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Frequently used symbols and abbreviations:

N : {1, 2, . . .}
R : set of real numbers
C : set of complex numbers
i : imaginary unit, i2 = −1

Re(z) : real part a of z = a+ bi ∈ C
arg(z) : the argument of a complex number z

AT : transpose of a matrix A ∈ Rm×n

〈x, y〉 : xTy, for x, y ∈ Rn

1A : indicator function 1A(x) = 1, if x ∈ A; 1A(x) = 0, if x /∈ A
Γ(x) : gamma function for x > 0
Jλ(x) : Bessel function of the first kind
Yλ(x) : Bessel function of the second kind
Kλ(x) : modified Bessel function of the second kind

f(x) ∼ g(x) : lim
x→a

f(x)
g(x) = 1, a ∈ R ∪ {±∞}

f(x) = O(g(x)) : lim sup
x→a

|f(x)|
|g(x)| <∞, a ∈ R ∪ {±∞}

X ∼ µ : X has distribution µ
L= : equality in distribution
L→ : convergence in distribution

Xn
L∼ Yn : Xn

L→ X,Yn
L→ X

Xn = oP (1) : Xn → 0 in probability for n→∞
a.s. : almost surely
i.i.d. : independent, identically distributed

N(µ, σ2) : normal distribution with mean µ and variance σ2

t(ν, µ, σ2) : Student t distribution with degree of freedom ν, location µ and scale σ
t(ν, µ, σ2, β) : Skew Student t distribution with skewness parameter β

RΓ(α, β) : inverse gamma distribution with shape parameter α and scale β
Poi(λ) : Poisson distribution with intensity parameter λ
Exp(λ) : Exponential distribution with rate λ
U[a,b] : Uniform distribution on [a, b]
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Preface

The topic of this thesis goes back to two famous mathematicians. William S. Gosset,
better known by his pseudonym Student (1908), is the origin of the name of the
Student t distribution. Over time, the Student t distribution proved to be extremely
useful in many statistical fields, both in theoretical foundations and applications.

Paul Lévy (1948) studied time-continuous stochastic processes with stationary
and independent increments, a generalization of Brownian motion, which is based on
the normal distribution. These processes, called Lévy processes, have become well
known in stochastics as well as in many financial and physical applications. Any Lévy
process has an underlying infinitely divisible distribution characterizing its behavior.
Since the Student t distribution is infinitely divisible, there exist Lévy processes
having Student t distributed increments, which we call Student-Lévy processes in
this thesis. However, not every marginal of the Student-Lévy process is Student
t distributed, in contrast to Brownian motion, where all marginals are normally
distributed. There exists only one point in time where the Student-Lévy process is
Student t distributed at t = 1. If t 6= 1, the distribution of the Student-Lévy process
has no closed form. This may explain why the time-continuous Student-Lévy process
has received little attention in the literature. Its complicated form in continuous time
makes analytical derivations and numerical computations challenging. In this thesis,
we contribute to the literature by developing new useful statistical techniques to
make the Student-Lévy process accessible. The main goal is to work out an efficient
estimation scheme for the t-increments with t 6= 1.

Heyde & Leonenko (2005) elaborated on the Student-Lévy process among other
Student processes. Grigelionis (2012) gave a good overview and discussed some very
useful results, such as its Lévy-Khintchine representation. Student-Lévy processes
may be used in, e.g., finance, as one-day returns are not normally distributed but
are often assumed to be Student t distributed due to their heavy tails (cf. Blattberg
& Gonedes (1974) or Bouchaud & Potters (2003), among many others). Heyde &
Leonenko (2005) proposed the Student-Lévy process as an alternative to Gaussian
processes in asset return modeling. Additionally, Cufaro Petroni et al. (2005) discussed
the Student-Lévy process in a physics context (for halos in accelerator beams).

The thesis consists of three parts. Due to the complicated nature of the Student-
Lévy process standard simulation techniques are not applicable. Thus there is a need
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for an appropriate simulation routine to generate quasi-time-continuous paths. Series
representations according to Rosiński (2001) for Lévy processes play a prominent role
in path generation. However, since the Lévy measure for the Student-Lévy process
has a complicated form, series representations are not directly applicable. The first
part of the thesis (Chapter 2) therefore proposes simulation algorithms based on
series representations. Furthermore, we prove bounds for approximation errors.

The second part deals with maximum likelihood parameter estimation. If a
Student-Lévy path is observed in high frequency, it is of interest to establish how this
data can be used to estimate the unknown parameters. Again, due to the complicated
form of the Student-Lévy process, there is no straightforward closed-form maximum
likelihood estimator. Chapter 3 thus develops a numerical maximum likelihood
estimation procedure. We then study its asymptotic properties and prove that it is
asymptotically normal and asymptotically efficient.

The third part shows that the Student-Lévy process is of practical interest. In
Chapter 4 we apply it to high-frequency financial data and observe that a model
based on a Student-Lévy process is a reasonable alternative in finance if other models
do not fit well.

In summary, this thesis covers simulation of the Student-Lévy process in Chapter
2, estimation in Chapter 3 and applications in Chapter 4. Chapters 2 and 3 are
addressed to mathematically versed readers, while Chapter 4 has been written for
financial practitioners and contains less mathematical detail. Although all chapters
focus on the Student-Lévy process, they cover different aspects and may be read in a
sequence. Readers will find that some details have been mentioned more than once
to ensure that each chapter can be read independently. The exception is Chapter
1, which introduces the technical preliminaries including necessary definitions and
theorems, and to which all the following chapters refer at various points. Finally,
Chapter 5 concludes.
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1 Technical preliminaries

This introductory chapter briefly presents definitions and theorems needed throughout
the thesis. Section 1.1 defines the Student t and related distributions. Section 1.2
highlights important general properties of Lévy processes. Section 1.3 discusses the
notion of stability. Section 1.4 defines the Student-Lévy process and gives an overview
of useful results in the literature. Section 1.5 defines Bessel functions which are used
throughout the thesis. However, this section is included primarily as a reference. It is
not necessary for an understanding of the remainder of the thesis and may be omitted
by the reader.

1.1 Student t and related distributions

In this section we mainly list the Student t and important related distributions and
their connections. We start with the univariate Student t distribution.
Definition 1.1. We consider the univariate Student t distribution t(ν, µ, σ2) with
ν > 0 degrees of freedom, location parameter µ ∈ R and scale parameter σ > 0 with
density function

fStν,µ,σ2(x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνσ2

(
1 + 1

ν

(
x− µ
σ

)2
)− ν+1

2

and characteristic function

ϕStν,µ,σ2(x) =
21− ν2 νν/4σν/2eiµx |x|ν/2K ν

2

(√
νσ |x|

)
Γ
(
ν
2

) , (1.1)

where Γ(x) denotes the gamma function of x and Kν(x) denotes the modified Bessel
function of the second kind. (See Section 1.5 for the definition of Bessel functions
and some of their properties.) We denote by t(ν) the standard Student t distribution
t(ν, 0, 1).

For ν = 1 we have the special case of the Cauchy distribution. While the
theoretical results in Chapters 2 and 3 and the empirical application in Chapter 4
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1 Technical preliminaries

are discussed in the one-dimensional case, the simulation routine (Chapter 2) is also
available for the multivariate Student t distribution, defined below.
Definition 1.2. The d-dimensional Student t distribution td(ν, µ,Σ) has density
function

fStν,µ,Σ(x) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν) d2

√
|Σ|

1 +

〈
(x− µ)Σ−1, (x− µ)

〉
ν


− ν+1

2

for all x ∈ Rd, where ν > 0 is the degree of freedom, µ ∈ Rd is the location vector
and Σ ∈ Rd×d is a symmetric and positive definite scaling matrix.

The Student t distribution is symmetric. For empirical applications where the
data exhibits skewness, a skew version of the Student t distribution is helpful. We
use Aas & Haff’s (2006) skew Student t distribution.
Definition 1.3. The one-dimensional skew Student t distribution t(ν, µ, σ2, β) is
defined by its density function

fSStν,µ,σ2,β(x) = 2 1−ν
2 νν/2σν exp

(
β(x− µ)

)
Γ
(
ν
2

)√
π

(
β2

νσ2 + (x− µ)2

) ν+1
4

·K ν+1
2

(√
β2 (νσ2 + (x− µ)2)) ,

with ν > 0 degrees of freedom, location parameter µ ∈ R, scale parameter σ > 0 and
skewness parameter β ∈ R\{0}. The characteristic function (v. Hammerstein 2010)
is given by

ϕSStν,µ,σ2,β(x) =
Kν/2(

√
νσ
√
u2 − 2iβu)(

√
νσ)ν/2(u2 − 2iβu)ν/4eiµu

Γ
(
ν
2

)
2ν/2−1

.

Note that there exist different skew Student t distributions, e.g., the version
proposed by Azzalini & Capitanio (2003), which we do not consider here. The reason
why we choose the version in Definition 1.3 is because it is a special case of the
generalized hyperbolic distribution, which we also use for the application in Chapter
4.
Definition 1.4. The one-dimensional generalized hyperbolic (GH) distribution

2



1.1 Student t and related distributions

GH(λ, α, β, δ, µ) is defined by its density function

fGHλ,α,β,δ,µ(x) =
(α2 − β2)λ/2Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ))

√
2παλ−1/2δλKλ

(
δ
√
α2 − β2

) (
|δ|+ (x− µ)2)1/2−λ ,

with shape parameter λ ∈ R, shape parameter α, skewness parameter β ∈ R, scale
parameter δ, location parameter µ ∈ R such that

δ ≥ 0, 0 ≤ |β| < α if λ > 0,
δ > 0, 0 ≤ |β| < α if λ = 0,
δ > 0, 0 ≤ |β| ≤ α if λ < 0.

The Student t distribution is the weak limit of the GH distribution fStν,µ,σ2(x) =
limα,β→0 f

GH
λ,α,β,δ,µ(x) and the skew Student t is the weak limit fSStν,µ,σ2,α(x) =

lim|β|→α>0 f
GH
λ,α,β,δ,µ(x) for each x ∈ R. Additionally, fStν,µ,σ2(x) = limβ→0 f

SSt
ν,µ,σ2,β(x)

for each x ∈ R.
Student-Lévy processes can be constructed by subordination of Brownian motion,

see Section 1.4. The inverse gamma distribution, which is the distribution of the
reciprocal of a gamma distributed random variable, is crucial for this subordination.
We define both distributions by their densities.
Definition 1.5. The gamma distribution Γ(α, β) on (0,∞) has density function

fΓ
α,β(x) = βα

Γ(α)x
α−1 exp(−βx),

with shape parameter α > 0 and rate parameter β > 0.
Definition 1.6. The inverse (or reciprocal) gamma distribution RΓ(α, β) on (0,∞)
has density function

fRΓ
α,β(x) = βα

Γ(α)x
−α−1 exp

(
−β
x

)
,

with shape parameter α > 0 and rate parameter β > 0.

The Lévy distribution Lévy(µ, β) is a special case of the inverse gamma distribu-
tion, Lévy(0, β) = RΓ(1/2, β/2). The gamma and the inverse gamma distributions
are special cases of the generalized inverse Gaussian (GIG) distribution. We do
not use the GIG distribution extensively in this thesis but state it for completeness.
Furthermore, the GH-Lévy process can be constructed by subordination of a Brownian
motion with a GIG subordinator. (For the definition of subordination see Section 1.2
below).

3



1 Technical preliminaries

Definition 1.7. The generalized inverse Gaussian (GIG) distribution GIG(λ, δ, γ)
on (0,∞) has density function

fGIGλ,δ,γ (x) =
(
γ

δ

)λ xλ−1

2Kλ(γδ) exp
(
−1

2(δ2x−1 + γ2x)
)
,

with λ ∈ R and

δ ≥ 0, γ > 0 if λ > 0,
δ > 0, γ > 0 if λ = 0,
δ > 0, γ ≥ 0 if λ < 0.

The inverse gamma distribution is the weak limit fRΓ
α,β(x) = limγ→0 f

GIG
λ,δ,γ (x) for each

x ∈ (0,∞). The GH and the GIG distribution have many special and limiting
cases which we do not discuss in detail. See Eberlein & v. Hammerstein (2004) and
v. Hammerstein (2010) for a deeper discussion.

1.2 Lévy processes

In this section we define and discuss some of the properties of Lévy processes. Sato
(1999) is a standard reference for theoretical results on Lévy processes. The definition
of a Lévy process is as follows.
Definition 1.8. An Rd-valued process {Xt : t ≥ 0} is called a Lévy process on Rd if
the following conditions are satisfied:

1. X0 = 0 a.s.
2. Independent increments: for any 0 ≤ t0 < t1 < · · · < tn < ∞, the random

variables Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.

3. Stationary increments: for any s > 0, Xt+s −Xt
L= Xs.

4. Stochastic continuity: for any ε > 0, lims→0 P [|Xt+s −Xt| > ε] = 0.
5. The path function t 7→ Xt(ω) is right-continuous and has left limits (càdlàg)

a.s.

There is a direct connection between Lévy processes and infinitely divisible
distributions, to be defined now.
Definition 1.9. Let X be a random variable in Rd with distribution L(X). L(X) is

4



1.2 Lévy processes

infinitely divisible if there exist i.i.d. random variables Y (n)
1 , . . . , Y

(n)
n such that

X
L= Y

(n)
1 + · · ·+ Y (n)

n ,

for any choice of n ∈ N.

The following theorem establishes the one-to-one correspondence between Lévy
processes and infinitely divisible distributions.
Theorem 1.1. If {Xt} is a Lévy process on Rd, then L(Xt) is infinitely divisible for
any t ≥ 0. On the other hand, if µ is an infinitely divisible distribution on Rd, then
there exists a Lévy process {Xt}, uniquely in law, such that L(X1) = µ.

The next theorem and corollary present the unique Lévy-Khintchine characteri-
zation of Lévy processes.
Theorem 1.2 (Lévy-Khintchine representation). A probability distribution µX on
Rd of a random variable X is infinitely divisible if and only if there exists a unique
triple (called Lévy triple) (γ,A,Π), such that

E
[
ei〈z,X〉

]
= exp

i 〈z, γ〉 − 1
2 〈z,Az〉+

ˆ
Rd0

(
ei〈z,x〉 − 1− i 〈z, x〉1{|x|≤1}

)
Π(dx)

 ,
(1.2)

for all z ∈ Rd, where γ ∈ Rd, A is a symmetric non-negative definite d× d matrix
and Π is a measure on Rd0 satisfying

ˆ
Rd0

(|x|2 ∧ 1)Π(dx) <∞,

which is to ensure that Π is σ-finite. We call ψ(z) := − logE
[
ei〈z,X〉

]
the characteristic

exponent.
Corollary 1.1. Let {Xt} be a Lévy process on Rd such that X1 has characteristic
function ϕ(z) = E[ei〈z,X1〉] given in (1.2). Then the law of Xt is uniquely characterized
by its characteristic function

E
[
ei〈z,Xt〉

]
= ϕ(z)t,

or, equivalently, by its characteristic exponent.

The Lévy measure Π is the key ingredient for path simulation in Chapter 2. The
Lévy measure is zero if and only if the Lévy process is Gaussian (or deterministic if,
moreover, A = 0) and has continuous paths a.s. On the other hand, if Π 6= 0 and

5



1 Technical preliminaries

A = 0, the Lévy process is a pure jump process.
The Lévy-Itô decomposition splits any Lévy process into its continuous and pure

jump parts.
Theorem 1.3 (Lévy-Itô decomposition). If {Xt} is a Lévy process on Rd with triple
(γ,A,Π), then there exists the decomposition

Xt = γt+Gt +
ˆ
|x|>1

xNt(dx) + lim
ε↘0

ˆ
ε<|x|≤1

x(Nt(dx)− tΠ(dx)),

where {Gt} is a Gaussian Lévy process with covariance matrix A and {Nt} is an
independent Poisson point process with intensity measure Π. All four summands
are independent Lévy processes. The third summand is a compound Poisson process
representing the “large” jumps and the fourth summand is a square integrable pure
jump martingale representing the “small” jumps.

We use the Lévy-Itô decomposition implicitly for simulation in Chapter 2. The
compound Poisson process (the large jumps) can be expressed via series representa-
tions, see Section 2.2. The very small jumps can either be neglected or approximated,
see Section 2.3.3.

Subordinators are useful special cases of Lévy processes and some interesting
Lévy processes (such as the Student-Lévy process, see Section 1.4) can be constructed
by means of subordination. In subordination the subordinator represents the random
time process.
Definition 1.10. A subordinator is a one-dimensional, (a.s.) non-decreasing Lévy
process.
Lemma 1.1. A Lévy process {Yt} is a subordinator if and only if its Lévy triple has
the form (β, 0, Q), such that β0 ≥ 0, where β0 = β−

´
|u|≤1 uQ(du) and Q is a σ-finite

measure on (0,∞) satisfying
´∞

0 (u ∧ 1)Q(du) <∞.

It is therefore common practice to represent subordinators in terms of their
Laplace exponent

η(z) := − log 1
t
E
[
e−zYt

]
= β0z +

ˆ ∞
0

(
1− e−zu

)
Q(du), z ≥ 0

and call (β0, Q) the Laplace characteristics. β0 is called drift and Q Lévy measure.
The next theorem states the Lévy triple for subordinated processes. A proof can

be found in Sato (1999).
Theorem 1.4. Let {Yt} be a subordinator with Laplace characteristics (β0, Q). Let

6



1.3 Stability

{Zt} be a Lévy process on Rd with characteristic triple (γ,Σ,Π), independent of {Yt}.
Let µt(B) = P [Zt ∈ B] with B ∈ B(Rd), t ≥ 0. Let

Xt := ZYt , t ≥ 0

be the subordinated process. Then, {Xt} is a Lévy process on Rd with characteristic
triple (γ̃, Σ̃, Π̃), where

γ̃ = β0γ +
ˆ

(0,∞)

ˆ
|x|≤1

xµs(dx)Q(ds),

Σ̃ = β0Σ,

Π̃(B) = β0Π(B) +
ˆ

(0,∞)
µs(B)Q(ds), B ∈ B(Rd).

1.3 Stability

We work with α-stable Lévy processes in Section 2.3.2 for simulation using the
rejection method, in Section 3.2 to prove local asymptotic normality and in Section
4.2.3 for the application. Here we briefly present their definition and characterizing
properties.
Definition 1.11. Let X be a random variable in Rd with distribution L(X) and
characteristic function ϕX(z). L(X) is called stable if for every a > 0 there exist
b > 0 and c ∈ Rd such that

ϕX(z)a = ϕX(bz)ei〈c,z〉, z ∈ Rd.

It is called strictly stable if c = 0.
Furthermore, a Lévy process {Xt} is called (strictly) stable if L(X1) is (strictly)

stable.
Definition 1.12. A (strictly) stable random variable X is called (strictly) α-stable,
α ∈ (0, 2], if

ϕX(z)a = ϕX(a1/αz)ei〈c,z〉, z ∈ Rd

for all a > 0 and c ∈ Rd. α is called the index of stability.

It can be shown that for every stable X there exists a unique constant α ∈ (0, 2]
such that X is α-stable. Furthermore, α-stable Lévy processes are characterized by:
Proposition 1.1. A Lévy process {Xt} with characteristic triple (β,A,Π) is α-stable,

7



1 Technical preliminaries

α ∈ (0, 2], if and only if exactly one of the following holds:

(i) α = 2 and Π = 0, i.e., the Lévy process is Gaussian.

(ii) α ∈ (0, 2), A = 0 and

Π(B) =
ˆ
Sd−1

ˆ
(0,∞)

1{rξ∈B}
dr
r1+αλ(dξ), B ∈ B(Rd),

where λ is a finite measure on the unit sphere Sd−1.

It follows that for real-valued α-stable Lévy processes with index of stability
α ∈ (0, 2) the Lévy measure can be written as

Π(dx) =
(
c+x

−1−α1{x>0} + c−|x|−1−α1{x<0}
)

dx,

for some c+, c− ≥ 0.

1.4 The Student-Lévy process

This section discusses the Student-Lévy process. As stated in Theorem 1.1, infinite
divisibility of a particular distribution is a necessary and sufficient condition for the
existence of the associated Lévy process.
Proposition 1.2 (Grosswald (1976)). The multivariate Student t distribution is
infinitely divisible.

Hence Lévy processes with Student t marginals do exist. However, only the
1-increments are Student t distributed since the Student t distribution is not closed
under convolution.
Definition 1.13. A d-dimensional Lévy process {Xt} on [0, T ], T > 0 is called a
Student-Lévy process if

L(X1) = td(ν, µ,Σ).

This means the Student-Lévy process on [0, T ] has Student t margins for all
increments with ∆t = 1. Of course, the time unit corresponding to ∆t = 1, for
example one hour or one day, depends on the context in practice. Additionally, we
define the skew Student-Lévy process in the same manner.
Definition 1.14. A one-dimensional Lévy process {Xt} on [0, T ], T > 0 is called a
skew Student-Lévy process if

L(X1) = t(ν, µ, σ2, β).
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Of course, there exists an extension to d dimensions which we omit here.
The next proposition ensures that inverse gamma Lévy processes exist.

Proposition 1.3 (Barndorff-Nielsen & Halgreen (1977)). The inverse gamma distri-
bution is infinitely divisible.

Definition 1.15. A subordinator {Yt} is called an inverse gamma subordinator or
an inverse gamma Lévy process if

L(Y1) = RΓ(α, β).

Barndorff-Nielsen & Shephard (2001) computed the Laplace characteristics of
the inverse gamma subordinator.
Proposition 1.4. Let {Yt} be an inverse gamma subordinator with L(Y1) = RΓ(α, β).
Its Laplace characteristics are given by (0, Q) with Lévy measure

Q(du) =
(
u−1
ˆ ∞

0
e−su2βg|α|(4βs)ds

)
du,

where

g|α|(x) := 2
(
π2x

(
J2
|α|

(√
x
)

+ Y 2
|α|

(√
x
)))−1

, x > 0, (1.3)

and Jα and Yα are the Bessel functions of the first and second kind, respectively. (See
Section 1.5 for the definition of Bessel functions and some of their properties.)

Using Theorem 1.4, Grigelionis (2012) computed the Lévy triple for the Student-
Lévy process.
Theorem 1.5. Let {Yt} be an inverse gamma subordinator such that L(Y1) =
RΓ(ν/2, ν/2) for ν > 1. Let {Gt} be a d-dimensional Gaussian Lévy process with
Lévy triple (0,Σ, 0) and independent of {Yt}. Set

Xt := GYt + µt, t ≥ 0,

with µ ∈ Rd. Then, {Xt} is the Student-Lévy process such that L(X1) = td(ν, µ,Σ).
{Xt} has Lévy triple (γ, 0,Π), where

γ =
ˆ
{|x|≤1}

x`(x)dx+ µ,

Π(dx) =`(x)dx,

9
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and

`(x) =
ν2 d4 +1

(〈
xΣ−1, x

〉)− d4
√
|Σ|(2π) d2

ˆ ∞
0

s
d
4K d

2

(2s
〈
xΣ−1, x

〉) 1
2

 g ν
2
(2νs)ds,

where Kλ is the modified Bessel function of the second kind and gν is defined in (1.3).

If we replace the Gaussian process {Gt} in Theorem 1.5 by a Brownian motion
{Bt} (i.e., Σ = I), and with µ = 0, we have a Student-Lévy {Xt} process with
standard scaling.

Figure 1.1 shows a sample path of a one-dimensional Student-Lévy process with
standard scaling (µ = 0 and Σ = 1) and ν = 4 using the simulation methods described
in Chapter 2. Very small jumps occur frequently, while big jumps occur more rarely.

It is well-known that the standard normal distribution is the limiting case of
the Student t distribution as ν →∞. We can thus conclude that this carries over to
Lévy processes because ϕ(z)→ exp (−1

2z
2) implies ϕ(z)t → exp (−1

2 tz
2) for ν →∞,

where ϕ(z) is the characteristic function of the Student t distribution. Hence the law
of the Student-Lévy process converges weakly to the law of the Brownian motion for
increasing degrees of freedom. Recall that sample paths of a Student-Lévy process
are not continuous, whereas Brownian motion paths are, a.s.

We focus on the inverse gamma subordinator with marginals L(Y1) = RΓ(ν/2, ν/2)
for ν > 0, since this subordinator induces the Student-Lévy process. In this case, the
Lévy measure of the inverse gamma subordinator is given by

Q(du) := ρ(u)du :=
(
u−1
ˆ ∞

0
e−suνgν/2(2νs)ds

)
du,

with gν as in (1.3). The results concerning the inverse gamma subordinator in this
thesis can easily be generalized to the L(Y1) = RΓ(α, β) situation with α, β > 0 and
α 6= β because if Y1 ∼ RΓ(α, α), then β

αY1 ∼ RΓ(α, β).

1.5 Bessel functions

Here we briefly present an outline of Bessel functions based on Olver et al. (2010);
see Watson (1995) for comprehensive information.
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20 40 60 80 100

t

-5

5

10

Xt

Figure 1.1: Path simulation of the Student-Lévy process with ν = 4 and standard
scaling using the inverse Lévy measure method; see Section 2.4.

Consider the differential equation called Bessel’s equation,

x2 d2w

dx2 + x
dw
dx + (x2 − λ2)w = 0.

The Bessel function of the first kind Jλ(x), the Bessel function of the second kind
Yλ(x) and the Bessel functions of the third kind (also called Hankel functions) H(1)

λ (x),
H

(2)
λ (x) are solutions to Bessel’s equation. The function Jλ(x) can be represented as

Jλ(x) =
(
x

2

)λ ∞∑
k=0

(−1)k
(
x2

4

)k
k!Γ(λ+ k + 1) ,

for x ∈ C, except for x = 0 if λ is negative and not an integer. The function Yλ(x)
can be represented as

Yλ(x) = Jλ(x) cos(λπ)− J−λ(x)
sin(λπ),

11
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where the right-hand side is replaced by its limiting value if λ is an integer. The
Hankel functions can be written as

H
(1)
λ (x) = Jλ(x) + iYλ(x),

H
(2)
λ (x) = Jλ(x)− iYλ(x),

If we replace x by ±ix in Bessel’s equation, we obtain the modified Bessel’s
equation

x2 d2w

dx2 + x
dw
dx − (x2 + λ2)w = 0. (1.4)

The modified Bessel function of the first kind Iλ(x) and the modified Bessel function
of the second kind Kλ(x) are solutions to (1.4). Iλ(x) can be represented as

Iλ(x) =
(
x

2

)λ ∞∑
k=0

(
x2

4

)k
k!Γ(λ+ k + 1) ,

for x ∈ C, except for x = 0 if λ is negative and not an integer. Kλ(x) can be
represented as

Kλ(x) = π

2
Iλ(x)− I−λ(x)

sin(λπ),
where the right-hand side is replaced by its limiting value if λ is an integer.

Some properties that we shall make repeated use of are

J−n(x) = (−1)nJn(x),
Y−n(x) = (−1)nYn(x),
I−n(x) = In(x),

for all x ∈ C and n ∈ N and

K−λ(x) = Kλ(x),

for all x ∈ C\{0} and λ ∈ C.
The limiting behavior of Kλ(x) is

Kλ(x) ∼
√
π

2xe
−x,

as x → ∞ in | arg(x)| < 3
2π (which is always satisfied throughout the thesis). For

12
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λ = 1
2

K1/2(x) =
√
π

2xe
−x,

for all x ∈ C.
Except for some special cases, Bessel functions are not available in closed forms

and can only be represented in terms of series or integral representations. Common
statistical packages approximate Bessel functions numerically.
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2 Simulation of Student-Lévy processes
using series representations

In this chapter we address path simulation for the Student-Lévy process. Although
theoretically available, there is a lack of path simulation techniques in the literature
due to its complicated form. We use series representations (Rosiński 2001) with the
inverse Lévy measure method and the rejection method and prove upper bounds for
the mean squared approximation error. Furthermore, we extend the numerical inverse
Lévy measure method of Imai & Kawai (2013) to incorporate explosive Lévy tail
measures. Monte Carlo studies verify the error bounds and the effectiveness of the
simulation routine. As a side result we obtain series representations of the so-called
inverse gamma subordinator which are used to generate paths in this model.

2.1 Introduction

We present simulation techniques for the time-continuous Student-Lévy process on
[0, T ], T > 0, i.e., a Lévy process where the 1-increments are Student t distributed.
Although theoretically available, there is a lack of path simulation techniques in
the literature due to its complicated form. Namely, the ∆t 6= 1 increments’ density
function and distribution function do not exist in closed form. In this chapter we
perform path simulation by using the characterizing Lévy measure (of the Lévy-
Khintchine representation, Theorem 1.2) for different series representations.

In a physics context (for halos in accelerator beams), Cufaro Petroni (2007)
restricted the simulation to time one increments which are Student t distributed.
This comes at the price that the increments ∆t < 1 are not available. One solution is
Hubalek’s (2005) idea to sample from the characteristic function. More recently, Barth
& Stein (2016) proposed another method based on sampling from the characteristic
function.

Here, we discuss another approach using series representations of Lévy processes
(Rosiński 2001). Series representations have been used widely in the literature, e.g.,
Todorov & Tauchen (2006) or Imai & Kawai (2011). Series representations were
introduced by Bondesson (1982) for simulating random variables with infinitely
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divisible distributions and next, due to the direct connection, for the simulation of
paths of Lévy processes. Among existent methods, the inverse Lévy tail measure
method (see Proposition 2.1) is a very popular one, with the drawback that in many
applications the inverse Lévy measure does not exist in closed form. Recently, Imai &
Kawai (2013) provided algorithms which compute the inverse Lévy measure efficiently.

This chapter contributes to the literature by proposing an inversion algorithm
for explosive Lévy tail measures and by applying it to simulate paths of the inverse
gamma Lévy process and, via subordination, of the Student-Lévy process. Moreover,
we propose an alternative algorithm using the rejection method. For both methods we
prove error bounds for the Student-Lévy process and the inverse gamma subordinator.

The organization of this chapter is as follows: Section 2.2 introduces the general
theory of series representations. Section 2.3 presents our main results for the error
estimates. Section 2.4 describes the numerical methods which are used for simulation.
In Section 2.5 we perform Monte Carlo simulations to validate the theoretical results
and illustrate the effectiveness of the numerical methods. The last section concludes.

2.2 Series representations

In this section we review some general theoretical results on series representations
of Lévy processes. For instance, we consider different forms which may represent
a Lévy process. We focus on the inverse Lévy measure method and the rejection
method, treated in Proposition 2.1. In Section 2.3 we discuss the special cases of
the Student-Lévy process and the inverse gamma subordinator and derive bounds
for the approximation error using the introduced series representations. Numerical
simulation techniques will be discussed in Section 2.4. Although we restrict the focus
to the Student-Lévy process in the one-dimensional case in Section 2.3, we first discuss
the general theory in d dimensions since the numerical algorithms also work for d
dimensions.

Let {Xt} be a d-dimensional Lévy process and {Yt} be a subordinator on the
compact interval [0, T ], where T > 0 is fixed. Let {Ei}i∈N be a sequence of i.i.d. unit
exponential random variables and let {Γi}i∈N with Γi = ∑i

j=1Ei be standard Poisson
arrival times. Furthermore, let {Ui}i∈N denote a sequence of i.i.d. U[0,T ] random
variables independent of {Γi}.

We now present some important results on series representations. This is moti-
vated by the question of how to simulate Lévy processes with general characteristics
(γ,A,Π). It turns out that this is easy if the density function ft(x) of Xt is known
explicitly. If this is this case, e.g., if the Lévy process under consideration is a
d-dimensional Gaussian Lévy process, we partition the domain [0, T ] into a discrete
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subset 0 = t0 < th < t2h < . . . < tnh = T with sufficiently small precision h > 0 and
simulate n i.i.d. random variables Xj,th from the density function fth(x). The Lévy
process is built with Xt = ∑bntc

j=0 Xj,th .
However, in many prominent cases, for instance the Student-Lévy process or the

inverse gamma Lévy process, the density function at time t 6= 1 is not available in
closed form. Hence, simulation turns out to be more difficult. One approach in the
Student t case was considered by Hubalek (2005) by simulating from the characteristic
function using the methods of Devroye (1981) which is based on Fourier inversion and
the ratio-of-uniforms method. Barth & Stein (2016) sampled from the characteristic
function using Fourier inversion and direct inversion. Our approach using series
representations has the advantage that we do not need to fix the minimal step size ∆t
at the beginning and hold it fixed but simulate the series representation and evaluate
the path afterwards at desired time points. Appendix 2.A compares our simulation
approach with those of Hubalek (2005) and Barth & Stein (2016).

The idea of series representations is that infinitely divisible random variables
(and hence Lévy processes) can be represented as an infinite sum of effects H(Γi, Vi)
of a shot Vi after Γi time units. These effects should be decreasing in time to make the
series summable. Rosiński (2001) – based on Bondesson (1982) and Rosiński (1990) –
derived the general shot noise theory and presented widely-used series representations.

We now state the theorem for general shot noise representations.
Theorem 2.1 (Rosiński (2001)). Let {Vi}i≥1 be an i.i.d. sequence of random variables
in a measurable space S with distribution function F . Let {Γi}i≥1 be a sequence of
standard Poisson arrival times independent of {Vi}. Let {Ui}i≥1 be a sequence of
independent, U[0,T ] random variables independent of {Vi} and {Γi}. Let

H : (0,∞)× S → Rd

be a measurable function such that for each v ∈ S, r 7→ |H(r, v)| is non-increasing.
Define measures on Rd by

σ(r,B) = P (H(r, Vi) ∈ B), r > 0, B ∈ B(Rd),

and
Π(B) =

ˆ ∞
0

σ(r,B)dr, B ∈ B(Rd).

Set
A(s) =

ˆ s

0

ˆ
|x|≤1

xσ(r, dx)dr, s ≥ 0.
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(i)
∑∞
i=1H(Γi

T , Vi)1{Ui≤t} converges almost surely and uniformly on [0, T ] to a Lévy
process with characteristic function

φt(z) = exp

t
i〈z, a〉+

ˆ
Rd0

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1})Π(dx)

 , z ∈ Rd,

if and only if ˆ
Rd0

(|x|2 ∧ 1)Π(dx) <∞ (2.1)

and a := lims→∞A(s) exists in Rd.

(ii) If only (2.1) holds, then ∑∞i=1H(Γi
T , Vi)1{Ui≤t} − tci, where ci are deterministic

centering constants, given by ci = A(i)−A(i− 1), converges a.s. and uniformly
on [0, T ] to a Lévy process with triple (0, 0,Π).

Unfortunately, this general theorem does not yield a unique representation for
any Lévy process since H(r, v) and the random variables Vi can have many different
forms. For a specific Lévy process it may be complicated to find an appropriate
representation or it may have several ones and the question arises as to which is the
most useful. We later provide some common series representations but first discuss
how to implement representations using Theorem 2.1. It is necessary to truncate the
sum as we cannot simulate infinitely many summands. We will cut off if an effect of a
shot noise becomes “too small”. Of course, we can truncate the sums deterministically
at i = n0 for large n0. We will consider this in Section 2.3.1 as a first step. A more
sophisticated way for truncating the infinite sum is the following random cutoff:
Remark 2.1. Assume condition (i) of Theorem 2.1 is fulfilled and the Lévy process
{Xt} can be represented as ∑∞i=1H(Γi

T , Vi)1{Ui≤t}. Then, for a given level of trunca-
tion τ > 0, the randomly truncated process

Xτ
t :=

∑
{i∈N:Γi≤τ}

H

(
Γi
T
, Vi

)
1{Ui≤t}

for t ∈ [0, T ] is a compound Poisson process (and hence a Lévy process) with
characteristics (0, 0,Πτ ), where

Πτ (B) =
ˆ τ

0
σ(r,B)dr, B ∈ B(Rd).

Hence, the key motivation for random truncation is that we replace the true
Lévy process by another actual Lévy process.
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Even if there exist series representations for general d-dimensional Lévy processes
{Xt}, from now on we restrict ourselves to one-dimensional subordinators {Yt}. We do
so because many interesting Lévy processes can be constructed by subordination, such
as the Student-Lévy process (possibly d-dimensional). Simulation of subordinators
together with Corollary 2.2 below provides a reasonable simulation method for {Xt}
without having to bother with more complicated series representations of {Xt}. First
note
Corollary 2.1. If {Yt} is a subordinator with zero drift and Lévy measure Q(B) =´∞

0 σ(r,B)dr for B ∈ B((0,∞)) then the conditions of part (i) of Theorem 2.1 are
fulfilled and Yt = ∑∞

i=1H(Γi
T , Vi)1{Ui≤t} a.s.

The next theorem provides important series representations for subordinators.
There exist more standard forms which we do not discuss here, because they are not
applicable for the inverse gamma subordinator.
Proposition 2.1. Let {Yt} be a subordinator with zero drift and Lévy measure Q(B).
Then we have the following series representations:

(i) (Inverse Lévy measure method, Ferguson & Klass (1972)) Let Q←(y) = inf{x >
0 : Q([x,∞)) < y} be the inverse Lévy tail measure for y > 0. Then

Yt
L=
∞∑
i=1

Q←
(

Γi
T

)
1{Ui≤t}, t ∈ [0, T ].

(ii) (Rejection method, Rosiński (2001)) Let {Y (0)
t } be a subordinator with Laplace

characteristics (0, Q0) such that dQ
dQ0
≤ 1. Let {Wi}i≥1 be a sequence of i.i.d. ran-

dom variables uniform on [0, 1] which are independent of {Γi}i≥1 and {Ui}i≥1.
Then

Yt
L=
∞∑
i=1

Q←0

(
Γi
T

)
1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi


1{Ui≤t}, t ∈ [0, T ].

(2.2)
(iii) (Thinning method, Rosiński (1990)) Let F be any probability distribution on

(0,∞) such that Q is absolutely continuous with respect to F . Let {Vi}i≥1 be
an independent F -distributed sequence, which is independent of {Γi}i≥1 and
{Ui}i≥1. Then

Yt
L=
∞∑
i=1

Vi1

{dQ
dF (Vi) ≥

Γi
T

}1{Ui≤t}, t ∈ [0, T ].
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2 Simulation of Student-Lévy processes using series representations

We discuss both the inverse Lévy measure and the rejection methods in detail
for the Student-Lévy process and inverse gamma subordinator in this chapter. The
thinning method is, although technically available, computationally burdensome, as
briefly discussed in Remark 2.3 and therefore only introduced for completeness here.
The general problem, as for the inverse gamma subordinator, is that the inverse Lévy
measure often is not available in closed form. In these cases we may use another
series representation or numerical methods as in Section 2.4.

In the next example the inverse Lévy measure is known explicitly. We use this
example in Subsection 2.3.2.
Example 2.1. Consider an α-stable subordinator {Y0(t)}t∈[0,T ] for α ∈ (0, 2) with
zero drift and Lévy measure

Q0(du) = c+u
−1−α1{u>0}.

Then the inverse tail measure is given by

Q←0 (y) =
(
α

c+

)−1/α

y−1/α

and Y0(t) can be represented as(
α

c+

)−1/α ∞∑
i=1

(
Γi
T

)−1/α

1{Ui≤t},

for t ∈ [0, T ].

The next corollary (cf. Tankov & Cont (2015)) closes the gap between the
simulation of a subordinator (via Proposition 2.1) and the desired simulation of
Gaussian subordination, e.g., the Student-Lévy process (see Theorem 1.5). Here we
state it for the inverse Lévy measure method. The series representations using the
rejection or the thinning method can be formulated analogously.
Corollary 2.2. Let Yt be a subordinator with zero drift and Lévy measure Q(B). Let
Q←(y) be defined as in Proposition 2.1. Let {Vi}i≥1 be a sequence of d-dimensional
i.i.d. standard normal vectors, independent both of {Γi} and {Ui}. Then we have the
following series representation for {Xt}, where Xt = BYt and {Bt} is a d-dimensional
Brownian motion independent of {Yt}:

Xt
L=
∞∑
i=1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}, t ∈ [0, T ].
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From now on, we focus on the inverse gamma subordinator with marginals
L(Y1) = RΓ(ν/2, ν/2) for ν > 1, since this subordinator induces the Student-Lévy
process. For ν = 1 the Student-Lévy process is a Cauchy-Lévy process. The Cauchy-
Lévy process is much easier to simulate since the Cauchy distribution is closed under
convolution and thus not considered here. For 0 < ν < 1 we can still use the
numerical algorithms proposed in Section 2.4 but the theoretical results within the
next subsections do not hold. Furthermore, we consider the case of a Student-Lévy
process with standard scaling (µ = 0,Σ = I) for the simulation purpose throughout
because the general case is an easy consequence using the transformation AXt + µt,
where Σ = AAT.

2.3 Mean squared error bounds

2.3.1 Inverse Lévy measure method

In this section we discuss mean squared approximation errors for the inverse gamma
subordinator and the Student-Lévy process simulation. All theoretical results within
this section are discussed for the one-dimensional Student-Lévy process {Xt} while
the simulation routine in Section 2.4 also works well for d dimensions.

Recall that the Lévy measure of the inverse gamma subordinator {Yt} with
Y1 ∼ RΓ(ν/2, ν/2) has the rather complex form

Q(du) := ρ(u)du :=
(
u−1
ˆ ∞

0
e−suνgν/2(2νs)ds

)
du, (2.3)

with

g|α|(x) := 2
(
π2x

(
J2
|α|

(√
x
)

+ Y 2
|α|

(√
x
)))−1

, x > 0,

and Jα and Yα are the Bessel functions of the first and the second kind, respectively.
There exists no closed-form solution for the inverse Lévy tail measure. Hence, the
inverse Lévy measure series representation is non-trivial. For now, assume that it
is possible to find Q←(y), at least numerically. Section 2.4 provides a justification.
Figure 2.1 shows numerically computed inverse Lévy measures for different degrees of
freedom. The inverse Lévy measure is higher for smaller degrees of freedom close to
the origin and lower in the tail. Let {Γi} be a process of Poisson arrival times. Then
Q←(Γi/T ) is larger for ν = 4 than for higher ν in case of small values of Γi/T (the
big jumps). On the other hand, for a given large Γi/T the jump Q←(Γi/T ) is smaller
for ν = 4. In practice, this means that for a truncated series representation we cut
off the very small jumps earlier for high ν. Hence, the truncated representation for
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Figure 2.1: Comparison of the inverse Lévy measures for the inverse gamma subordi-
nator (computed via Algorithms 1 and 2 for y = Γi

T ∈ (0,∞)). Note that
the inverse Lévy measure is higher for smaller degrees of freedom close to
the origin and lower in the tail.

ν = 4 contains more big jumps and more very small jumps. Figure 2.2 also illustrates
this pattern.

The aim of this subsection is to find an upper bound for the mean squared error
(MSE) of the approximation. For this purpose we now bound the Lévy measure and
the inverse tail measure (see Figure 2.3). This is also helpful for the rejection method
in Subsection 2.3.2.
Lemma 2.1. Let {Yt} be the inverse gamma subordinator with L(Y1) = RΓ(ν/2, ν/2)
and let ν > 1. Let Q(du) defined in (2.3) be its Lévy measure and Q←(y) be its
inverse tail measure. Then

Q(du) <
√

ν

2πu3 du (2.4)

and
Q←(y) < 2ν

πy2 . (2.5)

Proof. Recall that

Q(du) = u−1
ˆ ∞

0
e−suν2

[
π22νs

(
J2
ν
2
(
√

2νs) + Y 2
ν
2
(
√

2νs)
)]−1

dsdu.
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Figure 2.2: Simulation of sample paths of the inverse gamma subordinator with
Y1 ∼ RΓ(ν/2, ν/2) for various degrees of freedom. The red line maps
t 7→ t for comparison using the standard time process in Brownian motion
(no subordination). For ν = 4 note the characteristic big jumps. For
ν = 39 and even for ν = 12 there are no big jumps and the trajectories
are close to the t 7→ t line.

We use the inequality
J2
ν (x) + Y 2

ν (x) > 2
πx
,

first derived by Schafheitlin (1906); an elegant proof can be found in Watson (1995).
Hence,

νg ν
2
(2νs) = ν

[
π2νs

(
J2
ν
2
(
√

2νs) + Y 2
ν
2
(
√

2νs)
)]−1

<

√
ν

2π2s
.

By standard integration,

Q(du) < u−1
ˆ ∞

0
e−su

√
ν

2π2s
dsdu =

√
ν

2πu3 du

such that (2.4) follows. To derive (2.5), the tail mass function is bounded by

Q([z,∞)) =
ˆ ∞
z

Q(du) <
ˆ ∞
z

√
ν

2πu3 du =
√

2ν
πz
.
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2 Simulation of Student-Lévy processes using series representations
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Figure 2.3: The inverse Lévy measure Q←(y) for the inverse gamma subordinator
with Y1 ∼ RΓ(ν/2, ν/2) and its bound q(y) := 2ν

πy2 with ν = 4. Note that
the bound converges to the true inverse Lévy measure for increasing y.

Since Q([z,∞)) is strictly decreasing and continuous, Q←(y) is the true inverse and

Q←(y) = inf{z > 0 : Q([z,∞)) < y}

< inf{z > 0 :
√

2ν
πz

< y}

= 2ν
πy2 ,

which completes the proof.

We next derive the bound for the mean square error approximation for the inverse
gamma subordinator. Remark 2.1 discusses the random truncation of the series where
we cut off all summands for which Γi > τ for a given τ . For the next results it is
however convenient to consider a deterministic truncation first where we cut off all
summands i > n. Corollary 2.3 discusses how to deduce the approximation error for
the random truncation.
Theorem 2.2. Let {Yt} be the inverse gamma subordinator, with L(Y1) = RΓ(ν/2, ν/2),
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2.3 Mean squared error bounds

ν > 1, represented with the inverse Lévy measure method:

Yt =
∞∑
i=1

Q←
(

Γi
T

)
1{Ui≤t}, t ∈ [0, T ].

Let
Y

(n)
t :=

n∑
i=1

Q←
(

Γi
T

)
1{Ui≤t}, t ∈ [0, T ],

be the deterministically truncated process. Assume that n ≥ 4. Then

E[Yt − Y (n)
t ] < 2ν

π

T

n− 1 t, (2.6)

and the mean squared error is bounded by

E[(Yt − Y (n)
t )2] < 4ν2T 3

π2 t

(
1

n− 2.5 + 1
(n− 3)2

)2

, (2.7)

for t ∈ [0, T ].
Remark 2.2. The bound (2.6) depends on t, n, T and ν. While the former two seem
reasonable, the dependence on T might be puzzling at first sight. However, if T is
large, we expect more big jumps in this longer time interval. The reason for this is
that small values of Γi/T correspond to large jumps, see the plot of Q←(Γi/T ) in
Figure 2.1. Hence, the presence (or absence) of large jumps causes a higher error.
This effect is even higher for the mean squared error, which is proportional to T 3.

