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General Introduction 
Under the Bretton Woods system, the US-dollar (USD) acted as the reserve currency for 

many member countries around the world, where the foreign country was required to peg their 

currency on the USD in a narrow range; a fixed foreign exchange rate regime has been 

established. After the breakdown of the Bretton Woods system, which was unilaterally triggered 

by the United States (US) on the 15th of August, 1971, through the termination of the USD 

convertibility into gold, the investors were confronted with an abrupt regime change in which 

foreign exchange rates began to free-float. This situation was relatively new after centuries of 

gold-backed and/or fixed-rate episodes. The most important questions at the time were: what is 

the fundamental value of a currency? And, what factors sufficiently forecast foreign exchange 

rate returns?  

The first question was answered by the building of monetary exchange rate models that tried 

to anchor the nominal exchange rate to economic fundamental values, such as money supply 

differentials, real income differentials, short-term interest rate differentials, and/or inflation 

differentials (see Bilson, 1978; Dornbusch, 1976; Frankel, 1979; Frenkel, 1976; Hooper and 

Morton, 1978). These monetary model approaches provide economists with a first long-term 

view of the respective exchange rate dynamics. With regard to the second question, exchange 

rate forecasting as such has been identified as a very challenging task. In fact, a seminal study 

by Meese and Rogoff (1983) found that the forecasting performance of exchange rate models 

based on fundamentals does not perform better than the naïve random walk model. This 

empirical fact has not yet been convincingly rejected yet, leading to the term exchange rate 

disconnect puzzle.  

To overcome these difficulties in direct exchange rate forecasting, this study concentrates 

on the following questions: (i) what is the general underlying risk of foreign exchange baskets? 

And (ii) how can the investor use these risk structures to enhance portfolio efficiency in his 

foreign exchange exposure? Previous studies by Lustig et al. (2011) and Menkhoff et al. (2012a) 

investigated the cross-sectional risk dynamics of currency portfolio baskets that are sorted 

regarding their interest rate differentials. With regard to the summary statistics of the respective 

baskets, they found specific differences, especially between low-yielding currencies (funding 

currencies) and high-yielding currencies (investment currencies). While the latter currency 

group return statistics can be characterized as highly volatile with significant negative skewness 

and high positive returns, the first group’s returns are less volatile and more Gaussian 

distributed with on average negative returns for the representative US-investor. Furthermore, 

Lustig et al. (2011) found in a principal component analysis that all currency basket returns can 
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be explained by two major risk sources: (i) the dollar risk factor (DOL), which basically mirrors 

the value of the US-dollar (USD) relative to all other foreign currencies, and (ii) the carry trade 

risk factor (CT), which is the portfolio return of being long investment currencies and short 

funding currencies. In a standard asset pricing test (based on Ross, 1976), they showed that the 

DOL risk factor loaded constantly loaded on any portfolio basket, while the CT risk factor was 

identified as a slope factor that loads negatively on funding currencies and positively on 

investment currencies, which  monotonically increases from basket to basket. With R2 values 

reaching over 90%, one can state that they explained nearly all cross-sectional variations of 

currency portfolio returns sorted by their interest differentials. Especially, the carry trade risk 

factor was highly significant, therefore, plays a major role in explaining these return variations.  

Taking these facts as a basis, Chapter 2 deals with the following important questions: What 

is the carry trade risk characteristic, or put differently, what drives carry trade returns? Since 

the carry trade is one of the most famous investment strategy in currency markets, its significant 

excess returns over the past four decades are well documented (e.g. Burnside et al., 2011b) and 

have been heavily debated in the recent past. This debate is primarily due to the fact that 

systematical excess returns over a long period is at odds with the uncovered interest rate parity 

(UIP). It postulates that the advantage of the interest rate differential by investing into a high-

yielding currency, which is subsequently funded by a low-yielding currency, should vanish on 

average through a depreciation of the investment currency, appreciation of the funding 

currency, or both. One can formulize the UIP as follows: 

𝔼" 𝑆$ −𝐹",$ = 0	 (1) 

where	𝔼"[𝑆$] denotes the current expectation over the future spot rate in T, whereas the current 

forward rate with maturity T is denoted as 𝐹",$. The exchange rates are expressed as the price 

of one foreign currency unit in USD, where an appreciation translates into a depreciation of the 

USD. Given that the covered interest rate parity holds, the relationship of the current forward 

to the current spot rate is as follows: 

𝐹",$ = 𝑆"𝑒(,-,
.)0	 (2) 

where the annualized domestic USD-rate is denoted as i and the corresponding foreign LIBOR 

as 𝑖2	and where 𝜏 is just the difference between the maturity date T and the current date t. If we 

now reformulate both equations into log-format and substitute (2) into (1), we get 

𝔼" 𝑠$ −𝑠" + (𝑖 − 𝑖2)𝜏 = 0	 (3) 

where the lower case letter s denotes the respective log spot price. The first term corresponds 

to the expected spot return and the second term to the deterministic interest rate differential 

(IRD). A frequently used econometric equation to test the UIP ex post, can be performed as 
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𝔼" 𝑠"78 −𝑠" = 𝛼 + 𝛽 𝑖2 − 𝑖 𝜏 + 𝜀"78	 (4) 

Given that the UIP holds, one would expect that a is equal to zero and ß equal to 1, but the 

great majority of studies were able to reject this joint hypothesis (see Bilson, 1981; Fama, 1984; 

Hansen and Hodrick, 1980) and even found significantly negative ß coefficients. These results 

have led financial institutions to establish a strategy to exploit the empirical failure of the UIP, 

known as the currency carry trade. With regard to the empirical evidence from Lustig et al. 

(2011), it can be concluded that knowing more about the source of risk to the carry trade would 

ultimately lead to a better understanding of the currency risk in the cross-section.    

After a comprehensive analysis of the underlying risk of the carry trade, the second part of 

the question becomes important: How can the representative investor use this information to 

improve the returns of carry trade investments? Chapter 3 provides a sophisticated investment 

model for exchange rates that uses not only economic fundamentals as state variables, but also 

the information inherent in exchange rate options. This portfolio selection model, which goes 

back to the pioneering work of Brandt et al. (2009), models optimal portfolio weights as a 

function of the underlying risk characteristics. This means that instead of following the 

traditional mean-variance approach of Markowitz (1952), the model uses any kind of 

background risk factor that is supposed to have forecasting ability for the underlying risk at 

hand. Laborda et al. (2014) operationalized this idea to fit the needs for the currency carry trade 

portfolio, by installing six currency risks related state variables: (i) the average interest rate 

differential,1 (ii) the first lag of the carry trade return, (iii) the US-TED spread, (iv) a commodity 

index return, (v) the US equity-based volatility index VIX, and (vi) a global monetary policy 

indicator. 

 While most of these variables have been proven to be statistically significant for future carry 

trade returns, the results for my sample are more disappointing than those in the original work. 

Therefore, this study improves the results of the model by implementing risk factors that are 

naturally forward-looking, namely the FX option-implied variance risk. Using option-implied 

moment risk variables has been primarily encouraged by the studies by Della Corte et al. (2016), 

Farhi et al. (2015), Huang and Macdonald (2015), and Jurek (2014), who find a close 

connection between exchange rate returns and the moment risks traded in the FX option market. 

However, extracting information from the option market is far more complex. Farhi et al. (2015) 

for instance, decouple the “disaster risk” exposure, or disaster premium, from out-of-the-money 

(OTM) put prices of each exchange rate in the sample. As a result, the average disaster risk 

																																																													
1 To be more specific, Laborda et al. (2014) use the average of the forward discount values, which is the difference 
between the current forward and spot rate in log prices. One can see this by rearranging equation (2), in which the 
forward discount rate is equal to the interest rate differential. 
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exposure explains more than a third of the carry trade excess returns. Jurek (2014) constructed 

a crash-neutral carry trade portfolio, where he uses at-the-money (ATM) and OTM put options 

to hedge the downside risk. The difference between the hedged and unhedged portfolio versions 

have been justified as variance or skewness risk premium. He also concludes that also about 

one-third of the excess returns to the carry trade are connected to the crash risk.  

This study uses a direct way to measure option-implied moment risk that goes back to the 

theory of contingent claim pricing proposed by Breeden and Litzenberger (1978). Using this 

approach, Neuberger (2012) developed a realized and option-implied measure for variance and 

skewness risk that can be used to directly derive moment risk premia. In particular, Neuberger 

(2012) constructed a realized skewness that perfectly matches the moment of its option-implied 

counterpart, which can be regarded as novel in the existing literature.  

Having this approach in mind, Chapter 4 investigates into the third moment risk premium in 

currency markets. Given the empirical findings from Brunnermeier et al. (2009) and Jurek 

(2014), who observed an unusual disconnection between the realized and implied skewness risk 

between several exchange rates in their sample, a comprehensive analysis for a wide range of 

exchange rate becomes obligatory. Ruf (2012), for instance, observed a similar picture in the 

commodity market. After determining the empirical disconnection in the third moment risk 

premium among 25 different commodities, he provides evidence that the disconnection is 

primarily due to limits-to-arbitrage effects coming from trade activity in the commodity option 

market triggered by speculators. Therefore, it is interesting to see whether the skewness risk 

premium in currency markets is similarly affected as in commodity markets. 
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Abstract 

The carry trade is a zero net investment strategy that borrows in low yielding currencies and 
subsequently invests in high yielding currencies. It has been identified as highly profitable FX 
strategy delivering significantly excess returns with high Sharpe ratios. This paper shows that 
these excess returns are especially compensation for bearing FX variance and negative 
skewness risk. Additionally, factor risks that affect foreign money changes, foreign inflation 
changes, as well as changes to a newly developed Carry Trade Activity Index and the VIX 
index, as a proxy for global risk aversion, make up the carry trade risk anatomy. These 
findings are not exclusively important for carry traders, but also contribute to the 
understanding of currency risk in the cross-section. This is directly linked to asset pricing 
tests from Lustig et al. (2011), which have shown that currency baskets sorted on their interest 
rate differentials are all exposed to carry trade returns as a risk factor. Furthermore, this paper 
finds evidence that a decreased level of funding liquidity potentially leads to carry trade 
unwindings, controlling for equity and FX implied variance and skewness effects, which 
supports the theoretical model of liquidity spirals developed by Brunnermeier and Pedersen 
(2009). 
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1 Introduction 
This paper studies the risk anatomy of the carry trade (CT) foreign exchange rate (FX) 

strategy. This highly profitable zero net investment strategy uses funding gathered from low 

yielding currencies, also called funding currencies, and subsequently invests the proceeds into 

high yielding currencies, or investment currencies. This popular trading strategy has delivered 

significant returns over at least the past four decades (e.g. Burnside et al., 2011b), which 

violates the properties of the uncovered interest rate (UIP) parity. The UIP assumes that the 

current FX forward price is equal to the expected future spot price, or to put it differently, the 

future currency spot level will remove the advantage or disadvantage of the interest rate 

differential. Many empirical investigations about the UIP, dating back to at least Hansen and 

Hodrick (1980), Bilson (1981), or Fama (1984), have shown that there is no supportive 

evidence that FX forward prices are unbiased predictors of future spot prices. This is known 

in the literature as the forward premium puzzle.  

Guided by the insights of Lustig et al. (2011), who showed using the Arbitrage Pricing 

Theory (APT) of Ross (1976), we understand that FX cross-sectional portfolios are primarily 

driven by two risk factors. This is (i) a dollar-based risk, which loads constantly onto all 

portfolios and (ii) the carry trade risk itself, which increases monotonically from funding to 

investment currencies. Identifying the carry trade as a significant “slope” factor with respect 

to the cross-sectional currency portfolios that are sorted by interest differential, means that 

these portfolios are exposed differently to the carry trade. This leads to the following 

conclusion: A more profound understanding of the risks inherent in the carry trade helps to 

understand cross-sectional currency risk. In this respect, any evidence found here is not only 

important for investors engaged in the carry trade, but is also important to those making any 

foreign currency investment. 

The purpose of this paper is to convincingly identify risk factors, which underlines the 

reality that the return to the carry trade is a compensation for risk bearing. It provides a 

comprehensive empirical investigation to literature, which collects several economically 

important risk factors together in order to get a clearer view of the risk anatomy of the carry 

trade. This will be achieved in a multifactor model using time series regressions. Most of the 

risk factors are converted into mimicking FX portfolios to capture risk factors as returns, 

which can be also used as hedging instruments. Additionally, it will be shown that a newly 

constructed Carry Trade Activity Index (CTI), built on information of aggregated FX future 

contract positions, is significantly related to CT returns. Moreover, while liquidity risk does 

not directly exhibit sufficient effects on CT returns, it will be shown that it contributes 
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significantly to CT unwindings, controlling for variance and skewness risks, which supports 

the thesis of liquidity spirals proposed by Brunnermeier and Pedersen (2009) in the foreign 

exchange market. 

Furthermore, the empirical investigation shows that significant CT returns are mostly due 

to global FX option-implied variance and skewness risk. These two risk factors, which 

characterize investors future perceptions about FX return fluctuation and FX crash risk, 

appear to be uncorrelated to each other and describe more than 70% of the return variation. 

Other risks like (i) foreign real money growth, (ii) foreign CPI growth, (iii) changes to the 

CTI, and (iv) changes to the VIX index, complete the risk profile and describe almost 80% of 

CT return variation.  

 
2 Related Literature 

In addition to the pioneering work of Lustig et al. (2011), there are several variations made 

to describe the risks of cross-sectional FX portfolio returns. Rafferty (2012) uses global FX 

realized skewness as a substitute for CT returns. He argues that the time series of CT returns 

is prone to negative skewness and therefore can mimic the risk inherent in the CT strategy.  

Menkhoff et al. (2012a) investigated global FX volatility innovations, which stand for 

unexpected volatility changes that drives cross-sectional returns. Huang and Macdonald 

(2015) instead use returns of a mimicking portfolio of sovereign Credit Default Swaps (CDS) 

as the representative risk for global liquidity imbalances and sovereign default risk. All of 

them find evidence that these “FX moment risks” well describe the cross-section of FX 

returns. In a different study, Farhi et al. (2015) extract information about exposure to global 

disaster risk out of FX option prices. In this they find a close connection to the observed 

interest rate differentials. As a result, they justify the high excess return from the CT as a 

compensation for bearing high world disaster risk. Brunnermeier et al. (2009) offer another 

interesting perspective regarding liquidity risk. They argue that CT returns are dependent on 

the supply of speculative risk capital. They claim that when liquidity dries up, it can lead to 

reductions in CT positions and ultimately, negatively skewed returns. Clare et al. (2015) build 

up a capital asset pricing model (CAPM) that’s augmented by liquidity risk factors to show 

that the covariance term of market risk and lagging liquidity risk contributes to the 

explanation of CT returns, but CT returns continue to be significant. Furthermore, they find 

little support of the proposed equity downside CAPM model (DR-CAPM) by Lettau et al. 

(2014). This model relates negative equity market returns to the cross-section of currency 

portfolios. In a related paper, Christiansen et al. (2011) built a regime-dependent asset pricing 
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model for explaining CT excess returns, where regimes are best described using FX volatility 

and TED spread levels. They concluded that CT returns are exposed to equity market risks 

during both periods and to FX market risk in turmoil periods, while the risk adjusted return 

remains significant. Another link between equity market risk and currency risk was 

investigated by Aloosh (2014). He found evidence that global equity variance risk premium 

(VRPEQ) has predictive power to explain CT and equity returns. Also, Bakshi and Panayotov 

(2013) investigate the time series predictability of CT returns using changes of a commodity 

index, realized FX volatility and a liquidity risk indicator. They find evidence of the 

predictability of in-sample as well as out-of-sample CT returns. These contributions have in 

common that they mostly link FX returns to sources of financial market realized moment 

risks. They make use of various statistical techniques in order to empirically describe the risk 

environment of FX returns or to justifying high CT excess returns that are at odds with the 

theoretical foundations of the UIP.  

This paper comprehensively merges FX option-implied variance and skewness risk, 

foreign macroeconomic fundamental risks, “global investors risk aversion” in the form of the 

VIX index, as well as risks related to the FX market microstructure. This is the primary 

source for reliably explaining CT excess returns as compensation for risk bearing.  

The remainder of this paper is organized as follows: Section three describes the data and 

risk variables used in the analysis and the methodology of transforming these risks into factor 

mimicking portfolios. Section four presents empirical evidence to exemplify the risk profile 

of the carry trade. Section 5 concludes.  

 

3 Data and Methodology 
The foreign exchange data primarily consists of daily bid/ask spot and one-month (1m) and 

three-month (3m) forward rate data from WM/Reuters fixings. There are three currency 

samples used for the econometric analysis, one major and two sub-samples. The first one, 

Sample I consists of all 32 foreign currencies, quoted against the US-dollar (USD), covering 

the sample period from September 2003 at the earliest to June 2015.1 The first subgroup of 

Sample I is the so called G-10 currencies from Australia (AUD), Canada (CAD), Denmark 

(DKK), Europe (EUR), Great Britain (GBP), Japan (JPY) New Zealand (NZD), Norway 

(NOK), Sweden (SEK) and Switzerland (CHF). Sample I also contains FX prices of 22 

emerging countries: Brazil (BRL), Chile (CLP), Colombia (COP), Czech Republic (CZK), 

Hungary (HUF), India (INR), Indonesia (IDR), Israel (ILS), Malaysia (MYR), Mexico 
                                                
1 Table A. 1 provides an overview of the various start and end dates of any currency in the coverage. 
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(MXN), Peru (PEN), Philippines (PHP), Poland (PLN), Romania (RON), Russia (RUB), 

Singapore (SGP), Slovakia (SKK), South Africa (ZAR), South Korea (KRW), Taiwan 

(TWD), Thailand (THB), and Turkey (TRY). The second sub-group, Sample TFF, deals with 

up to nine currencies that are listed on the Chicago Mercantile Exchange (CME), where FX 

future contracts are traded. This sample includes AUD, CAD, CHF, EUR, GBP, JPY, MXN, 

all starting in September of 2003, while future contracts on NZD and RUB start in November 

of 2005 and February of 2009, respectively. This paper collects the last month future-only 

reports as a proxy for end-of-month data points. 

The interest rate data is comprised of daily 1m and 3m maturity London interbank offered 

rates (LIBOR) for all currencies and the USD. In cases where LIBOR is unavailable, implied 

rates are computed, using the covered interest rate parity (CIP) definition.2  

Additionally, 10-year (10y) government rates are used for all currencies except for PEN 

and RON, and 3m government rates are used for all G-10 currencies. The 10y and 3m 

government yields for the EUR are approximated with the Euro Benchmark Bond definition 

according to Datastream. The 3m CHF government bond rate is approximated with the 1-year 

rate because of non-availability. The US 4-week T-Bill rate serves as the risk free rate for the 

US investor.  

Also, monthly foreign macroeconomic data for the money stock (M3), consumer price 

index (CPI), industrial production, and foreign equity index data3 is collected for Sample I 

currencies. All data is obtained using Datastream except for FX future contract data that is 

obtained from the U.S. Commodity Futures Trading Commission’s (CFTC) website.  

 
Currency returns, parities and portfolios 

It is assumed that the foreign exchange (FX) market is arbitrage-free and without friction. 

Currency excess returns will be computed using currencies from 1m-forward and spot prices, 

expressed in terms of the viewpoint of a US-investor. An appreciation of the current exchange 

rate S"	translates into a depreciation of the USD. Forward prices are denoted as F",&, 

subscripted with t as the current state of time and T as the maturity date. The respective lower-

                                                
2 CIP assumes that the log forward price is equal to the log spot price and the interest rate differential. CIP-
implied foreign rates have been computed for the 1m KRW rate from September 2003-July 2004, the 1m TRY 
rate from November 2005-June 2006, the 1m CLP rate from January 2014-June 2015 and for 1m and 3m SKK 
rates from January 2009-June 2015 and October 2013-June 2015, respectively. 
3 The local stock index data is taken from the MSCI-Barra website and log returns are computed using “Net 
Standard Large+Mid Cap” index time-series.   
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case letters will be used to indicate log prices and t:T means the time interval between t and T. 

The log currency excess return4 𝑟𝑥":&	can then be defined as:  

𝑟𝑥":& = 𝑠&	 − 𝑓",& ≈ ∆𝑠":& − (𝑖",& − 𝑖",&
2 )	 (1) 

It can be viewed as buying foreign currency units in the forward market at time t and 

closing the position at maturity T by selling foreign currency units in the spot market. If it is 

assumed that CIP holds, then the excess return can also be approximated as the interest rate 

differential (IRD) minus the change in the spot market (∆𝑠":& = 𝑠& − 𝑠"), where 𝑖",&
2 	denotes 

the foreign LIBOR and 𝑖",& the US-LIBOR. When rearranging formula (1), one will get the 

forward discount value of the exchange rate, which is then equal to the IRD:  

𝑓𝑑",& = 𝑓",& − 𝑠"	 = 𝑖",& − 𝑖",&
2  (2) 

Hence, 𝑓𝑑",5 is negative for investment currencies and usually positive for funding 

currencies. Another interesting relationship is the uncovered interest rate parity (UIP), as has 

been briefly mentioned in the introduction. It assumes that the forward price should equal the 

expected future spot price:  

𝐹",& = 𝔼"		 𝑆&  (3) 
It is well known in the literature that this relation rarely holds true empirically, so that the 

forward price can be viewed as a biased predictor for future spot prices. As a result, 

investment currencies do not depreciate enough or funding currencies do not appreciate 

enough, on average, to equalize the advantage of the IRD. Therefore, the carry trade strategy 

exploits the failure of the UIP, leading to highly significant returns. Furthermore, in this paper 

it is not automatically assumed that CIP holds true, so all time frames of high CIP violations 

are excluded.5 This step ensures that effects leading to CIP violations do not cause a bias 

regarding the CT return distribution and forthcoming econometric results. 

As it is the case in numerous studies, this paper sorts currencies according to their IRD, 

forming six currency baskets. This is because numerous studies find evidence that these 

currency groups are different in their risk profiles (see Lustig et al., 2011; Menkhoff et al., 

2012a). P-1 denotes the return of the low yielding currency basket and ends with P-6, which 

contains the returns on investment currencies. The CT return itself is then the difference of P-

6 and P-1. Table 1 provides a statistical summary of the return time-series of these currency 

baskets. 

                                                
4 All return series are expressed in logarithmic format throughout the paper. 
5 Table A. 2 provides an overview of excluded time frames according to large CIP violations for all currencies, 
respectively. 
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[Insert Table 1 about here.] 

The first row monotonically increases in average returns when moving from P-1 to CT. 

Despite the financial crisis in September 2008, the CT return series is the only one that is 

significantly different from zero at the 10% level. In row three and four, you will find the 

average interest rate differential in terms of the foreign rate (IRDf = if-i) and average spot 

returns (Dspot). According to UIP, these values should sum to zero on average. Nevertheless, 

we see that P-1 currencies earn a negative carry of 139 basis points (bps) annually, while 

appreciating by only 64 bps. On the other hand, P-6 currencies earn an average of 708 bps but 

depreciate only by an average of 365 bps. The difference between Dspot and IRDf 

monotonically increases from P-1 to P-6, which aligns with the findings by Lustig et al. 

(2011). A similar monotonically increasing pattern arises for the standard deviation for P-1 to 

P-6, pointing to a less stable return series of investment currencies compared to funding 

currencies. This is not the case for portfolio skewness and excess kurtosis. Here, the 

monotonic pattern is only evident for P-1 to P-5 for skewness and P-1 to P-4 for kurtosis. 

Average transaction cost adjusted currency portfolio returns are provided in the row Mean 

(ba). It is assumed that the costs are primarily driven by trading bid and ask prices in the 

respective forward and spot market at initiation and end-of-month dates. The costs also rise 

monotonically from low yielding (98bps) to high yielding currencies (173bps), leading to 

average transaction costs of 117bps per year. Furthermore, there is no evidence of significant 

return autocorrelation of investment currency baskets or the CT portfolio, as it is found in 

Menkhoff et al. (2012a). The Sharpe ratio also rises monotonically from P-1 to CT, which 

points to the fact that the advantage of rising IRDf’s are not burdened by higher risk. Also, the 

Higher Moment Sharpe ratio (SRHM), a Sharpe ratio that accounts also for the third and fourth 

moment risk,6 increases in the same manner as the original SR but on a lower basis.  

 

Currency Risk Factors  
We have seen that FX portfolios sorted on their IRD values are differently exposed to 

higher moment risk, which often increases or decreases monotonically with higher interest 

rate levels. The CT strategy merges both extreme IRD portfolios, earning a significantly 

positive return over time, with higher Sharpe ratios. The forthcoming analysis will use several 

different risk factors to uncover the risk anatomy of the CT. It will show that the CT excess 

return is a compensation for (i) the global 2nd and 3rd FX moment risk, (ii) to foreign money 
                                                
6 The Higher Moment Sharpe ratio (SRHM) is according to the definitions in Broll (2016b) that is introduced in 
Appendix A. 
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stock and inflation growth rates, (iii) changes to the VIX index, and (iv) to changes of a Carry 

Trade Activity Index that tracks the position changes of currency futures.  

In the following analysis, all risk variables used in the empirical section will be introduced, 

accompanied by the respective underlying theory and the econometric model.  

 

Implied Volatility Smile Procedure 
In order to recover FX option prices, this paper makes use of an option implied volatility 

smile interpolation model developed by Reiswich and Wystup (2012). The resulting volatility 

smiles are comparable to other smile procedures used in practice; e.g. the vanna-volga method 

from Castagna and Mercurio (2007). It uses the input parameters 25-delta butterfly, 25-delta 

risk reversal, at-the-money (ATM) volatility mid quotes, and the respective LIBOR interest 

rates for 1m and 3m maturities, respectively. The volatility smile gives you information on the 

current volatility level of different strike prices from a single option maturity. This offers the 

opportunity to recover option prices and use them to compute implied moment risks. The 

implied volatility data is taken from Bloomberg via Datastream. 

 

Higher moment risks 
The computation of the second- and third-moment risk is based on the theoretical 

foundation derived from Neuberger (2012). While the variance risk gives information about 

the degree of price fluctuation for a given time period, the third-moment risk, or skew risk, 

defines the asymmetry of a return distribution. A negative skew is often referred to as the 

crash intensity of an underlying asset. In order to place a bet on a specific moment risk of an 

underlying asset, one can trade a moment swap, where the option-implied moment is swapped 

against the realized moment risk. This is practically done with building an option portfolio 

that resembles that moment risk and is subsequently hedged to neutralize asset price 

fluctuations. Also, the difference between realized and implied moments is usually used to 

detect risk premiums for any higher risk moment.  

While realized moment risk is computed out of an observed return distribution at time 

frame t:T, implied moment risk follows from risk-neutral expectation embedded in option 

prices at t with maturity date T. The advantage of the definition by Neuberger (2012) is that 

the realized and implied variance and the realized and implied skew risk perfectly aggregate 

to each other. This Aggregation Property of realized and implied moment risk ensures that 



 
 

15 

both measures are equal in expectation - regardless of the computation frequency used. It is 

assumed that the price process of exchange rates is martingale. 

  Neuberger (2012) defines variance through the function gV(r) ≡ 2(R - r), where R means 

the discrete return and r the log return of an asset. This variance definition of gV differs from 

the more conventional formula of gVar(r) ≡ r2. However, Jiang and Tian (2005) have shown 

that using squared log returns in a standard variance swap yield an imperfect aggregation of 

the realized and implied leg. 

 Therefore, it follows from gV that the realized variance from log returns is defined as:  

𝑅𝑣𝑎𝑟",& = 	 2
𝐹"=>,& − 𝐹",&

𝐹",&
− 𝑙𝑛

𝐹"=>,&
𝐹",&

&

"AB

≈ 2
𝑆"=> − 𝑆"

𝑆"
− 𝑙𝑛

𝑆"=>
𝑆"

&

"AB

 
 

(4) 
 

Due to data limitations, this paper uses the spot rate 𝑆"	as a forward equivalent in order to 

compute the realized variance (Rvar). According to the function gV, the implied variance 

(Ivar) that perfectly aggregates to Rvar can be priced with a continuum of options, using the 

spanning approach of Bakshi and Madan (2000):   
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𝐾NGOPQHI,J

∆𝐽(𝐾N) +
𝐶",& 𝐾N
𝐾NGOPSHI,J

∆𝐽(𝐾N)  
 

(5) 
 

The implied variance Ivar is comprised of a portfolio of out of the money (OTM) call and 

put options. The second RHS term (5) characterizes the discrete approximation, where ∆𝐽(𝐾N) 

defines the difference between strike prices, which is computed as follows:7  

∆𝐽(𝐾N) ≡ 	
𝐾N=> − 𝐾NU>, 𝑓𝑜𝑟	0 ≤ 𝑗 ≤ 𝑁	(𝑤𝑖𝑡ℎ	𝐾U> ≡ 2𝐾B − 𝐾>, 𝐾^=> ≡ 2𝐾^ − 𝐾^U>)	

0,																																																																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 
 (6) 

 

We will turn now to the definition of the third-moment risk, which is more complicated 

than the variance risk. Neuberger (2012) defined a g-function gThM, that approximates the 

skew risk of log returns. It can be expressed as follows: 

𝑔&bc ∆𝐼𝑣𝑎𝑟d, 𝑟 ≡ 3𝑅	∆𝐼𝑣𝑎𝑟d + 6(𝑟 + 1 + 𝑅 𝑟 − 2𝑅) 
 

(7) 
 

The term DIvarE means the first difference of the implied variance of the entropy contract 

that is somehow related to the definition (5), but still incorporates the intuition of variance 

                                                
7 The finite approximation of formula (6) has been used in Kozhan et al. (2013), who investigated in variance 
and skewness risk premiums for the S&P 500 equity index. 
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risk.8 It’s clear from gThM that the realized third-moment risk, which has the desired 

Aggregation Property, can be expressed as follows:  

𝑅𝑡ℎ𝑚",& = 	 3
𝐹"=>,& − 𝐹",&

𝐹",&
𝐼𝑣𝑎𝑟"=>,&d − 𝐼𝑣𝑎𝑟",&d + 6 𝑙𝑛

𝐹"=>,&
𝐹",&

+
𝐹"=>,&
𝐹",&

𝑙𝑛
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𝐹",&

&
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(8) 

 

While this paper computes realized moments at a daily frequency, Neuberger states that 

the higher the return frequency, the more efficient the resulting realized moment.9 The 

realized skew risk can be divided into two parts. The term within the first curly braces is 

interpreted as the covariance between the asset return and the change in variance, also known 

as the leverage effect. Under the second curly braces, an unconventional expression of cubed 

asset returns is applied. While the latter disappears in the limiting case, only the covariance 

term survives. This conclusion is essential to appropriately characterize skew risk in financial 

markets, while other skew definitions fail to incorporate the leverage effect into their 

calculations (e.g. Schoutens, 2005). 

The implied third-moment risk (Ithm) can also be expressed as a continuum of options, 

taking the function gThM as a basis and using the spanning approach of Bakshi and Madan 

(2000):10  
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(9) 

 

The discrete version using a finite set of options applies as: 

𝐼𝑡ℎ𝑚",& = 	
6
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𝑃",& 𝐾N (𝐹",& − 𝐾N)
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(10) 
 

We see that implied skew consists of a portfolio of OTM puts and calls, where calls are 

held long and puts are held short. Interpreting a positive implied skew in this context would 

mean that current call options are more expensive than their corresponding put counterparts, 

and therefore the market expects a more pronounced upward slope return distribution in the 

future.  

For the discrete calculations of the implied variance and skew risk according to (5) and 

(10), a string of 20 put and call OTM options will be used, respectively. The option strings are 

equally spaced between the (+/-) 0.10 and (+/-) 0.50 option delta for calls and puts, 

                                                
8 The definition of IvarE is discussed in Appendix B. 
9 Please be reminded that for the computation of Rthm, the spot prices are taken instead of forwards. 
10 A more thorough derivation of the implied third-moment risk is provided in Appendix C. 
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respectively. Instead of using the third-moment risk, this paper uses its standardized form, that 

is comparable to the conventional measure of skewness and is more Gaussian distributed as 

the pure third-moment risk. As a result, realized skewness is defined as Rskew = Rthm / 

Rvar3/2. Implied skewness is simply expressed as Iskew = Ithm / Ivar3/2.  

 

Pre- and Post-Crisis FX Moments 
Another interesting aspect of the second- and third-moment risk in currency markets can 

be seen when comparing pre- and post-crisis levels. Table 2 offers an interesting overview of 

the second- and third-moment risks.  

[Insert Table 2 about here.] 

Panel A gives an overview of the average volatilities, which are simply the square root of 

the respective variance and skewness figures during the pre-crisis period for P-1 to P-6 

currency baskets. Realized volatilities are lowest for funding currencies and highest for 

investment currencies, and increases monotonically with forward discounts, which can also 

be observed in Table 1. Also, funding currencies, on average, have a positive skewness, while 

the investment currencies are prone to crash risk (negative skewness). Whether a significant 

risk premium for volatility and skewness risk is observable has also been tested. The number 

in brackets shows T-statistics11, indicating a significant difference between the realized and 

implied moment risk. Here we see that in the pre-crisis period, there is no existence of a risk 

premium for volatility and skewness risk, except for P-4 for volatility risk. This means that 

there is no significant priced premium in FX option prices to be insured against rising 

volatility or falling skewness risk. This is not the case for post-crisis moment risk. The 

realized volatility levels are about 20% higher - except for P-6 currencies, and realized 

skewness is 36 bps lower on average for all currency baskets. The most important difference 

from the pre-crisis period is that volatility and skewness risk premiums are significant in 

magnitude for nearly all portfolios - at least at the 5% level. This means that investors are 

more willing to pay a premium to be insured against high volatility, or crash risk, post-crisis. 

Another interesting aspect is that realized volatilities almost cut in half after a crisis period, 

whereas skewness levels are even lower post-crisis compared to mid-crisis levels.  

                                                
11 Inference is based on using the bootstrap method with 10,000 draws, in order to estimate standard errors of the 
implied and realized risk moment differences. The confidence bounds are then approximated using the normal 
distribution. These bootstrapped inference appears to be more conservative than conventional HAC standard 
errors. 
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This discovery is in line with the findings of Farhi et al. (2015), who observed a 

remarkable difference between pre- and post-crisis risk reversal levels that mirror the 

skewness risk definition. For 45 G-10 cross-currency pairs, Jurek (2014) reported significant 

variance and skewness risk premiums for the majority of exchange rates, concluding that 

variance and crash risk is priced in the currencies cross-section. Caballero and Doyle (2012) 

find that the CT strategy even produces significantly positive excess returns, when 

subsequently hedged with FX options. The fact that implied volatilities traded at very low 

levels in the pre-crisis period supported these results.  

 

Carry Trade Activity Index (CTI) 
This paper provides a novel measure of carry trade activity. The most common data source 

for the FX derivatives market is the weekly Traders in Financial Futures (TFF) report 

provided by the U.S. Commodity Futures Trading Commission (CFTC). While future contract 

data is taken from the CME, which is the biggest FX market exchange, it is still remarkably 

small compared to the Over-the-Counter (OTC) market. According to statistical data from the 

Bank of International Settlement (BIS), the notional amounts outstanding in FX derivatives 

for the exchange traded market relative to the OTC market is only about 0.5% for June 2015. 

However, the CFTC provides relatively large records of historical data sets that are presented 

in various settings. 

The TFF report offers FX future contract data on long, short, and spread positions; it 

distinguishes between three different trader groups, Commercial, Non-Commercial, and Non-

Reportable. The group of traders that are most likely to take action in CT positions are of 

primary interest. This paper follows the logic of Brunnermeier et al. (2009), Breedon et al. 

(2015), who describe the Non-Commercial trader group as a group of speculators that are 

potentially engaged in CT positions. The data will be transformed to capture the size of net 

future long positions relative to all futures at risk. This can be formulated as follows: 

𝑆𝐶𝐹"i = 	
𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"i − 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"i

𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"i + 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"i	
 

 
(11) 

 

The ratio 𝑆𝐶𝐹"i stands for speculators capital in futures in the foreign exchange rate k at 

time t.12 It illustrates the degree of speculation to the long or short side of a single foreign 

                                                
12 This definition follows from Ruf (2012), who analysed the skewness risk premium in commodity markets, and 
uses this as a market pressure variable. 
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currency in the futures market.13 The SCF measure is rather practical, since it always lies 

between -1 and 1, where a positive realization translates into a net investment in the foreign 

currency funded by the USD, and vice versa. As this can be seen as a carry trade on a two-

country level, the extension to a multi-country level or CT strategy is obvious: 

𝐶𝑇𝐼"O = 	
1
𝐾 max

opq
𝑆𝐶𝐹"i

O

iA>
−
1
𝐾 min

opq
𝑆𝐶𝐹"i

O

iA>
 

 
(12) 

 

The Carry Trade Activity Index (CTI) averages the SCF values of K high-yield currencies 

and deducts the average SCF values from K low yield currencies, using Sample TFF 

currencies. This simple expression should capture on a multi-currency level, the average 

degree of speculation in CT currencies. While this index is rather limited on up to nine 

currencies in the relatively small exchange traded future market, it will be seen in the 

empirical section that CT returns clearly respond to changes of the CTI. A practical extension 

on the CTI will be made, enlarging the future universe with future positions of the Non-

Reportable traders group. This step seems reasonable, since the correlation of position 

changes to the Non-Commercial trader group is fairly high (avg. 0.50). 

As the CTI seems to be very similar with the procedure used in Brunnermeier, Nagel, and 

Pedersen (2009) (BNP), the following differences are crucial: (i) the CTI is an aggregated 

measure that uses the respective average investment ratios of funding and investment 

currencies in a time-series regression, while the BNP employs any individual currency ratio in 

a panel regression framework; (ii) the extended CTI has a somehow broader information set, 

with adding the Non-Reportable traders into its scope; and (iii) the CTI distinguishes between 

funding and investment currencies by using the K extreme high and low yielding currencies in 

the sample, whereas the distinction made by the BNP relies solely on the sign of the forward 

discount rate of any FX rate. The latter point, especially, is often inappropriate in small 

samples with regard to funding currencies. While the forward discount basically mirrors the 

interest rate differential to the USD, some low yield currencies would be treated misleadingly 

as investment currencies in times of relatively low USD-rates.  

 

Macroeconomic Risk Factors 
Macroeconomic risk variables have got a longstanding presence in exchange rate literature. 

After the breakdown of the Bretton-Woods system in the 70’s, the monetary model was one 

                                                
13 A similar ratio has been used in Brunnermeier et al. (2009), where they used the total Open Interest in futures 
in the denominator. 
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of the most prominent models for exchange rate determination (e.g. Frenkel, 1976). While 

these kind of models do not provide sufficiently stable results for the exchange rate (see 

Cheung et al., 2005; Rossi, 2006), exchange rate returns nevertheless seem to exhibit 

sensitivities to macroeconomic risks. In the studies of Lustig and Verdelhan (2007), and De 

Santis and Fornari (2008), evidence is found that foreign currency returns are related to 

domestic investors consumption growth risk. While funding currencies reduces the risk of 

consumption growth for the domestic investor, foreign high-yield currency holdings increase 

consumption growth risk. Therefore, excess returns to the CT strategy have been viewed as a 

compensation for additional exposure to the domestic consumption growth risk. This became 

especially visible in the financial crisis in 2008-2009, when CT returns exhibited large losses. 

While the theoretical model sounds economically appealing, the resulting coefficients often 

reveal only low or no statistical significance (see also Burnside, 2011). However, this paper 

will test the impact of foreign macroeconomic aggregates on CT risk apart from domestic 

macroeconomic variables. In this respect, going back to the vein of the monetary model, it is 

tested whether factor risks on the following three foreign macro variables, do have potential 

effects on CT returns: (i) the real money stock, (ii) the real income, and (iii) the price level. 

The macro risks are proxied by log changes to the money aggregate M3, industrial 

production14, and the CPI index of the respective foreign country. The variables (i) and (ii) are 

deflated by their corresponding CPI index level. 

Additionally, as another proxy for macroeconomic risk, it will be tested whether foreign 

stock market returns possibly spill-over to currency markets. Negative stock market returns 

are interpreted as a precursor of gloomy economic output or uncertainty. These returns are 

computed in their respective domestic currency, in order to serve as a pure indicator of 

foreign macroeconomic risk.  

 

Liquidity Risk Factors  
Liquidity risk is formally understood as price reaction of underlying assets due to 

decreased supply of risk capital. There are many ways to proxy for such risks, while the most 

prominent variables mentioned in currency literature are the currencies bid-ask spread and the 

US-TED spread (e.g. Menkhoff et al., 2012a). The former is measured as the relative distance 

                                                
14 Industrial production usually coincides with consumption growth data and has the advantage of being 
available at the monthly horizon. For the countries of AUD, NZD, CLP, and CHF there is no industrial 
production data available. Henceforth, the data on quarterly GDP data will be used instead and will be 
transformed into monthly observations using the cubic spline method. Also, for the following countries the 
broadest available money aggregate M2 have been used instead of M3: IDR, RUB, and TWD. 
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of daily bid and ask spot prices, averaged over the month, in order to mitigate impacts due to 

holiday or unusual effects. The TED-spread is the difference between 3m US-LIBOR and 3m 

US-T-Bill rates, where a higher premium is interpreted as lower available risk capital in the 

interbank money market. Additionally, inspired by Asness et al. (2013) and Bakshi and 

Panayotov (2013), an aggregated G10-TED spread will be built, which expands the money 

universe from only the US to the G10-countries money markets. 

 

Other Risk Sources 
A risk variable frequently used in currency literature is the VIX index (e.g. Ang and Chen, 

2010; Brunnermeier et al., 2009). It represents the implied variance computed out of 1m-

option prices on the S&P-500 equity index. The VIX index is often interpreted as a measure 

of investors risk aversion due to the importance of the US stock market for the global 

economy. Additionally, this paper checks the impact of the CBOE SKEW Index (SKEW) that 

represents the implied skewness risk of the same stock market index.15 Another factor that is 

closely related to macroeconomic risk is the index on Economic Policy Uncertainty (EPU).16 

It may consist of information from economic variables that has been overlooked. It collects 

data from newspaper articles related to economic policy uncertainty, US tax provisions, and 

forecast dispersions for economic aggregates. The use of these uncertainty indexes is 

motivated by the work of Balcilar et al. (2015), who found evidence of a relationship between 

EPU index changes and the variance risk of several dollar-based exchange rates. Since CT 

returns are prone to FX variance risk, it is likely that through these channels CT returns are 

affected.  

Furthermore, encouraged by Asness et al. (2013), who found evidence that momentum and 

value risk premiums exhibit strong effects globally and within eight different asset classes, 

this paper uses factor risks on short term FX momentum and FX-value strategies to uncover 

its effects on CT returns. 

