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Abstract

In econophysics, physicists apply physical theories and methods to address economics prob-
lems. Due to an enormous amount of available data, financial markets can be statistically
analyzed by physicists. The applied methods find their applications also in the context of
other complex systems. In particular, with the development of the high-frequency trading,
the market microstructure has gained growing attention. In this thesis, we will focus on
the microstructure of financial markets, particularly on the correlation of order flow, the
price impact and the dependence of demands.

We begin by developing a method to identify trade signs with a TAQ data set. With
the identified trade signs, we carry out an analysis of empirical data for the price cross-
response to trades and the cross-correlation of trade signs. To obtain a stable observation,
we also average them. The average cross-correlation of trade signs turns out to be long
memory. Meanwhile, the non-vanishing cross-response reflects non-Markovian features of
prices. According to the average cross-responses, we identify the influencing and influenced
stocks.

We then extend the price impact model of Bouchaud et al. (2004) to interpret our
empirical results. The extended model contains the impacts of traded volumes, which
are empirically revealed as power-law functions. The model also includes a self- and
a cross-impact function of time lag. To quantify them, we propose a construction to
fix the parameters and employ a diffusion function to corroborate the parameters. We
thus quantify and interpret the price impacts in terms of the temporary and permanent
components.

We further extend the framework of trading strategies of Gatheral (2010) from single
stocks to the two-dimensional case. Thus, we can introduce the cross-impact to the strat-
egy for executing two round-trip trades of two stocks. We apply the strategy to a specific
case, in which we quantify the cross-impacts with empirical data and give a view of how
the cross-impact affect the trading strategy.

We finally analyze the dependence of demands between stocks by a copula method. The
empirical dependence of demands can be well described by a K copula density function.
We also investigate how the large local fluctuations of the signed traded volumes affect the
dependence of demands. Furthermore, we explore the asymmetries of tail dependencies of
the copula density.

i





Zusammenfassung

In Wirtschaftsphysik konzentrieren sich Physiker auf die Anwendung physikalischer The-
orien und Methoden zur Untersuchungen ökonomischer Probleme. Aufgrund des großen
verfügbaren Datenvolumens können Finanzmärkte von Physikern mit statistischen Meth-
oden untersucht werden. Diese Methoden finden ebenfalls Anwendung bei der Unter-
suchung anderer komplexer Systeme. Insbesondere mit dem Aufkommen des Hochfre-
quenzhandels, gewinnt die Mikrostruktur des Marktes wachsende Aufmerksamkeit. In
dieser Arbeit konzentrieren wir uns auf die Mikrostruktur des Marktes, insbesondere auf
die Korrelationen des Orderflusses, den Einfluss des Preises und die Abhängigkeit von der
Nachfrage.

Wir beginnen mit der Entwicklung einer Methode zur Identifikation von Handelsvorzei-
chen mittels eines TAQ Datensatzes. Mit den identifizierten Handelsvorzeichen analysieren
wir empirische Daten für die Kreuzantwort des Preises auf Handel und die Kreuzkorrela-
tion der Handelsvorzeichen. Desweiteren mitteln wir diese, um sie zu stabilisieren. Diese
gemittelten Kreuzkorrelationsfunktionen zeigen Langzeitkorrelationen. Die vorhandenen
Kreuzantworten spiegeln die nicht markovschen Eigenschaften der Preise wider. Basierend
auf den gemittelten Kreuzantworten identifizieren wir beeinflussende und beeinflusste Ak-
tien.

Ausserdem erweitern wir das Preiseinflussmodell von Bouchaud et al. (2004) um unsere
datenbasierten Ergebnisse zu interpretieren. Die erweiterten Modelle enthalten den Ein-
fluss von Handelsvolumens, die sich aufgrund von Datenanalysen als Potenzgesetze identi-
fizieren lassen. Das Modell enthält Selbst- und Kreuzeinflussfunktion der Zeitverzögerung.
Um diese zu quantifizieren, schlagen wir eine Konstruktion vor, um die Parameter festzule-
gen und verwenden eine Diffusionsfunktion um die gewählten Parameter zu bestätigen.
Wir quantifizieren und interpretieren damit den Einfluss auf die Preisentwicklung in per-
manenten und zeitabhängigen Komponenten.

Darüber hinaus erweitern wir das Modell der Handelsstategien von Gathernal (2010)
vom ein- auf den zweidimensionalen Fall. Damit können wir Kreuzeinflussfunktionen
in die Strategie zur Ausführung zweier Round-Trip-Geschäfte zweier Aktien einführen.
Wir wenden die Strategie auf einen Spezialfall an, in dem wir die Kreuzeinflussfunktion
mittels systembasierter Daten quantifizieren und erläutern, wie die Kreuzeinflussfunktion
die Handelsstrategie beeinflusst.

Zuletzt untersuchen wir die Abhängigkeit der Nachfrage nach Aktien mit Hilfe einer
Kopula-Methode. Die Abhängigkeit der Nachfrage kann datenbasiert gut beschrieben
werden mittels eine K Kopula Dichte Funktion. Wir untersuchen auch wie starke lokale
Schwankungen des Vorzeichens des Handelsvolumens die Abhängigkeit der Nachfrage be-
einflussen. Ausserdem untersuchen wir die Asymmetrie der Abhängigkeit der Flügel der
Kopula Dichte.
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Chapter 1
Introduction

1.1 Econophysics

In the past decades, some of physicists have been trying to apply theories and methods
of physics to solve problems in economics and finance, resulting in a new interdisciplinary
research field—econophysics. Such application can be traced back to the late 1700s when
Adam Smith wrote his Wealth of Nations [150]. This book laid the foundations of eco-
nomic thought in 1776. In the book, he introduced Newtonian ideas for causative forces
in economics. Since then, financial markets have been recognized gradually as complex
systems by physicists. As a new field, econophysics experiences many strong criticisms,
for instance, physicists fail to build any valuable theory with explanatory power [32],
until Benoit Mandelbrot found the first evidence for fat-tailed distributions in the early
1960s [106]. He showed that the fluctuations in cotton prices follow a distribution that
differs from the Gaussian distribution. In other words, the price fluctuations departure
from the process of random walks, which is proposed by Louis Bachelier in 1900 to explain
the price fluctuations of security and commodity [12, 13]. More importantly, the finding
of fat-tailed distributions suggests that the big fluctuations are the inherent characteristic
of a normal market [14].

To describe a large amount of research work on problems in markets done by physicists,
Eugene H. Stanley first proposed the term “econophysics” in 1995 [64]. He suggests
that one way of success for econophysicists is focusing on data. The development of
econophysics is indeed restricted by the amount of data. When Benoit Mandelbrot found
the fat-tailed distributions, only a few thousand data points are available. Thirty years
later, to analyze the scaling behavior of Standard & Poor’s Index of the New York Stock
Exchange (NYSE) over the six year period (1984–89), Rosario Mantegna and Eugene H.
Stanley examined nearly five million data points [108]. Nowadays, the available data
points are much more than 200 million and spans half a century [31]. Comparing with
most other economic data existing in small, noisy data sets, the high-quality and long-term
data from financial markets is regarded as the main reason to explain why physicists are
so finance-centered [14].

In modern econophysics, the fat-tailed distribution mentioned above is one of stylized
facts. The term “stylized facts” is originally introduced by the economist Nicholas Kaldor
in 1961 [90]. He had an argument that any theory should start off with a summary of
facts related to problems and any model should be capable of explaining relevantly styl-
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1.1. Econophysics

ized facts. He suggested that theorists should “concentrate on broad tendencies, ignoring
individual details” [90]. More specifically, different individuals can be described by dif-
ferent parametric models, but stylized facts are statistical results of all individuals and
thus capture the general, qualitative feature rather than specific features of individuals.
Apart from the fat-tailed distribution [140, 142], a lot of stylized facts [26, 29, 36, 45, 46]
common to a wide set of financial assets are also found out. It includes the absence of
autocorrelations of returns [48, 123], volatility clustering [18, 47, 105], volume-volatility
correlations [72, 128], power laws [23, 62], long memory [57, 98, 100], U shape [111], and
so on.

By analyzing huge data, physicists have advanced establishing empirical facts about
financial markets, but their contributions in economics and finance are far beyond that.
How to interpret these empirical facts is another task of equal importance. To this end,
physicists have developed many realistic models for markets. For instance, they apply
the random matrix theory to financial correlations [131], develop copula approaches to
analyze the statistical dependence between stocks [41, 165], employ spin models for trading
decisions [22], use the model of Zero Intelligence Trading (ZIT) to simulate continuous
double-auction trading [70], and so on. Among these models, the most striking ones for
studying markets are agent-based models [37, 56, 96, 112], which originate in the Sante
Fe Institute in the early 1980s [10, 11], and develop rapidly in the last two decades. In
particular, an agent-based model is a computerized simulation of interactions of agents by
following prescribed rules. Comparing with traditional equilibrium models, agent-based
models are better to cope with nonlinear behaviors. Other extensively used models for
exploring market microstructures are price impact models [27, 99]. These models describe
how the price changes due to the effect of trades. The price impact is significant in both
academic and industrial fields, since it is linked closely to the cost of trading [65] and the
optimal executions of orders [5, 6, 65–67, 120].

As the techniques of data analysis in economics and finance develop pretty fast, physi-
cists are able to identify the instability of markets by considering markets as complex
systems [115, 116]. The market instability, on the one hand, reveals potential risks that
investors may face, and on the other hand, suggests possible opportunities for investors
to arbitrage. The latter, however, conflicts with a classical theory—Efficient Market Hy-
pothesis (EMH) put forward by Fama in 1970 [54]. The EMH states that all available
information is fully incorporated in an asset’s price. As a result, any (statistical) arbitrage
opportunity is absent. In view of the conflict between empirical facts and the classical
theory, physicists have used their ways to examine the market efficiency. To some extent,
they even have helped to improve the EMH, leading to an adaptive market hypothesis
proposed by Andrew W. Lo in 2004 [102]. The adaptive market hypothesis (AMH) states
the market efficiency from an evolutionary perspective, which not only reconciles the EMH
with all its behavioral alternatives, but also incorporates arbitrage opportunities from time
to time.

In short, we have shown that a part of physicists have devoted themselves to solving
the problems of markets. Applying physics models to economics, they have obtained a
lot of stylized facts. By doing so, they even have helped to improve some theories in
economics, e.g., the EMH. However, financial markets as complex systems have changed
too much in past years, leaving many existed opinions to be updated and many problems to
be solved. Finding new patterns of markets, disclosing market microstructures, revealing
financial risks, and designing trading strategies are the main tasks that econophysicists
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devote themselves to carrying out. Fortunately, we now have a mass of available data in
finance, as well as advanced techniques for data analysis. Benefiting from these, well will
be able to better understand the real markets.

1.2 Financial markets

People who make transactions are called traders. A financial market is a place where
traders gather together to buy or sell financial instruments. Here, the instruments include
stocks, bonds, options, future contracts, forward contracts, foreign currency contracts,
and other derivatives. The place may be a physical trading floor where traders meet and
perform trades, e.g., the New York Stock Exchange and the Chicago Mercantile Exchange;
it also could be an electronic system linked with the internet. The electronic system
facilitates traders in different places to submit orders for trading. Two typical electronic
markets are NASDAQ and Euronext. Also, the financial instruments can be traded over
the counter (OTC), i.e., a trade is done between two parties without the supervision of
an exchange. In this thesis, we will restrict ourselves to the stock markets, especially to
the NASDAQ stock market. In the modern financial market, with the development of
computerized trading, traders are in a race to make transactions faster. The trading at
a fast speed results in the high-frequency trading. In the following, we will take a closer
look on the NASDAQ stock market and the high-frequency trading.

1.2.1 NASDAQ stock market

NASDAQ is the acronym of the National Association of Securities Dealers Automated
Quotations and was found by National Association of Securities Dealers (NASD) in 1971.
It originates from a quotation system and gradually turns to a publicly electric trading
platform [117, 118]. Before the emerging of the electric trading platform, the traders had to
call their brokers to make transactions. Such telephone-based trading presents inefficiency,
which is noticeable during the market crash in October, 1987 [33, 145]. NASDAQ contains
an automatic execution system for orders of up to 1000 shares [94]. This system, called the
Small Order Execution System (SOES), guarantees the immediate automatic execution
of eligible orders even under turbulent market conditions. As a consequence, NASDAQ
computerized trading eliminates the inefficiency of trading.

There are three trading sessions in NASDAQ stock market, a pre-market session from
4:00 a.m. to 9:30 a.m., a regular trading session from 9:30 a.m. to 4:00 p.m., and an
after market session from 4:00 p.m. to 8:00 p.m.. Thus, the data of quotes and order
entry is available from 4:00 a.m. to 8:00 p.m. for each trading day. Moreover, up to 2017,
more than 3000 companies are exchanged in NASDAQ stock market. These companies
have a variety of levels of capitalization and cover 15 different industries. Comparing
with other markets, NASDAQ stock market possesses richer data for intraday trading and
various stocks. These trading information can be simultaneously broadcasted to millions
of computer terminals worldwide and accessed equally by all NASDAQ participants.

1.2.2 High-frequency trading

The high-frequency trading refers to a type of algorithmic trading characterized by holding
assets with very short time periods from milliseconds to minutes, probably hours. Most
high-frequency trading strategies close the positions of assets by the end of each trading
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Figure 1.1: The flash crash on May 6, 2010. The figure is taken from The New York Times [2].

day. Carried out by automated trading systems, the high-frequency trading seeks for prof-
its from market liquidity imbalances, short-term pricing inefficiency, arbitrage strategies,
and other possible strategies [4, 113, 152]. For instance, a basic high-frequency trading
strategy is the execution of large orders chopped into pieces [26, 27, 42, 91, 136, 155].
In the last decade, the high-frequency trading develops quickly in security, foreign cur-
rency, and derivatives. For security exchange, as estimated by Tabb Group [74], the
high-frequency trading in 2008 accounted for 52% of all traded volumes in United States
and 21% in Europe. In 2010, this proportion increased to 56% in United States and to
38% in Europe [74].

The high-frequency trading provides a lot of liquidity for markets by market making [4,
113], but it also introduces risks to markets. A typical example is the flash crash on May
6, 2010, when the Dow Jones Industrial Average index fell by 9% but recovered within
minutes [2, 93, 127, 163], shown in Fig. 1.1. For reducing such kind of risks, understanding
the market microstructure is very necessary in addition to relevant policy required to
regularize makets [113].

When identifying small changes in the quote stream, high-frequency traders rapidly
open and close positions [4]. Therefore, the high-frequency trading has extremely high
turnover rates, which leads to an incremental proportion of high-frequency trading in the
total traded volume. Accordingly, the transaction costs push up to a large number. When
the transaction costs are high enough, traders may fail to profit from trading. Thus,
lowering the costs of trading is significant for traders to increase their profits. On the
other hand, the high turnover rates result in plenty of order flow data with the resolution
of one second or even one millisecond. Such a large number of data makes it possible for
physicists to statistically analyze markets.

1.3 Market microstructures

Since the market crash in October, 1987, the field of market microstructures has consider-
ably grown in size and importance. According to O’hara (1995), the market microstruc-
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ture theory “focuses on how specific trading mechanisms affect the price formation pro-
cess” [121]. Later, Harris (2003) defined the market microstructure as “the branch of
financial economics that investigates trading and the organization of markets” [78]. Re-
cently, a common definition given by Hasbrouck (2007) is that “market microstructure is
the study of the trading mechanisms used for financial securities” [80]. In view of these
definitions, the trading mechanisms are at the heart of market microstructures. The un-
derstanding of trading mechanisms are of obvious importance for many practical purposes,
for instance, the quantifying of price impacts, the reduction of execution costs, the design
of trading strategies, the organisation of markets and the lowering of financial risks [3, 94].
In addition to these areas, the study of market microstructures is of equal importance
for exploring the role of information in the price discovery process, the interplay between
liquidity taking and providing, and the implication for market efficiency [3, 94].

In the following, we will begin with a brief review of some basic concepts, and then
introduce the mechanisms of price formation. We further overview the studies on the
following key areas of market microstructures: correlations of order flow, price impacts,
and the two-phase behavior in demands. For more details of market microstructures, the
reader is referred to Refs. [3, 50, 78, 80, 121, 139].

1.3.1 Orders, order book and liquidity

In financial markets, the ultimate goal of traders is to make profits by the way of buying
low and selling high. When they decide to perform a trade, they submit an order with
trading information, including the price, volume, type, and other relevant conditions. The
traded volume is the number of shares that traders intend to exchange. The trade type
indicates that the volume is to be bought in or sold out, i.e., buy or sell for short. All the
trading information must be met for conducting a trade. The orders submitted by traders
are classified into two major types, i.e., market orders and limit orders. The market orders
can be executed immediately at the current available price. The price for trading a market
order is called the trade price. In contrast, the limit orders specify the worst price that
traders can accept. Thus, not until the trade price reaches to the acceptable prices are
the limit orders executed. If a limit order is placed at a price level that the trade price
cannot arrive at or the limit order is cancelled by its trader in advance, the limit order
would not be executed. Before execution or cancellation, the limit orders are stored in the
order book as quotes, where buy (sell) limit orders are located at the side of bids (asks).
If different limit orders have the same accepted price, they would be placed at the same
price level. For a fixed price level, the available volume is the sum of the volumes of all
those orders.

The order book, as shown in Fig. 1.3, is visible for all traders to guarantee that they
have the same information of asks and bids. In the order book, the highest bid price of
buy limit orders is regarded as the best bid, and the lowest ask price of sell limit orders is
regarded as the best ask. The best bid and the best ask are also called the best quotes. A
buy limit order with a price higher than or equal to the best ask or a sell limit order with
a price lower than or equal to the best bid is marketable immediately. Such limit orders
would not list in the order book. Thus, the best ask price is always larger than the best
bid price. More precisely, at the moment of time t, the difference between the best ask
a(t) and the best bid b(t) is the spread

s(t) = a(t)− b(t) , (1.1)
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Bid Bid Ask Ask
Volume Volume

17.070 14,798 10,173 17.080

17.065 16,195 19,316 17.085

17.060 24,836 19,235 17.090

17.055 13,850 19,150 17.095

17.050 16,220 17,315 17.100

17.045 10,057 11,160 17.105

17.040 21,033 30,558 17.110

17.035 6,002 9,181 17.115

17.030 18,455 24,544 17.120

17.025 10,647 5,921 17.125

Figure 1.2: An example of order book. On the left hand side are the quotes to buy (bids), on the
right side the quotes to sell (asks). The similar order books for different stocks can be found in
Xetra stock exchange.

which is always positive. The bid-ask spread to some extent quantifies the market liq-
uidity [9, 15, 44, 51, 139, 166], which characterizes the ability to trade an asset without
significant change of the asset’s price. In the stock market, a high liquid stock has a small
spread, because the price levels near the best ask and the best bid are highly occupied by
limit orders. In contrast, a low liquid stock has a bigger spread due to the low-density
limit orders at the the price levels near the best quotes. As a result, a small market
order can easily enlarge the spread of low liquid stocks. In fact, the spread measures the
cost of an instantaneous round-trip of one share, i.e. a buy instantaneously followed by a
sell. This cost for making transactions without time delay are also termed as the liquidity
cost [15, 51, 166]. As a part of transaction costs, the liquidity cost is distinguished from
the fixed brokerage commission. Another quantity to quantify the market liquidity is the
market depth [44, 139], which is measured by the available volume at the best quote. If
the available volume is high, the market depth is large and the best quote price is difficult
to be shifted.

1.3.2 Continuous double auction

According to the characters of traders, the impatient traders favour submitting market
orders for trading immediately at the available price, while the patient traders prefer to
submit limit orders for a better price than the current trade price at the cost of time delay
for execution. The market orders match against the limit orders of the opposite type (buy
or sell) by the principle of primary price priority and secondary time priority. A market
order leads to a buy (sell) trade for buying (selling) a given volume. The market orders
will consume the volume at the best quotes for meeting the demands of traders. As a
result, the best quote prices either remain unchanged or move to the next best prices.

Take an example. Fig. 1.3 shows a snap shot of the order book before and after
executing a buy market order. As shown in the figure, there are 100 shares available at
the best ask at the time t. If the market order is only for buying 100 shares, it will be
fully executed with a trade price of 10.54 dollars and consume the volume at the best
ask. However, if the market order is for buying 1000 shares, the case will be different. In
particular, the market order will be executed partly at the price of 10.54 dollars for 100
shares. To fulfil the demand of 1000 shares, the market order will continue being executed
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Figure 1.3: Snap shot of the order book before and after a buy market order with a volume of
1000 shares is executed. At each price level, a bar stands for an limit order. The width of the
bar indicates the volume that will be traded. We notice that both the trade price S(t) and the
midpoint price m(t) move up after the execution of that market order.

at the price of 10.55 dollars for 500 shares and at the price of 10.56 dollars for the rest 400
shares, respectively. Consequently, this large market order changes the trade price from
10.54 dollars at the time t to 10.56 dollars at the time t + 1. Such a price change due to
a trade is termed as the price impact, which will be introduced in detail in Sec. 1.3.5.

Due to the incoming market orders, the trade price changes persistently. To make
profits from the price difference between ask and bid, the traders submit limit orders.
The submission of limit orders causes an anti-persistent change of the trade price. A
balance between persistence and anti-persistence in the price change determines the final
price which moves diffusively like a random walk [27]. Therefore, the interaction between
market orders and limit orders leads to price formation. The detailed mechanism for price
formation is referred to as the continuous double auction [35, 43, 59, 95, 151].

Since the trades for buying and selling occur at the best ask and the best bid, respec-
tively, the trade price fluctuates between them. A better way to trace the price tendency
is to look at the midpoint price, which is defined as the midpoint between the best ask
a(t) and the best bid b(t),

m(t) =
1

2

[
a(t) + b(t)

]
. (1.2)

As mentioned above, the best ask price is either unchanged or pushed up by buy market
orders, while the best bid price is either unchanged or dropped down by sell market orders.
Accordingly, the midpoint price could be unaltered, and also could be raised by buy market
orders or lowered by sell market orders.
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1.3.3 Prices, returns and volatility

In 1990, Louis Bachelier proposed that the stock price has a nature of random walks [12,
13]. For instance, Fig. 1.1 (a) shows the time evolution of prices for Citigroup, Apple
and Goldman Sachs. We find that the price evolution is rather irregular with strong
fluctuations. In terms of stochastic processes, Bachelier [12, 13] modelled the stock price
as Brownian motion, also known as Wiener process [164],

dS(t) = µdt+ ση
√
dt . (1.3)

The equation above includes a deterministic part µdt and a stochastic part ση
√
dt, where µ

is a drift that measures the average growth of the random variable, η is a random variable
that is independent of infinitesimal time step dt, and σ is the volatility of the price S(t).
Bachelier’s model captures the randomness of prices, but it allows negative prices. In
1959, Osborne modelled the stock price as a geometric Brownian motion [122],

dS(t) = µS(t)dt+ σηS(t)
√
dt . (1.4)

In this model, the prices are log-normally distributed and thus always positive, while the
differences of logarithmic prices are normally distributed. By comparison, the geometric
Brownian motion is much more realistic to describe stock prices, and has been extensively
applied to economic modelling.

In Fig. 1.4 (a), we notice that the prices for the three stocks are quite different. In-
tuitively, the absolute prices S(t) as well as the absolute price changes ∆Sk(t) are not
suitable for statistical analysis of multiple stocks. To make the price changes of different
stocks on the same footing, a typical way is to use relative price changes rk(t,∆t),

rk(t,∆t) =
∆Sk(t)

Sk(t)
=
Sk(t+ ∆t)− Sk(t)

Sk(t)
. (1.5)

Here, rk(t,∆t) is the so-called return, t is the initial time of the return and ∆t is the
return interval. As shown in Fig. 1.4 (b), the returns of the three stocks are comparable
and fluctuate around zero. The positive and negative returns represent the profits and
losses, respectively, while zero returns indicate neither profits nor losses. Also, we can
express the returns with the exponential growth in prices, namely

r̃k(t,∆t) = logSk(t+ ∆t)− logSk(t) = log
Sk(t+ ∆t)

Sk(t)
. (1.6)

In fact, when the return interval ∆t is small so that ∆Sk(t)/Sk(t) < 1 holds, the logarith-
mic returns are approximately equivalent to the returns in Eq. (1.5), namely

r̃k(t,∆t) = log

(
1 +

∆Sk(t)

Sk(t)

)
≈ ∆Sk(t)

Sk(t)
= rk(t,∆t) . (1.7)

The variation of prices over time is measured by volatility. More importantly, the
volatility can be used to quantify the risk of a stock k. As the volatility is unobservable
on markets, it is often estimated by the standard deviation of returns,

σk =

√〈
r2
k(t,∆t)

〉
t
−
〈
rk(t,∆t)

〉2

t
, (1.8)
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Figure 1.4: (a) Daily closing prices, (b) daily returns with ∆t = 1 day, and (c) volatility estimated
on a 40-days time window for Citigroup, Apple, and Goldman Sachs from January, 2000 to June,
2017.

where 〈· · · 〉t represents the average over all times t in a considered time window T . Thus,
the average of returns can be written as

〈
rk(t,∆t)

〉
t

=
1

T

T∑
t=1

rk(t,∆t) . (1.9)

According to Eq. (1.8), the volatility depends on not only the return interval ∆t, but also
the estimation horizon T . The empirical studies [21, 144] showed that the volatility of
returns is highly fluctuating rather than stationary. As seen from Fig. 1.4 (c), when we
move the time window of T = 40 days, the volatility of returns for each stock fluctuates
over time. Specifically, the volatility is high when the price changes dramatically over a
short time interval, whereas the volatility is low when the price changes at a steady pace
over a period of time. Furthermore, an early study [106] revealed that the volatilities are
clustered and the autocorrelation of volatilities decays slowly with time. Such stylized fact
is termed as the volatility clustering, which was first observed by Mandelbrot in 1963 [106].

1.3.4 Correlation of order flow

For a stock k, the order flow can be represented by a time series of trade signs εk(t),
where εk(t) = +1 stands for a buy trade and εk(t) = −1 stands for a sell trade. Thus, the
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correlation of order flow is expressed as

Θ(τ) =
〈
εk(t+ τ)εk(t)

〉
t
. (1.10)

In recent years, high auto-correlations of order flow have been found and analyzed [27,
55, 69, 98, 100, 114, 155]. The order flow exhibits a remarkable persistence that buy (sell)
orders are often followed by more buy (sell) orders [27, 98]. Such behavior is normally
termed as the long memory of order flow.

The long-memory correlation of order flow is probably due to order splitting [26, 27,
155] and herding behavior [155]. The order splitting refers to that a large order is chopped
into pieces, which are executed one by one with the same trade sign. As introduced in
Sec. 1.3.2, a large market order moves the trade price largely, leading to an extra cost
for trading. Taking advantage of order splitting, traders can avoid large trading costs.
The herding behavior in financial markets refers to that different traders place orders with
the same trade sign. It could be yielded by public information or the imitations between
traders. By comparison, Ref. [155] reveals that the persistence in order flow is mainly due
to the order splitting rather than the herding behavior.

The long-memory correlation of order flow, described by a power-law function [27, 98],
implies that the signs of future orders are highly predictable if we know the signs of past
orders. As a result, we can predict the trade prices. This may lead to an inefficient market,
unless this correlation is compensated by other quantities. In fact, this correlation is
compensated by a bare impact function decaying with time [27]. Regardless of the decaying
time of impacts, this correlation is also compensated by anti-correlated fluctuations in
traded volumes and liquidity [98]. In consequence, the correlation of order flow is closely
related to the price change caused by trades.

1.3.5 Price impact and response

The price change, on average, conditioned on initiating a trade with a given size and a given
sign (buy or sell) is termed price impact [27, 58, 114]. A buyer-initiated (seller-initiated)
trade refers to a market order for buying (selling). As market orders will consume the
volume at the best quote, a buyer-initiated trade is expected to raise the price while a
seller-initiated trade to lower the price. Thus, the price impact can be viewed as the price
response to trades. Due to the price impact, a large market order may be executed at
several different prices, rather than a constant price at which a trader initially intends
to trade. Thus, the practical trade price may differ from the initial trade price. The
difference between the two prices reflects the extra cost for trading, namely the price
impact cost. This cost can largely affect the profits of traders. To reduce it, a lot of
optimal execution strategies of orders have been proposed [5, 6, 65–67, 120]. In those
strategies, the cost arising from price impacts is regarded as an important determinant.
Either for such practical purpose or for academic exploring, an essential question centres
on how to understand and quantify the price impact.

Through most studies, the mechanism of price impacts is obscure, but is often in-
terpreted by three primary causes: short-run liquidity, traded volumes and informa-
tion [38, 59, 61, 84, 89, 114, 162]. As introduced in Sec. 1.3.1, for a low liquid stock,
the price levels near the best quote are less occupied by limit orders. As a result, only a
few volumes near the best quote are available. To immediately meet large demands, that
is, buying or selling for a large volume, traders have to lower their sell prices or raise their
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buy prices to obtain more available volumes [38]. Trade prices are thus moved to a far
place before new limit orders coming. Hence, a lack of short-run liquidity will lead to the
price change.

The volumes of market orders have an important impact on the trade price [99, 135].
Intuitively, large traded volumes will move the price to a large extent, leading to a large
price impact. However, numerous studies [27, 59, 89, 114, 162] reveal that large price
changes are, on average, not the result of large traded volumes. Due to the small liquidity,
a large market order indeed shifts the price obviously, resulting in heavy tails of the
return distributions [142]. No matter whether the large market orders are driven by valid
information or not, they are always thought to carry specific information and thus signal
traders to adjust their strategies. The traders, who intend to submit large market orders
but would not like to be noticed by others, want to conceal their trading information. For
this end, they employ the strategies such as splitting a large order into small pieces [26,
27, 155]. These small orders hidden by other random small orders move the price little
by little without being detected. They, on the one hand, largely reduce the liquidity cost,
and, on the other hand, generate the long-memory correlation of order flow [27, 98]. As
a result, the small orders that are split from a large market order lead to the large price
change on average [27].

The effect of information on the price has been noticed for a long time [61, 71, 75, 79,
89]. It can date back to 1970 when Fama proposed his famous theory—Efficient Market
Hypothesis (EMH) [54]. The EMH states that all available information is processed and
encoded in the current prices. It means that everyone has the equal information about
the market so that any (statistical) arbitrage opportunity is absent. The available public
information, for instance, the idiosyncratic news or market-wide news, affects the price
temporarily, and does not generate large price change in total [89]. Besides, the private
information is also incorporated in the price by trading. Comparing with the public
information, the private information is more likely to induce the price impact, moving the
price permanently [38].

1.3.6 Two-phase behavior in demands

For a trade, the volume of an individual stock is either bought in or sold out. To signal the
trade direction, we use the signed traded volume, where the volume bought is positive and
the volume sold is negative. In a certain time interval, the sum of all the signed traded
volumes, i.e., the difference between all bought-in volumes and all sold-out volumes, is
termed the volume imbalance. It quantifies the demand which drives the buying and
selling of the market. Recently, a two-phase behavior of demands in financial markets was
discovered by Plerou, Gopikrishnan, and Stanley (PGS) [132]. The two-phase behavior,
as shown in Fig. 1.5, is characterized by a transition from the unimodal distribution of
volume imbalances to a bimodal one. Such transition is due to the change of local noise
intensity, which is defined as the absolute value of fluctuations around the average of
volume imbalances in a certain time interval. When the local noise intensity Σ is smaller
than the critical value Σc, the distribution P (Ω|Σ) has only one peak. Once the local
noise intensity Σ goes beyond the critical value Σc, the distribution P (Ω|Σ) shows up two
peaks, which are located symmetrically around zero.

To find out the causes of the two-phase behavior, Matia and Yamasaki (MY) [110]
estimated the volume imbalance and local noise intensity using Trades and Quotes data
set and a numerical simulation, respectively. They found that the number of phases
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Figure 1.5: (a) Conditional density P (Ω|Σ) versus the volume imbalance Ω for varying local noise
intensity Σ, (b) order parameter ψ, i.e., positions of the maxima of P (Ω|Σ), versus Σ. The figures
are taken from Ref. [132].

is related to the distribution of traded volumes. If the generated time series of traded
volumes follows a Gaussian distribution, only one phase, i.e., the unimodal distribution
of volume imbalances, could be observed. In contrast, if this time series follows a fat-
tailed distribution, two phases, i.e., the unimodal and bimodal distributions of volume
imbalances, could be observed. As a result, the two-phase behavior is more likely due to
fat-tailed distributions of traded volumes. A similar conclusion is proposed by Potters and
Bouchard (PB) [134]. They found that the local noise intensity is positively correlated
with the magnitude of the volume imbalance, as long as traded volumes have fat tails.
This correlation leads to the volume imbalances symmetrically distributing around zero.
Thus, they argued that the two-phase behavior results from the statistical properties of
traded volumes. In line with MY and PB’s interpretations, PGS [133] further elucidated
the significance of the two-phase behavior in terms of the price change. More specifically,
large traded volumes, which imply large demands for buying or selling, will result in the
large fluctuations of prices around the local equilibrium values.

In addition to above studies, the two-phase behavior is also interpreted by agent-based
models [146, 147], minority games [167], herding models [167], and others [101]. Besides,
the studies on the two-phase behavior have been extended from stock markets to future
markets [85, 101], option markets [137] and financial indices [86].

1.4 Outline of the thesis

So far, we have had a basic knowledge about the financial markets and the market mi-
crostructures. Due to the revolutionary changes in the trading technology, the microstruc-
tures of financial markets have dramatically changed in the last decade. Numerous studies
have devoted to the market microstructure, but the landscape of this field is not fully dis-
closed. Particularly, many studies are confined to single stocks, but the financial market is
a rather complex system that companies as well as their stocks do not exist independently.
On the other hand, due to the development of high-frequency trading, a gigantic amount
of transaction data is available. With huge data, we thus can carry out the statistical
analysis either for individual stocks or for the market as a whole. Further, it becomes
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possible to disclose latent stylized facts, accurately test some theories, and even construct
more realistic models for practical applications. In this thesis, we will focus on the mar-
ket microstructure by considering the financial market as a whole. In particular, we will
restrict ourselves to the following key areas: correlations of order flow, price impacts, and
the two-phase behavior in demands.

The thesis is organized as follows.
In Chapter 2, we introduce two data sets, a Trade and Quote (TAQ) data set and a

TotalView-ITCH data set, where the TAQ data set is used for analyzing the empirical
cross-responses in Chapters 3 and 4. We also set the time convention for all empirical
analyses in this thesis. In addition, due to the low resolution of TAQ data set, it is
difficult to employ the previous algorithm [97] to identify the signs for the trades during
one-second intervals. We thus develop a method to figure out them with TAQ data set
and test this method with TotalView-ITCH data set.

In Chapter 3, we empirically analyze the cross-response as well as the corresponding
correlation of trade signs for pairs of stocks, and present a complete view of the response
in the market as a whole. We also compare the self- and cross-responses in terms of time
scales, price impacts, and trade sign correlations.

In Chapter 4, we perform the averages of cross-responses for an individual stock. By
doing so, the drastic fluctuations at large time lags in the cross-responses are wiped out
to some extent. Correspondingly, we also carry out the average of cross-correlations of
trade signs. According to the average cross-responses, we further identify the influencing
and influenced stocks and analyze the role of trading frequency in response functions. To
find out the microscopic mechanism of cross-responses, once more, we compare the self-
and average cross-responses.