The second interesting fact is that (2.6) and (2.7) increase in ν. In other words,
it is more difficult to simulate inverse gamma subordinators with high degrees of
freedom. To understand this, recall that the paths of the inverse gamma subordinator
converge to the path process t 7→ t for ν →∞ (Figure 2.2). But this limiting case is
the constant drift subordinator with Lévy measure zero, which hence has no inverse
Lévy measure.

Proof of Theorem 2.2. Note that

Yt − Y (n)
t =

∞∑
i=1

Q←
(

Γi
T

)
1{Ui≤t} −

n∑
i=1

Q←
(

Γi
T

)
1{Ui≤t}

=
∞∑

i=n+1
Q←

(
Γi
T

)
1{Ui≤t}

Denote by q(y) := 2ν
πy2 the bound for Q← derived in Lemma 2.1. We start by proving
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2 Simulation of Student-Lévy processes using series representations

(2.6). Taking expectations to obtain

E

 ∞∑
i=n+1

Q←
(

Γi
T

)
1{Ui≤t}

 =
∞∑

i=n+1
E

Q←(Γi
T

)E [1{Ui≤t}]

<
t

T

∞∑
i=n+1

E

q(Γi
T

) , (2.8)

where we have used the monotonicity of the expected value. Since the Γis are Γ(i, 1)
distributed (with density function denoted by γi(x)), (2.8) is equal to

t

T

∞∑
i=n+1

ˆ ∞
0

q(x/T )γi(x)dx = t

T

∞∑
i=n+1

2ν
π

T 2

(i− 1)(i− 2)

= 2ν
π

T

n− 1 t.

It remains to prove (2.7). Using the monotone convergence theorem

E


 ∞∑
i=n+1

Q←
(

Γi
T

)
1{Ui≤t}

2


=
∞∑

i=n+1

∞∑
j=n+1

E

Q←(Γi
T

)
1{Ui≤t}Q

←
(

Γj
T

)
1{Uj≤t}

 ,
since Q←

(
Γi
T

)
1{Ui≤t} ≥ 0 for all i. Next, by the Cauchy-Schwarz inequality

∞∑
i=n+1

∞∑
j=n+1

E

Q←(Γi
T

)
1{Ui≤t}Q

←
(

Γj
T

)
1{Uj≤t}



≤
∞∑

i=n+1

∞∑
j=n+1

√√√√√E
Q←(Γi

T

)2

1{Uj≤t}

E
Q←(Γj

T

)2

1{Uj≤t}



<
∞∑

i=n+1

∞∑
j=n+1

√√√√√ t2

T 2E

q(Γi
T

)2
E

q(Γj
T

)2


= t

T

∞∑
i=n+1

∞∑
j=n+1

√ˆ ∞
0

q(x/T )2γi(x)dx ·
ˆ ∞

0
q(x/T )2γj(x)dx
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2.3 Mean squared error bounds

= t

T

4ν2

π2

∞∑
i=n+1

∞∑
j=n+1

√
T 4

(i− 1)(i− 2)(i− 3)(i− 4)
T 4

(j − 1)(j − 2)(j − 3)(j − 4) .(2.9)

Since i, j ≥ n+ 1 ≥ 5, we can bound (2.9) using (i− 1)(i− 2)(i− 3)(i− 4) ≥ (i− 4)4

by
t

T

4ν2

π2

 ∞∑
i=n+1

T 2

(i− 4)2

2

= 4ν2T 3

π2 tψ′(n− 3)2, (2.10)

where ψ′(x) denotes the first derivative of the digamma function ψ(x) := Γ′(x)
Γ(x) (also

called polygamma function of order 1). Guo et al. (2015) provided a sharp bound for
polygamma functions. The inequality for ψ′(x) is

|ψ′(x)| < 1
x+ 1

2
+ 1
x2 . (2.11)

Applying (2.11) to (2.10) we obtain the bound

E


 ∞∑
i=n+1

Q←
(

Γi
T

)
1{Ui≤t}

2
 < 4ν2T 3

π2 t

(
1

n− 2.5 + 1
(n− 3)2

)2

.

With Theorem 2.2 we can also derive mean squared error bounds for the Student-
Lévy process using Corollary 2.2.
Theorem 2.3. Let {Yt} be the inverse gamma subordinator with L(Y1) = RΓ(ν/2, ν/2)
and Laplace characteristics (0, Q), ν > 1, and let {Bt}t∈[0,T ] be a Brownian motion
independent of {Yt}. Let Xt := BYt be the subordinated Student-Lévy process, repre-
sented with the inverse Lévy measure for subordination (see Corollary 2.2)

Xt =
∞∑
i=1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}, t ∈ [0, T ],

where Vi are i.i.d. N(0, 1). Let

X
(n)
t :=

n∑
i=1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}, t ∈ [0, T ]

be the deterministically truncated process. Assume that n ≥ 2. Then, E[Xt−X(n)
t ] = 0
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2 Simulation of Student-Lévy processes using series representations

and the mean squared error is bounded by

E[(Xt −X(n)
t )2] < 2ν

π

T

n− 1 t, (2.12)

for t ∈ [0, T ].

Proof. Again,

Xt −X(n)
t =

∞∑
i=n+1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}.

Note that E[Vi] = 0 and that Vi is independent of Q←
(

Γi
T

)
and Ui. Hence, by

Fubini’s theorem,

E

 ∞∑
i=n+1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}

 = 0.

Furthermore, analogously to Theorem 2.2,

E


 ∞∑
i=n+1

√√√√Q←(Γi
T

)
Vi1{Ui≤t}


2


=
∞∑

i=n+1

∞∑
j=n+1

E


√√√√Q←(Γi

T

)
Vi1{Ui≤t}

√√√√Q←(Γj
T

)
Vj1{Uj≤t}


=

∞∑
i=n+1

∞∑
j=n+1

E


√√√√Q←(Γi

T

)√√√√Q←(Γj
T

)
1{Ui≤t}1{Uj≤t}

E [ViVj] . (2.13)

Since E[ViVj ] = δi,j , (2.13) equals

∞∑
i=n+1

E

Q←(Γi
T

)
1{Ui≤t}

 < t

T

∞∑
i=n+1

E

q(Γi
T

) = 2ν
π

T

n− 1 t

as in the proof of Theorem 2.2.

If ν > 2 the variance of Xt is finite and equal to νt
ν−2 . In this case the error

bound (2.12) has the share 2(ν−2)T
π(n−1) of the variance of Xt. This means that if the

time horizon or the degrees of freedom increase the truncation level n has to increase
proportionally to hold this share constant. If the level of truncation is large enough
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2.3 Mean squared error bounds

(e.g., one hundred times higher than T ) this share will be about a few percentages for
small ν. Section 2.5.1 presents detailed information on the size of the bounds above
and those below with a Monte Carlo verification.

Next, we return to the case of the random truncation for Xt, cf. Remark 2.1.
This is done by replacing ∑n

i with ∑Nτ
i with a unit rate Poisson process Nt. We

then make use of the law of iterated expectation. Here, we skip this for the inverse
gamma subordinator Yt as the derivation of the expression becomes very tedious. The
numerical values are very close anyway.
Corollary 2.3. Let {Yt} and {Xt} be defined as in Theorems 2.2 and 2.3. Let τ be
a large positive number and define Nτ := #{i ∈ N : Γi ≤ τ}. Given the randomly
truncated series representations

Y τ
t :=

∑
{i∈N:Γi≤τ}

Q←
(

Γi
T

)
1{Ui≤t}

and

Xτ
t :=

∑
{i∈N:Γi≤τ}

√√√√Q←(Γi
T

)
Vi1{Ui≤t},

the conditional mean squared error for the Student-Lévy process is bounded by

E[(Xt −Xτ
t )2|Γ2 ≤ τ ] < 2νT t

π

τ + 1− eτ − τγ + τEi(τ)− τ log(τ)
eτ

1
1− Γ(3, τ)/2 ,

(2.14)
with γ = 0.577216 . . . the Euler-Mascheroni constant, Ei(x) = −

´∞
−x

e−t

t dt the expo-
nential integral and Γ(s, x) =

´∞
s ts−1e−tdt the incomplete gamma function.

Proof. Since Nτ = #{i ∈ N : Γi ≤ τ} and the Γi are unit Poisson arrival times,
Nτ ∼ Poi(τ). We now use the law of iterated expectation.

E[(Xt −Xτ
t )2|Γ2 ≤ τ ] = E

[
E[(Xt −Xτ

t )2|Nτ ,Γ2 ≤ τ ]|Γ2 ≤ τ
]

< E

2ν
π

T t

Nτ − 1

∣∣∣∣∣Γ2 ≤ τ

 ,
by Theorem 2.3. The conditional expected value E

[
1

Nτ−1 |Γ2 ≤ τ
]
exists and Nτ |Γ2 ≤

τ follows a truncated Poisson distributed with density function

P [Nτ = k|Nτ ≥ 2] = e−ττk

k!(1− P [Nτ ≤ 2]) = e−ττk

k!(1− Γ(3, τ)/2) .
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2 Simulation of Student-Lévy processes using series representations

Hence, the conditional expectation is

E

[ 1
Nτ − 1

∣∣∣Γ2 ≤ τ
]

=
∞∑
k=2

1
k − 1

e−ττk

k!(1− Γ(3, τ)/2)

= e−τ

(1− Γ(3, τ)/2)
(
τ + 1− eτ − τγ + τEi(τ)− τ log(τ)

)
,

which completes the proof.

The bounds are only valid under the condition Γ2 ≤ τ . However, this condition
is extremely likely to hold for reasonably high τ . The reason for this condition is to
ensure that Nτ ≥ 2. This is necessary for E( 1

Nτ−1) to exist.

2.3.2 Rejection method

The rejection method (2.2) provides another approach for the series representation.
The advantage is that we do not need to perform numerical inversions of Q([u,∞)).
The rejection method works with another subordinator Y0(t) which has a closed form
inverse tail measure such that the measure Q is absolutely continuous with respect to
Q0 and the corresponding density is bounded by 1. We simulate the subordinator
Y0(t) and accept summands Q←0 (Γi/T ) with probability dQ

dQ0
(Q←0 (Γi/T )).

The following result establishes the same upper bound for the rejection method
as for the inverse tail measure method.
Corollary 2.4. Let {Yt} be the inverse gamma subordinator with L(Y1) = RΓ(ν/2, ν/2)
and Laplace characteristics (0, Q) with Q defined in (2.3), ν > 1, and let {Bt} be a
Brownian Motion independent of {Yt}. Consider a Lévy process {Y0(t)} with zero
drift and Lévy measure Q0(du) =

√
ν

2πu3 du. Let Xt := BYt be the subordinated
Student-Lévy process, represented with the rejection method for subordination

Xt =
∞∑
i=1

√√√√Q←0
(

Γi
T

)
Vi1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi


1{Ui≤t}, t ∈ [0, T ],

where Vi are i.i.d. standard normal and Wi are i.i.d. uniform on [0, T ]. Then, both the
deterministically truncated series representation X(n)

t (for n ≥ 2) and the randomly
truncated representation Xτ

t have the same mean squared error bounds (2.12) and
(2.14) as in Theorem 2.3 and Corollary 2.3 as the inverse Lévy measure method.

Proof. We only prove the claim for the deterministic truncation; the random trunca-
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2.3 Mean squared error bounds

tion bound follows as in Corollary 2.3. Note that Lemma 2.1 implies that dQ
dQ0
≤ 1

and that the tail inverse Q←0 (y) = 2ν
πy2 exists in closed form. Let us start with the

mean squared error

E


 ∞∑
i=n+1

√√√√Q←0
(

Γi
T

)
Vi1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi


1{Ui≤t}


2


=
∞∑

i=n+1
E

Q←0
(

Γi
T

)
1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi


1{Ui≤t}

 ,
analogously as in the proof of Theorem 2.3, since E[ViVj ] = δi,j . By the law of
iterated expectation, this is equal to

∞∑
i=n+1

E

E
Q←0

(
Γi
T

)
1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi



∣∣∣∣∣∣∣Γi

E [1{Ui≤t}]

=
∞∑

i=n+1
E

Q←0
(

Γi
T

)
P

 dQ
dQ0

Q←0
(

Γi
T

) ≥Wi

∣∣∣∣∣∣Γi

E [1{Ui≤t}]

=
∞∑

i=n+1
E

Q←0
(

Γi
T

)
dQ
dQ0

Q←0
(

Γi
T

)
E [1{Ui≤t}]

≤
∞∑

i=n+1
E

Q←0
(

Γi
T

)E [1{Ui≤t}] ,
because dQ

dQ0
≤ 1. The rest of the proof follows as in the proof of Theorem 2.3 since

Q←0 ≡ q.

A key term is the probability of acceptance. This should not be too small, so as
not to simulate many random numbers which are not used. For the inverse gamma
subordinator there is no closed formula for this probability. Nevertheless, we can
simplify the expression to numerically evaluate it. As in the proof of Corollary 2.4,
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Figure 2.4: Plots of the acceptance probabilities dQ
dQ0

(x) for the inverse gamma sub-
ordinator for different degrees of freedom. For ν = 39 big jumps are
accepted with a very small probability.

P

 dQ
dQ0

Q←0
(

Γi
T

) ≥Wi

 = E

P
 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi

∣∣∣∣∣∣Γi



= E

 dQ
dQ0

Q←0
(

Γi
T

)


=
ˆ ∞

0

dQ
dQ0

(
Q←0

(
x

T

))
γi(x)dx,

where γi(x) is the density function of the Γ(i, 1) distribution, Q←0 (y) = 2ν
πy2 and

dQ
dQ0

(u) = ρ(u)/
√

ν
2πu3 , ρ being given in (2.3). Figure 2.4 plots the acceptance

probability dQ
dQ0

(x) for various ν. Note that x = Q←0 (Γi/T ) decreases to zero for
increasing i. This means that it is crucial to know how fast dQ

dQ0
(x) converges to 1 for

x↘ 0. The rejection method works better for small ν than for large ν.
Note that for both the inverse Lévy measure method and the rejection method it

is not possible to compute the mean squared error directly. Since the upper bounds
coincide, it is natural to ask whether or not the mean squared errors are equal. Imai
& Kawai (2013) provided an answer:
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Proposition 2.2. Consider the setting of Corollary 2.2 and let Y0(t) be a subordinator
with Lévy measure Q0 such that dQ

dQ0
(Q←0 (Γi/T )) ≤ 1. Define the approximating series

representations

Xτ,1
t :=

∑
{i∈N:Γi≤τ}

√√√√Q←(Γi
T

)
Vi1{Ui≤t},

Xτ,2
t :=

∑
{i∈N:Γi≤τ}

√√√√Q←0
(

Γi
T

)
Vi1


 dQ

dQ0

Q←0
(

Γi
T

) ≥Wi


1{Ui≤t},

for t ∈ [0, T ]. Then
E[(Xt −Xτ,1

t )2] < E[(Xt −Xτ,2
t )2].

Imai & Kawai (2013) proved a more general version of Theorem 2.2. They
also show that the inverse Lévy measure method is better at simulating the tails of
the Lévy measure than the rejection method (and further methods), which instead
performs better near the origin.

Since both methods have reasonably small approximation errors for sufficiently
large τ , we evaluate their numerical advantages and disadvantages in Section 2.5.2.
Remark 2.3 (Thinning method). Although we discussed that the thinning method
is theoretically valid (see Proposition 2.1), it is not useful to simulate Lévy processes
in general. While the technique may be fine for just one infinitely divisible random
variable, we now argue why it cannot easily simulate a (quasi-)time-continuous process.

Consider any subordinator with Lévy measure Q and any distribution function
F on (0,∞) such that Q is absolutely continuous with respect to F . Recall that the
thinning series representation is given by

∞∑
i=1

Vi1

{dQ
dF (Vi) ≥

Γi
T

}1{Ui≤t}, t ∈ [0, T ],

where Vi ∼ F i.i.d. We are interested in the number of accepted Vis in the represen-
tation, i.e., in the probability

P

[
dQ
dF (Vi) ≥

Γi
T

]
= E

P
 dQ

dF (Vi) ≥
Γi
T

∣∣∣∣∣Vi

 (2.15)

= E

Gi
(
T

dQ
dF (Vi)

) ,

33



2 Simulation of Student-Lévy processes using series representations

where Gi denotes the cumulative distribution function of the Γ(i, 1) distribution.
Since Gi(x) = γ(i,x)

Γ(i) , with γ(i, x) =
´ x

0 t
i−1e−tdt, is a strictly decreasing function in

i ∈ N, it follows that Gi(x) converges to zero for increasing i. Hence the probability
(2.15) converges to zero (recall that the acceptance probability for the inverse gamma
subordinator converges to one using the rejection method).

This is not a problem from a theoretical point of view. However, for computational
purposes a shrinking acceptance probability means that for a pure jump Lévy process
with infinitely many jumps we have to draw many simulations to obtain enough
accepted jumps. Even for the gamma subordinator (see, e.g., Rosiński 2001) our
simulations suggest a very low acceptance rate.

2.3.3 Gaussian approximation

Instead of just discarding the small jumps, we now show that there is an appropriate
refinement in the case of the one-dimensional Student-Lévy process and the inverse
gamma subordinator. Asmussen & Rosiński (2001) (and, for multivariate series
representations, Cohen & Rosiński (2007)) proposed a Gaussian approximation of the
small jumps, which are truncated in the series representation. To this end, decompose
a Lévy process {Xt} with characteristics (γ,A,Π) into two Lévy processes

X(t) = Xε(t) +Xε(t),

where Xε(t) = ∑
{i∈N:H(Γi/T,Vi)>ε}H

(
Γi
T , Vi

)
1{Ui≤t}, with ε > 0, is a truncated

series representation with Lévy measure denoted by Πε. Xε(t) is the corresponding
remainder with Lévy measure Πε = Π−Πε. Under some conditions (see (2.16)) on
the error variance

σ2
ε =
ˆ
R
x2Πε(dx),

we can replace Xε(t) by an approximation

µεt+ σεWt,

with µε =
´
R xΠε(dx), and where Wt is a Brownian motion.

The next two propositions show that the Gaussian approximation is valid for
the inverse Gamma subordinator and the Student-Lévy process. This approximation
can be used to improve the goodness of fit of the simulated paths; see Section
2.5.3. For brevity we only discuss the inverse Lévy measure case here. Eberlein &
v. Hammerstein (2004) provided a proof for the GH and GIG processes. The Gaussian
approximation for Student-Lévy process and the inverse gamma subordinator can
then be proven by a limiting argument. We here prove it directly.
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2.3 Mean squared error bounds

Proposition 2.3. Consider the error of the truncated series representation

Yε(t) =
∑

{i∈N:Q←(Γi/T )<ε}
Q←

(
Γi
T

)
1{Ui≤t},

for the inverse gamma subordinator. Then

σ−1
ε (Yε(t)− µεt) L→Wt, in D[0, T ]

for ε → 0, with µε =
´ ε

0 uQ(du) and σ2
ε =

´ ε
0 u

2Q(du), where Q defined in (2.3)
denotes the Lévy measure of the inverse gamma subordinator and Wt is a Brownian
motion.

Proof. Asmussen & Rosiński (2001) showed that the distributional convergence is
implied by

lim
ε→0

σε
ε

= +∞. (2.16)

We show that limε→0
σ2
ε
ε2 = +∞. Recall that

lim
ε→0

σ2
ε

ε2 = lim
ε→0

´ ε
0 u

2 ´∞
0 u−1e−suνg ν

2
(2νs)dsdu

ε2 . (2.17)

Using l’Hôspital’s rule, (2.17) is equal to

lim
ε→0

ε2 ´∞
0 ε−1e−sενg ν

2
(2νs)ds

2ε = lim
ε→0

1
2

ˆ ∞
0

e−sεg ν
2
(2νs)ds.

The monotone convergence theorem can be applied to (2.17) and thus

1
2

ˆ ∞
0

lim
ε→0

e−sενg ν
2
(2νs)ds = 1

2

ˆ ∞
0

νg ν
2
(2νs)ds =∞.

Proposition 2.4. Consider the error of the truncated series representation

Xε(t) =
∑

{i∈N:Q←(Γi/T )<ε}
Q←

(
Γi
T

)
Vi1{Ui≤t},

for the Student-Lévy process. Then

σ−1
ε Xε(t) L→W (t), in D[0, T ]
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2 Simulation of Student-Lévy processes using series representations

for ε→ 0, with σ2
ε =
´ ε
−ε x

2Π(dx), where Π denotes the Lévy measure of the Student-
Lévy process (see Theorem 1.5) and Wt is a Brownian motion.

Proof. Note that in the non-finite variation case µε has to be zero (Sato 1999). Recall
the Lévy measure for the univariate Student-Lévy process (with no drift and standard
scaling) is given by

Π(dx) = ν2 3
4 |x|−

1
2

π
1
2

ˆ ∞
0

s
1
4K 1

2

(√
2s|x|

)
g ν

2
(2νs)dsdx.

In the following we use the identity

K 1
2
(z) =

√
π

2 e
−zz−

1
2

for z > 0. As Π is a symmetric measure,

σ2
ε =
ˆ ε

−ε
x2Π(dx) = 2

ˆ ε

0
x2Π(dx).

Again using l’Hôspital’s rule, for some constant C > 0 that may change from line to
line

lim
ε→0

σ2
ε

ε2 = lim
ε→0

C
´ ε

0 x
2|x|−

1
2
´∞

0 s
1
4K 1

2

(√
2s|x|

)
g ν

2
(2νs)dsdx

ε2

= lim
ε→0

C
ε2ε−

1
2
´∞

0 s
1
4 e−

√
2sε
(√

2s
)− 1

2 ε−
1
2 g ν

2
(2νs)ds

ε

= lim
ε→0

C

ˆ ∞
0

e−
√

2sεg ν
2
(2νs)ds

= C

ˆ ∞
0

g ν
2
(2νs)ds

=∞.

The second-to-last last step uses the monotone convergence theorem.

2.4 Numerical methods

This section presents numerical methods for generating Lévy processes using series
representations, with a focus on the inverse Lévy measure method. Unfortunately,
there exists no closed form inverse, due to the complicated form of the Lévy measure
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2.4 Numerical methods

(2.3) for the inverse gamma subordinator. Furthermore, since finding its tail measure
requires double integration, numerical root finding is very slow and, for a large number
of jumps, highly inefficient. Thus, we need a numerical procedure which approximates
roots in reasonable time.

Derflinger et al. (2010) proposed an inversion method for random variate gen-
eration if only the density is known. Imai & Kawai (2013) applied these ideas to
the inversion of the Lévy tail measure. They – as we do here – considered a com-
pact interval [xmin, xmax] ⊂ (0,∞) on which the inversion is performed. If we set
qmin := Q([xmin,∞)) and qmax := Q([xmax,∞)), we can define a probability distri-
bution function F (x) := qmin−Q([x,∞))

qmin−qmax
1[xmin,xmax](x) + 1(xmax,∞)(x) and accordingly

its density function f(x) := ρ(x)
qmin−qmax

1[xmin,xmax](x) and then apply the algorithms of
Derflinger et al. (2010).

Imai & Kawai (2013) point out that the algorithms behave nicely in many
applications, but that it can be problematic for explosive behavior near the origin,
as it is the case for tail measures of α-stable processes. In fact (by Corollary 2.4)
the inverse Gamma subordinator’s explosive tail measure is close to an α-stable
subordinator and their algorithm does not terminate, meaning that the desired
accuracy is never achieved. Thus, the algorithm gets stuck in an infinite loop. Here
we do not transform to a probability function and consider the Lévy tail measure
directly. This implies some changes to their approach, which we discuss now.

The following algorithms work well with inverse gamma subordinators, for which
we explain the algorithms. Inverse gamma subordinators can be replaced with other
subordinators having a strictly decreasing Lévy tail measure.

Consider a compact interval [xmin, xmax] ⊂ (0,∞) with a sufficiently small xmin.
The idea is not to find the root by root finding algorithms, but first to find appropriate
points {xi} in the support and the corresponding Qi = Q([xi,∞)) using numerical
integration. Then, second, we perform an interpolation between {Qi, xi}. If we then
evaluate the interpolated function at a value y, we want the result to be as close as
possible to the true value Q←(y).

We split (as in the original proposal by Derflinger et al. (2010)) the algorithm
into an initialization where a proper set {xi, Qi} is found and the numerical inversion
routine, which is applied to y to estimate Q←(y). The key advantage is that, while
generating the setup may take some time, the actual inversion is very fast. We present
Algorithm 1 for the setup in pseudo code and discuss it in detail.

We fix a number εtol > 0 as a tolerance level for the maximal relative error. We
start a loop by setting the current subinterval [xL, xR] of length ∆. This subinterval
is again partitioned into six further subintervals [xint[j − 1], xint[j]] for j = 1, . . . , 6.
Next, we compute the corresponding tail measures in line 21 using the adaptive
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2 Simulation of Student-Lévy processes using series representations

Algorithm 1 Numerical Inversion Setup
Input: Q([x,∞)); .Tail measure.

ρ(x); .Lévy density.
[xmin, xmax] ⊂ (0,∞); .Compact domain on which the inverse is computed.
εtol > 0; .Maximal tolerated relative error.

Output: {x[i]}i∈N0 ;
{Q[i]}i∈N0 ;

1: ∆← (xmax − xmin)/32; .Initial step size.
2: x[0]← xmin; Q[0]← Q([xmin,∞));
3: i← 0; .Index of subintervals.
4: while x[i] < xmax do .Loop for all subintervals.
5: xL ← x[i]; .Set left boundary for current subinterval [xL, xR].
6: repeat .Repeat refinement until error is small enough.
7: if xL + ∆ < xmax then .Set right boundary of current subinterval.
8: xR ← xL + ∆;
9: else

10: xR ← xmax;
11: end if
12: xint[0]← xL; .Set seven interpolation points in [xL, xR].
13: xint[1]← xL+xR

2 −
√

2
3
xR−xL

2 ;

14: xint[2]← xL+xR
2 −

√
1
5
xR−xL

2 ;
15: xint[3]← xL+xR

2 ;
16: xint[4]← xL+xR

2 +
√

1
5
xR−xL

2 ;

17: xint[5]← xL+xR
2 +

√
2
3
xR−xL

2 ;
18: xint[6]← xR;
19: Qint[0]← Q[i]; .Compute the corresponding seven Q([x[i],∞)).
20: for j = 1 to 6 do
21: Qint[j]← GaussQuadrature(ρ(x);xint[j],∞);

.Global adaptive Gauss-Kronrod rule for Lévy density ρ(x).
22: end for
23: εmax ← 0; .Maximal relative error.
24: decr← true; .Boolean variable for monotonic decrease.
25: for j = 0 to 5 do
26: xmid ← xint[j]+xint[j+1]

2 ;
.Set midpoint of consecutive interpolation points.

27: Qmid ← GaussQuadrature(ρ(x);xmid,∞);
.Compute the corresponding Q midpoints.

28: xinv ← NewtonInterpolation({Qint}, {xint};Qmid);
.Newton Interpolation {(Qint[j], xint[j])}j=0,...,6. Find xinv for Qmid.

29: ε←
∣∣∣xinv−xmid

xmid

∣∣∣;
.Relative error between interpolated value and true midpoint.
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2.4 Numerical methods

Algorithm 1 Numerical Inversion Setup – ctd.
30: εmax ← Max(ε, εmax); .Reset maximal error
31: if xinv < xint[j] or xinv > xint[j + 1] then
32: decr← false;
33: end if .Check if monotonicity fails.
34: if εmax > εtol or decr = false then
35: ∆← ∆/2 and
36: exit for

.If error is too large: refine step size, exit for loop, go back to line 7.
37: end if
38: end for
39: until εmax < εtol and decr = true
40: for k = 1 to 6 do .If error is small enough save current subinterval.
41: x[i+ k]← xint[k];
42: Q[i+ k]← Qint[k];
43: end for
44: ∆← 2∆; .Resize step size.
45: i← i+ 6; .Proceed to next subinterval, go back to line 5.
46: end while
47: imax ← i;
48: return {x[i]}i=0,...imax and {Q[i]}i=0,...imax .

Gauss-Kronrod rule (cf. Piessens & Branders (1974)). A simple but useful trick
for the gamma subordinator’s tail measure is not to perform two one-dimensional
numerical integrations but rather use an adaptive quadrature rule for two-dimensional
integration over the domain [x,∞)× (0,∞).

Let εmax denote the maximal relative error which is obtained for this refinement
of the current subinterval. We will reject the subinterval and try another refinement
in case εmax exceeds the tolerated error. The for-loop beginning in line 26 has the
following goal: compute the midpoint xmid for the subinterval [xint[j − 1], xint[j]]
and the corresponding Q([xmid,∞)). Next, perform a Newton interpolation with the
set {Qint[j], xint[j]} and evaluate the interpolated function at Q([xmid,∞)) to find
the approximate inverse (say, xinv). Now, compute the relative error between this
approximation and the true inverse xmid. If the maximum of the relative errors for
each subinterval [xint[j− 1], xint[j]] is greater than the tolerance level, halve ∆ and go
back to the beginning of the repeat loop (line 7) to work with a smaller subinterval.

Line 34 gives another important condition. Since the tail measure of an inverse
gamma process is strictly decreasing, so is its inverse. We check whether the interpo-
lated function (which shall approximate the inverse) is decreasing. In case this fails
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2 Simulation of Student-Lévy processes using series representations

we, again, halve ∆ and go back to line 7.
We thus eventually find a small subinterval which fulfills the properties that all

six relative errors between the approximation and the true midpoint are small enough.
Then, we store the current points {xint[j], Qint[j]} in the table and proceed to the
next subinterval. We compute relative errors rather than absolute errors because for
large values of x = Q←(y) absolute errors would be unnecessarily restrictive while
for very small values of x, which represent the many small jumps in the series, they
would be not sufficiently precise.

In the end, we obtain a table with points which are used to execute the numerical
inversion in Algorithm 2.

Algorithm 2 Numerical Inversion
Input: {x[i]}i=0,...imax ; .Coordinates generated in Algorithm 1.
{Q[i]}i=0,...imax ;

Output: u = Q←(y); .Inverted value in [xmin, xmax].
1: Find minimal index k such that Q[k] ≤ y through BinarySearch;
2: if k < 3 then
3: k ← 3
4: end if
5: if k > imax − 3 then
6: k ← imax − 3
7: end if
8: u← NewtonInterpolation({Q[k − 3], . . . , Q[k + 3]}, {x[k − 3], . . . , x[k + 3]}; y);

. Compute the Newton interpolation as approximation for the inverse.
9: if u < x[k − 3] or u > x[k + 3] then

. In case decreasingness fails, use linear interpolation instead.
10: u← LinearInterpolation({Q[k − 1], Q[k]}, {x[k − 1], x[k]}; y);
11: if u < x[k − 1] or u > x[k] then . If monotonicity still fails, exit.
12: print ERROR and exit;
13: else
14: return u;
15: end if
16: else
17: return u;
18: end if

The numerical inversion in Algorithm 2 is, using the table {x[i], Q[i]} of Algorithm
1, easy and efficient. If y is given, we compute Q←(y) by finding the minimal index
k such that Q[k] ≤ y, using an iterative binary search algorithm which is faster for
ordered points than an ordinary sequential search (Hörmann et al. 2004). Next, we
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2.5 Monte Carlo study

use the Newton Interpolation for the seven points {Q[j], x[j]} for j = k− 3, . . . , k+ 3
to find the inverse Q←(y). As discussed in Derflinger et al. (2010) and Imai &
Kawai (2013), it is advisable to have an alternative if the Newton polynomial is not
strictly decreasing. Although we did not observe such behavior for the inverse gamma
subordinator’s simulation, we still recommend employing linear interpolation in case
this apparently rare event occurs.

The path generation with the rejection method is easy to implement but more
time-consuming due to the numerical integration required for the rejection probability.
We discuss the computing times of the algorithms in Section 2.5.2.

2.5 Monte Carlo study

We now test the algorithms of Section 2.4. Although simulation of d-dimensional
Student-Lévy paths is possible we for simplicity consider one-dimensional paths. We
discuss three cases: a small degree of freedom ν = 4, an intermediate ν = 12 and a
higher degree of freedom ν = 39 whose Student t density comes close to the Gaussian
density. We consider, unless stated otherwise, a fixed time domain [0, T ] with T = 100.
In the case of the inverse Lévy measure method, Algorithm 1 requires a compact
interval Q←(y) ∈ [xmin, xmax]. For each ν we choose xmin = 10−9, but the upper
bound can differ because for higher ν there are rarely big jumps in the inverse gamma
subordinator. Here, let xmax = 104 for ν = 4, xmax = 102 for ν = 12 and xmax = 10
for ν = 39. Of course it is possible to choose higher xmax. However, higher jumps than
the chosen xmax are very unlikely and hence not considered to reduce computational
time. We set εtol = 10−6. The error determines the execution time of the setup and
should be selected with care. For instance, for higher ν and a lower tolerated error
it can take much longer to run Algorithm 1 than discussed below. We feel that our
particular choice is sufficient even if it implies that for big jumps the absolute error
increases. To justify our choice we test the setup points by computing absolute and
relative errors

εa(x) := |x−Q←∗ (Q([x,∞)))|

and
εr(x) := |x−Q

←
∗ (Q([x,∞)))|

x
,

where Q←∗ is the approximate inverse from Algorithm 2 of the Lévy tail measure
Q([x,∞)) of the inverse gamma subordinator. Its Lévy measure is given in (2.3) and is
numerically computed with the Gauss-Kronrod rule. For any subinterval (10r, 10r+1]
for r ∈ {−9,−8, . . . , log10(xmax)} we take equidistant test points xrk = k

100010r+1,
for k = 1, . . . , 1000. (Exclude the last point xmax.) Imai & Kawai (2013) instead
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2 Simulation of Student-Lévy processes using series representations

(a): Relative errors εr(x)

/ν 4 12 39
Min 4.9 · 10−14 4.06 · 10−15 ≈ 0
25% 4.62 · 10−9 4.31 · 10−9 4.04 · 10−9

Median 1.89 · 10−8 1.79 · 10−8 1.91 · 10−8

Mean 7.94 · 10−8 1.18 · 10−7 9.19 · 10−8

75% 6.81 · 10−8 7.01 · 10−8 6.97 · 10−8

Max 1.63 · 10−4 7.9 · 10−4 1.63 · 10−4

P [εr(x) < 10−6] 0.9963 0.9905 0.9933

(b): Absolute errors εa(x)

Min 3.75 · 10−21 1.94 · 10−21 ≈ 0
25% 4.45 · 10−14 1.86 · 10−14 5.16 · 10−15

Median 9.09 · 10−11 6.91 · 10−12 8.52 · 10−13

Mean 2.81 · 10−5 2.15 · 10−7 2 · 10−9

75% 1.24 · 10−7 3.75 · 10−9 8.63 · 10−11

Max 0.22 3.72 · 10−4 9.14 · 10−7

Table 2.1: Panel (a) displays the quartiles and the mean of the relative errors. The
last line in panel (a) is the relative frequency of errors smaller than 10−6.
Panel (b) for the absolute errors. The statistics on the errors are computed
for the 1000 · (10 + log10(xmax)) number of test points xrk.

controlled the error ε(y) = |y − Q([Q←(y),∞))| in their approach. However, we
think that errors based on the x-axis are preferable, because we are interested in the
distance between the approximate inversion and the true inversion.

Table 2.1 presents some statistics on the numerical errors. For both types we
compute the sample mean and the five quartiles of εa(xrk) and εr(xrk). Furthermore, in
rare cases the observed empirical errors exceed the maximal tolerated error εtol = 10−6.
Since this happens in less than 1% of all test points, we do not consider this to be an
issue. The relative errors are very similar for the three different degrees of freedom
which suggests that our method is robust. On the other hand, the absolute error
is smaller for higher degrees of freedom, since the inverse Lévy measure is not that
extreme around the origin.
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2.5 Monte Carlo study

2.5.1 Mean squared error simulation

In this subsection we illustrate by simulation the theoretical mean squared error
bounds for the inverse gamma subordinator and the Student-Lévy process derived
in Section 2.3.1. In order to compare with simulated MSE bounds we first compute
the theoretical counterparts. The theoretical MSE is defined as expected quadratic
deviation between the series representation and the truncated series, E((Xt −Xτ

t )2).
The empirical counterpart is given by 1

B

∑B
b=1(Xt,b−Xτ

t,b)2 for b = 1, . . . , B replications.
Tables 2.2 and 2.3 show the theoretical upper bounds for the MSE computed with the
formulas (2.7) and (2.14), respectively, for various ν and T with t = T and different
levels of truncation τ . It is obvious that we need a higher level of truncation for
a larger domain [0, T ] since a larger domain requires more jumps. In the case of
the inverse gamma subordinator Table 2.2 shows that a ten times larger interval
approximately requires a hundred times larger truncation level, (compare one entry
with one to the right, two down). This is because the error in (2.7) (for deterministic
truncation) is of order T 4 (at the end point) and 1/n2 (or 1/τ2 for random truncation,
respectively). The same is true for the Student-Lévy process where (2.14) (or easier
to see for the deterministic determination in (2.12)) is of order T 2 and 1/τ . The
relationship between the degree of freedom and the level of truncation is linear for
both processes, since (2.7) is of order ν2 and (2.12) is of order ν. In summary, it is
important to choose the truncation level high enough because the error bounds can
be very large for large T .

Now, we discuss how to replicate the mean squared error bounds of Theorem
2.2 and Theorem 2.3 (Corollary 2.3) empirically. Consider the truncated jumps over
{i ∈ N : Γi > τ}. Recall that the errors are given by

Yt − Y τ
t =

∑
{i∈N:Γi>τ}

Q←
(

Γi
T

)
1{Ui≤t}

and

Xt −Xτ
t =

∑
{i∈N:Γi>τ}

√√√√Q←(Γi
T

)
Vi1{Ui≤t}.

Since we do not know Q← explicitly, we have to compute it numerically with the
algorithms of Section 2.4. Recall that the inversion is only available on the compact
interval [xmin, xmax], which means that we truncate all Q←

(
Γi
T

)
which are smaller

than the left boundary xmin. For all i ∈ N such that Γi > τ we replace Q←(y) by its
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2 Simulation of Student-Lévy processes using series representations

(a): ν = 4

τ / T 0.1 1 10 100
10 1.53 · 10−5 0.153 1.53 · 104 1.53 · 107

100 6.96 · 10−8 6.96 · 10−4 6.96 6.96 · 104

1000 6.53 · 10−10 6.53 · 10−6 6.53 · 10−2 6.53 · 102

10000 6.49 · 10−12 6.49 · 10−8 6.49 · 10−4 6.49
100000 6.49 · 10−14 6.49 · 10−10 6.49 · 10−6 6.49 · 10−2

1000000 6.48 · 10−16 6.48 · 10−12 6.48 · 10−8 6.48 · 10−4

(b): ν = 12

10 1.38 · 10−4 1.38 1.38 · 104 1.38 · 108

100 6.27 · 10−7 6.27 · 10−3 62.67 6.27 · 105

1000 5.88 · 10−9 5.88 · 10−5 0.588 5.88 · 103

10000 5.84 · 10−11 5.84 · 10−7 5.84 · 10−3 58.4
100000 5.84 · 10−13 5.84 · 10−9 5.84 · 10−5 0.584
1000000 5.84 · 10−15 5.84 · 10−11 5.84 · 10−7 5.84 · 10−3

(c): ν = 39

10 1.46 · 10−3 14.6 1.46 · 105 1.46 · 109

100 6.62 · 10−6 6.62 · 10−2 6.62 · 102 6.62 · 106

1000 6.21 · 10−8 6.21 · 10−4 6.21 6.21 · 104

10000 6.17 · 10−10 6.17 · 10−6 6.17 · 10−2 6.17 · 102

100000 6.16 · 10−12 6.16 · 10−8 6.16 · 10−4 6.16
1000000 6.16 · 10−14 6.16 · 10−10 6.16 · 10−6 6.16 · 10−2

Table 2.2: Theoretical MSE bounds for the inverse gamma subordinator’s series
representation for different degree of freedom ν, time horizon T and level
of truncation τ . The formula (2.7) for the deterministic truncation here
gives very similar numbers as for the random truncation.

upper bound q(y) = 2ν
πy2 . We then simulate the mean squared error with

∞∑
i=Nτ

√√√√q(Γi
T

)
Vi1{Ui≤t}

(or alternatively the version for the inverse gamma subordinator), by choosing an
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(a): ν = 4

τ / T 0.1 1 10 100
10 2.83 · 10−3 0.283 28.3 2.82 · 103

100 2.57 · 10−4 2.57 · 10−2 2.57 2.57 · 102

1000 2.55 · 10−5 2.55 · 10−3 0.255 25.5
10000 2.55 · 10−6 2.55 · 10−4 2.55 · 10−2 2.55
100000 2.55 · 10−7 2.55 · 10−5 2.55 · 10−3 0.255
1000000 2.55 · 10−8 2.55 · 10−6 2.55 · 10−4 2.55 · 10−2

(b): ν = 12

10 8.49 · 10−3 0.849 84.9 8.49 · 103

100 7.72 · 10−4 7.72 · 10−2 7.72 7.72 · 102

1000 7.65 · 10−5 7.65 · 10−3 0.765 76.5
10000 7.64 · 10−6 7.64 · 10−4 7.64 · 10−2 7.64
100000 7.64 · 10−7 7.64 · 10−5 7.64 · 10−3 0.764
1000000 7.64 · 10−8 7.64 · 10−6 7.64 · 10−4 7.64 · 10−2

(c): ν = 39

10 2.76 · 10−2 2.76 2.76 · 102 2.76 · 104

100 2.51 · 10−3 0.251 25.1 2.51 · 103

1000 2.49 · 10−4 2.49 · 10−2 2.49 2.49 · 102

10000 2.48 · 10−5 2.48 · 10−3 0.248 24.8
100000 2.48 · 10−6 2.48 · 10−4 2.48 · 10−2 2.48
1000000 2.48 · 10−7 2.48 · 10−5 2.48 · 10−3 0.248

Table 2.3: Theoretical MSE bounds for the Student-Lévy process’ series representation
for different degree of freedom ν, time horizon T and level of truncation
τ . The formula (2.12) for the deterministic truncation gives very similar
numbers as for the random truncation (2.14) here.

extremely high cutoff point, e.g., if we replace ∞ by m = 108.
For the rest of this subsection we fix T = 100. Table 2.4 shows the empirical

MSE bounds for the inverse gamma subordinator and Table 2.5 for the Student-Lévy
process for B = 10, 000 replications. The empirical MSE values are very close to
the theoretical ones. Of course, the empirical MSE values are a bit smaller due
to the truncation, which has to be applied at some point. Again, for Yt the MSE
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2 Simulation of Student-Lévy processes using series representations

τ/ν 4 12 39
10 6.73 · 106 6.05 · 107 6.39 · 108

100 6.5 · 104 5.86 · 105 6.19 · 106

1000 6.49 · 102 5.84 · 103 6.16 · 104

10000 6.48 58.4 6.16 · 102

100000 6.47 · 10−2 0.58 6.15
1000000 6.36 · 10−4 5.72 · 10−2 0.06

Table 2.4: Empirical mean squared errors for the inverse gamma subordinator with
various degree of freedom ν and level of truncation τ and fixed time horizon
T = 100.

τ/ν 4 12 39
10 2.52 · 103 7.55 · 103 2.45 · 104

100 2.55 · 102 7.66 · 102 2.49 · 103

1000 25.8 77.3 2.51 · 102

10000 2.53 7.6 24.7
100000 0.254 0.763 2.48
1000000 2.5 · 10−2 7.5 · 10−2 0.244

Table 2.5: Empirical mean squared errors for the Student-Lévy process with various
degree of freedom ν and level of truncation τ and fixed time horizon
T = 100.

depends quadratically on ν and linearly for Xt. Hence, if we consider simulating an
inverse gamma subordinator we should take this into account by carefully choosing
an appropriately high value of τ .

2.5.2 Comparison between methods

This subsection compares the inverse Lévy measure method with the rejection method.
For simplicity we consider Student t distributed X1 increments for different degrees
of freedom (ν = 4, 12 and 39). We simulate 10,000 random variates according to
both methods. Figure 2.5 shows QQ-plots to check if the empirical distribution is
approximately Student t. We additionally compare it with the standard acceptance-
rejection method for simulating Student t random variates (in the first column of
Figure 2.5). The second column corresponds to the inverse Lévy measure method and
the third to the rejection method. The latter two are generated with a truncation
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2.5 Monte Carlo study

τ / ν 4 12 39
10 0.647 0.271 0.016
100 0.931 0.81 0.564
1000 0.99 0.968 0.914
10000 0.999 0.996 0.987

Table 2.6: The average probabilities of acceptance in the rejection method for various
ν and τ . The average is taken over all jumps in the truncated series
representation and over all of the 10000 realizations.

level τ = 10, 000. The comparison suggests that both methods work equally well as
the standard method for generating Student t random variates. Moreover, since the
level of truncation is very high, there is no visible difference for higher degrees of
freedom in the bottom panels.

Figures 2.6 (inverse Lévy measure method) and 2.7 (rejection method) also show
QQ-plots each for a given method of random variate generation. In both figures the
panels’ rows correspond to the degrees of freedom ν = 4, 12 and 39. The columns
correspond to different levels of truncation τ = 10, 100 and 1000. Obviously, the
truncation at τ = 10 is not sufficient. For the rejection method, this level yields many
paths exclusively with rejections. This causes the odd behavior of the QQ-line being
zero. To see this, Table 2.6 shows the average acceptance probabilities 1

10000
∑10000
j=1 rj

with each rj the average of a realization of 1
Nτ

∑Nτ
i=1 P [ dQ

dQ0
(Q←0 (Γi/T )) ≥ Wi]. The

values imply that for large τ the acceptance probability is high enough, meaning
that most simulated jumps are accepted. This holds true for each ν. For τ = 10
and especially for large degrees of freedom we have a very low average acceptance
probability. This means that there is a high probability that no jump is accepted for
some realizations.

