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SUMMARY 

Spin control and spin manipulation are critical issues towards applications of spintronic devices in 

the future. Since the spin always carries a certain amount of magnetic momentum, an effective 

magnetic field is required to perform spin control and manipulation. This effective field can be either 

from one spin-related interaction mechanism, such as exchange interaction, spin-orbit coupling, 

hyperfine interaction etc., or just from a magnetic field, which is the most straightforward way. 

Generally macroscopic Helmholtz coils are used to generate a magnetic field, which nevertheless 

gives poor performance with respect to spatial resolution for addressing local spins and high 

frequency operation for studying fast/ultrafast spin dynamics.  

In this thesis, the dynamics of two localized spin systems are studied in semiconductors. Both types 

of localized spins couple with the carrier spins. The studies are based on a micro-fabrication 

technology, which allows one to electrically generate an on-chip switchable magnetic field. The 

experimental results demonstrate a local spin control and spin manipulation on a micrometer length 

scale. Further, the underlying physics is addressed from theoretical calculations showing that the 

local spin environment is critical for the studied spin dynamics.   

The method to generate an on-chip magnetic field is established by a two-step electron beam 

lithography and lift-off technique. Single-turn gold microcoils with variable aperture size ranging 

from 3 µm to 20 µm are defined on top of semiconductors. Thanks to the minimized coil length scale 

and the low complex impedance, a switchable magnetic field up to tens of mT can be obtained with a 

transition time less than 400 ps.  

The concept of spin control by a local magnetic field is demonstrated in a Cd1-xMnxTe/(Cd, Mg)Te 

diluted magnetic semiconductor (DMS) quantum well (QW). The Mn2+ ion spins are localized and 

strongly couple with the free carrier spins via sp-d exchange interaction. Introducing a current 

through the coil on top of the semiconductor, an electrically switchable magnetic field can be 

induced which aligns the Mn2+ ion spins in the DMS QW layer. Due to the strong sp-d exchange 

interaction between Mn2+ ions and carriers, there is a huge Zeeman energy splitting between carrier 

spin states. Therefore even a weak magnetic field of a few mT can generate an efficient carrier spin 

polarization, which can be probed by polarization-resolved magneto-photoluminescence (PL) 

spectroscopy. A pronounced carrier spin polarization of up to 8.5% is obtained by the 

current-induced field at liquid helium temperature. The spatial spin distribution directly reflects the 

locally varying sign and amplitude of the current-induced field. Since the spin relaxation process 

between Zeeman levels is rather fast compared to the exciton lifetime, the detected PL polarization 

can directly reflect the magnetization of Mn2+ ions. The magnetization process is a convolution of 

Mn2+ spin dynamics induced by the pulsed magnetic field and the phonon dynamics generated by the 

pulsed current-heating. A method is developed to separate these two contributions. For a DMS QW 

with high Mn2+ concentration of x = 0.067, the spin response to a magnetic field is fast enough so 

that the phonon dynamics can be determined from the PL polarization dynamics. The phonon 

lifetime in the studied samples is estimated to be on the order of hundred nanoseconds.  
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By reducing the repetition period of the electrical pulse to be below the phonon lifetime, a thermal 

quasi-equilibrium state is established between the Mn2+ spin system and the lattice system. This 

allows one to study the Mn2+ spin dynamics on a sub-ns time scale in a weak magnetic field regime 

of only several mT. In the absence of an external field (Bext), the Mn2+ spin dynamics is found to be 

on the order of hundred picoseconds, which is up to date faster than any reported Mn2+ spin response 

to an external field. In the presence of a certain Bext, the spin dynamics is slowed down. From 

numerical simulations, it is suggested anisotropic spin interactions, including hyperfine interaction, 

Mn ion spin coupling with the local strain-induced electrical field and the crystal field, are needed for 

an interpretation of the observed spin dynamics. At Bext = 0 these local interactions can induce strong 

anti-crossings between Mn2+ spin states, and thus induce fast Mn2+ spin transitions by the adiabatic 

relaxation channel on a sub-ns time scale. Since the Zeeman splitting is energetically dominant at a 

certain Bext, Mn2+ spin dynamics is governed by spin-lattice relaxation which is generally much 

slower. 

The second type of localized spins is the nuclear spin in n-GaAs. A pronounced nuclear spin 

polarization is obtained, via Fermi-contact nucleus-electron spin coupling, by means of injecting 

spin-polarized electrons. By applying a RF current through the microcoil, optically detected NMR 

with micrometer resolution is demonstrated in n-GaAs. To trace the variance of the nuclear field 

namely the Overhauser field, the electron Larmor precession frequency is monitored via 

time-resolved magneto-optical Kerr rotation. Sweeping the frequency of magnetic field induced by 

an on-chip microscale current loop, nuclear spin depolarization is achieved for each isotope species 

(69Ga, 71Ga and 75As). The measured nuclear field amplitude ratios between different isotope species 

distinctly contradict the theoretically predicted ones. This arises from a non-uniform nuclear spin 

leakage factor for each nuclear isotope. This is due to the quadrupole relaxation which depolarizes 

the nuclear spins, and the depolarization level is not uniform for different isotope species. By 

applying resonance RF pulse sequences, Rabi oscillation of 75As nuclear spins is obtained with an 

effective dephasing time ~200 µs. 

The observed non-fundamental NMR allows one to address the local nuclear spin environment. The 

local nuclear spin interaction gives rise to admixture of nuclear spin states. Assisted by resonance 

field-induced spin flip, optically-forbidden NMR is observed at RF of half-harmonics 1/2fα, 

harmonics 2 fα and two-mixed (fα1 + fα2), where fα is the RF for fundamental NMR of isotope species 

α. The measured nuclear spin dynamics is well interpreted as a two-level process between the 

dynamic nuclear polarization formation and nuclear spin depolarization via RF absorption. By 

analyzing the nuclear spin depolarization amplitude and the nuclear spin dynamics, it is concluded 

that the local quadrupole interaction and the current-induced oblique field are dominant perturbations 

for 2 fα and 1/2 fα NMR, respectively. The (fα1 + fα2) NMR can be only due to the nuclear 

dipole-dipole interaction.  
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1 INTRODUCTION 

In present computers, the information bit is represented by the carrier charge. Usually this is realized 

by utilizing electron charges in semiconductor integrated circuits. The generation, transport and 

control of electrons are achieved by applying electrical fields on the semiconductor device. With the 

on-going miniaturization of the semiconductor electronics, a further improvement of the device 

performance, e.g. lower power consumption and higher computing frequency, becomes more and 

more challenging [1]. In order to suffice the daily growth of the needed processing capability as 

illustrated by Moore’s law [2], an alternative technology for information processing is urgently 

required in the next decades. 

Apart from the charge property, an electron also has an eigen spin. The electron spin was for the first 

time experimentally observed during the famous “Stern-Gerlach experiment” in 1922 [3], and it was 

theoretically demonstrated by Dirac until 1928 [4, 5]. From his theory, the electron spin turns out to 

be intrinsic as a relativistic quantum effect, and it cannot be explained in context of classical physics. 

An electron can have a spin state of either “spin up” or “spin down”. Each electron spin state 

corresponds to a certain amount of magnetic moment in a specific direction. As a result, the average 

electron spin is manifested as magnetization for an ensemble of electrons. The electron spin 

properties are responsible for most magnetic effects in modern physics [6]. Therefore the magnetic 

properties can be controlled by tackling the spin degree of freedom. The spin states or magnetization 

can be used as information bits in applications.  

The electron spin degree of freedom has been technologically put into applications in 

magneto-electronics [7, 8]. Thanks to the discovery of the giant magnetoresistance (GMR) effect 

[9-11], the information density in the hard drive disks has been increased by more than one order of 

magnitude[12] in the past decade. The GMR-based read heads of hard disks [13] and magnetic field 

sensors [14] also have been widely used. Based on the tunneling magnetoresistance (TMR) effect [15, 

16], the magnetoresistive random access memory (MRAM) is commercially available since 2006 

[17]. Because MRAMs combine advantages of a high integration density, the high speed of a static 

random access and the non-volatility of a flash memory [18], the trend is likely that new generations 

of MRAMs will replace the current memory products in the future. 

All the available magnetoresistive devices of information storage are hitherto successfully performed 

in metallic systems [8]. Nevertheless, the metallic structures are not ideal candidates for information 

processing as the electron density cannot be continuously adjusted and there is no bandgap in metals. 

These can give poor electronic controllability and function compatibility to most electronic and 

electro-optical components, which are generally based on semiconductor systems. To understand 

spin properties in semiconductors thus becomes crucial for potential applications of spin-based 

information processing. This emerging field is named as semiconductor “spin-electronics” or 

abbreviated as “spintronics”.   

Semiconductor spintronic devices are regarded as one of the promising candidates for future 

information processing [8, 19]. Compared with charge-based electronic devices, they are expected to 



Chapter 1. Introduction 

4 

obtain several prominent potential advantages [20]. (i) Fast spin control and coherent spin 

manipulation up to THz frequency scale; (ii) Much lower power consumption during spin control 

and non-volatility for spin information storage; (iii) Being promising for quantum computing by 

addressing the spin states of a single carrier or ion in a semiconductor nanostructure. 

Towards applications of semiconductor spintronics devices, several fundamental issues are regarded 

crucial [8]: generation of spin polarization, spin transport, spin control, coherent spin manipulation, 

and detection of spin states. The spin-polarized carriers have been widely generated by means of 

polarized optical pumping [21] or electrical injection in semiconductor hybrid structures [22, 23]. 

Experiments of spin transport [24-26] are usually performed in a spin-field-effect-transistor 

(spin-FET) of which the architecture prototype is an analog to the conventional charge-based FET 

design [27]. To control a spin state, a magnetic field or an effective magnetic field is required. An 

on-chip magnetic field can be generated either from a ferromagnet micro/nanostructure [28-31] or a 

current loop [32, 33]. An effective field can be obtained by spin-related mechanisms, i.e. exchange 

interaction [26, 34], and spin-orbit interaction [35] etc. Coherent spin manipulation has been 

demonstrated up to THz by tailored optical pulsed excitation [36, 37], and up to GHz by pulsed 

resonance RF excitation [34, 38-40]. The spin states are probed electrically, e.g. via 

magnetoresistance [41], or optically, e.g. via luminescence polarization [21] or spectral shift [42], 

and the magneto-optic Kerr/Faraday effect [43].  

In order to incorporate magnetic properties into a nonmagnetic semiconductor, one alternative is to 

introduce magnetic centers in the host semiconductors. A semiconductor doped with magnetic ions is 

named as diluted magnetic semiconductor (DMS) [44]. In a DMS system, the magnetic ions partly 

substitute the cations of the host material. Well known host materials like II-VI semiconductors, e.g. 

CdTe, CdSe, CdS, ZnTe, ZnSe, HgTe, HgSe, ZnO, and III-V semiconductors, e.g. GaAs, InAs, GaN, 

have been widely utilized, and for the magnetic dopants, Mn, Fe, Co, Cr, V, Eu are often used [42, 

44]. The manganese Mn2+ ions are the most popular example. This is due to the isoelectronic 

property of Mn2+-ion in II-VI semiconductors and the large localized magnetic moment, which come 

from its 3d5- electronic shell configuration. Thanks to the highly developed growth technique, 

excellent DMS samples can be well fabricated from bulk materials [44] and quantum structures [42]. 

The Mn content can be precisely controlled even up to ~0.7 while the DMS lattice structure is still 

kept. Recently, novel structures incorporating Mn ions are demonstrated, e.g. single Mn ion in a 

quantum dot (QD) [45], DMS core-shell nanocrystals [46], and DMS colloidal QDs [47].  

The DMS system combines the electrical and optical properties of a nonmagnetic semiconductor 

with magnetic properties of magnetic ions, i.e. Mn ions. Due to the presence of the band gap in a 

DMS, the carrier density can be flexibly controlled [26, 48] and electronic state transitions induced 

by optical excitation are allowed [44]. These facilitate greatly the electrical and optical investigations 

in DMS systems [41, 42, 44], e.g. carrier transport measurements and photoluminescence studies. 

More prominent characteristics come from the magnetic properties. Due to the strong exchange 

interaction, i.e. s-d exchange interaction between Mn ions and electrons and p-d exchange interaction 

between Mn ions and holes, pronounced carrier spin polarization can be obtained even in a weak 
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magnetic field. This leads to the often observed giant Zeeman splitting and giant magneto-optic 

Farady/Kerr rotation [42, 44]. 

The concept of carrier-induced ferromagnetism [49, 50] gives the idea to control the magnetic phase 

of Mn ions by tuning the carrier density, i.e. the magnetization can be varied between the 

anti-ferromagnetism and ferromagnetism. Since the p-d exchange interaction is stronger than the s-d 

exchange interaction in a typical DMS system, the modulation of hole density is generally used [26, 

41, 51-53]. The demonstration of electrical control of ferromagnetism [26] stimulated vast 

experimental and theoretical investigations in various DMS, which was afterwards expected as one 

of the most promising material system for spintronic devices. Up to date, convincing results of 

ferromagnetism control are still below room temperature [54].          

The magnetization dynamics of Mn ions depends on the Mn content [42, 55, 56], which determines 

how fast the Mn ion spins can be controlled and how long they can be coherently manipulated. The 

longitudinal spin relaxation time, known as spin-lattice relaxation (SLR) time, can vary greatly for 

different Mn contents. Due to the absence of the orbit spin for a Mn ion in II-VI DMS systems, the 

spin-phonon coupling between the Mn ion spin and the lattice is rather weak. Thus for a very dilute 

Mn content, the SLR process is quite long up to a millisecond time scale at liquid helium temperature. 

Mn2+ ion clusters are formed by increasing the Mn content [57, 58]. The SLR process is much faster 

for a cluster as a result of the Mn-Mn interaction, and via spin diffusion, single Mn ions surrounding 

are relaxed [59]. As a whole the SLR time is reduced below 100 ns for a Mn content of ~0.1. On a 

contrary, the transverse spin relaxation time namely the spin-spin relaxation time changes slowly 

from a low Mn content to a higher value. It is generally between ~10 ps and ~1 ns for different Mn 

contents [55, 60-62].   

In order to accelerate the SLR process, carriers are introduced to provide an extra channel by means 

of carrier-Mn spin scattering [63] bypassing the relatively slow spin-phonon coupling. Experimental 

results demonstrate a pronounced SLR acceleration by increasing either the electron [64] or hole 

density [65]. Further, the magnetization dynamics can be shifted to a nanosecond time scale as a 

result of the Mn ion spin interaction with the local environment [56].        

Similar to the localized electron spin of a Mn ion in a DMS, one nucleus also has a localized spin. 

The nuclear magnetic moment is generally smaller than the electronic magnetic moment by three 

orders of magnitude. This leads to a much weaker coupling between the nuclear spins and the local 

environment. As a consequence, the nuclear SLR time can be long up to even hours or days, and the 

nuclear spin-spin relaxation time is a few 100 µs or more [66]. Due to the quite long spin lifetime, 

the nuclear spin states have been suggested for potential applications of information processing by 

combination with electron spins [67, 68]. 

Since the nuclear magnetic moment is rather small, the nuclear spin polarization is quite small in a 

thermal equilibrium state. By making use of non-equilibrium electrons in semiconductors, the 

nuclear spin polarization can be greatly enhanced as a result of the electron-nucleus Fermi contact 

hyperfine interaction [69]. This phenomenon is known as Overhauser effect, and the effective 

nuclear field is usually named Overhauser field. The non-equilibrium electrons can be generated by 
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optical pumping [70] or electrical injection [71]. Especially optical means has been widely used to 

address the various subjects of nuclear spin studies in semiconductors [21, 72].    

The magnitude of the nuclear field is determined by the strength of the hyperfine interaction and the 

nuclear isotope abundance [21, 73]. In III-V semiconductors, which are most widely studied, a 

nuclear spin polarization up to 50% was observed in QDs and the nuclear field of a few Tesla was 

experimentally determined [73-76]. A complete nuclear spin polarization is limited by nuclear 

leakage mechanisms [66, 77-79], like nuclear spin-spin interaction, nuclear SLR, nuclear quadrupole 

relaxation, and nuclear spin diffusion etc. These mechanisms depolarize nuclear spins competing 

with the hyperfine interaction which polarizes the nuclear spins. This explains why the nuclear 

polarization obtained in quantum structures is much larger than the value in bulk materials [21, 73]. 

Generally, an external magnetic field is required to suppress the depolarization mechanisms. In 

absence of an applied field, dynamic nuclear polarization formation in QDs has been recently 

demonstrated by using the Knight field [80, 81]. Due to much smaller hyperfine coupling constants, 

the nuclear field in II-VI semiconductors is much less compared with III-V counterparts. The nuclear 

field was experimentally determined to be ~10 mT [80, 82, 83]. 

The coherent manipulation of nuclear spins is achieved by means of the NMR technique [66]. The 

NMR in semiconductors can be detected by different experimental methods, e.g. highly sensitive 

detection of nuclear spin polarization from free induction decay signals [72], luminescence 

depolarization due to the Hanle effect [21, 77, 79, 84, 85], electrical resistance variance in the 

quantum Hall effect regime [86, 87], or the nuclear field-induced photoluminescence (PL) spectrum 

shift [88] and the electron spin precession dynamics, the latter probed by time-resolved 

magneto-optical Faraday/Kerr rotation [89-93]. Quite often, the RF field needed for NMR is 

produced from a Helmholtz coil [89]. Other approaches include all-optical NMR making use of the 

Knight field from optically generated spin-polarized electrons [90, 94], or an in-built micro-stripe 

which has been hitherto used in the ultralow temperature regime of ~50 mK [86]. By tailoring the 

pulse duration of the resonance RF field, the nuclear spins can be coherently manipulated, and it is 

known as nuclear Rabi oscillation. As the magnitude of the RF field is limited to ~1 mT in most 

experiments up to date, the coherent manipulation is typically in a frequency regime of a few kHz.   

Recent experimental observations confirm the importance of the local nuclear environment to the 

nuclear spins in quantum structures, where the nuclear properties are varying on a mesoscopic length 

scale. The local quadrupole interaction is found so strong that the concept of the nuclear spin 

temperature cannot be valid [95-97], as well the Knight field is demonstrated non-uniform as a 

consequence of the inhomogeneous electron wavefunction in a quantum dot [98]. Usually, the local 

nuclear spin interaction is extracted from either spectral features of the NMR signal, like spectral 

broadening and spectral shift, or spin-echo type of experiments [66, 86, 89]. In this way, the nuclear 

spin information is typically analyzed as a result of the total local nuclear spin interaction, e.g. 

including both dipole-dipole and nuclear quadrupole interaction. As the local perturbations can mix 

the nuclear spin states, optical-forbidden NMR can thus be induced [99, 100]. This method has not 
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been often used up to date, since the local nuclear spin interaction is much smaller compared with the 

nuclear Zeeman energy in most NMR experiments [72]. 

This thesis is dedicated to address on-chip spin control and spin dynamics of two localized systems 

in semiconductor micro- and nano-structures. The whole work is based on an on-chip electrical 

technique, which provides a magnetic field by introducing a current loop on top of the semiconductor. 

This allows one to demonstrate sub-nanosecond control of Mn ion spin dynamics in a DMS quantum 

well (QW) and local nuclear spin manipulation in n-GaAs. The thesis is organized as following: 

In Chapter 2, the background physics of this work is presented. In the first part, the crystal structure 

and the band structure of zincblende semiconductors are given. In the next part, the optical selection 

rules are given for a bulk GaAs system. The fundamental physics of a DMS QW is introduced in the 

last part. The optical properties are discussed for a QW system, and the magnetic properties of the 

DMS QW are reviewed. 

In Chapter 3, techniques used in this thesis are introduced. At first a microstructure fabrication 

technology is established to provide an electrically switchable on-chip magnetic field, which is the 

novel and key technique throughout the whole thesis. This is done by a two-step electron beam 

lithography and lift-off technique. In the next part, the high-frequency electrical operation is 

demonstrated by adapting 50 ohm match for the sample and the cryostat. The electrical 

characterization of the microstructures is presented. The on-chip magnetic field is used for two types 

of spin-related experiments. To address the magnetization dynamics of Mn2+ ions in diluted magnetic 

semiconductor quantum wells, measurements of the time-resolved photoluminescence polarization 

degree are performed by means of magneto-luminescence spectroscopy, of which the working 

principle is given in the third part. In the last part, the time-resolved magneto-optical Kerr rotation 

technique is presented which is used to monitor the nuclear spin polarization and detect the nuclear 

magnetic resonance in one n-GaAs sample.  

In Chapter 4, the concept of local electrical control of spin polarization is demonstrated by using the 

on-chip microscale current loop. In the first part, the magnetic properties of the diluted magnetic 

semiconductor quantum wells are characterized in a static magnetic field.  The strong sp-d 

exchange interaction between the carriers and Mn ions gives a large effective exciton g factor. The 

photoluminescence thus shows pronounced polarization in the low field regime. In the second part, a 

magnetic field is generated by introducing a current through the on-chip microcoil. The switchable 

magnetic field allows an electrical control of the spin polarization, which is a competing result 

between the current-induced magnetic field raising the magnetization of Mn ions and the 

current-generated local heating for the demagnetization. A method is developed to extract the 

contribution from each mechnism. In the last part, the magnetization dynamics on a sample with a 

higher Mn content is investigated, and this sample can function as a detector for the phonon 

dynamics with a nanosecond time resolution.          

In Chapter 5, the magnetization dynamics down to zero magnetic field is addressed in diluted 

magnetic semiconductor quantum wells. In the first part, the interaction of Mn ions with the local 

environment is introduced and the magnetic properties affected by carriers are discussed. These two 
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factors can strongly determine the Mn ion magnetization dynamics in the regime of a low magnetic 

field. Next the experimental results of the magnetization dynamics are presented showing a 

pronounced dependence on the external magnetic field. This is due to the interplay between the local 

anisotropic interactions of Mn ions and the Zeeman interaction with the external field. Numerical 

simulations based on the Lindblad master equation are performed and the theoretical calculations 

coincide well with the experiment results.  

In Chapter 6, nuclear spin polarization and coherent nuclear spin manipulation are studied in one 

n-GaAs sample. At first a theoretical background is discussed regarding the electron-nucleus 

hyperfine coupling which controls the dynamic nuclear polarization and the nuclear spin relaxation 

in a semiconductor. Experimentally the dynamic nuclear field is optically addressed by the 

time-resolved Kerr rotation technique. The dependence of the nuclear field properties is studied by 

varying the experimental conditions. By utilizing an on-chip microcoil fabricated atop the 

semiconductor sample and introducing a radio frequency current through the microcoil to produce a 

resonance magnetic field, optically detected nuclear magnetic resonance is demonstrated on a length 

scale of a few micrometers. Further, the Rabi oscillation of 75As nuclear spins is observed.     

In Chapter 7, dynamic nuclear magnetic resonance is addressed in n-GaAs, mainly with respect to 

the observed optically forbidden magnetic resonance absorption. The local nuclear spin interaction is 

introduced regarding the nuclear magnetic moment and the nuclear quadrupole moment. The 

multi-spin magnetic resonance is explained according to the local nuclear spin perturbations, and the 

multi-photon absorption due to the tilted RF excitation is discussed. A two-level model is given for 

the measured nuclear spin dynamics, describing the interplay between the dynamic nuclear 

polarization via hyperfine interaction and nuclear spin depolarization due to magnetic resonance 

absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with 

master equation simulations, the underlying nuclear spin depolarization mechanism for each 

resonance is identified. 
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2 BACKGROUND PHYSICS 

This chapter presents the background physics for this work. In the first part, the crystal structure and 

the band structure of zincblende semiconductors are given. In the next part, the optical selection rules 

are given for a bulk zincblende semiconductor. The fundamental physics of a diluted magnetic 

semiconductor (DMS) quantum well (QW) is introduced in the last part. The optical properties are 

discussed for a QW system, and the magnetic properties of the DMS QW are reviewed.  

 

2.1 Properties of zincblende semiconductors  
In this work, the two materials investigated are based on the II-VI binary compound-semiconductor 

CdTe and the III-V binary compound-semiconductor GaAs. Both semiconductor systems have 

zincblende crystal geometry, which leads to a similar electronic band structure.  

2.1.1 Zincblende lattice structure 

The zincblende crystal structure is schematically depicted in FIG 2.1-1. There are two types of atoms 

in a cubic cell. Each type of atom has a face-center-cubic (fcc) lattice. The two lattices are displaced 

against each other by a quarter of the space diagonal, so that each atom is tetrahedrally surrounded 

by four atoms of the other type. The lattice constant aLatt is conventionally defined as the side length 

of the cubic cell. Each atom has four next neighbours of the other atom type at the corners of a 

regular tetrahedron at a distance of 3 / 4⋅aLatt, and has twelve next-nearest neighbours of the same 

atom type at a distance of 2 / 2 ⋅aLatt. 

   

 

FIG 2.1-1: Unit cell of the zincblende crystal structure. The atom type is specified by an individual color. After Ref.[6].  

 

A Wigner-Seitz cell is defined as the primitive cell in which there is only one lattice point if there is 

only one atom type in a crystal structure. The Wigner-Seitz cell for an fcc crystal lattice is presented 

in FIG 2.1-2(a). The counterpart in k-space, i.e. the first Brillouin zone, is described in FIG 2.1-2(b). 
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For an fcc lattice in real space, the first Brillouin zone is body-center-cubic (bcc) in k-space. The 

symmetry points and the axes are given by Greek letters in FIG 2.1-3. In the origin kx = ky = kz = 0, 

the symmetry point is denoted as Γ. 

 

 
FIG 2.1-2: Schematic description of (a) the Wigner-Seitz cell for an fcc lattice in real space and (b) the corresponding 

first Brillouin zone in k-space. After Ref.[6]. 

 

 
FIG 2.1-3: First Brillouin zone of zincblende crystal structure. Symmetry points and axes are indicated by Greek letters. 

After Ref. [6] 
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In a zincblende binary compound, there are two atoms of different types in one Wigner-Seitz cell. It 

can be found that the volume of the Wigner-Seitz is vcell = 1/4⋅aLatt
3. The lattice constants involved in 

this work are listed in Table 2-1. For a ternary zincblende semiconductor compound, the lattice 

constant aLatt-ternary can be given by the Vegard’s law [101] 

 Latt-ternary Latt-binary1 Latt-binary 2(1 )a x a x a= − ⋅ + ⋅ , (2-1) 

in which (1-x) and x are the contents of the binary semiconductor 1 and 2, respectively. The 

corresponding lattice constants are aLatt-ternary1 and aLatt-ternary2. 

 

Semiconductor material Lattice constant (Å) 

CdTe 6.481 [44] 

MnTe 6.334 [44] 

MgTe 6.419 [102] 

GaAs 5.654 [103] 

Table 2-1: Lattice constants for different binary semiconductors with the zincblende crystal structure.  

 

2.1.2 Electronic band structures in zincblende semiconductors  

Due to the lattice periodicity and the space symmetry in a crystal system, energy bands are formed 

[104]. The valence band is the highest range of electron energies in which electrons are normally 

present at absolute zero temperature, and the proximate band above the valence band is the 

conduction band. In a direct bandgap semiconductor, most electronic and optical properties are 

controlled by the energy dispersion at the Γ point in the first Brollouin zone.  

For each zincblende semiconductor in Table 2-1, there is a direct energy bandgap at Γ point, i.e. k = 

0. From the group theory, the valence band has p-like symmetry and the conduction band has s-like 

symmetry in real space [104]. As a result, four bands are formed [105]: the conduction band (CB), 

the heavy-hole (HH) valence band, the light-hole (LH) band, and the spin-orbit (SO) split-off valence 

band. The schematic description of a direct bandgap bulk zincblende semiconductor is given in FIG 

2.1-4. Each band has a two-fold degeneracy by considering the electron spin states. As convention, 

the CB band is denoted as Γ6, HH and LH bands are denoted as Γ8, and the SO band is denoted as Γ7. 

The energy bandgap Eg is the energy required to excite one electron from the Γ8 maximum (Ev0) to 

the Γ6 minimum (Ec0), i.e. Eg = Ec0 – Ev0. The energy splitting ∆SO from the Γ8 maximum to the Γ7 

maximum originates from the spin-orbit interaction. Here the Γ8 maximum is defined as the zero 

energy level. 

In order to determine the energy dispersion relation in the center of the first Brillouin zone, the k⋅p 

method based on the four-band Kane model is considered [105]. The Hamiltonian in a zincblende 

semiconductor is given as  

 
2

2 2
0 0

ˆˆ ˆ ˆˆ( ) ( )
2 4

r σ r p
p

H V V
m m c

= + + ⋅∇ ×h
 (2-2) 
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Hereby p̂ is the momentum operator, m0 is the free electron mass, ( )ˆ rV is the periodic potential of 

the lattice at position r, the constant c is the light speed in vacuum and the operator σ̂  is described 

by the Pauli spin matrix. For an electron, the first term represents the electron kinetic energy. The 

second term is the periodic potential energy with V(r ) = V(r + R), in where R is the translation vector 

of the lattice. The last item describes the spin-orbit interaction between the electron spin and the 

internal electrical field which arises from the bulk inversion asymmetry in the zincblende crystal 

structure. 

 

 

FIG 2.1-4: Schematic description of the band structure of zincblende-type bulk semiconductors in the vicinity of Γ-point.  

 

According to the Bloch theorem, the electron states can be written as 

 nk nk( ) ( ) k rr r i
ψ u e ⋅= , (2-3) 

where 

 nk nk( ) ( )r r Ru u= +  (2-4) 

is a periodic function. Here the index n refers to the band and k is the wave vector. The energy is 

given by E = En(k). 

By writing the Schrödinger equation for the wavefunction in (2.3), it is obtained 

 
2

nk nk n nk2 2
0 0

ˆ 1ˆ ˆ ˆˆ( ) ( ) ( ) ( )
2 4

r σ p r k r
p

Hψ V V ψ E ψ
m m c

 
= + + ⋅∇ × = 
 

 (2-5) 

By taking account the definition of the momentum operator, i.e.̂p i= − ∇ℏ , the Schrödinger equation 

can be rewritten in terms of the periodic function as [105] 
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2

0 nk n nk2 2 2 2
0 0 0

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )
4 4

k p σ r p σ r k r k rH V V u E u
m m c m c

  ′+ ⋅ + ⋅∇ × + ⋅∇ × = 
 

ℏ ℏ ℏ
, (2-6) 

with 

 2 2
n n 0( ) ( ) / 2k kE E k m′ = −ℏ  (2-7) 

and  

 
2

0
0

ˆˆ ˆ( )
2

r
p

H V
m

= +  (2-8) 

Therefore En(k) can be obtained by from En
′(k). In the vicinity of the Γ point, the last term on the left 

side can be neglected [105]. It becomes 

 0 nk n nk2 2
0 0

ˆ ˆ ˆˆ ( ) ( ) ( ) ( )
4

k p σ r p r k rH V u E u
m m c

  ′+ ⋅ + ⋅∇ × = 
 

ℏ ℏ
 (2-9) 

To solve the Schrödinger equation above, a right set of basis functions should be chosen, so that the 

wavefunction unk(r) can be represented by a linear combination of these functions, i.e. 

 nk m m
m

( ) ( )r ru a v=∑  (2-10) 

Here {vm(r)} is the function set, and am is the corresponding coefficient. 

As mentioned above, the conduction band has s-like symmetry and the valence band has p-like 

symmetry near the Γ point, the basis functions can be chosen according to the orbit spin in each band. 

By considering the two-fold spin degeneracy, the basis functions are chosen as follows [105],  

 
1 2 3 4

5 6 7 8

( ) , ( ) , ( ) , ( )
2 2

( ) , ( ) , ( ) , ( )
2 2

r  r   r  r

r  r  r  r  

X iY X iY
v iS v v Z v

X iY X iY
v iS v v Z v

− += ↓ = ↑ = ↓ = − ↑

+ −= ↑ = − ↓ = ↑ = ↓
 (2-11) 

Here the wavefunction |S> is the normalized s-orbit spherical harmonic function. The wavefunctions   

|Z> and 
2

X iY±
∓  are the p-orbit spherical harmonic functions. These spherical harmonics are the 

normalized electron wavefunctions of a Hydrogen atom [105]. The electron spin states are denoted 

by |↑> for spin up and |↓> for spin down. Each basis function is a product of one orbit harmonic 

function and the spin state wavefunction, e.g. 1( )rv iS iS= ↓ = ⋅ ↓ . The first four basis functions 

are respectively degenerate with the last four basis functions, i.e. v1(r) is degenerate with v5(r), v2(r) 

is degenerate with v6(r), v3(r) is degenerate with v7(r) and v4(r) is degenerate with v8(r),. 

At the Γ point, the electronic statesX ↑ , X ↓ , Y ↑ , Y ↓ , Z ↑  and Z ↓  are degenerate 

and have energy of Ep [105], i.e. 
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0 p 0 p

0 p 0 p

0 p 0 p

ˆ ˆ, ,
ˆ ˆ, ,
ˆ ˆ, ,

 

 

 

H X E X H X E X

H Y E Y H Y E Y

H Z E Z H Z E Z

↑ = ↑ ↓ = ↓

↑ = ↑ ↓ = ↓

↑ = ↑ ↓ = ↓

 (2-12) 

Similarly for the conduction band, the statesS↑  and S↓  are degenerate and have energy of Es, 

i.e. 

 0 s 0 s
ˆ ˆ, , H S E S H S E S↑ = ↑ ↓ = ↓  (2-13) 

According to the basis functions in (2.11), the Hamiltonian cĤ  contained in Equation (2.9) can be 

represented by an 8 × 8 matrix. It is written as 

 c

c

ˆ 0

ˆ0

H

H

 
 
  

 (2-14) 

Here ˆ
cH is a 4 × 4 matrix, and it is obtained as [105] : 

 

s

p SO SO
c

SO p

p SO

0 0

0 3 2 3 0

2 3 0

0 0 0 3

E kP

E ∆ ∆
H

kP ∆ E

E ∆

 
 

− =  
 
 + 

 (2-15) 

Here the assumption kx = ky = 0 is made. The Kane’s parameter P and the spin-orbit split-off energy 

∆SO are defined as 

 z
0

ˆP i S p Z
m

= − ℏ
 (2-16) 

 SO y2 2
0

3
ˆ ˆ

4 x

i V V
∆ X p p Y

m c x y

∂ ∂= −
∂ ∂

ℏ
 (2-17) 

By using the definitions Es = Eg and Ep = −∆SO/3, the Hamiltonian in (2.15) is rewritten as   

 

g

SO SO
c

SO SO

0 0

0 2 3 2 3 0ˆ
2 3 3 0

0 0 0 0

E kP

∆ ∆
H

kP ∆ ∆

 
 

− =  − 
  

 (2-18) 

By considering the Hamiltonian Hc for the first four basis functions, the Schrödinger equation in (2.9) 

is rewritten in the matrix form as  

 

g 1 1 1 1

2 2 2 2SO SO

3 3 3 3SO SO

4 4 4 4

0 0 ( ) ( )

( ) ( )0 2 3 2 3 0

( ) ( )2 3 3 0
( ) ( )0 0 0 0

r r

r r

r r

r r

E kP a v a v

a v a v∆ ∆
E

a v a vkP ∆ ∆

a v a v

     
     −     ′=     −     
      

 (2-19) 
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There are four eigenvalues for the energy E′. By taking account Equation (2.7), the energy En(k) for 

k ≈ 0 can be obtained as 

                 
22 2

g SO
c g 2

eff-CB eff-CB 0 g g SO

2 ( 2 3)1 1
CB: ( ) , with

2 ( )
 

P Ek
E k E

m m m E E

+ ∆
≈ + = +

+ ∆
h

h
    (2-20) 

                  
2 2

HH
eff-HH eff-HH 0

1 1
HH : ( ) , with

2
  

k
E k

m m m
≈ =h

                      (2-21) 

                   
2 2 2

LH 2
eff-LH eff-LH 0 g

1 1 4
LH : ( ) , with

2 3
 

k P
E k

m m m E
≈ = −h

h   
 (2-22) 

                   
2 2 2

SO SO 2
eff-SO eff-SO 0 g SO

1 1 2
SO : ( ) , with

2 3 ( )
 

k P
E k

m m m E
≈ −∆ + = −

+ ∆
h

h  
 (2-23) 

The effective mass for each electronic state is given by Equation (2.20) ~ (2.23). To note, the Kane’s 

model gives an inaccurate description for the effective electronic mass of the HH band, i.e. see 

Equation (2.21). This can be fixed by the eight-band Luttinger-Kohn's model [105].    

The coefficient set {am} for each E′ can be determined. The corresponding wavefunctions are 

         1CB: ( )rku iS≈ ↓                                       (2-24) 

                       2HH : ( )
2

rk

X iY
u

+≈ − ↑  (2-25) 

                       3

1 2
LH : ( )

33 2
rk

X iY
u Z

−≈ ↑ + ↓  (2-26) 

                       4

2 1
SO : ( )

3 2 3
rk

X iY
u Z

−≈ ↑ − ↓  (2-27) 

 For the corresponding degenerate electronic states, the wavefunctions are  

                       5CB: ( )rku iS≈ ↑                                      (2-28) 

                       6HH: ( )
2

rk

X iY
u

−≈ ↓  (2-29) 

                       7

1 2
LH : ( )

33 2
rk

X iY
u Z

+≈ − ↓ + ↑  (2-30) 

                       8

2 1
SO : ( )

3 2 3
rk

X iY
u Z

+≈ ↓ + ↑  (2-31) 
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Now consider the electronic states in terms of the spin states. The electron spin state is represented 

by |s, ms>s, in which s is the electron spin and ms is the spin component along an arbitrary z-axis. It is 

written as 

 
s s

1 2,1 2 , 1 2, 1 2 ↑ = ↓ = −  (2-32) 

The orbital spin state is represented by by |l, ml>l, in which l is the electron orbit spin and ml is the 

spin component along the z-axis. It is obtained 

 
l l l l

0,0 , 1,1 , 1, 1 , 1,0
2 2

   
X iY X iY

S Z
+ −= − = = − =  (2-33) 

By denoting the orbital angular momentum operator as L̂  and the spin angular momentum operator 

as Ŝ , the operator of the total angular momentum written as ˆˆ ˆJ L S= + . The corresponding 

projection operators hold z z z
ˆˆ ˆJ L S= + . By performing the following operations  

 
ˆˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( )

J r L r S r r

r r r r

nk nk nk nk

z nk z nk z nk j nk

u u u j u

J u L u S u m u

= + =

= + =

h

h

, (2-34) 

the electronic states unk(r) can be represented by the spin states |j, mj>j. They are summarized as 

 

1

5

2

6

3

7

4

8

CB: 1 2, 1 2 ,

1 2,1 2 ;

HH : 3 2,3 2 ,
2

3 2, 3 2 ;
2

1 2
LH : 3 2, 1 2 ,

33 2

1 2
3 2,1 2 ;

33 2

2 1
SO : 1 2, 1 2 ,

3 2 3

2
1 2,1 2

3

       

 

        

       

 

       

j

j

j

j

j

j

j

j

u i iS

u i iS

X iY
u

X iY
u

X iY
u Z

X iY
u Z

X iY
u Z

X i
u

= − = ↓

= = ↑

+= = − ↑

−= − = ↓

−= − = ↑ + ↓

+= = − ↓ + ↑

−= − = ↑ − ↓

+= = 1
.

2 3

Y
Z↓ + ↑

 (2-35) 

Here the state unk(r) is denoted as un. 

For an accurate band structure calculation, the specific atomic parameters should be taken into 

consideration [105]. FIG 2.1-5 gives the calculated band structure [106] for bulk CdTe (a) and GaAs 

(b). From experimental data [103], Eg(CdTe) = 1.475 eV, ∆SO(CdTe) = 0.952 eV, Eg(GaAs) = 1.424 

eV at room temperature. At a temperature of 1.7 K, ∆SO(GaAs) = 0.3464 eV is determined. 
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FIG 2.1-5: Calculated band structure adopted from Ref. [106]. (a) bulk CdTe; (b) bulk GaAs. 