 

Factor Mimicking Portfolio (FMP) 
A factor mimicking portfolio (FMP) is a portfolio that consists of underlying assets that 

represent a background risk factor. It is usually constructed as a high minus low (HML) zero 

investment portfolio, which is often referred to as the portfolio approach. The setup procedure 

                                                
15 The data on the VIX and SKEW index is obtained from the historical section on the Chicago Board Options 
Exchange’s (CBOE) website. 
16 Economic Policy Uncertainty data and its corresponding sub-indexes are collected from 
www.policyuncertainty.com . 
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can be characterized as follows: The underlying assets (FX rates) are sorted on a single risk 

factor; for example the variance of month t. Then for any month t, it is decided to purchase 

the fraction of FX rates with the highest variances, and subsequently sell the fraction of FX 

rates with the lowest variance levels. The return series from this portfolio is supposed to 

mimic the risk of global FX variance. 

 The most popular FMP’s are the book-to-market risk factor (HML) and the small-minus-

big market capitalization risk factor (SMB) proposed by Fama and French (1993) in their 

three-factor model. These two factors augment the well-known market covariance risk of the 

CAPM model (see Sharpe, 1964), which explains equity market returns.17 When building 

mimicking portfolios, usually two questions arise: (i) what is an appropriate fraction size, and 

(ii) what weighting scheme should be applied? While the fraction size is usually determined 

between 20-40% as a rule of thumb, the weighting schemes applied here are restricted to the 

two possibilities of an equal weight (EW) or loading weight (LW).  

In a comparative study of mimicking portfolio construction, Asgharian (2004) proposes for 

FMP’s following the portfolio approach the LW approach. He argues that this approach 

generates the best relation between the risk factor and its FMP, when assets are weighted 

according to their relative risk factor (rf) loadings. This is reached using the following 

weights for the low risk fraction: 

𝑤i,"t = 1 −
𝑟𝑓i," − 𝑚𝑖𝑛i(𝑟𝑓i,")

𝑚𝑎𝑥i 𝑟𝑓i," −	𝑚𝑖𝑛i(𝑟𝑓i,")
 

 
(13) 

 

For the high risk fraction: 

𝑤i,"u = 1 −
𝑚𝑎𝑥i 𝑟𝑓i," − 𝑟𝑓i,"

𝑚𝑎𝑥i 𝑟𝑓i," −	𝑚𝑖𝑛i(𝑟𝑓i,")
 

 
(14) 

 

Here, the weight 𝑤i,"t 	 𝑤i,"u 	represents the weight of currency k, taken from the lowest 

(highest) risk fraction L (H) at time t. The resulting weights are then normalized to sum to 

one, respectively.  

  To ensure that the FMP’s developed here are not decoupled from the risks at hand, the 

weighting scheme as well as the fraction size will not be chosen independently of the risks 

analysed. This is done by comparing the correlation matrix of the FMP return series with the 

correlation matrix of the underlying risk factor time-series, which serves as benchmark. The 
                                                
17 In a new study by Fama and French (2015), the three-factor model was expanded to a 5-factor model to better 
describe excess returns on stocks. They constructed two new FMP’s that sorts stocks on their profitability 
(robust minus weak) and its investment exposure (conservative minus aggressive).  
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fraction size and weighting scheme are subsequently changed until these two correlating 

matrixes are as close as possible to each other, ensuring that the interdependencies among the 

FMP’s and their risk variables are similar. This procedure ascertains that the resulting 

coefficient estimates are not biased due to misspecification.  

In order to construct a reliable benchmark risk time-series, each risk variable needs to be 

transformed into a global risk factor. This procedure applies for any risk analysed here and 

can be formulized as follows18:  

𝑟𝑓"vwxyzw =
1
𝐾 𝑟𝑓i,"

O

iA>
 

 
(15) 

 

So, 𝑟𝑓"vwxyzw represents a global FX risk factor that is aggregated and averaged over all K 

currencies from the respective sample at time t. After transforming all country-specific risks 

into their global representatives, the benchmark correlation matrix can be computed. 

As a result, the best fit for factor mimicking portfolios according to all macroeconomic 

risks, FX-Momentum, FX-Value and the risk according to bid-ask spread changes is achieved 

using the loading weighting scheme and a fraction size of 30%. For all FX realized and 

implied moment risks and the risk coming from the aggregated G10-TED spread index, the 

best fit appears using the equal weighting scheme, with 30% fraction size for all moment risks 

and 40% fraction size for the G10-TED spread.  

 

Econometric Model  
This paper concentrates on a time-series analysis using ordinary least squares (OLS) as the 

primary econometric model. The objective is to uncover the risk profile of monthly carry 

trade excess returns (𝑟𝑥":&{&) by regressing on contemporaneous monthly risk variables (𝑥|,":&). 

These risk variables are in the form of monthly returns coming from factor mimicking 

portfolios (factor risks)19, as first differences of a risk variable, or as residuals taken from an 

AR(i)-model. The main econometric framework can be characterized as follows: 

𝑟𝑥":&{& = 𝛼 + 𝛽|𝑥|,":& + 𝜀"
^

|A>
 

 
(16) 

 

                                                
18 One exception is made for the realized and implied skewness risks, which are additionally signed by their 
interest rate differential sign(if-i), taking possible “flight-to-quality” affects into account in times of market 
turmoil. This procedure has been used in Rafferty (2012) for his global FX skewness risk variable.  
19 In the forthcoming analysis, the risk variables that are constructed out of factor mimicking portfolios will be 
superscripted with FMP and are referred to as factor risks. 
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Inference is based on a heteroscedasticity and autocorrelation corrected (HAC) covariance 

matrix, using four Newey-West lags. As long as the risk variables are all FMP’s, the constant 

𝛼	can be interpreted as risk adjusted monthly return. The OLS results will be checked for 

robustness against a model based on Generalized Method of Moments (GMM), which tests for 

possible errors-in-variables in the FMP’s return series.  

 

4 Empirical Results 
As outlined in the previous sections, the empirical analysis concentrates on the evaluation 

of the comprehensive risk profile of the FX carry trade strategy (CT). In order to show that 

historically high and efficient CT returns are compensation for bearing risk, the analysis in 

Table 3 uses factor mimicking portfolio returns sorted on a various set of global FX moment 

risks.  

[Insert Table 3 about here.] 
 

Panel A of Table 3 starts with time series regression results, using factor risks of realized 

and implied variance and skewness risk as well as their risk premiums that are defined as 

Rvar-Ivar, for the variance risk premium (VRP), and Iskew-Rskew, for the skewness risk 

premium (SRP), on contemporaneous carry trade returns (rxCT). The first two columns show 

significantly high results for the realized variance and skewness risk, respectively - both on 

the 1% significance level and an impressive high R2 of 35.9% for RvarFMP. The next two 

regressions compute the impact of the option-implied versions of both return moments. While 

IvarFMP has a significantly positive relation to rxCT with T-statistics of 7.2, which is 

comparable to RvarFMP, the coefficient result of IskewFMP is much stronger compared to its 

realized counterpart RskewFMP. IskewFMP exhibits a negative loading on rxCT with T-statistics 

of -6.79, which is more than twice as much compared to RskewFMP and quite high R2 of 

41.7%. These first regressions demonstrate that CT returns are highly dependent on global FX 

second and third order moment risk. One can state that FX variance and skewness risk are 

economically relevant risk sources for CT returns. While the positive coefficient on variance 

risk means that CT returns are exposed to the long side of the FMP, the negative loading on 

skewness risk means a significant exposition to the short side of the FMP. Hence, as a first 

result, one can state that rxCT is significantly dependent on high global FX variance risk and 

on negative global FX skewness or FX crash risk. Turning now to the risk premiums of both 

moment risks in regression five and six, we see a highly significant coefficient for the global 

FX VRP (1% level) and a slightly lower impact of the global FX SRP (10% level) on CT 
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returns. The R2’s are much lower with 13.9% and 4.3%, respectively, compared to the factor 

risks on the implied second- and third-moment. In column seven, a multiple time series 

regression with all six factor risks shows that RvarFMP and IskewFMP seem to be the only 

significant risk sources when regressed together. But this result is biased towards high multi-

collinearity, since the values for the variance inflation factor (VIF) for RvarFMP and IvarFMP 

reach 13.1 and 9.7, respectively. Therefore, in order to minimize multicollinearity effects, 

RvarFMP is dropped out in the following regression and it turns out that IvarFMP and IskewFMP 

are now highly significant with T-statistics of 6.67 and -11.14, respectively. But a high 

correlation of about -70% remains between RskewFMP and SRPFMP , so that the last regression 

also drops RskewFMP. As a result, SRPFMP becomes significant at the 5% level, which means 

that the global FX skewness risk premium seems to capture additional information for 

describing contemporaneous CT returns, beneath the global FX option-implied variance and 

skewness risk.    

In sum, we have seen that especially high global FX implied variance and negative implied 

skewness risk are economically important risk sources that impact CT returns. Interestingly, 

the two risk sources are not significantly correlated (-0.15) to each other. Together with the 

skewness risk premium, they explain nearly 72% of CT return variation. Nevertheless, the 

constant factor, which is interpreted as the risk adjusted return, is still highly significant at the 

1% level. This indicates that not all relevant risk sources are identified.  

The results on RskewFMP are in line with the global skewness variable proposed by Rafferty 

(2012). He found that realized skewness is a significantly priced risk source that is able to 

describe cross-sectional returns of currency portfolios. Jurek (2014) analysed tail risk hedged 

CT returns and he states that crash risk can account for nearly one third of the total risk, 

which is comparable to the negative loading of IskewFMP on rxCT and a R2 of about 42%. Also, 

Burnside et al. (2011a) have shown that CT returns continue to be significantly positive—

even when hedged by at-the-money FX options, which mirrors the significant risk adjusted 

return from the third regression with IvarFMP. However, the advantage of using risk-

mimicking portfolio returns is that one can put these various pieces of evidence on FX 

moment risk into perspective with each other, and thus draw a more profound risk profile of 

the carry trade strategy over all.  

While the FMP’s in Panel A have been sorted on the level of the underlying moment risks, 

Panel B changes the perspective and quantifies standardized variance and skewness risk 
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changes.20 Looking at the first four regressions, one can see that changes of realized moments 

do not exhibit significance; both implied variables are significantly positive in relation to CT 

returns. Nevertheless, R2 values appear to be relatively low at around 5%. When regressing all 

four variables together in a multivariate setting, dIvarFMP and dIskewFMP lose a bit of strength 

but continue to be significant. The last regression compares both factor risks with Panel A’s 

most significant variables. It turns out that the FMP’s on Ivar, Iskew and the SRP matter more 

in explaining CT returns, since dIvarFMP and dIskewFMP lose their significance.21  

 

Impact of Macroeconomic risk on CT returns  
We will turn now to macroeconomic factors that are possibly connected to currency risk 

through changes of foreign real money (dRMFMP), real production (dRP), inflation (dCPI), or 

equity returns (dEQ). The same procedure applies for these variables as for the FX moment 

risk premiums, where foreign currencies are sorted on these specific risks forming a FMP. 

   

[Insert Table 4 about here.] 

Table 4 presents the impact of macroeconomic aggregates and equity risk on carry trade 

returns. The first four columns show that foreign real money and CPI inflation changes are 

highly significant (1% level) on a single regression setup. In contrast, the FMP’s on foreign 

real production and equity risk changes do not explain CT returns at all. In a multiple 

regression setup in the fifth regression, we see that former results are confirmed, where the 

coefficients on dRMFMP and dCPIFMP becoming even stronger - with high T-statistics of 5.49 

and 5.10, respectively, and explaining more than 28.2% of the CT return variation. In order to 

see whether foreign macro risk can cope with results from the previous Table 3, the last two 

columns augment the regression with implied moment factor risks. One can observe that even 

with inclining moment risk into the regression, the coefficients on the money risk aggregates 

are remarkably stable. The coefficient for dRMFMP loses half of its strength, being only 

significant at the 5% level, while dCPIFMP are almost identical with slightly lower T-statistics 

of still high 4.19. Furthermore, the macro aggregates drive out the SRPFMP that are no longer 

significant. All variable correlations vary between +/-27%, so that multi-collinearity problems 

can be refused. The result shows that the positive coefficients on dRMFMP and dCPIFMP, 

                                                
20 The standardization is done using the simple differences of past moment risk changes divided by its sample 
standard deviation, in order to account for the high variability among FX moment risk. The same regressions 
were also run without using standardized values, which lead to similar results but somehow lower T-statistics. 
21 All regressions in Table 3 have been repeated with factor mimicking portfolios sorted on the same moment 
risks with 3m time frames. The results are qualitatively the same and are therefore omitted to save space. 
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interpreted as high foreign real money and high foreign CPI changes are important drivers for 

explaining CT return risk, together with global implied variance and skewness risks. This 

result can be linked to findings of Jylhä and Suominen (2009) and Buraschi and Jiltsov 

(2005). They have found evidence that inflation risk and money supply are significantly 

positively related to nominal interest rates levels of a particular currency. Since the carry trade 

is constructed out of high minus low nominal interest rate currencies, a significant effect on 

CT returns can therefore be expected. Furthermore, the T-statistic of the risk adjusted return is 

significantly reduced to only 0.21, indicating, that the majority of the CT risk exposure is 

sufficiently described by global FX moment and foreign real money and CPI growth risks. 

The last regression omits insignificant variables, which leads to even higher T-statistics for 

especially dCPIFMP and IvarFMP and a remarkably high R2 of almost 75%.  

Impact of Carry Trade Activity on CT returns  
The Carry Trade Activity Index (CTI) mirrors relative future position changes traded on 

the CME for currencies that are likely to be part of the investment scope of carry traders. 

Therefore, changes to this index (dCTI) are supposed to resemble risk exposure changes to 

the carry trade—and in this respect, influence CT returns. 

 

[Insert Table 5 about here.] 
 

The first three regressions of Table 5 report on the contemporaneous effect of 𝑑𝐶𝑇𝐼ziA| on 

CT returns (rxCT). The superscript k indicates the number of long/short currencies involved in 

the carry trade. To control for possible new in- or outflows in future contracts, the regressions 

adds up the respective 1y log change of future’s open interest (dOIk=i). It becomes visible that 

with increasing currencies k, the positive significance of dCTI on rxCT becomes stronger. The 

positive coefficient indicates that increasing (decreasing) CT trade coincides with higher 

(lower) CT returns. The T-statistic reaches 4.28 with R2 of 13.2% for a CTI, composed of 

three long and short currencies. The next three columns extend the CTI composition to the 

group of “Non-Reportable” traders, which is indicated by the subscript b. This trader group 

exhibits similarities to the already known “Non-Commercial” trader group, so that they can be 

characterized as retail or small speculators. Here we can observe an even stronger effect on 

CT returns for 𝑑𝐶𝑇𝐼yiAGand 𝑑𝐶𝑇𝐼yiA�, reaching T-statistics of 4.53 and 5.34, and an even 

higher R2 of 14.6% and 17.3%, respectively. The next regression tests in a multivariate setting 

for robustness against IvarFMP, IskewFMP, dRMFMP, and dCPIFMP. It shows that 𝐶𝑇𝐼yiA� 
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continues to be significant at the 1% level, with remarkably stable results for the other factor 

risks. While these results seem to be more than plausible, this paper is the first to my 

knowledge that reports such strong effects of CT activity changes on contemporaneous CT 

returns. Figure 1 plots a six-month moving average22 of the 𝐶𝑇𝐼yiA� as well as the cumulative 

CT returns, in order to visualize the former results.  

[Insert Figure 1 about here.] 

One can see that a long horizon of rising returns coincides with increasing CTI values. 

Likewise, it’s clear that carry trade crashes come with abrupt declines in carry trade positions. 

This picture has been analysed by Brunnermeier et al. (2009), who concentrated on liquidity 

spirals that affect CT risk positions. They find evidence that a sudden decline in risk capital 

leads to unwindings of CT positions and consequently to negative skewness in the CT return 

distribution. In order to clarify this idea, the next regression uses changes of the TED spread 

(dTED), where high values indicate states of illiquidity, and changes of the VIX (dVIX) 

control for the level of investor’s risk aversion. The results show that both variables are 

significant negatively related to 𝑑𝐶𝑇𝐼yiA�, which means that rising TED-spreads or higher 

VIX values lead to significant CT unwindings. This finding supports Brunnermeier and 

Pedersen's (2009) thesis, which argues that funding liquidity and market liquidity risk 

variables are mutually reinforcing and can lead to higher trader margins, a decline in a 

speculator’s position, and more negatively skewed returns.23  

The last two regressions check whether the global FX implied moment risks IskewFMP and 

IvarFMP alter the above results on dVIX and dTED. It turns out that dVIX becomes 

insignificant, whereas dTED and IskewFMP seem to play a central role in explaining 𝑑𝐶𝑇𝐼yiA�. 

The negative coefficient on IskewFMP means that negative returns on negatively skewed 

currencies coincides with contemporaneous carry trade unwindings, and vice versa. It is 

important to note that the correlation between IvarFMP and dVIX is significant at -0.56. 

Therefore, the last regression uses the variable dVIXortho instead of dVIX. The new variable 

explains the risk of investors risk aversion that is orthogonalized to IvarFMP.24 We can now 

                                                
22 The CTI is shifted 2-month backward in order to mitigate the lagging effect of the moving average. 
23 The finding here extends that of Brunnermeier et al. (2009), who did not find a significant relationship 
between dTED on FX future changes. In contrast to this analysis, they used country-fixed effect panel 
regressions with weekly data observations for the six currencies AUD, CAD, JPY, CHF, GBP, and EUR looking 
at the pre-crisis period 1992-2006. When the crisis period 07/2008-06/2009 is omitted in the regression here, the 
results become even stronger for dTED reaching a T-statistic of 4.07.      
24 dVIXortho can still be used as a tradable asset, since it is composed of a weighted portfolio of VIX futures and a 
factor mimicking portfolio of currencies sorted on implied variance risk. 
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observe that IvarFMP becomes also significant at the 5% level, and IskewFMP and dTED are 

more or less unchanged. The positive coefficient on IvarFMP certifies that rising global FX 

variance comes with reductions in CT positions.25 All in all, one can state that beneath the 

effect of decreasing risk capital, high levels of implied FX crash risk and FX variance risk 

contribute to unwindings in CT positions.26  

 

Liquidity Risk on Carry Trade Returns 
As outlined in the last section, we use two different liquidity risk proxies; the change of 

spot price bid-ask spreads (dBAS) and variations of the TED spread. Both variables will be 

used in form of FMP’s sorted on two different FX samples, due to the data restrictions 

regarding TED spread equivalents of emerging countries. Therefore, the FMP on dBAS is 

sorted using all Sample I currencies, whereas the FMP on TED equivalents is restricted to the 

G10-Sample (𝑑𝑇𝐸𝐷v>BHc�). Also, encouraged by the existing literature, there has been applied a 

TED Index consisting of single country TED spread equivalents for the G-10 universe, 

including the US-TED. Two different weighting schemes will be used. The first one is a 

simple, equally weighted TED Index (𝑇𝐸𝐷v>B
d��), and the second one is weighted according to 

a principal component analysis27 (𝑇𝐸𝐷v>B�{�).28 The regression of Table 6 concentrates on 

monthly changes to these TED indexes. 

 

[Insert Table 6 about here.] 

The first two columns of Table 6 present univariate regression results of dBASFMP and 

𝑑𝑇𝐸𝐷v>BHc� , respectively, but both coefficients lack statistical significance. The following three 

regressions are much more promising. The changes of the 𝑑𝑇𝐸𝐷v>B
d�� as well as the 𝑑𝑇𝐸𝐷v>B�{� 

are highly significant at the 1% level, with T-statistics of -2.93 and -3.40, respectively. Also, 

changes to the original US-TED spread show a comparably negative impact in terms of T-

statistics, all pointing to the fact that CT returns are decreasing with increasing states of 

illiquidity. The last regression nevertheless reveals that these effects vanish when regressed 

                                                
25 The last statement implies that a higher level of FX variance leads to on average declining foreign currency 
returns, which is usually the case.  
26 The regressions on dCTI uses also dSKEW as control variable with no significant effects, which has been 
omitted for convenience. dSKEW is the monthly first difference of the SKEW index, which is essentially the 
option-implied skewness of the S&P 500 equity index that is computed and published by the CBOE.  
27 The weights from the first principal component are taken into account, which explains almost 61% of the 
TED’s variation.  
28 Asness et al. (2013) applied innovations taken from an AR(2)-model from such a TED index. However, this 
paper also experiments with these innovations, but does not find any notably differences to simple changes of the 
US-TED or TED index. Therefore, results on TED’s innovations are omitted.  
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jointly with global FX implied moment risks, foreign macro risks and changes to CT 

activity.29 The overall results can be compared to findings in Menkhoff et al. (2012a), who 

showed in an asset pricing test that liquidity risk is priced in the cross-section of FX 

portfolios, but lack significance when tested jointly with e.g. FX volatility risk.  

The Impact of Other Risk Sources on Carry Trade Returns 
Other risk sources defined here are those associated with implied variance (dVIXCBOE) and 

implied skewness (dSKEWCBOE) changes to the S&P 500 index30, as well as innovations to 

the US Economic Policy Uncertainty (uPUI) and US News Uncertainty Index (uNUI) that are 

supposed to resemble investor’s states of risk aversion. While the implied moments are used 

as simple differences, the variables of uncertainty are defined as residuals taken from an 

AR(2)-model. These innovations can be interpreted as unexpected changes of the underlying 

indexes, since they are, by definition, uncorrelated to last two lags of the index. Also, the 

factor risks of FX momentum and FX value to CT returns will be applied using FMP’s that 

are sorted on 1m-past FX momentum returns (FX-MomFMP) and the 5y deviation from UIP31 

(FX-ValueFMP), respectively.    

[Insert Table 7 about here.] 

 

Starting with the first regression of Table 7, we see that dVIXCBOE is negatively and 

significantly related to CT returns, with a remarkable high T-statistic of -7.46 controlling for 

dSKEWCBOE. The later does not exhibit any significance. While the crash risk of the equity 

index is not priced in CT returns, the negative impact on implied variance has been reported 

in numerous papers and is often viewed as an indicator for the overall risk aversion of 

investors. Nevertheless, the risk adjusted return continues to be significant after controlling 

for equity implied moment risk. This is comparable to findings in Caballero and Doyle 

                                                
29 The other TED spread variables have been also tested jointly, but with even lower impact on CT returns. 
Furthermore, following Korajczyk and Sadka (2008) who studied alternative measurements for liquidity risk, it’s 
been tested whether shocks to the TEDUS, TEDEQW, and TEDPCA have a higher impact on CT returns. These 
shocks were defined as the residuals taken from autoregressions, using 1,2, and 3 lags, respectively. All of these 
variables do not contribute significant coefficient results in the multivariate regression.  
30 Also, implied volatility changes to the DAX, FTSE, and Nikkei have been analysed, where the volatility 
indexes of all three countries are significantly and negatively related to CT returns at the 1% level. This is due to 
a high correlation among these variables that range between 70% and 90%. Contrary to this, changes to 
contemporaneous realized volatility changes of the countries equity indexes do not have any significant effect on 
CT returns. This underlines the importance of option-implied moment variables over their realized counterpart.  
31 This FX-Value definition has been used in Asness et al. (2013), which is equal to the sum of consecutive 1m 
forward rate returns over the past five years. Since UIP predicts zero forward excess returns, it can be interpreted 
as the five-year deviation from UIP. In this respect, a positive value factor characterizes an overvalued currency 
and vice versa. 
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(2012). They constructed a hedging strategy for CT returns with rolling VIX contracts, but the 

resulting risk adjusted returns have still been found significant. 

 The second regression deals with the impact of FX-MomFMP and FX-ValueFMP factor risks 

on contemporaneous CT returns. Both coefficients show a negative sign, while momentum 

risk exhibits strong significance at the 1% level.32 The FX-MomFMP factor risk is almost 

identical to the currency strategy that is used in practice to earn a risk premium associated 

with past short-term momentum. The correlation to this strategy is mildly negative with -0.24, 

but the effects to CT returns seem to be strong, leaving risk adjusted excess returns still to 

appear significant. This contrasts the findings of Ang and Chen (2010), who reported a 

positive but insignificant loading of CT returns on 3m currency momentum, and a negative 

loading for the FX-value factor risk using a longer sample period from 1985 to 2009. In a 

comprehensive work on momentum strategies, Menkhoff et al. (2012b) states that both, 

momentum and CT strategies exhibit similarities in significant excess returns, but the return 

series are far from identical, with almost no correlation (0.04). Also Burnside et al. (2011b) 

highlighted differences of both strategies and showed that a combined portfolio strategy 

would strengthen the efficiency in terms of higher Sharpe ratios.  

The following two regressions concentrate on the impact of innovations to PUI and its 

news subindex NUI, respectively. Both regressions show, as expected, a negative impact on 

rxCT, although the coefficients of uPUI and uNUI are far from being significant with T-

statistics of about -1.1 and low R2 around 0.5%. The next regression puts all six variables 

together with significant factor risks from the previous tables. This leads to some interesting 

results. While dVIXCBOE stays significant only at the 5% level, with a dramatically reduced T-

statistic of -2.14, the coefficient on FX-MomFMP fails to retain a significant impact. At the 

same time, uNUI changes signs and becomes significant at the 10% level. Also, the impact of 

IvarHML is reduced to a T-statistic of 7.9, following the 10.16 reported in Table 6.  

However, the regression results are biased due to a negative correlation of -0.56 between 

IvarHML and dVIX, and a close to unity correlation between the two innovation terms uPUI 

and uNUI (0.96). Therefore, in the next regression dVIX is replaced by the orthogonalized 

factor risk dVIXortho used in Table 5, whereas uPUI is dropped out. It turns out that IvarHML 

becomes even stronger, reaching a T-statistic of 11.79 and a retired, significantly negative 

loading of dVIXortho at the 5% level on rxCT. Interestingly, the positive significance of uNUI 

increases to the 5% level. While the negative effects of dVIXortho are economically 
                                                
32 The factor risks on 3m and 6m past momentum returns do not exhibit any significant relation to CT returns 
and are omitted in the table. This is comparable to results of Menkhoff et al. (2012b), where the strongest FX 
momentum effects in the currencies cross section have been found for the shortest 1m period. 
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compelling, the positive effects on dNUI are not. Given the fact that uNUI showed a negative 

but insignificant effect on rxCT in an univariate regression, the positive and significant 

coefficients in a multivariate regression can be regarded as a positive relation to “residual 

risks” of CT returns. This effect becomes even more pronounced in the next regression, which 

omits the insignificant variables dSKEW, FX-MomFMP, and FX-ValueFMP, so that both uNUI 

and dVIXortho become significant at the 1% level. As a result, we can conclude that a 

significantly high excess return to the FX carry trade is a compensation for bearing risks. 

These risks have been characterized as (i) high global FX implied variance risk, (ii) negative 

global FX skewness risk, (iii) high foreign real money growth, (iv) high foreign CPI growth, 

(v) changes to the Carry Trade Activity Index, (vi) changes to the orthogonalized VIX index, 

and (vii) innovations to the US News Uncertainty Index. The risk adjusted returns to the CT 

are no longer significant after controlling for these risks and adjusted R2 reaches a remarkably 

high value of 77%, which adequately describes the risk anatomy of the CT.   

 Moreover, the most important risk variables, except for CTI and NUI, are tradable assets 

and can therefore be used as hedging instruments. Figure 2 compares monthly return 

observations of the unhedged (bar-chart) and hedged CT returns with all tradable factor risks 

(line-chart). The table below presents summary statistics that highlights the reduced return 

moments with respect to hedge activity. In particular, the annualized mean returns are close to 

zero and the standard deviation shrinks from 8.86% to only 4.30%. The Skewness and excess 

kurtosis coefficients are also reduced by 37.7% and 42.6%, respectively. Additionally, the 

interquartile range, minimum and maximum returns confirm the main picture with reductions 

of more than 50%. 

[Insert Figure 2 about here.] 

 

Furthermore, Figure 3 offers an overview of the autocorrelation structure of the residuals 

from the last OLS regression in Table 7. The autocorrelation function (ACF), together with 

the partial ACF (PACF), does not show any significant coefficient for the first 12 lags. This 

fact ultimately means that the residual risk resembles a white noise process, and therefore the 

underlying risk variables sufficiently describe the risk structure of carry trade excess returns. 

 

[Insert Figure 3 about here.] 

Errors-in-Variables Problem 
It is well-known that most data used in the empirical analysis contain errors of 

measurement. These errors-in-variables (EIV) lead to inconsistent ordinary least squares 
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(OLS) estimators, so that some researchers suggest using instrumental variables to circumvent 

this problem (see Bowden and Turkington, 1990). While it is often the case that suitable 

instruments are not easy to find, Coën et al. (2009) propose an estimation technique that only 

requires higher moments of the variable in order to mitigate EIV.33 With the use of the 

Generalized Method of Moments (GMM) estimation procedure (see Hansen, 1982), they 

showed that their iGMMHM (iterated GMM Higher Moments) model performs well at 

purging EIV and analysing the mimicking portfolios of the Fama and French model. They 

argue that FMP’s, constructed out of high minus low portfolios contain many nonlinearities 

that cannot be captured by classical CAPM or APT models because they assume a linear 

relationship between the returns to be explained as well as their risk factors. Their main idea 

to correct these nonlinearities is to add instrumental variables for all FMP’s variables that are 

expected to contain EIV, using their own lagged values up to the fifth order moment. They 

outlined that in a classical OLS regression the coefficients 𝛽 are underestimated in terms of 

lower absolute coefficients or less significant results. A complete picture of the properties and 

functionality of the iGMMHM estimation procedure are outlined in Appendix D. 

The last regression of Table 7 presents coefficient results of the iGMMHM model, taken 

as a robustness test to the previous OLS regression. To be more specific, in the iGMMHM 

calculation, an additional 25 instrumental variables are used, which are omitted to save space. 

These instruments are the first lagged higher moment variables for the five FMP risk 

portfolios IskewFMP, IvarFMP, dRMFMP, dCPIFMP and dVIXortho, respectively. We can observe 

that the coefficient estimates for the iGMMHM are almost identical for IskewFMP, IvarFMP, and 

dCPIFMP meaning that EIV is not present for these FMP’s and OLS lead to unbiased results. 

This is not the case for dRMFMP and dVIXortho. While dRMFMP appears stronger in magnitude 

relative to the OLS estimation, the impact of dVIXortho weakens and is only significant at the 

10% level. The coefficient for dRMFMP is higher and more significant, which is expected to be 

the case when EIV contamination is present. Almost all instrumental variables for dRMFMP 

exhibit significant coefficient results. However, dVIXortho as a mixed portfolio of IvarFMP and 

VIX futures, appears with much lower significance in the iGMMHM. Since the instrumental 

variables of dVIXortho do not show high evidence of strong EIV contamination, the impact of 

VIX changes have been just overestimated by OLS. Furthermore, the innovation term uNUI is 

fortunately not positively significant anymore in the iGMMHM estimation, which can also be 

regarded as evidence for an overestimation of the OLS procedure.  

                                                
33 Their technique builds on the work of Dagenais and Dagenais (1997), which is a variant of using higher 
moments to remove errors-in-variables.   
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Additional Robustness Tests 
To ensure that the regression results coming from factor mimicking portfolios are 

independent from the choice of the fraction size, it has been tested whether the coefficients 

change dramatically when increasing or decreasing fraction sizes by 10%, respectively. It 

turned out that the main results are unaffected. Furthermore, all regressions are re-examined 

omitting the financial crisis period from July 2008 to June 2009. This step uncovers the 

sensitivity of all coefficient results due to this extraordinary event. As a result, the level of 

significance is fairly untouched, while the strength in terms of T-statistics is only slightly 

reduced.34 

 
5 Conclusion 

It has been shown that the excess returns of the carry trade act as compensation for risk 

bearing; especially the risks from global FX option-implied variance and skewness risks. 

These are predominantly a source to uncover the risk anatomy of the carry trade. These 

findings are not only crucial for investors engaged in the carry trade, but also for 

understanding the risk inherent in any exchange rate market. This conclusion is due to the 

findings of Lustig et al. (2011), who found that cross-sectional currency portfolios are all, to 

some degree, exposed to the carry trade measured as a risk factor, and additionally to a 

constant factor - namely the dollar risk factor.  

However, six main drivers have been identified for driving carry trade excess returns, 

which are (i) high FX implied variance risk, (ii) negative FX implied skewness risk, (iii) high 

foreign real money growth, (iv) high foreign CPI growth, (v) changes to the Carry Trade 

Activity Index, and (vi) changes to the VIX index. The latter is the option-implied variance of 

the S&P 500 equity index, which is used here in an orthogonalized form. These variables 

explain almost 80% of the return variation in carry trade returns, leaving the risk adjusted 

return indifferent from zero. Moreover, the risk variables are constructed as factor mimicking 

portfolios, which can be used as hedging instruments for carry trade investments. Also, this 

paper delivers support for the theoretical model of the occurrence of the crash risk of an asset 

due to liquidity spirals (see Brunnermeier and Pedersen, 2009). More specifically, it has been 

shown that a decreased level of funding liquidity, proxied by the US-TED spread, 

accompanied by increased FX option-implied variance and skewness levels, leads to 

reductions of carry trade positions and ultimately to carry trade losses.  
                                                
34 All robustness tests are available upon request. 
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Figures and Tables 
 

Table 1. Summary Statistics of Currency Portfolios 

This table offers summary statistics about six currency portfolios sorted on their interest rate 
differentials (IRDf = if-i), where P-1 contains currencies with lowest and P-6 with highest IRDs. The 
carry trade portfolio return (CT) is P-6 minus P-1. Portfolio means, interest rate differentials (IRDf), 
spot changes (Dspot) are in terms of annualized log returns. P-values are based on HAC standard 
errors, with 4 Newey-West lags. Also, portfolio standard deviation (Std.Dev.), skewness and excess 
kurtosis, as well as the Sharpe ratio and Higher Moment Sharpe ratio (SRHM) are presented for any 
portfolio formation. Mean (ba) is the average portfolio return accounting for bid-ask spreads. AC(1) is 
the first order autocorrelation coefficient of portfolio returns. The sample period uses monthly 
observations from September 2003 to July 2015.  
 

Portfolio P-1 P-2 P-3 P-4 P-5 P-6 CT 
Mean -0.75 0.18 0.75 1.70 2.55 3.43 4.18 
p-values 0.73 0.90 0.73 0.51 0.38 0.28 0.07* 
IRDf -1.39 -0.22 0.81 2.06 3.77 7.08 8.47 
Dspot (sT-st) 0.64 0.40 -0.06 -0.36 -1.22 -3.65 -4.29 
Std. Dev. 7.50 8.13 8.51 8.37 10.34 12.01 9.05 
Skewness -0.08 -0.42 -0.32 -0.79 -0.89 -0.56 -0.34 
Excess kurtosis 0.40 1.51 1.10 2.39 2.12 0.82 0.68 
Sharpe ratio -0.27 -0.13 -0.06 0.05 0.12 0.18 0.32 
SRHM -0.002 -0.001 -0.001 0.029 0.067 0.122 0.239 
Mean (ba)              -1.73 -0.61 0.33 0.50 1.33 1.70 2.82 
AC(1) 0.02 -0.00 0.00 0.09 0.09 0.05 0.11 
p-value 0.77 0.97 0.99 0.30 0.28 0.52 0.19 
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Table 2. Average Portfolio Moment Risk Pre- and Post-Crisis 

This table summarizes average time-series values for realized and implied volatilities (Rvol and Ivol), 
which is defined as the square root of Rvar and Ivar, respectively, and for realized and implied 
skewness (Rskew and Iskew). The averages correspond to the six FX currency baskets, sorted on 
interest rate differentials, and are additionally splitted into four different time frames. The differences 
between Rvol and Ivol, as well as Rskew and Iskew, are each regressed on a constant. The inference is 
based on a bootstrap method that uses 10.000 replications and the appropriate t-distribution for 
building confidence bounds. T_BS presented in brackets mean the respective T-statistic of the 
regressions. Bold figures indicate significance at least at the 5% significance level and cursive at the 
10% level.   
 

Panel A: Pre-crisis (09/2003-06/2008) 
  P-1 P-2 P-3 P-4 P-5 P-6 
Rvol 7.85 8.26 8.25 7.54 9.93 13.45 
Ivol 7.97 8.52 8.27 8.09 9.92 13.47 
T_BS [-1.39] [-1.54] [-1.13] [-3.54] [-0.7] [-0.76] 

        
Rskew 0.21 -0.26 0.01 -0.41 -0.13 -0.31 
Iskew 0.24 0.08 0.03 -0.07 -0.22 -0.31 
T_BS [0.42] [1.12] [0.66] [1.39] [-1.20] [-0.64] 

       Panel B: Crisis (07/2008-06/2009) 
  P-1 P-2 P-3 P-4 P-5 P-6 
Rvol 18.90 18.32 19.06 21.38 20.96 25.09 
Ivol 19.91 17.77 18.33 20.68 20.92 24.16 
T_BS [-0.65] [0.25] [0.34] [0.32] [-0.22] [-0.11] 

        
Rskew -0.05 -0.14 -0.18 -0.23 -0.32 -0.56 
Iskew 0.12 0.01 -0.03 -0.20 -0.36 -0.36 
T_BS [1.43] [1.15] [0.84] [0.16] [-0.23] [1.18] 

       Panel C: Post-crisis (07/2009-06/2015) 

 
P-1 P-2 P-3 P-4 P-5 P-6 

Rvol 9.74 8.93 9.75 10.10 11.41 12.91 
Ivol 9.81 9.47 10.15 11.18 12.44 13.52 
T_BS [-1.29] [-3.32] [-2.33] [-3.96] [-3.82] [-2.52] 

        
Rskew -0.36 -0.42 -0.49 -0.52 -0.59 -0.67 
Iskew -0.13 -0.25 -0.29 -0.38 -0.40 -0.38 
T_BS [5.13] [3.31] [3.32] [3.05] [2.35] [4.97] 

        
Panel D: Full sample period 

 
P-1 P-2 P-3 P-4 P-5 P-6 

Rvol 10.24 9.80 10.42 10.67 12.10 14.67 
Ivol 10.50 10.05 10.52 11.25 12.62 14.86 
T_BS [-1.59] [-2.45] [-1.80] [-3.21] [-2.47] [-1.91] 

        
Rskew -0.09 -0.30 -0.26 -0.42 -0.37 -0.47 
Iskew 0.05 -0.09 -0.13 -0.22 -0.31 -0.34 
T_BS [4.16] [2.03] [3.15] [2.11] [0.81] [2.26] 
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Table 3. Impact of FX Moment Risk on Carry Trade Returns 

This table presents OLS time-series coefficient results in each column of monthly carry trade returns (rxCT) 
regressed on contemporaneous returns to factor mimicking portfolios (FMP) linked to global FX moment risk. 
The moment risks in Panel A are the FX realized and implied variance, denoted as RvarFMP and IvarFMP 
respectively, and realized and implied skewness risk, denoted as RskewFMP and IskewFMP, respectively. Also, 
FMP returns on the variance risk premium (VRPFMP), and the skewness risk premium (SRPFMP) are analysed. 
Additionally, Panel B adds FMP results that are sorted on standardized changes (“d”) to the variance and 
skewness risks, presented in Panel A, in realized and implied form. Inference is based on HAC standard errors, 
using four Newey-West lags. The asterisk values (***), (**), and (*) indicate statistical significance at the 99%, 
95%, and 90% confidence level, respectively, with T-statistics in brackets. The last row presents adjusted R2 
values. The sample period is September 2003-June 2015. 
 