On the other hand, τ = 100 seems fine as there is no visible difference to
even higher τ . However, we strongly recommend not to choose τ too small. Our
experiments demonstrate that for smaller increments X∆t with ∆t < 1, choosing τ
too small does not ensure that {X∆t} is empirically distributed as the ∆t law of the
Student-Lévy process. Hence, to simulate values in between intervals of size 1, we
should adjust τ .

Next, we discuss execution times of the algorithms. All algorithms are written in
Mathematica and run on a Windows 10 personal computer using one kernel with 3.2
GHz. The numerical inversion setup, which has to run only once for each degree of
freedom, needs 1961.7 seconds for ν = 4, 2605.2 sec. for ν = 12 and 1118.3 sec. for
ν = 39. We test the algorithm for some other degree of freedoms and find no typical
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Figure 2.5: QQ-Plot of empirical quantiles from different simulation methods versus
the theoretical quantiles for the Student-Lévy process, reference line in
blue, dotted. For panels (a)-(c) ν = 4, for panels (d)-(f) ν = 12, for panels
(g)-(i) ν = 39. The first column (panels (a), (d), (g)) rv’s are simulated
with standard acceptance-rejection. The second column is simulated with
the inverse Lévy measure method, the third with the rejection method.
For both τ = 10000.48
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Figure 2.6: QQ-Plot of empirical quantiles from different simulation methods versus
the theoretical quantiles for the Student-Lévy process, reference line in
blue, dotted. For panels (a)-(c) ν = 4, for panels (d)-(f) ν = 12, for
panels (g)-(i) ν = 39. In all we use the inverse Lévy measure method
with different levels of truncation. First column τ = 10, second column
τ = 100 and third column τ = 1000.
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Figure 2.7: QQ-Plot of empirical quantiles from different simulation methods versus
the theoretical quantiles for the Student-Lévy process, reference line in
blue, dotted. For panels (a)-(c) ν = 4, for panels (d)-(f) ν = 12, for panels
(g)-(i) ν = 39. In all we use the rejection method with different levels
of truncation. First column τ = 10, second column τ = 100 and third
column τ = 1000.
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2.5 Monte Carlo study

Method τ / ν 4 12 39
Standard 4 · 10−5 4 · 10−5 4 · 10−5

Inverse Lévy measure 10 10−3 10−3 10−3

Inverse Lévy measure 100 10−2 10−2 10−2

Inverse Lévy measure 1000 0.09 0.08 0.09
Inverse Lévy measure 10000 0.81 0.79 0.82
Rejection 10 0.28 0.09 0.07
Rejection 100 4.7 2 0.79
Rejection 1000 81.3 23.8 11
Rejection 10000 880 254.8 121.8

Table 2.7: Computing time in seconds to generate one Student t random number
for the standard (acceptance-rejection) method, the numerical inversion
(Algorithm 2) and the rejection method. The latter two for different τ .

pattern for the runtime, except that odd degree of freedoms mostly run a bit shorter.
Table 2.7 compares the runtime of the different methods to generate one Student t
distributed random number and Table 2.8 the computing time to generate one path
of a Student-Lévy process with ν = 4 on [0, T ] for a varying level of truncation τ
(which also is the number of observable jumps, if accepted). The rejection method
is considerably slower than the inverse Lévy measure method due to the numerical
integration. The inverse Lévy measure method quickly generates random numbers
and random paths even for a high accuracy, cf. Table 2.3 for MSE bounds. There is
no difference in computing time in ν for the inverse Lévy measure method. However,
the rejection method is a bit faster for higher ν because the numerical integrations
perform faster.

To conclude, we briefly summarize the relative merits of the methods. The inverse
Lévy measure method is, if implemented as in Section 2.4, very fast and robust. That
said, the inverse function is not exact and exhibits numerical errors as discussed at
the beginning of that section. The present Monte Carlo evidence suggests that this is
a minor problem, however. On the other hand, the rejection method is numerically
more precise but the repeated computation of the integral in ρ(x) is time-consuming.
We therefore prefer the inverse Lévy measure method, due to its lower MSE (see
Proposition 2.2) and its fast computation.

2.5.3 Goodness of fit

In this subsection we only use the inverse Lévy measure method to simulate paths of
the Student-Lévy process and investigate whether the simulated trajectories obey the
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2 Simulation of Student-Lévy processes using series representations

Method τ Runtime
Inverse Lévy measure 103 0.14
Inverse Lévy measure 104 0.87
Inverse Lévy measure 105 8.2
Inverse Lévy measure 106 83.3
Rejection 103 29.2
Rejection 104 526.6
Rejection 105 8692.6
Rejection 106 109891.5

Table 2.8: Computing time in seconds to generate one Student-Lévy path on [0, T ]
with ν = 4 with the numerical inversion (Algorithm 2) and the rejection
method for different level of truncation τ .

Student-Lévy law. For this purpose we apply the Kolmogorov-Smirnov distance and
test to some points of the simulated paths.
Definition 2.1. Let

Fk(x) = 1
k

k∑
i=1

1(−∞,x](xi)

be the empirical distribution function. The Kolmogorov-Smirnov statistic for a given
cumulative distribution function is

Dk = sup
x∈R
|Fk(x)− F (x)|.

For the hypothesis H0 : F = F0 versus H1 : F 6= F0 it is true that Dk → 0 a.s. for
k →∞ if and only if H0 is true. Moreover, Kolmogorov (1933) proved
Lemma 2.2. For x > 0,

lim
k→∞

P [
√
kDk ≤ x] = 1− 2

∞∑
j=1

(−1)j−1e−2j2x2
.

For simplicity, we compute the p-value from the asymptotic (k →∞) distribution.
Let Ft(x) denote the cumulative distribution function of the Student-Lévy process.

Since Ft is not known explicitly, except for t = 1, we use the following inversion
theorem (Gil-Pelaez 1951):
Lemma 2.3. Let X be a continuous random variable in R. Let F (x) be its cumulative
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2.5 Monte Carlo study

(a): Standard

∆t / ν 4 12 39 “∞”
0.1 - - - 0.0272783

(0.0521)
1 0.0849081 0.0852336 0.0849289 0.0850967

(0.045) (0.0407) (0.0428) (0.0436)

(b): Inverse Lévy measure

0.1 0.0274064 0.0271817 0.0272413 -
(0.0506) (0.0452) (0.0455)

1 0.0853521 0.0852608 0.0851765 -
(0.0463) (0.0428) (0.0434)

Table 2.9: Mean Kolmogorov-Smirnov statistics and empirical sizes (in parentheses).
The “∞” column stands for simulated Brownian motions.

distribution function and ϕ(z) its corresponding characteristic function. Then,

F (x) = 1
2 −

1
π

ˆ ∞
0

Re
[
e−izxϕ(z)

iz

]
dz, (2.18)

where Re(y) denotes the real part of y ∈ C.

However, we can only compute Ft(x) for t 6= 1 numerically, again, by using the
adaptive Gauss-Kronrod rule.

The procedure is the following: we simulate a path of length T = 100 and look
at the 1-increments and the 0.1-increments. We estimate the empirical distribution
function, the Kolmogorov-Smirnov statistic and test the null F = Ft for t = 1 and
for t = 0.1. We perform two additional comparisons. First, as in Subsection 2.5.2,
we simulate 100 Student t random variates using acceptance-rejection. Second, we
simulate paths of a Brownian motion and perform the Kolmogorov-Smirnov test for
the increments. We repeat this 10,000 times for each configuration.

Table 2.9 shows the average Kolmogorov-Smirnov statistic of this Monte Carlo
study. The values of the standard method and the inverse Lévy measure method are
indeed very similar for 1-increments. For the 0.1-increments there is no standard
method of generation. Hence, we compare it with the Brownian motion where the
mean KS statistic is also of the same magnitude. The statistics for 0.1-increments
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2 Simulation of Student-Lévy processes using series representations

are smaller because we have 1000 instead of 100 sampling points in [0, 1].
We also computed other statistical distance measures as the Hellinger distance

but as the results were qualitatively the same, we omit these here.
Table 2.9 also presents the empirical sizes if we apply the Kolmogorov-Smirnov

test to the increments with a nominal level 5%. We use (2.18) to compute the p-values,
although for small sample sizes exact formulas are available. Thus, the number of
rejections is slightly too small.

Additionally, Figure 2.8 shows histograms of the Kolmogorov-Smirnov statistics
for ν = 4 (for other ν it looks very similar). If we compare the generated paths using
the inverse Lévy measure (panels (b) and (d) for 1- and 0.1-increments, resp.) with
the corresponding Brownian motion generation there is no visible difference. This
suggests that our proposed method works very well.

Furthermore, we tested the Gaussian approximation for small jumps (see Sub-
section 2.3.3). We skip the discussion of the results, as these were very similar to
those above without Gaussian approximation. One issue is that we do not know´ ε
−ε x

2Π(dx) exactly and have to approximate it. Positively speaking, this means that
the series representation works well even without additional Gaussian approximation.

2.6 Conclusion and future work

This chapter analyzes the Student-Lévy process and the inverse gamma subordinator,
their series representations and (conditional) MSE bounds. We furthermore propose
a numerically feasible path generation method. A simulation study confirms the
validity of our results.

In future work we aim to extend the results to multidimensional Student-Lévy
processes. The simulation can be generalized in a straightforward way (we only need
to incorporate the inverse gamma’s inverse Lévy measure and use Corollary 2.2 with
d-dimensional Vi). We shall investigate how the d dimensions influence the accuracy
of the simulation, e.g., whether there is a “curse of dimensionality”. Simulations of
generalizations of the Student-Lévy process such as the generalized hyperbolic Lévy
process will also be considered.

The tools developed here prove useful in the context of parameter estimation for
the Student-Lévy process and stochastic differential equations driven by Student-Lévy
processes. This will be discussed in the next chapter and illustrated with empirical
applications in Chapter 4.
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Figure 2.8: Histogram of the Kolmogorov-Smirnov statistics. Panel (a) for standard
Student t random variates. Panel (b) for 1-increments of the Student-Lévy
process. Panel (c) for 1-increments of the Brownian motion. Panel (d) for
0.1-increments of the Student-Lévy process. Panel (e) for 0.1-increments
of the Brownian motion, red line indicating the 5% critical value, blue
line the theoretical Kolmogorov-Smirnov density.

2.A Other simulation methods

We compare the simulation method introduced in Chapter 2 with other methods in
the literature. Hubalek (2005) proposed sampling from the characteristic function
(1.1) using Devroye (1981), which is based on the ratio-of-uniforms method. The
details are as follows. Let ϕ(u) denote the characteristic function (1.1) and ψ(u) the
characteristic exponent for the Student t distribution with standard scaling t(ν) and
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2 Simulation of Student-Lévy processes using series representations

let ϕ(u; t) = eψ(u)t be the characteristic function of Xt for a Student-Lévy process
{Xt} with standard scaling. Then,

ϕ′′(u; t) = ϕ(u; t)(ψ′′(u)t+ ϕ′(u)2t2).

In a preprocessing step numerically evaluate

c = 1
2π

ˆ ∞
−∞
|ϕ(u; t)|du,

k = 1
2π

ˆ ∞
−∞
|ϕ′′(u; t)|du.

Set A = 4
√
kc and

g(x) = min
(
c,
k

x2

)
.

The algorithm generates a sample of {Xt} with density A−1g(x) by the ratio-of-
uniforms method and accepts iff g(X) < ft(X), where ft(x) denotes the density of
Xt and has to be evaluated numerically using the following Fourier inversion

ft(x) = 1
π

ˆ ∞
0

cos(xu)ϕ(u; t)du.

Then the algorithm is

Algorithm 3 Hubalek (2005)
Input: Numbers k, c, function g(x) depending on ν and t;
Output: Random variate Y with density function ft(x).

1: repeat
2: Sample V1 ← U(−1,1),
3: Sample V2 ← U(−1,1),
4: Sample U ← U(0,1),
5: X ←

√
k
c
V1
V2
,

6: Y ← g(X) · U ,
7: until Y ≤ f(X).

Note that the average number of repetitions until acceptance is given by A
(Devroye 1981).

More recently, Barth & Stein (2016) discussed a slightly different approach based
on the direct inversion method. Let Ft(x) denote the cumulative distribution function
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of Xt, which can be evaluated numerically using

Ft(x) = 1
2 −

1
π

ˆ ∞
0

Re
[
e−iuxϕ(u)

iu

]
du,

see Gil-Pelaez (1951). Then the algorithm is

Algorithm 4 Barth & Stein (2016)
Input: ν and t;
Output: Random variate Y with distribution function Ft(x).

1: Sample U ← U(0,1),
2: Find root Y ← inf{x ∈ R|Ft(x) = U}.

We compare both with the inverse Lévy measure method of Chapter 2. For
each method we simulate a Student-Lévy path on [0, 100] with a frequency ∆t = 0.1.
Actually, this means we simulate 1,000 random variables with distribution function
F0.1(x). Figure 2.9 shows QQ-plots comparing the empirical quantiles with the
theoretical quantiles. The three methods appear to work qualitatively equally well.

Additionally, we compare the execution times of the three methods. In this
experiment Hubalek’s (2005) algorithm takes about 67 seconds and Barth & Stein’s
(2016) algorithm 74 seconds. The numerical Fourier inversion is crucial for the
execution time. Depending on the method used, this may shorten or lengthen the
runtime.

Recall Table 2.8 on page 52 for the runtime of the inverse Lévy measure method.
For a high level of truncation τ = 106 (which we choose here) it takes about 83
seconds to run the inverse Lévy measure method. Note that for τ = 102, with a
runtime of about 8 seconds, the QQ-plot in this case looks very similar. This means
that a “good” path can be simulated in an even shorter time.

An additional advantage of the inverse Lévy measure method is that after the
series is simulated it can be evaluated extremely fast at desired times t. This means
that we do not need to fix the frequency a priori as for Algorithms 3 & 4. If we choose
a different frequency for these, we have to simulate new paths.

57



2 Simulation of Student-Lévy processes using series representations

-0.5 0.0 0.5

-0.5

0.0

0.5

Hubalek

(a)
-0.5 0.0 0.5

-0.5

0.0

0.5

Barth

(b)
-0.5 0.0 0.5

-0.5

0.0

0.5

Inv Lévy measure

(c)

Figure 2.9: QQ-plots comparing the empirical distribution of simulated increments
using different methods with the model distribution F0.1(x).
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3 Local asymptotic normality for
Student-Lévy processes under
high-frequency sampling

There is considerable interest in parameter estimation in Lévy models. The maximum
likelihood estimator is widely used because under certain conditions it enjoys asymp-
totic efficiency properties. The toolkit for Lévy processes is the local asymptotic
normality which guarantees these conditions. Although the likelihood function is
not known explicitly, we prove local asymptotic normality for the parameters of the
Student-Lévy process assuming high-frequency data for location and scale parameter
(µ, σ). In addition, we propose a numerical method to make maximum likelihood
estimates feasible based on the Monte Carlo expectation-maximization algorithm. A
simulation study verifies the theoretical results.

3.1 Introduction

There is considerable interest in Lévy processes and parameter estimation in Lévy
models, see, e.g., Masuda (2015) and the references therein. However, estimation is
difficult because the transition density often is not available in closed form. This
chapter deals with parameter estimation for the Student-Lévy process {Xt}t≥0 such
that X1 ∼ t(ν, µ, σ2) given a sample path. Throughout we are interested in estimating
the unknown θ = (µ, σ), while we assume ν > 1 to be known. The reason for this
assumption is discussed in Section 3.5. The additional estimation of ν is left for future
research.

As the crude method of moment estimator has poor asymptotic efficiency prop-
erties, we focus on maximum likelihood (ML) estimation. The maximum likelihood
estimator (MLE) requires the density function (or likelihood function) to be known.
In the case of the Student-Lévy process, however, we only know the transition density
for the 1-increments. For t 6= 1, Xt has no closed-form transition density. Thus,
maximum likelihood estimation is difficult both theoretically and practically.

The purpose of this chapter is, first, to develop asymptotic theory for the MLE
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in the Student-Lévy model even though the likelihood function is not given explicitly.
Second, we propose a time-efficient numerical method in order to make ML estimation
feasible.

Let us introduce some notation. Let (Ω,F , P ) be a probability space and let
{Xt}t≥0 be a real-valued Student-Lévy process with L(X1) = t(ν, µ, σ2). Let ν be the
known degree of freedom and θ = (µ, σ) ∈ Θ, where Θ is a bounded convex domain
such that its closure Θ ⊂ R× (0,∞). Importantly, this implies that σ ∈ (a, b) with
0 < a < b <∞ to exclude the limiting case σ → 0. Let (Pθ; θ ∈ Θ) be the family of
distributions of {Xt} dependent on the unknown parameter θ. The Radon-Nikodym
derivative dPθ′

dPθ
denotes the likelihood ratio (which in the case of the Student-Lévy

process is well-defined). By pt(x|θ) we denote the Lebesgue density of Xt, which is
always positive, and by `n(θ) the log-likelihood function. Since the Student-Lévy
process is a pure jump process we denote by ∆Xt := Xt − lims↑tXs the jump size at
time t.

A useful concept for studying asymptotics is the local asymptotic normality
(LAN) of a family of probability measures, which means that the logarithm of the
likelihood ratio behaves asymptotically as a normal random variable. More precisely,
we have
Definition 3.1. A sequence of parametric statistical models (Pnθ , θ ∈ Θ, n ∈ N) is
said to be locally asymptotic normal (LAN) with rate An and Fisher information
matrix I (θ), if for each u ∈ Rp and θn := θ +Anu ∈ Θ

log
dPnθn
dPnθ

= `n(θn)− `n(θ) = uTAn∇`n(θ)− 1
2u

TI (θ)u+ oPθ(1) (3.1)

holds true under Pθ, where An∇`n(θ) L→ Np(0,I (θ)).

The LAN concept implies many useful properties, including the asymptotic
normality and asymptotic efficiency of likelihood-based estimation. It was introduced
by Le Cam (1960) and since then has been applied in various statistical models.
Le Cam & Lo Yang (1990) provided a concise introduction to the topic. Because
Lévy processes have a diverse structure, a universal LAN theory is lacking: the
very different forms of the likelihood function make analysis difficult, for instance, if
the likelihood function pt(x|θ) does not exist in closed form (as is the case for the
Student-Lévy process). However, there are some specific cases for which the LAN
does exist. Examples for special Lévy models include Masuda (2009b) for the gamma
subordinator and the inverse Gaussian subordinator, Kawai & Masuda (2011) for the
Meixner Lévy process, and Kawai & Masuda (2013) for the normal inverse Gaussian
Lévy process, Kawai (2015) for the variance gamma Lévy process.
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3.1 Introduction

Aït-Sahalia & Jacod (2008) and Masuda (2009a) derived LAN results for non-
Gaussian stable Lévy processes (recall Definition 1.11 for stability). More recently
Ivanenko et al. (2015) investigated locally stable Lévy processes, i.e., L(h−1Xh) weakly
tends to an α-stable distribution as h→ 0, which contain the Student-Lévy process
as a special case. For more comments on locally stable processes, see below. Masuda
(2015) provided an excellent detailed overview and summarized many of the results
to be found in the literature.

For the purposes of estimating θ, it is important to clarify the structure of the
available data and the meaning of large sample theory. There are three different
senses in which we may sample a path of {Xt}t≥0 (see Masuda 2015).

• Sampling the path {Xt}t∈[0,T ] in continuous-time. This means that we observe
the whole path for any time t ∈ [0, T ]. Here asymptotic theory assumes T →∞.
In this setting, some parameters may be estimated without error.

• Sampling {Xt} at discrete and low-frequency time points {tnk}k=0,...,n ⊆ [0,∞)
such that

0 = tn0 < tn1 < · · · < tnn =: Tn
for each n ∈ N and the sampling intervals ∆n

k t := tnk − tnk−1 satisfy

lim inf
n→∞

min
1≤k≤n

∆n
k t > 0,

which requires that Tn →∞.
• Sampling {Xt} at discrete time points {tnk}k=0,...,n but with high-frequency, i.e.,

hn := max
1≤k≤n

∆n
k t→ 0,

as n→∞. Here Tn does not need to tend to infinity and, moreover, may even
be fixed as T ≡ Tn. We mainly consider the case where the step sizes are of
equal length hn ≡ ∆n

k t for each 1 ≤ k ≤ n.

The main difference between high-frequency and low-frequency sampling is that
in the former case the differences between the observation times hn become arbitrarily
small. For the latter, this is not the case. Here, the endpoint Tn must tend to infinity.
A simple example of sampling at low-frequency is given by the scheme tnk = k. This
means we sample the 1-increments of the path, which in the case of the Student-Lévy
process are Student t distributed. As Tn →∞ we obtain classic asymptotic theory for
the estimation of Student t random variables. For any other low-frequency sampling
scheme, the theory becomes more involved; see Remark 3.4. Most references above
mainly under low-frequency sampling (and some under high-frequency sampling) in
certain special cases.
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This chapter also mainly focuses on high-frequency sampling. The contribution
to the literature is to derive the LAN property for (µ, σ) for high-frequency sampling
in the Student-Lévy model. Moreover, we discuss why there is no such LAN result
for the skew Student-Lévy process. Results for the other schemes are relegated to the
end of Section 3.2.

The second contribution of this chapter is more practical. As is the case even
for the plain Student t distribution, there is no closed-form solution for the MLE
in the Student-Lévy model. For the Student t distribution ML estimation becomes
numerically feasible using the Expectation-Maximization (EM) algorithm introduced
by Dempster et al. (1977). Since Rubin (1983) (see also Little & Rubin (2014))
applied the EM algorithm to the Student t distribution, many extensions have been
developed. For example, Liu & Rubin (1995) described ML estimation of the unknown
ν by Expectation-Conditional Maximization Either (ECME; see Liu & Rubin (1994)).
Nadarajah & Kotz (2008) summarized some of the most important methods for the
Student t distribution. McLachlan & Krishnan (2007) is a standard reference for the
EM algorithm.

Returning to the Student-Lévy process, we here propose a Monte Carlo EM
(MCEM) algorithm. The MCEM algorithm was initially developed by Wei & Tanner
(1990) and replaces one or both of the E- and the M-steps with a Monte Carlo variant.
Details are discussed in Section 3.3 below. We aim to estimate (µ, σ) given a sample
with density pt(x|θ) where t 6= 1 and possibly is smaller.

In this chapter as already mentioned, we consider ν to be known. Possible
extensions are discussed in Section 3.5.

The remainder of this chapter is organized as follows: Section 3.2 states and
proves the LAN result for the Student-Lévy process. Numerical methods such as the
MCEM algorithm are discussed in Section 3.3. In Section 3.4 we test these methods
in Monte Carlo experiments. Section 3.5 concludes.

3.2 Main results

Under the high-frequency sampling scheme with observation times {tnk} and observed
points {Xtn

k
} we define the k-th increments of {Xt} as

∆n
kX := Xtn

k
−Xtn

k−1
, k = 1, . . . , n.

62



3.2 Main results

∆n
kX are i.i.d. with density function phn(x|θ). We define the log-likelihood function

by

`n(θ) :=
n∑
k=1

log phn(∆n
kX|θ).

We write

gnk(θ) := ∇ log phn(∆n
kX|θ) =

(
∂

∂µ
phn(∆n

kX|θ),
∂

∂σ
phn(∆n

kX|θ)
)T

.

We now state the main result.
Theorem 3.1. Let {Xt} be a Student-Lévy process such that L(X1) = t(ν, µ, σ2)
(with known ν > 1). Consider a sample (Xkhn)1≤k≤n with a sequence {hn}n∈N of
positive step sizes. If hn → 0 as n→∞, the LAN property (3.1) holds true for each
θ = (µ, σ) ∈ Θ with rate

An := diag
(

1√
n
,

1√
n

)
(3.2)

and Fisher information

I (θ) :=
(

1
2νσ2 0

0 1
2σ2

)
. (3.3)

In particular, I (θ) is positive definite for each θ ∈ Θ and, moreover, the maximum
likelihood estimator θ̂ exists and is asymptotically normal:

A−1
n (θ̂ − θ) L→ N2(0,I (θ)−1) as n→∞.

The positive definiteness of I (θ) implies that I (θ)−1 exists. θ̂ is asymptotically
efficient because it attains the Cramér-Rao bound asymptotically.

Theorem 3.1 is actually a special case of Theorem 2.1 is Ivanenko et al. (2015)
since the Student-Lévy process is locally stable, as we prove in Lemma 3.2. However,
we present a different proof here because we can use these methods for the skew
Student-Lévy process in Proposition 3.1, which was not treated in Ivanenko et al.
(2015). Furthermore, the ideas in our version of the proof will turn out to be
constructive in Section 3.3 for deriving a numerical procedure to compute the MLE.

Before we turn to the details of the proof, we make some additional comments.
Remark 3.1. The time horizon Tn does not need to tend to infinity. It may possibly
be fixed as T ≡ Tn. This is in contrast to, e.g., Gaussian Lévy processes, where the
maximum likelihood estimator for µ is not even consistent if Tn does not tend to
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infinity. This can easily be visualized by a short simulation. The LAN for Gaussian
Lévy processes has rate (

√
Tn,
√
n) for (µ, σ) (see, e.g., Kawai 2013).

Remark 3.2. Although the Student-Lévy process is clearly not stable, it has the
same asymptotic Fisher information as a stable Cauchy-Lévy process. (In fact, the
Cauchy-Lévy process is a special case of the Student-Lévy process with ν = 1. As
all increments are Cauchy distributed, ML estimation is reduced to the standard
i.i.d. Cauchy case (Haas 1969), which we do not consider here.) Masuda (2009a)
derived the LAN property for symmetric stable Lévy processes. A Lévy process whose
1-increments are Cauchy(µ,

√
νσ) distributed fulfills the LAN with Fisher information

(3.3) and rate (3.2).

Kawai & Masuda (2013) showed that the following conditions of Lemma 3.1 are
sufficient for the LAN to hold true. In the proof of Theorem 3.1 we will verify that
conditions (i) – (iii) are satisfied under the assumptions of Theorem 3.1.
Lemma 3.1. Assume the following conditions hold true as n→∞:

(i) nEθ
[
Angn1(θ)gn1(θ)TAn

]
→ I (θ),

(ii) n|Eθ[Angn1(θ)]|2 → 0,

(iii) n
(

supθ∈ΘEθ
[
|An∇(gn1(θ)T)An|2 + |Angn1(θ)|4

])
→ 0.

Then the LAN (3.1) holds true.

Assumption (iii) implies the Lindeberg condition
n∑
k=1

Eθ
[
|Angnk(θ)|2; |Angnk(θ)| ≥ ε

]
→ 0

for every ε > 0. This allows us to apply the central limit theorem.
The following lemmas are needed in order to prove Theorem 3.1. The first two

show the locally stable behavior of Student-Lévy increments as well as inverse gamma
subordinator’s increments. The third gives a bound for the density function of the
inverse gamma subordinator’s increments.
Lemma 3.2. Let {Xt} be a Student-Lévy process such that L(X1) = t(ν, µ, σ2). As
n→∞

Xhn − hnµ
hnσ

L→ Cauchy(0,
√
ν),
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i.e., the Cauchy distribution with density function

1
π
√
ν
(
1 + x2

ν

) , x ∈ R.

Proof. We use the convergence of the characteristic function to prove the claim.
Recall that the characteristic function for Xt is given in (1.1) byKν/2(

√
νσ|u|)(

√
νσ|u|)ν/2eiµu

Γ
(
ν
2

)
2ν/2−1


t

,

where Kν(x) is the modified Bessel function of the second kind. Hence Xkhn−hnµ
hnσ

has
the characteristic function

Kν/2

(√
νσ
∣∣∣ u
hnσ

∣∣∣)(√νσ ∣∣∣ u
hnσ

∣∣∣)ν/2
Γ
(
ν
2

)
2ν/2−1


hn

. (3.4)

Using
Kν/2(z) ∼

√
π

2z e
−z

for z →∞, we have for hn → 0 as n→∞

Kν/2

(
√
ν

∣∣∣∣ uhn
∣∣∣∣
)hn
∼

√ πhn
2
√
ν|u|

hn e−√ν |u|hn hn → e−
√
ν|u|,

since all other terms of (3.4) converge to 1. Of course, e−
√
ν|u| is the characteristic

function of the Cauchy(0,
√
ν) distribution.

Lemma 3.3. Let {Yt} be an inverse gamma subordinator such that L(Y1) = RΓ(ν/2, ν/2).
As n→∞

Yhn
h2
n

L→ Lévy(0, ν),

i.e., the Lévy distribution with density function√
ν

2π
e−

ν
2x

x3/2 , x ∈ R.
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Proof. Again, as in the proof of Lemma 3.2, we use convergence of the characteristic
function. The characteristic function of Yt is given by2

(
−iν2u

)ν/4
Γ
(
ν
2

) Kν/2
(√
−2iνu

)
t

Hence Yhn
h2
n

has the characteristic function

2
(
−iν2

u
h2
n

)ν/4
Γ
(
ν
2

)

hn

Kν/2

√−2iν u
h2
n

hn .
Similarly, as in the proof of Lemma 3.2,

Kν/2

√−2iν u
h2
n

hn ∼ hhnn e
−
√
−2iν u

h2
n
hn
→ e−

√
−2iνu

for n → ∞. Of course, e−
√
−2iνu is the characteristic function of the Lévy(0, ν)

distribution.

Lemma 3.4. Let RΓ(y|α, β) denote the density function for the RΓ(α, β) distribution
and let RΓ∗t(y|α, β) denote its t-fold convolution. Then for ν > 1 and any t > 0 there
exists a K > 0 such that for all 0 < y < K,

RΓ∗t
(
y

∣∣∣∣ν2 , ν2
)
> RΓ

(
y

∣∣∣∣ν2 , t2 ν2
)
, t > 1,

RΓ∗t
(
y

∣∣∣∣ν2 , ν2
)
< RΓ

(
y

∣∣∣∣ν2 , t2 ν2
)
, t < 1.

Proof. Girón & del Castillo (2001) showed that

RΓ∗2
(
y

∣∣∣∣ν2 , ν2
)

=
ν−1

2∑
i=0

wiRΓ
(
y

∣∣∣∣ν2 + i, 22 ν

2

)

for odd ν > 1 with wi ≥ 0 and ∑iwi = 1. The cumbersome formulas for wi can be
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found in Girón & del Castillo (2001). For small y it holds true that

ν−1
2∑
i=0

wiRΓ
(
y

∣∣∣∣ν2 + i, 22 ν

2

)
> RΓ

(
y

∣∣∣∣ν2 , 22 ν

2

)
,

sinceRΓ
(
y
∣∣∣ν2 + i, 22 ν

2

)
> RΓ

(
y
∣∣∣ν2 , 22 ν

2

)
for all i ≥ 1. The differenceRΓ∗2

(
y
∣∣∣ν2 , ν2 )−

RΓ
(
y
∣∣∣ν2 , 22 ν

2

)
increases in ν. Hence, by continuity in ν,

RΓ∗2
(
y

∣∣∣∣ν2 , ν2
)
> RΓ

(
y

∣∣∣∣ν2 , 22 ν

2

)
,

for all ν > 1 and small y. By induction,

RΓ∗m
(
y

∣∣∣∣ν2 , ν2
)
> RΓ

(
y

∣∣∣∣ν2 ,m2 ν

2

)
, (3.5)

for all integers m ≥ 2, for y small enough.

Obviously, (RΓ∗ 1
m )∗m

(
y
∣∣∣ν2 , ν2 ) ≡ RΓ

(
y
∣∣∣ν2 , ν2 ). By (3.5),

RΓ∗m
(
y

∣∣∣∣ν2 , 1
m2

ν

2

)
> RΓ

(
y

∣∣∣∣ν2 , ν2
)

= (RΓ∗
1
m )∗m

(
y

∣∣∣∣ν2 , ν2
)
,

which implies

RΓ∗
1
m

(
y

∣∣∣∣ν2 , ν2
)
< RΓ

(
y

∣∣∣∣ν2 , 1
m2

ν

2

)
, (3.6)

for all integer m ≥ 2, for y small enough. (3.5) and (3.6) together with the infinite
divisibility of the inverse gamma distribution imply the claim for all t > 0.

The next lemma clarifies the asymptotic behavior of the density of Student-Lévy
increments.
Lemma 3.5 (Berg & Vignat (2008)). Let pt(x|ν, θ) be the transition density of Xt,
where {Xt} is the Student-Lévy process. Then for any t > 0, ν > 0 and θ ∈ R×(0,∞),

pt(x|ν, θ) ∼
Cνt

σ
∣∣∣x−hnµσ

∣∣∣ν+1 ,

as |x| → ∞, where Cν is a constant only depending on ν.
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Berg & Vignat (2008) actually proved the statement for pt(x|ν, 0, 1) ∼ Cνt
|x|ν+1 . We

generalize this using pt(x|ν, θ) = 1
σpt(

x−hnµ
σ |ν, 0, 1).

Using these lemmas we now prove Theorem 3.1. There are two main ideas in
the proof. First, we use the fact that the Student-Lévy process is a subordinated
Gaussian process. Second, we apply Monte Carlo integration techniques to treat
complicated integrals.

Proof of Theorem 3.1. We prove the theorem by checking the assumptions of Lemma
3.1. Before that, we prove boundedness in order to be able to apply the bounded
convergence theorem. Note that phn(x|θ) > 0 for any x ∈ R, hn > 0, θ ∈ Θ, ν > 0.
We start with the first entry of ∇ log phn(Xhn |θ)

Eθ

( ∂

∂µ
log phn(Xhn |θ)

)2
 =
ˆ ∞
−∞

 ∂
∂µphn(x|θ)
phn(x|θ)

2

phn(x|θ)dx.

Observe that
phn(x|θ) =

ˆ ∞
0

phn(x, y|θ)dy,

where phn(x, y|θ) is the joint density of GYhn + hnµ, where {Gt} is a Gaussian Lévy
process such that Gt ∼ N(0, σ2t) (see Theorem 1.5). Thus,

phn(x|θ) =
ˆ ∞

0
phn(x, y|θ)dy =

ˆ ∞
0

N(x|hnµ, σ2y)phn(y)dy, (3.7)

whereN(x|hnµ, σ2y) denotes the density of theN(hnµ, σ2y)-distribution and phn(y) :=
RΓ∗hn

(
y
∣∣∣ν2 , ν2 ) , the density of the (unobserved) subordinator Yhn . Next,

∂

∂µ

ˆ ∞
0

N(x|hnµ, σ2y)phn(y)dy =
ˆ ∞

0

∂

∂µ
N(x|hnµ, σ2y)phn(y)dy, (3.8)

since
∣∣∣ ∂∂µN(x|hnµ, σ2y)

∣∣∣ ≤ C hn
y for a constant C independent of y and θ. But´∞

0
1
yphn(y)dy < ∞ is implied by the uniform integrability, which we show below.

(3.8) can be proven analogously for ∂
∂σ using the fact that Θ is a compact set.
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We now show that
∣∣∣∣∣ ∂∂µphn (x|θ)
phn (x|θ)

∣∣∣∣∣ is uniformly bounded in x and hn. This implies

lim
n→∞

Eθ

( ∂

∂µ
log phn(Xhn |θ)

)2
 = Eθ

 lim
n→∞

(
∂

∂µ
log phn(Xhn |θ)

)2
 .

Note that phn(x|θ) ∼ Cνhn

σ
(
x−hnµ
σ

)ν+1 as x → +∞ (see Lemma 3.5). This straight-

forwardly leads to ∂
∂µphn(x|θ) ∼ ∂

∂µ
Cνhn

σ
(
x−hnµ
σ

)ν+1 by applying (3.8) in the proof of

Theorem 2 in Berg & Vignat (2008). Hence it holds true that

∂
∂µphn(x|θ)
phn(x|θ) ∼

∂
∂µ

Cνhn

σ
(
x−hnµ
σ

)ν+1

Cνhn

σ
(
x−hnµ
σ

)ν+1
→ 0,

as x→ +∞, and analogously for x→ −∞ which implies that
∣∣∣∣∣ ∂∂µphn (x|θ)
phn (x|θ)

∣∣∣∣∣ is bounded
in x.

Furthermore,

∂
∂µphn(x|θ)
phn(x|θ) ∼

2x−hnµhnσ

σ

(
ν +

(
x−hnµ
hnσ

)2
) =: Cn(x)→ 0

as n→∞, for any x, see (i) below. Moreover, supx |Cn(x)| = 1√
νσ

implies uniform

convergence. By the continuity of
∂
∂µ
phn (x|θ)

phn (x|θ) in (x, hn) there exists a constant C > 0
such that ∣∣∣∣∣∣

∂
∂µphn(x|θ)
phn(x|θ)

∣∣∣∣∣∣ < C <∞,

for all x ∈ R, and all hn ∈ (0,∞). The proof of the boundedness of ∂
∂σ log phn(x|θ)

functions in a very similar fashion.
Next, we prove that hnN(x|hnµ, σ2Yhn), hn ∂

∂µN(x|hnµ, σ2Yhn) and
hn

∂
∂σN(x|hnµ, σ2Yhn) are uniformly integrable for n ∈ N. This implies that

lim
n→∞

ˆ ∞
0

hnN(Xhn |hnµ, σ2y)phn(y)dy =
ˆ ∞

0
lim
n→∞

hnN(Xhn |hnµ, σ2y)phn(y)dy,
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or, if replacing integrals with its Monte Carlo estimators,

lim
n→∞

lim
B→∞

1
B

B∑
b=1

hnN(Xhn |hnµ, σ2Yhnb) = lim
B→∞

1
B

B∑
b=1

lim
n→∞

hnN(Xhn |hnµ, σ2Yhnb),

and analogously for the integrals containing ∂
∂µ and ∂

∂σ . Uniform integrability can be
proven using uniform integrability test functions (Doob 2012). If for a ϕ : [0,∞)→
[0,∞) with limz→∞

ϕ(z)
z =∞ it holds true that supn∈NEθ[ϕ(|hnN(Xhn(ω)|hnµ, σ2Yhn)|)]

< ∞, then we have uniform integrability. We choose ϕ(z) = z2. Since phn(y) is
not available in closed form, we use two approximations. The first approximation
p∗hn(y) := RΓ(y|ν/2, h2

nν/2) is motivated by the fact that for ν = 1, phn(y) = p∗hn(y)
for all y > 0, hn > 0. Additionally, the approximation p∗hn(y) is chosen because
phn(y) < p∗hn(y) for small y > 0 and hn < 1 (Lemma 3.4). The second approximation
makes use of Lemma 2.1 in Chapter 2, which states that the Lévy measure of the
inverse gamma subordinator is bounded from above by the explosive Lévy measure of
the 1/2-stable Lévy subordinator with density function p̃hn(y) := RΓ(y|1/2, h2

nν/2)
for every hn if ν > 1. This implies that phn(y) < p̃hn(y) for large values of y. Hence
for all n there exist K(1)

n ,K
(2)
n > 0 such that

ˆ ∞
0

h2
nN(Xhn |hnµ, σ2y)2phn(y)dy

=
ˆ K

(1)
n

0
h2
nN(Xhn |hnµ, σ2y)2phn(y)dy +

ˆ K
(2)
n

K
(1)
n

h2
nN(Xhn |hnµ, σ2y)2phn(y)dy

+
ˆ ∞
K

(2)
n

h2
nN(Xhn |hnµ, σ2y)2phn(y)dy

≤C

ˆ K
(1)
n

0

h2
n

y
p∗hn(y)dy +

ˆ K
(2)
n

K
(1)
n

h2
n

y
phn(y)dy +

ˆ ∞
K

(2)
n

h2
n

y
p̃hn(y)dy


≤C

(ˆ ∞
0

h2
n

y
p∗hn(y)dy + (K(2)

n −K(1)
n ) h2

n

K
(1)
n

phn(K(1)
n ) +

ˆ ∞
0

h2
n

y
p̃hn(y)dy

)

=C
(

1 + (K(2)
n −K(1)

n ) h2
n

K
(1)
n

phn(K(1)
n ) + 1

ν

)
,

where C > 0 is a finite constant independent of y and n, which may vary from line to
line. (K(2)

n −K(1)
n ) h2

n

K
(1)
n

phn(K(1)
n ) converges to zero for n→∞ since K(1)

n ,K
(2)
n → 0

and h2
n

K
(1)
n

= O(1). This implies uniform integrability for hnN(Xhn |hnµ, σ2Yhn).
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We also show uniform integrability for ∂
∂µhnN(Xhn |hnµ, σ2y) by

ˆ ∞
0

h2
n

(
∂

∂µ
N(Xhn |hnµ, σ2y)

)2

phn(y)dy

≤C

ˆ ∞
0

h2
n(hn(Xhn − hnµ))2

y3 p∗hn(y)dy + (K(2)
n −K(1)

n )h
2
n(hn(Xhn − hnµ))2

(K(1)
n )3

phn(K(1)
n )

+
ˆ ∞

0

h2
n(hn(Xhn − hnµ))2

y3 p̃hn(y)dy
)

≤C

(Xhn − hnµ)2

h2 + (K(2)
n −K(1)

n )h
2
n(hn(Xhn − hnµ))2

(K(1)
n )3

phn(K(1)
n ) + (Xhn − hnµ)2

h2

 ,
and by Lemma 3.2 (Xhn−hnµ)2

h2
L→ X̃2, X̃ ∼ Cauchy(0,

√
ν) and X̃2 is a.s. finite.

Uniform integrability for ∂
∂σhnN(Xhn |hnµ, σ2y) can be proven analogously.

We are now able to check the assumptions (i)–(iii) of Lemma 3.1.
(i) We here derive the limiting form (3.3) of the Fisher information matrix. The

expression (3.7) is crucial and is used multiple times subsequently. We begin
with the first entry I (11)(θ).

lim
n→∞

nEθ

[(
A(11)
n g

(1)
n1 (θ)

)2
]

= lim
n→∞

Eθ

( ∂

∂µ
log phn(∆n

1X|θ)
)2


= lim
n→∞

Eθ


 ∂

∂µphn(Xhn |θ)
phn(Xhn |θ)

2
 . (3.9)

We again make use of the fact that the Student-Lévy density can be expressed
as (3.7). Hence, we can write (3.9) as

lim
n→∞

Eθ


(
∂
∂µ

´∞
0 N(Xhn |hnµ, σ2y)phn(y)dy

)2

(´∞
0 N(Xhn |hnµ, σ2y)phn(y)dy

)2



= lim
n→∞

Eθ


(´∞

0
∂
∂µN(Xhn |hnµ, σ2y)phn(y)dy

)2

(´∞
0 N(Xhn |hnµ, σ2y)phn(y)dy

)2

 . (3.10)
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The bounded convergence theorem implies that (3.10) equals

Eθ

 lim
n→∞

h2
n

(´∞
0

∂
∂µN(Xhn |hnµ, σ2y)phn(y)dy

)2

h2
n

(´∞
0 N(Xhn |hnµ, σ2y)phn(y)dy

)2



=Eθ


(
limn→∞ hn

´∞
0

∂
∂µN(Xhn |hnµ, σ2y)phn(y)dy

)2

(
limn→∞ hn

´∞
0 N(Xhn |hnµ, σ2y)phn(y)dy

)2

 . (3.11)

Since the density phn(y) of Yhn is unknown, we cannot compute the inner
integrals of (3.11) directly. Therefore, we use the approach of Monte Carlo
integration. Let {Yhn1}, . . . , {YhnB} be independent inverse gamma subordi-
nators, each independent of (Xkhn)1≤k≤n, such that Yhnb has density function
phn(y). (See Chapter 2 for more information on simulation of the inverse gamma
subordinator.) Then, a.s.,

lim
n→∞

ˆ ∞
0

∂

∂µ
hnN(Xhn |hnµ, σ2y)phn(y)dy

= lim
n→∞

lim
B→∞

1
B

B∑
b=1

∂

∂µ
hnN(Xhn |hnµ, σ2Yhnb)

and

lim
n→∞

ˆ ∞
0

hnN(Xhn |hnµ, σ2y)phn(y)dy

= lim
n→∞

lim
B→∞

1
B

B∑
b=1

hnN(Xhn |hnµ, σ2Yhnb).

By uniform integrability of hnN(Xhn |hnµ, σ2y) and ∂
∂µhnN(Xhn |hnµ, σ2y) in y

and n, (3.11) is equal to

Eθ


(
limB→∞

1
B

∑B
b=1 limn→∞

∂
∂µhnN(Xhn |hnµ, σ2Yhnb)

)2

(
limB→∞

1
B

∑B
b=1 limn→∞ hnN(Xhn |hnµ, σ2Yhnb)

)2

 . (3.12)
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Now,

N(Xhn |hnµ, σ2Yhnb) = 1√
2πσ2Yhnb

exp
(
−(Xhn − hnµ)2

2σ2Yhnb

)

= 1
hn

1√
2πσ2 Yhnb

h2
n

exp

−(Xhn − hnµ)2

2σ2h2
n
Yhnb
h2
n

 .

By Lemmas 3.2 and 3.3 we know that Xhn−hnµ
hnσ

L→ X̃ ∼ Cauchy(0,
√
ν) and

Yhnb
h2
n

L→ Ỹb ∼ Lévy(0, ν) for any b. Then,

1√
2πσ2 Yhnb

h2
n

exp

−(Xhn − hnµ)2

2σ2h2
n
Yhnb
h2
n

 L→ 1√
2πσ2Ỹb

exp
(
− X̃

2

2Ỹb

)
,

as n→∞. Analogously,

∂

∂µ
N(Xhn |hnµ, σ2Yhnb) = 1√

2πσ2Yhnb
exp

(
−(Xhn − hnµ)2

2σ2Yhnb

)
hn
Xhn − hnµ
σ2Yhnb

= 1
hn

1√
2πσ2 Yhnb

h2
n

exp

−(Xhn − hnµ)2

2σ2h2
n
Yhnb
h2
n

 1
σ

Xhn − hnµ
σhn

Yhnb
h2
n

,

and

1√
2πσ2 Yhnb

h2
n

exp

−(Xhn − hnµ)2

2σ2h2
n
Yhnb
h2
n

 1
σ

Xhn − hnµ
σhn

Yhnb
h2
n

L→ 1√
2πσ2Ỹb

exp
(
− X̃

2

2Ỹb

)
X̃

σỸb
.