 

2.2 Optical orientation in zincblende semiconductors  
Due to the direct nature of the band structure in zincblende semiconductors, optical excitation can 

induce electronic transitions from the valence band to the conduction band in the vicinity of Γ point. 

Polarized optical excitation, namely optical orientation, has been widely used to generate 

spin-polarized electrons for spin-related phenomena studies in semiconductors. Quite systematical 

investigations are summarized in Ref. [21] for III-V semiconductors.   

The resonant optical excitation is considered at the Γ point. This means that the excitation energy 

excωℏ is equal to the electronic bandgap energy Eg, i.e. Eg = excωℏ . An optically-induced electronic 

transition process can be treated as a state transition induced by the electrical dipole Hamiltonian 

operator DipĤ  of the light. It is defined as 

 Dip
ˆ ˆˆH r Ee= ⋅  (2-36) 

The electrical field vector E of the optical excitation is denoted as 

 (t) (t) (t)E =E E iθ
x y e+ ⋅  (2-37) 

Here it is considered the light wave vector is along the z-axis direction (see Section A3). The 

electrical field component along x-axis and y-axis are respectively represented as Ex(t) and Ey(t), and 

the phase retardation is given by θ. It can be found: 

In case of σ+-polarized excitation, i.e. |Ex(t)| = |Ey(t)| and θ = π/2,  
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 Dip
ˆ ˆ ˆˆ ˆ( ) ( ) ( )H x yσ e xE iyE γ X iY+ = + = +  (2-38) 

Here γ is constant determined by the spherical harmonic function [105].  

In case of σ−-polarized excitation, i.e. |Ex(t)| = |Ey(t)| and θ = −π/2,  

 Dip
ˆ ˆ ˆˆ ˆ( ) ( ) ( )H x yσ e xE iyE γ X iY− = − = −  (2-39) 

In case of linearly-polarized excitation, i.e. |Ex(t)| = |Ey(t)| and θ = 0,  

 Dip
ˆ ˆ ˆˆ ˆ( ) ( ) ( )H x yπ e xE yE γ X Y= + = +  (2-40) 

It could be found that σ+-polarized excitation can induce a transition from the state |3/2, -3/2>j to the 

state i|1/2, -1/2>j, as there is  

 Dip
ˆ ˆ ˆ ˆ1/ 2, 1/ 2 ( ) 3 / 2, 3 / 2 2

2
H

X iY
σ γ S X iY γ S X X+ −− − = ↓ + ↓ =  (2-41) 

Also the σ+-polarized excitation can induce a transition from the state |3/2, -1/2>j to the state i|1/2, 

1/2>j, as there is 

 Dip

2 2ˆ ˆ ˆ ˆ1 / 2,1 / 2 ( ) 3 / 2, 1 / 2
3 36

H
X iY

σ γ S X iY Z γ S X X+ −− = ↑ + ↑ + ↓ =  (2-42) 

As well, the σ+-polarized excitation can induce a transition from the state |1/2, -1/2>j to the state i|1/2, 

1/2>j, as there is 

 Dip

2 1 4ˆ ˆ ˆ ˆ1/ 2,1/ 2 ( ) 1/ 2, 1/ 2
3 32 3

H
X iY

σ γ S X iY Z γ S X X+ −− = ↑ + ↑ − ↓ =  (2-43) 

The transition probability is proportional to the square of the calculated values from (2.41) ~ (2.43). 

Therefore the relative transition strength is 1:1/3:2/3. For the calculations, it has been used 

ˆ ˆ ˆS X X S Y Y S Z Z= = by considering the spherical symmetry of S function.  

Similarly, state transitions induced by σ−-polarized excitation and by linearly-polarized excitation 

can be calculated. The transition paths and the relative strengths are summarized in FIG 2.2-1.   

Since Γ7 is split from Γ8 due to the spin-orbit interaction, the state transitions from SO band to CB 

band can be neglected in case of a resonant excitation from Γ8 to Γ6. If the excitation is σ±-polarized, 

the state transitions |3/2, m 3/2>j → |1/2, m1/2>j and|3/2, m1/2>j → |1/2, ±1/2>j are both induced, 

and the electron spin polarization is given as 

 
1/2,1/2 1/2, 1/2

opt

1/2,1/2 1/2, 1/2

1 1/ 3
50%

1 1/ 3

 

 
j j

j j

p p
P

p p

−

−

− −= ± = ± = ±
+ +

, (2-44) 

where the transition probability to the spin state |1/2, 1/2>j and |1/2, -1/2>j are respectively given by 

p|1/2, 1/2>j and p1/2, -1/2>j. This gives an upper-limit spin polarization by optical orientation in a bulk 

zincblende semiconductor, i.e. GaAs. The obtained electron spin polarization is generally smaller 

than this value as a result of different spin relaxation mechanisms [21]. In quantum structures, the 
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optically generated spin polarization can be up to 100%, since the LH band is not degenerate with the 

HH band anymore and only the state transition |3/2, -3/2>j → |1/2, -1/2>j is allowed in the case of 

resonant excitation. 

 

 

FIG 2.2-1: Allowed optical transitions from valence band to conduction band by different polarizations. The relative 

transition strength is indicated. 

 

2.3 II-VI diluted magnetic semiconductors  
Diluted magnetic semiconductors (DMS) are semiconducting alloys whose lattice is made up in part 

of substitutional magnetic ions [107]. The host materials can be IV-VI, II-VI and III-VI 

semiconductors [54] and the magnetic centers are typically of transition metals or rare-earth elements, 

e.g. Mn, Cr and Eu. Since the DMS system pertain both semiconducting electronic properties and 

magnetic properties, it has obtained great interest over decades. From the aspect of fundamental 

physics, it is interesting to understand the basic physics of the magnetic centers [42, 44, 108], such as 

magnetic ordering and the magnetization dynamics. On the other hand, the DMS is regarded as one 

promising candidate for future applications of spintronic devices [41, 54], especially after the 

successful demonstration of electrically controllable ferromagnetism [26].  

In this thesis, the DMS investigations are performed in heterostructures made of II-VI 

semiconductors belonging to telluride family, i.e. single Cd1-xMnxTe/Cd1-yMgyTe quantum wells 

(QW). Here x and y are the mole fraction of Mn and Mg, respectively. The study focus is mainly 

concerning to the magnetization dynamics of the Mn2+ ions acting as paramagnetic centers. Thanks 

to the superb optical quality of the grown samples [109], the magnetic properties are optically 

addressed by means of photoluminescence spectroscopic measurements. In the following, basic 

characteristics of the studied DMS QW are given. 
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2.3.1 Bandgap of a DMS QW  

For the studied Cd1-xMnxTe/Cd1-yMgyTe heterostructures, both crystal alloys are ensured to favor the 

zinc-blende structure, so that the compounds still have direct bandgap structures at the Γ point of the 

first Brillouin zone. By using the virtual crystal approximation approach [107], the bandgap for a 

bulk Cd1-xMnxTe DMS can be well described by 

 g g g( ) (1 ) (CdTe) (Mn Te)E x x E xE= − + , (2-45) 

in which Eg(CdTe) and Eg(MnTe) are the energy bandgaps for CdTe and MnTe, respectively. Here 

the bandgap is referred to the energy splitting between the Γ8 valence band and the Γ6 conduction 

band. The Γ7 split-off band is omitted for the studied (Cd, Mn)Te system. In the liquid helium 

temperature, it has been determined as Eg(CdTe) = 1.606 eV [107] and Eg(MnTe) = 3.198 eV [110]. 

The above relation can be simplified as 

 ( ) 1.606 1.592 [eV] gE x x= +  (2-46) 

For the Cd1-yMgyTe alloys, the energy bandgap dependence is experimentally summarized as [111] 

 2
g ( ) 1.606 1.700 0.3 [eV] E y y y= + +  (2-47) 

To determine the actual band structure of QW heterostructure, the offset of the valence band between 

the QW layer and the barrier layer should be taken into account. It is described by the valence band 

discontinuity parameter αV, which is used to define the depth of the trapping potential VV in the 

valance band. The relation is given as 

 V V B Q( )V α E E= −  (2-48) 

Here EB is the bandgap of the barrier layers and EQ is the bandgap of the QW layer. In FIG 2.3-1(a), 

the QW band alignment for a positive value of αV is schematically depicted. The potential 

confinement in the conduction band and the valence band both happen in the QW region, which is 

known as the type-I QW structure. The studied Cd1-xMnxTe/Cd1-yMgyTe QW is this type and the 

value of αV has been experimentally determined around to be around 0.3 [112].  

The higher barrier potential can confine the electron wavefunction mainly in the QW layer. The layer 

thickness is typically on the nanometer length scale. As a result of the quantum mechanical effect, 

the electron momentum is of discrete levels in the growth direction (z-axis direction) [113]. As 

shown in FIG 2.3-1(b), the energy level of the conduction (valence) band is not on the band 

minimum (maximum), but higher (lower) by a certain amount. The discrete momentum in the growth 

direction is 

 z
z

, with 1,2,3 
nπ

k n
L

= = ⋯ , (2-49) 

in which Lz is the thickness of the QW layer and n is the quantum number. The corresponding 

discrete subband kinetic energy level is    
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2 2 2

2 2
kin 2

eff-z z eff-xy

( ) ,with 1,2,3
2 2

 
π

E n n k n
m L m

= + =�

ℏ ℏ
⋯  (2-50) 

Hereby, ħ is the reduced Planck constant, meff-z is the effective electron (hole) mass in the conduction 

(valence) band in the z-axis direction, meff-xy is the effective electron (hole) mass in the conduction 

(valence) band in the in-plane (xy plane) direction, and k|| is the continuous in-plane component of 

the electronic wave vector. As a rough estimation of the quantized kinetic energy in the studied (Cd, 

Mn)Te QW sample, by using parameters n =1, k|| = 0, Lz = 12 nm, and me ≈ 0.094⋅m0 in CdTe [103, 

114] for the electron in the conduction band with m0 as the free electron mass, Ekin-e ≈ 28 meV is 

obtained. Similarly for holes in the valence band, by using meff-z-hh ≈ 0.72⋅m0 for the heavy hole and 

meff-z-lh ≈ 0.13⋅m0 for the light hole in the valence band, Ekin-hh ≈ 3.6 meV and Ekin-lh ≈ 20 meV are 

respectively obtained. To note, the electronic wavefunction penetration in the barrier layer is not 

considered here. This kinetic energy difference between the heavy hole and the light hole causes the 

non-degeneracy at the Γ point of the valence band.  

 

 
FIG 2.3-1: (a) Band alignment in a type-I quantum well heterostructure; (b) Discrete kinetic energy levels due to spatial 

confinement at the Γ point. CB band: magenta solid line; HH band: blue solid line; LH band: blue dashed line.  

 

Apart from the electronic confinement, there is universally lattice mismatch between the barrier 

material and the QW material. Since the QW thickness is generally chosen to be much below the 

critical relaxation thickness [115], finite strain is generated, i.e. a crystal field is in presence. As a 

result of the spin-orbit interaction, the LH subband is lowered compared with the HH subband in the 

QW layer [116].  

As a consequence of effective mass difference and the strain-induced spin-orbit interaction, the 

energy splitting ∆Ehl between the heavy HH (blue solid line) and LH (blue dashed line) is indicated 

in FIG 2.3-1(b). In the QW of the studied Cd1-xMnxTe/Cd1-yMgyTe heterostructures in which x is 

between 0.024 and 0.067 and y is equal to 0.3, ∆Ehl is estimated ~20 meV from measurements in 
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similar structures [109, 112]. Here, the non-degeneracy between the HH subband and the LH 

subband is dominated by the electronic confinement.  

 

For spectroscopic measurements, the photoluminescence (PL) is collected originating from the QW 

layer. The photoluminescence comes after the recombination of excitons, quasi-particles composed 

of electron-hole pairs. The excitons are bound states due to the Coulomb interaction between 

electrons and holes. A schematic description is given in FIG 2.3-2 for the exciton creation. 

 

 
FIG 2.3-2: Picture of exciton generation. For energy terms, ħω: excitation energy; Eb: exciton binding energy; EEX: 

exciton energy; Eg: semiconductor energy bandgap. After Ref. [117] 

 

The photon excitation (ħω) lifts the electrons from the valence band to the conduction band, and thus 

electron-hole pairs are generated after energy relaxation. One electron and one hole can be bound to 

form a neutral exciton (X) with a binding energy Eb, which reduces the total energy of the 

electron-hole pair. Based on the semi-classical Bohr model, the exciton binding energy can be 

written as 

 
22

2 0 r
b B,eff 2

0 r B,eff EX

41
( ) , with ( )

8 ( )
 

e
E n a n n

a n m e

πε ε
πε ε

= = h
, (2-51) 

in which ε0 is the vacuum dielectric constant, εr is the dielectric permittivity, e is the electron charge 

and n is an integer for the level of the exciton state. The effective Bohr radius is denoted as aB,eff(n), 

in which mEX is the reduced mass for the exciton. It is described by mEX
-1 = meff-e-xy

-1 + meff-h-xy
-1, 

where meff-e-xy and meff-h-xy are the in-plane effective mass of the electron and the hole, respectively. 

The formation possibility of the exciton state (n = 1) is generally much larger than the other states (n > 

1), therefore the photoluminescence is dominated by the recombination of excitons with n = 1. For 
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excitons (n =1) in bulk CdTe system, Eb ≈ 10.5 meV and aB,eff ≈ 7.6 nm have been experimentally 

determined [118, 119]. In the QW system, the strong spatial confinement could enhance the 

electron-hole interaction to give rise to higher binding energy than the value in bulk system [120, 

121]. In (Cd, Mn)Te/(Cd, Mg)Te heterostructures, the PL intensity from the light-hole excitons was 

observed much weaker than PL intensity of heavy-hole excitons [109]. 

Further, if the sample is doped, a charged exciton (trion) can be formed [122]. For instance, in the 

case of n-type doping, negatively charged trions (X-) composed of two electrons and one hole can be 

generated [123], while for p-type doping, the positively charge trion (X+) is obtained [124]. For 

CdTe-based systems, these two types of trions have been both clearly observed in quantum structures 

in the past two decades [123, 124]. The trion binding energy is typically larger than the neutral 

exciton by a few meV. Usually the trion PL intensity is higher than neutral excitons at liquid helium 

temperature [125]. 

 

2.3.2 Magnetic properties of a DMS QW in a static magnetic field 

In II-VI DMS systems like Cd1-xMnxTe alloys, the magnetic atoms (Mn) occupy randomly the cation 

positions (Cd), and thus the outer 4s2 electrons contribute to the interatomic binding with the anions 

(Te). The manganese atoms then function as ionic centers, i.e. Mn2+ ions, which have the 3d5 

electronic shell configuration.  

According to the Hund rules, all the five 3d-electron spins are aligned parallel to occupy the lowest 

energetic state [6]. Therefore the orbital spin is L = 0, and the effective spin of one Mn2+ ion is S = 

5/2. The Mn ions can be expected to be relatively clean localized magnetic centers, since the 

spin-orbit coupling between the Mn ions and the static/dynamic crystal field is rather small in a 

perfect solid crystal [108]. For an isolated Mn2+ ion, the ground spin state is of six-fold degeneracy, 

in which the spin components are Sz = -5/2, -3/2, ……, +5/2 along an arbitrary defined z-axis 

direction. The excited states contain one or more electron spins antiparallel to the ground state, e.g., 

it requires 2.2 eV of energy to flip one electron spin. For optical excitation below this energy level, 

the Mn2+ ion spin can be regarded always in the ground state. 

 

• Magnetization of Mn ions in a DMS  

The magnetic system is described by a macroscopic magnetization M, which could be treated as the 

mean value of the spin <Sz> averaged over all the Mn2+ ions in the thermal equilibrium state. In a 

magnetic field Bext which is defined along the z-axis direction, the degeneracy of the six-fold Mn2+ 

ion spin states is removed, and the energetic sublevels are equally separated by the Zeeman energy 

splitting [44]. For a Cd1-xMnxTe DMS sample, the equilibrium magnetization of Mn2+ ions can be 

written as 

 ext bath Mn B 0 z( , )M B T g µ N x S= − < > ,  (2-52) 
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in which gMn is the Lande g factor of the Mn ion, µB is the Bohr magneton, N0 is the number of 

crystalline elementary cells per unit volume, and Tbath is the sample temperature. For a system of 

isolated Mn ions which are treated as paramagnetic centers, e.g. in extremely diluted case with x << 

0.01 [44], the average spin <Sz> can be expressed by the Brillouin function 

 

Mn B ext
z 5/2
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5 5
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2 2
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2 2 2 2

  
g µ B
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J J
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J J J J

< >= −

+ += −
, (2-53) 

in which kB is the Boltzmann constant, and BJ(q) is the Brillouin function of Jth order. For the Mn2+ 

ion spin, J is equal to 5/2. In the regime of a higher Mn concentration, the Mn ions cannot be treated 

as isolated anymore, since the d-d exchange interaction can couple neighbouring Mn ions with each 

other. The d-d interaction is antiferromagnetic, from which the mean spin <Sz> is expected to 

become less. In the range of liquid helium temperature, Mn concentration (x < 0.67) and Bext < 5 T, 

the magnetization can be described by a modified Brillouin function [121, 126] 
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 (2-54) 

Here xeff is the effective Mn concentration, and the effective Mn spin temperature is Teff = Tbath + T0. 

A smaller value than x is expected for xeff due to formation of Mn clusters [44, 127], e.g. Mn ion 

pairs, Mn ion triangles and so on, in which the Zeeman interaction is suppressed by the much 

stronger d-d interaction and thus contribute less spin polarization. As a result, the saturated mean 

spin is less than 5/2, and it is denoted as an effective Mn2+ ion spin Seff = 5/2⋅xeff/x. The 

antiferromagnetic d-d interaction makes the Mn ions have a higher spin temperature than the sample 

temperature by T0 (with a positive value). Based on Monte Carlo simulations [127] and experiment 

investigations [121], empirical formulae can be given to describe experimental data for the bulk 

Cd1-xMnxTe system as 

 

43.35 6.192
eff

0

( ) 0.0179 0.653 1.807

35.37

1 2.752

x xS x e e

x
T

x

− −= + ⋅ + ⋅
⋅=

+ ⋅
 (2-55) 

Their dependence of the Mn concentration is depicted in FIG 2.3-3. Monotonically the effective spin 

decreases with increasing the Mn concentration and the spin temperature parameter T0 increases, 

both of which basically originate from enhanced d-d exchange interaction for higher Mn contents.  

For the Cd1-xMnxTe QW structures, the spectroscopic measurements [109, 120, 128, 129] generally 

show deviations from the empirical formula given above. The effective Mn2+ ion spin deviates by a 

small fraction , while the temperature parameter T0 differs by factor a two or so [129].  
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FIG 2.3-3: Calculated effective spin Seff (black line) and T0 (blue line) versus the Mn concentration in a bulk Cd1-xMnxTe 

system. The plotting is from Equation (2.55) with experimental data from Ref. [121]. 

 

Concerning the d-d exchange interaction between Mn ions, it is described by the Heisenberg spin 

Hamiltonian [130, 131] 

 d-d i j
ˆ ˆˆ ( )R S Sdd

ij
i j

H J
≠

= − ⋅∑  (2-56) 

Thereby iŜ  and jŜ are the spin operators for the two Mn ions located at Ri and Rj, respectively. 

Jdd(Rij) is the exchange interaction constant. The exchange processes are categorized into three types 

[107]: two-hole processes, one-hole-one-electron, and two-electron processes. The two-hole 

processes known as superexchange mechanism is the dominant one with a contribution of ~95% to 

the whole Hd-d. The one-hole-one-electron processes, i.e. the Bloembergen-Rowland interaction and 

the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, account for only ~5%, while the 

two-electron processes are negligible.      

The exchange interaction decreases strongly with increasing distance between Mn ions. It has been 

demonstrated both the nearest-neighbor exchange process (described by JNN) and the 

next-nearest-neighbor exchange process (described by JNNN) are antiferromagnetic, and thus Hd-d 

gives antiferromagnetic coupling as a whole. Typically, JNN is approximately five times larger than 

JNNN. In a Cd1-xMnxTe DMS system, JNN was experimentally determined about -0.54 meV [132], and 

JNNN ~ -0.095 meV [133].  

 

• sp-d exchange interaction  

The prominent magnetic properties in a DMS [44, 107], e.g. the giant magneto-optic rotation and the 

giant Zeeman effect, originate from the exchange interaction between the Mn ions and carriers, i.e. 

s-d exchange interaction between Mn ions and s-like electrons (conduction band Γ6), and p-d 
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exchange interaction between Mn ions and p-like electrons (valence band Γ7 and Γ8). The 

Hamiltonian can be described as 

 
i

, ,
i

ˆˆ ˆ( )
R

r R S ss p d s p d
ex iH J− −= − ⋅∑ , (2-57) 

Here Ri is the location of the ith Mn ion, and r is the electron coordinate. iŜ is the Mn2+ ion spin 

operator, ŝ  is the electron spin operator. The sp-d exchange interaction constant is denoted as 

Js,p-d(r - Ri). Since the electronic wavefunction spans over a large number of lattice sites which are 

partly occupied by Mn ions with a concentration x, the summation can be treated in terms of the 

virtual crystal field approximation. The item Js,p-d(r - Ri) can be replaced by xJs,p-d(r - R), where R is 

each lattice site in the crystal. Further, the mean Mn2+ ion spin <Sz> is used to replace the spin over 

all the Mn sites and the contribution from the electron spin is the z-component sj. With these 

assumptions, the sp-d exchange interaction can be simplified as 
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 (2-58) 

Here Is,p-d is the integral for s-d or p-d exchange interaction, which are conventionally denoted as α 

and β/3, respectively. In the Cd1-xMnxTe DMS system, it has been experimentally determined N0α = 

0.22 eV and N0β = -0.88 eV. Therefore the coupling between Mn ions and electrons of the 

conduction band is ferromagnetic while it is antiferromagnetic for the electron of the valence band. 

The different coupling types and strengths are raised from the origin of each exchange interaction 

between the band electrons and 3d5 electrons of Mn ions [107, 134]. There are two competing 

exchange effects. A positive contribution is from the Coulomb exchange interaction, which favors 

aligning the electron spin parallel to the Mn2+ ion spin, and thus it gives the ferromagnetic coupling. 

A negative source is due to the hybridization of the 3d5 electrons with the band electrons. The s-d 

hybridization between the electrons of the conduction band and the Mn ions is forbidden by 

considering the s-type electron wavefunction symmetry, while p-d hybridization between the 

electrons of the valence band and the Mn ions is allowed to contribute a strong and dominant 

negative contribution as antiferromagnetic coupling. As a whole, the s-d exchange interaction gives a 

positive integral value and the p-d exchange interaction a negative value. 

Using Equation (2.58), the change of the energy level for each subband can be explicitly expressed. 

For the Γ6 conduction band, it gives 
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Γ sE m N α x S m= − ⋅ = ±  (2-59) 

For the Γ8 valence band, it gives 

 
8

0
z

3 1
, with (HH), (LH)

3 2 2
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N β
E m x S m m= − ⋅ = ± = ± , (2-60) 

in which the heavy-hole and the light-hole subband are respectively clarified by HH and LH. 

 



Chapter 2. Background physics 

27 

• Giant Zeeman splitting in a DMS  

As a consequence of the sp-d exchange interaction, the carriers (electrons or hole) manifest quite 

abnormal effects in a DMS system compared with nonmagnetic counterparts. The Mn ions are 

magnetized in a magnetic field, and via sp-d exchange interaction, the band structure is greatly 

modified as indicated by Equations (2.59) and (2.60). Consider the two conduction subbands, the 

energy levels are 

 
c e B ext 0 z
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 (2-61) 

Hereby l indicates the lth Landau energy level in presence of the external field Bext, ωc is the 

cyclotron frequency and ge is the electron Lande g factor. The last term is spin dependent, with a sum 

of the electron Zeeman energy induced by Bext and the energy shift caused by the exchange 

interaction with Mn ions. The energy splitting between these two spin sublevels is 
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Here geff-e is the effective Lande g factor of the electron. From Equation (2.61) and (2.62), it is 
obtained 

 ( )0 ef f Mn B ext
eff e 0 z B ext e 5/2

B ext B bath 0
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 e

N α xS g µ B
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In the regime of a weak magnetic field, i.e. q << 1, the Brillouin function can be approximated [107] 
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In this case, the effective Lande g factor can be simplified as 

 Mn 0 ef f
eff e
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g N α xS
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,  (2-65) 

which is field independent. By using the relations in Equation (2.55) for a Cd1-xMnxTe system, gMn ≈ 

2 [44], ge ~ -1 [135] and Tbath = 5 K, the effective electron g factor is calculated, as presented in FIG 

2.3-4 (black line). Generally it is larger than the electron factor by one order of magnitude,1 and it 

has a positive sign due to the s-d ferromagnetic coupling. The maximum value happens at the Mn 

concentration of x ~ 0.1.  

                                                 
1 The calculationns in FIG 2.3-4 give upper limits for the effective g factor. In the low field regime, the local Mn2+ ion 

anisotropic spin interaction such as hyperfine interaction and spin-lattice coupling induced by strain or local crystal field, 

and magnetic fluctuations can depolarize the magnetization of the Mn ions. As a result, the sp-d exchange interaction is 

reduced giving a smaller effective g factor for electrons and holes.     
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Similarly the energy splitting between spin sublevels in the HH valence band is 

 8-HH HH e B ext 0 z eff-HHe B extΓ
∆E g µ B N β x S g µ B= − ⋅ =  (2-66) 

Hereby, gHHe denotes the electron g factor in the HH valence band, and geff-HHe the effective electron 

g factor. Because the corresponding hole spin always takes an opposite sign with the electron spin of 

the valence band, the effective Lande g factor of the heavy hole in the low field regime is  

 Mn 0 ef f
eff hh eff-HHe hh

B bath 0

7

6 ( )

g N β xS
g g g

k T T−
⋅= − = −
+

 (2-67) 

Again by using parameters above except ghh ~ 0, the effective hole g factor is calculated as presented 

in FIG 2.3-4 (blue line). It has a larger magnitude than the electron by a factor of about four. The 

maximum value happens at a same Mn concentration as for the case of the electron.  

Since the carrier g factor values are typically smaller by orders of magnitude than the effective g 

factors, they could be neglected as an approximation in most cases.  

Similar calculations and approximations can be made for the LH valence band. As a summary, the 

energy splitting in between each subband can be written as 
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The effective g factor of the electron, the heavy hole and the light hole can be approximated as 
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,  

FIG 2.3-4: Calculated effective g factor of the electron (black line) and effective g factor of the heavy hole (blue line) 

versus the Mn concentration in a Cd1-xMnxTe system. The sample temperature Tbath = 5 K is used. 
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The energy band structure of the conduction band and the valence band at the Γ point is presented in 

FIG 2.3-5. Due to the positive effective g factor for the electron, the spin state of ms = -1/2 is in the 

lower energy level in the Γ6 band. On the contrary, the electron spin state of mj = -3/2 occupies the 

highest energy level in the Γ8 band as a result of its negative effective g factor (to note, the 

corresponding hole spin is: mh = +3/2, and the effective g factor of the heavy hole is positive).  

 

 

FIG 2.3-5: Energy band structure manifesting giant Zeeman energy splitting as a result of sp-d exchange interaction. The 

blue arrow indicates the maximum energy splitting within each band. The red arrows indicate the optical transitions from 

the conduction band to the valence band. The polarization of the optical emission is marked for each transition process.    

 

Spin states Optical 

polarization  

Energy (relative to zero 

field position) 

Relative transition 

strength ms mj     (mh) 

+1/2 +3/2  (-3/2) σ− -1/2⋅N0(α - β)⋅x<Sz> 3 

+1/2 +1/2  (-1/2) π -1/2⋅N0(α - β/3)⋅x<Sz> 2 

+1/2 -1/2  (+1/2) σ+ -1/2⋅N0(α +β/3)⋅x<Sz> 1 

-1/2 +1/2  (-1/2) σ− +1/2⋅N0(α + β/3)⋅x<Sz> 1 

-1/2 -1/2  (+1/2) π +1/2⋅N0(α - β/3)⋅x<Sz> 2 

-1/2 -3/2  (+3/2) σ+ +1/2⋅N0(α - β)⋅x<Sz> 3 

Table 2-2: Transition energy and strength for each process marked in FIG 2.3-5. To note, <Sz> is negative.  

 

Assisted by one photon emission, one electron can transit from the conduction band to the valence 

band.2 According to the optical selection rules |ms-mj| = 0 or 1, the polarization of the optical 

                                                 
2 The reversed process can be done via one photon absorption. The relevant parameters are the same as in Table 2.2.  
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emission is marked along each transition process. The photon with helicity of +1 is denoted as σ+ 

namely right-circularly polarized; the photon with helicity of -1 is denoted as σ− namely 

left-circularly polarized; and the photon with helicity of 0 is denoted as π namely linear-circularly 

polarized. The transition energy and strength is summarized [44] and presented in Table 2-2.  

 

• Photoluminescence polarization in a DMS QW 

Due to the giant Zeeman energy splitting in a DMS system, appreciable carrier spin polarization is 

generated even in a weak magnetic field. For photon-excited carriers in a DMS structure, if carrier 

spin relaxation process is fast enough so that carriers get polarize before their annihilations, a 

polarized PL emission is expected resulting from recombination of spin-polarized carriers. The 

carrier spin relaxation arising from sp-d exchange interaction is very fast with a time constant of τs ~ 

1 ps [136], while the exciton lifetime τexc is generally much longer, e.g. τexc ~ 100 ps for a 

Cd1-xMnxTe QW structure at liquid helium temperature [125]. In the studied Cd1-xMnxTe QW, since 

the PL intensity from the heavy-hole excitons is dominant over the light-hole excitons, the PL 

polarization degree is considered here only for the previous one.  

The PL discussed here is from the bright excitons. First, the PL polarization is considered for the 

heavy-hole neutral excitons. A schematic description is given in FIG 2.3-6 in the exciton picture. The 

PL polarization degree is defined as 

 PL

σ σ

σ σ

I I
ρ

I I

+ −

+ −

−=
+

, (2-70) 

where Iσ+ and Iσ− are the intensity values of the σ+- polarized and σ−- polarized photoluminescence, 

respectively. 

 

 
FIG 2.3-6: Schematic description of the PL polarization from the neutral excitons (X). The energy splitting between the 

exciton subbands is ∆EX. After the exciton recombination, there is no carrier left. 
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The electron-hole pairs are optically generated by a linearly-polarized (π) excitation with the 

generation rate as R. The excitation is typically on a non-resonant energy level, and thus the carriers 

and excitons undergo energy relaxation processes which are treated as a whole energy relaxation 

process in this work [117]. It is assumed the formation time constant is the same for the exciton with 

a total spin of -1 and the exciton with a total spin of +1. The previous is denoted as X(-1) and X(+1) 

for the latter. The exciton spin is defined as the sum of the electron spin (e, the thin arrow) and the 

hole spin (h, the thick arrow). Since the energy relaxation can be approximated as spin-independent 

for the studied sample, the generation rate R− for exciton X(-1) is treated as equal to the generation 

rate R+ for exciton X(+1), i.e. R+ = R− = R/2. As well, the lifetime of X(-1) and X(+1) are also treated 

as same here, and it is denoted asτX which is in the order of several 100 ps.     

Before the exciton recombination, the excitons relax into a dynamical equilibrium state. The 

relaxation channel is dominated by the sp-d exchange interaction in the DMS system, and the spin 

relaxation time is expected to be a few picoseconds for the non-resonant excitation [136]. The 

relaxation rate from X(+1) to X(-1) is τs1
−1, and it is τs2

−1 for the reverse process. Suppose the Zeeman 

energy splitting between X(+1) and X(-1) is ∆EX. Then it is obtainedτs1
−1/τs2

−1 = exp(-∆EX/kBTX) by 

considering the Boltzmann factor in the thermodynamic equilibrium at the temperature TX which is 

the effective exciton temperature. The population of X(+1) and X(-1) exciton is respectively 

described by N+(t) and N−(t) at the time t. The rate equation is written as 
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In the dynamic equilibrium state, i.e. dN+(t)/dt = dN−(t)/dt = 0, it is obtained  
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The PL intensity after exciton recombination is directly proportional to the exciton number in the 

dynamic equilibriums state, i.e. Iσ+ ∝ N+ and Iσ− ∝ N−. The PL polarization degree of the neutral 

excitons in Equation (2.70) is rewritten as 
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For the neutral excitons, using the facts: R+ = R− and τs1
−1/τs2

−1 = exp(-∆EX/kbTX), the equation above 

is simplified 
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Hereby, ρ0X is regarded as the PL polarization if the exciton lifetime is infinite τX → ∞, and τs is the 

spin relaxation time for establishing the dynamic equilibrium between the two subbands. Therefore 

the factor τs/τX determines the actual saturation level of the PL polarization degree, which gains 

larger values for faster spin relaxation. Due to the fact τs <<τX, the PL polarization is also a reflection 

of the exciton temperature TX, which reflects the energy relaxation process. 

Further, by checking the optical transition energy listed in Table 2-2, it could be found the exciton 

energy splitting is 

 X 0( ) zE N x S∆ = − − ⋅ < >α β  (2-75) 

To note, the leakage of the wavefunction into the non-magnetic barrier should be taken in account for 

a QW structure. The full expression of (2.75) is
X 0 e h( )

z
E N x S∆ = − − ⋅ < >δ α δ β , in which δe and δh are 

respectively the probability of the electron and the hole confined in the QW. In a typical 

(Cd,Mn)Te/(Cd,Mg)Te heterostructure, δe ≈ δh ≈ 0.98 [63]. They are both approximated as unity in a 

general case. Also, the magnetic fluctuation is here neglected, e.g. see Ref. [137]. Therefore the PL 

polarization described by Equation (2.74) is thus an upper limit value 

The pronounced energy splitting due to sp-d exchange interaction is a result of the Mn2+ ion spin 

polarization <Sz>. The relation between the PL polarization and the Mn2+ ion spin polarization can be 

expressed as 

 0
0X

B X

( )
tanh

2 z  
N x

S
k T

 − ⋅= − < > 
 

α βρ  (2-76) 

Clearly, the PL polarization is a direct consequence of the spin polarization of Mn2+ ions, or the 

magnetization of the Mn ions by taking into account Equation (2.52).  

In the low field regime for weak magnetization of Mn ions, e.g. Bext ~ 100 mT, by considering 

Equation (2.62), (2.66) and (2.68), the exciton energy splitting can be represented in terms of the 

effective carrier g factor 

 ( )X 6 8-HH eff-e eff-h h B extE E E g g BµΓ Γ∆ ≈ ∆ + ∆ ≈ +  (2-77) 

It can be seen, the heavy-hole neutral exciton takes a giant effective g factor as 

 eff-hhX eff-e eff-h hg g g= + , (2-78) 
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which is positive since the effective electron g factor and the effective hole g factor are both positive, 

e.g. see calculations in FIG 2.3-4. This large effective exciton g factor indicates pronounced PL 

polarization even at a weak magnetic field.    

As a whole, by combining Equation (2.69) and (2.74), the PL polarization degree can be 

approximated as  

 ( ) Mn B ext ef f 0 0
PLX

s X B bath 0 B X

( )1 7
tanh , with

1 / 12 ( )

g B xS N N

k T T k T

−= = ⋅ ⋅
+ +

µ α βρ ζ ζ
τ τ

 (2-79) 

In an even weaker field regime where the exciton energy splitting is much less than the exciton 

thermal energy, e.g. Bext < 10 mT, there is tanh(ζ) ≈ ζ. The PL polarization can be explicitly 

expressed as 

 Mn B ext ef f 0 0
PLX

s X B bath 0 B X

( )7 1

12 1 / ( )

g B xS N N

k T T k T

−≈ ⋅ ⋅ ⋅
+ +
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 (2-80) 

In order to make it more clear, Equation (2.80) can be rewritten from (2.76) as  

 0 Mn B ext
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( )1 7
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1 / 2 6 ( )

N x g B
S S S
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+ +
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 (2-81) 

This indicates that the PL polarization is linearly proportional to the spin polarization of the Mn ions, 

i.e. ρPLX ∝ <Sz>.  

Again, since the exciton spin relaxation time is much shorter than the exciton lifetime as well the 

energy relaxation time, the dynamic PL polarization ρPL(t) is determined the Mn2+ ion spin dynamics 

and the exciton effective temperature. It gives 

 z
PLX

X

( )
( ) ~

( )
 

S t
t

T t
ρ < >

 (2-82) 

If the Mn2+ ion spin dynamics is much slower than the exciton energy relaxation, e.g. on the time 

scale above 100 ps, a mean and constant effective exciton temperature can be used. In this case, the 

exciton temperature can be regarded equal to the lattice temperature, i.e. TX(t) = TLatt(t). The dynamic 

PL polarization directly represents Mn ion spin dynamics, i.e. magnetization dynamics of Mn ions, 

and the lattice temperature in the DMS system,   

 1 1
PLX z ext( ) ~ ( ) ( ) ~ ( , , ) ( ) Latt Latt Lattt S t T t M B T t T tρ − −< > ⋅ ⋅  (2-83) 

 

Now, the PL polarization from the positively charged exciton (or trion, X+) is considered. One trion 

is a quasi-particle composed of one electron and two holes. The trions can appear in the p-type doped 

sample, in which there are pre-existing holes. A schematic presentation is given in FIG 2.3-7. This 

case is valid in the field regime3 where the p-d exchange interaction energy is less than the exciton 
                                                 
3 In the high field regime, the dissociation energy is suppressed by the p-d exchange interaction. The two holes can take 

a same spin. See Ref. [109, 138] 



Chapter 2. Background physics 

34 

binding energy, so that the spins of both hole are always antiparallel. In addition, it is assumed that 

the density of the optically generated carriers is much less than the doping density of the holes, so the 

optical excitation negligibly affects the total carrier density. 

The treatment is the same as for the neutral exciton. The denotations are similar, but with minor 

differences. One trion containing an electron with spin +1/2 is denoted as X+(+1/2), and X+(-1/2) 

means the trion with the electron spin -1/2. The dynamical populations are Nt−(t) and Nt+(t), 

respectively. The trion energy splitting at excited states is now ∆EexX+, and the hole splitting is ∆EgsX+. 

For the p-doping system, the population of the preexisting hole is N1 for mh = +3/2 on a higher 

energy level and N2 for mh = -3/2 on the lower (see FIG 2.3-5). The energy splitting between these 

subbands is denoted as ∆Ehh. By considering the Boltzmann statistics, the population relation is 

 B hh/
1 2/ hh∆E k TN N e−= , (2-84) 

where Thh is the temperature for the holes.  

 

 
FIG 2.3-7: Schematic description of the PL polarization from the positively charged excitons (X+). The energy splitting is 

∆EexX+ at excited states and ∆EgsX+ at ground states. After one exciton recombination, there is one hole left.  

 

After the annihilation of the trions, one hole is present compared with no left carrier for one neutral 

exciton. For the trion X+(+1/2) , the hole with spin +3/2 remains after the exciton recombination. In 

the case of X+(-1/2) , the remained hole is with spin -3/2. The lifetime of X+(+1/2) and X+(-1/2) are 

also treated as same here, and it is denoted asτX+. 

