Untersuchung schädigender Einflüsse unterschiedlicher Bismut-Spezies auf die physiologische Darmmicrobiota unter besonderer Berücksichtigung von methylierten Derivaten

Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.

> der Fakultät für Biologie an der

Universität Duisburg-Essen

vorgelegt von

BEATRIX AMANN

aus Krefeld

Mai 2013

Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Institut für Mikrobiologie I der Universität Duisburg-Essen, Campus Essen durchgeführt.

- 1. Gutachter: Prof. Dr. Reinhard Hensel
- 2. Gutachter: Prof. Dr. Peter Bayer

Vorsitzender des Prüfungsausschusses: Prof. Dr. Wilhelm Kuttler

Tag der mündlichen Prüfung: 12.09.2013

•

In Liebe und Dankbarkeit

meinem Vater Roman Georg Bialek

und in Gedenken an meine Mutter Alice Bialek

Tu erst das Notwendige, dann das Mögliche,

und plötzlich schaffst du das Unmögliche.

(Franz von Assisi)

Inhaltsverzeichnis

ABB	ILI	DUNGSVERZEICHNIS	V
TAB	EL]	LLENVERZEICHNIS	VII
ANH	IAN	NGSVERZEICHNIS	VIII
ABK	ÜR	RZUNGEN	IX
1	EI	INLEITUNG	1
1.1	Di	ie humane gastrointestinale Microbiota	1
1.1	.1	Diversität und Verteilung	1
1.1	.2	Interaktionen mit dem Wirtsorganismus	4
1.1	.3	Veränderung der Diversität: Faktoren und Folgen für den Wirtsorganismus	6
1.2	Da	as Schwermetall Bismut	7
1.2	2.1	Eigenschaften und Darstellung	7
1.2	2.2	Applikationen	8
1.2	2.3	Toxizität	9
1.3	Ve	ermutete molekulare Ursachen für die toxische Wirkung von Bismut-Sp	ezies auf
	Ba	akterien	11
1.4	Zi	ielsetzung dieser Arbeit	13
2	M	1ETHODEN	14
2.1	M	laterialien	14
2.2	Ge	eräte	15

2.3	Mi	kroorganismen: Herkunft der Stämme, ihre Präparation,	Lagerung	und
	An	alyse		17
2.3	8.1	Verwendete Bakterien		17
2.3	8.2	Herstellung von Kultivierungsmedien		17
2.3	8.3	Erstellung von Wachstumskinetiken		20
2.3	8.4	Ernte und Lagerung von Zellen		20
2.4	Ar	beiten mit DNS		20
2.4	.1	Isolation von Plasmid-DNS		20
2.4	.2	Auftrennung von DNS bzw. DNS-Fragmenten mit Hilfe der Gelel	ektrophorese	20
2.4	.3	Untersuchungen zur Modifikation der DNS durch Einwirkung von	n CBS, MMB	i,
		DMBi, TMBi		21
2.5	Ar	beiten mit RNS		21
2.5	5.1	Isolation von RNS aus Bakterien		21
2.5	5.2	Microarrays		22
2.6	Ar	beiten mit Proteinen		22
2.6	5.1	Herstellung von Zellextrakten		22
2.6	5.2	Probenvorbereitung für die 2-D Gelelektrophorese		22
2.6	5.3	Bestimmung der Proteinkonzentration nach Lowry (Lowry et al.,	1951)	22
2.6	5.4	Isoelektrische Fokussierung		23
2.6	5.5	Denaturierendes SDS-PAGE (Laemmli, 1970)		23
2.6	6.6	Silberfärbung von SDS-Gelen		24
2.6	5.7	Coomassiefärbung von SDS-Gelen		24
2.6	5.8	In-Gel-Verdau von Proteinen		25
2.6	5.9	MALDI-TOF-MS Analyse und Proteinidentifikation		25

2.7	Lip	pidanalytik	. 25
2.7	.1	Dünnschichtchromatographie von Lipiden	. 26
2.7	.2	Gaschromatographie von Fettsäuren	. 26
2.8	An	alytische Methoden	. 26
2.8	.1	ICP-MS-Analytik	. 26
2.8	2	Quantifizierung von flüchtigem Trimethylbismut mithilfe von ICP-MS-	
2.0		Techniken	. 29
2.8	.3	Quantifizierung von flüssigen Bismutverbindungen	. 29
2.8	.4	Ansetzen von Bismutverbindungen	. 29
3	ER	GEBNISSE	.31
3.1	Eir	nfluss von colloidalem Bismut-Subcitrat (CBS) auf das Wachstum v	von
	B . 1	thetaiotaomicron	. 31
37	Fir	nfluss methylierter Rismut-Snezies suf das Wachstum v	von
J . 2	В. 1	thetaiotaomicron	.33
3.3	Eta	ablierung eines Kokultursystems	. 37
3.4	Mo	olekulare Wirkmechanismen von Bismut-Derivaten	. 39
3.4	.1	Molekulare Wirkmechanismen von colloidalem Bismut-Subcitrat auf DNS	. 39
3.4	.2	Molekulare Wirkmechanismen von Trimethylbismut	. 41
3.4	.2.1	Wirkung auf die Zellmembran	. 41
3.4	.2.2	Wirkung auf das Transkriptom	. 43
3.4	.2.3	Wirkung auf das Proteom	. 47
4	DI	SKUSSION	. 59
4.1	W٤	achstumshemmung von <i>B. thetaiotaomicron</i> nach der Zugabe v	von
	unt	terschiedlichen Bismut-Spezies	. 59

4.2	Molekularer Wirkmechanismus von colloidalem Bismut-Subcitrat auf die DNS.61
4.3	Spezifische Untersuchung zu den molekularen Ursachen der Wachstumshemmung
	von B. thetaiotaomicron durch Trimethylbismut62
4.4	Relevanz der Wachstumshemmung von B. thetaiotaomicron für die physiologische
	Situation <i>in-vivo</i>
5	ZUSAMMENFASSUNG UND AUSBLICK70
6	LITERATUR
7	ANHANG

Abbildungsverzeichnis

Abbildung 1:	Der humane Gastrointestinaltrakt	. 2
Abbildung 2:	Strukturformel von Trimethylbismut	11
Abbildung 3:	Wachstumshemmung von <i>B. thetaiotaomicron</i> 48 Std. nach der Zugabe von CBS (n=3)	31
Abbildung 4:	Konzentrationsbestimmung an Schwefelwasserstoff in <i>B. thetaiotaomicron</i> Kulturen	32
Abbildung 5:	Wachstumshemmung von rekultivierten mit CBS inkubierten <i>B. thetaiotaomicron</i> Kulturen (n=3)	32
Abbildung 6:	Wachstumshemmung von <i>B. thetaiotaomicron</i> 48 Std. nach Exposition methylierter Bismut-Spezies (n=3)	34
Abbildung 7:	Wachstumshemmung von rekultivierten mit methylierten Bismut-Spezies inkubierten <i>B. thetaiotaomicron</i> Kulturen (n=3)	35
Abbildung 8:	Wachstumshemmung von zwei <i>E. coli</i> Stämmen etwa 40 Std. nach der Zugabe von 30 nM TMBi (n=3)	e 36
Abbildung 9:	Aufbau des Kokultursystems	37
Abbildung 10): Wachstumshemmung von <i>B. thetaiotaomicron</i> im Kokultursystem 48 Std. nach der Zugabe von 80 μM CBS zur <i>M. smithii</i> Kultur (n=3)	38
Abbildung 11	: Mit Ethidiumbromid gefärbtes 1 % Agarosegel nach Modifikation des Plasmids durch CBS unter aeroben Bedingungen	39
Abbildung 12	2: Signalintensitäten der <i>supercoiled</i> und <i>open-circular</i> DNS nach 48 Std. aerober Inkubation des Plasmids mit CBS (n=3)	40

Abbildung 13:	Lipidanalyse von B. thetaiotaomicron Kulturen ohne und mit einer 30 nM
	TMBi Exposition für 48 Std. (n=3)
Abbildung 14:	Analyse von Fettsäuren nach einer Exposition von 30 nM für 48 Std. (n=3)42
Abbildung 15:	Transkriptions-Aktivitäten verschiedener Gen-Kategorien von <i>B. thetajotaomicron</i> , nach Exposition von 15 nM TMBi für 24 Std. $(n-3)$, 43
Abbildung 16:	Polysaccharid-Lokus BT 1757-1763 von B. thetaiotaomicron
Abbildung 17:	Darstellung des Arginin- und Prolin- und Purin-Metabolismus
Abbildung 18:	Silbergefärbte 2-D SDS-Gele von 150 μ g Proteinextrakten ohne und mit
	30 nM TMBi (n=3)
Abbildung 19:	Sequenzmotive der Proteinsequenzen
Abbildung 20:	Alignment der Sequenz von Proteinspot 1 und 2 mit der Sequenz des Skp-
	Chaperons aus <i>Bacteroides helogenes</i> P36-108
Abbildung 21:	Alignment der Sequenz von Proteinspot 3 mit der Sequenz des putativen
	Lipoproteins aus <i>Bacteroides fragilis</i> 638R
Abbildung 22:	Alignment der Sequenz von Proteinspot 4 mit der Sequenz der OmpA/MotB
	Protein-Domäne aus Niastella koreensis GR20-10
Abbildung 23:	Sequenzvergleich des Skp-Chaperons aus E. coli K12 mit dem putativen Skp
	aus <i>B. thetaiotaomicron</i>
Abbildung 24:	Overlay der Tertiärstrukturen des Skp-Chaperons aus E. coli mit der aus der
	Aminosäuresequenz abgeleiteten Tertiärstruktur des putativen Skp-Chaperons
	aus <i>B. thetaiotaomicron</i>

Tabellenverzeichnis

Tabelle 1: Übersicht über die in den unterschiedlichen Darmsegmenten vorherrschenden	
Bedingungen und Bakteriendichten	3
Tabelle 2: Bismutverbindungen und deren Applikationen	9
Tabelle 3: Verwendete Chemikalien 1	4
Tabelle 4: Verwendete Geräte1	5
Tabelle 5: Verwendete Bakterienstämme1	7
Tabelle 6: Kultivierungsmedien 1	8
Tabelle 7: Protokoll der Silberfärbung2	4
Tabelle 8: Betriebsparameter der ICP-MS 2	:7
Tabelle 9: Übersicht über die sich unterscheidenden Proteinspots der Proteinextrakte von B. thetaiotaomicron nach Inkubation mit und ohne 30 nM TMBi nach massenspekrometrischer Auswertung	9
Tabelle 10: Detaillierte Sequenzanalyse (PSI-BLAST) der gefundenen Sequenzmotive der Proteinspots 1-4	51
Tabelle 11: Ergebnis des Sequenzvergleiches von Spot 1 und 2 in der Datenbank von NCBI	5
Tabelle 12: TMBi Konzentration in Mäusedärmen bei unterschiedlichen Versuchsbedingungen6	58

Anhangsverzeichnis

Anhang 1: Rohdaten der gaschromatograpfischen Auswertung der Zusammensetzung von
Fettsäuren von <i>B. thetaiotaomicron</i> (n=3) 89
Anhang 2: Genliste der ausgewählten Gencluster mit hoch- bzw. runterregulierten Genen 99
Anhang 3: Komplette Genliste der B. thetaiotaomicron Kulturen nach einer 15 nM TMBi
Exposition103
Anhang 4: Ergebnisreport der <i>Microarray</i> -Versuche (Originalmanuskript der Firma imaGenes)121
Anhang 5: Nukleotid- und Aminosäuresequenzen ausgewählter Proteinspots der 2-D
SDS-Gele

Abkürzungen

X	Vielfaches
x g	Vielfaches der Erdbeschleunigung
%	Prozent (der hundertste Teil von)
μ	mikro (10 ⁻⁶)
®	eingetragenes Warenzeichen
°C	Grad Celsius
2-D	zweidimensional
Abb.	Abbildung
bzw.	beziehungsweise
ca.	circa
Bi	Bismut
Bi ³⁺	Bismutkationen
B. thetaiotaomicron	Bacteroides thetaiotaomicron
CBS	colloidales Bismut-Subcitrat (Tripotassium-Dicitrato-Bismuthate)
CHAPS	3-[3-Cholamidopropyl)-Dimethyl-Ammonio]-1-Propansulfonat
CoM	Coenzym M
cps	counts per second
dH ₂ O	zweifach destilliertes Wasser
DL	unter Detektions-Limit
DMBi	Dimethylbismut

DNS	Desoxyribonukleinsäure
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig
E. coli	Escherischia coli
EDTA	Ethylendiamintetraessigsäure
et al.	et alteri
etc.	et cetera
EtOH	Ethanol
H_2S	Schwefelwasserstoff
HEPES	N-2-Hydroxyethyl-Piperazin-N'-2-Ethansulfonsäure
HNO ₃	Salpetersäure
ICP-MS	Massenspektrometrie mit Plasma-Anregung
kDa	Kilo Dalton
kg	Kilogramm
1	Liter
LB-Medium	Luria-Bertani-Medium
LPS	Lipopolysaccharid
m	milli (10 ⁻³)
mA	Milliampere
MALDI-TOF	Matrix-unterstützte Laser-Desorption/Ionisation und MS mit Flugzeitanalysator
max.	Maximum / maximal

MeOH	Methanol
MIC ₅₀	Konzentration, bei der das Wachstum um 50 % gehemmt ist
min	Minuten
М	molar (mol l^{-1})
MMBi	Monomethylbismut
M. smithii	Methanobrevibacter smithii
mV	Millivolt
m/z	Masse-Ladungs-Verhältnis
n	nano (10 ⁻⁹)
n	Anzahl der Stichproben
OC	open-circular
OD	optische Dichte
p. a.	pro analysis
PAGE	Polyacrylamid-Gelelektrophorese
PCR	Polymerase-Ketten-Reaktion (Polymerase-Chain-Reaction)
pH	negativer dekadischer Logarithmus der $H^{\!\scriptscriptstyle +}$ -Ionen-Konzentration
ppm / ppb	der millionste / billionste Teil von (parts per million / billion)
RNS	Ribonukleinsäure
Psi	pound per square inch
PT-GC	Purge and Trap-Gaschromatographie
rpm	Umdrehungen pro Minute (rounds per minute)

RT	Raumtemperatur
SC	supercoiled
SDS	Natriumdodecylsulfat
sec	Sekunde, Sekunden
Skp	seventeen-kilodalton-protein (Chaperon)
Std.	Stunde
Tab.	Tabelle
TEMED	N,N,N',N'-Tetramethylethylendiamin
ТМВі	Trimethylbismut
Tris	Tris-(Hydroxymethyl)-Aminomethan
U	Unit
Upm	Umdrehungen pro Minute
V	Volt
% (v/v)	Volumenprozent
VE	vollentsalztes Wasser
W	Watt
% (w/v)	Gewichtsprozent
z.B.	zum Beispiel

1 Einleitung

Die humane intestinale Microbiota, die vorwiegend aus verschiedenen Prokaryonten- und Ascomyceten-Gruppen zusammengesetzt ist, stellt ein diffiziles Ökosystem mit hoch komplexen Wechselbeziehungen dar. Vielseitige Hauptaufgaben, wie die Metabolisierung von Nahrungsbestandteilen, die Aufrechterhaltung des intestinalen Milieus, den Schutz der Mucosa vor Pathogenen und die Induktion des Immunsystems, werden durch komplexe Wechselbeziehungen der unterschiedlichen Mikroorganismengruppen untereinander und mit dem Wirtsorganismus bedingt. Veränderungen dieser Microbiota können weitreichende Folgen für die Gesundheit und das Wohlbefinden des Wirtes haben. Als wesentliche Störungen sind eine erhöhte Infektionsanfälligkeit mit Tendenz zu entzündlichen und chronischen Erkrankungen, Verdauungsstörungen, Begünstigungen von Nahrungsmittelunverträglichkeiten bis hin zu Diabetes und nervöse Veränderungen anzuführen. Zunehmend wird die intestinale Microbiota mit Schwermetallen belastet, welche über die Nahrung, über Medikamente oder Ähnlichem aufgenommen werden. Die Metalle, die als einfache Ionen nur eine durchschnittliche Zell-Giftigkeit aufweisen, zeigen jedoch in Verbindungen mit organischen, hydrophoben Komponenten eine deutlich höhere Toxizität. Ein Beispiel ist das sogenannte "grüne" Element Bismut, das als einfaches Ion nur eine mäßige Giftigkeit aufweist, aber in Verbindung mit organischen Komponenten, wie z.B. die Methyl-Bismut-Derivate, ein deutlich toxisches Potential entwickelt. Von aktueller Relevanz ist daher die Beeinflussung der intestinalen Microbiota durch unterschiedliche Metall-Spezies.

1.1 Die humane gastrointestinale Microbiota

1.1.1 Diversität und Verteilung

Die humane gastrointestinale Microbiota definiert sich als eine Gemeinschaft aus qualitativ unterschiedlichen mikrobiellen Gruppen mit einerseits dynamischer Fluktuation und andererseits mit relativ stabilen qualitativen Eigenschaften (Mikelsaar, 2004). Der gastrointestinale Trakt bietet vier Mikrohabitate. Es wird zwischen der Epitheloberfläche, der Mucosa der Lieberkühn-Krypten, den Mucosa-Epithelzellen und dem Darmlumen unterschieden (Freter, 1992; Egert *et al.*, 2006). Der Darm wird in die Kompartimente Duodenum (Zwölffingerdarm), Jejunum (Leerdarm), Ileum (Hüftdarm), Caecum (Blinddarm), Colon (Grimmdarm), und Rektum (Mastdarm) eingeteilt (Abb. 1). In jedem dieser Bereiche unterscheidet sich sowohl die Diversität als auch die Zelldichte der

Abbildung 1: Der humane Gastrointestinaltrakt

Microbiota. Dies ist auf die unterschiedlichen Bedingungen innerhalb dieser Abschnitte zurückzuführen. Hierbei unterscheiden sich die pH Werte, die Redoxpotenziale, der Sauerstoffpartialdruck, die Substratverfügbarkeit sowie der luminale Fluss des Darminhalts. Ein Überblick über die Bakteriendichten und die Bedingungen innerhalb der Darmsegmente ist in Tabelle 1 zusammengefasst. Die physiologische intestinale Microbiota setzt sich zu 99 % aus obligat anaeroben und lediglich zu 1 % aus fakultativ aeroben Prokaryonten zusammen. Etwa 90 % der anaeroben Microbiota klassifizieren sich in die beiden bakteriellen Phyla Bacteroidetes und Firmicutes. Hauptvertreter der Bacteroidetes sind hier Bacteroides vulgatus, Bacteroides distasonis und Bacteroides thetaiotaomicron. Als weitere phylogenetische Gruppen sind Actinobacteria, Proteobacteria, Fusobacteria, Leptospira, Spirochaetes, Verrucomicrobia, Ascomyta und Euryarchaeta anzuführen. Methanogene Archaeen, wie Methanospaera stadtmanae und Methanobrevibacter smithii, übernehmen essentielle Aufgaben innerhalb der Microbiota. Diese sind vorrangig an dem Abbau von intestinalem Wasserstoff (H₂) beteiligt, welcher in höheren Konzentrationen wirtseigene NADH-Dehydrogenasen inhibiert und somit die ATP Synthese innerhalb der mitochondrialen Atmungskette reduziert (Walker, 2007). Eine exakte taxonomische Klassifizierung der Microbiota ist derzeit noch schwierig, weil die meisten phylogenetischen Daten aus ex-situ Kultivierungsanalysen stammen. Da einige Prokaryonten in-vitro nicht kultivierbar sind, sind präzise Angaben auf Artenebene nur bedingt möglich. So ist bislang nur ungefähr 30 % der humanen Microbiota Zusammensetzung aufgeklärt (Korecka et al., 2012). Diese Einschränkung wird zunehmend durch neue molekularbiologische, kultivierungsunabhängige

Methodiken kompensiert.

Tabelle 1: Übersicht über die in den unterschiedlichen Darmsegmenten vorherrschenden Bedingungen und Bakteriendichten

(Simon et al., 1984; Evans et al., 1988; Stirrup et al., 1990; Macfarlane et al., 2004)

Darmabschnitt	Zellzahlen	Microbiota	pH-	Redoxpotenzial
	(ml ⁻¹)		Wert	(mV)
Duodenum und Jejunum	$10^2 - 10^5$	Lactobacillus	6,6	-66
		Streptococcus		
		Bifidobacterium		
		Enterobactericeae		
		Staphylococcus		
		Ascomycota		
Ileum und Caecum	$10^3 - 10^9$	Lactobacillus	7,5	-197
		Streptococcus		
		Bifidobacterium		
		Enterobactericeae		
		Staphylococcus		
		Ascomycota		
		Bacteroides		
		Clostridium		
Colon	10^{10} - 10^{12}	Lactobacillus	7,0	-380
		Streptococcus		
		Bifidobacterium		
		Enterobactericeae		
		Staphylococcus		
		Ascomycota		
		Bacteroides		
		Clostridium		
		Eubacterium		
		Peptostreptococcus		
		Fusobacterium		

1.1.2 Interaktionen mit dem Wirtsorganismus

Der als cross-talk bezeichnete Prozess beschreibt die Wechselbeziehungen zwischen dem Wirtsorganismus und den Mikroorganismen. Der Gastrointestinaltrakt wird von Milliarden von Mikroorganismen besiedelt, deren Anzahl um den Faktor 10 höher ist als die Anzahl körpereigener Zellen (Backhed et al., 2005). Die Gesamtheit der mikrobiellen Gene, das sogenannte Microbiom, ist folglich höher als die des Wirtes und beinhaltet rund 150 x mehr Gene als der Wirt, die für biochemische Stoffwechselwege essentiell sind (Magalhaes et al., 2007). Diese Gene sind an der Umsetzung und Verwertung von aufgenommenen Nährstoffen beteiligt, die der Wirt selbst nicht besitzt. Hauptsubstrate für die Microbiota sind Kohlenhydrate, komplexe Polysaccharide, Proteine, Lipide und endogene Substrate wie wirtseigene Zellen und lysierte Mikroorganismen. Der Abbau ist ein mehrstufiger metabolischer Prozess. Die entstandenen Edukte stehen zum Teil dem Wirt zur Verfügung und werden resorbiert oder werden von Mitgliedern der Microbiota als weitere Substrate genutzt. Der komplexe Abbau unterliegt spezialisierten Wechselbeziehungen, an dem eine Vielzahl von hauptsächlich bakteriellen Gruppen beteiligt sind. Dieser Kommensalismus führt unter anderem zu einer Nischenentwicklung, die selbst innerhalb der Arten stark ausgeprägt ist. Die Heterogenität wird zum Beispiel deutlich im Vergleich der Genome der Bacteroidetes Bacteroides vulgatus, Bacteroides distasonis und Bacteroides thetaiotaomicron. Während Bacteroides vulgatus vorrangig Gene, die an der Pectin-Degradation beteiligt sind besitzt, kodiert das Genom von Bacteroides distasonis hauptsächlich Gene der Kohlenhydrat-Degradation. Das Bacterium B. vulgatus besitzt zudem als einziger ein Gen, welches für eine Xylanase kodiert. Das Genom von Bacteroides thetaiotaomicron beinhaltet zahlreiche Gene, die für die Degradation von pflanzlichen Polysacchariden, Stärke und Glykanen verantwortlich sind (Walker, 2007).

Obwohl eine nährstoffbasierte Symbiose der Microbiota mit dem Wirt besteht, haben die Mikroorganismen zusätzliche Strategien entwickelt, um sich dauerhaft im Intestinum etablieren zu können. Somit können diese der Immunabwehr des Wirtorganismus entgehen. Mikrobielle Genome enthalten mehrere Glykosyltransferase-Gene, die eine Variation von oberflächlichen Polysacchariden bietet. Beispielsweise besitzt *Methanobrevibacter smithii* zudem oberflächliche Glykane, die wirtseigene mucusale Glykane imitieren. Eine weitere bedeutende Interaktion stellt die Kolonisationsresistenz gegen pathogene Mikroorganismen dar. Die auf der Epiheloberfläche des Darms befindlichen diversen Glykane sind an der Erkennung von Oberfächenpolysacchariden und Proteinen der Mikroorganismen beteiligt (Magalhaes *et al.*, 2007). Bleibt die Oberflächenerkennung pathogener Mikroorganismen aus,

so werden diese mit den Glykanen assoziiert und mittels intestinaler Peristaltik aus dem Intestinum ausgeschieden. Zudem sind *pattern recognition* Rezeptoren (PRR) ebenfalls an der Erkennung von Pathogenen beteiligt. Diese Rezeptoren interagieren mit Komponenten des Immunsystems wie Monozyten, Makrophagen und dendritischen Zellen (Geijtenbeek *et al.*, 2004; Michelsen *et al.*, 2007). Im Gegensatz hierzu kann das physiologische Bacterium *Bacteroides thetaiotaomicron* die Expression von wirtseigenen Fuc α 1,2 Gal β -Glykanen und des Peptides Angiogenin (Ang4) in den Epithelzellen stimulieren (Hooper *et al.*, 2001; Hooper, 2004). Das Angiogenin weist antibakterielle Eigenschaften auf und wirkt somit ebenfalls immunprotektiv gegen Pathogene (Stappenbeck *et al.*, 2002).

Ein Vergleich von keimfreien Mäusen mit konventionellen Mäusen mit intakter physiologischer Darmflora zeigt, dass die Microbiota einen entscheidenden Einfluss auf die Morphologie, Physiologie und Biochemie des gesamten Intestinums ausübt. In keimfreien Mäusen verringert sich die Masse, Länge und Breite des Darms. Auch die Zotten sind morphologisch verlängert mit gleichzeitiger Vertiefung der Krypten, was eine Verringerung der Proliferationsrate der Epithelzellen bedingen kann (Alam *et al.*, 1994). Des Weiteren wird die Peristaltik des Magen-Darm-Traktes vermutlich aufgrund geringerer Konzentrationen an flüchtigen Fettsäuren verlangsamt (Falk *et al.*, 1998). Ein reduzierter Blutstrom zu Leber und Darm und ein verlangsamter Herzschlag konnte anhand von Tierversuchen an Nagetieren aufgezeigt werden (Berg *et al.*, 1996). Dies führt in der Folge dazu, dass das im Darm produzierte Ammoniak in der Leber nicht adäquat abgeführt werden kann. Diese Hyperammonämie kann dann zur hepatischen Enzephalopathie, also einer reversiblen Funktionsstörung des Gehirns, führen (Olde Damink *et al.*, 2002; Romero-Gomez *et al.*, 2009).

Ein weiterer Aspekt der Interaktion ist das bidirektionale neurohumorale Kommunikationssystem (*gut–brain axis*). Dieses verbindet die Aktivitäten des Darms mit denen des Gehirns. Eine Interaktion der Microbiota mit der Gehirnentwicklung und der Gefühlslage kann somit diskutiert werden (Bercik *et al.*, 2012; Collins *et al.*, 2012).

1.1.3 Veränderung der Diversität: Faktoren und Folgen für den Wirtsorganismus

Der Intestinaltrakt eines gesunden Wirtes ist ein relativ stabiles Ökosystem mit einer dynamischen aber konstanten Microbiota. Aufgrund dessen und der in 1.1.2 beschriebenen Kolonialrestistenz können von außen aufgenommene Mikroorganismen sich nur schwer im Intestinum etablieren. Die Zusammensetzung und Stabilität der Microbiota kann allerdings durch mehrere exogene Faktoren beeinflusst werden. So wird diskutiert, ob dem Alter, Erkrankungen des Darms und der Ernährung, sowie der Einnahme von Pre- und Probiotika und Antibiotika eine entscheidende Bedeutung zukommt. Die Folgen können sowohl einen positiven als auch negativen Einfluss auf den Wirtsorganismus ausüben. Im Zuge der körperlichen Entwicklung des Wirtes unterliegt dessen Darm physiologischen, morphologischen und biochemischen Veränderungen. Die Microbiota ist diesen Bedingungen untergeordnet und die Diversität und Zelldichten verändern sich im Zuge dieser Entwicklung. Begründet liegt dies vorrangig an der Qualität der aufgenommenen Nahrung. Im Kindesalter ist die Microbiota vorrangig an die Verwertung von Milchprodukten adaptiert und dominiert durch Laktobazillen, wohingegen die Nahrung im Seniorenalter altersbedingt durch verminderten Geschmacks- und Geruchssinns, herabgesetzte Verdaubarkeit und Ähnlichem stark eingeschränkt ist (Parracho et al., 2007). Die grundsätzlich reduzierte Microbiota zeigt eine Reduktion an Bifidobakterien bei gleichzeitiger Zunahme von Enterokokken, Enterobakterien und Clostridien (Kleessen et al., 1997; Hopkins et al., 2001; Fanaro et al., 2003). Alleine eine Ernährungsumstellung vermag keine Verschiebung des microbiotischen Gleichgewichts mit drastischen Konsequenzen für den Wirt hervorzurufen. Vielmehr wird ein negativer Effekt für den Wirt durch die Summe mehrerer exogener Faktoren, wie Stress oder der Kontakt mit unbekannten Pathogenenen, potenziert (Tannock, 1983).

Eine Verschiebung des Gleichgewichts der Microbiota auf Ebene der Phyla steht vermutlich im Zusammenhang mit der Ausprägung zur Adipositas (Zuo et al., 2011; Gauffin Cano et al., 2012; Karlsson et al., 2012). Nicht nur die Diversität der Bakterien ist verändert, sondern auch das Microbiom und folglich metabolische Prozesse (Turnbaugh et al., 2009a; Turnbaugh et al., 2009b). Das Adipositas-assoziierte Microbiom weist vermehrt Gene auf, die an der Umsetzung von Kohlenhydraten zu kurzkettigen Fettsäuren (SCFA) beteiligt sind. Spekuliert wird ein Anstieg der Firmicutes bei gleichzeitiger Reduktion der Zelldichte von Bacteroidetes (Samuel et al., 2008; Kallus et al., 2012). Weitere Studien mit optimierten Versuchsbedingungen sind notwendig, Ergebnisse validieren um diese zu (Hoyles et al., 2009).

Die Applikation von Medikamenten, wie beispielsweise Antibiotika, hingegen kann die Darmmicrobiota erheblich beeinflussen. Diese werden vorrangig oral eingenommen und erst im Darm resorbiert. Im Intestinum zeigt das Antibiotikum bakteriostatische oder bakterizide Wirkungen. Hierbei kommt es zu einer massiven Störung des microbiotischen Gleichgewichts mit drastischen Folgen für die Microbiota-Wirt Interaktion. Infektionen mit pathogenen Mikroorganismen werden begünstigt, die in der Konsequenz einen enormen Schaden auf den Wirt ausüben können. So begünstigt die Gabe von Breitbandantibiotika eine vermehrte Kolonisierung durch *Clostridium difficile* mit der Folge von schwerer Enterokolitis (Peterfreund *et al.*, 2012).

Die Prebiotika und Probiotika werden vorrangig in der Prävention bzw. in der Behandlung von unterschiedlichen Erkrankungen eingesetzt. Die Prebiotika sind unverdauliche Nahrungsbestandteile, wie beispielsweise das synthetische Disaccharid Lactulose, die einen positiven Effekt auf den Wirtorganismus ausüben. Die Lactulose, angewandt bei einer portosystematischen Enzephalopathie und Verstopfungen, wirkt lokal im Dickdarm und pH-senkend (Prakash *et al.*, 2010). Dies führt zu einer Förderung von säuretoleranten Bakterienspezies, wie z.B. Laktobazillen (Salminen *et al.*, 1997). Die probiotischen Produkte, die aus lebenden Mikroorganismen bestehen, werden in der Prävention von Durchfällen während einer Antibiotikagabe angewandt (D'Souza *et al.*, 2002). Des Weiteren können diese probiotischen Bakterien karzinogene Spaltprodukte der physiologischen Microbiota im Intestinum binden (Goldin *et al.*, 1992; Rusch *et al.*, 2001). Die Konzentration an bakteriellem und entzündlich wirkendem Endotoxin kann reduziert werden, indem Laktobazillen gefördert und gramnegative Bakterien reduziert werden (Bengmark, 1998).

1.2 Das Schwermetall Bismut

1.2.1 Eigenschaften und Darstellung

Das Schwermetall Bismut (Bi) gehört zur fünften Hauptgruppe im Periodensystem. Natürlich tritt es in elemtarer Form als Mineralaggregat auf und weist hier eine kristalline silberweiße Farbe auf. Es zählt zu einem der seltenen Elementen mit einem Anteil in der Erdkruste von 2×10^{-5} % (Zielowski, 1995). Bismut, früher Wismut genannt, wurde im 15. Jahrhundert von Bergleuten im Erzgebirge in Sachsen entdeckt. Beschrieben wurde es allerdings erst 1546 von dem Arzt und Mineralogen Georgius Agricola (Agricola, 1546). Die Herkunft des Namens Wismut geht vermutlich auf das hochdeutsche Wort "wîz" zurück, das soviel bedeutet wie

"weiße Masse". Im Jahre 1979 verbreitete sich allerdings die Bezeichnung Bismut für dieses Schwermetall (Holleman, 2007).

Grundlage für die Gewinnung von Bismut stellen oxidische oder sulfidische Erze dar. Durch unterschiedliche chemische Verfahren kann Bismut aus diesen Erzen gewonnen werden. Das hauptsächlich dreiwertige Element Bismut liegt anorganisch zumeist mit Sauerstoff, Schwefel und instabilen Wasserstoffverbindungen, als auch mit Halogeniden komplexiert vor. In wässriger Lösung sind alle nur schwer oder gar nicht löslich.

1.2.2 Applikationen

Die unterschiedlichsten anorganischen und organischen Bismutverbindungen finden Anwendung sowohl in der Medizin als auch als Zusätze in der Kosmetik und Zahntechnik. Es wird angeblich als "grünes" Metall angesehen (Mohan, 2010). So werden beispielsweise zystische Fibrosen, verursacht durch das opportunistische pathogene Bacterium Pseudomonas aeruginosa, mit organischen Bismut-Thiolverbindungen therapiert. Hierbei konnte eine antibakterielle Wirkung durch Inhibition der Lipopolysaccharidschicht (LPS) belegt werden (Wu et al., 2002). Anorganische Bismutsalze werden als Zahnfüllmaterialien für Wurzelbehandlung eingesetzt (Sharma et al., 1994). Im Fokus stehen auch mit Bismut beschichtete Katheter, die bakteriellen Kontaminationen entgegenwirken können (Schindler et al., 2010). Des Weiteren wird es für Legierungen verwendet, z.B. für Solarzellen oder als Zusatz des Phase-Change-Materials einiger DVD-RAM (Ohmachi et al., 2006; Becerra et al., 2011; Moreno-Garcia et al., 2011).

Das wohl bekannteste Beispiel ist die Applikation von Bismutpräparaten in der Therapie gegen das Bacterium *Helicobacter pylori*, welches zu Gastritis, Magengeschwüren und zu Magenkarzinomen führen kann. Hier hat sich die Gabe von Bismutsalzen, wie colloidalem Bismut-Subcitrat (CBS), längst etabliert. In mehreren klinischen Studien wurde eine Wirksamkeit bestätigt (Nafeeza *et al.*, 1992; Karateev *et al.*, 2005). In folgender Tabelle 2 sind exemplarisch einige Bismutverbindungen und deren Applikationen aufgeführt.

Verbindung	Applikation	Referenz
Bismut-Subsalicylate	Bestandteil in künstlichem Knochenzement	(Hernandez et al., 2007)
Bismut-Camphocarbonate	Röntgenkontrastmittel, Virostatikum	(Lot, 1950; Bravo, 1951)
colloidales Bismut-Subcitrat	bakterielle Erkrankungen des Gastrointestinaltraktes	(Salvador <i>et al.</i> , 2012)
Radioimmunkonjugate mit Antikörpern	Onkologische Radiotherapie	(Sgouros et al., 1999)

Tabelle 2: Bismutverbindungen und deren Applikationen

1.2.3 Toxizität

Nach der Entdeckung des Bismuts im 15. Jahrhundert wurden die unterschiedlichsten Bismutverbindungen beispielsweise bei Durchfällen, Syphilis, Cholera und Wundbrand angewandt. Der erste dokumentierte Tierversuch im Jahre 1794 beschreibt die beobachteten Nebenwirkungen bei Kaninchen bei der Gabe von 0,9 g Bismutoxyd (Schlegel, 1794). Weiterführende Studien thematisieren eine potentielle Bismut-Toxizität, nach der Applikation unterschiedlicher Bismutpräparate (basisches und salpetriges Bismut-Nitrat, Magisterium Bismuthin, Bismut-Ammonium-Citrat). Morphologische Anomalien der Organe und der Einfluss auf die Blutkomponenten wurden anhand von Tierversuchen an Hunden, Katzen und Nagern untersucht (Orfila, 1843; Lussana, 1852; Lewald, 1857; Stefanowitsch, 1869). Begründet waren die Untersuchungen zum einem an dem erhöhten Interesse von Bismut für die Anwendung in der Medizin und mit den dafür notwendigen pharmakologischen Untersuchungen. Zum anderen wurden klinisch vermehrt schwerwiegende Nebenwirkungen nach der Einnahme von Bismutpräparaten beobachtet. Zu diesen Nebenwirkungen zählen beispielsweise Niereninsuffizienzen, Enzephalopathien, Durchfälle, Entzündungen der Mundhöhle (Bismutdiphttheritis, (Dubinsky, 1869)) und eine vermehrte Anreicherung von Bismut in der Niere, die sogenannte Metallniere (Mory, 1883). In den Jahren 1970 bis 1980 wurden zahlreiche Todesfälle in Frankreich auf die Einnahme von Bismutpräparaten, wie Bismut-Nitrat, Bismut-Subsalicylat und Bismut-Subgallat zurückgeführt (Buge et al., 1974). Diese Verbindungen wurden schließlich durch das colloidale Bismut-Subcitrat (CBS) ersetzt, da es löslicher als die oben genannten Verbindungen ist (Ge, 2007b). Mittlerweile ist bekannt, dass von den verschiedensten Bismutverbindungen eine unterschiedliche Toxizität ausgeht (Slikkerveer et al., 1989). Aufgrund ihrer molekularen Struktur besitzen diese unterschiedliche chemische Eigenschaften, wie Löslichkeit oder Hydrophobizität. Zudem wird angenommen, dass die Toxizität mit steigender Absorptionsmenge zunimmt (Grass et al., 2011). Für colloidales Bismut-Subcitrat beträgt die Absorptionsmenge im Intestinum etwa 0,2 % (Gavey et al., 1989). Der Rest wird in einer Reaktion mit intestinalem Wasserstoff als Bismutsulfid gefällt und mit dem Fäzes ausgeschieden (Wagstaff et al., 1988). Das resorbierte Bismut wird über die Blutbahn in die unterschiedlichen Gewebe transportiert und angereichert. Hier ergibt sich grundsätzlich folgende Verteilung mit sinkender Bismutkonzentration: Nieren, Lunge, Milz, Leber, Gehirn und Mukelgewebe (Lee, 1981). Spekuliert wird eine kritische Blutkonzentration an Bismut von $> 100 \ \mu g \ L^{-1}$, bei der toxische Symptome auftreten. Derart hohe Konzentrationen sind auf eine Überdosierung von Bismutpräparaten zurückzuführen. Es kann folglich davon ausgegangen werden, dass eine korrekte Einnahme von Bismutpräparaten per se keinen direkten toxischen Einfluss auf den humanen Organismus bzw. dessen Gewebe ausübt. Lediglich eine Überdosis führt zu den beschriebenen potenten Nebenwirkungen (Thomas et al., 2011a). Des Weiteren ist die Prognose einer Behandlung der Bismut-Intoxifikation recht günstig. Die Intoxifikation ist reversibel und die auftretenden Nebenwirkungen sind nach dem Absetzen der Bismutpräparate und entsprechender Medikation rückläufig. Arzneistoffe, wie beispielsweise Dimercaprol, fördern die renale Ausscheidung von Bismut und senken somit die toxischen Bismutkonzentrationen (Nogue et al., 1985).