Panel A 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT rxCT rxCT rxCT 

constant 0.006*** 0.014*** 0.003* 0.001 0.008*** 0.012*** 0.005** 0.005** 0.005*** 

 
[3.16] [4.19] [1.96] [0.46] [4.19] [3.31] [2.52] [2.60] [2.62] 

RvarFMP 0.576*** 
     

0.442*** 
  

 
[7.48] 

     
[3.53] 

  RskewFMP   -0.669*** 
    

-0.002 -0.018 
 

 
  [-3.11] 

    
[-0.02] [-0.123] 

 IvarFMP   
 

0.687*** 
   

0.128 0.528*** 0.528*** 

 
  

 
[7.20] 

   
[0.99] [6.67] [6.67] 

IskewFMP   
  

-1.042*** 
  

-0.952*** -0.907*** -0.914*** 

 
  

  
[-6.79] 

  
[-11.44] [-11.14] [-12.56] 

VRPFMP   
   

0.576*** 
 

-0.072 0.110 0.109 

 
  

   
[3.81] 

 
[-0.654] [1.17] [1.16] 

SRPFMP   
    

0.426* 0.185 0.199 0.213** 

 
          [1.91] [1.23] [1.35] [2.15] 

adj. R2 35.9% 16.0% 39.1% 41.7% 13.9% 4.3% 72.8% 71.3% 71.5% 
 
 

Panel B 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT rxCT 

constant 0.005** 0.003*** 0.008*** 0.002 0.004* 0.005** 0.006*** 

 
[2.05] [4.19] [1.96] [0.89] [1.71] [2.42] [2.93] 

dRvarFMP -0.237 
   

-0.222 
  

 
[-1.51] 

   
[-1.46] 

  dRskewFMP   -0.088 
  

-0.085 
  

 
  [-0.63] 

  
[-0.64] 

  dIvarFMP   
 

0.380** 
 

0.278** 0.306** 0.087 

 
  

 
[2.58] 

 
[2.03] [2.28] [1.25] 

dIskewFMP   
  

0.387*** 0.280** 0.285** 0.037 

 
  

  
[2.88] [2.21] [2.54] [0.47] 

IvarFMP   
     

0.540*** 

 
  

     
[7.40] 

IskewFMP   
     

-0.913*** 

 
  

     
[-12.32] 

SRPFMP   
     

0.239** 

 
            [2.18] 

adj. R2 1.6% 0.0% 5.4% 4.2% 7.8% 7.1% 71.3% 
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Table 4. Impact of Macroeconomic Aggregates and Equity Risk on Carry Trade Returns 

This table presents OLS time-series coefficient results in each column of monthly carry trade returns (rxCT) 
regressed on contemporaneous returns to factor mimicking portfolios (FMP) linked to macroeconomic and 
global FX moment risk. The macroeconomic risk sorts are done on real production growth (dRPFMP), real money 
growth (dRMFMP), and inflation growth rates (dCPIFMP), and foreign equity index returns (dEQFMP). The moment 
risks are the global FX option-implied variance and skewness risk, denoted as IvarFMP and IskewFMP, 
respectively, and the skewness risk premium (SRPFMP). Inference is based on HAC standard errors, using four 
Newey-West lags. The asterisk values (***), (**), and (*) indicate statistical significance at the 99%, 95%, and 
90% confidence level, respectively, with T-statistics in brackets. The last row presents adjusted R2 values. The 
sample period is October 2003-June 2015. 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT rxCT 

constant 0.004* 0.003 0.003* 0.004* 0.002 0.000 0.001 
  [1.90] [1.62] [1.73] [1.85] [1.37] [0.21] [0.25] 
dRPFMP -0.239 

   
-0.070 0.038 

 
 

[-1.36] 
   

[-0.48] [0.48] 
 

dRMFMP   0.445*** 
  

0.590*** 0.195** 0.194** 

 
  [3.43] 

  
[5.49] [2.38] [2.42] 

dCPIFMP   
 

0.521*** 
 

0.618*** 0.279*** 0.277*** 

 
  

 
[3.47] 

 
[5.10] [4.19] [4.76] 

dEQFMP   
  

-0.054 -0.077 0.034 
 

 
  

  
[-0.45] [-0.65] [0.49] 

 IvarFMP   
    

0.550*** 0.546*** 

 
  

    
[9.82] [10.78] 

IskewFMP   
    

-0.795*** -0.798*** 

 
  

    
[-10.82] [-10.51] 

SRPFMP   
    

0.019 
 

 
          [0.28] 

 adj. R2 1.5% 7.7% 14.8% -0.1% 28.2% 74.4% 74.8% 
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Table 5. Carry Trade Activity Index (CTI) 

This table presents OLS time-series coefficient results in each column of monthly carry trade returns (rxCT) 
regressed on contemporaneous changes to various versions of the Carry Trade Activity Index (dCTI). The CTI is 
superscripted with the number of k currencies used for the high and low portfolio, respectively. The subscript a 
means that future contract data is collected only from the Non-Commercial trader group, while b also includes 
futures data from the Non-Reportable trader group. The variable dOI is the past one-year log change of the open 
interest in future contracts of the respective number of currencies used for the CTI. The FMP returns of FX 
implied variance and skewness (IvarFMP and IskewFMP), macroeconomic risk sorts on foreign real money growth 
(dRMFMP), and foreign inflation growth rates (dCPIFMP) will be applied. Also, the first differences to the US-
TED and VIX index (dTEDUS and dVIX) are used, respectively. The variable dVIXortho is the risk of dVIX that is 
orthogonal to IvarFMP. The dependent variable changes to 𝑑𝐶𝑇𝐼yiA� for the last three regressions. Inference is 
based on HAC standard errors, using four Newey-West lags. The asterisk values (***), (**), and (*) indicate 
statistical significance at the 99%, 95%, and 90% confidence level, respectively, with T-statistics in brackets. 
The last row presents adjusted R2 values. The sample period is September 2003-June 2015. 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT rxCT 𝑑𝐶𝑇𝐼yiA� 𝑑𝐶𝑇𝐼yiA� 𝑑𝐶𝑇𝐼yiA� 

constant 0.003 0.004* 0.003 0.003 0.004* 0.003 0.000 0.005 -0.007 -0.010 
  [1.56] [1.66] [1.50] [1.51] [1.69] [1.55] [0.33] [0.31] [-0.44] [-0.73] 

𝑑𝐶𝑇𝐼ziA> 0.015** 
      

  
    [2.33] 

      
  

  𝑑𝐶𝑇𝐼ziAG   0.025*** 
     

  
  

 
  [3.79] 

     
  

  𝑑𝐶𝑇𝐼ziA�   
 

0.037*** 
    

  
      

 
[4.28] 

    
  

  𝑑𝐶𝑇𝐼yiA>   
  

0.014* 
   

  
      

  
[1.94] 

   
  

  𝑑𝐶𝑇𝐼yiAG   
   

0.034*** 
  

  
      

   
[4.53] 

  
  

  𝑑𝐶𝑇𝐼yiA�   
    

0.051*** 0.015***   
      

    
[5.34] [3.39]   

  dOI k’s 0.001 -0.003 0.000 0.000 -0.002 0.001 -0.016 -0.028 -0.037 -0.048 
  [0.10] [-0.56] [0.07] [0.02] [-0.43] [0.18] [-0.46] [-0.50] [-0.67] [-1.03] 
IvarFMP   

     
0.517***   -0.335 1.76** 

    
     

[10.24]   [-0.26] [2.27] 
IskewFMP   

     
-0.744***   -4.341*** -3.72*** 

    
     

[-10.92]   [-3.17] [-3.36] 
dRMFMP   

     
0.191**   

  
 

  
     

[2.37]   
  dCPIFMP   

     
0.265***   

      
     

[4.28]   
  dTEDUS   

      
-0.231** -0.197** -0.141** 

 
  

      
[-2.57] [-2.29] [-2.01] 

dVIX   
      

-0.009** -0.009 
 

 
  

      
[-2.14] [-1.59] 

 dVIXortho   
      

  
 

-0.006 
              

 
    [-1.52] 

adj. R2 4.6% 11.4% 13.2% 1.8% 14.6% 17.3% 76.0% 7.6% 13.0% 16.3% 
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Table 6. Impact of Liquidity Risk on Carry Trade Returns 

This table presents OLS time-series coefficient results in each column of monthly carry trade returns (rxCT) 
regressed on contemporaneous changes to different liquidity risk variables. dBASFMP and 𝑑𝑇𝐸𝐷v>BHc�represent 
FMP returns that are sorted on relative bid-ask spread changes of Sample I currencies and sorts on changes to 
TED spread equivalent on the G10 Sample, respectively. The variable dTEDUS is the first difference of the US-
TED spread, while 𝑑𝑇𝐸𝐷v>B

d�� and 𝑑𝑇𝐸𝐷v>B�{� apply to changes of an aggregated TED spread index over the G10 
Sample countries, including the US-TED. They are constructed as an equal weighted and a first principal 
component weighted index, respectively. Also, The FMP returns of FX implied variance and skewness (IvarFMP 

and IskewFMP), and macroeconomic risk sorts on foreign real money growth (dRMFMP), and foreign inflation 
growth rates (dCPIFMP) will be used together with the change of the Carry Trade Activity Index (𝑑𝐶𝑇𝐼yiA�). 
Inference is based on HAC standard errors, using four Newey-West lags. The asterisk values (***), (**), and (*) 
indicate statistical significance at the 99%, 95%, and 90% confidence level, respectively, with T-statistics in 
brackets. The last row presents adjusted R2 values. The sample period is November 2003-July 2015. 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT 

constant	 0.004* 0.004* 0.003 0.004 0.003 0.001 

	
[1.76] [1.71] [1.51] [1.57] [1.48] [0.90] 

dBASFMP	 -0.043 
     

	
[-0.46] 

     𝑑𝑇𝐸𝐷v>BHc�	   -0.097 
    

	
  [-0.59] 

    𝑑𝑇𝐸𝐷v>B
d��	   

 
-0.055*** 

   
	

  
 

[-2.93] 
   𝑑𝑇𝐸𝐷v>B�{�	   

  
-0.020*** 

  
	

  
  

[-3.40] 
  dTEDUS	   

   
-0.021*** -0.004 

	
  

   
[-2.89] [-1.21] 

Ivar	FMP	   
    

0.516*** 

	
  

    
[10.16] 

IskewHML	   
    

-0.731*** 

	
  

    
[-10.73] 

dRM	FMP	   
    

0.177** 

	
  

    
[2.19] 

dCPI	FMP	   
    

0.301*** 

	
  

    
[5.42] 

𝑑𝐶𝑇𝐼yiA�	   
    

0.013*** 

 
  

    
[2.98] 

adj. R2 -0.5% -0.2% 5.4% 7.7% 4.0% 77.2% 
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Table 7. Impact of Equity Moment, FX Momentum and Value Risk on Carry Trade Returns 

This table presents OLS time-series coefficient results in each column of monthly carry trade returns (rxCT) 
regressed on contemporaneous changes of a variety of risk variables. dSKEWCBOE and dVIXCBOE represent first 
differences to the option-implied skewness and variance indexes computed at the CBOE on the S&P 500 Index, 
respectively. FX-MomFMP and FX-ValueFMP are FMP returns sorted on past 1m FX momentum returns and the 5y 
difference to the UIP, respectively. uPUI and uNUI mean innovations taken from an AR(2)-model from the US 
Policy Uncertainty Index and US News Uncertainty Index, respectively. Also, the FMP returns of FX implied 
variance (IvarFMP) and skewness risk (IskewFMP), macroeconomic risk sorts on foreign real money growth 
(𝑑𝑅𝑀":&

Hc�), and inflation growth rates (𝑑𝐶𝑃𝐼":&Hc�) will be used together with the change of the Carry Trade 
Activity Index (𝑑𝐶𝑇𝐼yiA�). dVIXortho means the risk of dVIX that is orthogonal to IvarFMP. Inference is based on 
HAC standard errors, using 4 Newey-West lags. Last column coefficient estimates are taken from an iterated 
GMM optimization procedure that is specified in Appendix D. Here the instrumental variables are omitted, and 
dVIXCBOE, dVIXortho, dSKEWCBOE, uPUI, uNUI are divided by 1000 for convenience. The asterisk values (***), 
(**), and (*) indicate statistical significance at the 99%, 95%, and 90% confidence level, respectively, with T-
statistics in brackets. The last row presents adjusted R2 values. The sample period is November 2003-June 2015. 
 

 
rxCT rxCT rxCT rxCT rxCT rxCT rxCT rxCT 

constant 0.004* 0.004** 0.004* 0.004* 0.001 0.001 0.000 0.000 
  [1.92] [2.18] [1.78] [1.79] [0.62] [0.63] [0.55] [0.01] 
dSKEWCBOE 0.103 

   
1.362 1.242     

  [0.03] 
   

[0.74] [0.67]     
dVIXCBOE -2.536*** 

   
-0.566** 

 
    

  [-7.52] 
   

[-2.12] 
 

    
FX-MomFMP   -0.277*** 

  
-0.043 -0.043     

 
  [-3.25] 

  
[-0.98] [-0.98]     

FX-ValueFMP   -0.319 
  

-0.003 -0.000     
    [-1.44] 

  
[-0.06] [-0.01]     

uPUI   
 

-0.136 
 

-0.121 
 

    
    

 
[-1.10] 

 
[-0.97] 

 
    

uNUI   
  

-0.093 0.146* 0.072** 0.075** 0.039 
    

  
[-1.11] [1.86] [2.44] [2.60] [1.21] 

Ivar FMP   
   

0.461*** 0.527*** 0.531*** 0.529*** 

 
  

   
[7.72] [11.59] [11.21] [10.90] 

IskewHML   
   

-0.757*** -0.755*** -0.766*** -0.753*** 

 
  

   
[-10.68] [-10.66] [-11.13] [-10.99] 

dRM FMP   
   

0.183** 0.180** 0.178** 0.197*** 

 
  

   
[2.48] [2.50] [2.23] [2.79] 

dCPI FMP   
   

0.259*** 0.255*** 0.264*** 0.272*** 
    

   
[4.09] [3.95] [4.06] [3.94] 

𝑑𝐶𝑇𝐼yiA�   
   

0.015*** 0.015*** 0.015*** 0.017*** 

 
  

   
[3.65] [3.63] [3.59] [2.60] 

dVIXortho   
    

-0.573** -0.664*** -0.582* 
            [-2.16] [-2.64] [-1.65] 
adj. R2 19.5% 15.0% 0.5% 0.6% 76.5% 76.6% 77.0% 76.5% 
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Figure 1. Carry Trade Activity Index and CT Returns 

This figure presents a time-series of the cumulative FX carry trade excess returns as a solid line (left 
scale) and a six-month moving averages of the Carry Trade Activity Index (CTIb(MA-6)) as solid line 
with crosses (right scale). The composition of the CTI is according to formula (12) with K=3. The 
future-contract data include the scope of Non-Commercial and Non-Reportable traders defined by the 
US Commodity Futures Trading Commission (CFTC). The grey background indicates NBER recession 
periods. The sample covers the time period between December 2003 and June 2015. 
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Figure 2. Hedged and Unhedged Carry Trade Return Series  

This figure presents monthly unhedged (bar chart) and hedged carry trade returns (line chart). The 
hedging instruments involved are the factor mimicking portfolios (FMP) of IvarFMP, IskewFMP, 
dRMFMP, dCPIFMP, and dVIXortho, which is a combination of a portfolio of VIX futures and IvarFMP. 
The grey background indicates NBER recession periods. The sample covers the time period between 
October 2003 and June 2015. The table below offers portfolio summary statistics of the two strategies 
about annualized mean and standard deviation (Std.Dev.), skewness and excess kurtosis (ex. Kurtosis), 
the interquartile range (IQR), minimum (Min) and maximum (Max) log return observations. The last 
row indicates the percentage difference (% Diff.) between unhedged and hedged carry trade returns.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
  Mean Std.Dev. Skewness ex. Kurtosis IQR Min Max 
CT unhedged 4.85% 8.86% -0.268 0.620 3.41% -8.45% 6.82% 
CT hedged 0.37% 4.30% -0.167 0.356 1.61% -3.99% 2.93% 
% Diff. -92.3% -51.5% -37.7% -42.6% -52.8% -52.7% -57.1% 
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Figure 3. ACF and PACF Correlogram  

This figure presents the time-series autocorrelation function (ACF) in the upper chart, as well 
as the partial autocorrelation function (PACF) in the lower chart, of the residuals coming from 
the last OLS regression of Table 7. The ACF and PACF observations are shown as bar charts, 
respectively, up to the 12th lag. The upper and lower lines indicate the 95% confidence bands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

����
�����
����

�����
�

����
���

����
���

� � � � � �� ��
���

�������� ���

��� ��������

����
�����
����

�����
�

����
���

����
���

� � � � � �� ��
���

�������� ����

�� ����������



 
 

45 

 
APPENDIX 
 
Appendix A. The Higher Moment Sharpe Ratio 

The Higher Moment Sharpe ratio (SRHM) was developed by Broll (2016b). It extends the 

original Sharpe ratio (Sharpe 1964) by incorporating the second- and third-moment risk of the 

portfolio return. This measure of portfolio efficiency ensures that portfolio return series that 

are prone to fat tailed and skewed return distributions are adequately compared to more 

Gaussian distributed portfolios. It is equal to the original Sharpe ratio, when the portfolio 

return series has 0 skewness (𝛾>) and 0 excess kurtosis (𝛾G). 

𝑆𝑅uc = 	
𝜇 −	𝑟2

𝜎G 1 + 𝑎 𝛾>
¢ Ud

1 + 𝑏 𝛾G
¤ ¥ ¦U	§¨/|¦U	§¨|

 

 

 
(A.1) 

 

𝐸 = 	 +1, 𝑖𝑓	𝛾> > 0
−1,			𝑖𝑓	𝛾> 	≤ 0	   and    𝐵 = 	 +1, 𝑖𝑓	𝛾G > 0

−1,			𝑖𝑓	𝛾G ≤ 0	 
 

 

𝛾> =
𝐸 𝑋 − 𝜇 �

𝜎�  

 

(A.2) 

 

𝛾G =
𝐸 𝑋 − 𝜇 ­

𝜎­ − 3 (A.3) 

The numerator describes the portfolios excess return, where 𝜇	means the pure portfolio 

return, and 𝑟2the corresponding risk free rate. The denominator deflates the excess return by 

multiplication of the standard deviation with factors of skewness and excess kurtosis. The 

variables a and b are adjustment factors with values of 1.8 and 1.0. respectively, identifying 

this metric as a maximizer of investor’s exponential utility. 

 
Appendix B. Definition of Implied Variance (IvarE) 

This measure of variance has been developed in Neuberger (2012) as an ingredient of his 

measure of realized skewness. It is called the variance of an entropy contract, which has an 

expected future payoff of 𝔼t 𝑆&𝑙𝑛𝑆& . The corresponding implied variance to the entropy 

contract can then be defined as follows: 
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𝐼𝑣𝑎𝑟",&d = 2	𝔼"
ℚ 𝑆&
𝐹",&

ln
𝑆&
𝐹",&

−
𝑆&
𝐹",&

+ 1  
 
(B.1) 

𝔼"
ℚ means the risk-neutral expectation with today’s (t) information set, with 𝑆& and 𝐹",& as 

the future spot rate and the today’s forward rate maturing in T, respectively. Using the 

spanning approach from Bakshi and Madan (2000), the implied variance at time t can be 

computed as follows: 
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𝑑𝐾	
M
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    (B.2) 

 

𝑃",&(𝐾) and 𝐶",&(𝐾) are put and call prices with strike price K, and 𝐵",& is the domestic 

zero bond price. One can transform (B.2) into its discrete form using the same method applied 

for Ivart,T (see (5) and (6)).  

 

Appendix C. Implied Skewness Risk 

Considering gThM of equation (7), under risk-neutral expectations one gets the implied 

measure for the third-moment risk: 

𝐼𝑡ℎ𝑚",& = 	𝛦"
ℚ 3Δ𝐼𝑣𝑎𝑟",&d
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𝐹",&
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𝐹",&

𝑙𝑛
𝑆&
𝐹",&

 

 

 
(C.1) 
 

It is assumed that the foreign exchange rate price process is martingale,35 so that the first 

term in (C.1) becomes zero in expectation and only the second term is relevant for pricing the 

implied measure. Neuberger (2012) defines the implied third-moment risk as the difference of 

the implied variance of the entropy contract and the implied variance defined in equation (5):  

𝐼𝑡ℎ𝑚",& = 3	 𝐼𝑣𝑎𝑟",&d − 𝐼𝑣𝑎𝑟",&t 	  
 

 
(C.2) 
 

In order to show how the implied third-moment risk is connected to these measures of 

variance, we now substitute the risk-neutral values of equation (4) and (B.1) into (C.2). This 

results in the same expected value for the implied third-moment risk as in (C.1): 

 

                                                
35 Be reminded that the future spot price in T, can also be expressed in terms of a forward contract, ST=FT,T. It 

follows from the martingale property of the forward price process that Et[FT,T-Ft,T]= 0.  
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The implied third-moment risk can also be expressed as a portfolio of a continuum of 

options. Using the third-moment risk definition provided by Neuberger (2012) in (C.2), one 

can just replace IvarE and IvarL with their respective contingent claim prices, defined in (B.2) 

and (5), respectively, to get the result of equation (9): 
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Appendix D. The Iterated GMM Higher Moments Procedure (iGMMHM) 

The usual estimation problem for the econometrician using factor mimicking portfolios as 

risk variables (xi’s) to explain, e.g. excess returns, can be formalized as follows: 

	𝑦" = 𝛼 + 𝛽|
^

|A>
𝑥|," + 𝜀" 

 
  (D.1) 
 

 

In Coën et al. (2009), they introduce a model that corrects for errors-in-variable (EIV) 

problems by augmenting (D.1) with instrumental variables. These instruments are the first 

lagged value of each regressor xi expressed up to the 5th power, so that zi’s are a function of 

the corresponding underlying risk variable xi: 

𝑧|," = 𝑓 𝑥|,"U>, 𝑥|,"U>G , … , 𝑥|,"U>µ  
 
  (D.2) 

 

The augmented model will be estimated using the iterated GMM procedure that is 

formalized as follows:  

𝑦" = 𝛼 + 𝛽|
^

|A>
𝑥|," + 𝛽N

c

NA>
𝑧|," + 𝜀" 

 

     (D.3) 
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A moment condition is applied to the matrix Z of instrumental variables zi, so that each 

instrumental variable is orthogonal to the innovation term 𝜀, which is: 

𝐸 𝑍·𝜀 = 0    (D.4) 
With 𝜀 = ℎ(𝑌, 𝑋, 𝜃), where 𝜃 is the parameter vector to be estimated. These moment 

conditions are approximated by their sample averages: 

1
𝑁 𝑍|𝜀| = 𝐺(𝑌, 𝑋, 𝑍; 𝜃)

^

|A>
 

 
   (D.5) 

 

In order to estimate the vector of parameters θ, the minimization problem applies as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛	
½

𝐺· 𝑌, 𝑋, 𝑇; 𝜃 	𝑊 𝐺(𝑌, 𝑋, 𝑍; 𝜃) 
 

   (D.6) 
 

With W representing the inverse of the covariance matrix. One reasonable estimator for the 

weighting matrix W is the well-known White matrix: 

𝛷�b|"À = 𝛤B =
1

𝑇 − 𝑘 𝐺"·𝐺"

&

"A>

 
 

   (D.7) 
 

With T as the number of observations and k the number of regressors. Coën et al. (2009) 

propose for W the HAC covariance estimator (ΦÄÅÆ) in accordance with the iterated GMM 

method, which is:  

𝛷u�{ = 𝛤B + 𝜅(𝑗, 𝑞)(𝛤N + 𝛤N′)
&U>

NA>
 

 
   (D.8) 

 

The algorithm of the iterated GMM procedure computes the optimal covariance matrix 

using k in the form of the quadratic spectral, where j is the lag length, and q defines the 

bandwidth, which is optimally selected following the technique known as VAR prewhitening 

developed by Andrews and Monahan (1992).  
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Table A. 1. Foreign Currency Exchange Rate Data Coverage 

This table gives an overview of the coverage of foreign exchange rates used. It is divided into 
developed (Panel A) and emerging currencies (Panel B), and distinguishes between Sample I 
(middle partition) and Sample TFF (right partition). The left partition characterizes the 
foreign exchange rates by their number (No.), ISO 4217 currency code, and their country. The 
middle and right part gives an overview of the various start and end dates of the time-series 
and the number of monthly observations (Obs.).  
 
No. Currency Country   Sample I    Sample TFF  

  codes     Start date End date Obs.   Start date End date Obs. 

Panel A: Developed Market Currencies (G10) 
1 AUD Australia   09/2003 06/2015 142   09/2003 06/2015 142 
2 CAD Canada   09/2003 06/2015 142   09/2003 06/2015 142 
3 EUR Europe   09/2003 06/2015 142   09/2003 06/2015 142 
4 GBP Great Britain   09/2003 06/2015 142   09/2003 06/2015 142 
5 JPY Japan   09/2003 06/2015 142   09/2003 06/2015 142 
6 NZD New Zealand   09/2003 06/2015 142   11/2005 06/2015 116 
7 DKK Denmark   02/2005 06/2015 125   ./. ./. ./. 
8 NOK Norway   02/2005 06/2015 125   ./. ./. ./. 
9 SEK Sweden   02/2005 06/2015 125   ./. ./. ./. 

10 CHF Swiss   02/2005 06/2015 125   09/2003 06/2015 142 
Panel B: Emerging Market Currencies 

11 PLN Poland   09/2003 06/2015 142   ./. ./. ./. 
12 SGD Singapore   09/2003 06/2015 142   ./. ./. ./. 
13 ZAR South Africa   09/2003 06/2015 142   ./. ./. ./. 
14 KRW South Korea   09/2003 06/2015 142   ./. ./. ./. 
15 TWD Taiwan   09/2003 06/2015 142   ./. ./. ./. 
16 THB Thailand   09/2003 06/2015 142   ./. ./. ./. 
17 ILS Israel   03/2004 06/2015 136   ./. ./. ./. 
18 CLP Chile   02/2005 06/2015 125   ./. ./. ./. 
19 COP Colombia   02/2005 06/2015 125   ./. ./. ./. 
20 CZK Czech Republic   02/2005 06/2015 125   ./. ./. ./. 
21 HUF Hungary   02/2005 06/2015 125   ./. ./. ./. 
22 INR India   02/2005 06/2015 125   ./. ./. ./. 
23 MXN Mexico   02/2005 06/2015 125   09/2003 06/2015 142 
24 BRL Brazil   11/2005 06/2015 116   ./. ./. ./. 
25 TRY Turkey   11/2005 06/2015 116   ./. ./. ./. 
26 RUB Russia   04/2006 06/2015 111   02/2009 06/2015 77 
27 MYR Malaysia   09/2006 06/2015 106   ./. ./. ./. 
28 IDR Indonesia   06/2007 06/2015 97   ./. ./. ./. 
29 PHP Philippines   06/2007 06/2015 97   ./. ./. ./. 
30 PEN Peru   06/2008 06/2015 85   ./. ./. ./. 
31 RON Romania   06/2008 06/2015 85   ./. ./. ./. 
32 SKK Slovakia   06/2008 05/2014 70   ./. ./. ./. 
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Table A. 2. Time Frames Subject to Large CIP Violations 

This tables summarizes the time frames that are excluded due to large covered interest rate 
parity (CIP) violations. CIP violations applies, when the forward rate according to CIP, in the 
majority of daily observation within a month, differs more than 0.1% of the markets forward 
bid-ask spread. The first two columns specify the foreign currency code and country, 
followed by the start and end dates of exclusion, the number of monthly excluded 
observations in that period (Excl.Obs.), and the total number of monthly excluded 
observations for any currency (Total Excl.Obs.), respectively. The last row sums up all 
excluded observations. 

Code Country Start date  End date Excl. Obs. Total Excl. Obs. 

BRL Brazil 11/2005 11/2006 13   
  

 
12/2007 04/2008 5   

  
 

10/2008 11/2008 2   
  

 
09/2010 10/2011 14   

  
 

01/2013 04/2013 4 38 
CLP Chile 06/2008 10/2008 5   
    06/2009 12/2009 7 12 
COP Colombia 06/2010 07/2011 14   
  

 
10/2011 01/2012 4   

  
 

08/2015 09/2015 2 20 
HUF Hungary 12/2011 01/2012 2 2 
INR India 02/2008 05/2008 4   
  

 
09/2008 10/2008 2   

  
 

01/2009 02/2009 2   
  

 
06/2011 11/2011 6 14 

MXN Mexico 10/2008 12/2008 3 3 
MYR Malaysia 11/2008 01/2009 3   
  

 
02/2010 07/2010 6   

  
 

09/2010 12/2010 4   
  

 
02/2011 05/2011 4   

  
 

07/2011 08/2011 2 19 
PEN Peru 08/2010 11/2010 4   
  

 
02/2011 03/2011 2   

  
 

02/2012 05/2012 4   
  

 
11/2012 04/2013 6   

    02/2015 06/2015 5 21 
RUB Russia 10/2008 02/2009 5 5 
SKK Slovakia 11/2010 12/2010 2   
    08/2011 06/2012 11 13 
THB Thailand 09/2006 10/2006 2   
  

 
12/2006 01/2007 2 4 

TWD Taiwan 04/2007 05/2007 2   
  

 
01/2008 06/2008 6   

  
 

01/2009 06/2010 18 26 

         S 177 
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Abstract 
 

This study investigates an efficient parametric portfolio policy model to improve the return 
distribution of the well-known currency carry trade investment strategy. This carry trade 
strategy invests into high-yielding currencies that are subsequently funded by low-yielding 
currencies. Following this investment procedure has led to significantly excess returns for the 
investors, at least over the past four decades. However, these returns were subject to a high 
crash risk, which hit its peak during the US subprime crisis in 2008/2009 with portfolio losses 
of up to one third of the investment value. The constructed model overcomes these bad 
portfolio properties through computing the optimal carry trade portfolio weight for any 
monthly revolving investment period. This is done by modeling the optimal weight as a 
function of the carry trade’s risk characteristics. Especially, when using global FX option-
implied variance risk, as well as global consumer price inflation and commodity prices as 
background risk factors, the model delivers extremely-efficient out-of-sample results with 
annualized mean returns of up to 8.4% over an eight-year period, accompanied with a low 
standard deviation, positively skewed returns and leading to Sharpe ratios around unity, 
including transaction costs. These promising statistics are largely maintained when allowing 
for higher leveraged portfolios. 

 
 
 

 
 

___________________ 
*I would like to thank Joscha Beckmann, Adrian Bednarek, Ansgar Belke, Michael W. Brandt, Julien Guesdon, Michael 
Kaiser, Kamil Kladivko, and Ricardo Laborda for their helpful comments and suggestions. I also thank Oxana Gorbenko for 
her research assistance. The views expressed herein are those of the author and not necessarily those of the affiliated 
institution. 
†

To correspond with the author: Michael Broll, University of Duisburg-Essen, Faculty of Economics and Business 
Administration, Universitätsstraße 12, 45117 Essen, Germany. E-mail address: michael.broll@stud.uni-duisburg-essen.de.



  53 

1 Introduction 
Carry trade is one of the most famous currency investment strategies, where the investor 

borrows in currencies with low interest rates, also known as funding currencies, and purchases 

currencies with high interest rates, also called investment currencies. The main idea behind it 

is to lock-in the resulting interest rate differential using a monthly rebalancing investment 

procedure. Many studies have shown that the carry trade excess returns appear to be 

significant over long horizons (Burnside, Eichenbaum, and Rebelo 2011b; Menkhoff et al. 

2012a), which is at odds with the uncovered interest rate parity (UIP). The UIP theory 

postulates that future excess returns to any currency pair are supposed to be zero in 

expectation, so that any advantage of a positive interest rate spread should vanish through a 

depreciation of the higher-yielding to the lower-yielding currency. Many studies have shown 

that investment currencies do not depreciate much to mitigate this relationship, which is 

known in the literature as forward rate anomaly. Therefore, the overall profitability of the 

carry trade comes with a cost of high negative skewed returns and periods of high negative 

drawdowns.  

Lustig et al. (2011) propose a no-arbitrage model for exchange rates that explicitly 

uncovers the relationship of both country’s stochastic discount factor (SDF) dynamics and the 

resulting risks to exchange rates, which can reproduce the forward rate anomaly in the data. 

They conclude that the risk premium earned by the carry trade is particularly dependent on the 

difference of the global risk exposure between funding and investment currencies and the 

variation of one or more global state variables.1 As a result, negative shocks to the global risk 

factor, as well as the heterogeneity of global risk exposures, lead to high negative skewed and 

fat tailed returns, which characterizes the carry trade return distribution. Hence, identifying 

state variables that mirror global risk is key for predicting carry trade excess returns.  

Therefore, this paper focuses on finding risk factors that can be interpreted as common 

global risks to develop an efficient portfolio policy in order to increase carry trade returns 

without having the burden of fat tails and negative skewness. The main idea of the portfolio 

model has its origin from the pioneering work of Brandt et al. (2009).2 The authors propose 

modelling the optimal stock portfolio weights as a function of firm characteristics, e.g. the 

three factors’ defined by Fama and French (1993). Laborda et al. (2014) operationalize this 

                                                
1 Proposition 4.1 and 4.2 in Lustig et al. (2011) provide a brief overview of the model dynamics for the carry 
trade risk premium. 
2 Barroso and Santa-Clara (2015) use the model to enhance currency strategies based on momentum, interest rate 
differentials, and long-term reversals to optimize any currency position weight and show in out-of-sample tests 
that relying on these risk variables leads to efficient currency portfolios reaching Sharpe ratios of up to 1.06 
compared to 0.57 for the carry trade portfolios in the sample period from March 1996 to December 2011.	
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idea to optimize single portfolio strategies that follow a specific revolving investment 

procedure, such as the currency carry trade. This model imposes a strict linear functional form 

between future carry trade returns and a set of state variables that represent the dynamically-

changing macroeconomic environment. It operates within an optimal asset allocation setting, 

which maximizes the investor’s utility function with respect to the individual risk aversion. 

The main advantage over the baseline carry trade investment scheme is that the model 

computes an optimal portfolio weight each month, considering the global risk environment. 

The weights can switch between long and short investments in any desired leverage, leaving 

the individual composition of each exchange rate of the currency carry trade unchanged. 

This study concentrates on three main categories to reliably characterize the global risk 

environment: (i) option-implied variance risk, (ii) macroeconomic risk, and (iii) speculators 

trade positions. The set of information presented here differs remarkably from the choice in 

Laborda et al. (2014). The importance of option-implied risk factors, which mirrors the 

investor’s future perception, has been proven to be a reliable source to describe risk patterns 

inherent in the currency carry trade (see Broll, 2016a; Farhi et al., 2015; Jurek, 2014). Studies 

from Aloosh (2014) and Della Corte et al. (2016) report increased currencies’ return 

predictability using the variance risk premium (VRP) as a state variable. While Aloosh (2014) 

focuses on a global equity-based VRP,3 Della Corte et al. (2016) find that currency sorting on 

individual VRP levels leads to significant excess returns, which is primarily driven by spot 

rate predictability rather than interest rate spreads. The VRP, defined as the difference 

between realized and option-implied variance, can be regarded as a measure of relative 

insurance cost against high volatility. Della Corte et al. (2016) pointed out that one source of 

sufficient predictability of VRPs lies in their ability to capture fluctuations in investor’s 

aversion to volatility risk. The lower the dispersion between realized and implied variance for 

an exchange rate, the higher the returns in subsequent months and vice versa. The second 

category of global risk variables are macroeconomic risk aggregates. Following the evidence 

of Lustig et al. (2011) that the carry trade is a compensation for carrying global risk exposure, 

we form an aggregated global economic growth factor out of each country’s real industrial 

production growth. Furthermore, Lustig et al. (2014) show that the real countries’ pricing 

kernel are the nominal SDFs minus inflation. Since the carry trade is exposed to short 

positions in funding currencies, with relatively low interest and inflation rates and, at the same 

time, long positions of investment currencies with relatively high inflation rates (see Lustig et 

                                                
3 Aloosh (2014) shows in a multivariate regression setting that the global equity VRP is the only significant 
variable to predict future carry trade returns when regressed jointly with the FX volatility factor and the 
commodity risk factor of Bakshi and Panayotov (2013) between January 2000 and December 2011. 
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al., 2011),4 we expect that this difference plays a role in predicting excess returns to the carry 

trade. The last category examines the role of trade flows in carry trade. Broll (2016a) and 

Brunnermeier et al. (2009) found evidence that lower market liquidity, measured by the US-

TED spread, leads to an unwinding in carry trade positions. Tracking these trading flows is 

supposed to improve carry trade returns’ predictability. Broll (2016a) constructed a simple 

procedure to aggregate these trading flows of a generic carry trade portfolio called the Carry 

Trade Activity Index (CTI), using forward positions from currency speculators provided by 

the U.S. Commodity Futures Trading Commission (CFTC). 

Taking these three main categories as the baseline risk environment to predict future carry 

trade returns through this asset-allocation framework leads to significantly-improved portfolio 

statistics over the baseline carry trade portfolio and also outperforms the model proposed by 

Laborda et al. (2014). In fact, the empirical results presented here extend the findings of 

Laborda et al. (2014) with several aspects: (i) under the G10 carry trade portfolio formation, a 

more global carry trade portfolio is additionally constructed, containing up to 32 currencies as 

underlying assets, (ii) a higher leverage for the optimal carry trade weights is considered, (iii) 

a more parsimonious model significantly increases out-of-sample profitability, and (iv) 

transaction costs are taken into account.  

The main results can be summarized as follows: in-sample as well as out-of-sample tests 

suggest that the most significant variables to improve the carry trade return distribution are: 

(i) the implied variance spread between investment and funding currencies, (ii) the global FX-

based VRP, (iii) the global CPI differential, and (iv) the CRB commodity price index. While 

higher values of the implied variance spread signal higher carry trade weights, the opposite is 

true for the other three variables. As a result, the optimized carry trade portfolio takes 

advantage of financial stress periods through an effective system that variably switches 

between long and short holdings and, additionally, delivers gradual returns in relatively calm 

periods. This is reflected in mean annual returns of up to 8.38%, accompanied by a positive 

skewness of 0.58, low standard deviation, and tremendously-reduced maximum draw downs, 

leading to Sharpe ratios around unity.  

This paper is organized as follows: Section 2 describes the data and the parametric 

portfolio policy model and outlines the computation of the global risk variables. Section 3 

briefly describes the historical properties of the global and G10 carry trade portfolios and 

                                                
4 Lustig et al. (2011) report average nominal and real interest rate differentials for a variety of currency baskets 
sorted on their forward discount levels. Their statistics imply, for their “All Country” sample, a moderate 
average inflation rate of 1.76% for funding currencies and, on the other hand, a substantially higher average 
inflation of 8.15% for investment currencies, annually. Their sample period is from November 1983 to 
December 2009, with on average US annual inflation of 2.92%. 
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presents empirical evidence of in-sample and out-of-sample return profitability. Section 4 

provides conclusions to the information presented.  

 

2 Data and Methodology 

This section starts with a characterization of the data basis, which incorporates the data 

source, restrictions, and foreign exchange (FX) samples used. The study focuses on global 

state variables that incorporate the use of option-implied information, as has been outlined in 

the introduction. Specifically, the role of FX’s realized and implied variance risk, in particular 

the variance risk premium (VRP), will be taken into consideration as a primary source of 

global risk that impacts the currency carry trade risk environment. As a first step, the 

computational background for the second-moment risk will be introduced, followed by the 

transformation into a global state variable. After some preliminaries about the recovery of FX 

option prices and exchange rate return definitions, the parametric portfolio policy developed 

by Laborda et al. (2014) will be presented.  

 

2.1 Data 
The FX data primarily consists of foreign daily bid/ask spot rates, one-month (1m) and 

three-month (3m) forward rate data from WM/Reuters fixings. There are two currency 

samples used for computing carry trade returns, which are the Global-Sample, containing 32 

different exchange rates, and a smaller subsample of only 10 developed currencies, denoted as 

the G10-Sample. All FX rates are quoted against the US-dollar (USD), covering the sample 

period from September 2003, at the earliest, to June 2015.5 The G10-Sample consists of the 

countries/regions: Australia (AUD), Canada (CAD), Denmark (DKK), Europe (EUR), Great 

Britain (GBP), Japan (JPY) New Zealand (NZD), Norway (NOK), Sweden (SEK), and 

Switzerland (CHF). The Global-Sample additionally contains FX rates of 22 emerging 

countries: Brazil (BRL), Chile (CLP), Colombia (COP), Czech Republic (CZK), Hungary 

(HUF), India (INR), Indonesia (IDR), Israel (ILS), Malaysia (MYR), Mexico (MXN), Peru 

(PEN), the Philippines (PHP), Poland (PLN), Romania (RON), Russia (RUB), Singapore 

(SGP), Slovakia (SKK), South Africa (ZAR), South Korea (KRW), Taiwan (TWD), Thailand 

(THB), and Turkey (TRY).  

The study uses two different Carry Trade Activity Indexes (CTI’s) developed by Broll 

(2016a), which track the degree of long exposure of the global and G10 carry trade portfolio 

held by speculators. The underlying dataset is restricted to only nine different FX rates, 
                                                
5 Table A. 2 in the appendix provides an overview of the various start and end dates of each currency. 
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trading at the Chicago Mercantile Exchange (CME), which are the AUD, CAD, CHF, EUR, 

GBP, JPY, MXN, NZD, and RUB. Seven exchange rates are available over the sample 

period, while the data on the New Zealand Dollar (NZD) and Russian Ruble (RUB) start later, 

in November 2005 and February 2009, respectively. The CFTC provides information about 

aggregated FX future long, short, and spread positions for a variety of different trader groups 

for any single currency. The data is publically available at a weekly frequency on the CFTC’s 

homepage in the Traders in Financial Futures (TFF) report. The last month future-only report 

serves as proxy for end-of-month observation. In order to attain relative conformity with 

regard to the G10-Sample and the Global-Sample coverage, the CTIG10 consists of seven G10 

currencies, whereas the CTIGlobal makes use of all nine currencies.  

The FX option data contains information about end-of-month 1m and 3m option-implied 

volatility mid-quotes of the 25 delta butterfly and risk reversal strategy, as well as the at-the-

money (ATM) volatility levels. There is also equity-based data derived from the four major 

indices: the US S&P-500, the British FTSE-100, the German DAX-30, and the Japanese 

Nikkei-225 Index. The realized data contains daily closing prices, where the option-implied 

data consist of end-of-month closing prices coming from the volatility indices: VIX, VFTSE, 

VDAX-NEW, and VSJ. These prices proxy the 1m-implied volatility level of the four country 

indices, respectively.  

The interest rate data is comprised of end-of-month 1m and 3m maturity London interbank 

offered rates (LIBOR) for all Global-Sample currencies and the USD. In cases where the 

LIBOR are unavailable, implied rates were computed using the covered interest rate parity 

(CIP).6 Furthermore, the time-series on the US-TED spread is used, which essentially mirrors 

the interest rate difference between 3m LIBOR and 3m T-Bill rates. The risk-free rate for the 

US-investor is proxied by the four-week (4w) T-Bill rate.  

Macroeconomic data comprises monthly information on the money stock (M3),7 consumer 

price index (CPI), and industrial production data for all currencies covered. Additionally, the 

data on key rate changes for all G10 countries was collected. All data was obtained using 

Datastream, the CFTCs, and the G10 countries’ central bank websites.  

 

                                                
6 The CIP relationship is proxied by 𝑓",$ = 𝑠" + 𝑖",$ − 𝑖",$

* , where 𝑓",$ and 𝑠" denote the current log forward and log 
spot rate at time t, 𝑖",$

*  means the foreign interest rate, and 𝑖",$ the corresponding US-rate for period [t,T]. CIP-
implied foreign rates have been computed for the 1m-KRW interest rate from 2003:09 to 2004:07, the 1m-TRY 
rate from 2005:11 to 2006:06, the 1m-CLP rate from 2014:01 to 2015:06 and for 1m- and 3m-SKK rates from 
2009:01 to 2015:06 and 2013:10 to 2015:06, respectively. 
7 For the following countries, M2 data is used as the biggest available money aggregate. M3 is used for the USA, 
Indonesia, Russia, and Taiwan.  
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2.2 Recovering Option Prices 
It is a common practice in the FX market that option-implied volatilities are assigned to 

option deltas rather than fixed option strike prices. The option delta determines the moneyness 

of an option and, therefore, the sensitivity of the option price due to changes in the price of 

the underlying asset. In order to translate these option delta volatilities into strike price 

volatilities, Reiswich and Wystup (2012) developed a procedure to recover FX option prices 

by modelling market-conform option smiles. The option smile or skirt describes the various 

implied volatility levels relative to their option strike for the respective exchange rate and 

option maturity. They call their procedure the simplified parabolic interpolation model, using 

the 25-delta butterfly, 25-delta risk reversal, and ATM volatility quotes as input parameters.8 

Reiswich (2011) has empirically shown that this calibration method delivers robust results 

that are comparable to other well-known smile procedures used in practice; e.g. the vanna-

volga method by Castagna and Mercurio (2007), among others.  

 
2.3 Currency and Carry Trade Return Definition 

It is assumed that the FX market is arbitrage-free and without friction. The exchange rate is 

expressed in USD per one foreign currency unit. Therefore, an appreciation of the exchange 

rate translates into an appreciation of the foreign currency holding of a US-investor relative to 

his home currency, the USD. St denotes the current spot rate in t and Ft,t+1 the corresponding 

forward rate with maturity in t+1. Assuming that the covered interest parity (CIP) holds, the 

forward rate can be priced as follows: 

𝐹",",- = 𝑆"𝑒(12,234512,234
6 )8 (1) 

Here 𝑖",",-
*  denotes the one-period foreign LIBOR9 and 𝑖",",- the corresponding US-LIBOR, 

where t means the difference between start and maturity date expressed in years. This study 

solely expresses FX returns in logarithmic form, where forward and spot FX prices are then 

denoted as lower case letters. The one period log return rt,t+1 for a US-investor holding foreign 

currency units is then defined as  

𝑟",",- = 𝑠",-	– 𝑓",",- (2) 

When we plug the forward price definition (1) into (2) and maintain the log return format, 

we can see that the exchange rate return is composed of two main sources, on the one hand, 

the spot rate change (Dst,t+1) and, on the other hand, the interest rate differential (IRD): 
                                                
8 Table A. 1 in the appendix provides a detailed overview of option delta conventions used to recover option 
smiles for any exchange rate in the coverage. 
9 The London Interbank Offered Rate (LIBOR) is usually used as a benchmark rate to price forward contracts 
and other financial contracts in the foreign exchange market. 
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𝑟",",- ≈ 𝛥𝑠",",- + 𝑖",",-
* − 𝑖",",-  (3) 

The key objective of the currency carry trade strategy is therefore to lock-in the IRD. This 

is done in a portfolio context to mitigate country-specific risk through diversification effects. 