The dynamics of trions is quite like the neutral exciton. A same rate equation of Equation (2.71) can 

be directly applied for the trions. Then the PL polarization can be similarly rewritten from Equation 

(2.73). By taking into account the probability distribution of the ground states [21], the trion PL 

polarization is obtained as 
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Similarly the relation between τst1
−1 and τst2

−1 is given by τst1
−1/τst2

−1 = exp(-∆EX+/kBTX+), in which 

TX+ is the trion temperature and ∆EX+ is the energy splitting. Rather, the generation rate Rt+ of X(+1/2) 

and Rt− of X(-1/2) are not equal anymore. It could be assumed the formation of a trion is a binding 

process between the optically generated electron-hole pairs and one pre-existing hole, i.e. X(+1/2) is 

a consequence of the neutral exciton X(-1) and a hole with spin +3/2, and X(-1/2) is a consequence of 

X(+1) and a hole with spin -3/2. Therefore it is approximated that the trion generation rate is 

proportional to the population of the hole which is needed to form the trion, i.e. Rt+ ∝ N1 and Rt− ∝ 

N2. By considering Equation (2.84), it comes out 

 B hh/
t t 2 1/ / hh∆E k TR R N N e− + = =  (2-86) 

The trion energy is determined by the optical transition summarized in Table 2-2. It could be seen 

that for PL of the same circular polarization, the transition energy is the same between X+ and X. The 

energy splitting between the discussed trion states is the same as the case of neutral excitons, and it 

gives 

 ( )X exX+ gs X+ X 6 8 HH eff-e eff-h h B extE E E E E E g g Bµ+ Γ Γ −∆ = ∆ + ∆ = ∆ ≈ ∆ + ∆ ≈ +  (2-87) 

Similar to the expression in (2.74), the X+ PL polarization can be obtained 
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Here the hole spin polarization is defined as ρhh = (N2 – N1)/( N2 + N1). In the case of τst <<τX+, the 

expression of ρPLX+ is the same as ρPLX, the neutral exciton polarization. As a result, the PL 

polarization from the trions represents the same information of the magnetic dynamics and the 

effective trion temperature. The relation in (2.82) and (2.83) can be validly applied for the trions as 
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 (2-89) 

For a p-doped sample, the PL comes both from the neutral excitons and the trions. The energy of the 

latter is smaller than the previous by a few meV, which is within the PL spectral width of each.  

For the PL measurement, although the detected PL polarization is a mixture of the neutral exciton 

polarization and the trion polarization, the magnetization and effective exciton (X/X+) temperature 

are monitored in a same way. As a whole, it can be stated the PL polarization is a direct reflection of 

the magnetic ion spin relaxation and the exciton effective temperature  
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Here ρPL is the PL polarization from both types of excitons.  
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3 EXPERIMENTAL TECHNIQUES 

This chapter introduces techniques used in this thesis. A microstructure fabrication technology is 

established to provide an electrically switchable on-chip magnetic field, which is the novel and key 

technique throughout the whole thesis. This is done by a two-step electron beam lithography and 

lift-off technique. These two steps are for patterning electrical contact pads which provide electric 

connections to a voltage source and microcoils which generate magnetic fields, respectively. In the 

next part, the high-frequency electrical operation is demonstrated by adapting 50 ohm match for the 

sample and the cryostat. The electrical characterizations of the microstructures are presented. The 

on-chip magnetic field is put into applications for two types of spin-related experiments. To address 

the magnetization dynamics of Mn2+ ions in diluted magnetic semiconductor quantum wells, 

measurements of the time-resolved photoluminescence polarization degree are performed by means 

of magneto-luminescence spectroscopy, of which the working principle is given in the third part. In 

the last part, the time-resolved magneto-optical Kerr rotation technique is used to monitor the nuclear 

spin polarization and detect the nuclear magnetic resonance in a n-GaAs sample.  

 

3.1 Microstructure fabrications on top of a semiconductor  

There are two factors to obtain an electrically switchable on-chip magnetic field. On one hand metal 

microstructures with optimum geometry are designed to generate a magnetic field, of which the 

out-of-plane component is dominant. On the other hand, conductive pads are made to provide 

reliable electrical connections to external voltage sources.  

To generate magnetic field dominant in out-of-plane direction, the coil-like geometry is utilized. A 

schematic description is given in FIG 3.1-1(a). The semiconductor cap layer thickness is typically 

several 10 nm. The structure dimension is on a micrometre length scale by considering optical access 

and metal-induced strain. Then for a current flow through the microcoil, the magnetic field is 

dominant in the out-of-plane direction while the in-plane field is negligible in the microcoil center. 

From the numerical simulation results shown in FIG 3.1-1(b), the z-component of current-induced 

magnetic field is ~10 mT for I = 120 mA in the coil center, while the x-component of 

current-induced magnetic field is almost negligible as presented in (c).  

As a current can contribute Ohmic heating in the metal, resulting a local heating of the active 

semiconductor layer, microcoil structure geometry with neighbouring metal pads is used to dissipate 

excess heating for some used microcoils. To avoid possible deteriorations of the studied 

semiconductor optical properties (e.g. Chromium is quite diffusive, and makes poor optical 

properties by diffusion into semiconductors), the deposited metals are chosen as Gold (Au). 

The other factor is to achieve electrical connections between the microcoil and an external voltage 

source. This is achieved by a wire-bonding technique between on-chip metal pads and external 

sample holder pads. To realise reliable wire-bonding, it normally demands strong adhesion between 

the on-chip bonding pads and semiconductors. The bonding pads are made of triple metal layers, 
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Chromium (Cr), Palladium (Pd) and Au in the sequence of deposition. These multi-layered pads 

demonstrate excellent adhesion properties on top of different semiconductors. Therefore it is used as 

the standard layer structure for wire-bonding in this work. By considering the complex impedance 

under high-frequency operation and the feasibility of performing wire bonding, the pad area is 

typically around 300 × 300 µm2. The bonding pads connect the microcoil and the external sample 

holder pads, which are connected with SMA/SMB cables via thermal soldering.   

Because the two kinds of structures mentioned above are made of different metal layers, the whole 

microstructure fabrications for one sample are divided into two steps. The first step deals with 

wire-bonding pads and marker definitions, and the second for microcoil structures. Each step is done 

by a standard microstructure protocol, based on electron beam lithography (EBL) and lift-off 

technique.  

 

 
FIG 3.1-1: (a) Schematic description of an Au-microcoil on a semiconductor; (b) Numerical simulation for out-of-plane 

component BI-z of the current-induced magnetic field; (c) Numerical simulation for x-component BI-x. For simulations: I = 

120 mA, coil inner diameter: 8.5 µm, coil width: 5.5 µm, depth: -70 nm below semiconductor surface. 

 

Typically the sample is cut into ~5 mm × 5 mm piece from a large wafer, and then the sample is 

cleaned by a standard protocol to remove possible dirties on the semiconductor surface (see Section 

A1). To pattern the required two-types of microstructures on top of the semiconductor, the following 

protocol is used as standard, as well schematically described in FIG 3.1-2. 

S1-A. By spin-coating with a rotation speed of 3000 ~ 6000 rpm, the positive resist Poly methyl 

methacrylate (PMMA) in Chlorbenzen of a concentration of 7% (AR-P 671.07, ALLRESIST) is 

dispersed atop the semiconductor, so that a PMMA layer is formed with a thickness of approximately 

780 ~ 1200 nm. Afterwards, the sample is baked on a hotplate under a temperature of 160°C for 2 

minutes; 
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S1-B. The microstructure layout is designed with the Elphy Quantum software package (Raith 

GmbH), and the mask is exposed by a well-focused scanning electron microscop (SEM, SUPRA 25, 

Zeiss). Detailed parameters of EBL process can be found in Section A2; 

S1-C. The exposed PMMA mask is dissolved by using the developer solvent (AR 600-56, 

ALLRESIST) for 80 seconds, and the sample is rinsed by Isopropanol for 80 seconds; 

S1-D. Three layers of metals are deposited by the metal coating system (E306A Coating System, 

Edwards). A Cr layer with 15 nm thickness is deposited via electron beam evaporation, and then a Pd 

layer of 50 nm thickness is evaporated by means of thermal evaporation. Finally 300 nm Au is 

deposited again by thermal evaporation. As there are two boats for thermal evaporation and one boat 

for electron beam evaporation inside the coating system, these three steps can be done without 

opening the chamber. The sample is taken out after one hour for cooling.  

S1-E. The sample is fixed by a pair of wood tweezers and immersed into a beaker with Pyrrolidon 

solvent. The beaker is heated on a hot plate with a set temperature of 85°C (the liquid temperature is 

around 50°C). After ~70 min heating, the beaker is put into a water pool of the ultrasonic cleaner. 

Level 2 of the ultrasonic source is used for ~20 seconds, and then the sample is rinsed with 

Isopropanol for 1 minute.  

Steps (S1-A) to (S1-E) are for fabricating the bonding-wire pads.  

For patterning microcoil structures, similar steps are used as indicated from (S2-A) to (S2-E).  

S2-A. A new mask is defined using the same procedure as (S1-A); 

S2-B. The microstructure layout is again designed and exposed as (S1-B), but with different structure 

layouts and exposure electron beam current amplitude. Details can be found in Section A2; 

S2-C. The exposed PMMA mask is dissolved by the PMMA developer solvent for 70 seconds, and 

the sample is rinsed by Isopropanol for 70 seconds; 

S2-D. In the same coating system, an Au layer with 250 ~ 360 nm thickness is done by thermal 

evaporation. The sample is taken out after half an hour for cooling. 

S2-E. The sample is fixed by a pair of wood tweezers and immersed into a beaker with Pyrrolidon 

solvent. The beaker is heated on a hot plate with a set temperature of 80°C. After 35 min heating, the 

beaker is put into a water pool of the ultrasonic cleaner. Level 1 of the ultrasonic source is used for 

~20 seconds, and then the sample is rinsed with Isopropanol for 1 minute. 

In a whole, Section A2 gives detailed conditions and parameters for each processing step. FIG 3.1-3 

shows the SEM micrograph of the fabricated microstructures on top of a semiconductor. They 

include wire-bonding pads, microcoil structures, markers to identify structures, crosses to define 

same structure positions between different EBL procedures, and sample names.  

FIG 3.1-4 presents four typical microcoil structures. For the microcoils in (a), (b) and (c), the inner 

aperture size of the coil ranges from 3 µm to 20 µm, and the coil width from 2 µm to 10 µm. The 

metal pad around the coil in structure (d) is designed to dissipate current-generated local heating 

[139].  

After the microstructure fabrication, the sample is fixed by conductive glue (G302, PLANO) on a 

copper plate served as the sample holder. After around 15 minutes, an insulation plastic sheet with 
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copper pads is pasted by the same glue on top of the sample holder. After another 15 minutes, the 

whole sample ensemble is ready for wire-bonding. FIG 3.1-5 presents the schematics for a sample 

before wire-bonding. 

The wire-bonding is done with an Au wire of 25 µm diameter. The bonding is performed by an 

automatic and semi-auto ball bonder (5610, F&K Delvotec). The Au wires are bonded on both the 

on-chip Cr/Pd/Au pads and the copper pads on the plastic sheet. On the latter, the electrical cable 

soldering is made afterwards. The length of the bonded wires is on the order of millimetres, which 

allows high-frequency operation electrically on the sample.   

 

 
FIG 3.1-2: Side view of microstructure fabrication processes on a semiconductor. The set of processing steps (S1-A) ~ 

(S1-E) are for fabrication of wire-bonding pads, and steps (S2-A) ~ (S2-E) are for fabrication of microcoil structures. 
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FIG 3.1-3: SEM micrograph of the whole fabricated microstructures on a semiconductor after processing steps from 

(S1-A) to (S2-E). 

 

 

FIG 3.1-4: SEM micrographs of four typical fabricated microcoil structures. 
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FIG 3.1-5 Left: The schematics of a fixed sample ensemble. The sample (blue) is glued on the sample holder (pink). The 

insulation plastic sheet (white) with copper pads (yellow) is glued around the sample. Right: Layout of the insulation 

plastic sheet. The number is defined for each bonding pad. 

 

3.2 High frequency adaptation for samples 

Motivated by fast electrical control over spin dynamics, it is required to obtain a pulsed current with 

a short transition time, i.e. on the order of several 100 ps. This means the sample should be adapted 

for high-frequency (HF) electrical operation. 

To perform HF operation during experiments, all the electronic setup is with 50 ohm matching. SMA 

cables and SMA connectors are used to make connections between electronic instruments. The 

sample is terminated with a 50 ohm resistor in the cryostat. A schematic of electric connection during 

measurements is presented in FIG 3.2-1. A signal generator serves as a voltage source, and by using 

a voltage modulator with GHz bandwidth, the voltage amplitude could be driven up to Vpp = 8V 

within a transition time constant of a few 100 ps. The modulated voltage pulse is applied to the 

cryostat sample via a SMA adapter allowing RF signal transmission on a GHz scale. Two SMA 

transmission cables are used inside the cryostat. Each endpoint of each cable is split into the ground 

line and the signal line. The signal lines are directly connected, while the ground lines are connected 

via the 50 ohm terminator. By thermal soldering the inner side of the SMA adapter and the 

conducting pads on the sample, each line of cables is properly connected to achieve the electrical 

connections for the on-chip microcoil structure.  

For the whole electrical connections described above, there are several factors which limit the HF 

behavior capability due to non-ideal 50 ohm matching: (i) The broken part of the two cables inside 
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the cryostat; (ii) Each soldering part; (iii) The bonding Au wires; (iv) The on-chip metal structures 

making metal-semiconductor contacts.  

 

 
FIG 3.2-1: Schematic description of electrical connections between a signal generator and the studied sample in a 

cryostat.  

 

 

FIG 3.2-2: Schematic description of electrical connections to probe the reflection RF signals from the cryostat sample. 

 

In order to test the HF capability, the reflection waveform from the cryostat is probed by using the 

scheme presented in FIG 3.2-2. Here a 6 dB power divider (MODEL 5331, Picosecond Pulse Labs) 

receives RF wave (black arrows) and divides it into two parts with an equal amplitude. One part 
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travels into the cryostat and the other into an oscilloscope with 50 ohm output resistance. The inset 

gives a simplified diagram of the electrical circuits. Each port of the power divider carries a 

resistance of 16.7 ohm (blue rectangles). Since both the signal generator and the oscilloscope have a 

50 ohm matching, the only possible mismatching comes from the cryostat, i.e. the sample 

construction. In the case of a perfect 50 ohm matching in the cryostat, the total resistance of the load 

circuit is 50 ohm. Thus, the whole circuit has a 50 ohm matching. Then no reflection wave (red 

arrows) is expected. Otherwise, the oscilloscope is expected to detect a distorted RF wave as a 

superposition of the incoming RF and the reflected signal.         

FIG 3.2-3 shows the probed temporal profiles of a voltage pulse by a sampling oscilloscope 

(Tektronix 7854) and a GHz sampling unit (Tektronix7S11 & 7T11). The used signal generator is an 

Agilent 81133A, which is sufficient to provide voltage pulses with a transit time less than 90 ps. 

These fast leading/falling edges are confirmed as seen in FIG 3.2-3(a), in which the oscilloscope is 

directly connected via a SMA cable with the signal generator. To estimate the wave reflection during 

the RF transmission4, the electrical configuration is used as described in FIG 3.2-2. FIG 3.2-3(b) 

presents the waveform in the case that P3 is connected to a perfect 50 ohm termination. The 

electrical edge transit time is kept below 100 ps. This means the electrical circuit could afford the 

transmission of such a RF pulse even in case of non-ideal matching. As a comparison, P3 port is kept 

open for the measurement of FIG 3.2-3(c). There is a complex waveform as a result of serious 

mismatch in this frequency regime. For the measurement of FIG 3.2-3(d), P3 is connected with the 

cryostat. The detected waveform is quite similar to the one in FIG 3.2-3(a), which means the 

electrical properties of the cryostat are close to a perfect 50 ohm resistor on a GHz frequency scale.  

Further, similar testing was performed for voltage pulses which are typically used under 

experimental measurements. The cryostat temperature is 4.5 K. The pulse width is 4 ns for FIG 

3.2-4(a) and (b) and the repetition period is 20 ns. The similarities between FIG 3.2-4(a) and (b) 

confirm a rather small RF reflection from the low-temperature cryostat. For waveforms presented in 

FIG 3.2-4(c) and (d), the pulse width is 7 ns and the repetition period is 35 ns. The voltage modulator 

is used between the signal generator and the 6dB power divider. A weak reflection is present in FIG 

3.2-4(d). Since the amplitude of the reflection waveform is relatively small and the transmit time is 

fast enough, it could be estimated that the voltage waveform applied on the sample is close to FIG 

3.2-4(c). For detected waveforms from FIG 3.2-4(a) to (d), the leading/falling edge time constant is 

generally below 400 ps.  

The generation of fast electrical pulse allows one to perform on-chip electrical spin control on a time 

scale of a few 100 ps. By combination of time- and polarization- resolved photoluminescence 

measurements, the fast spin dynamics controlled by the electrical pulse could be detected on a 

sub-nanosecond time scale.  

                                                 
4 The test measurements in FIG 3.2-3 were performed in the early stage of this work. A T-junction connector without the 

three 16.7 ohm resistors was used as the power divider. This made the circuit mismatched in a whole. Therefore the 

testing results gave an indication of better HF operation in the case of the 6dB power divider.  
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FIG 3.2-3: Probed temporal profile of a voltage pulse at room temperature. The pulse width is 200 ps. (a) The signal 

generator is directly connected with the oscilloscope; (b) P3 (see FIG 3.2-2) is connected with a perfect 50 ohm 

terminator; (c) P3 is terminated as an open circuit; (d) The electrical connections are used as FIG 3.2-2. The output 

voltage from the signal generator for (a) ~ (c) is 500 mV, and the output voltage for (d) is 100 mV.  

  

 

FIG 3.2-4 : Probed temporal profile of a voltage pulse at a temperature of T = 4.5 K. For (a) and (c), P3 is connected with 

a perfect 50 ohm terminator; for (b) and (d), the electrical connections are adopted as FIG 3.2-2. For (a) and (b), the pulse 

width is 4 ns and the repetition period is 20 ns. For (c) and (d), the pulse width is 7 ns and the repetition period is 35 ns; 

and the voltage modulator is used here. The characteristic time constants for the leading and the falling edges are less 

than 400 ps. 
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3.3 Time-resolved magneto-luminescence spectroscopy  

The magnetization dynamics of Mn2+ ions in the Cd1-xMnxTe/Cd1-yMgyTe quantum well system is 

studied in the magneto-luminescence setup. The polarization degree of photoluminescence (PL) 

gives a sensitive detection of the carrier spin polarization in semiconductors, e.g. via the optical 

Hanle effect [21]. Thanks to a spatial resolution on a micrometer length scale, the setup allows one to 

optically address the local spin states inside the microcoil area. Since the temporal resolution of 

optical detection could be down to several ten picoseconds, the local Mn2+ spin dynamics can be 

traced on a sub-nanosecond time scale. 

The detected PL polarization degree is defined as 

  
σ σ

σ σ

I I
ρ

I I

+ −

+ −

−=
+

,  (3-1) 

where Iσ+ and Iσ- is the PL intensity of right-circular polarization (σ+) and left-circular polarization 

(σ-), respectively. As discussed in the Section 2.3.2, the PL polarization degree is controlled by the 

Mn2+ ion magnetization and the exciton temperature. By measuring Iσ+ and Iσ-, the PL polarization 

degree is determined, and thus the Mn2+ ion spin dynamics can be evaluated.  

 

3.3.1 Magneto-luminescence setup  

A schematic illustration of the magneto-luminescence setup is given in FIG 3.3-1. 

 

 
FIG 3.3-1: Schematics of the magneto-luminescence setup 
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• Optical excitation 

A diode laser head with a center wavelength of 641 nm serves as the excitation source. The laser 

head can work under cw or pulsed operation controlled by the laser driver (PDL 800-D, PicoQuant). 

Alternatively a He-Ne laser with 632.8 nm wavelength (AreoTech GmbH) is used. The excitation 

beam is focused on the studied sample by a micro-objective with a high numerical aperture (N.A.). 

The used objective is either the LD-Epiplan 50× with N.A. = 0.6 (Carl Zeiss AG) or the LD EC 

Epiplan-Neofluar 100× with N.A. = 0.75 (Carl Zeiss AG). Approximating the incoming ray as an 

ideal Gaussian beam, the laser spot diameter (defined as the beam waist) under focus is [140]:  

 0

2
2

l

Fλω
πω

⋅′ = , (3-2) 

where λ is the laser wavelength, F is the distance from the sample surface to the objective lens, and 

ωl is the beam radius on the objective lens. Since the modern micro-objective system is an infinity 

optical system [141], the focal plane of the objective lens is the object plane, i.e. the sample surface 

here. Then here F is equal to the focal length of the objective lens. In case of the optical window full 

of illumination, the beam diameter is equal to the lens aperture D, i.e. 2ωl = D. From the definition 

N.A. = sin(arctan(D/2F)), there is ωl = F⋅tan[arcsin(N.A.)]. The focused laser spot can be written as 

 0

2
2

tan[arcsin( . .)]N A

λω
π

′ ≈
⋅

 (3-3) 

For λ =641 nm, N.A. = 0.75, the minimal laser spot diameter 2ω0´ ≈ 360 nm. This is the ideal case, 

while factors suck lacking full illumination, experimental turbulence like setup vibration and so on, 

limit the spot size around 1 micrometer for optical excitation.    

During the experiments, the optical power is detected after M1. In order to calculate the excitation 

power density in the studied semiconductor layer, the optical reflectance of each optical component 

through the light path should be taken into account. As an approximation, the reflection coefficients 

of M2 and M3 are used as unity, the reflection coefficients of the beam-splitter is ~50% for each, the 

transmission of the micro-objective is ~90% from the datasheet, the reflectance of each side of the 

cryostat window is ~4% (two surfaces), and the reflection on the sample surface is ~50 %, e.g. for 

the studied (Cd, Mg)Te alloys, then the excitation power transmitted into the sample is Pexc ≈ 

0.2*Pmea. Here Pmea is the power probed after M1. For a typically used power Pmea = 6 µW, the 

average optical excitation density can be estimated ρexc ≈ 150 W/cm2 for a spot size of 1 µm.    

 

• Sample cryostat  

The studied sample is fixed on a finger in a LHe4 (liquid Helium 4He) flow cryostat (MicrostatHiRes, 

Oxford Instruments). By pumping liquid Helium flow through the cryostat, the sample temperature 

can be cooled down to 3.5 K and varied up to 300 K by using the cryostat heater. The sample 

temperature is set and read by the temperature controller (ITC 530, Oxford Instruments). The 

cryostat is mechanically fixed on a xy-translation stage, which is driven with a micrometer resolution 
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by an actuator controller (ESA-C, µ-drive controller, Newport). By combing the cryostat with a 

superconducting magnet system (MicrostatBT, Oxford Instruments), a magnetic field ranging from 

-5 Tesla to +5 Tesla can be applied on the sample in Faraday geometry (optical path parallel to the 

magnetic field). The magnetic field is set and read by a power supply controller (IPS 120-10, Oxford 

Instruments). In a whole, the magneto-optical setup allows one to perform optical characterization in 

Faraday geometry, and it gives a spatial resolution on micrometer scale at low temperature.      

To obtain the structure details and the laser spot positions, the sample is illuminated by a lamp. The 

sample is imaged by a CCD camera which is connected to a monitor. The excitation area within the 

microcoil is monitored in real time during the experiments.  

 

• Photoluminescence detection 

The photoluminescence is reflected from the sample through the micro-objective, guided by a 50/50 

beam splitter, and focused into the monochromator (Triax 550, Horiba Jobin Yvon). There are three 

alternative gratings with a groove density of 600 mm-1, 1200 mm-1 and 1800 mm-1. The linear 

dispersion of each grating is accordingly 3.03 nm/mm, 1.55 nm/mm and 1.01 nm/mm. The dispersed 

PL could be either collected by a cooled CCD camera (2048×512BIVS, 26.6×6.9 mm2, Horiba Jobin 

Yvon) in the front exit slit for spectral measurements, or a cooled photon-multiplied detector for 

counting PL photon numbers.   

The collected PL wavelength range is approximated as ∆λ ≈ (Linear dispersion) × (Exit area) by 

considering small diffraction angles [142]. In the case of using the 600 mm-1 grating, the CCD 

detector can cover a range of ~75 nm for the PL spectrum measurements. For the photon-counting, 

the spectral width is about 6 nm, if the width of the side exit slit is 2 mm. As the PL spectral width 

(Full width of half maximum) of studied samples is typically less than 3 nm (e.g., see Chapter 4), 

both means of optical detecting could collect most of the PL signal.   

 

3.3.2 Time-resolved measurements of photoluminescence polarization degree  

To obtain the PL polarization degree, the photon number of σ+ and σ- PL is respectively measured. 

The photon-counting for both kinds of polarized light is performed quasi-simultaneously compared 

with the setup stability. This is realized by applying a periodic PL modulation by an electro-optical 

modulator, which synchronizes the recording of the corresponding circularly-polarized 

photoluminescence. To monitor the PL polarization dynamics induced by an electrical pulse, 

electrical synchronization is utilized between the applied voltage sequence and the modulation 

signal.      

 

• Quasi-simultaneous measurements 

The configuration for PL polarization degree measurements is shown in FIG 3.3-2. The 

photoluminescence is modulated by an optical modulator: a photo-elastic modulator (PEM), liquid 

crystal (LC) or electro-optical modulator (EOM). After a phase retardation of π/2 or -π/2, each 
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circularly-polarized component of the photoluminescence is converted to a linearly-polarized signal. 

These two polarization directions are orthogonal.  

By a π/2 phase shift, the σ+ PL (red arrow) is converted to linearly-polarized signal with a 

polarization (red double-headed arrow) parallel to the following linear polarizer, while the σ- PL 

(blue arrow) becomes linearly-polarized with a polarization (blue double-headed arrow) orthogonal 

with this polarization. As a result, the σ+ PL passes through the linear polarizer and is recorded by 

the photon counter; while the σ- PL is eliminated by the linear polarizer and cannot be counted. In 

case of -π/2 phase shift, the σ- PL is counted while σ+ PL is eliminated. The routing signal for 

registering σ+ or σ- PL intensity is synchronized with the optical modulation signal, so that the 

individual intensity could be transferred to two different memories. 

 

 

FIG 3.3-2: Schematic description of quasi-simultaneous measurements of PL polarization degree 

 

In FIG 3.3-3, schematic descriptions of the phase modulation technique are given for recording 

σ+-polarized and σ−-polarized PL intensity. In (a), the PEM makes a sinusoidal phase modulation 

between π/2 and -π/2. The phase shift is given byθshift = π/2⋅sin(2 πt/T) which is plotted in the upper 

panel. Here T is the modulation period. In the lower panel, the PL intensity (black: σ+-polarized and 

red: σ−-polarized) after the linear polarizer is depicted (e.g. see Ref. [143]). In (b), the LC/EOM 

makes a squared phase modulation between π/2 and -π/2. The modulation duration is the same for 

two phase levels. As a result, the σ+-/σ−-polarized PL intensity after the linear polarizer has a similar 

temporal profile which is depicted in the lower panel. 
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FIG 3.3-3: Schematic descriptions of the phase modulation technique for recording σ+-polarized and σ−-polarized PL 

intensity. (a): PEM, after [143]; (b): LC or EOM. In each case, the upper panel represents the phase shift and the lower 

panels depict the PL intensity (black: σ+-polarized, red: σ−-polarized) after the linear polarizer. The modulation period is 

denoted by T.   

 

It can be seen the optical intensity modulation is periodic during experiments. If the applied time 

length is the same for measuring σ+ or σ- PL intensity, a single measurement of the PL polarization 

degree can be done within one modulation period. For PEM, the modulation frequency is a fixed 

value of 50 kHz; for LC, the used modulation frequency ranges from 0.1 Hz to 1 Hz; for EOM, the 

used modulation frequency ranges from 1 kHz to 10 kHz. All the used modulation periods are always 

above the setup stability duration. This allows one to detect the PL polarization degree in a way 

almost quasi-simultaneously. In order to obtain a good signal-to-noise ratio, measurements are 

averaged on a time scale of minutes.   

A more detailed description of quasi-simultaneous polarization degree detection can be found in Ref. 

[143]. 

 

• Synchronization between electrical pulse and optical detection 

To detect the PL polarization dynamics induced by an electrical pulse, the PL polarization degree is 

traced at a certain time delay with respect to the introduced voltage pulse sequence. Two 

synchronization methods are used between the electrical pulse and optical modulation. 

As shown in FIG 3.3-4, the optical modulation is done by a photo-elastic modulator (PEM-90, Hinds 

Instruments) with a fixed modulation frequency of f ≈ 50 kHz. There are two TTL voltage sequence 

outputs as triggering sources from the PEM controller. A square-wave sequence with frequency f is 
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used to trigger the two-channel photo-counter (SR400, Stanford Research Systems) to record the 

modulated PL intensity. Since there are two counting channels, the photon-counting frequency is 

actually with frequency 2f. The other TTL output is used to trigger the pulse generator (HP8110A, 

Hewlett-Packard) with a frequency of 2f.  

The temporal window width is 100 ns (τwin) for each photon-counting channel, which is adjusted to 

be centered at π/2 or -π/2 phase modulation (left side of FIG 3.3-4). The time interval for opening 

each detection window is τinter =10 µs. Therefore the time delay ∆t between the electrical pulse and 

each photon-counting channel is the same. The time delay ∆t is variable from 0 to 10 µs, which is 

manually controlled by the input trigger sequence and the output voltage pulse for the pulse 

generator. 

The time resolution is limited by the detection window of 100 ns. The electrical pulse frequency is 

inflexible due to the fixed PEM frequency. The photon detector here is a water-cooled 

photomultiplier tube (R943-02, Hamamatsu). The polarization degree resolution is ~0.5%. 

 

 

FIG 3.3-4: Electronic-optical synchronization at early experiment stage. ∆t is the variable time delay between the 

electrical pulse and the optical detection windows. PEM: Photo-elastic modulator; f = 50 kHz; CH: Channel. 

 

To improve the time resolution and the polarization sensitivity, a time-correlated single photon 

counting module (TCSCP-SPC630, Becker&Hickl) with a micro channel plate (MCP-R3809-51, 

Hamamatsu) as the photon detector is used. The electrical connection is presented in FIG 3.3-5. 

In order to make time-resolved photon counting, a TLL voltage pulse (named as CH1) provided by a 

pulse generator works as the “STOP” signal for the TCSPC module. The other output channel CH2 is 

connected to the cryostat sample to generate the on-chip magnetic field. The PL signal serves as the 
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“START” signal for the TCSPC system. Detailed descriptions of the TSCPC principle are given in 

Ref. [144]. Both output electrical sequences have a same frequency f1, which determines the time 

range of the monitored PL dynamics. The TCSPC module counts the PL photons through the whole 

time range (1/f1). The time delay is realized by a time to amplitude converter within the TCSPC unit 

[144]. The used f1 value is from 500 kHz (time range of 5 µs) to 50 MHz (time range of 20 ns) 

during the experiments.  

The optical modulation is performed by a liquid crystal (Variable retarder VIS, Meadowlark Optics) 

or an electro-optical modulator (LM0202 VIS KD*P, Linos), each of which is driven by a square 

voltage sequence. A function generator (AFG3252, Tektronix) provides the trigger sources. One 

output channel (CH3) provides a squared TTL wave with repetition frequency f2 to drive the optical 

modulation, and the other channel (CH4) gives a synchronized TTL voltage out to the R6 bit of the 

TCSPC module [144]. The R6 bit works as the routing signal, which distributes two memory 

sections for counting the σ+ or the σ- PL intensity. In typical experiments, the modulation frequency 

is f2 = 0.1 Hz for the LC and f2 = 1.852 kHz for the EOM.   

 

 

FIG 3.3-5: Electronic-optical synchronization at developed experiment stage. TCSPC: Time-correlated single photon 

counting; LC: Liquid crystal; EOM: Electro-optical modulator; CH: Channel.  

 

The digital time resolution of the TCSPC system is the time duration of each counting channel which 

is equal to the time range over the channel number (from 64 to 4096). The real time resolution of the 

optical detection is limited by the photon-electron transit time of MCP, which is approximately 25 ps. 

Since it is not required to synchronize the applied voltage sequence (f1 signal) on the sample to the 

optical modulation sequence (f2 signal), it makes the PL dynamical detection with more flexible time 
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range compared with PEM-based method. Further the polarization degree resolution is improved to 

~0.2%.    

      

3.4 Time-resolved Kerr rotation technique  

The studies of nuclear spin dynamics in n-GaAs is performed by the time-resolved Kerr rotation 

(TRKR) setup. The TRKR technique is a pump-probe optical method to detect the electron spin 

precession dynamics. It has been widely utilized to address ultrafast dynamic spin properties in 

different material systems [145-147]. This thesis concerns to the electron spin precession dynamics 

around a magnetic field. The monitored magnetic field is a sum of the applied static field and the 

dynamic nuclear field namely the Overhauser field [69]. Therefore by evaluating the electron 

precession Larmor frequency, the nuclear field is determined and thus the nuclear spin dynamics is 

addressed.  

 

3.4.1 Magneto-optic effects 

When light propagates in a medium, the polarization state can be varied by changing the medium 

magnetization, e.g. by applying an external magnetic field. The magneto-optic effects can be 

manifested during the transmission of the light through a magnetic medium or the reflection of the 

light from the medium surface. As a typical consequence, linearly-polarized light will be changed to 

elliptically-polarized light with a rotation of the polarization plane. A schematic picture is presented 

in FIG 3.4-1.  

In the case of light transmission (upper part, FIG 3.4-1), the magneto-optic effect is named Faraday 

effect [148] in the geometry of the material magnetization M collinear to the wave vector of the light 

k (M // k), while it is called Voigt effect [149] or Cotton-Mouton effect [150] for M ⊥ k. In the 

reflection case, it appears as the magneto-optic Kerr effect [151] (lower part, FIG 3.4-1). It can be 

classified into three fundamental geometries by considering the relative orientation between M and 

the incidence plane of the light. The polar Kerr rotation applies to the case in which M is in the 

out-of-plane direction and parallel to the incidence plane. The longitudinal Kerr rotation lies for the 

case where M is in-plane and parallel to the incidence plane, while the transverse Kerr rotation 

dominates if M is of in-plane direction and perpendicular to the incidence plane. Since each type of 

Kerr effect is related to the light reflection on a surface, it can be further decomposed into the Kerr 

effect for the s polarization state and the p polarization state, respectively5. 

For a general case with arbitrary medium magnetization, M can be decomposed into a sum of 

magnetizations in fundamental directions. The total change of the light polarization state is a 

superposition of those magneto-optic effects. For the light propagation from a nonmagnetic medium 

                                                 
5 In FIG 3.4-1, the s polarization state and the p polarization state are indicated. The s polarization state has the electric 

field vector perpendicular to the incidence plane, while the p polarization state has the electric field vector in the 

incidence plane. 
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(vacuum) to a magnetic medium, both transmission and reflection can exist on the medium boundary 

[152], and thus all types of magneto-optic effects should be included. For a magnetic material with a 

large optical absorption coefficient, e.g. metals or semiconductors with high-energy excitation, the 

transmission effects can be neglected [153, 154]. This is just the case for the studied sample within 

this thesis. Since the k-vector of the linearly polarized light during the experiments is always of a 

small angle to the normal of the sample surface, the polar Kerr effect is much more pronounced 

compared with the other two effects[154-156].  

 

 

FIG 3.4-1: Magneto-optic effects in transmission through a magnetic medium (a-b) and reflection on the surface of a 

magnetic medium (c-e). For each magneto-optic effect in a fundamental geometry, the orientation is given between the 

medium magnetization M and the wave vector of the light or the incidence plane of the light. θ is the rotation angle and η 

the ellipticity of the elliptical polarization state. 

 

The magneto-optics can be described in the context of either macroscopic dielectric theory or 

microscopic quantum theory [157]. The latter concerns the spin coupling between the electric field of 

the propagating light and the electron spin. For a spin-polarized electron with a spin vector collinear 

to the wave vector of the electric field in a magnetic medium, the probability of the electronic state 

transition is different between left-circularly polarized optical excitation and right-circularly 

polarized one. This causes the dependence of the refractive index on the light polarization [158-160]. 

Such magnetic circular dichroism is the basic origin of the magneto-optic effects. In this thesis, the 

macroscopic explanation based on wave propagation in dielectrics is given in the following.   
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• Light propagation in a magnetized dielectric material 

The light propagation in a medium can be described by Maxwell’s equations [152]. Considering the 

light of a plane wave with the form 

 ( )
0( , t) k rE r = E i te ω⋅ −  (3-4) 

 ( )
0( , t) k rH r = H i te ω⋅ −  (3-5) 

with E(r,t) as the electric field vector and H(r,t) as the magnetic field vector. By using Maxwell’s 

equations for this electromagnetic plane wave, it gives 
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Equations (3-6) ~ (3-7) lead to 
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Here ε0 is the vacuum electric permittivity, and µ0 is the vacuum magnetic permeability. The 

permittivity tensor of the medium is represented as εεεε(ω), and µ(ω) is the permeability tensor.  

The H vector can be eliminated by using the formula k×(k×E) = k(k⋅E) - k2E. As k⋅E = 0 due to the 

transverse nature of the electromagnetic wave, it gives   

 2 2
0 0E + µ ε Ek ε µ ω− ⋅ = 0

v

 (3-9) 

As the effect of magnetic permeability in optical phenomena is generally small, it can be assumed 

that µ(ω) = 1 with 1 as the unit tensor. Thus, in the case of medium magnetization, εεεε(ω) is dominant 

affecting the optical properties. For simplicity, the magnetization M is considered in the z-axis 

direction and the medium is with cubic symmetry [161]. Then the permittivity tensor is given: 
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Each tensor component may have a complex value, i.e. εij = ε´ij + iε´´ij, and it depends on the 

magnetization M. The off-diagonal components introduce the anisotropy of the permeability via the 

magnetization inducing the magneto-optic effects, and vanish if the medium is not magnetized. 

By giving the definitions k0 = ω/c0 = 
0 0ε µ ω , where c0 is the light velocity in vacuum and N = k/k0 

as the vector of the complex refractive index, equation (3-9) becomes 
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Here the case of light propagation along z-axis direction is considered. Then Ez = 0, and equation 

(3-11) is written as 
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To have non-zero solutions of Ex and Ey, the following relations must be fulfilled: 

 2
xx xyN iε ε± = ±  (3-13) 

 /2i
x y xiE E e Eπ±± = =  (3-14) 

These mean there are two normal modes of light propagation in the magnetized medium, and there is 

a fixed phase shift of ±π/2 between Ex and Ey in each mode. Thus the normal modes are 

right-circularly polarized (σ+, items are labelled with subscript “+” in this mode) and left-circularly 

polarized (σ-, items are labelled with subscript “-” in this mode). The electric displacement (or called 

by electric flux density) in the medium then becomes 

 2
0 ( )x yD N E iEε± ±= m  (3-15) 

To express the relation between the complex dielectric tensor and the refractive index in σ+ and σ- 

modes, some helpful definitions are given: 

 

;

; ( ) / 2

; ( ) / 2

 

 

 

xx xx xx xy xy xyi i

N n i

n n n n n n
± ± ±

+ − + −

+ − + −

′ ′′ ′ ′′= + = +

= +
∆ = − = +
∆ = − = +

ε ε ε ε ε ε
κ

κ κ κ κ κ κ

 (3-16) 

Here n is the refractive index, and κ is the extinction coefficient of the light in the medium. After 

some algebraic transformations, the dielectric tensor elements can be expressed in terms of the 

refractive indices as: 
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Similarly the difference between the refractive indices and the extinction coefficients can be 

described in terms of the dielectric tensor elements as: 
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Thus, the magnetization gives rise to the anisotropy of the dielectric tensor in (3.10), which 

determines the two modes of light propagation in the medium. For the two modes, the refractive 

indices and the extinction coefficients are not degenerate like in the non-magnetized case. Then it 

can be expected both the light wave amplitude and the phase could be changed by different 
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magnitudes for the light propagation of the two modes. The non-degeneracy of σ+ and σ- light 

propagation is responsible for the interpretation of the magneto-optic effects, which are 

schematically demonstrated in FIG A3-2 (Section A3). 

