Die Rolle des Transkriptionsfaktors TFAP2C in der Entwicklung der Mausplazenta

Inaugural-Dissertation
zur
Erlangung des Doktorgrades

Dr. rer. nat.
der Fakultät für Biologie
an der
Universität Duisburg-Essen

vorgelegt von

Stephanie Kaiser
aus Regensburg

Dezember 2013
Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Institut für Molekularbiologie der Universität Duisburg-Essen durchgeführt.

1. Gutachter: Prof. Dr. Elke Winterhager
2. Gutachter: Prof. Dr. Andrea Vortkamp

Vorsitzender des Prüfungsausschusses: Prof. Dr. Markus Kaiser

Tag der mündlichen Prüfung: 04.04.2014
INHALTSVERZEICHNIS

INHALTSVERZEICHNIS ... 3
ABKÜRZUNGEN .. 6
ABBILDUNGS- UND TABELLENVERZEICHNIS 8
1. EINLEITUNG ... 10
 1.1 Die Plazentaentwicklung der Maus 10
 1.2 Das Gefäßsystem ... 12
 1.4 Die molekularbiologische Regulation der Differenzierung der Trophoblastlinie ... 13
 1.4.1 Die Separierung von ICM und TE 13
 1.4.2 Der Transkriptionsfaktor TFAP2C 15
 1.4.3 Die Bildung des Labyrinths und der Spongiotrophoblastschicht 16
 1.4.4 Trophoblast-Riesenzellen ... 18
 1.5 Zielsetzung ... 19
2. MATERIAL UND METHODEN .. 21
 2.1 Material .. 21
 2.1.1 Chemikalien ... 21
 2.1.2 Verbrauchsmaterialien .. 23
 2.1.3 Enzyme .. 23
 2.1.4 Geräte .. 24
 2.1.5 Oligonukleotide .. 25
 2.1.6 Antikörper .. 26
 2.1.7 Kits ... 26
 2.1.8 Software und Datenbanken 26
 2.1.9 Transgene Mäuse ... 26
 2.2 Methoden .. 27
 2.2.1 Gewinnung von Gewebeproben 27
 2.2.2 Genotypisierung .. 27
 2.2.3 Histologische und morphometrische Analysen 27
 2.2.4 HE-Färbung .. 28
 2.2.5 In situ-Hybridisierung .. 28
 2.2.6 Immunfärbung .. 30
 2.2.7 Nachweis der alkalischen Phosphatase 30
 2.2.8 PAS-Reaktion .. 30
 2.2.9 Morphometrische Auswertung 31
3. ERGEBNISSE ... 39

3.1 Ein Teil der Tfap2c heterozygoten Embryonen stirbt im Verlaufe der Schwangerschaft ... 39
3.2 Embryonale und plazentare Gewichte der Tfap2c heterozygoten Nachkommen ... 39
3.3 Morphologische Charakterisierung der Tfap2c+/− Plazenten ... 41
3.4 Veränderte Expression der Markergene für Trophoblast-Riesenzellen ... 46
3.5 Proliferations- und Differenzierungsverhalten in Tfap2c+/− Plazenten ... 48
3.6 Kompartimentspezifische Genexpression ... 51
3.8 Auswirkungen des Tfap2c+/− Phänotyps in vitro ... 54
 3.8.1 Veränderung der Proliferation ... 54
 3.8.2 Veränderung der Genexpression während des Differenzierungsprozesses ... 55
 3.8.3 Einfluss auf das Migrations- und Invasionsverhalten ... 58
 3.8.3 Expression von Markern der Riesenzellsubtypen in Trophoblast Stammzellen 59
3.7 Einfluss des maternalen Genotyps ... 60
 3.7.1 Veränderte mendelsche Verteilung ... 60
 3.7.2 Veränderte Genexpression ... 61
 3.7.3 Einfluss auf das Geschlecht der Nachkommen ... 62
4. DISKUSSION ... 65

4.1 Die Rolle von Tfap2c in der Regulation der Plazentaentwicklung in vivo ... 65
 4.1.1 Der partielle Verlust von Tfap2c hat Einfluss auf die embryonale Gewichtsentwicklung und führt zu embryonalem Verlust ... 65
 4.1.2 Heterozygotie für Tfap2c führt zur Vergrößerung von Gefäßsystemen in der Plazenta ... 66
 4.1.3 Tfap2c ist an der Regulation von Proliferation und Differenzierung der Trophoblastlinien des Labyrinths beteiligt ... 67
 4.1.4 Kompartimentspezifische mRNA-Analyse zeigt veränderte Markergenexpression in Tfap2c+/− Plazenten ... 69
4.2 Die Rolle von Tfap2c in vitro ... 70
 4.2.1 Tfap2c+/− TSCs weisen ein verringertes Stammzellpotential auf ... 70
 4.2.2 Veränderte Riesenzellmarker in vitro ... 71
4.2.3 Der teilweise Verlust von Tfap2c zeigt nur einen geringen Einfluss auf das Migrations- und Invasionsverhalten in vitro .. 72

4.3 Der Einfluss des maternalen Genotyps auf die mendelsche Verteilung, die Genexpression in vivo und das Geschlecht der Nachkommen 73

4.4 Ausblick ... 73

5. ZUSAMMENFASSUNG .. 75

6. LITERATURVERZEICHNIS .. 78

DANKSAGUNG ... 84

LEBENSLAUF ... 85

ERKLÄRUNG ... 86
ABKÜRZUNGEN

A. dest Aqua dest
AP-2 activating protein 2
Ascl2 Achaete-Scute Complex Homolog 2
bp base pairs
cAMP Cyclisches Adenosinmonophosphat
CD31 cluster of differentiation 31
CDK cyclin-dependent kinase
CDKN1C cyclin-dependent kinase inhibitor 1c
cDNA complementary DNA
Cdx2 caudal type homeobox 2
Ch-TGCs channel trophoblast giant cells
CO₂ Kohlenstoffdioxid
C-TGCs canal trophoblast giant cells
Ctsq cathepsin Q
Cx Connexin
DEPC Diethylpyrocarbonat
DNA deoxyribonucleic acid
EDTA Ethylendiamintetraacetat,
Eomes Eomesodermin homolog
EPC ectoplacental cone
ESCs embryonic stem cells
EtOH Ethanol
FCS fetal calf serum
FGF4 fibroblast growth factor 4
Flt1 FMS-like tyrosine kinase 1
Gata3 GATA-binding protein 3
Gcm1 glial cell missing-1
GLUT1 glucose transporter 1
HCl Hydrogenchlorid
HZ Heterozygot
ICM inner cell mass
KCI Kaliumchlorid
MEFs murine embryonic fibroblasts
MgCl₂ Magnesiumchlorid
mRNA messenger RNA
Na₂HPO₄ Dinatriumhydrogenphosphat
NaCl Natriumchlorid
NaF Natriumfluorid
NaH₂PO₄ Natriumdihydrogenphosphat
Oct4 octamer-binding protein 4
PAS Periodic Acid Schiff
pc post coitum
Pcdh12 protocadherin 12
PCR polymerase chain reaction
Phlda2 pleckstrin homology-like domain family A, member 2
Pl placental lactogen
Plp placental lactogen-like protein
Prl2c2 prolactin family 2, subfamily c, member 2
Prl3b1 prolactin family 3, subfamily b, member 1
Prl3d1 prolactin family 3, subfamily d, member 1
P-TGCs parietal trophoblast giant cells
Sox2 sex determining region Y-box 2
SpA-TGCs spiral-artery associated trophoblast giant cells
S-TGCs sinusoidal trophoblast giant cells
TE Trophektoderm
Tead4 TEA domain family member 4
Tfap2 transcription factor AP-2
TGCs trophoblast giant cells
Tpbpa trophoblast specific protein alpha
tRNA transfer-RNA
TSCs trophoblast stem cells
VEGF vascular endothelial growth factor
WT Wildtyp
ABBILDUNGS- UND TABELLENVERZEICHNIS

Abb. 1.1 Die Entstehung der murinen Plazenta
Abb. 1.2 Schematische Darstellung des Gennetzwerkes zur Regulation von Trophoblaststammzellen
Abb. 1.3 Übersicht der verschiedenen Subtypen von Trophoblast Riesenzellen
Abb. 3.1 Gegenüberstellung der Beobachtungen
Abb. 3.2 Morphologische Phänotypanalyse der Plazenta von WT und T\(\text{fap2c}^{+/}\) Plazenten
Abb. 3.3 Vergleich der Größenverhältnisse von Labyrinth und Spongiotrophoblast
Abb. 3.4 Prozentuale Verteilung der Zelltypen in der Spongiotrophoblastschicht
Abb. 3.5 Nachweis von Sinusoidalen Riesenzellen mittels alkalischer Phosphatase
Abb. 3.6 Expression von Riesenzellmarkern
Abb. 3.7 Evaluation des Proliferationsmarkers KI67 im Labyrinth
Abb. 3.8 Charakterisierung der Zellnester im Labyrinth von \(T\text{fap2c}^{+/}\) Plazenten
Abb. 3.9 Expressionsmuster von Genen der Trophoblastlineage
Abb. 3.10 Expression von Markergen der Glykogenzellpopulation
Abb. 3.11 Proliferationsreihen der \(T\text{fap2c}^{+/}\) Trophoblaststammzellen
Abb. 3.12 Expressionsmuster von Markergen während der Differenzierung in TSCs
Abb. 3.13 Expression des Gap Junction-Proteins \(\text{Cx31}\)
Abb. 3.14 Migrations- und Invasionsfähigkeit von TSCs
Abb. 3.15 Expression von Riesenzellmarkern in TSCs
Abb. 3.16 Relative Expressionslevel von Stammzellmarkern
Abb. 3.17 Geschlechterverhältnis bei Verpaarung von Wildtyp und heterozygoten Müttern
Abb. 4.1 Übersicht über die Mechanismen der Entstehung der Trophoblast-Riesenzellen
Tab. 1 Anzahl der Nachkommen und der erwarteten Mendelschen Verteilung bei heterozygoten Verpaarungen

\[Tfap2c^{+/} \times Tfap2c^{+/} \]

Tab. 2 Gewichte von Nachkommen und Plazenten von

\[Tfap2c^{+/} \times Tfap2c^{+/} \text{ Verpaarungen.} \]

Tab. 3 Anzahl der Nachkommen und deren mendelschen Verteilung
1. EINLEITUNG

1.1 Die Plazentaentwicklung der Maus

Abb. 1.1: Die Entstehung der murinen Plazenta
Der Verlauf der Plazentaentwicklung der Maus von 3,5 pc bis 13,5 pc und der Ursprung der verschiedenen Zelllinien. Verändert nach Rossant und Cross (2001)
An Tag 9,5 \(pc \) der Embryonalentwicklung beginnt sich die Spongiotrophoblastschicht aus dem Ektoplazentarkonus zu bilden, welcher sich dazu vergrößert und abflacht (Cross et al. 2002). Die Zellpopulation des Spongiotrophoblasten ist charakterisiert durch die Expression des Gens \(Tpbpa \), welches sich in allen Zelltypen dieser Schicht nachweisen lässt. Es finden sich hauptsächlich zwei Zellpopulationen in dieser Schicht, zum einen Glykogenzellen, die wahrscheinlich die Energieversorgung des Embryos in später Schwangerschaft sicherstellen sollen und ab Tag 12,5 \(pc \) in die mütterliche Dezidua einwandern (Adamson et al. 2002), zum anderen finden sich dort die Spongiotrophoblastzellen. Diese sind, zusammen mit Trophoblast-Riesenzellen, verantwortlich für die Produktion verschiedener Stoffe. Unter anderem werden Hormone wie die Familie der placentären lactogens (PL) und prolactin-like proteins (PLP) (Soares et al. 1996; Simmons et al. 2008), sowie angiogene Stoffe und Wachstumsfaktoren wie z. B. Proliferin (Groskopf et al. 1997) oder VEGF (vascular endothelial growth factor) (Vuorela et al. 1997) gebildet.

1.2 Das Gefäßsystem

Bei dem Typ der hämochorialen Plazenta befindet sich das fetale und maternale Blut durch mehrere Zellschichten komplett voneinander getrennt. Auf der mütterlichen Seite erfolgt der Blutfluss wie folgt:

Von der maternalen Arteria Uterina aus verzweigen sich Radialarterien, die an vielen Stellen in den Uterus münden. Dort entstehen durch weitere Verzweigung in der Dezidua die sogenannten Spiralarterien. Diese stark muskulären Gefäße haben eine spiralförmige Gestalt und vergrößern ihren Durchmesser von 60 \(\mu m \) an Tag 11,5 \(pc \) bis zu 150 \(\mu m \) an Tag 17,5 \(pc \), um dem erhöhten Blutvolumen in der fortgeschrittenen Schwangerschaft gerecht zu werden (Adamson et al. 2002). In der Dezidua erreichen die Spiralarterien schließlich die Schicht der parietalen Riesenzellen. An dieser Grenzschicht vereinigt sich die Vielzahl der Spiralarterien in bis zu vier Zentralkanäle, welche das maternale Blut zur Basis der Plazenta befördern, wo es sich in ein ringförmiges Gefäßsystem ergießt. Dieser Ring dient als Ansatzstelle des viszeralen Dottersacks und weist an Tag 15,5 \(pc \) einen Durchmesser von 100 \(\mu m \) auf. Von diesem Punkt an steigt das maternale Blut wieder in mesometrale Richtung auf und verzweigt sich in kleine Sinusoide, welche die Zwischenräume der fetalen Kapillargefäße ausfüllen. Dieses Prinzip ergibt eine maximale Austauschfläche zwischen maternalen und fetalen Blutgefäßen (Adamson et al. 2002). An der Grenze zur Spongiotrophoblastschicht angekommen, verbinden sich die maternalen Gefäße zu 8-11 Kanäle. Diese Kanäle
1. EINLEITUNG

befördern das Blut schließlich in Lakunen in der Spongiotrophoblastschicht, von wo aus der Abtransport über venöse Gefäße zurück in den mütterlichen Kreislauf erfolgt (Gasperowicz et al. 2013). Der Verlauf der Blutgefäße kann außerdem in Abbildung 1.3 nachvollzogen werden.

