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Abstract: The paper focuses on a validation study for a macro-cognitive model of mental workload of 

airport traffic controllers (ATCOs). This model constitutes a means for quantifying and analysing the 

distribution of ATCOs workload over time dependent on different traffic scenarios. Workload is modelled 

via the amount of chunks in working memory. In a one-factor experimental Simulator-Study workload 

ratings were gathered with different traffic load, using a modified RSME scale within and NASA-TLX 

after each scenario. The data are analysed and discussed concerning the successful experimental 

manipulation and the estimation of goodness of fit of the model and experimental data. Therefore the 

average workload ratings of the participant and the model within each scenario as well as the distribution 

of workload over time for each participant-model pair are compared. The developed model can serve as a 

tool for the design of adaptive automation and supporting systems and can help to better understand 

workload dynamics of airport traffic controllers.

1. INTRODUCTION 

The responsibility of traffic controllers (ATCOs) in airport 

control towers is the safe and efficient handling of aircraft 

movements within their designated control zone. Without 

permission of an ATCO (so called clearances), no aircraft or 

vehicle is allowed to take any action at the airfield. Therefore 

ATCOs constantly have to  consider a trade-off between 

efficiency and thoroughness (Hollnagel, 2009). This is a 

highly complex and dynamic task which needs a high level of 

attention and experience. As human information processing is 

limited (Kramar & Spinks, 1991; Wickens, 1984, 1991), it is 

essential to consider these limitations most notably  for safety 

reasons. This is especially critical considering the growing 

amount of air traffic and therefore growing amounts of take-

offs, landings and taxi procedures controllers have to handle. 

Moreover, attempts to assign two smaller airports to only one 

controller (so called remote control cf. e.g. Fürstenau et al., 

2009), constitute an indirect increase of air traffic. To adjust 

to these changes, the abovementioned trade-off has to be 

shifted towards efficiency, which can lead to a higher 

probability of failure and therefore a higher risk of accidents 

(Hollnagel, 2009). It is therefore important to identify periods 

of high task- and workload, when cognitive overload of the 

ATCO is likely to occur, in order to counteract efficiently. 

One possibility is the implementation of adaptive automation. 

To reach this goal, a macro-cognitive modelling approach 

was chosen that incorporates the environment (airport), the 

interaction (incoming and outgoing information) and the 

controller’s cognitive processes into one model. Also macro-

cognitive models aim to simulate complex cognitive 

processes in realistic environments (Smieszek & Rußwinkel, 

2013).In this vein the MATriCS (Model of Airport Traffic 

Control System) model was developed as a holistic modelling 

approach. It takes into account all phases of information 

processing with a special focus set on mental workload of 

ATCOs in the control tower at airports. With this approach it 

is possible to simulate the distribution of workload of the 

ATCO over time and therefore to identify periods of high 

workload in respect of the traffic that has to be managed. In 

order to validate the model, a study was conducted in August 

2013 at the TU Berlin. The study aimed at collecting data 

from participants within a simulated air traffic control task 

and to compare these workload data with the model data 

within the same traffic scenarios. The paper focuses on this 

validation study and the fit between model and human data. 

After giving an overview about the underlying theoretical 

models the modelling approach and the structure of the model 

are briefly described. Finally the study the results will be 

presented and discussed.  

2. THEORETICAL BACKGROUND 

In order to adequately model workload of ATCOs it is 

necessary to look at the construct of workload first.  

2.1 Mental Workload in Air Traffic Control 

Most of the research on workload in the air traffic control 

sector has been conducted with en-route controllers and their 

tasks. These findings are therefore not fully applicable to 

airport controllers. It is often tried to infer the amount of 

workload from objectively observable variables like the 



 

 

     

 

amount of air traffic or communication events. Such 

approaches only consider the external task load factors 

(denoted as ATC complexity). However, Koros, Della Rocco, 

Panjwani, Ingurgio, and D’Arcy (2006) present a model in 

which not only external factors like air traffic characteristics 

influence workload. It is argued that workload depends on 

multiple variables. The resulting experience of workload is 

therefore equally influenced by individual factors like 

capacity limits, experience, or cognitive strategy, as well as 

external factors like traffic load. To find a valid way of 

modelling ATCO workload, several psychologically based 

concepts of workload should be considered. 

2.2 Theoretical Concepts of Mental Workload 

The term workload is often used without providing any 

definition. This may be the case because there is no 

consistent and comprehensive theory of mental workload in 

literature. Manzey (1998) identifies two dominating 

theoretical approaches of mental workload: activation-based 

and attention-based models. Within activation-based theories 

it is assumed that information processing requires energy. 

Mental workload is directly connected to this psychophysical 

effort and is therefore directly legible from 

psychophysiological activation indicators like heart rate (HR) 

or blood pressure (Manzey, 1998; Ribback, 2003). 

