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“The universe is big. It’s vast and complicated and ridiculous. 

And sometimes, very rarely, impossible things just happen 

and we call them miracles” 

Dr. Who 
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1 Introduction 

1.1 Hepatitis C virus (HCV) infection 

Initially, Hepatitis C was described as a transfusion-associated hepatitis which was 

neither hepatitis A nor hepatitis B, thus was termed non-A non-B hepatitis (NANBH) 

(Feinstone et al. 1975). Almost 15 years later in 1989 the pathogen causing NANBH 

was isolated by Choo et al. (1989) and the identified positive stranded ribonucleic 

acid (RNA) virus was named hepatitis C virus (HCV). HCV can cause acute as well 

as chronic infection. After an incubation period of two weeks up to six months only 

approximately 20% of infected individuals exhibit usually mild symptoms like fever 

and nausea, while the vast majority of acute HCV infections remains asymptomatic. 

Chronic disease can cause severe liver disease including liver fibrosis, cirrhosis and 

hepatocellular carcinoma (HCC). Therefore, HCV is the major reason for liver 

transplantation in developed countries. To date, approximately 71 million people 

worldwide are chronically infected with HCV accounting for 1% of the population and 

the World Health Organization (WHO) estimates 1.75 million new HCV infections per 

year. HCV is still a major public health burden and each year approximately 400 000 

people die from liver cirrhosis and HCC caused by HCV infection. The worldwide 

distribution of HCV is uneven with the highest prevalence of 2.3% in the Eastern 

Mediterranean Region and the European Region (1.5%) while the lowest prevalence 

can be observed in the South-East Asian Region with 0.5% (WHO 2017).  

1.1.1 HCV structure 

HCV is a positive stranded enveloped RNA virus of the Flaviviridae family, which also 

comprises dengue, yellow fever and west Nile virus. Besides HCV only the 

GB-virus B (Adams et al. 2017), the nonprimate (NPHV) (Kapoor et al. 2011), rodent 

(RHV) (Kapoor et al. 2013) bat (Quan et al. 2013) and the bovine hepacivirus 

(Baechlein et al. 2015) are grouped into the Hepacivirus genus. HCV has a length of 

approximately 9.6 kilo bases (kb) and the genome is encoding for a single long open 

reading frame. The encoded polyprotein is proteolytically cleaved into three structural 

(core, E1, E2) and seven non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A 

and NS5B). Short untranslated regions (5´-UTR and 3´-UTR) which contain 

secondary RNA structures, needed for translation and replication of the genome, are 

flanking the approximately 3 000 amino acid long open reading frame. The 5´-UTR 
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contains an internal ribosome entry site responsible for the initiation of protein 

translation. Two functional modules are encoded by the HCV genome. While the 

assembly module comprises the two envelope proteins E1 and E2, the core protein, 

p7 as well as NS2, the other non-structural proteins are required for RNA replication 

and form the replication module (reviewed in Penin et al. 2004, and Bartenschlager 

et al. 2013) 

1.1.2 HCV genotypes 

HCV shows substantial genetic variability due to its high replication rate paired with a 

high error rate of the RNA-dependent RNA polymerase. The high error rate caused 

by the lack of proof reading function of the HCV RNA polymerase results in 10-3 base 

substitutions per site per year (Major et al. 1999). Together with the high turnover 

rate of approximately 1012 virions per day this leads to the generation of a highly 

heterogenous pool of viruses within an infected individual (Neumann et al. 1998). 

The HCV quasispecies represents the entirety of all viral variants in a single 

individual and the viral variants are phylogenetically closely related but show a 

sequence variability (Martell et al. 1992). Moreover, based on the genetic distances 

in phylogenetic trees HCV can be classified into different genotypes. Until now seven 

major HCV genotypes numbered from one to seven have been reported and multiple 

subtypes named alphabetically have been identified. HCV strains between genotypes 

differ at 30-35% (Okamoto et al. 1992, Simmonds et al. 2005) whereas subtypes vary 

at ˂15% of nucleotide sites (Smith et al. 2014). Worldwide genotypes 1 and 3 are the 

most common ones and calculations estimated that they account for respectively 

46% and 30% of HCV cases (Messina et al. 2015). The seven described genotypes 

show distinct geographical distribution with genotype 1 having the highest prevalence 

worldwide and being the most common genotype in Europe (50-70%) and North and 

South America (70%). Genotype 2 is the most common genotype in West Africa 

while genotype 4 is most prominent in Central and North Africa. In South and 

Southeast Asia genotype 3 and 6 are predominant. Accounting for less than 1% of 

the HCV cases genotype 5 mostly described in Southern and Eastern Sub-Saharan 

Africa, is responsible for the fewest infections besides genotype 7, which until now 

has only been reported in a few patients originating from the Democratic Republic of 

Congo (reviewed in Scheel et al. 2013, Messina et al. 2015, Murphy et al. 2015). 

These genotypes are not only associated with distinct geographical distribution but 
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also with different sensitivity to treatment, for instance, to interferon alpha (IFNα) 

therapy which was standard of care for a long time.  

1.1.3 HCV therapy 

Since some people are able to clear HCV spontaneously, HCV therapy is not always 

required during acute infection. In chronically HCV infected patients, the main goal of 

therapy is to cure the infection and therefore prevent HCV-related causes like HCC 

and liver cirrhosis. Successful treatment results in a sustained virological response 

(SVR) characterised by the absence of detectable HCV RNA after a defined period of 

time. The rate of SVR is strongly dependent on the treatment regimen and duration, 

the viral genotype and the stage of liver fibrosis. During the last few years, the launch 

of direct-acting antivirals (DAAs) changed HCV therapy dramatically. Before that, 

recombinant IFNα was the main component in HCV therapy regimens. Since then, 

therapy was stepwise improved by the combination of IFNα with ribavirin, the 

modification of INFα or the combination with protease inhibitors (reviewed in 

Pawlotsky et al. 2015). IFNα was administered as a HCV therapy for the first time in 

1986, when HCV was still known as NANBH (Hoofnagle et al. 1986). In addition to 

the severe side effects of IFNα therapy, SVR rates were extremely low 

(approximately 10%). However, combination treatment of IFNα with the nucleoside 

analogue ribavirin could increase overall SVR rates up to approximately 30%. 

Furthermore, modification of IFNα by the addition of polyethylene glycol (PEG) 

significantly increased the elimination half-life of IFNα and when administered in 

combination with ribavirin SVR rates over 40% were observed. Almost 10 years after 

the launch of PEGylated IFNα, PEGylated IFNα and ribavirin were combined with the 

first generation of DAAs. Treatment with the first-wave of protease inhibitors blocking 

the viral replication by targeting the active site of the NS3/4A protease resulted in 

SVR in approximately 70% of infected individuals (reviewed in Pawlotsky et al. 2015). 

Between 2011 and 2015 various DAAs were licensed and administered in different 

HCV therapy regimens, further improving SVR rates. Sofosbuvir, a nucleotide 

analogue inhibiting the NS5B polymerase, was the first DAA reaching a SVR rate of 

over 90% (Lawitz et al. 2013). In addition, the first pan genotypic drug Epclusa, a 

combination of sofosbuvir and the NS5A inhibitor valpatasvir, was launched and 

approved for genotypes one to six in 2016. SVR rates over 95% were achieved, thus 

nearly all HCV infected individuals are curable (Feld et al. 2015). Even though 

pan-genotypic therapies are nowadays licensed, most treatment options are still 



Introduction 

 

 4

genotype-specific, therefore, HCV genotyping before treatment onset is required. 

Although a variety of DAAs is available, a few patients still do not achieve SVR which 

has been linked to the occurrence of resistance associated substitutions (RAS). RAS 

affect for instance the SVR rate to treatment with NS5A inhibitors especially in 

treatment experienced and cirrhotic patients (Zeuzem et al. 2017). Therefore, HCV 

resistance testing can support treatment decisions under certain conditions. 

Identification of resistance associated mutations at baseline results in the selection of 

presumably efficient therapy options (Kalaghatgi et al. 2016). 

1.1.4 HCV transmission 

HCV is a bloodborne virus and transmitted through infected blood or blood products. 

Before the late 1980s and therefore prior to the availability of serological and 

molecular tests for HCV, the main risk factor for acquiring HCV, was the transfusion 

of blood products. Since then, blood products are screened for HCV-RNA and HCV 

transmission through this route is therefore rarely reported. Nowadays, injection drug 

use is the most common cause of HCV transmission in western industrialised 

countries (reviewed in Alter 1997, WHO 2017).  

1.1.5 HCV infection in people who inject drugs 

Due to the common practice of people who inject drugs (PWID) to share needles or 

other injection materials the HCV transmission rate in this group of individuals is 

particularly high. Globally intravenous drug use is a major public health issue and 

reports estimate 15.9 million people worldwide being PWID (Mathers et al. 2008). 

Worldwide an estimate of 10 million PWID have detectable antibodies against HCV. 

Cumulatively, China, the USA and Russia account for 44% of HCV-RNA positive 

PWID worldwide. Especially in high income countries, the estimated frequency of 

HCV transmissions caused by intravenous drug use is tremendously high (80%) 

(Nelson et al. 2011). This is also evident in Germany, as the majority (76.2%) of all 

newly reported HCV infections by the Robert Koch-Institut (RKI) in 2016, where the 

transmission route was accounted for, were caused by intravenous drug use (figure 

1.1) (Robert Koch-Institut 2016).  
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Figure 1.1: HCV transmission routes in Germany 

In Germany 4887 initial HCV infections were diagnosed in 2015. In 76.1% of HCV cases the 
transmission route was unaccounted for, while in 23.9% the transmission route was reported. From 
the 1170 newly infected individuals 76.2% acquired HCV due to intravenous drug use. The second 
most frequent transmission route with 8.1% was men having sex with men (MSM). The remaining 
15.7% of newly diagnosed HCV infections were either transmitted during dialysis, heterosexually 
transmitted from a HCV infected partner, acquired by transfusion of blood products before routine 
HCV testing was implemented or transferred perinatal (Robert Koch-Institut 2016). 

Prevalence of HCV infection measured as antibody positivity among PWID in Europe 

ranges from 21% in Finland up to 90.5% in Estonia (Nelson et al. 2011). The recently 

reported prevalence rate of HCV infection among PWID in Germany is 63% including 

44% of the total PWID having detectable HCV RNA. Depending on the geographic 

location reported HCV infection rates in Germany vary from 37% to 73% 

(Robert Koch-Institut Berlin 2016).  

HCV is efficiently transmitted by intravenous drug use since the infection rate in 

PWID during the first two years after onset is approximately 29%. With increasing 

duration of intravenous drug use the prevalence of HCV positive individuals is 

steadily rising, reaching 72% after 10 years of drug abuse (Robert Koch-Institut 

Berlin 2016).  

Neither spontaneous resolution of HCV infection nor treatment induced clearance 

protects from HCV reinfection, thus HCV infection does not confer immunity to 

subsequent infections. HCV reinfections are reported especially in high-risk 

populations like PWID, HCV-Human immunodeficiency virus (HIV) coinfected 

individuals and MSM (Lambers et al. 2011, Islam et al. 2017). In PWID reinfection 
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rates are also dependent on several factors such as age, gender and injection 

behaviour, like frequency of injections, sharing of injection materials and 

simultaneous multidrug use as well as imprisonment, or social factors such as 

residential stability, employment and social support (Grebely et al. 2012, Marco et al. 

2013, Islam et al. 2017). A reduction of reinfection risk is seen in PWID engaging in 

opioid substitution therapy and mental health counselling (Islam et al. 2017). 

Although previous infections do not confer immunity to HCV infection, there are 

indications for a trend towards lower HCV reinfections in individuals who 

spontaneously cleared the infection in comparison to successfully treated individuals 

(Ingiliz et al. 2017). Furthermore, spontaneous resolution of the primary HCV 

infection leads to a partial protection as the duration and the maximum level of 

viremia are lower during a secondary HCV infection compared to the initial infection. 

The higher clearance rate of secondary infections is accompanied by an increased 

occurrence of cross-reactive neutralising antibodies against HCV and a broadened 

cellular T cell immune response (Osburn et al. 2010). The high-risk behaviour of 

PWID does not only lead to high reinfection rates but, due to the frequent exposure 

to HCV, mixed infections can occur where multiple viral strain are detectable at the 

same time in a single individual (Pham et al. 2010, Grebely et al. 2012). 

An epidemiological study on PWID in Essen reported 45.2% being chronically HCV 

infected determined by presence of detectable HCV-RNA, whereas 27.9% resolve 

the infection consistent with absence of HCV-RNA and detectable HCV antibodies. 

The remaining 26.9% are anti-HCV negative as well as HCV-RNA negative 

(Robert Koch-Institut 2012). The described high-risk behaviour in PWID suggests 

that the anti-HCV negative group has likely been exposed to HCV but is able to clear 

infection prior to seroconversion.  

1.1.6 Interferons and HCV infection 

As IFNα administration was efficient in treatment of NANBH, the importance of 

interferons (IFNs) in HCV infection has been reported even before the term HCV was 

introduced (Hoofnagle et al. 1986). Three major classes of IFNs are described at the 

moment: type I, type II and type III IFNs. Type I IFNs comprise IFNα, IFNβ, IFNκ, 

IFNε and IFNω while type III IFNs include IFNλ1 to IFNλ4. Both groups are essential 

for the innate immune response and signal through the JAK-STAT pathway which 

results in the induction of interferon-stimulated genes (ISGs). These ISGs have 

antiviral and immunomodulatory roles. In HCV infection, viral RNA is sensed either in 



Introduction 

 

 7

the cytosol by retinoic acid inducible gene I (RIG-I) or the melanoma 

differentiation-associated protein 5 (MDA-5) or in the endosome through the Toll-like 

receptor 3 (TLR3). RIG-I mediated sensing, for instance, depends on the binding to a 

poly-(U/UC) region found in HCV in the 3´UTR. RNA sensing results in downstream 

signalling and the induction of type I as well as type III IFNs (Saito et al. 2008, Wang 

et al. 2009, Cao et al. 2015). 

Treatment of hepatocytes with IFNα leads to an increase in ISG expression and an 

inhibition of HCV replication (Castet et al. 2002). This upregulation of ISGs is also 

induced by treatment with PEGylated IFNα in patients achieving SVR whereas 

non-responders already show high expression of ISGs at baseline. In 

non-responders additional administration of IFNα does not result in a further increase 

of ISG expression because the IFN signalling pathway shows a reduced 

responsiveness to IFNs (Sarasin-Filipowicz et al. 2008). Moreover, a single 

nucleotide polymorphism (SNP) (rs12979860) upstream of the IFNλ3 locus is a 

strong predictor of achieving SVR to IFNα treatment. Furthermore, the C/C genotype 

of this SNP is an independent predictor for spontaneous clearance of HCV infection 

(Thomas et al. 2009, Tillmann et al. 2010, Fitzmaurice et al. 2015). The 

proinflammatory and antiviral cytokine IFNλ3 is upregulated in HCV infected liver and 

an increase in endogenous production of IFNλ by HCV infected hepatocytes has 

been reported (Marukian et al. 2011, Park et al. 2012). IFNλ3 is able to inhibit HCV 

virus replication by phosphorylating STAT1 and STAT2 leading to the activation of 

further signalling in the JAK-STAT pathway and transcription of ISGs in a similar 

manner like IFNα (Zhang et al. 2011). Furthermore, rs12979860 upstream of the 

IFNλ3 locus is in a high linkage disequilibrium with a dinucleotide variant that is the 

basis for IFNλ4. This dinucleotide variant, first described in HCV patients, 

(ss469415590) is a strong genetic predictor for HCV clearance as well (Prokunina-

Olsson et al. 2013). While the CC variant of the IFNλ3 SNP is beneficial during acute 

HCV infection (Thomas et al. 2009), the SNP is associated with increased risk of liver 

fibrosis in chronic HCV infection (Eslam et al. 2015). Recently, it was identified that 

zinc inhibits the binding of IFNλ3 to IFNL receptor 1, providing evidence that zinc can 

mediate anti-inflammatory effects in HCV infection and might be effective against 

IFNλ3 induced liver damage in chronic infection (Read et al. 2017). 

However, HCV has evolved mechanisms to evade the antiviral IFN system. The 

non-structural protein NS3/4A targets and cleaves the mitochondrial antiviral 
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signalling proteins that are important in the signalling of RIG-I and MDA5 and 

therefore prevents recognition and downstream signalling. Moreover, the NS3/4A 

protease blocks the TLR3 signalling by targeting TRIF which results in the inhibition 

of IFN production (reviewed in Morikawa et al. 2011, and Heim et al. 2014). 

1.1.7 The adaptive immune system in HCV infection 

Both the innate as well as the adaptive immune system is essential for eliminating 

HCV during acute infection. In contrast to the early induction of type I and III IFNs, 

virus specific T cell responses are detected in the liver weeks after infection (Thimme 

et al. 2002). Multiple studies show that virus specific CD4+ as well as CD8+ T cells 

are crucial for spontaneous resolution of HCV and that a lack of a strong T cell 

response results in virus persistence. In addition, HCV specific memory cells can 

persist after resolution and respond rapidly upon a second infection. A strong and 

sustained T cell response targeting a broad range of HCV epitopes is essential for 

HCV elimination during acute infection (Lechner et al. 2000, Thimme et al. 2001, 

Thimme et al. 2002). T cell depletion studies in chimpanzees demonstrated the 

importance of CD8+ as well as CD4+ T cells in the control of HCV infection (Grakoui 

et al. 2003, Shoukry et al. 2003). Thus, the help of CD4+ T cells is needed to 

maintain effective CD8+ T cell responses. As demonstrated in a chimpanzee model, 

animals that clear the infection have a strong cytotoxic T lymphocyte (CTL) response 

targeting several epitopes whereas animals that develop chronic infection display a 

weak CTL response during acute infection (Cooper et al. 1999). Viral clearance 

through HCV-specific CD8+ T cells is mainly attributed to their high capability to 

secrete antiviral IFNγ upon activation (Frese et al. 2002, Jo et al. 2009). In addition, 

HCV-specific CD8+ T cells efficiently secrete TNFα and are capable of directly killing 

virus infected cells via perforin or the Fas/Fas ligand (FasL) pathway (Ando et al. 

1997). Immunogenetic studies revealed associations between certain human 

leukocyte antigen (HLA) class I haplotypes presenting viral antigens to T cells and 

spontaneous resolution, indicating the importance of virus specific CD8+ T cell 

responses for infection outcome. HLA-B*27 and HLA-B*57 have been repeatedly 

associated with spontaneous immune control and a robust IFNγ response 

(McKiernan et al. 2004, Kim et al. 2011, Fitzmaurice et al. 2015).  

Failure of controlling HCV replication during acute infection is associated with 

exhaustion of T cells after initial priming and expansion. Exhaustion is driven through 

continuous stimulation of CD8+ T cells with viral antigens. CD8+ T cell exhaustion is 
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characterised by impaired antiviral functionality as well as increased expression of 

numerous inhibitory receptors such as PD1, Tim-3, CTLA-4 and 2B4 (reviewed in 

Timm et al. 2015). In comparison to the periphery, intrahepatic T cells display an 

even higher expression of exhaustion markers (Kroy et al. 2014). Furthermore, 

exhausted CD8+ T cells have a low proliferative potential (Kroy et al. 2014), an 

impaired ability to produce IFNγ and TNFα as well as a reduced cytotoxicity (Penna 

et al. 2007). Multiple studies addressed a possible reversion of the exhausted 

phenotype to restore HCV-specific CD8+ T cell function. Anti-PDL1 antibodies 

blocking the PD1/PDL1 interaction enhance HCV-specific CD8+ T cell function 

(Penna et al. 2007) however, to restore full antiviral functionality combined blockade 

of inhibitory receptors is required (Nakamoto et al. 2009).  

Evasion of immune recognition is a common phenomenon in HCV infection since the 

majority of individuals develop chronic infection. One mechanism of HCV to evade 

T cell recognition is by selection of mutations inside as well as in the flanking regions 

of the targeted epitope. Three different molecular viral escape mechanisms are 

described that lead either to the complete abolishment or reduced CD8+ T cell 

activation through the TCR peptide MHC class I complex. First, mutations within 

flanking regions of an HCV CD8 T cell epitope are able to alter the peptide 

processing in the proteasome by cleavage of the polypeptide inside the epitope 

sequence. However, correct proteasomal processing does not guarantee T cell 

response as mutations within the MHC class I binding sites can alter the binding 

affinity. Mutations within anchor residues result in unstable MHC class I/peptide 

complexes and regularly to an abolished presentation to the TCR through the loss of 

the epitope. Furthermore, mutations that occur inside the sequence that is 

recognised by the TCR can result in the reduction or the absence of a CD8 T cell 

response even though the epitope is properly cleaved and presented (reviewed in 

Holz et al. 2015). These viral escape mechanisms that perturb peptide binding to the 

MHC molecule and impair TCR recognition hinder the generation of a TCR-MHC 

class I complex which is able to activate CD8+ T cells to elicit a IFNγ response that is 

sufficient to control HCV infection. To fully escape T cell recognition by HLA-B*27, 

multiple substitutions within the immunodominant epitope are required, possibly 

explaining the protective effect of this allele in HCV infection outcome (Dazert et al. 

2009). Besides viral sequence mutations, a narrow TCR repertoire displaying a low 

diversity within the CDR3 region, is associated with immune escape in a chimpanzee 
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model, whereas the generation of a broadly cross-reactive TCR repertoire possibly 

prevents viral escape (Meyer-Olson et al. 2004). However, escape mutations can 

affect the viral fitness, thus reducing viral replication capacity (Neumann-Haefelin et 

al. 2008, Salloum et al. 2008, Dazert et al. 2009). As a result, the quasispecies 

generally comprises viral variants which balance viral replication and immune 

evasion (Uebelhoer et al. 2008). In the absence of immune pressure, reversion back 

to the prototype sequence occurs, which is advantageous for viral replication (Timm 

et al. 2004, Ray et al. 2005, Neumann-Haefelin et al. 2008).  

In comparison to T cells as part of the adaptive immune system, the innate immune 

system is the first line of defence which is induced directly after infection and Natural 

Killer (NK) cells are the major innate cell type for mediating antiviral effects during 

HCV infection. 

1.2 Natural Killer (NK) cells 

NK cells have been defined in 1975 as large granular lymphocytes with the ability to 

kill target cells without prior priming and without restriction to the MHC expression on 

the target cell. Kiessling et al. (1975) showed that mouse NK cells are capable of 

killing Moloney leukaemia cells in vitro. NK cells comprise approximately 15% of the 

lymphocyte population in the periphery and are traditionally defined by their cell 

surface phenotype, lacking the T cell linage marker CD3 but expressing CD56. 

Nowadays NK cells are not solely defined by the expression of CD56 but furthermore 

by CD16. Based on the cell surface density of CD56 and the expression of CD16, 

NK cells are divided into three subtypes: CD56dim, CD56bright and CD56negative. CD56dim 

NK cells account for the majority of NK cells (90%) defined by a low-density 

expression of CD56 and high surface expression of CD16. Whereas around 10% of 

NK cells in the periphery are CD56bright, the third subset of CD56negative CD16positive NK 

cells is very rare (reviewed in Cooper et al. 2001, and Caligiuri 2008). These NK cell 

subsets have been associated with different functional properties and distinct 

differentiation stages in NK cell development (figure 1.2). CD56dim NK cells have a 

higher cytotoxic activity than CD56bright NK cells, thus produce more cytolytic 

granules. Through their high cell surface expression of CD16, CD56dim NK cells are 

efficient in CD16 mediated antibody dependent cell cytotoxicity (ADCC) in contrast to 

CD56bright NK cells. On the other hand, CD56bright NK cells are the subset most 

efficient in production of cytokines like IFNγ, tumour necrosis factor alpha (TNFα) or 
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interleukin 10 (IL) whereas CD56dim NK cells have a slightly reduced capability to 

produce and release cytokines (reviewed in Cooper et al. 2001). 

NK cells arise from CD34+ hematopoietic progenitors in the bone marrow and 

differentiation into NK cells is mainly triggered by the transcription factors Tbet and 

Eomes. In the periphery NK cells differentiate from CD56bright via CD56dim to 

CD56negative NK cells accompanied by a decline in telomere length (Romagnani et al. 

2007). Furthermore, Björkström et al. (2010) described additional differentiation 

stages within the CD56dim NK cell population. CD56bright NK cells express high 

amounts of NKG2A whereas CD56dim NK cells continuously lose NKG2A while they 

steadily gain the expression of CD57 and killer cell immunoglobulin-like receptors 

(KIRs).  
 

 
 

Figure 1.2: NK cell differentiation 

NK cells differentiate from CD56bright to CD56dim to CD56negative NK cells. Differentiation is accompanied 
by the subsequent loss of CD56 and NKG2A and the acquisition of CD16 and killer cell 
immunoglobulin-like receptors (KIRs). NK cell subsets are associated with different functional 
properties. CD56bright NK cells produce a wide range of cytokines, whereas their ability to produce 
cytotoxic granules is restricted. In contrast, CD56dim NK cells are highly capable to release cytolytic 
granules and are efficient cytokine producers, although to a lower extent than CD56bright NK cells. 
CD56- NK cells display impaired functionality and proliferation potential. 

Early reports suggested mature NK cells to be terminally differentiated, incapable of 

self-renewal and short lived (Miller 1982, Zhang et al. 2007). However, in an adoptive 

transfer experiment into a lymphopenic environment NK cells underwent homeostatic 

proliferation, resulting in longevity of transferred NK cells residing in both lymphoid 

and non-lymphoid tissue for over six months. NK cells are capable of self-renewal at 

a slow turnover rate, thus display similarities with T cells. Moreover, NK cells retain 

their functional capacity and respond robustly to virus infections even months after 

transfer (Sun et al. 2011). Even though NK cells are considered members of the 

innate immunity, over the last years various features of NK cells have been described 
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that were initially assigned exclusively to adaptive immune cells. For instance, NK 

cells are educated during development (reviewed in Orr et al. 2010), NK cells 

undergo clonal expansion during infection and they are able to generate long lived 

memory NK cells as seen in cytomegalovirus (CMV) infection (Sun et al. 2009). 

1.2.1 NK cell education 

To gain the capacity to detect target cells with downregulated or low MHC class I 

surface expression, NK cells must undergo a process called education which is also 

referred to as licencing or tuning of NK cells. Whereas during T cell education an 

activation via the TCR is required, the NK cell education process is based on the 

engagement of MHC-class I specific inhibitory receptors leading to the maturation of 

a functional NK cell repertoire (reviewed in Höglund et al. 2010, and Orr et al. 2010). 

The extent of NK cell responsiveness is determined by the number of interactions of 

inhibitory receptors with self MHC class I molecules on haematopoietic or stromal 

cells during development in the bone marrow. In contrast to the negative selection 

process during T cell development, NK cells that are not able to engage MHC class I 

through inhibitory receptors are not driven into apoptosis but become anergic (Kim et 

al. 2005, Yu et al. 2007). Notably, the NK cell education process is not terminal and 

NK cells are capable of readjustment. Anergic NK cells placed in a different 

MHC-class I setting acquire functional competence, whereas educated NK cells 

become hyporesponsive in a MHC-class I molecules devoid environment. To 

maintain their responsiveness NK cells need the continuous engagement of their 

inhibitory receptors to MHC-class I molecules (Joncker et al. 2010). 

1.2.2 NK cell activation and effector mechanisms 

NK cells express various receptors including inhibitory, activating, adhesion and 

cytokine receptors enabling them to differentiate between healthy and target cells. In 

a healthy setting NK cells remain in a tolerant state. Healthy cells express 

MHC class I molecules that are engaged by inhibitory receptors on NK cells 

balancing activating and inhibiting signals. Loss or downregulation of MHC class I 

molecules, seen on tumour or virus infected cells, however, leads to an activation of 

NK cells due to missing self-recognition. Absence of MHC class I engagement results 

in cytokine production and release of cytotoxic granules of NK cells (reviewed in 

Ljunggren et al. 1990). Furthermore, activation of NK cells through activating 
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receptors such as NKG2D can be induced by upregulation of activating ligands like 

MICA as a result of cellular stress (figure 1.3) (Bauer et al. 1999).  
 

 

 

 

Figure 1.3: NK cell activation by tumour or virus infected cells 

NK cells remain in a tolerant state when the strength of the activating signal received through 
engagement of activating receptors is lower than the inhibitory signal through binding of inhibitory 
receptors to MHC-class I molecules. Virus infected and tumour cells either downregulate or loose the 
expression of MHC-class I molecules on the cell surface and therefore, NK cells lack the inhibitory 
signal. The activating signal is not dampened resulting in missing-self-induced cytokine production and 
release of cytotoxic granules by NK cells. Another mechanism to activate NK cells to produce 
cytokines and cytotoxic granules is stress-induced. Stressed cells upregulate activating ligands, thus 
the activation signal outweighs the inhibitory signal (reviewed in Vivier et al. 2012). 