1.4 Die molekularbiologische Regulation der Differenzierung der Trophoblastlinie

Die verschiedenen Trophoblast-Subpopulationen sind räumlich und zeitlich streng in ihrer Entwicklung reguliert. Diese Differenzierung ist vor allem durch ebenfalls streng geregelt Signalkaskaden determiniert. Im Folgenden werden die Signalwege und Transkriptionsfaktoren zusammengefasst, welche Proliferation und Differenzierung der Stammzellen des Trophektoderms regulieren, um so schließlich eine funktionsfähige Plazenta zu bilden. Abbildung 1.2 bietet einen Überblick über das Zusammenspiel verschiedener Transkriptionsfaktoren in ihrer Abhängigkeit voneinander und ihre Interaktion für die Spezifizierung, den Erhalt und die weitere Differenzierung der Trophoblastzellen.

1.4.1 Die Separierung von ICM und TE

1. EINLEITUNG

Blastozoels, einem flüssigkeitsgefülltem Hohlraum. Dieser ist auch eine Grundvoraussetzung für die Ausbildung der inneren Zellmasse (Pedersen et al. 1986; Dyce et al. 1987).

Abb. 1.2: Schematische Darstellung des Gennetzwerkes zur Regulation von Trophoblaststammzellen
Darstellung der wichtigsten an der Plazentaentwicklung beteiligten Gene und deren Verbund untereinander. Orange: Gene, welche die innere Zellmasse abgrenzen; grün: Gene, die an der Spezifizierung der Trophoblastzellen beteiligt sind; blau: Gene, die an der Aufrechterhaltung des Stammzellpotentials beteiligt sind; rot: Gene, die an der Differenzierung der Trophoblastzellen beteiligt sind. Verändert nach Kuckenborg et al. (2012)

1. EINLEITUNG

Modell der embryonalen Stammzellen (ESCs), die Faktoren NANOG, SOX2 und OCT4 an Tfap2c binden und so wiederum dessen Expression verhindern (Kim et al. 2008). Diese Mechanismen führen also zu einer gegenseitigen Hemmung, was eine klare Separierung in Zellen der inneren Zellmasse und des Trophektoderms ermöglicht.

1.4.2 Der Transkriptionsfaktor TFAP2C

1. EINLEITUNG

1.4.3 Die Bildung des Labyrinths und der Spongiotrophoblastschicht

Die Bildung der Spongiotrophoblastschicht erfolgt aus dem Ektoplazentarkonus, was Aufgrund von Expression der Gene Tpbpa und Flt1 angenommen wird. Beide Gene werden sowohl im Ektoplazentarkonus als auch in der späteren Spongiotrophoblastschicht exprimiert (Lescisin et al. 1988; He et al. 1999; Cross et al. 2003).

1.4.4 Trophoblast-Riesenzellen

In der Plazenta der Maus sind bis zum heutigen Zeitpunkt fünf verschiedene Subtypen von Trophoblast Riesenzellen identifiziert. Sie werden zum einen durch ihre Lokalisation und zum anderen durch die Expression spezifischer Marker charakterisiert. Abbildung 1.3 zeigt die verschiedenen Subtypen und ihre Verbreitung. Die zuerst auftretenden polyploiden Zellen sind primäre Trophoblast-Riesenzellen, auch parietale Riesenzellen (P-TGCs) genannt, welche die Embryonalanlage an der antimesometralen und die Plazenta an der mesometralen Dezidua begrenzen. Eine weitere wichtige Rolle spielen sie bei der Implantation und dem ersten Kontakt des Trophoblasten mit maternalen Gefäßen. P-TGCs werden durch die Expression von Prl3d1 (placental lactogen 1, Pl-1) charakterisiert. In den mütterlichen Spiralarterien sind die Spiralarterien-assoziierten Riesenzellen (SpA-TGCs) zu finden. Sie dienen höchstwahrscheinlich dem Umbau der Arterien um einen kontinuierlichen Blutfluss in die Plazenta zu ermöglichen und sind durch die Expression von Prl2c2 (proliferin, Plf) charakterisiert. Ein weiterer Subtyp findet sich in den Zentralkanälen, welche das maternale Blut zur Basis der Plazenta leiten. Dort befinden sich Kanal-assoziierte Riesenzellen (C-TGCs), welche Prl2c2 und Prl3b1 (placental lactogen 2, Pl-2) exprimieren. Auch hier wird die Funktion der TGCs in der Erweiterung der Gefäße vermutet. In den maternalen Sinusoiden des Labyrinths sind die sinusoidalen Trophoblast Riesenzellen (S-TGCs) lokalisiert. Sie exprimieren Prl3b1 und Ctsq (Cathepsin Q) und modulieren vermutlich die

Abb. 1.3: Übersicht der verschiedenen Subtypen von Trophoblast Riesenzellen
Verändert nach Hu und Cross (2010)

Die SpA-TGCs sind positiv für den Spongiotrophoblast-spezifischen Marker Tpbpa und entstammen dem äußeren Ektoplazentarkonus, ebenso wie ein Teil der C-TGCs und P-TGCs. Der andere Teil, sowie Ch-TGCs und S-TGCs, sind negativ für Tpbpa, ihre genaue Herkunft ist noch nicht vollständig geklärt. Es wird ein Ursprung dieser Zellen im Chorionektoderm und/oder dem inneren Ektoplazentarkonus vermutet (Simmons et al. 2007).

1.5 Zielsetzung

Der Transkriptionsfaktor TFAP2C übernimmt die Funktion des Aufrechterhaltens des Stammzellpotentials im Ektoplazentarkonus, einer Struktur, die sich im weiteren Verlauf zur Plazenta weiterbilden wird (Auman et al. 2002; Werling et al. 2002). TFAP2C kann in der
1. EINLEITUNG

Zum besseren Verständnis der Signalkaskaden bei der Differenzierung der Trophoblastlinien in Abhängigkeit der Menge an TFAP2C sollten außerdem Tfap2c+/- Trophoblast-Stammzellen etabliert werden. Eine siebentägige Differenzierungsreihe ermöglicht es, die veränderte Genexpression während der Differenzierung in vitro zu verfolgen. Da bei dem vorliegenden plazentaren Phänotyp eine Störung von Migration und Invasion der differenzierenden Trophoblastzellen nicht ausgeschlossen werden konnte, sollten die für Tfap2c heterozygoten TSCs auf ihre Fähigkeit zu Migration und Invasion untersucht werden.
2. MATERIAL UND METHODEN

2.1 Material

2.1.1 Chemikalien

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose NEEO Ultra-Qualität</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Blocking Reagent 10x</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>BSA</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Calcein, AM</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>CHAPS</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>DEPC</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Dinatriumsalz</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>DMEM</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>DMSO</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>DNA-Polymerase-Puffer 10x</td>
<td>GeneCraft, Köln</td>
</tr>
<tr>
<td>DNase I-Puffer 10x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>dNTP-Mix (je 10 mM)</td>
<td>GeneCraft, Köln</td>
</tr>
<tr>
<td>DTT (0,1 M)</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>EDTA >99%</td>
<td>Serva, Heidelberg</td>
</tr>
<tr>
<td>Eosin</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Essigsäure 100%</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Ethanol absolut AnaLaR Normapur</td>
<td>BDR Prolabo VWR, Darmstadt</td>
</tr>
<tr>
<td>Ethidiumbromid [10 mg/ml]</td>
<td>Serva, Heidelberg</td>
</tr>
<tr>
<td>Fetal Calf Serum</td>
<td>Biochrom AG, Berlin</td>
</tr>
<tr>
<td>First-Strand buffer 5x</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Formaldehyd 35%</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Formamid</td>
<td>AppliChem, Darmstadt</td>
</tr>
<tr>
<td>Gel extraction Kit</td>
<td>Omega Bio-tek, Norcross, USA</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Riedel-de Haën, Seelze</td>
</tr>
<tr>
<td>Glycin</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Hämatoxylin</td>
<td>Thermo-Scientific, Pittsburgh, USA</td>
</tr>
<tr>
<td>HPLC-H₂O</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Material/Vertrieb</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>hrFGF4</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td></td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td></td>
</tr>
<tr>
<td>Kaliumdihydrogenphosphat</td>
<td></td>
</tr>
<tr>
<td>Kresyl-Violett-Farbstoff</td>
<td></td>
</tr>
<tr>
<td>L-Glutamin</td>
<td></td>
</tr>
<tr>
<td>Liquid Cover Glass</td>
<td></td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td></td>
</tr>
<tr>
<td>Matrigel Phenolrot-frei</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>Mitomycin C</td>
<td></td>
</tr>
<tr>
<td>Natriumacetat</td>
<td></td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td></td>
</tr>
<tr>
<td>Natriumdihydrogenphosphat</td>
<td></td>
</tr>
<tr>
<td>Natriumhydrogencarbonat</td>
<td></td>
</tr>
<tr>
<td>Natriumphosphat</td>
<td></td>
</tr>
<tr>
<td>Natriumpyruvat</td>
<td></td>
</tr>
<tr>
<td>NBT/BCIP Stock Solution</td>
<td></td>
</tr>
<tr>
<td>Nuclear Fast Red</td>
<td></td>
</tr>
<tr>
<td>Oligo(dT)18 Primer</td>
<td></td>
</tr>
<tr>
<td>PBS Dulbecco</td>
<td></td>
</tr>
<tr>
<td>Penicillin/Streptomycin (P/S)</td>
<td></td>
</tr>
<tr>
<td>Power SYBR Master Mix</td>
<td></td>
</tr>
<tr>
<td>Salzsäure 37%</td>
<td></td>
</tr>
<tr>
<td>RPMI 1640</td>
<td></td>
</tr>
<tr>
<td>Shandon Xylene Substitute</td>
<td></td>
</tr>
<tr>
<td>Shandon Xylene Substitute Mountant</td>
<td></td>
</tr>
<tr>
<td>ß-Mercaptoethanol</td>
<td></td>
</tr>
<tr>
<td>Tissue Tek O.C.T Compound</td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td></td>
</tr>
<tr>
<td>Tris-HCl</td>
<td></td>
</tr>
<tr>
<td>tRNA</td>
<td></td>
</tr>
<tr>
<td>Trypsin-EDTA</td>
<td></td>
</tr>
<tr>
<td>Tween 20</td>
<td></td>
</tr>
<tr>
<td>hrFGF4</td>
<td></td>
</tr>
<tr>
<td>Isopropanol</td>
<td></td>
</tr>
<tr>
<td>Kaliumchlorid</td>
<td></td>
</tr>
<tr>
<td>Kaliumdihydrogenphosphat</td>
<td></td>
</tr>
<tr>
<td>Kresyl-Violett-Farbstoff</td>
<td></td>
</tr>
<tr>
<td>L-Glutamin</td>
<td></td>
</tr>
<tr>
<td>Liquid Cover Glass</td>
<td></td>
</tr>
<tr>
<td>Magnesiumchlorid</td>
<td></td>
</tr>
<tr>
<td>Matrigel Phenolrot-frei</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>Mitomycin C</td>
<td></td>
</tr>
<tr>
<td>Natriumacetat</td>
<td></td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td></td>
</tr>
<tr>
<td>Natriumdihydrogenphosphat</td>
<td></td>
</tr>
<tr>
<td>Natriumhydrogencarbonat</td>
<td></td>
</tr>
<tr>
<td>Natriumphosphat</td>
<td></td>
</tr>
<tr>
<td>Natriumpyruvat</td>
<td></td>
</tr>
<tr>
<td>NBT/BCIP Stock Solution</td>
<td></td>
</tr>
<tr>
<td>Nuclear Fast Red</td>
<td></td>
</tr>
<tr>
<td>Oligo(dT)18 Primer</td>
<td></td>
</tr>
<tr>
<td>PBS Dulbecco</td>
<td></td>
</tr>
<tr>
<td>Penicillin/Streptomycin (P/S)</td>
<td></td>
</tr>
<tr>
<td>Power SYBR Master Mix</td>
<td></td>
</tr>
<tr>
<td>Salzsäure 37%</td>
<td></td>
</tr>
<tr>
<td>RPMI 1640</td>
<td></td>
</tr>
<tr>
<td>Shandon Xylene Substitute</td>
<td></td>
</tr>
<tr>
<td>Shandon Xylene Substitute Mountant</td>
<td></td>
</tr>
<tr>
<td>ß-Mercaptoethanol</td>
<td></td>
</tr>
<tr>
<td>Tissue Tek O.C.T Compound</td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td></td>
</tr>
<tr>
<td>Tris-HCl</td>
<td></td>
</tr>
<tr>
<td>tRNA</td>
<td></td>
</tr>
<tr>
<td>Trypsin-EDTA</td>
<td></td>
</tr>
<tr>
<td>Tween 20</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell culture Insterts 8 µm</td>
<td>Falcon, Heidelberg</td>
</tr>
<tr>
<td>Deckgläser (18 mm)</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>Einkanal-Pipetten</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Einwegskalpell</td>
<td>Mediware Servoprax GmbH, Wesel</td>
</tr>
<tr>
<td>Einmalspritzen (1 ml)</td>
<td>Terumo Europe N. V., Leuven, Belgien</td>
</tr>
<tr>
<td>Eppendorf-Gefäß</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Falcon Reagenzgefäße (15 ml, 50 ml)</td>
<td>Greiner bio-one, Solingen</td>
</tr>
<tr>
<td>Einmalkanülen (23 G, 27 G)</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Liquid Cover Glass</td>
<td>Zeiss, München</td>
</tr>
<tr>
<td>Objektträger</td>
<td>Engelbrecht, Edermünde</td>
</tr>
<tr>
<td>Objektträger Membran Slide 1.0 PEN</td>
<td>Zeiss, München</td>
</tr>
<tr>
<td>Objektträger Super Frost Plus Slides</td>
<td>R. Langenbrinck, Emmendingen</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>Pipettenspitzen (10 –100 µl, 100 –1000 µl)</td>
<td>Sarstedt, Nümbrecht</td>
</tr>
<tr>
<td>PCR-Reaktionsgefäße 0,2 ml</td>
<td>Carl Roth, Karlsruhe</td>
</tr>
<tr>
<td>UV-Küvetten</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Zellkulturschalen, -platten, -schalen</td>
<td>Falcon, Heidelberg</td>
</tr>
</tbody>
</table>