The attention-based models result from research concerning 

dual task performance. It is assumed that human information 

processing capacity is limited. This capacity is not sufficient 

to perform two tasks at the same time without performance 

decrements (Kramar & Spinks, 1991; Wickens, 1984, 1991). 

The relative capacity demand of a task determines the amount 

of mental workload (Manzey, 1998). It is further assumed 

that there is not only one single resource reservoir which all 

cognitive processes equally demand. Rather multiple 

resources are assumed for different stages of information 

processing (perception and central processing as well as 

motor reaction), different modalities (auditory, visual) and 

processing codes (visuospatial, categorical-symbolic) 

(Wickens & McCarley, 2008; Wickens, 1984, 1991, 2002). 

Hockey (1997) connects activation-based and attention-based 

approaches as he assumes multiple limited resources as 

energetic concepts where effort ensures energy supply for 

mental operations. Through such integrative theories limited 

information processing resources are interpreted as energetic 

concepts and are therefore accessible for physiological 

detection. In this work the concept of mental workload 

concurrent with integrative theories was used. 

2.3 Cognitive Limitations and Working Memory 

According to Wickens (1984, 1991, 2002) limitations of the 

information processing system primarily stem from working 

memory limitations. There are numerous approaches and 

theoretical models concerning structure, functions and 

limitations of working memory. As for workload, there are 

several findings which support multi-component theorys of 

working memory (Baddeley & Hitch, 1974; Baddeley, 2000, 

2012; Cowan, 1999; Oberauer, Süß, Schulze, Wilhelm, & 

Wittmann, 2000). Although these theories make exact 

assumptions about the structure and functions of the single 

components of working memory, there are no consistent 

assumptions about its limitations. 

Early approaches have a much easier concept of working 

memory but make more specific assumptions about its 

limitations (Klapp, Marshburn, & Lester, 1983; Oberauer et 

al., 2000; Sanders & McCormick, 1993). Within these 

approaches solely one sinlge capacity-limited resource 

reservoir is assumed. It is the well-known work of Miller 

(1956) who assumes a capacity limit of five to nine chunks 

which can be stored in working memory simultaniously. Here 

chunking is a subsumption of several pieces of information 

into one unit (a chunk). It is assumed that the ability of 

building chunks of unrelated items is influenced by 

knowledge, experience, and training (Baddeley, 1990;  

Ericsson & Chase, 1982). As ATCOs are highly experienced 

it can be assumed that they are highly able to build up and 

maintain numerous air traffic control specific chunks. This 

assumption is supported by studies conducted with ATCOs. 

For example, Sperandio (1969) conducted a study in which, 

after real control sessions, he asked ATCOs to recall all 

aircraft they had controlled in the last hour. On average, 

ATCOs were able to remember ten aircraft (Sperandio, 

1969). Also, Bisseret (1971) conducted a study in which he 

tested three different groups of ATCOs with different levels 

of experience: highly experienced controllers, controllers 

who had just passed the lowest level qualification test, and 

trainees with three to six months less experience than the 

recently graduated (Bainbridge, 1975). He found that highly 

experienced ATCOs were able to remember ten aircraft on 

average as well. Because of these studies an average upper 

limit of working memory capacity of ATCOs of ten chunks 

can be assumed. Though individual differences in working 

memory capacity do exist, they are beyond the scope of this 

approach as initially an appropriate method for modelling 

workload has to be found. 

2.4 Cognitive modelling of mental workload 

For modelling purposes it is important to include both the 

abovementioned types of factors (external and individual) 

into account in order to generate a holistic picture of the 

phenomenon. Koros, Della Rocco, Panjwani, Ingurgio, & 

D’Arcy (2003) identify 29 external factors (complexity 

factors) for airport traffic controllers and ask ATCOs to rate 

their importance. In this survey, the amount of air traffic was 

rated as most important. Based on the abovementioned 

literature, working memory limitations can be identified as a 

second major factor. In order to implement both these factors, 

a holistic, macro-cognitive modelling approach is required 

(see Cacciabue & Hollnagel, 1995; Smieszek, Manske, 

Hasselberg, Russwinkel, & Möhlenbrink, 2013; Smieszek & 

Rußwinkel, 2013). This approach allows an adequate 

modelling of cognitive processes as well as external factors 

such as the amount of aircraft. The model is implemented by 

using the abovementioned theories of workload and cognitive 

limitations.  

 

 



 

 

     

 

3. THE MATriCS MODEL 

The MATriCS model’s purpose is to simulate the integrated 

behaviour of an ATCO and the environment he works in. 

