
Reconfiguration of User Interface Models for

Monitoring and Control of Human-Computer Systems

Von der Fakultät für Ingenieurwissenschaften

der Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

genehmigte Dissertation

von

Benjamin Weyers

aus Essen

Referent: Univ.-Prof. Dr. rer. nat. Wolfram Luther, Universität Duisburg-Essen

Korreferent: Univ.-Prof. Dr.-Ing. Dirk Söffker, Universität Duisburg-Essen

Korreferent: Assoc. Prof. Dr. rer. nat. Nelson Baloian, Universidad de Chile

Tag der mündlichen Prüfung: 19.12.2011





Für Ann-Kathrin





Danksagung

Die vorliegende Arbeit entstand während meiner Promotion als Stipendiat der Studienstiftung

des deutschen Volkes am Lehrstuhl für Computergraphik und wissenschaftliches Rechnen an

der Universität Duisburg-Essen.

Mein aufrichtiger Dank gilt in erster Linie meinem Doktorvater Herrn Prof. Dr. Wolfram

Luther, der diese Arbeit angeregt und wissenschaftlich begleitet hat. Trotz vielerlei anderer

Verpflichtungen hat er meine Arbeit stets unterstützt und fand immer Zeit für Rat und An-

regungen. Vor Allem bin ich ihm für seinen offenen Umgang und für die vielen fruchtbaren

Diskussionen und Gespräche dankbar.

Auch möchte ich mich an dieser Stelle bei meinen Korreferenten Herrn Prof. Dr. Nelson

Baloian und Herrn Prof. Dr.-Ing. Dirk Söffker für die vielen Anregungen und wissenschaftlichen

Kooperationen bedanken, die mich immer wieder aufs Neue motiviert und inspiriert haben.

Die Arbeitsatmosphäre am Lehrstuhl für Computergraphik und wissenschaftliches Rechnen

werde ich immer in guter Erinnerung behalten. Ich danke daher allen Kollegen für das besonders

gute und freundschaftliche Arbeitsklima, sowie für die vielen fachlichen und nicht-fachlichen

Gespräche. Insbesondere möchte ich Herrn Dr. Thomas Pilz und Herrn Dr. Roger Cuypers

danken, die nicht nur Kollegen waren, sondern Freunde geworden sind. Auch möchte ich mich

bei den zahlreichen Studenten bedanken, die ich im Rahmen ihrer Abschlussarbeiten betreuen

durfte. Dabei möchte ich mich insbesondere bei Herrn Dipl.-Inform. Armin Strobl, Herrn Dipl.-

Inform. Jan Stückrath, Frau Dipl.-Inform. Sema Kanat, Frau Dipl.-Inform. Dudu Canpolat,

Herrn Dipl.-Inform. Cüneyt Altunok, Herrn Dipl.-Inform. Alexander Emeljanov, Frau Dipl.-

Inform. Yu Liu, Herrn Dipl.-Inform. Nikolaj Borisov, Frau Hanna Berdys, B.Sc. und Herrn

Patrick Berdys, B.Sc. bedanken.

Ganz herzlich möchte ich mich bei meiner Familie und meinen Freunden für ihre Ermuti-

gungen und den Halt bedanken, den sie mir immer wieder gegeben haben. Vor Allem möchte

ich mich allerdings bei meinen Eltern, Annegret und Wolfgang, für ihre immer währende Un-

terstützung während meines Studiums und meiner Promotion bedanken, die im Wesentlichen

zum Entstehen dieser Arbeit beigetragen hat.

Mein ganz besonderer Dank gebührt allerdings meiner Ehefrau Ann-Kathrin. Sie hat es nicht

nur immer wieder geschafft mich in schweren Situationen aufzubauen, sondern war auch jed-

erzeit für mich da. Sie hat mir in vielen Momenten den nötigen Rückhalt gegeben und stand

stets hinter mir und meinen Entscheidungen. Sie fand immer die passenden Worte und öffnete

mir den Blick für andere Sichtweisen. Ich danke Dir von ganzem Herzen.

Duisburg, im Dezember 2011 Benjamin Weyers





Contents

1. Introduction 1

2. Human-Computer Interaction 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Cognitive Psychology and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Human Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. The Role of Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5. Task and Dialog Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6. Adaptive User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7. Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8. Multimodal and Multi-User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Formal Modeling of User Interfaces 25

3.1. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. User Interface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Formalization of Interaction Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Transformation to Reference Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5. Extension of Interaction Logic Modeling . . . . . . . . . . . . . . . . . . . . . . . 87

3.6. Formal Modeling of Physical Representation . . . . . . . . . . . . . . . . . . . . . 92

3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4. Reconfiguration and Redesign 97

4.1. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2. Formal Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3. Redesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5. Modeling and Simulation of Formal User Interfaces 129

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2. The UIEditor Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3. Future Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6. User Interface Reconfiguration in Interactive Learning Systems 155

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2. Computer-Supported Cooperative Learning . . . . . . . . . . . . . . . . . . . . . 156

6.3. Simulation Environment for Cryptographic Algorithms . . . . . . . . . . . . . . . 160

6.4. Evaluation Study and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

iii



Contents

7. Error Reduction through Reconfiguration of User Interfaces 173

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2. Psychological Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3. Input Reconfiguration of User Interfaces . . . . . . . . . . . . . . . . . . . . . . . 175

7.4. Output Reconfiguration of User Interfaces . . . . . . . . . . . . . . . . . . . . . . 183

7.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8. Automatic Reconfiguration of User Interfaces 193

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.2. Reconfiguration System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3. Interaction Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9. Conclusion and Future Work 201

A. The UIEditor Framework—File Formats 205

B. The UIEditor Framework—Availability 213

List of Figures 215

List of Tables 219

Bibliography 221

iv



1. Introduction

In recent decades, computer science has become increasingly established as the leading field in

the development of technologies in interdisciplinary scientific projects. Various examples can

be found in communication technology, mechanical engineering, medicine, economics and other

disciplines. Having arisen from early data processing in the 1950s, today computer science con-

centrates on investigating abstract description languages often based on mathematical concepts

and working towards computer-based implementations as tools for investigation or as final prod-

ucts. The resulting modeling approaches seek to offer a universal platform for various research

disciplines, to the benefit of all participants. Thus, developing abstract modeling strategies for

use in digital systems, computer science offers a common universal basis in interdisciplinary

research projects for communication, modeling, and development, as well as tool support for

scientific work.

Motivation

With the development of electric systems and highly integrated processing units, technical sys-

tems are becoming ever more complex, as are the control and monitoring tasks to be conducted

by human users. For this reason, the development of human-computer interfaces has become

the focus of research seeking to reduce the complexity of technical systems by implementing

user interfaces that link psychological aspects, on the one hand, with technical requirements,

on the other. This highly interdisciplinary research area is human-computer interaction. Its

aim is to develop theories, concepts, and tools that offer user interfaces for successful control of

complex technical systems to simplify everyday life.

The field of human-computer interaction involves two scientific areas: psychology, which

investigates humans, their behavior, and how they understand the world, and engineering,

which develops and investigates complex technical systems. Computer science concerns itself

primarily with modeling methods to describe and investigate systems in executable fashion.

Thus, computer science supports (formal, mathematical) modeling methods that can be run on

computers for simulation, investigation, validation, and verification paired with tool support

for applied modeling by psychologists and/or engineers. In this context, computer science

can support methods and tools for modeling systems from the perspective of psychology as

well as engineering. Furthermore, computer sciences can use results from both scientific areas

to enhance success in human-computer interaction and offer a formal basis for research on

merging different worlds to create efficient and effective interactive human-computer systems.

In this context, engineering offers various application scenarios, where psychology supports

the creation of mental models, statistical evaluation approaches, and cognitive concepts like

situation awareness, etc.

This visionary view of future work in human-computer interaction motivates a modeling

approach for user interfaces that is, on the one hand, suitable for visual and expert-based

modeling and, on the other, formally defined to offer a solid basis for future integration of

1



1. Introduction

related psychological and engineering models as well as to make models directly executable on

computers. In the end, this approach reduces the gap between modeling and implementation.

Thus, this executable, computer-based communication platform enables the combination of

concepts from psychology and engineering.

Furthermore, both psychology and engineering are interested in building models that simplify

the real world to the degree that it can be understood by researchers and becomes easier to

investigate. Computer science offers a huge set of modeling languages and approaches based on

various concepts and ideas, always with the goal of using computers to execute and investigate

certain models. In this context, overlapping concerns are identified in building models of the

human and/or the technical systems involved, which also argue for developing and implement-

ing a solid computer-based and executable language for integrating models into user interface

creation processes and implementations.

Goals

The goal of this dissertation is to develop a formal and visual modeling language to describe

human-computer interaction embedded as an executable model of user interface design. This

formal approach will be extended by formal transformation concepts to offer options for formal

reconfiguration of user interfaces to make formally modeled user interfaces more flexible and

adaptable. Thus, they can be reconfigured in accordance with psychological research integrating

implicit psychological models to formal user interfaces. One example of this is reconfiguring a

user interface to reflect the user’s mental model of a machine. On the other hand, results from

engineering research can be easily introduced into formal user interface models and thus into

the interaction of the human user with the machine. For instance, the interaction processes

between humans and technical systems that target specific goals can be embedded in the inter-

action model of a user interface. Thus, this dissertation describes the development of a flexible

approach to formal user interface modeling, execution, and reconfiguration. This flexibility will

allow future research to extend the current work by applying such concepts as the easy intro-

duction of user interface adaption into an existing user interface model. Such extensions can

serve as a common platform integrating elements from both psychology and engineering.

Various concepts can be mentioned in this context. First, task models, which are familiar

from human-computer interaction research, play a central role in identifying and describing the

tasks a user tries to solve with a given (technical) system. Next, process and dialog modeling

approaches should also be integratable into the formalism to be developed. From the engineering

perspectives of automation and system control, the formalism needs to be flexible enough to

introduce structures into the user interface model for the automation of certain control and

monitoring tasks; it also needs to be able to embed concepts from psychology for the modeling

of cognitive architectures and human behavior. Here, it is desirable to develop formal approaches

for modeling mental models or use concepts in which the user embeds his mental model in the

formally modeled user interface through reconfiguration. Furthermore, it should be possible to

introduce structures into the user interface model to identify and avoid errors in interaction.

It must be possible to validate and verify the resulting user interface model on the basis of

mathematical and algorithmic concepts, as well as to simulate and execute it for use in real

life. In conclusion, the formalism to be developed has to offer a solid basis for modeling data

processing between a human user and a technical system and to make the resulting user interface

reconfigurable at the same time. Furthermore, it should offer formalization abilities for building

2



hybrid models by introducing different formalization approaches to the interaction model of a

formal user interface based on data-driven communication between these models. This makes

the formalism more flexible for future extensions and will prepare it for easier integration of

formal models from other disciplines.

Resulting from these requirements, a set of working packages can be inferred such as follows:

1. Design of an architecture that subdivides a user interface into conceptual parts such as

its suitability for formal modeling of human-computer interaction. Here, it is impor-

tant to distinguish the functional or behavioral part of a user interface from its outward

appearance. Furthermore, the role of the system to be controlled should be specified.

2. Development of a visual language for modeling user interfaces based on this architecture

with a view to formal simulation, reconfiguration, and validation and to offering a broad

basis for the inclusion of other modeling approaches and concepts, including the ability

to build hybrid models. To this end, the visual modeling language should be sustained

by a well-known and highly developed formalism that also supports formal semantics for

the newly introduced formalism, as well as tools and a vital research community.

3. Development of formal reconfiguration of user interfaces based on the developed formalism.

The reconfiguration approach must also be fully formal to prevent problems arising from

applying semi-formal transformation approaches to formal and verifiable user interface

models. In this way, both aspects are fully formal: (a) the user interface and (b) its

reconfiguration. This reconfiguration approach should enable the introduction of further

modeling concepts directly into formal user interface models. For instance, one task

will be to embed in the user interface model the user’s mental model (or parts of it,

such as a task model) as a representation of the system to be controlled. The goal of

doing so is to reduce errors in interaction. Furthermore, computer-driven reconfiguration

should also be possible in order to offer automatic generation of reconfiguration rules

and their application to the user interface for implementing adaptive user interfaces as

a topic of future work. This goal is similar to another: the introduction of automation

concepts to user interface models implementing interaction processes in the user interface

model, as well as elements of user help and guidance. In brief, the formal reconfiguration

approach should make the formal modeling language flexible enough to meet the above

set of requirements concerning hybrid modeling and the transformation of user interfaces’

behavior in general.

4. Implementation of a framework offering tools and components for visual modeling, simula-

tion, and reconfiguration of formal user interfaces, as well as offering well-defined software

interfaces for further extensions. The visual modeling component should be implemented

first and foremost for generating user interfaces on the basis of the formal approach briefly

discussed above. The simulation should be able to run the modeled user interface by com-

bining a simulator for the formal representation of the visual modeling language with an

interface to the system implementation, which should be controlled through the user inter-

face. Still, the system to be controlled is not part of the investigation and implementation

conducted for this dissertation. As will be shown below, the system is initially treated only

as a black box represented to the outside world by its system interface (a set of system

values). The reconfiguration module of the framework should offer an implementation of

formal transformation systems paired with the data structures necessary for describing

3



1. Introduction

Extendable Software Framework 
for

Modeling, Simulation, & Reconfiguration

Formal User Interface
Modeling

Formal User Interface
Reconfiguration

U
se

r I
nt

er
fa

ce
 

M
od

el
in

g 
A

rc
hi

te
ct

ur
e

Ev
al

ua
tio

n

Figure 1.1.: Working packages

transformations. It should also offer an interactive interface that implements a handy

way for human users to apply certain reconfiguration operations to the user interface,

such as integrating mental models into the user interface model in an interactive and it-

erative process. Furthermore, the framework should offer an open architecture for further

extensions based on well-defined software interfaces; these might include the analysis of

human-computer interaction, automatic generation of transformations and reconfigura-

tions, formal verification tools, and data-driven analysis of interaction.

5. Evaluation of the developed approach concerning its application in real work scenarios

for identifying its use in various fields and its relevance for future research on integrating

psychological models and models from engineering into human-computer interfaces. In

the context of this work, the evaluation should determine the extent to which mental

models can be integrated into formal user interface models and the extent to which this

integration influences interaction and the number of errors made during interaction.

Figure 1.1 shows the different working packages. Based on an architecture for modeling

user interfaces, a formal modeling language should be developed along with a suitable formal

approach to reconfiguration of user interfaces. These formalisms will be embedded in an ex-

pendable software framework for modeling, simulation, and reconfiguration, which will then be

evaluated to determine the influence of the approach on human-computer interaction.

Organization

First, a short review of various research areas will be provided. It will identify areas and concepts

in psychology and computer science relevant to the modeling of user interfaces and human-

computer interaction (Chapter 2). Thus, the survey of the relevant literature will embrace

cognitive psychology as it relates to modeling, as well as the classification and identification

of human error as relevant aspect in human-computer interaction for safety critical application

scenarios. Aspects of automation and its influence on human-computer interaction will also be

4



of interest. There are various approaches to task and dialog modeling for describing tasks to be

fulfilled using a certain system, on the one hand, and, on the other, the extent to which dialogs

between human and computer can be modeled and developed. Concerning the reconfiguration

of user interfaces, various studies have been published and are included in the survey. A short

preview of future work including an overview of work in the areas of multimodal and multi-user

interfaces concludes Chapter 2.

Based on this introduction to the field of human-computer interaction and its interdisciplinary

environment, the developed formal approach to modeling user interfaces will be introduced. It

is based on a visual language paired with formal transformation to reference nets, a special type

of Petri nets (Chapter 3). The visual language integrates concepts of business process model-

ing. These processes will be subsumed in a container called interaction logic, which connects to

physical elements of the user interface, called the physical representation, on the one hand, and

with a well-defined interface of the system to be controlled, on the other. To avoid complex

definitions of semantics, this modeling language will be equipped with a transformation algo-

rithm that transforms it to reference nets offering formal syntax and semantics. Petri nets are a

well-known family of formal languages for modeling non-deterministic processes also involving

complex data types and continuous time concepts with an active and well-organized research

community offering a broad formal background supporting the formalism and its use. Further-

more, reference nets will be shown as highly suitable for integrating different formalization to

build the hybrid models necessary for integrating models from various scientific approaches.

Nevertheless, Petri nets in general and reference nets in particular are formalisms that are

equipped with a stable tool for modeling and simulation, which is further enhanced and devel-

oped [150].

As a central element in platforms combining psychological concepts and technical systems,

formal reconfiguration of user interfaces is of great importance. This approach offers trans-

formation to various meta-models and third-party implementations without leaving the formal

surroundings of the developed modeling language except for the use of hybrid modeling ap-

proaches (Chapter 4). This will be achieved through the introduction of formal graph transfor-

mation systems developed primarily in theoretical computer science and often used as a tool for

defining semantics for graph-based languages. Here, graph transformation systems will be used

to apply reconfiguration rules to the reference net-based model of a user interface in a formal

manner, not least because of its solid theoretical foundation.

Modeling approaches in computer science are only as helpful as the tools they support.

Therefore, after introducing and defining formal modeling languages and their reconfiguration,

the UIEditor framework will be described. This is a software framework implementing modules

and software interfaces for visual modeling, simulation, and reconfiguration of user interfaces

(Chapter 5). Various open source libraries were used for the visual modeling of graph-based

structures. The simulation engine called Renew, which can be used for the modeling and

simulation of reference nets, is included in the implementation and enables connection to third-

party models during runtime by building executable hybrid interaction models. Furthermore,

a graph transformation system has been implemented that uses XML-based file formats to

describe transformation rules and reference nets based on the so-called double pushout approach.

Chapters 6 and 7 introduce three studies showing that (a) it is possible to transform mental

models into formally modeled user interfaces through reconfiguration and (b) reconfiguration

reduces human error in interaction. The first of these concepts was investigated in the context

of computer-supported cooperative learning. Here, it was possible to show that reconfiguration

5



1. Introduction

promotes success in the learning of cryptographic algorithms. Chapter 7 describes a study in

which two processes had to be monitored and controlled by users who were able to reconfigure

their user interfaces in accordance with their needs and their understanding of the processes.

The control group was not able to use reconfiguration. In these studies, it was possible to show

that reconfiguration of the user interface significantly influenced on the number of errors made

by the individual user in handling malfunctions in the process.

Chapter 8 offers a broader view of future work, identifying various areas for further develop-

ment, introducing concepts of interaction analysis. The dissertation concludes with Chapter 9,

which looks beyond interaction analysis and automatic reconfiguration to broader implications

for future research.

6



2. Human-Computer Interaction

Human-computer interaction (HCI) is a well-known research field in computer science arising in

the 1960s [177]. The study of HCI provides the background for this dissertation, which focuses

primarily on the conception of terms and on positioning of this work in a wider context of

HCI research. The motivation for this work can be shown by describing related literature and

highlighting relevant historical aspects of and developments in HCI. Furthermore, the role of

cognitive psychology in context of HCI and of this work will be explored.

2.1. Introduction

Beginning in the 1980s, interest in the area of HCI research increased dramatically with the

advent of graphical user interfaces on the first personal computers like Apple’s Lisa and Macin-

tosh, and IBM’s PC [231]. In HCI research, the focus of interest changes over time [247, 254].

Up till now, the main interest has been to find the answer to the question how to build or

create a dialog between human and computer such that the user can solve a task effectively and

efficiently without making too many mistakes. For instance, in the early 1980s Shneiderman

(1982) coined the term direct manipulation in his article “The future of interactive systems and

the emergence of direct manipulation” [253] to describe a concept for HCI that still endures

today. There, he characterizes the concept of direct manipulation as the “. . . visibility of the ob-

ject of interest, rapid reversible actions and replacement of complex command language syntax

by direct manipulation of the object of interest” [253, p. 246]. Three years later, Norman and

his colleagues investigated this concept of direct manipulation from the perspective of cognitive

science in their article “Direct manipulation interfaces” [117], identifying the pros and cons of

HCI from this perspective. On the basis of these examples, it is clear that HCI research always

combines various research areas. This is underscored by the various definitions of the term HCI

and the differing areas of research it includes.

The following definitions of the term HCI provide a more detailed view of this research area

from the point of view of various authors, beginning with Dix, Finlay, Abowd, and Bealy who

describe HCI as follows:

As computer use became more widespread, an increasing number of researchers

specialized in studying the interaction between people and computers, concerning

themselves with the physical, psychological and theoretical aspects of this process.

This research originally went under the name man-machine interaction, but this be-

came HCI in recognition of the particular interest in computers and the composition

of the user population! [64, p. 3]

Dix et al. [64] identify three central aspects of HCI: (a) the physical aspect of interaction

of user and computer, (b) the psychological aspect, which concentrates on the user, and (c)

the theoretical background, on which the whole interaction process is based. This definition

somehow lacks specificity. The last point in particular should be more clearly defined. Faulkner

7



2. Human-Computer Interaction

[88] also divides HCI research into three different areas, but gives clearer insight into its basic

concepts and tools by characterizing the aim of HCI research:

The aim [of HCI] is to create computer applications that will make users more ef-

ficient than they would be if they performed their tasks with an equivalent manual

system. The last point is very important, since all too often computerized applica-

tions are produced that do not make the user’s task easier and more satisfying, nor

do they save time. [88, p. 2]

According to Faulkner, the aim of HCI research is the development of models, methods and

concepts for generating user interfaces that make systems more usable in that they are more

efficient and make fewer errors in solving given tasks. Faulkner goes on to sketch a way for HCI

research to reach this goal by combining results from various areas of research:

... [HCI] needs to gain its inputs from many other associated areas of study because

it has to understand ... the computer system, the human user and the task the user

is performing. [88, p. 3]

Here, Faulkner characterizes three areas of investigation: (a) the computer systems, (b) the

human user and (c) the task to be completed by the system to be accessed via the user interface

under construction. This characterization differs from that given by Dix et al. It is more precise

in the sense that it breaks down the whole research area of HCI to three subjects of investigation.

Preece goes a step further in her perspective of HCI research. She also takes into account

the environment as a necessary subject of HCI research, ending up with four major areas of

investigation:

The knowledge necessary for this [HCI study] comes from understanding how users

interact with computer systems in particular work environments. This interaction

consists of four components:

• the user

• who has to do a particular task or job

• in a particular context

• using a computer system. [219, p. 12]

Preece tries to combine these four aspects in one term to describe the successful creation of

a user interface: Usability. Preece characterizes a usable user interface (in other words a user

interface with high usability) as a user interface that fulfills the following four requirements:

The goals of HCI are to develop and improve systems that include computers so

that users can carry out their tasks:

• safely (especially in critical systems like air traffic control)

• effectively

• efficiently, and

• enjoyably.

These aspects are collectively known as usability. [219, p. 14]

8



2.1. Introduction

Preece defines usable user interfaces as safe based on their use in critical situations. This

kind of situation can be characterized by such factors as a high level of stress and a short time

period for decision-making in situations where many disturbing stimuli from the environment

distract the user. Here, different interfaces are subject to different requirements if they are to

meet Preece’s requirement of safeness. Thus, in the context of safeness, usability has to be

determined depending on the type of user interface, the situation, and the user. From the point

of view of haptic interfaces, like a control stick in an airplane cockpit, different requirements

arise concerning usability than with a visual interface as in cases of process controlling, for

instance, in a steel factory.

Furthermore, interaction should be effective and efficient in the context of the task to be

solved using the user interface. Here, effective means that a given task can be fulfilled using

a given user interface, where efficiency in this context means that the interface should enable

the task to be completed quickly and with as few errors and problems as possible. The last

point, enjoyableness, seeks to convey a kind of ‘fun factor’ provided by using the interface.

Here, Preece subsumes factors required for the user’s motivation to use the user interface. For

instance, two user interfaces that are identically safe, effective, and efficient but differ in their

‘fun factor’ affect their perceived usability only because the user’s motivation differs.

In the book Designing the user interface [254], Shneiderman and Plaisant characterize HCI

in a more complex way. They describe the criteria for the quality of a user interface concerning

the aspects of “usability, universality, and usefulness” [254, p. 31] in context of the ISO norm

92411 [254, p. 32] as a set of requirements:

1. Time to learn. How long does it take for typical members of the user community

to learn to use the actions relevant to a set of tasks?

2. Speed of performance. How long does it take to carry out the benchmark tasks?

3. Rate of errors by users. How many and what kind of errors do people make in

carrying out the benchmark tasks? Although time to make and correct errors

might be incorporated into the speed of performance, error handling is such a

critical component of interface usage that it deserves extensive study.

4. Retention over time. How well do users maintain their knowledge after an

hour, a day, or a week? Retention may be linked closely to time to learn, and

frequency of use plays an important role.

5. Subjective satisfaction. How much did users like using various aspects of the

interface? The answers can be ascertained by interviews or by written surveys

that include satisfaction scales and space for free-form comments.

The way in which Schneiderman and Plaisant outline the basic requirements of user interface

development also defines a framework for testing the quality of a given user interface. By

applying a set of benchmark tasks, the developer of a user interface can determine the quality

of a given user interface design. Again, the human user is the focus, which seems to be a central

theme in HCI research.

It can be concluded from the work of the above authors, as well as that of Sears and Jacko

[247]; Sharp, Rogers and Preece [252]; Rosson and Carroll [238]; and Card, Moran, and Newell

[40], that HCI research embraces psychology, technology and sociology. At the same time, of

1http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=38009

9



2. Human-Computer Interaction

course, it includes computer science, which can be seen in the work of Palanque and Paternó

[204], who describe the use of formal methods in HCI.

In order to go into more detail, it is of interest to narrow the investigation to only central

aspects. The goal is to create methods and tools to (a) model the user interface on various

formal levels, (b) describe reconfiguration techniques based on this formalization and (c) to

define ways of formalizing the results of differing types of HCI research, so that bridges can be

built between formal studies in computer science and semi-formal or informal concepts from

HCI and cognitive psychology research. The following sections will specify earlier work that

contributes to the realization of these goals.

2.2. Cognitive Psychology and Modeling

Various methods for modeling the user, the user interface, the task and the interaction itself

have been developed and investigated in HCI research. Concepts like hierarchical task trees,

cognitive models and architectures are only a few examples of results from cognitive and HCI

research. This section will make the user the focus of investigation in order to identify possible

cognitive psychology approaches for further investigation and to build a basis for describing the

connection between formal modeling and cognition. Before going further into detail, the term

cognition should be briefly defined.

In psychology, cognition is usually defined as a process of the mind. Thus, cognition describes

the how humans think about, remember, perceive and learn information. Lachman, Lachman

and Butterfield [154] introduced an analogy to computers to describe what cognitive psychology

is about:

Computers take a symbolic input, recode it, make decisions about the recoded input,

make new expressions from it, store some or all of the input, and give back a

symbolic output. By analogy that is what most cognitive psychology is about. It is

about how people take in information, how they recode and remember it, how they

make decisions, how they transform their internal knowledge states, and how they

translate states into behavioral outputs. [154, p. 99]

Parkin [207] cautions that “one must be careful about how far this analogy can be taken” [207,

p. 12]. Nonetheless, he states that this analogy is still good enough to sketch out what cognitive

psychology is about. For instance, he agrees that the central processing unit of a computer,

which combines numbers using specific operations to obtain a result, can be compared to the

identical part of the human mind doing the same thing. The same is true for information storage

on hard drives for long-term purposes or RAM as an information buffer. The same modules can

be found in the human mind as parts of information processing. But, says Parkin, the analogy

ends at the point of information representation. The computer represents all information using

a binary system, which is not true for the human mind.

In order to understand the role of cognitive psychology in the context of this work, it is useful

at this point to revisit the main goal of this work: the formal modeling of human-computer

interfaces using a psychological approach to model human cognition. The basic idea is motivated

by research results from the investigation of adaptive user interfaces, which will be examined

in an upcoming section. Adaptive user interfaces seek to enhance the usability, efficiency and

effectiveness of user interfaces by adapting them to users’ abilities and approaches to solving

10



2.2. Cognitive Psychology and Modeling

System

+Action

User Interface

Task Model &
Solving Strategy

System Model

Knowledge &
Experience

Perception &
Interpretation

Execution

Task & Goal

Matching &
Decision Making

Mental 
Model

Human 
Cognition

Figure 2.1.: Model of the human cognition for task solving—a brief overview

a given task. In other words, adaptive user interfaces seek to adapt to the cognitive workflow

of users who are solving a given task by using a certain tool. Figure 2.1 shows a model of

human cognition, providing a deeper understanding of what is meant by the cognitive workflow

of information processing and task solving.

Nevertheless, this overview addresses only a few aspects of research into human cognition,

focusing on the concept of mental models, but relating the computer analogy quoted above

to human cognition in specific ways intended to support the formalization introduced in the

following chapters.

The concept of mental models seems to be a good point of connection between cognitive

psychology and research into adaptive user interfaces. Thus, the structure and occurrence of

mental models, which represent the tools and knowledge an individual uses to solve a given

task, are highly relevant to the process of adapting user interfaces. A mental model represents

the task and the strategy for solving the task using a computer or a machine as tool. The

cognitive representation of the function of this tool is a further part of a mental model. An

introductory overview of the term mental model and related research in the context of HCI is

given by Rasmussen [227] and in the context of human factors by Wilson and Rutherford [298].

Various psychological works introduced various views, approaches and concepts due to mental

models. The definition given by Rouse and Morris [239] deals with the context of HCI:

...[A mental model is a] mechanism whereby humans are able to generate descriptions

of system purpose and form, explanations of system functioning and observed system

states, and prediction of future system states. [239]

In this sense, a mental model is essential for human cognition to interact with a machine.

Thus, a mental model describes how to interpret and how to ‘understand’ the machine or its

11



2. Human-Computer Interaction

representation in the user interface such that a human can understand the state of the machine,

know how it actually works and, in the end, predict future system behavior based on this know-

ledge. Additionally, the user should be able to affect the state of the machine in order to achieve

any new state that might be necessary to perform given tasks.

A mental model can also be seen as a massive repository of long-term memory as described by

Carroll and Olson [41] and by Kluwe and Haider [136]. Parkin [207], Anderson [5] and Eysenck

[87] offer more detailed information concerning models for organization of human memory as

part of human cognition. In general, the term long-term memory can be described as a type

of memory that offers learned concepts and experience as the basis for processes like decision

making or interpretation in human cognition. Tulving [269] described long-term memory by

dividing it into two parts: (a) episodic memory, which stores discrete personal events, for

instance, what we had for dinner, and (b) semantic memory, which holds knowledge concerning

language and the world, for instance, the fact that rain is wet. Furthermore, he [270] adds to

this list procedural memory, which holds knowledge about how to do things, for instance, motor

skills, like moving one’s legs and arms or grasping an object.

As stated before, the mental model is one part of the whole cognitive process. Problems in this

process can occur if a mental model is erroneous. An erroneous mental model can be described

as an incorrect image of the reality. Errors will occur in user interaction with a machine that

is based on an incorrect model. In conclusion, if errors occur, an erroneous mental model may

be the reason. Mental models are generally constructed by practicing and training, and in this

process, incorrect assumptions to the model can be manifested, as described by Kluwe [136].

A further problem arises if the user interface with which the human user is interacting is

not completely applicable to his mental model. For example, the user expects a value to be

changed over time (part of the mental model) but its representation is only a static number

not visualizing its changing characteristic. The user’s mental model of the machine might be

correct, but if the user interface does not represent it in a specific and expected way, the user

will have trouble matching the perceived information to his mental model and will start to

generate wrong predictions concerning the current and future system state, which will result in

errors in interaction and in controlling the machine. Here, an adaptive user interface will try

to customize the presentation of the machine implemented in the user interface to the specific

user’s mental model.

Mental models are often described as sets of cues that in turn describe well-defined parts

of a bigger work flow or process, such as described by Ericsson and Kintsch [85]. Thus, in

this work the behavior of a user interface—also called interaction logic—is modeled as a set of

interaction processes that can be directly matched to the cues in the user’s mental model. This

is a first attempt to bridge the gap between formal modeling in user interface development and

the research on mental models through the use of formal methods.

A further way to describe mental models was introduced by Rauterberg, Schluep, and Fjeld

[228]. They describe the use of Petri nets to represent mental models in the context of automatic

determination of mental models from log files. They distinguish four types of models with

differing complexity, where each can differentiated between five different levels in a mental

model and include the system and the feedback from the system as mental representation.

They developed this method of representing mental models when studying actual interaction of

experts with a system to solve a given task, thus determining the cognitive complexity of using

the system and interface. This approach to determining cognitive models of human users seems

a promising way to provide formal modeling and validation for user interfaces.

12



2.3. Human Error

Another approach to formal description of cognitive models based on Petri nets was intro-

duced by Werther [281]. He uses colored Petri nets to model the cognitive memory system

as resource system defining the boundedness of human information processing. He extends

the single modeling aspect by applying formal verification methods of Petri nets to models of

human cognition. This ends up in statements concerning errors in such models, as well as

assessments on occurring problems in interaction. A holistic approach based on the cognitive

architecture introduced by Rasmussen [226] has been described in various works of Gamrad

and Söffker [95, 96, 256]. Here, a concept called Situation-Operator-Modeling approach (SOM)

describes the whole concept of knowledge and information processing of human cognition, which

is transfered to colored Petri nets for verification and machine-based learning. This concept

has been successfully used in various application scenarios like drive assistance [93] and arrival

management in air traffic control [192].

2.3. Human Error

Preventing human error during interaction with a machine is one main motivation for inter-

disciplinary research in psychology and HCI. To reduce errors in interaction, the structure and

mechanisms of human errors have to be understood before starting to create systems that will

prevent them. To this end, many researchers have investigated the occurrence of and reasons

for human errors in interaction with machines or other (more general) systems. The following

overview of research into human error, while by no means complete, gives a brief introduction

to the main aspects and concepts in this field of cognitive psychology.

Endsley [83] introduces the framework modeling situation awareness that can be seen as

a specified model based on the one shown in Figure 2.1. Situation awareness describes the

distribution of a person’s attention in a certain situation at a given point in time, as well as

his or her understanding of the current activities and expectations as to how the situation

will progress. This definition of the term situation awareness is Endsley’s attempt to integrate

various cognitive activities in handling complex and dynamic situations, starting with sense-

based perception (visual or haptic perception, etc.) and including processes for decision making

and problem solving [135]. Endsley defines three processes that establish situation awareness

shown in Figure 2.2: “... the (1) perception (noticing) of the elements in the environment within

a volume of time and space, the (2) comprehension of their meaning, and the (3) projection of

their status in the near future” [84, p. 15].

In Endsley’s framework modeling situation awareness, a classification of human errors can be

specified due to [82] and [84]. In these publications, Endsley differentiates three levels of error

in the context of the framework for situation awareness: errors in perception of the situation

(level 1), errors in interpretation and understanding of the situation (level 2) and errors in the

projection of future states (level 3).

Other works, like that of Hollnagel [113], describe other approaches to the topic of human

error. Hollnagel introduces a framework called the Cognitive Reliability and Error Analysis

Method (CREAM). CREAM is another more specific approach than that shown in Figure 2.1

to performance and error prediction, for instance, in controlling a nuclear power plant [114]. It

classifies errors by separating them into genotypes and phenotypes. The genotype describes the

possible cause of an erroneous action, whereas the phenotype describes a concrete occurrence

of an erroneous action.

Concerning errors in complex decision making, Wickens and Hollands [292], as well as Dörner

13



2. Human-Computer Interaction

● System Capability
● Interface Design
● Stress and Workload
● Complexity
● Automation

SITUATION AWARENESS

Perception
of Elements
in Current
Situation
Level 1

Comprehension
of Current
Situation

Level 2

Projection
of Future
Status

Level 3

Decision
Performance

of 
Actions

● Goals and Objectives
● Preconceptions
  (Expectations)

Information Processing
Mechanisms

Long Term
Memory

Automaticity

● Abilities
● Experience
● Training

State of the
Environment

Task/System Factors

Individual Factors

Figure 2.2.: Framework of Situation Awareness (Endsley [83])

[67] describe the problem of saliency bias (Dörner’s Lautstärkeprinzip [67]). This saliency bias

describes the problem of stimuli that direct a person’s attention to salient values that are less

important than they appear. Especially in situations where the person is pressed for time, this

bias can have a great influence on the occurrence of human error.

These are only a few basic approaches to the classification of errors and investigation of

the cognitive reasons occurring in the context of the cognitive information processing model

presented in Figure 2.1. In the 1980s, authors such as Rasmussen [225] and Nowak and Carr

[189] sought to identify general classification concepts for human error. More recent authors

have examined the topic in more specific contexts, such as medical care [66, 140] and aviation

[56, 251].

Many recent studies have examined human error in aviation. An ergonomic perspective,

for instance, was described by Edwards [69], who introduced the SHEL model differentiating

between four components: S stands for the non-material part of the system to be controlled,

also called software; H represents the hardware of that system, also involving the user interface

hardware; E stands for the environment in which the further three elements are embedded in

a coincidentally related manner; finally, L stands for liveware and represents the human user

of the system. The relations between these components provide the significant information in

the model. For instance, changing the hardware can also influence the interaction between

user and system in a positive or negative way. This type of model has been used by accident

investigators to identify human error in such situations (cf. [293, p. 29]). Other perspectives

(e.g., behavioral, aeromedical, psychosocial, or organizational) and further reading on human

error in aviation can be found in the work of Wiegmann and Shappell [293].

Independent of how human error is defined or how the models and frameworks surrounding

this topic are constructed, most approaches lack a foundation in formal HCI research. This

14



2.4. The Role of Automation

work will demonstrate the great value of incorporating human error research into the creation,

adaption and reconfiguration of user interfaces in Chapter 7. By providing formal platforms on

both sides, computer science research into adaptive user interfaces coupled with research into

human error greatly benefits due to the understanding of how human and computer interact

and thus significantly improves that interaction.

2.4. The Role of Automation

In the reconfiguration of user interfaces (cp. Chapter 4.2), automation plays a central role as an

extension of the adaption of user interfaces. Here, automation refers to specific parts of technical

systems that automate certain parts of controlling and monitoring of a system, for instance,

an autopilot. According to Kluwe [135], automation has a great impact on human-computer or

human-machine systems. This impact has been investigated mainly by Parasuraman and his

colleagues [205, 206]. As they have shown, the role of automation can be seen in the four main

functions of HCI and information processing like that given in Figure 2.1:

Information retrieval How information about the system’s state, performance, and

achievement of goals is acquired (‘Perception & Interpretation’ in Figure 2.1).

Information analysis How data is integrated, and how information is evaluated and

used for decision making (‘Plus’ box in Figure 2.1).

Decision and selection of actions Recommendation and selection of actions based on

system selection and operator information (‘Matching & Decision Making’ in Figure 2.1).

Execution of actions by the operator and the system (‘Action’ and ‘Execution’ in Figure

2.1).

Automation can be applied to any of these functions depending on the level of control needed

(high vs. low risk situations) and the character of the function itself. This kind of automation

would be implemented in the ‘User Interface and System’ box in Figure 2.1. Parasuraman,

Sheridan and Wickens [206] describe the role of automation and its functions in the context of

air traffic control introduced above. High automation can be applied for information retrieval;

in contrast, low automation should be applied for decision making and selection of actions in

high risk situations in order to increase the operator’s freedom of action.

There are further problems associated with automation. Wickens [291] identified three major

problems:

1. UNDERTRUST: Malfunctions, for instance unwarranted alarms, lead to a lost of trust

in the automation of the controlled system. This undertrust can lead to erroneous inter-

vention by the operator into automated parts of the system.

2. OVERTRUST: Too high a degree of trust (overtrust) in automation can lead to such

problems as a failure on the part of the operator to identify system malfunctions.

3. OOTLUF: The acronym OOTLUF describes a problem arising from automatically gener-

ated alternatives to actions applied to the system. It has been shown that action sequences

generated by the operator can be better remembered than automatically generated se-

quences. In the case of processes that were previously automated, the operator needs

15



2. Human-Computer Interaction

more time to generate the correct decisions and apply them to the system. This situation

can also be described as a reentering of the operator into the control loop. Therefore,

OOTLUF stands for “out of the loop unfamiliarity”.

In the context of automation in aviation, a further term should be mentioned: automation

surprises. This term refers to bad outcomes resulting from poorly implemented automation.

Sarter, Woods, and Billings [240, 241, 299] describe problems posed by automation for avia-

tion purposes and the potential for bad outcomes in high risk situations from an engineering

perspective.

Similarly, automation resulting from adaption or from the reconfiguration of user interfaces

also has to be considered in the context of automation as introduced above. Problems arising

from the reconfiguration of parts of the user interface need to be identified in an early stage

or avoided altogether by applying findings like those described by Parasuraman. Thus, an

environment that embeds the interaction logic of a user interface with formal reconfiguration

or adaption offers a handy formal approach to the problem of automation.

2.5. Task and Dialog Modeling

The last box in Figure 2.1 has not yet been discussed in further detail. This is the ‘Task Model

& Solving Strategy’ box. Closely related to the psychological approaches in HCI research intro-

duced above are the formal and semi-formal modeling approaches to dialog and task modeling

familiar from classical HCI research. The main motivation here is the modeling of a single, more

a general ‘standard’ user in the context of solving tasks on the basis of hierarchical structures.

