Synthese und Charakterisierung von binären Polyaziden

Gegenstand der vorliegenden Arbeit war die Untersuchung der binären Polyazide der p-Blockelemente. Hierbei standen vor allem die Etablierung neue Synthesewege und die vollständige Charakterisierung der Verbindungen im Vordergrund. Insbesondere die Charakterisierung durch Einkristall-Röntgenbeugung und damit die Betrachtung der intermolekularen Wechselwirkung gestützt durch quantenchemische Berechnungen waren von besonderem Interesse.

Amidinatoantimon- und -bismut-Komplexe

Die Komplexe [*t*BuC(N*i*Pr)₂SbF₂] **5** und [*t*BuC(NDipp)₂SbF₂] **6** konnten in nahezu quantitativer Ausbeute durch die Salzmetathese-Reaktionen der korrespondierenden Lithiumamidinat-Komplexe mit Antimontrifluorid bei tiefer Temperatur synthetisiert werden. Die vorteilhafte Reaktionsroute zwischen den Difluoridostiban-Komplexen **5** und **6** mit TmsN₃ zu den analogen LSb(N₃)₂-Komplexen lieferte **9** und **10** in hohen Ausbeuten. Die Bildung von TmsF ist thermodynamisch durch die starke Silizium-Fluor-Bindung bevorzugt und TmsF kann wie überschüssiges TmsN₃ verhältnismäßig einfach unter vermindertem Druck entfernt werden. Die analogen Diazidobismutan-Komplexe konnten nicht durch diese Reaktionsführung erhalten werden. Deshalb wurde der Halogenid-Azid-Austausch zwischen LBiCl₂ bzw. LBiI₂ und AgN₃ durchgeführt. Hierdurch konnten die Verbindungen **11** und **12** in nahezu quantitativer Ausbeute synthetisiert werden.

Abb. 3.1: Molekülstruktur von ${[tBuC(NiPr)_2]Bi(N_3)_2}_4$ 11.

Die Difluoridostiban- sowie Diazidostiban und Diazidobismutan-Komplexe wurden vollständig charakterisiert inklusive Einkristall-Röntgenstrukturanalyse und repräsentieren einige der wenigen Beispiele für Difluorid- bzw. Diazid-Verbindungen der Metalle Antimon und Bismut. Zusätzlich wurde die Bindungssituation von den Azid-Gruppen im multinuklearen {[*t*BuC(N*i*Pr)₂]Bi(N₃)₂}₄-Komplex **11** durch DFT-D-Berechnungen untersucht. Die strukturellen Parameter der Azid-Einheiten in **11** unterscheiden sich im Festkörper. Dies deutet auf eine unterschiedliche Bindungssituation hin, jedoch gibt es in der berechneten DFT-D Gasphasenstruktur **11'** keine signifikanten Unterschiede zwischen den verschiedenen Azid-Gruppen. Obwohl sich die absoluten Ladungen innerhalb der experimentellen und der optimierten Strukturen erheblich unterscheiden, ist die elektronische Natur der verschiedenen Azid-Gruppen innerhalb jeder Struktur vergleichbar.