Therefore, the model follows a macro-cognitive modelling 

paradigm. As a tool that generally allows the creation of 

process models independent of the modelled domain, 

Coloured Petri Nets (CPN) were chosen (Jensen & 

Kristensen, 2009). CPNs allow for the implementation of 

cognitive processes and external processes within one 

modelling tool. They are a specific kind of Petri Nets which 

can be described as a graphical programming language. CPN-

models can be structured hierarchically, i.e. nets can consist 

of several subnets that interact with each other and exchange 

information. With this in mind, even complex systems can be 

divided in several sub-models, each of which stays relatively 

simple and easily comprehensible. A detailed introduction to 

coloured petri nets in particular and petri nets in general can 

be found in Jensen and Kristensen (2009), Jensen (1997) and 

Reisig (2010). 

3.1 Basic structure 

The MATriCS model is structured according to this paradigm 

and is divided into three sub-models: an airport model, an 

interaction model, and a controller model. 

The airport model describes the traffic processes that occur in 

the controller’s environment. It consists of two components: 

an invariable process logic component and a variable airport 

structure component. Following the assumption that all 

airports share some fundamental processing elements such as 

certain locations (e.g. runways and stands) and certain actions 

(e.g. aircraft landing or taxiing from one location to another), 

these elements are represented in the process logic. On the 

other hand, the airport structure contains information about 

how these elements are arranged and connected and thereby 

describes an individual airport’s layout. This concept allows 

for relatively simple implementation of new airports without 

modifying the CPN structure. The airport model is further 

explained in Manske, Smieszek, Hasselberg and Möhlenbrink 

(2013). 

To enable the controller model to interact with the airport, the 

interaction model defines several channels of visual and 

auditory information exchange. Visual information about the 

current airport state can be acquired by the controller model 

via far view onto the airport as well as through a radar screen. 

Furthermore, the interaction model provides radio 

communication for aircraft requests and the controller 

model’s clearances. In addition, information about all 

currently relevant aircraft is available on flight strips. Flight 

strips are small paper strips, containing information about one 

aircraft each. These kind of information acquisition and 

communication are based on Tavanti (2006). 

The controller model’s structure is based on Hacker's (1986) 

Action Regulation Theory. Hacker (1986) defines five phases 

and components of human action regulation: a) goal setting; 

b) collection of information and orientation; c) generation of 

plans; d) decision for an action alternative; e) execution of 

action. It is assumed that the goal in this context is set by the 

work environment. The controller model’s primary goal is a 

safe and efficient coordination of aircraft movements. 

According to the remaining four phases of action regulation, 

the controller model is divided into the four sub-modules 

perceive, plan, decide, and act. Whereas the plan and act 

components have primarily auxiliary functions within the 

model, perception and decision making processes are crucial 

for the controller model’s information processing. A detailed 

description of the two modules is beyond the scope of this 

paper but they are further explained in Smieszek et al. (2013; 

perception) and Smieszek and Joeres (2013; decision 

making). All four components are linked to a working 

memory component that represents the controller model’s 

cognitive capacity and thereby operationalizes the model’s 

cognitive workload.  

3.2 Working memory model and mental workload estimation 

As argued before, a general working memory capacity of ten 

chunks is assumed. Chunks are created whenever the 

controller model acquires external information (such as the 

information, which aircraft is currently on the runway) or 

generates internal information (such as the decision, which 

clearance is to be given to a specific aircraft). 

One chunk contains different kinds of information. When, for 

example, the model checks if a certain taxiway section is 

currently free, the far view or ground radar interaction 

channel is utilized. After the information is acquired, a chunk 

is generated in working memory that contains information 

about 

 the requesting aircraft for which the check was 

conducted, 

 the checked taxiway section, 

 the state of that section (free or occupied), and 

 (if occupied,) the aircraft currently in that section. 

Which information is stored in a chunk depends on the way it 

was created and on its purpose in the overall decision making 

process. 

Therefore, all of the abovementioned sub-modules (perceive, 

plan, decide, and act) are linked to the working memory 

module. Whenever a chunk is created or deleted in one of 

those modules, the number of currently maintained chunks is 

updated. 

As argued before, the utilisation of working memory 

capacities is assumed to represent the current level of 

workload. Accordingly, the percentage of utilized working 

memory (current number of chunks divided by the limit of 

ten chunks) is used as a measure for the model’s mental 

workload at any given time. 

4. VALIDATION STUDY 

The modeller’s task is not only to build models but also to 

connect these models to the real phenomenon under study 

(Bub & Lugner, 1992; Möhlenbrink, 2011). Therefore, it is 

necessary to generate experimental data to which the model 

data can be compared in order to gather information about the 

goodness of fit of the model. 



