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1 Theoretical Background 

1.1 Introduction  

The structure of neurons and their action on other neurons is an example of content 

commonly learned in a biology class. Learning about these neurons is difficult without a 

picture that shows a neuron’s structure and how it releases a neurotransmitter that binds to 

chemical receptors. In an informal survey of people around the age of 30, I found that they 

unanimously said that it was and is difficult to read a scientific text in a biology or chemistry 

or in another science class at school, and they can remember that usually there were and are 

depictions in the science books showing what is explained in the text. 

 

Figure 1.1 Example of a learning text concerning the structure of neurons and their action on other neurons and a 
referring depiction in a science book (Bayrhuber, Hauber, & Kull, 2010, p. 253).   

 

Learning with text and picture has been studied extensively in research concerning 

multimedia learning (Mayer, 2001, 2005). Multimedia refers to presenting material in both 

pictorial and verbal forms (Mayer, 2001, p. 5) and is a way to facilitate learning, especially 

with scientific content. One learning strategy that can help students to learn from science texts 
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is the generative drawing strategy (van Meter & Garner, 2005): asking students to generate 

drawings as they read text. Figure 1.2 shows a drawing result of a student who was ask to 

draw a picture while reading and learning from a science text concerning the structure of 

neurons and their action on other neurons (see Figure 1.1). 

 

 

Figure 1.2 Figure showing a drawing that resulted from a students’ attempt to comprehend the complex science 
text on the structure of neurons and their action on other neurons and to translate it into a picture (see Figure 
1.1).  

Studies concerning this drawing strategy showed that it is effective in enhancing 

students’ learning from text (for an overview see van Meter & Garner, 2005, and van Meter & 

Firetto, 2013). There has only been one study on the effectiveness of computer-based drawing 

(Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010), and this did not show positive 

effects on science text comprehension. However, because computers have found their way 

into school lessons and working with them is supposed to increase student’s motivation, it is 

important to investigate whether successful learning strategies – in that case the generative 

drawing strategy – are also successful when they are used in a computer-based way. Thus, 

research is necessary to investigate which medium, paper or computer, is better to learn with. 

This thesis is aimed at investigating whether using computer-based generative drawing has a 

positive impact in general on learning outcome concerning science texts. Additionally, in the 

second of two studies of this thesis, computer- and paper-based drawing are compared to 

explore which is more effective for learning from science texts. The results will also be 
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discussed with regard to the assumptions of the Cognitive Load Theory (CLT; Chandler & 

Sweller, 1991). 

Both paper-based and computer-based drawings can be called ‘visualizations’. 

In this thesis, the underlying models and theories concerning generative drawing are first 

described. Then, factors that can impact the effect of generative drawing, such as cognitive 

load, are reviewed and the current state of research on generative drawing is summarized. 

Based on this background, the research questions are derived. Two empirical studies testing 

these research questions are then presented. Finally, results of the studies are discussed with 

regard to their empirical, theoretical and practical contributions as well as their limitations. 

Additionally, directions for future research are given. 

1.2 Generative Drawing 

Using generative drawing to learn from a text means that students are instructed to 

draw a picture during the reading process, concerning all relevant information described in the 

text. Learner-generated drawing or here most commonly called generative drawing is a 

learning strategy because it is target oriented; the process of drawing is a strategy to organize 

information and can therefore enhance learning (van Meter & Garner, 2005). A learning 

strategy is defined as a scheme of an action sequence to achieve a learning target (Klauer, 

2000) and as procedural knowledge to achieve a learning goal (Lukesch, 2001). Accordingly, 

van Meter and Garner (2005) defined generative drawing as strategic, representative, and 

constructive. In the following, the term generative drawing strategy therefore will be used. 

The theoretical framework of the generative drawing strategy is the Generative Theory 

of Drawing Construction (GTDC) originally proposed by van Meter and Garner (2005), and 

revised by van Meter and Firetto (2013) into the Cognitive Model of Drawing Construction 

(CMDC). The GTDC is based on Mayer’s Generative Theory of Textbook Design (Mayer, 

Steinhoff, Bower, & Mars, 1995; Mayer & Gallini, 1990), which has evolved into the 

Cognitive Theory of Multimedia Learning (CTML; Mayer, 2001, 2005, 2009). The CMDC 

has also integrated the Integrated Model of Text and Picture Comprehension (ITPC; Schnotz, 

2005) as well as research on self-regulated learning (SRL) and learning strategies, especially 

Winne’s SRL model (Winne & Hadwin, 1998; Winne & Perry, 2000). Thus, to understand the 

basic ideas of the GTDC as well as the CMDC, a brief digression and explanation of several 

important aspects of SRL, especially Winne’s model of SRL, the CTML, the ITPC, and the 

Cognitive Load Theory (CLT, Chandler & Sweller, 1991) are given, before explaining the 

GTDC and the CMDC in more detail. 
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1.3 Self-Regulated Learning 

Several models of self-regulated learning state that, within the process of self-

regulated learning, learners are active in designing and regulating their own learning process. 

However, within self-regulated learning theory, there are many terms that are used 

synonymously. Weinert (1982), for example, describes learning in general as self-regulated. 

Hence, the learners can affect all essential decisions: if, what, when, how and where they 

learn. Additionally, most SRL models posit that the learners must autonomously select, 

organize and integrate all relevant information they need to learn (e.g., Boekaerts, 1997, 1999; 

Schiefele & Pekrun, 1996; Winne & Hadwin, 1998; Zimmermann, 2001; for overviews see 

Leopold, 2009; Niegemann et al., 2008). These learning processes involve cognitive, 

metacognitive, and motivational components (McCombs, 1989; Schiefele & Pekrun, 1996; 

Schraw, Crippen, & Hartley, 2006). To manage the learning processes, learners have to use 

learning strategies they know. According to Mandl and Friedrich (2006) learning strategies 

are behavior and thoughts are cognitions (cf. Weinstein & Mayer, 1986) that learners activate 

to affect and control their motivation and the process of learning. The Winne and Hadwin 

(1998) model is one example of a self-regulated learning model (for an overview of more 

models concerning self-regulated learning see Boekaerts, Pintrich, & Zeidner, 2000, and 

Zimmermann & Schunk, 2001) and plays a crucial role in the extension of van Meter’s and 

Garner’s (2005) Generative Theory of Drawing Construction into the Cognitive Model of 

Drawing Construction of van Meter and Firetto (2013) which will be explained in detail 

below. 

Winne´s and Hadwin´s Model of Self-Regulated Learning	

Concerning how learners control and regulate their learning, Winne (Winne & 

Hadwin, 1998; Winne & Perry, 2000) focuses on learners’ metacognitive awareness and their 

control mechanisms. This means that after learners have filtered the demands of a task (phase 

1: task perception stage) they set a corresponding goal (phase 2: goal setting and planning 

stage). This goal induces standards for performance, which correspond to several facets of the 

task. Thus, there can be multiple standards for a single goal once learners have selected 

different facets that they think are important for that task. After setting standards, the self-

regulated learner applies cognitive operations (phase 3: acting stage), such as a learning 

strategy, to the learning material. When learners are metacognitively aware of which strategy 

matches best with specific conditions of a task, this can lead to selection of specific learning 

strategies during the planning phase. This ability reflects high quality self-regulation of the 

learners (Winne, 1995; Winne & Perry, 2000). Application of cognitive operations results in 
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learning products. If the learning task is complex, multiple learning products are created while 

working toward the learning goal. By applying metacognitive self-monitoring, the learners are 

able to adapt their cognitive strategies. The learning products are compared to the standards 

the learners have filtered when setting the learning goal. If the learning products are in line 

with the standards the learners will stick to their plan and apply the cognitive operations. 

However, if the learning products are not in line with the performance standards, self-

regulated learners will use metacognitive control to change their plan, select a new learning 

strategy, repeat parts of the already followed plan, or will adjust the performance standards 

(phase 4: adaption stage). Metacognitive awareness, metacognitive self-monitoring and 

metacognitive control build up a self-regulation cycle. All parts of the cycle will be repeated 

till the learning task is completed. Van Meter and Firetto (2013) use these self-regulation 

principles to extend the Generative Theory of Drawing Construction and to explain how 

drawing affects learning and how it can be used most effectively. This connection will be 

explained in the section about the Cognitive Model of Drawing Construction. 

Learning strategies 

Students need corresponding learning competence to be able to use self-regulated 

learning, namely to control and regulate the learning process and to accomplish the learning 

material. That requires a repertoire of learning strategies (e.g., Götz, 2006; Zimmermann, 

1990). Mandl and Friedrich (2006), for example, differentiate five different categories of 

learning strategies: cognitive strategies, metacognitive strategies, motivational-emotional 

support strategies, cooperative learning strategies and resource-oriented strategies. Every 

category contains several concrete and executable learning strategies and will be shortly 

described in the following sections (for an overview see Niegemann et al., 2008, and 

Weinstein & Mayer, 1986). However, the major questionnaires concerning learning strategies, 

the MSLQ (Pintrich, Smith, Garcia, & McKeachie, 1993) and the LIST (Wild & Schiefele, 

1994) differentiate only between three different categories, namely cognitive, metacognitive 

and resource-oriented strategies.  

Cognitive learning strategies are strategies concerning information processing. This 

process consists of the actual information input, information processing and information 

storage (Wild, 2000). These learning strategies refer to learning and understanding 

information (McKeachie, Pintrich, Lin, & Smith, 1987) and can be subdivided into the 

following strategies: (a) rehearsal strategies, (b) organizational strategies and (c) elaboration 

strategies (cf., Weinstein & Mayer, 1986; Pintrich, 1989). Rehearsal strategies are used to 

repeat important segments of a given learning material. An example is repeated reciting. 
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Organizational strategies are used to restructure a given learning material by selecting the 

basic learning elements and creating links between them. Examples are the generation of 

tables or concept maps (Sumfleth, Neuroth, & Leutner, 2010). Elaboration strategies are used 

to activate prior knowledge to enable the understanding of the learning information and to 

make it possible for learners to store the information permanently in long-term memory 

(Mandl & Friedrich, 2006). Examples are taking notes, asking questions and imagery 

strategies. For the latter, learners create an image of what is to be learned. Images personalize 

the learning information for the students and make it easier for them to access the 

information. Additionally, these strategies can be further categorized into depth- and surface-

oriented processing of the learning material according to the Levels-of-Processing Theory of 

Craik and Lockhart (1972), which describes memory recall as a function of the depth of 

mental processing, “…where greater depth implies a greater degree of semantic or cognitive 

analysis” (Craik & Lockhart, 1972, p. 675). Accordingly, organizational and elaboration 

strategies are categorized as depth-oriented processing, whereas rehearsal strategies are 

categorized as surface-oriented processing.    

Metacognitive learning strategies are so-called ‘superordinate strategies’ (Schreiber, 

1998; Weinstein & Mayer, 1986). While cognitive strategies are used to help learners to 

achieve a learning goal, metacognitive strategies are used to evaluate the learning process, 

i.e., planning, monitoring and regulating the learning process (e.g., Zimmerman, 2001):  

Planning. At the beginning of a learning process, learners need to determine the 

learning objective. After that, learners determine how the learning process should look like 

and which learning strategies to use for reaching the learning goal. The learning goal is highly 

relevant because it is used at the end of the process to compare the goal with the learning 

outcome achieved. 

Monitoring. This strategy is used to monitor one´s own learning progress according to 

the learning goal. Thereby the current state of the learning outcome is continuously compared 

to the target state of the learning outcome, i.e., the learning goal. Learners can, for example, 

ask themselves questions concerning the learning content to examine if they understand the 

information and try to draw their attention to the learning material (Niegemann et al., 2008).  

Regulation. This strategy is the last stage in the chain of metacognitive strategies, in 

which learners evaluate whether they have reached their learning goal. If there are 

discrepancies between the outcome and the desired outcome, learners realize and 

acknowledge them. Acknowledgement of difficulties during the learning process is also 

important: Learners should use this information to avoid or eliminate these difficulties by 
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adapting the learning processes in the future. 

Motivational and emotional support strategies are linked with regulation strategies as 

they influence the learning process: If learners, for example, feel unable to reach a learning 

goal, and thus perceive lower self-efficacy, they might not invest much effort in carrying on 

with the learning process, i.e., in achieving the learning goal. This demonstrates that even if 

learners know sufficient cognitive and metacognitive strategies, they will not automatically 

use them. Especially in learning environments geared to independent and self-regulated 

learning, motivational aspects have a strong impact (Mandl & Friedrich, 2006). 

Cooperative learning strategies refer, for example, to learning in groups or teams. 

Thus, these strategies are used in social contexts, like classes and seminars (and are also 

possible in some multimedia learning environments). However, to make cooperative learning 

strategies successful it is important to create adequate social learning situations. If these 

learning situations are created adequately they impact learners’ learning motivation as well as 

learners’ motivation to motivate others to learn. Academic help seeking, i.e., searching for 

help when learners are not able to make progress concerning their learning task by means of 

their own abilities and/or their prior knowledge, also belongs to the cooperative strategies. 

Concomitantly, academic help seeking is an important ability in self-regulated learning 

(Niegemann et al., 2008).  

Resource-oriented strategies are also called support or secondary strategies (Wild, 

Hofer & Pekrun, 2006). They are used for optimization of the available resources. Examples 

are time management, designing and organizing the learning environment or focusing 

attention (Wild, 2000; Wild, Hofer, & Pekrun, 2006). 

Generative Drawing as a Learning Strategy 

According to the subdivision of the learning strategies shown above, the generative 

drawing strategy is a deep cognitive strategy with a metacognitive component (cf., van Meter 

& Garner, 2005). Schmeck (2010) proposed that learners who generate a drawing for a text 

need to generate an overall structure of the text instead of processing the given text 

information sequentially (which is the case when taking notes). Accordingly, Seufert, Zander 

and Brünken (2007) assumed that learners using the drawing strategy are forced to build up a 

coherent representation of the content. For that reason, Schmeck (2010) defined the drawing 

strategy as an organization and elaboration strategy, however, with a metacognitive 

component. When drawing while reading a text, the learner may experience difficulties when 

building up the mental model or the external drawing, and he or she may refer back to either 

the internal verbal representation or to the text to detect comprehension errors and to revise 
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them. Thus, the drawing process might activate metacognitive strategies of monitoring and 

regulation.  

Now that typical self-regulated learning models are introduced and the generative 

drawing is classified as a learning strategy, the Generative Theory of Drawing Construction 

and it´s revised version will be introduced. However, at first it is needed to introduce the 

Cognitive Theory of Multimedia Learning and the Integrated Text and Picture 

Comprehension Model of Multimedia Learning to get to know the theories on which the 

Cognitive Model of Drawing Construction is based on. 

1.4 Cognitive Theory of Multimedia Learning 

The Cognitive Theory of Multimedia Learning (CTML; Mayer, 2001, 2005, 2009) 

explains how learners process a combination of text and picture. This theory is based on three 

main assumptions: There are two separate channels (verbal and pictorial) for processing 

information (cf., Paivio, 1986); there is only limited capacity of the channels (cf., Baddeley, 

1992; Baddeley & Hitch, 1974); and learning is an active process of selecting, organizing and 

integrating information. The theory acknowledges Paivio’s Dual Coding Theory (1986) as 

well as Wittrock’s Generative Learning Theory (1974, 1989). In line with these theories, 

Mayer assumes that learners who read a text with pictures build up an internal verbal 

representation of the text and an internal nonverbal (i.e., pictorial) representation of the 

pictures. The two representations are constructed separately and are integrated by generating 

referential connections to link the two different types of internal representations. According to 

Mayer (2001, 2005) three different cognitive processes are needed to build up the learner’s 

integrated mental model of the to-be-learned content and to achieve a meaningful learning 

outcome (Mayer, Griffith, Jurkowitz, & Rothman, 2008), namely selection, organization, and 

integration. Within the process of selection students select relevant ideas, elements and 

relationships from the text and the pictures. On the basis of the selected elements, students 

then organize their internal representations to build a coherent representation of text and 

pictures. The last process is the process of integration, in which referential connections are 

generated between internal verbal and nonverbal representations. As mentioned before the 

learner’s integrated mental model of the content is built and it is assumed to enhance the 

student’s problem solving abilities and conceptual understanding (Mayer & Sims, 1994). On 

the basis of this theory and the cognitive processes of students’ learning with text and 

pictures, van Meter and Garner (2005) built their Generative Theory of Drawing Construction 

which will be described in the next section. Additionally, a short digression will be provided 

whereby another theoretical concept concerning learning with text and picture is introduced: 
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The Integrated Text and Picture Comprehension Model of Multimedia Learning. 

Integrated Text and Picture Comprehension Model of Multimedia Learning 

The Integrated Text and Picture Comprehension model (ITPC) of multimedia learning 

was proposed by Schnotz, Seufert and Bannert (2002) and has several overlaps with Mayer´s 

CTML (2005, 2014). Both theories assume that cognitive processes of selection, organization 

and integration take place during learning with text and pictures.  

Mayer (2001, 2005), however, distinguishes between words and pictures, whereby 

Schnotz (2002, 2005) distinguishes between descriptive and depictive representations. Based 

on the distinction of different sign systems introduced by Peirce (1906), namely the 

differentiation between symbols and icons, in the ITPC text is defined as a descriptive 

representation and pictures as depictive representations. Descriptive representations like 

words and sentences are examples of symbols, which “…have an arbitrary structure and are 

associated with the designated object by convention” (Schnotz, 2002, p. 102). Depictive 

representations like static or animated pictures are examples of icons and do not have an 

arbitrary structure. “Instead, they are associated with the designated object by similarity” 

(Schnotz, 2002, p. 103). Thus, texts are descriptive and pictures are depictive, however when 

the information is abstracted from the text and the visualizations to the student´s cognitive 

system, both external representations can be constructed into either descriptive or depictive 

representations (van Meter & Firetto, 2013). The ITPC describes the detailed process of 

integration of verbal and visual representations into a joint mental model.  

According to the ITPC there are different levels of internal representations. The first 

level concerns the surface representation and is related to the external verbal or visual 

representation. In the process of text comprehension, the learner constructs a mental 

representation of the text surface structure by filtering the linguistic features of the text via 

verbal organization processes. Regarding the picture comprehension on this level the learner 

creates a visual image through perceptual processing based on the features of the graphic 

display (Schnotz, 2002). The second level is referred to as the propositional network. It 

includes the meaning of the provided text and picture and can be extended with prior 

knowledge. At this level in the process of text comprehension the text surface representation 

triggers conceptual organization processes, like semantic processing, resulting in a 

propositional representation (and a mental model). In the process of picture comprehension at 

this level the learner constructs a mental model (and a propositional representation) 

concerning the content shown in the picture. A propositional representation and a mental 

model can both be constructed from a text surface representation/descriptive representation, 



	 Theoretical Background 
	

17	
	

and from a visual image/depictive representation. Whereas the propositional representation is 

descriptive, the mental model is a structural analogue that is constructed by mapping 

structural features of the external visualization to knowledge in the long-term memory. 

The described model is integrated into the revised GTDC by van Meter and Firetto 

(2013) which will be explained in detail later on in this thesis.  

1.5 The Generative Theory of Drawing Construction 

Van Meter and Garner (2005) transferred the cognitive processes described in the 

CTML to drawings generated while reading a text. In line with the assumptions of the CTML 

they assume that the adequate completion of all three cognitive processes is the prerequisite 

for successful learning, and that these three cognitive processes do not take place linearly. To 

understand the transfer of the main ideas of the CTML into the GTDC the following sections 

take a closer look at the three cognitive processes of selection, organizing, and integration 

during drawing: 

Selection during Drawing	

Students reading a text and drawing pictures that reflect the text content only have the 

text from which to select important elements, as no pictures are added to the text. This also 

means that students using generative drawing as a learning strategy can only select elements 

from the text to build their internal, non-verbal representation. When learning with 

multimedia (when both text and pictures are provided) both representations restrict the 

selection of elements from one another. Students reading a scientific text about a system, an 

event or a rule, like the example from the beginning, the structure of neurons and their action 

on other neurons, have to select the important elements from the text to understand the 

content. However, the selection of these elements “…guides the selection of corresponding 

elements from…” (van Meter & Garner, 2005, p. 317) the given pictures, thus students search 

for elements they have selected from the text. Looking at the picture in detail, in turn, would 

give learners the opportunity to find other important information and perhaps force them to 

select additional elements. Switching between looking at the text and the provided pictures, 

students’ internal representations restrict one another by building up the mental model. 

Concerning learning from a text without provided pictures, but with help of generative 

drawing, they do not have such a restriction. Compared to multimedia learning, students who 

learn with text and self-generated drawing only have the text to select relevant content 

information. Thus, it seems to be all the more important that the learning text is well 

verbalized and that the instructions to build mental models are clear (cf., Hall, Bailey, & 
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Tillman, 1997; Levin & Mayer, 1993). 

Organization during Drawing 	

The learning text (also called external verbal representation) is needed for selecting 

elements. The selected elements are in turn organized into a coherent internal verbal 

representation. The constructed internal verbal representation then guides the process of 

constructing the nonverbal representation. Referring to our neuron example in Figures 1.1, 

this means that the internal verbal representation determines how the axon and the dendrite 

(two elements selected from the learning text) should be organized in relation to one another 

within the nonverbal representation. However, it is important to say that this process is not 

necessarily linear and sometimes learners need to go back to the internal verbal representation 

or the text when generating a nonverbal representation (van Meter, 2001). An important 

benefit of the drawing process is that existing referential connections activate relevant images 

from prior knowledge. However, if students need to learn new concepts for which they do not 

have prior knowledge, they only have the learning text to generate a drawing, which serves as 

an external nonverbal representation. Van Meter and Garner (2005, p. 318) mention “…that 

learners’ prior knowledge acts as a critical…support when using learner-generated drawing 

strategy.” 

Integration during Drawing 	

Following the GTDC there is no difference between the processes of organizing and 

integrating (contrary to the CTML). The internal verbal representation is needed to construct 

the internal nonverbal (i.e., pictorial) representation. In other words, to generate an external 

drawing, the integration of both the internal verbal and the internal nonverbal (i.e., pictorial) 

model is necessary. Hence, the drawing strategy forces the integration of the verbal and the 

pictorial model and is therefore thought to be more beneficial than learning with text and 

provided pictures. 

Van Meter and Firetto (2013) highlight two shortcomings of the GTDC and developed 

a revised theory. However, they mention that their revised theory, called the Cognitive Model 

of Drawing Construction (CMDC) still includes the basic principles of the GTDC. The first 

shortcoming van Meter and Firetto (2013) point out is a limitation concerning the assumption 

of the two separate channels for processing the verbal and visual representations. Van Meter 

and Firetto (2013) believe into the two distinct channels but find that this perspective alone 

restricts thinking about the characteristics of knowledge representations and about the way the 

representations interact with each other. The second shortcoming refers to students’ self-
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regulated learning system and the poor specification concerning the ways that drawing acts 

within this system. 

1.6 The Cognitive Model of Drawing Construction 

The Cognitive Model of Drawing Construction (CMDC, see Figure 1.3) developed by 

van Meter and Firetto (2013) is an extension of the GTDC (van Meter & Garner, 2005) and 

will be described in the following sections.  

Integration of the ITPC into the CMDC 

Van Meter and Firetto (2013) have adopted the central assumptions and the labels 

from the ITPC (Schnotz; 2002, 2005). Thus, following the ITPC they differentiate between 

descriptive and depictive representations. According to the CMDC, drawing begins when the 

learner forms a surface representation of linguistic characteristics filtered from the written 

learning text (or in some cases from spoken text). Through semantic processing of these 

characteristics, a propositional representation is constructed, containing structural elements 

and relations. Based on this propositional representation the learner creates a mental model, 

which van Meter and Firetto (2013), as in the ITPC, believe includes visuo-spatial 

information and is more determinate than the propositional representation (Gobert & Clement, 

1999). The mental model is crucial for the learner to understand the components of a system 

(described in a text) and how, for example, different components work together and interact. 

The mental model, by analogy, represents structural relations in a system and is therefore, 

according to van Meter and Firetto (2013), the primary reason for generative drawing being 

an effective learning strategy. In Figure 1.3, illustrating the CMDC, the mental model is 

located on the right-hand side. At this level of the process the learner has nearly accomplished 

the goal of creating an external drawing. Now he has to translate the mental model into a 

perceptual/visual image. Finally, the learner can draw an external picture on the basis of the 

perceptual/visual image because this perceptual image converts the mental model into a form 

the learner can translate onto paper, by externalizing this depictive surface feature 

representation (van Meter & Firetto, 2013, p. 255). Additionally, it is important to say that not 

only the mental model influences the perceptual/visual image; the propositional representation 

and the surface representation of the text also do. However, van Meter and Firetto (2013) 

retain only one single arrow between the mental model and the perceptual/visual image (see 

Figure 1.3) in their depiction of the theory, to emphasize that the drawing strategy is most 

effective when the perceptual/visual image is developed from the mental model. In that case 

learners have already selected the important elements from the text, have organized them into 
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a propositional representation, and have been forced to integrate the text and the depictive 

representation as well as to add their prior knowledge into the integration. Hence, it is 

assumed that when the perceptual/visual image is derived from the mental model, learners 

have processed the learning material deeply.  

That prior knowledge is important for the learning strategy is already known from van 

Meter and Garner´s (2005) original Generative Theory of Drawing Construction. When 

learners do not have any provided pictures and only a text that provides information to draw a 

picture, they must consult their memory for prior knowledge concerning the content of the 

material and/or knowledge concerning described forms and shapes. 

 

Figure 1.3 Graphic representation of the Cognitive Model of Drawing Construction according to van Meter and 
Firetto (2013).  

Similar to the GTDC, the CMDC assumes that the drawing strategy influences 

learning from text positively by forcing the learner to integrate verbal and nonverbal 

representations. Additionally, the CMDC postulates that drawing supports construction of 

knowledge representations at each level as described in the ITPC. The integration of the ITPC 

into the CMDC reinforces the potential impact of the learning material on how to execute the 

drawing strategy. According to the CMDC the efficacy of the drawing strategy is influenced 

by different factors. If signalling, for example, is used in the learning text - such as printing 

important words in bold - it is easier for the learner to generate drawings. Additionally, a 

highly constrained text – i.e., a text consisting of a specific and detailed language such as the 
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example of the structure of neurons in Figure 1.1- makes it easier for the learner to transfer a 

descriptive representation into a depictive representation. If the learning text is too detailed, 

however, the learner is able to translate descriptive symbols directly into a perceptual image 

without constructing a mental model before. Constructing a mental model, however, forces 

mentally organizing and integrating the to-be-learned information; in other words, it forces 

generative processing. Generative processing in turn is needed for deep-level understanding 

(Mayer, 2009), and thus it is thought to be the most important learning goal. Generating a 

mental model makes learners more able to recall main ideas from the learning material and 

apply new knowledge to novel problems (Azevedo, Cromley, & Seibert, 2004). According to 

Schnotz and Bannert (2003) differences in learners’ external representations are also reflected 

in learners’ mental models. Thus, in the CMDC it is emphasized that the effectiveness of the 

drawing strategy must be assessed with posttest assessments that are well-matched to the 

characteristics of learners’ mental models and, therefore, also to the external representations 

learners generate during learning. Learners seem to have an advantage when posttests are 

consistent with the drawings they have learned with before (Schnotz & Bannert, 2003). For 

example, rather than asking learners to summarize all important terms and concepts of the 

learning text in a diagram, a better matched assessment would be to ask learners to complete 

missing parts of a provided visualization that they were asked to earlier create on their own.  