 

• Magneto-optic Faraday effect 

The Faraday effect is described in FIG 3.4-1(a), which could be the dominant magneto-optic effect 

especially for long optical transmission scale. For simplicity, it is assumed that both the 

magnetization M and the wave vector k are along z-axis direction, and the light is linearly-polarized 

in x-axis direction. The electric field is expressed as E = 
1
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E E  (see section A3). For the light transmission in the magnetized sample of a thickness 

d, the respective electric field component becomes 
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Since the complex refractive indices N+, N- are non-degenerate as a consequence of magnetization, 

the phase and the amplitude are different for σ+ and σ- light. The linearly polarized light changes to 

an elliptically polarized light after transmission through the magnetized medium [Section A3]. The 

Faraday rotation angle is given as following (see equation (A-2)): 
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The ellipticity of the polarization state is 
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For the two circular modes, the relative phase shift is due to the circular birefringence, while the 

amplitude difference is caused by magnetic circular dichroism. In case of a long optical length, i.e. a 

small optical absorption, which means κ << n, the Faraday rotation and ellipticity can be 

approximated as 
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• Magneto-optic Kerr effect  

As a surface reflection effect, the Kerr effect depends on the reflection coefficients with respect to s 

wave and p wave, which can be described by the Fresnel reflection matrix [155]: 

 
 

=  
 

pp ps

sp ss

r r

r r
R  (3-24) 

Here r ij is the magnitude ratio of the i-polarized reflected electric field to the j-polarized incident 

electric field. The matrix element indicates the strength of the j-polarized wave changing to an 

i-polarized via boundary reflection. In absence of medium magnetization, non-diagonal elements rps 

and rsp are zero. The magnetization gives rise to non-zero rps and rsp, which determine the strength of 

the Kerr effect.  

The current focus is the polar Kerr effect as shown in FIG 3.4-1(c) with normal incidence. In this 

case, the s-polarization wave and p-polarization wave cannot be any longer distinguished. This 

results in degenerate Fresnel reflection coefficients. It only needs to consider the reflection difference 

between the two normal circular modes. The reflection coefficients from the vacuum to the medium 

are [152]: 
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The incident light is assumed to be linearly-polarized in x-axis direction. The electric field is 

expressed as Ei =
1
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The Kerr rotation angle is given by equation (A-7):  
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By using the trigonometric relation of 
tan tan
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and some 

algebraic transformations, it can be obtained as 
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Using the definitions in (3.16) and relations in (3.18), and neglecting items of higher orders, i.e. 

Ο(∆n∆κ), Ο(∆n2) and Ο(∆κ2) et al., it could be approximated as 

 
3 2 2 3

2 2 2 2 2 2

2[( 3 ) (3 ) ]
tan(2 )

( )(( 1) )(( 1) )
xy xy

K

n n n n

n n n

κ ε κ κ κ ε
θ

κ κ κ

′ ′′− − − + − −
≈

+ + + − +
 (3-30) 

For a small rotation angle, there istan(2 ) 2K Kθ θ≈ . Then the Kerr rotation is further approximated as 
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The ellipticity is given by equation (A-8): 
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By similar mathematic processing, the ellipticity due to Kerr rotation can be obtained as 
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In the experiment, the optical excitation is at a wavelength of 817.6 nm. To give a qualitative 

estimation of the magneto-optic effect, an absorption coefficient α ~ 104 cm-1 is assumed at low 

temperature by considering excitation above absorption edge [162]. The penetration depth is on the 

order of 1 µm, which is much less than the substrate thickness of ~500 µm. The reflection from the 

substrate could be neglected, and thus the Faraday effect will be ignored due to the light reflection 

from the sample backside [153, 154, 163]. The dielectric constants of the studied n-GaAs are adopted 

from [164], i.e. n ≈ 3.7, κ ≈ 0.1. By using equation (3-31), the Kerr rotation angle is calculated |θK| ≈ 

(0.02εxy´ + 0.002εxy´´), and ηK ≈ (-0.002εxy´ + 0.02εxy´´) from equation (3-33). Based on 

experimental results in Ref. [165], the value of εxy´ and εxy´´ is on the order of 10-2. The Kerr rotation 

is supposed to be as weak as a few 10-1 milliradians and the ellipticity hardly changes by ηK ~ 10-4. 

The magneto-optic Kerr effect has been observed and analysed in similar semiconductor systems 

[153, 154, 166, 167]. The sensitive detection of such small change of the light polarization is 

achieved by the time-resolved Kerr rotation setup discussed in the following section. 

 

3.4.2 Time-resolved Kerr rotation setup 

A schematic illustration of the time-resolved Kerr rotation setup is given in FIG 3.4-2. 

• Pump-probe beams  

The laser beams are provided by a mode-locked Ti-Sapphire laser system (Mira 900-D, Coherent), 

which is optically pumped by a solid state laser of 532 nm wavelength (Verdi 6, Coherent). The 
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lasing is performed in picosecond-mode with a repetition rate of ~ 76 MHz. The temporal width of 

the generated laser pulses is ~2 ps, and the wavelength is adjusted to λ = 817.6 nm. The output beam 

is divided by a beam splitter (BS1:50/50) into two beams, i.e. the pump beam and the probe beam. 

The pump beam is responsible for generating electron spin polarization, while the probe beam is 

used to detect the electron spin polarization via measuring the Kerr rotation.  

 

 

FIG 3.4-2: Schematics of the time-resolved Kerr rotation setup. For abbreviations in the figures, BS: beam splitter; LP: 

linear polarizer; EOM: electro-optic modulator; HALO: high-aperture laser objective; WP: Wollaston prism; LA: lock-in 

amplifier.  

 

The pump beam is reflected by a retroreflector (BBR1-5, Newport Inc.), which is mounted on a 

motorized positioning stage with a remote controller (PS 90, OWIS). The linear polarizer (LP1) 

changes polarization of the pump beam parallel to the fast/slow axis of the following EOM. The lens 

group collimates and resizes the beam to a diameter of ~2.5 mm at the EOM entrance window. The 

EOM is electrically driven by a TTL sequence from an arbitrary function generator (AFG 3252, 

Tektronix). The optical modulation frequency is 200 kHz for λ/4, λ/2 or 3λ/4 phase retardation, 

which accordingly transforms the light to the polarization state of σ+, linearly polarized and σ-, 

respectively. The duty cycle is chosen as 50:50 or 80:20. To get circular-polarized light on average 

(within one period), one level is set to λ/4 or 3λ/4 phase modulation, while the other is set to λ/2 

phase modulation. To get linearly polarized light on average, the duty cycle is used as 50:50 and the 
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two levels are set to λ/4 and 3λ/4, respectively. The beam is focused onto the sample by a 

high-aperture laser objective (Linos). The focal length is 50 mm, the N.A. is 0.31, and the incident 

clear aperture is 30.3 mm. By using Equation (3.3), the spot size is estimated around 10 µm for the 

pump beam.   

The probe beam is guided through an optical chopper (MC1000A, Thorlabs). The beam intensity is 

modulated with a frequency of 110 Hz. The following linear polarizer (LP2, extinction ratio < 10-6) 

makes the light highly linear-polarized. The diameter of the probe beam is around 4 mm, and focused 

onto the sample by the HALO. By using equation-(3-34), the spot size is estimated around 6.5 µm 

for the probe beam on the sample surface. 

The length difference of the light path between the pump beam and the probe beam is controlled by 

the motor-activated stage. It functions as a time delay-line. The controlled length scale is L = 1 m, 

and doubles by considering the reflection path. It is capable to provide a time delay of ∆t = 2L/c0 ≈ 

2×1 m/(3×108 m/s) ≈ 6.7 ns, which gives an upper-limit for the pump-probe time range. The step size 

is 2.5 mm, which gives a temporal resolution of ~8.3 ps for the pump-probe measurements. 

The incident beam positions on the HALO are shown in FIG 3.4-3. For most measurements, the 

power of pump beam is measured ~3 mW and the probe beam is ~ 0.6 mW in front of HALO. The 

excitation power ratio is always kept around 5:1 during all pump-probe measurements. Taking 

account into the beam size, the incidence angle is θ1 ≈ 18° for both. Then the refracted angle is θ2 

≈θ1 /nGaAs ≈ 4.9° in the GaAs active layer (also see inset of FIG 3.4-4). For the pump beam, this 

tilting angle can enhance the nuclear field facilitating the experimental observations. For the probe 

beam, this geometry could well separate the incident and reflection beam, which carries the Kerr 

rotation signal for detection.  

 

 
FIG 3.4-3: Incident positions of pump and probe beams on the HALO 

 

• Sample cryostat  

The studied sample is pasted on a sample holder in a Helium-flow microcryostat (Oxford 

Instruments). By pumping liquid Helium flow through the cryostat, the sample temperature can be 

cooled down to 2.2 K and increased up to 500 K by using the cryostat heater. The sample 



Chapter 3. Experimental techniques 

62 

temperature is set and read by the temperature controller (ITC 5305, Oxford Instruments). The 

cryostat is mechanically fixed on a xyz-translation stage, which is controlled manually. An 

electric-magnet (Magnet BE-10, Bruker) can provide a magnetic field up to 1.3 Tesla on the sample 

in Voigt geometry, i.e. the optical path is perpendicular to the magnetic field. The magnetic field is 

set and read by a power supply controller. 

To obtain the structure details and the laser spot positions, the sample is illuminated by a lamp. The 

sample is imaged by a CCD camera which is connected to a monitor. The overlapping between the 

pump beam and probe beam, and the detected area within the microcoil are checked prior to starting 

the measurements. The beam splitter BS3 (50%:50%) is removed during measurements. The beam 

splitter BS2 has a ratio of 92% and 8% for transmission and reflection, respectively. 

 

• Detection of the Kerr rotation signal 

The reflection of the linearly polarized probe beam carries the Kerr rotation information. It 

propagates through a mechanical pinhole and a λ/2 phase retarder of a Rhombus prism. The 

Wollaston prism (WP) separates the beam into two beams with normal polarization states. Each 

beam is focused into one photodiode detector (A/B) within the auto-balanced photoreceiver (Nirvana 

2007, New Focus). The λ/2 retarder can be rotated around its optical axes, so that the light 

polarization can be adjusted to arbitrary direction. In case of no electron spin polarization in the 

studied sample, the retarder is rotated to a fixed position, at which the light intensity of the two 

beams after the WP is the same. Therefore it is assured the diode bridge is balanced with ∆U = 

|UA-UB| =0 for the sample without magnetization. Then in case of non-zero electron spin polarization 

after circular-polarized pumping, ∆U represents the electron spin polarization during measurements. 

The voltage difference ∆U is extracted by a double lock-in technique [153, 154]. The electric signal 

is introduced to the first lock-in amplifier (DSP 7265, EG&G Instrument) with a reference signal of 

f1 = 200 kHz, which is synchronized with the EOM modulation. For the second lock-in amplifier 

(Model 5301, EG&G Princeton Applied Research), the reference signal has a frequency f2 = 110 Hz 

given by the output TTL square wave from the mechanical chopper. This gives a detection sensitivity 

of less than 1 µrad for the Kerr rotation of the probe beam [153].      

 

• Data evaluation 

The pump-probe measurements are performed in the so-called oblique experiment geometry 

presented in FIG 3.4-4. The external magnetic field Bext is applied in the in-plane direction, while the 

optical beams are incident with titling angles to the sample surface. The incident angle is indicated in 

the inset. After circularly polarized (σ+/σ-) optical pumping, the spin-polarized electron (S) ensemble 

precesses around the magnetic field of Btot = Bext + BN with BN as the nuclear field. The linearly 

polarized probe beam is used to detect the Sx component of electron spin S, mainly arising from the 

polar magneto-optic Kerr effect.  

A typical scanning of TRKR measurements is presented in FIG 3.4-5. After optical absorption, spin 

polarized electron-hole pairs are generated. (i) In the first few 10 ps, the dephasing process of the 
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hole spin is done due to strong state mixing between heavy and light holes; meanwhile the optically 

generated carriers average spin polarization to the donor-bounded electrons via exchange interaction 

[168]. (ii) In the next several 100 ps, the total electron spin ensemble precesses around the Btot with a 

certain extent of spin dephasing. (iii) After electron-hole recombination, the bound electrons are left 

and the spin relaxation process ranges from a few ns even up to 100 ns, which depends on the sample 

doping level and the experiment conditions. Therefore the detected signal can be expressed as 
*
2/| | cosit T

x i i
i

S S e ω t−=∑ , with i for the different carrier type, ω the precession frequency, T2
* the spin 

dephasing time constant and S as the carrier spin polarization . 

 

 

FIG 3.4-4: Pump-probe experiment geometry. After circularly polarized (σ+/σ-) optical pumping (red), the electron spin S 

precesses around the total field Btot. The polar Kerr rotation is detected via the probe beam (green) with linear 

polarization at incidence. 

 

Since the carrier spin dynamics is complicated within the first few 100 ps, and on the other hand the 

electron spin precession Larmor frequency ωL is the focus of the data evaluation, fittings are 

performed according to experimental data with time delay longer than 200 ps. From ωL = gµBBtot/ћ = 

gµB|Bext+BN|/ћ, the extracted ωL represents the nuclear field. Here g is the Landé g factor, µB is Bohr 

magneton and ћ is reduced Planck constant. The red curve is fitted by the function  

 
*
2/

L( ) | | cost T
xS t S e ω t DC−= ⋅ +  (3-35) 

The data-fitting is performed by 1stOpt software (7D-Soft High Technology Inc.). The quantities |S|, 

T2
*, ωL and DC are treated as free parameters. The Levenberg-Marquardt algorithm is adopted and 
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the fitting is finished with a typical correlation coefficient of 0.9999. The blue curve gives an 

indication of the electron spin dephasing envelope. 

  

 
FIG 3.4-5: Fitting for TRKR experimental data. The solid balls are experimental data and the red curve is by fitting. The 

blue envelop indicates electron spin dephasing and the periodic oscillation is from the electron Larmor precession around 

the total magnetic field. For the fittings,T2* = 1 ns and ωL = 13.585 GHz.  
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4 LOCAL CONTROL OF SPIN POLARIZATION BY AN ON-CHIP 

MICROSCALE CURRENT LOOP 

 

In this chapter, the concept of local electrical control of spin polarization is demonstrated by using 

the on-chip microscale current loop. In the first part, the magnetic properties of the diluted magnetic 

semiconductor quantum wells are characterized in a static magnetic field.  The strong sp-d 

exchange interaction between the carriers and Mn ions makes the excitons have a large effective g 

factor, which is experimentally determined to be ~200 at liquid helium temperature. The 

photoluminescence thus shows pronounced polarization in the low field regime. In the second part, a 

magnetic field is generated by introducing a current through the on-chip microcoil. The switchable 

magnetic field allows an electrical control of the spin polarization, which is a competing result 

between the current-induced magnetic field raising the magnetization of Mn ions and the 

current-generated local heating for the demagnetization. A method is developed to extract the 

contribution from each mechanism. In the last part, the magnetization dynamics on a sample with a 

higher Mn content is found to occur on a time scale below 10 ns, so that it can function as a detector 

for the phonon dynamics which is on a longer time scale.          

 

4.1 Diluted magnetic semiconductor quantum wells in a static magnetic field 

The layer structures of the studied semiconductor samples are schematically given in FIG 4.1-1. Two 

wafers of diluted magnetic semiconductor quantum wells (DMS QWs) are investigated. The samples 

are grown by molecular beam epitaxy on an undoped GaAs (001) substrate with a 2.47 µm thick 

CdTe buffer layer. A DMS QW of Cd1-xMnxTe with a thickness of 12 nm is embedded between a 

1.23 µm thick lower Cd1-yMgyTe  barrier and a 70 nm Cd1-yMgyTe cap layer, both with a Mg 

content y = 0.30. For the DMS QW layer, the manganese concentration is x = 0.067 and x = 0.024 

for Sample 1 and Sample 2, respectively. 

On the left side, the energy bandgap structure for the heterostructures is given. The values are 

calculated using the empirical formulae given in Equation (2.45) for (Cd, Mn)Te DMS QW and 

Equation (2.46) for the (Cd, Mg)Te barrier. Due to the pinning of the surface acceptor states and the 

Fermi level of the QW layer, there is a band bending across the heterostructures, and thus the sample 

is p-doped with the hole gas. The sheet density of the hole gas is determined by monitoring the 

Moss-Burstein shift, the energy shift between the photoluminescence (PL) energy and the optical 

absorption energy [169]. The hole density is strongly dependent on the cap layer thickness [109]. 

Thereby this method is found valid for the Mn concentration up to x = 0.093. The hole density is 

found maximum for a cap layer thickness of ~25 nm. Based on the systematic studies in Ref. [109], 

the hole density is estimated ~7 × 1010 cm-2 for the studied samples with a capper layer thickness of 

70 nm. The existence of the acceptor states is suggested to originate from the formation of telluride 

oxides, which play a role to trap electrons [170]. 
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FIG 4.1-1: Left: Layer structure schematics of the studied DMS QWs. Right: the energy band structure for the 

heterostructure. The values of energy bandgaps are marked. The pinning of the Fermi level and the surface states gives 

rise to the band bending. After Ref.[169] . 

 

4.1.1 PL spectrum studies 

As theoretically demonstrated in Section 2.3.2, the giant Zeeman splitting can be manifested in the 

PL spectrums of a DMS structure in a magnetic field. The energy splitting is hardly dependent of the 

exciton type, either neutral exciton (X) or positively charged (trion, X+), each of which has a huge 

effective g factor. These results from the magnetization of Mn ions, which strongly polarize the 

carriers via sp-d exchange interaction.  

The magnetic field dependence of the σ+-polarized PL spectrum is presented in FIG 4.1-2 for both 

samples with x = 0.024 (left) and x = 0.067 (right). For each sample, both trions and neutral excitons 

are observed in the PL measurements. This evidences the existence of the hole gas from the surface 

doping. At an external field of Bext = 0, the PL intensity is dominated by X+ and the X is absent for 

the sample with x = 0.024, while both X+ and X are present for the sample with x = 0.067. This is 

possibly due to the higher Mn concentration which gives a larger bandgap, so that the Fermi level is 

less below the valence band edge and thus, the hole density is reduced.  

By increasing Bext, the X intensity becomes more prominent while the X+ intensity is reduced. This 

arises from increasing sp-d exchange interaction competing with the dissociation energy [125]. The 

exchange interaction polarizes the holes in a preferred orientation, while the trions always take two 

holes with antiparallel spin orientations. This dissociation energy can be estimated ~ 4 meV from the 

spectral distance between the X peak and the X+ peak. This explains why the X+ intensity is vanishing 

at a magnetic field of around 1 T for the sample of the higher Mn content and at around 5 T for the 

lower Mn content. The broader spectral width for the higher Mn content might be due to the 
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enhanced interface roughness (between the QW and the barrier) or alloy fluctuations [171], and the 

larger magnetic fluctuation [172] , which both contribute larger fluctuations of the exciton energy.  

 

 

FIG 4.1-2: Magnetic field dependence of the σ+-polarized PL spectra for the sample with x = 0.024 (left) and x= 0.067, 

respectively. The neutral exciton (X) and the positively charged exciton (X+) are marked. The PL intensity is dominated 

by X+ in the low field, while X is dominating in the high magnetic field regime.    

 

As a pronounced effect, the PL spectra are both clearly red-shifted by increasing the magnetic field. 

The field dependence of the PL energy shift is plotted in FIG 4.1-3. Since the energy splitting for X 

and X+ have a similar dependence of the magnetic field, either X or X+ PL energy shift gives an 

estimation of the sp-d exchange interaction. The energy shift is extracted with respective to the PL 

energy at zero field, using the X line for x = 0.067 and X+ line for x = 0.024 from FIG 4.1-2. Each 

energy shift can be nicely fitted (red lines) by the Brillouin function described in Equation (2-54) and 

Table 2-2. The effective Mn2+ ion spin is Seff  ≈ 1.10 for sample 1 and Seff  ≈ 1.02 for sample 2. 

These values are close to the theoretically predicted plotted in FIG 2.3-3. The antiferromagnetic 

temperature parameters are T0 ≈ 3.9 K and T0 ≈ 2.6 K. Further, the effective exciton g factor is 

evaluated about ~ 200 for sample 1 and ~ 60 for sample 2, which are in good agreement with 

calculations indicated in FIG 2.3-4 and Equation (2.78).     

The PL spectra for different temperatures are shown in FIG 4.1-4.  The measurements were 

performed for sample 1. At zero external field (a), the PL energy shift versus temperature is 

determined by the Varshni shift: the PL energy is red-shifted for a higher temperature [173]. As well, 

the X+ intensity is clearly reduced by raising the temperature, which is a competing result between 

the increasing thermal kinetic energy and the diminishing dissociation energy [125]. The X+ is highly 

suppressed at a temperature above 20 K. In case of a strong magnetic field Bext = 5 T, the PL 

spectrum undertakes a blue-shift with increasing the temperature. This is mainly influenced by the 

weaker Mn ion magnetization at an elevated temperature, and thus the sp-d exchange interaction is 
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reduced giving a smaller energy splitting. The monitored energy shift is a combination of the giant 

Zeeman effect and the Varshni shift.      

 

 

FIG 4.1-3: Magnetic field dependence of the σ+-polarized PL energy shift. The energy shift is extracted respective to PL 

energy of the neutral exciton (sample 2) and the trion (sample 1) at zero magnetic field. Red lines are fittings by the 

Brillouin function, and the fitting parameters are indicated for each sample. Tbath = 5 K. 

 

 

FIG 4.1-4: Temperature dependence of the PL spectra for sample x= 0.067. The Varshni shift is reflected in the case of 

Bext = 0 T (a), and the energy shift in case of Bext = 5 T (b) is controlled by both the Varshni shift and the giant Zeeman 

effect.  

 

The giant Zeeman splitting ∆EPL
ex versus temperature is plotted in FIG 4.1-5. It is obtained from FIG 

4.1-4 (b) by subtracting the Varshni shift evaluated from FIG 4.1-4 (a). The energy shift is nicely 

fitted with the Brillouin function (red line) using the same parameters as determined in FIG 4.1-3. 

The Mn ion magnetization is suppressed in the high temperature regime, i.e. the sp-d exchange 
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interaction is reduced by a factor of two from Tbath = 5 K to Tbath = 20 K.  The Varshni shift is 

depicted in the inset, and the data are fitted by  

 
2

bath
varsh

bath

aT
∆E

T b
= −

+
, (4-1) 

in which the fitting parameters are a = 0.24 meV/K and b = 100 K, which are close to the literature 

data [174]. 

 

 

FIG 4.1-5: Temperature dependence of the PL energy shift for sample x= 0.067. The extracted energy shift is controlled 

by the giant Zeeman splitting at Bext = 5 T, and it is fitted by the Brillouin function using the same parameters as FIG 

4.1-3. The Varshni shift is depicted in the inset for Bext = 0 T. 

 

4.1.2 PL polarization studies 

In addition to the PL energy shift, the PL polarization can characterize the giant Zeeman effect in the 

low magnetic field regime. As theoretically discussed in Section 2.3.2, the PL polarization can 

sensitively reflect the Mn2+ ion magnetization at a weak magnetic field and the exciton energy 

relaxation after a non-resonant excitation. The following measurements are performed in static 

magnetic fields, so the results of the PL polarization are characterized by the magnetization of Mn 

ions in an equilibrium (or quasi-equilibrium) state. These data give important references for the 

results after this section.    

The magnetic field dependence of the PL polarization degree is presented in FIG 4.1-6. For each 

sample, there is a pronounced PL polarization in the low field regime, which gets saturated with a 

value of ρs ~ 92%. It is less than unity due to several possible facts. First, the saturated PL 

polarization degree is (1+τs/τEX)-1 according to Equation (2.74) or (2.88). The finite spin relaxation 

time τs of a few picoseconds and the exciton life τEX of 100 ps ~ 200 ps can make ρs < 1. The second 

factor can be simply due to the imperfect polarization optics in Section 3.3.1. The third possible 
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reason can be due to the fluctuation of the Mn ion, which can depolarize the exciton spins reducing 

the PL polarization [137]. It requires an external field up to a few Tesla to suppress the 

magnetization fluctuations in DMS quantum dots [175].  Nevertheless this effect seems to play little 

role for the studied QW structures. A critical Mn concentration in an epilayer was verified to be x = 

0.07 for achieving the formation of magnetic polarons [176], and thus it is quite unlikely to obtain 

magnetic polarons for the sample of x = 0.024 here.  

The PL polarization is more sensitive to the applied magnetic field for the sample 1 than for sample 2. 

This is a direct result of a larger Mn magnetization for a higher Mn concentration, while it turns out 

to more strongly polarize the photon-excited carriers via the sp-d exchange interaction. According to 

the saturation level of ρs, the experimental data can be nicely fitted by Equation (2.74) or (2.88) 

using T0 and Seff determined from the spectroscopic results in FIG 4.1-3. From time-resolved PL 

measurements, τX,X+ = 220 ps is used for Sample 1 and τX,X+ = 160 ps for Sample 2. The spin 

relaxation time is τs = 5 ps for both fittings. A constant exciton temperature TX,X+ = Tbath + ∆Texc is 

assumed and a value of ∆Texc = 8.5 K is used for both samples. This exciton temperature being 

higher than the bath temperature is reasonable by considering the non-resonant excitation at 1.943 eV 

and an energy relaxation time which is comparable with the exciton lifetime.  Here the excitation 

level is over 200 meV above the QW energy bandgap but ~200 meV lower than the barrier energy 

level. The lattice heating from the hot excitons is less than 1 K and thus it is neglected, e.g. see FIG 

4.1-8.   

   

 

FIG 4.1-6: PL polarization degree versus a static magnetic field. The experimental data of each sample are fitted by using 

same parameters determined from FIG 4.1-3. The exciton temperature is used higher than the bath temperature by ∆Texc 

for both samples. The excitation power density is ~150 W/cm2. 

 

FIG 4.1-7 presents the temperature dependence of the PL polarization for the two samples in an 

external magnetic field of Bext = 100 mT. The PL polarization is clearly reduced by increasing the 
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sample temperature, and it can be resolved for a temperature difference of 1 K. These data cannot be 

well fitted anymore using determined parameters above, since the exciton lifetime, the spin 

relaxation and kinetic relaxation time all depend on temperature. These data serve as references for 

determining the Mn2+ ion spin heating for the experimental results discussed later. 

The power dependence of the PL polarization is given in FIG 4.1-8 for the two samples. The 

magnetic field is Bext = 100 mT, and the bath temperature is Tbath = 5 K. Generally the polarization is 

reduced by increasing the optical excitation power. The excess kinetic energy of the photon-excited 

carriers can be transferred to the pre-existing holes and efficiently transferred to the Mn ions. 

Meanwhile the carriers can dissipate kinetics to the lattice system which can heat the Mn ions by 

spin-lattice relaxation [42, 63]. The coupling between the Mn ions, carriers and the lattice system is 

presented in Section 5.1.2, e.g. see FIG 5.1-1. There is an appreciable heating of Mn ions for the 

power larger than 10 µW (corresponding a power density of ρexc ~ 250 W/cm2, see Section 3.3.1). To 

evaluate the density of the optically generated carriers, the optical absorption coefficient is used as 

αCdTe ≈ 2 × 104 cm-1 [177],  and the exciton lifetime is used as τEX ≈ 200 ps. The photon-generated 

carrier density is given as nopt ~ ρexc⋅τEX⋅[1- exp(-Lz⋅αCdTe)] ≈ 4 × 109 cm-2. Here the thickness of the 

QW is denoted as Lz = 12 nm. To note, the hole density from surface doping is ~7 × 1010 cm-2. 

Therefore pronounced heating could be generated even by a relatively small amount of hot carriers 

compared with the carriers from surface doping.  

 

 

FIG 4.1-7: Temperature dependence of the PL polarization degree in a magnetic field of Bext = 100 mT. The excitation 

power density is ~150 W/cm2. 

 

By comparing the power dependence of the PL polarization and the temperature dependence in FIG 

4.1-7, it can be seen that the Mn heating is larger for the sample of a lower Mn content than the 

higher one by using the same excitation power. For an excitation power of 200 µW, the Mn heating 

is ~5 K in case of x = 0.023 and less than 2 K for x = 0.067. This can be understood by considering a 
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faster spin-lattice relaxation process in sample 1, in which the Mn ions can couple more strongly 

with the lattice system [178]. As a result, the Mn heating is more contributed from the heated lattice 

system, which holds a much larger thermal capacity and thus the Mn ions are less efficiently heated 

by hot carriers for the sample with x = 0.067.  

 

 

FIG 4.1-8: Power dependence of the PL polarization degree in a magnetic field of Bext = 100 mT and a bath temperature 

of Tbath = 5 K. The excitation power density is ~150 W/cm2. 

 

4.2 Local control of spin polarization by an on-chip current loop 

To obtain local spin manipulation is one key topic towards the applications of spin-based electronic 

devices [20]. By applying an electric field, the carrier concentration can be controlled to modulate 

the carrier-Mn ion exchange interaction in a DMS QW [26], the electron-electron exchange 

interaction can be varied by adjusting the overlapping of the electronic wavefunction in a double 

quantum dot system [34], the electron wavefunction can be dragged to tune the value of the Lande g 

factor in a heterostructure [179], or the spin-orbit coupling can be directly controlled [35]. The 

optical methods have been demonstrated to manipulate the electron spins in an ultrafast regime based 

on optical Stark effect [36] and the inverse Faraday effect [180]. These effects could be treated like 

the generation of an effective magnetic field for the carrier spins. 

The straightforward method is to use a magnetic field. Such an on-chip magnetic field can stem from 

a micro/nano-ferromagnet (FM) on top of the semiconductor [28-31, 62], which allows one to define 

a locally varying landscape of spin states in the semiconductor. It was even suggested to trap carriers 

with a defined spin states on a nanometer scale [181]. However, the ability to vary the magnetization 

of the micro/nanostructured FMs in order to gain external control over the local spin polarization is 

quite limited. One possibility is to employ short, intense laser pulses under an applied external 

magnetic field [182, 183] or even in zero field by using polarized optical excitation [180]. Another 

alternative is the current-induced magnetic field from a sub-millimeter coil which has been utilized 
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to electrically manipulate spin states of Mn2+ ions for studying the magnetization dynamics in DMS 

QWs [33, 56].Here a microscale coil is used to achieve the local spin control in a DMS QW. The PL 

results presented in this section are obtained by using the experiment scheme in FIG 3.3-4.  

A schematic description of the concept is given in FIG 4.2-1.By introducing a current through the 

microcoil, a magnetic field BI is generated in the coil center dominant in the out-of-plane direction. 

The Mn ions are magnetized, and via sp-d exchange interaction, the carriers are highly spin-polarized. 

Since the exciton spin relaxation process is much faster than the exciton recombination rate, i.e. τs << 

τEX, the excitons experience a giant Zeeman effect during the lifetime, and thus the PL emission is 

expected to be circularly polarized. In order to maximize the giant Zeeman splitting or the exciton 

spin polarization, a large effective g factor is required. Therefore the studied sample is chosen to be 

Sample 1 with the Mn content of x = 0.067, and the PL polarization degree (under cw excitation) is 

expected to be pronounced in presence of a few mT magnetic field as shown in FIG 4.1-6.  

 

 

 
FIG 4.2-1: Schematic description of the local spin control by a microscale current loop in a DMS QW 

 

FIG 4.2-2(a) shows an optical micrograph of the A2 structure with an inner radius of 2.8 µm and coil 

width of 2 µm. In FIG 4.2-2(c), the spin polarization degree ρ = (Iσ+−I σ−)/(Iσ++I σ−) in the coil center 

(black), with Iσ+, Iσ− being the intensities of σ+ and σ− polarized light, respectively, is depicted versus 

the DC current amplitude at Tbath = 4.2 K. By increasing the current amplitude, a pronounced spin 

polarization is obtained, and the spin polarization changes its sign when inversing the current 

direction, as expected. At large current amplitudes, ρ reaches a maximum of ~ ±3% as a consequence 
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of the current-generated heat, which introduces thermal disorder into the Mn2+ and carrier spin 

systems aligned by the current-induced field. FIG 4.2-2(b) shows a scanning electron micrograph of 

the C2 structure with an inner radius of 2.4 µm, a coil width of 3 µm, and several metal pads around 

the coil, a layout which is used from Ref. [139]. In general, the spin polarization (red) in the C2 

center shows a similar relation to the current amplitude as in A2, but for I > ~60 mA, ρ(C2) is 

obviously larger than ρ(A2). This verifies that the design of the C2 coil allows for an efficient 

dissipation of the current-generated heat resulting in higher Mn2+ and carrier spin polarizations. 

 

 
FIG 4.2-2: (a) Optical micrograph of the A2 structure. (b) Scanning electron micrograph of the C2 structure. (c) Circular 

PL polarization ρ versus the amplitude I of a DC current for A2 (black) and C2 (red) structures at Tbath = 4.2 K. 

 

In order to further enhance the spin polarization by suppressing heat generation, current pulses are 

used in the C2 coil. The electrical pulse width is ~ 400 ns and a time window of 100 ns of the photon 

counter was chosen with a delay of ∆t = 170 ns with respect to the rising edge of the pulse (see inset 

of FIG 4.2-3, left). As presented in FIG 4.2-3 (left), the PL polarization ρ increases linearly with the 

current amplitude for I < ~ 60 mA and reaches gradually a maximum of ±8.5 % at I = ±300 mA. 

On the right side, the measured relation between spin polarization ρ and an external magnetic field is 

plotted for different temperatures. As can be seen in the figure, ρ increases linearly with Bext in the 

low field limit. Thus, one expects a linear relation of ρ(I) for small currents, where heat generation 

can be neglected (dashed line in the left plott). For I > ~ 60 mA the polarization ρ deviates from the 

linear relation with I, which is attributed to a distinct contribution of heating at large currents. 

In order to quantitatively separate the two contributions which determine the spin polarization, 

namely the current-induced magnetic field BI, which aligns the Mn2+ spins and the current-generated 

heat, which increases the spin temperature of the Mn2+ ions TMn, and thus the disorder of the Mn2+ 

spins, measurements are performed to determine the spin polarization induced by a pulsed current at 

an external magnetic field of Bext = 100 mT.  
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FIG 4.2-3: Left: PL polarization degree ρ versus the amplitude of a pulsed current I at Tbath = 4.2 K. The dashed lines 

indicate the linear ρ(I) relation at small currents. The inset depicts the temporal shape of the current pulse (blue) and the 

temporal shape as well as the time delay ∆t of the observation window (black). Right: The PL polarization ρ is plotted 

versus Bext for Tbath = 4.2 K, 8 K, and 20 K, respectively. 

 

From Equation (2.80), it can be seen that the PL polarization is proportional to the total field and the 

bath temperature, i.e. ρ ~ Btot⋅TMn
-1⋅TEX

-1, in the low magnetic field regime. Here TMn is the Mn ion 

spin temperature with and TEX is the average exciton temperature. Since the Mn ion magnetization is 

on the saturation level at a time delay of ∆t = 170 ns and the magnetization process is shorter than the 

observation window of 100 ns (see Section 4.3), the Mn ion spin temperature can be approximated as 

an average value TMn. It can be used as TMn = TMn0 + ∆TMn, where TMn0 is the Mn ion spin 

temperature without heating and ∆TMn is Mn ion spin heating from the current. Similarly, the exciton 

temperature can be written as TEX = TEX0 + ∆TEX, where TEX0 is the exciton temperature without 

heating and ∆TEX is exciton heating from the current. The heating of both subsystems is due to the 

elevated lattice temperature TLatt = Tbath + ∆TLatt, then it can be treated the heating of the three 

subsystems is equal, i.e. ∆TMn = ∆TEX = ∆TLatt. It is obtained 

 ( ) 1 1
ext I Mn 0 Latt EX 0 Latt~ ( ) ( )ρ B B T ∆T T ∆T− −

± ± ⋅ + ⋅ +  (4-2) 

Here ρ+ is the PL polarization measured at Bext + BI, and ρ− is obtained at Bext − BI. 

Fig. 4.2-4(a) shows the spin polarization ρ+ and ρ− versus the current amplitude, respectively. As the 

induced magnetic field depends on the current direction, while the generated heat does not, ρav = (ρ+ 

+ ρ−)/2 directly indicates the local heating at Bext = 100 mT by using Equation (4-2). The average PL 

polarization ρav is plotted as left axis in FIG 4.2-4(b). By comparing ρav(I) with the temperature 

dependence of ρ at Bext = 100 mT (FIG 4.1-7), the change of the Mn2+ spin temperature ∆TMn(I) with 
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the current I can be directly extracted at the time delay of ∆t = 170 ns (see right axis). The heating is 

growing with increasing the current amplitude. For I = 300 mA, a heating of the Mn2+ spin system is 

up to about 6 K in the coil center. 

 

 

FIG 4.2-4: (a) PL polarization degree ρ versus the amplitude of a pulsed current with positive (+I) and negative (-I) sign 

at Tbath = 4.2 K and Bext = 100 mT. (b) ρav (left axis) and the extracted change of Mn2+ spin temperature, ∆TMn (right axis), 

versus current amplitude.( c) The extracted current induced magnetic field BI versus current amplitude I. The red line is a 

linear fitting.  

 

By considering the linear relation between ρ and B for weak fields, the slope of ρ(B) at a given 

temperature can be approximated as ∆ρ/∆B(I) ≈ ρav(I)/Bext. Thus the induced magnetic field can be 

written as B(I) ≈ ρdiff(I)/(∆ρ/∆B(I)) ≈ ρdiff(I)/ρav(I)*100 mT, where ρdiff(I) is the half of the spin 

polarization difference between ρ+(I) and ρ−(I), i.e. ρdiff(I) = 0.5⋅[ρ+(I) - ρ−(I)], plotted as the left axis 

in FIG 4.2-4(c). In the right axis, the evaluated current induced magnetic field BI is shown to depend 

linearly on the current amplitude I, i.e. BI = 0.093 mT/mA*I, which is fitted by the red line. 

As presented in FIG 4.2-5, the lateral distribution of the current-induced carrier spin polarization ρ(x) 

is monitored by using a spatial scanning with a micrometer resolution across the micro-coil structure. 

The studied B2 structure has an inner radius 4.7 µm and a coil width of 4.9 µm (inset). Because the 

Au coil is opaque, only the spin polarization on the uncovered part of the DMS can be optically 

addressed. A negative pulse with I = −300 mA is introduced, and a maximum of ρ ≈ −6 % is 

obtained in the coil center, decreasing in the vicinity of the Au coil. Outside the coil a small positive 
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value of ρ , vanishing on a 10 µm scale, is found, which indicates the expected sign reversal of the 

current induced magnetic field BI there. 

 

FIG 4.2-5: Spatially resolved PL polarization degree ρ(x) across the B2 coil (see inset, the red arrow indicates the scan 

path). The current amplitude is −300 mA and Tbath = 5 K, and the solid lines serve as a guide to the eye.    

 

 

FIG 4.2-6: (a) Spatially resolved polarization degree across B2 with positive (+I) and negative (-I) sign in an external 

magnetic field of Bext = 100 mT, a temperature Tbath = 4.2 K and I = 300 mA. (b) Spatially resolved average polarization 

degree ρav(x) (left axis) and local variation of the Mn2+ spin heating ∆TMn(x) (right axis). (c) Spatial distribution of the 

extracted current induced magnetic field BI and the theoretically calculated one (green curve). 
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To quantitatively separate the two contributions which determine the spatial distribution of ρ(x), 

namely the current induced magnetic field BI(x) and the local Mn ion spin heating ∆TMn(x), the same 

treatment is applied as above based on Equation (4-2).  

The spatial dependence of the PL polarization is plotted in FIG 4.2-6(a). Similarly, the PL 

polarization at a given lateral position x is represented as ρ+(x) for the positive current and ρ−(x) for 

the negative one. An average PL polarization is given by ρav(x) = 0.5⋅[ρ+(x) + ρ−(x)] which is purely 

determined by the local heating at a certain magnetic field of Bext = 100 mT. In FIG 4.2-6(b), the 

ρav(x) is presented in the left axis, and the spatial dependence of the local heating ∆TMn(x) is extracted 

by comparing ρav(x) and ρ(Tbath) in FIG 4.1-7. As expected, the strongest heating is observed in the 

direct vicinity of the metal coil. FIG 4.2-6(c) gives the current-induced magnetic field distribution 

BI(x) = ρdiff(x)/(∆ρ/∆B(x)) with ρdiff(x) = 0.5⋅[ρ+(x) − ρ-(x)]. The experimentally determined values 

nicely agree with the theoretically calculated field distribution from Biot-Savart’s law, as illustrated 

by the green curve.  

