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Summary 

The aim of this thesis mainly consists in the computation of risk-neutral option prices for energy, 

weather, emission and commodity derivatives, whereas we innovatively take future information – 

which we assume to be available to well-informed market insiders – into account via several 

customized enlargements of the underlying information filtrations. In this regard, we inter alia derive 

European as well as exotic option price formulas for electricity derivatives such as traded at the 

European Energy Exchange EEX, for example, but yet under the incorporation of forward-looking 

information about possible future electricity spot price behavior. Furthermore, we provide both utility-

maximizing anticipating portfolio selection procedures and optimal liquidation strategies for electricity 

futures portfolios yielding minimal expected trading costs under forward-looking price impact 

considerations. Moreover, we correlate electricity spot prices with outdoor temperature and treat a 

related electricity derivatives pricing problem even under additional temperature forecasts. In this 

insider trading context, we also derive explicit expressions for different types of temperature futures 

indices such as usually traded at the Chicago Mercantile Exchange CME, for instance, and provide 

various pricing formulas for options written on the latter. Additionally, we construct optimal positions 

in a temperature futures portfolio under forecasted weather information in order to hedge against both 

temporal and spatial temperature risk adequately. Further on, we treat the pricing of carbon emission 

allowances, such as commonly traded in the European Union Emission Trading Scheme EU ETS, but 

under supplementary insider information on the future market zone net position. In this context, we 

propose two improved arithmetic multi-state approaches to model the ‘length of the market net 

position’ more realistically than in existing models. By the way, throughout this work we frequently 

discuss customized martingale compensators under enlarged filtrations and related information premia 

associated to our specific insider trading frameworks. Finally, we invent nonlinear double-jump 

stochastic filtering techniques for generalized Lévy-type processes in order to (theoretically) calibrate 

the emerging incomplete market models.  
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Zusammenfassung 

Der Fokus dieser Dissertation liegt auf der Bereitstellung von risikoneutralen Optionspreis-Formeln 

für Energie-, Wetter- und Emissions-Derivate insbesondere unter Berücksichtigung von verfügbaren 

Prognosen beispielsweise bezüglich des zukünftigen Elektrizitätspreis-Levels oder der zu erwartenden 

Außentemperatur. Hierbei wird die jeweils zusätzlich verfügbare Information mathematisch durch 

maßgeschneiderte Vergrößerungen der zugrunde liegenden Filtrationen modelliert. In diesem 

Zusammenhang leiten wir diverse Preis-Formeln sowohl für europäische als auch für exotische 

Optionen auf Elektrizitätsderivate her. Ferner untersuchen wir die Auswahl nutzenmaximierender 

Elektrizitätsmarkt-Portfolios und optimaler Liquidierungsstrategien in Futures-Märkten unter Preis-

Impact Zukunfts-Informationen. Des Weiteren korrelieren wir den Elektrizitäts-Spotpreis mit der 

Außentemperatur und behandeln ein hiermit eng verbundenes Preis-Kalkulationsproblem unter 

Temperatur-Vorhersagen. In diesem Insider-Handelsansatz geben wir anschließend explizite 

Ausdrücke für verschiedene Temperatur-Indizes nebst Preisformeln für hierauf abgeschlossene 

Optionen an. Ferner konstruieren wir optimale Hedging-Positionen in einem Temperatur-Indizes-

Portfolio unter Berücksichtigung von Wettervorhersagen, womit sich beispielsweise Energieversorger 

sowohl gegen zeitliches als auch räumliches Temperaturrisiko absichern können. Darüber hinaus 

untersuchen wir die Preismodellierung im CO2-Emissionsmarkt European Union Emission Trading 

Scheme (EU ETS) erstmals unter Berücksichtigung von Insider-Informationen über die zukünftig 

anzunehmende Netzposition einer Marktzone. Parallel diskutieren wir die konkreten Formen diverser 

Martingal-Kompensatoren unter den auftauchenden vergrößerten Filtrationen und die hiermit eng 

verbundenen Informations-Prämien in den zugrunde liegenden Märkten. Abschließend entwickeln wir 

nicht-lineare stochastische Filter-Techniken für generalisierte Lévy-Typ Prozesse, welche letztlich zur 

(theoretischen) Kalibrierung der behandelten unvollständigen Modelle benutzt werden.  
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Abstract 

In the first chapter we give a short introduction to energy, weather, emission and commodity markets. 

Simultaneously, we prepare and motivate our upcoming derivative pricing issues under forward-

looking information in these markets which actually constitute the main topics of this thesis. 

Next, Chapter 2 designates our mathematical toolbox providing some helpful results on Lévy 

processes which embody one of our main modeling tools throughout the present work. In particular, 

we introduce appropriate martingale compensators under enlarged information filtrations therein.  

It is a well-known fact that electricity markets exhibit several striking key characteristics such as a 

seasonal spiky price behavior due to the non-storability of the underlying flow commodity along with a 

strong mean-reversion to a periodic trend-line showing slow stochastic variation, a lack of arbitrage 

opportunities, extremely high price volatilities, heavy-tailed empirical return distributions, 

incompleteness and a nearly monopolistic structure with only a few big players as market participants 

acting on separated regional markets. In accordance to the just enumerated electricity market features, 

the aim of the third chapter consists in the computation of risk-neutral option prices for both plain-

vanilla and exotic electricity derivatives on the basis of several multi-factor Ornstein-Uhlenbeck 

setups, whereas we newly take forward-looking information – which we assume to be available to 

well-informed traders – into account via numerous tailor-made enlargements of the underlying 

information-filtrations. In this context, we also correlate the electricity spot price with outdoor 

temperature and treat a related pricing problem under supplementary temperature forecasts. Our 

arithmetic approaches neither trouble an exponential function (to ensure positivity of the prices) nor 

are there Brownian motion terms involved in the appearing pure-jump electricity spot price models. 

Yet, we derive information premia associated to electricity futures contracts explicitly including a 

delivery period whereas we also examine utility-maximizing portfolio selection in electricity markets.     

Since electrical-energy markets usually are dominated by a few big players only whose individual 

trading activities may shift prices essentially, the question of how to optimally liquidate an existing 

electricity futures portfolio over a fixed time horizon under the constraint of minimizing unfavorable 

market impact effects is of striking relevance for portfolio managers trading at e.g. the European 

Energy Exchange (EEX). Thus, in the forth chapter we invent a tractable price impact model for 

electricity futures, whereas we derive optimal liquidation strategies with respect to different target 

functions such as conditioned expected trading costs, for example. Moreover, we newly take 

supplementary anticipating information about future electricity swap price behavior into account via a 

rigorous exploitation of enlargement-of-filtration methods. Finally, we derive optimal liquidation 

strategies under this insider trading machinery as well. 

III 



In Chapter 5 we deduce risk-neutral option prices for temperature derivatives on the basis of a mean-

reverting Ornstein-Uhlenbeck temperature model admitting seasonality both in the mean-level and 

volatility, whereas multiple pure-jump Lévy-type processes as driving noises allow for seasonal 

dependent jump-amplitudes and frequencies. Moreover, we take relevant forecasts about future 

weather conditions into account via an adequate enlargement of the underlying information filtration. 

In this insider trading context, we exemplarily derive expressions for temperature indices like 

cumulative average temperature (CAT) futures and cooling degree day (CDD) futures whereas we 

provide a forward-looking pricing formula for a European call option written on the former. In 

addition, we propose a jump-diffusion temperature model (including both Brownian motion and pure-

jump terms as driving noises) and hereafter price a CAT option related to this mixed approach even 

under temperature forecasts. Ultimately, we construct optimal positions in a temperature futures 

portfolio under forecasted weather information to hedge against both temporal and spatial temperature 

risk. 

In the sixth chapter we derive risk-neutral prices for carbon emission allowances (EUAs) as 

commonly traded in the European Union Emission Trading Scheme (EU ETS), whereas we newly 

take forward-looking information about the market zone net position into account via a rigorous 

exploitation of enlargement-of-filtration methods. In this insider trading framework, we model the 

market zone net position as a linear combination of multiple real-valued compound Poisson processes, 

which – in contrast to e.g. a two-state Markov chain – yet may indicate how long or short the overall 

position of the EU ETS market precisely is. Consequently, we need to apply customized multi-

dimensional Fourier transform techniques when it comes to related pricing purposes of EUA contracts. 

Moreover, we discuss the concept of minimum relative entropy in order to find a concrete equivalent 

martingale measure in our incomplete modeling approach. Eventually, we propose a continuous 

(Brownian motion driven) market zone net position model of Ornstein-Uhlenbeck type and derive 

EUA prices also for this mean-reverting setup. 

The aim of Chapter 7 consists in the computation of risk-neutral option prices for commodity 

derivatives on the basis of an extended Heath-Jarrow-Morton (HJM) approach, whereas the presence 

of random jumps in the underlying forward rate model requires the use of Fourier transform 

techniques. By the way, we derive an extended HJM drift restriction connected to our jump-diffusion 

setup, whereas the concepts of Esscher transforms and minimum relative entropy are adjusted to our 

purposes in order to determine a concrete equivalent martingale measure out of the large class of 

offering pricing probabilities in the present incomplete commodity market model. In this context, we 

particularly adapt a successive Lagrange-approach to the requirements of the underlying relative 

entropy minimization procedure. 

Finally, Chapter 8 is dedicated to the topic of nonlinear stochastic filtering which deals with the 

problem of estimating a dynamical system out of perturbed or incomplete observations, whereas a 

direct measurement of the underlying intriguing signal is only partially or even not possible. 

Innovatively, we model the signal variable as well as the observation process via fairly general jump-

diffusion Lévy-type stochastic processes simultaneously. Afterwards, we derive extended Zakai- and 

Kushner-Stratonovic-Equations, the latter representing our optimal filter in the least-squares sense. 

Ultimately, several selected applications taken from financial, electricity and emission markets are 

presented. 
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Chapter 1 
 

 

On Energy, Weather, Emission and 

Commodity Markets 

 

 

1.1 Introduction to electricity markets  

The creation of competitive power markets such as the European Energy Exchange (EEX) [38] or the 

Scandinavian Power Exchange $ord Pool [73], where e.g. electrical energy is traded as a commodity, 

has brought up new mathematical challenges concerning the risk-neutral pricing of available power 

derivatives. Starting off, we shortly enumerate a selection of the most important key characteristics of 

electricity markets – not at least, to get an idea about the most striking differences in contrast to 

ordinary financial stock markets.  

Briefly summing up the most relevant findings in [3], [7], [8], [10], [13], [14], [23], [37], [48], [59], 

[66], [68] and [72], we announce right at the beginning that electrical energy exchanges/prices exhibit 

a seasonal spiky price behavior due to the non-storability of the underlying flow commodity along with 

a strong mean-reversion to a periodic trend-line showing slow stochastic variation itself, a lack of 

arbitrage opportunities, extremely high price volatilities, heavy-tailed empirical return distributions, 

incompleteness and a nearly monopolistic structure with only a few big players as market participants 

acting on separated regional markets. Moreover, one suspects electricity prices to be strongly 

correlated with outdoor temperature and other commodity prices such as of gas, oil or coal, for 

instance [13]. In what follows, we want to provide more detailed explanations concerning our recent 

announcements, whereas we particularly motivate a necessary incorporation of forward-looking 

information into mathematical (option) pricing issues in electricity (and related weather and emission) 

markets, which constitutes the main topic of this thesis. In this regard, we now present a selection of 

the most convincing arguments that strongly count in favor for the incorporation of future information 

in electricity markets and partly have been given by Benth and Meyer-Brandis [10], originally. 
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First of all, electricity depicts a commodity which is non-storable or has at least very limited storage 

possibilities – except from indirect ones like in water reservoirs [10], [13]. This lack of storability 

causes a collapse of conventional cash-and-carry or buy-and-hold strategies and is responsible for 

calling electricity a flow commodity [10], [13]. Since consumers cannot buy for storage, there is no 

reason why today’s spot prices (and the corresponding backward-looking sigma-algebra which solely 

is generated by the spot price noises up to the present) should reflect public knowledge about future 

events like e.g. the introduction of carbon-dioxide-emission costs next year or simply noise-afflicted 

weekly weather forecasts [10]. Obviously, the present electricity spot price is unaffected by future 

market information, whereas it is a result of today’s supply and demand situation only [10]. Hence, 

forward-looking information about future market conditions evidently is not incorporated in today’s 

prices what makes the usual assumption “The available market information only affects today’s price 

behavior.” no longer acceptable in markets for non-storable commodities [10].           

Catching up another plausible example in [10], let us exemplarily study the outage of a major power 

plant during the next month which indisputably constitutes some worthy additional information that is 

available at least to well-informed market participants, so-called market insiders. In this case, the 

energy supply side will be reduced significantly so that one should expect an increase of the future 

(but not of the present) price level, since traders/consumers cannot buy for storage and thus, today’s 

prices should not be affected [10]. As a consequence, the calculation mechanisms for power forward 

prices or, in particular, for related option prices written on electricity forwards/futures, should 

adequately take this additional knowledge into account which, mathematically spoken, may culminate 

in an enlargement of the underlying information filtration (such as proposed in [10]). Hence, 

throughout this thesis we will be confronted within a rigorous discussion concerning the pricing of 

electricity futures contracts based upon enlarged information filtrations – not at least to avoid 

“information miss-specification” (see pp. 3 and 6 in [10]) in our underlying electricity market models. 

Moreover, the previously mentioned non-storability of electrical energy is responsible for a division of 

electricity markets into several regional trading territories excluding any arbitrage opportunities [13]. 

In contrast to energy derivatives associated to other commodities such as gas, coal or oil, electricity 

futures/swap
1 contracts posses the distinctive feature of yielding a delivery during a future time span, 

the so-called delivery period, rather than at a fixed maturity date such as known from forward 

contracts, respectively from forward rate theory (see Chapter 7 in the context of commodity forwards 

pricing); therefore, the basic products in electricity markets are options written on electricity spot or 

futures prices whose delivery is settled over a future period of time [13]. 

Due to inelastic demand, electricity prices show very impressive spikes – in contrast to common price 

histories observed at classical financial stock markets [8], [13]. As an example, altering weather 

conditions such as a significant dropping of temperature (in connection with the non-storability) often 

lead to a sudden increase of demand what results in strong upward jumps of electricity prices [8], [13], 

[14], [37], [48], [72]. However, after those sudden changes one most likely can observe a scenario 

wherein spot prices tend rather rapidly back to their mean-level [8]. More precise, the violent upward 

jumps are usually followed by a quick return to about the former level so that electricity prices yet are 

detected to be mean-reverting to a periodic trend-line which merely exhibits slow stochastic variations 

itself [8], [48], [72]. Therefore, mean-reverting stochastic processes of Ornstein-Uhlenbeck type 

present themselves to be the first choice in order to have realistic models for electricity price 

formation. Finally, let us emphasize the seasonal behavior of all involved magnitudes such as the jump 

sizes, the jump intensities and the mean-level as well in yearly, weekly and daily circles [8], [72]. 

                                                           
1 In accordance to the notation in [13], and particularly to the overall market jargon, throughout this work we 
associate futures, respectively swap contracts to admit a delivery period, whereas we understand forward 
contracts to deliver/mature at a fixed maturity date, on the contrary.  
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Likewise, Eberlein and Stahl [37] attest substantial price changes in energy markets even during a few 

days which happen with higher frequencies and greater magnitudes in contrast to time series observed 

at classical financial markets: Typically, energy price volatilities exceed the usually observed levels in 

ordinary stock markets by several orders due to sudden imbalances in supply and demand. Observing 

these “low-probability large-amplitude” spikes which clearly cannot arise in a Brownian motion (BM) 

framework (see page 8 in [72]), also Meyer-Brandis and Tankov [72] underline the outstanding non-

Gaussian character along with a heavy-tailed empirical return distribution of electricity prices. From 

all this it is clear that we will need rather sophisticated mathematical models admitting heavy-tailed 

return distributions, violent price spikes, seasonality and mean-reversion in order to model electricity 

price behavior in an adequate manner.  

Note that the just mentioned features obviously are neither met by geometric Brownian motion 

approaches, nor by simple Brownian Bachelier models, for example. Anyway, in [8] Benth, Kallsen 

and Meyer-Brandis present an arithmetic mean-reverting multi-factor pure-jump model with 

seasonality which seems to be extremely suitable to derive an adequate description of electricity price 

behavior (compare Fig.1 and Fig.2 in [8] in this context). For this reason, we catch up their arithmetic 

pure-jump onset in this thesis, whereas we actually use a slightly extended version of the latter as our 

main electricity spot price modeling tool in Chapter 3. All in all, the main objective of the third 

chapter has been to combine the two excellent articles [8] and [10], while examining diverse 

derivation methods for electricity option price formulas under additionally available forward-looking 

information (modeled by enlarged filtrations) in depth – a topic which has (to the best of our 

knowledge) not been treated in the literature in a comparable way.  

Ultimately, we claim that the electrical energy industry worldwide possesses a rather monopolistic 

structure [37], whereas almost all electricity markets are dominated by a few big players merely whose 

individual trading activities may shift prices essentially. Hence, a precise mathematical modeling of 

the feedback/influence that individual trading activities have on the underlying electricity prices (so-

called price impact effects) should be of a large interest particularly for portfolio managers trading at 

the EEX, for example. In Chapter 4 we thus present market impact considerations newly dedicated to 

electricity futures prices under forward-looking information for the first time in the literature (at least 

to the best of our knowledge).  

 

1.2 Introduction to weather markets 

During the last decades competitive weather markets like the Chicago Mercantile Exchange (CME) 

[28], wherein options on weather indices are traded, have been created all over the world. In such 

market places, numerous indices associated to different non-tradable underlyings like e.g. outdoor 

temperature, rainfall, snowfall, sunshine, wind or even the number of frost-days etc. are traded 

somewhat similar to financial products in ordinary stock markets [13].           

However, there exist close connections between energy and weather markets, since outdoor 

temperature and the prices for electricity, gas, oil, coal etc. are strongly correlated (for further reading 

on this topic see [10], [13], [29], [50]). Especially in geographical regions in which there is a need for 

heating in the winter and air-conditioning in the summer season, electricity spot prices often turn out 

to be extremely sensitive to forecasts of unusually warm or cool weather [29]. Therefore, both energy 

producers as well as consumers should be interested in financial contracts that can be utilized to 

manage weather risk adequately [13]. In what follows, we search for obvious parallels in between 

temperature and electricity markets: Comparing energy prices for non-storable commodities like 

electricity on the one hand and outdoor temperature dynamics on the other, we primarily note clear 
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evidences of mean-reversion to a seasonally varying trend-line in both cases [11] – [13]. Since neither 

temperature nor electricity is storable, both corresponding markets turn out to be incomplete in the 

sense that hedging/replicating by using the particular “asset” itself as securing underlying is 

impossible [13]. (Recall the second fundamental theorem of asset pricing in this context.) In addition, 

temperature futures contracts are usually written on some temperature index measured over a time 

span, the so-called measurement period, which may be associated with the delivery period steadily 

appearing in electricity swap contracts [13]. In other words, temperature futures “deliver” the 

underlying “asset” over an entire period rather than at a fixed maturity date such as commonly known 

from forward contracts (see section 1.3 in [13]). In conclusion, weather options lend themselves to 

hedge against unfortunate weather risk especially in electricity markets. 

Further, a common backward-looking information filtration approach (modeling the information flow 

in a weather market) does not at all reflect public knowledge about future weather conditions or, in 

particular, temperature forecasts [10]. Therefore, a pricing onset for weather contracts based upon a 

conditional expectation, given past and current information merely, actually sounds rather unrealistic 

– especially since omnipresent weather forecasts are completely neglected [10]. Certainly, weather 

forecasts do not provide exact but at least some useful additional (stochastic) information reducing the 

uncertainty about future weather behavior [10]. However, when it comes to pricing purposes of 

temperature derivatives, one clearly should take all available knowledge into account adhering to 

some kind of information yield concept [10]. Mathematically spoken, the just mentioned idea requires 

a rigorous enlargement of the underlying information filtration (also recall [10], [15] and [50] along 

with our former arguing in section 1.1 in this context). For this reason, in the corresponding paragraph 

5.3 we will be confronted within a persistent discussion concerning the exploitation of insider trading 

principles also for the pricing of temperature contracts yet under enlarged information filtrations.  

Actually, the new asset classes that are made up by temperature derivatives can be used to hedge 

against unfortunate weather conditions also in financial energy risk management. We now discuss this 

feature in more detail by following (partly) the argumentation given in [29]: Firstly, note that a 

business with weather exposure (such as e.g. gas, electricity or heating-oil retailers) may choose to buy 

or sell a futures contract written on outdoor temperature to secure itself against low sales figures 

induced by unfortunate weather conditions. More precisely, if a heating-oil retailer feels that the 

upcoming winter is going to be very cold, the merchant simultaneously expects high revenues and thus 

might sell a heating degree day (HDD) call which pays its holder a certain amount of money 

whenever the daily average temperature lies under a predetermined threshold [29] – see (5.1.3) below 

for a precise mathematical definition of an accumulated HDD temperature index. Consequently, if the 

winter is actually not going to be particularly cold afterwards, the heating oil retailer would keep the 

premium on the call at least [29]. Vice versa, if the winter is going to be very cold indeed, the retailer 

could easily rebalance the call option payoff with his extraordinary high revenues descending from 

higher-than-normal heating-oil sales [29]. In conclusion, our fictive heating-oil retailer has completely 

secured himself/herself against unfortunate weather conditions. Additionally, there exist many other 

branches in which weather conditions have a major impact on the gained revenues: For example, 

agricultural commodities like wine or corn simultaneously may be hedged with so-called cross-

commodity weather contracts which simply couple weather risk to agricultural price risk [29]. 

 

1.3 Introduction to carbon emission markets 

In the context of global warming, the issue of reducing carbon dioxide (CO2) emissions during the 

next decades can be found on almost every political agenda nowadays [47]. In order to comply with 
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the Kyoto protocol the European Union Emission Trading Scheme (EU ETS) has been constructed 

which constitutes the largest emission trading market world-wide [25]. The latter organizes trade in 

emission permits which hence become a traded commodity [25]. More precisely, political regulators 

have determined target emission levels for all participating firms, whereas a penalty is levied for each 

unit of pollutant emitted outside the fixed limits during a given compliance period [47]. In this regard, 

installations may either reduce their actual carbon emissions or buy additional credits [25]. However, 

the payment of a penalty does not release the company from the obligation to surrender the precise 

number of allowances equal to its former emissions [25]. For a more rigorous reading on carbon 

emission trading schemes and the EU ETS framework, the interested reader is advised to paragraph 

1.4 in [13], Chapter 1 in [25], references [27] and [39], or Chapter 1 in [47]. 

Anyway, in the present thesis we discuss risk-neutral pricing issues for CO2 emission allowances even 

under supplementary forward-looking information on the market zone net position. Parallel to [25], 

our modeling is done under the assumption of no banking of carbon allowances, whereas we newly 

discuss the effects that insider-information concerning the future market zone net position has on 

emission allowance (EUA) prices. As mentioned on p.2 in [25], we recall that “the impact of the 

release of sensitive information regarding the ETS net position [on emission prices] can be dramatic”: 

In April/May 2006 prices extremely dropped during a few days after it has become common 

knowledge that the suggested emission levels “had been too generous to have a significant impact on 

[the] emission practice”.2 In conclusion, it sounds reasonable to consider intermediate announcements 

concerning the actually verified market zone net position as responsible for periodical strong jumps in 

emission prices [25]. In particular, a similar causality should be valid for forward-looking information 

about the (most likely) future market zone net position – at least from an insider’s point of view. Thus, 

in section 6.5 we innovatively treat the pricing of carbon emission allowances under enlarged 

filtrations, whereas in the forthcoming Remark 6.2.4 we precisely explain why our improved multi-

state EU ETS model reasonably incorporates (actually time-delayed) jumps in the underlying EUA 

prices. 

 

1.4 Introduction to commodity markets 

In competitive commodity exchanges, derivatives on gas, oil, coal etc. are traded similar to financial 

contracts in ordinary stock markets. One of the most popular products in those markets are options 

written on commodity forwards, respectively power forwards, which guarantee the buyer of such an 

instrument the either physical or financial delivery of a predetermined amount of a certain commodity 

at the maturity time against the payment of a contractually specified fixed strike price [13], [21], [59]. 

Yet, the problem of pricing commodity derivatives turns out to be more challenging than computing 

option prices for usual financial assets. Nevertheless, we will exploit obvious similarities with respect 

to interest rate theory (i.e. to forward rate modeling) and draw the corresponding conclusions for the 

creation of an appropriate commodity forward market model in Chapter 7. In this context, we use a 

Heath-Jarrow-Morton (HJM) approach (as firstly introduced in [49]) taken from interest rate theory 

which seems to be appropriate for the modeling of commodity forward contracts delivering at a fixed 

maturity time. For a more rigorous reading concerning possible applications of HJM-approaches to 

commodity pricing see e.g. Chapter 6 in [13], respectively the references [51] and [59]. 

                                                           
2 Also see Figure 1 on p.4 in [25] for a succeeded visualization of this issue. We further refer to Chapter 5 in [25] 
to read more about the effects/impact of intermediate announcements concerning the market zone net position in 
the EU ETS market.  
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Chapter 2 
 

 

Some Useful Mathematical Results from 

Stochastic Calculus 

 

 

2.1 Selected results for Lévy-processes  

Throughout this work, Lévy-processes will be one of our main modeling tools. In this regard, we start 

off within a precise definition of this very tractable class of stochastic processes – cf. e.g. [1], [30], 

[32], [79], [80]. 

Definition 2.1.1 (Lévy-process) 

We say that the �-dimensional stochastic process � ≔ ���	�∈��,�� defined on the filtered probability 

space �Ω, ℱ, ℙ	 is a ℱ-adapted Lévy-process, if �� = � holds ℙ-a.s., �� is ℱ�-measurable for every � ∈ �0, �� and all components of � admit càdlàg paths and stationary and independent increments. 

The next result provides us with an explicit representation formula for Lévy-processes. 

Theorem 2.1.2 (Lévy-Itô decomposition) 

If � ≔ ���	�∈��,�� ∈ ℝ� is a Lévy-process, then there exists a constant vector � ∈ ℝ�, a Brownian 

motion � ∈ ℝ� with covariance matrix � ∈ ℝ�×� and an independent Poisson-Random-Measure 

(PRM) � defined on �0, �� × ℝ� ∖ ��  such that, for each � ∈ �0, ��, we have the decomposition 

(2.1.1) 

�� = �� + �� + " " # 
%&%'(

���), #	�
�

+ " " # 
�*%&%*(

�
�

��+ℙ�), #	. 
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Herein, �+ℙ stands for the �-dimensional ℙ-compensated integer-valued PRM which is given through 

(2.1.2)                                           ��+ℙ�), #	 ≔ ���), #	 − �.�#	 �) 

for a Lévy-measure . being a positive and finite Borel-random-measure on ℝ� ∖ ��  that fulfills the 

condition 

(2.1.3)                                               

" 1 ∧ %#%1 �.�#	 < ∞ 
ℝ4∖�� 

. 
Finally, we call ��, ., �	 the characteristic triplet of the Lévy-process �. 

Proof See Theorem 2.4.16 in [1]. ∎ 

 

When it comes to option pricing purposes in Lévy driven energy market models (being one of the 

main topics of the present work actually), we very often have to deal with expectations of the stylized 

type 

6ℙ�789� 
wherein �� is a Lévy (-type) process. In this context, the next result turns out to be extremely helpful 

as it tells us how such expectations can be computed more explicitly. 

Theorem 2.1.3 (Lévy-Khinchin formula) 

For a Lévy-process � ∈ ℝ� as given in (2.1.1) the corresponding characteristic function reads as 

(2.1.4)                                             :89�;	 ≔ 6ℙ<7=>?,89@A = 7� B�?	 
within a characteristic exponent 

(2.1.5)  

C�;	 ≔ D >�, ;@ − (1 >;, �;@ + " <7= >?,E@ − 1 − D >;, F@ G%E%*(A �.�F	 
ℝ4∖�� 

. 
Herein, the brackets >∙,∙@ designate the standard inner product on the space ℝ�. 

Proof See Corollary 2.4.20 in [1]. ∎ 

 

Further on, somewhat similar to the above theorem, the following statement can be applied yet for 

expectations of the type 

6ℙ����	I� 
called the J-th moment of the Lévy-process ��, where J ∈ ℕ. 
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Lemma 2.1.4 (Moment generating function of a Lévy-process) 

For a Lévy-process � as given in (2.1.1) the moment generating function LI���	 ≔ 6ℙ����	I� can 

be computed via 

LI���	 = DMI �I�;I N:89�;	O?P� 

where the characteristic function :89�;	 is such as defined in (2.1.4). 

Proof See section 1.1.6 in [1]. ∎  

Frequently, we will need a representation for the product of two stochastic (Lévy-) processes. For 

instance, if we discount an asset with a bond/bank account (as required by the risk-neutral pricing 

theory), the resulting discounted price process obviously possesses a product structure. The next 

lemma provides us with the related mathematical background. 

Lemma 2.1.5 (Itô’s product rule) 

For (Lévy-) processes � ≔ ���	�∈��,�� and Q ≔ �Q�	�∈��,�� we have 

��  Q� = �� Q� + " �RM �QR
�

�
+ " QRM ��R

�
�

+ ��, Q�� 

for all � ∈ �0, ��. Herein, the term ��, Q�� depicts the quadratic co-variation of the processes � and Q.   

Proof See Theorem 4.4.13 in [1]. ∎ 

 

The following theorem, which firstly has been proven by the Japanese mathematician Kiyoshi Itô, 

undisputedly constitutes one of the most celebrated results in the field of stochastic calculus. 

Essentially, it provides a representation for a transformed stochastic process of the form S���	 where S is a real mapping and �� depicts a Lévy-process. (However, Itô’s formula can be extended to more 

general processes like semi-martingales, for instance; see Ch. II in [78].) As we will see later, a very 

common choice (descending from e.g. geometrical Lévy-models such as introduced in Ch. 7) in this 

context is to take S�#	 as the Euler function 7&. For notational reasons, we present the one-

dimensional version of Itô’s formula here, remarking that the multi-dimensional analogue can be 

found in section 2.5 in [13] or Th. 9.5 in [32]. The precise (one-dimensional) result reads as follows.  

Theorem 2.1.6 (Itô’s formula) 

For a (one-dimensional) Lévy-process � and a function ��, #	 ⟼ S��, #	 mapping S: �0, �� × ℝ ⟶ℝ,  which is once continuously differentiable in its first variable and twice continuously differentiable 

in its second variable, in symbols S ∈ W(,1��0, �� × ℝ	, we have the representation 

S��, ��	 = S�0, ��	 + " SR�), �R	 �)�
�

+ " S&�), �RM	�
�

��R + (1 " S&&�), �R	�
�

���X�R
+ Y �S�), �R	 − S�), �RM	 −Z�R S&�), �RM	��[R[� . 
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Herein, we have denoted the jump size of the process � at time � by Z�� ≔ ��\ − ��M = �� − ��M, 

whereas ��X�� stands for the quadratic variation of the continuous part of �. 

Proof See Prop. 8.19 in [30] or Th. 9.4 in [32]. ∎  

 

Remark 2.1.7 If we integrate a bounded and deterministic function ]: ℝ\ ⟶ ℂ� with respect to the 

Lévy-process � such as introduced in Definition 2.1.1, then the resulting stochastic integral 

_� ≔ " ]�)	 ��R
�

�
 

in general is not a Lévy-process again, but instead an additive or Sato-process admitting independent 

but not necessarily stationary increments. (For further reading on Sato-processes see [30] or [80].) ∎ 

 

2.2 Girsanov’s Change-of-Measure theorem for jump-diffusions 

According to Chapter 3 in [26], we now introduce an (with respect to the probability measure ℙ) 

equivalent (martingale) measure ℚ in order to derive adequate option price formulas later. Thus, for 

previsible/predictable
3 and integrable stochastic processes a�, ℎ��, #	 and c��, #	 ≔ 7#d�ℎ��, #	  

with � ∈ �0, �� and # ∈ ℝ� ≔ ℝ ∖ �0 , we define the strictly positive Radon-Nikodym density process 

(2.2.1)      

e� ≔ 7#d f" aR
�

�
��R − 12 " aR1

�
�

�) + " " ℎ�)−, #	 
ℝh

�
�

��+ℙ�), #	
− " "�c�), #	 − 1 − ℎ�), #	� �.�#	 �) 

ℝh

�
�

i. 
Note in passing that if ℎ�), #	 equals zero, then there obviously are no jumps occurring in (2.2.1) so 

that the latter transforms into the well-known continuous Doléans-Dade exponential 

(2.2.2)                               e� = j�a⋅ ∘ �⋅	� ≔ 7#d mn aR�� ��R − (1 n aR1�� �)o. 
However, in order to ensure the ℙ-martingale property of e� such as given in (2.2.1), we first apply 

Theorem 2.1.6 on the latter yielding the following integral representation with vanishing drift 

(2.2.3)                      e� = 1 + n eR�� aR ��R + n n eRM�c�)−, #	 − 1� ℝh
�� ��+ℙ�), #	. 

Hence, e� designates a local ℙ-martingale. By the way, in differential notation (2.2.3) reads as 

(2.2.4)                                   
�p9p9q = a�  ��� + n �c��−, #	 − 1� ℝh �+ℙ��, �#	. 

                                                           
3 In accordance to page 163 in [32], an integrable stochastic process is called previsible/predictable, if the 
process is measurable, ℱ-adapted and left-continuous (i.e. càg, French: continue à gauche) with respect to �. 
Also see Chapter 3 in [26] along with Def. 2.5 and Def. 2.8 in [13] for more details on this terminology. 
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At this step, we see very clear how the continuous Girsanov density process alters due to the 

introduction of a random jump component. Further on, we assume the processes a, c and ℎ appearing 

inside (2.2.1) to be chosen such that both integrals in (2.2.3) constitute ℙ-martingales (with vanishing ℙ-expectation) for all �, resp. such that a, c and ℎ fulfill a $ovikov condition like announced in Th. 

12.21 in [32]. Each of these presumptions implies 6ℙ�e�� = 1 ∀� ∈ �0, �� so that – in accordance to 

Th. 5.2.4 in [1] – the exponential e in (2.2.1) even is declared as a true ℙ-martingale. (From now on, 

whenever necessary, we assume a Novikov condition to be in force, resp. the corresponding Radon-

Nikodym process to constitute a true ℙ-martingale, when we work with Girsanov’s theorem in this 

thesis.) Presuming either of the above presumptions to be in force, we state the following result. 

Proposition 2.2.1 (Girsanov’s theorem for jump-diffusions) 

Let ℚ be an equivalent probability measure on ℱ� with respect to ℙ. Then for all � ∈ �0, �� the density 

(2.2.5)                                                                s�ℚ�ℙtℱ9 ≔ e� > 0 

exists, wherein (the ℙ-martingale) e� is such as announced in (2.2.1). Therewith, the process 

(2.2.6)                                                       �+� ≔ �� − n aR�� �) 

indicates a standard Brownian motion (BM) under the equivalent martingale measure (EMM) ℚ. 

Moreover, the positive and finite compensating (Lévy-) measure under ℚ is given by 

(2.2.7)                                                 �.v��, #	 ≔ c��, #	 �.�#	 �� 

which is such that the ℚ-compensated integer-valued (Poisson-) random-measure (PRM)  

(2.2.8)                                     ��+ℚ��, #	 ≔ ����, #	 − c��, #	 �.�#	 �� 

forms a ℚ-martingale integrator on �0, �� × ℝ ∖ �0 . 

Proof See Theorem 3.2 in [26], respectively Problem 9.5 and Theorem 12.21 in [32].4 ∎ 

 

2.3 Martingale compensators under enlarged filtrations 

One of the most innovative topics in the present thesis consists in the provision of sophisticated 

derivation methods concerning option price formulas for energy, weather and emission derivatives 

under additional forward-looking information modeled by enlarged filtrations. In this context, it is 

often necessary to know the precise structures of the involved martingale compensators for different 

types of Lévy-processes yet adapted to those enlarged filtrations. We remark that the theory of 

enlargement-of-filtration has been initiated by Itô (see reference “[121] in [32]”), whereas it has been 

extended and applied (especially with an insider-trading background) by several authors, for instance 

in [10], [15], [32], [78] and also in the references “[6], [49], [63], [65], [77], [78], [90], [92], [93], 

[116], [130], [179], [181] in [32]”. All in all, the following results are extremely helpful when it comes 

to option pricing purposes with respect to additional future information. 

                                                           
4 Actually, there is a factor 1 2⁄  missing in front of the second integral appearing inside the definition of e��	 in 
Theorem 12.21 on page 197 in [32].  
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Proposition 2.3.1 (Itô’s enlarged filtration result)  

Let � ≔ ���	�∈��,�� be a ℱ ≔ �ℱ�	�∈��,��-adapted Lévy-process defined on the probability space �Ω, ℱ, ℙ	 as introduced above. Moreover, we implement the enlarged filtration ℰ� ≔ ℱ� ∨ z��{  for a 

future time index | ≤ �. Then the stochastic process 

(2.3.1)                                                      

~�� − " �{ − �R| − )
�

�
�)�

�∈��,{�
 

constitutes a ℰ�-adapted martingale under ℙ. 

Proof See the first lines of the proof of Proposition 16.52 in [32]. (Also compare Theorem 3 in 

Chapter VI of [78].) ∎  

The main message of Proposition 2.3.1 easily can be specialized to Brownian motions or compound 

Poisson processes, as the two latter merely constitute special cases of general Lévy-processes. The 

precise results read as follows. 

Corollary 2.3.2        

(a) For a ℱ-adapted ℙ-Brownian-motion (BM) � ≔ ���	�∈��,�� and an enlarged filtration 

ℰ�� ≔ ℱ� ∨ z��{  

the stochastic process 

(2.3.2)                                                

~��� ≔ �� − " �{ − �R| − )
�

�
�)�

�∈��,{�
 

embodies a �ℰ�� , ℙ�-martingale.
5
 

(b) For a ℱ-adapted ℙ-compensated compound Poisson process � ≔ ���	�∈��,�� with 

�� ≔ " " ; 
ℝh

�
�

��+ℙ�), ;	 

and an enlarged filtration ℰ�� ≔ ℱ� ∨ z��{  the stochastic process 

(2.3.3)                                                

~��� ≔ �� − " �{ − �R| − )
�

�
�)�

�∈��,{�
 

embodies a �ℰ�� , ℙ�-martingale. 

                                                           
5 Referring to Theorem 8.1 in [32], respectively to instance (16.158) on page 316 in [32], we deduce that ��� not 
only depicts a �ℰ�� , ℙ�-martingale, but even a �ℰ�� , ℙ�-Brownian motion. 
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Proof Both statements immediately follow from Proposition 2.3.1. ∎ 

 

The next result is of fundamental importance for our upcoming considerations concerning the pricing 

of energy, temperature and emission derivatives under additional forward-looking information, since 

the latter mostly will be modeled by intermediate enlarged filtrations in this thesis. For the sake of 

completeness and to become familiar with the most important mathematical backgrounds, we will give 

a full proof for the first part of the following Proposition 2.3.3, actually sticking to similar verification 

arguments as in the proof of Proposition 16.52 in [32]. However, we here give some additional 

explanatory words along with auxiliary computations in our proving procedure. Nevertheless, at this 

early step we remark that it seems to be hardly possible to apply the results of Proposition 2.3.3 

instantly when it comes to option pricing purposes under enlarged filtrations. We will return to this 

complex and for our purposes rather delicate topic in section 3.3 later and therein also provide an easy 

but in this context (at least to the best of our knowledge) new key idea to overcome the appearing 

problems descending from too general intermediate filtrations (such as e.g. ℋ� introduced below). 

 

Proposition 2.3.3 For ℙ-independent stochastic processes � and � (such as introduced in 

Corollary 2.3.2) and an enlarged filtration 

�� ≔ ℱ� ∨ z��{, �{  

we define the intermediate filtration ℋ� via 

ℱ� ⊂ ℋ� ⊂ ��. 
Then the stochastic process 

(2.3.4)                                                

~�+� ≔ �� − " 6ℙ��{|ℋR	 − �R| − )
�

�
�)�

�∈��,{�
 

depicts a ℋ�-adapted martingale under the measure  ℙ. As above, we denote this fact by writing �ℋ�, ℙ	-martingale shortly. [By the way, letting � → 0\ in Lemma 3.3.5 (a) below, we have that �+  

such as given in (2.3.4) even indicates a �ℋ�, ℙ	-Brownian motion.] 

Moreover, the stochastic process 

(2.3.5)                                                 

~��� ≔ �� − " 6ℙ��{|ℋR	 − �R| − )
�

�
�)�

�∈��,{�
 

constitutes a �ℋ�, ℙ	-martingale. 

 

Proof We aim to show that the conditional expectation 6ℙ��+� − �+��ℋ�� vanishes for all time 

indices 0 ≤ � ≤ � which initially would prove the proposition for the Brownian motion case. 
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Starting off, by using the tower property for conditional expectations we immediately obtain  

(2.3.6)                                                            
6ℙ��+� − �+��ℋ�� = 6ℙ ~�� − �� − " 6ℙ��{ − �R|ℋR	| − )

�
�

�)�ℋ��
= 6ℙ��� − ��|ℋ�	 − " 6ℙ��{ − �R|ℋ�	| − )

�
�

�)
= 6ℙ ~�� − �� − " �{ − �R| − )

�
�

�)�ℋ��. 
Since the inclusion ℋ� ⊂ �� is valid, applying the tower property for conditional expectations again, 

we may rewrite the latter equation as 

(2.3.7)                          6ℙ��+� − �+��ℋ�� = 6ℙ�6ℙ�������� − 6ℙ���������ℋ�� 

wherein ��  is such as defined in (2.3.2). Next, from Corollary 2.3.2 (a) we know that ��� constitutes a ��-measurable martingale under ℙ [shortly, a ���, ℙ	-martingale] so that  

(2.3.8)                                     6ℙ��+� − �+��ℋ�� = 6ℙ���� − ����ℋ�� = 0 

follows, which ultimately proves the proposition for the BM-case.  

The argumentation for the �ℋ, ℙ	-compensated compound Poisson process ��  can be done in a similar 

manner. ∎ 

 

2.4 The Leibniz-formula and Fourier-transforms 

Particularly in the Heath-Jarrow-Morton framework investigated in Chapter 7 we will need the 

following Leibniz-formula yielding an explicit representation for the differential (with respect to the 

time parameter �) of a generalized Lebesgue-integral, wherein the parameter � is allowed to appear 

both inside the integrand and in the integration bounds. By the way, note that such special cases 

cannot be treated by Itô’s formula directly.   

 

Lemma 2.4.1 (Leibniz-formula for parameter integrals) 

For differentiable, respectively integrable functions #��	, F��	 and S��, �	 we have 

(2.4.1) 

��� ~ " S��, �	 ��E��	
&��	

� = " ��� S��, �	 ��E��	
&��	

+ S��, F��		 F���	 − S��, #��		 #���	. 
Proof See the proof of Lemma 1 in [51], for instance. ∎ 
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Moreover, when it comes to option pricing issues in stochastic models with jumps one frequently 

decides to apply Fourier transform methods (see e.g. [8], [13], [22]) in order to treat the appearing 

conditional expectations descending from the risk-neutral pricing formula. This becomes necessary 

since in the most cases at hand the distributional properties of the underlying jump processes are not 

known explicitly – in contrast to simple log-normally distributed geometrical Brownian motion 

models (such as dealt with in Theorem 7.4.1, for instance) or even normally distributed (BM driven) 

Bachelier models, for example, which both can be handled by standard measure transformation 

arguments on the opposite [see (3.3.150) and (3.3.158) – (3.3.161)]. However, we next provide a 

precise definition for the Fourier transform of a real function and simultaneously for its inverse. 

Before doing so, let us remark that throughout the literature there can be found numerous slightly 

different definitions for Fourier transforms which might cause some confusion from time to time. 

Nevertheless, in this work we will consistently stick to the definitions given below. 

 

Definition 2.4.2 (multi-dimensional Fourier transform) 

For a function S: ℝ� ⟶ ℝ with S ∈ ℒ(�ℝ�, ��� we define its Fourier transform via 

(2.4.2)                                                

S��F	 ≔ " S�#	 
ℝ4

7M= >&,E@����#	 

whereby the square brackets >∙,∙@ denote the standard inner product in the space ℝ� and �� constitutes 

the �-dimensional Lebesgue-measure. Moreover, its inverse is then given through 

(2.4.3)                                            

S�#	 = 1�2�	� " S��F	 
ℝ4

7= >&,E@����F	. 
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Chapter 3 
 

 

Forward-Looking Multi-Factor 

Ornstein-Uhlenbeck Models for Pricing 

Electricity Risk 

 

 

3.1 A short chapter overview  

The aim of this chapter mainly consists in the computation of risk-neutral option prices for both plain-

vanilla and exotic electricity derivatives on the basis of an arithmetic multi-factor Ornstein-Uhlenbeck 

spot price model, whereas we take forward-looking information – which we assume to be available to 

well-informed market insiders – into account via numerous tailor-made enlargements of the 

underlying information filtrations. In this insider trading context, we also correlate electricity spot 

prices with outdoor-temperature and treat a related electricity derivatives pricing problem under 

supplementary temperature forecasts. However, it does not seem to be possible to derive analytical 

option price formulas whenever we assume future information on the driving jump noises to be 

available. In these cases we apply customized approximation procedures involving techniques from 

Complex analysis. Contrarily, whenever the historical filtration is enlarged with respect to Brownian 

noise, we fortunately obtain more explicit option price formulas. Finally, we stress that our arithmetic 

approaches do not trouble an exponential function (such as commonly appearing in geometrical 

models; compare e.g. Chapter 7) to ensure positivity of the prices. Having mentioned the most 

important key characteristics of electricity markets in section 1.1 already, we are now asked to draw 

the corresponding conclusions for the creation of an adequate forward-looking market model.  

The remainder of the present chapter is organized as follows: In section 3.2 our initial pure-jump 

multi-factor electricity spot price model of mean-reverting Ornstein-Uhlenbeck type is introduced in 

detail. Applying Girsanov’s Change-of-Measure theorem, we hereafter obtain a representation for the 
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electricity futures price under an equivalent martingale measure (EMM)6 and moreover, deduce 

related option prices for electricity derivatives within a rigorous utilization of Fourier transform 

methods. In the main paragraph 3.3 we focus on the pricing of electricity contracts again but yet under 

the incorporation of additional future information. Due to this insider trading machinery, we introduce 

the information premium measuring some kind of supplementary information gain with respect to 

common backward-looking scenarios and, in particular, tailor enlarged information filtrations to the 

requirements of our electricity market framework. This procedure finally culminates in the provision 

of electricity swap and connected option prices under complementary information on the future 

behavior of electricity spot prices or outdoor-temperature, for instance, actually representing some of 

the most innovative results in this thesis. Additionally, we propose a mixed electricity spot/futures 

price model including both Brownian motion along with pure-jump terms and deduce a corresponding 

mixed call option price formula. Hereafter, we compare our former approaches with an alternative 

forward-looking measure change method while introducing the notion of a cross premium. In section 

3.4 the most important conclusions a drawn, whereas the closing paragraph 3.5 inter alia contains 

verification arguments for some of the results that have been used throughout Chapter 3. 

 

3.2 Modeling electricity spot and futures prices  

We start off with the description of the mathematical basis of our model. Let �Ω, ℱ, ℙ	 be a filtered 

probability space, where the monotone backward-looking information filtration ℱ ≔ �ℱ�	�∈��,�� is 

assumed both to include a priori all ℙ-null-sets and to be cad (French: continue à droite), that is, ℱ� = ℱ�\ ≔ � ℱRR��  holds for all � ∈ �0, �� within a fixed time horizon � < ∞. 

 

3.2.1 A pure-jump multi-factor electricity spot price model    

Right from the beginning, we devote our attention towards the mathematical modeling of the 

upcoming electricity spot price dynamics. Inspired by [8], we will make use of an arithmetic mean-

reverting approach to achieve a tractable description of the spot price. More precise, we rigorously 

take the seasonality of the trend-line and particularly of the price spikes into account, allowing for 

seasonal dependent jump-amplitudes and frequencies. Hence, in accordance to [8], we model the spot 

price dynamics directly by a periodic deterministic function plus a weighted sum of mean-reverting 

Ornstein-Uhlenbeck (OU) processes, each of which reverting to zero with a different speed and having 

pure-jump processes as driving noises. This arithmetic onset yields the advantage of (semi-) analytical 

pricing formulas for electricity options [8], [72] (also see Prop. 3.2.4 below). In contrast to common 

geometrical setups (as appearing in e.g. [14], [48], [59]) there is no exponential function involved in 

the present additive model, whereas in return the positivity of the prices has to be ensured by allowing 

positive jumps only [8]. Yet, arithmetic multi-factor models of pure-jump OU-type capture the stylized 

facts of electricity spot prices, especially the seasonal features and the mean-reverting property, 

extremely well as imposingly proved by Benth, Kallsen and Meyer-Brandis [8] (see Ch. 2 therein for 

more details and compare Fig.1 with Fig.2 in [8]). Thus, a thorough analysis of those arithmetical 

models in connection with energy market applications is of steadily growing interest, presently.  

                                                           
6 Since electricity is non-storable and thus, neither a traded asset, it does, however, not make sense to require the 
(discounted) electricity spot price to form a martingale under an EMM. Hence, whenever we speak of an 
equivalent martingale measure in an electricity market context (respectively, in any market with non-tradable 
underlying), we actually think of an (with respect to ℙ) equivalent risk-neutral probability measure, merely. 
Note that any measure, equivalent to ℙ, constitutes an admissible candidate – compare subsection 4.1.1 in [13]. 
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Referring to [8], we assume the electricity spot price � ≔ ���	�∈��,�� to follow the additive structure 

(3.2.1)                                                          �� ≔ ���	 + Q� 

wherein ���	 represents a deterministic and periodic seasonality function, i.e. the non-random part of 

the stochastic trend-line. Note that the function ���	 does not constitute what we understand as the 

mean-level of the spot, as one could think on a first sight; instead, � rather indicates the floor or lower 

bound of the spot price [8], [13]. Further, the summand Q� is responsible for interspersing random 

price fluctuations. As in [8], the latter is supposed to be a weighted sum of stochastic processes 

(3.2.2)                                                            

Q� ≔ Y �����
I

�P(  

with constant weights �� ≥ 0 and zero-reverting pure-jump OU components ��� obeying 

(3.2.3)                                              ���� = −�� ���  �� + z���	 ����. 
Herein, �� > 0 denote constant mean-reversion speeds and z���	 > 0 are deterministic and bounded 

volatility functions controlling the seasonal variation of the jump-sizes. Moreover, the integrable, 

increasing and pair-wise independent pure-jump processes ��� regulate the price fluctuations including 

both small daily volatile variations on the one hand and violent large-amplitude price spikes on the 

other. In addition, we assume the noises ��� to be càdlàg (French: continue à droite avec des limites à 

gauche) and to admit independent increments. Finally, the deterministic initial values are given by ��� ≔ #� with #( ≔ ��� − ��0	� �(⁄  and #� ≔ 0 for � = 2, … , J. Since equation (3.2.1) implies Q� = �� − ���	, we may interpret Q� as the deseasonalized spot price [72]. Slightly deviating from [8], 

for all � = 1, … , J we next announce the concrete form of the monotone-increasing, finite-variation 

(see Th. 2.4.25 in [1]) and, for each ;, ℱ�-adapted (Lévy-type) Sato-processes ��� via 

(3.2.4)                                                        

��� ≔ " " ; ����), ;	 
¡¢

�
�

 

for a set £� ⊆ �0, ∞� ⊂ ℝ and time indices � ∈ �0, �� (cf. p.3 in [8]). In the latter equation �� depicts a 

one-dimensional integer-valued Poisson-Random-Measure (PRM) on �0, �� × �0, ∞� for each index �. 

Similar to [8], we further assume the PRMs ����), ;	 to have deterministic predictable (and in 

particular, time-dependent) ℙ-compensators of the form ¥��)	 �.��;	 �) such that the objects 

(3.2.5)                                    ��+�ℙ�), ;	 ≔ ����), ;	 − ¥��)	 �.��;	 �) 

indicate ℙ-martingale integrators for every �. By the way, if we choose ¥��)	 ≡ ¥� to be constant 

(resp. time-independent), then ��� such as given in (3.2.4) is a (increasing) Lévy-process (a so-called 

subordinator) admitting independent and stationary increments (cf. e.g. [1], [8], [30], [80]). However, 

in (3.2.5) the deterministic (time-inhomogeneous) functions ¥��)	 ≥ 0 control the seasonal variation 

of the jump-intensities and the one-dimensional Lévy-measures .� declare positive and finite Borel-

random-measures on £� for all � = 1, … , J obeying one of the following equivalent conditions  

n 1 ∧ ;1 �.��;	 ¡¢ < ∞    ⇔    n  ?¨
(\?¨  �.��;	 < ∞ ¡¢ .  



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

18 

 

Further on, as proposed in [8], it will turn out convenient to separate the sum (3.2.2) as follows:  

• In our context, we ought to use the first #ª  �< J	 components ��(, … , ��« to model the long-

term level of the spot price, i.e. the daily volatile stochastic variations of the deterministic 

trend-line ���	. Hence, the processes ��(, … , ��« should permit (Brownian-motion-like) small 

fluctuations only with jump-sizes in a set £� ≔ �0, ¬�� for a small number ¬� > 0 along with a 

slow mean-reversion velocity �� for � = 1, … , ª. 
          

• In return, the remaining #�J − ª	 components ��«\(, … , ��I are exploited to model the short-

term spiky variations, i.e. the large price jumps. Thus, we may choose £� ≔ �¬� , ∞� for an 

arbitrary (maybe large) number ¬� > 0 together with a high speed of mean-reversion �� for 

every � = ª + 1, … , J. A high mean-reversion speed is important here to ensure that after a 

large-amplitude jump the spot price rapidly turns back to about the same level as before – 

being a characteristic property of price spikes, such as announced in section 1.1 formerly. 

By the way, since in (3.2.4) we have permitted positive jumps only, the mean-reverting nature of the 

components ��� is necessary to guarantee that the spot price (3.2.1) is not only increasing but also 

decreasing [8], [13]. Taking (3.2.4) into account, the integral form of (3.2.3) reads as 

(3.2.6) 

��� = #� − �� " �R�  �)�
�

+ " " ; z��)	 ����), ;	 
¡¢

�
�

. 
Standard arguments from stochastic calculus purvey the explicit (Sato-type-) solution of (3.2.3) as 

(3.2.7) 

��� = #�  7M¢� + " z��)	 7M¢��MR	 ��R�
�

�
= #�  7M¢� + " " ; z��)	 7M¢��MR	 ����), ;	 

¡¢

�
�

. 
In our proceedings we will frequently make use of the iterated version  

(3.2.8) 

�®� = ���7M¢�®M�	 + " z��)	 7M¢�®MR	 ��R�
®

�
 

for time indices 0 ≤ � ≤ � ≤ �. Merging (3.2.2) and (3.2.7) into (3.2.1), we receive a more explicit 

representation for the electricity spot price 

(3.2.9)  
�� = ���	 + Y �����

I
�P( = ���	 + Y ��

I
�P( ~#�  7M¢� + " z��)	 7M¢��MR	 ��R�

�
�

�. 
At this step, let us pick up our introductory remark dedicated to (3.2.1) concerning the mean-level of 

the spot price ��: Slightly deviating from [8] (for details see Remark 3.2.1 below), we yet define the 

randomized trend-line of the electricity spot price via 
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(3.2.10)                                  

¯� ≔ �� − Y �����
I

�P«\( = ���	 + Y �����
«

�P( . 
Hence, looking at the last member in (3.2.10), we state that the mean-level of the spot, namely ¯�, is 

basically given through the positive, deterministic and periodic floor-function ���	 which is randomly 

perturbed by a sum of slowly varying weighted noises ��(, … , ��«. Interpreting the first equality inside 

(3.2.10), we claim that, in order to get an idea about the shape of the stochastic trend-line ¯�, we first 

have to filter out the large-amplitude spiky price variations of the spot � that are generated by the 

ingredients ��«\(, … , ��I. By the way, it is a rather difficult task to determine which price variations are 

caused by violent jumps (spikes) and which ones have their origin in the usual (Brownian-motion-like) 

price variations – cf. p. 14 in [72]. As claimed in [72], the latter constitutes an always present problem 

when it comes to the calibration/estimation of a spot price model of the above type. We will return to 

this challenging topic in section 8.4.4 while applying stochastic filtering techniques as invented in [53] 

to estimate the spiky components ��«\(, … , ��I, given the observed deseasonalized spot price Q�. 

Remark 3.2.1 The authors of [8] prefer to define the mean-level °̄��	 of the spot �� by the expected 

or averaged price after having taken out the large-amplitude spikes, namely 

(3.2.11)                       °̄��	 ≔ 6ℙ<�� − ∑ �����I�P«\( A = ���	 + ∑ ��  6ℙ<���A«�P(  

depicting a positive function yet. Taking (3.2.5) and (3.2.7) into account, the latter equation becomes 

(3.2.12)           

°̄��	 = ���	 + Y �� ~#� 7M¢� + " " ; z��)	 7M¢��MR	 ¥��)	 �.��;	 �) 
¡¢

�
�

�«
�P( . 

As it seems to be reasonable (see p.4 in [8]) to assume constant daily volatilities z��)	 ≡ z� > 0 and 

constant daily jump-intensities ¥��)	 ≡ ¥� ≥ 0 (both for � = 1, … , ª), eq. (3.2.12) next simplifies to 

(3.2.13)                    

°̄��	 = ���	 + Y �� ~#� 7M¢� + z�  ¥� 1 −  7M¢��� " ; �.��;	 
¡¢

�«
�P( .  

At this point, we recall that if we take constant long-term/daily jump-intensities ¥(, … , ¥« in our model, 

then the corresponding processes �(, … , �« become (subordinating) Lévy-processes (see above). In 

this context, let us finally quote from p.14 in [72]: “Especially when spike behavior […] appears in a 

non-stationary seasonal way […] the model requires the separation of the non-stationary spikes path 

from the stationary path of the remaining daily variations.”. ∎ 

Summing up, we can associate the electricity spot price (3.2.1) as decomposed as follows 

(3.2.14)  

�� = ���	 + Y �����
«

�P(²³³³³´³³³³µR�¶X·¸R�=X ¹º¸I «º»º« ¼=�· ¸R«¶¼ ¹º¸IM�º»º�R=¶I »º«¶X=�E¸I� R¹¸«« ½®¹¾M¸¹¾«=�®�ºR

+ Y �����
I

�P«\(²³³´³³µ¾�=Xº R¾=�ºR ¼=�· ¸ ·=¿· �¸�º ¶À ¹º¸IM�º»º�R=¶I
. 
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3.2.2 Switching to an equivalent risk-neutral measure  

According to page 8 in [8] and our former announcements in section 2.2, we now introduce an (with 

respect to ℙ) equivalent risk-neutral measure ℚ in order to derive adequate pricing formulas for 

electricity derivatives later. Thus, the present subsection is dedicated to the required switching of 

probability measures. For deterministic and integrable functions ℎ��), ;	 �� = 1, … , J	, we initially 

define the (strictly positive) Radon-Nikodym derivative  

(3.2.15)                                                        

s�ℚ�ℙtℱ9 ≔ Á j�Â���
I

�P(  

with (local) ℙ-martingale ingredients 

(3.2.16)                                             

Â�� ≔ " "<7·¢�R,?	 − 1A ��+�ℙ�), ;	 
¡¢

�
�

 

and discontinuous Doléans-Dade exponentials 

(3.2.17) 

j�Â��� ≔ 7#d ÃÂ�� − 12 Ä�Â��XÅ�Æ × Á �1 + ZÂR�� 7MÇÈÉ¢
�[R[�  

for � = 1, … , J and � ∈ �0, ��. Merging (3.2.16) into (3.2.17), we immediately receive 

(3.2.18) 

j�Â��� = 7#d f" " ℎ��), ;	 ��+�ℙ�), ;	 
¡¢

�
�

− " "<7·¢�R,?	 − 1 − ℎ��), ;	A ¥��)	 �.��;	 �) 
¡¢

�
�

i 

whereas an application of Itô’s formula [see Theorem 2.1.6] on (3.2.18) yields the (local) ℙ-martingale 

representation7 

(3.2.19)                             

j�Â��� = 1 + " " j�Â��RM <7·¢�R,?	 − 1A ��+�ℙ�), ;	 
¡¢

�
�

. 
Since in addition 6ℙ Äj�Â���Å = 1 holds for all � ∈ �0, �� and � = 1, … , J, the exponentials j�Â�� 

even are declared as true ℙ-martingales (cf. p.8 in [8]). Troubling Proposition 2.2.1, we may state that 

(3.2.20)                 ��+�ℱ,ℚ�), ;	 ≔ ��+�ℚ�), ;	 ≔ ����), ;	 − 7·¢�R,?	 ¥��)	 �.��;	 �) 

depict compensated PRMs under ℚ [and thus, ℱ-adapted ℚ-martingale integrators] for all � = 1, … , J. 

                                                           
7 By the way, coupling the two first equalities of section 5.1 in [1], we immediately obtain the representation 
(3.2.19) without any further application of Itô’s formula.  
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3.2.3 Electricity futures prices under the multi-factor approach  

In this subsection we concentrate on the computation of spot-dependent electricity futures/swap prices 

which will be denoted by Ê��|(, |1	 frequently. Right at the beginning, let us exemplarily consider a 

swap contract which promises the delivery of one unit of electrical energy, say 1 MWh, over the future 

delivery period �|(, |1�. Hence, the underlying time partition for our upcoming analysis reads as 0 ≤ � ≤ |( < |1 ≤ �. According to Chapter 3 in [8] and paragraph 4.1 in [13], we interpret the 

electricity delivery as a flow of rate �� �|1 − |(	⁄  obviously yielding cumulated costs of the form 

(3.2.21)                                               Ë°�|(, |1	 ≔ ({¨M{Ì n �® ��{¨{Ì . 
Therewith, we define the electricity futures price at time � ∈ �0, |(� via 

(3.2.22) 

Ê�ℱ,ℚ�|(, |1	 ≔ Ê��|(, |1	 ≔ 6ℚ�Ë°�|(, |1	|ℱ�	 = 1|1 − |( " 6ℚ��®|ℱ�	 ��{¨

{Ì
. 

Similarly to the announcements on the top of page 8 in [8], for � ∈ �0, �� and � ∈ �|(, |1� we might 

interpret S��, �	 ≔ 6ℚ��®|ℱ�	 as “a continuous stream of forward contracts with fixed delivery times” � spread over the delivery period �|(, |1�. However, the forthcoming result actually corresponds to 

Proposition 3.1 in [8], whereas it is adapted to our notations. It yields an explicit representation for the 

electricity futures price under the risk-neutral probability ℚ.  

 

Proposition 3.2.2    The price of an electricity futures Ê� ≔ Ê��|(, |1	 at time � ∈ �0, |(� with delivery 

period �|(, |1� is given by the ℱ�-adapted (local) ℚ-martingale
8 

(3.2.23) 

Ê��|(, |1	 = Ê��|(, |1	 + Y " " ; Í��), |(, |1	 ��+�ℚ�), ;	 
¡¢

�
�

I
�P(  

within a deterministic and positive (time-inhomogeneous) volatility function 

(3.2.24)                               

Í��), |(, |1	 ≔ ��  z��)	�|1 − |(	 �� <7M¢�{ÌMR	 − 7M¢�{¨MR	A 
[note that Í� even is strictly positive whenever �� ≠ 0] and a deterministic initial condition 

(3.2.25)                                                            Ê��|(, |1	 ≔ 

1|1 − |( " Ï���	 + Y �� ~#� 7M¢® + " " ; z��)	 7M¢�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 
¡¢

®
�

�I
�P( Ð ��{¨

{Ì
. 

                                                           
8 Note that Ê��|(, |1	, such as given in (3.2.23), is not a Lévy-process but an additive or Sato-process (see [80] 
for details; also compare our former Remark 2.1.7), meaning that Ê possesses ℱ-independent but not necessarily 
stationary increments under ℚ. Further, recall that Ê� constitutes a �ℱ� , ℚ	-martingale by definition. 
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Proof Similarly to the proof of Proposition 3.1 in [8], we put (3.2.9) into (3.2.22) and obtain 

(3.2.26) 

Ê��|(, |1	 = 1|1 − |( " Ï���	 + Y ��  #� 7M¢®I
�P( + Y ��

I
�P( 6ℚ ~" z��)	 7M¢�®MR	 ��R�

®
�

Ñℱ��Ð ��{¨

{Ì
. 

Recalling (3.2.4), (3.2.20) and the formerly assumed independent increment property of the Sato-

noises ���, the conditional expectation in (3.2.26) becomes 

6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñℱ�� = 

" " ; z��)	 7M¢�®MR	 ��+�ℚ�), ;	 
¡¢

�
�

+ " " ; z��)	 7M¢�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 
¡¢

®
�

. 
Substituting the latter expression into (3.2.26) along with an interchange of the integration order, we 

get the desired result. ∎ 

Remark 3.2.3 $ote that the volatility (3.2.24) is decreasing in |( what easily follows from ordinary 

calculus (for a full proof see Lemma 3.5.2 below). Hence, if the delivery period starts very far in the 

future, the present arrival of new information has a more or less negligible influence on the futures 

price (3.2.23) – cf. p.111 in [13]. On the top of p.112 in [13] the authors argue that in this (long-term) 

case – contrarily to soonly maturing (short-term) contracts – “the market has [much] time [left] to 

adjust before delivery takes place”. They further conclude that in such a long-term scenario the 

electricity futures price is “less sensitive to changes in the spot [price]” and thus, in any relevant 

model the futures price volatility should decrease with an increasing time to maturity. This 

characteristic feature, which obviously is met by our futures price model too, frequently is called 

(averaged) Samuelson effect throughout economists and finally stands in line with the findings in [13] 

(particularly see the pages 111, 122 and 126 therein). ∎ 

Adhering to Proposition 3.2 in [8], similar computations as in the proof of Proposition 3.2.2 above [but 

yet using (3.2.1), (3.2.2) and (3.2.8) instead of (3.2.9)] lead us to an expression for the electricity 

futures price Ê��|(, |1	 in terms of the Ornstein-Uhlenbeck noises ��(, … , ��I, reading 

(3.2.27)                                                            
Ê��|(, |1	 = 1|1 − |( " Ï���	 + Y �� " " ; z��)	 7M¢�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

®
�

I
�P( Ð ��{¨

{Ì
+ Y Í���, |(, |1	z���	 ���

I
�P( . 

 

3.2.4 Electricity futures multi-factor call option prices 

Before we turn to our main topic concerning electricity derivatives pricing under additional forward-

looking information in the next paragraph, we extend the put option result of Proposition 4.1 in [8] yet 
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to European call option prices in the current preparatory subsection – not at least to get familiar with 

Fourier transform techniques and a specific exponential damping argument such as presented in 

subsection 9.1.2 in [13], respectively in [14], [22]. In this regard, we now introduce a risk-free asset  

(3.2.28)                                                          Ò� ≔ Ò� 7��   
which can be regarded as a bond (i.e. a bank account) with constant interest rate � > 0 and initial 

value Ò� > 0. As usual, we define the European call option payoff with strike price Ó > 0 via 

(3.2.29)                   W� ≔ W��Ó, |(, |1	 ≔ �Ê��|(, |1	 − Ó�\ ≔ ÔÕ#�0, Ê��|(, |1	 − Ó . 
Moreover, let us recall the risk-neutral pricing formula (see e.g. subsection 5.2.4 in [83]) reading 

(3.2.30)                                                           W�Ò� = 6ℚ ÖW�Ò� tℱ�× 

for � ∈ �0, ��. Verbalizing, the (ℱ-adapted) discounted call option price is required to form a (local) 

martingale under an EMM ℚ. Anyway, within (3.2.28) and (3.2.29), the latter equation becomes 

(3.2.31)                                      W� = 7M���M�	 6ℚ��Ê��|(, |1	 − Ó�\|ℱ�	. 
Following Definition 2.4.2, we meanwhile obtain a representation for the one-dimensional Fourier 

transform S� associated to a real function S ∈ ℒ(�ℝ	, namely 

(3.2.32)                                                     

S��F	 = " S�#	 
ℝ

7M=E&�#. 
With respect to (2.4.3), its inverse is then given by 

(3.2.33)                                                    

S�#	 = 12� " S��F	 
ℝ

7=E&�F. 
Unfortunately, we are facing the fact ]�#	 ≔ �# − Ó�\ ∉ ℒ(�ℝ\	, whereas for the exponentially-

damped function Ù�#	 ≔ 7M¸&]�#	 ∈ ℒ(�ℝ\	 is valid within a real damping parameter 0 < Õ < ∞ 

(compare the bottom of p. 248 in [13], resp. [14], [22]). By the way, we even observe Ù�#	 ∈ ℒ(�ℝ	. 

However, starting with (3.2.32), a straightforward calculation delivers 

(3.2.34)                                    

 ÙÚ�F	 = " 7M�¸\=E	&  �# − Ó� �# Û
Ü

= 7M�¸\=E	Ü�Õ + DF	1 . 
Herein, we have just used the fact |7M=E&| = 1. 

Now we are able to derive the risk-neutral price for a European call option written on the electricity 

futures (3.2.23) with delivery period �|(, |1�. We remark that there is no call option result (comparing 

to Proposition 3.2.4 below) given in [8]. 
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Proposition 3.2.4     Denoting the risk-free interest rate by �, the EURO price W� ≔ W��Ó, |(, |1	 at 

time � ∈ �0, |(� of a European electricity call option with strike price Ó > 0 (in EURO) written on an 

electricity futures with delivery period �|(, |1� is given by 

(3.2.35) 

W� = 7M���M�	2� " 7�¸\=E	 �Ý9�{Ì,{¨	MÜ �Õ + DF	1  Á 7B¢�E,�,�	I
�P( �F 

ℝÞ
 

within a characteristic exponent  

(3.2.36)                                                          C��F, �, �	 ≔ 

 " "<7�¸\=E	 ? ß¢�R,{Ì,{¨	 − 1 − �Õ + DF	 ; Í��), |(, |1	A 
¡¢

�
�

7·¢�R,?	¥��)	 �.��;	 �). 
 

Proof According to (3.2.31) and the definition of Ù�∙	, we obtain 

(3.2.37)                              W� = 7M���M�	 6ℚ�7¸Ýà�{Ì,{¨	 Ù�Ê��|(, |1	��ℱ�� 

whereas (3.2.33) immediately yields 

(3.2.38)                                

W� = 7M���M�	2� " ÙÚ�F	 6ℚ�7�¸\=E	 Ýà�{Ì,{¨	�ℱ�� �F 
ℝÞ

. 
Exploiting the independent increment property of Ê, the above conditional expectation transforms into  

(3.2.39)           6ℚ�7�¸\=E	 Ýà�{Ì,{¨	�ℱ�� = 7�¸\=E	 Ý9�{Ì,{¨	 6ℚ<7�¸\=E	 �Ýà�{Ì,{¨	MÝ9�{Ì,{¨	 A. 
Substituting (3.2.23) into (3.2.39), with pair-wise independent PRMs �+�ℚ �� = 1, … , J	 we deduce 

(3.2.40) 

 6ℚ�7�¸\=E	 Ýà�{Ì,{¨	�ℱ�� = 7�¸\=E	 Ý9�{Ì,{¨	  Á 6ℚ á7n n �¸\=E	 ? ß¢�R,{Ì,{¨	 �â+¢ℚ�R,?	 ã¢à9 äI
�P( . 

If we rewrite the ℚ-compensated jump-integral in (3.2.40) via (3.2.20) as “Lévy-Itô-decomposed”, 

then, with respect to (3.2.36), the deterministic abbreviation å��)	 ≔ �F − DÕ	 Í��), |(, |1	 ∈ ℂ and 

Proposition 2.1 in [13] combined with Prop. 1.9 in [65] (resp. with Prop. 8 in [35]), we receive 

(3.2.41)                   

6ℚ Ï7#d ~" "�Õ + DF	 ; Í��), |(, |1	 ��+�ℚ�), ;	 
¡¢

�
�

�Ð = 6ℚ Ï7#d ~D " " ; å��)	 ��+�ℚ�), ;	 
¡¢

�
�

�Ð
= 7#d f" "<7= ? æ¢�R	 − 1 − D ; å��)	A 

¡¢

�
�

7·¢�R,?	¥��)	 �.��;	 �)i = 7B¢�E,�,�	. 
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Putting (3.2.34), (3.2.40) and (3.2.41) into (3.2.38), the claimed result is verified.9 ∎ 

 

3.3 Modeling electricity risk under future information  

In this section we devote our attention towards the pricing of electricity swap contracts with respect to 

some additional future information that informed market participants might have knowledge of. That 

is, as proposed in [10], in our upcoming considerations we will take forward-looking information into 

account via adequate enlargements of the underlying information filtrations in order to develop 

extended pricing mechanisms for electricity market insiders. In this context, once more, we emphasize 

that the previously introduced filtration ℱ� does only look into the past whereby all available 

information coming from market observations up to time � is stored in this monotone-increasing 

family of retro sigma-algebras. Mathematically spoken, the filtration ℱ� is (as usual) supposed to be 

generated by the spot price noises up to time �, in symbols 

(3.3.1)                                ℱ� ≔ z��®: 0 ≤ � ≤ � ≔ z��®( , … , �®I : 0 ≤ � ≤ � . 
Unfortunately, this traditional financial approach (which, by the way, neither might be appropriate for 

most asset pricing problems) does not at all reflect the case at hand when we are concerned with 

pricing applications in an energy market for a non-storable commodity such as electricity [10]. To be 

precise, one could think of a market situation wherein some additional (but still stochastic) future 

information is available: For instance, the market participants might know that a specific future event 

will take place with certainty but the exact effects remain random [10]. Taking such forward-looking 

knowledge into account, as a consequence, we would have to enlarge the information filtration ℱ� 

[10]. Hence, similar to [10], we now introduce the flow of additionally available market information at 

time � including forward-looking events by an enlarged filtration �� with �� ⊃ ℱ�. Exemplarily, the 

above mentioned future event could consist of political decisions like the planned introduction of 

CO2-emission costs next year, an outage of a major power plant during the next month, the building of 

new connecting cables to other electricity markets or simply noise-afflicted weekly weather forecasts 

[10]. All these future events have one thing in common, as they altogether reduce the uncertainty 

concerning future energy price behavior whereas the exact effects still remain random [10]. 