There is some evidence that the significance of carry trade returns increases when one 

increases the number of currencies involved (see e.g. Bakshi and Panayotov, 2013; 

Brunnermeier et al., 2009). The currency composition for the global carry trade strategy 

consist of one sixth of all currencies with the highest foreign rates, and one sixth of currencies 

with the lowest foreign interest rate levels for any monthly revolving investment period. The 

monthly carry trade return 𝑟",",->$  is then defined as the difference between the average log 

returns of Mt individual investment currencies and the average log returns of Nt individual 

funding currencies: 

	𝑟",",->$ =
1
𝑀"

𝑟",",-A

B2

AC-

−
1
𝑁"

𝑟",",-E

F2

EC-

 (4) 

In the forthcoming analysis, we use two different carry trade portfolio compositions. The 

first one is composed of the Global-Sample currencies, the global carry trade portfolio, while 

the second one’s composition relies only on the G10-Sample, the G10 carry trade portfolio 

that primarily serves as control sample. The number of available currencies for the global 

carry trade varies over time, so that N and M are subscripted by t, whereas the composition for 

the G10 carry trade portfolio always consist of two investment and two funding currencies. 

	
2.4 Parametric Portfolio Policy Model Description  

This section introduces the investment procedure used here to obtain optimal portfolio 

weights for the currency carry trade strategy. The procedure has its origins in the pioneering 

work of Brandt et al. (2009) and has been operationalized by Laborda et al. (2014) to fit the 

optimization process for the currency carry trade. The key objective for this investment 

procedure is to compute an optimal weight 𝜔"	for the carry trade that can change from long to 

short positions, depending on the changing nature of the global economic environment. As 

input variables for the model serves a range of global risk variables that have potential to 

predict the carry trade return distribution. The output is the time-varying optimal weight 𝜔", 

which simultaneously maximizes the investor’s utility. The carry trade positions are executed 

in the forward market and it is assumed that no collateral is needed to underline the forward 

market operations. Hence, the entire capital can be invested into the risk-free asset with return 

𝑟𝑓",",-HI . The resulting optimized portfolio return 𝑟",",-
JK"  can be defined as follows: 
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𝑟",",-
JK" (𝜔") = 𝑟𝑓",",-HI + 𝜔"𝑟",",->$ 	

	
(5) 
	

The basic idea of the optimization process is to choose a portfolio weight 𝜔"	in each period 

that maximizes the conditional expected utility 𝔼" 𝑈  of the portfolio’s return 𝑟",",-
JK" , given a 

set of risk variables Xt:  

max
Q
	 𝔼" 𝑈 𝑟",",-

JK" 𝜔" |	𝑋"  
 

(6) 
 

It is assumed that the investor’s utility function is CRRA (Constant Relative Risk 

Aversion), which is standard in portfolio theory (see Brandt, 1999):  

                                           𝑈 𝑟",",-
JK" =

-,T2,234
UV2 4WX

-5Y

𝑙𝑜𝑔 1 + 𝑟",",-
JK"

 
,	for	𝛾 ≠ 1	  

    (7) 
 ,	other.	

The risk aversion parameter of the representative US-investor is denoted as 𝛾 and takes on 

a value of 10.10 The optimal weight 𝜔" is parameterized as a function of the carry trade’s 

global risk structure, in the following simple linear form:  

𝜔" = 𝜔" 𝑋"; 𝜃 = 𝜃⊺𝑋" = 𝜃-𝑥- + 𝜃j𝑥"j + ⋯+ 𝜃E𝑥"E 
 

(8) 
 

where 𝜃 is a vector of coefficients to be optimized, Xt is a matrix of risk variables and 

𝑥-	serves as the intercept value, while all other 𝑥l- values represent risk variables that are 

standardized across time to have zero mean and unit standard deviation. This time-series 

standardization ensures, on the one hand, stationarity of the variables, and, on the other hand, 

that any particular risk source is treated balanced to each other, so that risk variables with 

particularly high volatilities are not over-weighted. After the optimization procedure, the 

values of 𝜔" will be restricted to lie between -1 and 1, in the following form: 

𝜔"Tmn"T. =
+1, 𝑓𝑜𝑟	𝜔" > 1	

			−1, 𝑓𝑜𝑟	𝜔" < −1	
𝜔", 𝑜𝑡ℎ𝑒𝑟.

 
 

(9) 
 

While this step is not obligatory, since the investments are executed in the forward market 

and can be leveraged to any desirable level, the initial results are primarily addressed to the 

conservative investor who is not necessarily interested in highly-leveraged investments. On 

the other hand, the results become ultimately comparable to the original work of Laborda et 

al. (2014). In the empirical section it will be shown that higher leveraged optimized carry 

trade portfolios are also reasonable without loss of portfolio efficiency.   

                                                
10 The standard level of investor’s risk is set to 𝛾 = 10, which leads, on the one hand, to volatility levels 
comparable to the baseline carry trade portfolio, and, on the other hand, ensures comparability to the results in 
Laborda et al. (2014).  
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Given the above-mentioned maximization problem and restrictions for the investor, we can 

now reformulate equation (6) to have a testable representation, which can be implemented 

into an optimization process using the iterated generalized method of moments (GMM) (see 

Hansen, 1982). The GMM method requires as many moment conditions m as one is supposed 

to estimate the number of k parameters 𝜃. This is done by using the first derivative of the 

maximization problem in (6) with respect to 𝜃: 

𝑚 𝜃 = 𝑈′ 𝑟",",-
JK" 	𝑟",",->$ 	⨂	𝑋" = 0 

 
(10) 

 
with 𝑈w as the marginal utility of the investor, 𝑚 𝜃  as the k x 1 vector of moment conditions, 

and ⨂ denoting Kronecker’s product. In order to make the representation in (10) operational, 

the corresponding sample analogue of this allocation problem is:  

𝑀$ =
1
𝑇 𝑚" 𝑟",",-

JK" , 𝑋"; 𝜃
$5-

"Cy

= 0 
 

  (11) 
 

Optimization is then achieved by minimizing the following scalar: 

1
𝑇 𝑚" 𝑟",",-

JK" , 𝑋"; 𝜃
$5-

"Cy

⊤𝑊$
1
𝑇 𝑚" 𝑟",",-

JK" , 𝑋"; 𝜃
$5-

"Cy

= 0 
 

(12) 
 

where WT is a k x k spectral density matrix of the population moment functions. Since we have 

as many moment conditions as parameters by definition, the model is called “just-identified” 

and the restrictions are perfectly satisfied. The weighting matrix WT determines the relative 

importance of all k moment conditions to each other. Hansen (1982) shows that setting WT 

equal to the inverse of a covariance matrix of the k moment conditions (W = S-1), yields 

optimal estimates of 𝜃 with the smallest variance. A popular choice for the covariance matrix 

estimator that also corrects for autocorrelation and heteroscedasticity (HAC) is the Newey-

West estimator: 

𝑆 = 𝑆y + 1 −
𝑗

𝐽 + 1

~

�C-

𝑆� + 𝑆�
⊤  

 
(13) 
 

with J indicating the lag length, and: 

𝑆� =
1
𝑇 𝑚" 𝑟",",-

JK" , 𝑋"; 𝜃 𝑚"5� 𝑟",",-
JK" , 𝑋"; 𝜃

⊤
$

"C�,-

 
 

(14) 
 

Basically, the optimal spectral density matrix WT requires an estimate of the parameter 

vector 𝜃. However, it is common practice that in the first estimation step the matrix WT is set 

equal to the identity matrix. In subsequent optimization steps, WT will be replaced by the 
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optimal inverse of the Newey-West HAC covariance estimator outlined in (14) to obtain 

consistent estimates of the parameter vector 𝜃.11  

As a result, the optimized parameter vector 𝜃 will be used to compute the optimal portfolio 

weight 𝜔" according to (8), which advises the representative investor with individual risk 

aversion 𝛾 to invest in the baseline carry trade strategy.    

Statistical inference is based on the asymptotic covariance matrix 𝛤$ for the vector 𝜃:  

Γ$ = (1 𝑇) 𝐺$𝑊$𝐺$⊺ 5- 
 

(15) 
 

with 

G$ =
1
𝑇

𝜕𝑀$ 𝑟",",-
JK" , 𝑋"; 𝜃
𝜕𝜃

$

"C-
 

 
(16) 
 

 

2.5 Variance Risk Definition 
The variance risk definition presented here slightly differs from the definitions in other 

studies or the variance swap approach used in practice. The conventional view of measuring 

an asset’s variance risk is determined by the aggregation of an asset’s squared discrete or log 

returns over a predetermined period, e.g. 𝑟j$ . Jiang and Tian (2005) noted that the usual 

variance definition leads to imperfect variance swap replication.12 Neuberger (2012) 

developed a function 𝑔� that overcomes this merit and leads to a perfect match between the 

realized and option-implied variance for every price process and partition size (e.g. hourly, 

daily, monthly, etc.). He describes this perfect match as satisfying the Aggregation Property, 

which means that the quantity measured using higher frequency - usually the realized variance 

- is an unbiased estimate of its low frequency counterpart, the option-implied variance risk.13 

Under the proposition that the underlying price process is martingale, he defined the 

generalized variance of log returns as 𝑔� r ≡ 2(𝑒T − 1 − r), which has all the properties of 

variance (see also Bondarenko, 2014). Following the proposition of 𝑔� as a measure of 

variance, the realized variance (𝑅𝑣𝑎𝑟",$1 ) of foreign exchange rate k in the time interval [t,T] is 

defined as follows: 

                                                
11 The GMM estimation process is executed using the publically-available software package from Michael 
Cliff’s homepage (see Cliff, 2003). The search algorithm is based on the Gauss-Newton procedure and the lag 
length is set to J = floor(T1/3).  
12 They noted that the replication is only true in the limiting case where the observed time period is close to zero 
and the price process is continuous.  
13 See especially Proposition 2 and 3 in Neuberger (2012) and proofs therein. 
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𝑅𝑣𝑎𝑟",$� = 	 2
𝐹",-,$�

𝐹",$�
− 1 − 𝑙𝑛

𝐹",-,$�

𝐹",$�

$

"Cy

≈ 2
𝑆",-�

𝑆"�
− 1 − 𝑙𝑛

𝑆",-�

𝑆"�

$

"Cy

	
	

(17) 
	

Investments in the foreign exchange markets imply a compounding of the interest rate 

differential of both currencies involved. Therefore, one should make use of forward data when 

computing realized moment risk. Since there is no such data available on Datastream, the 

price process is approximated using daily spot rates.  

The corresponding option-implied variance (𝐼𝑣𝑎𝑟",$� ) uses only the price information at time 

t from option prices with maturity T. Given the underlying function 𝑔� and applying the 

spanning approach of Bakshi and Madan (2000), 𝐼𝑣𝑎𝑟",$�  can be priced using a continuum of 

options:	

𝐼𝑣𝑎𝑟",$� = 	
2
𝐵",$

𝑃",$� 𝐾
𝐾j

𝑑𝐾	
�2,�

y
+

𝐶",$� 𝐾
𝐾j

𝑑𝐾	
�

�2,�
≈

2
𝐵",$

𝑃",$� 𝐾�
𝐾�j����2,�

∆𝐽(𝐾�) +
𝐶",$� 𝐾�
𝐾�j����2,�

∆𝐽(𝐾�) 	
	

   (18) 
	

𝐵",$	is the USD zero-bond price with same maturity. It turns out that 𝐼𝑣𝑎𝑟",$1  consist of a 

long portfolio of out-of-the-money (OTM) call and put options that are weighted by their 

squared strike prices K. However, in real world, there is no such continuum of options and, 

therefore, 𝐼𝑣𝑎𝑟",$� 	is approximated using twenty call and put option prices, respectively, which 

are equally spaced between +/- 0.10 delta options.14 The infinitely small strike price 

difference dK is replaced by ∆𝐽(𝐾�), which is approximated as:15  

∆𝐽(𝐾�) ≡ 	
𝐾�,- − 𝐾�5-, 𝑓𝑜𝑟	0 ≤ 𝑗 ≤ 𝑁	(𝑤𝑖𝑡ℎ	𝐾5- ≡ 2𝐾y − 𝐾-, 𝐾F,- ≡ 2𝐾F − 𝐾F5-)	

0,																																																																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
	

	
	

(19) 
	

As noted above, the variance risk premium is then defined as the simple difference 

between the realized and implied variance risk for the same time interval [t,T]. Since 𝑅𝑣𝑎𝑟",$�  

is only observable at the end of the period, whereas 𝐼𝑣𝑎𝑟",$�  is computed out of option prices in 

t, the 𝑉𝑅𝑃",$�  is a measure of dispersion between the ex-post observed realized variance to its 

ex-ante option-implied variance counterpart:  

𝑉𝑅𝑃",$� = 	𝑅𝑣𝑎𝑟",$� − 𝐼𝑣𝑎𝑟",$� 	
	

(20) 
	

                                                
14 Jiang and Tian (2005) also investigated into the approximation errors in a discrete world setting when 
computing implied moment risks. They conclude that the approximation errors are supposed to lie around 0.5% 
away from the true implied volatility level, when OTM options are struck at 1.5 standard deviations away from 
the forward price. The 0.10 delta strikes are roughly 1.4 standard deviations away from the forward, so that the 
expected errors are expected to be negligibly-small. 
15 Kozhan et al. (2013) studied the variance and skewness risk premiums for the S&P 500 equity index using the 
same finite approximation procedure as that presented here. 
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The VRP is supposed to measure investor’s perceptions about aggregate uncertainty in the 

economy and, therefore, provide a good benchmark to a shock to economic state variables. 

 In order to translate the single 𝑅𝑣𝑎𝑟",$� ’s, 𝐼𝑣𝑎𝑟",$� ’s, and 𝑉𝑅𝑃",$� ’s interpretation into a global 

context, this paper aggregates all single exchange rate variances into an equal weighted basket 

of all N currencies of their respective sample. The global state variable is then defined as:  

	𝑉𝑎𝑟",$
�� ¡¢�/�-y = 	

1
𝑁 𝑉𝑎𝑟",$�

F

�C-
	

	
(21) 
	

 

2.6 Global Equity Variance Risk Premium 
Following Aloosh (2014), we also consider a global variance risk variable based on the 

equity market. Aloosh (2014) has shown that his global equity VRP (VRPGlobal-EQ) has 

predictive power for future exchange rates and the carry trade portfolio return. Therefore, we 

follow his composition of the underlying equity index markets, but stick to the realized 

variance definitions of Neuberger (2012) defined in (17). The global variance risk contains 

the four equity market indices: (i) S&P 500, (ii) Nikkei-225, (iii) FTSE-100, and (iv) the 

DAX-30. While the realized variance is computed from daily spot prices, the implied variance 

is taken from the end-of-month closing prices of the corresponding 1m-option-implied 

volatility indices, which are: the VIX, the VXJ, the VFTSE, and the VDAX-NEW. The 

resulting global VRPGlobal-EQ is constructed as the equally-weighted average of any single 

equity market VRP. While Aloosh (2014) used a market-capital weighting scheme, he noted 

that, in a robustness check, the results are similar when using an equal weighted VRP.   

 

2.7 Macroeconomic State Variables 
As described in the introduction, the following two macroeconomic variables play a central 

role in predicting carry trade returns. These are (i) the past global 1m real industrial 

production growth rate16 (RP) and (ii) the past global 1m inflation differential between the 

average of all foreign countries CPI’s and the US-CPI growth rate (CPI). The RP represents 

an equal weighted aggregate of the respective currency sample’s real industrial production 

growth rate. The transformation from nominal to real terms is done through deflation by its 

country’s CPI index.17 

                                                
16 The following six countries’ currencies do not provide monthly data on industrial production growth: AUD, 
NZD, CHF, CLP, PEN, and PLN. For these cases, industrial production growth is approximated by quarterly 
GDP figures transformed into monthly observations by the cubic splines routine. 
17 The aggregation procedure for RP and CPI is equal to the applied methodology for variance risk in equation 
(21).  
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Since the data exhibits significant annual seasonality, both macro fundamentals are de-

seasonalized using the Box-Jenkins methodology. This adjustment is done for the aggregated 

data series using the best fit of three different seasonality models: (i) an AR(1) with seasonal 

moving-average, (ii) a multiplicative autoregressive, or (iii) the multiplicative moving average 

model.18  

The use of these fundamentals as global risk variables is encouraged by findings of de 

Zwart et al. (2009). They found evidence that in a trading application using real interest rates 

and GDP differentials are useful, as trading signals on individual exchange rate levels as well 

as on equal weighted currency portfolio levels. The results presented in the empirical section 

will prove that the global aggregates on CPI and RP will exhibit similar efficient effects on 

the optimization process for the currency carry trade portfolio.  

However, one important thing about the data is worth noting here; macroeconomic figures 

are often revised through time. Some papers robustness check their results with vintage data 

series, which refers to not-revised or real-time data. Unfortunately, the robustness check for 

this study cannot be performed due to a lack of macroeconomic vintage data for all countries 

being covered. 

 

2.8 Measuring Carry Trade Activity 
The definition of the Carry Trade Activity Index (CTI) is taken from the definition in Broll 

(2016a). It provides a useful aggregation procedure to mirror the degree of long investments 

into a virtual carry trade portfolio. The set of information is primarily driven by the 

publically-available foreign exchange data supplied by the CFTC in its weekly TFF report.	In 

order to track the positions of speculators in the carry trade, one computes first the investment 

exposure of any foreign exchange rate and then aggregates it into a portfolio setting. The most 

common group that has been identified as financial speculators is the group of “Non-

Commercial” traders (see Breedon et al., 2015; Brunnermeier et al., 2009), which is extended 

by the “Non-Reportables” traders group in Broll (2016a) due to a high positive correlation of 

position changes.  

It follows that the degree of a long speculation in currency k at time t is defined as follows:		

𝑆𝐶𝐹"� = 	
𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"� − 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"�

𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"� + 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠"�	
	

 
(22) 

 

                                                
18 A detailed discussion about time-series’ seasonality effects can be found in Enders (2014: 97-103). 
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The SCF (speculator’s capital in futures) captures the relative future market exposure to 

the long or short side of a single foreign exchange rate. The SCF always lies between -1 and 

1, where a positive (negative) realization translates into a net long (short) investment in the 

foreign currency funded by the USD. In order to capture the future market exposure to the 

carry trade portfolio, these single SCF values are aggregated with the following procedure: 

the average SCF of the three FX rates with the highest interest rate differentials (IRD) are 

deducted by the average SCF of the three FX rates with the lowest IRD levels: 

𝐶𝑇𝐼" = 	
1
3 max

¦§¨
𝑆𝐶𝐹"�

©

�C-
−
1
3 min

¦§¨
𝑆𝐶𝐹"�

©

�C-
	

	
(23) 
	

Hence, the resulting Carry Trade Activity Index (CTI) is now supposed to mirror the 

degree of speculation in the carry trade portfolio. The empirical section will make use of two 

different CTI’s to differentiate between the global and G10 sample, as has been outlined in the 

data section. Furthermore, the empirical analysis concentrates on a simple moving average of 

the CTI over the past six month due to the high variability of the monthly data series.  

 

2.9 Benchmark Model 
In order to take the results into perspective, Laborda et al.'s (2014) model is used as the 

benchmark model. Under the same parametric portfolio policy procedure introduced above, it 

reported quite well the improvements over the baseline carry trade investment, with 50% 

increased average returns, positively skewed return distributions, and Sharpe ratios around 

unity in out-of-sample tests. While they used an almost-doubled sample size from January 

1990 to July 2012, they exclusively investigated the G10 carry trade portfolio as an 

underlying asset without incorporating transaction costs. In particular, they rely on six major 

state variables as key drivers for predicting carry trade returns: (i) the 1m-lagged carry trade 

return, (ii) the average G10 forward discount, (iii) the VIX-index, (iv) the US-TED spread, (v) 

the CRB commodity index return, and (vi) a global monetary policy indicator (GMPI).19 The 

GMPI is related to negative key rate changes of the G10 countries’ central banks. This one-

sided binary index sums all reduced key rate changes in the respective month and then 

standardized this time-series to have zero mean and unit standard deviation.  

  

                                                
19 The data on the GMPI used in the original work of Laborda et al. (2014) was fortunately provided by the 
author and adapted to match the sample size in this study. 
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3 Empirical Results 
This section starts with a brief introduction of the time-series properties of the global and 

G10 carry trade portfolios. It then follows in-sample tests using the parametric portfolio 

policy with (i) the effects of FX and equity based variance risk, (ii) macroeconomic effects 

and influence of the CTI, and (iii) a round-up covering the most promising risk factors and the 

benchmark model. The last part of the section deals with the out-of-sample performance of a 

relatively parsimonious fitted parametric portfolio policy relying especially on option-implied 

information. This model is taken into perspective with the benchmark and carry trade 

portfolios and is extended to higher leveraged investments. 

  

3.1 Historical Returns to the Carry Trade Strategy 
The success of the carry trade as a popular currency strategy has been reported in many 

studies in terms of significant excess returns and high portfolio efficiency (e.g. Burnside et al., 

2011b). These excess returns have lost their glamour in the recent subprime crisis, starting in 

2008, where financial institutions engaged in the carry trade suffered from losses of up to one 

third of their value within a six-month period (G10 carry trade). Table 1 reports a brief 

summary of statistics about the carry trade return distribution, contrasting the carry trade 

returns build up by the G10-Sample (CTG10) and Global-Sample (CTGlobal) currencies.20 The 

analysis covers the investment period from September 2003 to June 2015 and is divided into 

Panel A and B, where the latter incorporates transaction costs. Starting with Panel A, we see 

that despite the occurrence of the financial crisis, the average mean return for the CTGlobal 

stays significant at the 10% level, reaching a mean return of 4.93%. The corresponding CTG10 

return is slightly smaller and has a much lower T-statistic of 1.28. Another interesting aspect 

is that the forward discount levels between the global and G10 carry trade, which mirrors the 

average interest rate differential between investment and funding currencies21 is twice as big 

as for the global carry trade with an average of 8.76%.  

 

[Insert Table 1 about here.] 

 

                                                
20 It should be noted that the reported average mean carry trade return defined in 4 is increased by the average 
4w T-Bill rate, with regard to the assumption that the entire cash exposure is invested in the US risk-free asset.   
21 The forward discount value is the difference between the forward and spot price of the respective exchange 
rate. Given that the covered interest rate parity holds (see equation (1)), the forward discount equals the exponent 
of the interest rate differential times the forward duration in years (𝜏). 
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While this is not surprising, since we know from the data that emerging market countries 

are paying a much higher interest on average compared to those with developed markets, the 

CTG10 collects almost all the interest rate differential, on average (FD=4.56%). This is not the 

case for the CTGlobal, where almost half of the interest rate spread is lost due to currency 

depreciation. While UIP suggests that currencies’ interest rate advantage should vanish 

completely through spot rate depreciations, on average, the same picture has been observed in 

Broll (2016a) and Lustig et al. (2011). Another interesting aspect is that both return series are 

exposed to negative skewness, which has led some authors to suggest that the significant 

excess returns are compensation for bearing crash risk (see Brunnermeier et al., 2009; Farhi et 

al., 2015; Jurek, 2014). This is especially true for the CTG10, reaching a negative skewness of -

0.44 with a tremendously-high maximum drawdown (MDD) of -28.48%. The much higher 

sample size of the CTGlobal seems to balance the returns more properly with half of the MDD 

(-13.27%) and higher portfolio efficiency in terms of the Higher Moment Sharpe ratio 

(SRHM),22 reaching 0.42, compared to just 0.29 for the CTG10. Figure 1 plots both carry trade 

time series, illustrating the sharpe slowdown during the subprime crisis of 2008-2009 and its 

ultimate reversal period. 

 

[Insert Figure 1 about here.] 

 

Another interesting portfolio metric in this context is the certain equivalent return (CER).23 

This indicates the level of guaranteed return, which makes the representative investor 

indifferent between the risky and the riskless strategy paying off CER in expectation. Using a 

risk aversion level of 𝛾 = 10, we see that the investor would only demand a minimum of 

0.74% to step away from the risky CTGlobal strategy. The CER figure for the CTG10 is even 

worse, here the investor would accept an annual loss of 2.44% to avoid the carry trade 

investment. The last two columns indicate that both return series are not significantly auto-

correlated to first lagged returns. The Jarque-Bera test statistic (JB) in the last column cannot 

reject the normal distribution of the CTGlobal return series, but for the CTG10, which is not 

surprising due to lower skewness, higher excess kurtosis, and a much lower maximum 

drawdown. Panel B reports the same return statistics considering transaction costs. These 

costs are approximated by bid-ask spreads in the forward market, where it is assumed that, at 

                                                
22 The SRHM has been developed by Broll (2016b), as a higher moment extension of the classical Sharpe ratio. It 
extends the Sharpe ratio by the third and fourth moment risks, including the original Sharpe ratio as a special 
case (see Appendix B). 
23 The certain equivalent return is defined in Appendix B.  
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initiation, investment (funding) currencies trade at ask (bid) prices, and the trade is settled at 

the end of each one-month period on spot mid-prices.24 It results that the average annual cost 

of 79bps for CTGlobal is more than twice as high as for the CTG10, with only 35bps, where 

CTGlobal mean returns are not statistically significant any more. 

 

3.2.1 Parametric Portfolio Policy: In-Sample Tests 
This section starts by investigating the parametric portfolio policy’s ability to find a risk-

adjusted carry trade weight that optimizes the return process in-sample. Therefore, we will 

focus on two main risk sources, which are the impact of global variance risk variables and the 

impact of global macro risk. The forthcoming tables are divided into two parts, where Panel A 

always uses the CTGlobal as the underlying portfolio, and Panel B the CTG10 presented in the 

top row. All return statistics are in log format and incorporate transaction costs. All optimized 

portfolios include a constant value in its parameter set, which is not presented here due to 

space limitations. 

The first two columns of Table 2 characterize carry trade returns and the global variance 

risk variables used as input parameters for the GMM optimization procedure, followed by 

statistical inference of the various parameter values and portfolio return statistics.  

The first four global state variables focus on the impact of FX-based variance risk, which 

are: (1) the current global 3m option-implied variance risk (𝐼𝑣𝑎𝑟",",©
��./�-y5�­), (2) the past global 

3m realized variance risk (𝑅𝑣𝑎𝑟"5©,"
��./�-y5�­), (3) the past global 3m variance risk premium 

(𝑉𝑅𝑃"5©,"
��./�-y5�­), and (4) the current difference of 3m option-implied variance between 

investment and funding currencies (𝐼𝑣𝑎𝑟",",©
>$(5�-y)).  

 

[Insert Table 2 about here.] 

 

With respect to the portfolio statistics of the CTGlobal, the average mean returns for strategy 

(1) and (2), are somehow lower, with only 2.32% and 2.15%, respectively, but with sharply-

reduced standard deviations and maximum drawdowns (MDD). The dCER value in the last 

column refers to the marginal CER, which is the difference of the respective CER of the 

optimized portfolio relative to the carry trade portfolio. A positive level indicates that the 

representative investor would prefer the optimized carry portfolio over the baseline carry 

                                                
24 Mancini et al. (2013) point out that the effective transaction costs are much lower than those imposed by 
official WM/Reuters bid-ask spreads. Taking half of the bid-ask spread leads to better approximated transaction 
costs. This procedure has also been used in Barroso and Santa-Clara (2015). 



  70 

trade. However, the results on the next two variables look much more promising. Continuing 

with VRPGlobal-FX, we see that the mean return of 3.87% stays at a similar level to the CTGlobal 

return, but with much lower standard deviation, leading to an almost doubled SRHM value of 

0.6. The VRPGlobal-FX parameter is statistically significant at the 5% level, where higher VRP 

levels lead to lower optimal carry trade weights. Using IvarCT as the only state variable leads 

to even slightly improved results. While there is a lack of statistical significance, the portfolio 

efficiency is well improved to 0.73 SRHM, which comes especially from the positive skewness 

of 1.12 compared to -0.13 for the VRPGlobal-FX parametrization. Also, the MDD value is 

sharply reduced to only -5.66%. The overall results of Panel A look very similar to those of 

Panel B, except for IvarCT-G10. Here, the portfolio statistic is the weakest among the four 

variables and the T-statistic is close to zero.  

The next three variables under investigation are the complementary risk variables on the 

equity side. These are: (5) the past global equity 1m realized variance risk (𝑅𝑣𝑎𝑟"5-,"
�� ¡¢�5®¯), (6) 

the current global equity 1m option-implied variance risk (𝐼𝑣𝑎𝑟",",-
�� ¡¢�5®¯), and (7) the past 

global equity 1m VRP (𝑉𝑅𝑃"5-,"
�� ¡¢�5®¯). The variables (5) and (6) show similar results 

compared to their FX-based counterparts, variable (1) and (2). Both lack statistical 

significance and do not contribute to great portfolio results. The results on the equity-based 

VRP look much more promising. The VRPGlobal-EQ is significantly negatively related to future 

carry trade returns at the 5% significance level. Opposed to VRPGlobal-FX, the optimized mean 

returns, skewness, and SRHM are higher, with an extraordinarily low MDD level of only -

6.69%. Looking at Panel B, one can state that the results are similar to the Global-Sample 

with the exception that RvarGlobal-EQ exhibits statistical significance at the 10% level. 

However, the significance of the VRPGlobal-EQ is even stronger at the 1% level compared to a 

slightly higher dCER level of 5.62% (compared to 5.35% for RvarGlobal-EQ). On the other 

hand, although the portfolio skewness reaches a very high level of 1.67, the excess kurtosis of 

11.38 leads to a lower SRHM level of 0.60, compared to 0.66 for RvarGlobal-EQ. 

The next two optimizations concentrate on results using multiple state variables as risk 

sources. Beginning in Panel A with a combination of the most promising FX-based variables, 

VRPGlobal-FX, and IvarCT shows interesting results. While IvarCT did not exhibit any statistical 

significance in the univariate case, it exhibits strong positive significance at the 5% level in 

this multivariate setting, while VRPGlobal-FX keeps on being significant at the 1% level. The 

portfolio results are even stronger with a mean return and standard deviation of about 7% and 

the SRHM nearly reaches unity. Moreover, the higher moment risks are more than amazing, 

with positive skewness of 0.45, along with a very low excess kurtosis near zero. This is 
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confirmed by the results in Panel B. Adding the equity-based VRP it can be seen, in the last 

row, that the results in both panels slightly improve, while the significance of VRPGlobal-EQ 

becomes insignificant in Panel A, and the MDD level in Panel B worsens to -15.2%. 

All in all, it can be stated that the contribution of option-implied variance risk, coming 

from the FX or equity market, significantly improves the portfolio results of the baseline carry 

trade investment scheme, which results in higher mean returns, higher skewness, lower 

standard deviation, and, therefore, more efficient portfolios. 

 

3.2.2 Macro-Fundamentals and Carry Trade Activity 
The second part of the analysis concentrates on the parametric portfolio policy using global 

macro variables, along with information on carry trade activity as a source of global risk. The 

macro risk variables are: (8) the past global 1m real industrial production growth rate 

(𝑅𝑃"5-,")
��./�-y), and (9) the past global 1m inflation differential (𝐶𝑃𝐼"5-,")

��./�-y). The market 

microstructure-based Carry Trade Activity Index (𝐶𝑇𝐼¢°±("5²,")
��./�-y ) is constructed as a 6m moving 

average from end-of-month observations.  

 

[Insert Table 3 about here.] 

 

Table 3 summarizes the results on the portfolio policy, starting with the individual effects 

of RP, CPI, and CTI on the optimal portfolio formation. Starting with Panel A, we see that 

RPGlobal and CPIGlobal exhibit significant impacts on future carry trade returns but with 

different signs. While an increase on global inflation leads to a reduced optimal portfolio 

weight, increased global real production has the opposite effect. The portfolio return statistics 

are similar to each other and as strong as the VRP results from Table 2, leading to mean 

returns of about 4.5% and low 6% standard deviation. The skewness is positive for both 

strategies with mild excess kurtosis. Compared to the G10-Sample, CPIG10 appears to be the 

only parameter with significant impact, leading to an extremely efficient portfolio with a 

SRHM of 0.94. This is due to an extraordinarily high mean return of 6.84%, accompanied with 

positive skewness and a dCER level of 7.13%.  

Also, these effects on inflation and production growth are economically-meaningful. With 

regard to RPGlobal, a higher value corresponds with a growing global economy and implicitly 

lowers the probability of economic distortions, which stimulates the carry trade return 

distribution. On the other hand, a higher global inflation relative to the US is a sign of reduced 

foreign purchase power and lead to future currency depreciations relative to the USD, in 
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particular for emerging countries. Therefore, CPIGl./G10 is significantly negatively-related to 

carry trade returns at the 1% level, leading to decreased or negative optimal carry trade 

weights.  

In the univariate parametrization with CTIGlobal, we see a somehow weaker result as 

opposed to the macro fundamentals. The coefficient appears to be insignificantly negative 

(except for Panel B), which means that the higher the observed long exposure in the carry 

trade, the lower the proposed optimal carry trade weight. This countercyclical result is 

probably due to a lag-effect of the 6m average. In unpublished optimizations with past 1m 

CTIs, the effect was statistically-weaker but positively-related to future carry trade returns.  

However, looking at the multivariate parametrization using the two fundamentals, both 

panel portfolio results look similar and very promising. In Panel A, the MacroGlobal reaches a 

higher mean return than the baseline carry trade, along with a positive skewness of 0.30 and 

lower standard deviation. The MDD is even lower at -7.73% and the portfolio efficiency with 

regard to the SRHM achieves a fantastic value of 0.93. This result is confirmed by the G10-

Sample, but the major effect has to be assigned to the CPIG10 value. Adding the CTI into the 

MacroGl./G10 parametrization also improves the portfolio statistics for Panel A, leading to even 

higher mean returns of 6.89% and a tremendous portfolio efficiency of 1.03 SRHM. With 

regard to Panel B, the marginal effect of adding CTIG10 is negligible.  

To summarize, the effect of past CPI realizations on future carry trade returns are 

significantly negative in both samples. Using this variable in the GMM optimization leads to 

quite-efficient portfolio returns in univariate and multivariate parametrizations. The real 

production growth risk and the CTI moving average are pro- and counter-cyclical risk 

measures, respectively, which only play a minor role for the carry trade return distributions.  

 

3.2.3 Comparison with the Benchmark Model   
We will now turn to the question of how well the model created by Laborda et al. (2014) 

performs in an extended global currency sample. This benchmark model has been developed 

with a greater sample period, ranging between January 1990 and July 2012, using only the 

G10 carry trade portfolio as the underlying asset. The baseline parametrization relied on six 

different variables plus a constant, all of which have been introduced at the end of the last 

section. In order to improve clarity, the portfolio statistics of the various strategies and the 

corresponding parameter values and their inference in Table 4 are arranged in an upper and 

lower table within each panel. 
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  [Insert Table 4 about here.] 

 

The first two rows of Panel A start with the comparison of the benchmark model to the 

CTGlobal. The benchmark mean returns are almost identical but the standard deviation is about 

30% lower. As a result, the SRHM is slightly higher, with 0.57 compared to 0.35, but the MDD 

value is even worse with 15.76% and accompanied with a relatively low dCER of 2.18%. In 

contrast to this, the Panel B results for the benchmark model look much better. The returns are 

positively skewed with a mean return of 6.10%. The SRHM is slightly higher compared to 

Panel A, resulting with 0.68 and a half reduced MDD of -14.53% relative to CTG10.  

However, when optimizing, the carry trade portfolio returns with the most promising 

option-implied risk variables, which are (i) the current 3m implied variance differential 

between investment and funding currencies (𝐼𝑣𝑎𝑟",",©
>$/(�-y)), (ii) the past global 3m FX-VRP 

(𝑉𝑅𝑃"5©,"
��./�-y5�­), and (iii) the past global 1m equity-VRP (𝑉𝑅𝑃"5-,"

��.5®¯), along with global macro 

fundamentals and the market microstructure variable, which are: (iv) the past global 1m real 

production growth (𝑅𝑃"5-,"
��./�-y), (v) the past global 1m CPI differential (𝐶𝑃𝐼"5-,"

��./�-y), and (vi) the 

6m moving average of the Carry Trade Activity Index (𝐶𝑇𝐼¢°±("5²,")
��./�-y ), the portfolio return 

statistics significantly improve from the baseline carry trade portfolio. This parametrization is 

denoted as the All-in model in the third row in both panels. Looking at Panel A, the All-in 

model delivers an impressive mean return of 10.36%, positive skewness of 0.50 and an 

explosively high SRHM of 1.36. The MDD is even more reduced to only -6.33% and the dCER 

more than triples to 7.71% as compared to the benchmark. With regard to Panel B, the results 

are better than the benchmark model but not to the same degree. The mean returns are quite 

high, with 10.88%, a positive skewness of 0.81, and a high SRHM of 1.18, while the MDD 

cannot be reduced to the same extent as in Panel A.  

Looking at the statistical inference of the benchmark model’s state variables, it becomes 

apparent that the overall level of significance is quite weak and mixed for both panels. While 

in Panel A the constant and the 1m lagged carry trade return (CTt-1) appears significant, in 

Panel B only the CRB returns (dCRB) have a significantly positive effect on future carry trade 

returns. Additionally, in Panel B there is information about the parameter values taken from 

the original work of Laborda et al. (2014), found in parenthesis for comparison. It becomes 

visible that especially the TED and the GMPI, exhibit much lower impact here, or put 
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differently, the funding liquidity risk and central bank’s tapering effects do not significantly 

impact carry trade returns in the sample period.25  

An interesting question is: “Do any risk parameters of the benchmark model help to 

improve the All-in model’s results?” The only parameter that contributed to better portfolio 

statistics and significant parameter results was the CRB index (CRB), used instead of the 

CRB returns (dCRB). While in Panel A the SRHM value increases to 1.57 compared to 1.38 

with a slightly improved dCER of 8.5% for the new All-in+CRB model, the marginal 

portfolio effects in Panel B are more articulated. The mean return increases to 13.08% (from 

10,88%) with unchanged standard deviation, leading to only a marginal rise in the SRHM by 

15bps to 1.33, due to lower skewness of 0.55 (from 0.81). The commodity index parameter 

CRB is also significant at the 10% (5%) level for the Global (G10) Sample. Taking the level 

parameter instead of the return of the CRB index does not have the same but, instead, similar 

economic relevance. The dCRB value in the benchmark model has a positive sign, which 

implies a pro-cyclical investment scheme for the investor. Compared to the level parameter 

CRB, which has a negative impact, it shows that the investor follows a more forward-looking 

investment behavior, where he is especially long-invested in the carry trade at depressed 

commodity prices and increasingly shorter at relative high levels, leading to much more 

appealing portfolio results. 

 Furthermore, there is some interesting evidence of commodity price risk on currency 

returns that supports the above-seen results. Roussanov et al. (2016) find that the carry trade 

risk premium can be largely explained by a portfolio that consists of long currencies of 

commodity export countries and short currencies that are largely commodity importers and 

producers of complex goods. They state that the aggregate consumption of commodity 

countries is less risky compared to producers and such heterogeneity in countries’ risk 

exposure can be explained by trade costs, a friction that potentially leads to segmented 

markets. Under these regularities, carry trade returns co-move with commodity price changes, 

as “commodity export currencies” mostly represented by investment currencies, react 

sensitively to commodity price shocks. The increased level of the heterogeneity of countries’ 

risk exposures in crisis periods additionally reinforces the crash risk for commodity 

currencies, which is manifested in highly-negative skewed returns for the currency carry trade 

(see also Powers, 2015). 

                                                
25 It should be noted that in the original work of Laborda et al. (2014) the benchmark model outperformed the 
baseline carry trade even after the subprime crisis of 2008/2009. This is not the case here, which is maybe due to 
a much smaller sample period. This probably means that the benchmark model is more data-consuming than the 
model based on option-implied risk parameters presented here, or that the major effects take place in the first 
half of their data sample.  
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3.3 Parametric Portfolio Policy: Out-of-Sample Tests 
As the previous results should be not overstated because they rely on in-sample estimations 

only used for estimating the strength of the individual parameters on carry trade returns, we 

will now turn to out-of-sample (OOS) tests to evaluate their forecasting performance. The 

OOS predictions start with an initial period length of 48 months. The monthly re-estimation is 

done with an expanding window procedure, starting in September 2007. The representative 

investor, with a risk aversion level of 𝛾 = 10, chooses the optimal carry trade weight in his 

information set.26  

 

  [Insert Table 5 about here.] 

 

Table 5 presents the OOS results for various global risk parametrizations, including the 

benchmark portfolio of Laborda et al. (2014). The first row of Panel A starts with a very weak 

CTGlobal performance in the OOS estimation period. The carry trade mean return and skewness 

is negative with a relatively high standard deviation of 8.22%. The benchmark portfolio 

performs slightly better with a mean return of 1.79% and positive skewness of 0.14. However, 

the most promising All-in+CRB parametrization of Table 4 delivers a mean return of about 

3.47% with positive skewness of 0.27 and relative low volatility (6.57%). This ultimately 

leads to an efficient portfolio with a doubled SRHM of 0.47 compared to the benchmark and a 

dCER of 5.39%. As it is well known in the literature that too many parameters tend to be 

harmful for OOS forecast performances, the analysis considers a more parsimonious 

parameter set. After a few tests it becomes clear that the most important sources that jointly 

forecast carry trade returns for both samples are represented by four major risk variables: (i) 

the carry trade’s implied variance differential (𝐼𝑣𝑎𝑟",",©>$ ), (ii) the global FX based VRP 

(𝑉𝑅𝑃"5©,"
��./�-y5�­), (iii) the global CPI differential (𝐶𝑃𝐼"5-,"

��./�-y), and (iv) the CRB commodity 

price index (𝐶𝑅𝐵"). This model will be denoted as TOP-4Gl./G10 parametrization in Table 5. 

Figure 2 plots the time-series of three risk variables in terms of their global or G10 

currency composition and the CRB commodity index. The variables are not standardized in 

the charts and cover the period between September 2003 and July 2015. 

  

  [Insert Figure 2 about here.] 

 
                                                
26 The use of a rolling window estimation has been abandoned due to the overall short sample size of about 
twelve years. The same OOS tests have been robustly checked with g-values of 1, 5, 20, and 50, which has led to 
comparable results. The statistics can be provided upon request.  
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The most pronounced movements become visible when observing the two charts above. 