As described, NK cells are able to recognise stressed cells triggering various effector 

mechanisms with the aim of eliminating the target cell. NK cell activation leads to the 

production of cytokines including IFNγ and TNFα. Moreover, target cells can be lysed 

by release of cytotoxic granules containing perforin or granzyme. Apoptosis of target 

cells can be induced via surface upregulation of FasL as well as tumour necrosis 

factor-related apoptosis-inducing ligand (TRAIL) on NK cells and binding to Fas as 

well as TRAIL receptors on the target cell surface. Furthermore, NK cells mediate 
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cellular crosstalk by stimulating dendritic cell (DC) maturation and therefore 

enhancing priming of T cells. Stressed cells which are opsonised by antibodies 

trigger ADCC of NK cells. The activating receptor CD16, also called FcγRIII, can 

recognise those cell bound antibodies and through crosslinking leads to direct killing 

of opsonised cells by triggering the release of cytotoxic granules (figure 1.4) 

(reviewed in Parham 2009, and Cheent et al. 2011) 
 

 

 
 

Figure 1.4: NK cell effector mechanisms 

NK cells are able to release cytotoxic granules resulting in direct cytotoxic effects to target cells. 
Moreover, they can induce apoptosis via surface upregulation of Fas ligand (FasL) and tumour 
necrosis factor-related apoptosis-inducing ligand (TRAIL). Through the engagement with Fas and 
TRAIL receptors on the target cell surface, NK cells can directly kill tumour or virus infected cells. 
Furthermore, NK cells secrete IFNγ and TNFα which mediate a direct antiviral effect and induce 
adaptive immune responses (A) (reviewed in Cheent et al. 2011).The activating receptor CD16, also 
called FcγRIII, can generate ADCC. CD16 recognises cells which are opsonised by antibodies and 
directly kill them through the release of cytotoxic granules after crosslinking of CD16 with the 
antibodies (B) (reviewed in Parham 2009). 
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1.2.3 NK cell receptors 

NK cells express a variety of activating and inhibitory receptors on the cell surface 

mediating their activation and inhibition. These NK receptors engage MHC class I 

molecules, MHC class I–like molecules, and molecules unrelated to MHC on the 

target cell. In the human system, we can group most NK cell receptors into three 

receptor families: the killer cell immunoglobulin-like receptor (KIR) family, natural 

cytotoxicity receptors (NCRs) and the CD94/NKG2 receptor family (reviewed in 

Caligiuri 2008). 

1.2.4 Killer cell immunoglobulin-like receptors (KIRs) 

The first identified KIRs were inhibitory receptors leading to the initial naming as 

killer cell inhibitory receptors. Further studies determined that inhibitory as well as 

activating receptors belong to this receptor family therefore KIR was kept as the 

abbreviation for killer cell immunoglobulin-like receptors (Marsh et al. 2003). KIRs are 

able to bind to HLA class I molecules like HLA-A, -B, -C, –G and -F and to date 14 

expressed human KIR genes and two KIR pseudogenes have been described 

(Gonzalez-Galarza et al. 2015, Garcia-Beltran et al. 2016). KIRs are encoded on 

chromosome 19q13.4 in a compact cluster of genes that is part of the leucocyte 

receptor complex. Nomenclature of KIRs is mainly based on their protein structure 

with subdivisions according to the number of extracellular domains and the length of 

the cytoplasmic tail. The KIRs have either two (2D) or three (3D) extracellular 

immunoglobulin (Ig) domains and either a short (S) or a long (L) cytoplasmic tail 

(figure 1.5). Furthermore, there is a less frequently used naming according to the 

cluster of differentiation (CD) nomenclature system classifying KIR molecules as 

members of the CD158 series. The length of the cytoplasmic domain determines if 

KIRs signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) or an 

immunoreceptor tyrosine-based activation motif (ITAM). KIRs expressing a long 

cytoplasmic domain transmit inhibitory signals through ITIMs located in their 

cytoplasmic domains (Carrington et al. 2003 pages 8-11) whereas, KIRs with a short 

cytoplasmic tail transmit activating signals through crosslinking of KIR with DAP12. 

DAP12 is an homodimeric adapter molecule which contains ITAMs in its cytoplasmic 

domain. Crosslinking of KIR and DAP12 leads to phosphorylation of DAP12 and 

therefore to downstream signalling through binding of ZAP-70 and Syk protein 

tyrosine kinases (Lanier et al. 1998).  
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Figure 1.5: KIR nomenclature 

The nomenclature of KIRs is based on the number of extracellular immunoglobulin (Ig)-like domains 
dividing them into KIR2D having two domains and KIR3D comprising three extracellular domains. 
Irrespective of the number of Ig domains KIRs either have a long or a short cytoplasmic tail appearing 
as (L) or (S) in the KIR nomenclature. While inhibitory KIRs have a long cytoplasmic tail and signal 
through a ITIM motif (red) activating KIRs have a short cytoplasmic tail and signal trough the 
association with an adapter protein DAP-12 containing an ITAM motif (green). 

For most KIR genes allelic variations have been described and their nomenclature is 

analogous to the one used for HLA alleles. An asterisk separates the gene name 

from the first three digits indicating the alleles that differ in the sequence of the 

encoded protein. Another four digits are used to discriminate alleles either having 

silent substitutions in the coding region or substitutions in an intron, promoter, or 

other noncoding regions of the sequence (Marsh et al. 2003). Based on the 

nomenclature KIR3DL1*001 for instance, is the first allele of the inhibitory KIR3DL1 

receptor with a long cytoplasmic tail and three extracellular Ig domains (Gonzalez-

Galarza et al. 2015).  

1.2.5 KIR3DL1 

KIR3DL1 shows a high allelic variability with 79 alleles described until now 

(Gonzalez-Galarza et al. 2015). According to the cell surface density, alleles can be 

grouped into alleles associated with intracellular retention and no cell surface 

expression (null) as well as alleles showing either low or high KIR3DL1 levels. In 

contrast to other pairs of inhibitory and activating receptors, KIR3DL1 and KIR3DS1 

are encoded in the same locus and segregate as alleles. The ligand for KIR3DL1 is a 

Bw4 motif comprised in a polymorphic region at amino acid positions 77–83 of HLA-A 

and HLA-B molecules. This region defines HLA alleles that are not capable to bind 

KIR3DL1 containing a so called Bw6 motif or alleles with a Bw4 motif able to interact 

with KIR3DL1. Amino acid positions 78 and 79 are conserved between the Bw4 and 

Bw6 motifs. The HLA class I residues that distinguish the Bw4 and Bw6 motif from 



Introduction 

 

 17 

one another are amino acids 77, 80, 81, 82 and 83 as depicted in table 1.1 (Gumperz 

et al. 1997). 

Table 1.1: HLA class I residues determining Bw4 and Bw6 motifs 

 polymorphic position within HLA class I molecules 

epitope 77 80 81 82 83
 
 

Bw4 N/D/S I/T A/L L R 

Bw6 S/G N L R G 

A: alanine, R: arginine, D: aspartic acid, N: asparagine, G: glycine, I: isoleucine, L: leucin, S: serine, T: threonine  

 

The binding affinity of KIR3DL1 to the HLA molecule is determined by a dimorphic 

residue at position 80 of the Bw4 motif. HLA-Bw4 alleles with isoleucine (80I) are 

stronger ligands than alleles with threonine (80T). Furthermore, KIR3DL1 is 

described to bind not only to the Bw4 motif itself but also to the presented peptide. 

Particularly, positions 7 and 8 of the presented peptide are crucial for the interaction 

with KIR3DL1 (reviewed in Parham et al. 2012, and O'Connor et al. 2013). In contrast 

to KIR3DL1, binding assays could not identify a ligand for KIR3DS1 until 2016. 

Genetic as well as functional studies suggested that HLA-Bw4 80(I) is a potential 

ligand (Martin et al. 2002, Alter et al. 2007) but recent evidence demonstrated the 

binding of KIR3DS1 to HLA-F and therefore identifying the ligand for 

KIR3DS1(Garcia-Beltran et al. 2016).  

1.2.6 NK cells in HCV infection 

Since NK cells are highly enriched in the liver comprising up to 50% of the total 

lymphocyte population and the fact that HCV is a hepatotropic infection, many 

studies focused on the role of NK cells in HCV infection. Reports suggest NK cells to 

be activated in the acute phase of HCV infection but without apparent correlation with 

HCV clearance. This activation is characterised by an enhanced IFNγ production and 

a higher cytotoxicity compared to healthy individuals (Amadei et al. 2010, Pelletier et 

al. 2010). In addition, the expression of NK cell receptors is associated with HCV 

infection outcome. Alter et al. (2011) reported that low frequencies of NKp30+, 

NKp46+, CD161+, and NKG2D+ NK cells during acute infection correlate with 

spontaneous resolution of HCV infection. NK cells during acute infection are mostly 

associated with high functional competence, whereas impaired NK cell functionality 

has been described in chronic infection. IFNα leads to a functional polarisation of NK 

cells towards high cytotoxicity and impaired IFNγ production in chronic infections. 

Persistent exposure to endogenous IFNα modulates NK cell responsiveness to 
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become refractory correlating with the loss of efficacy of IFNα based antiviral 

therapies (Edlich et al. 2012). Highly activated NK cells in chronic infection with 

enhanced cytolytic activity and dysfunctional cytokine production correlate with the 

degree of liver inflammation (Oliviero et al. 2009). Moreover, NK cells in chronic HCV 

infection are associated with reduced NKp46 and NKp30 expression and a decrease 

in NCR mediated killing of target cells (Nattermann et al. 2006) even though 

contradicting reports suggest elevated NCR expression during chronic infection (De 

Maria et al. 2007, Ahlenstiel et al. 2010). Furthermore, NK cells can contribute to 

immune protection prior to seroconversion as described in studies of high-risk groups 

such as PWID or healthcare workers exposed to HCV due to needlestick injuries. 

Seronegative individuals display a higher proportion of effector CD56low mature NK 

cells associated with increased cytolytic activity. Moreover, expression of the 

activating receptor NKp30 protects against HCV infection in a high-risk cohort of 

PWID (Golden-Mason et al. 2010). In addition, healthcare workers that have been 

percutaneously exposed to HCV without seroconversion show increased NK cell 

responses like IFNγ production and cytotoxicity as well as enhanced expression of 

NKp44, NKp46 and NKG2A (Werner et al. 2013). Furthermore, the presence of 

KIR2DL3+ NKG2A- NK cells is associated with protection from seroconversion in HCV 

exposed individuals (Thöns et al. 2014). Collectively these data show that NK cells 

contribute to an anti-HCV negative state in HCV exposed individuals therefore 

providing protection from HCV infection prior to seroconversion.  

1.2.7 KIRs and infection 

Genetic association studies have associated certain KIR/KIR-ligand combinations 

with viral infection outcome. Patients harbouring the genetic combination of KIR2DL3 

with two HLA-C group1 (C1) alleles are more likely to spontaneously clear the 

infection than heterozygous C1/C2 or homozygous C2/C2 individuals (Khakoo et al. 

2004). Moreover, the same genetic combination has been correlated with protection 

from HCV infection prior to seroconversion in a PWID cohort. Furthermore, 

individuals with this genetic constellation are more likely to achieve SVR if 

undergoing treatment (Knapp et al. 2010). In addition, the genetic constellation of 

KIR3DL1 with Bw4 is associated with increased SVR in genotype 1b infected 

patients treated with PEGylated IFNα and ribavirin in combination with or without 

telaprevir (Umemura et al. 2014). 
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1.3 Natural Killer T (NKT) cells  

Clearance of HCV infection has been associated with the activation of the innate 

immune system as well as the subsequent activation of the adaptive immune system. 

20 years ago, a new cell subset has been identified forming a link between both. 

Natural Killer T cells (NKT cells) were first described in the mid-1990s as a subset of 

T cells in mice that share some characteristics with NK cells, specifically the 

expression of the NK cell marker NK1.1. The characterisation of NKT cells as a T cell 

subset was based on the expression of a TCR (Lantz et al. 1994, Makino et al. 

1995). To date NKT cells are grouped as an intermediate between the innate and the 

adaptive immune system since they share characteristics of T cells as well as NK 

cells (reviewed in Taniguchi et al. 2003). NKT cells can be subdivided into two 

groups; Type I NKT cells, also termed invariant NKT (iNKT) cells and Type II NKT 

cells also referred to as non-invariant NKT cells. iNKT cells are defined by a highly 

conserved semi-invariant TCR. In mice, the TCR is encoded by Vα14 and Jα18 

paired with a set of Vß chains like Vß8.2, Vß7 and Vß2 (Lantz et al. 1994). In 

contrast, the human TCR receptor comprises a Vα24Jα18 chain exclusively 

combined with Vß11 (Dellabona et al. 1994). Non-invariant NKT cells in mice as well 

as in humans express a more diverse TCR repertoire (Behar et al. 1999). In 

comparison to conventional T cells that recognise antigens presented by MHC 

molecules, NKT cells recognise antigens presented by the non-classical MHC class I 

like molecule CD1d. CD1d is essential for the presentation of glycolipids to NKT 

cells. The first identified glycolipid ligand for iNKT cells was α-Galactosylceramide 

(αGalCer), an exogenous lipid isolated from the marine sponge Agalas mauritianus 

(Kawano et al. 1997). Although invariant as well as non-invariant NKT cells are CD1d 

restricted, non-invariant NKT cells do not recognise α-linked glycolipids presented 

through CD1d, thus are not αGalCer responsive. Besides this prototypic antigen for 

iNKT cells, various other glycolipid antigens have been described for iNKT cells. 

These include bacterial lipids like mycobacterial phosphatidylinositol mannoside or 

endogenous glycolipids such as the lysosomal glycosphingolipid 

isoglobotrihexosylceramide (iGb3) (Fischer et al. 2004). The endogenous iGb3 is 

recognised by mice as well as human iNKT cells and is implicated in mediating iNKT 

cell development. Moreover, iGb3 expression in the peripheral tissue is involved in 

controlling iNKT cell responses for instance to infections (Zhou et al. 2004).  
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Initially, NKT cells were defined by the expression of NK1.1 in mice and CD161 in 

humans. However, CD161 negative NKT cells have been reported in the periphery 

suggesting that the detection and definition of NKT cells requires adaptation (Pellicci 

et al. 2002). Since αGalCer has been identified as a strong antigen presented by 

CD1d, multimers were designed to identify αGalCer-CD1d restricted iNKT cells. 

These multimers of αGalCer loaded CD1d are highly sensitive and specific for 

identifying invariant Vα14+ NKT cells in mice. CD1d restricted non-invariant NKT 

cells, however, do not recognise and respond to αGalCer presentation, thus are not 

detected with this method. Therefore, αGalCer loaded CD1d multimers have been 

proposed as an effective tool to study CD1d restricted iNKT cells in mice (Matsuda et 

al. 2000). 

1.3.1 NKT cell differentiation  

NKT cells develop in the thymus similar to T cells. The highest frequency of NKT 

cells can be detected early in the fetal age and the numbers decrease continuously 

with age. Human NKT cells are able to leave the thymus at an undifferentiated stage 

to further differentiate in the periphery (Sandberg et al. 2004). Like classical T cells, 

NKT cells undergo a positive selection process. Therefore, immature double positive 

cortical thymocytes (CD4+CD8+) present CD1d the selecting ligand for NKT cell 

development. This positive selection is crucial to ensure, that the TCR of NKT cells 

can interact with CD1d (Bendelac 1995). As previously described, NKT cells are 

often defined by CD161 and the maturation process of NKT cells is associated with 

an increase of CD161 expression. However, most NKT cells leave the thymus at an 

immature CD161- state and continue their maturation process in the periphery. 

Therefore, CD161- cells represent precursors of more mature NKT cells in the 

periphery (Pellicci et al. 2002). In the thymus, the majority of NKT cells are CD4+ 

whereas in the periphery NKT cells can acquire the expression of CD8, thus based 

on their expression of CD4 and CD8 four different NKT cell subsets can be defined in 

the periphery (Baev et al. 2004, Montoya et al. 2007). Nevertheless, there is only a 

limited correlation between NKT cell frequencies in the thymus and in the peripheral 

blood (Berzins et al. 2005). The main transcription factor for the development of 

nonconventional T cells, including NKT cells is the promyelocytic leukaemia zinc 

finger protein (PLZF). PLZF leads to the development of fully functional NKT cells 

which are capable of secreting cytokines like IFNγ and IL4 as well as being able to 

release cytotoxic granules (Kovalovsky et al. 2008). In addition, histone 
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deacetylase 3 has recently been identified as being essential for NKT cell 

development and NKT cell differentiation into functional NKT cells (Thapa et al. 

2017). 

1.3.2 CD1d restricted activation of invariant NKT (iNKT) cells 

The TCR of NKT cells from mice and humans recognises the antigen presenting 

molecule CD1d. Even though mice CD1 and human CD1d only exhibit a sequence 

similarity of approximately 60% in the antigen binding region, the interaction of the 

invariant TCR with CD1 is highly conserved between both species. The hydrophobic 

antigen binding groove enables CD1d to present lipid antigens, more specifically 

glycolipids in most cases. Mouse as well as human CD1d can present the iNKT 

prototype antigen αGalCer leading to a rapid activation of iNKT cells (Brossay et al. 

1998). CD1d is able to present self-ligands as well as foreign lipid antigens that can 

activate iNKT cells. The binding affinity of endogenous lipids like iGb3 is low in 

comparison to αGalCer. However, the induction of a weak TCR signal by low affinity 

antigens can be sufficient to induce iNKT cell activation if a second signal by 

inflammatory cytokines like IL12 is provided. Such a strong cytokine signal can for 

instance, be represented by IL12 that is produced in response to microbial products 

by antigen presenting cells like DCs. This way of signalling is proposed to be the 

main mechanism of iNKT cell activation in microbial and viral infections (Brigl et al. 

2003) (figure 1.6). 
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Figure 1.6: Activation of iNKT cells 

iNKT cell activation is dependent on two signalling mechanisms: a TCR signal, provided by the 
engagement with a glycolipid-CD1d complex and a cytokine driven signal. iNKT cells can be activated 
through a TCR signal provided by the presentation of a strong foreign antigen as αGalCer that is 
largely independent of further cytokine stimuli (A). In contrast, a weak TCR signal by binding to low 
affinity microbial or self-lipids as iGb3, requires a strong cytokine signal. Activation can be mediated by 
the release of pro-inflammatory cytokines like IL12 from antigen presenting cells (B). 

1.3.3 CD1d the ligand for NKT cells 

The human CD1 family comprises five CD1 genes (CD1a, b, c, d, and e) located on 

chromosome 1, whereas mice only express the equivalent to CD1d. CD1 proteins 

are mainly expressed on cells that are involved in antigen presentation, such as the 

majority of thymocytes, DCs, macrophages, monocytes or B cells (reviewed in 

Porcelli et al. 1999). High CD1d expression was detected on hepatocytes whereas 

MHC class I expression in the liver was poor. These data indicate that CD1d 

restricted cells such as iNKT cells are important regulators of immune responses in 

the liver (Agrati et al. 2005) 

1.3.4 iNKT cell effector mechanisms 

iNKT cells are cytokine producing effector cells that also mediate direct cytolysis by 

release of cytotoxic granules. The main priming mechanism for the cytolytic activity of 

the CD4- iNKT cell subset, is the exposure to cytokines like IL2 and IL12. Moreover, 

this subset primarily secretes T helper (TH) 1 cytokines such as IL2, IFNγ and TNFα. 

CD4+ CD1d restricted iNKT cells, however, are mainly characterised by their 

production of TH2 cytokines like IL4, even though they are able to produce TH1 

cytokines as well. In addition, they can mediate cytolysis by releasing cytotoxic 
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granules containing perforin, in comparison to CD4- iNKT cells, however, this 

cytolytic ability is not mediated by cytokines (Gumperz et al. 2002).  

 

Figure 1.7: iNKT cell crosstalk with the innate and adaptive immune system 

iNKT cells can regulate and activate various cells of the innate and adaptive immune system. NKT cell 
activation can lead to DC maturation and increased antibody production of B cells. Furthermore, NK 
cells can be induced by iNKT cells to produce IFNγ. Treg proliferation is enhanced by IL2 secretion of 
NKT cells and naïve T cells are indirectly regulated through cross presentation by DCs.  

IFNγ produced by iNKT cells can directly activate NK cells. Activated NK cells are 

driven to produce IFNγ and therefore, enhance the induction of IFNγ production 

further, suggesting a prompt activation of the innate immune system by iNKT cells 

(Carnaud et al. 1999). NKT cells have the capability to recognise myeloid DCs early 

during the immune response through their CD1d specific TCR. NKT cells induce 

maturation of DCs and activate them to produce IL12. For this activation induced 

IL12 production, a second signal besides the TCR signal is needed and provided by 

CD40L engagement (Vincent et al. 2002). Thus, by NKT cell mediated maturation of 

DCs, the adaptive immunity is modulated by the increased potential of mature DCs to 

efficiently stimulate the proliferation of naïve T cells. Furthermore, iNKT cells can 

provide signals for B cell activation by interaction with CD40 on the B cell surface. 

iNKT cells are therefore able to improve antibody titers and B cell memory responses 

(Galli et al. 2007). In addition, IL2 produced by NKT cells can induce the 

development of regulatory T cells (Treg), whereas these in turn inhibit NKT cell 

proliferation, cytokine release and the production of cytotoxic granules (figure 1.7) 

(reviewed in La Cava et al. 2006). 
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1.3.5 iNKT cells in disease 

In different disease settings iNKT cells mediate promoting or inhibitory effects. CD1d 

restricted iNKT cells, especially their production of IL4, is associated with protection 

from type I diabetes. In type I diabetic patients a strong bias towards TH1 cytokines 

like IFNγ and a loss in the capability of iNKT cells to secrete IL4 has been described 

(Wilson et al. 1998). Moreover, iNKT cells can be beneficial in microbial and fungal 

infections. Activation of iNKT cells confers protection from Mycobacterium 

tuberculosis and IFNγ production by activated iNKT cells leads to local resistance to 

the fungi Cryptococcus neoformans (Kawakami et al. 2001, Chackerian et al. 2002). 

In a mouse model iNKT cell activation has been shown to inhibit Hepatitis B virus 

(HBV) replication (Kakimi et al. 2000) postulating, that activated intrahepatic iNKT 

cells are important during natural infection and contribute to viral clearance. 

Clearance of HBV deoxyribonucleic acid (DNA) in the blood as well as in the liver is 

correlated with an early increase in IFNγ levels and is not mediated by the adaptive 

immune system (Guidotti et al. 1999). Therefore, IFNγ production can be either 

attributed to NK or iNKT cells or perhaps an interplay of both. 

1.3.6 iNKT cells in HCV infection 

Several studies have determined iNKT cell frequencies in the periphery as well as in 

the liver of HCV infected individuals. However, reports are highly inconsistent. Some 

reports suggest no difference in frequencies whereas, others state that decreased 

frequencies are associated with chronic infection and increased frequencies with a 

seronegative state. Healthcare workers that have been exposed to HCV infection 

without seroconversion show increased frequencies of CD1d multimer+ iNKT cells six 

weeks after exposure accompanied by an increase in NKG2D expression on iNKT 

cells (Werner et al. 2013). Inoue et al. (2006) and van der Vliet et al. (2005) do not 

observe any differences in frequency of Vα24+ Vβ11+ iNKT cells in the periphery 

between chronically HCV infected patients and healthy individuals. Whereas, 

significantly lower frequencies of Vα24+ Vβ11+ iNKT cells in HCV-RNA positive 

individuals in comparison to patients that resolved the infection and healthy controls 

have been described by Lucas et al. (2003). Furthermore, Vα24+ iNKT cells are 

depleted in the liver of individuals with cirrhotic chronic HCV infection (Deignan et al. 

2002). 
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1.4 DNA methylation 

NK cells can confer early immune control or prevention of HCV infection by their 

cytolytic activity resulting in killing of virus infected hepatocytes or priming of the 

adaptive T cell immunity (Golden-Mason et al. 2010, Pelletier et al. 2010). NK cell 

differentiation, essential for the development of responsive NK cells as well as their 

effector functions, for instance, the capacity to produce IFNγ is epigenetically 

regulated. Epigenetic modifications include posttranslational histone modifications, 

modifications of the DNA and chromatin modulating processes that are crucial for the 

regulation of various cellular processes comprising the expression of genes and 

microRNA, X-chromosome inactivation or cellular differentiation. Modifications like 

methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, 

ADP-ribosylation, deimination and proline isomerisation can alter the gene activity 

without affecting the underlying DNA sequence (reviewed in Kouzarides 2007). DNA 

methylation is the most intensely studied modification and the occurrence of 

hypomethylation was first described in 1983 in human cancer. Feinberg et al. (1983) 

showed that cancer cells harbour unmethylated CpG clusters whereas CpG sites 

within normal tissues are methylated.  

DNA methylation occurs at cytosine residues that are located in CpG dinucleotides. 

The process of the addition of a methyl group transferred from S-adenosylmethionine 

to the fifth carbon of the cytosine forming a five-methyl-cytosine (5mC) is catalysed 

by a DNA methyltransferase. These CpG sites cluster in regions called CpG islands 

commonly present in gene promoters or in gene regulatory regions but being rare 

within genes. DNA methylation is associated with decreased or inhibited gene 

expression due to interference of the 5mC with the binding of transcription factors 

therefore, preventing the formation of transcription factor complexes required for 

optimal transcription (Watt et al. 1988). Moreover, gene transcription can be 

repressed by the binding of methyl-CpG binding domain proteins to 5mC, thus 

blocking transcription factor binding. In contrast, hypomethylation of CpG islands 

leads to gene activation and transcription (reviewed in Portela et al. 2010). For 

mapping DNA methylation patterns, bisulfite genome sequencing is a reliable method 

for the detection of methylated cytosine. Upon treatment of the DNA with bisulfite, 

cytosines are deaminated and therefore converted into uracil. However, methylated 

cytosine is not influenced by this treatment and therefore remains unchanged. This 
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allows discrimination after amplification by polymerase chain reaction (PCR) and 

subsequent sequencing of the region of interest (Frommer et al. 1992).  

1.4.1 DNA methylation of NK cells  

In early NK cell maturation stages KIR genes are epigenetically silenced. During the 

NK cell differentiation process KIRs become transcribed through opening of 

chromatin structures and demethylation of the promoter region. Furthermore, 

KIR3DL1 promoter methylation determines the allele-specific expression on the NK 

cell surface. The promoter of KIR3DL1- NK cells is highly methylated, whereas 

KIR3DL1+ NK cells display a completely unmethylated promoter (Chan et al. 2003). 

However, only a few studies focused on the functional impact of DNA methylation on 

NK cells. Long term activation of NK cells is associated with a methylation profile 

similar to activated lymphocytes especially T cells. Hypomethylation and therefore 

activation has been described in the loci of TNFA family members and the TH2 

cytokine IL13. Activated NK cells display high demethylation, whereas naïve NK cells 

are mostly methylated suggesting the NK cell methylome might display plasticity 

which can be remodelled during activation (Wiencke et al. 2016). 

1.4.2 DNA methylation and IFNγ competence of immune cells  

The functional capacity of immune cells to express IFNγ is correlated with the DNA 

methylation status. Hypomethylation within the IFNG promoter is associated with 

high IFNγ capacity. Complete methylation of CpG sites within the IFNG gene and 

within a transcriptional activator element preceding the IFNG gene is seen in naïve 

CD4+ T cells and neonatal T cells that are associated with low IFNγ competence, 

whereas CD8+ T cells and effector CD4+ T cells with high IFNγ competence show 

hypomethylation in the IFNG locus. The differentiation process of naïve CD4 T cells 

to TH1 cells that is accompanied by epigenetic alterations within the IFNG locus is 

needed to gain the capability to efficiently produce IFNγ (Melvin et al. 1995). Distal 

cis-regulatory elements in proximity to the IFNG gene are described to be associated 

with initiation of IFNG transcription through recruitment of transcription factors 

(Balasubramani et al. 2010). Therefore, methylation of distal regions impacts IFNγ 

production by immune cells. Similar to T cells changing their epigenetic profile during 

differentiation from naïve to TH1, NK cells undergo epigenetic changes of the IFNG 

promoter during their differentiation process. The maturation process from CD56bright 

NK cells to CD56dim NK cells is associated with demethylation of the IFNG promoter 
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and a proposed acquisition of a higher IFNγ competence (Luetke-Eversloh et al. 