Using this expression in (3.12) (note that the 1/hn factors cancel each other
out), (3.12) equals

Eθ


(
limB→∞

1
B

∑B
b=1 limn→∞

∂
∂µhnN(Xhn |hnµ, σ2Yhnb)

)2

(
limB→∞

1
B

∑B
b=1 limn→∞ hnN(Xhn |hnµ, σ2Yhnb)

)2



73



3 Local asymptotic normality for Student-Lévy processes under high-frequency
sampling

= Eθ



(
limB→∞

1
B

∑B
b=1

1√
2πσ2Ỹb

exp
(
− X̃2

2Ỹb

)
X̃
σỸb

)2

(
limB→∞

1
B

∑B
b=1

1√
2πσ2Ỹb

exp
(
− X̃2

2Ỹb

))2



= Eθ


(´∞

0
1√

2πσ2y
exp

(
− X̃2

2y

)
X̃
σypỸ (y)dy

)2

(´∞
0

1√
2πσ2y

exp
(
− X̃2

2y

)
pỸ (y)dy

)2

 , (3.13)

by reversing the Monte Carlo integration argument. pỸ (y) denotes the density
function of Ỹ ∼ Lévy(0, ν). The inner integrals of (3.13) can be computed
explicitly, that is

Eθ


(

2
√
νX̃

πσ2(X̃2+ν)2

)2

( √
ν

πσ(X̃2+ν)

)2

 =
ˆ ∞
−∞

4x2

σ2(x2 + ν)2 pX̃(x)dx = 1
2νσ2 ,

where pX̃(x) is the density function of the Cauchy(0,
√
ν) distribution.

We continue with the computation of I (22)(θ). Analogously to the computation
above,

lim
n→∞

nEθ

[(
A(22)
n g

(2)
n1 (θ)

)2
]

= lim
n→∞

Eθ


 ∂

∂σphn(Xhn |θ)
phn(Xhn |θ)

2


=Eθ


(
limB→∞

1
B

∑B
b=1 limn→∞ hn

∂
∂σN(Xhn |hnµ, σ2Yhnb)

)2

(
limB→∞

1
B

∑B
b=1 limn→∞ hnN(Xhn |hnµ, σ2Yhnb)

)2

 . (3.14)

Then,

∂

∂σ
N(Xhn |hnµ, σ2Yhnb)

= 1√
2πσ2Yhnb

exp
(
−(Xhn − hnµ)2

2σ2Yhnb

)
1
σ2

(Xhn − hnµ)2

σ2Yhnb
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− 1√
2πσ2Yhnb
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(
−(Xhn − hnµ)2

2σ2Yhnb

)
1
σ2

= 1
hn

1
σ2

1√
2πσ2 Yhnb

h2
n
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−(Xhn − hnµ)2

2σ2h2
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h2
n


(Xhn − hnµ)2

σ2h2
n
Yhnb
h2
n

− 1

 ,
and

1
σ2

1√
2πσ2 Yhnb

h2
n

exp

−(Xhn − hnµ)2

2σ2h2
n
Yhnb
h2
n


(Xhn − hnµ)2

σ2h2
n
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h2
n

− 1


L−→ 1
σ2

1√
2πỸb

exp
(
− X̃

2

2Ỹb

)(
X̃2

Ỹb
− 1

)

as n→∞. Therefore, (3.14) equals

Eθ


(´∞

0
1
σ2

1√
2πy exp

(
− X̃2

2y

) (
X̃2

y − 1
)
pỸ (y)dy

)2

(´∞
0
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2πσ2y

exp
(
− X̃2

2y

)
pỸ (y)dy
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

= Eθ


(

(X̃2−ν)
√
ν

πσ2(X̃2+ν)2

)2

( √
ν

πσ(X̃2+ν)

)2


= 1

2σ2 .

For the off-diagonal elements I (12)(θ) = I (21)(θ) observe that

lim
n→∞

nEθ

[(
A(11)
n g

(1)
n1 (θ)

)(
A(22)
n g

(2)
n1 (θ)

)]

=Eθ


(

2
√
νX̃

πσ2(X̃2+ν)2

)(
(X̃2−ν)

√
ν

πσ2(X̃2+ν)2

)
( √

ν

πσ(X̃2+ν)

)2

 = 0.
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(ii) Use

lim
n→∞

Eθ

 ∂
∂µphn(Xhn |θ)
phn(Xhn |θ)

 = Eθ

[
2X̃

σ(X̃2 + ν)

]
= 0,

and

lim
n→∞

Eθ

 ∂
∂σphn(Xhn |θ)
phn(Xhn |θ)

 = Eθ

[
X̃2 − ν

σ(X̃2 + ν)

]
= 0,

which implies (ii).
(iii) We continue by verifying the Lindeberg condition. First,

nEθ

[(
A(11)
n g

(1)
n1 (θ)

)4
]
∼ 1
n
Eθ

[
16X̃4

σ4(X̃ + ν)4

]
= 1
n

3
8ν2σ4 ,

nEθ

[(
A(22)
n g

(2)
n1 (θ)

)4
]
∼ 1
n
Eθ

[
(X̃ − ν)4

σ4(X̃2 + ν)4

]
= 1
n

3
8σ4 ,

which both converge to zero for n→∞. The compactness of Θ implies that

lim
n→∞

sup
θ∈Θ

nEθ
[
|Angn1(θ)|4

]
= 0.

Second, we look at the entries of the Hessian matrix ∇(gn1(θ)T). Note that
hn

∂2

∂µ2N(Xhn |hnµ, σ2Yhnb), hn ∂2

∂σ2N(Xhn |hnµ, σ2Yhnb) and
hn

∂2

∂µ∂σN(Xhn |hnµ, σ2Yhnb) are uniformly integrable, analogously to the terms
above. Thus

hn
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 1√
2πσ2Ỹb

exp
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− X̃

2
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)( X̃2

σ2Ỹ 2
b

− 1
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)
,

and
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∂2

∂σ2N(Xhn |hnµ, σ2Yhnb)
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 1√
2πσ2Ỹb

exp
(
− X̃

2

2Ỹb
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,
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and cross partial derivative

hn
∂2

∂µ∂σ
N(Xhn |hnµ, σ2Yhnb)
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 1√
2πσ2Ỹb
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(
− X̃

2

2Ỹb

)( X̃3

σ2Ỹ 2
b

− 3X̃
σ2Ỹb

)
.

Hence, by repeating the Monte Carlo integration argument,
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n
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n
Eθ


−2ν(−3X̃2+ν)

πσ3(X̃2+ν)3
√
ν

πσ(X̃2ν)

−
(

4X̃2

σ2(X̃2 + ν)2

)2

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n

7
8ν2σ4 ,
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n
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−
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

2
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n
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
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√
ν

πσ(X̃2ν)

−
(
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n

7
8σ4 ,

77



3 Local asymptotic normality for Student-Lévy processes under high-frequency
sampling

and

nEθ

(A(11)
n

∂2

∂µ∂σ
log phn(Xhn |θ)A(22)

n

)2


= 1
n
Eθ


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∂µ∂σphn(Xhn |θ)
phn(Xhn |θ)

−
∂
∂µphn(Xhn |θ) ∂
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phn(Xhn |θ)2

2


∼ 1
n
Eθ




2
√
νX̃(X̃2−3ν)
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√
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)
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ν
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
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

= 1
n

5
8νσ4 ,

as n→∞. This implies

lim
n→∞

sup
θ∈Θ

nEθ
[
|An∇(gn1(θ)T)An|2

]
= 0,

since the matrix norm is the Frobenius norm and Θ is compact. This completes
the proof.

Having obtained the result for the non-skew Student-Lévy process, it is natural
to ask if it can be extended to the skew Student-Lévy process. The answer is no.
Proposition 3.1. Let {Xt} be the skew Student-Lévy process (Definition 1.3) such
that L(X1) = t(ν, µ, σ2, β) (with known ν). The LAN (3.1) property for θ = (µ, σ, β) ∈
Θ with Θ bounded and convex such that Θ ⊂ R× (0,∞)× (R\{0}) does not hold true,
since the Fisher information I (θ) does not exist for An = diag(

√
n,
√
n,
√
nhn)−1

converging to zero as n→∞, i.e.,
√
nhn →∞ as n→∞.

The proposition requires that
√
nh2

n =
√
Tnhn →∞ as n→∞, implying that

the upper boundary of the sampling interval Tn has to tend to infinity. If this is
not given (e.g., if T ≡ Tn) we also have no LAN result because in this case An is
divergent.

Proof of Proposition 3.1. Consider a sample (Xkhn)1≤k≤n. First, similarly to the
proof of Lemma 3.2, we check the local stability of the skew Student-Lévy process.
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Recall Definition 1.3 and that X1 ∼ t(ν, µ, σ2, β) has the characteristic function

Kν/2(
√
νσ
√
u2 − 2iβu)(

√
νσ)ν/2(u2 − 2iβu)ν/4eiµu

Γ
(
ν
2

)
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.

Then Xkhn−hnµ
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has the characteristic function


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√
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)(√
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2 − 2iβ u
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)ν/4
Γ
(
ν
2

)
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
hn

.

All terms, except the one with the Bessel function, tend to unity as n→∞. As above
we have

Kν/2

√ν√u2

h2
n

− 2iβσ u
hn

hn ∼√√√√ π

2
√
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n
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−√ν√u2
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hn

∼ exp
(
−
√
ν
√
u2 − 2iβσuhn

)
→ exp

(
−
√
ν|u|

)
,

for hn → 0, which is the characteristic function of X̃ ∼ Cauchy(0,
√
ν).

Second, we focus on ∂
∂βphn(Xhn |θ). The skew Student-Lévy process {Xt} can

be constructed by Xt = σBYt + βσ2Yt + µt with an inverse gamma subordinator
{Yt} such that Y1 ∼ RΓ(ν/2, ν/2) and with a Brownian motion {Bt}. Then Xt|Yt ∼
N(µt+ βσ2Yt, σ

2Yt). Thus,

∂

∂β
N(Xhn |hnµ+ βσ2Yhnb, σ

2Yhnb)

= exp
(
−(Xhn − hnµ− βσ2Yhnb)2

2σ2Yhnb

)
Xhn − hnµ− βσ2Yhnb√

2πσ2Yhnb

L→ exp
(
− X̃

2

2Ỹb

)
X̃√
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.
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This is because Xhn−hnµ−βσ2Yhnb
hnσ

L∼ Xhn−hnµ
hnσ

as Yhnb
hn

p→ 0. Using

ˆ ∞
0

exp
(
−X̃

2

2y

)
X̃√
2πypỸ (y)dy =

√
νX̃

π(X̃2 + ν)

yields

1
h2
n

 ∂
∂βphn(Xhn |θ)
phn(Xhn |θ)

2
L→


√
νX̃

π(X̃2+ν)
√
ν

πσ(X̃2+ν)


2

= σ2X̃2.

This means that for rate A(33)
n = 1√

nhn
we have

Eθ
[
σ2X̃2

]
=∞,

implying that, by Fatou’s Lemma, the LAN property does not hold true.

The issue of having no LAN result cannot be solved by simply choosing another
rate A(33)

n . For example, if A(33)
n = (nhn)−1, this would cause a singular Fisher

information matrix and thus make the LAN result not meaningful (see, Masuda
2015).

This means that joint asymptotic normality (and optimality) for the MLE is
not available. Fortunately, the result of Theorem 3.1 remains valid if we treat the
non-zero skewness parameter β as known.
Corollary 3.1. Let {Xt} be the skew Student-Lévy process such that L(X1) =
t(ν, µ, σ2, β) (with known ν and β). The LAN holds true for θ = (µ, σ) with Fisher
information (3.3) and rate (3.2) of Theorem 3.1.

Proof. The proof is analogous to the proof of Theorem 3.1 but using the local
Cauchy property of Proposition 3.1. Note that N(Xhn |hnµ + βσ2Yhnb, σ

2Yhnb),
∂
∂µN(Xhn |hnµ + βσ2Yhnb, σ

2Yhnb), and ∂
∂σN(Xhn |hnµ + βσ2Yhnb, σ

2Yhnb) have the
same limiting behavior as for β = 0 because Xhn−hnµ−βYhnb

hnσ
L∼ Xhn−hnµ

hnσ
. Moreover, for

the computation of I (22)(θ) and I (12)(θ), we use (Xhn − hnµ− Yhn,bβσ2) p→ 0.

Remark 3.3. We here find a special case of the generalized hyperbolic (GH) Lévy
process for which the LAN does not hold. This means that it cannot be true for
all parameter constellations of the GH process. More research is needed to find the
conditions under which the LAN property holds.

We end the discussion of discretely sampled Student-Lévy processes with a short
remark concerning low-frequency sampling.
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Remark 3.4. Lemma 3.1 is also valid for low-frequency sampling with the difference
that hn → h for n→∞ implying that ph(x|θ) is the h transition density of the Xh

of the Student-Lévy process and is not available in closed form. This carries over to
the Fisher information and is therefore omitted here. There is one exception, namely
if h = 1. Then the transition density and the Fisher information are known explicitly,
but we refer to Lange et al. (1989) for this standard case.

3.2.1 Continuous sampling

We now take a little detour and discuss the case of continuous data where the full
path {Xt}t∈[0,T ] is observed. We are interested in the estimation of parameters and
the asymptotics when T →∞. Although this setting is unrealistic, it is interesting
to spell out the differences to high-frequency sampling. It may be the case that some
parameters can be estimated without error when we observe the whole path. To iden-
tify these parameters Raible (2000) (see also Masuda (2015) and Sato (1999)) proved
the following proposition, which provides a criterion for when the likelihood ratio
Pθ1 |FT
Pθ2 |FT

for parameters θ1 and θ2 is well-defined, where Pθ|FT denotes the restriction
of Pθ to the natural filtration FT generated by {Xt}t≤T .
Proposition 3.2. Let {Xt} be a (one-dimensional) Lévy process with characteristics
(γ(θ), A(θ),Π(dx; θ)) for θ ∈ Θ ⊂ Rp. Let T > 0 and θ1, θ2 ∈ Θ. Then the measures
Pθ1 |FT and Pθ2 |FT are equivalent iff the following conditions hold true.

(i) Π(dx; θ2) = k(x; θ1, θ2)Π(dx; θ2) for some Borel function k(·; θ1, θ2) : R →
(0,∞),

(ii) γ(θ2) = γ(θ1) +
´
R x(k(x; θ1, θ2)− 1)Π(dx; θ1) +

√
A(θ1)b for some b,

(iii) A(θ2) = A(θ1),

(iv)
´
R

(
1−

√
k(x; θ1, θ2)

)2
Π(dx; θ) <∞.

Using this criterion we obtain the following
Corollary 3.2. Let T > 0 and let Pθk , k = 1, 2 denote the distribution of the
Student-Lévy process with parameters θk = (νk, µk, σk, βk). Then Pθ1 |FT and Pθ2 |FT
are equivalent iff µ1 = µ2 and √ν1σ1 = √ν2σ2.

Proof. Raible (2000) proved this for the more general GH process with 1-increments
distributed as GH(λk, αk, βk, δk, µk). The measures are equivalent iff δ1 = δ2 and
µ1 = µ2. The Student t distribution t(νk, µk, σ2

k, βk) is the limiting case of the GH
distribution GH(−νk

2 , |βk|, βk,
√
νkσk, µk).
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Where ν is known, this reduces to σ1 = σ2. This means we can find (µ, σ) by
observing the path. Raible (2000) proved that the statistics

σ̂T,n := π√
νnT

#{t ≤ T : ∆Xt ≥ 1/n}, (3.15)

µ̂T,n = 1
T

XT −
∑

0<t≤T
∆Xt1[1/n,∞)(|∆Xt|)

 (3.16)

are strongly consistent estimators of σ and µ, as n→∞. If we observe the path in
continuous time we can compute σ a.s.= limn→∞ σ̂T,n and µ a.s.= limn→∞ µ̂T,n. Section
3.4 compares these estimators (where the data is obviously available not continuously
but in high-frequency) with the high-frequency MLE.

3.3 Numerical methods

Of course, the theory from the previous section is not directly informative about
how to actually compute the MLE. As is the case for the Student t distribution
(i.e., the Student-Lévy process observing 1-increments) the MLE does not exist in
closed form. This carries over to the Student-Lévy process when observing ∆n

kX with
hn 6= 1. Moreover, the density function of ∆n

kX is not given explicitly. We discuss
two approaches to tackling this issue. First, we numerically maximize the Fourier
inversion of the characteristic function. Second, we use a Monte Carlo Expectation-
Maximization (MCEM) algorithm. The first approach is less elegant and substantially
slower to execute than the second one but involves no randomness.

Let ϕX1 = ϕν,µ,σ2 be the characteristic function of the 1-increment, i.e., the
characteristic function of t(ν, µ, σ2). Then, the transition density of ∆n

kX can be
numerically found via

phn(∆n
kX|θ) = 1

2π

ˆ
exp(−iu∆n

kX)ϕX1(u)hndu. (3.17)

There are multiple ways to numerically compute this integral. For example, by a
suitable discretization and subsequent application of the Fast Fourier Transform
algorithm; see Walker (1996) among many others. Instead, we here use a global
adaptive Gauss-Kronrod quadrature rule (Piessens & Branders 1974). The log-
likelihood function `(θ) can be numerically maximized in θ by the Nelder & Mead
(1965) method. One issue with this method is that Fourier inversion needs to be
executed extensively, which is highly time-consuming. Thus, we will use this approach
only for comparison. We call it the Characteristic Function–Maximum Likelihood
Estimator (CF-MLE).

82



3.3 Numerical methods

As an alternative, we discuss an MCEM approach. The EM algorithm was
developed by Dempster et al. (1977) and a Monte Carlo extension was proposed by
Wei & Tanner (1990). We first sketch the details of how the EM algorithm works.
Then we apply it to the present Student-Lévy scenario and explain why the MC
extension is used. The resulting ML estimation routine is summarized in Algorithm
5.

We follow McLachlan & Krishnan (2007) for the details of the EM algorithm.
The idea behind EM is to assume that besides the observed data x with density
function p(x|θ), there are missing values y which we cannot observe. If we could
observe them, ML estimation using the joint density p(x,y|θ) would be easy.

Denote by `(θ|x) the incomplete log-likelihood and by `(θ|x,y) the complete
log-likelihood. Take some initial value θ0. The following E- and M-steps are repeated
alternately. On the (j + 1)-th iteration we have:

• E-Step. Calculate

Q(θ|θj) := Eθj [`(θ|x,y)|x] =
ˆ

log p(x,y|θ)p(y|x, θj)dy.

• M-Step. Find a value θj+1 that maximizes Q(θ|θj):

θj+1 = arg maxQ(θ|θj).

In practice, we repeat the E- and M-steps until the sequence {θj} converges.
We omit here the proof that the EM algorithm indeed finds the MLE and refer to
Dempster et al. (1977) or McLachlan & Krishnan (2007), but note that the M-step
implies that the incomplete-data log-likelihood function is non-decreasing, i.e.

`(θj+1|x) ≥ `(θj |x)

for any j = 0, 1, . . ..
If the E-step is difficult to compute, i.e., the expectation has no closed form, as

in the present Student-Lévy case, we replace the E-step with the following MCE-step.
Assume that the missing data y can be sampled from the posterior latent distribution
p(y|x, θj). Then we have

• MCE-Step.

Q̂(θ|θj) := 1
B

B∑
b=1

log p(x,yb|θ)→ Q(θ|θj),

a.s., for yb ∼ p(y|x, θj), b = 1, . . . , B, i.i.d., as B →∞.
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Next, we apply the MCEM algorithm to sample paths of the Student-Lévy
process. The procedure is similar to the standard Student t distribution (McLachlan
& Krishnan 2007), but differs in some of the details. Let

x = {∆n
kX}k=1,...,n, y = {∆n

kY }k=1,...,n, θ = {µ, σ},

where {Xt} denotes a Student-Lévy process of which we observe a sample path and
{Yt} is the corresponding unobserved inverse gamma subordinator. phn(x|θ) denotes
the density of Xhn and phn(y) denotes the density of Yhn , which is independent of θ.
Then the joint density is given by

phn(x, y|θ) = phn(x|y, θ)phn(y) = N(x|hnµ, σ2y)phn(y).

The complete log-likelihood function is given by

`(θ|{∆n
kX}, {∆n

kY })

=
n∑
k=1

logN(∆n
kX|hnµ, σ2∆n

kY ) + log phn(∆n
kY )

=
n∑
k=1
−1

2 log(2π)− 1
2 log σ2 − 1

2 log ∆n
kY −

(∆n
kX − hnµ)2

2σ2∆n
kY

+ log phn(∆n
kY ).

The density phn(y) of the inverse gamma subordinator has no closed form. However,
since it only depends on ν, which we assume to be known, it is irrelevant for
maximization in (µ, σ). The normal part of the complete likelihood is independent of
ν. This is indeed the reason why we assume ν to be fixed. As we do not explicitly know
phn(∆n

kY ), except that it depends solely on ν, we cannot perform likelihood-based
estimation.

Next, we seek the posterior of the latent subordinator in order to take the
expectation w.r.t. this posterior. In the case of the Student t distribution, the latent
variables are inverse gamma distributed and therefore the posterior is also inverse
gamma distributed because it is a conjugate prior for the normal distribution. This is
not the case for the inverse gamma subordinator and general hn 6= 1. By Bayes’ law,

phn(y|∆n
kX, θ) = phn(∆n

kX|y, θ)phn(y)
phn(∆n

kX|θ)
= N(∆n

kX|hnµ, σ2y)phn(y)
phn(∆n

kX|θ)
. (3.18)

To find Q(θ|θj) we integrate the log-likelihood with respect to this posterior.

Q(θ|θj) = Eθj [`(θ|{∆n
kX}, {∆n

kY })|{∆n
kX}]
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=
n∑
k=1
− 1

2 log(2π)− 1
2 log σ2 − 1

2Eθj [log ∆n
kY |∆n

kX]

− (∆n
kX − hnµ)2

2σ2 Eθj

 1
∆n
kY

∣∣∣∣∣∆n
kX

+ Eθj [log phn(∆n
kY )|∆n

kX].

We do not need to find Eθj [log ∆n
kY |∆n

kX] and Eθj [log phn(∆n
kY )|∆n

kX] because
when we take the derivative w.r.t. µ or σ these terms vanish. It only remains to find

Eθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
. By (3.18),

Eθj

 1
∆n
kY

∣∣∣∣∣∆n
kX

 =
ˆ ∞

0

1
y

N(∆n
kX|hnµ, σ2y)

phn(∆n
kX|θ)

phn(y)dy. (3.19)

At this point, Monte Carlo integration is useful. We approximate (3.19) by

Êθj

 1
∆n
kY

∣∣∣∣∣∆n
kX

 := 1
B

B∑
b=1

1
Yhnb

N(∆n
kX|hnµ, σ2Yhnb)
phn(∆n

kX|θ)
,

where Yhnb, b = 1, . . . , B, are i.i.d. draws from phn(y). They are simulated with

the algorithms from Chapter 2. Then Êθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
→ Eθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
a.s. for

B →∞. Note that we have to use the Fourier inversion (3.17) to compute phn(∆n
kX|θ).

Although this is the most time-consuming step in the proposed MCEM algorithm, it
is still much faster than the Nelder-Mead approach mentioned above.

We conclude the (j + 1)-th MCE-Step.

Q̂(θ|θj) =
n∑
k=1
−1

2 log(2π)− 1
2 log σ2− (∆n

kX − hnµ)2

2σ2 Êθj

 1
∆n
kY

∣∣∣∣∣∆n
kX

+C, (3.20)

where we collect the terms vanishing during maximization in the constant C.
In order to maximize (3.20), we set ∂Q

∂µ = 0 and ∂Q
∂σ = 0. We obtain the (j+ 1)-th

M-Step.

µj+1 =

∑n
k=1 Êθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
∆n
kX

hn
∑n
k=1 Êθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
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and

σ2
j+1 = 1

n

n∑
k=1

(∆n
kX − hnµj+1)2Êθj

 1
∆n
kY

∣∣∣∣∣∆n
kX

 .
Note that we need to find µj+1 first, since it is needed to update σj+1. The

MCE-step and the M-step are repeated iteratively until we observe convergence of
(µj , σj). To speed up the MCEM, we draw Yhnb, b = 1, . . . , B, only once and reuse
them in any MCE-step as recommended by Levine & Casella (2001). For the initial
(µ0, σ0) we take the raw moment estimates if ν > 2. For 1 < ν ≤ 2 we take some
other initial values. The whole MCEM routine is summarized in compact form in
Algorithm 5.

Algorithm 5 MCEM Algorithm for the Student-Lévy process with known ν
Input: Sample path observed at (Xkhn)1≤k≤n, such that ∆n

kX ∼ phn(x|θ);
Output: Maximum likelihood estimates µ̂ and σ̂2.

1: µ0 ← 1
hnn

∑n
k=1 ∆n

kX;
σ2

0 ← ν−2
ν

1
hnn

∑n
k=1(∆n

kX)2 − ν−2
ν hnµ

2
0; . Start with moment estimation.

2: Draw B i.i.d. random variates Yhn1, . . . , YhnB ∼ phn(y);
3: j ← 0;
4: repeat
5: MCE step:
6: for k = 1 to n do
7: Êθj

[
1

∆n
k
Y

∣∣∆n
kX

]
← 1

B

∑B
b=1

1
Yhnb

N(∆n
kX|hnµj ,σ

2Yhnb)
phn (∆n

k
X|θj) ;

8: end for
9: M step:

10: for k = 1 to n do

11: µj+1 ←
∑n

k=1 Êθj

[
1

∆n
k
Y |∆n

kX

]
∆n
kX

hn
∑n

k=1 Êθj

[
1

∆n
k
Y |∆n

k
X

] ;

12: σ2
j+1 ← 1

n

∑n
k=1(∆n

kX − hnµj+1)2Êθj

[
1

∆n
k
Y

∣∣∣∣∆n
kX

]
;

13: end for
14: until convergence.

3.4 Monte Carlo study

In this section we briefly present some experimental evidence for the above methods.
The section is split into three experiments. First, we test the MCEM algorithm and
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verify that a higher frequency leads to a better estimation result. A second experiment
compares the MCEM algorithm with the Nelder-Mead maximization of the Fourier
inversion. Third, we investigate the estimators µ̂T,n and σ̂T,n for continuous sampling.

The first experiment tests the MCEM algorithm. We sample Student-Lévy paths
for different degrees of freedom ν = 4, 12, 39 with hn = 0.01, 0.1, 0.5, 1 increments until
T ≡ Tn = 100. We consider 5 constellations for θ = (µ, σ). For each sampled path
and each hn we compute the ML estimate (µ̂ML, σ̂ML) with the MCEM algorithm
and the method of moments (MoM) estimate (µ̂MoM , σ̂MoM ). We repeat this 10,000
times for each constellation and compute the empirical bias and the empirical root
mean squared error (RMSE). Tables 3.1, 3.2 and 3.3 report the results. In order to
reduce computing time we only estimate the parameters for hn = 0.01 in the setting
θ = (0, 1).

Unsurprisingly, the estimates are closer to the true parameters for smaller step
sizes in all constellations. In almost all setups, the ML estimates are better than the
MoM estimates. Moreover, this pattern is more clearly visible for smaller degrees of
freedom. This is due to the fact that, for high degrees of freedom, the increments are
approximately normally distributed and the MoM estimator and the MLE coincide
for Gaussian increments. Thus, the MLE performs better for low degrees of freedom.

Further, the bias for the scaling parameter is typically negative while the bias
for the location parameter is positive in some cases. Next, the RMSEs for the ML
estimates of both parameters only depend on the true σ (and not on µ). This is
supported by Theorem 3.1, as the Fisher information matrix does not depend on
µ. As ν increases, the differences in RMSEs for µ tend to vanish along hn. Again,
this is reasonable as the MLE and the MoM estimator are numerically close for high
degrees of freedom. Although the Fisher information for σ does not depend on ν,
there are some small differences in RMSEs of σ̂ML for different ν in finite samples.
Additionally, for ν = 4, the RMSE of σ̂ML is decisively smaller than that of σ̂MoM

throughout, whereas for ν = 39 there are (if at all) only small differences.
Note that the moment estimator for µ is numerically equal to any digit among

different times hn since the moment estimator is not consistent if Tn 9∞.
Figures 3.1, 3.2 and 3.3 show kernel density estimates of the realizations of√

n (µ̂ML−µ)√
2νσ2 (panel (a)) and

√
n (σ̂ML−σ)√

2σ2 (panel (b)) for different hn compared with
the theoretical standard normal density. Figure 3.1 considers ν = 4, Figure 3.2 is for
ν = 12 and Figure 3.3 for ν = 39. All figures share the same true parameter setup
(µ, σ) = (0, 1).

Figure 3.1 illustrates asymptotic normality for both estimators, and the density
estimates for hn = 0.01 are not too far from the standard normal density. Figure 3.2
and 3.3 show that this is now less valid for large ν. In Figure 3.3 (b) all kernel density
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True θ hn µ̂ML σ̂ML µ̂MoM σ̂MoM

(0, 1) 1 −1.3 · 10−3 −5.5 · 10−3 −10−3 −.019
(.118) (.094) (.141) (.162)

0.5 −9.1 · 10−4 −3.2 · 10−3 −10−3 −.016
(.106) (.07) (.141) (.156)

0.1 5 · 10−5 −1.5 · 10−4 −10−3 −.013
(.069) (.037) (.141) (.149)

0.01 1.9 · 10−4 −3.2 · 10−4 −10−3 −.012
(.027) (.013) (.141) (.148)

(0, 3) 1 −9 · 10−3 −1.7 · 10−2 −8.6 · 10−3 −.066
(.361) (.278) (.428) (.459)

0.5 −7.2 · 10−3 −9.9 · 10−3 −8.6 · 10−3 −.056
(.324) (.211) (.428) (.435)

0.1 −2 · 10−3 −3.1 · 10−3 −8.6 · 10−3 −.046
(.211) (.111) (.428) (.416)

(0, 0.1) 1 4.4 · 10−5 −5.9 · 10−4 2.4 · 10−5 −1.9 · 10−3

(.0118) (.0094) (.0142) (.0179)
0.5 3.7 · 10−5 −4.1 · 10−4 2.4 · 10−5 −1.5 · 10−3

(.0106) (.007) (.0142) (.0172)
0.1 3.3 · 10−5 −1.5 · 10−4 2.4 · 10−5 −1.1 · 10−3

(.0069) (.0036) (.0142) (.0166)

(2, 1) 1 −8 · 10−4 −4.7 · 10−3 −2.1 · 10−3 −.019
(.118) (.093) (.141) (.16)

0.5 −9.9 · 10−5 −1.9 · 10−3 −2.1 · 10−3 −.015
(.106) (.07) (.141) (.152)

0.1 −1.3 · 10−3 −8.7 · 10−4 −2.1 · 10−3 −.013
(.07) (.036) (.141) (.147)

(−0.5, 1) 1 −6.8 · 10−4 −3.7 · 10−3 −1.7 · 10−3 −.016
(.118) (.094) (.142) (.166)

0.5 −1.3 · 10−3 −1.8 · 10−4 −1.7 · 10−3 −.013
(.106) (.07) (.142) (.158)

0.1 −1.2 · 10−3 −3.3 · 10−4 −1.7 · 10−3 −.01
(.07) (.036) (.142) (.152)

Table 3.1: Empirical bias and RMSE (in parentheses) for ν = 4 comparing the MLE
and the MoM estimator for different true θ and step size hn.
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True θ hn µ̂ML σ̂ML µ̂MoM σ̂MoM

(0, 1) 1 5.7 · 10−4 −6.3 · 10−3 4 · 10−4 −9 · 10−3

(.106) (0.08) (.108) (0.082)
0.5 8.9 · 10−4 −3.4 · 10−3 4 · 10−4 −5.7 · 10−3

(.102) (.059) (.108) (.065)
0.1 10−3 −1.3 · 10−3 4 · 10−4 −2.1 · 10−3

(.086) (.031) (.108) (.048)
0.01 3.5 · 10−5 −3.2 · 10−3 4 · 10−4 −1.4 · 10−3

(.042) (.013) (.108) (.043)

(0, 3) 1 −6.8 · 10−4 −.023 −6.6 · 10−4 −.029
(.319) (.24) (.326) (.25)

0.5 −2.5 · 10−4 −.013 −6.6 · 10−4 −.019
(.31) (.179) (.326) (.2)

0.1 −7.1 · 10−5 −4.9 · 10−3 −6.6 · 10−4 −8.5 · 10−3

(.259) (.093) (.326) (.145)

(0, 0.1) 1 1.2 · 10−4 −6.1 · 10−4 1.4 · 10−4 −8.1 · 10−4

(.0108) (.008) (.0111) (.0083)
0.5 1.4 · 10−4 −3.2 · 10−4 1.4 · 10−4 −4.7 · 10−4

(.0106) (.006) (.0111) (.0066)
0.1 5.4 · 10−5 −9.8 · 10−5 1.4 · 10−4 −1.4 · 10−4

(.0088) (.0031) (.0111) (.0049)

(2, 1) 1 −1.8 · 10−3 −7.3 · 10−3 −1.8 · 10−3 −9.3 · 10−3

(.107) (.079) (.109) (.082)
0.5 −1.8 · 10−3 −4.1 · 10−3 −1.8 · 10−3 −5.5 · 10−3

(.104) (.059) (.109) (.065)
0.1 −7.2 · 10−4 −9.4 · 10−4 −1.8 · 10−3 −1.8 · 10−3

(.087) (.031) (.109) (.048)

(−0.5, 1) 1 1.3 · 10−4 −7.4 · 103 5 · 10−4 −9.5 · 103

(.108) (.08) (.11) (.083)
0.5 1.9 · 10−4 −3.1 · 103 5 · 10−4 −5 · 103

(.105) (.059) (.11) (.066)
0.1 8.6 · 10−4 −1.1 · 103 5 · 10−4 −2 · 103

(.087) (.031) (.11) (.048)

Table 3.2: Empirical bias and RMSE (in parentheses) for ν = 12 comparing the MLE
and the MoM estimator for different true θ and step size hn.
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True θ hn µ̂ML σ̂ML µ̂MoM σ̂MoM

(0, 1) 1 −1.1 · 10−3 −8.1 · 10−3 −10−3 −8.7 · 10−3

(.103) (.074) (.103) (.074)
0.5 −9.2 · 10−4 −4.6 · 10−3 −10−3 −5.2 · 10−3

(.102) (.054) (.103) (.054)
0.1 −7.3 · 10−4 −1.9 · 10−3 −10−3 −2.3 · 10−3

(.097) (.027) (.103) (.031)
0.01 3.6 · 10−4 −3.9 · 10−3 −10−3 −1.7 · 10−3

(.065) (.019) (.103) (.022)

(0, 3) 1 −7.7 · 10−4 −2.8 · 10−2 −7.7 · 10−4 −3 · 10−2

(.308) (.221) (.309) (.222)
0.5 −1.1 · 10−3 −1.4 · 10−2 −7.7 · 10−4 −1.6 · 10−2

(.307) (.159) (.309) (.161)
0.1 5.3 · 10−4 −6.6 · 10−3 −7.2 · 10−4 −7.8 · 10−3

(.292) (.081) (.309) (.091)

(0, 0.1) 1 9.5 · 10−5 −6.9 · 10−4 9.5 · 10−5 −2.5 · 10−4

(.0103) (.0073) (.0103) (.0074)
0.5 10−5 −3.6 · 10−4 9.5 · 10−5 −1.7 · 10−4

(.0103) (.0053) (.0103) (.0054)
0.1 9.6 · 10−5 −1.7 · 10−4 9.5 · 10−5 −1.4 · 10−4

(.0097) (.0027) (.0103) (.003)

(2, 1) 1 2.7 · 10−4 −7.9 · 10−3 2.6 · 10−4 −8.6 · 10−3

(.101) (.074) (.101) (.075)
0.5 2.7 · 10−4 −4.5 · 10−3 2.6 · 10−4 −5 · 10−3

(.101) (.054) (.101) (.055)
0.1 −10−5 −1.7 · 10−3 2.6 · 10−4 −1.9 · 10−3

(.096) (.027) (.101) (.031)

(−0.5, 1) 1 −1.3 · 10−3 −8.5 · 10−3 −1.3 · 10−3 −9.1 · 10−3

(.104) (.074) (.104) (.075)
0.5 −1.1 · 10−3 −4.8 · 10−3 −1.3 · 10−3 −5.3 · 10−3

(.103) (.053) (.104) (.054)
0.1 −1.1 · 10−3 −2 · 10−3 −1.3 · 10−3 −2.1 · 10−3

(.097) (.027) (.104) (.03)

Table 3.3: Empirical bias and RMSE (in parentheses) for ν = 39 comparing the MLE
and the MoM estimator for different true θ and step size hn.
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Figure 3.1: Panel (a) compares kernel density estimates of
√
n (µ̂ML−µ)√

2νσ2 for different hn
with the standard normal density. Analogously, panel (b) for

√
n (σ̂ML−σ)√

2σ2 .
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Figure 3.2: Panel (a) compares kernel density estimates of
√
n (µ̂ML−µ)√

2νσ2 for different hn
with the standard normal density. Analogously, panel (b) for

√
n (σ̂ML−σ)√

2σ2 .

estimates are closer to each other and obviously not standard normal. This is because
Student-Lévy increments for high degrees of freedom are approximately normal.
However, for Brownian motions the LAN holds true, but with Fisher information
I (22) = 2

σ2 (Kawai 2013) instead of 1
2σ2 for Student-Lévy processes (yet with the

same rate). If we do not interpret the high degrees of freedom as approximately
normal but follow the Student-Lévy LAN theory, the asymptotic normality hence
“occurs later”.
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Figure 3.3: Panel (a) compares kernel density estimates of
√
n (µ̂ML−µ)√

2νσ2 for different hn
with the standard normal density. Analogously, panel (b) for

√
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3.4.1 Robustness

We perform a robustness simulation mainly to encourage future work on estimating
ν. We now simulate paths with ν ∈ {3, 5} but still assume ν = 4 for estimation.
Table 3.4 reports the empirical biases and RMSEs. For a better comparison we again
include the case in which we also simulate paths with ν = 4.

Comparing ν = 4 with ν = 5 we see that the bias and RMSE are almost equal
for µ̂ML. The same is true for RMSEs of σ̂ML while the biases are larger. For ν = 3
we again see that the biases and RMSEs of µ̂ML are of the same size as for ν = 4.
The biases and RMSEs of σ̂ML are slightly larger if the true ν = 3. However, for both
ν = 3, 5 and both parameters a higher frequency decreases the RMSE.

3.4.2 Comparison between ML methods

The second experiment aims to specify the numerical error between the two different
methods, MCEM-MLE and CF-MLE. We again test ν = 4, 12, 39 and hn = 0.1, 0.5, 1
but restrict ourselves to the setting µ = 0, σ = 1. Since the execution time of CF-ML
is too long, we only perform 100 iterations instead of 10,000 as before. In each
iteration we simulate a Student-Lévy path and estimate parameters for hn-increments
both with MCEM and CF-ML. We then estimate the root mean squared deviance

between both:
(

1
100
∑
j(µ

(j)
n,MCEM − µ

(j)
n,CF-ML)2

)1/2
. For hn = 1 (Student t random

numbers) we also compare each with the standard EM-MLE. Table 3.5 shows the
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True ν hn µ̂ML σ̂ML µ̂MoM σ̂MoM

3 1 4.1 · 10−4 .067 −7.6 · 10−4 .169
(.124) (.126) (.175) (.407)

0.5 3.8 · 10−4 .035 −7.6 · 10−4 .173
(.106) (.085) (.175) (.406)

0.1 2.7 · 10−4 -.037 −7.6 · 10−4 .176
(.065) (.052) (.175) (.405)

4 1 −1.3 · 10−3 −5.5 · 10−3 −10−3 −.019
(.118) (.094) (.141) (.162)

0.5 −9.1 · 10−4 −3.2 · 10−3 −10−3 −.016
(.106) (.07) (.141) (.156)

0.1 5 · 10−5 −1.5 · 10−4 −10−3 −.013
(.069) (.037) (.141) (.149)

5 1 2 · 10−4 −4.3 · 10−2 −1.1 · 10−4 −.099
(.117) (.096) (.129) (.15)

0.5 6.6 · 10−4 −2.2 · 10−2 −1.1 · 10−4 −.096
(.107) (.07) (.129) (.142)

0.1 7.3 · 10−4 2.8 · 10−2 −1.1 · 10−4 −.093
(.074) (.046) (.129) (.134)

Table 3.4: Empirical bias and RMSE (in parentheses) assuming ν = 4 for estimation
comparing the MLE and the MoM estimator for different true ν and step
size hn.

results.
Apparently, the randomness caused by the Monte Carlo integration has little

impact on the estimation results. This seems to be true for all degrees of freedom
considered. There are some exceptions for the CF-ML, viz. the Nelder-Mead maxi-
mization occasionally fails to find the optimum. These outliers have been excluded in
the table.

3.4.3 Continuous sampling

Finally, we discuss the estimators (3.15) and (3.16) for the continuous sampling
scheme. Of course, continuous sampling is physically impossible. However, if a path
is generated by a series representation (Chapter 2), we expect a sufficient number of
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Comparison hn µ̂ σ̂
ν = 4 12 39 4 12 39

MCEM 1 2.4 · 10−4 1.6 · 10−4 7.8 · 10−5∗ 8 · 10−4 3.5 · 10−4 8.8 · 10−5∗

vs 0.5 3.2 · 10−4 7.7 · 10−5∗ 1.6 · 10−4∗ 5.4 · 10−4 1.5 · 10−4∗ 1.7 · 10−4∗

CF-ML 0.1 5 · 10−5 1.7 · 10−4∗ 1.5 · 10−4 2.7 · 10−4 3.9 · 10−4∗ 1.6 · 10−4

MCEM
vs 1 2.4 · 10−4 1.6 · 10−4 7.8 · 10−5 8 · 10−4 3.4 · 10−4 8.8 · 10−5∗

EM

CF-ML
vs 1 6.1 · 10−7 2.8 · 10−7 6.8 · 10−8∗ 2.4 · 10−6 7.3 · 10−7 1.4 · 10−7∗

EM

Table 3.5: Empirical root mean squared deviances between the different ML estimation
approaches for different hn and ν. Exceptions occur where Nelder-Mead
does not work. These outliers have been excluded from analysis. The cases
are highlighted with ∗.

jumps for estimation. See also Raible (2000) for the normal inverse Gaussian Lévy
process.

Let T = 1, θ = (0, 1) and let τ = 50, 400; 87, 300; 157, 300 for ν = 4, 12, 39,
respectively, be the truncation levels for the random truncated series representation.
The different levels of truncation are chosen such that the series contain all jumps
up to size 10−9 for each ν. For each ν we generate 10,000 paths and compute the
continuous sampling estimators µ̂T,n and σ̂T,n for various n. Figure 3.4 plots the
sample mean of the estimates versus log10 n, both for µ̂T,n (panel (a)) and σ̂T,n (panel
(b)). The results illustrate the strong consistency of µ̂T,n for µ. However, there
is evidently a problem for σ̂T,n causing the decay. This is due to the fact that on
average there are τ jumps in each path (due to the random truncation). This bounds
#{t ≤ T : ∆Xt ≥ 1/n} and, eventually, σ̂T,n → 0 a.s. for n→∞.

If we pick n = 10, 000 such that σ̂T,n attains its maximum value, we find the
RMSEs given in Table 3.6 outperforming the MCEM-MLE (see Tables 3.1 to 3.3, lines
1 to 3, values in parentheses). In practice, the series representation is not available but
these estimators may be an alternative if a very high number of jumps is observed.
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Figure 3.4: Empirical means of estimates of 10,000 trajectories using (3.15) and (3.16)
for different ν and θ = (0, 1).

ν µ̂T,104 µ̂T,106 σ̂T,104

4 8.7 · 10−3 1.5 · 10−5 1.3 · 10−2

12 1.2 · 10−2 1.9 · 10−5 9.8 · 10−3

39 1.5 · 10−2 2.6 · 10−5 8.2 · 10−3

Table 3.6: RMSEs for estimators (3.15) and (3.16) for different ν and θ = (0, 1).

3.5 Conclusion and future work

In this chapter we discuss and prove local asymptotic normality for the Student-Lévy
process for high-frequency sampling. We find the rate of convergence and the Fisher
information matrix. The LAN implies asymptotic normality and asymptotic efficiency
for the maximum likelihood estimator. Additionally, we find that the LAN fails to
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hold for the skew Student-Lévy process. We propose and test in simulations a Monte
Carlo EM approach for numerical computations, which seems to work well.

In our future research we intend to further investigate estimation of GH Lévy
processes. This involves classifying all special cases where a LAN does or does not
hold. Furthermore, we aim to estimate the parameter ν, since this is also possible for
Student t random numbers. Unfortunately, the density of Yt, t 6= 1 is not available. In
order to tackle this issue we plan to use appropriate approximations, e.g., Approximate
Bayesian Computation.

In the next chapter we apply the procedures discussed above to real-world data,
e.g., high-frequency financial data and compare how the resulting approach competes
with existing ones.
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4 What is the best Lévy model for stock
indices? A comparative study with a
view to time consistency

Lévy models are frequently used for asset log-returns. The crucial criterion here is
the distributional assumption on the increments. Candidates include the generalized
hyperbolic, the normal inverse Gaussian and the (skew) Student-Lévy process. We
perform a comprehensive comparative study for multiple equity indices and competing
Lévy models. We fit Lévy models to daily and also to hourly log-returns. In order
to do so, we investigate Eberlein & Özkan’s (2003) notion of time consistency. This
means that we analyze whether a Lévy model for daily returns also fits well for hourly
returns and vice versa. We conclude that the best fits for each index and sampling
scheme are not necessarily from the same model family.

4.1 Introduction

This chapter investigates which distribution is the best distributional fit for asset
log-returns in a large class of parametric models. Asset price modeling goes back
to Bachelier (1900), who proposed the normal distribution for the log-returns. The
distributional assumption is crucial, especially for option pricing. The famous Black
& Scholes (1973) formula relies on the log-normality assumption. However, it is now
well known that the normal distribution yields a poor fit for heavy-tailed returns.
Several authors have proposed other more appropriate distributions. Among them,
Mandelbrot (1961) recommended stable non-normal distributions. Praetz (1972)
suggested the Student t distribution because it allows a finite variance for a degree of
freedom higher than two. Other suggestions include the variance gamma distribution
(Madan & Seneta 1990), the hyperbolic distribution (Eberlein et al. 1995), the normal
inverse Gaussian distribution (Barndorff-Nielsen 1997), the Meixner distribution
(Schoutens 2001), the generalized hyperbolic distribution (Eberlein & Prause 2002),
and the skew Student t distribution (Aas & Haff 2006).