 

3.3.1 The information premium in electricity markets 

In accordance to (3.2.22), we newly define the electricity futures price at time � associated to a 

delivery of a certain predetermined amount of electrical energy over the period �|(, |1� within a time 

partition 0 ≤ � ≤ |( < |1 ≤ � yet under the enlarged filtration �� by (the ��-adapted ℚ-martingale) 

(3.3.2)                                       Ê��,ℚ�|(, |1	 ≔ ({¨M{Ì n 6ℚ��®|��	 ��{¨{Ì . 
                                                           
9 Note that on the bottom of p.12 in [8] the expression for C��,�= �å	 is derived – similarly to (3.2.41) – by an 
application of the generalized Lévy-Khinchin formula allowing for time-dependent deterministic functions å�)	. 
However, there is an inaccuracy in the use of C��,�= �F Σ=�∙; �(, �1	� in Prop. 4.1 in [8], as on the bottom of p.12 C��,�=  is associated with �=, whereas in the second last line of the proof of Prop. 4.1, at the same time, C��,�=  is 
associated with the ℚ-compensated (and thus, drifted) process �ê=. More precisely, in the second last line of the 

proof of Prop. 4.1 in [8] there is a summand of the form – DF; Σ=�); �(, �1	 missing inside the contained .̂=��;, �)	-integral. Anyway, the correct put option price formula corresponding to Prop. 4.1 in [8] can be 
obtained similarly to our proof of Proposition 3.2.4 above (even with Õ = 0 therein). 
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Similar to before, we may introduce the forward price S�,ℚ��, �	 ≔ 6ℚ��®|��	 which obviously 

designates a ��� , ℚ	-martingale in � ∈ �0, |(� for every fixed � ∈ �|(, |1�, but not necessarily a �ℱ� , ℚ	-martingale. Moreover, slightly deviating from [10]10, we define the information premium by 

(3.3.3)                       ℑ��,ℱ,ℚ�|(, |1	 ≔  ℑ�ℚ�|(, |1	 ≔ Ê��,ℚ�|(, |1	 − Ê�ℱ,ℚ�|(, |1	.  
With respect to (3.2.22) and (3.3.2), we immediately obtain 

(3.3.4)                               

ℑ�ℚ�|(, |1	 = 1|1 − |( " <6ℚ��®|��	 − 6ℚ��®|ℱ�	A ��{¨

{Ì
. 

Parallel to page 6 in [10], the information premium (3.3.4) may be associated with an orthogonal 

projection of the random variable 6ℚ��®|��	 on the space ℒ1�ℱ� , ℚ	, since the tower property yields 

6ℚ�ℑ�ℚ�|(, |1	�ℱ�� = ({¨M{Ì n <6ℚ�6ℚ��®|��	�ℱ�� − 6ℚ��®|ℱ�	A ��{¨{Ì = 0  

for all 0 ≤ � ≤ |(. Roughly speaking, the information premium measures the supplementary 

information gain which is contained in �� compared with that in ℱ� [10], respectively the information 

asymmetry in between ��- and ℱ�-electricity futures prices.               

Following [10], we suppose the market participants to have knowledge of some insider information 

about the spot price behavior at a fixed future time |. More precise, we now assume that the traders 

have an idea about the (still stochastic) future mean-level (3.2.10) of the electricity spot price. 

Exemplarily, it should sound reasonable to expect the introduction of CO2-emission costs at a future 

time | to essentially influence the mean-level ¯{ (compare the arguing in section 2.2 in [10]). Since the 

seasonality function � remains deterministic, this additional knowledge merely affects the jump noises �{( , … , �{«  �ª < J	 which are responsible for a random perturbation of the floor-function � (as explained 

in subsection 3.2.1). Slightly extending the setting on p.12 in [10], we introduce the overall filtration 

(3.3.5)                                   ℋ� ≔ ℱ� ∨ z��{(, … , �{« ≔ ℱ� ∨ z��{( , … , �{«    

representing complete market information at time � about the long-term level of the spot price, where |-forward-looking events are included. That is, the enlarged sigma-algebra ℋ can be associated with 

exhaustive knowledge of the future electricity spot price trend-line ¯{. Parallel to [10], we next assume 

(3.3.6)                                                            ℱ� ⊂ �� ⊂ ℋ� 

for 0 ≤ � < |, whereas ℱ� = �� holds for all � ≥ |. For later purposes, we recall the explicit notation 

(3.3.7)                                                  ℱ� ⊂ �� ⊂ ℱ� ∨ z��{( , … , �{«   

perhaps being more intuitive, since the upper and lower bounds in between which �� is situated can be 

read off directly. Following the above algebraic structures, the filtration �� ≔ ℱ� ∨ z��{( , … , �{I  

would hence correspond to exhaustive/exact knowledge (at time �) concerning the accurate spot price 

value at time |, namely �{, including both long- and short-term variations.            

In order to examine the information premium (3.3.3) more precisely and to derive option price 

                                                           
10 On the contrary, Benth and Meyer-Brandis [10] consider the information premium under the measure ℙ. In 
addition, they restrict their examinations to electricity forward contracts, whereas we newly treat the electricity 
futures/swap case here, explicitly allowing for a delivery period instead of a fixed maturity date, merely.  
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formulas for electricity derivatives later, we need the following results which are closely connected to 

our former announcements in paragraph 2.3, actually. In other words, the upcoming Lemma 3.3.1 inter 

alia provides customized ℚ-martingale compensators (so-called information yields; see Def. 2.4 in 

[10]) associated to the enlarged filtrations ℋ and � such as introduced in (3.3.5), respectively (3.3.7). 

With respect to the information yield context, let us quote from page 7 in [10]: “The extra information 

added to the filtration coming from knowledge of future states of the market leads thus to essentially 

the same result as changing a probability measure, namely introducing a drift [which we will call 

information yield in this thesis].”. This statement explains the correspondence between a changing of 

probability measure and an enlargement of filtration in a very comprehensive manner. 

Condition A  Combining (3.2.4) with (3.2.20), we see that ��� is (not a Lévy- but) a Sato- or additive 

process under ℚ, admitting independent but non-stationary increments. As the results of section 2.3 

hold for Lévy-processes only, we ought to ensure that �(, … , �« also have stationary increments, if we 

work with enlarged filtrations of the type (3.3.5) – (3.3.7). Thus, whenever we model additional future 

information as in the latter equations in this thesis, then for � = 1, … , ª we simultaneously assume ¥��)	 ≡ ¥� ≥ 0 and ℎ��), ;	 ≔ ℎ��;	 inside (3.2.20) to be time-independent from now on (which is 

not necessary for � = ª + 1, … , J actually), such that �(, … , �« become Lévy-processes under ℚ. 

Fortunately, choosing constant long-term/daily jump-intensities ¥(, … , ¥« does not at all stand in 

contrast to the economical practice as described on page 4 in [8] (also see Remark 3.2.1 above). ∎ 

Lemma 3.3.1 (a) For an intermediate filtration �� as given in (3.3.7) the stochastic processes 

(3.3.8)                                                �î�� ≔ ��� − n 6ℚ�ïð¢MïÉ¢��É�{MR�� �) 

depict ��� , ℚ	-martingales for all � = 1, … , ª and � ∈ �0, |�.11
 

(b) For an overall filtration ℋ� as given in (3.3.5) the stochastic processes 

(3.3.9)                                                    ���� ≔ ��� − n ïð¢MïÉ¢{MR�� �) 

constitute �ℋ� , ℚ	-martingales for all � = 1, … , ª and � ∈ �0, |�. 
(c) For all � = 1, … , ª and time indices 0 ≤ � ≤ ) < | we have the equality 

(3.3.10)                                    6ℚ��{� − �R����� = {MR{M�  6ℚ��{� − �������. 
(d) For � = 1, … , ª the (stochastic) ��, ℚ	-compensator of ����), ;	 is given by 

(3.3.11)                                �.��,ℚ�), ;	 ≔ ({MR  6ℚ�n �����, ;	®P{®PR ��R��) 

whereas the ��, ℚ	-compensated random measure
12

 is thus of the form 

(3.3.12)                                    ��+��,ℚ�), ;	 ≔ ����), ;	 − �.��,ℚ�), ;	. 
                                                           

11 Note that for one fixed �∗ ∈ �1, … , ª  and ��� with ℱ� ⊂ ��� ⊂ ℱ� ∨ zñ�{�∗ò the stochastic process �î��∗
such as 

given in (3.3.8) even depicts a ���� , ℚ�-martingale, being a stronger conclusion [as long as we (reasonably) 

presume zñ�{�∗ò ⊂ z��{( , … , �{«   and likewise, ��� ⊂ �� ⊂ ℋ�] than the one actually given in Lemma 3.3.1 (a). 

Similarly, ����∗
[see (3.3.9)] not only is a ℋ�-martingale then, but even a �ℋ� ⊃	 ℱ� ∨ zñ�{�∗ò-martingale under ℚ. 

12 Since (3.3.11) is stochastic, (3.3.12) is not a (compensated) Poisson random measure in the classical sense – 
compare the sequel of Example 16.38 in [32]. Moreover, all conditional expectations 6�… |ℋR	 inside “(16.166) 
– (16.168), (16.170), (16.172) and Cor. 16.41 in [32]” are unnecessary; this is not the case in Prop. 16.53 in [32]. 
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Proof (a) See Lemma 3.3 in [10] – additionally, compare Proposition 16.52 in [32]. 

(b) See Proposition 2.3.1 above. [By the way, the statement in (b) trivially follows from (a) if we 

replace the intermediate filtration �R �⊃ ℱR	 in (3.3.8) by the global filtration ℋR �⊃ ℱR	 and hereafter 

apply the taking out what is known rule for conditional expectations.] 

(c) See Proposition A.3 in [10] with ]��	 ≔ ({M® and S��	 ≡ 1, together with Remark A.4 in [10] 

with � ≔ ��. Also compare p.13 in [10]. 

(d) The proof of Proposition 16.53 in [32] (with ; replaced by any arbitrary bounded and deterministic 

function S��;	 which vanishes in any small environment of zero and that determines a measure on 

each set £� with weight zero whenever ; ⟶ 0\, respectively with ; replaced by S��;	 invertible and 

integrable with respect to .��,ℚ) here applies equally. Nevertheless, we want to give the following 

additional explanatory comments: Merging (3.2.4) into the ���, ℚ	-martingale (3.3.8) while 

identifying (3.3.11) and (3.3.12), we get the claimed result via   

��� − " 6ℚ��{� − �R���R�| − )
�

�
�) = " " ; ����), ;	 

¡¢

�
�

− " 6ℚ ~ " " ;| − )  �����, ;	 
¡¢

®P{
®PR

��R��
�

�)
= " " ; Ï����), ;	 − 1| − ) 6ℚ ~ " �����, ;	®P{

®PR
Ñ�R� �)Ð 

¡¢

�
�

= " " ; ��+��,ℚ�), ;	 
¡¢

�
�

. ∎ 

 

Remark 3.3.2 $ote that for � = ª + 1, … , J the PRMs �+�ℱ,ℚ��, ;	 in (3.2.20) are (not only ℱ�-

adapted but also) ��-adapted ℚ-martingale-integrators, since ℱ� ⊂ �� holds true for all 0 ≤ � < |. ∎ 

 

For 0 ≤ � ≤ |( < | ≤ |1 the information premium can be computed further by applying standard 

transformation rules for conditional expectations. Having (3.3.1) and (3.3.7) in mind, we concretely 

argue as follows: Since (by assumption) the stochastic components �®«\(, … , �®I are ℚ-independent of �®( , … , �®« , conditioning the sum ∑ ��I�P«\( �®� on �� coincides with conditioning the latter on ℱ�. 

Moreover, as every ��� is ℱ�-adapted by definition, each ��� simultaneously is ��-adapted, since ��� 

depicts a measurable mapping, say ���: �Ω, ℱ�	 ⟶ �ó, ô	, whereas �����M(�ℬ	 ∈ ℱ� ⊂ �� holds for all 

Borel-sets ℬ ∈ ô and time indices 0 ≤ � ≤ |(. Thus, merging (3.2.14) into (3.3.4), we initially receive 

(3.3.13) 

ℑ�ℚ�|(, |1	 = 1|1 − |( " Y ��  <6ℚ��®����� − 6ℚ��®��ℱ��A ��«
�P(

{¨

{Ì
. 

Appealing to (3.2.8), the difference of conditional expectations inside (3.3.13) transforms into 

(3.3.14) 

6ℚ��®����� − 6ℚ��®��ℱ�� = 6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñ��� − 6ℚ ö" z��)	 7M¢�®MR	 ��R�

®
�

÷. 
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In the following, we presume � < | (more precisely |( ≤ � < | ≤ |1) which induces � ≤ ) ≤ � < |. 

Consequently, we may apply Lemma 3.3.1 (a) and (c) what leads us to 

(3.3.15) 

6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñ��� = 6ℚ ~" z��)	 7M¢�®MR	  6ℚ��{� − �R���R�| − )  �)®

�
Ñ���

= " z��)	 7M¢�®MR	| − )  6ℚ�6ℚ��{� − �R���R����� �) ®
�

= " z��)	 7M¢�®MR	| − )  6ℚ��{� − �R����� �) ®
�

= 6ℚ��{� − �������| − � " z��)	 7M¢�®MR	 �)®
�

. 
Moreover, with respect to (3.2.4), (3.2.20) and Condition A, the usual expectation in (3.3.14) becomes 

(3.3.16) 

6ℚ ö" z��)	 7M¢�®MR	 ��R�
®

�
÷ = " " ; z��)	 7M¢�®MR	 7·¢�?	 ¥� �.��;	 �) 

¡¢

®
�

. 
Substituting (3.3.15) and (3.3.16) into (3.3.14), we deduce 

(3.3.17)                                                6ℚ��®����� − 6ℚ��®��ℱ�� =                          

" z��)	 7M¢�®MR	 Ï6ℚ��{� − �������| − �  − " ; 7·¢�?	 ¥�  �.��;	 
¡¢

Ð �)®
�

. 
Hence, merging (3.3.17) into (3.3.13), for 0 ≤ � ≤ |( < | ≤ |1 the information premium points out as 

(3.3.18)                                                           ℑ�ℚ�|(, |1	 = 

1|1 − |( Y ��
«

�P( " " z��)	 7M¢�®MR	 Ï6ℚ��{� − �������| − �  − ¥� " ; 7·¢�?	 �.��;	 
¡¢

Ð �)®
�

��{¨

{Ì
. 

Actually, (3.3.18) extends equality “(3.3) in [10]” yet to a consideration under a risk-neutral measure ℚ and to the case of electricity futures explicitly permitting a delivery period.            

Recalling definition (3.2.24) while setting ø ≔ ø�)	 ≔ ÔÕ#�), |( , within an application of the 

stochastic Fubini-Tonelli theorem (similarly to the argumentation in e.g. the proof of Proposition 4.14 

in [13]; also see reference “Folland (1984) in [13]”) we ultimately derive  

(3.3.19) 

ℑ�ℚ�|(, |1	 = Y " |1 − ø�)	|1 − |(  Í��), ø�)	, |1	 Ï6ℚ��{� − �������| − �  − ¥� " ; 7·¢�?	�.��;	 
¡¢

Ð �){¨

�
«

�P(  

whenever 0 ≤ � ≤ |( < | ≤ |1. 
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On the contrary, for | ≤ |( the information premium can be computed as follows: For a time partition 0 ≤ � ≤ | ≤ |( ≤ � ≤ |1 we firstly recall the inclusions ℱ� ⊆ �� ⊆ �{ = ℱ{. Next, parallel to the 

arguing on page 14 in [10], within a simple application of the tower property the difference of 

conditional expectations inside equation (3.3.13) yet can be transformed into 

(3.3.20)                                              6ℚ��®����� − 6ℚ��®��ℱ�� = 

6ℚ��{����� + 6ℚ�6ℚ��®� − �{��ℱ{����� − 6ℚ��{��ℱ�� − 6ℚ�6ℚ��®� − �{��ℱ{��ℱ��. 
Further on, from (3.2.8) we deduce 

6ℚ��®� − �{��ℱ{� = �{�<7M¢�®M{	 − 1A + 6ℚ ö" z��)	 7M¢�®MR	 ��R�
®

{
÷. 

Merging the latter expression into (3.3.20), we receive 

(3.3.21)               6ℚ��®����� − 6ℚ��®��ℱ�� = 7M¢�®M{	<6ℚ��{����� − 6ℚ��{��ℱ��A. 
Implanting (3.3.21) inside (3.3.13) while identifying (3.2.24), we finally end up with 

(3.3.22) 

ℑ�ℚ�|(, |1	 = Y Í��|, |(, |1	z��|	
«

�P( <6ℚ��{����� − 6ℚ��{��ℱ��A 
yielding the information premium for | ≤ |(. Actually, property (3.3.22) extends equation “(3.4) in 

[10]” to the (ℚ-risk-neutral) electricity futures case. 

 

Remark 3.3.3 Since ℱ� = �� whenever � ≥ |, we observe that the information premium vanishes for 

all time indices � ≥ | [recall (3.3.4) or (3.3.22) to see this]. The latter fact seems quite natural from 

an economical point of view, as in this case the additional information either consists of present �� = |	 or of past �� > |	 information, none being any longer relevant in the context of forward-

looking insider trading, of course (cf. p.12 in [10]). Yet, parallel to p.14 in [10], the information 

premium (3.3.22) tends to zero as |1 approaches infinity (for fixed | and |(). Hence, for | ≤ |( the 

supplementary information impact [given through (3.3.22)] approximately vanishes for futures 

contracts with long delivery periods ending far in the future (i.e. |1 → ∞), which also sounds 

economically reasonable. At this step, we recall that a vanishing information premium corresponds to 

an equality between ℱ- and �-futures prices [compare (3.3.3)]. In conclusion, also for our specific ℚ-

risk-neutral futures setup (admitting delivery periods) the above observations widely stand in line with 

the findings in [10], which themselves are related to forward contracts under ℙ, on the opposite. ∎ 

 

The risk premium In addition to the above information premium examinations, we likewise aim 

to study the so-called risk premium for our current pure-jump electricity market model. Thus, slightly 

extending Definition 2.2 in [10], for 0 ≤ � ≤ |( < | ≤ |1 we define the risk premium via 

ℜ���|(, |1	 ≔ ℜ��,ℙ,ℚ�|(, |1	 ≔ Ê��,ℚ�|(, |1	 − Ê��,ℙ�|(, |1	. 
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Verbalizing, the risk premium measures the difference between two kinds of electricity futures prices, 

once computed with respect to the true market measure ℙ, and once with respect to the risk-neutral 

measure ℚ, while both futures prices are taken under the enlarged filtration �. Loosely speaking, 

comparing the risk premium with the information premium [such as defined in (3.3.3)], one might 

declare the former to measure a certain kind of (�-forward-looking) ℙ-ℚ-difference, whereas the latter 

captures a (ℚ-risk-neutral) ℱ-�-difference in the underlying electricity futures prices. By the way, 

these observations entirely justify the used vocabulary. In what follows, let us devote our attention to 

some further calculations concerning the risk premium.                          

Initially, taking (3.2.1), (3.2.2), (3.2.8) and (3.3.2) into account, we obtain 

ℜ���|(, |1	 = 1|1 − |( " f6ℚ ~Y �� " z��)	 7M¢�®MR	 ��R�
®

�
I

�P( Ñ���{¨

{Ì
− 6ℙ ~Y �� " z��)	 7M¢�®MR	 ��R�

®
�

I
�P( Ñ���i ��. 

As above, we presume 0 ≤ � ≤ |( ≤ � < | ≤ |1 in the following (what induces 0 ≤ � ≤ ) < |). 

However, we treat the conditional expectations appearing inside the latter equation separately: Using 

(3.2.4), (3.2.20), (3.3.8) and (3.3.10), the first object therein transforms into 

6ℚ ~Y �� " z��)	 7M¢�®MR	 ��R�
®

�
I

�P( Ñ���
= Y 6ℚ��{����� − ���| − � " �� z��)	 7M¢�®MR	�)®

�
«

�P(
+ Y " " ��  ; z��)	 7M¢�®MR	 7·¢�R,?	¥��)	 �.��;	 �) 

¡¢

®
�

I
�P«\( . 

Similar computations (but under ℙ yet) yield for the second conditional expectation 

6ℙ ~Y �� " z��)	 7M¢�®MR	 ��R�
®

�
I

�P( Ñ��� =
= Y 6ℙ��{����� − ���| − � " ��  z��)	 7M¢�®MR	�)®

�
«

�P(
+ Y " " ��  ; z��)	 7M¢�®MR	¥��)	 �.��;	 �) 

¡¢

®
�

I
�P«\( . 

Collecting the two latter decompositions, the risk premium actually points out as 

ℜ���|(, |1	 = 1|1 − |( " " fY ��  z��)	 7M¢�®MR	 6ℚ��{����� − 6ℙ��{�����| − �
«

�P(
®

�
{¨

{Ì
+ Y " ��  ; z��)	 7M¢�®MR	 <7·¢�R,?	 − 1A ¥��)	 �.��;	 

¡¢

I
�P«\( i �) ��. 
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Applying the Fubini-Tonelli theorem [parallel to our former argumentation in (3.3.19)] and hereafter, 

identifying the volatility function (3.2.24), we ultimately receive 

ℜ���|(, |1	 = " |1 − ø�)	|1 − |(
{¨

�
~Y Í��), ø�)	, |1	 6ℚ��{����� − 6ℙ��{�����| − �

«
�P(

+ Y Í��), ø�)	, |1	 ¥��)	 " ; <7·¢�R,?	 − 1A �.��;	 
¡¢

I
�P«\( � �) 

wherein we have just made use of the abbreviation ø�)	 ≔ ÔÕ#�), |( . Examining the final risk 

premium representation in more depth, we see very clear how the formerly announced measuring of 

(�-forward-looking) ℙ-ℚ-differences of electricity futures prices works in detail, namely: the first #ª 
stochastic processes involved in our electricity spot price model (3.2.1) generate the differences 6ℚ��{����� − 6ℙ��{����� �� = 1, … , ª	, whereas the remaining jump noises which were indexed by � = ª + 1, … , J lead to the deterministic risk premium ‘ingredients’ 7·¢�R,?	 − 1 on the opposite. Note 

that if the random components �{� �� = 1, … , ª	 were ��-measurable, then the risk premium would 

become deterministic. For �� replaced by ℋ� [as defined in (3.3.5)] this would be the case, actually. 

However, in the light of Lemma 3.3.1 (b) this fact not at all constitutes a surprising observation.  

 

3.3.2 Electricity swap prices under future information 

In the present work we aim to compute option prices for electricity derivatives under supplementary 

forward-looking information – a procedure which, to the best of our knowledge, has not been done yet 

throughout the literature in a comparable way. Hence, in order to evaluate options that, in particular, 

are written on the electricity futures price (3.3.2), it appears worthwhile to provide a representation for Ê��,ℚ�|(, |1	 initially. For this purpose, we put (3.2.14) into (3.3.2) yielding 

(3.3.23)  

Ê��,ℚ�|(, |1	 = 1|1 − |( " f���	 + 6ℚ ~Y ���®�
«

�P( Ñ��� + 6ℚ ú Y ���®�
I

�P«\( Ñ��ûi ��{¨

{Ì
 

where � ∈ �0, |(�. In the following, we will treat the two conditional expectations appearing in (3.3.23) 

separately: Remembering (3.2.8), the first object therein can be transformed into 

(3.3.24) 

6ℚ ~Y ���®�
«

�P( Ñ��� = Y �� f���  7M¢�®M�	 + 6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñ���i«

�P( . 
From now on, we suppose � < | [more precisely |( ≤ � < | ≤ |1]. Then, successively applying 

Lemma 3.3.1 (a), the Fubini-Tonelli theorem and the tower property, equation (3.3.24) becomes 

6ℚ ~Y ���®�
«

�P( Ñ��� = Y �� ü���  7M¢�®M�	 + " z��)	 7M¢�®MR	  6ℚ��{� − �R�����| − ) �)®
�

ý«
�P( . 
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Finally, an application of Lemma 3.3.1 (c) delivers [note in passing that 0 ≤ � ≤ ) ≤ � < | holds] 

(3.3.25) 

6ℚ ~Y ���®�
«

�P( Ñ��� = Y �� ü���  7M¢�®M�	 + 6ℚ��{� − �������| − � " z��)	 7M¢�®MR	 �)®
�

ý«
�P( . 

Moreover, the second conditional expectation in (3.3.23) can be rewritten as 

(3.3.26) 

6ℚ ú Y ���®�
I

�P«\( Ñ��û = Y ��  6ℚ��®��ℱ��I
�P«\(  

since conditioning the appearing integrand on �� coincides with conditioning it on ℱ� [as precisely 

explained in the sequel of Remark 3.3.2]. Hence, within (3.2.4), (3.2.8) and (3.2.20) we obtain 

(3.3.27) 

6ℚ ú Y ���®�
I

�P«\( Ñ��û
= Y �� f���  7M¢�®M�	 + " " ; z��)	 7M¢�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

®
�

iI
�P«\( . 

Substituting (3.3.25) and (3.3.27) into our futures price equality (3.3.23) while identifying (3.2.24), we 

ultimately end up with the laborious expression 

(3.3.28)                                                             

Ê��,ℚ�|(, |1	 = " ���	|1 − |( ��{¨

{Ì
+ Y Í���, |(, |1	z���	

I
�P( ���

+ Y 6ℚ��{� − �������| − �  ��|1 − |( " " z��)	 7M¢�®MR	 �)®
�

{¨

{Ì
��«

�P(
+ Y ��|1 − |( " " " ; z��)	 7M¢�®MR	 7·¢�R,?	¥��)	 �.��;	 

¡¢
�) ��®

�
{¨

{Ì

I
�P«\( . 

Once more, within (3.2.24) and the abbreviation ø ≔ ø�)	 ≔ ÔÕ#�), |( , an application of the 

stochastic Fubini-Tonelli theorem [as in (3.3.19) above] yet on (3.3.28) yields 

Ê��,ℚ�|(, |1	 = " ���	|1 − |( ��{¨

{Ì
+ Y  Í���, |(, |1	 z���	 ���

I
�P(  

+ " |1 − ø|1 − |( ÏY Í��), ø, |1	 6ℚ��{� − �������| − � + Y Í��), ø, |1	 " ; 7·¢�R,?	¥��)	 �.��;	  
¡¢

I
�P«\(

«
�P( Ð �){¨

�
. 
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Furthermore, introducing the deterministic functions 

(3.3.29) 

þ��	 ≔ " ���	|1 − |( ��{¨

{Ì
− Y " " " ��  z��)	|1 − |( ; 7M¢�®MR	 7·¢�R,?	¥��)	 �.��;	 

¡¢
�) ���

®
{¨

{Ì

I
�P«\( , 

����	 ≔  Í���, |(, |1	 z���	 , :���	 ≔ " " ��  z��)	 7M¢�®MR	�� − |	�|1 − |(	 �) ���
®

{¨

{Ì
 ~= " Í��), ø�)	, |1	� − | �)�

{¨
� 

and the random variables 

(3.3.30)                                                 e�� ≔ 6ℚ��{� − ������� 

for � ≤ |( < | the electricity futures price disposition (3.3.28) can be written in shorthand notation as 

(3.3.31) 

Ê��,ℚ�|(, |1	 = þ��	 + Y����	 ���
I

�P( + Y :���	 e��
«

�P( . 
Denoting the derivation with respect to � by an inverted comma, Itô’s product rule leads us to  

(3.3.32) 

�Ê��,ℚ�|(, |1	 = öþ′��	 + Y��� ��	 ��� + Y :�� ��	 e��
«

�P(
I

�P( ÷ �� + Y����	 ����
I

�P( + Y :���	 �e��
«

�P(  

whereas (3.3.29) delivers [note in passing that ø��	 ≔ � ∨ |( = |(, as � ∈ �0, |(� by assumption] 

(3.3.33)                                 ��� ��	 = ��  ����	,          :�� ��	 = Í���, |(, |1	 − :���	� − | , 
þ���	 = − Y " ; Í���, |(, |1	 7·¢��,?	¥���	 �.��;	 

¡¢

I
�P«\( . 

Merging (3.2.3), (3.3.29) and (3.3.33) into (3.3.32), we further receive 

(3.3.34) 

�Ê��,ℚ�|(, |1	 = öþ���	 + Y :�� ��	 e��
«

�P( ÷ �� + Y Í���, |(, |1	 ����
I

�P( + Y :���	 �e��
«

�P( . 
In our next step, we aim to express the dynamics (3.3.34) in terms of ��� , ℚ	-martingale integrators. 

For this purpose, we state the following result. 

Lemma 3.3.4 For e�� such as defined in (3.3.30), the stochastic process �e�� �| − �	⁄ ��∈��,{� 
embodies a ��� , ℚ	-martingale for all indices � = 1, … , ª and time parameters � ∈ �0, |�. 
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Proof Obviously, 
p9¢{M� ∈ ℒ(���, ℚ	 for all � ∈ �0, |�, i.e. e�� is ℚ-integrable and ��-adapted. Further, 

for a partition 0 ≤ � ≤ ) < | we deduce the claimed result within the tower property and (3.3.10) via 

(3.3.35)                      

6ℚ � eR�| − ) ���� = 6ℚ ��{� − �R�| − ) ��R∧�� = 6ℚ��{� − �R�����| − ) = e��| − � . ∎ 

Moreover, Itô’s product rule leads us to the stochastic differential equation 

(3.3.36)                                           

�e�� = �| − �	 � � e��| − ��− e��| − � ��. 
Substituting (3.2.4), (3.2.20), (3.3.8), (3.3.33) and (3.3.36) into the dynamics (3.3.34), we eventually 

obtain the �-forward-looking electricity futures price ℚ-representation [associated to the case � < |] 

(3.3.37)  

�Ê��,ℚ�|(, |1	 = Y Í���, |(, |1	 ����� − e��| − � ���«
�P( + Y Í���, |(, |1	 " ; �+�ℱ,ℚ��, �;	 

¡¢

I
�P«\(

+ Y :���	 �| − �	 � � e��| − ��«
�P( , � ∈ �0, |(�,   |( < |, 

with vanishing drift. Hence, with respect to Lemma 3.3.1 (a), Remark 3.3.2 and Lemma 3.3.4, the 

futures price (3.3.37) constitutes a ��-adapted (local) martingale under ℚ. In the light of its definition 

in (3.3.2), this fact, however, is not a surprising result. In conclusion, (3.3.37) essentially extends our 

former backward-looking futures price representation (3.2.23), respectively Proposition 3.1 in [8], and 

(to the best of our knowledge) cannot be found in the literature elsewhere. 

At this step, we recall that in the sequel of (3.3.24) we have presumed � < |. Complementarily, we 

now examine the case � ≥ |. To claim our findings right at the beginning, we announce that also for � ≥ | we receive a �-forward-looking futures price representation that very closely resembles the one 

in (3.3.37), actually. Starting off, we presently assume a time partition 0 ≤ � ≤ |( < | ≤ � ≤ |1. 

Next, we decompose the conditional expectation appearing on the right hand side of (3.3.24) via  

6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñ���

= 6ℚ ~" z��)	 7M¢�®MR	 ��R�
{M
�

Ñ��� + 6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

{
Ñ��� =:�( +�1 

where � = 1, … , ª. Note that inside �( we have � ≤ ) < | so that we evidently are allowed to apply 

Lemma 3.3.1 (a) and (3.3.10) here. Vice versa, inside �1 we observe time parameters � < | ≤ ) ≤ � 

inducing the inclusions ℱ� ⊂ �� ⊂ �{ = ℱ{. As a consequence of the latter observations, we are led to   

�( = 6ℚ��{� − �������| − � " z��)	 7M¢�®MR	 �){
�

, 
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�1 = 6ℚ ~6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

{
Ñℱ{� ���� = 6ℚ ö" z��)	 7M¢�®MR	 ��R�

®
{

÷. 
Referring to (3.2.4), (3.2.20) and Condition A, for � = 1, … , ª we further conclude 

6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñ��� = 

6ℚ��{� − �������� − | " z��)	 7M¢�®MR	 �)�
{

+ " " ; z��)	 7M¢�®MR	 7·¢�?	 ¥� �.��;	 �) 
¡¢

®
{

 

while the last summand is deterministic and independent of �, remarkably. Moreover, similar 

computations as in (3.3.23) – (3.3.37) currently lead us to exactly the same futures price dynamics [but 

yet associated to the case � ≥ |] as formerly given in (3.3.37) – except from a new function  

:+���	 ≔ " " ��  z��)	 7M¢�®MR	�� − |	�|1 − |(	 �) ���
{

{¨

{Ì
 ~= " Í��), |(, |1	� − | �)�

{
� 

instead of :���	. Evidently, the only difference between :+���	 and :���	 [as defined in (3.3.29)] can 

be detected in the lower integration bound of the inner integral. Thus, with respect to our upcoming 

option pricing purposes, we conclude that it is not really necessary to differ between the cases � < | 

and � ≥ |, since both instances induce (essentially) the same futures price dynamics. For the sake of 

notational simplicity, we will always assume � < | in our proceedings, unless stated otherwise. 

Nevertheless, the representation (3.3.37) is not really suitable for electricity derivatives pricing, since 

it is not at all clear whether the contained random variables e�� still are Sato-processes under ℚ and 

thus, possess independent increments with respect to ��. In fact, the latter depicts a convenient 

property when it comes to the evaluation of conditional expectations in the context of risk-neutral 

option pricing. Moreover, it does not seem to be possible to provide an explicit representation neither 

for the dynamics �e�� in terms of ��� and thus, nor for ��e�� �| − �	⁄ �. Unfortunately, we hence cannot 

hope for any explicit pricing formula, as long as we do not permit some additional structure to the 

(actually non-explicit) intermediate filtration ��. Looking at (3.3.6), we poorly know that �� contains a 

bit more information than ℱ� and a bit less than ℋ� (which, by the way, also might cause some 

difficulties concerning the modeling of available future information in practical applications). In this 

regard, we announce the following key idea which actually has originated from Lemma 3.3.1 (b): If we 

replace (the non-explicit filtration) �� by another intermediate filtration ��∗ which explicitly consists of 

a subfamily of the components appearing in ℋ�, concretely defining 

(3.3.38)                                                  ��∗ ≔ ℱ� ∨ zñ�{( , … , �{¾ò 

with 1 ≤ d ≤ ª < J, then ℱ� ⊂ ��∗ ⊂ ℋ� for � < | and ��∗ = ℱ� for � ≥ | still hold true. Putting d = ª 
yet would correspond to ��∗ = ℋ� and thus to – in the sense of (3.3.5) – complete or exhaustive 

knowledge of the electricity spot price mean-level at a future time |. In contrast, the case d < ª 
represents a scenario wherein the market participants merely have access to some restricted additional 

knowledge about the future long-term spot price behavior, sounding more realistically.  

More importantly, in accordance to Condition A and Prop. 2.3.1, resp. Lemma 3.3.1 (b), the process 
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(3.3.39)                                                        

��� − " �{� − �R�| − ) �)�
�

 

constitutes a ���∗, ℚ	-martingale for all � = 1, … , d and � ∈ �0, |�. By the way, substituting (3.2.4) into 

(3.3.39) and hereafter applying the stochastic Fubini-Tonelli theorem, we get the decomposition 

��� − n ïð¢MïÉ¢{MR �)�� = �1 − ªJ�| − �	� ��� + ªJ�| − �	 �{� − n n ; ªJ�| − )	 ����), ;	 ¡¢
{�   

for all � ∈ �0, |�. Furthermore, taking (3.2.8) and (3.3.29) into account, similar arguments as in 

(3.3.23) – (3.3.28) yield the following electricity futures price expression (yet under ��∗) reading  

(3.3.40)    

Ê��∗,ℚ�|(, |1	 = 1|1 − |( " f���	 + Y ��
¾

�P( 6ℚ��®����∗� + Y ��
I

�P¾\( 6ℚ��®��ℱ��i ��{¨

{Ì
= " ���	|1 − |( ��{¨

{Ì
+ Y " ��|1 − |(

{¨

{Ì

¾
�P( 6ℚ ~" z��)	 7M¢�®MR	 ��R�

®
�

Ñ��∗� ��
+ Y " ��|1 − |(

{¨

{Ì

I
�P¾\( 6ℚ ~" z��)	 7M¢�®MR	 ��R�

®
�

Ñℱ�� �� + Y����	 ���
I

�P( . 
In what follows, we presume � < |. Then, with respect to (3.3.10) [but for ��∗ now; also compare 

Lemma 3.5.1 in this context] and (3.3.39), the first conditional expectation becomes 

(3.3.41)                                            
6ℚ ~" z��)	 7M¢�®MR	 ��R�

®
�

Ñ��∗� = " z��)	 7M¢�®MR	| − )  6ℚ��{� − �R����∗� �)®
�

= 6ℚ��{� − ������∗� " z��)	 7M¢�®MR	| − � �)®
�

 

(� = 1, … , d), whereas – somewhat similar to (3.3.16) – the second one transforms into 

(3.3.42)      

6ℚ ~" z��)	 7M¢�®MR	 ��R�
®

�
Ñℱ�� = " " ; z��)	 7M¢�®MR	7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

®
�

 

(� = d + 1, … , J). Merging (3.3.41) and (3.3.42) into (3.3.40), with respect to (3.3.29) we deduce 

(3.3.43) 

Ê��∗,ℚ�|(, |1	 = þ���	 + Y����	 ���
I

�P( + Y :���	 6ℚ��{� − ������∗�¾
�P(  
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wherein we have just introduced the shorthand notation 

(3.3.44)  

þ���	 ≔ " ���	|1 − |( ��{¨

{Ì
− Y " " " ��  ; z��)	 7M¢�®MR	|1 − |( 7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

�
®

��{¨

{Ì

I
�P¾\( . 

We recall that ��� is ��∗-measurable for every index � ∈ �1, … , d , since ℱ� ⊂  ��∗ holds true. Similarly, 

every �{� is ��∗-measureable for all indices � = 1, … , d, since �{� trivially is z��{� -measureable and, in 

addition, for a certain (fixed) index � ∈ �1, … , d  the inclusions 

z��{� ⊂ zñ�{( , … , �{¾ò ⊂ ℱ� ∨ zñ�{( , … , �{¾ò = ��∗ 

are valid. Hence, taking out what is known, for each � = 1, … , d we obtain 

(3.3.45)                               6ℚ��{� − ������∗� = �{� − ��� = n n ; ����), ;	 ¡¢
{� .  

With respect to the derivation methodology of property (3.3.37) – but now using (3.3.39), (3.3.43) and 

(3.3.45) – within � ∈ �0, |(�,  |( < |, we eventually get the dynamics 

(3.3.46)                                                         �Ê��∗,ℚ�|(, |1	 = 

Y�Í���, |(, |1	 − :���	� ����� − �{� − ���| − � ���¾
�P( + Y Í���, |(, |1	 " ; �+�ℱ,ℚ��, �;	 

¡¢

I
�P¾\(  

depicting a ��∗-adapted martingale under ℚ, obviously.13 Comparing (3.3.37) with (3.3.46), we claim 

that the latter representation not only yields a better overview, but also that �∗ should be more 

appropriate than � for practical applications (as mentioned above). Anyway, in accordance to (3.3.39) 

and Lemma 3.3.1 (d), the ��∗, ℚ	-compensator of ����), ;	 for � = 1, … , d yet is given by 

(3.3.47)                                        

�.��∗,ℚ�), ;	 ≔ 1| − ) " �����, ;	®P{
®PR

�) 

whereas the ��∗, ℚ	-compensated random measure (RM)14 is thus of the form 

(3.3.48)                                    ��+��∗,ℚ�), ;	 ≔ ����), ;	 − �.��∗,ℚ�), ;	. 
In conclusion, combining (3.3.39) with (3.3.47) and (3.3.48), we finally obtain the linking equality 

(3.3.49)                                      

��� − " �{� − �R�| − ) �)�
�

= " " ; ��+��∗,ℚ�), ;	 
¡¢

�
�

. 
                                                           
13 Recall that (3.3.46) is related to � < | [compare the prolog of (3.3.41)]. On the contrary, for � ≥ | we may 
split the integral inside (3.3.41) [such as shown in the sequel of (3.3.37)] what leads us to exactly the same 
dynamics as claimed in (3.3.46) but with :���	 therein replaced by :+���	 [as defined previously to (3.3.38)]. 
14 Compare the footnote dedicated to (3.3.12) in this context. Also verify that we presently are in a very similar 
setting as presented in Example 16.38 in [32]. 
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3.3.3 Forward-looking electricity call option prices 

Let us now concentrate on the derivation of risk-neutral forward-looking prices for electricity options 

written on the futures (3.3.46). In accordance to (3.2.29), we define the �∗-forward-looking call option 

payoff at time � (which is not identical with the � introduced in sect. 3.2) with strike price Ó > 0 by 

W��∗ ≔ W��∗�Ó, |(, |1	 ≔ ÄÊ��∗,ℚ�|(, |1	 − ÓÅ\ ≔ ÔÕ# m0, Ê��∗,ℚ�|(, |1	 − Óo. 
However, similarly to (3.2.31), for 0 ≤ � ≤ � the adjusted risk-neutral pricing formula now reads as 

(3.3.50)                                 W��∗ = 7M���M�	 6ℚ ÖÄÊ��∗,ℚ�|(, |1	 − ÓÅ\ t��∗×. 
Within a real function Ù�#	 ≔ 7M¸& �# − Ó�\ ∈ ℒ(�ℝ\	 [as formerly introduced in subsection 3.2.4] 

and a shorthand notation Ê��∗,ℚ ≔ Ê��∗,ℚ�|(, |1	, parallel to (3.2.37) we consequently deduce 

(3.3.51)                                    W��∗ = 7M���M�	 6ℚ N7¸Ýà�∗,ℚÙ NÊ��∗,ℚO 	��∗O 

whereas the inverse Fourier transform (3.2.33) further yields 

(3.3.52)                         

W��∗ = 7M���M�	2� " ÙÚ�F	 7�¸\=E	Ý9�∗,ℚ  6ℚ Ö7�¸\=E	ÄÝà�∗,ℚMÝ9�∗,ℚÅt��∗× �F 
ℝÞ

 

with ÙÚ�F	 as announced in (3.2.34). Setting Í��)	 ≔ Í��), |(, |1	 and Ξ��), ;	 ≔ ; �Í��)	 − :��)	� 
while using the decomposition (3.3.46) along with the linking equality (3.3.49), we next obtain 

(3.3.53)                                   6ℚ N7#d m�Õ + DF	 ÄÊ��∗,ℚ − Ê��∗,ℚÅo 	��∗O = 

6ℚ ~7#d f�Õ + DF	 ÏY " "Ξ��), ;	 ��+��∗,ℚ�), ;	 
¡¢

�
�

¾
�P( + Y " " ; Í��)	 ��+�ℱ,ℚ�), ;	 

¡¢

�
�

I
�P¾\( Ði ���∗�. 

Unfortunately, this conditional expectation does not reduce to a usual one, since the involved price 

process Ê�∗,ℚ does not possess independent increments with respect to �∗ – neither for �� <	 | ≤ � 

(which is obvious), nor for | > � (remarkably). Actually, the appearance of �+�∗,ℚ in (3.3.53) avoids 

the latter property, since for each � ∈ �1, … , d  both �+��∗,ℚ and �∗ contain �{�. To verify this, we ought 

to remind (3.3.49) and then compare (3.3.46) with (3.3.38). In conclusion, (3.3.53) neither reduces to a 

usual expectation, nor can be handled by the Lévy-Khinchin formula (similarly to our arguing in the 

proof of Prop. 3.2.4). By the way, this neither would be possible, even if (3.3.53) reduced to a usual 

expectation, as the contained ��∗, ℚ	-compensator .�∗,ℚ, such as given in (3.3.47), [in contrast to the 

deterministic �ℱ, ℚ	-compensator in (3.2.20)] is stochastic yet. Thus, the precise analytical treatment 

(if there is any appropriate at all) of the conditional expectation in (3.3.53) presently is a standing 

problem. Anyway, in section 3.5.1 we present a possible handling of usual expectations of the type 

(3.3.54)                                       6ℚ Ä7#d m�Õ + DF	 ÄÊ��∗,ℚ − Ê��∗,ℚÅoÅ 
in more detail. Yet, in order to treat the much more challenging conditional expectation in (3.3.53), we 

propose two (in this context new) methods involving results from Complex analysis.     
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Excursus A:  On the evaluation of forward-looking conditional expectations using complex 

  power series expansions and linear approximation schemes 

In this excursus we aim to examine forward-looking conditional expectations – such as appearing in 

(3.3.51), for example – in more depth, whereas we provide a customized evaluation method involving 

complex power series expansions and linear approximation schemes, innovatively. To begin with, we 

recall that the most challenging problem in (3.3.51) obviously consists in finding a proper handling of 

the conditional expectation  

(A.1)                                                    6ℚ N7¸Ýà�∗,ℚÙ NÊ��∗,ℚO 	��∗O 

within an enlarged filtration ��∗ such as implemented in (3.3.38), a deterministic real function Ù�#	 ≔7M¸& �# − Ó�\ ∈ ℒ(�ℝ\	 and a real damping parameter 0 < Õ < ∞. Moreover, in accordance to 

(3.3.46) and (3.3.49), the forward-looking electricity futures price process Ê�∗ ≔ Ê��∗,ℚ�|(, |1	 satisfies 

the following ���∗, ℚ	-martingale decomposition15 

(A.2) 

Ê�∗ = Ê�∗ + Y " "Ξ��), ;	 ��+��∗,ℚ�), ;	 
¡¢

�
�

 ¾
�P( + Y " " Í��)	 ; ��+�ℱ,ℚ�), ;	 

¡¢

�
�

I
�P¾\(  

where 0 ≤ � ≤ �. Herein, we presume Í��)	 ≔ Í��), |(, |1	 and Ξ��), ;	 ≔ ; �Í��)	 − :��)	�, as 

before. Appealing to (3.2.25), we further assume the initial value Ê�∗ to be deterministic. Next, 

applying (3.2.33) on (A.1), [somewhat similar to (3.3.52)] we derive the equality 

(A.3)                            

6ℚ�7¸Ýà∗  Ù�Ê�∗	���∗� = 12� " ÙÚ�F	 6ℚ�7�¸\=E	Ýà∗���∗� �F 
ℝÞ

. 
Hence, instead of (A.1), we may equivalently examine the conditional expectation on the right hand 

side of (A.3) in the sequel. Since the ingredients Õ, F and Ê�∗ altogether are real-valued, we declare the 

object ;� ≔ Õ� + DF� ≔ ÕÊ�∗ + DFÊ�∗ = �Õ + DF	Ê�∗ to designate a (stochastic) complex number, i.e. ;� ∈ ℂ. Further, we introduce a holomorphic
16 function S: ℂ ⟶ ℂ via S��	 ≔ 7� which can be 

developed into a power series/Taylor series due to 

(A.4)                                                             

S��	 = Y �.!Û
P�  

with convergence radius 

(A.5)                                               ℜ = NªDÔ )�d →Û  (√!� OM( = ∞. 
                                                           
15 At this step, it appears interesting to compare equation (A.2) with the corresponding backward-looking futures 
price representation in (3.2.23), respectively with equality “(3.2) in [8]”, as it may help us to understand how 
forward-looking information (modeled by enlarged filtrations) is weaved into futures prices, actually.  
16 A complex function S: ℂ ⟶ ℂ is called holomorphic (respectively, analytic) at ;� ∈ ℂ, if and only if there 
exists an open environment of ;�, say ��;�	, wherein S is differentiable. If S is holomorphic over the whole 
complex plane, then it is frequently called an entire function (compare page 118 in [42]). 
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Thus, the representation (A.4) is valid on the whole complex plane ℂ. (For further reading on complex 

power series see e.g. Chapter V in [42] or Chapter II in [67].17) Returning to our original topic, we 

utilize (A.4) to obtain the approximation 

(A.6)                             �ℚ�∗�Ê�∗; �, Õ, F	 ≔ 6ℚ�7�¸\=E	Ýà∗���∗� = 6ℚ�S�;�	|��∗	 = 

6ℚ úY �;�	.!Û
P� Ñ��∗û = Y �Õ + DF	.! 6ℚ��Ê�∗	|��∗	Û

P� = ªDÔX→Û Y �Õ + DF	.! 6ℚ��Ê�∗	|��∗	X
P� ≈ �� +ℛ� 

wherein the �-th order Taylor-polynomial is given by 

(A.7)                            

�� ≔ ���Ê�∗; Õ, F, ��∗, ℚ	 ≔ 1 + �Õ + DF	 Ê�∗ + Y �Õ + DF	.! 6ℚ��Ê�∗	|��∗	�
P1  

and the Lagrange-type approximation error (the so-called remainder term) possesses the structure 

(A.8)                              

ℛ� ≔ ℛ��Ê�∗; Õ, F, �	 ≔ 7��� + 1	! �Õ + DF	�\( �Ê�∗	�\(. 
Herein, � ∈ ℂ is such as |�| ≤ Ê�∗ �Õ1 + F1 holds ℚ-a.s. Additionally, we presume 0 < Ê�∗ ≤ Â < ∞ 

to be valid ℚ-a.s. from now on18, whereby Â depicts a strictly positive constant. Hence, we observe |�| ≤ Â �Õ1 + F1 and, more importantly, |ℛ�| → 0 for � → ∞. Anyway, regarding (A.7), we should 

devote our attention towards the computation of 6ℚ��Ê�∗	|��∗	 for indices . = 2, … , � in the 

following. For this purpose, we firstly introduce a family of bounded and real-valued polynomials 

�]�#	 ≔ #  | # ∈ �0, Â� ⊂ ℝ\; . = 0,1, … , � . 
However, in order to treat the objects 6ℚ��Ê�∗	|��∗	 appearing in (A.7), one might propose to apply 

Itô’s formula on ]�Ê�∗	 �. = 2, … , �	 in order to derive a representation of the latter in terms of 

stochastic integrals. Unfortunately, neither the incoming infinite sum nor the remaining conditional 

expectation seems to be analytically tractable, as the underlying dynamics (A.2) are rather demanding. 

Nevertheless, from (A.2) we know that Ê∗ designates a ��∗, ℚ	-martingale so that, by definition, 

6ℚ�Ê�∗|��∗	 = Ê�∗ 

is valid for all 0 ≤ � ≤ �. Inspired by this observation, we yet propose a linear interpolation scheme to 

approximate 6ℚ��Ê�∗	|��∗	 for indices . = 2, … , � adequately. To begin with, we implement a (not 

necessarily equidistant) partition of the real interval �0, Â� via �≔ �0 = #� < #( < ⋯ < #¹ = Â , 

whereas we define the mesh Z due to 

Z ≔ Z��	 ≔ ÔÕ#�[½[¹M(�#½\( − #½�. 
                                                           
17 Most of the Complex analysis results used in Excursus A and B are taken from several lectures (which the 
author has attended) on complex function theory, power series theory and Complex analysis held by Prof. 
Wolfgang Luh at the University of Trier in 2004 – 2006.   
18 Having simulated various electricity futures price paths �Ê�∗: 0 ≤ � ≤ �	 in practice, for an applicant it should 
not cause any further trouble to choose a reasonable (sufficiently large) upper bound Â so that Ê�∗ ∈ �0, Â� is 
met within a probability close to one.  
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Actually, our key idea is to approximate the convex polynomial functions ]�#	 �. = 2, … , �	 in each 

interval <#½, #½\(A �� = 0, … , Ô − 1	 by its particular secants 

(A.9) 

)½�#	 = #½\( − #½#½\( − #½ �# − #½� + #½. 
Then, for . = 2, … , � and � = 0, … , Ô − 1 the approximation error ¬½ in each interval <#½, #½\(A is 

given by the difference ¬½ ≔ ¬½�#	 ≔ )½�#	 − ]�#	 which is bounded through  

(A.10)                                              0 ≤ ¬½ ≤  �M(	 �&�ÞÌM&��¨
�  #½\(M1. 

Obviously, the right hand side of (A.10) vanishes, as the mesh becomes finer, i.e. as Z approaches 

zero. Consequently, we likewise deduce ¬½ → 0, whenever Z → 0. In conclusion, we announce )½�#	 → ]�#	 for Z → 0, whenever # ∈ <#½, #½\(A. These observations lead us to the approximation 

(A.11) 

]�#	 = # ≈ Y )½�#	 GA&�,&�ÞÌA�#	¹M(
½P�  

wherein # ∈ �0, Â� and . = 2, … , �. Thus, taking (A.9), (A.11) and the ��∗, ℚ	-martingale property of Ê∗ into account, for . = 2, … , � and � = 0, … , Ô − 1 we may estimate [with vanishing approximation 

error, as Z → 0] the conditional expectations appearing on the right hand side of (A.7) via   

(A.12) 

6ℚ��Ê�∗	|��∗	 ≈ #½\( − #½#½\( − #½ �Ê�∗ − #½� + #½ 

whenever #½ < Ê�∗ ≤ #½\( ℚ-a.s. Collecting (A.6), (A.7) and (A.12), we obtain the approximation 

(A.13)                                                         

 �ℚ�∗�Ê�∗; �, Õ, F	 ≈ 1 + �Õ + DF	 Ê�∗ + Y �Õ + DF	.!  �#½\( − #½#½\( − #½ �Ê�∗ − #½� + #½��
P1 =: ½��F; Õ, Ê�∗	 

whenever #½ < Ê�∗ ≤ #½\( ℚ-a.s. Finally, referring to (3.3.51), (A.3), (A.6) and (A.13), we receive the 

following �∗-forward-looking electricity futures call option price estimate 

(A.14) 

W��∗ ≈ 7M���M�	2� " ÙÚ�F	  ½��F; Õ, Ê�∗	 �F 
ℝÞ

 

whenever #½ < Ê�∗ ≤ #½\( �� = 0, … , Ô − 1	 is valid ℚ-a.s. Herein, ÙÚ�F	 and  ½��F; Õ, Ê�∗	 are such as 

defined in (3.2.34) and (A.13), respectively. Actually, the forward-looking electricity futures price 

process Ê�∗ appearing in (A.14) has to be simulated numerically by using the dynamics (A.2). ∎  
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Reasoning about Excursus A, one ultimately might wonder why we have not directly applied our 

secant approximation techniques on the argument inside the forward-looking conditional expectation 

appearing on the right hand side of (A.3), namely 7�¸\=E	Ýà∗, instead of developing the latter into a 

complex power series, initially. The point here is that 7�¸\=E	Ýà∗ obviously constitutes a complex 

function involving Ê�∗, whereas the Taylor-polynomial in (A.7) merely contains real polynomials 

involving Ê�∗, namely �Ê�∗	, on the opposite, which may be approximated by a real linear 

interpolation approach, as presented. In a closing remark we recall that, in the absence of any 

appropriate analytical computation method for 6ℚ�7�¸\=E	Ýà∗���∗�, our goal in Excursus A actually was 

to establish a linear estimation scheme in order to exploit the ��∗, ℚ	-martingale property of Ê∗. 

Ultimately, referring to (3.2.34), (A.9), (A.13) and (A.14), we establish the following approximation 

for our forward-looking electricity call option price (3.3.51) yet reading 

(3.3.55) 

W��∗ ≈ 7M���M�	2� " 7M�¸\=E	Ü�Õ + DF	1  ö1 + �Õ + DF	 Ê�∗ + Y �Õ + DF	.!  )½�Ê�∗	�
P1 ÷ �F 

ℝÞ
 

whenever #½ < Ê�∗ ≤ #½\( �� = 0, … , Ô − 1	 is valid ℚ-a.s. 

 

Excursus B: Computing forward-looking conditional expectations with Cauchy’s integral 

  formula – a Complex analysis approach  

Catching up equality (A.3), we now propose to treat the contained forward-looking conditional 

expectation 6ℚ�7�¸\=E	Ýà∗���∗� with Cauchy’s integral formula, alternatively. Sticking to similar 

designations as in Excursus A [particularly compare (A.6)], we initially remind 

(B.1)                            �ℚ�∗�Ê�∗; �, Õ, F	 = 6ℚ�7�¸\=E	Ýà∗���∗� = 6ℚ�S�;�	|��∗	 

wherein S��	 ≔ 7� embodies a holomorphic function on ℂ (i.e. an entire function). To proceed in our 

arguing, we recall the following fundamental theorem from the field of Complex analysis. 

 

Theorem B.1 (Cauchy’s integral formula; CIF) 

Suppose a is an (arbitrary) open subset of the complex plane ℂ and S: a ⟶ ℂ constitutes a 

holomorphic function on a. Additionally, let � ⊂ a be a closed, rectifiable, positive-oriented Jordan 

curve with winding number equal to ‘one’ about ;� ∈ _��	, whereby _��	 ⊂ a with � ∩ _��	 = ∅ 

denotes the interior of �. Then for all ;� ∈ _��	 we have the representation 

(B.2) 

S�;�	 = 12�D " S��	� − ;�  �� 
�

. 
Moreover, we obtain S�;�	 = 0, whenever ;� ∈ ℂ ∖ _��	êêêêêêê = ℂ ∖ �� ∪ _��	 . 
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Finally, we remark that for ;� ∈ _��	 the complex function 

$��, ;�	 ≔ (1%=  (�M?h  

frequently is called ‘Cauchy kernel’ with overall mass ‘one’, since n $��, ;�	 �� � = 1 holds true. 

Proof See e.g. Chapter IV.4 in [42]. ∎   

Regarding our original problem (B.1), we now aim to express S�;�	 due to (B.2) in the following. For 

this purpose, we choose a = ℂ and � to be a circle line around the origin with radius & > 0, i.e. � ≔ �'�0	 ≔ �� ∈ ℂ: |�| = & = ñ� ∈ ℂ: � = & 7=®, � ∈ �0,2��ò. Furthermore, we yet presume & to 

be sufficiently large in the sense of obeying & > Â �Õ1 + F1, whereby Â constitutes a strictly 

positive constant, as above. Then the complex stochastic number ;� ≔ �Õ + DF	Ê�∗ ℚ-a.s. is an 

element of _ N�'�0	O = �� ∈ ℂ: |�| < & , as long as we assume 0 < Ê�∗ ≤ Â to be valid ℚ-a.s. 

[parallel to our assumption in Excursus A]. Particularly, note that the representation (B.2) is valid for 

an arbitrary curve � [as long as � fulfills the announced requirements of Theorem B.1] and thus, the 

actual value (B.2) does neither depend on the length of �, nor on the radius & in our current 

arrangement.19 Hence, it is indeed possible to choose & sufficiently large in the above sense. However, 

applying Cauchy’s integral formula on (B.1) while referring to our recent assumptions, we obtain 

(B.3) 

�ℚ�∗�Ê�∗; �, Õ, F	 = 12�D " 7�  6ℚ Ö 1� − ;� t��∗× �� 
|�|P'  

whereas |;�| < & holds ℚ-a.s. Further on, the conditional expectation on the right hand side of (B.3) 

obviously can be rewritten as20 

(B.4) 

6ℚ Ö 1� − ;� t��∗× = 1�  6ℚ ú 11 − ¸\=E�  Ê�∗ Ñ��∗û. 
Since for Ù� ≔ (Þ)*+  Ê�∗ ∈ ℂ with � ∈ �'�0	 we observe |Ù�| ≤ ,-  �Õ1 + F1 < 1 ℚ-a.s., it is possible 

to develop the holomorphic function ��Ù�	 ≔ 1 �1 − Ù�	⁄  for |Ù�| < 1 into a geometric power 

series21 (with compact convergence in the open disk �|Ù�| < 1 ⊂ ℂ). Consequently, the conditional 

expectation in (B.4) may be transformed into 

(B.5) 

6ℚ Ö 1� − ;� t��∗× = 1�  6ℚ���Ù�	|��∗	 = 1�  Y 6ℚ��Ù�	|��∗	Û
P� =  Y �Õ + DF	�\(

Û
P� 6ℚ��Ê�∗	|��∗	. 

                                                           
19 This remarkable property of Cauchy integrals frequently is called path independency in the literature. 
20 Alternatively, one might apply Itô’s formula on S���	 ≔ 1 ��⁄  with �� ≔ � − �Õ + DF	Ê�∗ where Ê�∗ follows 
the dynamics given in (A.2). Unfortunately, the incoming infinite sum is difficult to handle and not very useful 
for further computations. Thus, we instead make use of a geometric power series expansion here.  
21 By the way, we recall that the function ��;	 ≔ 1 �1 − ;	⁄  is differentiable in the unit circle �|;| < 1 ⊂ ℂ 
with �-th order derivative ���	�;	 = �! �1 − ;	M��\(	 where � ∈ ℕ�. 
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Hence, merging (B.1), (B.3) and (B.5) into (A.3), we immediately receive 

(B.6) 

6ℚ�7¸Ýà∗  Ù�Ê�∗	���∗� = 14�1D  Y 6ℚ��Ê�∗	|��∗	 " ÙÚ�F	 �Õ + DF	 " 7��\(  �� �F 
�-��	

 
ℝÞ

Û
P�  

whereby standard arguments from Complex analysis declare the remaining ��-integral to equal 2�D �.!	⁄ . Ultimately, substituting (3.2.34) and (B.6) into (3.3.51), we deduce the following forward-

looking electricity futures call option price formula  

(B.7) 

W��∗ = 7M���M�	2�  Y 6ℚ��Ê�∗	|��∗	 " �Õ + DF	M1.!  7M�¸\=E	Ü �FÛ
�\

Û
P�  

wherein Ê�∗ is given through (A.2) with � = �. Anyway, the terms 6ℚ��Ê�∗	|��∗	 appearing inside 

(B.7) may be approximated similarly to (A.12), whereas we ought to use Taylor-polynomial estimates 

again and thus, only choose finitely many summands in (B.5), respectively in (B.7), i.e. . = 0, … , � 

with � < ∞, like in Excursus A. In this case, the resulting approximation for (B.7) possesses a similar 

structure as in (A.14). ∎ 

 

3.3.4 Forward-looking electricity put option prices 

According to our argumentation in paragraph 3.3.3, within a real function 

(3.3.56)                                             d�#	 ≔ �Ó − #�\ ∈ ℒ(�ℝ\	 

the forward-looking electricity put option price at time � ∈ �0, ��, � < |, with strike price Ó > 0 

written on the futures price (3.3.46) is given by 

(3.3.57)                                         /��∗ = 7M���M�	 6ℚ Nd NÊ��∗,ℚO 	��∗O. 
Applying Fourier transform techniques as before, we immediately deduce 

(3.3.58)                             

/��∗ = 7M���M�	2� " 1 − DFÓ − 7M=EÜF1  6ℚ N7=EÝà�∗,ℚ	��∗O �F 
ℝÞ

 

wherein the appearing conditional expectation can be treated similar to the one in (3.3.51), 

respectively to �ℚ�∗�Ê�∗; �, 0, F	 such as introduced in (A.6). Alternatively, the Put-Call-Parity  

�Ó − #�\ = �# − Ó�\ − �# − Ó� 
along with (3.3.50) immediately delivers 

(3.3.59)                                    /��∗ = W��∗ + 7M���M�	 ÄÓ − Ê��∗,ℚ�|(, |1	Å. 
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3.3.5 Forward-looking average-type electricity option prices 

In the present paragraph we show that the just invented forward-looking pricing methodology under 

enlarged filtrations also is suitable for the treatment of more sophisticated exotic electricity derivatives 

such as average-type or Asian options written on the spot price (3.2.1). Referring to subsection 9.2.2 in 

[13], we initially assume the underlying Asian option contract to promise a payoff S Nn �® ��{¨{Ì O at the 

maturity date |1 within an arbitrary real function S ∈ ℒ(�ℝ\	. Extending this classical setup to our 

future information background, we newly define the �∗-forward-looking price of an Asian option at 

time � ∈ �0, |(� paying S Nn �® ��{¨{Ì O ∈ ℒ(��∗, ℚ	 at maturity |1 �> |( ≥ �	 via 

(3.3.60)                          ���∗ ≔ ���∗�|(, |1	 ≔ 7M��{¨M�	 6ℚ NS Nn �® ��{¨{Ì O 	��∗O. 
A straightforward application of the inverse Fourier transform (3.2.33) delivers 

(3.3.61)                                

 ���∗ = 7M��{¨M�	2� " S��F	 6ℚ N7=E n 01 �®ð¨ðÌ t��∗O �F 
ℝÞ

 

(cf. the beginning of the proof of Prop. 9.8 in [13]). Next, recalling (3.2.1), (3.2.2), (3.2.8), (3.2.24) 

and (3.3.29), an interchange of the integration order [parallel to our arguing in (3.3.19)] yields 

(3.3.62) 

" �® ��{¨

{Ì
= " ���	 �� + Y�|1 − |(	 ����	 ���

I
�P(

{¨

{Ì
+ Y " �|1 − ø	 Í��), ø, |1	 ��R�

{¨

�
I

�P(  

with ø ≔ ø�)	 ≔ ÔÕ#�), |(  �≤ |1	. Hence, the conditional expectation in (3.3.61) factors into 

(3.3.63)                                                   6ℚ N7=E n 01 �®ð¨ðÌ t��∗O =                  
7#d fDF Ï " ���	 �� + Y�|1 − |(	 ����	 ���

I
�P(

{¨

{Ì
Ði × 6ℚ ~7#d fY " ¯��)	 ��R�

{¨

�
I

�P( i ���∗� 

wherein we have just introduced the deterministic and complex function ¯��)	 ≔ DF ���)	 with ���)	 ≔ �|1 − ø	 Í��), ø, |1	 ≥ 0. Note that – similar to the formerly described situation in the 

sequel of (3.3.53) – for | ≤ |1 (which, by the way, constitutes the economically relevant case) the 

conditional expectation on the right hand side of (3.3.63) does not reduce to a usual one, 

unfortunately.22 For this reason, we now apply approximation techniques as invented in Excursus A.  

                                                           

22 Actually, there is a slight difference between (3.3.53) and (3.3.63), as the former equation contains �+�∗,ℚ  at 
the place of � [respectively, of �] inside the latter. Hence, if we presume �� <	 | ≤ |1 in (3.3.63) [being the 
economically relevant case that we aim to investigate], then the conditional expectation therein does not reduce 

to a usual one, since n ¯��)	 ��R�{¨�  for � = 1, … , d is not ℚ-independent of ��∗ ≔ ℱ� ∨ zñ�{( , … , �{¾ò so that we 

have to apply approximation techniques. On the other hand, if we suppose | > |1 [being the economically 

irrelevant scenario], then for all � = 1, … , J the integral n ¯��)	 ��R�{¨�  becomes ℚ-independent of ��∗. In this 

convenient case, the conditional expectation in (3.3.63) [equally well may be conditioned under ℱ� and thus] 
reduces to a usual one which trivially can be handled by the Lévy-Khinchin formula parallel to (3.2.41). 
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To ease the notation, for times 0 ≤ � < |1 we first establish the (real-valued) stochastic process 

0 ≤ c�,{¨ ≔ Y " ���)	 ��R�
{¨

�
I

�P(  

and the complex function ℎ��	 ≔ 7�. Parallel to Excursus A, we moreover presume 0 ≤ c�,{¨ ≤ Â to 

be valid ℚ-a.s. for all 0 ≤ � < |1 within a strictly positive constant Â. Consequently, the conditional 

expectation on the right hand side of (3.3.63) can be expressed as  

6ℚ ~7#d fY " ¯��)	 ��R�
{¨

�
I

�P( i ���∗� = 6ℚ�ℎ�DF c�,{¨����∗�. 
Recalling (A.6), (A.7) and (A.9), we approximate the holomorphic function ℎ�∙	 inside the latter 

equation by its (complex) �-th order Taylor-polynomial what leads us to 

(3.3.64) 

6ℚ ~7#d fY " ¯��)	 ��R�
{¨

�
I

�P( i ���∗� ≈ 

Y �DF	.! 6ℚ�)½�c�,{¨����∗��
P� = Y �DF	.!�

P� �#½\( − #½#½\( − #½  ñ6ℚ�c�,{¨���∗� − #½ò + #½� 

whenever #½ < c�,{¨ ≤ #½\( �� = 0, … , Ô − 1	 is valid ℚ-a.s.23 Furthermore, with respect to (3.3.38) 

and the definition of c�,{¨, the last conditional expectation inside (3.3.64) may be decomposed as 

6ℚ�c�,{¨���∗� = Y 6ℚ ~" ���)	 ��R�
{M
�

Ñ��∗�¾
�P( + Y 6ℚ ~" ���)	 ��R�

{¨

{
���∗�¾

�P(
+ Y 6ℚ ~" ���)	 ��R�

{¨

�
�ℱ��I

�P¾\( . 
Meanwhile, we recall that ℱ� ⊂ ��∗ ⊂ �{∗ = ℱ{ is valid for � < | �≤ |1	 [cf. the sequel of (3.3.38)]. 

Hence, taking (3.3.39), (3.3.45), Lemma 3.5.1 and the tower property into account, we get 

6ℚ�c�,{¨���∗� = Y �{� − ���| − � " ���)	 �){
�

 ¾
�P( + Y 6ℚ ~6ℚ ~" ���)	 ��R�

{¨

{
�ℱ{� ���∗�¾

�P(
+ Y 6ℚ Ï" ���)	 ��R�

{¨

�
ÐI

�P¾\( . 
                                                           
23 We remark that the secants in (A.9) originally have been defined for . = 2, … , �. Nevertheless, we may extend 
the setting of Excursus A to . = 0, … , � without any further restrictions. Moreover, we recall that c�,{¨  (playing 
the role of Ê�∗ in Excursus A) may become zero yet, while Ê�∗ has been strictly positive by definition. Hence, we 
have to respect the additional (but trivial) instance c�,{¨ = #� ≡ 0 now, whereas (3.3.64) is equal to one in this 
case. We conclude that it is indeed possible to extend the presumption of Excursus A yet to 0 ≤ c�,{¨ ≤ Â. 
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Referring to (3.2.4) and (3.2.20), the previous equation points out as 

6ℚ�c�,{¨���∗� = Y �{� − ���| − � " ���)	 �){
�

 ¾
�P( + Y 6ℚ ~6ℚ Ï" ���)	 ��R�

{¨

{
Ð ���∗�¾

�P(
+ Y " " ; ���)	 7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

{¨

�
I

�P¾\( . 
In accordance to Condition A [the latter adjusted to �∗], we introduce the deterministic abbreviations 

Ò���, |	 ≔  n %¢�R	{M� �){� ,         �2���, 3	 ≔ n n ; ���)	 7·¢�?	 ¥� �.��;	 �) ¡¢
»� ,  

 ����, 3	 ≔ n n ; ���)	 7·¢�R,?	 ¥��)	 �.��;	 �) ¡¢
»�  

and therewith receive the decomposition 

6ℚ�c�,{¨���∗� = Y  Ò���, |	 ñ�{� − ���ò¾
�P( + Y �2��|, |1	¾

�P( + Y ����, |1	I
�P¾\( . 

In conclusion, the estimation in (3.3.64) can be rewritten as 

6ℚ ~7#d fY " ¯��)	 ��R�
{¨

�
I

�P( i ���∗� ≈ 

Y �DF	.!�
P� ~#½\( − #½#½\( − #½  f−#½ + Y  Ò���, |	 ñ�{� − ���ò¾

�P( + Y �2��|, |1	¾
�P( + Y ����, |1	I

�P¾\( i + #½� 

=: L�½�|, |1; F, �; ¯	. 
At this step, we recall that the involved future values �{( , … , �{¾ are already known from (3.3.38). In 

other words, an applicant should have guessed, respectively established, these values previously so 

that a proper numerical evaluation of L�½�|, |1; F, �; ¯	 yet should not cause any further difficulties. 

The same is valid for the appearing deterministic functions Ò�, �2� and �� by the way. However, having 

simulated multiple paths of the stochastic process c�,{¨, an applicant also should be able to determine 

a reasonable upper bound Â so that the above presumption 0 ≤ c�,{¨ ≤ Â for times 0 ≤ � < |1 is 

fulfilled within a probability close to one. Similarly, the constraint “whenever #½ < c�,{¨ ≤ #½\(” 

ought to be implementable into a numerical simulation algorithm without any additional trouble, since c�,{¨ anyway has to be simulated and thus, it is clear which particular intervals A#½, #½\(A are hit by the 

actually realized trajectory of c�,{¨. Finally, note that our present reasoning about (practical) numerical 

application issues is valid for the evaluation of the call option price formula (3.3.55), likewise.  

For the sake of completeness, we claim that in the economically irrelevant case | > |1 we receive 

6ℚ�c�,{¨���∗� = Y �2���, |1	¾
�P( + Y ����, |1	I

�P¾\(  
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for time indices 0 ≤ � < |1. Herein, we have used (3.2.20) along with Condition A [for ª ≔ d now]. 

In this context, we recall that supplementary (|-forward-looking) future information about a selection 

of the electricity spot price driving noises, namely �{( , … , �{¾, evidently becomes irrelevant for an 

(Asian) option that matures at |1 where | > |1. This observation entirely stands in line with the 

structure of the latter formula, actually.                

Summing up, our Asian option price in (3.3.61) finally may be approximated via 

(3.3.65)                                                                     

���∗ ≈ 7M��{¨M�	2� " S��F	 L�½�|, |1; F, �; ¯	 7#d fDF Ï " ���	 �� + Y�|1 − |(	 ����	 ���
I

�P(
{¨

{Ì
Ði �F 

ℝÞ
 

which, by the way, extends Proposition 9.8 in [13] essentially, as available forward-looking 

information on the future spot price behavior currently has been taken into account. 

 

3.3.6 Pricing electricity contracts under future information about correlated temperature 

If we consider the Scandinavian energy market $ord Pool [73], we may state that the main driver of 

electricity demand is outdoor temperature [10]. Since low temperatures imply high prices (due to an 

increasing electricity demand for heating), we expect a negative correlation between temperature and 

electricity spot prices [10]. (Nevertheless, there of course exist geographical areas where high 

temperatures also lead to an increase of electricity demand due to the necessity of air conditioning.) 

Inspired by section 3.2 in [10], in our upcoming analysis we are going to weave additional forward-

looking information about future temperature behavior into our electricity derivatives pricing 

framework. To be precise, we yet assume that the electricity market participants have access to 

weather forecasts and thus, to some information about outdoor temperature at a future time | 

additionally to the information obtained from observing historical electricity price development.  

Appealing to the discussion in [10] – [13], we initially suppose the temperature process 4 to follow 

the (slightly extended) seasonal multi-factor Ornstein-Uhlenbeck disposition 

(3.3.66)                                

 �4� = �Ô��	 + � �Ô��	 − 4�� �� + Y ��  �5��
«

�P(  

which should be suitable to describe the stylized facts of empirical temperature behavior reasonably 

well. In the latter equation the mean-reversion speed � is assumed to be a positive constant, whereas 

the bounded, continuous and deterministic function Ô��	 indicates the seasonal mean-level. 