Dennoch ist unklar welche molekularen Mechanismen und zusätzlichen Faktoren zu den schwerwiegenden Nebenwirkungen, wie Enzephalopathien oder zu Todesfällen, in Frankreich geführt haben. Die epidemiologische Studie von Martin-Bouyer *et. al.* aus dem Jahre 1981 kommt zu dem Schluss, dass exogenen Faktoren, wie Dauer der Anwendung, Alter oder Ähnlichem keine Bedeutung zugemessen werden kann. Auch ist kein spezifisches Muster an Nebenwirkungen bei Patienten mit und ohne enzephalopathischen Symptomen ersichtlich (Martin-Bouyer *et al.*, 1981).

Ein möglicher Erklärungsversuch ist eine Transformation der Bismutsalze zu toxischen flüchtigen Bismut-Spezies im Intestinum durch Mikroorganismen. Es wurde gezeigt, dass im

Intestinaltrakt Bismut unter anaeroben Bedingungen von einigen Vertretern der Darmmicrobiota in das methylierte und flüchtige Trimethylbismut (Abb. 2) überführt wird.

Abbildung 2: Strukturformel von Trimethylbismut

Hier synthetisieren vorrangig methanogene Archaeen Bismutsalze in methylierte Bismut-Spezies im Zuge der Methanogenese (Thomas *et al.*, 2011c). Des Weiteren entstehen neben dem permethylierten Trimethylbismut auch die teilmethylierten Bismut-Spezies Monomethylund Dimethylbismut, die ebenfalls toxische Effekte hervorrufen können (von Recklinghausen *et al.*, 2008a). Alkylierte Verbindungen sind im Vergleich zu anorganischen Bismutverbindungen toxischer, da diese hydrophoper sind und somit Zellmembranen wahrscheinlich leichter überwinden können (Hirner *et al.*, 2010).

1.3 Vermutete molekulare Ursachen f ür die toxische Wirkung von Bismut-Spezies auf Bakterien

Einige Metalle des Periodensystems sind für bakterielle Prozesse und Stoffwechselwege essentiell. So sind beispielsweise Calcium, Eisen oder Nickel wichtige Elemente, die der intrazellulären Funktionalität dienen. Die Metalle Eisen und Nickel sind wichtige Kofaktoren für Enzyme (Eitinger *et al.*, 2000; Hantke, 2001). Dennoch können Metall- bzw. Schwermetallverbindungen auch negative Effekte in Mikroorganismen hervorrufen (Melnikova *et al.*, 1991). Seit 1970 werden die Interaktionen von Metallen auf die verschiedensten Mikroorganismen intensiv untersucht (Booth *et al.*, 2011). Eine Exposition mit den unterschiedlichsten Metallen kann weitreichende Folgen für die Bakterien haben. So können nicht nur eine Vielzahl essentieller Proteine inhibiert werden, eine Schädigung von Nukleinsäuren kann auch eine drastische Folge sein (Blundell *et al.*, 1969; Dixit *et al.*, 2004). Eine Toxizität ist grundsätzlich element-, verbindungs- und wirtspezifisch und die minimalen inhibitorischen Konzentrationen unterscheiden sich voneinander (Bruggraber *et al.*, 2004; Fulladosa *et al.*, 2007). Physiologische Wachstums- und Mileubedingungen bestimmen ebenfalls die Toxizität (Pearce *et al.*, 1999; Viamajala *et al.*, 2004).

Differenziell die Zellantworten unterschiedlichsten sind daher auch der auf Mikroorganismengruppen die verschiedensten Metallverbindungen. Einige Mikroorganismen aktivieren Resistenzmechanismen, Detoxifizieren die Metallverbindungen (durch Fällung, Bindung an Metalloproteine oder Umwandlung) oder kontrollieren den Imund Export, um einer Metallexposition entgegenzuwirken (Cohen et al., 1991; Kieu et al., 2011).

Für das im Rahmen dieser Arbeit thematisierte Schwermetall Bismut kann eine bakterizide Wirkung für mehrere Bakterien belegt werden (Marshall et al., 1987; Manhart, 1990). in der Bismutverbindungen werden vorrangig Therapie gegen das Pathogen Helicobacter pylori angewandt. Freigesetzte Bismutkationen (Bi³⁺) werden in die Zellwand eingebaut und die bakterielle F1-ATPase Aktivität um bis zu 47 % gehemmt (Beil et al., 1995). Weitere molekulare Effekte sind eine Einleitung von oxidativem Stress und Interferenzen der Nickel-Homöostase bei $MIC_{50} = 20 \ \mu g \ ml^{-1}$ (Ge, 2007a). Zusätzlich inhibieren die Bismutkationen reversibel die keimspezifische Urease, indem die Kationen an Thiolgruppen im aktiven Zentrum gebunden werden (Zhang et al., 2006). Rantidin-Bismutcitrat führt zu einer Zellfragmentierung und wirkt primär auf den Flagellenapparat (Worku et al., 1999). Des Weiteren verringern Bismutverbindungen, wie Bismut-Dimercaprol, Bismut-Subsalicylat oder Bismut-Oxychlorid, die Adhärenz von Bakterien an Oberflächen (Gump et al., 1992; Zhang et al., 2005). Eine Inhibierung der Biofilmbildung oraler Bakterien kann ebenfalls bestätigt werden (Hernandez-Delgadillo et al., 2012).

1.4 Zielsetzung dieser Arbeit

Ziel dieser Arbeit ist es, einen toxischen Einfluss von Bismut-Derivaten auf die physiologische Darmmicrobiota darzulegen. Besonderer Fokus liegt hier auf dem Einfluss von methylierten Bismutverbindungen. Es soll gezeigt werden, wie sich besonders die Methylierung auf die Toxizität gegenüber Darmbakterien auswirkt.

Zur Untersuchung der Toxizität der Bismut-Derivate wurden in der vorliegenden Arbeit zwei physiologische, prokaryotische Darmbewohner als Beispiele ausgewählt. Zum einen *Bacteroides thetaiotaomicron* (Vertreter der Domäne der Bacteria), der als repräsentativer Hauptvertreter der Microbiota angesehen wird und der Rezipient der toxischen Bismutverbindungen ist. Zum anderen *Methanobrevibacter smithii* (Vertreter der Domäne der Archaea), ein repräsentativer methanogener Hauptvertreter, der die methylierten Bismut-Derivate selbst synthetisiert.

Im ersten Schritt soll der toxische Einfluss der ausgewählten Bismut-Spezies, CBS und der methylierten Bismut-Spezies Monomethyl-, Dimethyl- und Trimethylbismut auf das Wachstum von *B. thetaiotaomicron* bestätigt werden. Dies soll sowohl an Reinkulturen als auch in direkter Kombination beider ausgewählter Prokaryonten erfolgen.

Der zweite Teil der vorliegenden Arbeit soll anschließend die molekularen Wirkmechanismen der angewandten Bismut-Spezies aufklären.

2 Methoden

2.1 Materialien

Tabelle 3: Verwendete Chemikalien

Substanz	Bezugsquelle
Acrylamid	ROTH GmbH, Karlsruhe
Agarose	ROTH GmbH, Karlsruhe
Ampicillin	AppliChem, Darmstadt
Benzonase	Invitrogen, Darmstadt
CBS	Sigma-Aldrich Chemie, Taufkirchen
Coomassie Brilliant-Blue R	Serva GmbH, Heidelberg
Cystein	Sigma-Aldrich Chemie, Taufkirchen
Dialyseschläuche	Serva GmbH, Heidelberg
DNS-Ladepuffer	MBI Fermentas, St. Leon Rot; New
(6 x Loading Dye solution)	England Biolabs, Frankfurt
DNS-Längenstandard	MBI Fermentas, St. Leon Rot; New
(GeneRuler® DNS Ladder Mix)	England Biolabs, Frankfurt
Ethidiumbromid	ROTH GmbH, Karlsruhe
Flüssiger Stickstoff	Messer-Griesheim, Frankfurt
Gase für ICP-MS (Ar, He), Gase für	AirLiquide, Essen
Nährmedien (H ₂ /CO ₂)	
HEPES	ROTH GmbH, Karlsruhe
IEF-Strips	Bio-Rad, München
Kanamycin	AppliChem, Darmstadt

Methanol	ROTH GmbH, Karlsruhe
Natriumdodecylsulfat (SDS)	ROTH GmbH, Karlsruhe
pET-Vektor	Novagen, Bioggio-Lugano (CH)
Plasmid-DNS Midi Kits	Qiagen, Hilden
RNeasy Midi Kit	Qiagen, Hilden
Silbernitrat	ROTH GmbH, Karlsruhe
Standardlösungen für ICP-MS	Kraft, Duisburg
Total Protein Kit, Micro Lowry,	Sigma-Aldrich Chemie, Taufkirchen
Petersons's Modification	
Proteinmarker Mark12 unstained	Invitrogen, Darmstadt
Vitamin B12 Ampullen Lichtenstein	Winthrop, Mülheim-Kärlich

Alle nicht aufgeführten Chemikalien wurden von Fluka (Seelze), Merck (Darmstadt), Sigma-Aldrich (Taufkirchen), Roth GmbH (Karlsruhe) oder VWR International (Darmstadt) im analytischen Reinheitsgrad bezogen.

2.2 Geräte

Tabelle 4: Verwendete Geräte

Gerät	Hersteller
2-D Elektrophorese Kammer	Bio-Rad, München
(Protean II xi cell)	
Anaerobenkammer	Coy Lab. Inc., Vertrieb Töpfer GmbH,
	Göppingen
Dialyseschläuche Visking	Medicell InteRNStional, London (UK)
(Ausschlussgrenze 14 kDa)	
Gel-Dokumentations-Gerät	ChemiDoc, BioRad Laboratories GmbH,
	München, Auswertungssoftware Quantity
	One 4.2.1, Bio-Rad

Hochdruckpresse French Press, SLM Aminco Instruments Inc., Vertrieb Fa. Polytech, Heilbronn **ICP-MS** Elan6000, Perkin Elmer, Rodgau IEF Zelle (Protean IEF cell) Bio-Rad, München Mikroskope Olympus BH-2 RFCA, Olympus, Hamburg Olympus CHT, Olympus, Hamburg Peqlab, Erlangen Multi-Imaging Instrument (FUSION-FX7 AdvanceTM) pH-Meter WTW pH 197, WTW GmbH, Weilheim Fotometer Eppendorf BioFotometer, Eppendorf AG, Hamburg Genesys 20, Thermo Spectronics, Rochester, NY, USA Purge-and-Trap Gaschromatografie Eigenbau (PT-GC) Reinstwasseranlage Seralpur pro 90 CN, Elga-Seral, Ransbach-Baumbach Rotameter Supelco, Bellefonte, PA (USA) Consort E835, Owl Separation Systems, Spannungsgeber Portsmouth, USA Macrodrive 5, LKB Bromma, Schweden Zentrifugen Avanti J-25, Beckmann, München Biofuge pico, Heraeus Holding GmbH, Hanau Universal 32R, Hettich GmbH & Co KG, Tuttlingen Eppendorf Centrifuge 5804R, Eppendorf AG, Hamburg Sigma 3K 12, Braun AG, Melsungen Martin Christ GmbH, Osterode am Harz Lyophilisationsanlage (Alpha 1-2, Christ)

2.3 Mikroorganismen: Herkunft der Stämme, ihre Präparation, Lagerung und Analyse

2.3.1 Verwendete Bakterien

Im Rahmen dieser Arbeit wurden die in Tab. 5 aufgeführten Bakterienstämme verwendet.

Tabelle 5: Verwendete Bakterienstämme

Art	Stamm	Domäne	Quelle
Bacteroides thetaiotaomicron	VPI-5482	Bacteria	DSMZ Nr. 2079
Methanobrevibacter smithii	ATCC 35061	Archaea	DSMZ Nr. 861
Escherichia coli	DH5a	Bacteria	Invitrogen
Escherichia coli	K12S	Bacteria	DSMZ Nr. 6966
Escherichia coli	MG 1655	Bacteria	DSMZ Nr. 1839

Die Zellanzucht von *E. coli* und der beiden Stämme *B. thetaiotaomicron* und *M. smithii*, sowohl in Reinkulturen als auch in der Kokultur erfolgte in dem unter 2.3.2 angegebenen Medien und Bedingungen.

2.3.2 Herstellung von Kultivierungsmedien

Alle Kultivierungsmedien wurden für mindestens 20 min bei einer Temperatur von 121 °C und einem Druck von 2 bar autoklaviert. Die hitzeinstabilen Antibiotika Ampicillin und Kanamycin wurden zur Verwendung steril filtriert (Millipore-Membranfilter: $0,22 \,\mu m$ Porendurchmesser) und dem autoklavierten Medium in einer Endkonzentration von 100 bzw. 50 $\mu g ml^{-1}$ zugesetzt. Weitere Zusätze, wie L-Cystein und Vitamin B12 wurden dem Medium nachträglich steril beigefügt.

Tabelle 6: Kultivierungsmedien

Kultivierungsmedium bb (B. thetaiota	aomicron, M.	smithii)
KH ₂ PO ₄	0,5	g
MgSO ₄ x 7 H ₂ O	0,4	g
NaCl	0,4	g
NH ₄ Cl	0,4	g
$CaCl_2 \ge 2 H_2O$	0,05	g
Kaliumacetat	1	g
NaCOOH	2	g
NaHCO ₃	4	g
Bacto TM Brain Heart Infusion	6	g
Hefeextrakt	2	g
Pepton	6	g
Spurenelementlösung SL-10	10	ml
Rezazurin-Lösung	1	ml
Vitamin B12 Komplex	4	ml
dH ₂ O	ad 1000	ml
80 % H ₂ /20 % CO ₂	рН 6,9-7,0	

Spurenelementlösung SL-10		
HCL (25 %, 7,7 M)	10	ml
FeCl ₂ x 4 H ₂ O	1,5	g
ZnCl ₂	70	mg
MnCL ₂ x 4 H ₂ O	100	mg
H ₃ BO ₃	6	mg
CoCl ₂ x 6 H ₂ O	190	mg
$CuCl_2 \ge 2 H_2O$	2	mg
NiCl ₂ x 6 H ₂ O	24	mg
$Na_2MoO_4 \ge H_2O$	36	mg
dH ₂ O	ad 990	ml

Kultivierungsmedium LB (E. coli; aerob und anaerob)			
Pepton	10	g	
Hefeextrakt	5	g	
NaCl	10	g	
dH ₂ O	ad 1000	ml	
	рН 7,0		

(anaerob: 80 % H₂/20 % CO₂)

2.3.3 Erstellung von Wachstumskinetiken

Für die Aufzeichnung der Wachstumskinetiken wurden in regelmäßigen Abständen Proben der Kulturen entnommen, moderat verdünnt und deren Zellzahl lichtmikroskopisch mithilfe einer Neubauer-Zählkammer bestimmt. Die Signifikanz der parallelen biologischen Replikate wurde mithilfe eines t-Tests (*pair-sample* t-Test) bestimmt (Ghurye, 1949). Bis zu einem Signifikanzlevel von 0,05 wurde das Ergebnis als signifikant erachtet (*: 0,05-0,02; **: 0,02-0,009; ***: 0,009-0,001).

2.3.4 Ernte und Lagerung von Zellen

Die Zellen wurden in der logarithmischen oder frühen stationären Wachstumsphase mittels Zentrifugation (15 min, 10.000 x g, 4 °C) pelletiert und bis zur weiteren Verwendung bei -80 °C gelagert.

2.4 Arbeiten mit DNS

2.4.1 Isolation von Plasmid-DNS

Die Plasmid-DNS pET24a(+) wurde aus 50 ml *E. coli* DH5 α Übernachtkulturen mithilfe des Plasmid-DNS Midi Kits (Qiagen) nach Herstellerangaben isoliert und in 30 µl dH₂O eluiert. Die Konzentration und Reinheit der präparierten Plasmid-DNS wurde bei 260 bzw. 280 nm fotometrisch bestimmt. Hierbei entspricht eine OD₂₆₀ von 1 einer Konzentration von 50 µg dsDNS ml⁻¹ (Sambrook, 1989). Präparationen mit einem Verhältnis von OD₂₆₀/OD₂₈₀ \geq 1,8-2,0 wurden für rein befunden und bis zur weiteren Verwendung bei -20 °C gelagert.

2.4.2 Auftrennung von DNS bzw. DNS-Fragmenten mit Hilfe der Gelelektrophorese

Die Agarose-Gelelektrophorese ist ein Separationsverfahren zur Trennung von Nukleinsäuren basierend auf Größe und Konformation (Sambrook, 1989). Im elektrischen Feld wandern Nukleinsäuren aufgrund ihres negativ geladenen Zucker-Phosphat-Gerüsts innerhalb einer Gelmatrix zur Anode. Die Wanderungsgeschwindigkeit ist sowohl abhängig vom Molekulargewicht und der Konformation der eingebrachten Probe als auch von der Stärke des elektrischen Feldes. In folgenden Versuchen wurde aufgrund der geringen Größe der zu
überprüfenden Plasmid-DNS eine Agarosegelkonzentration von 1 % (w/v) in 1 x TBE-Puffer (89 mM Tris, 89 mM Borsäure, 2,5 mM EDTA, pH 8,3) verwendet. Die Plasmid-DNS (200 ng) wurde mit 5 x *Loading Dye* versetzt, auf das Agarosegel aufgetragen und bei einer konstanten Spannung von 75 V in die unterschiedlichen Plasmidkonformationen aufgetrennt.

Im Anschluss an die Elektrophorese wurde das Gel 30 Minuten in einer Ethidiumbromidlösung (2 mg L⁻¹ Ethidiumbromid (v/v) in dH₂O) inkubiert. Das in die DNS interkalierte Ethidiumbromid kann letztlich unter UV-Licht ($\lambda = 254$ nm) visualisiert werden. Zur Dokumentation und Visualisierung der Gele diente das ChemiDoc-System (Bio-Rad, München).

Eine quantitative Auswertung der Bandenintensitäten von Plasmid-DNS in Agarosegelen erfolgte mithilfe des *Multi-Imaging* Instruments.

2.4.3 Untersuchungen zur Modifikation der DNS durch Einwirkung von CBS, MMBi, DMBi, TMBi

Für die Untersuchungen zum schädigenden Einfluss der Bismut-Spezies CBS, MMBi, DMBi und TMBi auf die DNS wurden diese zu je 200 ng Plasmid-DNS entweder in die Flüssigphase oder in den Gasraum (gasdichte *Vials*) appliziert. Nach einer Inkubationszeit von 48 Stunden wurden die kompletten Ansätze auf ein 1 % Agarosegel aufgetragen und auf ein Verhältnis von intakter *supercoiled* (SC) zur geschädigten *open-circular* (OC) Plasmidkonformation hin überprüft.

2.5 Arbeiten mit RNS

2.5.1 Isolation von RNS aus Bakterien

Aus den mit 0 (Kontrolle) und 15 nM TMBi (Probe) inkubierten *B. thetaiotaomicron* Kulturen wurde nach 24 Stunden Inkubation die Gesamt-RNS isoliert. Die Versuche wurden in Triplikaten durchgeführt. Die Isolation erfolgte nach dem Protokoll des Herstellers mit dem RNeasy Midi Kit (Qiagen). Die Konzentration und Reinheit der Präparationen wurden abschließend bei 260 bzw. 280 nm fotometrisch bestimmt. Isolate mit einem Verhältnis von $OD_{260}/OD_{280} \ge 2,0$ wurden für rein befunden und bis zur weiteren Verwendung bei -80 °C gelagert. Die Bestimmung der Integrität, sämtliche Modifikationen der RNS, die Generierung sowie die Auswertung der *Microarrays* wurden vom technischen Service der Firma imaGenes in Berlin durchgeführt (Auftragsnummer 9101080).

2.5.2 Microarrays

Für die folgenden Genexpressionsanalysen wurden *custom designed* 4 x 44 K *Microarrays* verwendet. Die mit Cy3 fluoreszenzmarkierte cRNS wurde aus intakter RNS synthetisiert und auf die *Microarrays* hybridisiert. Die *Arrays* wurden im Folgenden gescannt und die Fluoreszenz an jedem Oligonukleotid detektiert. Hierbei korreliert die Intensität der Fluoreszenz der gebundenen cRNS an das komplementäre Oligonukleotid auf dem *Array* mit der an das jeweilige Oligonukleotid gebundenen Menge an cRNS. Je höher also die Fluoreszenz, umso mehr Gentranskript war in der ursprünglichen Ausgangsprobe vorhanden. Die erhaltenden Daten wurden abschließend normalisiert (MVA-Plots, Box Plots), geclustert und auf ihre Signifikanz (Volcano-Plot, t-Test) hin überprüft. Die Vorgehensweise der Auswertung ist im Ergebnisreport der Firma imaGenes einsehbar (Anhang 4). Eine Expressionsänderung (*fold-change*) ergibt sich aus einem Vergleich (*ratio*) der Kontrollproben zu den TMBi behandelten Proben.

2.6 Arbeiten mit Proteinen

2.6.1 Herstellung von Zellextrakten

B. thetaiotaomicron Zellen, die innerhalb der frühen stationären Phase geerntet wurden, wurden in 5 ml VE-Wasser resuspendiert und durch dreimalige Passage durch eine Hochdruckpresse (*French Press*) bei 80 bar aufgeschlossen. Alle Arbeitsschritte wurden auf Eis durchgeführt und die Proteinextrakte bis zur weiteren Verwendung bei -80 °C aufbewahrt.

2.6.2 Probenvorbereitung für die 2-D Gelelektrophorese

Um störende Effekte bei der 2-D Gelelektrophorese zu minimieren, wurde eine DNSse Behandlung mit Benzonase durchgeführt. Hier wurden die Rohextrakte 1 Stunde bei 37 °C im Wasserbad mit 5 µl Benzonase und 500 µl 10 x Benzonase Puffer (500 mM Tris, 10 mM Mg^{2+} , pH 8, steril filtriert) inkubiert. Anschließend wurden die Proben über Nacht bei 4 °C gegen 5 L VE-Wasser dialysiert (Ausschlussgrenze 12 – 14 kDa).

2.6.3 Bestimmung der Proteinkonzentration nach Lowry (Lowry et al., 1951)

Die Proteinkonzentration wurde mithilfe des Total Protein Kits, Micro Lowry, Petersons's Modification von Sigma nach Herstellerangaben bestimmt. Hierbei wurde die zu testende

Proteinprobe mit dH₂O in einem Gesamtvolumen von 1 ml moderat verdünnt. Die Konzentration wurde über eine Eichkurve mit BSA bekannter Konzentrationen berechnet. Die Proben wurden in Aliqouts zu je 150 μ g bzw. 400 μ g bei -80 °C eingefroren, anschließend gefriergetrocknet und für die isoelektrische Fokussierung aufbereitet.

2.6.4 Isoelektrische Fokussierung

Die gefriergetrockneten Proteinextrakte wurden in 380 μ l IEF Puffer (7 M Harnstoff, 2 M Thioharnstoff, 4 % CHAPS, 5 mM TBP, 0,25 % Servalyt 3–10 Ampholyte (m/v), wenige Kristalle Bromphenolblau) resuspendiert und 1 Stunde lang bei RT inkubiert. Anschließend wurden 330 μ l in einen Schacht des *Focussing-Trays* pipettiert, ein IPG Streifen darauf gelegt und mit Mineralöl überschichtet. Die Streifen wurden 16,5 Stunden lang bei 20 °C passiv rehydriert (ohne Spannung). Die isoelektrische Fokussierung erfolgte bei einer maximalen Stromstärke von 75 μ A unter folgendem Programm: 200 V (rapider Anstieg) 45 min, 500 V (rapider Anstieg) 45 min, 1000 V (rapider Anstieg) einer Murden bis zur weiteren Verwendung bei -20 °C gelagert.

2.6.5 Denaturierendes SDS-PAGE (Laemmli, 1970)

Es wurden 12 % Acrylamid-Gele mit der Größe 20 x 20 cm und 1 mm *Spacern* verwendet. Diese wurden nach folgendem Pipetierschema angesetzt: 17 ml dH₂O, 12,5 ml Trenngelpuffer (1,5 M Tris/HCL, pH 8), 20 ml Acrylamid/bis-Lsg. (30 %), 0,5 ml 10 % SDS-Lösung. Zum Abdichten der Gelkassetten wurden 1,5 ml dieser Lösung mit 6,5 μl TEMED und 28 μl 10 % Ammoniumpersulfat-Lösung versetzt. Dem restlichen Ansatz wurden 25 μl TEMED und 75 μl einer 40 % Ammoniumpersulfat-Lösung hinzugefügt und die Gele bis ca. 0,5 cm unter den oberen Rand gegossen. Das Gel wurde abschließend mit wassergesättigtem 2-Butanol überschichtet, 2-3 Stunden bei RT polymerisiert und über Nacht bei 4 °C gelagert. Die aufgetauten Streifen wurden 10 min in 10 ml Äquilibrierungspuffer (6 M Harnstoff, 30 % Glycerin, 2 % SDS, 50 mM Tris/HCl, pH 8,8) mit 0,1 g DTT und danach 10 min in 10 ml Äquilibrationspuffer mit 0,5 g Iodoacetamid äquilibriert. Die Streifen wurden dann auf das Gel aufgebracht und mit 0,5 % Agarose (versetzt mit Bromphenolblau) überschichtet. Die Elektrophorese wurde zuerst für 45 min bei 20 mA/Gel und dann für 4,5 Stunden bei 35 mA/Gel durchgeführt.

2.6.6 Silberfärbung von SDS-Gelen

Die unter 2.6.5 gelaufenen Gele wurden silbergefärbt. Hierbei wurde nach folgendem Protokoll vorgegangen.

Tabelle 7: Protokoll der Silberfärbung

Schritt	Lösung	Inkubationszeit
Fixierung	200 ml MeOH, 48 ml AcOH, 0,2 ml HCOH (37 %)	über Nacht
Waschen	200 ml EtOH	3 x 20 min
Vorbehandlung	$0,08 \text{ g } \text{Na}_2 \text{S}_2 \text{O}_3 \text{ x } 5 \text{ H}_2 \text{O}$	1 min
Waschen	400 ml dH ₂ O	3 x 20 sec
Färbung	0,8 g AgNO ₃ , 0,3 ml HCOH (37 %)	20 min
Waschen	400 ml dH ₂ O	2 x 20 sec
Entwicklung	24 g Na ₂ CO ₃ , 0,2 ml HCOH (37 %), 1,6 ml Na ₂ S ₂ O ₃ x 5 H ₂ O (1 mg ml ⁻¹)	3 min
Waschen	400 ml dH ₂ O	2 x 2 min
Abstoppen	200 ml MeOH, 48 ml AcOH	
Waschen	200 ml MeOH	10 min

Alle Lösungen wurden auf 400 ml mit dH₂O aufgefüllt.

2.6.7 Coomassiefärbung von SDS-Gelen

Die unter 2.6.5 angefertigten Gele, die für MALDI-TOF-MS Untersuchungen herangezogen wurden, wurden mit Coomassie anstatt mit Silber angefärbt (Kang, 2002).

2.6.8 In-Gel-Verdau von Proteinen

Die ausgewählten *Proteinspots* wurden aus dem Gel ausgestanzt und in 50 µl reinem Acetonitril (ACN) für 5 min dehydriert. Die *Spots* wurden dann in 30 µl Trypsinlösung (40 mM Ammoniumbicarbonat, 3 % ACN, 0,1 ng ml⁻¹ Trypsin) bei 37 °C für 3 Stunden verdaut und die Reaktion durch Zugabe von 20 µl 1 % Trifluoressigsäure (TFA) gestoppt. Die Extraktion der Peptide erfolgte mithilfe einer Festphasenextraktion an einem C18-Sorbens nach Herstellerangaben (ZipTip®, Millipore, Billerica, USA). Die gereinigten Peptide wurden abschließend in einem adäquaten Volumen an Matrixlösung (10 mg ml⁻¹ α -Cyano-4 in 70 % ACN, 29,7 % dH₂O, 0,3 % TFA) auf ein MALDI-*Target* eluiert.

2.6.9 MALDI-TOF-MS Analyse und Proteinidentifikation

Die Proteine bzw. Peptide wurden mittels MALDI-TOF-MS (Matrix-unterstützte Laser-Desorptions-/Ionisations Flugzeit-Massenspektrometrie) analysiert. Die Untersuchungen wurden mit einem *Voyager* DE-STR MALDI-TOF-MS (*Applied Biosystems, Foster City*, USA) im positiven Ionenmodus am Institut für "Hygiene und Arbeitsmedizin" am Universitätsklinikum in Essen durch Herrn Mario Pink durchgeführt. Die Auswertung der *peptide mass fingerprint*-Spektren (PMF-Spektren) erfolgte mittels der Software DataExplorer. Die Proteinidentifizierung der erhaltenen Peaklisten (m/z-Werte) erfolgte mit der Software *Mascot (Matrix Science*, London, England) mit einem Signifikanzniveau von p < 0,05.

2.7 Lipidanalytik

Die im Folgenden beschriebenen Techniken der Lipidanalytik wurden am Institut "DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen" in Braunschweig von Herrn Dr. Brian Tindall vorgenommen. Hierzu wurden *B. thetaiotaomicron* Zellen in der frühen stationären Wachstumsphase, die entweder ohne (Kontrolle) oder mit 30 nM TMBi (Probe) für 48 Stunden exponiert wurden, geerntet und für die Analysen aufbereitet.

2.7.1 Dünnschichtchromatographie von Lipiden

Die Dünnschichtchromathographie ist eine Separationstechnik, die eine Trennung eines Gemisches erlaubt. Diese physikalisch-chemische Methode gewährleistet eine hohe Trennleistung, die unter anderem in der Analyse der Zusammensetzung von Lipiden angewandt werden kann (Privett *et al.*, 1965; Skipski *et al.*, 1965). Bei der Lipidanalytik wird ein hydrophobes Lipidgemisch auf einer mit Kieselgel beschichteten Dünnschichtplatte (stationäre Phase) innerhalb eines hydrophoben oder liphophilen Lösungsmittels (mobile Phase) aufgetrennt (Fuchs *et al.*, 2011).

2.7.2 Gaschromatographie von Fettsäuren

Die quantitative Analyse der Fettsäuren erfolgte gaschromatographisch modifiziert nach Miller und Kuykendall (Miller, 1982; Kuykendall, 1988).

2.8 Analytische Methoden

2.8.1 ICP-MS-Analytik

Das induktiv-gekoppelte Massenspektrometer (ICP-MS) ist eine hochauflösende analytische Methode für den quantitativen Nachweis von Spurenelementen. Sowohl flüssige als auch gasförmige Metall(oid)-Derivate können elementspezifisch analysiert werden (Wickenheiser *et al.*, 1998). Hierzu wird die Probe zunächst zerstäubt und als feines Aerosol in einem bis zu 10.000 °C heißen Argon-Plasma atomisiert und ionisiert. Der erzeugte Ionenstrom wird unter Hochvakuum des *Interfaces* fokussiert, beschleunigt und durch ein Linsensystem geleitet, in dem sowohl Neutral- als auch Photonenteilchen abgetrennt werden. Die erzeugten Ionen werden innerhalb des Quadrupol-Massenfilters nach ihrem Masse zu Ladungsverhältnis (m/z) aufgetrennt. Das Quadrupol besteht aus vier quadratisch angeordneten Metallstäben mit entgegengesetzt gerichteten Potenzialfeldern und überlagerter Wechselspannung. Lediglich die Ionen, die ein definiertes m/z-Verhältnis aufweisen, bleiben bei konstanter Quadrupol Spannung und Frequenz des Wechselfeldes auf einer beständigen Flugbahn. Dies wird in folgender Gleichung ausgedrückt:

$$m/z = 1,39*10^7 + \frac{U_{\text{max}}}{(f^2 * r_0^2)}$$

U_{max}	=	Quadrupol Spannung
f	=	Frequenz des Quadrupolwechselfeldes
r_0	=	Abstand zwischen den Quadrupolstäben
т	=	Masse
z	=	Ladung

Die Ionen mit instabilem m/z-Verhältnis haben eine instabile Flugbahn, werden an den Quadrupolstäben entladen und aus dem System entfernt. Der erzeugte Ionenstrom mit definiertem m/z-Verhältnis wird im Folgenden in einem Detektor erfasst. Dieser ist ein Sekundärelektronenvervielfacher. Die eingeleiteten Ionen treffen auf eine Fotokathode auf, erzeugen einen Stromimpuls, welcher in ein computergesteuertes elektronisches Signal umgewandelt wird. Die Auswertung der erhaltenen Daten erfolgte mit der geräteigenen Software (ELAN® 3.4 ICP-MS *Instrument Control*). Die generierten Diagramme wurden dann mit Microsoft Excel[®] und Origin[®] ausgewertet. Die Betriebsparameter des ICP-MS sind in Tabelle 8 zusammengefasst.

Bestandteil	Parameter
RF-Generator	1350 W
Auxiliarygas	0,4 l min ⁻¹
Kühlgas	12 l min ⁻¹
Zerstäuber	$0,8 - 1,3 \mathrm{l} \mathrm{min}^{-1}$
Sprühkammer	nach Scott
Zerstäubereffizient	3 – 5 %
Fluss des ²⁰⁵ Tl-Standards (selbstansaugend)	$0,005 - 0,01 \text{ ml sec}^{-1}$
Basiswert ²⁰⁵ Tl-Standards 10 ppb	50.000 – 150.000 cps (relative Intensität)

Tabelle 8: Betriebsparameter der ICP-MS

Die Quantifizierung von flüchtigem TMBi erfolgte durch P&T-GC-ICP-MS-Analytik. Hierzu wurde an die ICP-MS eine Gaschromatographiesäule gekoppelt. Die Probe wurde durch *"Purge-and-Trap"* (P&T) zunächst auf einem hydrophoben Trägermaterial (80/100 *Supelcoport*TM) bei tiefen Temperaturen (-196 °C) angereichert und im Folgenden gaschromatographisch aufgetrennt. Durch ein Aufheizen der Säule auf 250 °C werden die angereicherten Analyte dann ihrem Siedepunkt entsprechend in das ICP-MS überführt.

Für die Quantifizierung von TMBi wurde als Interelement-Kalibrierung eine 205 Tl-Standardlösung (10 ppm) in 1 % Salpetersäure in den Messungen mitgeführt. Das Intensitätsverhältnis des Analyten-Signals zur Intensität des Thallium-Signals wurde anhand einer Multielement-Standardlösung in 1 % (v/v) Salpetersäure bestimmt. Dieser relative Empfindlichkeitsfaktor eines Elements (RSF_a) wurde nach folgender Gleichung berechnet:

$$RSF_{a} = \frac{(I_{a} - I_{a0}) \cdot c_{s}}{(I_{s} - I_{s0}) \cdot c_{a}}$$

 $\begin{array}{ll} RSF_{a} &= \mbox{relativer Standardfaktor des Analyten} \\ I_{a} &= \mbox{Intensität des Analyten in der Multielement-Standardlösung} \\ I_{a0} &= \mbox{Intensität des Analyten in der Spüllösung (1 % Salpetersäure)} \\ I_{s} &= \mbox{Intensität des Standards (Tl) in der Multielement-Standardlösung} \\ I_{s0} &= \mbox{Intensität des Standards (Tl) in der Spüllösung (1 % Salpetersäure)} \\ c_{s, c_{a}} &= \mbox{Konzentrationen des Standards bzw. des Analyten in der Multielement-Standardlösung} \end{array}$

Da durch die Zerstäubung nur ein Teil der Standardlösungen in das Plasma geleitet wird, hat auch die Effizienz der Zerstäubung einen Einfluss auf die absoluten Mengenangaben. Diese wurde durch Differenzwägungen der Standardlösung sowie des Ablaufs bei angewandter Analysedauer bestimmt. Des Weiteren wurde der elementspezifische, relative Standardfaktor nach folgender Gleichung berechnet:

$$m_{a} = \int_{t_{1}}^{t_{2}} \frac{l_{a}}{l_{s}} \cdot \frac{v \cdot z}{RSF_{a}} \cdot dt$$

t = Zeit (s) t 1, t 2 = Integrationsflanken $I_a = \text{Intensität des Analytensignals}$ $I_s = \text{Intensität des }^{205}\text{Tl-Standardsignals}$ $v = \text{Fluss der }^{205}\text{Tl-Standardlösung (ml s^{-1})}$ z = Zerstäubereffizienz $RSF_a = \text{Relativer Standardfaktor des Analyten zum Signal der }^{205}\text{Tl-Standardlösung}$

Dieser relative Standardfaktor gibt die absolute Menge des zugeführten Analyt-Ions (m_a) nach Integration des zeitabhängigen Messsignals der Intensitäten des Analyt- und des Standard-Ions nach Abzug der jeweiligen Grundintensitäten in den Integrationsgrenzen an.

2.8.2 Quantifizierung von flüchtigem Trimethylbismut mithilfe von ICP-MS-Techniken

Ein Aliquot von flüchtigem TMBi wurde anhand der unter 2.8.1. beschriebenen P&T-GC-ICP-MS-Methode quantifiziert.

2.8.3 Quantifizierung von flüssigen Bismutverbindungen

Eine moderate Verdünnung der flüssigen Bismutverbindung CBS wurde in einem Endvolumen von 10 g in dH₂0 und einer ²⁰⁵Tl-Standardlösung mit einer Endkonzentration von 10 ppb versetzt. Die so erhaltene Messprobe wurde in die ICP-MS eingeleitet und deren Endkonzentration quantitativ anhand eines Interelementstandards bestimmt.

2.8.4 Ansetzen von Bismutverbindungen

Das Bismut-Subcitrat (CBS) wurde von Sigma-Aldrich bezogen und 48 Stunden bei 30 °C unter stetigem Rühren in dH₂0 gelöst. Die Lösung wurde dann zentrifugiert (14.000 rpm, 30 min, RT) und der Überstand abgenommen. Die Konzentrationsbestimmung des Überstandes erfolgte wie unter 2.8.3 beschrieben.

Das flüchtige Trimethylbismut wurde stets frisch unter Rotlicht im Anaerobenzelt unter N_2/H_2 Atmosphäre (98/2 % (v/v)) angesetzt. Hierzu wurde folgender Reaktionsansatz in 120 ml Serumflaschen zusammenpipetiert: 600 µg ml⁻¹ Rohextrakt bzw. angereicherte Proteinfraktion mit Bismut-Methylierungsaktivität aus *Methanosarcina mazei* Gö1, 50 mM HEPES, 10 µM Bismut-Ammonium-Citrat, 12,5 µl Methylcobalamin und 1500 µM Coenzym M (CoM). Die Ansätze wurden dann mindestens 30 min bei RT inkubiert und anschließend ein Aliquot quantitativ, wie unter 2.8.1 beschrieben, bestimmt.

Die teilmethylierten Bismut-Spezies MMBi und DMBi wurden mit freundlicher Unterstützung von der Arbeitsgruppe "Umweltanalytik", Universität Duisburg-Essen, bereitgestellt.