In Chapter 5, we extend the price impact model of Bouchaud et al. [27]. The extended
model aims to interpret the empirical results in Chapters 3 and 4. It includes a self-
impact function and a cross-impact function. To quantify the self- and cross-price impacts
that are difficult to be obtained from empirical data, we propose a construction to fix
the parameters, and employ a price diffusion function to corroborate the parameters. By
doing so, we can quantify and interpret the price impacts of individual stocks.

In Chapter 6, we extend the framework of trading strategies of Gatheral (2010) [65]
from single stocks to two-dimensional cases. Our trading strategy is used for executing two
round-trip trades of two stocks, where the cross-impact cost is an important determinant.
We apply the model of the strategy to a pair of stocks and display how the cross-impacts
affect the trading strategy.

In Chapter 7, we define the demand as the volume imbalance, i.e., the sum of all the
signed traded volumes in a fixed time interval, and analyze the dependence of demands
between stocks using a copula method. Furthermore, we quantify the local fluctuation of
the signed traded volumes by a local noise intensity, and investigate how the large local
fluctuations affect the dependence of demands.

In Chapter 8, we conclude with all our findings and give a view of further study.
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Chapter 2
Data sets, time conventions and trade
signs

2.1 Introduction

Nowadays, data has been the core of many fields, including the econophysics. By statistical
analyses of a large-scale of real-time data, a lot of stylized facts can be disclosed. The
studies in this thesis begin with the analysis of empirical data, shown in Chapters 3
and 4. Besides, such empirical analyses as parts of studies are also included in other
chapters. In general, the empirical results to some extent depend on how to process the
data. However, the data processing is influenced by how the data is organized in files. For
instance, the resolution of data determines which data points can be available; the type
of data determines which information the data provides.

In financial markets, the real-time data from trading is recorded in data sets. To have
a basic knowledge of data sets that we used, we give an introduction for them in Sec. 2.2.
To facilitate the data processing in the following chapters, we set the time conventions
in Sec. 2.3, where a physical time scale and a trading (event) time scale are discussed.
Furthermore, making use of two different data sets, we develop a method to classify trade
signs in Sec. 2.4 and test this method in Sec. 2.5. We conclude this chapter in Sec. 2.6.
The classifications of trade signs in Secs. 2.4 and 2.5 refers to Ref. [161].

2.2 Data sets

The data sets used in this thesis include a Trade and Quote (TAQ) data set and a
TotalView-ITCH data set. Our studies are mainly based on the TAQ data set. How-
ever, the disadvantage of this data set is at the resolution of transaction data, i.e., the
minimal distinguished time of transaction data. It is one second for the TAQ data set.
For a higher resolution, we have to resort to the TotalView-ITCH data set, of which the
timestamp is on the scale of milliseconds. In addition to the resolution, the two data sets
differ from each other in terms of the following aspects.
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2.2. Data sets

2.2.1 TAQ data set

The Trade and Quote (TAQ) data set, obtained from New York Stock Exchange, con-
tains intraday transaction data for all the stocks listed on the New York Stock Exchange,
American Stock Exchange, Nasdaq National Market System and SmallCap issues. For
each stock, the intraday transaction data is recorded in two individual files, a trade file
and a quote file.

The trade file lists the information of all successive transactions of market orders, as
shown in Table 2.1. In our studies, we focus on the dates, time, prices, volumes, ignoring
other quantities in Table 2.1, i.e., G127, CORR and COND. Here, G127 is an indicator
that combines “G”, Rule 127, and stopped stock trade, CORR is a correlation indicator,
and COND indicates a sale condition [1]. In each trading day, the time intervals between
two continuous trades are different. They may be a few minutes or several seconds or
even several milliseconds. Thus, during an one-second interval, more than one trades may
occur and are recorded in the trade file. On the other hand, all the quote information for
successive buy and sell limit orders is stored in the quote file, shown in Table 2.2. Here,
we ignore the information of Mode which indicates the quote condition [1]. In Table 2.2,
“Ask” and “Bid” refer to the best ask price and the best bid price, respectively. Meanwhile,
“Ask size” and “Bid size” are the volumes at the best ask and the best bid. The volume
in the trade file is in the unit of shares, but the volume in the quote file is in the unit of
lots. To make them in the same unit, we have to rescale the quote volume by 1 lot=100
shares. It is worth mentioning that there may be several quotes or no quote during an
one-second interval.

For the TAQ data set, the resolution of transaction information is one second. During
the time interval of one second, if there are several trades recorded in the trade file and
several quotes recorded in the quote file, it is difficult to distinguish the chronological order
of trades and quotes in two individual files. In this case, it is also unlikely to match each
trade with the preceding quote. Moreover, the recorded transaction information can be
traced from 7:00:00 to 20:00:00 in Eastern Standard Time (EST), because the TAQ data
set contains the information of pre- and post-market trades. Here, the pre-market trades
occur before the opening of the market at 9:30:00 EST, and the post-market trades occur
after the closing of the market at 16:00:00 EST.

In general, during the opening and closing time, the market exhibits large fluctuations
due to the effects of overnight information and artifacts. When using the TAQ data set,
we always ignore the first and last ten minutes of the market trading time in this thesis. In
addition, the transaction information in the TAQ data set comes from different exchanges,
but we only use the information from NASDAQ stock market in the year of 2008.

2.2.2 TotalView-ITCH data set

The TotalView-ITCH data set has a higher resolution than the TAQ data set. The times-
tamp of intraday transaction data can be accurate to one millisecond, as shown in Table 2.3
for Microsoft Corp. on Jan. 14th, 2008. The time in the table records the number of mil-
liseconds after the midnight, converted by

time =
[
(h hours× 3600 +m minutes× 60 + s seconds)× 1000 + x

]
milliseconds . (2.1)

The TotalView-ITCH data set contains the information of displayed orders. The exe-
cutions of most non-displayed orders, such as market orders, are not recorded in this data
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Chapter 2. Data sets, time conventions and trade signs

Table 2.1: An example of Microsoft Corp. from the trade file in the TAQ data set

Date Time Price Size G127 CORR COND
(dollars) (shares)

2008-01-09 12:28:30 34.30 200 0 0 @F
2008-01-09 12:28:32 34.29 200 0 0
2008-01-09 12:28:32 34.29 600 0 0
2008-01-09 12:28:37 34.30 700 0 0
2008-01-09 12:28:37 34.30 250 0 0 @F
2008-01-09 12:28:40 34.30 100 0 0
2008-01-09 12:28:40 34.30 100 0 0
2008-01-09 12:28:40 34.30 700 0 0
2008-01-09 12:28:40 34.30 100 0 0
2008-01-09 12:28:40 34.30 200 0 0

Table 2.2: An example of Microsoft Corp. from the quote file in the TAQ data set

Date Time Ask Bid Ask size Bid size Mode
(dollars) (dollars) (lots) (lots)

2008-01-09 12:28:36 34.2900 34.3000 20 91 12
2008-01-09 12:28:37 34.2900 34.3000 13 91 12
2008-01-09 12:28:37 34.2900 34.3000 10 91 12
2008-01-09 12:28:37 34.2900 34.3000 10 92 12
2008-01-09 12:28:37 34.2900 34.3000 12 92 12
2008-01-09 12:28:38 34.2900 34.3000 14 92 12
2008-01-09 12:28:40 34.2900 34.3000 23 92 12
2008-01-09 12:28:40 34.2900 34.3000 24 92 12
2008-01-09 12:28:40 34.2900 34.3000 5 92 12
2008-01-09 12:28:40 34.2900 34.3000 6 92 12

Table 2.3: An example of Microsoft Corp. from TotalView-ITCH data set

Time Ticker Order ID Type Shares Price MPID X

50543186 MSFT 173842357 S 400 342900 Q
50543311 MSFT 173835197 F 0 0 JPMS Q
50543311 MSFT 173835199 F 0 0 Q
50543311 MSFT 173835227 E 300 0 Q
50543312 MSFT 173843928 S 500 342700 Q
50543314 MSFT 173843952 B 100 342500 Q
50543314 MSFT 173843958 B 100 342500 JPMS Q
50543692 MSFT 173026550 D 0 0 Q
50543693 MSFT 173847899 S 500 342700 Q
50543693 MSFT 173847900 S 1800 342700 Q

set. Each displayed order contains a message, given in the fourth column of Table 2.3,
where the type of the message is marked by B, S, E, C, F, D, X or T. Here, B indicates
that a buy limit order is added to the order book, while S indicates a sell limit order is
added. When an order with the message of S or B is issued, it will be given a new and
unique ID, as listed in the third column of Table 2.3. Meanwhile, the volume and the
price of this order are recorded in the fifth and sixth columns of the data set, respectively.
If this order is then executed or cancelled in part, the message will be marked by E or C.
The executed or cancelled volume is displayed in the data set, but the corresponding price
is shown as zero. If this order is executed or cancelled in full, the type of the message
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turns to F or D. As the order will not be available any more in this case, the volume
and the price are displayed as zero. In the TotalView-ITCH data set, it is worth paying
attention to the price that is in the unit of 10−4 dollars. The type of X represents the
cross event with a bulk volume and the type of T indicates the execution of non-displayed
orders. For the orders marked by X and T, it is difficult to identify their trade signs. Thus,
these two types of orders are often excluded in our studies. In addition, the specifications
of eight types of messages are given by TradingPhysics.com [156], where we obtain the
TotalView-ITCH data set.

In our study, we focus on the transaction information of the first six columns in the
TotalView-ITCH data set, where the ticker denotes the symbol of a stock. The last
two columns, MPID and X, are ignored. Here, MPID represents the market participant
ID associated with the transaction. However, not every transaction is given a market
participant ID. Due to a lack of specifications for the last column, X is a unknown quantity.

In contrast with the TAQ data set, the TotalView-ITCH data set provides the detailed
information of order flow with a higher resolution of data. However, it does not contain the
information of the best quotes and the trades, which can be obtained conveniently from
the TAQ data set. Thus, our empirical analysis in the following chapters are mainly based
on the TAQ data set. The TotalView-ITCH data set will be used to test the accuracy of
the trade sign classification in Sec. 2.5.

2.3 Time conventions

The empirical studies in the following chapters will centre on the price response, i.e.,
the average price change caused by trades. Here, the trade is indicated by the sign of a
trade, which is identified from the trade information. The price changes is represented
by the change of the midpoint prices before and after this trade. The midpoint price can
be obtained from quote information. For the TAQ data set, the trades and quotes are
recorded in two individual files. Previous studies on the price self-response were carried
out on a trading time scale [24, 27, 28, 52, 69, 98, 99, 154]. The trading time scale, i.e.
the event time scale, regards every transaction as a timestamp. Due to the resolution of
one second in the TAQ data set, it is difficult to match each trade with the preceding
quote during an one-second interval. Thus, the studies in Refs. [98, 99] treated all the
trades in the same time interval as a single trade by lumping together all these trades, and
then considered one lumped trade as one trading time step. Such treatment is possible
for single stocks, as the trading time is unique for each stock. When considering the price
cross-response across different stocks, however, the trading time varies greatly in different
stocks.

In view of this, we carry out the empirical cross-responses on a physical time scale
instead of the trading time scale. The physical time scale maps the transaction information
into a real and discrete time axis with the unit time as the time step. We set the unit time
to one second, i.e., the minimal distinguished time in the TAQ data set. When reviewing
the trading time scale, we find that two continuous trades as two continuous trading time
steps may occur with a time interval of several seconds or dozens of minutes. Superficially,
the price is impacted by the last second trade, regardless of the last trade that leads to the
instantaneous price change. In fact, the price may be impacted not only by the last second
trade but also by other factors, such as news, during the long time interval. In contrast,
if we use the physical time scale, we are able to trace the real-time price response.
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2.4 Classification of trade signs

A widely used approach to classify trade signs was put forward by Lee and Ready [97]. By
comparing the trade price with the preceding midpoint price, the approach can correctly
classify at least 85% of all trades. A mathematical form for the trade sign can be expressed
by

ε(t;n) = sgn
(
S(t;n)−m(t;n)

)
, (2.2)

where the sign ε(t;n) of n-th trade in the time interval t is worked out by a sign function
sgn of the trade price S(t;n) and the preceding midpoint price m(t;n). For the TAQ data
set, it is unlikely to match each trade with the preceding quote during the one-second
intervals. Another approach for sign classification was proposed by Holthausen et al. [83].
They defined a trade as buyer-initiated if the trade is executed at a price above the prior
price, and as seller-initiated if the trade occurs at a price below the prior one. It is
expressed mathematically as

ε(t;n) = sgn
(
S(t;n)− S(t;n− 1)

)
, only for S(t;n) 6= S(t;n− 1) . (2.3)

Since they did not classify the trades which have the same price as the prior one, this
approach has the accuracy of 52.8% for sign classification.

In view of the difficulty of Lee and Ready’s approach and the incompleteness of
Holthausen et al.’s approach, we therefore propose an approach that further extends the
one of Holthausen et al.. We first classify the sign for each trade by comparing the current
and the prior price,

ε(t;n) =

{
sgn
(
S(t;n)− S(t;n− 1)

)
, if S(t;n) 6= S(t;n− 1),

ε(t;n− 1) , otherwise.
(2.4)

If the current price is higher (lower) than the prior price, the trade sign is defined as
+1 (−1). Here, we also classify the trades that are ignored by Holthausen et al.. If two
consecutive trades having the same trading direction together did not exhaust the available
volume at the best quote, the prices of both trades would be the same. Regarding to this,
we set the same sign for two consecutive trades that have the same price, i.e. the second
line of Eq. (2.4).

During the time interval t, the number of trades is denoted by N(t), and the individual
trades carried out are numbered by n = 1, ..., N(t). Therefore, we define the trade sign
for each time interval of one second by

ε(t) =

 sgn

(
N(t)∑
n=1

ε(t;n)

)
, if N(t) > 0 ,

0 , if N(t) = 0 .

(2.5)

Here, if more than one trade occur in the one-second interval t, we average all the trade
signs in this interval. Formally, the first line of Eq. (2.5) also includes the case of N(t) = 1.
As a result, ε(t) = +1 implies that a majority of trades in the time interval t were triggered
by buy market orders, whereas ε(t) = −1 indicates a majority of sell market orders. We
have ε(t) = 0 whenever trades did not take place in the time interval t or there was a
balance of buy and sell market orders in this interval.
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2.5 Tests of sign classifications

Since the TAQ data set does not provide the information of trade types, i.e., buy or sell,
we proposed an approach to classify trade signs in the last section. On the other hand, the
TotalView-ITCH data set lists the information of order types, from which we can derive
the empirical sign of each trade. Therefore, we resort to the TotalView-ITCH data set to
test the accuracy of our approach. In Sec. 2.5.1, we introduce how to obtain the empirical
trade signs from the TotalView-ITCH data set. We then test the approach for classifying
the signs of single trades in Sec. 2.5.2 and the signs of aggregated trades in one-second
intervals in Sec. 2.5.3.

2.5.1 Obtaining empirical trade signs

In the TotalView-ITCH data set, the executed orders can be classified as non-displayed
orders and displayed orders in the order book. The executed non-displayed orders taking
the message of T corresponds to hidden trades. The trade signs of hidden trades are
difficult to be identified. To test the accuracy of the trade sign classification, we thus
ignore the execution of non-displayed orders. For the displayed orders, by following the
order message of E and F, the executed limit orders can be sifted out. Here, we regard
an execution of one limit order as a transaction. Through the unique order ID, the limit
order can be traced back to the previous information since this order was released in the
order book. We thus obtain the execution information of the limit order, such as the type
of buy or sell, the volume and the price. When a market order to buy (sell) a certain
volume matches with a limit order to sell (buy) the same volume at a price offered by
the limit order, a trade occurs. Therefore, as a counterpart of the executed limit order,
the market order has the opposite trade type but the same traded volume and trade price
comparing with those of the limit order executed simultaneously. By matching, we can
derive the trade information of a market order if we know the information of the executed
limit order correspondingly. The trade signs of market orders, inferred by this way, are
called the empirical trade signs.

2.5.2 Tests for signs of single trades

To test the approach of the sign classification, we use the intraday data of Apple Inc.
(AAPL), Goldman Sachs Group (GS) and Exxon Mobil Corp. (XOM), obtained from
TotalView-ITCH data set for NASDAQ stock market. For each stock, we randomly select
two trading days in 2008. Following the order messages of B and S, all the limit order from
9:40:00 to 15:50:00 EST can be identified as to buy or to sell, where the executed limit
orders are identified as buyer- or seller-initiated. We name these trades as the identified
trades. As shown in Table 2.4, due to the high-frequency trading, there are more than
10000 trades for each stock in each trading day. The number of identified trades reflects
the total number of the available empirical trade signs. For a trade, if the empirical trade
sign is the same as the sign ε(t;n) worked out from the theoretical approach in Eq. (2.4),
there is a match. The number of matches divided by the number of identified trades
gives the accuracy of the trade sign classification. We carry out the accuracy with respect
to all the consecutive trades. For six tested samples, the average accuracy of the sign
classification is equal to 85%, listed in Table 2.4. To visualize the accuracy or the ratio of
matches, we show an example of AAPL during one minute at January 7th, 2008 in Fig. 2.1
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Figure 2.1: Comparisons between empirical and theoretical trade signs versus the physical time
for AAPL during one minute. (a) The sign comparison of every trade for AAPL on January 7th,
2008. (b) The sign comparisons of every second for AAPL on January 7th, 2008 with the worst
accuracy difference of 5% out of six samples. (c) The sign comparisons of every second for AAPL
on June 2nd, 2008. It shows a typical accuracy difference of 2%.

Table 2.4: Accuracy of trade sign classification

Stock AAPL AAPL GS GS XOM XOM 6 samples
Date 20080107 20080602 20081007 20081210 20080211 20080804 (average)

Sign classification for single trades1

Number of identified limit or-
ders

745020 407843 150532 199224 544451 596882

Number of identified trades 120287 52691 19942 17902 38455 59580
Number of matches 103635 47748 16668 15454 30478 49921
Accuracy of the classification 0.86 0.91 0.84 0.86 0.79 0.84 0.85

Sign classification for one-second intervals 1 2

Total number of identified signs 17115 12180 8283 6853 8782 9590
Number of matches for Eq.(2.5) 13956 10636 6801 5784 6516 7777
Accuracy for Eq.(2.5) 0.82 0.87 0.82 0.84 0.74 0.81 0.82
Number of matches for Eq.(2.6) 13256 10302 6715 5690 6446 7603
Accuracy for Eq.(2.6) 0.77 0.85 0.81 0.83 0.73 0.79 0.80

Total number of ε(t) = 0 found empirically 1

Using Eq.(2.5) 6000 10515 14218 15512 13719 12866 12138
Using Eq.(2.6) 5343 10186 14051 15426 13571 12731 11885
1The intraday trading time is set from 9:40:00 to 15:50:00 EST (total 22200 seconds).
2The simultaneous occurrences of ε(t) = 0 in three kinds of trade signs are excluded.
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(a), where the theoretical trade signs nicely match with the empirical ones.

2.5.3 Tests for trade signs of one-second intervals

We also test the trade sign ε(t) of every second, defined by Eq. (2.5). The trade sign
reveals the number imbalance of buy and sell trades in the one-second interval. With the
signs of single trades calculated by Eq. (2.4), we work out the trade sign of every second
by Eq. (2.5), namely the theoretical trade sign. Correspondingly, with the empirical signs
of single trades, we evaluate the aggregated trade signs for one second by the sign of
the number imbalance of trades in Eq. (2.5) and by the sign of the volume imbalance of
trades [63, 129, 130], given by

ε(t) =

 sgn

(
N(t)∑
n=1

ε(t;n)v(t;n)

)
, if N(t) > 0 ,

0 , if N(t) = 0 .

(2.6)

Here, v(t;n) is the traded volume of n-th trade in the time interval t. If a balance of
the volumes bought and sold in the one-second interval t was absent, the trade sign ε(t)
resulting from Eq. (2.6) is +1 or −1. ε(t) = +1 implies buyer-initiated market orders in
t, whereas ε(t) = −1 means seller-initiated market orders. If there was a balance of the
volumes bought and sold by market orders, we have ε(t) = 0. In addition, ε(t) = 0 also
stems from the absence of trades in t. To make clear how the trade signs are compared,
we show a diagram in Fig. 2.2.

As we consider the intraday trading time from 9:40:00 to 15:50:00 EST, there are total
22200 one-second intervals for each trading day. However, in case the accuracy of the sign
classification is affected by an excess of zero trade signs, the simultaneous occurrences
of ε(t) = 0 in three kinds of trade signs are excluded. Here, three kinds of trade signs
include the theoretical signs aggregated by the number imbalance of trades in the one-
second interval, the empirical signs aggregated by the number imbalance of trades in the
one-second interval, and the empirical signs aggregated by the volume imbalance of trades
in the one-second interval. Thus, the remaining trade signs for one-second intervals are
used to test the accuracy of the classification Eq. (2.5). Those remaining signs are named
as identified signs. As shown in Table 2.4, for each tested stock in each trading day, more

For single trades For one-second intervals

Theoretical trade signs
from Eq. (2.4)

Empirical trade signs

by number imbalance
of trades, i.e. Eq. (2.5)

by number imbalance
of trades, i.e. Eq. (2.5)

by volume imbalance
of trades, i.e. Eq. (2.6)

signs
compare

aggregated

aggregated

signs
compare

signs
compare

Figure 2.2: A diagram for illustrating the comparisons of trade signs
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than 6000 identified signs are used to compare with the theoretical signs arising from
Eq. (2.5). We count the number of matches if the empirical and theoretical signs for the
same time interval are the same. Again, we work out the accuracy of the sign classification
through the way that divides the number of matches by the identified signs.

Shown in Table 2.4, the comparison between the theoretical and empirical trade
signs, both aggregated from the number imbalance of trades in one-second intervals with
Eq. (2.5), manifests an average accuracy of 82% for the trade sign classification over six
samples. Very closely, the comparison between the theoretical and empirical trade signs,
aggregated from the number imbalance and the volume imbalance of trades in one-second
intervals with Eq. (2.5) and Eq. (2.6), respectively, exhibits an average accuracy of 80%
over six samples. The two scenarios imply a high correctness for Eq. (2.5) to classify trade
signs. For these two scenarios, there is a difference of 2% between the average accuracies.
It demonstrates that the different ways to aggregate trades affect sightly the trade signs
for one-second intervals. Fig. 2.1 (b) and (c) show the comparisons of three kinds of trade
signs for AAPL in one minute. In contrast to other five samples, AAPL on January 7th,
2008 has the worst accuracy difference of 5% between the two scenarios, shown in Fig. 2.1
(b). Even so, the matches of signs still can be found most of the time. Typically, AAPL
on January 2nd, 2008 shows the general case with the accuracy difference of 2%, shown
in Fig. 2.1 (c), where the three kinds of trade signs match with each other rather well.

2.6 Conclusions

In this chapter, we first introduced two data sets, a TAQ data set and a TotalView-ITCH
data set. The TAQ data set has the resolution of one second for transaction data. The
transaction data contains the best quote information and the trade information, which are
recorded in two individual files for each stock. The TotalView-ITCH data set lists all the
order flow information with eight types of messages, submission to buy (B), submission to
sell (S), execution in part (E), execution in full (F), cancellation in part (C), cancellation
in full (D), cross event with a bulk volume (X), and execution of non-displayed orders (T).
As the TotalView-ITCH data set does not provide the information of the best quotes and
trades, our empirical studies in the following chapters will use the TAQ data set. In view
of our studies across different stocks instead of in single stocks, we considered to carry out
the empirical studies on a physical time scale with the time step of one second.

In contrast with the TotalView-ITCH data set, the TAQ data set lacks of the informa-
tion of trade types, i.e., buy and sell. On the other hand, the previous approaches are not
available in our case to classify the trade signs. Therefore, we proposed an approach of the
sign classification for single trades and for one-second time intervals, respectively. Further,
we tested this approach with empirical trade signs identified by the TotalView-ITCH data
set. As a result, this approach can correctly classify 85% signs for single trades and 82%
signs for one-second intervals, where the trades are aggregated by the way of the number
imbalance. If we aggregate the trades by the volume imbalance in one-second intervals, the
accuracy for classifying the signs of one-second intervals is 80%. The accuracy difference
of 2% demonstrates that the different ways to aggregate trades have a slight effect on the
signs for one-second intervals.
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Chapter 3
Cross-responses in correlated financial
markets: individual stocks

3.1 Introduction

In the continuous order-driven markets, the price is formed under the mechanism of con-
tinuous double auction. A buy market order drives the price up by matching against the
sell limit orders in the best ask, while a sell market order drops the price down by match-
ing against the buy limit orders in the best bid. The price change due to a market order
or more explicitly a trade refers to the price impact or the price response to trades. Re-
cently, it has received considerable attention [27, 58, 69, 99, 114, 135]. Such price change
will lead to an extra cost for trading, i.e., the liquidity cost [15, 51, 166]. To reduce
the liquidity cost, a basic strategy is to split a large order into small pieces and executes
them one by one over a long time [26, 27, 155]. As a result, the order splitting yields a
long-memory correlation of order flow [27, 55, 69, 98, 100, 114, 155], which implies that
buy (sell) orders are often followed by more buy (sell) orders. If other factors could not
suppress the persistence of order flow, the trade sign in a later time would be predicted.
As the price change is related to the correlation of order flow, the future price could be
predicted as well. However, the predictability in prices obviously departures from the
Efficient Market Hypothesis (EMH) [54] that rules out any arbitrage opportunities. This
conflict is reconciled with a time-decaying impact propagator, proposed in Ref. [27]. To
recover the market efficiency, the time scale for the impact decaying is crucial, on which,
first, the relevant new information arrives and, second, the prices change. Many studies
have devoted to the price response to trades, but they are restricted to one single stock,
i.e., to the self-response. In this chapter, we go beyond this by investigating the price
response between stocks, namely the cross-response.

The chapter is organized as follows. In Sec. 3.2, we describe the data set and the data
processing. In Sec. 3.3, with a large-scale of real-time data, we carry out the cross-response
as well as the corresponding correlation of trade signs for pairs of stocks. In sec. 3.4, we
present a complete view of the response in the market as a whole, identifying several
structural characteristics, discussing the efficiency of markets, and shedding light on the
price impact across different stocks. To be clear about the cross-response, in Sec. 3.5, we
compare the self- and cross-response in terms of time scales, price impacts, and correlations
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of trade signs. We give our conclusions in Sec. 3.6. This chapter refers to Ref. [161].

3.2 Data description

The study in this chapter is based on the TAQ data set, introduced specifically in Chap-
ter 2, with the transaction data over the whole year of 2008. All the stocks we used are
from NASDAQ stock market. In Sec. 3.3, to study the price response across different
stocks, we select six companies from three different economic sectors in 2008, listed in
Table 3.1. In Sec. 3.4, for the whole market response, we pick out the first ten stocks with
the largest average market capitalization from each economic sector of S&P 500 index in
2008, whereas only nine stocks were available for the sector of telecommunications services
in that year. Here, the market capitalization is defined as the trade price multiplied with
the traded volume, and the average is performed over every trade during the year 2008.
We list the selected 99 stocks in Appendix A.1.

When studying the price response across a pair of stocks i and j, we only consider
the trading days that both stocks have trades. The setting is for the reason that a lack
of trades for either stock in one trading day would not impact on or be impacted by
the other stock in the same trading day. As explained in Sec. 2.3 in detail, due to the
non-synchronized trading time for different stocks, we employ a real, physical time scale
with the time step of one second rather than the trading time scale. Therefore, for every
one-second interval, there is an observation. Every observation includes two important
quantities of the price cross-response, the midpoint price and the trade sign. We obtain
the trade sign in each time interval by the approach of the sign classification, Eq. (2.4)
and Eq. (2.5). The midpoint price results from the best quotes. In a time interval, there
may be more than one midpoint price; there also may be absent of midpoint prices. For
the former, we consider the last midpoint price in the time interval t − 1 as the prior
midpoint price of the trade in t. For the latter, since nothing was triggered to update the
best quote, the best quote keeps the same as the previous one. Thus, the time interval
that lacks of midpoint prices can be filled by the last available midpoint price before this
time interval.

In the sequel, we consider eight pairs of stocks listed in Table 3.1, four within the same
economic sector and four across different economic sectors. All the quantities referring to
a particular stock carry its index i and referring to a pair of stocks carry two such indices.

Table 3.1: Company information

Company Symbol Sector

Apple Inc. AAPL Information technology
Microsoft Corp. MSFT Information technology
Goldman Sachs Group GS Financials
JPMorgan Chase JPM Financials
Exxon Mobil Corp. XOM Energy
Chevron Corp. CVX Energy
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3.3 Cross-responses for pairs of stocks

To study the mutual dependences between stocks, we introduce a price cross-response
function as well as a trade sign cross-correlator for pairs of stocks in Secs. 3.3.1 and 3.3.2,
respectively. Accordingly, we display empirical results of them in these sections. It turns
out that the definitions in- and excluding zero trade signs make a difference. We therefore
analyze and compare the two definitions in Sec. 3.3.3. In Sec. 3.3.4, we further discuss the
response noise, which provides a effective and meaningful lagged time for the response of
stock pairs.

3.3.1 Cross-response functions

To measure how a buy or sell trade of one stock indexed by j at time t influences the price
of another stock indexed by i at a later time t+ τ , we introduce a cross-response function,
where we employ the logarithmic price difference or the log-returns with a time lag τ to
represent the price change. Via the midpoint price mi(t), the price change at a given time
t is defined by

ri(t, τ) = logmi(t+ τ)− logmi(t) = log
mi(t+ τ)

mi(t)
. (3.1)

It is important to keep in mind the one-second accuracy for time t. To acquire the
statistical significance, the cross-response function is the time average of the product of
time-lagged returns and trade signs for stocks i and j, respectively, expressed as

Rij(τ) =
〈
ri(t, τ)εj(t)

〉
t
. (3.2)

Here, 〈...〉t represents the average over all the time t. Eq. (3.2) contains two possible
and meaningful definitions, including and excluding the trade signs εj(t) = 0. The two
definitions affect directly on the normalization of results. More specifically, in contrast
with the case without zero trade signs εj(t) = 0, the inclusion of zero trade signs increases
the total number of events, which determines the normalization constant for the average
of results. However, the events with zero trade signs do not yield any contribution to
the cross-response due to ri(t, τ)εj(t) = 0. Therefore, the two definitions exhibit the
different statistical significance. The cross-response including εj(t) = 0 measures the price
impact of market orders of stock j diluted by the time without trading, while the cross-
response excluding εj(t) = 0 purely measures the price impact of market orders, ignoring
the influence of non-trading time. We will discuss this issue further and give more details
in Sec. 3.3.3.

With the Eq. (3.2), we carry out the empirical cross-responses for different stock pairs
(i, j), shown in Figs. 3.1 and 3.2 for in- and excluding trade signs εj(t) = 0, respectively.
For the response versus the time lag, an increase to a maximum is always followed by a
decrease. It implies that the trend of price changes is eventually reversed. This trend does
not depend on the stocks of a pair coming form the same economic sector or from different
sectors. As an intuitive understanding, the paired stocks from the same sector face the
similar systematic risks, yielding a stronger cross-response than the stocks from different
sectors. However, the strong cross-response may also occur between the paired stocks
from different sectors, such as (GS, AAPL). This may arise from how investors assemble
their portfolios, regardless of a variety of reasons. To disperse the investment risks, the
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Figure 3.1: Cross-response functions Rij(τ) including εj(t) = 0 in 2008 versus time lag τ on
a logarithmic scale (top panels). Corresponding trade sign cross-correlators Θij(τ) for different
stock pairs on a doubly logarithmic scale, fit as dotted lines (bottom panels). The stock pairs in
the first column of panels are from the same economic sectors, and in second column of panels are
from the different economic sectors. The third column of panels are the self-responses and sign
self-correlators to be compared with cross-responses and sign cross-correlators.
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Figure 3.2: Cross-response functions Rij(τ) excluding εj(t) = 0 in 2008 versus time lag τ on a
logarithmic scale (top panels). Corresponding trade sign cross-correlators Θij(τ) for different stock
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investors often lump together the stocks with little correlation and different economic
risks in a portfolio. The gradual execution of trades for such a portfolio induces the price
cross-response to the trades between different stocks. The trend of price reversion is also
independent of in- or excluding zero trade signs εj(t) = 0. For the two cases, the general
trends are quite similar. Only the overall amplitude is changed.

Here, we notice that when τ = 1, the cross-response Rij(1) measures the impact of
trades during one second. This is rather different from the instantaneous impact of one
trade in single stocks. In our study, the cross-response is carried out on a physical time
scale rather than a trading time scale, so that the time step is one second instead of
one trade. Moreover, different from the self-response, the cross-response links different
stocks, where the trades of one stock cannot immediately shift the price of another stock
by consuming the volume of the later stock in the order book. The price impact between
stocks is more likely to be induced by other mechanisms. For instance, the transmitted
trading information may indirectly move the price of impacted stocks by affecting the
placements and cancellations of limit orders, or even the executions of market orders. Due
to the high frequency trading, the trading information can be detected very fast and the
trades can be executed at the level of milliseconds. Therefore, the one-second interval is
sufficient to identify the trading information or other effects from another stock.

3.3.2 Trade sign cross-correlators

In view of the self-response mainly induced by sign self-correlations [27], for the cross-
response we introduce a trade sign cross-correlator

Θij(τ) =
〈
εi(t+ τ)εj(t)

〉
t

(3.3)

in terms of the time lag τ . We once more distinguish the two possible definitions, including
and excluding εj(t) = 0. It turns out that the differences are negligible. The sum of
the product of trade signs between stocks is unchanged. Only the total number of trades
enlarges or shrinks the average values, but they do not change the main feature of decaying.
Therefore, the inclusion of εj(t) = 0 decreases the amplitude of sign cross-correlation, as
shown in Figs. 3.1 and 3.2. This can eliminate the suspicion of ones about that the
inclusion of zero trade signs induces the strong sign correlation.

In Figs. 3.1 and 3.2, the non-zero sign correlation across stocks turns out to be fitted
well by a power law

Θij(τ) =
ϑij(

1 + (τ/τ
(0)
ij )2

)γij/2 . (3.4)

To estimate the fit error, we use the normalized χ2
ij , seen in Appendix B. Thus, for eight

stock pairs analyzed, the parameters of the best fit as well as the values χ2
ij of the errors

are listed in Table 3.2. In contrast to the sign self-correlation with a long memory on
the trading time scale [27, 98], the sign cross-correlations for most of the stocks exhibit a
short memory with the exponents γij ≤ 1. Usually, the exponents smaller than unity [17]
indicates a long memory for the decaying. The short-memory sign cross-correlation implies
that the price change persists shortly and the price is reversed at a small time lag. To
compare the difference between the cases in- and excluding εj(t) = 0, it is instructive to

look at the parameters τ
(0)
ij , which measure the decay time scale of sign cross-correlations.