To sum up, when using the drawing strategy it is important to take the mentioned 

aspects concerning the preparation of the learning material into account. Additionally, it is 

important to stick to some of the principles of multimedia design (Mayer, 2001, 2005, 2009) 

when creating learning material applying to the drawing strategy (see Chapter 1.6).  

Integration of SRL into the CMDC  

In contrast to the GTDC, the CMDC more strongly emphasizes the role of 

metacognitive processes during drawing, and, thus, models of SRL were integrated in the 

theory. Because drawing is not linear, according to van Meter and Firetto (2013) learners will 

always undergo recursions through the steps of the CMDC with iterative processes driving the 

learner back and forth between the internal and external representations. This was van Meter’s 

and Firetto’s motivation to incorporate self-regulation into the CMDC. Thus, they used 

dashed arrows in their graphic of the CMDC (Figure 1.3) to emphasise metacognition. These 

arrows show feedback cycles, which arise when learners try to draw and thereby realize that 

they have not well understood the content of the learning material. Mayer (2005, 2009) speaks 

of selection, organization and integration as cognitive processes, and Schnotz (2005), on the 

other hand, speaks of semantic processing. However, neither the CTML nor the ITPC 
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explicitly explain how these cognitive and metacognitive processes work and do not speak of 

metacognitive processes. The GTDC implies how the process of drawing fosters 

metacognitive processes of monitoring and regulation. The CMDC, however, tries to explain 

how the process of drawing and metacognitive processes interact with other learning 

mechanisms (such as cognitive operations) by integrating three of the four phases of Winne’s 

model of SRL. These three phases are (a) setting standards for performance, (b) applying 

(strategic) operations, and (c) monitoring goal progress (Winne & Perry, 2000). When 

learners are instructed to generate a drawing regarding a learning text, as self-regulated 

learners they will set standards, such as how many and which details they will include, how to 

represent the way structures fit together, and how accurate the drawing should be. 

Additionally, learners set standards referring to their learning outcome such as understanding 

of the described content and being able to remember specific relations and structures 

described in the text. Then, in the second phase students conduct cognitive operations to 

process and understand the learning material (i.e., the learning text) in order to reach the 

standards they have set. The cognitive operations lead to selection and organization of 

important elements from the text. Moreover, a specific cognitive operation concerning 

drawing is the translation of verbal descriptions into a visual depiction, that is, into a drawing. 

Finally, in the third phase of the self-regulation cycle of generative drawing, learners monitor 

where they are located on the way to their drawing and learning goal. Thereby, the learners 

check whether their drawing reaches the standards they have set before. If that is the case, 

they will continue the current drawing and the current learning process and so finish the 

learning task. However, if learners within this metacognitive process note that the goals 

regarding their drawing are not reached, they will go back to either their mental model or their 

propositional representation or even back to the learning text. 

With regard to these three phases of SRL, the CMDC makes the following predictions: 

(1) Learners who know that it is important to generate accurate drawings will benefit more 

from this strategy than learners who do not know. (2) Learners’ attention is directed during 

the process of drawing, namely towards descriptions in the learning text about how specific 

elements look and how they are related to one another. (3) Drawing triggers learners to use 

additional learning strategies, like self-questioning and the activation and integration of prior 

knowledge. Thus, using the strategy of generative drawing includes using other learning 

strategies, too. (4) Learners knowing when it is meaningful and promising to use the drawing 

strategy will be able and qualified to use the strategy when learning by themselves. Hence, it 

is (5) important to give learners sufficient instructions and support when they learn using this 



	 Theoretical Background 
	

23	
	

strategy, so that they know how to apply it correctly. Therefore, support should additionally 

instruct learners to generate accurate drawings including details.  

To sum up, the CMDC (van Meter & Firetto, 2013) extends the prediction of the 

GTDC that learners, who apply the strategy of generative drawing correctly, automatically 

use self-monitoring more often by adding that if learners know how and in which situation to 

use the strategy, they are able to use this self-regulation learning strategy autonomously to 

reach their learning goal.  

Besides cognitive processing (forced by the need to understand the learning material 

and to be able to generate a drawing that contains all relevant elements and their relations) as 

well as metacognitve processing (induced by the learners’ realization of their deficiencies and 

increased self-monitoring; Ainsworth & Iacovides, 2005) the generative drawing strategy has 

an additional benefit: According to van Meter and Riley (1999) it is more difficult for learners 

to hide that they do not understand the learning material when they are asked to draw rather 

than to write. However, generating one’s own drawings runs the risk of creating too much 

extraneous cognitive processing (or extraneous cognitive load; see the following section), 

leading to fewer cognitive resources being available for generative processing (Mayer, 2009). 

1.7 The Cognitive Load Theory 

Another important theory with regard to drawing is the Cognitive Load Theory (CLT) 

(Chandler & Sweller, 1991; Sweller, 1999, 2005, 2010; Sweller, van Merriënboer & Paas, 

1998; for overviews see also Plass, Moreno, & Brünken, 2010; Sweller, Ayres, & Kalyuga, 

2011). Although the CLT only refers to processes within working memory and not to the 

whole process of understanding, this theory is important to understand possible problems in 

the learning process by means of drawing. 

Based on Baddeley’s model of working memory (Baddeley, 1992; Baddeley & Hitch, 

1974), CLT makes the assumption that the capacity of the working memory is limited 

(Limited Capacity Assumption). That is, the amount of new information that can be processed 

in working memory at the same time is limited. Additionally, working memory is also limited 

in duration when processing new information (e.g., Peterson & Peterson, 1959). Learners can 

only process 7 plus or minus two units at the same time, although they can use chunking as a 

strategy (Miller, 1956). However, more recent studies suggest that the capacity might be 

lower and that young adults only can process 3 - 5 chunks in their working memory (Cowan, 

2010). By using chunking, learners organize or group input into familiar units or chunks 

(Miller, 1956) to expand the capacity of their working memory. However, the possibility to 

use chunking depends on the learner´s prior knowledge: Only with high prior knowledge are 
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learners able to build up categories at a higher level, meaning that, if learners are not familiar 

with, e.g., the abbreviation for the American Psychological Association, they cannot treat 

APA as a single chunk. Concerning long-term memory, CLT assumes an unlimited capacity. 

During the process of learning with materials providing new information, the learner’s 

working memory is strained. This cognitive workload is called cognitive load. The CLT 

differentiates between three different types of load, intrinsic cognitive load, extraneous 

cognitive load and germane cognitive load (Sweller et al., 1998). 

Intrinsic Cognitive Load  

Intrinsic cognitive load is a result of the learning task itself. It is the load caused by the 

complexity and the difficulty of the learning material, induced by element interactivity. 

Element interactivity refers to the number of units learners need to process simultaneously in 

working memory to make sense of and understand the whole learning material. An example is 

a science text like the one presented in Figure 1.1, which, on the one hand, contains different 

technical terms whose meanings are explained in the text, and the learner needs to learn them. 

Learning these words can be demanding because the learner can forget them, but this process 

will not impose a high load on working memory. According to Sweller (2010), “because the 

working memory load is light, the issue of ‘understanding’ does not arise” (p. 41) concerning 

learning the technical terms only. On the other hand, a science text describes relations and 

processes between technical components. Although these described processes may contain 

fewer relevant elements, the element interactivity can be high. The learners cannot consider 

only one of the elements – to understand the processes learners need to consider all elements 

simultaneously in working memory. If the element interactivity is high, the intrinsic cognitive 

load is high as well. 

It is assumed that intrinsic cognitive load is fixed and cannot be changed by altering 

the material. Learning the elements as if they were isolated leads to learning but not to 

understanding, until all elements are processed in working memory (Sweller, 2010). 

However, according to Sweller (2010), instructing learners to learn high element interactivity 

material as if the elements are isolated and then learn the interactions later enhances learning 

compared to learning the interacting elements from the start. Another factor that impacts 

element interactivity and thus intrinsic cognitive load is the prior knowledge of the learner 

concerning the content (Gerjets, Scheiter, & Catrambone, 2004). Depending on the schemas a 

learner has already learned and built up in long-term memory, learning material that is 

complex and difficult for one individual can be simple for another. One schema might consist 

of different interacting elements; thus a supra-category has been built up as in chunking (as 
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mentioned above). Accordingly, only that schema has to be processed in working memory, 

resulting in low intrinsic cognitive load. In sum it can be said that the more prior knowledge 

concerning a specific content a learner has, the less intrinsic load there is (Sweller, 2005). 

Correspondingly, Gerjets and Scheiter (2003) showed that a suitable difficulty of the learning 

task can optimize the intrinsic cognitive load, meaning that easy problems should be 

associated with low levels of intrinsic cognitive load whereas difficult problems should be 

associated with high levels of intrinsic cognitive load. However, whether a task is difficult or 

easy in turn depends on the learner’s degree of expertise respectively on prior knowledge and 

should be adjusted according to this.   

Extraneous Cognitive Load 

Extraneous cognitive load is imposed by the manner in which information is presented 

to learners. This load describes the cognitive strain induced by the instructional design of the 

learning material. Excessive extraneous cognitive load can lead to cognitive overload, that is 

insufficient capacity in working memory, leaving no room for germane cognitive processes 

that would lead to successful learning. Originally, the CLT was developed to provide 

principles for the reduction of extraneous cognitive load (Sweller, 2010). For example, 

learning with text and pictures, like learning with an illustrated science book, whereby the 

illustration and the corresponding learning text are presented separately (e.g., on different 

pages), can lead to split attention (Ayres & Sweller, 2005). Thereby learners have to switch 

between these two presentations to collect all relevant information. This learning process 

leads to intensified cognitive strain which in turn leads to increased extraneous cognitive load 

and results in worse text comprehension. Thus, it is important that learning material is 

constructed in a way in which extraneous load is minimized (Sweller, 2005). 

Germane Cognitive Load 

Germane cognitive load is referred to as the load concerning learning and is devoted to 

constructing and automating schemas. Thus, it is the ‘good’ cognitive load. Germane 

cognitive processes are necessary to understand the learning material. If the learning material 

is designed in a way that reduces extraneous cognitive load, there is more capacity in the 

working memory for cognitive processes that induce germane cognitive load, thus leading to 

deeper learning. 

Intrinsic, extraneous and germane cognitive load are additive (see Figure 1.4) and 

determine the total cognitive load (Sweller, 2010). If intrinsic and extraneous cognitive load 

together exceed the capacity of the working memory, there is not enough ‘space’ in working 
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memory for germane cognitive load and thus for learning. To avoid this, learning material 

must be designed in a way that avoids extraneous cognitive load, especially in multimedia 

learning or learning with self-generated visualizations. These kinds of learning material have 

a high risk of evoking extraneous cognitive load (e.g., Leutner, Leopold, & Sumfleth, 2009; 

Mayer & Moreno, 2003; Sweller, 1999; van Merriënboer, 1997). However, generative 

drawing as well as multimedia learning (see the section about Extraneous Cognitive Load) 

could trigger cognitive overload in addition to fostering deep level understanding. The 

intensified activation of cognitive and metacognitive processes can, on the one hand, foster 

deeper understanding of the learning material but, on the other hand, it induces additional 

cognitive load. A possible cognitive overload is caused by the limited capacity of working 

memory and could decrease the learning outcome. Additionally, the drawing process itself 

can lead to a higher cognitive load caused by switching back and forth between text and 

drawing (Leutner et al., 2009) and/or by the drawing mechanisms itself.  

Measurement of Cognitive Load 

There are three basic kinds of empirical methods to measure cognitive load: using 

psychophysiological data, estimating performance, and gathering subjective data (Paas, 

Tuovinen, Tabbers, & van Gerven, 2003).  

Psychophysiological techniques are used based on the assumption that physiological 

variables can reflect changes in cognitive functioning (Paas et al., 2003). These techniques 

include, for example, eye tracking (van Gog & Jarodzka, 2013) and measuring brain activity 

(Paas, Ayres, & Pachman, 2008). 

Performance techniques can be subdivided into primary task measurement and 

secondary task performance (Paas et al., 2003). The first is based on task performance 

concerning the primary task, for example accuracy or error. The second is based on the 

performance of a secondary task that is performed concurrently with the primary task, like 

simple activities requiring sustained attention, such as detecting a visual or auditory signal 

(Paas et al., 2003). However, using secondary task performance can interfere with the primary 

task, especially if the primary task is complex (c.f. Brünken, Plass, & Leutner, 2003; Chandler 

& Sweller, 1996; Marcus, Cooper, & Sweller, 1996; Sweller, 1988). 

Subjective techniques usually use questionnaires with one or multiple different scales 

on which learners state their experienced level of cognitive load. Subjective rating scale 

techniques are based on the assumption that people are able to introspect their cognitive 

processes and report them (Paas et al., 2003). Although subjective self-rating scales seem to 

be difficult and could also be criticized regarding assessing cognitive load (e.g., Brünken, 
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Plass, & Leutner, 2003), Paas demonstrated for the first time in 1992 that people are able to 

state their perceived cognitive load. Many subjective techniques assess groups of associated 

variables (see Study II of this thesis; for an overview, see Nygren, 1991). However, 

unidimensional scales are also used to measure cognitive load (e.g., Paas & van Merriënboer, 

1994; and Study I of this thesis), and seem to be valid and reliable measurements (Paas, van 

Merriënboer, & Adam, 1994).  

Additionally, it is important to mention that cognitive load can be measured after the 

completion of a learning task (e.g., Kühl, Scheiter, Gerjets, & Edelmann, 2011; Leutner et al., 

2009; Schwamborn, Thillmann, Opfermann, & Leutner, 2011) or online, meaning 

immediately and continuously after working with each section of a learning task (e.g., 

Opfermann, 2008; Paas & van Merriënboer, 1994). 

 
 
Figure 1.4 A visual representation of the total Cognitive Load (own illustration).  

Some Principles of Multimedia Design 

In the following, the principles of multimedia design that are relevant for learning with 

written text and instructor-provided pictures as well as for learning using the strategy of 

generative drawing, which is the focus of this thesis, are introduced. According to Mayer 

(2001, 2005, 2009) the modality and redundancy principles refer to learning from animations, 

respectively to narrations with instructor-provided pictures and will therefore not be explained 

here. The first principles described here are those that Mayer introduced to reduce extraneous 

processing. Then the principles intended for managing essential processing are explained.  

Principles for Reducing Extraneous Processing (based on Mayer 2009, pp. 89-169):  

(a) Coherence Principle: Learning is improved when interesting but irrelevant 

information (like words, pictures, symbols, sounds or music) are excluded 
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from a multimedia presentation. 

In this regard Garner and her colleagues introduced the term seductive details 

(Garner, Brown, Sanders, & Menke, 1992) which refers to interesting (i.e., 

learners perceive them as interesting and entertaining) but irrelevant material 

that is added to the presentation of the learning material (Mayer, 2009). 

Irrelevant information increases extraneous cognitive load because the learner 

uses cognitive capacity when trying to integrate the details. In the example of 

Figure 1.1, a seductive detail might be a necrotic neuron as a given pictorial 

element within a drawing toolbar showing also all relevant pictorial elements 

for generating a drawing (see Study I and II of this thesis). It might be an 

interesting element but is not relevant to understand the given information.   

(b) Signaling Principle: People learn better when cues that highlight the 

organization of the essential material are added.  

Signaling reduces extraneous cognitive load by guiding the learner’s attention 

to important terms in the learning text. Thus, the learner’s connection building 

is guided as well. Signaling can be used for verbal material, for example 

adding headings or pointer words such as “first…second…third” to the 

learning text, and also for the pictorial material, for example using arrows or 

distinctive colors (Mayer, 2009). In the example from Chapter 1 (see Figure 

1.1), signaling could be done using pointer words, as in “First, the neuron 

releases a neurotransmitter, second the neurotransmitter binds to chemical 

receptors, third...” and using distinctive colors for relevant pictorial elements 

the learner needs for drawing. 

(c) Contiguity Principle: Students learn better when corresponding words and 

pictures are presented near rather than far from each other with respect to time 

and space.  

The spatial contiguity principle is realized when corresponding words and 

pictures are near each other on the page or computer screen, so that learners do 

not have to search and make use of their cognitive resources and are therefore 

able to hold words and corresponding pictures in working memory at the same 

time. The temporal contiguity principle is realized when corresponding words 

and pictures are presented at the same time, so that learners are more able to 

hold mental representations of both in their working memory at the same time. 

Hence, learners are more likely to be able to build up mental connections 
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between verbal and visual representations (Mayer, 2009). Regarding learning 

material using generative drawing, an example of spatial contiguity can be that 

below the learning text on a screen or page corresponding drawing elements 

are presented, which students need to generate a drawing. An example of 

temporal contiguity is that the learning text is presented in portions 

simultaneously with corresponding relevant drawing elements and a 

corresponding partially pre-drawn drawing background (see Study I and II of 

this thesis), on which students can place their drawing. 

Principles for Managing Essential Processing (based on Mayer 2009, pp. 171-199): 

(a) Segmenting Principle: People learn better when a multimedia message is 

presented in user-paced segments rather than as a continuous unit. 

When learning material is complex and learners are presented with fast-paced 

verbal and pictorial material, some learners will not fully understand one step 

in a process before the next one is presented. Thus, they may not have time to 

see the causal relation between one step and the next (Mayer, 2009). 

Concerning learning material using generative drawing an example of an 

applied segmenting principle would be that only one paragraph about causal 

steps (e.g., about catching and having the flu, see Study I of this thesis) and its 

corresponding drawing elements as well as its corresponding drawing 

background is presented before the next paragraph. Additionally, this process 

is user-paced, meaning that the learners determine when they are able to work 

with the next paragraph.   

1.8 State of Research on Generative Drawing 

When summarizing the key statements of the theories described above, it is reasonable 

to assume that the learning strategy of drawing according to a learning text is effective 

concerning learning outcome. One reason is the double encoding of the learning material, 

which does not necessarily occur when students learn with text only (Paivio, 2006). A second 

reason is the building of the mental model which is said to be crucial for learners to 

understand the components of a system. Additionally, cognitive processes, like selection, 

organization and especially integration, are increasingly induced, as well as metacognitive 

processes such as monitoring. 

However, research concerning drawing as a learning strategy has also been 

inconsistent. Positive effects of drawing as a learning strategy were shown, for example, by 

Alesandrini (1981), Lansing (1981), Leopold (2009), Leopold and Leutner (2012), Lesgold, 
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Levin, Shimron, and Guttman (1975) (Experiment 2), Lesgold, DeGood, and Levin (1977), 

Schmeck (2010), Schwamborn, Mayer, et al. (2010), Schwamborn, Thillmann, Leopold, 

Sumfleth, and Leutner (2010), van Meter (2001), and van Meter, Aleksic, Schwartz, and 

Garner (2006). Overviews of several studies showing positive effects of the drawing strategy 

were given by van Meter and Garner (2005) and van Meter and Firetto (2013). However, 

studies by Leutner et al. (2009), Rasco, Tennyson, and Boutwell (1975), Snowman and 

Cunningham (1975), Schwamborn et al. (2011), Tirre, Manelis, and Leicht (1979) did not 

show benefits of the drawing strategy. For an overview see also van Meter and Garner (2005). 

At this point it is important to mention that the benefits of the drawing strategy so far have 

only been shown in studies in which reading and drawing were on paper (Leutner & 

Schmeck, 2014). 

Support and Drawing  

Looking at the research concerning generative drawing it is apparent that studies that 

found a benefit of using this strategy usually included some kind of support for students to 

generate a picture. In studies of Lesgold et al. (1975, 1977) students were supported by 

provided cut-out figures. An interesting finding in this study was that students only benefitted 

from the process of generating pictorial representations when the cut-out figures were 

accurate. When students had to choose between accurate and distracting figures, there was no 

positive effect of the support (Lesgold et al., 1975). Alesandrini (1981) showed that it is more 

effective (in terms of higher learning outcome) to let students draw about the content of a 

learning text dealing with electrochemical concepts than to let them write about it. 

Additionally, Alesandrini (1981) pointed out that it is important to support students during the 

drawing process by calling attention to specific parts of the text. The group that was instructed 

to work holistically, namely to attend to how system parts fit together, showed the strongest 

effects of the drawing strategy. Schmeck (2010) categorized these kinds of external support as 

instructional support during the drawing process. During the drawing process learners can be 

supported in choosing relevant elements to generate their pictures, in focusing on specific 

textual aspects, and in generating the drawing itself. According to van Meter and Firetto 

(2013), the study by Alesandrini (1981) used drawing support that served a self-regulation 

function. This form of support has a positive effect on the learner´s self regulation abilities. 

Concerning Alesandrini´s study (1981), the given instructions and support increase students’ 

understanding of the drawing task, and as a result the learners are able to set specific drawing 

standards and appropriately direct their attention (van Meter & Firetto, 2013). Additionally, 

Ainsworth and Iacovides (2005) found that students who drew made four times as many self-
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monitoring statements than students who wrote. 

In a recent study by Schwamborn, Mayer, et al. (2010), to which will be referred to in 

more detail later on, students were supported during the drawing process by a drawing 

prompt, which contained drawing elements in a toolbar at the top of each learning page and a 

partially pre-drawn drawing background. Besides a control group wherein the participants 

read the scientific learning text only, there were four drawing groups. One group drew, for 

each paragraph of the learning text, a picture concerning the important events in the 

paragraph. Another group underlined the most important information in the text, in addition to 

drawing. The third group was instructed to create a mental model before generating a 

drawing. Finally, the fourth group underlined the most important information in the text, 

created a mental model, and then drew. Students in all four drawing groups scored higher on 

transfer, retention and drawing posttests than the control group without drawing. However, 

there were no differences between these four groups, showing that the drawing prompt was 

enough support for learners to make the drawing strategy beneficial. According to van Meter 

and Firetto (2013) this form of support has a constraint function. Looking at the 

categorization of drawing support of Schmeck (2010) it is possible to classify this form of 

support into the category instructional support during the drawing process. It is a support to 

aid the drawing process itself. 

In two studies of Schwamborn, Thillmann, and colleagues (2010) the same drawing 

prompt as in the studies of Schwamborn, Mayer, et al. (2010) was used as instructional 

support during the drawing process. In both studies a control group read a scientific learning 

text only. One drawing group was instructed to draw, for each paragraph, a picture concerning 

the important events in the paragraph. Another group got the learning text to read and 

additional provided pictures for every paragraph containing important content respectively 

coherences in the text. The last group had to draw their own pictures and got the provided 

ones after drawing to compare them. To control for learning time, Study 1 was conducted 

with fixed time and Study 2 with self-paced learning time. Results of Study 1 showed main 

effects of generative drawing on retention and drawing posttests. Results of Study 2 showed 

main effects of generative drawing on retention, transfer and drawing posttests. However, in 

both studies the combination of generative drawing and provided pictures had no positive 

effect on learning outcome.  

However, Schmeck (2010) also emphasize instructional support before the drawing 

process. According to Leutner and Leopold (2006), a combined training of the learning 

strategy and self-regulation aspects (received before the learning task) is a possible method to 
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support the use of the drawing strategy. When learners monitor and control this cognitive 

learning strategy, namely the drawing strategy, their learning outcome should increase. 

Several studies regarding learning strategies showed that a combined training resulted in 

higher learning outcome in comparison to simple learning strategy trainings without focus on 

self-regulation or to no training (Leopold & Leutner, 2004, 2015; Leutner, Barthel, & 

Schreiber, 2001; Leutner & Leopold, 2006). Leopold (2009), for example, showed in a study 

concerning reading and understanding of a science text, that a combined training of generative 

drawing and self-regulation had a positive effect on learners’ science text comprehension. 

Learners given the generative drawing strategy training only also performed better than the 

control group. However, the combined training had a positive effect on learners’ ability to 

remember the learning content after three months. 

Van Meter (2001) conducted a study concerning generative drawing wherein she 

varied the form of support. She found that the group with the most amount of support - 

provided illustrations and prompting questions to aid the comparison of their own drawing 

and the provided ones - scored significantly higher on a free recall test than the control group. 

In a later study, van Meter and colleagues (2006) used the same design as in the 2001 study 

but gave the control group (which did not draw) prompting questions that required 

comparison of the text and the provided illustrations. They also used a different learning text 

regarding birds’ wings. The new learning text was chosen to give students a content with 

which they were familiar and their prior knowledge was higher. Van Meter and colleagues 

(2006) aimed to test the hypothesis that prior knowledge can be a form of support. The 

students in the drawing groups who received support (illustrations and/or prompting 

questions) scored higher on posttest outcomes than students in the control group. Students 

who drew pictures and compared them to accurate illustrations were better on posttest scores 

because they used the illustrations to get to know how their own drawings should look like 

and how detailed they should be. As a consequence, students were able to improve their 

drawings and in turn their mental models (van Meter & Firetto, 2013). Schmeck (2010) 

categorized this kind of external support as instructional support after the drawing process. 

Concerning the studies of Van Meter (2001) and Van Meter et al. (2006), this means that 

feedback on the quality of the self-generated drawings by means of a comparison with 

provided illustrations after the drawing process could improve the learning effect of drawing. 

On the one hand, according to Van Meter and Firetto (2013), provided illustrations serve as a 

constraint function “…because these illustrations helped learners know what their own 

drawings should look like” (Van Meter & Firetto, 2013, p. 265). On the other hand, Van 
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Meter and Firetto (2013) posit that the variation of support within the three drawing 

conditions in this study and the concurrent alteration when students have to draw with more 

or less support is interesting to look at. Van Meter (2001) found that students who get the 

most extensive support during drawing generated drawings with higher accuracy and also 

showed a greater number of self-monitoring events (as indicated by think-aloud protocols) 

than students with less support during drawing. Thus, this kind of support also served as a 

self-regulation function. To generate a drawing first and compare the drawing with an 

accurate provided illustration afterwards is a combination of learning with self-generated 

drawings and learning with provided illustrations (multimedia learning). However, the 

effectiveness of the strategy depends on the quality of the generated drawings, also called 

accuracy (see next section). The presentation of an accurate illustration concerning a learning 

text should trigger learners to compare their own drawings with the provided ones, using 

metacognitive processes. Mistakes in the self-generated drawings can then be revised (Winne 

& Perry, 2000). This metacognitive control usually has a positive effect on the understanding 

and learning of the to-be-learned content if the learner processes the given illustrations 

correctly and conducts all comparisons needed (Seufert, 2003). 