Both variables contain information from option-implied variance risks, IvarCT (Chart a), and 

VRPFX (Chart b). Beneath the most pronounced hike, stemming from the subprime crisis in 

2008, we can also observe two other major events: the European Sovereign Crisis at the end 

of 2011 and the Ruble Crash in 2015. All these events lead to significant portfolio shifts due 

to the GMM optimization procedure, which reliably avoids crash risk in carry trade due to 

accurately timed short positionings and, additionally, the ability to identify turning points in 

which long investments are advantageous.  

Considering these three events, one can derive similar interdependencies with regard to 

optimally-computed carry trade weights: a crisis leads to time-delayed inflation increases 

(Chart c) and to a slowdown in commodity prices (Chart d). While inflation development can 

be attributed to second-round effects due to global central banks’ tapering policy, the second 

effect indicates a slowdown in global economic activity due to the decreased demand of 

baseline commodities. Both variables are negatively-related to future carry trade returns (see 

Table 4) and therefore lead to proposed short positions. The interdependencies between both 

option-implied variables are far more complex. While the variables are positively correlated 

to each other (»55%), IvarCT has a positive and VRPFX a negative relation to future carry trade 

returns. The general picture in crisis periods is as follows: both variables increase to similar 

magnitudes while the GMM procedure mostly overweighs the effect of the VRPFX variable, 

leading - in sum - to negative proposed weightings. After the peak of the crisis, the VRPFX 

reverses its sign, as investors quickly adapt their expectations of the high volatility stage, 

while IvarCT is slower to adjust to normal levels. This leads to an effective reversal pattern 

within a turmoil period.27  

These effective portfolio shifts are also mirrored in higher efficient out-of-sample results 

for the TOP-4 parametrization model in Table 5. The results of Panel A are remarkably 

strong: the mean return reaches 5.58% combined with an almost identical volatility level of 

5.92% and positive skewness of 0.13. This is reflected in a tremendously-high 1.05 SRHM 

value and a dCER of 7.89%. The maximum drawdown (MDD) is also reduced to one third 

compared to the benchmark of only -8.55%. These overall optimistic results are confirmed for 

the G10-Sample in Panel B. While the mean return is fairly identical to the Allin+CRB model 

with 8.38%, the portfolio efficiency almost doubles in terms of a SRHM reaching an 

impressive 0.93, which is especially due to an improved positive skewness of 0.58 from -0.32 

and a relatively low excess kurtosis of 1.  
                                                
27 For a closer inspection, Figure A. 1 plots a time-series of the monthly computed optimal carry trade weights 
coming from the TOP-4Global restricted and unrestricted model of Table 5.   
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The right part of each panel additionally provides information about bootstrapped 95% 

confidence intervals28 for the mean return, skewness, and the SRHM value. To assess the 

performance of the TOP-4 parametrization in Panel A, we see that the lower bound of the 

mean return (1.5%), the skewness (-0.28), and SRHM (0.26) are always higher compared to the 

portfolio statistics of the CTGlobal, which indicates statistical significance at the 5% level with 

regard to these measures. Additionally, the portfolio efficiency (SRHM) is also significantly-

higher compared to the benchmark model. Panel B confirms the results. 

The next estimation step involves the analysis of more leveraged optimized carry trade 

portfolios. All the above results were constructed under the premise that the optimal portfolio 

weight is restricted to lie between -1 and +1, which is equal to a leverage of 1. The portfolio 

results for leverage values 2 and 3, as well as a completely unrestricted leverage for the TOP-

4 parametrization, can be found below the dotted lines in each panel. For example, under the 

TOP-4 Lev2 model, the optimal portfolio weight can lie between -2 and +2, while under TOP-

4 Unr. the portfolio weighting is not restricted at all. With regard to Panel A, a leverage of 2 

improves the mean return to 8.51% from 5.58% and to even higher levels at 10.19% and 

10.95% for the TOP-4Gl.-Lev3 and -Unr. models, respectively. These return improvements are 

accompanied with higher positive skewness and with stable portfolio efficiency. This is only 

partially true for the G10-Sample. While the mean returns are also rocketing to levels between 

14.43% and 16.35% from 8.38%, the portfolio efficiency tends to decline with higher 

leverage.  

[Insert Figure 3 about here.] 

 

The charts in Figure 3 on the left-hand side (A1 and B1) visualize the time-series evolution 

of 1 USD invested in the OOS period, using the carry trade (red line), the benchmark model 

(blue line – circles), the TOP-4 model (light green line – stars), and the TOP-4 Unrestricted 

model (dark green line). Chart A1 and B1 show a clear outperformance of both TOP-4 

models, respectively, relative to the carry and benchmark portfolio. The dollar value for the 

TOP-4 model reaches 1.56 (1.94) in Panel A (Panel B), and even higher levels for the 

unrestricted model with 2.38 (3.64), compared to only 1.15 (1.18) for the benchmark model. 

Also, the average trend is positive, with some strong corrections, especially for the 

unrestricted model, while the trend for the benchmark model is downward-sloping after 2010.  

Another perspective of the strong results based on the TOP-4 model is characterized in bar 

charts A2 and B2. Each bar chart characterizes the excess return of the TOP-4’s performance 
                                                
28 The bootstrap method uses 10’000 replications of the empirical return distribution. The confidence intervals 
are constructed using the bootstrapped variance estimation with the appropriate student’s-t quantiles.  
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over the carry trade (blue bar) and benchmark return (green shaded bar) for any single 12-

month period,29 respectively. While in chart A2 the quantity of outperformance periods over 

the benchmark is balanced (4:4), the respective magnitude is not. Despite the largest negative 

difference in 2008 (-9.1%), the other values are relatively small (-3.6%, -1.3%, and -1.0%). 

Even when we consider 2012-2015, with three outperformance periods for the benchmark 

model, the TOP-4 model outperforms by an annualized return of 2.7% on average. The 

outperformance relative to the baseline carry trade appears even stronger. The negative excess 

returns only appeared twice around 2012 and 2014 with underperformances of -8.3% and -

4.3%, in contrast to six outperformance periods with an average of 10.2% return advantage 

annually, ranging between 4.2% and 15.9%. With regard to Panel B, the results are even 

stronger. Chart B2 highlights that the TOP-4 model underperformed only once (-11.3%) 

relative to the baseline carry trade and always outperformed the benchmark model, which 

demonstrates the strength and return consistency of the proposed model.   

 

[Insert Figure 4 about here.] 

 

Figure 4 provides a time-series plot about the parameter values of the TOP-4Global model 

during the out-of-sample estimation period. We can see that nearly all parameter estimates 

changed quite erratically during the subprime crisis in 2008-2009. While this is not surprising 

due to the relatively short pre-estimation period of only 48 months, followed by the world 

economic crisis, which definitely had significant impact on any quantitatively-based model 

fed with financial data. After this crisis period, all parameter estimates are less volatile and 

look pretty stable, suggesting the absence of structural breaks.30  

 

4 Conclusion 
This study investigates a portfolio policy procedure for currency carry trade investments 

that models directly the optimal portfolio weight as a function of its underlying risk 

characteristics. As the underlying asset, a global carry trade portfolio has been constructed 

consisting of 32 different currencies, whereas a smaller carry trade portfolio consisting of a 

developed countries’ sample served as the control strategy. While the in-sample results look 

                                                
29 The first 12-month bar chart covers the period between 2007:09 to 2008:08 denoted as 2008, the second one 
covers the period between 2008:09 to 2009:08 denoted as 2009, and so forth. Hence, the last bar chart means the 
outperformance over the last 10-month of the OOS period, denoted as 2015.   
30 Again, the volatility of the parameter estimates for the G10-Sample are only slightly higher, but mirror image 
the results presented for the Global-Sample. The figure can be provided upon request. 
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very promising, out-of-sample tests confirmed the overall strong performance. Especially four 

aggregated risk variables provided significant information to improve portfolio efficiency of 

currency carry trade returns: (i) the current global 3m option-implied variance differential 

between investment and funding currencies (𝐼𝑣𝑎𝑟",",©>$ ), (ii) the past global 3m FX variance 

risk premium (𝑉𝑅𝑃"5©,"
��./�-y5�­), (iii) the past global 1m CPI differential relative to US-CPI 

(𝐶𝑃𝐼"5-,"
��./�-y), and (iv) the CRB commodity price index (𝐶𝑅𝐵"). As a result, the optimized 

global (G10) carry trade portfolio in out-of-sample tests reaches an averaged mean return of 

5.6% (8.4%), accompanied with low volatility of 5.9% (9.6%), positive skewness of 0.13 

(0.58), and Higher Moment Sharpe ratios of 1.05 (0.93), including transaction costs. These 

statistics are not only significantly higher compared to the baseline carry trade portfolio, but 

clearly outperforms the proposed model by Laborda et al. (2014) presented in the literature. 

This outperformance is especially due to the use of option-implied variance risk 

information, which warns the investor precociously about crash risk inherent in currency carry 

trades. Furthermore, while former results assumed that the optimized portfolio weights for the 

global (G10) carry trade have to lie between -1 and 1, a relaxation of the leverage restriction 

produces even higher annualized returns for the out-of-sample period of up to 10.95% 

(16.35%) with Sharpe ratios around unity, while higher leveraged G10 carry trade portfolios 

tend to lose efficiency. Nevertheless, the overall strong portfolio results should encourage 

investors to rely on option-implied information to improve currency portfolio investments. 
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Figures and Tables 

 
Table 1. Summary Statistics of Carry Trade Strategies 

The table offers summary statistics of two carry trade (CT) strategies, where CTGlobal is computed from Global-
Sample currencies, while CTG10 consists of only G10-Sample currencies. Portfolio average mean returns (Mean), 
forward discount (FD), and standard deviation (SD) are all annualized and expressed in %. The T-statistics (T-
Stat.) measures the significance of the carry trade mean returns to be different from zero, which are based on 
HAC standard errors with 4 Newey-West lags. Furthermore, portfolio skewness (Skew) and excess kurtosis 
(Kurt), as well as the Sharpe ratio (SR), Higher Moment Sharpe ratio (SRHM), and the respective maximum 
drawdown in % (MDD) are presented for all portfolio formations. Additionally, there is information about the 
certainty equivalent return in % (CER), the first lag autocorrelation coefficient ACF(1), and the Jarque-Bera 
statistic (JB). The sample covers the period from 2003:09 to 2015:06 using 143 end-of-month observations. 

Panel (A): Carry trade portfolio statistics  

Strategy Mean T-Stat. FD SD Skew Kurt SRHM SR MDD CER ACF(1) JB 

CTGlobal 4.93* 1.73 8.76 9.03 -0.33 0.43 0.42 0.53 -13.27 0.74 0.13 3.62 

CTG10 4.85 1.28 4.56 11.71 -0.44 0.68 0.29 0.40 -28.48 -2.44 0.09 7.43** 

             Panel (B): Carry trade portfolio statistics with transaction costs 

Strategy Mean T-Stat. FD SD Skew Kurt SRHM SR MDD CER ACF(1) JB 

CTGlobal 4.14 1.46 8.76 9.02 -0.33 0.43 0.35 0.45 -14.01 -0.05 0.13 3.73 

CTG10 4.50 1.18 4.56 11.71 -0.44 0.69 0.27 0.38 -28.75 -2.79 0.09 7.50** 
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Table 2. Parametric Portfolio Policy with Variance Risk Variables 

This table presents currency portfolio statistics from the baseline carry trade strategies (CTGl./G10) and the 
optimized portfolio policy strategy in-sample estimation results based on variance risk parameters. Panel A uses 
the Global-Sample currencies, while Panel B is based on the G10-Sample. The left part of the table characterizes 
the variable numbers (VNs) used in the optimization model and the strategy’s name. The middle and right parts 
of the table provide information about statistical inference of the parameters and portfolio return statistics, 
respectively. Inference is based on a HAC matrix using 5 Newey-West lags, where 𝜃 means the parameter 
estimate and the corresponding P-value (Pval) under H0=0 against H1¹0. The asterisk values (***), (**), and (*) 
indicate statistical significance at the 99%, 95%, and 90% confidence level, respectively. Portfolio return 
statistics are the average annualized mean return in % (Mean), standard deviation in % (STD), skewness (Skew), 
excess kurtosis (Kurt), the Higher Moment Sharpe ratio (SRHM), Sharpe ratio (SR), maximum drawdown in % 
(MDD), and the marginal CER in % (dCER). The sample covers the period from 2003:09 to 2015:06 using 143 
end-of-month observations. 
 

(Panel A: Global-Sample) 
    Statistical Inference In-Sample Portfolio Return Statistics 
VN Strategy VN 𝜽 Pval Mean STD Skew Kurt SRHM SR MDD dCER 
./. CTGlobal ./. ./. ./. 4.14 9.02 -0.33 0.43 0.35 0.45 -14.01 0.00 
                          
(1) IvarGlobal-FX   0.15 0.67 2.32 4.21 -0.27 0.82 0.40 0.53 -9.35 1.48 
(2) RvarGlobal-FX   0.07 0.84 2.15 4.12 -0.32 0.40 0.39 0.50 -8.57 1.35 
(3) VRPGlobal-FX   -1.12** 0.05 3.87 5.45 -0.13 0.36 0.60 0.69 -9.37 2.43 
(4) IvarCT   0.42 0.16 4.13 5.26 1.12 4.26 0.73 0.77 -5.66 2.88 
                          
(5) RvarGlobal-EQ   -0.30 0.38 2.83 4.75 -0.27 1.72 0.39 0.57 -7.45 1.74 
(6) IvarGlobal-EQ   -0.05 0.89 2.13 4.08 -0.30 0.62 0.38 0.50 -7.87 1.34 
(7) VRPGlobal-EQ   -0.86** 0.03 4.66 5.93 0.22 1.57 0.68 0.77 -6.69 2.98 
                          
(3)(4) ImpliedGlobal-FX   ./. ./. 6.93 7.08 0.45 0.98 0.99 0.96 -7.84 4.57 

  
(3) -1.92*** 0.00 

        
  

(4) 1.28** 0.01 
        (3)(4)(7) ImpliedGlobal   ./. ./. 7.89 7.06 0.18 0.97 1.02 1.10 -7.52 5.49 

  
(3) -1.62** 0.01 

        
  

(4) 1.21** 0.02 
            (7) -0.59 0.21                 

 
(Panel B: G10-Sample) 

 

  
Statistical Inference In-Sample Portfolio Return Statistics 

VN Strategy VN 𝜽 Pval Mean STD Skew Kurt SRHM SR MDD dCER 
(0a) CTG10  ./. ./. ./. 4.50 11.71 -0.44 0.69 0.27 0.38 -28.75 0.00 
                          
(1a) IvarG10-FX   -0.09 0.65 2.03 3.36 -0.41 0.17 0.46 0.57 -5.76 4.25 
(2a) RvarG10-FX   -0.10 0.49 2.17 3.56 -0.47 0.28 0.45 0.58 -5.97 4.33 
(3a) VRPG10-FX   -0.60*** 0.01 4.54 6.07 0.19 2.44 0.59 0.73 -8.95 5.51 
(4a) IvarCT-G10   0.01 0.94 1.85 3.10 -0.39 0.85 0.40 0.56 -9.28 4.16 
                          
(5a) RvarGlobal-EQ   -0.46* 0.09 4.47 6.27 0.39 1.49 0.66 0.70 -8.55 5.35 
(6a) IvarGlobal-EQ   -0.19 0.36 2.68 4.25 -0.23 -0.21 0.57 0.61 -8.48 4.57 
(7a) VRPGlobal-EQ   -0.50*** 0.01 4.97 6.85 1.67 11.38 0.60 0.71 -10.28 5.62 
                          
(3a)(4a) ImpliedG10-FX   ./. ./. 6.58 7.29 0.85 4.51 0.79 0.89 -11.11 6.85 

  
(3a) -1.45*** 0.01 

        
  

(4a) 0.94** 0.02 
        (3a)(4a)(7a) ImpliedG10   ./. ./. 7.66 8.44 1.05 3.98 0.85 0.90 -15.20 7.17 

  
(3a) -1.21*** 0.00 

        
  

(4a) 0.96** 0.04 
            (7a) -0.69** 0.01                 
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Table 3. Parametric Portfolio Policy with Other State Variables 

This table presents currency portfolio statistics from the baseline carry trade strategies (CTGl./G10) and the 
optimized portfolio policy strategy in-sample estimation results based on macroeconomic and carry trade activity 
parameters. Panel A uses the Global-Sample currencies, while Panel B is based on the G10-Sample. The left part 
of the table characterizes the variable numbers (VNs) used in the optimization model and the strategy’s name. 
The middle and right parts of the table provide information about the statistical inference of the parameters and 
portfolio return statistics, respectively. Inference is based on a HAC matrix using 5 Newey-West lags, where 𝜃 
means the parameter estimate and the corresponding P-value (Pval) under H0=0 against H1¹0. The asterisk 
values (***), (**), and (*) indicate statistical significance at the 99%, 95%, and 90% confidence level, 
respectively.	Portfolio return statistics are the average annualized mean return in % (Mean), standard deviation in 
% (STD), skewness (Skew), excess kurtosis (Kurt), the Higher Moment Sharpe ratio (SRHM), Sharpe ratio (SR), 
maximum drawdown in % (MDD), and the marginal CER in % (dCER). The sample covers the period from 
2003:09 to 2015:06 using 143 end-of-month observations. 
 

(Panel A: Global-Sample) 

    Statistical Inference In-Sample Portfolio Return Statistics 
VN Strategy VN 𝜽 Pval Mean STD Skew Kurt SRHM SR MDD dCER 
  CTGlobal   ./. ./. 4.14 9.02 -0.33 0.43 0.35 0.45 -14.01 0.00 
                          
(8) RPGlobal   0.48* 0.07 4.15 5.81 0.25 1.28 0.64 0.70 -8.62 2.54 
(9) CPIGlobal   -1.00** 0.01 4.56 6.02 0.25 1.45 0.67 0.74 -6.89 2.83 
(10) CTIGlobal   -0.53 0.20 3.43 5.55 0.69 3.62 0.53 0.60 -8.49 1.99 
             
(8)(9) MacroGlobal   ./. ./. 5.75 6.41 0.30 0.41 0.93 0.88 -7.73 3.80 

  
(8) 0.56* 0.07 

        
  

(9) -1.18*** 0.00 
        (8)(9)(10) MacroGl.+CTIGl.   ./. ./. 6.89 7.00 0.27 0.33 1.03 0.97 -8.76 4.56 

  
(8) 0.63** 0.04 

        
  

(9) -1.24*** 0.00 
        

  
(10) -0.65 0.14 

         
(Panel B: G10-Sample) 

 
    Statistical Inference In-Sample Portfolio Return Statistics 
VN Strategy VN 	𝜽 Pval Mean STD Skew Kurt SRHM SR MDD dCER 
  CTG10   ./. ./. 4.50 11.71 -0.44 0.69 0.27 0.38 -28.75 0.00 
                          
(8a) RPG10   0.18 0.42 2.37 3.83 -0.33 0.66 0.45 0.59 -7.02 4.42 
(9a) CPIG10   -0.95*** 0.00 6.84 7.28 0.76 1.91 0.94 0.92 -11.89 7.13 
(10a) CTIG10   0.10 0.66 2.02 3.37 -0.20 0.78 0.44 0.57 -5.90 4.24 
             
(8a)(9a) MacroG10   

 
  6.79 7.10 0.49 1.40 0.93 0.94 -11.16 7.16 

  
(8a) 0.15 0.58 

        
  

(9a) -0.97*** 0.00 
        

(8a)(9a)(10a) MacroG10+CTI G10   
 

  6.85 7.13 0.51 1.36 0.95 0.95 -11.15 7.20 

  
(8a) 0.17 0.58 

        
  

(9a) -0.97*** 0.00 
            (10a) -0.03 0.92                 
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Table 4. In-Sample Return Results 

This table presents currency portfolio statistics from the baseline carry trade strategies (CTGl./G10) and the 
optimized portfolio policy strategy in-sample estimation results based on different parameter strategies. Panel A 
uses the Global-Sample currencies, while Panel B is based on the G10-Sample. The upper part of each panel 
provides information about portfolio return statistics, while the lower part is dedicated to statistical inference of 
the parameter estimates. Inference is based on a HAC matrix using 5 Newey-West lags, where 𝜃 means the 
parameter estimate and the corresponding P-value (Pval) under H0=0 against H1¹0. The asterisk values (***), 
(**), and (*) indicate statistical significance at the 99%, 95%, and 90% confidence level, respectively.	Portfolio 
return statistics are the average annualized mean return in % (Mean), standard deviation in % (STD), skewness 
(Skew), excess kurtosis (Kurt), the Higher Moment Sharpe ratio (SRHM), Sharpe ratio (SR), maximum 
drawdown in % (MDD), and the marginal CER in % (dCER). The sample covers the period from 2003:09 to 
2015:06 using 143 end-of-month observations. 
 

(Panel A: Global-Sample) 

  In-Sample Portfolio Return Statistics         
Strategy Mean STD Skew Kurt SRHM SR MDD dCER 
CTGlobal 4.14 9.02 -0.33 0.43 0.35 0.45 -14.01 0.00 
Benchmark 4.16 6.36 -0.19 0.07 0.57 0.64 -15.76 2.18 
All-in 10.36 7.52 0.50 1.22 1.38 1.36 -6.33 7.71 
All-in+CRB 10.87 7.15 0.59 1.22 1.57 1.51 -6.37 8.50 

         

 

 
Statistical Inference of Predictable Regressors       

Benchmark Strategy             
Variables Const. rCTlag FDAvg VIX TED dCRB GMPI   
𝜃 0.84** 0.65* -0.25 0.47 -0.30 0.23 0.05 

 Pval 0.03 0.07 0.52 0.36 0.46 0.55 0.90 
 All-In Strategy               

Variables Const. Ivar3CT VRP3Global-FX VRPGlobal-EQ RPGlobal CPIGlobal CTIAvg(6m) CRB 
𝜃 0.53 1.54** -1.08 -0.76 0.51 -1.22*** 0.36 ./. 
Pval 0.22 0.01 0.18 0.16 0.21 0.01 0.49 ./. 
All-In+CRB Strategy 

      𝜃 0.56 1.72*** -1.30 -0.91 0.52 -1.20*** 0.99 -1.04* 
Pval 0.17 0.01 0.11 0.14 0.20 0.01 0.15 0.07 

 
(Panel B: G10-Sample) 

 
  In-Sample Portfolio Return Statistics         
Strategy Mean STD Skew Kurt SRHM SR MDD dCER 
CTG10 4.50 11.71 -0.44 0.69 0.27 0.38 -28.75 0.00 
Benchmark 6.10 7.50 0.86 5.43 0.68 0.80 -14.53 6.22 
All-in 10.88 9.05 0.81 2.45 1.18 1.19 -15.76 9.86 
All-in+CRB 13.08 9.16 0.55 2.20 1.33 1.42 -14.79 11.88 

         
  

 
Statistical Inference of Predictable Regressors       

Benchmark Strategy             
Variables Const. rCTlag FDAvg VIX TED dCRB GMPI 

 𝜃 0.39 -0.06 (0.01) -0.29 (-0.42) 0.22 (0.05) -0.39 (-2.84) 0.50* (0.25) 0.06 (1.16)   
Pval 0.17 0.79  0.29  0.48  0.15 0.07 0.81 

 All-In Strategy               
Variables Const. Ivar3CT VRP3G10-FX VRPG10-EQ RPG10 CPIG10 CTIAvg(6m) CRB 
𝜃 0.54* 1.16** -0.98* -0.84** 0.19 -0.78** 0.40 ./. 
Pval 0.06 0.03 0.08 0.02 0.64 0.05 0.26 ./. 
All-In+CRB Strategy 

      𝜃 0.56* 1.32** -1.31** -0.60* 0.02 -0.62 0.52 -0.76** 
Pval 0.05 0.02 0.04 0.09 0.97 0.14 0.14 0.05 
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Table 5. Out-of-Sample Return Results 

This table presents currency portfolio statistics from the baseline carry trade strategies (CTGl./G10) and the 
optimized portfolio policy strategy out-of-sample estimation results based on different parameter strategies. 
Panel A uses the Global-Sample currencies, while Panel B is based on the G10-Sample. The left part of each 
panel provides information about portfolio return statistics, while the right part reports the lower and upper 
bound of a 95% confidence interval for the Mean, Skew, and SRHM using a bootstrap method. Portfolio return 
statistics are the average annualized mean return in % (Mean), standard deviation in % (STD), skewness (Skew), 
excess kurtosis (Kurt), the Higher Moment Sharpe ratio (SRHM), Sharpe ratio (SR), maximum drawdown in % 
(MDD), and the marginal CER in % (dCER). The sample covers the period from 2007:09 to 2015:06 using 95 
end-of-month observations. 
 

(Panel A: Global-Sample) 
  Out-of-Sample Portfolio Return Statistics   Bootstrapped 95% CI for 

Strategy Mean STD Skew Kurt SRHM SR MDD dCER Mean Skew SRHM 

CTGlobal -0.55 8.22 -0.38 0.34 0.00 -0.07 -14.01 0.00 {-6.2 5.2} {-0.82 0.16} {-0.0 0.58} 

Benchmark 1.79 7.14 0.14 0.79 0.23 0.25 -13.23 3.30 {-3.1 6.7} {-0.54 0.77} {-0.0 1.11} 

All-in+CRB 3.47 6.57 0.27 1.6 0.47 0.52 -9.54 5.39 {-1.1 8.0} {-0.55 1.01} {-0.0 1.11} 

TOP-4Gl. 5.58 5.92 0.13 -0.17 1.05 0.94 -8.55 7.89 {1.5 9.7} {-0.28 0.53} {0.26 1.87} 

TOP-4Gl. Lev2 8.51 8.55 0.39 0.36 1.10 0.99 -11.73 9.05 {2.5 14.5} {-0.09 0.82} {0.35 1.96} 

TOP-4Gl. Lev3 10.19 10.3 0.81 1.98 1.01 0.99 -13.47 9.35 {3.3 17.4} {-0.06 1.40} {0.31 1.81} 

TOP-4Gl. Unr. 10.95 10.82 0.88 2.03 1.05 1.01 -13.87 9.66 {3.7 18.7} {0.05 1.49} {0.34 1.87} 

 

(Panel B: G10-Sample) 
                Out-of-Sample Portfolio Return Statistics Bootstrapped 95% CI for 

Strategy Mean STD Skew Kurt SRHM SR MDD dCER Mean Skew SRHM 

CTG10 -0.67 12.41 -0.22 0.52 0.00 -0.06 -28.75 0.00 {-9.2 7.6} {-0.80 0.39} {-0.02 0.62} 

Benchmark 2.13 10.61 0.15 2.53 0.16 0.2 -16.26 5.14 {-5.2 9.5} {-0.93 1.16} {-0.01 0.88} 

All-in+CRB 8.30 10.42 -0.32 2.46 0.50 0.79 -15.1 11.24 {1.0 15.3} {-1.20 0.79} {0.05 1.79} 

TOP-4G10 8.38 9.55 0.58 1.00 0.93 0.87 -8.9 12.76 {1.8 15.2} {-0.05 1.15} {0.20 1.78} 

TOP-4G10 Lev2 14.43 14.93 0.71 1.30 1.03 0.96 -11.37 12.99 {4.3 25.0} {0.09 1.26} {0.29 1.89} 

TOP-4G10 Lev3 16.23 18.49 0.74 3.14 0.81 0.88 -14.84 8.84 {3.9 29.1} {-0.37 1.71} {0.15 1.65} 

TOP-4G10 Unr. 16.35 20.86 0.48 5.24 0.61 0.78 -19.66 0.99 {2.2 31.0} {-1.18 2.05} {0.05 1.52} 
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Figure 1. Cumulative Carry Trade Returns  

This figure presents the time-series charts of the cumulative log-returns coming from a global carry 
trade (green thick line) and a G10 carry trade portfolio (blue thin line). Both return statistics 
incorporate transaction costs. The sample covers the period between 2003:09 to 2015:06, with the grey 
background indicating an NBER recession period.  
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Figure 2. Global Risk Variables Predicting Carry Trade Returns 

This figure presents four charts characterizing the time-series properties of: (Chart a) the carry trade’s 
implied variance differential, (Chart b) the global FX variance risk premium, (Chart c) the global 
inflation differential, and (Chart d) the CRB commodity price index. The two lines within each chart 
(except in Chart d) distinguish between the aggregation level using the Global-Sample (green thick 
line) and the G10-Sample (blue thin line). The sample covers the period between 2003:09 to 2015:06, 
with the grey background indicating an NBER recession period.  
 

  (a: Implied varianceCT)   (b: FX variance risk premium) 

 
 
 
 
 

 
(c: Inflation differential)   (d: Commodity price index) 
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Figure 3. Performance of OOS Cumulative Returns 

The figure consists of four charts. On the left-hand side (LHS) the cumulative returns on four different currency 
investments are presented, while the right-hand side (RHS) bar charts present 12-month periods return figures. 
All results are based on the out-of-sample tests of Table 5 and the figure distinguishes between Global-Sample 
(Panel A) and G10-Sample (Panel B) calculations. The LHS charts carry investment performance on an initially-
invested 1 USD in: (i) the carry trade, (ii) the benchmark model, (iii) the TOP-4 model, and (iv) the TOP-4 
unrestricted model. The RHS bar charts present the 12-month log-return outperformances of the TOP-4 model 
with the carry trade returns (blue bars) and the benchmark model returns (green shaded bars), respectively. The 
sample covers the period between 2007:09 to 2015:06, with the grey background indicating an NBER recession 
period. 
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Figure 4. Parameter Stability of Top-4 Risk Variables 

The figure presents monthly parameter estimates of the TOP-4 model during the out-of-sample optimization 

period outlined in Table 5. The respective lines belong to: (i) the carry trade’s implied variance differential (Ivar-

CT, red line), (ii) the global FX variance risk premium (VRP-FX, blue line), (iii) the global CPI differential 

(CPI, green line), and (iv) the CRB commodity price index (CRB, purple line). The sample covers the period 

between 2003:09 to 2015:06, with the grey background indicating an NBER recession period. 
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APPENDIX 
 
Appendix A. Delta Conventions 

The term delta (∆) in the financial option market literature means the first partial derivative 

of the option value with respect to the underlying price. The FX market uses various sets of 

option-delta conventions for any respective exchange rate market. This becomes a crucial fact 

when dealing with option-implied volatilities that are assigned to a certain option-delta level. 

The questions are: (i) what kind of option-delta stays behind a specific market quote? And (ii) 

what at-the-money (ATM) strike conventions are used? Before recovering a market-conform 

option volatility smile based on option-implied volatility quotes, it is advisable to follow these 

restrictions. Before answering these questions, it is useful to first define the value of a FX 

option 𝑣",$, which goes back to the definition in Garman and Kohlhagen (1983): 

𝑣",$ = 	𝜙 𝑒5168𝑆"𝑁 𝜙𝑑, − 𝑒518𝐾𝑁(𝜙𝑑5) 	 (A.1)	

where 

𝑑± =
ln	 𝐹",$ 𝐾 ± 12 𝜎",$

j 𝜏

𝜎",$ 𝜏
 

    𝜎",$: the option-implied volatility level, 

    𝜙 = +1 for a call, 𝜙 = −1 for a put,  

    𝑁 𝑥 : the cumulative normal distribution. 

The option price 𝑣",$ is expressed in terms of USD per one unit of foreign currency. There 

are four different option-delta types used to quote implied volatilities, which are: (i) the spot 

delta (Ds), (ii) the forward delta (Fs), (iii) the premium adjusted spot delta (paDs), and (iv) the 

premium adjusted forward delta (paDf). These are defined as follows: 

𝐷𝑠 = 	𝜙𝑒5168𝑁 𝜙𝑑, 	 (A.2)	

𝐷𝑓 = 	𝜙𝑁 𝜙𝑑, 	 (A.3)	

𝑝𝑎𝐷𝑠 = 	𝜙𝑒5168
𝐾
𝐹",$

𝑁 𝜙𝑑5 	 (A.4)	

𝑝𝑎𝐷𝑓 = 	𝜙
𝐾
𝐹",$

𝑁 𝜙𝑑5 	 (A.5)	

In addition to the definition of the delta type that underlines the volatility quote, using the 

right ATM convention is the next issue one might think about. The most obvious is to choose 

the current FX spot level as the middle of the spot rate distribution. According to the 

conventions used in practice, this study follows two different definitions: the ATM-forward 

strike (Fs) and the ATM-∆-neutral strike (Dn): 
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𝐹𝑠 = 	𝐹",$ 	 		(A.6)	

                                            𝐷𝑛 = 	

-
j
𝜙𝑒5168		
-
j
𝜙

-
j
𝜙𝑒5168𝑒5

4
»¼

»8

					-
j
𝜙𝑒5

4
»¼

»8

	

,	for	Ds	 	 	
 
 

  (A.7)	

,	for	Df	

,	for	paDs	

,	for	paDf	

 

While the current forward level simultaneously defines the ATM forward strike, regardless 

of the option delta definition, this is obviously not true when determining the ATM-∆-neutral 

strike. Here, the knowledge of the underlying delta convention is obligatory in order to define 

a delta neutral strike basis.  

Table A. 1 gives a brief overview of the delta conventions used in this study. It is hard to 

find a systemic pattern as a basis for these conventions, so the applied calculations are 

primarily based on suggestions in Clark (2011) and Reiswich and Wystup (2012).  

 

Appendix B. Measures of Portfolio Efficiency 

Sharpe Ratio 
The well-known Sharpe ratio is a measure of an investment performance relative to its 

volatility or risk (see Sharpe 1964). The performance, as such, is the excess return (𝜇) of the 

asset over a risk-free return (𝑟*), divided by the standard deviation (𝜎):  

𝑆𝑅 = 	
𝜇 −	𝑟*

𝜎 	

 
(B.1) 

	

While the proposed ratio (SR) originally uses expected risk and return figures, this study 

uses ex-post annualized returns and standard deviations to properly evaluate the relative 

investment performance of the underlying asset. The risk-free rate for the representative US 

investor is the 4w T-Bill rate. 

 
Higher Moment Sharpe Ratio 

The Higher Moment Sharpe ratio (SRHM) was developed by Broll (2016b). It extends the 

original Sharpe ratio by incorporating the second- and third-moment risks of the portfolio 

return. This measure of portfolio efficiency ensures that portfolio return series that are prone 

to fat tailed and skewed return distributions are adequately compared to more Gaussian 

distributed portfolios. It is equal to the original Sharpe ratio when the portfolio return series 

has zero skewness (𝛾-) and zero excess kurtosis (𝛾j). The SRHM is defined as follows:	
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𝑆𝑅ÁB = 	
𝜇 −	𝑟*

𝜎j 1 + 𝑎 𝛾-
Â 5®

1 + 𝑏 𝛾j
Ä Å Æ5	T6/|Æ5	T6|

 
 

(B.2) 

 

𝐸 = 	 +1, 𝑖𝑓	𝛾- > 0
−1,			𝑖𝑓	𝛾- 	≤ 0	   and    𝐵 = 	 +1, 𝑖𝑓	𝛾j > 0

−1,			𝑖𝑓	𝛾j ≤ 0	 
 

 

𝛾- =
𝐸 𝑋 − 𝜇 ©

𝜎©  

 

(B.3) 

 

𝛾j =
𝐸 𝑋 − 𝜇 È

𝜎È − 3 
(B.4) 

 

While the numerator is equal to the original Sharpe ratio, the denominator deflates the 

excess return by the standard deviation accompanied with factors of skewness and excess 

kurtosis in a multiplicative fashion. The exponent of the denominator takes on the level of 1 

or -1, conditional on positive and negative excess return, respectively. It ensures a proper way 

of sorting relative investment performances when the excess return is negative. Thus, it gives 

the SRHM an identification with regard to an investor’s exponential utility function, as has 

been used in Pézier and White (2008) defining their Adjusted Sharpe ratio (ASR). The 

variables a and b are adjustment factors with values of 1.8 and 1.0, respectively. 

Certainty Equivalent Return  
Another portfolio metric is the certain equivalent return (CER). It indicates the level of a 

guaranteed return for an investor to be indifferent between the risky investment and the 

riskless strategy paying off CER in expectation. One has to define the form of the investor’s 

utility function (𝑈) and the individual level of risk aversion (𝛾). CER is then defined as: 

𝐶𝐸𝑅 = 1 − 𝛾 𝑇5- 𝑈 1 + 𝜇",-
$

"C-

-
-5Y

− 1	

 
   (B.5) 

	

Maximum Drawdown 
While the maximum drawdown is not directly a measure of portfolio efficiency, it provides 

information about the maximum shortfall during a defined period of time. This period 

contains the last peak price (P) of an underlying asset and the lowest price value (L) after the 

peak event. Both prices can be measured in any desired frequency, which is restricted here to 

end-of-month observations. The MDD return is then defined as: 

𝑀𝐷𝐷 = 𝑙𝑜𝑔
𝐿
𝑃 𝑥	100	 (B.6) 
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Table A. 1. Option Delta Conventions 

This table reports option delta conventions used in practice. The left section of the table 
introduces the various FX rates in the coverage with the corresponding country, while the 
right section informs about the underlying conventions. The abbreviations of the Delta and 
ATM type, introduced in Appendix A, are found in the third and fourth column, respectively.   
 

Exchange Rate Country 
 

Delta Conventions 

 
    Delta Type ATM Type 

Developed Market Currencies (G10) 
AUDUSD Australia   Ds Dn 
USDCAD Canada   paDs Dn 
EURUSD Europe   Ds Dn 
GBPUSD Great Britain   Ds Dn 
USDJPY Japan   paDs Dn 
NZDUSD New Zealand   Ds Dn 
USDDKK Denmark   paDs Dn 
USDNOK Norway   psDs Dn 
USDSEK Sweden   paDs Dn 
USDCHF Switzerland   paDs Dn 

Emerging Market Currencies 
USDPLN Poland   paDf Dn 
USDSGD Singapore   paDf Dn 
USDZAR South Africa   paDf Dn 
USDKRW South Korea   paDf Dn 
USDTWD Taiwan   paDf Dn 
USDTHB Thailand   paDf Dn 
USDILS Israel   paDf Dn 
USDCLP Chile   paDf Fs 
USDCOP Colombia   paDf Fs 
USDCZK Czech Republic   paDf Dn 
USDHUF Hungary   paDf Dn 
USDINR India   paDf Dn 
USDMXN Mexico   paDf Fs 
USDTRY Turkey   paDf Dn 
USDRUB Russia   paDf Dn 
USDMYR Malaysia   paDf Dn 
USDIDR Indonesia   paDf Dn 
USDPHP The Philippines   paDf Dn 
USDBRL Brazil   paDf Fs 
USDPEN Peru   paDf Fs 
USDRON Romania   paDf Dn 
USDSKK Slovakia   paDf Dn 
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Table A. 2. Foreign Currency Exchange Rate Data Coverage 

This table provides an overview of the foreign exchange rates coverage. The left section characterizes the 
foreign exchange rates by their number (No.), ISO 4217 currency code, and their country. The middle and 
right sections give an overview of the various start and end dates of the risk variables used in the 
optimization process and the number of monthly observations (Obs.). Furthermore, the rates are divided 
into developed (Panel A) and emerging currencies (Panel B). 
 
No. Currency Country   Global- and G10-Sample    CFTC Sample  
  codes     Start date End date Obs.   Start date End date Obs. 

Panel A: Developed Market Currencies (G10) 
1 AUD Australia   09/2003 06/2015 142   09/2003 06/2015 142 
2 CAD Canada   09/2003 06/2015 142   09/2003 06/2015 142 
3 EUR Europe   09/2003 06/2015 142   09/2003 06/2015 142 
4 GBP Great Britain   09/2003 06/2015 142   09/2003 06/2015 142 
5 JPY Japan   09/2003 06/2015 142   09/2003 06/2015 142 
6 NZD New Zealand   09/2003 06/2015 142   11/2005 06/2015 116 
7 DKK Denmark   02/2005 06/2015 125   ./. ./. ./. 
8 NOK Norway   02/2005 06/2015 125   ./. ./. ./. 
9 SEK Sweden   02/2005 06/2015 125   ./. ./. ./. 
10 CHF Switzerland   02/2005 06/2015 125   09/2003 06/2015 142 

Panel B: Emerging Market Currencies 
11 PLN Poland   09/2003 06/2015 142   ./. ./. ./. 
12 SGD Singapore   09/2003 06/2015 142   ./. ./. ./. 
13 ZAR South Africa   09/2003 06/2015 142   ./. ./. ./. 
14 KRW South Korea   09/2003 06/2015 142   ./. ./. ./. 
15 TWD Taiwan   09/2003 06/2015 142   ./. ./. ./. 
16 THB Thailand   09/2003 06/2015 142   ./. ./. ./. 
17 ILS Israel   03/2004 06/2015 136   ./. ./. ./. 
18 CLP Chile   02/2005 06/2015 125   ./. ./. ./. 
19 COP Colombia   02/2005 06/2015 125   ./. ./. ./. 
20 CZK Czech Republic   02/2005 06/2015 125   ./. ./. ./. 
21 HUF Hungary   02/2005 06/2015 125   ./. ./. ./. 
22 INR India   02/2005 06/2015 125   ./. ./. ./. 
23 MXN Mexico   02/2005 06/2015 125   09/2003 06/2015 142 
24 TRY Turkey   11/2005 06/2015 116   ./. ./. ./. 
25 RUB Russia   04/2006 06/2015 111   02/2009 06/2015 77 
26 MYR Malaysia   09/2006 06/2015 106   ./. ./. ./. 
27 IDR Indonesia   06/2007 06/2015 97   ./. ./. ./. 
28 PHP The Philippines   06/2007 06/2015 97   ./. ./. ./. 
29 BRL Brazil   02/2008 06/2015 89   ./. ./. ./. 
30 PEN Peru   06/2008 06/2015 85   ./. ./. ./. 
31 RON Romania   06/2008 06/2015 85   ./. ./. ./. 
32 SKK Slovakia   06/2008 02/2014 67   ./. ./. ./. 
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Figure A. 1. Out-of-Sample Optimal Carry Trade Weights  

This figure presents the time-series charts of the optimized weightings for the global carry trade 
portfolio, using the TOP-4 (green solid line with crosses) and the TOP-4 Unr. model (blue solid line) 
discussed in Panel A of Table 5. The former model weights are restricted to lie between -1 and +1, 
whereas the latter are completely unrestricted. The sample covers the out-of-sample period between 
2007:09 and 2015:06.  
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Chapter 4 

The Skewness Risk Premium in Currency Markets 
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THE SKEWNESS RISK PREMIUM IN CURRENCY MARKETS 
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a University of Duisburg-Essen, Germany 

 

 

 

Abstract 

This paper examines the relationship between currency option’s implied skewness and its future 
realized skewness, where the difference is known as the skewness risk premium (SRP). The 
SRP indicates whether investors pay a premium to be insured against future crash risk. Past 
investigations about implied and realized skewness within currency markets showed that both 
measures are loosely connected or even exhibit a negative relationship that cannot be 
rationalized by no-arbitrage arguments. Therefore, this paper studies time-series of future and 
option contract positions data in order to explain the disconnection in terms of investor’s 
position-induced demand pressure. While demand pressures on options do not sufficiently 
contribute to the disconnection, there is evidence that, surprisingly, demand pressure in 
currency future markets have the power to explain this market anomaly. Furthermore, currency 
momentum also plays an important role, which leads to a strong cyclical demand for OTM calls 
in rising or OTM puts in declining markets. In order to exploit the disconnection of skewness, 
a simple skew swap trading strategy proposed by Schneider and Trojani (2015) have been set 
up. The resulting skew swap returns are relatively high, but the return distribution is extremely 
fat-tailed. To appropriately compare different skew swap strategy returns, this paper proposes 
a Higher Moment Sharpe Ratio that also takes higher moments into account. 
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1 Introduction 
While it is quite common to use the second moment or variance as a measurement of risk, 

the focus of this paper lies on the third moment risk or skewness of a return distribution in the 

currency market. Strictly speaking, the investigation here concentrates on the relationship 

between future realized skewness (Rskewt:t+1) and its ex ante known risk-neutral counterpart, 

the implied skewness (Iskewt). The difference between the two variables is known as the 

skewness risk premium (SRPt:t+1). While Rskew measures the physical asymmetry of a return 

distribution, Iskew is supposed to measure investors’ future perception of an asymmetrical 

return distribution under the risk-neutral measure. Literature has used skewness to predict large 

and rare disasters and estimate crash risks in any desired setting. Hence, one can state that Rskew 

measures the future realized crash intensity and Iskew measures the option-implied crash risk 

and can be characterized as the current price for ensuring against future crashes. Taking these 

definitions as a basis, one can imagine that both variables are closely related to each other. It is 

also well-known that realized and implied moment risks are also used to design swap contracts 

to make the difference tradable. While the design of second-moment swap contracts or variance 

swaps are frequently used in practice, third-moment swaps or skew swaps have only been 

considered in academic literature.  