The outcome of this modeling strategy is a user interface that is customized to the user’s needs

concerning the strategy for solving given tasks and thereby increasing the effectiveness of using

the user interface. Various models and approaches were developed in the past on different levels

of task-planning strategies. Dix, Finlay, Abowd, and Beale [64] separate these levels into the

following three layers:

1. hierarchical representation of the user’s task and goal structure,

2. linguistic and grammatical models, and

3. physical and device-level models.

Two well-known examples of hierarchical task models based on mental processing are GOMS

and CCT. GOMS, developed by Card, Moran and Newell [38], is a modeling method based on

four different concepts: (G)oals refers to the goals the user tries to achieve using an interactive

system where those goals simultaneously represent points in the user’s memory; (O)perators

refers to the elementary actions the user can or has to perform on the system, for instance,

pressing a certain key; (M)ethods are rules governing how goals can be split into subgoals;

(S)elections are rules for selecting a certain method, depending on the user and the context, for

instance, the current state of the system.

The second approach for using basic psychological research in mental processing and task

solving is the (C)ognitive (C)omplexity (T)heory (CCT) introduced by Kieras and Polson [134].

CCT ‘inherits’ GOMS’ goal decomposition concept and enriches it by introducing a system

model to enlarge the power of prediction. In contrast to GOMS, CCT builds on production

16



2.5. Task and Dialog Modeling

rules defining a GOMS-like structure of task decomposition. Production rules in CCT are based

on if-clauses offering else-branches.

Based on the idea of using production systems, linguistic and grammatical models are further

examples of task hierarchy models. The task action grammar developed by Payne and Green

[214] is one well-known example of a linguistic approach.

The (K)eystroke (L)evel (M)odel, KLM, is a physical or a device-level model and can be

described as a simplified and practical instance of the GOMS family [184]. KLM was developed

by Card, Moran and Newell [39] and describes elementary operations that are paired with an

execution time. The execution sequence of these elementary operations that results from a task

model, for instance, one using GOMS, can be used to predict (time) costs in interaction.

All these early approaches were the first to combine psychological research into human cog-

nition with computer science research into HCI. In their book The Psychology of Human-

Computer Interaction, Card, Moran and Newell [40] brought the two worlds together as one

part of computer science. Many other groups also worked on involving psychological concepts

in the modeling of human-computer interfaces, including Anderson et al. [6], Robertson and

Black [236], Norman [188], and Young [302].

Besides task modeling and analysis, dialog modeling methods play an important role in HCI

research. Here, a dialog refers to the exchange of information between human and computer

in contrast to task-modeling techniques, which refer to decomposition and problem-solving

strategies. This type of model is a departure from the context of cognitively motivated models

such as GOMS and CCT. Dialog models in the sense presented in this section are not directly

based on cognitive processes but are inspired by them.

The first approach to modeling dialogs between human and computer was the use of state

transition networks, which were identified in the late 1960s [186, 208]. Here, a state represents

the state of the interactive system, and the transition represents the user’s input. This ap-

proach has one disadvantage: Every state that could be reached in a dialog had to be modeled

explicitly, resulting in a state space explosion. Because of this, alternative modeling languages

were developed. One example of an alternative language is Petri nets, where states are repre-

sented as markings in a net and not as explicit structures of it. Petri nets were used to specify

single- [202] and multi-user system dialogs [203]. Later works by Bastide and Palanque [19, 20]

describe an approach to dialog modeling that uses visual languages based on Petri nets and

embedded in an object-oriented development process. Other approaches to dialog modeling

are combining modeling languages like UML [196] with Petri net-based formalisms [80]. Fur-

thermore, Janssen, Weisbecker and Ziegler [122] introduced an extension of classical Petri nets

for dialog modeling called dialog nets. In addition to Petri net-based approaches, grammar-

based and production system-based approaches were also developed and used, for example, the

propositional production system (PPS) developed by Olsen [194].

The main problem in all these approaches is the lack between modeling and implementation of

a user interface. A contrary example is the Microsoft R© tool Expression Blend R© for developing

user interfaces [169]. This software is an integrated development tool that combines visual

modeling of the user interface with a graph-based modeling component for creating the dialog

structure of the user interface. Thus, a closer integration through formalization of modeling

and implementation can help in creating a user interface and refining it through methods like

reconfiguration as shown by Microsoft’s Expression Blend on a visual and semi-formal level.

A formal modeling approach to interaction and dialogs is developed by Navarre et al. [182]

introducing a modeling language called ICO. This language is pretty similar to the Petri net-

17



2. Human-Computer Interaction

based modeling language that is subject of investigation in this dissertation. Still, the new

approach in this dissertation differs in various aspects from ICO that mainly extends the dis-

sertation of Palanque [201]. The first aspect is the modeling approach the group of Palanque

follows. They use a Petri net based formalism, which is extended by introducing programming

code as inscriptions to a Petri net-based formalism. This ends up in the problem that the

modeler needs programming skill. Furthermore, Petri nets are not intuitive to use for modeling

visually. Another aspect is the attended implementation in this dissertation, which is planned

as a framework for modeling, simulation and reconfiguration of user interfaces. PetShop2 [181]

as implementation for modeling ICO only offers the simulation of the user interface without

direct connection to a system or a formal implementation of reconfiguration. Still, the imple-

mentation is executable but the code is not open and thereby makes it impossible to compare

other approaches to PetShop. Last but not least the group around Palanque developing ICO

did not yet publicized evaluation studies concerning the question in how far formal modeling

does influence HCI, what should be the main goal for modeling in HCI.

2.6. Adaptive User Interfaces

In the middle of the 1990s, HCI research began trying to incorporate results from artificial

intelligence research in order to build intelligent user interfaces. This led to the first research

into adaptive user interfaces. The idea in this field is to create a model of the user such that

adaptions for the user interface can be derived by using that model. The user model in this case

represents the user’s cognitive abilities and his principles of operation, and therefore functions

as an information basis for adapting the user interface to the user’s abilities. The result of using

the adapted user interface is a more efficient and effective interaction between the user and the

system.

Before going into detail, the terms adaptive user interface and intelligent user interface should

be properly defined. These terms will be defined by using one person, one machine, one task

scenarios. This type of scenario subsumes the case of one user who tries to solve one task

by using one user interface. (The single-user scenario will be sufficient for the purposes of

definition. Later, the formal modeling of multi-user interaction will be addressed, as a multi-

user, multi-interface scenario, which is the focus of current research.) Dietrich et al. [62] explain

an adaptive user interface as follows:

[Adaptive user interfaces] are designed to tailor a system’s interactive behavior with

consideration of both individual needs of human users and altering conditions within

an application environment. [62, p. 13]

Dietrich and his colleagues address two major aspects of adaptive user interfaces: (a) the

human user and (b) the environment. Both have individual needs and altering conditions

depending on the interactive behavior of the system they must interact with. The behavior

of the user interface must be adapted to reflect these needs and conditions. Langley, whose

primary research focus is machine learning [156], provides a further definition of an adaptive

user interface [158]. He goes a step further by claiming not only that a user interface should be

tailored to meet those needs and conditions but that it should actually improve its functionality:

2http://www.irit.fr/recherches/ICS/softwares/petshop/

18



2.6. Adaptive User Interfaces

An adaptive user interface is an interactive software artifact that improves its ability

to interact with a user based on partial experience with that user. [158, p. 358]

Here, Langley defines an adaptive user interface in reference to its ability to adapt to the

user based on the experience it gains through interacting with that user. The controlled system

is not mentioned directly but is implicitly understood as being controlled by the user through

the user interface. Both definitions focus on the adaption of the user interface to the user. The

term intelligent user interface goes a step further, as can be seen in this definition by Maybury:

Intelligent user interfaces . . . are human-machine interfaces that aim to improve the

efficiency, effectiveness, and naturalness of human-machine interaction by represent-

ing, reasoning, and acting on models of the user, domain, task, discourse, and media

(e.g., graphics, natural language, gestures). [166, p. 2]

In this sense, intelligent user interfaces not only involve the user—or a model of the user—

but also information about “the domain, task, discourse, and media”. Furthermore, Maybury

defines the difference between adaptive and intelligent user interfaces, stating that an intelligent

interface not only adapts itself to models of the user but also carries out “reasoning” about

those models. In the context of this dissertation, developing a formal basis for adapting a user

interface to a user is the primary research interest. Therefore, Langley’s definition covers all

the subjects of investigation necessary for this work: (a) the user and (b) the user interface as

a software artifact (extended by a formal basis). As will be shown below, a central part of the

user interface will be a formal model of interaction logic describing an executable representation

of data processing of input information and data inherited from the system to be controlled.

From a modeled system, further important information can be derived, which will be part of

a future investigation into error-based reconfiguration of user interfaces where errors in such

aspects as interaction can be derived from unwanted or critical system states.

Nevertheless, both types of interfaces use a model of the user in a computer-readable form.

From the perspective of cognitive psychology, a formal model of an architecture, like the one

shown in Figure 2.1, would be the best solution. Still, in research on adaptive user interface,

various approaches have been developed, for instance, by Langley. He publicized works on user

modeling from the perspective of machine learning. In [157], he gives an overview of the use of

machine learning concepts and approaches in adaptive user interfaces and later [158] describes

the concrete use of machine learning for user modeling in adaptive interfaces.

In the late 1990s, besides adaptive user interfaces and user modeling, terms like software

agents and intelligent agents arose to refer to systems that adapt to their users. Jameson [121]

describes his work with user-adaptive systems and agents, also extending concepts of adaption

to a broader range of research areas and interests.

A third approach to user modeling has been described by Razmerita et al. [229]. They present

an ontology-based user modeling architecture with its origins in the IMS LIP specifications from

semantic web technologies [47]. Further information is given by Fischer [91], in which he gives

an overview of user modeling in HCI research. Both approaches, agent- and ontology-based,

are the result of subsequent research based on works like Langley’s. Especially the agent-based

approach seeks to create multi-user models addressing systems that are applied even outside of

the one user, one task, one system scenario.

The second aspect of adaptive user interfaces is the user interface itself or, more specifically,

its creation, generation and adaption, which will be dealt with in the next section in the context

19



2. Human-Computer Interaction

of reconfiguration. As many authors have pointed out, the process of developing user interfaces

is similar to software engineering processes. The process of creating a user interface begins

with a design process that is, for instance, supported by task and dialog modeling, as well as

user modeling techniques. However, user interface creation as part of the software modeling

process is not explicitly of further interest in this work. Further information on this subject give

Dix et al. [64], who present a comprehensive survey of HCI; Shneiderman and Plaisant [254]

and Raskin’s slightly more recent book [224] as psychology-based approaches to user interface

design; and Tidwell’s collection of interaction patterns [267], as well as Borcher’s pattern-based

approach to interaction design [28].

This work focuses on concepts and approaches to automatic or more general computer- or

machine-driven creation of user interfaces on the basis of formally or semi-formally described

approaches. One well-known example of automatic generation and creation of user interfaces is

described by Paternò [209, 210]. Paternò’s approach is mainly based on task models, like the

ConcurTaskTrees introduced by Puerta [223], which can be seen as extensions to the dialog and

task models described above. Here, an initial attempt to generate user interfaces from cognitive

models tries to fill the gap between cognitive modeling based on a connection between task-

and dialog-modeling techniques and the concrete implementation of user interfaces. The use of

model-based approaches is of particular interest in nomadic applications [173]. A nomadic ap-

plication “. . . adapts to mobility, . . . but retain the richness and control of desktop applications”

[193, p. 3]. Well-known examples are mini-applications for mobile phones. Paternò and Santoro

[211] describe a more general approach to using descriptions of model-based user interfaces to

promote the use of one model of a user interface on various platforms, even in the context of

model-based and automatic generation of user interfaces.

Janssen, Weisbecker and Ziegler [122] describe the generation of user interfaces from data

models paired with a dialog model given as dialog net specification. These are an example of

the necessity of a well-defined formal approach to modeling user interfaces as a counterpart to

formal modeling methods on a higher and more abstract level. Offering formal methods on both

levels of modeling helps to create highly usable interfaces. A further example of modeling on

an abstract level is is given by Eisenstein and Puerta, who describe automated user-interface

design using an adaptive algorithm [79]. These approaches motivated adaption mainly from the

perspective of the user, who uses the interface to control a machine. Another, newer perspective

is to develop a machine that offers services to the user as an agent. This new perspective on

user interface creation and adaption is a very interesting new facet of HCI research, especially

in the context of formal modeling and reconfiguration of user interfaces. Therefore, this work

can be seen as an example of the close relationship between automated user-interface creation

and concepts of adaption as approaches to user interface creation as a continuous process rather

than as an application of a given model to a final and static user interface.

2.7. Reconfiguration

Reconfiguration of user interfaces can be approached from different directions, such as a tool-

driven approach that seeks to develop tool support for various concepts and ideas or to develop

formal models and languages in a given context. A possible approach to the topic of reconfig-

uration of user interfaces is that of extending an existing framework, as shown by Stanciulescu

[260]. He describes how information systems can be made flexible by extending a task model

described in UsiXML [273].

20



2.8. Multimodal and Multi-User Interfaces

Navarre, Palanque and Basnyat developed tool-supported reconfiguration of user interaction

in safety-critical interactive systems [179] based on an architecture they published together

with Ladry [183]. They investigated risk situations in airplane steering to identify possible

reconfigurations of the cockpit’s instruments. The result of this investigation was an expert

dialog model for interaction with the cockpit of an Airbus A 320. The entire study was based

on an architecture for reconfigurable user interfaces described in a Petri net-based modeling

language extended by a reconfiguration manager.

Rosis, Pizzutilo and Berardina [55] describe an approach for synthesizing user interfaces

from formally described interaction based on Petri nets. They describe a tool support for

modeling user interfaces with the paired formalism of Petri nets and the keystroke level model

developed by Card, Moran and Newell [39] called XDM (context-sensitive dialog modeling).

This combination also introduces a validation strategy into the modeling process.

Reconfiguration is also a well-known term in software engineering and can be described as

the process of making changes to software at run-time as described in [276]. Here, Warren, Sun,

Krishnamohan and Weerasinghe introduce a framework called OpenRec that offers an open

reconfiguration management infrastructure. This system has been extended by a verification

mechanism for deciding whether a suggested reconfiguration should be applied to a system or

not. This verification mechanism is based on a formal modeling language called ALLOY, which

offers a formal notation to specify systems and associated constraints based on first order logic.

Another example of reconfiguration in software engineering is that of Wermelinger, Lopes and

Fiadeiro [280], who define a high-level language to describe architectures for applying changes to

a configuration, such as adding, removing or substituting components. Also, Cansado, Canal,

Salaün and Cubo [36] describe a formal framework for unifying the behavioral adaption and

structural reconfiguration of software components.

These examples show the close relationship between reconfiguration in various fields of re-

search and formal methods, including formal verification approaches. This forms the basis for

developing a formal modeling language based on a well-known formalism offering a broad palette

of tools and theoretical background. Such a formal approach also makes sense in the context

of computer-based or intelligent adaption of user interfaces. A formal modeling method results

in access to all the aspects of reconfiguration, user modeling and cognitive research described

above. Such a technology has not been investigated in earlier research, which is why it seems

necessary to do now.

2.8. Multimodal and Multi-User Interfaces

Up to now, this discussion has introduced related studies that form the basis for the concepts

of formalism described in the sections below. Still, this survey would be incomplete without

taking into consideration future work that will focus on modeling formal user interfaces and

reconfiguration in multi-modal and multi-user scenarios. Such an extension would widen the

one-dimensional view presented here (the one user, one task, one system, unimodal user inter-

face) to embrace a multi-dimensional approach. Another goal is to extend the nomenclature

concerning studies in these newer research fields. Nomenclature, however, changes over time

in specific research communities and areas. This is also true for HCI research. In the above

sections, the focus has been mainly on older studies that form the basis for current research but

are not completely up to date in HCI literature, especially related to newer work on multi-user

and multimodal user interfaces. Thus, the best indicator of up-to-date nomenclature is pub-

21



2. Human-Computer Interaction

lished in studies on multimodal and multi-user interaction because these research areas have

been developed in the time period since 1995.

Before starting to describe the various facets of multimodal and multi-user interface research,

the terms multimodal and multi-user should be defined more clearly. Oviatt [200] identifies and

substantiates ten myths of multimodality and gives a brief explanation of a multimodal system:

Multimodal systems process combined natural input modes—such as speech, pen,

touch, hand gestures, eye gaze, and head and body movements—in a coordinated

manner with multimedia system output. [200, p. 74]

Thus, multimodality addresses a combination of various interaction channels available to

a human user, like the haptic channel for gestures and pen interaction, vision and acoustics

for perception of multimedia output, and the aural channel for speech input. These channels

form the basis of various research interests that concentrate on the investigation of one specific

modality and how they combine with others. Some examples can be found in investigations

into gesture-based interaction. Ou et al. [199] present a system that integrates gesture-based

input in live video for supporting physical tasks in a collaborative way. In medical contexts, for

example, gesture recognition enriches the user’s potential to communicate with the system. The

main aim is to offer more natural and effective communication between user and machine. A

further example of gesture-based multimodal interaction comes from research on collaborative

modeling, which also addresses multi-user aspects. Zurita, Baloian and Bytelman [304] describe

a tool called MCPresenter, which can be used for mobile modeling in the field supporting

gesture-based interaction to enrich communication on small mobile devices.

In the context of mobile applications and devices, other studies use mobile devices to support

multimodal interaction in order to provide interaction with complex, ontological data or even,

more generally, for data browsing. For instance, Sonntag et al. [258] introduce a system called

SmartWeb for entering a rich selection of Web-based information services in the context of

semantic web technologies. Williamson, Murray-Smith and Hughes [297] describe an interface

called Shoogle for multimodal data browsing on mobile devices. The reason for often using mul-

timodality on mobile devices is the restricted availability of classical input and output options;

often there is no physical keyboard and the display is very small and has a low resolution.

Another well-known application area for multimodal interaction techniques are virtual or

augmented reality systems. Here, the main goal in developing interaction techniques is to

approximate real life or to make interaction feel real like it has been described by Bowman et

al. [31], as well as by Hand [105]. An example of gesture-based interaction in virtual reality

environments is described by Latoschik [159]. A more general approach is described by Kaiser

et al. [130], who use a 3D multimodal interaction for immersive augmented and virtual reality

environments.

Multimodality is also the subject of investigation in formal interaction modeling. For instance,

Navarre and his colleagues [180] introduced a dialog- modeling framework for modeling multi-

modal interaction and dialogs for virtual reality applications based on Petri net-based formalism.

Another formalism based on Petri nets is described by Latoschik [160]. Katsurada, Nakamura,

Yamada, and Nitta [132] introduce an XML-based approach for modeling multimodal systems

called XISL.

Reeves et al. [230] propose that “multimodal interfaces should adapt to the need and abilities

of different users, as well as different contexts of use. Dynamic adaptivity enables the interface

to degrade gracefully by leveraging complementary and supplementary modalities according to

22



2.8. Multimodal and Multi-User Interfaces

changes in task and context.” These statements can be seen as further basis for this work in the

adaption of user interfaces and as an indication of its possible extension to multimodality. Such

extensions to the one user, one task, one interface scenario would take the first step towards

more complex interaction scenarios.

Multimodality is often used as one conceptual part in the development of computer-supported

learning systems [264]. Nevertheless, an important extension of computer-supported learning

systems is support for cooperation or collaboration in learning (CSCL), like the CoBo system

for learning cryptographic protocols based on cooperation developed by Baloian and the author

of this dissertation [18, 283]. Cooperative and collaborative systems—not only in the context

of learning systems—are also classical multi-user systems. Older studies by Patterson et al.

[212] and by Benteley et al. [23] present architectures for computer supported cooperative work

(CSCW).

More recent studies tend to focus on aspects of hardware components that offer multi-user

interaction. For instance, Simon and Scholz [255] introduce an idea for projecting different

image elements on a large-scale screen from multiple viewpoints to combine them in a single

stereoscopic image. The goal is to enable multi-user interaction and collaboration in a virtual

reality scenario. Cao, Forlines and Balakrishnan [37] took a one-user approach to handheld

projector interaction and extended it to a multi-user scenario. The idea of handheld projector

interaction is to extend the display and interaction space by projecting information on the

physical environment. A common example of multi-user interaction supported by hardware

based on the use of multi-touch tables is Microsoft’s Surface R©3. Another example of multi-user

interaction using a multi-touch table is provided by Dohse, et al. [65]. They describe the use of

a rear-projection, multi-touch tabletop enhanced by hand tracking. There are other examples

using multi-touch tables as well, like those offered by Peltonen et al. [215] and Wigdor et al.

[294], who both mainly describe empirical studies concerning the use of multi-touch hardware.

One last study that should be mentioned is [63], in which Dini, Paternò and Santoro describe

the use of handheld devices in a multi-user interaction scenario for improving museum visits

through games. Its main goal is to enhance the learning experience by introducing game play

to the museum visit.

Formal modeling and analysis approaches are not very widely spread and investigated for

multi-user interaction and interfaces as is the case for single-user interaction. Only a few exam-

ples can be found from the 1990s onwards, and these were developed in the context of CSCW

without any attempt to generalize them for general-purpose multi-user interaction. The study

by Bentley et al. [23] described above is one example. Calvary, Coutaz and Nigay [35] present

a generic software model for CSCW applications based on a modeling language called PAC*,

which is based on approaches like MVC [99], PAC [50], or ALV [111]. This language describes

mainly dialog models in a multi-user context using a graph-like visual representation that mod-

els the interaction between agents representing different components of the system. An example

of analysis of multi-user interaction can be found in context of CSCL research. Mühlenbrock

and Hoppe [175] describe a system that provides micro-analysis of the collaboration process.

As can be seen, formalization of multi-user interaction paired with validation, verification and

analysis techniques has been the subject of rather less investigation. Still, many application

scenarios and systems are multi-user scenarios and are sometimes more complex concerning such

aspects as the responsibilities of the users or the cognitive state. This view of user interface

3http://www.microsoft.com/surface/en/us/default.aspx

23



2. Human-Computer Interaction

modeling will be targeted in future work.

Upcoming chapters will introduce a formal approach to modeling user interfaces to define

a general formal basis for investigating interaction and analysis to close the gap between user

interface modeling and implementation.

24



3. Formal Modeling of User Interfaces

Formal modeling of user interfaces is one central aspect of this study. Nevertheless, every sci-

entific study benefits from a solid nomenclature to withstand any possible misunderstandings

and erroneous cross references to other definitions or identical terms in other scientific disci-

plines (Section 3.1). Based on this nomenclature, Section 3.2 describes a basic three-layered

architecture for modeling of user interfaces. Next, Section 3.3 introduces a graph-based formal

modeling language and its visual representation, which is especially useful for modeling the

interaction logic of user interfaces. This formal model is then transformed into reference nets,

a special type of Petri nets providing formal semantics for the graph-based modeling approach

and an extensive set of tools for verification and validation (Section 3.4). Section 3.5 introduces

various extensions to the formal modeling approach. Finally, Section 3.6 examines a group of

XML-based description languages that can be used to model the physical representation of a

user interface and specify its outward appearance. Here, a method for modeling interaction

elements, such as buttons, will also be described; like the approach of modeling formal interac-

tion logic, this method also uses formal description languages. The chapter will conclude with

a summary of the concepts that have been introduced and give a short preview of the next

chapter (Section 3.7).

3.1. Nomenclature

To avoid misunderstanding or miscomprehension, it is important to define the relevant nomen-

clature for the upcoming descriptions and specifications. It is not the aim of this section to give

a universal nomenclature for all research areas and any possible application scenario in the con-

text of HCI. The goal is to provide a basic nomenclature as background for this thesis dealing

with the modeling of interfaces for the interaction of human users with technical machines and

systems.

For example, the term system is of particular relevance to this study, but is an unclear term

in science, defined in various ways in various fields. Here, it will be sufficient to examine several

ideas of what the term system refers to without attempting to arrive at a universally valid

definition. This will be also true for several other terms that have well established meanings in

other research fields. Some additional terms instead are more or less new to the field of formal

user interface modeling and will need to be newly defined.

System

The term system has been defined differently in various areas of research. For instance, Casti

[42] introduces a definition of system from the perspective of engineering. Here, he is interested

in defining the term according to system theory. He identifies five central questions or problem

categories to be covered by system theory:

1. Realization-Identification

25



3. Formal Modeling of User Interfaces

2. Reachability-Controllability

3. Observability-Reconstructibility

4. Stability-Bifurcation

5. Optimality of a system

The first category deals mainly with the problem of how to realize or characterize a sys-

tem. Here, Casti characterizes a system as a “construction of a state-variable representation

(internal model) for given input-output data (external model).” He continues by describing

the underlying idea: “the state-variable model provides an explanation of the observed data,

since the connections and data paths from the input to the output are explicitly exhibited.”

He concludes that “the state-variable model represents the internal workings of the black box

called the system” [42, p. 10].

After identifying a way to describe the internal model of a system, for instance, using dif-

ferential equations, the issue of what properties this model possesses in interaction with the

outside world is of interest. One major property is the system’s ability to reach other states

from its initial state, where reachability involves “the initial state x0, the terminal state xT ,

the class of admissible inputs, and the time period during which the transfer x0 → xT is to

take place” [42, p.12]. Closely related to the question of reachability is that of observability

and reconstructibility. Casti states that “the intuitive content of the observability problem is

that of identifying the precise amount of information about the system state that is contained

in the measured system output” [42, p. 13]. Thus, observability of a system defines the extent

to which the system’s behavior can be reconstructed by taking its measured output data into

account.

The last two major aspects of a system model—stability and optimality—mainly determine

the qualitative aspects of a given model. The stability of a system model describes how the

given model behaves under “perturbations of its defining structure” [42, p. 14]. The optimality

of the model is measured by “superimpos[ing] an explicit criterion function upon the process

and ... minimiz[ing] this performance index” [42, p. 17]. Thus, the optimality of a system is less

oriented to an absolute perspective than its stability, but more oriented to a given performance

measurement.

Still, Casti’s engineering and math-oriented perspective on how a system is specified by

a formally defined model accompanied by certain characteristics is too precise and goes too

deeply into detail for the problem tackled in this work. It is not the aim here to model systems

accurately but to try to model user interfaces to monitor and control such systems. Therefore,

for the purposes of this study, the term system can be defined less specifically. All that is

needed is an idea of what a system could be, how it can be modeled and how it is observed

and controlled externally by a given user interface. Thus, the following statement describes

a meaning of the term system that is closely related to the theory introduced by Luhmann

[165]. There, he introduces the term production (among others) as one aspect of his definition

of what a system is. According to Luhmann, one can refer to production if several but not all

the reasons that are responsible for a certain outcome are under the control of a given system

(translated from the German source [165, p. 40]). This term is closely related to the term

emergence, which will be introduced in the following statement. Other examples of statements

and definitions of the term system can be found in [58] and [108].

26



3.1. Nomenclature

Statement 3.1 (System) A (closed) system is a well-defined part of the universe.

A system consists of elements that interact in a more or less complex way and

are in relationship with each other. Any element and any specific interaction and

relationship is specified by its individual characteristic.

A system can show characteristics that are neither characteristics of elements nor of

interactions and relationships. Such characteristics are called system characteristics

or emergences.

A system is called dynamic if the characteristics of elements, interactions and rela-

tionships change over time.

The system state of a given system is the collection of all characteristics (including

emergences). �

Statement 3.1 touches on various aspects familiar from system theory without trying to be

a universal definition of system. It has a clear technical focus relevant for this work. First of

all, the term element is used to describe things in the universe that cannot be further split

(in a technical or physical sense). Thus, these things called elements can be characterized as

atomic. A second term in the above statement is that of emergent characteristics, here also

called system characteristics. The emergent characteristics of a system are observable on a

macroscopic level. These characteristics cannot be matched directly to the systems’ elements

or to their interactions and relations. These characteristics become visible exclusively through

observation of the whole system.

For instance, a water molecule is a system in the sense that it is constructed of two hydrogen

atoms, one oxygen atom and their electro-physical interactions. The boiling point of water

is more or less 370◦K, depending on barometric pressure. Pressure can be interpreted as

interaction with the (surrounding) universe of the system water molecule. This interaction

with the environment is not covered by statement 3.1, which only refers to closed systems

that do not explicitly interact with their environment. Still, the characteristic of the system

water molecule called boiling temperature is emergent. It cannot be deduced from the boiling

point of hydrogen, which is 20.28◦K, or from that of oxygen, which is 90.2◦K. Moreover, the

electro-physical binding between hydrogen and oxygen does not have a boiling temperature in

this sense. Only through the concurrence of all elements, interactions and relationships can one

determine the boiling temperature of 370◦K. The extent to which emergences result from the

high complexity of interrelationships between the elements of a system might also be discussed,

but that is unnecessary in this context.

A further important aspect of systems to be considered is their connection to and interaction

with the surrounding universe, also denoted as the environment of a system. Therefore, the

terms open and closed system can be defined as differentiated systems that interact with their

environment (open systems) and differentiated systems that do not interact with it (closed sys-

tems). Still, defining the term open system in this way is different to system theory approaches

in engineering such as the one offered by Casti [42]. In this context, open systems are generally

unstructured, in contrast with the formally structured nature of systems as defined by Casti.

Thus, open systems in engineering terminology can be seen more in the role of describing the

environment. In this work, open systems must be defined differently to stay consistent with the

term system as introduced above (Statement 3.1) and to be able to define a system interface

as a specific set of observable and manipulable system characteristics. This definition is needed

27



3. Formal Modeling of User Interfaces

for the further development of the formal modeling approach of user interfaces as the central

research goal of this work, without explicitly excluding any invisible information exchange be-

tween the system and its environment besides the formally defined interaction through the user

interface.

Statement 3.2 (Open System) An open system interacts with its environment.

The environment is able to observe and manipulate the characteristics of the system’s

elements, as well as the elements’ relationships and interactions. Observable and

manipulable characteristics of a system are characteristics that are visible to an

observer who is not part of the system. �

Again, statement 3.2 is very general. It is helpful to define the term more specifically by

summarizing the system’s ability to interact with its environment. As noted above, the ability

to interact with the environment makes it an open system. Therefore, the following definition of

the term system interface refers to a well-defined set of system characteristics and relationships

that are observable and/or manipulable. Representing a system in the context of an environment

in this way simplifies the formal modeling of user interfaces in the upcoming sections.

Definition 3.3 (System Interface) A system interface is a well defined and finite

set of characteristics of the elements of a system and characteristics of the elements’

relationships and interactions that are observable and manipulable by the environ-

ment. System characteristics or emergences can only be part of the system interface

if they are exclusively declared as observable and not manipulable. �

Definition 3.3 seeks to define a compromise between closed systems, which do not interact

with their environments but can be observed from outside, and open systems, which interact

with their environments in unspecific and unpredictable ways. Thus, a system interface makes

it possible to define systems that interrelate with their environments in a well-defined way.

Especially in the context of technical systems, this definition seems a suitable approach for

further descriptions and makes a formalization of interaction possible. Emergences are not

manipulable because they result from the elements and their interactions. Thus, emergences

are only manipulable indirectly through the manipulation of involved system elements and their

relationships.

Figure 3.1 compares open and closed systems in the context of the system interface definition

given above (Definition 3.3). Therefore, a system S1 is represented as set of characteristics

(emergent or non-emergent/observable/manipulable or unobservable) shown as a thick and ver-

tical line or block in Figure 3.1. Those characteristics which are observable or manipulable are

part of the “system block” located above the central axis of the diagram in Figure 3.1. The

block above the central axis is further divided into two parts, one for the manipulable char-

acteristics of the system and one for system characteristics that are only observable. Invisible

characteristics are part of the block below the central axis; thus, they are neither observable

nor manipulable from the environment of the system. The system interface is shown as a white

block in the system block and is interpreted as a well-defined subset of observable and manip-

ulable characteristics (as defined in Definition 3.3). To differentiate open from closed systems,

a dashed vertical line in the middle of the diagram separates the two. S2 is an example of a

closed systems, where the environment is not able to manipulate any characteristics but can still

observe several. A subset of these observable characteristics are part of S2’s system interface

28



3.1. Nomenclature

Open System Closed System

Manipulable
Characteristics

In
vi

si
bl

e
Ch

ar
ac

te
ri

st
ic

s

System S1

System Interface of S1

System S3

System S2

Observable
Characteristics

Figure 3.1.: Comparison between open and closed systems showing the unspecified interaction

of the system with its environment on one side (open system) and the invisible

characteristics of the system on the other (closed system)

and can thus be presented as output on a user interface. Manipulable (and observable) charac-

teristics are not part of the system interface but interact with the environment in a unknown

fashion. It is not necessary to define precisely which other characteristics of a system are ob-

servable and how these are influenced by the environment. In fact, in the context of this work,

only characteristics that are part of the system interface are considered in the user interface

model: the internal structure of the system and other observable or invisible characteristics are

ignored. Still, the definition is flexible enough to introduce such aspects into the focus of future

related work if necessary in order to, for instance, generate more finely granulated user interface

models.

Figure 3.1 further shows a specific example of a system denoted as system S3. S3’s observable

characteristics are all part of its system interface. Thus, this kind of system is completely

“controllable” in the sense that all its observable or manipulable characteristics can also be

addressed in a well-defined way through its system interface. This also means that there is

no undefined or unobserved interaction between the system and its environment. Still, in real

scenarios, such as one in which a technical machine acts as a system, there will always be

unobserved interaction with the environment. Therefore, example system S1 represents the

scenario generally relevant to the modeling of user interfaces.

Any scientific field uses models to describe complex systems, interrelationships or, in general,

things. In this way, science tries to reduce complexity, using models to handle and understand

systems, exclude the complex environment and deduce a well-defined interaction between the

two. Because of this, the term model is used in various scientific disciplines with differing

meanings. This makes a clear definition of the term necessary.

Definition 3.4 (Model) A model is an artifact of scientific methodology that de-

scribes the investigated reality using parameters and their relationships in the context

of a scientific theory using a specific formalism. Observable parameters are connected

by causal laws. �

29



3. Formal Modeling of User Interfaces

Now it is possible to bring Statement 3.1 of the term system and Definition 3.4 of the term

model together, resulting in a term describing a model-based representation of a system—a

system model.

Definition 3.5 (System Model) A system model is a model description of a

system that describes its elements identified by their characteristics as well as their

interrelationships and interactions using formal, semi-formal or informal description

methods. �

A system model is a model of a system describing its elements and their interrelationships

in a more or less formal way. Normally, a system model simplifies its real correspondent to

make it expressible and understandable (in a formal way). For instance, in physics a model of

a spring is a differential equation describing its behavior on a macroscopic level without taking

the behavior of all atoms and molecules of the spring’s material into account. This example also

shows how system models can be simplified to represent adaptions. The differential equation

describing a spring can take damping into account as an interaction with the environment;

alternatively, it can delete this factor from the model, resulting in an ideal spring. Even though

an ideal spring does not exist, the model helps one understand how a spring works.

In the context of this dissertation, a special type of system model is of interest. Talking about

modeling user interfaces can address interfaces for the interaction of a human user with a data

processing system or, more specific spoken, with a computer system.

Definition 3.6 (Computer System Model) A computer system model is a sys-

tem model that describes a data processing system using a formal, semi-formal or

informal description method. This type of model is also called action logic. �

Wherever the term system is used below, it is generally data processing computer systems

that are meant. They are the main focus of HCI studies—in addition, of course, to the human

who forms the other half of the interaction.

The next section focuses on the interaction of users with complex systems. Therefore, the

term user will be defined on the basis of a nomenclature arising from interaction with systems.

Interaction

Based on the statements and definitions introduced above, the following explanations and def-

initions will define interaction between a system and its surrounding environment.

Definition 3.7 (Interaction) Data flow between a system (interface) and its en-

vironment is called interaction. This data exchange is differentiated between input

and output. Data flow emitted by the environment that influences the system is

called input; data flow from the system to the environment making system states

visible to the outside world is called output. �

Applying this definition to the term system interface means that the system interface is a set

of input and output flows of data that are well defined through the system interface itself. Based

on a given system interface, interaction can be formalized as a set of data exchange processes

using a suitable formalism. Normally, interaction is much more complex than input and output

data. The way this data (in a certain data format) is generated or processed is important in

30



3.1. Nomenclature

the context of HCI, as will be discussed below. Thus, a formal description of interaction as a

set of data flow processes must be defined and will be summarized in the following definition as

interaction logic. Here, logic can be understood in the mathematical sense, where it formalizes

the mutual dependencies of elements (or variables).

Definition 3.8 (Interaction Logic) Interaction logic is a model of interaction

representing a set of models of interaction processes. Interaction processes model

processes of data flow between a system interface and its environment. Interaction

logic can be described formally, semi-formally or informally. �

Definition 3.8 defines interaction logic as a set of interaction processes that model how data

emitted by the system interface is processed to be presented to the system’s environment.

Vice versa, it describes how data originating in the environment is processed to be sent to the

system interface. This is only true if there has been no more interaction than that defined

by the interaction logic. In general, no more data flow can be modeled by interaction logic

than is predefined by the system’s interface. This restriction results from the above definitions

and comments on open systems and system interfaces. It allows further considerations to be

neglected due to proofs of completeness of system interfaces or interaction logic. Still, the

meanings of the terms system and interaction introduced above would not allow such proofs

because of the insularity of system interfaces (cf. Definition 3.3).

In HCI research, it is also necessary to define the quality of interaction logic. In this regard,

the terms adequate and appropriate interaction logic will be defined to take a look at human

error in interaction and why it occurs in bad interaction logic.

Statement 3.9 (Adequate Interaction Logic) Interaction logic is called ade-

quate if it supports all kinds of interaction processes such that all possible system

states of a system can be changed through interaction to a final system state. A final

system state is a system state that is final with regard to a given task to be solved

using the given system. �

Thus, a final system state is associated with a task that a user tries to complete using the

system. Still, this definition of interaction logic does not restrict interaction such that it avoids

critical system states. For this reason, Definition 3.10 identifies further restrictions.

Statement 3.10 (Appropriate Interaction Logic) Interaction logic is called

appropriate if it is adequate and, furthermore, does not support interaction pro-

cesses reaching unwanted system states. A system state is unwanted if it shows

characteristics of the system that can be called abnormal or that are not part of the

system’s specifications. �

A strategy for creating an appropriate interaction logic is to configure a user interface that

makes it impossible for the user to change the system state to an abnormal one. Another op-

tion is to identify relevant interaction processes in a given interaction logic and reconfigure the

interaction logic to prevent the occurrence of abnormal system states. This type of reconfig-

uration can have various triggers. The reconfiguration can be triggered by an observer of the

system or by the user. These aspects discussed in Chapter 4, where a formal definition and

the formalism for reconfiguring user interfaces will be introduced. This kind of reconfiguration

does not change the action logic, nevertheless, it is a complete or incomplete model of the real

31



3. Formal Modeling of User Interfaces

system. It is still possible for the system state to become abnormal, but this should be inhibited

by the interaction logic.

This is a good point at which to discuss to what extent it is possible to prove the appro-

priateness, or adequacy, of an interaction logic and to what extent an interaction logic or,

more generally, the design of a user interface can avoid the occurrence of unwanted system

states and—probably more importantly—how interaction logic can offer interaction processes

for bringing a system back to a normal system state after a critical one has been reached. This

is an aspect of formal verification that is part of future work.

Up to now, interaction has been defined and classified from the perspective of the system

but not from that of the environment. For the purposes of this discussion, the environment can

be reduced to another system, without specifying its system interface and its interaction logic

in a concrete way. In the following, this system will be called user, referring to a human user

who interacts with a data-processing (or other) system. Thus, a user can be seen as a system

in that a user can receive data and react by sending data in response. This view of a human

user corresponds to the view of the human mind in cognitive psychology: Cognitive science

seeks to identify cognitive modules (corresponding to system elements) and their relationships

(corresponding to relationships between system elements). For an example, see the work of

Anderson [5]. A further reason to liken a human user to a system is an intended dependence of

systems to its interaction, modeled as interaction logic. To close the loop, a mental model (cf.

Section 2.2) is nothing other than a model of a human system that makes use of the analogy of

a human to a system.

The following statement helps to classify different specifications of the term user that will be

used in subsequent sections and chapters.

Statement 3.11 (User) A user is a system interacting with another system. The

following types of users can be specified:

• Human User: A human using a (data-processing/computer) system to solve a

given task, referred to below by the single term user.

• Expert: A special human user who has a complete and correct mental model of

a (data-processing/computer) system. From this user’s interaction, an expert

model can be derived demonstrating the error-free use of the system to reach a

certain goal.

• Learner: A special human user who is learning a given task or content through

practice and training. A learner does not necessarily learn to interact with a

given system. �

The last step in this section will be to define the term user interface, which is closely connected

to the term interaction element.

Statement 3.12 (User Interface, Interaction Element) The task of a user

interface is to influence specific characteristics of a system and its system state and

to present specific, observable data of that system to the outside environment.