 

4.3 Mn ion spin heating by pulsed current-generated phonons 

As discussed in the previous section, the on-chip current loop can function as a phonon generator to 

heat the Mn ion spin system. The giant Zeeman effect can sensitively probe the Mn ion 

magnetization which is affected by the Mn ion spin temperature, so that the DMS layer can work as a 

detector for the dynamics of the nonequilibrium phonons [184-187]. Thereby, the nonequilibrium 

phonons are generated by heating a thin metal film deposited on the sample. The generated phonons 

are typically in the sub-THz frequency regime, and thus gain a ballistic transport length scale above 1 

mm [185, 186]. It is suggested that the Mn ions of the DMS layer are resonantly heated by the 

spin-phonon coupling. As the Mn2+ ion has a zero orbital spin, the coupling between one single Mn 

ion and the phonon system is quite weak. Rather the Mn ion spin-phonon coupling is much more 

effective between one phonon and a pair of Mn ions, which is mediated by the Dzyaloshinski-Moriya 

exchange interaction [58, 188]. Therefore the dynamics of the phonons can be probed by monitoring 

the transient PL spectral shift. The detected phonon energy is equal to the Zeeman energy splitting of 

the Mn ions in presence of an external field, and thus the phonon frequency spectrum can be figured 

out by tuning the magnetic field magnitude.  

In Ref. [185, 186], the Mn content was chosen xMn ≥ 0.07, so that the Mn ion spin-lattice relaxation 

(SLR) process is below 100 ns [55-57]. The time resolution is limited by the SLR process which is 

much faster compared with the phonon decay on the order of 1 µs at a bath temperature of ~2 K. The 

phonon decay is expected faster at elevated temperatures [189, 190]. In the low Mn content regime, 

i.e. xMn ≤ 0.03, the phonon decay is much faster than the SLR process which is above 10 µs. Thus the 

SLR process can be probed with a time resolution limited by the phonon lifetime [64, 65, 188]. 

Nonequilibrium phonons can also be generated by non-resonant laser excitation, and the xMn 

dependence of the SLR process has been quite systematically studied in Ref. [120, 191, 192]. 
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The SLR rate is strongly depends on the sample temperature. For a rough estimation, the following 

relation is given from Ref. [58] 

 
bath bath24.4/ 24.4/1 1 1

SLR (3 ) ( 1)T T
τ e e− − −∝ + ⋅ −  (4-3) 

Here it is assumed the SLR rate mainly controlled by the Mn ion pairs, which becomes more with 

increasing the Mn concentration. If the temperature is elevated by a factor of two, the SLR time 

constant can be shortened by two orders of magnitude  

Similar to the reported technique, the nonequilibrium phonons are here generated by an electrical 

pulse. The used microcoil has an aperture of 8.5 µm and a width of 5.6 µm, similar to the structure 

shown in the inset of FIG 4.2-5. The studied sample has a Mn content of xMn = 0.067 (Sample 1) and 

the bath temperature is generally 5 K or above. For a sample with xMn = 0.05, it has been determined 

τSLR ≈ 100 ns at a temperature of 4.7 K [57]. By considering the fact that the SLR is becoming fast 

with increasing the Mn content [55] and the strong temperature dependence, the SLR time in the 

studied is expected much less than 100 ns. From Ref. [193], it has been indicated the phonon decay 

time has been estimated ~400 ns in a same sample. Therefore the PL polarization measurements here 

allow one to monitor the phonon dynamics with a time resolution limited by the SLR time in the 

sample with xMn = 0.067, in a field of 100 mT. The PL results presented in this section are obtained 

by using the experimental scheme in FIG 3.3-5. 

First, in order to determine the SLR time in the studied sample, the PL polarization measurements 

are performed with a constant sample temperature. In this way, the PL polarization dynamics directly 

represents the SLR dynamics. This can be realized by choosing an electrical pulse with a repetition 

period less than the phonon lifetime. In FIG 4.3-1, the PL measurements are measured in an external 

field of Bext = 100 mT. The electrical pulse repetition period τrep = 120 ns is chosen, and the pulse 

width τpul = 40 ns. The electrical transit time is 2 ns. In this case, a dynamic equilibrium is 

established between the phonon generation and the phonon decay, so that the DMS layer experiences 

a quasi-thermal equilibrium. Within the repetition period, the lattice temperature and the Mn ion spin 

temperature is a constant value. The σ+-polarized PL intensity (black) and σ−-polarized PL intensity 

(red) are respectively recorded by the modulation technique based on the TCSPC system (Section 

3.3.2), and the PL polarization (blue) is evaluated according to the definition in Equation (3-1). The 

PL polarization dynamics directly reflects the magnetization of the Mn ions as TMn ≈ TLatt ≈ TEX 

throughout the repetition period, and it is only affected by the pulsed magnetic field. 

As expected, the positive current can induce a positive contribution of the spin polarization presented 

in (a) and (c), and the negative current reduces the spin polarization in (b) and (d). The onset and 

decay of spin polarization is generally below 5 ns. This much faster rate is not surprising by 

considering the lattice temperature. In case of I = 100 mA, the PL polarization level is ~32% caused 

only by the static external field. The lattice temperature is estimated about 10 K by comparing it with 

the reference results in FIG 4.1-7.  In case of I = 200 mA, the PL polarization level is further 

reduced to ~20%, which corresponds to a lattice temperature of 16 K. This agrees well with the 
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theoretical discussion above. The short SLR process allows the phonon dynamics to be monitored 

with a time resolution of a few nanoseconds.  

 
FIG 4.3-1: Time-resolved PL polarization degree induced by an electrical pulse. The generated phonons are in a 

quasi-thermal equilibrium state since the pulse repetition period is shorter than the phonon lifetime. The external field is 

Bext = 100 mT. The time delay is with respect to the leading edge of the electrical pulse. The pulse width is 40 ns and the 

repetition period is 120 ns. The electrical transmit time is 2 ns. (a): a positive current is introduced I = 100 mA; (b): a 

negative current is introduced I = -100 mA; (c) I = 200 mA; (d) I = -200 mA. The PL polarization (blue) is calculated 

from the detected σ+-polarized PL intensity (black) and the σ−-polarized PL intensity (red). For the presented results, xMn 

= 0.067. 

 

To generate nonequilibrium phonons, a longer repetition period of τrep = 2 µs is used for 

measurements depicted in FIG 4.3-2.  In this case, as the phonon lifetime is shorter than the 

repetition period, the quasi-thermal equilibrium cannot be established throughout one electrical 

period. As a result, the current-generated phonons undertake a nonequilibrium generations process as 

well a nonequilibrium decay process. The lattice system obtains a dynamical temperature and the Mn 

ion spin system follows the dynamics via the fast SLR process. For the left panel (a ~ c), the pulse 

width isτpul = 400 ns. In (a), the time-resolved PL polarization degree induced by the current pulse is 

depicted for a positive current I = 100 mA (black) and the negative current I = -100 mA (red). In the 

time delay ∆t of the first few nanoseconds, there is fast spin polarization formation which again 

confirms the fast SLR process. Afterwards the spin polarization is suppressed for both currents due 



Chapter 4. Local control of spin polarization by an on-chip microscale current loop 

81 

to the accumulation of the current-generated phonons. The dynamic PL polarization at a time delay 

of ∆t is represented as ρ+(∆t) for the positive current and ρ−(∆t) for the negative current. The average 

dynamical polarization, which is defined as ρav(∆t) = 0.5⋅(ρ+(∆t) + ρ−(∆t)), is plotted in the left axis 

of (b). By applying a same argument as in FIG 4.2-4 and FIG 4.2-6, the ρav(∆t) directly reflects the 

Mn ion spin heating, but with a time resolution down to a few nanoseconds. The Mn ion spin heating 

is plotted in the right axis (blue). As expected the heating is maximum at the end of the current pulse. 

Both the growth process and the decay process of the Mn spin heating can be exponentially fitted 

with a time constant of 200 ns, which is just the phonon lifetime τphonon = 200 ns. The dynamical 

magnetic field is evaluated as B(∆t) ≈ ρdiff(∆t)/ρav(∆t)*100 mT,  and it is plotted in (c). The 

amplitude of the magnetic field pulse is ~9 mT, which agrees quite well with the value determined 

for I = 100 mA in FIG 4.2-4.    

 

 
FIG 4.3-2: Time-resolved PL polarization degree induced by an electric pulse. The generated phonons are in a 

nonequilibrium state since the pulse repetition period is longer than the phonon lifetime. The external field is Bext = 100 

mT. The current amplitude is 100 mA. The time delay is with respect to the leading edge of the electrical pulse. The 

repetition period is 2 µs. The pulse width is 400 ns for (a) ~ (c), and it is 1200 ns for (d) ~ (f). The electrical transmit time 

is 2 ns. (a) and (d): Time-resolved polarization degree for the positive current(black) and negative (red). (b) and (e): 

Time-resolved average PL polarization (red, left axis) and extracted Mn ion spin heating (blue, right axis). The phonon 

dynamics are fitted by the red lines. (c) and (f): Evaluated magnetic field pulses. For the presented results, xMn = 0.067. 
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In the right panel (d ~ f), experiment results are presented for a longer pulse widthτpul = 1200 ns. The 

time-resolved PL polarization for the positive pulsed current and the negative one is plotted in (d), 

respectively. The averaged ρav(∆t) and the extracted Mn ion spin heating are given in (e). By an 

exponential fitting, the phonon lifetime is determined as τphonon = 260 ns. The evaluated magnetic 

field is shown in (f). The field amplitude is ~9 mT, in a nice agreement with the amplitude in (c). 
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5 SUB-NS MAGNETIZATION DYNAMICS IN DILUTED 

MAGNETIC SEMICONDUCTOR QUANTUM WELLS 
 

In this chapter, the magnetization dynamics down to zero magnetic field is addressed in diluted 

magnetic semiconductor quantum wells. In the first part, the interaction of Mn ions with the local 

environment is introduced and the magnetic properties affected by carriers are discussed. These two 

factors can strongly determine the Mn ion magnetization dynamics in the regime of a low magnetic 

field. Next the experimental results of the magnetization dynamics are presented showing a 

pronounced dependence on the external magnetic field. This is due to the interplay between the local 

anisotropic spin interactions of Mn ions and the Zeeman interaction with the external field. The 

numerical simulations based on the Lindblad master equation are performed and the theoretical 

calculations coincide well with the experiment results.  

 

5.1 Interactions on Mn ions 

For a localized Mn ion carrying a magnetic moment in a solid system, the Mn ion interacts with the 

local crystal environment [108]. These include the hyperfine interaction between the five 3d5 

electrons and the nuclei of the Mn ion, and the spin coupling with the cubic crystal field or any 

electrical field, e.g. caused by strain in semiconductor quantum structures. In the presence of carriers, 

the single Mn ion has s-d exchange interaction with electrons and p-d exchange interaction with 

holes. One Mn ion can also interact with the neighbouring Mn ions via d-d exchange interaction [44, 

107]. These mechanisms can affect the magnetization dynamics of the Mn ions [56, 63-65, 178, 191, 

192].  

 

5.1.1 Local spin environment 

For a paramagnetic center, e.g. a Mn ion, the local magnetic interaction can be assessed by the 

electron paramagnetic resonance (EPR) technique. The corresponding Mn ion spin Hamiltonian is 

written as [194-196] 
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Here Ŝ and Î  are the electron spin and nuclear spin of the Mn ion, respectively. Bext denotes the 

applied external magnetic which defines the direction of the spin component Sz. The first item is the 

Zeeman energy with the Mn g factor of gMn ≈ 2.01 [108]. The second item Hhf is the hyperfine 

interaction with a hyperfine coupling constant A ≈ 0.68 µeV [56]. The spin coupling with the cubic 

crystal field is given in the third item with a ≈ 0.32 µeV [56]. The fourth item is the Mn ion spin 

coupling with a total strain-induced electrical field. In the studied (Cd, Mn)Te/Cd0.7Mg0.3Te DMS 

QW, the uniaxial strain along the growth direction (z-axis) is around δzz = -0.003 by considering the 

mismatch of the crystal lattice constants [44, 103]. The coefficients can be deduced Ds ≈ 0.62 µeV 

and Es = 0 for strain applied in [001] direction [103, 195, 197, 198]. In case of a strain in [110] or 

[111] direction, both coefficients are non-zero. This could happen by local fluctuations and 

dislocations. In Ref. [56], a strain of δxy = 0.004 is suggested for the (Cd,Mn)Te QWs, and thus it can 

be calculated Ds ≈ -0.41 µeV and Es = 1.12 µeV [103, 195, 197, 198]. The last term elecĤ  describes 

the spin coupling with the electrical field, which can be present due to the pinning of the surface state 

and the Fermi level in the studied samples [169] or due to the applied voltage on the metal structures. 

The complex formalism is given in Ref.[196]. Since the magnitude of the electric field is on the order 

of 107 V/m, Helec is estimated to be around a few neV, and thus it can be neglected compared with the 

other terms. 

The Zeeman energy splitting between Mn ion spin sublevels is around 1 µeV for a magnetic field of 

10 mT. This indicates that the anisotropic spin interactions, i.e. Hhf, Hcub and Hstrain, can compete with 

the Zeeman interaction in the low field regime [56], and they are expected to highly modify the 

magnetization dynamics, which is dominated by the spin-lattice relaxation (SLR) process in the 

strong field regime [42, 184].  

 

5.1.2 Magnetic properties affected by carriers 

In a DMS system, the existing carriers can affect the magnetic properties of the Mn ions in two folds. 

For the magnetization dynamics, the SLR process can be accelerated by introducing carriers which 

bypass the relatively slow spin-phonon coupling [42, 184].  For the static property, the carriers can 

enhance the magnetic susceptibility, and provide an additional effective magnetic field experienced 

by the Mn ions [49, 52]. 

In FIG 5.1-1, a schematic description is given for the relaxation channels between different energy 

reservoirs in a DMS system in the presence of carriers. There are three sub systems, the Mn ion spin 

system, the lattice system and the carriers. The Mn ions can couple with the lattice system via 

spin-phonon coupling, namely the SLR process, which is in a time range from a few nanoseconds to 

milliseconds depending on the Mn content and the temperature [42, 55, 56, 58, 184, 192]. As an 

additional relaxation channel, the carriers, i.e. electrons and holes, can make spin transitions of the 

Mn ions via a spin-flip scattering process [63, 64]. In addition, the carriers strongly couple with 

lattice system via a kinetic relaxation process which is typically on a time scale of 100 ps or even less 
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[117]. As a result, the carriers can provide an indirect channel to transfer the energy of the Mn ion 

spin system to the lattice system. In DMS QW structures, the SLR process has been experimentally 

demonstrated to be accelerated by tuning the density of the two-dimension (2D) electron gas [64] or 

the hole gas [65]. 

   

 

FIG 5.1-1: The schematic description of different energy reservoirs and their relaxation channels in a DMS system in 

presence of carriers 

For the spin-flip scattering process between the carriers and the Mn ions, the relaxation rate is mainly 

determined by the carrier density and the external field. In a spin-flip event, the Mn ion is put to a 

lower energetic spin level and the carrier is changed to a higher energetic spin level, so that the 

energy is conserved. Generally the scattering rate is larger for a degenerate carrier gas compared with 

the non-degenerate one. This is due to two facts: (i) the strong sp-d exchange interaction makes the 

Zeeman energy splitting between carrier spin sublevels much larger than that for the Mn ion spin; (ii) 

the carrier spin transition probability is expected to be higher if different spin states are occupied 

near the Fermi level. In other words, the acceleration of the SLR process is enhanced by increasing 

the 2D carrier density, and the acceleration becomes saturated if the Fermi level is much larger than 

the Zeeman energy splitting.  

In Ref. [63], a saturation density of a 2D electron gas is theoretically estimated as ne ≈ 1×1011cm2 in 

the low field regime for a Mn content x = 0.01. Below this concentration, the SLR rate can be faster 

by a factor of five or so if the electron density is increased higher by one order of magnitude. The 

effect is expected to be even stronger for the 2D hole gas, since the hole gas holds a larger effective 

mass leading to a larger density of states (DOS) and holes couple with the Mn ions by a stronger p-d 

exchange interaction. This has been experimentally confirmed in Ref. [65]. The in-plane effective 

mass of the heavy hole is about 2.5 times of the electron mass, i.e. mhh-in ≈ 0.25⋅m0 and me-in ≈ 0.1⋅m0 

[116]. The p-d exchange interaction is about four times as strong as the s-d exchange interaction. By 

considering these factors, the saturation density of the 2D hole gas can be expected to be larger by 

one order of magnitude or so than the 2D electron gas. In the studied sample, the hole density is nh ≈ 
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7×1010 cm2, which is likely below the complete degenerate condition in the low field regime, i.e. Bext 

= 100 mT.   

As a second prominent effect, the magnetic susceptibility of the Mn ions can be enhanced due to free 

carriers in a DMS system. This is basically due to carrier-mediated ferromagnetic coupling 

compensating the antiferromagnetic exchange interaction between Mn ion spins [49].  Once the 

former overcomes the latter, the Mn ions are changed from the paramagnetic phase to the 

ferromagnetic phase. This can happen by lowering the temperature or increasing the carrier 

concentration, so that the magnetic susceptibility can be highly enhanced forming the spontaneous 

magnetization of the Mn ions [48]. Again, since the p-d exchange interaction is stronger than the s-d 

exchange interaction and because of the larger DOS, p-type doping (holes) are typically used to 

achieve the ferromagnetism in DMS systems. The carrier-controlled ferromagnetism was first found 

in III-V [51] and later II-VI DMS systems [52]. The carrier density can be adjusted by modulation 

doping [52, 199], and by optical/electrical injection or depletion [26, 48, 200]. The Curie temperature 

has been theoretically predicted for different DMS materials [50]. In the studied (Cd, Mn)Te DMS 

structures, the Curie temperature was experimentally found to be below 4 K in case of p-type doping 

[48, 201]. 

As the sample temperature in current measurements was above 5 K, i.e. higher than the Curie 

temperature, the magnetic susceptibility is considered in the paramagnetic phase.  In Section 2.3.2, 

the Mn ion magnetization for an undoped DMS system has been described by the mean field 

approximation (e.g. see Equation (2-53)). By considering the approximation valid in the low field 

regime given in Equation (2-53), the magnetization is rewritten as 

 
2 2
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0 ext bath

B bath 0 bath 0
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The constant C is the Currie constant with 
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k
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magnetic susceptibility in absence of carriers is denoted as  

 0
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χ

B T T

∂= =
∂ +

 (5-3) 

From the theory proposed in Ref. [49], the carriers (e.g. holes) in a DMS QW can introduce an 

effective magnetic field B* seen by the Mn ions which is a function of Bext, and this field is given by  

 0*
ext

Mn B w Mn B 0 w

( )
2 2

β N βn n n n
B B

g µ L g µ N L
↓ ↑ ↓ ↑− −

= = , (5-4) 

in which n↑ is the hole density for mj = +3/2 and n↓ is the hole density for mj = -3/2, respectively. 

Here only the heavy holes are considered for the studied QW structures, and the QW width is Lw. 

The enhanced magnetic susceptibility is given  
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Therefore the enhanced magnitude of the magnetic susceptibility is  
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The energy diagram of the hole spin sublevel is given is FIG 5.1-2, in which the energy axis is 

reversed. In absence of an external field, the spin states are degenerate, i.e. n↓ = n↑. Once an external 

field Bext is applied, there is a giant Zeeman splitting ∆hh between spin-up state and spin-down state. 

The Fermi energy level is given by EF, which is here defined respective to the valence band bottom. 

According to the Fermi-Dirac distribution, the hole density is given 
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Here the heavy hole DOS is Dh, and kB is the Boltzmann constant. For a 2D hole gas, the value of Dh 

is assumed constant as hh-in
h 22

m
D

π

=
ℏ

. In the studied (Cd, Mn)Te DMS QW, the calculation gives Dh ≈ 

5×1010cm-2⋅meV-1 by using mhh-in ≈0.25⋅m0. After making the integration, the following relations are 

found 
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The Fermi level can be determined by using the second relation, if nh is known.  

 

 

FIG 5.1-2: Energy levels of heavy hole spin states. The energy axis is reversed. (a) The external field is Bext = 0, the 

energy values of two spin states are degenerate; (b) The degeneracy is lifted for Bext ≠ 0 with an energy splitting ∆hh. 
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In FIG 5.1-3, the hole density dependence of the Fermi level is depicted on the left-axis. It is almost 

independent on the magnetic field in the low field regime by judging the overlapping between Bext = 

0 mT (black line) and Bext = 100 mT (blue line). The energy splitting ∆hh ≈ 0.5 meV is used for Bext = 

100 mT, which is estimated for sample 1 with xMn = 0.067 at Tbath = 10 K (see FIG 4.1-5). The 

surface doping density is nh ≈ 7 × 1010cm-2 indicated by the dashed line, and it could be seen the 

Fermi level is quite close to the zero level.  

 

 
FIG 5.1-3: The heavy hole density dependence of the Fermi energy (left-axis) and the density of the spin-polarized holes 

(right-axis). For the numerical calculations, the temperature is used as T = 10 K, and the energy splitting between the 

heavy hole spin levels is used as ∆hh = 0.5 meV at an external field of Bext = 100 mT. The dashed vertical line indicates 

the hole density for the studied sample, i.e. nh ≈ 7 × 1010cm-2. 

 

Based on the calculated Fermi energy levels, the density dependence of the spin-polarized holes ∆nh 

is plotted on the right-axis. For a hole density nh < ~3×1011cm-2, the value of ∆nh is steadily growing 

by increasing the total density nh, while it becomes saturated and nh-independent for higher hole 

densities. This is due to the much higher Fermi energy level as compared with the thermal energy 

and the energy splitting, so that only lower energy states can contribute to ∆nh. This agrees well with 

the conclusion in Ref. [49]: the effective field B* is independent on the carrier density in case EF >> 

kBTbath for a perfect 2D hole gas system.  

For nh ≈ 7 × 1010 cm-2, it can be obtained ∆nh ≈ 1.4 × 1010 cm-2. This indicates a hole spin 

polarization of 20%, which gives a reasonable agreement with the measured PL spin polarization of 

~30 % at ~10 K, e.g. see FIG 4.1-7. To note, the PL polarization is determined by the excitonic 

Zeeman splitting, which is larger than the hole Zeeman splitting by a factor of 1.25. For nh > 3 × 1011 

cm-2, the saturated level is obtained with ∆nh ≈ 2.6 × 1010 cm-2. 

From the calculated value of ∆nh, the effective field can be estimated by using Equation (5-4). The 

used parameters are: Lw = 12 nm, N0 = 1.46 × 1022 cm-3, |N0β| = 0.88 eV and gMn = 2.01. It is 
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obtained B* ≈ 2.2 × 10-10 ⋅∆nh⋅ (mT⋅cm2). In case of nh ≈ 7 × 1010 cm-2, which corresponds to ∆nh ≈ 

1.4 × 1010 cm-2, B* ≈ 3 mT is obtained. In case of nh > 3 × 1011 cm-2, which corresponds to ∆nh ≈ 2.6 

× 1010 cm-2, B* ≈ 5.7 mT is obtained. This effective field gives a small enhancement for the magnetic 

susceptibility, by a few percents if one considers *
ext/

χ
η B B= . By modulating the hole 

concentration for the studied DMS QW, a maximum change of the effective field is ∆B* ≈ ± 3 mT. In 

addition, the hole-hole interaction should be taken into account in the regime of the large carrier 

density. This results in an enhancement of the Pauli susceptibility of the carriers, and then a further 

enhancement of the magnetic susceptibility is expected for the Mn ions. This enhancement was 

found to be a factor of two or so for a p-doped (Cd,Mn)Te DMS system [53]. This effect can make 

the effective field larger than the calculated ∆B* by a factor of two or so, i.e. ∆B* ≈ ± 6 mT in the 

experiment conditions. 

 

5.2 Sub-ns magnetization dynamics in DMS QWs 

To study the magnetization dynamics of magnetic centers is of fundamental interest in physics. In a 

DMS system, Mn ions can serve as paramagnetic centers due to the isoelectric property of the Mn 

ion with absence of the orbit spin. The magnetization dynamics of the Mn ions describes the 

relaxation process of the Mn ion spins to a new equilibrium state. This can also provide basic 

information for the quest how fast the Mn ion spin system can be controlled [20, 41].  

Quite generally, the magnetization dynamics of Mn ions is investigated in presence of a strong 

magnetic field, i.e. a few Tesla. In order to investigate the SLR process which dominates the 

longitudinal spin relaxation process, the Mn ion spin system is driven out of equilibrium by an 

external disturbance, i.e. direct heating the Mn ion system via nonequilibrium phonons [57, 184, 188, 

191] or indirect heating via optically generated nonequilibrium hot carriers [42, 192, 202, 203]. The 

SLR process of Mn ions has been investigated by detecting the magnetization-induced electrical 

signal [57, 204], and optically monitoring the dynamical recovery of the giant Zeeman shift of the PL 

spectrum [42, 184]. The SLR rate indicates how fast the dynamical equilibrium can be established 

between the Mn ion system and the lattice system. Concerning the transverse relaxation process, 

namely the spin-spin interaction of the Mn ions, it describes how fast a spin system loses its 

coherence. This can be either deduced from the resonance linewidth in EPR experiments [108] or 

obtained from the spin dephasing time in time-resolved magneto-optic Faraday [60, 205] or Kerr 

rotation measurements [61, 62].  At liquid helium temperature, the SLR time ranges from 100 ns to 

milliseconds strongly depending on the Mn content, while the spin-spin interaction time is typically 

on the order of a few 100 ps [55]. 

In order to accelerate the SLR process, carriers are introduced to provide an extra channel bypassing 

the relatively slow spin-phonon coupling [63], e.g. see FIG 5.1-1. Experimental results demonstrate 

an acceleration of a factor of two to four by increasing the carrier density by one order of magnitude 

[64, 65, 206]. Another alternative is to use a superlattice, in which the Mn contents are different for 
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the neighbouring layers. The SLR rate for the layer with the lower Mn content can be increased via 

spin-diffusion from the layer with the higher Mn content which has a faster SLR process [59]. 

Nevertheless, it seems not possible to shift the SLR time towards the sub-ns time scale in presence of 

a strong magnetic field. In absence of an external field, recent studies performed by Goryca et al. 

reveal a nanosecond magnetization dynamics of the Mn ions in dilute (Cd, Mn)Te QWs [33, 56, 207] 

and QDs [208, 209].  

In FIG 5.2-1, the magnetic field dependence of the PL polarization dynamics induced by a pulsed 

field is presented for sample 1 (xMn = 0.067). The experimentally measured σ+-polarized PL (red) 

and  σ−-polarized PL intensity (blue) are plotted in the lower part of each sub-figure and the PL 

polarization (black) is evaluated according to Equation (3-1) at each time delay. Since the electrical 

repetition period, i.e. 35 ns for (a) ~ (c) and 50 ns for (d) ~ (f), is much shorter than the phonon 

lifetime as determined in Section 4.3, the detected PL polarization dynamics is a direct representation 

of the magnetization dynamics of the Mn ions. The PL intensity is slightly enhanced by 

nonequilibrium carriers at two edges of the electrical pulse. Because the lifetime of these electrically 

generated transient carriers is ~200 ps, their effect on the Mn ion magnetization dynamics is 

negelected after their vanishing.      

Results in (a) ~ (c) depict the field dependence of the Mn ion magnetization dynamics induced by a 

pulsed current through the microcoil presented in the left figure, top. The magnetization dynamics is 

found to be 0.9 ns from fitting (magenta line) in the absence of an applied static field. Once an 

external field is applied of Bext = 50 mT, the onset of the spin formation process is clearly slowed 

down to ~1.8 ns. By increasing the static field to 100 mT, the magnetization dynamics is further 

slowed down to ~2.1 ns, which agrees well the PL polarization dynamics observed in Section 4.3. 

Here the bath temperature is estimated ~11 K by comparing the PL polarization degree after the spin 

decay process with the characteristic results in FIG 4.1-7.  

In (d) ~ (f), the field dependence of the magnetization dynamics is depicted for a microcoil presented 

in the right figure, top. The inner aperture is smaller and the metals pads are expected to provide 

efficient heat dissipation. At zero external field, the magnetization dynamics induced by the pulsed 

field can be well exponentially fitted with the same time constant 0.9 ns as used in (a). In the 

presence of a static field Bext = 50 mT, the spin formation process is slowed down to ~1.6 ns, which 

is similar to (b). By increasing the static field to 100 mT, the spin formation is still well fitted by a 

time constant of 1.6 ns.  

For sample 2 with xMn = 0.024, the field dependence of the magnetization dynamics is shown in FIG 

5.2-2. The used microcoil is same as the left top in FIG 5.2-1. In figure (a), the pulse repetition 

period is 35 ns, then the magnetization dynamics can be directly determined from the PL polarization 

dynamics. Here the PL polarization difference ρdiff (see Section 4.2) is plotted to improve the signal 

to noise ratio. In the absence of a static field, the magnetization dynamics is found ~ 1 ns, which is 

quite close to the dynamics for the sample 1 in case of Bext = 0 mT. No pronounced spin formation is 

observed if an external field of 100 mT is applied.  
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FIG 5.2-1: Magnetic field dependence of the PL polarization formation process for sample 1 with xMn = 0.067. The 

time-resolved PL polarization (black) is evaluated from the experimentally measured σ+-polarized PL (red) and  

σ−-polarized PL intensity (blue). In each case, the magnitude of the magnetic field is indicated and the formation process 

is exponentially fitted (magenta) with the given constant. (a) ~ (c): induced by a pulsed current through the microcoil on 

the left side. The current amplitude is 120 mA, the pulse width is 7 ns and the repetion period is 35 ns. (d) ~ (f): induced 

by a pulsed current through the microcoil on the right side. The current amplitude is 40 mA, the pulse width is 10 ns and 

the repetion period is 50 ns. The time delay is relative to the leading edge of the electrical pulse.   

 

In figure (b), a longer electrical pulse is used, i.e. τpul = 400 ns and the repetition period is 2 µs. The 

magnetization is still controlled by a fast dynamic process at zero external field, i.e. the data are 

fitted by a time constant of 3 ns. In the presence of Bext = 100 mT, the spin formation is observed on 

a much longer time scale. The magnetization dynamics, spin formation or spin decay, is composed of 

a fast process and a clearly slower process. Each dynamical process can be well fitted 

bi-exponentially by a short time constant of 3 ns and a longer time constant of 100 ns. This agrees 

well with the reported results in Ref. [33, 56, 207, 208]. 
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FIG 5.2-2: Magnetic field dependence of the PL polarization dynamics for sample 2 with xMn = 0.024. In each case, the 

magnitude of the magnetic field is indicated . (a): The current amplitude is 120 mA, the pulse width is 7 ns and the 

repetition period is 35 ns. (b): The current amplitude is 200 mA, the pulse width is 400 ns and the repetition period is 2 

µs. The time delay is given with respect to the leading edge of the electrical pulse. The pronounded magnetization 

dynamics is mono-exponentially fitted by the given time constant at Bext = 0 and bi-exponentially fitted by the given 

constants at Bext = 100 mT.  

 

By varying the pulse width τpul and the current amplitude I, the magnetization dynamics is further 

analyzed in the case of Bext = 100 mT. The experimental data are summarized in Table 5-1. As a 

quite general rule, each magnetization dynamics (formation or decay) is composed of a slow 

component and a fast component. The fast process has a time constant between 3 ns and 10 ns, while 

the slow one ranges from 100 ns to 200 ns. The amplitude of each component is comparable, and the 

ratio between two component amplitudes is the same for the formation and the decay process for a 

specific pulsed current. The slow component is comparable to the SLR time for this sample at the 

bath temperature which is between 8 K and 15 K according to Equation (4-3) and the experimental 

data in Ref.[202].   

In the absence of a static field, the magnetization dynamics is always fast on a time scale of a few 

nanoseconds (< 5 ns, see Table 5-2). It seems that these fast components are independent on the 

static field and the current parameters within the experimental errors. 

In case of the longer pulse width, the presented magnetization dynamics is obtained by using the 

relation ∆M(∆t) ∝ ρdiff(∆t) /ρav(∆t), in which ∆t is the time delay. As indicated in Equation (4-2), 

ρav(∆t) reflects the magnetization dynamics controlled by the dynamical Mn ion spin temperature 

TMn (but at a constant magnetic field) and the exciton temperature TEX, i.e. ρav(∆t) ∝ M(Bext, TMn, 
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∆t)⋅TEX
-1. Due to fast carrier-lattice relaxation time, the exciton temperature can be regarded to be the 

same as the lattice temperature. The Mn ion spin temperature is convolution of the dynamical 

temperature and the SLR relaxation process [188]. For the quantity ρdiff(∆t), it could be regarded a 

result of the spin response to the pulsed field BI, the magnetization dynamics affected by the Mn ion 

spin heating and the exciton temperature, i.e. ρdiff(∆t) ∝ M(BI, TMn, ∆t)⋅TEX
-1. In the low field regime, 

the quality ρdiff(∆t) /ρav(∆t) reflects the magnetization dynamics induced by the pulsed field BI(∆t). 

This should allow one to give a rough estimation of the magnetization dynamics. 

 

           Slow / fast  

τpul / I 

Amplitude, 

formation 

Time constants, 

formation 

Amplitude, 

decay 

Time constants, 

decay 

400 ns / 100 mA 0.6 / 0.4 100 ns / 5 ns 0.6 /0.4 150 ns / 5 ns 

400 ns/ 200 mA 0.5 / 0.5 100 ns / 3 ns 0.5 / 0.5 100 ns / 3 ns 

1200 ns / 100 mA 0.8 / 0.2 120 ns / 5 ns 0.8 / 0.2 100 ns / 5 ns 

1200 ns / 200 mA 0.5 / 0.5 200 ns / 10 ns 0.5 / 0.5 150 ns / 10 ns 

Table 5-1: Fitted parameters of the magnetization dynamics induced by different pulsed currents for sample 2 (xMn = 

0.024) at Bext = 100 mT. Both the formation process and the decay process are analysed. Each dynamical process is 

biexponentially fitted by a fast and slow component and the normalized amplitude of each amplitude is indicated.  

      

From the experimental results presented above for sample 1 and sample 2, it can be concluded, (i) the 

magnetization dynamics is independent of the Mn content in the absence of a static magnetic field; 

(ii) the magnetization dynamics is clearly slowed down by applying an external field. A summary of 

the observed magnetization dynamics is given in Table 5-2 for the studied two samples. 

 

          Dynamics (ns)  

Bext (mT) 

 

Sample 1, x = 0.067 

Sample 2, x = 0.024 

fast slow 

0  0.9 < 5 ns none  

50 1.7 ± 0.1 - - 

100 1.85 ± 0.25 6.5 ± 3.5 150 ± 50 

Table 5-2: Summary of the observed magnetization dynamics for two samples. 
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In order to understand the field dependence of the pulsed field-induced magnetization dynamics, the 

Hamiltonian of one Mn ion is considered as described by Equation (5-1). Both the electron spin 

states |S> and the nuclear spin states |I> of the Mn ion are taken into account, and the z-component is 

defined parallel to the direction of the external magnetic field. The state is denoted as |Si, Ij> for the 

electron spin of Si and the nuclear spin of I j. There are totally 36 states which are orthogonal with 

each other by considering S = 5/2 and I = 5/2. Based on the Mn ion spin Hamiltonian by using the 

parameters given in Section 5.1.1., the energy levels of the eigenstates are plotted in FIG 5.2-3. Each 

eigenstate is a linear sum of different states of |Si, Ij>. 

For small values of the magnetic field as shown in (b), there are strong state anticrossings. They 

origin from the anisotropic spin interactions including the hyperfine interaction and the spin coupling 

with the crystal field as well the strain-induced electric field. The anticrossings indicate adiabatic 

state transitions which bypass the energy transfer between the spin system and the phonon system via 

SLR process. Therefore the state transition process controlling the magnetization dynamics can be 

treated as a series of Landau-Zener processes by sweeping the magnetic field [56] in the absence of a 

static field. For the larger magnetic field, e.g. 100 mT in (a), it can be seen that most eigenstates are 

energetically separated. In this case, the magnetization dynamics induced by a pulsed field is 

expected to be dominant by the spin-lattice relaxation.     

 

 
FIG 5.2-3: Numerically calculated energy levels of eigenstates by taking account into the hyperfine interaction, 

mismatch-induced strain and the crystal field. Each eigenstate is composed of the electron spin states and the nuclear spin 

states of one Mn ion. The right figure is selected area of the left figure.      
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The spin dynamics of one Mn ion induced by a pulsed field is numerically simulated by solving the 

Lindblad-type master equation [210]:  

 { }( )† †1 ˆ ˆ ˆ ˆ ˆ, 2 ,
d

H L L L L
dt i

 = + − ℏ

ρ ρ ρ ρ  (5-9) 

Here Ĥ  spin Hamiltonian in Equation (5-1), ρ is the spin density matrix for the eigenstates 

determined in FIG 5.2-3, and ̂L the Lindblad operator. The Lindblad operator can be simplified as 

1 2 3
ˆ ˆ ˆ ˆ L L L L= + + , with 1 1

ˆ ˆL += Γ σ , 2 2
ˆ ˆL −= Γ σ ,and 3 3

ˆ ˆzL = Γ σ . The terms of 1̂L and 2L̂ describe the 

spin-lattice relaxation process and the constants Γ1 and Γ2 are determined by the SLR rate and the 

Zeeman energy splitting between the subbands. Only the Mn ion SLR is considered while neglecting 

the nuclear SLR process. The constant values are given by Γ1
−1= τSLR and Γ2

−1= 

Γ1
−1⋅exp(-∆E/kBTbath), where ∆E is the energy splitting between the subbands. The term L3 describes 

the spin-spin relaxation process and Γ3 is the spin-spin relaxation rate. ˆ+σ , ˆ−σ and ˆzσ  are the Pauli 

matrices.  

The simulation results are presented in FIG 5.2-4 for sample 1 (xMn = 0.067). According to the 

experimental conditions, the used parameters are: the bath temperature is 10 K, the magnitude of the 

pulsed field is 9 mT, and the SLR time is 3 ns and the spin-spin interaction is used as 500 ps [55]. It 

can be seen, the simulation results are in a qualitative agreement with the experiment results 

presented in FIG 5.2-1: the magnetization dynamics is fast on a sub-ns time scale in the absence of a 

static field. A slow component with much smaller amplitude is also indicated. The dynamics is 

clearly slowed down by increasing the external field. In (a) where the in-plane strain is considered 

absent, the pulsed field induced magnetization dynamics is almost indistinguishable for Bext = 50 mT 

and Bext = 100 mT, which is similar with the experimental observations. In Ref. [56], a strain of δxy = 

0.004 is introduced due to local fluctuations or dislocations. The simulation results are presented in 

(b) incorporating this effect. As a result the magnetization dynamics is further accelerated in case of 

Bext = 0 mT and the slow component disappears. The magnetization dynamics becomes 

distinguishable between Bext = 50 mT and Bext = 100 mT and the SLR process is more dominant for a 

higher magnetic field. Definitely the strain in the [110] direction can accelerate the magnetization 

dynamics due to the anisotropic interactions with the Mn ion spins. This might explain why the 

dynamics is observed relatively faster for the microcoil with a smaller aperture, as demonstrated in 

FIG 5.2-1. The bath temperature is estimated ~7 K for FIG 5.2-1(f), and the bath temperature is 

estimated ~11 K for FIG 5.2-1(c). Thus the SLR process is supposed to be longer in FIG 5.2-1(f). 