3 Ergebnisse

3.1 Einfluss von colloidalem Bismut-Subcitrat (CBS) auf das Wachstum von *B. thetaiotaomicron*

Die Zugabe von colloidalem Bismut-Subcitrat (CBS) in der logarithmischen Wachstumsphase zu Kulturen von *B. thetaiotaomicron* führt zu einer konzentrationsabhängigen Verminderung der maximalen Zelldichte 48 Stunden nach Applikation. Die Zellen befinden sich zu diesem Zeitpunkt in der frühen stationären Wachstumsphase. Hierbei tritt eine Hemmung des Wachstums um 50 % bei einer Konzentration von 500 μ M ein (MIC₅₀). Bei einer Konzentration von 2000 μ M wird das Wachstum nahezu komplett eingestellt (Abb. 3 I).

Abbildung 3: Wachstumshemmung von *B. thetaiotaomicron* 48 Std. nach der Zugabe von CBS (n=3) Die Zugabe von CBS zu wachsenden Kulturen von *B. thetaiotaomicron* (I) führt nach 48 Std. zu einer konzentrationsabhängigen Reduktion der maximalen Zelldichte in der frühen stationären Phase. Abb. II zeigt 20 µl Zelltropfen mit schwarzem Niederschlag von Bismutsulfid (* bezeichnet das Signifikanzniveau laut t-Test).

Bei der Durchführung der *in-vitro* Kinetiken fiel auf, dass sich etwa 24 Stunden nach Zugabe von Bismut-Subcitrat ein schwarzer Niederschlag bildete und somit die Kulturen verfärbten. Dieser Niederschlag tritt ebenfalls konzentrationsabhängig auf, mit einem Maximum bei

500 μ M äquivalent zum MIC₅₀ Wert. Mit steigender CBS Konzentration nimmt die Präzipitierung mit sinkender Zelldichte wieder ab (Abb. 3 II). Bei diesem Niederschlag handelt es sich um Bismutsulfid, welches in Gegenwart von CBS und Schwefelwasserstoff (H₂S), welches im anaeroben Metabolismus produziert wird, ausfällt. Die innerhalb der Kulturen produzierte Menge an H₂S wurde quantitativ bestimmt und beträgt 1 mg L⁻¹/1 x 10⁹ Zellen ml⁻¹ (Abb. 4).

Abbildung 4: Konzentrationsbestimmung an Schwefelwasserstoff in *B. thetaiotaomicron* Kulturen In Kulturen *von B. thetaiotaomicron* mit einer Zelldichte von $1 \ge 10^9$ Zellen ml⁻¹ ist 1 mg L⁻¹ Schwefelwasserstoff quantifizierbar.

Um einen Langzeiteffekt der Wachstumshemmung und der damit verbundenen Reduzierung der Zellvitalität abzuschätzen, wurden 1×10^3 mit CBS exponierte stationäre Zellen in frisches Medium überführt. Das Wachstum wurde 24 und 48 Stunden nach der Rekultivierung überprüft (Abb. 5).

Werden stationäre *B. thetaiotaomicron* Zellen, denen zuvor CBS zugegeben wurde, erneut und ohne eine weitere Zugabe von CBS frisch inokuliert, so zeigt sich nach 24 und 48 Std., dass die Kulturen, denen ursprünglich CBS zugesetzt wurde (graue Balken) eine deutlich geringere Zelldichte aufweisen, als Zellen denen ursprünglich kein CBS (Kontrolle) zugesetzt worden war (schwarze Balken; * bezeichnet das Signifikanzniveau laut t-Test).

Diese weisen sowohl nach einer Wachstumsdauer von 24 als auch nach 48 Stunden eine geringere Zelldichte auf, die ebenfalls konzentrationsabhängig ist. Als Ausnahme sind die Kulturen zu erwähnen, die zuvor mit 2000 µM inkubiert worden sind. Die Zelldichten sind im Vergleich zur Kontrolle auf einem gleichen Niveau. Dies könnte damit bergründet werden, dass durch die überhöhte Konzentration von freigesetzten Bismutkationen der Zugang von CBS zum Zellinneren blockiert wird.

Die Exposition von *B. thetaiotaomicron* Kulturen mit CBS führt zusammenfassend zu einer konzentrationsabhängigen Wachstumshemmung mit anhaltender Wirkung. Werden diese Kulturen rekultiviert, so zeigt sich ein deutlich geringeres Wachstum im Vergleich zur unbehandelten Kontrolle.

3.2 Einfluss methylierter Bismut-Spezies auf das Wachstum von B. thetaiotaomicron

Die Zugabe von methylierten Bismut-Spezies in der logarithmischen Wachstumsphase zu Kulturen von *B. thetaiotaomicron* führt zu einer konzentrationsabhängigen Verminderung der maximalen Zelldichte 48 Stunden nach Applikation (Abb. 6). Die Zellen befinden sich in der frühen stationären Wachstumsphase. Die Applikation von TMBi (Abb. 6 I) in die Gasphase bedingt eine Hemmung des Wachstums um 50 % bei einer Konzentration von 30 nM (MIC₅₀). Abb. 6 II verdeutlicht den Zeitpunkt innerhalb der logarithmischen Wachstumsphase bei einer Zelldichte von etwa 1 x 10^8 , bei dem die Kultur aliquotiert und das TMBi appliziert wurde. Bei einer Konzentration von 100 nM in der Gasphase wird das Wachstum komplett eingestellt. Diese Zellen erreichen die maximale Zelldichte von etwa 2 x 10^9 nicht, sondern verbleiben auf dem Niveau der Zelldichte ab dem Zeitpunkt der Applikation von TMBi.

Die Zugabe von TMBi (I) in die Gasphase oder von den löslichen methylierten Bismut-Spezies MMBi und DMBi (III) in die Flüssigphase zu wachsenden Kulturen von *B. thetaiotaomicron* führen zu einer konzentrationsabhängigen Wachstumshemmung. Abb. II zeigt die Kinetik mit Zugabe von TMBi. Die Kultur wurde innerhalb der logarithmischen Phase aliquotiert und mit unterschiedlichen TMBi Konzentrationen exponiert. Die Zellzahlen wurden 48 Std. nach Zugabe bestimmt (* bezeichnet das Signifikanzniveau laut t-Test).

Vergleichbare wachstumshemmende Effekte wurden bei der Applikation der löslichen teilmethylierten Spezies Monomethyl- und Dimethylbismut in die Flüssigphase erreicht (Abb. 6 III). Eine Wachstumshemmung ist hier ebenfalls konzentrationsabhängig mit einem $MIC_{50} \ge 480$ nM für beide Spezies. Die Zugabe von 480 nM MMBi führt zu einer Verminderung der maximalen Zelldichte von 29 % und die von DMBi zu einer von 40 %.

Werden nun $1 \ge 10^3$ dieser exponierten frühen stationären Zellen in frisches Medium überführt, so zeigt sich nach 24 Stunden eine geringere Wachstumsdichte im Vergleich zur unbehandelten Kontrolle (Abb. 7). Die Zellen, zu denen zuvor TMBi appliziert wurde, erreichen auch 48 Stunden nach Rekultivierung die maximale Zelldichte nicht (I). Im Gegensatz dazu, befinden sich die mit teilmethylierten Bismut-Spezies rekultivierten Zellen, nach 48 Stunden beinahe auf dem Niveau der maximalen Zelldichte der unbehandelten Kontrolle (II).

I

Abbildung 7: Wachstumshemmung von rekultivierten mit methylierten Bismut-Spezies inkubierten *B. thetaiotaomicron* Kulturen (n=3)

Werden stationäre *B. thetaiotaomicron* Zellen, zu denen zuvor methylierte Bismut-Spezies gegeben wurden, erneut und ohne eine weitere Zugabe von Bismut frisch inokuliert, so zeigt sich nach 24 und 48 Std., dass die Kulturen, die zuvor mit TMBi (I) exponiert wurden (graue Balken) eine deutlich geringere Zelldichte aufweisen als Zellen ohne Exposition (schwarze Balken). Die Zellzahlen der zuvor mit den teilmethylierten Bismut-Spezies exponierten Kulturen (II) erreichen nach 48 Std. der Rekultivierung ein zur Kontrolle vergleichbares Niveau (* bezeichnet das Signifikanzniveau laut t-Test).

Die Exposition von *B. thetaiotaomicron* Kulturen mit den methylierten Bismut-Spezies MMBi₍₁₎, DMBi₍₁₎ und TMBi_(g) führt zusammenfassend zu einer konzentrationsabhängigen Wachstumshemmung. Eine Hemmung des Wachstums der teilmethylierten Spezies um 50 % tritt im Vergleich zum TMBi erst bei höheren Konzentrationen ein. Dies lässt den Schluss zu, dass mit steigender Anzahl an Methylgruppen die Stärke der Wachstumshemmung zunimmt. Für die Toxizität methylierter Bismut-Spezies ergibt sich somit die Reihenfolge MMBi < DMBi < TMBi mit steigenden wachstumshemmenden Effekten.

Werden diese Kulturen rekultiviert, so zeigt sich nach 24 Stunden ein deutlich verlangsamtes Wachstum mit verringerter Zelldichte im Vergleich zur unbehandelten Kontrolle. Nach einer Rekultivierungszeit von 48 Stunden erreichen TMBi exponierte Zellen die maximale Zelldichte nicht, wohingegen MMBi und DMBi exponierte Zellen annähernd ein vergleichbares Zellniveau wie die unbehandelte Kontrolle aufweisen.

Das permethylierte flüchtige TMBi führt somit zu einer irreversiblen Langzeitschädigung der *B. thetaiotaomicron* Zellen. Die löslichen Spezies MMBi und DMBi hingegen führen zu einer kurzfristigen reversiblen Schädigung, dessen Wirkung nach 48 Stunden der Rekultivierung nachlässt.

Analoge Experimente wurden an den zwei *E. coli* Stämmen K12S und MG1655 unter anaeroben Bedingungen durchgeführt (Abb. 8). In beiden Fällen führt eine Zugabe von 30 nM TMBi in die Gasphase zu keiner Reduktion des Wachstums beim Erreichen der stationären Wachstumsphase.

E. coli MG1655 führen zu keiner ersichtlichen Wachstumshemmung (6 %).

3.3 Etablierung eines Kokultursystems

Die wachstumshemmenden Effekte von TMBi auf Reinkulturen von *B. thetaiotaomicron* wurden nun auf ihre Relevanz für die simulierte Situation im Darm hin bestätigt. Bei den Experimenten mit Reinkulturen von *B. thetaiotaomicron* wurde das enzymatisch hergestellte TMBi mithilfe einer gasdichten Spritze in die Gasphase injiziert und führte zu der bereits beschriebenen Verminderung der maximalen Zelldichte in der frühen stationären Phase. Bei der Situation im Darm wird allerdings das TMBi in geringeren Mengen kontinuierlich, vorrangig von methanogenen Archaeen, synthetisiert und in die Gasphase abgegeben. Daher wurde ein Kokultursystem etabliert, welches zwei separate Flüssigkeitsbereiche mit gemeinsamer Gasphase bietet (Abb. 9). Der TMBi-Produzent *M. smithii* produziert hier kontinuierlich TMBi, welches dann über die gemeinsame Gasphase zum Akzeptor *B. thetaiotaomicron*, transferiert werden kann.

Abbildung 9: Aufbau des Kokultursystems Das dargestellte Kokultursystem bietet zwei separate Flüssigkeitsbereiche unter einer gemeinsamen Gasphase. Dieses System erlaubt den Transfer von durch *M. smithii* produziertem TMBi (Donor) über die Gasphase zu der Kultur von *B. thetaiotaomicron*.

Die Zugabe von 80 µM Bismut-Subcitrat zu der wachsenden Kultur von *M. smithii* führt nach 48 Stunden zu einer um 47 % verminderten maximalen Zelldichte in der frühen stationären Phase der *B. thetaiotaomicron* Kultur (Abb. 10).

Abbildung 10: Wachstumshemmung von *B. thetaiotaomicron* im Kokultursystem 48 Std. nach der Zugabe von 80 µM CBS zur *M. smithii* Kultur (n=3)

Die Zugabe von 80 µM CBS zu wachsenden Kulturen von *M. smithii* (t: *treated*) führt nach 48 Std. zu einer konzentrationsabhängigen Hemmung der maximalen Zelldichte in der frühen stationären Phase der *B. thetaiotaomicron* Kultur im Vergleich zur unbehandelten Kontrolle (ut: *untreated*, * bezeichnet das Signifikanzniveau laut t-Test).

Um die Menge an transferiertem TMBi zu quantifizieren, wurde parallel hierzu derselbe Versuchsansatz mit einer chemischen Falle aus silberbeschichteten Silikat-Perlen (*Silikabeads*) anstatt der *B. thetaiotaomicron* Kultur verwendet. 48 Stunden nach der Zugabe von 80 μ M CBS zu der Kultur von *M. smithii* wurden die Silikat-Perlen mit 5 % HNO₃ eluiert, sterilfiltriert und die Menge an Bismut mithilfe der ICP-MS-Analytik bestimmt. Insgesamt wurden 1,64 ± 0,04 nmol Bismut, korrespondiert zu 33 nM TMBi, an die Perlen (*Beads*) gebunden. Diese Konzentration entspricht dem MIC₅₀ in dem unter 3.2 (Abb. 6 I) beschriebenem *in-vitro* Experiment.

Das Kokultursystem bestätigt somit, dass unter *in-vivo*-nahen Bedingungen eine Verminderung der maximalen Zelldichte ebenfalls erfolgt. Es ist daher davon auszugehen, dass *in-vivo* vergleichbare Wachstumshemmungen von *B. thetaiotaomicron* zu erwarten sind.

3.4 Molekulare Wirkmechanismen von Bismut-Derivaten

3.4.1 Molekulare Wirkmechanismen von colloidalem Bismut-Subcitrat auf DNS

Eine Exposition von B. thetaiotaomicron mit colloidalem Bismut-Subcitrat (CBS) führt, wie beschrieben, 48 Stunden nach Zugabe zu unter 3.1 einer signifikanten und konzentrationsabhängigen Verminderung der maximalen Zelldichte in der frühen stationären Wachstumsphase. Die verwendeten hohen Konzentrationen an CBS (250 bis 2000 μ M) haben anscheinend intrazellulär weitreichende Folgen für das Bacterium. In aeroben in-vitro Versuchen konnte eine Schädigung von Plasmid-DNS durch CBS detektiert werden. Hierzu wurden 200 ng Plasmid-DNS 48 Stunden bei 37 °C mit unterschiedlichen Konzentrationen an CBS von 250 µM bis 2000 µM inkubiert und die DNS anschließend über Elektrophorese analysiert. Plasmid-DNS kann in drei Konformationen vorliegen: in einer linearen, opencircular und einer supercoiled Form. Bei der linearen Form liegt ein Doppelstrangbruch im Plasmid vor. Die open-circular Form weist einen Einzelstrangbruch in dem ringförmigen Molekül auf. Bei der supercoiled Form handelt es sich um eine kompakte Form des intakten Plasmids. Diese drei Konformationen verhalten sich unterschiedlich in einem elektrischen Feld und können daher nach gelelektrophoretischer Auftrennung deutlich voneinander differenziert werden. Eine aerobe Inkubation des Plasmids mit CBS führt dazu, dass die Plasmid-DNS vermehrt in der open-circular (OC) Form vorliegt (Abb. 11).

Abbildung 11: Mit Ethidiumbromid gefärbtes 1 % Agarosegel nach Modifikation des Plasmids durch CBS unter aeroben Bedingungen

200 ng Plasmid-DNS pET24a(+) in dH₂O wurde 48 Std. mit unterschiedlichen CBS Konzentrationen bei 37 °C unter aeroben Versuchsbedingungen inkubiert. Im Agarosegel kann schneller migrierende *supercoiled* DNS (SC) von langsamer migrierender *open-circular* DNS (OC) unterschieden werden.

Bei der Auswertung der Signalintensitäten wird deutlich, dass das Plasmid vermehrt von der SC in die OC Form überführt wird (Abb. 12).

Abbildung 12: Signalintensitäten der *supercoiled* und *open-circular* DNS nach 48 Std. aerober Inkubation des Plasmids mit CBS (n=3)

Die Signalintensitäten der *supercoiled* (SC) und *open-circular* (OC) DNS Formen zeigen mit steigender CBS Konzentration eine Zunahme der OC Form bei gleichzeitiger Abnahme der SC Form.

In der unbehandelten Kontrolle zeigt sich 48 Stunden nach Inkubationsbeginn ein ungefähres Verhältnis von 50 % OC zu 50 % SC. Der relativ hohe Anteil der OC Form der Kontrolle ist auf die lange Lagerung zurückzuführen. Die Plasmide, denen CBS zugegeben wurde, werden vornehmlich und konzentrationsabhängig von der SC in die OC Form überführt. Es kommt folglich vermehrt zu Einzelstrangbrüchen. Bei 500 μ M CBS liegt das Verhältnis bei etwa 40 % SC zu 60 % OC und bei 2000 μ M CBS bei 25 % SC zu 75 % OC.

3.4.2 Molekulare Wirkmechanismen von Trimethylbismut

3.4.2.1 Wirkung auf die Zellmembran

Da die äußere und innere Zellmembran von *B. thetaiotaomicron* die Barriere zum extrazellulärem Milieu darstellt, wurde der Einfluss von TMBi auf beide Zellmembranen dieses Bacteriums untersucht. In einem ersten Schritt wurden Membranlipide qualitativ dünnschichtchromatographisch aufgetrennt. In Abbildung 13 ist exemplarisch je eine Platte dargestellt, anhand der eine Trennung in Phospholipide (PL), Aminophospholipide (PN), Phosphatidylethanolamine (PE) und Lipide (L) ersichtlich ist.

Abbildung 13: Lipidanalyse von *B. thetaiotaomicron* Kulturen ohne und mit einer 30 nM TMBi Exposition für 48 Std. (n=3)

Die Lipide von *B. thetaiotaomicron* Kulturen ohne (Kontrolle) und nach der Zugabe von 30 nM TMBi (Probe) wurden dünnschichtchromatographisch aufgetrennt.

Hierbei entsprechen PL1–PL4 unidentifizierten Phospholipiden, wobei PL3 und PL4 möglicherweise Phosphosphingolipide sind. PN1 und PN2 entsprechen unbekannten Aminophospholipiden/-sphingolipiden. Mit PE sind Phosphatidylethanolamine und mit L1–L2 Lipide bezeichnet.

Der Vergleich der unbehandelten Kontrolle mit der mit 30 nM TMBi exponierten Probe zeigt, dass sich die Lipidzusammensetzung qualitativ nicht unterscheidet.

In einem zweiten Versuch wurde der Einfluss von TMBi auf die Fettsäuren untersucht. Hierzu wurden diese gaschromatographisch separiert. Die erhaltenden *Peaks* konnten weitestgehend den dazugehörigen Fettsäuren zugeordnet werden (Anhang 1). Werden nun die jeweils drei biologischen Replikate der Kontrolle sowie der Proben graphisch gegenübergestellt, so ergibt sich keine Änderung der Fettsäurenzusammensetzung (Abb. 14).

Abbildung 14: Analyse von Fettsäuren nach einer Exposition von 30 nM für 48 Std. (n=3) Kulturen von *B. thetaiotaomicron* wurden 48 Std. ohne (Kontrolle) oder mit einer Konzentration von 30 nM TMBi (Probe) in der Gasphase inkubiert. Anschließend wurden die Fettsäuren gaschromatographisch analysiert.

Alle zuordbaren Typen an Fettsäuren unterscheiden sich qualitativ nicht im Vergleich von Kontrollen zu den Proben. Lediglich ist eine prozentuale Verschiebung der einzelnen Fettsäuren ersichtlich, die allerdings auf Messungenauigkeiten der unterschiedlichen Probenmenge zurückzuführen sind.

Zusammenfassend lässt sich aufgrund dieser Versuche keine Wirkung von flüchtigem Trimethylbismut auf die Lipide und Fettsäuren belegen.

3.4.2.2 Wirkung auf das Transkriptom

Das flüchtige permethylierte Trimethylbismut zeichnet sich im Vergleich zum Bismut-Subcitrat durch seine höhere Hydrophopizität aus und kann daher die äußere und innere Zellmembran überwinden. Intrazellulär kann dies weitreichende Folgen haben. Denkbar ist daher, dass TMBi eine Wirkung auf die Genexpression ausübt. So wurden Kulturen von *B. thetaiotaomicron* innerhalb der frühen logarithmischen Wachstumsphase mit einer Konzentration von 15 nM TMBi im Gasraum exponiert. Nach einer Inkubation von 24 Stunden und beim Erreichen der späten logarithmischen Wachstumsphase wurden die Zellen geerntet und die gesamte RNS isoliert. Eine Genexpressionsanalyse wurde mithilfe von *Microarrays* durchgeführt.

Auffällig ist, dass Gen-Kategorien, die Gene betreffen, die an Prozessen der Lipid-, Polysaccharid-Biosynthese und an der Zellwand-Biogenese beteiligt sind, durchweg runterreguliert sind (Abb. 15).

Abbildung 15: Transkriptions-Aktivitäten verschiedener Gen-Kategorien von *B. thetaiotaomicron* nach Exposition von 15 nM TMBi für 24 Std. (n=3) Kulturen von *B. thetaiotaomicron* wurden 24 Std. mit einer Konzentration von 15 nM TMBi in der Gasphase inkubiert. Anschließend wurde die Gesamt-RNA isoliert und ein Genexpressionsmuster mithilfe von *Microarray*-Experimenten erstellt. Dargestellt sind die Anzahl an Genen ausgewählter Gen-Kategorien deren Transkription hoch- bzw. runterreguliert wurden.

Im Kontrast hierzu werden Gene, die für Transporter kodieren hochreguliert. Besonders auffällig sind zudem erhöhte Prozesse, die im Zusammenhang mit Rekombinationsvorgängen

an der DNS stehen. Hier sind 15 Gene signifikant hoch- und drei Gene runterreguliert. Die Gene kodieren für Transposasen, Integrasen und Rekombinasen.

Weitere Analysen zeigen darüberhinaus, dass vier Gene des Fructoseoperons BT 1757-1763 nach TMBi Exposition runterreguliert werden (Abb. 16). Das Bacterium kann keine Fructose mehr degradieren und ist in seinem Energie-Metabolismus und folglich in seinem Wachstum behindert.

Abbildung 16: Polysaccharid-Lokus BT 1757-1763 von B. thetaiotaomicron

Dargestellt ist das Fructose Operon von *B. thetaiotaomicron*. Es besteht aus mehreren Genen, die sowohl an der Erkennung, der Bindung, dem Transport und der Degradation von Fructose beteiligt sind. Gene, die mit einem Stern markiert sind, werden bei einer Exposition mit 15 nM TMBi runterreguliert.

Folgende Abbildung 17 verdeutlicht die Komplexität der Genexpressionsveränderung der Gene von *B. thetaiotaomicron* nach einer Exposition mit TMBi. Hier sind der Arginin- und Prolin- und der Purin-Metabolismus anzuführen, deren Gene in ihrer Expression verändert sind. Die entsprechenden Gene des Arginin- und Prolin-Metabolismus werden hochreguliert (blaue Sterne) mit Ausnahme eines Gens. Die Gene, die dem Purin-Metabolismus zugeordnet werden können, sind alle runterreguliert (rote Sterne). Die entsprechenden Gene und ihre Expressionsänderung sind in Anhang 3 einsehbar.

PURINE METABOLISM Alanine, aspartate and glutamate metabolism Histidine metabolism Pentose phosphate pathway Thiamine metabolism D-Ribose-1P AICAR 5.4.2.7 Ribose-FGAN 632.6 + 0 - 4322 + 4 - 2.42.7 + 0 - 5-Amino-4 inuidazolecarboxyamida 2.7.6.1 2.4.2.14 3413 21.2.2 - 6.3.5.3 6331 4.1.1.21 -0-5.4.2.2 AppppA Adenylyisulfate PRPP SAICAR ATPO - 3.6.1.17 2.1.2.3 6.3.4.-6.3.4.18 5,499,18 O L-Glutamine 3.6.1.21 5'-Acetylphosphoadenosine (mitochondria) 0-3.6.1.20 -04 6.3.4.7 FAICAR 2.7.7.53 3.6.1.41 2.7.1.25 3.6.1.13 dIDP O◀ 2.7.4.6 ►O 3.6.1.19 ►O 5-Carboxyamino-1-(5-phospho-D-ribosyl)imidazole 3'-Phospho-adenylate 5'-Benzovlphosphoadenosin ADPribose 3.6.1.-PDE 2.1.2.3 3.5.4.10 (mitochondria 0-3.6.1.20-ApppA O-3.6.1.19 3.6.1.29 Ò 3.6.1.9 -0 3'-Phosphoadenylyl-sulfate 3.6.1.8 pppGpp 3.6.1.11 ppGpp ►O◀ Admylo 3.1.4.17 succinate 4.3.2.2 3.1.7.2 Inosine 5'-tetraphosphat 3.6.1.40 6.3.4.4 JDP 3.6.1.6 3.1.4.53 2.7.4.6 3.6.1.19 0-3.6.1.14 0 3',5'-cyclic GMP Q 2.7.7.8 3.6.1.8 OATP 3.6.1.5 3.6.1.5 3.6.1.8 ITP 2',3'-cyclic AMP 2.7.7.8 Urea cycle Adenosine 5'-tetraphosphate 5',5'-cyclic 1.7.1.7 2.7.6.5 3.6.1.5 3.6.1.3 3.6.4.1 2.7.4.6 3.6.1.5 3.1.4.16 3.6.1.14 0 4.6.1.1 4.6.1.2 3.6.1.8 3.6.1.15 5'-Butyrylphospho 3.6.1.20 2.7.1.40 3.6.1.6 NH3 O 3.6.1.5 3'-AMP 🕹 GMP 6.3.4.1 XMP Riboflavin metabolism 2.7.4.8 3.6.1.5 4.6.1.1 2.7.7.48 2.7.4.6 ATP ₽ð 1.1.1.205 3.5.4.6 2.7.4.3 GDP IMP GTP 6352 * 2.7.7.6 2.7.1.40 ADP RNA AMP 3.6.1.17 2.7.1.73 3.6.1.19 1.17.4.2 1.17.4.1 XppppX 3.1.3.5 2.7.1.73 3.1.3.6 Folate biosynthesis 3.1.3.5 0-3.6.1.17 ➡0 3.1.3.5 1.17.4.1 1.17.4.2 GppppG 🕹 2.7.1.20 2.7.1.74 2.4.2.8 3.2.2.12 XTP dGTI ►O dATP 2.7.4.6 DNA 2746 2.7.7.7 DNA O 2.7.7.7 dADP OdGDP 2.7.1.40 27140 2.4.2.7 Xanthosine Guanosine 3.5.4.4 Inosin 2.7.4.8 3.2.2.4 3.6.1.19 2.7.4.11 2.7.4.3 2.4.2.22 2.4.2.15 2.4.2.8 3.2.2.2 3.2.2.8 2.4.2.1 3.2.2.1 2.4.2.1 Deoxyadenosine 3.2.2.1 3.2.2.8 Deoxyguanosine 2.4.2.7 MAh 2.4.2.1 2.4.2.-27176 2.7.1.113 2.4.2.1 2.4.2.15 3.2.2.1 3.2.2.7 GMB 2428 2.4.2.22 3.2.2.1 3.2.2.8 1173 3543 2421 2.4.2.1 3.5.4.2 1.17.1.4 2',3'-cyclic GME Guanine Xanthine Adenine 3.5.4.4 3.1.3.6 Hypoxanthine Glycine , serine and threonine metabolism 0-3.1.4.16 2.4.2.1 1.17.1.4 1.17.3.2 3'-GMP Urate-3-ribonucleoside Deoxyinosine 3.5.2.-5-Amino-4-imidazole Ureidoglycine 3.5.3.-O 2.4.2.16 ► OUrate carboxylate 5-Hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-3.5.3.9 5-Ureido-4-imidazole carboxylate 11413113 Glycine 04 2.1.2.4 04 3.5.2. 04 3.5.4.8 04 1.7.3.3 411--04 353 Carbamovi Ureido (S)-Allantoin Oxalureate Formimino-Imidazolone athoysdate phosphate CO2 glycolate glycine 0-3.5.2.17 +Q 3.5.2.5 111.154 +0 2.1.3.5 ►O 2.7.2.2 4.1.1.-3.5.3.4 +04 -5-Hydroxyisourate Allantoate 43.2.3 NH3 O 5.1.99.3 Urea O 3.5.3.19 (R)-Allantoin Glyoxylate and dicarboxylate metabolism 3.5.1.5 ò-NH3 Glyoxylate Č∢ CO₂

Abbildung 17: Darstellung des Arginin- und Prolin- und Purin-Metabolismus

Gene, die den Signalwegen des Arginin- und Prolin- oder Purin-Metabolismus zugeordnet werden konnten, sind mit einem Stern markiert. Diese Gene sind nach einer 24 Std. TMBi Exposition in ihrer Genexpression verändert. Rote Sterne signalisieren eine Runterregulation und blaue Sterne eine Hochregulation des entsprechenden Gens.

3.4.2.3 Wirkung auf das Proteom

Bismutverbindungen sind chemisch reaktiv. Es kann folglich davon ausgegangen werden, dass das TMBi, nachdem es die Zellmembranen überwunden hat, aufgrund unterschiedlicher chemischer Prozesse und Mileubedingungen weiterreagiert. Zum einen könnte angenommen werden, dass die Methylgruppen vom TMBi abgespalten oder die freien Bismutkationen an intrazelluläre Komponenten gebunden werden. Eine Übertragung von Methylgruppen auf zelluläre Komponenten wäre hier denkbar. Für Bismutionen konnte in *in-vitro* Versuchen mit Bismut-Subcitrat, welches gegenüber dem Bacterium *Helicobacter pylori* eine bakterizide Wirkung zeigt, ein Transfer von Bismutkationen auf Proteine des Bacteriums aufgezeigt werden. Nachweislich binden Bismutkationen hier an acht bakterielle Proteine, wie z.B. an die Urease und die Protease (Tsang *et al.*, 2012). Offenbar wird die bakterizide Wirkung von Bismut-Subcitrat auf *Helicobacter pylori* auf die Interaktion von Bismutkationen mit bakteriellen Proteinen zurückgeführt (Ge *et al.*, 2007).

Um einen Einfluss von TMBi auf das gesamte Proteom von *B. thetaiotaomicron* abzuschätzen, wurden Gesamtzellproteinextrakte von Kulturen, die zuvor ohne oder mit 30 nM TMBi exponiert wurden, zweidimensional aufgetrennt. In der ersten Dimension wurden die Proteine in einem pH-Bereich von 3-10 (nicht-linear) entsprechend ihrem isoelektrischem Punkt fokussiert und anschließend durch eine SDS-PAGE der Größe nach aufgetrennt. In folgender Abbildung 18 sind exemplarisch zwei Aufnahmen von silbergefärbten 2-D SDS-Gelen gezeigt. Durch den Vergleich der Proteinspots auf dem Kontrollgel (Kontrolle) mit den Proteinspots, die zuvor mit TMBi exponiert wurden (Probe), sind jeweils zwei Proteinspots ersichtlich, die sich unterscheiden. Die restlichen Proteinspots sind sowohl auf dem Kontrollgel als auch auf dem Probengel wiederzufinden. Die Mehrzahl der Proteine wird somit vermutlich nicht durch die Zugabe von TMBi beeinflusst.

Abbildung 18: Silbergefärbte 2-D SDS-Gele von 150 µg Proteinextrakten ohne und mit 30 nM TMBi (n=3) Dargestellt sind exemplarisch zwei silbergefärbte 2-D SDS-Gele von 150 µg Proteinproben von *B. thetaiotaomicron* Kulturen, die ohne oder mit 30 nM TMBi für 48 Std. exponiert wurden. Die Gesamtproteinextrakte wurden in der ersten Dimension in einem pH-Bereich von 3-10 (nicht-linear) und in der zweiten Dimension ihrer Größe entsprechend aufgetrennt.

Die Spots 2 und 3 auf dem Kontrollgel finden sich nicht auf dem Probengel wieder, wohingegen die Spots 1 und 4 lediglich auf dem Probengel auftauchen. Äquivalente 2-D Gele wurden dann mit je 400 µg Proteinextrakt angefertigt, mit Coomassie *Brilliant-Blue* gefärbt, die Spots 1-4 aus den entsprechenden Gelen ausgestanzt und für weiterführende MALDI-TOF Untersuchungen aufbereitet. Diese Untersuchungen wurden am "Institut für Hygiene und Arbeitsmedizin" am Universitätsklinikum in Essen von Herrn Mario Pink durchgeführt. Hier konnten die mit Trypsin verdauten Peptide massenspektrometrisch vermessen und die ermittelten Sequenzendaten signifikant den entsprechenden Proteinen zugeordnet werden (Tab. 9).

Der Spot 2 auf dem Kontrollgel wurde identifiziert als Protein mit der Bezeichnung Q8A1E3, äquivalent zum *B. thetaiotaomicron* Gen BT_3723. Bei Spot 3 handelt es sich um das Protein Q89Z77 (Gen: BT_4500). Die Spots 1 und 4 des Probengels wurden den Proteinen Q8A1E3 (Gen: BT_3723) bzw. Q8AB83 (Gen: BT_0227) zugeordnet.

Tabelle 9: Übersicht über die sich unterscheidenden Proteinspots der Proteinextrakte von *B. thetaiotaomicron* nach Inkubation mit und ohne 30 nM TMBi nach massenspekrometrischer Auswertung

Angegeben sind die Protein- und Genbezeichnungen der Proteinspots nach massenspektrometrischer Auswertung.

Spot	Gel	Protein	Gen
1	+ TMBi	Q8A1E3	BT_3723
2	- TMBi	Q8A1E3	BT_3723
3	- TMBi	Q89Z77	BT_4500
4	+ TMBi	Q8AB83	BT_0227

Bei allen vier Proteinspots handelt es sich um putative Proteine im Genom von *B. thetaiotaomicron*, deren Klassifizierung aufgrund von Sequenzähnlichkeiten vorgenommen wurde. Obwohl das Genom bereits sequenziert ist, wurde eine Validierung der Funktion der hier gefundenen Proteine noch nicht vorgenommen (Xu *et al.*, 2003). Um dennoch eine Funktion der Proteine abzuschätzen, wurden die erhaltenen Aminosäuresequenzen in die Datenbank von NCBI eingegeben und mit anderen bakteriellen Sequenzen innerhalb der Datenbank abgeglichen. Als Ergebnis wurden für jeden Proteinspot charakteristische Sequenzmotive erhalten (Abb. 19). Diese Sequenzmotive resultieren aus einer umfangreichen

vergleichenden Sequenzanalyse, für die mehrere bakterielle Sequenzen herangezogen wurden (Marchler-Bauer *et al.*, 2013).

Abbildung 19: Sequenzmotive der Proteinsequenzen

Werden die Aminosäuresequenzen in der *online* Datenbank von NCBI gegen andere bekannte Sequenzen abgeglichen, so ergeben sich für die einzelnen Proteinspots die dargestellten Sequenzmotive.

Für Spot 1 und 2 ergibt sich ein Sequenzmotiv zu bereits charakterisierten Proteinen der äußeren Zellmembran (OmpH). Der Spot 3 enthält eine DUF3988 Domäne. Diese Domäne gehört zu einer uncharakterisierten Proteingruppe, die bei Sequenzanalysen des gesamten Microbioms auffällig ist (Ellrott *et al.*, 2010). Der Proteinspot 4 wird einer OMP_b-brl (β -barrel) und einer OM_Kanal Klasse zugeordnet. Die β -barrel Struktur ist divers und Struktureinheit mehrerer Proteine der äußeren Zellmembran. Bei OM_Kanälen handelt es sich um Porine. Diese Porine, lokalisiert in der bakteriellen äußeren Zellmembran, sind unspezifische Kanäle, die unter anderem an dem Transfer kleiner hydrophiler Moleküle beteiligt sind (Nakae, 1984).

Anhand von weiterführenden Sequenzvergleichen (PSI-BLAST) konnten detaillierte Informationen über die gefundenen Sequenzmotive erhalten werden (Altschul *et al.*, 1997; Altschul *et al.*, 2005). Die besten fünf Ergebnisse sind in Tabelle 10 zusammengefasst. Anhand dieser Analysemethode besitzen Spot 1 und 2 eine Sequenzzähnlichkeit von 100 % zum putativen Protein OmpH (Skp) von *B. thetaiotaomicron* selbst.

 Tabelle 10: Detaillierte Sequenzanalyse (PSI-BLAST) der gefundenen Sequenzmotive der Proteinspots 1-4

 4

Aufgeführt sind jeweils die besten fünf Ergebnisse einer weiterführenden Sequenzanalyse, um verwandtschaftliche Beziehungen darzustellen. Diese Methode gewährleistet einen Sequenzvergleich der Proteinspots mit Einträgen in der Datenbank von NCBI.

Der *SW-score* (Smith-Waterman) ist ein Algorithmus und gibt die Signifikanz an (Smith *et al.*, 1981). Die Identität (Ident) ist ein Maß für die Sequenzähnlichkeit.

Fett gedruckt sind die Ergebnisse, dessen Sequenzvergleiche in den folgenden drei Abb. 20-22 dargestellt sind.

Beschreibung	SW- score	Ident (%)
Spot 1 und 2		
putatives äußeres Membranprotein OmpH [<i>Bacteroides thetaiotaomicron</i> VPI-5482]	823	100
putative äußeres Membranprotein [Bacteroides fragilis 638R]	823	81
äußeres Membranprotein OmpH [Bacteroides fragilis YCH46]	823	81
äußeres Membranprotein [Bacteroides fragilis NCTC9343]	823	81
äußeres Membran Chaperon Skp [Bacteroides helcogenes P 36-108]	647	64
Spot 3		
putatives Protein [Parabacteroides distasonis ATCC 8503]	1102	54
putatives Protein [Bacteroides fragilis YCH46]	176	23
putatives Protein [Bacteroides helcogenes P 36-108]	163	22
putatives exportiertes Lipoprotein [Bacteroides fragilis 638R]	164	21
putatives Protein [Alistipes finegoldii DSM 17242]	157	21
Spot 4		
putatives Protein [Owenweeksia hongkongensis DSM 17368]	225	31
putatives Protein [Porphyromonas gingivalis TDC60]	249	27
putatives Protein [Porphyromonas gingivalis W83]	249	27
putatives Protein [Porphyromonas gingivalis ATCC 33277]	245	27
OmpA/MotB Domäne Protein [Niastella koreensis GR20-10]	228	27

SW- Ident Beschreibung score (%) Spot 1 und 2 äußeres Membran Chaperon Skp [Bacteroides helcogenes P 36-108] 647 64 -----MGVFAQNLKFGHINAQEIVSAMPEFAKAQSDIEALDKQLTSELQR 45 Spot 1/2 MLKKIALLVVMFALPLGAMAQ-AKFAHMNSQEVISVMPEFTKAQADLDALSKQYQKEMET 59 Skp .*:: Spot 1/2 TQEEFNKKYQEFQQAIAKDSLPANIAERRQKELQDMMQRQEQFQQEAQQQMQKAQADAMA 105 SQAEFNRKYQELLQ--QQDSLPKNILERRQKEINEMAQRQEAFQQEAYQAMQKAQQDAMT 117 Skp :* ***:***: * Spot 1/2 PIYKKLDDAIKAVGAAEGVIYIFDLARTPVAYVNESQSINTPKVKTQLGIK 156 Skp PIYKKLDEAIQAVGKAEGVIYIFDLARTAIPFVGTQSTDVTAKVKTQLGIK 168 ******

Abbildung 20: Alignment der Sequenz von Proteinspot 1 und 2 mit der Sequenz des Skp-Chaperons aus *Bacteroides helogenes* P36-108

Dargestellt ist ein Vergleich der Aminosäuresequenzen des Proteinspots 1 und 2 mit der des Skp-Chaperons aus *Bacteroides helcogenes* P 36-108. Die beiden Sequenzen weisen eine Ähnlichkeit von 64 % auf (* = gleiche Aminosäuren; := Aminosäuren mit vergleichbaren biochemischen Eigenschaften; .= Aminosäuren mit unterschiedlichen biochemischen Eigenschaften).

