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1. Introduction 

 

1.1. Acute myeloid leukemia 

1.1.1. Epidemiology 

 

Acute myeloid leukemia (AML) is a haematopoietic malignancy of the bone marrow 

involving haematopoietic progenitor cells, especially in the myeloid lineage. The 

pathogenesis is defined by a clonal expansion and proliferation of immature myeloid 

progenitor cells (so-called blasts) interfering with the normal haematopoiesis (Vardiman J, 

Brunning R et al. 2008, Showel and Levis 2014). While there is an abnormal production of 

white blood cells, AML can present with a decreased blood count for erythrocytes and 

platelets (Lowenberg, Downing et al. 1999, Brunning, Matutes et al. 2001). The abnormal 

production and the transformation of myeloid progenitor cells in the bone marrow define the 

state of the leukemia. With more than 20 % blasts in the bone marrow, the myeloid 

malignancy is considered �³acute�´�� �D�F�F�R�U�G�L�Q�J�� �W�R�� �W�K�H�� �:�R�U�O�G�� �+�H�D�O�W�K�� �2�U�J�D�Q�L�]�D�W�L�R�Q (WHO) 

classification (Brunning, Matutes et al. 2001, Vardiman 2010). AML is classified by two 

different systems, either by the WHO or the French-American-British Cooperative Group 

(FAB) classification. Both systems have in common that AML is classified according to cell 

morphology and immunological detection of lineage-specific markers. The WHO 

classification additionally includes molecular features and cytogenetic criteria and 

differentiates between clinical features. These factors are of great importance because the 

development of AML is associated with a variety of risk factors (Vardiman 2010). The 

systems differ in the minimum blast percentage at diagnosis which is at least 30 % for FAB 

classification (Cheson, Cassileth et al. 1990, Maurillo, Buccisano et al. 2013).  

 

Although AML is a relatively rare cancer type, it is the most common acute leukemia in 

adults (Teague and Kline 2013). The incidence of AML reaches 2.5 cases in 100,000 persons 

�Z�K�H�Q���D�G�M�X�V�W�H�G���W�R���W�K�H���Z�R�U�O�G�¶�V���S�R�S�X�O�D�W�L�R�Q�����,�Q���(�X�U�R�S�H�����W�K�H���L�Q�F�L�G�H�Q�F�H���L�V���V�O�L�J�K�W�O�\���K�L�J�K�H�U���Z�L�W�K���D����������

cases per 100,000 persons (Deschler and Lubbert 2006). Newly diagnosed patients have a 

median age of 65 years and the incidence increases with age. Therefore AML is primarily a 

malignancy of later adulthood. In Europe the 5-year survival rate is approximately 19 % 

(Visser, Trama et al. 2012). Like in other cancers, different risk factors have been identified to 

have an impact on epidemiology. These include genetic disorders, exposure to physical and 

chemical agents as well as ionizing radiation and antecedent chemotherapies with alkylating 
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drugs (Smith, Skibola et al. 2004, Bowen 2006). Moreover, previous haematological 

complications such as myelodysplastic syndrome also play a role in leukemia onset 

(Catenacci and Schiller 2005). Molecular genetic features are of great importance when 

considering treatment options and prognostic outcome (Kayser, Dohner et al. 2011). Genetic 

abnormalities play an important role as diagnostic criteria for further sub-classification into 

prognostic groups with either favourable, intermediate or adverse outcome by European 

Leukemia Net (ELN) guidelines. The three groups are associated with complete remission but 

with different risk for relapse (Mrozek, Marcucci et al. 2012). Favourable outcome results 

from beneficial mutations, adverse prognosis from severe genetic abnormalities (Lowenberg, 

Downing et al. 1999, Brunning, Matutes et al. 2001, Estey 2014). However, the specific cause 

of AML remains to be elucidated because it is a multigenetic disease like most cancer 

(Groschel, Schlenk et al. 2013). Especially relapse is still a major drawback in AML 

treatment. Conventional therapeutic approaches aiming at long term cure are considered the 

standard treatment and will be explained in the following.  

1.1.2. Conventional treatment  

  

As an acute leukemia, AML progresses rapidly and is typically fatal within weeks or months 

if left untreated. Treatment involves two phases: induction and consolidation. Induction 

therapy aims at the so-called complete remission, a condition that is defined by less than 5 % 

percent of remaining blast cells in the bone marrow that do not have the leukemic phenotype 

(Chen, Newell et al. 2015). Moreover, remission is specified by haematological parameters 

such as the presence of more than 1,000 neutrophils per µL blood and a platelet count of more 

than 100,000 cells per µL (de Greef, van Putten et al. 2005). This condition is normally 

achieved with intensive chemotherapy that usually consists of a combination of different 

drugs. However, which drug or drug combination may work best highly depends on the 

patient and also on the genetics of his AML type (Brunning, Matutes et al. 2001, Kaur, 

Constance et al. 2015). Complete remission can be achieved in approximately 70 % of 

patients younger than 60 years of age. It is inversely correlated to age meaning that the older 

the patient gets, the smaller is the chance of complete remission and the shorter is the duration 

of remission. Even if induction therapy destroys most of the normal bone marrow cells as well 

as leukemic cells, a small number of residual blasts often remain. Without subsequent 

treatment such as consolidation therapy, leukemia is likely to return within several months 

(Gratwohl, Baldomero et al. 2012). After successful remission, post-remission therapy known 

�D�V���³�F�R�Q�V�R�O�L�G�D�W�L�R�Q�´��is given to the patient in order to eradicate residual leukemic cells and to 
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achieve a long-term cure. Consolidation therapy is usually administered as another 

chemotherapy that differs from induction therapy in a higher dose intensity of drugs. This 

chemotherapy is then followed by haematopoietic stem cell transplantation (HSCT) to 

reconstitute the healthy bone marrow of the patient (Dvorak, Lysak et al. 2015). 

 

1.2. Haematopoietic stem cell transplantation  

1.2.1.  The importance of haematopoietic stem cell transplantation (HSCT) 

 

If the first complete remission failed, the selection of the consecutive therapy is crucial. After 

a certain conditioning regimen in chemotherapy as mentioned as �³�F�R�Q�Y�H�Q�W�L�R�Q�D�O�� �W�U�H�D�W�P�H�Q�W�´����

the patient will not have a functional immune system and requires the administration of cells 

that are able to reconstitute the bone marrow. Reconstitution of the hematopoietic system can 

be achieved by autologous HSCT with either healthy cells from the host himself or by 

allogeneic transplantation of cells from an human leukocyte antigen (HLA)-matched donor 

(Loh, Koh et al. 2007). In autologous transplantation, stem cells are removed from the patient 

and re-infused if needed (Gratwohl, Baldomero et al. 2012). In AML, this concept is rather 

difficult because even at complete remission, patients may have residual leukemic blasts in 

the bone marrow that have to be separated from healthy stem cells before autologous 

transplantation. For this reason, autologous transplants are accompanied with high relapse 

rates (von Grunigen, Raschle et al. 2012). The most common type of transplantation is 

allogeneic HSCT (Estey and Kantarjian 2005). Here, stem cells are isolated from an 

appropriate donor �W�K�D�W�� �F�O�R�V�H�O�\�� �P�D�W�F�K�H�V�� �W�K�H�� �S�D�W�L�H�Q�W�¶�V�� �+�/�$�� �D�Q�W�L�J�H�Q�� �S�D�W�W�H�U�Q�� �F�R�Q�I�L�U�P�H�G�� �E�\��

standard tissue typing of the major HLA molecules. Allogeneic HSCT can derive from related 

or unrelated donors as long as immunological similarity is confirmed (Gratwohl, Baldomero 

et al. 2012). Since �D�O�O�R�J�H�Q�H�L�F�� �W�U�D�Q�V�S�O�D�Q�W�D�W�L�R�Q�� �D�L�P�V�� �D�W�� �W�K�H�� �U�H�F�R�Q�V�W�L�W�X�W�L�R�Q�� �R�I�� �W�K�H�� �S�D�W�L�H�Q�W�¶�V�� �E�R�Q�H��

marrow and likely supports the long-term cure of the disease, it is the treatment of choice for 

AML patients. The importance of allogeneic transplantation becomes clear when considering 

the rising numbers of AML patients in Germany (Beelen and Mytilineos 2014). Figure 1 

shows increasing numbers of allogeneic HSCT due to AML over a period of 16 years (1998-

2013). As mentioned before, AML is the most frequent form of leukemia and is 

conventionally treated with allogeneic HSCT (Estey and Kantarjian 2005).  
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Fig. 1: Allogeneic stem cell transplantation in patients with Acute Myeloid Leukemia 
(AML) 
Increasing numbers of allogeneic stem cell transplantations in Germany. AML patients with (black) 
and without (blue) complete remission, adapted from www.drst.de 
 

1.2.2. The role of human leukocyte antigens (HLA) 

 

The success of allogeneic transplantation requires optimal donor selection. Optimal 

conditions are dependent on matching of HLA antigens, also known as major 

histocompatibility (MHC) antigens, which are surface proteins on almost all nucleated cells of 

the donor and the patient. HLA typing methods such as serological analysis and molecular 

techniques of sequence-specific priming (SSP) and sequence-specific oligonucleotide (SSO) 

probing can discriminate unique alleles encoded by HLA class I and II genes (Sheldon and 

Poulton 2006). The allele combination of HLA antigens is unique for every individual and 

�H�Q�D�E�O�H�V���L�P�P�X�Q�H���F�H�O�O�V���W�R���G�L�V�F�U�L�P�L�Q�D�W�H���µ�V�H�O�I�¶���I�U�R�P���µ�Q�R�Q-�V�H�O�I�¶�����7�K�H�U�H�I�R�U�H�� HLA antigen matching 

has a great clinical impact in bone marrow transplantation because they are the major 

molecules initiating graft rejection (Okumura, Yamaguchi et al. 2007). If there is an 

immunological incompatibility due to mismatches in HLA alleles, complications post 

transplantation can occur because engrafted cells can see �W�K�H���K�R�V�W�¶�V��immune system �D�V���µ�Q�R�Q-

�V�H�O�I�¶. Even if  the donor and the patient have identical HLA antigens, transplantation can result 

in Graft-versus-Host Disease (GvHD). This complication may arise from disparities in minor 

histocompatibility antigens (Spierings 2014). Complications such as graft rejection and 
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GVHD-related mortality also increase with increasing numbers of HLA mismatches. In the 

following chapter, complications after HSCT are introduced in detail. 

 

1.3. Complications after haematopoietic stem cell transplantation 

1.3.1. Graft �±versus-Host Disease (GvHD) 

 

One of the most serious complications of allogeneic HSCT is known as GvHD. GvHD is 

initiated by the introduction of a new immune system into the patient�¶�V�� �E�R�G�\���� �7�K�H�� �Q�H�Z�O�\��

transplanted cells can recognize �W�K�H���U�H�F�L�S�L�H�Q�W�¶�V���E�R�G�\���D�V���µ�Q�R�Q-�V�H�O�I�¶ �D�Q�G���F�D�Q���D�W�W�D�F�N���W�K�H���S�D�W�L�H�Q�W�¶�V��

cells. This immune response is especially mediated by reactive T and NK cells present in the 

graft. Reactive immune cells can also react �D�J�D�L�Q�V�W���D�Q�W�L�J�H�Q�V���R�I���W�K�H���S�D�W�L�H�Q�W�¶�V���W�L�V�V�X�H���H�[�S�U�H�V�V�H�G��

by the skin, liver or gastrointestinal tract (Jacobsohn and Vogelsang 2007). Complications 

like acute GvHD or graft rejection are usually controlled by immunosuppressive treatment 

given as a prophylaxis directly after transplantation. Acute GvHD is classified into grade 0-IV 

by the number and extent of organ involvement. Grade III/IV acute GvHD tend to have a poor 

outcome. Despite optimal prophylaxis, grade II-IV acute GvHD develops in 35-50 % after 

transplantation (Jacobsohn and Vogelsang 2007, Okumura, Yamaguchi et al. 2007).  

 

A more beneficial consequence of incompatibility of donor and recipient is the so-called 

�³�*�U�D�I�W���Y�H�U�V�X�V���/�H�X�N�H�P�L�D�����*�Y�/���´���H�I�I�H�Ft, a major therapeutic response of donor derived T cells 

directed against the HLA antigens on residual leukemic blasts of the patient (Horowitz, Gale 

et al. 1990, Baron, Maris et al. 2005). This immunological advantage has been a matter of 

intensive research because it allows eradication of residual tumor burden instead of total cell 

destruction in the patient by subsequent chemotherapy. The recognition of potent effector 

cells is subject of the concept of adoptive immunotherapy and will be introduced in this 

thesis.  

 

1.3.2. Relapse after haematopoietic stem cell transplantation 

 

After induction and consolidation therapy, it is generally assumed that a considerable burden 

of leukemia blasts remains undetected. Even when an AML patient is in complete remission, 

residual blasts can cause a relapse within a few weeks or months if no further post-remission 

therapy was administered. This in turn means that attainment of complete remission is often 
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neither a long-term guarantee for disease-free survival nor a cure (Larson, Lowenberg et al. 

2014). If complete remission fails, a rate of 20-30 % of all AML patients will relapse. After 

HSCT, a relapse refers to the recurrence of residual leukemic blasts in the bone marrow and 

peripheral blood of a patient that could not be eradicated completely by induction therapy.  

According to the National Cancer Institute (NCI) there is currently no standard therapy for 

relapse treatment of AML patients. Formerly, a second transplantation was considered the 

only treatment option. However, transplantation requires intensive treatment and can be 

accompanied with life-threatening complications. A number of drug combinations have been 

reported (Hiddemann, Kreutzmann et al. 1987, Brown, Herzig et al. 1990, Lang, Earle et al. 

2005, Altman, Sassano et al. 2011, Lu, Zhang et al. 2014) active against residual leukemic 

blasts. Patients treated with these drug combinations may have extended disease-free survival, 

however complete response to drugs was only found in a maximum of 60 % of relapsed 

patients. Donor lymphocyte infusions (DLI) are considered more useful even if no proper 

research on its beneficial potential was shown in prospective trials yet. Retrospective analysis 

of 400 relapsed patients after HSCT done by Schmid and colleagues (Schmid, Labopin et al. 

2007) only resulted in a relapse remission rate of 34 % concluding that the benefit of DLIs 

was quite limited. According to large retrospective analyses, the time between transplantation 

and relapse accounts for six to twelve months (Barrett and Battiwalla 2010). The longer the 

time between the first transplantation and the relapse occurrence, the longer is the leukemia-

free survival (Michallet, Tanguy et al. 2000, Hemmati, Terwey et al. 2015). To maximize 

survival rates, several research groups began studying concepts of additional 

immunotherapies in order to prevent relapse after HSCT.  

 

1.4. Current strategies of immunotherapies for AML 

 

Conventional therapy such as allogeneic stem cell transplantation controls residual tumour 

burden post remission but residual leukemic blasts can re-occur that have been hidden from 

reactive cells of the donor. Therefore, supportive immunotherapies are of urgent need. Current 

strategies involve treatment with cytokines or antibodies, vaccine trials with antigen-loaded 

dendritic cells or peptides, and adoptive transfer of effector cells with either genetically 

engineered T cell receptor (TCR) or chimeric antigen receptor (CAR). The aim of an 

�L�P�P�X�Q�R�W�K�H�U�D�S�\���L�V���H�L�W�K�H�U���W�R���F�R�Q�I�H�U���L�P�P�X�Q�L�W�\���E�\���D�G�R�S�W�L�Y�H���F�H�O�O���W�U�D�Q�V�I�H�U���R�U���W�R���E�R�R�V�W���W�K�H���S�D�W�L�H�Q�W�¶�V��

immune system after relapse.  
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Cytokine-derived therapy mainly uses interleukin-2 (IL-2) because of its known potential to 

activate and boost effector T cells that destroy cancer cells. Among other cancer types treated 

with IL-2 cytokine therapy such as colorectal cancer, ovarian carcinoma and bladder cancer, 

various trials (Macdonald, Jiang et al. 1991, Hamon, Prentice et al. 1993, Meloni, Trisolini et 

al. 2002, Stone, DeAngelo et al. 2008) have shown that the use of IL-2 has an impact of 

residual leukemic blasts. However, if the IL-2 receptor is expressed by leukemic cells, IL-2-

induced relapse can occur. Therefore, IL-15 was under intense research because it also targets 

the IL-2 receptor (Szczepanski, Szajnik et al. 2010).  

 

By contrast to IL-2, IL-15 is responsible for a prolonged maintenance of memory T cells, a 

preferred cellular phenotype for adoptive immunotherapy. Other cytokines such as 

granulocyte-macrophage colony stimulating factor (GM-CSF) and interferon also have 

pivotal roles in upregulating MHC molecules in order to improve antigen presentation 

(Borrello, Levitsky et al. 2009) which is necessary for effector cell attack. However, Gurion 

and colleagues compared the safety and efficacy of GM-CSF from randomized clinical trials 

and concluded that GM-CSF does not affect overall survival in AML patients (Gurion, 

Belnik-Plitman et al. 2012). So far, usage of interferon in immunotherapies against AML has 

been disappointing in clinical trials but lately gained new interest (Anguille, Lion et al. 2011). 

 

AML blasts not only express cytokine receptors but a variety of surface markers that have 

been explored as potential targets for monoclonal antibody therapy. CD33, as the most 

prominent surface molecule representing a myeloid-specific transmembrane receptor is 

extensively studied because it is highly expressed on more than 80% of haematopoietic 

malignancies including AML (Ehninger, Kramer et al. 2014). CD33 is not expressed on 

normal progenitor cells which makes the CD33 antibody (anti-CD33) a potential candidate for 

targeting residual leukemic blasts when relapse occurs. However, Kobayashi and colleagues 

reported that anti-CD33 therapy accompanies with liver toxicity (Kobayashi, Tobinai et al. 

2009) and is nowadays rather used as a target for CD33-directed chimeric antigen receptors 

on modified T cells (CART-33) (Pizzitola, Anjos-Afonso et al. 2014, Wang, Wang et al. 

2015). Because this is a fairly new technology, CARs will be explained in more detail in the 

following text. 

  

The first idea of preventing relapse was a vaccine trial with autologous leukemic blasts that 

were irradiated and administered to the patient with the addition of bacille Calmette-Guérin 

(BCG). BCG unspecifically stimulated the autoimmunization���� �D�� �S�U�R�F�H�V�V�� �Z�K�H�U�H�� �W�K�H�� �S�D�W�L�H�Q�W�¶�V��
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immune system develops antibodies against �W�K�H���S�D�W�L�H�Q�W�¶�V���R�Z�Q���W�L�V�V�X�H���V�X�F�K���D�V��leukemic blasts. 

Researchers thought that the capacity of �W�K�H���S�D�W�L�H�Q�W�¶�V���L�P�P�X�Q�H���V�\�V�W�H�P��increased by BCG and 

the patient would resist a subsequent trigger in form of leukemic cells. Because of the fact 

that autoimmunization only had a transient effect, 109 blast cells administered per therapy 

were selected for increase in reactivity (Powles, Crowther et al. 1973). In order to increase 

susceptibility of leukemic cells to immune attacks, research focussed on whole cell vaccines 

in form of dendritic-like leukemia cells. Dendritic cells are antigen presenters and were 

differentiated from AML blasts in order to obtain leukemic characteristics. In a study of 

Roddie and colleagues, these cells were administered to AML patients as a vaccine. 

Consequently, T cell responses were initiated and monitored in 22 patients over 12 months 

post vaccination. Because only two out of 22 patients remained in remission, this vaccination 

was not broadly applicable (Roddie, Klammer et al. 2006). Other whole cell vaccinations and 

loading strategies for dendritic cell based vaccination have been investigated extensively in 

vitro (Galea-Lauri, Darling et al. 2002, Duncan and Roddie 2008, Kremser, Dressig et al. 

2010) but clinical data are often limited to individual patient cohorts (Hardwick, Chan et al. 

2010). In other studies, whole cell vaccination was replaced by peptide vaccination including 

antigen-specific peptides that are highly expressed in AML (Greiner, Dohner et al. 2006, 

Keilholz, Letsch et al. 2009, Oka, Tsuboi et al. 2009). However, peptides are mostly restricted 

to MHC class I epitopes that do not represent the entire sequence of the antigen. Furthermore, 

they are restricted to a certain HLA antigen and therefore might not be applicable to a broad 

range of AML patients.  

 

Novel approaches focus on the generation of specific effector cells rather than on leukemia-

derived cells or peptides. Adoptive cell therapies with T or NK cells are currently under 

intensive investigation. One strategy, already described in the context of relapse, is the 

administration of DLIs from the original HLA-matched stem cell donor that was selected for 

the transplantation (Gozdzik, Rewucka et al. 2015). This immunotherapy has the advantage 

that a decent number of effector cells can be re-�L�Q�I�X�V�H�G�� �L�Q�� �W�K�H�� �S�D�W�L�H�Q�W�¶�V�� �E�R�G�\����Even if HLA 

antigens donor and patient match, there is still a chance of GvHD which is a major 

complication in this setting. In order to circumvent GvHD, autologous cell isolation is 

considered. Autologous cell isolation does not necessarily result in sufficient cell numbers 

and isolated effector cells are mostly short-lived and of low avidity towards leukemic antigens 

so that clinical efficiency cannot be achieved (Lichtenegger, Lorenz et al. 2014, Steger, 

Milosevic et al. 2014, Uttenthal, Martinez-Davila et al. 2014).  

 



Introduction 

9 
 

Immune responses rely on the specific TCR-dependent recognition of peptides presented by 

MHC. Naturally occurring TCRs that recognize a self-antigen are only of low affinity because 

of thymic selection (Purbhoo, Sutton et al. 2006, Linette, Stadtmauer et al. 2013). Since tumor 

antigens are also expressed by germ line cells and selected adult tissues, T cells directed 

against these peptides express TCRs of lower avidity for their antigenic ligands making 

isolation difficult (Schmid, Irving et al. 2010). Modification of T cells using genes encoding 

antigen receptors can be used to generate high-avidity T cells in a process termed genetic 

redirection of specificity (Kershaw, Westwood et al. 2014). By introduction of genetically 

modified TCRs in a specific effector cell culture, a T cell product without GvHD reactivity 

can be generated. To improve the duration of T cell control in the patient, T cells with 

memory function were pre-selected in many studies (Stauss, Thomas et al. 2008, Thaxton and 

Li 2014).  

 

Another strategy of a specific adoptive therapy is the generation of non MHC-restricted 

chimeric antigen receptors (CARs) on modified T cells. CARs are artificial TCR which 

typically graft the specificity of a monoclonal antibody onto a T cell (Ramos and Dotti 2011). 

This reprogramming of the T cell antigen receptor is usually done by retroviral vector systems 

that are specific for malignant cells. This technology combines the antigen recognition 

domain of an antibody, directed against leukemia-specific antigens on AML cells, with an 

intracellular signalling domain �L�Q�� �W�K�H�� �7�� �F�H�O�O�V�� �W�K�D�W�� �V�W�L�P�X�O�D�W�H�� �W�K�H�� �F�H�O�O�¶�V�� �D�F�W�L�Y�L�W�\��(Mardiros, 

Brown et al. 2013). Different generations of CAR modified T cells aim at enhanced activation 

signals, T cell proliferation and effector function of CAR-modified T cell in pre-clinical trials 

(Maus, Grupp et al. 2014). This technique also has the advantage of rapid generation of 

modified T cells that recognize leukemic antigens without HLA restriction and is therefore 

broadly applicable. These two strategies, TCR editing and generation of CARs, include 

modification of T cells resulting in highly specific effector cells for immunotherapy and are 

currently state of the art (Sadelain, Brentjens et al. 2009, Lipowska-Bhalla, Gilham et al. 

2012). 
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1.5. �:�L�O�P�V�¶���W�X�P�R�U�������D�Q�W�L�J�H�Q�� 

 

In order to eradicate residual leukemic blasts, a number of different research groups focussed 

on the identification of AML peptide antigens (Greiner, Ringhoffer et al. 2000, Bae, 

Martinson et al. 2004, Berlin, Kowalewski et al. 2014). These so called tumor-associated 

antigens (TAA) are of great interest because they are overexpressed by AML cells. Among 

these AML peptide antigens, the �:�L�O�P�V�¶���W�X�P�R�U���������:�7�������D�Q�W�L�J�H�Q���S�O�D�\�V���D���V�L�J�Q�L�I�L�F�D�Q�W���U�R�O�H and is 

the target structure of interest for the generation of an adoptive immunotherapy for AML in 

this project.  

 

WT1 protein, a transcription factor that �³shuttles�  ́between the nucleus and the cytoplasm of 

cells (Niksic, Slight et al. 2004), is encoded by the WT1 gene which is responsible for 

differentiation of genitourinary tissues (Hirose 1999, Toska and Roberts 2014, Bandiera, 

Sacco et al. 2015). In healthy tissue, WT1 expression is limited to developing kidney, testis 

and ovaries. In adult haematopoiesis, WT1 is also expressed at low level in a few progenitor 

cells, where it directs stage-specific quiescence and differentiation of CD34+ progenitors 

(Ellisen, Carlesso et al. 2001, Hosen, Sonoda et al. 2002). In contrast, WT1 is associated with 

neph�U�R�S�D�W�K�L�H�V�� �V�X�F�K�� �D�V�� �:�L�O�P�V�¶�� �W�X�P�R�U�� �D�Q�G��gonadal dysgenesis in Denys-Drash syndrome. 