Additionally, we presume the volatility components �� to constitute positive constants and the 

stochastic processes 5�� to embody standard Brownian motions (BMs) under ℙ for every � = 1, … , ª. 
The latter diffusion processes further are assumed to be both pair-wise independent and independent of 

the pure-jump noises ��(, … , ��I driving the electricity spot price (recall subsection 3.2.1). Next, Itô’s 

product rule yields the ℙ-solution of (3.3.66) reading 

(3.3.67)                          

4� = Ô��	 + 7M6� �4� − Ô�0	� + Y " ��  7M6��MR	�5R�
�

�
«

�P( . 
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Moreover, we here take the base components ��(, … , ��« (which formerly have been used to model the 

long-term level of the spot price) to be connected
24 with outdoor temperature via a constant adjusting 

screw � ∈ �−1,1�. Hence, referring to equality “(3.6) in [10]”, for all indices � = 1, … , ª we newly 

replace our former equation (3.2.3) yet through 

(3.3.68)                            ���� = −�� ���  �� + z���	 Ä� �5�� +�1 − �1 ����Å 
whereas for � = ª + 1, … , J property (3.2.3) remains untouched. Consequently, for � = 1, … , ª and 

time indices 0 ≤ � ≤ � ≤ � the iterated solution of (3.3.68) is of the form 

(3.3.69)          

�®� = ���  7M¢�®M�	 + �" z��)	 7M¢�®MR	�5R�
®

�
+�1 − �1 " z��)	 7M¢�®MR	��R�

®
�

. 
In order to price electricity options written on the spot price (3.2.14) [but yet with extended base 

components therein such as given in (3.3.68)], we need to switch to an (with respect to ℙ) equivalent 

probability measure, say ℚ7 . For this purpose, we slightly modify the Radon-Nikodym derivative 

(3.2.15), instead defining 

(3.3.70)                                   

s�ℚ7�ℙ�ℱê9
≔ Á j�a� ∘ 5���

«
�P( × Á j�Â���

I
�P(  

with deterministic and time-dependent real functions a���	, continuous Doléans-Dade exponentials 

(3.3.71)                            j�a� ∘ 5��� ≔ 7#d mn a��)	�� �5R� − (1 n a��)	1�� �)o 

and an (actually backward-looking) initial filtration 

(3.3.72)                                     ℱê� ≔ z���( , … , ��I,5�(, … ,5�« : 0 ≤ � ≤ � . 
Troubling Girsanov’s theorem (compare Proposition 2.2.1), we declare 

(3.3.73)                                               

5ê��,ℱê,ℚ7 ≔ 5ê�� ≔ 5�� − " a��)	 �)�
�

 

to constitute a ℱê�-adapted BM under ℚ7  for every index � = 1, … , ª. However, merging (3.3.73) into 

(3.3.67), we immediately obtain the ℚ7-dynamics 

(3.3.74) 

4� = Ô��	 + 7M6� �4� − Ô�0	� + Y " ��  a��)	 7M6��MR	�)�
�

«
�P( + Y " ��  7M6��MR	�5êR�

�
�

«
�P( . 

                                                           
24 Regarding (3.3.68), we are obviously not facing the classical setting with correlated Brownian motions here. 
We recall that the associated co-variation vanishes, i.e. ��5∙� , �∙��� = 0 for every � = 1, … , ª and 0 ≤ � ≤ �. 

Thus, � does not play the role of a common correlation parameter. Instead, the noise term ��5�� + �1 − �1���� 
in (3.3.68) is defined regardless of any classical correlation approaches.  
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Similarly, putting (3.3.73) into (3.3.69), for � = 1, … , ª and time indices 0 ≤ � ≤ � ≤ � we receive 

the iterated ℚ7-representation 

(3.3.75) 

�®� = ���  7M¢�®M�	 + �" z��)	 a��)	 7M¢�®MR	�)®
�

+ �" z��)	 7M¢�®MR	�5êR�
®

�
+�1 − �1 " z��)	 7M¢�®MR	��R�

®
�

. 
Further on, regarding (3.3.67) and (3.3.74), we introduce the overall filtration  

(3.3.76)   

ℋ7� ≔ ℱê� ∨ z�4{ ≔ ℱê� ∨ z ü" 76��5��
{

�
: � = 1, … , ªý = ℱê� ∨ z ü" 76��5ê��

{
�

: � = 1, … , ªý 

[recall (3.3.73) for the last equality] which might be associated with complete or exhaustive knowledge 

of the future temperature value at time | (cf. eq. “(3.7) in [10]”). Similar to before, we come up with a 

non-explicit intermediate filtration �8� obeying (cf. eq. “(3.9) in [10]”) 

(3.3.77)                                                           ℱê� ⊂ �8� ⊂ ℋ7� 

for 0 ≤ � < |, whereas ℱê� = �8� holds for all � ≥ |. Here, �8� represents the effective information about 

future temperature at time | that we assume the informed traders to have knowledge of. Parallel to our 

former key idea [such as precisely described in connection with (3.3.38)], we implement an explicit 

intermediate filtration �°� consisting of a subfamily of the components in ℋ7�, namely 

(3.3.78)                                    

�°� ≔ ℱê� ∨ z ü" 76��5ê��
{

�
: � = 1, … , �; �� ≤ ª	ý 

which also satisfies the inclusions ℱê� ⊂ �°� ⊂ ℋ7� whenever 0 ≤ � < |. Furthermore, for time indices 0 ≤ ) < | we notify the deterministic function 

(3.3.79)                                                      Õ�)	 ≔ 16º9É
º¨9ðMº¨9É 

in order to formulate the following statements. 

Lemma 3.3.5  

(a) Let �8� as in (3.3.77) and Õ�)	 as in (3.3.79), then the stochastic process 

(3.3.80)                              

5ê��,�8,ℚ7 ≔ 5ê�� − " Õ�)	 6ℚ7 ~" 76��5ê��
{

R
Ñ�8R��

�
�) 

depicts a ��8� , ℚ7�-Brownian motion for all � = 1, … , ª and � ∈ �0, |�. 
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(b) Let �°� as in (3.3.78) and Õ�)	 as in (3.3.79), then the stochastic process 

(3.3.81)                                     

 5ê��,�°,ℚ7 ≔ 5ê�� − " Õ�)	 " 76��5ê��
{

R
�

�
�) 

constitutes a ��°� , ℚ7	-Brownian motion for all � = 1, … , � and � ∈ �0, |�. 
(c) For all � = 1, … , � and time indices 0 ≤ � ≤ ) < | we have 

(3.3.82)                                 

6ℚ7 ~" 76��5ê��
{

R
Ñ�°�� = 6ℚ7 ~" 76��5ê��

{
�

Ñ�°�� 716{ − 716R716{ − 716�. 
Proof (a) This follows from Proposition 3.4 in [10].25 

(b) This follows from part (a): If we replace �8R in (a) by �°R and hereafter decompose the integral  

n 76��5ê��{R = n 76��5ê��{� − n 76��5ê��R�   

�� = 1, … , �	, we get the claimed result by applying the taking out what is known rule for conditional 

expectations, since n 76��5ê��{�  is �°R-measurable [compare (3.3.78)] and n 76��5ê��R�  is ℱêR-measurable 

[see (3.3.73)] and thus, the latter is �ℱêR ⊂	 �°R-measurable, too. 

(c) This follows from Prop. A.3 in [10] with ]��	 ≔ Õ��	, S��	 ≔ 76®, 5 ≔ 5ê� and �( ≔ |.26 ∎ 

 

Next, for notational reasons let us introduce the [�°R-adapted] Brownian ��°, ℚ7	-information yield 

(3.3.83)                                                     å°R� ≔ Õ�)	 n 76��5ê��{R . 
Further, appealing to (3.3.2), we define the temperature-forecast electricity futures price under �° by 

(3.3.84)                                    

Êê� ≔ Ê�:,�°,ℚ7�|(, |1	 ≔ 1|1 − |( " 6ℚ7��®|�°�	 ��{¨

{Ì
. 

Merging (3.2.1) and (3.2.2) into (3.3.84), within (3.3.78) we instantaneously derive the decomposition 

(3.3.85)                                                                      
Êê� = 1|1 − |( " ü���	 + Y ��

�
�P( 6ℚ7��®���°�� + Y ��

«
�P�\( 6ℚ7��®��ℱê�� + Y ��

I
�P«\( 6ℚ7��®��ℱê��ý ��{¨

{Ì
. 

                                                           
25 There is a notational error in Proposition 3.4 in [10], since the filtration �� therein actually should be assumed 
to be such as defined in “(3.9) in [10]” and not as in “(3.2) in [10]”. 
26 By the way, using a similar taking out what is known argument as in the proof of Lemma 3.3.5 (b), from 

(3.3.82) we deduce that 
n º9;�<ê;¢ð9º¨9ðMº¨99 designates a ��°� , ℚ7	-martingale in � for all � = 1, … , � and � ∈ �0, |�. 
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[Reminding (3.3.78) while applying similar arguments as in the sequel of Remark 3.3.2, we indeed are 

allowed to condition the second and third expectation in (3.3.85) equally well under ℱê� instead of 

under �°�.] In the following, we compute the three conditional expectations in (3.3.85) in their order of 

appearance:  

Substituting (3.3.75) into the first expectation, we get 

(3.3.86)                                                            6ℚ7��®���°�� = 

���  7M¢�®M�	 + �" z��)	 a��)	 7M¢�®MR	�)®
�

+ � 6ℚ7 ~" z��)	 7M¢�®MR	�5êR�
®

�
Ñ�°��

+�1 − �1 6ℚ7 ~" z��)	 7M¢�®MR	��R�
®

�
Ñℱê��. 

With respect to Lemma 3.3.5 (b), (3.2.4) and (3.3.83), [for � < |] the latter equation turns into 

(3.3.87)                                                             6ℚ7��®���°�� = 

���  7M¢�®M�	 + �" z��)	 a��)	 7M¢�®MR	�)®
�

+ �" z��)	 7M¢�®MR	6ℚ7�å°R���°���)®
�

+�1 − �1 6ℚ7 Ï" " ; z��)	 7M¢�®MR	����), ;	 
¡¢

®
�

Ð. 
Taking (3.2.20), (3.3.79), (3.3.82) and (3.3.83) into account, equality (3.3.87) finally becomes 

(3.3.88)                                                             6ℚ7��®���°�� = 

���  7M¢�®M�	 + �" z��)	 a��)	 7M¢�®MR	�)®
�

+ 2��" z��)	 76R 7M¢�®MR	 n 76��5ê��{�716{ − 716� �)®
�

+�1 − �1  " " ; z��)	 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 �) 
¡¢

®
�

. 
Merging (3.2.4) and (3.3.75) into the second conditional expectation in (3.3.85), we obtain 

(3.3.89)                                              6ℚ7��®��ℱê�� = ���  7M¢�®M�	 + 

�" z��)	 a��)	 7M¢�®MR	�)®
�

+�1 − �1 " " ; z��)	 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 �) 
¡¢

®
�

. 
Implanting (3.2.8) into the third conditional expectation of (3.3.85), we ultimately deduce 

(3.3.90)  

6ℚ7��®��ℱê�� = ���7M¢�®M�	 + " " ; z��)	 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 �) 
¡¢

®
�

. 
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Collecting (3.3.88), (3.3.89) and (3.3.90), within (3.2.24) our temperature-forecast electricity futures 

price equation (3.3.85) can be rearranged in shorthand notation as 

(3.3.91)                                    

Êê� = þê��	 + Y����	 ���
I

�P( + Y =���	 ���
�

�P(  

with ����	 as formerly defined in (3.3.29) and new abbreviations 

(3.3.92) 

þê��	 ≔ " ���	|1 − |( ��{¨

{Ì
+ �Y " " ��z��)	|1 − |( 7M¢�®MR	a��)	 �) ��®

�
{¨

{Ì

«
�P(

+�1 − �1 Y " " " ��z��)	 |1 − |( ; 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 
¡¢

�) ��®
�

{¨

{Ì

«
�P(

+ Y " " " ��z��)	|1 − |( ; 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 
¡¢

�) ��®
�

{¨

{Ì

I
�P«\( , 

=���	 ≔ 2��716{ − 716� " " ��z��)	|1 − |( 76R7M¢�®MR	�) ��®
�

{¨

{Ì
, ��� ≔ " 76��5ê��

{
�

. 
Applying Itô’s product rule on (3.3.91) while recalling (3.2.3), (3.2.4), (3.2.20), (3.2.24), (3.3.29), 

(3.3.33), (3.3.68), (3.3.73), (3.3.79), (3.3.81), (3.3.83) and (3.3.92), within a long-winded computation 

[similar to the derivation methodology of property (3.3.37) before] we ultimately receive the (local) ��°� , ℚ7	-Sato-martingale dynamics27  

(3.3.93) 

�Êê� = Y<Í���, |(, |1	 � − 76� =���	A �5ê��,�°,ℚ7�
�P( + � Y Í���, |(, |1	 �5ê��,ℱê,ℚ7«

�P�\(
+�1 − �1 Y " ; Í���, |(, |1	 �+�ℱê,ℚ7��, �;	 

¡¢

«
�P( + Y " ; Í���, |(, |1	 �+�ℱê,ℚ7��, �;	 

¡¢

I
�P«\( . 

                                                           
27 Recall that Êê indeed possesses independent increments with respect to �°; particularly, compare (3.3.78) and 
Lemma 3.3.5 (b) with (3.3.93) to verify this. Further, note that the dynamics (3.3.93) not necessarily is strictly 
positive any more, since the involved BM-terms may become negative and thus, drive the futures price Êê to 
negative values, too. Actually, it is only possible to compute the probability for the occurrence of negative prices 
in a continuous BM-case [compare Lemma 3.4 in [13] or (6.6.15) below]. However, an applicant might choose � 
and z� contained in (3.3.84) in such a way that negative values for both the spot � and the futures Êê only appear 
with negligible probability. Also, an adequate jump-size distribution (jumps are strictly positive here) may help 
to avoid negative spot/futures prices. In particular, on pp. 74-75 in [13] it is argued that “[…] an arithmetic 

model apparently allows for negative prices, a phenomenon which sounds odd in any normal market, since this 

means that the buyer […] receives money rather than pays. However, in the electricity market […] it can be 

more costly for a producer to switch off the generators than to pay someone to consume electricity in the case of 

more supply than demand. Thus, electricity is given away along with a payment. In fact, in almost all […] 

electricity markets, negative prices occur from time to time, although very rarely.”. In conclusion, this citation 
strongly defends our choice of an arithmetic multi-factor Brownian-motion-driven electricity spot/futures model 
which actually may generate negative prices (but possibly within a very small probability only).  
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Moreover, for 0 ≤ � ≤ � equality (3.3.93) immediately delivers the integral representation  

(3.3.94) 

Êê� − Êê� = Y "<Í��), |(, |1	 � − 76R =��)	A �5êR�,�°,ℚ7�
�

�
�P( + � Y " Í��), |(, |1	 �5êR�

�
�

«
�P�\(

+ Y " " ; Í��), |(, |1	 Ä1 + N�1 − �1 − 1O G�(,…,« ��	Å  ��+�ℱê,ℚ7�), ;	 
¡¢

�
�

I
�P( . 

Furthermore, let us concentrate on the computation of the price for an electricity call option written on 

the futures price (3.3.84) under additional knowledge about future temperature behavior. In 

accordance to our former designations and derivation procedure in subsection 3.3.3, for � ≤ � the 

temperature-forecast electricity call option price written on Êê yet under �° reads as 

(3.3.95)         

W��° ≔ W��°�Ó, |(, |1	 = 7M���M�	2� " ÙÚ�F	 7�¸\=E	Ýê9  6ℚ7�7�¸\=E	�ÝêàMÝê9���°�� �F 
ℝ

.  
Taking the independent increment property of the �°-adapted Sato-process Êê [such as given in (3.3.94)] 

into account, the above conditional expectation transforms into a product which consists of three 

categories of usual expectations, namely 

(3.3.96)                                                    6ℚ7�7�¸\=E	�ÝêàMÝê9���°�� = 

6ℚ7 Ï7#d fY "�Õ + DF	<Í��), |(, |1	 � − 76R =��)	A �5êR�,�°,ℚ7�
�

�
�P( + Y "�Õ + DF	 Í��), |(, |1	 � �5êR�

�
�

«
�P�\(

+ Y " "�Õ + DF	 ; Í��), |(, |1	 Ä1 + N�1 − �1 − 1O G�(,…,« ��	Å ��+�ℱê,ℚ7�), ;	 
¡¢

�
�

I
�P( iÐ

=: Á ℑ(�
�

�P( × Á ℑ1�
«

�P�\( × Á ℑ>�I
�P(  

with multipliers [note in passing that ℑ(� and ℑ1� merely differ by an additive information drift] 

(3.3.97) 

ℑ(� ≔ 6ℚ7 Ï7#d f"�Õ + DF	<Í��), |(, |1	 � − 76R =��)	A �5êR�,�°,ℚ7�
�

iÐ
= 7#d f" �Õ + DF	12 <Í��), |(, |1	 � − 76R =��)	A1�)�

�
i =: 7?¢�E,�,�	, 

ℑ1� ≔ 6ℚ7 Ï7#d f"�Õ + DF	 Í��), |(, |1	 � �5êR�
�

�
iÐ = 7#d f" �Õ + DF	12 Í��), |(, |1	1 �1�)�

�
i

=: 7X¢�E,�,�	, 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

56 

 

ℑ>� ≔ 6ℚ7 Ï7#d f" "@��), ;	 ��+�ℱê,ℚ7�), ;	 
¡¢

�
�

iÐ
= 7#d f" "<7A¢�R,?	 − 1 − @��), ;	A 

¡¢

�
�

7·¢�R,?	¥��)	 �.��;	 �)i =: 7B¢�E,�,�	 

and a deterministic function 

@��), ;	 ≔ �Õ + DF	 ; Í��), |(, |1	 Ä1 + N�1 − �1 − 1O G�(,…,« ��	Å. 
Herein, we have used Itô’s isometry (see eq. “(2.8) in [13]”) twice along with the extended Lévy-

Khinchin formula [as in (3.2.41) before]. Merging (3.2.34), (3.3.96) and (3.3.97) into (3.3.95), we 

finally end up with our innovative temperature-forecast electricity futures call option price formula 

(3.3.98) 

W��° = 7M���M�	2� " 7�¸\=E	�Ýê9MÜ��Õ + DF	1  × Á 7?¢�E,�,�	�
�P( × Á 7X¢�E,�,�	«

�P�\( × Á 7B¢�E,�,�	I
�P( �F 

ℝ
. 

Essentially, (3.3.98) exhibits three different classes of product terms which may be interpreted as 

follows: Firstly, ℑ(� = 7?¢�E,�,�	 �� = 1, … , �	 is closely linked with risk-reducing temperature 

forecasts. Secondly, ℑ1� = 7X¢�E,�,�	 �� = � + 1, … , ª	 descends from the remaining uncertainty 

concerning future temperature behavior. Thirdly, ℑ>� = 7B¢�E,�,�	 �� = 1, … , J	 represents omnipresent 

electricity (spot) price risk originating from other risk sources than temperature (like e.g. carbon 

emission permit prices). Reasoning about the current paragraph, we eventually cherish that is has been 

possible to compute the conditional expectation in (3.3.96) explicitly which has not been the case in 

our former anticipative pure-jump setups. To the best of our knowledge, in the literature there is no 

comparable result to (3.3.98) available which extensively provides an (semi-) explicit electricity 

futures call option price formula under forward-looking information about correlated temperature.    

 

3.3.7 Correlating electricity spot prices with carbon emission allowance prices 

Reasoning about subsection 3.3.6, it sounds economically reasonable to assume (not only outdoor 

temperature but also) carbon emission allowance (EUA) prices to have a major impact on electricity 

prices as well. More precisely, one should suspect a strong positive correlation in between carbon 

emission allowance prices and electricity spot, forward, futures or even option prices: Indeed, 

convincing empirical evidences which manifest the above proposition have been detected by Benth 

and Meyer-Brandis – see subsection 2.2 in [10]. Fortunately, our above modeling framework appears 

suitable for an incorporation of such sophisticated dependency structures between electricity prices 

and carbon permit prices, since we may correlate the EUA price, �� say, possibly obeying   

(3.3.99)                                         ���� = ��� <� �� + ∑ Ò�  ����«�P( A 
(with constants � ∈ ℝ, Ò� > 0 and standard BMs ���), with the electricity spot price (3.2.1) in an 

analogous way as described for the temperature case in the previous subsection 3.3.6 by replacing the 

temperature noises 5�� in equation (3.3.68) through the EUA price noises ��� for � = 1, … , ª. 
Moreover, the forward-looking machinery with enlarged filtrations then might be applied 
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simultaneously as in our former paragraph 3.3.6, whereas forward-looking insider information about 

future carbon emission allowance prices might not be as commonly (and neither as permanently) 

available as public temperature forecasts, admittedly. However, we will return to the topic of pricing 

carbon emission allowances in Chapter 6 later, wherein we will indeed take future information about 

the European Union Emission Trading Scheme (EU ETS) market zone net position into account.   

 

3.3.8 Forward-looking electricity floor option prices 

Empirical studies (see Chapter 8 in [13] for an overview and related references) have revealed that in 

geographical regions in which there is a need for air-conditioning in the summer and for heating in the 

winter, electricity prices often rally in spring and autumn. Hence, in order to protect against low 

electricity (spot) prices during a pre-specified time period �|(, |1�, an electricity retailer might enter an 

electricity floor contract [14]. Following section 5.1 in [14], a floor option designates a European-type 

contract which ensures a cash flow at intensity �Ó − �®�\ with strike price Ó > 0 at arbitrary time � ∈ �|(, |1�. Thus, denoting the constant interest rate by � > 0, the fair price of an electricity floor 

option at any time � yet under our forward-looking information filtration ��∗ is given by 

(3.3.100)          

ÊªCC�∗��	 ≔ ÊªCC��∗��; Ó, |(, |1	 ≔ 6ℚ ~ " 7M��®M�	{¨

�∨{Ì
�Ó − �®�\�����∗�. 

Next, with ]�#	 ≔ �Ó − #�\ ∈ ℒ(�ℝ\	 and (3.2.33), the Fubini-Tonelli theorem yields 

(3.3.101)                    

ÊªCC�∗��	 = 12� " " 7M��®M�	]Ú�F	 6ℚ�7=E01���∗� 
ℝÞ

�F ��{¨

�∨{Ì
. 

Taking (3.2.1), (3.2.2) and (3.2.8) into account, the conditional expectation in (3.3.101) factors into 

(3.3.102)    

6ℚ�7=E01���∗� = 7#d üDF ö���	 + Y ��  ��� 7M¢�®M�	I
�P( ÷ý × 6ℚ ~7#d üY " ¬��)	 ��R�

®
�

I
�P( ý Ñ��∗� 

wherein we have just introduced the complex and deterministic function ¬��)	 ≔ DF �v��)	 with �v��)	 ≔ �v��), �	 ≔ ��  z��)	 7M¢�®MR	 ≥ 0. We stress that the conditional expectation on the right 

hand side of equality (3.3.102) may be treated similarly to the one in (3.3.64), whereas ¯� yet has to be 

replaced by ¬�, �� by �v�, respectively |1 by �. Hence, parallel to our arguing in subsection 3.3.5, for a 

partition 0 ≤ � < | ≤ � ≤ |1 we deduce the approximation 

6ℚ ~7#d üY " ¬��)	 ��R�
®

�
I

�P( ý Ñ��∗� ≈L�½�|, �; F, �; ¬	. 
Moreover, with respect to (3.2.32) we obtain the inverse Fourier transform 

(3.3.103)                                                  ]Ú�F	 = (M=EÜMºq)*D
E¨ . 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

58 

 

Consequently, our pricing formula (3.3.101) may be approximated via 

(3.3.104) 

ÊªCC�∗��	 ≈ " 7M��®M�	2� " ]Ú�F	 L�½�|, �; F, �; ¬	 7#d üDF ö���	 + Y ��  ���  7M¢�®M�	I
�P( ÷ý 

ℝÞ
�F ��{¨

�∨{Ì
 

yielding an electricity floor option price estimate at time � ∈ �|(, |1� under additional forward-looking 

information modeled by the enlarged filtration ��∗. Eventually, we underline that the corresponding 

section 5.1 in [14], on the contrary, is concerned with the evaluation of electricity floor option prices 

under a common backward-looking information filtration approach. In addition, Biagini et al. [14] 

utilize a geometrical Heath-Jarrow-Morton setup to model the underlying electricity forward price 

dynamics, whereas we have made use of an arithmetic multi-factor electricity futures price Ornstein-

Uhlenbeck disposition under an enlarged filtration on the opposite. 

 

3.3.9 A mixed model for electricity spot, futures and option prices 

Regarding the previous subsections, it seems to be impossible to compute expectations of the type 

(3.3.53) analytically. To overcome this problem, we now propose a mixed electricity spot price model 

including both Brownian motion (BM) and pure-jump terms. In accordance to our former explanations 

concerning the splitting of the spot price noises into small and large-amplitude jump components [such 

as claimed previously to (3.2.6)], we yet suppose to replace the equations in (3.2.3) through 

(3.3.105)                           ���� = −�� ���  �� + z� �5��          �� = 1, … , ª	 

(with strictly positive and constant28 volatilities z(, … , z« along with standard ℙ-BMs 5�(, … ,5�«) and 

(3.3.106)                     ���� = −�� ��� �� + z���	 ����          �� = ª + 1, … , J	 

with pure-jump Sato-noises ��� such as defined in (3.2.4). Hence, the small-amplitude fluctuations of 

the long-term level of the spot reasonably are modeled by Brownian motions yet, whereas the short-

term spiky variation components remain untouched [compare (3.2.3) with (3.3.106)]. Similar to 

before, we assume all involved random processes also in our current mixed model (3.3.105) – 

(3.3.106) such as 5�(, … ,5�« , ��«\(, … , ��I to be pair-wise ℙ-independent. Further on, we recall that the 

associated mixed electricity spot price (compare subsection 3.2.2 in [13] at this step) reading 

(3.3.107)    

�� = ���	 + Y �����
«

�P( + Y �����
I

�P«\(  

now may become negative which, by the way, not at all constitutes a serious matter29.  

                                                           
28 On the bottom of page 4 in [8] it is argued that the assumption of constant (daily) long-term volatilities z���	 ≡ z� > 0 �� = 1, … , ª	 seems to be economically reasonable. Presently, we catch up this assumption 
which will turn out convenient in the context of modeling electricity prices under enlarged filtrations, as we will 
see later on. 
29 This statement is entirely justified by our former explanation concerning negative electricity prices which has 
been given in the context of the dynamics (3.3.93). 
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Slightly deviating from (3.3.70), we next define the mixed Radon-Nikodym derivative by 

(3.3.108) 

s�ℚ+�ℙ�ℱ�9
≔ Á j�a� ∘ 5���

«
�P( × Á j�Â���

I
�P«\(  

with multipliers j�a� ∘ 5��� as in (3.3.71), j�Â��� as in (3.2.18) and a new initial filtration 

(3.3.109)                                  ℱ�� ≔ z�5�(, … ,5�« , ��«\(, … , ��I: 0 ≤ � ≤ � . 
Similarly to (3.3.73), we declare 

(3.3.110)                                        5��� ≔ 5���,ℱ� ,ℚ+ ≔ 5�� − n a��)	 �)��  

to constitute a ℱ��-adapted Brownian motion under ℚ+  for all � = 1, … , ª. Moreover, for time indices 0 ≤ � ≤ � ≤ � the solution of (3.3.105) yet points out as 

(3.3.111)                                 

�®� = ���7M¢�®M�	 + z� " 7M¢�®MR	 �5R�
®

�
 

�� = 1, … , ª	, whereas (3.3.106) is solved by the Ornstein-Uhlenbeck-type Sato-process 

(3.3.112)                               

�®� = ���7M¢�®M�	 + " z��)	 7M¢�®MR	 ��R�
®

�
 

�� = ª + 1, … , J	. Referring to (3.3.110), equation (3.3.111) further yields the ℚ+-representation 

(3.3.113)            

�®� = ���7M¢�®M�	 + z� " 7M¢�®MR	 a��)	 �)®
�

+ z� " 7M¢�®MR	 �5�R�
®

�
 

�� = 1, … , ª	. In accordance to (3.3.76), we next introduce the overall/global filtration 

(3.3.114) 

ℋ+� ≔ ℱ�� ∨ z ü" 7¢��5��
{

�
: � = 1, … , ªý = ℱ�� ∨ z ü" 7¢��5���

{
�

: � = 1, … , ªý 

whereas, parallel to (3.3.78), we implement an associated explicit intermediate filtration via 

(3.3.115) 

�2� ≔ ℱ�� ∨ z ü" 7¢��5���
{

�
: � = 1, … , �; �� ≤ ª	ý. 

Actually, we observe ℱ�� ⊂ �2� ⊂ ℋ+� for 0 ≤ � < | and ℱ�� = �2� for � ≥ |.  
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Furthermore, for notational convenience we put 

(3.3.116)  

Õ��)	 ≔ 2 ��  7¢R71¢{ − 71¢R  ,         å�R� ≔ Õ��)	 " 7¢��5���
{

R
. 

Then, with respect to Lemma 3.3.5 (b), we deduce that 

(3.3.117)                                                 5���,�2,ℚ+ ≔ 5��� − n å�R��� �)  

constitutes a ��2� , ℚ+�-BM for all � = 1, … , � and � ∈ �0, |�. Additionally, Lemma 3.3.5 (c) yields 

(3.3.118) 

6ℚ+ ~" 7¢��5���
{

R
Ñ�2�� = 6ℚ+ ~" 7¢��5���

{
�

Ñ�2�� 71¢{ − 71¢R71¢{ − 71¢� 

for all � = 1, … , � and time indices 0 ≤ � ≤ ) < |.  

In accordance to (3.3.2), for � ∈ �0, |(� we yet define the (�2-forward-looking) mixed electricity futures 

price associated to our recent jump-diffusion electricity spot price model by dint of 

(3.3.119) 

Ê�� ≔ Ê��2,ℚ+ �|(, |1	 ≔ 1|1 − |( " 6ℚ+ ��®��2�� ��{¨

{Ì
. 

Merging (3.3.107) into the latter equation, we immediately deduce 

(3.3.120) 

Ê�� = 1|1 − |( " ö���	 + Y ��  6ℚ+ ��®���2���
�P( + Y ��  6ℚ+ ��®��ℱ���«

�P�\( + Y ��  6ℚ+ ��®��ℱ���I
�P«\( ÷ ��{¨

{Ì
. 

In what follows, we compute the three conditional expectations in (3.3.120) in their order of 

appearance: Using (3.3.113) and (3.3.116) – (3.3.118), [for � < |] the first object therein becomes  

(3.3.121) 

6ℚ+ ��®���2�� = ���7M¢�®M�	 + z� " 7M¢�®MR	 a��)	 �)®
�

+ 2 ��  z�  n 7¢��5���{�71¢{ − 71¢�  " 7¢�1RM®	�)®
�

. 
Utilizing (3.3.113) again, the second conditional expectation in (3.3.120) turns out as 

(3.3.122) 

6ℚ+ ��®��ℱ��� = ���7M¢�®M�	 + z� " 7M¢�®MR	 a��)	 �)®
�

. 
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Finally, referring to (3.2.4), (3.2.20) and (3.3.112), we observe the third expectation to be of the form 

(3.3.123) 

6ℚ+ ��®��ℱ��� = ���7M¢�®M�	 + " " ; z��)	 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 �) 
¡¢

®
�

. 
Hence, substituting (3.3.121) – (3.3.123) into (3.3.120), we obtain the shorthand representation 

(3.3.124) 

Ê�� = þî��	 + Y�����	 ���
I

�P( + Y =+���	 �+��
�

�P(  

with abbreviations 

(3.3.125) 

þî��	 ≔ " ���	|1 − |( ��{¨

{Ì
+ Y ��  z�|1 − |( " " 7M¢�®MR	 a��)	 �) ��®

�
{¨

{Ì

«
�P(

+ Y  ��|1 − |( " " " ; z��)	 7M¢�®MR	7·¢�R,?	¥��)	 �.��;	 �) �� 
¡¢

®
�

{¨

{Ì

I
�P«\( , 
�����	 ≔ ��|1 − |(  7M¢�{ÌM�	 − 7M¢�{¨M�	�� , 

=+���	 ≔ 2 ��  �� z�71¢� − 71¢{ " " 7¢�1RM®	|1 − |( �) ���
®

{¨

{Ì
,             �+�� ≔ " 7¢��5���

{
�

. 
From (3.3.125) we immediately deduce the derivatives (with respect to �) 

(3.3.126)               ���� ��	 = ��  �����	,            =+�� ��	 = Õ���	 <=+���	 7¢� − z�  �����	A, 
þî���	 = − Y z� a���	 �����	«

�P( − Y " ; z���	 �����	 7·¢��,?	¥���	 �.��;	 
¡¢

I
�P«\( . 

Next, applying Itô’s product rule on (3.3.124) and hereafter using (3.2.4), (3.2.20), (3.2.24), (3.3.105), 

(3.3.106), (3.3.110), (3.3.116), (3.3.117), (3.3.125) and (3.3.126), [within a similar computation as for 

(3.3.93)] we obtain the ℚ+-dynamics 

(3.3.127) 

�Ê�� = Y<z� �����	 − =+���	 7¢�A �5���,�2,ℚ+�
�P( + Y z�  �����	«

�P�\( �5���,ℱ� ,ℚ+

+ Y " ; Í���, |(, |1	 �+�ℱ�,ℚ+ ��, �;	 
¡¢

I
�P«\( . 
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Parallel to our former announcements in the footnote dedicated to (3.3.93), we remark that the 

electricity futures price Ê�  such as given in (3.3.127) may become negative in our present mixed spot 

price model. Yet, examining the dynamics (3.3.127) in more depth, we declare Ê�� to constitute a �2�-

adapted (local) martingale under ℚ+  which is, in the light of (3.3.119), not a surprising observation. In 

addition, comparing (3.3.115) with (3.3.127), we classify Ê�  to possess independent increments with 

respect to the enlarged filtration �2 and thus, to designate a ��2, ℚ+�-Sato-martingale, even.30  

In what follows, we aim to price a European-type option written on our mixed electricity futures 

(3.3.127). For this purpose, we yet adopt the notations of subsection 3.3.3 to our current setup. Hence, 

with respect to (3.3.52), we introduce the �2-forward-looking call option price at time � ≤ � via 

(3.3.128) 

W2� ≔ W��2�Ó, |(, |1	 = 7M���M�	2� " ÙÚ�F	 7�¸\=E	Ý�9  6ℚ+ �7�¸\=E	�Ý�àMÝ�9���2�� �F 
ℝ

 

where ÙÚ�F	 is like in (3.2.34). Taking (3.3.127) into account while introducing the shorthand notation å��)	 ≔ �Õ + DF	 Í��), |(, |1	, the conditional expectation in (3.3.128) factors into 

(3.3.129)                                                 6ℚ+ �7�¸\=E	�Ý�àMÝ�9���2�� = 

6ℚ+ Ï7#d f�Õ + DF	 ~Y "<z� ����)	 − =+��)	 7¢RA �5�R�,�2,ℚ+�
�

�
�P( + Y " z� ����)	 �5�R�

�
�

«
�P�\(

+ Y " " ; Í��), |(, |1	 ��+�ℱ�,ℚ+ �), ;	 
¡¢

�
�

I
�P«\( �iÐ =: Á/(� ×�

�P( Á /1�
«

�P�\( × Á />�I
�P«\(  

with multipliers 

(3.3.130) 

/(� ≔ 6ℚ+ Ï7#d f"�Õ + DF	<z� ����)	 − =+��)	 7¢RA �5�R�,�2,ℚ+�
�

iÐ
= 7#d f" �Õ + DF	12 <z� ����)	 −=+��)	 7¢RA1�)�

�
i, 

/1� ≔ 6ℚ+ Ï7#d f"�Õ + DF	 z� ����)	 �5�R�
�

�
iÐ = 7#d f" �Õ + DF	12  z�1 ����)	1 �)�

�
i, 

/>� ≔ 6ℚ+ Ï7#d fD " "�F − DÕ	 ; Í��), |(, |1	 ��+�ℱ�,ℚ+ �), ;	 
¡¢

�
�

iÐ
= 7#d f" "<7? æ¢�R	 − 1 − ; å��)	A 7·¢�R,?	¥��)	 �.��;	 �) 

¡¢

�
�

i. 
                                                           
30 Note that for any arbitrarily enlarged filtration this is not necessarily true, but under (3.3.115) it is. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

63 

 

Herein, for the computation of /(� and /1� we have made use of Itô’s isometry31, whereas for the 

treatment of />� we have exploited (3.2.20) along with Prop. 2.1 in [13] and Prop. 1.9 in [65]. Finally, 

referring to (3.2.34) and (3.3.129), our mixed electricity futures call option price (3.3.128) becomes 

(3.3.131) 

W2� = 7M���M�	2� " 7�¸\=E	�Ý�9MÜ��Õ + DF	1 × Á/(� ×�
�P( Á /1�

«
�P�\( × Á />�I

�P«\( �F 
ℝ

 

where /(�, /1� and />� are such as claimed in (3.3.130). Regarding the structure of our innovative 

pricing formula (3.3.131), we essentially recognize three different classes of risk terms: Firstly, /(� is 

closely connected with risk-reducing �2-forward-looking information on a selection of the Brownian 

noises driving the (stochastic) mean-level of the underlying electricity spot price. Secondly, the terms /1� can be associated to some kind of remaining risk with respect to the long-term level of the spot. 

Roughly speaking, the difference between /(� and /1� (which evidently consists in an additive 

information drift, merely) describes to what extend the (explicit) intermediate filtration �2� is smaller 

than the overall filtration ℋ+�. Yet, we observe that if �2� = ℋ+� (exhaustive knowledge) and hence, if � = ª, then the factors /1� would equal /(� so that the product in (3.3.129) would simplify to 

(3.3.132)                                                  ∏ /(� ×«�P( ∏ />�I�P«\( .  
In other words, if the index � appearing in (3.3.115) is far from ª (and thus, close to one), then there is 

not much supplementary information on the future behavior of the long-term level of the spot price 

available. As a consequence, the (actually non-forward-looking) members /1� in this case have a major 

impact on the resulting option price which sounds economically reasonable. Vice versa, if � is close to ª, then there indeed is some worthy future information on the majority of the long-term level driving 

noises available what reasonably emphasizes the impact of the multipliers /(�, which themselves have 

been associated with additional insider information on the future electricity spot price mean level. 

Thirdly, the terms />� appearing inside (3.3.131) originate from the omnipresent risk of an occurrence 

of electricity spot price spikes, i.e. violent upward jumps followed by a quick return to about the same 

level which periodically appear due to sudden imbalances in supply and demand – cf. [8]. Moreover, 

let us remark that the price of a put option written on Ê�� easily can be obtained from (3.3.131) by 

exploiting the Put-Call-Parity, parallel to our argumentation in subsection 3.3.4 before. Ultimately, we 

emphasize that in (3.3.130) it fortunately has been possible to compute the appearing expectations 

analytically which, on the contrary, seemed to be impossible in our former (forward-looking) pure-

jump cases [cf. e.g. section 3.3.3]. It also appears worthwhile to compare (3.3.131) with (3.2.35). 

 

The information premium in a mixed electricity market model As a closing remark we want 

to examine the information premium also for our recent mixed electricity spot price model. Note that 

in the previous subsection 3.3.1 the information premium actually has been introduced in connection 

with a pure-jump multi-factor model. Right now, we are situated in a completely different model 

setup, since the available additional information currently is taken with respect to Brownian noises 

[compare (3.3.115)]. However, adhering to (3.3.3), we newly define the information premium via 

(3.3.133)                                ℑ��2,ℱ�,ℚ+ �|(, |1	 ≔ Ê��2,ℚ+ �|(, |1	 − Ê�ℱ�,ℚ+ �|(, |1	.  
                                                           
31 Note that /(� and /1� in (3.3.130) actually may be computed further by exploiting the definitions in (3.3.125). 
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Taking (3.3.107), (3.3.110), (3.3.113) and (3.3.119) into account, the latter can be rewritten as 

(3.3.134)                                                      ℑ��2,ℱ�,ℚ+ �|(, |1	 = 

Y ��|1 − |(
�

�P( " <6ℚ+ ��®���2�� − 6ℚ+ ��®��ℱ���A ��{¨

{Ì
= Y ��  z�|1 − |( " 6ℚ+ ~" 7M¢�®MR	 �5�R�

®
�

Ñ�2�� ��{¨

{Ì

�
�P( . 

Next, appealing to (3.3.116) – (3.3.118), [with |( ≤ � < | ≤ |1 and thus, 0 ≤ � ≤ ) < |] we deduce 

(3.3.135) 

ℑ��2,ℱ�,ℚ+ �|(, |1	 = 2 |1 − |( Y �� �� z�  n 7¢��5���{�71¢{ − 71¢� " " 7¢�1RM®	�) ��®
�

{¨

{Ì

�
�P(  

yielding the information premium for �� ≤	 |( < |. We remark that the remaining integral on the right 

hand side of (3.3.135) can be straightforwardly computed by interchanging the integration order due to 

Fubini’s theorem.  

In order to treat the case | ≤ |(, we apply a similar iterated-conditioning procedure such as presented 

in (3.3.20) – (3.3.22): At first, we observe the inclusions ℱ�� ⊂ �2� ⊆ �2{ = ℱ�{ �0 ≤ � ≤ | ≤ |( ≤ |1	 to 

be valid. Hereafter, referring to (3.3.113) [but with � replaced by | therein], we claim32 

(3.3.136)                                              6ℚ+ ��®���2�� − 6ℚ+ ��®��ℱ��� 

= 6ℚ+ ��{���2�� + 6ℚ+ �6ℚ+ ��®� − �{��ℱ�{���2�� − 6ℚ+ ��{��ℱ��� − 6ℚ+ �6ℚ+ ��®� − �{��ℱ�{��ℱ��� 

= 7M¢�®M{	<6ℚ+ ��{���2�� − 6ℚ+ ��{��ℱ���A. 
Combining this with (3.3.134) while identifying (3.2.24), for 0 ≤ � ≤ | ≤ |( ≤ |1 we finally get 

(3.3.137) 

ℑ��2,ℱ� ,ℚ+ �|(, |1	 = Y Í��|, |(, |1	  z��|	  <6ℚ+ ��{���2�� − 6ℚ+ ��{��ℱ���A�
�P( . 

Additionally, substituting (3.3.113) [but yet with � ≔ | > � therein] into (3.3.137), we receive 

ℑ��2,ℱ�,ℚ+ �|(, |1	 = Y z� Í��|, |(, |1	  z��|	  6ℚ+ ~" 7M¢�{MR	 �5�R�
{M
�

Ñ�2���
�P( . 

Again, we take (3.3.116) – (3.3.118) along with the Fubini-Tonelli theorem into account and obtain 

ℑ��2,ℱ�,ℚ+ �|(, |1	 = 2 Y �� z� Í��|, |(, |1	  z��|	  n 7¢��5���{�71¢{ − 71¢� " 7¢�1RM{	�){
�

�
�P(  

yielding the information premium for � < | ≤ |(. (Yet, the last integral can be computed explicitly.) 

                                                           
32 Recall that |( ≤ � ≤ |1 and | ≤ |( hold true in our current setting. Thus, we have | ≤ �. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

65 

 

3.3.9.1    A Brownian single-factor electricity option price formula 

In this subsection we study a very simple subclass of the mixed model presented in paragraph 3.3.9. 

More accurately, we do no longer permit jump components now and restrict our approach to merely 

one Brownian motion driving the (actually no longer mixed) electricity spot price, i.e. we choose ª = 1 

and �«\( = ⋯ = �I = 0 in (3.3.107). Hence, putting �( ≔ 1, our single-factor electricity spot price 

model trivially boils down to �� = ���	 + ��(. For notational reasons, we will omit all indices, just 

writing �, �,5, a�)	 etc. instead of �(, �(,5(, a(�)	, in the following. Consequently, we observe     

(3.3.138)                                                       �� = ���	 + �� 

wherein �� is such as given in (3.3.105). Note that ℙ���� < 0 	 > 0. Recalling the main statements in 

[8], [14], [72] and our introductory section 1.1 which altogether count in favor for the modeling of 

electricity spot prices with jump processes, our recent approach in (3.3.138) appears rather unrealistic. 

However, we aim to examine how option pricing works in this trivial case, hoping for a simple pricing 

formula in the present Brownian Bachelier model. To claim our findings right at the beginning, we 

state that, on the one hand, option pricing becomes (as expected) very simple, as we now may apply 

measure-transformation arguments (instead of Fourier transform techniques). On the other hand, the 

price one has to pay for this convenience is not only to have an unrealistic spot model (which cannot 

generate price spikes), but also the modeling of additional information concerning future price 

behavior turns out to be problematic, since we neither may work with an explicit intermediate filtration 

[like in (3.3.115)] for the following reason: Obviously, we are now caught in a single-factor model 

with ª = � = 1 and hence – using the vocabulary of paragraph 3.3.9 – we observe �2� = ℋ+�. 

Consequently, we ought to work within a non-explicit intermediate filtration �� obeying 

(3.3.139)                                                        ℱ�� ⊂ �� ⊂ ℋ+�  

for 0 ≤ � < | (recall that ℱ�� = �� = ℋ+� for � ≥ |, anyway), whereas we presume 

(3.3.140)                                

ℋ+� ≔ ℱ�� ∨ z ü" 7��5�
{

�
ý = ℱ�� ∨ z ü" 7��5��

{
�

ý 

and ℱ�� ≔ z�5R: 0 ≤ ) ≤ � . Furthermore, similar computations as in (3.3.119) – (3.3.124) lead us to 

the following representation for the (single-factor) electricity futures price Ê�� ≔ Ê��,ℚ+ �|(, |1	 [defined 

parallel to (3.3.119), but yet associated to (3.3.138) – (3.3.139)] reading 

(3.3.141)                                         Ê�� = þ��	 +���	 �� + =��	 e� 

with shorthand notations 

(3.3.142) 

þ��	 ≔ " ���	|1 − |( ��{¨

{Ì
− z|1 − |( " " 7M�®MR	 a�)	 �) ���

®
{¨

{Ì
,            ���	 ≔  7M�{ÌM�	 − 7M�{¨M�	� �|1 − |(	 , 

=��	 ≔ 2 � z71� − 71{ " " 7�1RM®	|1 − |( �) ���
®

{¨

{Ì
,           e� ≔ 6ℚ+ ~" 7��5��

{
�

Ñ���. 
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We remark that during the derivation procedure of (3.3.141) we have used (an adapted version of) 

Lemma 3.3.5 (a) and (c), meanwhile. Further, in order to obtain the stochastic dynamics of Ê��, we 

provide the following result which, by the way, slightly resembles Lemma 3.3.4 above. In particular, 

we ought to remind the footnote dedicated to the proof of Lemma 3.3.5 (c) at this step. 

Lemma 3.3.6 For e� as defined in (3.3.142), the stochastic process 

Ö e�71{ − 71�×�∈��,{� 
designates a ��-adapted martingale under the risk-neutral pricing measure ℚ+ . 

Proof  Let 0 ≤ � ≤ ) < |. With respect to (3.3.118) and (3.3.142), we deduce 

6ℚ+ Ö eR71{ − 71R t��× = 171{ − 71R  6ℚ+ ~" 7��5��
{

R
Ñ�R∧�� = e�71{ − 71� . ∎ 

Anyway, Lemma 2.1.5 immediately leads us to the decomposition 

(3.3.143)                         

�e� = �71{ − 71�� � Ö e�71{ − 71�× − 2 � 71�71{ − 71�  e�  ��. 
Next, applying Itô’s product rule on (3.3.141) while taking (3.3.105), (3.3.110), (3.3.142), (3.3.143), 

[an adapted version of] Lemma 3.3.5 (a) and Lemma 3.3.6 into account, we finally end up with the ��� , ℚ+�-martingale dynamics  

(3.3.144) 

�Ê�� = z ���	 �5���,ℚ+ +=��	 <71{ − 71�A � Ö e�71{ − 71�× 

(with vanishing drift) wherein 

5���,ℚ+ ≔ 5�� − " Õ�)	 eR �)�
�

≔ 5�� − " 2 � 7R71{ − 71R  6ℚ+ ~" 7��5��
{

R
Ñ�R��

�
�) 

constitutes a ��� , ℚ+�-Brownian motion [what follows from Lemma 3.3.5 (a)]. Unfortunately, the 

distribution of (3.3.144) is not obvious. Thus, in order to price options written on the electricity futures 

price Ê�, we replace � by ℋ+  in our proceedings what gives rise to the notation Êℋ+ . Initially, we recall 

that both Brownian integrals n 7��5��{�  and n 7��5��R�  are ℋ+R-measurable – compare (3.3.114) along 

with Theorem 4.3.1 (ii) in [83] to verify this. Hence, the corresponding �ℋ+ , ℚ+�-Brownian motion, 

denoted by 5� ℋ+ ,ℚ+ , possesses the decomposition 

(3.3.145) 

5��ℋ+ ,ℚ+ ≔ 5�� − " Õ�)	 " 7��5�� �){
R

�
�

. 
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Moreover, under ℋ+ , the dynamics (3.3.144) transforms into 

(3.3.146) 

�Ê�ℋ+ = z ���	 �5��ℋ+ ,ℚ+ + =��	 <71{ − 71�A � ú6ℚ+ �n 7��5��{� �ℋ+��71{ − 71� û 

whereas the second differential on the right hand side of (3.3.146) actually can be handled with Itô’s 

product rule leading us to  

� ú6ℚ+ �n 7��5��{� �ℋ+��71{ − 71� û = � ú n 7��5���{71� − 71{û = 7�71� − 71{  �5��ℋ+ ,ℚ+ . 
Therewith, (3.3.146) may be rearranged as 

(3.3.147)                                                   �Ê�ℋ+ = F��	 �5��ℋ+ ,ℚ+  

which evidently designates a [not necessarily strictly positive] Brownian �ℋ+�, ℚ+�-martingale of single-

factor Bachelier-type. Herein, we have just introduced the deterministic function 

F��	 ≔ z ���	 − =��	 7�. 
Further on, the price of a European call option written on the ℋ+ -forward-looking electricity futures 

(3.3.147) actually may be calculated by two different techniques: Firstly, we might apply Fourier 

transform methods as presented in paragraph 3.3.9, for instance. Secondly, the more straightforward 

way is to trouble standard measure-transformation arguments, since the distribution of Êℋ+  is currently 

known explicitly. [Particularly, note that Êℋ+  possesses ℚ+-independent increments with respect to ℋ+ .] 

Although we will investigate the mentioned measure-transformation approach in the following, we 

initially claim the corresponding Fourier transform call option price formula by adapting (3.3.128) – 

(3.3.131) to our present single-factor model. In this regard, we observe 

(3.3.148) 

W�ℋ+ = 7M���M�	 6ℚ+ N<Ê�ℋ+ − ÓA\	ℋ+�O = 7M���M�	2� " 7�¸\=E	ÄÝ9ℋ+ MÜ\ ¸\=E1 n G¨�R	�Rà9 Å
�Õ + DF	1 �F 

ℝ
. 

Alternatively, we present the second approach now: Taking (3.3.147) into account, we obtain 

(3.3.149)                               W�ℋ+ = 7M���M�	 6ℚ+ N<Ê�ℋ+ − Ó + @�,�A\	ℋ+�O 

whereas the (real-valued) random variable 

@�,� ≔ " F�)	 �5�Rℋ+ ,ℚ+�
�

 

is ℚ+-independent of ℋ+� and moreover, normally distributed under ℚ+  with zero mean and variance 

�1��, �	 ≔ "F1�)	 �)�
�

. 
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Hence, conditioning on & ≔ Ê�ℋ+ , from (3.3.149) we receive the call option price formula  

(3.3.150)                                                        W�ℋ+ ≔ W�ℋ+ ,ℚ+ = 

7M���M�	 " s�# − �Ó − &	� �ℚ+H9,à�#	�'≔Ý9ℋ+
Û

ÜM' = 7M���M�	 <���, �	 :′���,�� + �Ê�ℋ+ − Ó� :���,��A 
with stochastic arguments ��,� ≔ �Ê�ℋ+ − Ó� ���, �	I . Herein, : designates the standard normal 

distribution function. Actually, (3.3.150) closely resembles Theorem 2 in [6]33, whereas we remark 

that the latter stems from a non-explicit intermediate filtration approach, while (3.3.150) is associated 

to the global filtration ℋ+  on the contrary. Moreover, both call option price formulas succumb to 

completely different risk-neutral pricing measures. Finally, the information premium for our current 

single-factor model can be calculated parallel to the argumentation at the end of subsection 3.3.9. 

 

3.3.9.2    A forward-looking pricing measure for electricity options 

The motivation for the current subsection is twofold: Firstly, we aim to extend Theorem 2 in [6] yet to 

a (possibly more appropriate) multi-factor version and, secondly, to compare the approach in [6] with 

ours in 3.3.9 and 3.3.9.1 – particularly, we do this with respect to the different underlying risk-neutral 

pricing measures. To begin with, we catch up our arithmetic electricity spot price model presented in 

paragraph 3.3.9 but yet with weights �«\( = ⋯ = �I = 0. That is, there are no jumps occurring in 

(3.3.107) which, by the way, should be regarded as true disadvantage (cf. e.g. Ch. 1 and 2 in [8] or Ch. 

2 in [72] in this context). However, we actually aim to focus on an alternative forward-looking change 

of probability measure which firstly has been proposed by Protter for the Brownian motion case (see 

reference “[31] in [6]”). Initially, we introduce the notion of dualism which we establish with 

reference to subsection 3.3.9: Therein, we firstly switched to a risk-neutral probability measure 

[actually without touching the filtration; see (3.3.108)] and secondly took an enlargement of the 

underlying filtration into account [see (3.3.114) – (3.3.115)]. Whenever these two steps are done 

separately, we will call this dualism from now on. (By the way, except from the present paragraph, we 

always work with the dualism concept in this thesis; especially, in section 3.3.6 the dualism setup is 

very evident.) On the contrary, in the mentioned approach proposed by Protter both dualism steps are 

done simultaneously. Extending [6], we now adjust Protter’s method to a BM-driven multi-factor 

electricity spot price model and hereafter, compare the associated option pricing results with those of 

section 3.3.9 and 3.3.9.1. Starting off, we refer to sect. 3.2 in [6] and to our former definition (3.3.108) 

in order to implement a customized �-forward-looking risk-neutral probability measure ℚ� ≔ ℚ���	 via  

(3.3.151)  

s�ℚ��ℙ��9
≔ Á j�−å∙�,� ∘ 5∙�,�,ℙ��

«
�P( ≔ Á 7#d f− " åR�,��5R�,�,ℙ�

�
− 12 "�åR�,��1�)�

�
i«

�P( . 
Yet, the underlying filtrations are defined due to  

ℱ� ≔ z�5R(, … ,5R« : 0 ≤ ) ≤ � , ℱ� ⊂ �� ⊂ ℋ� ≔ ℱ� ∨ z�5{(, … ,5{« . 
                                                           

33 There are some notational inaccuracies in Theorem 2 in [6]: Êℱ therein has to be replaced by Ê� while �1� must 

be replaced by �(� which is not “defined as in equation (23)”, but defined as announced previously to Theorem 2. 
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Moreover, for � = 1, … , ª and 0 ≤ � < | we presume 

(3.3.152) 

5��,�,ℙ ≔ 5�� − " åR�,� �)�
�

 

to constitute a ��� , ℙ	-Brownian motion (BM). Herein, 5�� designates a �ℱ� , ℙ	-BM and å��,� 

represents a ��-adapted stochastic process, the so-called information yield [10], which we assume to 

fulfill the Novikov condition (cf. sect. 2.2 above). By the way, Prop. 2.3.3 yields the explicit form  

(3.3.153)                                                   

åR�,� = 6ℙ�5{���R� − 5R�| − ) . 
More importantly, from (3.3.151) and Girsanov’s theorem we further deduce that 

(3.3.154)  

5î�� ≔ 5î��,�,ℚ� ≔ 5��,�,ℙ + " åR�,� �)�
�

 

depicts a ��� , ℚ��-BM for all � = 1, … , ª. Combining (3.3.152) and (3.3.154), we remarkably observe 

(3.3.155)   

5î��,�,ℚ� − " åR�,�  �)�
�

= 5��,�,ℙ = 5�� − " åR�,�  �)�
�

 

to be valid �ℙ ≡ ℚ��-almost-sure (i.e. ℙ-a.s. and also ℚ�-a.s., as both measures are equivalent) for each � and � = 1, … , ª. Thus, 5î� is a modification of 5� for each �. This means that, for each � and �, there 

exist sets J�� ⊂ Ω with ℙ�J��� = ℚ��J��� = 0 such that ℙ�ñK ∈ Ω ∖J���5î���K	 = 5���K	ò� =ℚ��ñK ∈ Ω ∖J���5î���K	 = 5���K	ò� = 1, respectively such that ñK ∈ Ω�5î���K	 ≠ 5���K	ò ⊂J��. 

Further, Theorem 2 in Chapter I of [78] induces that 5î� and 5� even are indistinguishable, meaning 

that �ℙ ≡ ℚ��-a.s., for all � and �, we have 5î�� = 5��. Moreover, Lemma 1.4.8 in [1] together with its 

short prolog declares the (Lévy-) processes 5î� and 5� to possess the same characteristics and thus, 

also the same (actually Gaussian-) distribution. In other words, for all indices � = 1, … , ª the �ℱ, ℙ	-

Brownian motions 5� simultaneously are ��, ℚ��-Brownian motions. However, the essence of this 

result firstly has been announced by Protter – compare “[31] in [6]”. We stress that, in order to obtain 

(3.3.155), we trivially have to choose a ≔ −å�,�  and � ≔ 5�,�,ℙ (and ℎ ≡ 0) in Prop. 2.2.1. 

Alternatively to [6], we next take the ℚ�-risk-neutral �-forward-looking electricity futures price 

(3.3.156)                               Êî� ≔ Ê��,ℚ� �|(, |1	 ≔ ({¨M{Ì n 6ℚ� ��®|��	 ��{¨{Ì  

as the starting point of our current setup.34  

                                                           
34 On the contrary, in [6] the futures price initially is introduced under �ℱ, ℙ	; compare equation “(11) in [6]”. 
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Then, in accordance to (3.3.107), (3.3.111), (3.3.125), (3.3.155) and (3.3.156), we obtain  

Ê��,ℚ� �|(, |1	 = " ���	|1 − |( ��{¨

{Ì
+ Y�����	 ���

«
�P( . 

Moreover, using (3.3.105), (3.3.126), (3.3.155) and Lemma 2.1.5, the latter decomposition leads us to 

the Brownian ���, ℚ��-martingale dynamics35 

(3.3.157) 

�Ê��,ℚ� �|(, |1	 = Y z� �����	 �5î��,�,ℚ�«
�P(  

which extends property “(17) in [6]” to the multi-factor case. We highlight that (3.3.157) [combined 

with (3.3.155)] further delivers 

�Ê��,ℚ� �|(, |1	 = Y z�  �����	 �5��
«

�P( = �Ê�ℱ,ℙ�|(, |1	. 
Thus, sticking to the vocabulary introduced in the sequel of (3.3.155), the electricity futures price 

processes Ê�,ℚ�  and Êℱ,ℙ are detected to be indistinguishable which might sound a bit strange from an 

economical point of view. In this context, we remark that also if we had taken  

Ê�ℱ,ℙ�|(, |1	 ≔ ({¨M{Ì n 6ℙ��®|ℱ�	 ��{¨{Ì   

[instead of (3.3.156)] as our starting point, we would yet have received �Ê�ℱ,ℙ�|(, |1	 = �Ê��,ℚ� �|(, |1	, 

similar to above. By the way, the latter �ℱ, ℙ	-approach is presented in [6].     

Nevertheless, we may calculate the price of a European call option written on (3.3.157) as follows: 

Parallel to (3.3.149) – (3.3.150), we claim the �-forward-looking call price as 

(3.3.158)                                W���,ℚ� = 7M���M�	 6ℚ� N</�,� − �Ó − Êî��A\	��O 

within a linear combination of ��� , ℚ��-independent Brownian-martingale increments 

(3.3.159)  

/�,� ≔ Êî� − Êî� = Y z� "����)	 �5îR�,�,ℚ��
�

«
�P( . 

Applying standard measure-transformation arguments on (3.3.158), we ultimately end up with the ��, ℚ��-call price formula 

(3.3.160)                       W���,ℚ� = 7M���M�	 <3��, �	 :′���,�� + �Êî� − Ó� :���,��A 
                                                           
35 Actually, the futures price (3.3.157) is no longer strictly positive which may be regarded as a disadvantage. 
However, in this context we remind the footnote dedicated to (3.3.93) – particularly, the explained influence 
which positive jumps may have on spot/futures prices. With respect to our current setup, we remark that it is 

easily possible to compute probabilities like ℚ� NmÊ��,ℚ� > 0oO = ℙ�ñÊ�ℱ,ℙ > 0ò� or ℚ� NmÊ��,ℚ� ≤ 0oO. 
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wherein : designates the standard normal distribution function and 

(3.3.161) 

��,� ≔ Êî� − Ó3��, �	,    31��, �	 ≔ LMNℚ� </�,�A = Y z�1 "����)	1 �)�
�

«
�P( ,    Êî� = Êî� + Y z� "����)	 �5îR�,�,ℚ��

�
«

�P( . 
If we choose ª = 1 in (3.3.157), then the corresponding single-factor pricing formula (3.3.160) – not 

surprisingly – possesses exactly the same structure as the one announced in Theorem 2 in [6]. More 

accurately speaking, for ª = 1 (and � ≡ 0) we obviously are in the setup presented in [6]. Anyway, our 

multi-factor extension of [6] only partly can be seen as the motivation for the current paragraph. 

Instead, the more interesting task is to compare the dualism call option price formula in (3.3.150) with 

the one in (3.3.160)36, although both pricing formulas appear very similar on a superficial view (which 

itself is a remarkable observation). On a closer look, we firstly recognize a striking difference 

concerning the underlying pricing measures: More precisely, in section 3.3.9.1 we worked under the 

backward-looking dualism-measure ℚ+ ≔ ℚ+�ℱ�� defined due to (3.3.108) [with ª = J = 1 therein], 

whereas in paragraph 3.3.9.2 we utilized the forward-looking risk-neutral measure ℚ� ≔ ℚ���	 such as 

established in (3.3.151). Secondly, in 3.3.9.1 the global (respectively overall) filtration ℋ+  enlarges ℱ�  

by a whole Brownian integral [see (3.3.140)], whereas its counterpart in 3.3.9.2 merely adds Brownian 

values to ℱ [recall the sequel of (3.3.151)]. Hence, there are different martingale compensators (i.e. 

information yields) involved [compare (3.3.145) with (3.3.153)]. More importantly, the call price in 

(3.3.150) actually succumbs to complete or exhaustive knowledge about future spot price behavior, as 

it is derived under the overall filtration ℋ+ . Contrarily, the call price in (3.3.160) is closely linked with 

the (non-explicit) intermediate filtration � which, at least in this instance, portrays a more realistic 

setup. In this context, we recall that the dynamics (3.3.144) did not seem to be suitable for a proper 

derivation of related option prices, so that we finally proposed to work under ℋ+ . In conclusion, the 

dualism concept along with non-explicit intermediate filtrations [like � in (3.3.139)] does not appear 

very useful for option pricing issues in electricity markets.37  

Nevertheless, an explicit intermediate filtration approach such as presented in paragraph 3.3.9 

[compare (3.3.115)] even should be more appropriate for electricity futures option pricing purposes 

than the one presented in 3.3.9.2, respectively in [6], mainly for the three following reasons:              

Firstly, jump terms do not have to be omitted in the forward-looking dualism approach of subsection 

3.3.9, whereas in [6] there are neither jump components in the electricity spot price permitted, nor is 

there a seasonality function present, on the opposite.38                              

Secondly, an explicitly enlarged filtration like in (3.3.115) ought to be more suitable for practical 

applications, as the available forward-looking information on the future spot price behavior can be 

established more accurately than in the non-explicit setup of subsection 3.3.9.2, respectively of [6].39 

All in all, regarding the (Black-Scholes-type) option price formulas in (3.3.160) or in [6], one might 

doubt that the underlying model is able to capture the sophisticated properties of electricity price 

behavior sufficiently well. In other words, it seems difficult to believe that (3.3.160) portrays an 

adequate tool to derive option prices for, particularly, electricity derivatives under future information.  

                                                           
36 In our comparison we neglect the fact of having a different number of noises involved in both models, i.e. the 
reader may assume ª = 1 in (3.3.160) for a moment in order to concentrate on the more essential differences.    
37 Also recall our former announcements stated previously to (3.3.38), particularly the formulated key idea. 
38 Admittedly, the presence of a seasonality function does not influence option prices. Compare e.g. the 
equations (3.3.138) and (3.3.150) to verify this.   
39 Also in [10] the authors mostly work with non-explicit intermediate filtrations; particularly recall the equalities 
“(3.2), (3.9) and (3.23) in [10]” in this context.  
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Thirdly, the most striking curiosity throughout subsection 3.3.9.2 possibly is embodied by the fact that 

we obtain precisely the same pricing formula as in (3.3.160), even if we neither change the probability 

measure, nor work under an enlarged filtration at all! We now explain this peculiarity in more detail: 

Since Ê�,ℚ�  and Êℱ,ℙ are indistinguishable, the same is valid for the corresponding call option price 

processes W��,ℚ�  and W�ℱ,ℙ. This fact may be interpreted as if additional forward-looking information on 

future spot price behavior was irrelevant for both electricity futures and related option prices which 

sounds odd – not only with respect to the convincing argumentation in [10] counting in favor for a 

strong relevance of future information especially in electricity markets.               

Admittedly, we rather should compare W��,ℚ�  with W�ℱ,ℚ�  [instead of W��,ℚ�  with W�ℱ,ℙ] in order to examine 

how (or if at all) additional future information is incorporated into a certain enlarged filtration model 

(reasonably). Anyway, the just explained oddity between �ℱ, ℙ	- and ��, ℚ��-prices certainly has to be 

classified as the non-standard case, as the futures prices Ê�,ℚ�  and Êℱ,ℚ�  [in contrast to Ê�,ℚ�  and Êℱ,ℙ; 

compare the sequel of (3.3.157)] usually differ by an additive information yield/drift40 which, by the 

way, sounds economically reasonable. In this regard, we emphasize that for Protter’s measure change 

in (3.3.151) we do not at all have an associated �ℱ, ℚ��-Brownian motion available, unfortunately, and 

thus, neither know the dynamics of Êℱ,ℚ� , nor a formula for W�ℱ,ℚ� . For this reason, we only may 

compare W��,ℚ�  with W�ℱ,ℙ leading us to the mentioned curiosity of indistinguishable option prices. 

Consequently, it is neither possible to compute the information premium under ℚ�  for the setup in [6], 

resp. in 3.3.9.2 (merely under ℙ, as presented in [6]), which might be regarded as another disadvantage 

of Protter’s measure change, since futures prices are commonly defined under a risk-neutral measure 

what makes ℑ�,ℱ,ℚ�  become the more interesting object, not ℑ�,ℱ,ℙ. This problem fortunately does not 

arise in the setup of paragraph 3.3.9 [recall (3.3.110) and (3.3.133) ff. to verify this additional 

advantage of our dualism approach]. In order to prove the mentioned oddity in connection with �ℱ, ℙ	- and ��, ℚ��-call option prices, we finally claim that in the �ℱ, ℙ	-case we derive 

W��ℱ,ℙ = 7M���M�	 <3��, �	 :′��2�,�� + �Ê�ℱ,ℙ − Ó� :��2�,��A, 
�2�,� ≔ Ê�ℱ,ℙ − Ó3��, �	 ,            Ê�ℱ,ℙ = Ê�ℱ,ℙ + Y z� "����)	 �5R�

�
�

«
�P(  

instead of (3.3.160) and (3.3.161), respectively. Herein, the deterministic function 3��, �	 is like in 

(3.3.161). By the way, choosing ª = 1 and � = 0 inside the latter equations, we get precisely the same 

pricing formula as announced in Theorem 1 in [6]. Since the futures prices Êî ≔ Ê�,ℚ�  and Êℱ,ℙ are 

indistinguishable, the stochastic argument processes ��,� and �2�,� are so, too. Consequently, the related 

call option price processes W��,ℚ�  and W�ℱ,ℙ are indistinguishable, likewise.                      

All in all, appealing to the just enumerated shortcomings of Protter’s forward-looking measure change 

method, the latter does not at all seem to be appropriate for option pricing purposes under future 

information in electricity markets. 

The risk premium for Protter’s measure change In what follows, we aim to compute the risk 

premium for the just presented approach related to Protter’s measure change, as it seems to be 

interesting to study the altitude between electricity futures prices that stem from ℙ on the one hand, 

and from ℚ�  on the other (both under �), in more detail. We recall that the mentioned magnitude in fact 

can be measured by the risk premium which we define through [cf. subsection 3.3.1 above] 

                                                           
40 Actually, this is the case in subsection 3.3.9 [and also in e.g. paragraph 3.3.3; compare (3.2.23) with (A.2) to 
see this]. Moreover, we strongly refer to our quotation given previously to Condition A in this context. 
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ℜ��,ℙ,ℚ� �|(, |1	 ≔ Ê��,ℚ� �|(, |1	 − Ê��,ℙ�|(, |1	 = Y ��|1 − |(
«

�P( " ñ6ℚ� ��®����� − 6ℙ��®�����ò ��{¨

{Ì
. 

In accordance to (3.3.111), (3.3.152) and (3.3.155), [for � < |] we immediately obtain 

6ℚ� ��®����� − 6ℙ��®����� = −z� " 7M¢�®MR	 6ℙ�åR�,����� �)®
�

. 
Next, with respect to (3.3.153), the latter equation becomes 

6ℚ� ��®����� − 6ℙ��®����� = −z� " 7M¢�®MR	  6ℙ�5{� − 5R�����| − ) �)®
�

. 
Further, note that Prop. A.3 in [10] with ]��	 ≔ 1 �| − �	⁄ , S��	 ≡ 1, �( ≔ | and 5 ≔ 5� yields 

6ℙ�5{� − 5R����� = | − )| − �  6ℙ�5{� − 5������ 

for 0 ≤ � ≤ ) < | and � = 1, … , ª. Therewith, we receive 

6ℚ� ��®����� − 6ℙ��®����� = z� 6ℙ�5{� − 5������| − �  7M¢�®M�	 − 1�� . 
Hence, the risk premium turns out as 

ℜ��,ℙ,ℚ� �|(, |1	 = Y O���; |, |(, |1	 6ℙ�5{� − 5������«
�P(  

within deterministic functions 

O���; |, |(, |1	 ≔ ��  z� 7M¢�{ÌM�	 − 7M¢�{¨M�	 − �� �|1 − |(	��1  �|1 − |(	 �| − �	 . 
Verbalizing, the risk premium ℜ�,ℙ,ℚ�  associated to Protter’s measure change in (3.3.151) is given by a 

linear combination of deterministically weighted �-adapted random variables under ℙ. Remarkably, 

there is no longer a ℚ�-dependency present.  

 

The cross premium Reasoning about our above discussion concerning the striking differences 

between Protter’s change-of-measure approach on the one hand, and our dualism concept on the other, 

we yet recommend to introduce a tailor-made mathematical indicator which is able to portray our 

previous observations adequately. However, it seems to be reasonable to measure – besides the risk- 

and information premium – also the altitude between Ê�,ℚ�  and Êℱ,ℙ. In this context, let us remind that 

the risk premium describes the difference in futures prices with respect to the underlying probability 

measures, whereas the information premium captures the difference with respect to the involved 

information filtrations, in return. Innovatively, we now introduce a mixture of these magnitudes which 

we will call cross premium in our proceedings, as it measures the ‘crossed’ difference between �ℱ, ℙ	- 

and ��, ℚ��-futures prices. More accurately speaking, we define the cross premium via  
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�P�ℱ,�,ℙ,ℚ� �|(, |1	 ≔ �Ê��,ℚ� �|(, |1	 − �Ê�ℱ,ℙ�|(, |1	 

wherein the differentials are taken with respect to the time parameter �.41 Furthermore, taking 

(3.3.157) along with (3.3.155) into account, we remarkably receive  

�P�ℱ,�,ℙ,ℚ� �|(, |1	 = 0 

�ℙ ≡ ℚ��-almost-sure for all �. At this step, we emphasize that a vanishing cross premium adequately 

symbolizes the formerly described curiosity in connection with Protter’s measure change, particularly 

the resulting indistinguishable futures (and also call option) prices.  

In what follows, we aim to compute the cross premium also for our dualism setup presented in 

paragraph 3.3.9. To begin with, we adjust the above definition and announce 

�P�ℱ�,�2,ℙ,ℚ+ �|(, |1	 = �Ê��2,ℚ+ �|(, |1	 − �Ê�ℱ�,ℙ�|(, |1	. 
Next, similar computations as in (3.3.119) – (3.3.124) [but under ℱ�  and ℙ now] yield 

Ê�ℱ�,ℙ�|(, |1	 = þ��	 + Y�����	 ���
I

�P(  

where �����	 is such as defined in (3.3.125) and 

þ��	 ≔ " ���	|1 − |( ��{¨

{Ì
− Y ��|1 − |( " " " ; z��)	 7M¢�®MR	 ¥��)	 �.��;	 �) 

¡¢

�
®

��{¨

{Ì

I
�P«\( . 

Further on, using (3.2.4), (3.2.5), (3.2.24), (3.3.105), (3.3.106), (3.3.125) and (3.3.126), we obtain 

�Ê�ℱ�,ℙ�|(, |1	 = Y z�  �����	«
�P( �5�� + Y " ; Í���, |(, |1	 �+�ℱ�,ℙ��, �;	 

¡¢

I
�P«\(  

which evidently constitutes a �ℱ�� , ℙ�-martingale. Finally, the latter representation along with (3.3.127) 

claims the cross premium associated to the dualism setup of subsection 3.3.9 to be of the form   

�P�ℱ�,�2,ℙ,ℚ+ �|(, |1	 = Y<z� �����	 − =+���	 7¢�A �5���,�2,ℚ+�
�P( + Y z� �����	 �5���

«
�P�\(  

− Y z� �����	 �5��
«

�P( + Y " ; Í���, |(, |1	 <1 − 7·¢��,?	A ¥���	 �.��;	 �� 
¡¢

I
�P«\(  

wherein we have just used (3.2.5) and (3.2.20). Regarding the latter equation, we recognize that, due to 

the structure of (3.3.115), the formerly involved jump noises have canceled out completely. 

Ultimately, we remark that, in general, the cross premium indicator associated to any dualism 

approach never vanishes – except from trivial and not relevant cases. 