Beschreibung

SW- Ident score (%)

164 21

Spot 3

putatives exportiertes Lipoprotein [Bacteroides fragilis 638R]

Spot 3 Lipoprotein	MNFKFRITKYLAVSALAVLLLGACSKNNIYMDVAYPNGEENSGGEEGNNDNPDKKDALIT MNKRLKLWIGCCLCMLGAPGLTGCSEQVPGEPGTEEGDPVSLRFSLY ** :::: .:. * * .** *: .* ::::* .	60 47
Spot 3 Lipoprotein	FSASVEGRNITRAMSPMGKGLQSWLCAYPSNTTNTIEGEPVGEGNYITSSPGVLTGIQSYRAKADEASTRADAATDMADGKTFCIYAFPAGAS-TTTTEPLDHKVYTVKGGVATG: : * : * : * : * : *:::: * **: * *::	120 101
Spot 3 Lipoprotein	KMYLSNDIYSFYAVSCNSSNPAPTFTNGKSEALSNGVDYLWWHALHQDVTSSQ ELYLYRGTYDLYLVSYNSSTEVSELKTDGTIQVSNGKDFMYTSLKGIVVQPNQTGENMMD ::** *.:* ** *** : : :*** *::: * :	173 161
Spot 3 Lipoprotein	VNIPITYQHVATQVVITITGGENITLNKVLSATITPTKPGAFMDLSTGIISSE VVLPAPFKRLGAQIKVSVKAGDFQPVTPTSLVVNSFEMGGLRASLPYTLGGITWGAVANE * :* .:::::::::::::::::::::::::::::::::	226 221
Spot 3 Lipoprotein	VSYDKPADMGINDFTVQYIMLPLKSSDPMALTMELMVNGESFSRTYNTT TFATTQSFTGFTNNTASHDIKTSRESTPVVVLPVDGSAMISFKVNLTVGYNDNGVSRKTT : *:.: *: ::**:* :::::* *. :: :**	275 281
Spot 3 Lipoprotein	ITPPDNILAAGNSYLFRAVINENSVSFGNVSVKDWTDVDESGNPLYPIQ NTYPAEIQKVLLPGMTYMFAFTLTFYGILDPADLTLAIGEYESTVTLDSDEMGK * * :::* .* :*:* .:. ::::*: * ** *:	324 335
Spot 3 Lipoprotein	D 325 -	

Abbildung 21: Alignment der Sequenz von Proteinspot 3 mit der Sequenz des putativen Lipoproteins aus *Bacteroides fragilis* 638R

Dargestellt ist ein Vergleich der Aminosäuresequenzen des Proteinspots 3 mit der des putativen Lipoproteins aus *Bacteroides fragilis* 638R. Die beiden Sequenzen weisen eine Ähnlichkeit von 21 % auf (* = gleiche Aminosäuren; := Aminosäuren mit vergleichbaren biochemischen Eigenschaften; .= Aminosäuren mit unterschiedlichen biochemischen Eigenschaften).

Beschreibung

Spot 4

OmpA/MotH	B Domäne Protein [Niastella koreensis GR20-10]	228	27
Spot 4 OmpA/MotB	MKKILLSLLALGCFSAANAQTFRFGPTVGGNLNISDETKTKIGFAV MKKLYALLLLTSTLYSANAQ-MRLGIIGGPQSSSVKETNYLPEWNKTTEPFYTKRSGLHI ***: ** . : :**** :*:* * :**: *: :	746 59	
Spot 4 OmpA/MotB	GAKAEMNFNNPENGWFMDASVLFNNRNRQSENYFNNETKLTQCWKYSTYSLLVPVN GIIGEIPLG-YTNKFFFQPGLIFSNKGRKFARYYDTSSAKTDTLYYSNNFYTNYIDMPLN * .*: :. * :*:::*.*: .*: .*: *: *: *: *: *:	102 1118	
Spot 4 OmpA/MotB	VGYKFRLSDNLNLLAAVGPYADFGLTGTDKVTTTDAKGHSKEEKMSSNVYGDK-LFNRVN IAVKLRMGKKSNFLISAGPYLSFFYSGKSSWEKRDTSLHFKQDESNIQVGKNTGMVKTFD :. *:*:: *:* :.*** .* :* *:. * *::: . :* :. :: :	1 161) 178	
Spot 4 OmpA/MotB	FGFDAKVGVEIAKHYQLSLSYSRGFTNIFKGGLNTKAQDLQLGFSYMF FGVNARVGFELG-NVLLTGFISQGLSNFYKATYNGTFKNHVIGASLGFWLNKKVVLTNDK **.:*:**.*:.: *: *: *:*::*. * . :: :* * *	209 237	
Spot OmpA/MotB	DGDGVPDKADACPDVPGSAKAGGCPDKDGDGVADAVDKCPDVAGLARDRGCPILDRDNDT	297	
Spot OmpA/MotB	VLDDVDQCPDVPGTFKYHGCPIPDTDGDGLNDEVDLCPDKAGPAEFNGCPIPDTDGDGVN	I 357	
Spot OmpA/MotB	DKEDKCPTVAGTVANKGCPEIKKEIVEKVNYAAKKIFFITGSDKIALESHSALNNVVAIL	417	
Spot OmpA/MotB	RTNPTLKLLIEGHTDNVGKPATNLILSQKRADAVKNYLVQKGLDANRLEAKGYGQEKPVD	9 477	
Spot OmpA/MotB	DNSTPAGRAANRRVELHLSOO 498		

Abbildung 22: Alignment der Sequenz von Proteinspot 4 mit der Sequenz der OmpA/MotB Protein-Domäne aus Niastella koreensis GR20-10

Dargestellt ist ein Vergleich der Aminosäuresequenzen des Proteinspots 4 mit der OmpA/MotB Protein-Domäne aus *Niastella koreensis* GR20-10. Die beiden Sequenzen weisen eine Ähnlichkeit von 27 % auf (* = gleiche Aminosäuren; := Aminosäuren mit vergleichbaren biochemischen Eigenschaften; .= Aminosäuren mit unterschiedlichen biochemischen Eigenschaften).

Dieser Eintrag ist identisch mit der zuvor eingegebenen Sequenz von Proteinspot 1 und 2. Eine Sequenzähnlichkeit von 64 % besteht zum validierten Skp-Chaperon aus *Bacteroides helcogenes* P 36-108. Der Proteinspot 3 wird als putatives Lipoprotein angegeben und der Spot 4 ist ein Protein mit einer OmpA/MotB Domäne. Das OmpA (Porin H) ist ein Hauptbestandteil der äußeren bakteriellen Zellmembran (Singh *et al.*, 2009). Das MotB Protein (*motility protein*) ist zusammen mit MotA ein Bestandteil des bakteriellen

SW- Ident score (%) Flagellenmotors, die in der Peptidoglykanschicht verankert sind (Kojima *et al.*, 2009; Andrews *et al.*, 2013).

Eine genauere Zuordnung von Protein 3 und 4 mit Sequenzähnlichkeiten von 21 % bzw. 27 % erscheint in Ermangelung weiterer konkreter Hinweise nicht möglich. Die Proteine bleiben somit putativ. Lediglich die Sequenz von Spot 1 und 2 deutet darauf hin, dass es sich um ein Skp-Chaperon handelt. Ein Auszug des Sequenzvergleiches mit den signifikantesten Ergebnissen ist in Tabelle 11 gezeigt. Die Auswertung der Ergebnisse verdeutlicht, dass die zu vergleichende Sequenz des Spots 1 und 2 ein Protein der äußeren Membran darstellt. Konkret ist ein Skp-Chaperon (*seventeen kilodalton protein*) denkbar, was anhand eines direkten Sequenzvergleiches (lila unterlegt in Tab. 11) deutlich wird. Mit einer Signifikanz (*e-value*) von 1e-59 und einer Identität (Ident) von 64 % ist es homolog zum bereits validierten Skp-Chaperon des Bacteriums *Bacteroides helcogenes* P 36-108. Auch die kalkulierte Größe mit 17,7 kDa und einem isoelektrischem Punkt von 5,3 stimmt mit der von charakterisierten Skp-Chaperonen überein (Rice, 2000).

Tabelle 11: Ergebnis des Sequenzvergleiches von Spot 1 und 2 in der Datenbank von NCBI

Aufgelistet sind homologe Proteine absteigend nach ihrer Identität, die homolog zur Aminosäuresequenz von Spot 1 und 2 sind. Die *Query cover* definiert die Größe der eingegebenen Sequenz, die für den Sequenzvergleich in Prozent herangezogen wurde. Die Identität (Ident) gibt die Übereinstimmung der Suchsequenz mit einer bekannten Sequenz innerhalb der Datenbank an. Der *e-value* gibt die Signifikanz an. Grau unterlegt sind die Ergebnisse, die eine konkrete Zuordnung liefern. Das Protein Skp ist lila dargestellt.

Beschreibung	Query cover (%)	e- value	Ident (%)
putatives äußeres Membranprotein OmpH [Bacteroides thetaiotaomicron VPI-5482]	100	1e-87	100
kationisches äußeres Membranprotein OmpH [<i>Bacteroides sp.</i> 1_1_14]	100	1e-87	99
äußeres Membranprotein OmpH [Bacteroides faecis MAJ27]	100	2e-87	99
putatives Protein HMPREF1061_03461 [<i>Bacteroides caccae</i> CL03T12C61]	100	9e-81	87
putatives Protein BACCAC_03271 [<i>Bacteroides caccae</i> ATCC 43185]	100	1e-80	87
kationisches äußeres Membranprotein OmpH [Bacteroides finegoldii DSM 17565]	100	2e-80	87
putatives Protein BACOVA_03541 [<i>Bacteroides ovatus</i> ATCC 8483]	100	3e-79	87
konserviertes putatives Protein [Bacteroides sp. 2_1_22]	100	3e-79	86
konserviertes putatives Protein [Bacteroides sp. 2_2_4]	100	5e-79	86
putatives Protein BSGG_1858 [Bacteroides sp. D2]	100	1e-78	86

putatives Protein HMPREF1203_03450 [<i>Bacteroides fragilis HMW 610</i>]	'100	1e-83	81
konserviertes putatives Protein [Bacteroides fragilis 3_1_12]	100	3e-83	80
äußeres Membranprotein OmpH [Bacteroides fragilis YCH46]	100	9e-83	80
putatives Protein HMPREF1068_00762 [<i>Bacteroides nordii</i> CL02T12C05]	100	3e-66	75
putatives Protein HMPREF1071_01134 [<i>Bacteroides salyersiae</i> CL02T12C01]	100	3e-61	72
äußeres Membranprotein [Bacteroides clarus YIT 12056]	100	2e-67	70
putatives Protein BACEGG_03616 [<i>Bacteroides eggerthii</i> DSM 20697]	100	5e-67	70
putatives Protein BACSTE_00400 [<i>Bacteroides stercoris</i> ATCC 43183]	100	8e-67	69
putatives Protein BACINT_00635 [<i>Bacteroides intestinalis</i> DSM 1739]	100	4e-64	68
äußeres Membranprotein [Bacteroides fluxus YIT 12057]	100	2e-62	68
putatives Protein BACCELL_01232 [<i>Bacteroides cellulosilyticus</i> DSM 14838]	100	5e-65	67
konserviertes putatives Protein [Bacteroides sp. D20]	100	2e-63	67
putatives Protein BACUNI_00447 [<i>Bacteroides uniformis</i> ATCC 8492]	100	2e-63	67
äußeres Membranprotein [Bacteroides sp. 4_1_36]	100	6e-64	66
putatives Protein HMPREF9447_01902 [<i>Bacteroides oleiciplenus</i> YIT 12058]	100	2e-62	66
äußeres Membran Chaperon Skp (OmpH) [<i>Bacteroides helcogenes</i> P 36-108]	100	1e-59	63
äußeres Membranprotein OmpH [<i>Bacteroides vulgatus</i> ATCC 8482]	100	8e-43	57
putatives Protein BACDOR_04939 [<i>Bacteroides dorei</i> DSM 17855]	100	2e-42	56
putatives Protein HMPREF1076_02714 [<i>Parabacteroides goldsteinii</i> CL02T12C30]	100	4e-29	43
äußeres Membranprotein [Tannerella forsythia ATCC 43037]	100	1e-17	40
äußeres Membranprotein [Paraprevotella xylaniphila YIT 11841]	100	2e-21	35
äußeres Membranprotein [Prevotella sp. oral taxon 473 str. F0040]	100	5e-19	34

Die Sequenzvergleiche verdichteten insgesamt den Verdacht, dass es sich bei diesem Protein aus Spot 1 und 2 von *B. thetaiotaomicron* um ein Skp-Chaperon handelt. Das Skp-Chaperon ist sowohl in der äußeren Membran als auch im Periplasma lokalisiert (Entzminger *et al.*, 2012). Dieses Chaperon ist zusammen mit weiteren Proteinen maßgeblich an der Zellwand-Biogenese beteiligt (Bos *et al.*, 2007). Entsprechend dem Skp Protein-Homolog aus *E. coli*
wird es im Cytoplasma der Zelle synthetisiert und über den Sec-Weg ins Periplasma zum Schutz teilgefalteter Proteine entlassen (Harms *et al.*, 2001).

Ein Sequenzvergleich auf Basis der Sekundärstrukturen verdeutlicht die strukturellen Übereinstimmungen von α -Helices, *coil*-Strukturen und β -Faltblättern. Darüberhinaus wird der Unterschied der Sequenzen des Chaperons Skp aus *E. coli* K12 mit dem putativen Skp aus *B. thetaiotaomicron* auf Primärstrukturebene hervorgehoben (Abb. 23).

Skp_Bt Skp Ec	MGVFAQNLKFGHINAQEIVSAMPEFAKAQSDIEALDKQLTSELQRTQEEFNKK	53 60
- I	···· ··· ··· ··· ··· ··· ··· ··· ··· ·	
Skp_Bt Skp_Ec	YQEFQQAIAKDSLPANIAER R Q K ELQDMMQRQEQFQQEAQQQMQ <mark>K</mark> A <mark>Q</mark> ADAMAPIYKKL ETDLQAKMKKLQSMKAGSDRTKLEKDVMAQRQTFAQKAQAFEQDRARRSNEERGKLVTRI * * ** * * * * * * * * *	111 120
Skp_Bt Skp_Ec	DDAIKAVGAAEGVIYIFDLARTPVAYVNESQSINTPKVKTQLGIK 156 QTAVKSVANSQDIDLVVDANAVAYNSSDVKDITADVLKQVK 161	

Abbildung 23: Sequenzvergleich des Skp-Chaperons aus *E. coli* K12 mit dem putativen Skp aus *B. thetaiotaomicron*

Dargestellt ist ein Sequenzvergleich des Skp-Chaperons aus *E. coli* K12 (Skp_Ec) mit dem putativen Skp-Chaperon des Proteinspots 1 und 2 aus *B. thetaiotaomicron* (Skp_Bt). Sich innerhalb der Sequenz des Chaperons aus *B. thetaiotaomicron* unterscheidende Aminosäuren sind teilweise farbig gekennzeichnet. Die schwefelhaltige Aminosäure Methionin (M) ist blau unterlegt. Die Aminosäuren Arginin (R; rot) und Lysin (K; grün) können durch Methylgruppen modifiziert werden. Die Symbole oberhalb der Sequenz geben die Sekundärstrukturen an ($-\alpha$ -Helix, $-\beta$ -barrel). Die gelb hinterlegten Aminosäuren E49, K97 und Q99 sind putative Lipopolysaccharid-Bindestellen (* = gleiche Aminosäuren; := Aminosäuren mit vergleichbaren biochemischen Eigenschaften; .= Aminosäuren mit unterschiedlichen biochemischen Eigenschaften).

Ein Vergleich der Sequenzen des Skp-Chaperons beider Bakterien verdeutlicht die Sequenzunterschiede, besonders der erhöhten Frequenz der Aminosäuren Methionin (blau), Arginin (rot) und Lysin (grün), bei *B. thetaiotaomicron* im Vergleich zu *E. coli*. Diese Positionen können theoretisch entweder durch Bismutionen oder Methylgruppen modifiziert werden und folglich das Chaperon funktionell beeinträchtigen.

Ein weiterer Hinweis, dass es bei dem putativen Protein von *B. thetaiotaomicron* um ein Skp-Chaperon handeln könnte, liefert die Anwesenheit von putativen Lipopolysaccharid-Bindestellen (LPS). Die Aminosäuren E49, K97 und Q99 sind äquivalent zu publizierten putativen LPS-Bindestellen von Skp-Chaperonen (Ferguson *et al.*, 1998; Walton *et al.*, 2004). Ein Vergleich der Tertiärstrukturen des Skp-Chaperons aus *E. coli* mit dem vermeintlichen Skp aus *B. thetaiotaomicron* bestätigt weiterhin, dass es sich bei dem Proteinspot 1 und 2 um das beschriebene Chaperon handelt könnte (Abb. 24). Die Tertiärstruktur des Proteinspots 1 und 2 wurde hierzu zunächst virtuell berechnet, um dann mit der bereits bestimmten Kristallstruktur des Skp-Chaperons aus *E. coli* verglichen zu werden (Chen *et al.*, 2009). Die dreidimensionalen Tertiärstrukturen wurden abschließend übereinandergelegt (Krissinel, 2004; Krissinel, 2005). Auffällig ist in beiden Fällen die durch den hohen Anteil an alphahelicalen Strukturen geprägte Tertiärstruktur.

Abbildung 24: Overlay der Tertiärstrukturen des Skp-Chaperons aus *E. coli* mit der aus der Aminosäuresequenz abgeleiteten Tertiärstruktur des putativen Skp-Chaperons aus *B. thetaiotaomicron* Das Overlay der Tertiärstrukturen des Skp-Chaperons aus *E. coli* (dunkelblau, grau) mit dem Skp aus *B. thetaiotaomicron* (hellblau) bestätigt eine Sequenzähnlichkeit anhand homologer Tertiärstrukturen. Das Skp aus *E. coli* ist als Trimer dargestellt. Das Overlay wurde online am ebi-Server angefertigt (Protein structure comparison service Fold at European Bioinformatics Institute; http://www.ebi.ac.uk/msdsrv/ssm).

Auffällig ist darüberhinaus, dass es sich bei Spot 1 des Probengels und Spot 2 des Kontrollgels um das selbe Protein handelt. Diese beiden Spots unterscheiden sich allerdings geringfügig in ihrer Position im 2-D Gel in ihrem isoelektrischem Punkt. Diese zusätzliche Veränderung in ihrem isoelektrischem Punkt könnte durch eine Anlagerung eines Metallions bedingt sein.

Es kann spekuliert werden, dass eine TMBi Exposition des Bacteriums *B. thetaiotaomicron* eine Veränderung des Skp-Chaperons bedingt und in der Folge zu den beobachteten wachstumshemmenden Effekten führt. Im Gegensatz hierzu wird das Wachstum des Bacteriums *E. coli* K12 durch eine TMBi-Applikation nur minimal (6 % Hemmung) beeinflusst.

4 Diskussion

4.1 Wachstumshemmung von *B. thetaiotaomicron* nach der Zugabe von unterschiedlichen Bismut-Spezies

Die Zugabe von colloidalem Bismut-Subcitrat (CBS) zu wachsenden Kulturen von *B. thetaiotaomicron* führt zu einer konzentrationsabhängigen Wachstumshemmung. Die wachstumshemmende Wirkung wurde in einem Bereich von 250 bis 2000 μ M CBS überprüft. Der MIC₅₀ liegt bei 500 μ M, die Zellzahlen sind hier um 50 % gegenüber der unbehandelten Kontrolle reduziert. Bei einer Konzentration von 2000 μ M CBS wird das Wachstum gänzlich eingestellt, die Kulturen verbleiben auf einem gleichen Zellzahlniveau (1 x 10⁸ Zellen ml⁻¹) wie zum Zeitpunkt der Applikation. Diese wachstumshemmenden Effekte von CBS auf Kulturen von *B. thetaiotaomicron* treten bereits 24 Stunden nach Zugabe des Bismutsalzes auf. Das applizierte CBS wird konzentrationsabhängig, von dem innerhalb der wachsenden Kultur produziertem Schwefelwasserstoff, als schwarzes Bismutsulfid ausgefällt. Das Maximum entspricht hierbei dem MIC₅₀ von 500 μ M. Die Zugabe höherer Konzentrationen an CBS führt zu reduzierten Produktionsraten an Schwefelwasserstoff, bedingt durch die steigenden wachstumshemmenden Effekte, und somit zu geringeren Mengen an sichtbar ausgefälltem Bismutsulfid.

Um die Dauer der bakteriostatischen Wirkung von CBS abzuschätzen, wurden Rekultivierungsversuche unternommen. Hier zeigte sich, dass rekultivierte Kulturen, die zuvor mit den unterschiedlichen Konzentrationen an CBS behandelten wurden, und nun mit einer distinkten Zellzahl (1×10^3 Zellen ml⁻¹) in frisches Medium überführt wurden, ebenfalls ein konzentrationsabhängiges vermindertes Wachstum bereits nach 24 Stunden im Vergleich zur zuvor unbehandelten Kontrolle aufzeigten. Eine langanhaltende irreversible bakteriostatische Wirkung von CBS wurde somit belegt, da die Zelldichten auch nach 48 Stunden der Neuinokulation im Vergleich zur unbehandelten Kontrolle reduziert sind.

Eine Ausnahme stellen die Kulturen, die zuvor mit 2000 µM CBS exponiert wurden, dar. Diese erreichen nach 48 Stunden Rekultivierungsdauer ein annähernd vergleichbares Zellzahlniveau wie die Kontrolle. Womöglich blockieren die Bismutkationen, die in erhöhter Konzentration vorliegen, den intrazellulären Import von CBS.

Bei der Zugabe von methylierten Bismut-Spezies können vergleichbare bakteriostatische Effekte auf *B. thetaiotaomicron* erzielt werden. Die teilmethylierten und löslichen Bismut-

Dimethylbismut Spezies Monomethylund bedingen konzentrationsabhängige wachstumshemmende Effekte, allerdings bei bereits niedrigeren Konzentrationen im nM Bereich. Die Applikation dieser Spezies in die Flüssigphase mit einer Konzentration von 480 nM resultiert 48 Stunden nach Applikation für MMBi in einer Reduktion der maximalen Zelldichte um 29 % und für DMBi um 40 % im Vergleich zur unbehandelten Kontrolle. Der MIC_{50} kann für beide teilmethylierten Bismut-Spezies ≥ 480 nM angegeben werden. Eine präzisere Angabe über die Konzentrationen, die zu einer maximalen Wachstumshemmung führt, war aufgrund der limitierten Substanzmenge der teilmethylierten Spezies nicht möglich. Die Zugabe von flüchtigem Trimethylbismut (TMBi) führt bereits bei einer Konzentration von 30 nM im Gasraum zu einer Reduktion der maximalen Zelldichte um 50 % im Vergleich zur unbehandelten Kontrolle zu Beginn der stationären Wachstumsphase. Ab einer Konzentration von 100 nM wird das Wachstum von B. thetaiotaomicron komplett eingestellt und verbleibt auch 48 Stunden auf dem gleichen Zellzahl Niveau wie zum Zeitpunkt der Applikation.

Eine bakteriostatische Langzeitwirkung kann für die teilmethylierten Spezies MMBi und DMBi nur bedingt bestätigt werden. Die Zellzahlen der rekultivierten Kulturen sind verglichen mit der unbehandelten Kontrolle nach 24 Stunden der Neuinokulation zwar reduziert, nach 48 Stunden der Neuinoukulation allerdings auf einem vergleichbaren Zellzahl Niveau im Vergleich zur unbehandelten Kontrolle. Begründet liegt dies vermutlich in der Instabilität der beiden teilmethylierten Bismut-Spezies. Gegensätzlich hierzu ist für das flüchtige TMBi eine irreversible Langzeitwirkung ersichtlich. Die Zellzahlen der zuvor exponierten Kulturen zeigen nach 48 Stunden der Rekultivierung ein reduziertes Wachstum verglichen mit der nicht exponierten Kontrolle (Bialek *et al.*, 2011).

Zusammenfassend lässt sich folgern, dass eine bakteriostatische Wirkung von methylierten Bismut-Derivaten auf *B. thetaiotaomicron* mit steigender Anzahl an Methylgruppen der Bismutverbindung zunimmt. Potente wachstumshemmende Konzentrationen befinden sich im nM Bereich im Vergleich zur den Konzentrationen des CBS (μ M). Im Gegensatz hierzu werden die unterschiedlichsten Bakterien durch andere Bismut-Spezies, wie beispielsweise durch Bismut-Salicylate, erst bei höheren Konzentrationen (mM) in ihrem Wachstum gehemmt (Kappstein *et al.*, 1987; Manhart, 1990).

Aufgrund der Hydrophobizität der Bismut-Spezies MMBi, DMBi und TMBi, bedingt durch die Methylgruppen, ist eine erleichterte intrazelluläre Aufnahme anzunehmen. Diese Bismut-Spezies könnten die Zellmembran nach unserer Vorstellung passiv überwinden, wohingegen das Bismut-Subcitrat wahrscheinlich aktiv über Transportmechanismen in die Zelle aufgenommen wird. Für weitere Schwermetalle, die ebenfalls bakteriostatisch wirken, konnte eine Beteiligung von aktiven Transportmechanismen belegt werden. So wird das toxische Schwermetall Blei über einen aktiven Export aus der Zelle transportiert (Sani *et al.*, 2003). Für Thalliumsulphat konnte eine effektive Bindung an Zelloberflächen mit intrazellulärem Transport über Kaliumtransportsysteme belegt werden.

Schlussfolgernd wird das Ausmaß der Toxizität maßgeblich über die eingesetzte Metall-Spezies bestimmt. So sind die Vielseitigkeit an beteiligten Transportsystemen, über die ein Im- und Export stattfindet, und die Affinität dieser zum Metall wohl eine weitere Ursache für seine Toxizität (Norris *et al.*, 1976). Die intrazelluläre Konzentration an Bismutionen kann im Bereich von μ M liegen. Allerdings sind für Bismutionen, im Gegensatz zu Metallen wie Zink oder Nickel, noch keine Transportmechanismen bekannt (Wegner *et al.*, 2011).

4.2 Molekularer Wirkmechanismus von colloidalem Bismut-Subcitrat auf die DNS

Die aerobe Zugabe von CBS zu intakter Plasmid-DNS führt zu einer konzentrationsabhängigen Schädigung des Plasmids. Intakte Plasmid-DNS der supercoiled Form (SC) wird durch die Applikation von 250 bis 2000 µM CBS nach 48 Stunden konzentrationsabhängig vornehmlich in die open-circular Form (OC) überführt. Diese OC-Konformation weist einen Einzelstrangbruch in der doppelsträngigen Plasmid-DNS auf. Es kovalente wird angenommen, dass Bismutkomplexe nicht und elektrostatische DNS Wechselbindungen mit doppelsträngiger eingehen (Wang et al., 2003; Hajian et al., 2012). Denkbar wäre, dass die Bismutionen mit dem Phosphatgerüst der DNS interagieren (Hannon, 2007). Schwermetalle können grundsätzlich die Doppelhelixstruktur der DNS verändern (Liu et al., 2008). Für Bismutkomplexe wurde bereits in unterschiedlichen Studien eine genotoxische Wirkung auf humane Zelllinien bestätigt, es fehlen allerdings Daten über eine potenzielle Wirkung auf bakterielle DNS und detaillierte Reaktionsmechanismen (Geyikoglu et al., 2007; Asakura et al., 2009).

Die DNS-schädigende Wirkung durch das CBS wird in parallelen Versuchen unter strikt anaeroben Bedingungen nicht hervorgerufen. Das Verhältnis von der SC- zur OC-Konformation ändert sich hier nicht signifikant. Es wird daher angenommen, dass dem Sauerstoff bei diesen DNS-schädigenden Prozessen eine Beteiligung zugemessen werden muss. Welche genauen Reaktionsmechanismen hier zugrunde liegen, ist noch nicht im Detail aufgeklärt. Es kann vermutlich davon ausgegangen werden, dass Sauerstoffradikale bzw. reaktive Sauerstoffspezies (ROS) im Zusammenspiel mit Metallionen eine DNS-Schädigung hervorrufen (Li *et al.*, 2001; Santos *et al.*, 2012). Auch reaktive Nitrogenspezies können hier als Oxidationsmittel fungieren und eine Schädigung bedingen (Ding *et al.*, 2005). Inwieweit allerdings reaktive Sauerstoffspezies die Microbiota im humanen Intestinum beeinflussen, ist nur schwer abzuschätzen. Intestinale Epithelzellen können zwar ROS generieren, allerdings sollten diese Spezies rasch inaktiviert werden (Jones *et al.*, 2012). Außerdem stellt das Intestinum ein nahezu anaerobes Habitat dar, das Oxidationsprozesse verhindert.

4.3 Spezifische Untersuchung zu den molekularen Ursachen der Wachstumshemmung von *B. thetaiotaomicron* durch Trimethylbismut

Das Ausmaß an intrazellulärer Schädigung durch das permethylierte TMBi wurde im Rahmen dieser Arbeit an einem bakteriellen Repräsentanten des Intestinums *B. thetaiotaomicron* überprüft. Um die beobachtbare Wachstumshemmung zu begründen, wurden mehrere Ansätze verfolgt.

Das extrazellulär vorliegende TMBi passiert die Zelle, vermutlich passiv, aufgrund seiner hydrophoben Eigenschaften. Die erste Barriere bilden hierbei die Zellmembranen. Eine Beeinflussung durch beispielsweise Akkumulation, vergleichbar mit der Wirkung anderer Metalle auf die Zellmembran, kann zu einer erheblichen Zellschädigung führen (Choi *et al.*, 2008; Guzman *et al.*, 2012; Ng *et al.*, 2012). Für erste Untersuchungen in Folge einer eventuellen, übermäßigen Belastung der äußeren und inneren Zellmembran wurde die Lipidzusammensetzung von zuvor mit 30 nM TMBi exponierten *B. thetaiotaomicron* Kulturen analysiert. Nach dünnschichtchromatographischer Separation der einzelnen Lipidkomponenten zeigt sich kein qualitativer Unterschied der Zusammensetzung im Vergleich zu unbehandelten Kontroll-Kulturen. Auch vermag das TMBi keinen schädigenden Einfluss auf die Fettsäureverteilung ausüben. Die Zusammensetzung der unterschiedlichen Fettsäuren ist nach gaschromatographischer Auftrennung unverändert in den mit TMBi behandelten Kulturen. Sowohl die Lipide als auch die Fettsäuren werden durch eine Exposition mit TMBi offensichtlich nicht beeinflusst.

Welchen Einfluss das TMBi auf die Genexpression nimmt, wurde mithilfe von *Microarray*-Studien untersucht. Hierzu wurde die gesamte RNS aus Kulturen, die mit 15 nM TMBi für 24 Stunden exponiert wurden, analysiert. Diese Kulturen waren im Vergleich zu parallelen unbehandelten Kontroll-Kulturen um 37 % in ihrem Wachstum gehemmt. Im Vergleich zur gesamten RNS aus unbehandelten Kontroll-Kulturen werden insgesamt 357 Gene signifikant reguliert. Die Signifikanz wurde anhand mehrerer statistischer Algorithmen bestimmt (Anhang 3 und 4). Die Mehrheit der regulierten Gene können unterschiedlichen Kategorien zugeordnet werden. Eine tabellarische Auflistung der Gene ist im Anhang 2 einsehbar. So werden insgesamt 10 Gene durch den Einfluss von TMBi, die den Prozessen der Lipid- und Polysaccharid-Biosynthese und der Zellwand-Biogenese zugeordnet werden können, in ihrer Transkription abgeschwächt. Diese 10 Gene sind vorrangig an der Synthese von extrazellulären Polysaccharidstrukturen, der Glycosilierung von Lipopolysacchariden und an der Synthese der Peptidoglykanschicht beteiligt. Insbesondere sind hier das Penicillinbindende Protein, die UDP-N-Acetylmuramoylalanin-D-Glutamat Ligase (MurD) und die Undecaprenyl Pyrophosphat Synthase anzuführen. Das Penicillin-bindende Protein (PBP) ist an der Biosynthese des Pepdidoglykans beteiligt und transglycosyliert die Glykanketten (Harris et al., 1998). Die Genexpression wird unter TMBi Einfluss 0,83 fach (d.h um 27 %) reprimiert. Die Expression der UDP-N-Acetylmuramoylalanin-D-Glutamat Ligase wird 0,67 fach (d.h um 33 %) runterreguliert. Diese Ligase verknüpft die α-Aminosäure D-Glutamat an die Acetylmuraminsäure, eine Hauptkomponente der Peptidoglykanschicht (Barreteau et al., 2012). Die Undecaprenyl Pyrophosphat Synthase synthetisiert das Undecaprenyl Pyrophosphat (UPP), welches dann für die Biosynthese des Peptidoglykans und der Lipopolysaccharide genutzt wird (Chen et al., 2005). Die Genexpression ist 0,51 fach (d.h um 49 %) runterreguliert. Eine Minderung der Transkription dieser drei Gene bzw. deren Proteine können bakterielle wachstumshemmende Effekte bedingen (Gegnas et al., 1998; Kumar et al., 2012; Inokoshi et al., 2013). Aus den Genexpressionsdaten kann dies auch auf die beobachtete Wachstumshemmung von B. thetaiotaomicron unter TMBi Exposition übertragen werden. Insgesamt würde dies bedeuten, dass die Zellen durch den Verlust der Membranintegrität in Ihrem Wachstum gehemmt werden. Des Weiteren lässt sich aus den Genexpressionsdaten ableiten, dass den Import und den Export betreffende Transportmechanismen ebenfalls durch eine TMBi Exposition beeinflusst werden. Hier werden 4 Gene runter- und 11 Gene hochreguliert. Ein Osmose regulierter Proline Transporter (BT_0182) ist 1,48 fach (d.h um 48%) hochreguliert. Unter osmotischen Stressbedingungen werden extrazelluläre Solute unter anderem freie Aminosäuren, wie Prolin oder Glutamat, in die Zelle aufgenommen, um die intrazellulären Milieubedingungen aufrechtzuerhalten (von Blohn et al., 1997). Des Weiteren wird ein Kaliumkanal (BT_2572) 1,31 fach (d.h um 31 %) hochreguliert. Beide Transportmechanismen sind bei osmotischem Stress aktiviert und gewährleisten eine rasche intrazelluläre K⁺ bei gleichzeitiger Akkumulation von Prolin (Kempf et al., 1998). Eine Exposition von Schwermetallen führt zu einer erhöhten Prolinaufnahme, bedingt durch ein erhöhtes osmotisches intrazelluläres

Potenzial, und resultiert in konzentrationsabhängigen Wachstumshemmungen (Alia *et al.*, 1991). Die Oxaloacetat Decarboxylase ist eine Na⁺ Transport-Pumpe und erzeugt einen elektrochemischen Na⁺-Gradienten, der für weitere Membranreaktionen wie der ATP Synthese oder der Motilität genutzt werden kann (Granjon *et al.*, 2010). Das Gen (BT_1689) wird bei einer TMBi Exposition 0,52 fach (d.h um 48 %) runterreguliert. Eine Deletion und womöglich auch eine Runterregulation führen in der Folge zu einem verminderten Citrat-Metabolismus bzw. zu einer verringerten Menge an metabolischer Energie (Augagneur *et al.*, 2008).

Insgesamt zeigen 18 Gene, die mit Rekombinationsprozessen mit der DNS in Verbindung stehen, eine Genexpressionsänderung nach TMBi Exposition. Hierbei werden 15 Gene hochreguliert und lediglich 3 Gene runterreguliert. Die Gene kodieren für Transposasen, Integrasen und Rekombinasen und sind unterschiedlich stark reguliert. Die niedrigste Hochregulation zeigt das Gen BT_4009, welches für eine Integrase kodiert. Im Gegensatz wird die Expresssion des Integrase Gens BT_2469 2,52 fach (d.h um 152 %) am stärksten hochreguliert. Annotiert werden diese als Phage-Integrasen. Diese Klasse von Integrasen binden kovalent spezifisch an die DNS und schneiden seriell DNS Substrate heraus (Kwon *et al.*, 1997). Erhöhte Rekombinationsprozesse können im Zusammenhang mit dem Aufbau einer Bismut-Resistenz in Verbindung gebracht werden. Es ist bekannt, dass Bakterien die Fähigkeit besitzen, Resistenzen gegenüber schädlichen Agenzien zu entwickeln. Durch Prozesse, wie Rekombination, Konjugation und Transformation, können Resistenzen hervorgebracht werden (Young *et al.*, 1979). Hierzu reichen selbst geringe Konzentrationen des Agens aus (Salyers *et al.*, 1996).

Andererseits besteht die Möglichkeit, dass kovalente Modifikationen der DNS durch TMBi erfolgen. Denkbar wäre hier ein Transfer von Methylgruppen vom TMBi auf die DNS. Diese so kovalent modifizierten DNS-Bereiche können nicht mehr transkribiert werden und werden von der Zelle erkannt. Die Zelle versucht durch Austauschprozesse (Rekombination und Integration) dieser Bereiche der Modifikation entgegenzuwirken.

Die Gene BT_2827, BT_3429 und BT_2275 sind 0,45 (d.h um 55 %) bzw. 0,60 (d.h um 40 %) bzw. 0,83 (d.h um 17 %) fach runterreguliert und kodieren für eine DNS Topoisomerase I, eine DNS Gyrase und eine Thymidin Kinase. Die DNS Gyrase ist eine essentielle Topoisomerase und katalysiert das negative *super-coiling* der DNS (Reece *et al.*, 1991). Die Expression der DNS Gyrase wird bei einer TMBi Exposition, gegensätzlich wie beispielsweise bei einer Exposition mit Arsen (Saltikov *et al.*, 2005),

runterreguliert. Eine Inhibierung dieser führt zu einer Schädigung der DNS-Synthese und in der Folge zum Zelltod (Eakin *et al.*, 2012).

Des Weiteren werden die Gene BT_1757, BT_1758, BT_1760, BT_1763 des Polysaccharid-Lokus runterreguliert. Diese kodieren für eine Fructokinase, ein inneres Membranprotein für den Import von Monosacchariden, eine β 2-6 endo-Fructanase und ein äußeres Membranprotein für die Bindung von Polysacchariden. Das Bacterium *B. thetaiotaomicron* kann folglich keine Fructose mehr degradieren. Dies ist allerdings von besonderer Bedeutung, da einige komplexe pflanzliche Polysaccharide ausschließlich von der Microbiota degradiert werden. An der Fructose Degradation sind vorrangig Firmicutes, Bacteroides und Bifidobakterien beteiligt. Darüberhinaus besitzt *B. thetaiotaomicron* als einziger Vertreter der Bacteroides eine β 2-6 endo-Fructanase, die eine Degradation der Polyfructose Levan erlaubt (Sonnenburg *et al.*, 2010). Änderungen in der Art und Qualität der Polysaccharide kann daher weitreichende Auswirkungen auf die Zusammensetzung der Microbiota haben. Da das Operon für die Degradation von Fructose runterreguliert ist, ist es denkbar, dass sich *B. thetaiotaomicron* im Darm nicht mehr etablieren kann und dies zu einer Veränderung der Microbiota führt.

