as well as other machine learning techniques. Moreover, given the frame-
work of such partial internal model, one could do future researches, such as developing
new insurance products under low interest rate environment, constructing a benchmark
portfolio for validation purpose, constructing hedging strategy based on the replicating
portfolio to reduce the required capital, doing capital allocation etc.

In summary, we comprehensively showed the usage of stochastic methods in risk man-
agement.
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A. Definition of the financial assets in
the asset pool

A.1. Interest rate related financial assets

In this section, we give the basic definitions of interest rate related financial assets which
follows the textbook of Brigo and Mercurio (2006).

Risk free zero coupon bond

Let P (t, T ) be the value of time t of a risk free zero coupon bond with maturity T . The
cash payment is only occurred at the maturity time T with value of 1 and without any
periodic coupon payments.

Total return index of risk free zero coupon bond

For given maturity T , the total return index of risk free zero coupon bond at tme t ≤ T ,
is defined as

TRI(t;T ) =
t∏
i=1

P (i, T )

P (i− 1, T )
. (A.1)

Total return index of constant (time to) maturity risk free zero coupon bond

For given time to maturity T̃ , the total return index of constant (time to) maturity risk
free zero coupon bond at tme t ≤ T is defined as

TRICM(t; T̃ ) =
t∏
i=1

P (i, i+ T̃ )

P (i− 1, i− 1 + T̃ )
. (A.2)

Interest rate swaps

The Interest-Rate Swap (IRS) is a contract that exchanges payments between fixed
and floating legs, starting from a future time instant. Let T := {Tα, . . . , Tβ} be the
payment dates and τ := {τα+1, . . . , τβ} be the time fractions between two payment
dates with τi = Ti − Ti−1. Let L(Ti−1, Ti) be the interest rate resetting at instant time
Ti. The payment of fixed leg is the amount of τiK, whereas the payment of the floating
leg is τiL(Ti−1, Ti). The Payer (Forward-start) Interest-Rate Swap (PFS) is defined as
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paying the fixed legs and receiving the floating legs, whereas the Receiver (Forward-
start) Interest-Rate Swap (RFS) is defined as receiving the fixed legs and paying the
floating legs. Therefore, for a PFS, the cash flow at time Ti is (L(Ti−1, Ti)−K). Then
the discounted payoff at time t < Tα of a PFS can be written as

β∑
i=α+1

D(t, Ti)τi(L(Ti−1, Ti)−K)

and find the value of PFS as:

PFS(t, T , τ,K) = Et

(
β∑

i=α+1

D(t, Ti)τi(L(Ti−1, Ti)−K)

)

=

β∑
i=α+1

τiP (t, Ti)Eit(F (Ti−1, Ti−1, Ti)−K)

=

β∑
i=α+1

τiP (t, Ti)(F (t;Ti−1, Ti)−K)

= P (t, Tα)− P (t, Tβ)−
β∑

i=α+1

τiKP (t, Ti) (A.3)

where Eit means the conditional expectation under forward measure QTi with numeraire
P (t, Ti). F (t;Ti−1, Ti) is the simply-compounded forward interest rate with F (t;Ti−1, Ti) =
1
τi

(P (t,Ti−1)
P (t,Ti)

− 1).

Swaption

The swaption or swap option is the option on the IRS. A European payer swaption is
an option grants the buyer the right, but not the obligation, to enter a payer swaption.
The market quotes of the swaptions are usually including two parts: the option maturity
(expiry) and the length of the swaption (tenor of swaption). For the option maturity
is the first reset date or settlement date of the underlying IRS, can be denoted by Tα,
whereas, the tenor of swaption can be denoted by Tβ − Tα.

According to (A.3), The discounted payoff of the payer swaption at its first reset date
Tα can be calculated as :

β∑
i=α+1

P (Tα, Ti)τi(F (Tα, Ti−1, Ti)−K) = Aα,β(Tα)[Sα,β(Tα)−K]+, (A.4)

where Aα,β(t) =
∑β

i=α+1 τiP (t, Ti). Therefore, for the payer swaption, the cash flow will
only generated at the option expiry time Tα with value of Aα,β(Tα)[Sα,β(Tα)−K]+.