In a study by Leutner, Leopold, and Sumfleth (2009) students were asked to read a 

chemistry text for comprehension (control group), draw a diagram concerning every 

paragraph in the drawing group or build up a mental model in the imagery group, and build up 

a mental model before drawing in the combination group. Leutner and colleagues find that 

drawing pictures decreased learning; the control group scored higher on learning outcome 

posttests. However, students in both drawing conditions showed increased cognitive load. 

Leutner and colleagues (2009) made the conclusion that this learning task wherein students 

had to generate a number of drawings was too effortful, so that the cognitive load was too 

high and overpowered any positive effects of the drawing strategy. In contrast, Firetto and van 

Meter (2011) also asked students to construct multiple drawings but found a positive learning 

effect for the drawing group. However, in this study students in the drawing group 

constructed seven diagrams but had 18 text paragraphs for which diagrams were provided, 

which served as support for students while drawing and learning with a complex biology text. 

To sum up, Firetto and van Meter (2011) showed that using the drawing strategy in learning 

tasks with highly demanding instructions is effective when students are supported adequately. 

In summary, there is instructional support during the drawing process, like the 

provision of accurate provided cut-out figures for drawing, a provided drawing prompt or 

calling attention to specific parts of a learning text. There is also instructional support before 
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the drawing process, for example, training of the learning strategy (generative drawing) 

and/or training of self-regulated learning aspects. Finally, there is instructional support after 

the drawing process, such as provided illustrations and prompting questions to aid students’ 

comparison of their own drawings with provided ones. 

Accuracy and Drawing  

Several studies, including some described above, point to the accuracy of drawings, 

generated by students, affecting the learning outcome (Schwamborn, Mayer, et al., 2010; 

Schwamborn, Thillmann, et al., 2010; van Meter, 2001; van Meter, et al., 2006; for an 

overview see also van Meter & Garner, 2005). A sufficient accuracy, i.e., the quality of 

generated drawings, is positively correlated with students’ learning outcome. The quality of 

the drawings or visualizations is high when learners have included in their drawings all 

relevant elements and have depicted the correct relations between elements described in the 

material. It is supposed that if learners recognize the important elements and their relations 

(Stern, Aprea, & Eber, 2003), they are also able to build up an internal mental model of the 

learning facts, which is important for deeper understanding of the learning content (van Meter 

& Garner, 2005). In this context, van Meter and Garner (2005) introduced the term drawing 

accuracy. Additionally, Schwamborn, Mayer, et al. (2010) established the prognostic drawing 

principle, which posits that the accuracy of learners’ drawings during learning predicts the 

quality of their learning outcomes. When learning with text and provided pictures the quality 

of the provided pictures is given naturally, whereas during learning with text and generative 

drawing the accuracy of the pictures can vary between learners. In a study of van Meter and 

colleagues (2006), they found that the instruction to draw a picture enhanced the learning 

outcome of sixth-graders and fourth-graders in comparison to the non-drawing control group. 

Additionally, they found that participants in the most supported drawing condition achieved 

higher problem solving scores than participants who drew without support, when looking at 

the six-graders only. Lesgold and colleagues (1975) also found that first-graders did not 

benefit from just the instruction to generate pictures. However, they did benefit when correct 

cut-outs were given to them, which they could use for their drawings. Moreover, they found a 

positive correlation between the quality of the generated drawings and learning outcome. In 

the study by Schwamborn, Mayer, et al. (2010), already described above, it was also shown 

that students who generated drawings with high accuracy scored higher on learning outcome 

tests than students who generated drawings with lower accuracy. Whether learning with self-

generated visualizations is successful seems to depend on learners’ ability to create highly 

accurate drawings or visualizations. This is why support is important for students learning 
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with the drawing strategy. Some studies described above in the support section refer to the 

quality of the drawings indirectly, namely by pointing to support that calls attention to 

specific parts of the text (Alesandrini, 1981) or using enough examples of visualizations to 

support learners in the drawing process in learning tasks with highly demanding instructions 

(Firetto & Van Meter, 2011). Both kinds of support have a constraint function; this means that 

these kinds of support aid the learner to know what their drawings need to include and how 

their drawings should look like to be highly accurate. 

Cognitive Load and Drawing  

According to the GTDC and the CMDC, drawing can trigger cognitive and 

metacognitive processes. On the one hand, this enhanced activation is assumed to result in 

deeper understanding of the learning material and, thus, to lead to better learning outcomes. 

However, on the other hand, the enhanced activation runs the risk of inducing additional 

cognitive load, which might stress the limited capacity of working memory and result in 

reduced learning outcomes (Chandler & Sweller, 1991; Leutner et al., 2009; Sweller, 2005). 

Accordingly, Leutner et al. (2009), as mentioned above, found that their drawing instruction 

seemed to be too intrusive and/or too difficult for students, as the participants in the drawing 

groups scored lower on learning outcome tests than did students who were asked to build up a 

mental model. Learners instructed to build up a mental model concerning the learning text 

stated to perceive less cognitive load by means of invested mental effort and perceived 

difficulty. Leutner et al. (2009) summarized that: “…what is intended to trigger helpful 

cognitive processing (drawing pictures for understanding in order to impose germane 

cognitive load on the learner and to help learning) entailed to impose extraneous cognitive 

load that hinders learning” (p. 288). This extraneous load requires cognitive resources, thus 

there is less space for germane cognitive load, resulting in hindered learning. According to 

Leutner et al. (2009) the extraneous load in this study is split attention (Ayres & Sweller, 

2005) caused by switching back and forth between text and drawings. However, there are 

several studies showing a positive effect of generative drawing on learning. In other words, 

there are also studies on drawing that helps learning without imposing too much extraneous 

load. In contrast to the Leutner et al. (2009) study these studies support the learners’ drawing 

process (e.g., Firetto & van Meter, 2011; Lesgold et al., 1975, 1977; Schwamborn, Mayer, et 

al., 2010; Schwamborn, Thillmann, et al., 2010; van Meter, 2001; van Meter et al., 2006).  

In sum, it seems to be important to use well-created learning material (considering the 

principles of multimedia design), meaning well structured learning texts and functional 

drawing mechanisms and to give sufficient support so that extraneous cognitive load is 
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minimized and learners are able to profit from the drawing process. 

1.9 The Research Gap  

Although research has produced mixed results regarding the efficacy of the generative 

drawing strategy, it can be summarized that paper-and-pencil-based generative drawing has a 

positive impact on the learning outcome if the following aspects are taken into consideration: 

At first students need to be supported during the drawing process, second the learning 

material needs to be presented in a way that facilitates working with it (considering the 

principles of multimedia design) and third the learning material needs to guide the learners in 

their generation process as well as that they are able to create accurate drawings without being 

cognitively overloaded. Consequently, cognitive resources are available and generative 

processing can take place during drawing, fostering deeper understanding of the to-be-learned 

information.  

However, working with computers within school lessons has become a topical subject. 

On the one hand computer-based learning offers a lot of options to process information 

actively, on the other hand it is supposed to increase students’ motivation. Thus, it is obvious 

to use successful learning strategies, like the generative drawing strategy, within computer-

based learning. However, while there have been several paper-based learning studies on 

generative drawing, to our knowledge only one study has investigated this kind of drawing for 

computer-based learning (by means of drag-and-drop), and it did not find support for the 

benefits of generative drawing (Schwamborn et al., 2011). There is no complementary 

evidence that the benefits of generative drawing can be transferred to computer-based 

learning environments. Thus, research is necessary to investigate whether the generative 

drawing strategy can be used as successful learning strategy within computer-based learning, 

as well. 

Looking at the study of Schwamborn and her colleagues (2011) in detail, this study 

investigated whether the learning outcome from science texts can be increased by providing 

learners with different forms of computer-based visualizations. Students read a text about the 

chemistry of washing with soap and water on the computer. Instructions varied so that there 

were four different groups. Besides a control group wherein the participants only read the 

text, one group was instructed to generate drawings concerning the important occurrences in 

each paragraph of the text. Another group got the text to read as well as provided 

visualizations for every paragraph of the text. The last group generated their own drawings 

and saw the provided ones after drawing to compare them. After learning with the material, 

students answered questions on cognitive load (mental effort, perceived difficulty) and 
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worked on comprehension posttests (retention, transfer, drawing). Although results showed 

positive main effects of provided visualizations on all three comprehension measures and 

negative main effects on both cognitive load measures, there was only one positive main 

effect of generative drawing on the drawing posttest, which is not surprising. Additionally, 

self-generated drawing increased mental effort. Taken together, Schwamborn et al. (2011) 

could not show that self-generated drawing has a positive effect on students’ comprehension 

when the drawing was computer-based by means of drag-and-drop, i.e., moving the pointer to 

the selected drawing element, press the button on the mouse or trackpad to ‘grab’ the element, 

then drag the element to the desired location by moving the pointer to this one and finally 

‘drop’ the drawing element by releasing the button. Instead, students seem to have less 

cognitive resources available for generative processing and thus, generating drawings seems 

to increase extraneous cognitive load.  

However, the study of Schwamborn et al. (2011) has some shortcomings. First, 

students within this study learned with a computer-based learning environment they were not 

experts in. According to CLT (Sweller, 1999, 2005) this could lead to too much extraneous 

cognitive load, which in this study is reflected by means of increased mental effort and 

learning time within the groups who generated drawings on their own. Too much extraneous 

load leads to less cognitive resources available for generative processing, respectively for 

meaningful learning (Mayer, 2009; Sweller, 1999, 2005). Second, learning outcomes were 

only tested immediately after learning, which could be different in a realistic learning 

situation. The same is true for the cognitive load measures, which were only tested once after 

learners finished the learning environment completely. Third, Schwamborn et al. (2011) 

tested the generative drawing strategy with only one specific learning content, namely the 

chemistry of washing with soap and water. Finally, in their study computer-based generative 

drawing was done by moving and combining provided elements on the computer screen. 

Regarding research on generative drawing so far, it might be assumed that moving and 

combining the elements is not the same as drawing by hand on paper with a pencil.  

Additionally, to our knowledge there is no study wherein a comparison was made 

between learning with the drawing strategy by hand on paper and computer-based by means 

of drag-and-drop. Thus, research is needed to specify the underlying processes of generating 

drawings paper-and-pencil-based versus computer-based by means of drag-and-drop. The 

following studies are intended to fill this research-gap.  

1.10 Structure and Research Questions 

Two empirical studies on generative drawing concerning science texts will be 
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presented in the following chapters. One study on computer-based generative drawing 

concerning two different science texts and online measured cognitive load and a second study 

comparing paper-based and computer-based generative drawing will be presented, followed 

by a general discussion of both studies. Taken together, the studies present a stepwise 

approach to analyze the effect of computer-based drawing: at first whether generative drawing 

by means of drag-and-drop on a computer screen can increase learning from science texts 

generally; second which kind of effect computer-based generative drawing has on students’ 

cognitive load; and finally whether benefits of generative drawing are the same for paper-

based and computer-based materials. 

In Study I students are asked in two lessons to read science texts (chemistry and 

biology) either with provided illustrations concerning the main ideas of the text (illustration 

group), or with the instruction to generate their own drawings concerning the main ideas of 

the text on a computer by means of drag-and-drop (generation group), or both (generation + 

illustration group), or neither (control group). This study provides partly a replication of the 

study by Schwamborn et al. (2011). However, in the present study training tutorials are 

extended, follow-up learning outcome posttests are included, cognitive load is measured 

online (meaning immediately and continuously after each learning text paragraph), a second 

biology learning content is used, and finally the drawing tools are optimized in general. These 

changes are made to eliminate shortcomings of the study by Schwamborn et al. (2011). In 

sum, Study I is intended to investigate the following: 

• First, based on theoretical assumptions on the learning strategy of drawing and 

negative results of a study by Schwamborn and her colleagues (2011), the 

study investigates whether students learn better from a science text (computer-

based) when they are asked to generate drawings (computer-based) 

representing the main ideas of the text. Thus, the aim is to know if the 

generative drawing principle, introduced by Schwamborn, Mayer, et al. 

(2010), can be extended to computer-based learning when students are 

instructed to draw using a computer-based interface. 

• Second, the study aims to test the generalizability of the prognostic drawing 

principle to computer-based generated drawings, which posits that the 

accuracy of learners’ drawings during learning predicts the quality of their 

learning outcomes. 

• Third, although the drawing activity is implemented in a way that minimizes 

extraneous activity (providing students with a toolbar including all relevant 
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drawing elements and a drawing background), the study seeks to determine if 

students report higher cognitive load when they are asked to draw 

visualizations using a computer-based interface while reading a science text 

and if there is an influence of cognitive load on the generative drawing effect. 

For this reason, cognitive load is measured online (meaning immediately and 

continuously after working with each section of a learning task). 

• Fourth, the study is expected to replicate the multimedia effect.  

• Fifth, besides separately testing the effect of learning with either generated 

drawings or provided illustrations, the effect of a combination of these two 

strategies is investigated. This is incorporated because of the assumption of 

van Meter (2001) and van Meter and colleagues (2006) that provided 

illustrations show learners how their drawings should look like and thus serve 

as support. Additionally, the study investigates whether the results of 

Schwamborn, Thillmann, et al. (2010), namely that there is no effect of a 

combination of provided illustrations and generative drawing on learning 

outcome, can be replicated.  

• Finally, differences in the amount of study time between the groups are 

investigated. It is expected that students need more study time when they are 

asked to generate visualizations while reading a science text on the computer 

compared to students who do not generate pictures.   

 

Study II investigates the effect of generative drawing only. It is the first study to 

compare the effects of the drawing strategy when students generate drawings with paper and 

pencil to using a computer by means of drag-and-drop. Students are asked to read a 6-

paragraph chemistry text in which paragraphs were alternately presented on paper (with 

instructions to create a drawing by hand concerning the content of the science text paragraph) 

and on a computer screen (with instructions to use a drag-and-drop interface to create a 

drawing concerning the content of the science text paragraph). On a subsequent questionnaire 

students are asked about their ratings on different cognitive, metacognitive and mechanical 

difficulties that could occur while using the drawing strategy. Additionally, the questionnaire 

contains questions concerning students’ enthusiasm respectively motivation. 

• First, the study examines if learning outcomes are higher when reading and 

generative drawing are computer- or paper-based. Hence, in this study, every 

student learns with science text paragraphs that are alternately presented on 
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paper and on the computer screen.  

• Second, the study investigates which kind of medium (paper vs. computer) and 

respectively which kind of drawing mechanics (hand drawing vs. drag-and-

drop) students perceive as more difficult, i.e., which medium causes higher 

cognitive load. 

• Third, the study aims to test whether the quality of learners’ drawings during 

learning predicts their learning outcomes, independent of the medium in which 

the drawings are generated. 

• Finally, possible explanations for differences in the effectiveness of the 

generative drawing principle based on whether students draw by hand versus 

on the computer will be examined. Therefore, a questionnaire was designed to 

get a deeper look at components possibly underlying the construct of cognitive 

load. Especially of interest is what underlies students’ perceived task difficulty, 

such as different cognitive, metacognitive and motoric difficulties. As a 

practical aim of this study, recommendations on how to successfully 

implement the generative drawing principle in the future are provided. 

 

In the final chapter, a brief overview of all the studies’ results followed by a joint 

discussion regarding the empirical, theoretical and practical implications of the studies is 

given. Finally, an outlook on future research is provided. 
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2 Study I: Extending the Generative Drawing Principle to 

Computer-Based Learning 
 

Abstract 

This study investigated whether the generative drawing principle (i.e., creating drawings 

while reading a scientific text causes generative processing that leads to better learning 

outcomes) and the prognostic drawing principle (i.e., the accuracy of the generated pictures 

correlates positively with the learning outcome) can be applied to computer-based learning. 

Two hundred and forty-nine German 8th graders in higher track secondary school read two 

onscreen texts dealing with chemistry and biology. This was followed by posttests of transfer, 

retention, and drawing as measures of learning outcomes. The study followed a 2 x 2 x 2 

factorial design, with generative drawing (whether or not students generated drawings) and 

instructor-provided illustration (whether or not illustrations were provided) as between-

subjects factors and the content of the lesson (chemistry or biology) as a within-subjects 

factor. The results for both lessons combined were consistent with the generative drawing 

principle: Students who were instructed to generate pictures during learning scored higher on 

learning outcome tests of transfer (d = 0.30) and drawing (d = 0.77), but not on retention (d = 

0.16). Additionally, the results provide strong and consistent support for the prognostic 

drawing principle, in which the accuracy of the pictures made during learning correlates 

positively with posttest scores on transfer (r = .51), retention (r = .41), and drawing (r = .52). 

Thus, the results suggest that the generative drawing principle and the prognostic drawing 

principle can be extended to computer-based learning environments, when extraneous 

processing caused by the specific mechanics of generating computer-based drawings is 

reduced. 
 

Keywords: text comprehension, generative drawing, multimedia learning, cognitive load 
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2.1 Introduction  

Suppose a student is reading a scientific text on a computer screen. Simply sitting in 

front of a screen and reading may seem too passive, especially since computer-based learning 

offers so many options for active information processing. Thus, we might think about ways of 

prompting the learner to engage in deeper cognitive processing during learning. One learning 

strategy intended to foster generative processing is to ask the student to draw an onscreen 

illustration of the content presented on each page, using a computer-based drawing interface. 

Although it has been demonstrated that learning from paper-based texts can be improved 

when students engage in hand drawing using paper and pencil (Leopold & Leutner, 2012; 

Schmeck, 2010; Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010; Schwamborn, 

Thillmann, Leopold, Sumfleth, & Leutner, 2010; van Meter & Garner, 2005), there is no 

complementary evidence that the benefits of generative drawing extend to computer-based 

learning environments (Schwamborn, Thillmann, Opfermann, & Leutner, 2011). Both hand-

made drawings and computer-based drawings can also be called ‘visualizations’.  

The primary goal of the present study is to test the generality of the generative 

drawing principle, which posits:  

People learn better from a science text when they are asked to draw illustrations 

representing the main ideas of the text. An important boundary condition is that the 

drawing activity should be implemented in a way that minimizes extraneous activity 

by the learner, such as provision of drawings of all key elements and a background for 

the drawing (Schwamborn et al., 2010, p. 878).  

Additionally, we aimed to test the generality of the prognostic drawing principle, which posits 

that the accuracy of learners’ drawings during learning predicts the quality of their learning 

outcomes. In short, the present study seeks to determine whether the generative drawing 

principle and the prognostic drawing principle can be extended to onscreen learning 

environments in which students are instructed to draw using a computer-based interface. 

2.2 Theory and Predictions  

The scenario of drawing while reading an onscreen scientific text, as described in the 

foregoing paragraph, can create two competing demands on the learner’s information 

processing system—generative processing and extraneous processing (Mayer, 2009; Sweller, 

Ayres, & Kalyuga, 2011). On the positive side, the act of translating printed words into a 

pictorial representation, such as when the learner is asked to produce drawings, can prime a 

form of generative processing during learning—that is, processing aimed at making sense of 

the material by selecting important material, mentally organizing it into a coherent structure, 
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and integrating it with relevant prior knowledge. This is the rationale for support for the 

generative drawing principle that has been demonstrated with hand-drawing with paper and 

pencil (Leopold & Leutner, 2012; Schmeck, 2010; Schwamborn, Mayer, et al., 2010; van 

Meter & Garner, 2005). On the negative side, figuring out how to use a cumbersome 

computer interface for generating onscreen drawings can create an excessive load of 

extraneous processing: That is, processing that does not support the learning objective but 

wastes precious cognitive capacity. Indeed, this may be the reason why support is lacking for 

the generative drawing hypothesis in computer-based environments (Schwamborn et al., 

2011). 

The challenge of instructional design in this scenario is to create a drawing experience 

that (a) fosters generative processing by asking learners to translate words into graphics, and 

(b) minimizes extraneous processing by ensuring that the drawing interface is easy to use. In 

the present experiment, we attempted to foster generative processing by asking learners to 

create an onscreen drawing below the onscreen text for each page, and also to minimize 

extraneous processing by providing learners with a pre-drawn background and a set of pre-

drawn elements that learners could drag-and-drop onto the background; a general approach 

developed in a prior study (Schwamborn et al., 2011). In short, to minimize the cognitive 

demands of the drawing mechanism we provided a drawing prompt: that is, a toolbar with all 

the relevant elements students needed to draw the pictures and a drawing background. A 

tutorial and pretraining were also supplied, so as to make students familiar with the drag-and-

drop drawing mechanism of the computer-based learning environment. 

To the degree to which the instructional design is successful in fostering generative 

processing while minimizing extraneous processing, we predict a generative drawing effect in 

which students who are asked to generate computer-based drawings during learning will 

outperform those who are not, on posttest measures of transfer, retention, and drawing. The 

effort required to create drawings might also be reflected in higher levels of reported mental 

effort and perceived difficulty. Additionally, to the degree to which the instructional design is 

successful in fostering generative processing while minimizing extraneous processing, we 

predict a prognostic drawing effect in which the accuracy score of student-generated drawings 

during learning correlates positively with posttest scores on transfer, retention, and drawing. 

Thus, we predict that the accuracy of the learners’ drawings during learning can predict 

performance on the posttests. This means that students with a high-accuracy score are 

expected to perform better on learning outcome scores than students with a low-accuracy 

score. 
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In our study we asked students in two lessons to read science texts (chemistry and 

biology) presented within a computer-based learning environment, either with provided 

illustrations concerning the main ideas of the text (illustration group), or with the instruction 

to generate their own drawings concerning the content of the science text (generation group), 

both (generation + illustration group) or neither (control group). Although we included 

instructor-generated illustrations in the study to provide a broader context, our main focus was 

on whether or not generative drawing fosters deeper learning. 

2.3 Theoretical Background 

Reading scientific texts usually entails cognitively highly demanding processes of text 

comprehension and thus is subject to the risk that students will fail to engage in deep 

processing of the material. One technique intended to foster deeper processing of scientific 

texts is to ask students to generate drawings of the important events described in the text: This 

can be termed the learner-generated drawing strategy (Alesandrini, 1984; Schmeck, 2010; 

Schwamborn, Mayer, et al., 2010; van Meter & Garner, 2005). Recent research on generative 

processing has revealed that instructing students to draw pictures by hand during learning 

results in improved performance on learning outcome posttests (Leopold, 2009; Leopold & 

Leutner, 2012; Schmeck, 2010; Schwamborn, Mayer, et al., 2010; see also van Meter, 2001). 

A serious limitation of research on the learner-generated drawing strategy is that while 

benefits for text comprehension have been documented when learners draw by hand using 

paper and pencil (Leopold & Leutner, 2012; Schwamborn, Mayer, et al., 2010; see also van 

Meter, 2001; van Meter, Aleksic, Schwartz, & Garner, 2006), to our knowledge, only one 

study has investigated this kind of drawing for computer-based learning (by means of drag-

and-drop); and did not find support for the benefits of generative drawing (Schwamborn, et 

al., 2011). This apparent contradiction is the motivation for the present study. 

Asking students to generate visualizations that reflect the main ideas of each 

paragraph is a learning strategy, called the learner-generated drawing strategy. A learning 

strategy is an activity that learners engage in during learning, with the intention of improving 

their learning of the material presented (Weinstein & Mayer, 1986). In this study we used a 

computer-based generative drawing to increase generative processing and to support students 

in comprehending our scientific material. In drawing, students have to translate the verbal text 

information into a picture that represents spatial relationships among the elements referred to 

in the text (Carney & Levin, 2002). This generation process enhances active processing of the 

to-be-learned information on a cognitive level, as well as on a metacognitive level (van Meter 

& Garner, 2005), corresponding to generative processing in the Cognitive Theory of 
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Multimedia Learning (CTML; Mayer, 2009) and germane load in Cognitive Load Theory 

(CLT; Chandler & Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011; Sweller, van 

Merriënboer, & Paas, 1998). Studies in which the learners’ construction of drawings was 

instructionally supported (Schwamborn, Mayer, et al., 2010; van Meter & Garner, 2005) 

showed benefits of the drawing strategy on text comprehension, whereas studies without 

instructional support for drawing did not (Alesandrini, 1981; Leutner, Leopold, & Sumfleth, 

2009). According to these studies, asking students to generate drawings runs the risk of 

creating too much extraneous cognitive processing (or extraneous cognitive load): that is, 

cognitive processing that does not serve the instructional objective. This might lead to fewer 

cognitive resources being available for generative processing (or germane cognitive load), 

that are needed for deep-level understanding (Mayer, 2009). 

Additionally, other studies have investigated the accuracy of learner-generated 

drawings (e.g., Lesgold, Levin, Shimron, & Guttmann, 1975; Lesgold, de Good, & Levin, 

1977; Schmeck, 2010; Schwamborn et al. 2010; Stern, Aprea, & Ebner, 2003; van Meter, 

2001; van Meter et al., 2006), meaning “the degree to which completed drawings resemble 

the represented object(s)” (van Meter & Garner, 2005, p. 299). Overall, the results showed 

that students who generated high-accuracy drawings also scored higher on learning outcome 

tests than those who generated low-accuracy drawings.  

The generative theory of drawing construction (van Meter & Garner, 2005) states that 

asking students to draw pictures while reading a text leads them to engage in different 

cognitive processes: namely, selection, organization and integration. In concrete terms, this 

means that students, who are assigned a text and are asked to draw a picture corresponding to 

the main ideas described in the text, have to select relevant ideas, elements and relationships 

first. After that, they have to organize the information to build their own internal verbal 

model. Finally, students have to construct an internal pictorial representation of the text’s 

information and integrate it with the verbal model and with relevant prior knowledge.  

Integration of the internal verbal and pictorial representations into a coherent mental 

model is important, because it is the basis for generating an external visualization (van Meter 

& Garner, 2005). If students have problems in building a mental model or an external 

visualization, they can monitor themselves and go back to their internal verbal representation 

or even back to the original text (van Meter, 2001). Thus, the generation of drawings seems to 

encourage students to engage in cognitive and metacognitive processing and thus fosters 

deep-level understanding (van Meter, 2001; van Meter & Garner, 2005; van Meter et al., 

2006). However, generating one’s own drawing runs the risk of creating too much extraneous 
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cognitive processing (or extraneous cognitive load), leading to fewer cognitive resources 

being available for generative processing (or germane cognitive load), which is needed for 

deep-level understanding (Mayer, 2009). 

2.4 Method 

Participants and Design  

In this study participants were 249 German 8th graders from higher track secondary 

schools who provided complete data and whose study time was within two standard 

deviations above or below the mean study time of their respective group. Their mean age was 

13.2 years (SD = 0.5); 53.2 % were female. The study followed a 2 x 2 x 2 factorial design 

with generative drawing (whether or not students generated drawings) and instructor-provided 

illustration (whether or not illustrations were provided) as between-subjects factors and 

content (chemistry or biology) as a within-subjects factor. Fifty-nine students were in the 

control group, 73 were in the generation group, 56 in the illustration group, and 61 were in the 

generation + illustration group. All groups received both a biology science text and a 

chemistry science text in counterbalanced order of paragraphs. 

