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Abstract
Because of different reported effects of parasitism on the accumulation of metals in fish, it is

important to consider parasites while interpreting bioaccumulation data from biomonitoring

programmes. Accordingly, the first step is to take parasitism into consideration when simu-

lating metal bioaccumulation in the fish host under laboratory conditions. In the present

study, the accumulation of metals in fish-parasite systems was simulated by a one-compart-

ment toxicokinetic model and compared to uninfected conspecifics. As such, metal accumu-

lation in fish was assumed to result from a balance of different uptake and loss processes

depending on the infection status. The uptake by parasites was considered an efflux from

the fish host, similar to elimination. Physiological rate constants for the uninfected fish were

parameterised based on the covalent index and the species weight while the parameterisa-

tion for the infected fish was carried out based on the reported effects of parasites on the

uptake kinetics of the fish host. The model was then validated for the system of the chub

Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis following 36-day

exposure to waterborne Pb. The dissolved concentration of Pb in the exposure tank water

fluctuated during the exposure, ranging from 40 to 120 μg/L. Generally, the present study

shows that the one-compartment model can be an effective method for simulating the accu-

mulation of metals in fish, taking into account effects of parasitism. In particular, the pre-

dicted concentrations of Cu, Fe, Zn, and Pb in the uninfected chub as well as in the infected

chub and the acanthocephalans were within one order of magnitude of the measurements.

The variation in the absorption efficiency and the elimination rate constant of the uninfected

chub resulted in variations of about one order of magnitude in the predicted concentrations

of Pb. Inclusion of further assumptions for simulating metal accumulation in the infected

chub led to variations of around two orders of magnitude in the predictions. Therefore, fur-

ther research is required to reduce uncertainty while characterising and parameterising the

model for infected fish.
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Introduction
Fish have widely been used as bioindicators for metal pollution in aquatic systems [1,2,3,4,5].
Moreover, simulation of metal accumulation in fish can provide input required for estimating
the risks to fish consumers, especially humans, of exposure to metals via the food chain. Bioac-
cumulation of chemicals in aquatic species has been well simulated with biodynamic models
[6,7,8,9,10,11]. Reasonable estimates of metal bioaccumulation could be obtained under field
conditions when organisms are exposed to metal mixtures [8]. Available models for simulating
metal accumulation in fish have usually been developed assuming the constancy of the expo-
sure concentration, which does not represent the real conditions either in the laboratory or in
the nature [12,13,14].

The number of parameters required as input to a one-compartment model is usually smaller
than that for a PBPK (physiologically based pharmacokinetic) model [15,16]. The PBPK model
might provide a more mechanistic understanding of metal toxicity and be reasonably extrapo-
lated across different conditions. However, these advantages might be outweighed by the
requirement for more inputs than the one-compartment model [17]. Some of the required
inputs for the PBPK model are not easily accessible or not available at all [15,16,17]. Conse-
quently, different assumptions are required to parameterise the missing factors, which can lead
to uncertainties in the model predictions.

Parasites are able to influence the accumulation of metals in the fish host [18,19,20]. Fur-
thermore, parasites such as the palaeacanthocephalan Pomphorhynchus laevis in the fish intes-
tine have been suggested as a potential indicator of metal pollution [21]. The distribution of
metals in fish-parasite systems is commonly expressed by a simple ratio between metal concen-
trations in the parasite and in the fish host tissues [22,23,24,25,26,27]. The exclusion of physio-
logical characteristics of organisms as well as physicochemical properties of the environment
in this method limits the potential for extrapolation across species or conditions.

In the present study, we aimed at developing a biodynamic model for simulating metal
accumulation in a fish-parasite system following aqueous exposure. The aqueous exposure was
selected because of the well-simulated mechanism via which Pb is accumulated in the acantho-
cephalan following exposure of the chub host to waterborne Pb [18,28]. This knowledge facili-
tates characterising the model simulating Pb accumulation in the fish-parasite system. Kinetic
parameters in the model were related to fish size, as the body size is one of the decisive factors
determining metal accumulation in fish [29,30,31,32,33,34]. Such a mechanistic model can be
applied to different conditions without the need for calibration for each metal-species combi-
nation [8]. The model was developed based on data from previous studies for different parasite
and fish species and then validated using an independent data set generated during our labora-
tory experiments on the system of the chub Squalius cephalus and the acanthocephalan Pom-
phorhynchus tereticollis. Due to the lack of data regarding infected fish, some assumptions were
required in order to develop and calibrate the biodynamic model. Uncertainties related to these
assumptions were also assessed in the present study.

Methods

Exposure experiments & biochemical and statistical analyses
The animal experiment (Reference number is 84–02.04.2013.A389) was approved according to
European regulations by the Landesamt für Natur-, Umwelt- und Verbraucherschutz
(LANUV). Chub fingerlings were obtained from the aquaculture facilities of the Research Insti-
tute for Nature and Forest (INBO), Belgium. Fish were kept in 500-L tanks with dechlorinated
tap water and fed daily with commercial pellets. During the maintenance, the water was
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changed twice weekly. The experiments were carried out when the fish reached the weight of 10
(± 3) g. The fish were divided into four groups: uninfected control (G1), infected control (G2),
uninfected Pb-exposed (G3), and infected Pb-exposed (G4, see Table 1). Amphipods naturally
infected with cystacanths of the acanthocephalan P. tereticollis were collected from the river
Wupper in Germany. Prior to the infection, the cystacanths were dissected from the amphipods
using scissors and forceps and transferred to a 0.9% saline solution. Subsequently, the chub in
groups G2 and G4 were infected with ten cystacanths each, using a 2-ml syringe fitted with a
12-cm length of 1-mm-diameter plastic tubing into the digestive tract of the fish [21].

Five weeks after infection, the exposure experiment was conducted. Fish (uninfected or
infected) were placed into 20-L tanks filled with 10L of tap water without (control groups) or
with (Pb-exposed groups) addition of Pb as nitrate salt. Fish were maintained at room temper-
ature of 20 ± 3°C whereas a light cycle with a ratio of 16:8 (light: dark) was simulated. Water
was completely changed once in three days. Water samples were taken before and after chang-
ing the water with a 0.45 μm filter for determining dissolved concentrations of Pb and metals
that are available in tap water, e.g. Fe, Cu, and Zn (S1 Fig). One day after water renewal, the
chub were fed with commercial fish pellets. After 36 days of exposure, the chub were killed by
cervical dislocation and the acanthocephalans were removed from the hosts. The number of
the acanthocephalans in each chub individual was counted while the acanthocephalans were
weighed (Table 1). All acanthocephalans found per fish were pooled and represented one para-
site tissue sample for metal analysis.