Although WT1 was originally described as a tumour suppressor gene in �:�L�O�P�V�¶�� �W�X�P�R�U and 

other related syndromes, WT1 positively affects carcinogenesis (Huff 2011). WT1 is found in 

tumor cells from a wide range of cancers and is highly associated with haematopoietic 

�P�D�O�L�J�Q�D�Q�F�L�H�V�� �V�X�S�S�R�U�W�L�Q�J�� �:�7���¶�V�� �R�Q�F�R�J�H�Q�L�F�� �I�X�Q�F�W�L�R�Q�� WT1 is especially overexpressed in 

AML as shown by several studies that report elevated WT1 expression for approximately 

80% of all AML patients (Miwa, Beran et al. 1992, Miyagi, Ahuja et al. 1993, Menssen, 

Renkl et al. 1995, Ostergaard, Olesen et al. 2004, Osborne, Frost et al. 2005). WT1 expression 

also accompanies with poor prognosis of AML (Lyu, Xin et al. 2014). According to a project 

on prioritization of cancer antigens of NCI, WT1 was ranked first because it fulfils most of 

the �S�U�H�G�H�I�L�Q�H�G�� �F�U�L�W�H�U�L�D�� �R�I�� �D�Q�� �µ�L�G�H�D�O�¶�� �F�D�Q�F�H�U�� �D�Q�W�L�J�H�Q. Criteria included expression level, 

oncogenicity, immunogenicity, therapeutic function, cellular localization and the number of 

antigen epitopes (Cheever, Allison et al. 2009). Its limited expression in healthy tissue makes 

WT1 a leukemia-associated antigen with therapeutic function because it can be used as a 

target structure for adoptive immunotherapy in order to treat AML (Uttenthal, Martinez-

Davila et al. 2014).  
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Although current therapies can be promising, they are mostly restricted to small patient 

cohorts in clinical trials or even individual patients (Barrett and Le Blanc 2010). It seems that 

optimization of immunotherapies does not only depend on one therapy but rather on a 

combination of approaches. Also, the entire status of the immune system after transplantation 

has to be taken into account which means that research should not only focus on the 

generation of potent effector cells but also on the analysis of residual target cells. Therefore, 

this project investigates a novel immunotherapy for the treatment of relapsed AML and 

focuses on the characterisation of putative effector cells and target cells that are specific for 

the WT1 antigen.  
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1.6. Aim of the project 

 

Although allogeneic haematopoietic stem cell transplantation is considered as a curative 

treatment for AML, a relapse rate of 20-30 % still remains (Leopold and Willemze 2002). The 

generation of new immunotherapies for relapse treatment is under intense research but still 

seems to be challenging. This project investigates adoptive immunotherapy as a novel 

approach for relapse treatment in AML. This therapy should be administered to the patient as 

a prophylaxis after transplantation. The overall aim of the project is the ex vivo generation of 

WT1-specific effector cells as shown in figure 2.  

 

 
 
Fig. 2: WT1-specific T cell immunotherapy 
Peripheral blood mononuclear cells of healthy controls and AML patients, respectively are cultured ex 
vivo and activated upon peptide stimulation (here WT1). T cells specific for the peptide are selected 
and expanded. In the next step, these cells are characterized and tested for their specificity and 
functionality. If cell numbers of WT1-specific cells are adequate for adoptive immunotherapy, the 
product is infused in the patient.  
 

In order to achieve this aim, two different subjects were addressed. The first part of the 

project dealt with the analysis of WT1-specific effector cells that were characterised 

according to their frequency, their cytokine production and proliferation potential and were 

also tested for their functionality. Isolated peripheral blood mononuclear cells and their 

subpopulations were analysed in ELISpot assay in order to determine WT1-specific cell 

frequencies of healthy controls and AML patients pre and post transplantation, respectively. 

Therefore, cells were stimulated with WT1 peptide and tested for their cytokine secretion 

pattern. Frequencies of cytokine secreting cells were further confirmed by FluoroSpot assay 
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that measures simultaneous cytokine production of WT1-specific cells. This was of interest 

for selecting a suitable starting culture for WT1-specific cell expansion. WT1 specificity was 

further analysed with flow cytometry-based Streptamer technology. In addition, cells were 

analysed for functional activity in cytotoxicity assays. Cytotoxicity of WT1-specific cells was 

tested by their potential to lyse specific target cells in an Europium release assay. Lysis of 

target cells was also visualized in video experiments. WT1-specific cells were expanded to 

generate cell numbers sufficient for a WT1-specific immunotherapy. To achieve this aim, 

different expansion strategies of WT1-specific cells were tested, including various activation 

strategies and growth supplements such as cytokines, autologous feeder cells and artificial 

MACSi beads. After expansion, the phenotype of cultures was analysed by flow cytometry. 

Optimal expansion results in cytolytic WT1-specific cells with memory function because 

these cells are long-lived and target specific lysis of residual leukemic blasts. Expanded cells 

were tested for WT1 specificity by ELISpot and WT1-specific Streptamer which is an 

antibody directed against HLA-A*02 restricted WT1 peptide. 

 

In order to test the cytolytic behaviour of WT1-specific cells, the characterisation of suitable 

leukemic target cells was subject in the second part of the project. Since WT1 is 

overexpressed in haematopoietic malignancies such as AML (Koeffler and Golde 1980, 

Bergmann, Maurer et al. 1997, Lowenberg, Downing et al. 1999), leukemic cells lines and 

AML blasts were chosen as targets. Target cells were analysed for their WT1 mRNA and 

protein levels. mRNA levels were examined by qRT-PCR, the WT1 protein amount by 

Western Blot and extra- and intracellular WT1 expression by flow cytometry. Additionally, 

target cells were tested in Europium release assay for their lysis potential.  

  

In summary, WT1-specific effector cells were characterized according to their frequency, 

cytokine production and cytolytic behaviour. These cells need to be expanded with an 

expansion strategy that results in highly specific cells in an appropriate cell number. Also, 

analysis of suitable target cells that express WT1 was crucial in order to establish optimal 

condition for a WT1-specific immunotherapy. 
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2. Material s and Methods 

2.1.  Materials 

2.1.1. Instruments, materials, chemicals and reagents 

 

Tab. 1: Instruments 
Instrument  Model Company 
CO2 Incubator Hera cell 240 Thermo Scientific (Waltham,USA) 
Centrifuges Heraeus Varifuge 3.0R Thermo Scientific (Waltham,USA) 
 Heraeus Megafuge 40 Thermo Scientific (Waltham,USA) 
Cell counting device KX-21N Sysmex (Norderstedt) 
ELISpot reader iSpot FluoroSpot AID Diagnostika (Straßberg) 
Fluorescent lamp FL 009751   AID Diagnostika (Straßberg) 
Fluorometer Wallac Delfia 1232 Perkin Elmer (Waltham, USA) 
Scintillation counter Wallac 1450 MicroBeta TriLux Perkin Elmer (Waltham, USA) 
Flow cytometer FC500  Beckman Coulter (Krefeld) 
 Software: Kaluza 1.1 Beckman Coulter (Krefeld) 
 FACS Aria I BD Biosciences (San Jose, USA) 
 Software: Diva 6.1.2 

FlowJo vX.0.6 
 

Gel documentation FX 7 Vilber Lourmat (Eberhardzell) 
Microscope Axio Observer Z1 Zeiss (Jena) 
Cell-bead separator MACSiMAG Miltenyi Biotec (Bergisch Gladbach) 
Software GraphPad Prism 6 GraphPad Software (La Jolla, USA) 

 

Tab. 2: Materials 
Material  Company 
MAIPN 4450 Multiscreen Filter Plates Merck Millipore (Darmstadt) 
Suspension cell culture plates (6, 12, 24, 48, 96 wells) Greiner Bio-One (Frickenhausen) 
Suspension cell culture plates, V bottom Sarstedt (Nümbrecht) 
Tissue culture plates, U bottom BD Biosciences (San Jose, USA) 
Cell culture flasks (25, 75, 175 cm2), filter caps Greiner Bio-One (Frickenhausen) 
Cell culture dishes 100x20 mm2 Greiner Bio-One (Frickenhausen) 
MACS separation columns (MS, LS) Miltenyi Biotec (Bergisch Gladbach) 
Cell culture tubes (12 mL) Greiner Bio-One (Frickenhausen) 
Cryo tubes (1 mL) Greiner Bio-One (Frickenhausen) 
Heparin monovettes (9 mL) Sarstedt (Nümbrecht) 
Polypropylene tubes, conical (15, 50 mL) Greiner Bio-One (Frickenhausen) 
Reaction tubes (0.5 - 2 mL) Eppendorf (Hamburg) 
Combi tips advanced (2.5 µL) Eppendorf (Hamburg) 
Finnpipette (from 5 - 300 µL) Thermo Scientific (Waltham, USA) 
Multipette ® plus Eppendorf (Hamburg) 
Pipettes (from 0.5 - 1000 µL) Gilson (Middleton, USA) 
Serological pipettes (5, 10, 25 mL) Greiner Bio-One (Frickenhausen) 
Mr FrostyTM Freezing Container Nalgene (Neerijse, Belgium) 
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Tab. 3: Chemicals and reagents 
Chemical/reagent Company 
Aqua, sterile water Braun (Melsungen) 
Chlorpromazine Sigma-Aldrich (Taufkirchen) 
DMSO (Dimethylsulfoxide) Wak-Chemie (Steinbach) 
DNase (100 µg) Roche (Basel, Switzerland) 
D-PBS (�'�X�O�E�H�F�F�R�¶�V��phosphate buffered saline) Gibco, Life Technologies (Darmstadt) 
EDTA (Ethylendiamintetraacetate) Sigma-Aldrich (Taufkirchen) 
Ethanol Roth (Karlsruhe) 
Ficoll-Paque�Œ plus, separation GE Healthcare (Upsala, Sweden) 
H3 thymidine  Hartmann Analytic (Braunschweig) 
L-Glutamine Sigma-Aldrich (Taufkirchen) 
Liquemin N25000 Roche (Basel, Switzerland) 
MACS rinsing solution Miltenyi Biotec (Bergisch Gladbach) 
NaCl 0.9 % (sodium chloride) Braun (Melsungen) 
Pelispot buffer (50 mL) Sanquin (Amsterdam, Netherlands) 
Penicillin-Streptomycin Gibco, Life Technologies (Darmstadt) 
Streptavidin poly HRP (horse raddish peroxidase) Sanquin (Amsterdam, Netherlands) 
TMB substrate (18 mL) Sanquin (Amsterdam, Netherlands) 
Trypan blue Invitrogen (Karlsruhe) 

 

2.1.2. Cell culture media and corresponding supplements 

 

Tab. 4: Cell culture media 
Product name Company 
AIM V Gibco, Life Technologies (Darmstadt) 
IMDM Lonza (Basel, Switzerland) 
RPMI 1640 Gibco, Life Technologies (Darmstadt) 
TexMacs, research grade Miltenyi Biotec (Bergisch Gladbach) 

 

Tab. 5: Sera and supplements 
Product name Company 

Fetal calf serum  Biochrom (Berlin), PAA (Pasching, Austria) 
Human AB serum  Own production 
L-Glutamine (200 U/mL) Sigma-Aldrich (Taufkirchen) 
Penicillin-Streptomycin (1 %) Gibco, Life Technologies (Darmstadt) 

 

2.1.3. Cytokines for expansion cell culture 

 

Tab. 6: Cytokines 
Product name Company 

IL- 2 (50 µg) Miltenyi Biotec (Bergisch Gladbach) 
IL- 7 (100 µg) Miltenyi Biotec (Bergisch Gladbach) 
IL-15 (100 µg) Miltenyi Biotec (Bergisch Gladbach) 
IL- 21 (100 µg) Miltenyi Biotec (Bergisch Gladbach) 
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2.1.4. Kits and assays 

 

Tab. 7: Kits and assays 
Kit  Company 

Dead cell removal kit Miltenyi Biotec (Bergisch Gladbach) 
EuTDA cytotoxicity reagents, Delfia Perkin Elmer (Waltham, USA) 
FITC Annexin V dead cell apoptosis kit Invitrogen (Karlsruhe) 
FluoroSpot assay, IFN-�5/granzyme B kit Mabtech (Nacka Strand, Sweden) 
Pan T/ CD137/ CD4/ CD8 cell isolation kit Miltenyi Biotec (Bergisch Gladbach) 
Bradford assay BioRad (Hercules, USA) 

 

 

 

Tab. 8: Western Blot equipment and buffers  
  

Additional material  Forceps, conical tubes for gel preparation 
Blocking solution 5 % skim milk powder (Sigma-Aldrich, Taufkirchen) 

in D-PBS (Gibco, Life Technologies, Darmstadt) + 
Tween 20 0.05 % (Thermo Scientific, Waltham, USA) 

Blotting buffer D-PBS (Gibco, Life Technologies, Darmstadt) + 
Tween 20 0.05 % (Thermo Scientific, Waltham, USA) 

Femto substrate  Thermo Scientific (Waltham, USA) 
Filter paper Whatman, 11µm pore size (BioRad, Hercules, USA) 
Gel running buffer 2.5 mM TRIS, 0.1 % SDS, glycine (Sigma-Aldrich, 

Taufkirchen) 
Power supply Thermo Scientific (Waltham, USA) 
Pre-stained molecular marker �3�D�J�H�5�X�O�H�U�Œ��Prestained Protein Ladder (10-170 kDa), 

Fermentas (Thermo Scientific, Waltham, USA) 
PVDF membrane 0.45 µm pore size, Millipore (Darmstadt) 
Running gel Polyacrylamide and acrylamide (PAA, BioRad, 

Hercules, USA), TRIS pH 8.8 (Sigma-Aldrich, 
Taufkirchen), 10 % APS (Thermo Scientific, 
Waltham, USA), TEMED (Sigma-Aldrich, 
Taufkirchen) 

Sample buffer 6 % SDS, 0.25 M TRIS (pH 6.8), 10 % glycerol, 
bromophenyl blue, 20 mM DTT (all: Sigma-Aldrich, 
Taufkirchen) 

Semi-dry transfer apparatus Bio Rad Criterion�Œ Blotter (BioRad, Hercules, USA) 
Stacking gel  PAA (BioRad, Hercules, USA), TRIS pH 6.8, 10 % 

APS (Thermo Scientific, Waltham, USA), TEMED 
(Sigma-Aldrich, Taufkirchen) 

Transfer buffer TRIS, 20 % methanol, pH 10.4 (Sigma-Aldrich, 
Taufkirchen) 

Wetting solution 100% methanol (Sigma-Aldrich, Taufkirchen) 
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2.1.5. Antibodies 

Tab. 9: Antibodies for ELISpot assay 
Specificity Conjugation Stock solution Company 
Granzyme B Primary mAb, unconj. 1 mg/mL Thomas Ehret Consults (Nidderau) 
Granzyme B Secondary mAb, biotin 1 mg/mL Thomas Ehret Consults (Nidderau) 
IFN-�5 Primary mAb, unconj. 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IFN-�5 Secondary mAb, biotin 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-10 Primary mAb, unconj. 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-10 Secondary mAb, biotin 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-12 Primary mAb, unconj. 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-12 Secondary mAb, biotin 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-13 Primary mAb, unconj. 1 mg/mL Sanquin (Amsterdam, Netherlands) 
IL-13 Secondary mAb, biotin 1 mg/mL Sanquin (Amsterdam, Netherlands) 
IL-17a Primary mAb, unconj. 0.5 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-17a  Secondary mAb, biotin 0.5 mg/mL Mabtech (Nacka Strand, Sweden) 
IL1-�� Primary mAb, unconj. 1 mg/mL Sanquin (Amsterdam, Netherlands) 
IL1-�� Secondary mAb, biotin 1 mg/mL Sanquin (Amsterdam, Netherlands) 
IL-2 Primary mAb, unconj. 0.5 mg/mL BD Biosciences (San Jose, USA) 
IL-2 Secondary mAb, biotin 0.5 mg/mL BD Biosciences (San Jose, USA) 
IL-4 Primary mAb, unconj. 1 mg/mL Mabtech (Nacka Strand, Sweden) 
IL-4 Secondary mAb, biotin 1 mg/mL BD Biosciences (San Jose, USA) 
Perforin Primary mAb, unconj. 1 mg/mL Mabtech (Nacka Strand, Sweden) 
Perforin Secondary mAb, biotin 1 mg/mL Mabtech (Nacka Strand, Sweden) 
TGF-��1 Primary mAb, unconj. 1 mg/mL Sanquin (Amsterdam, Netherlands) 
TGF-��1 Secondary mAb, biotin 0.5 mg/mL Sanquin (Amsterdam, Netherlands) 
TNF-�. Primary mAb, unconj. 1 mg/mL BD Biosciences (San Jose, USA) 
TNF-�. Secondary mAb, biotin 0.5 mg/mL BD Biosciences (San Jose, USA) 
Antibodies species: monoclonal mouse IgG1anti-human have been used for analysis 

 

Tab. 10: Antibodies for Western Blot and staining of WT1 
Antibody Species Dilution Clone Company 
Fab2  Donkey �. goat 1:300 polyclonal Santa Cruz Biotech. (Santa Cruz, USA) 
Fab2 PE Donkey �. goat 1:100 polyclonal Santa Cruz Biotech. (Santa Cruz, USA) 
Human WT1 Goat IgG 1:1000 polyclonal R&D Systems (Minneapolis, USA) 
Isotype Goat IgG 1:800 polyclonal R&D Systems (Minneapolis, USA) 
WT1-
streptamer 

Human 1:10 - IBA solutions (Göttingen) 

 

Tab. 11: Antibodies for FluoroSpot analysis  
Antibody Conjugation Clone Company 
IFN-�5 unconjugated 1-D1K, monoclonal Mabtech (Nacka Strand, Sweden) 
Granzyme B unconjugated GB10, monoclonal Mabtech (Nacka Strand, Sweden) 
IFN-�5 FITC 7-B6-1, monoclonal Mabtech (Nacka Strand, Sweden) 
Granzyme B Cy3 GB11, monoclonal Mabtech (Nacka Strand, Sweden) 
Antibodies species: monoclonal mouse IgG1anti-human have been used for analysis 
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Tab. 12: Antibodies for flow cytometry  
Specificitcy Conjugation Clone Company 
CD3 FITC SK7 BD Biosciences (San Jose, USA) 
CD3 PerCP UCHT1 BioLegend (San Diego, USA) 
CD4 FITC SK3 BD Biosciences (San Jose, USA) 
CD4 APC SK3 BD Biosciences (San Jose, USA) 
CD8 PE SK1 BD Biosciences (San Jose, USA) 
CD8 APC SK1 BD Biosciences (San Jose, USA) 
CD14 APC NP9 BD Biosciences (San Jose, USA) 
CD16 PE 3G8 BD Biosciences (San Jose, USA) 
CD19 APC SJ25C1 BD Biosciences (San Jose, USA) 
CD45 PerCP HI30 BioLegend (San Diego, USA) 
CD56 PE NCAM16.2 BD Biosciences (San Jose, USA) 
IgG 2a PE MOPC-21 BD Biosciences (San Jose, USA) 
Antibodies species: monoclonal mouse IgG1anti-human have been used for analysis 

 

 

Tab. 13: Peptides and Peptivators® 
Peptide Stimulation  Company 
WT1 peptide pool CD4+ and CD8+ T cells 15 mer Miltenyi Biotec (Bergisch Gladbach) 
CEF peptide pool CD8+ T cells 23 peptides Mabtech (Nacka Strand, Sweden) 
Candida albicans polyclonal extract Allergopharma (Hamburg) 
Phythohemagglutinin  polyclonal extract Remel, Thermo Scientific (Waltham, USA) 
CMV pp65 
NLVPMVATV 
peptide 

CMV-specific CD8+ T 
cells, HLA-A*0201 

single 
peptide 

IBA solutions (Göttingen) 

RMFPNAPYL peptide WT1-specific CD8+ T 
cells, HLA-A*0201 

single 
peptide 

IBA solutions (Göttingen) 

 

 

2.1.6. Cell lines 

 

Tab. 14: Cell culture media for cell lines 
Cell line Medium Supplement Serum Antibiotics Reference   

HL60 8322 IMDM L-Glutamine 10 % FCS Pen/Strep. Collins et al., 1978 
K562 RPMI 1640 L-Glutamine 10 % FCS Pen/Strep. Lozzio et al. 1979 
Kasumi-1 RPMI 1640 L-Glutamine 20 % FCS Pen/Strep. Tashiro et al. 1991 
KG-1 RPMI 1640 L-Glutamine 10 % FCS Pen/Strep. Koeffler et al., 1980 
T2 RPMI 1640 L-Glutamine 10 % FCS Pen/Strep. Salter et al., 1985 
THP-1 8354 RPMI 1640 L-Glutamine 10 % FCS Pen/Strep. Tsuchiya et al., 1982 

 

 

Cell lines were thawed and cultivated at 37°C and 5 % CO2. Before using the cells in 

experiments, HLA typing was done in our institute using SSP and SSO technologies.  
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K562 

K562 is a suspension cell line with large, round, 

non-adherent cells. It derived from human origin 

and was established in 1970 from a blast crisis 

of a pleural effusion of a 53-year-old woman 

suffering from chronic myeloid leukemia (CML) 

(Lozzio and Lozzio 1979, Koeffler and Golde 

1980). This cell line is commonly used as a 

target cell line for natural killer cell assays and 

was used for assay establishment in this project. 

Cells were maintained at 300.000 cells per mL and fresh medium was added every two to 

three days.  

 

Kasumi-1 

Kasumi-1 is a suspension cell line with large, round cells that have a myeloblast-like 

morphology. It derived from the peripheral blood of a Japanese patient who suffered from 

AML (Asou, Tashiro et al. 1991). Kasumi-1 is a commonly used target cell line for 

cytotoxicity assays which analyse the cytolytic behaviour of AML cells by effector T cells. A 

frozen aliquot of Kasumi-1 cells was kindly provided by the Department of Bone Marrow 

Transplantation in Essen and was thawed directly before use. According to HLA typing in our 

institute, Kasumi-1 cells express HLA-A*26, B*40 and B*48, C*03 and C*08. Cells were 

maintained at 300.000 cells per mL and fresh medium was added every two to three days. 
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HL -60 

The HL-60 cell line consists of round, single 

cells in suspension that tend to grow in clusters. 

Cells were obtained by leukopheresis from a 36-

year-old Caucasian female who suffered from 

acute promyelocytic leukemia (Collins, Ruscetti 

et al. 1978). HL-60 was used as a target cell line 

for cytotoxicity assays because of its leukemic 

origin. The cells express both HLA-A*01 and 

B*57 on their cell surface according to our HLA 

genotyping. HLA antigens are homozygous 

which can be an advantage for tumor escape strategies. Cells were maintained at 300.000 cells 

per mL and fresh medium was added every two to three days.  

 

 

KG-1 

KG-1 cells grow as single cells with different 

morphology. They are derived from a bone 

marrow aspirate of a 59-year-old Caucasian 

male with erythroleukemia that developed into 

acute myeloid leukemia. The cell line was 

described by  H.P. Koeffler and D.W. Golde 

(Koeffler and Golde 1980). This suspension cell 

line expresses HLA-A*30, B*53 and B*78 on 

the cell surface according to our HLA typing. 

Cells were maintained at 200.000 cells per mL and fresh medium was added twice a week.  
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THP-1 

THP-1 cells derived from a patient with acute 

monocytic leukemia and are characterised as 

large, round, single cells in suspension. The cell 

line was first described in 1982 by Tsuchiya and 

colleagues (Tsuchiya, Kobayashi et al. 1982). 

According to HLA typing, THP-1 cells express 

HLA-A*02, B*15 and B*35. The THP-1 cell line was used as a target cell for cytotoxicity 

assays because of its leukemic origin and its common HLA-A*02 antigen. Cells were 

maintained at 200.000 cells per mL and kept in culture with fresh medium added twice a 

week.  

 

 

T2 

The suspension cell line T2 is a mutant human suspension 

cell line which is negative for class II HLA antigens. 

Confirmed by HLA typing, T2 cells only express HLA- 

A*02 on their surface making the cells suitable targets for 

studying antigen processing and effector T cell recognition 

(Salter, Howell et al. 1985). In culture, cells tend to 

migrate and have different morphology. The T2 cell line 

was maintained at 300.000 cells per mL and kept in culture 

with fresh medium added twice a week.  

 

Cell lines as frozen aliquots were kindly provided by the Institute for Transfusion Medicine in 

Essen unless otherwise noted. 
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2.2.  Methods  

2.2.1. Collection and processing of cells 

 

2.2.1.1. Blood sample isolation of effector cells 

Blood samples of both healthy donors and AML patients pre and post transplantation were 

subject of this project. Peripheral blood from AML patients and healthy volunteers was 

collected after written informed consent was given according to the approval of the local 

ethics committee. For peripheral blood mononuclear cells (PBMC) isolation, heparinised 

blood or blood samples in ethylene-diamine-tetraacetic acid (EDTA) containing tubes were 

isolated using Ficoll-�3�D�T�X�H�Œ���3�O�X�V���G�H�Q�V�L�W�\���J�U�D�G�L�H�Q�W���F�H�Q�W�U�L�I�X�J�D�W�L�R�Q at 2800 rpm for 30 min in a 

swinging bucket rotor without brake. After centrifugation, PBMCs of healthy donors were 

resuspended in fresh RPMI 1640 medium supplemented with 10 % human serum pool (HS) 

or in AIMV medium for AML patients, respectively. Cells were then counted with the 

Sysmex cell counter that does not distinguish between viable and dead cells but determines 

the cell size only. Counting of cells was double-checked by viable cell staining with Trypan 

Blue. After counting, cells were adjusted to the required cell number and kept in the 

corresponding medium before use.  