Since the distributional assumption is crucial for option pricing, there is consider-
able interest in the choice of distribution. Many studies have already investigated this
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question. For example, Gray & French (1990), Peiró (1994) and Aparicio & Estrada
(2001) compared different distributions for the daily log-returns of equity indices in
different countries; see Corlu et al. (2016) or Göncü et al. (2016) for more recent stud-
ies. Corlu & Corlu (2015) and Nadarajah et al. (2015) investigated foreign exchange
rate returns. The results of the studies cited differ depending on the countries and
time periods considered. These recent studies often favor the normal inverse Gaussian
or the variance gamma distribution.

Typically, financial data such as returns can only be observed in discrete frequency.
The above comparative studies mostly considered daily returns. However, the log-
return process is often modeled with a time-continuous Lévy process. The price
process of an asset then is a so-called exponential Lévy model (see Section 4.2).
Except for the Brownian motion (or, for the price process, the geometric Brownian
motion) the Lévy models are pure jump processes. For a review of Lévy processes in
finance and their relative advantages see Tankov & Cont (2015).

However, less attention has been paid to the question of whether these Lévy
models for daily returns also fit well at higher frequencies, i.e., intraday returns.
Eberlein & Özkan (2003) called this the “time consistency of Lévy processes”. (For
a precise definition see Section 4.5.) They fitted a hyperbolic Lévy model to daily
DAX returns and compared the implied distribution for one hour according to the
Lévy model with the empirical distribution of hourly returns. They found that this
distance is approximately minimal if the hypothetical time t of the Lévy model is
equal to the physical time of the market, i.e., the model time corresponds to the
real time of the market. For example, if t = 1 represents one trading day with four
tradings hours, then the distance of the implied distribution of one hour is minimal for
approximately t = 0.25. Figueroa-López et al. (2011) revisited this topic for American
equities using the normal inverse Gaussian and the variance gamma models. They
found that these Lévy models can be time consistent for hourly log-returns. For very
high frequencies, e.g., returns for every minute, there are perturbing microstructure
effects in the market.

This chapter makes the following contributions. First, we analyze data for the
multiple equity indices of different countries using different Lévy models to determine
which is the best fit. To do this, we use the Kolmogorov-Smirnov statistic, the
Anderson-Darling statistic and the Bayesian information criterion as goodness of
fit measures. Second, we investigate hourly log-returns for the indices to establish
the best model in terms of time consistency. Our key finding is that there are time
inconsistencies. This means that some models which fit well for daily returns, e.g., the
variance gamma model, fit poorly for hourly returns. We find that the Student-Lévy
process is a more appropriate alternative.

The chapter is organized as follows: Section 4.2 introduces the different models
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and highlights some of their important properties and differences. Section 4.3 gives a
brief overview of the data. Section 4.4 presents the goodness of fit results. Section
4.5 formally introduces the notion of time consistency and investigates which Lévy
model is the “most” time consistent. The last section concludes.

4.2 The models

In this section we introduce various competing Lévy models for asset returns. Let
{St} denote a price process for an asset. It is commonly assumed that the price
process can be written as

St = S0 exp(Xt),

where S0 > 0, and {Xt}, the log-return process, is a Lévy process. Daily log-returns
are defined as Rt−1,t = Xt − Xt−1, i.e., the one-increments of the Lévy process
{Xt}. This means we assume the daily returns to be independent and stationary.
Throughout, we present models which are frequently used in the literature. Lévy
models are induced by infinitely divisible distributions. If X1 is distributed according
to an infinitely divisible distribution, denoted ID(θ), this determines the whole Lévy
process {Xt}, written ID(θ)-Lévy process. We therefore fix the distribution for daily
returns, and the corresponding exponential Lévy process models the price process.
Although more models are possible, e.g., mixtures of the following, we focus on the
basic ones.

4.2.1 The generalized hyperbolic model

The generalized hyperbolic (GH) distribution GH(λ, α, β, δ, µ) is one of the most
flexible distributions used to model asset returns. It contains many other models as
special or limiting cases. Its density function is

fGHλ,α,β,δ,µ(x) =
(α2 − β2)λ/2Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp(β(x− µ))

√
2παλ−1/2δλKλ

(
δ
√
α2 − β2

) (
|δ|+ (x− µ)2)1/2−λ ,

with Kν(x) the modified Bessel function of the second kind, shape parameters λ ∈ R,
α ∈ R+

0 , skewness parameter β ∈ R, scale parameter δ, location parameter µ ∈ R
such that

δ ≥ 0, 0 ≤ |β| < α if λ > 0,
δ > 0, 0 ≤ |β| < α if λ = 0,
δ > 0, 0 ≤ |β| ≤ α if λ < 0.
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Barndorff-Nielsen (1977) introduced the GH distribution (as a model for sand move-
ment) and Barndorff-Nielsen & Halgreen (1977) proved its infinite divisibility. Eberlein
& Prause (2002) proposed using the GH distribution for asset price returns. Eberlein
& v. Hammerstein (2004) discussed the special and limiting cases of the GH distribu-
tion which we introduce below. Except for some special cases, the GH distribution is
not closed under convolution. Hence, a GH Lévy process {Xt} such that X1 ∼ GH
has no known distribution for Xt for t 6= 1. For t = 1, the GH distribution is fitted to
data using numerical maximum likelihood (ML) estimation. Unfortunately, there ex-
ists no closed-form maximum likelihood estimator (MLE) and the likelihood function
has a very complicated form and depends on five parameters. Thus, ML estimation
may only find a local maximum. To address this issue, we use the numerical ML
estimation algorithm of Breymann & Lüthi (2013) and our own Nelder-Mead-based
approach for numerical maximization. Since, as already mentioned, there exists no
likelihood function for Xt if t 6= 1 in closed form, we only perform ML estimation
for t = 1 (one-day returns). GH distributions are semi-heavy-tailed, i.e., the tails
are thinner than any power law but heavier than any normal law. For a rigorous
definition, see Omey et al. (2017). An important consequence is that E(eX) <∞ if X
follows a semi-heavy-tailed distribution. The GH distribution contains the following
special cases.

The normal model

Bachelier (1900) proposed Brownian motion as a model for log-returns. Although
numerous authors have stressed that asset returns are too heavy-tailed to be normal,
the assumption features prominently in the frequently used Black & Scholes (1973)
model for option pricing. Although there is overwhelming evidence against this model,
we use it for the purposes of comparison. The normal distribution is the weak limit of
the GH distribution fNµ,σ2(x) = lim fGHλ,α,β,δ,µ(x) as α, δ →∞ and δ/α→ σ2 for each
x ∈ R.

The Student model

Praetz (1972) and Blattberg & Gonedes (1974) were among the first to propose the
Student t distribution t(ν, µ, σ2) for asset price returns. The Student t distribution
has density function

fStν,µ,σ2(x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πνσ2

(
1 + 1

ν

(
x− µ
σ

)2
)− ν+1

2

,
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with ν > 0 degrees of freedom, location parameter µ ∈ R and scale parameter σ > 0.
Heyde & Leonenko (2005) proposed the Student-Lévy process as an alternative to
Gaussian processes in asset return modeling. Grothe & Schmidt (2010) considered a
different approach, rescaling the Student t distribution as an approximation of the
Student-Lévy process. Cassidy et al. (2010) and Cassidy (2011) used this for option
pricing. The Student t distribution is not closed under convolution. In other words,
the Student-Lévy process {Xt} only has a closed-form density for X1. For Xt, t 6= 1,
no density is known. ML estimation for Student t random variables can be performed
by using an Expectation-Conditional Maximization Either (ECME) algorithm (Liu &
Rubin 1994). ML estimation for a sample of Xt, t 6= 1 was developed in Chapter 3.
The Student t distribution is heavy-tailed, meaning that E(eX) is infinite. The tails
for small ν are heavier than for large ν. The Student t distribution is the weak limit
of the GH distribution fStν,µ,σ2(x) = limα,β→0 f

GH
λ,α,β,δ,µ(x) for each x ∈ R.

The skew Student model

The Student t model mentioned above has the disadvantage that it can not capture
skewness. As financial data often exhibit skewness, Aas & Haff (2006) suggested the
use of the skew Student t distribution t(ν, µ, σ2, β). It has density function

fSStν,µ,σ2,β(x) = 2 1−ν
2 νν/2σν exp

(
β(x− µ)

)
Γ
(
ν
2

)√
π

(
β2

νσ2 + (x− µ)2

) ν+1
4

·K ν+1
2

(√
β2 (νσ2 + (x− µ)2)) ,

with ν > 0, µ ∈ R, σ > 0 and β ∈ R\{0}. The symmetric Student t distribution
is the weak limit if β → 0. Like the non-skew Student t distribution it is not
closed under convolution. However, there is no likelihood estimation method for
t-increments with t 6= 1. Hence we restrict ourselves to one-day returns and do not
investigate time-consistency. An ML estimation algorithm for t 6= 1 is left for future
research. The skew Student t distribution has a right (left) heavy tail and a left
(right) semi-heavy tail if β > 0 (β < 0). It is the weak limit of the GH distribution
fSStν,µ,σ2,β(x) = lim|β|→α>0 f

GH
λ,α,β,δ,µ(x) for each x ∈ R.
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The variance gamma model

Madan & Seneta (1990) introduced the variance gamma distribution V Γ(λ, α, β, µ)
to model market returns. It has density function

fV Γ
λ,α,β,µ(x) =

(α2 − β2)λ|x− µ|λ−1/2Kλ−1/2(α|x− µ|) exp(β(x− µ))
√
πΓ(λ)(2α)λ−1/2 ,

with α, λ > 0, β ∈ R such that −α < β < α and µ ∈ R. It takes its name
from the normal mean-variance mixture with a gamma distributed variable. The
variance gamma distribution is the weak limit of the GH distribution fV Γ

λ,α,β,µ(x) =
limδ↓0 f

GH
λ,α,β,δ,µ(x) for each x ∈ R. The variance gamma distribution is closed under

convolution, i.e., a variance gamma Lévy process {Xt} fulfills Xt ∼ V Γ(tλ, α, β, tµ).
The variance gamma distribution has two semi-heavy tails.

The normal inverse Gaussian model

Barndorff-Nielsen (1977) introduced the normal inverse Gaussian (NIG) distribution
NIG(α, β, δ, µ). It has density function

fNIGα,β,δ,µ(x) =
αδK1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2(x− µ)2 exp

(
δ
√
α2 − β2 + β(x− µ)

)
,

with α, δ > 0 and β, µ ∈ R. Barndorff-Nielsen (1997) used the NIG distribution in
the context of asset returns. The NIG distribution is a special case of the GH distrib-
ution NIG(α, β, δ, µ) = GH(−1/2, α, β, δ, µ). The NIG distribution is closed under
convolution, i.e., for a NIG Lévy process it holds true that Xt ∼ NIG(α, β, tδ, tµ).
The NIG distribution is semi-heavy-tailed.

The hyperbolic model

The hyperbolic distribution H(α, β, δ, µ) has density function

fHα,β,δ,µ(x) =
√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
,

with α > 0, β ∈ R, δ ≥ 0 and µ ∈ R. Eberlein et al. (1995) introduced the hyperbolic
distribution for asset price returns. The hyperbolic distribution is a special case of
the GH distribution H(α, β, δ, µ) = GH(1, α, β, δ, µ). The hyperbolic distribution is
not closed under convolution and has semi-heavy tails.
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4.2 The models

4.2.2 The Meixner model

The Meixner distribution M(α, β, µ, δ) is not included in the GH family. Schoutens
& Teugels (1998), Schoutens (2001) introduced the distribution for asset price returns
as an alternative to the hyperbolic family. (It is named for Josef Meixner (1908-1994)
to honor his work on so-called Meixner polynomials.) It has density function

fMα,β,µ,δ(x) = (2 cos(β/2))2δ

2απΓ(2δ) exp
(
β(x− µ)

α

) ∣∣∣∣∣∣Γ
(
δ + i(x− µ)

α

)∣∣∣∣∣∣ ,
with scale parameter α > 0, shape parameter δ > 0, skewness parameter −π < β < π
and location parameter µ ∈ R. The Meixner distribution is closed under convolution,
i.e., for a Meixner-Lévy process {Xt} it holds that Xt ∼M(α, β, tδ, tµ). Furthermore,
the Meixner distribution is semi-heavy-tailed. The MLE can be found numerically
using Newton methods since the derivative of the log-likelihood is explicitly available.

4.2.3 The stable model

Mandelbrot (1961, 1967) proposed stable distributions Sα(β, µ, σ) as a model for
returns. The stable distribution has no closed-form density (except in a few special
cases) and is defined by its characteristic function

ϕSα,β,µ,σ(u) =


exp

(
iµu− σ|u|

(
1 + 2iβ

π sign(u) log |u|
))

, α = 1,

exp
(

iµu− σα|u|α
(
1− iβsign(u) tan απ

2

))
, α 6= 1,

with index of stability α ∈ (0, 2], skewness parameter β ∈ [−1, 1], location parameter
µ ∈ R and scale parameter σ > 0. Important special cases of the stable family are the
normal (α = 2), the Cauchy (α = 1) and “the” Lévy distribution (α = 1/2). Since
the index of stability is unknown we consider estimation only using the characteristic
function. ML estimation is performed using Fourier inversion methods (Nolan 2001).
The stable distribution has one heavy tail for α < 1 and β = ±1, one light and one
heavy tail for α ≥ 1 and β = ±1, two light tails for α = 2 (Gaussian case), and
two heavy tails for all other cases. For more properties of stable distributions see
Nolan (2018). All stable distributions are closed under convolution. An α-stable Lévy
process {Xt} has marginals Xt ∼ Sα(β, tµ, t1/ασ).
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

4.3 Data

This section gives a brief overview of the data which we use study that follows. Data
are provided by the Thomson Reuters Eikon database. We consider the 78 equity
indices from 70 countries for which hourly data is available. We observe daily closing
prices from 01/02/1997 until 11/02/2017 (or a shorter for some countries depending
on availability). We compute daily log-returns for trading days. Furthermore, we
observe hourly closing prices from 11/02/2016 12pm until 11/02/2017 12pm and
compute hourly log-returns for trading hours. In other words, for the goodness of fit
analysis of daily log-returns we can use a long sample of almost twenty years, while
the analysis of time consistency is restricted to one year. We compute all statistics
for daily returns in this and the next section both for the full period and for the one
year period.

Figure 4.1 compares the logarithm of fitted densities of the above models to the
daily log-returns of the S&P 500 index. The figure also contains the kernel density
estimate of the returns. It visualizes the heavy tails of the stable, the Student and
the skew Student distributions. The other distributions have semi-heavy tails. The
normal distribution is omitted since its light tails are a very poor fit. The empirical
density makes it hard to say which of the models fits the tail behavior best. We
discuss this further in Section 4.4.

Table 4.1 reports on the countries and indices considered, the number of daily
returns for the long period, as well as empirical mean, standard deviation, skewness,
kurtosis and minimal and maximal values. The index returns typically have a
mean close to and usually larger than zero. There is some skewness in the data.
The empirical kurtosis is greater than three, indicating heavy tails. We group the
countries into three segments: developed markets (top), emerging markets (middle)
and frontier markets (bottom) and apply alphabetical ordering in each group.

Table 4.2 reports statistics for daily returns restricted to the last year of the
period. Empirical kurtosis is lower than in Table 4.1 since fewer extreme events occur
in this short period. Table 4.3 presents statistics for hourly returns.

Figure 4.2 (a) shows the daily S&P 500, panel (b) shows the daily log-returns.
Figure 4.3 (a) shows the one-year hourly S&P 500, panel (b) shows hourly log returns.
While the hourly log-returns appear to be stationary, the daily log-returns have
different phases, e.g., the financial crisis.

Figure 4.4 shows dot plots of daily log-returns for some indices (entire sampling
period). The red box indicates the interquartile range and the white line the median.
This illustrates the heavy-tailed nature of the returns. The middle 50 percent of
the daily log-returns are compressed into a small band, while the data outside the
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4.3 Data
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Figure 4.1: Logarithm of densities of fitted distributions to daily log-returns of the S&P
500 index, see Section 4.3. The kernel density estimator (oversmoothed)
is given in black.
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Figure 4.2: Panel (a) shows the daily S&P 500 from 01/02/1997 until 11/02/2017.
Panel (b) shows daily log-returns.
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

Countries Index n Mean Sd Skewness Kurtosis Min Max

Australia ASX 200 5269 1.75E-04 0.0099 -0.4696 8.6670 -0.0870 0.0572
Australia All Ordinaries 5268 1.75E-04 0.0096 -0.5483 8.9961 -0.0855 0.0574

Austria ATX 5156 2.15E-04 0.0142 -0.4011 9.8215 -0.1025 0.1202
Belgium BEL 20 5313 1.48E-04 0.0124 -0.0295 8.5770 -0.0832 0.0933
Canada TSX 60 4727 1.95E-04 0.0118 -0.6155 12.4482 -0.1033 0.0983
Canada TSX Composite 5235 1.91E-04 0.0110 -0.6830 12.0902 -0.0979 0.0937

EuroStoxx EuroStoxx 50 5334 1.04E-04 0.0132 -0.0525 8.4418 -0.0900 0.1022
Finland OMXH25 5229 2.62E-04 0.0181 -0.3584 10.2951 -0.1742 0.1456

France CAC 40 5313 1.68E-04 0.0146 -0.0587 7.4755 -0.0947 0.1059
Germany DAX 5288 2.95E-04 0.0152 -0.0917 6.9610 -0.0887 0.1080

Hong Kong Hang Seng 5138 1.50E-04 0.0165 0.0958 13.1446 -0.1473 0.1725
Ireland ISEQ Overall 5262 1.79E-04 0.0135 -0.6705 11.1581 -0.1396 0.0973

Israel TA 35 5099 3.66E-04 0.0124 -0.2893 7.3446 -0.0988 0.0923
Italy FTSE MIB 5034 -1.07E-05 0.0157 -0.1984 7.4934 -0.1333 0.1087

Japan Topix 5117 3.75E-05 0.0139 -0.2921 8.5004 -0.1001 0.1286
Luxembourg LuxX Index 4745 1.04E-04 0.0130 -0.3420 9.5255 -0.1116 0.0910
Netherlands AEX 5317 1.23E-04 0.0145 -0.1441 8.6006 -0.0959 0.1003

New Zealand NZX 50 Index 4232 3.72E-04 0.0069 -0.5181 8.4709 -0.0525 0.0581
Norway OBX Index 4555 3.82E-04 0.0153 -0.5362 9.6656 -0.1127 0.1102

Portugal PSI 20 5286 1.10E-05 0.0123 -0.3426 9.1062 -0.1038 0.1020
Singapore STI Index 4563 9.56E-05 0.0115 -0.2637 8.3753 -0.0870 0.0753

South Korea KOSPI 5236 2.60E-04 0.0173 -0.3124 7.8089 -0.1280 0.1128
Spain IBEX 35 5272 1.40E-04 0.0151 -0.1365 8.3046 -0.1319 0.1348

Sweden OMXS30 5230 2.45E-04 0.0152 0.0412 6.7460 -0.0880 0.1102
Switzerland SMI 5241 1.63E-04 0.0121 -0.1909 8.9135 -0.0907 0.1079

UK FTSE 100 5262 1.16E-04 0.0119 -0.1503 8.5470 -0.0927 0.0938
USA DowJones 30 5241 2.46E-04 0.0114 -0.1522 10.8003 -0.0820 0.1051
USA S&P 500 5241 2.39E-04 0.0122 -0.2360 10.9494 -0.0947 0.1096
USA Nasdaq 5241 3.89E-04 0.0183 0.0952 8.8485 -0.1111 0.1720

Brazil Bovespa 5158 4.58E-04 0.0206 0.2873 16.2452 -0.1721 0.2883
Chile IPSA 5191 3.51E-04 0.0106 0.1155 11.4702 -0.0766 0.1180

China CSI 300 3056 4.52E-04 0.0180 -0.5398 6.6949 -0.0969 0.0893
China SSE 5045 2.58E-04 0.0163 -0.4007 7.8492 -0.0933 0.0940

Colombia IGBC 3967 5.99E-04 0.0127 -0.1743 15.7878 -0.1105 0.1469
Czech Republic PX 5209 1.30E-04 0.0138 -0.4608 14.7225 -0.1619 0.1236

Egypt EGX 30 4838 5.50E-04 0.0171 -0.3222 11.6822 -0.1799 0.1837
Greece Athex 5172 -4.19E-05 0.0195 -0.2864 8.3305 -0.1771 0.1343

Hungary Budapest SE 5202 4.30E-04 0.0170 -0.6040 14.0900 -0.1803 0.1362
India Nifty 50 5180 4.65E-04 0.0153 -0.2153 10.6826 -0.1305 0.1633
India BSE Sensex 5180 4.50E-04 0.0154 -0.1664 9.3714 -0.1181 0.1599

Indonesia IDX Composite 5078 4.42E-04 0.0158 -0.2011 11.0806 -0.1273 0.1313
Malaysia KLCI 5128 6.77E-05 0.0130 0.5065 65.7219 -0.2415 0.2082

Mexico IPC 5240 5.09E-04 0.0142 0.0175 11.0234 -0.1431 0.1215
Peru Lima General 5201 5.06E-04 0.0136 -0.4256 14.0243 -0.1329 0.1282

Philippines PSEi 5119 1.94E-04 0.0143 0.1849 14.2994 -0.1309 0.1618
Poland WIG 5218 2.87E-04 0.0137 -0.3973 7.1969 -0.1029 0.0789

Qatar QE 20 Index 4877 3.73E-04 0.0241 -0.5530 642.7196 -0.8581 0.8442
Russia MICEX 5010 6.05E-04 0.0260 0.1227 19.3443 -0.2334 0.2750
Russia RTSI 3154 -8.78E-05 0.0199 -0.7041 32.3405 -0.2596 0.2211

Saudi Arabia TASI 5061 3.02E-04 0.0141 -0.8853 13.5072 -0.1033 0.0939
South Africa JSE 5203 4.38E-04 0.0124 -0.4518 8.8747 -0.1263 0.0727

Taiwan TWII 5261 8.72E-05 0.0139 -0.1695 5.6809 -0.0691 0.0652
Thailand SET 5094 1.47E-04 0.0156 0.0528 10.9759 -0.1606 0.1135

Turkey BIST 100 5206 9.11E-04 0.0239 -0.0405 9.5974 -0.1998 0.1777
Un Arab Em DFM 3587 3.59E-04 0.0175 -0.0353 9.1104 -0.1216 0.1220
Un Arab Em Abu Dhabi 4236 3.49E-04 0.0110 -0.0855 11.5268 -0.0868 0.0763

Argentina MERVAL 5121 7.38E-04 0.0217 -0.3015 7.8039 -0.1476 0.1612
Bahrain All Share 3643 5.70E-05 0.0056 -0.3859 9.3284 -0.0492 0.0361

Bulgaria SOFIX 4188 4.53E-04 0.0152 -0.6017 37.1980 -0.2090 0.2107
Croatia CROBEX 4844 1.35E-04 0.0145 0.1982 19.1451 -0.1109 0.1747
Cyprus CYMAIN 3219 -9.46E-04 0.0266 0.0335 9.4221 -0.1670 0.1749
Estonia OMXT 5092 3.96E-04 0.0150 -1.0884 28.4849 -0.2158 0.1287

Kazakhstan KASE Index 4131 7.35E-04 0.0267 0.6189 67.2996 -0.4864 0.4876
Kuwait Kuwait 15 1352 -2.38E-05 0.0076 -0.0227 7.8663 -0.0499 0.0506
Latvia OMXR 4411 5.18E-04 0.0142 -0.3801 19.7370 -0.1471 0.1160

Lithuania OMXV 4396 4.28E-04 0.0102 -0.5168 24.1855 -0.1194 0.1100
Mauritius SEMDEX 5097 3.58E-04 0.0062 0.3365 26.8623 -0.0638 0.0765

Morocco MASI 3950 3.07E-04 0.0076 -0.4295 9.7235 -0.0682 0.0446
Namibia NSX Overall 3773 3.06E-04 0.0156 -0.4181 8.0880 -0.1483 0.0870

Oman MSM 30 5083 1.82E-04 0.0138 0.5548 444.2203 -0.4398 0.4542
Pakistan KSE 100 5093 6.67E-04 0.0151 -0.3510 9.2609 -0.1321 0.1276
Romania BET 10 5024 4.11E-04 0.0165 -0.3589 10.7408 -0.1312 0.1056

Serbia BELEX 3042 -1.04E-04 0.0126 0.1317 18.9038 -0.1086 0.1216
Sri Lanka CSE All-Share 4969 4.81E-04 0.0111 0.2593 35.4884 -0.1389 0.1829

Tunesia Tunindex 4878 3.71E-04 0.0078 -0.4186 561.8742 -0.2669 0.2654
Venezuela IBC 4768 2.42E-03 0.0201 1.0871 19.0283 -0.2066 0.2006

Vietnam HNX 30 2967 1.13E-05 0.0199 0.0106 7.2570 -0.1286 0.0973
Zambia All Share 3919 1.00E-03 0.0207 1.2196 36.1472 -0.2086 0.3112

Table 4.1: Countries with equity indices, number of non-zero daily log-returns from
01/03/1997 until 11/02/2017 (if available), mean, standard deviation,
skewness, kurtosis, minimal and maximal log-return.106



4.3 Data

Countries Index n Mean Sd Skewness Kurtosis Min Max

Australia ASX 200 253 4.98E-04 0.00661 0.2122 4.9154 -0.0194 0.0329
Australia All Ordinaries 253 4.84E-04 0.00630 0.2116 5.1678 -0.0196 0.0320

Austria ATX 249 1.39E-03 0.00788 0.1120 3.3902 -0.0231 0.0304
Belgium BEL 20 257 6.81E-04 0.00631 0.4721 4.7953 -0.0142 0.0307
Canada TSX 60 250 3.96E-04 0.00503 -0.4571 3.8445 -0.0187 0.0124
Canada TSX Composite 250 3.75E-04 0.00489 -0.4619 3.9177 -0.0175 0.0129

EuroStoxx EuroStoxx 50 258 6.25E-04 0.00560 0.3087 3.6652 -0.0140 0.0202
Finland OMXH25 253 6.91E-04 0.00660 -0.0460 3.4182 -0.0211 0.0199

France CAC 40 257 8.63E-04 0.00677 0.8036 7.3632 -0.0189 0.0406
Germany DAX 254 1.02E-03 0.00675 0.5890 5.3229 -0.0184 0.0332

Hong Kong Hang Seng 247 9.04E-04 0.00717 -0.2403 3.6133 -0.0218 0.0222
Ireland ISEQ Overall 254 6.65E-04 0.00755 0.3766 3.8261 -0.0179 0.0303

Israel TA 35 244 1.43E-04 0.00527 0.1122 3.6891 -0.0154 0.0164
Italy FTSE MIB 256 1.32E-03 0.00973 0.5764 5.5315 -0.0299 0.0466

Japan Topix 247 1.10E-03 0.00824 0.4504 14.6809 -0.0468 0.0562
Luxembourg LuxX Index 257 1.59E-04 0.01072 0.1878 3.8062 -0.0340 0.0367
Netherlands AEX 256 8.69E-04 0.00576 0.1247 3.6523 -0.0153 0.0223

New Zealand NZX 50 Index 251 6.57E-04 0.00521 -0.9906 11.5728 -0.0340 0.0241
Norway OBX Index 252 1.14E-03 0.00746 -0.2402 3.0805 -0.0230 0.0224

Portugal PSI 20 257 7.12E-04 0.00742 0.3931 4.8158 -0.0283 0.0273
Singapore STI Index 251 7.40E-04 0.00535 -0.0616 3.1034 -0.0142 0.0159

South Korea KOSPI 245 1.03E-03 0.00600 0.0437 5.3061 -0.0227 0.0227
Spain IBEX 35 257 6.58E-04 0.00844 0.4616 4.6395 -0.0289 0.0369

Sweden OMXS30 253 6.50E-04 0.00644 0.1710 3.3660 -0.0197 0.0226
Switzerland SMI 253 7.31E-04 0.00613 0.2383 3.7790 -0.0151 0.0197

UK FTSE 100 253 3.55E-04 0.00570 -0.2612 5.0869 -0.0249 0.0209
USA DowJones 30 251 1.06E-03 0.00440 0.2308 6.2821 -0.0179 0.0205
USA S&P 500 250 8.26E-04 0.00455 -0.0243 6.5978 -0.0183 0.0220
USA Nasdaq 251 1.11E-03 0.00687 -0.5112 6.1731 -0.0255 0.0287

Brazil Bovespa 248 7.20E-04 0.01303 -1.5747 13.0742 -0.0921 0.0391
Chile IPSA 248 1.09E-03 0.00619 -0.1246 3.9666 -0.0191 0.0228

China CSI 300 245 7.41E-04 0.00600 -0.2331 4.3670 -0.0244 0.0179
China SSE 245 3.53E-04 0.00558 -0.3287 4.8000 -0.0250 0.0182

Colombia IGBC 243 2.46E-04 0.00625 -0.5826 5.2657 -0.0276 0.0162
Czech Republic PX 252 6.59E-04 0.00525 -0.2353 4.0755 -0.0176 0.0187

Egypt EGX 30 244 2.13E-03 0.01227 0.7191 6.2119 -0.0381 0.0594
Greece Athex 253 1.10E-03 0.01157 -0.3044 4.6478 -0.0415 0.0413

Hungary Budapest SE 253 1.22E-03 0.00782 -0.1140 5.6012 -0.0254 0.0392
India Nifty 50 248 8.18E-04 0.00659 -0.4197 4.6855 -0.0273 0.0185
India BSE Sensex 249 8.01E-04 0.00633 -0.2798 4.2903 -0.0257 0.0175

Indonesia IDX Composite 240 4.56E-04 0.00676 -0.6217 9.6635 -0.0409 0.0256
Malaysia KLCI 244 1.96E-04 0.00364 0.1660 3.9486 -0.0113 0.0115

Mexico IPC 252 1.38E-04 0.00742 -0.9003 9.8457 -0.0468 0.0286
Peru Lima General 250 1.11E-03 0.00669 0.0212 3.4830 -0.0183 0.0220

Philippines PSEi 244 6.58E-04 0.00865 -0.2380 4.2911 -0.0292 0.0279
Poland WIG 251 1.19E-03 0.00760 0.4032 3.5238 -0.0189 0.0273

Qatar QE 20 Index 248 -8.50E-04 0.00938 -1.7707 18.7009 -0.0754 0.0300
Russia MICEX 253 2.07E-04 0.00827 -0.0543 3.3711 -0.0253 0.0242
Russia RTSI 251 7.48E-04 0.01050 -0.5694 7.0801 -0.0566 0.0351

Saudi Arabia TASI 250 5.89E-04 0.00851 1.1154 9.1039 -0.0262 0.0535
South Africa JSE 249 6.60E-04 0.00712 -0.1218 3.3873 -0.0235 0.0213

Taiwan TWII 247 6.72E-04 0.00594 -0.5747 6.3984 -0.0302 0.0231
Thailand SET 244 5.21E-04 0.00434 -0.1857 5.2244 -0.0171 0.0177

Turkey BIST 100 254 1.54E-03 0.00960 0.1329 4.7235 -0.0320 0.0407
Un Arab Em DFM 251 3.81E-04 0.00729 0.5581 4.0359 -0.0176 0.0273
Un Arab Em Abu Dhabi 251 1.83E-04 0.00698 0.1540 5.1772 -0.0295 0.0259

Argentina MERVAL 246 2.07E-03 0.01343 -0.2658 4.7290 -0.0494 0.0488
Bahrain All Share 245 4.57E-04 0.00481 0.9688 8.7882 -0.0178 0.0275

Bulgaria SOFIX 251 8.85E-04 0.00729 -0.4216 12.6743 -0.0467 0.0390
Croatia CROBEX 252 -1.55E-04 0.00739 -0.6573 6.9662 -0.0311 0.0229
Cyprus CYMAIN 250 1.72E-04 0.01229 0.2000 4.4878 -0.0361 0.0537
Estonia OMXT 254 6.84E-04 0.00449 0.0762 4.4556 -0.0133 0.0196

Kazakhstan KASE Index 246 1.97E-03 0.00820 -0.1724 3.4053 -0.0288 0.0219
Kuwait Kuwait 15 249 5.93E-04 0.00780 0.3506 4.3000 -0.0254 0.0298
Latvia OMXR 251 1.44E-03 0.00823 3.8235 36.2884 -0.0209 0.0804

Lithuania OMXV 250 7.04E-04 0.00375 -0.1413 4.4677 -0.0124 0.0149
Mauritius SEMDEX 249 8.05E-04 0.00269 0.3366 5.9271 -0.0116 0.0103

Morocco MASI 250 6.33E-04 0.00745 0.8390 6.6608 -0.0209 0.0330
Namibia NSX Overall 249 4.92E-04 0.00972 0.1206 4.1788 -0.0323 0.0327

Oman MSM 30 247 -3.32E-04 0.00438 0.1873 4.3251 -0.0143 0.0185
Pakistan KSE 100 251 -1.21E-04 0.01113 -0.7080 5.6065 -0.0476 0.0317
Romania BET 10 250 5.68E-04 0.00651 -0.5429 9.5517 -0.0390 0.0266

Serbia BELEX 252 3.57E-04 0.00557 -0.3319 6.3354 -0.0256 0.0202
Sri Lanka CSE All-Share 240 1.23E-04 0.00378 0.5970 4.0644 -0.0090 0.0153

Tunesia Tunindex 253 3.95E-04 0.00308 0.3839 3.3156 -0.0070 0.0109
Venezuela IBC 238 1.61E-02 0.03575 1.1060 6.0132 -0.0827 0.1704

Vietnam HNX 30 250 9.62E-04 0.00657 -0.2804 3.1174 -0.0180 0.0179
Zambia All Share 161 1.08E-03 0.00698 -0.0933 6.3659 -0.0226 0.0278

Table 4.2: Countries with equity indices, number of non-zero daily log-returns from
11/03/2016 until 11/02/2017, mean, standard deviation, skewness, kurtosis,
minimal and maximal log-return. 107



4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

Countries Index n Mean Sd Skewness Kurtosis Min Max

Australia ASX 200 1800 7.06E-05 0.00245 0.4388 21.3538 -0.0181 0.0297
Australia All Ordinaries 1814 6.82E-05 0.00231 0.4833 23.6521 -0.0177 0.0291

Austria ATX 2242 1.54E-04 0.00257 0.2388 9.5376 -0.0182 0.0191
Belgium BEL 20 2309 7.37E-05 0.00223 0.8710 20.2231 -0.0126 0.0289
Canada TSX 60 1995 4.54E-05 0.00194 -0.2382 9.0734 -0.0132 0.0113
Canada TSX Composite 2007 4.19E-05 0.00179 -0.2498 9.3709 -0.0124 0.0102

EuroStoxx EuroStoxx 50 2320 6.63E-05 0.00207 0.5640 12.4904 -0.0135 0.0177
Finland OMXH25 2275 7.55E-05 0.00216 0.1201 12.5739 -0.0159 0.0158

France CAC 40 2311 9.37E-05 0.00250 1.7853 32.8108 -0.0137 0.0391
Germany DAX 2283 1.11E-04 0.00236 1.0342 16.4528 -0.0147 0.0256

Hong Kong Hang Seng 1927 1.15E-04 0.00250 -0.1732 12.1575 -0.0173 0.0205
Ireland ISEQ Overall 2434 6.97E-05 0.00237 0.7375 12.4769 -0.0140 0.0214

Israel TA 35 2127 1.60E-05 0.00181 0.4841 11.6591 -0.0125 0.0136
Italy FTSE MIB 2304 1.42E-04 0.00320 0.5716 12.4431 -0.0208 0.0335

Japan Topix 1723 1.68E-04 0.00304 2.4663 52.5856 -0.0222 0.0498
Luxembourg LuxX Index 2270 1.79E-05 0.00387 -0.3749 12.0211 -0.0300 0.0262
Netherlands AEX 2293 9.52E-05 0.00217 0.3290 14.6740 -0.0148 0.0210

New Zealand NZX 50 Index 2107 7.83E-05 0.00166 -0.4736 61.1024 -0.0241 0.0264
Norway OBX Index 2019 1.38E-04 0.00247 -0.2709 9.4210 -0.0167 0.0146

Portugal PSI 20 2311 7.49E-05 0.00246 0.1126 17.2719 -0.0252 0.0222
Singapore STI Index 2249 8.35E-05 0.00180 -0.1456 10.6594 -0.0110 0.0123

South Korea KOSPI 1711 1.47E-04 0.00219 0.1866 14.7022 -0.0157 0.0183
Spain IBEX 35 2564 6.32E-05 0.00287 -0.1460 28.5718 -0.0401 0.0316

Sweden OMXS30 2259 7.09E-05 0.00221 0.1992 11.2113 -0.0134 0.0170
Switzerland SMI 2276 7.89E-05 0.00202 0.6186 12.4761 -0.0123 0.0183

UK FTSE 100 2269 3.73E-05 0.00203 0.1778 10.6633 -0.0126 0.0163
USA DowJones 30 2008 1.31E-04 0.00154 1.0947 14.2450 -0.0105 0.0147
USA S&P 500 2000 1.00E-04 0.00159 0.6406 13.4870 -0.0102 0.0155
USA Nasdaq 2009 1.35E-04 0.00234 -0.3633 16.4007 -0.0232 0.0193

Brazil Bovespa 2077 7.46E-05 0.00438 -3.9932 91.6913 -0.0901 0.0252
Chile IPSA 2070 1.29E-04 0.00281 0.1156 300.5028 -0.0656 0.0668

China CSI 300 1709 1.06E-04 0.00249 0.1219 7.7060 -0.0120 0.0171
China SSE 1711 5.06E-05 0.00234 -0.4025 8.5230 -0.0157 0.0117

Colombia IGBC 1837 3.11E-05 0.00207 -0.1891 8.0009 -0.0134 0.0116
Czech Republic PX 2008 8.42E-05 0.00196 -0.1772 12.0585 -0.0195 0.0135

Egypt EGX 30 1200 4.32E-04 0.00500 2.3446 20.7353 -0.0292 0.0450
Greece Athex 2019 1.35E-04 0.00381 -0.0536 8.0771 -0.0233 0.0253

Hungary Budapest SE 2279 1.31E-04 0.00235 0.2235 8.1885 -0.0130 0.0182
India Nifty 50 1734 1.17E-04 0.00234 -0.4861 15.2852 -0.0238 0.0156
India BSE Sensex 1738 1.14E-04 0.00231 -0.1696 13.8418 -0.0224 0.0162

Indonesia IDX Composite 1819 6.16E-05 0.00225 -1.1355 45.1226 -0.0299 0.0235
Malaysia KLCI 1694 2.88E-05 0.00133 -0.5679 13.6636 -0.0117 0.0080

Mexico IPC 1879 1.20E-05 0.00266 -0.1461 11.9105 -0.0206 0.0217
Peru Lima General 2043 1.29E-04 0.00194 0.1635 7.4021 -0.0130 0.0119

Philippines PSEi 1706 9.81E-05 0.00318 0.3536 9.7002 -0.0213 0.0206
Poland WIG 2259 1.28E-04 0.00235 0.3952 8.8587 -0.0143 0.0184

Qatar QE 20 Index 1240 -1.71E-04 0.00422 -5.3766 108.2169 -0.0798 0.0267
Russia MICEX 2277 1.84E-05 0.00275 -0.3768 7.2733 -0.0209 0.0139
Russia RTSI 2223 8.47E-05 0.00375 -0.5897 15.1628 -0.0434 0.0231

Saudi Arabia TASI 1303 1.15E-04 0.00341 0.7533 13.0481 -0.0271 0.0268
South Africa JSE 2230 7.40E-05 0.00235 0.3934 8.5755 -0.0127 0.0154

Taiwan TWII 1233 1.37E-04 0.00250 0.3247 15.9052 -0.0203 0.0238
Thailand SET 1699 7.46E-05 0.00178 0.0030 6.7063 -0.0085 0.0097

Turkey BIST 100 2526 1.54E-04 0.00268 -1.2968 21.8438 -0.0373 0.0174
Un Arab Em DFM 1003 9.55E-05 0.00360 0.1046 8.4330 -0.0266 0.0202
Un Arab Em Abu Dhabi 1255 3.66E-05 0.00324 -0.7373 15.2062 -0.0336 0.0214

Argentina MERVAL 1735 3.03E-04 0.00450 -0.5839 18.7074 -0.0446 0.0325
Bahrain All Share 885 1.28E-04 0.00273 0.7879 36.2110 -0.0281 0.0315

Bulgaria SOFIX 1931 1.20E-04 0.00293 1.0336 28.3603 -0.0287 0.0368
Croatia CROBEX 2000 -2.15E-05 0.00268 -2.5604 50.9294 -0.0439 0.0192
Cyprus CYMAIN 1683 2.80E-05 0.00710 -0.1935 7.7709 -0.0472 0.0394
Estonia OMXT 1629 1.05E-04 0.00236 0.4862 13.9078 -0.0197 0.0221

Kazakhstan KASE Index 1673 2.89E-04 0.00374 0.3373 7.4059 -0.0229 0.0242
Kuwait Kuwait 15 992 1.52E-04 0.00423 0.5725 6.4445 -0.0143 0.0251
Latvia OMXR 1421 2.50E-04 0.00390 6.9598 142.2951 -0.0194 0.0818

Lithuania OMXV 1580 1.11E-04 0.02007 -0.2090 778.6937 -0.5631 0.5605
Mauritius SEMDEX 998 2.00E-04 0.00133 0.4685 11.6620 -0.0083 0.0087

Morocco MASI 1738 9.34E-05 0.00276 2.2058 36.8220 -0.0132 0.0421
Namibia NSX Overall 2221 5.16E-05 0.00403 -0.3037 13.4956 -0.0311 0.0307

Oman MSM 30 916 -8.97E-05 0.00186 0.0456 7.8146 -0.0103 0.0118
Pakistan KSE 100 1727 -1.72E-05 0.00389 -0.5270 10.2687 -0.0332 0.0208
Romania BET 10 2496 5.62E-05 0.00200 -0.5344 19.2760 -0.0186 0.0201

Serbia BELEX 1409 6.44E-05 0.00337 0.0670 5.6360 -0.0134 0.0164
Sri Lanka CSE All-Share 1435 2.05E-05 0.00121 0.5534 6.2710 -0.0052 0.0070

Tunesia Tunindex 1203 8.53E-05 0.00169 0.1193 4.4026 -0.0068 0.0069
Venezuela IBC 890 4.32E-03 0.01754 0.7130 8.7080 -0.0835 0.1071

Vietnam HNX 30 1264 1.97E-04 0.00317 0.1264 4.4978 -0.0115 0.0140
Zambia All Share 470 3.30E-04 0.02537 0.0328 81.6378 -0.2973 0.2986

Table 4.3: Countries with equity indices, number of non-zero hourly log-returns from
11/03/2016 1pm until 11/02/2017 12pm, mean, standard deviation,
skewness, kurtosis, minimal and maximal log-return.108
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Figure 4.3: Panel (a) shows the hourly S&P 500 from 11/02/2016 12pm until
11/02/2017 12pm. Panel (b) shows hourly log-returns.

interquartile range are widely dispersed. For some indices, e.g., the Tunisian Tunindex,
there occur extreme outliers. Figure 4.5 likewise shows dot plots for hourly returns.
The red boxes’ share of the full range is smaller than for daily returns, indicating
that the tails are heavier.

4.4 Goodness of fit

This section aims to decide which Lévy model is the best fit for daily and intraday
returns. We compare the Lévy models L ∈ {N,St, SSt,NIG, V Γ, H,GH,M,Sα}
presented in Section 4.2. We fit the distributions to the log-returns by (possibly
numerically) maximizing the log-likelihood `L(θ) = ∑n

i=1 log fL(xi; θ), where θ =
(θ1, . . . , θk) is the vector of parameters. Note that k depends on the specific Lévy
model L. Let θ̂ denote the ML estimate given the log-returns x1, . . . , xn.

We use three different measures of goodness of fit.

• The Kolmogorov-Smirnov (KS) statistic (Kolmogorov 1933) compares the em-
pirical distribution function Fn(x) = 1

n

∑n
i=1 1(−∞,x](xi) with the distribution

function of the fitted Lévy model FL(x; θ̂) and is given by the maximal deviance

KS = sup
x∈R
|Fn(x)− FL(x; θ̂)|.
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Figure 4.4: Dot plots of daily log-returns for several countries. The red box indicates
the interquartile range and the white line within it the median.

• The Anderson-Darling (AD) statistic (Anderson & Darling 1954) is defined by

AD = n

ˆ ∞
−∞

(Fn(x)− FL(x; θ̂))2

FL(x; θ̂)(1− FL(x; θ̂))
dFL(x; θ̂)

= −n−
n∑
i=1

2i− 1
n

(
logFL(x(i); θ̂) + log

(
1− FL(x(i); θ̂)

))
,

where x(1) ≤ . . . ≤ x(n) are the observed ordered data.
• The Bayesian information criterion (BIC) (Schwarz 1978) is defined by

BIC = k log(n)− 2`L(θ̂).

For each criterion the model with the smallest statistic is considered to be the best fit
among the models investigated. The KS statistic better reflects the deviance between
the empirical and the fitted distribution close to the center and the AD statistic
better reflects the deviance in the tails (Razali et al. 2011). Generally, the KS and
AD statistics do not account for overfitting. However, it is possible that a special or
limiting case may have a lower distance due to the nature of the distances and the
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Figure 4.5: Dot plots of hourly log-returns for several countries. The red box indicates
the interquartile range and the white line within it the median.

distributions. The BIC statistics adjust the log-likelihood by penalizing models which
are too large to avoid overfitting.

In the following, we compare Lévy models to determine which fits best for each
index. The decision as to which physical time unit corresponds to t = 1 is crucial.
This is because models which are not closed under convolution have no closed-form
distribution for t 6= 1. Thus, if we observe data with time distance unequal to one,
estimation is tricky. Of course, it is possible to redefine the meaning of t = 1 by
making it correspond to the new physical time. However, since in this chapter t = 1
always corresponds to one day, there is no problem in ML estimation for daily returns
as we basically fit the distributions of Section 4.2 to them.