The fish were homogenised using a tissue homogeniser (Ultra-Turrax T25, IKA-Labortech-
nik, Staufen, Germany). Subsequently, about 70–100 mg of the samples (wet weight) was
weighed in 30 ml Teflon tubes (Xpress vessels: CEM, Germany) and digested in the microwave
(MARS 6; CEM, Germany) with 4 mL of HNO3 65% at 180°C. From 6 to 10 blank samples
were included in each batch of digestion. Metal concentrations were obtained using inductively
coupled plasma mass spectrometry (ICP-MS, Perkin Elmer Elan 6000). The validity of the pro-
cedure was checked by using three reference materials, namely IAEA-407 (Fish Homogenate
Reference Material, International Atomic Energy, Monaco), DORM-2 (Dogfish Muscle Certi-
fied Reference Material, National Research Council, Canada), and DOLT-3 (Dogfish Liver Cer-
tified Reference Material, National Research Council, Canada). The recovery rates of Fe, Cu,
Zn, and Pb in these reference materials (ranging from 80% to 110%) are given in S1 Table.

As mentioned above, the partitioning of metals in fish-parasite systems is usually expressed
by a bioconcentration factor, i.e. the ratio of the metal concentration in the parasites to the con-
centration in the host or in the host organ. To facilitate comparing the pattern of metal parti-
tioning in the system of the chub and the acanthocephalan with that in other fish-parasite
systems, the average and the standard deviation of the bioconcentration factor were calculated
in the present study by using R software.

Table 1. The number and wet weight (average ± SD) of the chub Leuciscus cephalus and the acanthocephalan Pomphorynchus tereticolis in the
group investigated.

Parameters Control groups Pb-exposed groups

Uninfected Infected Uninfected Infected

Squalius
cephalus

Squalius
cephalus

Pomphorhynchus
tereticollis

Squalius
cephalus

Squalius
cephalus

Pomphorhynchus
tereticollis

Number 7 7 5.29 (± 2.21) 7 7 5.71 (± 3.77)

Weight* 7.60 (± 2.41) 10.76 (± 2.83) 1.62 (± 1.11) 9.86 (± 3.86) 10.74 (± 1.64) 1.87 (± 1.13)

*Units of the chub and acanthocephalan weight: g and mg, respectively.

doi:10.1371/journal.pone.0161091.t001
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Model development for uninfected fish
Model characterisation. The accumulation of metals in fish occurs as a balance of influxes

and effluxes. Following aqueous exposure, uptake via gills has been demonstrated as the major
contributor to the accumulation in fish for a number of metals [18,35,36]. The uptake of aque-
ous metals can be represented by the uptake rate constant ku (L/g/d). Metals can be eliminated
via gills, kidney, and intestine, and the contribution of these pathways varies among metals and
the exposure source [15,16,37]. In our one-compartment model, the elimination was repre-
sented by one single rate constant ke (1/d). In addition, metal concentrations in fish can be
affected by the growth dilution and this factor was also considered in the model. The changing
metal concentration in fish can therefore be described by the following equation:

dCt

dt
¼ ku � Cwi � ðke þ gÞ � Ct ð1Þ

where Ct (μg/g ww) is the metal concentration in the fish based on wet weight (ww); ku (L/g/d)
is the dissolved uptake rate constant; Cwi (μg/L) is the metal concentration in the exposure
solution; ke (1/d) is the elimination rate constant, excluding a distinction between different
elimination pathways; and g (1/d) is the mass-based growth rate constant.

The accumulation of metals in fish exposed to varying concentrations was modelled by
dividing the exposure duration into n intervals corresponding to each time of renewal (Tj) and
assuming that metal concentrations during the intervals were constant. This method has been
applied in previous studies on modelling the accumulation of metals from water at varying
exposure concentrations [38,39]. The metal concentration in the whole fish at time t between
the renewal Tj and Tj+1 can be calculated according to the following equation, similar to that
developed by Adam et al. [38]:

Ct ¼ C0 � e�ðkeþgÞ�ðt�T0Þ þ ku
ke þ g

� ð
X

Cwj � ðe�ðkeþgÞ�ðt�TjÞ � e�ðkeþgÞ�ðt�Tj�1ÞÞ þ

Cwjþ1 � ð1� e�ðkeþgÞ�ðt�TjÞÞÞ ð2Þ

where C0 (μg/g ww) is the initial metal concentration in the uninfected fish; ke (1/d) is the elim-
ination rate constant; g (1/d) is the growth rate constant; and CWj

(μg/L) is the metal concentra-

tion in the tank water during the interval j.
A detailed description of the mathematical derivation for determining metal concentrations

in the whole fish exposed to fluctuating exposure concentrations is given in S1 File.

Model parameterisation
Data collection and processing: Only data generated from experiments similar to the experi-
ments in the present study were used to parameterise the model. Therefore, only data fulfilling
the following criteria was considered: 1) Calculation was carried out based on dissolved metal
concentrations; 2) Experimental settings were similar to our experiments, i.e. static experi-
ments and regular renewal of tank water; 3) Fish were exposed to metals in the dissolved phase
only; and 4) Exposure durations were longer than one week.

Model parameterisation: Both metal toxicokinetics (represented by the dissolved uptake
rate constant and the elimination rate constant) and the growth rate constant have been dem-
onstrated to be explained by the fish size [40].

Dissolved uptake rate constant: The dissolved uptake rate constant varies between metals and
species. The uptake of metals by fish is highly correlated to the affinity of metal for binding sites
in the fish [41]. This has been translated into a relationship between the absorption efficiency
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p (%) and chemical-specific properties of metals [8,42,43]. Moreover, the intra- and inter-spe-
cies variations could be taken into account by including size dependence in simulating the venti-
lation rate [8,42]. In other words, the dissolved uptake rate constant can be expressed as:

ku ¼ p� VR ð3Þ

where p (%) is the metal-specific absorption efficiency; and VR (L/g/d) is the size-related ventila-
tion rate.

The ventilation rate is limited by the metabolism of enzymes in the liver and this limitation
can be described by a Michaelis-Menten equation [44]:

VR ¼ QLiver � VRmax

QLiver þ VRmax

ð4Þ

where VR (L/g/d) is the ventilation rate used as input to the model; QLiver (99.14� 10−3 L/g/d) is
the liver blood flow, calculated from the arterial blood flow to liver compartment determined
by Nichols et al. [44]; and VRmax (L/g/d) is the maximal ventilation rate derived from previous
studies as described below.