Materials and Apparatus 

The computer-based materials consisted of four versions of two lessons: one dealing 

with the chemistry of washing with soap and water (approximately 1000 words) and one 

dealing with the biology of the flu (approximately 850 words). The chemistry science text 

consisted of six screen pages, each containing one paragraph about the causal steps in the 

process of mixing soap and water (Figure 2.1). The chemistry science text and related 

material was taken from Schwamborn et al. (2011) and adapted for the present study. The 

biology science text consisted of seven screen pages each containing one paragraph about the 

causal steps in catching and having the flu (Figure 2.2). The content of the biology science 

text and related material was taken from Schwamborn, Opfermann, Pfeiffer, Sandmann and 

Leutner (2012) and adapted for the present study. 

In the lesson for the control group, one paragraph of text was presented at the top of 

each slide. In the lesson for the illustration group, each slide contained a text paragraph at the 

top and a picture of the content on the righthand bottom side. The provided illustrations were 

static functional pictures representing the main ideas of each paragraph, and consisted of 

pictorial elements identical to those provided in the drawing prompt used in the generation 

group. 
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In the lesson for the generation group, each slide contained a text paragraph on top and 

a drawing prompt on the bottom left side. This drawing prompt included two parts: (1) a 

toolbar showing all the relevant pictorial elements, as described in the text, for generating a 

drawing for the respective text paragraph by means of drag-and-drop: moving and combining 

the elements on the computer screen, and (2) a partly pre-drawn background into which the 

elements could be placed.  

In the lesson for the generation + illustration group, each slide contained a text 

paragraph on top, the drawing prompt on the bottom lefthand side, and an additional button 

for clicking after having generated the drawing. After this button was clicked, an illustration 

representing the main ideas of the paragraph appeared on the bottom righthand side, and 

students were instructed to compare their generated drawing with the provided illustration 

(which was the same as in the illustration group). The additional button was blocked for 

approximately two minutes, to prevent students from clicking immediately, without first 

generating their own drawing. 

For all groups, each lesson was preceded by a three-slide tutorial, presented before the 

chemistry or biology content screen pages, teaching students how to use the drag-and-drop 

interface to make drawings. In the first slide, students were asked to draw a little man by 

means of the given elements; in the second slide students were asked to move and rotate 

different sized hearts to the right place to fill in holes, and in the third tutorial slide, students 

were asked to build an isosceles triangle with the help of given elements. 

Additionally, after each slide a prompt asked the participants to rate their perceived 

difficulty and mental effort in a cognitive load booklet. At the end of the learning experience, 

participants were asked to rate overall difficulty and mental effort as well as answer a 

question about the drag-and-drop interface, on the final page of the cognitive load booklet. 

The apparatus consisted of 35 Dell computer systems on which the learning environment was 

installed.  

The paper-based materials consisted of the participant questionnaire, a prior 

knowledge pretest, a verbal ability pretest, spatial ability pretest, motivation survey, two 

cognitive load booklets, and two learning outcome posttests. The participant questionnaire 

solicited demographic information, asked students to report their biology and chemistry 

school grades and to rate their use of computers. The prior knowledge test consisted of four 

short-answer items, with two items related to the content of the chemistry science text and 

two items related to the content of the biology science text. An example of a biology question 

is: “Describe how the flu can invade your body and how it breeds.” The verbal ability pretest 
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consisted of 20 verbal analogy problems adapted from the Verbal Analogies subscale of the 

Cognitive Capability Test (Heller & Perleth, 2000). The spatial ability pretest consisted of 10 

paper folding items taken from the Paper Folding Test in the Kit of Factor-Referenced 

Cognitive Tests (Ekstrom, French, & Harman, 1976). The motivation survey consisted of nine 

items taken from the Challenge and Interest subscale of the Questionnaire to Assess Current 

Motivation in Learning Situations (FAM; Rheinberg, Vollmeyer, & Burns, 2001). An 

example of such an item is: “This task was a real challenge for me.” Each item was rated on a 

7-point Likert scale, with responses ranging from that is not right to that is right.  

As a dependent variable, which could also serve as a potential mediator of the effects 

of the experimental factors on the students’ learning performance, the amount of cognitive 

load experienced during learning in the learning environment was assessed online after each 

computer slide with two items: one asking the learners to rate their perceived task difficulty 

on a 7-point scale (Kalyuga, Chandler, & Sweller, 1999) and one asking them to rate their 

invested mental effort on a 7-point scale (Paas, 1992). The cognitive load booklet for the 

chemistry science text had six pages, while the booklet for the biology science text had seven 

pages, with both the perceived difficulty and the mental effort item on each page. 

Additionally, after students finished working with the learning environment, they again rated 

their overall learning experience with regard to perceived difficulty and mental effort, and 

they answered a question concerning the usability of the drag-and-drop mechanism on a 

separate page. 

The three learning outcome posttests for each lesson were the retention, transfer, and 

drawing tests. The chemistry retention test consisted of 13 multiple-choice items (Cronbach’s 

α = .69), such as: “What is a water molecule surrounded by on the water’s surface?: (a) by 

water molecules (b) by air molecules (c) by water molecules and air molecules (d) by water 

molecules and oxygen molecules.” The biology retention test consisted of 19 multiple-choice 

items (Cronbach’s α = .84), such as: “What is part of a scavenger cell?: (a) nucleus, capsule 

and pseudopodia (b) cell membrane, nucleus and pseudopodia, (c) cell membrane, antibodies 

and pseudopodia, or (d) nucleus, antibodies and pseudopodia.” The retention tests assessed 

students’ retention of factual and conceptual information covered in the text. 

The chemistry transfer test consisted of three open-ended questions (Cronbach’s α = 

.84), such as: “Pure water has a high surface tension. Please explain how the surface tension is 

created.” The biology transfer test consisted of four open-ended questions (Cronbach’s α = 

.70), such as: “Describe the two steps of the immune response, which are necessary to form 
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antibodies after the cell has absorbed and decomposed the virus.” The transfer tests assessed 

students’ ability to apply information presented in the text to new situations.  

The drawing tests asked students to draw sketches depicting key elements and the 

spatial relations among them, using paper and pencil. The chemistry drawing test consisted of 

three items (Cronbach’s α = .70), such as: “Please make a drawing that shows the impact 

adding soap has on the surface tension of water”. The biology drawing test consisted of four 

items (Cronbach’s α = .70), such as: “Draw the bond between three influenza viruses and 

matching antibodies”. All materials were in the German language.  

 
Figure 2.1 Example frames of the computer-based chemistry science text for control group (1), generation group 
(2), illustration group (3); and generation + illustration group (4) (German version). 
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Figure 2.2 Example frames of the computer-based biology science text for control group (1), generation group 
(2), illustration group (3); and generation + illustration group (4) (German version).  

2.5 Procedure 

Within their classes, students were randomly assigned to treatments. To ensure that 

students in both drawing groups did not feel rushed when students in the non-drawing groups 

completed the task more quickly, groups were tested in separate classrooms. The study was 

distributed across three consecutive days.1 On the first day, students first completed the 

participant questionnaire and the prior knowledge test at their own pace. They were then 

given the spatial ability pretest, with a three-minute time limit, and the verbal ability pretest, 

with a seven-minute time limit. On the second day, students were given the first computer-

based lesson. This procedure was counterbalanced: that is, half of each class received the 

chemistry science text first and the other half received the biology science text first. Each 

student had about 10 minutes to work with the tutorial section before starting with the 

learning section. All students were instructed to read the science text for comprehension. 

Additional instructions varied according to the conditions. Students in the generation group 

were instructed to read the text and to make drawings (using the drawing prompt on the 
                                                
1	The same posttests for both lessons were administered six weeks later, but the data are not included in this 

study, since some students failed to engage in taking the same tests over again.	



	 Study I 
	

61	
	

computer screen) representing the main ideas of each text paragraph. Students in the 

illustration group were instructed to read and additionally to look at provided visualizations 

representing main ideas of the text. Students in the generation + illustration group were 

instructed to read, to draw (using the drawing prompt), and finally to compare their 

visualizations to those provided. Students in the control group were only instructed to read the 

text for comprehension.  

For each lesson, students completed the motivation survey after the tutorial section 

and after the learning section of the lesson. To assess cognitive load online (i.e., during 

learning), students were instructed to answer the two items measuring mental effort and 

perceived difficulty in the cognitive load booklets next to their computer after each text 

paragraph. Additionally, they received both cognitive load items again, plus one question 

concerning the drag-and-drop mechanism after they had finished learning with all text 

paragraphs. Total study time was recorded for each lesson. 

Finally, students received the transfer, drawing, and retention tests to complete at their 

own pace, without access to the learning materials. Overall, after instructions and the tutorial, 

students had approximately 70 minutes to learn in the computer environment and to finish the 

posttests. They could decide on their own when they were finished with the learning and 

subsequently, when they were finished with the posttests. When students finished their 

learning they received the posttest immediately, meaning that the time between learning and 

the posttests was the same for every subject. 

The third day followed the same pattern as the second day, with every student staying 

in his/her condition but working with the remaining lesson. This research was conducted in 

compliance with APA ethical principles.  

2.6 Results 

Scoring 

The chemistry prior knowledge score for each participant was determined by counting 

the total number of correct main ideas for each of the two questions of the chemistry prior 

knowledge test, based on a scoring rubric consisting of six idea units. The biology prior 

knowledge score for each participant was determined by counting the total number of correct 

main ideas to each of the two questions of the biology prior knowledge test, based on a 

scoring rubric consisting of six idea units. Students’ answers were scored by two student 

assistants specialized in science education, with satisfactory inter-rater agreement for 
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chemistry prior knowledge (Goodman-Kruskal gamma = .93) and for biology prior 

knowledge (Goodman-Kruskal gamma = .99). 

The spatial ability score was determined by tallying the number correct out of 10; the 

verbal ability score was determined by tallying the number correct out of 20, and the 

motivation score was determined by tallying the nine ratings to yield a total score for 

motivation. Overall, there were two motivation scores for the first lesson and two for the 

second lesson; one prior to studying the lesson and one after learning.  

We computed the chemistry transfer test score for each learner by counting the total 

number of correct solution ideas in written answers to each of the three open-ended questions 

out of twelve possible ideas. We computed the biology transfer test score for each learner by 

counting the total number of correct solution ideas in written answers to each of the four 

open-ended questions out of nine possible ideas. Students’ answers were again scored by the 

two student assistants, with satisfactory inter-rater agreement on the chemistry transfer test 

(Goodman-Kruskal gamma = .87) and on the biology transfer test (Goodman-Kruskal gamma 

= .86).  

We computed the chemistry and biology retention test scores for each learner by 

awarding 1 point for each correct answer, and we added up the points for each question to 

compute the total retention scores for each test, out of a total possible 13 on the chemistry 

retention test and 19 on the biology retention test.  

We computed the chemistry and biology drawing test scores by counting the total 

number of correct main ideas in each learner’s answer across the three items on the chemistry 

drawing test and the four items on the biology drawing test, respectively. Students could earn 

a maximum of 15.5 points on the chemistry drawing test and 21 points on the biology 

drawing test. Students could end up with half points, because it is possible to draw only one 

part of an element correctly. Students’ answers were scored by the two student assistants, with 

satisfactory inter-rater agreement on the chemistry drawing test (Goodman-Kruskal gamma = 

.85) and on the biology drawing test (Goodman-Kruskal gamma = .89).  

Finally, in order to assess the quality of learner-generated visualizations constructed 

by both generation groups during learning in each lesson, we computed a drawing accuracy 

score for each of the six drawings for the chemistry science text and each of the seven 

drawings for the biology science text, yielding a maximum of 27 points on chemistry drawing 

accuracy and 21 points on biology drawing accuracy. The two student assistants scored each 

learner-generated visualization for each student, with satisfactory inter-rater agreement on the 

chemistry drawing accuracy test (Goodman-Kruskal gamma = .80) and on the biology 
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drawing accuracy test (Goodman-Kruskal gamma = .84). In order to compare performance 

across the various tests on a common metric, we computed the proportion correct on each test 

by dividing each student’s obtained score by the total possible score. 

Are the Groups Equivalent on Basic Characteristics? 

Before examining treatment effects on learning outcome measures, we analyzed 

whether the four experimental groups differed on some basic characteristics. Chi-square 

analysis and analyses of variance, based on alpha = .05, indicated that there were no 

significant differences among the groups in the proportion of males and females, chemistry 

prior knowledge score, biology prior knowledge score, spatial ability score, verbal ability 

score, or motivation score. Overall, we concluded that the groups were equivalent on basic 

characteristics. 

Do Students Learn Better When They Are Asked to Generate Drawings While Reading a 

Science Text? 

The major goal of this study was to determine if asking students to generate computer-

based drawings while reading a science text in a computer-based learning environment is an 

effective learning strategy that promotes improvements in posttest performance. In short, the 

goal was to determine whether computer-based drawing could produce a generative drawing 

effect similar to the one found with paper-and-pencil drawings, in which generating drawings 

while reading a science text enhanced learning outcomes (Schwamborn, Mayer, et al., 2010).  

A multivariate analysis of Variance (MANOVA), with generation and illustration as 

factors and posttest scores (transfer, retention, drawing) for each science text (chemistry, 

biology) as the dependent variable, showed that there was a significant effect of generation on 

the posttest scores, F(6,240) = 12,85, p < .001. Table 2.1 summarizes the mean proportion 

correct (and standard deviations) on the three posttests for the chemistry science text. The 

primary research issue concerns whether there is a generative drawing effect in which 

students who draw while learning perform better on posttests than those who do not. The left 

portion of Table 2.1 shows the mean proportion correct and standard deviations on the 

transfer test for students in the four groups. A separate univariate analysis of variance 

(ANOVA), with generation and illustration as factors and posttest scores as the dependent 

variable, indicated a positive main effect of generating drawings on the transfer scores, F(1, 

245) = 8,82, p = .003, d = .39, in which the two generation groups (M = 19.5% correct, SD = 

19.1) significantly outperformed the two groups that did not generate drawings (M = 12.6% 

correct, SD = 16.1). The middle portion of Table 2.1 summarizes the mean proportion correct 
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and standard deviations on the retention test for the four groups. No significant main effect of 

generating visualizations was found on the retention test of the chemistry science text, F(1, 

245) = 0.64, p = .423, d = .11: That is, the proportion correct for the generation groups (M = 

51.0% correct, SD = 22.1) did not differ significantly from the groups that did not generate 

drawings (M = 48.6% correct, SD = 22.5). The right portion of Table 2.1 shows the mean 

proportion correct on the drawing test for the four groups. There was a positive main effect of 

generating visualizations on the drawing scores, F(1, 245) = 48,97, p < .001, d = .79, in which 

the groups that generated illustrations (M = 39,8% correct, SD = 29.9) significantly outscored 

those that did not (M = 18.4% correct, SD = 23.9). There were no significant interactions.  
Table 2.1            
Mean Proportion Correct (Standard Deviation) on the Chemistry Transfer Test, Chemistry Retention Test, and 
Chemistry Drawing Test for all Four Groups 
 Type of test 
  Transfer Retention Drawing 
Group n M  SD M  SD M  SD 
Control 59 .14 .16 .52 .22 .06 .11 
Illustration 56 .11 .16 .45 .23 .32 .26 
Generation 73 .21 .20 .53 .21 .30 .23 
Generation + illustration     61 .18 .18 .49 .23 .51 .33 

 

Table 2.2 summarizes the mean proportion correct and standard deviations on each of 

the three posttests for the biology science text. The left portion of Table 2.2 shows the mean 

proportion correct and standard deviations on the transfer test for the four groups. A separate 

ANOVA indicated that the proportion correct on the transfer test by the generation groups (M 

= 14.4% correct, SD = 16.3) did not differ significantly, F(1, 245) = 0.27, p = .602, d = .07 

from the proportion correct on the transfer test by the groups that did not generate drawings 

(M = 13.3% correct, SD = 15.0). The middle portion of Table 2.2 summarizes the mean 

proportion correct on the retention test for the four groups. A separate ANOVA indicated that 

the proportion correct on the retention test by the generation groups (M = 57.8% correct, SD = 

24.7) did not differ significantly, F(1, 245) = 1.87, p = .172, d = .18, from the proportion 

correct on the retention test by the groups that did not generate drawings (M = 53.6% correct, 

SD = 23.2). The right portion of Table 2.2 shows the mean proportion correct on the drawing 

test for the four groups. There was a positive main effect of generating visualizations on the 

drawing scores F(1, 245) = 20.99, p < .001, d = .55 for the biology science text, in which the 

groups that generated drawings (M = 55.7% correct, SD = 28.3) significantly outscored those 

that did not (M = 41.2% correct, SD = 24.5). There were no significant interactions. 
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Table 2.2  
Mean Proportion Correct (Standard Deviation) on the Biology Transfer Test, Biology Retention Test, and 
Biology Drawing Test for all Four Groups 
 Type of test 
  Transfer Retention Drawing 
Group n M  SD M  SD M  SD 
Control 59 .15 .17 .56 .25 .30 .17 
Illustration 56 .11 .13 .51 .21 .53 .26 
Generation 73 .16 .17 .58 .26 .51 .29 
Generation + illustration     61 .13 .16 .58 .24 .62 .27 

 

A multivariate analysis of variance (MANOVA), with generation and illustration as 

factors and posttest scores for chemistry and biology combined as the dependent variable, 

showed that there was a significant effect of generation on the posttest scores, F(3,243 ) = 

23,81, p < .001. Table 2.3 summarizes the mean proportion correct and standard deviations on 

the three posttests for the chemistry and biology science texts combined: that is, across all 

chemistry and biology items on the respective tests. The left portion of Table 2.3 shows the 

mean proportion correct and standard deviations on the transfer test for the four groups. A 

separate ANOVA indicated a positive main effect of generating drawings on the transfer 

scores for both lessons combined, F(1, 245) = 4,15, p = .043, d = .28, in which the generation 

groups (M = 16.9% correct , SD = 16.0) significantly outperformed the groups that did not 

generate drawings (M = 12.9% correct, SD = 13.8). The middle portion of Table 2.3 

summarizes the mean proportion correct and the standard deviations on the retention test of 

both lessons together for the four groups. There was no significant main effect of generating 

drawings, F(1, 245) = 1.65, p = .201, d = .17: That is, the proportion correct for the generation 

groups (M = 54.4% correct, SD = 19.9) did not differ significantly from the groups that did 

not generate drawings (M = 51.1%, SD = 19.7). The right portion of Table 2.3 shows the 

mean proportion correct on the drawing test in both lessons together for the four groups. 

There was a positive main effect of generating drawings on the drawing scores, F(1, 245) = 

43,54, p < .001, d = .76, in which the groups that generated drawings (M = 47.8% correct, SD 

= 25.9) significantly outscored those that did not (M = 29.8, SD = 21.6). There were no 

significant interactions. 
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Table 2.3  
Mean Proportion Correct (Standard Deviation) on the Transfer Test, Retention Test, and Drawing Test for Both 
Lessons Combined for all Four Groups 
 Type of test 
  Transfer Retention Drawing 
Group n M  SD M  SD M  SD 
Control 59 .15 .15 .54 .21 .18 .11 
Illustration 56 .11 .12 .48 .18 .42 .23 
Generation 73 .18 .17 .55 .20 .41 .24 
Generation + illustration     61 .15 .15 .53 .19 .56 .26 

 

Overall, there is some evidence for the generative drawing effect in computer-based 

learning environments. Asking students to generate computer-based drawings while reading a 

computer-based science text resulted in higher posttest scores on transfer and drawing, but not 

on retention, as compared to students who did not draw during learning. In particular, 

computer-based drawing during learning appears to be a generative activity, as indicated by 

improved transfer test performance, which is the most appropriate measure of generative 

processing during learning. 

Do Students Report Higher Cognitive Load When They Are Asked to Generate Visualizations 

While Reading a Science Text? 

As a validity check we examined whether students who are required to work harder by 

generating drawings would report higher levels of difficulty and effort. The mean difficulty 

ratings and standard deviations for the chemistry science text were 3.24 (SD = 1.12) for the 

control group, 3.60 (SD = 1.03) for the illustration group, 4.02 (SD = 1.20) for the generation 

group, and 3.70 (SD = 1.19) for the illustration + generation group. An ANOVA with 

illustration and generation as factors indicated that students’ perceived difficulty in the 

chemistry science text was significantly higher, F(1, 245) = 11.21, p =.001, d = .44, for the 

generation groups (M = 3.92, SD = 1.24) than for the groups that did not generate drawings 

(M = 3.41, SD = 1.08). The mean difficulty ratings (and standard deviations) for the biology 

science text were 3.24 (SD = 1.24) for the control group, 3.21 (SD = 1.09) for the illustration 

group, 3.92 (SD = 1.57) for the generation group, and 3.50 (SD = 1.42) for the illustration + 

generation group. An ANOVA with illustration and generation as factors indicated that 

students’ perceived difficulty in the biology science text was significantly higher, F(1, 245) = 

11.49, p = .001, d = .44, for the generation groups (M = 3.80, SD = 1.51) than for the groups 

that did not generate drawings (M = 3.21, SD = 1.16).  

In both ANOVAs, there was no main effect of illustrations, suggesting that adding 

illustrations did not affect subjective reports of cognitive load. The only significant effect 
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involving illustrations was an interaction of generation and illustrations concerning students’ 

perceived difficulty in the chemistry science text, F(1, 245) = 4.90, p = .028, in which 

illustrations decreased perceived difficulty when drawing was required, but increased self-

reported difficulty when no drawing was required. There were no main effects or interactions 

involving the effort ratings. Overall, these results suggest that generating drawings was 

perceived as adding difficulty to the learning task; this may be an indication of increased 

cognitive processing during learning.  

Do Students Learn Better When They Are Asked to Generate Drawings While Reading a 

Science Text, When Cognitive Load is Included as Covariate? 

Given the group differences in perceived difficulty—which may be an indication of 

cognitive load which reduces available cognitive resources for generative processing during 

learning (Mayer, 2009)—we reanalyzed the posttest data (posttest scores as dependent 

variable) using an analysis of covariance (ANCOVA), with perceived difficulty as covariate 

and illustration and generation as factors. The analyses yielded the same pattern of significant 

effects on transfer and drawing posttests as in the previous analyses and yielded additional 

main effects of generating visualizations on retention tests for chemistry, F(1, 243) = 3,38, p 

= .034, d = .11, biology, F(1, 243) = 8.70, p = .003, d = .18, and for both lessons combined, 

F(1, 243) = 79.65, p < .001, d = .17, in which students who generated drawings scored higher 

on retention tests than those who did not. The ANCOVA also yielded significant interactions 

of generation and illustration on the drawing posttest for the biology science text, F(1, 243) = 

7.29, p = .007, d = .55 and both lessons combined, F(1, 243) = 5.66, p = .048, d = .76, in 

which the control group performed particularly poorly, as might be expected. Overall, adding 

the difficulty rating as a covariate served to preserve and strengthen the conclusion in the 

previous section, that computer-based drawing has positive effects on learning outcomes.   

Do Students Need More Study Time When They Are Asked to Generate Visualizations While 

Reading a Science Text? 

As a further validity check we examined whether students who are required to 

generate drawings need more time to study the science lessons. A multivariate analysis of 

variance (MANOVA) with generation and illustration as factors and study time for the 

chemistry and biology science text as the dependent variables showed that there was a 

significant effect of generation on study time, F(2,195) = 142,13, p <.001. The mean study 

time (and standard deviations) for the chemistry science text were: 10.60 min (SD = 3.02) for 

the control group, 10.99 min (SD = 2.61) for the illustration group, 24.98 min (SD = 9.08) for 
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the generation group, and 23.25 min (SD = 7.04) for the illustration + generation group. A 

separate ANOVA2 with illustration and generation as factors indicated that students’ study 

time in the chemistry science text was significantly higher, F(1, 196) = 201,81, p <.001, d = 

.22, for the generation groups (M = 24.2 min, SD = 8.26) than for the groups that did not 

generate drawings (M = 10.8 min, SD = 2.84). The mean study time (and standard deviations) 

for the biology science text were: 10.76 min (SD = 3.12) for the control group, 10.80 min (SD 

= 2.52) for the illustration group, 23.51 min (SD = 7.26) for the generation group, and 20.45 

min (SD = 5.43) for the illustration + generation group. A separate ANOVA with illustration 

and generation as factors indicated that students’ study time for the biology science text was 

significantly higher, F(1, 196) = 216,60, p< .001, d = .22, for the generation groups (M = 22.2 

min, SD = 6.67) than for the groups that did not generate drawings (M = 10.8 min, SD = 2.86). 

There were no other significant effects or interactions. Overall, as might be expected, asking 

students to draw illustrations added substantially to study time, so the benefits of computer-

based drawing should be weighed against the cost of additional study time.  

Is the Quality of Drawing During Learning Related to Better Learning Outcomes? 

The foregoing sections provided evidence for a generative drawing effect, in which 

asking students to create computer-based drawings of science text during learning resulted in 

improved posttest performance. In the present analysis, we focus on the quality of the 

drawings produced by students in the drawing groups, in order to determine whether the 

quality of student drawings during learning is related to posttest performance. According to 

the prognostic drawing principle established with hand-drawn student drawings (Schwamborn 

et al., 2010), we would expect the quality of computer-based drawings produced during 

learning to be positively related to posttest scores on transfer, retention, and drawing.  

As a first step in testing the prognostic drawing principle, we pooled the two 

generation groups, because their scores on drawing accuracy during learning did not differ 

significantly for the chemistry science text, F(1, 122) = 1.13, p = .289, d = .19, and for the 

biology science text, F(1, 122) = 0.87, p = .352, d = .19. 

Second, correlation analyses based on the combined data from the two generation 

groups revealed that the proportion correct in computer-based drawings (i.e., accuracy score) 

that students produced during chemistry learning correlated significantly with each of the 

three posttest measures for the chemistry science text: transfer test, r = .51, p < .01; retention 

test, r = .41, p < .01; and drawing test, r = .52, p < .01. Correlation analyses based on the 

                                                
2 Because of missing log-files concerning study time, degrees of freedom vary. 
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combined data from the two generation groups revealed that the accuracy score of drawings 

that students produced during learning with the biology science text correlated significantly 

with each of the three posttest measures for the biology science text: transfer test, r = .54, p < 

.01; retention test, r = .58, p < .01; and drawing test, r = .64, p < .01. This pattern of results 

shows a strong positive relation between the quality of students’ generated drawings during 

learning and their performance on the posttests. This is the primary evidence in support of the 

prognostic drawing effect, which states that the quality of drawings during learning predicts 

the quality of posttest performance on measures of learning outcome.  