2014).  
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1.5 Aims of the study 

The most important risk factor in western industrialised countries to acquire HCV 

infection is intravenous drug use. The high infection rates among PWID are caused 

by their common practice of sharing needles and other injection materials. For this 

reason, we utilise a PWID cohort to study HCV infection and comparatively analyse 

PWID developing chronic infection, spontaneously resolving HCV infection and PWID 

remaining anti-HCV seronegative. The aim is to provide novel insight into innate and 

adaptive mechanisms of the immune system leading to spontaneous immune control 

or the protection against HCV infection prior to seroconversion. Since the role of 

iNKT cells for the outcome of HCV infection is poorly defined and contradicting 

reports regarding described frequencies in chronic HCV infected individuals exist, the 

aim is to comparatively analyse frequencies and function of iNKT cells in HCV-RNA 

positive and anti-HCV positive PWID with resolved HCV infection. iNKT cells are still 

poorly covered by scientific reports in HCV infection, however, there is growing 

evidence for the importance of NK cells for HCV infection outcome. Different genetic 

association studies revealed that distinct KIR/KIR ligand constellations are 

associated with differential outcome in infections. Therefore, the aim is to analyse the 

impact of different KIR/KIR-ligand genotypes on the outcome of HCV infection in 

PWID. Moreover, KIR/KIR ligand constellations might influence NK cell phenotype 

and function which will be addressed in this study. Epigenetic modifications can alter 

gene expression and therefore influence cytokine competence of various immune 

cells including NK cells. Since IFNγ production of NK cells is a crucial effector 

mechanism for the outcome of HCV infection and DNA methylation in the IFNG 

region impacts IFNγ production the aim is to analyse if NK cells with different 

KIR/KIR ligand constellations are differentially regulated by epigenetic modifications.  

1. The role of iNKT cells in HCV infection 

a. Is there a distinct iNKT cell phenotype associated with HCV infection 
outcome? 

b. Do iNKT cells differ in their functionality depending on the HCV status? 

2. Association of KIR/KIR-ligand constellations on HCV infection outcome in our PWID 

cohort 

a. Do genetically determined KIR/KIR ligand constellations that correlate with 
infection outcome influence the phenotype and function of NK cells?  

3. Epigenetic regulation of the IFNγ competence 

a. Is the IFNγ production of NK cells with different KIR/KIR ligand combinations 
associated with distinct methylation patterns in the IFNG locus?
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2 Materials 

2.1 Chemicals and reagents 

α-Galactosylceramide (αGalCer) Funakoshi 

Anti-Mouse Ig, κ/Negative Control Compensation 
Particles Set (BD CompBeads)  

Becton Dickinson (BD) 

BD FACS™Clean BD 

BD FACS™Flow BD 

BD FACS™ Shutdown Solution BD 

BD FACS™Rinse BD 

Biozym LE Agarose Biozym 

Brefeldin A (BFA) Sigma 

Cellclean® CL50 Sysmex 

Cellpack® Sysmex 

CellTrics® filter 50 µm Sysmex 

Cytometer Setup & Tracking Beads Kit (CST beads) BD 

Biocoll Separating Solution Biochrome 

dimethyl sulfoxide (DMSO) ≥99.8% Roth 

DNA ladder 100 bp 0.5 mg/mL peQlab 

DNA loading Dye 6x Thermo Scientific 

dNTP mix 10 mM each Invitrogen 

Dulbecco's Phosphate-Buffered Saline, 1X (PBS) Gibco 

Ethanol absolute Merck 

Ethidium bromide solution 0.025% 250 µg/mL Roth 

GeneRuler 1kb DNA ladder 0.5 µg/µl Thermo Scientific 

IC Fixation Buffer  eBioscience (eBio) 

Interferon alpha A, alpha2a, human Pbl assay science 

Interleukin-28B/ Interferon λ3, human Pbl assay science 

IL12 Human Reprokine 

IL15 Human Reprokine 

IL18 Human Reprokine 

Ionomycin Calbiochem 

Nuclease-Free water Ambion 

PCR Buffer 10x 15 mM MgCl2 Qiagen 

Permiabilization Buffer (10x) eBio 
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Platinum® Taq DNA polymerase Invitrogen 

PMA Sigma 

2-Propanol VWR 

Stromatolyser®-WH Sysmex 

SYBR® Green PCR Master Mix Applied biosystems 

Tris-Borate-EDTA buffer Sigma 

2.2 Cell culture media and additives 

Fetal bovine serum (FBS) superior Biochrome 

Interleukin2 (IL2) human  Roche 

HEPES Buffer Solution (1M) Gibco 

Penicillin/ Streptomycin (100x) PenStrep Gibco 

RPMI Medium 1640 1x + GlutaMAXTM Gibco 

2.3 Composition of cell culture media 

Prior to supplementation of Fetal bovine serum (FBS) superior to the medium it was 

heated for 30 min at 56°C to inactivate the complement system. 

R10 RPMI Medium 1640 

 10% FBS 

 10 mM HEPES 

 100 IU/mL penicillin 

 100 µg/mL streptomycin 

 

Freezing medium FBS 

 10% DMSO 

2.4 Cell line 

The K562 cell line is a human erythroleukemic cell line that is highly undifferentiated. 

It was established by Lozzio et al. (1975) from a pleural effusion of a 53-year-old 

woman with a chronic myelogenous leukaemia. In NK cell assays K562 cells are 

highly sensitive targets for killing as they are HLA devoid. 

2.5 Commercial kits 

EZ DNA Methylation-DirectTM Kit Zymo Research 

LIVE/DEAD® Fixable Blue Dead Cells Stain Kit Life technologies 

QIAamp® DNA Blood Mini Kit Qiagen 

QIAquick® PCR purification Kit Qiagen 



Materials 

 

 31 

2.6 Antibodies for flow cytometry 

All conjugated antibodies were stored at 4°C and were mouse anti-human if not 

stated otherwise. Table 2.1 indicates the amount of antibody that is needed to stain 

1x106 cells. 

Table 2.1: Antibodies for flow cytometry 

specificity fluorochrome clone isotype 
µl/106 
cells 

company 

αGalCer loaded 
CD1d dextramer 

allophycocyanin 
(APC) 

n.a. n.a. 5 immudex 

CD1d peridinin chlorophyll 
(PerCP)-eFluor™710 

51.1 IgG2b 5 eBio 

CD3 APC-eFluor® 780 OKT3 IgG2a 2 eBio 

CD3 eFluor® 450 OKT3 IgG2a 2 eBio 

CD3 PerCP-Cy5.5 OKT3 IgG2a 1 eBio 

CD4 APC-eFluor® 780 RPA-T4 IgG1 2 eBio 

CD4 phycoerythrin 
(PE) 

RPA-T4 IgG1 1 eBio 

CD8a APC RPA-T8 IgG1 1 eBio 

CD8a eFluor® 450 RPA-T8 IgG1 0.2 eBio 

CD14 PE-Cy7 61D3 IgG1 1 eBio 

CD14 PerCP-Cy5.5 61D3 IgG1 2 eBio 

CD14 APC-eFluor® 780 61D3 IgG1 2 eBio 

CD16 APC-eFluor® 780 eBioCB16 IgG1 1 eBio 

CD16 PE B73.1 IgG1 1 eBio 

CD19 APC-eFluor® 780 HIB19 IgG1 1 eBio 

CD19 PerCP-Cy5.5 SJ25C1 IgG1 2 eBio 

CD38 PerCP-eFluor™ 710 HB7 IgG1 1 eBio 

CD45RA PE-Cy7 HI100 IgG2b 0.5 eBio 

CD45RO Fluorescein 
isothiocyanate 
(FITC) 

UCHL1 IgG2a 2 eBio 

CD56 Brilliant Violet (BV) 
421™ 

HCD56 IgG1 2 Biolegend 

CD56 FITC MEM188 IgG2a 5 eBio 

CD56 PerCP-eFluor™ 710 CMSSB IgG1 0.5 eBio 

CD57 FITC TB01 IgM 0.5 eBio 

CD107a PE-Cy7 H4A3 IgG1 2 BD 
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specificity fluorochrome clone isotype 
µl/106 
cells 

company 

CD127 PE-Cy7 HIL-7R-M21 IgG1 5 BD 

CD158b2/KIR2DL3 FITC 180701 IgG2A 5 R&D 

CD158e1/KIR3DL1 APC DX9 IgG1 2 Biolegend 

CD159a/ NKG2A PE-Cy7 Z199 IgG2b 5 Beckman 
Coulter (BEC) 

CD159c/ NKG2C PE 134591  IgG1 5 R&D 

CD161 PE-Cy7 HP-3G10 IgG1 5 eBio 

CD197/CCR7 PE 3D12 Rat/ IgG2a 5 eBio 

CD272/BTLA PE MIH26 IgG2a 2 Biolegend 

CD278/PD1 BV421™ EH12.2H7 IgG1 2 Biolegend 

CD314/NKG2D PerCP-eFluor™ 710 1D11 IgG1 1 eBio 

Fixable Viability Dye eFluor™ 506 n.a. n.a. 0.1 eBio 

IFNγ FITC 4S.B3 IgG1 1 eBio 

IL2 PerCP-eFluor™ 710 MQ1-17H12 Rat/ IgG2a 2 eBio 

TNFα PE MAb11 IgG1 1 eBio 

Vα24 FITC C15 IgG1 5 BEC 

Vβ11 PE C21 IgG2a 5 BEC 

n.a.: not applicable 

 

2.7 Oligonucleotides 

All primers were ordered from Eurofins. Lyophilised primers were reconstituted in 

nuclease-free water at a concentration of 10 pmol/µl and stored at -20°C. Table 2.2 

depicts all primers used for the DNA methylation analysis and the estimated PCR 

product size. 

Table 2.2: Primer sequences 

Primer name region Primer sequence 5´ - 3` product size 

IFNγ forward IFNγ 
promoter 

TTGAATGGTGTGAAGTAAAAGTG (23 bp) 
543 bp 

IFNγ reverse CAACCACAAACAARTACTATTAAAAA (26 bp) 

CNS1 forward CNS1 
region 

AGAAAAGGGGGGATTTA (17 bp) 
247 bp 

CNS1 reverse TAACACTCACAACCAAATTATC (22 bp) 
 

2.8 Patients 

Blood samples from healthy individuals were collected from the centre for blood 

donation from the University Hospital Düsseldorf with approval of the local ethics 
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committee. Due to an anonymisation process after the collection no donor 

information concerning age and gender was available. 

Whole blood samples from treatment-naïve patients with a history of intravenous 

drug use were collected from the ward for inpatient detoxification treatment of drug 

addicts or the clinic for opioid maintenance treatment at the Department for Addiction 

Medicine and Addictive Behaviour of the LVR-Hospital Essen, Hospital of the 

University of Duisburg-Essen. Written informed consent was obtained from all 

patients included in this study. The study was approved by the ethics committee of 

the Medical Faculty of the University of Duisburg-Essen. Samples were tested for 

anti-HCV antibodies by a chemiluminescent microparticle immunoassay from Abbott. 

Presence of HCV-RNA was determined by Abott RealTime HCV PCR assay with a 

detection limit of 12 IU/mL. PWID were grouped according to their anti-HCV and 

HCV-RNA status into three groups: 1. anti-HCV seropositive with detectable 

HCV-RNA (HCV-RNA positive), 2. anti-HCV seropositive without detectable 

HCV-RNA (HCV-RNA negative) and 3. Anti-HCV seronegative PWID without 

detectable HCV-RNA (anti-HCV negative). 

In addition, blood samples of anti-HCV positive PWID from North America were 

collected at the infectious diseases or hepatology clinics at Massachusetts General 

Hospital in Boston with local ethics committee approval. Data from these patients 

were kindly provided by Georg M. Lauer and Arthur Y. Kim. 

2.9 Consumables and equipment 

Allegra® X-15R Centrifuge BEC 

Cell culture flask 25 cm2, 75 cm2 Corning 

Cell culture flask 175 cm2 Thermo Scientific 

Cell culture plate (48 well) Greiner 

Cell culture plate (24 well, 96 well) Corning 

Cell scraper  TPP 

Cellstar® tubes 15 mL, 50 mL(Falcon) Greiner 

Centrifuge 5415 D Eppendorf 

Centrifuge 5810R Eppendorf 

Combitips advanced® 5 mL, 10 mL Eppendorf 

Cryo tubes, 2.0 mL Greiner Bio-One 

FACS Canto II BD 
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Filter tips 10 µl, 10/20 µl, 20 µl, 200 µl, 1 000 µl Starlab 

Freezer (-20°C) Bosch 

Agagel mini/maxi gel electrophoresis chamber Biometra 

Ice machine AF100 Scotsman 

Incubator 37°C BBD 6220 Heraeus 

Laminar flow Herasafe Thermo Scientific 

Leucosep™ tubes 50 mL Greiner 

Liquid nitrogen tank Biosafe® MD Cryotherm 

Liquid nitrogen tank HEco Series 800-190 MVE 

Mastercycler nexus GSX1 Eppendorf 

Megafuge 40R Thermo Scientific 

MicroAmp® Optical 8-cap strip Applied Biosystems 

Microwave Küppersbusch 

Microscope Primovert Zeiss 

Microscope TS100 eclipse Nikon 

MoFloXDP BEC 

Mr. Frosty™ Cryo 1°C freezing Container Nalgene 

Multipette® plus Eppendorf 

Multichannel 8 research 300 µl Eppendorf 

Multichannel 12 research plus 30-300 µl Eppendorf 

NanoDrop 2000 Thermo scientific 

Sprout Minicentrifuge, PCR tube centrifuge Biozym 

Syringe filters 0.8 μm Whatman 

Syringe Omnifix® 20 ml Braun 

PCR Tube Strips 0.2 mL Eppendorf 

Pipettes research tips (10 µl, 20 µl, 100 µl, 200 µl, 1 000 µl) Eppendorf 

pipetus® Hirschmann 

Polystyrene Round-Bottom FACS tubes 5 mL BD 

7500 Real time PCR System Applied Biosystems 

Reagent reservoir 50 mL Corning 

Refrigerator  Bosch 

Safe-Lock tube 2 mL eppendorf 

Safe Seal tube 1.5 mL sarstedt 

Scale JL602-G Mettler Toledo 
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Scale ScoutPro Ohaus 

Stripette® 2 mL, 5 mL, 10 mL, 25 mL costar 

Thermomixer comfort Eppendorf 

Thermocycler T3000 Biometra 

Thermocycler Professional TRIO Biometra 

ThermoStat plus eppendorf 

Tissue culture plate (6 well, 12 well)  TPP 

Tissue culture plate 96 well-U VWR 

96 well U bottom tissue culture plate BD 

Ultra-Low temperature freezer (-80°C) U725-G Innova® New Brunswick 

UV-System  Intas 

Vortexer VV3 VWR 

Vortexer L46 Labinco 

Water bath Köttermann 

XP-300 cell counter Sysmex 

2.10 Software and webpages 

Allele Frequency Net Database http://www.allelefrequencies.net 

FlowJo 10.0.7 Tree Star Inc. 

Geneious 7.1.9 Biomatters Ltd. 

Graph Pad Prism 5.04 GraphPad Software, Inc. 

Microsoft Office 2010 Microsoft Corporation 
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3 Methods 

3.1 Standard cell culture methods 

3.1.1 Thawing of cells 

Frozen cells (PBMCs or K562) were taken out of the liquid nitrogen and quickly 

thawed in a 37°C water bath. The cells were transferred into 15 mL tubes containing 

9 mL of prewarmed PBS. Afterwards the cells were centrifuged at 754 x g for 7 min. 

The supernatant was discarded and the pellet resuspended in 10 mL of PBS. 

Following another washing step, the cells were counted with the XP-300 cell counter 

and resuspended in the appropriate amount of media or PBS depending on the 

assay. Cells were either transferred into cell culture flasks or plates for further culture 

whereas cells for ex vivo fluorescence-activated cell sorting (FACS) analysis were 

transferred into 96 well U bottom tissue culture plates or polystyrene round-bottom 

FACS tubes for subsequent staining. 

3.1.2 Freezing of cells 

Cells were centrifuged at 754 x g for 7 min and the pellet was washed once with 

PBS. Afterwards the cell pellet was resuspended in 500 µl of FBS and transferred 

into a 2 mL cryo vial containing 500 µl FBS with 20% dimethyl sulfoxide (DMSO), 

thus cells were frozen in a final concentration of 10% DMSO in FBS. Cells were 

frozen slowly at a rate of approximately 1°C per minute in a Mr. Frosty™ freezing 

container, containing 2-Propanol and placed at -80°C to ensure optimal cell viability. 

Thereafter cells were transferred into the liquid nitrogen tank.  

3.1.3 Splitting of cells 

Cells were maintained in culture at 37°C, 5% CO2
 and 95% humidified atmosphere. 

Cells lines were regularly checked for their confluence and passaged appropriately. 

Therefore, suspension cells were resuspended thoroughly and transferred into a new 

flask containing fresh media. Cell debris was removed whenever necessary by 

centrifugation at 149 x g for 7 min. Moreover, cells lines were regularly checked for 

mycoplasma contaminations (described in 3.4.5) to ensure that all experiments were 

performed with mycoplasma free cells. 
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3.2 Isolation of peripheral blood mononuclear cells (PBMCs) 

Peripheral blood mononuclear cells (PBMCs) were isolated from 

EDTA-anticoagulated whole blood from PWID or buffy coats from healthy individuals 

via Ficoll density centrifugation (Boyum 1968). The isolation of mononuclear cells is 

based on different migration properties of peripheral cells during centrifugation. 

Centrifugation leads to the formation of several layers containing different cell types. 

While the bottom layer contains by Biocoll aggregated erythrocytes the intermediate 

layer contains mostly granulocytes. The mononuclear cell layer is visible as a small 

white ring in between the ficoll and the plasma layer. The interphase above the filter 

contains cells which are not dense enough to pass the Biocoll layer and consists of 

platelets, monocytes and lymphocytes.  

To obtain plasma, for instance, for the analysis of the CMV serostatus anticoagulated 

blood was centrifuged for 15 min at 1455 x g. Plasma was stored at -80°C until 

further analysis. For the isolation of PBMCs, blood was diluted 1:2 with PBS to 

ensure an optimal separation. 35 mL of blood-PBS were pipetted slowly into a 50 mL 

Leucosep™ tube containing 15 mL of Biocoll Separating Solution beneath the filter. 

After a 10 min centrifugation at 1126 x g the interphase, containing the PBMCs was 

transferred into a 50 mL tube and centrifuged at 754 x g for 7 min. To ensure removal 

of residual Biocoll and platelets, cells were washed twice in a total volume of 50 mL 

with PBS. Prior to the second washing step 200 µl cell suspension were transferred 

in a 1.5 mL tube and frozen at -20°C for subsequent DNA isolation (described in 

3.4.1). Furthermore, the cell number was determined with the XP-300 cell counter 

and the cell pellet was resuspended in freezing medium. Cell aliquots were 

transferred into a Mr. Frosty™ freezing container and placed in a -80°C freezer. After 

at least 80 min cryo vials were placed in the liquid nitrogen. 

3.3 Cultivation of PBMCs 

PBMCs were cultured in RPMI 1640 medium supplemented with 10% FBS, 

1% Pen/Strep (10 000 IU/mL Penicillin, 10 000 µg/mL Streptomycin) and 1% HEPES 

Buffer (1 M) at 37°C, 5% CO2 and 95% humidity. 
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3.4 Standard molecular biological techniques 

3.4.1 Isolation of DNA from PBMCs 

Genomic DNA was extracted from frozen PBMCs (aliquoted during 3.2) using the 

QIAamp® DNA Blood Mini Kit. Isolation was performed according to the 

manufacturer’s instructions. In short, PBMCs were thawed and 20 µl of QIAGEN 

protease was added to the cell suspension. Following the addition of 200 µl of 

AL buffer the mixture was homogenised by pulse-vortexing for 15 s. For efficient 

lysis, the mixture was incubated for 10 min at 56°C. After the incubation, 200 µl of 

ethanol were added and the sample was transferred to a QIAamp Mini Spin Column. 

Following a centrifugation for 1 min at 5939 x g the flow through was discarded and 

500 µl of washing buffer AW1 were added. Following another centrifugation, the spin 

column was transferred into a new 2 mL collection tube and washed with 500 µl of 

buffer AW2 at 15682 x g for 3 min. Thus, the DNA bound to the QIAamp membrane, 

was washed twice with two different washing buffers which resulted in improved 

purity of subsequently eluted DNA and ensured removal of contaminants. In order to 

remove all remaining AW2 buffer, the column was placed in a new collection tube 

and centrifuged again for 1 min at 15682 x g. To elute the purified DNA the spin 

column was placed into a 1.5 mL tube. Subsequently 50 µl of nuclease-free water 

were added and after a 1 min incubation the DNA was eluted by centrifugation for 

1 min at 5939 x g. To increase DNA yields the elution step was repeated. Therefore, 

the purified DNA was eluted in a final volume of 100 µl. The DNA concentration was 

determined afterwards via measurement with the NanoDrop 2000. 

3.4.2 HLA typing 

DNA from patients and healthy individuals was isolated as described in 3.4.1. HLA 

class I typing at four-digit resolution-level (HLA-A, HLA-B and HLA-C) was performed 

by the use of sequence-specific oligonucleotides (LABType methodology) provided 

by One Lambda Inc. (Canoga Park, CA), at the Institute for Transfusion Medicine, 

University Hospital Essen. 

3.4.3 KIR typing 

DNA from patients was isolated from PBMCs using Qiagen spin columns (3.4.1) and 

KIR genotyping was performed as previously described (Thöns et al. 2014). In short, 
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by use of sequence-specific oligonucleotides KIR typing was performed on a 

Luminex™ flow analyser platform at the Institute for Transfusion Medicine University 

Hospital Essen. Consistency of genotypes was verified through comparison with all 

published KIR haplotypes on Allele Frequency Net (Gonzalez-Galarza et al. 2015). 

DNA based KIR3DL1 allele subtyping was performed as described by Boudreau et 

al. (2014) with adjusted cycling conditions at the Institute for Transplantation 

Diagnostics and Cell Therapeutics, University Hospital Düsseldorf. KIR3DL1 

subgroups were determined according to the subtyping in null, low or high. 

3.4.4 Measurement of CMV IgG antibodies 

CMV serostatus was determined in the routine diagnostic lab of our institute via a 

quantitative detection of CMV specific IgG antibodies, based on a chemiluminescent 

immunoassay method. Therefore, plasma was tested with the LIAISON® CMV IgG II 

assay and analysed on a LIAISON® XL. 

3.4.5 Detection of mycoplasma in cell cultures 

Cell cultures were regularly checked for mycoplasma contamination. Therefore, cell 

culture supernatants of 3-day old cultures were analysed via an inhouse 

Real-time-Sybr-Green PCR. 

3.5 Flow cytometric analysis 

Performance checks via measurement of CS&T beads were regularly performed to 

ensure an optimal flow cytometer setup of the BD FACS Canto II. Through the 

measurement of single stained cells or BD CompBeads a compensation for each 

individual panel was calculated. BD CompBeads were utilised for panels that 

included rare cell populations or dimly expressed cell surface antigens whereas cells 

were used for panels that comprised only highly expressed antigens. 

3.6 Flow cytometric identification of iNKT cells 

In order to determine iNKT cells through flow cytometry, 3x106 PBMCs were stained 

with antibodies against the invariant T cell receptor and a commercially available 

fluorescently labelled CD1d dextramer loaded with αGalCer. Therefore, PBMCs were 

thawed and transferred to polystyrene round-bottom FACS tubes. Cells were stained 

for 20 min with the APC labelled CD1d dextramer at room temperature (RT) in a total 

volume of 100 µl in PBS. After incubation cells were washed with 2 mL of PBS and 

centrifuged for 5 min at 524 x g. The supernatant was removed by decantation. 
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Afterwards cells were stained with 100 µl of fixable viability dye eFluor506 for 15 min 

at 4°C to distinguish between viable and dead cells in the subsequent analysis. 

Following another washing step, the cells were stained with fluorochrome-conjugated 

antibodies against the invariant TCR chains Vα24 (FITC) and Vβ11 (PE). 

Furthermore, the cell surface antigens CD3 (eFluor450) and CD19 (APC-eFluor 780) 

were stained for 15 min at 4°C. After cell surface staining, cells were washed and live 

cells were fixated at 4°C for 15 min by the addition of 100 µl of cold IC fixation buffer. 

Treatment with IC fixation buffer results in the fixation of cells through cross-linking of 

proteins. Fixated cells were washed with PBS and acquired on a BD FACS Canto II. 

During analysis with FlowJo 10.0.7 CD3+ iNKT cells were defined after the exclusion 

of CD19+ cells due to unspecific binding of the CD1d dextramer to B cells.  

3.7 Phenotypical characterisation of iNKT by flow cytometry 

To determine possible differences in the phenotype of iNKT cells from HCV-RNA 

positive and HCV-RNA negative individuals, PBMCs were quickly thawed and the 

iNKT cell frequency was determined through αGalCer loaded CD1d dextramer 

staining. Therefore, 2x106 PBMCs were transferred into polystyrene round-bottom 

FACS tubes and stained for 20 min with the CD1d dextramer (APC) at RT in a total 

volume of 100 µl in PBS. Afterwards the cells were washed with 2 mL of PBS and 

centrifuged at 524 x g for 5 min. Following the staining of dead cells with fixable 

viability dye eFluor506 prediluted in 100 µl of PBS, for 15 min at 4°C, cells were 

washed again with 2 mL of PBS. PBMCs were stained for the cell surface antigen 

CD19 (APC-eFluor 780) for 15 min at 4°C. After washing with PBS and fixation with 

100 µl of IC fixation buffer for 15 min at 4°C, cells were acquired on a BD FACS 

Canto II. For phenotypic ex vivo analysis of iNKT cells, 3x106-5x106 PBMCs were 

stained in two separate steps with the αGalCer loaded CD1d dextramer (APC) and 

the viability dye as previously indicated. Subsequently PBMCs were stained for 

various cell surface antigens with additional fluorochrome-conjugated antibodies. All 

panels included CD19 (APC-eFluor 780) as a marker to exclude CD19+ B cells. A 

master mix containing all antibodies of interest was prepared for each individual 

panel and staining was performed in a total volume of 100 µl. PBMCs were stained 

for CD38 (PerCP-eFluor 710), CD127 (PE-Cy7), CD161 (PE-Cy7), CD57 (FITC), 

NKG2A (PE-Cy7), NKG2D (PerCP-eFluor 710), KIR2DL3 (FITC), PD1 (BV421) and 

BTLA (PE). After an incubation time of 15 min at 4°C cells were washed with PBS 
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and fixed with 100 µl of IC fixation buffer. Prior to flow cytometric measurement on 

the BD FACS Canto II cells were washed once again with PBS. 

3.8 Expansion of iNKT cells with αGalCer 

PBMCs were thawed and resuspended at a concentration of 2x106 cells/mL in R10. 

The medium was supplemented with 25 IU/mL of recombinant IL2. Afterwards 

PBMCs were stimulated with the exogenous glycolipid αGalCer (1 µg/mL) and 

incubated at 37°C in a humidified atmosphere containing 5% CO2. After 5-7 days half 

of the total volume R10 containing 25 IU/mL recombinant IL2 was added to the 

culture. To determine the expansion potential of iNKT cells and possible changes in 

the activation status 1x106 cells were stained after 10 days of expansion with the 

αGalCer loaded CD1d dextramer (APC) and antibodies against the cell surface 

antigens CD38 (PerCP-eFluor 710) and CD127 (PE-Cy7) after 10 days of expansion 

as stated in 3.7. To evaluate possible changes to the initial situation, ex vivo staining 

was performed as well.  

3.9 Analysis of iNKT cell function via intracellular cytokine staining 

iNKT cell function was analysed ex vivo and after in vitro expansion. On day 10 after 

stimulation with αGalCer 5x105-1x106 cells were transferred into polystyrene 

round-bottom FACS tubes whereas ex vivo analysis was performed with 2x106 

PBMCs. Cells were washed twice with R10 medium at 524 x g for 5 min and then 

stimulated with 1 µg/mL Ionomycin and 10 ng/mL Phorbol myristate acetate (PMA) 

for 5 hours in the presence of Brefeldin A (BFA) (100 ng/mL). For determining the 

degranulation ability an antibody against CD107a (PE-Cy7) was directly added to the 

culture. As a negative control, one well remains unstimulated without the addition of 

PMA and Ionomycin. During the 5 hour incubation period BFA disrupts the structure 

and function of the Golgi apparatus and therefore prevents the transport of vesicles 

from the endoplasmic reticulum to the cell surface. Intracellular vesicles are retained 

in the cell allowing a detection of produced IFNγ and IL2 during the incubation time. 