 

 

     

 

4.1 Background and aim of the study 

In order to collect realistic workload data, a simulator-study 

was conducted. The experimentally recorded data was 

compared against the model’s data. Therefore several 

workload measures were gathered during the experiment: 

one- and multidimensional subjective, physiological and 

performance measures. This paper focuses on the subjective 

measures. As there are nearly no reliability values for any 

workload measure, reliability is rather derived from a 

consistent coherence between measure and workload from 

prior studies. Therefore as multi-dimensional measure the 

NASA-TLX (Hart & Staveland, 1986) was used. As one-

dimensional measure a modified version of the RSME-scale 

introduced by Eilers, Nachreiner and Hänecke (1986) was 

used. A validation-study of the modified scale showed very 

good correlations with established measures (NASA-TLX 

and the original RSME-scale) (Kosicki, 2011). To gather the 

workload data, the participants had to handle four traffic 

scenarios of 15 minutes each. It was intended to replicate the 

task of ATCOs as realistically as possible within the 

simulation environment. Simultaneously a high 

correspondence between the real task and the modelled task 

had to be ensured.  

4.2 Experimental Design 

The study has a one-factor repeated measure within subjects 

design. As independent variable the amount of traffic to be 

controlled was manipulated (low and high traffic). For each 

level a repeated measure was conducted. Therefore the 

participants had to work four traffic scenarios of 15 minutes 

each. To avoid effects of scenario-sequence and learning, the 

scenarios were permuted across all participants. This results 

in 4! = 24 possible arrangements of scenarios. As dependent 

variables different measures of mental workload were 

gathered. During each scenario 15 RSME values were 

recorded (one measure every minute). At the end of each 

scenario the NASA Task Load Index (NASA-TLX) was used 

as a multi-dimensional measure of the subjects’ workload 

perception.  

4.3 Traffic Scenarios  

For the simulation four traffic scenarios were generated, 

lasting 15 minutes each: Two with high, two with low traffic 

demands. According to collected data from Frankfurt airport 

in the year 2009 (Huber, 2012) high traffic amount was 

defined with 20 movements (20 aircraft) per 15 minutes (1.3 

movements/minute). Low traffic amount was defined with 10 

movements per 15 minutes (0.6 movements/minute). 

Furthermore, the appropriateness of the traffic loads was 

trialled in pre-tests. The assignment of conditions in the 

present study to the respective scenarios is depicted in Table 

1.  

Table 1: Scenarios and traffic load conditions 

High traffic amount Low traffic amount 

Scenario 1 Scenario 2 

Scenario 3 Scenario 4 

 

As ATCOs’ workload can also be influenced by the airport 

configuration and complexity (cf. Koros et al., 2003), all four 

scenarios took place at the same simple-structured airport 

consisting of only one runway and one main taxiway. 

4.4 Estimation of goodness of fit and hypotheses 

Statistical tests were conducted to check if the experimental 

task load manipulation was successful. For this, two 

hypotheses concerning the two subjective measures were 

formulated. In both it is assumed that a higher amount of air 

traffic leads to higher perceptions of workload and therefore 

to higher ratings in the subjective measures. 

H1: Subjective ratings obtained with RSME are higher for 

high traffic load compared to low traffic load (a-d). Ratings 

of Scenarios with the same traffic amount do not differ (e-f) 

H2: Subjective ratings obtained with NASA-TLX are 

higher for high traffic load compared to low traffic load (a-d). 

Ratings of Scenarios with the same traffic amount do not 

differ (e-f). 

A pairwise comparison of each scenario median was 

conducted in order to verify the following hypotheses which 

apply for both methods of measurement: 

a) The subjective ratings in scenario 1 are higher than in 

scenario 2. 

b) The subjective ratings in scenario 1 are higher than in 

scenario 4. 

c) The subjective ratings in scenario 3 are higher than in 

scenario 2. 

d) The subjective ratings in scenario 3 are higher than in 

scenario 4. 

e) The subjective ratings in scenario 1 and 3 do not differ. 

f) The subjective ratings in scenario 2 and 4 do not differ. 

Beyond these statistical results, Schunn and Wallach (2005) 

describe a number of so-called goodness-of-fit-measures 

which serve as a means to estimate how good a model fits to 

experimental data. They describe three stages of goodness of 

fit estimation: 1. a visual comparison of the distribution of 

model- and experimental data; 2. the calculation of measures 

of how well relative trend magnitudes are captured; 3. the 

calculation of measures of deviation from exact location. For 

calculation of relative trend magnitudes they recommend the 

use of Pearson’s r and r². As the dependent measures at hand 

are not an interval or ratio scale (but ordinal scale) those 

measures cannot be used here. In this case, Schunn and 

Wallach (2005) recommend the use of rank correlation 

coefficients Spearman’s ρ and Kendall’s τ. This applies 

especially in cases where the experimentally measured data 

(RSME resp. NASA-TLX) is only loosely related to the 

dependent measure of the model (e.g. chunks in working 

memory). Even though Schunn and Wallach (2005) do not 

see any reason to prefer Kendall’s τ over Spearman’s ρ, both 

were calculated as Kendall’s τ is more insensitive against 

outliners and more conservative (Newton, 2002) while ρ is 

more often reported in other research and therefore facilitates 



 

 

     

 

better comparability. The calculation procedure of 

Spearman’s ρ is similar to Pearson’s r. However, not the 

actual values are taken but their ranks. 