                                                           
41 Obviously, we likewise might have defined the cross premium without differentials – similar to our former 
definitions of the risk- and information premium. However, the actually presented differential version yields a 
vanishing cross premium for Protter’s measure change which we believe is very suggestive.   



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

75 

 

Protter’s forward-looking change-of-measure methodology for jump processes   

As a closing remark, we want to examine the question whether it is possible to establish an alternative 

forward-looking measure change (equivalent to the one described above for the Brownian motion 

case) but yet for jump processes. Having equation (3.2.4) in mind, we initially introduce a ℱ�-adapted, 

càdlàg, pure-jump, finite-variation42, increasing (compound Poisson-type) Lévy process via 

(3.3.162)                                                 

�� ≔ " " ; ���), ;	 
¡

�
�

 

within a real set £ ⊂ �0, ∞�. Next, for a �ℱ, ℙ	-compensated Poisson-random-measure (PRM) 

(3.3.163)                  ��+ℱ,ℙ�), ;	 ≔ ���), ;	 − �.ℱ,ℙ�), ;	 ≔ ���), ;	 − �.�;	 �) 

(with Lévy-measure .) we implement a related �ℱ� , ℙ	-martingale due to 

(3.3.164)                                           

 ��ℱ,ℙ ≔ " " ; ��+ℱ,ℙ�), ;	 
¡

�
�

 

being a Lévy process again which, by the way, plays the role of 5�� above. Further on, for time indices 0 ≤ � < | we define the filtrations  

(3.3.165)                  ℱ� ≔ zñ�Rℱ,ℙ: 0 ≤ ) ≤ �ò,        ℱ� ⊂ �� ⊂ ℋ� ≔ ℱ� ∨ zñ�{ℱ,ℙò 

whereby ℱ� = �� = ℋ� is valid whenever � ≥ |. Parallel to (3.3.152), we currently presume the 

existence of a ��-adapted stochastic process Q� (the so-called information yield [10]) which induces 

the ��� , ℙ	-martingale 

(3.3.166)                                                

���,ℙ ≔ ��ℱ,ℙ − " QR �)�
�

. 
Consequently, Proposition 2.3.3 along with (3.3.162) – (3.3.164) yields 

(3.3.167)                                                  

QR = 6ℙ��{ℱ,ℙ��R� − �Rℱ,ℙ
| − ) = 6ℙ��{|�R	 − �R| − ) − " ; �.�;	 

¡
= " ; ü 6ℙ�n ����, ;	®P{®PR ��R�| − ) − �.�;	ý 

¡
. 

Hence, merging (3.3.163), (3.3.164) and (3.3.167) into (3.3.166), we receive 

(3.3.168)                

���,ℙ = " " ; ��+�,ℙ�), ;	 
¡

�
�

≔ " " ; ñ���), ;	 − �.�,ℙ�), ;	ò 
¡

�
�

 

wherein the (stochastic) ��, ℙ	-martingale compensator .�,ℙ is explicitly given through 

                                                           
42 In accordance to Theorem 2.4.25 in [1], we hence assume ; to be .-integrable on the set �; ∈ ℝ: 0 < ; < 1 . 
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�.�,ℙ�), ;	 ≔ 6ℙ�n ����, ;	®P{®PR ��R�| − ) �). 
Note in passing that ��,ℙ no longer is a Lévy process, as its characteristics are not deterministic 

anymore. Combining the latter equation with (3.3.167), we instantly obtain 

QR = " ; ��.�,ℙ�), ;	�) − �.�;	� 
¡

. 
Adhering to (3.3.151), we further introduce a ℙ-equivalent �-forward-looking risk-neutral probability 

measure ℚ ≔ ℚ��	 via the Radon-Nikodym derivative  

(3.3.169) 

s�ℚ�ℙt�9 ≔ j�Â∙	� 

within a local ��� , ℙ	-martingale  

(3.3.170)                                      

Â� ≔ " "<7·�RM,?	 − 1A ��+�,ℙ�), ;	 
¡

�
�

 

and a (strictly positive) discontinuous Doléans-Dade exponential 

(3.3.171) 

j�Â∙	� ≔ 7#d ÃÂ� − 12 �Â∙X��Æ × Á �1 + ZÂR	 7MÇÈÉ
�[R[�

= 7#d f" " ℎ�)−, ;	 ��+�,ℙ�), ;	 
¡

�
�

− " "<7·�R,?	 − 1 − ℎ�), ;	A �.�,ℙ�), ;	 
¡

�
�

i. 
Herein, ℎ�), ;	 constitutes a ��R ⊗ô�£	�-previsible stochastic process which is supposed to be 

chosen such that 6ℙ�j�Â∙	�� = 1 holds for all � ≥ 0 what implies that j�Â∙	� designates a (��-

adapted) true ℙ-martingale – also compare section 2.2 in this context. By the way, from Theorem 

5.1.3 in [1] – or alternatively, from Theorem 2.1.6 above applied on (3.3.171) – we deduce that the 

exponential in (3.3.171) obeys the martingale representation 

(3.3.172)                                         j�Â∙	� = 1 + n j�Â∙	RM �ÂR�� . 
Furthermore, we presume the ��, ℚ	-compensated random measure to be of the form 

(3.3.173)                                    ��+�,ℚ�), ;	 ≔ ���), ;	 − �.�,ℚ�), ;	 

which gives rise to the ��� , ℚ	-martingale 

(3.3.174)                                             

���,ℚ ≔ " " ; ��+�,ℚ�), ;	 
¡

�
�

. 
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Exercise 3.3.7 (a)   Does Proposition 2.2.1 together with (3.3.169) – (3.3.173) allow to deduce the 

equality �.�,ℚ�), ;	 = 7·�R,?	 �.�,ℙ�), ;	? [Hint: It might be helpful to consider the case ℎ�), ;	 ≔ ; 

first. Also recall that the object .�,ℙ appearing inside (3.3.171) presently is not deterministic.] ∎ 

With respect to our former Brownian motion framework, we meanwhile remark that (3.3.167) 

corresponds to (3.3.153), (3.3.168) to (3.3.152) and (3.3.174) to (3.3.154), respectively. More 

importantly, we remind that our objective actually consists in an establishment of a jump-analogy to 

(3.3.155). For this purpose, we have to ensure that the jump processes �ℱ,ℙ and ��,ℚ become 

indistinguishable. Due to Theorem 2 in Chapter I of [78], we equivalently may guarantee that �ℱ,ℙ and ��,ℚ become modifications, i.e. ��ℱ,ℙ = ���,ℚ ℙ-a.s. (respectively, ℚ-a.s.)43 for all �. This, together with 

the presumed càdlàg-property of both involved processes, would imply that �ℱ,ℙ and ��,ℚ likewise are 

indistinguishable. Evidently, if ��,ℚ was a modification of (the Lévy process) �ℱ,ℙ, then by definition 

(3.3.175)                                   

" " ; ñ�.�,ℚ�), ;	 − �.ℱ,ℙ�), ;	ò 
¡

�
�

= 0 

would hold �ℙ ≡ ℚ� ∀�. Further on, for � > 0 [� = 0 is trivial] equality (3.3.175) would lead us to  

(3.3.176)                                    �.�,ℚ�), ;	 = �.ℱ,ℙ�), ;	  �= �.�;	 �)	 

�ℙ ≡ ℚ� for all 0 ≤ ) ≤ � �< |	 and ; ∈ £ ⊂ �0, ∞�. In addition, Lemma 1.4.8 in [1] would yield that ��,ℚ also was a Lévy process, moreover with the same characteristics as �ℱ,ℙ [which entirely stood in 

line with (3.3.176)]. Vice versa, we eventually might trouble Corollary 2.4.21 in [1] to deduce that 

(3.3.176) in return implies the modification property of (the underlying Lévy processes) ��,ℚ and �ℱ,ℙ.  

Exercise 3.3.7 (b)   Combining Exercise 3.3.7 (a) and (3.3.176), we finally ask: Does the choice 

ℎ�), ;	 ≔ ªJ ��.�,ℚ�), ;	�.�,ℙ�), ;	� = ªJ ��.ℱ,ℙ�), ;	�.�,ℙ�), ;	� = ªJ ö | − )6ℙ�n ����, ;	®P{®PR ��R�  �.�;	÷ 

�ℙ ≡ ℚ� ∀�), ;	 ∈ �0, |� × £ imply indistinguishable Lévy processes �ℱ,ℙ and ��,ℚ? ∎ 

 

3.4 Conclusions  

In order to model electricity spot prices in a realistic manner, we have utilized an arithmetic multi-

factor Ornstein-Uhlenbeck setup which originally has been proposed in [8]. The latter approach 

represents an appropriate alternative for modeling electricity spot price dynamics without sticking to 

an exponential onset such as known from e.g. the popular “Lucia and Schwartz model” (compare the 

notation in section 3.2.1 in [13] and the mentioned references therein). Having derived traditional, i.e. 

backward-looking, electricity futures and related call option prices for our underlying multi-factor 

framework, we subsequently have turned our attention towards the pricing of electricity derivatives 

under additional future information. Dealing with this subject, we have taken forward-looking insider 

information into account via different customized enlargements of the underlying information 

                                                           
43 As ℙ and ℚ are equivalent, both probability measures possess the same null-sets. Hence, it does not matter 
whether we write ℙ-a.s. or ℚ-a.s., actually. However, for the sake of notational simplicity, we will use the 
symbol �ℙ ≡ ℚ� to denote both cases simultaneously from now on. 
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filtrations. In this regard, our most innovative results consist in the provision of numerous derivation 

methodologies for both plain-vanilla and exotic option price formulas associated to electricity futures 

contracts – but yet under supplementary future information about the long-term level of the spot price 

or about correlated outdoor-temperature, for example. As we have seen in paragraph 3.3 for several 

times, in order to evaluate risk-neutral forward-looking electricity option prices, there is a strong need 

for approximation techniques and numerical pricing methods. On the contrary, for the mixed models 

such as presented in section 3.3.6 and 3.3.9 it fortunately has been possible to provide more explicit 

option price formulas than in our former forward-looking pure-jump cases [compare e.g. (3.3.55) with 

(3.3.131)]. Reasoning about subsection 3.3.2 and 3.3.3, we finally recognize that working with the 

(practical) explicit intermediate filtration �∗ [instead of �; compare the key idea described previously 

to (3.3.38)] not at all has generated independent increments in the corresponding futures price 

dynamics (3.3.46), unfortunately. Hence, the approximation techniques presented in Excursus A might 

have directly been applied as well on (3.3.37). On the other hand, in paragraph 3.3.6, for example, it 

has been crucial to work under �° (instead of under �8), since ��� in (3.3.92) otherwise would have 

been to be replaced by a conditional expectation such as appearing in (3.3.80). In this case, it would 

not have been clear whether the corresponding futures price, say ÊS , in contrast to (3.3.93), constituted 

a Sato-process. In addition, the appearing differential with respect to �, reading �6ℚ7�n 76��5ê��{� ��8��, 

would be unknown. Anyway, in subsection 3.3.9.2 we have compared our former dualism approaches 

with an alternative forward-looking measure change method such as proposed by Protter. In this 

context, we also have introduced the notion of a cross premium. Finally, comparing section 3.3.6 with 

3.3.9, we propose to correlate the BM-driven base components in (3.3.105) [generating the mean-level 

fluctuations of the electricity spot price] with the temperature dynamics (3.3.66) – parallel to the 

procedure presented in (3.3.68). Then the involved BMs can be correlated in the common sense – 

possibly appearing more appropriate than (3.3.68) – while our option pricing methods still work.     

  

3.5 Appendix 

At first, we want to prove a result that has been used in the context of (3.3.41) formerly. 

Lemma 3.5.1 Let ��∗ as defined in (3.3.38). Then for all � = 1, … , d and 0 ≤ � ≤ ) < | we have 

6ℚ��{� − �R����∗� = | − )| − �  6ℚ��{� − ������∗�. 
Proof Assume � ∈ �1, … , d  and 0 ≤ � ≤ ) < |. Then, combining Proposition A.3 with Remark A.4 

in [10] while taking (3.2.4), (3.3.47), (3.3.48) and Condition A (with ª ≔ d) into account, we deduce 

(3.5.1)                                         6ℚ��{� − �R����∗� − 6ℚ��{� − ������∗� =   

               
−6ℚ ~" " ; �����, ;	 

¡¢

R
�

���∗� = −6ℚ ~" " ; ��+��∗,ℚ��, ;	 
¡¢

R
�

���∗� − 6ℚ ~" " ; �.��∗,ℚ��, ;	 
¡¢

R
�

���∗�
= −6ℚ ~ " " " ;| − �  �����, ;	®P{

®P�
�� 

¡¢

�PR
�P�

���∗�
= − " 1| − � 6ℚ ~ " " ; �����, ;	 

¡¢

®P{
®P�

���∗��PR
�P�

�� = − " 6ℚ��{� − ������∗�| − � ��R
�

. 
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Introducing the abbreviation 

(3.5.2)                                                     TR� ≔ 6ℚ��{� − �R����∗� 

property (3.5.1) easily can be rewritten as 

TR� = T�� − " T��| − � ��R
�

. 
Consequently, in differential notation the latter equality points out as 

(3.5.3)                                                           

 �TR� = TR�) − | �). 
As in [10], a straightforward application of the separation of the variables technique from ordinary 

calculus leads us to the solution of (3.5.3) which at the same time proves the claimed result. ∎  

 

In addition, combining (3.3.45) with Lemma 3.5.1, we announce that the stochastic process ��{� − ���� �| − �	⁄  constitutes a ���∗, ℚ	-martingale (in �) for all 0 ≤ � < | and 1 ≤ � ≤ d.       

The following lemma is closely connected with our former announcements in Remark 3.2.3 

concerning the (averaged) Samuelson effect. 

 

Lemma 3.5.2 Let � ∈ �1, … , J . Then for fixed ) and |1 the (strictly) positive volatility function Í��), |(, |1	 such as defined in equation (3.2.24) is decreasing in its second argument |(. 

 

Proof Differentiating (3.2.24) with respect to |(, (for fixed ) and |1) we initially obtain 

(3.5.4)                          UÍ��), |(, |1	U|( = ��  z��)	  7M¢�{ÌMR	�1 − ���|1 − |(	� − 7M¢�{¨MR	��  �|1 − |(	1 . 
Further, we observe that the object V�|1 − |(	 ≔ 1 − ���|1 − |(	 just embodies the tangent on the 

function W�|1 − |(	 ≔ 7M¢�{¨M{Ì	 in the point �0,1	 what leads us to the inequality 

(3.5.5)                                             1 − ���|1 − |(	 < 7M¢�{¨M{Ì	 
which is valid for all |( < |1. Next, (3.5.5) is equivalent to 

(3.5.6)                     

 7M¢�{ÌMR	�1 − ���|1 − |(	� < 7M¢�{¨MR	  ⇔  UÍ��), |(, |1	U|( < 0 

which proves our lemma. ∎  
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3.5.1 A numerical evaluation scheme for forward-looking expectations 

Although the conditional expectation in (3.3.53) does not reduce to a usual one (since the contained 

stochastic process does not possess independent increments with respect to the conditioning filtration), 

it is interesting to study the corresponding usual expectation (3.3.54) in more depth. On a first sight, 

one might suspect that an analytical handling of (3.3.54) – in contrast to (3.3.53) – is easily possible. 

Actually, this is not the case, as we will see in our proceedings. Since the evaluation of the �+�ℱ,ℚ-part 

(� = d + 1, … , J) contained in (3.3.54) can be done similarly to our former arguing in the proof of 

Proposition 3.2.4 [compare (3.2.41)], we yet concentrate on the more challenging objects like   

(3.5.7)      

ℰℚ�∗ N�, �, £�; F, Õ,Ξ�; �+��∗,ℚ; dO ≔ 6ℚ Ï7#d fY " "�Õ + DF	 Ξ��), ;	 ��+��∗,ℚ�), ;	 
¡¢

�
�

¾
�P( iÐ 

within a complex number �Õ + DF	 and deterministic, continuous functions Ξ��), ;	. Anyway, for the 

sake of notational simplicity we currently examine (forward-looking) expectations of the stylized form 

(3.5.8)        

ℰℚ�∗��	 ≔ ℰℚ�∗ N0, �, £�;O�; �+��∗,ℚO ≔ 6ℚ Ï7#d f" " O��)	 ; ��+��∗,ℚ�), ;	 
¡¢

�
�

iÐ 

�� = 1, … , d	 within arbitrary real sets £� ⊆ ℝ ∖ �0 , deterministic and continuous (maybe complex) 

functions O��)	 and ��∗, ℚ	-compensated random measures �+��∗,ℚ such as introduced in (3.3.48). To 

begin with, we decompose (3.5.8) due to (3.3.48) as follows  

(3.5.9) 

ℰℚ�∗��	 = 6ℚ Ï7#d f" " G|?|*( O��)	 ; ��+��∗,ℚ�), ;	 
¡¢

�
�

+ " " G|?|'( O��)	 ; ����), ;	 
¡¢

�
�

− " " G|?|'( O��)	 ; �.��∗,ℚ�), ;	 
¡¢

�
�

iÐ. 
On a superficial view, one now could think that it was possible to apply the extended Lévy-Khinchin 

formula on (3.5.9) – similar to our previous arguing in (3.2.41). Unfortunately, we are not allowed to 

do this here, since the ��∗, ℚ	-compensating “Lévy-measure” .��∗,ℚ extraordinarily contains some 

randomness [compare its definition in (3.3.47)] in our current enlarged filtration case study. Hence, a 

(semi-) analytical evaluation – if there is any appropriate at all – of forward-looking expectations of 

the type (3.5.8) presently is a standing problem (at least to the best of our knowledge). At this step, we 

recall that the same is valid for conditional expectations of the type (3.3.53).  

Nevertheless, exploiting our linking equation (3.3.49), property (3.5.8) yet may be rewritten as 

(3.5.10)                           

ℰℚ�∗��	 = 6ℚ Ï7#d f" O��)	���R� − �{� − �R�| − ) �)��
�

iÐ. 
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Furthermore, putting Q��)	 ≔ O��)	 �| − )	⁄ , (3.5.10) can be rearranged as 

(3.5.11) 

ℰℚ�∗��	 = 6ℚ Ï7#d f" O��)	 ��R�
�

�
− �{� " Q��)	 �)�

�
+ " Q��)	 �R� �)�

�
iÐ. 

In what follows, we treat the three integral terms on the right hand side of (3.5.11) in their order of 

appearance: Firstly, for all � = 1, … , d we observe 

(3.5.12) 

" O��)	 ��R�
�

�
= Y O��)	 Z�R��[R[� = Y O��)	 ��R� − �RM� ��[R[�  

whereby the involved càdlàg pure-jump Lévy noises �� (recall Condition A with ª ≔ d therein) such 

as implemented in (3.2.4) [but yet with £� ⊆ ℝ ∖ �0 ] have to be simulated numerically.44 Secondly, 

the values �{� for � = 1, … , d are known from ��∗ [see (3.3.38)], so that an applicant (having access to 

some insider information) already should have established/guessed those values formerly.45 

Consequently, the evaluation of the inner integral in (3.5.11) should not cause any further problems: 

Either n Q��)	�)��  can be computed analytically at once, or it has to be handled by standard numerical 

integration methods for Riemann-integrals such as presented in section 19.3 in [19], for instance. 

Thirdly, for a (not necessarily equidistant) partition �≔ �0 = �� < �( < ⋯ < �¹ = �  the last 

integral term in (3.5.11) can be approximated with the following Euler-Maruyama scheme (see [64])   

(3.5.13) 

" Q��)	 �R� �)�
�

≈YQ���½M(� ���qÌ�  ��½ − �½M(�¹
½P(  

with � = 1, … , d, wherein the (finite-variation) Lévy processes �� have to be simulated numerically 

again, as explained above.  

                                                           
44 Note that in practical applications of our multi-factor OU-model the processes ��  �� = 1, … , J	 anyway have 
to be simulated right from the beginning in order to obtain electricity spot price paths and related futures and 
option prices, even in the non-forward-looking framework presented in subsection 3.2.1, 3.2.3 and 3.2.4. Hence, 
an applicant already should have been confronted with such simulation issues, so that a proper evaluation of 
(3.5.12) yet should not cause any further trouble. However, Example 2.1 in [8] provides some helpful comments 
on a suitable numerical simulation of arithmetic multi-factor electricity spot price trajectories and thus, of the 
noises �� likewise. 
45 Let us recall that we always assume a market insider to have access to some additional information about e.g. 
future electricity prices or outdoor temperature behavior at a future time |. Thus, exemplarily referring to the 
correlated temperature context of subsection 3.3.6 now, within appropriately chosen ingredients �, Ô��	 and �� �� = 1, … , ª	 we may deduce suitable noise integral-processes n 76R�5R�{�  �� = 1, … , ª	 from the forecasted 

temperature value 4{. In other words, we may invert equality (3.3.67) to receive proper Brownian noise integral-
processes from the predicted temperature 4{. Obviously, for ª > 1 an inversion in the common sense is 
impossible, while in this case suitable integral values have to be guessed, respectively established. Of course, 
weather forecasts do not tell us the precise noise values for our specific model but the (most likely) magnitude 
for 4{ is announced instead. Hence, an inversion/establishment in the just described sense naturally becomes 
necessary in practical applications. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

82 

 

Introducing the mesh Z��	 ≔ ÔÕ#([½[¹��½ − �½M(�, for every � = 1, … , d we assume 

(3.5.14) 

" Q��)	 �R� �)�
�

= ªDÔÇ��	→�  YQ���½M(� ���qÌ�  ��½ − �½M(�¹
½P( < ∞. 

Eventually, for � = 1, … , d let us denote the simulated Lévy noises by ��êêê, i.e. the (deterministic) 

realization of �� is denoted by ��êêê from now on. We further suppose these simulated noises to have 

(exponentially distributed) jump-times in the non-empty set X ⊂ �0, ��. Then, with respect to (3.5.12) 

and (3.5.13), our forward-looking expectation (3.5.11) trivially can be approximated through 

(3.5.15) 

ℰℚ�∗��	 ≈ 7#d fY O��)	 N�R�êêê − �RM�êêêêêOR∈X − �{� " Q��)	 �)�
�

+ Y Q���½M(� ��YqÌ�êêêêêê ��½ − �½M(�¹
½P( i 

whereby we have assumed the values �{� to be known, respectively established already (and thus, they 

do not have to be simulated anymore). However, we conclude that equation (3.5.15) ought to be 

suitable for a numerical evaluation of forward-looking (usual) expectations of the type (3.5.7).  

We finally remark that our forward-looking mixed model such as implemented in subsection 3.3.6 

fortunately admits a more explicit evaluation of the corresponding expectations [see (3.3.96) and 

(3.3.97)], since (3.3.81) not only constitutes a ��°, ℚ7	-martingale, but even a ��°, ℚ7	-Brownian-motion 

which possesses independent increments with respect to �°. For this reason, the conditional expectation 

in (3.3.96) firstly reduced to a usual one, whereas ℑ(� in (3.3.97) secondly could be computed further 

by a straightforward application of Itô’s isometry. However, the same statements keep valid for our 

mixed electricity spot price model presented in paragraph 3.3.9 (and also for our upcoming mixed 

temperature model in paragraph 5.3.4). 

 

3.5.2 The information premium under Z∗  

Parallel to our former considerations under � in subsection 3.3.1, we again examine the information 

premium but yet associated to the explicit intermediate filtration �∗ such as introduced in (3.3.38). To 

this end, adapting definition (3.3.3), we initially put 

(3.5.16)                               ℑ��∗,ℱ,ℚ�|(, |1	 ≔ Ê��∗,ℚ�|(, |1	 − Ê�ℱ,ℚ�|(, |1	. 
With similar computations as in paragraph 3.3.1 [but now using (3.3.39), (3.3.45) and Lemma 3.5.1], 

we obtain for 0 ≤ � ≤ |( < | ≤ |1 

(3.5.17)                                                        ℑ��∗,ℱ,ℚ�|(, |1	 = 

Y " |1 − ø�)	|1 − |(  Í��), ø�)	, |1	 Ï�{� − ���| − �  − ¥� " ; 7·¢�?	�.��;	 
¡¢

Ð �){¨

�
¾

�P(  

which actually corresponds to (3.3.19). Herein, we have set ø�)	 ≔ ÔÕ#�s, |( , as before.  
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On the opposite, for 0 ≤ � ≤ | ≤ |( ≤ |1 and ℱ� ⊂ ��∗ ⊆ �{∗ = ℱ{ we apply similar conditioning 

techniques as in (3.3.20) – (3.3.22) what leads us to 

(3.5.18) 

ℑ��∗,ℱ,ℚ�|(, |1	 = Y Í��|, |(, |1	z��|	
¾

�P( <6ℚ��{����∗� − 6ℚ��{��ℱ��A 
which designates the �∗-counterpart of (3.3.22). Again, we observe ℑ{�∗,ℱ,ℚ�|(, |1	 = 0. 

 

Remark 3.5.3 We finally underline that a proper computation, respectively approximation, of option 

prices (for e.g. electricity derivatives) under enlarged filtrations portrays a much more challenging 

task in contrast to the pure derivation of information premia. This fact immediately becomes clear if 

we compare the sophisticated derivation methodologies for option price formulas under enlarged 

filtrations on the one hand, and the less-demanding ones for information premia on the other. 

Exemplarily, we justify this statement while referring to our proceedings in paragraph 3.3.9:          

In connection with our derivations in (3.3.133) – (3.3.137) [dedicated to the information premium] we 

actually used precisely the same techniques that previously had been applied during our option 

pricing examinations in (3.3.119) – (3.3.131). Hence, option pricing implies the corresponding 

information premia, obviously. In conclusion, one could regard information premia as an actual by-

product of related option prices under forward-looking information. For this reason, future research 

should rather concentrate on the derivation of option prices under enlarged filtrations, than on 

information premia. ∎     

 

3.5.3 Optimal electricity futures portfolio selection under forward-looking information 

In this subsection we aim to examine the question of how to determine an optimal (in the sense of 

maximizing a certain utility functional) electricity futures investment strategy – particularly under 

supplementary knowledge on future price behavior. Right at the beginning, we announce that the 

current paragraph has been motivated by the sections 8.1, 8.6, 16.5 and 16.6 in [32] which extensively 

deal with portfolio analysis for an insider in a financial stock market. In what follows, we want to 

adapt some of the techniques presented in [32] to our electricity market framework. Starting off, we 

assume that there are two investment possibilities46 in the underlying electricity market, namely:  

• a bond/bank account Ò�, � ∈ �0, |(�, obeying 

(3.5.19)                                                         �Ò� = � Ò�  �� 

within a constant interest rate � > 0 and a deterministic initial value Ò� > 0 [recall (3.2.28)]. 

• an electricity futures Ê� ≔ Ê��|(, |1	, � ∈ �0, |(�, such as given in Proposition 3.2.2, obeying 

(3.5.20)                                       �Ê� = ∑ n ; Í���	 �+�ℱ,ℚ��, �;	 ¡¢I�P(  

where Í���	 ≔ Í���, |(, |1	 ≥ 0 is like defined in (3.2.24). 
                                                           
46 In the electricity market practice there of course are various futures contracts with different delivery periods 
available. In this regard, note that our model easily can be extended to multiple futures investment possibilities. 
Nevertheless, we here illustrate the one-bond-one-futures case for the sake of notational simplicity. 
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Similar to above, we introduce the filtrations ℱ� ≔ z�ÊR: 0 ≤ ) ≤ � ≔ z��R(, … , �RI: 0 ≤ ) ≤ �  and �� ≔ ℱ� ∨ z��{( , … , �{I  while we presume the (non-explicit) intermediate filtration �� to fulfill 

(3.5.21)                                                           ℱ� ⊂ �� ⊂ �� 

for all 0 ≤ � < | where |( < |. Consequently, the statements of (Condition A and) Lemma 3.3.1 (a) 

and (d) likewise apply in our current setting – even for indices � = 1, … , J yet. Next, in accordance to 

[32], we implement the set of admissible (forward-looking) portfolios due to 

 ��	 ≔ ñ� = ���	�∈��,{Ì�� � Ëà]ªà�, � − Õ�Õd�7�, n ��1 ��{Ì� < ∞  �ℚ�ò.  
Parallel to the (stock market) setup presented on p.129 in [32], for a portfolio � ∈  ��	 we suppose 

the stochastic value �� to denote the fraction of the total wealth ��% invested in the electricity futures Ê��|(, |1	 at time � ∈ �0, |(�. In other words, we here think of a fictive electricity market participant 

(equipped with some additional insider knowledge modeled by the enlarged filtration �) who wants to 

create an optimal portfolio with respect to his/her individual future information (which other traders do 

not have). Yet, we suppose such a trader to be a small investor and thus, to act as a price taker; that is, 

his/her transactions do not have a remarkable impact on the overall price dynamics – compare Remark 

8.22 in [32]. For this reason, we presently do not involve the futures price Ê�,ℚ inside (3.5.20), but Ê ≔ Êℱ,ℚ instead, as the latter designates the reference price for a small investor (even if he/she 

personally has access to some future information). Vice versa, whenever the available future 

information consists of public knowledge or if we consider a large investor (who may influence prices 

by his/her individual transactions; also compare Chapter 4 below), then we ought to work with Ê�,ℚ in 

(3.5.20). Nevertheless, our fictive insider indeed may choose a portfolio with respect to his/her 

individual future knowledge and hence, the portfolio � is allowed to be �-adapted. Furthermore, we 

assume all portfolios � ∈  ��	 to be self-financing in the spirit of equality “(4.17) in [32]”, i.e. we 

presume the corresponding wealth process ��% to fulfill the forward SDE (recall Def. 15.7 in [32]) 

(3.5.22)                                          �M��% = å�%��	 �Ò� + å(%�� −	 �MÊ� 

with deterministic initial wealth ��% = # > 0 and coefficient processes å�%��	 ≔ �1 − ��� ��% and å(%��	 ≔ ��  ��%. At this step, we stress that Ê� is ℱ�-adapted while å(%��	 is ��-adapted. Unfortunately, 

this special case is not captured by Itô’s integration theory. In other words, the object n å(%�Ê��  is not 

well-defined as an Itô integral. Thus, we have to work with forward integration in (3.5.22) whereas we 

assume the coefficient å(% to be forward-integrable with respect to Ê, respectively �+�ℱ,ℚ �� = 1, … , J	, 

while we understand the symbol �MÊ� in the sense of Definition 15.1 in [32].47 Anyway, if either å(% 

was ℱ-adapted or if Ê was replaced by Ê�,ℚ, then we would not need forward integration: In fact, for 

integrands and integrators adapted to the same filtration the forward and Itô integral coincide – see 

Remark 8.5, Lemma 8.9 and Corollary 8.10 in [32]. Conversely, in our case the integrand å(% is not 

adapted to the filtration generated by its integrator. Further on, throughout section 8.1 and 8.6 in [32] 

the underlying risky asset is modeled by a geometric BM, while we are facing an arithmetic pure-jump 

electricity futures price disposition recently. Hence, our forward equation (3.5.22) slightly deviates 

from the basic scheme of “(8.1) and (8.27) in [32]”. In addition, the portfolio analysis in [32] is done 

under the measure ℙ, whereas we work under a risk-neutral measure ℚ [recall (3.5.20)]. Finally, note 

that our current approach addresses the questions (1) and (3) on p.131 in [32]. However, taking 

(3.5.19) and (3.5.20) into account, the forward equation (3.5.22) becomes 

                                                           
47 A reader not familiar with forward integration firstly might investigate paragraph 8.2 in [32], particularly 
Definition 8.3 therein (dedicated to the BM-case), before switching to section 15.1 in [32].  
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(3.5.23)  

�M��% = ��M% Ï�1 − ��	 � Ò�  �� + �� Y " ; Í���	 �+�ℱ,ℚ��M�, �;	 
¡¢

I
�P( Ð. 

Herein, we require the integrands to fulfill analogous conditions as in “(16.175) – (16.178) in [32]” 

with ℍ≔ �, å��, ;	 ≔ ; Í���	. As a consequence of the Itô formula48 (see Th. 15.8 in [32]), we get 

(3.5.24)                                                                   ��% = 

# 7#d fÒ� − Ò� − " �R ~� ÒR + Y Í��)	 ¥� " ; 7·¢�?	�.��;	 
¡¢

I
�P( � �)�

�
+ Y " " ªJ�1 + ; Í��)	 �R	 ����M), �;	 

¡¢

�
�

I
�P( i 

wherein we have just used (3.2.20) along with Condition A. By the way, note that (3.5.24) corresponds 

to the equalities “(8.28) and (16.132) in [32]”. Further on, we introduce a utility function �: �0, ∞	 ⟶�−∞, ∞	 which we presume to be non-decreasing, concave and once continuously differentiable on �0, ∞	. Next, appealing to “(8.29) in [32]”, we examine an optimization problem of the type 

(3.5.25)                                                  )�d%∈ ��	 6ℚ<���{Ì% �A 
which requires us to find an optimal portfolio, say �∗, that maximizes the ℚ-expected utility related to 

the final total wealth �{Ì%∗
 among all admissible and self-financing portfolios in  ��	, in symbols 

6ℚ<���{Ì%∗�A ≥ 6ℚ<���{Ì% �A    ∀ � ∈  ��	. 
Nevertheless, we refer to subsection 8.6.2 in [32] – particularly, recall (8.50) and (8.52) along with 

Example 8.33 therein – and penalize large trading volumes in our insider’s portfolio by adding a 

penalty term to (3.5.25). Hence, instead of the latter, we newly consider the value/utility functional 

(3.5.26)                         T��#	 ≔ )�d%∈ ��	 6ℚ Ä���{Ì% � − (1 n �7�)	1{Ì� �R1 �)Å  
within a deterministic weight function �7�)	 > 0. Merging (3.3.11), (3.3.12) and (3.5.24) into (3.5.26) 

while presuming a logarithmic utility function, we derive [remind “(16.168) in [32]” at this step] 

(3.5.27)                                            T��#	 = ªJ�#	 + Ò{Ì − Ò� + 

)�d%∈ ��	 6ℚ Ï" ~Y "  ªJ�1 + ; Í��)	 �R	| − )  6ℚ ~ " �����, ;	®P{
®PR

Ñ�R� 
¡¢

I
�P( − �R1  �7�)	12 − �R � Ò� 7�R

{Ì

�
− �R Y Í��)	 ¥� " ; 7·¢�?	�.��;	 

¡¢

I
�P( � �)Ð. 

                                                           
48 The Itô formula for forward integrals essentially possesses the same structure as its counterpart for common 
Itô integrals – except from forward integrals appearing at the place of Itô integrals otherwise. We here refer to 
the very comprehensive (Brownian motion) case studies of section 8.3 in [32]; particularly, see Theorem 8.12 
and Remark 8.13 therein. Moreover, Example 8.15 in [32] might be considered in the context of (3.5.24).    
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To find the optimal portfolio �∗ which solves (3.5.27), we maximize (point-wise) the functional 

(3.5.28) 

^��R	 ≔ Y "  ªJ�1 + ; Í��)	 �R	| − )  6ℚ ~ " �����, ;	®P{
®PR

Ñ�R� 
¡¢

I
�P( − �R1  �7�)	12 − �R � Ò� 7�R

− �R Y Í��)	 ¥� " ; 7·¢�?	�.��;	 
¡¢

I
�P(  

with respect to �R (for fixed ) ∈ �0, |(�; see the proof of Th. 16.54 in [32]) leading us to the condition 

(3.5.29)                                                

 �7�)	1 �R + � Ò� 7�R = Y " ; Í��)	 ~6ℚ�n �����, ;	®P{®PR ��R��| − )��1 + ; Í��)	 �R� − 7·¢�?	 ¥� �.��;	� 
¡¢

I
�P( . 

As U1^��R	 U�R1⁄ < 0 is valid for all self-financing portfolios �R ∈  ��	, the (�R-adapted) solution �R∗ of (3.5.29) indeed gives the maximum of ^�∙	. Like in Corollary 16.41, Theorem 16.50 or Theorem 

16.54 in [32], the optimality condition (3.5.29) neither can be analytically solved for �R. Thus, 

numerical evaluation methods ought to be used in order to derive the optimal portfolio �R∗ ∈  ��	. 

However, we leave this topic for future work. Instead, we recall that Chapter 8 in [32] contains 

portfolio examinations (but for financial stock markets and geometric BM-approaches) wherein the 

maximization procedures can be done analytically – see “(8.4), (8.5), (8.9), (8.10), (8.44)49 and the 

sequel of Theorem 8.34 in [32]”. In this regard, we conclude with the following exercise. 

       

Exercise 3.5.4     Instead of (3.5.20) assume that the electricity futures price obeys the dynamics 

(3.5.30)                                                 �Ê� = ∑ Í���	 ����I�P(   

with pair-wise ℚ-independent �ℱ� , ℚ	-BMs ��(, … , ��I and let ℱ� ⊂ �� ⊂ ℱ� ∨ z��{(, … , �{I  where ℱ� ≔ z�ÊR: 0 ≤ ) ≤ � . Show that the corresponding (��-adapted) wealth process fulfills 

(3.5.31)                                                                 ��% = 

# 7#d fÒ� − Ò� − " �R ú� ÒR − Y Í��)	 6ℚ��{� − �R���R�| − )
I

�P( + �R Y Í��)	12
I

�P( û �)�
�

+ Y " �R Í��)	 �M��R��
�

I
�P( i 

with ��� , ℚ	-Brownian motions ���(, … , ���I. [Hint: use Prop. 2.3.3.]
50 

 

                                                           
49 By the way, the factor 1 �2z1	⁄  inside equality “(8.10) in [32]” must be replaced by 1 2⁄  simply. Moreover, 
the last summand on the right side of “(8.44) in [32]” actually has a term z1��	 in its denominator.      
50 Admittedly, (3.5.30) constitutes a rather unrealistic model, as the futures price may become negative. 
However, the analytical optimization works in this case at least. Further, note that the last integral inside the 
exponent of (3.5.31) actually is a Brownian Itô integral again, i.e. we may write ���R� instead of �M��R� therein. 
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$ow presume logarithmic utility and show that the corresponding (�R-adapted) optimal portfolio with 

respect to the utility functional (3.5.26) is given by 

(3.5.32)        

�R∗ = ö−� ÒR + Y Í��)	| − ) 6ℚ��{� − �R���R�I
�P( ÷ ö�7�)	1 + Y Í��)	1I

�P( ÷_ . ∎ 

 

Optimal electricity futures portfolio selection for a large investor with insider knowledge  

In the following, we investigate the situation where the additionally available future information 

consists of public knowledge, respectively when the electricity market insider is a large investor. As 

explained above, in these cases we ought to replace (3.5.20) by a suitable anticipating electricity 

futures price disposition. Actually, we assume that – besides the bank account (3.5.19) – a market 

insider may invest – instead of (3.5.20) – into an electricity futures with price dynamics such as given 

in equality (A.2) but with d ≔ J therein. In other words, our insider no longer is a price taker yet, but 

has his/her own reference price, namely Ê∗, explicitly depending on the known future noise values �{( , … , �{I. In this context, for a time partition 0 ≤ � ≤ |(, � < |, we put Ê�∗ ≔ Ê��,ℚ�|(, |1	 while we 

presume the enlarged filtration � to be like defined in the context of (3.5.21). More accurately 

speaking, putting d = J in (3.3.38), we obtain �∗ = � which corresponds to complete/exhaustive 

knowledge of the future electricity price at time |. In this case, inside the pure-anticipating futures 

price dynamics (A.2) there only appear integrals with respect to the forward-looking random measures �+(�,ℚ, … , �+I�,ℚ. Further on, the total wealth equation (3.5.22) currently translates into 

(3.5.33)                        �M��% = ��M%  ��1 − ��	 �Ò� + �� �MÊ�∗�,        ��% = # > 0. 
This time, we assume the class of admissible, self-financing (anticipating) portfolios  ��	 to consist 

of all càglàd, ��-adapted and ℚ-almost-sure Lebesgue-square-integrable stochastic processes ��, � ∈ �0, |(�, which fulfill the following conditions 

• �� Ξ���, ;	 is (forward-) integrable with respect to the ��, ℚ	-compensated random measure �+��,ℚ for all ��, ;	 ∈ �0, |(� × £� and � = 1, … , J, 

• �� Ξ���, ;	 > −1 for ℚ-almost-all ��, ;	 ∈ �0, |(� × £� �� = 1, … , J	, 

• �� ��% is (forward-) integrable with respect to Ê�∗ for all � ∈ �0, |(�. 
Furthermore, we presently suppose the stochastic value �� to denote the fraction of the total wealth ��% 

invested into the electricity futures Ê�∗ at time � ∈ �0, |(�. Next, appealing to (3.5.19), (3.3.47), (3.3.48) 

and (A.2) [the three latter equations taken with d = J and �∗ replaced by �], the (��-adapted) 

solution of (3.5.33) points out as 

(3.5.34)                                                                 ��% =                                                        

 # 7#d fÒ� − Ò� + " ~−�R � ÒR + Y " ªJ�1 + Ξ��), ;	 �R	 − Ξ��), ;	 �R| − )
 

¡¢

I
�P( " �����, ;	®P{

®PR
� �)�

�
+ Y " " ªJ�1 + Ξ��), ;	 �R	 �+��,ℚ��M), �;	 

¡¢

�
�

I
�P( i. 
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At this step, let us remind that #, Ò, � and Ξ� in (3.5.34) altogether are deterministic. Also note that 

(3.5.34) directly corresponds to (3.5.24) and that the appearing forward integrals with respect to �+��,ℚ �� = 1, … , J	 actually depict common (Itô-Lévy-type) stochastic integrals. In particular, we announce 

that the last sum inside the exponent of (3.5.34) designates a ��, ℚ	-martingale. Parallel to (3.5.26), 

we further introduce the target functional   

(3.5.35)                        

T��#	 ≔ )�d%∈ ��	 6ℚ ÏªJ��{Ì% � − 12 " �7�)	1
{Ì

�
�R1 �)Ð. 

Merging (3.5.34) into (3.5.35), we receive 

(3.5.36)                                              T��#	 = ªJ�#	 + Ò{Ì − Ò� + 

6ℚ Ï" )�d%∈ ��	 f−�R � ÒR − �7�)	12 �R1
{Ì

�
+ Y " ªJ�1 + Ξ��), ;	 �R	 − Ξ��), ;	 �R| − )

 
¡¢

I
�P( " �����, ;	®P{

®PR i �)Ð. 
Thus, a (point-wise) maximization of the function 

(3.5.37) 

7̂��R	 ≔ −�R � ÒR − �7�)	12 �R1 + Y " ªJ�1 + Ξ��), ;	 �R	 − Ξ��), ;	 �R| − )
 

¡¢

I
�P( " �����, ;	®P{

®PR
 

with respect to �R (for fixed ) ∈ �0, |(�) yields the (necessary) optimality condition 

(3.5.38)                                                   

 �7�)	1 �R + � Ò� 7�R = Y " �R Ξ��), ;	1�) − |��1 + Ξ��), ;	 �R�
 

¡¢

I
�P( " �����, ;	®P{

®PR
. 

Obviously, U1 7̂��R	 U�R1⁄ < 0 is valid for all portfolios �R ∈  ��	. Hence, 7̂�∙	 is concave and the 

solution of (3.5.38), say �êR, indeed constitutes the maximum of (3.5.37). In analogy to our former 

explanations in the sequel of (3.5.29) it is neither possible to compute the critical value �êR analytically. 

But in any case, from (3.5.38) we deduce that �ê remains �-adapted, as desired.        

Yet, it appears worthwhile to compare (3.5.38) with (3.5.29) in more depth. For this purpose, we 

initially remind Ξ��), ;	 ≔ ; �Í��)	 − :��)	� wherein Í� and :� are such as defined in (3.2.24) and 

(3.3.29), respectively. Thus, :� might be interpreted as some kind of (deterministic) subtractive 

information drift which affects the number of futures holdings in the utility-maximizing insider 

portfolio �ê essentially. Remarkably, from (3.5.38) we derive �êR ≠ 0 for all ) ∈ �0, |(�, since otherwise 

(3.5.38) would contradictory simplify to �Ò�7�R = 0. Interpreting this, we state that (no matter how �ê 

really looks like) the optimal fraction of the total wealth invested in the (anticipating) electricity 

futures Ê∗, namely �ê, always is different from zero and hence, an insider with portfolio �ê never 

invests into the bank account Ò solely [remind (3.5.33) in this context]. On the opposite, in (3.5.29) the 
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mathematical theory interestingly does not a priori exclude the instance �R∗ = 0. The two latter 

observations can be interpreted economically: Although having access to some risk-reducing 

individual future information, for a small investor the overall futures price Ê such as given in (3.5.20) 

actually embodies a (risk-afflicted) ‘big unknown’ which, in particular, may be negatively influenced 

by other large traders in the market. Hence, for a small investor acting as a price taker with portfolio �∗ [given as the solution of (3.5.29)] it temporarily might be optimal to invest into the risk-less bank 

account Ò solely [in which case �R∗ = 0 holds]. On the other hand, a large investor with portfolio �ê 

(whose trading decisions depend on the information flow modeled by � and who may essentially 

influence the overall price development by individual transactions) can maximize his/her utility if 

he/she permanently holds a non-vanishing number of electricity futures with price dynamics Ê∗, in 

symbols �êR ≠ 0 ∀) ∈ �0, |(�.  
In what follows, we complete our current portfolio selection investigations in electricity futures 

markets with an examination of the non-anticipating case wherein there is no additional future 

information available. To this end, we adhere to the setting of (3.5.19) – (3.5.20) but assume the 

portfolio � to be ℱ-adapted now which, by the way, makes any forward-integration (and also 

Condition A) become superfluous. Evidently, the latter assumption gives rise to a replacement of  ��	, respectively  ��	, by  �ℱ	. Hence, presuming ; Í��)	 �R > −1 for ℚ-almost-all �), ;	 ∈�0, |(� × £� �� = 1, … , J	, equality (3.5.27), respectively (3.5.36), translates into 

(3.5.39)                                              Tℱ�#	 = ªJ�#	 + Ò{Ì − Ò� + 

6ℚ Ï" )�d%∈ �ℱ	 f−�R � ÒR − �7�)	12 �R1
{Ì

�
+ Y "�ªJ�1 + ; Í��)	 �R	 − ; Í��)	 �R� 7·¢�R,?	 ¥��)	 �.��;	 

¡¢

I
�P( i �)Ð. 

The latter equation directly leads us to the ℱ-associated (utility-maximizing) optimality condition 

(3.5.40)                                                   

 �7�)	1 �R + � Ò� 7�R = Y " −�R Í��)	1 ;1 1 + �R Í��)	 ;  7·¢�R,?	 ¥��)	 �.��;	 
¡¢

I
�P( . 

We stress that – similarly to (3.5.29) and (3.5.38) – property (3.5.40) neither can be analytically solved 

for �R. Interestingly, if we (unrealistically) presume a constant electricity futures price and thus, 

choose J = 0 [or alternatively, Í� ≡ 0 and Ξ� ≡ 0] inside (3.5.29), (3.5.32), (3.5.38) or (3.5.40), then 

in each case we observe the utility-maximizing portfolio to be of the form 

�R = − � Ò� 7�R�7�)	1 = −1�7�)	1  �ÒR�)  

which is strictly negative for all ) ∈ �0, |(�. Furthermore, if there exists a time point )̃ ∈ �0, |(� where 

transactions in the insider’s portfolio (approximately) are non-penalized [recall (3.5.26)], in symbols �7�)	 → 0\ �) → )̃	, then �R → −∞ �) → )̃	 what does not constitute an admissible scenario with 

respect to  �ℱ	 [which is defined similarly to  ��	 above].              

In the sequel, we provide optimal consumption rates for electricity futures market insiders who we 

suppose to be large traders. The following section has been motivated by [74] and §16.4 in [32]. 
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A utility maximizing consumption rate for an anticipating electricity futures market insider  

In [74] the problem of finding an optimal consumption rate (which maximizes a given utility 

functional) in a financial stock market is solved, while there is no a priori assumption made whether 

the considered agent has more or less information available than what can be obtained from observing 

the price development in the underlying market. In what follows, we aim to do similar examinations 

but yet for electricity futures market insiders. Combining equality (3.5.33) above with “(4.6) in [74]”, 

for 0 ≤ � ≤ |( we introduce the consumption-portfolio cash flow/amount �� ≔ ��X,% due to    

(3.5.41)                              �M�� = �1 − ��� �� �Ò� + ��  ��M �MÊ�∗ − Ë�  �� 

with deterministic initial wealth �� ≔ # > 0. Herein, the stochastic component Ë� ≥ 0 constitutes the 

rate of consumption/dividends that the considered agent is free to take out of the cash amount at any 

time � ∈ �0, |(� – compare pp. 2 and 14 in [74] –, whereas Ò and Ê∗ preliminarily are such as defined 

in (3.5.19) and (A.2), respectively. However, we presume �� ≡ 1 from now on what makes it easier to 

concentrate on optimal consumption rates. In addition, we put d ≔ J inside (A.2) and (3.3.38) leading 

us to ��∗ = �� ≔ ℱ� ∨ z��{( , … , �{I  for � < |. In other words, we assume that the trader’s decisions 

are based upon the information filtration � which corresponds to complete/exhaustive knowledge of 

the electricity futures price at the future time | �> |(	. However, we further suppose the consumption 

rate Ë� to be ��-adapted. Hence, the agent’s consumption decision at time � actually depends upon the 

information obtained from observing the cash flow history ��R: 0 ≤ ) ≤ �  up to time �, namely ℱ�, 

plus the additional anticipating noise values �{( , … , �{I. Moreover, appealing to p.10 in [74], we choose 

to represent the consumption rate Ë� at any time � by its fraction �� of the total wealth �� defining 

(3.5.42)                                                           �� ≔ Ë� ��⁄  

while we call �� the relative consumption rate. Yet, we suppose �� to be ��-adapted likewise. Entirely 

taking the above assumptions into account, the cash flow equality (3.5.41) consequently points out as 

(3.5.43)                        
�M�� = ��M ÏY "Ξ���, ;	 �+��,ℚ��M�, �;	 

¡¢

I
�P( − ��  ��Ð , �� = #, 

�0 ≤ � ≤ |(	 where Ξ� is like defined in the sequel of (A.2), while (3.3.47) and (3.3.48) deliver 

(3.5.44)                        �+��,ℚ��M�, �;	 ≔ ����M�, �;	 − ({M� n �����, ;	®P{®P� ��. 
Innovatively, we allow the coefficients Ξ���, ;	 to depend on the relative consumption rate �� as well, 

i.e. in the following we replace these ingredients through å���, ;, ��	. Thus, (3.5.43) becomes 

(3.5.45) 

�M�� = ��M ÏY " å���, ;, ��	 �+��,ℚ��M�, �;	 
¡¢

I
�P( − �� ��Ð , �� = #. 

The latter cash flow equation appears suitable to model the situation where the considered agent is a 

large investor with reference price Ê�,ℚ depending on both the trader’s forward-looking information � and, in particular, on the trader’s individual (�-adapted) relative consumption rate �. In this case, 

one should expect a negative correlation between the futures price Ê�,ℚ and the consumption rate �, 
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since the higher the agent’s consumption, the lower might be his/her investments in electricity futures 

and thus, the futures prices might decrease.51 Admittedly, the concrete choice of å���, ;, ��	 as a 

function of �� requires some further examinations which, however, are left for future research. 

Nevertheless, we emphasize that throughout the financial stock market investigations in [74] the 

appearing cash flow coefficients do – contrarily to above – not depend on the underlying consumption 

rate. Next, in accordance to Def. 3.1 in [74], we introduce the set of admissible relative consumption 

rates, ℭ≔ ℭ��	 say, by all càglàd and �-adapted stochastic processes � = ���	�∈��,{Ì� which fulfill 

�� > 0, �� > 0   ∀� ∈ �0, |(�,       n ��  ��{Ì� < ∞  �ℚ�,        6ℚ<n |ªJ���	| ��{Ì� A < ∞.  
At this step, let us remark that – in analogy to (3.5.42) and [74] – to each � ∈ ℭ we associate the 

consumption/dividend rate Ë� = ��  ��. More importantly, adapting “(1.4), (1.5), (2.3), Problem 3.2 

and Problem 4.2 in [74]” to our purposes, we now consider the exercise of maximizing the ℚ-expected 

accumulated discounted logarithmic utility of the realized consumption rate Ë, in symbols 

(3.5.46) 

b��	 ≔ b���, #, |(	 ≔ 6ℚ Ï" 7c��	 ªJ��� ��� ��{Ì

�
Ð ⟶ ÔÕ#∈ℭ��	 ! 

wherein O��	 ≤ 0, � ∈ �0, |(�, designates a deterministic discounting exponent. From now on, we 

further assume å���, ;, ��	 > −1  �� = 1, … , J	 for ℚ-almost-all ��, ;, ��	 ∈ �0, |(� × £� × �0, ∞	 

whereas � ∈ ℭ��	. In addition, we denote the derivative of å� with respect to �� (for fixed �) by å��  

while we presume that å� and å��� possess the same sign, that is, å�å��� ≥ 0. [The latter presumption 

ensures that b��	 is concave.] Eventually, the (strictly positive) solution of (3.5.45) is given by 

(3.5.47) 

�� = # 7#d f" ~−�R + Y " ªJ�1 + å��), ;, �R	� − å��), ;, �R	| − )
 

¡¢

I
�P( " �����, ;	®P{

®PR
� �)�

�
+ Y " " ªJ�1 + å��), ;, �R	� ��+��,ℚ�), ;	 

¡¢

�
�

I
�P( i. 

Note in passing that we do no longer need to work with forward integrals in (3.5.47), since the 

appearing integrands are adapted to the filtration generated by their integrators. On the opposite, in 

[74] the situation is fundamentally different, as there are no a priori adaptation assumptions made on 

the coefficient processes in “(2.1), (4.1) and (4.2) in [74]” – except from the (not very restrictive) 

presumption that they are ℱÛ-measurable (compare the top of p.8 along with “(3.1) and (4.3) in [74]”). 

In particular, the forward-integrators 5 and �+ in [74] associate to ℱ, whereas our �+��,ℚ’s above 

associate to � instead. These facts constitute – besides the �-dependency of å� and our electricity 

market insider trading context – the most striking differences between [74] and our current case study. 

Further, let us remind that the compensated random measures in (3.5.44) designate ��, ℚ	-martingale 

                                                           
51 In this context, we must not forget that we always presume a large trader to be a ‘big player’ who has a 
significant influence on the overall electricity price dynamics. Also recall that the considered (large) trader in our 
current model setup possesses exhaustive knowledge about the future electricity price at time | (compare the 
definition of �) so that it should not at all sound absurd to assume the trader’s individual consumption to have a 
remarkable impact on the overall price development in the market. 
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integrators for all � = 1, … , J. Thus, substituting (3.5.47) into (3.5.46) while interchanging the 

integration order of the iterated martingale-integrals due to Fubini’s theorem, we instantly derive 

(3.5.48)   

b��	 = 6ℚ Ï" 7c��	 ªJ�# ��	 ��{Ì

�
− " " 7c��	 �R �) ���

�
{Ì

�
+ Y " " " 7c��	  ªJ�1 + å��), ;, �R	� − å��), ;, �R	| − )

 
¡¢

" �����, ;	®P{
®PR

�) ���
�

{Ì

�
I

�P( Ð. 
Similar to the argumentation on the top of page 12 in [74], we again apply Fubini’s theorem yet on 

(3.5.48) [and hereafter rename/interchange the integration variables] leading us to 

(3.5.49) 

b��	 = 6ℚ Ï" 7c��	 ªJ�# ��	 ��{Ì

�
− " " 7c�R	�) �� ��{Ì

�
{Ì

�
+ Y " " " 7c�R	�) ªJ�1 + å���, ;, ��	� − å���, ;, ��	| − �

{Ì

�
" �����, ;	®P{

®P�
 

¡¢

{Ì

�
I

�P( ��Ð
= 6ℚ Ï" ~7c��	 ªJ�# ��	 − ���, |(	 ��

{Ì

�
+ Y " ���, |(	 ªJ�1 + å���, ;, ��	� − å���, ;, ��	| − � " �����, ;	®P{

®P�
 

¡¢

I
�P( � ��Ð 

whereby we have just introduced the deterministic function ���, |(	 ≔ n 7c�R	�){Ì� ≥ 0 in the last 

equality. Referring to (3.5.46) and (3.5.49), we have to maximize (point-wise) the target functional 

(3.5.50)                                                              S���	 ≔ 

7c��	 ªJ�# ��	 − ���, |(	 �� + ���, |(	 Y " ªJ�1 + å���, ;, ��	� − å���, ;, ��	| − � " �����, ;	®P{
®P�

 
¡¢

I
�P(  

with respect to �� ∈ ℭ��	 (for fixed � ∈ �0, |(�) yielding the (necessary) optimality condition 

(3.5.51) 

7c��	�� = ���, |(	 ~1 + Y " å���, ;, ��	 å�� ��, ;, ��	�1 + å���, ;, ��	��| − �� " �����, ;	®P{
®P�

 
¡¢

I
�P( � 

which evidently cannot be solved analytically for �� – at least not, as long as we have not chosen 

concrete coefficient functions å�. Nevertheless, we observe U1S���	 U��1⁄ < 0 for all �� ∈ ℭ��	 and � ∈ �0, |(� so that the solution of (3.5.51), say ��∗, indeed embodies the maximum of S, respectively b. 
At this step, we underline that å� has to be chosen such that ��∗ remains ��-adapted, finite and strictly 

positive. Regarding the optimality condition (3.5.51) more accurately, we finally emphasize that – in 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

93 

 

contrast to [74] – our utility-maximizing relative consumption rate ��∗ reasonably depends (not only on 

the discounting exponent O as it is the case in “(2.5) and Theorem 3.3 in [74]” but also) on the 

electricity futures price volatility coefficients å(, … , åI (and their derivatives, respectively). However, 

from the author’s point of view it sounds a bit odd when the optimal relative consumption rate such as 

given in equality “(3.9) in [74]” does not depend on any of the coefficients �, z and å involved in the 

underlying cash flow equation “(2.1) in [74]”. Especially, this fact becomes striking in the financial 

stock market application presented in Chapter 4 of [74]. Herein, the optimal relative consumption-

portfolio-rate provided in Theorem 4.3 and Corollary 4.4 not at all depends on any of the cash flow 

coefficients &, �, Ò and � emerging in “(4.1), (4.2) and (4.6) in [74]” and thus, neither on the 

underlying bond price �� nor on the risky asset �(. Particularly from an economical perspective, this 

feature might appear a bit strange, since it does not constitute the scenario one would expect 

intuitively. Typically, electricity market participants’ consumption rates are suspected to be strongly 

linked with (bond and) electricity price development. In this regard, we remind that in our recent 

approach the optimal relative consumption rate ��∗ [given as the solution of (3.5.51)] obviously stands 

in close connection with the �-forward-looking electricity futures price Ê�,ℚ due to the appearance of å� inside (3.5.51) being an economically reasonable linking. By the way, if we worked with (3.5.43) 

at the place of (3.5.45), then the corresponding optimal consumption rate would read as ��∗ =7c��	 ���, |(	⁄ , � < |(, which stands in strong analogy to “(3.9) in [74]” (to see this, choose | ≡ |(, Q ≡ 0 and O deterministic therein). Further on, for illustrational purposes we assume O��	 ≔ −O�� 

within a constant O� > 0 for a moment. Then, for 0 ≤ � ≤ |( property (3.5.51) can be rewritten as 

(3.5.52)              
(Mºqdh�ðÌq9	ch = m�� + ∑ n 9 æ¢��,?,9	 æ¢e ��,?,9	�(\æ¢��,?,9	��{M�� n �����, ;	®P{®P� ¡¢I�P( oM(

 

whereby the left hand side of (3.5.52) converges towards 0\ when � approaches |(. Consequently, the 

appearing (�-dependent) coefficients å� have to be established in such a way that the sum (which we 

presume to be different from zero for each �) inside the curly brackets on the right hand side of 

(3.5.52) converges to plus infinity when � → |(M. This feature constitutes another condition concerning 

the practical choice of the coefficients å� in addition to our former requirements å� > −1, å�å��� ≥ 0 

and the �-adaptivity, finitude and strict positivity of �∗. In order to make similar convergence 

observations in (3.5.51) [as for (3.5.52) but without defining O��	 ≔ −O��], it suffices to presume in 

(3.5.51) that either 7c��	 is bounded from zero in an environment of |( or O��	 ↛ −∞ for � → |(M. 

However, if O��	 → −∞ �� → |(M	, then O���	 → −∞ �� → |(M	 likewise, so that L’Hôpital’s rule 

yields ���, |(	 7c��	⁄ → 0\ for � → |(M, similar to the corresponding case related to (3.5.52).  

Ultimately, we remark that we also could investigate other utility functionals than the one studied in 

(3.5.46), of course. For instance, one might do similar examinations as above but for a target function 

as proposed in “(2.3) in [74]” (although this case should not provide valuable new insights in addition 

to our recent findings). Yet, in certain situations it might be worthwhile to consider accumulating 

utility functionals of the type 6ℚ Än 7c��	 ªJ���  ��� ��{¨{Ì Å or 6ℚ Än n 7c��	 ªJ��� ��� �� ��®�{¨{Ì Å. 
Moreover, we could presume the discounting exponent O to be an either ℱ or �-adapted stochastic 

process, while the choice d ≔ J in (3.3.38) and (A.2) could be replaced by 0 < d < J. Consequently, 

the corresponding explicit intermediate filtration setup then would involve forward integration theory. 

Anyway, we would obtain another interesting exercise, if we did not a priori suppose �� ≡ 1 in 

(3.5.41) and instead studied the related consumption-portfolio-problem [requiring a two-dimensional 

optimization subject to the vector �Ë, �	]. In this context, it even might be reasonable to link the 

discounting exponent O with the bond (3.5.19), for example setting O��	 ≔ − n �R �)��  within a 

stochastic interest rate �R > 0. 
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Chapter 4 
 

 

Optimal Liquidation of Electricity 

Futures Portfolios under Market Impact 

 

 

4.1 A short introduction to market impact modeling  

It is a well-known fact that the electrical-energy industry worldwide possesses a rather monopolistic 

structure [37], whereas almost all electricity markets are dominated by a few big players merely whose 

individual trading activities may shift prices essentially (also recall our former announcements in 

section 1.1 in this context). Hence, an in-depth analysis of price impact effects for electricity markets 

should be of large interest for portfolio managers trading at the European Energy Exchange (EEX) 

[38] or the Scandinavian Power Exchange $ord Pool [73], for instance. In other words, the question of 

how to optimally liquidate an existing electricity futures portfolio over a fixed time horizon under the 

constraint of minimizing unfavorable market impact effects undisputably is of steadily growing 

relevance for energy risk management. In this chapter we thus invent a tractable price impact model 

for electricity futures, whereas we derive optimal liquidation strategies with respect to different target 

functions such as conditional expected trading costs, for example. In accordance to our previous 

motivating argumentation in section 1.1 and 3.3, we newly take supplementary forward-looking 

information about future electricity price behavior into account via a rigorous exploitation of 

enlargement-of-filtration methods also in our upcoming price impact examinations. Consequently, we 

derive optimal liquidation strategies for electricity futures portfolios under this insider trading 

machinery as well – a topic which has not at all been studied extensively in the literature, yet. 

Generally speaking, market impact models describe the feedback that individual trading activities in a 

particular market have on the underlying prices [82]. More precisely, on page 1 in [82] the authors 

declare market impact risk as “a specific kind of liquidity risk”, i.e. “the risk of not being able to 

execute a trade at the currently quoted price”, since the trade itself feeds back in a negative manner on 
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the underlying price process. All in all, market impact effects thus depict one of the basic price 

formation arguments [82]. Eventually, the main message throughout price impact literature is that 

liquidity costs associated to large trades can be reduced significantly by splitting the execution in 

question into a sequence of smaller ones, so-called “child orders”, which are spread over a fixed time 

interval – compare p.4 in [45], p.1 in [81] or p.1 in [82].    

To the best of our knowledge, there is not a single work in the market impact literature (comparable to 

the present discussion) dealing with optimal liquidation strategies particularly for electricity futures 

portfolios under enlarged filtrations. Nevertheless, in [43], [44], [45], [81] and [82] market impact 

models for ordinary financial stock markets are treated rigorously. In accordance to the just mentioned 

references, we first want to give a short introduction to some basic (stock) market impact material in 

the current paragraph, whereas in the forthcoming sections of this chapter we then propose a possible 

transformation of these stock market impact considerations to electricity markets. More accurately 

speaking, in this chapter we again consider electricity futures prices under enlarged filtrations (while 

slightly deviating from the basics presented in Ch. 3 actually) and subsequently turn to related 

forward-looking electricity market impact purposes. Obviously, relevant supplementary knowledge 

about future electricity price behavior should be taken into account when liquidating an existing 

electricity futures portfolio over a future time span. Therefore, in this chapter we newly provide 

optimal (in the sense of admitting minimal expected trading costs) liquidation strategies for electricity 

futures portfolios under enlarged filtrations associated to additional insider information.          

Returning to our main topic, we here essentially address the question of how to optimally liquidate a 

given electricity futures portfolio throughout a finite time horizon under the constraint of minimizing 

the expected costs of trading over a certain class of admissible liquidation strategies. In other words, 

we aim to present a solution to the exercise of “how to optimally split up a large [electricity futures] 

trade so as to minimize” unfavorable price impact effects (see p.1 in [44]). As explained in [45], [81] 

and [82], under price impact considerations, trades are commonly not executed all at once but 

gradually over a predetermined time range. Hence, in accordance to [45], a sell (buy) order of # shares 

executed over the time interval �0, �� in general corresponds to a non-increasing (non-decreasing) 

asset position � ≔ ���	�∈��,�� obeying the side conditions �� = # and �� = 0 (�� = 0 and �� = #), 

as “it is beneficial to split up large trades into a sequence of smaller ones that are spread over” an 

entire time span, instead of executing a big single trade at once (see page 4 in [45]). 

The remainder of the present chapter is organized as follows: In section 4.2 we introduce the set of 

admissible trading strategies and moreover, come up within a suitable market impact model for 

electricity futures prices. In this context, we derive expressions for the associated costs of trading and 

hereafter, parameterize the class of admissible trading strategies adequately. In section 4.3 we discuss 

different target functions of conditioned-expected-cost type and innovatively provide (semi-) explicit 

optimal liquidation strategies for electricity futures portfolios, both under the historical filtration and 

under forward-looking information flows modeled by enlarged filtrations. In this framework, we 

explicitly show to what extent our computed optimal liquidation strategies deviate from the so-called 

most natural trading strategy which is simply given by a deterministic and linear liquidation over the 

underlying fixed time interval. Ultimately, the most important conclusions are drawn in section 4.4 

wherein, in addition, some accompanying future research topics are mentioned briefly. 

 

4.2 A market impact model for electricity futures prices  

Let �Ω, ℱ, ℙ	 be a filtered and complete probability space which we assume to fulfill the usual 

conditions/hypotheses (compare p.3 in [78]). With respect to our upcoming forward-looking electricity 
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market impact considerations under enlarged filtrations, we stress that ℱ ≔ �ℱ�	�∈��,�� constitutes the 

common historical (respectively, retro or backward-looking) information filtration.  

First of all, we refer to p.4 in [45] and define a suitable class of admissible trading strategies. For this 

purpose, we initially denote the number of shares in a trader’s portfolio at time � ∈ �0, �� by a 

stochastic process ��. Next, without loss of generality, we restrict ourselves to sell orders (compare the 

explanation at the end of paragraph 4.1 above), that is, a position of # > 0 shares shall be liquidated 

over the fixed time interval �0, ��. Hence, we require the stochastic process � to solve the boundary 

conditions �� = # and �� = 0. Moreover, we assume our fictive uninitiated traders only to have 

access at time � ∈ �0, �� to an information flow modeled by the retro sigma-algebra ℱ�. Summing up 

the latter assumptions, we now give the following definition.  

 

Definition 4.2.1   We define the class of admissible trading/liquidation strategies  ≔  �ℱ	 by all 

càdlàg (French: continue à droite avec des limites à gauche), ℱ-adapted and time-differentiable 

stochastic processes � ≔ ���	�∈��,�� with finite total variation on �0, �� that fulfill the side conditions �� = # and �� = 0. By the way, we denote the derivative of  �� with respect to � by �g� frequently. ∎ 

 

With view on Definition 4.2.1, we recall that the most natural trading strategy in   is embodied by 

the following linear deterministic liquidation strategy (cf. the top of p.3 in [44]) 

(4.2.1)                                                           �î� ≔ # − #� �. 
Moreover, slightly deviating from (3.2.22), we define the electricity futures price (yet under ℙ) at time � ∈ �0, |(� associated to a swap contract which promises the delivery of one unit of electrical energy, 

say 1 MWh, over the future delivery period �|(, |1� via 

(4.2.2)                                    

Ê� ≔ Ê�ℱ,ℙ�|(, |1	 ≔ 1|1 − |( " 6ℙ��®|ℱ�	 ��{¨

{Ì
 

wherein, similarly to (3.2.9), the electricity spot price is assumed to obey 

(4.2.3)                          

�� = ���	 + Y ��
I

�P( ~#�  7M¢� + " z��)	 7M¢��MR	��R�
�

�
�. 

Anyway, in Remark 4.2.2 we will give some justifying comments on our extraordinary ℙ-choice 

inside equation (4.2.2). In particular, we therein explain why (respectively, in which cases or under 

which assumptions) we are allowed to deviate from the risk-neutral pricing standards [and thus, from 

our former ℚ-definition in (3.2.22)], actually introducing the electricity futures price in (4.2.2) under 

the true market measure ℙ. But previously, let us do some further computations on the electricity 

futures price (4.2.2) leading us to a representation of the latter in terms of �ℱ, ℙ	-compensated 

stochastic jump integrals. Concretely, we argue as follows: 
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Parallel to the proof of Proposition 3.2.2, a straightforward calculation [but under ℙ yet] using (3.2.4), 

(3.2.5), (3.2.9) and (4.2.2) yields the integral equation 

(4.2.4)                                          

Ê� = Ê� + Y " " ; Í��)	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P(  

within a deterministic initial value 

(4.2.5) 

Ê� ≔ 1|1 − |( " Ï���	 + Y �� ~#�  7M¢® + " " ; z��)	 7M¢�®MR	¥��)	 �.��;	 �) 
¡¢

®
�

�I
�P( Ð ��{¨

{Ì
 

and a deterministic volatility function Í��)	 ≔ Í��), |(, |1	 ≥ 0 such as given in (3.2.24). Herein, the 

compensated PRMs �+�ℙ are like defined in (3.2.5). Evidently, the electricity futures price Ê� in (4.2.4) 

constitutes a ℱ�-adapted (local) Sato-martingale under ℙ which is, in the light of its definition in 

(4.2.2), not a surprising result. 

Remark 4.2.2 Originally, the electricity futures price (4.2.2) is defined under a “risk-neutral 

(equivalent) martingale measure”, say ℚ, in the electricity market literature and not under the “true 

market measure” ℙ, as above. However, standard assumptions in the market impact literature (see 

e.g. [44], footnote 1 in [45] or page 2 in [82]) require the unaffected (stock) price process to form a �ℱ, ℙ	-martingale. Obviously, our futures price Êℱ,ℙ as implemented in (4.2.2) forms a �ℱ, ℙ	-

martingale by definition, whereas the risk-neutral counterpart Êℱ,ℚ as defined in (3.2.22) does not 

meet this feature in general. Fortunately, in accordance to the footnote 1 in [45], we also may ignore 

drift effects (which a measure change actually would induce) in our electricity market framework, if 

we assume short trading horizons reaching from a few hours to a few days merely. Additionally, we 

defend our extraordinary ℙ-choice in (4.2.2) by remarking that the latter simultaneously (as 

commonly under ℚ only) excludes the existence of any arbitrage opportunities and free lunches, if one 

assumes – as just explained – short and thus, drift-unaffecting trading horizons. Similarly to the 

arguing in [45], we here mainly aim to focus on the quantitative effects of electricity price impact 

descending from specific trading strategies under the constraint of minimizing a certain cost criterion, 

instead of examining drift-effects associated to probability measure changes. ∎ 

 

Transferring the basic concepts of Chapter 2 in [44] to our electricity futures market framework, we 

define the (trading-size dependent) perturbed electricity futures price Ê�� ≔ Ê����	 by the ℱ�-adapted 

stochastic process 

(4.2.6)                                                 Ê�� ≔ Ê� + ¯ �g� + Q ��� − #� 
wherein � ∈ �0, �� while ¯ and Q are assumed to constitute positive constants. Herein, the member Ê� 

firstly embodies the unperturbed, respectively unaffected electricity futures price as defined in (4.2.2), 

secondly, the term ¯�g� describes the temporary impact of trading �g��� shares at time � ∈ �0, ��, while 

the summand Q��� − #� finally designates the permanent impact accumulated over all transactions in 

the time interval �0, ��, which affects all (that is, both current and future) trades equally [82].  
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Note in passing that the price impact part of (4.2.6) obviously can be interpreted as a simple 

functional, ℑ say, of the liquidation strategy � ∈  , in symbols  

ℑ: ⟶ ℝ, ℑ�∙	 ≔ ¯ ∗ UU� �∙	 + Q ∗ �∙ −#�. 
Moreover, for �� ≡ # the price impact part vanishes, i.e. ℑ�#	 = 0, and thus, we get Ê�� = Ê� in this 

case what indeed appears economically reasonable (at least from the trader’s individual point of view).  

Further on, in accordance to Chapter 2 in [44], for a liquidation strategy � ∈   we introduce the (ℱ�-

adapted) cumulated costs arising from trading ��R shares at price Ê�R over the time range �0, �� via 

(4.2.7)                                               

��8 ≔ " Ê�R�
�

��R = " Ê�R �gR �)�
�

. 
Substituting (4.2.4) and (4.2.6) into (4.2.7), an integration by parts delivers 

(4.2.8)  

��8 = Q2 #1 − # Ê� + ¯ " �gR1 �)�
�

− Y " " ; �R Í��)	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( . 

