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Abstract

This thesis covers the controlling of flexible robot systems by using a camera as a

measurement device. To accomplish the purpose of the study, the estimation process

of dynamic state variables of flexible link robot has been examined based on camera

measurements. For the purpose of testing two application examples for flexible

link have been applied, an algorithm for the dynamic state variables estimation is

proposed.

Flexible robots can have very complex dynamic behavior during their operations,

which can lead to induced vibrations. Since the vibrations and its derivative are

not all measurable, therefore the estimation of state variables plays a significant role

in the state feedback control of flexible link robots. A vision sensor (i.e. camera)

realizing a contact-less measurement sensor can be used to measure the deflection

of flexible robot arm. Using a vision sensor, however, would generate new effects

such as limited accuracy and time delay, which are the main inherent problems

of the application of vision sensors within the context. These effects and related

compensation approaches are studied in this thesis. An indirect method for link

deflection (i.e. system states) sensing is presented. It uses a vision system consisting

of a CCD camera and an image processing unit.

The main purpose of this thesis is to develop an estimation approach combining

suitable measurement devices which are easy to realize with improved reliability. It

includes designing two state estimators; the first one for the traditional sensor type

(negligible noise and time delay) and the second one is for the camera measurement

which account for the dynamic error due to the time delay.

The estimation approach is applied first using a single link flexible robot; the dy-

namic model of the flexible link is derived using a finite element method. Based on

the suggested estimation approach, the first observer estimates the vibrations using

strain gauge (fast and complete dynamics), and the second observer estimates the

vibrations using vision data (slow dynamical parts). In order to achieve an optimal

estimation, a proper combination process of the two estimated dynamical parts of

the system dynamics is described. The simulation results for the estimations based

on vision measurements show that the slow dynamical states can be estimated and

the observer can compensate the time delay dynamic errors. It is also observed

that an optimal estimation can be attained by combining slow dynamical estimated

states with those of fast observer-based on strain gauge measurement.
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Based on suggested estimation approach a vision-based control for elastic ship-

mounted crane is designed to regulate the motion of the payload. For the observers

and the controller design, a linear dynamic model of elastic-ship mounted crane

incorporating a finite element technique for modeling flexible link is employed. In

order to estimate the dynamic states variables and the unknown disturbance two

state observers are designed. The first one estimates the state variables using camera

measurement (augmented Kalman filter). The second one used potentiometers mea-

surement (PI-Observer). To realize a multi-model approach of elastic-ship mounted

crane, a variable gain controller and variable gain observers are designed. The vari-

able gain controller is used to generate the required damping to control the system

based on the estimated states and the roll angle. Simulation results show that the

variable gain observers can adequately estimate the states and the unknown distur-

bance acting on the payload. It is further observed that the variable gain controller

can effectively reduce the payload pendulations. Experiments are conducted using

the camera to measure the link deflection of scaled elastic ship-mounted crane sys-

tem. The results shown that the variable gain controller based on the combined

states observers mitigated the vibrations of the system and the swinging of the

payload.

The presented material above is embedded into an interrelated thesis. A concise

introduction to the vision-based control and state estimation problems is attached

in the first chapter. An extensive survey of available visual servoing algorithms that

include the rigid robot system and the flexible robot system is also presented. The

conclusions of the work and suggestions for the future research are provided at the

last chapter of this thesis.
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1 Introduction

In this chapter, a detailed overview of the intended study is outlined. Problem

definition and objectives of the study are delineated. Finally, the outline of thesis

is described.

1.1 Background

Besides the studies on the human/animal vision with the goal of understanding

the operation of biological vision systems, vision technology is a popular research

topic in robotic realm. There is a paradigm shift on developing vision systems for

the application in an industrial environment such as navigation, recognizing, and

tracking objects.

Machine vision system can not perform all the functions of human eyes. However,

robot vision technology provides a combination of flexibility, adaptability, precision,

non-contact measurement, and object recognition for robotics. Generally, using a

vision system two questions can be answered: ”What it is?” and ”Where it is?”.

Here ”it” refers to the observed object in the scenery. A robot visual servoing system

can answer both questions, but often focuses on one of them.

During the past decades industrial robots have become very important facet in

the manufacturing industry. Robots are applied to new areas each day, and in

order to be able to go into more new applications the robots often require better

performance or lower price. In order to meet these demands the physical robot

structures are built lighter and flexible materials (flexible robots). Therefore the

demands on the accuracy of the robot controllers have been growing. Good models

are also needed for model-based diagnosis of robots. A fundamental property in

flexible robot control is that the amount of sensors is limited. Usually, in the rigid

robot joint encoder signal is the only available feedback. But in the flexible robot

with infinite number of degree of freedom which come from the deformation of the

flexible links, a comprehensive measurement system is needed to compensate for

these flexibilities.

Flexible robots are now widely applied in various areas; especially in space plants

where pick and place processes are often required. A flexible robot system is a

special type of robots, the feedback signal in this system can be easily affected

by any uncertainty such as: robot calibration errors, lack of link stiffness, poor
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fixturing, and predictable target motion which can pose of the robot end-effector

or target object. Considerable effort and cost are expended to overcome the above

issues, e.g., to design and manufacture special-purpose end-effectors and intelligent

jigs and fixtures. Another difficulty with such systems is the preparation of the

robot for new tasks requires considerable reprogramming effort.

In order to overcome the above disadvantages, the most straight forward solution

is to add additional sensors to the conventional robot control system, which can

directly measure the relative motion between the robot end-effector and the target.

The vision sensor is one of the low cost, acceptable accuracy, and versatile sensors

that are well suitable for this application. Vision-based flexible robot control, or

visual servoing for flexible robot, has been one of the major research areas in flexible

robotics for more than a decade. The task of robot visual servoing is to control the

pose of the robot end-effector relative to either a world coordinate frame or a target

object being manipulated, using real-time image measurements extracted from the

distinguishable visual features.

The advantages of flexible robot visual servoing can be summarized as follows:

• It can reduce the requirement for the exact specification of the target pose.

Therefore, it can reduce the costs associated with robot teaching and special-

purpose fixtures. One of the significant improvements is that it can allow

operations on arbitrarily moving or randomly placed target object.

• The requirement for exact positioning of the robot end-effector can be relaxed.

In other words, the robot operations are not completely dependent on mechan-

ical accuracy and stiffness of the robot structure. Hence, robot mechanisms

could be built lighter. This can lead to reduced cost of robot manufacturing

and operation, and decreased robot cycle time.

• Task specifications in a flexible robot visual servoing framework would be

supported. That means it is relatively robust to many disturbing effects in

unstructured environments, and can be easily adapted to monitor changes in

the task or target object without requiring extensive reprogramming efforts.

1.2 Description of the Research Area

The main objective of this work is to improve the robust control performance (state

estimation capability) of an existing flexible robot by equipping the flexible robot
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system with a vision system. In order to achieve the goal of this dissertation,

the vision-assisted dynamic state variables estimation and vision-based control; for

flexible robot systems are studied. The purpose also is to study the dynamic error

of state estimation process for flexible robot with a vision sensor. The vision system

can be used as a good failure inspector by combining the data of other sensors

with vision sensor measurements. For state estimation of a flexible link robot the

camera system is proposed as a robust substitute for the strain gauge sensors. Here

robustness is defined as: the measurements are not effected by the change of the

internal dynamics. Vision-based flexible robot state estimation is applied in a direct

visual servo control method, which has been proposed for an elastic ship-mounted

crane type manipulator in this thesis. The main problems related to the vision

sensor have been addressed in the dynamic state estimation of the flexible robot

system theoretically and experimentally.

1.3 Outline

This thesis is organized as following:

Chapter 2 outlines the literature survey on the visual servoing theories. Applica-

tions of vision-based control related to the flexible robot are discussed. Chapter 3

describes the state estimation process of dynamical systems based on vision sensor

data. Suggested estimation approach is applied using flexible link beam as a case

study. Subsequently, in Chapter 4 the estimation approach is used with the elastic

ship-mounted crane system. The mathematical model of the elastic ship-mounted

crane is re-derived. The state estimation process and control is simulated. In chap-

ter 5 The elastic ship-mounted crane test-rig is used to verify suggested estimation

approach using different types of measurements through experiments. The camera

modeling and calibration process is done. The deflection measurements through

camera and combination of the camera system in the test-rig are also detailed. Fi-

nally, the conclusions and considerations regarding further research are presented in

Chapter 6.
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2 Literature Review

Robots are widely applied in various areas, especially in industrial assembly pro-

cesses. One major source of uncertainty that often leads to poor performance or

even failure of the assembly tasks is the absolute motion control used in the con-

ventional robotic systems [JS02]. Using this type of control, the target object is

required to be accurately placed at fixed world coordinate frame, and therefore,

only absolute pose (3D position and orientation) of the robot end-effector in the

base frame is controlled to operate with respect to the target object. Usually, the

robot joint encoder is the only available measurement in rigid manipulator system.

So the operation can be affected by uncertainty or errors regarding the pose of the

robot end-effector or target object, e.g. due to robot calibration errors, lack of link

stiffness, and unpredictable target motion. These conflicting requirements between

high speed and high accuracy lead to the use of flexible robots.

Here the challenge lies in the incorporation of flexibility effects in the system model

leading to increase in complexity which, in turn, complicates the problem of con-

troller synthesis. Due to the flexibility the controller must be able to control the

motion of the rigid-body mode of the arm and to suppress the vibration modes.

Flexible link robots are distributed parameter systems and have an infinite number

of degrees of freedom; hence many researchers have tried to solve the control prob-

lem by improving the dynamic models and incorporating different control strategies.

Due to the structural flexibility of flexible robots; specific control approaches are re-

quired to affect their vibrations. Another difficulty with such systems is that the

preparation of the robot for new tasks requires considerable reprogramming effort

[CLG+12].

In order to overcome the above issues, a straightforward solution is to add additional

sensors to the flexible robots control system, which can directly measure the relative

motion between the robot end-effector and the target, and at the same time can

also measure the vibration in the flexible link. Vision sensors are cheap, may have

specific high accuracy; versatile sensors are well suitable for a wide range of robot

control. This has been one of the major research areas in robotics for more than

two decades. The task of flexible robot visual servoing are to control the pose of

the robot end-effector relative to either a world coordinate frame or a target object

being manipulated, and to damp out the vibration in the structure by implementing

real-time image measurements extracted from the distinguishable visual features.
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This chapter is organized as follows. Section 2.1 describes the general vision-based

control process. Visual servoing approaches are addressed in section 2.2. In sec-

tion 2.3, visual servoing of flexible robot is discussed in detail. Applications and

classification of visual servoing of flexible robot is detailed in section 2.4. The state

of art is summarized in section 2.5.

2.1 Vision-Based Control

Machine vision [Cor11], which is originated from photogrammetry, is thought to

have the ability to sense, store, and recover a virtual space that matches the original

space as closely as possible. Based on photogrammetry, machine vision technologies

expanded into new research areas such as object recognition. The application of

machine vision in robotics is robot vision (visual servoing), which concentrates on

recognition, positioning, inspection, and modeling of objects. Two questions about

the objects what · · · ? (recognition) and where · · · ? (precision) could be solved

using the vision system [JS02]; in robot applications it should solve both of them.

It is often focused to one of these two aspects, to realize the robot system to solve

tasks of recognizing special objects (marks) or to evaluate its movement accuracy

relative to the environment.

Image

Feature

Feature
Extraction

Vision
System

Object Reconstruction

Interpretation
Control

Model

Figure 2.1: General vision-based control procedure
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In figure 2.1 a typical robot vision procedure based on the characteristics of robot

applications is presented. Different parts of this procedure could be investigated to

produce various practical technologies suitable for different applications. The ele-

ments in figure 2.1 represent [Cor11]: 3D-world (object), the vision data-2D (image),

the data extracted from 2D image (features), the 3D model description of objects

or targets (interpretation), the camera (vision system), the image processing (fea-

ture extraction), transformation from 2D to 3D algorithm (reconstruction), and the

method giving the decision about how to use the results from all elements (control

model).

This typical form of the robot vision system can be adjusted based on the following

factors: the kinds of images required, features found in the images, the mathematical

form of these features as obtained from the images, and how to use the image features

recovering the observed objects.

2.2 Visual Servoing System

In 1979, visual servoing is introduced by [HP79], in order to distinguish a new con-

trol approach. This technology merges the vision information into the usual control

loop of a robot. This type of control system is not only a simple feedback system but

a result of the fusion of many areas such as high speed image processing, kinematics,

control theory, and real-time computing ([Has03], [JS02]). Incorporated with sensor

fusion technology, many vision-based controllers have been investigated which re-

alizing industrial, surgical, space, and military applications. The kinematics-based

methods work with the assumption that the velocity of the manipulator can be

controlled precisely. While dynamic visual servoing directly provide joint inputs

based on visual feedback and the nonlinear robot dynamics. The visual servoing

methods have been briefly discussed, compared, and reviewed by many researchers

[CH08], [Mal02], [KC02], [Has03], [JS02]. Visual servoing systems were classified

with respect to several aspects:

• the position of the camera as eye-in-hand and eye-to-hand [Has03];

• the feedback representation mode position based, image based, and hybrid

visual servoing [KC02];

• the combination of vision sensor and controller of the joint: dynamic look-

and-move system and direct visual servo system [KC02]; and



2.2 Visual Servoing System 7

• the use of the visual information (control model) distinguishes two types of

visual servoing systems: kinematics-based visual servoing and dynamic visual

servoing [WLW08a],

in this review only the characteristics and drawbacks of the methods will be pre-

sented.