2.1.3 Enzyme

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bam HI</td>
<td>Fermentas, St. Leon-Rot</td>
</tr>
<tr>
<td>Eco RI</td>
<td>Fermentas, St. Leon-Rot</td>
</tr>
<tr>
<td>DNA Polymerase Biotherm</td>
<td>GeneCraft, Köln</td>
</tr>
<tr>
<td>DNase I</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>M-MLV-RT</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>RNase-Inhibitor</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>SP6-Polymerase</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>T7-Polymerase</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
</tbody>
</table>
2. MATERIAL UND METHODEN

2.1.4 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Prism 7300</td>
<td>Applied Biosystems, Weiterstadt</td>
</tr>
<tr>
<td>Autostainer 480</td>
<td>Medac, Hamburg</td>
</tr>
<tr>
<td>BioPhotometer plus</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Brutschrank US Autoflow</td>
<td>NuAire Plymouth, USA</td>
</tr>
<tr>
<td>CasyCounter CASY®1</td>
<td>Schärfe System, Reutlingen</td>
</tr>
<tr>
<td>Gelelektrophoresekammer</td>
<td>Medizintechnik Universitätsklinikum Essen</td>
</tr>
<tr>
<td>Homogenisator Polytron PT 3100</td>
<td>KINEMATICA AG, Luzern, Schweiz</td>
</tr>
<tr>
<td>Kryostat Leica CM 1850 UV</td>
<td>Reichert-Jung Leica, Wetzlar</td>
</tr>
<tr>
<td>Lichtmikroskop Axiovert 25</td>
<td>Zeiss, München</td>
</tr>
<tr>
<td>Lichtmikroskop Labovert FS</td>
<td>Leitz, Wetzlar</td>
</tr>
<tr>
<td>Magnetrührer IKAMAG®</td>
<td>IKA®-Werke, Staufen</td>
</tr>
<tr>
<td>Microplate Reader FLUOstar Omega</td>
<td>BMG Labtech, Ortenberg</td>
</tr>
<tr>
<td>Mikrotom 2050 Supercut</td>
<td>Reichert-Jung Leica, Wetzlar</td>
</tr>
<tr>
<td>PALM MicroBeam</td>
<td>Zeiss, München</td>
</tr>
<tr>
<td>Paraffinausgießstation PA/3,3</td>
<td>Chirurgie & Elektromechanik, Ludwigslust</td>
</tr>
<tr>
<td>pH-Meter HI 9025</td>
<td>Hanna Instruments, Kehl am Rhein</td>
</tr>
<tr>
<td>Photometer BioPhotometer plus</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Pipettierhilfe pipetus®</td>
<td>Hirschmann Laborgeräte, Eberstadt</td>
</tr>
<tr>
<td>Spannungsgerät PHERO-stab. 500</td>
<td>Biotec-Fischer, Reiskirchen</td>
</tr>
<tr>
<td>Sterilbank Class II</td>
<td>NuAire Plymouth, USA</td>
</tr>
<tr>
<td>T3 Thermocycler</td>
<td>T3 Biometra, Göttingen</td>
</tr>
<tr>
<td>Vortexer L46</td>
<td>GLW, Würzburg</td>
</tr>
<tr>
<td>Wärmeschrank</td>
<td>Memmert, Schwabach</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>GFL, Burgwedel</td>
</tr>
<tr>
<td>Zentrifuge: Eppendorf Centrifuge 5424</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Zentrifuge: Hettich Rotina 38R</td>
<td>Hettich, Tuttlingen</td>
</tr>
</tbody>
</table>
2. MATERIAL UND METHODEN

2.1.5 Oligonukleotide

<table>
<thead>
<tr>
<th>Genname</th>
<th>Acession number</th>
<th>Sequenz (5'→3')</th>
<th>Produktlänge (bp)</th>
</tr>
</thead>
</table>
| β-Actin | X03672 | for: AGCCATGTACGTAGCCATCC
| | | rev: GTCTCAGCTGTGGTGGTGAA | 227 |
| Tfap2c | NM009335 | for: CACCTTGCTCTCTACAGATCAG
| | | rev: TGGCCATCTCCGTG GTGACAG | 240 |
| Cdx2 | NM007673 | for: TCCTGCTGACTGTTTCTGA
| | | rev: CCCTTCTGATTTTGTGGGA | 144 |
| Cited2 | NM010828 | for: CTAAGGGCAGCGAGGAAGAG
| | | rev: TTCTGCTCGGAACACCGAAG | 176 |
| Gata3 | NM008091 | for: GTGAGGCAACCACCAGGAAG
| | | rev: TGCAAGCTAGCCTGACGGA | 185 |
| Tead4 | NM011567 | for: CTGAGACAAGCCCATCGACAA
| | | rev: CGATCGGCTACCTTGCGACCA | 154 |
| Cdkn1c | NM001161624 | for: GAGAGA A CTGGCT GGGCACATC
| | | rev: GCTTTACACCGTG CGAACCAG | 198 |
| Igf2 | NM010514 | for: CGTGGCGCTCTCTGAAACTC
| | | rev: GACGACTTCCCCAGATACCC | 155 |
| Phlda2 | NM009434 | for: CTGCAAGA CTTCCCCCGCTA
| | | rev: ATCTTGGTGAGAGCGACGC | 198 |
| Ascl2 | NM008554 | for: GAGAGCTAAGCAGCGATGGA
| | | rev: GCACCTGGCATTTGTCAGG | 187 |
| Ctsq | NM029636 | for: GTGATCTGGACAGATGAGTGTC
| | | rev: GTACTTCTCCTCCGGACTGATA | 180 |
| Prl3d1 | NM008864 | for: TGGGACCTACATTGTTGCGGA
| | | rev: GCGCAGTTGGTTGGAGGAG | 131 |
| Prl3b1 | NM_008865.3 | for: AGCAGCTTCTGCTGTGTTGTC
| | | rev: TGGTACACCAATC ACACG | 197 |
| Prl2c2 | NM011118 | for: AGGAGCGGATTTGGATG
| | | rev: ACCAGGGCGGTTTCTTCTT | 203 |
| Sry (Lambert et al. 2000) | NM_011564.1 | for: TGGGACTGCTGGACAATTTGTC
| | | rev: GAGTACAGGCTGGACTGCTCT | 402 |
| IL-3 (Lambert et al. 2000) | NM_010556.4 | for: GGGACTCCAAGCTCTCAATCA
| | | rev: TGGAGGAGGAGAAGAGCAGA | 544 |
2. MATERIAL UND METHODEN

2.1.6 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Dig-AP Fab Fragments</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>TFAP2c (05-909)</td>
<td>Merck Milipore, Darmstadt</td>
</tr>
<tr>
<td>KI67 (TEC-3)</td>
<td>DAKO, Hamburg</td>
</tr>
<tr>
<td>CD31 (SZ31)</td>
<td>Dianova, Hamburg</td>
</tr>
</tbody>
</table>

2.1.7 Kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total RNA Kit I</td>
<td>OMEGA bio-tek, Norcross, USA</td>
</tr>
<tr>
<td>RNeasy Micro Kit</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>RNeasy Midi Kit</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>REDExtract-N-Amp Tissue PCR Kit</td>
<td>Sigma-Aldrich, St.Louis, USA</td>
</tr>
<tr>
<td>DIG RNA labeling Mix</td>
<td>Roche, Grenzach-Wyhlen</td>
</tr>
<tr>
<td>MinElute Gel Extraction Kit</td>
<td>OMEGA bio-tek, Norcross, USA</td>
</tr>
</tbody>
</table>

2.1.8 Software und Datenbanken

ABI Prism 7300, Applied Biosystems, Weiterstadt
NIS-BR 3.1, Nikon Instruments, Amsterdam, Niederlande
GraphPad Prism 5, GraphPad Software, La Jolla, USA
PALM RoboSoftware 4.2, Zeiss, München
SPSS Software, Version 16.0, IBM, Ehningen
Vector NTI, Invitrogen, Karlsruhe

2.1.9 Transgene Mäuse

TFAP2C+/-flox Mäuse (bereitgestellt von Hubert Schorle, Universität Bonn, Werling et al. 2002) wurden mit CMV-Cre Mäusen verpaart (Tierlabor des Universitätsklinikums Essen, Erstbeschreibung bei Schwenk et al. 1995) um so TFAP2C+/- Tiere zu erhalten. Die Mäuse im
zentralen Tierlabor (Leitung: Prof. Dr. rer. nat. Gero Hilken) wurden unter konstanter Temperatur und Luftfeuchtigkeit und einem 12h/12h Hell-Dunkel-Rhythmus gehalten. Futter und Wasser wurden \textit{ad libitum} bereitgestellt. Die Wildtyp-, bzw. \textit{Tfap2c}^{+/-}-Männchen und Weibchen wurden über Nacht verpaart, der Tag mit sichtbarem vaginalem Plug wurde als Tag 0,5 \textit{pc} (\textit{post coitum}) festgelegt. Alle Tiere wiesen einen gemischten 129sv/bl6 Hintergrund auf.

Die Haltung und Arbeit mit den Versuchstieren wurde unter Einhaltung der Vorschriften zum Umgang mit Versuchstieren der Bundesrepublik Deutschland durchgeführt.

2.2 Methoden

2.2.1 Gewinnung von Gewebeproben

Schwangere Weibchen wurden an Tag 14,5 bzw. 18,5 \textit{pc} getötet und die Embryonen und Plazenten entnommen und gewogen, die Amnionhüllen wurden zur Genotypisierung benutzt. Alle Proben wurden anschließend je nach Verwendungszweck entweder in flüssigem Stickstoff schockgefroren oder in 4% Formalin über Nacht fixiert.

2.2.2 Genotypisierung

Je nachdem, ob es sich um Genotypisierungen zur Zucht oder zur Probenbestimmung handelte, wurden Schwanzspitzen, Ohrspitzen oder gesammelte Amnionhüllen zur Genotypisierung verwendet. Die Genotypisierung wurde mit dem REDEextract-N-Amp Tissue PCR Kit nach der Anleitung des Herstellers durchgeführt.

Die Folgenden Primer wurden verwendet, um Wildtyp und mutierte Allele nachzuweisen (Werling et al. 2002): P1 (5’-AACAGGTTATCATTGTTGGGATT-3’), P2 (5’-CAATTTTGTCCAACCTCTCCCTCAA-3’) and P3 (5’AATAGTCAGCCACCGCTTTACTAGG-3’), wobei eine 300 Basenpaar (bp) Bande ein Wildtyp- und eine 700 bp Bande das Nullallele anzeigte.

2.2.3 Histologische und morphometrische Analysen

Das Formalin-fixierte Gewebe für Morphologie, \textit{in situ}-Hybridisierung, Immunhistochemie, Detektion der alkalinen Phosphataseaktivität und für die PAS-Reaktion wurde dehydriert und...
2. MATERIAL UND METHODEN

in Paraffin eingebettet. Es wurden 7 µm dicke Schnitte auf Super Frost Plus Objektträger aufgezogen.

2.2.4 HE-Färbung

Eosin-Lösung: 5g Eosin
auf 1 l 96% EtOH,
2 ml 100 % Essigsäure

2.2.5 In situ-Hybridisierung

Hybmix-Puffer:
- 2,5 ml Formamid
- 1,25 ml 20x SSC
- 50 mg Blocking Reagent
- 1 ml A. dest
- 50 µl 0,5 M EDTA
- 5 µl Tween
- 50 µl CHAPS 10%
- 2 µl Heparin (50 mg/ml)
- 100 µl tRNA (50 mg/ml)

NTM
- 25 ml 1 M Tris-HCl pH 9,5
- 5 ml 5 M NaCl
- 12,5 ml 1 M MgCl₂
 - mit A. dest auf 250 ml auffüllen

20 x SSC
- 175 g NaCl
- 88,2 g Na-Citrat
- pH 4,5

50 % Formamid / 2x SSC
- 50 ml 20 x SSC pH 4,5
- 250 ml Formamid
 - mit A. dest auf 500 ml auffüllen
2. MATERIAL UND METHODEN

2.2.6 Immunfärbung

Verwendete Antikörper:
TFAP2c (1:1000, monoklonal, Ursprung: Maus)
KI67 (1:250 monoklonal, Ursprung: Ratte)
CD31 (1:20, monoklonal, Ursprung: Ratte)

2.2.7 Nachweis der alkalischen Phosphatase

NTM
25 ml	1 M Tris-HCl pH 9,5
5 ml	5 M NaCl
12,5 ml	1 M MgCl₂
	mit A. dest auf 250 ml auffüllen

2.2.8 PAS-Reaktion

Die PAS-Reaktion (Periodic acid-Schiff reaction) wurde verwendet, um vorhandene Glykogenakkumulationen in den Plazenten nachzuweisen. Die Färbereaktion wurde mit Hilfe einer automatischen Färbemaschine (Autostainer 480, Medac, Hamburg) durchgeführt. Nach
2. MATERIAL UND METHODEN

dem Entparaffinieren und Rehydrieren erfolgte die Behandlung mit Perjodsäure 0,5 % für 10 min. Nach einem kurzen Waschschritt in A. dest wurden die Proben in Schiffisches Reagenz überführt und dort für 20 min inkubiert. Nach der Gegenfärbung mit Hämatoxylin wurden die Schnitte dehydriert und in Xylene Substitute Mountant eingedacht. Das Glykogen im Gewebe wies eine rote, die Kerne eine blaue Färbung auf.