Remark 4.2.3 At this step, we underline that, similarly to the argumentation in Chapter 2 in [44], the 

linear deterministic liquidation strategy �î� as defined in (4.2.1) turns out to be optimal for the specific 

risk criterion “minimum expected trading costs” also in our electricity market context, since  

(4.2.9)                                                 6ℙ���8� ≥ 6ℙ<��8î A   ∀� ∈                                                                 
holds true. The latter not at all is a surprising observation, if one compares our representation (4.2.8) 

with the corresponding equation in the middle of page 2 in [44]. ∎ 

 

Actually, we aim to examine the specific risk criterion ℱ�-conditioned expected trading costs in the 

sequel. Thus, in order to provide optimal liquidation strategies later, for time indices 0 ≤ � ≤ � we 

parameterize our trading strategies via 

(4.2.10)                                                 

��h ≔ � − �� ~# + � " Ê® ���
�

� 

within an arbitrary parameter � ∈ ℝ. Obviously, ��h embodies an admissible strategy in the sense of 

Definition 4.2.1, i.e. ��h ∈  . Moreover, for � = 0 we obtain the linear deterministic liquidation 

strategy as implemented in (4.2.1). Hence, the adjusting screw � appearing in (4.2.10) controls the 

deviation of the actually realized liquidation activity ��h from the most natural trading strategy �î� in a 

very simple and practical way. We remark that the concrete choice (4.2.10) has been motivated by 

equation “(14) in [44]” which itself is closely connected with the specific risk criterion “(7) in [44]”, 

admittedly.  
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Nevertheless, the proposed structure of ��h seems to be a reasonable generalization of the linear 

deterministic trading strategy �î� – not only for the specific risk criterion examined in [44]. Note that, 

unfortunately, it appears necessary to restrict the rather general class of admissible trading strategies   yet to strategies that are (for example) of the form (4.2.10) in order to make fruitful statements 

concerning optimal liquidation strategies also in our challenging electricity futures market framework.  

We recall that e.g. in [44] an optimal trading strategy is found without sticking to a restrictive 

presumption such as introduced in (4.2.10) above, whereas the authors therein have to deal with a very 

sophisticated stochastic control problem in return – although they have merely started with a rather 

simple geometric Brownian motion model with constant coefficients (compare equality “(3) in [44]”) 

describing the dynamics of the underlying stock price. By the way, throughout the majority of market 

impact literature there are remarkable often very simple (sometimes inadequate) setups for the 

underlying stock price process chosen (such as geometric Brownian motion or even Brownian 

Bachelier models with constant coefficients), whenever the main objective consists in the provision of 

explicit optimal trading strategies. Since in our electricity market framework we are facing a rather 

complex multi-factor jump-term dynamics for the underlying futures price (4.2.4), a restrictive choice 

such as made in (4.2.10) appears convenient in order to provide (at least semi-explicit) optimal 

liquidation strategies yet for electricity futures portfolios. Otherwise, one is left within a very 

complicated stochastic control problem descending from a multi-factor jump model. Nevertheless, 

some further research might deal with the derivation of optimal liquidation strategies for electricity 

futures portfolios without sticking to the constraint (4.2.10). 

Returning to our main topic, we substitute (4.2.4) into (4.2.10) and hereafter apply the stochastic 

Fubini-Tonelli theorem [similarly to our arguing in (3.3.19) formerly] which leads us to the (ℱ�-

adapted) representation 

(4.2.11)  

��h = � − �� ~# + � Ê� � + � Y " " ; Í��)	 �� − )	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( �. 

Moreover, from (4.2.10) we immediately receive the (ℱ�-adapted) derivative 

(4.2.12) 

�g�h = − 1� ~# + � " Ê® ���
�

+ �� − �	 � Ê�� = ��h� − � + � − �� � Ê� 

describing the instantaneous alteration in the electricity futures holdings. 

 

4.3 Optimal liquidation strategies  

In the present paragraph we devote our attention towards the derivation of optimal liquidation 

strategies for electricity futures portfolios with respect to different risk criterions: Firstly, we treat the ℱ�-conditioned expected costs case in subsection 4.3.1. Afterwards, we introduce forward-looking 

electricity futures price representations and consider optimal trading strategies under additional insider 

information on the future electricity price behavior which is modeled by enlarged filtrations.  
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4.3.1 A trading strategy admitting minimal i-conditioned expected costs   

Starting off, for 0 ≤ � ≤ � we introduce the risk criterion ℱ�-conditioned expected costs due to 

(4.3.1)                                        ℜℱ��	 ≔ ℜℱ,ℙ��, �, �	 ≔ 6ℙ���8j�ℱ��. 
Our objective yet consists in finding the precise parameter � (and simultaneously the corresponding 

liquidation strategy �h) which minimizes the above target function ℜℱ. Putting (4.2.8) [but with � ≔ �h such as given in (4.2.10) therein] into (4.3.1), we instantly derive 

(4.3.2) 

ℜℱ��	 = Q2 #1 − # Ê� + ¯ " �gRh  ��Rh
�

�
+ ¯ 6ℙ ~" �gRh  ��Rh

�
�

�ℱ�� − Y " " ; �Rh  Í��)	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( . 

Further on, using (4.2.12), the remaining conditional expectation in (4.3.2) becomes 

(4.3.3) 

6ℙ ~" �gRh  ��Rh
�

�
�ℱ�� = " 6ℙ N��gRh�1	ℱ�O �)�

�
= 1�1 " 6ℙkÏ# + � ~" Ê® ��R

�
+ �) − �	 ÊR�Ð

1 lℱ�m�)�
�

. 
Merging (4.2.10), (4.2.12) and (4.3.3) into (4.3.2), we immediately deduce 

(4.3.4) 

ℜℱ��	 = Q2 #1 − # Ê� + �̄1 "�# + � �R	1 �)�
�

+ �̄1 " 6ℙ��# + � �R�1|ℱ�	 �)�
�

− 1� Y " " ; Í��)	 �� − )	 ~# + � " Ê® ��R
�

� ��+�ℙ�), ;	 
¡¢

�
�

I
�P(  

wherein we have just introduced the short hand notation 

�R ≔ n Ê® ��R� + �) − �	 ÊR.  
Differentiating (4.3.4) with respect to �, we next get 

(4.3.5) 

�ℜℱ��	�� = 2¯�1 "�# + � �R	 �R �)�
�

+ 2¯�1 " 6ℙ��# + � �R� �R|ℱ�	 �)�
�

− 1� Y " " ; Í��)	 �� − )	 " Ê® ��R
�

 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( . 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

101 

 

Yet, the first order condition �ℜℱ��	 ��⁄ = 0 yields the minimizing
52 coefficient 

(4.3.6)                                                             

�Ú ≔ W − £ − n� + 5  

with abbreviations 

(4.3.7)            � ≔ n �R1 �)�� ≥ 0,          5 ≔ n 6ℙ��R1|ℱ�	 �)�� ≥ 0,          £ ≔ # n �R �)�� , 
n ≔ # " 6ℙ��R|ℱ�	 �)�

�
,         W ≔ �2¯ Y " " " ; Ê® Í��)	 �� − )	 �� ��+�ℙ�), ;	R

�
 

¡¢

�
�

I
�P( . 

Applying the stochastic Fubini-Tonelli theorem several times while exploiting the fact that Ê� such as 

given in (4.2.4) constitutes a �ℱ� , ℙ	-martingale, we moreover observe the equality n = −£ to be 

valid (see section 4.5 for a full proof). Hence, (4.3.6) further simplifies to �Ú = W �� + 5	⁄ . Ultimately, 

the precise optimal liquidation strategy yielding minimal ℱ�-conditioned expected costs reads as 

(4.3.8)                                                    

��ho = � − �� ~# + �Ú " Ê® ���
�

� 

within a liquidation intensity coefficient �Ú = W �� + 5	⁄ . In practice, the electricity futures price 

process Ê appearing inside (4.3.8) must be simulated numerically by using the dynamics (4.2.4). 

 

4.3.2 The electricity futures price under an enlarged filtration 

In this subsection we implement the flow of supplementary information about future electricity price 

behavior by an enlarged filtration. More precise, we assume a fictive informed trader to have an idea 

about the jump noise values �{( , … , �{¾ within a time partition 0 ≤ � < | ≤ � and 1 ≤ d ≤ J. At this 

step, we emphasize that | ≤ � constitutes the interesting case (that we want to investigate in the 

following), while | > � embodies the economically irrelevant scenario, rather. Hence, similarly to 

(3.3.38), we introduce the (explicitly) enlarged filtration ��∗ due to  

(4.3.9)                                                     ��∗ ≔ ℱ� ∨ zñ�{( , … , �{¾ò 

whereas we recall that ℱ� ⊂ ��∗ is valid whenever � < | and ℱ� = ��∗ holds for all time indices � ≥ |. 

Further on, for 0 ≤ � < | and � = 1, … , d we come up with the (��∗-adapted) information yield 

(4.3.10)                                                           Q�� ≔ ïð¢Mï9¢{M� . 
Then, in accordance to Condition A [with ª ≔ d] and (3.3.39) [but both under ℙ now], the process 

(4.3.11)                                         ��� − n QR�  �)��  

designates a ���∗, ℙ	-martingale for all � ∈ �0, |� and � = 1, … , d. 

                                                           
52 Note that �1ℜℱ��	 ��1⁄ > 0 is valid for all �. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

102 

 

Moreover, referring to Lemma 3.3.1 (d) [respectively to (3.3.47) and (3.3.48)], for � = 1, … , d the 

(stochastic) ��∗, ℙ	-compensator of the PRM ����), ;	 is given by 

(4.3.12)                                           

�.��∗,ℙ�), ;	 ≔ 1| − ) " �����, ;	®P{
®PR

�)  
whereas the ��∗, ℙ	-compensated random measure is thus of the form 

(4.3.13)                                    ��+��∗,ℙ�), ;	 ≔ ����), ;	 − �.��∗,ℙ�), ;	. 
Appealing to (3.3.45) and Lemma 3.5.1, for all � = 1, … , d and 0 ≤ � ≤ ) < | we get  

(4.3.14)                                          6ℙ��{� − �R����∗� = | − )| − �  6ℙ��{� − ������∗� = | − )| − �  <�{� − ���A. 
Parallel to our former argumentation in Remark 3.3.2 [but speaking for the ℙ-case now], we further 

remind that for � = d + 1, … , J the compensated PRMs �+�ℱ,ℙ��, ;	 are (not only ℱ�-adapted but also) ��∗-adapted ℙ-martingale integrators, since ℱ� ⊂ ��∗ is valid for all � < |.                 

Corresponding to (4.2.2), we yet define the electricity futures price under the enlarged filtration �∗ by 

(4.3.15)                                 

Ê�∗ ≔ Ê��∗,ℙ�|(, |1	 ≔ 1|1 − |( " 6ℙ��®|��∗	 ��{¨

{Ì
. 

By the way, note that Ê�∗ equals Ê� for � ≥ |. Furthermore, similar arguments as in (3.3.40) – (3.3.46) 

[but with respect to the measure ℙ now] yield the ���∗, ℙ	-martingale representation 

(4.3.16) 

Ê�∗ = Ê�∗ + Y " "�Í��)	 − :��)	� ; ��+��∗,ℙ�), ;	 
¡¢

�
�

¾
�P( + Y " " Í��)	 ; ��+�ℱ,ℙ�), ;	 

¡¢

�
�

I
�P¾\(  

within a deterministic initial value Ê�∗ along with deterministic functions Í��)	 ≔ Í��), |(, |1	 and :��)	 such as defined in (3.2.24) and (3.3.29), respectively. Herein, the �ℱ, ℙ	-compensated PRMs �+�ℱ,ℙ are such as implemented in (3.2.5). Finally, a rigorous comparison of (4.3.16) with (4.2.4) shows 

us to what extend additional future information about the jump noises �{( , … , �{¾ influences the 

electricity futures price dynamics under ℙ. 

 

4.3.3 A trading strategy admitting minimal Z∗-conditioned expected costs   

In accordance to (4.2.6), for a forward-looking electricity futures price process Ê�∗ such as introduced 

in (4.3.15) and a trading strategy ��h such as given in (4.2.10) [but Ê® therein replaced by Ê®∗ now], we 

define the perturbed electricity futures price under �∗ by dint of 

(4.3.17)                                             Ê��∗ ≔ Ê�∗ + ¯ �g�h + Q ���h − #�. 
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Referring to (4.2.7) and (4.2.8), we currently take (4.3.16) and (4.3.17) into account and thus obtain 

cumulated costs associated to the trading strategy ��h but yet under �∗ reading 

(4.3.18)                                                    ��8j,�∗ ≔ n Ê�R∗�� ��Rh 

= Q2 #1 − # Ê�∗ + ¯ "��gRh�1�)�
�

− Y " " ; �Rh  �Í��)	 − :��)	� ��+��∗,ℙ�), ;	 
¡¢

�
�

¾
�P(

− Y " " ; �Rh  Í��)	 ��+�ℱ,ℙ�), ;	 
¡¢

�
�

I
�P¾\( . 

Moreover, we now choose the ��∗-conditioned expected costs 

(4.3.19)                                   ℜ�∗��	 ≔ ℜ�∗,ℙ��, �, �	 ≔ 6ℙ N��8j,�∗	��∗O 

as our risk criterion. Parallel to the derivation methodology in section 4.3.1, by putting (4.3.18) into 

(4.3.19) while appealing to our former comments on the PRMs given in the sequel of (4.3.14), we get  

(4.3.20)                                                     

ℜ�∗��	 = Q2 #1 − # Ê�∗ + ¯ "��gRh�1�)�
�

+ ¯ 6ℙ ~" �gRh  ��Rh
�

�
���∗�

− Y " " ; �Rh  �Í��)	 − :��)	� ��+��∗,ℙ�), ;	 
¡¢

�
�

¾
�P(

− Y " " ; �Rh  Í��)	 ��+�ℱ,ℙ�), ;	 
¡¢

�
�

I
�P¾\( . 

For the sake of notational simplicity, we presume 0 ≤ � ≤ | = � in the following. That is, we suppose 

market insiders to have knowledge (respectively, an idea) about the future electricity price behavior 

particularly concerning the end of the liquidation interval. Then, similar to (4.3.3), we take (4.2.12) 

[but with Ê∗ instead of Ê therein] into account what leads us to 

(4.3.21)                         

6ℙ ~" �gRh  ��Rh
�

�
���∗� = " 6ℙ N��gRh�1	��∗O �)�

�
= 1�1 " 6ℙkÏ# + � ~" Ê®∗ ��R

�
+ �) − �	 ÊR∗�Ð

1 l��∗m�)�
�

. 
Minimizing ℜ�∗��	 [as given in (4.3.20) – (4.3.21)] with respect to �, we receive the optimal value 

(4.3.22) 

�∗ ≔ W(∗ + W1∗ − £∗ − n∗�∗ + 5∗  
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wherein we have just set 

(4.3.23)    

�∗ ≔ " �R∗1 �)�
�

, 5∗ ≔ " 6ℙ��R∗1���∗� �)�
�

, £∗ ≔ # " �R∗ �)�
�

, n∗ ≔ # " 6ℙ��R∗|��∗	 �)�
�

, 

W(∗ ≔ �2¯ Y " " " ; Ê®∗ �� − )	 �Í��)	 − :��)	� �� ��+��∗,ℙ�), ;	R
�

 
¡¢

�
�

¾
�P( , 

W1∗ ≔ �2¯ Y " " " ; Ê®∗ �� − )	 Í��)	 �� ��+�ℱ,ℙ�), ;	R
�

 
¡¢

�
�

I
�P¾\( , �R∗ ≔ " Ê®∗ ��R

�
+ �) − �	 ÊR∗.   

Applying the Fubini-Tonelli theorem several times while exploiting the fact that Ê�∗ [as given in 

(4.3.16)] designates a ���∗, ℙ	-martingale, we finally obtain n∗ = −£∗ [see section 4.5 for a proving 

sketch]. Therefore, (4.3.22) further simplifies to 

�∗ = W(∗ + W1∗�∗ + 5∗. 
Again, we observe �1ℜ�∗��	 ��1⁄ > 0 to hold for all �. Hence, the liquidation parameter �∗ indeed 

minimizes the (�∗-forward-looking) conditional expected liquidation costs ℜ�∗��	. In conclusion, the 

specific liquidation strategy  

(4.3.24) 

��h∗ = � − �� ~# + �∗ " Ê®∗ ���
�

� ∈  ∗ ≔  ��∗	 

with liquidation intensity �∗ = �W(∗ + W1∗	 ��∗ + 5∗	⁄  is optimal in the sense of minimizing our cost 

criterion (4.3.19). Here,  ∗ is defined parallel to   in Def. 4.2.1. Finally, comparing (4.3.6) with 

(4.3.22), respectively (4.3.7) with (4.3.23), we notice an outstanding similarity, whereas the previously 

appearing electricity futures price process Ê recently has been replaced by its insider trading 

counterpart Ê∗. Actually, the most striking difference between (4.3.6) and (4.3.22) consists in the 

decomposition of the former summand W yet into W(∗ + W1∗. Herein, the term W1∗ closely resembles W, 

whereby additional insider information is weaved into our (forward-looking) optimal liquidation 

strategy (4.3.24) via the innovative summand W(∗. Unfortunately, any further (analytical) treatment of 

the conditional expectations such as appearing inside the coefficients 5 and 5∗ seems to be an 

extremely challenging issue and thus, ought to be examined in some separated future research. 

Nevertheless, in subsection 4.5.1 below we propose an initial approach related to a linear interpolation 

scheme in order to approximate the coefficient 5, while similar estimation techniques can be used to 

deal with 5∗ likewise. Maybe, it is moreover possible to modify (4.2.10) in such a way that ��h 

possesses independent increments with respect to ℱ�, respectively ��∗. If this was the case, then the 

conditional expectations in (4.3.3) and (4.3.21) would conveniently reduce to usual ones, at least. 

Remark 4.3.1 As a closing remark, we aim to underline the following connections between, firstly, 

insider trading models in electricity markets with (initially) enlarged filtrations, related price impact 

considerations and, thirdly, the theory of backward stochastic differential equations (BSDEs). In our 
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opinion, this triumvirate embodies a challenging future research area both from a mathematical as 

well as from an economical point of view. To begin with, we stress that so-called ‘insiders’ (in any 

market) are usually supposed to be ‘large traders’ so that it should sound legitimate to assume them to 

be able to manipulate the underlying price dynamics by their individual transactions, respectively 

trading behavior. As discussed above, this fact immediately gives rise to price impact examinations 

also in electricity markets. $ow, remind that most enlarged filtration approaches throughout this 

thesis (and also in the literature) essentially possess the coarse structure “historical sigma-algebra ℱ 

plus a sigma-algebra generated by future noise/price values” [compare e.g. (4.3.9)], while large 

investors (due to influential individual transactions) ought to be able to achieve/establish a certain 

desired price level at a fixed future time (or drive the price close to such a level at least). This is where 

the theory of ‘degenerated’ [as in general d < J in (4.3.9)] BSDEs enters the scene, whereas we 

simultaneously have detected a beneficial method to establish the future noise values [such as �{( , … , �{¾ in (4.3.9)] in practice. By the way, for a large investor it a priori sounds reasonable to 

assume d close to J. In this context, we recall that if d = J in (4.3.9), then the futures price Ê{∗�|(, |1	 

in (4.3.15) entirely is determined by the noise values �{( , … , �{I. Evidently, this instance is closely 

connected with the common BSDE-case. Moreover, previously to (4.3.21) we have supposed market 

insiders to have knowledge about future electricity price behavior particularly concerning the end of 

the liquidation interval (i.e. | = �) which also fits well into the just described framework. ∎  

 

4.4 Conclusions  

In this chapter we have proposed a suitable market impact model for electricity futures prices both 

under common knowledge and under supplementary forward-looking information about future 

electricity price behavior. More precisely, we have derived optimal liquidation strategies for electricity 

futures portfolios by minimizing different target functions of conditional expected cost type over a 

suitably parameterized class of admissible trading strategies. A challenging related research topic 

might consist in a numerical study of the invented electricity futures price impact models. Especially, 

it would be interesting to visualize the precise market impact effects that descend from additionally 

available future information by numerical simulations. Moreover, a comparison of our forward-

looking optimal liquidation strategy (4.3.24) with the (actually backward-looking) optimal liquidation 

strategy (4.3.8) certainly would yield some worthy new (visualized) insight concerning the 

undisputable advantages of insider information. Last but not least, a proper optimization of our 

conditional cost criterions without sticking to the (admittedly rather restrictive) parameterization of 

admissible trading strategies should embody another reasonable extension of our model, whereas the 

handling of the incoming multi-factor jump-noise optimal control problem for this much more general 

case definitely bears a challenging issue. 

 

4.5 Appendix 

In this paragraph we show why n = −£ holds in (4.3.7). Firstly, from the definition of n and � we get 

(4.5.1) 

n = # "k" 6ℙ�Ê®|ℱ�	 ���
�

+ " 6ℙ�Ê®|ℱ�	 ��R
�

+ �) − �	 6ℙ�ÊR|ℱ�	m�)�
�

. 
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Since the futures price (4.2.4) embodies a �ℱ, ℙ	-martingale, equation (4.5.1) further simplifies to 

(4.5.2) 

n = # "k" 6ℙ�Ê®|ℱ�	 ���
�

+ Ê�  �2) − � − �	m�)�
�

= # " " 6ℙ�Ê®|ℱ�	 �� �)�
�

�
�

= # �� − �	 6ℙ ~" Ê® ���
�

�ℱ��. 
Substituting the representation (4.2.4) into the last expression in (4.5.2) and hereafter, applying the 

Fubini-Tonelli theorem, we finally end up with 

(4.5.3) 

n = # �� − �	 ÏÊ� � + Y " " ; Í��)	 �� − )	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( Ð. 

On the opposite, from definition (4.3.7) we deduce 

(4.5.4) 

£ = # ~" " Ê® �� �)R
�

�
�

+ "�) − �	 ÊR �)�
�

� =  # ~"�� − �	 Ê® ���
�

+ "�) − �	 ÊR �)�
�

�
=  # �� − �	 " Ê® ���

�
. 

Merging (4.2.4) into (4.5.4), a straightforward application of the Fubini-Tonelli theorem yields 

(4.5.5) 

£ = # �� − �	 ÏÊ� � + Y " " ; Í��)	 �� − )	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P( Ð 

which finally leads us to £ = −n, as desired. The argumentation for n∗ = −£∗ can be done in a 

similar manner, yet using the dynamics (4.3.16) instead of (4.2.4). 

 

4.5.1 A linear interpolation scheme for a particular liquidation cost term  

To begin with, we claim that equation (4.3.2) can be rewritten as 

(4.5.6)            

ℜℱ��	 = Q2 #1 − # Ê� + ¯ ôℱ,ℙ��, �, �h	 − Y " " ; �Rh  Í��)	 ��+�ℙ�), ;	 
¡¢

�
�

I
�P(  



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

107 

 

wherein we have just set 

(4.5.7)                                

ô ≔ ôℱ,ℙ��, �, �h	 ≔ 6ℙ ~"��gRh�1�)�
�

�ℱ��. 
Further on, regarding the progress of paragraph 4.3.1, we recognize that ô in (4.5.7) and 5 in (4.3.7) 

are closely linked, as the latter directly originates from the former, obviously. However, we yet 

propose a linear approximation scheme to treat the object ô more accurately (than 5 in subsection 

4.3.1 before). In accordance to (4.2.12), for 0 ≤ � ≤ � we initially claim the estimation 

(4.5.8)  

��g�h� ≤ #� + |�|� ~" Ê® ���
�

+ �� − �	 Ê�� ≤ #� + |�| ÔÕ#�[®[� Ê® 

ℙ-a.s. Additionally, for � ≠ 0 and a constant Â > &� > 0 we assume the boundary condition 

ÔÕ#�[®[� Ê® < (|h| NÂ − #�O 

to be in force ℙ-a.s. Consequently, we receive ��g�h� < Â ℙ-a.s. for all 0 ≤ � ≤ �. Since we have 

restricted ourselves to liquidation strategies formerly, we actually obtain −Â < �g�h ≤ 0 ℙ-a.s. for all 0 ≤ � ≤ � (which, by the way, should not stand in contradiction to the economical practice). Parallel 

to Excursus A, we next implement a (not necessarily equidistant) partition of the interval �−Â, 0� via �−Â = �� < �( < ⋯ < �¹ = 0  in order to approximate the real function ℎ��	 ≔ �1 in each 

partial section A�½, �½\(A �� = 0,1, … , Ô − 1	 by its particular secant 

(4.5.9)                                        )½��	 = ��½\( + �½��� − �½� + �½1. 
Hence, with respect to (4.5.7) and (4.5.9), we finally get the approximation 

(4.5.10) 

ô = 6ℙ ~" ℎ��gRh� �)�
�

�ℱ�� ≈ 6ℙ ~" )½��gRh� �)�
�

�ℱ�� = −��½\( + �½� # − � �½ �½\( 

whenever �gRh ∈ A�½, �½\(A holds ℙ-a.s. for all 0 ≤ ) ≤ � and � = 0,1, … , Ô − 1. Reasonably, in the 

case �gRh = −Â, ) ∈ �0, ��, we set ô ≔ Â1 �.  

Eventually, we remark that the other problematic coefficient 5∗ such as appearing in (4.3.23) can be 

treated by applying a similar approximation scheme as above.   
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Chapter 5 
 

 

Pricing and Hedging Temperature 

Derivatives under Future Weather 

Information 

 

 

5.1 A short introduction to temperature derivatives  

The creation of competitive weather markets like the Chicago Mercantile Exchange (CME) [28], 

wherein options on weather indices are traded somehow similar to financial products at ordinary stock 

markets, has brought up new challenges concerning the stochastic modeling of those non-tradable 

underlyings such as temperature, rainfall, snowfall, sunshine, wind, or even the number of frost days 

in a certain location etc. – cf. [13]. However, in this chapter we particularly concentrate on suitable 

mathematical descriptions for different kinds of temperature indices. More precisely, in this work we 

derive risk-neutral option prices for plain-vanilla temperature derivatives on the basis of a mean-

reverting Ornstein-Uhlenbeck temperature model allowing for seasonality both in its mean-level and 

its volatility, whereas multiple pure-jump Lévy-type processes as driving noises allow for seasonal 

dependent jump-amplitudes and frequencies. Especially, we take stochastic forecasts about future 

weather conditions that are available to well-informed traders into account via adequate enlargements 

of the underlying information filtrations. In this insider trading context, we derive expressions for 

forward-looking cumulative average temperature (CAT) futures and cooling degree day (CDD) 

futures, whereas we provide a pricing formula for a European call option written on the former. 

Ultimately, we construct optimal positions in a temperature futures portfolio under forecasted weather 

information to hedge against both temporal and spatial temperature risk simultaneously. Anyway, let 

us initially make some comments concerning the usual (actually backward-looking) mathematical 

definitions of temperature indices that presently can be found in the literature (see e.g. [12] or [13]). 
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As mentioned above, the Chicago Mercantile Exchange inter alia organizes trade in financial 

derivatives written on outdoor temperature. Hence, the market participants actually may trade in 

futures contracts written on temperature indices such as cumulative average temperature (CAT), 

Pacific rim (PRIM), heating degree days (HDD) or cooling degree days (CDD) [13], whose precise 

mathematical descriptions will be introduced in the following. 

With reference to [13], we exemplarily study a CDD futures contract in detail now: To begin with, 

imagine that air-conditioners, for instance, often are switched on when the temperature increases 

above 18°C [13]. In this context, it makes sense to examine the stochastic process 

(5.1.1)                                      W££��	 ≔ �4� − Ë�\ ≔ ÔÕ# �4� − Ë, 0  �≥ 0	 

measuring the altitude (whenever it is positive) between the instantaneous daily average outdoor 

temperature 4� at time � ≥ 0 and a constant threshold Ë (=18°C). Consequently, the stochastic process 

in (5.1.1) not only visualizes the time ranges during which air-conditioning might be switched on, but 

also gives us a feeling for the intensity of necessary cooling which itself strongly depends on the 

difference between 4� and Ë, evidently. The following definitions are taken from section 10.1 in [13]:  

We introduce the accumulated CDD index over the measurement period �|(, |1� via 

(5.1.2)                                              

W££�|(, |1� ≔ " W££��	 ��{¨

{Ì
= " �4® − Ë�\��{¨

{Ì
 �≥ 0	 

whereas we obtain the corresponding HDD analogue by dint of 

(5.1.3)                                                

c££�|(, |1� ≔ " �Ë − 4®�\��{¨

{Ì
 �≥ 0	. 

Finally, as in [13], we define the (real-valued) cumulative average temperature (CAT) index through 

(5.1.4)                                                     

W���|(, |1� ≔ " 4® ��{¨

{Ì
. 

For the sake of completeness, we provide the definition of the Pacific rim temperature index (PRIM) 

/p_Â�|(, |1� ≔ W���|(, |1�|1 − |(  

although we will not investigate the latter in any more detail, as it very closely resembles the CAT 

index (5.1.4), obviously. Note in passing that, in accordance to p. 278 in [13], we assume the above 

contracts altogether to be “settled [financially] in terms of a currency with unit one”. That is, in 

contrast to the real CME practice, we do not multiply the above properties (5.1.2) – (5.1.4) with a 

factor like 20$ or 20£ to convert them into money [13]. (See Benth et al. [13], section 1.3 and 10.1 

therein, to read more about this money-converting context and the real CME practice.)  
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Thus, as explained on p. 278 in [13], the buyer of a CDD futures contract will receive the precise 

amount of money as given in (5.1.2) at the end of the measurement period |1. In order to attain this 

right, the buyer has to pay the CDD futures price Êq¡¡��, |(, |1	 at time � prior to the start of the 

measurement period |( [13]. The profit from this trade then obviously is given by the difference 

W££�|(, |1� − Êq¡¡��, |(, |1	 

[13]. Further on, as announced in section 10.1 in [13], common no-arbitrage arguments yield the 

CDD futures price with respect to the accumulated past information which is stored in a filtration 

(generated by the temperature process 4), say ℱ�, as the ℱ�-conditioned expected payoff under a (still 

to be determined) risk-neutral probability measure ℚ, in symbols  

(5.1.5)                                       

Êq¡¡��, |(, |1	 ≔ 6ℚ�W££�|(, |1�|ℱ�	 = 6ℚ ~ " �4® − Ë�\��{¨

{Ì
�ℱ�� �≥ 0	 

– compare eq. “(10.4) in [13]”. Analogously, we find the HDD futures price 

(5.1.6)                                      

 Êr¡¡��, |(, |1	 ≔ 6ℚ ~ " �Ë − 4®�\��{¨

{Ì
�ℱ�� �≥ 0	 

and the (real-valued) CAT futures price 

(5.1.7)                                           

 Êqs���, |(, |1	 ≔ 6ℚ ~ " 4® ��{¨

{Ì
�ℱ�� 

– compare p. 279 in [13]. Herein, the increasing family of sigma-algebras ℱ� is supposed to be made 

up by all information coming from observing the temperature 4 up to time �. Hence, we presume 

(5.1.8)                                                  ℱ� ≔ z�4®: 0 ≤ � ≤ � . 
At this step, let us catch up our former announcements in section 1.2 concerning the shortcomings 

associated to a temperature derivatives pricing approach which is simply based upon the retro sigma 

algebra ℱ. Essentially, the reader should be aware of the fact that a backward-looking filtration ℱ�, 

such as defined in (5.1.8) above, does not at all reflect public knowledge about future weather 

conditions or, in particular, about omnipresent temperature forecasts [10]. In addition, such an 

ordinary backward-looking approach completely neglects the non-storability and non-tradability of 

temperature – compare the bottom of p.7 in [10].                               

In this regard, the rather popular pricing onsets for temperature contracts such as presented in [12] or 

[13], respectively in the above equations (5.1.5) – (5.1.7) which obviously are based on a conditional 

expectation given the past information ℱ� merely, actually appear rather unrealistic – primarily, since 

temperature forecasts are not taken into account adequately. Nevertheless, to the best of our 

knowledge, there is no work in the literature (comparable to the present discussion) dealing with 

option pricing purposes for temperature derivatives under enlarged filtrations. However, in this thesis 

we will innovatively treat the pricing of temperature derivatives under available future weather 

information by implementing a customized enlargement-of-filtration procedure.  
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The remainder of the current chapter is organized as follows: In section 5.2 our underlying 

mathematical basis is established, whereas the sophisticated daily average temperature model of mean-

reverting Ornstein-Uhlenbeck type with pure-jump processes as driving noises is introduced in detail. 

Applying Girsanov’s Change-of-Measure theorem, we hereafter obtain the associated temperature 

dynamics under a risk-neutral measure ℚ. In paragraph 5.3 we invest some innovative effort 

concerning the construction of enlarged information filtrations tailored to the requirements of our 

temperature derivatives context, whereas we rigorously take additional information about future 

weather conditions (which is assumed to be available to well-informed traders) into account. This 

procedure finally culminates in the provision of CAT and CDD futures prices under complementary 

temperature forecasts and, more importantly, of a forward-looking pricing formula for a plain-vanilla 

option written on the former CAT index. In addition, we invent a forward-looking mixed temperature 

model including both Brownian motion and pure-jump terms and highlight a corresponding mixed 

CAT call option pricing formula. In subsection 5.4 we introduce a multi-dimensional temperature 

model in order to create an optimal temperature futures portfolio under complementary future weather 

information. In this framework, we present a CAT hedging strategy which minimizes both the spatial 

and temporal temperature risk. Ultimately, the most important conclusions are drawn in the closing 

section 5.5, whereas in addition some further research topics are presented. 

 

5.2 Modeling temperature dynamics  

We start off with the description of the mathematical basis of our stochastic temperature model. Let �Ω, ℱ, ℙ	 be a filtered and complete probability space, whereby the backward-looking information 

filtration ℱ ≔ �ℱ�	�∈��,�� with ℱ� as defined in (5.1.8) is presumed both to include a priori all ℙ-null-

sets and to be cad (French: continue à droite)53. 

 

5.2.1 Temperature variations: a mean-reverting pure-jump approach  

Slightly deviating from the setup presented in subsection 2.2 in [11], in this work we model the 

instantaneous outdoor temperature dynamics by a mean-reverting Ornstein-Uhlenbeck (OU) process 

driven by multiple pure-jump Lévy-type processes. To be precise, we presently assume the 

continuous-time dynamics of the daily average, respectively mean temperature variations54 4 ≔�4�	�∈��,�� to follow the stochastic differential equation (SDE)55 

(5.2.1)                                  �4� = ����	 + � ����	 − 4�� �� + ∑ z���	 ����I�P(  

(cf. eq. “(2.5) in [11]”). Herein, ���	 represents a deterministic, bounded, continuously-differentiable, 

periodic function modeling the trend and seasonality of the temperature variations. Exemplarily, it can 

be chosen as a truncated Fourier series like in [12] or alternatively, as a linear plus a trigonometric 

function as supposed in [11], for instance.  

                                                           
53 See the beginning of section 3.2 for a precise definition of cad sigma-algebras. 
54 The daily average or mean temperature is defined as the arithmetic average of the maximum and minimum 
temperature during the 24 hours of the day in consideration [11]. As a consequence, the observed temperature 
variations actually possess a time-discrete nature. Nevertheless, we model the temperature dynamics as a 
continuous-time stochastic process in order to be able to profit from the power of stochastic calculus.   
55 To read more about the (with respect to common OU-models admittedly rather unusual) appearance of the 
differential ����	 on the right hand side of (5.2.1), we refer to the bottom of page 3 in [11]. In fact, from the 
solution of equality (5.2.1) [such as given in (5.2.3)] we reasonably deduce |4® − ���	| → 0 as � → ∞. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

112 

 

Further on, the constant and strictly positive mean-reversion velocity is denoted by �, whereas z���	 

depicts a deterministic, strictly positive, bounded and time-dependent (seasonal) volatility function for 

every index � = 1, … , J which controls the seasonal variation of the jump-sizes. Moreover, for a real 

subset £� ⊆ ℝ ∖ �0 , time indices � ∈ �0, �� and � = 1, … , J we introduce a family of integrable, pair-

wise independent, (maybe Brownian-motion-like small-amplitude) pure-jump, càdlàg and finite-

variation (see Theorem 2.4.25 in [1] in the finite-variation context) Sato processes via 

(5.2.2)                                                     ��� ≔ n n ; ����), ;	 ¡¢
��  

being responsible for interspersing random temperature fluctuations56 in (5.2.1). In the latter equation �� constitutes a one-dimensional integer-valued Poisson-Random-Measure (PRM) actually living on 

the product space �0, �� × ℝ ∖ �0  for each index �. We further assume the PRMs ����), ;	 to have 

predictable ℙ-compensators such as given in (3.2.5), but for real-valued non-zero jump-amplitudes 

now – instead of strictly positive ones as originally supposed in (3.2.4). Thus, (5.2.2) does not 

completely coincide with equation (3.2.4), as one could think on a first sight.           

As pointed out in subsection 2.2 in [11], by choosing an appropriate distribution for the Lévy-type 

noises (5.2.2) admitting e.g. (semi-) heavy-tails or skewness, we may achieve a very precise 

description concerning the (possibly non-Gaussian) distributional properties of temperature variations 

also in our specific model setup (5.2.1). All in all, the above modeling proposal (5.2.1) within its 

tractable (small and large jump-amplitude) Lévy-type processes as driving noises should be able to 

describe empirical temperature variations in a better way than simple Brownian motion models, 

although the latter indisputably are much easier to handle from a mathematical point of view. 

Returning to our main topic, we use Itô’s product rule which leads us to the solution of (5.2.1) reading 

(5.2.3)   

4® = ���	 + �4� − ���	� 7Mh�®M�	 + Y " z��)	 7Mh�®MR	��R�
®

�
I

�P(  

for time indices 0 ≤ � ≤ � ≤ �. 

 

5.2.2 Risk-neutral martingale measures in the temperature market   

As the risk-neutral/arbitrage-free pricing theory requires the introduction of an (with respect to ℙ) 

equivalent martingale measure (EMM)57, say ℚ, we certainly will need a representation of (5.2.3) 

under ℚ when it comes to pricing issues associated to temperature derivatives. Also note in this 

context that the properties (5.1.5) – (5.1.7) likewise succumb to the measure ℚ. Since the pure-jump 

Sato noises (5.2.2) are defined similarly to (3.2.4) [except from slightly different jump-amplitudes as 

explained in the sequel of (5.2.2) above], the measure change methodology of subsection 3.2.2 yet 

applies simultaneously. Nevertheless, we give the following remark explaining the obvious 

incompleteness of the present temperature derivatives market in more detail.  

                                                           
56 Recall section 3.2.1 to read more about a possibly useful distinction between small- and large-amplitude jump 
noises. Further note that, in contrast to (3.2.4), in equation (5.2.2) we yet allow for negative jump-sizes, too, 
since temperature may become negative, of course. Moreover, in subsection 5.3.4 we will add Brownian motion 
noises to our model (5.2.1) and derive temperature futures prices under this mixed model approach likewise. 
57 Since the underlying (i.e. temperature) is neither storable nor tradable, we rather should call ℚ a risk-neutral 
(arbitrage-free) equivalent probability measure, instead of EMM, while it is not clear what should become a 
(discounted) local martingale under ℚ – cf. p. 22 in [13]. The same is valid for electricity markets, by the way.   
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Remark 5.2.1 $ote that an EMM by definition is a risk-neutral probability measure ℚ which, firstly, 

has to be equivalent to ℙ on the sigma algebra ℱ� meaning that ℙ and ℚ possess the same null-sets 

throughout ℱ�. By the way, the latter property simultaneously implies the existence of a Radon-

$ikodym density such as defined in (3.2.15). Secondly, all tradable assets in the considered market 

must designate (local) ℚ-martingales after discounting (cf. p.95 in [13]). Since temperature is neither 

storable nor a “tradable asset”, any arbitrary equivalent probability ℚ will instantly become a risk-

neutral one ([11], [13]), whereas it is not a trivial question which ℚ to choose. Hence, in accordance 

to the second fundamental theorem of asset pricing, the present temperature market turns out to be 

highly incomplete. Moreover, the final determination of a precise EMM out of the huge class of 

offering pricing probabilities (using e.g. the concepts of Esscher transforms, minimum relative entropy 

or the Föllmer-Schweizer minimal measure) may embody a challenging future research topic. ∎ 

 

5.3 Temperature futures under enlarged filtrations  

In this section we devote our attention towards the derivation of temperature futures prices with 

respect to some additional weather forecast information that well-informed market participants might 

have knowledge of. More precise, in our forthcoming considerations we will – as firstly proposed in 

[10] – take forward-looking information about future weather conditions into account via an adequate 

enlargement of the underlying information filtration. Initially, we emphasize that the filtration 

(5.3.1)                               ℱ� ≔ z�4®: 0 ≤ � ≤ � ≔ z��®( , … , �®I : 0 ≤ � ≤ �  

generated by the temperature process 4 does only look into the past and all available information 

coming from temperature observations up to time � is stored in this retro sigma algebra. As explained 

before, this traditional (financial) approach obviously does not at all reflect the case at hand when we 

are concerned with pricing applications for a non-storable commodity such as temperature.  

Adapting ideas from Chapter 3 in [10], we now introduce the flow of additionally available market 

information at time � including temperature forecasts by the enlarged filtration ��  �⊃ ℱ�	 for times 0 ≤ � ≤ �. In this regard, we assume that the traders have an idea about the temperature behavior at a 

future time | or – converting the latter assumption into the language of our underlying mathematical 

model – have a feeling about most-likely values of the jump-noises at the future time | driving the 

temperature dynamics (5.2.1). Consequently, we refer to [10] and introduce the overall filtration 

(5.3.2)              ℋ� ≔ ℱ� ∨ z�4{ ≔ ℱ� ∨ z��{( , … , �{I ≔ z��R�: ) ∈ �0, �� ∪ �| , � = 1, … , J  

representing complete or exhaustive information at time � about the future temperature behavior at 

time |. As explained in Chapter 3, we thus associate knowledge about the future temperature 4{ with 

knowledge about the values of its driving noises �{( , … , �{I. Once more, we highlight that the enlarged 

sigma algebra ℋ is closely linked with exact knowledge concerning the future temperature conditions 

at time |. In this regard, as in [10], we next introduce the (non-explicit) intermediate filtration �� via 

(5.3.3)                                                            ℱ� ⊂ �� ⊂ ℋ� 

for time points 0 ≤ � < |, whereas (5.3.2) immediately delivers ℱ� = �� for all � ≥ |. Similarly to 

(3.3.38), also in our current temperature derivatives framework we implement an explicit intermediate 

filtration ��∗ consisting of a subfamily of the components appearing in ℋ�, namely 

(5.3.4)                                                    ��∗ ≔ ℱ� ∨ zñ�{( , … , �{¾ò 
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with 1 ≤ d ≤ J and 0 ≤ � < |.58 Then ℱ� ⊂ ��∗ ⊂ ℋ� for � < | and ��∗ = ℱ� for � ≥ | likewise hold 

true. Putting d ≔ J would yet correspond to ��∗ = ℋ� and thus, to complete or exhaustive knowledge 

of the precise temperature value at the future time |. On the other hand, the case d < J represents a 

scenario wherein the market participants merely have access to some restricted additional information 

concerning future temperature behavior, sounding more realistically. 

 

5.3.1 Forward-looking CAT futures prices 

The present subsection is dedicated to the derivation of explicit CAT futures price dynamics under 

additional temperature forecasts, i.e. under complementary knowledge about the values of a selection 

of the temperature process driving jump noises �{( , … , �{¾ at the future time |. In accordance to (5.1.7), 

we newly define the (real-valued) CAT futures price under the enlarged filtration ��∗ by dint of 

(5.3.5)                                          Êqs��∗ ��, |(, |1	 ≔ 6ℚ Nn 4® ��{¨{Ì 	��∗O.  
Merging (5.2.3) into (5.3.5), we immediately receive 

(5.3.6)                                                           Êqs��∗ ��, |(, |1	 = 

" ���	 ��{¨

{Ì
+ �4� − ���	� " 7Mh�®M�	��{¨

{Ì
+ " 6ℚ ~Y " z��)	 7Mh�®MR	��R�

®
�

I
�P( Ñ��∗� ��{¨

{Ì
. 

Next, we split the sum appearing inside the conditional expectation in (5.3.6) and obtain 

(5.3.7) 

6ℚ ~Y " z��)	 7Mh�®MR	��R�
®

�
I

�P( Ñ��∗�
= Y 6ℚ ~" z��)	 7Mh�®MR	��R�

®
�

Ñ��∗�¾
�P( + Y 6ℚ ~" z��)	 7Mh�®MR	��R�

®
�

Ñℱ��I
�P¾\( . 

Parallel to (3.3.45) and our former arguing in the sequel of (3.3.44), we use (5.2.2) and (5.3.4) such 

that – also in the present temperature derivatives context – we receive for all � = 1, … , d 

(5.3.8)                                 6ℚ��{� − ������∗� = �{� − ��� = n n ; ����), ;	 ¡¢
{� . 

Taking Cond. A, Lemma 3.5.1, (3.3.39), (4.3.10), (5.3.8) and the Fubini-Tonelli theorem into account, 

[for � < |] the first conditional expectation on the right hand side of equation (5.3.7) transforms into 

(5.3.9)   

6ℚ ~" z��)	 7Mh�®MR	��R�
®

�
Ñ��∗� = Q�� " z��)	 7Mh�®MR	�)®

�
. 

                                                           
58 Note that neither the processes � (, … , � ¾ nor the filtration ℱ� in (5.3.4) are the same ones as in (3.3.38). Hence, 
the intermediate filtration ��∗ in (5.3.4) does not coincide with (3.3.38), as one could suspect on a first sight. 
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Moreover, appealing to (3.2.20) and (5.2.2), for all � = d + 1, … , J the second conditional expectation 

on the right hand side of (5.3.7) reduces to a usual expectation which can be computed as  

(5.3.10) 

6ℚ ~" z��)	 7Mh�®MR	��R�
®

�
Ñℱ�� = 6ℚ Ï" " ; z��)	 7Mh�®MR	 ����), ;	 

¡¢

®
�

Ð
= " " ; z��)	 7Mh�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 

¡¢

®
�

. 
Substituting (4.3.10), (5.3.7), (5.3.9) and (5.3.10) into (5.3.6), we ultimately end up with 

(5.3.11)                                                             
Êqs��∗ ��, |(, |1	 = " ���	 ��{¨

{Ì
+ 4� " 7Mh�®M�	��{¨

{Ì
− ���	 " 7Mh�®M�	��{¨

{Ì
+ Y �{� − ���| − � " " z��)	 7Mh�®MR	�)®

�
{¨

{Ì

¾
�P( ��

+ Y " " " ; z��)	 7Mh�®MR	 7·¢�R,?	 ¥��)	 �.��;	 �) 
¡¢

®
�

��{¨

{Ì

I
�P¾\( . 

Furthermore, introducing the deterministic functions 

(5.3.12) 

þ��	 ≔ " ���	 ��{¨

{Ì
− ���	 ���	 − Y " " " ; z��)	 7Mh�®MR	 7·¢�R,?	 ¥��)	 �.��;	 

¡¢
�) ���

®
{¨

{Ì

I
�P¾\( , 

���	 ≔  7Mh�{ÌM�	 − 7Mh�{¨M�	� , :���	 ≔ " "  z��)	 7Mh�®MR	� − | �) ���
®

{¨

{Ì
, 

equation (5.3.11) can be rewritten in shorthand notation as 

(5.3.13) 

Êqs��∗ ��, |(, |1	 = þ��	 +���	 4� + Y :���	¾
�P( ñ�{� − ���ò. 

Next, denoting the derivation with respect to � by an inverted comma, Itô’s product rule yields 

(5.3.14)                                                         
�Êqs��∗ ��, |(, |1	 = Ïþ′��	 +����	 4� + Y :�� ��	 ñ�{� − ���ò¾

�P( Ð �� +���	 �4� + Y :���	 ���{� − ����¾
�P(  
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whereas (5.3.12) delivers 

(5.3.15)                                  ����	 = � ���	,          :�� ��	 = z���	 ���	 − :���	� − | , 
þ���	 = −���	 Y " ; z���	 7·¢��,?	¥���	 �.��;	 

¡¢

I
�P¾\( − ����	 ���	 − ���	 ����	. 

Merging (5.2.1) and (5.3.15) into (5.3.14), with respect to (3.2.20) and (4.3.10) we get [as expected; 

compare definition (5.3.5)] the real-valued (local) ���∗, ℚ	-martingale representation  

(5.3.16) 

�Êqs��∗ ��, |(, |1	 = Y�z���	 ���	 − :���	�¾
�P( ñ���� − Q����ò + Y z���	 ���	I

�P¾\( " ; �+�ℱ,ℚ��, �;	 
¡¢

 

with vanishing drift. In accordance to (3.3.39), (3.3.49) and (4.3.10), eq. (5.3.16) may be rewritten as 

(5.3.17)                                                              
Êqs��∗ ��, |(, |1	 = Êqs��∗ �0, |(, |1	 + Y " " ; �z��)	 ��)	 − :��)	� ��+��∗,ℚ�), ;	  

¡¢

�
�

¾
�P(

+ Y " " ; z��)	 ��)	 ��+�ℱ,ℚ�), ;	 
¡¢

�
�

I
�P¾\( . 

 

5.3.2 European options on CAT futures under temperature forecasts  

In this paragraph we present a suitable pricing method for a European call option written on the 

enlarged CAT futures price (5.3.5). Adapting (3.2.29), we currently define the �∗-forward-looking 

CAT futures call option payoff with exercise time ��  and strike price Ó > 0 (in EURO) by dint of 

(5.3.18)  Wqs��∗ ���� ≔ Wqs��∗ ���, Ó, |(, |1� ≔ ÄÊqs��∗ ���, |(, |1� − ÓÅ\ ≔ ÔÕ# m0, Êqs��∗ ���, |(, |1� − Óo. 
Parallel to our previous announcements given in the sequel of (3.2.33), we recall that ]�#	 ≔�# − Ó�\ ∉ ℒ(�ℝ	, whereby on the other hand for the exponentially-damped function Ù�#	 ≔7M¸&]�#	 ∈ ℒ(�ℝ	 is valid within a real damping parameter 0 < Õ < ∞. Next, for � ≤ ��  and a 

constant interest rate � > 0 the adjusted risk-neutral pricing formula [cf. (3.3.50)] reads as 

(5.3.19)                           Wqs��∗ ��	 = 7M����M�	 6ℚ ÖÄÊqs��∗ ���, |(, |1� − ÓÅ\ t��∗×. 
Further, within a shorthand notation Êqs��∗ ��	 ≔ Êqs��∗ ��, |(, |1	 we consequently deduce 

(5.3.20)                            Wqs��∗ ��	 = 7M����M�	 6ℚ N7¸Ýtuà�∗ ��� 	 Ù ÖÊqs��∗ ����× 	��∗O 
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whereas (3.2.33) immediately yields 

(5.3.21)                          

Wqs��∗ ��	 = 7M����M�	2� " ÙÚ�F	 6ℚ N7�¸\=E	 Ýtuà�∗ ���		��∗O �F 
ℝ

 

with ÙÚ�F	 as announced in (3.2.34). At this step, we remind that Êqs��∗ ∈ ℝ constitutes a ��∗, ℚ	-

martingale [see (5.3.16)] which unfortunately does not possess independent increments with respect to �∗. [Our former argumentation in the sequel of (3.3.53) here applies equally.] Thus, the conditional 

expectation in (5.3.21) ought to be approximated as follows: Using (A.6) and (A.13), we derive  

(5.3.22)              6ℚ N7�¸\=E	 Ýtuà�∗ ���		��∗O = �ℚ�∗ NÊqs��∗ ����; �, Õ, FO ≈  v� ÖF; Õ, Êqs��∗ ��	× 

whenever #v < Êqs��∗ ���� ≤ #v\( ℚ-a.s. (where w = 0, … , Ôx − 1).59 In conclusion, the estimated price 

at time � �≤ ��� of a European call option written on the CAT futures Êqs��∗
 under �∗ with strike price Ó > 0 at exercise time �� �≤ |(	 and measurement period �|(, |1� finally points out as 

(5.3.23) 

Wqs��∗ ��	 ≈ 7M����M�	2� " 7M�¸\=E	Ü�Õ + DF	1   v� ÖF; Õ, Êqs��∗ ��	× �F 
ℝ

 

whenever #v < Êqs��∗ ���� ≤ #v\( ℚ-a.s. (w = 0, … , Ôx − 1). Note in passing that (5.3.23) appears 

suitable for numerical pricing techniques. Ultimately, we recall that the enlarged put option price, say /qs��∗
, written on the CAT futures Êqs��∗

 with strike price Ó > 0 easily can be obtained by exploiting the 

Put-Call-Parity (compare the end of subsection 3.3.4). Remembering that Êqs��∗
 as defined in (5.3.5) 

depicts a �∗-adapted ℚ-martingale, we may use (5.3.19) to receive [analogously to (3.3.59)] 

(5.3.24)                                   /qs��∗ ��	 = Wqs��∗ ��	 + 7M����M�	 ÄÓ − Êqs��∗ ��	Å. 
 

5.3.3 Forward-looking CDD futures prices 

In this subsection we derive CDD futures prices under temperature forecasts modeled by the enlarged 

filtration (5.3.4). Thus, in accordance to (5.1.5), we firstly define the CDD futures price under ��∗ via 

(5.3.25)                               Êq¡¡�∗ ��, |(, |1	 ≔ 6ℚ Nn �4® − Ë�\��{¨{Ì 	��∗O �≥ 0	.  
Applying the Fubini-Tonelli theorem on (5.3.25) while introducing similar functions as in the sequel 

of (5.3.18) [but replacing Ó inside the function ] by Ë now], we obtain  
                                                           

59 We recall that Êqs��∗
 (in contrast to the electricity futures Ê∗ such as originally appearing in Excursus A) is not 

strictly positive (but real-valued), since the temperature process 4 may become negative. Thus, (A.13) does not 
apply instantly here, as it actually is connected with the former presumptions 0 < Ê�∗ ≤ Â and #½ < Ê�∗ ≤ #½\(. 
Nevertheless, we easily may extend the partition � of Excursus A yet to y ≔ �−Â = #� < #( < ⋯ < #¹x = Â  

which obviously stems from the new presumption −Â < Êqs��∗ ���� ≤ Â ℚ-a.s., which we assume to be in force 
from now on. Consequently, in (5.3.22) we then have w = 0, … , Ôx − 1 (instead of � = 0, … , Ô − 1). Apart from 
this slight extension of the underlying partition, the approximation techniques of Excursus A here apply equally. 
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(5.3.26)                                 Êq¡¡�∗ ��, |(, |1	 = n 6ℚ�7¸:1  Ù�4®	|��∗	 ��{¨{Ì . 
With respect to the inverse Fourier transform (3.2.33), the latter equation turns into 

(5.3.27)                        Êq¡¡�∗ ��, |(, |1	 = (1% n n ÙÚ�F	 6ℚ�7�¸\=E	:1���∗� �F �� ℝ  {¨{Ì  

whereby (3.2.34) delivers 

(5.3.28)                                                      ÙÚ�F	 = ºq�(Þ)*	z�¸\=E	¨ . 
Moreover, substituting (5.2.3) and (5.3.28) into (5.3.27), we receive 

(5.3.29)                                                      Êq¡¡�∗ ��, |(, |1	 =                                            
" " 7�¸\=E	ñ{�®	MX\�:9M{��	�ºqj�1q9	ò2� �Õ + DF	1  6ℚ ~7#d üY " |��)	 ��R�

®
�

I
�P( ý Ñ��∗� 

ℝ
�F ��{¨

{Ì
 

wherein we have just set |��)	 ≔ �Õ + DF	 �Ú��)	 with �Ú��)	 ≔ z��)	 7Mh�®MR	 > 0. Note that the 

sum of stochastic integrals in (5.3.29) is not necessarily positive yet, as we have permitted real-valued 

(non-zero) jump sizes in (5.2.2). Thus, we cannot apply the approximation techniques of section 3.3.5 

instantly. Nevertheless, we refer to the footnote dedicated to (5.3.22) and introduce a similar extension 

of partition as described therein: More precisely, we now define the (real-valued) stochastic process 

(5.3.30)                       

c��,® ≔ Y " �Ú��)	 ��R�
®

�
I

�P( = Y Y �Ú��)	 Z�R��[R[®
I

�P( ∈ ℝ 

while assuming −Â < c��,® ≤ Â ℚ-a.s. for all � < �. Hence, appealing to our former argumentation 

in the sequel of (3.3.63), within an adjusted partition yî ≔ �−Â = #� < #( < ⋯ < #¹o = Â  we get  

(5.3.31)                            

6ℚ ~7#d üY " |��)	 ��R�
®

�
I

�P( ý Ñ��∗� ≈L}�« �|, �; F, �;|	 

whenever #« < c��,® ≤ #«\( ℚ-a.s. �ª = 0, … , Ôo − 1	. Herein, we have just set 

(5.3.32)                                                       L}�« �|, �; F, �;|	 ≔ 

Y �Õ + DF	.!�
P� ~#«\( − #«#«\( − #« f−#« + Y Ò����, |, �	 ñ�{� − ���ò¾

�P( + Y ���∗�|, �	¾
�P( + Y �����, �	I

�P¾\( i + #«�, 
Ò����, |, �	 ≔  n %o¢�R	{M� �){� ,            ���∗�|, �	 ≔ n n ; �Ú��)	 7·¢�?	 ¥�  �.��;	 �) ¡¢

®{ ,  
�����, �	 ≔ n n ; �Ú��)	 7·¢�R,?	 ¥��)	 �.��;	 �) ¡¢

®� .  
[Recall Condition A (adjusted to �∗) at this step.]  



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

119 

 

Finally, putting (5.3.29) and (5.3.31) together, we end up with the approximation 

(5.3.33)                                                           
Êq¡¡�∗ ��, |(, |1	 ≈ " " 7�¸\=E	ñ{�®	MX\�:9M{��	�ºqj�1q9	ò2� �Õ + DF	1  L}�« �|, �; F, �;|	 �F �� 

ℝ
{¨

{Ì
. 

In conclusion, it seems to be a rather difficult task to derive (estimated) pricing formulas for options 

written on the CDD futures index (5.3.33) – somehow similar to our proceedings in subsection 5.3.2 

for CAT futures –, since there is not an equally nice martingale representation [such as derived in 

(5.3.16) for the CAT-case] available for the CDD futures, unfortunately.  

 

5.3.4 A mixed model for temperature dynamics 

Referring to our former arguing in subsection 3.3.9, we now introduce a mixed temperature model 

including both Brownian motion (BM) and pure-jump processes as driving noises. For this purpose, 

we replace equality (5.2.1) yet through 

(5.3.34) 

�4� = ����	 + � ����	 − 4�� �� + Y z� �5��
«

�P( + Y z���	 ����
I

�P«\(  

with strictly positive and constant volatilities z(, … , z« along with standard ℙ-BMs 5�(, … ,5�« . Again, 

we assume the involved noises 5�(, … ,5�« , ��«\(, … , ��I to be pair-wise ℙ-independent. Consequently, the 

Ornstein-Uhlenbeck solution of (5.3.34) turns out as 

(5.3.35) 

4® = ���	 + �4� − ���	� 7Mh�®M�	 + Y z� " 7Mh�®MR	�5R�
®

�
«

�P( + Y " z��)	 7Mh�®MR	��R�
®

�
I

�P«\(  

for time indices 0 ≤ � ≤ � ≤ �. Fortunately, the properties (3.3.108) – (3.3.110) simultaneously apply 

in our recent temperature framework. Moreover, we implement both an overall filtration ℋ+� and an 

explicit intermediate filtration �2� which we suppose to be such as in (3.3.114), respectively (3.3.115), 

but with �� therein replaced by � now. Parallel to (3.3.116), we next come up with abbreviations 

(5.3.36)                            Õ�)	 ≔ 1hºjÉ
º¨jðMº¨jÉ       and       å�R� ≔ Õ�)	 n 7h��5���{R  

whereby the �ℱ�, ℚ+�-compensated BMs 5��� ≔ 5���,ℱ� ,ℚ+  are like in (3.3.110). Consequently, we declare 

(5.3.37)                                                  

5���,�2,ℚ+ ≔ 5��� − " å�R�
�

�
�) 

to constitute ��2� , ℚ+�-BMs for all � = 1, … , � and � ∈ �0, |�. Finally, (3.3.118) still holds true in our 

current mixed temperature model, if we replace ��  by � therein.  
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In accordance to (5.3.5), we newly define the CAT futures price under the enlarged filtration �2 by  

(5.3.38)  

Ê�qs���	 ≔ Êqs��2,ℚ+ ��, |(, |1	 ≔ 6ℚ+ ~ " 4® ��{¨

{Ì
��2��. 

Substituting (5.3.35) into (5.3.38), we obtain 

(5.3.39) 

Ê�qs���	 = " ���	 ��{¨

{Ì
+ �4� − ���	� ���	 + Y " z�  6ℚ+ ~" 7Mh�®MR	�5R�

®
�

Ñ�2�� ��{¨

{Ì

�
�P(

+ Y " z�  6ℚ+ ~" 7Mh�®MR	�5R�
®

�
Ñℱ��� ��{¨

{Ì

«
�P�\(

+ Y " 6ℚ+ ~" z��)	 7Mh�®MR	��R�
®

�
Ñℱ��� ��{¨

{Ì

I
�P«\(  

wherein ���	 is such as defined in (5.3.12). In what follows, we compute the three conditional 

expectations in (5.3.39) in their order of appearance: Firstly, troubling (3.3.110), (3.3.118), (5.3.36) 

and (5.3.37) [while appealing to a dualism concept], we actually receive for � = 1, … , � 

(5.3.40)  

6ℚ+ ~" 7Mh�®MR	�5R�
®

�
Ñ�2�� = " 7Mh�®MR	 a��)	 �)®

�
+ " 7Mh�®MR	 6ℚ+ �å�R���2�� �)®

�
= " 7Mh�®MR	 a��)	 �)®

�
+ 2� n 7h��5���{�71h{ − 71h�  " 7h�1RM®	�)®

�
 

[whereby we have just assumed � < |; remind the epilog of (3.3.37) in this context]. Secondly, taking 

(3.3.110) into account, we simply get for � = � + 1, … , ª 
(5.3.41) 

6ℚ+ ~" 7Mh�®MR	�5R�
®

�
Ñℱ��� = " 7Mh�®MR	 a��)	 �)®

�
. 

Thirdly, with respect to (3.2.20) and (5.2.2), we deduce for � = ª + 1, … , J 

(5.3.42) 

6ℚ+ ~" z��)	 7Mh�®MR	��R�
®

�
Ñℱ��� = " " ; z��)	 7Mh�®MR	7·¢�R,?	¥��)	 �.��;	 �) 

¡¢

®
�

. 
Merging (5.3.40) – (5.3.42) into (5.3.39), we end up with the representation 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

121 

 

(5.3.43) 

Ê�qs���	 = þ���	 +���	 4� + Y :+���	 ���
�

�P(  

wherein we have just introduced the shorthand notations 

(5.3.44) 

þ���	 ≔ " ���	 ��{¨

{Ì
− ���	 ���	 − Y "  " z�  7Mh�®MR	 a��)	 �)�

®
��{¨

{Ì

«
�P(

− Y " " " ; z��)	 7Mh�®MR	7·¢�R,?	¥��)	 �.��;	 �) 
¡¢

�
®

��{¨

{Ì

I
�P«\( , 

:+���	 ≔ 2�z�71h� − 71h{ " " 7h�1RM®	�) ���
®

{¨

{Ì
,             ��� ≔ " 7h��5���

{
�

. 
Next, from (5.3.44) we get the derivatives 

(5.3.45)                                        :+�� ��	 = Õ��	 <7h� :+���	 − z�  ���	A, 
þ� ���	 = − ���	 Ï����	 + � ���	 + Y z� a���	«

�P( + Y " ; z���	 7·¢��,?	¥���	 �.��;	 
¡¢

I
�P«\( Ð. 

Hence, applying Lemma 2.1.5 on (5.3.43) and hereafter using (3.2.20), (3.3.110), (5.2.2), (5.3.15), 

(5.3.34), (5.3.36), (5.3.37), (5.3.44) and (5.3.45), we obtain the Lévy-type ��2, ℚ+�-martingale dynamics 

(5.3.46) 

�Ê�qs���	 = Y<z� ���	 − 7h� :+���	A �5���,�2,ℚ+�
�P( + Y z�  ���	 �5���,ℱ� ,ℚ+«

�P�\(
+ Y " ; z���	 ���	 �+�ℱ�,ℚ+ ��, �;	 

¡¢

I
�P«\( . 

In our proceedings, we aim to price a European call option written on the �2-forward-looking (mixed) 

CAT futures price (5.3.46). Thus, sticking to the notational framework of subsection 5.3.2 

[particularly compare equations (5.3.20) and (5.3.21) therein], we assume the CAT call option price 

under �2 to obey 

(5.3.47)                            Wqs��2 ��	 = 7M����M�	 6ℚ+ N7¸Ý�tuà���	 Ù NÊ�qs�����O 	�2�O  

= 7M����M�	2� " ÙÚ�F	 7�¸\=E	Ý�tuà��	 6ℚ+ �7�¸\=E	�Ý�tuà���	MÝ�tuà��	���2�� �F 
ℝ

 

whereby ÙÚ�F	 is such as given in (3.2.34).  
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Then, with respect to the independent increment property of the ��2, ℚ+�-Sato-martingale (5.3.46)60, the 

conditional expectation on the right hand side of (5.3.47) factors into 

(5.3.48)                                         6ℚ+ �7�¸\=E	�Ý�tuà���	MÝ�tuà��	���2�� = 

Á 6ℚ+ Ï7#d f"�Õ + DF	 <z� ��)	 − 7hR :+��)	A �5�R�,�2,ℚ+��
�

iÐ�
�P(

× Á 6ℚ+ Ï7#d f"�Õ + DF	 z�  ��)	 �5�R�,ℱ� ,ℚ+��
�

iÐ«
�P�\(

× Á 6ℚ+ Ï7#d fD " "�F − DÕ	 ; z��)	 ��)	 ��+�ℱ�,ℚ+ �), ;	 
¡¢

��
�

iÐI
�P«\(

=: Á ℑ(�
�

�P( × Á ℑ1�
«

�P�\( × Á ℑ>�I
�P«\(  

with multipliers 

(5.3.49)                              ℑ(� = 7#d mn �¸\=E	¨
1  <z� ��)	 − 7hR :+��)	A1�)��� o,                                                                  

  ℑ1� = 7#d mn �¸\=E	¨
1  z�1 ��)	1�)��� o,               ℑ>� = 7B¢�E,�,��	,  

wherein C��F, �, ��� is such as defined in (3.2.41), but yet with å��)	 ≔ �F − DÕ	 z��)	 ��)	.        

By the way, comparing ℑ(� with ℑ1�, we recognize that both factors merely differ by an additive 

information drift which originates from the presumed supplementary knowledge about future (mean-) 

temperature behavior and hence, reasonably affects the multipliers that are indexed by � = 1, … , � 

solely [also recall the precise definition of �2 in this context].             

However, appealing to (3.2.34) and (5.3.47) – (5.3.49), our mixed CAT call option price under 

additional forward-looking information modeled by the (explicit) intermediate filtration �2 reads as 

(5.3.50)   

Wqs��2 ��	 = 7M����M�	2� " 7�¸\=E	�Ý�tuà��	MÜ��Õ + DF	1  Á ℑ(�
�

�P( × Á ℑ1�
«

�P�\( × Á ℑ>�I
�P«\(  �F 

ℝ
. 

Herein, the factors ℑ(� are closely connected with risk-reducing �2-forward-looking information on a 

selection of the Brownian noises driving the temperature mean-level. Secondly, the terms ℑ1� can be 

associated to some kind of remaining risk with respect to the future long-term level of the temperature 

variations (while weather forecasts never hold with exhaustive certainty). Finally, the multipliers ℑ>� 

originate from the omnipresent risk of temperature jumps (which possibly cannot be generated by 

Brownian noise). Regarding (5.3.48) – (5.3.50), we ultimately cherish that it has turned out possible to 

compute the appearing expectations more explicitly than in our former (anticipating) pure-jump 

approach presented in subsection 5.3.2 [particularly, compare equations (5.3.22) – (5.3.23) therein]. 

                                                           

60 Recall that 5� �,�2,ℚ+  is a �2-Brownian motion, while the integrators 5� �,ℱ�,ℚ+  and �+�ℱ�,ℚ+  generate stochastic integrals 
that possess independent increments with respect to ℱ� . Yet, the two latter integrator types are not affected by the 
enlargement of ℱ�  to �2 at all! Consequently, Ê�qs�  indeed possesses independent increments with respect to �2. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

123 

 

5.4 Hedging temperature risk under weather forecasts  

Inspired by [4], the present paragraph is dedicated to the construction of an optimal (in a sense to be 

determined) temperature futures portfolio including suitable market-traded temperature indices in 

order to hedge against both spatial and temporal temperature risk adequately. In this regard, imagine a 

company which would like to hedge against its temperature risk at a certain location or geographical 

area whereas, unfortunately, there merely are indices written on temperature in surrounding locations 

available [4]. In such a case it sounds convenient to construct a portfolio consisting of indeed 

suboptimal located temperature futures, which at least are available in the present market [4]. More 

precise, electricity producers or heating-oil retailers, for instance, often face a severe temperature risk, 

whereas their company, or their clients respectively, are not necessarily located in or nearby to one of 

the (nine European, eighteen North-American or two Japanese [13]) cities for which temperature 

futures are traded [4]. Possibly, there may neither be any temperature index with a measurement 

period as desired by the investor offered in the market (temporal risk), nor be any temperature futures 

for the locations of interest available (spatial risk) [4]. Hence, an investor’s goal should be to 

minimize both the present temporal and spatial temperature risk by constructing a suitable portfolio 

out of (possibly suboptimal but at least) available temperature indices that approximately covers the 

desired (but non-traded) futures in a best possible manner [4].  

Although interesting, in this work we will not stick to the random field framework presented in [4], 

wherein the time- and space-dependent temperature dynamics ����, #	 are driven by a Gaussian 

random field. Anyway, Barth et al. [4] model the coordinate (with respect to an appropriate cartesian 

coordinate system) of the city for which the temperature futures of interest is traded by a two-

dimensional vector # ∈ ℝ1. More precisely, the spatial temperature component # therein is assumed to 

be an element in a compact domain ~ ⊂ ℝ1 (with piecewise smooth boundary) representing a 

geographical area like the USA, Europe or Japan, respectively. In this context, the authors of [4] 

presume that there is trade on temperature indices in #J different cities which are located at the 

coordinates #(, … , #I ∈ ~ ⊂ ℝ1. However, in the following sections we will also concentrate on a 

spatio-temporal temperature risk hedging problem, whereby we deviate from the random field 

approach presented in [4]: Instead, we introduce a multi-dimensional temperature model in order to 

generate the temperature behavior at #Ô different locations/cities of interest simultaneously. In 

addition, we newly take forward-looking information about future temperature conditions [i.e. weather 

forecasts, whenever available, for each individual location of interest D ∈ �1, … , Ô ] into account and 

hence, examine a minimum variance temperature futures portfolio optimization problem with respect 

to generalized insider trading principles in the upcoming sections innovatively. 

 

5.4.1 A space-dependent multi-dimensional temperature model 

In accordance to (5.2.1), we now implement a Ô-dimensional random temperature vector 

(5.4.1)                                                 �� ≔ �4�(, … ,4�¹	 ∈ ℝ¹ 

with Ornstein-Uhlenbeck type entries 

(5.4.2)                               

�4�= = ��=��	 + �=  <�=��	 − 4�=A �� + Y z=���	 ���=�I
�P( . 
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In our framework, the components 4�= model the daily average outdoor temperature at time � in the 

location D ∈ �1, … , Ô . Similarly to (5.2.1), the deterministic ingredients �=��	, �= and z=���	 yet 

represent the space- and time-dependent mean-level, mean-reversion speed and volatility of the 

temperature variations at location D, respectively. In accordance to (5.2.2), for each index D ∈ �1, … , Ô  

we further introduce a family of #J pair-wise independent pure-jump finite-variation Lévy-type noises 

(5.4.3)                                                     

��=� ≔ " " ; ��=��), ;	 
¡)¢

�
�

 

with � = 1, … , J and £=� ⊂ ℝ ∖ �0 , interspersing random fluctuations into the temperature dynamics 

given by (5.4.2). Philosophically speaking, one could interpret (5.4.3) as a �Ô × J	-matrix-valued 

Poisson random field. Parallel to (5.1.4), let us moreover introduce a CAT index associated to the 

location/city with number D ∈ �1, … , Ô  and measurement period <|(= , |1= A by dint of 

(5.4.4)   

W��= ≔ W��<|(= , |1= A ≔ " 4®=  ��{)̈

{Ì)
. 

Furthermore, in accordance to (5.2.3), we yet find the Sato-solution of (5.4.2) as 

(5.4.5) 

4®= = �=��	 + <4�= − �=��	A 7Mh)�®M�	 + Y " z=��)	 7Mh)�®MR	��R=�®
�

I
�P(  

with 0 ≤ � ≤ �. Thus, substituting (5.4.5) into (5.4.4), we instantaneously obtain 

(5.4.6) 

W��= = " �=��	 ��{)̈

{Ì)
+ <4�= − �=��	A " 7Mh)�®M�	��{)̈

{Ì)
+ Y " " z=��)	 7Mh)�®MR	��R=�®

�
��{)̈

{Ì)
I

�P( . 
Meanwhile, we introduce the abbreviation ø= ≔ ø=�)	 ≔ ÔÕ#ñ), |(= ò and the deterministic function 

(5.4.7)                                    

Í��, |(= , |1= � ≔  7Mh)�{Ì)M�� − 7Mh)�{)̈M���= . 
Then, applying the Fubini-Tonelli theorem on (5.4.6), we end up with 

(5.4.8) 

W��= = " �=��	 ��{)̈

{Ì)
+ <4�= − �=��	A Í��, |(= , |1= � + Y " z=��)	 Í�), ø= , |1= � ��R=�

{)̈

�
I

�P( . 
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5.4.2 Modeling space-dependent temperature forecasts 

For the remainder of the present chapter we set 

(5.4.9)          ℱ�� ≔ zñ4®= : 0 ≤ � ≤ �, D = 1, … , Ôò ≔ zñ�®=(, … , �®=I: 0 ≤ � ≤ �, D = 1, … , Ôò 

whereas, analogously to (5.3.4), we implement the enlarged filtration �2�  �⊃ ℱ��� via 

(5.4.10)                                      �2� ≔ ℱ�� ∨ z m�{=(, … , �{=¾): D = 1, … , Ôo 

for 0 ≤ d= ≤ J and 0 ≤ � < |. Note in passing that �2� = ℱ�� still holds true for all � ≥ |. Further, the 

choice d= = 0 for a certain index D ∈ �1, … , Ô  means that there are no temperature forecasts for the 

location D at the future time | available. Vice versa, setting d= = J corresponds to having access to 

(rather unrealistically) complete or exhaustive knowledge of the future temperature at time | in the 

location D. 
Remark 5.4.1 The properties (3.3.39), (3.3.47), (3.3.48), (3.3.49) and Lemma 3.5.1 simultaneously 

hold in our recent setup (5.4.9) – (5.4.10). In other words, we are allowed to replace ��∗ by �2�, ��� by ��=�, �� by �=�, d by d= etc. inside the former properties. Moreover, in accordance to (3.2.20), the 

PRMs ��=��), ;	 such as appearing in (5.4.3) possess (preliminarily speaking for the pure ℱ�-case) 

deterministic predictable (time-inhomogeneous) �ℱ�, ℚ�-compensators that are of the form 

7·)¢�R,?	 ¥=��)	 �.=��;	 �) 

for D = 1, … , Ô and � = 1, … , J. $evertheless, under �2, we currently assume an adjusted version of 

Condition A to hold. ∎ 

 

5.4.3 The residual hedging risk under enlarged filtrations 

As explained beforehand, an investor may try to combine a selection of temperature futures traded for 

actually suboptimal located cities/regions into a portfolio which reflects his/her company’s needs for 

temperature securities in a best possible way [4]. In this regard, extending the backward-looking 

Gaussian random field approach in [4], we now dedicate our attention to the derivation of an optimal 

hedging portfolio consisting of temperature futures contracts which, in particular, minimize the �2-
conditioned variance within a certain desired (but actually unavailable) temperature index associated 

to a specific location of interest w ∈ �1, … , Ô . Thus, in the sequel we will create optimal, namely 

“synthetic hedges” (compare the notation in [4]) to cover those unavailable but desired temperature 

indices related to a specific location of interest.                             