However, empirical evidence for the currency market provided by Jurek (2014) and 

Brunnermeier et al. (2009) suggests that Rskew and Iskew are, on average, negatively related to 

each other. This is quite puzzling, since it means that, especially in times of fragile markets, the 

insurance price against crashes gets cheaper. In a study of skewness in the commodity market, 

Ruf (2012) found similar results that realized and implied skewness are somehow disconnected 

from each other. He found mounting evidence to suggest that this disconnectedness of skewness 

(DS) is primarily driven by option demand-based market pressures. Ruf (2012) showed that, 

especially in times where “arbitrageurs” faced large net long option positions1, they became 

restricted to offer more option contracts. Subsequently, the option prices started to rise, and, as 

a consequence, the implied skew degenerated from its realized counterpart. In a different study 

that focused on Iskew for the equity market, Gârleanu et al. (2009) analysed the disconnection 

between the heavily negative Iskew of the S&P 500 Index compared to the much flatter Iskew’s 

of its single stock constituents. They rationalized their findings by comparing with different net 

																																																													
1 “Net option positions” refer to the aggregate option positioning of an arbitrary number of market participants 
belonging to a special group of traders, e.g. end-users. If a trader group is exposed to a net long put position it 
means that the group of traders, as a whole, has a greater number of long put positions in contrast to short put 
positions. 
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option positions of “end-users”2 in their respective index or single stock markets. End-users 

are, on average, net long puts on the index side, which has led to a more negative Iskew. On the 

other hand, end-users have been, on average, more exposed to net short puts in the various 

single stock option markets, leaving the volatility smile more positively-skewed. Again, 

different positioning of market participants seems to play a big role in explaining some unusual 

market anomalies and, therefore, encourages an investigation of the DS in currency markets. 

Therefore, the aim of this paper is (1) to study the existence of a skewness risk premium in 

currency markets and (2) to identify the source of the disconnectedness of realized and implied 

skewness (DS) in the time-series. While the first part gives an overview of the historical 

situation of about 30 different currency pairs against the US-dollar (USD), with investors 

paying an extra premium to be insured against crash risk, the second part more thoroughly 

investigates the dependency of skewness to market pressures. Here, using a subsample of up to 

8 currencies, the study concentrates on future and option contract data provided by the U.S. 

Commodity Futures and Trading Commission (CFTC) in order to find a demand-based 

explanation of the DS in the currency market.  

Why is the DS relevant for an economic investigation? And, how can skew risk be defined? 

The DS is not consistent with no-arbitrage arguments of financial markets and can therefore be 

characterized as a kind of market anomaly. This becomes clear when one starts to exploit the 

DS through the use of a skew swap. This paper will use the methodology of a synthetic skew 

swap, recently developed by Kozhan et al. (2013) (KNS) to describe the skewness risk 

premium. The advantage of KNS is that realized and implied skew perfectly aggregate to each 

other. This has been achieved by Neuberger’ pioneering work (2012), which accurately derived 

a measure of realized skew that perfectly aggregates to its implied skew counterpart. KNS used 

this evidence to investigate the relationship between second and third-moment risk for the S&P 

500 Index market.  

This paper’s empirical framework is broadly identical to Ruf's work (2012). In a panel 

regression framework, it will be shown that the DS in currency markets are primarily driven by 

market pressures from the future market. Beside market pressures, the role of past currency 

momentum also exhibits a strong relation to the DS. Market concentration patterns, market 

illiquidity, macroeconomic risk, equity risk, and market volatility risk factors are also taken into 

account in the forthcoming analysis. At the end of this paper a more practical version of a skew 

																																																													
2 “End-Users” are a group of traders who do not offer option contracts to the public and, therefore, only trade long 
positions in call or put contracts. 
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swap (see Schneider and Trojani, 2015) will be briefly introduced and a trading strategy will be 

implemented using the evidence of panel regressions results to exploit the DS.  

All implied variance or skewness measures are primarily based on the existence of a 

volatility smile of the respective currency pair and option maturity. Therefore, the option-

implied volatility smile will be rebuilt, using 25-delta out-of-the-money (OTM) butterfly, 25-

delta OTM risk reversal, and at-the-money (ATM) volatility quotes provided by Bloomberg. In 

order to calibrate such a volatility smile and translate it into option prices, the simplified 

parabolic interpolation model developed by Reiswich and Wystup (2012) has been chosen. This 

model has proven to be robust against other well-known smile procedure approaches (see 

Reiswich, 2011) that are used in practice, e.g. the vanna-volga method by (Castagna and 

Mercurio, 2007).  

The remainder of this paper is organized as follows: section 2 gives an introduction to how 

second- and, especially, third-moment swaps are designed; section 3 describes the variables 

used in the empirical analysis; section 4 presents empirical evidence for why realized and 

implied skewness are disconnected in currency markets, a fact exploited in section 5. Finally, 

section 6 concludes the paper and sums up the argument.	

 

2 Moment Swaps 
Neuberger (2012) developed a trading strategy that is completely attributed to the third-

moment risk. While his approach is a trading strategy, the returns from it can be viewed as a 

pure bet on the third-moment risk and can be interpreted as a moment risk premium. The 

functionality of the strategy is similar to a swap contract. The buyer of a contract pays the 

option-implied level at inception time t of the corresponding moment risk, also known as the 

fixed leg or swap strike price. Then, she will subsequently receive the realized moment risk, 

known as the floating leg, until expiration date T. The fixed leg is usually characterized as a 

contingent claim and therefore priced with using the spanning approach from Bakshi and 

Madan (2000).  

An integrated part of Neuberger's (2012) derivations of second or third moment swaps is that 

they conform to the Aggregation Property (AP). To get a first impression of the meaning of the 

AP and how one can link it to the fixed and floating leg of a swap contract, take a look at the 

following equation:  



100 
	 	

𝔼	# 𝑔 𝑋& − 𝑋# = 	𝔼	# 𝑔 𝑋) − 𝑋)*+

&

),+

 

	

(1) 

On the left-hand side (LHS), one can see the expected value of a function g that is dependent 

on a price change of a variable X over the period [0,T]. On the right-hand side (RHS), there is 

the expected value of g-function’s sum of price changes over more frequent observations of X. 

Suppose that the function g is composed of a moment risk and X is a stochastic price process 

that follows a martingale. Then, the LHS describes the expected value of that moment risk using 

the price change over the entire period, for example - a month. This should be equal to the 

expected value of the summation term of this moment risk, subsequently computed on a daily 

frequency over the same period. Interpreting this result in terms of a swap contract, one can 

state that the RHS summation term, priced under a physical measure ℙ, represents the fair price 

of that moment risk and is equal in expectation to the contingent claim price E0[g(XT-X0)] 

evaluated under the implied (or risk-neutral) measure ℚ	3. A frequently used approach for the 

second, third and fourth implied-moment risk has been established by Bakshi et al. (2003), also 

known as the BKM approach. The challenging question was to define a g-function that perfectly 

aggregates to the contingent claim price or implied measure of the third-moment risk. 

Neuberger (2012) introduced a g-function that perfectly matches the third-moment risk of log 

returns that has the AP and therefore can be priced at any desired frequency and is also robust 

to jump processes.   

Under the following circumstances, it is assumed that the market is arbitrage-free and 

without frictions, and that calls and puts are available for any strike price K.4 All prices are in 

USD terms, with i and 𝑖1denoting the USD and foreign short term interest rates, respectively. 

There are also forwards and bonds available, where the prices are denoted as Ft,T, and Bt,T 

respectively, subscripted with its initiation date t and maturity date T. The forward price is 

defined as 𝐹),& = 	 𝑆)	𝑒(6*6
7)(&*))and the USD zero coupon bond Bt,T equals 𝑒*6(&*)). The 

forward log return is defined as rt,T = ln(FT,T / Ft,T).5 6 Call and put options will be priced 

according to Garman and Kohlhagen (1983) proposed option price formula, denoted as Ct,T(K) 

and Pt,T(K) respectively, with strike price K in parentheses and the same time subscripts.  

																																																													
3 The theory of pricing contingent claims with static option positions was primarily developed by Breeden and 
Litzenberger (1978). 
4 It is assumed that the stochastic spot price process St follows a standard Wiener process and therefore has the 
martingale property. 
5 Please be reminded that the term FT,T is equal to the spot exchange rate at time T, ST. 
6 For notational convenience, the time subscript of the log return r is dropped out. 
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In the following sections, two newly developed variance definitions will be briefly 

introduced that also play a role in deriving the third-moment risk. All measures of moment risk 

are based on log returns of the underlying asset and have the desired AP. A thorough derivation 

of the proposed g-functions is well beyond of the scope of this paper, so these functions are 

taken as given and well-defined.7   

 

Generalized Variance Measures 

Besides the widely used variance definitions of squared returns or log returns, Neuberger 

(2012) proposes a function gV that resembles the variance of an asset and has the AP. It is 

defined as gV(r) ≡ 2(er - 1 - r). Under the implied probability measure Q, the implied variance 

can be expressed as follows:  

𝐼𝑣𝑎𝑟),&= = 2	𝔼)
ℚ ?@,@

?A,@
− 1 − ln ?@,@

?A,@
  

 

	
(2) 

Neuberger (2012) uses a superscript L for the implied variance, indicating that this variance 

measure is the variance of a log contract that has a future payoff of 𝔼t 𝑙𝑛𝐹&,& . Using the 

spanning approach from Bakshi and Madan (2000), the payoff from the log contract can be 

priced with a continuum of options of the underlying asset at inception time t. The resulting 

implied variance for this log contract, can be regarded as the fixed leg of a variance swap and 

is defined as follows: 
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2
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(3) 

This is the same model-free implied variance that has been used from Britten-Jones and 

Neuberger (2000). The measure of implied variance is priced with an option portfolio consisting 

of positive put and call-weights that subsequently decreases with higher strike prices. Its 

corresponding realized or floating leg also follows from gV and since it has the AP, it can be 

computed on arbitrary frequency: 

𝑅𝑣𝑎𝑟),&= = 	 2
𝐹6P+,&
𝐹6,&

− 1 − 𝑙𝑛
𝐹6P+,&
𝐹6,&

&

6,)

 

	

(4) 

 

																																																													
7 Especially Proposition 2 in Neuberger (2012) is recommended for a more thorough derivation of g-functions that 
approximate the second or third moment risk of log returns and their corresponding proofs in Appendix.	
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Besides the variance of this log contract, another variance measure is important with regard 

to the construction of a third-moment swap. This variance measure is called the variance of an 

entropy contract. This contract has a future payoff of 𝔼t 𝐹&,&𝑙𝑛𝐹&,&  and its corresponding 

implied variance is defined as follows: 

𝐼𝑣𝑎𝑟),&Q = 2	𝔼)
ℚ 𝐹&,&
𝐹),&

ln
𝐹&,&
𝐹),&

−
𝐹&,&
𝐹),&

+ 1  

 

	
(5) 

 

Using again the spanning approach from Bakshi and Madan (2000), the fair price at time t 

can be computed as follows: 
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(6) 

 

In the following paragraphs, one can see how the variance of the entropy contract will 

emerge into the third-moment of risk.8 

 

Third-Moment Swap Definition 

Neuberger (2012) shows how a third-moment swap or skew swap can be designed so that 

the implied and realized parts perfectly aggregate to each other. He considered a twice-

differentiable function gThM that has the AP and approximates the third-moment of log returns.9   

𝑔&RS 𝛿𝐼𝑣𝑎𝑟Q, 𝑟 ≡ 3	𝛿𝐼𝑣𝑎𝑟Q 𝑒W − 1 +𝑀(𝑟)     

	
(7) 

𝑤𝑖𝑡ℎ						𝑀 𝑟 = 6(2 − 2𝑒W + 𝑟 + 𝑟𝑒W) 	
 

Considering gThM under risk neutral expectations, one will get the implied measure for the 

third moment risk: 
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(8) 

Since the underlying process is martingale, the first term in (8) is zero in expectation and 

only the second term M(r) becomes relevant for pricing the implied measure. Recalling the 

																																																													
8 Appendix A. 1 provides a more complete derivation of how the implied variance measures of the log and entropy 
contract can be transformed to the resulting option price strips.  
9 𝛿𝐼𝑣𝑎𝑟Qmeans the simple first difference of the implied variance of the entropy contract and can therefore be 
written as 𝐼𝑣𝑎𝑟&,&Q − 𝐼𝑣𝑎𝑟),&Q  .  
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generalized variance definitions of the log and entropy contract (see (2) and (5)) the implied 

third moment of log returns can also be expressed as follows: 10  

𝐼𝑡ℎ𝑚),& = 3	 𝐼𝑣𝑎𝑟),&Q − 𝐼𝑣𝑎𝑟),&= 	  
 

	
(9) 

If we now substitute equations (3) and (6) into (9),11 one can see how the implied third 

moment can be priced with a continuum of options of the underlying asset at inception time t: 
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(10) 

We see that the fixed leg Ithm is comprised of a portfolio of options that are long OTM calls 

and short OTM puts using the appropriate scaling factors. When the implied distribution 

function resembles a Gaussian distribution, the value of the fixed leg will be zero (as in the 

Black-Scholes world).12  

The corresponding floating leg or the realized third moment is indeed also derived from the 

gThM –function and is derived, given a partition length j, as follows: 
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(11) 

The first term contains the covariation between the change of the implied variance of the 

entropy contract and the simple return, also known as the leverage effect13. The second term 

(or M(r)-term) is an unconventional expression of cubed returns.14 If we now reconsider the AP 

in equation (1) and replace g with gThM, and likewise label its left hand side term as the true 

third-moment risk, obtained from the price change over the entire period (or low frequency), 

then Rthm can be seen as an unbiased estimate of this true third-moment risk, given the price 

and variance process is martingale. Some further conclusions can be made as well. First, the 

skew in high-frequency returns (M(r) in (11)) can only partly explain the true third-moment 

risk. Second, if the mesh of the partition j converges to zero, the leverage effect becomes the 

																																																													
10 Please check Appendix A. 3 a) for closer inspection. 
11 This will be shown in Appendix A. 3 b) in more detail. 
12	In practice it is not possible to trade a continuum of options, therefore it is shown in Appendix A. 2 how to 
construct a finite set of options to approximate the second or third implied moment risk.	
13	The leverage effect was first documented by Black (1976) and is described as the inverse relation of volatility 
and financial leverage. If firm value plunges in times of turmoil, the stock price volatility rises due to increased 
leverage of the firm, assuming no change in firm’s debt. This leverage is accounted for in practical option pricing 
applications like the stochastic volatility model proposed from Heston (1993). 
14 In Appendix A. 4 a Taylor series expansion for M(r) is considered to show that it is equal to cubed log returns 
up to the third order term. 
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only part that explains the true third-moment. Third, if the true third-moment is priced under 

the implied measure ℚ, as it is done in (10), one can use Ithm and Rthm to perfectly replicate a 

skew-swap portfolio, or use the difference of both to detect risk premium associated with third 

moment risk. Formerly, proposed skew-swap contracts that pay the sum of cubed daily returns, 

e.g. Schoutens (2005), indeed were able to capture the third moment by pricing cubed returns, 

but failing to capture the leverage effect.  

When the above fixed leg Ithm is scaled by the implied variance IvarL to the power of 3/2, 

one can get an implied skew coefficient (or implied skewness), which is comparable to the 

conventional measure of skewness and therefore can be easily interpreted.15  

𝐼𝑠𝑘𝑒𝑤),& = 	
𝐼𝑡ℎ𝑚),&

𝐼𝑣𝑎𝑟),&=
b/J			 

	
(12) 

For the realized part, Rthm is scaled with the corresponding measure of variance RvarL to 

the power of 3/2, which represents the realized skewness of the return distribution.  

𝑅𝑠𝑘𝑒𝑤),& = 	
𝑅𝑡ℎ𝑚),&

𝑅𝑣𝑎𝑟),&=
b/J		. 

 

	
(13) 

Why not use the more obvious third-moment definition with the g-function g(r) = r3? 

Kozhan et al. (2013) point out that it is indeed possible to create a feasible skew-swap using 

this g-function. While they did not find significant differences of a cubic swap, when analyzing 

the moments of the S&P equity index, the corresponding definitions lack some appealing 

properties. The replicating options portfolio of a cubic swap Ithmcubic for instance, is short OTM 

puts and long OTM calls and again short OTM calls for high strikes. Also, the realized leg 

Rthmcubic captures only the leverage effect and does not contain cubed returns.16 

 

3 Data and Variables 
All my exchange rate data consists of spot and 1-month forward bid-ask prices taken from 

WM/Reuters (WMR) fixings, are quoted against USD, and cover 30 different exchange rates. 

The spot and forward exchange rates are defined as USD per foreign currency unit, where an 

appreciation of the rate translates into a USD depreciation. Also, 1-month interest rates are 

																																																													
15	The terms third moment and skew are used interchangeably throughout this paper. Also skew coefficient and 
skewness have got the same meaning.	

16 To conserve space, Appendix A.5 gives a brief overview of the definition of the implied and realized leg of 
a cubic swap contract. Additionally, all upcoming panel regressions including Iskew and Rskew values have been 
robustness checked with Iskewcubic and Rskewcubic. All regression results are qualitatively the same. 
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needed in order to compute the volatility smile function. Therefore, 1-month interbank offered 

rates (LIBOR) are primarily used, or if not available in Datastream, the database of the 

particular central bank’s homepage has been accessed. In cases of absolute non-availability of 

interbank rates, the foreign currency interest rate is approximated with a forward implied rate. 

This can be computed using the covered interest rate parity (CIP)  ft,T = st + if - i , where f and 

s apply to the log price of spot and forward rates respectively, while if and i refer to the foreign 

and domestic interest rates.17  

 Two different samples are used in this paper. Sample I covers all 30 exchange rates with 

varying inception dates, starting from September 2003 until October 2013. Sample II is a 

subsample and it is restricted to the availability of futures and option data provided by the U.S. 

Commodity Futures Trading Commission (CFTC), which will be introduced in the following 

section. It covers the period from June 2006 to February 2014. Both samples are calculated on 

a monthly frequency with end-of-month data points. Since the relevant data in the Traders in 

Financial Futures (TFF) report is available at a weekly frequency, the last week report will be 

interpreted as end-of-month observation for Sample II. Table 1 presents the various foreign 

exchange rates and their respective data coverage. 

 

 [Insert Table 1 about here.] 

 

In order to rebuild volatility smiles and recover call and put market prices with the proposed 

simplified parabolic interpolation model developed from Reiswich and Wystup (2012), three 

volatility input parameters are needed. That is the 25-delta butterfly, the 25-delta risk reversal 

and at-the-money (ATM) volatility mid quote. Furthermore, the use of bid-ask quotes makes it 

possible to incorporate transaction costs for the last section’s trading strategy. All European 

style option quotes for 30 foreign currencies against the USD are obtained from Bloomberg in 

daily frequency.  

 

 Traders in Financial Futures (TFF) Report Data 

The CFTC offers weekly data in a futures-only or futures-and-options TFF report to the 

public. In the futures-only report, they separately aggregate the amount of all future long, short, 

or spread positions for five different trader categories. Additionally, the futures-and-options 

																																																													
17 This procedure has been used for the Slovakian koruna (SKK) from January 2009 to October 2013, the Turkish 
lira (TRY) from December 2005 until June 2006 and the South Korean won (KRW) from September 2003 to June 
2004. 
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report takes the options market risk (or delta risk) into account by simply computing future 

equivalents for each option positions. This means that a long ATM put option with a delta of 

around -0.50 is viewed as half a future short position. 

 The TFF report distinguishes between the following five trader categories: Dealer 

intermediary, Asset Manager/Institutional, Leveraged Funds, Other Reportables and Non-

Reportables. To adopt the traditional view of a market microstructure within financial 

marketplaces, the groups can be further divided into the sell-side and buy-side. This does not 

mean that one of them only buys or sells futures. However, sell-side participants, in this case 

the dealer intermediary group, are typically traders that sell financial products to their clients 

and simultaneously hedge the position in the market. Their primary interest is not building huge 

risky positions, but earning a commission fee from customers. Therefore, the dealer 

intermediary group will be denominated as hedgers in the following sections. The other four 

trader categories are assumed to belong to the buying side of the marketplace. They are deemed 

to be clients of the sell side and should provide risk capital, or in this particular case, futures 

and option positions. They will be denoted as arbitrageurs in the following sections, since their 

primarily intent to trade is to invest, speculate or just to manage risk of their primary holdings. 

 

Market Pressure Variables  

One main purpose of this paper is to find evidence that options or future-implied demands 

lead to the obscure disconnection of the realized and implied skew within currency markets. 

Ruf (2012) has shown that for the commodity market, using option demand pressure multiples, 

which imitates the current net positioning of hedgers or arbitrageurs, has power to influence the 

shape of the volatility smile. Therefore, this paper adopts his definitions of market pressure 

variables to show whether his findings are also applicable to the currency market.  

The theory of hedging pressure in future markets is not new and dates back to at least Keynes 

(1930). He examined the futures commodity market, where a typical producer of a commodity 

is a natural seller of futures. The futures market for producers serves as an instrument for 

hedging future price risks posed by the underlying commodity. For instance, Bessembinder  

(1992) analysed determinants for future premiums in the commodity and financial futures 

market that consists of five different currency futures,18 using net holdings of hedgers as a 

demonstrative variable. These net holdings simply represent the difference of all net short 

positions to net long positions published from the CFTC. He detected significant predictive 

																																																													
18 He considered CFTC future data of the Canadian dollar, British pound, Japanese yen, German mark and Swiss 
franc all quoted against the US dollar with a sample period from 06/1972 to 12/1989. 
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power for currency future returns after controlling for systematic risk. More recently, De Roon 

et al. (2000) also used net future holdings of hedgers, but scaled by the total number of futures 

at risk and confirmed the results for the same currency future markets. 

 

Futures and Options Demand Pressure 

For the empirical investigation, the paper will make use of the definitions assigned by Ruf 

(2012), who defined pressure variables for the buy and sell-side traders respectively and also 

distinguished between futures and options-only variables within each group. While TFF reports 

do not provide information of pure option-only positions, this information has been extracted 

out of both available reports to construct an option-demand variable. The two pressure variables 

for the hedgers group are defined as follows:  

𝐻𝑃𝐹6,) 	= 	
𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠ijkljWm − 𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠ijkljWm	
𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠ijkljWm + 𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠ijkljWm 		 

	
(14) 

𝐻𝑃𝑂6,) = 	
𝑠ℎ𝑜𝑟𝑡	𝑜𝑝𝑡𝑖𝑜𝑛	∆ijkljWm − 𝑙𝑜𝑛𝑔	𝑜𝑝𝑡𝑖𝑜𝑛	∆ijkljWm	
𝑠ℎ𝑜𝑟𝑡	𝑜𝑝𝑡𝑖𝑜𝑛	∆ijkljWm + 𝑙𝑜𝑛𝑔	𝑜𝑝𝑡𝑖𝑜𝑛	∆ijkljWm 		 

	
(15) 

The pressure variable HPF (HPO) gives an indication to what extent hedgers, as a group, are 

exposed (at time t of currency i) to net short or long future (option delta) holdings, relative to 

the sum of all their positions at risk. A more pronounced, positive multiple would indicate that 

hedgers are less exposed to currency risk, since short future positions would cover their losses 

from foreign currency holdings. 

In the same manner, the ratios for the group of arbitrageurs are designed. Again, the positions 

of arbitrageurs are comprised of the four remaining trader groups denoted as n. Please note that 

now a positive value refers to net long future/option Δ positions of arbitrageurs, compared to 

hedger pressure variables. 

𝐴𝐶𝐹6,) = 	
𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠r − 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠r 	
𝑙𝑜𝑛𝑔	𝑓𝑢𝑡𝑢𝑟𝑒𝑠r + 𝑠ℎ𝑜𝑟𝑡	𝑓𝑢𝑡𝑢𝑟𝑒𝑠r 	 (16) 

𝐴𝐶𝑂6,) = 	
𝑙𝑜𝑛𝑔	𝑜𝑝𝑡𝑖𝑜𝑛	∆ −r 	 𝑠ℎ𝑜𝑟𝑡	𝑜𝑝𝑡𝑖𝑜𝑛	∆r

𝑙𝑜𝑛𝑔	𝑜𝑝𝑡𝑖𝑜𝑛	∆ +r 	 𝑠ℎ𝑜𝑟𝑡	𝑜𝑝𝑡𝑖𝑜𝑛	∆r
 (17) 
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An extreme positive or even negative value would indicate that arbitrageurs are highly 

exposed to one side of the market and their ability for bearing risk is probably restricted.19 As 

a consequence, arbitrageurs are likely to provide more risk capital, claiming higher risk 

provisions.20  

 

Long and Short Trader Concentration 

The TFF report also publishes concentration ratios, which is defined as the overall long or 

short futures position in currency i among the eight largest traders j, independent of their traders 

group category. The concentration ratio at time t is simply the percentage of long (or short) 

future positions at risk of the top eight traders, relative to the whole futures open interest (OIfut). 

The long (short) concentration ratio will be denoted as CR8LF (CR8SF) and is defined as 

follows: 

𝐶𝑅8𝐿(𝑆)𝐹6,) = 	
𝑙𝑜𝑛𝑔(𝑠ℎ𝑜𝑟𝑡)	𝑓𝑢𝑡𝑢𝑟𝑒𝑠_

_∈&vw	x
_,+

𝑂𝐼1y),6,)
		 

	
(18) 

These concentration ratios can be interpreted as another proxy for nearing capital constraints, 

as long as the traders belong to the arbitrageurs group. On the other hand, if high concentration 

comes due to highly exposed individual hedgers, an unexpected economic shock could lead to 

extraordinary demand for insurance and therefore, may increase risk in the form of more 

negative Iskew.   

 

Liquidity and Volatility Risk Factors 

In this subsection, the influence of liquidity risk variables on skewness will be investigated 

in more detail, based on the theoretical framework from Brunnermeier and Pedersen (2009). 

They showed that funding liquidity and market liquidity variables are mutually reinforcing and 

can lead to “liquidity spirals”. In an empirical investigation, Brunnermeier et al. (2009) found 

evidence that the TED spread, as an indicator of illiquidity, is indeed positively related to 

currency crashes (negative skewness), which supported their precedent suggestions.  

In the light of these findings, this paper follows the definitions in Asness et al. (2013) who 

considered shocks to the following three US funding liquidity variables: (i) the Treasury-

																																																													
19	A quite similar ratio has been used in the study from Brunnermeier et al. (2009). They analysed crash risk 
inherent in the carry trade strategy and considered the same group as representative agents for speculative capital 
in FX markets. In contrast, their denominator consisted of the total open interest of all future positions from the 
sell-side trader groups.	
20 As a robustness check, the variables ACFLev and ACOLev have been considered, which take only the leveraged 
trader group as arbitrageurs into account. The resulting regression results are qualitatively the same. 
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Eurodollar (TED) spread that is the 3-month (3m) T-Bill rate minus 3m LIBOR, (ii) the spread 

between the 10y-Constant-Maturity Swap rate and the 3m T-Bill rate (SwTB), and (iii) the 3m 

LIBOR minus 3m Repo spread (LiRe). Additionally, shocks to the average bid-ask spread, 

aggregated over 30 different exchange rates (BAS30) have been considered as a market liquidity 

risk measure.21 Higher bid-ask spreads are an indication of less market activity and therefore 

should reflect the state of market illiquidity. Asness et al. (2013) defined liquidity shocks as 

residuals taken from an AR(2)-model. 22	23 All variables are end-of-month observations and 

signed that higher values reflect illiquidity. 

Furthermore, a reasonable source for crash risk is the overall state of investor’s risk aversion. 

While it is quite hard to find appropriate measures, a frequently used proxy is the S&P 500 

option implied VIX index. In the study of Brunnermeier et al. (2009), they found that increasing 

VIX levels coincided with reduced speculative capital in investment currencies, which in turn 

resulted in increased crash risk. In order to consider a more currency-related measure of risk 

aversion, the innovations in global FX volatility (u_VolaMSSS) developed from Menkhoff et al. 

(2012a) are rebuilt using all Sample II currencies. Menkhoff et al. (2012a) found that these 

innovations capture more than 90% of the cross-sectional excess returns from five different 

carry-trade portfolios. 

 In addition to these two risk aversion variables, an aggregated FX implied variance measure 

(Ivar30) that represents the simple average of all 30 Sample I currencies is used. The Ivar30 

aggregates the implied variance of the log contracts for each exchange rate as has been defined 

in (3). Because it was intended to measure the effects of changing risk aversion rather than its 

level, first differences of the VIX index (dVIX) and innovations taken from an AR(2)-model for 

the Ivar30 are considered (u_Ivar30).  

 

Value and Momentum Factors 

Several recent studies have emphasized the effects of momentum and value effects on cross-

sectional asset returns. For instance, Asness et al. (2013) studied the momentum and value 

effect across different asset classes including exchange rates. Their key results suggest that 

value and momentum portfolio returns across a variety of assets can explain returns to a single 

class of momentum and value returns. This points to the possibility that value and momentum 

																																																													
21 The definition follows from Menkhoff et al. (2012a), who aggregated daily relative bid-ask spreads over 48 
different currency pairs against the USD. 
22 The methodology is broadly taken from Korajczyk and Sadka (2008) who studied alternative liquidity risk 
measures. 
23 As a robustness check, residuals taken from AR(1) and AR(3) have been used as liquidity shock variables but 
the regression results were qualitatively the same.  
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factors across assets share a common global risk. Moreover, Menkhoff et al. (2012b) have 

examined cross-sectional currency momentum portfolios that carry surprisingly high excess 

returns that cannot be explained by traditional risk factors.  

In order to review how these factors could potentially affect the measures of skewness, two 

different momentum horizons for each currency are considered. Both are the past 3- and 6-

month cumulative forward returns on each currency. By defining a value factor for each 

currency, the negative sum of 5-year past forward returns are used, following the approach of 

Asness et al. (2013). Hence, without being inclined to prefer any specific exchange rate model, 

the resulting value factor can be interpreted as the five-year deviation from uncovered interest 

rate parity (UIP)24 - a positive (negative) value factor translates into an undervaluation 

(overvaluation) of the respective foreign currency. 

 

Control Variables 

Nine different control variables will be used in each panel regression in order to make the 

results more reliable. Macroeconomic fundamentals have a long tradition in exchange rate 

determination, dating back to Frenkel (1976) and the monetary model. In a recently published 

study, Menkhoff et al. (2013) have shown, through a cross-sectional portfolio approach, that 

macro fundamentals are indeed informative about future excess returns. Four different US 

macroeconomic variables that are reasonable candidates for potential sources of currency risk 

to the representative US investor are taken into account: (i) real industrial production growth, 

(ii) real money (M1) growth (iii) CPI inflation and (iv) log changes of the ISM Manufacturing 

Index, which is the most important leading indicator of the US economy. The first two variables 

are deflated using the corresponding CPI index.25  

Additionally, adjustments for the possibility that equity-related shocks carry over to currency 

markets are made. From the perspective of a representative US investor these sources of risk 

could potentially cause portfolio reallocations that are not only restricted to equity risk itself, 

but are likely to include implicit or explicit foreign exchange risk exposure. While the overall 

results of close connections between currency and equity markets are relatively thin, 

Christiansen et al. (2011) found that currency portfolio returns are indeed closely connected to 

																																																													
24 In the equity literature it is common to use the traditional book-to-market ratio as an indication of how firms 
equity is priced in relation to its stock market price. Since there is no such objective balance sheet item for 
currencies that could be used as an indication for its real intrinsic value, Asness et al. (2013) referred to the findings 
of Fama and French (1996) who showed that equity portfolios sorted on 5 year lagged returns are very similar to 
those sorting by book-to-market values. 
25 There are macroeconomic variables that are only available in quarterly frequency. These values have been 
transformed to monthly observations using the cubic spline approach. This was true for AUD, HKD, NZD, and 
CHF for real production; AUD and NZD for CPI inflation rates and finally for AUD real money growth.   
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the S&P 500 Index and bond market returns - particularly within high volatility regimes, or to 

put it differently, the states of investors’ high risk aversion. In order to account for a possible 

relationship from equity driven effects to currency return skewness, three systematic risk factors 

from Fama and French (1992), augmented by the US stock momentum factor (UMD) were 

used.  

Last but not least, the six-month log change of open interest (dOI) taken from the futures-

and-options report will be taken into consideration in order to adjust for possible price effects 

resulting from new capital flows from hedgers or arbitrageurs.26  

 

4 Empirical Results 

As outlined in the introduction, the aim of this paper is to find an answer to the obscure 

finding that Iskew and future Rskew are not positively related to each other. While this 

constellation is not plausible within a no-arbitrage framework, one should ask how and why 

this relationship arises in practice. Ruf (2012) answered this question with an option demand 

based explanation, where he found in the commodity market that option prices, and in this 

respect the whole option volatility smile, was influenced by net option positions of arbitrageurs 

who claimed a risk premium whenever they were confronted with extreme net short or long 

option exposure. This has led to option risk premiums, and therefore to shifts of the implied 

volatility skew which results in the observed disconnection of Iskew and future Rskew. If this 

is also true for the Sample I currencies, one should find out whether a statistical significant SRP 

exists. As noted at the beginning, SRP is defined as the difference between Rskew and Iskew 

and should be positive in markets where investors are willing to pay significant premiums to be 

insured against foreign currency crashes. The reason for analysing skewness coefficients 

instead of the third-moment measures Rthm and Ithm, lies in their very different distributional 

properties. While Rskew and Iskew closely resemble a Gaussian distribution respectively, there 

third-moment counterparts Rthm and Ithm are heavily skewed and have got extreme fat-tailed 

distributions. Therefore, to prevent all regression results for being dictated by outliers, the skew 

coefficients instead of the third-moment variables are preferred.27  

																																																													
26 To clearly present results, any coefficient of control variables will be omitted, but the most important effects 
will be briefly discussed at the end of the empirical section.	
27 Be reminded, that the skew swap definitions in section 2 purely rely on the relationship between Rthm and Ithm. 
Also, the Aggregation Property according to Neuberger (2012) is only strictly true for the measures of realized 
and implied third moment, and is not directly applicable to the skewness coefficients. However, the skewness 
coefficients as a standardized third moment measure are supposed to exhibit comparable relations. 
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Table 2 gives an overview of the cross-sectional evidence on the SRP observed for Sample 

I currencies that are additionally divided into 10 developed and 20 emerging market currencies. 

	

[Insert Table 2 about here.] 

	

The results suggest that crash risk in foreign currencies, relative to the USD, is significantly 

priced for the majority of currencies. There are 20 significantly positive values at least at the 

10% level and only 3 negative exceptions.28 The 2 significantly negative currencies are the 

Japanese yen and the Hong Kong dollar (HKD). Both significant negative SRP values suggest 

that these currencies are seen as so-called safe havens, relative to the USD in times of market 

turmoil. Ranaldo and Söderlind (2010) find empirical support for the traditional idea that some 

currencies consist of safe haven attributes, e.g. appreciation in high volatility or market 

illiquidity states. While the HKD was not considered in their study, maybe because of the 

currency peg to the USD, the yen appeared to have the strongest safe haven currency attributes, 

a fact that can once more be confirmed in terms of the negative SRP value. The HKD has higher 

positive Rskew values on average than the USD, followed by an even higher Iskew value. It is 

the same picture with the yen and therefore, understandably results in a negative SRP. Ranaldo 

and Söderlind (2010) also state that the mirror image to safe haven currencies are the so-called 

investment currencies that are characterized as high-interest rate currencies. This conclusion 

can also be confirmed with results in Table 2, where 14 currencies out of 20 significantly 

positive SRP’s have higher than average forward discount values. 

The next question is whether Iskew can forecast future Rskew, or how the two are connected 

to each other in the time-series. This question is closely connected to the question of whether 

or not the skewness of the option-implied distribution is positively related to the skewness of 

the future realized distribution. One would assume that this is true in any financial marketplace 

– otherwise, arbitrage opportunities would arise. To answer this question for Sample I 

currencies, the following simple regression will be conducted:  

	𝑅𝑠𝑘𝑒𝑤):)P+ = 𝛼 + 𝛽	𝐼𝑠𝑘𝑒𝑤) + 𝜀) (19) 

The regression results are summarized in Table 3 below. While the joint hypothesis test 

confirms the occurrence of a significant SRP, which in turn agrees with the results from Table 

																																																													
28 The same regressions were run excluding the turmoil period between 31/07/2008-30/06/2009 in order to test 
whether the SRP is a result of periods with high market volatility. This assumption can be rejected since the test 
regressions are very similar to those of Table 2. 
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2, the results for the ß coefficient appear to be important. One can observe that in the majority 

of cases, Iskew is not able to forecast future Rskew. To put it differently, the variations in the 

time-series of Iskew do not sufficiently resemble the variation in Rskew. This is not surprising, 

since one can show that Rskew standard deviations are on average five times higher. Moreover, 

it is visible that nearly half of all ß’s are on average negative (in 13 out of 30 cases). This 

confirms the findings of Jurek (2014) and Brunnermeier et al. (2009) that both measures on 

average exhibit an even negative relation (only statistically significant for the Thai baht). 

Furthermore, one can only observe that Iskew accurately forecasts future Rskew for the two 

foreign currencies Russian rubel (RUB) and Malaysian ringgit (MYR). The inference on the 

intercept α is for the most part, insignificantly different from zero, with only seven exceptions. 

The overall results confirm the notion that Iskew and Rskew are loosely connected to each other 

in the time-series and sometimes exhibit a negative relation.29  

[Insert Table 3 about here.] 

In the light of findings from Ruf (2012) for the commodity market, this paper raises the 

hypothesis that the DS arises especially due to market positionings of hedgers and/or 

arbitrageurs that especially influence the shape of the implied volatility curve. From the 

perspective of hedgers, the option market can be seen as a market instrument to buy insurance 

against possible market crashes. On the other hand, arbitrageurs are considered to be providers 

of insurance or risk capital, since they are supposed to be the natural counterpart of the demand 

from hedgers needs. 

 In order to examine whether option price changes are due to changing beliefs or risk 

premium, remarks from Bates (2003) about the price of earthquake insurance are useful. He 

states that there are three main reasons why the prices of insurance may change. Either, (i) the 

expectation about future appearance of earthquakes has changed, (ii) the customers have 

become more risk-averse about earthquake risk and therefore demand more insurance, or (iii) 

the risk capacity of insurers is constrained taking additional risk exposure. Translating it into 

the context of the option market and its implied volatility curve, one can state that the option 

skew is expected to change, if (i) the physical distribution of future returns is going to change, 

																																																													
29 As a robustness check, the same regressions have also been run with the third-moment measures, Rthm and Ithm. 
In order to dampen the fat-tailed distribution, the extreme data points at the 2.5%, 5% and 10% levels were 
winsorized respectively. Furthermore, residuals were bootstrapped with 10’000 replications to get more reliable 
and conservative estimations of standard errors. The used inference is based on the students-t distribution with the 
appropriate degree of freedoms. The overall results are comparable to Table 3. 
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(ii) hedgers may become more risk-averse about their current risk positions, or (iii) the risk 

capacity of arbitrageurs is nearing constraints. In the forthcoming analysis, these three 

possibilities will be referred to as scenarios 1-3.   

The econometric analysis will make use of the multivariate fixed-effects (within) panel 

regression model, with up to eight currency units from Sample II. In order to properly handle 

unbalanced panels, autocorrelation and the heteroskedasticity structures of the financial market 

variables, the use of the econometric panel regression tool xtscc is required. The econometric 

tool was developed by Hoechle (2007) and is implemented in STATA. It uses a nonparametric 

covariance matrix estimator, proposed by Driscoll and Kraay (1998), that produces 

heteroskedastic- and autocorrelation-consistent (HAC) standard errors that are additionally 

robust to general forms of spatial (cross-sectional) and temporal dependence. In order to 

identify cross-sectional dependence among the error terms in the panel regressions, the test 

proposed by Pesaran (2004) has been used. It turns out that all of the regressions exhibit a 

statistically significant spatial dependence, mostly at the 1% significance level. 

In order to distinguish between scenarios 1, 2 and 3, the presentation format is identical to 

Ruf (2012) who presented regression results on the dependent variable Iskew and SRP 

respectively - one upon the other. This approach has several advantageous that can be 

characterized as follows: The first panel represents the results from chosen regressors on Iskew 

and the second will be regressed on the SRP. Since the premium is the difference between 

realized and implied skewness, the effect of both terms will be analysed simultaneously. For 

instance, if Iskew is significantly affected by regressor X and the SRP is unaffected, it means 

that both the realized and implied variables are significantly affected at comparable magnitude 

by regressor X. In this case, scenario 1 applies, and one may conclude that market participants 

can correctly anticipate a changing future risk environment. This paper is more interested in 

identifying time-series patterns that can be related to scenario 2 or 3, where Iskew and SRP are 

contemporaneously and significantly affected by variable X. This would mean that variable X 

impacts Iskew at a much higher magnitude in contrast to Rskew. For example, if regressor X 

contains information about demand pressure from the hedgers group, the effect on the shape of 

the implied volatility curve could be rationalized by changing risk aversions of that group 

(scenario 2 applies), or on the other hand, if variable X is dedicated to the arbitrageurs group, 

the capacity for bearing additional risk exposure possibly nears its constraint and scenario 3 

applies.  
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The Effects of Market Pressure 

The overwhelming results from Table 3 confirm the puzzling fact that realized and implied 

skewness variables are not significantly and positively related, and they sometimes even exhibit 

negative relations. In order to shed some light into these obscure findings, this paper will try to 

rationalize the divergence of the measures of skewness with option and future induced demand 

pressure.  