In the study of Arnot and Gobas [45], exposure conditions such as the dissolved oxygen
content were considered determinants of the ventilation rate. However, these conditions are
usually lacking in the studies on metal uptake in fish. Therefore, the equation developed by
Arnot and Gobas [45] was not used to simulate the ventilation rate in the present study.
Instead, the method developed by Nichols et al. [46,47] was used. Nichols et al. [46,47]
assumed that the ventilation rate scales to species weight with a coefficient of -1/4, similar to
the approach applied in a number of other studies (e.g. Le et al. [8]):

VRmax ¼ 254:4� 10�3 � ð10�3 �WÞ�1=4 ð5Þ

where W (g) is the wet weight of the whole fish.
The metal-specific absorption efficiency was first calculated by using the ventilation rate

determined by the above approach and the collected data on the dissolved uptake rate (S2
Table). Several chemical properties of metals have been reported to be related to the uptake,
bioaccumulation, and toxicity of metals [8,42,48,49,50]. These chemical properties include the
ionic radius, the electronegativity, the covalent index, the softness index, the first hydrolysis
constant, and the ionic index. Our assessment showed that among these properties, the cova-
lent index (w2mr) is the best predictor of the absorption efficiency (S3 Table). Consequently, the
derived relationship between the absorption efficiency and the covalent index was used to
obtain the input for the absorption efficiency to the model:

log
p

1� p

� �
¼ 0:18� w2mr� 2:31 ð6Þ

Elimination rate: Elimination rates vary depending on exposure routes [6,51,52,53,54]. The
differences in elimination between the exposure routes are related to the internal distribution
of metals, which is dependent on the routes [53]. Therefore, only elimination rates measured
following dissolved exposure were used in the present study. In some studies, biexponential
elimination was used for simulating the varying concentration of metals in organisms during
the depuration phase [55]. As such, slow- and fast compartments have been discriminated in
simulating the elimination of metals in fish [38,39,56,57]. However, experiments do not usually
last long enough to consider such distinction in the simulation [58]. The elimination rates
determined by considering these different depuration phases were therefore not used for
model parameterisation in the present study. Instead, the elimination rate was recalculated
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from the raw data obtained in depuration experiments. The collected data on elimination rates
used for model parameterisation are given in S4 Table.

Elimination rates depend on water temperature [58,59,60]. However, limited data hinder
developing a quantitative relationship between elimination rates and water temperature [56].
Therefore, the dependence of elimination rates on water temperature was excluded in our
model, similar to the approaches applied previously [8,42]. As such, temperature was not con-
sidered in extrapolating the elimination rate determined in previous studies to the present
study. Similarly, the concentration of metals in water was excluded in simulating the elimina-
tion rate, following previously published findings that metal elimination following aqueous
exposure is independent of the exposure level [61].

No significant differences in elimination rates among fish species with the same range of
weight have been reported [54]. This is consistent with the conclusion by Norey et al. [62] that
elimination does not account for the inter-species variations in metal accumulation. Furthermore,
Dutton and Fisher [54] showed that elimination among different species could be explained by
metabolic processes. Based on these findings we assumed that the inter-species variations in elim-
ination rates can be explained by the fish size. Negative relationships between the elimination rate
and the fish size have been reported in a number of previous studies [40,56,57,58,63,64]. It has
usually been assumed that the variations in the elimination rate with varying fish size can be
explained by an allometric equation of metabolic processes [8,42,65]. However, empirical allome-
tric equations developed are very scarce. Until now, such equations were developed for mercury
only, with various allometric exponents from -0.22 to -0.58 [56]. In the study of Trudel and Ras-
mussen [56], data used for establishing a relation between the elimination rate and the fish size
have been generated in experimental conditions that are considerably different from those in the
present study. Therefore, the relationship derived by these authors was not used in our modelling.
Instead, the elimination rate was modelled by the following equation:

ke ¼ ke;0 �W
�1=

4 ð7Þ

where ke (1/d) is the elimination rate constant for the fish with the weightW (g); and ke,0 (1/d) is
the weight-corrected elimination rate constant.

Similar to the parameterisation of the absorption efficiency as described above, the weight-
corrected elimination rate derived from the collected data (S4 Table) was related to chemical
properties of metals. The covalent index (w2mr) was chosen in the parameterisation of the elimi-
nation rate because of its highest capacity for explaining the variations in the elimination
between metals, compared to other chemical properties (S5 Table):

logke;0 ¼ 0:25� w2mr� 1:78 ð8Þ

Growth rate: The growth of the juvenile chub S. cephalus has been investigated in a number
of studies. While the growth of larval S. cephalus under controlled laboratory conditions has
been studied [66,67,68], the growth of the adult has been examined in field studies only
[69,70,71,72,73,74,75]. The field studies show the dependence of the growth of adult chub on
environmental conditions. Therefore, the relative growth rate measured in these studies was
not used for model parameterisation in the present study. Instead, the relative growth rate in
weight was determined from a growth experiment at the same conditions as in our exposure
experiments for 36 days.

The relative growth rate in weight can be described by the following equation:

g ¼ Wt �Wt�1

Wt�1

ð9Þ
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where g (1/d) is the relative growth rate constant in weight; Wt (g) is the weight of the whole
fish after t days; and Wt-1 (g) is the weight of the whole fish after t-1 days.

The weight of the whole fish could therefore be calculated from the relative growth rate in
weight as:

Wt ¼ W0 � ð1þ gÞt ð10Þ

where W0 (g) is the initial weight of the fish.
The relative growth rate constant in weight was subsequently calculated by optimising the

similarities between the weight of the whole fish predicted from Eq 10 and the weight measured
in the experiment (Table A in S2 file). This method is based on the assumption that the growth
of chub was not limited or during the short exposure period, the weight of chub did not reach
the maximum. Following this method, the growth rate constant of 0.015 (1/d) was determined
by using Sigma Plot.

Model development for parasite-fish systems
Model characterisation. The metal uptake by parasites was considered another efflux of

metal accumulation in the host (Eq 11):

dCt

dt
¼ ku � Cwi � ðke þ gþ kpÞ � Ct ð11Þ

where Ct (μg/g ww) is the metal concentration in the whole fish; ku (L/g/d) is the rate constant
of metal uptake via the dissolved phase; Cwi (μg/L) is the dissolved concentration of the metal
in the exposure solution; ke (1/d) is the elimination rate constant; g (1/d) is the growth rate con-
stant; and kp (1/d) is the uptake rate constant by the parasites.