 

2.2.1.2. Freezing and thawing of cells 

For cryopreservation of cells and cell lines, cells were pelletized by centrifugation and 

resuspended in foetal calf serum (FCS) containing freezing medium. Freezing medium in 

1 mL vial contained 20 U/mL Liquemin, a heparin derivate, and 10 ���J���P�/�� �'�1�$�V�H�� �D�Q�G�� �Z�D�V 

tested with optimal performance in previous experiments in our laboratory. After addition of 

the freezing medium, 100 µL DMSO was added to the cells. The vials were transferred to a 

freezing device filled with isopropanol which was then put into a -80°C freezer for two to 

three days and cells were afterwards transferred into liquid nitrogen cryotanks for long-time 

storage.  

 

In order to process frozen cells, vials were transferred to a water bath with 37°C until the cell 

suspension was partly thawed. Subsequently, the cell suspension and a residual ice core were 

transferred to a new tube filled with the thawing medium that consisted of 9 mL of freezing 

medium without DMSO. The vials were centrifuged at 300g for 10 min and the supernatant 

was discarded. Then, two washing steps with D-PBS followed in the same procedure. After 

discarding the supernatant, the cell pellet was resuspended in fresh RPMI medium 

supplemented with 10 % HS. Then, the cells were counted with trypan blue solution and 
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checked for viability. If more than 80 % of viable cells were present, the sample was 

considered for further experiments. If less than 80 % of viable cells were present, dead cells 

were removed using the Dead Cell Removal kit (Miltenyi Biotech). The kit contains magnetic 

microbeads labelled with annexin V that recognizes phosphatidyl serine exposed by dead 

cells. By magnetic separation, dead cells are retained in the column and non-labelled viable 

cells are collected in the effluent and can be applied to the experiment. This procedure was 

especially necessary for AML cell lines. 

 

2.2.1.3. Magnetic separation of cell subpopulations  

Magnetic assisted cell sorting (MACS) is a technology that enables separation of cell 

subpopulations. MACS technology mainly consists of reagents containing magnetic 

microMACSi beads and separation columns composed of magnetic matrices (Miltenyi, 

Muller et al. 1990). For the project, T cell subpopulations such as CD3 (referred to as Pan T 

cells) and CD8+ T cells have been isolated by negative selection to obtain untouched T cell 

populations. For both cell populations, isolated PBMCs were centrifuged at 300 g for 10 min 

and the supernatant was discarded. The pellet was then resuspended in 40 µL of MACS buffer 

(0,1 % BSA, 2 mM EDTA in D-PBS) per 107 PBMCs. Additionally, 10 µL of �³CD8+ T cell 

Biotin-Antibod�\�� �&�R�F�N�W�D�L�O�´ containing antibodies against CD4, CD15, CD16, CD19, CD34, 

CD36, CD56, CD123, TCR��/�/, and CD235 �I�R�U���&�'�����L�V�R�O�D�W�L�R�Q���R�U���³Pan T cell Biotin-Antibody 

Coc�N�W�D�L�O�´ containing antibodies against CD14, CD15, CD16, CD19, CD34, CD36, CD56, 

CD123 and CD235 for Pan T cell isolation, respectively was added to the cells and incubated 

for 5 min at 4°C. After incubation, 30 µL of MACS buffer and 20 µL of the corresponding 

MicroBead Cocktail were mixed with the cells. An additional incubation step of 10 min at 

4°C followed before cells were processed by magnetic separation. In this project, LS columns 

with a cell number capacity of 2*109 total cells have been used as suggested by the 

�P�D�Q�X�I�D�F�W�X�U�H�U�¶�V�� �L�Q�V�W�U�X�F�W�L�R�Q�� After placing the columns into the magnetic field, they were 

rinsed with MACS buffer. Then, the cell suspension was applied onto the column and the 

flow-through was collected in tubes. Due to the fact that this separation technique is a 

negative selection method, the flow-through contains the unlabelled and therefore untouched 

cells of interest. The other subpopulations of PBMCs retain in the column because cells are 

bound to microMACSi beads that are coated with highly specific antibodies against all other 

subpopulations except the one of interest. After isolation, cells were pelletized by 

centrifugation and resuspended in the corresponding medium that was needed for further 

experiments. The level of purity was checked by flow cytometry and samples were considered 

pure when at least 96 % of cells displayed the desired immunophenotype (CD3+ or CD8+). 
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2.2.2. ELISpot assay 

 

The Enzyme Linked Immuno Spot (ELISpot) assay detects various cytokine secreting cells on 

a single cell level (Fujihashi, McGhee et al. 1993, Merville, Pouteil-Noble et al. 1993) and is 

a highly sensitive technique for the quantification of cells (Czerkinsky, Nilsson et al. 1984). 

In this project, isolated PBMCs as described above have been measured for their cytokine 

secretion profile. Cytokine secreting cells were counted and the median frequency of cells 

specific for a certain cytokine secretion pattern was determined.  

Pre-incubation: For ELISpot assay, isolated PBMCs or magnetically separated PBMC 

subpopulations were pre-incubated overnight at 37°C in 5 % CO2 if not stated differently. 

Cells were therefore plated in 200 µL medium in 96-well U bottom plates and incubated in 

the presence or absence of stimuli. Stimulation of cells was done with either 

phythohemagglutinin (PHA), Candida albicans extract or with the CEF peptide pool 

consisting of viral peptides from the human Cytomegalovirus (CMV), Epstein-Barr virus 

(EBV) and influenza (common flu) virus (Mabtech) at a concentration of 2 µg stimulus/mL as 

positive controls. Cells were also stimulated with 1 µg WT1 peptide pool/mL, a pool of 

lyophilized WT1 peptides that consists of 15-mer sequences with 11 amino acids overlap, 

covering the complete sequence of the WT1 protein (Peptivator WT1, Miltenyi Biotech). 

Coating: 96-well Multiscreen plates for ELISpot analysis containing polyvinylidene fluoride 

(PVDF) membranes were activated with 100 ��L of 70 % ethanol for 2 min. Wells were 

washed with D-PBS in order to remove residual ethanol and coated overnight with 60 ��L of 

monoclonal cytokine antibodies as listed in table 9. Antibodies were incubated overnight at 

4°C. If  pre-incubation of cells was not required, primary antibodies were incubated for 2-3 

hours at 37°C in 5 % CO2. In the next step, ELISpot plates were washed five times with D-

PBS and then blocked with 100 ��L of 1x PELISPOT blocking buffer for 1 hour at 37°C 

incubation. After incubation, blocking buffer was discarded without washing wells.  

Incubation and detection: Cells with or without stimulus were transferred from the U plates 

to the ELISpot plates. After 48 hours of incubation at 37°C, wells were washed five times 

with D-PBS. Then, 60 µL per well of secondary detection antibodies diluted in PELISPOT 

buffer were added to the wells and incubated for 1 hour at room temperature (RT). After five 

additional washing steps with D-PBS, 100 ��L of diluted streptavidine-poly-horseradish 

peroxidase conjugate complex in PELISPOT buffer was added to the wells and plates were 

incubated for 1 hour at RT. After incubation, plates were washed with D-PBS as previously 

described. For spot detection, 50 ��L of 3,���¶���������¶-tetramethylbenzidine (TMB substrate) was 
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added and plates were kept for spot development a few minutes in the dark. The ELISpot 

procedure is summarized in figure 3.  

 

 
Fig. 3: Scheme of the ELISpot procedure 
The primary monoclonal antibody (mAb) coated on an ethanol-treated polyvinylidene difluoride 
(PVDF) membrane binds to the cytokine which is secreted by the cell upon stimulation. After cell 
removal, a secondary, biotinylated detection antibody specifically binding the respective cytokine is 
added to the mixture followed by a streptavidin-biotin-horse radish peroxidase conjugate complex. 
This enzyme complex is changed into an insoluble precipitate when a colorimetric substrate (TMB) is 
added. The resulting spots on the PVDF membrane corresponding to single cells can be counted and 
evaluated by the ELISpot reader.  
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2.2.3. FluoroSpot assay 

 

The FluoroSpot assay is a fluorescent-labelled ELISpot with the advantage that secretion of 

two cytokines can be measured simultaneously on a single cell level. Measuring simultaneous 

cytokine secretion is possible because detection antibodies are labelled with different 

fluorescent tags that are excited by a fluorescent lamp and two different filters. Both filters 

create separate images of the cytokines and the reader generates an overlay of both images. 

Therefore, fluorescent spots that correspond to single cells secreting either one or both 

cytokines can be counted.  

 

After isolation of PBMCs, cells were magnetically separated through MACS columns in 

different T cell subpopulations (Pan T cells and CD8+ T cells). For FluoroSpot analysis, T cell 

subpopulations were directly used after magnetic separation. The protocol for the assay 

procedure was adjusted according to the ma�Q�X�I�D�F�W�X�U�H�U�¶�V�� �J�X�L�G�H�O�L�Q�H�V�� �R�I�� �W�K�H�� �³Human IFN-�5/ 

granzyme B (GrB) FluoroSpot �.�L�W�´ from Mabtech. 150,000 cells per well were plated in 

200 µL RPMI medium supplemented with 10 % HS in 96-well U-bottom plates and incubated 

in the presence or absence of stimuli overnight at 37°C and 5 % CO2. Stimulation of cells was 

done with either PHA, Candida albicans extract or with peptide pools of CEF and WT1 used 

at the same concentration as for ELISpot assays. Preparation of a 96-well plate, a so called 

IPFL (short for Immobilon Plate Fluorescence Low) plate, was done by activating the wells 

with 15 ��L of 35 % ethanol for 1 min. This plate is equipped with a low-fluorescent PVDF 

membrane and clear for suitable fluorescent reading. Wells were washed five times with 

200 µL D-PBS in order to remove residual ethanol and coated overnight with 100 ��L of 

monoclonal antibodies against IFN-�5 and granzyme B at 4°C. In the next step, ELISpot plates 

were washed five times with D-PBS and then blocked with 200 ��L of the same medium 

containing 10 % of serum as used for the cell suspension. Incubation was done for at least 

30 min at RT. After incubation, medium was removed without additional washing. For cell 

incubation, pre-incubated cells were transferred from the 96�±well U-bottom plates to the 

FluoroSpot plate and placed in the incubator for 24-48 hours at 37°C, 5 % CO2. Plates were 

wrapped in foil to prevent evaporation. After incubation, wells were washed five times with 

D-PBS to remove cells. Then, 100 µL/well of secondary detection antibodies, tagged with 

fluorescein isothiocyanate (FITC) for IFN-�5 and cyanine 3 (Cy3) for granzyme B diluted in 

D-PBS-0.1 % BSA buffer, were added to the wells at a concentration of 2 µg/mL and 

incubated for 2 hours at RT. After five washing steps with D-PBS, 100 ��L of diluted anti-

fluorescent antibodies was added to the wells and plates were incubated for another hour at 
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RT without light exposure. After incubation, plates were washed with D-PBS as previously 

described and 50 ��L of fluorescence enhancer solution was added and left on the wells for 

15 min at RT. The procedure of cell labelling is summarized in figure 4. 

 

 

 

 

Fig. 4: Scheme of the FluoroSpot procedure 
A mixture of primary monoclonal antibodies (mAB) specific for the cytokines IFN-�[ and granzyme B 
are coated on an ethanol-treated polyvinylidene fluoride (PVDF) membrane. In the presence of 
stimulated cells, these two cytokines are released and bound by the antibodies. After cell removal, a 
mixture of secondary fluorescence-labelled detection antibodies is added. Green fluorescence (FITC) 
is labelled indirectly to anti-IFN-�[ via a biotinylated antibody, red fluorescence (Cy3) is directly 
labelled to anti-granzyme B. Enhancer solution is added to the complex and resulting spots can be 
counted and evaluated with the ELISpot reader.  
 

 

2.2.4.  Fluorescence activated cell sorting (FACS) analysis 

 

Flow cytometry is a method for analyzing expression of cell surface and intracellular 

molecules that can be used for cell characterisation. The technique is predominantly used to 

detect and count individual cells by passing in a stream through a laser beam. For analysis, 

cells have to be tagged by antibodies labelled with a fluorophore. Then, the cell mixture is 

applied to the stream flowing through a nozzle that allows for single cell counting. As each 

cell passes through the laser the fluorophore is excited and light will be scattered. Sensitive 
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photomultiplier tubes equipped with a set of filters and mirrors detect both scattered light and 

fluorescence emissions. Each fluorophore has a characteristic peak excitation and emission 

wavelength. The energy of the light photons is converted into an electronic signal which is 

measured by a detection device. When cells are labelled with a single fluorophore, data are 

usually plotted by the software in form of histograms, dot plots, density plots or contour plots. 

Overlapping emission spectra by two different fluorophores excited by the same laser have to 

be compensated to ensure that the fluorescence detected in a particular detector derives from 

the fluorochrome that is being measured (BD Biosciences 2000). In this project, flow 

cytometry was mainly used for phenotypic analysis of cells pre and post expansion and for 

assessing the purity of isolated subpopulations after MACS technology.  

 

 

2.2.5. WT1 expression levels in AML patients 

 

WT1 expression levels from AML patients in relapse and from patients pre and post 

transplantation were measured with quantitative real time PCR in the Department of Bone 

Marrow Transplantation in Essen. After collecting RNA samples from PBMCs of more than 

200 patients and healthy controls, WT1 mRNA levels relative to GAPDH, a housekeeping 

control gene, were measured and values were kindly provided for this project. Relative WT1 

expression levels were evaluated using descriptive statistics. The aim of this analysis was the 

determination of a correlation between WT1 expression levels and AML prognosis to answer 

the question whether WT1 could be used as a putative prognostic marker for relapse. Relative 

WT1 mRNA expression levels were correlated to the time between sample analysis and 

transplantation, in case of patients post transplantations, and relapse occurrence in case of 

relapsed AML patients. Since WT1 is a putative tumor-associated antigen and highly enriched 

on AML blasts (Inoue, Sugiyama et al. 1994, Menssen, Renkl et al. 1995), its expression level 

should be increased during relapse and decreased during reconstitution of the bone marrow 

after transplantation. 
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2.2.6. Expansion of WT1-specific cells 

 

Expansion of WT1-specific cells depends on various factors. The quality of the primary 

material, which is mainly peripheral blood from AML patients, is one of the crucial factors. In 

general it is better to use freshly isolated cells instead of thawed cultures. Another factor is the 

initial cell number after isolation which can be limited in AML patients. The amount of WT1-

specific cells in AML patients is dependent on the presence of leukemic blasts in the 

peripheral blood which is the limiting factor before starting an ex vivo expansion experiment. 

Since heavily proliferating blasts gradually replace haematopoietic cells in the bone marrow, 

they are likely to migrate into the periphery over time. However, this is not the case in every 

patient and the successful isolation of a feasible amount of AML blasts from peripheral blood 

strongly depends on the frequency and severity of the disease. For this project, different 

protocols for optimal cell expansion after isolation from peripheral blood have been tested. 

Expansion protocols have been established by using freshly isolated blood cells from healthy 

donors. These experiments were done prior to the expansion of WT1-specific cells from AML 

patients and are not subject of this project. In the following section, the most suitable protocol 

for appropriate cell expansion is described and variations are stated if applicable. Expansion 

of specifically stimulated cells was monitored with ELISpot assay and cells were therefore 

taken from expansion cultures at distinct time points.  

Day 0: If frozen material was used, isolated PBMCs of AML patients were thawed as 

previously described and incubated overnight in fresh RPMI 1640 medium supplemented 

with 10 % HS.  

Day 1: The next day, cells were washed in order to remove dead material, counted and 

adjusted to 107 cells/mL. A subset of cells was analysed by flow cytometry for their 

immunophenotype. After thawing, CD14+ monocytes could hardly be detected in the cell 

culture. If needed, dead cells remaining after centrifugation were removed using the Dead 

Cell Removal Kit (Miltenyi, Muller et al. 1990). In case of freshly isolated PBMCs, cells 

were treated likewise except the overnight incubation from day 0 to day 1. Cells for negative 

and positive controls in ELISpot assay were removed as aliquots from the bulk culture and 

kept in 96-well U-bottom plates until analysis. Positive controls were stimulated with 2 

µg/mL PHA and CEF peptide pool in a total of 200 µL culture per well. Unstimulated cells 

were used as negative controls. Cell numbers for ELISpot analyses varied according to the 

measured cytokine. In parallel, regardless of fresh or thawed cells, cultures were stimulated 

with 1 µg WT1 peptide/mL culture. Cultures were incubated for 20-24 h at 37°C and 5 % 

CO2.  
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Day 2: Cultures were washed, counted and checked for viability by Trypan Blue staining. 

Enrichment of untouched Pan T cells or untouched CD8 positive T cells was done according 

to the instructions of the isolation kit from Miltenyi as described in section 2.2.1.3. Purity of 

resulting subpopulations was assessed by flow cytometry. Negative fractions bound to the 

column (i.e. all other cells excluding the untouched fraction) were eluted, centrifuged, 

irradiated with 30 Gy, and used as autologous feeder cells for antigen presentation in the 

expansion cell culture. T cell cultures and irradiated feeder cells were resuspended in RPMI 

1640 + 10 % HS. 

 

After isolation, different T cell activation strategies have been tested. One strategy to directly 

enrich for CD8+ CD137+ T cells was the subsequent use of the CD137 MicroBead Kit from 

Miltenyi Biotech after the isolation of CD8+ T cells. CD137 is a surface marker expressed on 

activated CD8+ T cells but does not occur on resting cells (Wolfl, Kuball et al. 2007).  

A second activation strategy was deviated from the T cell activation/expansion kit from 

Miltenyi Biotech, which employs anti-biotin MACSiBead particles that are coupled to 

biotinylated antibodies against the human surface markers CD2, CD3 and CD28 for the 

activation of resting T cells. MACSi beads also mimic antigen presentation as another 

stimulus for T cell activation. Independent of T cell activation strategies, cultures were 

resuspended in TexMACS expansion medium supplemented with a certain cytokine cocktail. 

This cocktail consisted of 200 IU/mL Proleukin (IL-2), 10 U/mL of each IL-7 and IL-15 and 

0.3 U/mL IL-21. Cells were sowed with a density of 2.5*106 cells/cm2 in an appropriate cell 

culture plate. In case of artificial bead activation, different bead-to-cell ratios were tested. For 

the third expansion strategy, culture conditions with autologous, irradiated feeder cells were 

determined and different ratios of feeder cells-to-effector cells were employed. The expansion 

strategy with MACSi bead activation was considered most effective and therefore 

summarized in figure 5. 
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Fig. 5: WT1-specific cell activation and expansion strategy with MACSi bead particles  
After magnetic separation of PBMCs into T cell subpopulations, unlabelled Pan T cells are cultured in 
TexMACS expansion medium with the addition of artificial MACSi beads that mimic antigen-
presenting cells. Expansion of WT1-specific T cells is supplemented with a cytokine cocktail of IL-2, 
IL-7, IL-15 and IL-21 that support cell expansion into functional memory cells, adapted from Miltenyi 
Biotech  
 

Day 4 and 7: Cells were observed microscopically for viability and appearance. Images were 

taken for monitoring colony growth. Afterwards, half of the medium was removed and the 

remaining cell culture was pelletized at 500 g for 5 min. Pellets were resuspended in fresh 

TexMACS medium supplemented with the cytokine cocktail that was adjusted to its original 

concentration. Cultures were incubated at 37°C and 5 % CO2.  

Day 9/10: For cell recovery from expansion medium, cells were washed three times with D-

PBS and pelletized at 500 g for 5 min. Expansion medium was replaced by RPMI 1640 with 

10 % HS for cell recovery. Cultures were kept at a density of 2*106 cells/mL and incubated at 

37°C and 5 % CO2 for 24 hours.  

Day 10/11: Cells were observed microscopically for viability and appearance and images 

were taken. Cells were then counted and adjusted to 107 cells per 1 mL medium. For 

restimulation, cultures were treated with 1 ��g WT1 peptide pool/mL culture. Prior 
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stimulation, cells for ELISpot analysis were removed from the culture and processed in 96-

well plates described on day 1. Cultures were incubated at 37°C and 5 % CO2 for 24 hours.  

Day 11/12: After restimulation with WT1 peptide and cytokines, cultures were transferred to 

fresh expansion medium. With every medium change from culture medium to expansion 

medium, cytokines and artificial MACSi beads were added at the same concentrations as 

before. For medium change, cultures were pelletized at 500 g for 5 min, counted and 

resuspended at a density of 2.5*106 cells/mL culture and further incubated  

Day 14/15 and 16/17: Cells were processed as described for day 4 and 7. During this time, 

cultures were regularly observed and images were taken for cell growth monitoring. After this 

expansion period, another expansion round was initiated as described for day 9/10. For 

functional analysis, artificial MACSi beads were removed as follows: Cultures were harvested 

by centrifugation and resuspended in MACS buffer at a density of 107 cells/mL and 

transferred to 15 mL Falcon tubes. The tubes were placed in the magnetic field of the 

MACSiMAG Separator, a magnetic device from Miltenyi Biotech. After adherence of bead 

particles to the tube walls for 2 min at RT, the supernatant with bead-depleted cells was 

carefully removed and the procedure was repeated. Bead-free supernatants were collected in a 

new tube and collected cells were ready for further analysis. T cell activation was monitored 

in ELISpot assays by measuring cytokine secretion of IFN-�5, IL-10, granzyme B and perforin. 

Expanded cells were considered active when cells stimulated with the WT1 peptide pool 

resulted in twice as much cytokine secreting cells than controls without stimulation. 

 

 

2.2.7. Europium Release assay  

 

The Europium TDA (short for �������¶�����¶���´-terpyridine-�������-́dicarboxylic acid) (EuTDA) release 

�D�V�V�D�\�� �E�D�V�H�G�� �R�Q�� �3�H�U�N�L�Q�(�O�P�H�U�¶�V�� �'�(�/�)�,�$�� �W�H�F�K�Q�Rlogy is a non-radioactive cytotoxicity assay 

that offers sensitivity comparable to the well-known 51Cr release assay. In this project, the 

assay aimed at measuring the amount of lysed tumor cells by functional WT1-specific 

effector cells. Instead of using radioactive chromium, target cells are loaded with an 

acetoxymethyl ester of fluorescence enhancing ligand (BATDA, short for bis (acetoxymethyl) 

2�����¶�����¶�����´-terpyridine-�������-́dicarboxylate)) which can enter the cell through the cell 

membrane. Inside the cell, a hydrophilic ligand (TDA) is formed due to hydrolysis of ester 

bonds. As a consequence, TDA stays in the cytoplasm of target cells since it can no longer 

pass the membrane (Blomberg, Granberg et al. 1986).  
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Fig. 6: Principle of Europium Release Assay  
Target cells are labelled with �������¶�����¶���´-terpyridine-�������-́dicarboxylic acid (TDA) ligand, which is 
release�G�� �X�S�R�Q�� �W�D�U�J�H�W�� �F�H�O�O�� �O�\�V�L�V�� �E�\�� �V�S�H�F�L�I�L�F�� �H�I�I�H�F�W�R�U�� �F�H�O�O�V���� �$�I�W�H�U�� �F�\�W�R�O�\�V�L�V���� �7�'�$�� �L�V�� �S�U�H�V�H�Q�W�� �L�Q�� �W�K�H�� �F�H�O�O�V�¶��
supernatant and labelled with Europium solution resulting in a stable, fluorescent complex. 
Fluorescence is then measured with time-resolved fluorometry.  
 

As summarized in figure 6, TDA is released upon lysis of target cells by effector cells and 

coupled to Europium solution, forming a highly stable chelate complex whose fluorescence 

can be measured with time-resolved fluorometry. 

 

Prior to target cell labelling, AML cell lines were checked for viability. Cell numbers were 

adjusted to 10,000 cells/well. Experiments were performed in 96-well V bottom plates and 

cells were cultured in RPMI 1640 medium supplemented with 10 % HS for analysis. An 

appropriate number of target cells needed for analysis was washed in D-PBS in order to 

remove culture medium containing 10 % of FCS. Cells were adjusted to 106 cells/mL for 

labelling. 2.5 µL/mL cell suspension of the fluorescent ligand BATDA was added and cells 

were incubated for 25 min at 37°C and 5 % CO2. The cells were then washed three times with 

D-PBS and the cell density was adjusted to 105 cells/mL for analysis. PBMCs as effector cells 

of AML patients were stimulated with the appropriate peptide and adjusted to a target cell : 

effector cell ratio of 1:4 to 1:100. Before loading target cells with varying concentrations of 

effector cells, cells for background and spontaneous release were added. For the background 

control, 100 µL of cell supernatant without target cells and 100 µL medium was added in 

triplicates to the wells. For measuring spontaneous release, 100 µL of target cells without 

effector cells was incubated with 100 µL medium. For maximum release, 100 µL of target 

cells was incubated with 100 µL medium supplemented with 15 µL of DELFIA lysis buffer.  
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For cell lysis experiments, 100 µL of target cells were loaded with the respective amount of 

effector cells and the volume was adjusted to 200 µL with fresh medium. The plate was then 

incubated for 2.5 hours at 37°C. Fifteen min before incubation ended, lysis buffer was added 

to the corresponding control well for maximum release. The plate was centrifuged at 500 g for 

5 min and 20 µL of supernatant from every well was transferred to a DELFIA microtitration 

plate containing 200 µL of Europium solution/well. The plate was further incubated for  

15 min at RT on a plate shaker. The signal was measured with time-resolved fluorometry 

using the Wallac Delfia 1232 fluorometer from Perkin Elmer. For measurement, the 

instrument used the following parameters: 

 

Tab. 15: Parameter settings for fluorometry 
Parameters Setting 

Assay type Counts 

Blanks 0 

Unknown Replicates 12 

Sysset: Flash cycle 1.00 

Delay time 0.40 

Window time 0.40 

Dead time 10 

Emission filter 615 nm 

Excitation filter 320 nm 

 

After counting fluorescence, results were calculated. The background control was subtracted 

from spontaneous and maximum releases and percentage release was determined by counts 

with the following formulas: 

 

% spontaneous release = 
�æ�ã�â�á�ç�Ô�á�Ø�â�è�æ���Ö�â�è�á�ç�æ�?�Õ�Ô�Ö�Þ�Ú�å�â�è�á�×���Ö�â�è�á�ç�æ��

�à�Ô�ë�Ü�à�è�à���Ö�â�è�á�ç�æ�?�Õ�Ô�Ö�Þ�Ú�å�â�è�á�×���Ö�â�è�á�ç�æ
�Û�s�r�r 

 

% specific release        = 
�à�Ø�Ô�æ�è�å�Ø�×���Ö�â�è�á�ç�æ�?�O�L�K�J�P�=�J�A�K�Q�O���Ö�â�è�á�ç�æ��

�à�Ô�ë�Ü�à�è�à���Ö�â�è�á�ç�æ�?�æ�ã�â�á�ç�Ô�á�Ø�â�è�æ���Ö�â�è�á�ç�æ
�Û�s�r�r 
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2.2.8. Cell lysis of CMV positive target cells by CMV-specific effector cells 

 

In cooperation with the company Cell Medica, a cell lysis experiment was conducted. For this 

purpose, a cell lysis assay was established. In order to establish experimental conditions, 

K562 cells were taken as target cells. For observation of target cell lysis, e.g. by apopotosis, 

during microscopy, the FITC Annexin V/ Dead Cell Apoptosis Kit from Invitrogen was used. 