A user interface is composed of a set of interaction elements that are defined by their

physical and logical characteristics. The physical characteristics of an interaction

element describe its outward appearance; they include position, size and coloring.

The logic characteristics of an interaction element describe the type of interaction

32



3.2. User Interface Modeling

involved: (a) what kind of data is generated, (b) how data is presented to the envi-

ronment and (c) how input and output of data is combined (called hybrid or complex

interaction elements). The entire set of the interaction elements of a user interface

comprises the physical representation of the given user interface. The flow of data

and the interaction with a system using a user interface is defined by a certain in-

teraction logic associated with the physical representation and the system interface

of the system to be controlled. �

In conclusion, a user interface can be modeled as a three-layered architecture: (a) the physical

representation describing the outward appearance as set of interaction elements, (b) the system

to be controlled represented in the form of its system interface and (c) the interaction logic that

models the flow of data between the two.

3.2. User Interface Modeling

The architecture presented in this section is based primarily on mental models as cognitive

representations of complex systems as described in Section 2.2 and as results of the nomenclature

introduced above. Modeling the cognitive representation of a machine with mental models

means representing the functionality of a machine with a set of cues that are activated by

perceived external data (e.g., data presented by the user interface). This enables the user to

interpret the current system state, consider new steps in the interaction process and predict

the future system state. These data and the reaction of the user perceiving them are directly

influenced by the user interface and its behavior. The behavior of a user interface can be defined

as how the system state or parts of it are presented to the user and how input data that is

generated by the user is processed and sent to the system. By creating a language for modeling

the behavior of a user interface, it becomes possible to introduce a specific, cue-based mental

model into the user interface without the need to integrate different and incompatible formalisms

and modeling approaches. The result will be a reduction of the gap between the user’s mental

model and the behavior of a user interface and, as a result, a reduction in interaction errors.

This hypothesis will be investigated in Chapter 7, showing that reconfiguration and adaption

of interaction logic influences the amount of human error in interaction.

Formal modeling needs to enable modeling of the behavior of a user interface. Therefore,

the architecture in Figure 3.2 distinguishes two layers of a user interface and the corresponding

layers representing the system interface (as described above): (a) the physical representation of

the user interface and (b) its interaction logic. The physical representation of a user interface

shows which interaction elements are positioned at which part of the interface and which visual

parameters are set to them (color, size, shape, etc.).

Interaction logic instead describes the behavior of a user interface previously defined as the

data transfer to and from the system to be controlled. The behavior of a user interface can be

understood as a type of data processing of input and output data to and from the system to

be controlled by the user interface. Thus, interaction logic in our sense is a set of interaction

processes each describing the processing of events resulting from interaction elements on the

physical representation layer or from the system interface, for example, a change of system

state. Interaction processes themselves can also interact with one other, resulting in complex

interaction logic behavior. In the context of cognitive psychology (here, mental models), an

interaction process that is activated by such means as pressing a button should process the

33



3. Formal Modeling of User Interfaces

System
System Interface

Interaction Logic

Physical Representation

Figure 3.2.: Three-layered architecture for formal modeling of user interfaces: An approach

based in cognitive research and the terminology of mental models.

resulting input data exactly according to the user’s expectation (here the cue of the mental

model). The user’s expectation is influenced by the physical representation of the user interface

but also by the user’s experiences and expectations as to how the entire system will work;

together, these form the user’s cognitive model. Using interaction logic as a second layer of a

user interface model, a formal mental model (as a set of cues) can be directly transformed into

a user interface. Vice versa, formally defined interaction logic can be matched algorithmically

to a given mental model as part of formal verification analysis.

The main goal of this study is to maintain a formal basis as a platform for transferring results

from HCI and psychology to the creation and adaption of user interfaces. Therefore, a good

starting point is to formalize the (informal) architecture of a user interface introduced above.

The following definition provides an initial formal structure: a formal user interface.

Definition 3.13 (Formal User Interface) A user interface UI is a three tuple

UI = (PR, IL, SI), where PR is the physical representation, and IL is the interac-

tion logic of a user interface. SI is a given system interface. �

The precision of the interaction logic (IL) will be investigated below. The physical represen-

tation PR can further be formalized as follows.

Definition 3.14 (Physical Representation) A physical representation PR is

a tuple PR = (I, P, C, p, c), where I is a finite set of interaction elements, P is a

finite set of physical parameters and C is a finite set of classes or types of interaction

elements. p is a total function where p : I → P ∗ matches any interaction element in

I to a set of physical parameters P ′, where P ∗ is the set of all subsets of P , such that

P ′ ⊆ P . c is a total function for the classification of interaction elements, where

c : I → C matches any interaction element in I to a class in C. �

Definition 3.14 defines a physical representation of a user interface as a set of interaction ele-

ments where every element is associated with a set of physical parameters pi ∈ P , defining such

34



3.3. Formalization of Interaction Logic

characteristics as their outward appearance. Furthermore, interaction elements are classified by

a classification function c, which associates any interaction element ij ∈ I with a class ck ∈ C.

Three classes of interaction elements are of most interest: (a) interaction elements for input, (b)

interaction elements for output data and (c) complex interaction elements that combine input

and output data. This basic classification can easily be extended by more specific classes such

as data visualization or a class of editing interaction elements. A closer look at the formaliza-

tion and representation of the physical representation will be introduced in Section 3.6 mainly

on the basis of XML-based description languages and a new modeling approach using formal

graph-based models.

The system interface was introduced informally above as a term. Here, to be consistent with

the formal Definition 3.14 of physical representation and to offer a starting point for formal

interaction logic, which will be discussed below, a more formal specification will be given.

Definition 3.15 (System Interface) A system interface SI = (SII , SIO) is a

pair of sets, where SII is a set of input variables and SIO is a set of output variables,

where SII and SIO are disjoint. All variables of sets SII and SIO are associated with

a data type. Input variables of set SII are write-only variables, whereas variables of

set SIO are read-only variables. �

Definition 3.15 differentiates strictly between input and output variables and thus between

values that trigger changes of the system state (values entered into the system by being bound

to input variables) and values that represent parts of the system state (values passed to the

environment through output variables). In this way, input variables are variables that can be

sent to the system from outside but cannot be read. In such cases, a change in the system

state can result in changes to input values through their relationship to other (also invisible)

elements of the system. Output variables are variables that can be read, but not written. They

represent system values that can be observed representing the system state or parts of it to the

outside environment. Values that are set to variables of set SII can be used beforehand for

other data processing purposes and modeled as interaction process in interaction logic. Still,

one variable can be part of sets SII and SIO, resulting in a variable that can be both written

and read. Nevertheless, depending on the context, a given variable’s role is well defined.

The next section discusses interaction logic as the third part of the formalization of user

interfaces in detail.

3.3. Formalization of Interaction Logic

Interaction logic is defined above as a set of interaction processes. Another aspect of interac-

tion logic is the dependencies and relations between two or more different interaction processes.

Modeling these kinds of interaction processes, a language has to be presented to an (expert)

user such that it offers a visual way of modeling interaction logic paired with a formally de-

fined background for such purposes as transforming a model into a executable, validated, and

verifiable formalism in order to verify interaction logic against a given action logic or an expert

model of a given interaction logic. For instance, state charts [106] or activity diagrams [195]

as part of the UML modeling language standard are examples for modeling processes using

visual languages. In economics, languages like Business Process Modeling Notation (BPMN)

[197, 290] as visual representations of Business Process Execution Language (BPEL) [191] are

35



3. Formal Modeling of User Interfaces

of great use in modeling business processes in production or document management. Still, these

languages are often very general and therefore are not specifically suited for the concrete prob-

lem of modeling interaction logic. The following sections introduce a formalism that is tailored

to the area of modeling interaction logic but still uses formalism introduced in BPMN to extend

the set of possible implementation of interaction processes. It is also easily transformable to

reference nets [149], a special type of Petri nets. The following two subsections describe the

modeling language FILL for the formal modeling of interaction logic as a graph-based structure

and its visual representation, called VFILL. Both were first introduced in [286].

Formal Interaction Logic Language

This section begins by introducing a graph-based formalism called FILL for describing data

flow in interaction logic. It goes on to explore how specific aspects of BPMN and a Java-like

type system are used to extend this basic approach.

Definition 3.16 (Formal Interaction Logic Language - FILL) The Formal

Interaction Logic Language (FILL) is a 9-tuple

(S, I, PI , PO, XI , XO, P, E, ω),

where S is a finite set of system operations, and I is finite set of interaction-logic

operations; PI and PO are finite sets of input and output ports; XI and XO are finite

sets of input and output proxies, such that S, I, PI , PO, XI and XO are pairwise

disjoint. P is a finite set of pairs

P = {(p, o) | pI(p) = o} ∪ {(p, o) | pO(p) = o},

where pI : PI → S ∪ I and pO : PO → S ∪ I are functions, and

∀s ∈ S : (∃1(p, s) ∈ P : pI(p) = s) ∧ (∃1(p, s) ∈ P : pO(p) = s), and

∀i ∈ I : ∃1(p, i) ∈ P : pO(p) = i.

E is a finite set of pairs, with

E = {(pO, pI) | e(pO) = pI},

where e : PO ∪XO → PI ∪XI ∪ {ω} is an injective function, ω is a terminator, and

∀(pO, pI) ∈ E : (pO ∈ XO ⇒ pI /∈ XI) ∧ (pI ∈ XI ⇒ pO /∈ XO). �

In Definition 3.16, there are two types of operations: system operations (as elements of

set S) and interaction-logic operations (as elements of set I). System operations describe

connections to and from the system, thereby representing the system interface of a system in

interaction processes of certain interaction logic. Concerning Definition 3.15, system operation

is differentiated into system operation for input data to the system and output operation to read

out system values. This is consistent with Definition 3.15 and the nomenclature Definition 3.3.

Thus, passing a value to a system operation influences the state of the system. After completing

this change, the passed value is returned and thrown back into the interaction process. The

same is true of system operations that return a value from the system, such as showing a special

part of the system state. Here, a data value passed to the (output) system operation will be

36



3.3. Formalization of Interaction Logic

consumed, and triggers the associated system value to be outputted at the output port of

the system operation back into the interaction process. This returning functionality of passed

data to system operations makes it possible to trigger downstream nodes in an interaction

process, without changing (input system operations) or consuming and passing a new data

object (output system operation) to the interaction process. Here, one important ability of

FILL becomes apparent: Processes are modeled as data passing from one node to another in a

graph-based model. This makes a FILL model executable and transformable to a colored Petri

net-based formalism, which models data passing as token creation and consumption.

Interaction-logic operations process data passed to them in various ways, including data type

conversion and mathematical calculation. This data processing can be implemented in a pro-

gramming language like Java. In general, interaction-logic operations represent data processing

methods that may be more or less complex. Later on, it will be shown how data processing

methods can be directly introduced into an underlying reference net derived from a FILL graph.

Any operation is associated with several input and/or output ports (as elements of sets PI
and PO), where this association is defined by function p. These ports are used to connect

an operation to another operation or to a proxy. Proxies are elements of sets XI and XO,

which connect an interaction process to physical interaction elements on the physical layer of

a user interface. Thus, output proxies represent interaction elements, like buttons, for input

data to the interaction process, and input proxies represent interaction elements for outputting

or presenting data resulting from an interaction process to the user, like labels. The edges

of a FILL graph are directed edges between proxies and ports. Every edge in a FILL graph

points from an output port or proxy to an input port or proxy. Also, any port or proxy is

attached to exactly one or no edge. These constraints make a later conversion to reference

nets much easier without constraining expressiveness and while taking the extensions discussed

below into consideration. Nevertheless, the consumer node, or terminator, ω is a special node

that identifies the end of an interaction process and consumes all data objects that are sent to

this node.

In the extended version of FILL, a third type of element is introduced that offers various

ways of branching and combining interaction processes, such that more complex interaction

processes can be modeled and the above-introduced 1:1 edge restriction does not restrict the

expressiveness of FILL. These elements are taken from BPMN [197, 290], a visual language for

modeling business processes. A second part of this extension is a new type of operation, called

a channel operation. These operations enable interaction between various interaction processes.

Definition 3.17 (Extended Formal Interaction Logic Language - FILLEXT )

FILLEXT is a 17-tuple

(S, I, CI , CO, PI , PO, XI , XO, B, P
′, E′, l, g, c, ω,L,B),

where S, I, PI , PO, XI , XO, and ω are identically defined like for FILL. CI is a

finite set of input channel-operations; CO is a finite set of output channel-operations;

B is a subset of BPMN-Nodes, with

B = {⊕, ⊗, �}.

S, I, CI , CO, PI , PO, XI , XO and B are pairwise disjoint.

P ′ is a finite set of pairs extending P from basic FILL, such that

P ′ = P ∪ {(p, o)|p′I(p) = o} ∪ {(p, o)|p′O(p) = o},

37



3. Formal Modeling of User Interfaces

where p′I : PI → CI and p′O : PO → CO are functions with

∀c ∈ CI : (∃1(p, c) ∈ P ′ : p′I(p) = c) ∧ (@(p, c) ∈ P ′ : p′O(p) = c), and

∀c ∈ CO : (∃1(p, c) ∈ P ′ : p′O(p) = c) ∧ (@(p, c) ∈ P ′ : p′I(p) = c).

E′ is a finite set of pairs extending E from basic FILL, such that

E′ = E ∪ {(p, b) | e′(p) = b, b ∈ B} ∪ {(b, p) | e′(b) = p, b ∈ B},

where e′ : PO ∪XO ∪B → PI ∪XI ∪B ∪ {ω} is a function, extending e from basic

FILL, and

∀b ∈ B : (#{(p, b) | (p, b) ∈ E′} > 1⇒ ∃1(b, p) ∈ E′) ∨
(#{(b, p) | (b, p) ∈ E′} > 1⇒ ∃1(p, b) ∈ E′).

l is a function with

l : E′ → L,

where L is a set of labels.

g is a function with

g : B → B,

where B is a set of Boolean expressions, also called guard conditions or guard ex-

pressions.

c is a relation with

c : CI → CO. �

In Definition 3.17, there are three extensions to FILL’s basic definition (Definition 3.16). The

first is the introduction of nodes from BPMN [197, 290]. The main goal of this extension is

to introduce a node type for fusing and branching various interaction processes in interaction

logic. This fusion and branching offers a conditioned way to control the data flow without ap-

plying complex data-processing operations that is subject to an interaction-logic operation. For

instance, in the case of processing data resulting from a multimodal interaction like speech com-

bined with tactical input, the combination of this data should be carried out by an interaction-

logic operation offering two input ports and complex processing functionality. The result would

be one output value. At the same time, every interaction-logic operation also has semantics of

fusing data objects to one output data object.

A closer look into the semantics of the three BPMN nodes in an interaction process is pre-

sented in Table 3.1. In general, these nodes have either 1 incoming and n outgoing or n incoming

and 1 outgoing edge. The former (1 to n) is called a branching node; the latter (n to 1) is called

a fusion node. This has been formalized in Definition 3.17 by the restriction to E′ concerning

all BPMN nodes bi ∈ B. The main reason for excluding the n to n structure is to simplify the

semantics of BPMN nodes, which would become much more complex if n to n is considered a

valid structure in FILLEXT .

Thus, for any BPMN node in FILLEXT , fusion and branching have to be separately described

and specified. BPMN nodes are activated after one m < n or n incoming data objects (depend-

ing on the type of node and if it is a branching or a fusion node) are delivered to the node.

38



3.3. Formalization of Interaction Logic

Table 3.1.: Informal specification of BPMN node’s semantics in FILLEXT

Node Type Branching Fusion

AND All outgoing edges are activated at the

same time, in parallel if the incom-

ing edge is activated ⇒ Paralleliza-

tion. The incoming data object will

be transmitted as copy to all outgoing

edges.

All incoming edges must be activated

before activation of the outgoing edge

⇒ Synchronization. Here, it is nec-

essary to define which data object of

which incoming edge will be trans-

ferred to the outgoing edge using a

guard condition.

OR Depending on the node’s guard condi-

tions, one outgoing edge or a group of

outgoing edges will be activated upon

the activation of the incoming edge.

Depending on the nodes’s guard con-

ditions, one edge or a group of edges

will be synchronized.

XOR Depending on the node’s guard con-

dition, exactly one outgoing edge will

be activated if the incoming edge has

been activated by an incoming data

object.

Depending on the node’s guard condi-

tion, exactly one incoming edge must

be activated before a specified outgo-

ing edge is activated by the incoming

data object.

The decision as to which outgoing edge will be activated, or even whether any edge will be ac-

tivated, depends on the type of data and its value as well as on the conditions given as Boolean

expressions, the so-called guard conditions of the BPMN node. For the detailed semantics of

BPMN nodes, see Table 3.1.

An introduction of BPMN nodes as related to FILL would be incomplete without defining

two terms that are also valid in the context of general operation nodes in FILLEXT graphs.

Furthermore, the following descriptions introduce informal semantics for FILLEXT graphs.

Edge activation: An edge is activated if a data object is send to or from a node

via that edge.

Node activation: A node is activated if edges have been activated as defined in

Table 3.1.

In the case of operation nodes, an outgoing edge is activated after the calculation (that was

triggered by activating this node) has been completed or the value from the system has been

returned. Edge activation of outgoing edges in BPMN node activation can be additionally

specified by guard conditions that are associated with the BPMN node. Therefore, an evaluation

sequence for BPMN nodes is necessary and can be described as follows.

1. Evaluation of edge activation of incoming edges The activation of incoming edges

triggers the activation of a BPMN node for fusion as follows: an XOR node is activated

if one incoming edge is activated; an OR node is activated if a specific group of incoming

edges is activated; an AND node is activated if all incoming edges are activated. In the

case of branching, a BPMN node is activated if its incoming edge is activated.

2. Evaluation of the BPMN node’s guard condition(s) that define(s) what data

is passed to the outgoing edge (fusion case), which outgoing edge(s) is (are) activated

39



3. Formal Modeling of User Interfaces

(branching case), and whether the outgoing edge(s) will be activated or not.

Considering the need for Boolean expressions, a further extension has been introduced. In

FILLEXT , BPMN nodes can be associated (defined by function g) with Boolean expressions as

elements of set B that are evaluated on the data passed through the edges to the BPMN node.

This data is identified by labels that are attached to incoming edges and thus can be used as

variables in the guard conditions. For instance, in the case of fusion, a guard condition has

to specify which data object from which incoming edge should be passed to the outgoing edge

under which condition. This makes it necessary to label outgoing edges, too, so that they can

also be referenced in guard conditions. How the expressions are to be formulated or modeled

depends on the formalism used for further processing of FILL models. In this dissertation,

reference nets are used. This Petri net formalism implements a special object-based language

for edge, transition and place inscriptions that is closely related to JAVA programming language

and its syntax for propositional logic expressions. In reference nets, conditions that control the

activation and firing of transitions are called guards, which are closely related to FILL’s guard

conditions.

The third extension of FILL is the introduction of channel operations, that model communi-

cation between different interaction processes. The referencing mechanism in reference nets can

be used to represent channels (in FILLEXT represented by function c) between channel opera-

tions. These channels between an input- and an output-channel operation pass the data sent to

an input-channel operation to all output-channel operations associated with that input-channel

operation via data duplication. It should be mentioned that a channel is a pair (cI , cO) com-

posed of an input-channel operation cI and an output-channel operation cO with c(cI) = cO of

a given FILLEXT graph. Thus, a channel always has exactly one input and one output-channel

operation associated to it. Still, input and output-channel operations can be associated with n

different channels as indicated by the definition of c as a relation.

A further extension of FILLEXT is the introduction of an object-oriented definition of data

types. This extension provides many benefits, for instance, type safety for data objects passed

through the FILLEXT graph and simpler transformation to reference nets, whose tokens are also

associated with Java-like object-oriented data types. This extension makes it possible to model

data flow in a more expressive way. Thus, on a semantic level, FILLEXT not only describes how

data is processed in an interaction process, but it also describes what kind of data is passed

from one operation to another.

Definition 3.18 (Typed Formal Interaction Logic Language Extended -

TFILLEXT ) TFILLEXT is a 19-tuple

(S, I, CI , CO, PI , PO, XI , XO, B, T, P
′, E′, l, g, c, t, ω,L,B),

where S, I, CI , CO, PI , PO, XI , XO, B, P ′, E′, l, g, c, ω, L, and B are identically

defined like for FILLEXT .

T is a finite set of data types and t is a total function with

t : (PI ∪ PO ∪XI ∪XO)→ T. �

In Definition 3.18, FILLEXT is extended to TFILLEXT by using a set of data types T and a

function t that assigns a data type to every port and proxy. On the semantic level, this means

that a port of a given type only accepts data of that type. Thus, for example, a port of type

40



3.3. Formalization of Interaction Logic

String only accepts data of type String or its sub-types. The structure of elements of set T is

not more clearly specified so that TFILLEXT will be open to different type systems like that of

Java or C++. This structure reflects how different types are organized and how the semantics

is defined. For instance, if the type system offers inheritance, types can be super-types of other

types. This has to be separately specified for the elements of set T . Due to the use of reference

nets as a Java-based simulator, the type system implemented for Java will be used here.

In conclusion, TFILLEXT has the following features:

1. Graph-based modeling of interaction processes that describe the interaction logic of a

user interface. Here, the connection to the physical representation of a user interface is

represented as special types of nodes in the interaction process called proxy nodes.

2. Three different types of operations were defined: (a) system operations, which represent

values to be assigned to or read from the system (defined by the SI of the system) to be

controlled by the user interface, (b) interaction-logic operations that offer more complex

data conversion and processing in the interaction logic with high flexibility due to the

integration of high-level programming languages and (c) channel-operations that connect

different interaction processes in the interaction logic with one another.

3. BPMN nodes are introduced to extend the ability to model complex processes based on

branching and fusion.

4. Edges can have labels, and BPMN nodes can be associated with Boolean expressions

referring to edges’ labels. BPMN nodes and conditions associated with BPMN nodes

offer a more complex modeling of interaction processes.

5. Nevertheless, TFILLEXT is type safe concerning data that is passed through the model.

All connector elements (ports and proxies) are associated with object-oriented data types.

In the following sections, the abbreviation FILL will be used to include TFILLEXT as well.

FILL is designed to be easily transformed to reference nets, which provides a formal semantics

for FILL, and also provides a theory of graph transformation [74], which can be used to define

formal user interface reconfiguration [284]. Also, verification and validation methods widely

investigated for Petri nets can be used in our context in various ways, such as to identify

failures in a user interface and to describe formal usability. These topics are the subject of

future research.

FILL is basically not exclusively motivated as a process-modeling language for modeling

interaction processes. Closely related to interaction process modeling are modeling approaches

for business processes. FILL has been also developed for interactive modeling of interaction

logic supported by visual editors like the one described in Chapter 5. Therefore, a visual

representation called Visual FILL or VFILL was developed to make it possible to model FILL

graphs visually.

Visual Formal Interaction Logic Language - VFILL

The previous section defines FILL on a formal, syntactic, and graph-based level. Nevertheless,

FILL was planned to be a visual language for modeling by the use of interactive tools. Thus,

this section presents the visual representation of FILL, called VFILL, which stands for Visual

FILL.

41



3. Formal Modeling of User Interfaces

Edges

BPMN Nodes

Proxy NodesOperation Nodes

Interaction-Logic
Operation

System Operation

Input Channel
Operation

Output Channel
Operation

System Operation

Interaction-Logic Operation

Channel Operation

Data Flow Edge Channel Reference Edge

Terminator / 
Consumer

Output Proxy

Input Proxy

OR Node

AND Node

XOR Node

DataConversion

Boolean String Object

String
Boolean

Input Port

Name of 
OperationDatatype

Edge 
Connector

Output 
Port

g1:aor

Guard 
Condition 

guard a>3 -> a;
guard b==true -> b;

Connection

Figure 3.3.: VFILL: Visual specification and explanation

Figure 3.3 shows all VFILL items (nodes and edges) in five blocks, grouping the different

items in the categories indicated by the headings. In the biggest block (upper left), all operation

nodes can be seen as boxes with the associated ports indicated as smaller compartments in the

operation node boxes. Thus, each input and output port is visualized as a box connected by an

arrow to the port box (input port) or away from the port box (output port). A more detailed

view of an operation is given in the lower part of the Operation Nodes block. The data type

associated with each port is indicated by the label, as is the name of each operation.

For obvious reasons, types of operation nodes have to be differentiated from one another. The

border of the operation box indicates whether it is a system operation (a solid border without

rounded corners), an interaction-logic operation (a dashed border without rounded corners) or

a channel operation (a solid border with rounded corners). In addition to labels, input-channel

operations are differentiated from output-channel operations by the position of the rounded

42



3.3. Formalization of Interaction Logic

corners. In the case of an input-channel operation, the rounded corners are at the bottom of

the operation box, while in the case of an output-channel operation, the rounded corners are

at the top of the operation box.

Proxy nodes are visualized in VFILL very similarly to port nodes because of their similar

semantics, ‘connecting something’. In contrast to ports, proxies are not connected or associated

with an operation box. As indicated in their definition in FILL (cf. Definition 3.16), input

proxies send data objects to a modeled interaction process as a result of an event occurring

in physical representation of the user interface, for instance, after the user presses a button.

Output proxies, on the other hand, consume data objects from the interaction process and

send them to the interaction element associated with a certain proxy node. In general, one

interaction process is associated with one interaction element. That is not explicitly specified

by (V)FILL but should be understood as a statement for modeling VFILL. The implemented

modeling tool, therefore, explicitly offers one modeling area or canvas for one interaction process

for each interaction element.

The three BPMN nodes borrowed from BPMN modeling language are identically visualized

as described in the BPMN specification [24, 197]. They are subsumed in the box under the one

showing the proxy nodes. A BPMN node’s outer shape indicates that this node is a BPMN

node, and the sign inside indicates which kind of BPMN node it is. A circle indicates the OR

node, a plus the AND node, and an X the XOR node. Guard conditions are connected with

BPMN nodes by a dashed edge to differentiate them from data flow edges shown in the box

at the bottom of Figure 3.3. Thus, guard conditions are shown in a dashed box with rounded

corners to clearly differentiate them from visualizations of operations.

Furthermore, VFILL defines two types of edges that were defined above as elements of set

E and relation c in Definitions 3.16 and 3.17. The first type is the standard edge, representing

data flow that connects ports, proxies and BPMN nodes with one another. This kind of edge

defines from which source to which destination a data object has to be sent. These edges can

be decorated with labels that indicate the edge, the sent data, or both. When these labels

are used as variables in guard conditions, they reference the sent data object. This is not the

case, for instance, for a label at an outgoing edge of a branching BPMN node. Here, the label

will reference the edge. The second edge type visualizes channels between input- and output-

channel operations. This sort of edge is indicated by a dashed line instead of the solid one used

for standard data-flow edges and a black arrow in contrast to the white arrow of a data-flow

edge. Both types of edges are directed and 1-to-1 connections (no multi-edges), and arrows

indicate their direction.

The last block under the BPMN Nodes block shows the terminator node, visualized as a big

black dot. This visualization is identical or similar to the visualization used in UML activation

diagrams [195] and BPMN.

Figure 3.4 provides an example of two main interaction processes, IP1 and IP2, modeled

in VFILL. IP1, which is surrounded by a dashed border, models the data processing of a

String object that might, for example, result from an enter event of a text field on the physical

representation. The entered String is sent to IP1 as a data object in the moment in which the

user presses the enter key. This piece of data is then sent to an AND node, which splits IP1

into three sub-processes sending the same String to all of them. That is the default behavior of

a branching AND node without a guard condition attached, which is optional in this case. The

left sub-process generates an Integer value, using an interaction-logic operation to transform

Strings to Integer values. The concrete transformation algorithm that is implemented in a

43



3. Formal Modeling of User Interfaces

String
onEnter

multiplier

Integer Integer

Integer

String
setText

getSystemValueA

Object

Integer

Input

String

Output

String

objectToString

Object

String

setSystemValueB

Integer

Integer

getSystemValueC

Integer

Object

Ticker

Object
stringToInteger

String

Integer

Integer
onChange

Integer
onChange

Integer
onChange

Input

String

Output

String

g1:a g1:b

guard b >= 10 -> g1:a;
guard c > 20 -> g2:c;

guard x >= 10 -> x;
guard y > 20 -> y;
guard z >= 10 -> z;

g2:c

x y z

Interaction Process IP1

Interaction Process IP2

Figure 3.4.: VFILL: Example of a possible VFILL graph modeling several interaction processes

higher programming language is not directly viewable on this level of modeling VFILL. Still,

adding additional information to this operation in a more complex visual editor or by adding

the code in text form would help in this situation. The calculated result of this interaction-logic

operation is passed to another interaction-logic operation that multiplies two incoming Integer

objects. The other input value for this interaction-logic operation is passed from a system

operation triggered by the String object in the mean sub-process. In this context, the String

object’s exclusive function is to trigger a system operation in the sense of node activation (cf.

the above discussion concerning edge and node activation). The result of the multiplication

operation is then passed to a system operation, setting this value to the system value B. The

returned value from this operation is consumed by a terminator node.

The third sub-process (the right one in IP1) activates an input-channel operation that sends

the String object to IP2, as shown on the right side of Figure 3.4 and indicated by a dashed-

44



3.3. Formalization of Interaction Logic

dotted frame. The String is sent to an OR node via the edge labeled g1 : a, which is activated

if the edge with inscription g1 : b has also been activated by an data object. This happens

if the system operation getSystemValueC is activated by an incoming data object. Here, this

incoming object is generated and sent to the system operation by an interaction-logic operation

Ticker. This operation sends a simple data object into the interaction process in clearly defined

time steps, for example, every second. If a data object is sent via edge g1 : a and g1 : b the

edge group g1 will be activated and will activate the OR node and its guard conditions will be

evaluated according to the above-defined evaluation routine. The activation of edge groups is

generally identical to the activation of nodes. If all edges of a group that is identified by the

label in front of : are activated, the group is activated and acts similarly to one activated edge

on a connected BPMN node.

Coming back to IP2, when the OR node is activated, its associated guard condition will be

evaluated. Then, the data object sent via edge g1 : a will be sent to the non-labeled outgoing

edge only if the data object b sent via edge g1 : b is equal to or greater than 10. This is defined

by the first guard condition. If group g2 is activated by sending a data object through edge

g2 : c, the OR node will also be activated. In this case, the second guard condition will be

evaluated. If the sent data object c via edge g2 : c is bigger than 20, it will be transferred to the

outgoing edge of the OR node. This data object sent by edge g2 : c results from an XOR node

in the upper part of IP2. This XOR node is activated, if exactly one of the incoming edges x,

y, or z is activated by an event occurring on the physical representation of the user interface.

Depending on the guard conditions, the values are either transferred to the outgoing edge or

not. If an XOR node fuses interaction processes, the guard condition has to be interpreted as

follows. First, the target reference indicated by the arrow -> has to be interpreted. In IP2, the

guard shows three conditions. Here, the target reference defines to which incoming edge a guard

condition is associated and which data object will be sent to the outgoing edge, depending on

which condition can be evaluated to true. If one incoming edge is activated, the fitting condition

will be derived from the target reference and evaluated, and if applicable, the corresponding

data object that is also identified by the target reference will be sent to the outgoing edge. For

instance, if edge x is to be activated, the first guard condition will be evaluated such that, if x

is greater than 10, x will be sent to the outgoing edge. Thus, any single guard condition of an

XOR node is associated by the target reference with one incoming edge, thereby defining the

condition’s association and which data object will be sent to the outgoing edge. Nevertheless, it

would be possible to define more than one condition per incoming edge by using its reference in

several guard conditions resulting in a non-deterministic selection behavior. The first condition

evaluated to true will activate the outgoing edge, either there is another ‘true’ condition or not.

If the OR node in IP2 is activated after evaluation of its guard condition, a data object is

sent to its outgoing edge. This data object is sent to an interaction-logic operation, where it

is transferred to a String object. The String object is then sent to an input-channel operation

that is associated with one output-channel operation that is part of IP1. This output-channel

operation in turn sends the String object to an input proxy associated with the interaction

element associated with P1, the text field from the beginning.

Figure 3.4 is only a simple example that could easily be extended. Still, one point is missing:

formal semantics for FILL. The above explanations give an idea of how the dynamic of a FILL

model looks during runtime. The next step is the formal, algorithmic transformation of FILL

graphs to a representation as reference net, offering formal semantics. Based on a simulation

engine like Renew [150, 152], a FILL graph also becomes executable.

45



3. Formal Modeling of User Interfaces

3.4. Transformation to Reference Nets

In addition to other reasons, the transformation of FILL to another formal language is motivated

by its lack of formal semantics. Defining this kind of transformation to a formal language has

other important advantages. First, the new formalism will be based on a formalism that is

grounded in a scientific community and used in various application areas and thus, has been

thoroughly investigated. Second, the use of Petri nets offers a huge set of verification and

validation tools and a good theoretical background without the need to reinvent to wheel. Last,

there are various tools for modeling Petri nets as well as many existing algorithms for simulating

Petri net-based models to make them executable in real application scenarios.

There are several reasons for choosing Petri nets. A first look at FILL shows that this language

is a graph-based language modeling data-processing processes. Therefore, any language FILL

is transformed into should also be graph-based in order to prevent errors in transformation

and make the creation of transformation algorithms easier to implement. Thus, the choice of

non-graph-based formalisms, such as grammar-based approaches (for instance graph grammars

[72], Lindenmayer grammars [222], etc.), is not appropriate. Unlike these formalisms, graph

transformation systems or transition systems are a better choice because both are based on

graph structures. Graph transformation systems are often powerful formalisms but also present

problems in their theoretical basis, such as decidability, as described by Betrand et al. [26].

Thus, it is better to use a less powerful formalism that is still powerful enough to model the

processes described by FILL. Therefore, classic transition systems seem to be the right choice

for a successful transformation of FILL to a formalism providing formally specified semantics

and a well-defined syntactic structure.

The next question is which concrete formalism to choose from the set of transition system

formalisms. One well-known group of formalisms is probabilistic transition systems, such as

Bayesian networks [124] or neuronal networks [234]. It is obvious that such formalisms are not

suitable to use for a transformation of FILL, which is not a probabilistic. Still, in the context

of building hybrid formalisms, these probabilistic approaches are of interest for adding further

knowledge to modeled interaction logic. Another group of formalisms is the automatons used for

defining languages in theoretical computer science [115]. Automatons were developed mainly

for defining languages by accepting (or not) a sequence of terminal symbols. The terminal

symbols were read in a sequence contrary to the parallel and non-deterministic data processing

defined by FILL. This does not mean that it would be impossible to model interaction logic

with automatons; however, doing so would make it more difficult and less accurate to transform

parallel FILL processes into sequential automatons. Furthermore, FILL handles more complex

(data) objects then terminal symbols. In the end, automatons are not suitable for the approach

being used in this work because they provide less tool support for use in real applications.

Especially in the context of tool support, only one type of formalism stood out as highly

compatible: Petri nets. Petri nets allow the combination of non-deterministic and parallel

processes in one model; moreover, there is an active research community associated with them

that supports a broad variety of tools for modeling, simulation, and analysis in various use

cases and scenarios. Many tools are available in the form of libraries that can be easily used in

third-party implementation. Therefore, Petri nets are the right choice because they are able to

reproduce the semantics of FILL and offer broad tool support paired with a solid theoretical

background embedded in a lively research community.

Against this background, this section will introduce reference nets. Reference nets are a

46



3.4. Transformation to Reference Nets

special type of Petri nets that offer a suitable formalism for representing interaction logic on an

appropriate level for formal simulation, verification, and validation. Reference nets are higher-

level Petri nets that are able to handle complex data objects. Furthermore, they are supported

by a solid implementation for modeling and simulation called Renew.

Reference Nets

Reference nets are a special type of Petri nets introduced in the PhD thesis by Olaf Kummer

in 2002 [149]. In the following section, every formalization and definition are taking from this

thesis to stay close to the original work by Kummer. As first step, some reasons for selecting this

kind of Petri net will be discussed by describing alternatives and their pros and cons. In a next

step, reference nets will be introduced formally to provide a basis for the formal transformation

of FILL graphs to reference nets.

Motivation for Reference Nets

Before starting to argue for one or another Petri net-based formalism, some requirements arising

from FILL and its transformation should be discussed in closer detail.

1. FILL describes data flow and data conversion processes; interaction logic is a collection of

interaction processes that are data flow-based processes. Therefore, a formalism should

offer a way of describing data or, more precisely, typed data objects and their process-

ing. For data processing, it should be possible to connect processing formalisms, like a

programming language, to the formalism, enriching the data processing by defining and

adding elementary operations.

2. For implementation reasons, a simulator should be implemented for the formalism to run

in an overall simulation of physical representation, interaction logic, and the system to be

controlled.

3. Interaction logic is connected to a system on one side and to a physical representation of

a user interface on the other. Thus, a formalism should offer a way of referencing physical

elements and the system interface, for instance, through a programming language. This

also addresses the need to introduce some kind of language to the basic formalism, a

further requirement in this list.

4. To represent communication channels defined in FILL, the formalism should offer a way

to formalize such constructions.

5. Nevertheless, the formalism should offer formal semantics for FILL. Therefore, the for-

malism should offer available and well defined formal semantics.

These requirements even more argues for the use of a Petri net-based formalism as it has been

former discussed above. Still, a Petri net is a modeling language for use with concurrent pro-

cesses in distributed systems [21, 216, 220]. Therefore, concurrent processes for data processing

can easily be modeled using Petri nets. Furthermore, Petri nets have been investigated for over

45 years beginning with Petri’s dissertation in 1962 [216]. During this time, many variations

of the basic Petri net formalism have been developed and investigated on a formal basis in

theoretical computer science research. Similarly, various modeling methodologies, validations,

47



3. Formal Modeling of User Interfaces

and verifications have also been developed and investigated over time, for instance, in system

engineering [98]. Moreover, many tools and simulators have been implemented to execute Petri

nets in various ways in different contexts, as a list of tools shows1.

Next, an applicable Petri net formalism has to be identified for the transformation of a FILL

graph, especially in order to meet the need of a connection to other, programmatic formalisms

and the formalization of channel operations. A further requirement from the above list is the

need for typed data in Petri nets to influence the selection of the ‘correct’ type of Petri net. The

following classification written by Monika Trompedeller in 1995 [268] offers a handy overview of

Petri nets. It is based on a survey by Bernardinello and Cindio from 1992 [25]. It does not try

to give an overview of up-to-date research results or to be complete, but it briefly summarizes

the whole area of Petri net-based formalisms in the form of a brief taxonomy. The classification

defines three different levels of Petri net-based formalisms, which are separated mainly by their

expressiveness.

Level 1: Petri nets on Level 1 are characterized by places that represent Boolean values; thus,

a place is marked by at most one unstructured token. Typical examples are:

• Condition/event systems

• Elementary net systems

• 1-safe systems

– State machines

Level 2: Petri nets on Level 2 are characterized by places that can represent integer values;

thus, a place is marked by a number of unstructured tokens. Typical examples are:

• Place/Transition nets

– Ordinary Petri nets

Level 3: Petri nets on Level 3 are characterized by places that can represent high-level values;

thus, a place is marked by a multi-set of structured tokens. Typical examples are:

• High-level Petri nets with abstract data types

• Environment relationship nets

• Well-formed (colored) nets

• Traditional high-level Petri nets

– Colored Petri nets

– Reference nets

This overview shows that FILL can most easily be transferred to a Petri net of level 3. This is

due to the first requirement, that a suitable formalism provide a form of expression for complex

data (types). The idea is to represent the data object sent from the physical representation

to the system through the interaction logic, or vice versa, by a token in the net. A classical

1http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

48



3.4. Transformation to Reference Nets

approach for such higher Petri nets has been proposed by Jensen [126]. He extends classical

Petri nets by an inscription language that offers typed places and complex tokens representing

data of a specific type. Often, Petri net-based formalisms are accompanied with a certain

tool support for simulation and verification. In the case of colored Petri nets, Jensen’s group

implemented the tool CPNTools2 [128] to connect visual modeling and verification tools.

Still, neither the transformation and representation of connections between the net, the phys-

ical representation of a given user interface, and the system nor the formalization of channel

operations is easily supported by Jensen’s CPNs. Therefore, it would be helpful to introduce

reference mechanisms to the Petri net formalism. This leads to the choice of reference nets.

Reference nets are level 3 nets offering complex, typed tokens [155] and a mechanism for refer-

encing the (Java) code of a higher programming language and synchronous channels [43], which

offer a well-defined way of sending tokens between net instances. There is also tool support

for reference nets for the implementation of this work. Renew3 is a simulator for reference

nets implemented in Java; it enables calls between the net and the Java source code [150, 152].

Thus, complex functionality can be introduced to interaction logic modeled as a reference net, a

system interface implemented in Java can be called, and a physical representation, such as Java

Swing [164] implementation, can be referenced. These implementation issues are discussed fur-

ther in Chapter 5. There are probably other options for implementing a simulator for reference

nets or Petri nets in general, such as logical or functional programming languages [7, 139]. Still,

it is not the aim of this work to implement a new simulator especially because Renew is a solid

implementation offering easy access to and from Java code to integrate a simulated reference net

into a whole program structure. This fact in particular is one of the most important arguments

for the decision to use reference nets as the formalism used to transform FILL, as argued above.