For hourly returns there also is no problem for the distributions which are closed
under convolution, viz. the normal, the variance gamma, the NIG, the Meixner and
the stable distributions. We refer the reader to the corresponding subsections for their
distributions at time t. We can fit these to hourly data as in the case of daily data.
The skew Student t, the hyperbolic and the GH distribution are not closed under
convolution. This means that for hourly data there exists no known distribution.
Moreover, as yet, there exists no ML estimation routine. Hence we do not fit these
Lévy models to hourly data. The Student-Lévy process is a special case because
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the Student t distribution is not closed under convolution but we have developed
an MCEM estimation routine in Chapter 3. However, this algorithm only works for
fixed degree of freedom ν. Thus, we maximize the log-likelihood only for small integer
values of ν.

Tables 4.4 – 4.6 report KS, AD and BIC for daily log-returns for the last 20 years.
For each country we compare all Lévy models presented here. The minimal statistic
is printed in bold to indicate the best fit. The different criteria do not always lead to
the same conclusion. This is reasonable, as they focus on different features. In terms
of KS (Table 4.4) and AD (Table 4.5) statistics the GH distribution often yields a
good fit, due not least to its five parameters. In these cases the NIG distribution
often is the second best choice. This applies both to highly developed (USA) as well
as less developed (Oman) countries. For certain other indices it is the first choice.
Almost all countries have a semi-heavy-tailed (NIG, variance gamma, H, GH, Meixner)
distribution as best fit. The heavy-tailed Student t and skew Student t are the first
choices only for some exotic markets, e.g., Kuwait, Namibia or Tunisia. Kuwait is the
only country for which the symmetric Student t distribution yields the best fit. It
is noteworthy that the stable distributions never yield the best fit, probably due to
their overly heavy tails. The AD statistic for the stable distribution often is much
larger than the minimum. The normal distribution yields a bad fit for all countries.

The BIC favors small models. This makes it attractive since models with many
parameters can lead to overfitting. The BIC for daily returns in the long period is
minimal in many countries for the NIG and Student t distributions. According to the
BIC, the GH distribution leads to overfitting, as also discussed by Prause (1997). If
all three criteria suggest the same model, e.g., for Kuwait the Student t distribution,
for the USA’s Nasdaq the GH distribution and for Finland the Meixner distribution,
this model can be assumed to be the best fit and not to be overfitted. If the three
criteria suggest different models we may follow the criterion which reflects a certain
desired property well. For asset returns, where we are interested in modeling the tails,
the AD statistic is very important.

So far we have only investigated which of the models fit best and not whether
the fits are qualitatively good. To analyze this, we plot QQ-plots. We discuss one
example in more detail (others are available on request). Figure 4.6 plots the empirical
quantiles of the German DAX index against the theoretical quantiles, each panel
corresponding to one model. Obviously, the normal model yields a bad fit. The
symmetric Student model has some difficulty capturing the skewness in the data.
Each of the other distributions fits quite well, making it hard to find the best by
visual inspection. KS, AD and BIC suggest that the variance gamma model yields
the best fit. In fact, there is at least one good fit for almost all other indices.

The entire sampling period is very long (approx. 20 years) and contains various
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Country Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 0.0589 0.0125 0.0107 0.0069 0.0090 0.0079 0.0089 0.0079 0.0174
Australia All Ordinaries 0.0611 0.0130 0.0106 0.0077 0.0090 0.0082 0.0099 0.0083 0.0172

Austria ATX 0.0813 0.0154 0.0080 0.0090 0.0181 0.0169 0.0075 0.0115 0.0114
Belgium BEL 20 0.0731 0.0168 0.0117 0.0072 0.0123 0.0111 0.0071 0.0077 0.0175
Canada TSX 60 0.0776 0.0155 0.0093 0.0084 0.0143 0.0130 0.0090 0.0100 0.0150
Canada TSX Composite 0.0809 0.0163 0.0080 0.0098 0.0165 0.0139 0.0075 0.0111 0.0119

EuroStoxx EuroStoxx 50 0.0704 0.0135 0.0113 0.0060 0.0097 0.0090 0.0055 0.0052 0.0175
Finland OMXH25 0.0787 0.0156 0.0120 0.0069 0.0131 0.0135 0.0095 0.0061 0.0170

France CAC 40 0.0656 0.0111 0.0086 0.0050 0.0111 0.0082 0.0050 0.0064 0.0147
Germany DAX 0.0671 0.0160 0.0162 0.0107 0.0055 0.0058 0.0055 0.0095 0.0235

Hong Kong Hang Seng 0.0801 0.0165 0.0160 0.0107 0.0109 0.0096 0.0118 0.0095 0.0234
Ireland ISEQ Overall 0.0790 0.0101 0.0072 0.0076 0.0160 0.0155 0.0055 0.0088 0.0130

Israel TA 35 0.0618 0.0125 0.0129 0.0094 0.0093 0.0082 0.0084 0.0086 0.0203
Italy FTSE MIB 0.0668 0.0164 0.0540 0.0093 0.0082 0.0066 0.0060 0.0074 0.0224

Japan Topix 0.0575 0.0131 0.0114 0.0079 0.0101 0.0085 0.0110 0.0080 0.0195
Luxembourg LuxX Index 0.0639 0.0078 0.0063 0.0064 0.0126 0.0112 0.0062 0.0076 0.0123
Netherlands AEX 0.0731 0.0231 0.0104 0.0064 0.0112 0.0109 0.0064 0.0066 0.0158

New Zealand NZX 50 Index 0.0526 0.0163 0.0135 0.0102 0.0106 0.0084 0.0130 0.0088 0.0157
Norway OBX Index 0.0717 0.0134 0.0075 0.0070 0.0147 0.0130 0.0064 0.0092 0.0135

Portugal PSI 20 0.0692 0.0118 0.0108 0.0075 0.0108 0.0092 0.0077 0.0062 0.0192
Singapore STI Index 0.0715 0.0124 0.0109 0.0058 0.0111 0.0091 0.0059 0.0069 0.0174

South Korea KOSPI 0.0919 0.0199 0.0195 0.0124 0.0158 0.0216 0.0073 0.0107 0.0230
Spain IBEX 35 0.0569 0.0143 0.0134 0.0100 0.0078 0.0072 0.0091 0.0088 0.0177

Sweden OMXS30 0.0580 0.0125 0.0121 0.0087 0.0101 0.0091 0.0079 0.0074 0.0154
Switzerland SMI 0.0724 0.0126 0.0087 0.0067 0.0120 0.0117 0.0078 0.0065 0.0144

UK FTSE 100 0.0685 0.0099 0.0086 0.0057 0.0100 0.0093 0.0052 0.0074 0.0129
USA DowJones 30 0.0812 0.0151 0.0156 0.0097 0.0130 0.0105 0.0085 0.0086 0.0228
USA S&P 500 0.0827 0.0170 0.0166 0.0095 0.0122 0.0117 0.0077 0.0080 0.0232
USA Nasdaq 0.0865 0.0233 0.0213 0.0166 0.0126 0.0171 0.0085 0.0150 0.0275

Brazil Bovespa 0.0599 0.0100 0.0065 0.0090 0.0130 0.0116 0.0065 0.0106 0.0117
Chile IPSA 0.0610 0.0084 0.0086 0.0072 0.0115 0.0088 0.0081 0.0079 0.0158

China CSI 300 0.0867 0.0281 0.0269 0.0182 0.0167 0.0206 0.0158 0.0191 0.0357
China SSE 0.0842 0.0185 0.0178 0.0115 0.0144 0.0161 0.0095 0.0106 0.0245

Colombia IGBC 0.0830 0.0137 0.0137 0.0098 0.0142 0.0144 0.0130 0.0099 0.0192
Czech Republic PX 0.0721 0.0127 0.0083 0.0092 0.0153 0.0140 0.0080 0.0107 0.0107

Egypt EGX 30 0.0691 0.0103 0.0079 0.0072 0.0136 0.0125 0.0072 0.0082 0.0141
Greece Athex 0.0711 0.0119 0.0125 0.0076 0.0113 0.0082 0.0068 0.0073 0.0189

Hungary Budapest SE 0.0682 0.0070 0.0063 0.0102 0.0172 0.0157 0.0062 0.0124 0.0149
India Nifty 50 0.0684 0.0111 0.0107 0.0058 0.0091 0.0082 0.0073 0.0058 0.0178
India BSE Sensex 0.0661 0.0120 0.0110 0.0060 0.0096 0.0081 0.0065 0.0062 0.0162

Indonesia IDX Composite 0.0863 0.0119 0.0109 0.0111 0.0185 0.0195 0.0091 0.0130 0.0126
Malaysia KLCI 0.1392 0.0107 0.0103 0.0092 0.0254 0.0341 0.0081 0.0113 0.0129

Mexico IPC 0.0716 0.0110 0.0101 0.0071 0.0134 0.0127 0.0075 0.0074 0.0149
Peru Lima General 0.0927 0.0116 0.0114 0.0096 0.0204 0.0209 0.0108 0.0106 0.0131

Philippines PSEi 0.0711 0.0082 0.0063 0.0097 0.0151 0.0138 0.0062 0.0111 0.0111
Poland WIG 0.0615 0.0126 0.0129 0.0077 0.0090 0.0065 0.0059 0.0060 0.0188

Qatar QE 20 Index 0.2211 0.0139 0.0174 0.0140 0.0378 0.0716 0.0138 0.0140 0.0166
Russia MICEX 0.1090 0.0106 0.0090 0.0116 0.0207 0.0240 0.0078 0.0132 0.0150
Russia RTSI 0.1308 0.0190 0.0192 0.0118 0.0220 0.0323 0.0157 0.0110 0.0247

Saudi Arabia TASI 0.1371 0.0157 0.0123 0.0090 0.0287 0.0447 0.0090 0.0097 0.0167
South Africa JSE 0.0569 0.0124 0.0067 0.0079 0.0112 0.0093 0.0062 0.0089 0.0116

Taiwan TWII 0.0720 0.0164 0.0176 0.0111 0.0108 0.0109 0.0074 0.0676 0.0228
Thailand SET 0.0754 0.0150 0.0154 0.0106 0.0128 0.0125 0.0104 0.0098 0.0241

Turkey BIST 100 0.0735 0.0086 0.0088 0.0065 0.0120 0.0119 0.0060 0.0066 0.0151
Un Arab Em DFM 0.0894 0.0138 0.0134 0.0100 0.0199 0.0208 0.0101 0.0107 0.0193
Un Arab Em Abu Dhabi 0.1056 0.0169 0.0180 0.0112 0.0193 0.0289 0.0088 0.0096 0.0226

Argentina MERVAL 0.0718 0.0114 0.0110 0.0052 0.0111 0.0095 0.0049 0.0055 0.0168
Bahrain All Share 0.0835 0.0162 0.0163 0.0111 0.0103 0.0143 0.0103 0.0101 0.0223

Bulgaria SOFIX 0.1393 0.0092 0.0096 0.0095 0.0302 0.0399 0.0076 0.0113 0.0100
Croatia CROBEX 0.1226 0.0095 0.0092 0.0096 0.0258 0.0341 0.0091 0.0113 0.0118
Cyprus CYMAIN 0.1042 0.0210 0.0200 0.0144 0.0174 0.0300 0.0101 0.0140 0.0241
Estonia OMXT 0.1310 0.0146 0.0138 0.0079 0.0208 0.0374 0.0074 0.0063 0.0166

Kazakhstan KASE Index 0.1625 0.0375 0.0350 0.0333 0.0237 0.0549 0.0392 0.0326 0.0354
Kuwait Kuwait 15 0.0546 0.0146 0.0149 0.0164 0.0170 0.0155 0.0148 0.0173 0.0171
Latvia OMXR 0.1191 0.0083 0.0076 0.0069 0.0224 0.0298 0.0059 0.0086 0.0118

Lithuania OMXV 0.1140 0.0075 0.0088 0.0083 0.0232 0.0270 0.0070 0.0109 0.0121
Mauritius SEMDEX 0.1330 0.0103 0.0073 0.0126 0.0284 0.0329 0.0079 0.0152 0.0095

Morocco MASI 0.0813 0.0122 0.0117 0.0068 0.0120 0.0121 0.0068 0.0071 0.0166
Namibia NSX Overall 0.0577 0.0095 0.0084 0.0080 0.0116 0.0100 0.0120 0.0092 0.0154

Oman MSM 30 0.1805 0.0100 0.0104 0.0101 0.0365 0.0410 0.0099 0.0136 0.0138
Pakistan KSE 100 0.0970 0.0176 0.0152 0.0113 0.0227 0.0258 0.0120 0.0114 0.0197
Romania BET 10 0.0988 0.0106 0.0102 0.0080 0.0206 0.0245 0.0083 0.0087 0.0158

Serbia BELEX 0.1118 0.0099 0.0100 0.0084 0.0209 0.0270 0.0064 0.0096 0.0144
Sri Lanka CSE All-Share 0.1168 0.0243 0.0140 0.0119 0.0242 0.0293 0.0134 0.0119 0.0170

Tunesia Tunindex 0.1642 0.0150 0.0118 0.0162 0.0267 0.0283 0.0145 0.0494 0.0143
Venezuela IBC 0.1329 0.0242 0.0187 0.0142 0.0225 0.0392 0.0118 0.0128 0.0214

Vietnam HNX 30 0.0998 0.0144 0.0144 0.0097 0.0212 0.0274 0.0103 0.1071 0.0169
Zambia All Share 0.1870 0.0539 0.0500 0.0525 0.0285 0.0933 0.0265 0.0516 0.0356

Table 4.4: KS distance between the empirical and fitted distributions for daily log-
returns, from 01/03/1997 until 11/02/2017.
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Country Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 43.516 1.760 0.502 0.416 0.916 0.656 0.463 0.563 1.657
Australia All Ordinaries 44.923 2.122 0.488 0.361 0.872 0.603 0.385 0.506 1.650

Austria ATX 71.487 2.795 0.379 0.560 2.436 1.926 0.307 0.949 1.060
Belgium BEL 20 59.925 2.435 1.020 0.314 1.115 0.794 0.311 0.309 2.510
Canada TSX 60 70.282 2.817 0.578 0.453 1.828 1.385 0.395 0.728 1.128
Canada TSX Composite 81.535 3.848 0.512 0.493 2.374 1.826 0.329 0.875 0.940

EuroStoxx EuroStoxx 50 63.128 1.815 1.078 0.234 0.685 0.495 0.175 0.172 2.996
Finland OMXH25 76.874 2.178 1.333 0.292 1.181 1.182 0.498 0.193 2.646

France CAC 40 49.004 1.414 0.618 0.171 0.767 0.469 0.180 0.209 2.208
Germany DAX 50.763 3.561 2.282 1.033 0.297 0.351 0.297 0.768 4.842

Hong Kong Hang Seng 79.722 2.078 1.609 0.663 0.843 0.829 0.673 0.597 3.502
Ireland ISEQ Overall 75.723 1.703 0.173 0.412 2.484 1.966 0.123 0.824 0.861

Israel TA 35 40.764 1.290 1.125 0.473 0.572 0.400 0.367 0.388 3.241
Italy FTSE MIB 47.894 2.330 1.344 0.382 0.323 0.209 0.164 0.230 3.406

Japan Topix 35.508 1.394 0.644 0.542 0.853 0.635 0.618 0.629 2.158
Luxembourg LuxX Index 48.748 0.408 0.214 0.258 1.203 0.821 0.153 0.473 1.204
Netherlands AEX 73.830 3.944 0.676 0.192 1.324 1.124 0.197 0.297 1.846

New Zealand NZX 50 Index 30.797 2.169 0.448 0.368 0.669 0.474 0.401 0.465 1.329
Norway OBX Index 56.761 1.607 0.223 0.308 1.639 1.171 0.145 0.594 1.077

Portugal PSI 20 54.471 1.873 0.944 0.318 0.909 0.604 0.329 0.312 3.081
Singapore STI Index 53.246 1.057 0.644 0.188 0.956 0.713 0.193 0.228 2.011

South Korea KOSPI 97.551 4.250 2.946 1.046 2.109 3.536 0.305 0.663 4.150
Spain IBEX 35 43.842 2.168 1.218 0.471 0.398 0.305 0.395 0.367 3.219

Sweden OMXS30 44.296 1.352 0.811 0.235 0.590 0.380 0.202 0.203 2.160
Switzerland SMI 62.191 1.615 0.496 0.296 1.292 0.950 0.274 0.473 1.814

UK FTSE 100 56.698 1.248 0.591 0.130 0.912 0.630 0.137 0.189 1.993
USA DowJones 30 78.320 2.581 1.788 0.668 0.954 0.800 0.519 0.543 3.995
USA S&P 500 85.227 3.033 1.874 0.624 1.096 1.005 0.436 0.480 3.773
USA Nasdaq 91.106 6.277 4.427 1.977 0.742 2.323 0.440 1.424 5.626

Brazil Bovespa 51.911 0.908 0.334 0.776 1.757 1.203 0.330 1.144 0.747
Chile IPSA 51.484 0.383 0.262 0.385 1.247 0.848 0.243 0.628 1.254

China CSI 300 46.209 2.589 2.414 1.480 1.169 1.603 1.011 1.315 3.819
China SSE 75.902 2.216 1.950 0.837 1.034 1.249 0.589 0.698 4.100

Colombia IGBC 66.175 0.709 0.435 0.394 1.487 1.268 0.358 0.622 1.684
Czech Republic PX 62.759 0.975 0.225 0.614 2.085 1.447 0.220 1.030 1.128

Egypt EGX 30 49.920 0.751 0.544 0.336 1.246 0.873 0.332 0.457 2.000
Greece Athex 57.853 1.608 1.102 0.249 0.698 0.497 0.179 0.160 2.849

Hungary Budapest SE 67.531 0.304 0.265 0.770 2.183 1.589 0.267 1.224 1.133
India Nifty 50 58.594 1.494 0.642 0.196 0.794 0.546 0.249 0.260 2.279
India BSE Sensex 57.263 1.404 0.595 0.164 0.856 0.577 0.176 0.226 1.967

Indonesia IDX Composite 95.961 1.436 0.602 0.398 2.762 2.792 0.314 0.671 1.313
Malaysia KLCI 279.559 0.853 0.694 0.685 7.105 12.418 0.401 1.351 1.277

Mexico IPC 71.177 1.053 0.634 0.301 1.460 1.167 0.313 0.450 1.723
Peru Lima General 107.334 0.381 0.411 0.598 3.805 3.580 0.323 1.040 1.308

Philippines PSEi 70.053 0.520 0.186 0.632 2.428 1.793 0.185 1.082 0.721
Poland WIG 49.279 1.286 0.953 0.275 0.512 0.335 0.199 0.214 2.799

Qatar QE 20 Index 567.411 1.491 1.509 0.914 15.135 49.254 0.950 1.292 2.027
Russia MICEX 153.140 1.138 0.536 0.665 4.680 5.981 0.368 1.191 1.411
Russia RTSI 130.471 1.846 1.289 0.702 2.980 6.056 0.855 0.878 2.377

Saudi Arabia TASI 201.078 2.858 1.285 0.534 7.301 17.865 0.556 0.647 2.373
South Africa JSE 43.017 1.371 0.221 0.422 1.393 0.909 0.204 0.698 0.807

Taiwan TWII 58.654 3.017 2.161 0.747 0.672 0.628 0.283 48.096 3.883
Thailand SET 72.188 1.618 1.514 0.654 0.974 0.900 0.624 0.598 3.222

Turkey BIST 100 73.079 0.441 0.422 0.164 1.464 1.213 0.146 0.334 1.734
Un Arab Em DFM 67.300 0.789 0.741 0.508 2.039 2.338 0.499 0.630 1.573
Un Arab Em Abu Dhabi 114.357 1.851 1.659 0.540 2.640 5.775 0.375 0.445 2.867

Argentina MERVAL 61.402 1.432 0.626 0.107 1.105 0.835 0.107 0.157 1.894
Bahrain All Share 57.749 1.573 1.597 0.722 0.798 1.032 0.483 0.596 2.955

Bulgaria SOFIX 190.920 0.496 0.523 0.436 6.573 12.319 0.277 0.813 1.018
Croatia CROBEX 190.928 0.558 0.513 0.396 8.019 12.800 0.254 0.744 1.165
Cyprus CYMAIN 83.564 2.238 2.161 0.936 1.251 5.242 0.299 0.694 2.849
Estonia OMXT 221.515 1.796 1.714 0.409 5.343 15.900 0.374 0.426 2.799

Kazakhstan KASE Index 271.291 6.059 5.955 4.566 3.350 35.930 9.626 4.254 6.131
Kuwait Kuwait 15 8.526 0.330 0.340 0.482 0.726 0.581 0.341 0.573 0.342
Latvia OMXR 153.699 0.368 0.298 0.325 4.844 7.903 0.109 0.772 0.995

Lithuania OMXV 146.364 0.459 0.441 0.389 4.605 6.545 0.234 0.777 1.256
Mauritius SEMDEX 241.176 1.139 0.446 0.949 8.562 14.469 0.298 1.828 0.736

Morocco MASI 67.482 0.623 0.602 0.224 1.490 1.607 0.223 0.301 1.527
Namibia NSX Overall 29.052 0.274 0.176 0.210 0.794 0.522 0.412 0.342 0.890

Oman MSM 30 424.079 0.534 0.528 0.910 13.598 21.119 0.453 1.885 1.427
Pakistan KSE 100 92.759 3.313 1.893 0.971 3.072 3.714 0.969 0.924 3.188
Romania BET 10 107.736 0.951 0.979 0.257 2.520 3.629 0.276 0.314 2.186

Serbia BELEX 99.618 0.381 0.381 0.181 2.704 3.997 0.144 0.379 1.010
Sri Lanka CSE All-Share 164.830 3.070 1.456 0.945 4.776 6.199 0.980 1.251 1.955

Tunesia Tunindex 335.949 1.971 1.033 2.855 7.478 6.883 1.783 31.006 1.274
Venezuela IBC 210.915 7.605 2.549 0.785 3.806 14.641 0.544 0.643 3.134

Vietnam HNX 30 61.007 1.182 1.105 0.381 1.721 2.988 0.273 63.437 1.636
Zambia All Share 317.758 16.669 14.746 16.887 4.561 67.387 3.156 16.412 10.160

Table 4.5: AD distance between the empirical and fitted distributions for daily log-
returns, from 01/03/1997 until 11/02/2017.
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4.4 Goodness of fit

Country Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 -33712 -34490 -34495 -34488 -34454 -34464 -34488 -34477 -34448
Australia All Ordinaries -34004 -34801 -34810 -34804 -34768 -34779 -34803 -34792 -34763

Austria ATX -29256 -30348 -30363 -30363 -30286 -30302 -30363 -30348 -30310
Belgium BEL 20 -31557 -32475 -32477 -32497 -32459 -32470 -32488 -32493 -32392
Canada TSX 60 -28525 -29664 -29673 -29667 -29597 -29607 -29669 -29652 -29630
Canada TSX Composite -32352 -33636 -33654 -33650 -33559 -33576 -33652 -33632 -33610

EuroStoxx EuroStoxx 50 -31051 -32015 -32012 -32036 -32009 -32015 -32028 -32035 -31921
Finland OMXH25 -27102 -28223 -28219 -28256 -28215 -28219 -28248 -28257 -28119

France CAC 40 -29831 -30605 -30603 -30617 -30588 -30598 -30608 -30613 -30527
Germany DAX -29242 -29975 -29976 -30007 -30026 -30025 -30018 -30012 -29887

Hong Kong Hang Seng -27582 -28849 -28843 -28859 -28826 -28825 -28850 -28852 -28761
Ireland ISEQ Overall -30346 -31544 -31552 -31550 -31462 -31480 -31551 -31534 -31493

Israel TA 35 -30324 -30959 -30955 -30972 -30964 -30969 -30965 -30972 -30868
Italy FTSE MIB -27538 -28243 -28243 -28270 -28264 -28269 -28266 -28272 -28151

Japan Topix -29242 -29901 -29902 -29892 -29866 -29875 -29894 -29882 -29863
Luxembourg LuxX Index -27758 -28612 -28605 -28599 -28548 -28562 -28599 -28587 -28549
Netherlands AEX -29935 -31013 -31048 -31067 -31014 -31022 -31059 -31061 -30972

New Zealand NZX 50 Index -30046 -30588 -30599 -30592 -30569 -30577 -30591 -30584 -30563
Norway OBX Index -25137 -26069 -26076 -26071 -26009 -26024 -26071 -26058 -26024

Portugal PSI 20 -31460 -32323 -32327 -32341 -32308 -32321 -32333 -32337 -32238
Singapore STI Index -27785 -28609 -28604 -28619 -28579 -28591 -28611 -28615 -28532

South Korea KOSPI -27587 -28812 -28810 -28891 -28882 -28857 -28909 -28907 -28694
Spain IBEX 35 -29246 -29946 -29945 -29958 -29949 -29953 -29950 -29956 -29865

Sweden OMXS30 -28939 -29605 -29600 -29621 -29604 -29612 -29613 -29621 -29512
Switzerland SMI -31342 -32327 -32329 -32334 -32289 -32296 -32329 -32324 -32268

UK FTSE 100 -31681 -32574 -32571 -32586 -32548 -32559 -32578 -32581 -32487
USA DowJones 30 -31969 -33132 -33129 -33153 -33128 -33128 -33145 -33149 -33041
USA S&P 500 -31339 -32575 -32574 -32604 -32573 -32571 -32597 -32602 -32484
USA Nasdaq -27061 -28237 -28235 -28314 -28339 -28314 -28346 -28329 -28117

Brazil Bovespa -25415 -26401 -26397 -26364 -26300 -26317 -26388 -26341 -26378
Chile IPSA -32478 -33418 -33411 -33396 -33342 -33357 -33402 -33380 -33359

China CSI 300 -15874 -16441 -16439 -16477 -16500 -16491 -16492 -16484 -16366
China SSE -27189 -28256 -28253 -28293 -28283 -28278 -28292 -28297 -28153

Colombia IGBC -23353 -24459 -24455 -24445 -24384 -24387 -24448 -24430 -24408
Czech Republic PX -29852 -31001 -31001 -30975 -30891 -30913 -30993 -30952 -30956

Egypt EGX 30 -25649 -26481 -26477 -26480 -26436 -26450 -26474 -26471 -26401
Greece Athex -26019 -26881 -26877 -26905 -26881 -26889 -26898 -26906 -26782

Hungary Budapest SE -27588 -28856 -28849 -28815 -28728 -28745 -28841 -28789 -28815
India Nifty 50 -28555 -29507 -29507 -29514 -29479 -29486 -29507 -29506 -29435
India BSE Sensex -28542 -29432 -29430 -29444 -29413 -29420 -29436 -29439 -29353

Indonesia IDX Composite -27671 -29108 -29105 -29118 -29022 -29022 -29113 -29107 -29039
Malaysia KLCI -29961 -33573 -33565 -33547 -33271 -33154 -33563 -33517 -33512

Mexico IPC -29715 -30845 -30839 -30846 -30787 -30796 -30840 -30837 -30767
Peru Lima General -29943 -31607 -31600 -31596 -31478 -31472 -31599 -31578 -31535

Philippines PSEi -28976 -30139 -30133 -30114 -30024 -30046 -30126 -30094 -30084
Poland WIG -29926 -30667 -30664 -30687 -30673 -30680 -30680 -30687 -30570

Qatar QE 20 Index -22476 -30281 -30273 -30283 -29781 -29168 -30281 -30261 -30229
Russia MICEX -22351 -24530 -24525 -24519 -24346 -24318 -24526 -24498 -24471
Russia RTSI -15750 -17622 -17618 -17622 -17522 -17440 -17618 -17608 -17574

Saudi Arabia TASI -28756 -31389 -31393 -31452 -31278 -31108 -31444 -31452 -31319
South Africa JSE -30917 -31679 -31683 -31675 -31623 -31643 -31677 -31662 -31635

Taiwan TWII -30025 -30732 -30729 -30788 -30801 -30803 -30800 -30099 -30608
Thailand SET -27910 -29051 -29042 -29061 -29029 -29030 -29052 -29056 -28959

Turkey BIST 100 -24071 -25227 -25218 -25228 -25167 -25174 -25222 -25219 -25144
Un Arab Em DFM -18834 -19788 -19781 -19800 -19745 -19741 -19792 -19797 -19725
Un Arab Em Abu Dhabi -26165 -27755 -27747 -27792 -27722 -27660 -27787 -27792 -27672

Argentina MERVAL -24692 -25602 -25601 -25624 -25582 -25593 -25615 -25621 -25516
Bahrain All Share -27380 -28216 -28207 -28236 -28226 -28220 -28233 -28237 -28137

Bulgaria SOFIX -23168 -25843 -25835 -25842 -25622 -25511 -25841 -25827 -25788
Croatia CROBEX -27262 -29793 -29785 -29808 -29583 -29489 -29803 -29798 -29729
Cyprus CYMAIN -14209 -15290 -15283 -15338 -15324 -15262 -15351 -15347 -15216
Estonia OMXT -28286 -31412 -31405 -31448 -31234 -31055 -31440 -31440 -31326

Kazakhstan KASE Index -18181 -21793 -21785 -21868 -22102 -21281 -22125 -21874 -21735
Kuwait Kuwait 15 -9328 -9490 -9483 -9478 -9464 -9470 -9476 -9473 -9476
Latvia OMXR -25002 -27252 -27243 -27245 -27060 -26998 -27247 -27228 -27193

Lithuania OMXV -27803 -29932 -29924 -29925 -29751 -29713 -29926 -29908 -29868
Mauritius SEMDEX -37297 -40627 -40621 -40603 -40291 -40172 -40621 -40575 -40585

Morocco MASI -27289 -28274 -28267 -28287 -28238 -28236 -28278 -28284 -28204
Namibia NSX Overall -20695 -21191 -21185 -21186 -21160 -21169 -21179 -21180 -21138

Oman MSM 30 -29094 -35103 -35095 -35051 -34644 -34429 -35087 -35009 -35043
Pakistan KSE 100 -28221 -29423 -29427 -29480 -29436 -29428 -29475 -29485 -29323
Romania BET 10 -26985 -28534 -28526 -28560 -28475 -28455 -28552 -28557 -28439

Serbia BELEX -17957 -19312 -19304 -19310 -19199 -19176 -19305 -19300 -19261
Sri Lanka CSE All-Share -30574 -32956 -32966 -32967 -32792 -32758 -32968 -32948 -32903

Tunesia Tunindex -33483 -38597 -38589 -38457 -38198 -38165 -38581 -37910 -38586
Venezuela IBC -23729 -26343 -26358 -26421 -26336 -26126 -26416 -26420 -26295

Vietnam HNX 30 -14823 -15575 -15567 -15612 -15577 -15565 -15611 -14764 -15506
Zambia All Share -19269 -23362 -23355 -23441 -23861 -22511 -23872 -23456 -23404

Table 4.6: BIC of fitted distributions for daily log-returns, from 01/03/1997 until
11/02/2017.
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Figure 4.6: QQ-plots of empirical quantiles for daily DAX log-returns from 01/03/1997
until 11/02/2017 versus model distributions.
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turbulent phases (e.g., the financial crisis). The i.i.d. assumption for log-returns is
unlikely to be valid across the entire period. This implies a violation of the Lévy
model. Some authors (e.g., Corlu et al. 2016) have split a long period into several
shorter subperiods and investigated which model fits best in each subperiod. For
our data, we do not find outstanding differences between the periods. Here, we only
consider the last year as an example so as not to overload the discussion, and relegate
the subperiod issue to Appendix 4.A. A second reason for only considering the last
year is that we only have hourly data for this period. A common time period is
needed for investigating time consistency in Section 4.5. Tables 4.7 – 4.9 present the
KS, AD and BIC statistics for the last year for daily log-returns. There are some
changes in the KS and AD statistics. Obviously, the return series are much shorter
at about 250 days. This implies that rare events may not have occurred. Hence, even
the normal distribution yields the best fit in some cases. The GH distribution is not
as often the first choice as for the entire sample. In most cases, the BIC favors the
Student t or the normal distribution. Again, this is also due to the small sample size.

We now turn back to the DAX example. Figure 4.7 shows QQ-plots comparing
the empirical with the model distributions. Again, the normal distribution is not a
good fit. The other models appear not to be as good as in Figure 4.6 but this is due
to the lower sample size and thus the different scaling. The KS and AD statistics
recommend the NIG model, the BIC the variance gamma model. The QQ-plots
suggest that both yield a reasonable fit.

Table 4.10 summarizes how often each distribution has the lowest KS, AD and
BIC statistic among all distributions considered, both for the full and the one-year
sample. The GH distribution performs well, especially for the full sample. This is
also due to the large sample size and the fact that the GH distribution, with its five
parameters, is the most flexible one.

We now turn to the case of hourly data. As already mentioned, we only have
data for one year. Nonetheless, the number of hourly log-returns is of a decent size
(see Table 4.3). Again, we still consider that t = 1 corresponds to one trading day.
Thus we now take t = th := 1/(#trading hours per day). This implies that we can
only use convolution invariant models because no maximum likelihood estimation
routines exist for the others. The only exception is the Student-Lévy process with the
routine derived in Chapter 3. Hence, from now on we will be considering six models
(normal, Student, NIG, variance gamma, Meixner and stable).

Tables 4.11 – 4.13 present the KS, AD and BIC statistics. Each of the distributions
except the normal has an almost equal number of best fits among the indices. Evidently,
this does not mean that the distributions are always equally appropriate. For example
the Student-Lévy model has an AD distance of 0.3 for the South Korean KOSPI
but the variance gamma distribution has 3, more than ten times higher. There are
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Code Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 0.0495 0.0354 0.0345 0.0339 0.0334 0.0336 0.0356 0.0335 0.0416
Australia All Ordinaries 0.0525 0.0372 0.0355 0.0342 0.0329 0.0336 0.0372 0.0335 0.0419

Austria ATX 0.0465 0.0449 0.0449 0.0480 0.0471 0.0480 0.0456 0.0476 0.0507
Belgium BEL 20 0.0487 0.0297 0.0331 0.0281 0.0240 0.0264 0.0245 0.0266 0.0466
Canada TSX 60 0.0552 0.0521 0.0402 0.0390 0.0345 0.0381 0.0372 0.0377 0.0426
Canada TSX Composite 0.0424 0.0326 0.0298 0.0326 0.0355 0.0335 0.0355 0.0339 0.0275

EuroStoxx EuroStoxx 50 0.0547 0.0318 0.0332 0.0335 0.0323 0.0333 0.0330 0.0393 0.0376
Finland OMXH25 0.0419 0.0329 0.0342 0.0336 0.0317 0.0333 0.0317 0.0361 0.0387

France CAC 40 0.0653 0.0294 0.0338 0.0323 0.0303 0.0316 0.0340 0.0312 0.0367
Germany DAX 0.1028 0.0385 0.0333 0.0289 0.0367 0.0399 0.0389 0.0904 0.0355

Hong Kong Hang Seng 0.0451 0.0256 0.0267 0.0275 0.0280 0.0277 0.0279 0.0346 0.0346
Ireland ISEQ Overall 0.0448 0.0412 0.0478 0.0470 0.0460 0.0646 0.0488 0.0463 0.0459

Israel TA 35 0.0595 0.0365 0.0349 0.0298 0.0277 0.0267 0.0277 0.0524 0.0517
Italy FTSE MIB 0.0878 0.0343 0.0383 0.0344 0.0345 0.0343 0.0344 0.0338 0.0487

Japan Topix 0.0949 0.0379 0.0378 0.0351 0.0311 0.0270 0.0378 0.0337 0.0384
Luxembourg LuxX Index 0.0623 0.0354 0.0337 0.0314 0.0323 0.0311 0.0320 0.0503 0.0440
Netherlands AEX 0.0375 0.0285 0.0299 0.0279 0.0258 0.0274 0.0258 0.0270 0.0400

New Zealand NZX 50 Index 0.0820 0.0315 0.0286 0.0314 0.0403 0.0333 0.0286 0.0333 0.0274
Norway OBX Index 0.0360 0.0375 0.0369 0.0431 0.0431 0.0432 0.0392 0.5043 0.0386

Portugal PSI 20 0.0628 0.0269 0.0336 0.0367 0.0413 0.0393 0.0361 0.0384 0.0341
Singapore STI Index 0.0441 0.0464 0.0457 0.0493 0.0496 0.0494 0.0495 0.0488 0.0441

South Korea KOSPI 0.0686 0.0364 0.0322 0.0305 0.0336 0.0322 0.0321 0.0306 0.0400
Spain IBEX 35 0.0717 0.0313 0.0314 0.0282 0.0276 0.0272 0.0271 0.0273 0.0384

Sweden OMXS30 0.0405 0.0447 0.0446 0.0522 0.0523 0.0522 0.0522 0.0522 0.0492
Switzerland SMI 0.0598 0.0409 0.0443 0.0424 0.0318 0.0403 0.0414 0.0544 0.0524

UK FTSE 100 0.0612 0.0341 0.0271 0.0273 0.0284 0.0274 0.0318 0.0272 0.0276
USA DowJones 30 0.0761 0.0386 0.0388 0.0302 0.0392 0.0327 0.0299 0.0328 0.0314
USA S&P 500 0.1038 0.0444 0.0451 0.0339 0.0494 0.0411 0.0337 0.0328 0.0524
USA Nasdaq 0.0941 0.0475 0.0457 0.0364 0.0409 0.0421 0.0412 0.0961 0.0586

Brazil Bovespa 0.0856 0.0248 0.0294 0.0267 0.0262 0.0259 0.0263 0.0255 0.0333
Chile IPSA 0.0426 0.0283 0.0295 0.0293 0.0285 0.0288 0.0296 0.0291 0.0325

China CSI 300 0.0425 0.0214 0.0226 0.0221 0.0209 0.0217 0.0226 0.0217 0.0304
China SSE 0.0688 0.0613 0.0573 0.0548 0.0474 0.0524 0.0476 0.0531 0.0603

Colombia IGBC 0.0596 0.0441 0.0463 0.0431 0.0344 0.0401 0.0461 0.0410 0.0515
Czech Republic PX 0.0605 0.0307 0.0303 0.0279 0.0278 0.0274 0.0273 0.0274 0.0368

Egypt EGX 30 0.0734 0.0258 0.0259 0.0279 0.0323 0.0291 0.0269 0.0284 0.0322
Greece Athex 0.0851 0.0488 0.0489 0.0416 0.0364 0.0334 0.0344 0.0692 0.0553

Hungary Budapest SE 0.0709 0.0442 0.0387 0.0369 0.0321 0.0343 0.0365 0.0354 0.0341
India Nifty 50 0.0664 0.0416 0.0455 0.0418 0.0346 0.0350 0.0375 0.0390 0.0504
India BSE Sensex 0.0584 0.0429 0.0456 0.0409 0.0441 0.0452 0.0421 0.0397 0.0520

Indonesia IDX Composite 0.0826 0.0279 0.0283 0.0299 0.0329 0.0294 0.0283 0.0304 0.0278
Malaysia KLCI 0.0643 0.0353 0.0341 0.0341 0.0388 0.0359 0.0350 0.0560 0.0379

Mexico IPC 0.0732 0.0312 0.0314 0.0311 0.0346 0.0301 0.0312 0.0308 0.0302
Peru Lima General 0.0402 0.0304 0.0296 0.0304 0.0307 0.0307 0.0309 0.0329 0.0392

Philippines PSEi 0.0595 0.0393 0.0368 0.0329 0.0322 0.0307 0.0319 0.0462 0.0397
Poland WIG 0.0600 0.0388 0.0374 0.0360 0.0363 0.0361 0.0388 0.0354 0.0385

Qatar QE 20 Index 0.1064 0.0354 0.0377 0.0337 0.0363 0.0370 0.0402 0.0329 0.0504
Russia MICEX 0.0402 0.0298 0.0302 0.0310 0.0309 0.0311 0.0310 0.0304 0.0385
Russia RTSI 0.0673 0.0253 0.0262 0.0298 0.0341 0.0312 0.0268 0.0312 0.0279

Saudi Arabia TASI 0.0661 0.0349 0.0269 0.0287 0.0285 0.0286 0.0304 0.0289 0.0272
South Africa JSE 0.0366 0.0261 0.0256 0.0254 0.0257 0.0255 0.0257 0.0256 0.0311

Taiwan TWII 0.0611 0.0403 0.0443 0.0418 0.0372 0.0390 0.0401 0.0400 0.0481
Thailand SET 0.0609 0.0255 0.0242 0.0261 0.0268 0.0254 0.0252 0.0265 0.0223

Turkey BIST 100 0.0537 0.0274 0.0264 0.0271 0.0263 0.0265 0.0268 0.0272 0.0257
Un Arab Em DFM 0.0595 0.0297 0.0423 0.0439 0.0470 0.0451 0.0470 0.0448 0.0405
Un Arab Em Abu Dhabi 0.0630 0.0241 0.0230 0.0201 0.0213 0.0222 0.0211 0.0214 0.0275

Argentina MERVAL 0.0530 0.0324 0.0305 0.0306 0.0285 0.0304 0.0311 0.0308 0.0345
Bahrain All Share 0.1147 0.0302 0.0304 0.0311 0.0423 0.0442 0.0289 0.0338 0.0347

Bulgaria SOFIX 0.0869 0.0337 0.0340 0.0335 0.0380 0.0359 0.0340 0.0330 0.0373
Croatia CROBEX 0.1072 0.0285 0.0312 0.0347 0.0453 0.0470 0.0324 0.0979 0.0265
Cyprus CYMAIN 0.0635 0.0393 0.0385 0.0348 0.0342 0.0363 0.0342 0.0744 0.0529
Estonia OMXT 0.0661 0.0364 0.0365 0.0327 0.0329 0.0316 0.0321 0.0318 0.0448

Kazakhstan KASE Index 0.0394 0.0403 0.0452 0.0446 0.0438 0.0445 0.0440 0.0442 0.0439
Kuwait Kuwait 15 0.0579 0.0263 0.0288 0.0269 0.0230 0.0252 0.0238 0.0257 0.0388
Latvia OMXR 0.1511 0.0322 0.0273 0.0324 0.0515 0.0544 0.0273 0.0345 0.0288

Lithuania OMXV 0.0576 0.0461 0.0427 0.0426 0.0416 0.0418 0.0425 0.0423 0.0438
Mauritius SEMDEX 0.0814 0.0439 0.0355 0.0323 0.0348 0.0342 0.0386 0.0868 0.0361

Morocco MASI 0.1064 0.0287 0.0260 0.0289 0.0381 0.0383 0.0296 0.0918 0.0318
Namibia NSX Overall 0.0667 0.0409 0.0426 0.0418 0.0367 0.0392 0.0368 0.0512 0.0448

Oman MSM 30 0.0494 0.0273 0.0273 0.0250 0.0250 0.0246 0.0249 0.0244 0.0382
Pakistan KSE 100 0.0733 0.0321 0.0350 0.0305 0.0385 0.0328 0.0334 0.0311 0.0425
Romania BET 10 0.0718 0.0455 0.0447 0.0403 0.0362 0.0353 0.0459 0.0380 0.0466

Serbia BELEX 0.0751 0.0275 0.0261 0.0244 0.0274 0.0266 0.0242 0.0243 0.0276
Sri Lanka CSE All-Share 0.0702 0.0508 0.0367 0.0387 0.0370 0.0405 0.0375 0.0432 0.0438

Tunesia Tunindex 0.0550 0.0385 0.0388 0.0382 0.0347 0.0379 0.0370 0.0443 0.0370
Venezuela IBC 0.1469 0.0869 0.0479 0.0442 0.0439 0.0520 0.0401 0.5041 0.0368

Vietnam HNX 30 0.0615 0.0575 0.0582 0.0391 0.0345 0.0380 0.0345 0.5048 0.0529
Zambia All Share 0.1789 0.0988 0.0899 0.0876 0.0782 0.1126 0.0597 0.0851 0.0728

Table 4.7: KS distance between the empirical and fitted distributions for daily log-
returns, from 11/03/2016 until 11/02/2017.
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4.4 Goodness of fit

Country Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 0.664 0.354 0.322 0.295 0.277 0.286 0.365 0.285 0.360
Australia All Ordinaries 0.719 0.329 0.285 0.255 0.234 0.244 0.329 0.244 0.324

Austria ATX 0.459 0.433 0.432 0.468 0.459 0.467 0.438 0.464 0.470
Belgium BEL 20 0.788 0.227 0.287 0.245 0.207 0.226 0.209 0.228 0.481
Canada TSX 60 0.906 0.530 0.261 0.244 0.228 0.239 0.236 0.237 0.327
Canada TSX Composite 0.854 0.383 0.157 0.158 0.166 0.160 0.166 0.162 0.207

EuroStoxx EuroStoxx 50 0.792 0.263 0.266 0.229 0.202 0.212 0.211 0.569 0.426
Finland OMXH25 0.365 0.213 0.217 0.209 0.200 0.207 0.200 0.257 0.333

France CAC 40 1.418 0.241 0.188 0.203 0.233 0.214 0.188 0.213 0.247
Germany DAX 3.499 0.606 0.518 0.371 0.487 0.491 0.554 3.049 0.584

Hong Kong Hang Seng 0.628 0.238 0.189 0.182 0.190 0.182 0.190 0.303 0.280
Ireland ISEQ Overall 0.521 0.284 0.374 0.379 0.391 1.235 0.381 0.381 0.334

Israel TA 35 1.144 0.314 0.297 0.220 0.180 0.179 0.180 0.791 0.707
Italy FTSE MIB 1.840 0.315 0.234 0.185 0.212 0.173 0.174 0.176 0.419

Japan Topix 4.049 0.234 0.234 0.231 0.325 0.296 0.234 0.246 0.370
Luxembourg LuxX Index 1.063 0.430 0.293 0.243 0.228 0.228 0.227 0.619 0.459
Netherlands AEX 0.374 0.215 0.227 0.216 0.208 0.214 0.208 0.212 0.339

New Zealand NZX 50 Index 2.955 0.488 0.228 0.259 0.341 0.283 0.228 0.291 0.171
Norway OBX Index 0.433 0.429 0.417 0.426 0.422 0.427 0.411 97.364 0.392