The following protocol was developed for K562 cells treated with chlorpromazine, an 

endocytosis inhibitor, for apoptosis induction. Therefore, titration of chlorpromazine was 

performed prior to the actual experiments. Negative controls were prepared by incubating 

K562 in the absence of chlorpromazine. After incubation, target cells were washed with cold 

D-PBS (an ion-free formulation without calcium and magnesium as annexin will desolve) and 

propidium iodide (PI) and annexin �Z�R�U�N�L�Q�J�� �V�R�O�X�W�L�R�Q�V�� �Z�H�U�H�� �S�U�H�S�D�U�H�G�� �D�F�F�R�U�G�L�Q�J�� �W�R�� �W�K�H�� �N�L�W�¶�V��

instructions. 106 cells/mL were selected as the best cell density for incubation in 24-well 

suspension plates. 10 µL of the annexin V-FITC conjugate and 1.5 µL red-fluorescent PI 

working solution containing 100 µg PI/mL was added to 100 µL of K562 suspension and cells 

were incubated for 15 min at RT before visualization. The incubation temperature during 

microscopy was kept at 37°C in the built-in conditioned cell incubation chamber. For 

analysis, cells were separated into different subgroups according to the intensity of their 

fluorescent signal. Living cells show no or little fluorescence while apoptotic cells show a 

high degree of surface fluorescence. Viable cells have intact membranes impermeable for PI, 

thereby it stains only dead cells. Apoptotic cells appear with green surface fluorescence, dead 

cells show both membrane staining by annexin V and nuclear staining by PI. Cells were 

observed for 2 hours. Annexin bleached out over time and had to be added again in case of 

longer exposure. 

 

After setting up experimental conditions with K562 cells, experiments were conducted with 

T2 cells as targets. As described in 2.1.6. T2 cells are HLA-A*02 positive and have a defect 

in antigen processing. Therefore, T2 cells can be loaded with exogenous peptides that are 

presented via HLA-A*02 (Salter, Howell et al. 1985). Freshly isolated or thawed PBMCs of a 

CMV-HLA-A*02-positive healthy control were selected as effector cells and resuspended in 

culture medium. On the same day, effector cells were stimulated with the CMV peptide pp65 

NLVPMVATV to activate the cells. Cells were incubated overnight at 37°C and 5 % CO2. To 

assure that NK cells do not take over effector cell function, NK cell removal was performed 

with MACS technology. The NK cell-negative fraction (CD56-) was taken into culture and 

incubated for 6 days at 37°C and 5 % CO2. During this time, daily observation of cell growth 
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and viability was crucial. After incubation, the culture was again magnetically separated into 

CD3+ and CD3- fractions and CD3+ cells were restimulated with the CMV peptide. After 

overnight incubation, cells were prepared for analysis. In the meantime, T2 target cells were 

counted and checked for viability. In the next step, target cells were loaded with the CMV 

peptide for 15 min at 37°C and 5 % CO2. Cell cultures of effector and target cells were then 

mixed at a ratio of 10:1 and transferred into a 24-well suspension plate for analysis. Controls 

were prepared as described for K562. T2 cells stained with annexin V were carried along with 

the sample in a control well that did not contain effector cells. Additionally, a culture of pure 

effector cells was observed in order to see if incubation conditions were appropriate during 

microscopic analysis as shown in figure 7.  

 

 
Fig. 7: Loading of a 24-well plate with effector cells, target cells and corresponding controls 
Target cells (T2) are cultured in control wells without dye (T2, B2) and with either propidium iodide 
(T2+PI, B4) or annexin (T2+annexin, B5). As a control for effector cell viability, effector cells (EC) 
are cultured alone (C2) and in addition with T2 cells, propidium iodide and annexin (D4) for cell 
lysis. The colour code indicates the fluorescent colour of the dyes. 
 

In the next experiment, CD8+ HLA-A*02 positive T cells specific for the CMV epitope pp65 

NLVPMVATV (Gratama, van Esser et al. 2001) were purified and confirmed as 98 % pure in 

flow cytometry. Cells were then cultured in RPMI 1640 supplemented with 10 % HS and 

incubated at 37°C and 5 % CO2 until use. In the meantime, the cell line T2 was cultured and 

cells were counted and checked for viability by Trypan Blue staining. 50.000 T2 cells in  

250 µL medium were loaded with 2.5 µL pp65 NLVPMVATV peptide and incubated for  

15 min at 37°C and 5 % CO2. In the next step, CD8+ effector cells were added to T2 target 

cells in a 24-well suspension plate at a ratio of 10:1. Immediately after combining effector and 

target cells, 5 µL of FITC-coupled annexin V was added to 500 µL of the cell suspension and 

the culture was observed under the microscope for 2 hours. After 2 hours another 5 µL of the 
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dye was added because of bleaching. Control wells containing target cells with the addition of 

either red-fluorescent PI or FITC-labelled annexin V were treated in the same manner. Cell 

cultures were visualised microscopically with Zeiss Axio Observer X. Results were displayed 

in time-lapse images. 

 

 

2.2.9. Western Blot to determine WT1 protein level in AML cell lines  

 

The WT1 protein is 52-54 kDa in size (Morris, Madden et al. 1991). In previous experiments, 

WT1 expression in fractionated protein lysates (nuclear and cytoplasmic) was found to be 

almost not detectable by Western Blot analysis. Therefore, all other experiments were done 

with the whole cell lysate.  

Sample preparation: Cells of AML cell lines were counted and tested for viability. For 

analysis, 1*106- 107 cells/100 µL medium were removed from cell culture and centrifuged at 

1000 g for 1 min. After discarding the supernatant, total cell lysates were prepared by 

solubilising cells in sample buffer. Cell extracts were denatured at 95°C for 3.5 min and 

sonicated for 5-10 sec with 5 bursts each at 50 % amplitude. 

Gel preparation and electrophoresis: After appropriate preparation of the running and 

stacking gel containing a mixture of polyacrylamide and acrylamide (PAA) in a ratio of 

37.5:1, the electrophoresis chamber was adjusted and filled with gel running buffer. 5 µL of 

�3�D�J�H�5�X�O�H�U�Œ and 20 µL of sample adjusted to the same cell number were loaded onto the gel. 

The electrophoresis unit was then connected with a power supply and the electrophoresis was 

started at 20 mA for approximately 20 min until the dye front has completely migrated into 

the running gel. Afterwards the current was increased to 400 mA until the dye front reaches 

the last 2 mm of the bottom of the gel. This distance was considered as complete 

electrophoresis. Gels were dislocated from glass plates and prepared for membrane transfer. 

Transfer of proteins: The PVDF membrane was prepared as follows: for activation, the 

membrane was submerged in 100 % methanol for 10 sec and then placed in de-ionized water 

until assembly of transfer unit done. For assembly, the following stacking with wet 

components was done: sponge on anode plate �:  2 Whatman filter papers (wet in transfer 

buffer) �:  PVDF membrane �:  gel �:  2 Whatman filter papers �:  sponge �:  cathode plate. 

The transfer unit was filled with transfer buffer and transfer was initiated at 4°C. A constant 

current of 400 mA was applied for 120 min. After transfer, the membrane was prepared for 

immunostaining. 
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Immunostaining: The electrophoresed proteins were transferred to a PVDF membrane and 

incubated in blocking solution for 1 hour at room temperature on a shaker. After one hour, the 

blocking buffer was poured off and the membrane was probed with 1 µg/mL of goat-�.-human 

WT1 polyclonal antibody (1:1,000) in blocking solution and incubated overnight at 4°C on a 

shaker. The next day, the membrane was washed with blotting buffer 5 times for 10 min. The 

membrane was then incubated for one hour at RT with the secondary antibody solution 

containing horseradish peroxidase (HRP)-conjugated donkey-�.-goat antibody (1:10,000). 

After incubation, the membrane was washed with buffer as described and treated with 

substrate solution (Thermo Fisher) for protein detection. In order to stop the colour 

development, the membrane was rinsed with de-ionized water. 

 

 

2.2.10. Intra- and extracellular staining of WT1 protein 

 

For immunofluorescent labelling, AML cells were counted and checked for their �F�H�O�O�V�¶��

viability. For intracellular staining in flow cytometry the cellular membranes had to be 

permeabilizied �Z�L�W�K�R�X�W�� �O�R�V�L�Q�J�� �W�K�H�� �F�H�O�O�V�¶�� �L�Q�W�H�J�U�L�W�\���� �)�L�[�D�W�L�Q�J�� �D�J�H�Q�W�V�� �Vuch as paraformaldehyde 

(PFA) stably cross-link protein structures on the cell surface before membranes are 

permeabilizied by Triton X 100 or other detergents (Sander, Andersson et al. 1991).  

4*106 cells were washed with D-PBS and incubated in 4 % PFA for 20 min at 4°C in the dark 

for fixation. Afterwards cells were washed with isotonic solution supplemented with 

decreasing concentrations of Triton X 100 (from 0.1- 0.01 %) and 5 % donkey serum. Cells 

were incubated for 30 min at 4°C in the dark with the primary antibodies of either goat-�.-

human WT1 or the isotype control, respectively. Unbound antibodies were removed by 

washing the cells with isotonic solution and 0.01 % Triton X 100 in three centrifugation steps. 

For indirect staining, a second incubation with a fluorescence-coupled antibody specific for 

the primary antibodies (here: donkey-�.-goat-PE) followed. After incubation of 20-30 min at 

4°C in the dark, cells were washed twice with isotonic solution and resuspended in 100 µL 

FACS buffer for immediate analysis. For extracellular staining, 1*106 cells were stained with 

the unconjugated primary WT1-specific antibody or corresponding isotype control antibodies. 

Therefore cells were pelletized and pellets were resuspended in buffer containing an excess 

amount of antibodies, which was determined by titration in previous experiments, for 15 min 

at 4°C in the dark. Unbound antibody was washed off with FACS buffer containing D-PBS 

supplemented with 0.5-1 % BSA. The second antibody specific for the primary antibody was 

labelled with phycoerythrin (PE) and incubated with the cells for 20 min at 4°C in the dark. 
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After washing steps as described above, cells were directly used for flow cytometry. Cell 

staining was analysed on an FC 500 (Beckman Coulter) flow cytometer. After gating on size 

and granularity of cells in the forward/side scatter (FSC/SSC), 104 events were analysed with 

Kaluza® Flow analysis software from Beckman Coulter. The mean fluorescence intensity 

(MFI) of the isotypic control staining was compared to the MFI of the WT1-specific staining 

and shown as histograms. 

 

 

2.2.11. WT1 mRNA level in AML cell lines 

 

WT1 expression levels were also determined on mRNA level in AML cell lines. To assess 

expression levels of WT1 in AML cell lines for comparison to AML patient samples, RNA 

was extracted from cell lysates by phenol-chloroform-precipitation and cDNA was produced 

by reverse transcription. Subsequently, quantitative PCRs were performed employing specific 

primers for WT1 and a housekeeping gene (GAPDH), respectively. To obtain a comparable 

value for the expression of WT1, it had to be normalized to the corresponding GAPDH 

expression level. These experiments were done and kindly provided by the Department of 

Bone Marrow Transplantation at the University Hospital in Essen. 

 

 

2.2.12. Statistical analysis 

 

For statistical analyses, GraphPad Prism 6 (GraphPad software, La Jolla, USA) was used. 

Data of cell frequencies were analysed with descriptive statistics and are indicated as median 

and interquartile ranges or as mean and standard error of the mean (SEM). The nonparametric 

t test has been used for comparing non-Gaussian distributed groups of data measured with the 

same analyte. In order to measure how well the relationship between two variables can be 

described, the Spearman rank correlation coefficient r was calculated and interpreted by the 

�'�D�Q�F�H�\�¶�V�� �D�Q�G�� �5�H�L�G�\�¶�V�� �F�D�W�H�J�R�U�L�V�D�W�L�R�Q��(Dancey and Reidy 2004). The probability is given as 

values that were considered significant with p < 0.05. 
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3. Results 

 

3.1. Analysis of WT1-specific effector cells 

3.1.1. Cytokine secretion of WT1-specific cells  

 

Subpopulations of immune cells have different cytokine secretion profiles (Street and 

Mosmann 1991, Ziegler-Heitbrock, Ströbel et al. 1992). Immune cells in the human body 

fulfil different tasks and secrete cytokines upon antigen stimulation to activate or stimulate 

other cells. For the generation of an immunotherapy, it is important to know which cell 

population secretes which cytokines. A pro-inflammatory response employs cellular agents in 

order to attack the tumor environment. Measuring an anti-inflammatory response would rather 

indicate regulatory immune cell function. In order to characterize WT1-specific cells, 

cytokine secretion profiles were measured with ELISpot assay. These experiments gave a first 

hint how cells behave on WT1 peptide stimulation. A broad range of pro-inflammatory  

(IFN-�5, granzyme B, perforin���� �7�1�)�.���� �,�/-2, IL-12, IL-17a) and anti-inflammatory  

(IL-4, IL-10, IL-13) cytokines was tested (Sanchez-Correa, Bergua et al. 2013). In the 

ELISpot assay, cytokine secretion results in different spot sizes and requires individual 

counting for each cytokine. Whereas pro-inflammatory cytokine secretion mainly appears as 

big spots, anti-inflammatory cytokine secretion varies from small to tiny spots. Resulting 

spots are converted into frequencies of WT1-specific immune cells which is shown in  

figure 8. 

 

For the establishment of assay conditions, experiments were firstly set up with PBMCs of 

healthy controls. Freshly isolated PBMCs from a buffy coat, a concentrated leukocyte 

suspension, of 3 healthy individuals were divided into two parts where one part was used for 

negative selection of CD3 cells via magnetic separation to isolated untouched Pan T cells. 

The other part remained as the unfractioned PBMC fraction. Cells of both fractions were 

either stimulated with the mitogen PHA (1 ��g/mL) or the antigen Candida albicans (62.25 

µg/mL) as positive controls or with the peptide pool of the human WT1 protein (1 ��g/mL). 

Unstimulated cells were used as a negative control. Both fractions were stimulated with 

peptides overnight and further incubated for 2 days for measuring cytokine secretion. 
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Fig. 8: Mean frequencies of WT1-specific PBMCs and Pan T cells in healthy controls  
Cytokine secretion was analysed in RPMI 1640 with 10% human serum pool for healthy controls. Pan 
T cells were isolated via magnetic separation. Cells were used without stimulus and with WT1 peptide 
stimulation and measured in ELISpot assay. Mean frequencies of WT1-specific cells were calculated 
and shown with standard error of the mean (GrB= granzyme B, n=3) 
 

The PBMC fraction that consists of monocytes, B cells and NK cells next to the T cell 

fraction, secreted both pro- and anti-inflammatory cytokines (figure 8, n=3). The production 

of IFN-�5, IL-10, granzyme B, IL-12, IL-13 and IL-17a was higher in the PBMC fraction than 

in the Pan T cell fraction. Pan T cells also secreted cytokines belonging to both immune 

responses but mainly IL-10 and TNF�. upon WT1 stimulation. In case of IL-10, a 

representative cytokine in anti-inflammatory immune response, the Pan T cell fraction only 

secreted one fifth compared to the whole PBMC fraction. This leads to the conclusion that 

PBMC subpopulations such as monocytes mainly secrete IL-10 and are therefore contribute to 

regulatory function.  

 

In the next experiments the PBMC and Pan T cell fraction was further separated into 

subpopulations and analysed for cytokine secretion. PBMCs were magnetically separated into 

two different T cell subpopulations (CD4+ and CD8+), an NK cell population (CD56+) and a 

monocytes population (CD14+). Resulting WT1-specific frequencies are shown in figure 9. 
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Fig. 9: Cytokine screening analysis of cell subpopulations 
PBMCs of one healthy control were separated into different subpopulations by magnetic cell isolation 
(MACS columns). CD4 and CD8 positive T cells, NK cells and monocytes were analysed in ELISpot 
assay. Cell cultures were pre-incubated with WT1 peptide overnight and further incubated for 48 h 
before ELISpot analysis. Frequencies of WT1-specific cells are shown in percent (GrB= granzyme B). 
 

Whereas the CD4+ T helper cells secreted perforin, IL-12 and IL-13, the cytotoxic CD8+ T 

cell fraction only secreted pro-inflammatory cytokines such as perforin, TNF�. and IL-12. The 

NK cell fraction that is said to have a similar secretion profile as CD8+ T cells did not secrete 

any cytokine in this experiment. Stimulated monocytes secreted both cytolytic enzymes and 

the cytokines IL-10, IL-13 and IL-17a. In conclusion, immune cells from the same bulk 

culture of a healthy individual have different cytokine secretion profiles and WT1 stimulation 

results in very low cell frequencies.  

 

Because of these low frequencies in the measured subpopulations and due to limited patient 

material, it was decided that following experiments were conducted with the entire PBMC 

fraction. For analysis, IFN-�5 as a pro-inflammatory cytokine and cytolytic enzymes granzyme 

B and perforin were selected. Additionally IL-10 was measured to monitor potential 

regulatory immune response by monocytes present in the PBMC fraction. In the following 

experiments, WT1-specific, cytokine secreting PBMCs were characterised and compared in 

healthy individuals (figure 10) and AML patients pre and post transplantation (figure 11 and 

12). As WT1 is a leukemia-associated antigen, it is overexpressed in malignant cells but can 

be also found in normal tissue. This would explain that even in healthy controls some WT1-

specific spots can be detected by ELISpot but median frequencies are equal to zero for all 

measured cytokines.  
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Fig. 10: Median frequencies of WT1-specific cells in healthy controls 
PBMCs of healthy donors (n=16) were pre-incubated without stimulus and with WT1 peptide. 
Cytokine secretion of IFN-�[, IL-10, granzyme B (GrB) and perforin was measured in RPMI 1640 
medium supplemented with 10% human serum pool in ELISpot assay. Median frequencies of WT1-
specific cells and interquartile ranges are shown. 
 

Compared to healthy controls (figure 10) WT1-specific spots were slightly higher in patients 

pre transplantation (figure 11). Even if the median frequencies for WT1-specific cells were 

similar to the ones of healthy controls, the range of detected spots was broader. Figure 11 

shows that AML patients (n=18) have different cytokine profiles especially for IL-10. In some 

patients high frequencies of IL-10 producing cells could be measured. This also holds true for 

some cells secreting perforin. IFN-�5 and granzyme B production was presumably low because 

AML patients do not have a fully functional immune system to fight leukemic blasts.  
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Fig. 11: Median frequencies of WT1-specific cells in AML patients pre transplantation 
PBMCs of AML patients pre transplantation (n=18) were pre-incubated without stimulus and with 
WT1 peptide. Cytokine secretion of IFN-�[, IL-10, granzyme B (GrB) and perforin was measured in 
AIMV medium in ELISpot assay. Median frequencies of WT1-specific cells and interquartile ranges 
are shown. 
 

AML patients post transplantation (n=33) showed comparable median frequencies of WT1-

specific cells to the other two groups as represented in figure 12. However, interquartile 

ranges were even broader compared to ranges in healthy controls and AML patients pre 

transplantation. Single spots counts measured for all cytokines were higher in AML patients 

post transplantation than in the other cohorts. IL-10 secretion was detected highest among the 

four measured cytokines which could be dependent on the number of monocytes in the 

�S�D�W�L�H�Q�W�¶�V���3�%�0�&���S�R�S�X�O�D�W�L�R�Q���� 
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Fig. 12: Median frequencies of WT1-specific cells in AML patients post transplantation 
PBMCs of AML patients post transplantation (n=33) were pre-incubated without stimulus and with 
WT1 peptide. Cytokine secretion of IFN-�[, IL-10, granzyme B (GrB) and perforin was measured in 
AIMV medium in ELISpot assay. Median frequencies of WT1-specific cells and interquartile ranges 
are shown.  
 

Median frequencies for all three cohorts are summarized in table 16 and do not differ 

significantly between the groups as already mentioned. However, single frequencies of WT1-

specific cells from patients post transplantation are already higher than in the other two 

groups and thus cells seem to be more active. Therefore, cells are taken as starting material 

for expansion and functional analysis.  

 

Tab. 16: Comparison of median frequencies for WT1-specific cells in AML patients and healthy 
controls  
 IFN-�5 IL-10 granzyme B perforin 
Healthy controls 0.0 0.0 0.0 0.0 
pre HSCT 0.0 0.007 0.0 0.0 
post HSCT 0.0 0.013 0.0 0.0 
IFN-�[-, IL-10-, granzyme B-and perforin-secreting mononuclear cells in healthy controls and AML 
patients pre and post haematopoietic cell transplantation (HSCT). Frequencies measured in ELISpot 
assay are given in percentage. 
 

 
In the next step, the relationship between the time from transplantation until sample analysis 

and the WT1-specific frequency at the �P�H�D�V�X�U�H�G���W�L�P�H���S�R�L�Q�W���Z�D�V���G�H�W�H�U�P�L�Q�H�G���Z�L�W�K���6�S�H�D�U�P�D�Q�¶�V��

correlation coefficient r. This correlation shows how two variables, here time and frequency 

are related to each other. If there is no relationship, the coefficient equals zero. Values greater 

than zero describe the strength of the relationship (Dancey and Reidy 2004). With increasing 

time until sample analysis, IFN-�5 secreting cells did not increase in number and showed no 
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correlation (r = -0.11). Cells secreting the cytolytic enzyme granzyme B slightly increased 

over time (r =0.17) (figure 13).  

 

 

 

 

Fig. 13: Correlation between frequencies of WT1-specific cells secreting IFN-�5/ granzyme B 
and time after transplantation 
WT1-specific cell frequencies of AML patients post transplantation (n=18) were analysed for 
�F�R�U�U�H�O�D�W�L�R�Q�� �Z�L�W�K�� �W�L�P�H�� �D�I�W�H�U�� �W�U�D�Q�V�S�O�D�Q�W�D�W�L�R�Q���� �&�R�U�U�H�O�D�W�L�R�Q�� �Z�D�V�� �L�Q�Y�H�V�W�L�J�D�W�H�G�� �E�\�� �6�S�H�D�U�P�D�Q�¶�V�� �U�D�Q�N��
correlation coefficient r (IFN-�[-secreting cells r= -0.11, p= 0.7, granzyme B-secreting cells r= 0.17, 
p= 0.5). 
 

Whereas conventional ELISpot analyses cytokine-secreting cells separately for different 

cytokines, a fluorescent detection assay (FluoroSpot) enabled simultaneous enumeration of 

WT1-specific cells secreting two cytokines in the same well. In order to compare assays and 

to test sensitivity, WT1-specific, spot-forming cells (SFC) from 20 patients after 
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transplantation were measured with both assays in parallel and results are shown in the figure 

14.  

 

 

 

Fig. 14: ELISpot and FluoroSpot analysis of spot-forming cells secreting IFN-�5 and 
granzyme B 
Cytokine secretion was analysed in AML patients after transplantation (n=20) by ELISpot and 
FluoroSpot. Unstimulated (neg) Pan T cells were compared to WT1 stimulated Pan T cells. After 
overnight incubation with WT1, cells were further incubated for 2 days and WT1 spots are shown in 
colour corresponding to the labelling fluorochrome. Median spot-forming cells (SFC) are shown with 
interquartile ranges.  
 

 

 



Results 

48 
 

IFN-�5 and granzyme B were selected as analytes for cytokine secretion in ELISpot procedure 

in order to further characterize the pro-inflammatory WT1-specific response. In general, in 

non-stimulated controls, FluoroSpot results were lower as compared to ELISpot results 

(figure 14 and 15). This refers to the fact that detection of fluorescent spots is more accurate 

due to lower background noise. In ELISpot, frequencies for WT1-specific cells secreting both 

cytokines could not be observed as negative controls were even higher than WT1-specific 

spot numbers. In FluoroSpot analysis, however, SFC in negative controls were lower than 

SFC in WT1-specific stimulation. As a result, WT1-specific cell frequencies can be measured 

by FluoroSpot. Median cell counts of both assays are summarized in table 17. According to 

statistical analysis, median spot-forming cells did not differ significantly. 