Third, as shown in Table 2.4, we classified each student in the two generation groups 

as a high-accuracy drawer or a low-accuracy drawer on the basis of a median split of the 

drawing accuracy score of the chemistry drawings generated during the chemistry science 

text. The mean proportion correct was 45.98% (SD = 29.66) for the high-accuracy 

visualization generators and 13.83% (SD = 8.76) for the low-accuracy visualization 

generators, t(128) = 15.70, p < .001, d = 1.47. T-tests revealed that the high-accuracy drawers 

significantly outperformed low-accuracy drawers on each of the posttest scores on the 

chemistry science text: transfer test, t(128) = 17.93, p < .001, d = .98; retention test, t(128) = 

0.93, p < .001, d = .67; and drawing test, t(128) = 0.50, p < .001, d = 1.08.  
Table 2.4  
Mean Proportion Correct (Standard Deviation) on the Chemistry Transfer Test, Chemistry Retention Test, and 
Chemistry Drawing Test by Low- and High-Accuracy Drawers From Both Generation Groups Combined 

  Type of test 

  Transfer Retention Drawing 

Group n M SD M SD M SD 

Low-accuracy drawers 66 .11 .14 .44 .20 .26 .25 

High-accuracy drawers 64 .28 .20 .58 .22 .54 .27 
 

Similarly, Table 2.5 shows each student in the two generation groups classified as a 

high-accuracy drawer or a low-accuracy drawer, on the basis of a median split of the accuracy 

score of the drawings generated during the biology science text. The mean proportion correct 

was 67.21% (SD = 17.46) for the high-accuracy drawers and 19.25% (SD = 11.69) for the 

low-accuracy drawers, t(126) = 15.20, p < .001, d = 3.23. T-tests revealed that the high-

accuracy drawers significantly outperformed low-accuracy drawers on each of the posttest 

scores for the biology science text: transfer test, t(126) = 31.24, p < .001, d = 1.03; retention 

test, t(126) = 0.34, p < .001, d = 1.19; and drawing test, t(126) = 0.65, p < .001, d = 1.36. 

These findings provide strong and consistent support for the prognostic drawing principle. 
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Table 2.5  
Mean Proportion Correct (Standard Deviation) on the Biology Transfer Test, Biology Retention Test, and 
Biology Drawing Test by Low- and High-Accuracy Drawers From Both Generation Groups Combined  

  Type of test 

  Transfer Retention Drawing 

Group n M SD M SD M SD 

Low-accuracy drawers 64 .07 .10 .45 .20 .40 .25 
High-accuracy drawers 64 .22 .18 .70 .22 .72 .22 

 

Do Students Learn Better When They Receive Instructor-Provided Illustrations While 

Reading a Science Text? 

In addition to the analyses described above, we were interested in whether there was 

evidence for the multimedia effect (Fletcher & Tobias, 2005; Mayer, 2009), which states that 

students learn better from lessons containing text and illustrations than from text alone. 

According to this effect, and to findings from Schwamborn et al. (2011; see also Schmeck, 

2010), we expected students provided with illustrations to perform better than students who 

were not given illustrations in their lessons.  

Table 2.1 summarizes the mean proportion correct and the standard deviations for the 

chemistry science text on each of the three posttests. An ANOVA indicated no main effect of 

presenting illustrations on the transfer scores, F(1, 245) = 1.79, p = .182, d = -0.18. There was 

a significant negative main effect of presenting illustrations on the retention scores, F(1, 245) 

= 4.13, p = .043, d = -0.26 , in which students who received instructor-generated illustrations 

(M = 46.9% correct, SD = 22.8) performed significantly worse than those who did not (M = 

52.6% correct, SD = 21.5). There also was a significant negative main effect of presenting 

illustrations to the students on the drawing scores, F(1, 245) = 57.63, p < .001, d = 0.84, in 

which students who received instructor-generated illustrations (M = 42.1% correct, SD = 

31.5) performed significantly worse than those who did not (M = 19.1% correct, SD = 22.2).  

Table 2.2 summarizes the mean proportion correct for the biology science text. An 

ANOVA indicated no main effect of presenting illustrations on the transfer scores, F(1, 245) 

= 2.61, p = .108, d = -0.21. Another ANOVA indicated no main effect of presenting 

illustrations on the retention scores F < 1. For the biology science text, there was a positive 

main effect on the drawing scores from providing illustrations while reading, F(1, 245) = 

26.69, p < .001, d = .59, wherein students who received instructor-generated illustrations (M = 
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57.3% correct, SD = 26.7) significantly outperformed those who did not (M = 41.6% correct, 

SD = 26.2).  

Table 2.3 summarizes the mean proportion correct for the chemistry and the biology 

science texts combined. An ANOVA indicated no main effect of presenting illustrations on 

the transfer scores, F(1, 245) = 2.69, p = .102, d = -0.22. Another ANOVA indicated no main 

effect of presenting illustrations on the retention scores on both lessons combined, F(1,245) = 

3.04, p = .083, d = - 0.23. There was a positive main effect on the drawing scores from giving 

illustrations while reading F(1, 245) = 52.88, p < .001, d = .81, for the chemistry and biology 

science texts combined, in which students who received instructor-generated illustrations (M 

= 49.7% correct, SD = 25.6) significantly outperformed those who did not (M = 30.4% 

correct, SD = 22.0). 

Overall, the small and inconsistent effect sizes on retention and transfer do not support 

the multimedia effect in this study. As already mentioned above, there were no significant 

interaction effects, meaning that the effect of the provided illustrations is not moderated by 

the generation of visualizations.  

2.7 Discussion 

Empirical Contributions 

The main empirical contribution of this study is that students learned better when they 

generated computer-based drawings while reading onscreen science texts. Thus, the results 

show that the generative drawing effect extends to a computer-based learning environment 

(where appropriate instructions and pretraining are given on using the drawing tool). The 

second empirical contribution of this study is that students who produced high-accuracy 

drawings on a computer while reading science texts scored better on learning outcome 

posttests than students who produced low-accuracy drawings on a computer while reading. 

Thus, the results show that the prognostic drawing effect extends to a computer-based 

learning environment. 

Theoretical Contributions  

The results are consistent with generative theories of learning (Mayer, 2009), which 

posit that people learn better when they engage in generative processing during learning, that 

is, cognitive activities aimed at making sense of the material. Generating computer-based 

drawings while reading is intended to cause students to translate the verbal information into a 

visualization that expresses the relevant relationships between the elements referred to in the 
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text, leading to a connection of verbal information, visual information, and prior knowledge. 

This generative cognitive processing leads to deeper understanding according to the CTML 

(Mayer, 2009) and CLT (Sweller, Ayres, & Kalyuga, 2011). These intended generative 

cognitive processes can be impaired or even impeded by extraneous cognitive load caused by 

the mechanics of using a tedious interface to create onscreen drawings, leading to insufficient 

cognitive resources being available for generative processing. Thus, in the present study we 

tried to create a form of visualization generation that minimized extraneous processing by 

providing a ready-made drawing background and a toolbar with all the relevant elements that 

could be dragged and dropped onto the background, along with appropriate pretraining. 

Overall, the results show that asking learners to generate drawings of scientific texts, 

using a computer-based tool, fosters generative processing. Thus, this study is in line with 

earlier studies, reviewed in the introduction, showing the generative drawing effect when 

instructional support is given during students’ process of drawing by hand on paper.  

The results show that the instructional support given during the drawing process 

within the computer-based learning environment seamed to be sufficient to foster generative 

processing, while minimizing extraneous processing caused by the mechanics of the drawing 

interface. On the transfer learning outcome tests, which are the most appropriate measures of 

generative processing during learning (Mayer, 2009), students who generated drawings 

outperformed the students who did not. Thus, computer-based drawing during learning 

appears to be a generative activity. However, group differences were found concerning the 

perceived difficulty, suggesting that generating drawings was perceived as adding difficulty to 

learning tasks; this also is in line with earlier studies, e.g., Leutner et al. (2009), Schwamborn 

et al. (2011). Adding difficulty ratings as a covariate strengthened the finding of a positive 

effect of computer-based drawing on learning, by showing stronger effect sizes.  

Results concerning study time show significant group differences which indicated that 

students’ study time was higher for the generation groups than for the groups that did not 

generate drawings within the chemistry as well as in the biology learning environment. This 

was in line with the assumption, that students learning with self-generated drawings have to 

use drawing mechanics to build up an external model, i.e., drawing, besides the cognitive 

processing of selecting, organizing and integrating, to build up a coherent mental model of the 

to be learned information. This process of course takes up time by itself. Additionally, the 

effects of generating drawings on the transfer test scores were in line with the results of 

Schwamborn, Thillmann, et al. (2010), who also used self-paced study time. When using self-

generated drawing students need to conduct cognitive and metacognitive processing of the 
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information as well as mechanical processing of drawing suitable, to achieve an ideal learning 

outcome (van Meter & Garner, 2005). Although, a causal interpretation is still not possible, 

without more empirical studies, it seems that a sufficient study time can counteract the higher 

cognitive load caused by the drawing mechanics within this learning strategy. As a result self-

generated drawing can then be effective (Leutner et al., 2009; Sweller, 2005). Looking at the 

averaged study time within the generation groups, self-generated drawing proved to be a 

relative efficient learning strategy.  

Additionally, our results are again in line with the theory of generative drawing (van 

Meter, 2001, 2005), which states that students who engage effectively in generating 

visualizations tend to build up a more coherent idea of the learning content and therefore 

construct meaningful learning outcomes also. Thus, the accuracy of the visualizations reflects 

the quality of the generative process during learning and is related to learning outcome 

measures of retention, transfer and drawing scores. Overall, the diagnostic value of the 

drawing accuracy scores is reflected in the finding that students who produced higher-

accuracy drawings during learning tended to score higher on learning outcome posttests. 

Practical Contributions  

Based on the present results, we propose a generative drawing principle in computer-

based learning environments, in which students learn better when they generate drawings by 

means of drag-and-drop on the computer screen while learning from an onscreen science text. 

Nevertheless, it is important to implement the drawing process through a method that reduces 

extraneous processing initiated by the mechanics of drawing. That is why we used the earlier-

described drawing interface and the drag-and-drop mechanism as a support for drawing. 

Based on the present findings, we recommend asking students to draw computer-based 

drawings during computer-based learning with science texts.  

Additionally, we propose the prognostic drawing principle for computer-based 

learning: The accuracy of the visualizations students draw during learning predicts the quality 

of learning outcomes. The students’ generated drawings give some indication of their level of 

understanding of the text content. On the one hand, students could use the accuracy of their 

generated visualizations to monitor what they have understood, and could go back to the text 

if necessary. On the other hand, teachers could use drawing accuracy to assess learning and 

adjust their instruction accordingly. It is possible that drawing accuracy offers more, or at 

least different information about students’ level of understanding than students can describe 

verbally. Thus, both principles are important for school practice, most of all because they 
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extend to computer-based learning environments, which have gained increasing attention and 

importance within educational contexts in recent years. 

Limitations and Future Directions 

The present study was limited in some areas that should be investigated in future 

studies. In addition to the results reported so far, we did not find an effect of the order of the 

offered lesson: That is, the order in which the students undertook the particular science lesson 

(chemistry or biology) did not effect their performance in posttests. Additionally, this seems 

to show that there was no effect of previous learning on later learning, which was expected 

due to suggestions of Schmeck (2010) based on results of Kellogg and Mueller (1993) who 

showed that students trained in using a strategy perform better. Further research is needed to 

see if computer-based drawing can improve learning over time.  

As mentioned above, we found only small and inconsistent effect sizes of presenting 

illustrations on retention and transfer, which consequently do not support the multimedia 

effect in this study. Additionally, there were no significant interaction effects concerning 

providing illustrations and generating drawings; this means that the effect of the provided 

illustrations was not moderated by the generation of drawings. One possible explanation is 

that the learners did not pay much attention to the computer-based illustrations. This 

possibility is consistent with our finding that students did not spend more study time on 

lessons containing illustrations than on lessons that did not contain illustrations. 

Because of the significant difference, concerning perceived difficulty, between 

students who generated visualizations and those who did not, it might be suggested that 

despite the drawing support (which seems to have been successful in comparison to previous 

computer-based studies) the drawing procedure based on drag-and-drop, is still a bit too 

intrusive for some students. One possible explanation for this could be that this procedure is 

still not the same as using a pencil, which in general is a familiar learning procedure for 

students. Future work is needed to determine if we can strengthen the effects of the generative 

drawing principle within computer-based learning environments by using a form of drawing 

mechanism that is more natural and that students are used to, so that it minimizes extraneous 

processing. In particular, it would be useful to incorporate a tablet computer in the learning 

environment, which would allow the students to use a pencil but still work with computers as 

a medium. Additionally, the use of tablet computers could help support students’ creativity. 

Their creativity was restricted in this study, due to the provision of a partially drawn 

background and of the elements the students were required to use. Perhaps the greater 

freedom in drawing, which students have when they work with paper and pencil, could better 
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support their learning, although it could, on the other hand, become a source of extraneous 

processing for inexperienced learners. Thus, further research concerning the role and the 

degree of guidance needed for self-generated drawings in computer-based learning 

environments would assist in developing more efficient and supportive learning 

environments. 
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3 Study II: Generative Drawing – Differences in Using Paper-

Based Material and Drawing by Hand Versus Using 

Computer-Based Material and Drawing by Drag-and-Drop 
 

Abstract 

Generative drawing is a learning strategy to foster deeper student learning. Using this 

strategy, students are asked to create drawings as they read a scientific text. However, 

researchers have noted that students report difficulties when they draw via computer rather 

than by hand. The present study examined the contrast between drawing by hand versus 

drawing by computer. Fifty-four 8th graders read a 6-paragraph text dealing with chemistry in 

which paragraphs were alternately presented on paper (with instructions to create a drawing 

by hand) and on a computer screen (with instructions to use a drag-and-drop interface to 

create a drawing). This was followed by a posttest of retention learning outcome. A repeated 

measures ANOVA with the presentation medium (computer- and paper-based) as within-

subjects factor was performed. Results showed that students learn significantly more when 

they read and generate drawings on paper than on a computer screen. Perceived difficulty was 

measured after every text paragraph. Results revealed that students reported significantly less 

perceived difficulty when working with a text-paragraph in the computer-based learning 

environment than in the paper-based learning environment. On a subsequent questionnaire, 

students generally reported fewer difficulties when generating drawings by drag-and-drop on 

the computer. Additionally, they reported a higher level of motivation when using the 

computer for generating. Finally, the prognostic drawing principle is supported in paper-based 

as well as in computer-based learning environments. Importantly, results concerning the 

questionnaire provide information to improve learning environments concerning generative 

drawing in the future. 

 

Keywords:	computer-based learning, paper-based learning, generative drawing, cognitive 

load, motivation 
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3.1 Theoretical Background  

Within their school career, students need to learn a lot of scientific phenomena. These 

phenomena are usually complex and cannot be observed directly. Research has shown that 

students have difficulties in understanding scientific concepts (Driver, Leach, Scott, & Wood-

Robinson, 1994). To make it easier for students, many teachers use experiments or 

animations. Experiments and animations can be presented on various media, such as on a 

computer screen, as physical experiments, or printed on paper. When the information to be 

learned, from text and/or visual representations, is presented on a computer screen, this kind 

of learning environment is categorized as computer-based learning environment. Using 

computers and other ‘new media’ presents numerous possibilities of how to share information 

with an audience and, not surprisingly, learning with new media has become a common 

research topic in educational psychology. This started in the sixties when new media – that is, 

electronic, digital and interactive media – were increasingly developed and distributed 

(Zander & Brünken, 2006). Looking at learning with real (Hofstein & Lunetta, 2004) and 

virtual (Chen, 2010) experiments, results showed positive effects of both on students’ learning 

outcome. The same applies to learning with animations, including highly realistic video-based 

animations (e.g., Michas & Berry, 2000; Spangenberg, 1973) and computer-based animations 

(e.g., Höffler & Leutner, 2007; Imhof, Scheiter, Edelmann, & Gerjets, 2012). However, using 

scientific texts as learning material is still unavoidable in everyday school life, and these can 

be presented on a computer as well as on paper. Often, when students need to learn from 

scientific texts, they find the complexity of these texts difficult and thus are sometimes unable 

to cope with the cognitively highly demanding process of comprehension (Naumann, Artelt, 

Schneider, & Stanat, 2009).  

An alternative to text-only presentations is to use multimedia presentation, in which 

students learn from both text and pictures (Mayer, 2009; Schnotz, 2005; Schnotz & Bannert, 

1999). Learning with multimedia presentations has been shown to be effective in paper-based 

learning environments (e.g., Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 

1990; Moreno & Mayer, 1999; Plass, Chun, Mayer, & Leutner, 1998; Schwamborn, 

Thillmann, Leopold, Sumfleth, & Leutner, 2010) as well as in computer-based learning 

environments (e.g., Brünken, Steinbacher, Schnotz, & Leutner 2001; Mayer & Moreno, 2002; 

Schmidt-Weigand, 2006; Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010). The 

research mentioned above has used pictures to foster students’ learning process when reading 

scientific texts. Another approach to foster this learning is to ask students to draw a picture 

during reading concerning the content presented in the text. Drawing is a learning strategy 
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that improves students’ text comprehension by enhancing active cognitive and metacognitive 

processing (Alesandrini, 1984; Schmeck, 2010; Schwamborn, Thillmann, et al., 2010; van 

Meter & Garner, 2005). Accordingly, the generative theory of drawing construction by van 

Meter and Garner (2005) states that students who are asked to generate a picture while 

reading a text engage in three different cognitive processes. The first process is the selection 

of important elements from the verbal representation, i.e., the text. The second cognitive 

process is organization, whereby the selected elements are used to build up an internal verbal 

model, which under integration of existing prior knowledge serves as the basis for 

constructing an internal nonverbal representation. Thereby, the organization of the verbal 

representation guides the organization of the nonverbal representation. Additionally, students 

integrate this internal nonverbal representation with the verbal model. According to van Meter 

and Garner (2005), the process of integrating verbal and nonverbal representations is not 

distinct from the process of organizing nonverbal representations. Instead, the organized 

verbal representation is the basis for the nonverbal representation both are necessarily 

integrated. Learners are literally forced to integrate both when generating an external 

nonverbal representation. This third cognitive process, integration, allows the student to be 

able to generate an external nonverbal representation, for example, a visualisation 

representing all relevant content of the learned text. That is, when students draw during 

reading, the organized verbal representation is used to construct the nonverbal representation. 

Specifically, when the introduced concepts are new for the student and no prior knowledge is 

available to refer to, the organized verbal representation is used to construct the nonverbal 

representation when students draw during reading. Through this process of generating 

(referential) connections between all representations described here students build up a mental 

model, which is assumed to be the reason for enhanced problem solving abilities (e.g., Mayer 

& Gallini, 1990; Mayer & Sims, 1994; van Meter & Firetto, 2013; van Meter & Garner, 2005) 

and therefore enhanced learning outcome.  

In addition to enhanced active cognitive processing, like selection, organization and 

integration, drawing also increases active processing on a metacognitive level (van Meter & 

Garner, 2005). At a metacognitive level, the cognitive process of drawing is not necessarily 

linear (van Meter & Garner, 2005). Sometimes when students try to draw a picture, they 

encounter problems: Perhaps they do not understand all of the text or they do not know how 

to draw elements described in the text and where to place them to show relationships 

correctly. Students then need to go back to their internal nonverbal and/or the verbal 

representation or even back to the text itself to be able to continue drawing. Thus, they 
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monitor and regulate themselves during learning with drawings (Leopold, 2009; Leopold & 

Leutner, 2015; van Meter, 2001). In other words, instructing students to draw a picture 

representing the relevant text information can enhance metacognitive processes. 

The activation of cognitive and metacognitive processes by drawing also corresponds 

to the ‘generative processing’ assumed in the Cognitive Theory of Multimedia Learning 

(CTML; Mayer, 2009) as well as to ‘germane cognitive load’ defined in Cognitive Load 

Theory (CLT; Chandler & Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011). Following the 

Cognitive Theory of Multimedia Learning and Cognitive Load Theory, the process of 

drawing while reading a scientific text does not only foster generative processing 

(respectively germane load), but also extraneous processing (respectively extraneous 

cognitive load; Chandler & Sweller, 1991; Leutner, Leopold, & Sumfleth, 2009; Mayer, 

2009; Sweller et al., 2011). Translating printed text into a pictorial representation, such as 

when learners are asked to generate drawings, can prime germane load (respectively 

generative processing), which is the effort that contributes to the construction of schemas 

(Sweller, Merrienboer, & Paas, 1998), by selecting important material, organizing it into a 

coherent structure, and integrating it with relevant prior knowledge. However, on the other 

hand, instructing students to draw does not automatically guarantee generative processing and 

thus a better understanding of the text. The mechanics of drawing, both on paper and on a 

computer-screen, can be difficult and therefore can create extraneous load. If the drawing 

process itself creates too much extraneous load, there will be not enough cognitive resources 

available in working memory for germane load; thus learning is impaired (Sweller, 2010).  

State of Research Concerning Generative Drawing 

Research so far has shown that learning from paper-based texts can be improved when 

students engage in hand drawing using paper and pencil (Leopold, 2009; Leopold & Leutner, 

2012; Schmeck, 2010; Schwamborn, Mayer et al., 2010; Schwamborn, Thillmann et al., 2010; 

van Meter & Garner, 2005; see also van Meter, 2001). However, studies on generative 

drawing that did not include instructional support during the drawing process often did not 

show an improvement in learning performance (Leutner et al., 2009; Rasco, Tennyson, & 

Boutwell, 1975; Tirre, Manelis, & Leicht, 1979), whereas studies with support did foster text 

comprehension (Study I of this thesis; Lesgold, Levin, Shimron, and Gullman, 1975; Lesgold, 

De Good, & Levin, 1977; Schwamborn, Mayer et al., 2010; Schwamborn, Thillmann et al., 

2010; van Meter, 2001; van Meter & Garner, 2005; van Meter, Aleksic, Schwartz, & Garner, 

2006). Accordingly, Schwamborn, Mayer, and colleagues (2010) proposed the generative 

drawing principle, which states that students learn better from science texts – only if the 
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drawing activity is implemented in a way that minimizes extraneous cognitive load. 

Additionally, Schwamborn, Mayer, et al. (2010) introduced the prognostic drawing effect, in 

which the accuracy score of student-generated drawings during learning correlates positively 

with posttest scores.  

All of these presented effects refer to studies that dealt with hand drawing using paper 

and pencil. But what about cases in which science texts are presented on a computer screen 

and students need to engage in drawing by using the mechanics of drag-and-drop? In the first 

study (Schwamborn, Thillmann, Opfermann, & Leutner, 2011) that investigated the effects of 

computer-based generative drawing, students were instructed to draw their pictures on a 

computer screen by means of drag-and-drop. Results of this study showed that students who 

drew on the computer screen performed better on a drawing test than students who learned 

with provided pictures or the control group. However, there were no significant effects on 

transfer and retention tests and thus results were not in line with generative theories (de Jong 

2005; van Meter & Garner, 2005; Wittrock, 1990). Additionally, Schwamborn and her 

colleagues (2011) found that using a computer-based learning environment seems to demand 

too much extraneous cognitive load meaning that students reported increased mental effort 

while learning with the computer-based drawing material. These students also needed more 

learning time than the non-generating groups. 

In the second study that investigated the effects of computer-based generative drawing 

(see Study I in Chapter 2 of this thesis), students were again instructed to draw their pictures 

on a computer screen by means of given elements and drag-and-drop. However, in this study 

learning material was taken from Schwamborn et al. (2011) and it was adapted to improve it 

for computer-based learning. Additionally, a second learning content was taken from 

Schmeck, Mayer, Opfermann, Pfeiffer, and Leutner (2014) and programmed to make it also 

suitable for computer-based learning. The second content was used, on the one hand, to 

clarify that the specific learning content was not the reason that no benefits of computer-based 

generative drawing were found in the first study (Schwamborn et al., 2011). On the other 

hand, a second content also helps students to get acquainted with the computer-based learning 

environment. The use of a second learning content combined with training tutorials and an 

optimized handling of the learning material should decrease extraneous cognitive load and 

thus leaving more cognitive resources available for generative processing and meaningful 

learning (Mayer, 2009). In Study I of this thesis (Chapter 2), we did assume that these 

alterations and arrangements should increase the positive effects of computer-based 

generative drawing on students’ learning outcome. 
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In contrast to the study of Schwamborn et al. (2011), Study I showed that learning 

from a science text presented on a computer-screen improves performance on learning 

outcome posttests when students engage in drawing using drag-and-drop. Students learned 

better when they generated computer-based drawings while reading onscreen science texts. 

Thus, the results showed that the generative drawing effect extends to a computer-based 

learning environment if appropriate instructions and pretraining on using the drawing tool are 

given. Additionally, results showed that the prognostic drawing effect (Schwamborn, Mayer, 

et al., 2010) extends to this computer-based learning environment, as students who produced 

high-accuracy drawings on a computer while reading science texts scored better on learning 

outcome posttests than students who produced low-accuracy drawings.  

However, this study also indicated, as in the study of Schwamborn and colleagues 

(2011), that using a computer-based learning environment seems to demand too much 

extraneous cognitive load, meaning that students here reported an increased perceived 

difficulty when generating drawings. According to these studies, asking students to use 

generative drawing runs the risk of creating too much extraneous cognitive load. This can 

lead to fewer cognitive resources being available for generative processing, respectively 

germane cognitive load, that is needed for deep-level understanding (Mayer, 2009). 

Overall, comparing results from previous studies concerning paper-based generative 

drawing with computer-based drawing studies, it strikes us that one computer-based drawing 

study did not find support for the benefits of generative drawing (Schwamborn et al., 2011), 

whereas the other computer-based drawing study (our Study I, Chapter 2) showed positive 

effects of generative drawing on learning outcome. However, our Study I still revealed 

smaller effect sizes than studies using paper-based learning material (cf. Schwamborn, Mayer 

et al., 2010; Schwamborn, Thillmann et al., 2010; Schmeck, 2010; Schmeck et al., 2014). 

These inconsistenties are the motivation for the present study. 