Spearman’s ρ is calculated as follows: 

ρ = 1 −
6 ∑ 𝑑𝑖

2
𝑖

𝑛 × (𝑛2 − 1)
 

In this, d is the difference between the ranks of model and 

data values and n is the amount of value pairs. 

Kendalls’s τ is calculated based on a comparison of 

concordant and not concordant pairs of ranks: 

𝜏 =  
𝐶 − 𝐷

√(𝐶 + 𝐷 + 𝑇𝑥) × (𝐶 + 𝐷 + 𝑇𝑦)
 

In this, C describes the pairs of values that are concordant 

and D describes the pairs of values that are not concordant Tx 

and Ty describe ties in the variables x and y (e.g. model and 

experimental data). Based on these trend-related goodness-of-

fit measures, a third hypothesis can be formulated which 

concerns the expected results of comparisons between model 

data and experimental data: 

H3: In comparing the distribution of workload over the four 

scenarios a highly positive correlation (> 0.6) between the 

average subjective rating and the model is expected. 

H4: In comparing the distribution of workload over time of 

each individual participant and of the model a positive 

correlation between the RSME ratings and the model data is 

expected. 

Measures of deviation from exact location take into account 

that a model can fit the trends of the data very well but 

completely miss the exact locations (values) of the 

experimental data. Therefore, Schunn and Wallach (2005) 

describe a number of measures from which RMSE (root 

mean squared error) is most commonly used. For the data set 

at hand there are several issues with respect to these 

measures. At first, the scales for measuring mental workload 

are somewhat arbitrary and not equidistant. In such cases of 

ordinal data, averages of quantitative deviations from exact 

location are not meaningful (Schunn & Wallach, 2005). Also, 

with subjective workload measures different ratings can be 

given by the participants even though the same situation is 

rated. A second problem is that the dependent measure is 

somewhat arbitrary with respect to the model because both, 

experimental and model-data, are not measured on the same 

dimension. Therefore it is not possible and also not 

meaningful to calculate such measures of deviation from 

exact data location. 

4.3 Sample 

As it is highly difficult and cost-intensive to recruit real 

ATCOs for such a study, a lay sample was used. 

Nevertheless, a profound understanding of the air traffic 

control task and simulated air traffic control environment was 

ensured by means of intensive instruction and training. 24 

subjects participated in the experimental simulation study. 

Participants’ age ranged between 22 and 39 years (m = 26.95, 

sd = 4.69). The sample size was determined according to 

Bortz & Döring (2006, p. 615) who recommend 23 

participants by means of a univariate repeated measures 

ANOVA. In order to ensure full permutation of scenario 

sequence, the sample size was set to 24 participants. 

4.4 Simulation environment  

As no high-fidelity simulator was available, simulation-

software for private users had to be used. Röbig, König, and 

Hofmann (2010) compare several such software products in 

order to build a “low-cost tower simulator.”  

 

 

 

 

 

 

 

 

 

 

They describe the Simulation “Tower Simulator” (Wilco 

Publishing, 2008) as highly realistic. It provides the user with 

five different airports of different complexity. It further 

provides a ground and air radar, as well as a simulated far 

view, whereas the far views’ graphic quality can be seen as 

outdated from today’s point of view.  

Requests of pilots are provided through simulated radio 

communication, communication from the user to the 

simulation works through input of text commands. As voice 

recognition could not be realised with the software, both 

requests from pilots and clearances by the participants were 

translated into the corresponding text commands for the 

simulation by the examiner. 

In addition to the radar screen provided by the simulation 

(see figure 1), a strip bay (containing the relevant flight 

strips) as well as a headset for push-to-talk communication 

was provided to the participants. In order to not overcharge 

the participants and to warrant nearly realistic working 

conditions, an airport with low complexity was chosen.  

4.5 Procedure 

After participants’ arrival and instructions about the general 

purpose of the study, demographic information was recorded 

in an according survey.  

Detailed instructions on ATCOs’ tasks and responsibilities in 

general, as well as on participants’ specific tasks and the 

simulation environment followed. To ensure full 

understanding of the task, the participants were asked to 

summarize their responsibilities in their own words. 