Binäre Polyazid-Verbindungen der Gruppe 15

Die neutralen Tri- und Pentaazid-Verbindungen der Elemente As, Sb und Bi konnten aus den entsprechenden Fluorid-Spezies und Trimethylsilylazid synthetisiert werden. Bei den Reaktionen wurden alle Fluorid-Ionen vollständig gegen Azid-Einheiten ausgetauscht. Aufgrund der explosiven Eigenschaften und der über alternative Reaktionswege schwierigen Aufreinigung der Polyazid-Verbindungen besitzen TmsF und TmsN₃, letzteres diente zudem als Lösungsmittel, durch ihren hohen Dampfdruck einen weiteren Vorteil, dieser ermöglicht den präparativen Zugang der reinen Polyazid-Verbindungen. Für die Synthese der Triazide Sb(N₃)₃ 15 und Bi(N₃)₃ 16 bei Raumtemperatur war ein Ultraschallbad förderlich, dagegen wurden die Pentaazide bei tiefer Temperatur hergestellt (-78 °C). Die temperaturempfindlichen Pentaazide wurden in situ durch eine zusätzliche Azid-Gruppe oder Lewis-Base in die bei Raumtemperatur stabileren Verbindungen PNP[Sb(N_3)₆] **19**, As(N_3)₅(dmap) **20** und Sb(N_3)₅(dmap) 21 überführt. Zudem wurden noch das basenstabilisierte Bi(N₃)₃(py)₂ 17 und das dianionische Pentaazidoantimonat-Ion $[Sb(N_3)_5]^{2-}$ in der Verbindung (PNP)₂ $[Sb(N_3)_5]$ **18** synthetisiert. Alle mittels spektroskopischer Methoden (multinukleare NMR-, IR- und Raman-Spektroskopie) sowie Einkristall-Röntgenstrukturanalyse untersuchte Verbindungen wurden in nahezu quantitativer Ausbeute erhalten und belegen damit das hohe Potential dieser Syntheseroute. 15 ist das zweite Polymorph von Sb(N₃)₃ und stellt hiermit eine der sehr wenigen neutralen binären Polyazid-Verbindungen der p-Blockelemente dar, die im Festkörper strukturell charakterisiert worden sind. Bi $(N_3)_3(py)_2$ 17 ist das erste neutrale Bismuttriazid, sowie As $(N_3)_5(dmap)$ 20 und Sb(N₃)₅(dmap) 21 sind die ersten neutralen Pentaazide der Gruppe 15, deren Festkörperstrukturen bestimmt werden konnten. Die Koordination von starken Lewis-Basen wie DMAP erweist sich als sehr effektiv für die kinetische Stabilisierung von höchst explosiven Pentaaziden der Gruppe 15. Zusätzlich wurden die Komplexe (PNP)₂[Sb(N₃)₅] 18 und PNP[Sb(N₃)₆] **19** vollständig inklusive der Einkristall-Röntgenstrukturanalyse charakterisiert.

Dabei stellt das Pentaazidoantimonat-Dianion $[Sb(N_3)_5]^{2-}$ ein in der 15. Gruppe unerwartetes und erstmalig beobachtetes binäres Polyazid-Ion dar. Dessen Bildung ergibt sich in theoretischen Berechnungen zufolge aus der Tatsache, dass das Hexaazidoantimonat-Trianion $[Sb(N_3)_6]^{3-}$ energetisch viel höher liegt.

Abb. 3.2: Molekülstrukturen von Sb(N₃)₃ **15** (links), des $[Sb(N_3)_5]^{2^-}$ -Dianions von Verbindung **18** (mitte) und des $[Sb(N_3)_6]^-$ -Anions von Verbindung **19** (rechts).

Azide der 17. Gruppe

Das gelbe, unter Standardbedingungen gasförmige ClN₃ (22), die orange Flüssigkeit BrN₃ (23) sowie der leuchtend gelbe Feststoff IN_3 (24) wurden nach teilweise über 100 Jahre alten Synthesevorschriften, die leicht verändert wurden, hergestellt. Chlor- und Bromazid sowie ein zweites Polymorph von Iodazid wurden erstmalig vollständig strukturell charakterisiert, wobei die Kristallzucht bei den Halogenaziden durch deren ausgeprägte Empfindlichkeit gegenüber kleinsten Druck- oder Temperaturschwankungen erschwert war. Unter Einsatz eines IR-Lasers mit einem Miniaturzonenschmelzverfahren konnten Einkristalle von 22 und 23 bei 150 K direkt auf dem Röntgendiffraktometer gezüchtet werden, dies belegt die Leistungsfähigkeit der in-situ-Kristallisationstechnik. Die Einkristalle der beiden Polymorphe des Iodazids 24a und 24b wurden durch langsame Sublimation des gekühlten amorphen IN₃ erhalten. Die Halogenazide ClN₃, BrN₃ und IN₃, deren Strukturen hier zum ersten Mal verglichen wurden, zeigen jeweils verschiedenartige intermolekulare Wechselwirkungen, die zu einem unterschiedlichen strukturellen Aufbau im Kristall dieser Verbindungen führen. ClN₃ weist intermolekulare Cl. Cl-Kontakte zwischen den ClN₃-Molekülen auf, die zu einem Kettenpolymer führen, wie sie ebenfalls in der Festköperstruktur von elementarem Chlor beobachtet wurden, während beide Polymorphe des IN₃ eindimensionale Polymere bilden, die durch nahezu symmetrische Verbrückungen der Iodatome über die Na-Atome der Azid-Einheiten entstehen. BrN3 nimmt eine helikale Struktur über intermolekulare Br…Nα-Kontakte vom Bromatom zum N_α-Atom des Nachmoleküls im Festkörper ein, die von zusätzlichen intermolekularen N_{β} ···N_{γ}-Kontakten begleitet sind. Ein derartiges Strukturmotiv wurde in der Chemie kovalenter Azide bislang noch nicht beobachtet. Um experimentell ermittelte Bindungslängen und -winkel von 22 und 23 mit theoretischen Werten vergleichen zu können und die Gründe für