For most of the stock pairs, the case excluding εj(t) = 0 has a longer decay time scale
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3.3. Cross-responses for pairs of stocks

Table 3.2: Fit parameters and normalized χ2
ij for the trade sign cross-correlators.

sign stock i stock j ϑij τ
(0)
ij [ s ] γij χ2

ij (×10−6)

correlators inc. 0 exc. 0 inc. 0 exc. 0 inc. 0 exc. 0 inc. 0 exc. 0

AAPL MSFT 0.46 0.05 0.05 3.46 1.00 1.35 0.23 1.52
MSFT AAPL 0.04 0.07 2.34 2.34 1.15 1.15 0.10 0.27
XOM CVX 0.61 0.67 0.06 0.21 1.04 1.16 0.07 0.52

cross GS JPM 0.45 0.48 0.07 0.13 1.00 1.00 0.04 0.18
AAPL GS 0.46 0.28 0.03 0.14 1.00 0.91 0.11 0.99

GS AAPL 0.49 0.49 0.06 0.10 1.00 1.00 0.05 0.13
GS XOM 0.61 0.73 0.04 0.08 1.04 1.10 0.04 0.20

XOM AAPL 0.76 0.29 0.05 0.34 1.09 1.42 0.12 0.18

AAPL AAPL 0.60 0.96 0.21 0.21 1.27 1.27 0.18 0.50
self GS GS 0.54 0.71 0.12 0.25 1.17 1.18 0.04 0.44

XOM XOM 0.54 0.89 0.17 0.23 1.12 1.14 0.09 0.49

than the one including εj(t) = 0. It illustrates that the absence of trading or the balance
of buy and sell market orders accelerates the decay of sign cross-correlations.

In addition, we notice the large fluctuations of sign cross-correlators at larger time lags
τ . They are partly due to the limited statistics. In particular, if the time lag τ is large,
the time lags τ for different times t will overlap with each other. The large overlaps lead
to the poor statistics when averaging the correlation over the time t.

3.3.3 Influences of zero trade signs

In our study, the physical time scale projects the transaction data to every time interval of
one second. If there is an imbalance of buy and sell market orders in a time interval, the
trade sign of this interval is either +1 or −1. If there is no trade or there is a balance of
buy and sell market orders in a time interval, it is necessary or even inevitable to introduce
the zero trade sign for this time interval.

For each trading day, on average, more than half of the total physical time features
zero trade signs, listed in Table 2.4. For those non-trading time intervals, the price is not
affected by trades so that the price response is zero at that time. After averaging the
response over entire time, the effect of absence of trades is involved, diluting the impact
of the trade itself. For instance, the impacts from the last trade one minute ago and from
the last trade five hours ago, respectively, on the price at this moment are very different.
For the latter, the current price may be influenced more significantly by the news during
that five hours than by the last trade five hours ago. The time with or without trading is a
non-trivial feature in the transaction data and contains much information on the trading
activity. Especially, for whatever economic or other reasons, the time without trading
reflects the disagreement of traders on the price. In view of this, the inclusion of zero
trade signs in the cross-response function is reasonable.

Alternatively, we rule out all the zero trade signs from the cross-response function.
This means the impact of trades is unaltered by the time without trading. The alternative
choice implies the sign for one trade is fixed and independent of the time period τ0 without
trading. However, the empirical result reveals a possible reversion of the trade sign after τ0,
as shown in Fig. 3.3 for five successive trading days of AAPL in 2008. The ps(τ0) and pd(τ0)
in Fig. 3.3 are the probabilities of finding the same and different trade signs, respectively,
before and after the time period τ0 without trading, where we have ps(τ0) + pd(τ0) = 1.
When this period τ0 enlarges, the probability of finding the same sign falls down slowly,
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Figure 3.3: Probabilities ps(τ0) and pd(τ0) for the change of trade signs versus the time τ0 without
trading. The intraday data used stems from five successive trading days of AAPL in 2008. The
strong fluctuations at large τ0 are due to the limited statistics.

while the probability of finding the different signs raises up gradually. Thus, for a long
time without trading, it is unlikely to keep the trade sign unchanged. Likewise, it is not
possible to maintain the same impact of trades after a long time period without trading.
From this perspective, the exclusion of zero trade signs may introduce a bias. Although
we incline towards the case including zero trade signs, we display the empirical results of
both cases for comparisons.

When there is a balance of buy and sell market orders in time interval t, the signs of
buy and sell market orders cancel each other out. However, whether or not the behaviour
of the trading itself causes the cross-response is unknown. To quantify the effect of zero

trade signs, we use R
(inc. 0)
ij (τ) and R

(exc. 0)
ij (τ) to represent the cross-response in- and

excluding ε(t) = 0, respectively. Thus, the response R
(only 0)
ij (τ) stemming from ε(t) = 0

can be quantified by the difference of the two kinds of cross-responses,

R
(only 0)
ij (τ) = R

(inc. 0)
ij (τ)−R(exc. 0)

ij (τ) . (3.5)

Here, we do not distinguish the two sources of ε(t) = 0, i.e., a lack of trading and a balance
of buy and sell market orders. Analogously, the sign cross-correlator for ε(t) = 0 can be
measured by

Θ
(only 0)
ij (τ) = Θ

(inc. 0)
ij (τ)−Θ

(exc. 0)
ij (τ) . (3.6)

As shown in Fig. 3.4, both the cross-response and the sign cross-correlator for ε(t) = 0
exhibit negative values, which implies the inclusion of zero trade signs will weaken the
impact of trades. In contrast, the exclusion of the zero trade signs enlarges this impact.
In this sense, the results with the inclusion of ε(t) = 0 gives a conservative estimation for
the impact of trades and the price cross-response. In addition, the non-linear response
with a reversed trend in the case of ε(t) = 0 further corroborates our analysis on the
influence of the time without trading.
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3.3.4 Cross-response noise

In Figs. 3.1 and 3.2, an increase of the cross-response is shown up after the decreasing
back at a large time lag τ close to 1000 seconds. Correspondingly, the strong fluctuations
in the decaying of sign cross-correlators are visible. We attribute these behaviour to the
noise. The identification of the noise helps us to find out the effective lagged period for
the cross-response as well as the sign cross-correlators. To this end, we introduce an
estimator ξij(τ) for cross-response noise. The procedure of the estimation is as follows.

We use a running integer number T
(c)
ij to label the common trading days that the trades

of stocks i and j took place. Then we separate our data into two sets, for days with odd
and even numbers, respectively. With the averages over odd or even days, we work out

the corresponding cross-responses R
(k)
ij (τ), where k = 1, 2. The two results should be

very close to the cross-response Rij(τ) averaged over all days. Otherwise, the results are
influenced by the noise. Therefore, the estimator ξij(τ) for the response noise is defined
as some kind of normalized Euclidian distance in terms of the time lag τ ,

ξij(τ) =
1

|Rij(τ)|

√√√√1

2

2∑
k=1

(
R

(k)
ij (τ)−Rij(τ)

)2
. (3.7)

Fig. 3.5 displays the empirical results of the response noise during the year 2008,
where all the cross-responses include the zero trade signs εj(t) = 0. Obviously, for time
lag smaller than about 120 seconds, most stock pairs keep a low response noise with
a value below 0.06. When increasing the time lag, the noise raises and the instability
of cross-responses also grows. The strongest noise here could reach to a value of more
than 0.25 for time lags tending towards 1000 seconds. This evidence visibly explains the
upwards trends after reversing back for the cross-response. As to a deep interpretation for
the response noise, it should be traced back to the cross-correlator of trade signs. When
the sign cross-correlator becomes weak at the large time lag, other factors dominate to
move the price, leading to a strong fluctuation of cross-responses. Certainly, the limited
statistics is possible to blur the picture, as only 22200 seconds of effective trading time are
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Figure 3.5: Cross-response noise ξij(τ) for different stock pairs during the year 2008 versus the
time lag τ measured on a logarithmic scale. Stocks of a pair are from the same economic sector
(top); stocks of a pair are from different sectors (bottom).

used for each trading day. Overall, the analysis of noises clearly quantifies the effective
and meaningful lagged period of cross-responses. Meanwhile, the cross-response at large
time lags is little sense for stock pairs.

3.4 Market response

To explore the cross-response for the whole market, we begin with the market response
structures in- and excluding zero trade signs in Sec. 3.4.1. We then discuss the possible
causes for the transient impact of trades in Sec. 3.4.2. In terms of the transient impact,
we explain the temporary deviation of market efficiency in Sec. 3.4.3. We further disclose
the informed trades for the whole market in Sec. 3.4.4.

3.4.1 Market response structure

So far, the price cross-response function and the trade sign correlator have given us a kind
of microscopic information for pairs of stocks. However, due to different constitutions
of stocks, such information could be distributed among different pairs. Whether the
information among different stock pairs cancels each other out or generates a particular
information for the market is obscure. To make clear how the trading of individual stocks
influences the market as a whole, we introduce the market response by a matrix ρ(τ)
whose entries are normalized response functions at a given time lag τ ,

ρij(τ) =
Rij(τ)

max (|Rij(τ)|) . (3.8)

Here, the denominator is the maximum over all stock pairs (i, j) at each given time lag τ .
The diagonal elements in the matrix are the self-responses, and the off-diagonal elements
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are the cross-responses. Due to different arguments, i.e., the returns and the trade signs,
in each entry, the response matrix is not symmetric, ρij(τ) 6= ρji(τ) where i 6= j. Thus,
the non-symmetric response matrix is distinguished from the symmetric matrix of Pearson
correlation coefficients.

Fig. 3.6 shows the 99 × 99 matrices of the market responses across 99 stocks, listed
in Appendix A.1, in the year 2008. The stocks in the matrices are ordered according to
the economic sectors. For revealing the information of the time evolution, we consider
the different time lags τ =1, 2, 60, 300, 1800, 7200 s for the market response. Visible
in Fig. 3.6, for a fixed time lag, the price change of one stock is always affected by the
trades of all others, and vice versa. With the evolution of the time lag, the intensity of the
responses distributed in the market raises up first and falls down then. In line with the
cross-responses for pairs of stocks, we also check the market responses in- and excluding
zero trade signs εj(t) = 0. For both cases, regardless of the similar trend of time evolution,
the microstructures of market response are quite different at each time lag. In the case
including εj(t) = 0, the matrices feature striking patterns of strips grouped by sectors,
such as the visibly strong strips in information technology (IT) sector. This market patten,
reflecting the distribution of price impacts of trades, keeps stable over time. In contrast,
the case excluding εj(t) = 0 displays a relatively homogeneous distribution of the impacts
across different stocks. This patten is not changed too much with time increasing. In
addition, for case either in- or excluding εj(t) = 0, a dependence of sectors is visible in the
market response at each time lag. For example, the responses of utilities (U), financials
(F) and energy (E) to their own sectors present the different strengths. Even in the same
sector, the block responses for the cases in- and excluding εj(t) = 0 may be different, such
as utilities (U) at τ = 60 s.

Therefore, an abundance of information in the market microstructure can be identified
by cross-responses. How to understand these information and what is the significance of
these information for the whole market? To answer these questions, we further explore
the nature of the market in the following sections.

3.4.2 Transient market impact

The price reversion with the time lag in Figs. 3.1 and 3.2 and the market response of the
time evolution in Fig. 3.6 manifest a transient impact of trades on the price. However,
the trade of one stock cannot directly influence the liquidity of another stock to move
this stock’s price. The transient impact, either for individual stocks or for the whole
market, must be due to other mechanisms. We therefore discuss the possible causes of the
transient impact, partly transferring a line of causes put forward for self-responses [155] to
our case of cross-responses, although we cannot provide the sufficient evidence to support
the following statements currently.

In single stocks, the splitting of large orders is one strategy for traders to hide their
trading intentions and prevent the large impact cost from the low liquidity market. As a
result, a sequence of small trades with the same type, buy or sell, induces the correlation of
trade signs. The order splitting could exist in different stocks. When two such sequences
of small trades separately from two individual stocks partly overlap each other on the
physical time axis, a cross-correlation of trade signs will be generated, leading to a price
response to trades between stocks, or say, a cross-impact of trades on the price. The
partial overlapping of sequences may be due to the economic correlation reflecting on the
return time series or purely be coincidental. In any case, since the self-impact of trades
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Figure 3.6: Matrices of market response with entries ρij(τ) for i, j = 1, . . . , 99 at different time
lags τ = 1, 2, 60, 300, 1800, 7200 s in the year 2008. The stocks pairs (i, j) belong to the sectors
industrials (I), health care (HC), consumer discretionary (CD), information technology (IT), utili-
ties (U), financials (F), materials (M), energy (E), consumer staples (CS), and telecommunications
services (TS). The responses in the first two columns of panels include εj(t) = 0, while in the last
two columns εj(t) = 0 is excluded.

in single stocks, related the sign self-correlation, is transient, the cross-impact of trades
between stocks indirectly induced by the same way should be transient as well. Another
possible cause we should not ignore is the behavior of traders. The overreaction to the
trading information, e.g. herding behavior, prompts traders to extend their activities
to other stocks which they did not trade previously, giving occasion to the price change
of these stocks. The overreaction persists shortly. After the traders calming down and
taking up again their previous trading patterns, less trades occur to these stock so that to
impact slightly on their price. Here, regarding to different stocks, the traders act as the
distributors of the trading information.

3.4.3 Temporary violation of market efficiency

The non-vanishing price response either in single stocks [27] or across different stocks shown
in Fig. 3.6 reveals a non-Markovian feature in the price. The Efficient Market Hypothesis
(EMH) [54], however, states that the price encodes all the available information, hinting
the absence of arbitrage opportunities, or to be more specific, a zero response on average.
The conflict seems to imply a violation of EMH. Actually, the transient impact in Fig. 3.6
demonstrates that the market efficiency is shortage on short time scales, but restored on
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3.4. Market response

longer time scales. The temporary violation of EMH is related to the behavior of some
traders, which as discussed in Ref. [27] will alert other traders. No matter whether or not
the trading is driven by valid information, the alerted traders act similar to arbitrageurs
reverting the price until a state compatible with the EMH is reached. The process for the
restoration of efficiency thus takes some time. To support this interpretation, we give the
following analysis with a clear evidence shown in Fig. 3.7.

We treat the market incorporating all the information as a whole, which washes out
the random fluctuations from the cross-responses by a self-averaging process,

R(τ) = 〈〈Rij(τ)〉j〉i , (3.9)

where i = j is excluded. The doubly averaged response functions (3.9) with a more
statistical significance are displayed in Fig. 3.7. Caused by a small part of potentially
informed traders, an increasing response trend followed by a decreasing trend for the
whole market shows up. In particular, the decreasing trend owes to the reverting action
of the alerted traders. Compared to a stock pair, the decay of the cross-response for the
market takes longer time, which partly arises from the noise reduction in the self-averaging
process. Essentially, the whole market needs more time to digest all potential information
than one individual stock. As the trend reversion lasts about three hours, the restoration
of efficiency for the whole market, combined with the impact of trades vanishing, presents
a rather slow process.
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Figure 3.7: Doubly averaged response functions R(τ) in- and excluding εj(t) = 0 for the whole
market in 2008 versus time lag τ on a logarithmic scale. The error bars indicate the standard
errors. For better comparison, the doubly average response function for εj(t) = 0 included and its
error bars are is scaled up by a factor of six.

36



Chapter 3. Cross-responses in correlated financial markets: individual stocks

uij(τ ) ×10
-3

0 0.5 1 1.5 2 2.5 3

p
(

u
ij
(τ

))

0

0.02

0.04

0.06

0.08

0.1

0.12

uij(τ ) − ∆uij(τ ) ×10
-3

0 0.5 1 1.5 2 2.5 3

p
(

u
ij
(τ

)
−

∆
u
ij
(τ

))

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.002 0.004 0.006 0.008 0.01
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

uij(τ) > 0
uij(τ) < 0

0 0.002 0.004 0.006 0.008 0.01
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

uij(τ)−∆uij(τ) > 0
uij(τ)−∆uij(τ) < 0

Figure 3.8: Probability distribution of the signed returns uij(τ) = ri(t, τ)εj(t) for the whole market
in 2008, excluding εj(t) = 0, for τ = 30 s: unshifted (left) and shifted (right) by −∆uij(τ) with
∆uij(30) = 5 × 10−5. The distributions for negative arguments (dashed lines) are folded back to
the positive regions. A logarithmic scale is used in the insets.

3.4.4 Informed trades

Generalizing the analysis of Ref. [27] for individual stocks, we examine the possible in-
formed trades by carrying out the probability distribution of signed returns,

uij(τ) = ri(t, τ)εj(t) (3.10)

for the whole market in 2008. Here we rule out the case of εj(t) = 0. An example of the
distribution at τ = 30 s is shown in Fig. 3.8, where to highlight the small asymmetry the
distribution of negative arguments are folded back to the positive regions. Carrying over
the line of reasoning for individual stocks in Ref. [26] to our analysis, a horizontal shift of
∆uij = 5 × 10−5 to symmetrize the distribution reveals a non-zero average impact from
all trades, while the prevailed asymmetry between the tailed distributions hints that some
trades are informed. For the former, the value of ∆uij = 5× 10−5 is comparable with the
value of R(30) ∼ 7 × 10−5 for the doubly averaged response function. For the latter, it
discloses and proves the existence of informed trades.

3.5 Comparisons of self- and cross-responses

Since the cross-response we have studied so far on a physical time scale is very different
from the self-response in previous studies on a trading time scale, a comparison between
both cases is therefore necessary to provide a view of the difference and to deepen the
understanding of the price impact. To this end, it is worth to recall a crucial quantity,
i.e., the trade sign ε(t), which represents an aggregated sign of all trades in time interval
t for our study, instead of the sign of t-th trade often used for previous studies. The
distinctive definitions of the trade sign, due to the employment of different time scales,
differ the measurements for the response as well as the trade sign correlation. Certainly, the
measurement across two or more stocks also give rise to a distinguished impact mechanism
from the one in single stocks. In the following, we will discuss these possible differences
in detail.
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3.5. Comparisons of self- and cross-responses

• Different measurements for responses

The trading time axis treats one trade as one time step. On this scale, the response with
the lag of one time step measures the instantaneous impact of a single trade. When
considering the lag of two time steps, the response comprises the price impact from the
second last trade. Between the last and the second last trade, there is a gap of real
physical time, which could be one second or five hours. For the larger time gap, the
price may be influenced strongly by the prevailed news instead of the second last trade.
Although this lagged response is an average result over all the second last trades, it loses
sight of the time gap. So is the case for the lag of more than two time steps. Despite the
exposure of the instantaneous impact for a single trade and a reasonable explanation for
the additional impact from such time gap, the measurement on the trading time scale
may introduce a bias for the impact from most lead trades. Differently, the physical time
axis considers the equal time interval as one time step. With one-second interval on this
scale in our case, the response lagged by one time step measures the impact of trades
during one second, either in single stocks or across different stocks. For every lagged
physical time, we always can find out a price response that comprises the impact from
trades during the given time interval. Thus, the measurement on this scale is absent of
the distortion from the uncertain time gap between two successive trades, although it
cannot disclose the instantaneous impact of a single trade as on the trading time scale.

• Different impact ways and causes

Regardless of the measurements on different time scales, the ways how trades impact
on the price in single stocks are the same. By consuming the volume in the best quote,
i.e., influencing the market depth, the trades shift the price instantaneously to a worse
level, leading to the price self-response. The price impact by this way originates from
the market liquidity, referring to the market’s ability to buy or sell an assent quickly
without changing the price of the assent significantly. The lower the liquidity, the
greater the price is impacted, and the more the extra trading cost should be paid. On
the trading time scale, in other words, the price impact is on account of the liquidity cost
that how much the traders should pay for a trade except for the conventional brokerage
commission. This price impact could take place in absence of the informed trades, which
has been demonstrated by Ref. [27]. On the physical time scale, however, as the one-
second time interval facilitates the informational transmission and detection for high
frequency trading, the price impact is partly due to the liquidity cost from uninformed
trades and partly due to other causes from informed trades. The latter cause is obvious
at a very short time lag but disappears at a long time lag. We show the corresponding
evidence in Fig. 3.9.

Figure 3.9 shows the probability distribution of signed returns of AAPL in 2008,
carried out on the physical time scale and at different time lags, excluding the zero
trade signs εj(t) = 0. To highlight the small asymmetry, the distribution of negative
arguments is once more folded back to the positive region. A stable horizontal shifts
∆uij(τ) = 5.15 × 10−5 for all the time lags are shown around the zero vertical axis,
implying a price impact from uninformed trades. The asymmetry of tailed distributions,
reflecting the imbalance of buy and sell orders, is accessible at small time lags τ = 1, 15,
120 s but invisible at the large lag τ = 300 s. We therefore infer that informed trades
are triggered by the insufficient liquidity at a very short time, but are wiped out when
the liquidity is restored by submitting more limit orders at a long time. Some sharp
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Figure 3.9: Probability distribution of signed return uij(τ) for physical time scale, where both i and
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with τ = 1, 15, 120, and 300 s, respectively. The negative parts of the distributions (dashed lines)
are folded back to the positive regions. The insets are the amplified probability distributions near
zero signed return.

bends for the distribution in the inset of Fig. 3.9 (right) is due to the folding procedure.

On the physical time scale, however, the way that the trades of one stock impact
on the price of another stock is very different from the case in single stocks, as the
trades of one stock cannot remove the volume in the best quote of another stock. This
price cross-impact is more likely to occur through an indirect way, such as trading
information spread, which influences the traders’ actions. The price shift corresponding
to the cross-impact of trades induces the price cross-response. Figs. 3.1 and 3.2 show
that the cross-responses are mostly weaker than the self-responses on the same time
scale. Put differently, the cross-impact between stocks is relative weak compared to
the self-impact in single stocks. Instead of working on the volume directly as the self-
impact, the cross-impact indirectly via a way of trading information may face to a loss of
effective information during the spread, as the competing information, e.g., other trades
or relevant incoming news, may replace the trading information from the impacting
stock. Comparing Fig. 3.8 with Fig. 3.9, we find the price cross-impact, same as the self-
impact in the same scale, is induced both by uninformed trades and informed trades.

• Different properties and causes of trade sign correlations

Since a buy market order pushes the price up, whereas a sell market order drops the price
down, the price shift accompanies with the trading type, indicated by the trade sign.
When considering the price response to a trade, the trade signs in the price shift and
the trade, respectively, produce a correlation. The origin of price response, therefore,
should be traced back to the correlation of trade signs. If the trade shifts the price
permanently or not is related to the performance of the trade sign correlation.

The quantitative analysis in Ref. [27] has shown a power-law decay of time lag for
the trade sign correlation, coinciding with our analysis. Based on the trading time scale
in Ref. [27], the trade sign correlation in single stocks exhibits a long memory with the
exponent 0 < γ < 1 in the power-law function. The long-memory property is more likely
to be due to the order splitting, i.e., the order with a large volume is fragmented into
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slices with small volumes. The traders use this way to hide their trading intentions and
dwindle down the liquidity cost triggered immediately by the large order. Differently,
on the physical time scale, either for sign self-correlation or for sign cross-correlation, we
cannot seize up a long memory no matter whether the zero trade signs are included or
not. Instead, a short memory with the exponent 1 < γij < 2 in the power-law function
turns up, seen in Table 3.2. The differentiated memory property in our case results
from the implementation of the physical time scale with the equal time intervals, which
probably suppress the influence of multiple fragmented orders in one time interval but
magnify the effect of a random trade in another time interval.

In spite of the memory property, on the physical time scale, the trade sign self-
correlation as the one in trading time scale is very probable to stem from the order
splitting. For the trade sign cross-correlation, it has several possible causes. When two
large orders separately for two stocks are fragmented to trade, the coincident overlap on
the physical time axis may introduce this sign cross-correlation. The actions of order
splitting could be from different traders, but also be from the same trader for different
stocks if this trader was executing a portfolio. As we already stated, the one-second
time interval helps to spread the trading information. If a lot of high frequency traders
detect such information, a herding behavior, referring to that some traders imitate the
actions of other traders to buy or sell specific stocks regardless of their own trading
pattens, could be induced to yield the sign cross-correlation.

So far, we have compared the difference between the self- and cross-responses on
different time scales, and further give the corresponding analyses. Although some of the
analyses have not been supported by empirical evidences, they at least provide clues to
dig out the potential factor for future studies. To clarify the differences concisely, we
provide a synopsis of the comparison in Table 3.3.

3.6 Conclusions

We extended the study of price self-responses in single stocks to price cross-responses in
a whole correlated market. The price cross-response to trades between different stocks,
as a function of the time lag, performs to be an increase followed by a decrease. This
price reversion not only between two stocks but also across the whole market reveals a
transient price impact from trades, which accounts for the temporary violation of market
efficiency, i.e., the market being inefficient at a short time but efficient at a long time.
The temporary distortion of market efficiency roots from potentially informed traders
who shift the price deviating from a foundational value. However, some traders, who
might be interpreted as arbitrageurs, drive the price to reverse and thereby help to restore
the efficiency. Pictorially speaking, the market needs time to react to the distortion of
efficiency.

By presenting the response matrices, we provided a view of the market microstructure.
The grouped strips pattens in the response matrices carried out by including zero trade
signs are remarkable and stable in time. These features are also distinguished by sectors.
The market response therefore provides much information about how the trade of one
stock affects the prices of other stocks, and how this stock’s own price is influenced by the
trades of other stocks.
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Table 3.3: Comparisons of self- and cross-responses

time scales trading time scale physical time scale
responses self-response self-response cross-response

trade sign ε(t) sign of t-th trade aggregated sign in time t aggregated sign in time t

Rii(1) or Rij(1) instantaneous impact one-second impact one-second impact

impact causes uninformed trades uniformed trades and in-
formed trades

uniformed trades and in-
formed trades

impact ways change prices by con-
suming the volumes in
the order book directly

change prices both by di-
rectly consuming the vol-
umes in the order book
and indirectly affecting
placements or cancella-
tions of limit orders

change prices by indi-
rectly affecting placements
or cancellations of limit or-
ders or even executions of
market orders

trade sign correla-
tions

self-correlation self-correlation cross-correlation

properties of sign
correlations

long memory short memory short memory

causes of sign cor-
relations

main: order splitting main: order splitting probable: order splitting,
herding behavior, portfo-
lios, et al.

Since the correlation of trade signs is closely related to the price response, we thus car-
ried out the corresponding sign correlation for the cross-responses by a defined correlator.
We find a power-law fashion for the cross-correlator, coinciding with the function for the
sign self-correlation. However, different from the long-memory self-correlation on a trad-
ing time scale, the sign cross-correlation for stock pairs reveals a short-memory decaying
process on a physical time scale. Here, the different time scales are partly responsible for
the difference of memory properties. The rest responsibility should be owed to different
correlation causes.

Regarding to the employment of a physical time scale rather than a trading time scale
used in previous studies, and the price response across different stocks instead of in single
stocks, we compared the differences between them. In contrast with the self-response on
the trading time scale only due to uninformed trades, we find the self- and the cross-
responses on the physical time scale are induced both by the uninformed and informed
trades, as the one-second time interval on this time scale facilitate to spread the trading
information, which could be detected and processed by high frequency traders. For the
responses in single stocks and between different stocks, we find the ways that the price is
impacted by trades are very different. The impact in single stocks works directly on the
volumes to move the price, but between different stocks it shifts the price by an indirect
way.
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Chapter 4
Average cross-responses in correlated
financial markets

4.1 Introduction

In the last chapter, we have found non-vanishing price responses across different stocks, re-
vealing a non-Markovian feature. However, the cross-response for a pair of stocks strongly
suffers from the noise and exhibits drastic fluctuations at large time lags. Correspond-
ingly, due to the noise effect, the cross-correlation of trade signs turns out to be short
memory instead of long memory. In contrast with the impact in single stocks, the im-
pact of a given stock on other stocks may depend on various factors, for instance, the
economic dependencies of companies, the grouping of investments in portfolios, and the
capital turnover for buying in some stocks at the cost of selling out other stocks and so on.
The complicated connection among stocks suggests that the price of one stock is affected
not only by one stock but also by many related stocks. For a given stock, a better view
of the price response is to average the cross-responses between different stocks and the
given stock. By doing so, it to some extent smooths out the drastic fluctuations in both
the price response and the sign cross-correlation at large time lags. With the reduction
of noise, the more interesting observations can be expected. In this chapter, we therefore
introduce the average cross-response of an individual stock to the whole market and to
different economic sectors. In this setting, we also discuss the influences of individual
stocks on other stocks.

The chapter is organized as follows. In Sec. 4.2, we describe the data used in this study.
In Sec. 4.3, we carry out the average cross-responses of an individual stock, including the
cross-response to the whole market and to different economic sectors. Meanwhile, we
work out the average cross-correlations of trade signs. In Sec. 4.4, making use of the
average cross-responses, we identify the influencing and influenced stocks, analyze the
relations between influencing stocks and trading frequency, and discuss the role of trading
frequency in response functions. In Sec. 4.5, by discussing the impact mechanisms in
details, we compare the self- and average cross-response. We come to conclusions in
Sec. 4.6. This chapter refers to Ref. [160].
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4.2. Data description

4.2 Data description

Following the study in the last chapter, we again use the TAQ data set for NASDAQ
stock market in 2008. The trading time is set to be from 9:40:00 to 15:50:00 EST for the
days that the two stocks of a pair are traded. In Sec. 4.3, for the average cross-response
of individual stocks, we choose Apple Inc. (AAPL), Goldman Sachs Group (GS) and
Exxon Mobil Corp. (XOM) as the sample stocks. For one individual stock, the averages
of cross-responses are carried out over other available 495 stocks in S&P 500 index or over
other available stocks in a given economic sector, where the self-response of the stocks are
always omitted. To analyze the influencing and influenced stocks according to the average
cross-response in Sec. 4.4, we select the 99 stocks listed in Appendix A.1, which contains
ten economic sectors and ten or nine stocks in each sector.

4.3 Average cross-responses of an individual stock

We introduce the passive and active cross-response functions as well as corresponding sign
correlators in Sec. 4.3.1. We then carry out and discuss the two kinds of average responses
to the whole market in Sec. 4.3.2 and to different economic sectors in Sec. 4.3.3, where we
further analyze the property of trade sign cross-correlators.

4.3.1 Definitions

In correlated financial markets, the price of one stock might be influenced by multiple
stocks. Meanwhile, the trades of this stock also might impact on the prices of multiple
stocks. Since the definition (3.2) of the cross-response is not symmetric, we therefore can
perform two conceptually different averages,

R
(p)
i (τ) = 〈Rij(τ)〉j and R

(a)
j (τ) = 〈Rij(τ)〉i , (4.1)

which are named as passive and active cross-response functions, respectively. Importantly,
we exclude the self-response for the stock pair (i, i) or (j, j) in these averages. The passive

cross-response function R
(p)
i (τ) measures how the price of stock i changes due to the trades

of all other stocks, while the active cross-response function R
(a)
j (τ) quantifies which effect

the trades of stock j have on the average price of all other stocks. In particular, the
former includes the collective impact from multiple stocks, and the latter contains the
individual impact on the average price of multiple stocks. To reduce the fluctuation of
trade sign correlations at large time lags, we also average the cross-correlator of trade
signs in Eq. (3.3) over different stock pairs. Thus, corresponding to the passive and active
cross-responses, we introduce

Θ
(p)
i (τ) = 〈Θij(τ)〉j and Θ

(a)
j (τ) = 〈Θij(τ)〉i , (4.2)

as passive and active cross-correlators of trade signs. Because the time lag only enters the
trade sign with index i, the average correlators here are not symmetric either.

Due to a lack of trades on the physical time scale, we introduced the zero trade signs
εj(t) = 0 to empirical calculations in Chapter 3. The empirical results show a dependence
on whether or not we include the zero trade signs in calculations. If including, the empirical
results contain the effect of the time between two successive trades, which could be very
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Chapter 4. Average cross-responses in correlated financial markets

Table 4.1: Fit parameters and errors χ2
i or χ2

j for the average trade sign cross-correlators.

Sign cross- stock i, j ϑi or ϑj τ
(0)
i or τ

(0)
j [ s ] γi or γj χ2

i or χ2
j (×10−6)

correlators inc. 0 exc. 0 inc. 0 exc. 0 inc. 0 exc. 0 inc. 0 exc. 0

AAPL 0.01 0.05 0.47 0.88 0.68 0.73 0.07 4.59

Θ
(p)
i (τ) GS 0.03 0.22 0.23 0.20 0.92 0.90 0.01 0.38

XOM 0.27 0.83 0.06 0.12 1.32 1.33 0.02 1.20

AAPL 0.02 0.03 1.44 1.44 0.90 0.91 0.03 0.08

Θ
(a)
j (τ) GS 0.01 0.03 1.31 1.27 0.85 0.83 0.02 0.18

XOM 0.02 0.03 0.55 1.08 0.71 0.95 0.11 0.08

short or very long. Otherwise, the results only reflect the impact of trades. In particular,
the inclusion of zero trade signs diminishes the cross-response strength, but it does not
change the trend of price reversion with the time lag. For a given time lag, the inclusion
of zero trade signs changes the market response structure by reshaping the feature in the
response matrix. In this chapter, as the averages for the responses and sign correlations
are performed over different stocks, the uncertainty of the effect from the zero trade signs
leads us to look at both cases.

4.3.2 Responses to the market

By averaging the cross-response and sign cross-correlator functions over other 495 stocks
in S&P500 index, we carry out the empirical analysis for the sample stocks AAPL, GS
and XOM. Their empirical results are presented in Fig. 4.1, where the two cases in- and
excluding εj(t) = 0 are distinguished. Instead of at every second, we only calculate the
results at several time lags. For each stock, we have checked that the results averaged over
495 stocks are similar to those averaged over other 98 stocks listed in Appendix A.1.

Figure 4.1 shows the passive and active cross-responses versus the time lag. For each
stock, the passive one reverses faster than the active one. Compared with the persistent
active response for hundreds of seconds, the passive response only persists for dozens of
seconds before reversing with sizeable volatility. This difference is due to the fact that
the price change in one stock is easer to be detected than the price change dispersed
over different stocks. By extending the previous interpretations based on the study of
single stocks, we can expound our view about the price dynamic on short time scales in
terms of the passive cross-responses. When the price goes up, less market orders will be
emitted to buy and more limit orders to sell. Thus, the price reverses [84] without a need
to evoke new information as a cause. Moreover, such liquidity induced mean reversion
attracts more buyers, which motivates liquidity providers to raise the price again. This
process running over and over again causes the volatility during the decline of the passive
cross-response. Considering the market as a whole, the mean reversion accentuates the
short-run price volatility, which is consistent with the single-stock analysis [25, 77]. As
the active cross-response disperses the impact of trades over the prices of different stocks,
it is conceivable that this process takes longer time than the passive case. Accompanied
with this dispersion, the volatility is spread out.

Shown in Fig. 4.1 , when excluding εj(t) = 0, the strength of the passive and active
cross-responses are comparable. However, when including εj(t) = 0, the active ones are
much stronger than the passive ones. The different response strengths are due to a part of
stocks that are able to influence other stocks strongly. If looking again the matrices of the
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Figure 4.1: Passive and active cross-response functions R
(p)
i (τ) and R

(a)
j (τ) for i, j =

AAPL,GS,XOM in the year 2008 versus time lag τ on a logarithmic scale (top, left and right).

Corresponding passive and active trade sign cross-correlators Θ
(p)
i (τ) and Θ

(a)
j (τ), fit as dotted

lines (bottom, left and right). The error bars indicate the standard errors.

market response in Fig. 3.6, we can find out these stocks signalled by the vertical stripes,
such as the stocks in the IT sector. As the vertical stripes are much more pronounced
than the corresponding horizontal ones, the active cross-response of an individual stock,
resulting from averaging the cross-response function over the stocks along the vertical
column, is much stronger the passive one by averaging over the stocks along the horizontal
row. Briefly, the abilities for a specific stock to influence on or be influenced by other stocks
are different.