Outline of the Present Study and Hypothesis 

To our knowledge, only two studies have investigated generative drawing on a 

computer screen by means of drag-and-drop (Study I, Chapter 2; Schwamborn, et al., 2011), 

and there is no published study that directly compared paper-based generative drawing with 

computer-based generative drawing. In the present study we intend to investigate the 

inconsistency concerning the effect of generative drawing in paper-based and in computer-

based learning environments. We do this by instructing students to use the generative drawing 

strategy on paper as well as on the computer, with students alternately reading science texts 

on paper and on the computer screen. Thus, the generative drawing medium is a within-



	 Study II 
	

85	
	

subjects-factor in our study. We measure students’ learning outcome of science content 

learned on paper and on the computer to compare the effectiveness of computer- and paper-

based generative drawing. We also investigate which medium (and therefore which 

mechanics) students perceive to be more difficult to work with, that is, which causes more 

extraneous cognitive load. Additionally, we look at the prognostic drawing principle in the 

paper-based as well as in the computer-based parts of the lesson. That is, we investigate 

whether the accuracy of student-generated drawings during learning correlates positively with 

posttest scores for both parts of the lesson. Finally, we also want to explore the underlying 

components of students’ perceived task difficulty. Thus, we examine possible explanations 

for differences in the effectiveness of the generative drawing principle based on whether 

students draw by hand or draw on the computer using drag-and-drop (Schwamborn, Mayer et 

al., 2010; Schmeck et al., 2010; see Study I, Chapter 2). In doing so, we will try to provide 

recommendations on how to successfully integrate generative drawing in the instructional 

context. In sum, we intend to investigate the following hypotheses: First, concerning learning 

outcome we assume that students will perform better on those learning outcome questions 

whose content was learned in the paper-based learning environment than on those whose 

content was learned in the computer-based learning environment. This is due to the 

assumption that the extraneous load is expected to be lower for the paper-based learning 

environment. Second, we assume that students perceive a higher difficulty when working in 

the computer-based learning environment than when working in the paper-based learning 

environment. Third, we predict that the accuracy of the learners’ drawings made during 

learning with both types of material will predict performance on the posttests. We predict that 

the accuracy of drawings made in the paper-based parts of the lesson will at least predict 

performance on the learning outcome of content learned with the paper material, but 

presumably also concerning content learned with the computer-based material. We predict 

that the same applies for the accuracy of the drawings made in the computer-based parts of 

the lesson. The assumption of the prognostic drawing principle also means that students with 

a high accuracy score are expected to perform better on learning outcome scores than students 

with a low accuracy score. Finally, we assume that students experience various kinds of 

difficulties when using a computer-based or paper-based approach to generate drawings 

during learning from a science text. These could be difficulties to learn the important content 

from the material, difficulties with the mechanics of the drawing process itself, or difficulties 

to be motivated by one or the other learning material. In this study we are interested in these 

differences, and we investigate what is easier or more difficult in computer-based and in 
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paper-based approaches, in order to create an easy-to-use and effective way to implement 

generative drawing in the long run.  

3.2 Method 

Participants and Design 

In this study participants were 54 German 8th graders from higher track secondary 

schools. Their mean age was 13.4 (SD = 0.7), and 57.4% were female. All 54 participants 

were presented with a chemistry science text and completed the posttest. Within their classes, 

students were randomly assigned to one of two sequence groups: 27 students began with 

paragraph one of the chemistry science text on the computer then switched to paper for the 

second paragraph, then on the computer, and so on (the ‘Computer-Paper Sequence Group’). 

The other 27 students began with paragraph one of the chemistry science text on paper then 

switched to the computer for the second paragraph and so on (the ‘Paper-Computer Sequence 

Group’). Thus, all students received the whole 6-paragraph chemistry science text with the 

medium (paper, computer) changing for each successive paragraph (exemplified in Table 

3.1). 
Table 3.1  
Sequence in Which the Students Were Provided With the Paper-Based and Computer-Based Learning Material 
and the Remaining Procedure of the Experiment, Depending on Their Group 

Materials and Apparatus 

We adapted the learning material from the chemistry science text of Schwamborn, 

Thillmann, et al. (2010), which we also used in our Study I (see Chapter 2). The computer-

based materials consisted of a chemistry text of approximately 1000 words dealing with the 

chemistry of washing with soap and its influence on the water surface tension. The lesson 

 ‘Computer-Paper Sequence’ Group’ ‘Paper-Computer Sequence’ Group’ 
Training 1 Paper Computer 

 Training 2 Computer Paper 
Paragraph 1 
 

Computer Paper 
 Perceived Difficulty Item 
Paragraph 2 
 

Paper Computer 
 Perceived Difficulty Item 
Paragraph 3 
 

Computer Paper 
 Perceived Difficulty Item 
Paragraph 4 
 

Paper 
 

 

Computer 
 Perceived Difficulty Item 
Paragraph 5 
 

Computer Paper 
 Perceived Difficulty Item 
Paragraph 6 
 

Paper 
 

Computer 
 Learning Outcome Test 
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consisted of six pages, each containing one paragraph about the causal steps in the process of 

mixing soap and water. In the computer-based materials, the text paragraphs were augmented 

with a drawing prompt, which included (1) a toolbar showing all relevant pictorial elements, 

as well as a tooltip with the names of the elements as described in the science text in case of 

mouse over, (the pictorial elements could be moved, rotated, and combined on the screen by 

means of drag-and-drop) and (2) a partly pre-drawn background onto which elements could 

be placed (exemplified in Figure 3.1). Additionally, there was a computer-based pre-training 

whose setup was the same as of the computer-based chemistry science text. However, within 

this first exercise students were instructed to generate an easy drawing of a little man on the 

partly pre-drawn background by means of given elements from the toolbar, using drag-and-

drop.  
 

 Figure 3.1 Two example frames of the computer-based chemistry learning material for (a) paragraph one and 
(b) for paragraph five (German version). 

The computer apparatus consisted of 35 Dell computer systems on which the learning 

environment was installed.  

The paper-based materials consisted of a learning booklet that included the same 

chemistry science text as the computer-based materials. The setup of the lesson followed the 

setup of the computer material with the printed science text paragraph on the top of each 

page, augmented with a drawing prompt on the bottom. This drawing prompt also included 

two parts. (1) A printed toolbar (on the left side) that showed the various elements and their 

names as described in the science text for generating drawings for the respective text 

paragraph. However, in this case, students had to select and combine the given elements and 

then re-draw them by hand onto (2) a pre-printed background (on the right side). The paper-



	 Study II 
	

88	
	

based lesson is exemplified in Figure 3.2. Additionally, there was also a paper-based pre-

training whose setup was the same as of the computer-based chemistry science text, but the 

students were instructed to generate an easy drawing of a little man on the pre-drawn 

background by means of given elements from the toolbar on paper.  

 

 
 
Figure 3.2 Two example frames of the paper-based chemistry learning material for (a) paragraph four and (b) for 
paragraph six (German version).  

The learning booklet additionally comprised the same item six times asking the 

students about their perceived difficulty experienced during learning with the previous 

paragraph. This was assessed online, meaning immediately and continuously one item after 

each paragraph, asking the learners to rate the perceived task difficulty on a 7-point scale 

based on the item of Kalyuga, Chandler, and Sweller (1999). Our modified item (translated) 

was: “How difficult was it for you to generate a drawing for the previous text paragraph?”. 

Responses ranged from (1) ‘very easy’ to (7) ‘very difficult’. The booklet also included hints 

to turn over the page and to work with the next paragraph on the computer or on paper to 

support and instruct the students in their working process. 

Further paper-based materials were a participant questionnaire, a spatial ability pretest, 

a ‘Medium Preference Questionnaire’ and a learning outcome posttest. The participant 

questionnaire solicited demographic information, students’ performance grade in school 

chemistry, and an estimate of their computer usage. For the spatial ability pretest, the Card 

Rotation Test (CRT; Ekstrom, French, & Harman, 1976), consisting of ten items, was used. 

We developed the Medium Preference Questionnaire because we could not find a published 

questionnaire concerning deeper insight into perceived difficulty. The questionnaire had 13 
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items and measured students’ preference for learning medium on three separate components. 

This taxonomie was composed to represent all relevant steps and mechanics students undergo 

when generating drawings and to differentiate possible difficulties students might try to 

express when they are asked how difficult a learning unit was for them. By means of this 

questionnaire we wanted to be able to look at the differences between the learning media in 

detail. The components were based on issues with the learning material media that our 

research team gathered from a small pilot study and on difficulties students reported to the 

experimenters after they had learned with the computer-based material of Study I. The first 

component was enthusiasm (2 items), which tapped into students’ enjoyment while generating 

drawings. An example item (translated) is: “Drawing the pictures was... (1) strikingly more 

fun on the computer, (2) a little more fun on the computer, (3) a little more fun on paper, or 

(4) strikingly more fun on paper”. The second component was difficulties with the mechanics 

of the drawing process (6 items), which concerned problems students had while drawing. An 

example item is: “For me, orienting the drawing elements on the drawing background was… 

(1) strikingly easier on the computer, (2) a little easier on the computer, (3) a little easier on 

paper, or (4) strikingly easier on paper”. The third component was metacognition and 

learning (5 items) and referred to processes like self-regulation as well as understanding of 

the learning content. An example item is: “For me, understanding the contents of the text 

paragraphs was… (1) strikingly easier on the computer, (2) a little easier on the computer, (3) 

a little easier on paper, or (4) strikingly easier on paper”. All items are listed in Table 3.4 in 

the results part of this study, each with 4-point Likert-type response scale.  

The learning outcome posttest was a retention test consisting of six open-ended 

questions, each related to one of the six text paragraphs of the chemistry science text 

(Cronbach’s α = .79), such as: “Please write down everything you remember about Paragraph 

Two: Water surface tension.” The retention test assessed students’ memory of factual and 

conceptual information covered in the text. 

All materials were presented in German.  

3.3 Procedure 

Within their school classes, students were randomly assigned to one of two groups, 

i.e., whether the first paragraph of the chemistry science text was paper-based (the Paper-

Computer Sequence Group) or computer-based (the Computer-Paper Sequence Group). At 

the beginning of the study, students first completed the participant questionnaire and were 

then given the spatial ability pretest with a three-minute time limit. All students (i.e., both 

sequence groups) received pre-training on how to generate paper-based and computer-based 
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drawings. The Computer-Paper Sequence Group was presented with the paper-based pre-

training first and received the computer-based pre-training before starting the first paragraph 

on the computer. This order was chosen to avoid an additional unnecessary switch between 

paper- and computer-based parts of the lesson. For the same reason, the Paper-Computer 

Sequence Group began their pre-training on the computer and then did the paper part of the 

pre-training before starting with the first science paragraph on paper. In both computer- and 

paper-based parts of the pre-training students were asked to generate a drawing of a little man 

by means of given elements. After that, students were given the chemistry science text. Based 

on the respective condition, participants began reading the 6-paragraph chemistry text on 

paper or on the computer. Each paragraph was then alternately presented either on paper (with 

instructions to make a drawing on paper) or on a computer screen (with instructions to use 

drag-and-drop tools to make a drawing), as exemplified in Table 3.1.  

In the main part of the lesson all students were instructed to read the science text for 

comprehension and to make drawings representing main ideas of the text, by hand for 

paragraphs presented on paper and using drag-and-drop for paragraphs presented on the 

computer screen.  

To assess cognitive load, students were told to turn the page or to click on the ‘hint’ 

button when they were finished with generating the respective drawing on paper or on the 

computer-screen. Students were then guided to answer the respective question in the learning 

booklet concerning the perceived difficulty during working with the previous paragraph and 

to read the next paragraph on the computer or paper, depending on condition.  

After students had pressed the ‘hint’ button on the screen, a ‘continue’ button 

appeared, but was blocked for approximately two minutes. This prevented students from 

skipping to the next computer-based paragraph before answering the appropriate perceived 

difficulty item, reading the next paragraph on paper, and then answering the next appropriate 

perceived difficulty item. On paper, students were told to turn the page when they were 

finished with generating the drawing, and then answered the respective difficulty item. On the 

next page the word ‘stop’ was printed in large, red letters, and the text on this page instructed 

the students to go back to the computer and to learn with the next paragraph on the computer. 

This procedure was repeated for every paragraph. After the last perceived difficulty item 

following Paragraph 6 (the last paragraph), both the learning booklet and the computer 

learning environment ended. Total study time for each student was recorded at the end of the 

learning task. Students then completed the Medium Preference Questionnaire. 
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Finally, students received the learning-outcome test to complete at their own pace 

without access to the learning materials. Overall, after instructions and the pre-training, 

students had approximately 70 minutes left to learn with the chemistry science text and to 

finish the posttest. They could decide on their own when they were finished with learning and 

subsequently also when they were finished with the posttest. Once students were finished with 

learning and completed the Medium Preference Questionnaire they got the posttest 

immediately, which means that the time between learning and the posttest was the same for 

every subject. All students were able to finish learning and the posttest within these 70 

minutes. 

After approximately five weeks, delayed learning effects were measured by giving the 

students the same posttest again as a follow-up test.3  

This research was conducted in compliance with APA ethical principles. 

3.4 Results 

Scoring 

The total number correct out of 80 determined the spatial ability score.  

The chemistry posttest scores on each of the six open-ended questions for each learner 

were computed by counting the total number of correct solution ideas in written answers. 

There were four possible correct solution ideas for questions one, two, and three; three 

possible ideas for question four and five; and two possible ideas for question six. The correct 

solution ideas were extracted by the help of expert answers that were constructed by two 

student science teachers under supervision of the author. Two research assistants scored the 

students’ answers with moderate inter-rater agreement over all six questions (Goodman-

Kruskal gamma = .48). For the analyses concerning learning outcome, which will be 

described in the following section, we used tertile-split scores. We used these scores, because 

of the right skewed distribution of the learning outcome scores (basement effect, Figure 3.3) 

and the varying difficulty of the different items (see Figure 3.6). 

                                                
3 The same posttest was administered approximately five weeks later, but the data are not included in this thesis 

as they did not show significant differences or an interpretable tendency. 
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Figure 3.3 Frequencies of students’ learning outcome scores (x-axes) for each of the six questions individually 
(1-6). Histograms of the questions two (2), three (3), four (4), five (5) and six (6) show a right skewed 
distribution. 

The perceived difficulty scores of the six paragraphs, based on a 7-point Likert-Scale 

(see Material and Apparatus), were computed per item. 

In order to assess the quality of learner-generated drawings we computed drawing 

accuracy scores for each of the six drawings, using an adapted coding scheme from Schmeck 

(2010), which we already used in Study I (Chapter 2). This yielded a maximum of eight point 

five points on drawing accuracy for Paragraph One, a maximum of seven points for Paragraph 

Two, eight points for Paragraph Three, two points for Paragraph Four, three points for 

Paragraph Five and finally a maximum of four points on drawing accuracy for the last 

Paragraph Six. The two research assistants scored each learner-generated drawing for each 

student, with mediocre inter-rater agreement between .24 and .72 (Goodman-Kruskal 

Gamma). 

Finally, we computed the scores on the Medium Preference Questionnaire concerning 

students’ enthusiasm to learn with paper or computer, their difficulties with the different 

mechanics of drawing, and their challenges in metacognition and learning per item. A score of 

1 or 2 on the 4-point Likert-Scale indicated student’s preference for the computer, whereas a 

score of 3 or 4 indicated student’s preference for paper. 
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Are the Groups Equivalent on Basic Characteristics? 

 Before conducting any further analyses, we analyzed whether the two experimental 

groups differed on several basic characteristics. Chi-square analysis and analyses of variance, 

based on alpha = .05, indicated that there were no significant differences among the groups in 

the proportion of males and females, last chemistry grade, spatial ability score, or study time 

(all ps > .10). Additionally, we asked participants’ chemistry teachers about the prior 

knowledge of their students concerning our chemistry science text. All teachers assured that 

their students had no prior knowledge about the content of the chemistry science text used in 

this study, mainly because in the students’ curriculum this content is taught one school year 

later. Overall, we concluded that the groups were equivalent on basic characteristics. 

Descriptives 

In the next sections we will look at students’ learning outcome, their perceived 

difficulty and the quality of their drawings when learning by means of the generative drawing 

strategy paper- and computer-based. The descriptives are given in Table 3.2, Table 3.3, and 

Figure 3.4. 
Table 3.2  
Means (Standard Deviations) of the Tertile-Split Learning Outcome Score (Upper Part), Students’ Perceived 
Task Difficulty (Middle Part) and Drawing Accuracy (Bottom Part) on all six Text Paragraphs for Both 
Sequence Groups  
  Paragraph Computer-Paper Group 

(N = 27) 
Paper-Computer Group (N = 

27) 

   M SD M SD 

Learning Outcome  

1 2.07 0.83 1.78 0.80 
2 1.96 0.94 1.89 0.89 
3 2.04 0.90 2.07 0.83 
4 2.07 0.83 1.41 0.80 
5 1.96 0.94 1.81 0.92 
6 2.04 0.90 1.70 0.82 

   M SD M SD 

Perceived Difficulty  

1 3.81 1.55 3.63 1.70 
2 3.67 1.04 3.55 1.34 
3 3.15 1.30 3.78 1.68 
4 3.70 1.20 3.04 1.53 
5 3.41 1.34 3.48 1.58 
6 3.44 1.70 2.61 1.57 
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 M SD M SD 

Drawing Accuracy 54 

1 2.48 2.65 1.52 1.45 
2 1.37 1.52 0.94 1.10 
3 2.35 2.14 2.38 1.58 
4 0.44 0.61 0.52 0.62 
5 0.83 1.05 0.63 0.86 
6 0.88 1.11 1.05 1.09 

Note. Grey Boxes = Text paragraphs were presented on the computer; White boxes = Text paragraphs were 
presented on paper. 

 
Table 3.3  
Means (Standard Deviations) and the Effect Size Cohen’s d of the Tertile-Split Learning Outcome Score (Left 
Part), Students’ Perceived Task Difficulty (Middle Part) and Drawing Accuracy (Right Part) for Text Paragraphs 
That Were Presented on a Computer and for Text Paragraphs That Were Presented on Paper (N = 54) 

 Learning Outcome Perceived Difficulty Drawing Accuracy 

 M SD d M SD d M SD d 

Computer 1.83 0.61 
-0.24 

3.30 1.13 
-0.35 

1.36 1.35 
0.13 

Paper 1.98 0.62 3.62 1.13 1.21 0.91 
 
 

 
Figure 3.4 Students’ learning outcome, perceived difficulty, and drawing accuracy of the paper-based material 
compared to students’ learning outcome of the computer-based learning material.   
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Do Students Learn Better From Science Texts When Reading and Generating Drawings on 

Paper or on a Computer Screen?  

One major goal of this study was to determine whether students learn better when 

learning from science texts on paper or on the computer. Therefore, in the present analysis, 

we focus on the learning outcome of content learned from paper-based and learned from 

computer-based learning material and whether there is a difference in performance between 

these two. For the analyses concerning learning outcome, which will be described in the 

following section we used tertile-split scores (see Table 3.2, Table 3.3, and Figure 3.4). 

For every participant we computed two learning outcome scores, one for those text 

paragraphs that were presented on a computer and one for those text paragraphs that were 

presented on paper. A repeated-measures ANOVA with the presentation medium (computer-

based and paper-based) as within-subjects factor, and with study time as covariate to test for a 

potential interaction with presentation medium, was computed. The covariate study time was 

included to make sure that a possible effect of the presentation medium was adjusted. The 

results show a significant main effect of the presentation medium on learning outcome F(1, 

52) = 4.60, p = .037. Looking at the descriptive statistics in the left part of Table 3.3 and 

Figure 3.4, it is noticeable that students learn more when they read and generate drawings on 

paper than on a computer screen. Furthermore, there was a significant interaction of the type 

of presentation medium and study time F(1, 52) = 11.31, p < .001. This indicates that study 

time has different effects on students’ learning outcome depending on which type of 

presentation medium students learned with. Correlations showed that learning outcome 

related to paper-based learning material was independent of study time (r = .001) whereas 

learning outcome related to computer-based learning material was significantly related to 

study time (r = .399) (see Figure 3.5). 
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Figure 3.5 Scatterplot of computer-based learning outcome and learning time (in minutes). 

Do Students Report Higher Perceived Difficulty When Reading and Generating Drawings on 

Paper or on a Computer Screen? 

The previous section provided information about students’ different learning 

performance when learning from a science text by means of the generative drawing strategy 

paper-based or computer-based. In the present analysis, we focus on whether students report 

more difficulties when they learn from science texts on paper or on the computer. 

For every participant we computed two perceived difficulty scores, one for those text 

paragraphs that were presented on a computer and one for those text paragraphs that were 

presented on paper (see Table 3.3, middle part). A repeated-measures ANOVA with the 

presentation medium (computer-based and paper-based) as within-subjects factor and study 

time as covariate, to test for a potential interaction with presentation modus, was computed. 

The results show a significant main effect of the presentation medium on perceived difficulty 

F(1, 52) = 6.60, p = .013. The descriptive statistics (see Table 3.3, middle part, and Figure 

3.4) reveal that students reported less perceived difficulty when working with the computer-

based learning environment than with the paper-based learning environment. Figure 3.6 

emphasizes that on all six chemistry science text paragraphs (with paragraph one as an 

exception) students perceived less difficulty when they worked computer-based instead of 

paper-based.  
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Figure 3.6 Distribution of students’ perceived task difficulty on all six science text paragraphs. The two different 
colored lines present the two sequence groups i.e., one group began with the computer-based and the other group 
with the paper-based learning material. Each measurement point is labeled with a P or C, depending on whether 
students worked with the respective paragraph computer-based or paper-based. 

Is the Quality of Drawings Related to Better Learning Outcomes? 

In the present analysis, we focus on the quality of the drawings produced by the 

students in order to determine whether the quality of drawings is related to posttest 

performance. According to the prognostic drawing principle, initially found for hand-drawn 

student drawings (Schwamborn, Mayer, et al., 2010), and later also found with computer-

based drawings (Study I, Chapter 2), we expect the quality of the computer-based drawings 

and paper-based drawings, produced during learning, both to be positively related to posttest 

learning outcome scores.  

As a first step in testing whether the prognostic drawing principle is independent of 

the medium in which the learning text is presented and the drawings are generated, we 

computed for every participant two drawing accuracy scores, one for those text paragraphs 

that were presented on a computer and one for those text paragraphs that were presented on 

paper, based on the drawing accuracy raw scores (see Table 3.3). Using these pooled scores a 

repeated-measures ANOVA with the presentation medium (computer-based and paper-based) 

as within-subjects factor, shows no significant main effect of the presentation medium on the 

drawing accuracy respectively the quality of the drawings F(1, 53) < 1. 

Second, correlation analyses revealed that the drawing accuracy score for computer-

based drawings correlated significantly with learning outcome, both posttest scores related to 
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computer-based paragraphs, r = .52, p < .01, and posttest scores related to paper-based 

paragraphs, r = .41, p < .01. For the drawing accuracy score for paper-based drawings, 

correlation analyses revealed that the accuracy score again correlated significantly with 

learning outcome, both posttest scores related to computer-based text paragraphs, r = .41, p < 

.01, and posttest scores related to paper-based text paragraphs, r = .35, p < .01. Additionally, 

there was a high correlation between the accuracy score for computer-based drawings and the 

accuracy score for paper-based drawings, r = .50, p < .01. 

However, correlation analyses also revealed that the learning time correlated 

significantly with the drawing accuracy score for computer-based drawings, r = .38, p < .01, 

meaning that the longer learners worked with the computer-based material the higher is their 

drawing accuracy score for computer-based drawings (see Figure 3.7). There was no 

significant correlation between learning time and the drawing accuracy score for paper-based 

drawings.    

This pattern of results shows a strong positive relation between the quality of students’ 

drawings generated during learning and their performance on the posttests, regardless of 

whether the learning material was computer-based or paper-based. This is primary evidence 

in support of the prognostic drawing effect, which states that the quality of drawings during 

learning predicts the quality of posttest performance on measures of learning outcome.  
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Figure 3.7 Scatterplot of the computer-based drawing accuracy score and learning time (in minutes). 

Do Students Report Higher Enthusiasm, Difficulties with the Mechanics of Drawing, and 

Challenges in Learning When Reading and Generating Drawings on Paper or on the 

Computer? 

Another major goal of this study was to determine which factors and underlying 

aspects of the computer-based learning environment compared to the paper-based learning 

environment may cause students’ perceived difficulty. For the Medium Preference 

Questionnaire, we analyzed each item individually. 

Table 3.4 summarizes the mean and standard deviation of each of the 13 items of the 

Medium Preference Questionnaire. One sample t-tests with a test value of 2.5 were executed 

for each item to evaluate whether the mean preference was significantly different from 2.5, 

the score on the 4-point scale at which no preference for computer nor for paper would be 

indicated. Because the taxonomie of the Medium Preference Questionnaire reflected all 

relevant steps and mechanics for generating drawings, we analysed each item individually to 

see differences concerning students’ preference for learning medium in detail and be able to 

interpret them item-based. A Bonferroni correction was calculated by deviding the signicance 
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level .05 of the t-test by 13, the number of the here individually tested hypothesis. After this 

correction these t-tests were significant for seven out of thirteen items. 

The upper part of Table 3.4 shows the two items asking for the enthusiasm issue. 

Looking at the enjoyment students had while generating drawings (Item 1) the mean is 1.76 

(SD = 0.67) which is significantly different from 2.5, t(53) = -8.11, p < .001. This indicates a 

preference to work with the computer-based material in place of the paper-based material. 

The effect size of d = 1.10 (d = t/square root (n)) indicates a large effect. Concerning Item 13 

about students’ preferred medium to work with in the future, the mean is 1.87 (SD = 0.58), 

which is significantly different from 2.5, t(53) = -7.91, p < .001, indicating a preference for 

the computer-based material. The effect size of d = 1.09 indicates a large effect.  

The middle part of Table 3.4 presents the items asking for the difficulties-with-the-

drawing-mechanics issue. Looking at the item about with which learning environment it was 

easier for students to generate drawings (Item 2), the mean is 2.06 (SD = 0.76), which is 

significantly different from 2.5, t(53) = -4.28, p < .001, indicating a preference for the 

computer-based learning environment. The effect size of d = 0.58 indicates a medium effect. 

In addition, for Item 5 about where it was easier to choose relevant elements from the toolbar, 

the mean is 2.09 (SD = 0.79), which is significantly different from 2.5, t(52) = -3.73, p < .001, 

indicating a preference for the computer-based learning environment. The effect size of d = 

0.52 indicates a medium effect. However, concerning Item 7 about the orientation of the 

given drawing elements, the mean is 2.89 (SD = 0.90), which is significantly different from 

2.5, t(53) = 3.16, p = .003, indicating a preference for the paper-based material. The effect 

size of d = 0.43 indicates a small effect.  

Finally, the bottom part of Table 3.4 shows the results for the metacognition-and-

learning-challenges issue. Regarding Item 8 that asked where it was easier for students to 

correct their drawings, the mean is 1.59 (SD = 0.79), which is significantly different from 2.5, 

t(53) = -8.45, p < .001, indicating a preference for the computer-based learning environment. 