Ein weiterer denkbarer Angriffspunkt für intrazellulär vorliegendes TMBi sind Wechselwirkungen mit Proteinen. Hierfür wurde mithilfe von 2-D SDS-Gelen das gesamte Proteom TMBi exponierter B. thetaiotaomicron Kulturen mit dem Proteom nicht exponierter Kontroll-Kulturen verglichen. Auffällig waren insgesamt vier Proteinspots, jeweils zwei auf dem Probengel (Q8A1E3, Q8AB83) und auf dem Kontrollgel (Q8A1E3, Q89Z77), die sich voneinander unterschieden. Die beiden Spots des Probengels finden sich nicht auf dem Kontrollgel und umgekehrt. Das Protein Q8A1E3 findet sich sowohl auf dem Kontroll- als auch auf dem Probengel. Die beiden Spots unterscheiden sich in Ihrer Position im 2-D SDS-Gel geringfügig im isoelektrischem Punkt. Es handelt sich somit um zwei Isoformen des selben Proteins. Anzunehmen ist eine Modifikation, die hierfür verantwortlich ist. Anhand der Massenspektren der gemessenen Peptide ist ersichtlich, dass es sich bei unterscheidenden um keine bekannte posttranslationale Modifikation, wie z.B. Peaks um eine Phosphorylierung, Sulfatisierung, Acetylierung oder Glycosilierung, handelt. Auch sind keine, womöglich durch das TMBi übertragene, Methylgruppen dedektierbar. Welche Art von Modifikation hier vorliegt, ist an dieser Stelle nur schwer zu deuten.

Nach massenspektrometrischer MALDI-TOF Analyse konnten die vier *Spots* signifikant Proteinen von *B. thetaiotaomicron* zugeordnet werden. Da alle vier identifizierten Proteine als putativ annotiert sind, waren sequenzvergleichende Analysen erforderlich. Die erhaltenden Proteinsequenzen wurden mit verschiedenen Algorithmen mit anderen bakteriellen annotierten Proteinsequenzen in der Datenbank von NCBI abgeglichen. Für alle Proteinspots konnten anhand eines auf der Primärstruktur basiertem Vergleich spezifische Sequenzmotive detektiert werden. Lediglich für das Protein Q8A1E3 lieferte der Sequenzvergleich ein ausreichend fundiertes Ergebnis. Die Proteine Q8AB83 und Q89Z77 sind vermutlich Proteine der äußeren Zellmembran (OMPs). Diese OMPs bestehen aus einer β -barrel Domäne, die in die äußere Membran integriert ist und einer aß-Domäne, die in der inneren Membran verankert ist (Walton et al., 2009). Eine detailliertere Zuordnung war allerdings nicht möglich, da die Sequenzvergleiche lediglich putative Proteinfunktionen mit geringer Treffsicherheit hervorbrachten. Die Funktion dieser beiden Proteine bleibt spekulativ. Die Sequenz des Proteins Q8A1E3 weist sehr hohe Ähnlichkeiten mit dem Skp-Chaperon auf. Ein weiterer Beleg hierfür ist die Ähnlichkeit der Sekundärstrukturen des putativen Skp-Chaperons aus B. thetaiotaomicron mit dem bereits charakterisierten Skp aus E. coli. Auch die Tertiärstrukturen der beiden Proteine stimmen weitgehend überein. Die Zuordnung des identifizierten Proteinspots Q8A1E3 wurde somit hinreichend belegt. Dieses Skp-Chaperon ist essentiell an der Faltung der Proteine, die in die äußeren Membran (OMPs) transloziert werden, beteiligt (Jarchow et al., 2008). Teilgefaltete Protein-Intermediate sollen so vor einer Aggregation im Periplasma geschützt werden. Mithilfe eines weiteren Chaperons (SurA) und im Zusammenspiel mit dem Protein Omp85 werden diese teilgefaltenen Protein-Intermediate dann ordnungsgemäß in die äußere Membran eingebaut (Lazar et al., 1996; Robert et al., 2006). Das Omp85 ist essentiell an der funktionellen Bildung der äußeren Membran beteiligt (Voulhoux et al., 2004). Diese Omp-Proteine können unter verschiedensten Einflüssen oligomerisieren (Wang et al., 2013). Diese Oligomerisierung, speziell der teilgefalteten Intermediate, wird allerdings in-vivo unter anderem durch Skp-Chaperone reduziert, um die biologische Funktion der translozierten Proteine zu gewährleisten (Bulieris et al., 2003b). Die Abwesenheit oder wahrscheinlich auch eine strukturelle Veränderung des Skp-Chaperons führt zu einer verminderten Faltungseffizienz der Target Proteine der äußeren Membran (Bulieris et al., 2003a). Skp-Mutanten sind daher nur limitiert funktionell eingeschränkt, nicht letal.

Eine Modifizierung des Chaperons aus *B. thetaiotaomicron* durch das permethylierte TMBi kann zum einen durch die Übertragung von Bismutionen oder zum anderen durch den Transfer von Methylgruppen verursacht werden. Bismutionen bzw. Metallionen werden hierbei vorrangig an thiolhaltige Aminosäure-Reste, wie von Methionin und Cystein,

gebunden (Burford *et al.*, 2003; Briand *et al.*, 2004). Die Aminosäure-Reste von Arginin und Lysin können, entsprechend ihrer Affinität zu Methylgruppen, an unterschiedlichen Positionen methyliert werden (Migliori *et al.*, 2010).

Zusammenfassend lassen die dargestellten Daten den Schluss zu, dass die Wachstumshemmung von *B. thetaiotaomicron* durch TMBi wohl auf verschiedene Interaktionen dieses Agens mit der Bakterienzelle zurückzuführen ist. Sowohl komplexe Stoffwechselwege, als auch Regulatoren der Zellorganisation können offensichtlich von diesen Interaktionen betroffen sein.

4.4 Relevanz der Wachstumshemmung von *B. thetaiotaomicron* für die physiologische Situation *in-vivo*

Aufgenommene Bismutverbindungen werden im Intestinum vornehmlich durch methanogene Archaeen in hoch-toxische, methylierte Bismut-Derivate umgewandelt. Eine Methylierung dieser Spezies erfolgt hierbei in einer Nebenreaktion der Methanogenese, wobei Methylgruppen vom Methylcobalamin (CH₃Cob(III)) kofaktorabhängig auf das Bismutkation übertragen werden (Thomas et al., 2011b). Das intrazellulär produzierte TMBi gelangt wieder ins Darmlumen und zerfällt teilweise, aufgrund seiner Instabilität, in die teilmethylierten Derivate MMBi und DMBi. Die methylierten Bismut-Spezies können wiederrum entweder einen Einfluss auf andere Bakterien der Microbiota ausüben oder werden über die Blutbahn im Wirtsorganismus verteilt. Das Bismut wird dann mit unterschiedlicher Präferenz in Organen akkumuliert (Huber et al., 2011). Hierbei werden präferiert methylierte Bismut-Spezies, vermutlich aufgrund ihrer erhöhten Hydrophopizität, in die Zellen aufgenommen (von Recklinghausen et al., 2008b). Wie bereits in in-vitro Versuchen gezeigt werden konnte, bedingen diese methylierten Bismutverbindungen konzentrationsabhängige Wachstumshemmungen des Bacteriums B. thetaiotaomicron (Bialek et al., 2011). Im Gegensatz hierzu konnte eine Wachstumshemmung von E. coli nicht belegt werden. Somit wird angenommen, dass nicht die gesamte Microbiota negativ durch eine Exposition von methylierten Bismut-Derivaten beeinträchtigt wird. Einige Bakterien vermögen einer Toxizität beispielsweise durch erhöhte spezifische Exportprozesse oder Resistenzmechanismen entgegenzuwirken (Cervantes et al., 1991; Ianeva, 2009). Im Rahmen dieser Arbeit konnten wachstumshemmende Effekte für B. thetaiotaomicron bereits bei Konzentrationen von 10-100 nM TMBi, mit einem MIC₅₀ bei 30 nM dargestellt werden. Innerhalb eines etablierten Kokultursystems wurde aufgezeigt, dass das methanogene

Archaeum M. smithii derart effektive TMBi Konzentrationen (33 nM) produziert. Da im Intestinum weitaus mehrere Vertreter der Methanogenen das permethylierte TMBi synthetisieren können, werden wohl ähnlich hohe Konzentrationen an methylierten Bismut-Spezies in diesem Kompartiment angenommen werden können (Meyer et al., 2008). Präzise Angaben über die physiologisch relevanten Konzentrationen an TMBi im Intestinum liegen derzeit noch nicht vor. In Abschätzung können Produktionsraten von TMBi in humanen Fäzesproben mit 2,1 - 4 pmol h kg⁻¹ TG (Trockengewicht) und für Mausdärme ungefähr 5 – 120 pmol h kg⁻¹ TG angegeben werden (Michalke *et al.*, 2008). Aufgrund der Instabilität, der Verteilung und der Affinität von TMBi zu Geweben wird die quantitative Gesamtmenge vermutlich noch unterschätzt. Weitere nicht publizierte in-vivo Versuche mit Mäusen, die zuvor über zwei Wochen mit bismuthaltigen Futter gefüttert wurden, geben einen ersten Einblick auf die im Darm produzierte TMBi Menge (Huber, 2010). Hierzu wurden Mäuse unterschiedlicher Altersstufen und ein Vergleich zwischen einer unterschiedlichen Ernährungsweise (pflanzliche und tierische Kost) in den Versuchen berücksichtigt. Ein Überblick über die TMBi Konzentrationen der entnommenen Mäusedärme ist in Tabelle 12 gegeben. In präparierten Mäusedärmen mittleren Alters (12 Wochen) konnte die höchste Konzentration an TMBi im Darm mit 0,77 ng NG⁻¹ angegeben werden. Die Därme juveniler

Tabelle 12: TMBi Konzentration in Mäusedärmen bei unterschiedlichen Versuchsbedingungen
Die TMBi Konzentration wurde im Rahmen von in-vivo Studien am Mausmodell aus präparierten Därmen
quantifiziert. Hierzu wurden unterschiedliche Einflüsse, wie das Alter der Mäuse und ihre Ernährungsweise, auf
die TMBi Konzentration überprüft (NG: Nassgewicht des Darms).

	TMBi Konzentration [ng NG ⁻¹]	Schwankungsbreite [ng NG ⁻¹]
Alter (n = 30, je 10)		
4 Wochen	0,06	0,01 - 0,26
12 Wochen	0,77	0,42 - 1,09
54 Wochen	0,13	0,01 - 0,5
Futter (n = 16, je 8; Alter 12 Wochen)		
Pflanzlich	0,77	0,42 - 1,09
Tierisch	0,98	0,40 - 1,34

Mäuse zeigen eine niedrige (0,06 ng NG⁻¹) und die alten Mäuse eine deutlich reduzierte (0,13 ng NG⁻¹) TMBi Konzentration (Angabe von Herrn D. Pieper). Begründet liegt dies

wahrscheinlich an der unterschiedlichen Diversität der Microbiota innerhalb der verschiedenen Altersgruppen (Hopkins *et al.*, 2002; Mariat *et al.*, 2009). Da sich auch die Zellzahlen der TMBi produzierenden methanogenen Populationen innerhalb der verschiedenen Altersklassen unterscheiden, erklären sich somit vermutlich die Schwankungen der angegebenen TMBi Konzentrationen.

Es ist anzumerken, dass die oben genannten TMBi Konzentrationen lediglich Näherungswerte darstellen. Die Bestimmung einer genauen physiologisch relevanten intestinalen TMBi Konzentration ist derzeit nur bedingt möglich, da einige grundlegende Parameter noch nicht berücksichtigt wurden. Hierfür müssen die Darmvolumina der Därme angegeben werden. Die TMBi Mengen, die dem Darmsystem vor Präparation des Darms entweichen und die teilmethylierten Bismut-Spezies MMBi und DMBi sind bei einer genauen Bilanzierung ebenso mit zu berücksichtigen.

5 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit konnte eine bakteriostatische Wirkung von verschiedenen Bismut-Spezies auf B. thetaiotaomicron, einen dominierenden intestinalen Hauptvertreter der Microbiota, belegt werden. Eine Wachstumshemmung des colloidalem Bismut-Subcitrats (CBS) liegt im µM Bereich, wohingegen eine Hemmung durch die Exposition der methylierten Bismut-Spezies Monomethyl- (MMBi), Dimethyl- (DMBi) und Trimethylbismut (TMBi) bereits bei Konzentrationen im nM Bereich (TMBi, $MIC_{50} = 30$ nM) auftreten. Die Toxizität nimmt hierbei mit steigender Anzahl an Methylgruppen, entsprechend der Reihenfolge MMBi < DMBi < TMBi, zu. Diese Wachstumshemmung und die damit verbundene Schädigung für das Bacterium sind langanhaltend, wie anhand von Rekultivierungsversuchen gezeigt wurde. Die Exposition von TMBi oder CBS führt hierbei zu einer irreversiblen und die Exposition von teilmethylierten Bismut-Derivaten zu einer reversiblen Wachstumshemmung. Die molekularen Ursachen dieser Wachstumshemmung durch das TMBi wurden anhand mehrerer Struktur- und Funktionseinheiten, wie der Zellmembran, dem Proteom und dem Transkriptom, überprüft. Es wurde aufgezeigt, dass das TMBi einen Zellstress für das exponierte Bacterium bedingt, der mit erniedrigten biosynthetischen Prozessen der Lipid- und Polysaccharid-Biosynthese und der Zellwand-Biogenese einhergeht. Die Beeinträchtigung des mutmaßlichen Skp-Chaperons, bedingt vermutlich ein limitiertes Wachstum. Zudem erniedrigt die Repression des Polysaccharid-Lokus vermutlich nachhaltig die physiologische Aktivität des Bacteriums, da Fructose nicht mehr degradiert werden kann. Erhöhte DNS-Prozesse, die im Zusammenhang mit der Rekombination stehen, können auf Schädigungen der DNS hindeuten, die dadurch behoben werden sollen.

Zukünftige funktionelle Studien mit dem Protein Q8A1E3, das aufgrund einer umfangreichen Analyse der Primär-, Sekundär-, und Tertiärstruktur einem Skp-Chaperon zugeordnet werden konnte, sind denkbar, um diese Zuordnung zu verifizieren. Als geeignete Lösungswege des vermeintlichen kämen eine Aktivitätsbestimmung Skp-Chaperons und ein immunologischer Nachweis mit geeigneten Antikörpern in Frage. Auch ist die Herstellung einer B. thetaiotaomicron Skp-Chaperon Deletions-Mutante (Δskp) sinnvoll, um anhand dieser die wachstumshemmenden Effekte nach TMBi Exposition darzulegen. Die verminderte physiologische Aktivität mit einhergehender Wachstumsreduktion des Bacteriums B. thetaiotaomicron kann somit zu einer Verschiebung der gesamten Darmmicrobiota führen, was wiederum weitreichende Konsequenzen für den Wirtsorganismus bedingen kann.

6 Literatur

Agricola, G. (1546). De natura fossilium Libri X. I: 186.

Alam, M., T. Midtvedt and A. Uribe (1994). "Differential cell kinetics in the ileum and colon of germfree rats." <u>Scandinavian journal of gastroenterology</u> **29**(5): 445-451.

Alia and P. P. Saradhi (1991). "Proline Accumulation under Heavy-Metal Stress." Journal of Plant Physiology **138**(5): 554-558.

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." <u>Nucleic acids research</u> **25**(17): 3389-3402.

Altschul, S. F., J. C. Wootton, E. M. Gertz, R. Agarwala, A. Morgulis, A. A. Schaffer and Y. K. Yu (2005). "Protein database searches using compositionally adjusted substitution matrices." <u>Febs Journal</u> **272**(20): 5101-5109.

Andrews, D. A., M. Xie, V. Hughes, M. C. Wilce and A. Roujeinikova (2013). "Design, purification and characterization of a soluble variant of the integral membrane protein MotB for structural studies." Journal of the Royal Society Interface **10**(79).

Asakura, K., H. Satoh, M. Chiba, M. Okamoto, K. Serizawa, M. Nakano and K. Omae (2009). "Genotoxicity Studies of Heavy Metals: Lead, Bismuth, Indium, Silver and Antimony." Journal of Occupational Health **51**(6): 498-512.

Augagneur, Y., D. Garmyn and J. Guzzo (2008). "Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism." Journal of applied microbiology **104**(1): 260-268.

Backhed, F., R. E. Ley, J. L. Sonnenburg, D. A. Peterson and J. I. Gordon (2005). "Host-bacterial mutualism in the human intestine." <u>Science</u> **307**(5717): 1915-1920.

Barreteau, H., I. Sosic, S. Turk, J. Humljan, T. Tomasic, N. Zidar, M. Herve, A. Boniface, L. Peterlin-Masic, D. Kikelj, D. Mengin-Lecreulx, S. Gobec and D. Blanot (2012). "MurD enzymes from different bacteria: evaluation of inhibitors." <u>Biochemical pharmacology</u> **84**(5): 625-632.

Becerra, D., M. T. S. Nair and P. K. Nair (2011). "Analysis of a Bismuth Sulfide/Silicon Junction for Building Thin Film Solar Cells." Journal of the Electrochemical Society **158**(7): H741-H749.

Beil, W., C. Birkholz, S. Wagner and K. Sewing (1995). "Bismuth subcitrate and omeprazole inhibit Helicobacter pyloriF1-ATPase." <u>Pharmacology</u>. **50**(5): 333-337.

Bengmark, S. (1998). "Ecological control of the gastrointestinal tract. The role of probiotic flora." <u>Gut</u> 42(1): 2-7.

Bercik, P., S. M. Collins and E. F. Verdu (2012). "Microbes and the gut-brain axis." <u>Neurogastroenterology and motility : the official journal of the European Gastrointestinal</u> <u>Motility Society</u> **24**(5): 405-413.

Berg, D. J., N. Davidson, R. Kuhn, W. Muller, S. Menon, G. Holland, L. Thompson-Snipes, M. W. Leach and D. Rennick (1996). "Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses." <u>The Journal of clinical investigation</u> **98**(4): 1010-1020.

Bialek, B., R. A. Diaz-Bone, D. Pieper, M. Hollmann and R. Hensel (2011). "Toxicity of Methylated Bismuth Compounds Produced by Intestinal Microorganisms to Bacteroides thetaiotaomicron, a Member of the Physiological Intestinal Microbiota." Journal of toxicology **2011**: 608349.

Blundell, M. R. and D. G. Wild (1969). "Inhibition of bacterial growth by metal salts. A survey of effects on the synthesis of ribonucleic acid and protein." <u>The Biochemical journal</u> **115**(2): 207-212.

Booth, S. C., M. L. Workentine, A. M. Weljie and R. J. Turner (2011). "Metabolomics and its application to studying metal toxicity." <u>Metallomics : integrated biometal science</u> **3**(11): 1142-1152.

Bos, M. P., V. Robert and J. Tommassen (2007). "Biogenesis of the gram-negative bacterial outer membrane." <u>Annual review of microbiology</u> **61**: 191-214.

Bravo, P. (1951). "Treatment of acture tonsillitis by rectal administration of bismuth camphocarbonate." Revue de laryngologie - otologie - rhinologie 72(3-4): 138-148.

Briand, G. G., N. Burford, M. D. Eelman, N. Aumeerally, L. Chen, T. S. Cameron and K. N. Robertson (2004). "Identification, isolation, and characterization of cysteinate and thiolactate complexes of bismuth." <u>Inorganic chemistry</u> **43**(20): 6495-6500.

Bruggraber, S. F., G. French, R. P. Thompson and J. J. Powell (2004). "Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori." <u>Helicobacter</u> 9(5): 422-428.

Buge, A., G. Rancurel, M. Poisson and H. Dechy (1974). "Myoclonic encephalopathies induced by bismuth salts. 6 cases observed during long-term oral treatment." <u>Nouv Presse</u> <u>Med</u> **3**: 2315-2320.

Bulieris, P. V., S. Behrens, O. Holst and J. H. Kleinschmidt (2003a). "Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide." <u>The Journal of biological chemistry</u> **278**(11): 9092-9099.

Bulieris, P. V., S. Behrens, O. Holst and J. H. Kleinschmidt (2003b). "Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide." Journal of Biological Chemistry **278**(11): 9092-9099.

Burford, N., M. D. Eelman, D. E. Mahony and M. Morash (2003). "Definitive identification of cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents." <u>Chemical communications(1)</u>: 146-147.

Cervantes, C., K. Chavez and S. Vaca (1991). "Mechanisms of bacterial resistance to heavy metals." <u>Revista latinoamericana de microbiologia</u> **33**(1): 61-70.

Chen, A. P., S. Y. Chang, Y. C. Lin, Y. S. Sun, C. T. Chen, A. H. Wang and P. H. Liang (2005). "Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase." <u>The Biochemical journal</u> **386**(Pt 1): 169-176.

Chen, C. C., J. K. Hwang and J. M. Yang (2009). "(PS)(2)-v2: template-based protein structure prediction server." <u>Bmc Bioinformatics</u> 10.

Choi, O., K. K. Deng, N. J. Kim, L. Ross, Jr.;, R. Y. Surampalli and Z. Hu (2008). "The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth." <u>Water research</u> **42**(12): 3066-3074.

Cohen, I., R. Bitan and Y. Nitzan (1991). "The effect of zinc and cadmium ions on Escherichia coli B." <u>Microbios</u> **68**(276-277): 157-168.

Collins, S. M., M. Surette and P. Bercik (2012). "The interplay between the intestinal microbiota and the brain." <u>Nature reviews. Microbiology</u> **10**(11): 735-742.

D'Souza, A. L., C. Rajkumar, J. Cooke and C. J. Bulpitt (2002). "Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis." <u>BMJ</u> **324**(7350): 1361.

Ding, W., L. G. Hudson and K. J. Liu (2005). "Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes." <u>Molecular and cellular biochemistry</u> **279**(1-2): 105-112.

Dixit, V., E. Bini, M. Drozda and P. Blum (2004). "Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus." <u>Antimicrobial agents and chemotherapy</u> **48**(6): 1993-1999.

Dubinsky, T. (1869). Die Wismutdiphtheritis der Mundhöhle. Petersburg.

Eakin, A. E., O. Green, N. Hales, G. K. Walkup, S. Bist, A. Singh, G. Mullen, J. Bryant, K. Embrey, N. Gao, A. Breeze, D. Timms, B. Andrews, M. Uria-Nickelsen, J. Demeritt, J. T. Loch, K. Hull, A. Blodgett, R. N. Illingworth, B. Prince, P. A. Boriack-Sjodin, S. Hauck, L. J. MacPherson, H. Ni and B. Sherer (2012). "Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents." <u>Antimicrobial agents and chemotherapy</u> **56**(3): 1240-1246.

Egert, M., A. A. de Graaf, H. Smidt, W. M. de Vos and K. Venema (2006). "Beyond diversity: functional microbiomics of the human colon." <u>Trends in microbiology</u> **14**(2): 86-91.

Eitinger, T. and M. A. Mandrand-Berthelot (2000). "Nickel transport systems in microorganisms." <u>Archives of microbiology</u> **173**(1): 1-9.

Ellrott, K., L. Jaroszewski, W. Li, J. C. Wooley and A. Godzik (2010). "Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families." <u>PLoS computational biology</u> 6(6): e1000798.

Entzminger, K. C., C. Chang, R. O. Myhre, K. C. McCallum and J. A. Maynard (2012). "The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation." <u>Biochemistry</u> **51**(24): 4822-4834.

Evans, D. F., G. Pye, R. Bramley, A. G. Clark, T. J. Dyson and J. D. Hardcastle (1988). "Measurement of gastrointestinal pH profiles in normal ambulant human subjects." <u>Gut</u> **29**(8): 1035-1041.

Falk, P. G., L. V. Hooper, T. Midtvedt and J. I. Gordon (1998). "Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology." <u>Microbiology and molecular biology reviews : MMBR</u> **62**(4): 1157-1170.

Fanaro, S., R. Chierici, P. Guerrini and V. Vigi (2003). "Intestinal microflora in early infancy: composition and development." <u>Acta paediatrica</u> **91**(441): 48-55.

Ferguson, A. D., E. Hofmann, J. W. Coulton, K. Diederichs and W. Welte (1998). "Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide." <u>Science</u> **282**(5397): 2215-2220.

Freter, R. (1992). Factors affecting the microecology of the gut. London, Chapman & Hall.

Fuchs, B., R. Suss, K. Teuber, M. Eibisch and J. Schiller (2011). "Lipid analysis by thin-layer chromatography--a review of the current state." Journal of chromatography. A **1218**(19): 2754-2774.

Fulladosa, E., J. C. Murat, J. C. Bollinger and I. Villaescusa (2007). "Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria." <u>The Science of the total environment</u> **377**(2-3): 207-213.

Gauffin Cano, P., A. Santacruz, A. Moya and Y. Sanz (2012). "Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity." <u>PloS one</u> **7**(7): e41079.

Gavey, C. J., M. L. Szeto, C. U. Nwokolo, J. Sercombe and R. E. Pounder (1989). "Bismuth accumulates in the body during treatment with tripotassium dicitrato bismuthate." <u>Alimentary pharmacology & therapeutics</u> **3**(1): 21-28.

Ge, R. (2007a). A biochemical and proteomic view of nickel homeostasis and bismuth treatment identification of bismuth-targeted proteins in Helicobacter pylori and characterization of a nickel-storage protein hpn, University of Hong Kong. **PhD**.

Ge, R., X. Sun, Q. Gu, R. M. Watt, J. A. Tanner, B. C. Wong, H. H. Xia, J. D. Huang, Q. Y. He and H. Sun (2007). "A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori." Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry **12**(6): 831-842.

Ge, R., Sun, H. (2007b). "Bioinorganic Chemistry of Bismuth and Antimony: Target Sites of Metallodrugs." <u>Acc. Chem. Res.</u> **40**(4): 267-274.

Gegnas, L. D., S. T. Waddell, R. M. Chabin, S. Reddy and K. K. Wong (1998). "Inhibitors of the bacterial cell wall biosynthesis enzyme MurD." <u>Bioorganic & medicinal chemistry letters</u> **8**(13): 1643-1648.

Geijtenbeek, T. B., S. J. van Vliet, A. Engering, B. A. t Hart and Y. van Kooyk (2004). "Selfand nonself-recognition by C-type lectins on dendritic cells." <u>Annual review of immunology</u> **22**: 33-54.

Geyikoglu, F., H. Turkez and A. Aslan (2007). "The protective roles of some lichen species on colloidal bismuth subcitrate genotoxicity." <u>Toxicology and industrial health</u> **23**(8): 487-492.

Ghurye, S. G. (1949). "On the use of student's t-test in an asymmetrical population." <u>Biometrika</u> **36**(3-4): 426-430.

Goldin, B. and L. Gorbach (1992). Probiotics for humans. London, Chapman and Hall.

Granjon, T., O. Maniti, Y. Auchli, P. Dahinden, R. Buchet, O. Marcillat and P. Dimroth (2010). "Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+) binding effect." <u>PloS one</u> **5**(6): e10935.

Grass, G., L. Rensing and C. Rensing (2011). "Metal toxicity." <u>Metallomics : integrated</u> biometal science **3**(11): 1095-1097.

Gump, D. W., O. W. Nadeau, G. M. Hendricks and D. H. Meyer (1992). "Evidence that bismuth salts reduce invasion of epithelial cells by enteroinvasive bacteria." <u>Medical microbiology and immunology</u> **181**(3): 131-143.

Guzman, M., J. Dille and S. Godet (2012). "Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria." <u>Nanomedicine</u> : <u>nanotechnology, biology, and medicine</u> 8(1): 37-45.

Hajian, R., N. Iravani, F. Ghanbari and N. Shams (2012). "DNA Binding Studies on the Interaction of Myricetin-Bi(III) Complex with Double Stranded DNA by UV-VIS Spectrophotometry and Voltammetry." <u>Asian Journal of Chemistry</u> **24**(8): 3656-3660.

Hannon, M. J. (2007). "Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology." <u>Pure Appl. Chem.</u> **79**(12): 2243-2261.

Hantke, K. (2001). "Iron and metal regulation in bacteria." <u>Current opinion in microbiology</u> **4**(2): 172-177.

Harms, N., G. Koningstein, W. Dontje, M. Muller, B. Oudega, J. Luirink and H. de Cock (2001). "The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane." Journal of Biological Chemistry **276**(22): 18804-18811.

Harris, F. and D. A. Phoenix (1998). "The Escherichia coli low molecular mass penicillinbinding proteins and a putative membrane bound protein complex." <u>Membrane & cell biology</u> **11**(5): 591-596.

Hernandez-Delgadillo, R., D. Velasco-Arias, D. Diaz, K. Arevalo-Nino, M. Garza-Enriquez, M. A. De la Garza-Ramos and C. Cabral-Romero (2012). "Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm." <u>International journal of nanomedicine</u> **7**: 2109-2113.

Hernandez, L., B. Vazquez, A. Lopez-Bravo, J. Parra, I. Goni and M. Gurruchaga (2007). "Acrylic bone cements with bismuth salicylate: Behavior in simulated physiological conditions." Journal of biomedical materials research. Part A **80**(2): 321-332.

Hirner, A. V. and A. W. Rettenmeier (2010). "Methylated metal(loid) species in humans." <u>Metal ions in life sciences</u> **7**: 465-521.

Holleman, A., Wiberg, F.E., Wiberg, N. (2007). <u>Lehrbuch der Anorganischen Chemie</u>. Berlin, Walter de Gruyter.

Hooper, L. V. (2004). "Laser microdissection: exploring host-bacterial encounters at the front lines." <u>Current opinion in microbiology</u> 7(3): 290-295.

Hooper, L. V. and J. I. Gordon (2001). "Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity." <u>Glycobiology</u> **11**(2): 1R-10R.

Hopkins, M. J., R. Sharp and G. T. Macfarlane (2001). "Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles." <u>Gut</u> **48**(2): 198-205.

Hopkins, M. J., R. Sharp and G. T. Macfarlane (2002). "Variation in human intestinal microbiota with age." <u>Digestive and liver disease : official journal of the Italian Society of</u> <u>Gastroenterology and the Italian Association for the Study of the Liver</u> **34 Suppl 2**: S12-18.

Hoyles, L. and A. L. McCartney (2009). "What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota?" <u>FEMS microbiology letters</u> **299**(2): 175-183.

Huber, B. (2010). Mikrobielle Derivatisierung von Bismut im Maus-Modell und in vitro-Analysen der Biogenese von Trimethylbismut. <u>Mikrobiologie I Essen</u>, Universität Duisburg-Essen. **PhD**.

Huber, B., P. Dammann, C. Kruger, P. Kirsch, B. Bialek, R. A. Diaz-Bone and R. Hensel (2011). "Production of toxic volatile trimethylbismuth by the intestinal microbiota of mice." Journal of toxicology **2011**: 491039.

Ianeva, O. D. (2009). "[Mechanisms of bacteria resistance to heavy metals]." <u>Mikrobiolohichnyi zhurnal</u> **71**(6): 54-65.

Inokoshi, J., Y. Nakamura, Z. Hongbin, R. Uchida, K. Nonaka, R. Masuma and H. Tomoda (2013). "Spirohexalines, new inhibitors of bacterial undecaprenyl pyrophosphate synthase, produced by Penicillium brasilianum FKI-3368." The Journal of antibiotics **66**(1): 37-41.

Jarchow, S., C. Luck, A. Gorg and A. Skerra (2008). "Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp." <u>Proteomics</u> 8(23-24): 4987-4994.

Jones, R. M., J. W. Mercante and A. S. Neish (2012). "Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications." <u>Current medicinal chemistry</u> **19**(10): 1519-1529.

Kallus, S. J. and L. J. Brandt (2012). "The intestinal microbiota and obesity." Journal of clinical gastroenterology **46**(1): 16-24.

Kang, D., Gho, S.G., Suh, M. & Kang, C. (2002). "Highly Sensitive and Fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis." <u>Bull. Korean Chem. Soc.</u> **11**: 1511-1512.

Kappstein, I. and I. Engels (1987). "Antibacterial activity of sucralfate and bismuth subsalicylate in simulated gastric fluid." European journal of clinical microbiology 6(2): 216-217.

Karateev, A. E., E. L. Nasonov and S. G. Radenska-Lopovok (2005). "Efficacy of colloid bismuth subcitrate (De-Nol) in gastropathies induced by nonsteroid anti-inflammatory drugs: an open controlled 4-week trial." <u>Terapevticheskii arkhiv</u> **77**(2): 46-49.

Karlsson, C. L., J. Onnerfalt, J. Xu, G. Molin, S. Ahrne and K. Thorngren-Jerneck (2012). "The microbiota of the gut in preschool children with normal and excessive body weight." <u>Obesity</u> **20**(11): 2257-2261.

Kempf, B. and E. Bremer (1998). "Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments." <u>Archives of Microbiology</u> **170**(5): 319-330.

Kieu, H. T., E. Muller and H. Horn (2011). "Heavy metal removal in anaerobic semicontinuous stirred tank reactors by a consortium of sulfate-reducing bacteria." <u>Water research</u> **45**(13): 3863-3870.

Kleessen, B., B. Sykura, H. J. Zunft and M. Blaut (1997). "Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons." <u>American Journal of Clinical Nutrition</u> **65**(5): 1397-1402.

Kojima, S., K. Imada, M. Sakuma, Y. Sudo, C. Kojima, T. Minamino, M. Homma and K. Namba (2009). "Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB." <u>Molecular Microbiology</u> **73**(4): 710-718.

Korecka, A. and V. Arulampalam (2012). "The gut microbiome: scourge, sentinel or spectator?" Journal of oral microbiology **4**.

Krissinel, E., Henrick, K. (2004). "Secondary-structure matching (PDBeFold), a new tool for fast protein structure alignment in three dimensions." <u>Acta Cryst.</u> **D**(60): 2256-2268.

Krissinel, E., Henrick, K., Ed. (2005). <u>Multiple Alignment of Protein Structures in Three</u> <u>Dimensions</u>. Computational Life Sciences Lecture Notes in Computer Science. Berlin Heidelberg, Springer-Verlag.

Kumar, A., S. K. Sarkar, D. Ghosh and A. S. Ghosh (2012). "Deletion of penicillin-binding protein 1b impairs biofilm formation and motility in Escherichia coli." <u>Research in microbiology</u> **163**(4): 254-257.

Kuykendall, L. D., Roy, M.A., O'Neill, J.J., Devine, T.E. (1988). "Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum." International Journal of Systematic Bacteriology **38**: 358-336.

Kwon, H. J., R. Tirumalai, A. Landy and T. Ellenberger (1997). "Flexibility in DNA recombination: structure of the lambda integrase catalytic core." <u>Science</u> **276**(5309): 126-131.

Laemmli, U. K. (1970). "Cleavage of Structural Proteins during Assembly of Head of Bacteriophage-T4." <u>Nature</u> **227**(5259): 680-&.

Lazar, S. W. and R. Kolter (1996). "SurA assists the folding of Escherichia coli outer membrane proteins." Journal of bacteriology **178**(6): 1770-1773.

Lee, S. P. (1981). "Studies on the Absorption and Excretion of Tripotassium Dicitrato-Bismuthate in Man." <u>Research Communications in Chemical Pathology</u> and Pharmacology **34**(2): 359-364.

Lewald, G. (1857). Untersuchung über den Übergang von Arzneimitteln in die Milch. Breslau.

Li, D., K. Morimoto, T. Takeshita and Y. Lu (2001). "Arsenic induces DNA damage via reactive oxygen species in human cells." Environmental health and preventive medicine 6(1): 27-32.

Liu, L. S., X. Wang, B. Y. Yang and Y. Sun (2008). "Mechanism of damage of DNA induced by carbaryl and heavy metal ions." <u>Guang pu xue yu guang pu fen xi = Guang pu</u> **28**(6): 1353-1355.

Lot, G. (1950). "Bismuth camphocarbonate in the treatment of herpes zoster." <u>Archivio</u> italiano di dermatologia, sifilografia, e venereologia **23**(4): 300-304.

Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall (1951). "Protein measurement with the Folin phenol reagent." <u>The Journal of biological chemistry</u> **193**(1): 265-275.

Lussana, F. (1852). Über die Wirkung des Bismutum subnitricum Italien, Gazz. med.

Macfarlane, S. and G. T. Macfarlane (2004). "Bacterial diversity in the human gut." <u>Advances</u> in applied microbiology **54**: 261-289.

Magalhaes, J. G., I. Tattoli and S. E. Girardin (2007). "The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens." <u>Seminars in immunology</u> **19**(2): 106-115.

Manhart, M. D. (1990). "In vitro antimicrobial activity of bismuth subsalicylate and other bismuth salts." <u>Reviews of infectious diseases</u> **12 Suppl 1**: S11-15.

Marchler-Bauer, A., C. Zheng, F. Chitsaz, M. K. Derbyshire, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, C. J. Lanczycki, F. Lu, S. Lu, G. H. Marchler, J. S. Song, N. Thanki, R. A. Yamashita, D. Zhang and S. H. Bryant (2013). "CDD: conserved domains and protein three-dimensional structure." <u>Nucleic acids research</u> **41**(D1): D348-352.

Mariat, D., O. Firmesse, F. Levenez, V. Guimaraes, H. Sokol, J. Dore, G. Corthier and J. P. Furet (2009). "The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age." <u>BMC microbiology</u> **9**: 123.

Marshall, B. J., J. A. Armstrong, G. J. Francis, N. T. Nokes and S. H. Wee (1987). "Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis." <u>Digestion</u> **37 Suppl 2**: 16-30.

Martin-Bouyer, G., G. Foulon, H. Guerbois and C. Barin (1981). "Epidemiological study of encephalopathies following bismuth administration per os. Characteristics of intoxicated subjects: comparison with a control group." <u>Clinical Toxicology</u> **18**(11): 1277-1283.

Melnikova, V. A., I. A. Basnakian and V. V. Ermolov (1991). "The limitation and inhibition of microorganism viability by metal ions." <u>Zhurnal mikrobiologii</u>, epidemiologii, i <u>immunobiologii</u>(6): 80-84.

Meyer, J., K. Michalke, T. Kouril and R. Hensel (2008). "Volatilisation of metals and metalloids: an inherent feature of methanoarchaea?" <u>Systematic and applied microbiology</u> **31**(2): 81-87.

Michalke, K., A. Schmidt, B. Huber, J. Meyer, M. Sulkowski, A. V. Hirner, J. Boertz, F. Mosel, P. Dammann, G. Hilken, H. J. Hedrich, M. Dorsch, A. W. Rettenmeier and R. Hensel (2008). "Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice." <u>Applied and environmental microbiology</u> **74**(10): 3069-3075.

Michelsen, K. S. and M. Arditi (2007). "Toll-like receptors and innate immunity in gut homeostasis and pathology." <u>Current opinion in hematology</u> **14**(1): 48-54.

Migliori, V., S. Phalke, M. Bezzi and E. Guccione (2010). "Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation." Epigenomics 2(1): 119-137.

Mikelsaar, M., R. Mändar, E. Sepp, H. Annuk (2004). <u>Human lactic acid bacteria and its role in the welfare of the host</u>. New York, Basel, Marcel Dekker.

Miller, L. T. (1982). "Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids." Journal of clinical microbiology **16**(3): 584-586.

Mohan, R. (2010). "Green bismuth." Nature chemistry 2(4): 336.

Moreno-Garcia, H., M. T. S. Nair and P. K. Nair (2011). "Chemically deposited lead sulfide and bismuth sulfide thin films and Bi2S3/PbS solar cells." <u>Thin Solid Films</u> **519**(7): 2287-2295.