This contrary indicates the faster spin dynamics in FIG 5.2-1(f) might origin from the microcoil 

geometry, e.g. it could be expected the strain in the DMS layer is larger for this microcoil due to a 

smaller aperture size. Such an acceleration of the magnetization dynamics was also found in a (Cd, 

Mn)Te QD system with a stronger strain compared with a QW system [209]. 
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FIG 5.2-4: Numerically calculated magnetic field dependence of one Mn ion spin dynamics induced by a pulsed 

magnetic field for sample 1 (xMn = 0.067). For the simulations, the magnitude of the pulsed field (magenta dashed line) is 

9 mT, the pulse width is 7 ns, the bath temperature is 10 K, a SLR time of 3ns and spin-spin time of 500 ps are used. The 

magnitude of the external field is indicated by a specific color. (a): strain δxy = 0; (b) δxy = 0.004. 

 

A similar simulation is performed for sample 2 (xMn = 0.024). The numerical calculations are given 

in FIG 5.2-5. The used parameters are: the bath temperature is 10 K, the magnitude of the pulsed 

field is 9 mT, and the SLR time is 150 ns and the spin-spin interaction is approximated as 500 ps. At 

zero external field, the magnetization dynamics almost instantaneously follows the pulsed field. This 

agrees nicely with the experimental result: the magnetization dynamics is independent of the Mn 

content in case of Bext = 0 mT. In case of an external field, the magnetization dynamics contains a 

fast component and a slow component. The amplitude of the slow component is growing by 

increasing the magnetic field while the amplitude of the fast component is going down. This field 

dependence of each component amplitude coincides well with the experimentally extracted data in 

Ref. [33, 207]. As a prominent effect found experimentally, the external field greatly slows the 

magnetization dynamics which trends to the SLR process  

It has to be mentioned that the simulation is performed for one Mn ion isolated from surrounding 

ones. Thereby, the d-d exchange interaction from the neighbouring Mn ions is not taken into account. 

Since the d-d exchange interaction is anisotropic, a further acceleration is expected for a DMS 

sample with a higher Mn content. In addition, the magnetization saturation level is expected to be 

reduced due to anti-ferromagnetic coupling between the Mn ion pairs. The exchange interaction 

between the Mn ion and the existing holes is also not included. One can expect that the carriers can 

slow down the magnetization dynamics induced by a pulsed field in the absence of a static field, and 

the carriers can accelerate the dynamical process in the presence of a moderate magnetic field [56, 

208].  
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FIG 5.2-5: Numerically calculated magnetic field dependence of one Mn ion spin dynamics induced by a pulsed 

magnetic field for sample 2 (xMn = 0.024). For the simulations, the magnitude of the pulsed field (magenta dashed line) is 

9 mT, the pusle width is 400 ns, the bath temperature is 10 K, a SLR time of 3ns and spin-spin time of 500 ps are used. 

The magnitude of the external field is indicated by a specific color. The strain δxy = 0.004. 
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6 LOCAL MANIPULATION OF NUCLEAR SPINS IN A 

SEMICONDUCTOR 
 

This chapter deals with the nuclear spin polarization and coherent nuclear spin manipulation in an 

n-GaAs sample. At first a theoretical background is discussed regarding the electron-nucleus 

hyperfine coupling which controls the dynamic nuclear polarization and the nuclear spin relaxation 

in a semiconductor. Experimentally the dynamic nuclear field is optically addressed by the 

time-resolved Kerr rotation technique. By means of optically generating spin-polarized electrons, the 

nuclear field is built up on a typical time scale of minutes. The dependence of the nuclear field 

properties is studied by varying the experimental conditions. By utilizing an on-chip microcoil 

fabricated atop the semiconductor sample and introducing a radio frequency current through the 

microcoil to produce a resonance magnetic field, optically detected nuclear magnetic resonance is 

demonstrated on a length scale of a few micrometers. Further, the Rabi oscillation of 75As nuclear 

spins is observed with an effective dephasing time of ~200 µs.   

       

6.1 Dynamic nuclear polarization in a semiconductor 

Since the nuclear magnetic moment is rather small, the nuclear spin polarization is quite small in 

thermal equilibrium state. To enhance the nuclear spin polarization, it was proposed and predicted 

theoretically to be achieved by making use of non-equilibrium electrons in metals by the pioneering 

work in Ref. [69]. Thereby, the basic idea is to polarize the nuclei via the Fermi contact hyperfine 

interaction, since the non-equilibrium electrons can flip the nuclear spins in a preferred orientation 

[211]. The enhancement factor is proportional to the deviation of the electron spin polarization out of 

the electron spin in thermal equilibrium state. It was also proposed to drive the electron spin states 

from the thermal equilibrium by applying electron spin resonance excitation with a saturating radio 

frequency (RF) magnetic field. This phenomenon is known as Overhauser effect and the generated 

effective nuclear field is named Overhauser field. 

Actually the fundamental requirement to cause the Overhauser effect is to generate an average 

electron spin (<S>) different from the electron spin (S0) under thermal equilibrium. The difference of 

|<S> − S0| determines the strength of the Overhauser field. There are more general methods to 

achieve a nonzero |<S> − S0|, while the RF resonance excitation is not a necessary condition.  

Two pioneering experiments demonstrating the Overhauser effect in semiconductors are introduced 

here. In an experiment performed in an InSb semiconductor sample [71], the nuclei were found to get 

polarized by injecting hot electrons from a DC current under an external magnetic field. Later, 

optical pumping was also found to be able to highly polarize the nuclear spins in a high-purity Si 

sample [70]. The required condition can be fulfilled by controlling the polarization of the excitation 

light by considering the optical selection rules [21]. For a semiconductor with a finite electron spin 
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polarization at thermal equilibrium state, e.g. under a strong external field, the optically generated 

electrons can be set to non-polarized by linear optical pumping for enhancing the nuclear spin 

polarization. In the case of negligible electron spin polarization, e.g. under a week external field, the 

optically generated electrons can be spin-polarized by circular optical pumping for generating an 

enhanced nuclear spin polarization. In both two experiments, the nuclear polarization processes were 

observed to occur on a time scale of hours. Recent studies indicate the requirement can be met either 

by spin-polarized electron injection [79, 212-216], or by fabricating ferromagnetic layers/structures 

to imprint the nuclear field [217]. The nuclear spin polarization is enhanced by several orders of 

magnitudes than the thermal equilibrium value by using the Overhauser effect. This has been widely 

used to facilitate studies of nuclear spin properties in various semiconductor systems [21, 72, 73]. 

 

 
FIG 6.1-1: Electron-nucleus coupling by contact hyperfine interaction 

 

The process of generating nuclear polarization is presented in FIG 6-1-1. Non-equilibrium electrons 

are injected in the semiconductor either by means of optical pumping or electrical injection etc. This 

nonequilibrium electron source aims to continuously transfer the excess non-equilibrium spin 

|<S>−S0| to the nuclear spin system via contact hyperfine interaction, so that the nuclear spins get 

polarize, the so called dynamic nuclear polarization (DNP) process. In the dynamic equilibrium state, 

the electrons see an effective nuclear field, the Overhauser field, and the nuclei see an effective 

electronic field named as Knight field. The enhanced nuclear magnetization is probed either by 

conventional nuclear magnetic resonance (NMR) spectrometer by monitoring the free-induction 

decay signals [72], or detected from optical methods, e.g. Hanle effect [21].  

 

In III-V semiconductors, the hyperfine interaction constant Ahf is on the order of 100 µeV (Table 6-1). 

The coupling can generate an effective nuclear field up to a magnitude of several Tesla, which has 

been observed in bulk semiconductors [21, 72, 77, 78, 84, 94, 213-215, 217-226], quantum wells [79, 
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89, 90, 212, 227-233] and quantum dots [34, 73, 81, 216, 234-238]. The pronounced Overhauser 

field has been manifested in different spin-related phenomenon in the semiconductor electronic 

system. For electron spin resonance experiments, the resonance spectrum is broadened and shifted 

due to the Overhauser shift which depends on the electron spin states [219, 220, 224]. In 

photo-/electro-luminescence experiments, the Hanle curve shape of luminescence polarization is 

changed as a result of the additional nuclear field [21, 78, 212, 213], or the photoluminescence 

spectrum is energetically shifted [81, 216, 234, 236]. In electron-transport measurements, the 

magnetoresistance is either varied as the nuclear field is large enough to tune the Laudau filling level 

[230-233], or it is modified due to the non-uniform generation of the nuclear field [214, 215]. In a 

double quantum dot system, the leakage current is modulated by the nuclear polarization which can 

determine the electron energy splitting between two neighbouring dots [34, 235]. In time-resolved 

Faraday/Kerr rotation measurements, the dynamical change of the electron Larmor frequency is 

observed which is ascribed to the DNP formation along the external magnetic field [89, 94, 

220-223].  

In II-VI semiconductors, the electron-nucleus hyperfine coupling is much weaker as presented in 

Table 6-1. Nevertheless, the Overhauser effect has been also experimentally confirmed in optical 

pumping NMR measurements [239-242]. In addition, the change of the electron Larmor frequency 

resulting from the Overhauser field has been also detected by means of time-resolved Faraday 

technique [83]. Further in a CdSe/ZnSe quantum dot system which is intrinsically n-doped, the DNP 

formation is observed as a non-equilibrium process in the absence of a magnetic field. An external 

field can strongly quench this electron-nucleus coupling [73, 80, 82, 243, 244]. The observed nuclear 

field generally has a magnitude of a few mT or so. This might be one reason why nuclear spin 

studies are not so widely performed in II-VI systems up to date. 

  

 Isotope Nuclear spin number Isotope abundance Ahf (µeV) 
 

 

GaAs, 

InAs, 

 

69Ga 3/2 60%  

 

~ 100 

71Ga 3/2 40% 
75As 3/2 100% 
113In 3/2 4.3% 
115In 3/2 95.7% 

 

CdSe 

77Se 1/2 7.6%  

~ -10 111Cd 1/2 12.8% 
113Cd 1/2 12.2% 

Si, 

C 

29Si 1/2 4.7% ~ 0.2 
13C 1/2 1.1% ~ 1 

Table 6-1:  Parameters of electron-nucleus hyperfine interaction for several typical isotope species in semiconductors 

(data after Ref. [73], Ref.[245] and Ref.[246]) 
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In materials of the IV group, e.g. Si and C, the isotope with nuclear spins is strongly diluted. This 

means one electron can couple with a much smaller amount of nuclear spins. In these materials, the 

DNP formation is typically achieved by electrical injection [246] or optically pumping local defects 

[247]. In the carbon nanotubes, the 13C nuclear spins has been found to be crucial for the electron 

spin transport [246]. The hyperfine interaction is regarded to be less critical for the electron spin 

transport in Si-based device [248], and Si actually has been used as a clean host system for nuclear 

spins [249] . 

 

In semiconductors, mostly the observed Overhauser effect origins from the Fermi-contact hyperfine 

interaction coupling between the electron spin and the nuclear spin. A short discussion from a 

theoretical aspect is given in the following section.  

 

6.2 Electron-nucleus hyperfine coupling 

In a semiconductor, there could be four types of hyperfine interaction: electron-nucleus contact 

coupling, hole-nucleus contact coupling electron-nucleus dipole-dipole coupling and hole-nucleus 

dipole-dipole coupling [66, 72, 245, 250].  In the contact hyperfine interaction, the nuclear spins 

interact with the carrier spins at the nuclei. An electron in the conduction band, which has s-like 

symmetry, can strongly couple with the nuclear spins. For a hole, which has p-like symmetry, the 

contact hyperfine coupling vanishes at the nuclei locations. The situation is opposite for the 

dipole-dipole hyperfine interaction, which arises from the interaction between the nuclear spins and 

the carrier orbital spins. As a result of the different wavefunction symmetry, the electron-nucleus 

dipole coupling is negligible compared with the hole-nucleus dipole coupling. In GaAs, hole-nucleus 

dipole hyperfine interaction is estimated ~ -10 µeV, which is weaker by one order of magnitude than 

the electron-nucleus contact hyperfine interaction [245]. Generally the carrier-nuclear spin coupling 

is dominated by the electron-nucleus contact hyperfine interaction in a n-doped GaAs system.  

For an electron in the conduction band, the Hamiltonian of the contact hyperfine interaction at a 

nucleus site is given as [66] 

 
20 0

hf B I I B I I I

4 4ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
3 3

I R S R = I R S R Rn N e n NH g g= ⋅ ⋅ ⋅ ⋅ ⋅µ µµ µ ρ µ µ δ ψ , (6-1) 

where µ0 is the vacuum permeability, µB is the Bohr magneton, gn is the nuclear g factor,  µN is the 

nuclear magneton, I
ˆ( )I R is the nuclear spin operator at the nucleus site RI, Ŝ is the electron spin 

operator, and ρe(RI) is the electron density given by the electron wavefunction. From Bloch theorem, 

the wavefunction is treated as a product of the electron density function δ(R) and an envelope 

function ψ(R). At the nuclei position RI, the electron density constant d(RI) is defined by 

( )I I 2
0

1 1
( ) ( )

2
R   R -

r

d δ
r →

= = ∇ , and it is normalized in the volume of a Wigner-Seitz cell. The value 
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of the wavefunction envelope at RI is given by ψ(RI) which is normalized over the whole space as 
2 3( ) 1

R

R Rψ d =∫ . If the electron wavefunction is limited inside a Wigner-Seitz cell, the contact 

hyperfine interaction becomes the case of coupling between an inner-shell electron and the nucleus 

[66].   

For GaAs, it has been determined d (69Ga) = d (71Ga) ≈ 5.8×1031 m-3, d (75As) ≈ 9.8×1031 m-3 [77, 

251]. The hyperfine coupling constant Ahf is defined as 0
hf B I

4
( )

3
Rn NA g d= µ µ µ . In GaAs, the 

contact hyperfine constant is calculated: Ahf(
69Ga) ≈ 35.6 µeV, Ahf(

71Ga) ≈ 45.3 µeV, and Ahf(
75As) ≈ 

43.0 µeV. In a Wigner-Seitz cell the total hyperfine coupling constant Ahf(GaAs) ≈ hf ( )α

α

χ A α∑  ≈ 

0.6* Ahf(
69Ga) + 0.4* Ahf(

71Ga) + Ahf(
75As) ≈ 82.5 µeV. Hereby the isotope abundance χα is taken 

into account, and χ69Ga ≈ 60%, χ71Ga ≈ 40%, χ75As = 100%.  

For one nucleus site Equation (6-1) is rewritten as 

 
2

hf hf I
ˆˆ ˆ( )R I SH A φ= ⋅  (6-2) 

In the Ising form it is given as 

 2

hf hf I

1ˆ ˆ ˆˆ ˆ ˆ ˆ( ) [ ( )]
2

R   z zH A I S I S I S+ − − += + +φ  (6-3) 

Here the Ladder operators are defined as x y
ˆ ˆ ˆI I iI+ = + , x y

ˆ ˆ ˆI I iI− = − , x y
ˆ ˆ ˆS S iS+ = + and x y

ˆ ˆ ˆS S iS+ = − . 

From Equation (6-3) it can directly be seen that, the non-equilibrium electrons flip the nuclear spins 

continuously from electron spin injection, so that the nuclei get spin-polarized to give the Overhauser 

field.  

 

6.2.1 Overhauser field and Knight field 

Since the electron wavefunction covers a large range of nuclear sites, the contact hyperfine 

interaction experienced by one electron is governed by : 

 
I

2

hf hf I I hf av
ˆ ˆˆ ˆ ˆ( ) ( )

R

S R I R S IH A A= ⋅ = ⋅∑ψ , (6-4) 

where avÎ is the average nuclear spin over the whole nucleus sites. There is an effective nuclear field 

seen by the electron. As there are three nuclear species in GaAs, the nuclear field contribution from 

isotope α is written as 

 0hf
av

e B e

4
( ) ( )

3
B IN n N

H
g d

g S g
= = < >αµα µ α

µ
, (6-5) 

where ge is the electron Landé g factor and I av
α is the average nuclear spin for α isotope species. For 

the case of spatially uniform nuclear spin polarization, this effective field is independent on the 

electronic state, either free electron state or localized state in a semiconductor. 
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In GaAs it is found ge ≈ - 0.44. For a complete nuclear spin polarization with <I av
α> = 3/2, the 

nuclear field contribution from each isotope is: bN(69Ga) = -1.37 T, bN(71Ga) = -1.17 T, and bN(69Ga) 

= -2.76 T.     

From Equation (6-5), it can be seen that the giant effective nuclear field is basically due to the large 

electron density (indicated by d(α))at the nucleus sites. If the electron wavefunction is 

homogeneously smeared instead of highly concentrated at nucleus sites, the effective nuclear field is 

estimated to be on the order of 0.1 mT which is likely a dipole-dipole spin interaction.  

On the other hand, the nuclei can see an effective magnetic field, namely the Knight field, from the 

electron. Since one electron can couple with many nuclei, the contact hyperfine interaction is shared 

by all the involved nuclei. From Equation (6-2), the effective electronic field seen by the nucleus at 

RI is 

 
2

2I 0 I
I cell I cell

( ) 4 ( )
( ) ( )

3

R I S R
B R R SB

e
n N

A d
v v

g I

φ µ µ φ
µ

⋅
= − = −  (6-6) 

Here vcell is the volume of Wigner-Seitz with vcell ≈ 4.5×10-29 m-3 [103]. It can be seen, the electronic 

magnetic field depends on the envelope function, and is independent on the nuclear spin. If there is 

more than one electron seen by one nucleus, the effective field is a sum of each electron i, i.e.  

 
20 I

I I i I cell i

4 ( )
( ) ( ) ( )

3

R
B R B R R SB

e ei
i i

d
v= = −∑ ∑

µ µ φ  (6-7) 

For free electronic states in a semiconductor, the Knight field can be quite weak. In an InSb sample 

with an electron density of 1015 cm-3, the Knight field magnitude was evaluated ~0.1 mT with full 

electron spin polarization [252]. It can be expected the magnitude is larger for localized electrons. In 

a Si-doped GaAs sample, if one considers a donor-bound electron with a wavefunction envelope 

 
1/2

/ 3
3

1
( ) , with ( ) = 1R R RBR a

B

e d
a
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 

∫φ φ
π

 (6-8) 

Here R is the distance relative to the donor, aB is the Bohr radius for the shallow donor, and typically 

aB ≈ 10 nm is used in bulk GaAs [77]. Put the Equation (6-8) into Equation (6-6), one obtains 
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= −

µ µ
π

µ µ
π

 (6-9) 

Here Be(0) is the Knight field at the donor site, and Γt is the time fraction of the donor occupied by 

the electron. Γt has a value between zero and unity, and Γt is determined by thermal activation, 

hopping to neighbouring donor sites and carrier recombination.  The field amplitude for each 

nuclear species is calculated: Be(0, 69Ga) = Be(0, 71Ga) ≈ -12.9 mT, and Be(0, 75As) = -21.8 mT. 

Further, within the range of the Bohr radius, the average Knight field can be given as  
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α α

B e Γ dr χ B α e dr χ B α Γ
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− − 
= = ≈ 

 
∑ ∑∫ ∫  (6-10) 

By considering the isotope abundance, the averaged Knight field amplitude is <Be> ≈ -17.35⋅ΓtS mT. 

For S = ±1/2, the maximal average amplitude is |<Be>| ≈ (8.7⋅Γt) mT. In order to get a large Knight 

field, the factor Γt is critical, which means a long occupation of the electron at the donor. 

The experimental observed value is typically smaller. A reported value is |<Be>| ≈ 0.09 mT in a 

compensated p-type GaAs [77], and |<Be>| ≈ 0.6 mT in a single electron-charged GaAs quantum dot 

[81]. Both experiments indicate a quite inhomogeneous distribution of the Knight field. 

 

6.2.2 Nuclear spin polarization in a semiconductor 

In a semiconductor, the nuclear spins can relax via several channels. The fluctuating hyperfine 

interaction described in (6-1) aims to polarize the nuclear spins, while the other mechanisms could 

depolarize the non-equilibrium nuclear spins. The latter include nuclear dipole-dipole interaction, 

nuclear exchange interaction, thermal relaxation, and local ion-induced quadrupolar interaction etc. 

[66, 77, 79, 253] . Here the focus is on the contact hyperfine interaction inducing nuclear spin 

polarization.  

Explicitly the nuclear spins relax via the spin flip-flop process indicated in Equation (6-3). For 

simplicity, the high-temperature approximation is generally used. For nuclear spin studies, 

high-temperature approximation is valid due to the small thermal equilibrium spin polarization at 

helium temperature [66]. This means the Zeeman energy splitting of electron and nuclear spins is 

much smaller than the thermal energy, i.e. |gnµnBI| and |geµBBS| << kBTbath.  

Here Tbath is the lattice temperature and kB is the Boltzmann constant. For conduction electrons in the 

regime of Fermi-Dirac statistics, e.g. in highly-doped metallic n-GaAs, where electrons are 

degenerate as in metals, the nuclear spin relaxation rate in the case of I = 1/2 is given by [66] 

 
21 2 2 2 2 2 2

hf-pol 0 B cell I e 2
F

1
( )

2
Rn N

B

T
T µ µ g µ v d n

k T
− =

ℏ
, (6-11) 

in which TF is the Fermi temperature, ne is the electron concentration. The Fermi temperature can be 

estimated based on the free electron gas model [250]. For a metallic n-GaAs of ne = 1018cm-3, the 

above equation gives Thf-pol (
75As) ≈ 9 × 103 seconds for T = 5 K and TF = 1000 K.  

Similarly for conduction electrons in the regime of Boltzmann statistics, e.g. in intrinsic GaAs with 

non-degenerate electronic states, the nuclear spin relaxation rate in the case of I = 1/2 is given [66] 
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9 2
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π

−  
=  
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,  (6-12) 

where meff is effective electron mass. As an estimation for GaAs with ne = 1015 cm-3, the above 

equation gives Thf-pol (
75As) ≈ 5 × 104 seconds using T = 5 K and meff = 0.067m0.  
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For electrons localized around donors described in Equation (6-8), the nuclear spin relaxation rate is 

calculated to be [21, 218]  

 
22 2 2 2 2

0 B cell I 4 /1
hf-pol 2 2 6

( )8

9

R
Bn N R a

t e
B

µ µ g µ v d
T Γ τ e

π a
−− =

ℏ
, (6-13) 

where τe is the electron correlation time. By using Γt =1, τe = 10-11 s [225], it is estimated at the donor 

site Thf-pol (
75As, 0) ≈ 0.17 seconds, and Thf-pol (

75As, aB) ≈ 9.6 seconds at a distance away of the Bohr 

radius. Compared with the nuclear spin relaxation from the free electrons, the relaxation rate is 

obviously much faster for the localized electronic states. This is basically due to much stronger 

contact hyperfine interaction in the localized regime.  

In the case of localized electrons, the nuclear spins beyond the Bohr radius regime, get relaxed 

(spin-polarized) via the nuclear spin diffusion process [225]. The diffusion rate is given 

 1 2
diff ( ) ( ) /nD Rτ α α− =  (6-14) 

where Dn(α) is the nuclear spin diffusion constant of nuclear species α on the order of 10-13 cm2/s, 

and R is the distance to the donor site for rough estimation. For a semi-insulating GaAs sample with 

a small n-doping and electrons are mainly localized states, e.g. ne = 1015 cm-3, the distance between 

neighbouring donors is aDD ≈ 100 nm ≈ 10aB. From Equation (6-14), then the nuclear spin diffusion 

time is τdiff ≈ Dn
-1⋅(aDD/2)2 ≈ 250 seconds. Nuclear spin diffusion on a similar time scale has been 

experimentally observed in bulk GaAs samples alike [72, 225, 226]. 

For a n-GaAs with a doping level close to the metal-insulator-transition regime, e.g. ne ~ 1016 cm-3, 

the detected nuclear spin relaxation time ranges from several 102 seconds [94, 221] to about 103 

seconds [250]. This could not be explained with satisfactory either by the theory for free electrons or 

by the nuclear spin diffusion model for localized electrons. It is quite likely the nuclear spin 

polarization in this regime originates from the co-existing of two electronic states comprising both 

delocalized electrons and localized electrons [163, 254-256]. In addition, the localized electrons can 

couple via spin-spin exchange interaction which is antiferromagnetic. The spin exchange interaction 

makes a flip-flop process for two coupling electrons with a rather short electron correlation time on 

the order of 10-11 s, and thus results in a fluctuating field seen by the nuclear spins. This additional 

fluctuating field is able to accelerate the nuclear polarization process. Up to date, the mechanism 

origins responsible for contact hyperfine interaction in bulk GaAs is still under discussion. A more 

complex model is required including factors such like electronic states [257] and optical absorption 

[258].  

 

In general, the nuclear spin polarization process is slowed down by applying an external field [66, 82, 

243, 259]. As presented in FIG 6-2-1, the contact hyperfine interaction makes a simultaneous 

flip-flop process for the electron spin and the nuclear spin. For an easy description, the electron is has 

a negative effective g factor and the nucleus has a positive one with I = 1/2. Here the z-axis is defined 

to be the direction of the external magnetic field. The electron spin is Sz = -1/2, and thus it occupies 



Chapter 6. Local manipulation of nuclear spins in a semiconductor 

106 

the lower energy state by assuming an external field parallel to the z axis. Due to hyperfine 

interaction, the electron spin is changed to Sz =1/2 (i.e. a higher energy level), while the nuclear spin 

state is changed from I = 1/2 to I = -1/2. Each spin flip process is related to energy change, which is 

provided by absorption or emission of phonons in the crystal. For the electron, the energy change is 

∆Ee = geµB|Bext + BN|∆Sz = geµB|Bext + BN|, and for the nuclear spin the energy change is ∆En = 

gnµn|Bext + Be|∆Iz = -gnµn|Bext + Be|. The total energy exhausted in this process is 

 e n e B ext n n ext e| | | |B B B BNE E E g gµ µ∆ = ∆ + ∆ = + + +  (6-15) 

As ge < 0 and gn > 0, this spin flip-flop process requires an energy amount; the reverse process 

transfers the same amount of energy from the spin system to the lattice reservoir. The argument is 

similar for arbitrary signs of ge and gn. As µn is much smaller than µB (µB ≈ 1800µn), Equation (6-15) 

is usually approximated as 

 e e B ext| |B BNE E g µ∆ ≈ ∆ = +  (6-16) 

 

 

FIG 6.2-1: Electron-nuclear spin flip-flop process mediated by contact hyperfine interaction. The external field lifts up the 

degeneracy for different spin states. The energy splitting between the electron spin states (∆Ee) is not equal to the energy 

splitting between the nuclear spin states (∆En). 

 

From a statistical aspect, the hyperfine interaction fluctuation is weakened by the Zeeman energy 

caused by the applied external field, and thus the relaxation is slowed down. The spin relaxation rate 

for nuclear species α is modified by multiplying a factor given by [66, 76, 216, 225] 

 1 1 1
hf-pol ext hf-pol hf-pol e e2 2 2

e e e

1 1
( , ) (0, ) (0, ) ,with /

1 ( / ) 1 ( )
 T B α T α T α ω ∆E

τ ∆E ω τ

− − −= ≈ =
+ +

ℏ
ℏ

, (6-17) 

where ωe is electron precession frequency around the total field, and the expression Thf-pol
-1(0, α ) 

denotes the relaxation rate calculated from Equation (6-11) ~ (6-13). 
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6.2.3 Dynamic nuclear polarization 

As a consequence of fluctuating contact hyperfine interaction, the nuclear spins of α isotope get 

spin-polarized with an equilibrium state [66, 218, 224] 

 hf 0 l 0

4 ( 1)
( ) ( ) ( )

3
I I S S

I I
f

+= + −α α
αα α  (6-18) 

Here I 0(α) and S0 is the mean nuclear spin and electron spin in the thermal equilibrium state, 

respectively. <S> is the average electron spin during the lifetime. The coefficient flα is called the 

nuclear spin leakage factor defined as 
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, (6-19) 

where Tirhf-dep
-1(α) is the nuclear spin depolarization rate of isotope α due to any other relaxation 

channel except the contact hyperfine interaction. It can be different for different nuclear species. 

Therefore the nuclear polarization rate of Equation (6-17) is modified by taking into account the 

leakage factor,  

 1 1 1 1 1
hf-pol ext hf-pol ext irhf-dep ext l hf-pol ext( , ) ( , ) ( , ) ( , )

α
T B α T B α T B α f T B α

− − − − −′ = + =  (6-20) 

Since I 0(α) is too small to be noticeable, Equation (6-18) is simplified as 

 l
hf 0

4 ( 1)
( ) ( )

3
I S S

I I f+≈ −α α αα  (6-21) 

While polarizing nuclear spins, the contact hyperfine interaction in addition partly depolarizes the 

nuclear spins assisted by nuclear spin-spin interaction. The nuclear spin depolarization is driven by 

nuclear dipole-dipole interaction and nuclear spin exchange interaction [77]. The precession around 

the dynamical effective electronic field can also depolarize nuclear spins [79, 234]. This 

depolarization rate is 

 
2

1 1
hf-dep ext hf-pol ext2

ext

( , ) ( , )
B B

L

e

ξB
T B α T B α

− −′=
+

, (6-22) 

Here it is approximated the electronic field is the same for each nuclear isotope. The expression for 

an arbitrary case is given in Ref. [77]. 

In Equation (6-22), Be is the Knight field. The nuclear dipole field BL is typically on the order of 0.1 

mT, and ξ is a factor charactering the depolarizing rate. If the nuclear spin-spin interaction is solely 

given by the dipole-dipole interaction, ξ is equal to 3 . While normally ξ has small value in bulk 

GaAs, it becomes quite large (up to 104) if the hyperfine interaction is subject to a large electron spin 

anisotropic interaction which can strongly depolarizes the electron spins, e.g. electron-hole exchange 

interaction in quantum dots [234] or anisotropic electron spin interaction in 

semiconductor-ferromagnet hybrid structures [79, 217].   

The rate equation for the dynamical nuclear polarization (DNP) process incorporating the nuclear 

polarization and depolarization process is written as [79] 
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In steady state with 
( )

0
Id

dt
=

α
, and by considering Equation (6-22), the nuclear spin of isotope 

species α is given 
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To keep in mind, the nuclear spin direction is along the field (Bext + Be) seen by nuclei [77, 81]. The 

rate of the nuclear dynamic polarization from the rate equation of (6-23) is given as  

 
2
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 (6-25) 

The total Overhauser field seen by an electron is the sum over three isotope species in GaAs 
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 (6-26) 

This indicates that, it has always to be ensured |Bext + Be |
2 >> ξBL

2 to obtain an appreciable nuclear 

field. In bulk materials, the Knight field |Be|
2 is typically smaller than the field ξBL

2, an external field 

on the order of 1 mT is required to suppress the nuclear spin-spin fluctuations. In some quantum 

structures with high values of ξ, stronger external fields up to a few 100 mT are needed to generate 

observable DNP [79, 234]. Recently, it is demonstrated that the Knight field is strong enough to get 

an observable DNP process in single-electron charged quantum dots in the absence of an external 

field [80-82], which is due to the strong spatial confinement and relatively the weak nuclear 

depolarization.  

According to Ref. [66], one can define a nuclear spin temperature from Equation (6.24) [21, 77, 218] 
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 (6-27) 

This spin temperature can be positive or negative depending on the electron spin. As a typical 

estimation, for |Bext + Be | ~ 0.1 T and neglecting ξBL
2, (<S> - S0) ~ (<Sz> - Sz0) ~ 0.1 and gn ~ 1 [77], 

TNS ~ 10-4 K is obtained. This is far below the sample temperature (T = 5 K for most experiments). 

This is the reason why “nuclear spin cooling” is often used for the nuclear spin polarization by 

Overhauser effect. 

  

In bulk GaAs Iα is equal to 3/2 for each isotope, and for experiments presented in this work it is 

generally satisfied |Be| << |Bext| as well |ξBL
2| << |Bext|

2. This means the nuclear field is along the 

external field (z-axis direction) |<I s(α)>| ≈ <Iz(α)>, and so is the electron spin as |<S> - S0> ≈ (<Sz> - 

Sz0). Thus only the z-component spin is considered. Equations (6.25) ~ (6.27) become  



Chapter 6. Local manipulation of nuclear spins in a semiconductor 

109 

 

( )

l 0

1 1
l hf-pol1 1

DNP ext hf-pol ext 2 2
e e B ext

2 2

NS
B 0

10
( ) ( )

3

(0, )
( , ) ( , )

1 ( | | / )

4 ( )

B B

 

N N z z

N

ext Ln N

ext z z

B b f S S

f T
T B T B

g

B Bg
T

k B S S

− −
− −

≈ −

′≈ ≈
+ +

+
=

⋅ −

∑ α
α

α

α

α
α α

τ µ

ξµ

h
 (6-28) 

 

For localized electronic states, either donor-bound or confined in a quantum dot, the nuclear field 

from DNP process is spatially inhomogeneous. The nuclear spin diffusion discussed above should be 

considered for the dynamic equilibrium process, which is governed by  

 z z z z

ext diff

( ) ( ) ( ) ( )

( , ) ( )
s

DNP

d I I I I

dt T B

α α α α
α τ α

−
= − −  (6-29) 

To note, the DNP rate is a variable value during the nuclear spin dynamics, as it is controlled by the 

dynamic total field of Btot = (Bext + BN). For instance, in case of BN parallel to Bext, the DNP process 

is slowed down, while in case of BN anti-parallel to Bext, the nuclear polarization is faster. Especially 

once the Overhauser field compensates the external field, the total field is zero and the DNP 

formation process is highly accelerated, i.e. see Equation (6-17). The nuclear spin diffusion with a 

fixed rate works as a depolarization source here. The dynamic relationship between TDNP
-1(Bext, α) 

and τdiff
-1(α) limits the nuclear field amplitude in the steady state. This means the dynamic nuclear 

spin polarization depends on the nuclear spin history as a non-Markovian process. In recent studies 

performed in quantum dots, this property is observed as a bistability phenomenon of the nuclear spin 

polarization. The steady Overhauser field has a hysteretic character if one controls the nuclear field, 

via scanning the external field [76], the optical excitation power [236] or the injected electron spin 

polarization [75].  

 

6.3 Optically pumping dynamic nuclear polarization in n-GaAs 

To control the nuclear field, it is critical to control the deviation of the electron spin from the 

equilibrium state, i.e. the quantity (<Sz> - Sz0) in Equation (6-28). It can be varied by changing the 

injected electron spin, the temperature, optical excitation power and so on. The electron spin after 

optical pumping is [72, 219] 
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, (6-30) 

where Sz-inj is the injected electron spin according to the optical selection rules,τe is the electron 

lifetime, τs is the electron spin lifetime, and Sz0 is the electron spin in the thermal equilibrium by 

taking Boltzmann distribution. The critical factor which determines the Overhauser field is  
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It can be seen that, the nuclear field is proportional to the factor (Sz-inj - Sz0), where Sz-inj is directly 

determined by the polarization of the optical pumping. Based on the optical selection rules in bulk 

GaAs [21], the right-circularly polarized (σ+, with helicity “+1”) excitation gives Sz-inj up to -0.25; 

the left-circularly polarized (σ−, with helicity “-1”) excitation gives Sz-inj up to +0.25; and linearly 

polarized excitation makes Sz-inj equal to zero. As demonstrated in earlier time, either circularly or 

linearly polarized pumping can generate the Overhauser effect in the presence of an external 

magnetic field [70]. Also as a consequence of a finite Sz0, the nuclear field has been observed with 

different magnitudes between σ+- and σ−- polarized excitation in a large external field [260]. 

 

The measurements were performed on a Si-doped GaAs sample, grown with molecular beam epitaxy 

on a GaAs (100) substrate. The active layer has a thickness of 2 µm, an electron density of 5 × 1016 

cm-3, and a mobility of µ = 4115 cm2/Vs at room temperature. The active region is sandwiched by an 

undoped GaAs layer of 50 nm below and a Si-doped GaAs layer above. The latter one is gradually 

doped up to an electron density of 5 × 1018 cm-3 within 15 nm and followed by another 15 nm thick 

GaAs layer with a constant doping level of 5 × 1018 cm-3. This avoids band bending effects within the 

active layer due to surface depletion and ensures that the nuclear spins probed experience a 

macroscopic homogeneous electrical environment. 

The dynamic nuclear field is investigated by the time-resovled Kerr rotation (TRKR) technique. The 

electron spin polarization is generated from optical pumping, and it is transferred to the doping 

electrons via fast exchange interaction [168]. The doping electrons are here regarded dominant for 

the DNP formation. The experiment geometry is described in Section 3.4.2.  

FIG 6.3-1 presents the continuous TRKR scanning under linearly polarized optical excitation. To 

note, experimentally the polarization of the pump beam is achieved by the light polarization on 

average, e.g. see Section 3.4.2 .The monitored electron precession is not remarkably dependent on 

the lab time, as there is no indication of clear phase shift of the TRKR data.  

In the case of circularly poalrized excitation, for σ+- polarized excitation as presented in FIG 6.3-2 

and for σ-- polarized excitation as presented in FIG 6.3-3, there is a clear dynamic phase shift on the 

time scale of minutes (indicated by dashed lines). For σ+- (σ--) polarized excitation, the phase shift is 

clearly observed, which is a result of an increment (decrement) of the electron Larmor precession 

frequency. This indicates an increment (decrement) of the total field seen by the electrons and thus 

makes a faster (slower) electron spin precession. The total field Btot is a sum of the applied external 

field Bext and the dynamic nuclear field BN as a result of the Overhauser effect, i.e. Btot = Bext + BN. 

Therefore for the current experiment conditions of |Bext| = 374 mT and T = 5 K, (i) the nuclear field 

is negligible under linearly-polarized excitation; (ii) the nuclear field is parallel to the external field 

under σ+-polarized excitation; (iii) the nuclear field is anti-parallel to the external field under 
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σ--polarized excitation. This can be understood by considering the relation between the electron spin 

in equilibrium and the electron spin by circular-polarized optical injection. 

 

 
FIG 6.3-1: Continuous scanning of TRKR measurements under linearly polarized optical excitation. Each TRKR scan 

takes ~ 2 minutes. The lab time is indicated on the right side. The dashed line indicates negligible phase shift of the 

electron spin precession. The external magnetic field is 374 mT, and the cryostat temperature is 5 K. 

 

 
FIG 6.3-2: Continuous scanning of TRKR measurements under σ+-polarized optical excitation. The lab time is indicated 

on the right side. The dashed line indicates a phase shift of the electron spin precession resulting from the nuclear field 

parallel to the external field. The external magnetic field is 374 mT, and the cryostat temperature is 8 K. 
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FIG 6.3-3: Continuous scanning of TRKR measurements under σ--polarized optical excitation. The lab time is indicated 

on the right side. The dashed line indicates a phase shift of the electron spin precession resulting from the nuclear field 

anti-parallel to the external field. The external magnetic field is 374 mT, and the cryostat temperature is 10 K. 

 

Since the n-GaAs sample is doped with a concentration of 5×1016 cm-3, i.e. above the 

metal-insulator-transition level, the electrons are neither completely localized nor completely free as 

in metals. Here the electron spin polarization is estimated for the upper limit and the lower limit. The 

effective electron g factor ge ≈ -0.42 is used based on recent work [163, 255, 256]. In case of 

completely localized electronic states, the electron temperature equal to the cryostat temperature of 

~4 K, the spin electron is obtained as Sz0 ~ -0.0065 by using a Boltzmann statistics. In case of 

completely free electrons, the Fermi temperature is estimated around 85 K by using the free electron 

gas model [250], the electron spin is as low as ~ -0.0003. Thus for linearly polarized excitation, Sz0 is 

expected to be between ~ -0.0003 and -0.0065 while Sinj = 0.  

For circularly polarized excitation (σ+ or σ-), an electron spin of |Sinj|= 0.25 is expected by 

considering the optical selection rules in n-GaAs [21]. In addition, in our experiment the pump beam 

was modulated between linear polarization and σ
+ (or σ-) - polarization with a duty cycle of 50 %. 