The option will be exercised only if this value is positive. So then discount the payoff
to the current time t is:

D(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi(F (Tα, Ti−1, Ti)−K)

)+

= D(t, Tα)Aα,β(Tα)[Sα,β(Tα)−K]+.
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In practice, we value swaptions with a Black-like formula, by assuming the swap rate
is lognormal distribution.1 The formulation of the price of PFS (at time zero) is given
by:

PSBlack(0, T , τ,K, σα,β) = Bl(K,Sα,β(0), σα,β
√
Tα, 1)

β∑
i=α+1

τiP (0, Ti), (A.5)

where

Bl(K,F, v, ω) = FωΦ(ωd1(K,F, v))−KωΦ(ωd2(K,F, v))

d1(K,F, v) =
log(F/K) + (v2/2)T

v
√
T

d2(K,F, v) =
log(F/K)− (v2/2)T

v
√
T

with Φ denoting the standard Gaussian cumulative distribution function. σα,β is now
a volatility parameter quoted in the market. A similar formula is used for a receiver
swaption, which gives the holder the right to enter at time Tα a receiver IRS, with
payment dates in T . The formula is:

RSBlack(0, T , τ,K, σα,β) = Bl(K,Sα,β(0), σα,β
√
Tα,−1)

β∑
i=α+1

τiP (0, Ti).

A payer swaption is said to be at-the-money (ATM) if and only if

K = KATM := Sα,β(0) =
P (0, Tα)− P (0, Tβ)∑β

i=α+1 τiP (0, Ti)
,

while in-the-money (ITM) for K < KATM and out-of-the-money (OTM) for K > KATM ,
with the converse holding for a receiver swaption.

A.2. Equity related financial assets

Total return index of equity and European option on equity price

Let S(t) denote the spot price of equity stock at t and q is the dividend yield. A total
return index T (t) for equity can be calculated by

T (t) = T (t− 1)
S(t)

S(t− 1)
(1 + q), for t > 0 and T (0) = 1. (A.6)

1Under current negative interest rate environment, new convention such as the shifted lognormal or
normal distribution assumption on forward swap might be used which leads to normal implied
volatility or shifted Black implied volatility, see e.g. d-fine (2012).
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The payoff of a European Call Option on the price of equity with maturity T and strike
K is given by

H(T ) = [S(T )−K]+. (A.7)

Therefore, for the European Call option, the cash flow will only be generated only at
the maturity time T with value of [S(T )−K]+.

Under the risk-neutral valuation principle its price at time t is given by

C(t;T,K) = EQ
t

[
(S(T )−K)+D(t, T )

]
Since the equity index is dividend paying, the Black formula based on forward price is
usually preferred to price the option, i.e. (see Joshi (2003, section 6.15))

C(t;T,K) = P (t, T )Bl(K,FT (t), σ(T,K), 1). (A.8)

The forward price of equity is defined as FT (t) = S(t) exp((R(t, T ) − q)(T − t)) (see
Rebonato (2004, section 3.2)). FT (T ) equals to S(T ) at time T . Finally, the implied
volatility σ(T,K) could be derived by Equation (A.8).
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B. Linear model selection and
regularization

B.1. Linear regression models and least-squares
computations

Let X1, . . . , Xk be the explanatory variables, where X1 could be identically equal to one
in some practical cases and Y be the dependent variable, the linear regression model is
used to model linear relationship between explanatory variables and dependent variables,
i.e.

Y =
k∑
j=1

βjXj + ε (B.1)

where ε is the error or disturbance term to capture all other factors that influence the
dependent variable other than the explanatory variables.

Let y = (y1, . . . , yn)′ be the n observations of the dependent variable and xj =
(x1j, . . . , xnj)

′ be the n observations of the j-th explanatory variable Xj. Note that
a column vector of values will be always denoted by a lowercase letter with boldface.
A matrix will always be denoted by a boldface upper letter. For instance, let X =
(x1, . . . ,xk) be the n× k matrix where each column is an n× 1 vector. Then we have:

yi =
k∑
j=1

βjxij + εi (B.2)

and the corresponding matrix form could be written as:

y = Xβ + ε (B.3)

where β = (β0, β1, . . . , βk)
′ and ε = (ε1, . . . , εn)′.