Mory, E. (1883). Einige neue toxikologische Versuche über die Wirkungen des Wismuts. Bern.

Nafeeza, M. I., M. M. Shahimi, M. V. Kudva, H. Ahmad, M. R. Isa, I. M. Sood, M. Z. Mazlam, F. Jamal and Y. Suboh (1992). "Evaluation of therapies in the treatment of Helicobacter pylori associated non-ulcer dyspepsia." <u>Singapore medical journal</u> **33**(6): 570-574.

Nakae, T. (1984). "Permeability properties of the outer membrane of gram-negative bacteriaa discover of porin." <u>The Kitasato archives of experimental medicine</u> **57**(1): 1-20.

Ng, N. S., P. Leverett, D. E. Hibbs, Q. Yang, J. C. Bulanadi, M. Jie Wu and J. R. Aldrich-Wright (2012). "The antimicrobial properties of some copper(ii) and platinum(ii) 1,10-phenanthroline complexes." <u>Dalton transactions</u>.

Nogue, S., A. Mas, A. Pares, P. Nadal and A. Berttran (1985). "Encefalopatia mioclonica y convulsiva por bismuto:utildad del tratamiento con dimercaprol." <u>Medicina Clinica</u> **84**: 530-532.

Norris, P., W. K. Man, M. N. Hughes and D. P. Kelly (1976). "Toxicity and accumulation of thallium in bacteria and yeast." <u>Archives of microbiology</u> **110**(23): 279-286.

Ohmachi, N., N. Morishita, K. Yusu, N. Nakamura, T. Nakai and S. Ashida (2006). "Highspeed recording media for HD DVD rewritable system." Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers **45**(2B): 1210-1212.

Olde Damink, S. W., N. E. Deutz, C. H. Dejong, P. B. Soeters and R. Jalan (2002). "Interorgan ammonia metabolism in liver failure." <u>Neurochemistry international</u> **41**(2-3): 177-188.

Orfila, M. (1843). Traite de Toxicologie. Paris.

Parracho, H., A. L. McCartney and G. R. Gibson (2007). "Probiotics and prebiotics in infant nutrition." <u>The Proceedings of the Nutrition Society</u> **66**(3): 405-411.

Pearce, D. A. and F. Sherman (1999). "Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae." Journal of bacteriology **181**(16): 4774-4779.

Peterfreund, G. L., L. E. Vandivier, R. Sinha, A. J. Marozsan, W. C. Olson, J. Zhu and F. D. Bushman (2012). "Succession in the Gut Microbiome following Antibiotic and Antibody Therapies for Clostridium difficile." <u>PloS one</u> **7**(10): e46966.

Prakash, R. and K. D. Mullen (2010). "Mechanisms, diagnosis and management of hepatic encephalopathy." <u>Nature reviews. Gastroenterology & hepatology</u> **7**(9): 515-525.

Privett, O. S., M. L. Blank, D. W. Codding and E. C. Nickell (1965). "Lipid Analysis by Quantitative Thin-Layer Chromatography." Journal of the American Oil Chemists' Society **42**: 381-393.

Reece, R. J. and A. Maxwell (1991). "DNA gyrase: structure and function." <u>Critical reviews</u> in biochemistry and molecular biology **26**(3-4): 335-375.

Rice, P. L., I. and Bleasby, A. (2000). "EMBOSS: The European Molecular Biology Open Software Suite "<u>Trends in Genetics</u> **16**(6): 276–277.

Robert, V., E. B. Volokhina, F. Senf, M. P. Bos, P. Van Gelder and J. Tommassen (2006). "Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif." <u>PLoS biology</u> **4**(11): e377.

Romero-Gomez, M., M. Jover, J. J. Galan and A. Ruiz (2009). "Gut ammonia production and its modulation." <u>Metabolic brain disease</u> **24**(1): 147-157.

Rusch, K. and V. Rusch (2001). <u>Mikrobiologische Therapie: Grundlagen und Praxis</u>. Heidelberg: Haug.

Salminen, S. and E. Salminen (1997). "Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection." <u>Scandinavian journal of gastroenterology</u>. Supplement **222**: 45-48.

Saltikov, C. W., R. A. Wildman, Jr. and D. K. Newman (2005). "Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3." Journal of bacteriology **187**(21): 7390-7396.

Salvador, J. A., S. A. Figueiredo, R. M. Pinto and S. M. Silvestre (2012). "Bismuth compounds in medicinal chemistry." <u>Future medicinal chemistry</u> **4**(11): 1495-1523.

Salyers, A. A. and N. B. Shoemaker (1996). "Resistance gene transfer in anaerobes: new insights, new problems." <u>Clinical infectious diseases : an official publication of the Infectious Diseases Society of America</u> **23 Suppl 1**: S36-43.

Sambrook, J., E. F. Fritsch and T. Maniatis, Ed. (1989). <u>Molecular cloning</u>. New York. , Cold Spring Habor Laboratory Press.

Samuel, B. S., A. Shaito, T. Motoike, F. E. Rey, F. Backhed, J. K. Manchester, R. E. Hammer, S. C. Williams, J. Crowley, M. Yanagisawa and J. I. Gordon (2008). "Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **105**(43): 16767-16772.

Sani, R. K., B. M. Peyton and M. Jandhyala (2003). "Toxicity of lead in aqueous medium to desulfovibrio desulfuricans G20." <u>Environmental toxicology and chemistry / SETAC</u> 22(2): 252-260.

Santos, A. L., N. C. M. Gomes, I. Henriques, A. Almeida, A. Correia and A. Cunha (2012). "Contribution of reactive oxygen species to UV-B-induced damage in bacteria." <u>Journal of</u> <u>Photochemistry and Photobiology B-Biology</u> **117**: 40-46.

Schindler, R., U. Heemann, U. Haug, B. Stoelck, A. Karatas, C. Pohle, R. Deppisch, W. Beck and M. Hollenbeck (2010). "Bismuth coating of non-tunneled haemodialysis catheters reduces bacterial colonization: a randomized controlled trial." <u>Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 25</u>(8): 2651-2656.

Schlegel (1794). Thesaurus mat. med. II. Leipzig.

Sgouros, G., A. M. Ballangrud, J. G. Jurcic, M. R. McDevitt, J. L. Humm, Y. E. Erdi, B. M. Mehta, R. D. Finn, S. M. Larson and D. A. Scheinberg (1999). "Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia." Journal of nuclear medicine : official publication, Society of Nuclear Medicine **40**(11): 1935-1946.

Sharma, R. R., I. P. Cast, R. M. Redfern and C. O'Brien (1994). "Extradural application of bismuth iodoform paraffin paste causing relapsing bismuth encephalopathy: a case report with CT and MRI studies." Journal of neurology, neurosurgery, and psychiatry **57**(8): 990-993.

Simon, G. L. and S. L. Gorbach (1984). "Intestinal flora in health and disease." Gastroenterology **86**(1): 174-193.

Singh, R., P. K. Gupta and V. D. P. Rao (2009). "Expression and purification of the major outer membrane protein (OmpH) of Pasteurella multocida P52 from Escherichia coli." <u>Veterinarski Arhiv</u> **79**(6): 591-600.

Skipski, V. P., A. F. Smolowe, R. C. Sullivan and M. Barclay (1965). "Separation of lipid classes by thin-layer chromatography." <u>Biochimica et biophysica acta</u> **106**(2): 386-396.

Slikkerveer, A. and F. A. de Wolff (1989). "Pharmacokinetics and toxicity of bismuth compounds." <u>Medical toxicology and adverse drug experience</u> 4(5): 303-323.

Smith, T. F. and M. S. Waterman (1981). "Identification of Common Molecular Subsequences." Journal of Molecular Biology **147**(1): 195-197.

Sonnenburg, E. D., H. Zheng, P. Joglekar, S. K. Higginbottom, S. J. Firbank, D. N. Bolam and J. L. Sonnenburg (2010). "Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations." <u>Cell</u> **141**(7): 1241-1252.

Stappenbeck, T. S., L. V. Hooper and J. I. Gordon (2002). "Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **99**(24): 15451-15455.

Stefanowitsch, P. (1869). Über die Wirkung des Wismuts auf den tierischen Organismus. Beitrag zur Pharmacologie und Toxicologie der Wismutsalze. Petersburg.

Stirrup, V., S. J. Ledingham, M. Thomas, G. Pye and D. F. Evans (1990). "Redox Potential Measurement in the Gastrointestinal-Tract in Man." <u>Gut</u> **31**(10): A1171-A1171.

Tannock, G. (1983). <u>Effect of dietary and environmental stress on the gastrointestinal</u> <u>microbiota</u>. London, Academic Press.

Thomas, F., B. Bialek and R. Hensel (2011a). "Medical Use of Bismuth: the Two Sides of the Coin." <u>Clinic Toxicol</u> **S:3**.

Thomas, F., R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz and R. Hensel (2011b). "Connection between Multimetal(loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis." <u>Applied and Environmental Microbiology</u> **77**(24): 8669-8675.

Thomas, F., R. A. Diaz-Bone, O. Wuerfel, B. Huber, K. Weidenbach, R. A. Schmitz and R. Hensel (2011c). "Connection between multimetal(loid) methylation in methanoarchaea and

central intermediates of methanogenesis." <u>Applied and environmental microbiology</u> **77**(24): 8669-8675.

Tsang, C. N., J. Bianga, H. Sun, J. Szpunar and R. Lobinski (2012). "Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry." <u>Metallomics : integrated biometal science</u> **4**(3): 277-283.

Turnbaugh, P. J. and J. I. Gordon (2009a). "The core gut microbiome, energy balance and obesity." <u>The Journal of physiology</u> **587**(Pt 17): 4153-4158.

Turnbaugh, P. J., V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight and J. I. Gordon (2009b). "The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice." <u>Science translational medicine</u> 1(6): 6ra14.

Viamajala, S., B. M. Peyton, R. K. Sani, W. A. Apel and J. N. Petersen (2004). "Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1." <u>Biotechnology progress</u> **20**(1): 87-95.

von Blohn, C., B. Kempf, R. M. Kappes and E. Bremer (1997). "Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B." <u>Molecular microbiology</u> **25**(1): 175-187.

von Recklinghausen, U., L. M. Hartmann, S. Rabieh, J. Hippler, A. V. Hirner, A. W. Rettenmeier and E. Dopp (2008a). "Methylated bismuth, but not bismuth citrate or bismuth glutathione, induces cyto- and genotoxic effects in human cells in vitro." <u>Chemical research in toxicology</u> **21**(6): 1219-1228.

von Recklinghausen, U., L. M. Hartmann, S. Rabieh, J. Hippler, A. V. Hirner, A. W. Rettenmeier and E. Dopp (2008b). "Methylated bismuth, but not bismuth citrate or bismuth glutathione, induces cyto- and genotoxic effects in human cells in vitro." <u>Chemical Research in Toxicology</u> **21**(6): 1219-1228.

Voulhoux, R. and J. Tommassen (2004). "Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly." <u>Research in microbiology</u> **155**(3): 129-135.

Wagstaff, A. J., P. Benfield and J. P. Monk (1988). "Colloidal bismuth subcitrate. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in peptic ulcer disease." <u>Drugs</u> **36**(2): 132-157.

Walker, A. (2007). "Genome watch - Say hello to our little friends." <u>Nature Reviews</u> <u>Microbiology</u> **5**(8): 572-573.

Walton, T. A., C. M. Sandoval, C. A. Fowler, A. Pardi and M. C. Sousa (2009). "The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **106**(6): 1772-1777.

Walton, T. A. and M. C. Sousa (2004). "Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation." <u>Molecular Cell</u> **15**(3): 367-374.

Wang, H., K. K. Andersen, B. S. Vad and D. E. Otzen (2013). "OmpA can form folded and unfolded oligomers." <u>Biochimica et biophysica acta</u> **1834**(1): 127-136.

Wang, X. Y., X. M. Zhang, J. Lin, J. W. Chen, Q. Xu and Z. J. Guo (2003). "DNA-binding property and antitumor activity of bismuth(III) complex with 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane." <u>Dalton Transactions</u>(12): 2379-2380.

Wegner, S. V., E. Ertem, M. Sunbul and C. A. He (2011). "Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth." <u>Chemical Science</u> 2(3): 451-456.

Wickenheiser, E. B., K. Michalke, C. Drescher, A. V. Hirner and R. Hensel (1998). "Development and application of liquid and gas-chromatographic speciation techniques with element specific (ICP-MS) detection to the study of anaerobic arsenic metabolism." <u>Fresenius</u> Journal of Analytical Chemistry **362**(5): 498-501.

Worku, M. L., R. L. Sidebotham and Q. N. Karim (1999). "Effects of ranitidine bismuth citrate on Helicobacter pylori motility, morphology and survival." <u>Alimentary pharmacology</u> <u>& therapeutics</u> **13**(6): 753-760.

Wu, C. L., P. Domenico, D. J. Hassett, T. J. Beveridge, A. R. Hauser and J. A. Kazzaz (2002). "Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa." <u>American</u> journal of respiratory cell and molecular biology **26**(6): 731-738.

Xu, J., M. K. Bjursell, J. Himrod, S. Deng, L. K. Carmichael, H. C. Chiang, L. V. Hooper and J. I. Gordon (2003). "A genomic view of the human-Bacteroides thetaiotaomicron symbiosis." <u>Science</u> **299**(5615): 2074-2076.

Young, F. E. and L. Mayer (1979). "Genetic determinants of microbial resistance to antibiotics." Reviews of infectious diseases 1(1): 55-63.

Zhang, H., J. Tang, X. Meng, J. Tsang and T. K. Tsang (2005). "Inhibition of bacterial adherence on the surface of stents and bacterial growth in bile by bismuth dimercaprol." Digestive diseases and sciences 50(6): 1046-1051.

Zhang, L., S. B. Mulrooney, A. F. Leung, Y. Zeng, B. B. Ko, R. P. Hausinger and H. Sun (2006). "Inhibition of urease by bismuth(III): implications for the mechanism of action of bismuth drugs." <u>Biometals : an international journal on the role of metal ions in biology</u>, <u>biochemistry</u>, and <u>medicine</u> **19**(5): 503-511.

Zielowski, W. (1995). Use of bismuth as fishing weight: 1-3.

Zuo, H. J., Z. M. Xie, W. W. Zhang, Y. R. Li, W. Wang, X. B. Ding and X. F. Pei (2011). "Gut bacteria alteration in obese people and its relationship with gene polymorphism." <u>World</u> journal of gastroenterology : WJG **17**(8): 1076-1081.

7 Anhang

Anhang 1: Rohdaten der gaschromatograpfischen Auswertung der Zusammensetzung von Fettsäuren von *B. thetaiotaomicron* (n=3)

Angegeben sind die Rohdaten der gaschromatograpfischen Messungen der Fettsäurezusammensetzung von *B. thetaiotaomicron* Kulturen, die entweder ohne (Kontrollen 1-3) oder mit 30 nM TMBi (Proben 1-3) für 48 Stunden exponiert wurden. Die Kulturen befinden sich in der späten logarithmischen Wachstumsphase. (RT: Retentionszeit; *Response*: Peakfläche; Ar/Ht: Peakkonzentration; RFact: Umrechnungsfaktor ; ECL: Retentionsindex für Fettsäuren ; *Peak* Name: Fettsäurezuordnung; *Percent*: Prozentsatz)

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,570	3,672E+08	0,025	0,000	7,034	SOLVENT PEAK	0,00
1,667	1867	0,021	0,000	7,238		0,00
2,421	956	0,022	0,000	8,820		0,00
5,202	2965	0,029	1,054	12,614	13:0 ISO	4,30
5,301	2019	0,030	1,050	12,702	13:0 ANTEISO	2,92
5,632	263	0,026	1,038	13,001	13:0	0,38
6,452	1412	0,031	1,015	13,618	14:0 ISO	1,97
6,961	7761	0,035	1,002	14,000	14:0	10,70
7,672	405	0,035	0,987	14,472		0,55
7,899	17976	0,035	0,982	14,623	15:0 ISO	24,28
8,035	20117	0,035	0,979	14,713	15:0 ANTEISO	27,10
8,470	3440	0,037	0,971	15,001	15:0	4,59
10,023	697	0,047	0,000	15,949		0,00
10,106	3144	0,039	0,944	16,000	16:0	4,09
10,972	936	0,041	0,933	16,506	15:0 3OH	1,20
12,728	9629	0,042	0,914	17,521	16:0 3OH	12,11
13,846	4678	0,044	0,904	18,161	17:0 ISO 3OH	5,82

Kontrollen (1 - 3)

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,569	3,602E+08	0,023	0,000	7,030	SOLVENT PEAK	0,00
2,421	236	0,024	0,000	8,820		0,00
3,385	291	0,027	1,149	10,607	11:0 ISO	0,14
3,443	569	0,025	1,144	10,694	11:0 ANTEISO	0,27
4,179	522	0,025	1,099	11,609	12:0 ISO	0,24
4,524	801	0,028	1,081	12,000	12:0	0,36
5,203	15389	0,029	1,054	12,613	13:0 ISO	6,79
5,302	11225	0,029	1,050	12,702	13:0 ANTEISO	4,93
5,555	1796	0,030	1,041	12,930	13:1 AT 12-13	0,78
5,634	977	0,031	1,038	13,001	13:0	0,42
6,327	394	0,030	0,000	13,522		0,00
6,377	835	0,031	1,017	13,560		0,36
6,454	3837	0,036	1,015	13,618	14:0 ISO	1,63
6,870	495	0,035	0,000	13,931		0,00
6,961	28031	0,032	1,002	14,000	14:0	11,75
7,585	563	0,029	0,988	14,414	15:1 ISO F	0,23
7,675	1258	0,036	0,987	14,473		0,52
7,741	335	0,032	0,000	14,517		0,00
7,901	52872	0,036	0,982	14,623	15:0 ISO	21,72
8,037	49006	0,036	0,979	14,714	15:0 ANTEISO	20,08
8,471	8807	0,038	0,971	15,001	15:0	3,58
8,656	531	0,035	0,967	15,114	14:0 ISO 3OH	0,22
8,794	697	0,038	0,965	15,198	14:0 2OH	0,28
9,252	732	0,044	0,957	15,478		0,29
9,495	668	0,034	0,954	15,627	16:0 ISO	0,27
9,807	1966	0,039	0,949	15,817		0,78
10,023	2346	0,052	0,000	15,949		0,00
10,107	11792	0,039	0,944	16,000	16:0	4,66
10,335	919	0,042	0,941	16,133	15:0 ISO 3OH	0,36
10,819	839	0,043	0,935	16,416	ISO 17:1 w9c	0,33
10,972	2816	0,053	0,933	16,505	15:0 3OH	1,10

11,104	689	0,045	0,932	16,583	0,27
11,183	502	0,036	0,931	16,629 17:0 ISO	0,20
12,087	1583	0,053	0,920	17,153 16:0 ISO 3OH	0,61
12,626	603	0,033	0,915	17,462 18:1 ISO H	0,23
12,728	29250	0,044	0,914	17,520 16:0 3OH	11,19
13,168	1131	0,041	0,910	17,772 18:1 w9c	0,43
13,566	891	0,033	0,906	18,000 18:0	0,34
13,848	11615	0,046	0,904	18,161 17:0 ISO 3OH	4,39
14,019	630	0,043	0,903	18,260 17:0 2OH	0,24

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,571	3,748E+08	0,025	0,000	7,031	SOLVENT PEAK	0,00
2,421	175	0,024	0,000	8,813		0,00
3,389	191	0,024	1,149	10,609	11:0 ISO	0,09
3,445	620	0,027	1,144	10,695	11:0 ANTEISO	0,28
4,082	275	0,035	0,000	11,495		0,00
4,179	541	0,026	1,099	11,606	12:0 ISO	0,23
4,525	1348	0,032	1,081	12,000	12:0	0,57
5,205	16684	0,029	1,054	12,613	13:0 ISO	6,87
5,303	13006	0,030	1,050	12,702	13:0 ANTEISO	5,33
5,556	493	0,031	1,041	12,929	13:1 AT 12-13	0,20
5,634	1448	0,030	1,038	13,000	13:0	0,59
6,455	4925	0,033	1,015	13,618	14:0 ISO	1,95
6,871	966	0,037	0,000	14,000		0,00
6,962	41797	0,034	1,002	14,474	14:0	16,35
7,676	1340	0,035	0,987	14,623		0,52
7,902	50495	0,035	0,982	14,714	15:0 ISO	19,36
8,038	55760	0,035	0,979	15,001	15:0 ANTEISO	21,32
8,471	9180	0,039	0,971	15,198	15:0	3,48
8,793	432	0,033	0,965	15,484	14:0 2OH	0,16
9,262	638	0,039	0,957	15,628		0,24
9,498	517	0,037	0,954	15,817	16:0 ISO	0,19
9,808	1469	0,039	0,949	15,944		0,54
10,015	3006	0,051	0,000	16,001		0,00
10,108	10029	0,040	0,944	16,134	16:0	3,70
10,337	638	0,040	0,941	16,504	15:0 ISO 3OH	0,23
10,971	2653	0,044	0,933	17,148	15:0 3OH	0,97
12,079	1543	0,061	0,920	17,460	16:0 ISO 3OH	0,55
12,624	866	0,043	0,915	17,519	18:1 ISO H	0,31
12,726	31688	0,042	0,914	17,720	16:0 3OH	11,31
13,077	481	0,034	0,911	17,770		0,17
13,166	1927	0,044	0,910	18,000	18:1 w9c	0,68
13,567	1127	0,039	0,906	18,160	18:0	0,40
				93		
------	-------------	-------------------------	-------------------------------------	--		
9071	0,045	0,904	18,257 17:0 ISO 3OH	3,20		
587	0,044	0,903	17:0 2OH	0,21		
	9071 587	9071 0,045 587 0,044	9071 0,045 0,904 587 0,044 0,903	9071 0,045 0,904 18,257 17:0 ISO 3OH 587 0,044 0,903 17:0 2OH		

Proben (1 - 3)

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,570	3,673E+08	0,025	0,000	7,033	SOLVENT PEAK	0,00
2,422	280	0,026	0,000	8,821		0,00
3,443	275	0,029	1,144	10,695	11:0 ANTEISO	0,18
4,178	257	0,025	1,099	11,608	12:0 ISO	0,17
4,525	762	0,032	1,081	12,001	12:0	0,48
5,204	10498	0,030	1,054	12,614	13:0 ISO	6,48
5,303	6817	0,030	1,050	12,703	13:0 ANTEISO	4,20
5,556	379	0,031	1,041	12,931	13:1 AT 12-13	0,23
5,633	806	0,032	1,038	13,000	13:0	0,49
6,327	555	0,039	0,000	13,522		0,00
6,454	2814	0,032	1,015	13,618	14:0 ISO	1,67
6,869	402	0,039	0,000	13,930		0,00
6,962	21524	0,033	1,002	14,001	14:0	12,64
7,676	767	0,035	0,987	14,474		0,44
7,900	38164	0,036	0,982	14,623	15:0 ISO	21,96
8,037	35274	0,037	0,979	14,713	15:0 ANTEISO	20,24
8,469	6483	0,036	0,971	15,000	15:0	3,69
8,657	365	0,031	0,967	15,115	14:0 ISO 3OH	0,21
8,797	385	0,032	0,965	15,200	14:0 2OH	0,22
9,264	499	0,041	0,957	15,485		0,28
9,496	327	0,030	0,954	15,627	16:0 ISO	0,18
9,807	1612	0,041	0,949	15,817		0,90
10,025	1543	0,052	0,000	15,950		0,00
10,107	8055	0,040	0,944	16,000	16:0	4,46
10,336	749	0,037	0,941	16,134	15:0 ISO 3OH	0,41
10,970	1911	0,040	0,933	16,504	15:0 3OH	1,05
12,079	1100	0,054	0,920	17,149	16:0 ISO 3OH	0,59
12,619	416	0,030	0,915	17,457	18:1 ISO H	0,22
12,729	22181	0,043	0,914	17,521	16:0 3OH	11,88
13,076	517	0,037	0,911	17,719		0,28
13,164	1630	0,040	0,910	17,770	18:1 w9c	0,87

				95
1303	0,043	0,906	18,001 18:0	0,69
8726	0,044	0,904	18,160 17:0 ISO 3OH	4,62
500	0,041	0,903	18,259 17:0 2OH	0,26
	1303 8726 500	1303 0,043 8726 0,044 500 0,041	1303 0,043 0,906 8726 0,044 0,904 500 0,041 0,903	1303 0,043 0,906 18,001 18:0 8726 0,044 0,904 18,160 17:0 ISO 3OH 500 0,041 0,903 18,259 17:0 2OH

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,571	3,775E+08	0,026	0,000	7,031	SOLVENT PEAK	0,00
2,421	338	0,025	0,000	8,816		0,00
3,446	333	0,023	1,144	10,695	11:0 ANTEISO	0,15
4,182	300	0,027	1,099	11,609	12:0 ISO	0,13
4,525	742	0,031	1,081	12,000	12:0	0,31
5,205	13867	0,029	1,054	12,613	13:0 ISO	5,70
5,303	9092	0,030	1,050	12,702	13:0 ANTEISO	3,72
5,556	681	0,033	1,041	12,929	13:1 AT 12-13	0,28
5,636	1199	0,031	1,038	13,001	13:0	0,49
6,327	711	0,039	0,000	13,522		0,00
6,455	4815	0,035	1,015	13,618	14:0 ISO	1,90
6,874	447	0,033	0,000	13,933		0,00
6,963	28745	0,034	1,002	14,000	14:0	11,22
7,676	1386	0,034	0,987	14,473		0,53
7,902	60217	0,037	0,982	14,623	15:0 ISO	23,04
8,038	61019	0,035	0,979	14,713	15:0 ANTEISO	23,28
8,471	11100	0,036	0,971	15,000	15:0	4,20
8,654	521	0,034	0,967	15,112	14:0 ISO 3OH	0,20
8,796	741	0,037	0,965	15,199	14:0 2OH	0,28
9,254	730	0,038	0,957	15,479		0,27
9,497	482	0,033	0,954	15,627	16:0 ISO	0,18
9,809	861	0,039	0,949	15,818		0,32
10,026	2412	0,051	0,000	15,951		0,00
10,107	10322	0,040	0,944	16,000	16:0	3,80
10,335	976	0,038	0,941	16,133	15:0 ISO 3OH	0,36
10,972	3434	0,042	0,933	16,505	15:0 3OH	1,25
11,105	473	0,030	0,932	16,583		0,17
12,080	2003	0,055	0,920	17,149	16:0 ISO 3OH	0,72
12,624	518	0,039	0,915	17,461	18:1 ISO H	0,18
12,729	32408	0,043	0,914	17,520	16:0 3OH	11,54
13,165	1578	0,050	0,910	17,770	18:1 w9c	0,56
13,567	930	0,038	0,906	18,000	18:0	0,33

7 Anhang					97
13,847	13114	0,044	0,904	18,161 17:0 ISO 3OH	4,62
14,018	761	0,037	0,903	18,258 17:0 2OH	0,27

RT	Response	Ar/Ht	RFact	ECL	Peak Name	Percent
1,568	3,607E+08	0,023	0,000	7,031	SOLVENT PEAK	0,00
2,419	263	0,023	0,000	8,816		0,00
4,521	384	0,030	1,081	12,000	12:0	0,26
5,201	5968	0,029	1,054	12,614	13:0 ISO	3,88
5,299	4055	0,030	1,050	12,702	13:0 ANTEISO	2,63
5,553	1144	0,032	1,041	12,930	13:1 AT 12-13	0,73
5,632	578	0,031	1,038	13,002	13:0	0,37
6,324	430	0,029	0,000	13,522		0,00
6,375	648	0,033	1,017	13,561		0,41
6,451	3082	0,034	1,015	13,618	14:0 ISO	1,93
6,870	316	0,030	0,000	13,933		0,00
6,958	15654	0,034	1,002	14,000	14:0	9,67
7,672	844	0,034	0,987	14,622		0,51
7,897	38282	0,035	0,982	14,713	15:0 ISO	23,17
8,034	43539	0,036	0,979	15,000	15:0 ANTEISO	26,27
8,467	7410	0,036	0,971	15,112	15:0	4,43
8,650	317	0,036	0,967	15,198	14:0 ISO 3OH	0,19
8,790	528	0,035	0,965	15,628	14:0 2OH	0,31
9,494	335	0,032	0,954	15,816	16:0 ISO	0,20
9,803	376	0,030	0,949	15,952		0,22
10,024	1435	0,050	0,000	16,000		0,00
10,104	6639	0,040	0,944	16,133	16:0	3,86
10,332	554	0,034	0,941	16,504	15:0 ISO 3OH	0,32
10,968	2173	0,044	0,933	17,152	15:0 3OH	1,25
12,081	1482	0,054	0,920	17,463	16:0 ISO 3OH	0,84
12,625	358	0,040	0,915	17,520	18:1 ISO H	0,20
12,724	19825	0,044	0,914	17,770	16:0 3OH	11,17
13,161	826	0,040	0,910	17,999	18:1 w9c	0,46
13,561	748	0,036	0,906	18,162	18:0	0,42
13,844	10641	0,046	0,904	18,258	17:0 ISO 3OH	5,93
14,012	674	0,037	0,903		17:0 2OH	0,37

Anhang 2: Genliste der ausgewählten Gencluster mit hoch- bzw. runterregulierten Genen Aufgeführt sind die Gene der biologischen Prozesse mit dazugehöriger Funktion, die eine Änderung nach TMBi Exposition zeigten.

Prozess	Gen	Funktion
Integrase-like, catalytik		
core, phage	BT_1827	Transposase
	BT_1928	Transposase
	BT_1960	Integrase
	BT_2321	putative Integrase
	BT_2446	Integrase
	BT_2469	Integrase
	BT_3916	Recombinase IntIA
	BT_4009	Integrase
	BT_4544	Transposase
DNS Rekombination	BT_0023	Transposase
	BT_1827	Transposase
	BT_1928	Transposase
	BT_1933	Transposase
	BT_1960	Integrase
	BT_2321	putative Integrase
	BT_2446	Integrase
	BT_2469	Integrase
	BT_3916	Recombinase IntIA
	BT_4009	Integrase
	BT_4437	Transposase
	BT_4544	Transposase
DNS Integration	BT_1827	Transposase
	BT_1928	Transposase
	BT_1960	Integrase
	BT_2321	putative Integrase
	BT_2446	Integrase

BT_2469	Integrase
BT_3916	Recombinase IntIA
BT_4009	Integrase
BT_4544	Transposase
BT_0023	Transposase

DNS metabolische

Prozesse

	BT_1827	Transposase
	BT_1890	putatives Protein
	BT_1928	Transposase
	BT_1933	putatives Protein
	BT_1960	Integrase
	BT_2321	putative Integrase
	BT_2446	Integrase
	BT_2469	Integrase
	BT_2827	DNS Topoisomerase I
	BT_3916	Rekombinase IntIA
	BT_4009	Integrase
	BT_4437	Transposase
	BT_4544	Transposase
	BT_3429	DNS Gyrase Untereinheit B
	BT_2275	Thymidine Kinase
Zellwand-Biogenese	BT_3453	Penicillin-binding Protein
	BT_4101	putative bifunctionale UDP-N-Acetylmuramoyl-
		Tripeptide:D-Alanyl-D-Alanin Ligase . Alanin
		Racemase
	BT_3450	UDP-N-AcetylmuramoylalaninD-Glutamat Ligase
	BT_3726	undecaprenyl Pyrophosphat Synthase
Metallionen Transport	BT_0182	osmo-regulierter Prolin Transporter
	BT_1270	putativer Na^+ . H^+ Antiporter
	BT_1689	Oxaloacetat Decarboxylase beta chain

	BT_2572	putative Kalium Kanal Untereinheit
Polysaccharid-		
Biosynthese	BT_0381	Capsular Polysaccharide Biosynthese Protein capD
	BT_0828	dTDP-4-Dehydrorhamnose 3, 5-Epimerase
	BT_4004	Lipid-A-Disaccharide Synthase
	BT_4101	putative bifunctionale UDP-N-acetylmuramoyl-
		tripeptide:D-alanyl-D-alanin Ligase . Alanine
		Racemase
	BT_4205	UDP-N-Acetylglucosamin Acyltransferase
	BT_3450	UDP-N-AcetylmuramoylalanineD-Glutamat Ligase
	BT_3726	undecaprenyl Pyrophosphat Synthase
Lipid-Biosynthese	BT 4099	1-Deoxy-D-Xylulose-5-Phosphat Synthase
	BT 3834	3-Oxoacyl-(<i>acyl carrier protein</i>) Synthase III
	_ BT_0381	Capsular Polysaccharide Biosynthese Protein capD
	BT_0828	dTDP-4-Dehydrorhamnose 3, 5-Epimerase
	BT_4004	Lipid-A-Disaccharide Synthase
	BT_4205	UDP-N-Acetylglucosamin Acyltransferase
Membrantransport		
(integral)	BT_0182	osmo-regulierter Proline Transporter
-	BT_0622	Na ⁺ -transportierende NADH:ubiquinon
		Oxidoreductase Elektronen Transport Komplex
		Protein RnfA
	BT_1270	putativer Na ⁺ . H ⁺ Antiporter
	BT_1416	putatives Protein
	BT_1436	putatives Protein
	BT_2052	putatives Protein
	BT_2390	putatives Protein
	BT_2572	putative Kalium Kanal Untereinheit
		AcrB, AcrD, AcrF Familie Kationen Efflux System
	BT_3969	putatives Protein

BT_4565	putatives Protein
BT_4694	Kationen Efflux System Protein
BT_4609	putatives Protein

Anhang 3: Komplette Genliste der *B. thetaiotaomicron* Kulturen nach einer 15 nM TMBi Exposition

Aufgeführt sind die alle 357 Gene, die nach statistischer Analyse mithilfe des t-Test mit p < 0.05 signifikant nach TMBi Exposition reguliert werden. Die Expressionsänderung (*fold-change*) ergibt sich aus dem Verhältnis (*ratio*) der drei biologischen Replikate der Kontrolle zu den drei biologischen Replikaten der TMBi exponierten Proben. Lila hinterlegt sind die Gene, die in Anhang 2 unterschiedlichen Genclustern zugeordnet wurden. Grün hinterlegt sind die Gene des Purin-Metabolismus und blau hinterlegt die Gene des Arginin-und Prolin-Metabolismus (siehe Abb. 17).