Afterwards PBMCs were washed with 2 mL of PBS and pelleted at 524 x g for 5 min. 

Following another washing step with 2 mL PBS cells were stained with a APC 

labelled αGalCer loaded CD1d dextramer for 20 min at RT in the dark. Following a 

washing step, cell viability was determined through staining with a fixable viability dye 

eFluor506 for 15 min at 4°C in a total volume of 100 µl to exclude dead cells. Cells 

were washed with 2 mL of PBS at 5 min at 542 x g. Afterwards PBMCs were stained 
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with antibodies against the surface antigens CD4 (PE), CD8 (eFluor450) and CD19 

(APC-eFluor 780) in a total volume of 100 µl for 15 min at 4°C. Cells were washed 

once with PBS and PBMCs were fixed for 15 min at 4°C with 100 µl of IC fixation 

buffer. Cells were permeabilised by two washing steps with 1x Permeabilization 

Buffer. Through permeabilisation small holes were created in the cell membrane that 

allow intracellular staining of cytokines. The cells were stained for intracellular IFNγ 

(FITC) and IL2 (PerCP-eFluor 710) in 100 µl of 1x Permeabilization Buffer for 20 min 

at 4°C. Following another washing step with PBS the cells were resuspended in 

100 µl PBS. Cells were acquired on a FACS Canto II and analysis was performed 

using FlowJo 10.0.7. The percentage of IFNγ+, IL2+, CD107a+ iNKT cells was 

determined by subtracting the background cytokine production from the stimulated 

samples.  

3.10 In vitro activation of iNKT cells  

PBMCs from healthy individuals were stimulated either with IFNα or IFNλ3 or a 

combination of IL12, IL15 and IL18 to address the possible influence of these 

cytokines on the activation status of iNKT cells. The differences between the medium 

control without the addition of cytokines and the stimulated samples were 

determined. Changes in the activation status of iNKT cells was assessed through the 

measurement of the activation marker CD38 by flow cytometry. Therefore, PBMCs 

were quickly thawed and adjusted to a concentration of 2x106 cells/mL in R10. After 

stimulation with IFNα (100 IU/mL) or IFNλ3 (1 000 IU/mL) or IL12/15/18 (10 ng/mL, 

100 ng/mL, 50 ng/mL) or IL12 (10ng/mL) or IL15 (100 ng/mL) or IL18 (100 ng/mL) 

over a period of 24h, 1x106 cells were transferred into polystyrene round-bottom 

FACS tubes. Cells were washed twice with PBS to remove all stimulants. Following 

the αGalCer loaded dextramer staining (APC labelled), cells were stained with the 

fixable viability dye eFluor506 and subsequently with antibodies against the cell 

surface antigens CD19 (APC-eFluor 780) and CD38 (PerCP-eFluor 710). Prior to cell 

acquisition with the BD FACS Canto II cells were fixed.  

3.11 CD1d expressing peripheral cells 

To determine which cells in the periphery express CD1d on the cell surface, PBMCs 

from healthy individuals were analysed. Cell viability was evaluated by staining of 

dead cells via the fixable viability dye eFluor506. Following incubation, cells were 

washed and stained with antibodies against cell surface markers attributed to T cells, 
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B cells, NK cells and monocytes. While T cells, B cells and NK cells reside in the 

lymphocyte gate, monocytes display a different morphology and could be 

distinguished from the other cell types by analysing the forward and sideward scatter 

(FSC/SSC) plot. Cells were stained with antibodies targeting the cell surface antigens 

CD3 (eFluor 450), CD4 (PE) and CD8 (APC) to identify T cells and their subsets. 

Furthermore, NK cells were defined as CD3-/CD14-/CD19- and staining positive for 

CD56 (FITC) while B cells were identified as CD19+ (APC-eFluor 780). In addition to 

determining monocytes by FSC and SSC they were identified after a 15 min 

incubation at 4°C with an antibody against CD14 (PE-Cy7). Following fixation and 

cell acquisition on a BD FACS Canto II cell surface staining for CD1d 

(PerCP-eFluor 710) was analysed for all cell types. 

Furthermore, PBMCs from 13 HCV-RNA positive and 13 HCV-RNA negative PWID 

were analysed for their CD1d expression on monocytes and B cells. Therefore, 

5x105 cells were stained with the fixable viability dye eFluor506 to exclude dead 

cells. Subsequently cells were stained with antibodies against the cell surface 

antigens CD1d (PerCP-eFluor 710), CD14 (PE-Cy7) and CD16 (APC-eFluor 780) to 

define CD1d expressing monocytes. Whereas CD1d expressing B cells were 

determined after the addition of antibodies targeting CD19 (APC-eFluor 780) and 

CD1d (PerCP-eFluor 710) and subsequent incubation for 15 min at 4°C. Following 

cell fixation by IC fixation buffer cells were analysed by flow cytometry. 

3.12 Influence of IFNα treatment on CD1d expression 

PBMCs from healthy individuals were thawed and adjusted to a concentration of 

2x106 cells per mL in R10. Cells were treated with IFNα (100 IU/mL) or IFNλ3 

(1 000 IU/mL) or IL12/15/18 (10 ng/mL, 100 ng/mL, 50 ng/mL) over 24 h. As 

monocytes adhere to plastic cell surfaces, detachment prior to cell staining was 

performed. To avoid enzymatical digestion methods based for instance on trypsin 

that influences the cell viability, monocytes were detached by exposure to a cold 

environment. Following a centrifugation for 5 min at 754 x g the R10 was carefully 

removed. Ice cold PBS was added to the cells and the plate was placed at 4°C for 

15 min to allow detachment. After incubation at 4°C, the remaining attached cells 

were detached by repeatedly pipetting up and down the PBS or cautious cell 

scraping. The level of detachment was visually analysed via an inverse microscope. 

1x106 stimulated cells as well as control cells, that were placed for 24 hours in R10 

medium without further addition of stimulants, were transferred into polystyrene 
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round-bottom FACS tubes. Viable cells were determined through staining with the 

fixable viability dye eFluor506. Subsequently cells were washed with PBS and 

pelleted at 524 x g for 5 min. After discarding the supernatant, the cells were 

incubated with antibodies against CD14 (PE-Cy7), CD16 (APC-eFluor 780) and 

CD1d (PerCP-eFluor 710) for 15 min at 4°C. After an additional washing step cells 

were fixed and monocytes were analysed for their surface expression of CD1d by 

measurement on the BD FACS Canto II. 

3.13 Monocyte depletion experiment 

To investigate the role of monocytes, as a cell type expressing CD1d, in the 

expansion and activation of iNKT cells, PBMCs from 15 healthy individuals were 

expanded over a period of 10 days in the presence or absence of monocytes. 

Monocytes have the ability to adhere to plastic surfaces and this ability was used to 

deplete monocytes from the PBMC culture. PBMCs were adjusted to a concentration 

of 2x106 cells per mL in R10. Cells were plated into two separate tissue culture 

plates, 5x106 cells were transferred into a 12 well plate whereas 2x106 cells were 

transferred into a 24 well plate. After 3 hours of incubation at 37°C monocytes were 

attached to the surface of the tissue culture plate. Non-adherent cells were carefully 

collected from the 12 well plate without scratching the adherent layer whereas the 

second plate remained untouched. Non-adherent cells were counted using a XP-300 

cell counter and 2x106 cells were transferred into a 24 well plate in a total volume of 

1 mL R10. Subsequently untouched PBMCs as well as cells after monocyte depletion 

were stimulated with IL2 (25 IU/mL) and αGalCer (1 µg/mL). After 5 days of culture 

500 µl R10 supplemented with IL2 (25 IU/mL) were added into each well. Frequency 

of iNKT cells as well as their expression of CD38 was analysed by flow cytometry 

directly after thawing and after 10 days of culture. For ex vivo analysis 2x106 cells 

were used for staining while measurement of in vitro expanded cells were performed 

with 1x106 cells. Cell viability (fixable viability dye eFluor506) and the expression of 

the cell surface antigens CD3 (eFluor 450), CD38 (PerCP-eFluor 710), CD19 

(APC-eFluor 780) was determined on iNKT cells after staining with the αGalCer 

loaded CD1d dextramer (APC). Staining was performed as previously described in 

3.7. Following cell fixation, cells were acquired on a BD FACS Canto II.  
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3.14 Isolation and analysis of intrahepatic lymphocytes 

Liver tissue was obtained from patients undergoing liver resection at the University 

Hospital Essen. A perfusion of the resected liver piece was performed at the 

Department of Gastroenterology and Hepatology at the University Hospital Essen. 

Ruth Bröring kindly provided the liver perfusate comprising intrahepatic 

lymphocytes (IHL). The perfusate was transferred into 50 mL tubes and centrifuged 

at 524 x g for 7 min. After the supernatant was carefully decantated, the cell pellets 

were resuspended and combined. PBS was added up to a final volume of 35 mL. For 

IHL isolation 15 mL Bicoll were added into a 50 mL tube and the cell suspension was 

slowly layered over the Biocoll solution. Following a 20 min centrifugation at 1341 x g 

without brakes the mononuclear cell ring was transferred into a new tube. 

Subsequently cells were washed with PBS to remove residual Biocoll and pelleted at 

524 x g for 7 min. Cells were resuspended in PBS and the cell number was 

determined. After another washing step cells were frozen in freezing media as 

described in 3.1.2. For determining intrahepatic iNKT cell frequencies, IHL were 

stained with the αGalCer loaded CD1d dextramer (APC) as previously described in 

chapter 3.7. 

3.15 Flow cytometric analysis of KIR3DL1+ NK cells 

KIR3DL1+ NK from 90 PWIDs either being HCV-RNA positive, HCV-RNA negative or 

anti-HCV negative and 120 healthy individuals were analysed for their IFNγ and 

TNFα secretion as well as CD107a expression. PBMCs were thawed and rested in 

R10 overnight at a concentration of 2x106/mL. In addition, K562 were splitted 1:2 

one-day prior to the stimulation assay to ensure optimal viability of the target cells. 

5x105 PBMCs were incubated with K562 at an effector target ratio of 1:10. As K562 

are HLA devoid, engagement of inhibitory receptors on NK cells is abrogated, NK 

cells are activated and produce cytokines and cytotoxic granules. For the functional 

analysis of NK cells, PBMCs were washed once with R10 and 5x105 PBMCs were 

transferred into a 96 well U bottom tissue culture plate. In parallel K562 cells, the 

NK cell targets, were counted and washed once with R10. After K562 cells were 

transferred, BFA (10 ng/mL) and a CD107a specific antibody (PE-Cy7) was added to 

the culture. Stimulation of NK cells with K562 cells was performed in a total volume of 

250 µl of R10. For each analysed sample one well remained unstimulated, thus 

PBMCs were cultured in the presence of BFA without the addition of K562. After 

incubation at 37°C, 5% CO2 and 95% humidity cells were pelleted during a 5 min 
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centrifugation at 524 x g and washed twice with PBS to remove all residual FBS, 

since proteins in the buffer reduce brightness of the viability staining. Staining for 

15 min at 4°C with fixable viability dye eFluor506 allowed the exclusion of dead cells 

during subsequent analysis. Following another washing step PBMCs were stained 

with PerCP-Cy5.5 labelled antibodies against CD3, CD14 and CD19 to exclude 

T cells, monocytes and B cells. PBMCs were further stained with antibodies against 

the cell surface antigens CD16 (APC-eFluor 780), CD56 (BV-421) and KIR3DL1 

(APC) to identify KIR3DL1 expressing NK cells. A master mix was prepared 

comprising all antibodies against cell surface antigens. Each sample was stained in a 

total volume of 100 µl of antibodies pre-diluted in PBS. Following an incubation at 

4°C for 15 min, PBS was added and cells were centrifuged at 524 x g for 5 min. 

Afterwards cells were fixed through the addition of 100 µl IC fixation buffer for 15 min 

at 4°C. Subsequently cells were washed twice with 1x permeabilisation buffer and 

stained with antibodies against IFNγ (FITC) and TNFα (PE), previously intracellularly 

retained through the addition of BFA to the cell culture. Intracellular cytokine staining 

was performed in a total volume of 100 µl 1x permeabilisation buffer. Following 

incubation for 20 min at 4°C cells were washed with PBS and measured with a BD 

FACS Canto II. Subsequently results were analysed using FlowJo 10.0.7. and NK 

cell effector functions were calculated after the subtraction of the negative control. 

3.16 Flow cytometric analysis of KIR3DL1+ T cells 

To determine the frequency of KIR3DL1 expressing T cells through flow cytometry, 

PBMCs from 15 healthy individuals were thawed and 5x105 PBMCs were transferred 

into a 96 well U bottom tissue culture plate. To exclude dead cells, a viability staining 

with fixable viability dye eFluor506 was performed. Subsequently cells were stained 

by antibodies against the cell surface antigens CD3 (PerCP-Cy5.5), 

CD4 (APC-eFluor 780), CD8 (eFluor450) and KIR3DL1 (APC). Following the 15 min 

incubation at 4°C, cells were washed and fixed by IC fixation buffer. Prior to the cell 

acquisition cells were washed once and the cell pellet was resuspended in PBS. 

3.17 Flow cytometric analysis of NKG2C+ NK cells 

PBMCs from ten healthy individuals, that were included in the methylation analysis, 

were thawed and the NKG2C expression on NK cells was determined. 1x106 PBMCs 

were transferred into polystyrene round-bottom FACS tubes and stained for viable 

cells by the addition of fixable viability dye eFluor506. After an incubation for 15 min 
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at 4°C, cells were washed with 2 mL of PBS. Following a centrifugation for 5 min at 

524 x g cells were stained with antibodies against the cell surface antigens CD3, 

CD14, CD19 (all PerCP-Cy5.5), CD16 (APC-eFluor 780), CD56 (BV-421), KIR3DL1 

(APC) and NKG2C (PE). 

3.18 CpG methylation analysis 

To determine possible epigenetic imprinting leading to differences in IFNγ production, 

the methylation pattern of the IFNG region including the IFNG promoter and the 

conserved noncoding sequence (CNS)1 region localised 4.2 kb upstream from the 

transcriptional start site of IFNG was analysed. CD4+ T cells, TH1 cells and NK cells 

from healthy individuals were analysed for their DNA methylation pattern in the two 

selected regions. 

3.19 Cell sort of naïve CD4+ T cells, TH1 cells and NK cells for methylation 

analysis 

The percentage of methylated CpGs of CD4+ T cells, TH1 cells and NK cells was 

determined following FACS sorting of these cell populations. Therefore, frozen 

PBMCs from healthy individuals were thawed quickly in a 37°C water bath. The cells 

were transferred into 15 mL tubes containing 9 mL of prewarmed sterile filtered PBS. 

Afterwards the cells were centrifuged at 233 x g for 10 min. The supernatant was 

discarded and the pellet was resuspended in 10 mL of sterile PBS. Following another 

washing step, cells were counted and 1x107 cells were further used for staining. Cells 

were stained for 15 min at RT either with antibodies against the cell surface antigens 

CD3 (APC-eFluor 780) and CD56 (PerCP-eFluor 710) to define NK cells as CD3-

CD56+ or with CD3 (PerCP-Cy5.5), CD4 (APC-eFluor 780), CD45RA (PE-Cy7), 

CD45RO (FITC), CCR7 (PE) to investigate naïve CD4 T cells and TH1 cells. While 

both subsets express the T cell markers CD3 and CD4 they could be divided by their 

expression of CCR7, CD45RO as well as CD45RA into CCR7+ CD45RO- CD45RA+ 

naïve CD4+ T cells and CCR7- CD45RO+ CD45RA- TH1 cells. Subsequently cells 

were washed twice with sterile PBS and filtered prior to FACS based cell sorting 

using CellTrics® filters with a diameter of 50 µm. Cells were sorted through a BEC 

MoFlo XDP at the Core Flow Cytometry Facility of the University Hospital Düsseldorf.  

3.20 Cell sort of KIR3DL1- and KIR3DL1+ NK cells for methylation analysis 

To determine the methylation pattern of KIR3DL1 negative and positive NK cells, 

frozen PBMCs were thawed as described in 3.19. PBMCs from ten healthy 
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individuals were stained in 500 µl sterile PBS for 15 min at RT using 

0.5 µl/1x106 cells of live/dead fixable blue dead stain to distinguish viable from dead 

cells. Afterwards PBMCs were washed with 2 mL of sterile PBS and pelleted at 

233 x g for 10 min. PBMCs were stained for surface antigens CD16 (PE), CD56 

(PerCP-eFluor 710), KIR3DL1 (APC) and CD3/CD14/CD19 (all APC-eFluor 780) for 

15 min at 4°C. The concentration of CD56 was adjusted to the detection with MoFlo 

XDP as the intensity of PerCP-eFluor 710 was dimmer on this cytometer, thus 2 µl 

instead of 0.5 µl were used per 1x106 cells, which allowed reliable detection of 

NK cells. Thereafter, cells were washed twice with 2 mL of sterile PBS and filtered 

before detection to avoid cell aggregates. Viable, single, lymphocytes which were 

CD3- CD14- CD19- and CD56dim NK cells were positively selected and further 

subdivided by their expression of KIR3DL1 into KIR3DL1- and KIR3DL1+. Sorting 

was performed by a BEC MoFlo XDP. 

3.21 Bisulfite treatment of DNA 

Sorted global NK cells, naïve CD4+ T cells, TH1 cells as well as KIR3DL1- and 

KIR3DL1+ CD56dim NK cells were pelleted and dissolved in 12 µl of nuclease-free 

water. Ex vivo FACS sorted cells were treated with proteinase K and bisulfite 

converted by using the EZ DNA Methylation-Direct™ Kit according to the 

manufactures instruction. Through bisulfite treatment unmethylated cytosines were 

converted into uracil and could be detected as thymidin during sequencing while 

methylated cytosines were not affected by the treatment and remain as cytosine in 

the sequence (principle of bisulfite sequencing is depicted in figure 3.1). Sorted cells 

were digested with proteinase K. Therefore, 12 µl sample were mixed in a PCR tube 

with 13 µl digestion buffer (2x) and 1 µl proteinase K and incubated for 20 min at 

50°C. Followed by a 5 min centrifugation at 9279 x g, 20 µl of the supernatant were 

used for the subsequent bisulfite conversion. The supernatant was mixed with 130 µl 

of CT Conversion Reagent and placed into the thermocycler. During 8 min at 98°C 

the proteinase K was inactivated and the DNA is thermally denaturated. During an 

incubation at 64°C for 3.5 hours the single stranded DNA was converted. Afterwards 

the sample could be stored up to 20 hours at 4°C. Following incubation 600 µl of 

M-binding buffer were added into a Zymo-Spin™ IC Column and the sample was 

mixed carefully with the buffer through inverting. While the converted single stranded 

DNA was bound to the membrane, centrifugation for 30 seconds at 15682 x g 

removed sodium bisulfite from the sample. After discarding the flow through the DNA 
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was washed with 100 µl of M-Wash Buffer to ensure complete removal of residual 

sodium bisulfite. The last step of the conversion process was the desulfonation into 

uracil by the addition of 200 µl of M-Desulphonation Buffer to the membrane bound 

DNA. The incubation period of 20 min at RT was followed by a centrifugation for 

30 seconds at 15682 x g. Converted DNA was washed twice with 200 µl of M-Wash 

buffer before elution of the DNA by the direct addition of 10 µl M-Elution Buffer onto 

the membrane and subsequent centrifugation for 30 seconds at 15682 x g. Bisulfite 

converted DNA was stored at -80°C until further usage.  
 

 

Figure 3.1: Principle of bisulfite sequencing 

Bisulfite sequencing is a reliable method to distinguish methylated from unmethylated cytosines in 
CpGs of the region of interest. Unmethylated cytosines in a single stranded DNA are converted by 
bisulfite treatment into uracil and are detectable as thymine in the subsequent PCR amplification and 
sequencing (positions 8,11,12,14,18). However, methylated cytosines are not converted and remain 
as cytosine in the sequence (position 22). Therefore, through sequencing methylated CpGs can be 
distinguished from unmethylated CpGs and by calculating the ratio between cytosine and thymine the 
percentage of methylation can be determined. Furthermore, evaluation of cytosines outside the CpG 
sites can give insight into the efficacy of the bisulfite conversion, as they should be completely 
converted into thymine. The exemplary Sanger sequencing shown here provides proof of a complete 
conversion process and a high methylation of the analysed CpG. For quantitative instead of qualitative 
results from Sanger sequencing next generation sequencing was used to determine the frequency of 
methylation at each individual CpG site.  

3.22 PCR amplification of bisulfite converted DNA 

1 µl of bisulfite converted DNA was amplified using Platinum Taq DNA Polymerase 

and the composition of the PCR master mix is shown in table 3.3. The PCR reaction 

was performed in a total volume of 25 µl as the amplification protocol states (table 

3.1 and table 3.2). Primer combinations used for the PCR are shown in table 2.2. 

Successful amplification of the bisulfite converted DNA was verified by gel 

electrophoresis. Therefore, 5 µl of PCR product were mixed with 1 µl of DNA loading 

dye (6x) and applied to a 1.5% agarose gel that comprised 5 drops of 0.025% 

ethidium bromide solution. The gel electrophoresis was performed in 

1x Tris-Borate-EDTA buffer for 60 min at 120 V, 400 milliampere. The 247 bp (CNS1) 
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or 543 bp (IFNG promoter) sized PCR products were evaluated in comparison to the 

100 bp and 1 kb base pair DNA ladder. 

Table 3.1: PCR amplification protocol for the CNS1 region 

step temperature duration cycles 

initial denaturation 94°C 2 min 1 

denaturation 94°C 0.5 min  

annealing 52°C 0.5 min 45 

elongation 72°C 1 min  

final elongation 72°C 10.0 min 1 

  

Table 3.2: PCR amplification protocol for the IFNG promoter 

  

 

 

  

 
 

Table 3.3: PCR Master mix 

component volume  

Nuclease-free water 19.9 µl 

10 x Taq PCR Buffer (containing 15 mM MgCL2) 2.5 µl 

dNTP mix, 10 mM each 0.5 µl 

Forward-primer 10 pmol/µl 0.5 µl 

Reverse-primer 10 pmol/µl 0.5 µl 

Platinum Taq DNA Polymerase 0.1 µl 

Bisulfite treated DNA template 1 µl 

3.23 PCR purification 

After successful PCR amplification was confirmed, the PCR product was purified 

before sending it to Sanger sequencing. To remove impurities from the PCR product 

like primers, unused nucleotides and salts a PCR purification of amplified CNS1 and 

IFNG products was performed according to the Qiagen PCR purification kit protocol. 

In short, 200 µl PB binding buffer and 20 µl PCR product was added into the spin 

column. Nucleic acids are able to bind to the silica membrane of the spin column. 

Therefore, all other ingredients could be discarded after a centrifugation for 

30 seconds at 15682 x g. The DNA was washed with 750 µl PE buffer and the 

flow-through was discarded after 30 seconds of centrifugation at 15682 x g. An 

step temperature duration cycles 

initial denaturation 94°C 2 min 1 

denaturation 94°C 0.5 min 

45 annealing 50°C 0.5 min 

elongation 72°C 1 min 

final elongation 72°C 10.0 min 1 
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additional centrifugation for 1 min was performed to remove residual ethanol 

comprised in the binding buffer. Afterwards the column was placed in a second 

1.5 mL microcentrifuge tube and 30 µl EB buffer were added directly to the silica 

membrane. Followed by a 1 min incubation at RT the DNA was eluted through a 

centrifugation for 1 min at 15682 x g. The concentration of the purified DNA was 

measured with a Nano Drop at 260 nm since bisulfite converted DNA is A, U and T 

rich, the absorption resembles the absorption of RNA.  

3.24 Sanger Sequencing  

To confirm sufficient bisulfite conversion efficacy the purified DNA product was 

analysed by Sanger sequencing. Therefore, 50 ng of purified DNA in a total volume 

of 15 µl nuclease-free water was mixed with 2 µl (10 pmol/µl) of the specific primer 

for each of the analysed regions separately. The IFNG promoter region and the 

CNS1 region were both sequenced with the forward as well as the reverse primer. 

The sequencing was performed by Eurofins and analysed with Geneious 7.1.9.  

3.25 DNA methylation analysis of the IFNG locus by Next generation 

sequencing 

After confirmation of efficient bisulfite conversion, PCR sequencing of six CpG sites 

of the CNS1 region localised 4.2 kb upstream from the transcriptional start site of 

IFNG and five CpG sites in the IFNG promoter was performed by next generation 

sequencing (NGS). Therefore, the IFNG and CNS1 PCR products were sequenced, 

performed by Seq-IT GmbH & Co. KG in Kaiserslautern. Raw data were provided 

from forward and reverse reads. Data were evaluated through Geneious 7.1.9. The 

mean methylation was calculated from every single CpG site from all available reads. 

Per sample and region between 166 503 and 237 445 reads were used for 

calculation. 

3.26 Statistical analysis 

Data were examined for normal distribution and followed by an equivalent outlier test. 

For the comparison of two groups either a parametric or nonparametric t test was 

performed. For the calculation of statistical significance between groups displaying 

paired observations either the Wilcoxon matched pairs test or the paired t test was 

used depending on the distribution of the data. Three or more groups were compared 

by one-way analysis of variance (ANOVA) or a Kruskal-Wallis test. Linear regression 

analysis was performed to determine the correlation of two parameters. 
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P-values ≤0.05 were considered to be statistically significant. Statistical analyses 

were performed using GraphPad Prism 5.04 software (GraphPad Software, San 

Diego California USA). 
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4 Results 

4.1 iNKT cells in HCV infection 

Initially, iNKT cells have been studied intensively in mice utilising either antibodies 

against the T cell receptor chains Vα14 and Vβ8.2, Vß7 and Vß2 or αGalCer loaded 

CD1d dextramers. Since iNKT cells recognise αGalCer presented by the MHC 

class I like molecule CD1d, dextramers of αGalCer loaded CD1d can be used for the 

analysis of iNKT cells. Therefore, human PBMCs were stained for iNKT cells utilising 

a commercially available fluorescently labelled αGalCer loaded CD1d dextramer. By 

flow cytometric analyses iNKT cells were identified after exclusion of dead cells and 

doublets. CD1d dextramer+ NKT cells were congruent with the described human 

invariant T cell receptor chains expressed by iNKT cells as they solely express Vα24 

in combination with Vβ11 (figure 4.1). Further analysis of iNKT cells in this study 

were focused on invariant CD1d restricted cells that were detectable via a αGalCer 

loaded CD1d dextramer. 

 
 

Figure 4.1: Identification of human iNKT cells 

To determine iNKT cells using flow cytometry, lymphocytes were identified and dead cells, doublets as 
well as CD19+ B cells were excluded. iNKT cells were identified as CD1d dextramer+ cells and 
subsequently analysed for the expression of the T cell receptor chains Vα24 and Vβ11. 

In contrast to iNKT cells, identification of non-invariant NKT cells, that are 

characterised by a diverse TCR repertoire, with existing methodology is challenging. 

Non-invariant NKT cells are commonly defined by their CD1d-restriction and the 

absence of the invariant TCR chains, as a unique surface marker to distinguish them 

from iNKT cells is still lacking (reviewed in Rhost et al. 2012). Therefore, the analysis 

of non-invariant NKT cell was not included in this study. 



Results 

 

 54 

4.1.1 Frequency of iNKT cells in HCV-RNA positive and HCV-RNA negative 

PWID 

The role of iNKT cells for the outcome of HCV infection is poorly defined and 

decreased iNKT cell frequencies have been reported in chronically HCV infected 

patients, however, contradicting reports exist. Therefore, iNKT cell frequencies in 

HCV infection were re-evaluated in a high-risk cohort of PWID. Since injection drug 

use represents the most important risk factor for HCV infection in industrialised 

countries as Germany, we utilised this cohort to comparatively study PWID 

developing chronic infection and individuals that spontaneously resolve HCV 

infection. In this study, a total of 61 individuals with a history of injection drug use 

were analysed including 28 HCV-RNA positive and 33 anti-HCV positive PWID with 

resolved HCV infection (HCV-RNA negative). Significantly reduced NKT cell 

frequencies have been observed early in HIV infection (Fernandez et al. 2014). 

Therefore, no HCV-HIV coinfected individuals were included to focus on HCV 

mediated effects. Patient characteristics of individuals included in the analysis of 

iNKT cells are summarised in table 4.1. 