Afterwards participants worked on a five minutes training 

scenario. 

Pretests showed that several aspects of the complex task were 

particularly difficult for participants to understand and to 

Figure 1: The two radar screens of the simulation environment the 

participants worked with (left ground radar; right air radar) 



 

 

     

 

execute. One such aspect was e.g. the estimation of the time 

an arriving aircraft needs until hitting the runway. Therefore 

participants often hesitated to issue a landing permission if 

the runway was still used by another aircraft. These aspects 

were repeated and emphasized after the training session. 

Finally, the four abovementioned traffic scenarios were 

executed. At the end of each scenario (including the training 

scenario) the participants were given a five minute break. The 

whole experiment from participants’ arrival to the end of the 

fourth traffic scenario lasted approximately 120 minutes. 

5. RESULTS 

As the data obtained from NASA-TLX and RSME is only 

ordinal data and not normally distributed the use of non-

parametric tests is recommended (Bortz & Lienert, 2008; 

Fleid, 2009). Therefore, Friedmann’s-ANOVA and post-hoc 

Wilcoxon signed rank tests with Bonferroni correction were 

used to calculate the statistical results. For estimation of 

goodness of fit, correlation coefficients Spearman’s ρ and 

Kendall’s τ were calculated. As explained earlier, estimations 

of deviations from exact data location is not informative for 

the measured construct at hand. That is why no such 

measures were calculated. 

5.1 Experimental manipulation 

It was assumed that for each measure of workload the ratings 

should be significantly higher in scenarios with high traffic 

amount compared to scenarios with low traffic amount. No 

difference was expected for scenarios with the same amounts 

of traffic. For the analysis of NASA-TLX only the subscale 

“mental effort” was analysed (NASA-TLX m. e.). 

Friedmann-ANOVAs showed significant results for RSME 

and NASA-TLX m. e. median differences (χ2 = 33.734, df 3, 

p < 0.001 for RSME; χ2 = 29.038, df 3, p < 0.001 for NASA-

TLX m. e.). Post-hoc Wilcoxon signed rank tests with 

Bonferroni correction (α = 0.0083) showed that all alternative 

hypotheses can be confirmed. Table 2 shows all test results 

for NASA-TLX and RSME. 

Table 2: Results for scenarios with different traffic loads 

Scenario RSME NASA-TLX m. e. 

1 vs. 2 

(H1a, 2a) 

T=25, p<0.001, 

r=0.496 ** 

T=24, p<0.001,  

r=-0.519 ** 

1 vs. 4 

(H1b, 2b) 

T=30, p<0.001,  

r=-0.495 ** 

T=6, p<0.001,  

r=-0.549 ** 

3 vs. 2 

(H1c, 2c) 

T=13, p<0.001, 

 r=-0.565 ** 

T=37, p=0.001, 

 r=-0.419 ** 

3 vs. 4 

(H1d, 2d) 

T=15, p<0.001,  

r=-0.557 ** 

T=44, p=0.001, 

 r=-0.437 ** 

For testing the null hypotheses, the α-level was set to 

α = 0.20 (Bortz, 2005) and no Bonferroni-correction was 

conducted to reduce the risk of a β-error. The post-hoc 

Wilcoxon signed rank test showed no significant difference 

for both scenarios in the NASA-TLX m. e. ratings and one 

scenario in the RSME rating. Solely for the comparison of 

the RSME rating of scenario 1 and 3 a small difference was 

discovered. The results are shown in Table 3. 

Table 3: Results for scenarios with same traffic loads 

Scenario RSME NASA-TLX m. e. 

1 vs. 3 

(H1e, 2e) 

T=103.5, p(2-tailed) 

=0.190, r=-0.192 * 

T=114.5, p(2-tailed)= 

0.320, r=-0.146 n.s. 

2 vs. 4 

(H1f, 2f) 

T=99, p(2-tailed)= 

0.384, r=-0.192 n. s. 

T=134.5, p(2-tailed)= 

0.923, r=-0.015 n.s. 

5.2 Average workload level 

For estimating the average workload ratings for each 

scenario, medians (and average deviations from median MD) 

were calculated for each measure as they can just be seen as 

ordinal data. In contrast, the model data can be seen as scaled 

proportionally which is why the mean is reported here. The 

average workload ratings gathered with RSME and NASA-

TLX m. e., as well as for the model are summarized in Table 

4. 

Table 4: Average workload ratings (median) and estimations of  

the model (mean) within each scenario 

Scenario RSME 

[%] 

MD 

[%] 

NASA-

TLX 

m. e. 