In addition, metal concentrations in parasites can be simulated by another mass balance
equation:

dCp

dt
¼ kp � Ct �

W
Wp

� np � gp � Cp ð12Þ

where Cp (μg/g ww) is the metal concentration in parasites; W (g) is the whole fish weight; Wp

(g) is the weight of the parasites; np is the number of parasite individuals inhabiting the fish
host; and gp (1/d) is the growth rate constant of the parasites. This equation can be re-written
in a similar way for the accumulation of metals in fish from the exposure solution:

dCp

dt
¼ kp � Cf i � np � gp � Cp ð13Þ

where Cfi (μg/kg ww) represents the source of metals from the fish:

Cf i ¼ Ct �
W
Wp

ð14Þ

where Ct (μg/kg ww) is the metal concentration in fish; W (g) is the whole fish weight; and Wp

(g) is the weight of the parasites inhabiting the fish.
Similar to the uptake by fish from the solution, we assumed limited variations in the metal

source from the host for the parasites during the 3-day intervals. Based on this assumption,
metal concentrations in the parasites (Cp) and infected fish (Ct) can be elaborated similarly to

Metal Accumulation in Fish-Parasite Systems
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the approach for metal accumulation in uninfected fish as described above:

Cp ¼ C�
0 � e�np�gp�ðt�T0Þ þ kp

np � gP
�

X
Cf j � ðe�np�gp�ðt�TjÞ � e�np�gp�ðt�Tj�1ÞÞ

�
þ

Cf jþ1 � ð1� e�np�gp�ðt�TjÞÞ
�

ð15Þ

where C�
0 (μg/g ww) is the initial concentration of metals in the parasites; np is the number of

the parasites inhabited in the fish host; gp (1/d) is the growth rate constant of the parasites; kp
(1/d) is the uptake rate constant by the parasites; and Cfj (μg/g) is the metal source from the
fish;

Ct ¼

C0 � e�ðkeþgþkpÞ�ðt�T0Þ þ ku
ke þ gþ kp

�
X

Cwj � ðe�ðkeþgþkpÞ�ðt�TjÞ � e�ðkeþgþkpÞ�ðt�Tj�1ÞÞ þ Cwjþ1

�
�

1� e�ðkeþgþkpÞ�ðt�TjÞÞ� � ð16Þ

where C0 (μg/g ww) is the initial concentration of metals in the infected fish; ke (1/d) is the
elimination rate constant of metals in the infected fish; g (1/d) is the growth rate constant of
the fish; kp (1/d) is the uptake rate constant by the parasites; and ku (L/g/d) is the rate constant
of metal uptake by the infected fish via the dissolved phase.

Model parameterisation
Absorption efficiency and elimination rate: According to Oyoo-Okoth et al. [76], infestation
of fish with parasites affected the uptake and elimination of metals by the fish host. In the pres-
ent study, effects of parasitism on the rate of metal uptake by the host were accounted for by
including the influence on the absorption efficiency, assuming that parasitism does not have
effects on the ventilation rate. No information on the uptake and elimination rates of infected
fish is available for Pb. Therefore, two scenarios (Table 2) were considered based on the findings
by Oyoo-Okoth et al. [76] on the uptake kinetics of Cd and Co in the system of the cyprinid fish
Rastrineobola argentea and the tapeworm Ligula intestinalis. In the first scenario, the uptake
kinetics of Pb in the host was assumed to be affected by parasites in the same way as the uptake
of Cd: the uptake rate by the infected fish is two times higher than the rate for the uninfected

Table 2. Scenarios examined for assessing sensitivity of the modelledmetal concentration in the parasite-fish system.

Parameters Standard
scenarios

Absorption-efficiency-scenarios Elimination-rate-scenarios

S1 S2 A1 A2 B1 B2 C1 C2 D1 D2

Absorption
efficiency

Uninfected
chub

Default Default 2 times
lower than
Default

2 times
lower than
Default

2 times
higher than
Default

2 times
higher than
Default

Default Default Default Default

Infected
chub

Act like
Cd

Act like
Co

Act like Cd Act like Co Act like Cd Act like Co Act like Cd Act like Co Act like Cd Act like Co

Elimination
rate

Uninfected
chub

Default Default Default Default Default Default 2 times
lower than
Default

2 times
lower than
Default

2 times
higher than
Default

2 times
higher than
Default

Infected
chub

Act like
Cd

Act like
Co

Act like Cd Act like Co Act like Cd Act like Co Act like Cd Act like Co Act like Cd Act like Co

doi:10.1371/journal.pone.0161091.t002
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fish and the elimination rate in the infected fish is 1.7 times lower than the rate for the unin-
fected. In the second scenario, parasitism was assumed to have the same effects on the uptake
kinetics of Pb and Co: Pb is taken up by infected fish at a rate two times lower than by the unin-
fected while being eliminated from infected fish at 1.7 times higher than from the uninfected.

Relative growth rate of fish: The relative growth rate in weight of fish in a short investiga-
tion period was assumed not to be affected by parasites. This assumption is based on the negli-
gible differences in the weight of uninfected and infected chub observed in previous studies
[20,77].

Relative growth rate of parasites: The relative growth rate of individual parasites in weight
was parameterised by the same approach as applied for fish, as described above. The growth
rate constant of 0.021 (1/d) was obtained by using the data in the study of Sures et al. [20] for
P. laevis with Sigma Plot.

Uptake rate of parasites: The uptake rate constant of parasites (1/d) was determined from
Eq 16 by using data in the study of Sures et al. [20]. As such, the time-dependent metal concen-
tration in the whole fish is required for the parameterisation of the uptake rate of the parasites.
However, this information was lacking in the study of Sures et al. [20]. In the parameterisation
of the uptake rate of parasites, metal concentrations in the whole fish were estimated from the
concentration in muscle, based on significant relationships between metal concentrations in
the whole fish and in muscle as reported in previous studies [78,79] and described in the fol-
lowing part. Linear relationships have been found between metal accumulation in the whole
fish and in muscle based on the data previously published in other studies [79,80]. For example,
concentrations of Hg in herring and perch muscle were strongly and significantly related to the
concentrations in the whole fish according to a linear relationship [79]. This is consistent with
the results based on the data generated by Sures et al. [20] as presented in S2 Fig. Moreover,
such a strong and significant relationship between the concentration in muscle and the concen-
tration in the whole fish held for a variety of metals, i.e. Fe, Mn, Zn, Cu, Pb, Ni, and Cd (Honda
et al. [80]; S3 Fig). Therefore, in the parameterisation of the uptake rate by parasites, the Pb
concentration in the whole fish was estimated from the concentration in muscle and used in
further steps as presented in the detailed description given in S2 File. Such parameterisation
resulted in a value of the Pb uptake by parasites of 1.36� 10−3 (1/d). The lack of data on the
time-dependent accumulation of Fe, Cu, and Zn in fish-parasite systems prevents us from
parameterising the uptake rate constant of parasites for other metals. Therefore, we applied the
uptake rate constant determined above for Pb to other metals as well.