Portugal PSI 20 1.455 0.357 0.300 0.342 0.406 0.369 0.329 0.366 0.288
Singapore STI Index 0.360 0.344 0.345 0.342 0.342 0.342 0.342 0.343 0.360

South Korea KOSPI 1.972 0.334 0.246 0.199 0.183 0.179 0.179 0.189 0.274
Spain IBEX 35 1.331 0.288 0.174 0.149 0.147 0.143 0.143 0.144 0.286

Sweden OMXS30 0.337 0.289 0.289 0.281 0.284 0.282 0.281 0.283 0.262
Switzerland SMI 1.163 0.377 0.381 0.322 0.253 0.382 0.249 0.879 0.692

UK FTSE 100 1.267 0.311 0.187 0.193 0.224 0.203 0.221 0.203 0.162
USA DowJones 30 2.776 0.446 0.453 0.258 0.350 0.295 0.255 0.271 0.222
USA S&P 500 3.633 0.851 0.616 0.492 0.578 0.502 0.454 0.464 0.503
USA Nasdaq 4.029 0.415 0.381 0.332 0.449 0.370 0.445 3.747 0.517

Brazil Bovespa 2.605 0.244 0.182 0.228 0.296 0.261 0.243 0.250 0.199
Chile IPSA 0.538 0.252 0.264 0.275 0.285 0.277 0.267 0.280 0.240

China CSI 300 0.530 0.132 0.143 0.144 0.153 0.147 0.143 0.147 0.163
China SSE 0.905 0.361 0.301 0.293 0.289 0.289 0.288 0.290 0.347

Colombia IGBC 1.368 0.321 0.394 0.374 0.362 0.367 0.392 0.368 0.461
Czech Republic PX 0.772 0.230 0.144 0.133 0.133 0.131 0.131 0.131 0.191

Egypt EGX 30 2.106 0.156 0.139 0.160 0.229 0.200 0.144 0.176 0.183
Greece Athex 1.991 0.396 0.350 0.255 0.176 0.171 0.171 1.465 0.519

Hungary Budapest SE 1.401 0.451 0.273 0.270 0.288 0.273 0.271 0.275 0.260
India Nifty 50 1.212 0.364 0.373 0.353 0.323 0.334 0.356 0.344 0.454
India BSE Sensex 1.096 0.466 0.495 0.444 0.348 0.377 0.362 0.416 0.651

Indonesia IDX Composite 2.794 0.256 0.236 0.302 0.430 0.363 0.237 0.344 0.168
Malaysia KLCI 1.235 0.477 0.367 0.359 0.394 0.370 0.364 0.903 0.370

Mexico IPC 2.115 0.210 0.239 0.260 0.315 0.277 0.204 0.276 0.249
Peru Lima General 0.480 0.270 0.243 0.228 0.222 0.225 0.223 0.321 0.440

Philippines PSEi 1.227 0.261 0.200 0.182 0.177 0.177 0.176 0.650 0.235
Poland WIG 0.816 0.447 0.385 0.380 0.383 0.383 0.393 0.378 0.363

Qatar QE 20 Index 3.507 0.297 0.291 0.274 0.278 0.266 0.297 0.279 0.441
Russia MICEX 0.363 0.260 0.258 0.259 0.262 0.259 0.260 0.261 0.336
Russia RTSI 1.741 0.159 0.139 0.147 0.189 0.166 0.139 0.157 0.208

Saudi Arabia TASI 2.043 0.275 0.183 0.232 0.289 0.259 0.195 0.257 0.161
South Africa JSE 0.216 0.138 0.123 0.123 0.125 0.124 0.125 0.124 0.151

Taiwan TWII 1.220 0.278 0.279 0.284 0.294 0.283 0.282 0.285 0.326
Thailand SET 1.359 0.149 0.138 0.158 0.202 0.178 0.145 0.171 0.139

Turkey BIST 100 0.954 0.158 0.148 0.168 0.199 0.179 0.155 0.180 0.129
Un Arab Em DFM 1.102 0.444 0.533 0.550 0.610 0.572 0.611 0.558 0.478
Un Arab Em Abu Dhabi 1.582 0.172 0.120 0.108 0.120 0.113 0.109 0.110 0.166

Argentina MERVAL 1.049 0.171 0.178 0.182 0.201 0.189 0.180 0.187 0.209
Bahrain All Share 4.924 0.406 0.415 0.195 0.333 0.332 0.185 0.216 0.241

Bulgaria SOFIX 3.787 0.261 0.250 0.265 0.431 0.397 0.250 0.282 0.303
Croatia CROBEX 5.327 0.236 0.257 0.314 0.532 0.557 0.286 4.990 0.219
Cyprus CYMAIN 1.228 0.522 0.493 0.397 0.287 0.317 0.288 1.504 0.683
Estonia OMXT 1.160 0.268 0.270 0.218 0.204 0.202 0.202 0.207 0.442

Kazakhstan KASE Index 0.388 0.330 0.390 0.386 0.381 0.386 0.382 0.383 0.373
Kuwait Kuwait 15 1.069 0.186 0.192 0.175 0.175 0.171 0.172 0.171 0.295
Latvia OMXR 9.803 0.442 0.124 0.207 0.533 0.512 0.124 0.271 0.184

Lithuania OMXV 1.062 0.714 0.629 0.633 0.624 0.626 0.631 0.632 0.570
Mauritius SEMDEX 3.924 0.898 0.379 0.284 0.323 0.243 0.361 4.464 0.326

Morocco MASI 5.046 0.232 0.236 0.236 0.418 0.468 0.244 4.458 0.241
Namibia NSX Overall 1.104 0.267 0.259 0.234 0.239 0.227 0.230 0.571 0.341

Oman MSM 30 0.601 0.172 0.171 0.160 0.157 0.156 0.159 0.155 0.275
Pakistan KSE 100 2.210 0.294 0.333 0.361 0.441 0.403 0.342 0.380 0.326
Romania BET 10 2.414 0.340 0.301 0.324 0.382 0.334 0.302 0.344 0.224

Serbia BELEX 2.163 0.156 0.136 0.109 0.120 0.112 0.107 0.107 0.201
Sri Lanka CSE All-Share 1.663 1.013 0.424 0.346 0.269 0.302 0.272 0.670 0.572

Tunesia Tunindex 0.885 0.602 0.606 0.335 0.305 0.332 0.324 0.434 0.369
Venezuela IBC 10.221 3.874 1.049 0.923 0.753 1.470 0.699 91.944 0.464

Vietnam HNX 30 0.805 0.697 0.711 0.272 0.223 0.258 0.223 96.595 0.503
Zambia All Share 6.785 1.993 1.492 1.742 1.180 2.333 0.708 1.690 1.107

Table 4.8: AD distance between the empirical and fitted distributions for daily log-
returns, from 11/03/2016 until 11/02/2017.
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

Country Index N St SSt NIG VΓ Hyp GH Meix Stable

Australia ASX 200 -1812 -1815 -1810 -1810 -1810 -1810 -1804 -1810 -1811
Australia All Ordinaries -1836 -1841 -1836 -1835 -1835 -1835 -1830 -1835 -1836

Austria ATX -1695 -1691 -1685 -1685 -1685 -1685 -1680 -1685 -1686
Belgium BEL 20 -1864 -1869 -1864 -1864 -1864 -1864 -1858 -1864 -1864
Canada TSX 60 -1926 -1926 -1924 -1924 -1925 -1925 -1919 -1925 -1922
Canada TSX Composite -1941 -1942 -1940 -1940 -1940 -1940 -1935 -1940 -1938

EuroStoxx EuroStoxx 50 -1933 -1932 -1928 -1929 -1929 -1929 -1923 -1926 -1926
Finland OMXH25 -1812 -1808 -1803 -1803 -1803 -1803 -1798 -1803 -1801

France CAC 40 -1828 -1847 -1843 -1842 -1841 -1842 -1838 -1842 -1841
Germany DAX -1808 -1832 -1828 -1833 -1837 -1836 -1832 -1804 -1819

Hong Kong Hang Seng -1728 -1727 -1722 -1723 -1723 -1723 -1717 -1722 -1719
Ireland ISEQ Overall -1751 -1750 -1746 -1746 -1745 -1728 -1741 -1746 -1746

Israel TA 35 -1857 -1858 -1853 -1855 -1856 -1856 -1851 -1849 -1847
Italy FTSE MIB -1635 -1652 -1648 -1649 -1649 -1649 -1644 -1649 -1643

Japan Topix -1660 -1727 -1721 -1720 -1717 -1717 -1716 -1718 -1719
Luxembourg LuxX Index -1592 -1593 -1588 -1589 -1590 -1590 -1585 -1585 -1584
Netherlands AEX -1904 -1901 -1895 -1895 -1895 -1895 -1890 -1895 -1895

New Zealand NZX 50 Index -1916 -1962 -1959 -1957 -1952 -1954 -1954 -1956 -1960
Norway OBX Index -1744 -1738 -1733 -1735 -1735 -1735 -1728 3991 -1733

Portugal PSI 20 -1781 -1792 -1789 -1788 -1786 -1787 -1783 -1788 -1787
Singapore STI Index -1903 -1898 -1892 -1893 -1893 -1893 -1887 -1893 -1892

South Korea KOSPI -1802 -1821 -1816 -1817 -1817 -1817 -1812 -1817 -1813
Spain IBEX 35 -1715 -1723 -1720 -1720 -1720 -1720 -1715 -1720 -1717

Sweden OMXS30 -1825 -1821 -1815 -1816 -1816 -1816 -1811 -1816 -1815
Switzerland SMI -1850 -1852 -1847 -1848 -1850 -1849 -1844 -1843 -1842

UK FTSE 100 -1887 -1898 -1894 -1894 -1893 -1894 -1888 -1894 -1892
USA DowJones 30 -2001 -2032 -2027 -2028 -2026 -2027 -2023 -2028 -2026
USA S&P 500 -1976 -2012 -2008 -2011 -2009 -2010 -2006 -2011 -2005
USA Nasdaq -1778 -1819 -1814 -1816 -1818 -1818 -1813 -1769 -1809

Brazil Bovespa -1439 -1483 -1480 -1477 -1474 -1475 -1471 -1476 -1479
Chile IPSA -1808 -1809 -1804 -1804 -1803 -1803 -1798 -1803 -1802

China CSI 300 -1802 -1805 -1799 -1799 -1799 -1799 -1794 -1799 -1798
China SSE -1837 -1843 -1838 -1838 -1839 -1838 -1833 -1838 -1836

Colombia IGBC -1767 -1780 -1775 -1774 -1774 -1774 -1769 -1774 -1773
Czech Republic PX -1921 -1923 -1919 -1919 -1919 -1919 -1914 -1919 -1916

Egypt EGX 30 -1445 -1470 -1466 -1466 -1464 -1464 -1460 -1465 -1462
Greece Athex -1528 -1542 -1537 -1540 -1542 -1542 -1536 -1524 -1531

Hungary Budapest SE -1726 -1740 -1736 -1736 -1735 -1736 -1731 -1736 -1737
India Nifty 50 -1777 -1784 -1780 -1780 -1781 -1780 -1775 -1780 -1777
India BSE Sensex -1804 -1808 -1803 -1803 -1805 -1804 -1799 -1804 -1800

Indonesia IDX Composite -1707 -1750 -1744 -1742 -1737 -1739 -1739 -1741 -1745
Malaysia KLCI -2038 -2041 -2037 -2037 -2037 -2038 -2032 -2031 -2032

Mexico IPC -1746 -1782 -1777 -1775 -1772 -1773 -1771 -1774 -1777
Peru Lima General -1784 -1781 -1775 -1776 -1776 -1776 -1770 -1775 -1773

Philippines PSEi -1615 -1622 -1618 -1619 -1619 -1619 -1614 -1611 -1613
Poland WIG -1727 -1725 -1723 -1723 -1723 -1723 -1717 -1723 -1721

Qatar QE 20 Index -1602 -1664 -1659 -1656 -1653 -1654 -1653 -1655 -1657
Russia MICEX -1698 -1694 -1689 -1689 -1689 -1689 -1683 -1689 -1687
Russia RTSI -1565 -1589 -1584 -1584 -1582 -1583 -1579 -1583 -1582

Saudi Arabia TASI -1664 -1695 -1692 -1690 -1687 -1689 -1687 -1689 -1691
South Africa JSE -1746 -1742 -1737 -1737 -1737 -1737 -1731 -1737 -1736

Taiwan TWII -1821 -1837 -1833 -1832 -1831 -1831 -1826 -1831 -1833
Thailand SET -1952 -1967 -1961 -1961 -1960 -1961 -1956 -1961 -1959

Turkey BIST 100 -1630 -1639 -1633 -1633 -1632 -1633 -1628 -1633 -1631
Un Arab Em DFM -1748 -1750 -1749 -1748 -1747 -1748 -1742 -1748 -1748
Un Arab Em Abu Dhabi -1770 -1786 -1781 -1781 -1781 -1781 -1776 -1781 -1777

Argentina MERVAL -1413 -1422 -1417 -1417 -1416 -1417 -1411 -1417 -1414
Bahrain All Share -1910 -1968 -1962 -1966 -1964 -1963 -1960 -1965 -1962

Bulgaria SOFIX -1748 -1809 -1804 -1802 -1800 -1800 -1798 -1801 -1804
Croatia CROBEX -1749 -1808 -1802 -1803 -1798 -1798 -1798 -1742 -1800
Cyprus CYMAIN -1480 -1485 -1480 -1481 -1483 -1482 -1478 -1469 -1476
Estonia OMXT -2015 -2022 -2016 -2017 -2018 -2018 -2012 -2018 -2012

Kazakhstan KASE Index -1655 -1651 -1646 -1646 -1646 -1646 -1640 -1646 -1646
Kuwait Kuwait 15 -1701 -1706 -1702 -1703 -1702 -1703 -1697 -1703 -1699
Latvia OMXR -1687 -1817 -1816 -1814 -1802 -1803 -1811 -1811 -1813

Lithuania OMXV -2074 -2078 -2074 -2073 -2072 -2073 -2068 -2073 -2073
Mauritius SEMDEX -2230 -2263 -2261 -2265 -2269 -2268 -2263 -2215 -2257

Morocco MASI -1731 -1783 -1778 -1780 -1778 -1777 -1775 -1729 -1773
Namibia NSX Overall -1591 -1596 -1591 -1592 -1592 -1592 -1586 -1587 -1586

Oman MSM 30 -1971 -1974 -1968 -1968 -1968 -1968 -1963 -1968 -1966
Pakistan KSE 100 -1536 -1558 -1554 -1554 -1553 -1552 -1548 -1553 -1550
Romania BET 10 -1798 -1838 -1832 -1830 -1827 -1827 -1827 -1829 -1834

Serbia BELEX -1891 -1917 -1912 -1913 -1912 -1912 -1907 -1912 -1908
Sri Lanka CSE All-Share -1987 -1988 -1990 -1991 -1993 -1992 -1987 -1987 -1987

Tunesia Tunindex -2197 -2193 -2187 -2192 -2192 -2192 -2187 -2192 -2190
Venezuela IBC -900 -974 -979 -990 -999 -987 -993 3505 -987

Vietnam HNX 30 -1793 -1788 -1782 -1786 -1786 -1786 -1781 3840 -1783
Zambia All Share -1133 -1197 -1192 -1199 -1222 -1189 -1213 -1201 -1195

Table 4.9: BIC of fitted distributions for daily log-returns, from 11/03/2016 until
11/02/2017.
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4.4 Goodness of fit
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Figure 4.7: QQ-plots of empirical quantiles for daily DAX log-returns from 11/03/2016
until 11/02/2017 versus model distributions.
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

N St SSt NIG VΓ Hyp GH Meix Stable
KS – daily, full sample 0 1 3 18 2 3 40 11 0
AD – daily, full sample 0 1 3 17 2 1 46 8 0
BIC – daily, full sample 0 20 11 28 2 1 6 10 0

KS – daily, one year 3 11 8 7 19 8 7 7 8
AD – daily, one year 0 9 9 7 11 8 17 1 16
BIC – daily, one year 17 56 0 0 5 0 0 0 0

Table 4.10: Number of lowest statistics per distribution.

examples for which this is the other way round (e.g., the Philippines). Hence, proper
model choice is crucial.

Table 4.14 summarizes how often each distribution has the lowest KS, AD and
BIC statistic among the models which are closed under convolution (and the Student-
Lévy model for which ML estimation is available). For the purposes of comparison,
the table also includes numbers for the daily fit. For the full sample, the NIG model
most often is appropriate, followed by the Meixner model. For the last year and daily
data the variance gamma model most often yields a good fit, while for hourly data
there is no obvious “winner”.

Figure 4.8 shows QQ-plots for hourly returns for the DAX example against model
distributions. The Student model (not the Student t distribution but the distribution
of Xt of a Student-Lévy process {Xt} with t = th, using the estimation routine from
Chapter 3) and the stable model outperform the other models. KS, AD and BIC
favor the Student model. Hence the DAX is a good example of where the daily data is
best modeled by a variance gamma or NIG distribution while the hourly data seem to
fit well to a Student-Lévy process and therefore a different Lévy model. This means
that in this case it is difficult to find a model which fits both hourly and daily returns
equally well. We discuss time consistency further in the next section.

4.5 Time consistency

In this section we elaborate on the notion of time consistency which we briefly
introduced above. In a nutshell, a model is time consistent if it fits to both daily and
intraday data (or other time dimensions). Eberlein & Özkan (2003) introduced the
concept and analyzed German stocks with the hyperbolic model. However, we do
not use the hyperbolic model because it is not closed under convolution. Eberlein
& Özkan (2003) redefined the meaning of t = 1 in their paper, which we do not do
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4.5 Time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 0.1218 0.0149 0.0146 0.0329 0.0149 0.0189
Australia All Ordinaries 0.1236 0.0185 0.0187 0.0301 0.0183 0.0207

Austria ATX 0.0806 0.0127 0.0116 0.0186 0.0128 0.0133
Belgium BEL 20 0.0866 0.0137 0.0132 0.0204 0.0154 0.0142
Canada TSX 60 0.1132 0.0305 0.0232 0.0200 0.0218 0.0338
Canada TSX Composite 0.1132 0.0313 0.0247 0.0177 0.0233 0.0322

EuroStoxx EuroStoxx 50 0.0874 0.0129 0.0142 0.0215 0.0167 0.0191
Finland OMXH25 0.1050 0.0151 0.0183 0.0272 0.0201 0.0141

France CAC 40 0.0934 0.0094 0.0127 0.0232 0.0151 0.0164
Germany DAX 0.1027 0.0121 0.0173 0.0305 0.0198 0.0132

Hong Kong Hang Seng 0.1223 0.0389 0.0382 0.0328 0.0377 0.0407
Ireland ISEQ Overall 0.0747 0.0173 0.0142 0.0218 0.0165 0.0077

Israel TA 35 0.1074 0.0102 0.0144 0.0268 0.0156 0.0170
Italy FTSE MIB 0.0842 0.0088 0.0105 0.0145 0.0124 0.0156

Japan Topix 0.1729 0.0197 0.0168 0.0405 0.0157 0.0211
Luxembourg LuxX Index 0.1399 0.0219 0.0180 0.0303 0.0172 0.0203
Netherlands AEX 0.0966 0.0156 0.0124 0.0196 0.0126 0.0179

New Zealand NZX 50 Index 0.1084 0.0160 0.0198 0.0279 0.0216 0.0186
Norway OBX Index 0.0835 0.0125 0.0144 0.0211 0.0154 0.0117

Portugal PSI 20 0.0881 0.0133 0.0128 0.0200 0.0137 0.0147
Singapore STI Index 0.1079 0.0159 0.0167 0.0307 0.0194 0.0120

South Korea KOSPI 0.1223 0.0140 0.0159 0.0302 0.0169 0.0150
Spain IBEX 35 0.0740 0.0160 0.0103 0.0145 0.0117 0.0143

Sweden OMXS30 0.0902 0.0098 0.0108 0.0183 0.0133 0.0142
Switzerland SMI 0.0872 0.0175 0.0171 0.0242 0.0183 0.0149

UK FTSE 100 0.0859 0.0087 0.0108 0.0159 0.0129 0.0114
USA DowJones 30 0.1167 0.0320 0.0270 0.0314 0.0258 0.0341
USA S&P 500 0.1053 0.0405 0.0370 0.0190 0.0359 0.0430
USA Nasdaq 0.1157 0.0372 0.0309 0.0291 0.0302 0.0399

Brazil Bovespa 0.1021 0.0125 0.0129 0.0186 0.0138 0.0151
Chile IPSA 0.1397 0.0126 0.0131 0.0205 0.0162 0.0167

China CSI 300 0.1293 0.0930 0.0793 0.0504 0.0786 0.0739
China SSE 0.1321 0.0784 0.0696 0.0501 0.0687 0.0636

Colombia IGBC 0.0752 0.0088 0.0090 0.0182 0.0094 0.0152
Czech Republic PX 0.0684 0.0221 0.0159 0.0150 0.0162 0.0144

Egypt EGX 30 0.1860 0.0376 0.0176 0.0489 0.0136 0.0217
Greece Athex 0.0702 0.0123 0.0110 0.0141 0.0126 0.0172

Hungary Budapest SE 0.0731 0.0106 0.0109 0.0188 0.0122 0.0171
India Nifty 50 0.0919 0.0123 0.0102 0.0171 0.0118 0.0179
India BSE Sensex 0.0957 0.0129 0.0161 0.0268 0.0177 0.0192

Indonesia IDX Composite 0.1205 0.0227 0.0137 0.0237 0.0148 0.0215
Malaysia KLCI 0.1009 0.0149 0.0131 0.0236 0.0154 0.0220

Mexico IPC 0.0826 0.0135 0.0106 0.0164 0.0105 0.0200
Peru Lima General 0.0902 0.0276 0.0236 0.0261 0.0220 0.0330

Philippines PSEi 0.1194 0.0423 0.0358 0.0122 0.0351 0.0404
Poland WIG 0.0773 0.0085 0.0119 0.0193 0.0142 0.0140

Qatar QE 20 Index 0.1124 0.0159 0.0169 0.0247 0.0199 0.0156
Russia MICEX 0.0653 0.0133 0.0108 0.0145 0.0111 0.0183
Russia RTSI 0.0694 0.0280 0.0264 0.0395 0.0258 0.0273

Saudi Arabia TASI 0.1116 0.0295 0.0269 0.0309 0.0262 0.0312
South Africa JSE 0.0784 0.0124 0.0114 0.0205 0.0135 0.0163

Taiwan TWII 0.1110 0.0171 0.0172 0.0328 0.0186 0.0106
Thailand SET 0.0656 0.0094 0.0084 0.0136 0.0096 0.0158

Turkey BIST 100 0.0928 0.0218 0.0201 0.0176 0.0194 0.0298
Un Arab Em DFM 0.0665 0.0192 0.0189 0.0198 0.0194 0.0168
Un Arab Em Abu Dhabi 0.0630 0.0167 0.0133 0.0161 0.0139 0.0264

Argentina MERVAL 0.1216 0.0144 0.0112 0.0243 0.0111 0.0174
Bahrain All Share 0.1135 0.0204 0.0187 0.0206 0.0177 0.0275

Bulgaria SOFIX 0.1015 0.0120 0.0099 0.0188 0.0120 0.0205
Croatia CROBEX 0.1191 0.0103 0.0112 0.0227 0.0130 0.0213
Cyprus CYMAIN 0.1039 0.0289 0.0273 0.0633 0.0272 0.0347
Estonia OMXT 0.0573 0.0191 0.0159 0.0108 0.0139 0.0298

Kazakhstan KASE Index 0.0765 0.0266 0.0149 0.0135 0.0129 0.0290
Kuwait Kuwait 15 0.0746 0.0323 0.0239 0.0199 0.0216 0.0377
Latvia OMXR 0.1579 0.0284 0.0184 0.0406 0.0171 0.0264

Lithuania OMXV 0.4093 0.0176 0.0476 0.0879 0.0497 0.0240
Mauritius SEMDEX 0.1276 0.0462 0.0302 0.0330 0.5024 0.0329

Morocco MASI 0.0972 0.0269 0.0215 0.0208 0.0196 0.0327
Namibia NSX Overall 0.1631 0.0501 0.0414 0.0354 0.0412 0.0282

Oman MSM 30 0.1040 0.0782 0.0718 0.0612 0.0983 0.0772
Pakistan KSE 100 0.0816 0.0177 0.0154 0.0149 0.0144 0.0212
Romania BET 10 0.0935 0.0135 0.0134 0.0203 0.0153 0.0102

Serbia BELEX 0.0722 0.0194 0.0169 0.0305 0.0813 0.0223
Sri Lanka CSE All-Share 0.0604 0.0185 0.0144 0.0138 0.0144 0.0221

Tunesia Tunindex 0.0497 0.0240 0.0247 0.0246 0.0225 0.0336
Venezuela IBC 0.1638 0.0728 0.0595 0.0671 0.0551 0.0427

Vietnam HNX 30 0.0380 0.0275 0.0163 0.0170 0.0163 0.0169
Zambia All Share 0.1744 0.1573 0.1420 0.1635 0.1404 0.1567

Table 4.11: KS distance between the empirical and fitted distributions for hourly
log-returns, from 11/02/2016 1pm until 11/02/2017 12pm.
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 63.540 0.291 0.380 3.251 0.529 0.507
Australia All Ordinaries 66.286 0.383 0.471 2.797 0.620 0.632

Austria ATX 34.272 0.364 0.364 1.435 0.571 0.356
Belgium BEL 20 45.905 0.582 0.606 1.775 0.877 0.410
Canada TSX 60 50.918 2.170 1.652 0.709 1.427 3.048
Canada TSX Composite 53.264 2.743 2.013 0.455 1.770 3.500

EuroStoxx EuroStoxx 50 46.016 0.214 0.367 1.484 0.571 0.582
Finland OMXH25 56.098 0.574 0.947 3.309 1.329 0.458

France CAC 40 54.462 0.191 0.401 1.772 0.635 0.485
Germany DAX 56.900 0.351 0.679 2.771 0.988 0.392

Hong Kong Hang Seng 72.237 2.579 2.181 2.686 2.030 3.121
Ireland ISEQ Overall 37.529 0.892 0.835 1.991 1.175 0.188

Israel TA 35 50.562 0.300 0.412 2.007 0.610 0.590
Italy FTSE MIB 36.691 0.218 0.274 1.113 0.368 0.817

Japan Topix 118.466 0.568 0.369 6.272 0.346 0.824
Luxembourg LuxX Index 97.834 1.780 1.195 3.203 1.044 1.730
Netherlands AEX 53.426 0.249 0.348 1.743 0.547 0.713

New Zealand NZX 50 Index 59.536 0.556 0.962 2.445 1.377 0.612
Norway OBX Index 34.518 0.436 0.734 2.167 1.050 0.220

Portugal PSI 20 44.022 0.491 0.511 1.579 0.735 0.746
Singapore STI Index 60.301 0.531 0.864 3.582 1.210 0.374

South Korea KOSPI 62.350 0.302 0.355 3.070 0.505 0.427
Spain IBEX 35 36.154 1.189 0.405 0.970 0.610 0.810

Sweden OMXS30 42.643 0.211 0.353 1.584 0.574 0.553
Switzerland SMI 41.136 0.343 0.545 1.788 0.812 0.482

UK FTSE 100 41.781 0.155 0.273 1.545 0.483 0.419
USA DowJones 30 65.320 2.468 1.598 1.714 1.413 2.987
USA S&P 500 55.878 3.258 2.732 0.690 2.502 4.401
USA Nasdaq 66.541 2.260 1.797 2.498 1.690 3.103

Brazil Bovespa 51.275 0.357 0.415 1.347 0.588 0.732
Chile IPSA 108.909 0.650 0.763 2.854 1.228 0.563

China CSI 300 48.564 12.544 12.353 3.181 12.229 11.734
China SSE 50.734 10.206 10.164 4.085 10.021 9.883

Colombia IGBC 23.708 0.160 0.128 0.726 0.170 0.675
Czech Republic PX 24.528 1.377 0.469 0.948 0.618 0.382

Egypt EGX 30 77.160 3.858 0.343 4.078 0.203 0.931
Greece Athex 21.915 0.394 0.284 0.689 0.370 0.764

Hungary Budapest SE 28.272 0.332 0.262 0.917 0.352 0.665
India Nifty 50 34.837 0.131 0.169 1.109 0.290 0.474
India BSE Sensex 35.134 0.400 0.269 1.498 0.371 0.568

Indonesia IDX Composite 66.925 1.897 0.613 1.653 0.759 0.828
Malaysia KLCI 41.523 0.496 0.361 1.404 0.443 0.750

Mexico IPC 32.563 0.274 0.170 0.616 0.202 0.823
Peru Lima General 33.246 2.022 1.401 0.808 1.156 3.404

Philippines PSEi 49.089 3.876 2.963 0.384 2.724 4.061
Poland WIG 31.645 0.339 0.238 1.090 0.388 0.544

Qatar QE 20 Index 37.261 0.283 0.632 1.298 0.915 0.211
Russia MICEX 18.465 0.777 0.244 0.576 0.282 0.973
Russia RTSI 27.283 0.927 0.571 1.585 0.698 0.975

Saudi Arabia TASI 35.007 0.537 0.468 1.518 0.530 0.801
South Africa JSE 32.425 0.312 0.418 1.410 0.603 0.469

Taiwan TWII 36.355 0.364 0.433 2.093 0.561 0.290
Thailand SET 18.106 0.139 0.151 0.523 0.215 0.424

Turkey BIST 100 41.677 1.747 1.441 0.966 1.249 3.453
Un Arab Em DFM 8.296 0.577 0.311 0.525 0.375 0.299
Un Arab Em Abu Dhabi 10.154 0.386 0.255 0.370 0.300 0.651

Argentina MERVAL 64.605 0.398 0.178 1.826 0.199 0.806
Bahrain All Share 25.626 0.390 0.280 0.628 0.306 0.738

Bulgaria SOFIX 48.991 0.486 0.319 1.009 0.477 0.903
Croatia CROBEX 72.540 0.318 0.443 1.685 0.691 1.016
Cyprus CYMAIN 36.140 1.787 1.323 3.674 1.162 2.454
Estonia OMXT 12.615 0.943 0.527 0.414 0.508 1.302

Kazakhstan KASE Index 20.729 2.338 0.574 0.270 0.430 1.459
Kuwait Kuwait 15 7.892 1.157 0.776 0.441 0.682 1.935
Latvia OMXR 82.066 1.674 0.775 1.967 0.682 1.739

Lithuania OMXV 504.101 0.796 9.581 31.016 10.398 0.734
Mauritius SEMDEX 35.630 2.887 1.154 1.322 385.546 1.099

Morocco MASI 42.008 1.143 0.633 0.564 0.540 1.928
Namibia NSX Overall 130.738 9.478 8.215 3.014 8.229 5.003

Oman MSM 30 19.998 4.438 4.259 4.270 20.962 4.929
Pakistan KSE 100 28.955 0.343 0.268 0.581 0.263 1.003
Romania BET 10 55.507 0.472 0.755 2.433 1.178 0.314

Serbia BELEX 15.247 0.813 0.479 0.936 17.100 0.977
Sri Lanka CSE All-Share 8.382 0.824 0.186 0.307 0.210 0.626

Tunesia Tunindex 4.920 0.911 0.719 0.643 0.688 1.178
Venezuela IBC 47.998 9.908 5.242 3.412 4.299 2.829

Vietnam HNX 30 3.692 1.255 0.275 0.376 0.309 0.326
Zambia All Share 24.919 17.366 15.469 18.966 15.315 17.453

Table 4.12: AD distance between the empirical and fitted distributions for hourly
log-returns, from 11/02/2016 1pm until 11/02/2017 12pm.
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4.5 Time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 -16517 -17391 -17383 -17337 -17379 -17358
Australia All Ordinaries -16857 -17773 -17765 -17732 -17761 -17740

Austria ATX -20372 -20902 -20892 -20850 -20886 -20870
Belgium BEL 20 -21628 -22360 -22343 -22290 -22332 -22339
Canada TSX 60 -19244 -19900 -19915 -19949 -19924 -19821
Canada TSX Composite -19689 -20375 -20393 -20446 -20403 -20294

EuroStoxx EuroStoxx 50 -22077 -22779 -22766 -22718 -22758 -22745
Finland OMXH25 -21449 -22276 -22260 -22174 -22250 -22251

France CAC 40 -21111 -21964 -21948 -21887 -21938 -21931
Germany DAX -21131 -21973 -21957 -21884 -21947 -21944

Hong Kong Hang Seng -17613 -18552 -18565 -18649 -18571 -18493
Ireland ISEQ Overall -22508 -23121 -23106 -23051 -23093 -23111

Israel TA 35 -20813 -21542 -21534 -21478 -21529 -21505
Italy FTSE MIB -19915 -20473 -20466 -20436 -20461 -20426

Japan Topix -15072 -16637 -16643 -16521 -16643 -16604
Luxembourg LuxX Index -18766 -20006 -20027 -19979 -20036 -19944
Netherlands AEX -21611 -22416 -22404 -22347 -22396 -22379

New Zealand NZX 50 Index -20975 -22012 -21980 -21911 -21958 -22008
Norway OBX Index -18507 -19034 -19019 -18963 -19011 -19014

Portugal PSI 20 -21187 -21866 -21851 -21798 -21839 -21839
Singapore STI Index -22029 -22869 -22857 -22766 -22849 -22840

South Korea KOSPI -16087 -16926 -16920 -16831 -16917 -16894
Spain IBEX 35 -22726 -23420 -23413 -23368 -23398 -23424

Sweden OMXS30 -21207 -21872 -21859 -21804 -21851 -21840
Switzerland SMI -21764 -22412 -22397 -22340 -22387 -22385

UK FTSE 100 -21676 -22317 -22305 -22253 -22298 -22283
USA DowJones 30 -20302 -21168 -21184 -21215 -21189 -21100
USA S&P 500 -20081 -20829 -20842 -20929 -20848 -20752
USA Nasdaq -18630 -19550 -19556 -19597 -19559 -19489

Brazil Bovespa -16649 -17535 -17517 -17467 -17507 -17502
Chile IPSA -18436 -20238 -20192 -20097 -20161 -20238

China CSI 300 -15629 -16148 -16185 -16529 -16201 -16080
China SSE -15867 -16446 -16476 -16714 -16490 -16372

Colombia IGBC -17471 -17826 -17822 -17800 -17820 -17784
Czech Republic PX -19323 -19737 -19733 -19705 -19726 -19731

Egypt EGX 30 -9297 -10209 -10239 -10172 -10243 -10198
Greece Athex -16746 -17103 -17097 -17076 -17093 -17077

Hungary Budapest SE -21115 -21546 -21542 -21519 -21539 -21505
India Nifty 50 -16069 -16612 -16602 -16561 -16596 -16579
India BSE Sensex -16157 -16684 -16677 -16637 -16673 -16648

Indonesia IDX Composite -17001 -18024 -18015 -17949 -18005 -18006
Malaysia KLCI -17612 -18222 -18215 -18174 -18211 -18189

Mexico IPC -16943 -17442 -17436 -17416 -17434 -17399
Peru Lima General -19709 -20129 -20141 -20196 -20150 -20049

Philippines PSEi -14761 -15373 -15396 -15495 -15407 -15304
Poland WIG -20917 -21402 -21397 -21365 -21392 -21366

Qatar QE 20 Index -10029 -10698 -10672 -10626 -10657 -10697
Russia MICEX -20378 -20659 -20670 -20655 -20668 -20631
Russia RTSI -18509 -18990 -18984 -18955 -18976 -18971

Saudi Arabia TASI -11094 -11576 -11574 -11584 -11573 -11545
South Africa JSE -20656 -21150 -21142 -21102 -21136 -21116

Taiwan TWII -11261 -11749 -11742 -11688 -11740 -11726
Thailand SET -16678 -16947 -16942 -16930 -16940 -16913

Turkey BIST 100 -22726 -23377 -23377 -23382 -23379 -23299
Un Arab Em DFM -8429 -8566 -8561 -8551 -8558 -8555
Un Arab Em Abu Dhabi -10811 -11023 -11013 -11000 -11008 -11013

Argentina MERVAL -13817 -14723 -14721 -14670 -14719 -14682
Bahrain All Share -7926 -8323 -8315 -8295 -8311 -8300

Bulgaria SOFIX -17035 -17789 -17775 -17733 -17765 -17765
Croatia CROBEX -17991 -19136 -19116 -19043 -19102 -19108
Cyprus CYMAIN -11862 -12312 -12322 -12310 -12329 -12245
Estonia OMXT -15073 -15316 -15313 -15308 -15308 -15312

Kazakhstan KASE Index -13940 -14210 -14222 -14229 -14226 -14177
Kuwait Kuwait 15 -8014 -8115 -8115 -8124 -8117 -8090
Latvia OMXR -11720 -12906 -12911 -12878 -12908 -12865

Lithuania OMXV -7854 -15768 -15566 -14836 -15563 -15796
Mauritius SEMDEX -10379 -10826 -10844 -10832 20553 -10816

Morocco MASI -15537 -16171 -16171 -16169 -16171 -16121
Namibia NSX Overall -18172 -19856 -19908 -20073 -19921 -19856

Oman MSM 30 -8908 -9119 -9131 -9411 -8882 -9076
Pakistan KSE 100 -14254 -14679 -14675 -14670 -14675 -14634
Romania BET 10 -23934 -24835 -24812 -24734 -24795 -24820

Serbia BELEX -12031 -12219 -12220 -12218 -11996 -12179
Sri Lanka CSE All-Share -15182 -15305 -15313 -15307 -15312 -15296

Tunesia Tunindex -11934 -11978 -11983 -11987 -11984 -11960
Venezuela IBC -4658 -5168 -5220 -5285 -5233 -5203

Vietnam HNX 30 -10943 -10975 -10990 -10987 -10990 -10974
Zambia All Share -2109 -2397 -2375 -2416 -2362 -2458

Table 4.13: BIC of fitted distributions for hourly log-returns, from 11/02/2016 1pm
until 11/02/2017 12pm.
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4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

N St NIG VΓ Meix Stable
KS – daily, full sample 0 9 37 7 23 2
AD – daily, full sample 0 6 42 6 21 3
BIC – daily, full sample 0 24 36 6 12 0

KS – daily, one year 3 15 10 26 12 12
AD – daily, one year 0 13 16 22 7 20
BIC – daily, one year 17 56 0 5 0 0

KS – hourly, one year 0 17 18 13 18 12
AD – hourly, one year 0 19 20 13 11 15
BIC – hourly, one year 0 45 7 18 4 4

Table 4.14: Number of lowest statistics per distribution among models which are
closed under convolution and Student model.

here because this causes comparison issues (see below). Figueroa-López et al. (2011)
focused on the variance gamma and the NIG distributions and explored in simulations
how the estimation error evolves with an increasing sampling frequency for a given
Lévy path. They found that if the frequency is too high, e.g., just a few minutes,
microstructure effects inhibit time consistency. Apart from these two works, the topic
has received little attention in the literature. However, the idea one well-performing
model for both hourly and daily data is appealing, e.g., for pricing path-dependent
options.

We here focus on establishing which model is more time consistent. Eberlein &
Özkan (2003) defined two sorts of time consistency between daily and intraday returns,
which we adopt. Downward convolution means that we fit a distribution FLt=1(x; θ̂d)
to daily data, where L denotes a Lévy model and θ̂d is the ML estimate for daily
data. We then compare the implied distribution at time t = th, FLt=th(x; θ̂d), with
the empirical distribution of the hourly returns Fn,h(x). We compute the distance
between FLt=th(x; θ̂d) and Fn,h(x). If the distance is close to the distance between
FLt=th(x; θ̂h) and Fn,h(x), we say that the model is downwardly time consistent. On
the other hand, upward convolution means that we fit a distribution FLt=th(x; θ̂h) to
hourly returns, where θ̂h is the corresponding ML estimate for hourly data. Then
we compare the implied distribution at time t = 1, FLt=1(x; θ̂h), with the empirical
distribution of daily returns Fn,d(x) and compute the distance between FLt=1(x; θ̂h)
and Fn,d(x). A model is upwardly time consistent if this distance is close to the
distance between FLt=1(x; θ̂d) and Fn,d(x) of the direct fit. Here is the reason why we
do not redefine the meaning of t for the models which are not closed under convolution.

126



4.5 Time consistency

-0.005 0.000 0.005

-0.004

-0.002

0.000

0.002

0.004

0.006

Normal

(a)
-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Student

(b)
-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

NIG

(c)

-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Variance gamma

(d)
-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Meixner

(e)
-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Stable

(f)

Figure 4.8: QQ-plots of empirical quantiles for daily DAX log-returns from 11/02/2016
1pm until 11/02/2017 12pm versus model distributions.

The upward convolution would then not be comparable since it would not be from
the same distributional class.

We start with downward convolution. The number of trading hours per day varies
for each index. It may be that the number of hours is not an integer, e.g., 8.75 hours
(for the DAX). In such cases we round up to full hours and use an adjusted th. The
reason for this is that Eberlein & Özkan (2003) found that the distance for downward
convolution is minimal for a t which is slightly smaller than the actual physical time.
We find that this is also true for our data but omit a detailed discussion.

Tables 4.15 and 4.16 present the KS and AD distances between FLt=th(x; θ̂d) and
Fn,h(x). Table 4.17 presents the BIC of the model FLt=th(x; θ̂d) using hourly data. We
observe that the downwardly convoluted variance gamma model is a poor fit in many
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cases. For example, while it was the best fit (in terms of AD) for the daily returns of
the EuroStoxx (cf. Table 4.8) the downward convolution is the worst fit for hourly
returns. The implied distribution of the Student-Lévy model is the best fit in the
most cases, followed by the stable model. Even the Gaussian model sometimes has
the lowest distance. This leads us to conclude that in these cases downward time
consistency is not given, as the Gaussian model is a poor fit.

It is also important to check whether the downward convolution can compete
with the ML fit to hourly returns. We compare, e.g., for AD, Table 4.12 (ML fit) with
Table 4.16 (downward convolution). The distances for the downward convolution
are in most cases vastly greater, indicating poor downward consistency. Only a few
indices can compete with the ML fit, e.g., the South Korean KOSPI’s 0.31 (downward
convolution) with 0.302 (ML) in the Student-Lévy model. To summarize, downward
time consistency is generally not given.

We return to the DAX example from Section 4.4. Figure 4.9 shows QQ-plots
comparing the downward convolution with the empirical quantiles. It is very obvious
that the normal, the Student, the NIG, the variance gamma and the Meixner model
do not fit. The stable distribution looks promising at first glance. However, it
underestimates the left tail. The AD distance is 24.64 for the stable downward
convolution while it is 0.392 for the hourly ML fit. We also see this if we compare
panel (f) of Figure 4.9 with Figure 4.8 (f).

Of course, it is reasonable for the downward convolution distances to be higher
than those of the ML fit, even if the underlying Lévy model is true. It is of interest
to study what proportion of these high distances is due to the specific market data
and which to model estimation difficulties. To address this issue we generate 1,000
sample paths from the Lévy models with parameters estimated from daily returns.
We then compute the sample mean of the KS, AD and BIC. For example, we use
the fitted stable distribution of the DAX for daily returns to generate 1,000 paths of
the stable log-return process with an hourly frequency. The downward convolution
has an average AD distance to the simulated paths of 7.47 compared with the real
world AD distance of 24.64. This suggests that the time inconsistency is also caused
by some violations of the model. We only outlined this issue here, since a rigorous
discussion would require numerous simulations for each index and each model, which
is beyond the scope of this chapter.