Starting off, we first need a reasonable hedging error criterion. For this purpose, we come up with a 

tailor-made conditional variance measure which (as in [4]) will be called the “residual risk” 

(associated to an arbitrary temperature index ℑ) from now on. Extending equation “(3.2) in [4]” to our 

innovative insider trading context, we concretely define the residual risk via  

(5.4.11) 

ℜ+��, ��	 ≔ 6ℚ���ℑ�|(v , |1v� − Y ��=
¹

=P(=�v
 ℑ<|(= , |1= A�

1
ll�2���. 
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Herein, ℑ�|(v , |1v� ≔ ℑv stands for a desired but actually unavailable either CAT, HDD or CDD index 

associated to a location/city with number w ∈ �1, … , Ô  and measurement period �|(v , |1v� along with a 

time partition |(v ≤ |(= ≤ |1= ≤ |1v for indices D = 1, … , Ô;  D ≠ w. That is, ℑ�|(v , |1v� embodies the 

temperature risk connected with the location w to which we assume our fictive agent to be exposed. 

Moreover, the multi-dimensional �2�-adapted stochastic process (i.e. each component is �2�-adapted)  

(5.4.12)                                   �� ≔ ���(, … , ��vM(, ��v\(, … , ��¹	 ∈ ℝ¹M( 

describes the number of contracts invested in each of the (available but) suboptimal located 

temperature futures ℑ<|(= , |1= A ≔ ℑ= �D = 1, … , Ô;  D ≠ w	 at time � (cf. p.6 in [4]). Having the structure 

of (5.4.10) in mind, we emphasize that – since each investment decision ��= associated to the 

temperature index ℑ= is assumed to be �2�-measurable – the trading position (5.4.12) basically depends 

on the available backward-looking market information up to time �, namely ℱ��, and possibly on some 

additional temperature forecasts for the location D ∈ �1, … , Ô \�w  at a future time |. Verbalizing, the 

object ℜ+��, ��	 measures the ℚ-expected (non-hedgeable) remaining risk at location w associated to 

the temperature index ℑv in the ℒ1-sense conditioned on all available information �2� including 

temperature forecasts. Parallel to “(3.3) in [4]”, our fictive agent’s goal should be to find an optimal 

hedging strategy �î� which minimizes the residual risk indicator (5.4.11) throughout all �2�-adapted 

trading positions ��. Consequently, we are facing a minimum variance hedging problem of the form 

(5.4.13)                                              ����9 �29M¸�¸¾�º� ℜ+��, ��	 

bearing the optimal position, say 

�î� ≔ ��� ����9 �29M¸�¸¾�º� ℜ+��, ��	. 
 

5.4.4 Computing minimum variance hedging positions for CAT indices 

In our proceedings, we choose (without loss of generality) the dummy temperature index ℑ to be a 

cumulative average temperature index, that is, ℑ ≔ W��. In order to minimize the ℒ1��2, ℚ�-distance 

(5.4.11) between the desired (but unfortunately non-available) futures contract W��v ≔ W���|(v , |1v� 
and the linear combination of available CAT indices in the market, namely the synthetic hedge  

(5.4.14) 

Y ��=
¹

=P(;=�v W��<|(= , |1= A, 
under the constraint that our fictive agent enters the futures market at time � �≤ |(v	, we obviously 

have to solve the following first order optimality condition 

(5.4.15)                                                           UU��½  ℜ+��, ��	 = 0 

for a running index � ∈ �1, … , Ô \�w  (compare the proof of Prop. 3.1 in [4]).  
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Substituting (5.4.11) into (5.4.15) along with an interchange of the differential operator and the 

conditional expectation, we receive 

(5.4.16)  

0 = UU��½  ℜ+��, ��	 = 2 6ℚk�Y ��=
¹

=P(=�v
W��= − W��v�W��½l�2�m. 

Since each component of �� formerly has been assumed to be �2�-adapted [compare the sequel of 

(5.4.12)], equation (5.4.16) next transforms into 

(5.4.17) 

Y ��= 6ℚ�W��= W��½��2��¹
=P(=�v

= 6ℚ�W��v W��½��2��. 
In accordance to (5.3.5), we yet define the component-wise futures price at time � associated to a CAT 

index at location D ∈ �1, … , Ô , i.e. W��=, with measurement period <|(= , |1= A under the forward-looking 

information flow �2� by dint of 

(5.4.18)                                      Êqs�)�2 ��, |(= , |1= � ≔ 6ℚ Ön 4®=  ��{)̈{Ì) t�2�×.  
Therewith, we exemplarily compute the conditional expectation on the left hand side of (5.4.17) in 

detail now: Taking (5.4.4), (5.4.8) and (5.4.18) into account, we firstly deduce  

(5.4.19)                                                     6ℚ�W��= W��½��2�� = 

��
�" �=��	 ��{)̈

{Ì)
+ <4�= − �=��	A Í��, |(= , |1= �

��
�× Êqs���2 ��, |(½, |1½�

+ 6ℚkW��½ Y " z=��)	 Í�), ø=, |1= � ��R=�
{)̈

�
I

�P( l�2�m. 
Within analogous arguments, the remaining conditional expectation on the right hand side of equality 

(5.4.19) finally becomes 

(5.4.20) 

6ℚkW��½ Y " z=��)	 Í�), ø=, |1= � ��R=�
{)̈

�
I

�P( l�2�m
=
��
�" �½��	 ��{�̈

{Ì�
+ <4�½ − �½��	A Í��, |(½ , |1½�

��
�× 6ℚ�c�=��2�� + 6ℚ�c�= c�½��2�� 
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whereby we have just introduced the shorthand notation 

(5.4.21)                                         

c�= ≔ Y " z=��)	 Í�), ø= , |1= � ��R=�
{)̈

�
I

�P( . 
Remembering (5.4.3), (5.4.10), (5.4.21) and, in particular, Remark 5.4.1, within a similar derivation 

methodology as in (5.3.7) – (5.3.10) [while presuming |1= < | ≤ |1v] we presently derive  

(5.4.22) 

6ℚ�c�=��2�� = Y 6ℚk" z=��)	 Í�), ø=, |1= ���R=�
{)̈

�
l�2�m¾)

�P( + Y 6ℚk" z=��)	 Í�), ø= , |1= ���R=�
{)̈

�
lℱ��mI

�P¾)\(

= Y " z=��)	 Í�), ø= , |1= � 6ℚ ��{=� − �R=�| − ) ��2���){)̈

�
¾)

�P(
+ Y 6ℚ �" z=��)	 Í�), ø=, |1= � ��R=�

{)̈

�
�I

�P¾)\(
= Y 6ℚ��{=� − ��=���2�� " z=��)	 Í�), ø=, |1= �| − � �){)̈

�
¾)

�P(
+ Y " " ; z=��)	 Í�), ø=, |1= � 7·)¢�R,?	 ¥=��)	 �.=��;	 �) 

¡)¢
{)̈

�
I

�P¾)\(
= þ=��	 + Y :=���	 ñ�{=� − ��=�ò¾)

�P(  

with abbreviations 

(5.4.23)                                            

 :=���	 ≔ " z=��)	 Í�), ø=, |1= �| − �  �){)̈

�
 

and 

(5.4.24) 

þ=��	 ≔ Y " " ; z=��)	 Í�), ø= , |1= � 7·)¢�R,?	 ¥=��)	 �.=��;	 �) 
¡)¢

{)̈

�
I

�P¾)\( . 
Additionally, we find the decomposition 

(5.4.25)                     6ℚ�c�= c�½��2�� = ℂ��ℚ�c�=, c�½��2�� + 6ℚ�c�=��2�� 6ℚ�c�½��2��. 
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Admittedly, the co-variance expression in (5.4.25) requires some further examinations, whereas the 

members 6ℚ�c�=��2�� and 6ℚ�c�½��2�� fortunately can be handled similar to (5.4.22). Finally, merging 

(5.4.20), (5.4.22) and (5.4.25) into (5.4.19), we get an expression for 6ℚ�W��= W��½��2�� involved 

inside our optimality condition (5.4.17). Actually, the treatment of the object 6ℚ�W��v W��½��2�� such 

as appearing on the right hand side of (5.4.17) can be done in an analogous manner. 

  

Remark 5.4.2 $ote in passing that equation (5.4.17) can be interpreted as a time-dependent 

stochastic matrix-vector-equation reading 

(5.4.26)                                                          ���	 �� = ���	 

(compare Prop. 3.1 in [4] at this step) with matrix entries 

(5.4.27)                                                �½=��	 ≔ 6ℚ�W��= W��½��2�� 

and vector components 

(5.4.28)                                                 �½��	 ≔ 6ℚ�W��v W��½��2�� 

for indices D, � ∈ �1, … , Ô \�w . Since all entries �½=��	 by definition are pair-wise ℚ-independent, the 

matrix ���	 possesses full rank and thus, ℚ-almost-sure is invertible. ∎ 

 

Returning to our optimization exercise (5.4.13), we recognize that the second order condition for a 

minimum is also fulfilled, since 

(5.4.29) 

U1
U���½�1  ℜ+��, ��	 = 2 6ℚ N<W��½A1	�2�O > 0 

is valid whenever W��½ ≠ 0. [In fact, the trivial case W��½ ≡ 0 only appears with negligible 

probability and thus, is not of any interest here – compare (5.4.4) to verify this proposition.]  

In conclusion, by solving (5.4.17) for ��(, … , ��vM(, ��v\(, … , ��¹ [respectively (5.4.26) for ��], we obtain 

the synthetic hedging position (5.4.14) [respectively �î� as introduced in the sequel of (5.4.13)], which 

is optimal in the sense of minimizing the ℚ-expected �2-conditioned squared distance in between the 

desired (but unavailable) CAT futures index W��v and what can be hedged by investing in suboptimal 

located (surrounding) CAT indices, namely W��= with D ∈ �1, … , Ô \�w . Similar to [4], the optimal 

position �î� = ���	M� ���	 designates a dynamic hedge as it changes with time. All in all, a company 

exposed to temperature risk in a certain location w may combine the available surrounding indices to 

create a dynamic hedging portfolio which minimizes the residual temperature risk effectively. 

 

5.4.5 A spatially correlated temperature model 

Regarding our space-dependent multi-dimensional temperature model like introduced at the beginning 

of paragraph 5.4.1, we have to declare the lack of any spatial dependency structures as a remarkable 
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disadvantage, as the temperature behavior in neighbored locations ought to be (more or less) 

correlated. Unfortunately, it is not evident how to incorporate such local dependency structures into 

our model (5.4.2), since the driving pure-jump Lévy-type components – in contrast to Brownian noises 

– hardly are to be correlated. To overcome the just described problem, for D = 1, … , Ô we might 

replace equality (5.4.2) through 

(5.4.30) 

�4î�= = ��=��	 + �=  <�=��	 − 4î�=A �� + Y z=� �5�=�I
�P(  

with standard Brownian motions (BMs) 5�=� and strictly positive volatility constants z=�. Therewith, 

we tend very closely to the Gaussian random field approach presented in [4], admittedly. 

Nevertheless, we still may apply enlargement-of-filtration techniques (yet concerning the Brownian 

noises, similarly to our framework proposed in subsection 5.3.4) in order to incorporate additional 

information on future temperature behavior – an issue which has not been taken into account in [4], on 

the contrary. More accurately speaking, we currently might define 

(5.4.31)   

��� ≔ ℱî� ∨ z ü" 7h)R�5R=�{
�

: � = 1, … , d=; D = 1, … , Ôý 

instead of (5.4.10), whereas we set 

(5.4.32)                                 ℱî� ≔ zñ5R=(, … ,5R=I: 0 ≤ ) ≤ �; D = 1, … , Ôò. 
In addition, with respect to our modified approach (5.4.30), we now introduce the Brownian integrals  

(5.4.33) 

c��= ≔ Y z=� " Í�), ø= , |1= � �5R=�
{)̈

�
I

�P(  

instead of (5.4.21). Consequently, for indices D, � ∈ �1, … , Ô \�w  the adjusted co-variance expressions  

(5.4.34)                                                  &�=½ ≔ ℂ��ℚ�c��=, c��½����� 

[such as originally appearing inside (5.4.25)] then can be interpreted as some kind of time-dependent ��-conditioned co-variance matrix entries which explicitly allow for the desired spatial dependency 

structure, respectively spatial correlation, yet. Roughly speaking, the currently proposed model 

modification with correlated Brownian motions obviously admits both a dependency in D-direction 

along with an independency in �-direction, meaning that 5(� , … ,5vM(,�,5v\(,�, … ,5¹� for each � ∈ �1, … , J  are pair-wise correlated via (5.4.34) and that 5=(, … ,5=I are pair-wise independent for 

each fixed index D ∈ �1, … , Ô \�w , what indeed sounds reasonable – especially from an applicant’s 

point of view. All in all, the precise treatment of the related hedging procedure with suboptimal 

located temperature futures [yet associated to our modified Brownian motion model (5.4.30), 

particularly considered under (5.4.31)] is left to the reader – not at least, as the required techniques 

have already been presented in our former paragraphs 5.3.4 and 5.4.1 – 5.4.4.    
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5.5 Conclusions  

In order to model the daily average outdoor temperature dynamics in an appropriate manner, we have 

suggested an alternative multi-factor pure-jump Ornstein-Uhlenbeck setup permitting mean-reversion 

to a periodic trend-line in addition to seasonal volatility. Subsequently, we have turned our attention 

towards the derivation of CAT and CDD futures prices under supplementary future weather 

information. Dealing with this innovative insider trading topic, we have rigorously taken temperature 

forecasts into account via an adequate enlargement of the underlying information filtration. As we 

have seen in connection with our forward-looking CAT call option price estimate in (5.3.23), in order 

to evaluate explicit risk-neutral temperature futures option prices under future information there is a 

strong need for approximation techniques and numerical pricing methods. A challenging related 

research topic might consist in the derivation of corresponding forward-looking price representations 

for European options written on CDD and HDD futures likewise (such as already mentioned at the end 

of subsection 5.3.3). Nevertheless, for our mixed temperature model (like introduced in paragraph 

5.3.4) including both Brownian motion and pure-jump terms it fortunately has been possible to derive 

a more explicit CAT call option price formula [see equation (5.3.50) along with (5.3.49)] than in our 

former anticipative pure-jump approaches.  

Ultimately, in section 5.4 we have constructed optimal positions for a CAT futures portfolio under 

forecasted temperature behavior. In this context, we have introduced a multi-dimensional temperature 

setup which has turned out suitable to model the temperature dynamics at different locations of 

interest simultaneously. Moreover, inspired by [4], we have implemented an appropriate risk indicator, 

namely the residual risk [see (5.4.11)], in order to hedge against both temporal and spatial 

temperature risk adequately by using a dynamic synthetic hedge portfolio for CAT futures. 
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Chapter 6 
 

 

Pricing Carbon Emission Allowances 

under Future Information on the 

Market Zone �et Position 

 

 

6.1 Extending the Markov-chain onset for the EU ETS net position  

In the present chapter we derive risk-neutral prices for carbon emission allowances (EUAs) as 

commonly traded in the European Union Emission Trading Scheme (EU ETS), whereas we take 

forward-looking information about the future market zone net position into account via a rigorous 

exploitation of enlargement-of-filtration methods. In this insider trading framework, we model the 

market zone net position as a linear combination of multiple real-valued compound Poisson processes 

which – in contrast to the two-state Markov-chain onset proposed by Cetin and Verschuere [25] – may 

indicate the overall net position of the EU ETS market more precisely. Consequently, we need to 

apply tailor-made multi-dimensional Fourier transform techniques when it comes to pricing purposes 

of EUA contracts under our extended multi-factor pure-jump approach. Moreover, we discuss the 

concept of minimum relative entropy in order to find a concrete risk-neutral pricing measure in our 

incomplete EU ETS market model. 

In addition to the above summarizing comments, we now want to present some detailed motivating 

aspects for our upcoming EU ETS examinations. More concretely speaking, in this work we extend 

the sophisticated carbon emission allowance pricing approach proposed by Cetin and Verschuere [25] 

in the following concerns:                                 

Firstly, we newly model the market zone net position by a linear combination of several real-valued 

compound Poisson processes (CPPs) which – in contrast to the poor two-state Markov-chain onset in 

[25] – takes more than just the two values plus and minus one.  
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To motivate our idea, let us quote from the bottom of page 15 in [25]:  

“Obviously, it is not possible to measure how long or short the zone is by a å [net 

position] process with only two states. Therefore, a better fit to the data could be 

more easily achieved by introducing more states to the model.” and “The resemblance 

[between the simulated and empirical data] could be improved by extending the set of 

admissible states for å from just two elements [being plus and minus one, actually].”.  

Note in passing that on the one hand our innovative CPP onset yet is able to indicate how long or 

short
61 the overall position of the EU ETS market precisely is, whereas in return it requires customized 

multi-dimensional Fourier transform techniques and exponential dampening methods when it comes to 

pricing issues of carbon dioxide emission allowances, as we will see in section 6.3 later.         

Secondly, we treat the carbon emission permits pricing under supplementary forward-looking 

information on the market zone net position, rigorously exploiting enlargement-of-filtration methods 

as examined in e.g. [10], [15], [32], [50]. Let us remark that this insider trading machinery constitutes 

the right opposite to the incomplete information setup presented in Chapter 4 of [25]. More precisely, 

the authors therein treat the pricing of carbon emission allowances under partial, respectively 

incomplete information concerning the market zone net position. For this purpose, they introduce 

some kind of reduced filtration, arguing that “the EU ETS market participants typically do not observe 

[the net position process] å continuously” (see p.9 in [25]) but at randomized discrete time steps in 

reality. Admittedly, on a first view the partial information assumption in [25] might appear a bit more 

practical than our forward-looking considerations. Nevertheless, one easily may imagine a scenario 

wherein market insiders know that the future (e.g. steel-) production will increase and thus, there will 

be more CO2-emission certificates needed what should make the EU ETS market become short. Vice 

versa, an insider might expect the (steel-) demand/production to decrease (due to a particular reason), 

so that there will be less emission allowances needed in the future what should drive the EU ETS 

market long, rather. However, in section 6.5 we will give some additional motivating aspects that also 

count in favor for the consideration of EUAs under enlarged filtrations.                   

Thirdly, we discuss the concept of minimum relative entropy in order to determine a concrete risk-

neutral measure out of the large class of offering pricing probabilities in our incomplete model, 

whereas in Chapter 3 in [25] the so-called Föllmer-Schweizer minimal measure (see [40] for details) is 

examined on the contrary.                           

Fourthly, in section 8.4.5 we apply stochastic filtering techniques as invented in [53] to (theoretically) 

estimate the unobservable market net position out of observable emission allowance prices.     

The remainder of the current chapter is organized as follows: In section 6.2 we specify the carbon 

emission allowance prices and, in particular, the market zone net position mathematically. In this 

context, we provide a precise definition of the EU ETS market to be long, short or in equilibrium, 

respectively. Applying Girsanov’s Change-of-Measure theorem, we next switch to an equivalent 

pricing measure. Due to the risk-neutral pricing theory, we hereafter obtain a proper drift-restriction 

which, as usually, ensures the martingale property of the discounted EUA prices. Afterwards, we 

invest some innovative effort concerning the pricing of carbon emission allowances under our new 

multi-factor compound Poisson modeling approach, whereas the subsequent paragraph 6.4 is 

dedicated to an appropriate minimum relative entropy procedure. In section 6.5 we construct enlarged 

information filtrations tailored to the requirements of our EU ETS framework and, in addition, derive 

EUA prices under this forward-looking information approach as well, extending our former results of 

section 6.3 essentially. Finally, in paragraph 6.6 a BM-driven mean-reverting Ornstein-Uhlenbeck 

                                                           
61 For a precise definition of the EU ETS market being long, respectively short, see Definition 6.2.1. 
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market zone net position model is introduced, whereas the closing section 6.7 contains our conclusions 

along with some future research topics. 

  

6.2 Modeling carbon emission allowance prices  

Let �Ω, ℱ, ℙ	 be a filtered and complete probability space, whereby the backward-looking 

(respectively historical) information filtration ℱ ≔ �ℱ�	�∈��,�� (within a fixed time horizon � < ∞) is 

assumed both to include a priori all ℙ-null-sets and to be cad 
62. However, we will give a more precise 

definition of the sigma algebra ℱ� in equality (6.2.10) later. In order to be able to focus on the main 

ideas, we correspond to Chapter 2 in [25] and likewise assume a stylized market setup wherein just 

two EU ETS carbon emission allowances (EUAs) are traded, namely: one EUA for the current year, 

which is denoted by EUA0, and one for the next year, notified by the abbreviation EUA1 (cf. p.5 in 

[25]). Hence, a EUA0 contract can be interpreted as some kind of emission allowances spot price, 

whereas a EUA1 contract may be considered as the corresponding forward price (cf. p.3 in [25]). 

Slightly deviating from the setup in Ch. 2 of [25], we come up with the stochastic differential equation 

(SDE) fulfilled by the forward price process Ê� (associated to the EUA1 contract) reading 

(6.2.1)                                          �Ê� = ���, Ê�, å�	 �� + z��, Ê� , å�	 ��� . 
Herein, �� designates a one-dimensional standard Brownian motion (BM) under ℙ, whereas we 

suppose the drift, respectively the volatility coefficient to reveal the tailor-made structures 

(6.2.2)                           ���, Ê� , å�	 ≔ Ê�  �� + � − å�	,       z��, Ê� , å�	 ≔ Ê�  z��	 

for an arbitrary real constant �, a risk-less interest rate � > 0, a deterministic and continuous volatility 

function z��	 > 0 and a real-valued stochastic process å� modeling the market zone net position. 

Furthermore, we introduce a bank account Ò� obeying  

(6.2.3)                                                            �Ò� = � Ò�  �� 

with initial value Ò� > 0. Consequently, equation (6.2.3) possesses the solution 

Ò� = Ò� 7��. 
As usual, we define the discounted EUA1 forward price Êî� via 

(6.2.4)                                                                Êî� ≔ Ý9�9 
whereas Itô’s product rule immediately yields the dynamics 

(6.2.5)                                            �Êî� = Êî�  ��� − å�	 �� + z��	 ����. 
Note in passing that (6.2.5) essentially extends equation “(2.1) in [25]”, as we newly permit both a 

time-dependent volatility coefficient z��	 and, more importantly, a multi-state (real-valued) net 

position process å�. In what follows, we characterize the EU ETS market to be long, short or in 

equilibrium respectively, by appealing to the sign of the market zone net position process å (cf. p.3 

and p.5 in [25]), whereas the net position itself will be precisely defined in (6.2.6) later. 

                                                           
62 See the beginning of section 3.2 for a precise definition of cad sigma-algebras. 
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Definition 6.2.1 (a) If å� > 0 holds for a time index � ∈ �0, ��, then we say that the ETS market 

is long at time �. In this case the market faces a surplus situation of emission permits, meaning that 

there are some firms holding emission allowances that they actually do not need. 

(b) If å� < 0 holds for a time index � ∈ �0, ��, then we say that the ETS market is short at time �. In 

this (much more delicate) scenario the market faces a shortage situation of emission permits, meaning 

that there are some firms which still need emission allowances to cover their actual pollution level. 

(c) If å� = 0 holds for a time index � ∈ �0, ��, then we say that the ETS market is in equilibrium at 

time �. In this case there is a perfect match in between the overall issued emission allowances and the 

actually verified pollution level – a scenario which, by the way, might not be the most likely one. ∎ 

 

Remark 6.2.2   Similarly to p.5 in [25], regarding eq. (6.2.5), we observe a negative relationship 

(correlation) between the sign of the market net position å� and the overall drift part � − å� of the 

EUA1 price Êî�. More precisely, in the case of emission permit shortage we expect an increase in the 

demand for EUA1 contracts and thus, in their prices [25]. Fortunately, this economical feature is met 

by our model, since for å� < 0 we observe an upward shift of the drift in (6.2.5) what most likely 

makes forward prices increase. Vice versa, in the case of permit longness we expect a decrease in the 

demand for EUA1 contracts [25]. Yet, contrarily to above, for å� > 0 we observe a downward shift of 

the drift in (6.2.5) and hence, forward prices should decrease. Finally, in the equilibrium case å� = 0 

the basic drift component � in (6.2.5) reasonably is not affected, neither in upward nor in downward 

direction. In conclusion, the above features sound economically reasonable and agree with [25]. ∎ 

 

In [25] the market zone net position å� is modeled as a càdlàg (French: continue à droite avec des 

limites à gauche) Markov-chain in continuous time merely taking values in the set n ≔ �−1 ∪ �1  

whereas the ETS market therein is called short for å� = −1, and long for å� = 1 respectively (cf. p.5 

in [25]). Reminding our citations in section 6.1 concerning the striking shortcomings connected with 

such a two-state Markov-chain approach, in this work we will model the market zone net position as a 

linear-combination of #J real-valued compound Poisson processes. More accurately, we yet define 

(6.2.6)                                                           

å� ≔ å� + Y ���
I

�P(  

within an initial value å� (which we assume without loss of generality to equal zero63 in the remainder 

of this chapter, i.e. å� = 0) and a family of pair-wise independent, pure-jump, càdlàg, finite-variation 

compound Poisson (Lévy-) processes 

(6.2.7)                                                     ��� ≔ n n ; ����), ;	 ¡¢
��  

for a real subset £� ⊆ ℝ ∖ �0  and time indices � ∈ �0, ��.  
                                                           
63 Hence, with respect to Definition 6.2.1, we here suppose the ETS market to be in equilibrium at time � = 0. At 
this step, let us remark that in section 6.6 we alternatively propose a zero-reverting market zone net position 
model of Ornstein-Uhlenbeck type with multiple Brownian motion (BM) terms as driving noises [compare 
equation (6.6.1)]. Remarkably, in this BM-setup it is possible to compute the probability for a short, respectively 
long market zone net position [see equation (6.6.15)].     
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In the previous equation �� constitutes a one-dimensional integer-valued Poisson-Random-Measure 

(PRM) on �0, �� × £� for each index � = 1, … , J. We further assume the PRMs ����), ;	 both to be ℙ-independent of the (EUA1 forward price driving) Brownian noise � and to have ℙ-compensators �.��;	 �) such that 

(6.2.8)                                            ��+�ℙ�), ;	 ≔ ����), ;	 − �.��;	 �) 

designate ℱ-adapted martingale integrators under ℙ for all � = 1, … , J. By the way, note that Êî and å 

hence are assumed to be ℙ-independent which will become important later. Furthermore, the one-

dimensional compensating Lévy-measures .� appearing in (6.2.8) declare positive and sigma-finite 

Borel-random-measures on £� for all � = 1, … , J obeying the usual condition 

(6.2.9)                                                        

" 1 ∧ ;1 �.��;	 < ∞ 
¡¢

. 
 

Remark 6.2.3 Similarly to our former announcements in section 3.2.1, also in the current emission 

allowances framework it might turn out convenient to split the finite sum in (6.2.6) as follows: We 

ought to utilize the first #ª  �< J	 components ��(, … , ��«  to model (Brownian-motion-like) small 

fluctuations with jump-sizes in a set £� ≔ �−¬� , ¬�� ∖ �0  for a small number ¬� > 0 and � = 1, … , ª. 
In return, the remaining #�J − ª	 components ��«\(, … , ��I might be exploited to model the short-term 

spiky variations of the market zone net position process whereby we might choose £� ≔ ℝ ∖ �−¬�, ¬�� 
for an arbitrary (maybe large) number ¬� > 0 and � = ª + 1, … , J. ∎ 

 

In contrast to a two-state Markov-chain approach, our real-valued compound Poisson process å� [like 

implemented in (6.2.6)] yet can be regarded as a helpful indicator showing how long or short the 

overall net position of a certain EU ETS market zone precisely is (cf. p.5 in [25]). In this context, 

comparing fictive values like å� = −0.01 and å� = −100, for instance, we clearly notice some 

worthy additional information (interpreted with respect to the underlying jump-size distribution, of 

course) contained in the relation of the above values, although the market is simply said to be short in 

both cases. Actually, in [25] both previous scenarios trivially would have led to å� = −1 so that a big 

part of information gets lost in the mentioned two-state setup, obviously.      

Furthermore, on page 18 in [25] the authors propose another possible improvement of their model, 

arguing that one might allow for non-symmetric changes in the drift64 of the EUA1 forward prices 

(6.2.5) in the following sense: News on short positions in the market should make the drift increase
65

 

more strongly than news on long positions make it decrease on the opposite, since (equilibriums or 

even) long positions of the regarded EU ETS zone evidently embody an extremely less delicate market 

scenario in contrast to ‘trouble-making’ permit shortages on the other hand.    

                         

                                                           
64 The setup in [25] merely allows for symmetric changes in the drift, namely either � − � in the case of the 
market being short or � + � in the case of the market being long, whereas � is an arbitrary and � a negative 
constant. 
65 In [25] the authors write on page 18 „…in the sense that news regarding short positions reduce the drift more 

strongly…” which is wrong (or at least misleading/illogical), as they have assumed a negative constant � on the 
bottom of page 5 and thus, in their setup short positions (i.e. å = −1) make the drift increase instead.   
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Contrarily to [25], in our innovative multi-state CPP model such asymmetrical drift effects for Êî� can 

easily be achieved by choosing a tailor-made jump-size distribution for the market zone net position 

process å�, that is, by implementing a customized (possibly asymmetric) distribution for the Lévy 

noises ��� appearing inside (6.2.6). More precisely, if one has an idea about the EU ETS market being 

more likely to turn into or to end up in a particular position, then one might adjust the jump-size 

distribution as follows:                   

If one exemplarily feels that the ETS market is more likely to end up short, then one ought to choose a 

jump-size distribution that is positively skewed, i.e. skewed to the right with respect to the vertical axis. 

In this case, negative jumps appear more likely which should drive the market zone net position 

process to negative values within a high probability. Vice versa, an opposite effect can be achieved for 

an expected long market scenario (also think of what happened in April/May 2006: recall section 1.3 

in this context), if one implements a negatively skewed, i.e. skewed to the left, jump-size distribution 

on the contrary. Finally, if one suspects the market to turn into or to end up in a precise equilibrium, 

then a symmetric (i.e. symmetric to the vertical axis) jump-size distribution might be a proper choice.  

In conclusion, the use of hyperbolic distributions (see e.g. section 5.6.7 in [1], section 2.6.2 in [13] or 

the references [30], [80]) for the Lévy noises ���, admitting (heavy-tails and in particular) skewness, 

may yield a very precise description of the distributional properties of the market zone net position. 

Anyway, the examination of empirical evidences along with numerical simulation issues concerning 

the just described modeling idea with asymmetrical jump-size distributions (which actually are 

induced by our innovative use of multiple Lévy process noises instead of a simple Brownian motion 

approach or even a two-state Markov-chain onset for å) may embody a challenging future research 

topic which has, to the best of our knowledge, not at all been treated in the context of carbon emission 

allowances modeling in the literature yet. 

 

Remark 6.2.4 From a modeling point of view, however, there is no obvious necessity to incorporate 

an additional random jump component in (6.2.5), respectively in (6.2.1), although one may suspect 

more or less strong jumps in EUA1 forward prices from time to time, e.g. as a consequence of 

intermediate announcements concerning the truly verified market zone net position (also compare the 

second half of the abstract in [25] to read more about a possible occurrence of jumps in emission 

prices). With respect to our improved CPP approach, we argue that this modeling job simultaneously 

is taken over by the pure-jump process å� appearing inside the drift of (6.2.5), since jumps in å� make 

the drift part jump at the same time (yet in opposite direction, actually) and thus, forward prices also 

should exhibit a more or less intensive de- or increase during the sequel time range after a jump. This 

time-delay-feature seems to be extremely reasonable, as one expects the ETS market to need some time 

to adjust in the case of an abruptly changing (i.e. jumping) net position (due to e.g. information 

release or other economical reasons). From an economical point of view, a simultaneous jump in the 

forward price path hence appears rather unrealistic, as it completely neglects a delaying adjustment 

period. ∎    

Further on, with respect to (6.2.5) and (6.2.6), we yet specify the aforementioned filtration ℱ� via  

(6.2.10)                       ℱ� ≔ zñÊîR, åR: 0 ≤ ) ≤ �ò ≔ z��R, �R(, … , �RI: 0 ≤ ) ≤ � . 
In order to price carbon emission allowances later, we also need the following technical assumption 

concerning the market zone net position: For the remainder of this chapter we presume that å� ∈�Â(, Â1� ⊂ ℝ holds true ℙ-almost-sure for all � ∈ �0, �� with arbitrary constants Â( < 0 and Â1 > 0. 
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In this regard, for å� = Â( we interpret the EU ETS market to be maximal short at time �. Vice versa, 

for å� = Â1 the market is said to be maximal long. 

 

Remark 6.2.5 Alternatively to (6.2.6), it might be reasonable to model the market zone net position 

as a zero-reverting Ornstein-Uhlenbeck process of the form 

(6.2.11)                                             

�å� = −� å� �� + Y ����	 ����
I

�P(  

within a deterministic mean-reversion speed � > 0, deterministic volatility functions ����	 > 0 and 

compound Poisson (Lévy-) processes ��� as defined in (6.2.7). Interpreting the latter economically 

motivated modeling proposal, one here expects the market zone net position å� to revert towards zero, 

meaning that the ETS market possesses a natural tendency of turning towards its equilibrium. In 

section 6.6 we will examine a model of the type (6.2.11) in more detail. ∎ 

 

6.2.1 Switching to an equivalent martingale measure  

As the risk-neutral pricing theory requires the introduction of an (with respect to ℙ) equivalent 

martingale measure ℚ, the present subsection is dedicated to a change of probability measures. Thus, 

for a square-integrable and ℱ�-adapted process a� we define the Radon-Nikodym derivative  

(6.2.12)                                     

s�ℚ�ℙtℱ9 ≔ e�� ≔ j�a⋅ ∘ �⋅	� × Á j�Â∙���
I

�P( > 0 

within a continuous Doléans-Dade exponential j�a⋅ ∘ �⋅	� as defined in (2.2.2), (local) ℙ-martingale 

ingredients Â�� as previously introduced in (3.2.16) [but with ℎ��), ;	 ≔ ; now] and discontinuous 

Doléans-Dade exponentials j�Â∙��� as given in (3.2.17). Moreover, the former representation (3.2.18) 

likewise holds in our recent setup, if we replace ℎ��), ;	 ≔ ; and ¥��)	 ≡ 1 therein. Actually, Itô’s 

formula yields the local ℙ-martingale representation 

(6.2.13)                                   

 j�a⋅ ∘ �⋅	� = 1 + " j�a⋅ ∘ �⋅	R aR ��R
�

�
. 

In addition, equation (3.2.19) simultaneously holds, but with ℎ��), ;	 ≔ ; therein now. Assuming the 

presumptions of paragraph 2.2 to be in force, by means of independency we find 6ℙ�e��� = 1 for all � 

such that e� embodies a true ℙ-martingale. Troubling Proposition 2.2.1, we consequently state that 

(6.2.14)                                                         

�+� ≔ �� − " aR
�

�
�) 

indicates a ℱ�-adapted BM under the equivalent martingale measure (EMM) ℚ [compare (2.2.6)]. 
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Furthermore, with respect to (2.2.8) we claim that 

(6.2.15)                           ��+�ℱ,ℚ�), ;	 ≔ ��+�ℚ�), ;	 ≔ ����), ;	 − 7? �.��;	 �) 

depict �ℱ, ℚ	-compensated PRMs and thus, ℱ-adapted ℚ-martingale integrators for all � = 1, … , J. 

 

Remark 6.2.6 In accordance to the risk-neutral pricing theory, we recall that all tradable “assets” 

in the considered market must designate local ℚ-martingales after discounting (cf. e.g. subsection 

4.1.1 in [13]). Since there are only two “tradable assets” in our current model, namely the EUA0 

contract and the EUA1 forward with price process Êî (whereas the market net position is non-tradable, 

of course), we are facing #�J + 2	 sources of risk (one coming from the EUA0 contract and one from 

the EUA1 forward Êî along with #J associated to å) what, in accordance to the second fundamental 

theorem of asset pricing, declares our underlying EU ETS market model to be highly incomplete 

(parallel to p.6 in [25]). Thus, the determination of a precise equivalent martingale measure using the 

approximation concept of ‘minimum relative entropy’ will lead us to some sophisticated but necessary 

examinations in section 6.4 later. (Also remind Remark 5.2.1 at this step.) ∎ 

 

Returning to our main topic, we substitute (6.2.14) into (6.2.5) and hence obtain the ℚ-representation 

(6.2.16)                                 �Êî� = Êî�  <�� − å� + z��	 a�	 �� + z��	 ��+�A. 
With respect to Remark 6.2.6, we require the discounted EUA1 forward price Êî� to form a local 

martingale under ℚ, what leads us to the drift-restriction 

(6.2.17)                                                             

a� = å� − �z��	 . 
Assuming the latter drift-restriction to be in force, equality (6.2.16) simplifies to 

(6.2.18)                                                       �Êî� = Êî� z��	 ��+� 

bearing the explicit (continuous) Doléans-Dade ℚ-solution 

(6.2.19)                       

Êî� = Êî� j�z�∙	 ∘ �+⋅�� = Êî� 7#d f" z�)	�
�

��+R − 12 " z�)	1�
�

�)i. 
Herein, we assume the initial value 

Êî� = Ê�Ò� > 0 

to be deterministic. 
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6.3 Pricing carbon emission allowances  

In this paragraph we invent an appropriate method involving multi-dimensional Fourier transforms in 

order to derive explicit pricing formulas for carbon emission allowances as commonly traded in the 

EU ETS but newly under our improved multi-state market zone net position approach. We initially do 

this under the ordinary assumption that the market participants’ knowledge is such as modeled in 

(6.2.10). In other words, at time � we suppose these uninitiated traders solely to have an idea about the 

histories of ÊîR and åR during a time range 0 ≤ ) ≤ �. On the contrary, in section 6.5 we will show how 

these pricing formulas alter if one presumes some additional forward-looking insider information 

about the market zone net position at a future time | available to so-called informed traders, 

respectively market insiders. 

As described at the end of Chapter 2 in [25], we firstly should notice that if the EU ETS market ends 

up long �å� > 0	 at the expiry date � (meaning that there are still some firms holding carbon emission 

allowances that they do not need any more), then – under the assumption of no banking – EUA0 

contracts will become worthless what drives their prices towards zero immediately. Theoretically, we 

assume the same to be valid for the rather unlikely but of course possible case wherein the market ends 

up in a precise equilibrium �å� = 0	. Contrarily, if the market ends up short �å� < 0	 at the final time � (meaning that there is a shortage situation throughout carbon emission allowances in the market), 

then – in this much more delicate market scenario – a EUA0 contract will not become worthless, since 

the latter easily can be turned into a EUA1 contract by paying an imposed penalty Ó (cf. p.6 in [25]).  

Hence, slightly deviating from “(2.5) in [25]”, we yet define the price of a EUA0 contract via 

(6.3.1)                                        

W� ≔ �Êî� + Ó� G�æà*� = Ã      0,              å� ≥ 0Êî� + Ó, å� < 0s 
within a constant penalty value Ó > 0 (given in EURO). Thus, the EUA0 price W� in (6.3.1) can be 

interpreted as a generalized contingent claim, respectively as a non-standard option on Êî [25]. In other 

words, a EUA0 contract may be considered as some kind of exotic option on a EUA1 contract.  

As explained before, in [25] the market zone net position å� is modeled as a two-state Markov-chain 

merely taking values in the set n ≔ �−1,1 , whereby the case å� = 1 (å� = −1) in [25] corresponds 

to å� ≥ 0 (å� < 0) in our setup. For this reason, in the Cetin-Verschuere-approach (see the top of 

page 8 in [25]) the contingent claim W� easily can be written in the extremely convenient form 

(6.3.2)                                          

W� = �Êî� + Ó� G�æàPM( = 1 − å�2 �Êî� + Ó�. 
At this step, we notice a (preliminary) disadvantage of our innovative CPP approach (although the 

latter possibly appears more realistic from a modeling point of view), as the very tractable 

representation (6.3.2) unfortunately is no longer valid if we model the market zone net position by a 

linear combination of compound Poisson processes taking arbitrary many values in the compact set �Â(, Â1� ⊂ ℝ, instead of a net position with values in n ≔ �−1,1 , solely. In fact, regarding the 

structure of our contingent claim (6.3.1), it seems hardly possible to express the latter within a similar 

notational form as in (6.3.2). However, the claim (6.3.1) not at all reveals a European-type structure 

(as commonly known from popular plain-vanilla options), though on a superficial sight rather similar, 

since inside the indicator function not the process Êî itself appears, but another process, namely å.  
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Our key idea to overcome the just formulated problem reads as follows: We newly associate the 

contingent claim W� as given in (6.3.1) within a customized real function S mapping 

S: �0, ∞	 × �Â(, Â1� ⟶ �0, ∞	 

whereas we concretely define 

(6.3.3)                                                S�#(, #1	 ≔ �#( + Ó	 G�&¨*�  
so that S�Êî� , å�� = W� proves true instantly. Unfortunately, the function S is not integrable on the set ℳ ≔ �0, ∞	 × �Â(, Â1� ⊂ ℝ1 with respect to the two-dimensional Lebesgue measure �1, in symbols S�#(, #1	 ∉ ℒ(�ℳ, �1	. However, for later purposes we introduce the exponentially damped function 

(6.3.4)                                                 Ù�#(, #1	 ≔ 7M¸&Ì  S�#(, #1	 

defined on ℳ as well, within a real dampening parameter Õ > 0, yet obeying Ù�#(, #1	 ∈ ℒ(�ℳ, �1	 

on the opposite. 

 

6.3.1 Pricing EUA0 contracts with Fourier transform methods 

In this subsection we derive risk-neutral prices for EUA0 contracts such as traded in the EU ETS 

market by applying a customized Fourier transform procedure (also compare paragraph 3.2.4 above). 

Starting off, with respect to (6.3.1), (6.3.3) and (6.3.4), we immediately obtain 

(6.3.5)                                          W� = S�Êî� , å�� = 7¸Ýîà  Ù�Êî� , å��. 
Moreover, in accordance to (2.4.3) [but with � = 2 therein], we receive 

(6.3.6)                                            

Ù�Êî� , å�� = 1�2�	1 " ÙÚ�F(, F1	 
ℳ 7=�EÌÝîà\E¨æà	��1�F(, F1	.  

Next, for 0 ≤ � ≤ � the risk-neutral pricing formula [cf. (3.2.30)] can be written as 

(6.3.7)                               

W� = Ò�Ò�  6ℚ�W�|ℱ�	 = 7M���M�	 6ℚ�S�Êî� , å���ℱ��. 
Appealing to (6.3.5), (6.3.6) and the Fubini-Tonelli theorem, the conditional expectation on the right 

hand side of (6.3.7) becomes 

(6.3.8)                                    6ℚ�S�Êî� , å���ℱ�� = 6ℚ�7¸Ýîà  Ù�Êî� , å���ℱ�� 

= 1�2�	1 " ÙÚ�F(, F1	 
ℳ 6ℚ�7�¸\=EÌ	Ýîà  7=E¨æà�ℱ�� ��1�F(, F1	. 

Further on, the ℱ�-measurability of Êî� and å� together with the independent increment property of the 

two latter ℚ-independent processes implies 
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(6.3.9)       6ℚ�7�¸\=EÌ	Ýîà  7=E¨æà�ℱ�� = 7�¸\=EÌ	Ýî9  7=E¨æ9  6ℚ�7�¸\=EÌ	�ÝîàMÝî9  7=E¨�æàMæ9 �ℱ�� 

= 7�¸\=EÌ	Ýî9  7=E¨æ9  6ℚ<7�¸\=EÌ	�ÝîàMÝî9  A 6ℚ<7=E¨�æàMæ9 A =: 7�¸\=EÌ	Ýî9  7=E¨æ9 × ℑ( × ℑ1. 
Meanwhile, we proceed with the computation of the Fourier transform ÙÚ such as appearing inside 

(6.3.8): In accordance to (2.4.2), (6.3.3) and (6.3.4), we get 

(6.3.10) 

ÙÚ�F(, F1	 = "�#( + Ó	 G�&¨*�  7M¸&Ì  7M=�&ÌEÌ\&¨E¨  ��1�#(, #1	 
ℳ

=  " G�&¨*�  7M=&¨E¨ " �#( + Ó	 7M�¸\=EÌ	&Ì  �#(
Û

�
È¨

ÈÌ
�#1

=  " 7M=&¨E¨  1 + �Õ + DF(	 Ó�Õ + DF(	1  �#1
�M

ÈÌ
= 1 + �Õ + DF(	 Ó�Õ + DF(	1 × 7M=ÈÌE¨ − 1DF1 . 

Anyway, applying (6.2.6), (6.2.7), (6.2.15) and the Lévy-Khinchin formula [see Theorem 2.1.3], by 

common independency (and stationarity) arguments we next derive 

(6.3.11)                      

ℑ1 ≔ 6ℚ<7=E¨�æàMæ9 A = Á 6ℚ Ä7=E¨ïàq9¢ ÅI
�P( = Á 7��M�	 B¢�E¨	I

�P(  

within characteristic exponents 

(6.3.12)                                            

C��F1	 = "<7=E¨? − 1A 7? �.��;	 
¡¢

. 
What remains is the computation of the first multiplier ℑ(: Using (6.2.19) while exploiting standard 

conditioning methods (cf. e.g. the last equality of the proof of Prop. 10.4 in [13]), we deduce 

(6.3.13)                                                     

ℑ( ≔ 6ℚ<7�¸\=EÌ	�ÝîàMÝî9 A = 6ℚ ö7�¸\=EÌ	ÃÝîàÝî9  M (ÆÝî9÷
= 6ℚ Ï7#d f�Õ + DF(	 Ï7#d ~" z�)	�

�
��+R − 12 " z�)	1�

�
�)� − 1Ð &iÐ

'≔Ýî9
. 

Furthermore, for 0 ≤ � ≤ � the stochastic process 

(6.3.14)                            

��M� ≔ Êî�Êî� = 7#d f" z�)	�
�

��+R − 12 " z�)	1�
�

�)i 

is log-normally distributed under the EMM ℚ with mean 
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6ℚ���M�� = 1  

and variance 

LMNℚ���M�� = 7#d mn z�)	1�)�� o − 1.  
As usual, we denote the latter fact by writing 

ℚ8àq9 = �� �−F12 ,F1� ,        F1 ≔ " z�)	1�)�
�

 

in shorthand notation. Hence, adhering to similar measure-transformation/conditioning arguments as 

applied in e.g. the proof of Prop. 10.4 in [13], with respect to (6.3.13) and (6.3.14) we next obtain  

(6.3.15)                
ℑ( = 6ℚ<7�¸\=EÌ	�8àq9M(	'A'≔Ýî9 = " 7�¸\=EÌ	�&M(	' �ℚ8àq9�#	'≔Ýî9

 
��,Û	

= "  7�¸\=EÌ	�&M(	'
#√2�F1

Û
�\

7#d f− 12 úªJ�#	 + G1̈F û1i �# '≔Ýî9 =:O�F(, Êî�� 

which can be calculated further by standard numerical integration methods for Riemann integrals (see 

paragraph 19.3 in [19], for example). Merging (6.3.8), (6.3.9), (6.3.11) and (6.3.15) into (6.3.7), we 

finally end up with the expression 

(6.3.16)                                                                        
W� = 7M���M�	�2�	1 " ÙÚ�F(, F1	 O�F(, Êî�� 7�¸\=EÌ	Ýî9\=E¨æ9  Á 7��M�	B¢�E¨	 ��1�F(, F1	I

�P(
 

ℳ  

yielding the Ó-penalized EUA0 price at time � of a contingent claim paying W� as given in (6.3.1) at 

the expiry date �, whereby ÙÚ�F(, F1	, C��F1	 and O�F(, Êî�� are such as defined in (6.3.10), (6.3.12) 

and (6.3.15), respectively. In practical applications, the random processes Êî� and å� appearing inside 

(6.3.16) naturally have to be simulated, whereas the two-dimensional ��1-integral over ℳ must be 

evaluated numerically. 

 

6.4 The minimum relative entropy measure  

Due to the second fundamental theorem of asset pricing, in an incomplete market model we are facing 

several candidates for equivalent martingale measures and it is not a trivial question which one to 

choose (also recall Remark 6.2.6 in this context). Thus, our following considerations are dedicated to 

the minimum relative entropy methodology which provides an appropriate method to overcome (at 

least approximately) the above mentioned selection problem. We want to stress here that in [25] the 

so-called Föllmer-Schweizer minimal martingale measure (see [40] for details) is examined. 

Alternatively, in the present work we will stick to an adjusted relative entropy approach, whereas both 

onsets obviously succumb to a related minimization concept.  
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Following the idea of measuring some kind of distance between two equivalent probability measures ℙ and ℚ, parallel to the bottom of page 520 in [26] we define the so-called relative entropy of any 

measure ℚ with respect to the fixed market measure ℙ as our approximation-error criterion via 

(6.4.1)                                                     

ℰ�ℙ|ℚ�≔ ℰ�ℙ|ℚ���	 ≔ 6ℚ �ªJ � s�ℚ�ℙtℱ9��. 
Merging (2.2.2), (3.2.18) [but with ℎ��), ;	 ≔ ; and ¥��)	 ≡ 1 therein] and (6.2.12) into (6.4.1) while 

taking (6.2.8), (6.2.14) and (6.2.15) into account, we initially get 

(6.4.2) 

ℰ�ℙ|ℚ� = 6ℚ Ï" ~aR12 + Y "�; 7? + 1 − 7?� �.��;	 
¡¢

I
�P( � �)�

�
Ð. 

According to section 3.3 in [26] (see p.521), we announce right at the beginning that the problem of 

finding the precise EMM ℚ yielding minimal relative entropy forces us to minimize the above 

expression (6.4.2) with respect to the stochastic process a under the restrictive constraint (6.2.17). 

Roughly speaking, the measure of minimum relative entropy thus minimizes the distance between the 

true market measure ℙ and its approximating candidate ℚ and therefore, delivers the [with respect to 

our specific error criterion (6.4.1)] best possible approach towards the verity ℙ under the restrictive 

condition ‘the discounted EUA1 forward price Êî has to form a local ℚ-martingale’.     

Since ; 7? + 1 − 7? > 0 is valid for all ; ∈ ℝ ∖ �0  while the Lévy-measures .� have been assumed 

to be positive on their supports £� ⊆ ℝ ∖ �0  for every index � = 1, … , J anyway, the object 

(6.4.3)                                             

þ ≔ Y "�; 7? + 1 − 7?� �.��;	 
¡¢

I
�P(  

appearing inside (6.4.2) designates a positive and deterministic constant which obviously is time-

independent. Hence, an application of the Fubini-Tonelli theorem on (6.4.2) immediately yields 

(6.4.4)                                                   

ℰ�ℙ|ℚ� = "�6ℚ�aR1�2 ��) + þ��
�

. 
Further on, a substitution of the drift-condition (6.2.17) into (6.4.4) leads us to 

(6.4.5) 

ℰ�ℙ|ℚ� = " 6ℚ�åR1� − 2 � 6ℚ�åR� + �12 z�)	1 �) + þ��
�

. 
In order to solve the upcoming minimization exercise explicitly, we assume the volatility function z�)	 appearing inside (6.4.5) to be constant, i.e. z�)	 ≡ z > 0, for the remainder of paragraph 6.4. 

Moreover, Theorem 2.1.3 and Lemma 2.1.4 together with (6.2.6), (6.2.7) and (6.2.15) [respectively, 

together with (6.3.11) and (6.3.12)] yield the first and second moments 
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(6.4.6)                                                                     
6ℚ�åR� = ) Y " ; 7?�.��;	 

¡¢

I
�P( , 

6ℚ�åR1� = − U1U#1 �6ℚ<7=&æÉA�&P� = ) Y " ;17?�.��;	 
¡¢

I
�P( + )1 ~Y " ; 7?�.��;	 

¡¢

I
�P( �

1
. 

Using (6.4.6) and the deterministic abbreviations 

(6.4.7)                             

� ≔ Y " ;17?�.��;	 
¡¢

I
�P( ,      5 ≔ Y " ; 7?�.��;	 

¡¢

I
�P( , 

for 0 ≤ � ≤ � property (6.4.5) presently transforms into 

(6.4.8)                                          

ℰ�ℙ|ℚ� = �2z1 �513 �1 + � − 25�2 � + �1� + þ� 

which may be interpreted as a deterministic function 

��, z	 ⟼ ℰ�ℙ|ℚ���, z	 ≔ ℰ��, z	 

with arguments � ∈ ℝ and z ∈ �0, ∞	. Hence, the minimum relative entropy framework forces us to 

minimize (6.4.8) with respect to � and z. Yet, the gradient vector of ℰ reads as 

(6.4.9)                 �ℰ��, z	 ≔ ÖUℰU� ,UℰUz× ��, z	 = � �2z1 �2� − 5�� ,   �z> �25� − �2 � − 513 �1 − �1�� 

so that (for � > 0) the first order condition �ℰ��, z	 = � yields the non-linear equality system 

(6.4.10)                                    

 � = 5�2       ∧       25� − �2 � − 513 �1 − �1 = 0 

          

which unfortunately does not possess a unique solution for � and neither for z, as the latter has 

canceled out completely, anyway. In conclusion, our model does obviously not allow to minimize the 

function (6.4.8) over � and z simultaneously. [By the way, note that for � = 0 we have ℰ��, z	 = 0 

which can be associated with the martingale modeling case ℙ = ℚ.] Nevertheless, for � > 0 and a 

fixed volatility coefficient z the mapping � ⟼ ℰ��	 attains its minimum at the critical value 

(6.4.11) 

�∗ ≔ 12 Y " " ; 7?�.��;	 
¡¢

�
�

I
�P( �) 

whereas ℰ����∗	 > 0 holds whenever 0 < � ≤ �.  
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Putting (6.2.6), (6.2.7) and (6.4.11) into the drift condition (6.2.17), we ultimately end up with 

(6.4.12)                                    

a� = a�∗ ≔ 1z Y " " ; Ã����), ;	 − 7?2 �.��;	 �)Æ 
¡¢

�
�

I
�P(  

(yet for 0 ≤ � ≤ � again). In conclusion, the precise equivalent martingale measure (EMM), ℚ∗ say, 

yielding minimum relative entropy (in the just discussed sense) is given through the Radon-Nikodym 

derivative (6.2.12) but within a stochastic process a∗ such as defined in (6.4.12). 

 

6.5 Emission allowances under enlarged filtrations  

In this section we devote our attention towards the pricing of EUA0 contracts but yet with respect to 

some additional information about the market zone net position that an informed market insider may 

have knowledge of. More precise, in our upcoming considerations we will take forward-looking 

information about a selection of the jump-noises driving the stochastic net position process å at some 

future time | into account via an adequate enlargement of the underlying filtration. By the way, we 

emphasize that the just mentioned enlargement-of-filtration procedure constitutes the right opposite to 

the pricing framework under incomplete information such as treated in Chapter 4 in [25].  

Once more, we here recall that the monotone increasing retro sigma algebras ℱ� such as defined in 

(6.2.10) only store past information that is available up to time �, actually. On the contrary, we now 

introduce the flow of supplementary future information concerning the market zone net position by an 

enlarged filtration: To be precise, we assume that a fictive informed EU ETS trader has an idea about 

the net position value å{, respectively has guessed/established appropriate values for the pure-jump 

noises �{( , … , �{I driving the net position (6.2.6) at the future time |. [Note that it is not necessary to 

impose Condition A presently, since the jump noises in (6.2.7) are Lévy processes already, as we have 

chosen ℎ��), ;	 ≔ ; and ¥��)	 ≡ 1 in Ch. 6.] However, somewhat similar to our former approaches, 

for a time partition 0 ≤ � < | ≤ � we initially introduce an overall/global filtration ℋ via 

(6.5.1)                                       ℋ� ≔ ℱ� ∨ z�å{ ≔ ℱ� ∨ z��{( , … , �{I  

representing the (rather unrealistic) case of having access to complete or exhaustive information at 

time � �< |	 about the market net position å{ where |-forward-looking events are included. Slightly 

deviating from our main idea presented in subsection 3.3.2 [recall (3.3.38)], we next implement an 

explicit intermediate filtration ��∗ by using a subfamily of the components appearing in ℋ� defining 

(6.5.2)                                                   ��∗ ≔ ℱ� ∨ z��{�: � ∈ J  

for an arbitrary index subset J ⊆ �1, … , J  and times 0 ≤ � < | ≤ �. Then the properties 

(6.5.3)                                                           ℱ� ⊂ ��∗ ⊂ ℋ� 

for � < | and ℱ� = ��∗ = ℋ� for � ≥ | are valid. The choice J = �1, … , J  in (6.5.2) corresponds to ��∗ = ℋ� and thus, to complete knowledge of the market zone net position value at the future time |. 

On the other hand, the case J ⊂ �1, … , J  actually represents a scenario wherein the EU ETS market 

insiders merely have access to some restricted additional information on the future net position 

behavior, sounding more realistically. Obviously, the trivial instance J = ∅ implies ��∗ = ℱ�. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

147 

 

Eventually, we recall that the properties (3.3.39), (3.3.45), (3.3.47) – (3.3.49) and Lemma 3.5.1 [but 

altogether adjusted to the J-notation yet] simultaneously hold true in our recent enlargement-of-

filtration setup (6.5.1) – (6.5.3) associated to the EU ETS framework. 

 

6.5.1 Pricing EUA0 contracts under future information on the market zone net position 

In accordance to the pricing framework introduced in section 6.3 [particularly remind equality (6.3.7) 

therein], we define the Ó-penalized EUA0 price at time � ∈ �0, �� of a contingent claim paying W� as 

given in (6.3.1) at the (fixed) expiry date � yet under the filtration ��∗ [as implemented in (6.5.2)] via 

(6.5.4)                                           W�∗ ≔ 7M���M�	 6ℚ�S�Êî� , å�����∗�. 
By the way, referring to (6.3.7), (6.5.3) and (6.5.4), for | ≤ � ≤ � we observe W�∗ = W�, since ��∗ = ℱ� 

holds whenever � ≥ |. Thus, we merely need to treat (6.5.4) under the presumption 0 ≤ � < | in the 

following. Applying Fourier transform methods like presented in subsection 6.3.1, we initially deduce 

(6.5.5)                     

W�∗ =  7M���M�	�2�	1 " ÙÚ�F(, F1	 6ℚ�7�¸\=EÌ	Ýîà\=E¨æà���∗� ��1�F(, F1	 
ℳ  

within an inverse Fourier transform ÙÚ such as claimed in (6.3.10).  

At this step, let us remark that in general the market zone net position process å does not possess 

independent increments with respect to �∗. More precisely, åR − å� and ��∗ are not necessarily ℚ-

independent for arbitrary time indices 0 ≤ � < ) ≤ � (unless J = ∅), as long as the instance ) = | is 

not excepted. (The latter fact directly becomes clear if we compare (6.2.6) with (6.5.2) wherein J ≠ ∅.) Fortunately, we have already presumed � < | above, so that for a fixed expiry date � �≠ |	, � ≤ �, the conditional expectation appearing inside (6.5.5) [similarly to (6.3.9)] yet factors into 

6ℚ�7�¸\=EÌ	Ýîà\=E¨æà���∗� = 7�¸\=EÌ	Ýî9\=E¨æ9 × O�F(, Êî�� × Á ℑ��∗
�∈J × Á ℑ�ℱ�∈Jz  

with JX ≔ �1, … , J ∖J and multipliers 

ℑ��∗ ≔ 6ℚ Ä7=E¨ñïà¢ Mï9¢òÅ , ℑ�ℱ ≔ 6ℚ Ä7=E¨ïàq9¢ Å = 7��M�	 B¢�E¨	 
where C��F1	 and O�F(, Êî�� are such as defined in (6.3.12), respectively in (6.3.15). Unfortunately, a 

proper analytical handling of ℑ��∗
 does not seem to be achievable, since the contained Lévy processes ��  �� ∈J	 even inside those usual expectations (as some kind of ‘heritage’) still associate with �∗: 

more precisely, the corresponding (actually stochastic) martingale compensators presently have to be 

taken with respect to �∗ [remind (3.3.47) – (3.3.49) along with the epilog of (6.5.3) in this context]. In 

other words, the appearing objects ℑ��∗ = ℰℚ�∗��, �, £�; DF1; ��	 [recall definition (3.5.8)] essentially 

belong to the ‘stubborn’ class of forward-looking usual expectations such as examined in paragraph 

3.5.1. Anyway, inspired by Excursus A, we now propose an alternative treatment of the conditional 

expectation inside (6.5.5) while applying an approximation technique involving complex Taylor-

estimates. For notational convenience, we preliminarily introduce the complex stochastic process 

(6.5.6)                                                c� ≔ �Õ + DF(	 Êî� +  DF1 å�. 
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Starting off, we make use of a (complex) Taylor-approximation of order one66 to obtain 

(6.5.7)                                                6ℚ�7�¸\=EÌ	Ýîà\=E¨æà ���∗� ≈               

Y 6ℚ��c�	|��∗	.!(
P� = 1 + �Õ + DF(	 6ℚ�Êî����∗� + DF1 6ℚ�å�|��∗	. 

Next, taking (6.5.2) and (6.2.18) into account, we receive  

(6.5.8)                                             6ℚ�Êî����∗� = 6ℚ�Êî��ℱ�� = Êî� . 
Moreover, with respect to (6.2.6) and (6.5.2), we may decompose 

(6.5.9) 

6ℚ�å�|��∗	 = 6ℚ ú Y ����∈J Ñ��∗û + 6ℚ ú Y ����∈Jz Ñℱ�û. 
Further on, appealing to (3.3.45), (3.3.47) – (3.3.49), (6.2.7), (6.2.15), Lemma 3.5.1 and the tower 

property, the first conditional expectation on the right hand side of (6.5.9) transforms into 

(6.5.10) 

6ℚ ú Y ����∈J Ñ��∗û = Y 6ℚ���� − ������∗��∈J + Y ����∈J = Y 6ℚ ~" " ; �.��∗,ℚ�), ;	 
¡¢

�
�

���∗��∈J + Y ����∈J
= Y " 6ℚ��{� − �R����∗�| − )

{M
�

�)�∈J + Y " 6ℚ��{� − �R����∗�| − )
�

{
�)�∈J + Y ����∈J

= Y " �{� − ���| − �
{M
�

�)�∈J − Y " 6ℚ�6ℚ��R� − �{��ℱ{����∗�| − )
�

{
�)�∈J + Y ����∈J

= Y �{��∈J − Y " 6ℚ��R� − �{��| − )
�

{
�)�∈J = Y ~�{� + �� − |	 " ; 7? �.��;	 

¡¢
��∈J  

wherein we have just used the fact ��∗ ⊂ �{∗ = ℱ{ for � < | �≤ ) ≤ �	, � ≠ |, in connection with the 

iterated conditioning step. On the other hand, referring to (6.2.7), (6.2.10) and (6.2.15), the second 

conditional expectation on the right hand side of equation (6.5.9) points out as 

(6.5.11) 

6ℚ ú Y ����∈Jz Ñℱ�û = Y ~��� + �� − �	 " ; 7?�.��;	 
¡¢

��∈Jz . 
                                                           
66 Recall Excursus A, particularly (A.6), at this step [although we will not apply secant estimations as presented 
therein now]. Admittedly, using Taylor-polynomials of higher orders (than one) certainly would yield a better 
approximation in (6.5.7), whereas the handling of the incoming conditional expectations then becomes extremely 
longwinded, unfortunately. However, the author has done the corresponding computations for a Taylor-
polynomial of order two while applying Itô’s formula on �c�	1. Nevertheless, the underlying techniques should 
become clearer in the tangent-plane case presented above, not at least as it yields a much better overview. 



Markus Hess                           PRICING ENERGY, WEATHER AND EMISSION DERIVATIVES UNDER FUTURE INFORMATION 

 

149 

 

Hence, substituting (6.5.10) and (6.5.11) into (6.5.9), we derive 

(6.5.12)                                                             
6ℚ�å�|��∗	 = Y N�{� − ���|	O�∈J + Y N��� − ����	O�∈Jz + Y ����	I

�P(  

wherein we have recently introduced the deterministic abbreviation 

����	 ≔ � " ; 7? �.��;	 
¡¢

. 
Finally, merging (6.5.8) and (6.5.12) into (6.5.7), we end up with the estimate 

(6.5.13)                                  6ℚ�7�¸\=EÌ	Ýîà\=E¨æà���∗� ≈ T��|, �; F(, F1	 

within a complex stochastic process 

(6.5.14)                                                   T� ≔ T��|, �; F(, F1	 ≔ 

1 + �Õ + DF(	 Êî� + DF1 ö Y N�{� − ���|	O�∈J + Y N��� − ����	O�∈Jz + Y ����	I
�P( ÷. 

We remark that in practical applications the stochastic ingredients of T�, such as Êî� and ��� �� ∈ JX	, 

have to be simulated numerically, whereas the involved values �{�  �� ∈ J	 have to be guessed, 

respectively established, from the additionally available future information concerning the market 

zone net position at time |, namely å{ [recall the precise definition of the intermediate filtration ��∗ in 

(6.5.2) and of the market zone net position process in (6.2.6) in this context].          

All in all, the Ó-penalized �∗-forward-looking EUA0 price at time � �< |	 of a contingent claim 

paying W� such as given in (6.3.1) at the expiry date � can be estimated via 

(6.5.15) 

W�∗ ≈  7M���M�	�2�	1 " ÙÚ�F(, F1	 T��|, �; F(, F1	 ��1�F(, F1	 
ℳ . 

Herein, the (deterministic) inverse Fourier transform ÙÚ is defined like in (6.3.10), whereby the two-

dimensional Lebesgue integral over ℳ can be evaluated by standard numerical integration methods. 

Eventually, we propose a rigorous (numerical) comparison of (6.5.15) with (6.3.16) to examine the 

precise effects of supplementary future information on emission allowance prices in more detail. 

 

6.6 A Brownian mean-reverting market zone net position model  

In order to obtain an alternative EUA0 pricing formula descending from a continuous net position 

model (without jumps), we now propose a Brownian motion (BM) driven approach to describe the 

dynamics of the latter. To be precise, we innovatively model the market zone net position by a 

continuous zero-reverting multi-factor Ornstein-Uhlenbeck disposition, such as formerly supposed in 

Remark 6.2.5. Referring to (6.2.11), we thus replace equation (6.2.6) through 
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(6.6.1)                                           

�åî� = −� åî�  �� + Y ��  �5��
I

�P(  

whereas we presume (without loss of generality) that the market zone net position is in equilibrium at 

time � = 0, i.e. åî� = 0. Moreover, the constant parameter � > 0 appearing inside (6.6.1) denotes the 

mean-reversion velocity, �(, … , �I are deterministic and strictly positive volatility coefficients and 5�(, … ,5�I designate standard BMs under ℙ which we assume both to be pair-wise independent and 

independent of the EUA1 price driving noise ��. Again, we suppose the technical assumption åî� ∈ �Â(, Â1� ⊂ ℝ to be valid ℙ-almost-sure for all � ∈ �0, �� (see eq. (6.6.10) ff. in this context). 

Somehow similar to (6.2.12), we next implement an EMM ℚ+  due to the Radon-Nikodym derivative 

(6.6.2)                                       

s�ℚ+�ℙ�ℱ�9
≔ j�aî∙ ∘ �∙�� × Á j�a��∙	 ∘ 5∙���

I
�P(  

with multipliers j�aî∙ ∘ �∙��  as defined in (2.2.2) [but with a therein replaced by aî to avoid a double-

notation here], j�a��∙	 ∘ 5∙��� as introduced in (3.3.71) and a new initial filtration 

(6.6.3)                                           ℱ�� ≔ z��R,5R(, … ,5RI: 0 ≤ ) ≤ � . 
Further on, the solution of (6.6.1) under ℙ obviously is given by 

(6.6.4)                                               

åî� = Y ��  I
�P( " 7Mh��MR	 �5R�

�
�

. 
Moreover, taking Girsanov’s Change-of-Measure theorem into account [cf. paragraph 2.2, respectively 

eq. (3.3.110)], the latter equality transforms into the ℚ+-representation 

(6.6.5) 

åî� = Y ��
I

�P( " 7Mh��MR	 a��)	 �)�
�

+ Y ��
I

�P( " 7Mh��MR	 �5�R�
�

�
 

within �ℱ�, ℚ+�-BMs 5�(, … ,5� I. Referring to the notations and derivation methodologies of section 6.3 

[particularly recall (6.3.7) – (6.3.9) therein], we announce the (actually backward-looking) Ó-

penalized EUA0 price W�� of a contingent claim (6.3.1) with expiry date �, but yet associated to our 

recent BM-driven mean-reverting market zone net position model (6.6.1), to be of the form 

(6.6.6) 

W�� = 7M���M�	�2�	1 " ÙÚ�F(, F1	 
ℳ 7�¸\=EÌ	Ýî9  7=E¨æ�9 ×  �( ×�1 ��1�F(, F1	 

wherein ÙÚ is such as defined in (6.3.10). In accordance to (6.3.13) and (6.3.15), we firstly observe 

(6.6.7)                                      �( ≔ 6ℚ+ <7�¸\=EÌ	�ÝîàMÝî9  A = O�F(, Êî��. 
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Secondly, with respect to (6.6.5), we deduce 

(6.6.8)                                                     
�1 ≔ 6ℚ+ Ä7=E¨ñæ�àMæ�9òÅ = ���, �	 × 6ℚ+ ÏÁ 7#d fDF1 �� ~@��, �	 " 7hR �5�R�

�
�

+ 7Mh� " 7hR �5�R�
�

�
�iI

�P( Ð 

wherein we have just introduced the deterministic abbreviations @��, �	 ≔ 7Mh� − 7Mh� and 

���, �	 ≔ 7#d fDF1 Y �� ~" 7Mh��MR	 a��)	 �)�
�

− " 7Mh��MR	 a��)	 �)�
�

�I
�P( i. 

Meanwhile, note that for every � ∈ �1, … , J  the �5�R�-integrals appearing on the right hand side of 

(6.6.8) are ℚ+-independent of each other. Thus, the involved usual expectation factors what leads us 

[within an application of Itô’s isometry] to 

�1 = ���, �	 × 7#d üF11  �1 − 71h�	 @1��, �	 + 71h��M�	 − 14�  Y ��1
I

�P( ý =: ¯�F1, �, �	. 
In conclusion, equation (6.6.6) points out as 

(6.6.9) 

W�� = 7M���M�	�2�	1 " O�F(, Êî�� 7�¸\=EÌ	Ýî9  ~ " ÙÚ�F(, F1	 ¯�F1, �, �	 7=E¨æ�9  �F1
È¨

ÈÌ
� �F(

Û
�\

 

yielding the (backward-looking) EUA0 price at time � ∈ �0, �� associated to our innovative BM-driven 

Ornstein-Uhlenbeck net position model (6.6.1). Ultimately, we aim to compute the probability 

(6.6.10) 

ℙ�åî� ∈ �Â(, Â1�� = ℙ ~Â( ≤ Y " �� 7Mh��MR	�5R�
�

�
I

�P( ≤ Â1� , � ∈ �0, ��. 
For this purpose, we recall that åî� is normally distributed under ℙ with zero mean and variance 

(6.6.11)                                                

F1��	 ≔ 1 − 7M1h�2� Y ��1
I

�P(  

whereby we have used Itô’s isometry and the pair-wise ℙ-independence of 5(, … ,5I in (6.6.11). We 

denote the latter distributional property by writing åî� ~ ��0,F1��	�. Hence, (6.6.10) becomes 

(6.6.12)                                   

ℙ�åî� ∈ �Â(, Â1�� = : Ö Â1F��	× −  : Ö Â(F��	× 

wherein : constitutes the standard normal distribution function and � ∈ �0, ��.  
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In practice, equation (6.6.12) ought to be a rather helpful indicator for choosing appropriate bounds Â( < 0 and Â1 > 0, since applicants might exemplarily require a probability like 

ℙ�åî� ∈ �Â(, Â1�� > 0.99  ∀� ∈ �0, �� 
for their underlying model setup. Particularly, for our Brownian multi-factor mean-reverting net 

position model (6.6.1) it is moreover possible to compute the probability for the EU ETS market to 

end up long �åî� > 0�, respectively short �åî� < 0�, as we – not surprisingly – observe the symmetry 

(6.6.13)                                     ℙ�åî� > 0� = ℙ�åî� < 0� = :�0	 = 0.5. 
Consequently, there presently seems to be no possibility which allows for an adjustment of our recent 

model (6.6.1) in the sense of incorporating asymmetrical drift effects – such as discussed previously to 

Remark 6.2.4 in connection with our former pure-jump case study.       

Nevertheless, if we permit a non-vanishing deterministic initial value åî� in (6.6.1), say åî� > 0 [i.e. we 

exemplarily presume the EU ETS market to start long in the following], then the ℙ-solution in (6.6.4) 

translates into 

(6.6.14) 

åî� = åî� 7Mh� + Y ��
I

�P( " 7Mh��MR	 �5R�
�

�
 ~  � Nåî� 7Mh�,F1��	O 

what leads us to  

(6.6.15)                    

ℙ�åî� < 0� = 1 − : �åî� 7Mh�F��	 � ,           ℙ�åî� > 0� = : �åî� 7Mh�F��	 � 

for all � ∈ �0, ��. Evidently, the two latter probabilities differ (not only for åî� > 0 but) whenever åî� ≠ 0. Thus, long resp. short EU ETS market net positions (at time �) finally occur – in contrast to 

(6.6.13) – with different/asymmetrical probabilities. Furthermore, the probability for the equilibrium 

event ñåî� = 0ò may be approximated via the elementary De-Moivre-Laplace formula yielding 

(6.6.16)                                            

 ℙ�åî� = 0� ≈ 1F��	  £ �åî� 7Mh�F��	 � 

wherein £�∙	 denotes the standard normal density function.           