To analyze the average cross-correlators of trade signs in Fig. 4.1, we fit the empirical
results with the power-law function (3.4). The fitting parameters and errors are listed in
Table 4.1. Remarkably, the exponents with 0 < γi < 1 and 0 < γj < 1 in the power
law indicate the long-memory property for the average sign cross-correlators. Recalling
the short-memory property in the sign cross-correlators of stock pairs, we thus infer that
the price change related to the trade sign cross-correlations can accumulate to persist over

longer time. By comparing Table 3.2 with Table 4.1, we find the two decay time scales τ
(0)
ij

for the cases in- and excluding εj(t) = 0 are effectively enhanced and become comparable
after averaging. The variations are attributed to the reduction of noise, which slows down
the decaying process of sign correlations.
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Chapter 4. Average cross-responses in correlated financial markets

4.3.3 Responses to economic sectors

From the matrices of the market response in Fig. 3.6, we find that there are quite different
responses between a given stock and the stocks from different economic sectors, regardless
of the given stock impacted by other stocks or impacting on other stocks. If we treat
each economic sector as a whole, how a given stock responds to each sector? For different
sectors, do the yielded responses show the similar behaviour or not? To this end, we work
out the average cross-responses to ten economic sectors in S&P 500 index for the sample
stocks, i.e., AAPL, GS and XOM.

The empirical results of the passive and active cross-responses are displayed in Figs. 4.2
and 4.3, respectively, where the calculations in- and excluding the zero trade signs εj(t) = 0
are distinguished. Once more, we observe the price reversion for all the cases. Besides, the
sector dependence of the response is also remarkable. We will go into detail about this.
For passive cross-responses, the three sample stocks have in common that they are all
affected strongly by the trades within their own sectors, which is not surprising because of
the same economic effects. For active cross-responses, a time-dependent clustering across
different sectors is visible. In particular, the trades of AAPL and GS have a significant
impact on the stocks from financials (F), but a lesser one on utilities (U), health care (HC)
and consumer staples (CS). Since the latter three sectors serve the needs of daily life, they
are more stable than other sectors and also much difficult to be impacted by the stocks
unrelated to them. In addition, the trades of XOM are more likely to influence energy
(E), the sector it belongs to, but less impact on health care (HC) and consumer staples
(CS). Here, compared with health care (HC) and consumer staples (CS), utilities (U) are
rather strongly coupled to energy (E) in an economic sense.

4.4 Influencing and influenced stocks from the viewpoint of
average cross-responses

According to the active and passive cross-responses, we identify the influencing and influ-
enced stocks in Sec. 4.4.1. In view of the large change in the ranks of influencing stocks in-
and excluding zero trade signs, we thus discuss the relations between influencing stocks
and the trading frequency in Sec. 4.4.2. Further, we analyze the role of trading frequency
in the average cross-response functions in Sec. 4.4.3.

4.4.1 Identifying influencing and influenced stocks

Considering different measurements for the passive and active cross-responses, we thus
classify the stocks as the influencing and influenced stocks. The influenced stocks with
large passive cross-responses are easily impacted by trades of other stocks, whereas the
influencing stocks with strong active cross-responses have profound impacts on prices
of other stocks. To identify the two kinds of stocks, we rank the 99 stocks listed in
Appendix A.1 according to the numerical values of responses, normalized by the Eq. (3.8)
at a given time lag τ . The first fifteen stocks with the largest average cross-responses at
τ = 1, 2, 60, 300 s are shown in Figs. 4.4 and 4.5, where we show the ranks for the cases
in- and excluding the zero trade signs εj(t) = 0, respectively.

Either including εj(t) = 0 in the passive cross-response or not, the rank of strongly
influenced stocks keeps stable in general, especially for FTR, X, CF, NUE and S. Since the
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4.4. Influencing and influenced stocks from the viewpoint of average cross-responses

effect of zero trade signs is diminished across different stocks, it alters the rank of influenced
stocks very slightly. However, the effect of zero trade signs is spread to different stocks
by the active cross-responses. Including εj(t) = 0 or not thus greatly changes the rank
of strongly influencing stocks. When including εj(t) = 0, the rank reveals that most of
influencing stocks come from information technology (IT) even if we shift the time lag.
This conforms to the stable response structure in Fig. 3.6. When excluding εj(t) = 0, more
stocks from financial (F) occupy the top positions. Even some stocks from utilities (U),
which are absent from the top rank in the former case, are identified as the influencing
stocks in this case.

4.4.2 Relations of influencing stocks and trading frequency

On a physical time scale, the zero trade sign indicates a lack of trades or a balance of buy
and sell trades in a time interval. If many zero trade signs are included, it hints less time
intervals having an imbalance of trades. Here, we introduce the trading frequency as the
proportion of time intervals having an imbalance of trades to the total considered time
intervals. Therefore, the effect of zero trade signs on the average cross-responses converts
to the role of trading frequency in these responses, which further leads to the different
ranks of influencing and influenced stocks. Due to the evident alteration in the rank
of influencing stocks, we thus explore how the trading frequency affects the influencing
stocks.

As a surrogate of the trading frequency, we consider the average daily number of trades.
The daily number of trades is set to one per second if there is an imbalance of buy and sell
trades in one-second intervals, or otherwise to zero per second. The intraday trading time
is limited to be from 9:40:00 to 15:50:00 EST. Thus the total time intervals for each stock in
each day are fixed. We use the 99 stocks listed in Appendix A.1 again for analysis. Fig. 4.6
shows the dependence of the active cross-response in- and excluding εj(t) = 0, respectively,
on the average daily number of trades. We find a linear dependence for the case including
εj(t) = 0, but a random relation for the case excluding εj(t) = 0. The linear dependence
is accompanied by a high correlation between the response and the number of trades. It
implies that the influencing stocks are exactly the stocks with the high trading frequency
if we consider the effect of time by including zero trade signs. Pictorially speaking, the
impact of trades from the frequently traded stocks is very probable to be rapidly followed
by another impact. Before the previous impact vanishing, the new impact continues
pushing the price, leading to a persistent change in the price. However, the impact of
trades from infrequently traded stocks is lessened by the time period without any trade or
with a balance of trades. This is so, because the price during this period may be affected
by other information rather than trades, and may deviate from the previous price trend far
away. If we ignore the effect of time by excluding zero trade signs, the linear dependence
disappears. No matter how many trades occur in a trading day, the active cross-response
at each time lag floats in a limited range. Even so, the strongly influencing stocks are
more likely to be identified as those stocks with the daily number of trades lower than
2000.
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4.4.3 Role of trading frequency in response functions

To our knowledge, the asynchronous trading induces spurious lead-lag correlations, and
the returns of frequently traded stocks generally lead to those of infrequently traded
stocks [103, 104]. For instance, the incoming news influences the frequently traded stocks
first, and then the infrequently traded stocks. In Sec. 4.4.2, the high correlation between
the active cross-response including zero trade signs and the average daily number of trades
might be misinterpreted, so that the influence that the stocks exert is owed to the lead-lag
correlation of returns rather than the impact of trades. Here, we have to clarify that this
lead-lag correlation is not fit to explain our case. What we focus on is how a lack or
a balance of trades affects the impact degree of trades. Suppose a buy trade of stock j
occurs at time t, which pushes the price of stock i up. Between time t and a later time
t+ τ , the news comes in and triggers sell trades of stock i. The triggered sell trades shift
the price to deviate from the previous price trend, debilitating the impact of that buy
trade. To which degree is the impact of stock j on the stock i weakened due to the news
between time t and t+ τ?

To answer the above question, we recall the definitions of the cross-response in- and
excluding εj(t) = 0,

R
(inc. 0)
ij (τ) =

∑Tj+Tj;n
t=1 ri(t, τ)εj(t)

Tj + Tj;n
, (4.3)

R
(exc. 0)
ij (τ) =

∑Tj
t=1 ri(t, τ)εj(t)

Tj
. (4.4)

For stock j, Tj and Tj;n are the total trading time of stock j and the total time without any
trade or with a balance of buy and sell trades. If trading does not take place or there is a
buy-sell balance, the products ri(t, τ)εj(t) vanish. Thus, the numerators in Eqs. (4.3) and
(4.4) are the same, but the denominators, i.e., the normalization constants, are different.
Hence, we have

R
(inc. 0)
ij (τ) = fjR

(exc. 0)
ij (τ) , (4.5)
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4.5. Comparisons of self- and average cross-responses

where the trading frequency defined in Sec. 4.4.2 can be written in a mathematical formula

fj =
Tj

Tj + Tj;n
. (4.6)

In parts of the literature, the term frequency is used in a colloquial sense. For example,
a frequently traded stock is a very often traded stock. Our definition (4.6) is consistent
with that, but quantifies it by fj , 0 ≤ fj ≤ 1. The trading frequency is thus inversely
proportional to time Tj;n. In addition, fj also can be regarded as the probability for trades
to occur unevenly on the time scale of one second. In our case, fj rescales the degree of the
impact: the higher the trading frequency fj is, the less the impact of trades is weakened
by time, and the more the remaining impact has on average after a time lag. Since the
trading frequency is no more than one, the cross-response including εj(t) = 0 can never
be stronger than the one excluding εj(t) = 0.

In view of rather different features of passive and active cross-responses, we further
look at how the trading frequency affects them. For passive cross-response, we have

R
(p, inc. 0)
i (τ) =

1

k

k∑
j=1

R
(inc. 0)
ij (τ)

=
1

k

k∑
j=1

fjR
(exc. 0)
ij (τ) , (4.7)

where k is the total number of stocks j. By weighing the response excluding εj(t) = 0,
the trading frequency links the two cases of passive cross-responses, i.e., in- and excluding
εj(t) = 0. The weighed term is summed over different stocks j to yield the passive cross-
response including εj(t) = 0. This average greatly reduces the effect of trading frequency,
so that the ranks of influenced stocks based on the passive cross-responses does not change
too much. For active cross-response, we find

R
(a, inc. 0)
j (τ) =

1

k

k∑
i=1

R
(inc. 0)
ij (τ)

=
1

k

k∑
i=1

fjR
(exc. 0)
ij (τ)

= fjR
(a, exc. 0)
j (τ) . (4.8)

Here, the trading frequency fj leads the active cross-response including εj(t) = 0 to be
proportional to the one excluding εj(t) = 0. This explains the strong linear correlation
between the active cross-response including εj(t) = 0 and the average daily number of
trades, no matter whether or not there is a correlation between the case excluding εj(t) = 0
and the number of trades.

4.5 Comparisons of self- and average cross-responses

In Sec. 3.5, we have compared and analyzed the differences of the self- and cross-responses,
where the time scale affects the responses as well as the sign correlations significantly. In
this section, since the averages of responses improve parts of the properties, such as a longer
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4.6. Conclusions

persistence for price change, we will extend the comparisons to the responses within and
without averaging on a physical time scale. Figs. 4.7 and 4.8 display the dependence
of each response as well as the corresponding correlation of trade signs on the time lag.
Here, AAPL, GS and XOM as the sample stocks are analyzed, and the influence of trading
frequency is taken into account by including the zero trade signs.

To be more specific, Fig. 4.7 shows the comparison between the self- and cross-responses
as well as the average cross-responses, i.e., passive and active cross-responses. Typically,
the self-response of one stock is stronger than the cross-response of this stock paired with
other stocks. However, we notice an exception of XOM which is contrary to the general
case. Comparing the self-responses with the average cross-responses, we find that the
general case is aways hold, i.e., the self-response of one stock is stronger than the active
and passive cross-responses of this stock. Above exception of XOM implies an instability
in the cross-responses for stock pairs, whereas the reduction of noise by averaging the
cross-responses greatly improves the stability and persistency. We therefore have reasons
to believe that it is convenient to look at the self- and cross-responses on a short time
scale, but for investigating the stability, persistence or even the efficiency of the market
as a whole, the average quantities give useful information on a longer time scale.

Corresponding to Fig. 4.7, Fig. 4.8 depicts the trade sign self- and cross-correlators
as well as the average cross-correlators. The difference of the decaying correlators for
single and paired stocks can be distinguished at the time lag below 10 seconds. With
the increasing of the time lag, the different correlators are difficult to be distinguished,
except for the cases of XOM. The study of the self-response [27] proposed a “bare” impact
function with a power-law decay, which describes the impact mechanism and restrains the
amplification effect due to the time-accumulated correlations of trade signs. Therefore,
the price self-response is described by the impact function and the trade sign correlation
together. If the impact mechanisms in self- and cross-responses are the same, the trade
sign correlation should behave in a similar way to the response, as the two quantities
are in proportion. However, the inconsistent behaviours of the responses and the sign
correlations for XOM reveal different impact mechanisms for self- and cross-responses.

Furthermore, the passive cross-response contains the collective impact of different
stocks on an individual stock. The collective impact is difficult to be observed, but it
can be reflected indirectly by the behavior of trade sign correlators with a qualitative
analysis. In the second row of Fig. 4.8, the sign correlators decay with the time lag in
an orderly fashion that the self-correlators are always larger than the active and passive
ones. This orderly fashion suggests a stronger stability of the sign correlators in the av-
erages than in stock pairs. For the case of averages, the different sign correlators can be
distinguished until 100 seconds. Comparing with the sign cross-correlators for stock pairs,
we find a longer persistence for the average sign cross-correlators. Either the stronger
stability or the longer persistence in the average sign correlators is consistent with the
performance of the average cross-responses.

4.6 Conclusions

We introduced average cross-response functions, a passive and an active one, which mea-
sures how much the price of an individual stock changes due to the collective impact of
trades from multiple stocks, and which effect the trade of one individual stock has on the
average price of multiple stocks, respectively. The empirical results show very different
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features for the two kinds of responses. The passive one reverses quickly before declining
in a volatile way, while the active one reverses at a longer time with less volatility. The
difference arises from that the price change in one stock easily alerts the market partici-
pants, but the price change dispersed over different stocks is difficult to be detected. The
average cross-responses allow for more statistically significant statements than the cross-
response for individual stock pairs. In addition, we introduced the corresponding active
and passive cross-correlators of trade signs. Remarkably, we found that the short memory
of sign cross-correlation in individual stock pairs turns to be long memory after averaging.
The long memory implies a long persistence either for the trade sign correlation or for the
price change.

By comparing the cross-responses in- and excluding zero trade signs, we found that
the time with a lack of trades or a balance of buy and sell trades lowers the impact of
trades, leading to a weak cross-response. Here, the trading frequency plays a crucial role in
rescaling the cross-response. According to the response degree, we therefore identified the
different ranks for influenced and influencing stocks, especially for the latter. Furthermore,
by comparing the self-responses with various cross-responses, we found that the self- and
cross-responses result from different impact mechanisms. It is convenient to look at the
cross-responses for stock pairs at a short time scale, but the averages performed over
different stock pairs give more useful and interesting information at a longer time scale.
It helps to investigate the stability, persistence or the efficiency of the market as a whole.

So far, we presented an empirical study and restricted ourselves to those interpretations
that are possible. Certainly, model-based interpretations are called for, and we will present
them in Chapter 5.
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Chapter 5
Microscopic understanding of cross-
responses: a price impact model

5.1 Introduction

In Chapters 3 and 4, we showed that the trades have an impact on the price either for
pairs of individual stocks or for suitable averages over stock pairs. We gave the possible
interpretations for this stylized fact, but to further understand the relation between prices
and trades, those interpretations are obviously restricted. For this reason, the model-
based interpretations are called for. In previous studies, many models are put forward
to interpret the price impact from trades. For a single trade, an early model assumes
a linear dependence of the impact on the traded volume [95], but the later empirical
studies found that this dependence is nonlinear and can be described by a power-law [8,
60, 99], by a square-root [63, 130, 153] or by a logarithm [135]. In terms of time lags, the
price impact for a single trade is found to be transient, i.e., decaying with time, which
is described by a propagator in a price impact model [27]. The price impact models
mentioned above are all confined to single stocks. However, only very few models [30, 81,
124] are constructed to shed light on the price impact across different stocks, namely cross-
impact. Upon completion of this study, a multivariate propagator model for cross-impacts
is presented [16].

Due to a lack of available models to account for our empirical results of cross-responses,
we therefore aim to extend the price impact model of Bouchaud et al. [27]. While this
model contains one impact function for single stocks, we propose a price impact model for
correlated markets which contains two impact functions depending on the time lag, one
for the impact in single stocks and the other one for the impact across different stocks,
i.e., a self-impact function and a cross-impact function. The two impact functions result
from the short-run liquidity of the stock itself and the trading information of other stocks,
respectively. We demonstrate that the cross-response function of prices is indeed related
to both, the self- and the cross-correlations of trade signs, as empirically analyzed in
Chapters 3 and 4.

The chapter is organized as follows. In Sec. 5.2, we construct the price impact model
with two impact functions depending on the time lag, i.e., a self-impact function and a
cross-impact function. We thereby obtain the average cross-response functions of indi-
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vidual stocks for three scenarios: the cross responses related to sign cross-correlations, to
sign self-correlations, and to both, respectively. In Sec. 5.3, we resort to empirical data to
analyze and calibrate the memory properties of the trade sign self- and cross-correlators,
and to determine the relation between the average cross-responses and the traded volumes.
In Sec. 5.4, due to the difficulty to quantify the price impacts using empirical data, we
propose a construction to fix the parameters in the impact functions. In Sec. 5.5, we in-
troduce a diffusion function that describes the correlated motion of different stock prices,
and use it to corroborate the parameters. In Sec. 5.6, we quantify and interpret the price
impacts of individual stocks in detail. We give our conclusions in Sec. 5.7. This chapter
refers to Ref. [158]. In the following, we use the original text from Ref. [158].

5.2 Price impact model

We setup our model for the response functions in a market of correlated stocks. In Sec.
5.2.1, we construct the price impact model between two stocks to model the cross-response
functions for stock pairs. In Sec. 5.2.2, we reduce the complexity of the response functions
to be averaged by defining them per share and also by restricting ourselves to three scenar-
ios. We obtain the passive and active averaged response functions for the three scenarios
in Secs. 5.2.3, 5.2.4 and 5.2.5, respectively.

5.2.1 Setup of the model

Suppose a buy market order having a trade sign εi(t) = +1 with a unsigned volume
vi(t) larger than that at the best ask was executed at initial time t. It is impossible to
immediately issue new sell limit orders at the best ask in order to consume the volumes
of the market order. In other words, there is an insufficient short-run liquidity. The buy
market order therefore moves the initial trade price to a higher price instantaneously.
Here, both the traded volume and the trade price are for the same stock i. The change
of the trade price is reflected in the movement of the midpoint price, and the direction
of the movement is indicated by the trade sign, e.g. in the present case εi(t) = +1 for
the price raising. In this study we use the logarithmic midpoint price to replace the trade
price. The price impact from the traded volume is always non-negative either for a buy or
sell market order of the same stock. It is denoted by fi(vi(t)). However, the price impact
cannot persist all the time, as the new incoming limit orders enlarge the liquidity. We say
that a stock is liquid if there are many shares which can be sold or bought without time
delay and with little impact on the stock price. The liquidity can be estimated by looking
at the bid-ask spread, i.e. at the difference of the best bid and the best ask prices [15, 51].
Hence, if there is enough volume available at the new best ask with a price smaller than
the one of last trade, the price in the following trades reverses. In view of the influence of
the short-run liquidity, a price impact function Gii(τ) versus time lag τ for a single trade is
used to modulate the degree of the price impact due to the volumes traded. Furthermore,
all other sources that indirectly cause the price change, such as the new information, are
described by a random variable ηii(t). Hence, using discrete time, we have the trade price
after the time step of length τ = 1,

logmi(t+ 1) = logmi(t) +Gii(1)fi
(
vi(t)

)
εi(t) + ηii(t). (5.1)

For the next time step, the trade price is not only influenced by the trade at the first
time step, but also affected by the trade at the initial time t with the remnant impact
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modulated by Gii(2) with τ = 2,

logmi(t+ 2) = Gii(1)fi
(
vi(t+ 1)

)
εi(t+ 1) + ηii(t+ 1)

+ Gii(2)fi
(
vi(t)

)
εi(t) + ηii(t)

+ logmi(t) . (5.2)

Now suppose infinitely many trades were executed before time t, each of these trades has
an impact on the trade price at time t. Accounting for the past price at time −∞, we
obtain the trade price at time t by constructing a superposition model, where all the price
impacts from past trades are summed up,

logmi(t) =
∑
t′<t

Gii(t− t′)fi
(
vi(t
′)
)
εi(t
′) +

∑
t′<t

ηii(t
′)

+ logmi(−∞) . (5.3)

We notice the sum over the random variables ηii(t
′). The prototype of this model was

proposed in Ref. [27]. It describes the price impact from past trades, focusing on the
same stock only. Here, we go beyond this and by comprising the trades from the same
stock as well as from the other stocks.

When considering a trade from another stock j with trade sign εj(t
′), the trade also

produces a price impact gi(vj(t
′)) different from the one in the impacted stock i. As the

trades of stock j do not consume volumes directly from the order book of stock i, we
attribute the price impact gi(vj(t

′)) to transmission of trading information. We emphasize
that the trading information in our model only contains trade directions, i.e. buy and
sell, and traded volumes of market orders, rather than other information, such as private
information and relevant news which will later on be modelled by random variables. Due
to the latter competing information, the price impact from volume traded for stock j
cannot remain unchanged. Hence, to scale how the price impact depends on the time
lag, we employ a price impact function Gij(τ) for a single trade. To distinguish these
two types of impact functions, we refer to Gii(τ) as to the self-impact function of the
stock i, while we refer to Gij(τ) as to the cross-impact function between impacted stock i
and impacting stock j. Moreover, we use random variables ηij(t

′) to model all the above
mentioned sources belonging to stock j that may cause price change of stock i. All the
random variables ηii(t

′) and ηij(t
′) are assumed to be independent of trade signs and to

not show autocorrelations in time. Thus, we arrive at the following model

logmi(t) =
∑
t′<t

[
Gii(t− t′)fi

(
vi(t
′)
)
εi(t
′) + ηii(t

′)
]

+
∑
t′<t

[
Gij(t− t′)gi

(
vj(t

′)
)
εj(t

′) + ηij(t
′)
]

+ logmi(−∞) (5.4)

for the impacts of trades from different stocks.

As a consequence of the trade superposition model (5.4), the price change of stock i
resulting from Eq. (3.1) comprises two components. The first one is due to the short-run
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liquidity of stock i itself,

r
(L)
ii (t, τ) =

∑
t≤t′<t+τ

Gii(t+ τ − t′)fi
(
vi(t
′)
)
εi(t
′)

+
∑
t′<t

[
Gii(t+ τ − t′)−Gii(t− t′)

]
fi
(
vi(t
′)
)
εi(t
′)

+
∑

t≤t′<t+τ
ηii(t

′) . (5.5)

As explained at the beginning of Sec. 5.2.2, the influence of the short-run liquidity is
described by the self-impact Gii(τ). Apart from the impact of traded volume, Gii(τ) can
be regarded as the impact of a single trade of stock i on its own price after the time τ .
The second contribution results from the trading information transmitted from stock j to
stock i,

r
(I)
ij (t, τ) =

∑
t≤t′<t+τ

Gij(t+ τ − t′)gi
(
vj(t

′)
)
εj(t

′)

+
∑
t′<t

[
Gij(t+ τ − t′)−Gij(t− t′)

]
gi
(
vj(t

′)
)
εj(t

′)

+
∑

t≤t′<t+τ
ηij(t

′) . (5.6)

Here, the cross-impact function Gij(τ) plays the rôle of information propagator between
stocks i and j. It describes the impact of a single trade of stock j on the price of stock
i after time τ , without taking the impact of traded volume of stock j into account. The
sum of these two components

rij(t, τ) = r
(L)
ii (t, τ) + r

(I)
ij (t, τ) (5.7)

constitutes the total price change of stock i due to effects of stock i and of another stock
j.

Employing the definition (3.2), we now calculate the time average response functions.
For the two components of the price change of stock i we obtain

R
(C)
ij (τ) =

〈
r

(L)
ii (t, τ)εj(t)

〉
t

=
∑

t≤t′<t+τ
Gii(t+ τ − t′)

〈
fi
(
vi(t
′)
)〉
t
Θij(t

′ − t)

+
∑
t′<t

[
Gii(t+ τ − t′)−Gii(t− t′)

] 〈
fi
(
vi(t
′)
)〉
t
Θji(t− t′) , (5.8)

R
(S)
ij (τ) =

〈
r

(I)
ij (t, τ)εj(t)

〉
t

=
∑

t≤t′<t+τ
Gij(t+ τ − t′)

〈
gi
(
vj(t

′)
)〉
t
Θjj(t

′ − t)

+
∑
t′<t

[
Gij(t+ τ − t′)−Gij(t− t′)

] 〈
gi
(
vj(t

′)
)〉
t
Θjj(t− t′) . (5.9)
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The superscripts (C) and (S) refer to the response functions due to cross- and self-
correlations of trade signs, respectively. Thus, the price response of stock i to the trades
of stock j contains both contributions,

Rij(τ) = R
(C)
ij (τ) +R

(S)
ij (τ) . (5.10)

Here we assume that both, the self- and the cross-correlator of trade signs, are independent
of the impacts of traded volumes, i.e. of fi

(
vi(t
′)
)

and gi
(
vj(t

′)
)
. The average impacts

of traded volumes over all times t do not depend on the traded time t′. We notice that
Eq. (5.8) only contains the trade sign cross-correlators Θij(τ) and Θji(τ), while Eq. (5.9)
only involves the trade sign self-correlators Θjj(τ).

5.2.2 Simplifications of the model

We want to perform two kinds of averages of the response functions with respect to the
stock indices. To this end, we have a more detailed look at the functions (5.8) and (5.9)
for a stock pair (i, j) and we notice that the contribution of the traded volumes to the
price response is independent of the time lag. This time independence means that the
time-dependent information of the response is only included in the impact functions and
the trade sign correlators. Since we focus on how the price changes respond to the trades
on a certain time scale, it is reasonable to reduce the complexity of each component by
dividing the average impact of traded volumes, after averaging the response components
for an individual stock i over different j, i.e., over the second index,

R
(p,C)
i,0 (τ) =

〈
R

(C)
ij (τ)

〉
j〈

fi(vi)
〉
t

and R
(p,S)
i,0 (τ) =

〈
R

(S)
ij (τ)

〉
j〈

gi(vj)
〉
t,j

. (5.11)

We emphasize that the total passive response per share R
(p)
i,0 (τ) to be defined later on

is not simply the sum of the above two functions R
(p,C)
i,0 (τ) and R

(p,S)
i,0 (τ) which measure

the passive responses related to the cross- and self-correlators of trade signs, respectively.
Likewise, for the active response per share we define the two contributions by averaging
over different j, now being the first index,

R
(a,C)
i,0 (τ) =

〈
R

(C)
ji (τ)

〉
j〈

fj(vj)
〉
t,j

and R
(a,S)
i,0 (τ) =

〈
R

(S)
ji (τ)

〉
j〈

gj(vi)
〉
t,j

. (5.12)

Again, the total active response R
(a)
i,0 (τ) to be defined below is not simply the sum. The

impact functions of traded volumes are distinguished by the individual stock with the
subscript i of the passive response with the superscript (p) or the active response with
(a). As the average impact of traded volumes is unrelated to the traded time, we omit
the argument t′ of the traded volumes. It is worth mentioning that those average impact
functions of traded volumes as denominators in Eqs. (5.11) and (5.12) are quite different.
For the passive response of stock i, 〈fi(vi)〉t and 〈gi(vj)〉t,j quantify the impacts of traded
volumes, respectively, from stock i and stocks j on the price of stock i on average. For
the active response of stock i, 〈fj(vj)〉t,j and 〈gj(vi)〉t,j measure how the traded volumes
of stocks j and stock i, respectively, influence the average price of stocks j.
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To further clarify the mechanisms in our model, we now consider it for the following
three scenarios.

Scenario I The cross-impact of trading information from other stocks is very weak, which
allows us to set Gij(τ) → 0. Therefore, the price cross-response only comes
from the cross-correlators of trade signs Θij(τ).

Scenario II The cross-correlator of trade signs Θij(τ) is small enough to be ignored.
Therefore, the cross-response only comes from the self-correlator of trade
signs, while the cross-impact Gij(τ) transmitting trading information be-
tween stocks is important.

Scenario III Both the self- and the cross-correlators of trade signs are responsible for
the price cross-response with non-negligible self- and cross-impacts.

The average response functions and average impact functions for the three scenarios are
discussed in detail in Secs. 5.2.3, 5.2.4 and 5.2.5, respectively. For convenience and to
avoid a cumbersome notation, we set the time t at which every trade is executed to zero,
t = 0.

5.2.3 Scenario I: Cross-response related to trade sign cross-correlators

When the cross-impact function approaches zero, the response component R
(S)
ij (τ) related

to the trade sign self-correlators vanishes, and only R
(C)
ij (τ) related to the cross-correlators

remains. Hence, the price response across stocks is rooted in the sign cross-correlation.
As for the price change, the self-impact function cannot be neglected, although it does
not contribute to the correlations across stocks. From Eqs. (5.8), (5.11) and (5.12), the
passive and active response functions per share follow as

R
(p)
i,0 (τ) =

∑
0≤t<τ

Gii(τ − t)Θ(p)
i (t) +

∑
t<0

[
Gii(τ − t)−Gii(−t)

]
Θ

(a)
i (−t) , (5.13)

R
(a)
i,0 (τ) =

∑
0≤t<τ

〈Gjj(τ − t)〉jΘ(a)
i (t) +

∑
t<0

[
〈Gjj(τ − t)〉j − 〈Gjj(−t)〉j

]
Θ

(p)
i (−t) . (5.14)

When performing averages over stock indices, the trade sign correlators and impact func-
tions are always assumed to be independent of each other. Therefore, the passive and

active trade sign cross-correlators, i.e. Θ
(p)
i (τ) and Θ

(a)
i (τ), appear in Eqs. (5.13) and

(5.14).
To facilitate a comparison with the theoretical impact functions resulting from simu-

lations to be discussed in Sec. 5.4, we transform the average response functions further.
In a first step, by substituting τ ′ for the time intervals τ − t and −t in impact functions
of Eq. (5.13) and Eq. (5.14), the passive and active response functions become

R
(p)
i,0 (τ) =

∞∑
τ ′=1

A
(p)
i (τ, τ ′)Gii(τ

′) , (5.15)

R
(a)
i,0 (τ) =

∞∑
τ ′=1

A
(a)
i (τ, τ ′)〈Gjj(τ ′)〉j , (5.16)
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where we introduce

A
(p)
i (τ, τ ′) =

{
Θ

(p)
i (τ − τ ′)−Θ

(a)
i (τ ′) , if 0 < τ ′ ≤ τ ≤ ∞ ,

Θ
(a)
i (τ ′ − τ)−Θ

(a)
i (τ ′) , if 0 < τ < τ ′ ≤ ∞ ,

(5.17)

A
(a)
i (τ, τ ′) =

{
Θ

(a)
i (τ − τ ′)−Θ

(p)
i (τ ′) , if 0 < τ ′ ≤ τ ≤ ∞ ,

Θ
(p)
i (τ ′ − τ)−Θ

(p)
i (τ ′) , if 0 < τ < τ ′ ≤ ∞ .

(5.18)

Equations (5.17) and (5.18) guarantee the positivity of the time lags in the passive and
active trade sign correlators. The second step of the transformation is to employ a matrix
notation. As we use discretized time, the quantities for different time lags τ or τ ′ can

be treated as elements of average response vectors R
(p)
i,0 and R

(a)
i,0 , impact vectors Gii

and 〈Gjj〉j , and sign correlation matrices A
(p)
i and A

(a)
i . We arrive at the rather concise

expressions

R
(p)
i,0 = A

(p)
i Gii and R

(a)
i,0 = A

(a)
i 〈Gjj〉j , (5.19)

which may be inverted,

Gii = [A
(p)
i ]−1R

(p)
i,0 and 〈Gjj〉j = [A

(a)
i ]−1R

(a)
i,0 . (5.20)

These expressions render it possible to calculate the empirical impact functions from the
empirically found responses per share and trade sign correlators. As the above vectors
and matrices have infinite dimensions, we use a large cut-off Tcut of 3000 seconds for
calculations.

5.2.4 Scenario II: Cross-response related to trade sign self-correlators

According to Eq. (5.9), the information propagator Gij(τ) which transmits the trading
information revealed by the self-correlators of trade signs across stocks is crucial in this
scenario. Interestingly, the trade sign self-correlator not only relates to the self-response
in single stocks [27, 98] but also to the cross-response between stocks. When considering
different stocks, we group the impacts of trading information either coming from different

stocks or transmitted to different stocks into an individual impact function, i.e. G
(p)
i (τ)

for the former and G
(a)
i (τ) for the latter. Here, G

(p)
i (τ) is the price impact of stock i due

to all single trades of different stocks, while G
(a)
i (τ) is the impact of a single trade of stock

i on the average price of different stocks. We refer to G
(p)
i (τ) and G

(a)
i (τ) as to the passive

and active impact function of stock i, respectively. Hence, from Eqs. (5.9), (5.11) and
(5.12), we calculate

R
(p)
i,0 (τ) =

∑
0≤t<τ

G
(p)
i (τ − t) 〈Θjj(t)〉j +

∑
t<0

[
G

(p)
i (τ − t)−G(p)

i (−t)
]
〈Θjj(−t)〉j , (5.21)

R
(a)
i,0 (τ) =

∑
0≤t<τ

G
(a)
i (τ − t)Θii(t) +

∑
t<0

[
G

(a)
i (τ − t)−G(a)

i (−t)
]
Θii(−t) , (5.22)

as the passive and active response functions per share.
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To obtain the empirical impact functions, transformations similar to the ones from
Eq. (5.15) to Eq. (5.20) are carried out. This yields

G
(p)
i = [〈Ajj〉j ]−1R

(p)
i,0 and G

(a)
i = [Aii]

−1R
(a)
i,0 , (5.23)

with the matrix elements

Aii(τ, τ
′) =

{
Θii(τ − τ ′)−Θii(τ

′) , if 0 < τ ′ ≤ τ ≤ ∞ ,
Θii(τ

′ − τ)−Θii(τ
′) , if 0 < τ < τ ′ ≤ ∞ .

(5.24)

The matrix elements 〈Ajj〉j are defined analogously. Again, the infinity ∞ in Eq. (5.24)
will be cut off by a large time Tcut of 3000 seconds for calculations. Therefore, Eqs. (5.20)
and (5.23) reveal the empirical price impacts depending on the time lag τ .

5.2.5 Scenario III: Cross-response related to both correlators

We now take into account both response components that were individually studied in
Scenarios I and II. Neither the self- nor the cross-impacts as propagators of single trades
can be neglected, both contribute to the price change. We underline once more that both,
the cross-impact and the trade sign cross-correlator, generate responses across different
stocks. When taking different stocks into account, the impact functions either becomes the
average self-impact functions or enters active and passive response functions. Compared
to Scenarios I and II, the average response function here describes the price response to
trades between stocks completely, regardless of the complexity and hence depending on
numerous parameters. By making use of the average response functions per share obtained
in Scenarios I and II, we find the average response functions

R
(p)
i (τ) = R

(p,C)
i,0 (τ)

〈
fi(vi)

〉
t
+R

(p,S)
i,0 (τ)

〈
gi(vj)

〉
t,j
, (5.25)

R
(a)
i (τ) = R

(a,C)
i,0 (τ)

〈
fj(vj)

〉
t,j

+R
(a,S)
i,0 (τ)

〈
gj(vi)

〉
t,j
. (5.26)

The passive response functions, R
(p,C)
i,0 (τ) andR

(p,S)
i,0 (τ) have the same forms as in Eqs. (5.13)

and (5.21), respectively. Similarly, the active response functions R
(a,C)
i,0 (τ) and R

(a,S)
i,0 (τ)

have the same forms as in Eqs. (5.14) and (5.22), respectively.