Gen	ratio (fold-change)	Signifikanz (t-Test)	Beschreibung
BT_4245	4,233243	0,049	hypothetical protein BT_4245 :: gene:5592763-5594055
BT_3743	0,267907098	0,008	hypothetical protein BT_3743 :: gene:4860127-4861641
BT_4246	3,729203136	0,036	hypothetical protein BT_4246 :: gene:5594092-5596020
BT_2734	0,272880282	0,017	DNA-directed RNA polymerase subunit beta :: gene:3386937-3390749 :: COG:COG0085K
BT_2704	0,279431876	0,049	30S ribosomal protein S13 :: gene:3366497-3366877 :: COG:COG0099J
BT_1142	0,285920236	0,044	hypothetical protein BT_1142 :: gene:1426444-1426929
BT_2733	0,296920202	0,031	DNA-directed RNA polymerase subunit beta :: gene:3382547-3386830 :: COG:COG0086K
BT_1994	0,307532602	0,029	hypothetical protein BT_1994 :: gene:2508286-2508606
BT_1436	3,126469493	0,028	hypothetical protein BT_1436 :: gene:1766558-1766803
BT_3383	0,32063209	0,027	hypothetical protein BT_3383 :: gene:4361466-4361891
BT_1760	0,330175595	0,004	glycosylhydrolase :: gene:2174963-2176534 :: COG:COG1621G
BT_2052	0,330915803	0,025	hypothetical protein BT_2052 :: gene:2573038-2573475 :: COG:COG0848U
BT_4247	3,018491048	0,045	hypothetical protein BT_4247 :: gene:5596039-5599392 :: COG:COG4206H
BT_0370	0,342553613	0,003	galactokinase :: gene:455441-456595 :: COG:COG0153G
BT_1763	0,352960935	0,016	hypothetical protein BT_1763 :: gene:2179702-2182827 :: COG:COG4206H

	BT_1697	0,357216945	0,013	pyruvate carboxylase subunit B :: gene:2095697-2097526 :: COG:COG5016C
	BT_1758	0,358552364	0,043	Glucose . Galactose transporter :: gene:2171552-2172721 :: COG:COG0738G
	BT_3648	0,369303051	0,043	putative modulator of DNA gyrase :: gene:4726266-4727807 :: COG:COG0312R
	BT_1132	2,698989784	0,049	hypothetical protein BT_1132 :: gene:1418781-1419230
	BT_2603	2,679489595	0,050	Konjugate Transposon protein :: gene:3243651-3246050 :: COG:COG3451U
	BT_2740	0,375753301	0,036	elongation factor Tu :: gene:3393922-3395106 :: COG:COG0050J
	BT_2161	0,379538949	0,046	50S ribosomal protein L9 :: gene:2721028-2721471 :: COG:COG0359J
	BT_1895	0,382965682	0,038	hypothetical protein BT_1895 :: gene:2384610-2385062
	BT_4004	0,38595569	0,049	lipid-A-disaccharide synthase :: gene:5216850-5217986 :: COG:COG0763M
l	BT_0282	0,390305556	0,043	hypothetical protein BT_0282 :: gene:326951-328246 :: COG:COG5545R
	BT_4265	0,39058603	0,049	GMP synthase :: gene:5615708-5617231 :: COG:COG0519F
	BT_2469	2,520692593	0,032	Integrase :: gene:3089857-3090117 :: COG:COG4974L
	BT_0307	0,407909778	0,043	triphosphatefructose-6-phosphate 1-phosphotransferase :: gene:368717-370363 ::
				COG:COG0205G
	BT_0057	2,433034671	0,045	hypothetical protein BT_0057 :: gene:53288-53575
	BT_1995	0,415539414	0,026	hypothetical protein BT_1995 :: gene:2508676-2509260
	BT_2547	0,415916453	0,019	hypothetical protein BT_2547 :: gene:3180300-3180725 :: COG:COG2166R
	BT_4775	2,327656331	0,024	Konjugate Transposon protein :: gene:6256915-6257022
	BT_4269	2,321743553	0,047	hypothetical protein BT_4269 :: gene:5624885-5625880
	BT_1152	0,434796926	0,021	D-3-phosphoglycerate dehydrogenase :: gene:1437011-1437931 :: COG:COG0111HE
	BT_2466	2,297386981	0,050	hypothetical protein BT_2466 :: gene:3087902-3088378

BT_3259	0,436462238	0,013	hypothetical protein BT_3259 :: gene:4161350-4161745
BT_3840	0,437991764	0,049	putative RNA-Binding protein rau :: gene:4995518-4995763 :: COG:COG0724R
BT_0039	2,279519212	0,033	hypothetical protein BT_0039 :: gene:35989-36417
BT_3744	0,443922024	0,018	hypothetical protein BT_3744 :: gene:4861762-4862547
BT_1757	0,447486801	0,021	fructokinase :: gene:2170630-2171517 :: COG:COG0524G
BT_1614	0,449893862	0,043	hypothetical protein BT_1614 :: gene:1984505-1984738
BT_2827	0,450648139	0,023	DNA topoisomerase I :: gene:3522354-3524702 :: COG:COG0550L
BT_2090	0,451270246	0,014	methylmalonyl-CoA mutase :: gene:2618135-2620282 :: COG:COG1884I
BT_2390	2,204421006	0,037	hypothetical protein BT_2390 :: gene:2977831-2980062 :: COG:COG1629P
BT_2579	0,454531716	0,040	hypothetical protein BT_2579 :: gene:3222805-3223650
BT_1930	2,197227987	0,036	hypothetical protein BT_1930 :: gene:2422496-2422789
BT_0297	0,455349448	0,016	putative outer membrane lipoprotein silC :: gene:349074-350570 :: COG:COG1538MU
BT_3811	0,45655513	0,015	putative endothelin-converting enzyme :: gene:4961310-4962668 :: COG:COG3590O
BT_2361	0,4580181	0,010	hypothetical protein BT_2361 :: gene:2941696-2942085
BT_4747	2,182204903	0,009	hypothetical protein BT_4747 :: gene:6229596-6229925
BT_2610	2,165012112	0,035	hypothetical protein BT_2610 :: gene:3250156-3250581
BT_3374	0,465381385	0,038	putative carbamoyl-phosphate-synthetase :: gene:4350311-4351495 :: COG:COG0439I
BT_4762	2,147574054	0,044	conjugate Transposon protein :: gene:6248249-6248686 :: COG:COG1192D
BT_1932	2,14157436	0,032	hypothetical protein BT_1932 :: gene:2427164-2427871
BT_3463	0,471997624	0,038	hypothetical protein BT_3463 :: gene:4459251-4459832
BT_2446	2,115096024	0,044	Integrase :: gene:3063566-3064795 :: COG:COG4974L

BT_4030	2,11330514	0,022	hypothetical protein BT_4030 :: gene:5243593-5243847
BT_3724	0,473547221	0,035	cationic outer membrane protein :: gene:4833241-4833756 :: COG:COG2825M
BT_0573	0,476803705	0,035	hypothetical protein BT_0573 :: gene:709894-710697 :: COG:COG4105R
BT_4591	0,477386755	0,016	putative nitrogen utilization substance protein :: gene:6013108-6013890 :: COG:COG0781K
BT_4029	2,087907822	0,037	hypothetical protein BT_4029 :: gene:5242727-5243467
BT_2650	2,086494975	0,029	hypothetical protein BT_2650 :: gene:3302647-3303348 :: COG:COG1432S
BT_0530	2,079571284	0,012	anthranilate phosphoribosyltransferase :: gene:653313-654311 :: COG:COG0547E
BT_3668	2,079260958	0,039	hypothetical protein BT_3668 :: gene:4757943-4758677
BT_1928	2,073836129	0,042	Transposase :: gene:2419971-2421200 :: COG:COG4974L
BT_0371	0,48436923	0,002	Glucose . Galaktose transporter :: gene:456639-457949 :: COG:COG0738G
BT_1416	0,486331283	0,045	hypothetical protein BT_1416 :: gene:1749078-1750313 :: COG:COG1333O
BT_0422	0,48734064	0,038	threonyl-tRNA synthetase :: gene:509421-511361 :: COG:COG0441J
BT_4763	2,046066769	0,032	conjugate Transposon protein :: gene:6248689-6249183
BT_1131	2,043111588	0,047	hypothetical protein BT_1131 :: gene:1418623-1418808
BT_3725	0,489925546	0,046	putative outer membrane protein :: gene:4833780-4836437 :: COG:COG4775M
BT_0382	0,49038865	0,019	capsular polysaccharide biosynthesis protein Cps4K :: gene:469853-471058 ::
			COG:COG0451MG
BT_3981	0,4913665	0,007	hypothetical protein BT_3981 :: gene:5183203-5183889
BT_0332	0,493873955	0,025	2-oxoisovalerate oxidoreductase subunit beta :: gene:397900-398079 :: COG:COG0674C
BT_2360	0,494557148	0,027	transcriptional regulator :: gene:2941242-2941652 :: COG:COG1476K
BT_3351	0,495436135	0,010	cysteinyl-tRNA synthetase :: gene:4322214-4323695 :: COG:COG0215J

BT_3629	0,496524182	0,022	hypothetical protein BT_3629 :: gene:4701147-4701734
BT_1153	0,496570559	0,035	phosphoserine aminotransferase :: gene:1438046-1439113 :: COG:COG1932HE
BT_0748	0,497171237	0,029	ribose-phosphate pyrophosphokinase :: gene:926690-927607 :: COG:COG0462FE
BT_0381	0,498951814	0,033	capsular polysaccharide biosynthesis protein capD :: gene:468796-469845 :: COG:COG1086MG
BT_4610	0,50470755	0,048	recombinase A :: gene:6035657-6036691 :: COG:COG0468L
BT_4028	1,976614724	0,024	hypothetical protein BT_4028 :: gene:5242311-5242583
BT_1947	1,972459939	0,040	hypothetical protein BT_1947 :: gene:2447183-2447599
BT_0507	0,507079334	0,025	TetR . AcrR family transcriptional regulator :: gene:629234-629842 :: COG:COG1309K
BT_3726	0,51011874	0,044	undecaprenyl pyrophosphate synthase :: gene:4836468-4837202 :: COG:COG0020I
BT_0888	0,510428394	0,024	AMP nucleosidase :: gene:1090106-1090882 :: COG:COG0775F
BT_4205	0,510941706	0,029	UDP-N-acetylglucosamine acyltransferase :: gene:5541476-5542243 :: COG:COG1043M
BT_1167	1,957022388	0,031	hypothetical protein BT_1167 :: gene:1455628-1456815 :: COG:COG1215M
BT_1514	1,954109041	0,049	hypothetical protein BT_1514 :: gene:1871179-1871478
BT_1418	0,515315955	0,040	quinol oxidase :: gene:1751850-1752446 :: COG:COG3005C
BT_0021	1,938246043	0,039	hypothetical protein BT_0021 :: gene:18251-18919
BT_1689	0,523733948	0,033	oxaloacetate decarboxylase beta chain :: gene:2083882-2085042 :: COG:COG1883C
BT_4101	0,524295603	0,043	putative bifunctional UDP-N-acetylmuramoyl-tripeptide:D-alanyl-D-alanine ligase . alanine
			racemase
BT_4371	0,524872634	0,016	peptidyl-prolyl cis-trans isomerase :: gene:5763642-5765780
BT_3845	0,525033287	0,021	inosine-5-monophosphate dehydrogenase :: gene:5002008-5003486 :: COG:COG0516F
BT_3848	0,525648349	0,049	peptidyl-prolyl cis-trans isomerase :: gene:5006035-5007417 :: COG:COG0760O

BT_3417	1,898271183	0,032	hypothetical protein BT_3417 :: gene:4400971-4401228
BT_4254	0,52756456	0,005	hypothetical protein BT_4254 :: gene:5605420-5606103
BT_3470	0,529973728	0,029	putative dehydrogenase :: gene:4469216-4470598 :: COG:COG0673R
BT_4129	1,886125781	0,020	outer membrane assembly protein :: gene:5413272-5415788 :: COG:COG2982M
BT_2248	1,881420122	0,049	putative integral membrane protein :: gene:2817682-2818536 :: COG:COG5006R
BT_2493	0,534390692	0,017	ROK family transcriptional repressor :: gene:3115362-3116342 :: COG:COG1940KG
BT_0674	0,534727152	0,016	carboxynorspermidine decarboxylase :: gene:834315-835454 :: COG:COG0019E
BT_0028	1,867553642	0,038	alkaline phosphatase :: gene:22552-22830 :: COG:COG1785P
BT_2368	0,536438428	0,015	hypothetical protein BT_2368 :: gene:2954453-2954677
BT_1317	0,536588292	0,024	riboflavin synthase subunit alpha :: gene:1642549-1643151 :: COG:COG0307H
BT_3376	0,5372057	0,010	nucleotide sugar transaminase :: gene:4352674-4353783 :: COG:COG0399M
BT_1408	0,537405739	0,005	putative Tricorn-like protease :: gene:1739290-1742598 :: COG:COG0793M
BT_0123	1,856938797	0,028	NADH-ubiquinone oxidoreductase subunit :: gene:112706-113182 :: COG:COG1905C
BT_0828	0,543740815	0,001	dTDP-4-dehydrorhamnose 3, 5-epimerase :: gene:1022989-1023537 :: COG:COG1898M
BT_0709	1,838777511	0,048	hypothetical protein BT_0709 :: gene:881771-884146
BT_4694	1,838614155	0,050	cation efflux system protein :: gene:6159884-6162991 :: COG:COG3696P
BT_3075	0,544072488	0,013	NAD-dependent epimerase . dehydratase family protein :: gene:3899088-3900095 ::
			COG:COG0451MG
BT_1964	1,832903905	0,043	hypothetical protein BT_1964 :: gene:2464700-2465308 :: COG:COG1309K
BT_3969	1,828591575	0,029	AcrB . AcrD . AcrF family cation efflux system protein :: gene:5165823-5170148 ::
			COG:COG3696P

BT_4565	0,548456624	0,015	hypothetical protein BT_4565 :: gene:5985535-5985909
BT_3810	0,549167964	0,012	putative endothelin-converting enzyme :: gene:4960631-4961275 :: COG:COG3590O
BT_1946	1,818360006	0,049	hypothetical protein BT_1946 :: gene:2446767-2447153
BT_2648	1,810690665	0,050	hypothetical protein BT_2648 :: gene:3301054-3301755
BT_2165	0,552724844	0,033	two-component system response regulator :: gene:2723104-2723805 :: COG:COG0745TK
BT_0543	1,805736284	0,026	glutamine synthetase :: gene:667987-670176 :: COG:COG3968R
BT_3833	0,555884949	0,050	50S ribosomal protein L32 :: gene:4989390-4989575 :: COG:COG0333J
BT_1013	1,795468035	0,020	putative alpha-rhamnosidase :: gene:1262233-1266105 :: COG:COG4692G
BT_4428	1,793108195	0,021	hypothetical protein BT_4428 :: gene:5833334-5834224
BT_2830	0,55807924	0,010	DNA-Binding protein HU-beta :: gene:3528957-3529229 :: COG:COG0776L
BT_3628	0,558239047	0,030	hypothetical protein BT_3628 :: gene:4700594-4701160 :: COG:COG3295S
BT_1840	0,560268229	0,001	histidyl-tRNA synthetase :: gene:2311032-2312396 :: COG:COG0124J
BT_0034	1,783858442	0,019	hypothetical protein BT_0034 :: gene:30281-31492
BT_0394	0,560688329	0,028	capsular polysaccharide biosynthesis glycosyltransferase :: gene:483453-484547 ::
			COG:COG0438M
BT_3115	1,780894229	0,031	putative proline Dehydrogenase . delta-1-pyrroline-5-carboxylate Dehydrogenase ::
			gene:3967116-3970436 :: COG:COG1012C
BT_3545	1,771238247	0,032	hypothetical protein BT_3545 :: gene:4581515-4583104 :: COG:COG4783R
BT_2582	1,76961195	0,031	hypothetical protein BT_2582 :: gene:3225821-3226372
BT_1277	1,760881109	0,013	L-fuses permease :: gene:1587227-1588543 :: COG:COG0738G
BT_3894	0,568829839	0,004	tRNA (guanine-N(7)-)-methyltransferase :: gene:5064602-5065444 :: COG:COG0220R

BT_1481	1,749954666	0,029	hypothetical protein BT_1481 :: gene:1824973-1826166
BT_3456	0,573362779	0,048	cell division protein MraZ :: gene:4452056-4452526 :: COG:COG2001S
BT_1881	0,575017058	0,011	purine nucleoside phosphorylase :: gene:2368131-2368940 :: COG:COG0005F
BT_3265	0,575168301	0,044	D-tyrosyl-tRNA(Tyr) deacylase :: gene:4168394-4168846 :: COG:COG1490J
BT_1827	1,737831222	0,033	Transposase :: gene:2290562-2291500 :: COG:COG4974L
BT_0080	1,737100292	0,046	hypothetical protein BT_0080 :: gene:76586-76798
BT_1359	0,576130548	0,045	TPR repeat-containing protein :: gene:1685751-1687457 :: COG:COG4783R
BT_2056	1,729816846	0,009	hypothetical protein BT_2056 :: gene:2575720-2576496 :: COG:COG0084L
BT_3737	1,728615141	0,006	hypothetical protein BT_3737 :: gene:4846918-4847214
BT_4210	0,578664185	0,028	peptide chain release factor 1 :: gene:5546853-5547965 :: COG:COG0216J
BT_4593	0,58228803	0,022	hypothetical protein BT_4593 :: gene:6014270-6015283
BT_0295	0,583138986	0,021	ABC transporter ATP-Binding protein :: gene:344839-345732 :: COG:COG1131V
BT_3397	0,584179084	0,048	hypothetical protein BT_3397 :: gene:4377188-4377664
BT_2235	0,58439083	0,044	hypothetical protein BT_2235 :: gene:2803542-2803775
BT_3992	0,588156556	0,037	putative anti-sigma factor :: gene:5201306-5202235 :: COG:COG3712PT
BT_2322	1,697582752	0,028	putative Integrase :: gene:2897656-2898654
BT_0101	1,696999482	0,037	hypothetical protein BT_0101 :: gene:91727-92965
BT_3892	0,591014494	0,047	branched-chain amino acid aminotransferase :: gene:5062892-5063911 :: COG:COG0115EH
BT_0783	1,689773632	0,032	hypothetical protein BT_0783 :: gene:972725-972913
BT_3622	0,592891496	0,043	putative glycosyltransferase :: gene:4692339-4694783 :: COG:COG0463M
BT_1731	0,593058522	0,046	hypothetical protein BT_1731 :: gene:2130044-2130589

BT_1515	1,685953278	0,016	hypothetical protein BT_1515 :: gene:1871922-1872560
BT_3735	1,68073075	0,024	hypothetical protein BT_3735 :: gene:4846002-4846259
BT_1470	1,679736892	0,035	putative two-component system sensor histidine kinase :: gene:1811517-1812767 ::
			COG:COG5000T
BT_4473	1,677573444	0,046	putative purine permease :: gene:5884613-5885923 :: COG:COG2233F
BT_1014	1,675134859	0,031	hypothetical protein BT_1014 :: gene:1266184-1267704
BT_0023	1,673647238	0,028	Transposase :: gene:19601-19966 :: COG:COG3328L
BT_0342	1,671152667	0,038	hypothetical protein BT_0342 :: gene:411093-411866 :: COG:COG1410E
BT_0108	1,666371245	0,050	hypothetical protein BT_0108 :: gene:100303-102303 :: COG:COG0358L
BT_2677	1,66344952	0,018	hypothetical protein BT_2677 :: gene:3335869-3336192
BT_3327	0,604648519	0,044	ATP-dependent DNA helicase RecG :: gene:4275431-4276888 :: COG:COG2865K
BT_4544	1,653708956	0,028	Transposase :: gene:5964600-5965526 :: COG:COG4974L
BT_3429	0,604728541	0,007	DNA gyrase subunit B :: gene:4418315-4420276 :: COG:COG0187L
BT_3304	0,605527413	0,041	hypothetical protein BT_3304 :: gene:4242086-4243156 :: COG:COG2365T
BT_2160	0,605694522	0,020	putative regulatory protein :: gene:2719301-2720986
BT_0253	0,607191194	0,026	hypothetical protein BT_0253 :: gene:281298-282143
BT_3058	1,644046724	0,031	transcriptional regulator :: gene:3879903-3880745 :: COG:COG2207K
BT_3759	0,608461647	0,039	N-acetyl-gamma-glutamyl-phosphate reductase :: gene:4879609-4880577 :: COG:COG0002E
BT_1803	1,639469265	0,033	hypothetical protein BT_1803 :: gene:2260468-2261148
BT_1828	0,610433907	0,048	hypothetical protein BT_1828 :: gene:2292185-2293747
BT_3966	1,638147062	0,020	two-component system response regulator :: gene:5162880-5163671 :: COG:COG3279KT

BT_0256	0,610495866	0,004	hypothetical protein BT_0256 :: gene:284756-285073
BT_1633	0,611056072	0,026	mannose-1-phosphate guanyltransferase :: gene:2019352-2020095 :: COG:COG1208MJ
BT_4427	1,627591456	0,012	surface layer protein :: gene:5831498-5833297 :: COG:COG3391S
BT_1743	1,627415907	0,038	hypothetical protein BT_1743 :: gene:2149554-2151077 :: COG:COG2755E
BT_0293	1,626966647	0,033	hypothetical protein BT_0293 :: gene:341869-343101
BT_3834	0,615351143	0,039	3-oxoacyl-(acyl carrier protein) synthase III :: gene:4989662-4990669 :: COG:COG0332I
BT_0423	0,616897718	0,045	translation initiation factor IF-3 :: gene:511433-511990 :: COG:COG0290J
BT_0622	1,620422828	0,021	Na ⁺ -transporting NADH:ubiquinone oxidoreductase electron transport complex protein RnfA ::
			gene:766766-767338 :: COG:COG4657C
BT_0515	1,620125607	0,045	terminal quinol oxidase subunit :: gene:638180-639205 :: COG:COG22598
BT_4219	1,614596153	0,024	hypothetical protein BT_4219 :: gene:5555716-5556393
BT_1703	1,614474123	0,036	hypothetical protein BT_1703 :: gene:2100815-2102653
BT_4695	1,613469124	0,033	outer membrane efflux protein :: gene:6162969-6164219 :: COG:COG1538MU
BT_0902	0,6206927	0,028	hypothetical protein BT_0902 :: gene:1113022-1113312
BT_2287	1,601903421	0,048	conjugate Transposon protein :: gene:2864237-2864674
BT_4598	0,626346347	0,012	hypothetical protein BT_4598 :: gene:6019688-6020272
BT_2321	1,59576015	0,028	putative Integrase :: gene:2897452-2897646 :: COG:COG4974L
BT_1447	1,595711797	0,033	two-component system sensor histidine kinase :: gene:1781157-1783514 :: COG:COG0642T
BT_2564	0,629786173	0,032	hypothetical protein BT_2564 :: gene:3202032-3203183 :: COG:COG1225O
BT_3293	0,630141827	0,034	beta-galactosidase :: gene:4214913-4219178 :: COG:COG3250G
BT_2352	1,583094326	0,027	Transposase :: gene:2929538-2931109 :: COG:COG3436L

	BT_3205	0,632630413	0,046	hypothetical protein BT_3205 :: gene:4098277-4099011
	BT_0571	0,633485929	0,037	phenylacetate-coenzyme A ligase :: gene:707810-709108 :: COG:COG1541H
	BT_2751	0,636021949	0,012	hypothetical protein BT_2751 :: gene:3408968-3410764
	BT_4485	1,57093393	0,025	hypothetical protein BT_4485 :: gene:5902056-5902421
	BT_2111	1,567584624	0,025	hypothetical protein BT_2111 :: gene:2652976-2656104 :: COG:COG3537G
	BT_4308	0,639667257	0,018	pantoatebeta-alanine ligase :: gene:5677786-5678634 :: COG:COG0414H
	BT_3213	0,641877368	0,013	tRNA pseudouridine synthase B :: gene:4105831-4106553 :: COG:COG0130J
	BT_0292	1,555737431	0,047	hypothetical protein BT_0292 :: gene:341115-341864
	BT_4545	1,554950647	0,023	hypothetical protein BT_4545 :: gene:5966203-5966448
	BT_1961	1,554253313	0,037	Transposase :: gene:2461891-2462061
	BT_0576	1,55319856	0,007	hypothetical protein BT_0576 :: gene:711725-712447
	BT_3720	1,55204779	0,016	aspartate aminotransferase :: gene:4830294-4831445 :: COG:COG0436E
	BT_0710	1,546934309	0,009	hypothetical protein BT_0710 :: gene:884246-884611
	BT_3178	0,647087777	0,046	beta-hexosaminidase :: gene:4063219-4065543 :: COG:COG3525G
	BT_0920	0,647279388	0,017	putative DNA-binding . iron Metalloproteine . AP endonuclease :: gene:1130452-1131471 ::
				COG:COG0533O
	BT_2583	1,544444716	0,044	hypothetical protein BT_2583 :: gene:3226384-3227310
	BT_4128	1,544376517	0,038	hypothetical protein BT_4128 :: gene:5412640-5413254 :: COG:COG0009J
	BT_1960	1,54375703	0,030	Integrase :: gene:2461168-2461806
1	BT_2533	1,535920152	0,047	hypothetical protein BT_2533 :: gene:3167954-3168856
	BT_1427	1,535367819	0,044	tetracycline resistance element mobilization regulatory protein rteC :: gene:1758954-1759793

BT_3847	0,653044424	0,031	hypothetical protein BT_3847 :: gene:5005180-5006025
BT_2933	0,654469153	0,036	methionyl-tRNA synthetase :: gene:3688414-3690453 :: COG:COG0143J
BT_2284	1,527349822	0,038	hypothetical protein BT_2284 :: gene:2863002-2863259
BT_0722	1,527326665	0,035	putative surface protein, function unknown :: gene:897605-898225 :: COG:COG2431S
BT_1933	1,525830641	0,025	Transposase :: gene:2428062-2428334 :: COG:COG3328L
BT_1936	0,656045126	0,035	hypothetical protein BT_1936 :: gene:2432684-2434831
BT_1987	1,523706692	0,044	hypothetical protein BT_1987 :: gene:2495352-2497787
BT_2948	1,523399103	0,027	hypothetical protein BT_2948 :: gene:3710631-3713324 :: COG:COG3537G
BT_2110	1,520838406	0,038	hypothetical protein BT_2110 :: gene:2651640-2652869
BT_4002	0,65841753	0,033	ParaA family ATPase :: gene:5214894-5215841 :: COG:COG1192D
BT_4183	1,51523931	0,046	pectate lyase L :: gene:5516024-5517337
BT_0829	0,663050565	0,027	UDP-glucose 6-dehydrogenase :: gene:1023557-1024870 :: COG:COG1004M
BT_0038	1,507052433	0,006	hypothetical protein BT_0038 :: gene:35266-35703
BT_1902	1,502248135	0,021	pyrroline-5-carboxylate reductase :: gene:2392014-2392814 :: COG:COG0345E
BT_2747	0,666311752	0,036	3-deoxy-D-manno-octulosonic-acid transferase :: gene:3403559-3404782 :: COG:COG1519M
BT_4409	1,500274533	0,048	DNA damage-inducible protein :: gene:5809743-5810804 :: COG:COG0389L
BT_3450	0,667949353	0,019	UDP-N-acetylmuramoylalanineD-glutamate ligase :: gene:4444262-4445503 ::
			COG:COG0771M
BT_0179	0,668220763	0,028	SsrA-binding protein :: gene:187011-187463 :: COG:COG06910
BT_3149	0,670704731	0,042	hypothetical protein BT_3149 :: gene:4013993-4014268
BT_0997	1,484662289	0,050	hypothetical protein BT_0997 :: gene:1236402-1239023

BT_0182	1,481625271	0,013	osmo-regulated proline transporter :: gene:191106-192656 :: COG:COG0591ER
BT_3719	1,48074624	0,032	gamma-glutamyl kinase :: gene:4829106-4830188 :: COG:COG0263E
BT_2184	1,480612827	0,021	RNA polymerase ECF-type sigma factor :: gene:2742881-2743375 :: COG:COG1595K
BT_4547	1,478209841	0,039	excisionase :: gene:5967594-5967968
BT_4344	1,478152805	0,040	putative DNA helicase :: gene:5722241-5727058 :: COG:COG1112L
BT_2153	0,677148002	0,001	putative Fe-S oxidoreductase :: gene:2710904-2712235 :: COG:COG0621J
BT_4211	0,680662164	0,048	putative phosphoribosylformylglycinamidine cyclo-ligase :: gene:5547969-5549135 ::
			COG:COG0150F
BT_3592	1,465281434	0,047	alpha-galactosidase :: gene:4648534-4650516 :: COG:COG3345G
BT_1115	1,463436891	0,032	aldo . keto reductase :: gene:1401639-1402793 :: COG:COG0667C
BT_4550	1,461006961	0,031	putative transposase :: gene:5970215-5971675 :: COG:COG2452L
BT_4193	0,68575339	0,050	dipeptidyl peptidase IV :: gene:5527974-5530184 :: COG:COG1506E
BT_3364	1,456630638	0,025	hypothetical protein BT_3364 :: gene:4338991-4339734
BT_3907	0,687297653	0,008	hypothetical protein BT_3907 :: gene:5079538-5081013
BT_3711	0,689015495	0,045	hypothetical protein BT_3711 :: gene:4821489-4822139 :: COG:COG2815S
BT_1935	0,689941983	0,027	hypothetical protein BT_1935 :: gene:2430476-2432677 :: COG:COG1413C
BT_2797	0,691155813	0,016	S-adenosyl-L-homocysteine hydrolase :: gene:3470274-3471704 :: COG:COG0499H
BT_3221	0,692012816	0,033	hypothetical protein BT_3221 :: gene:4113369-4113731
BT_0596	0,69238387	0,044	putative transcriptional regulator :: gene:736175-736753 :: COG:COG0250K
BT_3458	0,69283844	0,022	hypothetical protein BT_3458 :: gene:4453742-4454560 :: COG:COG0204I
BT_4599	0,693907661	0,015	putative transcriptional regulator :: gene:6020330-6021226 :: COG:COG0583K

BT_1882	0,696504874	0,023	putative thiamine-monophosphate kinase :: gene:2368956-2369990 :: COG:COG0611H
BT_1174	1,434635396	0,040	hypothetical protein BT_1174 :: gene:1462856-1463299
BT_2320	1,434428034	0,039	transcription regulator :: gene:2896357-2897232 :: COG:COG2207K
BT_0190	1,434098697	0,024	hypothetical protein BT_0190 :: gene:200124-203564 :: COG:COG4771P
BT_1890	1,433802629	0,002	hypothetical protein BT_1890 :: gene:2377103-2379163 :: COG:COG3973R
BT_2283	1,433222116	0,039	hypothetical protein BT_2283 :: gene:2862765-2862983
BT_0364	1,433160155	0,047	hypothetical protein BT_0364 :: gene:440745-443828 :: COG:COG4206H
BT_3319	0,698073727	0,006	signal peptidase I :: gene:4262067-4263548 :: COG:COG0681U
BT_1292	0,700014556	0,033	thiol:disulfide interchange protein :: gene:1609157-1610257 :: COG:COG1225O
BT_0389	0,700271398	0,046	putative galactoside acetyltransferase :: gene:478431-478976 :: COG:COG0110R
BT_1134	1,426200768	0,019	hypothetical protein BT_1134 :: gene:1420174-1420554
BT_3355	0,703627363	0,003	putative auxin-regulated protein :: gene:4329182-4330693
BT_3611	0,703740931	0,041	glycyl-tRNA synthetase :: gene:4679697-4681238 :: COG:COG0423J
BT_2109	1,419442606	0,047	hypothetical protein BT_2109 :: gene:2650421-2651620
BT_1316	0,706583494	0,044	putative NADH Dehydrogenase . NAD(P)H nitroreductase :: gene:1641955-1642491 ::
			COG:COG0778C
BT_3231	1,414574759	0,017	5-keto-4-deoxyuronate isomerase :: gene:4121092-4121934 :: COG:COG3717G
BT_2113	1,413193361	0,022	hypothetical protein BT_2113 :: gene:2657209-2660634
BT_4564	0,708302741	0,042	putative glycosyltransferase :: gene:5984561-5985511 :: COG:COG0463M
BT_3288	0,709162445	0,033	putative integral membrane protein :: gene:4205847-4207202 :: COG:COG1808S
BT_3183	0,709779698	0,030	hypothetical protein BT_3183 :: gene:4072459-4072731

	BT_0004	1,408749969	0,050	hypothetical protein BT_0004 :: gene:2783-3451
	BT_3595	0,713666786	0,021	hypothetical protein BT_3595 :: gene:4653339-4655354
	BT_2963	1,391266171	0,040	hypothetical protein BT_2963 :: gene:3731488-3734430 :: COG:COG4225R
	BT_3112	0,719196036	0,035	hypothetical protein BT_3112 :: gene:3960342-3961748 :: COG:COG0412Q
	BT_4609	1,385587724	0,025	hypothetical protein BT_4609 :: gene:6034520-6035512 :: COG:COG2855S
l	BT_3636	0,722263397	0,014	aspartate-semialdehyde Dehydrogenase :: gene:4711361-4712368 :: COG:COG0136E
	BT_2921	1,38393324	0,029	hypothetical protein BT_2921 :: gene:3666005-3667087 :: COG:COG4225R
	BT_4469	1,380859473	0,011	hypothetical protein BT_4469 :: gene:5878345-5878827 :: COG:COG3663L
	BT_3036	1,377295957	0,041	hypothetical protein BT_3036 :: gene:3844119-3846701 :: COG:COG4772P
	BT_3916	1,374791281	0,043	site-specific recombinase IntIA :: gene:5089961-5090911 :: COG:COG4974L
	BT_4437	1,374390176	0,045	Transposase :: gene:5843808-5845022 :: COG:COG3328L
	BT_0546	1,374242555	0,029	hypothetical protein BT_0546 :: gene:672280-673005
	BT_1634	0,729873049	0,016	hypothetical protein BT_1634 :: gene:2020104-2021534 :: COG:COG1660R
	BT_2134	0,730438748	0,022	HD superfamily hydrolase :: gene:2687167-2687703 :: COG:COG1713H
	BT_2430	1,366985813	0,035	hexokinase type III :: gene:3040198-3041406 :: COG:COG5026G
	BT_1230	1,363130969	0,013	hypothetical protein BT_1230 :: gene:1532823-1533323
	BT_4623	1,35984506	0,049	hypothetical protein BT_4623 :: gene:6049333-6049980
	BT_3193	0,736815419	0,014	putative coenzyme A transferase :: gene:4082312-4083811 :: COG:COG0427C
	BT_1802	1,357166289	0,027	two-component system sensor histidine kinase :: gene:2258318-2260375 :: COG:COG0642T
	BT_3586	0,737020999	0,044	putative Dehydrogenase :: gene:4640662-4641666 :: COG:COG0673R
	BT_2746	0,738662539	0,028	thiol:disulfide interchange protein tlpA :: gene:3401658-3403286 :: COG:COG0526OC

BT_4099	0,740007828	0,037	1-deoxy-D-xylulose-5-phosphate synthase :: gene:5356034-5357977 :: COG:COG1154HI
BT_3742	0,742206703	0,031	hypothetical protein BT_3742 :: gene:4858327-4859844
BT_3949	0,74367407	0,023	hypothetical protein BT_3949 :: gene:5125921-5126565
BT_1624	0,746975282	0,029	putative secreted sulfatase :: gene:1999530-2001077 :: COG:COG3119P
BT_1584	1,338508376	0,025	hypothetical protein BT_1584 :: gene:1946899-1947243
BT_4495	0,749030076	0,044	hypothetical protein BT_4495 :: gene:5911955-5912224
BT_1815	0,754885596	0,028	low-specificity L-threonine aldolase :: gene:2277969-2278982 :: COG:COG2008E
BT_4053	0,755724932	0,032	putative membrane transport protein :: gene:5281141-5282472 :: COG:COG0668M
BT_4135	1,322130877	0,032	hypothetical protein BT_4135 :: gene:5423531-5426677 :: COG:COG4206H
BT_3698	1,321287964	0,019	alpha-amylase, susG :: gene:4800873-4802951 :: COG:COG0366G
BT_1956	1,313619284	0,023	putative cell surface protein :: gene:2457295-2459076
BT_2572	1,313147104	0,018	putative potassium channel subunit :: gene:3210215-3210946
BT_1617	1,313071906	0,028	RNA polymerase ECF-type sigma factor :: gene:1987600-1988163 :: COG:COG1595K
BT_3712	0,761851155	0,046	ribosomal large subunit pseudouridine synthase D :: gene:4822165-4823238 :: COG:COG0564J
BT_0393	0,763147264	0,036	serine acetyltransferase :: gene:482830-483435 :: COG:COG1045E
BT_1190	1,305994747	0,038	putative ATP GTP-Binding protein :: gene:1485359-1486426 :: COG:COG1162R
BT_2403	0,767773993	0,023	bifunctional aspartokinase I . homoserine dehydrogenase I :: gene:2999048-3001483 ::
			COG:COG0527E
BT_3341	1,298463215	0,034	hypothetical protein BT_3341 :: gene:4304569-4306497
BT_3484	1,297105295	0,006	hypothetical protein BT_3484 :: gene:4491719-4493767
BT_1295	0,777679683	0,040	V-type sodium ATP synthase subunit K :: gene:1615062-1615523

BT_0002	1,285833117	0,049	hypothetical protein BT_0002 :: gene:783-1778	
BT_3863	1,284226417	0,025	hypothetical protein BT_3863 :: gene:5031632-5034007 :: COG:COG5373S	
BT_4275	1,282746528	0,049	hypothetical protein BT_4275 :: gene:5634664-5635422	
BT_2749	1,28111067	0,047	membrane-associated HD superfamily hydrolase :: gene:3406408-3408480 :: COG:COG1480R	
BT_4431	1,280296878	0,025	hypothetical protein BT_4431 :: gene:5838055-5839854	
BT_3199	1,277378115	0,008	putative non-specific DNA-binding protein :: gene:4088719-4089225 :: COG:COG0776L	
BT_1771	1,276910221	0,024	putative cell surface protein :: gene:2198734-2200881	
BT_0913	1,27431127	0,010	putative Fe-S oxidoreductase :: gene:1124016-1125326 :: COG:COG0621J	
BT_4194	0,786532913	0,034	putative integral membrane protein :: gene:5530454-5531401 :: COG:COG0330O	
BT_4282	1,271347192	0,045	glycosyltransferase :: gene:5641529-5642755 :: COG:COG0438M	
BT_3253	0,790518533	0,004	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F	
BT_3253 BT_1003	0,790518533 1,261911692	0,004 0,009	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S	
BT_3253 BT_1003 BT_3047	0,790518533 1,261911692 0,792979911	0,004 0,009 0,014	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S hypothetical protein BT_3047 :: gene:3859947-3861248	
BT_3253 BT_1003 BT_3047 BT_4167	0,790518533 1,261911692 0,792979911 1,259737651	0,004 0,009 0,014 0,040	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S hypothetical protein BT_3047 :: gene:3859947-3861248 hypothetical protein BT_4167 :: gene:5481184-5482926	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437	0,004 0,009 0,014 0,040 0,035	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151Fhypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533Shypothetical protein BT_3047 :: gene:3859947-3861248hypothetical protein BT_4167 :: gene:5481184-5482926hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223P	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105 BT_3664	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437 1,247757453	0,004 0,009 0,014 0,040 0,035 0,049	<pre>phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S hypothetical protein BT_3047 :: gene:3859947-3861248 hypothetical protein BT_4167 :: gene:5481184-5482926 hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223P putative alpha-glucosidase :: gene:4752710-4754626</pre>	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105 BT_3664 BT_2975	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437 1,247757453 0,80274924	0,004 0,009 0,014 0,040 0,035 0,049 0,024	 phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S hypothetical protein BT_3047 :: gene:3859947-3861248 hypothetical protein BT_4167 :: gene:5481184-5482926 hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223P putative alpha-glucosidase :: gene:4752710-4754626 NAD-dependent deacetylase :: gene:3753745-3754449 :: COG:COG0846K 	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105 BT_3664 BT_2975 BT_1974	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437 1,247757453 0,80274924 0,803615696	0,004 0,009 0,014 0,040 0,035 0,049 0,024 0,006	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151Fhypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533Shypothetical protein BT_3047 :: gene:3859947-3861248hypothetical protein BT_4167 :: gene:5481184-5482926hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223Pputative alpha-glucosidase :: gene:4752710-4754626NAD-dependent deacetylase :: gene:3753745-3754449 :: COG:COG0846KM24 family metallopeptidase :: gene:2483101-2484264 :: COG:COG0006E	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105 BT_3664 BT_2975 BT_1974 BT_1546	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437 1,247757453 0,80274924 0,803615696 1,243516512	0,004 0,009 0,014 0,040 0,035 0,049 0,024 0,006 0,000	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151Fhypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533Shypothetical protein BT_3047 :: gene:3859947-3861248hypothetical protein BT_4167 :: gene:5481184-5482926hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223Pputative alpha-glucosidase :: gene:4752710-4754626NAD-dependent deacetylase :: gene:3753745-3754449 :: COG:COG0846KM24 family metallopeptidase :: gene:2483101-2484264 :: COG:COG0006Eacyltransferase :: gene:1906225-1907232 :: COG:COG1835I	
BT_3253 BT_1003 BT_3047 BT_4167 BT_4105 BT_3664 BT_2975 BT_1974 BT_1546 BT_3384	0,790518533 1,261911692 0,792979911 1,259737651 1,254460437 1,247757453 0,80274924 0,803615696 1,243516512 0,804626573	0,004 0,009 0,014 0,040 0,035 0,049 0,024 0,006 0,000 0,002	phosphoribosylamineglycine ligase :: gene:4152166-4153440 :: COG:COG0151F hypothetical protein BT_1003 :: gene:1249524-1251620 :: COG:COG3533S hypothetical protein BT_3047 :: gene:3859947-3861248 hypothetical protein BT_4167 :: gene:5481184-5482926 hexuronate transporter :: gene:5367284-5368771 :: COG:COG2223P putative alpha-glucosidase :: gene:4752710-4754626 NAD-dependent deacetylase :: gene:3753745-3754449 :: COG:COG0846K M24 family metallopeptidase :: gene:2483101-2484264 :: COG:COG0006E acyltransferase :: gene:1906225-1907232 :: COG:COG1835I hypothetical protein BT_3384 :: gene:4362121-4362732	

BT_4627	1,241788368	0,003	DNA modification methylase :: gene:6053107-6056082
BT_1270	1,240438748	0,017	putative Na ⁺ . H ⁺ antiporter :: gene:1579631-1580932 :: COG:COG1757C
BT_3308	0,809419564	0,015	putative zinc protease ymxG :: gene:4245438-4246658 :: COG:COG0612R
BT_4505	0,814445841	0,035	hypothetical protein BT_4505 :: gene:5920108-5920650
BT_2395	1,22397892	0,005	hypothetical protein BT_2395 :: gene:2991079-2991975
BT_3728	0,817915474	0,008	riboflavin biosynthesis protein ribD :: gene:4838863-4839882 :: COG:COG0117H
BT_3453	0,825157542	0,048	penicillin-binding protein :: gene:4448603-4450729 :: COG:COG0768M
BT_2275	0,829384593	0,039	thymidine kinase :: gene:2855659-2856258 :: COG:COG1435F
BT_1899	1,205492566	0,024	hypothetical protein BT_1899 :: gene:2388189-2388896
BT_4382	0,830349238	0,003	hypothetical protein BT_4382 :: gene:5774560-5775624
BT_2922	1,199740863	0,005	beta-galactosidase :: gene:3667119-3668933 :: COG:COG3250G
BT_1068	1,190725082	0,038	hypothetical protein BT_1068 :: gene:1356084-1356428
BT_3531	0,843376349	0,033	hypothetical protein BT_3531 :: gene:4566645-4568708 :: COG:COG3533S
BT_0161	1,178192832	0,034	putative permease :: gene:166150-167325 :: COG:COG2814G
BT_4375	0,861422208	0,018	transcriptional regulator :: gene:5769234-5770475 :: COG:COG3829KT
BT_1445	0,873333999	0,044	putative biotin synthesis protein bioC :: gene:1779703-1780488 :: COG:COG2226H
BT_1213	1,135646837	0,049	periplasmic component of efflux system :: gene:1509808-1511037 :: COG:COG0845M
BT_1968	0,890019988	0,034	transcriptional regulator :: gene:2471205-2472053 :: COG:COG2207K
BT_3508	0,929480613	0,019	hypothetical protein BT_3508 :: gene:4526220-4528775 :: COG:COG2373R

Anhang 4: Ergebnisreport der Microarray-Versuche (Originalmanuskript der Firma imaGenes)

imaGenes GmbH

imaGenes.