The objective is to use observations in a sample to estimate the unknown parameters
or coefficients β in the model, and then later to predict the value of Y . Before the
estimation of the parameters, we need to distinguish between population quantities such
as β and ε and the sample estimates of them, b and e (see Greene (2012, p.26, Chapter
3)). Given the estimate of β, i.e. b, we so called residual e is calculated as e = y−Xb.
Therefore, we have

y = Xβ + ε = Xb+ e. (B.4)
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The least squares estimation of the coefficients β is performed by minimizing the
residual sum of squares:

RSS(β) =
n∑
i=1

(yi −
k∑
j=1

βjxij)
2 = (y −Xβ)′(y −Xβ). (B.5)

Differentiating the (B.5) with respect to β and setting the first derivatives to zero, under
the assumption that there is no linear dependent or perfect multicollinearity among the
explanatory variables (i.e. X has full column rank, X ′X is positive definite and hence
invertible) we get the unique solution for the estimates of the coefficients as follows:

b = (X ′X)−1X ′y. (B.6)

Another way to do the estimation of coefficients could be done by the triangular
factorization based methods. The matrix X could be factored as

X = QR (B.7)

where Q is the n× k orthogonal matrix, i.e. Q′Q = I where I is k × k identity matrix
and R is the k × k upper triangular matrix.

According to the QR decomposition, each column of X could be represented by a
linear combination of orthogonal vectors Q1, . . . ,Qk, i.e.

x1 = r11Q1

x2 = r12Q1 + r22Q2

x3 = r13Q1 + r23Q2 + r33Q3, etc.

where rij is the element of matrix R = {rij}. We could have

y = γ1Q1 + . . .+ γkQk + e = Qγ + e (B.8)

where γ = (γ1, . . . , γk)
′ are the least-squares estimates by running regression of Y upon

on the Q1, . . . ,Qk. And the values are:

γ = (Q′Q)−1Q′y = Q′y. (B.9)

As we know

y = Xb+ e = Qγ + e, (B.10)

then by substituting γ = Q′y and X = QR, we have

b = R−1Q′y. (B.11)

The orthogonal reduction method based on QR decomposition is quite meaningful
in the context of subset selection. First of all, it could speed up the subset selection.
According to (B.7), we have X ′X = R′R, i.e. R is the Cholesky factor of X ′X. This
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means that if we run the regression of Y against a subset of X such as the first p
columns of X, we can just use the same calculations of the regression of Y against X
by skipping the last (k−p) rows and columns. If the subset variables are not in the first
p columns, one could use planar rotation algorithm to change the order of variables and
then omitting the later variables.

The sum of squares of Y is

y′y = γ2
1 + γ2

1 + . . .+ γ2
k + e′e. (B.12)

The residual sum of squares after regressing Y against X1, X2, . . . , Xp is

γ2
p+1 + . . .+ γ2

k + e′e. (B.13)

In the subset selection, the square of the i-th projection, is the reduction in the residual
sum of squares when the variable in position i is added to the linear model containing
the first (i− 1) variables.

Furthermore, it has the advantage of accuracy. The estimation of coefficients based
on QR decomposition given in (B.11) is more accuracy than the methods based on the
X ′X and its inverse given in (B.6). (see Miller (2002, p.31)). The accuracy is quite
important for the subset selection. There are reasons as given by Miller (2002). Firstly,
there is a choice of selection among high co-linearity variables during the subset selection
procedure. Secondly, the searching procedures of best subsets require a very substantial
number of arithmetic operations, the rounding errors should be accumulated as slowly
as possible.

B.2. Subset selection

There are a number of different approaches to choose the optimal subset. It is feasible
to find the best subset through exhaustive evaluation of all subsets by examining the
residual sum of squares. The number of possible subsets of one or more variables out
of n is 2n− 1 and efficient algorithm such as branch-and-bound techniques (see Furnival
and Wilson (1974)) is used to perform the exhaustive search. However, it is still quite
time consuming and therefore not quite feasible in practice if the number of possible
subsets are quite large. In order to overcome the computational disadvantage, some
greedy algorithms such as forward selection, Efroymson’s stepwise regression, backward
elimination, sequential replacement algorithms and so on are used to find the best-fitting
subset instead of exhaustive search.