Table 4.1: Patient characteristics of PWID included in the iNKT cell study  

complete cohort HCV-RNA positive HCV-RNA negative 

n 28 33 
mean age in years (range) 35 (22-55) 39 (22-53) 
male (%) 23 (82.1%) 30 (90.1%) 
HCV genotype 1 (%) 12(42.9%) n.d. 
HCV genotype 3 (%) 12(42.9%) n.d. 
other HCV genotypes or unknown 

(%) 4 (14.3%) n.d. 

median viral load in IU/mL (range) 582900 (615-34 010 000) n.d. 
anti-HIV positive (%) 0 (0%) 0 (0%) 
n.d. not determined 

iNKT cell frequencies in PWID ranged from undetectable to 0.23% and no significant 

difference in frequency could be observed between PWID with resolved HCV 

infection and HCV-RNA positive individuals. The median frequency was slightly 

higher in the HCV-RNA positive group with 0.032% compared to 0.017% in the 

HCV-RNA negative group (figure 4.2 A). Furthermore, a weak nonsignificant 

correlation between age and iNKT cell frequencies was observed in our cohort 

(p=0.083, r2=0.050, figure 4.2 B). In addition, iNKT cell frequencies were not 

associated with the gender of patients, even though this analysis was limited due to 
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the small percentage of female PWID in this cohort. Moreover, no association of 

iNKT cell frequencies and viral load in HCV-RNA positive individuals could be 

determined (data not shown). 
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Figure 4.2: iNKT cell frequencies in HCV-RNA positive and HCV-RNA negative PWID 

iNKT cell frequencies were determined via a CD1d dextramer staining of PBMCs from 28 HCV-RNA 
positive and 33 HCV-RNA negative individuals. Displayed is the percentage of iNKT cells from single, 
viable lymphocytes after the exclusion of CD19+ B cells. To apply a logarithmic scale the limit of 
detection was defined as 0.0001% for individuals with no measurable iNKT cells frequencies. The 
dotted line at 0.01% represents the cut off for PWID that were included in further analysis. The p-value 
was calculated by nonparametric Mann Whitney test and the median is depicted (A). Moreover, the 
frequency of iNKT cell was correlated with the age of each analysed PWID independent of their HCV 
status. Linear regression was performed and the p-value as well as the R2 is indicated (B). 

Since iNKT cell were not measurable in all analysed individuals only individuals with 

previously detectable iNKT cells above the defined cut off of 0.01% were further 

included in phenotypical as well as functional analysis. 

4.1.2 Phenotype of iNKT cells in HCV-RNA positive and HCV-RNA negative 

PWID 

In HCV infection, various NK cell phenotypes have been repeatedly associated with 

HCV infection outcome. Moreover, differences in expression of differentiation or 

exhaustion markers on T cells have been linked to HCV infection outcome. Since 

elaborate phenotypical analyses of iNKT cells that share both characteristics of NK 

and T cells in HCV infection are lacking we aimed to comparatively analyse the 

phenotype of iNKT cells from HCV-RNA positive and HCV-RNA negative PWID. 

iNKT cells were defined as CD1d dextramer positive lymphocytes and were analysed 

for their expression of markers commonly associated with the NK cell linage like 

CD161, receptors of the CD94/NKG2 family and KIR2DL3 exemplifying the receptors 

of the KIR family. Furthermore, CD161 has been initially described as a NKT defining 

cell marker. In addition, to addressing the expression of the exhaustion marker PD1, 

that has been linked to T cell exhaustion in HCV infection, the expression of several 
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differentiation as well as activation markers such as CD57, CD127 and CD38 were 

analysed on iNKT cells (figure 4.4). By flow cytometric analysis lymphocytes were 

identified and subsequently dead cells as well as doublets were excluded. Following 

an exclusion of CD19+ B cells due to unspecific staining of B cells by the dextramer, 

iNKT cells were defined. The gating strategy for iNKT cells and selected surface 

antigens CD38, PD1 and NKG2A, is shown in figure 4.3. 
 

 
 

Figure 4.3: Representative gating strategy for iNKT cells in PWID  

Representative gating strategy of the analysis of iNKT cells from chronically HCV infected PWID and 
PWID with spontaneously resolved HCV is depicted. Cryopreserved PBMC were thawed and iNKT 
cells were defined through CD1d dextramer staining as CD19-, live, single lymphocytes. Subsequently 
the frequency of iNKT cells expressing NKG2A, NKG2D, KIR2DL3, CD38, CD127, CD57, PD1 and 
BTLA on iNKT cells were determined. An Exemplary gating for CD38, NKG2A and PD1 is shown. 

As previously reported, high frequencies of CD161+ cells in the iNKT cell population 

could be confirmed with a median frequency of 85% (Lee et al. 2002). Expression of 

the NK cell receptors NKG2A, NKG2D and KIR2DL3 on iNKT cells, previously 

described to be differentially regulated on NK cells in HCV infection, did not 

significantly differ between groups. Interestingly, out of the nine tested receptors the 

activation marker CD38 was significantly higher expressed on iNKT cells of 

HCV-RNA positive PWID (mean: 24.5%) compared to HCV-RNA negative PWID 

(mean: 8.9%; p=0.0008). Despite this activated phenotype in PWID with chronic HCV 

infection, iNKT cells expressed high levels of CD127 and predominantly lacked 

CD57, irrespective of the infection status. Moreover, no difference in expression of 

the exhaustion markers PD1 and BTLA could be observed between groups. 
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Figure 4.4: Phenotypical comparison of iNKT cells from HCV-RNA positive and 
HCV-RNA negative PWID 

Expression of the NK cell markers CD161, NKG2A, NKG2D and KIR2DL3 (lower panel) as well as the 
differentiation markers CD127, CD57 (middle panel) and markers associated with exhaustion and 
activation like CD38, PD-1 and BTLA (top panel) were analysed by flow cytometry on iNKT cells. In 
total 13 HCV-RNA positive and 13 HCV-RNA negative PWID were analysed for their iNKT cell 
phenotype. Samples size between panels varies due to limitation in the availability of patient samples. 
If no or extremely low expression was observed as this was the case for CD57 and KIR2DL3 or if 
analysis was performed as proof of principle which holds true for CD161, data acquisition was 
discontinued, accounting for further differences in sample size. P-values were calculated by 
nonparametric Mann Whitney test and the median is depicted. 

To determine if this activated phenotype is solely seen on iNKT cells, CD38 

expression was analysed on CD1d dextramer negative lymphocytes. No difference in 

CD38 frequency could be observed between HCV-RNA positive and negative PWID 

on non iNKT lymphocytes (appendix figure 6.1). This indicates that solely iNKT cells 

in chronic HCV infection are in a pre-activated state. 

Four different human iNKT cell subsets have been previously described in the 

periphery, which are defined by the expression of the cell surface antigens CD4 and 

CD8. To address a possible change in iNKT cell subset distribution during HCV 

infection CD4+/CD8– (CD4+), CD4–/CD8+ (CD8+), double negative (DN) and double 

positive (DP) iNKT cells were determined in HCV-RNA positive and HCV-RNA 

negative PWID. However, the observed frequency of each subset was similar to 

previously described proportions in healthy individuals. Moreover, iNKT cell subset 

distribution did not significantly differ between HCV-RNA positive and HCV-RNA 

negative PWID (figure 4.5). 
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Figure 4.5: iNKT cell subset distribution in HCV-RNA positive and HCV-RNA negative 
PWID 

iNKT cell subset distribution was analysed in 14 HCV-RNA positive and 10 HCV-RNA negative PWID. 
Frequency of CD4+/CD8– (CD4+), CD4–/CD8+ (CD8+), double negative (DN) and double positive (DP) 
iNKT cells was determined. Statistical analysis revealed no associations and the mean ± standard 
error of mean (SEM) is depicted. 

4.1.3 Functional analysis of iNKT cells in HCV-RNA positive and HCV-RNA 

negative PWID 

Since iNKT cells of chronically HCV infected individuals displayed an activated 

phenotype, further analysis is needed to investigate if this translates into different 

functional properties of iNKT cells from HCV-RNA positive and HCV-RNA negative 

PWID. The proliferation potential of iNKT cells was determined by treatment of 

PBMCs with αGalCer, an exogenous ligand for iNKT cells. Robust iNKT cell 

expansion was induced after 10 days of culture in both groups. Independent of HCV 

infection status, iNKT cell frequencies were significantly increased after in vitro 

stimulation compared to iNKT cell frequencies ex vivo (****p≤0.0001, figure 4.6 A). 

The expansion potential of iNKT cells was calculated as fold change of iNKT cell 

frequencies determined ex vivo and after in vitro expansion. A slight tendency 

towards an increased expansion capacity of iNKT cells from HCV-RNA positive 

individuals could be observed in comparison to HCV-RNA negative PWID (p=0.1662, 

figure 4.6 B). Expansion of iNKT cells in both HCV-RNA negative PWID and PWID 

spontaneously resolving HCV infection was significantly associated with upregulation 

of the activation marker CD38 and downregulation of CD127 (figure 4.6 D+E). 

Downregulation of CD127 has been associated with T cell activation in HIV infection 

(Benito et al. 2008). Therefore, the determined iNKT cell phenotype of CD38high 

CD127low indicates that iNKT cells become highly activated during expansion with 

αGalCer irrespective of infection outcome.  
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Figure 4.6: Proliferation potential of iNKT cells from HCV-RNA positive and HCV-RNA 
negative PWID 

PBMCs from 13 HCV-RNA positive and 13 HCV-RNA negative PWID were analysed for their 
proliferation potential. Frequencies of iNKT cells were determined ex vivo and after 10 days of in vitro 
expansion with IL2 and αGalCer (A). Fold change of CD1d dextramer+ iNKT cells between day 0 and 
day 10 was calculated (B). Furthermore, the frequency of CD38+ iNKT cells and CD127+ iNKT cells 
was determined after expansion (C+D). For statistical analysis Wilcoxon’s matched-pairs signed rank 
test was used (****p≤0.0001; A). For comparison of differences in iNKT fold change the p-value was 
calculated by nonparametric Mann Whitney test (B). One-way ANOVA was used for the statistical 
comparison of four groups (C and D **p≤0.01, ***p≤0.001). 

As the distinct activated phenotype observed in chronic HCV infection had only 

marginal impact on the proliferation capacity of iNKT cells, functional characteristics 

of iNKT cells of patients with chronic and resolved HCV infection were further 

addressed. iNKT cells are characterised by their ability to rapidly produce cytokines 

such as IFNγ or IL2 and the release of cytotoxic granules upon activation. Expression 

of CD107a, a marker for degranulation and cytotoxicity, as well as the production of 

IFNγ and IL2 of iNKT cells was analysed in 14 HCV-RNA positive PWID and 13 

HCV-RNA negative PWID with resolved HCV infection in response to stimulation with 

PMA and Ionomycin. The function of iNKT cells was examined either ex vivo or after 

10 days of in vitro expansion (figure 4.7). Ex vivo functional analysis revealed a high 

IFNγ production potential of iNKT cells while the degranulation ability was low and 

only detectable in approximately half of the analysed patient samples. However, 
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independent of HCV status, iNKT cells produced similar levels of IFNγ, IL2 and 

CD107a. Interestingly, the potential of iNKT cells to produce IL2 as well as their 

degranulation ability determined by CD107a expression was significantly improved 

by stimulation of PBMCs with αGalCer over 10 days. Even though no significant 

difference in iNKT functionality regarding production of IFNγ, IL2 and expression of 

CD107 could be observed, there was a slight tendency towards increased IFNγ 

production in HCV-RNA positive individuals after in vitro expansion. 
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Figure 4.7: Cytokine profile of iNKT cells from HCV-RNA positive and HCV-RNA 
negative PWID 

The frequency of IFNγ+, IL2+ and CD107a+ iNKT cells in 14 PWID with chronic or 13 with resolved 
HCV infection was measured via intracellular cytokine staining and flow cytometric analysis. Samples 
were either stimulated with PMA (10 ng/mL)/Ionomycin (1 µg/mL) for 5 hours in the presence of 
BFA (100 ng/mL) ex vivo (C) or their functionality was addressed after 10 days of expansion with 
αGalCer. Samples with less than 10 detectable iNKT cells were excluded from the ex vivo analysis. 
P-values were calculated using a nonparametric Mann Whitney test and the median is depicted. 

4.1.4 Combination of interleukins induces CD38 expression on iNKT cells in 

vitro 

ISGs induced by type I or type III IFNs as IFNα or IFNλ3 are upregulated in HCV 

infected liver and increased endogenous production of IFNλ by HCV infected cells 

has been reported (Marukian et al. 2011, Park et al. 2012). Although IFNs mediate 

antiviral effects, chronic HCV infection has been associated with increased IFNα 
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levels. Continuous induction of ISGs seen in chronic infection lead to decreased 

responsiveness to PEGylated IFNα based therapies (Sarasin-Filipowicz et al. 2008). 

Therefore, it was addressed if IFNα or IFNλ have a direct influence on iNKT cells. 

Moreover, potential effects of a combination of IL12, IL15 and IL18, previously 

reported to activate NK cells, were assessed. PBMCs from healthy individuals were 

stimulated over a period of 24 hours and the frequency of CD38 as a marker for 

activation was determined on iNKT cells by flow cytometry. While no difference in 

activation of iNKT cells could be observed in response to IFNα or IFNλ3 stimulation 

(figure 4.8 A+B), treatment with a combination of IL12, -15 and -18 led to a significant 

increase in CD38+ iNKT cells (p=0.0030, figure 4.8 C). Moreover, an additive effect of 

IL12 and IL15 could be observed (figure 4.8 D). In contrast to NK cells, IL18 had no 

effect on iNKT cell activation and the observed increase was solely mediated by IL12 

and IL15. However, this IL12, IL15 mediated activation was not unexpected since 

NKT cells harbour various NK cell properties. 
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Figure 4.8: Influence of IFNα, IFNλ3 and IL12, -15 and -18 on iNKT cell activation 

PBMCs from healthy individuals were stimulated over 24 hours with or without 100 IU IFNα/mL (A) 
and the expression of CD38 on iNKT cells was determined by flow cytometry. Furthermore, PBMCs 
were stimulated for 24 hours in media supplemented with IFNλ3 (1 000 IU/mL) (B), IL12 (10ng/mL), 
IL15 (100 ng/mL) or IL18 (100 ng/mL) alone or in combination (10 ng/mL, 100 ng/mL, 50 ng/mL) 
(C+D). Activation of iNKT cells was determined by the measurement of the frequency of CD38+ iNKT 
cells. Significance was calculated by paired t-test and comparison of more than two groups was done 
using One-way ANOVA **p≤0.01. 
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4.1.5 Expression of the iNKT cell ligand CD1d is independent of HCV infection 

outcome 

In HIV infection CD1d is downregulated by the Nef protein and this downregulation is 

associated with reduced iNKT cell activation (Chen et al. 2006). Since we observed 

an increase in iNKT cell activation displayed by CD38 expression we hypothesised 

that in chronically HCV infected patients CD1d might be upregulated in comparison 

to patients with resolved infection. To identify cells, capable of presenting glycolipids 

to iNKT cells in the periphery, PBMCs from five healthy individuals were analysed by 

flow cytometry for their cell surface expression of CD1d. In line with previous reports, 

suggesting that CD1d is most prominently expressed on antigen presenting cells 

(Roark et al. 1998), monocytes showed the highest CD1d expression of all analysed 

cells in the periphery. Moreover, CD1d expression could be detected in B cells while 

T and NK cells lacked CD1d on the cell surface (figure 4.9 A). Since B cells and 

monocytes displayed detectable CD1d on their surface, both cell types were 

subsequently studied in HCV infected individuals. For that purpose, CD1d expressing 

monocytes and B cells from 13 PWID with chronic HCV infection and 13 PWID with 

resolved infection were identified by flow cytometry. However, the analysis between 

HCV-RNA positive and HCV-RNA negative individuals revealed no significant 

differences in the expression of CD1d neither on monocytes nor on B cells (figure 

4.9 B+C).  
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Figure 4.9: Expression of CD1d on peripheral cells  

CD1d expression on CD3+ T cells, CD56+ NK cells, CD19+ B cells and CD14+ monocytes from 
five healthy individuals was determined. As monocytes have a different cell morphology they were first 
identified through the FSC/SSC scatter plot as a population distinct from lymphocytes because of their 
increased size. Afterwards populations were defined by their expression of cell surface markers 
specific to the cell type (A). One-way ANOVA **p≤0.01 ****p≤0.0001 was used to analyse statistical 
significance. Since monocytes displayed the highest CD1d mean fluorescence intensity (MFI) in the 
periphery, PBMCs from 13 chronically HCV infected PWID and 13 PWID with spontaneously resolved 
HCV infection were analysed for CD1d MFI (B). Moreover, CD1d MFI on B cells was examined 
between groups. Unpaired t-test was performed to determine significance and the median is depicted. 
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4.1.6 IFNα mediates upregulation of the iNKT cell ligand CD1d in vitro 

While no direct effect of IFNα and IFNλ stimulation on iNKT cell activation could be 

detected, IFNs might mediate other effects and thus indirectly contribute to iNKT cell 

activation. Classical MHC class I expression in the hepatic compartment is low 

compared to other tissues, whereas hepatocytes express high levels of CD1d (Agrati 

et al. 2005). Since IFNs are upregulated in HCV infected liver we hypothesised that 

they might contribute to differences in CD1d expression. Therefore, the influence of 

IFNα, IFNλ or the combination of IL12, -15 and -18 on CD1d expression was 

determined. Expression analysis was focused on monocytes as they displayed the 

highest CD1d expression in the periphery. No influence on CD1d expression could 

be detected after 24 hours of stimulation with IFNλ or the combination of IL12, -15 

and -18 (figure 4.10 C+D). Interestingly, it could be demonstrated that CD1d is 

significantly increased on monocytes upon IFNα treatment (p=0.0120 figure 4.10 B), 

suggesting that high IFNα levels in the liver might mediate upregulation of CD1d on 

hepatocytes and subsequently lead to the activation of iNKT cells in the liver. 

 

Figure 4.10: Influence of IFNα, IFNλ3 and IL12, -15 and - 18 on CD1d expressing 
monocytes 

PBMCs from healthy individuals were stimulated for 24 hours in media supplemented with either 
100 IU IFNα/mL or IFNλ3 (1 000 IU/mL) or IL12/15/18 (10 ng/mL, 100 ng/mL, 50 ng/mL). The influence 
of the treatment on the median fluorescence intensity of CD1d on monocytes was determined. 
Significance was calculated by paired t-test. 

4.1.7 Monocytes influence the expansion and activation of iNKT cells 

As monocytes were the most prominent cell type in the periphery expressing CD1d 

their impact on iNKT cell expansion and activation was addressed. We hypothesised 

that absence of CD1d expressing monocytes might lead to reduced expansion of 
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iNKT cells since cells able to present CD1d restricted glycolipid ligands to iNKT cells 

are decreased. Thus, PBMCs from 15 healthy individuals were stimulated with 

αGalCer either in the presence or absence of monocytes, followed by flow cytometric 

analysis. iNKT cell frequencies as well as CD38 expression as a marker for activated 

iNKT cell was determined. Indeed, a strong tendency towards a lower iNKT cell 

expansion capacity was observed in the monocyte depleted culture (p=0.0730, figure 

4.11 A). Furthermore, the analysis indicates that a depletion of monocytes has a 

major impact on the activation of iNKT cells since significantly reduced frequencies of 

CD38+ iNKT cells (p=0.0038) as well as a reduction in CD38 surface density 

(p=0.0203) on iNKT cells were detected (figure 4.11 B+C). These results proof that 

CD1d expressing cells are needed for proper iNKT cell expansion as well as iNKT 

cell activation. 
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Figure 4.11: Influence of monocytes on the expansion and activation of iNKT cells  

PBMCs from 15 healthy individuals were expanded over a period of 10 days with IL2 (25 IU/mL) and 
αGalCer (1 µg/mL) in the presence or absence of monocytes. Monocytes were depleted by adherence 
to plastic. iNKT cell frequencies (A) and frequency of CD38 expressing iNKT cells as well as CD38 
MFI on iNKT cells (B+C) was determined directly after thawing and after 10 days of culture. The 
median is shown and statistical significance was determined by Wilcoxon signed rank test *p≤ 0.05, 
**p≤ 0.01. 

4.1.8 CD1d is upregulated in HCV infected liver 

Previous reports demonstrated high NKT cell frequencies in the liver of mice (Eberl et 

al. 1999). Therefore, we tested if iNKT cell frequencies are similarly elevated in the 

human system. iNKT frequencies were determined in liver infiltrating lymphocytes 

and compared to the above stated iNKT cell frequencies in the periphery. In contrast 

to studies in mice, an enrichment of iNKT cells in the human liver could not be 

observed (figure 4.12 A+B). Moreover, studies in mice showed a proinflammatory 

role of CD1d restricted NKT cells contributing to hepatic inflammation and liver 

fibrosis (Ishikawa et al. 2011). Since HCV is a hepatotropic infection, upregulation of 

CD1d in the liver could contribute to iNKT cell activation. Therefore, the expression of 

CD1d was analysed in the liver. In cooperation with the clinic for Gastroenterology 



Results 

 

 65 

and Hepatology at the University Hospital Essen an expression profile of CD1d from 

liver biopsies was generated to compare messenger RNA (mRNA) levels between 54 

HCV infected patients and 23 patients with HBV infection. The mRNA expression of 

CD1d was significantly higher in HCV infected individuals compared to HBV infected 

patients (p≤0.05, figure 4.12 C). As HCV infection in contrast to HBV infection is 

known to induce a strong type I IFN response in the liver, our observed effect of IFNα 

mediated upregulation of CD1d on monocytes in the periphery could therefore 

possibly account for the difference in CD1d mRNA level between HCV and HBV 

infected patients.  
 

 
 

Figure 4.12: iNKT frequencies and CD1d mRNA levels in the liver  

iNKT cell frequencies were analysed in four liver samples as CD1d dextramer+ CD19- lymphocytes 
(B). Frequencies in the liver were compared with initial determined iNKT cell frequencies in the 
periphery of HCV-RNA positive and HCV-RNA negative PWID (A). One-way ANOVA was used to 
analyse statistical significance. Furthermore, CD1d mRNA levels were compared between liver 
biopsies of 54 HCV and 23 HBV infected patients. Data of CD1d mRNA levels were kindly provided by 
the Clinic for Gastroenterology and Hepatology at the University Hospital Essen. The mean ± SEM is 
depicted. 
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4.2 NK cell in HCV infection 

While iNKT cells are still poorly covered by scientific reports in HCV infection there is 

growing evidence for the importance of NK cells for HCV infection outcome. Different 

genetic association studies revealed that genetically determined combinations of 

NK cell-receptors and their ligands are associated with differential outcome of HCV 

infection. NK cell function is regulated by a set of different inhibitory and activating 

receptors including killer-cell immunoglobulin-like receptors (KIRs). Khakoo et al. 

(2004) demonstrated that PWID homozygous for KIR2DL3 and its ligand HLA-C1 are 

significantly enriched in patients who spontaneously resolve HCV infection. 

Therefore, the aim was to analyse whether certain KIR/KIR-ligand combinations are 

associated with HCV infection outcome in our PWID cohort and if identified 

KIR/KIR-ligand combinations correlate with functional properties of NK cells. 

4.2.1 PWID cohort 

As previously described injection drug use is the most common risk factor for HCV 

infection in high income countries (Nelson et al. 2011). Consistent with these 

findings, we observed that with approximately 81% the majority of our PWID cohort 

(n=266) were HCV antibody positive (table 4.2). Of the analysed PWID, 57% had 

detectable HCV RNA consistent with ongoing viral infection. In turn, 24% were 

HCV-RNA negative with detectable HCV antibody titres, consistent with spontaneous 

immune control of HCV infection. Interestingly, the remaining 19% were HCV 

seronegative despite continuous high-risk behaviour. The high frequency of sharing 

injection materials among PWID suggests that at least parts of this group were also 

exposed to HCV infection. Accordingly, these exposed anti-HCV seronegative PWID 

were resistant to infection or achieved immune control during an early phase prior to 

seroconversion. The ratio between male and female patients included in this study 

did not significantly differ between the three subgroups. However, anti-HCV negative 

PWID were significantly younger than HCV-RNA positive patients (appendix figure 

6.2, p≤0.05). 
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Table 4.2: Patient characteristics of PWID included in the KIR study 

Germany North America  

complete cohort 
HCV-RNA 

positive 

HCV-RNA 

negative 

anti-HCV 

negative 

HCV-RNA 

positive 

HCV-RNA 

negative 

n 151 64 51 267 75 

mean age in years (range) 38 (18-61) 38 (20-53) 34 (18-49) 33 (18-73) 35 (19-59) 

male (%) 116 (76.8%) 56 (87.5%) 38 (74.5%) 168 (62.9%) 28 (37.3%) 

HCV genotype 1 (%) 84 (55.6%) n.d. n.d. 158 (59.2%) n.d. 

HCV genotype 3 (%) 64 (42.4%) n.d. n.d. 38 (14.2%) n.d. 

other HCV genotypes or 

unknown (%) 
3 (2%) n.d. n.d. 71(26.6%) n.d. 

median viral load in 

IU/mL (range) 

852848 

(621-7 778 000) 
n.d. n.d. 

862456  

(200-40 500 000) 
n.d. 

anti-HIV positive (%) 5 (3.3%) 1 (1.5%)   31 (11.6%) 12 (16%) 

GT: genotype, IU: international units, n.d.: not determined 

 

4.2.2 KIR/KIR-ligand combinations associated with HCV infection outcome in a 

high-risk group of PWID 

A previous study in our group had the aim to identify if certain KIR/KIR-ligand 

constellations play a role in HCV infection outcome in a high-risk cohort of PWID. 

Therefore, 266 treatment naïve well characterised patients comprising 151 HCV-RNA 

positive PWID, 64 HCV-RNA negative PWID and 51 anti-HCV negative PWID were 

included in the genetic analysis (table 4.2). PWID were KIR and HLA class I typed at 

a 4-digit resolution level to allow discrimination between HLA-A and -B alleles 

encoding a Bw6, Bw4 80(I) or Bw4 80(T) motif. While all three motifs are seen on 

HLA-B alleles, HLA-A alleles only encode for Bw6 and Bw4 80(I).  

An univariate analysis testing all known KIR/KIR-ligand constellations for possible 

associations with infection outcome of HCV, revealed that the KIR/KIR-ligand 

constellation of KIR2DL1/HLA-C2 (p=0.014) as well as KIR3DL1/HLA-Bw4 80(T) 

(p=0.003) was significantly enriched in seropositive HCV-RNA negative PWID 

compared to HCV-RNA positive PWID (table 4.3). In contrast to Khakoo et al. (2004), 

no association between the constellation KIR2DL3/HLA-C1 and HCV infection 

outcome was observed. 
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Table 4.3: Genetic association between KIR/KIR-ligands and HCV infection status in 
PWID  

 

univariate 

analysis 
multivariate analysis 

gene 
HCV-RNA 

positive 

HCV-RNA 

negative 

anti-HCV 

negative p-value
a
 p-value

b 
 p-value

a
 OR 

95% 

CI 

KIR2DL1/HLA-C2 9.9% 20.3% 9.8% 0.014 1.000 n.s. - - 

KIR3DL1/HLA-

Bw4 80(T) 
25.8% 46.9% 29.4% 0.003 0.714 0.007 2.90 

1.339

-

6.267 

n.s. not significant, a HCV-RNA pos vs. HCV-RNA neg, b HCV-RNA pos vs. anti-HCV neg 

OR: odds ratio; CI: confidence interval 

Through a multivariate logistic regression analysis, the association between the 

genetic constellation of KIR3DL1/HLA-Bw4 80(T) and spontaneous resolution of HCV 

was confirmed (p=0.007). In contrast, the association of KIR2DL1/HLA-C2 with 

infection outcome was not verified by multivariate logistic regression analysis. Table 

4.3 depicts all significant associations between KIR/KIR-ligand constellation and HCV 

infection status in a univariate and multivariate logistic regression analysis that were 

previously described in our group. Since no previous reports linking 

KIR3DL1/HLA-Bw4 80(T) to HCV infection outcome exist, a second genetic 

association study was performed in a separate North American PWID cohort. 