In the following section, a short and informal introduction to reference nets will be given based

on the work of Kummer [149], to show features of reference nets, and thereby their connection

to FILL.

Introduction to Reference Nets

This section will give a brief and informal introduction to reference nets. The reader is assumed

to have the basic knowledge of Petri nets required for understanding this section. Books by

Reisig [232], Baumgarten [21], and Priese [220] can be recommended as introductory reading

about Petri nets, although they do not constitute a complete list. In his books [125, 126, 127],

Jensen describes colored Petri nets as extensions of basic S/T nets by using complex structured

tokens. An overview of various types of Petri net formalisms, especially time-dependent and

stochastic approaches to Petri nets, can be found in [22]. Best and Fernandez give an overview

of various Petri net terminologies in [27]. Petri Net World is an online platform giving an

overview of the Petri net community and of various Petri net types and tools [301].

Reference nets were introduced by Olaf Kummer in his PhD thesis [149] in 2002. He delineates

three major concepts which extend basic colored Petri net definitions: (a) synchronization of

different transitions in a net that are basically concurrent and independent of each other, (b)

creation of more than one instance of a net, and (c) extension of possible token values by

references to other net instances. He introduces these three major concepts in three steps,

using an example that has been slightly adapted to fit the context of modeling interaction logic.

2http://wiki.daimi.au.dk/cpntools/cpntools.wiki
3http://www.renew.de/

49



3. Formal Modeling of User Interfaces

information 
entered

A disabled

A ready

B ready
B disabled

information 
entered

number of possible 
entries

Figure 3.5.: Simple example for a S/T net describing the behavior of two interdependent text

fields in a simple user interface

A  Bdisabled

y y

xx

x
xx

y y

ready A A
B B

possible 
entries

information 
entered

Figure 3.6.: Extension of the example of simple interaction logic using colored Petri nets

From S/T Nets to Colored Nets The example the various extensions will be introduced by

is that of a simple interaction logic describing how the status of two text fields A and B of the

physical representation of a given user interface could change between ready, where the user can

enter information, and disabled, where the user cannot enter anything in the text fields. The

disabled status of a text field, whereby an interaction element is grayed out, is well known from

standard user interfaces. A further restriction on entering information is a value that defines

how many times information can be entered. Every time information has been entered, the text

field should be disabled. It should only be possible to set a new number of entries if both text

fields are in ready mode. A possible S/T net (level 2 net) modeling this interaction logic can

be seen in Figure 3.5.

The structure of interaction logic for both text fields is very similar. Jensen [126] solves this

problem of multiple similar structures in a net by adding structured tokens to the basic S/T

net definition. This makes it possible to represent the state of both subnets with only one net

and two tokens representing the text fields. The resulting net is shown in Figure 3.6. Figure

3.7 shows a part of this net to give an idea of how the rule for firing transitions in these nets is

defined. If a transition fires, any variable at an incoming edge has to be bound to a token from

the incoming place that is itself connected to that edge. The binding of values to variables is

decided by unification algorithms known from mathematical logic studies [12, 145, 244]. This

will also be the case for reference nets and their simulation tools. If it is not possible to bind

variables via unification, the transition cannot fire and is therefore inactive. In the example,

50



3.4. Transformation to Reference Nets

Adisabled

y
y

x
x

ready

information 
entered

B A  B disabled

y y

x
x

ready

information 
entered

Figure 3.7.: Switching of a transition in a colored Petri net through binding complex values to

edge labeling variables

number of 
entries

add remove[A,14]

[n,a+5] [n,a-5]

[n,a] [n,a]

Figure 3.8.: Representation of a possible implementation of interaction logic for a slider defining

the number of entries

the lower information entered transition can fire through a binding of token B to x. Because

the variable at the outgoing edge is also x, a new B token is first bound to x at the outgoing

edge and then added to the outgoing place. The result is shown on the right in Figure 3.7.

In Jensen’s understanding of colored Petri nets, places are multi-sets of structured tokens

as shown in Figure 3.6. In this example, the number of possible entries in a specific text field

is represented by a token indicating its owner. Text field A has two further entries free. The

same is true for text field B. Another possible way of representing the number of entries is

excluding a part of the net to form a separate one. The resulting net could be connected to

the interaction element that defines the possible number of entries while both text fields are in

ready state, for instance, a slider defining the new number of entries allowed. This would be

congruent with the convention of creating one interaction process for every interaction element.

A model of this separation is shown in Figure 3.8 as a net offering two operations represented

as transitions: (a) add and (b) remove. Here, the structured token is a tuple of two items. The

first item represents the owner of the number of entries; the second item shows the number of

possible entries, here 14. The add transition increases the number of possible entries by 5; the

remove transition decreases the number of possible entries by 5. For instance, if a slider is used

to input the number of entries, every tick to the right would fire the add transition (in Figure

3.8) and similarly, every tick to the left would fire the remove transition, decreasing the possible

number of entries.

From Colored Nets to Nets with Synchronous Channels One major problem of the example

shown in Figure 3.8 is the mixture of the explicit dependency of text fields A and B and their

implicit dependency on another interaction element defining the number of entries. It seems

to be more natural to differentiate the model of explicit dependencies from that of implicit

dependencies as can be seen in Figure 3.9. In this extension, some transitions have to be

associated with each other. This association is indicated by dashed lines shown in Figure 3.9.

51



3. Formal Modeling of User Interfaces

x

y x

number 
of entries

add

remove

disabled

y y

x
x

x

y

ready

information 
entered

A  B

Figure 3.9.: Separation of text filed’s behavior and their restrictions through the number of

possible entries

this:add(x,y)

this:enterInfo(x)

x

y x

number 
of entries

add

remove

disabled

y y

xx

x

y

ready

information 
entered

:add(x,y)

:enterInfo(x)

A  B

Figure 3.10.: Textual addresses mark synchronous channels

To avoid a change in the fire semantics in the net, these transitions have to be associated in a

very strict way. If one transition fires, the associated transition has to be fired instantaneously,

that is, in a synchronous way. This semantic behavior can be compared with function or method

calls in higher programming languages. As can be seen in Figure 3.10, this kind of synchronous

calling mechanism can be added to a Petri net formalism using a specific kind of inscription. A

synchronization is called by, for instance, the inscription this:enterInfo(x). This inscription

associates its transition with the transition inscribed :enterInfo(x). The variable x is likewise

bound to the value of the incoming token as is the case for variable labeling edges. The bound

value is then transferred to the called transition as a parameter and then brought to the partial

net representing a part of the implicit dependency. This concept of synchronous channels was

first introduced by Christensen and Hansen [43] and was transferred to and used in Kummer’s

reference net formalism [149].

Synchronization can also be used to describe the parallel calls of transitions. This means

that more than one synchronization can be modeled through one channel. This can be seen in

Figure 3.11. The add channel is called twice. This kind of model results in a double firing of

the add transition with two different values. Using synchronous channels, it is now possible to

introduce the simple model of the slider’s interaction process from Figure 3.8 to the example

shown in Figure 3.11. The resulting net is shown in Figure 3.12.

In contrast to basic colored nets, nets with synchronous channels have the ability to talk

about simultaneous actions and not only about concurrent or serial actions [149].

52



3.4. Transformation to Reference Nets

this:add(y)

this:enterInfo(x)

x

y x

number 
of entries

add

remove

disabled

y y

xx

x

y

ready

information 
entered

:add(x)

:enterInfo(x)

this:add(x)

A  B

Figure 3.11.: Re-use of synchronous channels

this:enterInfo(x,1)

disabled

y y

x
x

x

y

ready

information 
entered

number 
of entries

add remove

[A,14]

[n,a+m] [n,a-5]

[n,a] [n,a]

this:add(x,5)
this:add(y,5)

:add(n,m)

[B,14]

:enterInfo(n,m)

A  B

Figure 3.12.: Complete separation of text field’s behavior and interaction process of slider defin-

ing the number of entries

Reference Nets Classic Petri nets and higher Petri net formalisms normally limit the existence

of a token to a singleton. During runtime there is a singleton token in exactly one net. Kummer

lifts this restriction by allowing multiple instances of a net. Furthermore, he allows references

on net instances or exemplars to be represented as tokens in a net instance. This ability

distinguishes reference nets from colored nets with synchronous channels.

In Figure 3.13 there are two net patterns on the left: the creator net and the refnet pattern.

In the creator net, a transition creates two net instances of the refnet pattern, and binds them

to the variables x and y. On the right in Figure 3.13, the creator net is shown during runtime.

Here, the two instances of refnet were created by the firing of the upper transition labeled

with expression using the new operator for instantiation. After the lower transition has fired,

the references will be consumed or deleted, but the net instances of the refnet will still exist.

All net instances thereby are independent (as is true for higher, object-oriented programming

languages), with the exception of synchronous channels.

This referencing mechanism allows modeling of system reorganization instead of only descrip-

tion of the changes in system states as in standard colored nets through the token game. Using

net instances in modeling reduces the complexity of net patterns, offering better understanding

of complex models.

In conclusion, reference nets offer the following abilities, which distinguish them from other,

more basic Petri net-based formalisms:

1. complex, colored tokens based on object-oriented systems like that of Java programming

language,

53



3. Formal Modeling of User Interfaces

creator

refnet

x

[ ]

x y

y

x:new refent
y:new refnet

x

x y

y

x:new refent
y:new refnet

creator[1]

refnet[1] refnet[2]

[ ]
<instantiate><instantiate>

<instantiate>

<reference> <reference>

Figure 3.13.: Example of two net patterns (shown on the left with a gray background color)

that are instantiated as two net instances (shown on the right)

2. synchronous channels that describe synchronous firing of distributed transitions in a net,

and

3. the use of referencing net instances based on net patterns.

The following section will introduce the formal definition of reference nets as a basis for the

transformation of FILL graphs to reference nets.

Formal Definition of Reference Nets

One motivation for the transformation of a FILL graph to a reference net is the lack of a formal

semantics for FILL. According to the definition of the formal transformation to reference nets,

the semantics of reference nets is also suitable for FILL. In addition, the resulting transformed

reference net can be simulated in Renew, as well as validated and verified using various tools

for the validation and verification of Petri net-based models.

A thorough definition of the formal semantics of reference nets is complex and will not be

recapitulated here in its entirety. For a closer look at the complete definition, see Kummer’s

work [149, p. 107–119], which outlines the definition of formal semantics for reference nets in

detail.

In brief, the formal semantics of reference nets is based on a conversion of a reference net to

a graph transformation system. The token game of the reference net is transferred to a graph,

in which a node represents a token and its inscription indicates the place in which the token is

positioned. Net instances are represented as special type of node that are inscribed with the

net instance’s name. Edges that refer a token (node) to a net instance (node) represent a token

(node) referencing a certain net instance (node). Edges that refer a net instance (node) to

token (node) indicate the belonging of this node to this specific net instance. The fire event of a

54



3.4. Transformation to Reference Nets

transition is modeled based on the single-pushout approach known from the theory of categories

described, for instance, by Ehrig et al. ([73, 77]) as transformation rule.

The definition of semantics for FILL and the formal transformation of FILL to reference nets

require a formal definition of reference net formalism. Before the structure of reference nets

can be defined, a formal definition of the labels and inscriptions of the reference net’s elements,

like places, transitions, and edges, has to be described. That is of primary interest, because a

lot of semantic information results from a complex inscription language associated with a basic

Petri net definition like Jensen’s [125]. Kummer [149] defines such a language on the basis of

labeled algebra as discussed by Ehrig et al. [76]. Labeled algebra associates any element of the

algebra with a word from a given alphabet. It also guaranties that the result of a calculation

with an operator is the concatenation of the words of the arguments. The definition of labeled

algebra is based on signatures that are necessary for the definition of algebra for multiple sorts

that can be compared with types in object-oriented programming languages.

For the following definitions, detailed discussions and descriptions, as well as a fundamental

derivation of the formal reference definition can be found in Kummer’s dissertation [149], as well

as in his publications, like [146, 148, 150]. Especially, the mechanism of synchronous channels

has been described in detail in these resources, based on works of Christensen et al. [43]. The

work at hand will give only a short overview of the most important definitions and formalization

necessary for formal transformation of FILL to a representation as a reference net.

Definition 3.19 (Signature) A pair Sig = (S,Op)) is a signature if S is a set

of sorts and Op is an indicated set of sets of operators that are pairwise disjoint.

Opw,s ⊆ Op with w ∈ S∗ and s ∈ S denoting the operators with arguments of sort

w and a result of sort s.

op : s1 × . . .× sn → s

can be written for op ∈ Ops1...sn,s. �

Based on Definition 3.19, which defines the term signature, a special type of algebra called

Sig-Algebra can be defined as follows:

Definition 3.20 (Sig-Algebra) If a signature Sig = (S,Op) is given, a pair A =

(SA, OpA) is called Sig-Algebra or simply Algebra, if SA = {As}s∈S is an indexed

set of pairwise disjoint sets and OpA = {Aop}op∈Op is an indexed set of functions,

where for op ∈ Ops1...sn,s and s1, . . . , sn, s ∈ S, Aop : As1 × . . .×Asn → As is true.

Furthermore, it is defined that Set(A) =
⋃
s∈S As. If there is no confusion, x ∈ A

will be written for x ∈ Set(A). �

By introducing an extending labeling function l, a basic Sig-Algebra (cf. Definition 3.20) can

be extended to a labeled algebra, as follows:

Definition 3.21 (Labeled Algebra) A signature Sig = (S,Op) and an alphabet

X are given. A labeled Algebra is a triple A = (Sa, OpA, l), where (SA, OpA) is a

signature and l is a total function with l : SA → X∗, such that for s1 . . . sn ∈ S,

s ∈ S, op ∈ Opw,s, and x1 ∈ As1 to xn ∈ Asn,

l(Aop(x1, . . . , xn)) = l(x1) . . . l(xn)

is true. �

55



3. Formal Modeling of User Interfaces

A labeled algebra associates any element of an algebra with a word from a given alphabet

guaranteeing that the result of an operator is the concatenation of its words given as parameter

to the operator. This type of definition for an inscription language extended by the definition

of super-signatures (cf. Definition 3.22) makes it possible to define a highly flexible declaration

language for reference nets without concreting the language too early and thereby reducing

portability between algebraic systems.

Definition 3.22 (Sub- / Super-signature) Two signatures Sig = (S,Op) and

Sig′ = (S′, Op′) are given. Sig is a Sub-signature of Sig′, if S ⊆ S′ and for w ∈ S∗

and s ∈ S, Opw,s ⊆ Op′w,s is true.

Sig′ is also called a Super-signature of Sig. �

Based on these definitions of signature and labeled algebra, the reference declaration as basis

for talking about variables and types can now be defined as follows:

Definition 3.23 (Reference Declaration) A reference declaration is a 9 tuple

D = (Sig,A, Sig′, sR, Q, V, v0, τ, C),

where

• Sig = (S,OP ) is a signature,

• A = (SA, OpA) is a Sig-Algebra or Data-Algebra,

• Sig′ = (S′, Op′) is a super signature of Sig,

• sR ∈ S − S′ is a distinguished sort of reference,

• Q is a set of net identifier with Q ∩ Set(A) = ∅,

• V is a set of variables,

• v0 ∈ V is a distinguished variable,

• τ : V → S′ is a typing function, and

• C is a set of names for channels. �

Definition 3.23 does not specify any limitations on the algebra A. Up to this point, there

is no necessity to reduce the possible range of inscription languages resulting from reference

declarations. Later on, it will be shown that this algebra can be matched to the Java type

system which will also be used for FILL and all implementation aspects in the context of this

work.

Q is a set of net identifier where any element q ∈ Q will be associated with a concrete net

pattern. Based on this identifier and the associated net pattern, a new net instance of this net

pattern can be created. v0 is a special identifier that always points to a net instance in which a

transition fires. This kind of identifier can also be seen as a this or self pointer. In general,

only net instances are differentiated, and there is only one net sort.

Based on this formal definition of a reference declaration, reference nets can be formally

defined as follows [149, p. 218]:

Definition 3.24 (Reference Net) A reference net declaration

D = (Sig,A, Sig′, sR, Q, V, τ, C)

56



3.4. Transformation to Reference Nets

is given. A reference net is a 7 tuple

N = (S, T,K, k,G,U, c)

with

• sets S of places, T of transitions and C of global defined channels, where S, T

and C are pairwise disjoint,

• K a set of edges and channels,

• the function

k : K → (S × T × V × {in, test, out} ∪ C × T × V ∪ C × T × V × V ),

which assigns edge and channel objects to an applicable tuple concerning their

type,

• y ∈ K, with k(y) = (c, t, v, v′), where c ∈ C and τ(v′) = sR,

• G : T → (Op′ × V ∗ ×V ) a set of equality specifications, where

(op, v1 . . . vn, v) ∈ G(t) and op ∈ Op′τ(v1)...τ(vn),τ(v),

• U : T → P(V ×V) a set of inequality specifications, such that for (v, v) ∈ U(t),

τ(v) = t(v) is true, and

• c : T → (V → Q) associating a partial function to every t ∈ T with

∀v ∈ dom(c(t)) : τv = sR. �

The definition of reference nets differs in some aspects from other higher Petri net formalisms.

The first difference is that edges are inscribed only with variables and not with complex terms.

Based on the equality specifications, these variables can be easily extended to complex terms if

necessary. In the context of this dissertation, this will not be necessary.

A second difference is that places are not typed. This aspect is not a problem for the

transformation of FILL to reference nets. The type-safeness of FILL will be integrated by edges

inscribed by typed variables based on Java’s type system.

Complex guard conditions like those defined in other Petri net formalisms are replaced here

by equality and inequality specifications. If complex guards are necessary as in the transfor-

mation of BPMN nodes, the data algebra used has to be extended in such a way that complex

(Boolean, assertion logical) conditions can be described. By using the Java type system as the

data algebra, the resulting reference net offers complex guard conditions compatible with the

simulator that is implemented in Java, which can evaluate these expressions.

K mainly describes edges in the net that can have different types. Therefore, an element

x ∈ K is associated with a quadruple k(x) ∈ S×T ×V ×{in, test, out} defining the neighboring

place s ∈ S, the neighboring transition t ∈ T , the edge’s inscription v ∈ V , and its type as

elements of the set {in, test, out}, whereby in means that the edge is pointing to the transition

and out means the edge is pointing to the place. In addition to in and out edges, test edges

can also be defined. Test edges assign firing conditions to the connected transitions with the

difference that if the transition fires, the tokens of the connected place are not removed (cf.

[126]). Thereby, an edge of type test influences the firing of a transition, but does not change

the connected place’s marking. Still, this type of edge is not necessary for the transformation

57



3. Formal Modeling of User Interfaces

xx yx yx

x = yy = x

Figure 3.14.: An example of using ‘=’ in a unification context in contrast to the use as assign

operator in Java

of FILL to reference nets in this version. Therefore, this type of edge is not further described

or investigated.

x ∈ K can also be a synchronous channel. If k(x) ∈ C × T × V , the channel is called

an uplink. An uplink indicates that the associated transition can receive “invocations”. If

k(x) ∈ C×T ×V ×V , the channel is called a downlink and represents an invocation of another

transition that can be placed in another net instance.

Java as Inscription Language

For implementation and modeling reasons, one concrete language should be used as an inscrip-

tion language and data algebra. For reference nets, Kummer used Java for implementation and

in this context, Java is part of the reference net’s inscription language, which is introduced

informally in [149], based on [147] and [151]. The following paragraphs draw from explanations

in [149] to offer a close and informal description of the inscription language used as a Java

derivate to avoid loss of information.

Equality and Assigning The ‘=’ operator is in Java declared as an assign operator with various

limitations that are in conflict with the general unification approach of variables in Petri nets.

In Petri nets, variables are unified with values during simulation or runtime. This difference

between the two approaches will be explained using the example in Figure 3.14 (cf. [149, p.

247]). All three nets have the same semantics. In the net on the left, both incoming edges of

the transition are inscribed with the variable x, which means that the tokens or values on the

incoming places must have the same value and type or that their type is a super- or subtype of

the other. Only if this requirement is fulfilled, can both variables be bound to these identical

values and the transition fires.

The net in the middle of Figure 3.14 shows the use of the ‘=’ operator as a condition for

unification with the same semantics as described for the example on the left. The same is true

for the example on the right, which only shows that the ‘=’ operator in the reference net’s

unification algorithm (for binding variables to values) is commutative. This contrasts with the

assigning operator in Java, where on the left side a variable and on the right side a value has

to be assigned or defined.

This kind of re-definition of the ‘=’ operator in reference nets leads to following conventions

for the ‘=’ operator concerning equality:

1. Values are bound to variables through unification algorithms and not by the ‘=’ operator.

2. On both sides, complex expressions concerning the equality condition for unification can

be written, like x+ 1 = y + 1, which is not allowed in Java.

58



3.4. Transformation to Reference Nets

3. Concerning types in Java, only the left variable can be a super type or the same type as

the right variable to prevent testing for types during runtime. For reference nets, it is only

important that one variable is a super type of the other; there is no position restriction

concerning the ‘=’ operator.

In summary, the assign operator in Java is used in reference nets as an equality operator in

the mathematical sense for controlling the unification process.

Guards In addition to the unification that controls the enabling and firing conditions of tran-

sitions, additional inscriptions for transitions are introduced that guard the transitions. These

guard conditions are closely related in their semantics to guard conditions in FILL. A guard

condition is an inscription of a transition that is identified by the keyword guard followed by

a proposition-logical expression. The transition can fire only if this expression is evaluated to

true. Variables in these conditions are also bound by unification algorithms as is the case for

general variable binding in reference nets. Guard conditions are restricted to Boolean expres-

sions based on propositional logic as will be defined for FILL below. In general, guards are

evaluated after a matching binding has been found for edges’ inscribed variables and the given

equality conditions.

Actions As described above, assigning values to an object or variable in the sense of Java’s

semantics is not possible using the ‘=’ operator. ‘=’ is reserved for proving equality during

unification. That is why a new keyword is helpful for marking sections of a transition inscription

that is independent from the unification process. To be independent from unification means

that such expressions can be interpreted as normal Java expressions. Doing so makes it possible

to use the ‘=’ operator in the Java sense and thus for assigning values to variables independently

of the unification process.

The keyword marking these sections to transitions’ inscriptions is action. Expressions fol-

lowing action are interpreted according to Java type rules and expressions. In addition to the

use of ‘=’ in the Java sense, as is now possible, action expressions are only executed during the

firing of transitions. To this end, various requirements have to be met. For example, the action

inscription has to be used if Java methods are called from reference nets. Further examples

are the transformed subnets resulting from various FILL nodes and the applied transformation

algorithms that will be presented in the next section. More about actions can be found in

[149, p. 249].

Synchronous Channels Channels are indicated by a name with a leading colon. The name is

followed by a parameter list in round brackets. Variables on this list are separated by commas.

Uplinks and downlinks are separated by leading identifiers of the net instance in which a call

of a transition via a synchronous channel is executed. Here,

: channel(x, x, 20)

an example of an uplink is given, identified by the absence of a net identifier in front of the

colon. The example shows only the channel name and the parameter list. The variable x has to

be bound to a value before the transition associated with the inscription can fire. One possible

matching downlink is

59



3. Formal Modeling of User Interfaces

n : channel(a, b, c),

where n indicates the net instance, and the a, b and c variables have to be bound to values

before calling the uplink in net n. A further requirement on the values bound to a, b and c

is that they have to match the associated uplink. If the previously given uplink is called the

downlink, the values of a and b have to be bound with identical values (through unification),

and c has to be bound to the value 20. If this is not possible, neither the transition associated

with the up- nor downlink can fire. The name of the channel channel indicates which transition

in net n should be fired in the case of a valid binding. If there are more than one matching

uplink in net n (that also fulfill the further restriction on the bindings), one of them is chosen

non-deterministically.

If a downlink references an uplink in the same net instance, the keyword this can be used,

such as

this : channel(a, b, c).

This type of downlink will mainly be used in transformed FILL graphs because up to now

there is no use to the referencing mechanism. Still, there are future work issues that can

benefit from this specific characteristic of reference nets. One aspect would be the modeling and

implementation of multi-user systems based on formal interaction logic, where the dependencies

between individual interaction logic models can be identified for every user. Also, a further net

can model the interrelation between the user’s interaction logics regarding aspects like task

and responsibility dependencies. Furthermore, it would be possible to create interaction logic

models describing various responsibilities of users which can then be replaced, depending on

which user is controlling the system via the user interface. In this context, more than one user

can also be logged in to the system with the same responsibility resulting in multiple instances

of a net pattern describing this responsibility. A more specific use of the reference mechanism is

for modeling and integrating interaction-logic operations not only as abstract concepts but as

concrete net. Also, a system modeled as a reference net can be easily integrated into an existing

interaction logic without changing the formalism. Although this is planned for future work, it

offers further evidence that reference nets are the right choice for modeling formal interaction

logic.

Tuples and Lists In some cases, single-valued variables (which can also be of a container type,

like Vector or Hashmap) are not enough or make the structure of a reference net too complex.

Therefore, reference nets introduce tuples and lists, whereby tuples are more important to the

transformation of FILL than lists are. It should be assumed that the calculation of (x−1)∗(x+1)

has to be modeled in a reference net. N1 in Figure 3.15 is an incorrect example, while N2 is

a correct model, which uses a tuple. In net N1, the sub-results from tokens 1 and 2 can be

mixed up. Using tuples, these sub-results are connected by the tuple that makes mixing up the

sub-results impossible.

Lists instead represent organized selections of values without an upper boundary of the num-

ber of elements. Lists are syntactically defined using braces because in the inscription language

of reference nets, blocks like those used in higher programming languages are not supported.

This means that there is no confusion concerning using braces to represent lists instead of code

blocks. More information about lists can be found in [149, pp. 260,261].

60



3.4. Transformation to Reference Nets

x

x + 1

x - 1
a

b

a * b1       2N1

x [x-1, x+1] a * b[a, b]N2 1       2

Figure 3.15.: Example of using tuples to avoid modeling errors like that shown in net N1 by

associating both sub-results in a tuple, as in net N2 (cf. [149, p. 259])

Method Calls in Reference Nets to Java Code Communication between transitions is based

on synchronous channels. This mechanism can be used for synchronous communication between

transitions in a single net instance or in multiple instances as described above. The next step

would be to extend the synchronous communication mechanism by a calling mechanisms to call

methods in a programming language from the net and vice versa. If this extension is based on

synchronous channels, the Java-based inscription language does not have to be further extended.

Thus, the syntax for communication with Java methods is exactly the same as for synchronous

channels. That makes sense because the semantics is more or less the same. The difference

is that the uplink now calls a method in a Java class and does not match it with another

transition’s inscription in a given net instance. Downlinks are identically defined and inscribed

to a transition as are synchronous channels and are now being called by Java code. This

functionality is based on a stub architecture, which handles the net’s communication with the

loaded Java class during the runtime of the simulation. This stub-based architecture, paired

with the simulation engine, was implemented in Renew, connecting Java classes with a simulated

reference net.

Based on this (informal) declaration of reference nets’ Java-like inscription language, which

was introduced for Renew as a modeling and simulation engine for reference nets, the next

section will introduce a specific inscription language for FILL graphs. Edge labels and guard

conditions in particular have to be more clearly specified in order to make an algorithmic

transformation to reference nets possible.

Edge Labels and Guard Conditions in FILL

Before starting to define formal transformation of FILL to reference nets, label and guard

inscriptions for edges and BPMN nodes in FILL have to be formally defined. Guard conditions,

in particular, are defined to conform with a reference net’s declaration of guards based on

propositional logic. This simplifies transformation and prevents different levels of expressiveness

of both languages. The first step is to define edge labels in the form of an EBNF grammar

[120], as in the following definition.

Definition 3.25 (Edge labels in FILL) For all FILL graphs

F = (S, I, CI , CO, PI , PO, XI , XO, B, T, P
′, E′, l, g, c, t, ω,L,B),

61



3. Formal Modeling of User Interfaces

all words (labels) li ∈ L are words of language L, which is defined by the following
EBNF:

LABEL = [GROUP’:’]VARIABLE;

VARIABLE = {CHARACTER};
GROUP = {CHARACTER};

CHARACTER = NUMBER | ’a’ | ’b’ | . . . | ’z’;

NUMBER = ’0’ | ’1’ | . . . | ’9’; �

In Definition 3.25, edge labels are defined as words being composed of characters and num-

bers, where the colon ‘:’ is a reserved character indicating edge groups. Groups are especially

important for OR nodes as described in Section 3.3 (see Figure 3.4). Labels identify the in-

teraction process and the data object that is passed ‘through’ the edge it is associated with.

This semantics will be manifested in the transformation to reference nets later on. In Definition

3.26, a EBNF grammar will be defined for the guard conditions that are associated with BPMN

nodes.

Definition 3.26 (Guard Conditions in FILL) For all FILL graphs

F = (S, I, CI , CO, PI , PO, XI , XO, B, T, P
′, E′, l, g, c, t, ω,L,B),

all words (guard conditions) bi ∈ B are words of language B, which is defined by the
following EBNF:

GUARD EXP = {GUARD’;’};
GUARD = ’guard’ CONDITION [’->’ VARIABLE];

CONDITION = (CONDITION BOOL OP CONDITION) | [’ !’]’(’ CONDITION ’)’ |
[’ !’] BOOL VAR | NUM COMP EXP | BOOL VAL;

NUM COMP EXP = (NUM EXP COMP OP NUM EXP) | ’(’ NUM COMP EXP ’)’ ;

NUM EXP = (NUM EXP ARITH OP NUM EXP) |
NUM VAR | {NUMBER};

NUM VAR = VARIABLE;

BOOL VAR = VARIABLE;

VARIABLE = [GROUP’:’]{CHARACTER};
GROUP = {CHARACTER};

ARITH OP = ’-’ | ’+’ | ’*’ | ’/’;

BOOL OP = ’ |’ | ’&’;

COMP OP = ’>’ | ’<’ | ’>=’ | ’<=’ | ’==’;

CHARACTER = NUMBER | ’a’ | ’b’ | . . . | ’z’;

NUMBER = ’0’ | ’1’ | . . . | ’9’;

BOOL VAL = ’true’ | ’false’; �

The semantics of a guard is also defined by its conversion to reference nets. Basically, the

semantics of a guard is based on propositional logic extended by an arithmetic expression

using numerical values connected by arithmetic operators. Through operators for comparing

numerical expressions, they are transformed to Boolean values, which can be evaluated in a

logical expression. As with reference nets, guard conditions in FILL are syntactically closely

related to logical expressions in JAVA [244].

62



3.4. Transformation to Reference Nets

a
b

c

a
b

cx

x
guard a > 3 -> a;
guard b == 3 -> b;
guard true -> c;

guard x > 3 -> a;
guard x == 3 -> b;
guard x < 3 -> c;

Figure 3.16.: Example of guard conditions in an XOR node in a FILL graph for both fusion

and branching

The semantics of the stylized arrow -> is different from guards in reference nets. The arrow

differentiates the (Boolean) condition from a reference. This target reference has different

semantics depending on whether it is used in a branching or a fusion case of a BPMN node.

Before specifying this in more detail, it should be remembered that an edge label can reference

the edge or the data object that activates the edge. For instance, by using the edge label in

guard conditions, the label is used to reference the data object activating the edge and not the

edge itself.

Branching In branching, the target reference defines which outgoing edge will be activated

with the incoming data object if the the Boolean expression it precedes can be evaluated to

true. The target reference references an edge by using its label as a reference. Here, the target

reference references an edge and not a data object.

Fusion The target reference defines which data object from which incoming edge will be sent

to the outgoing edge if the preceding Boolean expression can be evaluated to true. Here, the

target reference references a data object, in contrast to a target reference in branching.

For a better understanding, the following examples of different guard conditions and their

evaluations will be described in detail. The first guard condition is an example of a branching

XOR node as can be seen in Figure 3.16 on the right. Here, the XOR node’s three outgoing

edges are labeled a, b, and c, and its incoming edge is labeled x, as well as it guard condition

is given by

guard x > 3 −> a;

guard x == 3 −> b;

guard x < 3 −> c;

This guard condition and its evaluation can be described as follows. If the incoming value

referenced by x is greater than 3, the edge labeled a will be activated by sending value x to

63



3. Formal Modeling of User Interfaces

edge a. Where x is equal to 3, edge b will be activated by sending value x to it. If x is less than

3, edge c will be activated by the value x. Here, the target references define which outgoing

edge is to be activated by the incoming value to the BPMN node after a positive evaluation of

the associated condition. It should be mentioned at this point that nondeterministic conditions

can also be created. For instance, if the third condition in the above example is changed to

guard x <= 3 −> c;

it will be evaluated differently. If x is exactly 3, the value would be sent to edge b or edge c,

because both expressions would be evaluated as true. For the transformation to reference nets,

this is unproblematic. In this aspect, reference nets are nondeterministic, as is the case for all

Petri net-based formalism.

In cases of fusion, as can be seen on the left in Figure 3.16, the evaluation is a bit different

from the above example. This is because the target references are now associating a condition

with a certain incoming edge. This means that, if an edge labeled a is activated by an incoming

value, the first condition will be evaluated. In this case, if the incoming value of edge a is greater

than 3, it will be sent to the outgoing edge without further evaluation of other conditions in

the guard expression. Here, label a has two different meanings: (1) It references the edge as a

target reference, and (2) it functions as variable that is bound to the data object that is sent

‘through’ the edge. The guard condition

guard a > 3 −> a;

guard b > 3 −> b;

guard true −> c;

can be described as follows. If the incoming edge labeled a is activated, the first condition

referencing a, and no other, will be evaluated. Thus, if the data object sent via edge a is

greater than 3, the value of variable a is sent to the outgoing edge. If edge b is activated, the

second condition will be evaluated. In this case, the outgoing edge will also be activated if the

data sent via edge b is greater than 3. Data sent through edge c is always sent to the outgoing

edge; the condition is always true.

A special type of edge labels is grouped labels. Such labels are only important for edges

associated with OR nodes. This node type can fuse or branch groups of edges and not only

either single (XOR node) edges, or all incoming or outgoing edges (AND node). Groups are

defined using the reserved colon string in an edge label, as in Figure 3.17. This example shows,

fusion and branching in an interaction process using an OR node. In general, the OR node is

activated only if all the edges of a group are activated. In fusion, the OR node is activated if

edges g1 : a and g1 : b of group g1 are activated or if edge g2 : c of group g2 is activated. The

individual labels a, b and c are still important to identify the individual edge of a group or its

associated data objects. In fusion, a possible guard expression

guard (a == 3)&(b > 5) −> g1 : a;

guard true −> g2 : c;

can be defined. If group g1 is activated through the activation of both edges g1 : a and g1 : b,

the first guard condition will be evaluated. The outgoing edge will be activated if a is equal to

3 and b is greater than 5. The value of edge g1 : a will be sent to the outgoing edge following

64



3.4. Transformation to Reference Nets

g1:a
g1:b

g2:c

g1:a

g1:b

g2:c

x

(a)

(b)

Figure 3.17.: Example of group labels for branching and fusion of an interaction process using

an OR gateway: (a) shows a fissioning OR gateway; (b) shows a branching OR

gateway using groups

a positive evaluation of this condition. Here, it can be seen that in fusion the target reference

always references the data object by using the individual label of edge g1 : a. The second guard

condition states only that if edge g2 : c is activated, it will directly activate the outgoing edge

and by sending its data object, referenced by c.

In branching, outgoing edges are referenced as groups because a whole group of edges will

always be activated if the preceding condition is evaluated to true. A possible guard expression

for the given OR node

guard x > 3 −> g1;

guard x <= 3 −> g2;

could be defined. If the incoming data object x is greater than 3, group g1 will be activated.

Activation of a group of edges means that edges g1 : a and g1 : b will be activated with the

same data object referenced by x. If x is less than or equal to 3, group g2 will be activated by

sending the data object referenced by x to edge g2 : c. Nondeterministic guard expressions are

also possible in this situation using group edges. This is due to the fact that the conditional

part is defined similarly to the former cases; only the target references change to accommodate

grouping.

Restrictions on the use of guard conditions for BPMN nodes in FILL have to be made for

semantic and transformation reasons. Table 3.2 shows these restrictions for all BPMN nodes

in FILL. AND nodes only accept exactly one guard condition in fusion excluding a target

reference. That results from the semantics of an AND node. Thus, all outgoing edges will be

activated by the incoming data object. In this case, the guard condition only controls whether

the incoming data object will activate the outgoing edges or not. In OR and XOR nodes, for

any outgoing group or edge, a guard has to be specified to indicate which incoming data object

will activate which outgoing group or edge. In fusion, all guards only control which data object

is sent to the outgoing edge. If guard conditions are optional, it is possible not to specify a

guard condition. In this case, a random-selection heuristic decides which data object activates

65



3. Formal Modeling of User Interfaces

Table 3.2.: Conditions to adding guard conditions to BPMN nodes and further restriction for

the use of references in guard conditions

Node Type Branching Fusion

AND (optional) ONE guard WITHOUT

target reference

(optional) ONE guard WITH target

reference

OR (obligatory) ONE guard WITH target

reference per OUTGOING GROUP

(optional) ONE guard WITH target

reference per INCOMING GROUP

XOR (obligatory) ONE guard WITH target

reference per OUTGOING EDGE

(optional) ONE guard WITH target

reference per INCOMING EDGE

the outgoing group or edge.

On the basis of the reference nets introduced, their formally defined syntax, and the speci-

fication of label and guard condition syntax for FILL graphs, the next section introduces the

transformation of FILL graphs to reference nets by specifying transformation algorithms.

Transformation of FILL Models into Reference Nets

Transformation of FILL graphs to reference nets will be discussed from two different perspec-

tives: (a) a visual representation of the various conversion rules will give an overview of how

FILL graphs are converted to reference nets accompanied by (b) a formal description of the

conversion of a FILL graph-based interaction logic to a reference net given as an algorithm in

pseudocode.

Conventions

For a formal transformation, the following conventions and extensions of the given definitions

have to be introduced based on a given FILL graph:

• If op ∈ S ∪ I ∪CI ∪CO is a given operation, than P
(op)
I ⊆ PI is an indexed set of n input

ports with

P
(op)
I = {pi|pi ∈ PI ,∃(pI , op) ∈ P ′},

where index i identifies the i-th input port of operation op.

p
(op)
O ∈ PO is the output port of operation op, such that

∃(p(op)O , op) ∈ P ′ : p(op)O ∈ PO.

• f is a function, with

f : S ∪ I ∪ CI ∪ CO → F ,

where F is a set of function calls. These function calls reference different types of under-

lying structures in the system or in the implementation of interaction logic operations.

Depending on the underlying programming language or system, these references have

different syntaxes. Here, reference nets use Java method calls for calling code from the

net.

66



3.4. Transformation to Reference Nets

• κ is a function, with

κ : XI ∪XO → I,

where I is a set of references on interaction elements on the physical layer of the user

interface.

• id is a total bijective function, with

id : S ∪ I ∪ CI ∪ CO ∪ PI ∪ PO ∪XI ∪XO ∪B → ID,

where ID is a set of ids, that identifies any node, port, or proxy in FILL. Based on the

formal, graph-based definition of FILL, global identifiers are not necessary. In the trans-

formation to reference nets and for representation in data formats like XML (discussed

below), ids play an important role.

• := represents an assigning operator that makes it possible to re-bind a set to a ‘new’ set

in an iterative process or algorithm. This allows mathematical sets to be extended as in

a programming language, as the example

E := E ∪ {a, b, c}

shows. This expression has the same semantics as would various programming languages.

The set E is extended by the elements a, b and c. Here, E is treated more like a variable

that is rebound to a union of two sets.

• To simplify the association of inscriptions to transitions based on G and U as equality and

inequality specifications, which are themselves based on Java’s type and logic system, the

function inc : T → IN associates a transition with an inscription based on the inscription

language informally introduced in the previous section. IN represents a set of all possible

inscriptions based on the language and formal specification of G, U and c in the reference

net definition. Thus, i ∈ IN is a String representing a binding condition using equality,

a channel identified by a colon (up- or downlink), a guard condition, or an action.

• ms : PO → S and mt : PI → S are functions, where PO is the set of output ports and PI
is the set of input ports of a FILL graph and S is a set of places in a reference net and

NOT a set of system operations. ms matches an input port to its corresponding place in

the reference net; mt matches an output port to its corresponding place in the reference

net. This convention simplifies the definition of transforming a data edge as described

below.

• Any string in typewriter font type, such as a, indicates the data ‘a’ of type String. The

combination of Strings with mathematical symbols implies the use of a adequate String

representations of this mathematical notation as String in the transformed reference net.

For example, in case of a variable v0 the resulting String would be v0.

Still, a basic convention for inscriptions in reference nets is necessary. This convention will

specify the type of data objects that are passed as tokens through the net. Based on the tuple

data structure in reference nets, a convention for transformation is defined as follows. In the

definition, any edge inscription in the transformed reference net must take the form of a tuple,

such as

[procID, ieID, DataObject].