This results in a maximum circular-optically generated electron spin of |Sinj(max)| = 0.125. Only the 

z-component Sz-inj is responsible for dynamical nuclear spin polarization. Considering the 

experimental geometry presented by FIG 3.4-4 (Section 3.4.2): the incident angle of the pump beam 

θ1 ~ 18° (and thus the refractive θ2 ~ 4.9° in the GaAs active layer using nGaAs ≈ 3.7 and following 

Snell’s law), it is obtained |Sz-inj(max)|⋅sin(θ2) ~ 0.01, i.e. clearly larger than the expected spin in case 

of linear polarized excitation. So it is reasonable to observe a clear phase shift of electron spin 

precession for circular optical pumping, while it is negligible for linear excitation.  

By neglecting the equilibrium Sz0, the nuclear field direction is only determined by the sign of Sz-inj 

using Equation (6-28).  The σ+-polarized excitation generates a negative Sz-inj, aligning the nuclear 

spins anti-parallel to the external field, so that the electrons see an Overhauser field parallel to Bext 
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(note, bN is negative). In contrast, the σ--polarized excitation generates a positive Sz-inj, aligning the 

nuclear spins parallel to the external field, and thus the electrons see an Overhauser field anti-parallel 

to Bext. This gives a qualitative explanation of the dynamic phase shift presented in FIG 6.3-2 and 

FIG 6.3-3. 

 

6.3.1 Dependence of DNP on optical helicity  

The magnitude of the nuclear field is directly determined by the injected electron spin. The excitation 

optical helicity controls the injected electron spin. To more conveniently study the nuclear spin 

dynamics, the electron precession Larmor frequency ωωωωL is extracted from the TRKR measurements. 

It is defined as  

 ( ) ( )( )L e B tot e B ext N/ /t B  B B tω g µ g µ= = +ℏ ℏ , (6-32) 

and thus ωωωωL(t) can directly represent the dynamic nuclear field BN(t). The method to evaluate the 

Larmor frequency is given in Section 3.4.2. 

As presented in FIG 6.3-4, the polarization of the optical pumping is systematically varied over time 

and the characteristic electron Larmor frequency ωL (upper panel) is extracted from each TRKR 

scan. Under linearly polarized optical excitation, no observable change of ωL = 13.9 GHz is obtained 

indicating a negligible nuclear field. After switching to σ+ - polarized excitation with a duty cycle of 

Dτ = 20%, an increase of ωL up to ~14.5 GHz is found. This indicates an Overhauser field parallel to 

the external field with a magnitude of BN ~ +15 mT (lower panel) by using Equation (6.32). After 

DNP saturation, the optical excitation is switched to σ−- polarized with the same duty cycle. As 

expected, ωL is reduced down to ~13.3 GHz, indicating that the nuclear filed now is anti-parallel to 

the external field resulting in Btot = Bext − BN. Again, BN is found to be ~ -15 mT.  To further 

enhance the Overhauser field magnitude, we increased the duty cycle of the polarized optical 

pumping to 50%, which is expected to result in an increase of the average electron spin polarization 

and thus in an increase of the achieved Overhauser field. After switching to σ+ excitation with Dτ = 

50%, the nuclear field reverses its sign and increases up to about +35 mT, which results in ωL ~ 15.2 

GHz. An anti-parallel BN with similar amplitude is observed for σ
− excitation with Dτ = 50%. In case 

of Dτ = 80%, the amplitude of the Overhauser field is further enhanced to BN ~ 50 mT. Finally, 

switching back to linear polarized excitation, the nuclear field vanishes to zero. 

As discussed in Equation (6.28), Bext is much larger than the Knight field and much larger than the 

nuclear depolarization field (|ξBL
2|)1/2 under the experimental conditions. Thus for theoretically 

estimating the expected Overhauser field, a simplified form can be used by combining Equations 

(6-28) and (6-31) 
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Here ρe is the polarization degree of the optical excitation, and the average leakage factor fl is used 

for three nuclear species. From the TRKR results from FIG 6.3-1 to FIG 6.3-3, the electron spin 
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dephasing time is approximated as T2
*≈ 10 ns, which is used as the spin relaxation time τs = T2

* in 

n-GaAs in the regime of low magnetic field and temperature [8]. Since there are existing electrons 

from doping, it is assumed the electron life time is just the laser excitation period τe ≈ 13 ns. By 

using |Sinj| = 0.25 for a complete σ+ - or σ− - excitation, θ2 ≈ 4.9°, the expected Overhauser field is 

~(160⋅fl⋅ρe) mT. Considering the duty cycle of polarized excitation, Dτ, and comparing the measured 

magnitude of the Overhauser field BN with the calculated value, the leakage factor here is estimated 

~0.5, which is a reasonable value at low temperature [79].  

 

 

FIG 6.3-4: upper panel: Electron Larmor precession frequency versus laboratory time. Duty cycle and helicity of the 

pump beam, which were varied with time, are indicated. The transient change in the Larmor frequency due to DNP is 

mono-exponentially fitted with a time constant of 13.5 min (line). Lower panel: The corresponding dynamic nuclear field 

for the upper panel. The external magnetic field is 374 mT, and the cryostat temperature is 5 K. 

 

Concerning to the nuclear spin dynamics, as indicated in FIG 6.3-4, the DNP process can be fitted 

quite well with a time constant of 13.5 min (red lines). Within the experimental error, this time 

constant is found to be hardly dependent on duty cycle and optical helicity. The observed DNP 

formation time is faster by one order of magnitude than the calculated value from Equation (6-11) 

assuming free electronic states, and is slower by orders of magnitude than the calculated value from 

Equation (6-13) assuming localized electronic states. Comparable values have been found in similar 

GaAs systems [94, 250], while the origin to explain the discrepancy from the theory is still under 

discussion [72]. 
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6.3.2 Power dependence 

In FIG 6.3-5, TRKR measurements are presented by varying the excitation power under linearly 

polarized optical pumping. The presented data are normalized by scaling the detected signals with 

multiplying the indicated coefficients. The amplitude of the Kerr rotation at zero time-delay, is 

enhanced with increasing the excitation power. This is due to more spin-polarized electrons from 

optical pumping, e.g. see Section 3.4.2. On the other hand the probe beam also takes higher optical 

intensity to generate larger photon-voltage for the diode-bridge detector.  

As a more prominent dependence on the power, the electron dephasing time is clearly reduced for 

stronger optical excitation. The detected spin dynamics is a sum of the two electronic systems, 

delocalized and localized electrons [254]. The excitation level here is 1.5176 eV, and the energy of 

the donor-bounded electron is ~1.513 eV. See Ref. [103]. Since the excitation energy is above the 

energy level of the localized electron, higher excitation density can generate more delocalized 

electrons coexisting with the localized electrons. The delocalized electrons typically carry excess 

energy, which makes relatively faster spin dephasing compared with the localized electrons. As a 

result, the spin dephasing is manifested by a shorter time due to the increasing population of 

delocalized electrons over localized from higher optical excitation. The delocalized electrons take an 

effective g factor with a smaller absolute value (to note ge < 0) as compared for localized ones [163], 

and thus there is clear phase shift by changing the excitation density. The relative phase shift is 

indicated by the dashed line, and the corresponding Larmor frequency is given in FIG 6.3-6 (red).  

 

 
FIG 6.3-5: Power dependence of TRKR measurements under linearly polarized optical excitation. The power of the 

pump beam is given on the right side. The power ratio of the pump beam to the probe beam is always kept as 5:1, and 

only the pump power value is indicated. The presented data are scaled from the detected signals by the indicated 

coefficients. The dashed line indicates a phase shift of the electron spin precession resulting from the change of the 

electron g factor. The external magnetic field is 374 mT, and the cryostat temperature is 5 K. 
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The power dependence of the Larmor frequency ωL is also given in FIG 6.3-6 for σ+-polarized (black) 

and σ--polarized (blue) optical excitation. Clearly the Larmor frequency is decreased (increased) for 

σ+- polarized (σ-- polarized) excitation, which means a reduction of the nuclear field with increasing 

excitation power. Based on the three groups of ωL determined in FIG 6.3-6 and Equation (6-32), the 

power dependence of nuclear field is extracted and presented in FIG 6.3-7 (left axis).  

 

 

FIG 6.3-6: Power dependence of the Larmor frequency under linearly polarized (red), σ+-polarized (black) and 

σ--polarized (blue) optical excitation. The external magnetic field is 374 mT, and the cryostat temperature is 5 K. 

 

 

FIG 6.3-7: Power dependence of the nuclear field (left axis) and the electron dephasing time (right axis). The external 

magnetic field is 374 mT, and the cryostat temperature is 5 K. The nuclear field is averaged for σ+-polarized and 

σ--polarized cases. 
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The nuclear field magnitude is decreasing by increasing the excitation power. The nuclear field is 

reduced from ~40 mT to ~20 mT by increasing the power from 3 mW to 40 mW. This is in contrary 

with reported dependence of the nuclear field on excitation power [90, 154]. This might be due to 

much weaker excitation there, e.g. the optical power density is ~ 40 W/cm2 as an upper excitation in 

Ref. [90] while the value is ~3000 W/cm2 as a lower excitation within the current work. For a large 

density of optically generated carriers, the electron spin-spin interaction, e.g. via electron-electron 

scattering and exchange coupling, becomes stronger, which can accelerate the electron spin 

dephasing progress and thus shortens the spin relaxation time [93]. The spin lifetime is assumed 

equal to the dephasing time as mentioned above, and the power dependence is given in the right axis 

of FIG 6.3-7. Generally the spin lifetime is decreased from ~ 10 ns down to ~1 ns while the power is 

increased. By considering Equation (6-31), the shorter spin lifetime gives smaller average electron 

spin, which indicates weaker hyperfine interaction between the electrons and nuclei. In addition, the 

anti-ferromagnetic electron spin-spin interaction can depolarize the nuclear spins, and this 

mechanism is enhanced by increasing the electron population. Then it is expected the generated 

nuclear field is getting smaller.   

 

6.3.3 Temperature dependence 

In FIG 6.3-8, TRKR measurements are presented for varying the cryostat temperature under linearly 

polarized optical pumping. The Kerr rotation is significantly smaller for higher temperature, which 

causes the energy bandgap narrowing [103]. Since the excitation energy is kept constant (as 1.5176 

eV) which gives more excess kinetics for optically generated carries for smaller energy bandgap, the 

spin injection becomes less efficient at a higher temperature. In addition, since the detected Kerr 

rotation signal is from electrons above the Fermi level, then the electron population is much less as 

compared with the electron population in case of resonant excitation, which happens at a temperature 

of ~5 K in current studies. 

The temperature dependence of the injected electron spin is extracted in FIG 6.3-8 (right axis). 

According to e 0 k6.3 (eV) g g E≈ + ⋅ [163, 261], where g0 is the g factor at resonant excitation and Ek 

is the energy above the conduction band, the electron g factor changes to a smaller absolute value. 

This is due to the fact that g0 becomes absolutely smaller and Ek becomes relatively larger as a result 

of the bandgap shrinkage when the temperature is increased. This is reflected by the clear phase shift 

of the electron spin precession, and it is indicated by the dashed line in FIG. 6.3-8. Nevertheless, the 

spin dephasing time is of little dependence on the temperature, in good agreement with previous 

studies [163]. 

The Larmor frequency sequence for different temperatures is presented in FIG 6.3-9. For a cryostat 

temperature, the Larmor frequency is determined for both σ+- (for each dynamical rising process) 

and σ-- (for each dynamical lowering process) polarized excitation and the DNP process is also 
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monitored. Based on these systematic data, the temperature dependence of the nuclear field and the 

DNP formation rate are extracted.  

The steady nuclear field is estimated by using the electron g factor determined from FIG 6.3-8 and 

the Larmor frequency values under σ+- and σ--polarized excitation from FIG 6.3-9. The temperature 

dependence is presented in FIG 6.3-10 (left axis). A nuclear field of ~ 40 mT is obtained in the 

temperature regime below 10 K. For the higher temperature range, the nuclear field is strongly 

suppressed and almost vanishes at 50 K. This can be ascribed to two origins: (i) More delocalized 

electrons are generated at higher temperature. The delocalized electron has a longer DNP time 

compared with the localized electrons, so the nuclear spin polarization rate is reduced. In addition, 

the nuclear spin depolarization rate is enhanced due to the more prominent role by the thermal 

relaxation at higher temperatures. Therefore the nuclear field after DNP saturation is reduced by 

considering a smaller leakage factor from Equation (6-19). (ii) The spin injection efficiency is greatly 

diminished in case of excitation highly above the bandgap energy. The temperature dependence of 

injected electron spin is presented in the right axis of FIG 6.3-10. The extracted spin value is 

estimated from the peak-peak amplitude value at zero time delay for each TRKR measurement, and 

normalized by the maximum. The injected electron spin is clearly reduced by increasing the 

temperature, and thus the hyperfine coupling strength becomes less. To note, the trend is quite close 

to the nuclear field dependence on the temperature.  

 

 
FIG 6.3-8: Temperature dependence of TRKR measurements under linearly polarized optical excitation. The temperature 

is given on the right side. The dashed line indicates a phase shift of the electron spin precession. The external magnetic 

field is 374 mT. 

 

The temperature dependence of the DNP formation rate is presented in FIG 6.3-11. In the low 

temperature regime less than 10 K, the DNP formation time is independent on the temperature 

change and is kept constantly ~ 10 minutes, while the rate increases almost linearly with the 



Chapter 6. Local manipulation of nuclear spins in a semiconductor 

119 

temperature (indicated by the dashed line) beyond 10 K. For the free electrons considered in 

Equation (6-11), the hyperfine interaction rate has a linear relation with the temperature. Other 

relaxation channels depolarizing nuclear spins, such as thermal relaxation including nuclear 

spin-lattice relaxation and quadrupolar relaxation, come into consideration at higher temperature. 

The thermal relaxation rate is expected to have a linear relation with the lattice temperature below 

the Debye temperature [66] which is ~344 K in GaAs [103]. Thus it is expected the total DNP rate is 

proportional to the temperature in case of free electrons. This is in a qualitative agreement with the 

presented data 

 

 
FIG 6.3-9: Electron Larmor precession frequency versus laboratory time. The optical polarization is indicated by arrows. 

The cryostat temperature, which was varied with time, is indicated by a specific color. The external magnetic field is 374 

mT. 

 

 

FIG 6.3-10: Temperature dependence of the nuclear field (left axis) and the injected electron spin (right axis). The latter 

is extracted by the peak-peak amplitude value at zero time delay for each TRKR measurement, and normalized by the 

maximum. The external magnetic field is 374 mT. 
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FIG 6.3-11: Temperature dependence of the DNP rate. The dashed line is a guide for eyes. The external magnetic field is 

374 mT. 

 

6.4 Optically detected nuclear magnetic resonance using an on-chip microcoil 

To obtain manipulation of nuclear spins in semiconductors is of fundamental interest for the 

emerging field of quantum information processing. On one side, nuclear spin states can represent 

quantum bits [67, 262]; on the other side, the electron-nucleus coupling is an ultimate factor limiting 

electron spin lifetime in quantum structures [80, 237, 238]. In addition, nuclear spins can affect the 

electron spin transport [213-215], and further nuclear spins can lock the electron spin states under 

resonant electrical or optical excitations [263-265]. It is thus required to attain a powerful and 

spatially selective approach for nuclear spin manipulation, e.g. based on nuclear magnetic resonance 

(NMR). It has been shown for different III-V semiconductors that optically [21, 77, 84, 85, 88-92, 94, 

266] or electrically injected spin-polarized electrons [79, 86, 87] strongly enhance nuclear spin 

polarization via hyperfine interaction in comparison with conventional NMR. Different experimental 

methods have been developed to optically or electrically detect the NMR, e.g. highly sensitive 

detection of nuclear spin polarization from free induction decay signals [72], luminescence 

depolarization due to the Hanle effect [21, 77, 79, 84, 85], electrical resistance variance in the 

quantum Hall effect regime [86, 87], the effective nuclear field BN (namely the Overhauser field) 

induced PL spectrum shift [88] or the electron spin precession dynamics, the latter probed by 

time-resolved magneto-optical Faraday/Kerr rotation [89-93]. 

Quite often, the RF field needed for NMR is produced from a Helmholtz coil with a typical power 

consumption of ~ 100 W or so [89]. Other approaches include all-optical NMR making use of the 

Knight field from optically generated spin-polarized electrons [90, 94], or an in-built micro-stripe 

which has been hitherto used in the ultralow temperature regime of ~50 mK [86]. In contrast, an 

on-chip micro-coil can generate pulsed magnetic fields up to several 10 mT in the GHz regime with 

power consumption down to several 10 mW [193, 267]. 
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6.4.1 Magnetic resonance in two passages 

For considerations of the nuclear magnetization under resonance conditions, the analysis is typically 

performed in a rotating frame [66, 168, 268]. In the following only the nuclear species α1 is 

considered close to magnetic resonance while the others αi (i ≠ 1) are far from resonance and thus 

not affected by the RF field.    

In FIG 6.4-1 (a), the rotating frame is chosen to have an angular velocity ωωωωr parallel to Bext. The RF 

magnetic field BRF is assumed to oscillate perpendicular to the external field Bext. In the lab frame, 

the RF field is [ ] [ ]( )RF RF RF 1 RF RF RF RF= cos( ) = cos( ) sin( ) cos( ) sin( )B x x y x yB ω t B ω t ω t ω t ω t+ + −  

with B1 = BRF/2. Here x and y are the unit vectors for each direction axis. It is set |ωωωωr| = |ωRF|. Then 

the RF field can be treated as a sum of two rotating magnetic fields with the opposite angular 

velocity directions, i.e. ωωωωr and -ωωωωr.  Generally the latter component is ignored for analysis since it is 

away from the resonance condition and Bext >> B1 [66, 268]. Therefore the RF field is simply xB1 in 

the rotating frame. The longitudinal field seen by the nuclear spins is ext r 1/ 2B B ω
α

∆ πγ= − , where 

γα1 is the gyromagnetic ratio for the isotope species α1. In the rotating frame, the effective field seen 

by the nuclear spins is  

 ( )1/22 2 1
eff 1 , with arctan( ) 

B
B B ∆B Φ

∆B
= + =  (6-34) 

 

 
FIG 6.4-1: Nuclear field affected by a RF magnetic field. (a) The effective field seen by the nuclear species α1 in the 

rotating frame. (b) Nuclear field evolution the short time regime. The dashed red line indicates the precession vector of 

the nuclear field BNα1 in the rotating frame. (c) Steady nuclear filed in the long time regime. The z-component B′′′′Nα1-z is 

the stationary Overhauser field in the lab frame. 
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In the short time regime, on the time scale shorter than the nuclear spin-spin interaction which is on 

the order of 100 µs in GaAs [168], the nuclear magnetization precesses around the effective field 

once the RF field is applied. The dynamic nuclear field BNα1 is indicated by the dashed line in FIG 

6.4-1 (b). The NMR spectral width measured in this regime is a reflection of the local nuclear spin 

interaction, such as nuclear spin exchange interaction, dipole-dipole interaction, quadrupolar 

interaction etc. [66, 72, 268]. In the resonance case of ∆B = 0 or ωRF = 2πγα1Bext, the nuclear spins 

precess around the RF field B1 in the rotating frame, and manifest as nutation in the lab frame. The 

phenomenon is known as Rabi oscillations, with the Rabi frequency of fRabi
α1= γα1B1 = 1/2γα1⋅BRF 

and an effective nuclear spin dephasing time T2
Rabi.   

In FIG 6.4-1(c), the long time regime is presented. The nuclear filed approaches equilibrium at a new 

stationary level under RF excitation. This happens on a longer time scale, and it is approximated as 

the DNP formation time. The nuclear spins experience hyperfine relaxation process in the presence 

of the RF field. In the rotating frame, the new nuclear field BNα1
’ is collinear with the effective field 

Beff, and it is still along the external field Bext by considering the transverse average component in the 

lab frame. The magnitude could be written as  

 2
N 1-z N 1 cos ( )
α α

B B Φ′ =  (6-35) 

It can be seen, the measured NMR spectrum in this regime is related to the magnitude of the RF field. 

The NMR spectral width is a convolution of half of the RF field and the local nuclear spin interaction 

determined by NMR in the fast passage.  

The total magnetic field seen by the electron is the sum of the external field, the nuclear field not 

affected by the RF excitation, and the dynamic field of the isotope changed by the RF field, i.e. 

tot ext N i N 1
i 1

( ) ( )B B B B
α α

t t
≠

= + +∑ as described in FIG 6.4-1(b) and (c). By monitoring the dynamic 

electron Larmor frequency, the nuclear spin dynamics can be extracted under NMR conditions.  

 

6.4.2 Optically detected NMR in n-GaAs 

The studied sample is the same as described in Section 6.3, and the cryostat temperature is set as 5 K 

in this section. The NMR experiment geometry is schematically given in FIG 6.4-2(a). The nuclear 

field is generated collinear with the external field by using the optical oblique geometry described in 

Section 3.4.2. To induce magnetic resonance, an on-chip microcoil is patterned on the semiconductor. 

The microcoil used in the experiments has an inner diameter of 19 µm and a width of 6 µm as shown 

FIG 6.2-2(b). By introducing a RF current through the microcoil, an oscillating magnetic field is 

generated inside the coil with a component perpendicular to the external field, and thus NMR 

geometry is fulfilled as presented in FIG 6.4-1. The electrical resistance of the microcoil is negligible 

at low temperatures compared to the 50 ohm terminal resistor. As the microcoil is connected between 

ground and the 50 ohm resistor, the electric potential of the metal stripes is too low to produce a 

significant electric field in the studied GaAs active layer by the microcoil. 
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FIG 6.4-2: (a) Experimental geometry for the TRKR measurements and NMR conditions; (b) Scanning electron 

micrograph of the microcoil structure; (c) TRKR signal obtained for linear polarized optical excitation, σ+-polarized 

excitation and σ−-polarized excitation. For the two latter cases, data obtained with and without RF excitation at resonance 

conditions for the 75As isotope are compared. The arrows indicate the phase shift with respect to zero time delay, which is 

the consequence of the different Larmor frequency in each case. 

 

In FIG 6.4-2(c), it can be seen that for σ+-polarized pumping, the Larmor frequency ωL increases 

from 13.9 GHz to 15.2 GHz, which indicates the nuclear field BN is parallel to Bext. The situation is 

just opposite σ−-polarized excitation is used for the pump beam: The Overhauser field BN should 

now be anti-parallel to Bext, and the Larmor frequency is reduced to 12.5 GHz. These results are 

similar to what is discussed in Section 6.3. 

By introducing a RF current through the microcoil with frequency 2.72 MHz, which is expected to 

be the resonance frequency for 75As at Bext = 374 mT, a distinct change of the Larmor frequency can 

be seen in the TRKR data: In case of σ+ (σ−) – polarized pumping, the Larmor frequency drops 

(increases) to a value of ωL = 14.5 GHz (13.1 GHz), indicating a significant depolarization of the 

nuclear spins. The Larmor frequency does not reach the value measured for linearly polarized 

pumping as only the 75As nuclear spins are depolarized by NMR, while the nuclei of the other 

isotopes (69Ga, 71Ga) are not noticeably affected. To note, the depolarization level is almost same for 

both polarizations, i.e. |∆ωL| = 0.7 GHz for σ+-polarized excitation and |∆ωL| = 0.6 GHz for 

σ−-polarized excitation. This means the nuclear field amplitude is actually independent on the optical 
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excitation helicity. This gives further evidence that the equilibrium electron spin is negligible 

compared with the optically injected electron spin, and thus the nuclear field at linear excitation can 

be ignored (e.g. see discussions in the beginning part of Section 6.3.1). 

To obtain the 75As NMR spectrum, TRKR measurements are performed for different frequency 

values as presented in FIG 6.4-3. The DNP formation was ensured to be on the saturation level prior 

to switching on the RF field. For each RF frequency, the RF excitation is always on during the 

measurements and the TRKR scanning was performed for ten times, which totally take around 10 

min. Since the DNP formation time has been found ~10 minutes for three isotope species in Section 

6.3.1, it is expected the DNP formation of each isotope is shorter than the total TRKR scanning time. 

Therefore the NMR condition here is in the long time regime. For the measurements, the current 

amplitude through the microcoil was set to 30 mA. For the RF frequency of 2.72 MHz, there is a 

maximum phase shift indicating the strongest nuclear spin depolarization at (close to) the resonance 

center. The phase shift becomes smaller as the RF frequency is away the center frequency. 

 

 
FIG 6.4-3: TRKR measurements under RF excitation for different frequency values. The frequency is given on the right 

side. The arrow indicates a maximum phase shift for the 75As resonance at 2.72 MHz. The optical pumping is 

σ−-polarized and the external magnetic field is 374 mT. 

 

The NMR spectra are given in terms of extracted Larmor frequency values, which are plotted in FIG 

6.4-4(a) for both σ+-polarized and σ−-polarized optical excitation. The NMR features of all three 

species of isotopes are observed by sweeping the RF frequency. The center frequency of each NMR 

peak follows well the relation of fα = γαBext, where γα is the nuclear gyromagnetic ratio for the 

isotope α (α : 69Ga, 71Ga and 75As). The NMR spectral linewidth is between 20 kHz and 40 kHz and 

thus much larger than expected due to the dipole-dipole broadening in bulk GaAs [269], which 

suggests resonance saturation conditions [66] as well as a contribution from the RF field in the long 

time regime. 
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At the center frequency of each NMR spectrum, the change of ωL corresponds to a reduction of the 

total Overhauser field BN by BNα for each isotope species α. The sum of BNα for all three isotope 

species is comparable to the total Overhauser field BN. This indicates complete spin depolarization of 

the specific isotope for each NMR resonance. Interestingly, the measured ratio BNα/BN does not agree 

with the theoretically calculated value: BN
71

Ga is expected to be less than BN
69

Ga in pure GaAs crystals 

from Ref. [77], in obvious contradiction to the measured data. As BNα ~ flα⋅bnα with bnα being the 

calculated nuclear field (see Section 6.2-3) for complete spin polarization, we attribute this to a 

nuclear spin leakage factor flα, which is varying for different isotope species. The spin leakage factor 

flα is defined in Equation (6-19) written as flα = (1+τhf-pol(α)/τirhf-dep(α))-1, where τhf-pol(α) is the 

nuclear spin polarization time and τirhf-dep(α) the depolarization time constant, which competes with 

the DNP process via any nuclear spin relaxation channels. Isotope specific values of 

τhf-pol(α)/τirhf-dep(α) can arise in case of nuclear spin relaxation via quadrupolar interaction, whereas 

nuclear spin relaxation by thermal vibrations can be neglected at 5 K [250]. It is thus suggested that 

the ionized donors in our n-GaAs layer induce an electrical field gradient. This is statistically varying, 

e.g., due to trapping, hopping or recombination of electrons, and interacts with the nuclear 

quadrupole moment thus causing nuclear spin relaxation [253, 270]. This apparently results in a 

larger leakage factor for the 71Ga as compared to the 69Ga isotope, in agreement with earlier results 

[270]. Considering the theory given in Ref. [77], it can be extracted from the experimental data that 

the leakage factor relation between the isotopes is fl
75

As:fl
69

Ga:fl
71

Ga ≈ 20:16:25. 

 

 
FIG 6.4-4: (a) Optically detected NMR of 75As, 69Ga and 71Ga after σ+- (balls) and σ−- (squares) polarized excitation. Bext 

is 374 mT and the current amplitude I = 30 mA. Red lines are a guide to the eye. (b) NMR of 75As and 71Ga at I = 0.5 mA. 

Vertical lines indicate the expected spectral splitting due to the local quadrupolar field.    
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A further hint of the impact of quadrupolar interaction generated most likely by ionized donors is 

presented in FIG 6.4-4(b). By decreasing the current amplitude to 0.5 mA, the NMR linewidth of 
75As and 71Ga is reduced to ~10 kHz, and no clear Knight shift is observed for σ+ and σ− excitation. 

Apparently, the line shape of the NMR resonances is changed now. In case of a donor-induced local 

quadrupolar field [85, 270], a resonance broadening or even the occurrence of distinct satellites are 

expected, depending on the linewidth caused by the nuclear dipole field [269]. By using the values 

summarized in Ref. [253] with the Bohr radius of aB ≈ 10 nm, a quadrupolar field BNQ is ~ 0.3 mT is 

obtained for 71Ga, while a value of ~ 0.4 mT is found for BNQ(75As).  The expected splittings of the 

NMR resonances are included in FIG 6.4-2(b) as vertical lines. In spite of our limited signal to noise 

ratio, it is concluded that the broadening of the NMR resonances for low RF fields might be 

attributed to the local quadrupolar effects. From the literature [87, 270], a smaller magnitude of the 

resonance satellites is expected for the 75As species as compared to the 71Ga one, in qualitative 

agreement with the presented data.  

To address the coherent dynamics of nuclear spins, Rabi oscillation measurements were performed 

for the 75As nuclei, as shown in FIG 6.4-5. In this kind of experiments, a RF pulse triggers a coherent 

absorption-emission cycle between nuclear spin states of the 75As nuclei, which are energetically 

separated due to the external magnetic field [66]. Thus, the nuclear magnetization direction can be 

controlled by the RF pulse width under resonance conditions. In this case, the NMR is in the short 

time regime. To suppress the current-generated RF field inhomogeneity [193], a pinhole was used for 

probing the spin dynamics within a range of less than 5 µm in the center of the microcoil. The 

applied RF pulse sequence has a frequency of 2.72 MHz and a current amplitude of 30 mA. 

 

 
FIG 6.4-5: (a) 2D plot of the TRKR data for 75As Rabi oscillations. The upper panel is obtained with σ+-polarized 

excitation and the lower panel is obtained with σ--polarized excitation. The RF current amplitude is 30 mA at a frequency 

of 2.72 MHz. (b) Extracted Larmor frequency vs RF pulse width. The extracted ωL data are fitted by damped cosine 

functions (lines). The RF pulse is indicated in the inset.  
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As presented in FIG 6.4-5(a), the TRKR data are plotted versus the RF pulse width τRF, which is 

given in the vertical axis. Pronounced phase oscillations of the Kerr rotation signal can be seen by 

varying τRF, under both σ+-polarized excitation and σ--polarized excitation. FIG 6.4-5(b) presents the 

extracted Larmor frequency for each τRF. By fitting the data with damped cosine functions, it can be 

determined that the 75As nuclear magnetization coherently nutates with a Rabi frequency of fRabi
75As ~ 

4 kHz. Clearly by a π pulse (~ 100 µs) control, the nuclear magnetization is reversed. By using the 

relation of fRabi
75As = 1/2γ75As ⋅BRF, BRF is estimated to be ~ 1.2 mT. The effective dephasing time 

T2
Rabi is estimated ~ 200 µs, which is close to the literature value for GaAs in the adiabatic regime 

[89].  
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7 DYNAMIC NUCLEAR SPIN RESONANCE IN A 

SEMICONDUCTOR 
 

The chapter addresses dynamic nuclear magnetic resonance in n-GaAs, mainly with respect to the 

observed optically forbidden magnetic resonance absorption. The local nuclear spin interaction is 

introduced regarding the nuclear magnetic moment and the nuclear quadrupole moment. The 

multi-spin magnetic resonance is explained according to the local nuclear spin perturbations, and the 

multi-photon absorption due to the tilted RF excitation is discussed. A two-level model is given for 

the measured nuclear spin dynamics, describing the interplay between the dynamic nuclear 

polarization via hyperfine interaction and nuclear spin depolarization due to magnetic resonance 

absorption. Comparing the characteristic nuclear spin relaxation rate obtained in experiment with 

master equation simulations, the underlying nuclear spin depolarization mechanism for each 

resonance is identified. 

 

7.1 Local nuclear spin environment 

Nuclear magnetic resonance (NMR) represents a technique widely utilized to address nuclei in 

various materials, e.g. in order to analyze the local nuclear spin environment [66]. Recent progress in 

quantum information processing requires an in depth understanding of nuclear spins [43, 262], 

particularly in semiconductor quantum structures, where the nuclear properties are varying on a 

mesoscopic length scale. The local quadrupolar interaction is found so strong that the concept of the 

nuclear spin temperature cannot be valid [95-97]. In addition, the Knight field is demonstrated 

non-uniform as a consequence of the inhomogeneous electron wavefunction in a quantum dot [98]. 

The ability of dynamic nuclear spin polarization via hyperfine interaction with spin polarized 

electrons greatly facilitates access to the nuclear spins in semiconductors via NMR experiments [21, 

72]. These results give insight e.g. into the dipole-dipole (DD) interaction strength [89, 99] or the 

impact of the nuclear quadrupole (NQ) interaction under a local electrical field from atomic 

distortion [21, 100, 271], doping (defects) [85] or strain [87, 272]. Such local perturbations can cause 

a mixing of nuclear spin states and thus induce optically-forbidden [79, 99, 100], non-fundamental 

magnetic resonances by radio frequency (RF) absorption.  

Usually, the properties of the nuclear spins are extracted from either spectral features of the NMR 

signal, like spectral broadening and spectral shift, or spin-echo type of experiments. In this way, the 

nuclear spin information is typically analyzed as a result of the total local nuclear spin interaction, 

e.g. including both DD and NQ interaction. Since the optically forbidden NMR originates from the 

local perturbations, the nuclear spin resonance has a characteristic transition rate determined by the 

perturbation strength. Therefore new insights on the local nuclear spin interaction in semiconductors 
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are expected by investigating the transient nuclear spin dynamics under non-fundamental resonance 

conditions.  

For the local nuclear spin environment in solids, the nuclear dipole-dipole magnetic coupling and the 

nuclear quadrupole interaction are considered in the following.   

7.1.1 Dipole-dipole interaction 

The interaction of two magnetic moments is known as dipole-dipole coupling. Two neighbouring 

nuclei can interact with each other via nuclear spin dipole-dipole coupling. In FIG 7.1-1, the relative 

space relationship is given for two nuclei, nucleus 1 and nucleus 2 in both rectangular coordinates 

and spherical coordinates. The nuclear spin of nucleus 1 is I 1 and is I 2 for nucleus 2.  The nuclear 

magnetic moment for two nuclei are respectively given as 

 
1 n1 1

2 n2 2

,µ I  

µ I

h

h

=
=

γ
γ

, (7-1) 

where h  is the Planck constant ( 2h = π h ), and γn1, γn2 is the gyromagnetic ratio for nucleus 1 and 

nucleus 2, respectively. The dipole-dipole coupling between the two nuclei is 

 
( )( )1 20 1 2

12 3 5

ˆ ˆˆ ˆ3ˆ ˆˆ
4

µ r µ rµ µ

DDH
r r−

⋅ ⋅ ⋅= − 
 

µ
π

, (7-2) 

where r is the radius vector from µµµµ1 and µµµµ2, and µ0 is the vacuum permeability.  

 

FIG 7.1-1: Coordinate representation for two nuclei, nucleus 1 and nucleus 2. The coordinate of nucleus 2 (with nuclear 

spin I2) is given relative to nucleus 1 (with nuclear spin I1) at the origin. The relationship between rectangular coordinates 

x, y, z and spherical coordinates r,θ, φ is indicated.  

 

Using spherical representatives, the dipole-dipole Hamiltonian above can be rewritten as [66, 268]  

 
2

0 n1 n2
12 3

( )
4DD

µ γ γ h
H A B C D E F

π r− = + + + + + , (7-3) 

in which each item is expressed in terms of the raising and lowering operator as 
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Here the nuclear spin eigenstates are defined in the z-axis direction, i.e. parallel to the external field 

Bext. The first item (A) directly contributes to the nuclear spin energy level, while the left (B ~ F) 

items can perturb the eigenstates so that the nuclear spins are mixed. These elements are responsible 

for optically-forbidden NMR, which break the selection rules for spin state transitions.  

The strength of the dipole-dipole coupling is estimated to be on the order of 
2

0 n1 n 2
34

µ γ γ h

π r
. For the 

nucleus 2, it can see an effective dipole field 0 n1
34DD

µ γ h
B

π r
≈  from nucleus 1. For one nucleus 75As 

located in a GaAs crystal, the nearest neighbour nucleus is one 69Ga or 71Ga nucleus. The atomic 

distance is r ≈ 0.433⋅aLatt (see Section 2.1), where aLatt is GaAs lattice constant with aLatt ≈ 0.56 nm. 

Then the dipole field from one nucleus is BDD ≈ 0.05 mT. In the presence of an external magnetic 

field Bext, one nuclear spin performs nuclear precession with a certain Larmor frequency. Since the 

precession frequency is not same for unlike nuclear spins, the effective dipole field is random, which 

allows flipping the nuclear spins. It thus can be treated as a fluctuating local field. In the NMR 

spectrum, it is manifested as a linewidth broadening of the RF resonance absorption [66].  

In principle, one nucleus interacts with all nuclei in the crystal by dipole-dipole coupling. The DD 

Hamiltonian is a sum of all over the nuclei 

 ˆ ˆ
DD DD ij

i j

H H −
≠

=∑  (7-5) 

The DD interaction is proportional to r-3, so that the magnitude of the effective dipole field vanishes 

quite fast for nuclei far away. Typically the nearest neighbour nuclei and the nuclei next to the 

nearest neighbour are accounted in Equation (7.5).  

 

7.1.2 Quadrupole interaction 

As one nucleus carries a certain charge, it can interact with an electrical field. If the nuclear charges 

have a non-spherical distribution, the nucleus undergoes a quadrupole interaction [268, 273].    

Here the consideration is for a nucleus of atomic number N, and total electrical charge Ne is 

distributed over the nuclear volume with a charge density ρ(x, y, z). The nucleus center is set as the 
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origin position (0, 0, 0). The electrical potential is given by V(x, y, z) which is determined by all 

charges other than those of the nucleus under considerations. The electrostatic energy for the nuclear 

charges can be expressed as 

 ( , , ) ( , , )NH x y z V x y z dxdydzρ= ∫  (7-6) 

By using the Taylor expansion for the potential V(x, y, z) relative to the nuclear center, one obtains 

 
2

0 j j k
j j,kj j k0 0

1
( , , )

2N

V V
H x y z dxdydz V x x x

x x x
ρ

    ∂ ∂ = + + +       ∂ ∂ ∂     
∑ ∑∫ L  (7-7) 

Here the notation is used as x1 = x, x2 = y, x3 = z. The subscript “0” indicates the derivatives are 

evaluated at the origin and thus it can be taken outside the integral. Then the electrostatic energy can 

be represented as 
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0 j jk
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2N

V V
H NeV P Q

x x x

   ∂ ∂′= + + +      ∂ ∂ ∂   
∑ ∑ L , (7-8) 

where ( , , )x y z dxdydz Ne=∫ ρ , and the two definitions are given 

 
j j
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=
′ =
∫
∫

, (7-9) 

in which Pj is known as the electric dipole moment and Qjk´ is known as the electric quadrupole 

moment tensor.  

In Equation (7-8), the first expansion is spin-independent, and thus it is out of interest here. The 

second expansion is demonstrated to vanish due to the odd parity of the nuclear charges. The third 

expansion is the focus here, namely the quadrupole interaction between the nucleus and the electric 

field. The neglected fourth expansion known as electric octupole term vanishes and the higher orders 

are neglected due to much less contribution compared with the quadrupole interaction [273]. For the 

spin-related terms in the electrostatic energy, the nuclear quadrupole interaction is dominant, and the 

nuclear quadrupole Hamiltonian is obtained as 

 
2
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  NQ

V
H Q V V

x x
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∑  (7-10) 

Since the electric field is given ask
k

V
E

x

∂= −
∂

, the term Vjk is just the negative derivative of the 

electric field by using 
2

k
jk

j k j k j0

EV V
V

x x x x x

    ∂∂ ∂ ∂= = − − = −    ∂ ∂ ∂ ∂ ∂  
. The quadrupole energy is actually 

given by the interaction between the nuclear quadrupole moment and the electric field gradient.  As 

convention for simplicity, a new quadrupole moment tensor is defined as 
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Q Q Qδ
=

′ ′= − ∑ , (7-11) 

where δjk = 1 for j = k and δjk = 0 otherwise. The nuclear quadrupole Hamiltonian in Equation (7.11) 

becomes 

 
3 3

jk jk ii jj
j,k i 1 j 1

1 1ˆ ˆ( )( )
6 2NQH Q V Q V

= =

′= +∑ ∑ ∑  (7-12) 

The discussions above are valid for an arbitrary coordinate system xyz. Now the nuclear spin effect is 

introduced. The nuclear spin eigenstate is defined as the nuclear spin component along the z-axis 

direction parallel with the external magnetic field Bext which energetically separates the nuclear spin 

sublevels.  