die Stärke der intermolekularen Wechselwirkungen zu beleuchten, wurden Berechnungen auf allerhöchstem Niveau mittels Coupled-Cluster-Theorie (CCSD(T)) und zudem DFT-SAPT-Berechnungen durchgeführt. Bei den Wechselwirkungen des ClN₃-Moleküls mit seinen nächsten Nachbarn sind unerwarteterweise die berechneten, intermolekularen Wechselwirkungen zwischen den Molekülen der benachbarten Ebenen (CCSD(T): –12.2, DFT-SAPT: –12.1 kJ mol⁻¹) sogar stärker als die innerhalb einer Ebene. Unter Vernachlässigung relativistischer Effekte liefert die Wechselwirkungsenergie mittels DFT-SAPT der Dimerstruktur in BrN₃ mit Br···N_α-Kontakt einen Wert von –12.6 kJ mol⁻¹ und ist in sehr guter Übereinstimmung mit dem nichtrelativistischen CCSD(T)-Wert von –12.3 kJ mol⁻¹. Für die Dimerstruktur mit N_{β}···N_{γ}-Kontakt in **23** beträgt die DFT-SAPT-Gesamtwechselwirkungsenergie –6.0 kJ mol⁻¹, während das CCSD(T)-Resultat von –6.1 kJ mol⁻¹ nahezu identisch ist. Beachtet werden sollte, dass jeweils die stärkste intermolekulare Wechselwirkung in ClN₃ sowie in BrN₃ ca. 60 % der für die Wasserstoffbrückenbindung im dimeren Wassermolekül beobachteten 21 kJ mol⁻¹ beträgt.

Abb. 3.3: Ausschnitte aus den Festkörperstrukturen der Halogenazide und die stärksten intermolekularen Wechselwirkungen zwischen den jeweiligen Molekülen (ClN₃ **22** links, BrN₃ **23** mittig und IN₃ **24** rechts).

Niedervalente Azide der 14. Gruppe

Die Verbindung Ge(N₃)₂(IPr) **25** wurde in guter Ausbeute durch die Reaktion von NaN₃ mit GeCl₂(IPr) synthetisiert und vollständig charakterisiert. Ge(N₃)₂(IPr) ist das erste niedervalente kovalente Hauptgruppenelementazid, dessen Struktur im Festkörper mittels Einkristall-Röntgenstrukturanalyse bestimmt werden konnte. Die Ausnahme hiervon sind die basenfreie und die basenstabilisierten Pb(N₃)₂-Verbindungen, in den jedoch das Bleiatom in seiner stabileren Oxidationsstufe vorliegt, im Gegensatz zum Germaniumatom in Ge(N₃)₂(IPr). Die Bindungssituation in **25** als auch in diversen anderen binären Germaniumpolyazid-Verbindungen mit dem Germaniumatom in der formalen Oxidationsstufe +II sowie +IV wurde mit Hilfe der Dichtefunktionaltheorie unter Einbeziehung einer empirischen Dispersionskorrektur (BP86-D3) auf hohem theoretischen Niveau untersucht. Das Prinzip der Basenstabilisierung erscheint generell zur Stabilisierung niedervalenter Azid-Verbindungen geeignet. Es verspricht für die Zukunft ein großes Potenzial für die hier erstmalig belegte strukturelle Charakterisierung thermo- und stoßsensitiver sowie redoxlabiler niedervalenter kovalenter Hauptgruppenelementazide.

Abb. 3.4: Molekülstruktur von $Ge(N_3)_2(IPr)$ 25.