[Insert Table 4 about here.] 

 

The first two panel regressions of Table 4 indicate that both hedging pressure on options 

(HPO) and arbitrageurs’ capacity on options (ACO) are significantly and positively related to 

Iskew. However, the insignificant values on the premium suggest that both variables separately 

have a similar effect on Rskew, and this result will be assigned to scenario 1, where the physical 

and implied distribution of future returns is not significantly different. Now, conducting the 

equivalent market pressure variables on futures (HPF and ACF) in regressions three and four 

will reveal a surprising result. Both variables are significantly and positively related to Iskew at 

a comparable magnitude, and even more significantly negatively related to the premium. This 

result suggests that scenarios 2 and 3 can be respectively applied to the regression results. 

Moreover, the absolute coefficient values on SRP are much higher, compared to the coefficients 

in panel A. This implies that the impact of net future exposure of hedgers and arbitrageurs is 

positive for Iskew, whereas the impact on Rskew is contemporaneously negative. To shed some 

more light into this finding, regressions five and six divide ACF and HPF into their positive 

and negative values, respectively. In regression five, one can observe that the coefficient on 

ACF(+) is significantly and positively related to Iskew, whereas it is not different from zero for 

the premium. This again means that in states of future net long holdings of arbitrageurs, options 

are accurately priced with regard to future Rskew. For the case of ACF(-), the coefficient is not 

different from zero for Iskew, but significantly negative on the premium. This means that in 

states of future net short holdings of arbitrageurs, option prices do not accurately forecast 

positive future Rskew. One would expect a coefficient of about -0.4 on ACF(-) in panel A in 

order to correctly account for positive future Rskew. Therefore, the findings in regression three 

are mostly driven by incorrect option pricings in states of net future short holdings of 

arbitrageurs. This leads to relatively cheap call and expensive put prices at time t, with a 

conversely positive future Rskew. It seems like arbitrageurs on average incorrectly adjust option 

prices whenever they are exposed to net future short holdings. This result is quite puzzling and 

an explanation in terms of scenario 3 is difficult to justify.  
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Now turning to regression six, one can see that in panel A the coefficient on HPF(+) is not 

different from zero, whereas it is significantly negative for the premium in panel B. A similar 

conclusion is applicable in the case of ACF(-). Whenever hedgers are exposed to net future 

short holdings, they may profit from relatively cheap put prices for hedging purposes. The more 

negative coefficient of -0.187 in panel B compared to panel A, implicitly assumes that future 

Rskew is on average negative. This result is applicable to Jurek's (2014)finding that hedging is 

especially cheap when the probability of a crash is highest. One reasonable explanation for this 

fact with regard to HPF(+) could be that hedgers primarily reduce their risk with currency 

futures. This could result in a low overall demand for put options as hedging instruments and it 

may therefore cause an option volatility curve that is too positively skewed. The regressions 

with HPF(-) can be attributed to scenario 1, where a significantly positive relation to Iskew is 

approximately similar in magnitude of future Rskew, which leads to a SRP value insignificant 

from zero.  

Finally, the last two regressions use a squared term on ACF and HPF, compared to 

regressions three and four to check for nonlinear effects. Regarding the results from the linear 

terms in panel A, one can observe that positive significance is similar in magnitude to the 

regression without squared terms. Looking at the squared terms in panel A, only HPF2 exhibits 

a significantly negative relationship to Iskew. In panel B, both regressions show insignificant 

values on the premium, which suggests that squared terms similarly affect Iskew and future 

Rskew values. Taking the results of the last two regressions together, one can conclude that the 

DS is overall linear in ACF and HPF.  

One big difference to the Ruf (2012) results for the commodity market is that the impact of 

ACO and HPO on the SRP leads to the DS, whereas ACF and HPF values in the currency 

market seem to have more power to explain the market anomaly. The reason for the low impact 

of ACO and HPO on SRP in the currency market could be the low trading volume. Since there 

is no daily trading volume available, the open interest on options relative to futures should be a 

good proxy. The upper chart of Figure 1 presents a time series of futures and options open 

interest (OI) aggregated over the 8 Panel II currencies. It reveals that the overall options OI is 

relatively small and seemingly unrelated to futures OI over the timespan. This fact is confirmed 

by the lower chart of Figure 1, which presents time-series averages of futures and options OI 

respectively for each of the 8 currencies in billion USD. While the average share of options OI 

compared to futures OI over all currencies reaches only 15%, it also substantially varies in the 

cross-section, with 24% as the highest share for the EUR/USD option market until 8% for the 

CHF/USD. Meanwhile, the markets for the Mexican peso and New Zealand dollar are almost 
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non-existent. Low trading activity applies pressure to the variables ACO and HPO, which are 

more prone to noisy effects. This is likely to be the reason why one cannot find any direct 

significant relation of option demand pressure variables to Iskew or SRP.  

[Insert Figure 1 about here.] 

 

Effects of Liquidity and Volatility Risk Factors on Skewness 

Given the strong results that HCF and ACF have on skewness, this subsection will now 

examine whether “liquidity spirals”, as outlined in Brunnermeier and Pedersen (2009), or 

volatility innovations can contribute to the DS. Additionally, in order to account for “flight-to-

quality effects” or “safe-haven” properties that have been explicitly investigated by Ranaldo 

and Söderlind (2010)30, every liquidity or volatility innovation have been signed by their 

forward discount value of each of the 8 Sample II currencies, respectively. Also, an interaction 

term between HPF and the innovation under consideration is included, in order to find out 

whether innovations amplify the already strong effect of HPF on skewness. 

 

[Insert Table 5 about here.] 

 

The first four regressions in Table 5 present the results of the impact of HPF, together with 

various liquidity variables on the measures of skewness. One can only observe significantly 

negative effects for the Libor-Repo and the well-known TED spread on Iskew. These effects 

however, do not translate into the premium, so Rskew is similarly affected as Iskew. In the case 

of the Swap-TBill spread, the pattern is different. While it has no effect on Iskew, it significantly 

affects the SRP at the 10% level. Since the coefficient of the Swap-TBill spread on the premium 

is higher in absolute terms, it means that future Rskew is negatively affected while Iskew 

exhibits an insignificantly positive relation. Therefore, one can conclude that liquidity variables 

in terms of the Swap-TBill spread possibly contribute to the DS. Also, the interaction terms do 

not exhibit a significant relationship to Iskew or the SRP. Therefore, one cannot confirm a 

clearly amplified picture of liquidity risk based on the imbalance of implied and realized 

skewness.  

The next three regressions examine the effects of volatility on the measures of skewness. It 

starts with considering (i) first differences of the VIX index (dVIX), (ii) innovations in global 

																																																													
30 They found that especially in turbulent market states, low yielding currencies like the Japanese yen on average 
appreciated, while the opposite is true for high yielding currencies. 	



118 
	 	

FX volatility (u_VolaMSSS), and (iii) innovations of the aggregated implied volatility index 

(u_Ivar30). All three variables exhibit strong negative effects on Iskew, at least at the 5% 

significance level. The most significant effect on Iskew comes from u_Ivar30, showing a 

remarkably high T-statistic of -6.67. Nevertheless, all volatility variables are not significantly 

related to the SRP value, so Rskew and Iskew are similarly affected on volatility changes. Also, 

the interaction terms are all insignificant for both variables, so no amplifying effect of volatility 

and HPF is observable.31 One can conclude that when adding volatility and liquidity 

innovations to the regressions, the significance of HPF is in all cases remarkably stable. 

Furthermore, the added variables do indeed have a significant impact on Iskew but not on SRP, 

a fact that then can be attributed to scenario 1. By this logic, Iskew correctly anticipate changes 

in future Rskew, leaving the SRP unaffected. Only in the case of the Swap-TBill spread we 

observe a significant relationship to the SRP while it is insignificant on Iskew. This means that 

the implied volatility curve does not correctly price OTM option prices with regard to future 

Rskew. In states of high (low) Swap-TBill spread values or illiquidity (liquidity), OTM put 

prices are too low (high) relative to call prices, which makes insurance costs against future 

crashes relatively cheap (expensive). 

 

Effects of Traders Concentration on Skewness 

Market concentration ratios offer additional information about the microstructure of the 

marketplace. This paper will use the share from the eight biggest trader positions expressed as 

percentage of total open interest (see (18)). Since market concentration is independent of trader 

groupings, the consequence it has on Rskew or Iskew cannot be completely attributed to one of 

these groups. However, several conclusions can be made on whether arbitrageurs or hedgers 

dominate market share. On one hand, if arbitrageurs dominate market share, (i) individually 

high future exposure could limit their ability to take on additional positions (scenario 3), or (ii) 

they might exploit their market strength and be forced to offer less favorable prices. On the 

other hand, if only a few hedgers dominate the market, they are more exposed to cluster risk, 

which leads to very tight markets with escalating insurance prices - especially in times of market 

turmoil. However, all these possibilities would lead to the same effect. 

[Insert Table 6 about here.]  
	

 
																																																													

31 For brevity, regressions of skewness on ACF, liquidity and volatility variables are not reported, since the results 
are almost equivalent. 
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Table 6 starts by regressing Iskew and SRP on long and short concentration ratios (CR8LF 

and CR8SF) respectively. While both variables impact Iskew significantly in different 

directions, negatively for long concentration and positively for short future concentration, only 

CR8LF exhibits a strongly significant effect on SRP. Hence, unconditional high long future 

market concentration leads to a negative effect on Iskew. Likewise, the higher positive 

coefficient in absolute terms on SRP points to the fact that Rskew is controversially and 

positively related to high-market concentration. A similar picture can be seen in Table 4 for 

ACF and HPF values effecting Iskew and Rskew in positive and negative magnitude, 

respectively. However, in order to reveal a possible relation to market concentration and net 

future exposures of arbitrageurs and hedgers, CR8LF will be conditioned on extremely high or 

low values of ACF and HPF respectively. High (low) values are defined as being above (below) 

the 75% percentile (25% percentile) of each currency’s ACF and HPF distribution. The 

percentage in between is defined as the mid values.32 Therefore, regression three explores the 

effect of CR8LF when arbitrageurs are exposed to net future long (ACF>Q3), net future short 

(ACF<Q1) exposures, or values between these extremes (ACFmid). It turns out that especially low 

or mid values exhibit a significantly negative effect on Iskew, while market concentration, 

conditional on ACF<Q1, or net future short positions exhibit a significantly positive relation on 

SRP. A similar picture arises in regression four for the hedgers group. While all three variables 

have significantly negative impacts on Iskew, only market concentration, conditional on 

HPF<Q1, or net long future exposures exhibit a significant relationship on SRP. Since HPF and 

ACF values are highly and positively correlated, it is difficult to distinguish whether the DS can 

be attributed to one party or the other. But the fact that long future concentrations together with 

net long future positions of hedgers have a significant effect on Iskew and SRP, it is likely that 

market concentration is due to large positions in the hands of a few positions from hedgers.  A 

higher than normal risk exposure is then the explanation for higher risk aversion for hedgers, 

which appears most commonly when a market shock takes place. This is when only a few big 

traders simultaneously demand insurance for their positions, a situation that ultimately results 

in a tight option market and a high premium for OTM put options. Therefore, scenario 2 is a 

possible candidate for causing the DS with regard to future market concentration.  

 

 

																																																													
32 Dividing the market pressure variables into equal parts, where high (low) values are defined as being the highest 
(lowest) 33% values of all data points and the remainder belonging to the middle part, lead to the same regression 
results.  
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Effects of Momentum and Value Factors  

Now, the forthcoming analysis will try to draw conclusions for how short-term momentum 

or long-lasting over- or undervaluation affects skewness. As outlined in the data section, 3- and 

6-month33 currency-forward returns from each currency will be considered as momentum 

factors, in addition to the negative five-year deviation from UIP, where a positive (negative) 

value factor points to an undervalued (overvalued) foreign currency. 

[Insert Table 7 about here.] 

And indeed, the first two regressions of Table 7 present strong, significantly positive effects 

of momentum on Iskew, which are also very strong in magnitude on the SRP. The higher 

absolute coefficient on SRP points to the fact that future Rskew is on average negative. 

Regarding the higher absolute coefficient on SRP, data shows that momentum conversely 

exhibits on average a negative relation to Rskew and therefore even strengthens the DS. These 

results lead to the following conclusion: In a case where past currency momentum is 

unconditionally regressed on Iskew and SRP in rising (falling) markets, OTM calls (puts) are 

significantly more expensive as future Rskew would suggest on average. The most controversial 

point on one hand is that past momentum returns exhibit a positive relationship to Iskew, while 

on the other hand, past momentum returns implicitly exhibit a negative relationship to future 

Rskew. This pattern is absolutely not consistent with regard to the expectation hypothesis of 

implied and realized moment risk (see equation (1)). Therefore, past momentum returns seem 

to cyclically form the option implied volatility curve instead of future expectations of market 

participants.   

 The value factor in the third regression is not significantly related to Iskew, but it exhibits a 

clearly positive effect on SRP. As a result, undervalued (overvalued) currencies have, on 

average, positively (negatively) skewed future realized distributions which are not correctly 

priced in Iskew, preliminarily. In other words, the OTM call (put) prices from undervalued 

(overvalued) currencies are too cheap, which also lead to the DS.  

Turning now to regressions four and five where squared terms are added for 3- and 6-month 

momentum factors respectively, in order to examine possible non-linear effects. For both 

momentum factors, the impact of the squared and linear term is significant for Iskew (only 

borderline significant for RX(6m)2, with a p-value of 0.107). However, in panel B, only in cases 

of the 3-month momentum factor do both coefficients exhibit a significant relationship on SRP. 

																																																													
33 The results on 1-month momentum returns are almost identical to 3-month forward returns, so these results were 
skipped for brevity. 	
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Hence, especially strong past short-term momentum returns strengthen the abovementioned 

imbalance even more that exist between Iskew and future Rskew. 

But what is the rationale behind this crucial disconnect between the measures of skewness 

in states of currency trends, in terms of scenario 2 or 3? To shed some light on this question, 

one can regress momentum conditional on extreme net short or long positions of arbitrageurs 

and hedgers respectively. Extreme ACF or HPF values are similarly defined, as in the case of 

the market concentration analysis in the previous table, so that they will be denoted as net short 

or long positions of both trader groups respectively.34 Regression six reveals that only in times 

when arbitrageurs are exposed to net long future positions (ACF>Q3), they do have a 

significantly positive impact on Iskew and SRP. A reasonable explanation for this pattern that 

is in line with scenario 3, is that the already high future long exposition of arbitrageurs in 

trending currency markets reduces their ability or willingness to provide additional option risk 

exposure. While additional short calls for arbitrageurs would mitigate their current delta long 

exposure, it would raise their short vega exposure (and short gamma exposure35). This 

positioning is especially unfavourable in declining market environments, where on average 

implied volatility rises and ultimately leads to portfolio losses. Since the first two regression 

results point to the fact that future Rskew is indeed negative in rising markets, the claim for an 

extra risk premium on OTM call prices seems to be plausible. In the case of negative trends and 

net long future positions of arbitrageurs, higher than expected OTM put prices are maybe due 

to past portfolio losses, which leads to tighter risk limits for arbitrageurs and higher option 

prices. The last regression results seem to be a mirror image of the regressions shown in column 

six. Here, the returns from the past three months are positively related to Iskew, together with 

extremely low or high HPF values. But when regressed on SRP, it turns out that past returns 

and net future short positions of hedgers lead to the DS. An explanation in terms of higher risk 

aversion of hedgers (scenario 2) seems to be implausible. Moreover, it is hard to distinguish 

between both groups of trader’s positions, since the effects on Iskew and SRP are at a 

comparable magnitude. But summarizing the last two regressions, one can observe that the DS 

takes place in states of net future long positions of arbitrageurs or net future short positions of 

																																																													
34 Since this analysis concentrated on extreme high or low values of ACF and HPF market pressure ratios, the 
coefficients of mid-term values were skipped. Nevertheless, it is important to note that all of them are also highly 
significant in all cases. Also regressions that are conditional on positive and negative values of ACF and HPF on 
market momentum have been tested, and the regression results did not change. Furthermore, ACF and HPF values 
change sign at the same time, so a distinction of arbitrageurs or hedgers net positions was not possible. Also market 
momentum conditional on ACF or HPF values were divided into equal parts, as in the last subsection, but the 
results did not change. 
35 Gamma is the second order derivative of the option price function with respect to underlying price changes. It 
measures the change in delta when the underlying moves one price unit. Short gamma positions lead to increasing 
long (short) delta positions when the underlying declines (rises).		
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hedgers together with past 3-month returns. While a higher state of risk aversion of hedgers 

together with net future short positions seems to be implausible, one can conclude that the 

arbitrageur’s capacity of providing risk capital is likely to be responsible for the DS - as 

explained above.       

To summarize the overall picture, currency momentum seems to play an important role in 

explaining the DS. Iskew is positively dependent on currency momentum, leading to higher 

than expected OTM call (put) option prices within rising (declining) markets. Furthermore, 

future Rskew is affected in a direction opposite to Iskew which strengthens the DS. The effect 

is even stronger the shorter the past momentum horizon is, especially because the 3-month 

momentum exhibits a convex dependence on Iskew and the SRP.  

 

Impact of Control Variables on Measures of Skewness  

The overall result of the impact from US macro risk, the three Fama and French factors 

extended by the momentum risk factor UMD (FF4) can be characterized as follows: While the 

FF4 factors do not impact currency crash risk significantly, there is a strong and significantly 

negative coefficient (T-statistics always between -6 and -5) for real production growth on Iskew 

and to somehow lower but still significant magnitude on Rskew. This finding can be related to 

results of Lustig and Verdelhan (2007) who found that the risk of US consumption growth36 is 

significantly priced in the cross-section of currency portfolio sorts based on their interest rate 

differential. Also, Menkhoff et al. (2013) broadly confirmed that production growth is priced 

in the cross-section of currency portfolio sorts based on interest rate differentials and also macro 

based sorts. Therefore, based on above regressions it can be concluded that positive currency 

returns in line with higher US production growth also increase future crash risk and the price 

for insurance through a more negatively sloped implied volatility curve. 

 

5 Skew Trading Strategy 

The empirical section provides evidence about the disconnection of realized and implied 

skewness in currency markets. Panel regressions using market pressure variables on at least six 

currencies and other market features such as momentum and value have helped to explain this 

market anomaly. Since predictive regressions have been used, one can now try to exploit this 

market feature by simply trading a skew swap, where the price of the option implied skew is 

swapped against its corresponding realized skew. In section 3, we have learned how a skew 

																																																													
36 It is well known that consumption growth rates are highly correlated to production growth rates, and therefore 
the results of one or the other can be regarded as the same source. 
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swap can be synthesized by constructing a portfolio of options at inception and subsequently 

hedging futures and options on arbitrary frequency. While future/forward trading is relatively 

easy to manage in terms of costs and product homogeneity, subsequent trading in various option 

strikes simultaneously is rather difficult to put into practice. To avoid unnecessary hedging 

costs, Schneider and Trojani (2015) proposed a simple skew contract (SSC) that is of a similar 

build at inception, and needs only to be subsequently hedged in the futures market and therefore 

makes a skew swap more tractable and less costly. It also has the desired “Aggregation 

Property” (AP) so that hedging can be done on arbitrary frequency.  

The theoretical construction procedure and the practical application will be briefly described, 

followed by empirical results. 

	

Theoretical Background 

The SSC proposed by Schneider and Trojani (2015) derives the implied skew term as the 

difference of two measures of implied variance. The first implied variance measure is the 

already derived implied variance measure defined in equation (3), denoted as IvarL. It follows 

from the variance function: gV(r) ≡ 2(er - 1 - r).37 On the other hand, the second implied variance 

measure, denoted as IvarS, follows from the simple squared return function: gS(r) = (er-1)2. 

Schneider and Trojani (2015) show that going long the underlying option portfolio according 

to IvarL and contemporaneously selling the replication portfolio due to IvarS, will result in a 

portfolio that is short OTM puts and long OTM calls comparable to Ithm (see equation (10)) 

and has the desired AP according to Neuberger (2012). When looking at the differences 

between the associated measures of realized variance, one will see that roughly only third order 

effects survive. In the following paragraphs, the results from Schneider and Trojani (2015) will 

be presented and for a more thorough analysis the Appendix A. 6 and Appendix A. 7 are 

recommended. 

 

Simple Variance Contract 

As noted above, the SSC is defined as the difference of two measures of variance. Therefore, 

one can start by defining the contingent claim price of the simple squared return function gS. 

Using the spanning approach from Bakshi and Madan (2000), the contingent claim price or the 

options replication portfolio can be characterized as follows (see Appendix A. 6): 

																																																													
37	Recall that r is defined as the log forward return and therefore R ≡ er-1 is an expression for the simple forward 
return.	
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Obviously, its realized variance counterpart (or floating leg) is simply defined as 
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Simple Skew Contract (SSC) Definition 

The fixed leg of the SSC is defined as the difference between the fixed leg of the variance 

swap contract IvarL and the fixed leg of the simple variance contract IvarS.  

𝐼𝑡ℎ𝑚),&
~ = 𝐼𝑣𝑎𝑟),&= − 𝐼𝑣𝑎𝑟),&~  (22) 

 

While this construction might give the impression of being rather artificial or even 

implausible in terms of representing a third moment, it is instructive to consider the realized leg 

of the SSC. Carr and Lee (2009) showed that the realized variance of squared log returns can 

be defined as follows (see Appendix A.7): 

𝑅𝑣𝑎𝑟),&
�vl� = 𝑅𝑣𝑎𝑟),&= −

1
3 𝑅)P6 b
�*+

6,#

+ O(𝑅)�) 

 

	

(23) 

Schneider and Trojani (2015) used the results of (23) to refer to the close connection of 

RvarlogR to the variance measure RvarL, as defined in (4). Furthermore, one can observe that the 

second term is devoted to cubed simple returns. Schneider and Trojani (2015) also noted that 

such a relationship between RvarS and RvarL does not exist, but when assuming that RvarlogR ≈ 

RvarS, and keeping in mind that the floating leg of the SSC is the difference of RvarL and RvarS, 

one can derive following relationship: 

𝑅𝑡ℎ𝑚),&
~ ≡ 𝑅𝑣𝑎𝑟),&= − 𝑅𝑣𝑎𝑟),&~ ≈ 𝑅𝑣𝑎𝑟),&= − 𝑅𝑣𝑎𝑟),&= −

1
3 𝑅)P6 b
�*+

6,#

+ O(𝑅)�)  
	

 

𝑅𝑡ℎ𝑚),&
~ =

1
3 𝑅)P6 b
�*+

6,#

− O(𝑅)�) 
(24) 



125 
	 	

With regard to (24), one can see that the SSC is primarily connected to third order effects, 

with disappearing higher order effects in the limiting case. 

 

Practical Implications 

With regard to the practical implementation of the SSC, one has to deal with several issues. 

One important thing is the amount of margin one has to allocate to a bank account, in order to 

be allowed to trade in the futures and options market. While the overall margin rules for futures 

and options combined can be rather complicated, a rather easy margin requirement scheme will 

be applied that is taken from the margin calculator of the Chicago Board of Trade (CBOE). In 

the case of entering into a short put and short future contract simultaneously, you have to 

provide 150% of the margin amount of the corresponding future contract. Translated to the SSC 

investment, where one goes long calls and short puts or vice versa, hedging the options delta 

position with futures, one could characterize an aggregated position as, e.g. being long 1 call 

option (0.25 delta) and short 1 put option (0.25 delta) position and hedging with 0.5 short future 

contracts. Since margins for long option positions are usually not required, it will be assumed, 

for our combination, that the overall margin requirement is 125% of one future contract. The 

easy margin assumption has been compared to the margin requirements of the Chicago 

Mercantile Exchange (CME), and without considering any opportunity for reducing margins, 

this rule of thumb can be regarded as a conservative margin measurement. Fortunately, the 

CME provides historical margin costs for their currency future contracts on their website.38 

These historical margins have been implemented into the daily return calculation process, in 

order to establish a realistic picture of margin increases and reductions.  

The dataset of forward and options is comprised of 1-month maturity prices on a daily 

frequency. In order to exploit the above findings, a 1-month constant-maturity SSC will be 

constructed, where profit and losses can be computed on a daily frequency. It starts with 

building an options and forward portfolio at the beginning of each month, followed by future 

hedges on a daily frequency, until the end-of-month when all positions will be closed out. The 

option portfolio consists of 3 OTM call and 3 OTM put options that are stripped between the 

(+/-) 0.175 delta (call/put) option strike and the forward ATM strike, respectively.39 The strikes 

																																																													
38 Unfortunately, there is no historical margin information available for the MXNUSD exchange rate. Therefore, 
the historical margin information from seven currency futures have been used to get reasonable estimates for 
MXNUSD margins. It turns out that the required margin amounts expressed as percentage of future margin 
regressed on the current and first lag of the implied volatility level have got the most robust estimation results with 
R2’s of around 60% on average. For the estimation of MXNUSD margins, higher than average coefficient values 
were used, in order to achieve a conservative margin measure.  
39 In order to establish a consistent forward hedge, the option delta is computed in forward delta terms.   
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of the OTM option strips are equally spaced. In the daily profit and loss calculations, the end-

of-day option prices are computed with the next day’s implied volatility smile, where the 

maturity date will be deducted by 1 day (or 3 days in the case of weekends). The same procedure 

is done for forward prices, where 1/30 of the forward premium to the next day’s forward price 

will be deducted.40 In the next subsection, the returns of the SSC will be presented, both with 

and without transaction costs. As for transaction costs, only the costs induced by trading at bid-

ask prices are considered, whereas SSC returns without transaction costs take mid-quotes of 

futures and options as trading prices.  

 

Simple Skew Contract Returns 

Before building a reasonable investment scheme for the skew swap to incorporate the effects 

of market pressure, the time series behaviour of swap returns for each of the Sample II 

currencies was analysed. It will be referred to short skew investments as the strategy for selling 

puts and buying calls, with subsequent delta hedging with futures. Comparing returns that show 

unconditionally long or short skews throughout the sample period for each currency reveals that 

skew swap returns rely heavily on the steepness of the implied volatility curve. Since most of 

the currencies have on average a negative Iskew (see Table 2), a short skew strategy is superior 

to being exposed to long skew (the opposite is true for the Japanese yen). This can be 

rationalized by a positive return drift, created from positive option theta that is due to higher 

put prices sold and lower call prices purchased.  

With this relationship in mind, only strategies that are exposed to short skew strategies will 

be considered.41 In order to exploit the skewness premium, these eight currencies will be sorted 

by their ACF, HPF, CR8LF values respectively, and choose the two highest or two lowest 

values, whatever would best rationalize a short skew position, to invest in equal weights. This 

is true for positive HPF(+) or ACF(+) values and the lowest concentration ratios, CR8LF(low). 

In the case of only negative values for ACF and HPF, one will choose to invest in the risk-free 

4-week T-Bill rate. If there is only one positive value, all proceeds will be invested into this 

single currency. The same sorting scheme applies for positive values of 1-month, 3-month, and 

6-month-momentum RX(Xm) and negative FX-value factors, respectively. Additionally, 

several sub-strategies to sort currencies by some multiples will be tested. For example, 

																																																													
40 As a robustness check, the option portfolio strips were enlarged to 10 OTM call and 10 OTM put options with 
the result that the efficiency according to the SRHM has increased. This comes especially due to significant reduced 
variance, skewness and kurtosis figures at times of market stress.  
41 Any combined strategy that consists of short skew and long skew investments, e.g. selling skew on the two 
highest ACF values and buying skew on the currencies with lowest ACF values, ends up with overall negative 
portfolio returns. 
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ACF(+)/CR8LF, positive ACF values divided by CR8LF, will allow to filter high positive ACF 

values associated with low overall future market concentration, or ACF(+)*RX(1m) will allow 

to choose high 1-month momentum returns with contemporaneous high positive ACF values. 

The results of 20 different strategies will be compared to each other, including a naïve 

investment strategy denoted as the benchmark strategy, which always invests in those two 

currencies with the most negatively implied skew values (Iskew(-)). To appropriately compare 

these skew swap portfolio returns, a Higher Moment Sharpe Ratio (SRHM) will be used in order 

to accomplish an efficient portfolio ranking according to higher return moments. 42 In addition 

to the original Sharpe Ratio (SR), it accounts for the return skewness and excess kurtosis of the 

return distribution and in the case of negative excess returns, the denominator will be raised to 

the power of -1, according to suggestions of Israelsen (2005). Also the original SR values will 

be reported for comparison. The average rate of the 4-week T-Bill will be used as the risk-free 

rate over the Sample II period. 

[Insert Table 8 about here.] 

 

 Table 8 summarizes return results sorted on SRHM, in ascending order, without including 

transaction costs. In Panel A, one can see that the most efficient results according to SRHM, are 

from sorts on positive 1-month momentum returns, RX(1m)+, low future market concentration, 

CR8LF(low), and net future short holdings from hedgers, HPF(+). The first three results are as 

expected to be strong, because of the outcomes in above regressions (see Table 4, Table 6 and 

Table 7). While the return results from HPF(+) compared to ACF(+) is nearly identical, the 

benchmark strategy Iskew(-), has the highest monthly return result of impressing 2.1% p.m. . 

On the other hand, the return distribution is very negatively skewed and fat tailed, which leads 

to a worse overall rating due to SRHM. The worst strategy result is on sorting on FX-value, which 

supports the above notion that skew swap results primarily rely on strong shifts in Iskew rather 

than Rskew. In Panel B, the turmoil period from the end of July 2008 until the end of June 2009 

has been removed, in order to study the influence of extreme events on skew swap investments. 

During this relatively “normal” period, the benchmark strategy is the most efficient with on 

average returns of about 38.1% p.a. and almost half the standard deviation, positive skewness, 

and a much lower excess kurtosis compared to Panel A. The volatility over all strategies is one-

third lower and the returns are almost doubled. This impressively highlights the strong negative 

effects of such a state of market stress on skew swap investments. Especially clear is the strong 

																																																													
42 A detailed description of the Higher Moment Sharpe Ratio will be found in Appendix A. 8. 
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advancement of the naïve strategy, (Iskew(-)) because excluding the turmoil period reveals that 

investments in currencies are specifically sensitive to turmoil periods. This is also true for 

investment schemes sorted on positive ACF or HPF values, multiplied by currency momentum, 

e.g. RX(1m). On the other hand, sorting low market concentration ratios CR8LF(low) is a 

strategy that is almost immune to crash scenarios. The return and standard deviations are 

somehow lower, with almost identical negative skewness and excess kurtosis, compared to 

other strategies.  

Figure 2 now presents the cumulative returns of the three most efficient sorting schemes, 

according to SRHM together with the benchmark strategy. It becomes visible that sorting on 

negative Iskew’s results in a highly fat-tailed and negatively skewed return distribution, 

compared to the others. The success of the CR8LF(low) strategy becomes progressive 

beginning in 2011, while the return paths of RX(1m) and HPF(+) strategies seem to accumulate 

smoothly over the entire period.	

                                            [Insert Figure 2 about here.] 

Table 9 now incorporates transaction costs and one can see that all sorting schemes result in 

negative excess returns. The average costs of all strategies are 230 basis points p.m. - which 

sounds very high. Future inclined costs represent on average 2/3 of all transaction costs. 

However, evidence from Lyons (2002) suggests that Reuters future bid-ask spreads are twice 

as large as the relevant inter-dealer spreads. If a similar picture arises for the option bid-ask 

spreads taken from Bloomberg, and the futures hedging frequency is reduced, one could easily 

reduce half of the transaction costs. Therefore, a skew swap strategy for currencies sorted by 

market pressure variables or currency momentum ratios is likely to exhibit profitable 

investments in practice. 

[Insert Table 9 about here.] 

6 Conclusion 
We have seen that in the majority of 30 different foreign currency markets, there exists a 

statistically significant skewness risk premium (SRP). This ultimately means that foreign 

currency crash risk against the USD is priced. We have also seen that in the great majority of 

cases the implied skewness (Iskew) does not forecast future realized skewness (Rskew), which 

would be expected in a no-arbitrage environment of financial markets. Moreover, even 13 out 

of 30 currency markets exhibit on average a negative relationship between Iskew and future 

Rskew (only significant for the Thailand baht). These facts not only support the occurrence of 
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a significant SRP but also raise the question of whether these imbalances can be attributed to a 

demand based explanation. 

In conjunction with publically available future and option data provided by the CFTC, there 

is evidence that the disconnection of Iskew and Rskew (DS) is partly due to special 

constellations in the future market microstructure. Therefore, this paper makes use of market 

pressure variables, like net future and net option positions of hedgers and arbitrageurs that are 

supposed to capture the overall positioning in the market. It was surprising that evidence is 

found that especially market pressures from the FX futures market has led to the DS. This 

contrasts the findings from Ruf (2012) in the commodity market, where option market variables 

primarily have been responsible for the DS. However, four main sources of the observed market 

anomaly have been identified: (i) past short term currency momentum, (ii) high concentration 

in the future market, (iii) unconditional net future short positions of arbitrageur or hedger 

groups, and (iv) states of market illiquidity in terms of innovations from the Swap-TBill spread. 

 Past currency returns have the most significant impact on Iskew and the SRP, which leads 

to a cyclical demand for OTM calls in rising markets and likewise a demand for OTM puts in 

declining markets. There is evidence that this is due to a reduced ability for bearing risk of 

arbitrageurs when they are exposed to long future holdings (scenario 3). In the case of rising 

markets, arbitrageurs seem to demand an extra risk premium for OTM calls in order to be 

compensated for short vega positions. This is plausible since future Rskew is implicitly negative 

on average. In the case of declining markets, arbitrageurs demand for an extra premium for 

OTM puts only makes sense when it is viewed as a compensation for past future losses. 

Additionally, in the last section one can see that especially a swap strategy using the past 1-

month returns has afforded the most efficient portfolio results by exploiting the DS.  

High future long concentration has been identified as the second source leading to the 

imbalance of skewness. The rational behind this pattern is that possibly a high future 

concentration in the hands of only a few traders from the hedging group seem to trigger a high 

demand for OTM put options in a state of increased risk aversion or a suddenly negative market 

event. This could lead to tight option markets as well as especially unfavourable prices for 

insurance - this therefore can be assigned to scenario 2 for causing the DS. Also, using low 

states of market concentration with short skew swap investments belongs to the three most 

successful strategies in terms of the Higher Moment Sharp Ratio.  

There is also evidence that unconditional net future short holdings from arbitrageurs or the 

hedgers group contribute to the DS. Short holdings from arbitrageurs lead to relatively high 

costs for OTM puts, which is opposite to the average observed positive Rskew. Therefore, an 
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explanation in terms of scenario 3 seems to be implausible. On the other hand, short holdings 

from the hedgers group leads to relatively low OTM put prices. This means that Iskew is 

positively skewed, although future Rskew is on average, negative. While this situation is quite 

favorable for allowing the hedgers group to buy cheap insurance for future crash risk, this 

pattern also contributes to the existence of the DS. This result is comparable to findings in Jurek 

(2014) or Brunnermeier et al. (2009) that can be summarized by the following phrase: “hedging 

is especially cheap when the probability of a crash is highest”. One reasonable explanation for 

the incorrectly adjusted Iskew is that hedging is primarily done in the future market and does 

not lead to an option demand which would be then consistent with future Rskew. 

 The last observed effect in conjunction with the DS is the sensitivity to innovations of the 

Swap-TBill spread. The innovations are used as a proxy for market illiquidity and there is 

evidence that the option market does not correctly adjust for future Rskew values. This 

ultimately leads to relatively cheap OTM put prices, or cheap prices for insurance when the 

state of illiquidity is high. Nevertheless, this result should be viewed with caution since other 

illiquidity innovations that are taken from the well-known TED spread or Libor-Repo spread 

do not confirm this result. 

Section 5 has shown that exploiting the DS by replicating a constant maturity simple skew 

swap using the information of net future positions, market concentration and currency 

momentum leads to high returns of up to 20% p.a. without transaction costs. But when bid-ask 

spreads on futures and options as transaction costs are taken into account, the high returns 

almost vanish. 
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Figures and Tables 

Table 1. Sample Overview 

This table gives an overview of the used exchange rates against the USD for Sample I and Sample II 
currencies within their respective sample periods. It starts on the left with currency numbers, followed 
by the official ISO 4217 currency codes and country names. The fourth column indicates whether the 
country is grouped to the developed (DM) or emerging market (EM). It then follows the inception and 
end dates of Sample I and Sample II currencies, with the number of monthly observations used. 

 

No. Currency Country DM/EM  Sample I Coverage  Sample II Coverage 
  Codes       Inception End Obs.   Inception End Obs. 

1 AUD Australia DM   09/2003 10/2013 121   06/2006 02/2014 93 
2 CAD Canada DM   09/2003 10/2013 121   06/2006 02/2014 93 
3 CHF Switzerland DM   02/2005 10/2013 104   06/2006 02/2014 93 
4 DKK Denmark DM   02/2005 10/2013 104   ./. ./. ./. 
5 EUR Europe DM   09/2003 10/2013 121   06/2006 02/2014 93 
6 GBP Great Britain DM   09/2003 10/2013 121   06/2006 02/2014 93 
7 JPY Japan DM   09/2003 10/2013 121   06/2006 02/2014 93 
8 NOK Norwegia DM   02/2005 10/2013 104   ./. ./. ./. 
9 NZD New Zealand DM   09/2003 10/2013 121   06/2006 02/2014 93 

10 SEK Sweden DM   02/2005 10/2013 104   ./. ./. ./. 
11 CLP Chile EM   03/2005 10/2013 103   ./. ./. ./. 
12 COP Colombia EM   03/2005 10/2013 103   ./. ./. ./. 
13 CZK Czech Republic EM   03/2005 10/2013 103   ./. ./. ./. 
14 HKD Hong Kong EM   09/2003 10/2013 121   ./. ./. ./. 
15 HUF Hungary EM   03/2005 10/2013 103   ./. ./. ./. 
16 IDR Indonesia EM   06/2007 10/2013 76   ./. ./. ./. 
17 ILS Israel EM   09/2003 10/2013 121   ./. ./. ./. 
18 INR India EM   02/2005 10/2013 104   ./. ./. ./. 
19 KRW South Korea EM   09/2003 10/2013 121   ./. ./. ./. 
20 MXN Mexico EM   09/2003 10/2013 121   06/2006 02/2014 93 
21 MYR Malaysia EM   09/2006 10/2013 85   ./. ./. ./. 
22 PHP Philippines EM   06/2007 10/2013 76   ./. ./. ./. 
23 PLN Poland EM   09/2003 10/2013 121   ./. ./. ./. 
24 RUB Russia EM   10/2005 10/2013 96   ./. ./. ./. 
25 SGD Singapore EM   09/2003 10/2013 121   ./. ./. ./. 
26 SKK Slovakia EM   03/2005 10/2013 103   ./. ./. ./. 
27 THB Thailand EM   09/2003 10/2013 121   ./. ./. ./. 
28 TRY Turkey EM   11/2005 10/2013 95   ./. ./. ./. 
29 TWD Taiwan EM   09/2003 10/2013 121   ./. ./. ./. 
30 ZAR South Africa EM   09/2003 10/2013 121   ./. ./. ./. 
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Table 2. The Skewness Risk Premium in Foreign Exchange Markets 
This table presents time-series averages of implied (Iskew) and realized skewness (Rskew), the conventional unit-
free measure of skewness (Skewness), as well as the skewness risk premium denoted as SRP. Additionally, 
Corr(I/Rskew) means the correlation of Iskew and Rskew, where bold figures indicate significant correlation at 
least at the 10% level. Sample II currencies are superscripted with TFF. Obs. stands for the number of monthly 
observations used in the calculation. Forward discount values (FD) are annualized and proxies the interest rate 
differentials assuming CIP holds. SRP values are regressed on a constant using OLS, with HAC standard errors 
and 3 Newey-West (NW) lags. Asterisk values (***), (**) and (*) represent statistical significance at the 99%, 
95% and 90% confidence levels, respectively. 	