2.2.1 Position-Based Visual Servoing (PBVS)

The 3D-visual information used in PBVS, define the position and orientation of the

object (target) with respect to the camera (robot) coordinate system as a desired

reference input. Figure 2.2 shows the basic block diagram for PBVS system. Here
CPT is the target pose with respect to the camera, and CP ∗

T is the desired target

pose. The error between the desired pose and the pose of the target represent the

motion required to move the robot from its initial pose to the desired pose. The

position-based methods have been investigated and discussed by many researchers

([DJSW02], [WHB96], [HDAG08], [JF09]).

The practical applications of this method have the advantage that it allows the

error computation from the desired relative pose in the 3D workspace. The second

advantage is that the end-effector cartesian trajectory can be controlled to move

along a straight line in the cartesian space. In addition, the controller design can

use the advantage of classic robot control problem; due to the separating of the pose

estimation problem from the control design problem [JS02].

Camera

Feature
extraction

Robot

Robot
controllercontroller

Joint sensors

Pose estimation

Cartesian space

−
+

CP ∗
T

CPT

Figure 2.2: Position-based visual servoing



8 Chapter 2. Literature Review

One of the inherent problems of the position-based method is that the geomet-

ric model of the object should be known for pose estimation ([Cha98], [HHC96],

[MCB99]), which makes it a ”model-based” method in comparison with the image-

based method. The second problem related to PBVS is the sensitivity of the camera

calibration error; the camera calibration is needed to get the unbiased cartesian po-

sitioning.

2.2.2 Image-Based Visual Servoing (IBVS)

The image-based visual servoing defines the desired reference input using the 2D-

visual information (image features) figure 2.3. In IBVS the relative pose is estimated

based on the features f provided by the camera. The control goal is fulfilled by co-

inciding the desired f ∗ and estimated f features. In this method, control error func-

tion is computed in the 2D space based on the image Jacobin matrix that shows

the characteristics of movement in image space. The image-based method have

been investigated and discussed by many researchers ([Cha98], [DJSW02], [Esp93],

[HHC96], [KC02], [Mal02]). The practical advantage of this method is that it rep-

resents a ”model-free” method, this means there is no need for a full object model

and also no camera model. The positioning accuracy of the image-based method is

robust to the camera and target modeling errors ([HHC96], [Mal02]). The stability

of the image-based method is known to be robust with respect to camera calibration

errors [Esp93].

Camera

FeatureFeature

extraction

Robot

Robot

controllercontroller

Joint sensors

interpretation

Image space

−
+

f ∗

f

Figure 2.3: Image-based visual servoing

The major disadvantage of the image-based method it is local asymptotic stable,

where the control error function decreases exponentially ([Has03], [DJSW02]). It
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has been stated [Cha98] due to the coupling between the end-effector translational

and rotational motions the image-based visual servoing suffers from typical problem

representing the motion coupling, when the camera moves away from the target in

a depth direction and then returns (camera retreat). Also in the presence of camera

modeling errors the analytically described robustness domain of the stability of the

system dynamics can not be determined due to the fact that the system is highly

coupled ([Cha98], [Esp93]). There are disadvantages of existing image singularities

and image local minima induced from the image Jacobian matrix, which may lead

to potential failure of the method [Has03]. These control law drawbacks arise es-

pecially when the initial and the goal camera images respectively corresponding to

the actual and desired system configurations are very different (i.e for large system

displacements).

2.2.3 Hybrid Visual Servoing Approach (HVSA)

Using the advantages of both of the two earlier approaches and in order to overcome

their disadvantages a hybrid visual servoing (2&1
2
D) which represents a new visual

servoing system is presented by [MCB99]. Hybrid visual servoing represents a system

which does not need a complete 3D model of the object, and also can be used in

the whole work space of the system. Several hybrid visual servoing approaches have

been proposed ([MC02a], [MCB99], [HJ07]). The aim is to get hybrid visual servoing

approach which gives a partial control in the same time for both of cartesian and

image trajectories. This approach realizes model-free visual servoing; it still uses the

recognizable feature in the image but does not require a full object model. Unlike

to image-based approaches the analytical robustness domain of system dynamic

stability can be determined, in other words camera modeling errors can be expressed

by closed form analytical function. Finally this method is free of singularities and

local minima.

Another hybrid approach is the partitioned approach [Hut01]. Within the approach

the rotation around and translation along the optical axis from all other DOFs are

decoupled. This is specifically developed to avoid problems related to a pure rota-

tion around the optical axis. Although the partitioned approach is a very suitable

method to keep the object in the field of view. This method has one drawback:

the two IBVS rotational degrees of freedom are controlled in image space, they do

not take cartesian space into account [GH07]. Another work which executes vi-

sual control by combining or partitioning the visual control structure [CH08]. The
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methodology of switching control is presented in [CH08], the method allows switch-

ing of the controller (i.e. switching between IBVS and PBVS) based on the situation

of the system or based on measurements in image space. The switching control en-

compasses the idea that in each iteration it should be decided which controller should

be used, based on performance criteria.

In the last decade many researcher proposed several developments for visual servoing

to overcome the drawbacks of previous developed approaches. A virtual visual

servoing enabling the calculation of camera parameters iteratively is proposed in

[MC02b]. Using a special calibration rig [PCT07] investigated a calibration method

to determine varying intrinsic parameters. Fuzzy techniques are used to estimate

the robot-camera model [SMSC08] which presents a new eye-to-hand visual servoing

method using inverse fuzzy modeling. This method can be used with unknown

camera and/or robot parameters. [SY09] also uses a fuzzy controller and applied it

on a specific class of IBVS. Here the camera moves in the depth axis, for the sake

of finding the image moment to reflect the object depth.

A new method for image-based visual servoing approach with eye-in hand configu-

ration and not calibrated camera parameters proposed in ([WLW08a], [WLW08b],

[WLZ08]). Depth independent interaction matrix have been developed and ex-

tended, the asymptotic stability of this method has been proved by using Lyapunov

theory. The asymptotic stability condition is: the elements result from multiplica-

tion of depth interaction matrix and its inverse are greater than zero. The inverse

of depth interaction matrix approximated model is determined using offline step.

The interaction matrix and the depth are updated at each iteration using the mea-

surements of the features. Each feature is constrained to reach its desired position

through straight line. In these studies a new algorithm has been developed to es-

timate the unknown camera and geometric parameters. An introduction to sensor

fusion approach by using a combination of two cameras (eye-in-hand, and eye-to-

hand) is presented by [AJSMM10]. Here reduces the inaccuracy of the estimation

of the end-effector pose. As a result the robustness of visual servoing is improved.

In the recent years many problems in visual servoing got more and more attention

from the researchers. There are many points related to the visual servoing need

further studies, e.g., stability analysis of visual servoing systems, uncalibrated visual

servoing, time delay in the measurements, sensor data fusion, and stereo visual

servoing.
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2.3 Visual Servoing of Flexible Robots

A vision sensor (camera) represents a contactless virtual movable measurement sen-

sor, or a set of sensors working at the same time (i.e. getting a set of data from

the camera), therefore vision-based control can improve the control performance

and can be extended to other application areas such as flexible robot manipulators.

In the last three decades the researchers stimulated to study flexible manipulators

due to the need of large load capacities, low energy consumption, the use of small

actuators, the requirements related to high-speed, and also to high precision robot’s

operations. Recently there has been an increasing research interest in this area. A

number of research reports concentrating in visual servoing of flexible robot applica-

tions have been published in order to study related issues problems (see applications

in section 2.4).

Flexible robots have been employed not only in space shuttles, but also in industrial,

surgical, and maintenance applications. However, due to the structural flexibility

and inertial forces, flexible robots have very complex static deflections, they show

dynamic vibrations, especially in high speed operations. Static deflection adds the

initial condition value to the system which should be taken into account in the

control design process. In many cases, there will be very large path tracking or

positioning errors. The dynamic models of flexible robot available till date can not

take care of large elastic deflections of the manipulator. Internal resonances due to

modal interactions are almost ignored, and in most analyses of multi-link manipu-

lators, only linearized models are considered [DE06]. Many control techniques were

proposed to isolate the dynamic errors based on the dynamics models [DE06], but

they seem not very suitable for real-time application due to the very complicated

and time consuming computation of the dynamics of flexible manipulators. Com-

pared to rigid robots the end effector position of flexible links can not be obtained

precisely enough based on the kinematics and joint variables, because the position

of any point of a flexible link is not only related to the joint angles but also to the

link flexural displacements.

2.3.1 State Variable Estimation of Flexible Robot Using Vision Sensors

In case of rigid manipulators, the state variables consist of joint angles and their

velocities, which can be measured by encoders, potentiometers, tachometers, and

so on. In case of flexible manipulators, however, the state variables also include
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elastic deformations and their velocities due to flexibility. In order to control a flex-

ible manipulator based on dynamic model, the state variables should be accurately

estimated.

Flexible link robots are distributed parameter systems and have an infinite number of

degrees of freedom. Each degree of freedom can be represented by using time related

variable and flexible mode shape function. A mode shape function represents the

shape of the beam related to a specific natural frequency. This mode shape can be

determined by the Eigenvalue problem of the vibration equation. In flexible link

robot case the modes are modeled using elasticity theory in order to describe the

shape of the link. In general the frequencies of the individual modes have no simple

relation to each other. For control purposes the approximation of the dynamical

behavior is typically truncated to a finite number of flexible modes [DlB08]. To

sense these modes, the sampling frequency has to be at least twice the frequency of

the highest mode of interest. Further, the vision system resolution needs to be high

enough in order to detect the small vibration amplitudes of higher modes [OB96].

The work on vision-based control for flexible robot is first presented in [TWL90].

The image feedback of the tip displacement and estimated vibration states are used

in [TWL90] to improve the overall performance of end-effector position control.

The main disadvantages of this work are the limited abilities of data processing

and analyzing, camera properties, and image processing software. Several image

processing schemes are proposed by [TWL90] to increase the operational speed.

The researchers had overcome these disadvantages in the following years through

the generation of powerful processing and new vision systems. In [YOK01] the

camera is used to measure the state variables of flexible link, and then using these

measured states to identify the physical parameters of flexible link dynamic model.

The idea is to use the camera sensor to measure the real elastic deformation related

to markers along the link and transform these positions (markers position) as virtual

passive joint angles.

The issues of vibration measurement and control, the end-effector trajectory tracking

control, and Cartesian space trajectory tracking control of robot arms with link

flexibility using vision sensor data are addressed in ([JG05], [JE07], [Jia08]). The

control strategies used are: regulation of end-effector trajectory tracking error to

zero based on visual feedback, compensation of nonlinear forces, and to damp out

the vibrations of the flexible links using a PD plus controller based on feedback of

link deflections. Since the time derivatives of the end-effector position, joint angles,

and link deflections are needed in calculation of the control input, the estimation
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algorithms are used to estimate the value of the velocities in order to calculate the

control input.

2.3.2 Output Feedback Control of Flexible Robot Using Vision Sensors

As an alternative to state feedback control method, the camera is used as a sensor

to measure the output of the system and provide the controller with the information

about the target in order to generate the required input. In [OB96] and [OB99], a

landmark tracking system-based position sensor with fast sampling rate and good

position resolution was proven effective and economical. With this sensor the first

two natural modes of the studied long-reach manipulator were identified. The direct

sensing of the end point position of a flexible positioning system using this sensor

can provide a feedback signal that can always ensure accurate tip placement. The

landmark tracking system works even with link inaccurate construction and in the

case of uncertain placement of equipment. The analytical criteria for selection of

the number, type and location of suitable sensors for robust control of mechanical

systems with flexible bodies is presented in [SMVP99]. In the criteria, a dynamic

sensors data fusion approach is developed to integrate additional sensors such as

vision based sensors in the active control of flexible robots.

The eye-in-hand IBVS of flexible manipulators is studied in [BR06b]. The IBVS

approach was chosen as it computes the feedback control directly from the visual

information, and does not require any further knowledge of the physical parameters

of the manipulator. In [BR06b] the IBVS approach implemented by combining the

two-time scale control of flexible structures and the task space control. Dynamic

effects of both the rigid and the flexible motion of the manipulator are fully taken

into account. The ”fast” subsystem uses the joint sensors information, while the

visual information is used in the ”slow” subsystem for a task-space-oriented control

law. Since the control law in this case is related to work space, the computationally

expensive operations such as generating the inverse and also the time derivative of

the Jacobian, are avoided. The results related to this approach are simulated and

implemented experimentally in ([BR03], [BR04], [BR06b]).

2.3.3 Sensor Data Fusion

In the last decade the problem of data fusion sensor (i.e. strain gauge, vision

sensor,· · · ) in the control of flexible link robots, is strongly addressed by several

researchers. The vision sensor data can be used effectively in cooperation with



14 Chapter 2. Literature Review

other types of sensors for control of the flexible robot system due to the versatility

of vision sensor. Nowadays the vision sensor can be represented as set of sensors and

not only as plain visual feedback. Several measurements can be accomplished in the

same time using single vision sensor (i.e. the same image frame) by augmenting the

image processing software and without needing to change the sensor position.

The estimation of the elastic coordinates as a problem of sensor data fusion is pre-

sented by [BR06a]. Although Kalman filter can be effectively used to weigh the

measurements coming from different sensors. The approach developed in [BR06a],

allows the design of a complete visual servoing control law which can be applied us-

ing a digital camera, a standard image acquisition, and processing hardware. Three

dimensional range sensor is proposed in ([LD04], [LD05], [LUD06]) for estimating

the vibration of large scale flexible structure. In this scheme, a set of synchronously

working satellites is employed to observe the vibrations that appear in various parts

of the structure. The measured vibrational data range from the satellites are fused

by using Kalman filter. This method is validated by experiment where stereo camera

is used as the range sensor in order to estimate the vibration of a quadruple pendu-

lum composed of four links and low friction rotational joints. The method presented

consists of three parts: kinematic data fusion, Kalman filtering, and shape estima-

tion. The advantage of this method is that it needs only coarse kinematic surrogate

measurements to be provided to the Kalman filter, but on the other hand it assumes

that the dynamic model is accurately known and the mode shapes are approximately

known a priori.