The variables have the following meanings:

67



3. Formal Modeling of User Interfaces

procID This variable defines an id for the interaction process, which is modeled using the

net. The main purpose of this id is to enable some simplification of the resulting net.

procID is of type String.

ieID This id identifies the original interaction element that triggers the interaction pro-

cess. ieID is also of type String.

DataObject This is the data object that is originally generated by the input interaction

element, or the system to be controlled and is modified by any operation that it passes.

The function of procID and ieID will be explained in greater detail in the discussion on

transforming operations, proxies, and BPMN nodes below.

Preconditions

Beginning the transformation, N = (S, T,K, k,G,U, c) is an empty reference net with a given

reference declaration D = (Sig,A, Sig′, sR, Q, V, τ, C), which satisfies the convention introduced

by Java as an algebraic data type system, as well as its formalisms for transition inscriptions

described in Section 3.4. Additionally, F is a (not empty) FILL graph that has to be trans-

formed to N using an iterative transformation algorithm. This algorithm will be described as

elementary transformation steps for any FILL element. The use of conflicting symbols will be

clear in the context of use transforming F to N . Otherwise, further information will be given.

Transformation of System and Interaction-logic Operations

Transformations of system or of interaction-logic operations are, for the most part, identical,

differing only in the number of input ports. For system operations, exactly one input port

is transformed (as shown in Figure 3.18), while for interaction-logic operations, 0 to n input

ports are transformed. Still, each type of operation has exactly one output port that is trans-

formed. Figure 3.19 shows the transformation of an operation node with three input ports. The

transformation follows two main rules:

1. Every port is transformed into a place in the reference net. Depending on the type of

port, this place is the source (input port) or the destination (output port) of an edge

connected to the transitions that represent the operation.

2. Every operation is transformed into two transitions. One represents the operation call,

shown in Figure 3.18 with four parameters, which is connected to edges the sources of

which are places representing input ports. The other transition represents the return value

of the operation and is therefore connected to the place representing the output port by

an edge that points from the transition to the (output port) place.

The following pseudocode defines a part of the transformation algorithm extending the given

(at the beginning empty) reference net N and transforming a given system operation s from

F . The transformation of all system operations from F to N will be done by embedding the

following algorithm into an iterative process over all elements in F , which will be described at

the end of this section. This is true for each node in F , no matter what kind of FILL node it is.

This is also true for data edges, where channel edges are transformed during the transformation

68



3.4. Transformation to Reference Nets

qI

qO

tI

[procID, ieID, vI]

[procID, ieID, vO]

tO

:systemOperationCallback( f(s), procID, ieID, vO);

action systemOperationCall( f(s), procID, ieID, vI)
s

I

O

Figure 3.18.: Transformation of a VFILL system operation in a subnet of a reference net

of channel operations. The type of pseudocode used in Algorithm 3.27, describing the trans-

formation of system operations, will be used identically in other transformation algorithms for

other FILL elements.

Algorithm 3.27 (Transformation of System Operation) For a given system operation s

from F , the transformation to a subnet of N will be generated.

(1) vI ∈ V is a variable, where τ(vI) = t(pI) with pI ∈ P (s)
I .

(2) vO ∈ V is a variable, where τ(vO) = t(p
(s)
O ).

(3) tI and tO are transitions, where tI , tO /∈ T ,

inc(tI) = action systemOperationCall(f(s), procID, ieID, vI), and

inc(tO) = :systemOperationCallback(f(s), procID, ieID, vO).

(4) qI and qO are places, where qI , qO /∈ S, mt(pI) = qI , and ms(pO) = qO.

(5) uI and uO are tuple variables of structure

uI = [procID, ieID, vI], and uO = [procID, ieID, vO].

(6) eI and eO are edges, where eI , eO /∈ K,

k(eI) = (pI , tI , uI , in), and k(eO) = (pO, tO, uO, out).

(7) T := T ∪ {tI , tO}; S := S ∪ {qI , qO}; K := K ∪ {eI , eO}.

In the first step of Algorithm 3.27, variables are defined with types conforming to the types

of input and output ports in s. In the second step, two transitions are defined with inscriptions

conforming to the up- and downlink declarations for synchronous channels in reference nets

(introduced above) and their ability to connect to Java source code as a method call. Which

system operation has to be called on the Java level is encoded by f(s), which defines the

concrete system operation or method. This will also be the case for interaction-logic operations,

as described in Algorithm 3.28. For the edges defined in the last step of Algorithm 3.27, tuple

variables are defined, which include the formerly defined variables. The algorithm finishes by

adding all the generated elements to certain sets defining the reference net N . The given system

operation s and the resulting subnet from Algorithm 3.27 can be seen in Figure 3.18.

69



3. Formal Modeling of User Interfaces

The transformation of an interaction-logic operation sil from F is slightly different from

the transformation of a system operation. An interaction-logic operation transformation is

described by Algorithm 3.28, which differs from Algorithm 3.27 in how it handles input ports.

Interaction-logic operations have 0 to n input ports, which all have to be iteratively transformed.

Algorithm 3.28 (Transformation of Interaction-logic Operation) For a given interac-

tion-logic operation sil from F , the transformation to a subnet of N will be generated.

(1) n = #P
(sil)
I .

(2) vi ∈ V are variables, where τ(vi) = t(pi) with pi ∈ P (sil)
I , i = 0, . . . , n− 1.

(3) v ∈ V is a variable, where τ(v) = t(p
(sil)
O ).

(4) qO is a place, where qO /∈ S, and ms(p
sil
O ) = qO.

(5) tI and tO are transitions, where tI , tO /∈ T with

inc(tI) = action ilOperationCall(f(sil), id(sil), procID, ieID, v0,. . ., vn−1),

inc(tO) = :ilOperationCallback(f(sil), id(sil), procID, ieID, v).

(6) uO is a tuple variable of structure uO = [id(psilO ), ieID, v].

(7) eO is an edge, where eO /∈ K, and k(eO) = (qO, tO, uO, out).

(8) T := T ∪ {tI , tO}; S := S ∪ {qO}; K := K ∪ {eO}.

(9) FOR i = 0 TO n− 1 DO

(a) qi is a place, where qi /∈ S and mt(pi) = qi.

(b) ui is a tuple variable of structure ui = [procID, ieID, vi].

(c) ei is an edge, where ei /∈ K and k(ei) = (pi, tI , ui, in).

(d) S := S ∪ {qi}; K := K ∪ {ei}.

In Algorithm 3.28, variables are defined for each of the input ports of sil as is one variable

for its output port. Similarly to Algorithm 3.27, two transitions are defined that represent

calls to and from Java code implementing the functionality of the interaction-logic operation.

Here, the method name used indicates that the corresponding operation is an interaction-logic

operation, so that it is impossible to confuse this operation with a system operation. The

concrete interaction-logic operation that has to be called on the Java level is encoded similarly

to system operations, using the function f(sil). The FOR-loop at the end of Algorithm 3.28

generates the necessary places and edges to represent the input ports of for sil in N and adds

them to the sets S and K of N . Figure 3.19 visualizes the transformation that results from

Algorithm 3.28 using an example of an interaction-logic operation with three input ports.

Before examining the transformation of other FILL nodes, several issues concerning the trans-

formation of interaction-logic operations should be mentioned. First of all, calling external

methods in this way can generate problems when conducting a formal analysis of interaction

logic that relies on approaches and techniques such as those used in process analysis based on

Petri net formalism. If only the consistency of used data types is important for the analysis,

70



3.4. Transformation to Reference Nets

sil

p0 p1 p2

pO

q1

qO

tI

[id(pI), ieID, v]

tO

q2qO

action ilOperationCall( f(sil), id(sil), procID, ieID, v0, v1, v2)

:ilOperationCallback( f(sil), id(sil), procID, ieID, v);

[id(p0), ieID, v0]

[id(p1), ieID, v1]

[id(p2), ieID, v2]

Figure 3.19.: Transformation of a VFILL interaction-logic operation in a subnet of a reference

net

there will not be a problem. However, a problem in analysis arises if the type of functional-

ity implemented by the interaction-logic operations has to be taken into account because the

analysis method would have to take other formalisms into account (such as Java) beside the

reference net formalism. Here, two solutions to this problem are mentioned:

Use of One Transition with Data Transformation given as an Inscription In this solution,

the interaction-logic operation is not transformed into two transitions, but into one transition

that is inscribed by a data transformation. How complex this transformation can be is limited

by the inscription language. Simple conversions can be described by such means as arithmetic

operations and type conversions. Still, the exclusive use of inscription is not as expressive as

the Java-based approach.

Use of Two Transitions Referencing a Further Net Instance In this case, the two-transition

concept is maintained but changed in that the downlink transition creates a net instance to

represent the interaction-logic operation and sends the data to it. Therefore, the interaction-

logic operation models complex behavior as would a reference net while doing data conversion or

other operations. Figure 3.20 provides an example of this approach as it would be modeled using

Renew. On the left side, there is a cutout of more complex interaction logic; this represents

the transformed interaction-logic operation. The two transitions representing the interaction

logic operation are not connected via a synchronous channel to Java code but to a net instance

of net ggtNet. The net pattern of net ggtNet can be seen on the right side of Figure 3.20.

The net instance of net ggtNet will be generated by the initialization part of the interaction

logic net on the left (which will be also generated by an extended transformation algorithm).

Any time the interaction logic operation is activated by two values being sent to the input

places, the transition inscribed n:ggt(this,v0,v1) can fire, resulting in firing the :ggt(n,y,z)

transition in the net instance n of type ggtNet. The parameters of the downlink transition refer

to the interaction logic net (using this) and to the two parameters sent to the interaction-logic

operation. The net reference is necessary for a callback with the resulting value, which is, in

this case, the greatest common divisor (ggt) of the values v0 and v1.

Based on the latter approach, various types of complex algorithms for data conversion can be

included in the interaction logic without the necessity of introducing a higher-level language.

71



3. Formal Modeling of User Interfaces

Interaction 
Logic
Detail

ggtNet
Initialization

IL Operation 
Transformation

Net Instance 
of ggtNet

n

n

v0 v1

n

x
ggt

:ggtReturn(ggt)

n:ggt(this,v0,v1)

n = new ggtNet;
n

[z,r+z,z]

[y,z,r] [y,z,r]

[y,z,r-z]

[y,z,r]

[y,z,r]

[y,z,r][y,z,r]

[y,z,y]

[y,z,r]

[y,z,z]
guard z == 0;

guard z != 0;
guard r >= 0;

guard r < 0;

n:ggtReturn(y);

[y,z,r]n

Figure 3.20.: Example of possible extension to the transformation algorithm for interaction-

logic operations using the referencing mechanism formalized and implemented for

reference nets; modeled in Renew

The same is true for system operations. Here, one net instance of the system implementation as

a reference net is initialized and passed to all system operation representations in the interaction

logic. A precondition for this approach is that the system be modeled as a reference net. If

this is done and all interaction-logic operations are modeled as reference nets as well, the whole

model can be analyzed using the analysis tools and algorithms for Petri nets.

A further matter that will be of even greater interest in the context of the next section

should also be mentioned here. If the system and interaction-logic operations are modeled

as reference nets, applied reconfigurations to interaction logic can also be directly integrated

into the system’s model if necessary. This is of interest in situations in which the user makes

decisions that were not implemented or considered beforehand, for instance, when the user

changes a critical system state back to a normal system state. By applying this approach, the

system is able to learn from human behavior or, more specifically, from the reconfiguration of

interaction logic conducted by a human user.

Transformation of Proxies

Transformation of proxies is slightly different than transformation of operations. A proxy

represents a value sent from the physical representation of a user interface (output proxy) or

a value sent to the physical representation in order to present a visualization (input proxy).

Figure 3.21 shows the transformation of an output and an input proxy to a reference subnet.

In such cases, the transition represents the import of a value into the net if it is the source

of an edge pointing to a place or the export of a value out of the net if the transition is the

destination of the edge pointing to the corresponding place. The place represents the point of

connection for the rest of the net to the subnet representing the proxy. Algorithm 3.29 shows

the transformation of an output proxy op from F .

72



3.4. Transformation to Reference Nets

Algorithm 3.29 (Transformation of Output Proxy) For an output proxy op from F , the

transformation to a subnet of N will be generated.

(1) v is a variable, where τ(v) = t(op).

(2) t is a transition, where t /∈ T , and inc(t) = :κ(op)(v).

(3) q is a place, where q /∈ S, and ms(op) = q.

(4) u is a tuple variable of structure u = [id(q), κ(op), v].

(5) e is an edge, where e /∈ K, and k(e) = (q, t, u, out).

(6) T := T ∪ {t}; S := S ∪ {q}; K := K ∪ {e}.

The transformation Algorithm 3.30 of an input proxy ip is more or less identical to the

transformation of an output proxy, as was shown in Algorithm 3.29.

Algorithm 3.30 (Transformation of Input Proxy) For an input proxy ip from F , the

transformation to a subnet of N will be generated.

(1) v is a variable, where τ(v) = t(ip).

(2) t is a transition, where t /∈ T , and inc(t) = action widgetCallback(κ(ip), v).

(3) q is a place, where q /∈ S, and mt(ip) = q.

(4) u is a tuple variable of structure u = [id(q), κ(ip), v].

(5) e is an edge, where e /∈ K, and k(e) = (q, t, u, in).

(6) T := T ∪ {t}; S := S ∪ {q}; K := K ∪ {e}.

The results of Algorithms 3.29 and 3.30 can be seen in Figure 3.21. Both algorithms transform

a proxy to a subnet consisting of a place, a transition, and an edge, where the edge’s direction

indicates whether the subnet represents an input or an output proxy. Especially important

for Algorithms 3.29 and 3.30 is the correct transformation of the connection to the physical

element that is represented by these proxies. This problem is solved by ids referencing the

interaction elements in the physical representation layer. These ids are associated with proxies

using the function id. In the process of implementation, ids can be generated during runtime

and thus do not have to be part of the formalism. For output proxies, the id of the associated

interaction element is simultaneously the channel inscription of the corresponding transition in

the transformed subnet. With output proxies that call Java methods, an interface method has

to be declared called widgetCallback. Both decisions make sense from the perspective of an

implementation for simulating formal interaction logic. Here, every interaction element knows

its id and thus which transition has to be called. In callback, the necessity that any extension

of the physical representation would result in a complex extension of the programming interface

makes a common definition of the one-interface method reasonable. Which interaction element

will be referenced is defined by the first parameter of the interface method. More information

concerning implementation and simulation will be presented in Chapter 5, which introduces the

framework implemented for this dissertation.

73



3. Formal Modeling of User Interfaces

ip

t

q

Input Proxy Transformation
action widgetCallback(κ(op), v)

[id(q), κ(op), v]
op

t

q

Output Proxy Transformation

:κ(op)(v)

[id(q), κ(op), v]

Figure 3.21.: Transformation of VFILL input and output proxies in a subnet of a reference net

Transformation of Channel Operations

In contrast to the previous transformations, the transformation of channel operations has to

take into account channels defined by relation c in a FILL graph. The number of outgoing

channel edges (as visual representations of channels defined by c) of an input channel operation

defines the number of place-transition constructions connected to a transition that represents

the channel operation itself. Furthermore, a place represents the connection to the channel oper-

ation from the perspective of interaction logic. The connections between these place-transition

constructions are modeled by synchronous channels in the reference net as shown in Figure

3.22. Based on the id of the output channel operation, parts of the inscriptions are generated

that control which transition is called to represent a given output-channel operation. First, the

transformation of an input-channel operation cI will be described in Algorithm 3.31.

Algorithm 3.31 (Transformation of Input-Channel Operation) For a given input-chan-

nel operation cI from F , the transformation to a subnet of N will be generated.

(1) i = 0.

(2) v is a variable, where τ(v) = t(pI),and pI ∈ P (cI)
I .

(3) qI is a place, where qI /∈ S, and mt(pI) = qI .

(4) tI is a transition, where tI /∈ T .

(5) uI is a tuple variable of structure uI = [procID, ieID, v].

(6) eI is an edge, where eI /∈ K, and k(eI) = (pI , tI , uI , in).

(7) T := T ∪ {tI}; S := S ∪ {pI}; K := K ∪ {eI}.

(8) FOR ALL cO ∈ CO with c(cI) = cO DO

(a) ti is a transition, where ti /∈ T , and inc(ti) = this:channel(id(cO), ieID, v);.

(b) qi is a place, where qi /∈ S.

(c) ui is a tuple variable of structure ui = [procID, ieID, v].

(d) ei1 is an edge, with ei1 /∈ K, and k(ei1) = (qi, ti, ui, in).

(e) ei2 is an edge, with ei2 /∈ K, and k(ei2) = (qi, tI , ui, out).

(f) T := T ∪ {ti}; S := S ∪ {pi}; K := K ∪ {ei1, ei2}.

(g) i+ +.

74



3.4. Transformation to Reference Nets

Input CO
cI

pI

tI

qI

q0 q1 q2

t0

t1

t2

Output CO
c0

Output CO
c1

Output CO
c2

[procID, ieID, v]

[procID, ieID, v] [procID, ieID, v]
[procID, ieID, v]

this:channel(id(c0), ieID, v)

this:channel(id(c1), ieID, v)

this:channel(id(c2), ieID, v)

tI

qI

[procID, ieID, v]

this:channel(id(c0), ieID, v);
this:channel(id(c1), ieID, v);
this:channel(id(c2), ieID, v);

[procID, ieID, v]
[procID, ieID, v]

[procID, ieID, v]

Figure 3.22.: Transformation of an input channel operation shown as a VFILL node (subnet)

into a subnet of a reference net

Figure 3.22 shows the structure of an input-channel operation resulting from Algorithm 3.31.

The transformed input-channel operation is connected exemplarily to three channels and thus

to three different output channel operations. It can also be seen that the channels are encoded

via the id of the output-channel operation that is introduced to the inscription of the transitions

inscribed with the synchronous channel called this:channel. With this id and the unification

of transitions inscription for synchronous channels, the corresponding transition representing

the output-channel operation can be identified during runtime.

In the upper right of Figure 3.22, an alternative transformation can be seen. The semantic

is identical, but the structure of the subnet is much simpler. The transition shown has a much

more complex inscription, subsuming all downlinks to all transitions that represent output-

channel operations associated with the transformed input-channel operation through channels.

In spite of this apparent complexity, Algorithm 3.31 was chosen to represent channels in the

reference net’s structure in order to make the resulting net more understandable by a human

expert and to simplify the application and creation of transformation rules to create the required

net. This will be discussed in greater detail in Chapter 4.

The transformation of output-channel operations is easier than the transformation of input-

channel operations. Output-channel operations only have to be transformed to a simple struc-

ture, as shown in Figure 3.23. This is because output-channel operations do not have to differ-

entiate between different channels; they only receive calls from input-channel operations or from

downlink transitions. The following pseudocode describes the conversion of an output-channel

operation cO to a reference subnet.

Algorithm 3.32 (Transformation of Output-Channel Operation) For a given output-

channel operation cO from F , the transformation to a subnet of N will be generated.

(1) v is a variable, where τ(v) = t(p
(cO)
O ).

(2) q is a place, where q /∈ S, and ms(p
(cO)
O ) = q.

(3) t is a transition, where t /∈ T , and inc(t) = :channel(id(cO), ieID, v);.

75



3. Formal Modeling of User Interfaces

(4) u is a tuple variable of structure u = [id(p
(cO)
O ), ieID, v].

(5) e is an edge, with e /∈ K, and k(e) = (q, t, u, out).

(6) T := T ∪ {t}; S := S ∪ {p}; K := K ∪ {e}.

Algorithm 3.32 is visualized in Figure 3.23, where the result of the transformation can be

seen. In this way, every output-channel operation is simply transformed to a unique uplink that

is indicated by the output-channel operation’s id embedded in the transition’s inscription.

Output CO
cO

pO

t

q

[id(pO), ieID, v]

:channel(id(cO), ieID, v);

Figure 3.23.: Transformation of an output channel operation shown as a VFILL node into a

subnet of a reference net

This id-based transformation has the disadvantage that output-channel operations can only

be associated with one channel—a restriction that does not exist in FILL’s formal definition.

This means that, if n channels are connected to one output channel operation, the id-based

transformation has to be changed to use ids that are associated with the channel itself, that is,

to any pair (cI , cO) with c(cI) = cO. The resulting structure of the subnet for output-channel

operations would then be similar to that of input-channel operations (except that all edges have

inverted orientation, and the channel-representing transitions are inscribed with uplinks instead

of downlinks).

Transformation of BPMN Nodes

In context of transformation of BPMN nodes, three different aspects have to be considered.

1. The semantics of BPMN nodes, described in Table 3.1,

2. the edge labels associated with the incoming and outgoing edges surrounding the BPMN

nodes, and

3. their associated guard conditions.

The semantics of BPMN nodes undergo a structural transformation into a reference net. This

means that the semantics of BPMN nodes are transformed into a specific structure of places

and transitions in the resulting reference subnet. For the transformation of an OR node, the

grouping labels of edges are relevant to the transformation process. For BPMN nodes without

grouping, the labels are not important for the structural transformation.

Transformation of guard conditions is simple. It is based on the association of the guard condi-

tions in FILL directly with the main transition of the transformed reference subnet representing

the transformed BPMN node. The definitions of guard conditions in FILL are syntactically and

76



3.4. Transformation to Reference Nets

semantically similar to those in reference nets. Thus, a one-to-one conversion can be applied

without the necessity of further transformation, with one exception: the reference part of a

guard condition in FILL has to be split from its conditional part.

Figures 3.24 through 3.26 show the three types of BPMN nodes in FILL’s visual representation

and their transformation into reference nets. For the formal algorithmic transformation, an

additional declaration is required as follows:

• If b ∈ B is a BPMN node from a given FILL graph, than E′inb and E′outb are sets, such

that

E′inb = {(p, b)|(p, b) ∈ E′, p ∈ PO ∪XO}, and

E′outb = {(b, p)|(b, p) ∈ E′, p ∈ PI ∪XI}.

• If e = (s, t) ∈ E′ is an edge of a FILL graph, than src : E′ → PO ∪ XO ∪ B and

trg : E′ → PI ∪XI ∪B are two functions with

src(e) = s, and

trg(e) = t.

• If b ∈ B is a BPMN node of a FILL graph, than mbt : E′inb → S and mbs : E′outb → S

are functions similar to mt and ms. Thus, S is a set of places in a reference net and

not a set of system operations. mbt and mbs matches incoming and outgoing edges of a

BPMN node b to the incoming and outgoing places representing the connector nodes in

a reference net for these edges.

• ids : S′ → ID is a total bijective function that matches a place in a reference net to an

id similar to function id. S′ ⊆ S is a subset of places representing connections to and

from a BPMN node. This function is necessary for the transformation of BPMN nodes; it

compensates for the fact that a BPMN node does not have ports associated with ids. The

inverse function id−1s matches an id to a place in a reference net. Due to the bijectivity

of ids, there is an inverse function id−1s .

• If b ∈ B is a guard condition, than grd and ref are functions where bc is the conditional

part of b with grd(b) = bc and br is the reference part of b with ref(b) = br. refg is a

function where bg is the group of a reference part of a guard condition with refg(ref(b)) =

bg; refe is a function where be is the referenced edge with refe(ref(b)) = be. For example,

consider a guard condition b, with

b = guard (a > 3) & (b == true) -> g1:c;,

than the functions grd, ref , refg and refe map b on

grd(b) = guard (a > 3) & (b == true);,

ref(b) = g1:c,

refg(ref(b)) = refg(g1:c) = g1, and

refe(ref(b)) = refe(g1:c) = c.

77



3. Formal Modeling of User Interfaces

For an edge label l ∈ L, refg and refe map l to the edge group or to the individual edge

label. For example, consider an edge label

l = g1:d,

than the functions refg and refe map l on

refg(l) = refg(g1:d) = g1, and

refe(l) = refe(g1:d) = d.

• It is important in the transformation of BPMN nodes to differentiate between the name

of a variable, its type and the variable itself. To do this, a function called nam : V → N
maps a variable in a reference net to its name as an element of set N . All elements n ∈ N
are strings and are of the same type as the edge labels of set L in a FILL graph.

• If b ∈ B is a BPMN node from a FILL graph, than E′ing:b is a subset of set E′inb , merging

all edges that are part of the same group g. The same is true for set E′outh:b as a subset of

set E′outb specified by group h. Set Gb is a set of all groups used in BPMN node b.

AND Node An AND node is transformed based on the structure shown in Figure 3.24. First,

the transformation of an AND node in a case of fusion will be defined in Algorithm 3.33. The

types of variables have to be derived from the ports of the incoming and outgoing edges of the

given AND node. Thus, b⊕ ∈ B is an AND node of F with n incoming edges e0, . . . , en−1 ∈ E′inb⊕
and one outgoing edge eout ∈ E′outb⊕

.

Algorithm 3.33 (Transformation of a fusing AND node) For an AND node b⊕ with n in-

coming edges e0, . . . , en−1 ∈ E′inb⊕ and one outgoing edge eout ∈ E′outb⊕
from F , the transformation

to a subnet of N will be generated.

(1) v0, . . . , vn−1 are variables, where

τ(vi) = t(src(ei)), and nam(vi) = l(ei) with i = 0, . . . , n− 1.

(2) v is a variable, where τ(v) = t(trg(eO)).

(3) q is a place, where q /∈ P , and mb⊕s(eout) = q.

(4) t is a transition, where t /∈ T , and inc(t) = grd(g(b⊕)).

(5) u is a tuple, where u = [ids(q), ieID0, ref(g(b⊕))].

(6) e is an edge, where e /∈ K, and k(e) = (q, t, u, out).

(7) T := T ∪ {t}; S := S ∪ {q}; K := K ∪ {e}.

(8) FOR i = 0 TO n− 1 DO

(a) qi is a place, where qi /∈ S, and mb⊕t(ei) = qi.

(b) ui is a tuple, where ui = [procIDi, ieIDi, vi].

(c) ei is an edge, where ei /∈ K, and k(ei) = (qi, t, ui, in).

(d) S := S ∪ {qi}; K := K ∪ {ei}.

78



3.4. Transformation to Reference Nets

In Algorithm 3.33, the transformation of a fusing AND node has been formalized in two parts.

In the first half, a transition is generated. Next, all n incoming edges are iteratively transformed

into n edge/place constructions representing connections from the AND node subnet to the

remaining interaction logic. The use of one transition implements the synchronization semantics

of an AND node based on elements in reference nets; the transition cannot fire before all

incoming places are equipped with tokens. This corresponds with the semantics of an AND

node as described in Table 3.1.

Algorithm 3.34 defines the transformation of a branching AND node. In this case, b⊕ ∈ B is

an AND node in F with one incoming edge ein ∈ E′inb⊕ and n outgoing edges e0, . . . , en−1 ∈ E′outb⊕
.

Algorithm 3.34 (Transformation of a branching AND node) For an AND node b⊕ in F

with 1 incoming edge ein ∈ E′inb⊕ and n outgoing edges e0, . . . , en−1 ∈ E′outb⊕
, the transformation

to a subnet of N is generated.

(1) v0, . . . , vn−1 are variables, where

τ(vi) = t(trg(ei)), and nam(vi) = l(ei) with i = 0, . . . , n− 1.

(2) v is a variable, where τ(v) = t(src(ein)), and nam(v) = l(ein).

(3) q is a place, where q /∈ P , and mb⊕s(ein) = q.

(4) t is a transition, where t /∈ T , and inc(t) = grd(g(b⊕)).

(5) u is a tuple, where u = [procID, ieID, ref(g(b⊕))].

(6) e is an edge, where e /∈ K and k(e) = (p, t, u, out).

(7) T := T ∪ {t}; S := S ∪ {q}; K := K ∪ {e}.

(8) FOR i = 0 TO n− 1 DO

(a) qi is a place, where qi /∈ S, and mb⊕s(ei) = qi.

(b) ui is a tuple, where ui = [ids(qi), ieIDi, vi].

(c) ei is an edge, where ei /∈ K, and k(ei) = (qi, t, ui, out).

(d) S := S ∪ {qi}; K := K ∪ {ei}.

Algorithm 3.34 transforms a given AND node to a subnet as shown in Figure 3.24. It is similar

to Algorithm 3.33 except that now n outgoing edges are activated simultaneously. To model

this semantics, one transition is again used, which is activated by one incoming place/edge

construction and, after it has been fired, generates n identical data objects. These data objects

are sent simultaneously to all n outgoing place/edge constructions, representing the n outgoing

edges of the given branching AND node.

XOR Node An XOR node is transformed on the basis of the reference net structure that can

be seen in Figure 3.25. First, the transformation of a fusing XOR node will be described in

Algorithm 3.35. The node b⊗ ∈ B should be a BPMN node of a given VFILL graph with n

incoming edges ei ∈ E′inb⊗ , i = 0, . . . , n− 1 and one outgoing edge eout ∈ E′outb⊗
.

79



3. Formal Modeling of User Interfaces

VFILL Reference NetType

t

q

q0 q1 q2

t

q1q0

q

q2

Fu
si

on
Br

an
ch

A
N

D
 

Node 

guard true -> a;

guard x >= 3;

a
b

c

a
b

c

x

[procID0, ieID0, a]

[procID1, ieID1, b]

[procID2, ieID2, c]

guard true;

[id(q), ieID0, a]

[procID, ieID, x]

[ids(qO), ieID, x]
[ids(q1), ieID, x]

[ids(q2), ieID, x]

guard x >= 3;

Figure 3.24.: Transformation of fusing and branching AND nodes to a reference nets

Algorithm 3.35 (Transformation of fusing XOR node) For a XOR node b⊗ in F with n

incoming edges ei ∈ E′inb⊗ , i = 0, . . . , n− 1 and 1 outgoing edge eout ∈ E′outb⊗
, the transformation

to a subnet of N is generated.

(1) v0, . . . , vn−1 are variables, where

τ(vi) = t(src(ei)), and nam(vi) = l(ei) with i = 0, . . . , n− 1.

(2) v is a variable, where τ(v) = t(src(eout)), and nam(v) = l(eout).

(3) q is a place, where q /∈ P , and mb⊗s(eout) = q.

(4) S := S ∪ {q}.

(5) FOR i = 0 TO n− 1 DO

(a) qi is a place, where qi /∈ S, and mb⊗t(ei) = qi.

(b) ti is a transition, where ti /∈ T , and inc(ti) = grd(g(b⊗)) with ref(g(b⊗)) = l(ei).

(c) ui1 is a tuple, where ui1 = [procID, ieID, vi].

(d) ui2 is a tuple, where ui2 = [ids(qi), ieID, vi].

(e) ei1 is an edge, where ei1 /∈ K, and k(ei1) = (qi, ti, ui1, in).

(f) ei2 is an edge, where ei2 /∈ K, and k(ei2) = (q, ti, ui2, out).

(g) S := S ∪ {qi}; K := K ∪ {ei1, ei2}.

The semantics of an XOR node is opposite to that of an AND node. Here, during fusion,

any incoming data object is sent to the outgoing edge. Thus, for every incoming edge, a

place connected to a transition has to be generated to transport the incoming data object

associated with that particular edge—without being affected by other incoming edges—to the

80



3.4. Transformation to Reference Nets

outgoing edge represented by a further place. The transformation of incoming edges is again

implemented iteratively, creating the place/transition construction as described in Algorithm

3.35 and as shown in Figure 3.25.

In branching, an XOR node b⊗ ∈ B of a FILL graph will have one incoming edge ein ∈ E′inb⊗
and n outgoing edges ei ∈ E′outb⊗

, i = 0, . . . , n − 1. The transformation is defined in Algorithm

3.36.

Algorithm 3.36 (Transformation of a branching XOR node) For a XOR node b⊗ in

F with 1 incoming edge ein ∈ E′inb⊗ and n outgoing edge ei ∈ E′outb⊗
, i = 0, . . . , n − 1, the

transformation to a subnet of N is generated.

(1) v0, . . . , vn−1 are variables, where

τ(vi) = t(src(ei)), and nam(vi) = l(ei) with i = 0, . . . , n− 1.

(2) v is a variable, where τ(v) = t(src(ein)), and nam(v) = l(ein).

(3) q is a place, where q /∈ P , and mb⊗t(ein) = q.

(4) S := S ∪ {q}.

(5) FOR i = 0 TO n− 1 DO

(a) qi is a place, where qi /∈ S, and mb⊗s(ei) = qi.

(b) ti is a transition, where ti /∈ T , and inc(ti) = grd(g(b⊗)) with ref(g(b⊗)) = l(ei).

(c) ui1 is a tuple, where ui1 = [ids(qi), ieID, vi].

(d) ui2 is a tuple, where ui2 = [procID, ieID, vi].

(e) ei1 is an edge, where ei1 /∈ K, and k(ei1) = (qi, ti, ui1, out).

(f) ei2 is an edge, where ei2 /∈ K, and k(ei2) = (q, ti, ui2, in).

(g) S := S ∪ {qi}; K := K ∪ {ei1, ei2}; T := T ∪ {ti}.

In contrast to AND nodes, branching XOR nodes activate exactly one outgoing edge of

the n edges. Similar to the transformation in Algorithm 3.35, Algorithm 3.36 generates one

place/transition construction for every outgoing edge. If the incoming edge (here represented

as one place) is activated by a data object, the guard conditions connected to the outgoing

edges—and therefore to the transitions that represent them—decide which transition will fire

and thus which outgoing edge will be activated.

OR Node The transformation of an OR node results in a reference net that is a mixture of

an XOR and an AND node transformation because of the use of edge groups. Edges in a group

behave like edges being fused or branched using an AND node; groups of edges behave like edges

being fused or branched using an XOR node. Thus, if only one group exists, the semantics of

an OR node is similar to that of an AND node. If any edge has its own group, the semantics

of the OR node is similar to that of an XOR node. The transformation of a fusing OR node

b� ∈ B with n incoming edges ei ∈ E′inb� , i = 0, . . . , n− 1 and one outgoing edge eout ∈ E′outb�
is

defined in Algorithm 3.37 and can be seen in Figure 3.26.

81



3. Formal Modeling of User Interfaces

VFILL Reference NetType

t2

q1q0 q2

t0 t1

q

t2

q1q0 q2

t0 t1

q

XO
R

Fu
si

on
Br

an
ch

Node 

guard a >= 5 -> a;
guard b == 6 -> b;
guard true -> c;

guard x > 6 -> a;
guard x == 6 -> b;
guard x < 6 -> c;

x

guard a >= 5;

[procID, ieID, a] [procID, ieID, b] [procID, ieID, c]

guard b == 6; guard true;

[ids(q), ieID, a]
[ids(q), ieID, b]

[ids(q), ieID, c]

guard x > 6;

[procID, ieID, x]
[procID, ieID, x]

[procID, ieID, x]

guard x == 6; guard x < 6;

[id(p0), ieID, x] [id(p1), ieID, x] [id(p2), ieID, x]

a
b

c

a
b

c

Figure 3.25.: Transformation of fusing and branching XOR nodes in reference nets

Algorithm 3.37 (Transformation of a fusing OR node) For an OR node b� in F with n

incoming edges ei ∈ E′inb� , i = 0, . . . , n− 1 and 1 outgoing edge eout ∈ E′outb�
, the transformation

to a subnet of N is generated.

(1) v0, . . . , vn−1 are variables, where

τ(vi) = t(src(ei)), and nam(vi) = refe(l(ei)) with i = 0, . . . , n− 1.

(2) q is a place, where q /∈ P , and mb�s(eout) = q.

(3) S := S ∪ {q}.

(4) FOR ALL gr ∈ Gb� DO

(a) tgr is a transition, where

tgr /∈ T, and inc(tgr) = grd(g(b�)) with refg(ref(g(b�))) = gr.

(b) vgr is a variable, where vgr = vi with nam(vi) = refe(ref(g(b�))).

(c) ugr is a tuple, where ugr = [ids(q), ieID, vgr].

(d) egr is an edge, where egr /∈ K, and k(egr) = (q, tgr, ugr, out).

(e) T := T ∪ {tgr}; K := K ∪ {egr}.

(f) FOR ALL ei ∈ E′ingr:b� DO

(A) qei is a place, where qei /∈ S, and mb�t(ei) = qei .

(B) uei is a tuple, where uei = [procID, ieID, vi].

(C) eei is an edge, where eei /∈ K, and k(eei) = (qei , tgr, uei , in).

(D) S := S ∪ {qei}; K := K ∪ {eei}.

82



3.4. Transformation to Reference Nets

In Algorithm 3.37, the transformation of OR nodes to reference subnets is based on groupwise

transformation, rather than edgewise transformation as is the case for the AND and XOR nodes

in Algorithms 3.33 through 3.36. Nevertheless, edgewise transformation is used on the group

level. Every group uses one synchronizing transition paired with places—one place for each edge

in the group. The whole transformation is iteratively defined over groups and their edges. The

transformation of a branching OR node b� ∈ B with n outgoing edges ei ∈ E′outb�
, i = 0, . . . , n−1

and one incoming edge ein ∈ E′inb� is defined in Algorithm 3.38.

Algorithm 3.38 (Transformation of a branching OR node) For an OR node b� in F with

1 incoming edge ein ∈ E′inb� and n outgoing edges ei ∈ E′outb�
, i = 0, . . . , n− 1, the transformation

to a subnet of N is generated.

(1) v is a variable, where τ(v) = t(src(ein)), and nam(v) = refe(l(ein)).

(2) q is a place, where q /∈ P , and mb�t(ein) = q.

(3) S := S ∪ {q}.

(4) FOR ALL gr ∈ Gb� DO

(a) tgr is a transition, where

tgr /∈ T, and inc(tgr) = grd(g(b�)) with refg(ref(g(b�))) = gr.

(b) ugr is a tuple, where ugr = [procID, ieID, v].

(c) egr is an edge, where egr /∈ K, and k(egr) = (p, tgr, ugr, in).

(d) T := T ∪ {tgr}; K := K ∪ {egr}.

(e) FOR ALL ei ∈ E′ingr:b� DO

(A) qei is a place, where qei /∈ S, and mb�s(ei) = qei .

(B) uei is a tuple, where uei = [id(qei), ieID, v].

(C) eei is an edge, where eei /∈ K, and k(eei) = (qei , tgr, uei , out).

(D) S := S ∪ {qei}; K := K ∪ {eei}.

Algorithm 3.38 is similar to Algorithm 3.37, iterating only over groups of outgoing edges and

not over groups of incoming edges.

Transformation of Data Edges

Edges are the last elements of a FILL graph to undergo transformation. It is the data edges

between ports and proxies that have to be transformed. Edges representing channels are trans-

formed in channel operations. This final transformation of data edges creates a complete refer-

ence net from all the subnets produced by the transformation of FILL nodes described above.

The result is an adequate representation of a given interaction logic modeled as a FILL graph.

In the final reference net, all relevant places will be connected via edge-transition construc-

tions like the one shown in Figure 3.27. To this end, Algorithm 3.39 will transform an edge

e = (pO, pI) ∈ E′ of F to a subnet in N connecting to the places in the subnets created by

Algorithms 3.27 through 3.38.

83



3. Formal Modeling of User Interfaces

VFILL Reference NetType

g1:a

g1:b

g2:c

g1:a
g1:b

g2:c

t1

q1q0 q2

t0

q

t1

q1q0 q2

t0

q

O
R

Fu
si

on
Br

an
ch

Node 

guard a > 0 -> g1:b;
guard c > 3 -> g2:c;

x

guard x > 0 -> g1;
guard x <= 0 -> g2;

[procID, ieID, a] [procID, ieID, b][procID, ieID, c]

guard a > 0;

[id(pO), ieID, b]

guard c > 3;

[id(pO), ieID, c]

[procID, ieID, x][procID, ieID, x]

guard x > 0; guard x <= 0;

[id(p0), ieID, x][id(p1), ieID, x][id(p2), ieID, x]

Figure 3.26.: Transformation of fusing and branching OR nodes in reference nets

Algorithm 3.39 (Transformation a data edge) For a data edge e = (pO, pI) ∈ E′ of F ,

the transformation to a subnet of N is generated.

(1) v is a variable, where τ(v) = t(pO) = t(pI).

(2) t is a transition, where t /∈ T .

(3) qO is a place, and uO is a tuple variable, where

(a) IF pO ∈ PO ∪XO

qO ∈ S with ms(pO) = qO, and uO = [id(pO), ieID, v].

(b) ELSE IF pO ∈ B
mpOs(e) = qO, and uO = [ids(qI), ieID, v].

(4) qI is a place, and uI is a tuple variable where

(a) IF pI ∈ PI ∪XI

qI ∈ S with mt(pI) = qI , and uI = [id(pI), ieID, v].

(b) ELSE IF pI ∈ B
mpI t(e) = qI , and uI = [ids(pI), ieID, v].

(5) eO is an edge, where eO /∈ K, and k(eO) = (qO, t, uO, out).

(6) eI is an edge, where eI /∈ K, and k(eI) = (qI , t, uI , in).