342 PWID including 267 HCV-RNA positive and 75 HCV-RNA negative individuals 

were analysed for associations between KIR/KIR-ligand constellation and infection 

outcome (table 4.2). The genetic data of the North American cohort were kindly 

provided by Georg M Lauer. As seen in the German cohort the genetic combination 

of KIR3DL1/HLA-Bw4 80(T) was significantly enriched in HCV-RNA negative 

individuals compared to HCV-RNA positive PWID (44.0% vs. 28.8%; p=0.017) and 

thereby verified an association between KIR3DL1/HLA-Bw4 80(T) and spontaneous 

clearance of hepatitis C. Figure 4.13 illustrates that PWID encoding the combination 

of KIR3DL1 and HLA-Bw4 80(T) were enriched in PWID that spontaneously control 

HCV infection. 
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Figure 4.13: Frequency of the genetic combination of KIR3DL1/HLA-Bw4 80(T) in two 
PWID cohorts from Germany and North America grouped by infection outcome 

The frequency of individuals with the KIR3DL1/Bw4 80(T) genotype in HCV-RNA positive PWID (dark 
blue) and HCV-RNA negative PWID (light blue) is shown in percent. P-values were calculated using 
Fisher’s exact test.  

In summary, our group could identify that the genetic combination of 

KIR3DL1/HLA-Bw4 80(T) was associated with spontaneous immune control of HCV 

infection in two separate cohorts. 

4.2.3 Bw4 copy number is associated with HCV infection outcome 

Since copy number of KIR-ligands were described to influence NK cell functionality 

(Kim et al. 2008) the PWID cohort described in table 4.2 was examined for possible 

association between HLA-Bw4 copy number and HCV infection status. PWID were 

grouped according to the HLA-Bw4 copy number into HCV-RNA positive PWID, 

HCV-RNA negative PWID and anti-HCV seronegative PWID either lacking a 

HLA-Bw4 allele, carrying one HLA-Bw4 allele or carrying two or more HLA-Bw4 

alleles (table 4.4).  

Table 4.4: Association between HLA-Bw4 copy number and HCV infection status in 
PWID 

  HCV-RNA 

positive 
HCV-RNA 

negative 
anti-HCV 

negative p-value
a p-value

b 

n 151 (100%) 64 (100%) 51 (100%) n.s n.s 
no KIR3DL1 7 (4.6%) 4 (6.3%) 1 (2%) n.s n.s 
KIR3DL1 + 0 Bw4 45 (29.8%) 14 (21.9%) 13 (25.5%) n.s n.s 
KIR3DL1 + 1 Bw4 76 (50.3%) 27 (42.2%) 17 (33.3%) n.s n.s 
KIR3DL1 + ≥ 2 Bw4 23 (15.2%) 19 (29.7%) 20 (39.2%) 0.0299 0.0006 
n.s. not significant, a HCV-RNA pos vs. HCV-RNA neg, b HCV-RNA pos vs. anti-HCV neg 

 

PWID expressing multiple Bw4 copies were significantly enriched in HCV-RNA 

negative PWID (29.7%) compared to HCV-RNA positive PWID (15.2%, p=0.0299). 

This difference was even more pronounced when comparing anti-HCV negative 

PWID (39.2%; p=0.0006) to HCV-RNA positive PWID. Figure 4.14 visualises the 
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genetic association between multiple Bw4 copy numbers and infection outcome. 

Frequency of patients harbouring two or more Bw4 copies in HCV-RNA positive, 

HCV-RNA negative and anti-HCV negative PWID is displayed. 
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Figure 4.14: Frequency of PWID having ≥ 2 Bw4 motifs grouped by infection outcome 

The frequency of individuals having two or more Bw4 motifs in HCV-RNA positive PWID (dark blue), 
HCV-RNA negative PWID (light blue) and anti-HCV seronegatives (grey) are shown in percent. 
P-values were calculated by Fisher’s exact test. 

4.2.4 Frequency and function of KIR3DL1+ NK cells are independent of HCV 

infection status 

Since an association between the genetic constellation of KIR3DL1/HLA-Bw4 80(T) 

as well as Bw4 copy number and HCV infection outcome was observed by Christine 

Thöns, the influence of KIR3DL1+ NK cell was addressed further. Therefore, the aim 

of this project was to determine the functional consequences of this 

KIR3DL1/Bw4 80(T) genotype on the NK cells level in HCV infection. Moreover, the 

influence of the ligand for KIR3DL1, Bw4 was further investigated. For this reason, 

PBMCs from a representative subgroup of our PWID cohort was analysed through 

flow cytometry, including 30 HCV-RNA positive, 30 HCV-RNA negative and 

30 anti-HCV negative PWID. PWID were preselected by their expression of the 

KIR3DL1 gene. For phenotypic analysis, KIR3DL1 expressing NK cells were defined 

through CD16 and CD56 expression of live, single lymphocytes that lack the surface 

markers CD3, CD14 and CD19. Effector functions such as IFNγ and TNFα 

production as well as CD107a expression of KIR3DL1+ NK cells were determined. 

Therefore, PBMCs were stimulated with the HLA devoid target cell line K562 leading 

to the activation of NK cells through missing self-recognition. A representative gating 

strategy for NK cells and exemplary FACS plots from three individuals with different 

surface density of KIR3DL1 is shown in figure 4.15.  
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Figure 4.15 Representative gating strategy of the analysis of NK cell phenotype and 
function in PWID 

A representative gating strategy of the analysis of NK cell phenotype and function from 30 HCV-RNA 
positive, 30 HCV-RNA negative and 30 anti-HCV seronegative PWID. Cryopreserved PBMCs were 
thawed and NK cells were defined through CD16 and CD56 expression of CD3-/CD14-/CD19-, live, 
single lymphocytes. NK cells were further analysed for KIR3DL1 expression and function. IFNγ, TNFα 
and CD107a production was measured by intracellular cytokine staining after stimulation of PBMCs 
with K562 (10:1) for 5h. Flow cytometry results are shown from three different samples showing 
different KIR3DL1 expression on the cell surface of NK cells.  

Comparison of KIR3DL1 expression on NK cells between HCV-RNA positive, 

HCV-RNA negative and anti-HCV negative PWID revealed no differences. Neither 

frequency of KIR3DL1 (figure 4.16 A) nor density defined by KIR3DL1 MFI (data not 

shown) on NK cells were associated with infection outcome. Furthermore, no 

functional differences could be observed between groups regarding IFNγ (figure 

4.16 B) and TNFα production as well as CD107a expression of KIR3DL1+ NK cells.  
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Figure 4.16: Phenotypic and functional analysis of NK cells from HCV-RNA positive, 
HCV-RNA negative and anti-HCV seronegative PWID 

(A) The frequencies of KIR3DL1 expressing NK cells in HCV-RNA positive, HCV-RNA negative and 
anti-HCV negative PWID are depicted for all 90 analysed individuals. (B) IFNγ producing KIR3DL1+ 
NK cells upon stimulation with K562 at an effector target ratio of 10:1 for 5h are shown. (C) The 
frequency of KIR3DL1+ NK cells is depicted for HCV-RNA positive and HCV-RNA negative PWID 
according to the KIR3DL1 subtype expression level (null, low, high) as determined by a multiplex PCR 
assay (4). P-values were calculated by Kruskal Wallis test (*p≤ 0.05 and ***p≤0.001) and the median 
is depicted in every graph. 

The KIR3DL1 gene locus is highly polymorphic with 79 described alleles to date. 

These alleles have been associated with different expression levels on the cell 

surface. While some alleles are linked to low or high density of KIR3DL1 expression 

on the cell surface, KIR3DL1*004 is not detectable on the cell surface due to 

intracellular retention. Therefore, a previous described multiplex PCR assay 

(Boudreau et al. 2014) with minor modifications was performed in cooperation with 

the Institute for Transplantation Diagnostics and Cell Therapeutics at the University 

Hospital Düsseldorf to characterise the KIR3DL1 gene in more detail. KIR3DL1 

alleles were determined in 60 PWID that were included in the flow cytometry 

analysis. According to the provided PCR results all samples were divided into three 

groups. PWID encoding solely non-expressed KIR3DL1 alleles were grouped as 

KIR3DL1 null, while PWID encoding one low-expressed KIR3DL1 gene and absence 

of a high-expressed allele were grouped as KIR3DL1 low. The KIR3DL1 low group 

therefore contained PWID homozygous for low-expressed alleles as well as PWID 

with low-expressed alleles combined with the activating receptor KIR3DS1 or 

non-expressed alleles. The third group consists of patients that harboured at least 

one high expressed allele and was termed KIR3DL1 high. The KIR3DL1 allele 

subgroups defined by PCR were significantly associated with KIR3DL1 expression 

on the cell surface (figure 4.16 C). Frequency of KIR3DL1+ NK cells as well as 

KIR3DL1 surface density (data not shown) was significantly higher in the KIR3DL1 

high group compared to the KIR3DL1 low group. These results are in line with 

Boudreau et al. (2016) showing that KIR3DL1 subtypes exhibit distinct expression 
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patterns on the NK cell surface. However, the KIR3DL1 frequency was not 

associated with HCV infection outcome.  

4.2.5 HLA-Bw4 copy number is associated with NK cell functionality in healthy 

individuals 

Since the genetic analysis revealed a significant association between Bw4 copy 

number and infection outcome, as PWID encoding two or more Bw4 motifs were 

enriched in the anti-HCV seronegative group, a possible functional impact of a Bw4 

copy number effect was addressed. Therefore, 90 PWID were grouped according to 

their number of Bw4 motifs rather than HCV infection status. A maximum of four Bw4 

motifs can be expressed in a single individual on HLA-A and HLA-B alleles but since 

three as well as four Bw4 motifs are rarely seen, PWID were divided into three 

groups (0 Bw4, 1 Bw4 and patients with two or more Bw4 motifs). Functionality of 

KIR3DL1+ NK cells was determined in response to stimulation with a HLA devoid 

target cell line K562 at an effector target ratio of 1:10. Differences in the ability to 

produce IFNγ and TNFα as well as in the degranulation potential was analysed. 

Even though a slight tendency towards increased functional responses of KIR3DL1+ 

NK cells could be observed with increasing Bw4 copy numbers, no significant 

differences between groups could be determined for any of the three analysed NK 

cell functions (figure 4.17 A-C). Since Kim et al. (2008) previously reported enhanced 

IFNγ responsiveness of KIR3DL1+ NK cells in healthy individuals with multiple Bw4 

copies and we could observe a trend in our PWID cohort as well, the aim was to 

validate our findings in a healthy cohort. Therefore, PBMCs from 120 healthy 

individuals were isolated and IFNγ, TNFα production and CD107a expression was 

analysed on KIR3DL1+ NK cells as described for the PWID cohort. In line with 

previous results we observed a significant stepwise increase in IFNγ production with 

an increasing number of Bw4 motifs (figure 4.17 D). Moreover, the degranulation 

ability of KIR3DL1+ NK cells was significantly increased in patients with one Bw4 

motif compared to patients with no Bw4 motif and even more pronounced in patients 

that harbour two or more Bw4 copies. In addition, TNFα production was significantly 

higher in healthy individuals with two or more Bw4 motifs than in individuals with no 

or one Bw4 motif. 
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Figure 4.17: Correlation of HLA-Bw4 copy number and NK cell functionality in PWID 
and healthy individuals 

PWID (A-C) and healthy individuals (D-F) were grouped according to the number of HLA-Bw4 alleles. 
Individuals lacking a Bw4 motif, with one Bw4 motif and individuals with two or more Bw4 motifs were 
grouped as indicated. The frequency of IFNγ producing (A+D), TNFα-producing (B+E) and CD107a 
(C+F) expressing KIR3DL1+ NK cells according to the number of Bw4 motifs are shown. Horizontal 
lines indicate the median. For statistical analysis Kruskal Wallis test or One-way ANOVA (*p≤ 0.05 and 
***p≤0.001) were performed. 

4.2.6 HLA-Bw4 80(T) is associated with an increased functional ability of NK 

cells in PWID 

The genetic association studies revealed that the combination of HLA-Bw4 80(T) and 

KIR3DL1 is enriched in HCV-RNA negative PWID. Since this was the first report 

suggesting a protective effect of HLA-Bw4 80(T) in HCV infection, hereafter the 

influence of this genetic constellation on NK cell function was examined. To exclude 

effects possibly mediated by HLA-Bw4 copy number as stated in table 4.4 only PWID 

carrying a single HLA-Bw4 motif were analysed. Therefore, PWID with either one 

Bw4 80(T) or one Bw4 80(I) motif were compared and individuals lacking Bw4 were 

included as a control group. Interestingly, KIR3DL1+ NK cells of PWID expressing a 

Bw4 80(T) motif produced significantly higher amounts of IFNγ (p≤0.05) and TNFα 

(p≤0.01) and showed an enhanced degranulation ability (CD107a p≤0.05) compared 

to patients that harbour a Bw4 80(I) motif (figure 4.18 A-C). In addition, PWID 

encoding Bw4 80(T) expressed significantly more TNFα (p≤0.05) and CD107a 

(p≤0.05) than patients lacking a Bw4 motif. Furthermore, to address if this is a 

general or an HCV mediated effect, healthy individuals were grouped accordingly. 
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However, the increased functionality of KIR3DL1+ NK cells in the context of 

HLA-Bw4 80(T) in PWID was not observed in healthy individuals (figure 4.18 D-F). 

No difference between individuals encoding a Bw4 80(I) motif or a Bw4 80(T) motif 

regarding IFNγ, TNFα and CD107a expression was detected.  
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Figure 4.18: Functional analysis of KIR3DL1+ NK cells from PWID and healthy 
individuals in the presence of the KIR3DL1 ligand HLA-Bw4 80(T) and 80(I) 

PWID and healthy individuals were grouped according to their KIR3DL1-ligand status. PWID (A-C) 
and healthy individuals (D-F) carrying either no Bw4 or a single HLA-Bw4 80(T) or HLA-Bw4 80(I) 
motif were grouped as indicated. All individuals with multiple HLA-Bw4 alleles were removed from the 
analysis. The frequencies of IFNγ producing (A+D), TNFα producing (B+E) and CD107a expressing 
(C+F) KIR3DL1+ NK cells according to the KIR3DL1-ligand status are shown. Horizontal lines indicate 
the median. For statistical analysis Kruskal Wallis test or One-way ANOVA (*p≤ 0.05 and **p≤ 0.01) 
were performed.  
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4.3 DNA methylation of the IFNG locus  

This study described that Bw4 copy number is associated with enhanced NK cell 

functionality. To determine possible underlying mechanisms leading to improved 

IFNγ production of KIR3DL1+ NK cells in individuals encoding multiple Bw4 motifs 

epigenetic alterations were analysed. Therefore, we aimed to investigate if Bw6+ 

individuals showed an aberrant methylation pattern at the IFNG locus in comparison 

to individuals with two Bw4 motifs. Since epigenetic modifications of regulatory 

elements upstream or downstream of IFNG as well as methylation of the IFNG 

promoter can alter IFNG transcription (Melvin et al. 1995, Schoenborn et al. 2007), 

the DNA methylation pattern of the IFNG promoter as well as the upstream CNS1 

region was investigated. CNS1 is located 4.2 kb upstream of the IFNG gene and 

displays a transcription factor binding site for NFAT and Tbet, thus is an enhancer for 

IFNG transcription (Lee et al. 2004). 

4.3.1 DNA methylation analysis of the IFNG locus of naïve CD4+ T cells, TH1 

cells and NK cells 

It has been reported that different cell types are associated with distinct methylation 

patterns of the IFNG locus (Dong et al. 2013). As a first step, we tested if the 

described methylation patterns could be reproduced in our study. Therefore, we 

determined the DNA methylation pattern of six CpG sites in the CNS1 region and five 

CpGs in the IFNG promoter of naïve CD4+ T cells, TH1 cells and NK cells in a 

healthy individual. Figure 4.19 displays a representative gating strategy used to sort 

naïve CD4+ T cells and TH1 cells.  



Results 

 

 77 

 
 

Figure 4.19: Representative gating strategy of FACS sorted naïve CD4+ T cells and 
TH1 cells 

Freshly thawed PBMCs were FACS sorted for naïve CD4+ T cells and TH1 cells. Therefore, single 
lymphocytes expressing CD3+ and CD4+ cell surface antigens were further divided into CCR7+ 
CD45RO- CD45RA+ naïve CD4+ T cells as well as CCR7- CD45RO+ CD45RA- TH1 cells. 

While all analysed CpG sites were completely methylated in naïve CD4 T cells, TH1 

cells showed a partial demethylation in the CNS region as well as at the IFNG 

promoter. NK cells displayed a demethylated IFNG promoter whereas the upstream 

element regulating IFNG transcription appeared to be highly methylated as described 

by Luetke-Eversloh et al. (2014). Hence, previous findings were reproduced and this 

method was utilised for further NK cell methylation analysis (figure 4.20). 
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Figure 4.20: DNA methylation pattern of the IFNG locus from CD4+ T cells, TH1 cells 
and NK cells  

The percentage of DNA methylation was determined via NGS for five CpG sites in the IFNG promoter 
(A) and six CpG sites in the CNS1 region upstream of the IFNG promoter. Depicted is the pattern of 
FACS sorted naïve CD4 T cells (white), TH1 cells (black) and NK cells (grey) from one healthy 
individual. Furthermore, the distance of each CpG to the IFNG transcriptional start site (TSS) is 
indicated. 
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4.3.2 HLA-Bw4 copy number has no impact on CNS1 methylation of NK cells 

Since the detected results were in line with previous data it was further investigated if 

DNA methylation at the IFNG locus accounts for the observed difference in 

functionality of KIR3DL1+ NK cells between Bw4+ and Bw6+ individuals. We 

hypothesised that individuals encoding multiple Bw4 motifs might show 

demethylation of the CNS1 region resulting in higher transcription, leading to 

enhanced IFNγ production capability. Based on the observed complete 

demethylation of the IFNG promoter in NK cells the following analysis focused on the 

methylation pattern of the CNS1 region. To exclude described differences in the 

methylation status between different NK cell developmental stages only CD56dim 

NK cells were included (Luetke-Eversloh et al. 2014). KIR3DL1- and KIR3DL1+ NK 

cells were sorted from ten healthy individuals including five individuals with two Bw4 

motifs and five lacking a Bw4 motif. The gating strategy and representative dot plots 

are shown in figure 4.21. 

 
 

Figure 4.21: Representative gating strategy of FACS sorted KIR3DL1- and KIR3DL1+ 
NK cells  

PBMCs from 10 healthy individuals were FACS sorted for KIR3DL1- and KIR3DL1+ CD56dim NK cells. 
Cryopreserved PBMCs were thawed and NK cells were defined through CD16 and CD56 expression 
of CD3-/CD14-/CD19-, live, single lymphocytes. 

The level of methylation was analysed for each CpG site in the CNS1 region. 

However, comparison between individuals expressing two Bw4 motifs or lacking a 

Bw4 motif revealed no significant differences, neither for KIR3DL1- nor KIR3DL1+ NK 

cells (figure 4.22 A+B). Moreover, the mean methylation of all investigated CpG sites 

was similar between KIR3DL1- and KIR3DL1+ NK cells irrespective of the number of 

Bw4 motifs (figure 4.22 C+D). This suggests that the number of Bw4 motifs is not 
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associated with an aberrant DNA methylation pattern of the IFNG locus in KIR3DL1+ 

NK cells. While most samples showed a high level of methylation in the CNS1 region, 

three samples were hypomethylated at the analysed six CpG sites (figure 4.22 D 

indicated in blue). 
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Figure 4.22: CNS1 methylation pattern of KIR3DL1neg and KIR3DL1pos NK cells grouped 
by number of Bw4 motifs 

KIR3DL1- and KIR3DL1+ CD56dim NK cells were sorted from five individuals without a Bw4 motif and 
five with two Bw4 copies. DNA methylation is depicted in percent for each of the six analysed CpG 
sites comparing 0 Bw4 with two Bw4 copies (A+B) and the mean with SEM is shown. The mean 
methylation of all CpG sites for every individual is depicted for KIR3DL1- (C) and for KIR3DL1+ (D) NK 
cells. For statistical analysis, unpaired t-test was performed.  

4.3.3 CMV seropositivity and NKG2C expression are associated with 

demethylation of the CNS1 region of NK cells 

It has been reported that the CMV status can influence the methylation pattern of NK 

cells (Luetke-Eversloh et al. 2014). Therefore, it was addressed if CMV seropositivity 

has an influence on the methylation pattern of KIR3DL1- and KIR3DL1+ NK cells and 

thus accounts for the outliers seen in figure 4.22. Healthy individuals were grouped 

according to their CMV IgG status into CMV+ and CMV- individuals. CMV+ individuals 

showed a significantly lower mean methylation in comparison to CMV- individuals on 

KIR3DL1- (p=0.0362) as well as KIR3DL1+ (p=0.0483) NK cells (figure 4.23 B). DNA 

demethylation in CMV+ individuals was independent of KIR3DL1 expression on NK 

cells and could also be observed at each analysed CpG site individually (figure 

4.23 A). 
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Figure 4.23: CNS1 methylation pattern of KIR3DL1neg and KIR3DL1pos NK cells grouped 
by CMV status 

The DNA methylation data from KIR3DL1- and KIR3DL1+ NK cells of 10 healthy individuals was 
grouped according to the CMV status. The methylation of the CNS1 region is depicted for each of the 
six analysed CpG sites (A). Furthermore, the mean methylation of the six measured CpG sites was 
calculated for each individual (B). P-values were calculated by unpaired t-test and the median is 
shown. 

To further address the impact of the CMV status on DNA demethylation of the CNS1 

region, PBMCs were analysed by flow cytometry. As CMV seropositivity has been 

repeatedly linked to the expansion of NKG2C+ NK cells and decreased DNA 

methylation of the IFNG locus has been described in CMV+ individuals with an 

expansion of a NKG2Chigh NK cell population, PBMCs were analysed for their 

NKG2C expression on NK cells (Luetke-Eversloh et al. 2014). In our study, a 

tendency towards an expansion of NKG2C+ NK cells could be observed in CMV+ 

individuals (figure 4.24 C). While three out of five examined CMV+ individuals showed 

an NKG2C expansion, two individuals displayed normal frequencies of NKG2C+ NK 

cells. The CNS1 region of CMV+ individuals without an expansion was highly 

methylated in KIR3DL1- and KIR3DL1+ NK cells (figure 4.24 A+D) as seen in CMV- 

individuals. In contrast, hypomethylation of CpG sites in the CNS1 region occurred in 

CMV+ individuals with an expanded NKG2C population (figure 4.24 B+E). 

Interestingly, the mean methylation of all analysed CpGs significantly correlated with 

the expression of NKG2C on NK cells (figure 4.24 F, p≤0.0001 R2=0.8966). 
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Figure 4.24: Demethylation of the CNS1 region in CMV+ individuals with an NKG2C 
expansion 

PBMCs from ten healthy individuals were analysed for their expansion of NKG2C+ NK cells. Cells 
were gated for single, viable lymphocytes and after exclusion of B cells, T cells and monocytes 
through CD3, CD19 and CD14, NK cells were defined by the expression of the cell surface antigens 
CD16 and CD56. A and B show exemplary flow cytometry plots from two CMV+ individuals either 
without (A) or with an expansion of the NKG2C population (B). Moreover, the corresponding 
methylation pattern of the CNS1 region for both individuals is displayed in D and E. The percentage of 
NKG2C+ NK cells from all CMV- and CMV+ individuals is depicted in C. Unpaired t-test was calculated 
to determine significance between groups. The frequency of NKG2C+ NK cells was correlated with the 
mean methylation of the six investigated CpG sites in the CNS1 region and a linear regression 
analysis was performed. 
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5 Discussion 

The importance of studying HCV infection is highlighted by the fact that the 2016 

Lasker award went to Rice, Bartenschlager and Sofia for their contributions in the 

field of HCV infection research. Rice and Bartenschlager developed a replication 

system that enabled high throughput screening of novel HCV drugs (Lohmann et al. 

1999, Lindenbach et al. 2005) and Sofia was awarded for the discovery of Sofosbuvir 

a highly efficient NS5B nucleotide polymerase inhibitor (Sofia et al. 2010). 

Nevertheless, the underlying mechanisms that either confer protection prior to 

seroconversion or lead to spontaneous resolution of HCV infection are not fully 

defined. Therefore, the influence of NK cells and iNKT cells on spontaneous 

resolution, protection from HCV infection or their role in chronic HCV infection were 

further addressed in this thesis. 

5.1 iNKT cells in HCV infection 

CD1d restricted iNKT cells, one subset of NKT cells, have been repeatedly reported 

to play a role in various viral infections (De Santo et al. 2008, Fernandez et al. 2014, 

Li et al. 2016, Ahmad et al. 2017). However, the involvement of iNKT cells in HCV 

infection remains poorly understood and their contribution to early immune responses 

as well as to liver injury in humans is not well defined. Therefore, the aim of this study 

was to comparatively analyse the phenotype and function of iNKT cells in HCV 

infected PWID with different infection outcome in detail. The role of iNKT cells in HCV 

infection was determined in a high-risk cohort of anti-HCV positive PWID. The cohort 

was grouped into PWID with detectable HCV-RNA (HCV-RNA positive) and anti-HCV 

seropositive individuals without detectable RNA (HCV-RNA negative). The 

comparison of the phenotype of iNKT cells from HCV-RNA positive and HCV-RNA 

negative PWID suggested iNKT cells to be activated in chronic HCV infection as they 

showed significantly increased expression of the activation marker CD38. Expression 

of various exhaustion and differentiation markers as well as NK cell receptors 

however, did not correlate with HCV infection outcome. Moreover, iNKT cell 

frequencies as well as their functionality were similar between PWID groups. 

However, iNKT cells from HCV-RNA positive PWID showed a trend towards an 

increased proliferation potential as well as an enhanced IFNγ production capacity. In 

vitro expansion of iNKT cells resulted in a significant upregulation of CD38 
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independent of HCV infection outcome. Interestingly, cytokines associated with NK 

cell activation significantly activated iNKT cells as measured by an increase of CD38 

expression. Notably, the frequency of iNKT cells in the liver was not enriched 

compared to frequencies in the peripheral blood, however, we were unable to test 

liver samples from HCV-infected individuals, as nowadays liver biopsies to determine 

the stage of liver fibrosis in HCV infected individuals are replaced by non-invasive 

approaches (reviewed in Castera 2012). It is well described, that IFN levels and 

consequently ISG expression levels are elevated in the liver of patients with chronic 

infection (Helbig et al. 2005, Sarasin-Filipowicz et al. 2008). We therefore tested, if 

treatment of peripheral iNKT cells with IFNα or IFNλ resulted in iNKT cell activation 

and thus an upregulation of CD38. Although such a direct effect on peripheral iNKT 

cells was not observed, an increase of CD1d expression was noted on monocytes, 

which is the cell type with the highest CD1d expression in the periphery. It would be 

important to analyse the impact of IFN treatment on CD1d expression levels on liver 

resident cells and more importantly to directly address if CD1d expression levels are 

elevated in the liver compartment in the context of HCV infection. In a cooperation 

project, the latter aspect was addressed and expression profiles from liver biopsies of 

HCV and HBV infected livers were compared. In line with an increased expression of 

CD1d in the context of chronic HCV infection in the liver, CD1d transcript levels were 

significantly higher in the HCV-infected liver compared to the HBV-infected liver. 

Although not conclusive, this could point towards a role of type I or type III interferons 

in intrahepatic CD1d regulation, because it has been described that ISGs are 

strongly upregulated in the liver during hepatitis C but not hepatitis B (Su et al. 2002, 

Wieland et al. 2004).  

 

iNKT cells have been extensively studied in mice models and associated with a role 

in several viral infections such as MCMV, HBV and HSV. iNKT cell activation resulted 

in reduced (van Dommelen et al. 2003) or inhibited (Kakimi et al. 2000) viral 

replication of MCMV and HBV, mediated by the induction of IFNγ, suggesting that in 

addition to NK cells NKT cells can mediate early viral clearance by either directly 

killing the virus infected cells or indirectly activating other immune mechanisms. 

Furthermore, the absence of iNKT cells was associated with impaired clearance of 

HSV (Grubor-Bauk et al. 2003). In addition, there are multiple indications in hepatitis 

mouse models for the importance of iNKT cells in liver immunology. Moreover, 
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mouse models could provide explanations for the importance of iNKT cells in the 

clearance or the progression of HCV infection. Previous studies proposed that 

activated iNKT cells can mediate hepatocyte damage (Osman et al. 2000) even in 

the absence of NK cells (Nakagawa et al. 2001). In addition, it has been reported that 

iNKT cell activation contributes to the development of liver fibrosis (Ishikawa et al. 