2.2.9 Morphometrische Auswertung

2.2.10 Laser-Mikrodissektion

2.2.11 RNA-Gewinnung aus ganzen Plazenten
2. MATERIAL UND METHODEN

2.2.12 cDNA-Synthese und reverse Transkription
Für die Synthese der cDNA wurde 1 µg der RNA der Gesamtplazenten, bzw. 1 µl des Gesamteeluats der mikrodissezierten Plazenten verwendet. Um Kontaminationen durch DNA auszuschließen, wurde die RNA mit 1 U/µl DNase I für 15 min inkubiert. Der Verdau wurde anschließend bei 65° C für 10 min abgestoppt. Zusammen mit 200 U/µl M-MLV, Oligo(dT) Primer, DTT und 1,25 µl dNTPs (10 mM) wurde danach die reverse Transkription für 1 h bei 37° C durchgeführt.

2.2.13 Herstellung der Standardreihen für die Real-Time PCR
Zur Herstellung der Standardreihen wurde zunächst cDNA-Proben von Wildtypplazenten mit den jeweiligen Primern amplifiziert. Dazu wurde je ein 50 µl Ansatz mit 1 µg cDNA, 1 U/µl DNA-Polymerase, 1 µl dNTP-Mix und je 1 µl der Primer (25 pmol/µl) hergestellt. Die verwendeten Primer sind in Abschnitt 2.1.5 aufgelistet.
Programmablauf:
1x 94°C 2 min
45x 94°C 45 s
 60°C 45 s
 72°C 2 min
1x 72°C 5 min
Die amplifizierten Proben wurden anschließend auf ein Agarosegel aufgetragen.

2.2.14 Agarose-Gelelektrophorese
Das verwendete 1%ige Agarosegel mit TBE-Puffer wurde zur Sichtbarkeit der DNA mit Ethidiumbromid (0,5 mg/mg) versetzt. Bevor die amplifizierten PCR-Produkte auf das Gel aufgetragen wurden, wurden ihnen 10x DNA-Probenpuffer im Verhältnis 1:10 zugesetzt. Anschließend erfolgte die grösenspezifische Auftrennung der DNA bei 110 V für ca. 45 min, zusammen mit einem Größenstandard (Gene Ruler 100 bp DNA ladder). Die Auswertung erfolgte unter UV-Licht an einer Geldokumentationsanlage.
2. MATERIAL UND METHODEN

TBE-Puffer: 90 mM Tris
 90 mM Borsäure
 2 mM EDTA
10 x DNA-Probenpuffer 50% (v/v) Glycerin
 0,25 % (w/v) Bromphenolblau
 75 mM EDTA

2.2.15 Quantitative Real-Time PCR
Programmablauf:
1x 95° C für 10 s
45x 95° C für 5 s
 60° C für 35 s
Um die Spezifität der amplifizierten Produkte zu gewährleisten, wurde anschließend eine Schmelzkurvenanalyse durchgeführt. Um die Proben quantifizieren zu können, wurden standardisierte Proben von 0,1 fg bis 1 pg parallel zu den zu bestimmenden cDNA-Proben getestet. Ebenfalls wurden die Ergebnisse gegen die Menge des housekeeping-Gens β-Aktin abgeglichen.

2.2.16 Statistische Auswertung
Für jede Analyse wurde ein Minimum von drei Plazenten pro Genotyp verwendet. Die statistische Auswertung erfolgte mit Hilfe der GraphPad Prism 4.0 Software. Für die Gesamtzahl der überlebenden Tiere sowie die Geschlechterverteilung am Tag 14,5 pc und nach Geburt wurde der Chi-Quadrat-Test verwendet, für die Auswertung der Ergebnisse der Laser-Mikrodissektion und die Expressionsanalyse der Gesamtplazenta-RNA wurde der Mann-Whitney-U-Test verwendet. Eine two-way ANOVA-Analyse erfolgte für die Daten der Differenzierungsreihen der Trophoblast Stammzellen in vitro. P-Werte ≤ 0,05 wurden als statistisch signifikant angesehen und entsprechend gekennzeichnet.
2. MATERIAL UND METHODEN

2.2.17 Zellkultur
Alle im Folgenden beschriebenen primären Zellen wurden in einem Brutschrank US Autoflow der Firma NuAire bei 5 % CO₂ und 37° C kultiviert.

Gewinnung und Kultivierung von murinen embryonalen Fibroblasten
Die für die Kultivierung der Trophoblast Stammzellen (TS-Zellen) und für die Herstellung von konditioniertem TS-Zellmedium benötigten murinen embryonalen Fibroblasten (MEFs) wurden nach dem Protokoll von Nagy et al. (2006) isoliert und kultiviert.

Die schwangeren Wildtyp-Muttermiere wurden an Tag 14,5 pc getötet und die Embryonen entnommen und in auf Eis gehaltenes PBS gelegt. Anschließend wurde der Kopf und sämtlichen sichtbaren blutführenden Organe sowie die Extremitäten entfernt. Das übrige Gewebe wurde mit Hilfe eines Skalpells zerkleinert und in Dissektionsmedium überführt.

MEF-Medium: DMEM
15 % FCS
1 % P/S

Dissektionsmedium: MEF-Medium mit
0,25 % Trypsin/EDTA
0,1 µg/ml DNase I
Herstellung von MEF-konditioniertem Medium

Mitomycin-Lösung: 0,01 mg/ml in MEF-Medium

TS-Medium: RPMI 1640

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Zusatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>Natriumpyruvat</td>
</tr>
<tr>
<td>2 mM</td>
<td>L-Glutamin</td>
</tr>
<tr>
<td>100 µM</td>
<td>β-Mercaptoethanol</td>
</tr>
<tr>
<td>1 %</td>
<td>P/S</td>
</tr>
<tr>
<td>20 %</td>
<td>FCS</td>
</tr>
</tbody>
</table>

Konditioniertes TS-Medium: 75% zusammen mit MEFs inkubiertes Medium

25% TS-Medium

25 ng/ml FGF4

1 µg/ml Heparin

Etablierung und Kultivierung von Trophoblast Stammzelllinien

2. MATERIAL UND METHODEN

Bestimmung der Zellzahl

<table>
<thead>
<tr>
<th>CasyTon-Puffer:</th>
<th>136 mM</th>
<th>NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>Na2-EDTA</td>
<td></td>
</tr>
<tr>
<td>5,4 mM</td>
<td>KCl</td>
<td></td>
</tr>
<tr>
<td>1,6 mM</td>
<td>NaH2PO4</td>
<td></td>
</tr>
<tr>
<td>3,7 mM</td>
<td>Na2HPO4</td>
<td></td>
</tr>
<tr>
<td>7,1 mM</td>
<td>NaF</td>
<td></td>
</tr>
</tbody>
</table>

Proliferationsreihe

Zur Ermittlung der Proliferationsfähigkeit unter proliferativen und differenzierenden Bedingungen wurden an Tag -1 des Versuchs je 1,5 x 10⁴ TS-Zellen in die Vertiefungen einer 24-well Platte ausgesät und mit konditioniertem TS-Medium versorgt. Der folgende Tag wurde als Tag 0 bezeichnet. An diesem Tag wurde bei den zur Differenzierung ausgewählten Zellen das konditionierte Medium durch unkonditioniertes TS-Medium ersetzt und somit der
Prozess der Differenzierung eingeleitet. An den folgenden Tagen wurde nun regelmäßig die Zellzahl wie oben beschrieben bestimmt und graphisch ausgewertet.

Differenzierungsreihe

Migrations- und Invasionsassay

Um das Migrations- und Invasionsverhalten der neu etablierten TS-Zellen zu untersuchen, wurde ein Transwell-Assay durchgeführt. Die verwendeten Zellkline befanden sich je an den Tagen 0, 5 und 7 der oben zuvor beschriebenen Differenzierungsreihe. Für die nachfolgenden Untersuchungen wurden Zellkultur-Inserts mit einer Poregröße von 8 \(\mu m \) verwendet. Diese eigneten sich zur Bestimmung der Migrationsfähigkeit, zur Beurteilung der Invasion war eine Beschichtung der Transwells mit Matrigel (1:3 verdünnt in RPMI 1640) nötig, welche eine Stunde zuvor vorgereitet wurde und bei 37° C inkubiert wurde. Die so vorbereiteten Inserts konnten nun passgenau in die Vertiefungen von 24-well Platten gesetzt werden. Eine Anzahl von 1 \(\times 10^5 \) Zellen in einem Volumen von 500 µl TS-Medium wurde anschließend in die Inserts gesät. Als Migrations- bzw. Invasionsanreiz wurde eine Menge von 750 µl konditioniertes TS-Medium in die untere Vertiefung gefüllt. Die Zellen wurden nun für 24 h bei 37° C und 5 % CO\(_2\) im Brutschrank inkubiert. Mit Hilfe einer CalceinAM-Färbung konnte am nächsten Tag die Auswertung der Migration bzw. Invasion erfolgen. Dazu wurde das CalceinAM mit Dissoziationspuffer verdünnt, um eine Konzentration von 1,2 µg/ml zu erhalten. Diese Lösung wurde nun anstatt des konditionierten TS-Mediums in das untere well gegeben. Dies diente dazu, die von unten an der Filtermembran haftenden Zellen abzulösen. Dazu wurden die wells zunächst mit PBS gewaschen und anschließend mit 300 µl des Calcein-Gemisches befüllt. Nach einer Inkubationszeit von 1 h bei 37° C im Brutschrank konnte die so entstandene Zellsuspension entnommen werden und in Aliquots von 2 x 100 µl

Dissoziationspuffer: 5mM EDTA

in PBS (pH 7,4)
3. ERGEBNISSE

3.1 Ein Teil der Tfap2c heterozygoten Embryonen stirbt im Verlaufe der Schwangerschaft

Nach der Verpaarung von Tfap2c+/- X Tfap2c+/- Tieren konnten wir bereits an Tag 14.5\textsubscript{pc} einen Verlust von Embryonen feststellen. Für eine genauere Auswertung der Zahlen war es nötig, die zu erwartende Verteilung nach Mendel anzupassen, da an diesem Embryonaltag bereits keine homozygoten Tiere mehr vorhanden waren. Unsere Ergebnisse zeigten an Tag 14.5\textsubscript{pc} eine mit 60,5 \% niedrigere Zahl an heterozygoten Tieren, verglichen mit den erwarteten 66,6 \% nach der angepassten mendelschen Verteilung (Tab. 1). In Abbildung 3.1 wurden die Ergebnisse graphisch aufbereitet und mit der erwarteten Anzahl an lebenden Tieren nach Geburt verglichen. Es zeigte sich eine deutliche Reduktion der tatsächlich gezählten Embryonen an Tag 14,5\textsubscript{pc} und der lebenden Nachkommen, die einen heterozygoten Genotyp aufwiesen. Der größte Teil der Resorptionen geschah demnach zwischen Tag 14,5\textsubscript{pc} und Geburt. Diese Ergebnisse lassen auf eine Störung in der Plazentaentwicklung oder deren Funktion mit folgendem Absterben der Embryonen schließen.

3.2 Embryonale und plazentare Gewichte der Tfap2c heterozygoten Nachkommen

Um den Grund für den signifikanten Verlust an Embryonen während der zweiten Hälfte der Schwangerschaft genauer zu untersuchen, wurden zuerst die Gewichte von Embryos und den dazugehörigen Plazenten bei Wildtyp und heterozygoten Nachkommen an den Tagen 14.5 und 18.5\textsubscript{pc} erhoben (Tab. 2). Die Gewichte der heterozygoten Embryonen waren an Tag 14,5\textsubscript{pc} signifikant niedriger (p \leq 0,05), wohingegen die Gewichte der Plazenten nur ein tendenziell geringeres Gewicht aufwiesen. An Tag 18,5\textsubscript{pc} konnte keine signifikante

Tab. 1: Anzahl der Nachkommen und der erwarteten Mendelschen Verteilung bei heterozygoten Verpaarungen Tfap2c^{+/−} X Tfap2c^{+/−}

1 Anzahl der der Tiere nach Geburt (Werling et al. 2002)

2 Die zu erwartende mendelsche Verteilung wurde an die Durchführung einer Tfap2c^{+/−} X Tfap2c^{+/−} angepasst, da bei dieser Verpaarung keine homozygot deletierten Tiere zu erwarten waren

<table>
<thead>
<tr>
<th>♂ Tfap2c<sup>+/−</sup> X ♀ Tfap2c<sup>+/−</sup></th>
<th>Erwartete Anzahl nach Geburt<sup>1</sup></th>
<th>Beobachtete Anzahl nach Geburt</th>
<th>Erwartete Anzahl an Tag 14.5 pc</th>
<th>Beobachtete Anzahl an Tag 14.5 pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/+</td>
<td>63,75 (25 %)</td>
<td>183 (73 %)</td>
<td>10,75 (25 %)</td>
<td>17 (39,5 %)</td>
</tr>
<tr>
<td>+/-</td>
<td>125,5 (50 %)</td>
<td>68 (27 %)</td>
<td>21,5 (50 %)</td>
<td>26 (60,5 %)</td>
</tr>
<tr>
<td>-/-</td>
<td>62,75 (25 %)</td>
<td>0</td>
<td>10,74 (25 %)</td>
<td>0</td>
</tr>
</tbody>
</table>

Angepasste mendelsche Verteilung²

<table>
<thead>
<tr>
<th>♂ Tfap2c<sup>+/−</sup> X ♀ Tfap2c<sup>+/−</sup></th>
<th>Erwartete Anzahl nach Geburt<sup>1</sup></th>
<th>Beobachtete Anzahl nach Geburt</th>
<th>Erwartete Anzahl an Tag 14.5 pc</th>
<th>Beobachtete Anzahl an Tag 14.5 pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/+</td>
<td>83,6 (33,3 %)</td>
<td>183 (73 %)</td>
<td>14,3 (33,3 %)</td>
<td>17 (39,5 %)</td>
</tr>
<tr>
<td>+/-</td>
<td>167,3 (66,6 %)</td>
<td>68 (27 %)</td>
<td>28,6 (66,6 %)</td>
<td>26 (60,5 %)</td>
</tr>
<tr>
<td>-/-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Abb. 3.1 Gegenüberstellung der Beobachtungen
Darstellung der erwarteten und tatsächlich gefundenen Nachkommen an Tag 14.5 pc und bei Geburt. *** p ≤ 0.001
3. ERGEBNISSE