Model validation for the chub-acanthocephalan system
In generating model predictions, the concentration of metals in the uninfected control chub
and in the acanthocephalans inhabiting the control chub was considered the initial concentra-
tion of the metals in the chub and in the acanthocephalans, respectively. The performance of
the developed model was evaluated by comparing the analysed metal concentration in the
uninfected chub, the infected chub, and the acanthocephalans with the corresponding pre-
dicted concentration according to the developed model by using different means of statistical
parameters. The capacity of the model in explaining the variations in the metal concentration
in the chub or in the acanthocephalans was expressed by the value of r2 and p [81]. In addition,
the deviation between the measured and the predicted concentrations was represented by the
values of mean absolute error (MAE) and root mean square error (RMSE) [81]. The validation
for Fe, Cu, and Zn at the background concentrations of the tap water was carried out assuming
that at those low concentrations, the accumulation of the metals in the chub was not affected
by the acanthocephalans.
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Uncertainty and sensitivity analyses
In the present study, the absorption efficiency and the elimination rate constant of the unin-
fected and infected fish were parameterised based on data for various metals as well as for dif-
ferent fish and parasite species. Therefore, they are potential sources of uncertainty in applying
the developed model to specific systems, for example, to predict the accumulation of Cu, Zn,
Fe, and Pb in the chub-acanthocephalan system in our validation. The sensitivity of the esti-
mates of metal concentrations in the chub-acanthocephalan system was assessed by examining
the variations in the predicted Pb concentration in the uninfected chub as well as in the
infected chub and in the acanthocephalans with varying the absorption efficiency and the elim-
ination rate constant within a factor of 2 (Table 2).

Results

Metal accumulation in chub and acanthocephalans
For all investigated metals (Fe, Cu, Zn, and Pb), there were no significant differences in the
accumulation level in the uninfected chub compared to that in the infected chub as shown by
the overlapping ranges (average ± standard deviation) of the measured metal concentrations in
the uninfected and infected chub (Fig 1). Moreover, the concentrations of these metals in both
the uninfected and infected chub were significantly lower than those in the acanthocephalans
when the ranges (average ± standard deviation) of the measured metal concentrations in the
chub and in the acanthocephalans did not overlap each other (Fig 1).

The concentrations of Fe, Cu, and Zn in the acanthocephalans and in the chub host when
the host was not exposed to Pb were similar to those when the host was exposed to Pb (Fig 1).
Similarly, the concentrations of these metals in the chub of the uninfected control group were
not significantly different from those in the chub of the uninfected Pb-exposed group (Fig 1).
This indicates that at the background exposure concentration in the tap water, the accumula-
tion of essential metals like Cu, Fe, and Zn in the chub and the acanthocephalans was not
affected by the addition of Pb to the exposure solution. As a result, the Pb exposure reduced the
differences between the concentrations of essential metals and of Pb in the chub as well as in
the acanthocephalans (Fig 1).

The partitioning in the chub-acanthocephalan system differed between essential metals (Fe,
Cu, and Zn) and the non-essential metal (Pb) (Fig 1). In particular, when the chub host was not
exposed to Pb, the deviations between the concentrations in the acanthocephalans and in the
host was substantially smaller for Fe, Cu, and Zn (around one order of magnitude) than for Pb
(more than two orders of magnitude) (Fig 1A). Without the Pb exposure, Fe and Zn were accu-
mulated by the acanthocephalans and the chub host at the highest level, being significantly
higher than the accumulation level for Cu (Fig 1A). In the system not exposed to Pb, the con-
centrations of the essential metals in the chub host were up to four orders of magnitude higher
than the corresponding concentrations of Pb, while in the acanthocephalans, the difference
between the concentrations of the essential metals and of Pb ranged from one to two orders of
magnitude (Fig 1A). Following the Pb exposure, the concentration of Cu in the uninfected chub
did not significantly deviate from that of Pb (Fig 1B). A similar observation was found for the
concentration of these two metals in the acanthocephalans as well as in the chub host (Fig 1B).

When the chub were not exposed to Pb, the partitioning between the acanthocephalans and
the chub host, as expressed by the bioconcentration factor was most unequal for Pb, compared
to Fe, Cu, and Zn (Table 3). However, the difference was not statistically significant as shown
by the overlapping range (average ± standard deviation) of the calculated bioconcentration fac-
tors, attributed to the large variation in the bioconcentration factor for Pb (Table 3). The
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Fig 1. Metal concentrations in the uninfected chub, the infected chub, and the acanthocephalans based on
wet weight (ww) when the chub is not exposed to Pb (A) and when the chub is exposed to Pb (B). The error
bars represent the standard deviation. The slashes on the y-axis represent the breaks.

doi:10.1371/journal.pone.0161091.g001
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variations in the bioconcentration factors were larger when the chub host was exposed to Pb
than when the chub host was not exposed to Pb (Table 3). When the chub host was exposed to
Pb, Pb and Cu had the highest bioconcentration factor values, significantly higher than those
for Fe and Zn (Table 3). The exposure of the chub host to Pb increased the partitioning of Pb
to the acanthocephalans, but not significantly, while there were significant increases in the par-
titioning of Cu and Zn to the acanthocephalans (Table 3).

Validation results for the chub-acanthocephalan system
The concentrations of essential metals (i.e. Fe, Cu, and Zn) in the chub-acanthocephalan sys-
tem were slightly underestimated (Fig 2). However, the predicted concentrations of these
essential metals accumulated in the uninfected chub as well as in the chub-acanthocephalan
system from the tap water at the background concentrations were within one order of

Table 3. Bioconcentration factors (i.e. the ratio between the metal concentration in parasites and the concentration in the whole fish or in the mus-
cle) for different metals found in the present study or reported in previous studies.