2.3.4 Improving the Control of Flexible Robot Using Vision Sensors

The most common problems related to vision sensors are that of the noise and time

delay of measurement data. Thus the less noisy measurement from the camera can

help improving the quality of deflection measurements. On the other hand, to deal

with delays in a control system the actuator gains should be increased to increase

the damping and making the system more robust against the time delays. However,

some approaches are not based on time delay robust controllers but on the accurate

estimation of the delay itself. The vision-based two-time scale controller (fast and

slow) to track a desired tip position while suppressing oscillations in the single

flexible link is described in [XR09]. The vision sensor (slow) is used in combination

with motor encoder (fast) to estimate the full states of the system. The effect of noise

is removed using a Kalman filter, and the time delay effect is accounted using the
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dynamics of the system. The information obtained from end-effector camera (eye-in-

hand) used by [JYKU08] to estimate the tip vibration using modified two-time scale

Kalman filter takes into account the constant delay due to the image processing time.

The estimator is modified in order to deal with image features of unknown objects.

The image Jacobian matrix used in measurement equation can not be obtained easily

when no prior information available for the detected image features. In [DDM09]

two-time scale Kalman filter is used considering a variable delay which is estimated

on the basis of time stamps. The variable time delay estimation based on time

stamps represents a robust method against visual sensor troubles such as partial

occlusions or failure of the camera sensor. The problem by considering sinusoidal

regression instead of a Kalman filter to reconstruct the vibration from visual data is

addressed in [DDM10]. Using a eye-in-hand configuration, the problem of vibration

suppression by using visual features without any markers, or priori knowledge on the

environment is developed by the authors of [DDM10]. The tip displacement induced

by vibrations is estimated exploiting a simple physical model of the manipulator.

The time delay was estimated in [DDM09], [DDM10] by exchanging timestamps

between real-time high sampling rate controller and the non-real time supervisor

whose sampling rate is aligned to the camera frame rate. An alternative method

described in [Dub10] consists of using a secondary concurrent sensor to estimate the

delay. The cross-correlation technique is used to compute the time-delay between

the two signals. These signals are: first free of noise, but delayed visual data to

estimate the tip displacement and the second is noisy, but concurrent inertial data

to correct these visual data in time. An approach to combine suitable measurement

devices easy to realize with improved reliability was proposed in [HS12b]. In this

work the compensation of time delay and noise effects in the estimated states of

the flexible link dynamics is addressed. The approach is based on combination of

the two estimated fast and slow dynamical parts of the flexible link dynamics by

combining the estimations of the slow observer (based on vision measurements) with

those of the fast observer (based on strain gauges).

2.4 Applications

As has been pointed out before, flexible manipulators can find many applications,

but since the main problem is to control their vibrations, many researchers have tried

to solve this problem by improving the dynamic models and incorporating different

control strategies. The study on the control of a flexible arm manipulator started
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as a part of the space robots research, as a space manipulator should be as light as

possible in order to reduce its launching cost. Another application for large robotic

manipulators are needed in nuclear maintenance, e.g., to perform decontamination

tasks. The nozzle dam positioning task for maintenance of a nuclear power plant

steam generator is an example of a task that requires a strong manipulator with

very fine absolute positioning accuracy.

In order to ease the design procedure of flexible space robot systems a method devel-

oped in [SMVP99] to select the type and the location of sensors for flexible robotic

applications is used. The sensors meeting this criteria are called ’hyperstability sen-

sors’. The criteria is implemented practically on special three revolute joints and a

very flexible link designed to simulate the dynamic characteristics of Space Station

Remote Manipulator System (SSRMS). A control positioning for flexible link using

Camera Space Manipulation (CSM) is developed in [KPB04]. In comparison with

the visual servoing method presented by [SMVP99], CSM provides a less compu-

tationally intensive method which is imperative for flexible manipulation. Also the

amount of image data required for CSM makes it a vigorous method for unknown

environments.

2.4.1 Visual Servoing of Flexible Robot Configuration

Any visual servoing systems using typically one of the two camera configurations:

(1) Eye-in-hand and (2) Eye-to-hand configurations. The detailed applications for

visual servoing of flexible manipulator are described below.

2.4.1.1 Eye-in-hand configuration

Despite of the structural flexibility of flexible manipulators, the eye-in-hand vision-

based control which is more complicated than the eye-to-hand approach is addressed

by many researchers in the last ten years due to the development of the vision sys-

tems and controllers. The concept of the eye-in-hand is used in [MKU03], [MKU04]

to design an automated object capturing with a two-arm flexible manipulator. In

this work basic technology in space for automated object capture with a two-arm

spatial flexible manipulator is presented. A small CCD camera and a laser displace-

ment sensor are mounted at the end-effector of the arm. The camera is utilized to

detect the distance to an object and relative orientations at long and middle range,
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while the laser displacement sensor precisely measures the distance from each end-

effector to the surface of the object at close range. Feature based visual servoing is

applied to control the end-effector positions relative to the object positions.

In [FS04] the eye-in-hand approach is used to control the position of a flexible robot

end-effector. In [FS04] the flexibilities of the manipulator links was assumed as

small disturbances to be counteracted by the feedback control loop. A vision-based

training for a neural network control model of a planar, large-deflection robot ma-

nipulator is developed by [LF04]. The training data are acquired from images by

moving the motors to a randomly selected motor position. This method which

requires no previous knowledge of the kinematics or dynamics of the manipulator

suffers from several disadvantages: not robust to sudden disturbances, time consum-

ing process of training the neural network, and it is applicable only on planar robot.

An approach which is composed of an end-effector position control based on eye-in-

hand visual servoing and a vibration suppression control is proposed in ([JKU06],

[JKU07]). High and low pass filters are used to decouple the end-effector position

control and the vibration control. This modified approach applied practically based

on an impedance control used with 3D flexible link manipulator which succeeds to

insert the peg into the hole whose clearance is 0.1mm. In [JKU07], also studied

the trajectory and vibration control by using an endpoint camera, where a two-time

scale discrete Kalman filter is used to estimate the deflection and vibration of the

links using the endpoint camera.

Most of vibration control strategies proposed so far assumes that the structural vi-

bration is directly measured (or it can be measured) by sensors such as strain gauges

or accelerometers. Specific applications such as Articulated Inspection Arm (AIA)

[GBB+09], which works in high temperature and highly level of radiation need spe-

cial type of sensors. The eye-in-hand camera system used in corporation of other

sensor as stated in ([DDM09], [DDM10], [Dub10]) to damp the vibration of the

end effector of AIA. A novel approach for active vibration damping of the TUDOR

(3-Dof flexible link robot arm) using RGB-D-sensor based on the eye-in-hand con-

figuration is adressed by several articles ([JAR+10], [JAB12], [JAT12b], [JAT12a]).

The limitations such as frame rate and camera resolution are studied practically us-

ing TUDOR test rig. The end-effector oscillations of TUDOR system are suppressed

using energy-based model free in conjunction with damping controller.

The RGB-D camera [JAB12], which is different from RGB sensor by providing

per-pixel depth (D) values computed from a reflected pseudo-random structured in-

frared light pattern. The authors compared six different visual oscillation sensing
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approaches on scenes, including sparse texture and poor geometrical profiles as well

as static and dynamic contents, by utilizing the per pixel depth measurements to

reconstruct the 6D vector of the camera motion between two subsequent acquired

images. The method involving the image Jacobian, the homography and the rigid

transformations after back projection rely on a previously extracted set of point fea-

ture correspondences from subsequently acquired images. The problem of time delay

compensation for the TUDOR system has been studied in [JAT12b]. Fourier ex-

trapolation, sinusoidal-regression and auto-regression, signal processing approaches

to compensate for the sensor inherent delay are compared. TUDOR system is used

under gravitational influence to catch multiple balls sequentially thrown by a human

in [JAT12a]. The ball detection, tracking as well as the prediction of the ball inter-

cept location is based on a wall-mounted Kinect RGB-D sensor. Varying payload

and flexible link deformations are damped out using model free independent joint

controller.

The application of the IBVS algorithm has been validated to a space manipulator

for an eye-in-hand camera using a software simulation tool, and then by means of

the experimental test-bed in ([SMGP13b], [SMGP13a]). In their works and due

to its simpler arrangements, the IBVS have been adopted to control three flexible

links with eye-in-hand camera. An image processing algorithm is developed for

adapting itself to different lighting conditions. However, in their papers only fixed

targets are considered. Since the camera affected by the flexible vibration and visual

distortion, an Extended Kalman Filter (EKF) is not only used for the estimate of

the feature motion, but also account the camera measurements in the case of camera

failure. The usage of a camera system for navigation and flexible vibration control

is analyzed in the work.

2.4.1.2 Eye-to-hand configuration

In the eye-to-hand configuration, the camera is fixed in the workspace and its con-

tinuously focusing on the robot end effector. In this case the camera image is

independent of the robot motion, the weight of the camera is not representing an

additional payload to the system, and the auto focus feature is not necessary, in con-

trast to the eye-in-hand configuration. The main disadvantage here is the limitation

of the workspace; the robot can be controlled by keeping it in the field of view during

the visual servoing. The eye-to-hand high-speed camera configuration which avail-

able for visual servoing is used by [CLGM05], [CLG+06]; to identify the dynamic

model of two-link flexible robot around a particular position. Using the identified
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model a Generalized Predictive Controller (GPC) in the frequency domain, and H∞

controller are implemented practically for validation of the model. The main disad-

vantage is the arm generally has to remain around particular position, which makes

the model only appropriate for medical application. An advanced MIMO control

strategy is designed in [CLG+12] for high-speed visual servoing based on recomput-

ing model after camera displacement, and the robustness due to a change in the

working position is evaluated.

In [KMM10] results of ground-based experiments on the assembly of flexible space

structures using the hardware developed under the Self-Assembling Wireless Au-

tonomous Reconfigurable Modules (SWARM) program is presented. Two estima-

tion systems are introduced for observing the dynamics of flexible beam using vision

measurements. The Kalman filter is used to estimate the internal beam joint angles,

while the steady state filter is used to estimate the angular position and angular ve-

locity of the total beam deflection. Adaptive control is used to generate the control

signal by using the measurements and the model information. The SWARM pro-

gram has successfully demonstrated the maneuvering and docking of a flexible beam

in a 2D flat floor environment. In [HS12a], [HS12c] illustrated the problem related

to state variable estimation of Elastic Ship-Mounted Crane by using vision sensor

data, the main goal of the work was to develop an approach to combine suitable

measurement devices easy to realize with improved reliability. The task which be

solved was estimations of the variable gain observer (based on vision measurements)

with those of the variable gain observer (based on potentiometers) are combined.

By realizing a multi-model approach the variable gain controller uses the variable

gain observer’s estimated states and the roll angle to generate the required damping

to control the system to reduce the payload pendulations.

2.5 Summarized State of Art

The main inherent problem regarding visual servoing are the limitations of vision

sensor, long time image processing, image resolution, and frame rate. Although

relatively fast cameras and visual algorithms exist, the sampling rates of visual

measurements are still lower than the frequency of positional encoders and joint

angle sensors. In a flexible robotics context, the visual measurements are often

needed to provide a feedback for control, or measurements to estimate the dynamic

state variables of the system. In feedback control to attain controller stability, the

sample rate needs to be high enough and the low sensor delay. The sensor delay
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of the visual measurements must be taken into account when estimating the state

variables of the system for state feedback control. By combining the visual measure-

ments with high frequency position information the control loop can be run with

higher frequency to allow better stability and faster convergence. In addition, the

sensor delay of the visual measurements must be taken into account when fusing the

measurements. Especially, eye-in-hand configuration requires precise synchroniza-

tion of the traditional measurement and visual measurement. Otherwise vision give

erroneous information while the end-effector is in motion.

In addition to low sample rate and sensor delay the visual measurements are un-

certain. The resolution of a camera is limited, image noise is present and motion

blur adds error to the image. The dynamics and control of 3D flexible robot motion

are more complicated when using a single measurement at each time instant as is

it typical in visual servoing. More than one camera (scenario) can be used effec-

tively in the 3D visual servoing of flexible robot system. The uncertainty in visual

measurements can cause undesired oscillations and hinder the accuracy, by fusing

multiple measurements together more accurate estimates of target motion can be

made compared to a single image.
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3 Dynamic State variables Estimation Using Vi-

sion Sensor Data

In the last chapter a detailed overview for the visual servoing for flexible manipulator

is presented. The main challenges, and applications of the this kind of robots are

also addressed. The state estimation process using vision sensors; which represents

the core of the state feedback control method in visual servoing will be addressed in

this chapter.