2011). Furthermore, IFNγ produced by activated iNKT cells enhanced NK cell 

cytotoxicity as well as potentiated their IFNγ capacity and increased CD8+ T cell 

responses (Carnaud et al. 1999, Nakagawa et al. 2001). Collectively, the existing 

mouse data suggests that iNKT cell activation in acute HCV infection might be 

beneficial for clearance, as they activate NK as well as T cells which are important 

mediators for early immune control of HCV infection. Whereas, activated iNKT cells 

might be disadvantageous in chronic infection as they have the ability to promote 

liver fibrosis. Based on data generated in various mouse models we hypothesised 

that potentially iNKT cells play a role in HCV infection outcome. However, there might 

be some limitations in the transferability into the human system. Although some 

similarities between CD1d restricted iNKT cells from mice and humans have been 

described, there are major differences as well. Especially reported iNKT cell 

frequencies in several tissues differ vastly between these species. Whereas high 

frequencies of CD1d restricted iNKT cells have been described in livers of mice 

(approximately 30% of IHL), invariant Vα24+ iNKT cells were rare in the human liver 

(0.03-0.34% of IHL) (Matsuda et al. 2000, Exley et al. 2002). Our report proposed 

even lower iNKT cell frequencies in the human liver (mean: 0.03% of IHL). 

Furthermore, in accordance with our study, iNKT cell frequencies in the peripheral 

blood of humans were reported to be highly variable compared to mice and span a 

100-fold range in healthy individuals (Lee et al. 2002). Therefore, suggesting that 

mice studies might not adequately reflect the importance of iNKT cells in human HCV 

infection. Even though hepatitis mouse models have provided evidence for the role of 

iNKT cells in liver inflammation (Ishikawa et al. 2011) and the recently developed 

HCV mouse model (Billerbeck et al. 2017) offers the opportunity to study iNKT as 

well as non-invariant NKT cells in acute and chronic infection, these models cannot 

replace human cohort studies. 

 

In HCV infection, no alterations in iNKT cell numbers have been reported upon 

treatment with PEGylated IFNα and ribavirin. Moreover, iNKT cell frequencies were 
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neither associated with HCV genotype nor with SVR to IFNα based treatment (van 

der Vliet et al. 2005). Thus, this indicates that iNKT cell frequencies were not 

influenced by HCV therapy and moreover did not predict treatment response. Here, 

however we aimed to elucidate the role of iNKT cells on HCV infection outcome 

rather than treatment outcome. Therefore, the underlying study solely focused on 

iNKT cell analysis in treatment naïve HCV infected patients. Our study described no 

differences in iNKT cell frequencies in HCV-RNA positive and HCV-RNA negative 

PWID, thus our results were in accordance with studies from Inoue et al. (2006) and 

van der Vliet et al. (2005) that reported comparable Vα24+ Vß11+ iNKT cells 

frequencies in the periphery. However, Lucas et al. (2003) provided conflicting 

results, as they described decreased frequencies of Vα24+ Vß11+ iNKT cells in HCV-

RNA positive individuals compared to HCV-RNA negative individuals with resolved 

HCV infection. Since no anti-HCV negative PWID were included in our iNKT cell 

study, we were not able to confirm reported elevated iNKT cell frequencies in 

exposed uninfected individuals (Werner et al. 2013). The explanation for the reported 

differences in iNKT cell frequencies between cohorts is likely to be multifactorial. 

However, differences in definition of the iNKT cell population through varying 

methodology could be excluded as the underlying cause. All included studies fulfilled 

the criteria of a clearly defined iNKT cell population, since staining was performed for 

the Vα as well as the Vβ chain of the invariant TCR and not solely through the 

expression of the cell surface markers CD56 and CD3. Although the iNKT cell 

definition in our study differed, as iNKT cell flow cytometric analysis was based on 

the ability of iNKT cells to recognise αGalCer loaded CD1d dextramers, we provided 

evidence that the definition of iNKT cells through the TCR chains Vα24 and Vß11 

was congruent with the dextramer analysis. Thus, investigated iNKT cell populations 

were comparable based on the methodology used for their definition. In addition, 

various characteristics such as gender and age have been described to affect iNKT 

cell numbers. Sandberg et al. (2003) provided evidence that the female sex was 

associated with elevated Vα24+ iNKT cell frequencies. Moreover, an inverse 

correlation between iNKT cell frequencies and age has been proposed in healthy 

individuals (Mansour et al. 2015). Although our association analysis was limited in 

regard of gender evaluation, since the proportion of male PWID was significantly 

higher than female PWID in our cohort, a weak association between iNKT cell 

frequencies and age in HCV infected individuals was observed in our study as well. 
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In HCV infection, the female sex that has been linked to increased iNKT cell 

frequencies, has a higher likelihood for viral clearance compared with males (Bakr et 

al. 2006), thus gender distribution in HCV cohorts is generally different between the 

HCV-RNA positive group and the HCV-RNA negative group. Variations in gender 

distribution might partially explain discrepant results between cohorts. In our iNKT 

cell study the mean age in years as well as the gender distribution of PWID was 

comparable between HCV-RNA positive and HCV-RNA negative individuals. 

However, other studies might not be well controlled for age and gender and could 

account for the observed differences. 

 

Interestingly, iNKT cells of HCV-RNA positive PWID showed significantly higher 

expression of the activation marker CD38 than HCV-RNA negative PWID. Although 

iNKT cells have not been associated with an activated phenotype in the periphery 

before, Lucas et al. (2003) reported that liver Vα24+ Vß11+ iNKT cells of HCV 

infected individuals compared to peripheral iNKT cells displayed an elevated 

expression of CD69, a marker for recent activation. Moreover, liver infiltrating NKT 

cells from chronically HCV infected individuals, defined as CD56+CD3+ lymphocytes, 

showed a trend towards increased CD69 expression compared to HCV negative 

patients (Boisvert et al. 2003). In addition, activation of mucosal associated invariant 

T (MAIT) cells, another population of semi-invariant T cells which displays several 

similarities with NKT cells (reviewed in Treiner et al. 2006) has been reported in 

chronic HCV infection (van Wilgenburg et al. 2016). Taken together these data 

support our findings that iNKT cells are activated during chronic infection. However, 

longitudinal studies are needed to determine if this activation state is induced by HCV 

infection or if elevated frequencies of CD38+ iNKT cells promote persistence of HCV 

infection. Despite the activated phenotype of iNKT cells from chronically HCV 

infected individuals, none of the other analysed markers were associated with 

infection outcome. Although functional impairment of iNKT cells has been linked to 

enhanced PD1 expression in HIV infected individuals (Moll et al. 2009) and 

exhaustion of HCV specific CD8+ T cells in chronic infection were commonly 

characterised by an increased PD1 expression (reviewed in Timm et al. 2015), PD1 

expression levels on iNKT cells were neither associated with HCV infection outcome 

nor reduced functional capacity.  
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While the enhanced ex vivo activation, seen in chronically infected individuals was 

not linked to the extent of iNKT cell activation after in vitro expansion, expansion 

upon αGalCer stimulation was in general associated with a significant upregulation of 

CD38 on the cell surface. Our reported phenotype of iNKT cells after proliferation 

was expected and in line with a study by Kitamura et al. (2000) who described an 

upregulation of the early activation marker CD69 on iNKT cells upon αGalCer 

stimulation. Therefore, we propose that the expansion of iNKT cells in HCV infected 

individuals is associated with tremendous activation of iNKT cells.  

As αGalCer is an exogenous antigen derived from a marine sponge, iNKT cell 

activation in HCV infection is mediated by other mechanisms. Critical factors that 

regulate activation and effector functions of iNKT cells are the type of 

antigen-presenting cell, the availability of the presented antigen and the cytokine 

environment. Possibly, the cytokine milieu in chronic HCV infection influences iNKT 

cells and might activate them which could explain the observed CD38 upregulation. 

To provide insight into the underlying mechanisms the influence of various cytokines 

previously described to be associated with HCV infection or NK cell activation was 

analysed in this study. Our study demonstrated that IFNα treatment indirectly and a 

combination of IL12, -15 and -18 directly activated iNKT cells. IFNα based therapy of 

chronically HCV infected individuals was described to not alter MAIT cell frequencies 

but to enhance CD38 expression on MAIT cells (Spaan et al. 2016). In contrast, no 

direct effect of IFNα treatment on the frequency of CD38+ iNKT cells was observed in 

our study. However, van Wilgenburg et al. (2016) described that the activation of 

MAIT cells by IFNα was dose dependent. MAIT cell activation was only induced with 

particularly high IFNα concentrations that far exceeded the concentration used in our 

study. This might explain the absence of a direct effect of IFNα treatment on CD38 

expression on iNKT cells in our analysis. In line with our report suggesting a direct 

effect of the combination of IL12, -15 and -18, the early activation marker CD69 was 

significantly upregulated on MAIT cells upon IL12 and IL18 stimulation (Spaan et al. 

2016). The activation of MAIT cells was dose dependent and the combination of IL12 

and IL15 was sufficient to induce a high activation state (van Wilgenburg et al. 2016). 

Since IL18 alone had no impact on CD38 expression, we as well propose that a 

combination of IL12 and IL15 is sufficient to activate iNKT cells. Elevated IL12 serum 

levels have been described in HCV infection and IFNγ priming induced a significant 

increase of IL12 in chronically HCV infected individuals especially in patients with 
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severe liver inflammation (Quiroga et al. 1998). In addition, serum IL15 was also 

significantly elevated in chronic HCV infection, compared to healthy controls and 

increased with disease progression to HCC (Kakumu et al. 1997). Collectively, the 

existing data support our idea that IL12 and IL15 probably influence iNKT cell 

activation in the natural course of HCV infection and might explain the activated 

phenotype of iNKT cells in chronically HCV infected individuals. 

iNKT cells are activated either by direct or indirect mechanisms. The direct 

mechanisms via a strong TCR signal would include the specific recognition of a viral 

or virus-induced antigen. However, no HCV derived glycolipid that can activate either 

iNKT or non-invariant NKT cells via CD1d presentation has been identified so far. 

Indirect mechanisms by virus induced cytokines combined with a weak TCR signal 

mediated by an endogenous glycolipid are more likely to induce iNKT cell activation 

in the HCV infection setting. Even though iNKT cells in HCV infection probably 

depend only on a weak TCR signal, antigen presentation by CD1d is still crucial for 

iNKT cell activation. It has been demonstrated that viruses can manipulate CD1d 

expression to escape recognition by CD1d restricted iNKT cells, thus leading to 

reduced iNKT cell activation. HCMV, HSV and HIV developed mechanisms to 

downregulate CD1d surface expression through inhibition of CD1d transcription, 

increasing the internalisation of CD1d, intracellular retention of CD1d molecules and 

active prevention of the reappearance of CD1d on the cell surface after endocytosis 

(Chen et al. 2006, Yuan et al. 2006, Raftery et al. 2008, Han et al. 2013). Our study 

however reported no differences in CD1d expression on monocytes as well as B cells 

between HCV-RNA positive and HCV-RNA negative PWID in the periphery, 

indicating that in HCV infection CD1d expression is not altered on peripheral cells. 

Interestingly, CD1d mRNA levels in the liver were significantly higher in HCV infected 

patients compared to HBV infected patients. In contrast to CMV, HSV and HIV that 

downregulate CD1d expression, CD1d expression seems to be upregulated in HCV 

infected livers and therefore might explain the activated phenotype of iNKT cells in 

chronically infected PWID, as upregulation of the ligand CD1d in chronic HCV 

infection can subsequently lead to iNKT cell activation. Upregulation of CD1d might 

not only mediate iNKT activation but could contribute to non-invariant NKT cell 

activation as well, since this subset is also CD1d restricted. IFNα treatment of CD1d 

expressing monocytes significantly enhanced CD1d surface expression and might 

explain elevated CD1d mRNA levels in the liver from HCV infected individuals. Taken 
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together these data suggest that continuous exposure to IFNs in chronically HCV 

infected individuals might result in iNKT cell activation. In addition, another 

mechanism that might account for the activation of iNKT cells in the HCV infection 

setting besides the upregulation of the ligand CD1d or the upregulation of cytokines 

could be the induction of the expression of CD1d restricted endogenous lipid 

antigens as seen in HBV infection (Zeissig et al. 2012). However, such mechanisms 

have not been reported for HCV infection so far. 

 

This study provides evidence for the activation of iNKT cells in chronic HCV infection 

and proposes two possible mechanisms that might mediate this activation. However, 

the functional impact of this activation has been inconclusive and needs to be further 

addressed in future studies. Interestingly, in comparison to the previously described 

low proliferation potential of Vα24+ Vß11+ iNKT cells in HIV infection (Moll et al. 

2009), our study demonstrated that iNKT cells in HCV infection rapidly proliferate 

after activation with αGalCer. In addition, even though not statistically significant a 

trend towards an increased proliferation capacity of iNKT cells of HCV-RNA positive 

individuals compared to HCV-RNA negative individuals was observed. Thus, the 

increased expansion of iNKT cells in chronic infection might indicate that the 

pre-activated state results in a reduced proliferation threshold. Furthermore, 

functional analysis of iNKT cells from HCV-RNA positive and HCV-RNA negative 

PWID, performed ex vivo as well as after in vitro expansion, revealed no association 

between the functional capacity of iNKT cells to produce IL2, IFNγ or their 

degranulation ability and infection outcome. However, a tendency towards increased 

IFNγ production was observed in chronically HCV infected individuals compared to 

patients that spontaneously resolve the infection. Although iNKT cells in the liver 

were reported to be mainly TH1 restricted, CD4+, CD4- and DN iNKT cell subsets in 

the periphery each harbour distinct effector functions (Exley et al. 2002, Gumperz et 

al. 2002). As discussed earlier in this study iNKT cell frequencies were low in the 

periphery and moreover material from HCV infected PWID is limited. Therefore, 

sufficient numbers of iNKT cells to further subdivide them into TH1 and TH2 iNKT cell 

subsets could not be acquired. Hence, our analysis could not exclude the possibility 

that IFNγ production by TH1 iNKT cells in the periphery might significantly differ 

according to HCV infection outcome. Furthermore, differences in effector functions 

might have been overlooked as an artificial stimulation with PMA and Ionomycin was 
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used to induce iNKT cell activation. Thus, a more physiological stimulation, for 

instance with cytokines, might reflect the situation in HCV infection more accurately. 

Despite this, our study provided evidence that iNKT cells in the periphery are efficient 

IFNγ producers. 

 

Although collectively the results indicate that chronic inflammation as observed in 

chronic HCV infection leads to activation of iNKT cells, our data are based on 

analysis of iNKT cells from the peripheral blood. It would be important to study iNKT 

cells at the site of infection, which is on the one hand in general technically 

challenging since only a few mononuclear cells can be isolated from liver biopsies 

and on the other hand, is nowadays highly limited by the number of biopsies 

available from HCV infected patients, since non-invasive strategies are preferred to 

determine the stage of liver fibrosis (Castera 2012). Moreover, acquisition of liver 

material through biopsies from patients with resolved infection is ethically challenging 

as there is generally no medical indication for such an invasive procedure. Currently, 

isolation of IHL from liver perfusions provides the opportunity to study, for instance 

iNKT cells at the site of HCV infection.  

Notably, in line with Karadimitris et al. (2001) the frequency of iNKT cells in the liver 

was low and comparable to frequencies in the peripheral blood. However, 

contradicting data exists as significant enrichment of Vα24+ Vβ 11+ iNKT cells in the 

liver compartment compared to the periphery, has been reported in healthy 

individuals (Ward et al. 2004). One has to keep in mind that our approach to use IHL, 

obtained by liver perfusion, has limitations since material was obtained from patients 

undergoing liver resections with various underling diseases. Therefore, the 

comparison between iNKT cells in both compartments provided by Ward et al. (2004) 

might reflect the situation in healthy individuals more accurately as they analysed 

liver perfusate from transplanted healthy livers. However, we were unable to test liver 

samples from HCV-infected individuals in this study, thus could not address 

differences in iNKT cell frequencies and comment on a previously described trend 

towards ongoing reduction of Vα24+ iNKT cell frequencies during HCV disease 

progression as well as depletion of Vα24+ iNKT in patients with end-stage HCV 

cirrhosis (Deignan et al. 2002). Although we could not address this in the underlying 

study, a comparison of iNKT between both compartments could give further insights 

into the role of iNKT cells during HCV infection and might provide evidence for the 
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functional impact of the activated state observed in chronically HCV infected PWID. 

In addition, the described effect of IFNα on CD1d expression points towards a role of 

IFNs in hepatic CD1d regulation. However, with the analysis of monocytes from the 

periphery an artificial system was used that might not adequately reflect the situation 

in the liver compartment. Thus, to conclusively determine IFN mediated upregulation 

of CD1d, IHL as well as CD1d expressing hepatocytes have to be analysed. 

Although, in our study neither liver enzymes nor viral load of HCV-RNA positive 

individuals correlated with iNKT cells frequencies in the periphery, which is in 

accordance with previously reported MAIT cell data (Spaan et al. 2016), iNKT cells in 

the HCV infected liver might still be associated with hepatocyte damage. In addition 

to studying HCV infected liver samples, the use of a HCV cell culture replicon system 

might provide further insights into the possibly antiviral properties of human iNKT 

cells. Efficient suppression of HCV replication in a genotype 2a HCV cell culture 

replicon system by IFNγ production of activated MAIT, has recently been described 

(van Wilgenburg et al. 2016). Even though iNKT cells display a much smaller 

proportion of intrahepatic lymphocytes compared to MAIT cells, they have the ability 

to rapidly expand upon activation, thus might play a critical role in HCV infection.  
 

 
 

Figure 5.1: Graphical summary: activated iNKT cells in chronic HCV infection 

iNKT cells are activated in HCV-RNA positive PWID. Two possible mechanisms have been postulated 
in this study that result in the direct or indirect activation of iNKT cells in HCV infection. Cytokines as 
IL12 and IL15 directly activate iNKT cells whereas IFNα leads to an indirect activation through the 
upregulation of CD1d, the ligand for iNKT cells. Activated iNKT cells of HCV RNA positive PWID might 
for instance contribute to hepatocyte damage during chronic HCV infection. Even though we are 
lacking human data this effect of activated iNKT cells has been described in mice. However, to 
conclusively link activated iNKT cells to HCV pathology further research is needed. 
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Collectively, our data provides evidence that iNKT cells from HCV-RNA positive 

PWID are activated in chronic HCV infection. In addition, two possible mechanisms 

have been proposed that result in the activation of iNKT cells in HCV infection. IFNα 

mediated upregulation of the iNKT cell ligand CD1d and the direct effect of IL12 

and -15 on CD38 expression indicate that CD1d expressing cells and the cytokine 

environment modulate iNKT cell activation in HCV infection. In conclusion, additional 

studies are needed to elucidate the role of iNKT cells in the context of HCV infection 

further and to characterise the impact of the activation status on the functionality in 

more detail. 
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5.2 NK cells in HCV infection 

This study was based on the recent finding of our group, that a distinct KIR/KIR 

ligand constellations was associated with HCV infection outcome in a high-risk cohort 

of PWID. HCV-treatment naïve patients were grouped according to their antibody 

serostatus and viral RNA levels into anti-HCV seropositive PWID with detectable 

HCV RNA, anti-HCV seropositive PWID without detectable HCV RNA and anti-HCV 

seronegative PWID. The genetic combination of KIR3DL1 and a HLA class I allele 

encoding a Bw4 80(T) motif was significantly enriched in HCV infected patients that 

spontaneously control the infection. This effect was not observed in the anti-HCV 

seronegative group. The association of KIR3DL1/HLA-Bw4 80(T) and spontaneous 

clearance of HCV infection was confirmed in a second independent cohort of PWID 

from North America. This indicates that NK cells in the context of KIR3DL1 combined 

with the ligand HLA-Bw4 80(T) are beneficial for the outcome of acute HCV infection 

mediating resolution of the virus but do not confer protection prior to seroconversion. 

Therefore, the influence of this genetic constellation on NK cell function was 

addressed and confirmed a superior functionality of KIR3DL1+ NK cells from 

Bw4 80(T) positive patients compared to Bw4 80(I) positive patients. Moreover, a 

second distinct predisposition associated with infection outcome was identified in the 

genetic correlation study. KIR3DL1 in combination with multiple copies of the ligand 

HLA-Bw4 (≥ two Bw4 motifs) was significantly increased in individuals with an 

anti-HCV seronegative state. Therefore, this genetic constellation mediated a 

protective effect upon HCV exposure which results in resolution prior to 

seroconversion. In addition, functional analysis confirmed an enhanced cytokine 

secretion as well as cytotoxic potential of NK cells in individuals with multiple Bw4 

copies. Hence this study proposes two distinct genetic predispositions that result in 

either protection from HCV acquisition prior to seroconversion or driving spontaneous 

resolution of HCV infection. Interestingly, both genetic associations were associated 

with enhanced NK cell functionality. 

 

Here, we examined the human NK cell subset expressing KIR3DL1, the only known 

KIR specific for HLA-Bw4 alleles. KIR3DL1 frequencies on NK cells were similar 

between HCV-RNA positive, HCV-RNA negative and anti-HCV negative PWID in our 

cohort. In line with this study Alter et al. (2011) reported similar KIR3DL1 frequencies 

in HCV-RNA positive and HCV-RNA negative individuals. Moreover, in contrast to 
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previously described decreased proportions of KIR3DL1 expressing NK cells in HCV 

infected patients the observed expression of KIR3DL1 on NK cells from healthy 

individuals and chronically HCV infected individuals was comparable in our analysis 

(median frequency of KIR3DL1+ NK cells 14.5% vs. 15.1%). Differences might be 

due to the low number of included individuals in the study of Oliviero et al. (2009) 

while our flow cytometric analysis included 90 PWID and 120 healthy individuals. 

Therefore, we propose that the frequency of KIR3DL1 expressing NK cells is not 

associated with HCV infection outcome in PWID. 

However, KIR expression on T cells might influence HCV infection outcome. The 

frequency of KIR3DL1 expressing T cells from healthy individuals were low 

compared to NK cells. The frequencies of KIR3DL1+ CD8+ T cells ranged from 0.02% 

to 7.83% whereas KIR3DL1 was mostly undetectable on CD4+ T cells (mean: 0.15%, 

appendix figure 6.3). In line with our results low levels of KIR (KIR2DL1/S1/L2/S2/L3) 

expression on CD8+ T cells have been described in the periphery as well as in the 

liver from HCV infected individuals. Even though KIR expression on HCV-specific 

CD8+ T cells in the liver was low, Bonorino et al. (2007) proposed that expressed 

KIRs are able to efficiently impair their virus specific reactivity. KIR expressing 

CD8+ T cells in HCV infection were terminally differentiated and displayed a reduced 

replicative potential. Although KIR3DL1 expression on CD8+ T cells was not further 

investigated in this study, existing data suggests that KIR expression on T cells might 

be disadvantageous for the adaptive immune response against HCV infection. 

 

Several studies associated different KIR/KIR ligand constellations with disease 

severity or outcome in various virus infections such as HIV or HCV (Martin et al. 

2002, Khakoo et al. 2004). Moreover, reduction of CMV reactivation after stem cell 

transplantation was correlated with the presence of multiple activating KIRs in the 

donor (Cook et al. 2006). In HCV infection, the genetic constellation of the inhibitory 

NK cell receptor KIR2DL3 in combination with homozygosity of the ligand HLA-C1 

was reproducibly associated with infection outcome. Khakoo et al. (2004) were the 

first who identified a direct influence of KIR2DL3 and HLA-C1 on spontaneous 

resolution of HCV infection, which was confirmed in a PWID cohort of Puerto Rican 

ethnicity (Romero et al. 2008). Furthermore, the same group could extend the 

association of this genetic predisposition to protection from HCV infection prior to 

seroconversion (Zúñiga et al. 2009). In addition, Knapp et al. (2010) confirmed the 
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association with HCV resistance in seronegative PWID and further correlated 

homozygosity for KIR2DL3 in combination with HLA-C1 allotypes with an enhanced 

likelihood to achieve SVR upon IFNα-based therapy. In contrast, no correlation of this 

KIR/KIR ligand constellation with HCV infection outcome was detected in our genetic 

association study. However, a previous study of our group could show increased 

KIR2DL3 expression on NK cells of seronegative PWID and PWID with resolved 

infection compared to HCV-RNA positive PWID (Thöns et al. 2014). The discrepancy 

between results from genetic association studies might be explained by factors that 

influence HCV infection outcome such as viral genotype, gender and the IL28B 

genotype, since these factors are not always well controlled (Grebely et al. 2014). 

Moreover, HCV resolution is not solely mediated by NK cell responses but CTLs, 

especially virus specific CD8+ T cells with a broad response efficiently clear the 

infection (Cooper et al. 1999). CD8+ T cell responses in HCV infection are partially 

genetically determined. Immunogenetic studies reproducibly associated HLA-B*27 

and HLA-B*57 with spontaneous immune control of HCV infection (McKiernan et al. 

2004, Kim et al. 2011, Fitzmaurice et al. 2015). In addition, our group confirmed the 

protective effect of HLA-B*27 for PWID exposed to genotype 1 as well as genotype 3 

(data unpublished). Moreover, the occurrence of the HLA-B*27:05 allele that 

comprises a Bw4 80(T) motif was associated with infection outcome in our PWID 

cohort. To exclude that the genetic correlation of KIR3DL1/HLA-Bw4 80(T) and 

spontaneous clearance of HCV infection in our PWID cohort was exclusively driven 

by HLA-B*27, all B*27 positive patients were excluded. The analysis showed that the 

protective effect of the KIR3DL1/HLA-Bw4 80(T) genotype was not solely mediated 

by HLA-B*27 since the frequency of this constellation was still higher in HCV-RNA 

negative PWID (37.5%) compared to HCV-RNA positive PWID (22.9%) however, this 

association was borderline significant (p=0.05). Although studies provided evidence 

that adaptive as well as innate immune events independently contribute to the 

outcome of HCV infection (Khakoo et al. 2004, McKiernan et al. 2004, Thomas et al. 

2009), collectively our results suggest an additive effect of HLA-B*27 and 

KIR3DL1/HLA-Bw4 80(T) on HCV infection outcome. 

 

The beneficial effect of the KIR3DL1/HLA-Bw4 80(T) genotype on spontaneous 

clearance of HCV infection could be demonstrated in two independent HCV cohorts. 

However, no association was observed in a third cohort from the UK. In addition to 
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the above stated factors, that could influence the observed variances between 

genetic association studies, the most probable explanation for the variance between 

the UK and our cohort are differences in distribution of HLA-B alleles between 

cohorts. Differences in HLA-B allele frequency as observed for HLA-B*13, *38, *44 

and *57, might affect the contribution of CTLs to HCV resolution and therefore 

account for observed difference in the genetic association study.  

Interestingly, we observed that in the context of HLA-Bw4 80(T) NK cell functionality 

was enhanced compared to HLA-Bw4 80(I) allele carriers in PWID, whereas this 

phenomenon was not observed in healthy individuals. The HLA-Bw4 subtype that 

harbours an isoleucine (I) at amino acid position 80 exhibits a stronger affinity to 

KIR3DL1 compared to threonine (T) at this position (Cella et al. 1994) and therefore 

should be better armed to efficiently produce cytokines upon MHC downregulation. 

This phenomenon was observed by Boudreau et al. (2016) in healthy donors, since 

KIR3DL1+ NK cells with a HLA-Bw4 80(I) background exhibited a better functionality 

compared to HLA-Bw4 80(T) positive individuals against HLA-negative targets cells. 

In contrast, to these results we observed no functional benefit of HLA-Bw4 80(I) in 

healthy individuals. Furthermore, the reason for our observed superior functionality of 

KIR3DL1+ NK from HLA-Bw4 80(T) positive PWID remains unclear. Previous data 

might provide an explanation for the reported superior functionality of KIR3DL1+ NK 

cells in the context of a weaker affinity ligand as HLA-Bw4 80(T) in HCV infection. 

KIR2DL3 in combination with HLA-C1 has been reproducibly correlated with HCV 

infection outcome however, expression of an inhibitory KIR with HCV infection 

outcome was surprising at first. KIR2DL3 inhibits NK cells and NK cell activation is 

crucial for killing of virus infected hepatocytes either directly or by mediating the 

activation of the adaptive immune system (Golden-Mason et al. 2010, Pelletier et al. 

2010). The described binding affinity of KIR2DL3 to HLA C1 was lower than for 

KIR2DL2 (Winter et al. 1998), thus HLA-C1 mediated inhibition of NK cells is lower in 

KIR2DL3 homozygous individuals. In HCV infection it was suggested that a weaker 

inhibitory control of NK cells might be beneficial as NK cells are more easily activated 

and are therefore able to contribute to resolution during acute infection or even 

mediate early immune control prior to seroconversion (Khakoo et al. 2004). This 

reduced threshold to activate NK cells could explain our observed increased cytokine 

production as well as degranulation ability in the low affinity ligand HLA-Bw4 80(T) 

carriers. 
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NK cells gain their functional competence during NK cell development in a process 

called NK cell education and NK cell education might provide an explanation for our 

observed superior NK cell functionality in the presence of multiple HLA-Bw4 alleles. 