[%] 

MD 

[%] 

Model 

[%] 

sd 

[%] 

1 25.06 10.30 63.54 20.24 33.92 6.31 

2 16.52 10.15 34.51 19.38 12.28 3.57 

3 29.39 11.08 50.93 21.40 24.56 5.20 

4 17.29 9.85 31.47 20.41 8.14 2.38 

With RSME a median workload rating of M1 = 25.06 % (MD 

= 10.30 %) was reached for Scenario 1. With NASA-TLX the 

rating was much higher with M1 = 63.54 % (MD = 20.24 %). 

The model showed a mean workload level of M = 33.92 % 

(sd = 6.31 %) was reached. The average workload ratings and 

estimations of the model are depicted graphically in Figure 2.  

As it was noticed that the trend of RSME is different to 

NASA-TLX  m. e., the total value of NASA-TLX as raw task 

load index (NASA-RTLX according to Byers, Bittner, & 

Hill, 1989) was calculated as well. This allows for detection 

of potential differences in diagnosticity of the single 

workload measures. It can be seen in Figure 2 that the 

absolute height of the workload ratings is slightly 

underestimated by the model but it approximately reaches the 

height reached by the RSME-ratings.  

By calculating correlation coefficients over the four scenarios 

it can, nevertheless, be recognized, that the model reflects the  



 

 

     

 

 

trend of the ratings achieved with the NASA-TLX m. e. scale 

with a correlation of ρ = 1,00. However the trend across the 

four scenarios of the NASA-RTLX and the RSME is 

replicated worse (ρ = 0,800 with NASA-RTLX; ρ = 0,600 

with RSME). Instead the trends of the RSME and NASA-

RTLX correlate better (ρ = 0,800). Both correlate worse with 

NASA-TLX m. e. (RSME: ρ = 0,600; NASA-RTLX: ρ = 

0,800). These results are consistent with our hypothesis H3. 

5.3 Distribution of workload over time 

As a second measure of goodness of fit the workload 

distribution over time of the model was compared to the 

workload distribution over time of the participants. Therefore 

the participants had to rate their workload every minute 

during the scenarios via the RSME workload scale, such that 

for 15 points in time workload ratings could be gathered. 

These ratings were correlated with the workload estimation 

the model gave at exactly the same time. 

Therefore, for each participant’s scenario a model simulation 

was conducted, such that data was generated for 4•24 = 96 

scenarios (4 scenarios • 24 participants). For each of these 96 

individual scenarios workload distribution over time was 

calculated for the model and the participants. Figure 3 depicts 

one such distribution for participant #24 in scenario one. It is 

important to note that the trend as well as peaks and valleys 

are replicated well by the model. It nevertheless seems as if 

the model more strongly reacts to differences in task load 

than the participant does, as the participant’s curve is flatter 

than the curve of the model. From the distributions in figure 3 

a highly positive correlation can be expected as was assumed 

in hypothesis 4. 

Because some participants’ ratings were missing, 64 out of 

96 possible correlation coefficients could be calculated 

(66.67 %). Only five correlation coefficients were negative, 

which means that over 90 % were positive and compliant 

with our hypothesis. After Fishers-Z-transformation (Bortz & 

Schuster, 2010), an average correlation coefficient for each 

scenario as well as an overall average correlation coefficient 

was calculated. It is shown inTable 5. 

It can be seen that an overall medium correlation could be 

reached with Spearman’s ρ (ρ = 0.427). The coefficient of 

Kendall’s τ is a little lower (τ = 0.336) which is consistent 

with our hypothesis H4. 

Table 5: Correlation Coefficients 

Scenario Kendall’s τ Spearman’s ρ 

1 0.392 0.518 

2 0.243 0.305 

3 0.323 0.410 

4 0.382 0.416 

Overall 0.336 0.427 

6. DISCUSSION 

 6.1 Experimental manipulation 

Results show that the experimental manipulation was 

successful as with higher traffic load, higher workload ratings 

were measured. It can nevertheless be seen that even when 

the overall traffic amount within two scenarios was the same, 

workload was estimated differently. The reason could be that 

workload does not only depend on the overall amount of 

traffic within one scenario, but also on the distribution of 

aircraft (and therefore the distribution of workload) over time 

within the scenario. Because of different distributions of 

aircraft, different scenario difficulties arise which cause 

different estimations of workload. Nonetheless, this 

confounding of variables cannot be solved. By increasing the 

air traffic it is always the case that more complicated 

situations arise. Moreover, the exact scenario development 

depends severely on the individual participant’s actions and 

reactions. The sequence in which clearances are given affects 

the following movement patterns and thereby the occurrence 

of possible conflict situations. Better experimental control 

could be achieved by improving the controllability of the 

frequency and time of aircraft conflicts. Nonetheless, in 

reality the number of aircraft is a variable which can be 

influenced more easily than the number of critical situations 

this is why the conducted study provides a higher accordance 

to real situations. Looking at the model data, similar 
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differences were detected. It can therefore be concluded, that 

the model not just detect differences in workload resulting 

from different traffic amount but also from different 

distributions of aircraft over time. Hence the model is able to 

estimate the amount of workload within a traffic scenario  

diagnostically. 