3.1 Dynamic State Variables Estimation

State estimation in dynamical systems is crucial in state feedback control real world

applications, because the designed control systems using full-state feedback required

the true state of the real system. However, it is rarely possible to measure all the

state variables. Some state variables are not even physical quantities [Tew02]. Even

in such cases where all the state variables are physical quantities, accurate sensors

may not be available, or may be too expensive to construct for measuring all the

state variables. Also, sensors provide only specific output measurements which are

sometimes a sequence of noisy and delayed measurements that a control system

based on such measurements would be unsuccessful. Hence, it is invariably required

to estimate rather than measure the state vector of a system. The state estimation

process contains observing the output of the system for a known input and for

a finite time interval, and then reconstructing the state-vector from the record of

the output [HDRT04]. The mathematical model of the process by which a state-

vector is estimated from the measured output and the known input is called an

observer (or state estimator). The estimation (observation) of the state of a process

is a fundamental part of modeling, monitoring and control strategies. Consider a

noise free, linear, time-invariant plant described by the following state and output

equations:

χ̇(t) = A χ(t) + B u(t) (3.1)

y(t) = C χ(t) +D u(t).

Here: A, B, C, and D are the system state space model matrices, χ represents the

state vector of the system, u, and y are the input and the output of the system

respectively. The general schematic diagram of an observer is shown in figure 3.1.
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Figure 3.1: General structure of observer

Based on the measured output, a known input, and plant dynamics there are dif-

ferent types of state observers. If the plant for which the observer is required is

linear, the observer’s dynamics would also be described by linear state-equations.

The states of the system must be determinable at any initial state, χ(0) in order

to design an observer for a system, of a free motion system. This is called the

observability of the system; which is an important property of physical systems to

decide whether the states of the system can be reconstructed based on the output

and a known input or not [Tew02]. The linear time-invariant state-equation which

describes the dynamics of an observer can be expressed as follows:

˙̂χ(t) = A χ̂(t) +B u(t) +OG (y(t)− ŷ(t)), (3.2)

where χ̂ is the estimated state-vector, OG is the observer gain matrix, and ŷ is the

observer output (ŷ(t) = C χ̂(t) + D u(t)). The matrix OG must be selected in a

design process such that the estimation error eo(t) = χ(t)− χ̂(t) is brought to zero

in the steady state. From Eqs. (3.1 and 3.2) the error dynamic equation of the

observer can be derived as:

ėo(t) = (A−OG C)eo(t). (3.3)
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According to (3.3) the Observer gain OG should be chosen to ensure the asymptotic

stability of the error dynamics (i.e. e → 0 as t → ∞).

Estimation theory discussed above is a model-based. Hence, the need for an appro-

priate model is imperative. ”Appropriate” means a model that is well suited for its

intended purpose [HDRT04]. The model must describe the essential properties of

the underlying system. In other words, when a model is developed it must always

be kept in mind what it should be used for. It should also be simple enough to

make sure that it can be used to devise an efficient estimation algorithm. If the

underlying model is not appropriate it does not matter how good the estimation

algorithm is. Hence, a reliable model is essential to obtain good estimates. When

referring to a model, this means a system of equations describing the evolution of

the states and the measurements associated with the application. Other models are

for instance impulse responses, transfer functions and Volterra series. A state-space

model is used in the rest of the work, to model the mechanical systems.

3.2 State Variables Estimation Using Vision Sensor Data

With the evolving technology of digital video and communication, come new de-

mands and new ways to utilize the technology. Increasing number visual or video

based control systems can be seen in several areas. A vision sensor (i.e. camera)

realizing a contactless measurement sensor can be used to measure the deformations

of flexible mechanical systems [HS12b]. On the other hand, the estimation of dy-

namic state variables plays a significant role in the control of flexible link robots.

The camera system can be used effectively to estimate the states of mechanical sys-

tems. The application of visual servoing for flexible robots has several drawbacks

like limited accuracy, time delay occurs, and relatively low frame rate, which are the

main inherent problems of vision sensors.

3.2.1 Noisy Measurements

Because of the limited accuracy of the camera systems, the measuring process used

normally produces noised measurements, which are not suitable data to use with

traditional types of observer. On the other hand the filtering problem of measure-

ments is in general difficult, especially if the underlying system is nonlinear and/or

the noise sources are non-Gaussian [JU05]. In many cases the filtering process can

not be done in real time, which leads to a need for estimation process based on these
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noisy measurements. The Eq. (3.1) after adding the noise term to the output can

be written as

y(t) = C χ(t) +D u(t) + η, (3.4)

where η represent the noise generated during the measurement process (Image Pro-

cessing). The term η in the measurements which is unknown in the real time ap-

plications, will lead to the failure of the estimation process in the traditional state

observer. In this work the Kalman filter is used later to estimate the states of the

dynamic model, in order to avoid the effects of noise in the estimation process. This

is because one important property: which is the covariance matrices of the filter are

independent of the measurement.

3.2.2 Delayed Measurements

Filtering methods, such as the extended Kalman filter (EKF) and the particle filter,

are commonly used to acquire an estimate of the true state from noisy measurements.

In general, it is assumed that the measurements are transmitted to the filter without

any delay. In other words, a currently available measurement reflects the current

state. Thus, the current state can be corrected by the current measurement. In

practice, however, in the case of vision sensor this assumption may be unjustified.

For instance, when an observation processor is connected to a camera sensor through

a network, there is a fundamental communication time. Moreover, the raw sensor

data require post-processing (image processing). In order to update the state of

the dynamic system, processing time is needed, resulting in a delay between the

acquisition of a measurement and its availability for the filter. The basic conceptual

design is similar for all cameras [Cor11], meaning that all camera types contribute

the delay in the same way, as basically the same things happens in the process of

capturing, processing and dispatching an image. A measurement sequence without

delay is represented in figure 3.2(a). When, however, both instants does not coincide,

there is a time difference, called delay, between them. Figure 3.2(b) shows a sequence

of this situation. The measurement equation is rewritten, by adding the time delay

to the output Eq.(3.4) as:

y(t) = C χ(t− τ) +D u(t− τ) + η(t− τ), (3.5)

here τ is the time delay in the measurements. The researchers have used many

special techniques in order to reduce the data processing and transfer time of the

measured data. In the next section the dynamic state estimation of flexible link

robot will be addressed.
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Figure 3.2: Measurements sequence [CCPK09]

3.3 Case Study: Flexible Link Robot

As stated in the second chapter vision based control of flexible robots have been

presented in several researches. An analytical criterion for the selection of suitable

sensors for the control of structures with flexible bodies was developed in [SMVP99].

The state estimation of a single link flexible manipulator was studied in [YOK01];

the vision system was used to estimate the state variables of the virtual joint model

of a flexible link. Due to the slow image processing operation in comparison with

the real time control several researchers used a two time scale control ([BR06b]),

[JKU07]. Other researchers developed new approaches of state estimators dealing

directly with time delay and noise [ZLC06], [LZW+08].

In this chapter the effect of time delay and noise in state estimation process of flexible

robot arm are shown through the comparison between the estimated states based

on different measurements data. The flexible link model used, is based on finite

element method. The separation of the dynamics is based on the frequencies of

the system. The slow dynamic is chosen using assumed camera specifications. Two

observers are designed, the first one to estimate the higher modes of the vibration

using strain gauges, the second one represents an estimator using the camera as a

sensor to estimate a modal set of slow dynamics based on the measurable frequencies

of the modes.
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3.3.1 Mathematical model of flexible link robot

The basis of the dynamic model used in this case study is related to the elastic

ship mounted crane. The flexible part of the boom is modeled as flexible link. The

derivation of the dynamic model can be divided into two main parts: the finite

element (FE) analysis, and the state-space representation.

The dynamic model of a flexible link shown in figure 3.3 is utilized using the FE

method ([HS12b]), the effects of rotary inertia, transverse shear deformation, axial

forces, and torsion are neglected. The link is assumed to be clamped at x = 0.

The elementary dynamic model matrices related to the elastic vibration for a beam

consisting of five elements can be written as

MT ϋT +DT υ̇T +KTυT = FT , (3.6)

where the MT , DT , KT matrices represent the 12×12 mass, damping, and stiffness

matrices respectively, FT represents the 12×1 force vector, υT represents nodal trans-

lational and rotational displacements variables as

υT = [ω1 θ1 ω2 θ2 · · · · · · ω6 θ6]
T, (3.7)

ωi , θi denote the translational and rotational displacements at each node along the

flexible link. The translational and rotational displacements at x = 0 must be zero

(ω1=0 , θ1=0). The complete system is described by

Mf ϋ +Df υ̇ +Kfυ = Ff , (3.8)

where Mf , Df , Kf represent the global 10×10 mass, damping, and stiffness matrices

respectively, Ff represents the 10×1 force vector, and υ = [ω2 θ2 ω3 θ3 · · · · · · ω6 θ6]
T.
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The matrix differential equation (Eq. 3.8) is represented in a state-space form as

ż = Az +Bu, (3.9)

y = Cz + η,

with z =

[

v

v̇

]

, A =

[

0n×n In
−M−1

f Kf −M−1
f Df

]

, B =

[

0n×1

M−1
f I1

]

, C =

[

C1

C2

]

,

here z denotes the (2× n)× 1 state vector and η represents the measurement noise,

with n = 10. The values of the elements of matrix C are depending on the sensor

gain of the measuring sensor.

In order to separate the state space model (Eq. 3.9) to fast and slow subsystem, the

state transformation is defined as

z(t) = Tx(t), (3.10)

with T as nonsingular transformation matrix, the state space model is written by

replacing z in equation 3.9

ẋ = T−1ATx+ T−1Bu, (3.11)

y = CTx+ η.

to obtain

ẋ = Ãx+ B̃u, (3.12)

y = C̃x+ η.

In (Eq. 3.12), ˜ sign means the transformed matrix and the resulting state matrix

from this equation is diagonal/block-diagonal. By reordering the system states are

separated to slow and fast subsystems. The state space equations corresponding to

the dynamic separation can be expressed in vector form as
[

ẋ1

ẋ2

]

=

[

Ã1 0

0 Ã2

][

x1

x2

]

+

[

B̃1

B̃2

]

u, (3.13)

[

y1
y2

]

=

[

C̃1

C̃2

]

x+

[

0

η

]

.

In equation 3.13 the slow dynamical system can be generated from the overall system

according to the frequency of the modes. The state components related to the slow

dynamics should be estimated by using the signal from the camera system. An

augmented predictor for the delay and noise compensation described in the next

section can be used for overall optimal estimation.
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3.3.2 State Variables Estimation

In this work, the flexible link model is observed with two types of sensor: strain gauge

sensor to observe the fast dynamic states, camera sensor to observe the slow motion

of the beam. The vision data, which provide direct measurements of the deflection

with respect to inertial coordinate, prove to be a good substitute for strain gauges

if the slow modes of vibration are considered. Related to the description (Eq. 3.13)

two different measurement vectors

y1(t) = C̃1x1(t), (3.14)

y2(t) = C̃2x2(t− τ) + η(t− τ),

are used. Here τ denote the time delay between the two sensor types, which is equal

to the time of the image frame transfer and processing.

Practically there will be time delay and noise in the all types of measurements; here

the delay and the noise for the strain gauge signal are neglected in comparison with

the camera signal. Due to the limitations of the sampling rate, and the resolution of

the camera to detect all modes of the system; two different observers are designed

to estimate the dynamical behavior of the system. The first one is a standard one,

while the second one is not used only to estimate the states, but also for time

delay compensation. The dynamic model is divided in slow and fast dynamic parts

(3.13) in accord to consider the maximal natural frequencies which are related to

the cameras sensor limit. In this work the camera measurement is used to estimate

the modes; which are not only related to the first mode, but also to the remaining

modes of the flexible slow modes up to the camera sampling rate. This contributes

significantly to the beam tip deflection estimation using the vision sensor.

3.3.2.1 State Estimator for Non-delayed Measurement

For the non-delayed measurement (based on the strain gauges), the modes are esti-

mated using classical observer approach as

˙̂x1 = (Ã1 −K1C̃1)x̂1 + B̃1u+K1y1, (3.15)

with K1 = P1C̃
T
1 R

−1
1 and P1 as the solution of the Riccati equation [HDRT04]

described as

Ã1P1 + P1Ã
T
1 − P1C̃

T
1 R

−1
1 C̃1P1 +Q1 = 0, (3.16)

where Q1 and R1 are positive definite weighting matrices for the non-delayed states

and measurements respectively.
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3.3.2.2 State Estimator for Noised-delayed Measurement

The advantage of using the camera as a tip sensing device is the direct inertial

measurement. The disadvantage is a delayed and noisy measurement signal. The

delay is due to the time used in the vision processing and video signal transmission.

In this section the method of defining states using an augmented predictor for the

delay and noise compensation is described. Here, a Kalman filter is proposed for the

delayed estimation. According to [Rob86], and assuming that the estimated states

are delayed by τ , the Kalman filter equation can be written as

˙̂x2(t− τ) = (Ã2 −K2C̃2)x̂2(t− τ) + B̃2u+K2y2(t), (3.17)

where K2 = P2C̃
T
2 R

−1
2 and P2 is the solution of the Riccati equation described as

Ã2P2 + P2Ã
T
2 − P2C̃

T
2 R

−1
2 C̃2P2 +Q2 = 0, (3.18)

where Q2 and R2 are positive definite covariance matrices for the noised-delayed

measurement.