Tab. 2: Gewichte von Nachkommen und Plazenten von \(Tfap2c^{+/-} \) X \(Tfap2c^{+/-} \)
Verpaarungen.
Die Gewichte der Plazenten an Tag 14,5 und 18,5 pc wurden erhoben. An Tag 14,5 pc wurde ein signifikanter Unterschied zwischen Wildtyp und heterozygoten Embryonen festgestellt.
* \(p \leq 0,05 \)

<table>
<thead>
<tr>
<th>Genotyp der Nachkommen</th>
<th>Gewicht (g ± SEM) an Tag 14.5 pc</th>
<th>Gewicht (g ± SEM) an Tag 18.5 pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tfap2c^{+/-})</td>
<td>Plazenta: n = 8 0.097 ± 0.006</td>
<td>Embryo: n = 4 0.272 ± 0.041</td>
</tr>
<tr>
<td></td>
<td>Plazenta: n = 16 0.087 ± 0.004</td>
<td>Embryo: n = 13 0.242 ± 0.038*</td>
</tr>
<tr>
<td>(Tfap2c^{+/-})</td>
<td>Plazenta: n = 4 0.099 ± 0.019</td>
<td>Embryo: n = 13 1.270 ± 0.093</td>
</tr>
</tbody>
</table>

3.3 Morphologische Charakterisierung der \(Tfap2c^{+/-} \) Plazenten

Um die Ursache der reduzierten embryonalen Gewichte und des Verlusts von Embryonen in später Schwangerschaft zu evaluieren, wurde der morphologischen Aufbau der Plazenten an sagittal auf der Ebene der Nabelschnur geschnittenen und HE-gefärbten Präparaten untersucht (Abb. 3.2). Während die Plazenten von \(Tfap2c^{++} \) Tieren eine normale Morphologie aufwiesen (Abb. 3.2 A+C), zeigten sich bei \(Tfap2c^{-/-} \)-Proben ein deutlich veränderter plazentarer Phänotyp (Abb. 3.2 B+D). An Embryonaltag 14,5 waren in der Spongiotrophoblastschicht der heterozygoten Embryonen große, blutgefüllte Räume zu erkennen, die wahrscheinlich erweiterte maternale venöse Gefäße darstellen. Die Labyrinthschicht wies eine normale morphologische Struktur mit einer dichten embryonalen Kapillargefäßstruktur (Abb. 3.2 B) auf. An Tag 18,5 pc zeigte sowohl die Wildtyp als auch die heterozygote Plazenta eine Reduzierung der Spongiotrophoblastschicht, was typisch für dieses Stadium der Schwangerschaft ist (Abb. 3.2 C+D). Auffällig hingegen waren große Hämorrhagien in der Spongiotrophoblastschicht von Tag 18,5 pc \(Tfap2c^{+/-} \) Plazenten (Abb. 3.2 D), sowie unregelmäßig verteilte Nester von polygonalen Zellen im Labyrinth, sowohl an Tag 14,5 als auch an Tag 18,5 pc. Diese Beobachtung wird später im Detail dargestellt.
3. ERGEBNISSE

Abb. 3.2: Morphologische Phänotypanalyse der Plazenta von WT und Tfap2c^{+/−}-Plazenten
HE-gefärbte Schnitte von Tag 14,5 (A) und 18,5 pc, sowie Schnitte von Tag 14,5 (C) und 18,5 pc (D) wurden untersucht. An Tag 18,5 pc zeigten die Plazenten der heterozygoten Tiere starke Einblutungen im Labyrinth (D, Pfeile). Maßstabsbalken = 1000 µm.
D = Dezidua, SP = Spongiotrophoblast, L = Labyrinth, NS = Nabelschnur
Um diese möglichen Veränderungen in der Größe der Plazentakompartimente, Labyrinth und Spongïotrophoblast, zu erfassen, wurden die in Abb. 3.2 dargestellten Sagittalschnitte von den Tagen 14,5 und 18,5 pc morphometrisch ausgewertet. Es zeigte sich lediglich eine tendenzielle Verringerung der Größe der Spongïotrophoblastschicht bei einer unveränderten Gesamtgröße der Plazenta und daraus resultierend eine tendenziell größere Labyrinthschicht (Abb. 3.3).

![Diagramm](image)

Abb. 3.3: Vergleich der Größenverhältnisse von Labyrinth und Spongïotrophoblast

(A) Tag 14,5 pc (B) Tag 18,5 pc in mm². Es waren nur geringfügige Abweichungen in den Flächen der Labyrinthschichten an Tag 14,5 und 18,5 pc in den heterozygoten Plazenten zu erkennen.

Um die zu Grunde liegenden Mechanismen für die an Tag 14,5 pc signifikant geringeren embryonalen Gewichte zu klären, wurde die Menge der Glykogenzellen untersucht. Glykogen ist ein wichtiger Faktor bei der Ernährung der Embryonen und wird ab Tag 12,5 pc in Glykogenzellen eingelagert. Auch könnte die tendenziell geringere Größe des Spongïotrophoblasten auf eine Reduktion der Glykogenzellen hinweisen. Um die Menge der
Zellen zu quantifizieren, wurden die Glykogenzellen mit einer PAS-Reaktion identifiziert (Abb. 3.4 A). Die morphometrische Auswertung ergab, dass die Spongiotrophoblastschicht von \(\text{Tfap2c}^{+/+} \)-Plazenten eine prozentual geringere Menge an Glykogen enthaltenden Zellen aufwies. Auch konnten in heterozygoten Plazenten prozentual gesehen mehr zellleere Räume beobachtet werden (Abb. 3.4 B).

Abb. 3.4: Prozentuale Verteilung der Zelltypen in der Spongiotrophoblastschicht
(A) Verteilung von Glykogen- und Spongiotrophoblastzellen in der Spongiotrophoblastschicht (B) Prozentuale Anteile von Lakunen, Glykogenzellen und Spongiotrophoblastzellen in der Spongiotrophoblastschicht von Wildtyp- und \(\text{Tfap2c}^{+/+} \)-Plazenten an Tag 14.5 \(pc \)

Um herauszufinden, welche potenziellen Ursachen für die drastische Hämorrhagien im Labyrinth zu Grunde liegen, wurde zunächst das feine Netzwerk von fetalen Kapillargefäßen, welches den Stoffaustausch zwischen Mutter und Fetus gewährleistet, durch eine
3.4 Veränderte Expression der Markergene für Trophoblast-Riesenzellen

Die verschiedenen Subgruppen von Trophoblast-Riesenzellen in der murinen Plazenta werden zum einen durch ihre Lokalisation und zum anderen durch die Expression spezifischer Hormone und Cathepsin Q charakterisiert. Sinusoidale Riesenzellen (S-TGCs) exprimieren Cathepsin Q (Ctsq) und das Prolaktin Prl3b1, wohingegen die kombinierte Expression von Prl3b1 und Prl2c2 charakteristisch für Kanal-assoziierte Riesenzellen (C-TGCs) ist. Der Typ Riesenzellen, der in den mütterlichen Spiralarterien (SpA-TGCs) der Dezidua zu finden ist, exprimiert als einzigen Marker Prl2c2, im Gegensatz zu den Parietalen Riesenzellen (P-TGCs) an der Grenze zur Dezidua, welche alle drei Prolaktine, Prl3d1, Prl3b1 und Prl2c2, exprimieren (Simmons et al. 2007). Ein neu entdeckter Typ von Riesenzellen sind die...
3. ERGEBNISSE

sogenannten „channel“-TGCs. Diese exprimieren Ctsq und Prl2c2 und kleiden die maternalen venösen Gefäße der Spongiotrophoblastschicht aus (Gasperowicz et al. 2013).

Um eine eventuelle Veränderung in der Ausbildung der S-TGCs zu untersuchen und genauere Information über die verschiedenen Riesenzellsubtypen in Tcap2c\(^{+/−}\) Plazenten zu bekommen wurden Plazenten von Tag 14, 5 \(pc\) auf die Expression von Riesenzellmarkern getestet. Die quantitative Real-Time PCR zeigte eine signifikant erhöhte Transkriptmenge von Ctsq in den heterozygoten Proben (Abb. 3.6 A), wohingegen eine teils signifikante Reduktion der Expressionslevel für die Prolaktine Prl3d1, Prl3b1 und Prl2c2 gefunden wurde (Abb. 3.6 B, C, D). Die Expression des Spongiotrophoblast-spezifischen Markers Tphpa war in Wildtyp wie auch heterozygoten Proben unverändert (ohne Abbildung). Diese Ergebnisse lassen auf ein verändertes Profil von Riesenzellmarkern in Tcap2c heterozygoten Plazenten im Vergleich zum Wildtyp schließen. Die ermittelten Ergebnisse zeigen eine Verschiebung in der Entwicklung der Trophoblast-Riesenzelllinie zugunsten der sinusoidalen Riesenzellen in den heterozygoten Plazenten, wohingegen im Wildtyp die Kanal-assoziierten Riesenzellen mit ihrer starken Expression von Prl3b1 und Prl2c2 dominieren.

Abb. 3.6: Expression von Riesenzellmarkern
Die RNA-Proben wurden von ganzen Plazenten von Tag 14,5 \(pc\) erhalten. Die Expressionslevel für Prl3d1 (B), Prl3b1 (C) and Prl2c2 (D) waren in heterozygoten Proben niedriger als in Wildtyp Proben, nur die Expression von Ctsq (A) war signifikant erhöht.

\(* p \leq 0.05\)
3.5 Proliferations- und Differenzierungsverhalten in $Tfap2c^{+/-}$ Plazenten

Die Beobachtung von undifferenzierten Zellpopulationen in der Labyrinthschicht von Plazenten der $Tfap2c^{+/-}$ Tiere, sowohl an Tag 14,5 als auch 18,5 pc, veranlasste dazu, das Proliferationsverhalten der Trophoblastzellen mit Hilfe des Markers Ki67 zu untersuchen. Wie in Abbildung 3.7 zu sehen, fand sich in den Labyrinthschichten von heterozygoten Plazenten eine deutlich höhere Anzahl positiver Zellen im Vergleich zum Wildtyp (Abb. 3.7 A, B). Die Auszählung von Ki67 positiven Zellen zeigte eine signifikant höhere Anzahl an positiv markierten Zellen. Dies weist auf eine erhöhte Proliferationsrate hin (Abb. 3.7 C), da normalerweise an Tag 14,5 der Embryonalentwicklung die Proliferation des Trophoblasten weitgehend beendet ist (Iguchi et al. 1993).

Abb. 3.7: Evaluation des Proliferationsmarkers Ki67 im Labyrinth.
Eine Immunhistochemische Färbung gegen Ki67 der Labyrinthschichten von Wildtyp (A) und $Tfap2c^{+/-}$ (B) Plazenten zeigte eine höhere Anzahl positiver Zellen, was eine Erhöhung der Proliferationsrate in den heterozygoten Proben bestätigt. Die anschließende Quantifizierung (C) konnte ebenfalls eine höhere Prozentzahl Ki67-positiver Zellen in den heterozygoten Plazenten zeigen.
Maßstabsbalken = 10 µm; $p \leq 0.05$
3. ERGEBNISSE

Zusätzlich zu dieser Beobachtung der erhöhten Proliferation in der Labyrinthschicht der heterozygoten Plazenten zeigten die Zellnester, die an verschiedenen Stellen im Labyrinth aufraten und weder maternale noch fetale Blutgefäße enthielten, ein verändertes Differenzierungsmuster. Morphologisch ähnelten die akkumulierten Zellen in Ihrer Erscheinung Trophoblast-Stammzellen oder Spongiotrophoblastzellen, sowohl in der Übersicht (Abb. 3.8 A + G) als auch bei höherer Vergrößerung (Abb. 3.8 B + H). Diese Zelldispergierung zeigten sich sowohl an Tag 14,5 als auch an Tag 18,5 pc alle positiv für *Tfap2c* in der Immunfärbung (Abb. 3.8 C + I). Interessanteweise waren viele dieser Zellen auch positiv in der Färbung für Ki67 (Abb. 3.8 D), d. h. es handelte sich um eine stark proliferative Zellpopulation. Zur weiteren Charakterisierung dieser Zellen wurde eine *in situ* Hybridisierung mit dem Spongiotrophoblast spezifischen Gens *Tpbpa* durchgeführt. Sowohl an 14,5 (Abb. 3.8 E) als auch an Tag 18,5 pc (Abb. 3.8 J) der Schwangerschaft zeichneten sich diese Zellen durch eine starke Färbung aus. Darüber hinaus zeigte die PAS-Reaktion (Abb. 3.8 F + K) das Vorhandensein von Glykogenzellen in diesen Nestern. Zusammengefasst handelt es sich bei diesen Zellakkumulationen um proliferative Zellen mit Spongiotrophoblastcharakter.
Abb. 3.8: Charakterisierung der Zellnester im Labyrinth von \textit{Tfap2c}$^{+/}$ Plazenten. HE-gefärdbte Plazenten von \textit{Tfap2c}$^{+/}$ Embryonen von Tag 14,5 (A, B) und 18,5 \textit{pc} (G, H) zeigten klar abgegrenzte Zellnester im Labyrinth (gepunktete Linien). Immunhistochemische Färbungen für TFAP2C (C, I) und KI67 (D) zeigten eine Expression dieser Gene in den Zellnestern. Auch konnte die Expression des Spongio trophoblast-spezifischen Markers \textit{Tpbpa} mittels \textit{in situ}-Hybridisierung nachgewiesen werden (E, J). Manche der Zellen innerhalb der Nester enthielten Glykogen, welches in einer PAS-Reaktion angefärbt werden konnte (F, K). Maßstabsbalken: A u. G: 1000 \(\mu\)m B-F = 50 \(\mu\)m, H-K = 10 \(\mu\)m
3.6 Kompartimentspezifische Genexpression

Im Spongiotrophoblast-Gewebe wurde eine um ca. 40 % reduzierte Expression von $Tfap2c$ in den heterozygoten Proben im Vergleich zu den Wildtyp-Proben gefunden, diese Beobachtung traf allerdings nicht auf das Labyrinth zu. Dort war die Expressionsrate von $Tfap2c$ in Wildtyp und heterozygoten Proben gleich groß (Abb. 3.9 A). Dies lässt sich wohl darauf zurückführen, dass die $Tfap2c^{+/−}$ Plazenten mehrere, TFAP2C positive Zellnester in der Labyrinthschicht aufwiesen, weshalb die Menge an gemessenem $Tfpa2c$ Transkript höher war als im Vorfeld vermutet.