The effect size of d = 1.15 indicates a large effect. Additionally, for Item 12 that asked where 

students actually improved more of their drawings, the mean is 2.05 (SD = 0.81) which is 

significantly different from 2.5, t(53) = -4.03, p < .001, indicating a preference for the 

computer-based learning environment. The effect size of d = 0.55 indicates a medium effect. 
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Table 3.4  
Means (Standard Deviations) of the 13 Items of the Medium Preference Questionnaire 

Item No. N M SD 

(Enthusiasm)    

01. Drawing the pictures was... 54 1.76*** 0.67 
1)    o  strikingly more fun on the computer,  
2)    o  a little more fun on the computer,  
3)    o  a little more fun on paper, 
4)    o  strikingly more fun on paper 

   

13. In the future I would....  54 1.87*** 0.58 
1)    o  clearly prefer working with the computer,  
2)    o  prefer working on the computer,  
3)    o  prefer working on paper, 
4)    o  clearly prefer working on paper 

   

(Difficulty with Mechanics)    

02. To draw the pictures was... 54 2.06*** 0.76 
1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

03. To begin with drawing was...   54 2.45 0.66 
1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

04. To draw the pictures as I wanted them to draw was... 54 2.31 0.94 
1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

05. To chose the elements to draw the pictures,  
for example the hydrogen molecule, surfactants etc. was... 53 2.09*** 0.79 

1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

06. To place the drawing-elements to the correct position 
on/in the predrawn drawing background was...  53 2.35 0.92 
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1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

07. To orient the drawing-elements for me it was... 54 2.89** 0.90 
1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

(Metacognition and Learning)    

08. To correct/improve the pictures during respectively 
after drawing for me it was... 54 1.59*** 0.79 

1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

09. To understand the content of the text paragraphs,  
for me it was...  53 2.70 0.72 

1)    o  strikingly more easy on the computer,  
2)    o  a little more easy on the computer,  
3)    o  a little more easy on paper, 
4)    o  strikingly more easy on paper 

   

10. I thought about the picture I should draw –  
before I started to draw... 54 2.65 0.65 

1)    o  strikingly more often on the computer,  
2)    o  a little more often on the computer,  
3)    o  a little more often on paper, 
4)    o  strikingly often fun on paper 

   

11. To go back in the text, to reread information during 
drawing, I did...  54 2.50 0.84 

1)    o  strikingly more often on the computer,  
2)    o  a little more often on the computer,  
3)    o  a little more often on paper, 
4)    o  strikingly often fun on paper 

   

12. During the drawing process I corrected/improved my 
drawings... 54 2.05*** 0.81 

1)    o  strikingly more often on the computer,  
2)    o  a little more often on the computer,  
3)    o  a little more often on paper, 
4)    o  strikingly often fun on paper 

   

Note.Significance levels: * p < .038 (after bonferroni correction), ** p < .01, and *** p < .001 based (two 
tailed); means < 2.5 students decide in favor for the computer, means > 2.5 students decide in favor for paper. 
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3.5 Discussion and Scientific Significance  

Empirical Contributions 

From an empirical point of view, our results show that there is a difference in 

students’ learning outcome depending on whether students read and generate drawings on 

paper or on a computer screen. Results show that students learn more when they learn from a 

science text using the generative drawing strategy on paper (and drawing by hand) than on a 

computer screen (and drawing via drag-and-drop). Thus, there are differences in the 

effectiveness of computer-based and paper-based learning materials. Although appropriate 

instructions are given to students during learning within the paper-based and computer-based 

text paragraphs (Study I, Chapter 2; Schwamborn et al., 2011; Schwamborn, Mayer et al., 

2010), it matters whether generative drawing construction is used paper-based or computer-

based. Additionally, results show a correlation of learning outcome related to computer-based 

learning material and study time, meaning that the longer students work with the computer-

based material the higher is their learning outcome recpectively they learn more.      

Our results also show that students report to perceive significantly less difficulty when 

learning with the computer-based text paragraphs than with the paper-based text paragraphs 

of the learning material. Thus, results show that the presentation medium has an effect on 

perceived difficulty.   

Another empirical contribution of this study is that the quality of the generated 

drawings is independent of the medium in which the learning text is presented and the 

drawings are generated. However, results show that the accuracy respectively the quality of 

drawings, generated via a computer tool, are positively correlated to students’ posttest 

performance according to computer-based as well as paper-based learned science content. In 

line with previous research, we found that the same is true for the accuracy of hand-drawn 

drawings. This accuracy was related to students’ posttest performance according to paper-

based as well as computer-based learned science content. This is evidence in support of the 

prognostic drawing effect, which states that the quality of drawings during learning predicts 

the quality of posttest performance on measures of learning outcome. 

Additionally, correlation analyses also revealed that the learning time correlated 

significantly with the drawing accuracy score for computer-based drawings. This means that 

the longer learners worked with the computer-based material the better is the quality of their 

computer-based drawings.     

An additional empirical contribution of this study is that students report to experience 

and to have different kinds of difficulties, challenges and preferences when using computer-
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based or paper-based approaches to generate drawings during learning from a chemistry text. 

Overall, students stated that they experienced fewer difficulties when learning with the 

computer, and accordingly most of them indicated they would rather work with the computer 

in the future. 

Theoretical Contributions  

From a theoretical point of view, our results are consistent with assumptions derived 

from the generative drawing principle (Leutner & Schmeck, 2014; Schwamborn, Mayer et al., 

2010) and the first study of this thesis (Study I, Chapter 2). Looking at students’ learning 

outcome, the results are consistent with paper-based studies concerning generative drawing 

(Leopold & Leutner, 2012; Schmeck, 2010; Schwamborn, Mayer, Thillmann, Leopold, & 

Leutner, 2012; Schwamborn, Thillmann, Leopold, Sumfleth, & Leutner, 2010) and partly 

with our Study I (Chapter 2). Results show that learning outcomes for content students 

learned from paper-based material were significantly higher than learning outcomes for 

content learned from computer-based material. This partly supports findings from Study I 

(Chapter 2) and findings from Schwamborn, Mayer et al. (2010), Schmeck et al. (2010) as 

well as from Leutner and Schmeck (2014): Although the generative drawing principle was 

extendable to computer-based learning Study I (Chapter 2), in comparison the effect sizes of 

paper-based generative drawing on learning outcome were higher than the effect sizes of 

computer-based generative drawing on learning outcome (for an overview see Leutner & 

Schmeck, 2014). 

At first sight controversially, we found that students rated their perceived difficulty 

higher (as measured by the perceived difficulty item of Kalyuga et al., 1999) when they 

learned with the paper-based material than with the computer-based material, which seems to 

contradict the assumption that computer-based learning environments are still a bit too 

intrusive when using the learner-generated drawing strategy (Study I, Chapter 2). However, 

the combination of the two results (i.e., learning outcomes for content students learned from 

paper-based material were significantly higher than learning outcomes for content learned 

from computer-based material and that students rated their perceived difficulty higher when 

they learned with the paper-based than with the computer-based material) contradicts the 

Cognitive Theory of Multimedia Learning (CTML; Mayer, 2009) and the Cognitive Load 

Theory (CLT; Chandler & Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011). According to 

these theories, perceived difficulty is believed to reflect extraneous cognitive load. Although 

measures that were used here cannot measure cognitive overload, comparing cognitive load 

for the two different media, according to the CTML (Mayer, 2009) and CLT (Chandler & 
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Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011) we expected that, when students perceive 

less difficulty working with the computer-based learning material they should have enough 

space within their working memory for generative processing. Thus, computer-based learning 

material was expected to be the best suited media for learning. Additionally, when students 

rate their perceived difficulty higher in paper-based learning environments, it was expected 

that students score lower on learning outcome of content learned in this environment. 

However, this was not what we found in this study. For the CTML (Mayer, 2009) and CLT 

(Chandler & Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011) this means that their 

assumption that more perceived difficulty leads to less learning outcome must be questioned 

when comparing generative drawing in computer-based and paper-based learning 

environments. 

Additionally, our results again replicated the prognostic drawing principle in paper-

based as well as in computer-based learning environments and therefore results are again in 

line with the Theory of Generative Drawing (van Meter, 2001, 2005; van Meter & Firetto, 

2013), which states that students who engage effectively in generating visualizations tend to 

build up a more coherent idea of the learning content and therefore construct meaningful 

learning outcomes. The accuracy of the drawings reflects the quality of the generative process 

during learning and consequently is related to learning outcome scores. However, it does not 

seem to matter whether students learn with paper-based or with computer-based material and 

how students generate the drawings, by hand or via drag-and-drop. 

Finally, underlying aspects of students’ perceived difficulty of drawing were 

investigated. Thus, our study additionally fills a gap in the Cognitive Load Theory (Chandler 

& Sweller, 1991; Sweller, Ayres, & Kalyuga, 2011) about specific difficulties students can 

perceive within learning environments using generative drawing. With our Medium 

Preference Questionnaire we tried to provide a deeper insight into perceived difficulty, i.e. we 

found it important to develop a questionnaire that differentiates possible difficulties students 

might try to express when they are asked how difficult a learning unit was for them. 

Additionally, the results concerning the underlying aspects of perceived difficulty provide 

information that can partly explain our contradictory results: less perceived difficulty when 

working with the computer-based learning material but lower learning outcome scores, at the 

same time. 

Looking at the specific difficulties students encountered, derived from the results of 

our Medium Preference Questionnaire, it seems that students perceived challenges that can 

lead to different manifestations of cognitive load (cf. DeLeeuw & Mayer, 2008). Concerning 
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results about enthusiasm from the Medium Preference Questionnaire, students significantly 

prefer to work with the computer in the future (Item 13) and have more fun when generating 

the drawings computer-based (Item 1). Because, students have more fun and prefer to work 

with the computer in the future, it must be assumed that students are more motivated 

(motivation is an “activating alignment of the current conduct of life to a positively evaluated 

target state”, Rheinberg, 2004, p. 17) when learning computer-based instead of paper-based. 

Additionally because, there is a positive correlation between motivation and learning 

(Rheinberg & Fries, 1998), a consequence can be an increased demand of computer-based 

learning from students as well as from teachers.   

Looking at the difficulties students had with the mechanics of drawing (based on the 

Medium Preference Questionnaire), students reported that it was significantly easier for them 

to generate drawings in general (Item 2) on the computer than on paper. Additionally, 

students reported that it was significantly easier for them on the computer to choose the 

drawing elements to draw the pictures (Item 5). However, for using the generative drawing 

strategy in practice it is important to note that, according to student data, orienting the given 

drawing elements was easier with paper-based material than on the computer (Item 7). 

Concerning metacognition and learning challenges, students indicated a significant 

preference for learning with computer-based materials for two of the five items. Students 

stated that it was significantly easier for them to correct their drawings (Item 8) and actually 

improve more of their drawings (Item 12) when they learned with the computer-based 

material. On the one hand, these results show that students seem to perceive less difficulty in 

the computer-based learning environment, leaving more cognitive resources available for 

germane cognitive load/generative processing, fostering meaningful learning. On the other 

hand, whether correcting (and improving) is easier in the computer-based environment, there 

is a risk of students not engaging in enough cognitive as well as metacognitve activities. To 

put it simply, because it is easy for students to change and correct their drawings, it is possible 

that they do not bother to think enough before drawing, which might lead to not building a 

sufficient mental model and, as a consequence, lower learning outcome. Results of the 

ANOVA concerning learning outcome support this, by showing that students learned less 

when learning with the computer-based material. Clearly, a higher learning outcome depends 

on how well a learner understands the information, thus here it seems that students understand 

more of the science content when learning with the paper-based materials. 

Looking once more at the results of the items asking about metacognition and 

learning, students indicated twice (Item 8 and Item 12) that they significantly prefer the 
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computer-based material over and above the paper-based material. However, these two items 

could, on the one hand, be categorized as difficulty with the mechanics of the drawing (thus a 

form of extraneous cognitive load) and, on the other hand, as learning-based load (a form of 

germane cognitive load; Sweller et al, 1998). Thus, the two itmes also indirectly retrieve 

germane load, which is needed for successful learning outcomes.  

Nevertheless, with the strategy of generative drawing, our aim is to foster processes 

like metacognition (and, as a result, generative processing respectively germane cognitive 

load) to achieve deep understanding (Mayer, 2009) as well as learning. Additionally, 

generative theories of learning posit that people learn better when they engage in generative 

processing during learning, that is, cognitive activities aimed at making sense of the material 

(Mayer, 2009). In this study, results concerning students’ learning outcome indicated that 

there seems to be more generative processing, respectively germane cognitive load within 

paper-based learning environments (students using paper-based material).  

However, some of the results could explain the mismatch between the higher 

perceived difficulty and the higher score on learning outcome for the paper-based learning 

environment. Students have a significantly higher motivation when learning on the computer 

and it is easier for them to generate and correct respectively improve the drawings there, and 

thus they are supposed to have less extraneous load in the computer-based learning 

environment. 

In summary, when comparing generative drawing within paper-based and computer-

based learning directly, using the learning strategy within the paper-based environment results 

in higher learning outcome. Thus, regarding the Theory of Generative Drawing (van Meter, 

2001, 2005; van Meter & Firetto, 2013) it seems that the generative drawing principle 

(Leutner & Schmeck, 2014; Schwamborn, Mayer et al., 2010) is more effective using paper-

based drawing. However, students perceived learning in the computer-based environement as 

less difficult, which according to the Cognitive Load Theory (Chandler & Sweller, 1991; 

Sweller, Ayres, & Kalyuga, 2011) means that there should be more cognitive resources 

available for generative processing, thus meaningful learning respectively a higher learning 

outcome. Because we found exactly the opposite here, the CLT must be reconsidered when 

comparing computer-based and paper-based drawing. However, the results concerning our 

Medium Preference Questionnaire provide information that can partly explain the 

contradictory results. One possible explanation for the contradictory result could be that 

students, due to the perceived simplicity of the computer-based environment do not engage in 

enough cognitive and metacognitive processing. Additionally, the results give pointers to 
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possible shortcomings of the usage of only one item by Kalyuga et al. (1999), to ask for 

extraneaous coginitve load. 

Practical Contributions  

All results concerning the underlying aspects of perceived difficulty and medium 

preference give important indications on how to organize and design learning environments 

for optimizing the learning strategy of generative drawing. 

An important derived practical contribution is that the drag-and-drop mechanics seem 

to be easier to handle than drawing by hand. In other words, it was easier for students to 

generate the drawings in general and to choose the elements to draw the picture, as well as to 

correct and improve their drawings when using drag-and-drop. However, whether these 

processes are easier, besides the positive effect of decreasing extraneous processing, there is a 

risk that learners do not engage in enough cognitive and metacognitive processes: They might 

draw carelessly without contemplating and planning before beginning to draw. The resulting 

learning might be relatively shallow. Another practical contribution is that orienting the given 

drawing elements seems to be more difficult with drag-and-drop than with paper-based 

material, which was likely a problem of this specific computer-based environment.  

Thus, in addition with our significant finding that students have higher learning 

outcome scores respectively learn more when they learn from a science text using the 

generative drawing strategy on paper we propose the use of paper-based text combined with 

on-screen generative drawing with mechanics that mimic drawing by hand and at the same 

time give the opportunity to eliminate parts of the drawing quickly and easily. This would be 

possible, for example, with a tablet computer. Using a tablet computer, can on the one hand 

meet demands of students and teachers concerning more computer-based learning in real 

school life wich are likely to arise for example because of students’ higher motivation to work 

with computer-based material. On the other hand, drawing using a tablet computer is similar 

to drawing using a pencil, which in general is a familiar and therefore a more embodied 

learning procedure for students, whereas drawing using drag-and-drop by means of a track 

pad or mouse of course is not the same as drawing by hand and using a pencil. Overall, it 

would be recommendable to combine benefits of both environments, so that disadvantages of 

each are minimized, causing less extraneous processing and leaving more cognitive resources 

available for generative processing, fostering meaningful learning (Mayer, 2009; Sweller, 

1999, 2005). 
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Limitations and Future Directions 

The present study was limited in some areas that should be investigated in future 

studies.  

Although we did find a significant effect of the learning medium on the learning 

outcome, it is the first study in which the comparison between generative drawing with paper-

based and computer-based approaches is addressed directly. Thus, more studies must be 

conducted with this design to replicate the results, especially those concerning the 

inconsistent results of learning outcome and cognitive load here in the form of perceived 

difficulty.  

Another possible explanation for the inconsistent findings concerning the learning 

outcome and perceived difficulty must be investigated in future studies, namely generative 

processing underutilization (Mayer, 2009). According to Mayer (2009), generative processing 

underutilization could occur when learning material is presented in an unattractive way, for 

example when it is boring and therefore the learner does not put much effort into trying to 

understand the material. However, it is conceivable that generative processing 

underutilization can also take place when the learning material is not demanding enough. 

Perhaps this happened in the computer-based learning environment when it was easier for the 

students to generate drawings and also to improve and delete all or parts of the drawing. This 

could be a situation in which students have cognitive capacity available but perhaps they do 

not choose to use it for making sense of the material (Mayer, 2009). 

Additionally, we measured cognitive load by means of only one item, namely the 

perceived difficulty item of Kalyuga et al. (1999). Future studies should measure extraneous 

cognitive load by means of the item of Kalyuga et al. (1999) and additionally the item of Paas 

(1992), which asks about invested mental effort. Furthermore, in future studies the cognitive 

load items should also be presented paper-based as well as computer-based. Students should 

answer the items in a paper-based booklet or on the computer screen depending on the 

medium they worked with in the previous paragraph. However, both the item we used and the 

item of Paas (1992) are subjective measurements, which could be criticized.  

In consideration of the results concerning the Medium Preference Questionnaire, it is 

important to examine the reliability of the questionnaire in more studies, under consistent 

conditions. Additioanlly, regarding Item 9 and 10, which only showed a tendency (not 

significant and therefore not discussed in the results section) of students preferring the paper-

based learning environment, it would be interesting to have more results, because these items 
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are supposed to be able to explain the higher learning outcome in the paper-based 

environment. 

Moreover, our study did not include a control group that only read the chemistry 

science text and did not generate drawings. Having a control group would give the chance to 

replicate the effect of generating drawings on the learning outcome in comparison to learning 

by just reading the science text. Additionally, our study was conducted with only one science 

content, and results can therefore not be generalized to other science contents. 

Overall, future research is needed to determine whether the effects of the generative 

drawing principle can be strengthened by a combined computer-based and paper-based 

learning environment, using drawing mechanics that are more natural for students. The hope 

would be that this would minimize extraneous processing but also force germane load, thus 

generative processing, by being not too easy in terms of improving and deleting the drawings. 

In particular, it would be useful to incorporate a tablet computer in the learning environment, 

which would allow students to use a pen but still work with a computer as the medium. 

Additionally, the science content should be presented as a paper-based text, to which students 

are used to, due to the usual use of school books and worksheets.  
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4 Joint Discussion 
 

In view of the fact that students have problems with the cognitively highly demanding 

processes of text comprehension when reading complex and difficult expository texts 

(Naumann, Artelt, Schneider, & Stanat, 2010), particularly when learning scientific concepts 

(Driver, Leach, Scott, & Wood-Robinson, 1994), the present dissertation aims to further 

investigate the effect of the generative drawing strategy on learning outcome from science 

text, thereby focusing on computer-based generative drawing. Prior research indicates that an 

effective alternative to purely learning from text is to use multimedia presentation, in which 

students learn from both text and pictures (Mayer, 2009; Schnotz, 2005; Schnotz & Bannert, 

1999). Learning with multimedia presentations has been proven to be effective in paper-based 

learning environments (e.g., Mayer, 1989; Mayer & Anderson, 1991, 1992; Mayer & Gallini, 

1990; Moreno & Mayer, 1999; Plass, Chun, Mayer, & Leutner, 1998; Schwamborn, 

Thillmann, Leopold, Sumfleth, & Leutner, 2010) as well as in computer-based learning 

environments (e.g., Brünken, Steinbacher, Schnotz, & Leutner 2001; Mayer & Moreno, 2002; 

Schmidt-Weigand, 2006; Schwamborn, Thillmann, Opfermann, & Leutner, 2011). Another 

approach to foster students’ text comprehension is the generative drawing strategy (van Meter 

& Firetto, 2013; van Meter & Garner, 2005), which asks students to generate drawings as they 

read text. Studies concerning generative drawing on paper showed that it enhances students’ 

learning from text (Leopold & Leutner, 2012; Schmeck, Mayer, Opfermann, Pfeiffer, & 

Leutner, 2014; Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010; Schwamborn, 

Thillmann et al., 2010; van Meter & Garner, 2005). However, research results on the 

effectiveness of computer-based generative drawing are very rare with one study, which did 

not show positive effects on text comprehension (Schwamborn et al., 2011). To further 

investigate whether using computer-based generative drawing has a positive effect on 

learning outcome concerning science text (for the purpose of a replication and an extension of 

the existing state of research) and to investigate which medium is better to learn with, we 

conducted two studies. These studies systematically analyzed whether the generative drawing 

principle could be extended to computer-based learning (applying an adapted version of the 

learning material taken from Schwamborn et al., 2011; and Schwamborn, Opfermann, 

Pfeiffer, Sandmann, & Leutner, 2012). Put simply, we investigated if drawing while reading a 

scientific text on a computer screen enhances students’ learning outcome. Finally we 

examined which medium is better to learn with when they are compared directly. 
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In Study I of this thesis (Chapter 2) we tested whether the generative drawing principle 

(i.e., creating drawings while reading a scientific text causes generative processing that leads 

to better learning outcomes) and the prognostic drawing principle (i.e., the accuracy of the 

generated pictures correlates positively with the learning outcome) can be applied to 

computer-based learning. Students read two onscreen science texts and were either instructed 

to learn with the text and an instructor-provided picture, or were instructed to learn with the 

text and generate drawings concerning the text content on their own, or both, or neither (the 

control group), followed by posttests of transfer, retention, and drawing as measures of 

learning outcomes. The results for both lessons combined were consistent with the generative 

drawing principle (Schwamborn, Mayer et al., 2010): Students who were instructed to 

generate drawings during learning within a computer-based learning environment scored 

higher on learning outcome tests. In addition, results provide strong and consistent support for 

the prognostic drawing principle (Schwamborn, Mayer et al., 2010). Results of Study I show, 

for the first time, that the generative drawing principle can be extended to computer-based 

learning environments. Additionally, the results provide strong and consistent support for the 

prognostic drawing principle. Thus, the results suggest that the generative drawing principle 

as well as the prognostic drawing principle can be extended to computer-based learning 

environments, when extraneous processing caused by the specific mechanics of generating 

computer-based drawings is reduced. However, group differences were found concerning the 

perceived difficulty (for the first time measured online), suggesting that generating drawings 

was perceived as adding difficulty to learning tasks. Adding difficulty ratings as a covariate 

strengthened the finding of a positive effect of computer-based drawing on learning, by 

showing additional positive effects of generative drawing on retention posttests and larger 

effect size of the positive effects on learning outcome already found in the previous analysis. 

In Study II of this thesis (Chapter 3) we examined the contrast between drawing by 

hand versus drawing by computer to further investigate the effect of generative drawing in 

different learning environments and in different media. Students in Study II were instructed to 

read a 6-paragraph science text, in which paragraphs were alternately presented on paper 

(with instructions to create a drawing by hand) and on a computer screen (with instructions to 

use a drag-and-drop interface to create a drawing). Additionally, we measured perceived 

difficulty after every paragraph, thus online. Results show that students learn more when they 

learn from a science text using the generative drawing strategy on paper (and drawing by 

hand) than on a computer screen (and drawing via drag-and-drop). Thus, there are differences 

in the effectiveness of computer-based and paper-based learning material. Results also 
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revealed that students reported more perceived difficulty when working with a paragraph in 

the paper-based learning environment than in the computer-based learning environment. 

Thus, results show that the presentation medium has an effect on perceived difficulty. On a 

subsequent questionnaire, students generally reported fewer difficulties when generating 

drawings by drag-and-drop on the computer. Students reported that they would rather work 

with the computer in the future, and have more fun when generating the drawings computer-

based. Additionally, students reported that it was significantly easier for them to generate 

drawings in general and to choose the drawing elements to draw the pictures on the computer 

than on paper. However, orienting the given drawing elements was in contrast easier with 

paper-based material than on the computer. Looking at metacognition and learning 

challenges, students stated that it was significantly easier for them to correct their drawings 

and actually improve more of their drawings when they learned with the computer-based 

material. On the one hand, these results show that students seem to perceive less extraneous 

load in the computer-based learning environment, which should leave more cognitive 

resources available for germane cognitive load respectively generative processing, fostering 

meaningful learning. On the other hand, that correcting (and improving) is easier in the 

computer-based environment, creates a risk of students not engaging in enough cognitive as 

well as metacognitve activities, which could explain the mismatch between the higher 

perceived difficulty and the higher score on learning outcome for the paper-based learning 

environment. Finally, the prognostic drawing principle was supported in paper-based as well 

as in computer-based learning environments. 

4.1 Major Results 

We proposed several research questions. Based on our results, we can answer these 

questions as follows:  

1) Do people learn better from a science text when they are asked to generate 

computer-based drawings representing the main ideas of the text? Thus, is the 

generative drawing principle (i.e., creating drawings	while reading a scientific text 

causes generative processing that leads to better learning outcomes) extendable to 

computer-based learning? 

The results of Study I (Chapter 2) revealed that students who were instructed to 

generate computer-based drawings while reading a chemistry text on the computer 

screen scored higher on posttests of transfer and drawing, but not on retention, as 

compared to students who did not draw during learning. When students read a 

computer-based biology text instead and were instructed to generate computer-based 
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drawings they scored higher on posttest scores on drawing but not on transfer or 

retention. Overall, there is some evidence for the generative drawing principle in 

computer-based learning environments, because results of Study I also revealed that 

students who generated computer-based drawings while reading a science text scored 

higher on posttest scores on transfer and drawing but not on retention, for the 

chemistry and biology science texts combined. 

2) Can the prognostic drawing principle (i.e., the accuracy of the generated drawings 

correlates positively with the learning outcome)	(a) be generalized to computer-

based learning, and (b) is the prognostic drawing principle independent of the 

medium (paper vs. computer) students learn with? 

Study I and Study II provided valuable results to answer these questions:  

(a) Study I showed that students’ scores on drawing accuracy (the proportion correct 

in computer-based drawings) produced during chemistry learning correlated 

significantly with each of the three posttest measures for the chemistry science 

text. The same applies to accuracy scores of computer-based drawings that 

students produced during learning with the biology science text and the 

corresponding three posttest measures for the biology science text. Additionally, 

findings of Study I showed that students who were classified as high-accuracy 

drawers (by means of a median split) concerning both the chemistry drawings and 

biology drawings significantly outperformed low-accuracy drawers on each of the 

posttest scores for the respectively content. The primary evidence in support of 

the prognostic drawing effect within computer-based learning is the positive 

relation between the quality of students’ computer-based generated drawings 

during learning and their performance on the posttests. In summary it can be said 

that these results indicate that the prognostic drawing principle can be generalized 

to computer-based learning, because students who are able to use the learning 

strategy of computer-based generative drawing successfully (i.e., producing high 

quality drawings) gain better text comprehension and therefore benefit more from 

this learning strategy.  

(b) Study II further tested whether the quality of computer-based and paper-based 

drawings is related to posttest performance, as suggested by Study I and results 

from Schwamborn, Mayer, and their colleagues (2010), and whether the 

prognostic drawing principle is independent of the medium. Results indicate that 

the drawing accuracy score for computer-based drawings (produced during 
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computer-based learning) as well as for paper-based drawings (produced during 

paper-based learning) both correlate significantly with posttest scores related to 

computer-based paragraphs as well as to paper-based paragraphs. Thus, the 

quality of computer-based drawings and paper-based drawings produced during 

learning (on the computer or on paper, respectively) are both positively related to 

posttest scores. Overall, results indicate that students who are able to use the 

learning strategy of generative drawing successfully (i.e., producing high quality 

drawings) gain better text comprehension and therefore benefit more from this 

learning strategy, which is true for both computer-based and paper-based drawing. 

Thus, the prognostic drawing principle is independent of the medium students 

learn with. 

3) Do students report higher cognitive load when they are instructed to generate 

drawings while reading a science text using a computer-based interface (a) and is 

there an influence of cognitive load on the effect of generative drawing (b)? 