5.3 Empirical analysis

We analyze the memory properties of the trade sign correlators and the relation between
the responses and the traded volumes. In Sec. 5.3.1, we discuss the data set and introduce
some definitions, e.g. trade sign and time scale. In Sec. 5.3.2, we check the memory
properties of the self- and cross-correlators of trade signs for 31 stocks. In Sec. 5.3.3, we
analyze the impacts of traded volumes for passive and active cross-responses of individual
stocks.

5.3.1 Data sets and definitions

The empirical analysis employs the Trades and Quotes (TAQ) data set. Among all the
markets included in the TAQ data set, we only use the data from NASDAQ stock market
in 2008, since NASDAQ is a purely electronic market. To investigate the average response
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across different stocks, we choose the first 31 stocks from S&P500 index (see Appendix A.3)
with the largest average number of daily trades. As in Refs. [160, 161], we use the physical
time instead of the trading time which is convenient when considering self-responses in
single stocks [27, 98]. However, when looking at different stocks which each have their
own trading time, we found that the physical time is the better choice. As our data has a
one-second resolution, it is only meaningful to define the number of daily trades as none
or one per second from 9:40 to 15:50 New York local time on the physical time scale, even
though more than one trade or quote can occur in this second. To determine the sign
of every trade in the one-second interval, we cannot employ the approach of comparing
the trades price with the preceding midpoint price in the best quote [97], since trades
and quotes data are listed in two individual files without sufficiently short time stamps to
specify the preceding midpoint price of the trade. Instead, we employ our approach [161].
If there are N(t) trades in the time interval labeled by t, then the trades are numbered
n = 1, ..., N(t) and the corresponding prices are denoted S(t;n). For two consecutive
trades in the interval t, the sign of the price change is defined as

ε(t;n) =

{
sgn
(
S(t;n)− S(t;n− 1)

)
, if S(t;n) 6= S(t;n− 1) ,

ε(t;n− 1) , otherwise .
(5.27)

According to Eq. (5.27), a buy market order with the trade sign ε(t;n) = +1 is executed
if the trade price raises, while a sell market order with ε(t;n) = −1 is executed if the
trade price falls. If the trade price is unchanged, the trade sign is set to be the same as
the preceding one, because the two consecutive trades with the same trading direction did
not exhaust the available volume at the best price. If there are more than one trade in
the interval t, these trades are aggregated yielding a single trade sign for t,

ε(t) =

 sgn

(
N(t)∑
n=1

ε(t;n)

)
, if N(t) > 0 ,

0 , if N(t) = 0 .

(5.28)

The case N(t) = 1 is included. If the majority of trades in second t was triggered by
buy (or sell) market orders, then ε(t) = +1 (or −1). If trading did not take place or if
there was a balance of buy and sell market orders in the second t, the trade sign is set to
ε(t) = 0.

We only consider those days for a stock pair (i, j) in which trading took place in both
stocks. In each such day, the trading time is limited from 9:40 to 15:50 of New York local
time, which avoids overnight effects and any artifacts due to opening and closing of the
market.

5.3.2 Properties of trade sign correlators

For both, the self- and the cross-correlators of trade signs appearing in the response
functions in Sec. 5.2, an empirical check of their memories is called for: For the long-
memory sign correlation, a buy (sell) market order is more likely to be followed by other
buy (sell) market orders. The price thus changes persistently. For the short-memory sign
correlation, a buy (sell) market order is not as often followed by other buy (sell) market
orders. Thus, the price is more likely to quickly reverse. Previous studies have found long
memory in individual stocks, making the trade sign self-correlator slowly decay in a slow
power-law fashion [26, 27, 98]. One way to characterize the long-memory process [17] is
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to use the covariance function Y (τ). In the present case we may identify this object with
the trade-sign correlator. In general, the process under consideration has long memory, if
in the limit τ →∞, the covariance function has the form

Y (τ) ∼ τ−γL(τ) , (5.29)

where 0 < γ < 1. The function L(τ) has to be slowly varying at τ →∞ [53], implying

lim
τ→∞

L(ατ)

L(τ)
= 1 , for all α . (5.30)

This asymptotic characterization ignores the correlation at any smaller time lag. The
exponent γ determines the rate of decay of the correlation rather than their absolute size
and thus also whether the integrated correlation function remains finite. Even a small
correlation can generate a long-memory process, characterized by the exponent γ. The
smaller γ, the longer the memory. In financial markets, the exponent γ is often measured
via a power-law function of the trade sign correlator,

Θij(τ) ' ϑij
τγ

for large τ . (5.31)

The constant ϑij as well as the exponent γ are fit parameters [160, 161]. In the case
i = j, the above function is the trade sign self-correlator, while for i 6= j it is the cross-
correlator. A more refined functional dependence is not needed, as we are only interested
in the long-memory properties.

For the sign self-correlators on the trading time scale, Lillo and Farmer (LF) [98] found
γ = 0.6 by analyzing 20 highly capitalized stocks traded in the London Stock Exchange.
Bouchaud et al. [26] measured a value of γ ranging from 0.2 to 0.7 for the Paris Stock
Exchange, e.g. γ ≈ 0.2 for France-Telecom, and γ ≈ 0.67 for Total. Here, we will
work out the sign self-correlations on the physical time scale of 31 individual stocks. The
results are listed in Appendix A.3. In these stocks, 71% show long-memory with γ < 1,
and the rest, 29%, show short-memory with γ ≥ 1. It is not surprising to find short-
memory self-correlators in individual stocks. Similar results were obtained in Ref. [52].
The short-memory is due to a balance of long-memory positive and negative correlations.
This might also be an explanation for our findings for the self-correlations. However, the
positive correlation dominates in the first 10000 seconds. Thus, we tend more to the our
explanation put forward in Ref. [161]. In the one-second time intervals, several trades
with the same trading direction may occur, they are aggregated to yield one trade sign.
As only the net effect of these trades matters, not their individual effects, they have the
same overall effect as if just one trade occurred in this one-second interval. We also work
out the average self-correlation of trade signs 〈Θii(τ)〉i. The 31 stocks considered exhibit
a long-memory with γ = 0.87, unaffected by the short-memory of a small part of stocks.

In previous analyses [160, 161], we provided considerable evidence that the short-
memory of sign cross-correlation is converted into long-memory when averaging across the
market. We are thus led to check the memory property for the average cross-correlators
of trade signs for each individual stocks across other 30 stocks. We find that the passive

cross-correlator Θ
(p)
i of 77.4% of the stocks show long-memory with the γ ranging from

0.62 to 1, and the active cross-correlator Θ
(a)
i of all stocks exhibits long-memory with γ

ranging from 0.75 to 1, see Appendix A.3.
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5.3.3 Impacts of traded volumes

According to Eqs (5.8) and (5.9), the traded volumes contribute to the price response. We
assume that the impact of traded volumes is independent of the time lag τ . In previous
studies, Lillo, Farmer and Mantegna [99] have shown that the impact can be described
by a concave function on the trading time scale. More specifically, it is a power law,
R(v) ∼ vδ. Similar studies have been put forward [92, 129] for time-aggregated volumes.
In the study of Potters et al. [135], who analyzed stocks traded at the Pairs Bourse and
NASDAQ, also on trading time scale, a logarithmic impact, R(v) ∼ log(v), was found. To
the best of our knowledge, studies of the price impact of traded volumes on the physical
time scale are so far lacking, but will be provided here. For later comparison, we first work
out the impact of traded volumes in individual stocks on the physical time scale. We refer
to the aggregation of all traded volumes in a one-second interval as traded volume. To
put all stocks on roughly the same footing, we normalize the traded volume of each stock
at time t by dividing its average traded volume in that year, 2008,

vi(t) =
T
∑N(t)

n=1 vi(t;n)∑T
t=1

∑N(t)
n=1 vi(t;n)

, (5.32)

where T denotes the total trading time, i.e. the days of trading in both stocks of a pair
multiplied by 22200 seconds in each day of 2008. By binning the traded volumes, we
obtain the price response as a function of the traded volumes.

Figure 5.1 shows the relation between the price self-response and the traded volumes
〈Rii(vi, τ = 1)〉i for individual stocks at time lag τ = 1, averaged over the 31 stocks
listed in Appendix A.3. The fit of power-law and logarithm functions to the empirical
results indicates the relation is more in line with the former, R(v) ∼ vδ with an exponent
δ = 0.51. The exponent value is consistent with previous studies on the trading time
scale. Lillo, Farmer and Mantegna [99] found δ ∼ 0.5 for small traded volumes and
δ ∼ 0.2 for large traded volumes in the stocks from New York Stock Exchange in 1995.
In another study of Lillo and Farmer, δ = 0.3 resulted for Vodafone [98], one of the five
highly capitalized stocks in the London Stock Exchange. The δ = 0.51 in our case strongly
corroborates the square-root impact function of traded volumes in single stocks, as found
in Refs. [63, 130, 153].

Figure 5.2 displays the dependences of average cross-responses for different stocks i
on the traded volumes at τ = 1. The stocks i are C, MSFT, INTC, CSCO and BAC,
the first five stocks with the largest average daily traded volumes among all stocks we
studied. Here, four different dependences are discussed: How does the passive cross-

responses 〈R(C)
ij (τ)〉j and 〈R(S)

ij (τ)〉j of the stock i depend on average on the traded volumes
of stock i itself (Scenario I, see Fig. 5.2 a) and of the other stocks j (Scenario II, see Fig. 5.2

c), respectively? — How does the active cross-responses of stock i, i.e. 〈R(C)
ji (τ)〉j and

〈R(S)
ji (τ)〉j of stock i depend on average on the traded volumes of other stocks j (Scenario

I, see Fig. 5.2 b) and of stock i itself (Scenario II, see Fig. 5.2 d), respectively? —
In contrast to the average self-response versus traded volumes in Fig. 5.1, the average
cross-responses raise for small traded volumes but decay for large ones. The nonlinear
dependence complicates the impact function of traded volumes, even though the average
cross-response as well as the average self-response of each stock i for traded volumes smaller
than their average can be fitted by a power law.

67



5.3. Empirical analysis

vi

10
-2

10
-1

10
0

10
1

10
2

〈R
ii
(v

i
,
τ
=

1
)〉

i

10
-5

10
-4

10
-3

empirical

vδi , δ = 0.51

log vi

Figure 5.1: The average self-response over 31 stocks listed in Appendix A.3 versus traded volumes
at time lag τ = 1 on a doubly logarithmic scale. The open circles represent the empirical results,
the solid line represents the power-law fit, and the dash line represents the natural logarithmical
fit.

To make the analysis feasible, we focus on the region of traded volumes which affect the
average cross-response considerably. As an example, we show in Fig. 5.3 the probability
density distributions of traded volumes for MSFT and for other 30 stocks paired with
MSFT. We conclude that the small volumes are traded frequently, while the large volumes
are not. Not surprisingly, it is easier to analyze the self- or cross-correlators of trade signs
in frequently traded stocks. As the power-law dependence in Fig. 5.2 levels off around the
average of traded volumes, the ratios of the number of trades with volumes smaller than
their average among the total trades are counted. It reaches 73% of the traded volume
smaller than the average for MSFT and to 71% for the other 30 stocks paired with MSFT.
The high proportions narrow down our study to trades below the average traded volume,
described well by the power law instead of a complex nonlinear relation. In the power-law
function of traded volumes, the exponent δ indicates the strength of price impact. As
visible in Fig. 5.2, the δ ranges from 0.27 to 1.02 for the average cross-responses. To be
more specific, the comparison of the δ in Fig. 5.2 a) and c) reveals that the stock price is
more likely to be influenced by the traded volumes of the stock itself rather than by those
of the other stocks. Put differently, the passive response of stock i depends strongly on
the traded volumes of stock i itself, but weakly on the volumes of other stocks j. For the
active response of stock i, the impact of traded volumes from stock i itself differs across
different i, see Fig. 5.2 d), while this impact from other stocks j basically keeps stable
whatever the stock i might be, see Fig. 5.2 b). This is so, because neither the average
price changes nor the traded volumes of stocks j, over which we average, vary too much
for different stocks i.

The analyses in Figs. 5.2 and 5.3 yield a power-law impact function of traded vol-
umes for the region of volumes smaller than their average. Hence, for passive and active
cross-responses of MSFT to the other 30 stocks considered, we arrive at the following
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Figure 5.2: The dependence of the average cross-responses on the traded volumes at time lag τ = 1

on a doubly logarithmic scale. (a) The passive response 〈R(C)
ij (vi, τ = 1)〉j of stock i for Scenario

I. (b) The active response 〈R(C)
ji (vj , τ = 1)〉j of stock i for Scenario I. (c) The passive response

〈R(S)
ij (vj , τ = 1)〉j of stock i for Scenario II. (d) The active response 〈R(S)

ji (vi, τ = 1)〉j of stock i
for Scenario II. Here, the stocks i are C, MSFT, INTC, CSCO and BAC, respectively. The other
30 stocks j are listed in Appendix A.3. The markers represent the empirical results and the dot
lines represent the power-law fits with the exponents δ.
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Figure 5.4: The dependence of average responses per share on the time lag τ in each region of

traded volumes on a logarithmic scale. (a) The passive responses per share R
(p)
i,0 (τ, vi) of stock i

in the regions of traded volumes vi for Scenario I. (b) The active responses per share R
(a)
i,0 (τ, vj)

of stock i in the regions of traded volumes vj of other stocks j for Scenario I. (c) The passive

responses per share R
(p)
i,0 (τ, vj) of stock i in the regions of the traded volumes vj of other stocks

j for Scenario II. (d) The active responses per share R
(a)
i,0 (τ, vi) of stock i in the regions of traded

volumes vi for Scenario II. The regions of vi and vj are (0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8),
[0.8, 1), and (0, 1), respectively. Here, the stock i is MSFT and the other stocks j are listed in
Appendix A.3.

approximations of the average impact functions,

〈fi(vi)〉t ≈ 0.28 and 〈fj(vj)〉t,j ≈ 0.56 in Scenario I, (5.33)

〈gi(vj)〉t,j ≈ 0.66 and 〈gj(vi)〉t,j ≈ 0.43 in Scenario II. (5.34)

which are independent of time lag τ . Dividing those constants leads to the passive and
active cross-responses per share, defined in Eqs. (5.11) and (5.12), respectively. Figure 5.4
shows the average cross-responses per share for MSFT versus time lag τ in each bin of the
traded volumes. As seen, small traded volumes have stronger relative responses than large
ones. The small traded volumes are more likely due to the fragmentation of large orders,
by which the traders try to conceal their trading intention. The consecutive trades of
small orders do not only prompt the self-correlator of trade signs in individual stocks [27],
but may also lead to the cross-correlator of trade signs between stocks when trying to split
two large orders of stocks in the same portfolio.

5.4 A construction to quantify price impacts

With numerical simulations and data comparisons, we try to quantify the price impacts.
The construction sketched in the sequel should not be viewed as a fit. The number of
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Figure 5.5: The sketch of the dependence of the price impact on the time. (a) the price impact of
a buyer-initiated market order. (b) the price impact of a seller-initiated market order.

parameters is forbiddingly large. The purpose of the construction is to show that consistent
and reasonable forms of the impact functions lie within the parameter domains. We
choose a functional form for the impact and discuss the temporary and permanent impact
components in Sec. 5.4.1. We then construct a strategy to determine the parameters for
the impact functions in Sec. 5.4.2.

5.4.1 Impact function

The long-memory of the average sign correlations with γ < 1 leads to persistence in the
price change. If other factors did not contribute to the price change, the price would
be predictable and arbitrage would be possible on long time scales. As this is not only
inconsistent with the EMH [54] and also in general unrealistic, the price at some larger
time lag τ has to reverse. In a previous study [161], we argued that the EMH is not valid on
short time scales, but restored on longer ones. The price impact thus has to decay, implying
the analogous behavior for the impact function in the response functions. Mathematically
speaking, as the sign correlators Θij(τ) decay as a power-law function (5.31), the integrals
of the sign correlators over the time lag will increase according to τ1−γ if γ < 1. When
considering constant impact functions, the response functions (5.8) and (5.9) will also
increase with τ1−γ . For τ → ∞, the response functions will tend to be infinite. A
decaying impact function can outmaneuver this divergence. For the small part of stocks
with γ > 1, the response functions (5.8) and (5.9) with τ1−γ will not tend to infinity, and
the divergence problem does not emerge.

A single trade can affect the stock price in different ways and with different strengths. It
is thus highly unlikely to reverse the price exactly to the previous one while the price impact
decays to zero. As the final price differs, in general, from the initial one, the price impact in
our model comprises two components, a temporary impact and a permanent impact [88].
The temporary impact is measured by the difference between the instantaneous price
logmi(t

+) and the final price logmi(∞), while the permanent impact is measured by
the difference between the final price logmi(∞) and the initial price logmi(t). Here, the
instantaneous price is induced by a buy or sell market order immediately. This is shown
in Fig. 5.5.
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The memory properties of the average sign correlator as well as the impact components
require the impact function to include two parts,

G(τ) =
Γ0[

1 +
(
τ
τ0

)2
]β/2 + Γ , (5.35)

an algebraically decaying term with exponent β and with overall strength Γ0 over the time
scale τ0 as well as a constant term Γ. Here, G(τ) is a general impact function, neither
restricted to a special stock nor to an impact type. It stands for the self-impact function

Gii(τ), cross-impact function Gij(τ), passive impact function G
(p)
i (τ) and active impact

function G
(a)
i (τ), as all of them follow a power-law. In Eq. (5.35), the decaying term

describes the temporary impact component, and converges to the price change with aver-
age sign correlations of long-memory. The constant term provides the permanent impact
component, including the possibility of average sign correlations of short-memory. In our
price impact model, we use an self- and a cross-impact function. Hence, for individual
stocks, the temporary self-impact comes from the short-run liquidity cost. The difficulty
to immediately find willing buyers or sellers induces a price concession from the initial
price to the instantaneous price which yields more available volumes for trading [38, 83].
The permanent self-impact results from private information, which is subsequently in-
corporated in the new equilibrium price [38, 83]. The two self-impacts are measured in
Ref. [8]. Across stocks, the temporary cross-impact is attributed to the transmission of
trading information which, however, is always weakened by competing information. As
the strategy traders may benefit much more from this trading information, a permanent
cross-impact can result.

According to Eq. (5.35), the temporary and permanent impact components can be
quantified from the impact of a single trade. For instance, if there was a buy market order
of stock i at initial time t with the volume vi(t). The instantaneous price of stock i for
Scenario I is

logmi(t
+) = logmi(t) +Gii(t

+ − t)fi
(
vi(t)

)
= logmi(t) +Gii(0

+)fi
(
vi(t)

)
, (5.36)

where the superscript + indicates a time increment smaller than the distance to the next
trade. After the time τ , the restored liquidity due to the new coming limit orders make
the price reverse to

logmi(t+ τ) = logmi(t) +Gii(τ)fi
(
vi(t)

)
. (5.37)

At τ →∞ the price change will approach the limit

logmi(∞)− logmi(t) = Gii(∞)fi
(
vi(t)

)
= Γfi

(
vi(t)

)
. (5.38)

This is the permanent impact and Γ measures the permanent impact per share of stock i,

Γ =
logmi(∞)− logmi(t)

fi
(
vi(t)

) . (5.39)
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Furthermore, the price reversion of stock i occurs according to

logmi(t
+)− logmi(∞) = [Gii(t

+ − t)−Gii(∞)]fi
(
vi(t)

)
= Γ0fi

(
vi(t)

)
, (5.40)

where we assume that the instantaneous impact function Gii(t
+− t) equals the initial one,

Gii(t
+ − t) = Gii(0). Equation (5.40) states the temporary impact. Correspondingly, Γ0

measures the temporary impact per share of the stock i,

Γ0 =
logmi(t

+)− logmi(∞)

fi
(
vi(t)

) . (5.41)

Analogously, consider Scenario II and suppose the price change of stock i is triggered by
a buy market order of stock j. The cross-impact function Gij(τ) as well as the traded
volumes of stock j contribute, such that Γ0 and Γ measure the temporary and permanent
impacts per share of stock j, respectively.

5.4.2 A construction to fix parameters

All impact functions (5.35) have the same form, but the details are encoded in the parame-
ters, i.e., the permanent impact component per share Γ, the temporary impact component
per share Γ0, the time scale τ0 and the rate β of the decay. Unfortunately, we cannot de-
termine these impacts directly from empirical data nor observe the latent characteristic
of each impact depending on the time lag. To address this problem, we resort to the
response functions in Sec. 5.2, which comprises the impact functions of time lag, the im-
pact functions of traded volumes and the trade-sign correlators. The last two types of
functions can be determined individually from empirical data, because, as analyzed in
Sec. 5.3, the parameters ϑij and γ in the trade-sign correlators (5.31) can be obtained by
fitting to the empirical correlators, and the average impact functions of traded volumes
are approximately constant. Hence, only four parameters in the impact functions (5.35)
are to be determined.

Rather than an exact fit or simulation, we use the following strategy which is merely
a construction using consistency arguments to look for appropriate parameters. To begin
with, we restrict the response functions to Scenario I and to Scenario II, respectively, where
we give initial values that are possible or close to ideal values for the four parameters in
the response functions. By adjusting the values of the parameters in 106 iterations to
reach a minimal error between the empirical responses per share and the theoretical ones,
we find best suited values for the parameters in the Scenarios I and II, respectively. The
comparisons of empirical and theoretical results for price responses and impacts are shown
in Fig. 5.6, where the empirical impacts in Scenarios I and II result from Eqs. (5.20) and
(5.23), respectively. The fit parameters and the normalized errors χ2 [19], see Appendix B,
to present the goodness of fits are listed in Table 5.1.

In a typical market situation, both Scenarios I and II have been accounted for. There
are, however, arbitrarily many ways of doing this which all would leave us with too many
parameters to be fitted. We thus have no other choice than resorting to an ad hoc method.
It turned out that the interpolating ansatz

R
(p)
i (τ) = wR

(p,C)
i,0

∣∣
I
(τ)
〈
fi(vi)

〉
t
+R

(p,S)
i,0 (τ)

〈
gi(vj)

〉
t,j
, (5.42)

R
(a)
i (τ) = wR

(a,C)
i,0

∣∣
I
(τ)
〈
fj(vj)

〉
t,j

+R
(a,S)
i,0 (τ)

〈
gj(vi)

〉
t,j
, (5.43)
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Figure 5.6: (a) The average cross-responses R
(z)
i,0 (τ) per share versus the time lag τ in Scenario

I and II, where the superscript z stands for either a or p, indicating active and passive cross-
responses, respectively. (b) The impact functions G(τ) versus the time lag τ in Scenario I and
II, where the G(τ) stands for the self-impact function Gii(τ) of stock i, the average self-impact

function 〈Gjj(τ)〉j of other stocks j, the passive impact function G
(p)
i (τ) and the active impact

function G
(a)
i (τ) of stock i, respectively. The stock i is MSFT and the other stocks j are listed in

Appendix A.3.

with a weight w with 0 < w < 1 yields good results. Here R
(p,C)
i,0

∣∣
I
(τ) and R

(a,C)
i,0

∣∣
I
(τ)

are the passive and active response per share, respectively, of Scenario I, and R
(p,S)
i,0 (τ)

and R
(a,S)
i,0 (τ) are the passive and active response per share, respectively, of Scenario III,

for which the parameters will be fitted. We proceed as follows: we choose the values
w = 0.10, 0.30, 0.50, 0.70 and 0.90 and for each given w we try to fit the parameters

entering R
(p,S)
i,0 (τ) and R

(a,S)
i,0 (τ). The results are shown in Fig. 5.7 and 5.8 and in Table 5.2.

Once more, we emphasize that the construction to quantify the response functions does
not exclude that ansatzes other than (5.42) and (5.43) or an altogether different approach
might yield comparable or even better results. Our point is only to show that our model
is capable of reproducing the data with appropriate parameter values.

The weight determines the proportion of self-impacts in the average cross-responses,
giving rise to different features of the price change. To find out the most appropriate
weight w and to test how reasonable the parameters for Scenario III are, we need a
different function depending on the same parameters. Therefore, in the third step, we
approach this issue with the price diffusion function, introduced in Sec. 5.5.

Table 5.1: The fit parameters and errors for Scenarios I and II

Scenario response impact Γ Γ0 τ0 β χ2
R0 χ2

G

function function (×10−6) (×10−4) [ s ] (×10−6) (×10−6)

I
R

(p)
i,0 (τ) Gii(τ) 0.0001 10.24 0.02 0.13 1.14 6.93

R
(a)
i,0 (τ) 〈Gjj(τ)〉j 260.90 20.97 0.00008 0.21 1.04 10.74

II
R

(p)
i,0 (τ) G

(p)
i (τ) 1.58 0.47 43.25 0.18 0.26 0.38

R
(a)
i,0 (τ) G

(a)
i (τ) 0 1.01 5.73 0.16 1.90 1.73
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Figure 5.7: The passive responses versus the time lag τ in Scenario III with the weights w =
0.10, 0.30, 0.50, 0.70 and 0.90, respectively.

Table 5.2: The fit parameters and errors for Scenario III

response impact w Γ Γ0 τ0 β χ2
R

function function (×10−4) [ s ] (×10−6)

0.10 0 0.59 43.49 0.18 0.29
0.30 0 0.42 51.55 0.25 0.30

R
(p)
i (τ) G

(p)
i (τ) 0.50 0 0.25 70.87 0.49 0.35

0.70 0 0.11 270.68 15.41 0.98
0.90 0.03 -274.43 59.68 -0.0002 0.45

0.10 0 3.49 0.011 0.15 1.05
0.30 0 2.89 0.008 0.17 1.09

R
(a)
i (τ) G

(a)
i (τ) 0.50 0 2.57 0.004 0.19 1.14

0.70 0 2.90 0.002 0.28 1.23
0.90 0.33 -3292.80 823.19 -0.00008 1.03
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Figure 5.8: The active responses versus the time lag τ in Scenario III with the weights w =
0.10, 0.30, 0.50, 0.70 and 0.90, respectively.

5.5 Relation to correlated diffusion

We study how the self- and cross-impacts are related to the correlated diffusion of prices.
We define the diffusion function in Sec. 5.5.1, and then discuss the time-lag dependence
for three stochastic processes modelling the correlated motion of different stock prices in
Sec. 5.5.2. We further analyze the stochastic processes depending on the weight of self-
impacts, and compare the empirical and theoretical diffusions to corroborate the choice of
parameters in Sec. 5.5.3.

5.5.1 Price diffusion functions

We begin with briefly recalling some properties of diffusion in two dimensions. Consider
a particle moving in a flat two-dimensional space with coordinates (x, y). The particle
position is changed by random increments u and v in the directions x and y, respectively.
We introduce the probability p(x, y|t)dxdy to find the particle in the area element dxdy
at time t with the joint probability density p(x, y|t). The partial differential equation for
the joint probability density reads

∂p(x, y|t)
∂t

=
〈u2〉
2τ

∂2p(x, y|t)
∂x2

+
〈v2〉
2τ

∂2p(x, y|t)
∂y2

+
〈uv〉
τ

∂

∂x

∂

∂y
p(x, y|t) . (5.44)

For the convenience of the reader, details are given in Appendix C. The angular brackets
indicate averages over the distribution of u and v. We emphasize the presence of the last
term in Eq. (5.44) which is non-zero if the random increments are not independent. Hence,
the probability density p(x, y|t) does not factorize. In general, the diffusion equation can
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be written as [76],
∂p(~r|t)
∂t

= ∇ ·
(
D̂∇p(~r|t)

)
, (5.45)

where D̂ is a symmetric diffusion tensor in homogeneous and anisotropic media,

D̂ =

[
D̂xx D̂xy

D̂yx D̂yy

]
. (5.46)

This tensor is not space dependent and the two-dimensional diffusion equation becomes

∂p(x, y|t)
∂t

= D̂xx
∂2p(x, y|t)

∂x2
+ D̂yy

∂2p(x, y|t)
∂y2

+ 2D̂xy
∂

∂x

∂

∂y
p(x, y|t) , (5.47)

with D̂xy = D̂yx. Equations (5.44) and (5.47) coincide and allow for the identification

〈u2〉 = 2D̂xxτ , 〈v2〉 = 2D̂yyτ , and 〈uv〉 = 2D̂xyτ . (5.48)

In another terminology, the elements of the diffusion tensor D̂ are constants in the case of
Brownian motion, see details in Appendix C.

We apply the results (5.48) to the motion of two stocks with indices i and j and obtain
the price diffusion function for these two different stocks,

Dij(τ) =
〈
rij(t, τ) rji(t, τ)

〉
t
. (5.49)

This diffusion function can be positive, negative or zero. To accumulate statistics, it is
helpful to carry out an additional average over the stock index j which defines the quantity

〈Di〉(τ) =
〈
rij(t, τ) rji(t, τ)

〉
t,j
, (5.50)

where rij(t, τ) and rji(t, τ) are the logarithmic midpoint price changes of stocks i and j,
respectively. They can be calculated by Eq. (3.1). We notice that the diffusion functions
in (5.48) read 2D̂xxτ and so on, i.e. they are linear functions in time, while the diffusion
coefficients D̂xx, etc, are constants. To test the simulated results for all the scenarios, we
employ the price diffusion function, which reflects the price fluctuations with time lag τ .
For each stock, due to different causes, i.e. the short-run liquidity from the stock itself
and the trading information from other stocks, the price change contains two components,
i.e. Eqs. (5.5) and (5.6). Hence, the price diffusion function can be decomposed into four
individual sub-functions for different combinations of the components,

〈Di〉(τ) = 〈Di〉(LL)(τ) + 〈Di〉(II)(τ) + 〈Di〉(LI)(τ) + 〈Di〉(IL)(τ) . (5.51)

In view of Eq. (5.7), we define the diffusion functions 〈Di〉(XY )(τ) with (XY ) indexed as
(LL), (II), (LI), and (IL) in the following way

〈Di〉(LL)(τ) =
〈
r

(L)
ii (t, τ)r

(L)
jj (t, τ)

〉
t,j
,

〈Di〉(II)(τ) =
〈
r

(I)
ij (t, τ)r

(I)
ji (t, τ)

〉
t,j
,

〈Di〉(LI)(τ) =
〈
r

(L)
ii (t, τ)r

(I)
ji (t, τ)

〉
t,j
,

〈Di〉(IL)(τ) =
〈
r

(I)
ij (t, τ)r

(L)
jj (t, τ)

〉
t,j
. (5.52)
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With Eqs. (5.5) and (5.6), we can cast all diffusion functions into to a unified expression,

〈Di〉(XY )(τ) =
∑

t≤t′<t+τ

G1(t+ τ − t′)G2(t+ τ − t′)Θ1(0)V

+
∑
t′<t

[
G1(t+ τ − t′)−G1(t− t′)

][
G2(t+ τ − t′)−G2(t− t′)

]
Θ1(0)V

+ 〈∆i〉(XY )(τ)V + τD(XY )
η , (5.53)

where the numbers V are averages of products of the traded volumes, see Table 5.3. The

noise contributions D
(XY )
η , which are assumed to be constants, stem form the random

price fluctuations. Moreover, 〈∆i〉(XY )(τ) is the contribution induced by the correlation
between the impact functions and the sign correlators, it is given by

〈∆i〉(XY )(τ) =
∑

t≤t′<t′′<t+τ

G1(t+ τ − t′)G2(t+ τ − t′′)Θ2(t′′ − t′)

+
∑

t≤t′′<t′<t+τ

G1(t+ τ − t′)G2(t+ τ − t′′)Θ1(t′ − t′′)

+
∑

t′<t′′<t

[
G1(t+ τ − t′)−G1(t− t′)

][
G2(t+ τ − t′′)−G2(t− t′′)

]
Θ2(t′′ − t′)

+
∑

t′′<t′<t

[
G1(t+ τ − t′)−G1(t− t′)

][
G2(t+ τ − t′′)−G2(t− t′′)

]
Θ1(t′ − t′′)

+
∑

t≤t′′<t+τ

∑
t′<t

[
G1(t+ τ − t′)−G1(t− t′)

]
G2(t+ τ − t′′)Θ2(t′′ − t′)

+
∑

t≤t′<t+τ

∑
t′′<t

G1(t+ τ − t′)
[
G2(t+ τ − t′′)−G2(t− t′′)

]
Θ1(t′ − t′′) . (5.54)

Table 5.3 summarizes all appearing quantities appearing in the above Eqs. (5.53) and
(5.54). Equation (5.51) describes the price diffusion for Scenario III. As for Scenarios I
and II, the price diffusions

〈Di〉(τ) =

{
〈Di〉(LL)(τ) (Scenario I)
〈Di〉(II)(τ) (Scenario II)

, (5.55)

result from only one component of price change.

5.5.2 Correlated motion of prices

In individual stocks, the price stochastic process is often be interpreted as either be normal
diffusion, super-diffusion or sub-diffusion [82]. For normal diffusion, the coefficients, such

Table 5.3: The quantities in diffusion functions

〈Di〉(XY )(τ) V G1(τ) G2(τ) Θ1(τ) Θ2(τ) D
(XY )
η

〈Di〉(LL)(τ) 〈fi(vi)fj(vj)〉j ≈ 0.179 Gii(τ) 〈Gjj(τ)〉j Θ
(p)
i (τ) Θ

(a)
i (τ) D

(LL)
η

〈Di〉(II)(τ) 〈gi(vj)gj(vi)〉j ≈ 0.308 G
(p)
i (τ) G

(a)
i (τ) Θ

(a)
i (τ) Θ

(p)
i (τ) D

(II)
η

〈Di〉(LI)(τ) 〈fi(vi)gj(vi)〉j ≈ 0.208 Gii(τ) G
(a)
i (τ) Θii(τ) Θii(τ) D

(LI)
η

〈Di〉(IL)(τ) 〈gi(vj)fj(vj)〉j ≈ 0.416 G
(p)
i (τ) 〈Gjj(τ)〉j 〈Θjj(τ)〉j 〈Θjj(τ)〉j D

(IL)
η
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as D̂xx or D̂yy in Eq. (5.48), are constant. If the price changes persistently, we have
super-diffusion, in which, e.g., a high price is more likely to be followed by another high
price. If this process continues for a long time, the price is eventually likely to be higher
than the initial one. However, if the process persists only for a short time and then
reverses, it is said to change anti-persistently, and typically sub-diffusion occurs. A high
price is likely to be followed by a low price, and vice versa. This can last for a long time.
In mathematical terms, super- and sub-diffusion are characterized by a non-linear time-
dependence of the diffusion function. The three processes can be associated with the Hurst
exponent H [73], which is used to measure long-memory process for the auto-correlation
of the time series [98, 109],

Dii(τ) =
〈
r2
ii(t, τ)

〉
t
∼ τ2H . (5.56)

Here, H = 1/2 indicates normal diffusion, while H > 1/2 and H < 1/2 correspond to
super- and sub-diffusion, respectively [27, 109].

Across different stocks, we transfer this way of analysis. The diffusion function 〈Di〉(τ)
characterizes the correlated motion of the prices. Hence, we introduce an expression
analogous to the above one,

〈Di〉(τ) ∼ τ2λ (5.57)

with a new exponent λ, which is not necessarily equal to H. This is related to some studies
of fractional Brownian motion [107, 126]. For an empirical analysis, it is useful to divide
out a linear time dependence according to√

|〈Di〉(τ)|/τ ∼ τλ− 1
2 . (5.58)

As we are here only interested in the time behavior, we use an absolute value to prevent
this expression from being imaginary in case of a negative diffusion function. For normal
diffusion with λ = 1/2, we obtain the constant diffusion coefficient. If λ > 1/2, the
function (5.58) is an increasing function of τ . Thus, compared to the normal diffusion, the
correlations increase in time and — if 〈Di〉(τ) > 0 — a high price of one stock becomes
more likely to be followed by a high price of another stock. This is super-diffusion for
correlated stocks. In contrast, if λ < 1/2, the function (5.58) decreases with τ and the
correlation decays as compared to the normal diffusion. This is sub-diffusion for correlated
stocks.