 

Tab. 17: Comparison of median spot-forming cells in ELISpot and FluoroSpot  
 ELISpot FluoroSpot 
 neg WT1 neg WT1 
IFN-�5 10.25 3.25 0.50 0.75 
Granyzme B 8.25 7.50 5.50 14.50 
Data are given in median spot-forming cells per 150,000 Pan T cells, isolated of AML patients post 
haematopoietic cell transplantation, n=20. Unstimulated cells (neg) were compared to WT1 
stimulated cells. 
 

 

WT1-specific responses in ELISpot and FluoroSpot were also compared by Spearman 

correlation. Values showed a slightly positive correlation (data not shown). The FluoroSpot 

assay was more sensitive than the ELISpot assay which is shown in a representative example 

in figure 15.  
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Fig. 15: Representative example of spot-forming cells secreting IFN-�5 and granzyme B 
(GrB) in ELISpot and FluoroSpot analysis of the same sample 
Cytokine secretion was analysed in an AML patient after haematopoietic stem cell transplantation in 
ELISpot (two upper rows) and FluoroSpot (three lower rows). Unstimulated (neg) Pan T cells were 
compared to WT1 stimulated Pan T cells measured in both assays. Cells stimulated with Candida 
albicans (Cand), CEF peptide pool and phythohemagglutinin (PHA) served as positive controls. After 
overnight incubation with stimuli, cells were further incubated for 2 days.  
 

Therefore, FluoroSpot was also used in the next experiments where simultaneous secretion of 

IFN-�5 and granzyme B in patients after transplantation was analysed. Here, FluoroSpot 

permits the detection of a T cell subpopulation defined by their simultaneous secretion of 

these cytokines. This is of great importance when culture conditions for WT1-specific cell 

expansion are selected. Double positive cells producing IFN-�5 and granzyme B 

simultaneously would be most suitable for expansion because IFN-�5-granzyme B-positive 

cells have cytolytic activity. This double positive population covers different immune 

responses that are necessary for the generation of an immunotherapy. FluoroSpot results 

summarized in figure 16 did not show high frequencies of WT1-specific double positive cells 

(0.0003 %).  
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Fig. 16: FluoroSpot analysis of spot-forming cells secreting IFN- �5, granzyme B or both 
cytokines simultaneously (double pos) in AML patients post haematopoietic cell 
transplantation  
Cytokine secretion was analysed in AML patients post transplantation (n=22). Unstimulated (neg) 
Pan T cells were compared to WT1 stimulated Pan T cells. After overnight incubation with WT1, cells 
were further incubated for 2 days and measured in FluoroSpot assay. Median spot forming cells 
(SFC) are shown with interquartile ranges for IFN-�[, granzyme B (GrB) and cells simultaneously 
secreting these cytokines (double pos). 
 

FluoroSpot was also performed in healthy controls and AML patients pre transplantation 

(figure 17). WT1-specific spots were low in healthy controls compared to AML patients. 

Double positive spots could also be detected in AML patients pre transplantation. However, 

overall frequencies were lower. Granzyme B secreting WT1-specific cells had a higher 

frequency than IFN-�5 secreting cells. 

 

 

 



Results 

51 
 

 
Fig. 17: FluoroSpot analysis of WT1-specific cells secreting IFN- �5 and granzyme B in 
healthy controls and AML patients pre and post transplantation 
Pan T cells of healthy controls (HC, n=3) and AML patients pre (n=3) and post (n=22) 
haematopoietic cell transplantation (HCT) were pre-incubated with WT1 peptide and measured in 
FluoroSpot assay. Double positive cells emerge from a computerized overlay of IFN-�[ and granzyme 
B (GrB) spot images. Data are shown as mean and standard error of the mean. 
 

In summary, ELISpot and FluoroSpot analysis resulted in the detection of WT1-specific cells 

measured in healthy controls and AML patients, respectively. After transplantation, cells 

seem to be more active. The FluoroSpot technique is more sensitive than ELISpot due to less 

background noise (table 17).  

 

 

3.1.1. Analysis of cytokine secreting cells in relapsed AML patients 

 

The next experiment focuses on the analysis of WT1-specific cells in relapsed patients who 

could benefit from a WT1-specific immunotherapy. The aim of this experiment was to show 

if relapse has an impact on WT1 reactive cells in AML patients after HSCT. Therefore, 

analysis of WT1-specific cells was carried out in eight AML patients after transplantation that 

were diagnosed with relapse according to standard criteria (Gratwohl, Baldomero et al. 2012). 

Firstly, the frequency of WT1-specific cells was analysed with ELISpot assay (figure 18).  
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Fig. 18: Median frequencies of WT1-specific cells in relapsed AML patients 
Cytokine secretion was measured in AIMV medium. Peripheral blood mononuclear cells of relapsed 
AML patients post transplantation (n=8) were pre-incubated with WT1 peptide, measured in ELISpot 
assay and median frequencies of WT1-specific cells were calculated. Data are shown with 
interquartile ranges.  
 

Low frequencies of WT1-specific cells could also be observed in this group. Results highly 

depend on the amount of leukemic blasts in the peripheral blood of the patients. The 

frequency of WT1-specific cells did not correlate with the interval from analysis to relapse 

diagnosis. 

 

 

3.1.2. Analysis of WT1 mRNA levels in AML patients post transplantation 

 

To further analyse WT1 in AML patients after transplantation, a retrospective analysis was 

performed. This time, WT1 expression levels were measured by quantitative real time-PCR 

(qRT-PCR) and values were compared to the interval between sample analysis and relapse 

diagnosis. WT1 mRNA levels are given in percentage that results of the mRNA expression 

value of WT1 divided by the expression value of GAPDH used as a housekeeping gene. 

Results are shown in figure 19.  
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Fig. 19: WT1 mRNA level of AML patients post transplantation  
Detection of WT1 mRNA levels by quantitative real time-PCR. Percent mRNA was calculated by 
dividing specific values by levels of GAPDH as a control. Patient samples were analysed before  
(pre RE, n=17), during (RE± 1 months, n=9) and after (after RE, n=17) relapse (RE). Mean mRNA 
levels are shown with standard error of the mean. **  p=0.002  
 

The cohort was divided into three groups: WT1 levels before relapse (RE), during relapse and 

up to nine months after relapse. The time of nine months after transplantation is an 

approximate value where the reconstitution of the cell numbers after transplantation is said to 

be completed. �7�K�L�V�� �K�R�Z�H�Y�H�U�� �G�R�H�V�� �Q�R�W�� �U�H�I�H�U�� �W�R�� �W�K�H�� �F�H�O�O�¶�V�� �I�X�Q�F�W�L�R�Q�D�O�L�W�\����Innate immunity, 

including epithelial barriers, monocytes, granulocytes, and NK cells quickly recovers within 

weeks after transplantation whereas, adaptive immunity by B- and T-cells requires months for 

recovery (Storek, Geddes et al. 2008). In patient samples prior to relapse (n=17), WT1 levels 

could not be detected but elevated WT1 levels could be measured during relapse and showed 

a significant difference with p =0.002 compared to samples pre RE. WT1 levels seemed to be 

patient-specific during relapse occurrence which is indicated by mRNA values that have a 

relatively broad detection range. Within this group WT1 mRNA values varied from 0.0002 to 

0.2 which is a 105-fold difference among these values. Such a difference may be dependent on 

the severity of tumour burden at relapse and has not been taken into consideration during the 

measurement. After relapse, levels decreased and were nearly comparable to a WT1 state 

before relapse. Thus, WT1 mRNA levels are high when relapse occurs.  
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3.1.3. Expansion of low-frequent WT1-specific T cells 

 

Adoptive immunotherapy for relapse prevention requires the generation of highly specific 

cells. Prior to adoptive transfer cells have to be expanded in vitro to reach therapeutically 

sufficient numbers. In general, expansion conditions of effector cells should be as �µnatural�¶ as 

possible which means that culturing methods should include cells and other components that 

reflect the normal environment in the body. Effector cell activation at least requires two 

signals. One signal is given by antigen-presenting cells that present a peptide antigen via the 

MHC complex. This peptide is recognized by the effector cell via the T cell antigen-specific 

receptor (TCR). Due to antigen stimulation, T cells secrete cytokines as measured with 

ELISpot and FluoroSpot assay in this project. For full activation, the T cell also requires co-

stimulatory molecules such as CD3 and CD28. If the signals are transmitted to the nucleus, 

clonal expansion is initiated and differentiation into effector cells takes place (Smith-Garvin, 

Koretzky et al. 2010).  

 

Due to the close cooperation with Miltenyi Biotech, MACSi beads coated with co-stimulatory 

molecules CD3 and CD28 were selected as artificial antigen presenters. In parallel, 

autologous feeder cells used as antigen presenting cells were lethally irradiated. However, 

irradiation of feeder cells may lead to apoptotic cell bodies (depending on irradiation dose) 

with a lower capacity of promoting T cell proliferation because gamma irradiation reduces 

expression of surface molecules needed for T cell activation. Moreover, feeder cells do not 

actively secrete cytokines (Cao, Chen et al. 2004). By the use of autologous feeder cells and 

MACSi beads, the co-stimulatory signals are administered. Effector cells were stimulated 

with peptide overnight and then magnetically separated by negative selection into untouched 

Pan T cells or CD8+ T cells. Since one goal of this project is the expansion of WT1-specific  

T cells, expansion aims at isolating cells in a high purity and number. The purity and the 

immune state before cell isolation was regularly analysed by flow cytometry. Mononuclear 

cells were separated by Ficoll gradient and labelled with the standard panel of antibodies for 

immune state determination. The basic markers include: CD3-FITC for T cells, CD4-APC for 

T helper cells, CD8-PE for cytotoxic T cells, CD14-APC for monocytes, CD19-APC for  

B cells and CD16/56-PE for NK cells. The corresponding gating strategy is shown in figure 

20 for three different cell populations. 
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Fig. 20: Gating strategy of freshly isolated PBMCs and Pan T cells of AML patients  
Flow cytometric analysis of PBMCs (panel A) and isolated Pan T cells fractions (Pan positive fraction 
in Panel B, Pan negative fraction in Panel C) of an AML patient. Cells were incubated with 
monoclonal antibodies anti-CD3-FITC, anti-CD8-PE, anti-CD4/14-APC, anti-CD19-APC and anti-
CD16/56-PE. At least 10,000 events were measured per sample. Data were acquired in a FACS Aria I 
and analysed using FlowJo vX 0.6 software. 
 

Panel A shows the PBMC fraction before magnetic separation. Panel B displays the CD3+  

(= Pan positive, untouched) fraction whereas Panel C represents the CD3- cells (= Pan 

negative fraction enriched for CD14+, CD16/56+, CD 19+ cells). For analysis, magnetic 

separation was considered pure when the enriched cell population was above 96 %. In this 

example CD3+ T cells could be enriched up to 92.5 % (figure 20 B). In Panel B, CD8+ T cells 

accounted for 70 % of CD3+ T cells and CD4+ T cells for 23 %. This CD4+ T cell fraction also 

contained CD4/CD14+ monocytes. For expansion it is necessary to know if there is already 

cytolytic potential in the starting material, which means that a high amount of CD8+ T cells is 

preferred. The amount of CD16/CD56+ and CD 19+ cells was gated in CD3- cell fraction. 7 % 

of CD3+ T cells remained in the CD3- fraction (figure 20 C). Results of following expansion 

approaches are summarized in tables 18 A and B. Section A shows the antibody setting 

consisting of CD3-FITC, CD4/14-APC and CD8-PE, section B summarizes data of a second 

setting including CD3-FITC, CD16/56-PE and CD19-APC.  
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Tab. 18: Summary of flow cytometric data from different expansion experiments in AML 
patients 
[A]  living cells CD3+ CD4+/CD14- CD8+ 

E1 PBMCs 68.7 35.8 65.1 29.1 

E1 Pan+ 78.8 72.9 66.2 29.7 

E1 Pan- 66.2 2.76 15.8 61.2 

E2 PBMCs 87.6 68.3 31 65.4 

E2 Pan+ 88.6 81.7 36.3 61.3 

E2 Pan- 76.3 24.4 6.11 88.4 

E3 PBMCs 85.9 66.8 23.6 67.3 

E3 Pan+ 87.0 92.5 22.5 69.7 

E3 Pan- 77.7 7.11 6.59 72.9 

 

[B]  living cells CD3- CD16+/CD56+ CD19+ 

E1 PBMCs 65.2 63.6 27.9 32.2 

E1 Pan+ 74.0 26.1 56.4 8.45 

E1 Pan- 63.1 97.4 19.1 26.3 

E2 PBMCs 82.7 31.7 39.9 14.7 

E2 Pan+ 86.1 17.8 36.0 2.14 

E2 Pan- 71.7 76.7 39.6 18.5 

E3 PBMCs 81.3 31.9 50.7 24.6 

E3 Pan+ 81.8 8.14 67.3 8.16 

E3 Pan- 75.2 92.9 48.5 22.4 

Flow cytometric analysis of peripheral blood mononuclear cells (PBMCs) and isolated Pan T cells 
fractions (Pan+=Pan positive fraction, Pan-=Pan negative fraction) of AML patients (E1-3, n=3) 
before expansion (E).Cells were incubated with monoclonal antibodies anti-CD3-FITC, anti-CD8-PE, 
anti-CD4/14-APC, anti-CD19-APC and anti-CD16/56-PE in two different settings ([A]  
T cell/monocytes setting, [B] NK/B cell setting). Results display the percentage of cells. Data were 
acquired with a FACS Aria I and analysed using FlowJo vX 0.6 software. 
 

In literature, different expansion strategies have been described that mainly deal with high-

frequent cell populations. However, WT1-specific frequencies are comparably low and 

therefore, no appropriate expansion protocol has been established yet. In order to find a 

suitable expansion procedure, CMV-positive donors have been used for establishment of 

different expansion strategies. This approach has the advantage that not only sufficient 

starting material is present but also the frequency of CMV-positive cells is relatively high. 

After isolation of subpopulations, cultures were enriched for CD137+ T cells before taking 

them into expansion. CD137 is a co-stimulatory molecule that was identified as a potent 

supporter CD8+ T-cell expansion. CD137 expression by T cells is activation dependent which 

requires ex vivo stimulation with defined tumor antigen such as WT1. CD137 signalling 
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regulates T-cell proliferation and survival, particularly within the T-cell memory pool (Ye, 

Song et al. 2014). The enrichment of CD137+ T cells from healthy donors can be used for 

identification and isolation of WT1-specific T cells. However, AML patients may not have 

enough activated cells. Cultures roughly started with the same cell number of 800,000 cells/ 

culture for healthy donors which is already considered a low starting cell number (figure 21). 

 

For the first expansion approach two different conditions were tested. Firstly, it was analysed 

what starting material is most suitable for expansion. Secondly, cells were expanded with or 

without artificial bead addition. In order to compare results from a common bulk culture, 

CMV stimulated T cells of a healthy donor were isolated into Pan T cells and CD8+ T cells 

and expanded in TexMACS medium supplemented with a cocktail of growth-promoting 

cytokines. The cytokine cocktail was adopted from other expansion protocols (Zeng, Spolski 

et al. 2005, Kinter, Godbout et al. 2008, Wölfl, Merker et al. 2011) and especially selected for 

T cell proliferation. It consists of a combination of interleukins such as IL-2, a potent T cell-

stimulator that is secreted by central memory T cells upon activation and promotes growth 

and differentiation of other T cells (Wölfl, Merker et al. 2011), IL-15 and IL-21 that act 

synergistically to support proliferation of memory CD8+ T cells (Zeng, Spolski et al. 2005) 

and IL-7 that is a anti-apoptotic survival factor and T cell growth factor for memory cells 

(Kinter, Godbout et al. 2008). Owing to the low initial frequency of WT1-specific cells, 

protocols (see 2.2.6) involve repeated WT1 stimulation and the addition of the cytokine 

cocktail that drives cells into a central-memory phenotype. During expansion, cultures with 

MACSi beads as an additional stimulation signal showed higher cell numbers than cultures 

without bead addition as demonstrated in the figure 21. However, higher cell numbers could 

only be observed after restimulation of cells, here on day 10 and 17. 
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Fig. 21: Expansion of CMV-specific Pan T cells and CD8+ T cells without or with artificial 
MACSi beads  
CMV stimulated T cells of a healthy control were magnetically separated into T cell subpopulations 
(Pan T cells and CD8+) and expanded in TexMACS medium for 3 weeks without or with (w) artificial 
MACSi beads for unspecific stimulation. T cell cultures were restimulated (R1 at day 8, R2 at day 15) 
weekly with a cytokine cocktail of IL-2, IL-7, IL-15 and IL-21 and the CMV peptide pool.  
 

In T cell cultures without bead addition cells seemed to be exhausted much quicker than in 

cultures with the unspecific stimulation signal. Even after two rounds of restimulation, T cell 

numbers did not increase. In conclusion, expansion courses indicate that artificial antigen 

presentation and co-stimulatory signal transduction by the addition of MACSi beads promotes 

T cell expansion. T cell growth and proliferation could also be observed during expansion by 

microscopic monitoring of cultures. For monitoring, an exemplary expansion culture extract 

is depicted in figure 22. 
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Fig. 22: Expansion culture of Pan T cells with feeder cells and MACSi beads 
T cell clones were observed with Zeiss Axio Observer Z1at 400x total magnification. 
 

By regularly monitoring of cell cultures, one can also assess the generation of T cell clones. 

Formation of T cell clones is proof of concept for expansion strategies. If clone formation is 

present, T cells proliferate. In order to know which conditions are suitable for T cell 

proliferation, microscopic observation was also done for bead stimulation. Results of culture 

conditions with artificial MACSi beads are shown in figures 21, 22 and 23. Figure 23 A 

shows a Pan T cell culture stimulated with WT1 peptide and MACSi beads at day 2 (upper 

panel). After restimulation with WT1 peptide and cytokines on day 8 (lower panel), colony 

formation of T cell clones �F�D�Q���E�H���R�E�V�H�U�Y�H�G���D�V���µ�E�O�D�F�N�¶���F�H�O�O���F�O�X�V�W�H�U�V��at 100x total magnification. 

In contrast, figure 23 B shows T cell stimulation with WT1 and cytokines but without the 

addition of artificial MACSi beads which results in much lower colony formation (lower 

panel) even after restimulation of the expansion culture with antigen and cytokines. In 

summary, addition of MACSi beads increased T cell colony formation. 
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Fig. 23: Expansion progress of antigen-specific Pan T cells with (A) or without (B) artificial 
MACSi beads  
WT1-stimulated T cells were magnetically separated and expanded in TexMACS medium for 3 weeks 
with (panel A) or without (panel B) artificial MACSi beads for unspecific stimulation. Panel A shows a 
T cell culture with artificial MACSi beads before (day 2, upper panel) and after first restimulation 
with WT1 peptide and cytokines IL-2, IL-7, IL-15 and IL-21 (day 8, lower panel). Panel B shows the 
corresponding T cell culture without bead stimulation. Colonies were observed with Zeiss Axio 
Observer Z1 at 100x total magnification. 
 

In the next experimental set up, it was tested which cell subpopulation after magnetic 

isolation would be optimal as starting culture. Owing to the fact that the percentage of CD3+  

T cells (Pan T cells) in the mononuclear cell fraction is higher than the percentage of CD8+  

T cells as a T cell subpopulation, Pan T cell isolation generally resulted in higher cell 

numbers as starting culture but also in a heterogeneous T cell population. Expansion of CD8+ 

T cells resulted in pure starting cultures. However, expansion protocols of other researchers 

(Mason and Simmonds 1988, Shedlock and Shen 2003) suggest that CD4+ T cells positively 

influence CD8+ T cell expansion supporting Pan T cell cultures as a starting material. 

Sufficient numbers of Pan T cells or CD8+ T cells as starting material was not problematic for 

establishing expansion conditions because material of healthy donors was used (figure 21). 

For the next experiment, PBMCs of an AML patient after transplantation were isolated and 
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divided into T cell subgroups for direct comparison. Here, cell cultures started with 

approximately 400,000 cells per culture (figure 24) Cultures of AML patients were not 

enriched with CD137 isolation because of limited patient material. In figure 24, the Pan T cell 

culture expanded 6 fold on day 5 in contrast to the 3 fold expansion of CD8+ T cell cultures. 

After first (day 10) and second (day 17) restimulation, cells became exhausted and cell 

numbers decreased.  

 

 
Fig. 24: Expansion of WT1-specific Pan T cells and CD8+ T cells with artificial MACSi 
beads 
After magnetic separation of PBMCs into T cell subpopulations, unlabelled Pan T and CD8+T cells of 
an AML patient post transplantation were cultured in TexMACS expansion medium with (w) the 
addition of artificial MACSi beads, a cytokine cocktail of IL-2, IL-7, IL-15 and IL-21 and WT1 
peptide. T cell cultures were weekly restimulated with beads, cytokines and peptide (R1 at day 8, R2 at 
day 15). 
 

By comparing different cell populations, it was concluded, that Pan T cell cultures as starting 

material proliferated more than CD8+ T cell cultures in a shorter time. Further investigation 

concentrated on the autologous feeder cell culture that was used to obtain a culture condition 

as natural as possible. Under normal in vivo conditions T cell survival is dependent on cell to 

cell interactions. Expansion, however, aims at expanding specific cells with a high purity 

which unfolds the problem of how to get rid of feeder cells for adoptive immunotherapy. For 

expansion in this project, autologous feeder cells were produced from the negative fraction of 

magnetic separation, i.e. Pan- T cells or CD8- T cells. These cultures were lethally irradiated 

and administered to the expansion cultures mostly in a ratio of 5:1 (feeder to effector cells). 

Figure 25 shows the two different expansion strategies of WT1 stimulated Pan T cells in the 

presence of artificial MACSi beads but with (A) or without (B) autologous feeder cells. 
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Starting cell numbers differed because of different yields of cells resulting from isolation of 

PBMCs from the same donor.  

 

 
Fig. 25: Expansion of WT1-specific Pan T cells with artificial MACSi beads in presence or 
absence of autologous feeder cells 
After magnetic separation of PBMCs, Pan T cells of an AML patient post transplantation were 
cultured in TexMACS expansion medium with the addition of artificial MACSi beads, a cytokine 
cocktail of IL-2, IL-7, IL-15 and IL-21 and WT1 peptide. T cell cultures were expanded with (A) or 
without (Ø, B) autologous feeder cells. Feeders were irradiated with 30 Gray and T cell cultures were 
weekly restimulated with beads, cytokines and peptide (R1 at day 8, R2 at day 14). 
 

T cells in the presence of feeder cells (figure 25 A) expanded 4 fold to nearly 9*106 cells per 

culture after 5 days of incubation. Expansion appeared to decrease after this time point and 

cells did not proliferate any further during the following restimulation rounds. Regularly 

microscopic observation confirmed results by little colony formation. Cells were counted by a 
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cell counting device and the culture was monitored every third day and cultures showed a 

decrease in cell number. In comparison to these observations, expansion without autologous 

feeder cells resulted in higher T cell numbers. The course of expansion is presented in figure 

25 B shows a 3 fold expansion from day 3 to day 8. Cell quantity changed by 2.8 fold 

decrease after day 8 when cells were restimulated with WT1 peptide and the cytokine 

cocktail. On day 9, expansion medium was exchanged for culture medium. Dramatic decrease 

in cell numbers could be a consequence of cytokine-induced cell death and develops from 

overreaction of cells to cytokine addition. After second restimulation on day 14, cell numbers 

recovered and cells proliferated. Proliferation rates were easier to monitor because cell culture 

without feeder cells were more pure. Even if the initial expansion rate was higher in presence 

of autologous feeders, the overall cell number at expansion termination was higher for the cell 

culture without feeder cells (figure 25 B). On day 21, expansion was terminated and cells 

were analysed in flow cytometry (figure 29), ELISpot and Europium release assay (data not 

shown). ELISpot analysis resulted in a higher number of WT1-specific spots than spot 

numbers before expansion. WT1-specific cells tested in Europium release assay did not 

provoke specific lysis of leukemic cell lines. 

 

This experimental set up was validated with another AML patient sample after transplantation 

and resulted in a similar outcome. Therefore it was concluded that the presence of autologous 

feeder cells did not result in higher amounts of specific T cell numbers and moreover 

contaminated the purity of the expansion culture. It is assumed that unspecific stimulation via 

artificial MACSi beads and weekly addition of WT1 peptide is sufficient for T cell expansion.  

 

In the following experimental approach the optimised expansion strategy with WT1-

stimulated Pan T cells and artificial MACSi beads without autologous feeder cells was used. 

Because relapse after transplantation is subject of this project, Pan T cells from a relapsed 

AML patient were expanded for 21 days (figure 26). 18*106 Pan T cells could be isolated and 

were incubated under optimised conditions. Before expansion, PBMCs were analysed with 

flow cytometry and resulted in a total CD3+ T cell quantity of 40 % which may indicate that 

the amount of T cells is decreased because of the presence of leukemic blasts in the pat�L�H�Q�W�¶�V��

peripheral blood. After magnetic separation, Pan T cells were enriched up to 70 %. These  

70 % of cells were taken into expansion.  
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Fig. 26: Expansion of WT1-specific Pan T cells from a relapsed AML patient post 
transplantation 
After magnetic separation of PBMCs, Pan T cells were cultured in TexMACS expansion medium with 
the addition of artificial MACSi beads, a cytokine cocktail of IL-2, IL-7, IL-15 and IL-21 and WT1 
peptide. T cell cultures were weekly restimulated with (w) beads, cytokines and peptide (R1 at day 8, 
R2 at day 15). 
 

As shown in figure 26, the cell number increased up to 5*107 cells in total within the first 

week of expansion but decreased after restimulation at day 8. According to monitoring of cell 

number and colony formation, cells did not proliferate after restimulation and decreased in 

number until termination of the experiment. Expansion of patient cells in relapse is not a good 

option and is highly dependent on the amount of blasts in the peripheral blood whereby the 

immune state of the patient has to be examined carefully before expansion.  