(a) Cognitive load in Study I was measured online (i.e., immediately after learning 

with each science text paragraph) by means of two items asking students about 

their mental effort and about their perceived difficulty during learning. Results of 

this study show that students’ perceived difficulty during learning was 

significantly higher within both science lessons for the generation groups than for 

the groups that did not generate drawings. Overall, these results suggest that 

generating drawings was perceived as adding difficulty to the learning task and 

this may be an indication of increased cognitive load during learning. 

(b) Additionally, in Study I it becomes apparent that adding the perceived difficulty 

rating as a covariate preserved and strengthened the conclusion that computer-

based drawing has positive effects on learning outcomes. Besides the same pattern 

of significant effects with perceived difficulty as a covariate, additional effects of 

generating drawings on retention were found. Thus, adding the difficulty rating 

into the statistical model served to preserve and strengthen the previous conclusion 

(showing larger effect sizes) that computer-based drawing has positive effects on 

learning outcomes. 

4) Is the multimedia effect (i.e., that students learn better when they receive 

instructor-provided illustrations while reading a science text) replicable (a) and is 

there a specific effect of the combination of both learning with instructor-provided 

illustrations and generative drawing (b)? 
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(a) As Study I was partly a replication of a study by Schwamborn et al. (2011) we also 

looked at whether there was evidence for the multimedia effect. The results show 

small and inconsistent effect sizes on retention and transfer posttests. Concerning 

the chemistry text we even found a negative main effect of presenting illustrations 

on the drawing scores, but when the two science lessons were combined, there was 

a positive main effect of giving illustrations while reading on the drawing scores. 

(b) Additionally, because there were no significant interaction effects of generative 

drawing and provided illustrations in Study I, the generation of drawings is not 

moderated by the presentation of illustrations as well as vice versa. Thus, the 

multimedia effect is not moderated by the generation of drawings. 

5) Do students need more study time when they are asked to generate drawings while 

reading a science text on the computer? 

In Study I the study time was self-paced by the students and was measured by means 

of timestamps. It was therefore important for us to focus on differences in study time 

between the groups who generated drawings and those who did not. Results revealed 

that students’ study time was significantly higher for the generation groups than for 

the groups that did not generate drawings, which is true for both science lessons. 

Asking students to generate drawings added substantially to study time, because of 

cognitive and metacognitive, as well as mechanical processing during suitable 

drawing. However, looking at the learning outcome of the groups who generated 

drawings as well as on their study time, it seems that a sufficient study time can 

counteract the higher cognitive load caused by the drawing mechanics. Thus, students’ 

averaged study time showed self-generated drawing as to be a relative efficient 

learning strategy, meaning that althoug it costs more study time it pays off regarding 

the learning outcome.  

The following questions are foremost answered by Study II, which was the first study to 

directly compare the effects of paper-based and computer-based generative drawing. 

6) Do students learn better from science texts when they generate paper-based or 

computer-based drawings? 

Study II focused on the comparison of the effectiveness of paper-based versus 

computer-based generative drawing on learning outcome, to determine whether 

students learn better when learning from science texts on paper or on the computer. 

Results showed a significant effect of the presentation medium on the learning 
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outcome. Descriptive statistics showed hat students learned more when they read and 

generated drawings on paper than on a computer screen. 

7) Do students report higher perceived difficulty when they are asked to generate 

paper-based or computer-based drawings while learning from science text? 

Study II further focused on students’ cognitive load, particularly on perceived 

difficulty, again measured online (i.e., measured immediately after learning with a 

science text paragraph). In this study we wanted to determine whether students report 

more difficulties when they generated paper-based or computer-based drawings. 

Results indicated that perceived difficulty was significantly affected by the 

presentation medium. The descriptive statistics showed that students reported less 

perceived difficulty when working with the computer-based learning environment 

than with the paper-based learning environment. 

8) When do students report higher enthusiasm, difficulties with the mechanics of 

drawing, and challenges in metacognition and learning, when generating paper-

based or when generating computer-based drawings?  

To determine which factors and underlying aspects of the computer-based learning 

environment compared to the paper-based learning environment cause students’ 

perception of difficulty, we developed a Medium Preference Questionnaire. 

Concerning enthusiasm, students reported to have significantly more fun to work with 

the computer. Additionally, students significantly preferred the computer as medium 

to work with in the future. Results concerning the issue of difficulties with the 

drawing mechanics showed that students say it was easier to generate drawings in the 

computer-based learning environment; thus there was a significant preference for the 

computer. In addition, students significantly preferred the computer as medium 

compared to paper choosing relevant elements from the toolbar. However, concerning 

the orientation of the given drawing elements, students indicated a significant 

preference for the paper-based material. Finally, results for the third issue, 

metacognition and learning challenges, showed that it was easier for students to 

correct their drawings and that they actually improved more of their drawings in the 

computer-based learning environment. Overall, students perceived it less difficult to 

generate drawings on the computer than on paper. 	

4.2 Empirical and Theoretical Implications 

Some overall theoretical and empirical implications concerning (computer-based) 

generative drawing can be derived from the studies of this thesis and are discussed in the 
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following.  

The first main contribution of this thesis is that the generative drawing effect extends 

to a computer-based learning environment, because students learned better when they 

generated computer-based drawings while reading onscreen science texts than students who 

did not. This result is consistent with generative theories of learning (Mayer, 2009), which 

posit that people learn better when they engage in generative processing during learning. 

Generating computer-based drawings while reading a scientific text is intended to lead to an 

integration of verbal information, visual information, and prior knowledge. This generative 

cognitive processing leads to deeper understanding, according to the CTML (Mayer, 2009) 

and CLT (Sweller, Ayres, & Kalyuga, 2011). Overall, results of Study I show that asking 

learners to generate drawings of scientific texts using a computer-based tool fosters generative 

processing and is thus in line with previous studies (Schmeck et al., 2014; Schwamborn, 

Mayer, et al., 2010; Schwamborn, Thillmann, et al., 2010; van Meter & Garner, 2005). These 

studies showed the generative drawing effect when students are given instructional support 

while they draw by hand on paper. Further, the results of Study I provide an indication that 

the instructional support given in this study during the drawing process within the computer-

based learning environment helped fostering generative processing, while at the same time it 

minimized extraneous processing caused by the mechanics of drawing.  

The second main contribution is that there is a difference in students’ learning 

outcome depending on whether students read and generate drawings on paper or on a 

computer screen. Results show that students learn more when they learn from a science text 

using the generative drawing strategy on paper (and drawing by hand) than on a computer 

screen (and drawing via drag-and-drop). Thus, there are differences in the effectiveness of 

computer-based and paper-based learning material. This result is consistent with assumptions 

derived from the generative drawing principle (Leutner & Schmeck, 2014; Schwamborn, 

Mayer, et al., 2010) and the first study of this thesis (see Study I, Chapter 2). Additionally, 

results concerning students’ learning outcome are consistent with paper-based studies of 

generative drawing (Leopold & Leutner, 2012; Schmeck, 2010; Schwamborn, Mayer, 

Thillmann, Leopold, & Leutner, 2012; Schwamborn, Thillmann, Leopold, Sumfleth, & 

Leutner, 2010), as well as with findings from Leutner and Schmeck (2014) and partly with 

our Study I (Chapter 2). Although the generative drawing principle was extendable to 

computer-based learning in the first study of this thesis, the effect sizes of paper-based 

generative drawing on learning outcome were higher than the effect sizes of computer-based 

generative drawing on learning outcome. Thus, we carefully conclude that it does seem to 
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matter which medium is used for the strategy of generative drawing. 

The third main empirical contribution of this thesis is that the prognostic drawing 

principle can be generalized to computer-based learning, because students who produced 

high-accuracy drawings on a computer while reading science texts scored higher on learning 

outcome posttests than students who produced low-accuracy computer-based drawings (Study 

I, Chapter 2). Additionally, Study II showed that the drawing accuracy score for computer-

based drawings (produced during computer-based learning) as well as for paper-based 

drawings (produced during paper-based learning) both correlate significantly with posttest 

scores related to computer-based paragraphs as well as to paper-based paragraphs. This is in 

line with the prognostic drawing principle coined and shown by previous research. The 

prognostic drawing principle proposed by Schwamborn, Mayer, et al. (2010) is based on the 

theory of generative drawing (van Meter, 2001; van Meter & Firetto, 2013; van Meter & 

Garner, 2005). This theory states that students who generate effective drawings, meaning 

drawings that are accurate regarding the learning content, build up a more coherent idea of the 

learning content and therefore construct meaningful learning outcomes. Besides generalizing 

the prognostic drawing principle to computer-based drawings, instead of replicating the 

prognostic drawing principle for paper-based drawing only, it is shown that the prognostic 

drawing principle seems to be independent of the medium students learn with. 

Although our form of the computer-based drawing generation using the revised 

learning material from Schwamborn et al. (2011) and Schwamborn, Opfermann, Pfeiffer, 

Sandmann and Leutner (2012) appears to be successful at minimizing extraneous processing, 

as shown by the positive effect of computer-based drawing on the learning outcome in Study 

I, results also show that students reported higher cognitive load when they were asked to 

generate drawings. However, generative cognitive processes can be impeded by extraneous 

cognitive load caused by the instructional design, (e.g., the mechanics of generating 

drawings). When students perceive too much cognitive load, they usually have insufficient 

cognitive resources available for generative processing (Mayer, 2009). In Study I we found 

group differences concerning the perceived difficulty: Students in the generation groups 

reported perceiving higher difficulty, which is in line with studies of Leutner, Leopold, and 

Sumfleth (2009) and Schwamborn et al. (2011). Adding perceived difficulty ratings as a 

covariate (to statistically control for the effects of perceived difficulty on learning), served to 

preserve and strengthen the conclusion that computer-based drawing has positive effects on 

learning, by showing additional effects of generating drawings and higher effect sizes for the 

already shown effects. In other words, there are still differences between the groups after 
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clearing for the covariate (here perceived difficulty) and results can not be ascribed to the 

covariate, anymore. 

Contrary to the first computer-based study of Schwamborn et al. (2011), we found 

computer-based drawing to be an effective learning strategy (Study I). Further, our study 

revealed smaller effect sizes (for an overview see Leutner & Schmeck, 2014) concerning 

computer-based drawing on learning outcome (Study I) than studies using paper-based 

learning material (cf. Schmeck, 2010; Schwamborn, Mayer, et al., 2010; Schwamborn 

Thillmann, et al., 2010). However, computer-based drawing (see Study I and Schwamborn et 

al., 2011) as well as paper-based drawing (Schmeck et al., 2014; for an overview see Leutner 

& Schmeck, 2014) seem to increase students’ cognitive load. Hence, in Study II we further 

investigated these findings by comparing computer-based and paper-based generative 

drawing directly.  

Results of Study II demonstrate, on the one hand, that students reported perceiving 

significantly less difficulty when learning in the computer-based learning environment than in 

the paper-based learning environment. On the other hand, however, learning outcome tests 

showed significant differences between computer-based and paper-based generative drawing. 

As already mentioned students learned more when they read and generated drawings on paper 

than on a computer screen. The first result partly contradicts the assumption (Study I) that 

computer-based learning environments are still a bit too intrusive when using generative 

drawing. This assumption resulted from the finding that despite generating drawings is a 

successful learning strategy in computer-based learning environments students who generated 

visualizations reported more perceived difficulty than students who did not. Although the 

second result is partly in line with findings of our Study I and with the studies of Schmeck 

(2010), Schwamborn, Mayer, et al. (2010), and Schwamborn, Thillmann, et al. (2010), it 

seems to be inconsistent with the first result. As we combine these two results, it is obvious 

that they are not in line with the Cognitive Theory of Multimedia Learning (CTML; Mayer, 

2009) and the Cognitive Load Theory (CLT; Chandler & Sweller, 1991; Sweller et al., 2011), 

which state that extraneous load, here measured by perceived difficulty, decreases cognitive 

capacity, which can lead to cognitive overload not leaving enough space for generative 

processing and thus learning. Surprisingly we found that students using paper-based 

generative learning score higher on learning outcome even though they reported to perceive 

more difficulty within this learning environment. 

However, Study II investigated underlying aspects of students’ perceived difficulty of 

drawing (using a Medium Preference Questionnaire), which can partly explain the 
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contradictory results. Results of the Medium Preference Questionnaire (Study II) show that 

students reported to have significantly more fun to work with the computer and to prefer the 

computer as medium to work with in the future. Concerning the issue of difficulties with the 

drawing mechanics, results showed that students perceived generating drawings as well as 

choosing relevant elements from the toolbar in the computer-based learning environment 

easier. However, concerning the orientation of the given drawing elements, students indicated 

a significant preference for the paper-based material. Results for the third issue, 

metacognition and learning challenges, showed that it was easier for students to correct their 

drawings and that they actually improved more of their drawings in the computer-based 

learning environment. Thus, overall students stated that they perceived less difficulties within 

the computer-based learning environment (investigated by the Medium Preference 

Questionnaire), which supports the finding that students rated to perceive significantly less 

difficulty when learning in the computer-based learning environment than in the paper-based 

learning environment.  

However, looking at the students’ statements that it was easier to correct and improve 

their drawings in the computer-based environment, there is a risk of students not engaging in 

enough cognitive as well as metacognitve activities, i.e., students do not bother to think 

enough before drawing, because it is easy to delete and change the drawing elements, which 

might lead to not building a sufficient mental model and, as a consequence, fewer learning 

outcome. Besides being categorized as cognitive and metacognitve activities within our 

Medium Preference Questionnaire these two items could also be categorized as challenges 

with the mechanics of the drawing, thus as challenges with the instructional design of the 

learning environment that are related to extraneous cognitive load.   

Some of these results could partly explain the mismatch between the higher perceived 

difficulty and the higher score on learning outcome for the paper-based learning environment. 

Nevertheless, with the strategy of generative drawing, our aim is to foster processes like 

metacognition (and as a result generative processing) to achieve deep understanding (Mayer, 

2009) as well as learning. Additionally, generative theories of learning posit that people learn 

better when they engage in generative processing during learning, that is, cognitive activities 

aimed at making sense of the material (Mayer, 2009). In this study results according students’ 

learning outcome showed that generative processing seems to be stronger for the paper-based 

material.  

All results concerning the underlying aspects of difficulties and medium preference 

give important indications on how to organize and design learning environments for 
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optimizing the learning strategy of generative drawing. In the field we want to have an 

effective learning medium that minimizes extraneous cognitive load while promoting 

germane cognitive load. Practical implications of the mentioned findings are reviewed in the 

next section. 

4.3 Practical Implications 

Several practical implications can be drawn from the two studies of the present thesis. 

First, results provided evidence for a generative drawing principle in computer-based learning 

environments, because we found that students learned better when they generate computer-

based drawings while learning from an onscreen science text than students who did not 

generate drawings. However, in Study I we used a drawing prompt, a drag-and-drop 

mechanism and a pre-training, as support for drawing and to implement the drawing process 

with a method that reduces extraneous processing initiated by the instructional design. Based 

on our results, we recommend using generative drawing during computer-based learning with 

science texts, when drawing is supported in a way that extraneous load is reduced.  

In addition to the generative drawing principle, we propose the prognostic drawing 

principle for computer-based learning. This thesis shows that the accuracy of the drawings 

students generate during learning predicts the quality of learning outcomes. This is true for 

paper-based drawings (Study II) as well as for computer-based drawings (Study I and Study 

II). Based on this, drawing accuracy could be used as formative assessment (Black & Wiliam, 

2009): Teachers and students themselves get prompt feedback concerning the learning 

progress. Using generative drawing puts students in the position to use their drawings to 

monitor what they have understood from the learning information, enabling them to go back 

to the text if necessary. Additionally, teachers could use the accuracy of the drawings to 

adjust their instruction if necessary.  

The extension of the generative drawing principle and the prognostic drawing 

principle to computer-based learning environments is especially important because computers 

gain constantly more attention within school education (Ross, Morrison, & Lowther, 2010).   

Based on the results of Study I and II, it is important to take students’ difficulties and 

preferences for the computer-based or paper-based learning environment into account when 

implementing the generative drawing strategy. When instructing students to draw during 

learning from science text, the aim is to foster generative processing (such as metacognition) 

to achieve better understanding (Mayer, 2009). In Study I we saw that this works within 

computer-based learning environments, but students perceived higher difficulty when 

generating drawings than students who did not. When comparing computer-based and paper-
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based generative drawing directly, there was a significant difference concerning the learning 

outcome, as students learned more when they read and generated drawings on paper than on a 

computer screen. 

Looking at perceived difficulty in general (measured online by the item from 

(Kalyuga, Chandler, & Sweller, 1999) students perceived generating computer-based 

drawings as less difficult than paper-based ones (Study II, Chapter 3), although Study I 

showed that computer-based generation was still too demanding. However, looking at the 

underlying components of students’ perceived difficulty (measured with a Medium Preference 

Questionnaire), we see the results on students’ enthusiasm (closely linked to students’ 

motivation) show students’ preference for the computer. The same applies to the mechanics of 

drawing: Overall, students reported that it was easier for them to generate drawings on the 

computer than on paper, which can partially explain why students perceived less difficulty 

when generating computer-based drawings. Thus these results partly explain the 

inconsistency between higher perceived difficulty and at the same time a higher score on 

learning outcome for the paper-based learning environment. 

Additional results of the Medium Preference Questionnaire give important advice 

about how to organize and design learning environments using the learning strategy of 

generative drawing. For example, people should take into account that although the drag-and-

drop mechanism seems to be easier to handle than drawing by hand, this simultaneously 

increases the risk that students do not engage in enough metacognition, which can result in 

shallower generative processing and less deeper learning. Another specific problem of the 

computer-based learning environment used in our studies was that the orienting of the 

drawing elements was rated as more difficult when it was drag-and-drop. Additionally, this 

shows that drawing using drag-and-drop by means of a track pad or mouse is still not the 

same as using a pencil. However, results show that students have more fun and thus are more 

motivated to work with the computer material, but perform better when learning with the 

paper material. Consequentially, we propose a combination of paper-based text with on-

screen drawing with mechanics that mimics drawing by hand. However, at the same time 

students should be able to see drawing elements and a drawing background, and they should 

have the opportunity to eliminate drawing elements quickly and easily. To combine benefits 

of both media, a tablet computer could be used. It is highly probable that this combination 

causes less extraneous load and at the same time fosters generative processing and thus 

meaningful learning (Mayer, 2009; Sweller, 1999, 2005). 
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4.4 Future Research and Conclusion 

Based on the results of these two studies, future studies should further investigate 

several important aspects. First, our studies found evidence for the positive effect of 

generative drawing on learning outcome and also showed evidence for reinforced cognitive 

and metacognitive processes (see Medium Preference Questionnaire, Study II) in line with the 

Generative Theory of Drawing Construction (GTDC; van Meter & Garner, 2005; van Meter 

& Firetto, 2013). However, because our study was the first study showing this effect using 

computer-based drawing, further replications of this positive effect on learning would be 

important. 

Second, as mentioned in the practical contributions section above, the drawing 

procedure based on drag-and-drop is not the same as using a pencil and thus students are 

probably not as familiar with computer-based drawing as with paper-pencil-based drawing. 

As a consequence, this procedure might be still a bit too intrusive, indicated by higher 

perceived difficulty ratings when generating drawings in Study I and higher learning 

outcomes within paper-based learning environments in Study II. Future work is needed to 

determine if the effects of the generative drawing principle can be strengthened when a 

combination of benefits of both computer-based and paper-based generative drawing is used. 

One particular focus could be to investigate how the usage of a tablet computer would impact 

the effect of generative drawing. Using a tablet computer would allow students to use a 

pencil-like tool but still work within a motivating computer-based environment, and the 

science content could also be presented as a paper-based text simultaneously. If benefits from 

both media are combined (i.e., less perceived difficulty and a higher learning outcome) and a 

more natural form of drawing is used, it is expected that extraneous processing will be 

minimized and students will have more cognitive resources available for deeper learning. 

Third, by showing positive effects of generative drawing in computer-based learning 

environments (mainly Study I) this thesis indicates some efficacy of the drawing prompt (the 

toolbar showing all relevant pictorial elements and the partly pre-drawn background) as 

additional instructional support when learning with self-generated drawing. For a clarification 

of the efficacy of the drawing prompt, further studies should compare generative drawing 

with the drawing prompt, meaning with a variation of both elements of the drawing prompt 

(the toolbar and/or a partly pre-drawn background) and without any type of drawing support. 

Drawing without any type of drawing support (also possible when using a tablet computer) 

could help support students’ creativity. Their creativity was restricted in this thesis, due to the 

provision of the toolbar and the partially drawn background. A greater freedom in drawing, 
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which students have when they work with paper and pencil or on a tablet computer, could, on 

the one hand, become a source of extraneous processing for inexperienced learners. On the 

other hand, it could support their learning. In summary, further research concerning the role 

and the degree of guidance needed for computer-based as well as for paper-based self-

generated drawings would also inform the development of more efficient and supportive 

learning environments. 

Fourth, because students in our Study II who worked with paper-based and computer-

based generative drawing stated that they perceived more difficulty in the paper-based 

environment, more studies should be conducted using the same design to replicate the results 

concerning cognitive load. Additionally, the inconsistent results concerning the higher 

learning outcome in contrast to higher perceived difficulty with paper-based drawing should 

be investigated once again. Thereby, it should also be investigated if generative processing 

underutilization (Mayer, 2009) could be the reason for the contradictory results. In other 

words, generating drawings in the computer-based learning environment may be easier and 

thus students have cognitive capacity available, but they do not choose to use it for making 

sense of the material. 

It is important to mention that, in contrast to previous studies concerning the 

relationship between cognitive load and self-generated drawing (cf. Leutner et al., 2009; 

Schwamborn et al., 2011), in our studies we decided to measure cognitive load online, 

meaning immediately after working with each paragraph (e.g., Opfermann 2008; Paas & van 

Merriënboer, 1994) instead of only once after the whole learning task (e.g., Kühl, Scheiter, 

Gerjets, & Edelmann, 2011; Leutner et al., 2009; Schwamborn et al., 2011). We did this in 

accordance with research regarding the point of time when subjective rating scales for 

cognitive load measurement should be applied (van Gog, Kirschner, Kester, & Paas, 2012) 

and to differentiate the relationship between cognitive load and self-generated drawing more 

detailed (cf. DeLeeuw & Mayer, 2008). In Study II we measured cognitive load by means of 

only one item, namely the perceived difficulty item of Kalyuga et al. (1999), because we were 

especially interested in the extraneous cognitive load related to difficulties students have 

when creating drawings. We also opted to include only one item for the sake of parsimony. 

However, future studies using the same study design as in Study II should measure cognitive 

load by means of the item of Kalyuga et al. (1999) as well as by means of the item of Paas 

(1992), to be able to look at students’ invested mental effort, as well. Extending this research 

is particularly important because, according to Paas, Tuovinen, Tabbers, and van Gerven 

(2003), mental effort refers to the cognitive capacity that is actually allocated to accommodate 
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the demands imposed by the task; thus, it can be considered to reflect the actual cognitive 

load. 

Additionally, extension is important because of findings of DeLeeuw and Mayer 

(2008). Results of their study showed, that mental effort ratings are most sensitive to 

manipulation of intrinsic processing, whereas difficulty ratings were most sensitive to 

indications of germane processing. Most sensitive to manipulation of extraneous processing, 

indeed, seems to be response time measurement, thus an objective measurement. 

Nevertheless, the items we used were self-report and subjective measurements, which can 

provide a useful substitute for some kinds of objective data (cf. Crockett, Schulenberg, & 

Petersen, 1987; Howard, 1994) but could also be criticized regarding assessing cognitive load 

with only single items (e.g., Brünken, Plass, & Leutner, 2003). Future studies should include 

more objective measures and not so heavily rely on self-reported measures as do the present 

studies. For example, different difficulties students have with the mechanics of drawing 

during learning from science text could be assessed through physiological measurement of 

cognitive load such as eye tracking (Van Gog & Jarodzka, 2013) or measuring brain activity 

(Paas, Ayres, & Pachman, 2008). Additionally, simple objective measures such as observer 

ratings of difficulties students have when drawing (e.g., whether students are daydreaming or 

make many corrections of their drawings) or response time could be used in future studies. To 

promote further research of cognitive load within generative drawing, more results of the 

subjective cognitive load measurements are necessary. On the one hand more results of the 

two items of Kaluya et al. (1999) and Paas (1992) are necessary to verify whether participants 

interpret the questions differently, e.g., in terms of extraneous cognitive load or as an overall 

impression of the load (Seufert, Jänen, & Brünken, 2007). On the other hand, more results of 

the Medium Preference Questionaire are necessary to be able to classify the questions 

dependable as extraneous load or germane cognitive load features (DeLeeuw & Mayer, 2008).  

Fifth, although we did find positive effects of computer-based generative drawing on 

the learning outcome and therefore can carefully conclude that our instructional support given 

during the drawing process was successful, we did not find an effect of the order of the 

lessons (see Study I). The order in which the students worked with the science lessons 

(chemistry or biology) did not affect their performance in learning outcome posttests. The 

pretraining does not seem to have an effect on learning, which should be invested in future 

studies. 

Further research using the study design of Study II should include a control group, 

such as in Study I in which the control group only read the science text and did not generate 
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drawings. This would give the opportunity to compare the effect of computer-based as well as 

paper-based generative drawing with the effect of just reading the text and also to be able to 

take account of learning time.  

Additionally, further research including follow-up scores is needed to determine if 

computer-based drawing can improve learning over time. 

Finally, although in Study I one of the learning groups got the science text and 

provided pictures to learn with, we did not find the multimedia effect. Because we found that 

students in the multimedia group did not spend more time in the learning environment than 

students who did not have illustrations, we assume that they did not pay much attention to the 

given pictures, which might be the reason for not finding an effect of the given pictures.  

Conclusion 

Our research aimed to further explore the effects of computer-based generative 

drawing, that is, whether positive learning effects of this strategy can be generalized from 

paper-based to computer-based learning environments. We also investigated whether an 

extension of the prognostic drawing principle to computer-based learning is possible. Finally, 

we compared computer-based and paper-based generative drawing and aimed to investigate 

specific underlying difficulties, challenges, and motivational aspects of both learning 

environments. Results show that the generative drawing principle as well as the prognostic 

drawing principle can be generalized to computer-based learning. Thus, it does matter in 

which medium students work with help of this strategy. However, learning outcome in the 

paper-based learning environment is higher than learning-outcome in the computer-based 

environment. Looking at cognitive load and underlying aspects of the instructional design, we 

found promising starting points for further research as well as for the implementation of 

generative drawing into everyday school life. Based on the results of this thesis the primary 

aim of future research should be the extension of theoretical and empirical embedding of the 

generative drawing strategy. The experiences of students during drawing that are described in 

this thesis should be used to improve learning environments and to derive design principles in 

future research. Finally, benefits of both media should be combined in using a tablet computer 

to generalize our findings to more innovative and user-friendly media. 
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