To remove the delay effect from the estimated states, a equation g is defined as

ġ(t) = Ã2g(t) + B̃2u, (3.19)

derived using the slow modes dynamic, is used to account the effect of delay in the

estimated states, and the non delayed state estimate can now be found as

x̂2(t) = g(t) + eÃ2τ [x̂2(t− τ)− g(t− τ)]. (3.20)

3.3.2.3 Combination of the Estimated States

The schematic diagram for the estimation approach is shown in figure 3.4. Each

estimator described before is used to predict the related modes of vibration. The

full state estimation can be found by using equation 3.10 as

ẑ = T

[

x̂1

x̂2

]

, (3.21)

However, in practical implementation the states of the system can be estimated from

different measurements by combining all of the corresponding estimated states. In

this work for the sake of comparison the full system states are also estimated based
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Figure 3.4: Schematic diagram for observation approach

on the strain gauge measurement and this can be done by changing the variables in

Eq. 3.15 by the complete system dynamics. The states from the second estimator

are combined with the same set of states, which are estimated using the full observer

using the minimum mean-squared error x̂i with

x̂i =
(piix̂1,i + qiix̂2,i)

(qii + pii)
, i = 1, . . . , n1, (3.22)

here n1 denotes the number of slow modes. An optimal estimation can be achieved,

when they are combined properly. The derivation process of qi,i, pi,i is explained in

detail in [Rob86]. Note, that the subscripts ’1’ and ’2’ in the states represent cases

that the states are estimated based on measurements ’1’ and ’2’, respectively. The

transformed states are used in (Eq. 3.22) due to the parameters qi,i, pi,i; which are

related to transformed states.

3.3.3 Simulation Results

The parameters used in this work for the system illustrated in section 3.3.1 are:

– L = 0.5 m,

– A = 0.00125 m2,
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– EI = 54.6 N.m2, and

– ρ = 7850 Kg/m3.

Here L, A, E, I, ρ denotes length, cross sectional area, elastic modulus, cross section

moment of area, and mass density, of the elastic link. Assuming two measurement

points as, node 3 (using the strain gauge) and node 6 (using the camera sensor),

two different input signals are used in the simulation, these two input signals are

placed in the same position. The first one is an impulse force, deflecting the beam

for 0.01 sec. with 10 N, the second one is vibrating the flexible beam with different

frequencies according to the equation

u = a sin(2πt2). (3.23)

Here a denotes the amplitude of the sweep function. The simulation for the mea-

surements of the camera sensor for the 6th node after the applying the input forces

is illustrated in figure 3.5 and figure 3.6. Here node 6 denotes the end effector point

of the flexible link. The noise in the signal is generated by adding the random

number to the white noise signal and the results is multiplied by an appropriate

factor related to the measurement signal. The time delay is assumed equal to 0.15

sec. Practically the total delay time can be determined by comparing the camera

measurement to the strain gauge measurement for the same node. In this work the

time delay is used as constant value due to the fact that the time delay can only

be calculated based on the comparison between camera measurement and another

sensor measurement. The time delay can be set as constant if there is no problem

related to the camera measurement such as camera failure. The delay calculation

can be done continuously (real time) during the operation of the real system in case

of variable time delay.

3.3.3.1 Effect of Noise and Delay on Estimated States

The strain gauge simulated measurement for the 3rd node is used to estimate the

full states of the system by using a full state observer. The simulated camera

measurement is used also to estimate the full states of the system. The estimation

of the full states using the camera measurement is to show the effect of the noise

and the time delay in the estimated state variables figure 3.7 and figure 3.8. These

figures show the error in the set of estimated states based on simulated camera

measurement for each input type. In these two figures e represent the difference
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Figure 3.5: Simulated measurement of the camera sensor (impulse input)

between the two cases of estimation (ẑc− ẑs), where c, s represent camera and strain

gauge respectively, for each type of inputs. Where e− ẑi represents the error between

the two cases for state number i.

3.3.3.2 Compensation of Noise and Delay

It can clearly be seen from the estimated tip point error in figure 3.9 and figure 3.10

that the slow and fast state estimators compensate the noise and delay from the

estimated states for the each type of input. The state estimates which are designed

in this work follow the states and remove the effects of noise and time delay very

fast. The estimated states of the slow dynamic are combined with the estimated

states from the observer to get an optimal augmented state estimation figure 3.11

and figure 3.12.
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Figure 3.6: Simulated measurement of the camera sensor (sweep input Eq. 3.23)
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ẑ
1
9

e
−
ẑ
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Figure 3.7: Effects of noise and time delay on the estimated states (impulse input)
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Figure 3.8: Effects of noise and time delay on the estimated states (sweep input)



3.3 Case Study: Flexible Link Robot 35

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
x 10

−4

0 1 2 3 4 5 6 7 8 9 10
−2

0

2
x 10

−4

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

x 10
−3

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

x 10
−3

e
−
ẑ
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Figure 3.9: Compensation of the effects of noise and time delay on the estimated
states (impulse input)



36 Chapter 3. Dynamic State variables Estimation Using Vision Sensor Data

0 1 2 3 4 5 6 7 8 9 10
−2

0

2
x 10

−4

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
x 10

−3

0 1 2 3 4 5 6 7 8 9 10
−0.01

0

0.01

0 1 2 3 4 5 6 7 8 9 10
−0.02

0

0.02

e
−
ẑ
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Figure 3.11: Combination of the estimated states (impulse input)
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ẑ
1
0

ẑ
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Figure 3.12: Combination of the estimated states (sweep input)
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3.4 Summary

In this chapter the effects and compensation of limited accuracy and time delay

occur on the state estimation process based on noised and delayed measurements

are studied. The effects of time delay and noise in states estimation are shown by

the comparison of the states from different measured input data. The main goal

of the work is to develop an approach to combine suitable measurement devices

easy to realize with improved reliability. After a brief overview of dynamical state

observation systems, a flexible link mechanical systems has been studied in this

chapter as examples for flexible robot systems. The dynamic model is separated

to slow and fast dynamics based on assumed camera specification. Two observers

are designed using the fast and slow dynamics, the first one to estimate the higher

modes of the vibration using strain gauges, the second one represent an estimator

using the camera as a sensor to estimate a modal set of slow dynamics based on the

frequency of the system states. The combination of the two estimated dynamical

parts of the system dynamics of flexible link robot is described. The solved task is

combining the estimations of the slow observer (based on vision measurements) with

those of the fast observer based on strain gauges. The simulation is done in order

to verify the effectiveness of the state estimation proposed approach. The proposed

method of states estimation will be used later for the more complicated system, by

integrating the flexible link with the overall dynamics of the elastic ship mounted

crane.
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The model used in this work is based upon SRS1-designed elastic ship mounted

crane (Fig. 4.1). The flexible part of the boom can be represented as a flexible

link robot. As compared to rigid boom of the cranes, the end effector position of

flexible links can not be obtained precisely enough based on the kinematics and

joint variables. The position of any point of a flexible link is not only related to

the joint angles but also to the link flexural displacements. Elastic cranes can have

very complex dynamic pendulations during the operation, due to the flexibility in

the boom of the crane [ASS07]. The boom in this crane consists of a flexible and of

a rigid part. The flexible part is coupled with the dynamics of the pulley and the

payload. The dynamic model of the lower part of the boom (flexible link) is utilized

using the Finite Element method neglecting the effects of rotary inertia, transverse

shear deformation, axial forces, and torsion. The link is assumed to be clamped at

x = 0.

4.1 Mathematical Model of Elastic Ship-Mounted Crane

The mathematical model used in this work is related to the elastic crane designed

by SRS. The mathematical model is briefly presented, the development as well as

the full model are given in [ASS07]. In this work, the mathematical model is re-

derived with the only unique change from the original model, where the flexible link

is divided into two elements instead of five elements (Fig. 4.2). The vision feedback

can provide the actual tip point position, but only for low modes of vibration. Then

there is no need to include negligible (in terms of pixel size) high frequency modes.

Detection of higher order modes is limited by the camera resolution, so in this

contribution only lower order model is used.

The linear equations of motion [ASS07] of the crane using two elements for flexible

parts of the boom can be rewritten as

M0q̈ −B2ü−B4∆δ̈ = −K0q +B1u+ B3∆δ + B5p2, (4.1)

where

q =
[

∆w2 ∆θ2 ∆w3 ∆θ3 ∆α2 ∆φ2

]T

(4.2)

1SRS: Chair of Dynamics and Control, University of Duisburg-Essen.
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Figure 4.1: Elastic ship mounted crane, SRS
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denotes the 6×1 generalized displacement vector, ∆wi describes the translational

displacement at the nodes along the flexible link, ∆θi describes the elastic rotational

displacement at each node, ∆α2 the angle of the right hand side of the cable (L2)

with respect to the horizontal plane, ∆φ2 the angle of payload with respect to the

vertical plane, and

u =
[

∆ρ ∆L ∆D
]T

(4.3)

represents the control input vector, with ∆ρ as a luff angle of the boom, ∆L the

total length of the cable, and ∆D the position of the movable suspension point B ′,

M0, K0 as the total mass and stiffness matrices respectively of order 6×6, B1, B2 are

input matrices of order 6×3, B3, B4 and B5 are disturbance matrices of order 6×1.

The measurement vector is specified as

ym =
[

∆w3 ∆α2 ∆φ2

]T

= C1q, (4.4)

where C1 is the measurement matrix of order 3×6; describing the position of the

sensors of the crane. The state space equations corresponding to the current equi-

librium point, can be expressed as

ż = Az + Bu+ E∆δ +Np2, (4.5)

ym = Cz +Du+ F∆δ + η,

with

A =

[

06×6 I6
−K0M

−1
0 06×6

]

, B =

[

06×3

B1 −K0M
−1
0 B2

]

, (4.6)

representing the corresponding system and input matrices respectively,

E =

[

06×1

B3 −K0M
−1
0 B4

]

, N =

[

06×1

B5

]

, (4.7)

representing the disturbance input matrix for the rolling and the disturbance matrix

N for the forces acting on the payload respectively. The matrix

C =
[

C1M
−1
0 03×6

]

(4.8)

denotes the output matrix, the matrices D and F as

D = [C1M
−1
0 B2]12×3 , F = [C1M

−1
0 B4]12×1, (4.9)
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representing the input and disturbance direct transmission matrices respectively.

The input matrices E,F are used to relate external effects to the dynamics. The

modeled displacement vector q can be obtained using state variables vector as

q =
[

M−1
0 0

]

z +M−1
0 B2u+M−1

0 B4∆δ, (4.10)

where ∆δ denotes the external movement of the system. The noise in the measure-

ment signal and the wind disturbance force are specified in (Eq. 4.5) by the terms

η, p2.

4.1.1 Measurements

Due to economic or practical reasons not all the state variables are measured, only

3 out of 12 states can be easily measured. In this work the system is observed with

two types of sensors. The vision sensor represents the first type of sensors, which

provides direct measurements of the flexible link deflection with respect to inertial

coordinates, as a good substitute for strain gauges. Related to (Eq. 4.4) two different

types of measurements

ym =






∆w3

∆α2

∆φ2




 =






y1(t− τ)

y2(t)

y3(t)




+






η1(t)

η2(t)

η3(t)




 (4.11)

=

[

Cm1

Cm2

]

z +

[

Dm1

Dm2

]

u+

[

Fm1

Fm2

]

∆δ +

[

η1
0

]

=

[

ym1

ym2

]

,

are used. Here τ denote the time delay between the two sensors, which is equal to

the time of the image frame transfer and processing.

The angle of the right part of the cable with respect to the horizontal and the angle

of the payload with respect to vertical α2 and φ2 measurements are assumed free of

noise and delay η2(t), η3(t) ≈ 0. The two angles can be measured using potentiome-

ters. Practically there will be time delay and noise in the all types of measurements

[HDRT04]; here the delay and the noise in the angles signal measurement are ne-

glected in comparison to those of the camera signal.
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4.2 State Variables Estimation for Control

4.2.1 State and disturbance estimation using non-delayed measurements

The state space model (Eq. 4.5) of the crane contains the unknown disturbance p2
(wind force). The state variables and the unknown disturbance can be estimated by

using an observer design able to reconstruct system states in presence of additional

unknown effects acting on the system. Therefore a Proportional-Integral-Observer

(PI-observer) [SYM95] is used. For the non-delayed measurements (based on the

potentiometers), the unknown wind force is approximated by

p2 ≈ Hv, (4.12)

and (Eq. 4.5) can be rewritten as

[

ż2
v̇

]

=

[

A NH

0 S

][

z2
v

]

+

[

B

0

]

u+

[

E

0

]

∆δ, (4.13)

ym2 =
[

Cm2 0
]
[

z2
v

]

+Du+ F∆δ. (4.14)

Due to the difficulty of defining a simple linear model that can adequately describe

the unknown disturbance (assumed as unknown) a suitable design procedure is nec-

essary. It is assumed that the rolling motion of the ship ∆δ(t) can be measured.

Here a model approximation v̇ = Sv , S = 0 is used. A high gain observer to realize

v̂ ≈ p2 [SYM95] is applied. Therefore, the PI-observer model can be written as

[
˙̂z2
˙̂v

]

=

[

A NH

0 S

]

︸ ︷︷ ︸

Ae

[

ẑ2
v̂

]

+

[

B

0

]

︸︷︷︸

Be

u+

[

E

0

]

︸︷︷︸

Ee

∆δ (4.15)

+

[

Le1

Le2

]

︸ ︷︷ ︸

Le

(ym2 − ŷm2),

with

ŷm2 =
[

Cm2 0
]

︸ ︷︷ ︸

Ce

[

ẑ

v̂

]

+Du+ F∆δ, (4.16)
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where ŷm2 is the output of the observer, Le1 and Le2 are the observer gain matrices of

appropriate dimensions. It is necessary that the extended system is full observable,

i.e.,

rank

[

λiI − Ae

Ce

]

= dim(z2) + dim(p2). (4.17)

Here λi denotes all eigenvalues of the system (Eq. 4.17). Different design techniques

can be used to design the observer gain matrices [SYM95]. Here the well-known

LQR approach solving the Algebraic Riccati Equation

AePe + PeA
T
e +Qe − PeC

T
e R

−1
e CeP = 0, (4.18)

is used, so the gain matrix of the observer is calculated by

Le = PeC
T
e R

−1
e . (4.19)

Here Qe and Re are symmetric positive definite weighting matrices for the extended

states and the non-delayed measurements respectively.