5.5.3 Consistency of our model

With the parameters in Scenario III, we work out the theoretical price diffusion according

to Eq. (5.51), where the total noise contribution, i.e. the sum over the D
(XY )
η , is set to

1× 10−8 for all cases. The comparisons between empirical and theoretical price diffusions
are shown in Fig. 5.9. Theoretical result largely depends on the weight w, presenting
distinct stochastic processes. For w < 0.50, due to the small proportion of self-impacts,
the cross-impacts dominate in the price change, resulting in a super-diffusive process for
the motion of prices in the first 500 seconds. The overestimated cross-impacts fail to
reverse the price effectively, and thus provide opportunities of arbitrage, which violates
the EMH [54]. For w > 0.50, the process transforms from super-diffusion at first to
sub-diffusion later on, as a higher proportion of self-impacts quickly prevents prices from
moving in a correlated and persistent manner. The motion of prices in opposite directions
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opens possible opportunities of arbitrage as well. The consistency between empirical and
theoretical diffusions lead us to favor the weight w = 0.50, especially at larger time lags. In
this case, the diffusion coefficient is approximately constant, implying a normal diffusion
that the price movement cannot be predicted. Also, we compare the price diffusion in the
extreme cases, i.e., Scenarios I and II with only self-impacts or cross-impacts. As shown
in Fig. 5.10, the two scenarios all exhibit super-diffusive behaviors. In contrast, the better
agreement for w = 0.5 in Scenario III lets us conclude that the average cross-responses can
indeed be described by the two response components, namely one including the sign self-
correlators together with cross-impacts, the other one the sign cross-correlators together
with self-impacts. The results are also supported by the small errors χ2

D of the price
diffusion, listed in Table 5.4. The above interpretation is also consistent with the line of
arguing in Ref. [27] where only the self-responses were addressed.

5.6 Price impacts of individual stocks

The price impacts of individual stocks i include the self-impact Gii(τ) as well as the cross-

impacts. For the latter we introduced a passive impact G
(p)
i (τ) and an active impact

G
(a)
i (τ). The difficulty to obtain the empirical impacts leads us to describe them with

the function (5.35). Using consistency arguments in Secs. 5.4 and 5.5, we are able to fix
the parameters. Thus, the resulting impact function is only a possible one, not excluding
others with similar properties. Taking MSFT as an example, with the parameters in
Scenario III and the weight w = 0.50, we are able to provide the price impacts versus time
lag, as shown in Fig. 5.11. The resulting parameters for the impact functions are listed in
Table 5.5.

Table 5.5 shows the temporary and permanent components, Γ0 and Γ in the self-
impact of MSFT, measuring the impact of a single trade of the stock on its own price
after a time τ . In our model the self-impact is due to the short-run liquidity in general,
however, the existence of the above two components requires more explanation. This is
reminiscent of Ref. [61], where the price impact is separated into a mechanical impact
and an informational impact. The mechanical impact of a market order is referred to as
the change of future prices without any future change in decision making. The average
mechanical impact decays to zero monotonically in time in a power-law fashion, similar to
the temporary component in our self-impact. The informational impact is the remainder
after the mechanical impact being removed. It grows with time and approaches a constant
value, just as the permanent component in our self-impact. Thus, a line of reasoning put
forward in Ref. [61] can be partly transferred to our case. As the incoming limit orders
following the instantaneous price change offer more liquidity for the market and reverse
the trade price towards the previous price, the temporary component is still induced by
the short-run liquidity, but the reversed final price is less likely to exactly be the previous
one. Therefore, the induced permanent component as well as the informational impact
may result from private information. If individual agents possess private information to

Table 5.4: The fit errors of [|〈Di〉(τ)|/τ ]1/2 in three scenarios

Scenario I II III
w = 0.10 w = 0.30 w = 0.50 w = 0.70 w = 0.90

χ2
D(×10−5) 0.28 1.43 0.85 0.31 0.17 0.21 0.73
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a logarithmic scale. The price impacts are calculated with the parameters in Scenario III and
the weight w = 0.50. The insert is the dependence of price impacts on the time lag on a doubly
logarithmic scale.

trade, a price change due to the trading affects will emerge. Other intelligent agents will
then adjust their market expectations based partly on the private information and partly
on all available public information. The private information is made public via the trade
price, visible in the permanent component of the self-impact. However, in contrast to the
temporary component of the order of 10−4, the permanent component is very small, of
the order of 10−11.

For the cross-impact of MSFT, the permanent component is absent. Hence, either
passive or active impacts only contain the temporary component. We recall that the
passive impact is the price change of an individual stock i induced by single trades of
different stocks and the active impact is the average price change of different stocks trig-
gered by a single trade of stock i. The cross-impact accounts for the trading information
transmitted across stocks. We stress once more that the trading information indicates
the trading directions (buy and sell) and trading volumes of other stocks, unrelated to
private information, news and so on, which are viewed as competing information. Because
of the interference of this competing information, the influence of trading information can
neither remain for a long time nor be as strong as the self-impact. Moreover, the difficulty
for the traders to distinguish useful and useless trading information makes a permanent

Table 5.5: The parameters of impact functions in Scenario III with w = 0.50

impact Γ Γ0 τ0 β
function (×10−10) (×10−4) [ s ]

Gii(τ) 0.5 5.12 0.025 0.13

G
(p)
i (τ) 0 0.25 70.873 0.49

G
(a)
i (τ) 0 2.57 0.004 0.19
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impact unlikely.
In addition, although the passive impact shows weak temporary component, it decays

very slowly with the decay time scale of τ0 = 70.873 s. The decay of the impact at about
70 s is visible in Fig. 5.11. It is a consequence of the reduction of the noise induced
by random trades, as the passive impact extracts the trading information from multiple
stocks. In contract, the trading information from only one stock leads to small decay time
scales either for self-impact or for active impact.

5.7 Conclusions

We put forward a price impact model for the average cross-response functions for individual
stocks. It comprises two impact functions, i.e. a self-impact function and a cross-impact
function. We introduced and studied three scenarios, namely cross-responses exclusively
due to the trade-sign cross-correlators (Scenario I), or to the trade-sign self-correlators
(Scenario II), or to both (Scenario III), respectively. Thereby, we managed to greatly
reduce the complexity of the problem, and facilitated the determination of the model
parameters.

In the empirical analysis we demonstrated that, for most stocks, the self-correlators
and average cross-correlators of trade signs have a long memory, which provides a strong
support for setting up the impact function of the time lag. The empirical analysis also
revealed power-law relations between the average cross-responses and the traded volumes
that are smaller than their average. The relations hold regardless of the passive or ac-
tive cross-responses and regardless of the traded volumes of the impacted or impacting
stock. To further explore the parameter space of our model, we defined the average cross-
responses per share, which are the average cross-responses divided by the average impact
functions of traded volumes. Our empirical analysis manifests that the smaller the vol-
umes, the larger are the responses per share. This indicates the fragmentation of large
orders.

Using the average cross-response functions and the price diffusion functions, we gave
a construction to fix the parameters for the impact functions. The results indicate that
there are two components present in the response functions. One contains the self-impacts
that suppress the amplification effects due to sign cross-correlators, the other one contains
the cross-impacts that suppress the amplification effects due to sign self-correlators.

As an example, we studied the price impacts of MSFT. The self-impact includes tem-
porary and permanent components. The temporary component, as a decaying power-law
function, is the result of short-run liquidity, while the permanent component, approaching
a constant, is due to private information. However, the permanent component is rather
small compared to the temporary one. The cross-impacts, separated into an active impact
and a passive impact, only contain the temporary component. It comes from the trading
information transmitted across stocks. In our study, the trading information is limited to
the trading directions, i.e. buy and sell, and traded volumes of impacting stocks. The
interference of competing information weakens the influence of the trading information.
Consequently, the cross-impacts are neither as strong as the self-impact nor persistent
permanently.
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Chapter 6
Trading strategies with cross-impact costs:
an application of cross-responses

6.1 Introduction

The price change due to a market order will lead to an extra cost for trading. In particular,
large market orders will consume the volumes at several price levels near the best quote
and shift the trade price to a higher or a lower level immediately. To reduce the transaction
cost, traders are more likely to execute a sequence of small orders, which are split from a
large order. By doing so, it largely lowers the cost from the price impact. On the basis
of the order splitting, a lot of optimal trading strategies are proposed [5–7, 49, 65, 66,
120]. Most of these strategies, however, focus on the self-impact cost in single stocks,
ignoring the cross-impact cost between stocks. Only very few of execution strategies take
the cross-impact into account [7, 34, 143]. In particular, Almgren and Chriss (2001)
considered the optimal execution for portfolio transactions by minimizing a combination
of volatility risk and transaction costs, where the permanent and temporary impacts were
set to be linear in the rate of trading [7]. Cartea et al. (2015) constructed an optimal
execution strategy for liquidating a basket of assets whose price were co-integrated [34]. In
their model, they assumed linear temporary and permanent price impacts in the speed of
trading as well. Recently, Schneider and Lillo (2016) extended the framework of trading
strategies from Gatheral (2010) [65] to multiple assets [143]. They also discussed the
possible constraints on the shape and size of the cross-impact. On condition of absence
of dynamical arbitrage, they found the cross-impact must be odd and linear function of
trading intensity and symmetric for a pair of stocks. However, empirical studies show a
nonlinear impact function of order size either in single stocks or across multiple stocks [99,
135, 158].

Our study aims to construct a trading strategy regarding to the cross-impact cost, and
reveal the influence of cross-impacts on the trading strategy. We thus extend the frame-
work of trading strategies of Gatheral (2010) from single stocks to the two-dimensional
case, where the trade price is generated by the price impact model from Ref. [158], also
see Chapter 5. Our trading strategy for a pair of stocks results from three parameters,
i.e., the rate of trading for each stock, and the ratio of trading periods of two stocks. By
minimizing the cross-impact cost, we thus can obtain an optimal trading strategy. Ac-
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cording to the empirical analysis, we employ a power-law impact functions of time lag and
of order size to calculate the costs for a specific case.

This chapter is organized as follows. In Sec. 6.2, making use of the price impact model
with both self- and cross-impacts, we construct a trading strategy in terms of the cross-
impact cost. In Sec. 6.3, we apply the trading strategy to a pair of stocks and calculate
the cost depending on the tree parameters, where we quantify the cross-impacts of traded
volumes and of time lag for the need of computation. We conclude our results in Sec. 6.4.
This chapter refers to Ref. [157]. In the following, I use the original text from Ref. [157].

6.2 Model setup

In Sec. 6.2.1, we introduce the price impact model with both self- and cross-impacts, and
transform the discrete model into a continuous one. In Sec. 6.2.2, we discuss the cost of
trading and derive in detail the function for cross-impact costs. In Sec. 6.2.3, We construct
a trading strategy with three free parameters.

6.2.1 Trade price

In financial markets, a buy market order will raise or maintain the stock price, while a
sell market order will drop or maintain the stock price. The price change on average due
to a buyer-initiated or a seller-initiated trade refers to the price impact. This impact can
be propagated to the price in a future time. Therefore, the stock price is the result of the
accumulation of impacts from all past trades. The impact can be classified as a self-impact
and a cross-impact [158]. The self-impact is related to the trades from the impacted stock
itself. As the insufficient volumes at the best ask or bid cannot fulfil the large demand
of market orders in a short term, leading to a lack of the short-run liquidity, the traded
price has to be conceded to a higher ask price or a lower bid price. This instantaneous
price change for stock i at time t thus results from the impact of traded volumes fi

(
vi(t)

)
.

However, the price change is not fixed with time [27]. When new limit orders come into
the order book, the price is reversed towards previous one gradually. Such price change
due to the restoration of liquidity in a long term is characterized by a self-impact function
Gii(τ). Differently, the cross-impact [16, 160, 161] across different stocks is more likely
due to the trading information containing the traded volumes and trade signs rather than
other information, because the trade of one stock cannot consume the volume of another
stock directly showing in the order book. By the transmission of trading information, the
stock j has an impact gi

(
vj(t)

)
on the stock i. With the time increasing, more and more

competitive information, such as news, covers the trading information and weakens the
impact of stock j gradually. This decaying process is depicted by a cross-impact function
Gij(τ).

Therefore, taking into account the price impacts from two different stocks i and j, the
logarithmic midpoint price of stock i at time t can be expressed [158] as

logmi(t) =
∑
t′<t

[
Gii(t− t′)fi

(
vi(t
′)
)
εi(t
′) + ηii(t

′)
]

+
∑
t′<t

[
Gij(t− t′)gi

(
vj(t

′)
)
εj(t

′) + ηij(t
′)
]

+ logmi(−∞) . (6.1)
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Here, mi(t) is the midpoint of the best ask price and the best bid price at time t. εi(t)
and εj(t) are the trade signs of stocks i and j, respectively. εi(t) = +1 means a buy
market order of stock i at time t, while εi(t) = −1 means a sell market order. εi(t) = 0
represents a lack of trading or a balance of buy and sell market orders at t. The trade
signs in Eq. (6.1) clearly indicate the directions of price changes, a buy for price increasing
and a sell for price decreasing. Apart from the causes already described by the impact
functions, i.e., fi

(
vi(t)

)
, gi
(
vj(t)

)
, Gii(τ), Gij(τ), all remaining causes of the price change

arising from stock i and stock j are modelled by the random variables ηii(t) and ηij(t),
respectively.

In Eq. (6.1), the impact functions of traded volumes fi
(
vi(t)

)
and gi

(
vj(t)

)
describe the

unsigned price changes caused by the unsigned volumes vi(t) and vj(t) of market orders.
That means buying in and selling out the same volume have the same strength of impact
on the stock i, but the impact raising or dropping the price is determined by the terms
fi
(
vi(t)

)
εi(t) and gi

(
vj(t)

)
εj(t). To facilitate the calculation, we merge the trade signs

into unsigned volumes and the unsigned impact functions by the following way,

fi
(
vi(t)

)
εi(t) −→ f̃i

(
νi(t)

)
,

gi
(
vj(t)

)
εj(t) −→ g̃i

(
νj(t)

)
, (6.2)

where f̃i
(
νi(t)

)
and g̃i

(
νj(t)

)
are signed impact functions of signed volumes νi(t) and νj(t).

Thus, when selling out the volume νi(t) with νi(t) > 0, the price either changes f̃i
(
−νi(t)

)
or changes −f̃i

(
νi(t)

)
, i.e., the negative price change of buying in the same volume. This

also meets the case of νi(t) < 0. As a result, we have

f̃i
(
− νi(t)

)
= −f̃i

(
νi(t)

)
. (6.3)

Analogously,

g̃i
(
− νj(t)

)
= −g̃i

(
νj(t)

)
. (6.4)

With the substitution of Eq. (6.2), the price impact model (6.1) is revised as

logmi(t) =
∑
t′<t

[
Gii(t− t′)f̃i

(
δνi(t

′)
)

+ ηii(t
′)
]

+
∑
t′<t

[
Gij(t− t′)g̃i

(
δνj(t

′)
)

+ ηij(t
′)
]

+ logmi(−∞) , (6.5)

where δνi(t
′) and δνj(t

′) are the signed traded volumes in each time interval δt′. In unit
time interval δt′′, the signed traded volumes are the rates of trading,

ν̇i(t
′′) =

δνi(t
′′)

δt′′
=
δνi(t

′)

δt′
,

ν̇j(t
′′) =

δνj(t
′′)

δt′′
=
δνj(t

′)

δt′
. (6.6)

The positive rates of trading are for buy market orders, while the negative rates for sell
market orders. Considering the limit case that δt′ → δt′′, we transform the discrete time
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process of the price into a continuous process,

logmi(t) =

∫ t

−∞
Gii(t− t′)f̃i

(
ν̇i(t

′)
)
dt′ +

∫ t

−∞
ηii(t

′)dt′

+

∫ t

−∞
Gij(t− t′)g̃i

(
ν̇j(t

′)
)
dt′ +

∫ t

−∞
ηij(t

′)dt′

+ logmi(−∞) . (6.7)

The continuous process of price is on a physical time scale, rather than a trade or an event
time scale that considers a trade or an event as a time stamp. For linear impact functions
of traded volumes, Eq. (6.7) is hold. For nonlinear ones, however, Eq. (6.7) will return an
approximate value for the price.

6.2.2 Costs of trading

A trading strategy Πi = {νi(t)} is referred to a round-trip trade [65] of stock i if the total
bought-in volume is the same as the total sold-out volume in a trading period Ti, which
can be expressed as ∫ Ti

0
ν̇i(t)dt = 0 (6.8)

with the rate of trading ν̇i(t). During a trading period Ti, the cost of trading is the
expected cost of a sequence of small trades,

Ωi(Πi) = E
[ ∫ Ti

0
ν̇i(t)

(
logmi(t)− logmi(0)

)
dt
]
. (6.9)

Here, we use the difference of the logarithmic midpoint prices, i.e. the price return, to
represent the price change. Due to the trades randomly initiated by buy and sell market
orders, the trade price fluctuates between the best ask and the best bid. In contrast, the
midpoint price between the best ask and best bid is better to indicate the price trend, as it
is raised by a buy market order and lowered by a sell market order. To avoid the dramatic
price shifting, the small trades in a round trip are restricted to exchange the volume that
is less than the average. The cost of trading in Eq. (6.9) can be separated into the cost
induced by the self-impact

Ωii(Πi) =

∫ Ti

0
ν̇i(t)dt

∫ t

0
Gii(t− t′)f̃i

(
ν̇i(t

′)
)
dt′ , (6.10)

and the cost induced by the cross-impact

Ωij(Πi) =

∫ Ti

0
ν̇i(t)dt

∫ t

0
Gij(t− t′)g̃i

(
ν̇j(t

′)
)
dt′ . (6.11)

Since the price impacts of all the buy and sell trades in a round trip are averaged to greatly
lower the effects of random variables, the costs induced by ηii(t

′) and ηij(t
′) are ignored

in above two equations. The total cost of stock i is the sum of the two parts,

Ωi(Πi) = Ωii(Πi) + Ωij(Πi) . (6.12)
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For the paired stock j with a trading period Tj , the cost of trading is analogously given
by

Ωj(Πj) = Ωjj(Πj) + Ωji(Πj) . (6.13)

The two round-trip trades of the stocks i and j start with a time difference ∆t, where
to keep the model as simple as possible, we only consider the limit cases, ∆t = 0 and
∆t→∞. The former means there is an overlap in the execution periods of the two round-
trip trades, leading to the self-impact accompanied with the nontrivial cross-impact. The
latter implies the two round-trip trades are executed individually without any overlap in
time so that only the self-impact is present in each round-trip trade. If the costs arising
from the self-impacts in above two cases are the same, the case with ∆t = 0 has an extra
cost induced by the cross-impacts,

Ωc(Πi,Πj) = Ωij(Πi) + Ωji(Πj) . (6.14)

Therefore, the cross-impact cost Ωc(Πi,Πj) determines the optimal execution of the two
round-trip trades. If Ωc(Πi,Πj) > 0, executing the two round-trip trades individually with
∆t→∞ is preferred to eliminate the extra cost from the cross-impacts. If Ωc(Πi,Πj) < 0,
executing the two round-trip trades with ∆t = 0 contributes to reduce the trading costs
or even to profit from the possible opportunities of arbitrage. The cross-impact cost
Ωc(Πi,Πj) are detailed as follows.

For stock i, during the trading period Ti, the volumes are bought in within the first

θi period by a rate v̇
(in)
i (t), and then are sold out totally in the remaining time (1− θi)Ti

by a rate −v̇(out)
i (t), where θi is a scaling factor of the bought-in time during the trading

period. Analogously for stock j with all the quantities indexed by j instead of i. Here, the

rates v̇
(in)
i (t), v̇

(in)
j (t), v̇

(out)
i (t) and v̇

(out)
j (t) are always positive values. To trace the rates

of trading in different time regions, the constant rates are denoted as a function of time
t or t′ in the following integrals. Furthermore, to reduce the complexity of the integrals,
the trading strategies are distributed in the following time regions.

(I) 0 6 θjTj 6 θiTi 6 Tj

The transformation from buying in to selling out the stock i occurs during the period
of stock j being sold out. Thus, the cross-impact costs in Eq. (6.14) can be expanded as

Ωij(Πi) =

∫ θiTi

0
v̇

(in)
i (t)dt

∫ θjTj

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′

+

∫ θiTi

0
v̇

(in)
i (t)dt

∫ t

θjTj
Gij(t− t′)g̃i

(
− v̇(out)

j (t′)
)
dt′

+

∫ Ti

θiTi

(
− v̇(out)

i (t)
)
dt

∫ θjTj

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′

+

∫ Ti

θiTi

(
− v̇(out)

i (t)
)
dt

∫ t

θjTj
Gij(t− t′)g̃i

(
− v̇(out)

j (t′)
)
dt′ , (6.15)
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Ωji(Πj) =

∫ θjTj

0
v̇

(in)
j (t)dt

∫ t

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′

+

∫ Tj

θjTj

(
− v̇(out)

j (t)
)
dt

∫ θiTi

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′

+

∫ Tj

θjTj

(
− v̇(out)

j (t)
)
dt

∫ t

θiTi
Gji(t− t′)g̃j

(
− v̇(out)

i (t′)
)
dt′ . (6.16)

Here, due to the lag effect of cross-impacts, it is possible that the upper limit of
integrals of selling out the volume of one stock goes beyond the trading period of this
stock. However, the lag effect after finishing the process of buying in the volume is quickly
covered by the effect of selling out the volume, it will not influence on the upper limit of
integrals of buying in the volume. The cases in other time regions also have the similar
treatment for the intergrals.

(II) 0 6 θjTj 6 Tj 6 θiTi

Before emptying all the bought-in volumes of stock i, a round-trip trade of stock j has
been fully executed. The cost Ωij(Πi) has the same expression as Eq. (6.15). The cost
Ωji(Πj) is given by

Ωji(Πj) =

∫ θjTj

0
v̇

(in)
j (t)dt

∫ t

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′

+

∫ Tj

θjTj

(
− v̇(out)

j (t)
)
dt

∫ t

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′ . (6.17)

(III) 0 6 θiTi 6 θjTj 6 Ti

The transformation from buying in to selling out the stock j occurs during the period
of emptying all bought-in volumes of stock i. Thus, we have the cross-impact costs

Ωij(Πi) =

∫ θiTi

0
v̇

(in)
i (t)dt

∫ t

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′

+

∫ Ti

θiTi

(
− v̇(out)

i (t)
)
dt

∫ θjTj

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′

+

∫ Ti

θiTi

(
− v̇(out)

i (t)
)
dt

∫ t

θjTj
Gij(t− t′)g̃i

(
− v̇(out)

j (t′)
)
dt′ , (6.18)

Ωji(Πj) =

∫ θjTj

0
v̇

(in)
j (t)dt

∫ θiTi

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′

+

∫ θjTj

0
v̇

(in)
j (t)dt

∫ t

θiTi
Gji(t− t′)g̃j

(
− v̇(out)

i (t′)
)
dt′

+

∫ Tj

θjTj

(
− v̇(out)

j (t)
)
dt

∫ θiTi

0
Gji(t− t′)g̃j

(
v̇

(in)
i (t′)

)
dt′

+

∫ Tj

θjTj

(
− v̇(out)

j (t)
)
dt

∫ t

θiTi
Gji(t− t′)g̃j

(
− v̇(out)

i (t′)
)
dt′ . (6.19)
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(IV) 0 6 θiTi 6 Ti 6 θjTj

Before all the bought-in volumes of stock j being sold out, the execution of the round-
trip trade of stock i has finished. Thus, the cross-impact cost Ωij(Πi) is

Ωij(Πi) =

∫ θiTi

0
v̇

(in)
i (t)dt

∫ t

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′

+

∫ Ti

θiTi

(
− v̇(out)

i (t)
)
dt

∫ t

0
Gij(t− t′)g̃i

(
v̇

(in)
j (t′)

)
dt′ . (6.20)

The expression of the cost Ωji(Πj) is the same as Eq. (6.19).

6.2.3 A construction of trading strategies

A round-trip trade ends up when the net volume is zero, leading to

v̇
(in)
i θiTi − v̇(out)

i (1− θi)Ti = 0 , (6.21)

v̇
(in)
j θjTj − v̇(out)

j (1− θj)Tj = 0 . (6.22)

Setting v̇i and v̇j as the sums of bought-in rates and sold-out rates for stocks i and j,
respectively,

v̇i = v̇
(in)
i + v̇

(out)
i , (6.23)

v̇j = v̇
(in)
j + v̇

(out)
j , (6.24)

the bought-in and sold-out rates can be denoted as

v̇
(in)
i = κiv̇i and v̇

(out)
i = (1− κi)v̇i (6.25)

for stock i, and

v̇
(in)
j = κj v̇j and v̇

(out)
j = (1− κj)v̇j (6.26)

for stock j, where the scaling factors of the bought-in rates κi and κj are bound to

0 < κi < 1 and 0 < κj < 1 . (6.27)

According to Eqs. (6.21)—(6.26), the scaling factors of bought-in time θi and θj can be
replaced by

θi = 1− κi and θj = 1− κj . (6.28)

To connecting the stock i with the stock j, we introduce ζT, which links the trading periods
of two stocks,

ζT =
Ti
Tj

, (6.29)

and ζv, which combines the total bought-in (or sold-out) volumes vi and vj of two stocks,

ζv =
vi
vj

. (6.30)

By making use of the definition (6.6), the sums of bought-in and sold-out rates of the two
stocks have the ratio,

v̇i
v̇j

=
ζv
ζT

(1− κj)κj
(1− κi)κi

. (6.31)
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Therefore, to execute two round-trip trades of stocks i and j, we need to preset the

ratio ζv of the total bought-in volumes, the bought-in rate v̇
(in)
i and the trading period

Ti according to the practical demand. With three free parameters κi, κj and ζT, we then
can work out the remaining quantities by Eqs. (6.23)—(6.31), including the sold-out rate

v̇
(out)
i and v̇

(out)
j , the bought-in rate v̇

(in)
j , the trading period Tj , and the time for buying

in and selling out each stock. As a result, a trading strategy is determined by the set
of {κi, κj , ζT}, where the optimal trading strategy is conditioned on the minimal cost of
cross-impacts

Ωc(Πi,Πj) = min
{

Ωc

(
κi, κj , ζT

)}
. (6.32)

6.3 Applications to a specific case

The cost functions in Eqs. (6.15)—(6.20) contain the impact functions of time lag and of
traded volumes. However, these impact functions have not been determined yet. Although
Ref. [158] gives the functional form for them, the parameters in the functions depend on
the specific stocks. To result in a feasible trading strategy in terms of the cross-impact cost
for a specific case, it is necessary to measure the price impacts. Therefore, in Sec. 6.3.1,
we introduce the data set used for the empirical measurement. In Sec. 6.3.2, we describe
the algorithm for classifying the trade signs, which is crucial for measuring the price
impacts. In Sec. 6.3.3, we quantify the impacts of traded volumes, fitted by a power law.
In Sec. 6.3.4, with the help of the cross-response functions and the self-correlators of trade
signs, we measure the cross-impacts of time lag between two stocks. In Sec. 6.3.5, using
the fitted and preset parameters, we carry out and discuss the trading strategies with
respect to the cross-impact costs.

6.3.1 Data sets

We apply our trading strategy to a specific pair of stocks, Apple Inc. (AAPL) and Mi-
crosoft Corp. (MSFT), where AAPL is indexed by i and MSFT is indexed by j in the
following. We use the Trades and Quotes (TAQ) data set, where the data of two stocks
comes from the NASDAQ stock market in 2008. For a given stock in each year, the TAQ
data set contains a trade file recording all the information of each trade and a quote file
recording all the information of each quote. The information of trades and quotes has the
resolution of one second. However, more than one trade or quote may be found in the
TAQ data set on the time scale smaller than one second. In addition, we only consider
the trading days that AAPL and MSFT all have trades so as to have the cross-impacts
during the intraday trading time. To avoid the dramatic fluctuation of prices due to any
artifact at the opening and closing of the market, we exclude the data in the first and the
last ten minutes of trading.

6.3.2 Trade signs

The trade sign plays a crucial role in measuring the price impacts from empirical data.
Since the TAQ data set lacks of the information about the trade type (buy or sell) or the
trade sign, a method to identify the trade signs is required. One representative algorithm
put forward by Lee and Ready [97] is to compare the trade price with the preceding
midpoint price. However, it is difficult to employ this algorithm to identify the signs for
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the trades during the one-second interval, because we cannot match those trades with
their preceding midpoint prices without a higher resolution of the TAQ data set. In view
of this, we resort to the algorithm described in our previous study [161]. The sign ε(t;n)
of n-th trade in the time interval t results from the sign of price change if the prices S(t;n)
and S(t;n − 1) for two consecutive trades are different, or otherwise from the preceding
trade sign,

ε(t;n) =

{
sgn
(
S(t;n)− S(t;n− 1)

)
, if S(t;n) 6= S(t;n− 1) ,

ε(t;n− 1) , otherwise .
(6.33)

It is worth to mention that the trade price S(t;n), found directly from the trade file of
the TAQ data set, differs from the midpoint price m(t), which is obtained from the last
quote prior to the time interval t in the quote file. Moreover, the trade sign ε(t) for the
time interval of one second is defined as

ε(t) =

 sgn

(
N(t)∑
n=1

ε(t;n)

)
, if N(t) > 0 ,

0 , if N(t) = 0 .

(6.34)

That is a sign function of the sum of the trade signs ε(t;n) in time interval t if there
were trades in this interval. Otherwise, the absence of trading in t leads ε(t) to be zero.
Same as the ε(t) in Eq. (6.1), the sign ε(t) here indicates the trade type of market orders.
ε(t) = +1 (ε(t) = −1) means a majority of buy (sell) market orders in time interval t,
and ε(t) = 0 means a lack of trading or a balance of buy and sell market orders in this
interval. The tests of this algorithm using the TotalView-ITCH data set, carried out in
Ref. [161], reveals the average accuracy of 85% for Eq. (6.33) and of 82% for Eq. (6.34) to
identify the trade signs.

6.3.3 Measurement for impacts of traded volumes

The traded volume in this study refers to the aggregation of all the traded volumes in the
time interval t. To put different stocks in the same footing, the traded volumes of each
stock are normalized by dividing the average of traded volumes over a whole year,

v(t) =
T
∑N(t)

n=1 v(t;n)∑T
t=1

∑N(t)
n=1 v(t;n)

, (6.35)

where v(t;n) is the volume of the n-th trade in the time interval t, N(t) is the number
of trades in t, and T is the total time intervals for trading during a whole year. Thus,
v(t) < 1 indicates that the traded volumes are smaller than their average. Conditioned
on the unsigned volumes vj(t), the price change of stock i, on average, due to the trades
of stock j, i.e., the price cross-response, is given [135, 158] by

Rij(vj , τ) =
〈
ri(t, τ)εj(t)

∣∣∣vj(t)〉
t
, (6.36)

where 〈· · · 〉t means the average over all the time t, and the price change ri(t, τ) at time t
with a time lag τ is defined as the difference of logarithmic midpoint prices,

ri(t, τ) = logmi(t+ τ)− logmi(t) = log
mi(t+ τ)

mi(t)
. (6.37)
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Figure 6.1: Empirical (circle) and fitted (line) results of impact functions of traded volumes. Stock
i is AAPL, and stock j is MSFT.

Since the influence of traded volumes is independent of the time lag, Eq. (6.36) can be
approximately decomposed into

Rij(vj , τ) ≈ Rij(τ)gi(vj) , (6.38)

where

Rij(τ) =
〈
ri(t, τ)εj(t)

〉
t

(6.39)

is the price cross-response depending on the time lag, and gi(vj) is the impact function of
traded volumes. For the average price change of stock j induced by stock i, analogously
we have,

Rji(vi, τ) ≈ Rji(τ)gj(vi) . (6.40)

Using the empirical data of AAPL and MSFT, we carry out the dependence of price
changes on the traded volumes with τ = 1, as shown in Fig. 6.1. Coinciding with Ref. [158],
the dependencies for small traded volumes are fitted well by a power law,

gi(vj) = v
δij
j and gj(vi) = v

δji
i , (6.41)

where the parameters δij and δji for AAPL and MSFT, respectively, are listed in Table 6.1.
To make the trading strategy feasible, we limit the volume of each trade in strategies to
be smaller than the average.

We notice that the traded volumes and the impact functions in Eq. (6.41) are all
unsigned. With the positive rates of trading to buy a stock, the signed impact functions
of traded volumes in Eqs. (6.15)—(6.20) are the same as the unsigned ones, as shown in
Eq. (6.41). With the negative rates of trading to sell a stock, according to Eq. (6.4), the
signed impact functions turn to unsigned ones by the following way,

g̃i
(
− v̇(out)

j (t′)
)

= −g̃i
(
v̇

(out)
j (t′)

)
= −gi

(
v̇

(out)
j (t′)

)
, (6.42)

g̃j
(
− v̇(out)

i (t′)
)

= −g̃j
(
v̇

(out)
i (t′)

)
= −gj

(
v̇

(out)
i (t′)

)
. (6.43)
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Figure 6.2: Empirical (circle) and fitted (line) results of impact functions of time lag. Stock i is
AAPL, and stock j is MSFT.

6.3.4 Measurement for cross-impacts of time lag

The price cross-response comprises two components [158]. One arises from the self-impacts
and is related to the cross-correlators of trade signs. The other one results from the cross-
impacts and is related to the self-correlators of trade signs. Here, we focus on the response
component containing the cross-impacts, which is given by

R
(S)
ij (τ) =

∑
0≤t<τ

Gij(τ − t)
〈
gi
(
vj(t)

)〉
t
Θjj(t)

+
∑
t<0

[
Gij(τ − t)−Gij(−t)

] 〈
gi
(
vj(t)

)〉
t
Θjj(−t) . (6.44)

The superscript (S) in the response function indicates the response component related to
the the self-correlator Θjj(τ), defined as

Θjj(τ) =
〈
εj(t+ τ)εj(t)

〉
t
. (6.45)

In Eq. (6.44), by replacing τ − t or −t with τ ′ in each cross-impact function of time lag,

R
(S)
ij (τ) =

∑
0<τ ′≤τ

Gij(τ
′)
〈
gi
(
vj(t)

)〉
t
Θjj(τ − τ ′)

+
∑
τ ′>τ

Gij(τ
′)
〈
gi
(
vj(t)

)〉
t
Θjj(−τ + τ ′)

−
∑
τ ′>0

Gij(τ
′)
〈
gi
(
vj(t)

)〉
t
Θjj(τ

′) , (6.46)

Table 6.1: Parameters for impact functions

δij δji 〈gi(vj(t))〉t 〈gj(vi(t))〉t Γ0,ij Γ0,ji τ0,ij τ0,ji βij βji

0.61 0.50 0.40 0.60 1.13 ×10−4 0.79×10−4 7.34 4.75 0.14 0.03
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and using the symmetric property of sign self-correlators Θjj(τ) = Θjj(−τ), we have

R
(S)
ij (τ)〈

gi
(
vj(t)

)〉
t

=

∞∑
τ ′=1

Ajj(τ, τ
′)Gij(τ

′) , (6.47)

where

Ajj(τ, τ
′) = Θjj(τ − τ ′)−Θjj(τ

′) . (6.48)

The component R
(S)
ij (τ) is the cross-response Rij(τ) weighted by a quantity wi with 0 <

wi < 1. Therefore, the cross-impact of time lag entering the impact matrix Gij can be
quantified from empirical data by

Gij =
wi〈

gi
(
vj(t)

)〉
t

A−1
jj Rij , (6.49)

where Ajj is the matrix of sign correlators with the elements worked out by Eq. (6.48) and
Rij is the response matrix with the elements Rij(τ), defined by Eq. (6.39). Analogously
for stock j, we have

Gji =
wj〈

gj
(
vi(t)

)〉
t

A−1
ii Rji . (6.50)

Although we can estimate the weight wi and wj by a complicated method, as introduced
in Ref. [158], to facilitate the calculation, we assume wi = wj and further normalize the
cross-impact of time lag by wi or wj . By this way, it also normalizes the cost of trading
according to Eqs. (6.15)—(6.20), but it does not change the sign of the cost, used to
distinguish the profit from the cost.