Fish-parasite system Experimental set-up Fe Cu Zn Pb Other
metals

References

Fish Parasite

Squalius
cephalus

Pomphorhynchus
tereticollis

Lab exposure
experiment/Water

8.58 (±
0.90)

32.00 (±
34.23)

3.58 (±
1.74)

140 (±
237)

Present studya

9.07 (±
0.50)

102.96 (±
35.25)

10.16 (±
1.24)

178 (±
57)

Present studyb

Squalius
cephalus

Pomphorhynchus laevis Field sampling 400–2700
(Cd, Pb)

Sures and Siddall
[18]

Barbus barbus Pomphorhynchus laevis Field sampling 0.2–600d Thielen et al. [24]

Perca fluviatilis Acanthocephalus lucii Field sampling 67.7 10.1 52.1 Brazova et al. [26]c

Proteocephalus perca 19.8 8.7 21.3

Perca fluviatilis Pomphorhynchus laevis Field sampling 3.3. (±
2.8)

26.0 (±
26.5)

10.3 (±
4.7)

337 (±
401)

Nachev et al. [82]c

Eustrongylides sp 14.3 (±
7.7)

122.9 (±
71.0)

11.6 (±
6.1)

9.4 (±
12.5)

Oncorhynchus
mykiss

Raphidascaris acus Laboratory exposure
experiment/Dietary

0.09 (Se) Hursky and
Pietrock [85]

Nemipterus
peronii

Hysterothalycium
reliquens

Field sampling 27.02 (±
9.8)

60.1 (± 5) 33.3 (± 9) 6.7 (±
4.3)

185 (± 0.06)
(Cd)

Mazhar et al. [87]c

Paraphilometroides
nemipteri

25.4 (±
5.4)

52.3 (± 2) 24.2 (± 7) 11 (±
1.9)

292 (± 0.06)
(Cd)

Oreochromis
niloticus

Acanthogyrus sp. Field sampling 147 Paller et al. [97]c

Perca fluviatilis Acanthocephalus lucii Field sampling 11.45 240 20.79 Sures [109]

Barbus barbus Pomphorhynchus laevis Field sampling 26–407 (Cd,
Pb, Zn)

Schludermann et al.
[110]

Notothenia
coriiceps

Aspersentis
megarhynchus

Field sampling 7 81 325 Sures and Reimann
[111]c

Perca fluviatilis Acanthocephalus lucii Field sampling 11 250 33 Sures et al. [112]

Perca fluviatilis Acanthocephalus lucii Field sampling 24.4 4.7 Jankovska et al.
[113]c

aDetermined in control experiment, i.e. the chub is exposed to metals at the background concentrations of the tap water;
bDetermined in Pb exposure experiment;
cMetal concentrations in the muscle of the host were used to represent the concentration in the whole host because of the dominant contribution of this organ

to the total weight of the host;
dMultiple metals (As, Al, Ag, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Sb, Sn, Sr, Tl, V, Zn)

doi:10.1371/journal.pone.0161091.t003
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magnitude of the analysed concentrations (Fig 2 and Table 4). More than 90% of the variations
in Fe and Zn concentrations in the uninfected chub, the infected chub, as well as in the acan-
thocephalans could be explained by the model (Table 4). At the same time, the model could
explain only around 50% of the varying concentrations of Cu accumulated in the chub-acan-
thocephalan system, related to the larger variations in the measurements (Fig 2).

Similar to the predictions for the essential metals, statistically significant relationships were
found between the predicted and the analysed concentrations of Pb in the uninfected chub as
well as in the chub-acanthocephalan system using the default absorption and elimination rates
(Fig 2 and Table 5). More than 96% of the variations in the Pb concentrations in the chub-
acanthocephalan system could be explained by the model developed. Moreover, the accumula-
tion of Pb in the uninfected chub could be simulated well by using the absorption efficiency
and the elimination rate constant parameterised from the covalent index and species weight by
using data generated for other fish-parasite systems. This is shown by the deviations of less
than one order of magnitude between the estimates and the measurements of Pb concentra-
tions in the standard scenario S1 (Fig 2). Based on the assumption that parasitism has the same

Fig 2. Comparison of the predicted and the measured concentrations of Fe, Cu, Zn, and Pb in the
chub-acanthocephalan system. The horizontal error bars represent the standard deviation in the
measurement of metal concentrations. The solid line represents the 1:1 ratio (i.e. the measured concentration
equals the predicted concentration). The dashed lines represent the deviation of one order of magnitude from
the 1:1 ratio. The model predictions for Pb accumulation in the chub-acanthocephalan system obtained in
scenario S1 with the default absorption efficiency and elimination rate were given to provide an illustration on
the model performance.

doi:10.1371/journal.pone.0161091.g002

Table 4. Statistical parameters (including the correlation coefficient r2, p, the mean absolute error MAE, and the root mean square error RMSE)
describing the relationship between the modelled andmeasured concentrations of essential metals (Fe, Cu, and Zn) in the uninfected and infected
chub and the parasites at the background concentrations of the tap water.

Statistical parameters Fe Cu Zn

r2 0.50 0.91 0.93

p < 0.05 < 0.0005 < 0.00001

MAE 44.54 16.70 30.58

RMSE 81.02 33.39 42.57

doi:10.1371/journal.pone.0161091.t004
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effects on the uptake kinetics of Pb and Cd (scenario S1), concentrations of Pb accumulated in
the chub-acanthocephalan system was overestimated, although still within one order of magni-
tude of the measurements (Table 5). The assumption that the infection affects the uptake kinet-
ics of Pb and Co in the same way (scenario S2) resulted in lower predicted Pb concentrations in
the chub host than the assumption in scenario S1.

The estimates of Pb accumulation in the chub-acanthocephalan system were more sensitive
to the absorption efficiency than to the elimination rate as shown by larger variations in the
predicted concentrations among the absorption-efficiency scenarios (A1, A2, B1, B2) com-
pared to the elimination scenarios (C1, C2, D1, D2) (Table 5). Varying the absorption effi-
ciency within a factor of 2 from the default value resulted in variations of less than one order of
magnitude in the predicted concentrations of Pb in the uninfected chub, larger than the varia-
tions related to the varying elimination. When the absorption efficiency in the uninfected fish
varied by a factor of 2, there were almost two-order-of-magnitude variations in the predicted
concentration of Pb in the acanthocephalans and in the chub host, larger than the variations
with varying elimination rate constants. Moreover, these results indicate additional uncertain-
ties in predicting metal accumulation in the chub-acanthocephalan system, related to the lack-
ing information on the uptake kinetics of the infected fish.

Discussion

Metal accumulation in fish-parasite systems
The order of the concentrations of Cu, Zn, and Fe accumulated in the acanthocephalans found
in the present study is consistent with the results reported by Nachev et al. [82] and by Javed
and Usani [83]. The decrease in the concentrations in the order: Zn> Cu> Pb observed in the
perch Perca fluviatilis by Brazova et al. [26] agreed with the results obtained in the present
study. The high concentration of Fe found in fish might be related to its specific metabolism
with no complete excretion, hindering the metal from being eliminated [84]. The high concen-
tration of Fe and Zn in fish may additionally be due to their physiological functions. For exam-
ple, Fe is included in Fe-heme compounds, e.g. hemoglobin or myoglobin, and bound to
proteins like ferritin [22], while Zn is the constituent of a number of enzymes [84]. Generally,
the bioconcentration factors found in the present study were in a range reported previously
(Table 3). The dominant partitioning of metals to the acanthocephalans over to the chub host
found in the present study is in agreement with the trend reported in a number of other studies
for other fish-parasite systems (Table 3). This was also seen when the concentration of metals
in parasites was compared with the concentration in fish tissues (Table 3). However, Hursky
and Pietrock [85] found an opposite observation when the trout was exposed to Se via dietary
pathway.