4.2.2 State estimation using noised-delayed measurement

The advantage of using the camera as a tip sensing device is the direct inertial

measurement. The disadvantage is a delayed and noisy measurement signal. In this

work it is assumed that the camera measurements is highly noised and delayed in

order to represent typical practical situations. In order to achieve the objectives

of minimizing the effect of measurement noise and time delay, a Kalman Filter is

chosen [LS13] as a state estimator. However, the presence of measurement noise and

delay challenges this premise. In this section the method of defining states using an

augmented predictor for the delay and noise compensation is described. According

to [Rob86], assuming a certain delay time τ , the Kalman Filter differential equation

can be written as

˙̂z1(t− τ) = Aẑ1(t− τ) + Bu+ E∆δ +Np̂2 (4.20)

+L
′

1(ym1(t− τ)− ŷm1(t− τ)),

with L
′

1 = P
′

1C
T
m1R

−1
m1. Here P

′

1 is the solution of the Riccati equation described as

AP
′

1 + P
′

1A
T +Qm1 − P

′

1C
T
m1R

−1
m1Cm1P

′

1 = 0, (4.21)
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ẑ1ẑ2
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Figure 4.3: Schematic diagram for observer approach

where Qm1 and Rm1 are positive definite covariance matrices for the system states

and the delayed measurements respectively. The wind disturbance p2 can be es-

timated based on other measurements, because the disturbance is not related to

system dynamics. It is assumed, that the rolling motion of the ship ∆δ(t) is mea-

sured. According to [Rob86], to remove the delay effect from the estimated states,

a function g which is derived based on the mathematical model of elastic crane, and

the non delayed state estimate ẑ1(t) are given by

ġ(t) = Ag(t) + Bu+ E∆δ +Np̂2, and (4.22)

ẑ1(t) = g(t) + eAτ [ẑ1(t− τ)− g(t− τ)]. (4.23)

In (Eqs. 4.23) g(t) is used as a defined function to account the time delay, ẑ1(t− τ)

as defined above and g(t − τ) is obtained by a time delay of g(t). Here the initial

value for g(t) is [0 0 0 0 0 0 0 0 0 0 0 0]T .

The estimation error dynamic from equations (Eq. 4.5) and (Eq. 4.23), after filtering

and predicting can be written as

e(t) = ẑ1(t)− z1(t) = eAτ (ẑ1(t− τ)− z1(t− τ)), (4.24)

ė(t) = (A− L
′

1Cm2)e(t) + L
′

1η. (4.25)
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The corresponding error covariance is given by

Ec = eAτP
′

1e
AT τ +

∫ τ

0

eAsQm1e
AT sds. (4.26)

The estimation error dynamic equation is derived by neglecting the internal noise

related to the dynamics of the internal states in comparison with the measurements

noise [HDRT04]. Detailed equations of the error covariance of the error dynamics

can be found in [Rob86].

4.2.3 Combination of the estimated states

The schematic diagram for the estimation approach is shown in Fig. 4.3. The state

estimators described before are used to predict system states ẑ1, ẑ2. However, in

practical implementation the states of the system can be estimated from different

measurements by combining all of the corresponding state variable estimates. The

states from the second observer (Eqs. 4.23) are combined with the states estimated

using observer (Eqs. 4.15). Let the matrix Pe in (Eqs. 4.18) be Pe = [pi,j ] and the

matrix Ec of (Eqs. 4.26) be Ec = [σi,j ]. The combination process is based on the

minimum mean-squared error [LS13] as

ẑi =
(pi,iẑ1,i + σi,iẑ2,i)

(σi,i + pi,i)
. (4.27)

An optimal estimation can be achieved, when they are combined properly. The

derivation process is explained in detail in [Rob86]. The process of combination is a

weighting process, the two state estimators estimate the states with small differences.

The parameter σi,i, pi,i are chosen according to [Rob86]. Note, that the subscripts

’1’ and ’2’ in the states represent cases that the states are estimated based on

measurements ’1’ and ’2’, and therefore observers 1 and 2 respectively.

4.3 Controller Design

The observer discussed in the section before reconstructs the states and the unknown

disturbance force p2 as p̂2. The disturbances are calculated, their effect on the

control variables should be canceled or compensated. In this section, the controller

is designed for the model given by Eq.( 4.5). The controller design is published in

previous work [ASS07] and will here be repeated briefly. In order to cancel/reduce
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the effect of the disturbances and to ensure safe cargo transfer of the crane, the

control input u is decomposed into three parts, as

u = uz + u2 + uδ, (4.28)

where uδ and u2 are used to act against the disturbance E∆δ and the estimated

disturbance Np2 respectively; uz is chosen to provide the optimal control for the

crane using state feedback, i.e.,

uδ = −Kδ∆δ , u2 = −K2p̂2 , uz = −Kz ẑ, (4.29)

where ẑ and p̂2 are the estimated states obtained from Eqs. ( 4.5 and 4.5).

4.3.1 Defining Kδ , K2 , Kz

To define the numerical values of the corresponding three inputs, the changes in the

position of the payload (x2 and y2) resulting from rolling are set to be zero, i.e.,

∆x2 ≈
∂x20

∂δ
∆δ +

∂x20

∂ρ
∆ρ+

∂x20

∂L
∆L+

∂x20

∂D
∆D (4.30)

+
∂x20

∂w3

∆w3 +
∂x20

∂θ3
∆θ3 = 0,

∆y2 ≈
∂y20
∂δ

∆δ +
∂y20
∂ρ

∆ρ+
∂y20
∂L

∆L+
∂y20
∂D

∆D (4.31)

+
∂y20
∂w3

∆w3 +
∂y20
∂θ3

∆θ3 = 0.

Here, the subscript 20 denotes the value at t = 0, the roll angle ∆δ is assumed to

be measured. The first control input results to

uδ = −
[

Aδ + FδGδ

]−1

Bδ∆δ, (4.32)

with Aδ , Fδ , Gδ , and Bδ as given in [ASS07]. From (Fig. 4.2) is concluded that

the disturbance p2 acts only on the payload m2; from (Eqs. 4.1) it can be seen that

the corresponding disturbance matrix is

B5 =
[

0 0 0 0 −1 1
]T

. (4.33)
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Figure 4.4: Local coordinates and related local gains

From (Eq. 4.33), it can be seen that p2 affects directly only at the last two states z11
and z12, while the structure of the input matrix described by (Eq. 4.10) indicates that

the input vector u affects all the last 6 states, which means that any attempt to cancel

the effect of the disturbance on the last two states will effect the other states. So no

static feedback matrix K2 can be given to cancel the effect of p2 without exciting the

other states. The effect of the disturbance force p2 can be reduced by implementing

a closed loop state feedback control leading to a dynamical accommodation. It is

necessary to estimate the disturbance, because the state feedback controller uses the

estimated states obtained by the observer, to reconstruct the states with minimum

error only if the disturbances are taken into consideration while reconstructing all

states. Using the Introduced PI-observer this can be achieved. Here LQR state

feedback matrix Kz is calculated as

Kz = R−1BTP, (4.34)

where P represents the solution of the algebraic Riccati equation

ATP + PA+Q− PBR−1BTP = 0, (4.35)

with Q and R as symmetric positive definite weighting matrices of the states and

inputs respectively. The controlled system description can be written as

ż = Az −BKz ẑ + (E −BKδ)∆δ +Np2. (4.36)
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4.3.2 Variable gain observers and controller

It can be seen from Eqs. ( 4.18, 4.21, and 4.35) that the observer and the controller

gain matrices Le, L
′
1, Kz, and Kδ depend directly on the system parameters. Addi-

tionally the input and measurement matrices (B, C) partly depend on the system

parameters. They represent together with the weighting matrices Qm1, Qe, Q, Re,

Rm1, and R the parameters of the Ricatti equations. As a solution a multi model

approach is suggested; based on local linearization. The matrices M0 and K0 are

calculated at different working points, which vary with the length of the cable L and

the boom luff angle ρ, so the observers and controller gain matrices are suitable for

the local working points.

For the scaled model under consideration, the length of the cable (in meters) and

the luff angle (in degrees) are divided such that L0r = 1 + 0.5r , r = 0, · · · , 3

and ρ0s = 15 + 20s, s = 0, · · · , 3. This results to 3×3 = 9 operating regions.

The operation of the crane is now covered by 9 different observers and controller

gain matrices Le, L
′
1, Kz, and Kδ. The switching between these gains takes place

automatically according to the measurements of the luff angle and the length of the

cable to detect the current operating region.

To define the appropriate point inside the region at which the corresponding ob-

servers and controller gains should be calculated, special care should be taken. The

gains are calculated at each individual region of the whole considered working field;

the weighting matrices are chosen to produce nearly the same relative stability and

damping at each region, and each local gain set should provide a stable operation

of the crane for all possible operating points inside the region. The values of the

controller gains are described using a 2D interpolation polynomial

Kz = k1 + k2x+ k3y + k4xy, (4.37)

where x and y denote the local coordinate axes of the region as shown in Fig. 4.4, and

k1, · · · , k4 denote the polynomial coefficient matrices, the numerical values of these

coefficient matrices depend on the gains associated with the corners of the region.

According to [ASS07] the observers and controllers matrices can be calculated based

on the interpolution approach as

Kz(0, 0) = K� → k1 = K� (4.38)

Kz(1, 0) = K⋄ → k2 = K⋄ −K�

Kz(0, 1) = K∆ → k3 = K∆ −K�

Kz(1, 1) = K∇ → k4 = K∇ +K� −K⋄ −K∆.
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Each corner gain is assumed to satisfy the given interpolation polynomial; therefore,

the coefficients of this polynomial can be calculated from (Eqs. 4.37, 4.38) to get

Le = (1− x− y + xy)L� + (x− xy)L⋄ + (y − xy)L∆ + (xy)L∇, (4.39)

L′
1 = (1− x− y + xy)L′

�
+ (x− xy)L′

⋄ + (y − xy)L′
∆ + (xy)L′

∇. (4.40)

Similarly, the corresponding value of the controller gain matrix can be expressed as

Kz = (1− x− y + xy)K� + (x− xy)K⋄ + (y − xy)K∆ + (xy)K∇, (4.41)

the rolling disturbance compensator gain matrix is described by

Kδ = (1− x− y + xy)Kδ� + (x− xy)Kδ⋄ (4.42)

+(y − xy)Kδ∆ + (xy)Kδ∇.

The subscripts �, ⋄, ∆, and ∇, represent the gain related to the corner of the region as
shown in (Fig. 4.4). This includes that the gains are updated continuously according
to the local x- and y-coordinates of the current operating point. Therefore, the
relative stability and the damping property are preserved for all operating points
inside the region.

4.4 Simulation Results of State Variables Estimation and
Control

The simulation results are based on the dimensions of a scaled test rig which is
designed and constructed at SRS (Figs. 4.1 and 4.2). The following data are used:
Boom length = 1.5 m, L5 = 0.42 m, l = 0.5 m, m2= 5 kg, and m1= 0.01 m2,
δ0 = π/4). In the simulation the guided base is subjected to sea-waves-like sinusoidal
or chaotic excitations.

As stated earlier simulation of ∆w3 in combination with simulation of the angles
∆α2, ∆φ2 are used to estimate the displacement variable vector q. The simulation
of ∆w3 in two cases is shown in Fig. 4.5, the first case noised and delayed ∆w3

the second is free of noise and delay. The noise in the Fig. 4.5 are generated using
white noise function. This noise then multiplied by random number. The time
delay used here is a variable time delay. Here a mathematical function is used to
generate random delay between (0.2 - 0.4) sec. Practically the time delay value
can be measured by comparison of the camera measurements and the strain gauge
measurements.
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4.4.1 Observer and controller gains design

In this work a multi model approach is used for observer and controller design. The
Linear Quadratic Regulator (LQR) method [HDRT04] has been applied to design
the variable gain PI-observer, and Kalman filter matrices by solving the algebraic
matrix Riccati equation. The LQRmethod is also used to design the variable gains of
the controller. The design parameters for the whole working regions is not explicitly
described for the sake of conciseness. For a suitable observer design, the feedback
matrices Le, L

′
1 have to be chosen in such a way that the estimation errors tend to

zero (e(t) → 0). The design parameters for the top left corner in working region R5,
Fig. 4.4 have been chosen as Qe = diag(20 20 20 20 20 10 20 20 20 100 20 10000
10e+ 12), and Re = diag

(
0.5 0.5

)
. For the same region the weighting matrices in

(21) for the delayed, noised simulated ∆w3 have been chosen as Qm1 = diag (7e −
09 10e−09 8e−08 10e−07 10e−07 3e−07 4e−10 2e−10 8e−07 1e−07 2e−06 2e−06),
and Rm1 = 9.26e− 5. the values of Qe and Qm1 matrices are chosen by finding the
error covariance for a set of simulated states. While the values of Re and Rm1 are
chosen by finding the error covariance for a set of simulated outputs. Then these
values can be adjusted till get the best results related to estimation gains.

On the other hand, in order to achieve good performance and fast vibration sup-
pression at steady-state, the design terms in ( 4.35) for the bottom right corner in
working region R5 have been chosen as Q = diag (10 10 1 1 1 1 0.1 0.1 1 1 460 370),
and R = diag (19000 19× 1013 250000) respectively. With these values the resulting
state feedback matrix becomes

Kz = 10−3 ×
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.