Eventually, a proper application of Strassen’s invariance principle, respectively Strassen’s iterated 

logarithm theorem (see [5]: Chapter VII, §33, along with Chapter IX, §47 and section 3 in §51), 

should yield some further insight into the most likely behavior of the market zone net position process 

(6.6.14). Anyway, we leave such examinations for future work. Instead, we close with the following 

remark. 

 

Remark 6.6.1 We finally emphasize that throughout this thesis we essentially have been confronted 

with four different types of forward-looking conditional expectations associated to (option) pricing 

purposes under enlarged filtrations: The first kind appears in (3.3.53), (3.3.58) and (5.3.22), for which 

– in the lack of any independent increment property of the involved processes [which explicitly depend 
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on the ��∗, ℚ	-compensated random measures �+��∗,ℚ
] – we have proposed tailor-made approximation 

techniques such as presented in Excursus A and B. The second type can be found in (3.3.64), (3.3.102) 

and (5.3.31), wherein we particularly had to distinguish between different scenarios concerning the 

future information time parameter |. Thirdly, in (3.3.96), (3.3.129), (5.3.48) and (6.6.8) we have dealt 

with rather convenient Brownian motion cases; the same is valid for the trivial instances (3.3.149) and 

(3.3.158), by the way. Fourthly, the situation in (6.5.5) actually resembles the second case (at least on 

a superficial sight) but – as we have seen above – has to be handled with more care, as there is a 

combination of Brownian and pure-jump noises involved. For the sake of completeness, we eventually 

remind (4.3.21), whereas this object does not possess any option pricing background and also exposes 

a completely different structure with respect to the aforementioned conditional expectations. ∎   

 

6.7 Conclusions  

In this chapter we have discussed the pricing of carbon emission allowances such as traded in the EU 

ETS market both under common knowledge and under supplementary forward-looking information 

about the market zone net position. In the second insider trading case, we have rigorously taken 

customized enlargement-of-filtration techniques into account. Additionally, we have modeled the net 

position of the ETS market by a linear combination of multiple compound Poisson processes taking 

values in a compact real interval. Thus, our approach essentially extends the two-state Markov-chain 

disposition presented in [25] and moreover, yields the reasonable opportunity of indicating how long, 

respectively how short, the EU ETS market overall net position precisely is. As a consequence, our 

innovative compound Poisson multi-state setup yet requires two-dimensional Fourier transform 

methods along with exponential dampening arguments when it comes to the pricing of EUA0 

contracts. Fortunately, in our model it is easily possible to incorporate asymmetrical drift effects by 

choosing tailor-made jump-size distributions for the market zone net position process. At this point, 

we recall from [25] that those non-symmetrical drift changes may be utilized to emphasize ‘delicate’ 

market scenarios such as ‘trouble-making’ emission permit shortages more strongly in contrast to 

rather harmless surplus or equilibrium situations. Subsequently, we have turned our attention towards 

a minimum relative entropy procedure in order to determine a concrete EMM in our incomplete 

model.  

Some challenging related research topics might consist in a numerical study of our multi-state CPP 

model similar to the examinations in Chapter 6 and 7 in [25]. Especially, it would be interesting to 

visualize the effects of forward-looking information (about the market zone net position) on the EUA0 

contract prices such as derived in (6.5.15) by numerical simulations. In this context, a proper 

comparison of simulated EUA0 price trajectories descending from equation (6.3.16) on the one hand, 

and from (6.5.15) on the other, should yield some new insights concerning the question of how 

forward-looking insider information may affect the price formation in the EU ETS market. Similarly, 

an accurate illustration of the expected time-delay-feature related to a possible market adjustment 

period – such as mentioned in Remark 6.2.4 before – by using simulative instruments should be very 

suggestive. In addition, it might be worthwhile to model the market zone net position as a zero-

reverting Ornstein-Uhlenbeck process like proposed in section 6.6 but yet under the incorporation of 

future information concerning the involved Brownian motion noises (similarly to the procedure 

presented in e.g. paragraph 3.3.6 and 3.3.9) and hereafter, derivate the corresponding forward-looking 

pricing equations for the underlying (continuous) diffusion setup. Last but not least, the incorporation 

of emission permits banking, as “allowed during and after the second phase of [the] Kyoto protocol” 

(see p.17 in [25]), should embody another reasonable extension of our model. 
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Chapter 7 
 

 

Explicit Pricing Measures for 

Commodity Forwards in a Heath-

Jarrow-Morton-Framework with Jumps 

 

 

7.1 A short chapter overview  

The creation of competitive commodity exchanges, wherein gas, oil or coal (just to nominate a few) 

are traded somehow similar to financial products in ordinary stock markets, has brought up new 

mathematical challenges concerning the risk-neutral pricing of commodity derivatives. In the present 

chapter, we will exploit obvious similarities between commodity derivative contracts and forward rate 

theory (see [13], [17], [18], [33], [36], [49], [51], [59], [65], [79], [83]) and draw the corresponding 

conclusions for the creation of an appropriate commodity forward market model. More precisely, we 

here aim to compute risk-neutral option prices for commodity derivatives on the basis of an extended 

Heath-Jarrow-Morton (HJM) setup, whereas the presence of random jumps in our underlying forward 

rate onset requires Fourier transform techniques. By the way, we derive an extended HJM-drift-

restriction dedicated to our jump-diffusion approach and the concepts of Esscher transforms and 

minimum relative entropy are adapted to our purposes in order to determine a concrete EMM out of 

the large class of offering pricing probabilities in the present incomplete market model. 

As we have seen in section 1.1, respectively in Chapter 3, in contrast to energy derivatives associated 

to storable commodities like e.g. coal or oil, we remind that electricity futures contracts in particular 

possess the distinctive feature of yielding a delivery during a future time span, the so-called delivery 

period, rather than at a fixed maturity date, since electricity is non-storable. Hence, the basic products 

in electricity markets are options written on electricity futures/swap contracts which are settled over a 

future period of time [13]. Anyway, in the present chapter we use a Heath-Jarrow-Morton (HJM) 
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approach (as firstly introduced in [49]) taken from interest rate theory which seems to be appropriate 

for the modeling of commodity forward contracts delivering at a fixed maturity time (cf. Ch. 6 in [13]). 

The remainder of the current chapter is organized as follows: In section 7.2 our underlying 

mathematical basis is established and a selection of facts from interest rate theory is recalled. Yet, in 

order to derive the corresponding HJM-equations dedicated to our extended jump approach, we newly 

make use of the Leibniz-rule for parameter integrals in this work and therewith provide an alternative 

derivation procedure in contrast to the acquainted techniques presented in [17] and [18]. Applying 

Girsanov’s Change-of-Measure theorem, we hereafter obtain an extended HJM-drift-restriction linked 

to our jump-diffusion case. Since in incomplete market models the equivalent martingale measure 

(EMM) cannot be uniquely chosen, we have to invest some additional effort concerning the 

manifestation of an (in a certain sense) optimal EMM. In this context, a generalized Esscher transform 

is introduced in the subsequent paragraph 7.3 and furthermore tailored to our requirements. Moreover, 

dealing with the relative entropy idea, we utilize a customized successive Lagrange approach to 

receive the explicit ‘minimizing pair-process’ leading to another optimal EMM (in the sense of 

yielding minimal relative entropy). In subsection 7.4 the price for a European commodity call option is 

obtained, whereas the occurrence of random jumps in the underlying power forward prices requires a 

rigorous application of Fourier transform techniques. 

 

7.2 Modeling power forward prices  

We start with the description of the mathematical disposition of our underlying commodity forward 

model. Let �Ω, ℱ, ℙ	 be a filtered and complete probability space, whereas the information filtration ℱ 

(which we assume to include a priori all ℙ-null-sets) is assumed to be cad (French: continue à 

droite)67. Furthermore, all appearing stochastic processes in the following are assumed to be ℱ-adapted 

and to fulfill the usual integration assumptions.  

 

7.2.1 The extended Heath-Jarrow-Morton approach with jumps    

Right from the beginning, we devote our attention towards the description of the upcoming forward 

price dynamics. For this purpose, let us determine the time frame of an underlying commodity forward 

contract via 0 ≤ � ≤ | ≤ �, where | denotes the exercise time
68 and � represents the delivery date in 

return (also see the explanations dedicated to Th. 7.4.1 below). Further, in this chapter we will make 

use of an extended HJM-approach to model the forward prices S��|	 directly, instead of modeling the 

commodity spot price first, and deriving the corresponding forward price dynamics afterwards (cf. 

[13], [14]) – such as presented at the beginning of section 3.2.3 for the electricity futures case.          

In this regard, the reader is advised to the first lines of Chapter 1 in [14], wherein two major 

disadvantages of (actually electricity) spot price models are presented: Firstly, the difficulty of giving 

a precise definition of (electricity) spot prices and, secondly, the lack of a straightforward connection 

in between the (electricity) spot price on the one hand, and forward/futures prices on the other. 

                                                           
67 See the beginning of section 3.2 for a precise definition of cad sigma algebras. 
68 For infinitely many values | ∈ �0, �� our upcoming HJM-jump-diffusion model actually would be complete in 
the sense of yielding a unique EMM, as the involved noises might be recovered by arbitrary many forward 
contracts �S∙�|	: | ∈ �0, ��	. Nevertheless, with respect to the common commodity exchange practice, we assume 
that there are only finitely many forwards traded in the time interval �0, ��, i.e. we are facing finitely many 
exercise times only, what makes our model become incomplete yet. We even might presume | ∈ �0, �� to be 
fixed right from the beginning and hence, regard only one commodity forward contract in the following. 
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Moreover, on the bottom of p.4 in [10] it is argued that “For the case of electricity, the exact relation 

between the spot and forward is not clear.”. Similarly, on p.32 in [13] Benth et al. declare the loss of 

the connection between a HJM-modeled (electricity) forward/futures price and the underlying spot 

price as a “possibly undesirable consequence of the HJM approach for electricity futures price 

modeling”. On the same page they further announce “Given an electricity futures price dynamics, one 

cannot trace back a spot price dynamics except in trivial and not relevant cases. This is a serious 

matter […], since the spot is namely the reference index for the futures.”. To read more about the 

modeling of commodity forward contracts via HJM-approaches the interested reader particularly is 

advised to Ch. 6 in [13]. By the way, in section 6.3 therein the authors provide a possible extension of 

the HJM-forward-approach to futures/swap contracts (delivering the underlying over a time span) by 

simply integrating the forward price over the delivery period (cf. eq. “(6.8) in [13]”).             

Inspired by Björk, Di Masi, Kabanov and Runggaldier [17], we adjust their setting by adding two 

generalized compound Poisson process parts to the primitive Brownian HJM model in [49], whereas 

we differ between small and large jump-sizes in our approach. In contrast to [17] and [18], we newly 

receive the commodity forward price evolution equation by using the Leibniz-rule for parameter 

integrals (see Lemma 2.4.1 above), instead of troubling solely and elaborately the stochastic Fubini-

Tonelli theorem (as on p.16 in [17], resp. on pp. 9-11 in [18]). Starting off, we suppose the stochastic 

differential equation (SDE) describing the forward rates S��|	 under the probability measure ℙ to 

admit a càdlàg representation that possesses the following fairly general Lévy-type structure 

(7.2.1)   

�S��|	 = ���|	 �� + z��|	 ��� + n Ò�M�#, |	 ���, �#	 |&|'( + n Q�M�#, |	 �+ℙ��, �#	 |&|*(   

for times 0 ≤ � ≤ | ≤ � (cf. eq. “(3) in [18]”). Consequently, the equivalent integral form reads as 

(7.2.2) 

S��|	 = S��|	 + " �R�|	�
�

�) + " zR�|	�
�

��R + " " ÒRM�#, |	 
|&|'(

�
�

���), #	 + " " QRM�#, |	 
|&|*(

�
�

��+ℙ�), #	 

wherein the initial condition S��|	 represents today’s forward rate, � designates a one-dimensional 

standard Brownian motion (BM) under ℙ and �+ℙ stands for a one-dimensional ℙ-compensated 

integer-valued Poisson-Random-Measure (PRM) on �0, |� × ℝ� with ℝ� ≔ ℝ ∖ �0 .69 

Remark 7.2.1 For the sake of notational simplicity and to simplify a focusing on the main ideas, we 

restrict ourselves to the one-dimensional case here, remarking that the multi-dimensional modeling of 

the noises � and � is not essential to understand the theoretical and practical gain of our enlarged 

jump setup. The extension to higher-dimensional cases does not require any essential new ideas and is 

of technical character only. ∎ 

Further, the ℙ-compensator of ���), #	 is denoted by �.�#	�) which is chosen such as 

(7.2.3)     ��+ℙ�), #	 ≔ ���), #	 − �.�#	 �) 

depicts a ℙ-martingale integrator.  

                                                           
69 We denote the set �# ∈ ℝ ∖ �0 : |#| < 1 = �−1,0	 ∪ �0,1	 by writing |#| < 1 in (7.2.1) and (7.2.2) shortly. 
For the remainder of Chapter 7 we always suppose jump-sizes in the set ℝ� ≔ ℝ ∖ �0 , although we frequently 
will omit the null-exception for notational reasons, instead writing e.g. |#| < 1 merely.  
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Moreover, in our case the Lévy-measure . appearing in (7.2.3) is supposed to be a positive and finite 

Borel-random-measure on ℝ� that fulfills the condition 

n  &¨
(\&¨  �.�#	 < ∞ ℝh .  

(For details concerning the integrability condition associated to the Lévy-measure . see the beginning 

of subsection 1.2.4 in [1] or Chapter 3 in [30], for instance.)                 

Finally, we suppose the stochastic70 coefficient processes 

�: �0, |� × �0, �� ⟶ ℝ 

(7.2.4)                 z: �0, |� × �0, �� ⟶ ℝ\ 

Ò: �0, |� × ℝ� × �0, �� ⟶ ℝ 

Q: �0, |� × ℝ� × �0, �� ⟶ ℝ 

such as appearing in (7.2.1) and (7.2.2) altogether to be integrable and bounded, so that all integrals in 

the two latter equations are well-defined. 

  

7.2.2 The power forward price dynamics under the true market measure 

In what follows, we will derive the corresponding power forward price dynamics associated to our 

extended model setup with jumps. As in [18], for 0 ≤ � ≤ | ≤ � we firstly define the short rate �� by  

(7.2.5)              �� ≔ S���	. 
Interest rate theory (see e.g. Chapter 10 in [83] for an overview and motivating aspects; particularly, 

see section 10.3 therein for details on the Brownian HJM standards) allocates the following well-

known relation between (commodity) forward prices d��|	 and forward rates S���	, namely 

(7.2.6)                                                   

d��|	 = 7#d ü− " S���	{
�

��ý 

for 0 ≤ � ≤ | (cf. eq. “(5.1) in [17]”, resp. “(10.3.3) in [83]”). Consequently, we observe d���	 = 1. 

By the way, taking the logarithm in (7.2.6) and hereafter differentiating with respect to |, we receive 

S��|	 = − UU| �ªJ  d��|	� 
(cf. eq. “(5.2) in [17]”, resp. Def. 2.2 in [18]). Let us recall that our goal is the provision of the SDE 

fulfilled by the power forward price d��|	. Hence, in order to apply Itô’s formula on (7.2.6), we 

obviously need a representation for the stochastic differential of the appearing exponent 

(7.2.7)                                                 

�� ≔  ���|	 ≔ − " S���	{
�

��. 
                                                           
70 Anyway, we will assume the coefficients (7.2.4) to be deterministic in some later paragraphs.    
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For the above special case it is not possible to provide the �-dynamics ��� immediately (by applying 

Itô’s formula, for example), since on the right hand side of (7.2.7) the time parameter � appears both 

inside the integrand and in the lower integration bound. To treat this extraordinary instance, we 

innovatively make use of the Leibniz-rule for parameter integrals in the following:  

In accordance to the notations in Lemma 2.4.1, we presently have #��	 ≔ | and F��	 ≔ � leading us 

to the dynamics 

(7.2.8) 

��� = � ~" S���	�
{

��� = S���	 �� − " �S���	{
�

�� 

for time parameters 0 ≤ � ≤ |. Merging (7.2.1) and (7.2.5) into (7.2.8), we get 

��� = �� �� − " ����	{
�

�� �� − " z���	{
�

���  �� − " " Ò�M�#, �	 ���, �#	 
|&|'(

{
�

��
− " " Q�M�#, �	 �+ℙ��, �#	 

|&|*(
{

�
��. 

Referring to the stochastic Fubini-Tonelli theorem, we next derive  

(7.2.9) 

��� = ��� −  Õ��|	� �� − )��|	 ��� − " ��M�#, |	 ���, �#	 
|&|'(

− " ]�M�#, |	 �+ℙ��, �#	 
|&|*(

 

wherein – somehow parallel to eq. “(6) in [18]” – we have just introduced the shorthand notations 

(7.2.10)                                   

Õ��|	 ≔ " ����	{
�

�� ,       )��|	 ≔ " z���	{
�

��  �> 0	,  
���#, |	 ≔ " Ò��#, �	{

�
�� ,       ]��#, |	 ≔ " Q��#, �	{

�
��. 

As usual, we define the jump size of the càdlàg process � at time � by Z�� ≔ ��\ − ��M = �� − ��M 

whereas ��X�� denotes the quadratic variation of the continuous part of �. Therewith, we are able to 

state the stochastic evolution equation for d��|	 under the measure ℙ in the subsequent way:  

Applying Itô’s formula (see Theorem 2.1.6) for discontinuous semi-martingales on the Euler function Ë�#	 ≔ 7&, we receive 

d��|	 = Ë���	 = Ë���	 + " Ë��RM	�
�

��R + 12 " Ë��R	�
�

���X�R + Y �Ë��R	 − Ë��RM	 −Z�R Ë��RM	��[R[� . 
Substituting (7.2.9) into the latter equation, we immediately derive 
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(7.2.11)                                                                   
d��|	 = d��|	 + " dR�|	�

�
��R −  ÕR�|	 + )R�|	12 �  �) − " dR�|	 )R�|	�

�
��R

− " " dRM�|	 �RM�#, |	 
|&|'(

�
�

���), #	 − " " dRM�|	 ]RM�#, |	 
|&|*(

�
�

��+ℙ�), #	
+ Y dRM�|	 �7Ç¤É − 1 −Z�R��[R[� . 

In the following, we will handle the infinite sum appearing in (7.2.11) separately: Remembering 

(7.2.9), we obtain 

(7.2.12) 

Y dRM�|	 �7Ç¤É − 1 −Z�R��[R[�
= " " dRM�|	 <7M?Éq�&,{	 − 1 +�RM�#, |	A 

|&|'(
�

�
���), #	

+ " " dRM�|	 <7M¿Éq�&,{	 − 1 +]RM�#, |	A 
|&|*(

�
�

���), #	 

= " " dRM�|	 <ñ7M?Éq�&,{	 +�RM�#, |	ò G|&|'( + ñ7M¿Éq�&,{	 +]RM�#, |	ò G|&|*( − 1A 
ℝh

�
�

���), #	. 
Putting the auxiliary calculation (7.2.12) into equation (7.2.11) while taking the compensator property 

(7.2.3) into account, we derive a representation for d��|	 under the true probability measure ℙ reading 

(7.2.13) 

d��|	 = d��|	 + " dR�|	�
�

k�R −  ÕR�|	 + )R�|	12 + " ]R�#, |	 
|&|*(

�.�#	m�) − " dR�|	 )R�|	�
�

��R

+ " " dRM�|	 <7M?Éq�&,{	 G|&|'( + 7M¿Éq�&,{	 G|&|*( − 1A 
ℝh

�
�

���), #	. 
In differential form the latter equation becomes 

(7.2.14) 

�d��|	d�M�|	 = k�� −  Õ��|	 + )��|	12 + " ]��#, |	 
|&|*(

�.�#	m�� − )��|	 ��� + " O�M�#, |	 
ℝh

���, �#	 

(which extends Prop. 2.4 (3) in [18]) whereby we have recently introduced the abbreviation 
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(7.2.15)                                O��#, |	 ≔ 7M?9�&,{	 G|&|'( + 7M¿9�&,{	 G|&|*( − 1. 
However, for discounting we trouble a bank account with stochastic interest rate �R = SR�)	 defined by 

(7.2.16)                                                    

5� ≔ 5� 7#d f" �R
�

�
�)i 

(cf. p.11 in [18]) within a deterministic initial value 5� > 0, whereas 

(7.2.17)                                 �5� = ��5���         and          � N (<9O = − �9<9 �� 

result as trivial consequences. Next, for 0 ≤ � ≤ | we define the discounted power forward price via 

(7.2.18)                                                           d̂��|	 ≔ ¾9�{	<9  

(cf. Definition 3.3 (1) in [18]). Using (7.2.14), (7.2.17), (7.2.18) and Itô’s product rule, we derive the ℙ-dynamics  

(7.2.19)                                  
�d̂��|	d̂�M�|	 = k)��|	12 −  Õ��|	 + " ]��#, |	 

|&|*(
�.�#	m�� − )��|	 ��� + " O�M�#, |	 

ℝh
���, �#	 

which corresponds to equality “(5.12) in [17]”. Note that the short rate �� has canceled out so far. By 

the way, we may compute the exact solution of the integro-SDE (7.2.19) which reads as 

(7.2.20) 

d̂��|	 = d̂��|	 7#d�"k− ÕR�|	 + " ]R�#, |	 
|&|*(

�.�#	m�
�

�) − " )R�|	�
�

��R

− " "  <�RM�#, |	 G|&|'( + ]RM�#, |	 G|&|*(A 
ℝh

�
�

���), #	�. 
However, we will save up the detailed derivation procedure of (7.2.20) for later investigations, since 

the underlying techniques will come into play while deriving the representation for the discounted 

power forward price under a forthcoming equivalent martingale measure in the next subsection. 

 

7.2.3 The power forward price dynamics under an equivalent martingale measure 

Let us turn back to the analysis of the discounted power forward price as introduced in (7.2.18) but 

under an equivalent martingale measure (EMM) now. Taking the results of Proposition 2.2.1 into 

account, we are able to state the evolution equation of d̂��|	 under an EMM ℚ which itself we assume 

to be defined like in (2.2.5).  
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More precisely, substituting (2.2.6) and (2.2.8) into (7.2.19), we instantly derive the ℚ-dynamics 

(7.2.21) 

�d̂��|	d̂�M�|	 = ~)��|	12 −  Õ��|	 + " ]��#, |	 
|&|*(

�.�#	 − )��|	 a� + " O��#, |	 c��, #	 �.�#	 
ℝh

� ��
− )��|	 ��+� + "O�M�#, |	 

ℝh
�+ℚ��, �#	. 

In accordance to the risk-neutral pricing theory, the discounted power forward price in (7.2.21) has to 

constitute a local ℚ-martingale. For this reason, we have to require the following extended HJM-drift-

restriction (cf. Prop. 5.3 and Prop. 5.6 (4), eq. (5.36), in [17]) corresponding to our jump-case, reading 

(7.2.22) 

0 = )��|	12 −  Õ��|	 − )��|	 a� + "<]��#, |	 G|&|*( + O��#, |	 c��, #	A 
ℝh

�.�#	. 
Remark 7.2.2  Although looking completely different on a first glance, our extended HJM-drift-

restriction in (7.2.22) can be traced back to the one received on p.9 in [59], which – adjusted to our 

current notations – on the contrary reads as 

(7.2.23)                                                           Õ��|	 = R9�{	¨
1 . 

To justify this statement, we argue as follows: Comparing (7.2.23) with our extended drift-condition 

(7.2.22), one should note that the authors in [59] make use of a “martingale modeling approach” (see 

the last line of p.6 in [59]), which in our framework a priori would imply a ≡ 0 in (2.2.6) and thus, 

also in (7.2.22). In addition, there are no jumps permitted in “(25) in [59]”, what corresponds to 

choosing Ò ≡ 0 and Q ≡ 0 in (7.2.1), which would imply � ≡ 0 and ] ≡ 0, and hence, O ≡ 0 in our 

setup. (To read more on “martingale modeling” the interested reader is advised to the prolog of Prop. 

3.15 on pp. 19-20 in [18], while related model calibration particularities are discussed on page 158 in 

[13].) Anyway, differentiating (7.2.22) with respect to | while using (7.2.10) and (7.2.15), we get 

(7.2.24) 

 ���|	 = z��|	 " z���	{
�

�� − z��|	 a�
+ "<Q��#, |	 ñ1 − c��, #	 7M¿9�&,{	ò G|&|*( − Ò��#, |	 c��, #	 7M?9�&,{	 G|&|'(A 

ℝh
�.�#	. 

Yet, it appears worthwhile to compare the latter equation with “(28) in [18]”. $ext, let us recall that 

in the continuous (i.e. Brownian-) HJM-model descending from a martingale modeling approach 

(such as implemented in [59]) the volatility coefficient z��|	 represents the only parameter (besides 

the initial condition S��|	 which can be obtained from the observed forward price d��|	 via S��|	 =−U ªJ d��|	 U|⁄ ) that has to be chosen in order to develop the entire forward rate dynamics (cf. eq. 

“(28) in [59]” and the top of p.10 in [59]). In other words, once having selected a concrete volatility 

process z��|	, the drift coefficient ���|	 simultaneously is determined via the nice relationship 
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(7.2.25)                                                ���|	 = z��|	 n z���	{� �� 

which easily is deduced from (7.2.23) by differentiating the latter equation with respect to | [59]. 

Comparing (7.2.24) with (7.2.25), the most striking difference consists in the additional �.-integral 

term appearing in (7.2.24) which comes in due to the admission of jumps in the present work. A 

parallel opening of our extended jump-diffusion approach also using a “martingale modeling onset” 

would culminate in choosing a ≡ 0 in (2.2.6) and c��, #	 ≡ 1 in (2.2.8) right from the beginning. ∎ 

 

However, assuming the drift-restriction (7.2.22) to be in force, the ℚ-dynamics (7.2.21) shortens to 

(7.2.26)                                    �d̂��|	d̂�M�|	 = −)��|	 ��+� + "O�M�#, |	 
ℝh

�+ℚ��, �#	 

extending equality “(31) in [59]”. In order to work out the explicit solution of the latter integro 

stochastic differential equation (ISDE), let us define the local ℚ-martingale 

(7.2.27)                                

Q� ≔ − " )®�|	 ��+®
�

�
+ " " O®M�#, |	 

ℝh

�
�

��+ℚ��, #	 

for notational simplicity. Therewith, equality (7.2.26) shortly can be expressed as 

(7.2.28)                                                    �d̂��|	 = d̂�M�|	 �Q� . 
Next, standard arguments from stochastic calculus (see section 5.1 in [1], for instance) purvey the 

solution of (7.2.28) as a discontinuous stochastic Doléans-Dade exponential reading 

(7.2.29) 

d̂��|	 = d̂��|	 7#d ÃQ� − 12 �QX��Æ Á �1 + ZQ®	 7MÇ¥1
�[®[� . 

In the following, we handle the infinite product appearing in (7.2.29) separately: Recalling (7.2.15) 

and (7.2.27), we get 

(7.2.30) 

Á �1 + ZQ®	 7MÇ¥1
�[®[� = 7#d ü Y �ªJ�1 + ZQ®	 − ZQ®��[®[� ý

= 7#d f" "<ªJ�1 + O®M�#, |	� − O®M�#, |	A 
ℝh

�
�

����, #	i
= 7#d f− " "<�®M�#, |	 G|&|'( + ]®M�#, |	 G|&|*(  + O®M�#, |	A 

ℝh

�
�

����, #	i. 
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Regarding (7.2.27), the first exponent in (7.2.29) turns out as 

(7.2.31) 

Q� − 12 �QX�� = − " )®�|	 ��+®
�

�
+ " " O®M�#, |	 

ℝh

�
�

��+ℚ��, #	 − 12 " )®�|	1���
�

. 
Merging (7.2.30), (7.2.31) and the compensator property (2.2.8) into (7.2.29), we finally end up with 

(7.2.32)                                                               d̂��|	 = 

d̂��|	 7#d f− " Ï)®�|	12 + "ñ�®�#, |	 G|&|'( + ]®�#, |	 G|&|*( + O®�#, |	ò c��, #	 �.�#	 
ℝh

Ð ���
�

− " )®�|	 ��+®
�

�
− " "<�®M�#, |	 G|&|'( + ]®M�#, |	 G|&|*(A 

ℝh

�
�

��+ℚ��, #	i. 
Remark 7.2.3 Comparing (7.2.32) with the corresponding equation “(6.1) in [13]”, we notice that 

our formula essentially possesses a similar structure. In this context, note that the authors of [13] 

utilize a “martingale modeling approach” and therewith provide the discounted power forward prices 

under the EMM immediately. Hence, their process S��, |	 in (6.1) corresponds to our price process d̂��|	 such as given in equation (7.2.32) above. However, our approach is much better motivated, 

since we have modeled the forward rates in (7.2.1) first, then derived the power forward prices via 

(7.2.6), respectively (7.2.14), discounted afterwards in (7.2.18) and finally switched to an EMM in the 

present subsection. Roughly speaking, Benth et al. [13] thus start at the very point where we have just 

come to (also see the top of p.20 in [18] in this context). The price one has to pay using such a 

(convenient) “martingale modeling onset” lies in the statistical problems associated with parameter 

estimation: In fact, the main drawback consists in the problem of calibrating the model, since in 

reality one does not observe commodity forward prices under the EMM ℚ but instead under the true 

market measure ℙ (cf. p.158 in [13], resp. the top of p.21 in [18]).
71

 Unfortunately, this fact has 

completely been neglected by Hinz et al. [59], as they do their maximum (log-) likelihood “Historical 

calibration” in Chapter 4 under the EMM falsely. ∎ 

 

7.3 Determining an optimal equivalent martingale measure    

In accordance to the second fundamental theorem of asset pricing, in an incomplete market model we 

have to deal with several candidates for EMMs and it is not a trivial question, which one to choose. In 

this context, the following subsections are dedicated to the concepts of Esscher transforms and 

minimum relative entropy, both providing appropriate methods to overcome (at least approximately) 

the just mentioned selection problem. We start off within a rigorous examination of Esscher 

transforms tailored to the requirements of our HJM-approach with jumps in the subsequent paragraph.  

                                                           
71 On p.158 in [13] the authors recognize this particularity of their martingale modeling approach and hence, 
propose to establish a measure change (yet in “opposite direction”, i.e. from ℚ to ℙ) in order to describe their 
model under the true market measure ℙ eventually. Nevertheless, also in real markets, option prices are observed 
under ℚ of course [13]. But, since in most power exchanges “options are rather thinly traded”, the more liquid 
forward markets actually appear more appropriate (than option prices) for calibration issues, because forward 
markets usually permit a “good access to reliable data under ℙ” (see p.158 in [13]).  
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7.3.1 The Esscher transform 

Since the EMM cannot be uniquely chosen in an incomplete market model, it might be useful to 

restrict the large class of potential risk-neutral pricing measures to a flexible subclass of parameterized 

arbitrage-free probabilities given through the Esscher transform (cf. sect. 4.1.1 in [13]). Referring to 

p.95 in [13], we may interpret the latter as an extension of the Girsanov transform for Brownian 

motions yet to jump processes in the following sense: On the one hand, the popular Girsanov 

transform for Wiener processes provides a measure change which “preserves the normality of the 

[underlying] distribution”. On the other hand, the Esscher transform only slightly alters the 

distributional properties of the involved jump noises [in particular, we can force correspondence 

between (2.2.1) and (7.3.7) via (7.3.9), as we will see later on] and fully “preserves the independent 

increment property” of the driving (Lévy- or Sato-) processes (see p.95 in [13]). All in all, the 

upcoming Esscher parameter å can be interpreted as the “[market] price of jump risk” (see p.98 in 

[13]). In order to define a version of the Esscher transform that fits our purposes, let us initially 

introduce the following ℙ-martingale 

(7.3.1)                                                    

�� ≔ �� + " " # 
ℝh

�
�

��+ℙ�), #	. 
Using (7.2.3), we immediately deduce its Lévy-Itô decomposition under ℙ reading 

(7.3.2)           

�� = −� " # 
|&|'(

�.�#	 + �� + " " # 
|&|*(

�
�

��+ℙ�), #	 + " " # 
|&|'(

�
�

���), #	 

(cf. “(2.3) and (2.4) in [26]”). Thus, � obviously depicts a Lévy process with characteristic triplet 

Ö1, ., − n # |&|'( �.�#	×.  
Parallel to p.96 in [13], for a deterministic Esscher parameter å ∈ ℝ we further assume the condition 

n 7æ& |&|'( �.�#	 < ∞.  
In what follows, let us denote the characteristic function of �� by :ï9 (recall Theorem 2.1.3 above). 

Then, slightly deviating from the bottom of p.519 in [26], we define the Esscher transform of �� by 

(7.3.3) 

s�ℚ��ℙ�ℱ9
≔ 7Mæï96ℙ�7Mæï9� = 7Mæï9:ï9�Då	 = 7Mæï97� B¦�=æ	 = 7#d�−å�� − � Cï�Då	 > 0. 

In (7.3.3) the function Cï�∙	 represents the characteristic exponent of the Lévy process (7.3.1), which 

in our case is explicitly given by the Lévy-Khinchin formula [see equality (2.1.5)] via 

(7.3.4)                                       

Cï�Då	 = å12 + "<7Mæ& − 1 + å#A 
ℝh

�.�#	. 
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Let us remark that if � simply is a standard BM, i.e. � = � being a Lévy process with characteristic 

triplet �1,0,0	, then (7.3.3) becomes the familiar Girsanov density with constant drift parameter å ∈ ℝ 

which is explicitly given through the continuous Doléans-Dade exponential 

s�ℚ��ℙ	ℱ9 = j�−å ∘ �⋅	� ≔ 7#d m−å�� − æ¨�1 o.  
Returning to our original context, we have to consider a slightly generalized and, in particular, time-

dependent Esscher transform in this work, since our underlying (discounted) commodity forward price 

process d̂��|	 exhibits time-dependent coefficients [compare e.g. equality (7.2.19)]. Hence, inspired by 

equation “(3.19) in [26]”, we claim the following more appropriate definition extending (7.3.3). 

Definition 7.3.1    For a Lévy process �� such as given in (7.3.1) and a real, (square-) integrable, 

(finite), continuous, deterministic and time-dependent Esscher parameter/function å� we define the 

generalized Esscher transform due to 

(7.3.5)                                      

s�ℚ+�ℙ�ℱ9
≔ Ξ� ≔ 7#d f− " åRM

�
�

��R − " Cï�DåR	�
�

�)i > 0 

with time parameters 0 ≤ � ≤ |. Herein, the object Cï�∙	 represents the characteristic exponent 

associated to the Lévy process � which, in accordance to (2.1.5), respectively to (7.3.4), is given by 

(7.3.6)                                   Cï�DåR	 = æÉ̈1 + n <7MæÉ& − 1 + åR#A ℝh �.�#	. 
Moreover, the probability measure ℚ+  defined through (7.3.5) frequently will be referred to as the 

Esscher-EMM in the following. ∎  

We now show that Ξ is a (true) ℙ-martingale: Merging (7.3.1) and (7.3.6) into (7.3.5), we derive 

(7.3.7) 

s�ℚ+�ℙ�ℱ9
= 7#d f− " åR

�
�

��R − 12 " åR1�)�
�

− " " åRM# 
ℝh

��+ℙ�), #	�
�

− " "<7MæÉ& − 1 + åR#A 
ℝh

�.�#	�
�

�)i. 
Applying Itô’s formula on (7.3.7), we next obtain the alternative integral representation 

(7.3.8) 

s�ℚ+�ℙ�ℱ9
= 1 − " s�ℚ+�ℙ�ℱÉ

åR
�

�
��R + " " s�ℚ+�ℙ�ℱÉq

<7MæÉq& − 1A 
ℝh

��+ℙ�), #	�
�

 

(with vanishing drift) declaring the density process Ξ in (7.3.5) as a local ℙ-martingale. Since the 

emerging Esscher parameter å is deterministic, the integrals in (7.3.8) both are ℙ-martingales with 

expectation zero such that Ξ > 0 even constitutes a true ℙ-martingale (cf. the bottom of p.514 in [26]; 

In fact, strictly positive local martingales with expectation one are true martingales – see Theorem 

5.2.4 in [1].). By the way, if å was stochastic, in order to ensure the latter (true) ℙ-martingale property 

we might impose a $ovikov condition on å (cf. Th. 12.21 in [32]) such that the positive local ℙ-

martingale Ξ also in this case would yield a ℙ-expectation equal to one (recall section 2.2 above).  
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Comparing (2.2.1) with (7.3.7) [or (2.2.3) with (7.3.8), alternatively], we recognize that we can force 

correspondence between (2.2.1) and (7.3.7) by setting 

(7.3.9)                          aR ≔ −åR ,      ℎ�), #	 ≔ −åR# ,      c�), #	 ≔ 7·�R,&	. 
Moreover, substituting (7.3.9) into our extended HJM-drift-restriction (7.2.22), we receive 

(7.3.10)             

"O��#, |	 7Mæ9& 
ℝh

�.�#	 = −)��|	 å� + Õ��|	 − )��|	12 − " ]��#, |	 
|&|*(

�.�#	 

which corresponds to “(3.20) in [26]”. Yet, we assume the coefficients O, ), Õ and ] such as appearing 

in (7.3.10) to be deterministic in the following, whereas we emphasize that they do not depend on the 

Esscher parameter å. Further, note that )��|	 is strictly positive and thus, the right hand side of 

equation (7.3.10) forms a decreasing linear function in å� for every fixed � (and |). Hence, defining 

þ�å�	 ≔ n O��#, |	 7Mæ9& ℝh �.�#	  

for notational reasons, equality (7.3.10) can be expresses as 

(7.3.11)                                                       þ�å�	 = �å� + � 

within a strictly negative and constant72 coefficient � and an arbitrary constant � (both for fixed � and |). At this point, the reader is invited to invest some further effort concerning the solvability of 

(7.3.11), whereas meanwhile a concrete form of both the Lévy-measure . – descending from e.g. 

generalized hyperbolic distributions like the normal inverse Gaussian distribution, or variance gamma 

distributions such as the Carr, Geman, Madan, Yor distribution (compare subsection 2.6.2 and 2.6.3 in 

[13] for an overview and definitions) – and the appearing coefficients O, ), Õ and ] might have to be 

chosen in order to make fruitful statements. By the way, introducing the function 

(7.3.12)                                                        Í�å�	 ≔ §�æ9	M��   

equation (7.3.11) may be transferred into the fix-point problem
73 

Í�å�	 = å�. 
However, once having computed a specific solution to (7.3.11), say å��, the latter can be substituted 

into the density process (7.3.7) and thus, can be utilized for switching to an (in such a way determined) 

Esscher-EMM ℚ+ ≔ ℚ+�å��, depending directly on the concrete solution å�. 

 

7.3.2 The measure of minimum relative entropy 

In order to measure the distance between two equivalent probability measures ℙ and ℚ, we recall 

definition (6.4.1) introducing the relative entropy as an appropriate approximation-error criterion.  

                                                           
72 In this context, the expression „constant“ means „not depending on å�”. 
73 Unfortunately, Banach’s fix-point theorem does not apply here, since the function Í�∙	, respectively þ�∙	, 
appearing in (7.3.12) does not constitute a contractive operator on the complete metrical space �ℝ, |∙|	, as the 
inequality |Í�F	 − Í�;	| ≤ Ù |F − ;| with Ù ∈ �0,1	 and F, ; ∈ �Â(, Â1� ⊂ ℝ does not seem to be in force. 
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Merging (2.2.1) and (2.2.5) into (6.4.1) while taking (2.2.6), (2.2.8) and (7.2.3) into account, we obtain 

(7.3.13)                                                               ℰ�ℙ|ℚ� = 

6ℚ Ï" aR
�

�
��R − 12 " aR1

�
�

�) + " " ℎ�)−, #	 
ℝh

�
�

��+ℙ�), #	 − " "�c�), #	 − 1 − ℎ�), #	� �.�#	 �) 
ℝh

�
�

Ð
= 6ℚ Ï" aR

�
�

��+R + 12 " aR1
�

�
�) + " " ℎ�)−, #	 

ℝh

�
�

��+ℚ�), #	
+ " "�1 + c�), #	 �ℎ�), #	 − 1 � �.�#	 �) 

ℝh

�
�

Ð. 
Remembering the martingale properties claimed in connection with Prop. 2.2.1, (7.3.13) shortens to 

(7.3.14) 

ℰ�ℙ|ℚ� = 6ℚ Ï" ~aR12 + "�1 + c�), #	 �ªJ c�), #	 − 1 � �.�#	 
ℝh

� �)�
�

Ð 

(parallel to the top of p.521 in [26]). As explained on p.521 in [26], the problem of finding the EMM 

yielding minimum relative entropy forces us to minimize (for a fixed time index )) the expression 

(7.3.14) with respect to aR and c�), #	, both being connected via the extended HJM-drift-condition 

(7.2.22). Thus, roughly speaking, the measure of minimum relative entropy in particular minimizes the 

‘distance’ between the true market measure ℙ and its approximating candidate ℚ and therefore 

delivers the [with respect to our error criterion (6.4.1)] best approach towards the verity ℙ under the 

restrictive constraint (7.2.22) which requires the discounted power forward price d̂��|	 to form a local ℚ-martingale.  

In accordance to p.521 in [26], we can equivalently minimize the �)-integrand in (7.3.14) merely, 

reducing our minimum relative entropy problem to the following optimization exercise:  

For a fixed time index ), find processes aR and c�), #	 which are coupled 

via the constraint (7.2.22) and moreover solve the minimization exercise 

(7.3.15)         

� � �Ã¨É �©.¨.¨¨	ª««««¬ r�R,&	Æ ~aR12 + "�1 + c�), #	 �ªJ c�), #	 − 1 � �.�#	 
ℝh

�. 
Once having derived a proper minimizing solution to (7.3.15), say aR∗ and c∗�), #	, then this 

minimizing pair-process determines [via (2.2.1) and (2.2.5)] a concrete minimum relative entropy 

EMM ℚ∗ ≔ ℚ∗�a∗, c∗	 by dint of 

s�ℚ∗�ℙ tℱ9 = 7#d f" a∗���
�

− 12 "�a∗	1�)�
�

+ " " ªJ�c∗	 
ℝh

�
�

��+ℙ − " "�c∗ − 1 − ªJ�c∗	� �. �) 
ℝh

�
�

i. 
In what follows, we devote our attention towards the precise minimization procedure of (7.3.15).  
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Of course, as mentioned on the bottom of p.521 in [26], one could use (7.2.22) to express aR in terms 

of c�), #	, substitute the resulting expression into (7.3.15) and finally minimize over c�), #	 

separately. However, the main drawback of this aR-eliminating approach is the incoming squared �.-

integral involving c�), #	 which is difficult to manage [26] – at least, as long as we have not chosen a 

concrete form of the Lévy-measure ., that is, a concrete density of . with respect to e.g. the Lebesgue 

measure [such as descending from generalized hyperbolic distributions, for example].  

Alternatively, in order to solve the optimization problem (7.3.15), in this work we firstly fix aR, 

subsequently minimize over c�), #	 and finally minimize (7.3.15) [with this optimal c�), #	] over aR,  

adapting the successive Lagrange approach suggested by Chan on p.522 in [26] to our requirements. 

For this purpose, we define the fitted Lagrange function
74 

(7.3.16)                                          ��c	 ≔ ���, c	 ≔ ���R, c�), #	� ≔ 

"�1 + c�), #	�ªJ c�), #	 − 1 � �.�#	 
ℝh

+ �R "<]R�#, |	 G|&|*( + c�), #	 OR�#, |	A �.�#	 
ℝh

= "<1 + �R ]R�#, |	 G|&|*( + c�), #	 ��R OR�#, |	 − 1 + ªJ c�), #	 A �.�#	 
ℝh

 

within a Lagrange multiplier �R ≔ ��aR	 being a differentiable function of a.  

In order to attain a better overview, we suppress the subscripts and arguments appearing in (7.3.16) 

during our following considerations. Since both the process c and the Lévy-measure . formerly have 

been supposed to be strictly positive, ordinary calculus delivers ����c	 > 0 which ensures the 

convexity of the Lagrange function c ⟼ ���, c	. Therefore, as in [26], we merely have to require the 

following (actually necessary) minimum condition for a strictly positive process Ê�), #	 and a scalar � 

(7.3.17)                                             0 = sÖ 6 ���, c + �Ê	×	6P� = 

s~ UU� "<1 + � ] G|&|*( + �c + �Ê 	 �� O − 1 + ªJ�c + �Ê	 A �.�#	 
ℝh

��
6P�

. 
An interchange of the differential and the integral operator in (7.3.17) yields 

0 = n Ê�), #	 <�R OR�#, |	 + ªJ�c�), #	�A �.�#	 ℝh .  
Thus, since Ê > 0 holds while . has already been assumed to be strictly positive formerly, within a 

similar argument as on page 522 in [26] we .-almost-sure receive 

0 = �R OR�#, |	 + ªJ�c�), #	� 

or equivalently 

(7.3.18)                             c�), #	 = 7#d�−�R OR�#, |	 = 7#d�−��aR	 OR�#, |	  

which represents the precise minimizing c�), #	 for fixed aR. 

                                                           
74 In contrast to Chan [26], we will motivate the structure of the Lagrange function (7.3.16) in more detail in the 
closing section 7.6.  
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What remains is the computation of the minimizing aR corresponding to the partial solution (7.3.18): 

Substituting (7.3.18) into (7.3.15), the argument therein becomes  

(7.3.19) 

aR12 + "<1 − �1 + �R OR�#, |	  7MÉ cÉ�&,{	A �.�#	 
ℝh

. 
Again, let us omit the subscripts and arguments yet in (7.3.19) for a moment, defining the functional 

(7.3.20)       

��a	 ≔ a12 + "<1 − �1 + ��a	 O  7M�¨	 cA �. 
ℝh

 

which corresponds to “(3.23) in [26]”. In order to receive its derivative with respect to a, once more, 

we interchange the differential and the integral operator yielding (cf. eq. “(3.24) in [26]”) 

���a	 ≔ U�Ua = a + ��a	 ���a	 " O1 7M�¨	 c�. 
ℝh

. 
Unfortunately, it is not straightforward to solve the necessary optimality condition ���a	 = 0 for a, 

since the function ��∙	 is not known explicitly. Computing the second derivative of � with respect to a, we can at least ensure convexity of �, if we require the following convexity-constraint 

����a	 > 0 ⇔  " O1 7M�¨	 c ����a	1 �1 − ��a	 O + ����a	 ��a	� �. 
ℝh

> −1. 
Recalling the positivity of the Lévy-measure ., we could alternatively demand the stronger (and 

hence, not best possible) restriction  

����a	 ��a	 > ���a	 O − 1  ���a	1 

to guarantee positivity of ��� and thus, convexity of � likewise. If we assume the latter inequality to be 

in force, then – in order to ensure minimality – we solely have to require the condition 

(7.3.21)                                   

0 = ���a	 = a + ��a	 ���a	 "O1 7M�¨	 c�. 
ℝh

. 
On the other hand, substituting (7.3.18) into our extended drift-restriction (7.2.22), we get 

0 = )��|	12 −  Õ��|	 − )��|	 a� + "<]��#, |	 G|&|*( + O��#, |	 7M�¨9	 c9�&,{	A 
ℝh

�.�#	 

whereby a differentiation of the latter equation with respect to a� (for fixed �) yields 

(7.3.22)                               

0 = )��|	 +  ���a�	 "O��#, |	1 7M�¨9	 c9�&,{	 
ℝh

�.�#	. 
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Comparing (7.3.21) with (7.3.22), [for ��a	 ≠ 0] we finally end up with 

(7.3.23)                                                           a� =  �� )��|	. 
Substituting the minimizing pair “(7.3.18) and (7.3.23)” into equation (7.2.22), the precise HJM-drift-

restriction associated to minimal relative entropy ultimately possesses the structure 

(7.3.24)           

0 = Ö12 − ��× )��|	1 − Õ��|	 + "<]��#, |	 G|&|*( + O��#, |	 7M9 c9�&,{	A 
ℝh

�.�#	 

which can be associated with eq. “(3.25) in [26]”. In the closing section 7.6 we will provide some 

further examinations concerning the just discussed minimization procedure. In particular, we therein 

explain why the above Lagrange function precisely has been chosen like in (7.3.16).  

 

7.3.3 Comparing the Esscher transform with the measure of minimum relative entropy 

In order to force correspondence between the minimum relative entropy measure ℚ∗ ≔ ℚ∗�a∗, c∗	 

and the EMM ℚ+ ≔ ℚ+�å�� induced by the Esscher transform, (parallel to [26]) we have to compare the 

drift restrictions (7.3.10) and (7.3.24) yielding the subsequent correspondence requests 

(7.3.25)                                   å� = −�� )��|	      and       å�# = �� O��#, |	. 
Hence, in contrast to the announcements on the top of p.523 in [26], in our HJM-jump-diffusion model 

the measure of minimum relative entropy ℚ∗ does (at least on a first glance) not directly correspond to 

the measure ℚ+  induced by the Esscher transform. Nevertheless, by solving (7.3.25), we may obtain the 

precise Esscher parameter å� which leads us [via (7.3.5)] to a specific Esscher EMM ℚ+ ∗ that 

simultaneously minimizes the relative entropy (6.4.1). To see this, we argue as follows: Eliminating å� 

inside (7.3.25), for �� ≠ 0 we get the correspondence condition 

(7.3.26)                                                      O��#, |	 = −)��|	 #. 
Implanting (7.2.10) and (7.2.15) into the latter equation, for all � ≤ | we achieve 

(7.3.27)                          

7M n �9�&,®	ð9 �® G|&|'( + 7M n ®9�&,®	ð9 �® G|&|*( = 1 − # " z���	{
�

��. 
Note that (for � < |) the right hand side of (7.3.27) denotes a decreasing linear function in #, since the 

volatility z���	 has been assumed to be strictly positive and thus, so is the integrated volatility )��|	. 

In what follows, we construct a case wherein the correspondence condition (7.3.26) is at least 

approximately fulfilled: Firstly, let us recall the definition of the Lévy-measure associated to d̂ due to 

(7.3.28)               .�ℬ	 ≔ .¾Ú�ℬ; �0, &�	 ≔ 6ℚ�#�� ∈ �0, &�:  Zd̂��|	 ≠ 0,   Zd̂��|	 ∈ ℬ  �  
for times 0 ≤ & ≤ | ≤ � (with | fixed) and a Borel-set ℬ ∈ ô�ℝ�	. Verbalizing, .�ℬ	 counts the ℚ-

expected number of jumps in the interval �0, &� with a (non-zero) jump-amplitude belonging to the set ℬ. As on p.524 in [26], we next presume that the discounted commodity forward price d̂ mostly makes 

very small jumps under ℚ, say 0 ≠ |Zd̂��|	| ≤ ¬ for 0 ≤ � ≤ | and a small strictly positive number ¬. 
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Thus, we expect a large quantity of jumps within a (non-zero) jump-size between −¬ and ¬ so that the 

set �−¬, ¬� ∖ �0 ⊂ ℝ� will ‘weigh heavily’ under .. Interpreting the latter, we certify the Lévy-

measure . to be “concentrated around zero” (see p.524 in [26]). Note in passing that in this case we 

only have to care about the instance |#| < 1 in (7.3.27). Hence, assuming the Lévy-measure . to be 

concentrated around zero yet, we can use (7.3.27) to specify the coefficient Q��#, �	, given z���	, in 

the following way: For |#| < 1 and 0 ≤ � ≤ | equation (7.3.27) simplifies to 

(7.3.29)                                    n Q��#, �	{� �� = −ªJ�1 − # n z���	{� ���.  
Differentiating (7.3.29) with respect to the upper integration bound |, we next obtain 

(7.3.30) 

Q��#, |	 = # z��|	1 − # n z���	{� ��. 
Thus, similar to the original (Brownian) Heath-Jarrow-Morton model in [49], due to a given volatility z��|	 all other model coefficients (besides the initial condition) are determined simultaneously (also 

recall Remark 7.2.2 in this context). Summing up, we may state that under the above concentrated 

around zero assumption the condition (7.3.26) is at least approximately fulfilled. Therefore, in 

accordance to our recent case study, the Esscher transform spawns a measure which even admits 

approximately minimum relative entropy in the sense of obeying (7.3.25) – cf. p.524 in [26]. 

Eventually, we remark that a similar case study can be done by assuming the Lévy-measure . to be 

bounded from below instead, yet dealing with the instance |Zd̂��|	| > ¬, resp. with |#| ≥ 1 in (7.3.27). 

 

7.4 Pricing commodity forward options    

Let us now turn to the topic of pricing commodity derivatives. At first, we assume that the discounted 

power forward price (7.2.32) is given in the same currency as the underlying strike price Ó, thus in 

EURO. Anyway, Hinz et al. model the (electricity) forward price d��|	 in MWh (cf. p.8 in [59]). For 

this reason, in their setup d̂��|	 is given in MWh/EURO, since the bank account 5� bears in EURO. 

Hence, the problem of intermingled currencies in the European call option payoff 

(7.4.1)                                      W{ ≔ �d̂{��	 − Ó	\ ≔ ÔÕ#�0, d̂{��	 − Ó  

�| ≤ �	 arises, as the strike price Ó in [59] still is given in EURO. To overcome this problem, one has 

to invest a great effort in Change-of-$uméraire techniques
75 (as in Ch. 3 of [59]) to fit the different 

currencies, respectively to achieve an appropriate currency change. Furthermore, on p.11 in [59] a 

detaining time-change property for continuous (semi-) martingales
76 has to be troubled in order to 

compute the conditional expectation appearing inside the risk-neutral pricing formula 

(7.4.2)                                                 
q9<9 = 6ℚ Nqð<ð 	ℱ�O ,    � ∈ �0, |� 

by terms of a usual expectation.  

                                                           
75 For further reading on Change-of-$uméraire techniques see Chapter 9 in [83]. Additionally, the interested 
reader is advised to Chapter 2 in [14] or Chapter 3 in [51] to read more about a possible conversion of, 
particularly, electricity markets into money markets by Change-of-Numéraire techniques. 
76 See section 3.4 B, Theorem 4.6, in Karatzas and Shreve [62] for more details. 
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In the following, we aim to derive a pricing formula for a European commodity call option based upon 

our extended jump-diffusion HJM-model. Before doing so, we briefly present the continuous version 

(without jumps) related to a Black-Scholes setup in the next subsection (also compare paragraph 9.1.1 

in [13]). We do this not only for the sake of completeness, but also to present an alternative way to 

proof the pricing formula declared in Prop. 1 in [59]. Actually, we suppose the coefficients in (7.2.4) 

[and thus, also those in (7.2.10) and (7.2.15)] to be deterministic for the remainder of section 7.4. 

 

7.4.1 Commodity forward option prices in the continuous Black-Scholes case 

When there are no jumps involved in the underlying (discounted) commodity forward price d̂��|	, 

then the dynamics in (7.2.26) simply reads as 

�d̂��|	 = −d̂��|	 )��|	 ��+� 

bearing the continuous Doléans-Dade solution 

(7.4.3)         d̂��|	 = d̂��|	 j�−)⋅�|	 ∘ �+⋅�� ≔ d̂��|	 7#d m− n )®�|	 ��+®�� − (1 n )®�|	1���� o. 
Yet, we provide the following theorem which essentially corresponds to Proposition 9.1 in [13]. 

 

Theorem 7.4.1    As above, let 0 ≤ � ≤ | ≤ �. In what follows, we denote the constant interest rate
77

 

by � while : stands for the cumulative standard normal distribution function. Then the European 

commodity call option EURO price W� at time � (prior to the exercise time
78

 |) written on a commodity 

forward with delivery time � and strike price Ó (in EURO) is given by 

(7.4.4)                               W� ≔ W��Ó, |, �	 = 7M��{M�	�d̂���	 :��(	 − Ó :��1	� 
with arguments 

�(,1 = ªJ Öd̂���	Ó ×± 12 n )®��	1{� ��
°n )®��	1{� �� . 

Proof Assuming a constant interest rate �� ≡ � in (7.2.16), equation (7.4.2) transforms into 

(7.4.5)                                                  W�  = 7M��{M�	 6ℚ�W{|ℱ�	 

where 0 ≤ � ≤ |. Further, appealing to (7.4.1), the call option payoff W{ can be expressed as 

(7.4.6)                                                   W{ = Nd̂���	 ¾Úð��	¾Ú9��	 − ÓO\. 
                                                           
77 Admittedly, assuming a constant interest rate �� ≡ � sounds somewhat contradictory with respect to the 
underlying HJM-framework, since we formerly have announced �� = S���	 in (7.2.5). However, we recall that in 
[13] and [59] the same assumption is supposed. Actually, we could easily get rid of the problematic stochastic 
discount factor 5 appearing in (7.4.2) by applying standard Change-of-Numéraire techniques (see e.g. [14], [51], 
[59], [83]). Yet, section 9.4.3 in [83] particularly deals with option pricing purposes under a random interest rate. 
We leave the workout of the details to the reader, as we instead want to focus on the topic of commodity forward 
option pricing with Fourier transforms under our extended jump-diffusion approach in the next section.  
78 The trading period ends at the exercise time |, whereas the delivery takes place at the maturity time � �≥ |	. 
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Thus, linking (7.4.5) with (7.4.6) while implanting the representation (7.4.3), we receive 

W� = 7M��{M�	 6ℚ ~öd̂���	 7#d ü− " )®��	 ��+®
{

�
− 12 " )®��	1��{

�
ý − Ó÷\ �ℱ�� 

(cf. p.239 in [13]). Since d̂���	 is strictly positive and ℱ�-adapted, the latter equality can be written as 

(7.4.7)                                 

W� = 7M��{M�	 d̂���	 6ℚ �á78ðq9  − Ód̂���	ä\ �ℱ�� 

whereby [for a deterministic coefficient )®��	] we have currently introduced the abbreviation 

�{M� ≔ �{M���	 ≔ − " )®��	 ��+®
{

�
− 12 " )®��	1��{

�
. 

Note that �{M� depicts a drifted Brownian integral under ℚ which is normally distributed with mean 

− 12 " )®��	1��{
�

 

and variance 

" )®��	1��{
�

. 
Moreover, since �{M� and ℱ� are ℚ-independent by definition, the conditional expectation in (7.4.7) 

reduces to a usual expectation which trivially can be computed by standard measure transformation 

arguments, ultimately yielding the desired result (similarly to the proof of Prop. 9.1 in [13]). ∎ 

 

Remark 7.4.2 Obviously, the pricing formula (7.4.4) reveals a very similar structure with respect to 

the celebrated Black-Scholes formula. Corresponding to subsection 9.1.1 in [13], we claim that in the 

above treated continuous case without jumps the risk of a possible loss can be hedged by holding a 

well defined number of commodity forwards given by the so-called delta hedging strategy 

(7.4.8) 

Z� ≔ Z��Ó, |, �	 ≔ UW��Ó, |, �	Ud̂���	  

(cf. equation “(9.2) in [13]”). Taking (7.4.4) into account, a straightforward application of the 

elementary product- and chain-rule from ordinary calculus delivers 

(7.4.9)                                                Z� = 7M��{M�	 : N�(�d̂���	�O  

giving the precise number of commodity forwards an investor should hold at time � �≤ | ≤ �	 in 

his/her portfolio. We remark that equation (7.4.9) directly corresponds to Proposition 9.2 in [13]. ∎ 
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7.4.2 Commodity forward option prices in the case of jumps 

As there is no explicit distribution function for the discontinuous commodity forward price (7.2.32) 

available, we cannot handle the conditional expectation appearing inside the risk-neutral pricing 

formula via a straightforward measure transformation (similarly to our arguing in the proof of 

Theorem 7.4.1 in the previous subsection) when it comes to commodity derivatives pricing in the 

jump-case (also see p.247 in [13]). On the contrary, inspired by the argumentation in subsection 9.1.2 

in [13] (and moreover, by the results in [14], [22], [33] and [79]), we now adopt customized Fourier 

transform techniques to our mission. Instantly, let us introduce the real-valued local (Lévy-type-/Sato-) ℚ-martingale 

(7.4.10)                           

Â��|	 ≔ − " )®�|	 ��+®
�

�
− " " �®M�#, |	 

ℝh

�
�

��+ℚ��, #	 

within a (deterministic) integrand 

(7.4.11)                                  �®�#, |	 ≔  �®�#, |	 G|&|'( + ]®�#, |	 G|&|*(. 
In addition, we also assume the process c to be deterministic and define the strictly positive function 

(7.4.12)      

;��|	 ≔ d̂��|	 7#d f− " ~)®�|	12 + "��®�#, |	 + O®�#, |	� c��, #	 �.�#	 
ℝh

� ���
�

i. 
Therewith, parallel to the arguing in subsection 9.1.2 in [13], we can express the ℚ-dynamics (7.2.32) 

in the subsequent shorthand version 

(7.4.13)                                                    d̂��|	 = ;��|	 7È9�{	 
(cf. p.248 in [13]). Inserting (7.4.13) into the call price formula (7.4.1), we derive  

(7.4.14)                                                W{ = <;{��	 7Èð��	 − ÓA\. 
Keeping the structure of (7.4.14) in mind, we next concentrate on the exponentially-damped call price 

function 

(7.4.15)                               Ù�#	 ≔ Ù�#; Ó, Õ, |, �	 ≔ 7M¸& �;{��	 7& − Ó�\ 

within a real damping parameter 1 < Õ < ∞ (compare Lemma 9.1 in [13] in this context). Note that �;{��	 7& − Ó�\ ∉ ℒ(�ℝ	, while Ù�#	 ∈ ℒ(�ℝ	 holds true in return. Thus, the Fourier transform of Ù�#	 exists and can be computed via (3.2.32) yielding 

ÙÚ�F	 = " 7M�¸\=E	&  �;{��	 7& − Ó�\ 
ℝ

�# = " ;{��	 7M�¸\=E	& á7& − Ó;{��	ä\ 
ℝ

�#
= ;{��	 " 7M�¸\=E	&Û

«IÖ Ü?ð��	×
á7& − Ó;{��	ä �#. 
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Recalling the fact |7M=E&| = 1, a straightforward calculation finally delivers 

(7.4.16)                                    

ÙÚ�F	 = Ó�Õ + DF	�Õ − 1 + DF	 �;{��	Ó �¸\=E
 

(cf. Lemma 9.1 in [13]). Now we are able to state the discontinuous analogue of Theorem 7.4.1 which 

actually corresponds to Proposition 9.4 in [13].79 

 

Theorem 7.4.3     Denoting the risk-less interest rate by �, the EURO price W� ≔ W��Ó, |, �	 at time � �≤ |	 of a European commodity call option with exercise time | �≤ �	 and strike price Ó > 0 (in 

EURO) written on a commodity forward maturing at the delivery time � is given by 

(7.4.17) 

W� = 7M��{M�	2� " ÙÚ�F	 
ℝ

7#d ü�Õ + DF	 Â���	 + �Õ + DF	12 " )®��	1 ��{
�

+ C�F, �, |, �	ý �F. 
Herein, Â and ÙÚ are such as declared in (7.4.10) and (7.4.16) respectively, whereas the 

(deterministic) characteristic exponent C�F, �, |, �	 is explicitly given through 

(7.4.18)                      

C�F, �, |, �	 ≔ " "<7= æ1�&,E,�	 − 1 − D å®�#, F, �	A 
ℝh

{
�

c��, #	 �.�#	 �� 

within a shorthand notation å®�#, F, �	 ≔ �DÕ − F	 �®�#, �	. 
 

Proof   (Cf. the proof of Prop. 9.4 in [13].) Combining (7.4.14) with (7.4.15), we derive 

W{ = 7¸ Èð��	Ù�Â{��	�. 
Recalling (3.2.33), the latter can be transformed into 

W{ = 12� " ÙÚ�F	 
ℝ

7�¸\=E	 Èð��	�F. 
Therewith, the risk-neutral pricing formula (7.4.2) points out as 

(7.4.19)                                   

W� = 7M��{M�	2� " ÙÚ�F	 
ℝ

6ℚ�7�¸\=E	 Èð��	�ℱ�� �F. 
In the following, we handle the conditional expectation appearing in (7.4.19) separately: Since Â{��	 − Â���	 and ℱ� are ℚ-independent, with respect to (7.4.10) we receive 

                                                           
79 Note that in Prop. 9.4 in [13] the characteristic exponent (7.4.18) is not given explicitly on the contrary. 
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(7.4.20)                   6ℚ�7�¸\=E	 Èð��	�ℱ�� = 7�¸\=E	 È9��	 6ℚ<7�¸\=E	 �Èð��	MÈ9��	 A = 

7�¸\=E	 È9��	 6ℚ Ï7#d fD ~"�DÕ − F	 )®��	 ��+®
{

�
+ " "�DÕ − F	 �®M�#, �	 ��+ℚ��, #	 

ℝh

{
�

�iÐ. 
As �+  and �+ℚ have a priori been assumed to be ℚ-independent, equality (7.4.20) factors into the triplet 

(7.4.21)                                6ℚ�7�¸\=E	 Èð��	�ℱ�� = 7�¸\=E	 È9��	 × ℑ( × ℑ1 

with usual expectations 

ℑ( ≔ 6ℚ ö7#d ü− "�Õ + DF	 )®��	 ��+®
{

�
ý÷, 

ℑ1 ≔ 6ℚ Ï7#d fD " "�DÕ − F	 �®M�#, �	 ��+ℚ��, #	 
ℝh

{
�

iÐ. 
Applying Itô’s isometry, a straightforward calculation yields 

(7.4.22)                                              

ℑ( = 7#d ü�Õ + DF	12 " )®��	1��{
�

ý. 
Further on, we recall our former definition å®�#, F, �	 ≔ �DÕ − F	 �®�#, �	 and therewith, rewrite the 

compensated jump-integral appearing inside ℑ1 with respect to (2.2.8) as Lévy-Itô-decomposed 

(7.4.23)                                    

 ℑ1 = 6ℚ Ï7#d fD " " å®M�#, F, �	 ��+ℚ��, #	 
ℝh

{
�

iÐ = 

6ℚ Ï7#d fD ~− " " å®�#, F, �	 c��, #	 �.�#	 �� 
|&|'(

{
�

+ " " å®M�#, F, �	 ��+ℚ��, #	 
|&|*(

{
�

+ " " å®M�#, F, �	 ����, #	 
|&|'(

{
� �iÐ. 

Similarly to our former arguing in (3.2.41), an application of the generalized Lévy-Khinchin formula 

(combine Prop. 8 in [35] or Prop. 1.9 in [65] with Prop. 2.1 in [13]) finally delivers 

(7.4.24)            

ℑ1 = 7#d f" "<7= æ1�&,E,�	 − 1 − D å®�#, F, �	A 
ℝh

{
�

c��, #	 �.�#	 ��i = 7B�E,�,{,�	 

within a characteristic exponent C�F, �, |, �	 such as defined in (7.4.18) above. Implanting (7.4.21), 

(7.4.22) and (7.4.24) into the pricing formula (7.4.19), we get the claimed result. ∎ 
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In order to evaluate the pricing formula (7.4.17) with respect to the EMM ℚ+  induced by the Esscher 

transform (the so-called Esscher-EMM; compare subsection 7.3.1), we would first need an explicit 

(deterministic) solution of equation (7.3.11), say å��, which would lead us via (7.3.9) to 

(7.4.25)                                                         c+��, #	 ≔ 7Mæ+1& .  
This specific coefficient c+ then could be weaved into (7.4.17) by dint of (7.4.10), (7.4.12), (7.4.16) 

and (7.4.18), while replacing c by c+ in the latter equalities. On the other hand, in order to work out 

the commodity call option price (7.4.17) under the minimum relative entropy EMM ℚ∗ (compare 

subsection 7.3.2), we would first need to know the concrete minimizing solution a®∗ and c∗��, #	 such 

as introduced in the sequel of (7.3.15). Ultimately, the proper coefficient c∗ then could be merged into 

(7.4.17) – similar to the way described for c+ above – and thus, would yield the explicit commodity 

call option price related to the minimum relative entropy measure ℚ∗ in return. 

 

7.5 Conclusions  

In order to model commodity forward prices adequately, we have suggested an extended Heath-

Jarrow-Morton setup permitting random jumps at random time points via additive compound Poisson-

type processes, while we have distinguished between small and large jump sizes. By the way, we have 

presented an alternative derivation modality for the involved forward price dynamics using the 

Leibniz-rule for parameter integrals instead of troubling the stochastic Fubini-Tonelli theorem 

laboriously as suggested in [17], respectively [18]. Having derived an extended HJM-drift-restriction 

associated to our jump-diffusion case, we subsequently have adapted generalized Esscher transform 

methods to our purposes. Moreover, with respect to our present incomplete market model, minimum 

relative entropy techniques have been elaborated to determine a specific equivalent martingale 

measure out of the large class of offering pricing probabilities. Dealing with this subject, we have 

invested some pursuing effort concerning the connected minimization procedure, while adapting the 

successive Lagrange approach supposed in [26] to our requirements. In order to compute risk-neutral 

European commodity call option prices, we finally have applied tailor-made Fourier transform 

techniques such as proposed in [13]. Regarding the resulting pricing formula (7.4.17), we remark that 

there obviously is a need for numerical pricing methods in order to evaluate explicit commodity option 

prices. Ultimately, we highlight that (7.4.17) descends from an exponential model – see (7.4.13). In 

this concern, it appears interesting to compare our argumentation in subsection 7.4.2 with that in 

paragraph 3.2.4, for example, while the latter is dedicated to an arithmetical approach on the contrary.  

 

7.6 Appendix: The Lagrange function  

In this closing section we want to give some additional explanatory comments on the structure of the 

Lagrange function (7.3.16) while exploring the connected minimization procedure in more detail. 

Referring to our minimization exercise (7.3.15), for a fixed time parameter ) we initially declare 

(7.6.1) 

S�a, c	 ≔ S�aR, c�), #	� ≔ aR12 + "�1 + c�), #	 �ªJ c�), #	 − 1 � �.�#	 
ℝh
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with S: ℝ1 ⟶ ℝ as our target function. Next, in accordance to our extended drift-restriction (7.2.22), 

we introduce the functional ]: ℝ1 ⟶ ℝ due to 

(7.6.2)                                               ]�a, c	 ≔ ]�aR, c�), #	� ≔ 

)R�|	12 −  ÕR�|	 − )R�|	 aR + "<]R�#, |	 G|&|*( + OR�#, |	 c�), #	A 
ℝh

�.�#	 

(again for a fixed time parameter )). Hence, with respect to (7.3.15), our objective yet consists in a 

proper minimization of the target function (7.6.1) under the constraint 

(7.6.3)                                                       ]�aR, c�), #	� = 0. 
In conclusion, the Lagrange multiplier method (see section 6.2.5.6 in [19]) then requires the equality 

(7.6.4)                                                   �S�a, c	 = �  �]�a, c	 

to be valid, wherein � ∈ ℝ embodies the Lagrange multiplier and � denotes the gradient operator. 

Appealing to (7.6.1) and (7.6.2), in vectorial notation equation (7.6.4) turns out as 

(7.6.5) 

ú aRn ªJ c�), #	 �.�#	 ℝh
û = � ú −)R�|	n OR�#, |	 �.�#	 ℝh

û. 
From this we obtain the equality system 

(7.6.6) 

aR = −� )R�|	      ∧      "�ªJ c�), #	 − � OR�#, |	� �.�#	 
ℝh

= 0 

(with fixed time-parameter )), which .-almost-sure is equivalent to 

(7.6.7)                                      aR = −� )R�|	      ∧      c�), #	 = 7 cÉ�&,{	 
since we have assumed . to be positive in the sequel of (7.2.3) – also recall the arguing on p.522 in 

[26] at this step. Thus, comparing (7.6.7) with (7.3.18) and (7.3.23)80, we achieve a better 

understanding why the fitted Lagrange function precisely has been chosen like in (7.3.16). Further on, 

referring to (7.6.2), (7.6.3) and (7.6.7), we have the three following equalities available 

(7.6.8) 

±²³
²́ �µ	  )R�|	12 −  ÕR�|	 − )R�|	 aR∗ + "<]R�#, |	 G|&|*( + OR�#, |	 c∗�), #	A 

ℝh
�.�#	 = 0

�µµ	                                                          aR∗ = −� )R�|	                                                              �µµµ	                                               ªJ c∗�), #	 = � OR�#, |	                                                       
s 

(.-almost-sure) in order to determine the three values aR∗, c∗�), #	 and �.  
                                                           
80 The opposite signs do not at all constitute a serious matter here, as we could equally well have considered 
(7.6.4) for � replaced by −�, obviously. 
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Parallel to our earlier notation in the sequel of (7.3.15), we here denote the critical values by aR∗ and c∗�), #	 again. Adhering to (7.2.15), we reasonably assume the coefficient O to be non-zero, so that 

equation �µµµ	 turns out to be equivalent to  

(7.6.9)                                                             � = «Ir∗�R,&	cÉ�&,{	 . 
Substituting (7.6.9) into equation �µµ	, we immediately obtain 

(7.6.10)                                                  aR∗ = − RÉ�{	cÉ�&,{	  ªJ c∗�), #	. 
Hence, putting (7.6.10) into �µ	, we finally end up with 

(7.6.11) 

)R�|	1 �12 + ªJ c∗�), #	OR�#, |	 �+ "<]R�#, |	 G|&|*( + OR�#, |	 c∗�), #	A 
ℝh

�.�#	 = ÕR�|	. 
Examining (7.6.11) in more depth, we conclude that – after having chosen concrete coefficients ), Õ, O, ] and an appropriate form of the Lévy-measure . (i.e. a density with respect to the Lebesgue-

measure, for instance) – this equation may be solved numerically for c∗�), #	 which simultaneously 

leads us to aR∗ via (7.6.10), ultimately. All in all, we underline that the equalities (7.6.10) and (7.6.11) 

indeed are suitable to derive the precise minimizing pair-process �a∗, c∗	 which induces the minimum 

relative entropy measure ℚ∗�a∗, c∗	 such as defined in the sequel of (7.3.15). 
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Chapter 8 
 

 

�onlinear Double-Jump Stochastic 

Filtering using Generalized Lévy-Type 

Processes 

 

 

8.1 Introduction to stochastic filtering  

Nonlinear stochastic filtering deals with the problem of estimating a dynamical signal system on the 

basis of perturbed or incomplete observations whereas a direct measurement of the underlying 

intriguing signal is only partially or even not possible (cf. e.g. [2], [70], [77]). In this chapter both the 

signal variable � and the observation process Q innovatively are modeled via fairly general jump-

diffusion Lévy-type stochastic processes for the first time in the literature (at least to the best of our 

knowledge). Moreover, an extended Zakai- and Kushner-Stratonovic-Equation is derived, the latter 

representing our optimal filter in the least-squares sense. Finally, selected applications taken from 

electricity and emission markets are presented. Anyway, we start off by giving some introductory 

comments on the topic of stochastic filtering, simultaneously providing a short literature overview. 