The forward selection starts with one variable and adds sequentially more variables
that could improve most the fit (i.e. reduce the residual sum of squares) until some
stopping criteria is satisfied.

Efroymson’s stepwise regression proposed by Efroymson (1960) is an extension on
forward selection. After the addition of one new variable into selected set, a test is
performed to check if any variable of the previously selected variables could be deleted
with relative low increase of the residual sum of squares.
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The backward elimination starts with all variables and deletes sequentially one variable
that has the least impact on the fit (i.e. yields smallest residual sum of squares after
deletion) until some stopping criteria is satisfied.

The sequential replacement algorithm tries to replace any of selected variables with
another gives smaller residual sum of squares provided that two or more variables have
been selected. Sequential replacement requires more computation time but improves
the chances of finding the best-fitting subset than the than forward selection or the
Efroymson algorithm.

More descriptions of these algorithm could be seen in Miller (2002).
There are many criteria could be used to determine which subset should be chosen

and stop the subset selection.
First of all, we look at the coefficient of determination R2, which is a measure of how

well the regression line fitted to the data. It is defined as:

R2
p = 1− RSSp

RSS1

, (B.14)

where RSSp is the residual sum of squares of model with p explanatory variables and
RSS1 is the total sum of squares for the linear regression with intercept. It is not a good
criterion, since R2 is always increasing when one more variable is added into selected
subset. For this reason, the adjusted R2 that penalizes the number of parameters in the
model is preferred and given as:

R̄2
p = 1− (1−R2

p)
n− 1

n− p
(B.15)

Note that for linear regression with no intercept, the R2 is redefined as R2
p = 1 − RSSp

RSS0

where RSS0 is the total sum of squares for the regression with no intercept and R̄2
p =

1− (1−R2
p)
n−1
n−p .

Another criterion is the Mallows’ Cp (see Mallows (1973)) defined by

Cp =
RSSp
σ2

− (n− 2p), (B.16)

where σ2 is replaced by the unbiased estimate of residual variance σ̂2 = RSSk
n−k for the full

model under consideration, which includes all k explanatory variables.
For a model that fits the data adequately E(Cp) is approximately p and therefore, Cp

itself should be approximately equals to p for an adequate model. The criterion clearly
can be used to compare subsets of the same size, but it can also be used more generally
by looking for those models for which Cp ≈ p. The quantity estimated by Cp is the
normalized mean squared prediction error (MSPE) with p predictors.

An alternative family of criteria is based on likelihood. Assume that the disturbances
εi are i.i.d normal distributed, the observations yi are also normal distributed conditioned
on given data (xi1, . . . , xik) and the corresponding density for model Mp with p predictors
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is:

f(yi;
∑
j∈Mp

xijβj, σ
2
p,Mp) =

1√
2πσ2

p

exp

−
(
yi −

∑
j∈Mp

xijβj

)2

2σ2
p

 . (B.17)

The likelihood based on the n i.i.d observations could be given as:

l(β, σ2
p;X,y,Mp) =

n∏
i=1

f(yi;
∑
j∈Mp

xijβj, σ
2
p). (B.18)

The log-likelihood by taking the natural log of likelihood is

Lp := ln l(β, σ2;X,y,Mp) = −n
2

ln(2πσ2
p)−RSSp/(2σ2

p). (B.19)

The maximum likelihood estimate of σ2
p is σ̂2

p = RSSp/n, and then the maximum value
of log likelihood is

Lp = −n
2

ln(2πσ̂2
j )−

n

2
= Const− n

2
ln(RSSp). (B.20)

The Akaike information criterion (AIC) is

AICp = −2Lp + 2p. (B.21)

The Schwarz criterion, often known as the Bayesian Information Criterion (BIC) is

BICp = −2Lp + p ln(n). (B.22)

B.3. Shrinkage method

The LASSO (see Tibshirani (1996)) is a shrinkage method defined by:

min
β

N∑
i=1

(yi −
p∑
j=1

xijβj)
2

s.t.

p∑
j=1

|βj| ≤ b. (B.23)

The closely related optimization problem is:

min
β

1

2

N∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj| (B.24)

Problems (B.23) and (B.24) are equivalent, since for a given λ, 0 ≤ λ <∞, there exists a
b ≥ 0 such that the two problems share the same solution, and vice versa. (see Osborne
et al, Chen et al. (1998)). Note that with sufficient small b, some of the coefficients turns
to be exactly zero due to the nature of the constraint. Therefore, the LASSO treats as
a kind of continuous subset selection.
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The Kalman filter developed by Kalman (1960) is an approach to linear filtering and
prediction, which could be applied to various models, in particular the state space model
that including unobservable variables. In the following we summarize the main steps of
linear Kalman filter algorithm (see more details in Chapter 2 of Tanizaki (1996)).