4.4.2 State estimation results

The estimated displacement variables ∆ŵ3,∆α̂2 , and ∆φ̂2 estimation results are
shown in Fig. 4.6. Here the crane base is subjected to sinusoidal excitation with
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the amplitude of |∆δ|max = 5 degree and ∆φ2 = 30 degree as initial condition. A
sinusoidal wind force affecting the payload is assumed, and the controller is turned
off. The estimated displacement variables are compared with the actual states based
on the varible dynamic model of the system. The proposed observer estimates the
state very well. The Kalman filter removes the noise effect from the states and the
dynamic part g(t) accounting the time delay dynamic part very fast. From Fig. 4.6
can be stated that the proposed observer removes the error in the estimated states
due to unknown initial condition also.

4.4.3 Controlled motion results

Results for the control based on the developed estimation model are shown in
Figs. 4.7, 4.8. The control system is used for a sinusoidal rolling excitation with
amplitude of |∆δ|max = 10 degree, assuming no wind force affecting the payload.
The luff angle is increased in the first 5 seconds from 30 to 55 degree; the length of
the cable is decreased from 2.5 to 1.5 meter, the initial conditions are assumed as
zero. The controlled and the uncontrolled displacement variables and the position
of the payload are shown in Fig. 4.7. In the case the controller is turned on, the
vibrations of the flexible link are suppressed very fast. The position of the payload
is stays around constant value (∆x2(t), and ∆y2(t) ≈ 0). The control system is used
to suppress the swing motion of the payload m2 for a chaotic rolling disturbance
(Fig. 4.8). Here the dominant frequency is close to the first eigenfrequency of the
crane (2.5 Hz), so the crane vibrates for the first 5 seconds. Then the controller
is turned on at t=5 seconds to control the vibrations in the elastic and rigid parts
of the crane. The luff angle is increased in the period from tbegin = 5 to tend = 10
sec. from 25 to 55 degree, the length of the cable is decreased from 2 to 1.5 meter.
The payload swings for the first five seconds, then the controller is turned on. For
all of the above mentioned cases, it can be stated that the controller performs very
well and the oscillations are reduced significantly without any noticeable secondary
effects based on the estimated states.

4.5 Summary

In this chapter the effect of time delay as well as noise in the state estimation pro-
cess is assumed through the comparison between the states obtained from different
measured input data. The main goal of the work is to develop an approach com-
bining suitable measurement devices easy to realize with improved reliability. The
dynamic model of elastic crane is used to design the controller for the payload po-
sition using three input variables. The state estimators are used based on three
measurementsOne of these measurements assumed as camera measurement. Two
variable state estimators are designed, the first one to estimate state variables based
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Figure 4.5: Simulation of ∆w3

on the delayed and noised camera measurement, the second one is based on the non-
delayed measurements. The states estimated from these two observers are combined
in order to get optimal estimation of the required states. A dynamic equation based
on the model of the elastic crane is used to account for the time delay in the esti-
mated states. A variable gain controller is designed based on the estimated states
to generate the required damping and to compensate for the rolling movement of
the ship. As an outline of this chapter, the experimental test of state estimating
and controlling of elastic ship-mounted crane using camera measurements will be
presented in the next chapter.
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5 Visual Servoing of Elastic Ship-mounted Crane:

Experiments

This chapter addresses the experimental results for a vision-based vibration control
for elastic ship-mounted crane. Realizing a multi-model approach addressed in the
last chapter, the variable gain controller uses the estimated states from variable gain
state estimator and the roll angle to generate the required damping to control the
system. Experimental work will be explained in detail.

5.1 Experimental Setup: Elastic Ship-Mounted Crane

The configuration of the experimental set up was built at the laboratories of SRS.
A scaled test rig is designed and constructed to simulate the operation of an actual
elastic ship-mounted crane at sea (Fig. 4.1). The analytic-numerical investigation
and the experimentation have been taken in to account in the building process of the
test rig, in order to validate the theoretical assumptions and to verify the numerical
results. The test rig (components and measurements) are presented in [ASS07].
In this section only brief overview and the additional components presented. The
elastic ship-mounted crane test rig consists of the following parts:

1. Three inputs to control the payload during operation:

• The position of the lower suspension point ∆D(t), which is controlled
using a hydraulic cylinder mounted between the lower suspension point
and the tip of the boom as shown in Fig. 5.1(a),

• the luff angle of the elastic boom ρ(t), The luff angle is controlled by a
hydraulic cylinder as shown in Fig. 5.2(a), and

• the length of the upper cable L(t), is controlled by a DC motor integrated
with a spur gear box as shown in Fig. 5.3(a).

The displacement ∆D(t) is measured by a linear incremental encoder, while
the change in the luff angle ∆ρ(t) and the change in the upper length cable
∆L(t) are measured using rotary potentiometer.

2. Three output variables must be known to guarantee the observability condition
of the crane and payload:

• The elastic rotational displacement is measured directly by a strain gauge
glued to the elastic boom which is replaced in this work by camera system,
as shown in figure 5.5(a).



5.1 Experimental Setup: Elastic Ship-Mounted Crane 59

(a) Actuator for ∆D(t) (b) Incremental Encoder for ∆D(t)

Figure 5.1: Lower suspension point measurement and input signal

(a) Actuator for ρ(t) (b) Rotary potentiometer for ρ(t)

Figure 5.2: Luff angle measurement and input signal

• The ∆α2 and ∆φ2 angles can be measured indirectly using rotary poten-
tiometers as shown in figure 5.4(a) and figure 5.4 (b).

3. The measuring instruments (the potentiometers and the linear incremental en-
coder) are connected to the controller (dSpace processor) through a connection
block with MIMO channels ( Fig. 5.5(b)).

4. The dSpace controller is programmed by MATLAB SIMULINK which includes
the multi model PI-Observer and the variable-gain controller. Each actuator of
the crane is controlled by a PD tracking controller to ensure that the actuators
track the input commands (desired displacements) coming from the MIMO
variable-gain controller as illustrated in Fig. 4.20.



60 Chapter 5. Visual Servoing of Elastic Ship-mounted Crane: Experiments

(a) Actuator (DC Motor) for L(t) (b) Rotary potentiometer for L(t)

Figure 5.3: Cable length measurement and input signal

(a) Rotary potentiometer for ∆α2 (b) Rotary potentiometer for ∆φ2

Figure 5.4: Measurement of angles
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(a) Strain gauge (b) dSpace connection block

Figure 5.5: Deflection measurement and connection block

Figure 5.6: Basler aviator camera, SRS

5. In this work, a high performance CCD camera avA1600-50gc that is made by
Basler Company (Fig. 5.6) is used for sensor fusion.
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5.2 Flexible Link Deflection Measurement

In the operation of flexible link robot it is important to compensate the tip position
and orientation inaccuracies caused by the link deformations through adjustment
of the joint variables. Thus, a vision sensor system which is specially dedicated to
the measurement of the link deformations in real-time is essential for the accurate
control of the flexible link. A combined PI- observer and Kalman filter are used for
estimating beam deflection angle in order to address robustness issues and reduce
the operation error.

5.2.1 Camera System Modeling

The second type of sensor considered in this work for dynamic state estimation:
the camera. When the camera is pointed to a physical object, an image of this
object is formed on a photographic film or an image capture device by means of
rays reflected from the object passing through the aperture of the camera lens.
Digital images are stored as number arrays where numbers represent the intensity
of light exposed on the sensor array. By using a camera as the flexible link sensing
device, a direct measurement of the deflection can be made. The quality of the
camera measurement depends on the properties such as the imaging sensor, lens
type and frame rate, which cameras are usually classified according to. However,
a significant delay and noise was found between the actual and measured flexible
link deflection, which needs to be compensated. In this section the camera model
used, is first explained, followed by the adjustment for distortion in the camera lens
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and the description of the calibration process. After that how finding the flexible
link deflection based on the image frames captured by the camera is discussed. As
stated earlier, a high performance CCD camera avA1600-50gc that is made by Basler
Company is used for sensor fusion. The image array sensor is up to 1600 pixel by
1200 pixel image size, and highest sampling frequency being 60 Hz. The computer
used in the real time image processing captures the frames from camera using a high
performance GigE vision interface. The mathematical camera model and calibration
procedure is also explained in this section.

A visual sensor system containing: CCD camera and LED markers, is used. Assum-
ing the camera geometry modeled by perspective projection [Cor11], which simplifies
the camera lens to its ideal behavior. Mathematical camera models represent the
mapping of 3D coordinates of a point in the scene to its 2D projection in the image
plane (figure 5.7). The 2D projection of the point is derived by using the similarity
of triangles, as

(ui, vi) = (fc
XP

ZP

, fc
YP

ZP

), (5.1)

where u and v represent the components of the image coordinate frame (i-frame)
with origin on the center of the image plane, i.e. the center of projection. Here, fc is
the focal length of the camera. Since the digital output of the camera is represented
by pixel values pixel coordinates (p-frame). The projection of point P having 3D
camera frame coordinates [XP , YP , ZP ] on the image plane is given by

(xp, yp) = (x+ x0, y + y0) = (x0 + fc
XP

ZP

, y0 + fc
YP

ZP

), (5.2)

where x and y represent the components of the image coordinate frame(i-frame)
with origin on the center of the image plane, i.e. the center of projection. (x0, y0)
being the position of center of projection.

This ideal camera model is converted to a more realistic model by employing terms
for non-ideal characteristics of a camera. These include the effective pixel size sx and
sy , and image plane orientation represented by the skew factor. The aforementioned
attributes are collected in a matrix form symbolized by Kint which is multiplied with
the position vector of the observed 3D point. the Kint can be written in compact
form as:

Kint =

[
sxfc skew factor x0

0 syfc y0

]

, (5.3)

and using Kint the projection of point P on the image plane reformulated as

(xp, yp) = Kint P
c. (5.4)

Additionally, non-linear image distortion model can be utilized to express the non-
ideal lens properties. In more recent works, a distortion model is also suggested by
introducing non-linear coefficients to the camera model.
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Figure 5.8: Checkerboard pattern images used for intrinsic calibration
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Figure 5.9: Extracted image points for calibration

5.2.2 Camera Calibration

Camera calibration is necessary to relate information obtained from the image plane
pixels to objects in the real world through determining the matrix form symbolized
by Kint and the external calibration parameters. Camera calibration extensively
studied with many more techniques presented in the literature. The camera calibra-
tion toolbox for matlab developed by Jean-Yves Bouguet at the Vision Laboratory
of California Institute of Technology [Bou] for internal and external calibration is
used in this work. Internal calibration is used for the determination of pinhole cam-
era model parameters, i.e. Kint explained earlier. The relationship between the
camera frame and object (point) frame is defined using Kint. However, object or
point P is represented in global frame [Xg, Yg, Zg], since it is not possible to measure
the distance from the center of the camera to the point P. Hence, external projec-
tion between the camera frame and global frame should be known. Determination
of the position of camera in global frame and the rotation between the frames are
calculated via external calibration as follows





XP

YP

ZP



 = Rext





Xg

Yg

Zg



+ text. (5.5)

The relationships given in Eqns.( 5.2-5.5) can be represented with a equation matrix
multiplication by combining text and Rext in a 3x4 matrix [Rext|text] and multiplying
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Figure 5.10: Reprojection error of image points for calibration

the resultant with employing homogeneous coordinates, a 4x1 vector. Homogeneous
coordinates are formed with augmenting 1 at the end of the coordinate vector:


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
. (5.6)

The calculated pixel coordinate vector from Eqn.( 5.6) is weighted by a factor of m
which is the 3rd component. By dividing the first two components of the vector,
pixel coordinates are obtained.

As stated earlier intrinsic and extrinsic parameters of the camera are obtained by
utilizing the Camera Calibration Toolbox for MATLAB [Bou]. The main internal
parameters are estimated using images of a planar checkerboard pattern (Fig. 5.8).
This pattern provides a number of points for minimization of the re-projection error.
These error patterns represent the estimation of the corners’ positions based on the
calibration parameters for each frame. Several iteration have to be done, until the
error is smallest as possible. One of the images with the extracted and projected
corners and the distribution of re-projection pixel error are shown in figures 5.9
and 5.10 respectively. Internal camera parameters for Basler Camera are obtained
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as follows:

[
sxfcsyfc

]
=

[
1480.33 1478.77

]
±
[
4.504 5.531

]
,

[
x0 y0

]
=

[
320.18 293.08

]
±
[
5.71 3.42

]
,

skew factor =
[
0.00

]
±
[
0.00

]
,

Pixel error =
[
0.24346 0.3497

]
.

Additionally, non-linear image distortion model can be utilized to express the non-
ideal lens properties, distortion coefficients Dc are obtained as follows:

Dc = [−0.104 0.474 0 0]± [0.019 0.211 0 0].

The unit to the internal parameter values is ’one pixel long’. The external camera
parameters of the Basler Camera used in this work are calculated at in the exper-
imental setup. The corner of the checkerboard pattern is marked as the origin of
the global coordinate frame. The rotation and translation matrices are obtained as
follows:

Translationvector : Tcext =
[
−85.492828 98.748398 1236.655272

]
,

Rotationmatrix : Rcext =





0.971317 − 0.131396 − 0.198189
−0.018018 − 0.871738 0.489641
−0.237105 − 0.472026 − 0.849101



 ,

Pixel error =
[
0.22383 0.58252

]
.