From a semiclassical point of view, the external charges giving the electric field gradient interact 

only with the temporal average of the nuclear charge distribution. Because the nuclear charges 

precess rapidly around the direction of the nuclear spin, the nuclear charge distribution is symmetric 

to the z-axis, and thus it can be expected Qjk = 0 in case of j ≠ k, and Q11 = Q22. On the other hand, it 

is satisfied Q11 + Q22 + Q33 = 0 by checking Equation (7-11), so one obtains Q11 = Q22 = -1/2Q33.  

Hence all quadrupole components in Equation (7-12) can be expressed in terms of Q33 which is 

referred to the nuclear spin axis.  

Consider a nucleus with a nuclear spin Iz, the quadrupole moment Q based on Equation (7-9) and 

(7-11) is defined as [273] 
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| |
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Iz Iz
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eQ Q
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ϕ ϕ

ρ

=< >

−∫
 (7-13) 

Here ϕIz is the nuclear wave function ρIz(x, y, z) is the charge density distribution for the nuclear spin 

state Iz, and r2 = x2 + y2 + z2. As convention, the nuclear quadrupole moment is denoted in units of 

the proton charge e, and it is with a form of eQ as appeared in literature. If ρIz(x, y, z) is spherically 

symmetric, the nuclear quadrupole moment is proportional to (3z2 – r2) which is equal to zero by 

volume integration. This is the case for nuclear spin I = 0 or I = 1/2. For the nuclear spin number I ≥ 

1, the nuclear charge has an asymmetric distribution. The eQ is positive for an elongated charge 

distribution, and negative for a flattened distribution. The nuclear radius rn is typically on the order 

of 10-15 ~10-14 m, and the nuclear quadrupole moment is estimated 10-30 ~ 10-28 m2 [268, 273]. In 

general, it is larger for heavier nuclei than lighter ones. 

By careful quantum-mechanical treatments, the nuclear quadrupole Hamiltonian in Equation (7-12) 

can be given as [273]  

 ( ) 2
NQ j k k j jk jk

j,k

3ˆ ˆ ˆ ˆ ˆ ˆ
6 (2 1) 2

I
eQ

H I I I I V
I I

 = + − −  
∑ δ  (7-14) 

A more detailed expression is given Ref. [253] 
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 (7-15) 

Here the space vector R refers to the general position for one nucleus. Clearly, there is NQ-induced 

energy splittings between different nuclear spins in case of non-zero Vzz (R).   

 

In a perfect crystal with cubic symmetry, the electric field gradient vanishes at the nucleus site. An 

appreciable Vjk can appear once the crystal symmetry is broken. For crystals lacking inversion 

symmetry center, e.g. GaAs, the quadrupole interaction can become non-zero by introducing local 

atomic distortion [100, 271], applying a huge external electrical field [274, 275] or generating strain 

in the crystal [87, 272, 276, 277].   

FIG 7.1-2 gives the configuration of the electric field E and the magnetic field Bext. The crystal axes 

lie in the new coordinate system X’Y’Z’ , in which the electrical field is given as E = (EX’ , EY’ , EY’ ) 

by the component on each axis direction. The angle between E and the Z’-axis is θ, and is ϕ between 

X’ and the EZ’-plane. As defined already, the magnetic field lies in the z-axis direction in the xyz 

coordinate system. Similarly,θ’ and ϕ’  are the angles between Bext and the Z’-axis and between X’ 

and the zZ’-plane, respectively. Then the tensor of the electric field gradient in the xyz coordinate 

system can be represented by the electric field components in X’Y’Z’-coordinates as [253, 278] 
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, (7-16) 

in which R14 is the antishielding factor given in Ref. [253, 278].  

Therefore the nuclear quadrupole Hamiltonian can be analytically estimated by Equation (7.15) and 

(7.16). For a simple case of the magnetic field parallel with the crystal axis, Bext // Z’-axis, which 

means θ’ = 0 and ϕ’ = 90°, the non-zero components of Vjk are  

 
xy 14 z 14

yz 14 y 14

x z 14

cos

sin sin

sin cos
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 (7-17) 

It can be seen that the NQ-induced energy levels are degenerate for different nuclear spins.  But still 

the nuclear spin eigenstates are mixed by the NQ perturbations. This spin state mixture can give rise 

to the non-fundamental NMR in case of resonant RF excitation, which is similar to the arguments for 

DD coupling in Section 7.1-1.  
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In the NMR experiments performed in Section 6.4, the external magnetic field is applied in the 

in-plane direction, while the accurate direction with respect to the crystal axis is uncertain. As a 

result, the component Vzz can contribute an additional energy, to modify the nuclear spin energy 

levels in presence of Bext.  

The nuclear spins magnetically interact with the external field as nuclear Zeeman interaction 

well-known as   

 extI BZ n NH g µ= − ⋅ , (7-18) 

where gn is the nuclear g factor and µN is the nuclear magneton 

   

 

FIG 7.1-2: Geometry of the electric field and the magnetic field configuration. The crystal axes lie in the X’Y’Z’  

coordinate system, and the magnetic field is parallel to the z-axis direction in the xyz coordinate system (x- and y-axis are 

in the X’Y’ plane, not depicted).  The angular positions of the external field Bext and the electrical field E are indicated in 

the X’Y’Z’  coordinate system.    

 

Compared with HZ, the NQ interaction is rather weak, and thus HNQ is considered only by first-order 

perturbation. For a system with nuclear spin of I = 3/2 (e.g. GaAs), the effect of the NQ interaction on 

the NMR spectrum is schematically presented in FIG 7.1-3. In the absence of the NQ perturbation, the 

energy splitting is the same between nuclear spin states of ∆I = 1. Thus there is only one center 

frequency f = ∆E/h = gnµNBext/h for resonance absorption. In the presence of nuclear quadrupole 

interaction, the nuclear spin energy levels are non-uniformly shifted, but with a same amount defined 

as 3AQ. The energy splitting can be thus changed by 6AQ. The sign of the energy shift can be judged 

from the first term of Equation (7-15), and it gives AQ = 1/12⋅eQVzz by performing calculations. As a 

result, the NMR spectrum is split into three resonance centers, the original one and two satellites. 

The latter are shifted to frequencies of (f ± ∆f), in which ∆f = 6AQ/ h. 

By expanding the expression in Equation (7-16), it can be obtained 
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In order to make a rough estimation, the magnitude is approximated as 
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FIG 7.1-3: Quadrupole splitting of the NMR for nuclear spin I = 3/2.  Top: spin energy sublevels. Bottom: NMR 

spectrum. Only center frequencies are indicated. The NQ-induced energy splitting gives the NMR satellites. The number 

indicates the expected relative resonance strength for each satellite.    

 

In the studied n-GaAs sample, the ionized donors can generate local electrical fields. As a rough 

estimation, the electrical field is considered at a distance of the Bohr radius (|R| = aB ≈ 10 nm) from 

the donor. The electrical field 6
2

0 B

1
1.1 10 V/ m

4
E

e

πεε a
≈ ⋅ ≈ × , in which |e| is the ionized donor 

charge, ε0 is the vacuum permittivity, and ε is the dielectric constant of GaAs. In order to calculate 

the NQ splitting of 75As as an example, parameters summarized in Ref.[253] are used: Q(75As) = 

0.314*10-28 m2, R14(
75As) = 3.2*1012 m-1. The quadrupole interaction for each nuclear spin state is 

|HNQ| = 3AQ(75As) = 1/4⋅eQ(75As)Vzz ≈ 1/4⋅0.43⋅eQR14|E| ≈ 1.9 × 10-30 J. The frequency shift in NMR 

is expected as ∆f(75As) = 6AQ(75As)/h ≈ 5.7 kHz. This energy splitting can be treated like an effective 

quadrupole field defined as |BNQ(75As)| = |HNQ|/gnµN ≈ 0.39 mT. By similar calculations, for the other 

two nuclear species, one obtains ∆f(69Ga) ≈ 5.7 kHz, ∆f(71Ga) ≈ 6.8 kHz, |BNQ(69Ga)| ≈ 0.28 mT and 
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|BNQ(71Ga)| ≈ 0.26 mT. The calculation results are in qualitative agreement with the experiment 

results presented in FIG 6.4-4 (Section 6.4).  

 

7.2 Dynamic nuclear spin resonance in n-GaAs 

The experimental configuration has been presented in FIG 6.4-2: the direction of the external field 

Bext is defined as the z-axis direction, and the microcoil is patterned on top of the semiconductor 

surface. The generated on-chip RF field BRF is in the x-z plane. In this case, the nuclear spin 

Hamiltonian is written as 

 ( ) ( )
z RF ext RF

ext RF RF RF RF
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2

I B B
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n N z long tran

H H H g µ

I I
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 (7-21) 

Here I  is the nuclear spin, and HRF is the Hamiltonian contributed from the RF field. The longitudinal 

component of the RF field (collinear with Bext) is BRF-long and BRF-tran is the transverse component 

(perpendicular to Bext). The transverse part of HRF contains the raising and lowering operators, and 

thus it can flip the nuclear spins. In the condition of resonant RF excitation, i.e. ωRF = 2πγnBext, 

fundament NMR is induced. The selection rule is ∆Iz = 1 for nuclear spin state transitions in case of 

fundamental NMR. This is what observed in FIG 6.4-4 (Section 6.4). 

 

 

FIG 7.2-1: Optically detected NMR under σ+ - polarized optical excitation (balls) and σ- - polarized optical excitation 

(squares). The horizontal dashed line indicates the Larmor frequency measured under linear polarized excitation. 
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By varying the frequency of the RF field, nuclear spin depolarization is observed at different 

resonance frequency positions. The Larmor frequency ωL is clearly reduced (enhanced) for σ
+ (σ-) 

optical excitation. The observed NMR results are presented in FIG.7.2-1. They can be classified as 

four types: (1) fundamental NMR at frequencies of fα = γαBext [21, 72, 77, 79, 85, 87, 89, 98, 99, 222, 

272], where γα is the nuclear gyromagnetic ratio of isotope species α; (2) two-spin NMR involving 

one isotope species at 2fα [79, 85, 99] ; (3) two-spin NMR involving different species of isotopes at 

(fα1 + fα2) [79]; (4) half-harmonic NMR at 1/2fα [79, 100, 271, 279]. 

In order to understand the occurrence of the non-fundamental NMR, the total nuclear spin 

Hamiltonian is written as:  

 Z hf RF DD NQ
ˆ ˆ ˆ ˆ ˆ ˆH   H  + H  + H + H  + H=  (7-22) 

The first two terms refer to the Zeeman energy and the hyperfine interaction, respectively. HRF is the 

perturbation arising from the RF magnetic field, HDD is related to the dipole-dipole interaction, and 

HNQ represents the nuclear quadrupole interaction. 

 

7.2.1 Non-fundamental NMR from local perturbations 

The non-fundamental magnetic resonance, i.e. two-spin or two-photon resonance, breaks the 

selection rule. Basically it originates from local perturbations, either crystal properties or experiment 

geometry.   

• Two-spin nuclear magnetic resonance 

The two-spin NMR indicates the nuclear spin state transition of ∆Iz = 2 by absorbing the energy of 

one RF quanta.  This can be explained by considering the nuclear spin environment, concerning to 

DD interaction and NQ interaction. From Equations (7-4) and (7-15), there are off-diagonal elements 

in either HDD or HNQ, so that the orthogonality is broken for the nuclear spin eigenstates defined 

along the external field. The extent of the state mixture is determined by perturbation strength with 

respect to the Zeeman energy splitting [99], i.e. (HDD/∆Hz)
2 ~ Bext

-2 and (HNQ/∆Hz)
2 ~ Bext

-2. Here 

∆Hz is the Zeeman energy splitting between nuclear spin states which can be coupled by the local 

perturbations. In HDD given in Equation (7-4), the terms C and D contain the first order of I+ or I-, 

and thus they mix spin states with ∆Iz = 1 for two neighbouring nuclei. The terms of E and F contain 

the second order of I+ or I-, and thus they mix spin states with ∆Iz = 2. Similarly HNQ can induce state 

mixture between nuclear spins with ∆Iz = 1 and ∆Iz = 2 according to Equation (7-15), but only for 

one nucleus.        

In FIG 7.2-2, a schematic explanation is given for the two-spin NMR either due to HDD or HNQ. In (a), 

the DD interaction couples nucleus 1 and nucleus 2. The nuclear spin states are I1z and I2z, 

respectively, and it is denoted as |I1z, I2z>. By considering the C or D term in HDD, there can be spin 

state mixture between |I1z, I2z> and |I1z - 1, I2z> (lower-right channel), |I1z, I2z> and |I1z, I2z - 1> 

(lower-left channel), |I1z - 1, I2z> and |I1z - 1, I2z - 1> (upper-right channel), or |I1z, I2z - 1> and | I1z - 1, 

I2z - 1> (upper-left channel). The mixture channel is indicated by the dashed double arrow. In 
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absence of RF excitation, such spin state mixture is in a dynamical equilibrium. As can be seen from 

Equation (7-21), the transverse component of HRF contains the first order of I+ or I-, there could be 

spin flips of ∆Iz = 2 according to the C or D term in HDD.  If the RF excitation has a frequency

( )RF n1 n 2 ext 1 2( )
α α

f γ γ B f f= + = + , the two-spin NMR is induced. A similar argument is applied for 

HNQ to generate two-spin NMR as shown in FIG 7.2-2 (b).  

For the DD interaction, spin coupling can be between neighboring nuclei of either the same isotope 

species or between two different kinds of isotopes, which allows HDD to induce NMR at 2fα and at 

(fα1 + fα2), respectively. The nuclear quadrupole interaction only involves one nucleus (for each 

isotope species in GaAs the quadrupole moment is non-zero), HNQ can consequently induce the 2fα 

resonance.  

 

 
FIG 7.2-2: (a) Two-spin magnetic resonance perturbed by dipole-dipole interaction which mixes the nuclear spin states of 

neighbouring nuclei, 1 and 2. The isotope species of nucleus 1 and nucleus 2 can be the same or different. (b) Two-spin 

magnetic resonance perturbed by nuclear quadrupole interaction, which mixes the spin states for one nucleus.  

 

• Two-photon nuclear magnetic resonance 

The half-harmonic resonance at 1/2fα suggests two-quanta RF absorption for spin transitions of ∆I =1, 

which stems from the oscillating RF field oblique to the nuclear field [280]. This geometry can 

happen in case of either strong nuclear quadrupole interaction with the crystal field if the applied RF 

field is perpendicular to Bext [21, 100, 271], or the applied RF field is intentionally oblique to Bext 

[279]. As the quadrupole field around donors is on the order of 0.1 mT [222] (also see Section 7.1-2), 

which is quite small compared with Bext = 374 mT, this hardly changes the parallelism of BN and Bext. 

However, the transverse field component BRF-tran varies within the microcoil center and can achieve 

values on the order of 1 mT in the metal vicinity while the longitudinal field component BRF-long is 
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slightly spatially dependent (see Section 3.1). This results in BN being oblique to the total RF field. 

Therefore this spatially inhomogeneous RF field from the on-chip microcoil is ascribed to be 

responsible for the 1/2fα NMR. 

FIG 7.2-3 presents the oblique configuration of Bext and BRF. The left side gives the tilted RF field 

with BRF-long = z⋅BRF-long⋅cos(ωRFt) and BRF-tran = x⋅BRF-tran⋅cos(ωRFt), where x and z denote the unit 

vector for x-axis and z-axis direction, respectively. The tilting angle is defined as φ = arctan(BRF-tran/ 

BRF-long).  

 

 

FIG 7.2-3: Configurations of the external magnetic field and the RF field for generating two-photon NMR. Left: the RF 

field is tilted with respect to the external field; Right: magnetic field in a rotating frame with an angular velocity of ωωωωr.  

 

Similar to the treatment in FIG 6.4-1 (Section 6.4), a rotating frame with angular velocity of ωωωωr is 

used here, as presented on the right side. The total longitudinal magnetic field becomes Blong = (Bext - 

ωr/2πγα + BRF-long⋅cos(ωRFt)) and the transverse magnetic field is Btran =  1/2⋅BRF-tran⋅( x⋅cos((ωRF - 

ωr)t) + y⋅sin((ωRF - ωr)t)).  Now the angular velocity is chosen to be [279] 

 r RF RFRF-long2 cos
α

ω ω πγ B ω t= + ⋅  (7-23) 

Then in the rotating frame, the longitudinal field is 

 long ext RF / 2
α

B B ω πγ= − , (7-24) 

and the transverse field becomes 
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in which the phase is obtained by integral for the angular speed on time 
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By using the Taylor expansion for sine and cosine functions and keeping the first order of BRF-long, 

the transverse field is approximated as 
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By comparing Equation (7.24) and Equation (7.27), it can be seen that the magnetic resonance 

condition in the rotating frame is: ωRF = 2πγαBlong. It turns out fRF = 1/2⋅γαBext = 1/2 fα, which is just 

the half of the fundamental resonance frequency. Further, the magnitude of the resonance field is 
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 (7-28) 

This indicates the resonance strength is reduced by increasing the external field, with a similar 

dependence on Bext as two-spin resonance. In case of a RF field perpendicular to the external field (φ 

= 90°) or RF field parallel to the external field (φ = 0), no two-photon NMR is expected. Since the 

transverse field generated by the microcoil can vary greatly from the center to the metal vicinity, the 

resonance strength can be expected to differ much at different areas inside the microcoil. This might 

explain the non-uniform resonance level for the measured 1/2fα NMR in FIG 7.2-1. 

 

7.2.2 Nuclear spin dynamics under non-fundamental magnetic resonance  

Two typical TRKR data sets obtained under RF resonance conditions are presented in FIG 7.2-4(a). 

The arrows mark the time when the RF field was switched on. In case of the fundamental 75As NMR 

(upper panel), there is an abrupt change of the Kerr rotation signal after switching on the RF field, 

while for the 71Ga75As resonance (lower panel), the TRKR signal changes on a time scale of minutes. 

The variation of the Larmor frequency ωL with lab time after switching on the RF field is plotted for 

a few selected resonances in FIG 7.2-4(b). Each curve can be roughly fitted by a mono-exponential 

decay with a nuclear spin relaxation (NSR) time constant τNSR(exp) as summarized in Table 7-1. For 

the fundamental resonances, τNSR(exp) is much shorter than 1 min and limited by the experiment 

setup, i.e. the time needed for recording one TRKR curve. In case of the 2fα and the 1/2fα resonances,  

τNSR(exp) is on the order of 1 min, while for the (fα1 + fα2) resonances, time constants between 2.4 

min and 4.2 min are extracted from the data.   

It has to be noted that the nuclei are always exposed to polarized optical excitation and thus 

experience DNP formation during the measurements. Thus, the nuclear spin dynamics can be 

described by a two-level model as shown in FIG 7.2-5.The nuclear spin polarization with a rate τpol
-1 

caused by the hyperfine interaction Hhf competes with the depolarization due to RF absorption with a 

rate τdep
-1. The rate equation for the dynamic Overhauser field is 

 N N0 N N

pol dep

– 
dB B B B

dt τ τ
−=  (7-29) 

Here, BN0 is the Overhauser field in case of DNP saturation. By solving the equation above, the 

nuclear spin relaxation rate and the reduction of the Overhauser field ∆BN at resonance conditions 

are obtained as  
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-1 -1 -1

NSR pol dep

N N 0 dep pol

( )

/ (1 / )

  

B B

τ τ τ
τ τ

= +

∆ = +
 (7-30) 

 

 

FIG 7.2-4: (a) 2D plot of the Kerr rotation data. The color code describes the amplitude of the Kerr signal and the arrows 

indicate the lab time, where the RF field is switched on. The data for the upper plot are obtained at the 75As NMR, while 

the lower plot represents the data recorded for the 71Ga75As NMR. (b) Larmor frequency versus lab time for different 

resonances (symbols). The solid lines are mono-exponential fits. 

 

NMR 

time  (min.)
τ

NSR
 (exp.) τpol 

τdep 

D-D NQ Btran 
69

Ga
75

As 4.2 6.6 6.0 - - 
71

Ga
75

As 2.7 7.8 5.6 - - 
69

Ga
71

Ga 2.4 4.4 3.6 - - 

2
75

As 0.8 5.0 19 0.05[1.2] - 

2
71

Ga 1.0 2.8 7.2 0.03[0.4] - 

1/2
75

As 1.1 5.0 - - 1.3 

1/2
71

Ga 0.9 2.8 - - 0.5 

75As << 1 5.0 << 1 

Table 7-1: Experimentally obtained time constant of the nuclear spin relaxation τNSR(exp), based on the average values 

measured for σ+ - and σ- - excitation (second column).  In the third column, the nuclear polarization time τpol is listed as 

extracted from the data presented in FIG 7.2-6. The last column summarizes the depolarization time constant τdep as 

obtained from the numerical simulations. 

 

In order to determine the polarization time τpol, TRKR measurements with defined RF switching 

sequences were performed as shown in FIG 7.2-6. By using σ+ - polarized optical pumping without 

an applied RF field, the DNP formation results in an increase of the Overhauser field with a 

characteristic time constant of τpol,exp = 9.4 min. After saturation, the RF field is switched on with a 

frequency resonant to the 75As isotope and the 75As nuclear spins are depolarized instantaneously, i.e. 
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below the time scale of our experiment. Afterwards, the RF field is again switched off and the 75As 

nuclei get polarized with a time constant of 4.6 min. This difference in the time constants is related to 

the fact that the first DNP process involves all three species of isotopes, while the latter one is only 

controlled by the DNP of the 75As nuclei.  

According to Ref. [250], one obtains for the DNP formation time for the isotope species α the 

relation τpol-α ~ fl-α⋅χα(γαPf-α)−2, where fl-α is the nuclear spin leakage factor, χα is the isotope 

abundance, and Pf-α is electron probability density at the nucleus normalized by the unit cell volume 

[66, 250]. In Section 6.2, the leakage factor relation is calculated as fl-75As:fl-69Ga:fl-71Ga ≈ 20:16:25. 

Using the assumption τpol = Στpol-α, the value τpol-α for each isotope species α can be estimated. From 

τpol,exp = 9.4 min, τpol-75As = 5.0 min is extracted, which fairly well agrees with the experimental value 

of 4.6 min. Similar experiments have been performed for the 71Ga isotope, where τpol-71Ga = 2.77 min 

is measured, in good agreement with the calculated value of 2.8 min. In Table 1, the extracted 

polarization time for each NMR is listed. Hereby, we assume τpol = (τpol-α1 + τpol-α2) for the (fα1 + fα2) 

resonances [281].  

 

 
FIG 7.2-5: Two-level scheme used for describing the nuclear spin dynamics. 

 

 

FIG 7.2-6: Larmor frequency ωL versus lab time for a well-defined RF switching sequence. The RF excitation is to 

induce 75As NMR. Lines are guide to eyes. The first DNP formation process before switching on RF excitation concerns 

all the nuclear species, and the second DNP formation process after switching off RF excitation is only due to 75As 

nuclear spins.   
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In order to determine the depolarization time τdep we consider the different depolarization 

mechanisms for each NMR. The temporal evolution of nuclear spin states can be described by the 

Lindblad master equation [210]: 

 [ ] { }( )† †1
, 2 ,

d
H L L L L

dt i
= + −

ℏ

ρ ρ ρ ρ  (7-31) 

Here H =Hz + HRF + HDD + HNQ is the nuclear spin Hamiltonian, ρ is the nuclear spin density matrix, 

and L the Lindblad operator. As the nuclear spin relaxation via thermal vibrations is negligible in the 

low temperature regime used here [250], the Lindblad operator can be simplified as L = Γσz, where Γ 

is a constant determining the nuclear spin-spin relaxation rate and σz is the Pauli matrix.  

To simulate the NMR-induced nuclear spin depolarization process, the following steps are performed: 

(i) The initial nuclear spin polarization degree is set to unity; (ii) In a first approximation, a nuclear 

spin-spin relaxation time of T2 = 100 µs is taken for all three isotope species using the measured Rabi 

coherence time T2
Rabi of the 75As isotope (assuming T2

Rabi ≈ 2*T2 [66, 89] ) . (iii) The relaxation 

rate Γ is defined as the nuclear spin-spin relaxation rate relative to the instantaneous total magnetic 

field [282]. (iv) For the calculations of the NQ-induced NMR, the quadrupole field magnitude is 

taken as 0.4 mT for the 75As and 0.3 mT for the 71Ga isotope, respectively, from previous 

calculations (Section 7.1-2). For the calculations of the 1/2fα NMR, a transverse field of BRF-tran = 

0.15 mT as a calculated averaged value inside the microcoil is used.  

Under these assumptions, the nuclear spin depolarization dynamics is numerically calculated from 

the master equation. To note, there is a uniform nuclear spin depolarization by RF excitation even 

there is no perturbation and the RF field is non-resonant. As an instance presented in FIG 7.2-7(a), 

the nuclear spin depolarization dynamics (red dots) is calculated for NQ-induced 2f75As NMR only 

with RF excitation. By setting the NQ interaction equal to zero, there is still a nuclear spin 

depolarization process (blue dots), which can depolarize the 75As nuclear spins completely. The 

experimental dependence of the Larmor frequency on RF excitation frequency is given in FIG 7.2-7 

(b), there is no noticeable nuclear spin depolarization ranging from 0.5 MHz to 20 MHz for both σ+- 

and σ-- polarized optical excitation. This discrepancy between theoretical simulation and 

experiments is yet not clear. For a qualitative understanding, the used data (black line) are based on 

the calculated dynamics (red dots) under RF excitation and NQ interaction by excluding (dividing) 

the background nuclear spin dynamics (blue dots). Such a processing is applied for all the nuclear 

field depolarization processes.   

Finally, the total dynamic nuclear field experienced by the precessing electrons is determined by 

weighting the nuclear field amplitude of each isotope with the respective isotope spin polarization. 

The calculated temporal evolution of the nuclear field is presented in FIG 7.2-8. From the numerical 

calculations, the characteristic decay time constants are extracted and listed in Table 7-1.  

There are several interesting features that need to be discussed here. First, nuclear spin depolarization 

at the fundamental resonance is on the order of 100 µs, determined by the nuclear spin-spin 

relaxation time. Second, for the non-fundamental NMR, the nuclear spin depolarization occurs on a 

quite long time scale of minutes, in good agreement with the experimental findings. Hereby, the 
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DD-induced spin depolarization is generally much slower than the spin depolarization caused by the 

transverse field component BRF-tran and the NQ interaction, respectively. This is basically due to its 

much smaller perturbation strength, which is on the order of 0.01 mT or less in GaAs [99]. From the 

calculated data, the local NQ perturbation is identified as the dominant factor limiting the 

depolarization of the observed 2fα NMR. Note that the NQ field mainly depolarizes the nuclear spins 

located in the vicinity of the donors. Thus, a finite spin diffusion time τdiff has to be considered for 

getting the total depolarization time [225]. The values given in squared brackets in Table 7-1 indicate 

the expected spin diffusion time by taking into account the average distance between neighboring 

donors in the studied sample. The DD interaction strength is enhanced for the (fα1 + fα2) resonances 

due to shorter inter-nucleus distance, generating a faster spin depolarization as compared to the 

DD-induced depolarization of the 2fα NMR. For the 1/2fα NMR, the nuclear spin depolarization time 

is calculated based on the average value of BRF-tran inside the microcoil.  

 

 

FIG 7.2-7: (a) Simulated 75As nuclear field depolarization dynamics for NQ-induced 2f75As NMR. The red dots are subject 

to both RF excitation and NQ interaction, while the blue dots indicate nuclear spin depolarization in absence of NQ 

interaction. The used nuclear field depolarization data (used) are based on the red ones by dividing the blue ones. (b) 

Larmor frequency dependence of RF field frequency for both σ+- (balls) and σ-- (squares) polarized optical excitation. 

 

A quite good agreement between theory and experiment is obtained allowing an identification of the 

dominant depolarization mechanism for each NMR resonance observed in the experiment. In order 

to further proof the validity of the results, the change of the Larmor frequency, i.e. the Overhauser 

field, at NMR conditions is measured as a function of the RF field amplitude.  

In FIG 7.2-9, the change of ωL is plotted versus the square of the RF field. One should keep in mind 

that the nuclear spin polarization rate is only determined by the hyperfine interaction, while the spin 

depolarization rate strongly depends on the RF excitation power. For the 75As resonance, the 

amplitude of nuclear spin depolarization is found to be constant over the whole RF power regime 

measured. This is due to the fact that independent on the RF power, the relation τdep << τpol holds 

[66]. In contrast, in case of the non-fundamental resonances, the change of the nuclear field strongly 
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depends on the RF power. The nuclear spin depolarization is suppressed if the RF field amplitude is 

on the order of 0.01 mT or below. In this regime, τdep becomes much larger than τpol and ∆BN 

becomes negligible.  

 

 
FIG 7.2-8: Numerically calculated temporal variation of the nuclear field assuming nuclear spin depolarization purely 

due to magnetic resonance absorption. 

 

 
FIG 7.2-9: Larmor frequency variation under NMR conditions versus the squared RF magnetic field. Lines are guide to 

the eyes. 
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APPENDICES 
 

A1 Standard processes for cleaning samples 

 

1. Make sure the sample is fixed facing downwards in the tweezer, and keep it in the boiling 

Choroform  solvent for 2 minutes; 

2. Dry the sample by blowing Nitrogen (do not put the sample too close to the Nitrogen, a distance 

of about 10 cm is preferred); 

3. Bring the sample into boiling Aceton solvent, and keep it inside for 2 minutes; 

4.  Keep the sample in the beaker, and make the ultrasonic pool work with a power level of 3 ~ 4 

under 80 °C. Bring the beaker into the ultrasonic pool for 2 minutes; 

5. Put the sample directly into boiling Ethanol solvent immediately, and keep it inside for 2 

minutes; 

6. Mount the sample on the spin-coating machine (CPS20, SEMITEC). Run the spin-coating by 

Programm NO.1, during which flush the sample by Isopropanol.  

7. Dry the sample by blowing Nitrogen. 
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A2 Two-step EBL protocol 

 

Material system □ GaAs  □ ZnSe   √√√√ CdTe    

Sample wafer number: W030707AI 

Contact: Yuansen Chen 

 Technology steps √√√√Signature 

► Sample cutting (if required) 

Size: 4.2 × 4.7 mm      

Notes: 

 

► 
 
 

Cleaning: A3-a protocol 

• Chloroform  √√√√ 

• Aceton  √√√√ 

• Ethanol √√√√ 

 

► First mask coating (Positive resist for bonding pads) 
 

Thickness PMMA 
1200 nm 7% @3000 rpm 

√√√√ Baking (2 min under 160° C on Hot plate) 

Notes: 

√√√√Signature 

 

► 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EBL Exposure 
GDSII: omega-updated-2.csf ;  
Position list:W030707AI-5.pls ; 
Notes: Exposure Protocol 
 
 Date / Time Mar. 16, 2009 

Resist PMMA 7% 

High Voltage 20 kV 

Working Distance 5 mm 

Magnification  25 × 

Layout File W030707AI-5 

Structure / Layer 0 

Working Area 400 (µm) 

Positionlist W030707AI-5.PLS 

Writefield Size 350 × 350 µm² 

Beam Current 1.304 nA 

Area Step Size 0.0244 µm 

Area Dwell Time 0.00109 ms 

Area Dose 300 µC/cm² 

Area Settling Time 5.0 ms 

√√√√Signature 
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► Development 

√√√√ PMMA:  80 seconds, Developer AR 600-56;  

          80 seconds, Isopropanol 

 

Notes: 

 

 

► Metal depostion 
□   Sputter-Coater        √√√√   Evaporation  
 
Coating layer(s): 
   
  

Material Thickness Rate Coating Tooling 
factor 

Cr 15 nm ~0.1 nm/s e-beam 1.6 
Pd 50 nm ~0.2 nm/s thermal 1.8 
Au 300 nm ~0.3nm/s thermal 1.0 

 

Notes: 

√√√√Signature 

 

► Lift-Off  

√ Pyrrolidon  80 °C,   70 min;   

Ultrasonic source level:      2    ; 

Time duration:     10   Seconds. 

Notes: 

 

 

► Structure characterization 

File folder of SEM pictures :  

√√√√Signature 

 

 

 

 

 

► Second mask coating  (Positive resist for microstructures) 
 

Thickness PMMA 
1200 nm 7% @3000 rpm 

 

√ Baking (2 min under 160° C on the Hot plate) 

Notes: 

 

√√√√Signature 
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► EBL Exposure 
GDSII: omega-updated-2.csf 

Position list: W030707AI-5.pls 

Notes: Exposure Protocol 

 

 
 
 

 

Date / Time Mar. 18, 2009 

Resist PMMA 7% 

High Voltage 20 kV 

Working Distance 5 mm 

Magnification 500 × 

Layout File W030707AI-5 

Structure / Layer 0 

Working Area 100 (µm) 

Positionlist W030707AI-5.PLS 

Writefield Size 100 × 100 µm² 

Beam Current 0.013 nA 

Area Step Size 0.0031 µm 

Area Dwell Time 0.0003 ms 

Area Dose 300 µC/cm² 

Area Settling Time 5.0 ms 

√√√√Signature 
 

 

 

► Development 

√ PMMA: 70 seconds. Developer solvent: AR 600-56,  

                 70 seconds. Isopropanol 

Notes: 

 

► Metal depostion 
□   Sputter-Coater       √√√√ Evaporation  
 
Coating layer(s):  
   

Material Thickness Rate Coating Tooling factor 
Au 360 nm 0.2 nm / s thermal 1.0 

 
Notes: 
 

√√√√Signature 
 

► Lift-Off 
√√√√ Pyrrolidon  80 °C,   35 min;   
Ultrasonic source level:     1  ;           
Time duration: 30 Seconds. 
Notes: 

 

► Structure characterization 
File folder of SEM pictures : 

√√√√Signature 
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A3 Representations of light polarization 

The considered light wave propagates along the z-axis direction, and the electric field is written as E 

= E0e
i(kr-ωt), where E0 is the complex amplitude, k is the wave vector and ω is the frequency. Due to 

the transverse nature of the electromagnetic wave, Ez = 0. By using the Jones vector, the light wave 

with an arbitrary polarization state can be represented as[152]: 

 
cos

sin
x

A i
y

E
E

E eθ

ϕ
ϕ

   
=   

  
 (A-1) 

Here, Ex and Ey are the decomposed components of the complex amplitude of E0 in x- and y-axis 

direction, respectively. EA = 22

x yE E+ ,ϕ = arctan(|Ey|/|Ex|), and θ is the relative phase between Ex 

and Ey. For simplicity, it is assumed Ex= |Ex|⋅Re{ei(kz-ωt)}, Ey = |Ey|⋅Re{ei(θ+kz-ωt)}and |Ex|≥|Ey| with 0 ≤ 

ϕ ≤ π/4. The dependence on space and time has been omitted, since they are common to all 

expressions in the following. 
The equation (A-1) represents: 

(i): A linearly polarized light in the condition of θ = m⋅π with m as an integer. The polarization 

direction is of an angle φ = θ + (-1)m⋅ϕ. 

(ii): A circularly polarized light in the condition ofϕ = π/4 and θ = (m+1/2)⋅π. As a typical case, the 

light is right-circularly polarized for θ = π/2 and left-circularly polarized for θ = -π/2. 

(iii): An elliptically polarized light with x-axis the major axis, in the condition of θ = (m+1/2)⋅π. The 

ellipticity η = tan(ϕ), and η = 0 for the special case of (ii). 

(iv): An elliptically polarized light as a general case. The ellipticity η = tan(ϕ), and the rotation angle 

of the major axis with respect to x-axis is  

 22

2 cos1 1
arctan( ) arctan(cos tan(2 ))

2 2
x y

x y

E E

E E

θ
β θ ϕ

⋅
= = ⋅

−
 (A-2).  

A schematic description is presented in FIG A3-1 with the parameters indicated. The major axis of 

the ellipse lies on the new x´- axis in the x´y´ coordinate system, which is transformed by rotating the 

xy coordinate with an angle β. In the x´y´ system, the light can be expressed as 

 /2

cos

sin
x

A i

y

E
E

eE
π

ϕ
ϕ

 ′    =  
 ′   

 (A-3) 

Applying the transformation matrix from the x´y´ to the xy coordinate system, the electric field in the 

xy system is expressed as 

 
cos sin cos cos sin sin

sin cos sin cos cos sin

β β β ϕ β ϕ
β β β ϕ β ϕ

 ′ +      = =     − − + ′      
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FIG A3-1: Schematic description of an elliptically polarized light. 

 

Now the representation of the light wave in the circular system is considered. A linearly polarized 

wave can be treated as a superposition of a right-circularly polarized (σ+) wave and a left-circularly 

polarized (σ-) wave. Mathematically, this can be written as ( ) ( /2 )
0 0( Re{ } Re{ })

2
ω π ω− + −= ⋅ + ⋅+E x yx i t kz i t kzE

e e

and ( ) ( /2 )
0 0( Re{ } Re{ })

2
ω π ω− − + −

− = ⋅ + ⋅E x yx i t kz i t kzE
e e . The transformation matrix from the linear system 

based on Ex and Ey to the circular system can be found: 

 
11
12

+

−

    
=     −    

x

y

EE i

EE i
 (A-5) 

Then the electric field vector E can be expressed in the circular system 

 
(cos sin )(cos sin ) (cos sin )

(cos sin )(cos sin ) (cos sin )2 2
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−

− −  −   
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 (A-6) 

Here |E+| = ( ) 1
cos sin ( )

2 2
A

x y

E
E Eϕ ϕ− = − , |E-| = ( ) 1

cos sin ( )
2 2
A

x y

E
E Eϕ ϕ+ = + , arg(E+) 

=-β and arg(E-) = β.  

The properties of the ellipse in FIG A3-2 can be described by the following relations: 

 
/1 1

ln (arg( ) arg( ))
2 / 2

E E
E E

i E E
β − −

− +
+ +

= = −  (A-7) 
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1

( )
2

yE E E− += −  (A-10) 

In the discussion of the magneto-optics (Section 3.4), the two normal modes of the light propagation 

are circularly polarized, namely the σ+ wave and σ- wave. The magneto-optic effects originate from 

the relative relations between these two modes. A schematic description is given in FIG A3-2. By 

changing the phase and the amplitude relation between the two circular modes, different polarization 

states can be formed. 

(i): If the two circular modes have the same zero initial phase and the same amplitude, the composed 

light is linearly-polarized in x-axis direction. It is presented FIG A3-2(a); 

(ii): If the two circular modes have the same non-zero initial phase and the same amplitude, the 

composed light is linearly-polarized in β direction. It is presented as FIG A3-2(b); 

(iii): If the two circular modes have the same zero initial phase and different amplitudes, the 

composed light is elliptically-polarized with the major axis in x-axis direction. It is presented as FIG 

A3-2(c); 

(iv): If the two circular modes have the same non-zero initial phase and different amplitudes, the 

composed light is elliptically-polarized with the major axis in β-angle direction. It is presented as 

FIG A3-2(d). 

 

 

FIG A3-2: Origin of the magneto-optic effects based on the circular system. (a) A linearly-polarized light on x-axis 

direction: a same zero initial phase and amplitude for two circular modes; (b) A linearly-polarized light on β-angle 

direction: a same non-zero initial phase and a same amplitude for two circular modes; (c) A elliptically-polarized light of 

the major axis on x-axis direction: a same zero initial phase but different amplitudes for two circular modes; (d) An 

elliptically-polarized light of the major axis on β-angle direction: a same non-zero initial phases and different amplitudes 

for two circular modes.
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