 

In another AML patient without relapse, however, cells could be successfully expanded 

(figure 27). The experimental set up started with WT1-stimulated Pan T cells of an AML 

patient after transplantation. These cells were expanded with the addition of artificial MACSi 

beads and the cytokine cocktail but without autologous feeder cells. The course of the 

expansion depicted in figure 27 showed generally an increase in T cell proliferation. With a 

starting culture of 1.8*106 cells per culture, T cells could be expanded by a factor of 4 within 

three weeks expansion.  
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Fig. 27: Representative example of WT1-specific Pan T cell expansion over 3 weeks 
After magnetic separation of PBMCs, Pan T cells of an AML patient without relapse were cultured in 
TexMACS expansion medium with the addition of artificial MACSi beads, a cytokine cocktail of IL-2, 
IL-7, IL-15 and IL-21 and WT1 peptide. T cell cultures were weekly restimulated with (w) beads, 
cytokines and peptide (R1 at day 8, R2 at day 14). 
 

T cell viability and proliferation could be confirmed with T cell colony formation, as 

illustrated in figure 28. The left panel shows one T cell cluster on day 7 of expansion 

compared to an increased number in colony formation on day 19 after three rounds of 

restimulation in the right panel.  

 

 
Fig. 28: Colony formation of expanded WT1-specific Pan T cells 
WT1-stimulated T cells were magnetically separated and expanded in TexMACS medium for 3 weeks 
with the addition of artificial MACSi beads, a cytokine cocktail of IL-2, IL-7, IL-15 and IL-21 and 
WT1 peptide. The pictures show the difference between T cell colony formations on day 7 before 
restimulation (left panel) and day 19 after three rounds of restimulation (right panel). T cell colonies 
were observed with Zeiss Axio Observer Z1at 100x total magnification. 
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Successful expansion has to consider the phenotype of expanded T cells. As a consequence, 

expanded T cells were analysed for their immunophenotype by flow cytometry. 

 

As already mentioned in the introduction of expansion experiments, the aim of an 

immunotherapy is the generation of memory T cells that also have cytolytic function. To 

prove which cell type was expanded, the following gating strategy was used as shown in 

figure 29. 

 

 
Fig. 29: Flow cytometric analysis of expanded WT1-specific Pan T cells of day 21  
WT1-specific T cells and artificial MACSi beads were expanded in TexMACS medium supplemented 
with a cytokine cocktail of IL-2, IL-7, IL-15 and IL-21 for 21 days and analysed with flow cytometry. 
Cells were incubated with monoclonal antibodies anti-CD3-FITC, anti-CD8-PE, anti-CD4/14-APC, 
anti-CD19-APC, anti-CD16/56-PE and anti-CD 45PerCP. Cells were gated on lymphocytes and at 
least 10,000 events were measured per sample. Data were measured with the FC500 and analysed 
using Kaluza software. 
 

To analyse the culture, it was first gated on lymphocytes according to their scatter 

characteristics. The high frequency of events with low forward scatter and/or high side scatter 

can be explained by the presence of artificial MACSi beads in the culture. In this example, 

expansion of Pan T cells resulted in 95 % CD3+ CD8+ T cells and 1.3 % CD3+ CD4+ T cells. 

This representative outcome of a nearly pure CD3+ CD8+ expansion culture is similar to all 

other expansion approaches measured during this project. Pan T cell positive expansion 

cultures always developed into a CD3+ CD8+ phenotype whereas CD3+ CD4+ T cells hardly 

survived. The amount of 0.20 % NK cells and even less B cells could be neglected because 

they did not interfere with the expansion outcome. In order to see if cells retain a central-
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memory-like phenotype, which is driven by the cytokine cocktail, corresponding surface 

markers like CD45RA, CD45R0 and CD62L have to be analysed. This analysis was carried 

out by cooperation partners of the Department of Otorhinolaryngology. As a result, cytotoxic 

CD8+ CD45RA+ CD62L+ effector cells were measured that did not have a memory phenotype 

(data not shown).  

 

To complement the analysis, WT1 specificity of expanded Pan T cells was measured by 

Streptamer technology. The Streptamer enables fluorescent staining of WT1-specific CD8+  

T cells in an HLA-A2 restricted manner. This restriction makes the generation of WT1-

specific effector cells difficult because patient samples are restricted to the HLA-A*02 

antigen. Furthermore, Streptamers are restricted to a single peptide sequence of WT1 

(Neudorfer, Schmidt et al. 2007). The following gating strategy for WT1-specific cells is 

summarized in figure 30. Expanded cells were incubated with monoclonal antibodies (anti-

CD3-PerCP, anti-CD8-APC, anti-CD4-FITC, anti-WT1-PE and anti-isotype-PE) and gated on 

viable lymphocytes whereas the lymphocyte negative fraction consisted of MACSi beads and 

cell debris. Out of the lymphocyte population, 99.9 % of cells were CD3+ T cells. The T cell 

fraction was further subdivided into CD8+ and CD4+ T cells. A percentage of 77.8 for the 

CD8+ fraction was measured. For further analysis, cells were gated on the CD8+ subpopulation 

and the amount of WT1-specific PE-positive cells was determined and compared with the 

isotype control. PE-positive cells stained with WT1 Streptamer showed an 8-fold increase of 

0.27 % compared to the isotype control with 0.033 % PE-positive cells.  

 

 

 

 

 

 

 

 



Results 

68 
 

 

 
Fig. 30: Representative example of expanded WT1-specific Pan T cells analysed by 
Streptamer technology 
WT1-specific Pan T cells of an AML patient post transplantation were expanded with artificial MACSi 
beads in TexMACS medium supplemented with a cytokine cocktail for 21 days and analysed with 
Streptamer technology after termination of expansion (day 21). Cells were incubated with the 
monoclonal antibodies anti-CD3-PerCP, anti-CD8-APC, anti-CD4-FITC, anti-WT1-PE and anti-IgG-
PE as the corresponding isotype control. At least 10,000 events were measured per sample. Data were 
collected with FACS Aria I and analysed using FlowJo vX 0.6 software. 
 

Three further T cell expansions with the same expansion conditions were also measured by 

flow cytometry after termination of the experiment (day 21) and cell populations are recorded 

in table 19. According to measured percentages, it can be concluded that the amount of WT1-

specific T cells differs significantly between patients. A patient specific variability could also 

be observed for WT1 mRNA levels that were measured for AML patients after 

transplantation (see figure 19). As expected, WT1-specific cells could not be detected in 

patient sample 1 by HLA-A*02 restricted Streptamer analysis (table 19) because of the HLA 

type. However, there was no WT1 detection in patient sample 2 even though HLA-A*02 

occurred. WT1-specific T cells were detected in patients 3 and 4 with matching HLA-A 

antigen. 
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Tab. 19: Immunophenotype of expanded WT1-specific T cells from AML patients post HSCT 
measured in percent frequency 
Sample HLA- A 

antigen 

Lym [Lym] 

CD3+ 

[Lym/CD3 +] 

CD4+ 

[Lym/CD3 +] 

CD8+ 

[CD8+] 

Iso 

[CD8+]  

WT1 

Pat 1 Iso  80.3 99.9 31.1 66.1 0.028  

Pat 1 WT1 A*25, 

A* 33 

77.4 99.0 32.1 64.8  0.014 

Pat 2 Iso  36.4 95.9 12.9 78.5 0.011  

Pat 2 WT1 A*02, 

A* 01 

39.6 96.4 3.09 1.22  0.000 

Pat 3 Iso  73.9 95.2 69.3 21.7 0.033  

Pat 3 WT1 A*02, 

A*01 

78.5 97.9 73.1 21.9  0.27 

Pat 4 Iso  38.5 82.7 35.9 52.2 0.036  

Pat 4 WT1 A* 02 38.2 81.6 38.3 50.1  0.054 

Flow cytometric analysis of isolated Pan T cells of AML patients (Pat 1-4, n=4) with known human 
leukocyte antigen (HLA) pattern post transplantation at day 21of expansion. Cells were incubated 
with the monoclonal antibodies anti-CD3-PerCP, anti-CD4-FITC, anti-CD8-APC, anti-WT1-PE and 
anti-IgG-PE (Iso). Cells were gated on living lymphocytes (lym). Gates are represented in squared 
brackets []. Data were acquired in a FACS Aria I and analysed using FlowJo vX 0.6 software. 
 

 

 

3.2. Analysis of WT1 in specific target cells 

 

The development of targeted therapies in order to treat AML requires the identification of 

good target cells that can be used for in vitro assays in order to characterize putative effector 

cells. One approach to identify potential target cells is to analyse the amounts of WT1 protein 

in leukemic cell lines. As known from the literature, WT1 is overexpressed in AML but only 

low abundant in healthy tissue. The aim of analysing target cells is to find a candidate which 

expresses high amounts of WT1 and can be specifically lysed by generated WT1-targeting 

effector cells. The following experiments tested both lysis potential and WT1 content in 

leukemic cells lines and AML blasts for comparison.  
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3.2.1. Europium release (EuTDA) assay  

 

The lytic capacity of cytotoxic cells was tested by Europium release assay. The first 

experiment was performed using K562 as target cells that were cultured in RPMI 1640 

medium supplemented with 10 % HS. Effector cells were isolated from five healthy controls 

and stimulated with CMV peptide overnight prior to the cell lysis experiment in order to 

activate the cells. Because of the fact that K562 cells are NK cell targets, the starting effector 

cells consisted of the whole PBMC fraction and not of isolated T cells which are considered 

the optimal effector cells for immunotherapy. First of all the best amount of target cells was 

determined and different ratios of effector cells versus target cells was determined. As a result 

specific lysis of K562 was measured (figure 31).  

 
Fig. 31: Specific lysis of K562 by effector cells of healthy controls  
Determination of the cell number of the target cell K562 used for following experiments. PBMCs of 
healthy controls (n=5) were used as effector cells at different effector cell (EC)/target cell (TC) ratios 
as indicated.  
 

A cell number of 10,000 target cells emerged to be optimal because a higher percentage of 

specific lysis of K562 could be achieved. The more effector cells were present, the better the 

lysis of the target cell. For this experimental set up a 100:1 ratio is only feasible in healthy 

controls. AML patients suffering from panzytopenia do usually not have enough effector cells 

for isolation and ratios had to be adjusted.  

 

In order to translate conditions into a setting that uses different leukemic target cells, the 

protocol had to be modified. Thereby, determination of individual growth curves of target 

cells was necessary. Target cells were only labelled optimally when they were in the log 

phase. The following experiment was conducted because it is not only important to work out 
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optimal conditions for effector cells but moreover to define a range of specific release of the 

TDA ligand. By specific lysis of TDA, the range defines the specific lysis potential of every 

target cell. As demonstrated in figure 32, ranges can differ substantially. 

 

 

 

Fig. 32: Spontaneous and maximum release of EuTDA by AML target cell lines and AML 
blasts 
Leukemic target cell lines (K562, THP-1, Kasumi 1, HL-60, KG-1), T2 target cells and leukemic blasts 
of AML patients pre transplantation were labelled with bis(acetoxymethyl) �������
�����
�����´-terpyridine-�������-́
dicarboxylate (BATDA) for 25 min and EuTDA release was determined by fluorescent counts. For 
maximum release cells were lysed with lysis buffer for 15 min. Results are presented as mean± 
standard error of the mean of n=3 independent experiments. 
 

The THP-1 cell line appeared as the optimal target cell for measuring specific lysis because of 

the widest range. The reason for selecting different leukemic cell lines as targets was their 

various HLA-A antigen profile. With matching HLA antigens unspecific lysis induced by 

mismatches is less likely. HLA antigens of cell lines are described in the methods section. For 

measuring TDA release of AML blasts, patient samples were isolated for CD34+ blasts. Blasts 

from 3 different patients were measured. The specific range for AML blasts was highly 

dependent on the patient sample. 

 

In a following experiment, T cell activity of CD8+ T cells in presence of different leukemic 

cell lines was measured. CD8+ T cells were isolated magnetically from healthy controls (n=3) 

and grown overnight in the presence of recombinant IL-2 for unspecific T cell stimulation. 

Target and effector cells were incubated for 2 hours before the Europium signal was 

measured. Due to HLA restriction of CD8+ T cells (HLA-A*02), it was expected that  

HLA-A*02 positive THP-1 cells were lysed to a higher extend than the other target cell lines 
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with mismatching HLA antigen expression. In fact only low specific lysis with around 15 % 

could be measured with THP-1 (figure 33). HLA-A*01 positive HL-60 cells showed a higher 

percentage of lysis than the THP-1 cell line. Lysis of the HL-60 cell line was, however, not 

dependent on the number of effector cells. HLA-A*02 positive T2 cells that can be externally 

loaded with peptide were lysed specifically by CD8+ HLA-A*02 positive effector T cells. 

Lysis increased with increasing cell ratios. Comparable to THP-1, KG1 cells were not lysed 

significantly. 

 

 
Fig. 33: Specific lysis of AML cell lines by HLA-A*02+ CD8+ T cells 
Comparison of cell lysis of AML cell lines ( THP-1, HL60, KG-1) and T2 cells by different ratios of 
effector T cells (EC) to target cells (TC) from healthy controls (n=3). CD8+ T cells were stimulated 
unspecifically with IL-2 and incubated for 4 days. Target cells were labelled with bis(acetoxymethyl) 
�������
�����
�����´-terpyridine-�������-́dicarboxylate (BATDA) for 25 min and specific lysis was calculated.  
 

The concept of an allogeneic setting was analysed in the next experiment. AML blasts from 

three individual AML patients pre transplantation were thawed and incubated with WT1-

stimulated CD8+ T cells from corresponding donors. Specific lysis was measured by 

Europium release assay. All three approaches did not show specific lysis of AML blasts 

(figure 34). Negative specific lysis for patient-donor match 2 occurred due to high values of 

spontaneous release. Thus, the frequency of effector cells directed against AML blasts was 

too low to be detected.  
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Fig. 34: Specific lysis of CD34+ AML blasts of patients by corresponding donor CD8+ 
effector T cells  
CD34+ AML blasts from AML patients pre haematopoietic cell transplantation (n=3) were incubated 
with CD8+ T cells of corresponding donors, referred to as match, for 2 hours. Prior to incubation, 
donor cells were stimulated with WT1 peptide pool for 18 hours. Different effector cell (EC)/target 
cell (TC) ratios were used as indicated. 
 

 

The aim of the next experiment was the analysis of HLA specific lysis of leukemic target cells 

by WT1-specific effector cells. For this experiment, two HLA-A*01 positive AML patients 

after transplantation were stimulated with WT1 peptide and incubated overnight. Afterwards 

specific lysis in the presence of HLA-A*01 positive HL-60 cells and WT1-loaded T2 cells 

was determined. Different effector: target cell ratios were selected as shown in figure 35. 
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Fig. 35: Specific lysis of cell lines T2 and HL -60 by WT1-specific effector cells of two AML 
patients post HSCT  
Peripheral blood mononuclear cells (PBMCs) from HLA-A*01 positive AML patients (n=2) after 
transplantation were stimulated with the WT1 peptide pool overnight and further incubated with HLA-
A*02 positive T2 and HLA-A*01 positive HL-60 target cells for 2 hours. Target cells were labelled 
with bis(acetoxymethyl) �������
�����
�����´-terpyridine-�������-́dicarboxylate (BATDA) for 25 min and specific 
lysis was calculated. Different effector cell (EC)/target cell (TC) ratios were used as indicated.  
 
 

Specific lysis due to matching HLA antigen patterns of effector and target cells could not be 

observed. According to literature, WT1 expression is low or even absent in healthy tissue 

which means that cells of healthy individuals may need stimulation with WT1 peptide for a 

long time period.  

 

In the next experiment WT1-specific CD3+ effector T cells of a healthy control were 

expanded for 7 days. After expansion, cells were analysed microscopically to check viability 

and proliferation and were tested for effector cell function in EuTDA assay. Prior to analysis, 

cells were magnetically isolated into CD3+ CD56- effector cells. The experiment aimed at 

assessing the capability of WT1 positive effector cells to lyse T2 cells externally loaded with 

WT1. As controls, the leukemic cell lines K562, THP-1 and HL-60 were used that potentially 

express WT1 as a target structure on the cell surface. In order to assess the purity of the 

isolated NK cell negative population (CD3+ CD56-), K562 cells as NK cell targets were used 

to see if residual NK cell response is present. As a result, leukemic cell lines and T2 cells 

showed specific lysis (figure 36). As said before, K562 is not a target for effector T cells so 

that only 20-30 % of lysis could be measured. This percentage could be due to residual NK 

cells in the culture. The THP-1 cell line also showed lysis up to 20 %. WT1-loaded T2 target 

cells and HL-60 cells showed increasing levels of specific lysis with increasing cell ratios.  
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Fig. 36: Specific lysis of AML cell lines by WT1+ CD3+ effector T cells of a healthy control 
WT1-specific effector T cells of a healthy control were magnetically separated into CD3+ CD56- 

subpopulation and expanded for 7 days. Effector cells (EC) were incubated with different ratios of 
target cell (TC) lines (K562, THP-1, T2, HL60) for 2 hours in Europium release assay. 
 

In the last lysis experiment, the HLA-A*02 positive THP-1 cell line was incubated with 

HLA-A*02 positive effector cells that were either non-stimulated or stimulated with CMV 

and WT1 peptide, respectively. The experiment was conducted in order to see if there were 

variations in specific lysis when effector cells are stimulated differently. It was assumed that 

WT1-specific cells were optimal effector cells because the target cell THP-1 overexpresses 

WT1. As shown in figure 37, WT1-specific lysis was highest compared to the CMV-specific 

lysis and the unstimulated control.  
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Fig. 37: Specific lysis of THP-1 cells by antigen stimulated HLA-A*02+ T cells after 2 weeks 
expansion 
Antigen (CMV, WT1)-specific effector T cells from an HLA-A*02 positive healthy donor were 
measured in EuTDA assay after 2 weeks expansion. During expansion cells were stimulated with 
antigen and a cocktail of IL-2, IL-7, IL-15 and IL-21. For target cell (TC) lysis, THP-1 was incubated 
with different ratios of effector cells (EC) for 2 hours. 
 

In summary, it has been shown that EuTDA assay can be used to detect cytolysis of leukemic 

cell lines and T2 cells by different types of effector cells. The degree of specific lysis is 

dependent on various parameters like growth phase and permeability of target cells, cell 

quality of effector cells and also on handling procedures. These aspects will be further 

clarified in the discussion.  

 

 

3.2.2. Cell lysis of T2 target cell line by effector cells 

 

In the following experiments, the lysis of externally loaded T2 cells was analysed under the 

microscopy. These so called video experiments were analysed for 7.5 hours with Zeiss Axio 

Observer 1. The microscope was equipped with an incubation chamber allowing for ideal cell 

culture conditions. For analysis, the target cell line T2 was selected because it can be loaded 

with peptides as a target structure for effector cells. CMV positive cells were cultured as 

effector cells for a week under CMV stimulation and the addition of IL-2. During culturing, 

NK cells were removed from the previous bulk culture. Experiments were conducted with 

CD3+ effector T cells.  

 

 



Results 

77 
 

In figure 38, differences in cell sizes can be 

observed. T2 cells are approximately 20 µm 

in size, effector cells vary from 7-12 µm. 

Activated T cells are bigger than resting T 

cells. T2 is motile and is equipped with 

flagellae-like structures that can be seen 

under the microscope.  

Fig. 38: Illustration of target cell T2 and effector cell  
 

 

In the first video experiment, CMV loaded T2 cells were incubated with CMV-specific CD3+ 

effector T cells. Over a time period of 25 min, CMV-specific cells were able to attack target 

cells. After receiving a signal by CMV-specific CD3+ effector T cells, the target cell 

undergoes apoptosis (figure 39). 

 

 
Fig. 39: CMV-positive effector cells drive T2 loaded CMV target cells into apopotosis 
Images from time lapse video microscopy showing induction of apoptosis of T2 cells by CMV positive 
effector cells. Black arrows indicate the direct cell contact of target and effector cell. White arrows 
show signs of apoptosis in the target cell. Cells were tracked over a real time period of 7.5 h. Scale 
bar, 20 ��m. 
 

The experiment was repeated with similar conditions as used for the first approach. This time, 

alteration of T2 cells could be observed more clearly. Moreover, it was observed that effector 

cells were active by moving and changing their morphology. By direct cell contact of effector 

and target cells, indicated by the black arrow in figure 40, T2 cells seemed to lose their 

cytoplasmic membrane which is denoted with the white arrow in figure 40. The nucleus of the 
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target cells showed signs of apoptosis by breaking into smaller nucleosomal units. Therefore 

it was assumed that specific lysis of T2 cells was initiated. Comparable to the previous 

experiment, alteration of cells occurred within a time of 30 min.  

 

 
Fig. 40: Cell lysis of CMV-loaded T2 cells by CMV-positive effector cells  
Images from time lapse video microscopy show the late stage apoptotic T2 cell triggered by CMV-
positive effector cells. Black arrows indicate direct cell contact of target and effector cell. White 
arrows show apoptotic progression by elimination of the cytoplasm from the nucleus. The time line 
indicates the real time during microscopy. Cells were tracked over a period of 7.5 h. Scale bar, 20 ��m. 
 

Video experiments shown in figure 39 and 40 recorded alterations in the target cell line T2 

and showed direct cell contact by effector cells. To confirm that these alterations were signs 

of apoptotic cell death, the next video experiment was performed. In order to track target 

cells, T2 was labelled with annexin and propidium iodide to distinguish between apoptosis 

and necrosis of cells. Soon after initiating apoptosis, cells translocate the phospolipid 

membrane component called phosphatidylserine (PS) from the inner layer of the membrane to 

the cell surface. When expressed, PS can be easily detected with annexin which has a high 

affinity to PS. Propidium iodide which is known from dead cell exclusion in flow cytometry 

was used for counterstaining to discriminate dead/necrotic cells from apoptotic ones. This 

discrimination is important because apoptosis is induced by specific target cell lysis whereas 

necrotic cells are a sign of unspecific cell death (Kanduc, Mittelman et al. 2002).  
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Apoptosis of target cells could be observed in the next experiment illustrated in figure 41.  

 

 
Fig. 41: Apoptosis of CMV-loaded T2 target cells labelled with annexin V by CMV-positive 
effector cells  
Images from time lapse video microscopy show the apoptosis of a CMV-loaded T2 target cell 
triggered by CMV-positive effector cells in the presence of annexin V (green). Black arrows indicate 
direct cell contact of target and effector cell. Green cell appearance is a sign of apoptosis induction. 
The process of apoptosis is shown by membrane blebbing. The time line indicates the real time during 
microscopy. Cells were tracked over a period of 7.5 h. Scale bar, 20 ��m 
 

After 10 min of recording, direct cell contact of target and effector cell could be observed 

(arrow). Within the next 35 min the first green staining of the target cell membrane was 

visible. As shown in the upper panel of pictures, a bean shaped nucleus was still visible that 

broke down to smaller fragments with increasing time. After 1 hour and 55 min the whole cell 

membrane was stained green as a sign of cell apoptosis. There were no signs of necrotic cells 

that would transform red by propidium iodide. In these experiments, apoptosis of CMV 

positive T2 cells was investigated and resulted in an optimized assay that can be conducted 

alongside other cell lysis experiments. However, selection of functional effector cells is 

crucial and assay procedure requires time. These experiments were conducted for establishing 

assay conditions and similar approaches were initiated with WT1-specific effector cells 

isolated from AML patients. Optimal assay conditions have not been achieved during the 

project. 
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3.2.3. Analysis of WT1 mRNA levels in AML cell lines 

 

Analysis of target cell lines was one of the subjects in this project. For setting up in vitro 

assay conditions leukemic cell lines were used as target cells. These cell lines were frozen for 

several years in liquid nitrogen. As optimal target cells for effector cells, cell lines should 

overexpress the WT1 antigen. In order to determine the WT1 content, cell lines were sent to 

our cooperation partners at the Department of Bone Marrow Transplantation, Essen for  

qRT-PCR analysis. WT1 mRNA levels were determined with WT1-specific primers and 

resulting data are shown in figure 42. 

 
Fig. 42: WT1 mRNA level in AML cell lines 
WT1 mRNA levels of leukemic cell lines (K562, THP-1, KG-1, HL-60) and T2 as a control cell line 
were measured in comparison to GAPDH, a housekeeping gene. The relative expression of WT1 was 
calculated in percentage by the quotient of WT1 mRNA expression and GAPDH expression, multiplied 
by 100. Error bars are only shown for KG-1 and HL-60 experiments (n=3). Analysis of K562, T2 and 
THP-1 was conducted once.  
 

WT1 levels greatly varied between cell lines. K562 had by far the highest levels of WT1 

mRNA and served as a positive control for further experiments. T2 cells did not express WT1 

mRNA as expected and was used as a negative control. Leukemic cell lines THP-1, KG-1 and 

HL-60 showed WT1 mRNA expression. Compared to figure 19 where WT1 mRNA was 

measured in AML patients, AML cell lines possess approximately 1000 times higher mRNA 

levels. Both patient and cell line mRNA levels were analysed by a standard protocol for  

qRT-PCR.  

 

However, the amount of mRNA present in the cells does not necessarily correlate with the 

WT1 antigen that is actually expressed on the cell surface. Therefore, protein concentration 

was determined by Western Blot followed by polyacrylamide gel electrophoresis which is a 
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powerful tool providing information about the presence, the size, the charge and the purity of 

WT1 protein. 