In consistence with previous studies [20,22,23,86], the present study shows that the concen-
tration of toxic metals like Pb in parasites was many folds higher than that in the fish host.

Table 5. Statistical parameters (including the correlation coefficient r2, p, the mean absolute error MAE, and the root mean square error RMSE)
describing the relationship between the modelled andmeasured concentrations of Pb in the uninfected and infected chub and in the parasites in
different scenarios.

Statistical parameters S1 S2 A1 A2 B1 B2 C1 C2 D1 D2

r2 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.96

p < 0.00001 < 0.00005 < 0.00001 < 0.00005 < 0.00001 < 0.00005 < 0.00001 < 0.00005 < 0.00001 < 0.00005

MAE 23.46 35.10 30.02 36.12 10.74 33.67 20.57 34.21 27.23 35.95

RMSE 46.26 73.72 62.17 75.93 15.40 69.30 38.85 71.36 55.50 75.63

doi:10.1371/journal.pone.0161091.t005

Metal Accumulation in Fish-Parasite Systems

PLOSONE | DOI:10.1371/journal.pone.0161091 August 22, 2016 14 / 24



Although a higher concentration in parasites compared to that in the fish host was also consis-
tently found for essential metals like Fe and Zn, the partitioning for these metals was more
equal than the partitioning for non-essential metals like Pb (Table 3). Moreover, the high bio-
concentration factor of Pb (Table 3) as well as the smaller differences between the average con-
centration of Pb and the concentration of the essential metals in the acanthocephalans
compared to the differences in the chub host (Fig 1A) are in line with the findings by Nachev
et al. [82] that the acanthocephalans primarily accumulate toxic metals like Pb. In combination
with these results, the larger differences between the concentrations in the acanthocephalans
and in the chub host for Pb compared to the differences for Fe, Cu, and Zn indicate some
mechanisms that enhance the accumulation of non-essential metals like Pb in the acantho-
cephalans. Mazhar et al. [87] also found the highest bioconcentration factor in the system of
the bream Nemipterus peronii and the nematode Paraphilometroides nemipteri for Cd. Previ-
ous studies (e.g. Sures and Siddall [18]; Sures et al. [28]) have suggested that non-essential met-
als such as Pb are accumulated in bile-complexes by the acanthocephalan. Therefore, the more
unequal partitioning of non-essential metals like Pb and Cd in fish-parasite systems than the
partitioning for essential elements might be related to the differences in binding of these metals
to steroids in bile and/or excretion of the metals to the host intestine. According to Stamp and
Jenkins [88], the production of bile acids is induced when the amount of metals such as Cu and
Fe exceeds the levels needed. In the present study, the chub were exposed to Cu and Fe at the
background concentration of the tap water and at these exposure levels, Cu and Fe accumu-
lated in the fish might be bound to bile acids at lower extent than Pb. This might account for
the less unequal partitioning of Fe, Cu, and Zn in the chub-acanthocephalan system. The lower
concentration of Se in the nematode Raphidascaris acus compared to the concentration in the
trout Oncorhynchus mykiss as found by Hursky and Pietrock [85] might be related to the lim-
ited induction of bile acids due to the low concentration of Se in the investigated trout. In par-
ticular, the concentration of Se in the trout investigated in the study of Hursky and Pietrock
[85] was lower than the concentration of Se in the muscle of the bream in the study of Mazhar
et al. [87] by more than one order of magnitude.

The above discussion shows metal-specific partitioning in fish-parasite systems. In addition,
the partitioning of metals in fish-parasite systems depends on a number of other factors, such
as characteristics of the parasite, the developmental stage of the parasite, and the parasite’s
location in the host. For example, the accumulation of metals in fish-parasite systems varies
among parasites. Acanthocephalans and tapeworms inhabiting the intestine of the fish host are
usually able to accumulate metals at high levels [89,90]. In agreement with other studies, the
present study shows the ability of intestinal parasites to concentrate metals when the fish host
is exposed to waterborne metals (Table 3). The mechanism of metal accumulation in the acan-
thocephalans following exposure of the fish host to waterborne metals has been simulated in
previous studies [18]. Metals are mainly taken up via the gills, entering the bloodstream,
besides the paracellular diffusion across the epithelial membrane [18,35,36,91,92]. In the blood,
metals are bound to the membrane of erythrocytes and transported to various fish organs. Sub-
sequently, metals can form organometallic complexes with steroids in the bile and transported
to the intestine [18,86]. These complexes are taken up by the acanthocephalans together with
other essential compounds that cannot be synthesised by the acanthocephalans. Compared to
intestinal parasites, a lower ability to concentrate metals has been reported for cestode larvae in
the body cavity of the intermediate host [93,94]. The determinants of metal partitioning in
fish-parasite systems as mentioned above have been demonstrated to be involved in the accu-
mulation of organic compounds as well [95].

The differences between the concentrations of Fe, Cu, Zn, and Pb in the uninfected chub
and in the infected chub were consistently insignificant in the present study, similar to the
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observation by Genc et al. [96]. In particular, Genc et al. [96] demonstrated that the accumula-
tion of Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn in the European eel Anguilla anguilla infected with
the nematode Anguillicola crassus was not significantly different from that in the uninfected
eel. By contrast, infection with parasites has been reported to reduce the concentration of met-
als accumulated in the fish host in many of previous studies [18,20,85,97]. Sures and Siddall
[18] and Sures et al. [20] reported lower concentrations of Pb in the chub infected with the
acanthocephalan P. laevis than in the uninfected chub. In the study of Hursky and Pietrock
[85], the infection with the nematode R. acus reduced metal concentrations in the trout O.
mykiss. Similarly, the concentration of Pb in the tilapia Oreochromis niloticus infected with the
acanthocephalan Acanthogyrus sp. was significantly lower than that in the uninfected fish [97].
The reduction in the concentration of metals accumulated in the fish host related to the infec-
tion with parasites as reported in these studies does not indicate positive effects of the infection
on the health of the fish host. For instance, the trout exposed to Se and infected with the nema-
tode had higher energetic demands than the trout exposed to Se alone [85]. The mortality of
guppies Poecilia reticulata infected with the monogenean Gyrodactylus turnbulli increased
with increasing Zn concentrations while this was not seen for the uninfected guppies [98]. This
indicates that parasites might have effects on metal distribution and metabolism in the fish
host, besides the effects on the uptake kinetics.