Es ist bekannt, dass der Transkriptionsfaktor TFAP2C in einem Netzwerk von anderen Genen interagiert, welche alle eine wichtige Rolle in der Balance von Proliferation und Differenzierung von Trophoblastzellen spielen (Kuckenberg et al. 2012). Auch bei dem Stammzellmarker $Cdx2$ konnte eine etwa um die Hälfte verminderte Expression im Spongiotrophoblasten der $Tfap2c^{+/−}$ Plazenten nachgewiesen werden (Abb. 3.9 B). Es ist außerdem bekannt, dass es eine direkte Interaktion von TFAP2C mit CDX2 gibt (Kuckenberg et al. 2010), weshalb eine direkte Beeinflussung wahrscheinlich erscheint. Ein weiterer bekannter Interaktionspartner von TFAP2C ist GATA3, welcher in einem parallelen Signalweg zu CDX2 agiert. Zusammen bilden diese drei Faktoren eine positive feedback loop und halten so die Balance zwischen der Aufrechterhaltung des Stammzellpotentials und der Differenzierung in der sich entwickelnden Mausplazenta. Das Expressionslevel von $Gata3$ in den untersuchten heterozygoten Proben war im Vergleich zu Wildtypproben signifikant reduziert (Abb. 3.9 D). Die relative Expression von TEAD4, ein Regulator von CDX2 und GATA3, blieb jedoch unverändert (Abb. 3.9 E). Nur eine leichte Veränderung in der Transkriptmenge wurde für $Cited2$ beobachtet, einem Faktor der eine Rolle bei Vaskularisierungsprozessen in der Plazenta spielt (Abb. 3.9 C) (Withington et al. 2006).
3. ERGEBNISSE

Abb. 3.9: Expressionsmuster von Genen der Trophoblastlineage
Die untersuchten Proben von Tag 14,5 pc wurden mittels Laser Mikrodissektion von Spongiotrophoblast und Labyrinthgewebe gewonnen. Die Expressionslevel von *Tfap2c* (A), *Cdx2* (B) und *Cited2* (C) waren nur tendenziell downreguliert in den Spongiotrophoblastschichten von heterozygoten Plazenten, während die Verminderung der Transkriptrate von *Gata3* (D) signifikant war. Die Expression des Markers *Tead4* (E) war nicht verändert. Spongios = Spongiotrophoblast, Lab = Labyrinth; p ≤ 0.05

Als nächstes wurde der insulinähnliche Wachstumsfaktor *Igf2*, ein paternal imprintetes Gen, welches das Wachstum der Plazenta und des Embryos stimuliert (Eggenschwiler et al. 1997), untersucht. In diesen Versuchen konnten allerdings keine Unterschiede in den Expressionslevel in *Tfap2c*+/+ und *Tfap2c*−/− Proben gefunden werden (Abb. 3.10 B).

Das Gen *Phlda2* (pleckstrin homology-like domain family A, member 2) ist ein mütterlich imprintetes Gen und wird hauptsächlich im Labyrinth der Mausplazenta exprimiert (Frank et
3. ERGEBNISSE

![Expression von Markergenen der Glykogenzellpopulation](image)

Abb. 3.10: Expression von Markergenen der Glykogenzellpopulation
Diese Proben wurden ebenfalls an Tag 14,5 pc mittels Laser-Mikrodissektion gewonnen. Die Transkriptmenge von Phlda2 (C) zeigte eine leichte Erhöhung in beiden untersuchten Plazentaschichten. Ascl2 (A) war signifikant erniedrigt im Spongiotrophoblasten von Tfap2c^{−/−} Plazenten und Igf2 (B) zeigte keine Unterschiede in Wildtyp und heterozygoten Proben. Spongio = Spongiotrophoblast, Lab = Labyrinth; p ≤ 0.05
3. ERGEBNISSE

Zusammengefasst kann man sagen, in den Plazenten heterozygoter Nachkommen kommt es, als Konsequenz des verminderten Levels an Tfap2c-Transkripts, vor allem in der Spongiotrophoblastschicht zu einer veränderten Genexpression.

3.8 Auswirkungen des Tfap2c\(^{+/-}\) Phänotyp in vitro

3.8.1 Veränderung der Proliferation

Um die genauen Abläufe des Wechsels von Proliferation zu Differenzierung bei teilweisem Verlust von Tfap2c genauer nachzuvollziehen, sowie den Phänotyp der heterozygoten Plazenta auf molekularer Ebene besser erklären zu können, wurden Trophoblast-Stammzellen (Trophoblast Stem Cells = TSCs) aus Blastozysten etabliert. Bereits bei den ersten Passagen der Kultivierung wurde eine Schwäche der Proliferationsfähigkeit deutlich, da die Zellen im Vergleich zu Wildtyp-TSCs sehr langsam wuchsen.

In Abb. 3.11 ist eine Übersicht über das Proliferationsverhalten der Tfap2c\(^{+/-}\) Stammzellen unter Stammzell- (Abb. 3.11 A) und differenzierenden Bedingungen zu sehen (Abb. 3.11 B). Bereits ab dem ersten Tag der Proliferation wird der Unterschied zwischen Wildtyp und heterozygoten Zellen deutlich. An jedem gemessenen Tag unter differenzierenden sowie unter Stammzellbedingungen zeigte sich ein langsameres Proliferationsverhalten.
3. ERGEBNISSE

Abb. 3.11: Proliferationsreihen der Tfat2c^{−/+}-Trophoblaststammzellen
Messung der Proliferation in siebentägigen Proliferationsreihen, jeweils an Tag 0 entweder Beibehalten des Stammzellmedium (A) oder Wechsel zu Differenzierungsmedium (B).

** p ≤ 0.01, *** p ≤ 0.001

3.8.2 Veränderung der Genexpression während des Differenzierungsprozesses
Um die veränderten Genexpressionsmuster während der Differenzierung in die verschiedenen Zelltypen der Trophoblastlinie in den Tfat2c^{−/+} TSCs noch genauer zu untersuchen, wurden die Zellen über einen Zeitraum von sieben Tagen unter differenzierenden Bedingungen gehalten. Abbildung 3.12 zeigt die wichtigsten Änderungen der Genexpression für Stammzellmarker.

Die Expression von Tfat2c zeigt auf Grund der monoallelischen Expression eine Verringerung der Transkriptmenge bereits an Tag 0 der Differenzierungsreihe (Abb. 3.12 A). Im Gegensatz zu WT-TSC zeigt sich auch an den folgenden Tagen in heterozygoten Klonen keine Hochregulierung der Tfat2c-Expression. Der Unterschied in der Transkriptmenge von
3. ERGEBNISSE

Des Weiteren wurde das Gap Junction Protein _Connexin 31 (Cx31)_ im Verlauf der Differenzierung untersucht. _Cx31_ defizierte TSC wiesen in früheren Studien dieser Arbeitsgruppe einen Verlust von _Tfap2c_ während der Differenzierung auf (Koch et al. 2012). Im Rahmen dieser Arbeit wurde daher die Expression von _Cx31_ in _Tfap2c_-defizienten TSCs untersucht. Von Tag 0 bis Tag 3, sowie an Tag 7 der Differenzierung zeigte sich eine geringere Transkriptmenge in den heterozygoten Zellen im Vergleich zum Wildtyp. An Tag 5
zeigte sich kein Unterschied der Expressionsrate, da die Transkriptmenge in den Wildtypzellen zu sinken begann (Abb. 3.13).

Abb. 3.12: Expressionsmuster von Markergenen während der Differenzierung in TSCs

Die undifferenzierten Wildtyp und heterozygoten TSCs wurden über einen Zeitraum von 7 Tagen differenziert. An den Tagen 0, 1, 2, 3, 5 und 7 wurden RNA-Proben isoliert. Die Expressionslevel von *Tfap2c* (A), *Ascl2* (C), Eomes (D) und Gata3 (E) waren herunterreguliert in den heterozygoten TSCs, während die Transkriptmenge von *Cdkn1c* (B) nicht verändert war. Die Expression von *Cdx2* (F) war von Beginn an geringer und zeigte keine Regulation.

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001
3. ERGEBNISSE

Abb. 3.13: Expression des Gap Junction-Proteins Cx31
Während die Tfap2c+/+ Zellen im Verlauf der Differenzierung bis Tag 3 eine Hochregulierung für Cx31 zeigen, wurde eine signifikant niedrigere Menge an Cx31 Transkript in den heterozygoten Zellen gefunden.
* p ≤ 0.05, *** p ≤ 0.001

3.8.3 Einfluss auf das Migrations- und Invasionsverhalten

Im Verlauf der Plazentaentwicklung in der Maus ist die Migration und Invasion von Trophoblastzellen von großer Bedeutung. Nach einer proliferativen Phase verlassen die Zellen den Zellzyklus und beginnen in die mütterliche Dezidua zu migrieren und zu invadieren. Störungen im Übergang von Proliferation zu Differenzierung können Störungen der Plazentaentwicklung zur Folge haben, weshalb auch dieser Aspekt untersucht wurde. TSCs eignen sich sehr gut für die Durchführung von Migrations- und Invasionsassays, es wurden Zellen an den Tagen 0, 5 und 7 der Differenzierung verwendet. In Abb. 3.14 A und B wurden die Ergebnisse zusammengefasst.

Die Migrationsfähigkeit der Tfap2c+/+ TSCs ergab keine Abweichungen im Vergleich zum Wildtyp (Abb. 3.14 A), an allen untersuchten Tagen waren die ermittelten Zahlen der migrierten TSCs gleich hoch. Anders verhielten sich die Ergebnisse des Invasionstests (Abb. 3.14 B). Im undifferenzierten Zustand an Tag 0 sowie an Differenzierungstag 5 zeigte sich in den heterozygoten Zellklonen eine höhere Zahl an Zellen, die invadiert waren. Lediglich an Differenzierungstag 7 liegt die Zahl der invadierten Zellen unter der des Wildtyps.
3.3.3 Expression von Markern der Riesenzellsubtypen in Trophoblast Stammzellen

Die Analyse der Riesenzell-Subtypspezifischen Marker Ctsq, Prl3d1, Prl2b1 und Prl2c2 in differenzierten TSCs an Tag 7 zeigte, dass lediglich für Prl3d1 eine Hochregulierung in den Tfap2c^{+/−}-Stammzellen detektiert werden konnte. Die Expressionslevel von Ctsq und Prl3b1 waren in den für Tfap2c heterozygoten Zellen geringer als in den Wildtyp-Zellen, Prl2c2 zeigte keine Veränderung (Abb. 3.15). Aufgrund dieses Expressionsmusters der Riesenzellmarker ist von einer überwiegenden Differenzierung von P-TGCs in den Tfap2c^{+/−}-TSCs auszugehen.
3. ERGEBNISSE

Abb. 3.15: Expression von Riesenzellmarkern in TSCs
Die RNA-Proben wurden von Trophoblast Stammzellen des Differenzierungstags 7 gewonnen. Die Expressionslevel für Ctsq (A) und Prl3b1 (C) waren in den untersuchten heterozygoten Klonen niedriger als in den Wildtyp Proben. Für Prl3d1 (B) und Prl2c2 (D) war eine höhere, bzw. vergleichbare Expression zu beobachten.

3.7 Einfluss des maternalen Genotyps

3.7.1 Veränderte mendelsche Verteilung
Bei der Verpaarung von Tcap2c^{+/+} Müttern mit Tcap2c^{+/-} Vätern kam es nicht wie erwartet zu einem drastischen Verlust von Embryonen während der Schwangerschaft. An Tag 14,5 {pc} zeigte sich zwar noch ein deutlicher Unterschied, von 50 % erwarteten heterozygoten Tieren konnten nur 37,5 % beobachtet werden. Dieser Unterschied war jedoch bei Geburt bereits nicht mehr zu sehen, zu diesem Zeitpunkt wurden genauso viele Tiere wie erwartet geboren (Tab. 3). Diese Ergebnisse standen im Gegensatz zu früheren Beobachtungen, wie sie in Tab. 1 zusammengefasst wurden.
3. ERGEBNISSE

Tab. 3: Anzahl der Nachkommen und deren mendelschen Verteilung
Bei einer Verpaarung von $Tfap2c^{+/+}$ Müttern mit $Tfap2c^{+/+}$ Vätern wurden an Tag 14,5 pc weniger Embryos als erwartet beobachtet. Nach Geburt entsprach die beobachtete Anzahl der Mendelschen Verteilung.

<table>
<thead>
<tr>
<th>$♀$ $Tfap2c^{+/+}$</th>
<th>Erwartete Anzahl nach Geburt</th>
<th>Beobachtete Anzahl nach Geburt</th>
<th>Erwartete Anzahl an Tag 14,5 pc</th>
<th>Beobachtete Anzahl an Tag 14,5 pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>n = 30</td>
<td>n = 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/+</td>
<td>15 (50 %)</td>
<td>15 (50 %)</td>
<td>8 (50 %)</td>
<td>10 (62,5 %)</td>
</tr>
<tr>
<td>+/-</td>
<td>15 (50 %)</td>
<td>15 (50 %)</td>
<td>8 (50 %)</td>
<td>6 (37,5 %)</td>
</tr>
</tbody>
</table>

3.7.2 Veränderte Genexpression
Da bei der Anzahl an Nachkommen nach der Geburt keine Unterschiede zur mendelschen Verteilung aufgefallen sind, wurden weitere Parameter der Plazentaentwicklung und der Einfluss von $Tfap2c^{+/+}$ Müttern untersucht.