 

 

3.2.4. WT1 protein detection in AML cell lines by Western Blot  

 

For the first experiment of WT1 protein determination, total protein was isolated from THP-1 

cells as a positive control and CD34+ cells from AML patients and healthy donors. In AML 

patients isolated cells served as AML blasts whereas for healthy controls CD34+ progenitor 

cells were isolated. The aim of this experiment was to show differences of WT1 protein 

expression in CD34+ cells and to compare them with AML blasts. The result should support 

the hypothesis that WT1 protein is overexpressed in AML blasts but only present at a low 

level in healthy tissue and CD34+ progenitor cells (Schwarzinger, Valent et al. 1990, Inoue, 

Sugiyama et al. 1994, Bergmann, Maurer et al. 1997, Maurer, Brieger et al. 1997). 

 

Once the cells were lysed, they were boiled to denature any proteases that may interfere with 

the experiment. In order to compare protein expression, equal amounts of total protein have to 

be loaded on the electrophoresis gel. Therefore, protein concentration of the extracted protein 

was quantified using Bradford assay. Concentrations were adjusted to 0.35 µg/µL. In a second 

approach samples were normalized according to cell number. 500,000 cells/40 µL per sample 

were used. Samples were loaded in different order for both approaches, however sample 

numbers are the same. For better understanding, this is shown in table 20. 

 

Tab. 20: Loading scheme of THP-1, cells from AML blasts and CD34+  progenitor cells in 
Western Blot  

1 2 3 4 5 6 7 8 9 10 

marker THP-1 Pat 1 Pat 2 Buffer Buffer 1_CD34+ 1_CD34- 2_CD34+ 2_CD34- 

5 µL of page ruler�Œ (marker) and 40µL of THP-1(positive control), AML blasts (Pat1, Pat 2, n=2) 
and healthy CD34+ progenitor cells (1_CD34, 2_CD34, n=2) were loaded on a polyacrylamide gel 
for electrophoresis. In lanes 7 and 9: CD34+ fraction after MACS separation, in lanes 8 and 10: 
CD34- fraction after MACS separation. Buffer in lane 5 and 6 served as the negative control.  
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Fig. 43: WT1 protein determination by Western blot analysis in THP-1 and in samples of 
AML patients and healthy controls 
Protein lysates either normalised to cell number (left) or protein concentration (right) were resolved 
on a 10% polyacrylamide gel and run in SDS-polyacrylamide gel electrophoresis (SDS-PAGE). WT1 
was detected by immunoblotting on a polyvinylidene fluoride (PVDF) membrane using a 1:1000 
dilution of anti-WT1 goat polyclonal IgG and 1:10,000 dilution of donkey anti-goat polyclonal IgG. 
Bound antibodies were detected using a secondary antibody, horseradish peroxidase conjugated IgG. 
Proteins were detected using Femto susbtrate. Actin (42 kDa) as the loading control is shown in the 
lower panel for both membranes. The used marker (protein ladder) is shown on the left. 
 

As shown in figure 43, protein detection resulted in unspecific protein bands that could hardly 

be distinguished. In the left picture THP-1 in lane 2 showed the most intense signal 

corresponding to higher protein content than the other samples. For direct comparison, 

samples of isolated CD34 cells were loaded as the positive and negative fraction that resulted 

from magnetic separation. This difference can be seen in lane 9 and 10 loaded with CD34 

progenitor cells of a healthy individual. CD34+ cells in lane 9 showed a brighter signal. To 

improve signal resolution, the membrane was probed with a chemiluminescent enhancer 

solution. However, signals appeared to be unspecific after treatment with Femto substrate as 

an enhancer for low-level protein detection. The WT1 protein is approximately 54 kDa in size 

and a weak band can be seen. This leads to the conclusion that samples did not have high 

concentrations of WT1. Nearly the same results can be observed in the right picture which 

displays samples normalized to the total protein concentration. The THP-1 cell line showed 

the highest signal of proteins even if the corresponding band for WT1 expression could only 

be estimated. As already stated, addition of Femto substrate led to unspecific signal. In order 

to interpret the result from any Western blot experiment, the loading control such as ��-actin 

was used throughout this experiment. As a conclusion, Western Blot performance was 

adequate but experiments had to be repeated with optimized conditions.  
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Because of the fact that this experiment was conducted with a relatively low cell number of 

500.000 cells per sample, the determination of WT1 protein in leukemic cell lines was 

repeated with 5*106 cells/mL. Depending on the results of mRNA analysis (see figure 42), it 

was expected that K562 had a high WT1 protein concentration whereas no WT1 protein could 

be detected in T2. Results are shown in figure 44. WT1 protein could be detected as a band at 

54 kDa in all cell lines except for T2, the negative control. Experiments were repeated twice 

with similar results.  

 

 
Fig. 44: WT1 protein determination in AML cell lines by Western blot analysis 
Protein lysates normalised to cell number were resolved on a 10% polyacrylamide gel and run in 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). WT1 was detected by immunoblotting on a 
polyvinylidene fluoride (PVDF) membrane using a 1:1000 dilution of anti-WT1 goat polyclonal IgG 
and 1:10,000 dilution of donkey anti-goat polyclonal IgG. Bound antibodies were detected using a 
secondary antibody, horseradish peroxidase conjugated IgG. Proteins were detected using Femto 
substrate. The used marker (protein ladder) is shown in the first lane. 
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3.2.5. Intra-/extracellular staining of WT1 in AML cell lines THP-1 and HL-60  

 

Western Blot analysis is a reliable technique to measure the amount of WT1 protein. As 

described in previous experiments (figure 43 and 44), detection of low-level proteins is 

challenging and requires a fairly high cell number which might be a problem in AML patient 

analysis. Alternatively, WT1 localisation can be examined more specific by fluorescent 

staining. As known from literature, WT1 shuttles between the nucleus and the cytoplasm 

(Niksic, Slight et al. 2004) so that WT1 localisation was analysed extra- and intra-cellular in 

the following experiments.  

 

For WT1 localisation target cell lines THP-1 and HL-60 were stained for extra- and intra-

cellular WT1 expression. Results are summarized in figure 45 for both cell lines. Experiments 

were conducted with three different controls that are indicated by a colour code of the shown 

histograms. The unstained samples consisting of the living cells only are represented by the 

grey peaks. In the next measurement cells that were only stained with the secondary antibody 

coupled with PE are represented by the red peak. The green peak shows the isotype control 

and the blue peak depicts the actual detection of WT1 protein with WT1 antibody. For each 

experiment, cells were gated on living cells and histograms were compared.  

 

THP-1 analysis shown in panel A resulted in nearly no extra-cellular WT1 localisation but 

rather in intra-cellular localisation. These results come about when observing a shift from the 

blue peak (WT1) compared to the unstained control in grey. This shift cannot be observed for 

extra-cellular localisation in the upper lane but for intra-cellular localisation. By calculating 

the delta mean fluorescence intensity (�û MFI) of the isotype subtracted from the WT1, the 

expression levels can be compared. MFI values are given in the table 21. 

 

Tab. 21: Delta mean fluorescence intensities of THP-1 and HL-60 
�û MFI THP-1 HL -60 

Extra-cellular WT1 0.01 0.09 

Intra-cellular WT1 1.66 0.83 

 

WT1 expression and localization in HL-60 cell line resulted similar outcome as described for 

THP-1.  
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Fig. 45: Extra- and intra-cellular staining of WT1 in THP-1 and HL -60 cells 
AML cells THP-1 (Panel A) and HL-60 (Panel B) were analysed for WT1 expression extra- and intra-
cellular and gated on forward/side scatter (FSC/SSC). Control samples consisting of unstained AML 
cells (grey), cells stained with the secondary antibody [donkey anti goat-PE (d anti g PE), red] only 
and cells stained with the isotype control [Isotype control (Iso), donkey anti goat-PE (d anti g P), 
green] were compared to WT1 expression in cell lines (blue). The mean fluorescence intensity  
(X-A.mean) of the isotype expression (green box) was subtracted from WT1 expression (blue box). 
 

In summary, WT1 expression could be detected on mRNA level in K562, THP-1, HL-60 and 

KG-1 cells. Western Blot analysis resulted in WT1 protein expression in mentioned cell lines. 

The HLA-A*02 positive cell line THP-1 was considered an optimal target cell for effector 

cell analysis because it showed the widest range for measuring specific release in EuTDA 
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assay. Moreover, WT1 was expressed by THP-1 on a transcriptional and translational level 

but could not be detected on the cell surface. 
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4. Discussion 

This project investigated a novel approach for an adoptive immunotherapy in order to treat 

relapsed AML patients after HSCT. The overall aim was the generation of WT1-specific 

effector cells that are able to specifically lyse AML cells. For establishing an adoptive 

immunotherapy it is crucial to analyse both effector and target cells in in vitro assays. In the 

following text, characterisation and expansion strategies of potent effector cells and their 

influence on optimal target cell selection are discussed. Finally, the investigated approach will 

be compared to current immunotherapies that are administered to AML patients in relapse. 

 

4.1.  Analysis of WT1-specific cells as potent effectors for adoptive 

immunotherapy 

 

The first aim of this project was the characterisation of WT1-specific cells used for the 

generation of an adoptive immunotherapy. To examine effector cell function of WT1-specific 

cells, cells were characterised according to their frequency and specificity, their proliferative 

potential for expansion and their potential to lyse AML target cells. For determination of 

WT1-specific cell frequencies, PBMCs of healthy controls and AML patients pre and post 

transplantation were isolated and stimulated with a WT1 peptide pool. This peptide pool 

consists of overlapping peptide sequences covering the whole WT1 protein. The WT1 peptide 

pool activates T cell subpopulations by the stimulation of CD4 and CD8 T cells resulting in 

pro- and anti-inflammatory cytokine secretion of WT1-specific cells (figure 8 and 9) 

(Krishnadas, Stamer et al. 2011, Miltenyi Biotech 2014). Whereas pro-inflammatory 

cytokines such as IFN-�5 are important for long-term proliferation of activated T cells 

(Ranieri, Popescu et al. 2014), cytolytic enzymes (granzyme B and perforin) secreted by 

cytotoxic cells mediate a boost response directly after secretion (Wensink, Hack et al. 2015). 

Both responses are favourable for an adoptive immunotherapy since effector cells should 

directly attack leukemic blasts and develop memory function for prolonged survival. Immune-

suppressive cytokines such as IL-10 are essential for regulatory function. IL-10 is produced 

by both monocytes��macrophages and T cells belonging to the T helper cell subsets 

suppressing the production of pro-inflammatory cytokines (Yssel, De Waal Malefyt et al. 

1992). Based on these characteristics, it has been suggested that IL-10 might be involved in 

preventing GvHD and inducing T cell tolerance in the setting of HSCT. Since regulatory cells 

are thought to attenuate T cell reactivity against leukemic blasts, IL-10 secretion counteracts a 

successful immunotherapy. However, high secretion levels have been reported to be 
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associated with fatal outcome in transplanted patients (Hempel, Korholz et al. 1997, Schulz, 

Munker et al. 2001, Tsimberidou, Estey et al. 2008, Szczepanski, Szajnik et al. 2009, 

Sanchez-Correa, Bergua et al. 2013) and suggests the removal of IL-10-secreting cells such as 

monocytes (figure 9) for optimal expansion conditions. In order to analyse different immune 

responses by WT1 stimulated cells, IFN-�5, IL-10, granzyme B and perforin were selected for 

WT1-specific cell responses in further experiments. In healthy controls, the cytokine secretion 

profile of WT1-specific cells resulted in relatively low median frequencies for all measured 

cytokines (figure 10). High WT1-specific frequencies are not expected in healthy controls 

since WT1 is only expressed at a low level or even absent in normal tissue (Yang, Han et al. 

2007, Toska and Roberts 2014). Similar results were observed for WT1-specific frequencies 

in AML patients, pre and post transplantation (figure 11 and 12). As a preparation for HSCT, 

AML patients pre transplantation undergo induction and consolidation therapy aiming at the 

destruction of AML blasts but also healthy cells contributing to a functional immune system 

so that WT1-specific cells may be also impaired in function. AML patients post 

transplantation are thought to have active cells arising from the reconstitution of the �S�D�W�L�H�Q�W�¶�V 

bone marrow. Although median frequencies of WT1-specific cells appeared to be similar in 

the cohorts (table 16), interquartile ranges were different among the groups. Whereas WT1-

specific frequencies were at a similar range in all healthy controls, WT1-specific frequencies 

in AML patients were detected at a broader range, especially for IL-10 secretion. Since 

interquartile ranges display single frequencies, it seems that there is a patient-specific 

variability in WT1-specific frequencies. In single patients cells after transplantation seemed to 

be more active. It has been reported that patients have different initial frequencies of WT1 

precursors which are influenced by various parameters such as disease severity, AML 

subtype, treatment and time between transplantation and sample analysis (for AML patients 

post transplantations) (Wölfl, Merker et al. 2011). However, cytokine levels in AML patients 

after transplantation (figure 13) did not significantly increase with time after transplantation. 

Analysis of cytokine levels during the post transplantation period is important for the 

selection of potent effector cells to administer after transplantation as a supportive therapy.  

 

In order to further characterize WT1-specific cells, FluoroSpot was used. The novel 

FluoroSpot technique, a fluorescence-coupled ELISpot assay, measures IFN-�5 and granzyme 

B secretion simultaneously and was run in parallel with the ELISpot assay. According to 

other working groups (Hallengard, Haller et al. 2011, Kesa, Larsson et al. 2012, Essone, 

Kalsdorf et al. 2014) assays were reported to be comparable which could be confirmed in this 

project. For both IFN-�5 and granzyme B secreting T cells, responses to WT1 were equally 
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correlated between the two assays which makes the techniques comparable. Although 

correlated with ELISpot, FluoroSpot generally resulted in slightly higher WT1-specific 

frequencies (table 14). Additionally background noise of the unstimulated controls was lower 

in FluoroSpot (table 17, figure 15) indicating that this assay is even more sensitive and 

specific. Other groups observed similar frequencies as we observed in the FluoroSpot. But in 

contrast to our experiments, they used anti-CD28 for co-stimulation (Casey, Blumenkrantz et 

al. 2010, Han, Bagheri et al. 2012). While having all the advantages of an ELISpot assay, 

FluoroSpot analysis compresses the different kinetics of cytokine release. The production of 

cytokines by immune cells rather results from sequential than from simultaneous release. This 

means that cells predominantly release one cytokine after another (Han, Bagheri et al. 2012). 

In this FluoroSpot setting, IFN-�5 and granzyme B are said to be secreted simultaneously. 

However, by comparing kinetics of cytokine release, granzyme B is secreted within a 

relatively short time (from 20 min up to 4 hours) to induce a boost for the immune system 

whereas IFN-�5 is released after hours (Shafer-Weaver, Sayers et al. 2004). With an incubation 

time of 24-48 hours, FluoroSpot analysis combines this secretion difference. ELISpot assays 

could be adjusted for every single cytokine which is not possible for a combined analysis. 

FluoroSpot also needs less cell material which is a big advantage for AML patient samples 

having usually low specific cell numbers. Therefore, FluoroSpot assay was identified as the 

method of choice when analysing WT1-specific frequencies. Simultaneous measurement of 

IFN-�5 and granzyme B in AML patients post transplantation (figure 16) identified three 

functional WT1-specific T cell subsets which reflect their memory phenotype and cytotoxic 

potential, a phenotype which is preferred for adoptive immunotherapy. IFN-�5-secreting 

effector cells define active T cells that could develop into long-lived memory cells. Effector 

cells secreting granzyme B are known to have cytolytic function and will result in a short but 

strong immune response. This boost will not hold for long because cytotoxic T cells without 

memory function are only short-lived (Uttenthal, Martinez-Davila et al. 2014). This short  

life-span would not be beneficial for adoptive immunotherapy. Effector cells with cytolytic 

function that secrete both IFN-�5 and granzyme B simultaneously might be the best starting 

material for ex vivo generation because they basically display both immune responses. 

However, double positive T cells secreting both cytokines simultaneously resulted in a very 

low frequency of WT1-specific cells (figure 17) compared to single cytokine secretion so that 

all three subpopulations would be used for expansion. 

 

Relapsed AML patients who could benefit from a WT1-specific immunotherapy were 

analysed by ELISpot according to their WT1-specific frequency (figure 18). Because WT1 is 
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highly expressed in more than 80 % of AML cells (Malagola, Skert et al. 2014), it is 

considered a prognostic marker for residual leukemic blasts in a relapse situation. However, 

WT1-specific frequencies were relatively low for relapsed AML patients which might refer to 

the fact that blasts contaminating the patients mononuclear cells dampened the cytokine 

secretion in ELISpot assay. During leukomogenesis leukemic blasts in the bone marrow are 

likely to migrate into the peripheral blood replacing functional mononuclear cells. The more 

blast cells were detected in the blood, the less functional T cells could be analysed in ELISpot 

assay. Compared to non-relapsed AML patients pre and post transplantation (figure 11 and 

12), WT1-specific frequencies of relapsed AML patients did not differ significantly. To assess 

the prognostic potential of WT1, WT1 mRNA levels were measured before, during and up to 

8 months after AML relapse (figure 19). Data show that WT1 mRNA levels highly increase 

during relapse and equal zero before and after relapse, an expression level that is similar to 

healthy controls. Monitoring WT1 levels after transplantation seems to be relevant for further 

relapse prediction. According to many studies, elevated WT1 mRNA levels accompany with 

poor prognosis (Yang, Han et al. 2007). Most of the studies on relapse monitoring employ 

bone marrow as the source of leukemic cells which is not comparable to peripheral blood 

sources used for this analysis (Malagola, Skert et al. 2014). However, monitoring of WT1 

derived from AML blasts in this project showed a significant increase in mRNA levels at the 

time of relapse and can be used as a prognostic relapse marker. Since WT1 mRNA is elevated 

during relapse, Elmaagacli and colleagues asked the question if silencing of the WT1 gene by 

small interfering RNAs (siRNA) might induce anti-leukemic effects. siRNAs are known to 

initiate sequence-specific degradation of targeted mRNA with regard to cell proliferation and 

induction of apoptosis (Karami, Baradaran et al. 2014, Sioud 2014). WT1-specific siRNA 

analysis showed significant decrease in WT1 expression levels in leukemic cell lines and 

AML blasts (Elmaagacli, Koldehoff et al. 2005). However, WT1 mRNA levels do not 

necessarily correlate with protein amount as transcription of mRNA only describes WT1 gene 

expression but not translation of WT1 proteins. Therefore experiments do not give any 

information about WT1 expression on the cell surface of AML blasts. 

 

Current immunotherapies are diverse in expansion strategies that are more or less successful. 

Successful expansion moreover refers to sufficient cell numbers that can be generated rapidly. 

Clinically relevant protocols are based on the generation of dendritic cells (DC) as antigen 

presenters. Most protocols involving DC generation are time-consuming. Different groups 

describe generation times of more than 10 days for potent DCs and generation is fairly 

difficult in AML patients having a non-functional immune system (Wolfl, Kuball et al. 2007). 
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Alternatively, strategies make use of magnetic selection of antigen-specific T cells using 

Streptamers which is only applicable in a high-frequent T cell population and is limited to 

patients that express the corresponding HLA antigen. Patient cohorts are limited by the initial 

frequency of effector cells which plays a major role in finding the optimal expansion. In 

general, various expansion strategies for high-frequent cells have been described in literature 

especially for the generation of CMV-specific effector cells. CMV has been studied 

immensely because viral infections are responsible for morbidity and mortality in patients 

after HSCT (Bruminhent and Razonable 2014, Santos, Brennan et al. 2014, Sousa, Boutolleau 

et al. 2014, Van Craenenbroeck, Smits et al. 2015). As investigated by cooperation partners of 

the Department of Otorhinolaryngology and confirmed in this project (figure 21), expansion 

of high-frequent CMV-specific T cells is possible to a certain extend with the selected 

expansion strategy described in 2.2.6 and was taken as a basis for WT1-specific T cell 

expansion. However, after a T cell expansion of approximately 2 weeks, cell numbers 

dramatically decreased which might be a consequence of activation-induced cell death 

(Arakaki, Yamada et al. 2014, Dalla Santa, Merlo et al. 2014, Moreno, Negrotto et al. 2014). 

This situation is initiated by the over-stimulation of cells by the cytokine cocktail which was 

regularly administered to the expansion culture. Applying the same expansion protocol to 

low-frequent WT1-specific T cells resulted in a different outcome. Even if sufficient numbers 

of around 2*106 Pan T cells were present in the starting culture (figure 25 and 27), expansion 

of WT1-specific cells did not exceed a 4 fold increase. Since DLIs transfused at dosages of  

1-5*106 T cells/kg are found to be a feasible therapeutic strategy after transplantation 

(Gratwohl, Baldomero et al. 2012), it is highly unlikely that this expansion strategy generates 

sufficient cell numbers for an adoptive immunotherapy. From the applied expansion protocol, 

it can be concluded that expanded WT1-specific T cells resulted in a highly pure culture of 

cytotoxic CD8+ T cell (figure 29) confirmed by flow cytometry even if Pan T cells were 

selected as the initial culture (figures 24, 25 and 27). Transformation of cytotoxic CD8+  

T cells to effector memory cells as an aim of expansion is crucial for increasing antitumor 

efficacy. Although expanded CD8+ T cells acquired cytotoxic activity in form of granzyme B 

release by WT1 stimulation, antitumor effects could be absent in adoptive immunotherapy. 

This refers to the fact that CD8+ T cells secreting granzyme B lose the ability of IL-2 

secretion, an important cytokine for resisting apoptosis. Consequently, differentiation of CD8+ 

T cells into effector memory cells is inversely related to their proliferative potential (Wölfl, 

Merker et al. 2011, Restifo, Dudley et al. 2012). The more the cells are differentiated after 

expansion, the lower is their proliferative capacity. Reinfusion of WT1-specific CD8+ T cells 

derived from less differentiated populations such as central memory T cells has shown to be 
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successful by Chapuis and colleagues. They managed to generate functional, long-term 

detectable CD8+ T cells with an expansion strategy similar to the one in this project. In their 

study, HLA-A*0201-restricted CD8+ T cells expressing CD27, CD28 and CD127 (phenotype 

of central memory T cells) (Appay 2008) mediated anti-leukemic activity which indicates that 

expansion of a highly specific, single T cell subpopulation is in general possible (Chapuis, 

Ragnarsson et al. 2013). Wölfl and colleagues suggested that depletion of CD4+ T cells prior 

to expansion enhanced T cell proliferation (Li and Yee 2008, Wölfl, Merker et al. 2011). 

Because expansion of Pan T cell cultures in this setting only resulted in a CD8+ T cell culture, 

CD4+ �7�� �F�H�O�O�V�� �Z�H�U�H�� �S�U�R�E�D�E�O�\�� �R�Q�O�\�� �Q�H�H�G�H�G�� �I�R�U�� �L�Q�L�W�L�D�W�L�Q�J�� �W�K�H�� �H�[�S�D�Q�V�L�R�Q�� �D�V�� �µ�F�R-stimulator�V�¶�� �E�X�W��

not for the entire expansion phase. However it has been found by Restifo and colleagues that 

CD8+ and CD4+ T cells secreting IFN-�5 after expansion initiate the upregulation of MHC 

class I and II on AML blasts (Restifo, Dudley et al. 2012) which underlines the importance of 

measuring the cytokine secretion profile by ELISpot assay. WT1-specific cells resulted in a 

higher number when expanded without autologous feeder cells (figure 25). Even if feeder 

cells were used to retain in vivo conditions, they contaminated the purity of the effector cell 

culture and could not be removed after expansion. Novel expansion strategies are mostly 

feeder-free by using particle-based approaches (Oyer, Igarashi et al. 2015). Artificial MACSi 

beads only deliver the co-stimulatory signal for T cell activation but do not function as 

antigen presenters to the effector cells (Onlamoon, Boonchan et al. 2013). Therefore, weekly 

administration of WT1 peptide to the cultures was necessary. Additional growth stimulation 

by the cytokine cocktail did not result in the generation of long-lived effector memory cells 

which was tested by phenotypic analysis in flow cytometry for an expansion culture  

(figure 29). To complement expansion outcome, WT1 specificity of effector cells was proven 

by cytokine secretion of WT1-specific cells in ELISpot assay and by Streptamer binding in 

flow cytometry. ELISpot analysis resulted in higher WT1-specific frequencies for IFN-�5 and 

granzyme B compared to the initial starting culture. Frequencies of T cells after expansion 

tested on other stimuli such as PHA, CEF or Candida albicans was not as successful as for 

WT1, indicating WT1 specificity of expanded T cells. However, WT1-specific frequencies 

could not be compared to unstimulated cells as negative controls. Expansion of unstimulated 

cells is not possible because cells are not activated and die after 2-3 days even if treated with 

the same growth supplements (cytokine cocktail). The same results of WT1-specific 

frequencies were observed for Fluorospot analysis. Whereas initial frequencies of WT1-

specific cells before expansion resulted in 0.001 %, a 10-fold increase in expanded WT1-

specific cell frequencies could be observed after 21 days. Streptamer technology confirmed 

rather low frequencies of WT1-specific cells after expansion. However, frequencies were  
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10 times higher than for ELISpot assay, ranging from 0.054-0.27 % WT1 positive cells. 

Higher frequencies after Streptamer analysis are expected as this technique only measures 

binding of WT1 peptides and not function (cytokine secretion). Streptamer staining would be 

a good option for direct ex vivo WT1 isolation. A major drawback of this technique is that 

Streptamer staining of WT1-specific cells is HLA-A*02 or HLA-A*24 restricted and 

therefore only applicable for a small cohort of patients. ELISpot analysis is not HLA 

dependent and therefore broadly applicable. Moreover, Streptamer technology is also 

restricted to one WT1 peptide sequence whereas in ELISpot assay cells are stimulated with 

the entire WT1 peptide repertoire. In conclusion, expansion of low frequencies of WT1-

specific precursors requires multiple rounds of stimulation which is a time-consuming 

approach.  