Inhibitory receptor expression is essential to obtain functional cells that respond 

efficiently to a lack of self-MHC on the target cell (Kim et al. 2005). The number of 

inhibitory receptors as well as the presence of the ligand have a major impact on the 

functionality of NK cells (Sim et al. 2016). While homozygosity for the ligand for 

KIR2DL3 and KIR2DL1 expressing NK cells (C1/C1 or C2/C2) did not confer better 

education compared to heterozygosity of the ligand, KIR3DL1+ NK cell function is 

dependent on the number of Bw4 motifs. The presence of two Bw4 copies was 

associated with a trend towards increased functionality of KIR3DL1+ NK cells, thus 

multiple Bw4 copies resulted in enhanced education of KIR3DL1+ NK cells (Sim et al. 

2016). Comparable results were obtained in a study by Kim et al. (2008) 

demonstrating that KIR3DL1+ NK cells from healthy individuals with the 

HLA-Bw4/Bw4 genotype had a higher ability to produce IFNγ compared to Bw4 

heterozygous individuals and individuals lacking a Bw4 motif (Kim et al. 2008). Our 

results of healthy individuals were in line with these studies and confirmed a positive 

correlation between functionality of KIR3DL1+ NK cells and Bw4 copy number. In 

addition, we could extend the observed superior functionality of NK cells in the 

presence of multiple Bw4 copies to increased TNFα production as well as enhanced 

degranulation ability. Furthermore, Boudreau et al. (2016) described that besides 

Bw4 copy number, functionality of KIR3DL1 NK cells was affected by the binding 

strength of KIR3DL1 to its ligand Bw4 as well as the receptor and ligand density on 

the cell surface. We observed congruent results for KIR3DL1 receptor density 

analysis whereas ligand density was not addressed in our study. Even though the 

differences were not statistically significant a tendency towards increased 

functionality of KIR3DL1+ NK cells with multiple Bw4 copy numbers was observed in 

the PWID cohort as well. 

 

Our study was the first to report that KIR3DL1 in combination with HLA-Bw4 was 

associated with resolution of HCV infection and being the only study so far that 

demonstrated a beneficial effect of HLA-Bw4 80(T) for viral clearance. In line with our 

results, Ruiz-Extremera et al. (2017) recently described an influence of KIR3DL1 as 
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well as HLA-Bw4 on the natural course of HCV infection in a study analysing the 

Mother-to-child transmission of HCV. The study indicated, that homozygosity for 

KIR3DL1 and the presence of multiple HLA-Bw4 alleles in the mother were two 

independent predictors for clearance of HCV infection in the child. However, no 

correlation of the combination of both with infection outcome or transmission rate was 

described. In addition, the combination of KIR3DL1 and HLA-Bw4 alleles has 

recently been described to influence treatment outcome. Nozawa et al. (2013) and 

Umemura et al. (2014) demonstrated that the KIR3DL1/HLA-Bw4 genotype was an 

independent predictor for SVR in a genotype 1b infected cohort from Japan after 

combination therapy with either PEGylated IFNα and ribavirin or after treatment with 

a triple therapy of telaprevir, PEGylated IFNα and ribavirin.  

Furthermore, KIR3DL1 and Bw4 as well as the combination of both have been 

associated with beneficial effects in other diseases. In cancer, the genetic 

constellation of KIR3DL1 and HLA-Bw4 has been linked to the protection from diffuse 

large B-cell lymphoma and significant better overall survival in metastatic colorectal 

cancer patients (Karabon et al. 2011, De Re et al. 2014, Vejbaesya et al. 2014). 

Patients with neuroblastoma or Non-Hodgkin's Lymphoma harbouring the 

KIR3DL1/HLA-Bw4 genotype showed improved clinical outcome, especially 

individuals carrying the Bw4 80(T) motif. They reported that for monoclonal antibody 

based immunotherapy success, a weaker NK cell inhibition mediated by 

HLA-Bw4 80(T) was beneficial (Erbe et al. 2017), thus proposing the same 

mechanism for advantageous outcome as our HCV study. Moreover, the low-affinity 

ligand HLA-Bw4 80(T) has been associated with reduced relapse rates in acute 

myeloid leukaemia (AML) patients and multiple copies of HLA-Bw4 80(T) further 

decreased the incidence of AML relapses (Marra et al. 2015).  

Furthermore, the HLA-Bw4 motif was correlated with a significant advantage in HIV 

infection outcome, as homozygosity for HLA-Bw4 was associated with suppression of 

HIV viremia, delayed HIV progression and thus delayed acquired immunodeficiency 

syndrome (AIDS) pathogenesis (Flores-Villanueva et al. 2001). Interestingly, the 

intracellularly retained KIR3DL1*004 in the presence of HLA-Bw4 was protective in 

HIV infection and influenced AIDS progression as well as plasma HIV RNA level 

(Martin et al. 2007). In contrast to our study, in HIV infection KIR3DL1 combined with 

HLA-Bw4 80(I) rather than HLA-Bw4 80(T) has been correlated with a significantly 

slower progression from HIV infection to AIDS (Martin et al. 2007) which indicates 
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that the impact of different combinations of KIR3DL1 alleles and their ligands varies 

between HIV and HCV infection. Numerous studies linked the Bw4 80(I) motif 

harbouring HLA-B*57 allele to favourable HIV outcome. The genetic combination of 

KIR3DL1, especially high expressing alleles, and HLA-B*57 were associated with a 

reduced risk of HIV infection in exposed uninfected individuals and slower disease 

progression (Martin et al. 2007, Boulet et al. 2008). In addition, NK cells from 

individuals with this protective genotype showed enhanced functionality (Boulet et al. 

2010). Since the observed increased functionality of KIR3DL1+ NK cell in the context 

of Bw4 80(T) was only seen in the PWID cohort, further analysis of possible effects of 

protective alleles in HCV infection like HLA-B*27 adding to NK cell functionality was 

limited in our study. Out of the 90 analysed PWIDs only four expressed KIR3DL1 and 

carried a HLA-B*27 allele including two individuals with multiple Bw4 copies, thus not 

allowing a valid and reliable analysis of the impact of HLA-B*27 on NK cell function.  
 

 
 

Figure 5.2: Graphical summary: association of KIR3DL1/HLA-Bw4 with HCV infection 
outcome and NK cell functionality in PWID 

Upon HCV exposure, the majority of PWID develop chronic HCV infection. A second subgroup is able 
to clear HCV infection prior to seroconversion, thus remain HCV seronegative whereas a third group 
spontaneously resolves HCV infection after seroconversion. PWID with multiple Bw4 alleles are more 
likely to clear HCV infection before seroconversion compared to PWID with one or no Bw4 allele. In 
addition, increasing HLA-Bw4 copy numbers were correlated with a stepwise increase of functionality 
of KIR3DL1+ NK cells in healthy individuals. Better NK cell functionality is probably mediated by 
enhanced education in the presence of multiple Bw4 copies. KIR3DL1 in combination with 
HLA-Bw4 80(T) was associated with spontaneous resolution of HCV infection after seroconversion 
and KIR3DL1+ NK cells from HLA-Bw4 80(T)-positive PWID showed superior functionality compared 
to HLA-Bw4 80(I) positive PWID. Presumably a low activation threshold of NK cells in the presence of 
the low affinity ligand HLA-Bw4 80(T) results in enhanced functionality. 
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In summary, these data indicate that KIR3DL1 in the presence of HLA-Bw4 80(T) 

promotes spontaneous resolution of HCV during acute infection in a high-risk group 

of PWID, whereas this genetic combination however, does not mediate protection 

from HCV infection. In addition, multiple Bw4 copies were associated with HCV 

clearance prior to seroconversion, thus proposing a mechanism that mediates 

protection from HCV infection. Both genetic constellations were associated with 

superior NK cell functionality. Whereas enhanced KIR3DL1+ NK cell functionality in 

the context of multiple Bw4 copies is probably mediated by better NK cell education, 

the HLA-Bw4 80(T) effect in HCV infected individuals is most likely due to a lowered 

threshold to activate NK cells in the context of the low affinity ligand. Taken together 

this suggest that a superior NK cell functionality plays a critical role for HCV infection 

outcome in PWID. 
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5.3 DNA methylation of the IFNG locus 

Our study showed that increased IFNγ production by KIR3DL1+ NK cells in the 

context of multiple HLA-Bw4 copies was not epigenetically imprinted in the IFNG 

locus. DNA methylation of the CNS1 region in KIR3DL1- and KIR3DL1+ NK cells was 

independent of the Bw4 copy number. Interestingly, DNA methylation within the IFNG 

locus was significantly reduced in CMV+ individuals. Moreover, hypomethylation of 

the CNS1 region was correlated with the NKG2C expression on NK cells.  

Previous studies reported a closed conformation and a highly methylated CNS1 

region as well as IFNG promoter in naïve T cells, whereas the CNS1 region in 

TH1 cells was hypomethylated (Dong et al. 2013, Luetke-Eversloh et al. 2014). 

Moreover, the IFNG promoter was broadly demethylated in resting NK cells and 

methylation patterns were independent of NK cell activation (Wiencke et al. 2016). In 

accordance with these studies we observed similar methylation patterns of the IFNG 

locus comprising the CNS1 region as well as the IFNG promoter, for naïve 

CD4+ T cells, TH1 cells and NK cells. Furthermore, it has been described that the 

occurrence of hypomethylation of an upstream region regulating the transcription of 

IFNγ as part of the IFNG locus was associated with NK cell activation (Luetke-

Eversloh et al. 2014). Moreover, demethylation of the CNS1 region confered an 

increased IFNγ competence of NK cells (Luetke-Eversloh et al. 2014). However, our 

observed superior IFNγ production of KIR3DL1+ NK cells could not be associated to 

hypomethylation occurring within the analysed CNS1 region. Even though 

investigated epigenetic modifications did not provide an explanation for superior IFNγ 

functionality of NK cells from multiple HLA-Bw4 motif carriers, other epigenetic 

modification might be responsible for the observed differences in functionality 

between individuals lacking a Bw4 motif in comparison to Bw4+ individuals. In 

addition to an increased IFNγ production, KIR3DL1+ NK cells from individuals with 

multiple HLA-Bw4 motifs exhibited an enhanced ability to produce TNFα. DNA 

methylation might be the underlying mechanism mediating this functional difference, 

since previous reports described that the methylation pattern of the TNFA promoter 

correlated with gene transcription and demethylation of the TNFA promoter was 

described in activated NK cells (Wiencke et al. 2016). 

 

In HCMV infection NKG2Chigh NK cells show characteristics of adaptive immune 

cells, since they are clonally expanded after reactivation, highly functional and 
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long-lived. As these NK cells display features usually associated with adaptive 

memory cells they are termed memory NK cells (Sun et al. 2009). The expansion of 

this NKG2Chigh memory NK cell population in HCMV infected individuals was 

associated with demethylation of the CNS1 region. Moreover, the open configuration 

and accessibility of CNS1 correlated with enhanced IFNγ competence (Luetke-

Eversloh et al. 2014). Our study demonstrated an association between the occurring 

hypomethylation of the CNS1 region and the CMV seropositivity of investigated 

individuals. In addition, we provided evidence that the epigenetic remodelling at this 

site within the IFNG locus was attributed to memory NK cells since we observed an 

inverse correlation between the DNA methylation and the frequency of 

NKG2C+ NK cells. Therefore, our study confirmed the previously reported association 

between NKG2C expression of CMV+ individuals and hypomethylation of the CpG 

sites within the CNS1 region. Collectively the existing data suggest that memory 

features of NK cells are epigenetically regulated. 

In summary, our data confirms that NK cell memory features, which are attributed to 

NKG2C expressing NK cells in CMV positive individuals, are epigenetically imprinted 

within the CNS1 region of the IFNG locus, whereas the significantly enhanced IFNγ 

capacity of KIR3DL1+ NK in the context of multiple HLA-Bw4 motifs is not 

epigenetically regulated by DNA methylation. 
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5.4 Future directions 

5.4.1 iNKT cells in HCV infection 

The impact of the activated iNKT cell status in HCV-RNA positive PWID on their 

functionality is not fully understood. It is reported that iNKT cell activation leads to an 

upregulation of FasL (Nakagawa et al. 2001), indicating that iNKT cells might directly 

induce liver injury through the Fas-FasL signalling pathway. This effector 

mechanisms could differ between individuals with different infection outcome, thus 

might provide functional explanations for the observed activated phenotype of iNKT 

cells in HCV infection. Therefore, further analysis of iNKT cell functions are 

necessary to understand the impact of iNKT cells in HCV infection outcome in depth. 

In addition, the role of iNKT cells in the activation of innate as well as adaptive 

immune cells should be further addressed in the context of HCV infection. The 

absence of NKT cells in HBV infection reduced HBV specific T cell responses 

(Zeissig et al. 2012). In addition, IFNγ produced by activated iNKT cells in mice 

increased CD8+ T cell responses in a hepatic tumour mouse model (Nakagawa et al. 

2001) which leads to the assumption that iNKT cell activation induced by αGalCer 

might positively affect CD8+ T cell responses in HCV infection. Furthermore, direct 

antiviral effects of iNKT cells could be determined in cell culture based replicon 

systems. Recently, a mouse model of an HCV-related hepacivirus, that displays 

similarities with HCV infections in humans, was established (Billerbeck et al. 2017). 

Therefore, this new mouse model represents a suitable method to elaborately study 

the role of iNKT and non-invariant NKT cells in acute and chronic HCV infection.  

5.4.2 NK cells in HCV infection 

Here, we reported that the combination of KIR3DL1 and HLA-Bw4 80(T) was 

associated with spontaneous immune control of HCV infection in a high-risk cohort of 

PWID. Moreover, HLA-B*27 was reproducibly linked to spontaneous resolution of 

HCV infection and escape mutations within the presented epitope were associated 

with viral persistence. Interestingly, KIR3DL1 is not only able to bind to the Bw4 motif 

from HLA-A and HLA-B molecules but also makes contact to the presented peptide 

(reviewed in Parham et al. 2012, and O'Connor et al. 2013). Thus, it might be of 

interest to determine if viral peptide variants presented by a HLA-B*27 allele that 

harbours a Bw4 80(T) motif like HLA-B*27:05 modulate NK cell responses. 

Moreover, future analysis could determine if mutations within the presented viral 

epitope which confer T cell escape can also escape NK cell recognition. 
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6 Appendix 
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Figure 6.1: Expression of CD38 on CD1d dextramer negative lymphocytes 

CD38 expression was analysed on CD1d dextramer negative lymphocytes from 13 HCV-RNA positive 
and 13 HCV-RNA negative individuals. The frequency of CD38+ non iNKT cells is depicted and an 
unpaired t-test was used to determine significance. The mean ± SEM is shown.  
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Figure 6.2: Age distribution within the PWID cohort 

The age in years is depicted for every individual PWID that was included in the genetic KIR/KIR ligand 
association study. The median age of HCV-RNA positive (n=151), HCV-RNA negative (n=64) and 
anti-HCV negative (n=51) PWID is indicated. Significance was calculated by one-way ANOVA 
(p≤0.05). 
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Figure 6.3: Frequency of KIR3DL1 expressing T cells  

The frequency of KIR3DL1+ T cells was determined in PBMCs from 15 healthy individuals. 
KIR3DL1+ T cells were defined as CD3+ single, viable lymphocytes and were compared to KIR3DL1 
expressing NK cells. CD3+ T cells were further subdivided into CD4+ and CD8+ cells. Significance was 
calculated by the use of the Wilcoxon signed rank test (****p≤0.0001) and the mean ± SEM is 
depicted. 



Summary 

 

 105

7 Summary 

Worldwide 71 million people are chronically infected with HCV and each year 

approximately 400 000 people die from HCV associated liver diseases. The most 

important risk factor in western industrialised countries to acquire HCV infection is 

intravenous drug use. For this reason, we utilised a cohort of people who inject drugs 

(PWID) to comparatively analyse PWID developing chronic infection (HCV-RNA 

positive), spontaneously resolving HCV infection (HCV-RNA negative) and PWID 

remaining anti HCV seronegative (anti-HCV negative), to provide novel insights into 

the contribution of innate and adaptive immune mechanisms to HCV infection 

outcome. 

The role of Natural Killer T (NKT) cells, which share characteristics of innate and 

adaptive immune cells, for the outcome of HCV infection is poorly defined. Invariant 

NKT (iNKT) cells, a subset of NKT cells, recognise glycolipid antigens such as 

α galactosylceramide (αGalCer) presented by the non-classical MHC molecule 

CD1d. Decreased iNKT cell frequencies have been reported in chronically HCV 

infected patients, however, contradicting reports exist. In this study iNKT cell 

frequencies did not differ between HCV-RNA positive (n=28) and HCV-RNA negative 

(n=33) PWID. Interestingly, phenotypic analysis of iNKT cells of chronically infected 

PWID showed significantly higher expression of the activation marker CD38, 

however, this was not associated with apparent differences in 

PMA/ionomycin-stimulated effector functions. In addition, treatment with a 

combination of IL12, -15 and -18, which is described to activate NK cells, led to a 

significant increase in CD38+ iNKT cells. Since IFN stimulated genes are induced in 

patients with chronic infection the influence of IFNs on iNKT cell activation was 

addressed as well. Although no direct effect of IFNα on iNKT cell activation was 

observed, CD1d was upregulated on peripheral monocytes, the cell type with the 

highest expression of CD1d in the periphery. However, CD1d levels on monocytes, 

did not differ between PWID with chronic and resolved HCV infection. Nevertheless, 

presence of monocytes promoted iNKT cell expansion and activation, as depletion of 

monocytes significantly reduced the frequency of CD38+ iNKT cells. Furthermore, 

CD1d transcript levels were significantly higher in HCV-infected liver compared to 

HBV-infected liver. Collectively the data demonstrate that iNKT cells are activated in 

chronically HCV infected PWID, possibly via type I interferon-induced upregulation of 

CD1d on monocytes or other liver resident cells or via direct activation by 
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pro-inflammatory cytokines. However, the functional consequences of increased 

activation of iNKT cells are not fully defined. 

While iNKT cells are still poorly covered by scientific reports in HCV infection there is 

growing evidence for the importance of NK cells for HCV infection outcome. Genetic 

association studies revealed that specific genetically determined combinations of NK 

cell-receptors and their ligands are associated with differential outcome of HCV 

infection. NK cell function is regulated by a set of inhibitory and activating receptors 

including killer-cell immunoglobulin-like receptors (KIRs). A previous study in our lab 

identified that KIR3DL1/HLA-Bw4 80(T) was associated with spontaneous clearance 

of HCV infection in our PWID cohort (n=266) which was validated in a second PWID 

cohort from North America (n=342). For this reason, this study focused on the 

functional characterisation of NK cells according to the identified KIR/KIR-ligand 

genotype. Besides PWID, healthy individuals (n=120) were included in the analysis 

as well. KIR3DL1+ NK cells from HLA-Bw4 80(T) positive PWID showed superior 

functionality compared to HLA-Bw4 80(I) positive PWID. However, this differential 

impact was not observed in healthy donors. Moreover, the frequency of individuals 

with multiple HLA-Bw4 alleles was significantly higher in HCV-RNA negative as well 

as anti-HCV negative PWID compared to HCV-RNA positive PWID and HLA-Bw4 

copy number strongly correlated with the functionality of KIR3DL1+ NK cells in 

healthy individuals. HLA-Bw4 80(T) and multiple HLA-Bw4 copies in combination with 

KIR3DL1 are associated with protection against chronic HCV in PWID by distinct 

mechanisms. Better education of KIR3DL1+ NK cells in the presence of multiple 

HLA-Bw4 copies is beneficial prior to seroconversion whereas HLA-Bw4 80(T) may 

be beneficial during acute hepatitis C. To determine possible underlying mechanisms 

leading to the superior functionality of KIR3DL1+ NK cells, the DNA methylation 

pattern of the IFNG locus was analysed, since demethylation of the IFNG locus is 

generally associated with increased IFNG transcription. Unfortunately, the 

significantly enhanced IFNγ capacity of KIR3DL1+ NK cells from multiple HLA-Bw4 

motif carriers was not epigenetically regulated by DNA methylation. However, our 

data could confirm that NK cell memory features, attributed to NKG2C expressing NK 

cells in CMV positive individuals, are epigenetically imprinted within the IFNG locus. 

In summary, these studies contribute novel evidence for the importance of NK cells 

and iNKT cells for HCV infection outcome and describe possible underlying 

mechanisms. However, further research is needed to elucidate for instance, the role 

of HCV peptides presented by HLA alleles harbouring a Bw4 motif on the function of 

KIR3DL1+ NK cells or the exact mechanism leading to the activated state of iNKT 

cells during chronic HCV infection. 
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8 Zusammenfassung 

Nach Schätzung der WHO sind zurzeit 71 Millionen Menschen weltweit chronisch mit 

dem Hepatis C Virus (HCV) infiziert und jährlich sterben etwa 400.000 Menschen an 

den Folgen einer HCV induzierten Leberkrankungen. In westlichen Industrieländern 

stellt der intravenöse Drogenkonsum hierbei den höchsten Risikofaktor dar, sich mit 

HCV zu infizieren. Um neue Erkenntnisse über die Rolle des natürlichen und 

angeboren Immunsystems in der HCV Infektion zu gewinnen, wurde einer Kohorte 

von intravenös Drogen gebrauchenden Menschen („people who inject drugs“ PWID) 

analysiert. Hierbei wurden PWID mit chronischer HCV-Infektion (HCV-RNA positiv), 

ausgeheilter HCV-Infektion (HCV-RNA negativ) und HCV seronegative PWID 

(anti-HCV negativ) miteinander verglichen. 

Welche Rolle Natürliche Killer T (NKT) Zellen, die sowohl Eigenschaften von innaten 

als auch adaptiven Immunzellen aufweisen, bei dem Verlauf einer HCV Infektion 

spielen ist nicht klar definiert. Invariante NKT (iNKT) Zellen stellen eine Subgruppe 

der NKT Zellen dar und erkennen Glycolipid Antigene wie z.B. α galactosylceramid 

(αGalCer), die durch das nicht-klassische MHC Molekül CD1d präsentiert werden. 

Die Untersuchung der iNKT Zellfrequenzen zeigte keine Unterschiede zwischen 

HCV-RNA positiven (n=28) und HCV-RNA negativen (n=33) PWID. 

Interessanterweise ergab die phänotypische Analyse, dass sich iNKT Zellen von 

chronisch HCV infizierten PWID durch eine signifikant erhöhte Expression des 

Aktivierungsmarkers CD38 auszeichnen. Allerdings konnten keine funktionellen 

Unterschiede mit diesem aktivierten Phänotyp assoziiert werden. Zusätzlich wurde 

die Auswirkung von Interferonen auf iNKT Zellen in dieser Studie adressiert. 

Während kein direkter Effekt von IFNα oder IFNλ festgestellt werden konnte, führte 

eine Kombination von NK Zell aktivierenden Zytokinen (IL12, IL15 und IL18) zu einer 

signifikanten Erhöhung der CD38+ iNKT Zellen. Auch wenn gezeigt werden konnte, 

dass der Ligand von iNKT Zellen durch IFNα Stimulation hochreguliert wird, konnte 

kein Unterschied in der CD1d Expression auf peripheren Monozyten, welche in der 

Peripherie den Zelltyp mit der höchsten CD1d Expression darstellen, zwischen 

HCV-RNA positiven und HCV-RNA negativen PWID festgestellt werden. Dennoch 

nehmen Monozyten eine wichtige Rolle in der Expansion und Aktivierung von iNKT 

Zellen ein, da eine Depletierung selbiger eine signifikant verminderte Frequenz von 

CD38+ iNKT Zellen zur Folge hat. Des Weiteren ergaben Leberanalysen, dass 

HCV-infizierte Lebern im Vergleich zu HBV-infizierten Lebern eine signifikant erhöhte 

CD1d Transkription aufweisen. Zusammengefasst weisen unsere Daten darauf hin, 
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dass iNKT Zellen in der chronischen HCV Infektion aktiviert sind. Sowohl eine Typ I 

Interferon induzierte Hochregulation von CD1d auf Monozyten oder anderen Zellen in 

der Leber als auch das proinflammatorische Zytokine Milieu sind potentiell für die 

Modulation des Aktivierungsstatus von iNKT Zellen in der HCV Infektion 

verantwortlich.  

Während es kaum wissenschaftliche Berichte gibt, die sich mit iNKT Zellen im 

Kontext der HCV Infektion auseinandersetzen, steigt die Zahl an Belegen, die NK 

Zellen eine wichtige Bedeutung für die Prävention und Kontrolle einer HCV Infektion 

zusprechen. Verschiedene Assoziationsstudien konnten bereits zeigen, dass 

genetisch determinierten Kombinationen von NK Zell Rezeptoren und ihren Liganden 

mit der HCV Verlaufsprognose assoziiert sind. Die NK Zell Funktion wird durch 

aktivierende und inhibierende Rezeptoren einschließlich der 

Killerzell-Immunglobulin-ähnlichen Rezeptoren (KIR) reguliert. In einer 

vorangegangenen Studie wurde mit Hilfe einer multivariaten logistischen 

Regressionsanalyse KIR3DL1/HLA-Bw4 80(T) mit der spontanen Ausheilung einer 

HCV Infektion in unserer PWID Kohorte (n=266) assoziiert. Diese Assoziation konnte 

in einer zweiten anti-HCV positiven PWID Kohorte (n=342) aus Nordamerika validiert 

werden. Auf Grund dessen wurden in der vorliegenden Studie NK Zellen anhand 

ihres KIR/KIR-Liganden Genotyps funktionell charakterisiert. Neben PWID wurden 

auch gesunde Proben (n=120) in der Analyse inkludiert. Es konnte gezeigt werden, 

dass KIR3DL1+ NK Zellen von HLA-Bw4 80(T) positiven PWID verglichen mit 

HLA-Bw4 80(I) positiven PWID eine signifikant erhöhte NK Zell Funktionalität 

aufweisen. Hingegen konnte kein funktioneller Einfluss dieses Genotyps in gesunden 

Individuen beobachtet werden. Darüber hinaus wurde gezeigt, dass multiple 

HLA-Bw4 Allele, deren Frequenz signifikant in HCV-RNA negativen und anti-HCV 

negativen PWID im Vergleich zu HCV-RNA positiven PWID erhöht ist, auch mit einer 

starken NK Zell Funktionalität einhergehen. Zusammenfassend können sowohl 

HLA-Bw4 80(T) als auch multiple Kopien von HLA-Bw4 in Kombination mit KIR3DL1 

mit der Protektion gegen eine chronische Hepatitis C assoziiert werden. Diese wird 

über verschiedene Mechanismen vermittelt: während eine bessere NK Zell 

Lizensierung durch die Anwesenheit von multiplen HLA-Bw4 Kopien vor der 

Serokonversion vorteilhaft ist, könnte HLA-Bw4 80(T) während eine akuten HCV 

Infektion von Vorteil sein. Epigenetische Veränderung könnten eine mögliche 

Erklärung für die erhöhte IFNγ Produktion von KIR3DL1+ NK Zellen im Kontext von 

multiplen HLA-Bw4 Allelen bieten. Hierfür wurde die DNA Demethylierung des IFNG 
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Lokus, welche generell mit einer erhöhten Transkription assoziiert ist, analysiert. Es 

konnte jedoch kein Zusammenhang zwischen dem Methylierungsstatus und der 

Anzahl an HLA-Bw4 Kopien hergestellt werden. Hingegen konnten vorausgegangene 

Studien bestätigt werden, die besagen, dass Memory-Eigenschaften von NKG2C 

exprimierenden NK Zellen in CMV positiven Individuen epigenetisch reguliert sind.  

Abschließend lässt sich feststellen, dass die hier präsentierten Studien neue 

Beweise für die Bedeutsamkeit von NK und iNKT Zellen für den HCV 

Infektionsverlauf liefern und Hinweise auf mögliche zugrundeliegende Mechanismen 

geben. Dennoch sind weitere Arbeiten notwendig die z.B. klären ob HCV Peptide, die 

durch Bw4 Motiv tragende HLA Allele präsentiert werden, einen Einfluss auf die 

Funktion von KIR3DL1+ NK Zellen haben oder welche Mechanismen genau während 

der chronischen Infektion zu einer Aktivierung von iNKT Zellen führen. 
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