Der erste deutliche Unterschied zeigte sich im Expressionslevel von $Tfap2c$, welches in Plazenten von heterozygoten Müttern in der Spongiotrophoblastschicht reduziert war (siehe Abschnitt 3.6). Bei einer Verpaarung einer Wildtyp Mutter mit einem heterozygoten Vater war hingegen keine nennenswerte Verringerung der Transkriptmenge zu ermitteln (Abb. 3.16 A). Dasselbe Phänomen wurde außerdem bei $Cdx2$ (Abb. 3.16 B) und $Ascl2$ (Abb. 3.16 C) beobachtet. Anscheinend hat der maternale Genotyp einen großen Einfluss auf die Transkription wichtiger Gene, welche an der Differenzierung und Proliferation von Trophoblast-Vorläuferzellen beteiligt sind.
3. ERGEBNISSE

Abb. 3.16: Relative Expressionslevel von Stammzellmarkern
Die mRNA-Analyse der Plazentakompartmenten zeigte an Tag 14.5 \textit{pc} keine Unterschiede in den Expressionslevel für \textit{Tfap2c} (A), \textit{Cdx2} (B) und \textit{Ascl2} (C)

3.7.3 Einfluss auf das Geschlecht der Nachkommen
Neben des oben beschriebenen Effekts des maternalen Genotyps auf die Expressionsmuster in \textit{Tfap2c}^{+/-} Plazenten fiel noch ein weiterer Einfluss bei der Wahl des Muttertieres für die Zucht auf. Sowohl an Tag 14.5 \textit{pc} (Abb. 3.17 A) als auch nach Geburt (Abb. 3.17 B) war ein signifikant verringrigerter Anteil an weiblichen Mäusen zu beobachten, wenn die Nachkommen von \textit{Tfap2c}^{+/-} und \textit{Tfap2c}^{+/+} Müttern miteinander verglichen wurden. In normalen Verpaarungen von Wildtyp-Müttern mit Wildtyp-Vätern tritt annähernd eine 50:50 Verteilung von männlichen und weiblichen Nachkommen auf. Bei einer Verpaarung von Weibchen, die zwei Wildtyp-Allele für \textit{Tfap2c} besitzen, kam es zu keiner nennenswerten Abweichung von der Norm. Bei den Nachkommen von Müttern, die heterozygot für \textit{Tfap2c} waren, konnte bereits an Tag 14.5 \textit{pc} eine signifikante Verringerung der Anzahl weiblicher Nachkommen
beobachtet werden. Auch nach der Geburt war die tatsächliche Zahl an geborenen Weibchen unter der erwarteten.

Abb. 3.17: Geschlechterverhältnis bei Verpaarung von Wildtyp und heterozygoten Müttern

Die Nachkommen aus Verpaarungen von *Tfap2c⁺⁺* und *Tfap2c⁺⁻* Müttern mit *Tfap2c⁺⁻* Vätern zeigten eine signifikant unterschiedliche Geschlechtsverteilung, sowohl an Tag 14.5 pc (A) als auch nach Geburt (B).
3. ERGEBNISSE

Zusätzlich scheint es einen bisher unbekannten Zusammenhang von maternalem Genotyp und plazentarer Genexpression, sowie der Geschlechterverteilung zu geben, was ebenfalls im Folgenden diskutiert wird.
4. DISKUSSION

4.1 Die Rolle von Tfap2c in der Regulation der Plazentaentwicklung in vivo

4.1.1 Der partielle Verlust von Tfap2c hat Einfluss auf die embryonale Gewichtsentwicklung und führt zu embryonalem Verlust

4.1.2 Heterozygotie für *Tfap2c* führt zur Vergrößerung von Gefäßsystemen in der Plazenta

Da der Verlust von heterozygoten Embryonen wahrscheinlich nicht auf eine chronische Mangelversorgung durch die Plazenta zurückzuführen ist, was sich in drastisch reduzierten embryonalen und plazentaren Gewichten zeigen würde, wurde die Morphologie im Detail untersucht. Alle Plazenten wiesen bei der Begutachtung von HE-gefärbten Schnitten eine normale Differenzierung in die Zellpopulationen von Labyrinth, Spongiotrophoblast, Glykogenzellen und Riesenzellen auf. Ein schwerwiegender Defekt, der die Plazenta in ihrer Funktion einschränkt, konnte somit ausgeschlossen werden.

4.1.3 *Tfap2c* ist an der Regulation von Proliferation und Differenzierung der Trophoblastlinien des Labyrinths beteiligt

Da die Probleme der maternalen Blutgefäße auf eine gestörte Differenzierung von Trophoblast-Riesenzellen hindeuten könnten, wurden die \(Tfap2c^{+/+}\)-Plazenten auf ihre Expression von TGC-Markern untersucht. Die Abbildung 4.1 gibt einen Überblick über die Entstehung der einzelnen Riesenzell-Subtypen und deren Vorläufer.

![Diagram of trophoblast giant cells subtypes](image)

Abb. 4.1: Übersicht über die Mechanismen der Entstehung der Trophoblast-Riesenzellen

Die sog. sekundären Riesenzellen können sowohl aus \(Tpbpa^{+}\) als auch aus \(Tpbpa^{-}\) Vorläufern entwickeln. Verändert nach Simmons et al. 2007

Die Differenzierung der TGCs kann von \(Tpbpa^{-}\) negativen als auch positiven Vorläuferzellen erfolgen. Da in den mikrodissektierten \(Tfap2c\)-heterozygoten Plazenten keine Unterschiede in der Transkriptmenge für \(Tpbpa\) festgestellt werden konnten, ist davon auszugehen, dass die Entwicklung zu \(Tpbpa^{+}\)-positiven Vorläufern normal erfolgt ist. Aufgrund des in dieser Arbeit beschriebenen Phänotyps und der Verteilung der Aktivität der alkalischen Phosphatase liegt höchstwahrscheinlich eine gestörte Differenzierung der \(Tpbpa^{-}\)-negativen sinusoidalen TGCs vor. Ebenfalls ist eine Beteiligung der erst kürzlich beschriebenen channel-TGCs in Betracht zu ziehen, da diese die maternalen Lakunen in der Spongiotrophoblastschicht auskleiden und ebenfalls negativ für \(Tpbpa\) sind (Gasperowicz et al. 2013). Das Expressionslevel des Riesenzellmarkers \(Ctsq\) deutet ebenfalls auf eine Verschiebung der Subtypen in Richtung der sinusoidalen und channel-Riesenzellen. Die \(Tfap2c^{+/+}\)-Plazenten wiesen an Tag 14,5 pc eine
4. DISKUSSION

geringere Expression von Prl3d1, Prl3b1 und Prl2c2 auf und zeigten eine deutliche Hochregulierung von Ctsq im Vergleich zu Wildtyp-Plazenten. Ctsq ist ein Marker, der nur in S-TGCs und Ch-TGCs zu finden ist. Ob dies jedoch auf eine größere Anzahl von maternalen Sinusoiden und Kanäle zurückzuführen ist, oder ob eine verstärkte Invasion der Gefäße durch die Riesenzellen stattgefundet hat, ist mit dem Ansatz der reinen Genexpressionsanalyse nicht zu klären.

4.1.4 Kompartimentspezifische mRNA-Analyse zeigt veränderte Markergenexpression in Tfap2c+/- Plazenten

Wie erwartet zeigte sich eine reduzierte Menge an Tfap2c-Transkript in den Proben der heterozygoten Plazenten im Vergleich zum Wildtyp. Ebenfalls waren die Marker Cdx2 und Gata3 verringert exprimiert. Gata3 und Cdx2 regulieren die Trophoblastentwicklung parallel zueinander. Gata3 ist ein Marker, welcher die Differenzierung der Stammzellen während der Plazentaentwicklung vorantreibt, eine Verringerung der Expression könnte ein Hinweis auf eine verzögerte Differenzierung sein (Ralston et al. 2010). Gata3-Nullmutanten überleben jedoch bis Tag 10,5 pc (Ma et al. 1997), daher ist eine frühe Störung der Trophoblastentwicklung durch ein reduziertes Gata3-Transkript nicht zu erwarten. Cdx2 hingegen ist für die erste Lineage-Differenzierung notwendig und an der Aufrechterhaltung des Stammzellpotentials beteiligt (Beck et al. 1995).

Der Transkriptionsfaktor TEAD4 wird im Trophektoderm für die Expression von Cdx2 (Yagi et al. 2007) und Gata3 (Ralston et al. 2010) benötigt und ist somit auch an der frühen Determinierung der Trophoblastlinien beteiligt. Da die Expression von Tead4 bei heterozygotem Verlust von Tfap2c nicht verändert war ist anzunehmen, dass TFAP2C erst auf der Ebene der Stammzellerhaltung nachhaltig in die Genexpression eingreift und nicht bereits auf der Ebene der frühen Spezifikation.

69
Eine signifikante Verringerung der Expression zeigte sich bei dem Transkriptionsfaktor Ascl2 in der Spongiotrophoblastschicht der heterozygoten Plazenten. In Ascl2-defizienten Plazenten konnten keine Spongiotrophoblastzellen sowie deren Vorläufer nachgewiesen werden (Guillemot et al. 1994), im Gegensatz zum hier gefundenen Phänotyp. Ebenso wie Ascl2 ist Cited2 ein wichtiger Faktor für die Differenzierung von Trophoblast-Riesenzellen und Spongiotrophoblastzellen. Cited2-Nullmutanten sterben bis Tag 14,5 pc der Schwangerschaft und weisen eine zu geringe Menge an Trophoblast-Riesenzellen, Spongiotrophoblasten und Glykogenzellen auf, außerdem zeigen sich Schwierigkeiten im korrekten Aufbau der Labyrinthschicht (Withington et al. 2006). Die Autoren führen dies auf verringerte Proliferation in Ektoplazentarkonus und Chorion zurück, was eine reduzierte Menge an Vorläuferzellen, welche sich in der weiteren Entwicklung ausdifferenzieren können, zur Folge hat. Im Kompartiment des Spongiotrophoblasten der Tfap2c−/+ Plazenten war eine verringerte Expression von Cited2 zu beobachten. Die niedrigeren Expressionslevel von Ascl2 und Cited2 können somit ebenfalls auf eine Störung der Proliferation in frühen Stadien der Plazentaentwicklung hindeuten, was Probleme in der späteren Differenzierung der Progenitorzellen in der Spongiotrophoblastschicht nach sich ziehen könnte.

An Tag 14,5 pc zeigten die Tfap2c−/+ Embryos eine signifikante Verringerung des Gewichts im Vergleich zum Wildtyp. Die Faktoren Igf2 und Phlda2, beides Regulatoren des Wachstums und des Glykogenhaushalts (Sibley et al. 2004; Tunster et al. 2010), zeigten allerdings keine signifikanten Veränderungen der Expressionsmenge in der Spongiotrophoblastschicht. Jedoch wurde in den heterozygoten Plazenten eine geringere Menge an Glykogenzellen ermittelt, was eine Erklärung für die transiente Gewichtsreduktion der Embryonen an Tag 14,5 pc sein könnte.

4.2 Die Rolle von Tfap2c in vitro

4.2.1 Tfap2c−/+ TSCs weisen ein verringertes Stammzellpotential auf

Die Tfap2c heterozygoten Trophoblast-Stammzellen wiesen von Beginn der Messung an eine geringere Proliferationsrate als der Wildtyp auf. Dieser Effekt zeigte sich sowohl unter Stammzell- als auch unter Differenzierungsbedingungen. Dies steht scheinbar im Gegensatz zu den Ergebnissen in vivo, bei denen eine erhöhte Proliferation der Zellen in der Labyrinthschicht an Tag 14,5 pc nachgewiesen werden konnte. Jedoch muss beachtet werden, dass die Proliferationsreihe in vitro nur 7 Tage umfasste, was nur einen sehr frühen Zeitraum der Stammzellentwicklung abdeckt. Wie die im Folgenden diskutierten Veränderungen von
verschiedenen Markergenen zeigen, kann es sich hierbei auch um eine verzögerte Etablierung eines stabilen Stammzellpotentials handeln.

Koch et al. konnten in \textit{Cx31}+/− TSCs nachweisen, dass der Verlust des Connexins 31 einen Einfluss auf die Regulation von \textit{Tfap2c} hat, welches dort nicht wie im Wildtyp im Laufe der Differenzierung hochreguliert wird (Koch et al. 2012). Auch umgekehrt scheint die Menge an \textit{Cx31} Transkript in Korrelation zu \textit{Tfap2c} zu stehen, da die Expression von \textit{Cx31} in den \textit{Tfap2c}+/− TSC während der Differenzierung geringer war als in Wildtyp TGCs.