5.2.3 Deflection Calculation

Control strategy based on image processing is usually done by extracting relevant
features that characterize uniquely the target with respect to other objects that could
be present in the image. These features can be points, lines, or general shapes. The
task of an advanced image processing for complex target detection is not of primary
interest in the present work, and the description of the developed algorithm for the
target detection is limited to the case of point features. The experimental target is
here represented by three red lights mounted on a flexible link. The three red markers
to measure the deflection of flexible link is used in order to simplify the detection
process of markers, as shown in figure 5.11. In the begin of the experiments three
white LEDs are used as markers. Because of the white LED were not appropriate
with the scene (as shown in figure 5.12). In order to avoid the requirements of black
background, reduce the light of the environment (laboratory), and paint some parts
of the crane. The white LEDs are replaced in the progress of the work with red
LEDs .
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Figure 5.11: LED markers fixed on flexible link

Figure 5.12: White LEDs test
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Clearly, in a generic environment, other red pixels could be present but if the other
pixels have different intensity, the image processing procedure will not detect the
pixels as LED markers. The idea of tip deflection measurements is based on using
two point located on straight line and then using the third point to calculate the
deflection of the tip point (vertical distance between the line and the third point).
In RGB codification, three values are associated to any pixel, corresponding to the
red, blue, and green levels. A perfect red should be a [255, 0, 0] triplet. However,
due to changing light conditions and sensor imperfections, this value is not expected
to be found. A common behavior that has been experimentally observed is that the
camera automatic exposition regulation. Meaning, the distance between the camera
and the test rig brings to an underexposed image when it is far from the target (i.e.
acquired red is darker than perfect red) and to an over-exposed image when it is
close to the target (i.e. acquired red almost like white).

Sequences of processes are applied consecutively in real time for the sake of red
marker detection: first subtract the red component (R-Image) from the gray scale
image to extract the red components in the image. After that the median filter is
used to filter out noise. Convert the resulting gray scale image into a binary image.
Remove all those pixels region less than 12px, Label all the connected components
in the image which represent the red objects, and the image blob analysis is done
finally to locate the center of the LED in the image. The image processing steps
are shown in figure 5.13, the image processing is done using the Matlab/Simulink
software through capture the video signal from GigE vision card using Simulink and
by using Matlab/Sfunction for Image processing.

5.3 Experimental Results

The results are based on the dimensions of a scaled test rig which is designed and
constructed at the Chair of Dynamics and Control at the University of Duisburg-
Essen (Fig. 4.1). The data used are: Boom length = 1.5 m, L5 = 0.42 m, l =0.5
m, m2= 5 kg, and m1= 0.01 m2, δ0 = π/4). In the experiment the guided base is
subjected to two different types of sea-waves like sinusoidal and chaotic excitation.
The dSpace controller is programmed by MATLAB SIMULINK which includes the
multi-model PI-Observer, Kalman Filter for state estimation and the variable-gain
controller. Each actuator of the crane is controlled by a PD tracking controller
to ensure that the actuators track the input commands coming from the MIMO
variable-gain controller. Two mainframes, one for image processing and the second
for the dSpace system are used in the experiments. A User Data-gram Protocol
(UDP) in Python program is used as a connection between these two computers to
transfer the camera measurements to the dSpace computer. The time delay can be
calculated by using the python program by comparing the time of send and the time
of receive in the first and second computer respectively; and then the time delay fed
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Figure 5.14: Schematic diagram for the test rig (Chair of Dynamics and Control,
University of Duisburg-Essen)

to the dSpace model to account delay effect in the state variables. The schematic
diagram for the image processing unit and experimental test rig connection is shown
in figure 5.14.

5.3.1 Link Deflection Measurement

The tip point position is measured based on image frames. The camera is set on
the location in front of the vertical plane in which the crane moves with a distance
of 2.25 (m). With this setting, the measurable area of the visual sensor system is
0.8 (m) × 1 (m), the resolution is 55(µm) × 55 (µm). The frame rate of the camera
is fixed on 30 fps. Deflection of the link is calculated on real-time basis, the main
steps of this process are

1. LEDs detection on image plane,

2. Determination of LEDs centroids, and

3. Determination of deflection using the LEDs centroids.
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Figure 5.15: Tip deflection measurement

To detect the center of each LED it is necessary to determine its edge. After the de-
tection of each LED centroids, and as shown in figure 5.15, the deflection calculation
can be found by

∆w3 = def = yd ∗ cos(β), (5.7)

where yd is calculated by

yd = y3 − (yp3 − yp1), (5.8)

here p1, p2, and p3 represent the position of the LEDs centroids on the image
plane. In order to compare the tip deflection measurement with those given in
[ASS07], θ3 is required which is derived based on the beam model, and as the
result is given by ∆θ3 = 3∆w3/2L3. The deflection measurement using the camera
system is shown in figure 5.16. The camera is used to measure the slope of the tip
deflection when the controller is on. The measurement using the camera system
suffer from highly noise (Fig. 5.16) due to the resolution limitation and the error in
the LED centroids detection. Due to the limitation of the frame rate, the camera
system can not detect the exact deflection of the tip point precisely. Because of
coupling between rigid and flexible dynamics; the rigid states of the system affect
the flexible dynamics. Then, there is no linear system for the estimator which can
be constructed by simply removing their rows and columns from the matrices of
dynamic equations. The camera measurement is used in the rest of results instead
of strain gauge measurement to estimate the states of the system. The performance
of the elastic crane system will be compared in the next section using the camera
and the strain gauge measurements.

5.3.2 State Estimation and Control Experimental Results

Results for an actual disturbance in addition to the actual displacements, the estima-
tions based on the illustrated approach are presented in Figs. (5.17−5.26). Results
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Figure 5.16: Flexible link deflection measurements camera, strain gauge

presented here are based on the full working range of the elastic crane. In these
results the dynamic state variables experimentally estimated based on the estima-
tion approach addressed in chapter 4, where simulated camera and potentiometers
measurements are used by different types of state estimators. Then the estimated
state are combined in order to get the optimal estimation, and used to generate the
control inputs.

In figure 5.17 and 5.18, the crane was subjected to sinusoidal rolling excitation in
the neighborhood of the first eigenfrequency of the crane. The controlled (camera
and strain gauge measurements) and the uncontrolled dynamic response variables
of the crane are presented. In the uncontrolled case, this excitation caused the
amplitude of measurements to grow rapidly to a dangerous level. Two different
amplitude for the sinusoidal rolling is used in order the see the effect of higher
amplitude on the system. Figure 5.17 shows the sinusoidal excitation of the crane
with±5 degree, the output variables beside the position of the payload are presented.
The sinusoidal excitation of the crane with ±10 degree is presented in Figure 5.18
and the same system output and the position of the payload are presented. The
crane also subjected to chaotic rolling excitation the results shown in Figure 5.19.
From the earlier mentioned figures it can be seen that the controller based on the
estimation approach can be remove the vibration of the payload after few seconds.
It is also clear from the presented results that the performance of the system when
using strain gauge or camera measurements is quite close. This set was repeated for
different luff angles, cable lengths, and payloads (different models) in order to test
the operation of the region finder and the behavior of the variable-gain observer and
controller in case of camera measurements.

The constant values like initial condition of the cable length L0, the initial condi-
tion of the luff angle ρ0 (variable-gain), and payload m2 were changed during the
experiments, in order to test the work of the crane under variation of these values
Figs. (5.20−5.26). The payload of the crane changed from 5 kg to 10 kg, and the



74 Chapter 5. Visual Servoing of Elastic Ship-mounted Crane: Experiments

experiments done using the three sets of rolling conditions, produced the results
presented in (5.20−5.22). In figure 5.23 the system to swing for 10 seconds, and
then run the controller just to ensure the effectiveness of the controller to suppress
the vibration. Two sets of results for sinusoidal rolling with ±5 degree, are pre-
sented in figure 5.24. The length of the cable, and the luff angle changed during the
operation of the crane from 1.6 − 1.2(m), and 30 − 45(Deg) and this led observer
to change the gain to estimate the states based on the variable gain approach, the
controlled and uncontrolled of the output response and the position of the payload
are presented in this figure. After that in figure (5.25) the L0, and ρ0 are changed
during the operation (L0 = 1.6 − 1.2(m) and ρ0 = 30 − 45(Deg)) of the crane to
simulate real world lift process with the value of 7.5 kg payload. System outputs,
and the position of the payload are shown in Fig. (5.25).

The chaotic rolling excitation is used in combination with the changes of the L0,
ρ0, and m2 = 10 kg and the results shown in figure 5.26. The rolling excitation is
shown, and the output responses and the position payload for the controlled and the
uncontrolled cases are shown in the figure. All results addressed in this section cover
all the operations possibility of the crane. The results also shown that the estimation
approach based on the camera measurements works well and estimated the states
of the system fast in different operation condition which prove the robustness of the
estimation approach.
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Figure 5.17: Experimental response due to sinusoidal rolling ±5 degree, un-
controlled controlled (camera), controlled (strain gauge)
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Figure 5.19: Experimental response due to chaotic rolling uncontrolled
controlled (camera), controlled (strain gauge)
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Figure 5.20: Experimental response due to sinusoidal rolling ±5 degree, (10 kg
payload) uncontrolled controlled
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Figure 5.21: Experimental response due to sinusoidal rolling ±10 degree, (10 kg
payload) uncontrolled controlled
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Figure 5.25: Experimental response due to sinusoidal rolling (7.5 kg payload),
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Figure 5.26: Experimental response due to sinusoidal rolling (10 kg payload),
uncontrolled controlled
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5.4 Summary

In this chapter the experimental realization of the visual servoing for elastic ship-
mounted crane was presented. The components of the elastic crane system test-rig
are presented in detail. Also the camera setup in the system, the model of the cam-
era used in the experiments, and the camera calibration are explained. The intrinsic
and extrinsic parameters of the camera are addressed. The image processing proce-
dure (i.e. deflection measurements using camera) is presented. Several experiments
regarding control of the payload of the elastic crane have been done, in order to en-
sure that the combination of the two measurement devices is reliable. The approach
of using two variable gain observers presented in the last chapter is tested. The
results show that the estimation of the dynamic states of the elastic crane works
effectively and removes the effects of noise and time delay. It is also important to
report that the crane system works very robust using only the measurements of the
camera, this results mainly from the ability of the Kalman filter system to remove
the effects of noise and time delay.
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6 Summary, Conclusion, and Recommendations

6.1 Summary and conclusion

In this thesis the control of flexible link robot using vision sensor data, is studied.
The dynamic state variable estimation process using camera measurements have
been deeply examined, which is the core of the state feedback control process used
in the control of flexible link robot. The main two inherent problem related to vision
sensor measurements have been solved in case of state estimation process. Despite
time delay and presence of noise in camera measurements; the suggested estimation
approach has proved reliability and the dynamics state variables estimated within
acceptable accuracy. A traditional state estimator is proposed, which is combined
with an augmented Kalman filter to estimate dynamic states of the model.

The dynamic model of the flexible link in chapter 3 is separated to slow and fast
dynamics based on assumed camera specification. Two observers are designed us-
ing the fast and slow dynamics, the first one to estimate the higher modes of the
vibration using strain gauges, the second one representing an estimator using the
camera as a sensor to estimate a modal set of slow dynamics based on the frequency
of the system states. The proposed method for state estimation is used later for the
more complex system, by integrating the flexible link with the overall dynamics of
the elastic ship-mounted crane.

In chapter 4 and chapter 5 the elastic ship-mounted crane system is studied. The
dynamic model of flexible link which is re-derived based on a two element flexible
beam to simplify the observer and controller design problem. The higher modes of
vibration of the flexible beam has no large effects on the tip deflection estimation.
Two observers are designed, the first (PI-observer) is used to estimate displacement
variables and disturbances using potentiometer, the second represents an augmented
Kalman filter using the camera as a sensor to estimate displacement variables. Based
on a multi-model approach, variable gain observers and controller are designed, in
order to cover all the operation conditions of the elastic crane. The states from
the second variable estimator are combined with the states estimated using the first
observer using minimum mean squared error. The effect of the noise and time delay
can be effectively removed from the estimated states after applying this approach.
The observer-based control works well and mitigate the error in the estimated states
due to the unknown initial conditions rapidly, the controller based on the estimated
states attenuates the vibration and suppresses the swing of the payload. Several
simulations for the both cases have been applied. And in order to verify the ef-
fectiveness of the proposed approach the experimental tests are carried out using
elastic crane test rig and CCD camera.

Consequently, the vision sensor (camera) beside other types of measurements can
be used effectively to estimate the dynamic state variables of the system, if the
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number of modes considered in the model are in the bound of the camera frame
rate. It can be shown from the results addressed in this work that the vision sensors
represent a good substitute by ”slow dynamics” for strain gauges. The idea of using
vision as sensing device can be easily extended to other cases due to the fact that no
extra measurement equipments is required (different from the case of using strain
gauges); which represents another advantage for complex structures with flexible
components.

In this thesis for the first time the following results are obtained:

• The state variables estimation for flexible link robot can be estimated using
camera measurements if the considered modes of vibration are in the range of
camera frame rate.

• When the observer is appropriately designed, noisy measurements have no
effect on the estimated states.

• The time delay in the measurements can be compensated successfully using
an accounting dynamic term related to the time delay.

• The state estimation process for complex mechanical systems can be optimized
based on different types of measurements.

6.2 Recommendations

To extend the ”results of this thesis”, the following points are recommended as
further development:

1. The velocity measurement of the tip-deflection using the camera can be in-
cluded for the dynamic state variable estimation of flexible link.

2. Instead of CCD sensor and LED markers, IR-camera and IR-markers can be
used to increase the measurement quality.

3. The measurements of the camera can be extended to include the other two
outputs in the elastic ship-mounted crane case.

4. The neuro-fuzzy intelligent control methods based on camera measurements
for flexible link robot can be used.
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