Automated Analysis of Gene Expression Profiling Experiments

imaGenes Report

NN

August 30, 2011

imaGenes GmbH
 Robert-Rössle-Str.10
 D-13125 Berlin
 Germany
 Telephone: +49 (0)30-9489 2440
 Telefax: +49 (0)30-9489 2442

Contents

1	Standardized Analysis of Gene Expression Profiling Experi-	
	ments	2
2	Normalization	2
	2.1 Technical Parameters	3
	2.2 MA-Groups	3
	2.3 MVA-Plots	3
	2.4 Boxplots	6
3	Hierarchical Clustering	7
4	PCA	10
5	Heatmap	12
6	Histogram of <i>p</i> -Values	14
7	Volcano Plot	15
8	List of differentially expressed genes	16

http://www.imagenes-bio.de/

imaGenes GmbH			
---------------	--	--	--

Abstract

1 Standardized Analysis of Gene Expression Profiling Experiments

imaGenes analysis pipeline combines state of the art tools for analysing microarray data from all major platforms.

Raw data are read in, analysed and adjusted to quality standards, normalised and finally evaluated by statistical methods like t-Test, principal-componentanalysis (PCA) and hierarchical clustering to derive the important biological information under various aspects.

The analysis steps comprise:

- normalization of data,
- statistical analyses,
- finding top up- and down-regulated genes,
- hierarchical clustering of data,
- heatmap representation
- principal component analysis
- annotation of genes

The main goal of imaGenes automatic analysis pipeline is:

- 1. to provide the scientists with a compact datasheet that depicts the basic quality features of a microarray experiment at one glance the customer gets an impression if the experiment fulfills essential quality requirements.
- 2. to give a comprehensive overview over the key results, i.e the differentially regulated genes, their respective fold-changes and related annotations (Genbank, Ensembl, etc.)

2 Normalization

The problem with raw microarray data is that non-biological factors can contribute to the variability of data. Hence, in order to reliably compare data from microarray experiments, differences of non-biologocal origin must be minimized. Factors that may contribute to variation include:

- amount and quality of target hybridised to the array,
- amount of stain applied, and
- experimental variables.

 $\mathbf{2}$

imaGenes.

imaGenes.

In technical terms, before applying any of the statistical analysis methods, the data has to be normalized. Normalization is used to reduce unwanted variation across chips and may use information from multiple chips. It can correct for overall chip brightness and other factors that may influence the numerical value of expression intensity, enabling the user to more confidently compare gene expression estimates between samples. There are several different methods for normalizing data. The normalisation method selected for this experiment is quantile normalization. After performing normalization all genexpression values lower than 0% quantile were set to the value of this 0% quantile (1.4465213333333 for this experiment) to eliminate low level signals beeing too much scattered to be used in a reproducible analysis.

2.1 Technical Parameters

• Number of Oligos: 41353

i

- Number of Genes after Normalization: 4776
- Number of Oligos after filtering: 41353
- Number of Genes after filtering: 4776
- Quantile used for cutoff: 0
- Filter inter quartile range used for filtering: 0.0

2.2 MA-Groups

The following table shows how the data of this experiment were categorized:

	Group	Class	Letter	Name
1	A01	control	A1	А
2	A02	$\operatorname{control}$	A2	Α
3	A03	$\operatorname{control}$	A3	Α
4	D151	treatment	D1	D
5	D152	treatment	Κ	D
6	D153	treatment	D3	D

Table 1: MA-Groups

2.3 MVA-Plots

MvA plots allow easy identification of intensity dependent bias in microarray data (curvature or 'banana shape'). Comparisons are performed between two chips, datapoint by datapoint (gene by gene), after a specific log-transformation, see below.

The purpose of this analysis is to test how the chips compare before and after normalization (Fig. 1). The output of this analysis is a plot which has for each hybridization a column and a row. The diagonal, from the upper left to the lower right, holds the names of the hybridizations and separates the lower triangle from the upper triangle.

http://www.imagenes-bio.de/

· 0	CI LIT	
1maGenes	GMDH	

imaGenes.

The plots in the upper triangle show chip-to-chip comparisons of the hybridizations. The lower triangle shows the variances of the ratios between the two chips compared.

The description for the axis reads as follows:

x-axis log_2 intensity log_2 value of product of both elements for each gene on both

y-axis log_2 ratio log_2 of the ratios of the two intensities.

In case of two identical the plots would show a straight line through zero.

http://www.imagenes-bio.de/

		MVA	Before	Normaliz	ation	
	A01				~	
	0.0868	A02				
м	0.0723	0.00878	A03		-	
IVI	0.0891	0.00846	0.00824	D151		
	0.128	0.00693	0.0379	0.0391	D152	
	0.083	0.0123	0.00857	0.00322	0.0098	D153

imaGenes.

Figure 1: A chip-to-chip comparison before and after normalization. The plots on the diagonal show the names of the chips compared. The plots above the diagonal show the comparison of the data of two chips. After normalization the red line should be close to zero (the green line). The plots below the diagonal show the variance of the ratios. The variance equals zero, if the compared chips are identical.

http://www.imagenes-bio.de/

Figure 2: Boxplots of log2 transformed expression values before and after normalization

2.4 Boxplots

imaGenes GmbH

Boxplots, also called box-and-whisker plots show the distribution of numerical data for each experimental group. Spacings between the lines in the box indicate the degree of skewness and dispersion in the data. The line at the center of the box is the median, the upper and lower borders of the box represents the first and the third quartiles. The distance between the first and the third quartile is also known as inter quartile range (IQR). Large differences in the distance between the median and the quartiles indicate non-normal data distributions. The whiskers in this diagram indicate the minimum and maximum. If one of them would extends to more than 1.5 times the IQR than only the last value inside the 1.5 times the IQR is shown and all the other values are plotted as outliers (Tukey Boxplot).

imaGenes.

http://www.imagenes-bio.de/

imaGenes GmbH

imaGenes.

3 Hierarchical Clustering

Hierarchical clustering algorithms are applied to control the different experimental conditions. When performing gene expression profiling experiments, each hybridization has been performed under a specific condition, e.g. "control" or "disease". Hierarchical clustering of hybridization signal intensity shows the similarity of regulation between two hybridizations. Hybridizations performed under different conditions should always be more dissimilar than hybridizations performed under the same condition.

The result from hierarchical clustering is a graph called a dendrogram, see Fig 4 for the clustering of the normalized dataset. The clustering is based on normalized expression values. The clusters are arranged along the x-axis and the dissimilarity values between the clusters form the y-axis. The interpretation of the dendrogram is straightforward. Those hybridizations that are very close together form a cluster. Hybridizations which do not enter any cluster, are dissimilar to the other hybridizations.

A hierarchical clustering algorithm first aligns the two most-related hybridizations to each other in order to produce the first cluster. It then aligns the next most related hybridization to this cluster or the next two most-related hybridizations to each other in order to produce another cluster. A series of such pairs that includes increasingly dissimilar hybridizations and clusters of hybridizations at each iteration, produces the final graph. Arrays which are clustering very far from other arrays are indicating technical problems.

Different methods for calculating the distance between individual arrays and different cluster methods might give different cluster results. If the differences are small the clusters are quite robust, if not it mmust be assumed that becaus of many outliers the clustering results is quite depending on the method used. If none of the clustering results fulfills your expectations you should think about excluding outlier arrays for having a reliable analysis of your gene expression set.

http://www.imagenes-bio.de/

```
imaGenes GmbH imaGenes.
```


Figure 3: Hierarchical clustering of unfiltered signals. Clustering hybridization experiments by their expression values means, measuring the similarity of regulation between two experiments. The clustering is based on normalized expression values. The distance matrix was calculated using the "euclidian distance" between data points, the clustering was done using the "complete linkage" method where always the most distant points of a cluster are used to recalculate the distance matrix after fusing a new data point into the cluster.

http://www.imagenes-bio.de/
imaGenes GmbH imaGenes.

Figure 4: Hierarchical clustering of filtered signals.

http://www.imagenes-bio.de/

CI ITT
GmbH

Figure 5: PCA of expression values for normalized and filtered genes 4776) for the arrays. First four prinicpal components (PCs) are plotted against each other. The numbers in the diagonal show the proportion each PC contributes to the overal differences between the arrays.

4 PCA

Principal component analysis reduces the dimensionality of the data by transforming to a new set of variables - the principal components - to summarize data features. The principal components (PC) are uncorrelated. The first PC contains the largest variances among all other PCs, the second PC contains the second largest variance and so on. Genes might contribute differentially to each PC. In Fig. 6 for the differentially expressed genes the first four principal components are plotted against each other. The amount of variance between the data explained by the PC is shown in the diagonal. The genes contributing mostly to the PC will be shown in Tab. 3 for all genes being differentially expressed between the groups. In the plots above the diagonal the controls are marked in red, the treatment arrays are marked in blue. Individual arrays can be recognized by their letter codes introduced in Fig. 2.

http://www.imagenes-bio.de/

		Prir	ncipal	Compon	ents fo	r Differer	ntial Ex	pressec	Set	
	PC 1 0.934		۵ ۵	+ + +	۵ ۵	+	۵	+ A +		▲ + +
43 M	Δ2	K D	F	PC 2 0481	+	+ 	4	۲ ۵	+	+ +
43 M	A2	ж 101	101 42	.A3 A1	F 0.	PC 3 00972	△ _	+ Δ	+	+ +
x1 43	A2	Di	A2 D1	A1 A3	A21	Di A3	0	PC 4 .00676	+ +	<u>۵</u>
N3	A2	K D	L2 D1	A3 K	A2 K 	A3 D3 D1	A3 K D	A2	0	⊃C 5 .00191

Figure 6: PCA of expression values for differentially expressed genes (356) for the arrays. First four prinicpal components (PCs) are plotted against each other. The numbers in the diagonal show the proportion each PC contributes to the overal differences between the arrays.

http://www.imagenes-bio.de/

imaGenes GmbH

	pc1	pc2	pc3
1	DCP_1_11	BT_2451	BT_2451
2	DCP_20_7	BT_{1283}	ETG09_48764
3	DCP_22_9	BT_4491	BT_{2450}
4	BT_{4297}	BT_{1282}	DCP_1_11
5	RC12	BT_{2450}	BT_3959
6	ETG10_13482	BT_{4299}	BT_4491
7	RC6	BT_{1280}	BT_{1280}
8	RC1	BT_3240	BT_3960
9	ETG09_205211	BT_{0317}	BT_{1282}
10	ETG02_36680	BT_{1284}	BT_{2807}

Table 2: Main principal components for the filtered genes (4776)

	pc1	pc2	pc3
1	BT_{4245}	BT_2493	BT_1292
2	BT_4246	BT_{1436}	BT_4246
3	BT_{1436}	BT_{4246}	BT_{1436}
4	BT_2493	BT_{1758}	BT_{4245}
5	BT_{0307}	BT_{4245}	BT_{0307}
6	BT_1758	BT_{1292}	BT_2493
7	BT_2733	BT_3892	BT_3742
8	BT_3611	BT_{1763}	BT_2352
9	BT_3742	BT_3611	BT_3611
10	BT_1292	BT_3811	BT_{4247}

Table 3: Main prinicipal components for the differentially expressed genes (356)

5 Heatmap

The heatmap shows a two-dimensional clustering of the top fifty genes (Fig. 7). Those top genes has been retrieved by ordering genes after there absolute logfoldchanges. Genes that fall into one cluster (vertical axis) have similar behaviors in the experiments. Hybridizations with similar behavior fall into one cluster (horizontal axis). It can be seen, whether it suffices to focus on the top 50 genes, to correctly differentiate between experiment conditions. Expression intensities are represented by red and blue, for high and low intensities, respectively. White indicates medium intensities. In order to balance the display the data are scaled row-wise and symmetrically between -1 and 1.

Figure 7: The heatmap shows a two-dimensional clustering of the top 50 genes. Expression intensities are normalised rowwise by the Z-score: RowMean - Value / Row-Standard Deviation. Those Z-score values are represented by red and blue, for high and low intensities, respectively. White indicates medium intensities.

http://www.imagenes-bio.de/

6 Histogram of *p*-Values

imaGenes GmbH

The histogram (Fig. 8) shows the distribution of p-values over the experiment. If all p-values have nearly the same frequency, then there is no change in expression in the experiment. A high frequency of p-values around zero is indicating a number of differentially expressed genes in the experiment.

http://www.imagenes-bio.de/

14

imaGenes.

Figure 9: Volcano-Plot t-test. In the figure real data (black dots) has been plotted first, random data (red dots) has been plotted afterwards.

7 Volcano Plot

D. Value

In a so-called volcano plot the statistical significance (p-values) of the genes is compared to the respective logfold changes. In Fig. 9 genes are arranged along dimensions of biological and statistical significance. The fold change is computed from the normalized expression values.

The first (horizontal) dimension is the fold change between the two groups (on a log-scale, so that up and down regulation appear symmetric), and the second (vertical) axis represents the *p*-value for a t-test of differences between samples. Smaller *p*-values appear lower down.

135

http://www.imagenes-bio.de/

1.00

8 List of differentially expressed genes

The uploaded data is initially divided into different categories. These categories define the conditions. For example, "control" and "disease". If we have only one hybridization per condition, i.e. two experiments, then we can only compute a fold change and the log-fold change. The genes are sorted by absolute fold change.

If two conditions were tested and there are at least two hybridization experiments per condition, then a t-test statistic is performed. If there are more than two conditions, then the ANOVA (Analysis Of VAriance) is performed. The results of the analysis for differentially expressed genes is shown in Tab. 4.

	ratio	lfc	rawp	description
BT 4245	4.23	2.08	4.85e-02	hypothetical protein BT 4245 :: gene:5592763-5594055
BT 3743	0.27	-1.90	8.18e-03	hypothetical protein BT 3743 ·· gene:4860127-4861641
DT 4040	0.00	1.00	0.05-00	hyperiterical protein BTB 1946
BT_2734	0.27	-1.87	1.74e-02	DNA-directed RNA polymerase subunit beta :: gene:3386937-
BT_2704	0.28	-1.84	4.85e-02	305 ribosomal protein S18 :: gene:3366497-3366877 :: COG:COG0099J
BT 1142	0.29	-1.81	4 430-02	hypothetical protein BT 1142 ··· sene:1426444.1426929
BT_2788	0.80	-1.75	8.11e-02	DNA-directed RNA polymerase subunit beta :: gene:8882547- 2886830 .: COC.COC0086K
DT 1004	0.91	1 20	0.0000	hand the locate of DT 1004
DT 1400	0.01	1.04	2.908-02	hypothetical protein BT1334 :: genet250200-2506000
B1_1436	3.13	1.64	2.77e-02	hypothetical protein BT1436 :: gene:1/06555-1/06503
B.1.3388	0.82	-1.64	2.75e-02	hypothetical protein BT_3353 :: gene:4361466-4361891
B.T_1760	0.88	-1.60	8.62e-08	glycosylhydrolase :: gene:2174968-2176584 :: COG:COG1621G
BT_2052	0.88	-1.60	2.50e-02	hypothetical protein BT_2052 :: gene:2573038-2573475 :: COG:COG0848U
BT_4247	3.02	1.59	4.54e-02	hypothetical protein BT_4247 :: gene:5596039-5599392 :: COG:COG4206H
BT_0370	0.84	-1.55	8.41e-08	galactokinase :: gene:455441-456595 :: COG:COG0153G
BT_1768	0.85	-1.50	1.58e-02	hypothetical protein BT_1763 :: gene:2179702-2182827 :: COG:COG4206H
BT_1697	0.86	-1.49	1.26e-02	pyruvate carboxylase subunit B :: gene:2095697-2097526 :: COG:COG5016C
BT_1758	0.86	-1.48	4.34e-02	glucose . galactose transporter :: gene:2171552-2172721 :: COG:COG0738G
BT_3648	0.87	-1.44	4.81e-02	putative modulator of DNA gyrase :: gene:4726266-4727807 :: COG:COG0312R
BT_1182	2.70	1.43	4.87e-02	hypothetical protein BT_1132 :: gene:1418781-1419230
BT_2603	2.68	1.42	4.96e-02	conjugate transposon protein :: gene:3243651-3246050 :: COG:COG3451U
BT_2740	0.38	-1.41	3.59e-02	elongation factor Tu :: gene: 3393922-3395106 :: COG:COG0050J
BT_2161	0.38	-1.40	4.64e-02	505 ribosomal protein L9 :: gene:2721028-2721471 :: COG:COG0859J
BT 1895	0.38	-1.38	3.83e-02	hypothetical protein BT 1895 :: gene:2884610-2885062
BT_4004	0.89	-1.37	4.91e-02	lipid-A-disaccharide synthase :: gene:5216850-5217986 :: COG-COG0768M
BT_0282	0.89	-1.36	4.25e-02	hypothetical protein BT_0282 :: gene: 326951-328246 :: COC: COC5545R
BT 4965	0.99	1.96	4 90= 0.2	GMP synthese ·· rene:5615708 5617281 ·· COC/COC0519F
DT 9460	0.33	1 00	2.01-00	Give synthese is generated bootstarts and COC COC 40541
BT_0307	0.41	-1.29	4.30e-02	diphosphate-fructose-6-phosphate 1-phosphotransferase ::
DOD GOVEN	0.40	1 00	1 51 00	generation in a state and a
B110087	2.40	1.20	4.546-02	nypotnetical protein BI_0057 :: gene:53255-53375
B.L.1995	0.42	-1.27	2.61e-02	hypothetical protein BT_1995 :: gene:2508676-2509260
B112547	0.42	-1.27	1.93e-02	hypothetical protein BT_2547 :: gene:S180300-3180725 :: COG:COG2166R
BT_4775	2.33	1.22	2.39e-02	conjugate transposon protein :: gene:6256915-6257022
BT_4269	2.32	1.22	4.71e-02	hypothetical protein BT_4269 :: gene:5624885-5625880
BT_1152	0.43	-1.20	2.06e-02	D-3-phosphoglycerate dehydrogenase :: gene:1437011-1437981 :: COG:COG0111HE
BT_2466	2.30	1.20	4.96e-02	hypothetical protein BT_2466 :: gene:3087902-3088378
BT_3259	0.44	-1.20	1.27e-02	hypothetical protein BT_3259 :: gene:4161350-4161745
BT_3840	0.44	-1.19	4.88e-02	putative RNA-binding protein rbpA :: gene:4995518-4995768 :: COG:COG0724R
BT_0039	2.28	1.19	8.32e-02	hypothetical protein BT_0039 :: gene:85989-36417
BT_3744	0.44	-1.17	1.76e-02	hypothetical protein BT_3744 :: gene:4861762-4862547
BT_1757	0.45	-1.16	2.11e-02	fructokinase :: gene:2170630-2171517 :: COG:COG0524G
BT_1614	0.45	-1.15	4.30e-02	hypothetical protein BT_1614 :: gene:1984505-1984738
BT_2827	0.45	-1.15	2.35e-02	DNA topoisomerase I :: gene: 3522354-3524702 :: COG: COG0550L
BT_2090	0.45	-1.15	1.40e-02	methylmslonyl-CoA mutase :: gene:2618185-2620282 :: COG:COG1884I
BT_2390	2.20	1.14	8.72e-02	hypothetical protein BT_2390 :: gene:2977831-2980062 :: COG:COG1629P
BT_2579	0.45	-1.14	8.99e-02	hypothetical protein BT_2579 :: gene:3222805-3223650
BT_1980	2.20	1.14	8.55e-02	hypothetical protein BT_1930 :: gene:2422496-2422789
BT_0297	0.46	-1.18	1.56e-02	putative outer membrane lipoprotein silC :: gene:849074-850570 :: COG:COG1538MU
BT_3811	0.46	-1.13	1.5Se-02	putative endothelin-converting enzyme :: gene:4961310-4962668 :: COG:COG85900
BT_2361	0.46	-1.13	9.82e-03	hypothetical protein BT 2361 :: gene:2941696-2942085
BT_4747	2.18	1.18	8.58e-08	hypothetical protein BT_4747 :: gene:6229596-6229925
BT 2610	2.17	1.11	8.50e-02	hypothetical protein BT 2610 :: gene:8250156-8250581
BT_3374	0.47	-1.10	8.82e-02	putative carbamoyl-phosphate-synthetase :: gene:4350311-4351495 :: COG:COG04291
BT_4762	2.15	1.10	4.44e-02	conjugate transposon protein :: gene:6248249-6248686 :: COG:COG1192D

http://www.imagenes-bio.de/

1	BT 1982	2.14	1.10	8.19e-02	hypothetical protein BT 1932 :: sene:2427164-2427871
	BT_3463	0.47	-1.08	3.77e-02	hypothetical protein BT_3463 :: gene:4459251-4459832
	BT 2446	2.12	1.08	4.41 = -02	integrase :: gene: \$063566-3064795 :: COG:COG4974L
	BT_4080	2.11	1.08	2.20e-02	hypothetical protein BT_4030 :: gene:5243593-5243847
	BT_3724	0.47	-1.08	3.54e-02	cationic outer membrane protein :: gene:4838241-4838756 :: COG:COG2825M
	BT_0573	0.48	-1.07	3.55e-02	hypothetical protein BT_0578 :: gene:709894-710697 :: COG:COG4105R
	BT_4591	0.48	-1.07	1.56e-02	putative nitrogen utilization substance protein :: gene:6013108- 6013890 :: COG:COG0781K
	BT_4029	2.09	1.06	8.69e-02	hypothetical protein BT_4029 :: gene:5242727-5243467
	BT_2650	2.09	1.06	2.95e-02	hypothetical protein BT_2650 :: gene:3302647-3303348 :: COG:COG1432S
	BT_0530	2.08	1.06	1.17e-02	anthranilate phosphoribosyltransferase :: gene:653318-654311 :: COG:COG0547E
	BT_3668	2.08	1.06	8.85e-02	hypothetical protein BT_3668 :: gene:4757943-4758677
	BT_1928	2.07	1.05	4.22e-02	transposase :: gene:2419971-2421200 :: COG:COG4974L
	BT_0371	0.48	-1.05	1.63e-03	glucose . galactose transporter :: gene:456639-457949 :: COG:COG0738G
	BT_1416	0.49	-1.04	4.53e-02	hypothetical protein BT_1416 :: gene:1749078-1750318 :: COG:COG133330
	BT_0422	0.49	-1.04	8.78e-02	threonyl-tRNA synthetase :: gene:509421-511861 :: COG:COG0441J
	BT_4768	2.05	1.08	S.2Se-02	conjugate transposon protein :: gene:6248689-6249183
	BT_1131	2.04	1.08	4.73e-02	hypothetical protein BT_1131 :: gene:1418628-1418808
	BT_3725	0.49	-1.03	4.62e-02	putative outer membrane protein :: gene:4833780-4836437 :: COG:COG4775M
	BT_0382	0.49	-1.03	1.91e-02	capsular polysaccharide biosynthesis protein Cps4K :: gene:469858- 471058 :: COG:COG0451MG
	BT_3981	0.49	-1.03	6.72e-03	hypothetical protein BT_3981 :: gene:5183203-5183889
	BT_0882	0.49	-1.02	2.52e-02	2-oxoisovalerate oxidoreductase subunit beta :: gene:397900-398079 :: COG:COG0674C
	BT_2360	0.49	-1.02	2.69e-02	transcriptional regulator :: gene:2941242-2941652 :: COG:COG1476K
	BT_3351	0.50	-1.01	9.61e-08	cysteinyl-tRNA synthetase :: gene:4322214-4323695 :: COG:COG0215J
	BT_3629	0.50	-1.01	2.19e-02	hypothetical protein BT_3629 :: gene:4701147-4701734
	BT_1158	0.50	-1.01	8.52e-02	phosphoserine aminotransferase :: gene:1438046-1439118 :: COG:COG1932HE
	BT_0748	0.50	-1.01	2.91e-02	ribose-phosphate pyrophosphokinase :: gene:926690-927607 :: COG:COG0462FE
	BT_0381	0.50	-1.00	8.81e-02	capsular polysaccharide biosynthesis protein capD :: gene:468796- 469845 :: COG:COG1086MG
	BT_4610	0.50	-0.99	4.83e-02	recombinase A :: gene:6035657-6036691 :: COG:COG0468L
	BT_4028	1.98	0.98	2.43e-02	hypothetical protein BT_4028 :: gene:5242311-5242583
	BT_1947	1.97	0.98	8.97e-02	hypothetical protein BT_1947 :: gene:2447188-2447599
	BT_0507	0.51	-0.98	2.49e-02	TetR . AcrR family transcriptional regulator :: gene:629234-629842 :: COG:COG1309K
	BT_8726	0.51	-0.97	4.48e-02	undecaprenyl pyrophosphate synthase :: gene:4886468-4887202 :: COG:COG0020I
	BT_0888	0.51	-0.97	2.42e-02	AMP nucleosidase :: gene:1090106-1090882 :: COG:COG0775F
	BT_4205	0.51	-0.97	2.90e-02	UDP-N-acetylglucosamine acyltransferase :: gene:5541476-5542248 :: COG:COG1048M
	BT_1167	1.96	0.97	8.11e-02	hypothetical protein BT_1167 :: gene:1455628-1456815 :: COG:COG1215M
	BT_1514	1.95	0.97	4.92e-02	hypothetical protein BT_1514 :: gene:1871179-1871478
	BT_1418	0.52	-0.96	4.02e-02	quinol oxidase :: gene:1751850-1752446 :: COG:COG3005C
	BT_0021	1.94	0.95	3.88e-02	hypothetical protein BT_0021 :: gene:18251-18919
	BT_1689	0.52	-0.98	8.27e-02	oxaloacetate decarboxylase beta chain :: gene:2083882-2085042 :: COG:COG1883C
	BT_4101	0.52	-0.93	4.26e-02	putative bifunctional UDP-N-acetylmuramoyl-tripeptide:D-alanyl- D-alanine ligase . alanine racemase :: gene:5859608-5862157 :: COG
	BT_4371	0.52	-0.93	1.59e-02	peptidyl-prolyl cis-trans isomerase :: gene:5763642-5765780
	BT_3845	0.58	-0.93	2.10e-02	inosine-5-monophosphate dehydrogenase :: gene:5002008-5003486 :: COG:COG0516F
	BT_3848	0.58	-0.98	4.92e-02	peptidyl-prolyl cis-trans isomerase :: gene:5006035-5007417 :: COG:COG07600
	BT_3417	1.90	0.92	8.17e-02	hypothetical protein BT_3417 :: gene:4400971-4401228
	BT_4254	0.58	-0.92	5.22e-08	hypothetical protein BT_4254 :: gene:5605420-5606103
	BT_3470	0.58	-0.92	2.98e-02	putative dehydrogenase :: gene:4469216-4470598 ::
	BT_4129	1.89	0.92	2.02e-02	COG:COG0673R outer membrane assembly protein :: gene:5413272-5415788 ::
	1000000000				and an approach (

Table: 4: Differential expressed genes genes, ordered by absolute values of logfold changes

http://www.imagenes-bio.de/

Anhang 5: Nukleotid- und Aminosäuresequenzen ausgewählter Proteinspots der 2-D SDS-Gele Tabellarische Auflistung der MALDI-TOF Auswertung der auf den 2-D SDS-Gelen sich unterscheidenden Proteinspots. Angegeben sind die Nukleotid- und Aminosäuresequenzen der Proteinspots.

Spot	Nukleotidsequenz	Aminosäuresequenz
1	atgggtgtatttgcacaaaatctgaaattcggtcatattaat gcccaagaaatcgtttcagcaatgcctgaatttgctaagg cacaatctgatattgaagcactagacaaacaactgacca gcgaattacaaagaactcaggaagaattcaacaagaaat atcaggaattccagcaagctatcgctaaggactctcttcct gctaacatcgctgaaagaagacaaaaagaactgcagga tatgatgcaaagacaagagcagttccaacaggaagctc aacagcagatgcaaaaagctcaggctgacgcaatggct cctatctacaaaaagttggacgacgcaattaaagctgtag gtgctgccgaaggcgtaatctacatcttcgaccttgcaag aacaccggttgcttacgttaatgagtcacaaagtattaatc tgactcctaaggtaaagacaagac	MGVFAQNLKFGHINAQEIVSAMPE FAKAQSDIEALDKQLTSELQRTQEE FNKKYQEFQQAIAKDSLPANIAERR QKELQDMMQRQEQFQQEAQQQM QKAQADAMAPIYKKLDDAIKAVG AAEGVIYIFDLARTPVAYVNESQSI NTPKVKTQLGIK
2	atgggtgtatttgcacaaaatctgaaattcggtcatattaat gcccaagaaatcgtttcagcaatgcctgaatttgctaagg cacaatctgatattgaagcactagacaaacaactgacca gcgaattacaaagaactcaggaagaattcaacaagaaat atcaggaattccagcaagctatcgctaaggactctcttcct gctaacatcgctgaaagaagacaaaaagaactgcagga tatgatgcaaagacaagagcagttccaacaggaagctc aacagcagatgcaaaaagctcaggctgacgcaatggct cctatctacaaaaagttggacgacgcaattaaagctgtag gtgctgccgaaggcgtaatctacatcttcgaccttgcaag aacaccggttgcttacgttaatgagtcacaaagttaat	MGVFAQNLKFGHINAQEIVSAMPE FAKAQSDIEALDKQLTSELQRTQEE FNKKYQEFQQAIAKDSLPANIAERR QKELQDMMQRQEQFQQEAQQQM QKAQADAMAPIYKKLDDAIKAVG AAEGVIYIFDLARTPVAYVNESQSI NTPKVKTQLGIK

tgactcctaaggtaaagacacagctcggcatcaaataa

4

- Atgaattttaagtttcgaattacaaagtatctggcagtatc 3 cgcactggcggtgctgctgttaggagcctgctccaaaaa caacatttatatggatgttgcctatccgaacggagaagaa aatagtggcggagaagagggaaacaatgacaatcctga caaaaaagatgcactcattactttcagtgcttccgtagaag gaagaaatataacgcgtgccatgtctccgatgggaaaag gattgcagagctggttatgtgcctacccttccaataccac caatacgatagagggggggggggcctgtcggtgaaggcaact atatcacttcttctcccggagttttgacgggaatacaaagtt ataaaatgtatctcagtaatgatatctatagtttttatgcggtt tcctgtaattccagcaaccccgctcctacctttaccaacg gcaagtccgaagcattatccaatggggtggattatctgtg gtggcatgccctgcatcaggatgtgaccagttcacaagt caacatteccateacttaccageacgtagecaeteaggte gtgataaccataacgggaggtgagaatattacactcaac aaagtactctccgccactattactccacgaaaccgggag ctttcatggatctgtcaacagggatcatttcttcagaagtca gttacgataagcctgccgacatgggaatcaatgatttcac ggttcaatatatcatgcttccgctgaaaagttccgacccg atggctttaacgatggaattgatggtcaacggagaaagtt tctcacgtacttacaatacgaccattaccccgccagacaa tattctggctgccggaaattcatatcttttccgtgcagtaat caacgaaaactccgtatcattcggtaacgtgagcgtaaa agactggacggatgtagatgaaagcggtaacccgctgt atccgatacaagactaa
 - atgaaaaagattttattatcattgcttgcattaggttgtttttc agccgcaaatgcacaaacattccgcttcggtccaactgt aggaggaaatctgaacatttctgatgagacaaaaacaaa gatcggttttgctgtaggtgcaaaagcagaaatgaacttc aacaacccagagaacggttggtttatggagcttcggtctt gttcaacaacagaaacagacagagcgaaaactatttcaa taacgaaacaaagttgactcagtgctggaagtactcaac ctactctcttctcgttccagtcaatgtaggctacaaattccg cctttcagacaacttgaatctcctcgctgctgttggccctta tgcagattttggcttgacaggtacggacaaagtcacaac gactgatgctaaaggacatagcaaagaggagaaaatgt cctcaaatgtttacggagacaaactcttcaatcgtgta aacttcggcttcgatgccaaggttggcgttgaaatcgcca agcactaccagcttagcctttcttatagtagaggatttacc aatatetttaaaggtggactcaatactaaagcccaagacc tacagttgggattctcatatatgttctaa

MNFKFRITKYLAVSALAVLLLGAC SKNNIYMDVAYPNGEENSGGEEGN NDNPDKKDALITFSASVEGRNITRA MSPMGKGLQSWLCAYPSNTTNTIE GEPVGEGNYITSSPGVLTGIQSYKM YLSNDIYSFYAVSCNSSNPAPTFTN GKSEALSNGVDYLWWHALHQDVT SSQVNIPITYQHVATQVVITITGGEN ITLNKVLSATITPTKPGAFMDLSTGI ISSEVSYDKPADMGINDFTVQYIML PLKSSDPMALTMELMVNGESFSRT YNTTITPPDNILAAGNSYLFRAVINE NSVSFGNVSVKDWTDVDESGNPLY PIQD

MKKILLSLLALGCFSAANAQTFRFG PTVGGNLNISDETKTKIGFAVGAKA EMNFNNPENGWFMDASVLFNNRN RQSENYFNNETKLTQCWKYSTYSL LVPVNVGYKFRLSDNLNLLAAVGP YADFGLTGTDKVTTTDAKGHSKEE KMSSNVYGDKLFNRVNFGFDAKV GVEIAKHYQLSLSYSRGFTNIFKGG LNTKAQDLQLGFSYMF

Publikationsliste

<u>Bialek, B</u>., Diaz-Bone, R. A., Pieper, D., Hollmann, M., Hensel, R. (2011). "Toxicity of Methylated Bismuth Compounds Produced by Intestinal Microorganisms to Bacteroides thetaiotaomicron, a Member of the Physiological Intestinal Microbiota." <u>Journal of toxicology</u> 2011: 608349.

Huber, B., Dammann, P., Kruger, C., Kirsch, P., <u>Bialek, B</u>., Diaz-Bone, R. A., Hensel, R. (2011). "Production of toxic volatile trimethylbismuth by the intestinal microbiota of mice." Journal of toxicology 2011: 491039.

Thomas, F., <u>Bialek, B</u>., Hensel, R. (2011). "Medical Use of Bismuth: the Two Sides of the Coin." <u>Clinical Toxicology</u> S3-004.

Lebenslauf

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten.

Erklärungen

Hiermit erkläre ich, gem. § 7Abs. (2) c) + e) der Promotionsordnung Fakultäten für Biologie, Chemie und Mathematik zur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbständig verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe. Essen, den

Beatrix Amann

Hiermit erkläre ich, gem. § 6 Abs. (2) f) der Promotionsordnung der Fakultäten für Biologie, Chemie und Mathematik zur Erlangung der Dr. rer. nat., dass ich das Arbeitgebiet, dem das Thema "Untersuchung schädigender Einflüsse unterschiedlicher Bismut-Spezies auf die physiologische Darmmicrobiota unter besonderer Berücksichtigung von methylierten Derivaten" zuzuordnen ist, in Forschung und Lehre vertrete und den Antrag von Frau Beatrix Amann befürworte und die Betreuung auch im Falle eines Weggangs, wenn nicht wichtige Gründe dem entgegenstehen, weiterführen werde.

Essen, den

Prof. Dr. Reinhard Hensel

Hiermit erkläre ich, gem. § 7 Abs. (2) d) + f) der Promotionsordnung der Fakultäten für Biologie, Chemie und Mathematik zur Erlangung des Dr. rer. nat., dass ich keine anderen Promotionen bzw. Promotionsversuche in der Vergangenheit durchgeführt habe und dass diese Arbeit von keiner anderen Fakultät/Fachbereich abgelehnt worden ist.

Essen, den

Danksagung

Ich möchte meinem Doktorvater Herrn Prof. Dr. Reinhard Hensel für die Aufnahme in seine Arbeitsgruppe herzlich danken. Vielen Dank für die interessante Themenstellung, die unzähligen wissenschaftlichen Diskussionen und für neue Denkanstöße.

Ich danke Herrn Prof. Dr. Peter Bayer für die freundliche Übernahme des Koreferats.

Ich danke den Mitarbeitern der Arbeitsgruppe Mikrobiologie I Herrn Thomas Knurra, Frau Hildegard Eling und Herrn Andreas Thessarek für Ihre Unterstützung während meiner gesamten Promotionszeit. Thomas, was wäre das Labor nur ohne Dich! Mit deinem außerordentlichen technischem Verständnis, standest du mir stets zur Hilfe, wenn Laborgeräte aus mir unerklärlichen Gründen nicht funktionierten. Aber auch von deiner Erfahrung im Labor und den damit verbundenen Methoden, konnte ich nur profitieren. Vielen Dank Hildegard, Annika und Andreas für die Unterstützung im Labor, für viele nette Gespräche und die amüsanten Kaffeepausen.

Auch möchte ich an dieser Stelle den Ehemaligen Mitarbeitern der Mikrobiologie I danken.

Frau Dr. Britta Huber danke ich für die Einweisung in die hohe Kunst der ICP-MS-Analytik und Ihre mentale Unterstützung während meiner Promotion.

Frau Sabine Effenberger für die Einweisung in die nicht ganz so triviale Technik der anaeroben Kultivierung.

Herrn Dominik Pieper für unzählig viele Gespräche und Unterstützung bei ICP-MS-Messungen. Hier zeichnete er sich besonders als unverzichtbarer Gasflaschen Transportierer aus.

Danke Stephanie Vorwerk für die nette und lustige Zeit. Der Laboralltag wäre ohne dich nicht so unterhaltsam gewesen. Auch danke ich Dir für die gemeinsame Entwicklung des Kokultursystems.

Herrn Dr. Oliver Würfel, der mir stets bei brisanten Versuchen zur Seite stand.

Ich möchte mich bei der Arbeitsgruppe um Herrn Prof. Dr. Hirner bedanken. Nicht nur für die freundliche Bereitstellung von Messzeiten, sondern auch für Chemikalien und sonstige Verbrauchsmaterialien. Herr Jörg Hippler und Frau Maria Madani waren hier sehr hilfsbereit.

Dank gilt Herrn Markus Hollmann für seine Hilfsbereitschaft bei analytischen Messungen und seine vielen wertvollen Hinweise und Gespräche. Von deinem weitgefächerten chemischen Wissen konnte ich oft profitieren.

Besonderer Dank gilt Herrn Maxim Buldyrski. Ich danke Dir für Deine absolute Hilfsbereitschaft in allen Lebenslagen und ganz allgemein einfach für deine Freundschaft.

Ein herzlicher Dank gilt Herrn Dr. Witold Michalowski, der mich in die 2-D Elektrophorese eingewiesen hat und für die Bereitstellung eines Arbeitsplatzes.

Herrn Klaus Kowski für die mehrfache freundliche Ausgabe von Trockeneis.

Herrn Dr. Brian Tindall für die Durchführung der Lipidanalytik.

Herrn Mario Pink für die Durchführung der MALDI-TOF Messungen.

Ich möchte auch die Gelegenheit nutzen mich bei meinem Ehemann Benny Amann zu bedanken. Du unterstützt mich stets bedingungslos in allem was ich mache.

Ich bedanke mich auch bei Frau Dr. Katja Knops. Was soll ich sagen, ich bin einfach nur dankbar dich als meine Freundin zu haben.

Schlussendlich bedanke ich mich bei meinen Eltern Roman und Alice Bialek für ihre Unterstützung während meiner gesamten akademischen Laufbahn. Ihr habt stets an mich geglaubt und mich bestärkt meinen Weg zu gehen.

Diese Arbeit ist euch gewidmet und vor allem meiner Mutter Alice, die mit Sicherheit sehr stolz auf mich gewesen wäre.

-Verbunden über das Grab hinaus-