\textbf{4.2.2 Veränderte Riesenzellmarker \textit{in vitro}}

Zwischen Wildtyp und heterozygoten TSCs zeigte sich kein Unterschied in Bezug auf die Expressionslevel von \textit{Cdkn1c}. Dieser Marker weist auf den Ausstieg der Zellen aus dem Zellzyklus und auf den Beginn der Endoreduplikation hin (Hattori et al. 2000). Aus diesem Grund war anzunehmen, dass die Menge an Trophoblast-Riesenzellen in Wildtyp und \textit{Tfap2c}+/− Trophoblast-Stammzellen gleich hoch ist. Aufgrund der Expressionsmuster der TGC-Markergene an Tag 7 der Differenzierung kann jedoch von einer Veränderung in der
Verteilung der Riesenzell-Subtypen ausgegangen werden. Die Expressionslevel für Prl3b1 und Ctsq waren geringer im Vergleich zu WT TSCs und die Transskriptmenge für Prl2c2 zeigte sich unverändert. Lediglich bei Prl3d1 konnte eine Erhöhung der Expression festgestellt werden. Prl3d1 ist ein Markergen, was auf das Vorhandensein von P-TGCs hinweist. Diese Ergebnisse der in vitro Versuche stehen allerdings im Gegensatz zur Beobachtung der Subtypmarker in vivo, dort wurde eine Erhöhung von Ctsq nachgewiesen, was auf eine Verschiebung in der Differenzierung zu Gunsten der S-TGCs schließen lässt. Diese Beobachtung lässt sich möglicherweise damit begründen, dass im isolierten Zellkultursystem in vitro keinerlei Beeinflussung von maternaler Seite möglich ist. So ist es wahrscheinlich, dass die Ausbildung der verschiedenen Riesenzelltypen in vivo nicht nur endogen geregelt wird, sondern auch durch parakrine und endokrine Faktoren beeinflusst wird.

4.2.3 Der teilweise Verlust von Tfap2c zeigt nur einen geringen Einfluss auf das Migrations- und Invasionsverhalten in vitro

Die Fähigkeit zur Migration schien an den Tagen 0, 5 und 7 der Differenzierung in Wildtyp und heterozygoten Zellen gleich ausgeprägt zu sein. Da die heterozygoten TSCs, wie in Abschnitt 4.2.1 diskutiert, eine geringere Proliferation aufwiesen, kann kein abschließendes Urteil über die gemessene migrierte Zellmenge gebildet werden. Es ist möglich, dass das langsames Wachstum der Tfap2c +/- Zellen eine erhöhte Migrationsrate verdeckt hat. Dies gilt ebenfalls für die Ermittlung der Invasionsrate, die obwohl tendenziell nur leicht erhöht, trotzdem eine gesteigerte Invasion vermuten lässt.
4. DISKUSSION

4.3 Der Einfluss des maternalen Genotyps auf die mendelsche Verteilung, die Genexpression in vivo und das Geschlecht der Nachkommen

4.4 Ausblick

In der vorliegenden Arbeit ist das veränderte plazentare Genmuster nur punktuell erfasst worden. Um einen detaillierteren Einblick in die veränderten Interaktionen der Signalwege für die Entwicklung der Tjap2c heterozygoten Plazenten zu bekommen, müssten in weiterführende Arbeiten zusätzlich frühere und spätere Entwicklungsstadien untersucht werden. Dazu müsste mittels kompartimentspezifischer Laser-Mikrodissektion der Verlauf
4. DISKUSSION

der Genexpression von der sich noch entwickelnden bis hin zur reifen Plazenta dokumentiert werden, um so eine frühe Fehlregulierung der Netzwerke zu erkennen.

Die Ursache der Hämorrhagien könnte durch eine transversale Schnittebene, im Gegensatz zur hier verwendeten sagittalen Ebene, eine bessere Übersicht über den Verlauf von maternalen venösen Gefäßen in der Spongiotrophoblastschicht und der Sinusoide im Labyrinth geben, wie kürzlich beschrieben (Gasperowicz et al. 2013). Durch diese Schnittechnik ließen sich eventuelle Engstellen und die Ursachen der Stauungen des Blutflusses besser erkennen.

Die Ergebnisse der Versuche mit Tfap2c+/- Stammzellen in vitro legen ein stark verringertes Stammzellpotential nahe, sowie eventuell eine Verzögerung der Differenzierungsprozesse. Diese Hypothese würde sich durch eine Überexpression von Tfap2c+/- in Wildtyp-TSCs untersuchen lassen, ebenso wie der Rescue von Tfap2c+/- Zellen. Dazu sollten virale Systeme zur Transfektion genutzt werden, um eine stabile Integration und Expressionsstärke zu bekommen.

5. ZUSAMMENFASSUNG

In den letzten Jahren ist die Forschung zur Plazentaentwicklung und -funktion und der Beitrag der Plazenta zur Programmierung des Embryos während der Schwangerschaft und der Prognose für die Gesundheit im weiteren Leben immer mehr in den Fokus gerückt. Da Mensch und Maus eine ähnlich aufgebaute diskoidale und hämochoriale Plazenta besitzen, ist die Maus ein ideales Modell zur Untersuchung zell- und molekularbiologischer Mechanismen der Plazentaentwicklung.

Im Rahmen dieser Arbeit soll der Einfluss des Transkriptionsfaktors TFAP2C auf die Entwicklung der Plazenta der Maus genauer untersucht werden. Bisherige Arbeiten von Werling et al. (2002) und Aumann et al. (2002) hatten sich bereits mit den Auswirkungen des kompletten Verlustes von \textit{Tfap2c} beschäftigt. Ein vollständiger Verlust führt zu einem sehr frühen Absterben der Embryonen, was hauptsächlich auf die fehlende Entwicklung der plazentaren Anlage zurückzuführen ist. In der vorliegenden Arbeit wurde das Modell der \textit{Tfap2c}^{+/+}\textit{-Maus} verwendet. Bei dieser Mauslinie werden zwar heterozygote Tiere geboren, jedoch in verringerter Anzahl. Dieses heterozygote Mausmodell, das eine reduzierte Menge des Transkriptionsfaktors exprimiert, ermöglicht es, den Einfluss von \textit{Tfap2c} während des ganzen Verlaufs der Plazentaentwicklung bis hin zur Geburt der Nachkommen untersuchen zu können. In dieser Arbeit konnte gezeigt werden, dass bereits an Tag 14,5 \textit{pc} ein signifikanter Verlust von heterozygoten Embryonen stattgefunden hat und dieser Verlust bis zur Geburt zunimmt. Bei Vergleich mit der zu erwartenden mendelschen Verteilung der Embryonen zeigte sich eine Reduktion der heterozygoten Tiere um 40%. An Tag 14,5 \textit{pc} zeigte sich eine signifikante Reduzierung der embryonalen Gewichte, dagegen waren die Gewichte der Plazenen an Tag 14,5 \textit{pc} sowie die Gewichte von Embryo und Plazenta an Tag 18,5 \textit{pc} in den heterozygoten Proben nur tendenziell reduziert.

Um die Ursachen für den Verlust von \textit{Tfap2c}^{+/+} Embryonen während der Schwangerschaft genauer zu untersuchen, wurden histologische und immunhistochemische Untersuchungen an den Tagen 14,5 und 18,5 \textit{pc} durchgeführt. Die untersuchten heterozygoten Plazenten zeigten eine korrekte Differenzierung der verschiedenen Schichten, wie die des Spongiotrophoblasten und des Labyrinths. Große morphologische Abweichungen zeigten sich vor allem in der Ausbildung von Hohlräumen in der Spongiotrophoblasterhaltung an Tag 14,5 \textit{pc}, sowie große Hämorrhagien in der Labyrinthschicht an Tag 18,5 \textit{pc}, was auf eine Fehlentwicklung des maternalen Gefäßsystems hindeutet. Die Hohlräume schienen ihren Ursprung in erweiterten maternalen venösen Gefäßen zu haben, während die Hämorrhagien auf Grund ihrer Aktivität
von alkalischer Phosphatase als vergrößerte maternale Sinusoide identifiziert werden konnten. Das Expressionsmuster der Trophoblast-Riesenzellen zeigte außerdem einen Anstieg des sinusoidalnen TGC-Subtyps. Dies deutete zusätzlich auf eine gestörte Entwicklung der sinusoidalnen Riesenzellen hin, welche die maternalen Sinusoide im Labyrinth auskleiden.

Im Labyrinth war eine verstärkte Proliferationsaktivität des labyrinthären Trophoblasten an Tag 14,5 \textit{pc}, sowie ein gehäuftes Auftreten von Zellnestern an den Tagen 14,5 und 18,5 \textit{pc} zu beobachten. Diese Zellnester exprimierten \textit{Tpbpa}, ein Marker der Spongiotrophoblastschicht, und zeigten außerdem eine starke Proliferationsaktivität, außerdem enthielten sie Glykogen. Diese Ergebnisse wiesen ebenfalls auf eine gestörte Regulation von Proliferation und Differenzierung hin und als Konsequenz auf eine verzögerte Differenzierung in den \textit{Tfap2c} heterozygoten Plazenten.

Die Expression der trophoblastären Markergene der \textit{Tfap2c}+/- Plazenten an Tag 14,5 \textit{pc} wurde mit Hilfe der Laser-Mikrodissektion an distinkten Arealen der Plazenta untersucht. In der Spongiotrophoblastschicht zeigte sich eine verringerte Expression von \textit{Cdx2, Gata3, Cited2} und \textit{Cx31}, die für die Erhaltung des Stammzellpotentials und die Einleitung des Differenzierungsprozesses verantwortlich sind. In den untersuchten Arealen der Labyrinthschicht wurden keine signifikanten Veränderungen in der Genexpression gefunden. Die Etablierung \textit{Tfap2c}-heterozygoter Trophoblaststammzellen (TSCs) ermöglichte eine gezielte Untersuchung der Auswirkungen des teilweisem Verlustes dieses Transkriptionsfaktors auf die Proliferations- und Differenzierungsmöglichkeiten. \textit{Tfap2c}+/- TSCs zeigten eine stark verringerte Proliferationskapazität, außerdem fehlte die Expression der für das Stammzellpotential wichtigen Transkriptionsfaktoren \textit{Eomes} und \textit{Cdx2} fast vollständig. Des Weiteren war der Differenzierungsmarker \textit{Ascl2} in seiner Expressionsstärke verringert und zeigte eine Verzögerung im Expressionsmuster. Der Verlust der Stammzellmarkers begründet, dass die TSCs eine verringerte Kapazität zur Proliferation aufwiesen und erst verspätet die Differenzierung eingeleitet wird.

affects trophoblast formation and vascularization of the mouse placenta."

Wu, L., A. de Bruin, H. I. Saavedra, M. Starovic, A. Trimboli, Y. Yang, J. Opavska, P.
Wilson, J. C. Thompson, M. C. Ostrowski, T. J. Rosol, L. A. Woollett, M. Weinstein,

Yagi, R., M. J. Kohn, I. Karavanova, K. J. Kaneko, D. Vullhorst, M. L. DePamphilis, A.
Buonanno (2007). "Transcription factor TEAD4 specifies the trophectoderm lineage at

Iternational review of cytology **165**: 53-119.
ICH MÖCHTE FRAU PROFESSOR WINTERHAGER DANKEN, DASS SIE ES MIR ERMÖGLICHTE HAT, MEINE DOKTORARBEIT IN IHRER ARBEITSGRUPPE ZU VERFASSEN. MEIN GROSER DANK GILT AUßerdem IHRER FACHLICHEN UNTERSTÜTZUNG UND IHRER DISKUSIONSBEREITSCHAFT. EBENFALLS VERDANKE ICH FRAU WINTERHAGER DIE TEILNAHME AN VIELEN KONGRESSEN IM IN- UND AUSLAND.

ICH B EDANKE MICH BEI MEINEN KOOPERATIONSPARTNERN IN BONN, PROF. DR. HUBERT SCHORLE SOWIE SEINE MITARBEITERN PETER KUCKENBERG, CAROLIN KUBACZKA UND NEHA SHARMA FÜR DIE ZAHLREICHEN DISKUSSIONSRUNDEN, NETTE GESPRÄCHE, FÜR DIVERSE HILFESTELLUNGEN BEI VERSUCHEN UND FÜR DAS BEREITSTELLEN DER BENÖTIGTEN MAUSLINIEN.

ICH DANKE ALLEN MEINEN MIT-DOKTORANDINNEN, EHEMALIGEN UND AKTUELLEN KOLLEGEN DER ARBEITSGRUPPE FÜR VIELE LUSTIGE STUNDEN, FACHLICHE DISKUSSIONEN, TECHNISCHE ASSISTENZ UND IMMER EIN OFFENES OHR FÜR SORGEN UND NÖTE. VOR ALLEM GILT MEIN DANK ELISABETH KÜHNEL, OHNE SIE WÄRE DIE DURCHFÜHRUNG DER MIKRODISSEKTION NICHT MÖGLICH GEWESEN UND YVONNE KOCH, DIE MIR GERAD E IN DER ANFANGSZEIT EINE GROSSE HILFE WAR. SIGFRIED MOYRER DANKE ICH FÜR DIE HILFE BEI SÄMTLICHEN COMPUTERPROBLEMEN.

MEIN BESONDERER DANK GILT MEINER FAMILIE UND MEINEM MANN. OHNE EUCH WÄRE DIESE OFT STRESSIGE ZEIT SICHER UM EINIGES SCHWERER GEWESEN!
Name Stephanie Kaiser
Geburtsname Scheinost
Anschrift Isenbrockstraße 50
 44867 Bochum
Geburtsdatum 17.08.1984
Geburtsort Regensburg
Familienstand verheiratet
Staatsangehörigkeit deutsch

Schulische Ausbildung
1991 - 1995 Grundschule St. Elisabeth Kareth
1995 - 2004 St.-Marien-Gymnasium Regensburg
 Abschluss allgemeine Hochschulreife

Hochschulausbildung
 Abschluss als Diplom-Biologin,
 Titel der Diplomarbeit: Chemische und physikalische
 Adjuvanten bei DNA-Immunisierung gegen das respiratorische
 Synzytial-Virus

seit 04/2010 Doktorandin am Institut für Molekularbiologie des
 Universitätsklinikums Essen bei Frau Prof. Dr. Elke
 Winterhager

Bochum, den 10.12.2013

Stephanie Kaiser
ERKLÄRUNG:

Essen, den 10.12.2013

Prof. Dr. rer. nat. Elke Winterhager

ERKLÄRUNG:
Hiermit erkläre ich, gem. § 7 Abs. 2, c und e der Promotionsordnung der Math.-Nat. Fakultäten zur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbständig verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe.

Essen, den 10.12.2013

Stephanie Kaiser

ERKLÄRUNG:

Essen, den 10.12.2013

Stephanie Kaiser