Next, we turn to upward time consistency. Although downward time consistency
is interesting in itself, upward time consistency is more relevant in practice. A model
fitted to hourly data should be useful in explaining daily behavior. In order to address
this, we fit Lévy models to hourly returns and use the upward convolution as a model
for daily returns. Tables 4.18 – 4.20 report the KS, AD and BIC statistics. There
is, again, no obvious first choice, as the Student, the NIG and the variance gamma
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Country Index N St NIG VΓ Meix Stable

Australia ASX 200 0.12497 0.05445 0.03505 0.07995 0.02620 0.09998
Australia All Ordinaries 0.12846 0.05497 0.03424 0.09343 0.03200 0.09917

Austria ATX 0.08497 0.04674 0.04168 0.03605 0.03882 0.07413
Belgium BEL 20 0.07374 0.02922 0.05880 0.14934 0.07342 0.06282
Canada TSX 60 0.09831 0.04588 0.09062 0.16219 0.09572 0.09035
Canada TSX Composite 0.10716 0.04920 0.08910 0.15529 0.09612 0.10371

EuroStoxx EuroStoxx 50 0.06712 0.02594 0.05446 0.11870 0.07253 0.06107
Finland OMXH25 0.10810 0.05551 0.04138 0.05144 0.06630 0.10779

France CAC 40 0.07219 0.04975 0.08388 0.17289 0.09647 0.04001
Germany DAX 0.09308 0.09884 0.12933 0.26462 0.12055 0.06473

Hong Kong Hang Seng 0.12469 0.06713 0.08723 0.12920 0.11159 0.11445
Ireland ISEQ Overall 0.08835 0.02523 0.04527 0.07039 0.04595 0.07306

Israel TA 35 0.10146 0.02922 0.05883 0.15939 0.05126 0.07512
Italy FTSE MIB 0.08684 0.05680 0.09309 0.20226 0.10688 0.03696

Japan Topix 0.17476 0.04189 0.02658 0.17113 0.02865 0.09422
Luxembourg LuxX Index 0.12858 0.05881 0.05610 0.14446 0.10481 0.11463
Netherlands AEX 0.07550 0.01805 0.01709 0.06408 0.02232 0.06821

New Zealand NZX 50 Index 0.12670 0.03825 0.07961 0.19580 0.09193 0.05279
Norway OBX Index 0.09572 0.07488 0.11292 0.11658 0.51224 0.09061

Portugal PSI 20 0.08808 0.05077 0.07853 0.15352 0.08971 0.05706
Singapore STI Index 0.10540 0.07807 0.08575 0.07889 0.09182 0.10540

South Korea KOSPI 0.12788 0.01308 0.04842 0.16940 0.06208 0.06411
Spain IBEX 35 0.05968 0.06878 0.10753 0.19191 0.12200 0.03756

Sweden OMXS30 0.08425 0.04323 0.05479 0.04912 0.05248 0.08259
Switzerland SMI 0.08932 0.03178 0.06788 0.19229 0.06995 0.07142

UK FTSE 100 0.07158 0.04707 0.08499 0.16205 0.09725 0.02684
USA DowJones 30 0.11892 0.04011 0.05863 0.16202 0.06976 0.05143
USA S&P 500 0.10601 0.05997 0.09733 0.18486 0.10727 0.07151
USA Nasdaq 0.12080 0.05537 0.08120 0.26870 0.14014 0.05765

Brazil Bovespa 0.10041 0.06527 0.09567 0.20019 0.10896 0.04740
Chile IPSA 0.08171 0.01776 0.02919 0.08381 0.03756 0.04461

China CSI 300 0.12654 0.11318 0.11345 0.10600 0.11110 0.12603
China SSE 0.12259 0.08382 0.09624 0.16035 0.09663 0.10454

Colombia IGBC 0.07495 0.05088 0.07444 0.16961 0.08577 0.03690
Czech Republic PX 0.05651 0.05251 0.08835 0.15840 0.10168 0.04589

Egypt EGX 30 0.19601 0.12408 0.09628 0.13184 0.08916 0.13786
Greece Athex 0.08219 0.05886 0.09522 0.20691 0.06882 0.02735

Hungary Budapest SE 0.09419 0.03678 0.07325 0.16431 0.08704 0.06007
India Nifty 50 0.10353 0.01423 0.04455 0.13874 0.05632 0.07221
India BSE Sensex 0.10244 0.02596 0.04344 0.15040 0.05455 0.08272

Indonesia IDX Composite 0.13212 0.04368 0.06664 0.17563 0.07762 0.05091
Malaysia KLCI 0.10600 0.02565 0.03413 0.10140 0.07602 0.06391

Mexico IPC 0.07905 0.05958 0.08254 0.15838 0.09527 0.02527
Peru Lima General 0.12008 0.07425 0.05231 0.02758 0.08115 0.11823

Philippines PSEi 0.12228 0.07744 0.09156 0.19118 0.11587 0.10342
Poland WIG 0.09185 0.02418 0.05874 0.08713 0.05814 0.07264

Qatar QE 20 Index 0.11094 0.04755 0.07594 0.14209 0.08680 0.02740
Russia MICEX 0.06500 0.01726 0.01416 0.04401 0.01664 0.06122
Russia RTSI 0.05589 0.09293 0.11084 0.19897 0.11981 0.03301

Saudi Arabia TASI 0.12918 0.03288 0.05099 0.11381 0.05427 0.06772
South Africa JSE 0.07991 0.03384 0.03809 0.05078 0.03270 0.07775

Taiwan TWII 0.12382 0.04284 0.03968 0.11682 0.04510 0.09217
Thailand SET 0.04756 0.07129 0.09414 0.14423 0.10284 0.03509

Turkey BIST 100 0.11487 0.02527 0.04366 0.12660 0.05167 0.06940
Un Arab Em DFM 0.06865 0.02001 0.04115 0.05454 0.04120 0.04817
Un Arab Em Abu Dhabi 0.05490 0.06752 0.08590 0.15254 0.09535 0.03726

Argentina MERVAL 0.14251 0.05912 0.04451 0.10399 0.03410 0.11055
Bahrain All Share 0.08982 0.06675 0.08907 0.17875 0.09682 0.05574

Bulgaria SOFIX 0.07649 0.10287 0.13172 0.25261 0.14189 0.05486
Croatia CROBEX 0.11380 0.08174 0.10491 0.21971 0.12858 0.04664
Cyprus CYMAIN 0.06279 0.10045 0.11321 0.22277 0.08267 0.08481
Estonia OMXT 0.03454 0.09360 0.11036 0.14353 0.11848 0.06373

Kazakhstan KASE Index 0.05717 0.05037 0.06538 0.07266 0.06706 0.06322
Kuwait Kuwait 15 0.06202 0.04967 0.05902 0.07620 0.06625 0.03667
Latvia OMXR 0.13276 0.07482 0.08775 0.17393 0.09411 0.05089

Lithuania OMXV 0.03767 0.06633 0.07433 0.11434 0.08233 0.05039
Mauritius SEMDEX 0.13017 0.05249 0.04559 0.13975 0.13573 0.04616

Morocco MASI 0.08709 0.10004 0.11924 0.23512 0.12157 0.07945
Namibia NSX Overall 0.14064 0.07491 0.06149 0.10085 0.11621 0.12011

Oman MSM 30 0.12297 0.09780 0.09504 0.07410 0.09367 0.10721
Pakistan KSE 100 0.09646 0.03762 0.06107 0.15968 0.07114 0.04344
Romania BET 10 0.09952 0.06792 0.10493 0.22698 0.11857 0.02325

Serbia BELEX 0.06278 0.15538 0.17457 0.20660 0.18165 0.11460
Sri Lanka CSE All-Share 0.10140 0.03533 0.07158 0.15814 0.10469 0.08021

Tunesia Tunindex 0.03536 0.05849 0.06954 0.08682 0.07388 0.05262
Venezuela IBC 0.15442 0.12768 0.12504 0.22650 0.50928 0.11604

Vietnam HNX 30 0.02450 0.04152 0.07187 0.10249 0.51170 0.03226
Zambia All Share 0.28998 0.30074 0.30359 0.30358 0.30280 0.29862

Table 4.15: KS distance between the empirical distribution for hourly log-returns and
the downward convoluted fitted distribution for daily log-returns.
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Country Index N St NIG VΓ Meix Stable

Australia ASX 200 66.91 12.28 5.59 11.17 3.24 42.46
Australia All Ordinaries 71.90 12.41 5.33 15.21 3.19 43.80

Austria ATX 38.36 9.68 9.12 5.83 7.66 31.34
Belgium BEL 20 33.99 3.80 14.34 92.24 23.68 19.81
Canada TSX 60 38.55 5.73 17.33 53.17 21.29 28.75
Canada TSX Composite 47.67 6.61 15.66 42.14 18.25 34.40

EuroStoxx EuroStoxx 50 30.43 3.33 11.21 68.29 19.77 16.43
Finland OMXH25 59.72 12.53 6.41 8.38 18.27 55.79

France CAC 40 33.56 16.02 34.58 140.94 46.24 5.93
Germany DAX 49.43 55.48 101.86 407.61 88.59 24.64

Hong Kong Hang Seng 74.78 19.49 17.08 21.17 41.66 58.34
Ireland ISEQ Overall 51.09 2.92 10.61 16.21 10.62 31.37

Israel TA 35 44.69 1.99 13.29 117.27 10.92 23.74
Italy FTSE MIB 38.88 18.95 46.55 225.57 61.79 5.03

Japan Topix 123.27 4.04 1.22 93.23 2.44 32.82
Luxembourg LuxX Index 81.85 10.67 8.89 48.55 37.28 51.40
Netherlands AEX 33.81 1.06 0.81 15.53 2.02 22.42

New Zealand NZX 50 Index 86.81 4.88 22.68 113.83 31.61 8.79
Norway OBX Index 47.22 28.79 54.44 58.08 781.13 38.94

Portugal PSI 20 44.51 9.37 22.39 83.35 29.82 11.41
Singapore STI Index 57.86 30.06 33.68 29.29 39.06 57.86

South Korea KOSPI 67.61 0.31 4.97 80.74 9.00 10.37
Spain IBEX 35 24.70 30.54 60.71 206.78 80.43 7.63

Sweden OMXS30 36.71 7.40 10.19 10.36 9.78 28.92
Switzerland SMI 42.78 2.55 15.53 189.24 18.98 21.72

UK FTSE 100 30.44 14.78 33.08 107.26 43.11 5.61
USA DowJones 30 67.54 7.72 15.36 97.40 20.50 9.46
USA S&P 500 57.65 18.39 40.27 166.40 48.34 21.27
USA Nasdaq 74.18 14.33 33.23 243.31 163.14 7.55

Brazil Bovespa 48.93 17.01 37.38 167.93 50.04 6.87
Chile IPSA 30.60 0.84 3.53 26.24 6.34 7.62

China CSI 300 39.66 17.47 16.30 17.59 15.80 28.32
China SSE 39.84 14.38 15.52 47.91 16.86 24.80

Colombia IGBC 24.01 12.53 25.93 120.81 35.81 4.32
Czech Republic PX 16.69 10.44 26.81 79.52 35.67 6.41

Egypt EGX 30 85.35 25.53 15.64 18.16 13.94 39.08
Greece Athex 33.34 16.87 45.05 182.18 17.19 1.96

Hungary Budapest SE 49.08 4.39 19.73 99.45 28.86 12.30
India Nifty 50 45.18 0.50 3.57 60.45 6.45 16.98
India BSE Sensex 40.68 1.33 3.11 71.64 6.23 22.20

Indonesia IDX Composite 79.92 5.36 13.26 86.34 18.53 6.60
Malaysia KLCI 46.74 1.52 2.03 18.97 25.06 12.65

Mexico IPC 30.50 17.25 33.94 113.65 43.05 3.89
Peru Lima General 71.79 22.64 13.16 4.27 29.15 68.47

Philippines PSEi 52.65 8.31 12.20 62.16 30.46 23.35
Poland WIG 45.89 3.20 11.73 18.13 11.06 25.88

Qatar QE 20 Index 36.19 4.58 14.44 53.63 19.16 1.34
Russia MICEX 18.59 0.52 0.56 6.87 0.81 16.74
Russia RTSI 16.70 47.94 79.00 197.47 94.18 9.24

Saudi Arabia TASI 49.96 1.97 1.71 12.93 1.98 12.80
South Africa JSE 33.77 4.84 4.69 5.37 3.96 28.97

Taiwan TWII 43.83 3.98 3.48 17.95 3.03 21.14
Thailand SET 10.72 24.56 37.70 84.75 44.55 8.34

Turkey BIST 100 70.92 1.97 6.96 71.90 11.76 16.45
Un Arab Em DFM 9.04 0.56 2.05 3.60 2.19 3.28
Un Arab Em Abu Dhabi 7.15 12.27 21.56 51.17 26.12 4.59

Argentina MERVAL 89.23 12.24 5.76 22.18 3.56 42.78
Bahrain All Share 15.26 12.30 18.32 49.00 20.90 8.61

Bulgaria SOFIX 27.70 58.80 94.90 275.01 109.60 19.65
Croatia CROBEX 65.56 35.58 61.49 222.76 148.18 14.22
Cyprus CYMAIN 56.15 73.96 98.53 219.48 448.04 55.23
Estonia OMXT 12.84 48.90 64.88 101.13 72.59 25.23

Kazakhstan KASE Index 12.31 9.15 13.25 14.00 13.37 14.40
Kuwait Kuwait 15 5.05 5.84 7.19 13.33 8.52 3.62
Latvia OMXR 56.68 20.09 30.14 93.35 35.67 13.12

Lithuania OMXV 59.00 20.15 27.67 43.93 30.99 13.67
Mauritius SEMDEX 36.95 3.19 2.27 30.44 41.28 3.06

Morocco MASI 34.38 54.20 78.56 228.26 69.03 35.46
Namibia NSX Overall 94.66 21.63 14.09 39.92 39.30 53.19

Oman MSM 30 33.35 13.69 10.85 6.11 9.53 24.09
Pakistan KSE 100 41.01 4.63 12.33 95.22 17.43 4.01
Romania BET 10 63.15 25.25 58.90 269.00 75.92 2.52

Serbia BELEX 32.06 105.45 125.42 172.83 133.05 79.76
Sri Lanka CSE All-Share 38.78 4.24 9.45 38.53 29.93 19.59

Tunesia Tunindex 7.87 12.34 20.42 25.72 25.97 13.47
Venezuela IBC 41.27 25.99 25.52 77.81 344.07 34.76

Vietnam HNX 30 4.60 7.00 17.29 31.05 488.96 6.79
Zambia All Share 1350.28 288.20 335.58 378.14 347.45 292.81

Table 4.16: AD distance between the empirical distribution for hourly log-returns and
the downward convoluted fitted distribution for daily log-returns.
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4.5 Time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 -16516 -17297 -17347 -17123 -17363 -16965
Australia All Ordinaries -16854 -17682 -17733 -17448 -17746 -17346

Austria ATX -20370 -20827 -20821 -20830 -20830 -20513
Belgium BEL 20 -21611 -22341 -22251 -21334 -22172 -21874
Canada TSX 60 -19211 -19856 -19793 -19462 -19788 -19295
Canada TSX Composite -19684 -20334 -20293 -20049 -20294 -19773

EuroStoxx EuroStoxx 50 -22022 -22760 -22699 -22043 -22489 -22276
Finland OMXH25 -21448 -22183 -22223 -22070 -22112 -21611

France CAC 40 -21055 -21870 -21731 -20546 -21641 -21831
Germany DAX -21120 -21622 -21296 -18465 -16665 -21794

Hong Kong Hang Seng -17613 -18402 -18440 -18335 -18195 -17940
Ireland ISEQ Overall -22492 -23111 -23044 -22942 -23034 -22755

Israel TA 35 -20809 -21533 -21442 -20243 -21415 -21268
Italy FTSE MIB -19914 -20344 -20137 -18319 -20020 -20375

Japan Topix -15070 -16608 -16638 -15386 -16629 -16280
Luxembourg LuxX Index -18735 -19909 -19977 -19452 -19623 -19383
Netherlands AEX -21536 -22391 -22391 -22195 -22381 -21913

New Zealand NZX 50 Index -20934 -21962 -21799 -20615 -21712 -21961
Norway OBX Index -18490 -18798 -18174 -18104 27637 -18624

Portugal PSI 20 -21187 -21805 -21695 -20930 -21627 -21736
Singapore STI Index -22028 -22585 -22525 -22560 -22443 -22013

South Korea KOSPI -16083 -16926 -16886 -15881 -16853 -16793
Spain IBEX 35 -22697 -23235 -23004 -21486 -22847 -23348

Sweden OMXS30 -21202 -21800 -21764 -21750 -21764 -21436
Switzerland SMI -21764 -22395 -22277 -20478 -22222 -22184

UK FTSE 100 -21654 -22228 -22093 -21235 -22015 -22217
USA DowJones 30 -20301 -21143 -21101 -20184 -21066 -21020
USA S&P 500 -20081 -20747 -20621 -19396 -20568 -20616
USA Nasdaq -18625 -19479 -19355 -17347 -17383 -19444

Brazil Bovespa -16648 -17423 -17261 -15827 -17157 -17431
Chile IPSA -17941 -20240 -20174 -19806 -20126 -20182

China CSI 300 -15595 -16092 -16140 -16342 -16169 -15859
China SSE -15827 -16402 -16435 -16262 -16450 -16176

Colombia IGBC -17471 -17744 -17636 -16584 -17558 -17739
Czech Republic PX -19309 -19687 -19559 -18955 -19486 -19659

Egypt EGX 30 -9278 -10053 -10137 -9961 -10156 -9871
Greece Athex -16728 -16975 -16752 -15322 -16952 -17069

Hungary Budapest SE -21070 -21508 -21383 -20364 -21304 -21399
India Nifty 50 -16056 -16609 -16572 -15798 -16540 -16447
India BSE Sensex -16153 -16680 -16654 -15769 -16622 -16466

Indonesia IDX Composite -16989 -17997 -17912 -16975 -17861 -17959
Malaysia KLCI -17609 -18215 -18205 -17912 -17977 -18090

Mexico IPC -16942 -17336 -17209 -16306 -17139 -17349
Peru Lima General -19568 -19995 -20060 -20140 -19952 -19605

Philippines PSEi -14759 -15346 -15347 -14843 -15129 -15136
Poland WIG -20895 -21386 -21321 -21211 -21323 -21054

Qatar QE 20 Index -10029 -10663 -10558 -10034 -10510 -10689
Russia MICEX -20378 -20674 -20666 -20568 -20663 -20459
Russia RTSI -18485 -18701 -18470 -17163 -18354 -18903

Saudi Arabia TASI -11066 -11566 -11566 -11340 -11560 -11444
South Africa JSE -20655 -21114 -21108 -21071 -21113 -20735

Taiwan TWII -11253 -11726 -11725 -11439 -11725 -11534
Thailand SET -16654 -16798 -16699 -16166 -16646 -16849

Turkey BIST 100 -22658 -23364 -23308 -22412 -23260 -23226
Un Arab Em DFM -8429 -8566 -8546 -8525 -8544 -8439
Un Arab Em Abu Dhabi -10807 -10942 -10859 -10508 -10818 -10981

Argentina MERVAL -13771 -14643 -14687 -14294 -14699 -14351
Bahrain All Share -7893 -8252 -8203 -7807 -8181 -8248

Bulgaria SOFIX -16965 -17448 -17196 -15533 -17089 -17631
Croatia CROBEX -17988 -18907 -18705 -16960 -9725 -19020
Cyprus CYMAIN -10694 -11902 -11805 -10784 32467 -11764
Estonia OMXT -14823 -15048 -14940 -14576 -14885 -15142

Kazakhstan KASE Index -13804 -14148 -14092 -14088 -14094 -13883
Kuwait Kuwait 15 -7999 -8086 -8076 -8019 -8068 -8069
Latvia OMXR -11649 -12807 -12747 -11994 -12707 -12759

Lithuania OMXV 300166 -15645 -14734 -13952 -14366 -15673
Mauritius SEMDEX -10378 -10824 -10836 -10437 -10278 -10794

Morocco MASI -15528 -15848 -15682 -14207 -8954 -15911
Namibia NSX Overall -17920 -19671 -19821 -19579 -19411 -19142

Oman MSM 30 -8863 -9051 -9073 -9191 -9088 -8944
Pakistan KSE 100 -14235 -14645 -14577 -13668 -14532 -14607
Romania BET 10 -23930 -24666 -24396 -22217 -24261 -24789

Serbia BELEX -11450 -11655 -11543 -11085 -11497 -11707
Sri Lanka CSE All-Share -15044 -15275 -15235 -14852 -15120 -15183

Tunesia Tunindex -11820 -11915 -11821 -11809 -11527 -11775
Venezuela IBC -4637 -5109 -5140 -4610 11619 -5026

Vietnam HNX 30 -10862 -10949 -10857 -10770 17068 -10828
Zambia All Share 20514 -1041 -955 -725 -920 -1006

Table 4.17: BIC for hourly log-returns using the downward convoluted fitted distribu-
tion for daily log-returns.

131



4 What is the best Lévy model for stock indices? A comparative study with a view
to time consistency

-0.005 0.000 0.005

-0.004

-0.002

0.000

0.002

0.004

0.006

Normal

(a)
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004

-0.004

-0.002

0.000

0.002

0.004

0.006

Student

(b)
-0.003 -0.002 -0.001 0.000 0.001 0.002 0.003

-0.004

-0.002

0.000

0.002

0.004

0.006

NIG

(c)

-0.0005 0.0000 0.0005 0.0010

-0.004

-0.002

0.000

0.002

0.004

0.006

Variance gamma

(d)
0.000 0.005 0.010

-0.004

-0.002

0.000

0.002

0.004

0.006

Meixner

(e)
-0.004 -0.002 0.000 0.002 0.004

-0.004

-0.002

0.000

0.002

0.004

0.006

Stable

(f)

Figure 4.9: QQ-plots of empirical quantiles for hourly DAX returns versus downward
convoluted model distribution fitted to daily returns.

models have comparable numbers of best fits. Comparing, for instance, the upward
convolution ADs (Table 4.19) with the daily ML fit ADs (Table 4.12) we see that, with
some exceptions, the former are not vastly higher than the latter. For example, for
the Japanese Topix the direct daily fit has an AD of 0.231 and the upward convolution
one of 0.297. This often implies an appropriate fit.

Figure 4.10 shows QQ-plots for the DAX example, comparing the upwardly
convoluted distribution with the empirical distribution of daily returns. At first sight
none of the distributions seems to be a good fit. Again, this is also due to the low
sample size of daily returns in one year. It is useful to compare this figure with Figure
4.7, the direct fit to daily returns. This reveals that the Student t fit is more or less
appropriate. The AD distance also favors the Student model.
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4.5 Time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 0.0471 0.0510 0.0466 0.0524 0.0442 0.0382
Australia All Ordinaries 0.0498 0.0524 0.0477 0.0657 0.0456 0.0387

Austria ATX 0.0450 0.0592 0.0520 0.0548 0.0509 0.0468
Belgium BEL 20 0.0579 0.0515 0.0455 0.0451 0.0464 0.0507
Canada TSX 60 0.0586 0.0548 0.0618 0.0540 0.0621 0.0842
Canada TSX Composite 0.0501 0.0408 0.0458 0.0428 0.0467 0.0751

EuroStoxx EuroStoxx 50 0.0716 0.0441 0.0528 0.0529 0.0545 0.0471
Finland OMXH25 0.0394 0.0468 0.0384 0.0424 0.0357 0.0305

France CAC 40 0.0828 0.0509 0.0596 0.0610 0.0612 0.0612
Germany DAX 0.1111 0.0752 0.0872 0.0860 0.0898 0.0756

Hong Kong Hang Seng 0.0415 0.0537 0.0510 0.0600 0.0498 0.0654
Ireland ISEQ Overall 0.0338 0.0437 0.0426 0.0422 0.0416 0.0562

Israel TA 35 0.0665 0.0648 0.0468 0.0434 0.0484 0.0691
Italy FTSE MIB 0.0840 0.0590 0.0681 0.0694 0.0694 0.0637

Japan Topix 0.0875 0.0462 0.0294 0.0540 0.0315 0.0466
Luxembourg LuxX Index 0.0796 0.0542 0.0497 0.0495 0.0491 0.0935
Netherlands AEX 0.0576 0.0365 0.0382 0.0378 0.0398 0.0514

New Zealand NZX 50 Index 0.0667 0.0428 0.0570 0.0609 0.0558 0.0481
Norway OBX Index 0.0529 0.0665 0.0671 0.0708 0.0655 0.0583

Portugal PSI 20 0.0609 0.0518 0.0412 0.0386 0.0426 0.0485
Singapore STI Index 0.0441 0.0547 0.0538 0.0538 0.0528 0.0512

South Korea KOSPI 0.0629 0.0349 0.0423 0.0433 0.0441 0.0487
Spain IBEX 35 0.0802 0.0715 0.0664 0.0661 0.0673 0.0572

Sweden OMXS30 0.0403 0.0437 0.0424 0.0427 0.0424 0.0428
Switzerland SMI 0.0575 0.0445 0.0415 0.0413 0.0431 0.0491

UK FTSE 100 0.0755 0.0553 0.0576 0.0570 0.0593 0.0669
USA DowJones 30 0.0743 0.0746 0.0519 0.0541 0.0508 0.0920
USA S&P 500 0.1008 0.0832 0.0832 0.0852 0.0834 0.0983
USA Nasdaq 0.0903 0.0712 0.0617 0.0722 0.0636 0.0753

Brazil Bovespa 0.0886 0.0543 0.0602 0.0604 0.0618 0.0678
Chile IPSA 0.1102 0.0388 0.0334 0.0320 0.0347 0.0366

China CSI 300 0.0638 0.0641 0.0386 0.0904 0.0325 0.1253
China SSE 0.0690 0.0634 0.0716 0.0765 0.0714 0.1282

Colombia IGBC 0.0573 0.0525 0.0476 0.0461 0.0481 0.0514
Czech Republic PX 0.0698 0.0863 0.0618 0.0606 0.0623 0.0539

Egypt EGX 30 0.0541 0.1600 0.0911 0.1079 0.0813 0.1004
Greece Athex 0.0796 0.0720 0.0726 0.0727 0.0733 0.0701

Hungary Budapest SE 0.0555 0.0473 0.0439 0.0441 0.0445 0.0601
India Nifty 50 0.0598 0.0456 0.0455 0.0471 0.0466 0.0447
India BSE Sensex 0.0534 0.0546 0.0417 0.0427 0.0405 0.0425

Indonesia IDX Composite 0.0725 0.0724 0.0351 0.0269 0.0321 0.0430
Malaysia KLCI 0.0581 0.0338 0.0416 0.0432 0.0404 0.0522

Mexico IPC 0.0779 0.0502 0.0579 0.0580 0.0592 0.0674
Peru Lima General 0.0581 0.0739 0.0682 0.0650 0.0692 0.0471

Philippines PSEi 0.0566 0.0936 0.0658 0.0797 0.0632 0.0714
Poland WIG 0.0468 0.0415 0.0394 0.0420 0.0387 0.0287

Qatar QE 20 Index 0.1078 0.0450 0.0567 0.0603 0.0600 0.0420
Russia MICEX 0.0414 0.0408 0.0313 0.0311 0.0318 0.0396
Russia RTSI 0.0817 0.0752 0.0649 0.0647 0.0659 0.0715

Saudi Arabia TASI 0.0571 0.0558 0.0430 0.0430 0.0425 0.0433
South Africa JSE 0.0347 0.0405 0.0304 0.0302 0.0290 0.0403

Taiwan TWII 0.0485 0.0562 0.0469 0.0490 0.0441 0.0435
Thailand SET 0.0781 0.0638 0.0647 0.0650 0.0656 0.0710

Turkey BIST 100 0.0259 0.0406 0.0356 0.0344 0.0351 0.0526
Un Arab Em DFM 0.0573 0.0277 0.0373 0.0377 0.0384 0.0402
Un Arab Em Abu Dhabi 0.0705 0.0554 0.0537 0.0547 0.0546 0.0552

Argentina MERVAL 0.0389 0.0624 0.0515 0.0563 0.0488 0.0386
Bahrain All Share 0.1430 0.0747 0.0908 0.0992 0.0939 0.0829

Bulgaria SOFIX 0.1061 0.0901 0.0803 0.0841 0.0827 0.0751
Croatia CROBEX 0.1137 0.0608 0.0698 0.0721 0.0739 0.0597
Cyprus CYMAIN 0.1613 0.1512 0.1449 0.1485 0.1442 0.1717
Estonia OMXT 0.1217 0.1195 0.1090 0.1092 0.1093 0.1095

Kazakhstan KASE Index 0.0742 0.1002 0.0709 0.0677 0.0700 0.0763
Kuwait Kuwait 15 0.0737 0.0577 0.0525 0.0562 0.0533 0.0550
Latvia OMXR 0.1759 0.0936 0.0996 0.1137 0.1043 0.0974

Lithuania OMXV 0.4288 0.1178 0.2176 0.2356 0.2262 0.1112
Mauritius SEMDEX 0.0788 0.0588 0.0401 0.0429 0.5012 0.0523

Morocco MASI 0.1201 0.0860 0.0903 0.0956 0.0920 0.0914
Namibia NSX Overall 0.0967 0.0587 0.0529 0.0766 0.0499 0.1429

Oman MSM 30 0.0465 0.0582 0.0673 0.0711 0.0471 0.0591
Pakistan KSE 100 0.0610 0.0418 0.0429 0.0456 0.0438 0.0470
Romania BET 10 0.0650 0.0490 0.0469 0.0488 0.0464 0.0538

Serbia BELEX 0.1548 0.1537 0.1464 0.1439 0.1536 0.1433
Sri Lanka CSE All-Share 0.0817 0.0784 0.0887 0.0897 0.0887 0.0839

Tunesia Tunindex 0.0924 0.0798 0.0841 0.0869 0.0848 0.0860
Venezuela IBC 0.2114 0.1510 0.0897 0.1595 0.1056 0.1342

Vietnam HNX 30 0.0797 0.0821 0.0734 0.0736 0.0737 0.0768
Zambia All Share 0.3741 0.3451 0.3529 0.4811 0.3544 0.3409

Table 4.18: AD distance between the empirical distribution for daily log-returns and
the upward convoluted fitted distribution for hourly log-returns.
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Country Index N St NIG VΓ Meix Stable

Australia ASX 200 0.570 0.661 0.575 0.705 0.496 0.796
Australia All Ordinaries 0.565 0.714 0.617 1.320 0.528 0.748

Austria ATX 0.455 0.838 0.676 0.787 0.641 0.827
Belgium BEL 20 1.435 0.619 0.510 0.487 0.566 1.059
Canada TSX 60 1.798 1.436 1.186 0.902 1.099 4.008
Canada TSX Composite 1.189 0.749 0.707 0.603 0.661 3.301

EuroStoxx EuroStoxx 50 2.011 0.765 0.865 0.777 0.943 1.818
Finland OMXH25 0.322 0.533 0.366 0.661 0.314 0.551

France CAC 40 3.227 1.241 1.310 1.177 1.433 2.335
Germany DAX 4.167 2.097 2.387 2.436 2.549 3.001

Hong Kong Hang Seng 0.560 0.672 0.459 1.018 0.448 1.682
Ireland ISEQ Overall 0.449 0.447 0.704 0.919 0.663 0.550

Israel TA 35 1.404 0.923 0.510 0.611 0.573 1.448
Italy FTSE MIB 1.686 0.863 0.871 0.989 0.930 1.573

Japan Topix 3.593 0.846 0.297 1.169 0.324 1.411
Luxembourg LuxX Index 1.953 1.114 0.805 0.648 0.708 5.034
Netherlands AEX 1.737 0.540 0.619 0.467 0.685 1.720

New Zealand NZX 50 Index 1.678 1.004 1.161 1.677 1.135 0.581
Norway OBX Index 0.805 1.671 1.596 1.952 1.477 1.278

Portugal PSI 20 1.401 1.007 0.683 0.716 0.713 0.922
Singapore STI Index 0.378 0.681 0.566 0.754 0.496 1.074

South Korea KOSPI 1.593 0.333 0.355 0.680 0.400 0.817
Spain IBEX 35 2.272 1.638 1.040 1.027 1.096 1.182

Sweden OMXS30 0.457 0.440 0.341 0.375 0.324 0.820
Switzerland SMI 1.100 0.468 0.530 0.692 0.569 0.733

UK FTSE 100 2.251 0.999 1.121 1.021 1.207 2.155
USA DowJones 30 2.592 1.685 0.778 1.147 0.792 3.380
USA S&P 500 3.481 2.053 1.771 1.978 1.762 4.222
USA Nasdaq 3.524 1.151 1.325 1.948 1.438 2.661

Brazil Bovespa 2.829 0.687 0.855 0.902 0.924 1.571
Chile IPSA 6.950 0.366 0.318 0.296 0.382 0.482

China CSI 300 1.692 2.304 1.019 2.855 0.660 9.969
China SSE 2.289 2.112 1.280 1.514 0.997 9.001

Colombia IGBC 1.325 0.919 0.746 0.745 0.777 1.615
Czech Republic PX 1.362 1.904 0.846 0.787 0.867 1.133

Egypt EGX 30 1.241 10.228 2.521 4.926 2.084 2.731
Greece Athex 1.486 0.844 0.955 1.095 1.003 0.810

Hungary Budapest SE 0.954 0.632 0.790 0.966 0.808 1.099
India Nifty 50 0.874 0.733 0.608 0.889 0.607 0.522
India BSE Sensex 0.909 0.951 0.589 0.826 0.591 0.724

Indonesia IDX Composite 1.892 1.865 0.335 0.599 0.364 0.620
Malaysia KLCI 1.068 0.491 0.551 0.878 0.565 0.997

Mexico IPC 2.370 1.131 1.131 1.093 1.190 2.236
Peru Lima General 2.311 1.925 2.243 2.215 2.500 0.736

Philippines PSEi 1.018 2.244 0.698 1.208 0.630 3.198
Poland WIG 0.819 0.689 0.738 1.035 0.759 0.433

Qatar QE 20 Index 3.657 0.500 0.532 0.680 0.602 0.391
Russia MICEX 0.367 0.666 0.264 0.286 0.269 0.625
Russia RTSI 2.972 2.287 1.698 1.679 1.765 2.367

Saudi Arabia TASI 0.992 0.684 0.497 0.617 0.485 0.541
South Africa JSE 0.197 0.387 0.207 0.279 0.192 0.790

Taiwan TWII 0.748 0.878 0.595 0.809 0.524 0.678
Thailand SET 2.640 1.842 1.675 1.669 1.728 2.511

Turkey BIST 100 0.565 0.397 0.552 0.806 0.622 1.043
Un Arab Em DFM 1.039 0.465 0.500 0.585 0.523 0.500
Un Arab Em Abu Dhabi 2.133 1.013 1.004 1.063 1.054 0.957

Argentina MERVAL 0.645 1.520 1.100 1.889 1.014 0.729
Bahrain All Share 8.034 2.416 2.725 3.299 2.948 2.698

Bulgaria SOFIX 7.162 4.055 3.679 3.566 3.892 4.301
Croatia CROBEX 5.966 1.692 1.907 2.235 2.189 1.906
Cyprus CYMAIN 14.626 12.544 12.029 12.146 11.889 16.539
Estonia OMXT 6.384 5.361 4.555 4.618 4.610 4.634

Kazakhstan KASE Index 2.777 3.624 2.108 1.986 2.067 3.547
Kuwait Kuwait 15 2.162 1.241 1.076 1.174 1.084 1.352
Latvia OMXR 13.809 3.986 3.743 4.364 4.054 5.638

Lithuania OMXV 81.970 4.930 23.646 26.310 25.707 4.452
Mauritius SEMDEX 3.730 1.188 0.410 0.846 96.189 1.278

Morocco MASI 6.153 3.191 3.237 3.560 3.357 4.441
Namibia NSX Overall 5.235 2.327 1.822 2.491 1.334 13.580

Oman MSM 30 1.155 1.013 1.891 1.481 1.094 1.046
Pakistan KSE 100 1.458 0.497 0.616 0.812 0.675 0.861
Romania BET 10 1.930 0.629 0.676 0.687 0.769 1.123

Serbia BELEX 13.341 11.556 11.340 11.437 13.727 13.025
Sri Lanka CSE All-Share 4.159 2.610 3.963 4.324 4.038 2.633

Tunesia Tunindex 3.744 3.683 3.085 3.240 3.110 3.646
Venezuela IBC 16.122 6.252 4.210 9.704 5.025 9.791

Vietnam HNX 30 2.636 3.275 2.245 2.244 2.257 2.738
Zambia All Share 46.539 40.667 41.779 53.236 41.952 40.005

Table 4.19: AD distance between the empirical distribution for daily log-returns and
the upward convoluted fitted distribution for hourly log-returns.
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4.5 Time consistency

Country Index N St NIG VΓ Meix Stable

Australia ASX 200 -1811 -1811 -1808 -1806 -1808 -1788
Australia All Ordinaries -1835 -1837 -1833 -1828 -1834 -1814

Austria ATX -1695 -1689 -1684 -1683 -1684 -1669
Belgium BEL 20 -1862 -1867 -1861 -1859 -1860 -1850
Canada TSX 60 -1923 -1915 -1915 -1917 -1916 -1875
Canada TSX Composite -1940 -1936 -1934 -1936 -1935 -1895

EuroStoxx EuroStoxx 50 -1928 -1929 -1924 -1925 -1924 -1907
Finland OMXH25 -1812 -1806 -1802 -1799 -1802 -1785

France CAC 40 -1823 -1841 -1833 -1830 -1832 -1822
Germany DAX -1807 -1823 -1816 -1810 -1814 -1805

Hong Kong Hang Seng -1728 -1717 -1718 -1719 -1720 -1686
Ireland ISEQ Overall -1749 -1749 -1741 -1738 -1741 -1734

Israel TA 35 -1857 -1856 -1853 -1851 -1853 -1836
Italy FTSE MIB -1635 -1648 -1640 -1634 -1639 -1633

Japan Topix -1659 -1720 -1719 -1692 -1717 -1699
Luxembourg LuxX Index -1589 -1583 -1583 -1587 -1586 -1534
Netherlands AEX -1896 -1897 -1892 -1894 -1892 -1872

New Zealand NZX 50 Index -1911 -1952 -1938 -1917 -1934 -1955
Norway OBX Index -1741 -1730 -1726 -1725 -1727 -1710

Portugal PSI 20 -1781 -1789 -1781 -1777 -1780 -1777
Singapore STI Index -1903 -1893 -1890 -1890 -1891 -1866

South Korea KOSPI -1801 -1821 -1815 -1803 -1814 -1803
Spain IBEX 35 -1712 -1715 -1711 -1709 -1710 -1708

Sweden OMXS30 -1825 -1819 -1815 -1815 -1815 -1797
Switzerland SMI -1850 -1851 -1845 -1842 -1845 -1836

UK FTSE 100 -1884 -1894 -1887 -1884 -1886 -1876
USA DowJones 30 -2001 -2028 -2024 -2013 -2022 -1999
USA S&P 500 -1976 -2004 -1999 -1990 -1997 -1977
USA Nasdaq -1777 -1814 -1807 -1791 -1804 -1792

Brazil Bovespa -1439 -1477 -1465 -1454 -1462 -1467
Chile IPSA -1769 -1809 -1803 -1802 -1802 -1797

China CSI 300 -1797 -1785 -1789 -1785 -1794 -1697
China SSE -1832 -1825 -1829 -1829 -1832 -1750

Colombia IGBC -1767 -1776 -1769 -1765 -1767 -1761
Czech Republic PX -1919 -1918 -1913 -1912 -1913 -1905

Egypt EGX 30 -1441 -1439 -1449 -1437 -1451 -1431
Greece Athex -1526 -1538 -1528 -1523 -1527 -1529

Hungary Budapest SE -1721 -1738 -1727 -1720 -1725 -1728
India Nifty 50 -1775 -1782 -1776 -1769 -1776 -1769
India BSE Sensex -1804 -1807 -1801 -1796 -1801 -1790

Indonesia IDX Composite -1706 -1745 -1734 -1714 -1730 -1739
Malaysia KLCI -2038 -2041 -2036 -2031 -2036 -2023

Mexico IPC -1746 -1775 -1765 -1758 -1763 -1761
Peru Lima General -1762 -1772 -1764 -1761 -1761 -1756

Philippines PSEi -1615 -1613 -1614 -1614 -1615 -1579
Poland WIG -1725 -1723 -1718 -1715 -1718 -1708

Qatar QE 20 Index -1602 -1658 -1647 -1633 -1643 -1656
Russia MICEX -1698 -1691 -1689 -1688 -1689 -1678
Russia RTSI -1562 -1575 -1569 -1566 -1568 -1568

Saudi Arabia TASI -1658 -1694 -1688 -1679 -1686 -1680
South Africa JSE -1746 -1740 -1736 -1735 -1736 -1721

Taiwan TWII -1820 -1834 -1829 -1821 -1829 -1817
Thailand SET -1949 -1956 -1950 -1948 -1949 -1943

Turkey BIST 100 -1621 -1636 -1626 -1618 -1623 -1623
Un Arab Em DFM -1748 -1750 -1747 -1745 -1746 -1741
Un Arab Em Abu Dhabi -1769 -1780 -1772 -1769 -1771 -1773

Argentina MERVAL -1405 -1414 -1411 -1397 -1411 -1397
Bahrain All Share -1903 -1954 -1947 -1937 -1945 -1946

Bulgaria SOFIX -1740 -1784 -1773 -1765 -1769 -1777
Croatia CROBEX -1748 -1795 -1783 -1764 -1779 -1790
Cyprus CYMAIN -1390 -1398 -1397 -1398 -1399 -1355
Estonia OMXT -1988 -1990 -1990 -1989 -1989 -1987

Kazakhstan KASE Index -1640 -1632 -1630 -1632 -1631 -1611
Kuwait Kuwait 15 -1697 -1701 -1697 -1696 -1697 -1692
Latvia OMXR -1677 -1795 -1789 -1769 -1784 -1772

Lithuania OMXV -996 -2047 -1879 -1878 -1859 -2042
Mauritius SEMDEX -2230 -2263 -2264 -2255 5488 -2249

Morocco MASI -1729 -1761 -1754 -1744 -1752 -1747
Namibia NSX Overall -1570 -1571 -1573 -1580 -1580 -1465

Oman MSM 30 -1956 -1963 -1958 -1959 -1948 -1942
Pakistan KSE 100 -1533 -1556 -1547 -1539 -1544 -1544
Romania BET 10 -1797 -1831 -1818 -1806 -1814 -1826

Serbia BELEX -1829 -1840 -1835 -1834 -1816 -1820
Sri Lanka CSE All-Share -1955 -1979 -1963 -1957 -1961 -1972

Tunesia Tunindex -2179 -2169 -2171 -2170 -2171 -2163
Venezuela IBC -892 -948 -968 -941 -970 -927

Vietnam HNX 30 -1780 -1765 -1770 -1771 -1770 -1762
Zambia All Share -651 -762 -737 -694 -734 -768

Table 4.20: BIC for daily log-returns using the upward convoluted fitted distribution
for hourly log-returns.
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Figure 4.10: QQ-plots of empirical quantiles for daily DAX returns versus upward
convoluted model distribution fitted to hourly returns.

Table 4.10 reports the number of minimal KS, AD and BIC statistics among the
models considered for the downward and upward convolutions. The Student-Lévy
process and the stable process are ranked first and second in terms of downward time
consistency. The Student-Lévy upward convolution is most often well suited to the
daily data.

4.6 Conclusion

This chapter provides a comprehensive comparison of Lévy models for equity index
returns, including both traditional and exotic markets. We analyze three samples,
namely daily returns over an almost twenty-year horizon, daily returns for the final
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4.6 Conclusion

N St NIG VΓ Meix Stable
KS – downward 7 32 8 4 5 22
AD – downward 5 29 9 4 7 24
BIC – downward 0 43 9 4 5 17

KS – upward 10 22 9 11 9 17
AD – upward 5 20 14 16 14 9
BIC – upward 22 49 1 1 3 2

Table 4.21: Number of lowest statistics for downward and upward time consistency
per model.

year, and hourly returns for this same last year. We find that the GH distribution
yields a very good and flexible fit for the long period. However, it may lead to
overfitting. Another drawback is that the GH distribution is not closed under
convolution, making it hardly accessible for hourly data. Other models, such as the
NIG and the variance gamma models, which also fit very well, overcome this issue.
For the last year, there is no unique most appropriate model anymore. This is also
due to the small sample size. However, in a long sample period the parameters may
change over time. This could be modeled using stochastic volatility approaches (in
fact, all parameters could be modeled stochastically). We here restrict ourselves to
the basic Lévy models. More involved models may fit better to empirical data but
are less useful for the purposes of comparison.

We investigate hourly intraday returns for the assets. We find that the Student
and the stable models often fit these well because of their heavy tails. As a second
contribution we also analyze whether daily and intraday returns fit to the same
underlying Lévy model. We here distinguish between downward and upward time
consistency. Downward consistency is more difficult to identify as hourly data has to
fit to the downwardly convoluted model when fitted to daily data. The Student-Lévy
process most frequently has the lowest downward time consistency distances. On the
other hand, the variance gamma and the NIG processes are less useful in this regard.
Moreover, in contrast to the best fit for daily returns (Section 4.4), where the second
best choice is little worse, some models, e.g., the variance gamma model for the DAX,
fail to provide any time consistent fit. This makes clear that a well-fitting model for
daily data may be a very poor fit for hourly data. Upward time consistency is less
problematic. Models for hourly data may be carried over to daily data.

We use three different criteria. The KS distance and the AD distance often prefer
the same model. The BIC tends to favor the Student model with its three parameters.
Unfortunately, we could not identify a pattern as to which model is the most useful
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for a given index. Developed, emerging and frontier markets can all be modeled well
by the same class of distributions.

Future research may study models not closed under convolution for hourly data,
as soon as ML estimation becomes feasible. Additionally, a higher frequency may be
considered provided data is available. Further extensions of models could include,
e.g., tempered versions (Rachev et al. 2011).

4.A Additional return fits

We perform some additional comparisons as to which model in Chapter 4 fits best to
daily log-returns. Like Corlu et al. (2016), we split the whole sampling period into
several subperiods to decide which model yields the best fit in each subperiod. Table
4.22 reports the number of minimal KS, AD and BIC for each model. Note that for
the early periods some indices were not available on Thomson Reuters Eikon and
have to be excluded. At the macroscopic level we do not see tremendous differences
for different periods. The temporal position apparently is not as important as the
length of the period. If we compare Table 4.22 with Table 4.7 on page 121, we see,
e.g., that the GH model is favored more often for the full sampling period while less
often for the one year sample.
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4.A Additional return fits

Subperiod Criterion N St SSt NIG VΓ Hyp GH Meix Stable
1997-2001 KS 0 7 5 12 10 10 9 3 7

AD 0 6 10 2 8 3 25 3 6
BIC 0 46 1 5 5 1 0 3 2

2002-2005 KS 0 4 8 9 10 5 19 11 7
AD 0 3 5 10 8 6 28 6 7
BIC 0 34 3 9 9 3 2 10 3

2006-2009 KS 0 4 7 16 4 6 22 14 4
AD 0 1 5 11 2 3 39 10 6
BIC 0 31 0 19 6 4 1 15 0

2010-2013 KS 0 7 6 18 7 10 18 9 3
AD 0 1 4 14 11 9 25 9 5
BIC 0 41 3 2 13 3 0 14 2

2014-2017 KS 0 3 5 12 7 12 17 14 8
AD 0 7 8 13 9 6 26 5 4
BIC 0 47 2 9 7 6 1 6 0

Table 4.22: Number of lowest statistics for each subperiod per model.
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5 Conclusion

In this thesis we developed simulation and estimation techniques for the Student-Lévy
process, both of which are more theoretical and largely of computational interest.
Chapter 4, on the other hand, discusses an application and provides evidence that
the Student-Lévy process can be a useful tool in finance.

In future, we will continue to investigate in both the theoretical and empirical
directions. Since the Student-Lévy process is part of the generalized hyperbolic Lévy
process family, the next step will be to further examine local asymptotic normality in
this class of Lévy processes. First of all, a full parameter LAN theorem, including the
parameter ν for the Student-Lévy process, is of interest. This may, as pointed out in
Chapter 3, not be easy to achieve as the likelihood function of the inverse gamma
subordinator has no closed form. However, the methods of the proofs in Chapter 3
should prove useful for, for example, the hyperbolic Lévy process.

From the empirical point of view, it is interesting to investigate which Lévy
model is most useful (and in which cases) for option pricing and the impact of the
availability of high-frequency data. This is of particular interest for path-dependent
options. Note that the moment-generating function of the Student-Lévy process is
infinite, which makes a direct option price formula unavailable. Truncation, capping
or tempering, as in Cassidy et al. (2010), may be used to derive an option price
formula for a modified Student-Lévy process. Monte Carlo option pricing (Hilber
et al. 2009) is an alternative.

This thesis was based on Monte Carlo methods. Of course there have been
rapid and wide-reaching developments in this field, which may help to improve the
approaches used in this thesis. (Randomized) Quasi-Monte Carlo methods are the
next step.
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