The problem of estimating a partially hidden dynamical signal system is in general a difficult task, 

since information about the state process � only can be obtained by extracting those contained in the 

noisy observation process Q using a challenging mathematical procedure provided by modern 

stochastic calculus (cf. p.1 in [70]). If any of the functions involved in the underlying filtering setup is 

nonlinear or “if a jump term is present, then it is rarely possible to [derive] the conditional distribution 

[of the signal] by a ‘finite [analytical] computation’” (see p.559 in [76]). However, in the literature 

there are two fundamental ways to solve such a mentioned filtering problem: On the one hand, we 

have the Change-of-Measure method, which makes use of an adjusted version of Girsanov’s theorem, 

and on the other, there is the Innovation-Process approach (see e.g. pp. 52 and 70 in [2]).  
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In this chapter we trouble the Change-of-Measure method wherein an equivalent martingale measure 

(EMM) is constructed under which the observation process Q becomes a martingale that is 

stochastically independent of the signal �. Further, the conditional distribution of the transformed state 

variable S��	, given the measurement information Q, then possesses a representation in terms of an 

associated non-normalized process which satisfies a specific stochastic differential equation (SDE) 

known as the Zakai-Equation [70], [77]. Finally, Itô-calculus tells us how to derive the so-called 

Kushner-Stratonovic-Eq. representing the normalized conditional distribution of the signal in return. 

Although stochastic filtering has several important applications in modern signal processing reaching 

from the biomedical area and chemistry to micro-electronics, mechanics and engineering, ending up in 

the economic and finance branch (just to nominate a few), to the best of our knowledge there is not a 

single work in the literature dealing with nonlinear filtering in a generalized Lévy-type double-jump 

diffusion case. Nevertheless, continuous-time diffusion models without jumps have rigorously been 

studied by Bain and Crisan [2] and Xiong [84], recently. Furthermore, Mandrekar, Meyer-Brandis and 

Proske [70] deal with a nonlinear filtering model wherein the observation process contains both 

general Gaussian noise as well as Cox noise whose jump-intensity explicitly depends on the drifted 

continuous signal itself. An analogous setting with the state � a diffusion and the observation process Q a generalized Lévy-type process can be found in Meyer-Brandis and Proske [71], where in addition 

financial filtering applications are treated (see Ch. 4 therein for the calibration of a jump-diffusion 

model via nonlinear filtering).                            

Recently, an arresting topic has been brought up by Calzolari, Florchinger and Nappo [20], as they 

have dealt with nonlinear filtering under time-delayed observations. More precise, in their framework 

a delaying time transformation modifies the time index of the observation process in a deterministic 

manner. However, this idea is related to the stochastic time-change procedure with Lévy-subordinators 

(see subsection 1.3.2 in [1] for further reading), as it can be seen as a special case of the latter but 

without any randomness ‘under the new clock’. Yet, introducing stochastic time-changes to the 

filtering theory might bear a challenging future research topic. Note that, whenever multiple-sensor 

measurement scenarios cause information inputs at random (non-equidistant) time points (such as it is 

the case in [31]; see below), a subordinated filtering model might be appropriate. For more 

information about possible applications of Lévy-subordinators in stochastic finance (e.g. to model 

leverage effects) see Cont and Tankov [30], for instance. By the way, another inspiring example in 

[20] is embodied by the proposed time-delayed diffusion model, wherein the multi-dimensional 

observation process is available after a fixed delay | only. To be precise, in this model setup no 

information is available during the time range 0 ≤ � ≤ |, while after the flashpoint | the belated 

observations eventually start off. Further on, a collateral case study in [20] deals with an information 

input that “arrives by packets” (cf. p.51 therein). Comparable situations arise in numerous 

applications, whenever an observer is confronted with measurements at discrete time steps merely: In 

between the observation points there is no new information available then, what makes the observed 

component look like a pure-jump compound Poisson process, i.e. some kind of randomized step 

function. Referring to the bottom of p.50 in [20], we claim that the above mentioned partially 

observable systems with delayed observations exemplarily appear in risk minimizing problems of 

financial models for incomplete markets.                  

Another challenging connection between nonlinear filtering and stochastic finance has been drawn by 

Cvitanic, Liptser and Rozovskii [31], as they have applied stochastic filtering techniques to extract the 

unobservable market volatility out of asset prices that have been observed at discrete random time 

points. Malcolm, James and Elliott [69] consider a “risk-sensitive” filtering model based upon a 

continuous signal process of mean-reverting Ornstein-Uhlenbeck type together with increasing 

standard Poisson process observations within a jump-intensity that explicitly depends on the signal. 

Additionally, a very detailed presentation of a nonlinear filtering problem has been published by Popa 
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and Sritharan [77], whereas the authors model the state process as a discontinuous semi-martingale 

with both diffusion and Cox noise while the observation process comes as a drifted Brownian motion 

(and thus without jumps, unfortunately).               

As we have seen so far, there are very little publications in which both the signal and the observation 

process are simultaneously modeled as generalized Lévy-type jump-diffusions. To the best of our 

knowledge, the only approach that allows for a double-jump setting has been disclosed by Poklukar 

[76], wherein the signal indicates a jump-diffusion and the observation process comes as a standard 

Poisson process within a jump-rate depending on the signal itself and jump-times that are disjoint to 

the jumps of the latter. Thus, our aim in this chapter essentially consists in an extension of Poklukar’s 

setting to a generalized Lévy-type approach with random jump-sizes at random jump-times in addition 

to Brownian observation noise both in the state and observation process. Particularly, we will permit 

complete Brownian integrals in the signal as well as in the observation process, instead of ‘naked’ 

Brownian motions solely such as appearing in the majority of the above mentioned filtering setups. 

The remainder of the current chapter is organized as follows: In section 8.2 our extended double-jump 

nonlinear filtering problem is introduced mathematically while the associated stochastic evolution 

equations for the signal and the observation process are given explicitly. Afterwards, we apply a 

tailored version of Girsanov’s Change-of-Measure theorem and switch to an equivalent probability 

measure ℚ under which the signal and the observation process become independent. The following 

paragraph 8.3 contains an extended representation for the non-normalized conditional distribution 

associated to the signal in terms of stochastic integrals, called extended Zakai-Equation throughout 

this work. Subsequently, an extended Kushner-Stratonovic-Equation is derived which constitutes our 

main result so far. Hereafter, in section 8.4 several selected applications taken from electricity and 

emission markets are presented, whereas we explicitly focus on suitable choices of the appearing 

coefficient processes. The most relevant conclusions are drawn in the closing section 8.5, wherein in 

addition some accompanying future research topics are mentioned briefly. 

 

8.2 The nonlinear filtering problem  

Generally speaking, nonlinear stochastic filtering deals with the estimation of a dynamical signal 

system, whereas a direct observation of the latter is not possible [77]. However, partial/perturbed 

measurements of the underlying signal often can be obtained in reality [77]. Hence, one may get 

information about the intriguing state � by observing (theoretically) the stochastic process Q which is 

– loosely speaking – a functional of � corrupted by additive noise (cf. p.1 in [77]). Yet, the aim of 

stochastic filtering lies in the derivation of the conditional distribution of the current state of the signal �, given the accumulated past information stored in the monotone increasing observation filtration  

ℱ�¥ ≔ z�QR: 0 ≤ ) ≤ �  

(cf. e.g. [2], [70], [71], [84]). This backward-looking family of sigma-algebras contains all foretime 

information that has been collected by observing the process Q up to and including time �. 

Remark 8.2.1 At this early stage, we should spend a moment to think about a possible enlargement 

of the observation filtration ℱ¥ also in the current filtering framework. We here recall that the 

increasing family of sigma-algebras ℱ�¥ does only “look into the past” while all available information 

coming from observing the process Q up to time � is stored in this “retro filtration”. Actually, this is 

not always the case at hand when we are dealing with filtering applications in reality. To be precise, 

one could think of a measurement situation where some additional (but possibly stochastic) future 
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information is available. Exemplarily, an observer might know that a specific future event will take 

place with certainty while the exact effects remain random. Taking such forward-looking knowledge 

into account, we would have to enlarge the observation filtration ℱ¥ appropriately. Fitting the 

connections between stochastic filtering and such an enlargement of the information filtration as 

described above while taking forward-looking events into account portrays a rather challenging issue. 

Exemplarily, one might use stochastic filtering techniques to estimate the unobservable volatility in an 

electricity market model (state process), wherein the observable electricity spot price (observation 

process) might be modeled as a sum of non-Gaussian mean-reverting Ornstein-Uhlenbeck jump-

processes under anticipative information as supposed in Ch. 3 formerly. In this case, one would have 

to derive the corresponding filtering equations (i.e. the Zakai- and Kushner-Stratonovic-Equation) for 

additive multi-factor mean-reverting (forward-looking) observations. ∎ 

To proceed in our arguing, let us recall the best approximation property of conditional expectations 

(for details see Xiong [84], Lemma 5.1 therein) which is crucial for the construction of our nonlinear 

filter. Precisely, we argue as follows: Suppose that the random variable � is square-integrable but not 

measureable with respect to the filtration �. That is, the information cumulated in � does not 

completely determine the values of �. Then, the conditional expectation T ≔ 6��|�	 possesses the 

remarkable property that it yields the uniformly best approximation for � in the least-squares sense. 

Hence, the inequality 

6��p − �	1� ≥ 6��T − �	1� 
holds for all random variables p that are �-measureable and square-integrable. Adhering to the above 

least-square error criterion, our nonlinear filtering problem comes down to the computation of the 

precise stochastic evolution equation that is fulfilled by the conditional expectation of S���	, given the 

observation filtration ℱ�¥, under the probability measure ℙ, in symbols 6ℙ�S���	|ℱ�¥	 (cf. p.2 in [71] 

and p.1 in [77]). Herein, the test-function S allows for a (nearly) arbitrary transformation of the signal �� whereas for most applications we can choose it as the identity. In this context, we introduce the 

shorthand notation 

(8.2.1)                                                    /��S	 ≔ 6ℙ�S���	|ℱ�¥	 

(cf. “(3.4) in [70]”, resp. Def. 4.6 in [77]) which will be called the normalized conditional distribution 

of � given Q throughout this chapter. Therewith, our nonlinear stochastic filtering problem yet consists 

in the determination of the specific stochastic differential equation (SDE), namely the Kushner-

Stratonovic-Equation, which is fulfilled by the (in the least-squares sense) optimal filter /��S	. 

 

8.2.1 The representation of the signal and the observation process 

We start off with the description of the mathematical basis of our filtering setting. Let �Ω, ℱ, ℙ	 be a 

filtered complete probability space, whereas the monotone information filtration ℱ ≔ �ℱ�	�'� is 

assumed to be cad (French: continue à droite). In addition, sticking to common filtering notations (see 

e.g. p.5 in [70]), we denote the (augmented) sigma-algebra generated by the signal up to time � by 

(8.2.2)                                                    ℱ�8 ≔ z��R: 0 ≤ ) ≤ �  

and the (augmented) sigma-algebra generated by the observation process up to time � by 

(8.2.3)                                                    ℱ�¥ ≔ z�QR: 0 ≤ ) ≤ � . 
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In this context, we assume that ℱ�8 and ℱ�¥ a priori include all ℙ-null-sets.81 As usually, the overall, 

respectively global filtration is given by 

(8.2.4)                                                           ℱ� ≔ ℱ�8 ∨ ℱ�¥. 
Further on, the �-dimensional signal process � ≔ ���	�'� is modeled as a generalized Lévy-type 

stochastic process in this work. Since we suppose that a direct observation of the discontinuous semi-

martingale � is not possible, the latter frequently is referred to as the unobservable component. More 

precisely, we assume that � admits a càdlàg (French: continue à droite avec des limites à gauche) 

representation under the true probability measure ℙ that is of the fairly general Lévy-type form 

(8.2.5) 

�� = �� + " ��), �R	�
�

�) + " Ò�), �R	�
�

��R + " " Q�)−, �RM, #	 
¡

�
�

��+8ℙ�), #	 

(cf. e.g. “(2.1) in [77]”) wherein the random variable �� denotes the �-dimensional initial condition, � stands for a d-dimensional Brownian motion (BM) under ℙ with d ≤ � and �+8ℙ designates the ℙ-

compensated �-dimensional integer-valued Poisson-Random-Measure (PRM) on ℝ\ × £ associated 

to the signal � within jump-amplitudes in the set £ ⊆ ℝ� ∖ �� . Further, the ℙ-compensator of the 

PRM ��8�), #	 is denoted by �.8�#	�) which is such as 

(8.2.6)                                        ��+8ℙ�), #	 ≔ ��8�), #	 − �.8�#	 �) 

forms a martingale integrator under ℙ. Herein, the �-dimensional Lévy-measure .8 declares a positive 

and finite Borel-random-measure on £ that fulfills one of the following equivalent assumptions 

(8.2.7)                          n %#%1 ∧ 1  �.8�#	 < ∞   ⇔    ¡ n  %&%¨
(\%&%¨  �.8�#	 < ∞. ¡  

Ultimately, the coefficients appearing in (8.2.5) such as 

 (8.2.8)       �: ℝ\ × ℝ� ⟶ ℝ�,         Ò: ℝ\ × ℝ� ⟶ ℝ�×¾,         Q: ℝ\ × ℝ� × £ ⟶ ℝ�×� 

altogether are assumed to be integrable and bounded.         

Furthermore, we suppose that the signal process � may be partially observed via the observation 

process Q ≔ �Q�	�'� which comes as a fairly general Ô-dimensional Lévy-type jump-diffusion with Ô ≤ �. More precisely, we presume the explicit form under the measure ℙ as 

(8.2.9)                                                                    Q� = 

Q� + " ¬�)	 ℎ�), �R	�
�

�) − " "O�), F	 7¿�R,8É,E	�.¥�F	 �) 
È

�
�

+ " ¬�)	 �5R
�

�
+ " "O�)−, F	 ��¥�), F	 

È
�

�
 

(which essentially extends “(1.1) in [70]”). In the latter equation the random variable Q� denotes the Ô-dimensional initial condition, 5 depicts a Ù-dimensional BM under ℙ with Ù ≤ Ô and �¥ stands 

for the Ô-dimensional integer-valued PRM on ℝ\ × Â associated to Q within jump-amplitudes in the 

set Â ⊆ ℝ¹ ∖ �� . The Ô-dimensional Lévy-measure .¥ is assumed to fulfill analogous conditions as .8 in (8.2.7), whereas in return it plays the role of the ℙ-compensator of �¥, that is, the object  

                                                           
81 To get an idea of what may happen if we do not impose this assumption, see Remark 2.3 in [2]. 
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(8.2.10)                                      ��+¥ℙ�), F	 ≔ ��¥�), F	 − �.¥�F	 �) 

presently indicates a ℙ-martingale integrator. Moreover, the coefficients appearing in (8.2.9) such as 

 (8.2.11)                                   ¬: ℝ\ ⟶ ℝ¹×¶ ,            ℎ: ℝ\ × ℝ� ⟶ ℝ¶ , 
O: ℝ\ × Â ⟶ ℝ¹×¹ ,           ]: ℝ\ × ℝ� × Â ⟶ ℝ 

altogether are supposed to be integrable and bounded, whereby the so-called sensor function 

c: ℝ\ × ℝ� ⟶ ℝ¹      with      c�), �R	 ≔ ¬�)	 ℎ�), �R	 

usually is exploited to model the specific sensor characteristics associated to the underlying 

measurement procedure.  

Let us further assume that all appearing random components in (8.2.5) and (8.2.9) such as ��, Q�, �,5, ��8 , .8	 and ��¥ , .¥	 are ℙ-independent of one another and that the coefficients �, Ò, Q, ¬, ℎ, O and ] fulfill the usual linear-growth and Lipschitz-continuity conditions, so that both the 

signal equation (8.2.5) and the observation equation (8.2.9) possess unique strong solutions. (For 

details on the existence and uniqueness of solutions to SDEs see for instance Theorem 1.19 in [75] or 

Chapter 6.2 in [1].) At this early point, we can already state that our above double-jump filtering 

approach contains the complete amount of filtering settings mentioned in the introductory section 8.1 

as subclasses. In addition, our model is flexible enough to manage pure-jump cases, continuous 

diffusion cases or a mixture of these by setting a selection of the appearing coefficients equal to zero. 

$evertheless, the most powerful filtering onset for numerous applications should be the double-jump 

diffusion case which is the main topic of the present chapter.           

For the sake of notational simplicity and to be able to focus on the main ideas, we restrict ourselves to 

the one-dimensional case with � = d = Ô = Ù = 1 in the following, remarking that the multi-

dimensionality of the state and the observation process is not essential to understand the additional 

gain of our double-jump diffusion setup. An extension to higher-dimensional cases, which might be 

important in practice, does not require any essential new ideas and is of technical character only. 

 

8.2.2 Switching to an equivalent martingale measure  

For Â ⊆ ℝ ∖ �0  let us introduce the pure-jump Doléans-Dade exponential Í ≔ �Í�	�'� defined by 

(8.2.12) 

Í� ≔ 7#d f" " ]�)−, �RM, F	 
È

�
�

��+¥ℙ�), F	 − " "<7¿�R,8É,E	 − 1 − ]�), �R, F	A �.¥�F	 �) 
È

�
�

i 

(also recall eq. “(3.3) in [70]”). Then Itô’s formula yields the associated integro-SDE (ISDE) 

(8.2.13)                                       

�Í� = Í�M "<7¿��M,89q,E	 − 1A 
È

�+¥ℙ��, �F	 

which classifies Í as a local martingale under ℙ. In addition, we presume ] to be chosen such that 6ℙ�Í�� = 1 for all � ≥ 0 what declares the exponential Í as a true ℙ-martingale (cf. sect. 2.2 above).  
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Analogously, we define the continuous Doléans-Dade exponential Í� ≔ �Í�� 	�'� via 

(8.2.14)                 

Í�� ≔ j�−ℎ�⋅, �∙	 ∘ 5⋅	� ≔ 7#d f− " ℎ�), �R	 �5R
�

�
− 12 " ℎ1�), �R	�

�
�)i 

(recall “(4.2) in [77]”, resp. p.6 in [70]) also yielding a stochastic differential with vanishing drift 

(8.2.15)                                                  �Í�� = −Í��  ℎ��, ��	 �5� . 
Thus, Í��  forms a local martingale under ℙ. Yet, we presume ℎ to be chosen such that 6ℙ�Í��  � = 1 

holds for all � ≥ 0 (resp. such that ℎ fulfills a $ovikov condition; see “(4.3) in [77]”) what either 

declares Í� as a true ℙ-martingale. Finally, we switch to the (with respect to ℙ) equivalent martingale 

measure (EMM) ℚ due to the Radon-Nikodym density process e ≔ �e�	�'� which is defined via 

(8.2.16)                                                      

 s�ℚ�ℙtℱ9 ≔ e� ≔ Í��  Í� 

= 7#d f− " ℎ�), �R	 �5R
�

�
− 12 " ℎ1�), �R	�

�
�) + " " ]�)−, �RM, F	 

È
�

�
��+¥ℙ�), F	

− " "<7¿�R,8É,E	 − 1 − ]�), �R, F	A �.¥�F	 �) 
È

�
�

i 

(cf. (2.2.1), resp. Lemma 3.2 in [70]). Further, Itô’s product rule yields the integral equation under ℙ 

(8.2.17) 

e� = 1 − " eR ℎ�), �R	 �5R
�

�
+ " " eRM <7¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℙ�), F	. 

Hence, e indicates a local ℙ-martingale. Appealing to our above presumptions, we recognize that 6ℙ�e�� = 1 holds for all � ≥ 0 such that e (not surprisingly) features a ℙ-martingale even. Adjusting 

Girsanov’s Change-of-Measure theorem (remind Prop. 2.2.1) to our recent setup, we may state that 

(8.2.18)                                                 �5�� ≔ �5� + ℎ��, ��	 �� 

depicts a BM under the EMM ℚ (also see Lemma 4.1 (1) in [77]) and that 

(8.2.19)                                 ��+¥ℚ��, F	 ≔ ��¥��, F	 − 7¿��,89,E	�.¥�F	 �� 

constitutes the ℚ-compensated random measure associated to Q [recall the first part of the footnote 

dedicated to (3.3.12) at this step]. Further note that, similar to [71], the ℚ-compensator of ��¥, namely 

7¿��,89,E	�.¥�F	 �� 

explicitly depends on the hidden state variable ��. Adapting/extending corresponding results/proofs in 

[2], [70], [76] and [77] (in particular, Proposition 3.13 in [2], Lemma 3.2 in [70], Lemma 1 and 2 in 

[76] and Lemma 4.1 in [77]; also see [84]) to our purposes, we derive the subsequent statements. 
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Lemma 8.2.2 Defining the density process e as in (8.2.16), we get the following: 

(a) Under ℚ, the process Q possesses a local martingale representation that is of the form 

(8.2.20)                              Q� = Q� + a� + �� 

wherein 

(8.2.21)                                                      a� ≔ n ¬�)	 �5�R��  

indicates a Brownian local ℚ-martingale and 

(8.2.22)                                            �� ≔ n n O�)−, F	 È�� ��+¥ℚ�), F	 

denotes a pure-jump local ℚ-martingale. 

(b) Under ℚ, the signal process � and the observation process Q are independent. Moreover, under ℚ, � has the same distribution as under ℙ. 

(c) Under ℚ, a, � and � are independent. 

Proof 

(a) This follows from a straightforward substitution of (8.2.18) and (8.2.19) into equation (8.2.9). 

(b) Without loss of generality, we assume that Q� = 0 holds ℙ-almost-sure. If we further define 

4� ≔ " ¬�)	 �5R
�

�
, þ� ≔ " " O�)−, F	 ��¥�), F	 

È
�

�
, 

then – due to (8.2.9) – we immediately deduce the vectorial decomposition 

(8.2.23) 

Ö��Q� × = � 0n <¬�)	 ℎ�), �R	 − n O�), F	 7¿�R,8É,E	 �.¥�F	 È A�� �)�+ Ö ��4� + þ�×. 
Moreover, an extension of Proposition 3.13 and Exercise 3.14 in [2] to our jump-diffusion case 

implies that, under the measure ℙ, the law of the pair process ��� , Q�	� is absolutely continuous with 

respect to the law of ��� ,4� + þ�	� whereas the corresponding Radon-Nikodym derivative is given by e�, in symbols 

(8.2.24)                                                       

�ℙN ·9¸9Þ¹9O
�ℙN·9º9O = e� . 

Thus, referring to (8.2.16) and (8.2.24), for any arbitrary measureable and bounded (test-) function �: ℝ1 ⟶ ℝ we next obtain the equality   

(8.2.25) 

6ℚ á� Ö��Q� ×ä = " � Ö��Q� × e�
 

Ω
�ℙ = " � Ö#F× 

ℝ¨
�ℙN ·9¸9Þ¹9O�#, F	 = 6ℙ á� Ö ��4� + þ�×ä. 
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Hence, the stochastic vector ��� , Q�	� possesses the same joint-distribution under ℚ as ��� ,4� + þ�	� 

has under ℙ, whereby a priori the ingredients 4�, þ� and �� have been assumed to be ℙ-independent 

[compare the sequel of (8.2.11)]. Consequently, � and Q are finally detected to be ℚ-independent. 

From (8.2.25) we moreover deduce that � has the same distribution under ℚ as under ℙ. 

(c) This follows immediately from part (b). ∎  

 

Appealing to (8.2.16) (and p.7 in [70]), we next introduce the inverse density process via  

(8.2.26)                                                

 e�M( ≔ �Í��  Í�	M( ≔ s�ℙ�ℚtℱ9
≔ 

 7#d f" ℎ�), �R	 �5R
�

�
+ 12 " ℎ1�), �R	�

�
�) − " " ]�)−, �RM, F	 

È
�

�
��+¥ℙ�), F	

+ " "<7¿�R,8É,E	 − 1 − ]�), �R, F	A �.¥�F	 �) 
È

�
�

i. 
Applying Itô’s formula on (8.2.26), we obtain the following stochastic integral representation under ℙ 

(8.2.27)   

e�M( = 1 + " eRM( ℎ1�), �R	�
�

�) + 2 " " eRM( �ËC)ℎ�]�), �R, F	� − 1  �.¥�F	 �) 
È

�
�

 

+ " eRM( ℎ�), �R	 �5R
�

�
+ " " eRMM( <7M¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℙ�), F	. 

In accordance to (8.2.26), the so-called Kallianpur-Striebel-Formula (cf. “(4.6) in [77]”) yet reads as 

(8.2.28) 

6ℙ�S���	|ℱ�¥	 = 6ℚ�S���	 e�M(|ℱ�¥	6ℚ�e�M(|ℱ�¥	  

– for a full proof of (8.2.28) see Theorem 3.22 along with Theorem 5.3 in [84]. Further on, merging 

(8.2.10), (8.2.18) and (8.2.19) into equation (8.2.27), we receive the following ℚ-representation   

(8.2.29) 

e�M( = 1 + " eRM( ℎ�), �R	 �5�R
�

�
+ " " eRMM( <7M¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℚ�), F	. 

Hence, e�M( is classified as a local martingale under ℚ. Similar to above, we require 6ℚ�e�M(� = 1 for 

all � ≥ 0 such that the inverse density process e�M( even designates a true ℚ-martingale.  
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In differential form, equation (8.2.29) points out as  

(8.2.30)                   �e�M(e�MM( = ��� ≔ ℎ��, ��	 �5�� + "<7M¿��M,89q,E	 − 1A �+¥ℚ��, �F	 
È

 

whereby we have just introduced the ℚ-martingale 

(8.2.31)                         

�� ≔ " ℎ�), �R	 �5�R
�

�
+ " "<7M¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℚ�), F	 

for notational reasons. Let us recall that the solution of (8.2.30) possesses the representation (cf. [1]) 

(8.2.32) 

e�M( = 7#d Ã�� − 12 ��X��Æ Á �1 + Z�R	 7MÇsÉ
�[R[�  

wherein ��X�� denotes the quadratic variation of the continuous part of �� and Z�� ≔ �� − ��M 

symbolizes the jump-magnitude of � at time �. Thus, we instantaneously derive 

(8.2.33) 

e�M( = 7#d f" ℎ�), �R	 �5�R
�

�
+ " "<7M¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℚ�), F	 − 12 " ℎ1�), �R	�

�
�)i

× Á 7#d�ªJ�1 + Z�R	 − Z�R �[R[� . 
In the following, we handle the infinite product in (8.2.33) separately: Utilizing (8.2.31), we get 

(8.2.34) 

Á 7#d�ªJ�1 + Z�R	 − Z�R �[R[� = 7#d ü Y �ªJ�1 + Z�R	 − Z�R��[R[� ý
= 7#d f" "<1 − ]�)−, �RM, F	 − 7M¿�RM,8Éq,E	A 

È
�

�
��¥�), F	i. 

Merging the latter equation into (8.2.33) while remembering (8.2.19), we finally end up with  

(8.2.35) 

e�M( = 7#d f" ℎ�), �R	 �5�R
�

�
− 12 " ℎ1�), �R	�

�
�) − " " ]�)−, �RM, F	 

È
�

�
��+¥ℚ�), F	

+ " "<7¿�R,8É,E	 − 1 − ]�), �R, F	 7¿�R,8É,E	A �.¥�F	 �) 
È

�
�

i 
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yielding the explicit solution of (8.2.29), respectively of (8.2.30), with respect to the equivalent 

martingale measure ℚ.82 For the sake of completeness, we state the following result which extends the 

fourth and fifth instance of Lemma 4.1 in [77] to our double-jump filtering approach. 

 

Lemma 8.2.3  

(a) Under the EMM ℚ, we have 6ℚ�e�M(|ℱ�8	 = 1. 
(b) The restrictions of ℚ and ℙ to the filtration ℱ�8 are the same. 

 

Proof  

(a) Using the representation (8.2.29), we derive 

(8.2.36) 

6ℚ�e�M(|ℱ�8	 = 6ℚ ~1 + " eRM( ℎ�), �R	 �5�R
�

�
+ " " eRMM( <7M¿�RM,8Éq,E	 − 1A 

È
�

�
��+¥ℚ�), F	�ℱ�8�. 

Next, Lemma 8.2.2 (c) implies that 5� , �+¥ℚ and ℱ 8 are ℚ-independent. Thus, the conditional 

expectation in (8.2.36) reduces to a usual expectation which, due to the ℚ-martingale property of the 

appearing stochastic integrals in (8.2.36), yields the desired result. 

(b) This immediately follows from (8.2.16) and Lemma 8.2.2 (b). ∎ 

 

8.3 The filtering equations  

In this paragraph we define the non-normalized (respectively, unnormalized) and the normalized 

conditional distribution of S���	, given the observation filtration ℱ�¥, and hereafter derive the 

corresponding filtering SDEs, namely the extended Zakai- and Kushner-Stratonovic-Equation.  

 

8.3.1 The extended Zakai-Equation 

We start off by introducing some shorthand notations for terms appearing when we are dealing with 

Itô’s formula for discontinuous semi-martingales. Although we have restricted ourselves to the one-

dimensional case formerly, we will provide an adjusted multi-dimensional version (which originally 

can be found in [75]) of the upcoming jump-diffusion differential operator now. 

 

Lemma 8.3.1 For � ≥ 0, #, ; ∈ £ ⊆ ℝ� ∖ ��  and S: £ ⟶ ℝ, S ∈ W�1�£	 (= W1-class functions that 

vanish at infinity) the time and state dependent jump-diffusion differential operator � S	��,⋅	 

associated to equation (8.2.5) exists and is given by 

                                                           
82 Yet, we could also have derived the solution (8.2.35) by putting (8.2.10), (8.2.18) and (8.2.19) into (8.2.26). 
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(8.3.1)  

� S	��, #	 ≔ Y �=��, #	 �
=P(

USU#= �#	 + 12 Y �ÒÒ�	=½
�

=,½P( ��, #	 U1SU#=U#½ �#	
+ " Y ÄS N# + Q�=	��, #, ;	O − S�#	 − Q�=	��, #, ;	 �S�#	Å  ��.8	=�;=	�

=P(
 

¡
. 

Herein, Ò� denotes the transposed matrix of Ò, Q�=	 stands for the i-th column of the �� × �	-matrix Q, �S�#	 symbols the gradient vector of S�#	 and finally, �.8	= represents the i-th component of the �-

dimensional Lévy-measure associated to the signal. (For further reading on jump-diffusion differential 

operators see e.g. Applebaum [1] or Øksendal and Sulem [75]; also recall Theorem 4.3 in [77].) ∎ 

 

Remark 8.3.2 In the one-dimensional case the operator (8.3.1) exhibits the familiar structure 

(8.3.2)                                                               � S	��, #	 = 

���, #	 S&�#	 + 12  Ò1��, #	 S&&�#	 + "<S�# + Q��, #, ;	� − S�#	 − Q��, #, ;	 S&�#	A �.8�;	 
¡

 

for all � ≥ 0 and  #, ; ∈ £ ⊆ ℝ ∖ �0 . The latter equation further simplifies to 

� S	��, #	 = ���, #	 

for S�#	 ≔ D��#	 ≔ #. ∎ 

 

Applying Itô’s formula on the signal equation (8.2.5), we obtain the following ℙ-representation for S���	 [again for � = 1 and thus, for S: £ ⊆ ℝ ∖ �0 ⟶ ℝ] reading 

(8.3.3) 

S���	 = S���	 + " öS&��R	 ��), �R	 + 12  Ò1�), �R	 S&&��R	�
�

+ "<S��R + Q�), �R, #	� − S��R	 − Q�), �R, #	 S&��R	A �.8�#	 
¡ ÷ �)

+ " S&��R	 Ò�), �R	�
�

��R + " "<S��RM + Q�)−, �RM, #	� − S��RM	A 
¡

�
�

��+8ℙ�), #	. 
Identifying the differential operator (8.3.2) inside (8.3.3), the latter equation shortens to 

(8.3.4)                                                          S���	 = S���	 + 

"� S	�), �R	�
�

�) + " S&��R	 Ò�), �R	�
�

��R + " "<S��RM + Q�)−, �RM, #	� − S��RM	A 
¡

�
�

��+8ℙ�), #	. 
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Note in passing that property (8.3.4) implies the following Dynkin-Equation (cf. e.g. p.562 in [76]) 

(8.3.5)                              6ℙ�/��S	� = 6ℙ�S���	� + n 6ℙ�� S	�), �R	��� �). 
 

Definition 8.3.3    The unnormalized conditional distribution of S���	 given ℱ�¥ is defined by 

(8.3.6)                                               d��S	 ≔ 6ℚ�S���	 e�M(|ℱ�¥	 

where e�M( is such as announced in (8.2.26) – cf. Def. 4.4 in [77]. ∎ 

 

Remark 8.3.4 (a) Identifying (8.2.1) and (8.3.6) inside (8.2.28), we derive the shorthand notation 

(8.3.7)                                                               /��S	 = d��S	d��1	 

as an equivalence to our previous Kallianpur-Striebel-Formula (cf. eq. “(4.26) in [77]”).  

(b) Further, d��⋅	 depicts a linear functional, since 

(8.3.8)                                            d���S + ¯]	 = � d��S	 + ¯ d��]	 

holds for arbitrary constants �, ¯ and S, ] ∈ »� 	 ≔ W�1�ℝ��. Here, »� 	 denotes the domain of 

the operator   representing the space of all admissible functions. Since d��⋅	 is linear, so is /��⋅	. ∎ 

 

Theorem 8.3.5 (extended Zakai-Equation)
83

 

The unnormalized conditional distribution of S���	 given ℱ�¥, as defined in (8.3.6), solves ℚ-almost-

sure for all � ≥ 0 and S ∈ »� 	 the stochastic evolution equation 

(8.3.9) 

d��S	 = d��S	 + " dR� S	�
�

�) + " dR�Sℎ	�
�

�5�R + " " dRM�S ⋅ �7M¿ − 1 	 
È

�
�

��+¥ℚ�), F	. 
Proof Since S���	 e�M( impresses on the right hand side of (8.3.6), it should be worthwhile to study 

this product process more accurately (also see p.8 in [77]). Using Itô’s product rule and hereafter 

implanting (8.2.29) and (8.3.4) into the resulting expression, we obtain   

                                                           
83 Note that our innovative representation (8.3.9) essentially extends equation “(15) in [76]” from standard yet to 
compound Poisson (Lévy-type) observations admitting randomized jump-amplitudes. Unfortunately, there are 
several mistakes in the proof of Theorem 1 in [76]: e.g. in (16) the initial value ��Q� is missing, whereas in the 
subsequent equality the term S�#�0	� should appear. Moreover, the quadratic variation on the top of page 563 
actually vanishes, while on the right hand side of (24) instead of the capital = a small � should appear. All in all, 
the left side limits in (15) do neither make sense for the Brownian �F�)	-integral, nor for the �)-integrals. Also 
in the proof of Theorem 4.5 in [77] there are a couple of errors, as in (4.11) there should stand S���0	�, whereby 

in (4.15) and (4.17) �+½ must be replaced by �½. Finally, in (4.18) the integrator �Q�)	 has to be replaced by �). 
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(8.3.10)          S���	 e�M( = S���	 e�M( + n S��RM	�� �eRM( + n eRMM(�� �S��R	 + �S��⋅	, e⋅M(�� = 

S���	 + " S��R	�
�

eRM( ℎ�), �R	 �5�R + " " S��RM	 eRMM( <7M¿�RM,8Éq,E	 − 1A 
È

�
�

��+¥ℚ�), F	
+ " eRM( � S	�), �R	�

�
�) + " eRM( S&��R	 Ò�), �R	�

�
��R

+ " " eRMM( <S��RM + Q�)−, �RM, #	� − S��RM	A 
¡

�
�

��+8ℙ�), #	 + �S��⋅	, e⋅M(��. 
Comparing the ℙ-representations (8.3.4) and (8.2.27), we state that the pair S��	 and eM( does neither 

eject a quadratic co-variation coming from the continuous parts related to � and 5 nor one coming 

from the Poisson jump parts related to �8 and �¥. Roughly speaking, S��	 and eM( have nothing in 

common, since all appearing random components formerly have been assumed to be independent 

[compare the sequel of (8.2.11)] and therefore, generate a quadratic co-variation that equals zero 

(8.3.11)                                                         �S��⋅	, e⋅M(�� = 0. 
Since our goal is the derivation of the specific SDE that is satisfied by d��S	, we ought to devote our 

attention towards the examination of the conditional expectation 6ℚ�S���	 e�M(|ℱ�¥	 from now on. 

Putting (8.3.10) inside (8.3.6), the resulting conditional ℚ-expectation turns out to consist of six 

separated summands. With respect to the derivation methodologies of the results in Theorem 1 in [76] 

and Lemma 5.4 in [84], we now treat these six additive components in their order of appearance: 

By definition, for the first object we trivially receive  

(8.3.12)                                                     6ℚ�S���	|ℱ�¥	 = d��S	. 
Next, an application of the stochastic Fubini-Tonelli theorem yields for the second integrand 

(8.3.13) 

6ℚ ~" S��R	�
�

eRM( ℎ�), �R	 �5�R�ℱ�¥� = " 6ℚ�S��R	 eRM( ℎ�), �R	|ℱ�¥	�
�

�5�R. 
Parallel to the proof of Theorem 1 on page 563 in [76], the latter term can equally well be conditioned 

on ℱRM¥ , since the filtration ℱ�¥ may be decomposed into 

(8.3.14)                                            ℱ�¥ = ℱRM¥ ∨ z�Q®−QR: ) ≤ � ≤ �  

whereas the second sigma-algebra on the right hand side of (8.3.14) “tells us nothing [new] about the 

integrand” S��R	 eRM( ℎ�), �R	 [for time indices 0 ≤ ) ≤ �] such as appearing on the right hand side of 

(8.3.13). Thus, identifying (8.3.6), equation (8.3.13) next becomes 

(8.3.15)  

6ℚ ~" S��R	�
�

eRM( ℎ�), �R	 �5�R�ℱ�¥� = " 6ℚ�S��R	 eRM( ℎ�), �R	|ℱRM¥ 	�
�

�5�R = " dR�Sℎ	�
�

�5�R. 
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Applying similar arguments as in (8.3.13) – (8.3.15), we receive for the third summand 

(8.3.16)  

6ℚ ~" " S��RM	 eRMM( <7M¿�RM,8Éq,E	 − 1A 
È

�
�

��+¥ℚ�), F	�ℱ�¥�
= " " 6ℚ�S��RM	 eRMM( <7M¿�RM,8Éq,E	 − 1A�ℱRM¥ � 

È
�

�
��+¥ℚ�), F	

= " " dRM�S ⋅ �7M¿ − 1 	 
È

�
�

��+¥ℚ�), F	 

whereas the fourth additive component points out as 

(8.3.17) 
6ℚ ~" eRM( � S	�), �R	�

�
�)�ℱ�¥� = " 6ℚ�eRM( � S	�), �R	|ℱRM¥ 	 �)�

�
= " dR� S	�

�
�). 

Coming to the fifth conditional expectation, we have to remember the ℚ-independence of � and Q 

provided by Lemma 8.2.2 (b), which implies the ℚ-independence of � and ℱ¥ likewise and thus, also 

of ��R	R∈��,�� and ℱ�¥ (cf. the top of p.10 in [77]). The latter properties yield 

(8.3.18)                

6ℚ ~" eRM( S&��R	 Ò�), �R	�
�

��R�ℱ�¥� = 6ℚ Ï" eRM( S&��R	 Ò�), �R	�
�

��RÐ. 
Since under ℙ the Brownian ��R-integral in (8.3.18) is a martingale which is normally distributed 

with zero mean, we can use the second statement of Lemma 8.2.2 (b) which, parallel to “(23) in [76]” 

resp. “(4.16) in [77]”, allows us to replace ℚ by ℙ on the right hand side of (8.3.18) in order to obtain 

(8.3.19)                                         

6ℚ ~" eRM( S&��R	 Ò�), �R	�
�

��R�ℱ�¥� = 0. 
Similar arguments tell us that the sixth and last summand vanishes, too: More precise, we now may 

exploit the ℚ-independence of �+8ℙ and ℱ¥ provided by Lemma 8.2.2 (b). Therewith, we announce 

(8.3.20) 

6ℚ ~" " eRMM( <S��RM + Q�)−, �RM, #	� − S��RM	A 
¡

�
�

��+8ℙ�), #	�ℱ�¥�
= 6ℚ Ï" " eRMM( <S��RM + Q�)−, �RM, #	� − S��RM	A 

¡
�

�
��+8ℙ�), #	Ð = 0 

whereby we have used the second statement of Lemma 8.2.2 (b) again for the last equality.  
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Collecting the properties (8.3.12), (8.3.15), (8.3.16), (8.3.17), (8.3.19) and (8.3.20), we ultimately get 

the desired result. ∎ 

 

8.3.2 The extended Kushner-Stratonovic-Equation 

Now we are able to provide the dynamics of our optimal filter. At first, let us recall property (8.2.1). 

 

Definition 8.3.6    The normalized conditional distribution of S���	 given ℱ�¥ is defined by 

(8.3.21)                                                /��S	 ≔ 6ℙ�S���	|ℱ�¥	. ∎ 

 

The stochastic process /��S	 is sometimes called (probability-) measure-valued process or simply the 

conditional distribution of � given Q in the literature, since it can be interpreted as a transition- or 

Markov-kernel (see e.g. pp. 3, 13, 15, 27 and 229 ff. in [2] for more details).          

Regarding our version of the Kallianpur-Striebel-Formula in (8.3.7), we should take care of the 

process d��1	 in our proceedings. Anyway, note that the jump-diffusion differential operator (8.3.1) 

vanishes for S ≡ 1. Thus, using (8.3.9), we immediately receive the local ℚ-martingale representation 

(8.3.22) 

d��1	 = 1 + " dR�ℎ	�
�

�5�R + " " dRM�7M¿ − 1	 
È

�
�

��+¥ℚ�), F	 

which, by the way, extends equality “(4.27) in [77]” to our double-jump diffusion case.  

 

Lemma 8.3.7 The inverse unnormalized conditional distribution d��1	M( solves ℚ-almost-sure for 

all � ≥ 0 the stochastic evolution equation 

(8.3.23) 

d��1	M( = 1 + "/R�ℎ	1dR�1	 �)�
�

+ " " 1dR�1	 á 1/R�7M¿	 − 1 + /R�7M¿ − 1	ä 7¿�R,8É,E	�.¥�F	 �) 
È

�
�

− " /R�ℎ	dR�1	
�

�
�5�R + " " 1dRM�1	 á 1/RM�7M¿	 − 1ä 

È
�

�
��+¥ℚ�), F	. 

 

Proof Applying Itô’s formula on (8.3.22), we immediately obtain 

(8.3.24)                                                       d��1	M( = d��1	M( 

− " 1dRM�1	1  �dR�1	�
�

+ " 1dR�1	>  ��d∙�1	X�R +�
�

Y � 1ZdR�1	 + dRM�1	 − 1dRM�1	 + ZdR�1	dRM�1	1��[R[� . 
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Taking (8.3.22) and Remark 8.3.4 (b) into account, the above infinite sum translates into 

(8.3.25) 

¼� ≔ Y � 1ZdR�1	 + dRM�1	 − 1dRM�1	 + ZdR�1	dRM�1	1��[R[�
= " " � 1dRM�7M¿	 − 1dRM�1	 + dRM�7M¿ − 1	dRM�1	1 � 

È
�

�
��¥�), F	. 

Further, with respect to (8.3.7), the latter can be transformed into  

(8.3.26)                           

¼� = " " 1dRM�1	 á 1/RM�7M¿	 − 1 + /RM�7M¿ − 1	ä 
È

�
�

��¥�), F	. 
Remembering (8.2.19), we finally end up with 

(8.3.27) 

¼� = " " 1dRM�1	 á 1/RM�7M¿	 − 1 + /RM�7M¿ − 1	ä ��+¥ℚ�), F	 
È

�
�

+ " " 1dR�1	 á 1/R�7M¿	 − 1 + /R�7M¿ − 1	ä 
È

�
�

7¿�R,8É,E	�.¥�F	 �). 
Merging (8.3.22) into the first integral on the right hand side of equality (8.3.24), we receive 

(8.3.28) 

" 1dRM�1	1  �dR�1	�
�

= " /R�ℎ	dR�1	 �
�

�5�R + " "/RM�7M¿ − 1	dRM�1	  ��+¥ℚ�), F	 
È

�
�

. 
What remains is the computation of the second integral in (8.3.24) which immediately turns out as 

(8.3.29) 

" 1dR�1	>  ��d∙�1	X�R =�
�

"/R�ℎ	1dR�1	
�

�
 �). 

Substituting (8.3.27) – (8.3.29) into equality (8.3.24), we finally get the desired result. ∎ 

 

Now we come to our main proposition throughout Chapter 8 culminating in the provision of the 

specific stochastic differential equation fulfilled by our optimal filter (8.3.21). More concretely 

speaking, the forthcoming Theorem 8.3.8 yields the extended Kushner-Stratonovic-Equation 

descending from our innovative double-jump diffusion (nonlinear) filtering approach with generalized 

Lévy-type signal and observation processes. By the way, it might be worthwhile to compare Theorem 

8.3.8 below with Corollary 4.7 in [77]. 
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Theorem 8.3.8    (extended Kushner-Stratonovic-Equation; main result)
84 

The normalized conditional distribution of S���	 given ℱ�¥, as defined in (8.3.21), solves ℚ-almost-

sure for all � ≥ 0 and S ∈ »� 	 the stochastic evolution equation 

(8.3.30) 

/��S	 = /��S	 + "/R� S	�
�

�) + "�/R�S	 /R�ℎ	 − /R�Sℎ	��
�

/R�ℎ	 �)
+ " "/R�S ∙ 7M¿	 − /R�S	 /R�7M¿	/R�7M¿	  /R�1 − 7M¿	 7¿�R,8É,E	�.¥�F	 �) 

È
�

�
+ "�/R�Sℎ	 − /R�S	 /R�ℎ	��

�
�5�R + " "/RM�S ∙ 7M¿	 − /RM�S	 /RM�7M¿	/RM�7M¿	  ��+¥ℚ�), F	 

È
�

�
. 

 

Proof Recalling (8.3.7) and Itô’s product rule (see Lemma 2.1.5), we initially obtain 

(8.3.31)  

/��S	 = d��S	d��1	 = d��S	 d��1	M( + " dRM�S	 ��dR�1	M(	�
�

+ " dRM�1	M( �dR�S	�
�

+ �d∙�S	, d∙�1	M(��. 
Taking (8.3.23) into account, for the first integral on the right hand side of (8.3.31) we deduce  

(8.3.32)                                                    

 " dRM�S	 ��dR�1	M(	�
�

= 

"/R�S	 /R�ℎ	1 �) + �
�

" "/R�S	 á 1/R�7M¿	 − 1 + /R�7M¿ − 1	ä 7¿�R,8É,E	�.¥�F	 �) 
È

�
�

− "/R�S	 /R�ℎ	 �5�R + �
�

" "/RM�S	 á 1/RM�7M¿	 − 1ä ��+¥ℚ�), F	 
È

�
�

. 
Remembering (8.3.9), the second integral in (8.3.31) moreover becomes 

(8.3.33) 

" dRM�1	M( �dR�S	�
�

= "/R� S	 �)�
�

+ "/R�Sℎ	 �5�R
�

�
+ " "/RM�S ⋅ �7M¿ − 1 	 

È
�

�
��+¥ℚ�), F	. 

                                                           
84 We stress that Theorem 8.3.8 essentially extends Corollary 1 and 2 in [76]. More accurately speaking, (8.3.30) 
obviously includes the filters “(32) and (35) in [76]” as subclasses. Unfortunately, in the proof of Corollary 1 in 

[76] there are two mistakes: firstly, �z∙�S	, z∙�1	M(�� does not equal =��S	, but instead − n =R�Sℎ	=R�ℎ	�)��  and, 

secondly, in the last line of page 565 there must stand a minus sign in front of the appearing integral.  
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Recalling (8.2.19), (8.3.9) and (8.3.23), we finally derive 

(8.3.34) 

�d∙�S	, d∙�1	M(�� = �d∙�S	X , �d∙�1	M(	X�� + Y ZdR�S	�[R[�  Z�dR�1	M(	
= − "/R�Sℎ	 /R�ℎ	 �) +�

�
" " �/RM�S ⋅ �7M¿ − 1 	/RM�7M¿	 − /RM�S ⋅ �7M¿ − 1 	���+¥ℚ�), F	 

È
�

�
+ " " �/R�S ⋅ �7M¿ − 1 	/R�7M¿	 − /R�S ⋅ �7M¿ − 1 	� 

È
�

�
7¿�R,8É,E	�.¥�F	 �). 

In conclusion, substituting (8.3.32) – (8.3.34) into equality (8.3.31) while taking the linearity of /��∙	 

[provided by Remark 8.3.4 (b)] into account, we receive the claimed result. ∎ 

 

8.4 Some practical filtering applications  

In the following subsections we present a selection of practical filtering applications related to our 

double-jump setup whereby we particularly focus on suitable choices of the appearing coefficients.   

 

8.4.1 Concrete choices of the signal process coefficients 

If we define 

(8.4.1)                     ��), �R	 ≔ � �R,       Ò�), �R	 ≔ Ò �R,       Q�)−, �RM, #	 ≔ # �RM 

within # ∈ £+ ⊆ �−1, ∞	 and arbitrary constants � ∈ ℝ and Ò ∈ ℝ\, then our signal equation (8.2.5) 

possesses the Doléans-Dade solution 

(8.4.2)                

�� = �� 7#d fÏ� − Ò12 − " # �.8�#	 
¡+

Ð � + Ò �� + " " ªJ�1 + #	 
¡+

�
�

��8�), #	i. 
Note that in a financial application (as proposed in [31], for example) the signal process � might be 

interpreted as an unobservable stochastic volatility process, i.e. � ≔ z ≔ �z�	�'�. In this context, by 

referring to (8.4.2), the volatility log-returns then would be given through  

(8.4.3)                 

ªJ Öz�z�× = Ï� − Ò12 − " # �.½�#	 
¡+

Ð � + Ò �� + " " ªJ�1 + #	 ��½�), #	 
¡+

�
�

. 
In order to attain an Ornstein-Uhlenbeck (OU)-type signal process on the contrary, one might choose 

(8.4.4)               �� ≔ #�,       ��), �R	 ≔ −� �R,       Ò�), �R	 ≔ 1,       Q�)−, �RM, #	 ≔ −# 

in (8.2.5) within # ∈ £ ⊆ ℝ ∖ �0 , a constant initial condition #� ∈ ℝ and a jump intensity � ∈ ℝ\.  
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Moreover, let us introduce the compound Poisson process (CPP) 

(8.4.5) 

�� ≔ " " # ��8�), #	 
¡

�
�

= Y Z�R�[R[���Ç8É∈¡ 
≔ Y Ó=

¾9

=P(  

wherein, under ℙ, the standard Poisson process p� is distributed via 

p�~/CD���	, ℙ�p� = �	 = ���	��! 7Mh�  �� = 0,1,2, … 	, 
and �Ó=	=∈ℕ constitutes a family of independent and identically distributed (iid) random variables with Ó= ∈ £ ⊆ ℝ ∖ �0  ℙ-a.s. for all D bearing a constant mean value å ≔ 6ℙ�Ó(� ∈ ℝ. Hence, from 

Theorem 11.3.1 in [83] we deduce that the compensated CPP 

��� − å��	�'� 

depicts a ℙ-martingale. We further denote the distribution of Ó( under ℙ by ℙÜÌ ≔ £ and the 

corresponding Lebesgue-density by ¥. Therewith, we derive 

(8.4.6)                                 �.8�#	 = � �ℙÜÌ�#	 = � �£�#	 = � ¥�#	 �#. 
Taking (8.2.6), (8.4.5) and (8.4.6) into account, we immediately receive 

(8.4.7)                                     

6ℙ���� = 6ℙ Ï" " # ��8�), #	 
¡

�
�

Ð = � " # �.8�#	 
¡

= å��. 
If we moreover define the Lévy process � via 

(8.4.8)                                                            �� ≔ �� − �� 

then, in accordance to the specific coefficient choices in (8.4.4), our signal equation (8.2.5) exhibits 

the following mean-reverting structure 

(8.4.9)                                                ��� = � �å − ��	 �� + ��� 

with mean-level å ∈ ℝ and mean-reversion speed � ∈ ℝ\. The solution of (8.4.9) yet is given by 

(8.4.10)               

�� = å + �#� − å	7Mh� + " 7Mh��MR	�
�

��R − " " # 7Mh��MR	 
¡

�
�

��8�), #	. 
Summing up, our innovative double-jump diffusion filtering model is flexible enough to deal with 

signal processes both of geometric Doléans-Dade type [see (8.4.2)] and of mean-reverting Ornstein-

Uhlenbeck type [see (8.4.10)]. Note that, within a positive initial condition �� > 0, the geometric 

signal in (8.4.2) also is strictly positive (which is crucial for stochastic volatility process estimations, 

for instance), whereas the OU-signal (8.4.10) is not necessarily so. 
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8.4.2 Concrete choices of the observation process coefficients 

In this subsection we newly allow the observation process coefficients to depend explicitly on Q itself 

which does not affect the validity of our invented filtering setup. In other words, our former derivation 

methodologies remain valid for an extended observation equation yet reading  

(8.4.11) 

Q� = Q� + " ¬�), QR	 ℎ�), �R, QR	�
�

�) − " " O�), QR, F	 7¿�R,8É,¥É,E	�.¥�F	 �) 
È

�
�

+ " ¬�), QR	 �5R
�

�
+ " "O�)−, QRM, F	 ��¥�), F	 

È
�

�
. 

Note in passing that equality (8.4.11) closely resembles (8.2.9). Moreover, if we choose coefficients 

(8.4.12)                                 ¬�), QR	 ≔ QR ¬ ̃�)	,      ℎ�), �R, QR	 ≔ ℎ��), �R	, 
O�), QR, F	 ≔ QR O2�), F	,       ]�), �R, QR, F	 ≔ ]v�), �R, F	, 

then (8.4.11) possesses the Doléans-Dade solution 

(8.4.13) 

Q� = Q� 7#d f" ¬ ̃�)	 �ℎ��), �R	 − ¬ ̃�)	2 ��
�

�) − " "  O2�), F	 7¿v�R,8É,E	 �.¥�F	 �) 
È

�
�

+ " ¬ ̃�)	 �5R
�

�
+ " " ªJ N1 + O2�)−, F	O ��¥�), F	 

È
�

�
i. 

If we elsewise specify 

(8.4.14)                ¬�), QR	 ≡ ¬ ∈ ℝ\,      O�), QR, F	 ≔ F,      ]�), �R, QR, F	 ≔ ]v�), �R	, 
then (8.4.11) becomes 

(8.4.15) 

Q� = Q� + ¬ " ℎ�), �R, QR	�
�

�) − " 7¿v�R,8É	 " F �.¥�F	 �) 
È

�
�

+ ¬ 5� + " " F ��¥�), F	 
È

�
�

. 
Committing ourselves to similar definitions as in (8.4.5) – (8.4.7), the latter equation can be written as  

(8.4.16)                             

Q� = Q� + "<¬ ℎ�), �R, QR	 − å∗�∗7¿v�R,8É	A�
�

�) + ��∗ 

wherein we presume å∗ ∈ ℝM and �∗ ∈ ℝ\ to be constant.  
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Herein, 

��∗ ≔ ¬ 5� + ��∗ 

denotes a (jump-diffusion) Lévy process, whereas ��∗ indicates a compound Poisson process (CPP) 

with random jump sizes in the set Â ⊆ ℝ ∖ �0 . If we furthermore define 

(8.4.17)                               

ℎ�), �R, QR	 ≔ − �∗¬ QR, ]v�), �R	 ≔ ªJ �− ���R	å∗ � 

within a strictly positive function � ∈ W1, then – in differential notation – (8.4.16) points out as 

(8.4.18)                                           �Q� = �∗ �����	 − Q�� �� + ���∗  

constituting an Ornstein-Uhlenbeck type equality with constant mean-reversion velocity �∗ ∈ ℝ\ and 

signal-dependent (and thus, stochastic) mean-reversion level ���	. 

For a deterministic initial value Q� ≔ F� ∈ ℝ the solution of (8.4.18) eventually is given through 

(8.4.19) 

Q� = F� 7Mh∗� + �∗ " ���R	 7Mh∗��MR	�
�

�) + ¬ " 7Mh∗��MR	�5R
�

�
+ " " F 7Mh∗��MR	��¥�), F	 

È
�

�
. 

 

8.4.3 Estimating the stochastic mean-level of electricity spot prices    

In an electricity market application the (OU-type) observation process (8.4.18) might be interpreted as 

the (indeed mean-reverting) electricity spot price. In addition, we may assume the signal process � to 

embody the stochastic driver of the randomized mean-level ���	, i.e. the stochastically varying 

periodic trend-line towards which the spot price reverts. In this context, the reader should also recall 

our former suggestions in Chapter 3 concerning adequate Ornstein-Uhlenbeck modeling onsets for 

electricity spot prices. With this background information, the strictly positive function ��∙	 ∈ W1 

appearing in (8.4.18) ought to be chosen as a bounded and periodic seasonality function. Hence, 

adhering to our recent filtering vocabulary, the estimation of the underlying unobservable randomized 

mean-level ���	 should reasonably be based upon the observable electricity spot price Q. Yet taking 

(8.2.10), (8.2.18) and (8.2.19) into account, for a state component ���	 and an observed spot price Q 

our optimal filter (8.3.30) can be expressed in terms of ℙ-ingredients reading 

(8.4.20) 

/���	 = /���	 + "/R� �	�
�

�) + "�/R��	 /R�ℎ	 − /R��ℎ	��
�

�/R�ℎ	 − ℎ�), �R, QR	� �)
+ " "/R�� ∙ 7M¿	 − /R��	 /R�7M¿	/R�7M¿	 <1 − /R�7M¿	 7¿�R,8É,¥É,E	A �.¥�F	 �) 

È
�

�
+ "�/R��ℎ	 − /R��	 /R�ℎ	��

�
�5R + " "/RM�� ∙ 7M¿	 − /RM��	 /RM�7M¿	/RM�7M¿	  ��+¥ℙ�), F	 

È
�

�
. 
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Further, recalling the specific choices of the coefficients ] and ℎ such as determined in (8.4.14), 

respectively in (8.4.17), while keeping Definition 8.3.6 in mind, we obtain 

/R�ℎ	 = − �∗¬  QR, /R��ℎ	 = − �∗¬  QR /R��	, /R�7M¿	 = −å∗ /R��M(	, /R�� ∙ 7M¿	 = −å∗. 
Therewith, equation (8.4.20) translates into  

(8.4.21) 

/���	 = /���	 + "/R� �	�
�

�) + " " 1 − /R��	 /R��M(	/R��M(	  �1 − /R��M(	 ���R	� �.¥�F	 �) 
È

�
�

+ " " 1 − /RM��	 /RM��M(	/RM��M(	  ��+¥ℙ�), F	 
È

�
�

 

representing our optimal filter (i.e. the best estimator in the least-squares sense) for the stochastic 

mean-level ���	, given the observed electricity spot price (8.4.18). 

 

8.4.4 Filtering out the spikes of electricity spot prices 

Inspired by [72], we now apply nonlinear double-jump stochastic filtering techniques as invented 

above in order to (theoretically) calibrate our multi-factor electricity spot price model like introduced 

in section 3.2.1. In this context, the main difficulty actually lies in the examination of the question:85  

Which electricity spot price fluctuations are caused by jumps/spikes and which ones have 

their origin in the usual (BM-like) small-amplitude price variations? (Cf. p.14 in [72].)  

Since for Q ≔ �Q�	�∈��,�� as defined in (3.2.2) there is no explicit distribution available (due to the 

occurrence of multiple jump noises), we ought to utilize stochastic filtering to detect the involved 

short-term OU-components ��«\(, … , ��I properly. To be precise, we now aim to estimate the spiky 

components ��«\(, … , ��I given the observed deseasonalized spot price Q� (cf. p.15 in [72]).         

To this end, let us first identify all relevant filtering ingredients such as the observation and the signal 

process along with the Kushner-Stratonovic-Equation under ℙ in the following. Since we can observe 

the electricity spot price (3.2.1) – or the deseasonalized spot price (3.2.2) respectively – we declare Q ≔ �Q�	�∈��,�� given in (3.2.2) as the observation process. From now on, we further assume the 

volatility functions appearing in (3.2.3) for all � = 1, … , J to be constant, i.e. z���	 ≡ z� > 0. In 

conclusion, the upcoming calibration exercise yet can be transformed into a stochastic filtering 

problem for a partially observed model with vectorial signal ���«\(, … , ��I��∈��,�� and observations �Q�	�∈��,��. Additionally, for the remainder of Chapter 8 we put £� ≔ £ ⊆ �0, ∞� for all � = 1, … , J.  

To keep matters simple, we fit the dimensions as follows: Observing the one-dimensional process Q�, 

we estimate the one-dimensional signals (that is, every single spiky component) ��� successively for � = ª + 1, … , J [in accordance to (8.2.1)] via the (in the least-squares sense) optimal filter  

                                                           
85 Also see the beginning of Chapter 4 in [72] (in particular, pp. 14 and 15 therein) in the context of detecting 
electricity price spikes via filtering. However, Meyer-Brandis and Tankov [72] do not pursue the stochastic 
filtering approach any further whereas they instead adopt methods from nonparametric statistics to filter out 
price spikes (see p.15 ff. in [72]). 
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(8.4.22)                                                  /���S	 ≔ 6ℙ�S������ℱ�¥� 

with S�#	 ≔ D��#	 ≔ # and an observation filtration ℱ�¥ ≔ z�Q®: 0 ≤ � ≤ �  (cf. the top of p.15 in 

[72]). Taking (3.2.1), (3.3.1) and (8.2.3) into account, we (unfortunately) recognize the identity 

ℱ�¥ = ℱ� 

to be valid for all � ∈ �0, ��. Since ��� is ℱ�-measureable for every index � = ª + 1, … , J, as an 

immediate consequence our optimal filter (8.4.22) trivially boils down to 

(8.4.23)                                                          /���D�	 = ��� 

which does not make sense in any practical filtering application, of course. Hence, for our above 

electricity market framework the mathematical filtering theory tells us nothing else than: 

If you monitor the deseasonalized spot price Q, then you simultaneously 

consider its driving noises �(, … , �I [via (3.2.2)] anyway and thus, the 

signal ��«\(, … , �I� does not at all need to be filtered! 

Consequently, the main problem we are facing here actually lies in undesired dependency structures in 

between the signal driving noises �«\(, … , �I and the observation process driving noises �(, … , �I, the 

former obviously being a subfamily of the latter. On the contrary, in common filtering setups the 

signal and observation noises a priori are assumed to be independent (see e.g. p.1 in [76]; also recall 

our announcements at the end of subsection 8.2.1 above).  

In this regard, somewhat similar to (3.2.3), we newly suppose the (slightly modified) signal vector ��î«\(, … , �îI� to admit components 

(8.4.24)                                               ��î�� = −�� �î�� �� + z�  ���� 

�� = ª + 1, … , J	 with initial values �î�� ≔ #� and ���-independent Lévy-type/Sato noises 

(8.4.25)                                                        

��� ≔ " " ; �Â��), ;	 
¡

�
�

 

along with ��-independent ℙ-compensated PRMs 

(8.4.26)            �Â+�ℙ�), ;	 ≔ �Â��), ;	 − ¥Ú��)	 �.̂��;	 �). 
Therewith, the [to (8.4.22)] analogous optimal filter reads as 

(8.4.27)                                                   /î���D�	 ≔ 6ℙ��î���ℱ�¥� 

�� = ª + 1, … , J	 which, in contrast to before, does not simplify any further yet. Next, referring to 

(8.4.24) – (8.4.26) for � = ª + 1, … , J the one-dimensional signal components are given by 

(8.4.28) 

�î�� = #� + " ö−�� �îR� + z�  ¥Ú��)	 " ; �.̂��;	 
¡

÷ �)�
�

+ z� " " ; �Â+�ℙ�), ;	 
¡

�
�

. 
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Hence, comparing (8.4.28) with (8.2.5), in order to achieve correspondence we may choose 

(8.4.29)                            

�� ≔ �î�� ,        ��), �îR�� ≔ −�� �îR� + z� ¥Ú��)	 " ; �.̂��;	 
¡

,    
Ò�), �îR�� ≔ 0,        Q�)−, �îRM� , ;� ≔ z� ;,        �+8ℙ ≔ Â+�ℙ.  

Appealing to (3.2.2) and (3.2.6), the one-dimensional observation process exhibits the structure 

(8.4.30) 
Q� = Y �� #�

I
�P( − Y " �� �� �R�  �)�

�
I

�P( + Y " " ; ��  z� ����), ;	 
¡

�
�

I
�P( . 

Additionally, for all � = 1, … , J and ; ∈ £ we assume the Lévy-measures .� to possess explicit 

Lebesgue-densities 

(8.4.31)                                                      �.��;	 = ���;	 �; 

with density functions ���;	 bearing the real mean-values/expectations 

(8.4.32) 

Õ� ≔ " ; ���;	 �; 
¡

. 
Thus, choosing 

(8.4.33)               ¬�)	 ≔ 0,        ℎ�), �îR�� ≔ 0,        O�), ;	 ≔ ; ��(z(, … , �IzI	� ∈ ℝI, 
]�), �îR� , ;� ≔ ªJ �∑ �� �� �îR�I�P(∑ ��  z�I�P( Õ�� , Q� ≔ Y ��  #�

I
�P( , 

 .¥ ≔ �.(, … , .I	� ∈ ℝI, �¥ ≔ ��(, … , �I	� ∈ ℝI, Â ≔ £, 
we can force correspondence between (8.4.30) and (8.2.9) yet.  

Referring to (8.4.27), (8.4.33), Remark 8.3.2 and Theorem 8.3.8, for � = ª + 1, … , J the components 

of our optimal filter under ℙ with S ≔ D� explicitly read as  

(8.4.34)                                                              /î���D�	 = 

/î���D�	 + "/îR���	�
�

�) + " "</îR��D�	 /îR��7M¿	 − /îR��D� ∙ 7M¿	A 7¿�R,8îÉ¢,?� �.��;	 �) 
¡

�
�

+ " "/îRM� �D� ∙ 7M¿	 − /îRM� �D�	 /îRM� �7M¿	/îRM� �7M¿	  ����), ;	 
¡

�
�

 

whereby � and ] are such as defined in (8.4.29), respectively in (8.4.33).  
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Herein, we easily find for the initial value 

(8.4.35)                                                        /î���D�	 = �î�� = #� 

whereas (8.4.29) delivers 

(8.4.36)                                         /îR���	 = −�� /îR��D�	 + z� ¥Ú��)	 ÕÚ� 

with mean-values 

(8.4.37) 

ÕÚ� ≔ " ; �Ú��;	 �; 
¡

 

defined similar to (8.4.32). Unfortunately, the term  

(8.4.38)                                

/îR��7M¿	 = 6ℙ ~úY �� �� �îR�
I

�P( ûM( �ℱR¥� Y �� z�
I

�P( Õ� 

cannot be simplified any further. The same is valid for /îR��D� ∙ 7M¿	, by the way. Finally, note that for ℱ�¥ = ℱ� and thus, for /���D�	 = ��� as explained in connection with (8.4.22) and (8.4.23), one would 

receive instead of (8.4.34) the following Dynkin-equation 

(8.4.39) 

��� = /���D�	 = /���D�	 + "/R���	�
�

�) = #� − �� " �R�
�

�
�) + z� Õ� " ¥��)	�

�
�). 

 

8.4.5 Estimating the market zone net position in the EU ETS market 

In order to calibrate our incomplete carbon dioxide emission allowances model such as introduced in 

Chapter 6, we now apply stochastic filtering techniques as presented above. More precisely, we want 

to (theoretically) estimate the unobservable market zone net position å out of public EUA1 forward 

prices Êî. For this intention, we identify all relevant filtering ingredients such as the observation and 

signal process along with the Kushner-Stratonovic-Equation under ℙ in the following.  

Starting off, for � ∈ �0, �� we declare Êî� as given in (6.2.5) as the observation process and å� as 

defined in (6.2.6) as the underlying signal process. Moreover, with view on our upcoming filtering 

purposes, we ought to introduce the observation filtration 

(8.4.40)                                               ℱ�Ýî ≔ ℱî� ≔ zñÊîR: 0 ≤ ) ≤ �ò. 
Therewith, the normalized conditional distribution of the market zone net position is given by the filter 

(8.4.41)                                                   /��S	 ≔ 6ℙ�S�å�	�ℱî�� 

[recall eq. (8.2.1)] whereas we choose S�#	 ≔ D��#	 ≔ # inside (8.4.41) from now on.  
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Additionally, we put £� ≔ £ ⊆ ℝ ∖ �0  for all indices � = 1, … , J in our proceedings. Then, in 

accordance to (6.2.6) – (6.2.8), the market zone net position process obviously obeys  

(8.4.42)             

å� = � Y " ; �.��;	 
¡

I
�P( + Y " " ; ��+�ℙ�), ;	 

¡
�

�
I

�P( . 
Hence, in order to achieve correspondence between (8.2.5) and (8.4.42), we may choose 

(8.4.43)                  

�� ≔ å�,         �� ≔ å� = 0,         ��), åR	 ≔ Y ��
I

�P( ,         �� ≔ " ; �.��;	 
¡

,  
Ò�), åR	 ≔ 0,         Q�)−, åRM, ;	 ≔ �;, … , ;	 ∈ ℝI,         �+8ℙ ≔ ��+(ℙ, … , �+Iℙ� ∈ ℝI. 

On the contrary, taking (6.2.5) into account, the observation process moreover exhibits the structure 

(8.4.44)                                

Êî� = Êî� + " ÊîR �� − åR	 �)�
�

 + " ÊîR z�)	 ��R
�

�
. 

As a consequence, defining 

(8.4.45)                               

Q� ≔ Êî� ,        ¬�), ÊîR� ≔ ÊîR z�)	,         ℎ�), åR, ÊîR� ≔ � − åRz�)	 ,      
O�), ÊîR, F� ≔ ]�), åR, ÊîR, F� ≔ 0,          5 ≔ �, 

we can force correspondence between (8.4.11) and (8.4.44) yet. Referring to (8.4.20) [but with � ≔ D� 

therein86], (8.4.45) and Remark 8.3.2, our optimal filter under ℙ explicitly becomes 

(8.4.46)                                                     /��D�	 = /��D�	 +                       
"/R��	�
�

�) + "�/R�D�	 /R�ℎ	 − /R�D� ∙ ℎ	��
�

á/R�ℎ	 − � − åRz�)	 ä �) + "�/R�D� ∙ ℎ	 − /R�D�	 /R�ℎ	��
�

��R. 
Herein, we find for the initial value 

(8.4.47)                                                            /��D�	 = 0 

whereas (8.4.43) delivers 

(8.4.48)                                               /R��	 = ∑ n ; �.��;	 ¡I�P( .  
                                                           
86 Unfortunately, we are facing a double notation here: To be precise, we merely choose the W1-function ��∙	 
appearing in (8.4.20) to be the identity, whereas the constant drift coefficient � ∈ ℝ associated with equation 
(6.2.5), respectively with (8.4.44), remains untouched. Further note that, in contrast to our former assumption in 
subsection 8.4.3, the W1-function ��∙	 does no longer need to be strictly positive in our present EU ETS market 
framework so that the choice ��#	 ≔ # �# ∈ �Â(, Â1� ⊂ ℝ	 in (8.4.20) indeed is possible/admissible.  
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Moreover, with respect to (8.4.45) we deduce 

(8.4.49)                                  /R�ℎ	 = � − /R�D�	z�)	 ,         /R�D� ∙ ℎ	 = � /R�D�	 − /R�D�1	z�)	 . 
Substituting (8.4.41) and (8.4.47) – (8.4.49) into (8.4.46), we ultimately obtain 

(8.4.50) 

6ℙ�å��ℱî�� = " ú åR − /R�D�	z�)	1 × LMNℙ�åR�ℱîR� + Y " ; �.��;	 
¡

I
�P( û �)�

�
− "LMNℙ�åR�ℱîR�z�)	

�
�

 ��R 

representing the (in the least-squares sense) optimal time-� estimate for the market zone net position 

process å�, given the observed (respectively, simulated) EUA1 forward price Êî�, under the historical 

market measure ℙ. 

 

8.5 Conclusions  

Based upon the best approximation property of conditional expectations in this chapter we have 

constructed an (in the least-squares sense) optimal filter associated to our underlying generalized 

Lévy-type filtering disposition. More precisely, in order to model various measurement procedures in 

a more realistic manner, we have suggested an extended double-jump diffusion filtering onset 

permitting jumps with random amplitudes at random time points via independent compound Poisson-

type processes both in the signal as well as in the observation process dynamics along with Brownian 

diffusion noise. By the way, we have tailored enhanced measure change techniques to our mission and 

moreover, have rigorously occupied ourselves with the emerging jump-diffusion differential operators. 

As a first highlight, we have introduced an expanded derivation modality for our extended double-

jump Zakai-Equation afterwards. Having derived the extended Kushner-Stratonovic-Equation 

associated to our innovative double-jump framework, we subsequently have presented some practical 

filtering applications dealing inter alia with the estimation of an unobservable (stochastically varying) 

trend-line of electricity spot prices out of noise-afflicted spot price histories, with the detection of price 

spikes out of observed electricity spot price dynamics and, last but not least, with an adequate 

calibration method for the unobservable market zone net position in the EU ETS market while 

referring to public emission allowance prices. Concentrating on these subjects, in paragraph 8.4 we 

finally have invested some pursuing effort concerning concrete choices of the emerging coefficient 

processes.                

Throughout the just mentioned applications we particularly have cherished that our innovative Lévy-

type filtering approach is flexible enough to generate geometric Doléans-Dade types as well as mean-

reverting Ornstein-Uhlenbeck types both for the signal and the observation equation – not at least due 

to the novel appearance of an entire Brownian integral (instead of a naked Brownian motion solely as 

appearing in the majority of related work in the filtering literature) inside the observation dynamics 

(8.2.9), respectively inside (8.4.11). Note that classical Kalman-Bucy (particle) filtering techniques 

(see e.g. [2]) should mostly fail in connection with such elaborated emission or electricity market 

applications as discussed throughout this thesis, since we frequently have been confronted with highly 

non-Gaussian settings herein. 
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