Using Eqs. (6.49) and (6.50), we work out the empirical cross-impacts of time lag
between AAPL and MSFT, shown in Fig. 6.2 with circles. To obtain the cross-impacts in
the first 300 seconds, we replace the ∞ in Eq. (6.47) by a large cut-off of 3000 seconds.
Due to the fluctuations of sign self-correlators and of cross-responses, the cross-impacts in
small time lags are unstable. We thus extract the empirical results with stably decaying
for parameter fits. To fit to empirical data, here, we employ simplified power-law functions
instead of the complicated functional form in Ref. [158],

Gij(τ) =
Γ0,ij(

1 + τ
τ0,ij

)βij and Gji(τ) =
Γ0,ji(

1 + τ
τ0,ji

)βji , (6.51)

where τ0,ij and τ0,ji are the time scales having the positive values, βij and βji are the rates
of decaying, and Γ0,ij and Γ0,ji are the temporary impact components per share. The
fitted values of these parameters are listed in Table 6.1.

6.3.5 Computations and discussions of trading strategies

To obtain the trading strategy, we consider to totally buy in the same volume for AAPL
and MSFT, such that ζv = 1. Further, we set the trading period of AAPL as Ti = 1
unit of time. For one unit of time, we plan to buy in 0.1 times average traded volume

of AAPL, resulting in v̇
(in)
i = 0.1. With these preset values and fitted parameters listed

in Table 6.1, we carry out the trading strategies {κi, κj , ζT} in four time regions using
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the cost function (6.14). The four time regions lead to the three free parameters in the
strategies bound to the conditions,

1−κj
1−κi 6 ζT 6

1
1−κi (region I) ,

ζT >
1

1−κi (region II) ,

1− κj 6 ζT 6 1−κj
1−κi (region III) ,

0 < ζT 6 1− κj (region IV) .

(6.52)

Due to the boundary conditions, with a given ratio of trading periods ζT, one may not
obtain the numerical solution for the cost function (6.14).

As examples, here, we consider the ratio of trading periods ζT = 0.5, 1, and 2, meaning
the trading period of AAPL is the half of, the same as, and the twice of the trading period
of MSFT, respectively. Leaving out the cases without numerical solutions, the cross-
impact costs depending on the scaling factors of bought-in rates κi and κj are displayed
in Fig. 6.3. In terms of the costs, the trading strategies can be classified as two types, one
with the non-negative cost and the other one with the negative cost. For the non-negative
cost, it is better to execute the two round-trip trades individually without any overlap
in time, i.e. ∆t → ∞ so as to circumvent the extra cost. If the two round-trip trades
inevitably start at the same time, by using the strategy {κi, κj , ζT} with the minimal
cross-impact costs, one can lower the total cost of trading. Taking ζT = 2 as an example,
for the two round-trip trades starting at the same time, we find that the minimal positive
cost in region III is at the position of the maximal κi and κj . It suggests quickly buying in
AAPL and MSFT and then slowly selling out them can lower the total cost of trading to
some extent. On the other hand, the presence of the negative cost is possible, especially
at a small time scale when the market has not reached to an efficient state [158]. Such
case can be seen when ζT = 1 in regions I and III. The negative cost of trading implies
the possible opportunities of arbitrage or a reduction of the total cost for trading. In
particular, by minimizing the cross-impact cost to obtain an optimal execution strategy
{κi, κj , ζT}, one can maximize the possibility of arbitrage.

6.4 Conclusions

We extend the framework of trading strategies for single stocks [65] to a pair of stocks.
For one stock, to lower the execution cost from price self-impacts, traders favour to submit
a sequence of small trades. A round trip for buying in and selling out a sequence of small
trades is termed a round-trip trade. By considering the executions of two round-trip trades
from different stocks, we construct a trading strategy {κi, κj , ζT}, which can be described
by the trading rates κi and κj of the paired stocks and the ratio of their trading periods
ζT. By minimizing the cross-impact cost, one can obtain the optimal execution strategy
for the two round-trip trades.

We apply our trading strategy to a pair of stocks, AAPL and MSFT. To determine the
impact functions in the strategy, we measure the cross-impacts of time lag and of traded
volumes using the empirical data. By numerical computation with the fitted parameters
and the preset values, we picture the trading strategy in terms of the cross-impact cost.
The positive cost suggests that the individual executions of two round-trip trades without
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Figure 6.3: Trading strategies with respect to the costs Ωc. The increasing of positive and negative
costs is displayed by the colour from white to dark red and to dark blue, respectively. Zero cost
is indicated by white. To view clearly, the directions and ranges of axes are adjusted for specific
cases. The costs of trading Ωc are all rescaled by multiplying 106.
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any overlap in time can circumvent the extra cost. The negative cost implies that the two
round-trip trades starting at the same time lead to the possible opportunities of arbitrage
or a reduction of the total cost for trading. The different ways for order execution reveal
the influence of cross-impacts on the optimal trading strategy. Certainly, an improved
strategy with respect to the cross-impact cost is called for, but it is beyond this study.
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Chapter 7
Local fluctuations of the signed traded
volumes and the dependencies of demands:
a copula analysis

7.1 Introduction

In the previous chapters, we found that the traded volume is crucial for price impacts
and optimal execution of orders, where we considered the traded volume and the trade
sign individually. In this chapter, we will introduce the trade sign into the traded vol-
ume, leading to the signed traded volume. In a certain time interval, the sum of all the
signed traded volumes is the volume imbalance, which indicates the demands of stocks
at that time interval. A positive volume imbalance implies that the demand for a stock
is larger than the supply, whereas a negative volume imbalance implies an opposite case.
As introduced in Chapter 1.3.6, conditioned on the local noise intensity, the distribution
of demands exhibits a two-phase behavior [132], that is, a unimodal distribution trans-
forms to a bimodal distribution with the increase of the local noise intensity. A lot of
studies [85, 86, 101, 110, 132–134, 137, 146, 147, 167] have been devoted to the two-phase
behavior, but only the statistical properties of individual stocks are taken into account
in those studies. Here, we want to look at the statistical dependence of demands across
different stocks, and figure out the influence of the local noise intensity on this dependence
structure.

To this end, we employ copulas, which was first introduced by Sklar in 1959 [148, 149].
In copulas, all marginal distributions are mapped to uniform distributions. The joint
distribution density is then measured as a function of the corresponding quantiles in the
resulting uniform distributions. Consequently, the copula separates the pure statistical
dependence of random variables from the marginal probability distributions. In contrast
with the correlation coefficient, it is better to capture the nonlinear dependence of two
random variables. Due to this advantage, the copula has become an important, standard
tool for directly modelling and analyzing the statistical dependencies of different systems.
An overview of applications of copulas in finance refers to Refs. [68, 125].

Recently, a K copula density function was proposed to describe the fat-tailed depen-
dence [41, 165]. The K copula density is based on a multivariate distribution in terms
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of a modified Bessel function of the second kind. This distribution is a result of the
Random Matrix Model for the non-stationarity of financial data [40, 140]. It turns out
to account for the empirical multivariate distributions of returns with fat tails rather
well [39, 40, 140, 141]. In this study, by comparing the K copula density with the Gaus-
sian copula density, we will show that the K copula density provides a good description
for the empirical dependence of demands. With the copula density, we also investigate the
asymmetry of the tail dependencies of demands, and further demonstrate the influence of
the large local noise intensity on the dependence structure.

The chapter is organized as follows. In Sec. 7.2, we introduce the data set and the
methods of analysis, including the definition of the demands, the concept of the copula
density, and the estimation method of the empirical copula density. In Sec. 7.3, we show
the empirical results for the demand distributions of individual stocks, the empirical cop-
ula density between stocks and the tail asymmetries of the empirical copula density. In
Sec. 7.4, we fit the empirical copula density by a bivariate K copula density function and
a Gaussian copula density function, and compare the two fit results. In Sec. 7.5, we in-
vestigate the influences of local fluctuations on the dependence of demands and on the
tail asymmetries of dependencies. We conclude and discuss our results in Sec. 7.6. This
chapter refers to Ref. [159]. In the following, we use the original text from Ref. [159].

7.2 Data set and methods of analysis

We present our data set in Sec. 7.2.1, and give basic definitions of trade signs in Sec. 7.2.2.
Although there are detailed presentations on copulas in the statistics literature [41, 87, 119,
165], we give a short sketch of the concept for the convenience of the reader in Sec. 7.2.3.
In Sec. 7.2.4, we illustrate and discuss how the empirical copula densities are estimated.

7.2.1 Data set

The stocks are from NASDAQ stock market in the year 2008, where all successive trans-
actions and quotes of those stocks are recorded in Trades and Quotes (TAQ) data set.
To avoid overnight effects and the drastic fluctuations at the opening and closing of the
market, we exclude the trades occurring in the first and the last 10 minutes of the trading
time for each day. For a stock pair, only the common trading days are taken into account
for calculating the copula densities, because the dependence between stocks is absent when
either stock does not trade. In Sec. 7.2.2, to calculate the conditional probability density
distributions, we use 496 available stocks from S&P 500 index in 2008. For the empirical
copula densities to be evaluated in Secs. 7.3 and 7.5, we select the first 100 stocks, listed
in Appendix A.4, with the largest average number of daily trades among that 496 stocks.
The number of daily trades, also excluding the ones in the first and the last 10 minutes of
the daily trading time, is averaged over a whole year for each stock.

7.2.2 Trade signs and demands

In a time interval labeled t, various trades with running number n may occur with corre-
sponding prices S(t;n). Each such trade in the TAQ data set can be classified as either
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buyer-initiated or seller-initiated [160, 161] by

ε(t;n) =

{
sgn
(
S(t;n)− S(t;n− 1)

)
, if S(t;n) 6= S(t;n− 1),

ε(t;n− 1) , otherwise,
(7.1)

where ε(t;n) represents the sign of n-th trade in a time interval. A trade is identified as
buyer-initiated if ε(t;n) = 1, and a seller-initiated if ε(t;n) = −1. Zero values for ε(t;n)
are absent, because we do not aggregate the trade signs in a physical time interval as in
our previous studies [160, 161]. It is worth mentioning that due to the resolution of one
second in the TAQ data set, the algorithm of Lee and Ready [97] cannot be used to classify
the trades occurring in a time interval of one second. Instead, Eq. (7.1) is designed to
classify continuous trades in smaller time scale than one second, too.

The demand can be quantified as the volume imbalance, i.e. the difference between
all bought-in volumes and all sold-out volumes in a time interval t,

ν(t) =

Ntrades(t)∑
n=1

v(t;n)ε(t;n) . (7.2)

Here, Ntrades(t) denotes the number of trades in time interval t, and v(t;n) is the unsigned
volume for n-th trade in t. To have, at the same time, many trades in the time intervals
t and a long time series ν(t) in each trading day, we use time intervals t of one minute.

7.2.3 Copula densities

Let Fkl(x1, x2) be a joint cumulative distribution of the random variables x1 and x2 with
marginal cumulative distributions Fk(x1) and Fl(x2), respectively. According to Sklar’s
theorem[119], there exists a copula Copkl(q1, q2) for all quantiles q1, q2 ∈ [0, 1] satisfying

Fkl(x1, x2) = Copkl
(
Fk(x1), Fl(x2)

)
. (7.3)

In terms of the probability density function fk(x1) of the random variable x1, the marginal
cumulative distribution function Fk(x1) can be expressed as,

Fk(x1) =

x1∫
−∞

fk(s)ds , (7.4)

and analogously for Fl(x2). The inverse cumulative distribution function F−1
k (·) is known

as the quantile function. We thus have

q1 = Fk(x1) and x1 = F−1
k (q1) , (7.5)

and accordingly for q2 = Fl(x2). Hence, using Eq. (7.3) , the copula can be expressed as
the cumulative joint distribution of the quantiles,

Copkl(q1, q2) = Fkl
(
F−1
k (q1), F−1

l (q2)
)
. (7.6)

Thus, the dependence structure of random variables is separated from the marginal prob-
ability distributions. In other words, the pure dependence structure is measured indepen-
dently of the particular marginal distribution. The copula density is given as the two-fold
derivative

copkl(q1, q2) =
∂2

∂q1∂q2
Copkl(q1, q2) (7.7)

with respect to the quantiles.
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Figure 7.1: The empirical copula density cop(q1, q2) of volume imbalances averaged over 4950 stock
pairs (k, l). Left: the order of stocks is preset; right: the order of stocks is shuffled.

7.2.4 Empirical estimation of copula densities

To estimate the empirical pairwise copula densities of demands, we first map all observa-
tions of volume imbalances νk(t) from stock k to a uniformly distributed time series q1(t)
by

q1(t) = Fk(νk(t)) =
1

T

T∑
τ=1

Θ
(
νk(t)− νk(τ)

)
− 1

2T
, (7.8)

where Θ(·) is the Heaviside step function, and T is the length of the time series. The
volume imbalance νk(t) is defined in Eq. (7.2). To arrive at generic results, we average
over all L(L− 1)/2 stock pairs,

cop(q1, q2) =
2

L(L− 1)

L−1∑
k=1

L∑
l=k+1

copkl(q1, q2) , (7.9)

where copkl(q1, q2) is a histogram over two dimensions. The bin size of all these histograms
is ∆q1 = ∆q2 = 1/20. Following Refs. [41, 165], we do not use a symmetrized definition
of the averaged copula.

One might argue that the empirical copula densities should be averaged over L(L− 1)
stock pairs by

cop(q1, q2) =
1

L(L− 1)

L−1∑
k=1

L∑
l=k+1

(
copkl(q1, q2) + coplk(q1, q2)

)
, (7.10)

which would make the averaged copula densities independent of the order of two stocks
in a pair. To clarify the reasons for the choice of definition (7.9), we first point out that
the order of stocks in a pair will not influence the averaged copula densities largely, as we
consider the average of copula densities over a large amount of stock pairs. The purpose
of averaging is to wash out the individual features of specific stock pairs and to reveal the
generic ones.

When the number of stocks tends to the infinity, i.e. L → ∞, the definitions (7.10)
and (7.9) are equivalent. We calculate the empirical copula density of volume imbalances
with the first definition (7.9), as shown in Fig. 7.1. Here, to facilitate the calculation, we
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Figure 7.2: Histograms of asymmetry values of copula densities for positive dependence p(αkl)
(left) and for negative dependence p(βkl) (right) with 4950 stock pairs (k, l). Top: the order of
stocks is preset; bottom: the order of stocks is shuffled. All the histograms are normalized to one.

replace L→∞ by L = 100, and total 4950 stock pairs are used. To have a better view of
the dependence structure, the tail asymmetries of the copula density are characterized by
two quantities, αkl and βkl,

αkl =

1∫
0.8

dq1

1∫
0.8

dq2 copkl(q1, q2)−
0.2∫
0

dq1

0.2∫
0

dq2 copkl(q1, q2) , (7.11)

βkl =

0.2∫
0

dq1

1∫
0.8

dq2 copkl(q1, q2)−
1∫

0.8

dq1

0.2∫
0

dq2 copkl(q1, q2) , (7.12)

i.e., we look into the corners of size 0.2 times 0.2 in the (q1, q2) plane. Thus, αkl describes
the asymmetry of positive dependence. A shift away from zero in the histogram of αkl can
be seen in Fig. 7.2. However, the asymmetry of the negative dependence, indicated by βkl,
is more significant. An overall symmetric distribution around zero for βkl can be found in
Fig. 7.2. That implies the averaged copkl(q1, q2) over 4950 stock pairs (k, l) is equivalent
to the averaged coplk(q1, q2) over 4950 stock pairs (l, k). Hence the two definitions (7.9)
and (7.10) are equivalent for all practical purposes.

The difference of the two definitions (7.9) and (7.10) lies in whether or not the order of
stocks influences the dependence structure of average copula density. We therefore shuffle
the order of stocks and recalculate the copula density with definition (7.9). The results in
Figs. 7.1 and 7.2 do not change too much compared to the original ones with preset order
of stocks as listed in Appendix A.4.
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Figure 7.3: Left: the probability density distributions of volume imbalance conditioned on the
local noise intensity p(ν|Σ), right: the cumulative probability density distributions of the numbers
of data points conditioned on the local noise intensity p(Ndata > x|Σ) versus variable x.

We thus employ the definition (7.9) to average the empirical copula densities rather
than the definition (7.10).

7.3 Empirical results

In Sec. 7.3.1, We examine the effect of the local noise intensity on the marginal distribution
of volume imbalances. In Sec. 7.3.2, we show the empirical copula density and discuss the
asymmetry of tailed dependence of the copula.

7.3.1 Demand distributions

It is useful to introduce the local noise intensity [132],

Σ(t) =
〈∣∣v(t;n)ε(t;n)−

〈
v(t;n)ε(t;n)

〉
n

∣∣〉
n
, (7.13)

which can be understand as the amount of fluctuations around the local average of volume
imbalance in a time interval.

We investigate the two-phase behavior by examining the distribution of the volume
imbalance conditioned on the local noise intensity, p(ν|Σ), as shown in Fig. 7.3. The
distributions are found for altogether 496 stocks in S&P 500. To include different stocks on
equal footing, we scale out the volatilities. For larger Σ(t), the transition from a unimodal
distribution to a bimodal distribution appears. Especially, when the Σ(t) > 4, the bimodal
distribution is obvious. These large local noise intensity and bimodal distributions are
exactly what we are interested in when looking at the copula density of demands between
stocks conditioned on the local noise intensity.

7.3.2 Copula densities

From the empirical copula densities of volume imbalances in Fig. 7.1, strong dependen-
cies of large demands between stocks can be inferred, positive as well as negative ones.
The positive demands mean that the buyer-initiated trades dominate in the market. The
negative demands correspond to supplies of volumes, i.e., seller-initiated trades dominate.
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Thus, either the large supplies or the large demands between stocks exhibit strong, pos-
itive dependencies. In contrast, the dependencies between large supply of one stock and
large demand of another stock, i.e. the negative dependencies, also exist, but are not as
pronounced.

As we have seen in section 7.3.2, the negative dependencies are almost symmetric
for the average copula densities, but the positive dependencies are not. Once more, the
asymmetry of the αkl distribution in in Fig. 7.1 is important, as it implies a stronger de-
pendence of demands than of supplies. To further quantify the asymmetry of distributions,
we introduce the skewness, defined as

skewness =
〈(x− µ)3〉

σ3
, (7.14)

where µ is the mean of x, and σ is the standard deviation of x. Here, x stands for αkl and
βkl, respectively. We thus measure the skewness of the distributions, listed in Table 7.1,
where the one for αkl is 0.0977. This suggests that from a large trade of one stock, it is more
likely to find similar trades of other stocks, where the possibility of buy trades is higher than
the possibility of sell trades. When the traded volumes are much larger than the market
depth, these buy trades will push the prices up [133, 160, 161]. In financial markets,
the persistent raising of prices of most stocks indicates a bull market. Consequently, the
asymmetry of positive dependencies suggests the traders are more optimistic expecting a
bull market.

7.4 Comparison of two models with the empirical copula
density

We fit the empirical copula density with two functions, a bivariate K copula density
function and a Gaussian copula density function. Since the two copula density functions
are discussed in Refs. [41, 165], we only shortly introduce them in Secs. 7.4.1 and 7.4.2,
respectively. We then compare them with the empirical results in Sec. 7.4.3.

7.4.1 Bivariate K copula density

A K component vector r =
(
r1, ..., rK

)
with elements rk, k = 1, ...,K, normalized to zero

mean and unit variance, follows a multivariate K distribution [40, 140], if its probability

Table 7.1: The skewness of distribution of asymmetries

for positive
dependence

p(αkl)
preset

p(αkl)
shuffled

p(α
(ss)
kl ) p(α

(ll)
kl ) p(α

(sl)
kl ) p(α

(ls)
kl )

0.0977 0.0977 0.0665 0.1247 -0.0351 0.0008

for negative
dependence

p(βkl)
preset

p(βkl)
shuffled

p(β
(ss)
kl ) p(β

(ll)
kl ) p(β

(sl)
kl ) p(β

(ls)
kl )

-0.0319 -0.0257 -0.0373 -0.0473 -0.0186 -0.0140
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density is given by

〈g〉(r|C,N) =
1

2N/2+1Γ(N/2)
√

det(2πC/N)

K(K−N)/2

(√
Nr†C−1r

)
√
Nr†C−1r

(K−N)/2
(7.15)

. =
1

(2π)KΓ(N/2)
√

detC

∞∫
0

dzz
N
2
−1e−z

√
πN

z

K

exp

(
−N

4z
r†C−1r

)
.

The notation 〈g〉 indicates that this distribution results from a random matrix average
to model non-stationary, i.e., fluctuating covariance or correlation matrices with a mean
value C. The parameter N measures the strength of these fluctuations, 1/N can be
viewed as the corresponding variance. Km is the modified Bessel function of the second
kind of order m. In the present content r is a vector of returns, which are time series
rk = rk(t), t = 1, · · · , T . The distribution (7.16) is assumed to hold for each time t. It
is worth mentioning that the parameter N is different from Ntrades(t) in Eq. (7.2), which
represents the number of trades in the time interval t. In the bivariate case K = 2, the
joint pdf of the K distribution reads,

f(x1, x2) =
1

Γ(N/2)

∞∫
0

dzz
N
2
−1e−z

N

4πz

1√
1− c2

exp

(
−N

4z

x2
1 − 2cx1x2 + x2

2

1− c2

)
, (7.16)

with the correlation matrix

C =

[
1 c
c 1

]
, (7.17)

which only depends on one correlation coefficient c. By integrating f(x1, x2) over the
whole range of x2, we can obtain the marginal distribution density,

fk(x1) =

∞∫
−∞

dx2f(x1, x2)

=
1

Γ(N/2)

∞∫
0

dzz
N
2
−1e−z

√
N

4πz
exp

(
−N

4z
x2

1

)
, (7.18)

and analogously for fl(x2). Further, the integral of the probability density function yields
the marginal cumulative distribution,

Fk(x1) =

x1∫
−∞

dξfk(ξ)

=
1

Γ(N/2)

∞∫
0

dzz
N
2
−1e−z

x1∫
−∞

dξ

√
N

4πz
exp

(
−N

4z
ξ2

)
, (7.19)

and Fl(x2) accordingly. With Eqs. (7.6) and (7.7), the copula density function can be
derived as

copKc,N (q1, q2) =
f
(
F−1
k (q1), F−1

l (q2)
)

fk
(
F−1
k (q1)

)
fl
(
F−1
l (q2)

) . (7.20)

A more detailed discussion of the bivariate K copula is given in Ref. [41].

108



Chapter 7. Local fluctuations of the signed traded volumes and the dependencies of
demands: a copula analysis

7.4.2 Gaussian copula density

Here, one assumes that the random variables x1 and x2, normalized to zero mean and
unit variance, follow a bivariate normal distribution with a correlation coefficient c. The
bivariate cumulative normal distribution of x1 and x2 is given by

F (x1, x2) =

x1∫
−∞

x2∫
−∞

1

2π
√

1− c2
exp

(
−y

2
1 + y2

2 − 2cy1y2

2(1− c2)

)
dy2dy1 . (7.21)

Hence, the marginal cumulative normal distribution of x1 is

Fk(x1) =

x1∫
−∞

1√
2π

exp

(
−y

2
1

2

)
dy1 , (7.22)

and analogously for Fl(x2). Using Eqs. (7.21), (7.22) and (7.6), we find an explicit expres-
sion of the Gaussian copula density

copGc (q1, q2) =
∂2

∂q1∂q2
F
(
F−1
k (q1), F−1

l (q2)
)

=
1√

1− c2
exp

(
−c

2F−1
k (q1)2 + c2F−1

l (q2)2 − 2cF−1
k (q1)F−1

l (q2)

2(1− c2)

)
(7.23)

by carrying out the partial derivatives in Eq. (7.7).

7.4.3 Fits

To fit the empirical copula, we first work out the average correlation coefficient c̄ = 0.10
by averaging over L(L − 1)/2 stock pairs for the L = 100 corresponding to 100 stocks
listed in Appendix A.4. In the K copula density function in Eq. (7.20), the correlation
coefficient c is replaced by c̄. Thus, in Eq. (7.20), only the free parameter N needs to be
fitted. By minimizing the squared difference between the empirical copula density and
the model copula density, we find N = 6.72. With the same c̄, we also carry out this
comparison using the Gaussian copula density function in Eq. (7.23). To quantify the
goodness of fit, we work out the difference between the empirical copula density and the
model copula density. Fig. 7.4 shows the two fits and the difference between data and
model. The Gaussian copula density differs from the empirical one by a large extent. In
particular, the tailed dependencies are poorly captured. In contrast, the K copula density
exhibits a good fit to the empirical result, as it works much better for the tails. This
supports previous studies in which the K distribution was found to give good descriptions
of multivariate data subject to nonstationarities [39, 40, 140, 141].

7.5 Influence of local fluctuations on dependencies

In Sec. 7.5.1, We discuss a method to analyze the conditional copula density. In Sec. 7.5.2,
we define copula densities conditioned on the local noise intensity and discuss the influence
of large local fluctuations on the dependence of volume imbalances between stocks. In
Sec. 7.5.3, we give an explanation of this influence with respect to the cross-correlation of
volume imbalances. In Sec. 7.5.4, we investigate the influence of large local fluctuations
on the asymmetries of tailed dependencies.
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Figure 7.4: K copula density copKc̄,N (q1, q2) with c̄ = 0.10 and N = 6.72 (left, top). The error be-

tween the empirical copula density and the K copula density, defined as cop(q1, q2)−copKc̄,N (q1, q2),

(right, top). Gaussian copula density copGc̄ (q1, q2) with c̄ = 0.10 (left, bottom). The error between
the empirical copula density and the Gaussian copula density, defined as cop(q1, q2)− copGc̄ (q1, q2),
(right, bottom).

7.5.1 Feasibility of our method

We work out the cumulative probability densities of the numbers of data points Ndata for
the four ranges of noises in Fig. 7.3. A data point gives a volume imbalance as well as a
corresponding local noise intensity in the time interval of one minute. As seen in Fig. 7.3,
for larger numbers of data points, it is less possible to observe the bimodal distribution.
In particular, for some stocks, the bimodal distribution with Σ > 4 results from only
several dozens of data points. When considering the conditional dependencies of demands
between two individual stocks that have bimodal marginal distributions, however, these
data points are not sufficient to have access to the better statistical property. We thus
employ the following method to measure the influence of large local noise intensity. First,
we work out the conditional copula density, excluding 50 data points with the largest local
noise intensity from both stocks or either stock of a pair. We find little difference between
the copula densities excluding 10, 50 and 100 such data points, respectively. However, due
to data points that result in a unimodal distribution, enlarging the number of such data
points to more than 100 will make the copula density different. Next, we subtract that
conditional copula density from the corresponding unconditional one including all data
points. The difference between them is the part induced by the large local noise intensity.

110



Chapter 7. Local fluctuations of the signed traded volumes and the dependencies of
demands: a copula analysis

7.5.2 Influence on the dependence structure

We now condition the empirical copula densities on the local noise intensity Σ. The
conditional copula densities are worked out by excluding the first 50 data points with the
largest or smallest local noise intensity. The exclusion of data points with extremely small
local noise intensity is to rule out the construed effect that the large change of dependence
structure is randomly induced by excluding any kind of data points. Let Σk,max denote
the minimum of the first 50 data points with the extremely large local noise intensity for
stock k, and Σk,min the maximum of the first 50 data points with extremely small local
noise intensity for this stock. We write the conditional copula densities as

cop(ss)(q1, q2) = cop
(
q1, q2

∣∣Σk < Σk,max,Σl < Σl,max

)
,

cop(ll)(q1, q2) = cop
(
q1, q2

∣∣Σk > Σk,min,Σl > Σl,min

)
,

cop(sl)(q1, q2) = cop
(
q1, q2

∣∣Σk < Σk,max,Σl > Σl,min

)
,

cop(ls)(q1, q2) = cop
(
q1, q2

∣∣Σk > Σk,min,Σl < Σl,max

)
. (7.24)

Here, Σk and Σl are the local noise intensity for stock k and stock l, respectively. Fur-
thermore, cop(ss)(q1, q2) indicates that the copula density results from the quantiles q1

and q2 with small local noise intensity, while cop(ll)(q1, q2) represents the opposite case.
Similarly, cop(sl)(q1, q2) denotes the copula density from the quantiles q1 with small local
noise intensity and the quantiles q2 with the large local noise intensity, and vice versa for
cop(ls)(q1, q2). We show the four types of conditional copula densities in Fig. 7.5. Only
cop(ll)(q1, q2) reveals strongly positive dependencies, the dependencies in the other copula
densities are nearly uniform at the corners and the centres.

To study the influence of large local fluctuations, indicated by the local noise intensity,
we look at the difference between the unconditional and the conditional copula densities,

∆cop(ll)(q1, q2) = cop(q1, q2)− cop(ss)(q1, q2) ,

∆cop(ss)(q1, q2) = cop(q1, q2)− cop(ll)(q1, q2) ,

∆cop(ls)(q1, q2) = cop(q1, q2)− cop(sl)(q1, q2) ,

∆cop(sl)(q1, q2) = cop(q1, q2)− cop(ls)(q1, q2) . (7.25)

The unconditional copula density cop(q1, q2) is worked out with all data points. As shown
in Fig. 7.6, the extremely small local fluctuations from two stocks have a very slight
effect on the positive dependencies of the copula density. This effect is quantified by
∆cop(ss)(q1, q2). However, the extremely large local fluctuations present in either stock or
both stocks of a pair not only enhance the positive dependencies, but also suppress the
negative dependencies of the copula densities. The degrees of enhancing and suppressing
are measured by ∆cop(sl)(q1, q2), ∆cop(ls)(q1, q2), and ∆cop(ll)(q1, q2), respectively. Com-
paring the effects of the extremely large and small local fluctuations, we find that the
construed effect is absent in the change of dependencies due to large local fluctuations.
In the copula densities, the lower corner along the positive diagonal, corresponding to
the negative volume imbalances, reveals the dependence of supplies between stocks, while
the upper corner along the positive diagonal, corresponding to the positive volume im-
balances, reveals the dependence of demands. Combining Figs. 7.5 and 7.6, we find that
the extremely large local fluctuations in either stock of a pair are crucial to prompt the
strong dependence between demands or supplies. A possible interpretation might be as
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Figure 7.5: Empirical copula densities conditioned on the local noise intensity cop(ss)(q1, q2) (left,
top), cop(ll)(q1, q2) (right, top), cop(sl)(q1, q2) (left, bottom), and cop(ls)(q1, q2) (right, bottom).

Figure 7.6: The influences of the local noise intensity on the copula density ∆cop(ll)(q1, q2) (left,
top), ∆cop(ss)(q1, q2) (right, top), ∆cop(ls)(q1, q2) (left, bottom), and ∆cop(sl)(q1, q2) (right, bot-
tom).
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Figure 7.7: Left: the dependence of γKc̄,N on the correlation coefficient c, where N = 6.72; right:

the dependence of γKc̄,N on the parameter N , where c = 0.10. Here, γKc̄,N is the difference between
positive and negative dependencies for the bivariate K copula density. The ranges of vertical axes
for two subgraphs are different.

following: An extremely large trade may either be random or include useful information.
In any case, the extremely large trade pushes the price up for a large demand or drops the
price down for a large supply. Increase of the price may induce higher expectation for the
raising of the price or induce herding behavior [20, 138] of trading, leading more volumes
to be bought. Analogously, drop of the price leads to more volumes being sold. Due to
the correlations between stocks [129], the effect of a large demand or supply of one stock
is very likely to spread to another stock and induce the similar behavior for the volumes
to be bought or sold. The presence of such large trades in both stocks of a pair causes,
on the one hand, large local fluctuations in the stocks, and, on the other hand, mutual
dependence of demands or supplies in the considered stock pair.

7.5.3 Correlations induced by large local fluctuations

As shown in the top row of Fig. 7.5, the change due to large local fluctuations are mainly
visible in the positive and negative corners of the copula density. To quantify how such
fluctuations affect the dependence structure, we define the difference between positive and
negative dependencies of demands for a stock pair (k, l) as

γkl =
( 1∫

0.8

dq1

1∫
0.8

dq2 copkl(q1, q2) +

0.2∫
0

dq1

0.2∫
0

dq2 copkl(q1, q2)
)

−
( 0.2∫

0

dq1

1∫
0.8

dq2 copkl(q1, q2) +

1∫
0.8

dq1

0.2∫
0

dq2 copkl(q1, q2)
)
, (7.26)

where the terms in the brackets do not coincide with αkl and βkl in Eqs. (7.11) and (7.12).
However, the amount of data points is not large enough to empirically analyze γkl. Rather,
we resort to the K copula density (7.20) which, as we have shown, describes the data well.
Hence, we replace copkl(q1, q2) by copKc̄,N (q1, q2) in definition (7.20) with γKc̄,N instead of

γkl. Using Eq. (7.20), we calculate γKc̄,N as a function of c for a given N and vice versa,
respectively, as shown in Fig. 7.7. The two given values N = 6.72 and c = 0.10 are from
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the fit to the empirical copula. We find that the difference between positive and negative
dependencies of demands is drastically affected by the correlation coefficient c rather than
by the parameter N . This leads us to dissect the cross-correlation of the volume imbalance
between stocks k and l,

corr
(
νk(t), νl(t)

)
=

〈
νk(t)νl(t)

〉
t

=
〈
p+
k (t)|νk(t)|p+

l (t)|νl(t)|+ p−k (t)|νk(t)|p−l (t)|νl(t)|
−p+

k (t)|νk(t)|p−l (t)|νl(t)| − p−k (t)|νk(t)|p+
l (t)|νl(t)|

〉
t

=
〈
Pkl(t)|νk(t)||νl(t)|

〉
t
. (7.27)

Here, p+
k (t) is the probability that a surplus of volumes is bought for stock k in time

interval t, corresponding to the positive volume imbalances of stock k, and p−k (t) is the
probability that a surplus of volumes is sold, corresponding to the negative volume im-
balances. Importantly, we have p+

k (t) + p−k (t) = 1. The quantity Pkl(t) introduced in
Eq. (7.27) can be written as

Pkl(t) = p+
k (t)p+

l (t) + p−k (t)p−l (t)− p+
k (t)p−l (t)− p−k (t)p+

l (t)

= 4p+
k (t)p+

l (t)− 2p+
k (t)− 2p+

l (t) + 1 , (7.28)

and may be interpreted as effective weight referring to the volume imbalances of both
stocks at each time step t. The value of Pkl(t) is bound between -1 and 1.