Let m be the dimension of the state variables, d be the dimension of the observations,
and n the number of observations. In general, a state space model with unobservable
variable can be represented as following two equations:

Measurement equation yt = ct + Ztαt +Gtεt, (C.1)

Transition equation αt = dt + Ttαt−1 +Htηt, (C.2)

where yt is the observed data and αt is the unobservable state variable. εt ∼ N(0, Id)
and ηt ∼ N(0, Im) are unit matrices. We assume that both of εt and ηt are serially
uncorrelated. Furthermore, εt and ηs are uncorrelated for all time periods t, s and
uncorrelated with the initial state variable. The dimensions of the parameters are:

yt ∈ Rd, ct ∈ Rd, Zt ∈ Rd×m, Gt ∈ Rd×d, εt ∈ Rd

αt ∈ Rm, dt ∈ Rm, Tt ∈ Rm×m, Ht ∈ Rm×m, ηt ∈ Rm.

Let Ys denote the information of the observation up to time s, i.e., Ys := {y1, y2, · · · , ys}.
Let at|s := E[αt|Ys] and Σt|s := Cov[αt|Ys] be the conditional expectation and covariance
of αt given Ys. Similarly, let yt|s := E[yt|Ys] and Ft|s := Cov[yt|Ys] be the conditional
expectation and variance of yt given Ys.

The algorithm of Kalman filter is given by following equations.

• Step 1: Initialization. The first step is to give the initial values of state variables.
Here we use the unconditional mean and variance for a0|0 and Σ0|0, i.e.

a0|0 = lim
t→∞

E[αt] (C.3)

Σ0|0 = lim
t→∞

Var[αt], (C.4)

• Step 2: Prediction. In this step, it gives the prediction of αt and yt and associ-
ated variance conditional on the information up to time t− 1.

at|t−1 = Ttat−1|t−1 + dt, (C.5)

Σt|t−1 = TtΣt−1|t−1T
′
t +HtH

′
t, (C.6)

yt|t−1 = Ztat|t−1 + ct, (C.7)

Ft|t−1 = ZtΣt|t−1Z
′
t +GtG

′
t. (C.8)
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• Step 2: Kalman gain. The Kalman gain Kt is chosen such that the at|t has
minimum variance.

Kt = Σt|t−1Z
′
tF
−1
t|t−1. (C.9)

• Step 3: Updating. In this step, it updates the state variable and associated
variance by combining the new observation obtained at time t (i.e. yt) .

Σt|t = Σt|t−1 −KtFt|t−1K
′
t, (C.10)

at|t = at|t−1 +Kt(yt − yt|t−1). (C.11)

• Step 4: Maximum likelihood function. at|t and Σt|t for t = 1, . . . , T are
then calculated recursively by the previous three steps, once a0|0, Σ0|0, Ht and
Gt are given. Under the assumption of normality of error terms εt and ηt, we
have yt|Yt−1 ∼ N(yt|t−1, Ft|t−1) and the maximum likelihood function could be
constructed as

P[yT , yT−1, · · · , y1]

=
T∏
t=1

P[yt|Yt−1]

=
T∏
t=1

(2π)−
m
2 |Ft|t−1|−

1
2 exp

(
−1

2
(yt − yt|t−1)′F−1

t|t−1(yt − yt|t−1)

)
. (C.12)

Finally the parameters could be estimated by maximizing the (log-) likelihood
function.

lnL(Θ) = −mT
2

ln(2π)− 1

2

T∑
t=1

ln |Ft|t−1| −
1

2

T∑
t=1

(yt − yt|t−1)′F−1
t|t−1(yt − yt|t−1)

(C.13)
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