6.2 Average workload level 

It was shown that the mean workload level was usually 

underestimated by the model. Nonetheless, the model is 

similar to the by the RSME-ratings. The average workload 

ratings gathered with NASA-TLX m. e. are always much 

higher. It is possible that participants in hindsight rated a 

scenario as highly demanding using NASA-TLX while 

workload within the scenario (rated with RSME) was 

perceived rather moderate. This difference might also stem 

from the calculation of the average workload ratings. The 

calculated median of RSME consist of 15 measures taken 

during the scenarios (like with the model) while with NASA-

TLX just one rating per scenario was gathered. It can also be 

assumed that with a rating in hindsight higher workload 

within a scenario is remembered more strongly than low 

workload. 

It could further be shown that the average height of workload 

given by the model and recorded with NASA-TLX m. e. are 

highly correlated (ρ = 1.00). A lower correlation was reached 

between the model data and the data collected with the 

RSME. From the comparisons of RSME, NASA-TLX m. e. 

and NASA-RTLX it can be inferred that RSME is not as 

diagnostic for mental effort as initially assumed. Instead there 

are hints that with RSME, other factors affecting the 

subjective perception of workload (like time pressure) are 

somewhat included into participants’ ratings. It might be the 

case that participants are not able to differentiate these factors 

within the demanding situation. Nevertheless, it could be 

shown that the model is highly diagnostic for mental effort as 

intended by the model development. 

6.3 Distribution of workload over time 

In examining the goodness-of-fit of the model using 

individual case assessments it can be seen that there is a 

positive relation between the model and the subjective ratings 

gathered with RSME-scale. There were only 5 negative 

correlation coefficients out of 64 (7.81 %). From the 

graphical depictions it can be assumed that, due to 

habituation and learning effects, ratings at the end of the 

scenarios are slightly lower which can explain negative 

correlations. The model is not able and not intended to take 

such effects into account. Furthermore, because of the pre-

sorting of the flight strips, participants could have expected a 

high workload at the beginning of a scenario, which is then 

corrected during the scenario. Moreover, there were two 

participants who always marked one and the same anchor-

point of the RSME-scale, such that no or just little variations 

arose. This might occur because the ratings were allocated a 

lower priority than the main task. Also the participants’ 

motivation was possibly not high enough to give valid 

estimates of their current workload.   

In comparing the distribution of RSME-ratings and model 

data visually, an increasing difference between both measures 

arises as the scenario proceeds. This might occur because the 

participants expect the end of the scenario and therefore adapt 

their ratings downwards. Additionally, when several aircraft 

and requests arose at (nearly) the same time, they may have 

been handled in different sequence by the model and by the 

participants. In phases of very high traffic loads, some 

aircraft were not processed at all by some participants. These 

differences and the resulting differences in the specific traffic 

situation might also account for low or negative correlations 

in some cases. 

Finally also a lower diagnosticity for mental effort of the 

RSME-scale (as indicated by the results of section 5.2 and 

6.2) could account for low correlations, because other factors 

affecting workload are somewhat included into participant’s 

RSME ratings. 

7 CONCLUSION 

This study showed that the presented MATriCS model can 

predict the dependence of subjectively perceived workload on 

external task load which was manipulated by means of traffic 

load. Moreover, the model can predict situation-dependent 

workload within one scenario. Further research must be 

conducted to examine why the workload estimations of some 

participants differed severely from the model’s predictions as 

indicated by negative correlations. One possible explanation 

is the application of individual strategies. Another possible 

explanation is that, as shown in figure 3, expectation of a 

stressful scenario as well as expectation of the imminent end 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W
o
rk

lo
ad

 l
ev

el
 [

%
] 

t [min] 

RSME

Model

Figure 3: Distribution of Workload over time for participant 24 in Scenario 1 



 

 

     

 

of the scenario might have influenced the participants’ 

perceived workload in the scenario’s beginning and end. 

These negative correlations, however, occurred for only a 

minority of trials. 

For further validation of the model, a high fidelity simulation 

with real air traffic controllers as participants should be used. 

This allows for generation of even more realistic data and 

therefore to proof the generalizability of the model to real air 

traffic control environments. 

However, it should be noted that the MATriCS model shows 

a weak, but significant correlation with experimental 

workload data as well as a good estimation of the absolute 

height of workload. It therefore can be seen as a promising 

approach to estimating ATCOs’ workload in different 

situations. 
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