In Ref. [134], Potters and Bouchaud (BP) have demonstrated that the local noise
intensity

Σ̃(t) =
〈(
v(t;n)ε(t;n)− 〈v(t;n)ε(t;n)〉n

)2〉
n
, (7.29)

and the square of volume imbalances are positively correlated,〈
Σ̃(t)ν2(t)

〉
= (Ntrades − 1)

( 〈
v4(t;n)

〉
− 3

〈
v2(t;n)

〉2
)

+(1− 3

Ntrades
)

Ntrades∑
ni 6=nj=1

〈
v2(t;ni)v

2(t;nj)
〉
, (7.30)

if the traded volumes have fat tails, i.e.,
〈
v4(t;n)

〉
> 3

〈
v2(t;n)

〉2
, and/or are positively

correlated, i.e.,
〈
v2(t;ni)v

2(t;nj)
〉
≥ 0. They neglect the fluctuation of the number of

trades Ntrades = Ntrades(t). Using their conclusion in our case, we have

Σ(t) ∼ |ν(t)| (7.31)

for fat-tailed traded volumes. Thus, the correlation of the volume imbalance in Eq. (7.27)
is approximately

corr
(
νk(t), νl(t)

)
∼
〈
Pkl(t)Σk(t)Σl(t)

〉
t
. (7.32)

We analyze the dependence of Pkl(t) on p+
k (t) and p+

l (t), see Fig. 7.8. For very small
volume imbalances, the probability of a surplus of volumes bought is very close to the
one of a surplus of volumes sold in time t, i.e. p+

k (t) ≈ p−k (t) ≈ 0.5. For this case, Pkl(t)
tends to zero, as seen in Fig. 7.8. Accordingly, the correlation of volume imbalances goes
towards zero according to Eq. (7.32). A correlation coefficient around zero indicates that
the positive dependencies on the copulas are comparable to the negative ones as shown
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Figure 7.8: The contour of Pkl(t) depending on p+
k (t) and p+

l (t). The value of Pkl(t) is indicated
by the color.

in Fig. 7.7. Consequently, the very small local fluctuations, positively correlated with
the absolute values of the very small volume imbalances, result in a similar strength of
dependencies in the four corners of the copula density, see Fig. 7.5. In contrast, the very
large volume imbalances, corresponding to the very large local fluctuations according to
Eq. (7.31), imply a high probability for most of the traded volumes being bought or sold.
When both stocks k and l have very large volume imbalances, we find a rather high effective
weight Pkl(t) at the four corners of Fig. 7.8. As a result, the very large local fluctuations
in both stocks together with a high value of Pkl(t) lead to a considerable correlation of
volume imbalances. This correlation turns out to be positive, as the positive dependencies
prevailing over negative ones result in a positive asymmetry γkl, corresponding to a positive
correlation in Fig. 7.7.

7.5.4 Influence on the asymmetries of tail dependencies

In Sec. 7.3, we quantified and analyzed the asymmetries of tail dependencies between
stocks. Here, we want to find out how the large local fluctuations act on the tail asym-
metries in the copula density, characterized by αkl and βkl for positive and negative de-
pendencies, respectively. We work out the distributions of αkl and βkl for four conditional
copula densities, defined in Eq. (7.24), and show the results in Figs. 7.9 and 7.10. For
the negative dependencies in Fig. 7.10, the overall asymmetries are not pronounced in

the four distributions p(β
(ss)
kl ), p(β

(ll)
kl ), p(β

(sl)
kl ), p(β

(ls)
kl ). Their skewness in Table 7.1 is

relatively small and changes slightly compared to the skewness of the distributions of αkl.
For the positive dependencies, the overall asymmetries depend on the local fluctuations,
see Fig. 7.9. If both stocks of a pair have small local fluctuations, the skewness of the dis-

tribution p(α
(ss)
kl ) is 0.0665, which is smaller than the value of 0.0977 in the unconditional

copula density, defined in Eq. (7.9). If both stocks have large local fluctuations, an overall

right shift of the distribution p(β
(ll)
kl ) shows up with a skewness of 0.1247. If one stock

has large local fluctuations and the other one has small local fluctuations, independently

of the symmetry or asymmetry of p(β
(sl)
kl ) and p(β

(ls)
kl ), we find a very small skewness for
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7.5. Influence of local fluctuations on dependencies

Figure 7.9: Histograms of asymmetry values of 4950 stock pairs (k, l) for positive depen-

dence p(α
(ss)
kl ), p(α

(ll)
kl ), p(α

(sl)
kl ), and p(α

(ls)
kl ), corresponding to the copula densities cop(ss)(q1, q2),

cop(ll)(q1, q2), cop(sl)(q1, q2), and cop(ls)(q1, q2), respectively. All the histograms are normalized to
one.

Figure 7.10: Histograms of asymmetry values of 4950 stock pairs (k, l) for negative depen-

dence p(β
(ss)
kl ), p(β

(ll)
kl ), p(β

(sl)
kl ), and p(β

(ls)
kl ), corresponding to the copula densities cop(ss)(q1, q2),

cop(ll)(q1, q2), cop(sl)(q1, q2), and cop(ls)(q1, q2), respectively. All the histograms are normalized to
one.
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Chapter 7. Local fluctuations of the signed traded volumes and the dependencies of
demands: a copula analysis

them. Among the four distributions for positive dependence, only p(α
(ll)
kl ) exhibits size-

able right shift and a positive fat tail, implying that the large local fluctuations in both
stocks contribute to the dependence of demands more than the one of supplies, probably
indicating a bull market.

7.6 Conclusions

We investigated the influence of large local fluctuations on the dependence of demands
between stocks. The demand is quantified by the volume imbalance, where the positive
demand is due to a surplus of volumes bought, while the negative demand is the supply if a
surplus of the volumes is sold. We employed copulas to study the dependence of demands,
and found stronger positive dependencies than negative ones. Hence, if the demand for
one stock is large, it is likely to find large demand for other stocks as well. The situation
is analogous for supplies. The bivariate K copula density function describes the empirical
copula density better than the Gaussian one, especially the fat-tailed dependencies. The
bivariate K copula density function follows from a random matrix model and only depends
on two parameters, an average correlation coefficient c and a parameter N measuring the
strength of the fluctuations of the correlations.

We discussed the empirical copula densities conditioned on the local noise intensities,
and found that the extremely large local fluctuations from both stocks of a pair strengthen
the positive dependencies of demands but weaken the negative ones. We attributed this
interesting feature to the cross-correlation of volume imbalances between stocks, which
in turn is related to large local fluctuations and signs of the volume imbalances. We
uncover that the larger the local fluctuations, the stronger is the cross-correlation of volume
imbalances, and the bigger is the difference between positive and negative dependencies
of demands in the copula densities.

We also looked at the asymmetries of tail dependencies of demands. They are not
pronounced for negative dependencies but sizeable for the positive ones. For the latter,
the large local fluctuations cause a shift from zero to the right in the distribution of the
asymmetries. We therefore conclude that large local fluctuations influence the dependence
of demands more than the dependence of supplies, probably reflecting a bull market with
persistent increase of prices in the markets.
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Chapter 8
Conclusion and Outlook

In the last two decades, the market microstructure has gained growing attention. Due
to a gigantic amount of available data, it is possible to statistically analyze financial
markets and reveal the market microstructure. In particular, with the development of
high-frequency trading, the study of the market microstructure is of obvious importance for
practical purposes, for instance, price impacts, execution costs, and market risks. In this
thesis, we began with the analysis of empirical data and then constructed proper models
to interpret the empirical results. As an extension, we also showed a basic application for
our findings. Different from some previous studies, we considered the financial market as
a whole, and focused on the relation between stocks, rather than single stocks.

We first developed a method to classify trade signs with the TAQ data set. This
method effectively classifies the signs for the trades recorded in the TAQ data set during
the time intervals of one second and the sign for the aggregated trade during each time
interval. By tests, this method has an average accuracy of 85% for the former and of
82% for the latter. With the classified trade signs, we carried out the cross-response as
well as the cross-correlation of trade signs for pairs of stocks. The empirical analysis is
based on a physical time scale that considers each time interval as a time step. Due to
strong fluctuations at large time lags, the cross-correlation of trade signs turns out to be
short memory for stock pairs. Meanwhile, the non-vanishing cross-response reflects the
non-Markovian features of prices.

To reduce the noise and have a stable observation, we performed the averages of cross-
responses for an individual stock. By performing conceptually different averages, we ob-
tained active and passive cross-responses. The active cross-response measures which effect
the trades of one stock have on the average price of other stocks, while the passive one
quantifies how the price of one stock changes due to the trades of other stocks. Interest-
ingly, the two types of average cross-responses show different characteristics. The active
one lasts for a longer time before the price reversion than the passive one. Furthermore,
we observed the average cross-response for the market as whole. The non-zero response
implies that the market lacks of efficiency at a short time scale but restores the efficiency
at a longer time scale. We also carried out the average cross-correlation of trade signs.
Since the strong fluctuations at the large time lags are effectively wished out, the average
cross-correlation of trade signs turns out to be long memory. That means a buy (sell)
market order is more likely to be followed by more buy (sell) market orders.

To interpret our empirical results, we extended the price impact model of Bouchaud et
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al. [27]. In our model, the price is impacted by traded volumes from two stocks at a given
time step. The impacts increase instantaneously to maxima and then decay with time. We
used the impact functions of traded volumes to describe the instantaneous process. The
empirical results manifest that the impact functions of traded volumes follow a power law.
We characterized the decaying process by a self- and a cross-impact function of time lag.
The self-impact function comes from the stock itself and the cross-impact function comes
from a different stock. Due to the difficulty to quantify the price impacts depending on
the time lag from empirical data, we thus proposed a construction to fix the parameters
for theses impact functions. Further, we employed a diffusion function to corroborate
the parameters. According to the quantified price impacts, we found that the price self-
impact contains a strong temporary component and a very weak permanent component.
In contrast, we found that the active and passive impacts, corresponding to the active and
passive response functions, respectively, only have the temporary component.

The price change due to a market order will lead to an extra cost for trading. To
reduce the transaction cost, we considered a trading strategy for executing two round-trip
trades of two stocks, where the cross-impacts between two stocks were introduced. Our
strategy is extended from the framework of the trading strategy of Gatheral (2010) for
single stocks [65], and it depends on three parameters, i.e., the ratio of trading periods
of two stocks and the rate of trading of each stock. By minimizing the cross-impact cost,
the strategy can arrive at the optimization. We applied the strategy to a pair of stocks.
With the cross-impacts quantified by the empirical data, we displayed the effect of the
cross-impacts on the trading strategy. The positive cross-impact cost suggests that traders
can circumvent the extra cost if they execute two round-trip trades without any overlap
in time. The negative cross-impact cost implies that finding opportunities of arbitrage or
reducing the total transaction cost is possible if traders start the two round-trip trades at
the same time.

The traded volumes are crucial for price impacts and optimal executions of orders. We
introduced the trade sign into the traded volume, leading to the signed traded volume. In
a certain time interval, the sum of all the signed traded volumes is the volume imbalance,
which measures the demand of one stock in that time interval. We investigated the
dependence of demands between stocks using copulas, and demonstrated that the empirical
dependence can be well described by a bivariate K copula density function. Also, we used
the local noise intensity to quantify the local fluctuations, and analyzed the effect of the
large local fluctuations on the dependencies of demands. The empirical results show that
the extremely large local fluctuations from both stocks of a pair strength the positive
dependencies of demands but weaken the negative ones. We attributed this interesting
feature to the cross-correlation of volume imbalances between stocks. Furthermore, by
analyzing the asymmetries of tail dependencies of demands, we found that the large local
fluctuations influence the dependencies of positive demands more significantly than the
dependencies of negative demands.

By analyzing a large-scale of real-time data, we found many interesting features for
the correlated financial markets. We also used appropriate models to interpret them,
but the model-based interpretations are not totally confined to this thesis. For better
understanding the features, more proper models from a new perspective are expected. We
introduced the cross-impact to a trading strategy. To highlight the role of cross-impacts,
we restricted ourselves to considering two stocks. Typically, a portfolio contains many
different stocks. We thus expect to construct a strategy in terms of the cross-impact for
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Chapter 8. Conclusion and Outlook

more than two stocks. Furthermore, it is also expected to employ an alternative framework
of trading strategies, such as the Markowitz theory for portfolio optimization. In general,
a linear combination of risk elements determines a portfolio. Introducing the cross-impact
in the Markowitz theory will result in an extra risk, which will affect the portfolio.
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Appendix A
Stock information

A.1 Trading information of 99 stocks

In Chapter 3, we evaluated the market response for the 99 stocks from ten economic sectors:
industrials (I), health care (HC), consumer discretionary (CD), information technology
(IT), utilities (U), financials (F), materials (M), energy (E), consumer staples (CS), and
telecommunications services (TS) as listed in Table A.1. These stocks are also used for the
analyses of influential and influenced stocks in Chapter 4. The acronym AMC in Table A.1
stands for averaged market capitalization.

Table A.1: Information of 99 stocks from ten economic sectors

Industrials (I) Financials (F)

Symbol Company AMC Symbol Company AMC

FLR Fluor Corp. (New) 14414.4 CME CME Group Inc. 49222.9

LMT Lockheed Martin Corp. 12857.8 GS Goldman Sachs Group 21524.3

FLS Flowserve Corporation 12670.2 ICE Intercontinental Exchange Inc. 14615.3

PCP Precision Castparts 12447.0 AVB AvalonBay Communities 11081.6

LLL L-3 Communications Holdings 12170.8 BEN Franklin Resources 10966.2

UNP Union Pacific 11920.9 BXP Boston Properties 10893.0

BNI Burlington Northern Santa Fe C 11837.5 SPG Simon Property Group Inc 10862.4

FDX FedEx Corporation 10574.7 VNO Vornado Realty Trust 10802.3

GWW Grainger (W.W.) Inc. 10416.8 PSA Public Storage 10147.9

GD General Dynamics 10035.6 MTB M&T Bank Corp. 9920.2

Health Care (HC) Materials (M)

Symbol Company AMC Symbol Company AMC

ISRG Intuitive Surgical Inc. 31355.9 X United States Steel Corp. 15937.7

BCR Bard (C.R.) Inc. 11362.7 MON Monsanto Co. 14662.6

BDX Becton Dickinson 10298.4 CF CF Industries Holdings Inc 14075.5

GENZ Genzyme Corp. 9728.8 FCX Freeport-McMoran Cp & Gld 11735.7

JNJ Johnson & Johnson 9682.6 APD Air Products & Chemicals 10246.4

LH Laboratory Corp. of America Holding 9035.7 PX Praxair Inc. 10234.5

ESRX Express Scripts 8864.6 VMC Vulcan Materials 8700.4

CELG Celgene Corp. 8783.1 ROH Rohm & Haas 8527.1

ZMH Zimmer Holdings 8681.7 NUE Nucor Corp. 7997.4

AMGN Amgen 8543.0 PPG PPG Industries 7336.7
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A.2. Lists of 496 stocks in S&P 500 index

Table A.1: (continued)

Consumer Discretionary (CD) Energy (E)

Symbol Company AMC Symbol Company AMC

WPO Washington Post 61856.1 RIG Transocean Inc. (New) 16409.5

AZO AutoZone Inc. 14463.7 APA Apache Corp. 13981.9

SHLD Sears Holdings Corporation 11759.2 EOG EOG Resources 13095.0

WYNN Wynn Resorts Ltd. 11507.9 DVN Devon Energy Corp. 12499.7

AMZN Amazon Corp. 10939.2 HES Hess Corporation 11990.4

WHR Whirlpool Corp. 9501.9 XOM Exxon Mobil Corp. 11460.3

VFC V.F. Corp. 9051.2 SLB Schlumberger Ltd. 11241.1

APOL Apollo Group 8495.8 CVX Chevron Corp. 11100.0

NKE NIKE Inc. 8149.5 COP ConocoPhillips 10215.3

MCD McDonald’s Corp. 8025.6 OXY Occidental Petroleum 9758.4

Information Technology (IT) Consumer Staples (CS)

Symbol Company AMC Symbol Company AMC

GOOG Google Inc. 62971.6 BUD Anheuser-Busch 9780.6

MA Mastercard Inc. 28287.8 PG Procter & Gamble 9711.5

AAPL Apple Inc. 22104.1 CL Colgate-Palmolive 9549.2

IBM International Bus. Machines 15424.9 COST Costco Co. 9545.9

MSFT Microsoft Corp. 10845.1 WMT Wal-Mart Stores 9325.7

CSCO Cisco Systems 8731.4 PEP PepsiCo Inc. 9180.7

INTC Intel Corp. 8385.8 LO Lorillard Inc. 8919.0

QCOM QUALCOMM Inc. 7739.4 UST UST Inc. 8433.1

CRM Salesforce Com Inc. 7691.9 GIS General Mills 8243.3

WFR MEMC Electronic Materials 7392.8 KMB Kimberly-Clark 8069.5

Utilities (U) Telecommunications Services (TS)

Symbol Company AMC Symbol Company AMC

ETR Entergy Corp. 12798.7 T AT&T Inc. 6336.2

EXC Exelon Corp. 9738.8 VZ Verizon Communications 5732.5

CEG Constellation Energy Group 9061.5 EQ Embarq Corporation 5318.7

FE FirstEnergy Corp. 8689.4 AMT American Tower Corp. 5195.6

FPL FPL Group 7742.8 CTL Century Telephone 4333.8

SRE Sempra Energy 6940.6 S Sprint Nextel Corp. 2533.7

STR Questar Corp. 6520.4 Q Qwest Communications Int 2201.3

TEG Integrys Energy Group Inc. 5978.4 WIN Windstream Corporation 2089.1

EIX Edison Int’l 5877.5 FTR Frontier Communications 1580.9

AYE Allegheny Energy 5864.9

A.2 Lists of 496 stocks in S&P 500 index

In Chapter 4, the averages of cross-responses are performed over 496 stocks. These stocks
are from NASDAQ stock market and belong to S&P 500 index in 2008. In the following,
we list all the symbols of these stocks, which are classified into ten sectors.

• Consumer Discretionary (CD)

ADM, AVP, BUD, CAG, CCE, CL, CLX, COST, CPB, CVS, DF, DPS, EL, GIS, HNZ, HSY, K, KFT, KMB,

KO, KR, LO, MKC, MO, PBG, PEP, PG, PM, RAI, SJM, SLE, STZ, SVU, SWY, SYY, TAP, TSN, UST, WAG,

WFMI, WMT
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• ConsumerStaples (CS)

ADM, AVP, BUD, CAG, CCE, CL, CLX, COST, CPB, CVS, DF, DPS, EL, GIS, HNZ, HSY, K, KFT, KMB,

KO, KR, LO, MKC, MO, PBG, PEP, PG, PM, RAI, SJM, SLE, STZ, SVU, SWY, SYY, TAP, TSN, UST, WAG,

WFMI, WMT

• Energy (E)

APA, APC, BHI, BJS, BTU, CAM, CHK, CNX, COG, COP, CVX, DVN, EOG, EP, ESV, HAL, HES, MEE,

MRO, MUR, NBL, NBR, NE, NOV, OXY, PXD, RDC, RIG, RRC, SE, SII, SLB, SUN, SWN, TSO, VLO, WFT,

WMB, XOM, XTO

• Financials (F)

ACAS, AFL, AIG, AIV, AIZ, ALL, AMP, AOC, AVB, AXP, BAC, BBT, BEN, BK, BXP, C, CB, CBG, CINF,

CIT, CMA, CME, COF, DDR, DFS, EQR, ETFC, FHN, FII, FITB, GNW, GS, HBAN, HCBK, HCP, HIG,

HST, ICE, IVZ, JNS, JPM, KEY, KIM, L, LM, LNC, LUK, MBI, MCO, MER, MET, MI, MMC, MS, MTB,

NCC, NDAQ, NTRS, NYX, PBCT, PCL, PFG, PGR, PLD, PNC, PRU, PSA, RF, SCHW, SLM, SOV, SPG,

STI, STT, TMK, TROW, TRV, UNM, USB, VNO, WB, WFC, XL, ZION

• Health Care (HC)

ABC, ABI, ABT, AET, AGN, AMGN, BAX, BCR, BDX, BIIB, BMY, BRL, BSX, CAH, CELG, CI, COV,

CVH, DGX, DVA, ESRX, FRX, GENZ, GILD, HSP, HUM, ISRG, JNJ, KG, LH, LLY, MCK, MDT, MHS,

MIL, MRK, MYL, PDCO, PFE, PKI, RX, SGP, STJ, SYK, THC, TMO, UNH, VAR, WAT, WLP, WPI, WYE,

XRAY, ZMH

• Industrials (I)

AVY, AW, BA, BNI, CAT, CBE, CHRW, CMI, COL, CSX, CTAS, DE, DHR, DOV, EFX, EMR, ETN, EXPD,

FAST, FDX, FLR, FLS, GD, GE, GR, GWW, HON, IR, ITT, ITW, JEC, LLL, LMT, LUV, MAS, MMM,

MTW, MWW, NOC, NSC, PBI, PCAR, PCP, PH, PLL, R, RHI, ROK, RRD, RTN, TXT, TYC, UNP, UPS,

UTX, WMI

• Information Technology (IT)

A, AAPL, ACS, ADBE, ADI, ADP, ADSK, AKAM, ALTR, AMAT, AMD, APH, BMC, BRCM, CA, CIEN,

CPWR, CRM, CSC, CSCO, CTSH, CTXS, CVG, DELL, EBAY, EMC, ERTS, FIS, FISV, GLW, GOOG, HPQ,

HRS, IBM, INTC, INTU, JAVA, JBL, JDSU, JNPR, KLAC, LLTC, LSI, LXK, MA, MCHP, MOLX, MOT,

MSFT, MU, NOVL, NSM, NTAP, NVDA, NVLS, ORCL, PAYX, QCOM, QLGC, SNDK, SYMC, TDC, TEL,

TER, TLAB, TSS, TXN, VRSN, WFR, WU, XLNX, XRX, YHOO

• Materials (M)

AA, AKS, APD, ATI, BLL, BMS, CF, DD, DOW, ECL, EMN, FCX, IFF, IP, MON, MWV, NEM, NUE, PPG,

PTV, PX, ROH, SEE, SIAL, TIE, VMC, WY, X

• Telecommunications Services (TS)

AMT, CTL, EQ, FTR, Q, S, T, VZ, WIN

• Utilities (U)

AEE, AEP, AES, AYE, CEG, CMS, CNP, D, DTE, DUK, DYN, ED, EIX, ETR, EXC, FE, FPL, GAS, NI,

PCG, PEG, PGN, PNW, POM, PPL, SO, SRE, STR, TE, TEG, WEC, XEL
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A.3. Daily trading information of 31 stocks

A.3 Daily trading information of 31 stocks

In Chapter 5, the 31 investigated stocks listed in Table A.2 are ranked and selected ac-
cording to the average number of daily trades for each stock in 2008. Here, we have a trade
if the trade sign in a time interval of one second is non-zero. We exclude the first and the
last ten minutes from the intraday trading time. Except for the information of economic
sector and the average number of daily trades for each stock, the other information, i.e.
the average daily traded volume, and the exponents γ for the trade sign self-correlator

Θii(τ), the passive cross-correlator Θ
(p)
i (τ) and the active cross-correlator Θ

(a)
i (τ), are

also listed in Table A.2.

Table A.2: The average daily trading information and the γ values for each stock

Symbol Sector Average Average daily γ
number of traded volume

daily trades (×106) for Θii(τ) for Θ
(p)
i (τ) for Θ

(a)
i (τ)

AAPL Information Technology 13415 13.27 1.36 0.71 0.83
JPM Financials 10284 12.62 1.07 1.06 0.81
XOM Energy 9708 7.79 1.19 1.50 0.95
BAC Financials 9599 18.08 0.92 0.89 0.79
WFC Financials 9040 12.43 0.90 0.88 0.81
MER Financials 8823 9.20 0.97 0.96 0.79
C Financials 8297 30.48 0.78 0.68 0.75
QCOM Information Technology 8132 8.43 0.84 0.87 0.87
MS Financials 7860 7.04 1.00 0.92 0.79
MSFT Information Technology 7794 30.39 0.70 0.70 0.84
WMT Consumer Staples 7438 6.28 0.91 0.94 0.88
CVX Energy 7331 3.65 1.30 1.51 0.99
GS Financials 7073 3.46 1.23 0.94 0.79
WB Financials 6856 14.41 0.78 0.66 0.75
COP Energy 6712 3.23 1.07 1.24 0.95
CSCO Information Technology 6697 22.41 0.69 0.67 0.83
CHK Energy 6603 4.50 0.94 0.92 0.91
INTC Information Technology 6567 25.61 0.65 0.62 0.81
GE Industrials 6475 16.67 0.78 0.73 0.83
HAL Energy 6455 4.43 0.90 0.94 0.92
AMZN Consumer Discretionary 6371 3.66 0.98 0.86 0.88
FCX Materials 6308 3.08 1.11 1.11 0.91
T Telecommunications Services 6239 6.64 0.83 0.84 0.86
USB Financials 6078 4.49 0.88 0.88 0.82
HPQ Information Technology 6056 4.47 0.86 0.88 0.88
AXP Financials 6046 3.42 0.96 0.97 0.85
SLB Energy 5952 2.56 1.20 1.30 0.98
AIG Financials 5928 12.38 0.82 0.76 0.77
GILD Health Care 5851 3.27 0.81 0.92 0.89
PG Consumer Staples 5765 3.45 0.93 1.12 0.92
ORCL Information Technology 5696 14.94 0.66 0.65 0.84

A.4 Daily trading information of 100 stocks

In Chapter 7, we select 100 stocks for the copula analysis. With the TAQ data set, we
calculate the average number of daily trades for 496 available stocks from S&P 500 index
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in 2008. Here, we define a trade if the total volume, i.e., the sum of all the unsigned
volumes, in a time interval of one second is non-zero. We exclude the first and the last
ten minutes from the intraday trading time. The first 100 stocks with the largest average
number of daily trades are listed in Table A.3, which records in detail the information of
symbols, economic sectors and the average numbers of daily trades for each stock.

Table A.3: The first 100 stocks with the largest average number of daily trades

Stocks Sectors Numbers Stocks Sectors Numbers

C Financials 98990.8 AMGN HealthCare 21715.6
BAC Financials 90648.7 SPLS ConsumerDiscretionary 21528.3
AAPL InformationTechnology 86242.5 SBUX ConsumerDiscretionary 21420.5
MSFT InformationTechnology 80399.8 GILD HealthCare 20880.6
JPM Financials 75825.8 FCX Materials 20762.8
WFC Financials 68118.3 SYMC InformationTechnology 20490.1
INTC InformationTechnology 63849.0 NCC Financials 20029.7
GE Industrials 61435.8 GLW InformationTechnology 19865.2
CSCO InformationTechnology 60952.6 DIS ConsumerDiscretionary 19754.3
WB Financials 60803.0 ADBE InformationTechnology 19180.9
XOM Energy 56978.8 TGT ConsumerDiscretionary 19068.0
MER Financials 55616.2 KO ConsumerStaples 18812.8
AIG Financials 48129.0 VLO Energy 18770.7
QCOM InformationTechnology 47234.5 F ConsumerDiscretionary 18741.8
ORCL InformationTechnology 45197.8 SLB Energy 18712.4
MS Financials 42930.3 SNDK InformationTechnology 18464.7
YHOO InformationTechnology 39279.2 ALTR InformationTechnology 18444.2
WMT ConsumerStaples 37852.5 XLNX InformationTechnology 18187.2
DELL InformationTechnology 36807.0 BMY HealthCare 17949.7
T TelecommunicationsServices 36013.4 SGP HealthCare 17947.4
CMCSA ConsumerDiscretionary 35446.6 DTV ConsumerDiscretionary 17933.3
PFE HealthCare 31997.7 RF Financials 17566.6
NVDA InformationTechnology 31618.3 MOT InformationTechnology 17293.7
AMAT InformationTechnology 31156.6 HCBK Financials 17177.7
HD ConsumerDiscretionary 30661.2 NTAP InformationTechnology 17017.8
HAL Energy 30160.6 XTO Energy 16897.1
HPQ InformationTechnology 29049.2 GOOG InformationTechnology 16870.1
CHK Energy 28869.6 MO ConsumerStaples 16818.3
USB Financials 28501.7 CVS ConsumerStaples 16129.3
BRCM InformationTechnology 28333.2 JAVA InformationTechnology 15962.9
CVX Energy 28211.5 BBBY ConsumerDiscretionary 15786.4
EMC InformationTechnology 27682.0 BK Financials 15589.9
EBAY InformationTechnology 27589.1 LLTC InformationTechnology 15450.5
SCHW Financials 25703.3 WFT Energy 15316.3
AA Materials 25148.4 MU InformationTechnology 14973.1
TXN InformationTechnology 24315.1 HBAN Financials 14899.5
GS Financials 24113.1 MCD ConsumerDiscretionary 14896.6
COP Energy 24010.7 COST ConsumerStaples 14812.1
PG ConsumerStaples 23998.2 UNH HealthCare 14685.2
VZ TelecommunicationsServices 23540.2 DOW Materials 14684.0
AXP Financials 23508.4 NBR Energy 14642.2
AMZN ConsumerDiscretionary 23213.6 COF Financials 14577.6
FITB Financials 23105.8 KFT ConsumerStaples 14542.3
JNPR InformationTechnology 22952.1 AMD InformationTechnology 14516.8
GM ConsumerDiscretionary 22379.9 GPS ConsumerDiscretionary 14501.0
TWX ConsumerDiscretionary 22075.0 OXY Energy 14166.3
LOW ConsumerDiscretionary 21933.8 CAT Industrials 14003.3
JNJ HealthCare 21906.1 M ConsumerDiscretionary 13884.9
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Table A.3: (continued)

Stocks Sectors Numbers Stocks Sectors Numbers

MRK HealthCare 21903.3 DD Materials 13859.4
S TelecommunicationsServices 21724.9 DHI ConsumerDiscretionary 13810.6
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Appendix B
Error estimation

Suppose we measured or numerically simulated a set of M data points y(τm) at positions
τm, m = 1, . . . ,M . We want to describe the data with a function f(τ) by fitting its MP

parameters. To assess the quality of the fit, the normalized χ2 [19]

χ2 =
1

M −MP

M∑
m=1

(
f(τm)− y(τm)

)2
(B.1)

is used. Here, M −MP is referred to as the number of degrees of freedom. In our case,
we have M = 1000, MP = 3 for the fitting of trade sign cross–correlators in stock pairs,
and M = 34.
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Appendix C
Diffusion equation in two dimensions

Consider a particle moving in a flat two–dimensional space with coordinates (x, y) at time
t. After a small and fixed time τ , this particle moves to the position (x + u, y + v).
The random increments u and v in the direction x and y, respectively, can be positive
or negative and satisfies a normalized and symmetric distribution of marginal probability
density, ∫ +∞

−∞
q(u)du = 1 and q(−u) = q(u) , (C.1)

∫ +∞

−∞
q(v)dv = 1 and q(−v) = q(v) . (C.2)

Their joint probability density distribution is also normalized to unity between −∞ and
+∞, ∫ +∞

−∞

∫ +∞

−∞
q(u, v)dudv = 1 . (C.3)

According to the Eqs .(C.1)–(C.3), the random increments have following properties,

〈uv〉 =

∫ +∞

−∞

∫ +∞

−∞
uvq(u, v)dudv , (C.4)

〈un〉 =

∫ +∞

−∞

∫ +∞

−∞
unq(u, v)dudv =

∫ +∞

−∞
unq(u)du , (C.5)

〈vn〉 =

∫ +∞

−∞

∫ +∞

−∞
vnq(u, v)dudv =

∫ +∞

−∞
vnq(u)du . (C.6)

As the particle moves without any external driving force, the positive and negative incre-
ments in each direction have equal probability, which lead to

〈u〉 = 0 and 〈v〉 = 0 . (C.7)

We introduce the probability p(x, y|t)dxdy to find the particle in the area element dxdy
at time t with the joint probability density p(x, y|t). Now suppose the particle moves to
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the position (x′, y′) at time t. After the time increment τ , the probability density to find
the particle in the new position (x, y) is

p(x, y|t+ τ)

=

∫ +∞

−∞

∫ +∞

−∞
dx′dy′p(x′, y′|t)

∫ +∞

−∞

∫ +∞

−∞
dudvq(u, v)δ(x− (x′ + u))δ(y − (y′ + v))

=

∫ +∞

−∞

∫ +∞

−∞
dudvq(u, v)p(x− u, y − v|t) , (C.8)

where the δ functions δ(x− (x′ + u))δ(y − (y′ + v)) as the proper filter fix the x and y to
x′+u and y′+ v, respectively. The random increments u and v during the time increment
τ are assumed to be all very small. Thus the Eq. (C.8) can be derived as,

p(x, y|t+ τ) + τ
∂p(x, y|t)

∂t

=

∫ +∞

−∞

∫ +∞

−∞
dudvq(u, v)

{
p(x, y|t)− u∂p(x, y|t)

∂x
− v∂p(x, y|t)

∂y

+
1

2

[
u2 ∂

2

∂x2
p(x, y|t) + v2 ∂

2

∂y2
p(x, y|t) + 2uv

∂

∂x

∂

∂y
p(x, y|t)

]}
. (C.9)

Employing the Eqs. (C.1)–(C.7), the last equation (C.9) becomes

∂p(x, y|t)
∂t

=
∂2p(x, y|t)

∂x2

1

2τ

∫ +∞

−∞

∫ +∞

−∞
u2q(u, v)dudv

+
∂2p(x, y|t)

∂y2

1

2τ

∫ +∞

−∞

∫ +∞

−∞
v2q(u, v)dudv

+
∂

∂x

∂

∂y
p(x, y|t) 1

τ

∫ +∞

−∞

∫ +∞

−∞
uvq(u, v)dudv (C.10)

=
〈u2〉
2τ

∂2p(x, y|t)
∂x2

+
〈v2〉
2τ

∂2p(x, y|t)
∂y2

+
〈uv〉
τ

∂

∂x

∂

∂y
p(x, y|t) .

Here, the angular brackets indicate averages over the distribution of u and v. The last
term in Eq. (C.11) is non–zero if the random increments are not independent. In general,
to find the particle at the time t at the position ~r, the diffusion equation can be written
as [76]

∂p(~r|t)
∂t

= ∇ ·
(
D̂∇p(~r|t)

)
. (C.11)

In homogeneous and anisotropic media, the diffusion tensor D̂ is symmetric and depends
on the direction. For a flat two–dimensional space, it is given by

D̂ =

[
D̂xx D̂xy

D̂yx D̂yy

]
, (C.12)
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Appendix C. Diffusion equation in two dimensions

where D̂xy = D̂yx. Thus, the two–dimensional diffusion equation (C.11) turns into

∂p(x, y|t)
∂t

=
[

∂
∂x

∂
∂y

] [ D̂xx D̂xy

D̂yx D̂yy

] [ ∂
∂xp(x, y|t)
∂
∂yp(x, y|t)

]

= D̂xx
∂2p(x, y|t)

∂x2
+ D̂yy

∂2p(x, y|t)
∂y2

+ 2D̂xy
∂

∂x

∂

∂y
p(x, y|t) . (C.13)

Equations (C.11) and (C.13) coincide and allow for the identification,

〈u2〉 = 2D̂xxτ , 〈v2〉 = 2D̂yyτ , and 〈uv〉 = 2D̂xyτ . (C.14)

For the Brownian motion, the diffusion coefficients D̂xx, D̂yy and D̂xy are constant.
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[148] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de
l’Institut de Statistique de l’Université de Paris, 8:229–231, 1959.
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