 

The development of WT1 targeted therapies in order to treat relapsed AML does not only 

require sufficient cell numbers but also functional cells that eradicate residual AML blasts. 

Cytotoxicity is the most important effector function of cells generated for an adoptive 

immunotherapy. The cytolytic capacity of effector cells was tested in Europium release assay 

�D�Q�G���¶�Y�L�G�H�R���H�[�S�H�U�L�P�H�Q�W�V�¶��where specific lysis of AML cell lines was investigated. The aim of 

this assay was not only the functional characterisation of WT1-specific effector cells but also 

the identification of optimal target cells that express high amounts of WT1 on the cell surface 

as a target structure. The EuTDA cytotoxicity assay was invented as a non-radioactive 

alternative to the well known Cr51 release assay (Blomberg, Hautala et al. 1996). It has been 

shown that this assay works for K562 lysis by human PBMCs (Vikström, Lähde et al. 2000). 

K562 was used for establishing assay conditions, cell lysis experiments were conducted with 

AML blasts and AML cell lines. Effector cell function was tested in different settings 

including AML cell line or AML blast lysis by CD8+ T cells of AML patients, AML cell lysis 

by healthy control cells and lysis of the AML cell line THP-1 by WT1-specific expanded  

T cells. Efficient cell lysis of AML targets highly depended on HLA antigens presented on 

both effector and target cells. Specific lysis could be detected for HLA matched antigens as 

long as no other HLA antigens were present. Activation of HLA-A*02 positive CD8+ T cells 

by unspecific IL-2 stimulation (figure 33) did not result in significant lysis of AML cell lines 

expressing different HLA antigens. Increased specific lysis up to 50 % could only be 

observed in T2 cells which were exogenously loaded with WT1 peptide pool prior to analysis. 

Because effector cells originated from healthy donors, it was not expected that effector cells 

were WT1-specific. In another experiment (figure 34), donor-recipient pairs were analysed 

that were selected as an ideal match for HSCT. Donor derived effector cells were tested for 
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specific lysis of patient blasts but were not able to lyse target cells. These cells were only 

stimulated with WT1 over night and were not expanded or enriched for WT1 indicating that 

initial frequencies of WT1-specific cells could be too low for effector cell function. Evidence 

was given by another lysis approach with HLA-A*02 positive THP-1 cells and expanded 

HLA-A*02 positive T cells stimulated with WT1 and CMV that specifically lysed target cells 

(figure 37). The T2 cell line seems to be an optimal target since this cell line is defective in 

antigen presentation and only expresses HLA-A*02 antigen on its surface (Wei and Cresswell 

1992, Luft, Rizkalla et al. 2001). Expanded WT1-specific effector cells were able to 

specifically lyse WT1 loaded T2 cells up to 100 % (figure 36). Cytolytic activity of WT1-

specific effector cells is not only dependent on high frequencies of specific cells but also on 

WT1 presentation of target cells. Moreover, target cell activity was highly influenced by 

growth phases of AML cells and was tested to be optimal when cells were in log phase (data 

not shown). Also, it was not clear how efficiently target cells could be labelled with BATDA. 

Since the ligand penetrates the cell membrane, loading efficiency differed between the cell 

lines. Specific lysis is only measured indirectly by the release of TDA that is set free upon 

effector cell lysis. Even if this assay benefits from being non-radioactive and fast (< 4 hours) 

(Lengagne R, Gnatjic S et al. 1998) labelling of target cells as well as assay performance is 

highly dependent on HLA antigen matching and therefore requires a number of suitable target 

cells with a broad range of HLA antigens. In AML blasts a variety of HLA antigens is found 

which may cause problems in this assay. The cytolytic potential of effector cells was also 

analysed in video experiments making use of the T2 cell line that was identified as an optimal 

target cell in Europium release assay. By labelling target cells with annexin and propidium 

iodide induction of apopotosis could be observed. Since apoptosis is a consequence of 

specific cell lysis (Kanduc, Mittelman et al. 2002) effector cell function could be analysed. 

Induction of apoptosis by CMV-positive effector cells was confirmed for CMV loaded  

T2 cells (figure 41). This setting with T2 target cells can be conducted alongside with other 

lysis experiments but requires careful selection of functional effector cells. As shown for 

EuTDA assay, HLA restriction is predetermined by HLA-A*02 specificity of T2 cells and 

apoptosis is only initiated by sufficient frequencies of specific effector cells. Therefore it was 

not possible to establish optimal conditions for cell lysis by WT1-specific cells. 
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4.2.  Identification of suitable AML target cells to confirm effector cell 

functionality 

 

The second aim of this project was the analysis of suitable target cells for in vitro assays. 

Target cells were analysed for to their HLA antigen expression, their potential of being lysed 

by effector cells and their presence of WT1 on mRNA and protein level. According to the 

impact of HLA antigens in transplantation (Horowitz, Gale et al. 1990, Jacobsohn and 

Vogelsang 2007, Okumura, Yamaguchi et al. 2007), effector and target cells should match in 

their HLA antigen pattern for cytotoxicity assay to exclude unspecific lysis of effector cells 

by HLA mismatches, as already discussed for Europium release assay. AML blasts could not 

be identified as suitable targets because they neither showed a broad range for specific release 

of TDA (figure 32) nor specifically interacted with effector cells (figure 34). It is known that 

AML blasts downregulate MHC class I molecules as an immune evasion mechanism and 

therefore do not express WT1. This could explain why WT1-specific effector cells are not 

activated (Restifo, Dudley et al. 2012). Lack of killing presumably resulted from insufficient 

expression of WT1 target peptide on the cell surface of AML cell lines. Moreover, the amount 

of peptide plays a role in recognition and could be a limiting factor in this experiment. 

Therefore, following experiments investigated if leukemic cell lines express WT1 as a target 

structure. WT1 expression in AML cell lines was confirmed by qRT-PCR, Western Blot and 

flow cytometry.  

 

WT1 mRNA levels measured by qRT-PCR in AML patients were either very low or even 

undetectable (figure 19) but greatly varied in AML cell lines (figure 42) as also investigated 

by other groups (Inoue, Sugiyama et al. 1994, Maurer, Weidmann et al. 1997). The WT1 

expression levels of normal bone marrow CD34+ hematopoietic progenitors and acute 

leukemia cells were reported to be the similar (Inoue, Sugiyama et al. 1994, Maurer, 

Weidmann et al. 1997). But Inoue and colleagues found that the WT1 expression level of 

normal CD34+ cells in bone marrow was significantly lower than levels of leukemic cells 

(Inoue, Sugiyama et al. 1994). If the same amount of WT1 would be expressed in normal 

hematopoietic progenitors and in leukemia cells, the adoptive transfer of WT1-specific 

effector cells would have a deleterious effect on haematopoietic progenitors. However,  

qRT-PCR analysis revealed strong WT1 mRNA expression and resulted in a 1000 times 

higher mRNA levels for leukemic cell lines versus AML blasts. This high content has not 

been reported by other researchers so far.  
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To assess the actual protein amount of WT1, Western Blot analysis was conducted with AML 

cell lines, CD34+ haematopoietic progenitor cells from healthy controls and CD34+ AML 

blasts from patients (figure 43). WT1 protein detection was only expected at low level in 

healthy controls since WT1 appears to be a tumor suppressor in haematopoietic progenitors 

leading to quiescence and growth arrest (Yang, Han et al. 2007). Western Blot for CD34+ cells 

of AML patients and healthy controls was difficult to establish because too many cells were 

needed for analysis. It cannot be stated if WT1 expression is only restricted to CD34+ AML 

blasts and THP-1 cells. Consequently experiments of WT1 protein determination were 

repeated in AML cell lines only and resulted in specific bands for WT1 in K562, THP-1,  

KG-1 and HL-60 samples at approximately 54 kDa (figure 44). Both qRT-PCR and Western 

Blot analysis showed variations in the level of WT1 expression in leukemic cells lines which 

could have an impact on specific lysis by effector cells. Cytotoxicity assay results raise the 

possibility that only a small subpopulation of target cells express sufficient WT1 levels. These 

experiments did not confirm surface expression of WT1. Interestingly, only a few research 

groups tried the detection of WT1 protein by Western Blot analysis (Gao, Bellantuono et al. 

2000, Bellantuono, Gao et al. 2002) which could be dependent on the high amount of CD34+ 

cells needed for analysis. Also, WT1 detection on protein levels requires a highly specific 

WT1 antibody that binds to immunodominant WT1 peptide structures on the surface of target 

cells. Selection of a suitable antibody for Western Blot analysis was fairly difficult because 

none of the available antibodies was reported to be highly specific by having a high avidity. 

Even if available antibodies were polyclonal indicating they generally recognize multiple 

epitopes because they are generated using the entire immunogen, it was not known if 

immunodominant epitopes were presented by target cells.  

 

To assess WT1 localisation on the target cell surfaces extra- and intracellular staining was 

conducted and has the advantage that only little material was required. Since WT1 is 

described as a transcription factor that shuttles between the nucleus and the cytoplasm 

(Niksic, Slight et al. 2004) it was assumed that high amounts of WT1 can be found 

intracellularly. This assumption was confirmed by flow cytometry for AML cell lines THP-1 

and HL-60 (figure 45, table 21). No extracellular WT1 expression could be detected. In 

theory, intracellular proteins are expressed on the cell surface via MHC class I as peptide 

fragments. Upon presentation, peptides are recognized by the TCR on WT1-specific effector 

cells (Konig 2002, Morris, Hart et al. 2006). As a nuclear protein, WT1 is inaccessible to 

classical antibody therapy. Most of the monoclonal antibodies that are considered 

therapeutically useful only recognize whole surface proteins which make targeting of WT1 
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quite difficult. Due to the inaccessibility to conventional antibody therapies, many groups 

work on vaccine approaches where WT1-specific cytotoxic T cells are generated that 

recognize certain WT1 peptides (Bellantuono, Gao et al. 2002, Pinilla-Ibarz, May et al. 2006, 

May, Dao et al. 2007, Rezvani, Yong et al. 2007, Van Driessche, Berneman et al. 2012). The 

WT1-specific peptide sequence is the most prominent peptide expressed by AML blasts and 

therefore used as a target structure for antibody generation (Rezvani, Yong et al. 2008, 

Rezvani, Yong et al. 2012, Dao, Yan et al. 2013, Veomett, Dao et al. 2014). Recently, a novel 

antibody, ESK-1, specific for the immunodominant RMFPNAPYL epitope of WT1 has been 

found to be highly-specific because of its high avidity (Dao, Yan et al. 2013). ESK-1 binds to 

AML cells in a HLA-A*02 restricted WT1-specific manner but not to normal PBMCs. 

 

Besides intensive research on relapse prevention, there is still an urgent need for supportive 

immunotherapies to eradicate residual leukemic blasts after conventional therapy. Tumour 

escape mechanisms are discussed as the most important stimulus for relapse development 

(Chan and Coussens 2013, Kaluza and Vile 2013, Kottke and Boisgerault 2013, Leone, Shin 

et al. 2013, Rommelfanger-Konkol, Pulido et al. 2013, Bruttel and Wischhusen 2014, Bryan 

and Gordon 2015). Generating immunotherapies is only possible when AML blasts express 

HLA antigens and other surface molecules that serve as recognition sites for functional 

immune cells such as T and NK cells. However, AML blasts can have alterations in HLA 

expression leading to a suppressed immune response by effector cells (van Luijn, van den 

Ancker et al. 2011, Waterhouse, Pfeifer et al. 2011, Hamdi, Cao et al. 2015). This so called 

genomic instability is common in certain types of leukemia and leads to the fact that leukemic 

cells manage to escape the immune system. Vago and colleagues analysed HLA expression 

patterns in AML patients in a relapse situation and found out that HLA antigens can be lost 

due to leukemic cell escape (Toffalori, Cavattoni et al. 2012, Vago, Toffalori et al. 2012). 

This led to the problem that donor T cells could not attack leukemic blasts any longer because 

�W�K�H�\���G�L�G���Q�R�W���H�[�S�U�H�V�V���W�K�H���µ�F�R�U�U�H�F�W�¶���V�L�J�Q�D�O���I�R�U���7���F�H�O�O���U�H�F�R�J�Q�L�W�L�R�Q�����'�X�H���W�R���V�X�F�K���D�Q���L�P�P�X�Q�H���H�V�F�D�S�H��

mechanism, the generation of immunotherapies directed against residual leukemic blasts and 

the maintenance of GvL response becomes difficult. Deficient processing and presentation 

also applies to other surface structures like adhesion molecules involved in effector cell 

recognition. In addition to these alterations leukemic cells can evade the immune system by 

defective secretion of co-stimulatory molecules. These molecules are needed for effector  

T cell activation and stimulation. Furthermore, co-inhibitory molecules such as Programmed 

Death Receptor Ligand-1 (PD-L1) secreted by AML blasts down-regulate effector cell 

function and inhibit their proliferation (Berthon, Driss et al. 2010, Zhou, Munger et al. 2010, 
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Kronig, Kremmler et al. 2014). Another important immune escape mechanism is the secretion 

of inhibitory cytokines such as IL-10 and TGF-�� which lead to T cell anergy and limit 

effective antigen presentation to cytotoxic lymphocytes (Lippitz 2013, Li, Li et al. 2014, Tjin, 

Krebbers et al. 2014). Other studies describe anti-apoptotic mechanisms like insufficient 

expression of FasL (FAS ligand) and TRAIL (Tumor necrosis factor-related apoptosis-

inducing ligand), AML cells employ in order to not be eliminated by effector cells (Min, Lee 

et al. 2004, Tourneur, Delluc et al. 2004, Pordzik, Petrovici et al. 2011). 

 

 

4.3.  The future of WT1-specific adoptive immunotherapy  

 

WT1-specific effector T cells usually appear at very low frequencies in a fairly small portion 

of AML patients pre and post transplantation as shown by ELISpot results. Even after 

expansion, T cells were characterized by a short life span confirmed by their phenotype 

(figure 29). However, Chapuis and colleagues managed to expand WT1-specific CD8+ T cells 

with memory function and antileukemic activity (Chapuis, Ragnarsson et al. 2013). This 

finding of a successful adoptive T cell transfer is an exceptional case because therapies with 

naturally occurring cells often fail to mediate therapeutic effects due to lack in high T cell 

affinity. Whereas naturally occurring T cells are restricted in cell number and especially in 

avidity as described by a number of researchers, genetically engineered T cells do not face 

these problems. TCR editing and CAR-modified T cells are promising approaches (Mardiros, 

Brown et al. 2013, Ritchie, Neeson et al. 2013, Tettamanti, Marin et al. 2013, Cartellieri, 

Koristka et al. 2014, Gill, Tasian et al. 2014, Tettamanti, Biondi et al. 2014) also shown for 

WT1-specific immunotherapies (Ochi, Fujiwara et al. 2011, Van Driessche, Berneman et al. 

2012). For TCR editing, TCRs from T cells of patients with good antitumor response are 

cloned and inserted into a vector system that is used for infection of other patient cells (Zhang 

and Morgan 2012). CARs with antibody-like specificities are even more useful because they 

can recognize surface structures of leukemic target cells in a non-MHC restricted manner 

(Restifo, Dudley et al. 2012). However, due to the monoclonal specificity of cells, genetically 

engineered T cells attack only a narrow range of leukemic blasts. This in turn could lead to 

antigen escape variants of blasts and unexpected toxicities by antigen mimicry leading to 

cytokine storm and tissue destruction (Restifo, Dudley et al. 2012). A more disastrous effect 

of transferring genetically modified T cells specific for the MAGE-A3 peptide (a melanoma-

associated antigen) resulted in cardiovascular toxicity followed by mortality in two patients 
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when engineered TCRs recognized an unrelated epitope of normal cardiac tissue instead of 

the actual target peptide (Linette, Stadtmauer et al. 2013). In another study, adoptive cell 

therapy with modified TCRs recognizing MAGE-A3/A9/A12 also resulted in death of two 

patients due to neuronal cell destruction by unrecognized expression of MAGE-A12 in 

normal brain tissue (Morgan, Chinnasamy et al. 2013).  

 

As described by many researchers, currently available therapies are mostly applicable to only 

a small patient cohort due to HLA restrictions. A novel approach of ex vivo generation of a 

WT1-specific T cell adoptive immunotherapy for treating relapsed AML investigated in this 

project was thought to be an alternative to currently available immunotherapies. However, 

expansion did not result in a rapid generation of highly-specific cell numbers sufficient for 

therapeutic use and is therefore not considered as clinically applicable. While there is 

evidence that generation of non-genetically modified, cytotoxic effector cells for adoptive 

transfer is possible and beneficial (Chapuis, Ragnarsson et al. 2013), improvement in overall 

survival and relapse prevention has not been demonstrated by many clinical studies. In 

addition therapies for clinical use cannot be generated in every laboratory because generation 

is influenced by methodological factors, money and requires GMP conformity. 
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5. Summary  

 

Relapse after haematopoietic stem cell transplantation remains a major cause of mortality for 

patients with Acute Myeloid Leukemia (AML). The generation of adoptive immunotherapies 

for treating relapse in AML patients is an emerging field that already showed promise in a 

number of clinical trials. The idea of targeting residual leukemic blasts with adoptive transfer 

of antigen specific T cells developed over the years by improved understanding of T cell 

activation strategies and target structure recognition. Nevertheless, many obstacles such as 

insufficient effector cell numbers after expansion, low avidity of specific cells, time-

consuming generation and application to only a small number of patients, need to be 

overcome. Since the WT1 protein has proven to be a promising tumor-associated antigen 

being highly expressed on leukemic blasts, it has been studied as a target structure for the 

generation of an adoptive immunotherapy in this project. Consequently, investigation aimed 

at the identification of putative WT1-specific effector cells by determining WT1-specific 

frequencies in ELISpot and FluoroSpot assay. Initial frequencies in AML patients were found 

to be relatively low (0.001- 0.013 %) concluding that WT1-specific cells have to be expanded 

ex vivo in order to generate sufficient cell numbers for an immunotherapy. The proliferative 

potential of WT1-specific cells was then tested in different expansion strategies that resulted 

in at most 4-fold expansion of WT1-specific cells under optimised conditions. Compared to 

expansion protocols for clinical application, generated cell numbers were not sufficient for 

adoptive transfer yet. Furthermore, expanded cells mainly consisted of cytotoxic CD8+ T cells 

secreting IFN-�5 and granzyme B, but not of effector memory cells. To assess effector cell 

functionality, one aim was the identification of suitable target cells expressing WT1 that could 

be lysed by WT1-specific effector cells. The lytic activity of effector cells against AML cell 

lines and AML blasts from patients was tested by Europium release assay. Since lysis does 

not only depend on WT1 recognition, WT1 levels were determined by qRT-PCR, Western 

Blot analysis and flow cytometry. Specific lysis of AML targets could only be achieved in 

AML cell lines but not in AML blasts. Tumor escape influenced by various factors is 

discussed to be the major stimulus of relapse which could be an explanation for these results. 

Considering existing approaches with TCR editing and genetically modified T cells as 

adoptive immunotherapies for relapse prevention, it seems that immunotherapies with non-

modified cells cannot keep up with current requirements for rapid generation of highly WT1-

specific cells. Although many expansion strategies have proven successful for the generation 

of WT1-specific effector cells, T cell avidity remains a problem. 
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Zusammenfassung  

 

Rezidive sind die häufigste Todesursache bei Patienten mit Akuter Myeloischer Leukämie 

(AML). Deshalb hat sich die Wissenschaft in den letzten Jahren zunehmend mit supportiven 

Therapieansätzen wie adoptiver Immuntherapie beschäftigt, die als eine Art Prophylaxe nach 

Stammzelltransplantation verabreicht werden soll, um restliche leukämische Blasten zu 

zerstören. Vielversprechende Ansätze sind bereits in klinischer Anwendung, allerdings zielen 

Erfolge immer nur auf relativ kleine Patientengruppen ab. Daraus lässt sich schließen, dass 

bisher noch keine optimale Immuntherapie gefunden wurde, die breitgefächert einsetzbar ist. 

Zeitaufwendige Herstellung von Effektorzellen gegen restliche leukämische Blasten sowie 

mangelnde Spezifität und Immunogenität behindern die Entwicklung optimaler 

Immuntherapien, die möglichst schnell und spezifisch in der Klinik eingesetzt werden sollen. 

Nachdem WT1 als vielversprechendes Tumorantigen identifiziert werden konnte, das auf 

leukämischen Blasten hoch exprimiert wird, diente es in diesem Projekt als Zielstruktur für 

eine adoptive Immuntherapie. Zu Beginn wurde die initiale Frequenz von WT1-spezifischen 

Zellen aus AML Patienten mit ELISpot und FluoroSpot gemessen. Die daraus resultierende, 

niedrig-frequente Zellpopulation mit 0,001-0,013 % WT1-spezifischen Zellen wurde im 

Folgenden expandiert, um ausreichende Zellmengen für adoptiven Zelltransfer herzustellen. 

Unterschiedliche Expansionsansätze wurden miteinander verglichen, ergaben aber unter 

optimalen Bedingungen nur eine 4-fache Vermehrung von WT1 spezifischen Zellen, 

verglichen mit der Ausgangspopulation. Abhängig von der vorgegebenen Menge an 

transfundierten Zellen, die für die klinische Anwendung notwendig ist, reicht dieser 

Expansionsansatz nicht für therapeutische Zwecke. Die expandierten Zellen bestanden im 

Wesentlichen aus zytotoxischen CD8+ T Zellen, die IFN-�5 und Granzym B sezernieren, aber 

nicht aus Effektor Memory Zellen. Um die Funktionalität der Effektorzellen zu testen, war ein 

weiteres Ziel des Projektes die Etablierung geeigneter Zielzellen, die WT1 präsentieren. 

Hierfür wurden AML-spezifische Zelllinien und AML Blasten aus Patienten im Europium 

Assay auf ihre Lyse durch Effektorzellen untersucht. Da Zelllyse nicht nur von funktionellen 

Effektorzellen abhängig ist, wurde WT1 auf mRNA Ebene mit qRT-PCR und auf 

Proteinebene mit Western Blot Analyse und mittels Durchflusszytometrie untersucht. 

Spezifische Lyse konnte nur bei AML Zelllinien und nicht bei Patientenblasten festgestellt 

werden, was vermutlich auf Tumor Escape Mechanismen von AML Blasten zurückzuführen 

ist. Berücksichtigt man aktuelle Therapieansätze mit manipulierten T-Zellrezeptoren oder 

genetisch modifizierten T-Zellen für die Rezidivbehandlung, so scheint die Expansion von 

nicht-modifizierten, WT1-spezifischen Effektorzellen weniger erfolgreich, da eine hohe 

Avidität der angereicherten T-Zellen ein Problem darstellt. 
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6. Appendix 

 

Antibody concentrations of pro-and inflammatory cytokines used for ELISpot and FluoroSpot 

analysis are given in detail in the tables below.  

 

Tab. 22: ELISpot - primary antibody concentration 
Specificity Concentration Clone 
Granzyme B 15 µg/mL GB10 
IFN-�5 10 µg/mL 1-D1K 
IFN-�. 15 µg/mL MT1/3/5 
IL-10 10 µg/mL 9D7 
IL-12 10 µg/mL IL12-I 
IL-13 10 µg/mL B-B13 
IL-17a 10 µg/mL MT44.6 
IL-2 10 µg/mL Mouse �. human IL2 
IL-4 10 µg/mL MP4-25D2 
Perforin 30 µg/mL Pf-80/164 
Tumor-necrosis factor-�.�����7�1�)-�.��   4 µg/mL TNF ¾ 

 

Tab. 23: ELISpot - secondary antibody concentration 
Specificity Concentration Clone 
Granzyme B 1 µg/mL GB11 
IFN-�5 2 µg/mL 7-B6-1 
IFN-�. 1 µg/mL MT2/4/6 
IL-10 1 µg/mL 12G8 
IL-12 2 µg/mL IL12-II -biotin 
IL-13 1 µg/mL B-B13 II-biotin 
IL-17a 0.5 µg/mL MT5046-biotin 
IL-2 2 µg/mL �.���K�X�P�D�Q���E�L�R�W�L�Q�\�O�D�W�H�G 
IL-4 2 µg/mL IL4-II -biotin 
Perforin 1 µg/mL Pf-344-biotin 
TNF-�. 1 µg/mL TNF 5 

 

Tab. 24: FluoroSpot - primary antibody concentration 
Specificity Concentration Clone 
Granzyme B 15 µg/mL GB10 
IFN-�5 15 µg/mL 1-D1K 

 

Tab. 25: FluoroSpot - secondary antibody concentration 
Specificity Concentration Clone 
Granzyme B 2 µg/mL GB11-biotin 
IFN-�5 2 µg/mL 7-B6-1-FS-FITC 
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verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle 

wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe. 

 

Essen, den __________________ _________________________ 

     (Tina Danielzik) 

 

 

Erklärung: 

Hiermit erkläre ich, gem. § 7 Abs. 2, d und f der Promotionsordnung der Math.-Nat. 

Fakultäten zur Erlangung des Dr. rer. nat., dass ich keine anderen Promotionen bzw. 

Promotionsversuche in der Vergangenheit durchgeführt habe, dass diese Arbeit von keiner 

anderen Fakultät abgelehnt worden ist, und dass ich die Dissertation nur in diesem Verfahren 

einreiche. 

 

Essen, den __________________ _________________________ 

                (Tina Danielzik) 

 

 

 