	

Currency Obs. FDt  Iskewt Rskew t:t+1 Skewness t:t+1 Corr(RSCs)  SRP t:t+1 t-stat. p-value 
Developed Market Currencies (DM) 

JPYTFF 121 -0.16%   0.29 0.07 0.05 0.81   -0.22*** -3.67 0.000 

NOK 104 0.06%   -0.01 -0.08 -0.09 0.79   -0.07 -1.10 0.275 

CHFTFF 104 -0.12%   0.08 0.13 0.12 0.82   0.05 0.66 0.512 

NZDTFF 121 0.27%   -0.18 -0.11 -0.22 0.79   0.07 1.11 0.269 

DKK 104 -0.03%   -0.02 0.07 0.04 0.81   0.09 1.33 0.188 

SEK 104 -0.01%   -0.02 0.08 0.07 0.72   0.10* 1.72 0.089 

AUDTFF 121 0.26%   -0.19 -0.07 -0.15 0.81   0.12* 1.85 0.066 

CADTFF 121 0.00%   -0.02 0.08 0.07 0.74   0.10* 1.88 0.062 

GBPTFF 121 0.07%   -0.11 0.00 -0.05 0.66   0.11** 2.02 0.046 

EURTFF 121 -0.02%   -0.07 0.08 0.02 0.79   0.15** 2.47 0.015 

Emerging Market Currencies (EM) 

HKD 121 -0.05%   0.88 0.24 0.24 0.87   -0.64*** -4.98 0.000 

KRW 121 0.06%   -0.16 -0.13 -0.17 0.82   0.03 0.44 0.659 

INR 104 0.38%   -0.18 -0.14 -0.15 0.81   0.04 0.58 0.560 

TWD 121 -0.19%   0.08 0.18 0.21 0.86   0.10 1.15 0.253 

ILS 121 0.08%   -0.08 0.02 -0.01 0.79   0.10 1.44 0.153 

ZAR 121 0.49%   -0.21 -0.11 -0.09 0.73   0.11** 2.02 0.045 

THB 121 0.11%   -0.09 0.13 0.11 0.89   0.22** 2.19 0.031 

PLN 121 0.20%   -0.14 -0.01 -0.09 0.70   0.13** 2.23 0.028 

SGD 121 -0.06%   -0.05 0.10 -0.02 0.79   0.15** 2.38 0.019 

MXNTFF 121 0.36%   -0.27 -0.12 -0.16 0.78   0.14** 2.43 0.017 

CZK 103 -0.05%   -0.07 0.10 0.06 0.74   0.17** 2.60 0.011 

COP 103 0.25%   -0.30 -0.12 -0.17 0.80   0.18*** 2.71 0.008 

SKK 103 -0.02%   -0.06 0.15 0.09 0.80   0.21*** 3.03 0.003 

PHP 76 0.19%   -0.30 -0.09 -0.11 0.68   0.21*** 3.09 0.003 

HUF 103 0.36%   -0.23 -0.02 0.01 0.73   0.21*** 3.48 0.001 

TRY 95 0.76%   -0.38 -0.12 -0.11 0.77   0.26*** 3.54 0.001 

IDR 76 0.48%   -0.53 -0.07 0.03 0.91   0.45*** 3.81 0.000 

RUB 96 0.47%   -0.27 0.04 -0.04 0.82   0.30*** 3.83 0.000 

CLP 103 0.18%   -0.31 0.02 -0.01 0.74   0.33*** 4.87 0.000 

MYR 85 0.02%   -0.17 0.17 0.15 0.86   0.34*** 5.77 0.000 
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Table 3. Implied and Realized Skewness in the Time-Series 
This table presents OLS regression results and inference gathered from the regression: Rskewt:t+1 = α + β 
Iskewt + εt  on each currency. Inference is based on Newey and West (1987) corrected standard errors, using 
three lags and the asterisk values (***), (**), and (*), represent statistical significance at the 99%, 95%, and 
90% confidence levels, respectively. The first three columns show ISO 4217 currency codes while TFF 
superscripts indicate Sample II currencies, followed by the number of monthly observations used and the 
adjusted R2 value of each regression. The next six columns present coefficient estimates and inference of α 
and/or ß. Columns 4-6 test the hypothesis H0: α=0 against H1:α≠0 and columns 7-9 test the hypothesis H0: 
ß=0 against H1:ß≠0. The inference is based on a two-tailed t-test and HAC standard errors using three Newey-
West lags. The last two columns then present the F-statistics and p-values of the joint hypothesis H0: α=0 
and ß=1 against H1: α≠0 and ß≠1. The Sample I currencies are divided into developed and emerging market 
currencies and each part is sorted on ß t-statistics in ascending order. The sample periods vary over currencies 
according to Table 1, but always lie between 09/2003 – 10/2013. 	
Currency Obs. adj.R2   α t-stat. p-value   ß t-stat. p-value   F-stat. p-value 
        H0: α=0 H1: α≠0   H0: ß=0 H1: ß≠0   H0: α=0 and ß=1  

Developed Market Currencies (DM) 

CHFTFF 104 -0.2%   -0.17** -2.28 0.02   -0.45 -0.81 0.42   4.29** 0.016 

AUDTFF 121 -0.3%   0.14 0.94 0.35   -0.40 -0.69 0.49   8.27*** 0.000 

NZDTFF 121 -0.5%   0.17 1.19 0.23   -0.33 -0.56 0.58   4.76*** 0.010 

CADTFF 121 -0.7%   -0.08 -1.60 0.11   0.14 0.43 0.67   5.90*** 0.003 

DKK 104 -0.7%   -0.07 -1.12 0.27   0.22 0.53 0.60   3.09** 0.050 

EURTFF 121 -0.6%   -0.09 -1.40 0.16   0.24 0.59 0.55   5.18*** 0.007 

NOK 104 -0.6%   0.08 1.14 0.26   0.34 0.70 0.49   1.38 0.257 

GBPTFF 121 -0.2%   -0.04 -0.58 0.57   0.38 0.90 0.37   3.09** 0.049 

JPYTFF 121 -0.3%   0.01 0.10 0.92   0.27 0.91 0.36   9.61*** 0.000 

SEK 104 1.0%   -0.09 -1.58 0.12   0.68 1.58 0.12   1.79 0.173 

Emerging Market Currencies (EM) 

THB 121 2.6%   -0.04 -0.40 0.69   -1.06** -2.14 0.03   11.94*** 0.000 

MXNTFF 121 0.2%   0.25** 2.55 0.01   -0.49 -1.46 0.15   12.43*** 0.000 

IDR 76 0.1%   0.38 1.61 0.11   -0.58 -1.36 0.18   13.18*** 0.000 

HUF 103 0.0%   0.16 0.98 0.33   -0.65 -1.06 0.29   15.44*** 0.000 

KRW 121 0.0%   0.17** 2.08 0.04   -0.27 -1.02 0.31   11.83*** 0.000 

PHP 76 -0.8%   0.19 1.62 0.11   -0.35 -0.89 0.38   8.30*** 0.001 

ILS 121 -0.6%   -0.01 -0.17 0.87   -0.16 -0.58 0.56   10.08*** 0.000 

TRY 95 -0.7%   0.23 1.24 0.22   -0.28 -0.58 0.56   10.00*** 0.000 

ZAR 121 -0.6%   0.17 1.13 0.26   -0.30 -0.47 0.64   4.71** 0.011 

CLP 103 -0.9%   0.04 0.21 0.84   -0.19 -0.37 0.71   17.81*** 0.000 

PLN 121 -0.8%   0.00 0.02 0.98   0.05 0.09 0.93   3.23** 0.043 

CZK 103 -1.0%   -0.11 -1.58 0.12   0.07 0.17 0.86   7.20*** 0.001 

HKD 121 -0.8%   -0.21 -1.62 0.11   0.04 0.29 0.77   47.62*** 0.000 

TWD 121 -0.6%   -0.16 -1.61 0.11   0.17 0.47 0.64   2.82* 0.064 

SKK 103 -0.5%   -0.17* -1.85 0.07   0.38 0.56 0.58   6.50*** 0.002 

INR 104 -0.5%   0.09 0.90 0.37   0.31 0.82 0.42   1.70 0.187 

COP 103 -0.3%   0.00 0.02 0.99   0.39 0.97 0.33   6.09*** 0.003 

SGD 121 0.5%   -0.12* -1.87 0.06   0.39 1.56 0.12   6.03*** 0.003 

RUB 96 4.8%   -0.31* -1.92 0.06   1.04* 1.74 0.09   7.72*** 0.001 

MYR 85 2.6%   -0.29*** -3.73 0.00   0.73** 2.51 0.01   17.29*** 0.000 
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Table 4. Effects of Market Pressure on Skewness 
This table presents results from a fixed-effects (fe) panel regression of Iskew (Panel A) and the SRP (Panel B) on 
a number of variables related to market pressure. The regression framework produces HAC standard errors (5 NW 
lags). Asterisk values (***), (**) and (*) represent statistical significance at the 99%, 95% and 90% confidence 
levels, respectively, with t-stats in brackets. HPFt-1 (ACFt-1) is the scaled net future short (long) exposure of hedgers 
(arbitrageurs). HPOt-1 (ACOt-1) is the same multiple for the option market. (+) and (-) means only positive or 
negative outcomes of the variable. ACF2

t-1 and HPF2
t-1 means the square of the exposure variable. At the end of 

each panel, simple within R2 results are reported and additionally, currency units and the total number of 
observations. Coefficients from control variables and their constants are omitted.	

	
Market Pressure and Skewness 
Panel A: Implied Skewness (Iskewt) 

ACOt-1 0.273***        
 [3.76]        
HPOt-1  0.147**       
  [2.60]       
ACFt-1   0.069**    0.064**  
   [2.76]    [2.54]  
HPFt-1    0.036**    0.041** 
    [2.59]    [3.10] 
ACF(+)t-1    0.083*    
     [1.99]    
ACF(-)t-1    0.047    
     [0.80]    
HPF(+)t-1      -0.021   
      [-0.79]   
HPF(-)t-1      0.103**   
      [3.27]   
ACF2

t-1       0.028  
       [0.56]  
HPF2

t-1        -0.056** 
        [-2.55] 
R2 22.27% 21.17% 17.03% 16.72% 17.07% 17.88% 17.08% 17.72% 

Panel B: Skewness Risk Premium (Rskewt:t+1 - Iskewt) 
ACOt-1 0.089        
 [0.54]        
HPOt-1  0.116       
  [1.00]       
ACFt-1   -0.274***    -0.316***  
   [-4.00]    [-5.27]  
HPFt-1    -0.157***    -0.154*** 
    [-4.00]    [-3.88] 
ACF(+)t-1    -0.167    
     [-1.18]    
ACF(-)t-1    -0.445**    
     [-2.88]    
HPF(+)t-1      -0.187*   
      [-2.07]   
HPF(-)t-1      -0.121   
      [-1.12]   
ACF2

t-1       0.222  
       [1.18]  
HPF2

t-1        -0.027 
        [-0.32] 
R2 3.50% 4.10% 4.27% 4.31% 4.36% 4.33% 4.39% 4.32% 
Currency units 8 7 8 8 8 8 8 8 
Observations 553 520 688 688 688 688 688 688 
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Table 5. Effects of Liquidity Risk and Volatility Risk on Skewness 
This table presents results from a fe panel regression of Iskew (Panel A) and the SRP (Panel B) on a number of 
variables related to market pressure, volatility, and liquidity risk. The regression framework produces HAC 
standard errors (5 NW lags). Asterisk values (***), (**) and (*) represent statistical significance at the 99%, 95% 
and 90% confidence levels, respectively, with t-stats in brackets. HPFt-1 is the scaled net future short exposure of 
hedgers. The innovations from the TED-spread (u_TEDt-1), the LIBOR-Repo spread (u_LiRet-1), the Swap-T-Bill 
spread (u_SwTBt-1), and the average bid-ask spread (u_BAS30t-1) are used as liquidity risk. Furthermore, the 
changes of the VIX (dVIXt-1:t), innovations in global FX volatility (u_VolaMSSS

t-1), and innovations of the 
aggregated FX implied variance (u_Ivar30t-1) are used as volatility risk measures. Additionally, all liquidity or 
volatility variables are signed (SN) by the FD value in each currency unit, respectively. The variable X means the 
currently used liquidity or volatility risk variable that is multiplied by the HPF value. The variable SN*dVIX is 
multiplied by 100 for convenience. 	

Liquidity, Volatility Risk and Skewness 
Panel A: Implied Skewness (Iskewt) 

HPFt-1 0.035** 0.034** 0.037** 0.039** 0.037** 0.041** 0.038** 
 [2.51] [2.48] [2.63] [2.66] [2.74] [2.99] [2.73] 
SN*u_TEDt-1 -0.047*       
 [-2.33]       
SN*u_LiRet-1 -0.086**      
  [-2.53]      
SN*u_SwTBt-1  0.031     
   [1.25]     
SN*u_BAS30t-1    -172.9    
    [-1.08]    
SN*dVIX (x100)t-1     -0.486**   
     [-3.20]   
SN*u_VolaMSSS

t-1      -17.59**  
      [-3.12]  
SN*u_Ivar30t-1       -42.16*** 
       [-6.67] 
HPFt-1*X -0.048 -0.083 -0.016 185.7 -0.352 -0.193 -35.97 
 [-1.20] [-1.32] [-0.66] [1.37] [-1.87] [-0.02] [-1.55] 
R2 17.92% 18.65% 17.09% 17.38% 20.41% 19.66% 20.44% 

Panel B: Skewness Risk Premium (Rskewt:t+1 - Iskewt) 
HPFt-1 -0.157*** -0.156*** -0.156*** -0.145*** -0.156*** -0.155*** -0.170*** 
 [-3.98] [-3.96] [-4.08] [-3.70] [-4.01] [-3.74] [-4.18] 
SN*u_TEDt-1 -0.031       
 [-0.79]       
SN*u_LiRet-1 0.036      
  [0.53]      
SN*u_SwTBt-1  -0.165*     
   [-1.90]     
SN*u_BAS30t-1    -455.5    
    [-1.52]    
SN*dVIX (x100)t-1     -0.039   
     [-0.09]   
SN*u_VolaMSSS

t-1      -17.62  
      [-0.77]  
SN*u_Ivar30t-1       -6.74 
       [-0.23] 
HPFt-1*X -0.029 0.127 -0.192 877.7 0.160 9.28 34.31 
 [-0.34] [0.68] [-0.84] [1.73] [0.17] [0.21] [0.25] 
R2 4.33% 4.36% 5.15% 4.60% 4.32% 4.61% 4.82% 
Currency units 8 8 8 8 8 8 8 
Observations 688 688 688 688 688 664 656 
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Table 6. Effects of Market Concentration on Skewness 
This table presents results from a panel regression of implied skewness (Iskewt) and the skewness risk 
premium (SRPt:t+1) on a number of variables related to market pressure and market concentration risk. 
The fixed-effects panel regression framework produces HAC standard errors and is robust to general 
forms of spatial and temporal dependence (5 NW lags). Asterisk values (***), (**) and (*) represent 
statistical significance at the 99%, 95% and 90% confidence levels, respectively. The dependent variable 
in Panel A is Iskewt and in Panel B the SRP. CR8LF (CR8SF) is the market share of the largest 8 trader 
positions being long (short) in the futures market. CR8LF|ACF>Q3 (CR8LF|ACF<Q1) is CR8LF 
conditional on ACF value being above (below) the 75% percentile (25% percentile), and CR8LF|ACFmid 
represents the remainder. Hence, CR8LF|HPF>Q3 (CR8LF|HPF<Q1) is CR8LF conditional on HPF being 
above (below) the 75% percentile (25% percentile), and CR8LF|HPFmid represents the remainder. At 
the end of each panel, simple within R2 results are reported and additionally, the last two rows 
characterize the number of currency units and the total number of observations used in the regression. 
Coefficients from control variables and their constants are omitted. 

	
Market Concentration and Skewness 

Panel A: Implied Skewness (Iskewt) 
CR8LF -0.256**    
 [-3.07]    
CR8SF  0.292***   
  [4.07]   
CR8LF |ACF>Q3  -0.198  
   [-1.74]  
CR8LF |ACFmid  -0.252*  
   [-2.25]  
CR8LF |ACF<Q1  -0.236**  
   [-2.65]  
CR8LF |HPF>Q3   -0.256* 
    [-2.08] 
CR8LF |HPFmid   -0.223* 
    [-1.98] 
CR8LF |HPF<Q1   -0.258** 
    [-2.82] 
R2 18.34% 18.45% 18.84% 18.73% 

Panel B: Skewness Premium (Rskewt:t+1 - Iskewt) 
CR8LF 0.731**    
 [2.74]    
CR8SF  -0.397   
  [-1.67]   
CR8LF |ACF>Q3  0.278  
   [0.78]  
CR8LF |ACFmid  0.332  
   [0.98]  
CR8LF |ACF<Q1  0.564*  
   [1.96]  
CR8LF |HPF>Q3   0.251 
    [0.75] 
CR8LF |HPFmid   0.333 
    [1.04] 
CR8LF |HPF<Q1   0.573* 
    [2.06] 
R2 4.11% 3.24% 4.72% 5.77% 
Currency units 8 8 8 8 
Observations 688 688 688 688 

 

 



137 
	 	

Table 7. Effects of Momentum and Value on Skewness 
This table presents results from a fe panel regression of Iskew (Panel A) and the SRP (Panel B) on a number of 
variables related to market pressure, momentum, and FX-value risk. The regression framework produces HAC 
standard errors (5 NW lags). Asterisk values (***), (**) and (*) represent statistical significance at the 99%, 95% 
and 90% confidence levels, respectively, with t-stats in brackets. RX(Xm) means the past X-month forward log 
return, and Value is the negative sum of the past 5 year forward log returns. RX(Xm)2 means the square of past X-
month forward returns and RX(Xm)|ACFt

>Q3(<Q1) is the past X-month return conditional on ACF belongs to the 
upper (lower) third of the data. The same is true for conditional HPF variables. 	

	
Momentum, Value and Skewness 
Panel A: Implied Skewness (Iskewt) 

RX(3m)t-3:t 1.085***   1.140***    
 [7.49]   [5.96]    
RX (6m)t-6:t  0.611***   0.652***   
  [7.05]   [6.61]   
Value   -0.067     
   [-0.88]     
RX (3m)2

t-3:t    1.927*    
    [1.93]    
RX (6m)2

t-6:t     0.815   
     [1.85]   
RX (3m)t-3:t|ACFt

>Q3     1.510***  
      [6.50]  
RX (3m)t-3:t|ACFt 

<Q1     0.741***  
      [4.19]  
RX (3m)t-3:t|HPFt

>Q3      1.273*** 
       [6.05] 
RX (3m)t-3:t|HPFt 

<Q1      0.867*** 
       [4.63] 
R2 30.3% 26.0% 15.6% 31.3% 26.8% 31.4% 30.7% 

Panel B: Skewness Risk Premium (Rskewt:t+1 - Iskewt) 
RX(3m)t-3:t -2.271***   -2.433***    
 [-4.33]   [-5.24]    
RX (6m)t-6:t  -1.763***   -1.838***   
  [-5.04]   [-4.56]   
Value   0.914***     
   [3.87]     
RX (3m)2

t-3:t    -5.720**    
    [-2.57]    
RX (6m)2

t-6:t     -1.514   
     [-0.71]   
RX (3m)t-3:t|ACFt

>Q3     -5.133***  
      [-3.65]  
RX (3m)t-3:t|ACFt 

<Q1     -0.706  
      [-0.84]  
RX (3m)t-3:t|HPFt

>Q3      -5.046** 
       [-3.28] 
RX (3m)t-3:t|HPFt 

<Q1      -0.683 
       [-0.80] 
R2 5.8% 6.9% 6.5% 6.2% 7.0% 7.3% 6.9% 
Currency units 8 8 8 8 8 8 8 
Observations 688 688 688 688 688 688 688 
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Table 8. Skew Swap Trading Strategies Depending on Signals (no transaction costs) 
This table presents portfolio return and risk figures from investments in a 1-month constant maturity simple skew 
contract (SSC) without transaction costs. The SSC consists of a maximum of two exchange rate option portfolios 
that are equally weighted, rebalanced every month and future hedged at a daily frequency. The option portfolio 
consists of three OTM call and three OTM put options, respectively.  The two currencies are chosen out of the 
Panel II universe and are sorted on different multiples (investment criteria). The investment criteria are as follows: 
ACF(+) (HPF(+)) means SSC investments in currencies with most positive coefficients of net long (short) future 
positions of arbitrageurs (hedgers). The symbol (+) (or (-)) means that a coefficient must be strictly positive 
(negative) to be chosen. Also, the past forward returns RX, the FX-value factor (Value), or a multiple of two 
different variables are used as a sorting scheme. Sorting currencies simply on Iskew refers to the benchmark 
investment rule. Panel A shows return figures for the investment period 30/06/2006-31/01/2014 without 
transaction costs and Panel B incorporates bid-ask spreads. The return and risk figures are the average monthly 
(RX p.m.) and annual returns (RX p.a.), standard deviations (Std.Dev.), skewness (Skew) and excess kurtosis 
(Kurtosis) of the log returns at monthly frequency. The table results are sorted according to the Higher Moment 
Sharpe Ratio (SRHM); SR means the original Sharpe ratio.  

 
Panel A 

 Investment criteria RX p.m. RX p.a. Std.Dev. Skew Kurtosis SRHM SR 
RX(1m)(+) 1.4% 17.0% 25.8% 1.7 11.9 0.52 0.62 
CR8LF (low) 1.6% 19.2% 25.2% -0.8 5.6 0.33 0.72 
HPF(+) 1.4% 16.8% 19.8% -1.7 4.9 0.32 0.80 
RX(1m)(+)/ CR8LF 0.8% 10.1% 26.4% 1.4 11.9 0.28 0.35 
HPF(+)*Value 1.5% 18.5% 27.1% -1.3 5.6 0.27 0.65 
ACF(+) 1.2% 14.0% 22.5% -1.6 4.1 0.24 0.57 
HPF(+)/CR8LF 1.0% 11.4% 20.0% -1.4 5.9 0.21 0.52 
ACF(+)*Value 1.5% 17.5% 29.4% -1.9 8.6 0.20 0.56 
RX(3m)(+) 1.0% 12.1% 24.1% -1.5 4.4 0.20 0.46 
Iskew(-) 2.1% 24.7% 37.7% -3.8 23.8 0.14 0.63 
RX(3m)(+)/ CR8LF 0.8% 9.9% 25.4% -2.0 5.8 0.13 0.35 
ACF(+)/CR8LF 0.7% 8.6% 23.7% -2.1 6.2 0.12 0.32 
HPF(+)*RX(6m) 1.5% 17.7% 37.2% -3.4 22.7 0.11 0.45 
ACF(+)*RX(6m) 1.3% 15.8% 34.5% -4.6 32.4 0.08 0.43 
RX(6m)(+)/ CR8LF 0.3% 3.0% 28.3% -1.5 3.7 0.03 0.07 
ACF(+)*RX(3m) 0.8% 9.6% 52.2% -6.8 55.3 0.03 0.16 
RX(6m)(+) 0.2% 3.0% 29.5% -2.1 7.2 0.02 0.07 
ACF(+)*RX(1m) 0.7% 8.3% 52.0% -6.8 56.1 0.02 0.14 
HPF(+)*RX(3m) 0.5% 5.7% 55.4% -6.0 43.5 0.01 0.08 
HPF(+)*RX(1m) 0.4% 4.4% 55.4% -5.9 43.8 0.01 0.06 
Value(-) -0.3% -3.6% 57.8% -5.4 35.9 -0.14 -0.08 

Panel B: without Turmoil Period 
 Investment criteria RX p.m. RX p.a. Std.Dev. Skew Kurtosis SRHM SR 
Iskew(-) 3.18% 38.12% 20.37% 0.6 8.9 1.31 1.82 
ACF(+)*RX(6m) 2.39% 28.64% 17.71% -0.2 1.1 1.14 1.56 
ACF(+)*RX(1m) 2.17% 26.09% 20.10% -0.5 2.4 0.74 1.25 
ACF(+)*RX(3m) 2.37% 28.47% 20.46% -0.8 2.4 0.73 1.34 
RX(3m)(+) 2.03% 24.31% 19.11% -0.7 2.5 0.67 1.22 
HPF(+)*RX(1m) 2.03% 24.31% 19.86% -0.6 2.6 0.67 1.17 
HPF(+) 1.86% 22.34% 16.20% -1.3 4.3 0.58 1.31 
RX(1m)(+) 1.44% 17.31% 18.99% -0.6 2.4 0.50 0.86 
HPF(+)*RX(6m) 2.39% 28.65% 21.83% -1.4 7.2 0.49 1.27 
HPF(+)/CR8LF 1.52% 18.28% 17.06% -0.9 7.0 0.44 1.01 
HPF(+)*RX(3m) 2.37% 28.41% 21.99% -1.9 8.1 0.44 1.25 
CR8LF (low) 2.16% 25.88% 23.92% -1.0 8.6 0.42 1.04 
ACF(+) 1.82% 21.83% 20.25% -1.7 5.2 0.41 1.03 
RX(6m)(+)/ CR8LF 1.67% 20.01% 21.26% -1.6 7.8 0.33 0.89 
RX(3m)(+)/ CR8LF 1.79% 21.44% 21.26% -2.2 9.1 0.31 0.96 
HPF(+)*Value 1.57% 18.87% 23.72% -2.4 8.0 0.25 0.75 
ACF(+)/CR8LF 1.31% 15.72% 21.99% -2.5 9.2 0.21 0.67 
Value(-) 1.66% 19.87% 27.58% -2.8 11.7 0.20 0.68 
RX(6m)(+) 1.56% 18.67% 24.09% -3.1 18.1 0.19 0.73 
RX(1m)(+)/ CR8LF 0.75% 8.97% 19.90% -1.3 3.5 0.18 0.40 
ACF(+)*Value 1.46% 17.56% 26.81% -2.9 12.8 0.17 0.62 
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Table 9.	Skew Swap Trading Strategies Depending on Signals (transaction costs) 
This table presents portfolio return and risk figures from investments in a 1-month constant maturity simple skew 
contract (SSC) with transaction costs. The SSC consists of a maximum of two exchange rate option portfolios that 
are equally weighted, rebalanced every month and future hedged at a daily frequency. The option portfolio consists 
of three OTM call and three OTM put options, respectively.  The two currencies are chosen out of the Panel II 
universe and are sorted on different multiples (investment criteria). The investment criteria are as follows: ACF(+) 
(HPF(+)) means SSC investments in currencies with most positive coefficients of net long (short) future positions 
of arbitrageurs (hedgers). The symbol (+) (or (-)) means that a coefficient must be strictly positive (negative) to be 
chosen. Also, the past forward returns RX, the FX-value factor (Value), or a multiple of two different variables are 
used as a sorting scheme. Sorting currencies simply on Iskew refers to the benchmark investment rule. Panel A 
shows return figures for the investment period 30/06/2006-31/01/2014 without transaction costs and Panel B 
incorporates bid-ask spreads. The return and risk figures are the average monthly (RX p.m.) and annual returns (RX 
p.a.), standard deviations (Std.Dev.), skewness (Skew) and excess kurtosis (Kurtosis) of the log returns at monthly 
frequency. The table results are sorted according to the Higher Moment Sharpe Ratio (SRHM); SR means the 
original Sharpe ratio.  

 
Panel A 

 Investment criteria RX p.m. RX p.a. Std.Dev. Skew Kurtosis SRHM SR 
RX(1m)(+) -0.9% -10.8% 24.8% 0.8 8.7 -0.04 -0.48 
HPF(+) -0.7% -8.6% 19.5% -1.7 5.1 -0.05 -0.49 
CR8LF(low) -0.6% -7.7% 25.7% -0.8 4.6 -0.05 -0.34 
Iskew(-) -0.2% -2.1% 38.9% -4.0 25.4 -0.06 -0.08 
RX(1m)(+)/CR8LF -1.4% -16.3% 25.6% 0.5 8.4 -0.06 -0.68 
ACF(+) -1.1% -12.7% 21.9% -1.4 3.6 -0.07 -0.62 
HPF(+)/CR8LF -1.2% -14.5% 19.6% -1.5 5.9 -0.08 -0.79 
HPF(+)*Value -1.0% -12.0% 26.2% -1.4 6.0 -0.08 -0.50 
ACF(+)*Value -1.1% -13.1% 27.9% -1.6 7.5 -0.11 -0.51 
ACF(+)/CR8LF -1.4% -16.2% 23.6% -2.0 6.2 -0.11 -0.73 
RX(3m)(+) -1.3% -15.6% 25.2% -2.1 8.1 -0.12 -0.66 
RX(3m)(+)/ CR8LF -1.4% -16.4% 27.2% -2.3 7.6 -0.14 -0.64 
HPF(+)*RX(6m) -0.8% -9.8% 37.0% -3.8 25.5 -0.18 -0.29 
RX(6m)(+)/ CR8LF -2.1% -24.8% 29.6% -1.7 4.9 -0.19 -0.87 
ACF(+)*RX(6m) -1.0% -11.5% 34.8% -4.9 35.8 -0.23 -0.36 
RX(6m)(+) -2.2% -26.6% 30.1% -2.1 6.8 -0.24 -0.92 
ACF(+)*RX(1m) -1.5% -18.2% 53.2% -7.1 58.8 -0.68 -0.36 
ACF(+)*RX(3m) -1.6% -19.3% 53.3% -7.0 58.2 -0.72 -0.38 
HPF(+)*RX(1m) -1.9% -23.1% 56.8% -6.1 45.4 -0.82 -0.42 
HPF(+)*RX(3m) -1.9% -23.1% 56.9% -6.1 44.8 -0.82 -0.42 
Value(-) -2.9% -35.2% 59.0% -5.5 37.8 -1.19 -0.61 

Panel B: without Turmoil Period 
 Investment criteria RX p.m. RX p.a. Std.Dev. Skew Kurtosis SRHM SR 
Iskew(-) 1.1% 12.7% 20.1% 0.9 8.5 0.45 0.58 
ACF(+)*RX(6m) 0.2% 2.5% 16.8% -0.2 1.0 0.06 0.09 
HPF(+)*RX(6m) 0.2% 2.2% 20.9% -1.7 8.6 0.02 0.06 
HPF(+)*RX(3m) 0.1% 1.2% 21.3% -2.0 8.6 0.00 0.01 
ACF(+)*RX(1m) 0.1% 1.0% 18.9% -0.6 2.0 0.00 0.00 
ACF(+)*RX(3m) 0.1% 0.8% 19.2% -0.6 1.9 -0.01 -0.01 
CR8LF (low) 0.0% -0.1% 23.9% -1.0 7.7 -0.01 -0.05 
HPF(+)*RX(1m) -0.1% -1.5% 18.7% -0.6 2.0 -0.01 -0.14 
RX(3m)(+) -0.2% -2.6% 18.0% -0.9 1.9 -0.01 -0.20 
HPF(+) -0.3% -4.1% 15.9% -1.2 3.3 -0.02 -0.32 
ACF(+) -0.4% -5.2% 19.3% -1.3 3.6 -0.03 -0.32 
RX(1m)(+) -0.7% -8.9% 17.8% -0.8 1.6 -0.03 -0.56 
RX(3m)(+)/ CR8LF -0.3% -4.1% 21.3% -2.2 8.7 -0.03 -0.24 
HPF(+)/CR8LF -0.7% -8.8% 16.7% -1.0 6.1 -0.04 -0.59 
RX(6m)(+)/ CR8LF -0.6% -7.3% 21.4% -1.7 7.8 -0.05 -0.39 
ACF(+)/CR8LF -0.8% -9.7% 21.8% -2.4 8.9 -0.07 -0.49 
RX(1m)(+)/ CR8LF -1.3% -15.9% 19.3% -1.5 3.6 -0.07 -0.88 
HPF(+)*Value -1.0% -11.8% 22.9% -2.4 8.4 -0.09 -0.56 
RX(6m)(+) -0.9% -10.5% 23.0% -2.9 15.4 -0.10 -0.50 
Value(-) -0.9% -10.9% 26.0% -2.5 10.1 -0.10 -0.46 
ACF(+)*Value -1.1% -13.0% 25.3% -2.6 11.0 -0.12 -0.55 
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Figure 1. Time Series of Aggregated Futures and Options OI in bn USD 
The upper figure presents a time-series of aggregated futures and options open interest (OI) in billion USD. The 
aggregation consists of Sample II currencies provided by the CFTC. The grey background indicates NBER 
(National Bureau of Economic Research) recession periods. The lower figure shows time-series averages of the 
notional OI in billion USD for each Sample II currencies, respectively. The lower table summarizes the respective 
OI figures for each currency in futures and options, respectively. The last row shows the options OI market share 
in comparison to the futures market. The last column presents the cross-sectional sum of futures and options OI.	
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  EUR JPY GBP CAD AUD CHF MXN NZD Σ 
Future OI 35.4 21.6 13.8 11.2 10.7 6.5 4.6 1.8 105.6 
Option OI  8.4 3.7 1.4 1.3 0.9 0.5 0.0 0.0 16.3 
Opt/Fut OI 23.8% 17.3% 10.1% 11.8% 8.6% 8.4% 0.0% 0.0% 15.4% 
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Figure 2. Cumulative Log Returns of the Simple Skew Contract 
This table presents cumulative log-returns of a short skew investment using a one-month constant 
maturity SSC. The skew swap returns are taken from the results of Table 8 and do not include transaction 
costs. The eight Panel II currencies are sorted according to four different investment criteria, 
respectively, isolating the two most favourable currencies with the highest previous 1-month forward 
returns (RX_1m), highest net future short exposure of hedgers (HPF), or lowest future market 
concentration among the 8 biggest traders (CR8LF), and lowest implied skewness (Iskew) representing 
the benchmark investment scheme. The sample period goes from 30/06/2006-31/01/2014 and grey 
background indicates NBER recession periods. 
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Figure 3. Comparing Five Different Skewness/Kurtosis Scenarios 
The various figures present results of function values of the Sharpe ratio (SR), the Higher Moment 
Sharpe ratio (SR(HM)) and the Adjusted Sharpe ratio (ASR) for different standard deviation values 
holding skewness and excess kurtosis constant. Therefore, the figures are different in their constant third 
and fourth moment values. The x-axis describes the level of standard deviation used and the y-axis the 
level of the three ratios. A black vertical line indicates the inflexion point, where the ASR function starts 
to decline with increasing standard deviation.  
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APPENDIX 

Appendix A. 1 

Generalized Variance Measures 

Besides the widely used variance definitions of squared simple or log returns, Neuberger 

(2012) proposed two other variance measures:  

𝐼𝑣𝑎𝑟),&= = 2	𝔼)
ℚ ?@,@

?A,@
− 1 − ln ?@,@

?A,@
  

 

	
(25) 
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−
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(26) 

 

The first equation defines the variance of a log contract Lt,T that pays off the futures log price 

of the underlying ST (or here FT,T). The second equation defines the variance of the entropy 

contract that pays off Et,T = [FT,T lnFT,T]. Rearranging equations (25) and (26) to the respective 

future payoffs of Lt,T  and Et,T  leads to:  
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Using the illustrative approach from Carr and Madan (2002), the log return of a currency 

forward Ft,T  starting in t and maturing in T, can be priced using a continuum of options at 

inception time t under risk-neutral expectation as follows:  
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(29) 

Using the result of (29) for the payoff function of Lt,T  and Et,T  respectively leads to the current 

price of the log and entropy contracts: 
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Furthermore, in order to get the current implied variance level of the log and entropy contract 

respectively, we simply need to plug equation (29) into (27) and (28). After some 

rearrangements, one can get the following results: 
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Appendix A. 2 

Computing Implied Moments Using a Finite Set of Options 

As noted in the introduction, the first step of computing implied moments is to recover 

market conform call and put prices. This will be done by using the parabolic interpolation model 

developed from Reiswich and Wystup (2012), which rebuilds the implied volatility curvature. 

It offers the information of the implied volatility level for any given strike and maturity of an 

option. Together with the US and foreign interbank offer rates and the spot exchange rate, one 

can recalculate any FX-option value with Garman and Kohlhagen (1983) proposed option price 

formula.   

With regard to the implied second and third moment formulas (3), (6), and (10), the 

continuum of options will be replaced by the sum of 20 OTM call and 20 OTM put option 

strikes Kj. The call and put options will be stripped between the (+/-) 0.175 delta (call/put) 

option strike and the forward ATM strike, respectively. The strikes of the OTM option strips 

are equally spaced. The implied variance of the log and entropy contract and the implied third 

moment risk can be then formulated as follows: 
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Appendix A. 3 

Implied Third Moment Risk 

a) In order to show how the implied third-moment risk is connected to the generalized 

variance measures, it is necessary to start from equation (9). Then, simply by plugging 

in the risk-neutral expected values from IvarE and IvarL in terms of forward prices, we 

get the same expected value for the implied third-moment risk as in (8). Note that the 

first term in (8) is zero, according to the martingale property for forward prices. 
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b) The implied third-moment risk can also be expressed as a portfolio of a continuum of 

options. Again using the result from equation (9), one can just replace IvarE and IvarL 

with their respective contingent claim prices defined in (32) and (33), respectively, to get 

the result from equation (10). 
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Appendix A. 4  
Taylor Series Expansion 

Given the log return r and the function M(r) 

𝑤𝑖𝑡ℎ						𝑟 = 𝑙𝑛
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The n derivatives of M(r) are as follows: 
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Using the Taylor approximation for M(r) results in: 
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For small x, one can see that the polynomials in O(x4) converges quickly to zero:	
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Hence, the implied third moment of Neuberger (2012) is closely connected to cubed log-

returns of the underlying asset: 
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Appendix A. 5 
Fixed and Floating Legs of a Cubic Swap 

According to the definitions in Kozhan et al. (2013), the fixed leg of a cubic swap using the 

g-function g(r) = r3 is defined as: 
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The corresponding realized leg of the cubic swap is defined as: 
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The realized leg of the cubic swap (Rthmcubic) also contains an implied variance term that 

refers to the definition of a quadratic swap according to Kozhan et al. (2013). The definition of 

𝐼𝑣𝑎𝑟6,&
�  is summarized in (41) for convenience. Note that the term 𝛿𝐼𝑣𝑎𝑟6,&
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(41) 

In order to construct implied and realized skew coefficients comparable to the Iskew and 

Rskew variables, Ithmcubic and Rthmcubic will be scaled by IvarQ to the power of 3/2. 
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Appendix A. 6 
According to Schneider and Trojani (2015), the variance function of the simple return gS can 

be characterized as follows: 

𝑔~ = 𝑒W − 1 J =
𝐹&,& − 𝐹),&

𝐹),&

J

	

 

	

(44) 

Under iterated expectations and if the martingale property for the forward price process 

applies, the simple variance function has an interpretation in accordance with the Aggregation 

Property shown in equation (1). The expected value of the implied variance in gS under the ℚ-

measure is equal to the expected realized variance under the physical measure ℙ, independent 

of the measurement frequency. 
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Schneider and Trojani (2015) show how the implied measure can be characterized as 

contingent claim price using a continuum of option prices:  
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Hence, by taking risk neutral expectations, the fixed leg of a simple variance swap is defined 

as follows: 
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Appendix A. 7 

Relationship Between Realized Variance of the Log Contract and Realized Variance of Log 

Returns 

Using the definitions in Carr and Lee (2009), the simple and log return of forwards are 

denoted as follows: 

𝑅),& =
𝐹),& − 𝐹)*+,&
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					𝑎𝑛𝑑 𝑟),& = ln
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A Taylor series expansion for f(x) = 2 ln(1+x) leads to: 
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By using above return definition, one can write: 
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(49) 

Now, squaring both sides and solving for R2 leads to: 

𝑅),&J = r),&J − 𝑅),&b + O(𝑅),&� )	

 

Now, (50) is substituted into (49), and solving for r2 leads to: 

(50) 
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(51) 

Using these results, one can now develop a measure of realized variance of squared log 

returns with N observations and frequency length Δ: 
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Denoting this realized variance measure with RvarlogR and recalling the definition 

in (4) for the realized variance of the log contract leads to following relationship : 

(52) 
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Appendix A. 8	
Higher Moment Sharpe Ratio 

This paper briefly introduces an extension of the well-known Sharpe ratio (Sharpe, 1975). It 

is frequently used as a measure of efficiency for an investment, by simply dividing the excess 

return of a portfolio with its standard deviation (σ). The excess return is defined as the difference 

between the portfolio return (µ1) and a risk free rate (rf). One of its shortcomings is that it does 

not account for return distributions apart from normality. Therefore, the Higher Moment Sharpe 

Ratio (SRHM) is supposed to appropriately account for skewness (γ1) and excess kurtosis (γ2) of 

a return distribution and contains the original SR as a special case. It is defined as follows: 

 

𝑆𝑅iS = 	
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𝐸 = 	 +1, 𝑖𝑓	𝛾+ > 0
−1,			𝑖𝑓	𝛾+ 	≤ 0	   and    𝐵 = 	 +1, 𝑖𝑓	𝛾J > 0

−1,			𝑖𝑓	𝛾J ≤ 0	 
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(55)	
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𝐸 𝑋 − 𝜇+ �

𝜎�  (56)	

 

The numerator is equivalent to the original SR, while the denominator is extended by two 

additional factors. The first accounts for the skewness of a portfolio return distribution γ1 and 

the second for its excess kurtosis γ2. Both are multiplied by factors a and b, which are assumed 

to be 1 for simplicity. If both γ1 and γ2 are 0, as in the case for normal distributed returns, SR 

and SRHM are equal. E and B represent indicator variables that are 1 or -1 depending on the 

respective γi values. In order to account for negative (positive) skewness and excess kurtosis 

above (below) 0, one would plausibly expect a reduced (increased) SR. This is effectively 

achieved for SRHM, since the terms inside the last two root terms are both higher (lower) than 

1, which leads to a reduced (increased) SRHM compared to the original SR.  

In order to identify SRHM as a measure of investor utility, the Adjusted Sharpe Ratio (ASR) 

proposed by Pézier and White (2008) is considered for calibration purposes. The ASR is derived 
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from a Taylor series expansion of expected utility with an exponential utility function of the 

form 

𝐴𝑆𝑅 = 𝑆𝑅 +
𝛾+
3! 𝑆𝑅

J −
𝛾J
4! 𝑆𝑅

b (57) 

This variable also has its merits, especially for SR values above one and/or high excess 

kurtosis. In these cases, ASR is an increasing function of the standard deviation, all other input 

values equal. The calibration process for the SRHM uses five different arbitrarily chosen 

skewness/kurtosis scenarios for a return portfolio. For each scenario, the values for the standard 

deviation will be subsequently increased holding the skewness/kurtosis scenario values 

constant. How the 3 different Sharpe ratios evaluate in these 5 scenarios with regard to increased 

standard deviation can be seen in the following figure:  

 

[Insert Figure 3 about here.] 

 

Then the values a and b for SRHM are optimized simultaneously, by minimizing the sum of 

squared differences between ASR and SRHM over all five scenarios. Please note that only 

reasonable ASR values are considered. This means that only ASR values are taken into account 

which decline when standard deviation increases. The Generalized Reduced Gradient (GRG) 

algorithm proposed by Abadie (1978) is used to find a feasible solution for coefficients a and b 

respectively. The optimization process finds a solution with a=1.8 and b=1.0. These values are 

taken to represent the default approach of the SRHM. Additionally, the denominator will be 

raised to the power of the excess return, divided by its absolute value of the excess return 

following the idea of Israelsen (2005). While this correction has no effect on positive excess 

returns, the value becomes -1 in cases of negative returns. Israelsen (2005) points out that the 

original SR yields only plausible rankings, as long excess returns are positive. This adjustment 

corrects for negative excess returns, resulting in a more tractable, efficient ranking. 
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Chapter 5 

General Conclusion 
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General Conclusion 
This study analysed, on the one hand, the exchange rate return characteristics of the currency 

carry trade strategy and, on the other hand, the crash risk premium for a wide range of currencies 

in the sample. The first part comprehensively showed that the excess return premium of the 

carry trade is a compensation for risk bearing. The key differences to other studies are: (i) a 

high variety of risk variables analysed together and (ii) the use of forward-looking option-

implied moment risk instead of the realized data. These two ingredients made it possible to 

uncover 80% of the systematic risk of the carry trade and simultaneously offer investors the 

possibility of using these risks as hedging instruments. Moreover, it has been documented that 

constructing a parametric portfolio policy model fed up with option-implied moment risk can 

dramatically improve the risk-return profile of the carry trade portfolio. 

The second part of the analysis found evidence that the observed skewness risk anomaly, 

which is manifested by the disconnection of the realized and option-implied skewness risk, can 

be primarily explained by FX short term return momentum effects as well as special 

constellations in the FX market microstructure. With regard to other studies in the currency and 

equity or commodity literature, this skewness risk anomaly is unique in terms of its occurrence 

in other financial markets and also the explanatory evidence. Therefore, this study can be 

regarded as a starting point for future investigations. After describing the source of 

disconnection, a novel investment strategy was set up to exploit this anomaly using a skew 

swap strategy in the FX option and forward market. While the results look very promising in 

terms of excess returns, after controlling for transaction costs these profits almost completely 

vanish. 
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