Biodynamic models for metal accumulation in fish-parasite systems
The potential of our proposed modelling based on body size of fish strengthens the results
obtained in previous studies that this biological trait might act as a determinant of the inter-
and intra-species variations in metal accumulation [8,42,65,99,100,101]. Results in the present
study demonstrate that the biodynamic model in which metal accumulation is assumed to
occur as a balance of different effluxes and influxes was applicable to infected fish, taking into
account effects of parasites. The uptake by parasites as well as the effects of parasites on the tox-
icokinetics of the fish host were taken into consideration while estimating metal accumulation
in the host by the model. In such application, the uptake of metals by parasites can be consid-
ered another efflux pathway for the accumulation in the fish host. This assumption is sup-
ported by the uptake of the bile-metal complexes by the acanthocephalan as mentioned above.
The absorption of metals from the host intestine has also been suggested to contribute to the
accumulation of non-essential metals inH. reliquens [87]. The assumption is further substanti-
ated by the findings by Hursky and Pietrock [85] on the accumulation of Se in the system of
the rainbow trout O.mykiss and the nematode R. acus. In particular, these authors showed that
the concentration of Se in the uninfected trout reached a steady state after 4-weeks of dietary
exposure to Se whereas slower, but continuous, accumulation of this metal in the infected trout
was observed during the 7-week exposure. Furthermore, this difference has been suggested to
be related to the uptake of Se by the nematode for growth and metabolism.

However, the model developed in the present study might not cover all possible mecha-
nisms of metal uptake in parasites. For instance, the increased demand in the fish host for pro-
duction of immune cells, peptides, proteins, and molecules against parasite infection, which
might contribute to lower concentrations of Se in the infected trout than in the uninfected
trout [85], was not considered in our model. The lack of effects of waterborne Pb exposure on
the accumulation in the acanthocephalans of essential metals such as Fe, Cu, and Zn at the
background concentration of the tap water in the present study might indicate the demand of
the acanthocephalans for these metals. The demand of parasites for essential metals might play
an important factor in metal partitioning in fish-parasite systems, as supported by the differ-
ence in the accumulation of essential and of non-essential metals in nematodes [87]. The
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exclusion of the demand for essential metals in both parasites and the fish host might contrib-
ute to the slight underestimation while predicting the accumulation of the essential metals in
the chub-acanthocephalan system in the present study. Another factor that might affect the
accumulation of metals in parasites is the cuticle structure [87]. Mazhar et al. [87] suggested
that P. nemipteri takes up toxic metals directly through the blood of the host. Another plausible
pathway is through the surroundings water [87], which is not considered in our model for the
acanthocephalan based on the assumption of the dominant availability of some metals in the
host intestine for the intestinal parasites.

Considering the uptake by parasites as a pathway of elimination in the host, data on the
uptake and elimination rate for infected fish are required for proper simulation of metal accu-
mulation in the selected fish-parasite system. However, these data are very scarce. Therefore,
some assumptions were used in model development as illustrated in the present study. In par-
ticular, the absorption efficiency and the elimination rate constant for the infected fish were
parameterised relative to the corresponding value for the uninfected fish. The uncertainty and
sensitivity analyses in the present study clearly indicate that this parameterisation represents
one important source of uncertainty, which became obvious by variations of almost two orders
of magnitude across the scenarios. In model parameterisation in the present study, the uptake
rate of essential metals such as Cu, Fe, and Zn by parasites was assumed to be similar to that
for Pb due to the lack of the required data. This assumption is a potential source of uncertain-
ties as different trends in the accumulation in fish-parasite systems have been shown for essen-
tial and for non-essential metals as discussed above. Because of the lacking data for infected
fish, a relationship between the metal concentration in the whole fish and the corresponding
concentration in muscle was used for parameterising the uptake rate of parasites as described
in theMethods section. Such a relationship might not hold in all conditions. For instance, Bev-
elhimer et al. [102] investigated the relationship between the concentrations in the whole fish
and the concentrations in muscle for a variety of metals such as Cd, Cu, Pb, Ni, U, V, Zn, and
Hg. These authors found relatively constant concentrations of Cd, Cu, Pb, Ni, Zn, U, and V in
the whole fish with varying concentrations in muscle. This observation was related to the nar-
row range of metal concentrations in the study of Bevelhimer et al. [102]. Therefore, the obser-
vation demonstrated by Bevelhimer et al. [102] does not affect the relevance of our assumption
to the experimental conditions in the present study.

Uncertainties from the parameterisation of uptake kinetics are also inherent in simulation
of metal accumulation in the uninfected fish. The developed mechanistic model in which
uptake and elimination rates were derived based on the covalent index and fish weight allows
wide application and extrapolation to different metals and different fish species. However, the
covalent index could explain less than 20% of the variations in the absorption efficiency as
shown in the model development. This weak relationship between the covalent index and the
absorption efficiency indicates that the absorption efficiency is not entirely metal-specific. Spe-
cifically, the absorption efficiency may depend on physiological characteristics of the organ-
isms as well as physicochemical properties of the environment. For example, metal uptake
might be enhanced due to the induction of metallothionein as a response to metal exposure
[103]. The slight underestimation for essential metals such as Zn may be related to the exclu-
sion of metallothionein induction, which could increase the uptake of the metals. Bervoets
et al. [104] demonstrated the dependence of metallothionein induction by different fish species
on exposure conditions. Environmental conditions were also shown to have influence on metal
elimination by fish [105]. Metal uptake in fish is influenced by water chemistry where pH,
salinity, dissolved organic carbon, and hardness play a significant role
[8,41,42,55,106,107,108]. These aspects were not included in the present model, similar to
mechanistic models developed previously [8,42]. The low potential of the covalent index for
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explaining the variations in the absorption efficiency leads to the question about the relevance
of estimating this physiological rate constant by this approach while excluding physiological
characteristics of organisms and physicochemical properties of the environment.

Results in the present study show the potential application of mechanistic models to simulat-
ing metal accumulation in fish and in fish-parasite systems as well. However, assumptions,
which are required due to the lack of data, as well as the exclusion of some factors, which might
influence metal uptake and elimination rates as mentioned above, represent potential sources of
uncertainties. The model predictions can be improved by further calibration with more experi-
mental data on metal uptake and elimination rates in parasites and in the fish host. In the present
study, model validation was carried out based on limited data in our experimental investigation
on a small number of fish due to ethical issues. Validation with a larger data set is required to
obtain more comprehensive assessment on the performance of the developed model.
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