(7) T := T ∪ {t}; K := K ∪ {eO, eI}.

In contrast to all the other transformation algorithms, Algorithm 3.39 has to identify places

in N that were created before the data edge transformation in Algorithm 3.39 begins. This

is because data edges are transformed into transitions connected to the places that represent

ports of operations, connections to BPMN or proxy nodes after transformation.

84



3.4. Transformation to Reference Nets

qq q

[procID0, ieID0, a]

[procID1, ieID1, b]

[procID2, ieID2, c]

guard true;t

qO

t

qI

t

[ids(qO), ieID, v]

[id(pI), ieID, v]

[procID, ieID, x]

action systemOperationCall('setValueA', procID, ieID,x)

guard true -> a;

a
b

c

setValueA

Integer

Integer

[id(pO), ieID0, a]

Figure 3.27.: Transformation of an edge to its representation as reference subnet

FILL Transformation Algorithm

In conclusion, the algorithms introduced above have to be embedded into an algorithm that

controls the overall transformation of the FILL graph F . That is the role of Algorithm 3.40,

which can be used as a super-construction to bundle the partial transformation algorithms

introduced above.

Algorithm 3.40 (Transformation of a FILL graph F to a reference net N) For a given

FILL graph F a representation as reference net N is generated.

(1) N is an empty reference net.

(2) FOR ALL s ∈ S of F call Algorithm 3.27 with N and PI and PO of F as parameter.

(3) FOR ALL sil ∈ I of F call Algorithm 3.28 with N and PI and PO of F as parameter.

(4) FOR ALL xO ∈ XO of F call Algorithm 3.29 with N as parameter.

(5) FOR ALL xI ∈ XI of F call Algorithm 3.30 with N as parameter.

(6) FOR ALL cI ∈ CI of F call Algorithm 3.31 with N and c as parameter.

(7) FOR ALL cO ∈ CO of F call Algorithm 3.32 with N and c of F as parameter.

(8) FOR ALL b ∈ B of F DO

(a) IF b is an AND node

(A) IF b is a fusion node call Algorithm 3.33.

85



3. Formal Modeling of User Interfaces

(B) ELSE call Algorithm 3.34.

(b) IF b is an XOR node

(A) IF b is a fusion node call Algorithm 3.35.

(B) ELSE call Algorithm 3.36.

(c) IF b is an OR node

(A) IF b is a fusion node call Algorithm 3.37.

(B) ELSE call Algorithm 3.38.

(9) FOR ALL e ∈ E′ of F call Algorithm 3.39 with N as a parameter.

Example of a Transformed FILL Graph

To conclude the current section, a transformed FILL graph will be presented in Renew’s visu-

alization of reference nets. Besides providing a simulator for reference nets, Renew also offers

a visual editor for modeling reference nets interactively or importing and exporting various

types of serializations. For the simulation, Renew uses a data structure called a shadow net

system, which represents a reference net in a form that is suitable for simulation without style

information like the position or size of transitions or places. This information is added as a net

drawing to the shadow net as visualized in Figure 3.28.

Figure 3.28 shows part of the interaction logic of a user interface. Its corresponding physical

representation can be seen in Figure 3.29, indicating parts that are associated with the partial

interaction logic in Figure 3.28. The interaction logic in Figure 3.28 describes the processing of

press events of the key labeled ‘SV2’ and the status of a lamp directly above it. Pressing this key

results in an open or close action of steam valve 2 in a simulation of a nuclear power plant (see

Section 7 below). The decision to open or close the valve is modeled into the interaction logic.

As can be seen on the left in Figure 3.28, a press event is sent to a system operation returning

the current value set to SV2, which is further processed using an XOR node. Depending on

its guard condition, if the current value is false, edge a will be activated. Otherwise, edge

b will be activated. If edge a is activated, a Boolean value true will be generated and sent

to the system operation setSV2Status. If edge b is activated, a Boolean value false will

be generated, and the valve will be closed. Figure 3.28 (right side) depicts the interaction

logic for controlling the status lamp. Here, an interaction-logic operation called ticker sends

simple data objects of type Object to the interaction process. This data object triggers the

getSV2Status system operation, which returns the current status of SV2. The Boolean value

resulting from this operation is directly sent to the input proxy representing the status lamp

on physical representation layer.

In addition to the interaction logic described as a FILL graph, Figure 3.28 shows its trans-

formation to a reference net. Here, the various processes involved in the transformation are

associated with the original elements in the FILL graphs. Thick lines connect the elements

in the FILL graph and the reference net, which are indicated by overlays with different types

of border; the dashed boxes indicate parts of the left interaction process (associated to the

key), and the dotted ones parts in the reference net resulting from transformation of the right

interaction process (associated to the lamp). The transformation itself is not further described

because the visual representation is simple, and the process can be easily derived from the visual

86



3.5. Extension of Interaction Logic Modeling

getSV2Status

Object

Boolean

Boolean

Event

Generate Boolean
Value(true)

Object

Boolean

generateBoolean
Value(true)

Object

Boolean

generateBoolean
Value(false)

Object

Boolean

setSV2Status

Boolean

Boolean

ticker

Object

getSV2Status

Object

Boolean

guard x.booleanValue()==false -> a;
guard x.booleanValue()==true -> b;

a b

x

setSV2Status

Boolean

Boolean

Figure 3.28.: Example of partial interaction logic and its corresponding transformation to a

reference net

representation of transformation algorithms introduced above. Nevertheless, one special feature

of the implementation of the transformation algorithm can be seen in Figure 3.28. Transforma-

tions of system operations are fused to only one subnet in interaction logic. Here, the system

operation getSV2Status has been used by the interaction processes for both the key and the

lamp. This reduces the number of elements in the reference net, thus enhancing performance.

Still, the interaction processes have to be distinguished, which is accomplished by using Process

ids (procID). As can be seen, the process ids specified in the tuple associated with the incoming

edges are different, and they only match specific tuples associated with the outgoing edges.

The next section will introduce some approaches to modeling the physical representation of

a user interface formally. In addition to some basic approaches based on XML description

language, an ongoing approach to modeling interaction elements will be introduced.

3.5. Extension of Interaction Logic Modeling

The presented architecture (cf. Figure 3.2) is closely related to other well-known concepts, such

as the Seeheim Model. This layered model was published in context of a workshop in 1983 [217].

As Figure 3.30 shows on the left, the Seeheim model differentiates between three layers: (a) the

87



3. Formal Modeling of User Interfaces

WP1:

WP2:

CP:

Control Rods:

Figure 3.29.: Physical representation of a user interface showing elements associated with the

interaction logic presented in Figure 3.28

presentation layer, which is basically equivalent to the physical representation of a formal user

interface, (b) the dialog control component, which has the same task as the interaction logic,

and (c) the application interface model, which is more or less equivalent to the system interface

as introduced in this work. Nevertheless, an enclosed formal modeling approach like the one

introduced in this work does not exist.

As further research has shown, this kind of rough two- or three-layer model is not fine-

grained enough for certain purposes. Thus, models like the ARCH model [300] (as is shown in

Figure 3.30 on the right) have been further developed to define a more detailed structure of

user interface models, thus offering a better approach for describing user interfaces in greater

detail. Here, the component specifying dialog has been extracted from the technology-dependent

perspective, where it was represented in the Seeheim model. Using translation components such

Presentation

Dialog Control

Application Objects Domain-Specific
Component

Domain-Adaptor
Component

Dialog
Component

Presentation
Component

Interaction Toolkit
Component

Domain Objects

Domain Objects Presentation Objects

Interaction Objects

Seeheim Model ARCH Model

Figure 3.30.: Seeheim and ARCH models as architectural approaches to user interface modeling

88



3.5. Extension of Interaction Logic Modeling

System

LDM1

View1

LDM2 LDM3 LDM4

View2 View3 View4

GDM

System Interface

IP
1

IP
2

IP
3

IP
4

IE1

IE2

IE3

IE4

IP
1

IP
2

IP
3

IP
4

IE1

IE2

IE3

IE4

IP
1

IP
2

IP
3

IP
4

IE1

IE2

IE3

IE4

IP
1

IP
2

IP
3

IP
4

IE1

IE2

IE3

IE4

Figure 3.31.: Extended user interface model considering local (LDM) and global dialog models

(GDM), differentiating communication between the user interface and the system

from its dialog model

as the domain-adapter component to translate task-level sequences from the dialog component

to the domain-specific component (denoted as system in this thesis) makes it possible for the

dialog model to be exchangeable without necessarily exchanging the domain-specific component

or, on the other side, the interaction toolkit component, which is equivalent to the physical

representation. Still, this model makes the domain-specific component and the interaction

toolkit component as exchangeable as the dialog component. Based on these findings, it should

be of interest to extend the basic model proposed in this thesis to one offering finer grained and

exchangeable components, identifying meta-models in the sense of dialog model components,

and, furthermore, to discuss to what extent these components can be managed using VFILL

and what role an extension to hybrid models can play.

Component-based User Interface Modeling with FILL

A first step towards component-based modeling of a user interface was made in the context

of FILL by the called interaction processes introduced above, which can be understood as

a sub-graph of the entire FILL-based interaction logic, which is exclusively associated with

one interaction element of the physical representation. The interrelation between different

interaction elements is part of the different interaction processes that are connected with each

other by channels. This kind of modeling approach of dialog aspects in the interaction logic

produces a fixed-dialog model entangled in the interaction logic, which was identified as a

problematic aspect in earlier research (cf. the Seeheim and ARCH models discussion above).

Thus, in future work, the basic approach of component-based modeling using the concept of

89



3. Formal Modeling of User Interfaces

interaction processes should be extended by a local dialog model describing the interrelation

between the interaction elements using FILL. Here, a possible approach could be to represent

interaction processes by interaction-logic operation nodes in which input and output ports

represent input and output channel operations in the interaction process, so that it is possible

to send specific information to the dialog model from the interaction process and vice versa. In

that local dialog model, dependencies and interrelations can be modeled on the basis of data

sent by the interaction processes. This makes the interaction processes and the dialog models

exchangeable and modularizes interaction logic, as can be seen in Figure 3.31. Here, the dialog

model is indicated as local dialog model or LDM.

The term local refers to the fact that user interfaces modeled in the sense of a general two-

layered concept only allow one physical representation to be modeled; that is, it is not possible

to model multiple views that can be changed depending on a global dialog model (GDM), as

is the case in today’s user interfaces. For instance, the user interface changes if new data has

been loaded that needs a different visualization and a different way to handle editing or changes

in presentation. In future work, the user interface model should be extended by a GDM. This

GDM handles physical components or views of the physical representation of a user interface,

such as a menu, a central component, or the like. Again, information from the GDM can be

passed to and from the various LDMs of the elementary user-interface components via channel

operations. LDMs could also be represented as interaction-logic operations on the level of the

GDM, which also makes GDMs be modeled by FILL. The whole resulting architectural structure

can be seen in Figure 3.31, where the physical representation is split into several views. Each

view is connected to an LDM, and the GDM handles the interaction of the various views.

The whole extension is also supported by reference nets, which are important because dialog

models are also modeled using FILL. Thus, a transformed FILL-based dialog model can also

be represented as reference nets. Using the reference mechanism, it is possible to modularize

interaction logic as described above using various nets instead of only one. The transformation

of channel operations will support a successful integration of the component-based architecture

into the existing formal approach.

Hybrid User Interface Models

Still, it would sometimes be helpful to integrate other kinds of formal models into FILL in order

to extend the possible range of modeling to other kinds of control structures and information-

generating models, as described, for instance, in [287]. Here, models of errors in interaction

implemented as deterministic finite automatons are integrated into reference net-based inter-

action logic to identify interaction errors during runtime and trigger relevant counteractions

to prevent fatal system errors. Based on FILL and its transformation to reference nets, it is

possible to integrate further modeling approaches to interaction logic. The example mentioned

above of integrating a deterministic finite automaton into reference net-based interaction logic

is only one specific example. Based on the concept as described in [287], adding third-party

models to interaction logic using the referencing mechanism of reference nets also makes it pos-

sible to integrate other kinds of formal models (probabilistic or mathematical models such as

differential equations) to the FILL-based modeling approach. These models can be bound to

interaction-logic operations and also, in this way, transformed into reference nets as described

above. The resulting reference net relates only to the specified model, which has also been

simulated in a specific simulation implementation during runtime. Therefore, the presented ap-

90



3.5. Extension of Interaction Logic Modeling

Server

Multi-User
Dialog Model/

Cooperation ModelSystem

System Interface

UI_Client1

IL

PR

UI_Client2

IL

PR

UI_Clientn

IL

PR

...

Figure 3.32.: Multi-user interface architecture to be modeled with FILL based on a client-server

architecture

proach can also be extended through further modeling approaches and, thus, is not only capable

of being modeled in a component-based fashion but also extensible for subsequent use of other

formal approaches without it being necessary to instigate a possibly erroneous transformation

to FILL.

Multi-User Interfaces

The last area of future work concerning interaction-logic modeling in this architectural context

is the modeling of multi-user interfaces. Here, multi-user interfaces are user interfaces that are

operated by more than one user in a cooperative or asynchronous fashion. Different scenarios

are possible. Probably the most common of these is the one-interface-multi-user scenario, where

one physical user interface exists but several users operate it. Another possible scenario is one

in which multiple interfaces are operated by multiple users. A case in point is cooperative

systems implemented on mobile devices. Here, less research has been done, especially from the

perspective of user-interface modeling and creation. Most work has focused on the problem

of creating user interfaces for devices with small monitors. FILL could serve as a modeling

language for multi-user dialog models, as can be seen in Figure 3.32. Here, the multi-user

interface is based on a client-server architecture, where the multi-user dialog-model runs on the

server and, simultaneously, on the n user interfaces; that is, for every user interface employed,

one runs on a client. These single-user interfaces are therefore modeled as described above

based on the formal component-based modeling approach.

91



3. Formal Modeling of User Interfaces

3.6. Formal Modeling of Physical Representation

Section 3.2 introduced the physical representation as a tuple (I, P, C, p, c), where

• I is a set of interaction elements representing the elementary items of a physical repre-

sentation of a user interface,

• P is a set of parameters defining specific attributes of certain interaction elements, where

p : I → P ∗ is a total function mapping every interaction element in I to a set of parameters

specifying their attributes, such as their outward appearance, and

• C is a set of classes of interaction elements, where c : I → C is a total function that

maps every interaction element of a given physical representation to a class of interaction

elements.

This simple and basic definition of a physical representation can be mapped to many publi-

cized standards for describing physical representations and user interfaces modeling languages,

which also include interaction logic elements in the description.

Past research has shown XML to be a suitable approach for standardized serialization of

complexly structured data. Especially in the modeling of user interfaces, XML has had a great

impact on the standardization of data formats for parsing, reading, and publishing interactive

content. One common example is XHTML [274], which is based on the SGML language standard

published by ISO [119]. A specific markup language for describing user interfaces is XUL [221],

which was developed as part of the Mozilla project4 and is now the standard language for

modeling user interfaces in the Firefox Browser [89]. The logic and the connection to the

system is implemented using JavaScript [92, 118], which itself is the standard in programming

dynamic content for the World Wide Web in AJAX [51], as well as other technologies, including

Flash [97] and ActionScript [237]. Still, XUL is application-dependent in the sense that a user

interface described in XUL can only be rendered and used in the Firefox Browser or in other

Mozilla framework-based implementations. There are some open-source projects for open XUL

for other platforms, like Java Swing, but they are still closely related to Mozilla’s framework.

Another example that is independent of certain implementations is UsiXML [273]. UsiXML

is a markup language for modeling user interfaces embedded in a huge framework for user

interface development unifying various XML-based languages, like TransformiXML, IdealXML,

and GrafiXML. This framework implements workflows for developing user interfaces in different

stages, from a model of task and concept, to an abstract user interface model, to a concrete user

interface, and, finally, to a final user interface. Various tools supporting this workflow were

developed mainly to support the transformation of modeled user interfaces to other contexts

with a minimum of effort5.

A further example is UIML, which is a markup language developed and standardized by

the OASIS standardization committee [190]. UIML was first developed by Phanouriou [218]

at the Center of Human-Computer Interaction at the Virginia Polytechnic Institute and State

University in 2000. It was developed mainly as a platform-independent markup language for

modeling user interfaces involving the style, structure, content, and behavior of a user interface.

These terms are not exactly the same as those used above. Here, the structure of a user

interface describes how elements of the user interface are positioned. Style defines style-specific

4http://www.mozilla.org
5http://www.usixml.org/index.php?mod=news

92



3.6. Formal Modeling of Physical Representation

aspects, such as color and font. The content of a UIML description defines the content of

the user interface’s elements, mainly text, images, and so forth. Behavior defines how the user

interface changes its outward appearance in relation to different system states and the elements’

interrelation. Logic defines the connection with a given data source, and presentation specifies

the parameters for any given device.

These description languages focus primarily on describing the physical representation of a

user interface. In some cases, they also include basic approaches to describing the behavior of

a user interface concerning events, etc. Still, there is no language, such as FILL, embedded

to describe complex data processing and the interrelation of interaction elements based on the

three-layered architecture described above. Also, the necessary specifications for connections

between interaction elements and interaction logic are not provided as they are in the explicit

connection between interaction logic and system interface shown above.

To address this lack, a proprietary XML-based format was implemented that provides the

specific information needed to combine the physical representation and the interaction logic

modeled as a reference net. Also, the flexibility of a user interface is also needed for reconfigu-

ration. The proprietary format, which is described in Section 5, could be transformed to UIML

or to another XML-based markup language to describe the physical representation. This trans-

formation, when implemented in a format such as an XSLT schema [275], offers a standardized

format for the distribution of a user interface.

The introduction of multiple views extends to the basic set-based definition of physical repre-

sentation. This extension would offer dialog-based modeling as discussed above in the context

of GDMs and multi-user interfaces. Therefore, the physical representation PR = (I, P, C, p, c)

will be extended as given in the following definition.

Definition 3.41 (Multi-View Physical Representation) A multi-view physi-

cal representation is a tuple MPR = (V, I, P, C, p, c) where I, P, C, p, c are equally

defined as in Definition 3.14 and V ⊆ P(I), where P(I) is the power set of I. �

Definition 3.41 presents a simple extension to the basic approach as introduced in Definition

3.14 but makes the modeling of multiple-view user interfaces possible. Therefore, the GDM can

handle the behavior of the different views and also define, for instance, a menu-based change of

views.

Modeling Interaction Elements

These XML-based approaches are suitable for the standardized modeling of user interfaces, for

instance, for highly exchangeable interfaces in mobile environments or for cross-platform use.

Thus, modeling the physical representation of a user interface is only possible in a restricted way

when using XML-based description languages. To offer a broader solution to this problem of the

restricted and static set of interaction elements, a concept for interactive and visual modeling

of interaction elements was developed in cooperation with Sema Kanat [131] and Alexander

Emeljanov [81]. The main goal of using formal methods to model interaction elements was

to combine the input information mainly associated with mouse events on the part of the

interaction element with a state machine. The state machine, which is described as a reference

net, defines the behavior of the interaction elements in response to input events or values.

This approach to the modeling and implementation of interaction elements combines a visual

modeling step with a connection to an automaton-based model of the changes applied to the

93



3. Formal Modeling of User Interfaces

Background (Image) Layer

Visualization Layer

Dynamic Image Box I

Dynamic Image Box II

Dynamic 
Image 
Box III

Event Layer

Event Box I
<<MouseOver>>

Event Box III
<<MouseClick>>

Event Box IV
<<MouseEnter>>

Event Box II
<<MouseOver>>

Figure 3.33.: Architectural concept for modeling and creating complex interaction elements us-

ing visual editors and reference nets

outward appearance of the modeled interaction element. To this end, interaction elements are

modeled physically based on a layered architecture, as shown in Figure 3.33. An interaction

element consists of three layers: (a) the background layer, showing a background image and

defining the outer bound of the interaction element; (b) the visualization layer, which is com-

posed of Dynamic Image Boxes (DIB); and (c) the event layer, which is also composed of Event

Boxes (EB). DIBs are frames showing a set of images one at a time that can be changed in

accordance with a state change modeled by the interaction element’s logic (implemented as a

reference net or state machine). EBs are areas that react to mouse events of various types,

which can be specified individually for every EB. In Figure 3.33, the type of event is indicated

textually.

Figure 3.34 depicts an example of an interaction element as a layered implementation, a set

of images for the DIB DIB a, with its logic modeled as reference net. This interaction element

is a combination of input and output elements representing a machine status that distinguishes

between normal, critical, and accident system states. As can be derived from its logic, in a

normal system state, the interaction element shows a key-like image in green. In other states,

the green image is replaced by an orange or a red image. As shown by the uplinks at the status

transitions, the status has to be sent from the system to the interaction element. The same is

true for the processing of events. The visualization engine that renders the interaction element

and captures the mouse events has to handle the triggering of the uplink-event transition (seen

on the right side of the reference net in Figure 3.34). The system information can also be

processed by interaction logic, which is also modeled as a reference net. The mouse event

94



3.7. Conclusion

Logic of EM modeled as reference netImages Set of DIB DIB_aIE Model EM

EMERGENCY
DIB_a

EB_a
<<MouseDown>>

<<MouseUp>>

:init();
x = new ME();

:status(''normal'') :status(''accident'') :status(''critical'')

x
x.DIB_a(GREEN)

x.DIB_a(RED)

x.DIB_a(YELLOW)

x

:mouseUp();
m = new MouseEvent();

:mouseDown()

:proxyCall(m)

mm

x

x

x.DIB_a(COLOR_p)

x.DIB_a(COLOR)

x

x

GREEN_P

GREEN

RED_P

RED YELLOW

YELLOW_P

Figure 3.34.: Example of a created interaction element using a layered architecture shown in

Figure 3.33 with its logic modeled as a reference net

:init();

EMERGENCY
:status(''critical'')

EMERGENCY

EMERGENCY

:mouseDown()

EMERGENCY

:mouseUp()

EMERGENCY
Call 

Interaction 
Logic EMERGENCY

:status(''normal'')

EMERGENCY
:status(''critical'')

:mouseDown()

EMERGENCY

:mouseUp()

Call 
Interaction 

LogicEMERGENCY
:status(''accident'')

Figure 3.35.: A possible behavior of the modeled interaction element in Figure 3.34 showing the

inputs resulting from the system or the user

that is sent to the interaction element will also be processed in the interaction logic later on.

Therefore, a downlink transition was added to the interaction element’s reference net (labeled

:proxyCall(m), indicating the connection to a proxy in interaction logic). Figure 3.35 shows

the modeled interaction element during runtime.

This approach to modeling interaction elements for use in a physical representation is a

consistent continuation of the formalization of user interfaces. This image- and box-based

approach is currently under investigation, as are the various ways it can be extended. These

include offering more complex types of boxes (circles, polygons etc.), image types (gif. animation

etc.), and more complex and more flexible visualization approaches (canvases, 3D rendering

areas etc.). Modeling parts of the physical representation of an interface in this way makes it

possible to formalize not only the behavior of the user interface as interaction logic, but also to

introduce the ’logic’ of interaction elements and their behavior in response to input from the

interaction logic or from the user, such as key or mouse events.

3.7. Conclusion

This section discussed the need and opportunities for formal modeling of interaction logic in

modeling user interfaces. The first step was to introduce a nomenclature that distinguishes the

terms used here from their general use in the literature so as to avoid misunderstandings and

erroneous interpretations. Next, a new approach to a three-layered architecture for modeling

user interfaces was introduced that differentiates between (a) the physical representation, (b) its

interaction logic, and (c) the system interface that represents the observable and manipulable

95



3. Formal Modeling of User Interfaces

parts of the system to be controlled. Then, a new formal language called FILL was described

along with its visual representation. FILL was developed mainly to model the processing of

data triggered by the human user of a physical representation or data sent from the system.

The resulting graph-based language lacked formally defined semantics. Therefore, the formal

transformation of FILL graphs to reference nets was introduced and algorithmically described.

The use of reference nets has shown a number of advantages concerning the requirements that

result from the formalization of interaction logic. Thus, some requirements were also generated

by a later implementation for modeling, simulation, and analysis of formal interaction logic.

In addition to the formal modeling of interaction logic based on FILL and its transforma-

tion to reference nets, a short introduction to possible approaches to formal modeling of the

physical representation of a user interface was discussed. The formal modeling of a physical

representation is not in the focus of this work, but is still an important aspect of modeling for-

mal user interfaces. Some XML-based description languages were briefly introduced as possible

candidates for formal modeling. Finally, an approach developed in cooperation with Kanat and

Emeljanov was described, which is currently being investigated.

After introducing the formal modeling of interaction logic, the next step is to describe an

approach to reconfiguring interaction logic. In this context, reconfiguration can be understood

as a tool for adapting user interfaces on the logic level. Formal reconfiguration means that

adaption becomes verifiable in various senses. Furthermore, formal reconfiguration makes it

possible to stay in one formalism—here, the use of reference nets. Another motivation for using

formal concepts for reconfiguration is implementation. Using a formal approach compatible

to reference nets makes implementation in a higher programming language easy without losing

expressiveness, which might occur if a complex and informal approach for reconfiguration has to

be transformed to a formal programming code. Therefore, the next chapter introduces formal

reconfiguration, as well as a formal redesign for adapting physical representations. It will also

deal with graph rewriting concepts and their customization for use in reference nets and formal

interaction logic.

96



4. Reconfiguration and Redesign

Reconfiguration and redesign are two terms that are often used synonymously. Therefore, this

chapter starts by defining these terms more clearly and bringing them into the context of formal

modeling of user interfaces (Section 4.1) in the same way as was done for nomenclature in the

previous chapter. Formal reconfiguration of interaction logic as one part of the adaption of user

interfaces will be further introduced and discussed. Then, approaches to the reconfiguration of

user interfaces in different application scenarios will be investigated, with a particular focus on

various reconfiguration operations (Section 4.2). This section will be followed by an introduction

to formal redesign techniques for adapting the physical representation of a user interface (Section

4.3). The chapter will conclude with a summary of the concepts that have been introduced and

give a short preview of the next chapter (Section 4.4).

4.1. Nomenclature

This section will give an overview of the nomenclature used as an extension of the concepts

presented in Section 3.1. The three-layered architecture for modeling user interfaces using

formal languages presented there motivates a closer look at the definition of the terms used to

describe and define formal reconfiguration and redesign. The partitioning of a user interface

into its physical representation and its interaction logic necessitates defining terms relevant to

adaption. To do this, adaption will be split into two different processes: (a) reconfiguration,

which denotes the adaption of interaction logic and (b) redesign, which refers to the adaption

of the physical representation of the user interface. The combination of reconfiguration and

redesign can be called adaption of a user interface independently from the system that applies

these kind of changes.

Definition 4.1 (Reconfiguration) Reconfiguration of a user interface is the adap-

tion of interaction logic by applying given adaption rules. Formal reconfiguration ap-

plied to formal interaction logic is the application of formally defined transformation

rules. �

Changes and reconfigurations of interaction logic (formal or non-formal) are often paired with

the adaption of the physical representation of a user interface.

Definition 4.2 (Redesign) Redesign of a user interface is the adaption of its

physical representation by applying given adaption rules. �

Adaption rules for redesigning a user interface as defined in Definition 4.2 influence the

parameters of the physical representation’s interaction elements, for instance, size, background

color, and position.

Because of their close relationship, the terms reconfiguration and redesign sometimes cannot

be clearly differentiated. Reconfiguration as applied to interaction logic often involves the

97



4. Reconfiguration and Redesign

redesign of the physical representation. For instance, deleting an interaction process from

an interaction logic also results in deleting its associated interaction elements in the physical

representation. Thus, in the following sections, the term reconfiguration will sometimes be

used to refer to both the reconfiguration of an interaction logic and the redesign of a physical

representation.

In the following sections, reconfiguration and redesign will be introduced on both a formal

and an informal basis. In particular, the reconfiguration of interaction logic will be investigated

and discussed in detail by applying formal graph transformation systems adapted to reference

nets. Furthermore, in the context of a short look at implementation that will be introduced in

Chapter 5, a graph transformation system based on XML will be presented.

4.2. Formal Reconfiguration

Chapter 3 introduced a formal approach to modeling interaction logic based on a formally de-

fined, graph-based language called FILL, its visual representation called VFILL, and its trans-

formation to reference nets providing formal semantics. For reconfiguring formal interaction

logic, a formalism has to be identified that (a) can define reconfiguration rules in relation to

reference nets or be extended to apply to reference nets and (b) that is a well-known approach

for adapting graph-based structures.

In the context of the later requirement, the choice of graph transformation systems seems to

be the correct one. The research area of graph transformation systems refers to a variety of

approaches that change graphical structures by applying rules in a certain way. There are two

main approaches to graph transformation systems: (a) graph grammars and (b) graph rewriting

systems [149].

Both graph grammars and graph rewriting systems are based on the concept of rules. Still,

the approaches differ in their objectives: Graph grammars generate a net by using a set of

transformation rules and an initial graph, while graph rewriting systems instead apply rules

to an existing net to change its structure without seeking to produce or reproduce the graph.

Thus, graph grammars produce graphs, whereas rewriting systems replace, delete, or add parts

of an existing net. In formal reconfiguration, a graph rewriting approach makes the most sense.

A standard scenario for reconfiguring interaction logic is that an initial interaction logic, such as

a reference net, has to be adapted in a certain way. Thus, it is contradictory to use an approach

like graph grammars, which creates a completely new graph any time a rule is applied to the

existing interaction logic. A further argument against the use of graph grammars is that the

initial interaction logic would have to be given as a set of generating rules, which is contrary

to the approach detailed above (cf. Section 3.4), which describes FILL’s transformation to

reference nets and not to a set of generating rules. For these reasons, the following explanations

introduce the use of graph rewriting systems applied to reference nets as the formal basis for

reconfiguration.

Petri Net Rewriting

Ehrig and Nagl [70, 178] gave an overview of graph transformation systems. Newer works, like

Heckel [107], provide a short introduction to the application of graph grammars. The Handbook

of Graph Grammars and Computing by Graph Transformation presents a broad selection of

various approaches to the use of graph grammars and graph transformation techniques and

98



4.2. Formal Reconfiguration

their use in various application scenarios, like software engineering or pictures [72]. Schür and

Westfechtel [246] identify the following groups of graph rewriting systems:

Logic Oriented This approach defines rules and their context of application using pred-

icate logic. This powerful approach is not widespread because of its complex implemen-

tation.

Set Theory Rules for rewriting graphs can be defined on the basis of set theory. This

approach is highly flexible and can be applied easily to an application scenario. Still, with

this approach possible irregularities can appear in the adapted graph. Furthermore, prob-

lems arise in applying mathematical verification and validation concepts to a specialized

set-oriented rewriting system.

Category Theory Graphs and graph morphisms that are defined on the basis of these

graphs can be defined as a mathematical category. Rules for graph rewriting are then

defined as morphisms in that category and often modeled as pushouts. A pushout is a

category theory concept that defines a colimit of a diagram of two morphisms (explained in

more detail below). Two main approaches are based on pushouts: (a) the single-pushout

approach and (b) the double-pushout approach. In the single-pushout approach, one

pushout is defined for deleting and adding graph components for the graph to be rewrit-

ten. In the double-pushout approach, one pushout is defined for deleting and a second

for adding components to a given graph. The approach based on pushouts has limited

expressiveness compared with the other two approaches. Nevertheless, this approach is

simple enough to handle for formal verification without dealing with the sorts of problems

that can occur in set theory-based approaches, which require great mathematical effort.

Using pushouts is still powerful enough for the reconfiguration of reference nets and, in

general, interaction logic, as will be seen below.

Taking all this into consideration, a category theory-based approach is a good choice, reducing

complexity to a minimum for implementation, without losing the ability to apply mathematical

verification methods. It is also a widespread approach to formalizing graph rewriting systems

and is supported by a broad formal basis and a wide range of publicized research.

Next, graph rewriting has to be deployed to Petri nets and then to reference nets in order to

formally implement the reconfiguration of interaction logic. Graph rewriting applied to Petri

nets has been subject of investigation in several publications. Wileden [295] describes the use of

graph rewriting for modeling Petri net semantics as used in the work of Kummer [149]. Wilke

[296] gives an overview of the use of graph rewriting concepts in Petri net-based formalisms.

In this work, works by Ehrig et al. [74, 77] will be applied to reference nets. Ehrig uses the

double-pushout approach for the transformation of Petri nets. This approach has been extended

by the author in cooperation with Jan Stückrath as described in Stückrath’s thesis [265].

Before discussing the extension of Ehrig’s approach to higher Petri nets on the basis of XML-

based languages, the use of the double-pushout approach will be introduced by showing the

cons of a single-pushout approach, especially in later implementation.

Theoretical Background

The use of the category theory approach for rule-based graph rewriting is mainly based on

the single- (SPO) and double-pushout (DPO) approaches. The double-pushout approach was

99



4. Reconfiguration and Redesign

introduced as part of a tutorial by Ehrig [71] and followed by the introduction of the SPO

approach by Löwe [163]; the latter seems more elegant than the DPO approach, but problems

can result from its less specific definition of transformation rules. The DPO approach combines

categories of graphs with total graph morphisms, which offers a simple transformation of proofs

and concepts to various types of graphs. The SPO approach, in contrast, simplifies the structure

of transformation rules by only using one pushout, which results in a more complex category

that also allows partial graph morphisms. This makes the SPO approach more expressive than

the DPO approach, but also leads to more complex behavior of the transformation system and

can thus result in a non-predictable outcome of the transformation. The two approaches are

compared in greater detail in [73].

To reduce the complexity of the transformation to a minimum, in this dissertation, the DPO

approach is used to reconfigure formal interaction logic. Thus, the DPO approach will be

introduced based on a general graphical structure described in Definition 4.3 to stay close to

the literature and to build a basis for its extension to the rewriting of reference nets. Some

definitions from category theory will also be given; while they will not provide a complete

discussion of category theory, but they offer a good basis for comprehending the following

definitions.

Definition 4.3 (Graph) A directed graph is a tuple G = (V,E, s, t) with finite sets

V and E, where V is a set of vertices or nodes and E is a set of edges. s : E → V

and t : E → V are functions such that for any e ∈ E, vs with s(e) = vs is the source

node of e and vt with t(e) = vt is the target node of e. �

Based on this general definition of graphs, a first step toward defining rewriting systems can

be made by formally defining the terms production and matching.

Definition 4.4 (Production and Matching) A production is a mapping m :

L → G; a matching is a mapping p : L → R, where L, R, and G are graphs.

The corresponding mappings of m and p are defined as mapping m∗ : R → H and

p∗ : G→ H, where H is also a graph. �

The basic idea of rule-based graph rewriting is to define a production p that maps a graph

L to a graph R, defining what has to be changed or how R is ‘produced’ from L. For instance,

graph L has nodes that are not mapped to R. Therefore, these nodes will be deleted. Next, this

production has to be matched to graph G, which is rewritten. To do this, different graphs can

be applied to one production. Thus, a matching m determines which nodes on the left side L of

the production p are matched to G and which parts are changed as determined by production p.

When calculating p∗ and m∗, H is also calculated by applying the production p to the matched

parts of L in G defined by m. In general, only nodes are mapped to one another. Still, this is

true only for definitions of graphs where edges are not defined as individual objects. In such

cases, more specific mappings have to be defined to avoid inconsistencies. Such extensions will

be examine below.

Based on Definition 4.4, the term rule for general graph rewriting can be defined as the

combination of a production p, a matching m, and the graphs L and R as follows:

Definition 4.5 (Rule) A rule is a tuple r = (m, p, L,R) for transformation of a

given graph G, where m : L→ G is a matching and p : L→ R is a production. L is

100



4.2. Formal Reconfiguration

L

G

R

H

1

2

1

3

1

2

4

5

1
4

5

3

p

p*

m m*

6

6

7
8

7
8

9

9

Figure 4.1.: Example of the application of a rule r = (m, p,R, L) to a graph G resulting in a

graph H

the left side of r, and R is the right side of r, where L and R are graphs. Application

of a rule r is defined by replacement of the occurrence of L in G defined by m with

R defined by p. �

Based on Definition 4.5, it is possible to define universal productions for various types of

graphs, depending on an applicable choice of function m. Figure 4.1 shows an example of a

rule r = (m, p, L,R) transforming a graph G to graph H. Function m is implicitly defined

by labeling the numbers of nodes and edges and identifying which node or edge in the rule’s

graphs (L and R) is matched to which node or edge in G and then in H, therefore, the numbers

should not be interpreted as the weights of the nodes or edges. Thus, only nodes and edges

with identical labels are matched to each other by the functions m, p, m∗, or p∗. For instance,

p only matches node 1 in L to node 1 in R. No more nodes or edges in graph L or graph R are

matched to one another. In Figure 4.1, associated nodes are also indicated by identical shade

of gray. Thus, production p of the rule defines that edge 6 and node 2 have to be deleted from

and node 3 and edge 9 added to graph G. Generally, the application of a rule r to a graph G

means that

1. all nodes and edges in graph L that have an image in graph R defined by p will stay

unmodified and will be part of H,

2. all nodes and edges in graph L that have no image in graph R will be deleted in G and

will thus be missing in H, and

3. all nodes and edges in graph R that have no preimage in graph L will be added to G and

thus will also be added to H.

Thus, all nodes and edges in graph G that do not have a preimage in L defined by the

matching function m will stay unmodified. In this way, m defines which nodes and edges of G

represent the occurrence of L in G. Because of this role of m as part of a rule r, it fulfills the

requirements of being a (total) homomorphism. If m is a homomorphism, m is a function that

101



4. Reconfiguration and Redesign

obtains the structure of the mapped graph. The fact that m is a homomorphism is especially

important for the mapping of edges; an edge in G has to have the correct nodes as both source

and target as is the case in L. Thus, given two graphs L = (V,E, s, t) and G = (V ′, E′, s′, t′),

for m : L→ G, it has to be true that

∀e ∈ E′ : s′(m(e)) = m(s(e)) ∧ t′(m(e)) = m(t(e)).

On the other hand, p does not necessarily have to be a total morphism. It is precisely this that

differentiates the SPO from the DPO approach. But before discussing this difference in detail,

the definition of this rule-based transformation of graphs must be embedded in category theory

to offer a well-defined theoretical basis. Therefore, pushouts will be introduced formally as a

well-known tool in category theory for talking about homomorphisms. Informally, a pushout is

constructed of two category-theoretical arrows that are executed simultaneously (cf. [10]).

Definition 4.6 (Pushout) Given two arrows f : A→ B and g : A→ C, the triple

(D, g∗ : B → D, f∗ : C → D) is called a pushout, D is called pushout object of

(f, g), and it is true that

1. g∗ ◦ f = f∗ ◦ g, and

2. for all other objects E with the arrows f ′ : C → E and g′ : B → E that fulfill

the former constraint, there has to be an arrow h : D → E with h ◦ g∗ = g′ and

h ◦ f∗ = f ′. �

Definition 4.6 is visualized in Figure 4.2. The first restriction g∗ ◦ f = f∗ ◦ g applied to the

arrows f and g and their counterparts f∗ and g∗ avoids the order of application of arrows to A,

but does not change the result D. Thus, it does not matter how A is mapped to the pushout

object D. Still, the choice of the pushout (D, f∗, g∗) for (f, g) is not unique. There could be

various pushouts that fulfill the first restriction. Therefore, the second restriction implies that

for one pushout only no arrow h exists, such that there is another object E that h is pointing

to. That reduces the possible pushouts to exactly one, except in the case of isomorphism. Thus,

defining (f, g) as a transformation rule, there is exactly one resulting pushout (D, f∗, g∗) that

is the deliberate behavior of a rewriting rule.

In general, it is possible that two arrows (f, g) will not have a pushout. This is not the case

for the category of graphs, which makes it possible to use pushouts to model transformation

rules for graph rewriting. Given a rule (f, g) and a graph A, building the pushout generates the

transformed graph as pushout object. That a pushout can be always calculated in the graph

category results from a reduction of that category to the category of sets because transformation

of nodes and edges can be handled separately. For more details, see [1, 10, 73].

To introduce the DPO approach, a further definition is necessary: that of the pushout com-

plement.

Definition 4.7 (Pushout Complement) Given two arrows f : A → B and g∗ :

B → D, the triple (C, g : A→ C, f∗ : C → D) is called the pushout complement of

(f, g∗) if (D, g∗, f∗) is a pushout of (f, g). �

The pushout complement as defined in Definition 4.7 is part of the definition of rules for

rewriting graphs in the DPO approach, as will be described in the next paragraph. It is

essential for applying the transformation defined by a rule to a graph.

102



4.2. Formal Reconfiguration

A B

C D

E

f
g*g g'

h
f'
f*

Figure 4.2.: Visual presentation of pushout

DPO Approach

The former definition of a rule r = (m, p, L,R) as a tuple with two morphisms m and p and two

graphs L and R can be transferred to the use of pushouts, as shown above. Therefore, m and p

are considered arrows in category theory, where p need not be a total morphism. Building the

pushout (D,m∗, p∗) to the pair (m, p), the pushout object D is the transformed graph. Thus,

because p need not be a total homomorphism, r specifies a rule of the SPO. The problem with

this approach is that the production is a partial homomorphism, which is likely to lead to an

unclear result. Another option is the DPO approach, which replaces the single and partially

defined production homomorphism with two total homomorphisms.

Definition 4.8 (DPO Rule) A DPO rule s is a tuple s = (m, (l, r), L, I, R) for

the transformation of a graph G, with l : I → L and r : I → R, which are two total

homomorphisms representing the production of s; m : L → G is a total homomor-

phism matching L to graph G. L is called the left side of s, R is called the right

side of s, and I is called an interface graph. �

The example seen in Figure 4.1 shows an SPO rule applied to a graph. The identical rule

is shown as a DPO rule in Figure 4.3 and applied to the same graph. The difference is that

deletion and addition operations are applied to graph G in two steps. In the first step, graph

C is generated by determining the pushout complement (C, c, l∗) corresponding to (l,m). H

results as the pushout object of the pushout (H, r∗,m∗) corresponding to (r, c). The pushout

(H, r∗,m∗) is unique, resulting from its definition. Nevertheless, pushout complements do not

have to be unique, but only to exist. For more information on this subject, see Ehrig et al. [73]

and Heumüller et al. [110].

The problem of the nonexistence of pushout complements can be solved by introducing a

further restriction to the creation of DPO rules called the gluing condition.

Definition 4.9 (Gluing Condition) There are three graphs I = (VI , EI , sI , tI),
L = (VL, EL, sL, tL), and G = (VG, EG, sG, tG). Two graph homomorphisms l : I →
L and m : L→ G fulfill the gluing condition if the following assertions are true for
both l and m, given as

@e ∈ (EG \m(EL)) : sG(e) ∈ m(VL \ l(VI)) ∨ tG(e) ∈ m(VL \ l(VI)), and (4.1)

@x, y ∈ (VL ∪ EL) : x 6= y ∧m(x) = m(y) ∧ x /∈ l(VI ∪ EI). (4.2)

�

103



4. Reconfiguration and Redesign

L

G

R

H

1

2

1

3

1

2

4

5

1
4

5

3

l

l*

m m*

6

6

7
8

7
8

9

9

I

C

1

1
4

5

c

7
8

r

r*

Figure 4.3.: Example of the application of a rule s = (m, (l, r), L, I, R) to a graph G resulting

in a graph H

In Definition 4.9, the gluing condition of two graph homomorphisms is defined using two

assertions, the dangling condition in Equation 4.1 and the identification condition in Equation

4.2. The application of the gluing condition has already been indicated in the definition by

choosing the identifiers l and m for the homomorphisms. When the gluing condition is applied

to the left side of a DPO rule, the assertions have the meanings discussed below.

Dangling Condition The homomorphism l of a DPO rule that defines which nodes have

to be deleted from a graph fulfills the dangling condition if it also defines which edges

associated with the node will be removed. Thus, the dangling condition avoids dangling

edges; a dangling edge is an edge that has only one node associated with it as its source

or target.

Identification Condition The homomorphism m of a DPO rule that matches nodes

and edges in L to nodes and edges in graph G fulfills the identification condition if a node

in G that should be deleted has no more than one preimage in L. However, if one node

of G has more than one preimage in L defined by m and one of these has to be deleted,

it is not defined whether the node will still exist in G or must be deleted. This confusion

is avoided by the identification condition.

Figure 4.4 shows these two basic problems concerning deletion using DPO-based graph rewrit-

ing (on the left side of a DPO rule). Pushout diagram (a) shows a violation of the identification

condition. Here, nodes (0) and (1) in L are matched to only one node (0, 1) in G. The identifi-

cation condition is violated because (0, 1) has two preimages in L. A brief idea of proof that no

pushout complement exists in this case is that, when the rule (l, c) is applied, G is found not

to be a pushout object. This is because there is no total morphism h that maps G to all other

possible graphs G′ that can be mapped by m′ and l′. Still, this condition is essential if G is to

be a pushout object of the pushout of (l, c), as defined in Definition 4.6. Otherwise, it is not a

pushout.

104



4.2. Formal Reconfiguration

(b)
L

G

1

0

0,1

l

l*

m

a
I

C

1

c

a
1

G'

L

G

l

l*

m

I

C

c

G'

m'

l'

h

m'

l'

h

(a)

1

0
a

1

0

1

3 2

a

b c

1

3 2

0

1

3 2

a

0

1
a

Figure 4.4.: Pushout diagram (a) shows an example of a violation of the identification condition;

pushout diagram (b) shows an example of a violation of the dangling condition.

Another argument is that the correct example of a graph G′ in Figure 4.4 (lower left) is

possible, but no total morphism h′ can exist that maps all the elements of G to G′. This

problem can be traced back to the missing node (0) in C. Of course, there could be an example

in which C contains a node (0), but with the given matching function m, G is still not a pushout

because one instance of G′ can be found where no total morphism h exists for mapping G to

G′.

Figure 4.4 also includes pushout diagram (b), which shows a violation of the dangling con-

dition. Here, node (0) will be deleted without defining what has to be done with the edges

connecting nodes (2) and (3) to node (0). As seen above, a graph G′ can be found such that G

cannot be mapped to G′ by the total morphism h; thus, in (b) no edges between (0), (2), and

(3) can be matched to elements in G′. Here again, the missing nodes and edges in graph C can

be identified as the reason this problem arises.

For the latter example, a correction can be applied to the rule as shown in Figure 4.5. Here,

the surrounding nodes of node (0) are introduced to L. Now, a total morphism h can be found

for an exemplary graph G′. Figure 4.5 shows a possible graph G′, in which arrows m′ and l′

and a morphism h exist; however, G′ is not ‘minimal’ because of node (4). That G is a pushout

object of a valid pushout for (l, c) has to be proved showing that for all possible G′ graphs

mapped by the arrows m′ and l′, a morphism h exists. For further discussion and proofs, see

Adamek et al. [1] and Corradini et al. [48].

Applying the gluing condition to the use of DPO rules solves the problem of the possible

non-existence of a pushout complement. This is why the gluing condition has been included as

an integral part of the DPO approach. Accordingly, DPO rules that do not fulfill the gluing

condition are not applied to any graph.

Besides determining whether a pushout complement exists or not, there is still the problem

that the pushout complement does not have to be unique. The pushout complement is unique

if l and m are injective. If this is not the case, however, diverse correct pushout complements

exist for a pair (l,m) of homomorphisms. Further investigation of this problem was conducted

by Stückrath [265] and Heumüller et al. [110].

105



4. Reconfiguration and Redesign

L

G

l

l*

m

I

C

c

G'

m'

l'

h

0

1

3 2

a

b c

1

3 2

1

3 2
0

1

3 2

a

b c

0

1

3 2

a

b c

4d

Figure 4.5.: Pushout diagram with fixed left side of a DPO rule.

For further work based on the above considerations, the DPO approach was used in the

implementation of a graph rewriting system for the formal reconfiguration of interaction logic

based on reference nets. For this purpose, DPO rules must meet the following two requirements:

1. It must fulfill the gluing condition to ensure the existence of a pushout complement of the

left side of a DPO rule, and

2. in the DPO rule, l andm are injective to ensure the uniqueness of the pushout complement.

The following section describes how the general graph rewriting approach based on DPOs

has been adapted for its use with reference nets.

Extension of DPO Approach to Reference Nets

Before the DPO approach can be extended to reference nets or, more generally, to colored Petri

nets, it has to be transfered first to simple Petri nets, also called place transition nets (P/T

nets). To that end, this section will first examine the work by Ehrig et al. [74, 75]. Then, it

will explore work done in cooperation with Stückrath [265] extending the basic graph rewriting

approach for P/T nets to colored and thence to reference nets.

Application of DPO to P/T Nets

Before looking at how Ehrig et al. extend graph rewriting on the basis of the DPO approach,

it is necessary to define P/T nets.

Definition 4.10 (P/T net) A P/T net is a graph defined as a tuple of four el-

ements (P, T, pre, post). p ∈ P is called place, t ∈ T is called transition. The

functions pre : T → P⊕ and post : T → P⊕ define edges of a P/T net, where P⊕

is a set of all finite multi-sets generated with elements of P . �

106



4.2. Formal Reconfiguration

I R

C H

r=(rP,rT)

c=(cP,cT)

r*=(r*P,r*T)

m*=(m*P,m*T)

Figure 4.6.: Pushout diagram applying homomorphisms to P/T nets

As shown above, applying a DPO rule to a graph or net G means determining the pushout

(object) of the right side of the rule and the pushout complement (object) of the left side of

the rule. Before introducing the determination of pushouts on homomorphisms for P/T nets,

homomorphisms on P/T nets need to be defined. Here, the main problem to be solved is the

extension of homomorphisms to associate two different types of nodes in two graphs with one

another: places to places and transitions to transitions.

Definition 4.11 (Homomorphisms on P/T nets) A homomorphism r : I → R

on two P/T nets I = (PI , TI , preI , postI) and R = (PR, TR, preR, postR) is a pair

(rP , rT ) of two homomorphisms with rP : PI → PR and rT : TI → TR where for all

t ∈ TI

preR(rT (t)) = rP⊕(preI(t)), and

postR(rT (t)) = rP⊕(postI(t))

is true. rP⊕ : P⊕I → P⊕R is a function that maps a multiset of elements from PI to

a multiset of elements of PR such that⋃
pI∈P⊕

I

{rP (pI)} = P⊕R . �

The requirements to rP and rT defined in the above definition guarantees that the charac-

teristic structure for homomorphisms is maintained. This kind of ‘split definition’ of a homo-

morphism r = (rP , rT ), mapping two P/T nets to one another, offers a handy way to calculate

pushouts on P/T nets based on the above-introduced approach for general graphs providing

only one type of node. Figure 4.6 shows a pushout diagram of the right side of a DPO rule

using split homomorphisms on P/T nets. H should be calculated as a pushout object of the

pushout of the pair of homomorphisms (r, c) and the P/T nets I, R, and C, as is the case in

the graph rewriting system using the DPO approach.

To determine the pushout shown in Figure 4.6, it is enough to determine the pushout in the

category of sets of (rP , cP ) for places and the pushout in the category of sets of (rT , cT ) with

pushout object PH and TH . As described for pushouts in general and in their application in

graph rewriting, PH and TH are determined by gluing PR and PC through PI together, and TR
and TC through TH respectively, such as

PH := PC +PI
PR, and

TH := TC +TI TR.

107



4. Reconfiguration and Redesign

L I

G C

l=(lP,lT)

m=(mP,mT)

l*=(l*P,l*T)

c=(cP,cT)

Figure 4.7.: Pushout diagram showing the left side of a DPO rule.

Next, preH and postH of net H have to be specified. This is slightly different from the above

definition of pushouts in graphs in general. Here, edges are defined implicitly and not as

individual objects. preH and postH can by

preH(t) =

{
m∗P⊕(preR(tj)), if m∗T (tj) = t and tj ∈ TR
r∗P⊕(preC(tk)), if r∗T (tk) = t and tk ∈ TC

, and

postH(t) =

{
m∗P⊕(postR(tj)), if m∗T (tj) = t and tj ∈ TR
r∗P⊕(postC(tk)), if r∗T (tk) = t and tk ∈ TC

.

If this implicit definition of edges in a P/T net is taken into consideration, it becomes clear

that the explicit definition of adding or deleting edges cannot be specified in transformation

rules using the approach described above. Instead, adding or deleting edges is implicitly de-

fined through its connected transition. This means that if an edge should be deleted, but the

associated transition should not, the transition must first be deleted and then added back into

the net without the unwanted edge. The process is analogous for adding edges. This restriction

makes the application of rules safer in the sense that adding an edge to or deleting an edge from

a transition means changing the meaning of the transition. Still, in some cases this change in

the semantics of a net can be helpful or even desirable. Adding and deleting edges will be part

of the discussion of extending the DPO approach to colored nets in the next section.

The next step will be to describe how the pushout complement is determined in order to

calculate the parts of the net to be deleted. Central to determining the pushout complement is

the gluing condition, which guarantees the existence of the pushout complement if it is applied

to the rules of the formalism (here, DPO rules on P/T nets). In this case, the left side of a DPO

rule is of interest because it is on this side that the pushout complement has to be calculated.

The left side of a DPO diagram can be seen in Figure 4.7.
The transformation of the gluing condition to the application of the DPO approach to P/T

nets can be conducted by

GP = l(PI ∪ TI), (4.3)

IP = {p ∈ PL|∃p′ ∈ PL : (p 6= p′ ∧mP (p) = mP (p′))} (4.4)

∪ {t ∈ TL|∃t′ ∈ TL : (t 6= t′ ∧mT (t) = mT (t′))}, and

DP = {p ∈ PL|∃t ∈ TG : @t′ ∈ TL : mT (t′) = t ∧ (mP (p) ∈ preG(t) ∨mP (p) ∈ postG(t))}. (4.5)

These are based on the homomorphism and nets shown in Figure 4.7. The set GP defined in

Equation 4.3 is a set of all places and transitions that are mapped from net I to net L by the

108



4.2. Formal Reconfiguration

morphism l. Furthermore, GP is a set of places and transitions that are part of net L and are

images of the nodes in I concerning l. Thus, these nodes should not be deleted from G. As it is

known, the identification condition is fulfilled if no node exists that is deleted ((PL ∪TL) \GP )

and simultaneously mapped to more than one node in G. Therefore, all nodes of L that are

mapped to more than one node in G are collected in set IP . Thus, a DPO rule fulfills the

identification condition if for the sets GP and IP , IP ⊆ GP is true.

A rule fulfilling the dangling condition has to require that no place that is connected to a

transition in G can be deleted if it is not an image of a node in L defined by m. Therefore,

DP contains all places that are mapped from L to G and are simultaneously connected to a

transition. Thus, the dangling condition is fulfilled if DP ⊆ GP is true for a given DPO rule.

The dangling condition for transitions does not have to be formulated explicitly because of the

implicit definition of edges. If a transition is removed from the net, the connected edges are

also removed.

Under the assumption that the gluing condition is fulfilled by the left side of a given DPO

rule, the pushout complement object C can be generated by

PC = (PG \mP (PL)) ∪mP (lP (PI)), and

TC = (TG \mT (TL)) ∪mT (lT (TI)),

where mP (PL) represents the image set of mP similar to mT (TL) representing the image set of

mT . The morphisms preC and postC result from the reduction of their domain to TC . It is also

true that preC(tC) = preG(l∗T (tC)) and postC(tC) = postG(l∗T (tC)).

Extension to Colored Petri Nets

Extending the DPO approach for P/T nets to colored Petri nets mainly involves extending the

rewriting by adding inscriptions to the rewriting rules. Furthermore, associating inscriptions

with edges requires that edges be defined as independent objects, as transitions and places are.

Extending the DPO approach in this context is similar to the process shown in the previous

section, where basic graphs offering only one type of node were extended in P/T nets to include

two types of nodes.

Before continuing, it is necessary to define colored Petri nets. This unspecific definition of

higher Petri nets is complex enough to investigate the rewriting of Petri nets involving inscrip-

tion languages and simple enough to avoid complex formalization that is only applicable to one

specific type of Petri net and its associated inscription language. Still, all higher formalisms

regarding Petri nets are extended by a special type of inscription language as is the case for ref-

erence nets. It has also to be noted that the following formalization does not take the semantics

of the inscription language into account. This would also lead to a specification of rewriting,

which is not the goal of this dissertation.

Definition 4.12 (Colored Petri Net) A colored Petri net is a 6-tuple

(P, T,E, I, e, i)

with P a set of places, T a set of transitions, and E a set of edges where P , T ,

and E are pairwise disjoint. I is a set of all possible inscriptions based on a certain

inscription language including the empty inscription ε. e : E → (P ×T )∪ (T ×P ) is

a total function defining the source and target node of an edge. i : (P ∪ T ∪E)→ I

is a total function mapping an inscription to a place, transition, or edge. �

109



4. Reconfiguration and Redesign

As discussed above, a colored Petri net can be distinguished from basic P/T nets in two

important ways: (a) edges are defined as individual elements and are thereby explicitly defined,

and (b) inscriptions can be associated with places, transitions, and edges, thus extending the

formalisms and making them more flexible, but not necessarily more powerful. The latter

assertion depends primarily on the type of inscription language and its structure, which will

not be dealt with here. For further discussion, please see the books [125, 126] by Jensen, which

describe a specific type of colored Petri nets and suggest further reading. One example of an

inscription language is that of reference nets based on the Java type system as introduced by

Kummer [149] and explained in Chapter 3 above.

As for P/T nets, for colored nets the definition of a graph homomorphism f : A→ B mapping

the nets A to B can be extended. The problem here is not to maintain the net’s structure by

defining how transitions are mapped and the characteristics of the associated edges’ defining

functions (pre and post). Here, the problem is the mapping of nodes and edges to each other

that are additionally inscribed with more or less complex expressions. Inscribed nodes and edges

cannot be handled in the same way as in the above definitions because in colored nets, each

node is individualized through its inscription. Therefore, mapping two graphs is correct if and

only if the image node’s inscription is identical to that of the preimage node. This assumption

makes it possible to neglect further considerations concerning homomorphisms in the context

of inscriptions. Thus, the factor of inscriptions is kept out of the further extension of DPO to

colored nets.

Definition 4.13 (Total Homomorphisms on Colored Nets) A total homo-

morphism r : A → B on two colored nets A = (PA, TA, EA, I, eA, iA) and B =

(PB, TB, EB, I, eB, iB) is a triple (rP , rT , rE) of three total homomorphisms with

rP : PA → PB, rT : TA → TB, and rE : EA → EB. For r, the following restriction

has to be fulfilled, where fstX : EX → (PX ∪TX) maps an edge of net X to its source

element and lstX : EX → (PX ∪ TX) maps it to its target element, where any edge

is directed and points from its source to its target, such as

∀x ∈ (P ∪ T ∪ E) : iA(x) = iB(r(x)), (4.6)

∀e ∈ EA : r(fstA(e)) = fstB(rE(e)), and (4.7)

∀e ∈ EA : r(lstA(e)) = lstB(rE(e)). (4.8)

�

The Restrictions 4.7 and 4.8 in Definition 4.13 guarantee the structure maintenance of func-

tion rE , making r a homomorphism. Restriction 4.7 states that for all edges e in the preimage

graph A, the image of its source nodes has to be identical to the source node of the image of

e in graph B. The same is true for Restriction 4.8, which says that the image of the target

element of an edge e in graph A has to be identical with the image of the target element of

the image of edge e in B. Figure 4.8 provides two examples of the mapping of graph A to B.

The upper one shows a violation of Restriction 4.7, where all nodes and edges of graph A are

mapped to nodes and edges in B, but the image of the source node of edge e (labeled 1′) is

not the source node (labeled 1) of the image e′ of edge e in B. The lower example shows a

violation of Restriction 4.8, where the image of the target node (labeled 1) in graph A of edge

e (labeled 1′) is no longer the target node of the image e′ of edge e. Equation 4.6 specifies

how to handle inscriptions. Here, the inscription of an element in the preimage graph has to

110



4.2. Formal Reconfiguration

A BrP

rT

rE

A BrP

rT

rE

e
e'

e'

1 1'
2

e
1 1' 2

Figure 4.8.: Violation of Restriction 4.7 (above) and of Restriction 4.8 (below)

I R

C H

r=(rP,rT,rE)

c=(cP,cT,cE) m*=(m*P,m*T,m*E)

r*=(r*P,r*T,r*E)

L

G

m=(mP,mT,mE)

l=(lP,lT,lE)

l*=(l*P,l*T,l*E)

Figure 4.9.: Pushout diagram showing a DPO rule for colored Petri nets

be identical with the inscription of its image. Later on, it will be shown how this point can

be applied to simplify the formulation of transformation rules offering the transformation of

inscriptions. In the following, only r is assumed to include rP , rT , and rE as long it is clear

which partial morphism is relevant in a given context.

Figure 4.9 shows a DPO rule for colored nets using a total homomorphism as specified for

the DPO approach. The pushout object H on the right side of the rule is determined by gluing

together PR and PC through PI , TR and TC through TI , and ER and EC through EI , such as

PH := PC +PI
PR,

TH := TC +TI TR, and

EH := EC +EI
ER.

Based on the definition of the homomorphisms for colored Petri nets, it is not necessary to

specify further restrictions. The structure of eH and iH directly results from Equations 4.7, 4.8

111



4. Reconfiguration and Redesign

for eH , and 4.6 for iH .
To determine the pushout complement for the left side of the rule shown in Figure 4.9, first

the gluing condition has to be adapted to colored Petri nets. For that purpose, the sets GP ,
IP and DP introduced above can be extended for colored Petri, such as

GP = l(PI ∪ TI ∪ EI), (4.9)

IP = {x ∈ (PL ∪ TL ∪ EL) | ∃x′ ∈ (PL ∪ TL ∪ EL) : (x 6= x′ ∧m(x) = m(x′))}, and (4.10)

DP = {x ∈ (PL ∪ TL) | ∃e ∈ EG : (m(x) = fstG(e)) (4.11)

∨ m(x) = lstG(e))) ∧ @e′ ∈ EL : m(e′) = e}.

The set GP contains all places, transitions and edges that should not be deleted from G. The

representation of edges as individual objects makes it necessary to identify the fusion of edges

as was the case for places and transitions in the extension to P/T nets. Thus, IP is extended

with all edges in L that are matched by m to a image edge in G. Now, a DPO rule for colored

Petri nets fulfills the identification condition if IP ⊆ GP is true. The set DP need not to be

modified and the dangling condition is fulfilled if DP ⊆ GP is true for a given DPO rule.

If the gluing condition is fulfilled by a given DPO rule, the pushout object C of the pushout

complement of (l,m) can be calculated by

PC = (PG \mP (PL)) ∪mP (lP (PI)),

TC = (TG \mT (TL)) ∪mT (lT (TI)), and

EC = (EG \mE(EL)) ∪mE(lE(EI)).

eC and iC result from a reduction of their domains.

The Problem of Inscription Rewriting

The ability to inscribe nodes and edges is one of the most important aspects of colored Petri

nets. The sections above cover the adaption of the DPO approach to colored Petri nets, but

do not address the topic of rewriting inscriptions. However, DPO rules also have to cover

inscriptions, in that L, I, and R also have inscribed nodes and edges. This is nothing new

as the basic theory expects that the rule graphs will have the same syntax (and semantics) as

the graph to be rewritten by the rule. Otherwise, the rewriting approach would not be able

to change the whole range of semantics in the given graph-based formalism. For instance, rule

graphs without inscriptions would only be able to add nodes and edges to the graph with empty

inscriptions, which would also require the colored Petri net formalism to allow for nodes and

edges with empty inscriptions (as most formalisms of this kind do). A further problem would

be matching graph L to G by m. If m did not take the inscription into account, the match

probably could not been made correctly when applying the rule because the inscriptions in

graph G are essential elements defining its semantics. Thus, a match that does not consider

inscriptions is not able to cover the entire possible range of a rewriting formalism.

Considering the basic theory of pushouts as used in the DPO approach, the problem of

inscriptions in graph rewriting becomes even more critical. As shown in Figure 4.2 and defined

in Definition 4.6, the pushout object D has to be unique (except in the case of an isomorphism)

such that for all graphs E, there is an arrow h. In the case of graphs with inscriptions that

are not considered by the homomorphisms in a pushout diagram, it is possible to construct a

graph E which is isomorphic to graph D and thus ‘equal’ in the sense of the category used, but

which provides different inscriptions for nodes and edges. Going back to the original definition

112



4.2. Formal Reconfiguration

L

G

R
l

m

I
rxx

int int

guard x ==5

xx

float

guard x ==5

float

xx

int int

guard x ==5

xx

int int

guard x ==10

Figure 4.10.: Example of the application of an order relation to the matching function m of a

given DPO rule with direct rewriting of the inscription

of the syntax and semantics of the graph-based formalism being considered, D and E show

different syntax and semantics and therefore should be identified as different types of graphs,

but the pushout does not do so. This would lead to the problem that the diagram supposed to

be a pushout is not a pushout at all because D is not unique when the syntax and semantics

definition of the colored Petri net formalism is taken into account. These circumstances lead

to the decision that inscriptions have to be considered in the context of DPO rules so as not

to violate the underlying theoretical concepts of pushouts and, in this way, risk an inconsistent

solution.

The straightforward solution for this problem is to extend the mapping functions m, l, and

r so that they also take into account the inscriptions of the places, transitions, and edges of

all the nets, such that, for instance, a place only matches another place if their inscriptions are

equal, as it has been defined in Definition 4.13. This kind of restriction influences the possible

matches to the graph G, as well as the possible rewrites defined by l and r with graphs L, I, and

R. In fact, if only unchanged inscriptions are allowed, it is not possible to rewrite inscriptions.

Still, inscriptions are important for the semantics of a given graph and should therefore be

rewritable.

As proposed by Stückrath [265], matching inscriptions, especially in case of the matching

function m, could be defined as a (partial) order relation v, such that

∀x ∈ (PL ∪ TL ∪AL) : incrL(x) v incrG(m(x)). (4.12)

This approach is an initial step toward rewriting inscriptions using the DPO approach. In some

cases, this definition of an order relation has to be further investigated due to the definition of

the semantics of the graph formalism to be rewritten. In the example shown in Figure 4.10, the

matching is only correct if all the operations on integers also work with float values. Obviously,

this is not the case. For instance, the function ggt, which calculates the greatest common divisor,

113



4. Reconfiguration and Redesign

would not work on a float value because it is specifically defined as an integer-based function.

Regarding this aspect of defining semantics, the specification of an order relation like the one

in Equation 4.12 becomes complicated. Furthermore, there is no theoretical foundation for this

approach even though it makes sense in the context of the application in formal reconfiguration

of user interfaces and in general to make graph rewriting more flexible for use with inscribed

graph formalisms.

However, it is not the main goal of this work to describe theoretical foundations for these

kinds of problems, but that of future work. Still, a solution is needed to make the rewriting

mechanism more flexible in its use for formal user interface reconfiguration. In this context, the

next step is to find a data structure that offers a handy formulation and serialization of DPO

rules to be applied to reference nets as well as a suitable handling of the ‘rewriting inscription

problem’ using a particular partial order relation. Therefore, an XML-based approach will be

introduced and discussed based on Stückrath’s work [265].

Graph Rewriting through XML-based Petri Net Serialization

In the formal approach to graph rewriting and its application to colored Petri nets, it is nec-

essary to examine its programmatic implementation. The implementation of a framework for

the interactive and formal modeling of user interfaces paired with their simulation and recon-

figuration is discussed in Chapter 5. Still, an XML-based representation of Petri nets in the

context of graph rewriting and thus in the formal reconfiguration of interaction logic is closely

related to the described DPO approach and its formal background. Therefore, the XML-based

implementation of the DPO approach will be explored at this point and not as part of the

implementation description in Chapter 5.

Various types of XML-based serialization of graphical data structures can be found on the

Web. For instance, one well-known example is GraphXML, introduced by Herman and Marshall

[109] and later renamed GraphML by Brandes et al. [33]. For Petri nets, with their diverse

types of extensions in various research disciplines, an exchange format based on XML was first

published by Jüngel et al. [129], extended by Weber and Kindler [279], and finally standardized

as part of the ISO standard ISO/IEC 15909, described by Hillah et al. [112]. This standardiza-

tion and its wide distribution in diverse implementations for modeling and simulating different

types of Petri nets make PNML the best format for serializing interaction logic as reference

nets and the most useful basis for describing DPO rules for rewriting reference nets.

For the implementation of a software system for graph rewriting of colored Petri nets,

Stückrath [265] extended the basic structure of PNML as a RelaxNG schema file1 (cf. [272])

(ISO/IEC 19757-22) to an exchange format for colored nets like those introduced above. For

this extension, RelaxNG offers concepts like inheritance and overwriting. Using the extension,

reference nets can also be serialized to a PNML-based format. It is not the goal of the follow-

ing descriptions to give a complete description to RelaxNG; instead, the aim is to sketch the

implemented style file for describing colored Petri nets based on the version of PNML newly

introduced by Stückrath. Nevertheless, the style files are part of the implementation and can

be found in Appendix A.

In addition to defining colored nets as a PNML file, it is important to define an XML-based

format for specifying DPO rules to be applied to a given reference net or graph in PNML

1http://www.pnml.org/version-2009/grammar/pnmlcoremodel.rng
2http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=52348

114



4.2. Formal Reconfiguration

L
p1

p3

lx

I R

t2
guard x == 3;

x

p1
x

t2

p1
x

t2

p4

guard x > 5;

r

Figure 4.11.: Example of a production of a DPO rule for rewriting colored Petri nets

format. In general, a graph rewriting rule was defined as a combination of production(s) and

a mapping function. In the context of this dissertation, the DPO approach was implemented

because it can be easily verified by checking rules for fulfilling the gluing condition; thus, the

correctness and applicability of a rule to a net can be determined such that an estimated result

can be calculated and a result actually exists.

A DPO rule s was defined as a tuple s = (m, (l, r), L, I, R) of a matching function m, a

production (l, r) given as a pair of two total homomorphisms and three nets or graphs L, I,

and R where L is called left side, R is called right side, and I is called interface net or interface

graph. Mapping this formal definition of a DPO rule to an XML-based representation in the

context of colored Petri nets results in the structure seen in Listing 4.12. Here, the XML-based

format will be used to represent only the production and its necessary graphs L, I, and R, but

not the matching function m. The reason for this is that once a DPO production has been

generated, it can be applied to different nets without the necessity to change the content of the

XML file representing the rule. The matching function is provided as separate information to

the transformation engine that interprets the rule and applies it to a graph. The example in

Listing 4.12 shows a production of a DPO rule as an XML file.

Related to Listing 4.12, a net is described using PNML by defining the root node net followed

by its children, which define transitions, places, and edges represented as transition, place,

and arc nodes. Any child of node net has an id and optional children defining inscriptions

represented as inscription nodes. The production (l, r) is a mapping node that contains

mapElement nodes that represent the mapping of elements in net L (deleteNet), I (interface),

and R (insertNet). This way of modeling l and r in XML is possible because both morphisms

are total and thereby have the same domain. Finally, it should be noted that only the nodes

of type net and their child nodes are part of PNML. All other nodes are added to represent a

DPO rule as an XML file in a consistent way.

As can easily be seen in Figure 4.11, one basic restriction on homomorphisms for colored

nets has been violated: The inscriptions of the transition labeled t2 differ between nets L, I,

and R. This clearly relates to the problem of rewriting inscriptions as was forbidden by the

definition of homomorphism given above for colored Petri nets. Still, it should be easily possible

to rewrite inscriptions to simplify the use and implementation of this approach in a modeling,

simulation, and reconfiguration framework based on it. Therefore, the following definition offers

an extension using the XML-based formalization of Petri nets, which makes it possible to rewrite

the inscriptions in Figure 4.11, defining a partial order relation as described above on the basis

on the XML-based tree structure.

115



4. Reconfiguration and Redesign

1 <r u l e>

2 <de l e teNet>

3 <net id=” net1 ” type=” re fNet ”>

4 <t r a n s i t i o n id=” t2 ”>

5 < i n s c r i p t i o n><t ex t>guard x == 3</ text></ i n s c r i p t i o n>

6 </ t r a n s i t i o n>

7 <p lace id=”p1”/>

8 <p lace id=”p3”/>

9 <arc id=”e1” source=”p1” t a r g e t=” t2 ”>

10 < i n s c r i p t i o n><t ex t>x</ text></ i n s c r i p t i o n>

11 </ arc>

12 <arc id=”e2” source=” t2 ” t a r g e t=”p3”>

13 < i n s c r i p t i o n><t ex t>x</ text></ i n s c r i p t i o n>

14 </ arc>

15 </ net>

16 </ de l e teNet>

17 < i n t e r f a c e>

18 <net id=” net2 ” type=” re fNet ”>

19 <t r a n s i t i o n id=” t2 ”>

20 < i n s c r i p t i o n><t ex t>guard x == 3</ text></ i n s c r i p t i o n>

21 </ t r a n s i t i o n>

22 <p lace id=”p1”/>

23 <arc id=”e1” source=”p1” t a r g e t=” t2 ”>

24 < i n s c r i p t i o n><t ex t>x</ text></ i n s c r i p t i o n>

25 </ arc>

26 </ net>

27 </ i n t e r f a c e>

28 <i n s e r tNe t>

29 <net id=” net3 ” type=” re fNet ”>

30 <t r a n s i t i o n id=” t2 ”>

31 < i n s c r i p t i o n><t ex t>guard x == 3</ text></ i n s c r i p t i o n>

32 </ t r a n s i t i o n>

33 <p lace id=”p1”>

34 < i n s c r i p t i o n><t ex t> i n t</ text></ i n s c r i p t i o n>

35 </ p lace>

36 <p lace id=”p4”/>

37 <arc id=”e1” source=”p1” t a r g e t=” t2 ”>

38 < i n s c r i p t i o n><t ex t>x</ text></ i n s c r i p t i o n>

39 </ arc>

40 <arc id=”e3” source=”p4” t a r g e t=” t2 ”/>

41 </ net>

42 </ in s e r tNe t>

43 <mapping>

44 <mapElement i n t e r f a c e I D=”p1” de l e te ID=”p1” in s e r t ID=”p1”/>

45 <mapElement i n t e r f a c e I D=” t2 ” de le te ID=” t2 ” in s e r t ID=” t2 ”/>

46 <mapElement i n t e r f a c e I D=”e1” de l e te ID=”e1” in s e r t ID=”e1”/>

47 </mapping>

48 </ r u l e>

Figure 4.12.: Example of a DPO rule for rewriting colored Petri nets given in PNML format.

116



4.2. Formal Reconfiguration

Definition 4.14 (XML Node Part of Relation) An XML node A is part of

another XML node B if the following two conditions are fulfilled:

1. B contains any attribute that A contains with the same values.

2. A has no child nodes OR

for any child A′ of A there is a child B′ of B such that A′ and B′ are identical

or A′ is part of B′.

Two nodes are identical if node A is part of a node B and B is part of A. �

This extension of mapping nets onto each other softens the restrictions made to homomor-

phisms on colored Petri nets (cf. Definition 4.13). Allowing the rewriting of inscriptions based

on the part of relation for XML nodes as defined in Definition 4.14 makes it possible to change

the semantics of transitions as occurs when the rewriting of edges alters the firing of transi-

tions. As will be shown below, changing existing parts of a net to restrict such factors as token

play is part of reconfiguration. Therefore, XML-based net rewriting using the part of relation

is a helpful extension for later implementation. The main formal restrictions to the pushouts

and pushout complements, like the gluing condition, are left untouched by this adaption of the

formalisms.

Coming back to the example shown in Figure 4.11, using the part of relation, it is now

possible to map the graphs to one another. This is because the transition’s inscription with id

t2 in net I is part of the inscription attached to the transition t2 in graph L. This is also true

for its transformation to graph R. By extending the part of relation to XML nodes representing

elements of the net, for instance, transitions, it is possible to validate the correctness of the

mapping node as a rule. It is possible to check, for instance, whether, when one transition is

mapped to another transition, the latter’s inscriptions are part of the first or not, and so forth.

Taxonomy of Reconfigurations

The above formal introduction to the rewriting of colored Petri nets and their representation in

XML-based formats offers a toolbox for modeling the reconfiguration of formal interaction logic

as a reference net. Next, an overview of the possible reconfigurations of interaction logic will

be introduced and described. To that end, a classification of reconfiguration will be proposed

and provide a basis for further investigation into the reconfiguration of interaction logic. In

Chapter 5, an algorithm for generating DPO rules for rewriting a formal interaction logic will

be introduced that offers all the necessary information and tools for generating specific rewriting

based on the informal introduction of reconfiguration operations below.

In the following descriptions, reconfiguration operations for application to interaction pro-

cesses that process data inputted by the user are introduced independently from those for

reconfiguring interaction processes that process data emitted from the system for presentation

to the user. This differentiated presentation of reconfiguration operations offers a more un-

derstandable introduction to the problem because in many cases of reconfiguration operations,

input and output interaction processes differ due to the type of data they process (controlling

something or presenting the system state) and how they are triggered. Furthermore, it is easier

to introduce these different classes of reconfiguration operations separately. Still, simple recon-

figuration operations, like adding an interaction process to or deleting one from the interaction

logic are identical. Also, some classes of reconfiguration operations are somewhat similar, like

117



4. Reconfiguration and Redesign

Input

Simple

Delete Fusion Partition

Discretization

Parallelization Sequencing Timed
Sequencing

Single
Discretization

Multiple
Discretization

Influence

Exclusion

Direct
Exclusion

Indirect
Exclusion

Timed
Exclusion

Conditioned
Filtering

Combination

Loose
Combination

DuplicateAdd

Figure 4.13.: Taxonomy of possible reconfigurations of formal interaction logic—Reconfigura-

tion of input data processing interaction processes

combining specific interaction processes. Nonetheless, it is important to recognize that combin-

ing interaction processes for inputting data and combining those for outputting data differ in

how they are combined.

In addition to reconfiguring the interaction logic, it is often necessary to redesign the physical

representation. For instance, deleting an interaction process often involves deleting the associ-

ated interaction elements from the physical representation. This is also true for the deletion of

interaction elements that are associated with interaction processes. To prevent inconsistency

between the interaction logic and the physical representation, rules are specified in the detailed

descriptions below. In general, the following directives can be introduced for any reconfiguration

involving redesign.

Changing interaction process/interaction element For every change in interaction

logic, the physical representation must be checked for compatibility: The changed interac-

tion logic must still generate correct data to be presented by the interaction elements and

must still be compatible with the data generated by the associated interaction elements.

Deletion interaction process/interaction element If an interaction process is dele-

ted, it is necessary to ascertain whether the related interaction element is still needed or

not. Similarly, if an interaction element is deleted, it is necessary to ascertain whether

the associated interaction process is still needed or not, for instance, if it is connected to

other interaction processes.

Adding interaction process/interaction element Here, it is necessary to ensure that

an added interaction process is triggered by a interaction element and/or that it triggers

an interaction element. Conversely, when an interaction element is added to the physical

representation, it is necessary to ensure that it is connected to a interaction process. Also,

the compatibility of data passed to and from interaction elements has to be verified as

described above (due to changing interaction process/interaction element).

Thus, a consistent reconfiguration of a user interface guarantees that every interaction element

is associated with a minimum of one interaction process and that no data type incompatibility

arises. Conversely, consistent reconfiguration also guarantees that an interaction process is still

connected to a minimum of one interaction element and/or interacts with other interaction

processes.

118



4.2. Formal Reconfiguration

Figures 4.13 and 4.15 show a possible selection of reconfigurations organized in a hierarchical

taxonomy building classes of reconfiguration operations. This selection of operations is not

complete, but offers a basic catalog of operation classes for reconfiguring interaction logic. A

closer description of all classes follows. First, reconfiguration operations for adapting interaction

processes for input data will be presented and discussed, followed by reconfiguration operations

for adapting processes for output data. In this context, the necessary redesign of the physical

representation will be briefly described. This description will address only the addition and

deletion of interaction elements, always assuming that no data compatibility problems arise

from applying the reconfiguration operations to the user interface.

Simple.[Add, Duplicate, Delete] The class of Simple reconfiguration operations can be refined

by the operations Add, Duplicate, and Delete. Applied to interaction logic, the operation

Add adds a certain interaction process associated with a newly added interaction element that

triggers the new interaction process in the interaction logic; Duplicate duplicates an existing

interaction process in the interaction logic that is also associated with a new interaction element

that has been added to the physical representation; Delete deletes a certain interaction process

from the interaction logic and also deletes its associated interaction element as long as it is not

associated with another interaction process.

Combination.[LooseCombination, Fusion, Partition] The class Combination describes a cer-

tain way in which reconfiguration operations combine interaction processes. Its three main

subclasses are specified in Figure 4.13: LooseCombination, Fusion, and Partition. The sub

class Fusion describes operations that, if applied to two or more interaction processes, fuse

them into one process based on a certain fusion semantics. The following list introduces three

types of fusion operation:

• Parallelization: When two or more interaction processes are parallelized, they are acti-

vated simultaneously. This process stops after the last subprocess has finished. Because

all the subprocesses start at the same time, they also end in the same sequence depending

on their individual time to be finished. Thus, the frequency of subprocesses finishing

is implicitly defined. This could influence the semantics of parallelization such that the

subprocesses are not ‘only’ parallelized.

• Sequencing : Sequenced interaction processes are activated in a well-defined sequence.

After the first process in a sequence finishes, the next is activated, and so forth.

• Timed Sequencing : This operation is similar to the sequencing operation with the excep-

tion that the interaction processes succeeding each other are delayed by a specified wait

time.

Partition is the inverse of the fusion operation. It divides one interaction process into two or

more. Partition of an interaction process is not simple and should be investigated further. Still,

it seems necessary to develop various heuristics for partitioning interaction processes paired with

user intervention. LooseCombination is a class of reconfiguration operations defining all types of

combination interaction processes that are not Fusion. A possible example is the combination

of two interaction processes that process inputted text, each in a different way. These processes

can be combined in a conditioned way, which means that if a certain input is to be generated

on the physical layer, one or the other process will be activated. All reconfiguration operations

119



4. Reconfiguration and Redesign

in the class Combination are combined by adding new interaction elements to the physical layer

of the user interface, triggering the new, combined interaction process.

Discretization.[Single, Multiple] The class Discretization of interaction processes refers main-

ly to changing an interaction process awaiting a continuous value into an interaction process

awaiting one specific, discrete value (Single) or a set of discrete values (Multiple). What is

meant by continuous and discrete values in this context? An interaction element that generates

a continuous value is an interaction element that generates one value out of a specific range of

values. Therefore, as a minimum, any associated interaction process has to handle all the values

from this range. A discrete interaction element generates only one specific value, for instance,

a button generating a press event object. Applying a discretization operation to a particular

interaction process results in a interaction process that transfers a continuous input value into

one (Single) or one of a set of values (Multiple) out of the range of the accepted values for

the interaction process. This kind of reconfiguration is normally associated with adding a new

interaction element to a physical representation or replacing a continuous interaction element

with a discrete one.

Influence.[Exclusion, ConditionedInfluence] In addition to combining or extending interac-

tion processes, it is possible to extend interaction logic by defining the influences of and be-

tween interaction elements through their interaction processes. Here, the data processing is not

changed, but the type of interaction between different interaction elements (not processes) is

modified. Exclusion and ConditionedInfluence are only two of many specific examples of influ-

ences between interaction elements. Therefore, Exclusion can be subdivided into the following

subclasses.

• Direct Exclusion: Applying Direct Exclusion to an interaction elements’ interaction pro-

cess adds further dependencies between the interaction elements (through their interac-

tion processes). Take, for example, a button that is disabled until a certain number of

characters have been entered. Thus, the button’s disabled state depends directly on the

information entered into a second interaction element.

• Indirect Exclusion: This kind of reconfiguration operation takes into account mainly those

influences that result from data generated by the system. For instance, if a data value

reaches a certain threshold, a button is enabled or disabled.

• Timed Exclusion: Influences between interaction elements can also be extended by adding

time delays. This is true for both direct and indirect exclusion.

In the reconfiguration class Influence, no adaption of the physical representation is necessary.

Figure 4.14 shows three examples of the application of reconfiguration operations to an ex-

isting user interface on both levels: interaction logic and physical representation. The first

example on the left side of Figure 4.14 shows the result of a Parallelization of two interaction

processes by adding a new button to the physical representation labeled ‘Input A+B’ and a

place/transition construction to the interaction logic indicated as dark gray circles (places),

squares (transitions), and arcs. If a user generates an event by pressing the new button, the

upper dark gray transition fires and adds a token to the downstream place. The following

transition then fires and triggers both interaction processes associated with the buttons labeled

‘Input A’ and ‘Input B’.

120



4.2. Formal Reconfiguration

RIL

Input A Input B
Input A+B

Input A Input B
0 50 100 150 200

[0,200] [0,200]

Input 50

50

[0,200]

Input

0 50 100 150 200

[0,200]

Input

x

guard x > 50

x

guard x <= 50

true false

:setEnabled(b)

b

0 50 100 150 200
0 50 100 150 200

:setEnabled(b)

b

Genuine Reconfiguration

Combination.Parallelization

Genuine Reconfiguration

Discretization.Single

Genuine Reconfiguration

Influence.Direct

RIL

50

RIL

x
guard x>50

x
guard x<=50

true false

Figure 4.14.: Three examples for reconfiguration interaction processes for input data

Output

FilteringSimple

Add Delete

Combination

Direct
Filtering

Indirect
Filtering

Timed
Filtering

Duplicate Loose
Combination

FusionPartition

Figure 4.15.: Taxonomy of possible reconfigurations of formal interaction logic—Reconfigura-

tion of output data processing interaction processes

The reconfiguration example in the middle of Figure 4.14 shows a Discretization initializing

the original interaction process with the value 50. The example on the right side shows how

certain influences between two interaction elements can be introduced to a given interaction

logic. Here, the entered value of the slider influences the enable status of the button labeled

Input.

In interaction processes that mainly process data outputted by the system (interface), other

types of reconfiguration operations can be identified as described in the following paragraphs

and shown in Figure 4.15.

Simple.[Add, Duplicate, Delete] Simple reconfigurations like Add, Duplicate, and Delete are

defined similarly to those for interaction processes that process input data.

Filtering.[DirectFiltering, IndirectFiltering, TimedFiltering] By adding Filtering to an in-

teraction process, data that is sent to the physical representation of a user interface for being

presented to the user can be filtered in various ways. Thus, DirectFiltering means adding some

interaction logic operation to the interaction process that applies specific data processing to

121



4. Reconfiguration and Redesign

the sent data. IndirectFiltering, in contrast, involves adding other information to the filtering

process, like different output data sent by the system to the interaction logic. By involving

aspects of time, for instance, a delay in filtering output data, this reconfiguration can be called

TimedFiltering.

Combination.[Fusion, Partition, LooseCombination] The Combination of output data re-

places a simple—for instance, one dimensional—interaction element, which only outputs a sin-

gle value, with an interaction element that presents two, three, or more values in relation to

one another (for instance, as a graph). In the above-described sense, this Combination can also

be called Fusion. A LooseCombination is a less strict fusion of output values that combines the

values and sends them to an output interaction element without necessarily arranging them in

a relationship with one another.

Figure 4.16 provides two examples showing the application of Fusion and DirectFiltering to

interaction processes for output data. It is noticeable that Fusion is paired with a change

of physical representation, unlike DirectFiltering in which only data processing is changed on

interaction logic level.

As mentioned above, this list of reconfigurations of interaction processes for input and out-

put data is neither complete nor self-contained. For instance, Influence reconfigurations for

interaction processes for processing input data can also be applied to interaction processes for

processing output data, and so forth. The goal was to identify certain reconfiguration opera-

tions or groups of operations that can be seen as a basis for more specific operations that are

often highly dependent on their context. For applying these reconfiguration operations to a

given interaction logic, the following section will introduce some basic requirements and ideas

of how reconfiguration can be applied to a given interaction logic.

Applying Reconfiguration

The application of reconfiguration to formally modeled user interfaces must be examined from

various perspectives. Two perspectives are those of the participants in the reconfiguration: (a)

the user and (b) the reconfiguration system. Further instances that could trigger reconfiguration

operations can be super-users or supervisors of a given controlling scenario or other processes

that intervene. One might also discuss to what extent triggering reconfiguration and the re-

configuration itself can be directly modeled into formal interaction logic. This requires further

development of the reconfiguration system and its implementation and will be the subject of

future work.

A further perspective considers at which point in time a reconfiguration should be applied to

a user interface. Another is that of the data involved in generating reconfiguration operations

before applying them to a user interface. The following sections will describe the various

perspectives, discuss implementation, and indicate areas where further investigation is needed.

Triggering Reconfiguration

Triggering a reconfiguration at a certain point in time can be defined as a time-dependent event

that describes the application of a reconfiguration operation to a given user interface. This

trigger event can be caused by the user or by a reconfiguration system. There are various

possible objectives for initiating such an event. For example, the reconfiguration system may

identify a failure in the interaction between user and system. On the other hand, the user may

122



4.2. Formal Reconfiguration

RIL

Genuine Reconfiguration

Combination.Fusion

Genuine Reconfiguration

Filtering.DirectFiltering

RIL

y

x

x

x

x

guard x < 50;

guard x >= 50;

99

x

x

x

guard x < 50;

guard x >= 50;

99

Figure 4.16.: Two examples of reconfiguration interaction processes for output data

want to change the behavior of the user interface because, for instance, the initial design is

not best suited for solving a particular task. Schubert [245] describes a software system that

controls the triggering and application of reconfiguration and redesign for a given user interface

in the context of learning systems. To give a brief overview of possible reasons for triggering

such a reconfiguration in other contexts, the following list mentions some scenarios:

Adaption to user’s understanding and expectation Here, the user triggers a recon-

figuration if the user interface does not behave as expected. A simple example is this: if

a user presses a button and the reaction is not the expected one, that user would adapt

the interaction process connected to the button.

Erroneous interaction Detected errors in interaction can trigger reconfiguration of a

user interface designed to prevent such errors during future use. This kind of triggering

and application of reconfiguration of the user interface is currently under investigation.

123



4. Reconfiguration and Redesign

Automation and supervision Applying reconfiguration to add more automation and

system-side supervision to system controls and interaction logic can serve various purposes.

A simple one is that of meeting the changing requirements on a user interface issued by

a local authority, a company, or some other potential user.

Practice and training of the user Practice and training in the use of a given user

interface can lead to user reconfiguration of the interface. For instance, after becoming

familiar with how outputted information is presented by the interface, the user may choose

to improve that presentation.

There are many other possible scenarios that can cause reconfiguration operations to be

triggered. Still, all of them are influenced by the following factors:

The user, who shows a certain amount of knowledge concerning the task, the system,

and the user interface, as well as various cognitive abilities.

The system, which can identify and manipulate the triggering of reconfiguration in var-

ious ways—whether directly by applying certain changes to interaction logic or indirectly

through the user.

The environment and situation, which influence both the user and the system in

various ways.

The user interface offering various channels for interaction.

Thus, triggering of reconfiguration involves a broad range of considerations to be investigated

in future work. Still, some basic work has already been done in Schubert’s thesis [245] that

should be transferred to general purposes and to a system that offers instantiation of the

above-introduced concepts of user or the group of users, the system, the environment, and,

nevertheless, the user interface and it supported modalities.

Manual vs. Automatic Reconfiguration

This aspect of applying reconfiguration to a given user interface mainly aims at the type of

generating concrete instances of classes of reconfiguration operations described in the former

section. Here, in a next step after triggering a reconfiguration, the used information and data

is of main interest that has to be used to generate specific reconfiguration. These types of

information and data needed for generating reconfiguration operations can be associated to

three different groups on how reconfiguration is applied to a given user interface:

Manual reconfiguration is mainly based on the user’s need to adapt a given user

interface. Here, the user decides how to reconfigure the user interface and which parts of

the original user interface are involved in the reconfiguration.

Automatic reconfiguration Here, a reconfiguration system is added to a framework

that applies reconfiguration to a formally modeled user interface. The system can identify

certain situations during runtime in which reconfiguring a user interface can make it

perform its functions more safely, more efficiently, more automatic, and so forth. For

instance, if it is possible to identify failures in interaction, the reconfiguration system

could generate a reconfiguration to ensure that this failure cannot recur.

124



4.2. Formal Reconfiguration

Semi-automatic reconfiguration This is a combination of both manual and automatic

reconfiguration. For instance, the user identifies problems in using the system during

interaction but does not know how to correct this issue using reconfiguration. Here, a re-

configuration system based on various heuristics and algorithms could generate proposals

for reconfiguration of the user interface. The reverse might also apply; the reconfiguration

system could identify failures and propose certain reconfigurations to the user, but not

directly apply them to the user interface.

An automatic approach to identifying situations in which a reconfiguration should be applied

to an interaction logic and determining what kind of reconfiguration would be appropriate in a

given situation will be the subject of future investigation. First of all, it will be important to

ascertain when to reconfigure a given interaction logic and user interface, how the reconfigura-

tion should be carried out, and who should do it. These issues will be further discussed and an

approach described in Chapter 8.

Creation of Reconfiguration Rules

The creation of reconfiguration rules involves various types of information. First, it is necessary

to know the type of reconfiguration to be carried out. Without this knowledge, it is not possible

to create the necessary DPO rules since the type of reconfiguration determines which the rule-

creation algorithm will be used. That is to say, for every type of reconfiguration, a specific

algorithm has to be developed and implemented.

After the correct algorithm for the reconfiguration operation has been selected, the interaction

processes that will be affected by the reconfiguration have to be identified and the specific parts

of them derived using graph algorithms. For this purpose, various approaches may be used.

For instance, for an approach where the user selects certain interaction elements to represent

the related interaction processes, the algorithm has to identify the parts of the interaction logic

that are connected with these interaction elements and thus identify the interaction processes

involved.

Now, the selected algorithm for creating a DPO rule from the derived interaction processes

has to create the left and right side of the rule and the interface graph, which are all connected

via the matching functions. Based on the XML-based data structure, the algorithm generates

the output as three graphs in PNML format and a mapping node that associates the three

graphs with each other by the id of places, transitions, and edges. Several parts of this creation

workflow for DPO rules will be described in the next chapter, which introduces the framework

implemented developed in this dissertation to create, simulate, and reconfigure formal user

interfaces.

As shown in Section 4.2, most reconfiguration operations also apply changes to the physical

representation of a user interface. In the context of reconfiguration, differentiation between the

physical representation and the interaction logic is often not as strict as described above. Still, if

the term reconfiguration is used, it usually refers to changes in the interaction logic rather than

to changes in the physical representation, with the exceptions of adding, deleting, or replacing

interaction elements. In the following section, more complex operations for redesigning the

physical representation of a user interface will be described.

125



4. Reconfiguration and Redesign

4.3. Redesign

Redesign is the change of the physical representation PR of a user interface, which was defined

as a tuple PR = (I, P, C, p, c) in Section 3.2. The formalization of the redesign can thus be

defined as follows:

Definition 4.15 (Formal Redesign) A given physical representation

PR = (I, P, C, p, c)

is redesigned to a physical representation PR′ = (I ′, P, C, p′, c′), if I is replaced by

I ′ and if function p is replaced by a function p′ : I ′ → P ∗, where

∃i ∈ I ′ : p′(i) 6= p(i),

and function c by an adequate function c′ : I ′ → C. �

Definition 4.15 defines the redesign of a physical representation of a given user interface as the

replacement of set I with another set I ′ of interaction elements and the replacement of function

p with a function p′ that associates any interaction element of the new set I ′ of interaction

elements with specific physical parameters. Function c has to be replaced by function c′ only

because of the replaced set I ′ of interaction elements. Furthermore, sets P and C are assumed

to be generally valid and complete concerning all possible physical parameters and classes of

interaction elements.

This approach to redesign is very general. As introduced in Section 3.6, there are various

XML-based description languages for modeling user interfaces, especially their outward appear-

ance. To transfer the formal approach to user interface redesign described above, XML-based

technologies have to be applied to the description of the physical representation. This kind of

formally modeled redesign can be applied using transformation technologies like XSLT [275].

Based on these technologies, redesign rules can be also modeled formally as XSLT schemas or

other kind of XML rewriting approaches. The use of the implemented graph rewriting approach

seems not to be suitable in this context because physical representation is not a graph-based

structure. For this dissertation, the redesign of user interfaces was implemented based on visual

and interactive editors as will be described in Chapter 5, and therefore, XSLT-based approaches

are not of interest at this point.

In context of multi-view physical representations as defined in Definition 3.41, an extension

of the upper given definition of formal redesign is simple. The approach described has only to

be applied to every view on its own.

In the formal redesign of the physical representation, adapting the ‘behavior’ of an interaction

element is also of interest. Based on the formal approach sketched in Section 3.6, this process is

based on the use of reference nets; techniques based on graph rewriting can also be applied here.

Therefore, an implementation of formal redesign offers access to the formally modeled logic of

an interaction element, as well as a handy interface for defining reconfiguration operations that

are applied to the interaction element’s logic using the same engine as the reconfiguration of

interaction logic. This will be subject of future work on implementation and can be considered

an extension of the UIEditor framework to be described in the next chapter.

126



4.4. Conclusion

4.4. Conclusion

This chapter introduced the reconfiguration and redesign of user interfaces as a formal approach

based on the results of Chapter 3. First, the terms reconfiguration and redesign were defined

to offer a solid nomenclature for this dissertation. In this context, it is especially important to

differentiate between the modification of interaction logic and the modification of the physical

representation of a user interface. After defining reconfiguration for the modification of the

interaction logic and redesign for the modification of the physical representation, the ongoing

discussion described formalizations for reconfiguring interaction logic based on the transforma-

tion of FILL models to reference nets as described above. For this purpose, graph rewriting

systems were identified as a suitable formal approach for modeling reconfiguration. Ehrig et

al. [73, 74] introduced the DPO approach for general graph rewriting and then adapted this

approach to P/T nets, which are a simple type of Petri net formalism. Based on this foundation,

Stückrath [265], together with the author of this dissertation, extended this approach to colored

nets using an XML-based description language. To complete the formal approach to rewriting

colored nets, the author further extends Ehrig’s formalization.

After describing formal reconfiguration, the concrete application of reconfiguration to a given

interaction logic was described by introducing taxonomies for various reconfiguration operations.

These operations were categorized into those which process input data and those which process

output data. In addition, the problem of triggering and applying reconfiguration was briefly

discussed and identified as the subject of future work.

Finally, a formal approach to redesign was briefly discussed and the idea of the use of trans-

formation languages for application to XML-based description languages was described. In

context of this dissertation and the implementation that will be introduced in the next chapter,

redesign is mainly implemented and applied by visual editors and by the user, who enters and

changes the characteristics of the interaction elements of a given physical representation. Fur-

ther investigation into how adaptive user interfaces can benefit from formal redesign remains

to be conducted, which will also impact the UIEditor framework to be presented in the next

chapter.

127





5. Modeling and Simulation of Formal User

Interfaces

This chapter describes an implemented framework, including a visual editor for modeling the

physical representation and the associated interaction logic using VFILL. Various modules will

be examined that implement a simulation engine for a formally described user interface and a

component for applying reconfiguration operations to it. The concrete implementation (Section

5.2) will be described on the basis of the architecture introduced in Section 5.1, which models

the relationship between the modules and their internal structures. The description of the

implementation will also involve the introduction of an XML-based format for serializing formal

user interfaces. The chapter will conclude by describing various application scenarios and a set

of possible extensions for future implementations (Section 5.3).

5.1. Introduction

Formal and visual modeling languages are often accompanied by tools that provide ways to

use them in various application scenarios. The UIEditor framework provides the tools imple-

mented in this dissertation to support an efficient way to model, simulate, and reconfigure

formally modeled user interfaces and thus support an appropriate tool set for using VFILL

to formally model user interfaces. Furthermore, this implementation provides interfaces for

extending usable interaction elements and adding new components, such as a component for

analyzing interaction logic, which is a topic for future work. It also uses various libraries for

visualizing and simulating reference nets (cf. Kummer [149]).

From this less specific set of tasks and tools for the framework to be developed, a list of more

specific requirements can be derived:

1. Modeling requirements:

a) The framework should provide visual tools for modeling VFILL in an interactive

process paired with a visual editor for modeling an associated physical representation,

resulting in a completely formal user interface.

b) The framework should provide tools for extending the initially created interaction

elements based on approaches described above (cf. Section 3.6).

c) Interaction logic modeled as a VFILL graph should be transformed automatically

into reference nets using the algorithm described in Section 3.4.

d) The framework should support all necessary implementations for easy editing of

interaction elements and operations in VFILL.

2. Simulation and Reconfiguration:

129



5. Modeling and Simulation of Formal User Interfaces

a) The framework should support a module for simulating the formal user interface as

created using the visual editors for modeling the interaction logic and physical repre-

sentation. Thus, it should include the simulation engine implemented by Renew for

simulating reference nets and combining them with the Java-based implementation of

the physical representation as a Swing interface. Furthermore, it should implement

a simulation engine that visualizes the physical representation and handles the event

redirection from and to the simulated reference net representing the interaction logic

of the simulated user interface.

b) The framework should implement a module for formal and XML-based reconfigu-

ration of a given interaction logic using a visual editor for user-driven, interactive

reconfiguration. Therefore, the reconfiguration module should implement a set of

algorithms for such purposes as extracting certain interaction processes from the

interaction logic. Furthermore, it should provide well defined and documented in-

terfaces for adding automatic and semi-automatic modules for reconfiguration based

on intelligent approaches.

3. Architecture and Implementation:

a) The framework should be implemented in Java to allow the use of Swing for visual-

ization and event handling, Java reflection for easy addition of code during runtime,

and object-oriented modeling of the framework to offer highly flexible extension.

b) The framework should implement interfaces for adding modules that provide various

analysis methods. Here, various approaches for analyzing the interaction logic using

methods known from Petri net analysis, as well as methods for investigating the

interaction itself will be implemented in the course of future work.

c) The framework should support an interface for serialization and a set of serialization

modules for importing and exporting different data formats. An XML-based format

should be developed and modules for reading and writing it should be implemented,

especially to make formally modeled user interfaces persistent.

As will be introduced below, these requirements result mainly from the software engineering

approaches described by Rosson and Carrol [238]. Here, the authors introduce development

processes for creating user interfaces as iterative processes involving methods such as scenario-

based development for usability engineering. Such processes are based primarily on classic

approaches familiar from general software engineering as described by Sommerville [257] with

a focus on usability.

Figure 5.1 shows a more general process for creating user interfaces developed by Deming [57]

and known as the Deming Cycle. The Deming Cycle consists of four phases: (a) plan, (b) model

and create (do), (c) check and revise, and (d) act and deliver. The UIEditor framework supports

all four steps in this process through its various modules. In planning, the UIEditor framework

can be used by user interface modelers for creating mock-ups and testing them directly. During

testing, a certain amount of reconfiguration can be applied to the user interface directly without

the need to go back to modeling mode, which speeds up planning. In the next phase, the same

group of persons is able to create a final model of the user interface by using the modeling tool

in the UIEditor framework and, after completing it, to pass it directly to the users who will be

testing it. Here, in the third phase (check and revise), the persons doing the testing, who are

not necessarily user interface modelers, are able to use the interface to interact with the system

130



5.2. The UIEditor Framework

Plan

Do

Check

Act

Figure 5.1.: Original Deming Cycle

to be controlled and, furthermore, to adapt the user interface to their own needs using the

simple visual reconfiguration model. From the use and reconfiguration process, information can

be generated to enhance the usability of the final user interface for delivery. In the last phase of

delivery, the user interface will be used by the end user to control the real system. Furthermore,

the end user will be able to reconfigure the user interface, where this data can be again used

for a new planning phase, thus closing the development cycle. It can be seen that the formal

approach supported by a solid implementation framework can speed up development and easily

introduce the tester or end user to the development process without their having to deal with

the problems that would result from a gap between evaluation data and its transformation to

the concrete implementation of the user interface.

The following section will give a general overview of the architecture of the implemented

framework that results from the above sets of requirements. This overview will be followed by

detailed descriptions of the architecture modules.

5.2. The UIEditor Framework

The UIEditor framework is a framework for modeling, simulating and reconfiguring user inter-

faces based on Java programming language and extended by several libraries for XML parsing

and visualization of graph-based data structures. Figure 5.2 shows the main structure and

data communication between the single modules. In the illustration, arrows indicate data flow.

Furthermore, as can be seen in the diagram, the UIEditor framework is divided into various

modules, which themselves are further divided into various interrelated components. For data

communication, various types of data formats were implemented, also indicated in Figure 5.2.

Thus, every defined data format structures data communication between modules in the UIEd-

itor framework and can be also associated with a serialized form. If there is no data format

specified, data communication is implemented via object-based communication on the imple-

mentation level using object-oriented data-structures.

131



5. Modeling and Simulation of Formal User Interfaces

UIELoader

VFILLEditorPhysicalUIEditor

Simulator

UIESerializer

SimulationCreator

Interaction-logic oper-
ations (Java Byte-Code)

System Interface
(Java Byte-Code)

Interaction-logic oper-
ations (Java Byte-Code)

System Interface
(Java Byte-Code)

Interaction Logger

Interaction Elements
(Java Byte-Code)

IE Creator

Re
co

nf
ig

ur
at

orRe
co

nf
ig

ur
er

IE Classifier

.uie File

.pnml File .sim File .log File 

Analysis

Interaction Elements
(Java Byte-Code)

UIELoader

RefNetTransformator

Figure 5.2.: Diagram showing the structure of the modules of the UIEditor framework

The following briefly introduces the modules. Thereafter, specific parts of these modules will

be described in detail.

PhysicalUIEditor This module implements all necessary elements for interactive and

visual modeling of the physical representation of a user interface based on the drag-and-

drop metaphor. The modeling process is based on the ‘what you see is what you get’

concept familiar from graph drawing tools such as Open Office Draw1, Microsoft Visio2,

etc.

VFILLEditor This editor provides a canvas for modeling VFILL graphs based on the

same concept, look, and feel as the PhysicalUIEditor. Operations and BPMN nodes are

1http://de.openoffice.org/product/draw.html
2http://office.microsoft.com/de-de/visio/

132



5.2. The UIEditor Framework

added to the canvas via drag and drop after selection from a palette. Proxies are auto-

matically added by the editor to the graph by associating it with a selected interaction

element; channel operations can be added by using buttons from the icon bar at the top

of the editor. Furthermore, by loading Java classes via Java Reflection, the implemented

interface classes for connecting the system (System Interface in Figure 5.2) and the im-

plemented interaction-logic operations (Interaction-logic operations in Figure 5.2) to the

modeled user interface automatically generate system and interaction-logic operations in

the VFILLEditor as visually represented operation boxes.

Simulator The simulator connects all data files and implementations of interaction logic

operations and the system. It loads Renew to simulate the reference net and to handle the

communication between Renew, the rendered physical representation, and the system’s

implementation. It also logs interaction during simulation runtime, which is of particular

interest for further investigation of the automatic generation of reconfiguration rules based

on analysis of interaction. For this purpose, a module called Interaction Logger has been

implemented, which is closely connected to the simulator, which streams the applied

interaction operations to the logger component.

Reconfigurer The module for user interface reconfiguration combines various software

elements in one module. The first element is a interactive editor-like user interface, im-

plementing interactive reconfiguration through the physical representation of the user

interface. The second element is the implementation of a Petri net rewriting engine that

has been implemented to apply DPO rules (cf. Section 4.2) to colored Petri or reference

nets. The last element is a component that automatically generates DPO rules from the

inputs the user applies to the psychical representation paired with application of reconfig-

uration operations to his selections. It also implements algorithms that extract affected

sub-nets from interaction logic to create the correct matching functions for the DPO rule.

UIESerializer Many components were developed for serialization tasks and were sub-

sumed in the serialization module. For instance, the UIESerializer serializes the modeled

user interface in a specific XML-based format. This format has been developed espe-

cially to make these models persistent and enable their transformation, for instance, into

reference nets as PNML files.

UIELoader In addition to serialization for defining an XML-based format and making

modeled user interfaces persistent, loading abilities for serialized user interfaces are of

interest. Furthermore, the UIEditor framework should include the integration of given

implementations of interaction-logic operations and system interfaces based on Java. To

this end, various components were implemented that handle the loading of user inter-

faces for modeling, simulation, and reconfiguration, as well as loading implementations of

interaction-logic operations and system interfaces; these form connections to the system

to be controlled using Java reflection. These implementations of interaction-logic opera-

tions and system interfaces have to be compiled as Java source and byte code for loading

during runtime. For connectivity reasons, the UIEditor framework supports various Java

interfaces for implementation and makes them accessible to the UIELoader.

Analysis The analysis module functions mainly as a placeholder for future work imple-

mentation. Still, this author has conducted various works on analysis of interaction logs.

133



5. Modeling and Simulation of Formal User Interfaces

Altunok [3] implemented different string and pattern matching algorithms for the iden-

tification of errors in interaction. In a current work by Borisov [29], an implementation

will extend Altunok’s work to a multi-user scenario, supported by a visualization engine

for interpreting interrelations between multi-user interaction logs. Still, these are only a

few examples of planned developments in the analysis of formal interaction logic and user

interface modeling. In future work, verification and validation techniques will be used

and implemented on the basis of the representation of interaction logic as reference nets

to identify errors in the user interface and describe formal usability.

The following explanations are structurally organized according to a possible workflow in the

creation, simulation, and reconfiguration of user interfaces using the UIEditor framework. Such

a workflow will also be presented in the upcoming chapters (cf. Chapter 6 and 7), which describe

studies evaluating the evolution of the active principals of building and using mental models

on the part of human users interacting with machines. Figure 5.3 illustrates a basic workflow

for using the UIEditor framework, where a user interface is first created in a classical software

development process (here subsumed as creation phase) using the visual editors of the UIEditor

framework. Next, the existing user interface is used in a simulation phase for testing or as a

deliverable for use in controlling a given process. Next comes the adaption phase, where the user

interface is adapted for various reasons using reconfiguration techniques. This reconfiguration

can result in new requirements for a new development of a user interface or in an individualized

user interface to be reused for simulation and/or for controlling processes.

This rather raw-grained representation of a possible workflow will be described in more detail

below. There, the different steps of the workflow will be matched to the module structure of the

UIEditor framework (as introduced in Figure 5.2) and the processing of the various implemented

data structures and data formats.

Interactive Modeling

The VFILLEditor and the PhysicalUIEditor modeling component provide the interactive mod-

eling for the two layers of formal user interfaces presented in Section 3.2. Both are WYSIWYG

editors [231] implementing the drag-and-drop metaphor for adding and deleting elements. They

are based on the same software architecture and use the same library for graph visualization,

JGraph, that was first developed and introduced by Bagga and Heinz [13] and released under

Open Source BSD license3. This library implements a graph visualization canvas supporting

interactive graph modeling via point and click. The whole visualization engine is based on

Java Swing [164], which is especially suitable for (a) modeling physical representation of user

interfaces based on Java Swing components and (b) implementing new types of nodes using

the comfortable Java Swing lightweight components, which are highly flexible. The latter is

important for implementing VFILL nodes, like system, interaction-logic, or channel operations,

as well as BPMN nodes. JGraph also provides a data structure based on Java’s basic graph

data structures, which are supported by the Java API4.

Before describing the components implemented in the UIEditor framework for interactive

modeling of user interfaces, it is useful to identify the relevant software modules in the framework

(cf. Figure 5.2) and examine how interactive modeling is subsumed in the general workflow (cf.

Figure 5.3). Figure 5.4 shows the module structure and indicates the sequence of usage of the

3http://www.opensource.org/licenses/BSD-2-Clause
4http://download.oracle.com/javase/6/docs/api/

134



5.2. The UIEditor Framework

Initial User Interface Adapted/Individualized 
User Interface

Testing
Deliver

Adaption Phase

Reconfiguration

Creation Phase

Interactive Modeling

Use Phase

Simulation

Test 
Results

Adaption
Individualization

Testing
Deliver

Extension
New Development

Individualization

Process Control

Figure 5.3.: Workflow for using the UIEditor framework to create, simulate, and reconfigure a

formal user interface

modules needed for modeling user interfaces. Thus, in step Ê, interaction elements, the system

interface, and interaction-logic operations are loaded from Java byte code stored as class files in

the file system to the PhysicalUIEditor and VFILLEditor module using the UIELoader module.

In step Ë, the user interface is modeled by adding interaction elements in the PhysicalUIEditor

and defining specific interaction processes for these interaction elements in the VFILLEditor

iteratively. An example of this will be described at the end of this section. After finishing the

creation of the user interface, it will be serialized in step Ì using the UIESerializer component to

make the user interface persistent, on the one hand, and accessible and usable for other modules

in the UIEditor framework, on the other (for such purposes as simulation or reconfiguration).

A created user interface stored as a .uie file can also be loaded (step Í) later on and thus

reused in the iterative creation process for modification or extension.

Architecture and Data-Structure Model

The overlying architecture is a flexible, component-based implementation that provides easy

extension for other implementations by more complex editors. Thus, the VFILLEditor and the

PhysicalUIEditor are both implemented in the same container structure supported by the UIEd-

itor framework. This architecture provides containers that can include palettes that perform

functions like, holding interaction elements, as in the PhysicalUIEditor, and areas for posi-

tioning various types of canvases. For the PhyscialUIEditor, the class JGraphCanvas has been

implemented by extending the basic visualization and editing canvases delivered by JGraph with

drag and drop features. The VFILLEditor uses an extension of JGraph called OperationCanvas

135



5. Modeling and Simulation of Formal User Interfaces

Re
co

nf
ig

ur
at

or

SimulationCreatorRefNetTransformator

Analysis

IE Creator

VFILLEditorPhysicalUIEditor

UIESerializer

Interaction logic oper-
ations (Java Byte-Code)

System Interface
(Java Byte-Code)

Interaction Elements
(Java Byte-Code)

.uie File

UIELoader

UIELoader

1
1

2

3

4

Creation Phase

Interactive Modeling

1 2 3 4

Figure 5.4.: Extraction of modules for interactive modeling of user interfaces using the UIEditor

framework

with the same features as the JGraphCanvas, as well as other implementations, such as edge

drawing, handling, and automatic layout of proxy nodes in the canvas.

The visualization is substantiated by a data structure that can be defined as a model in a

Model View Controller architecture pattern described by Gamma et al. [94] and serves as the

basis concept for implementation in the UIEditor framework. This complex data structure is

shown in Figure 5.5 as a UML class diagram [195], which tends not to be complete but shows

its main elements and classes. The main classes are the Widget and Operation classes, which

represent, respectively, interaction elements and VFILL operations. Both are aggregated to

UIEditorGraphCell objects to embed them on the JGraph architecture for visualization and

editing. The UserInterfaceModel aggregates all the Widget and Operation objects of a modeled

user interface in one object, which represents the modeled user interface. Any Widget object

is associated with a JGraph object. This JGraph object represents the associated interaction

process modeled in the VFILLEditor as a JGraph object. Here, the modeling convention de-

scribed above which says that any interaction element is associated with one interaction process

is implemented as a Java-based data structure.

Furthermore, a Widget object aggregates objects of type WidgetInput and WidgetEvent.

These two classes represent input and output proxies as part of a Widget object. These objects

are added to the aggregated JGraph object modeling the interaction process of a given Widget.

Thus, WidgetInput and WidgetEvent are elements that are associated with a Widget object

in a well-defined way and are also added to the associated interaction process of the given

Widget. Therefore, WidgetInput and WidgetEvent are an adequate software implementation

of the input and output proxies of a VFILL graph, which connect interaction elements to an

interaction process.

Interaction elements modeled as Widget aggregate objects of type WidgetParameter, which

define the physical parameters of a given Widget. A set of possible WidgetParameter objects

136



5.2. The UIEditor Framework

Swing

Widget

JComponentWidgetInput WidgetEvent WidgetParameter

Operation

SystemOperation ILOperation BPMNItem ChannelOperation

InputChannelOperation

OutputChannelOperation

MessageChannel

JGraph

UserInterfaceModel

GraphModel

UIEditorGraphModel

DefaultGraphCell

UIEditorGraphCell

InputPort

OutputPort

IOPort

JGraph

Figure 5.5.: Object-oriented data structure representing the formally modeled user interface

during runtime and indicating connection points to other libraries

is defined in any subclass of Widget specialized to the specific Widget implementation, for

instance a button. The outward appearance of a Widget is basically defined by the associated

JComponent, which is the super class of every interaction element defined in the Java Swing

library. For every specialized Widget class that defines the model of a widget, there is a

specialized JComponent that specifies the view of the widget in the Model View Controller

architecture pattern.

Interaction logic is modeled as set of operation nodes connected by edges. Therefore, FILL

is modeled as set of classes extending the super class Operation, which is itself embedded

in objects of type UIEditorGraphCell, such that they can be added to a JGraph object for

interactive modeling and visualization. The data edges of a VFILL graph are modeled using

the standard edge implemented in the JGraph library. Thus, the graphical structure of a FILL

model is an object of type GraphModel and is part of the JGraph library.

Any operation aggregates a set of input and output ports implemented as class InputPort and

OutputPort, which extend the class IOPort. Furthermore, class IOPort extends the class Port

of the JGraph library, which cannot be seen in Figure 5.5. Objects of this class are aggregated

in the UIEditorGraphCell objects and represent the points of connection for edges in a JGraph

compatible with the definition of ports in VFILL.

Implementation of specific operations was realized by extending the class Operation with the

classes SystemOperation, ILOperation, BPMNItem, and ChannelOperation. The SystemOpera-

tion and ILOperation classes represent Java methods in a VFILL graph. Thus, via reflection,

the UIEditor framework implements a component that loads Java classes during runtime [167]

and automatically creates instances of classes SystemOperation and ILOperation, depending on

137



5. Modeling and Simulation of Formal User Interfaces

public class FooInteractionLogicOperations 
                    implements ILOperationInterface {
    public Integer multiply(Integer a, Integer b) {
        return new Integer(a*b);
    }
}

public class FooSystemInterface 
                    implements SystemInterface {
    public String getSystemValue() {
        return systemValue;
    }

    public void setSystemValue(String s) {
        systemValue = s;
    }
}

Ja
va

 R
ef

le
ct

io
n

U
IE

Lo
ad

er

multiply

Integer Integer

Integer

setSystemValue

String

String

getSystemValue

Object

String

Figure 5.6.: Generating instances of classes ILOperation and SystemOperation using Java re-

flection API and a further component of the UIEditor framework

which kind of class has been loaded, which is defined by a certain implementation of a Java

interface. The created instances then reference the method and retain this information for

later serialization. For later simulation, the methods are loaded via reflection and are called

by firing transitions in the reference net. An example of loading Java classes for instantiation

of ILOperation and SystemOperation objects can be seen in Figure 5.6. In general, the UIEd-

itor framework supports two Java interfaces: (a) The ILOperationInterface for implementing

interaction logic operations as methods of an implementing class of the interface, and (b) the

SystemInterface for implementation of a system interface for inputting and outputting data

from the system. Thus, every public method of a class implementing the ILOperationInterface

interface is interpreted as an interaction logic operation, where any parameter of the method

is interpreted as an input port and a optional return parameter as an output port; any public

method implemented in a class that implements the SystemInterface interface is interpreted as

an input system operation (if there is a void return parameter and one method parameter) or as

an output system operation (if there is a return and no parameter). Figure 5.6 shows an exam-

ple of an implementation of ILOperationInterface and SystemInterface. The implementing class

of the Java interface ILOperationInterface, called FooInteractionLogicOperations, implements a

public method called multiply, which offers two parameters a and b of type Integer and also

returns a value of type Integer. This method calculates only the product of the parameters a

and b and returns the result a ∗ b. The exemplary implementation of SystemInterface called

FooSystemInterface implements two methods: getSystemValue, which returns a specific value,

and setSystemValue, which assigns a value to a specific system value. These two methods

are read in using the UIELoader, which creates two system operation boxes: an input system

operation from the setSystemValue method, which offers one parameter and a void return

value, and an output system operation derived from the getSystemValue method, which offers

no parameters, but a return value of type String. More or less the same is true for the above-

described example of an interaction logic operation with two parameters where the return value

is not empty, resulting in the interaction-logic operation box that can be seen on the right in

Figure 5.6.

Class BPMNItem represents BPMN nodes in the VFILL graph. BPMN items are not oper-

ations in the VFILL sense, but it is useful to implement them as extensions of class Operation.

Given the necessity of including BPMN nodes in the visualization of a JGraph, it is easier to

implement them in this way than to create them from scratch.

138



5.2. The UIEditor Framework

Figure 5.7.: Screenshot of the visual editors: On the left is the VFILLEditor; on the right is the

PhyscialUIEditor

Class ChannelOperation represents channel operations and is extended by two sub-classes:

InputChannelOperation, which defines the entrance of a channel, and OutputChannelOperation,

which defines the exit of a channel. Every channel is modeled as an object of type MessageChan-

nel and connects input and output channel operations as part of a JGraph graph model. The

serialization of the entire data structure representing a VFILL graph will be examined in more

detail below.

Visual Editors

The visual editors of the UIEditor framework are shown as a screen shot in Figure 5.7. The

VFILLEditor can be seen on the left of Figure 5.7. The upper left palette provides BPMN nodes

for adding them to the right side canvas (here shown with one proxy node and two operation

nodes). The lower palette shows a set of operations, where the border’s color indicates the type

of the operation (system operation for input data, system operation for output data, and inter-

action logic operation). Operations can be added via loading Java classes like described before.

Loaded interaction logic and system operations can then be added via drag and drop from the

palette to the canvas for modeling a VFILL graph. Input and output channel operations are

added by using the buttons in the toolbar at the upper part of the VFILLEditor. Furthermore,

there is a button for deleting selected nodes. Another way to delete a node is by dragging it

out of the canvas onto the operation palette. By dropping it there, it will be deleted together

with its connected edges.

On the right side in Figure 5.7 is the PhysicalUIEditor. Its structure is comparable to that of

the VFILLEditor. On the left in the PhysicalUIEditor, there is a palette of interaction elements;

on the right is a canvas for positioning and adding interaction elements from the palette via

drag and drop. The toolbar in the upper part of the editor provides operations for deleting or

duplicating interaction elements, as well as opening, saving, or creating a new user interface.

139



5. Modeling and Simulation of Formal User Interfaces

The menu supports three menu items: (a) File, for saving, opening, and creating a new user

interface or exporting it to other file formats, (b) View, for opening the VFILLEditor window,

and (c) Simulation, for changing the mode from editing to simulation and for creating and

loading simulation files.

To provide deeper insight into the modeling process using the visual editors of the UIEditor

framework, Figure 5.8 shows an example of the process that can be used to model a user

interface. In the first step (step Ê), a new physical element, here, a button, is added to the

physical representation from the palette via drag and drop. In the next step (step Ë), the

parameters of the interaction element are defined, here, the label. The label indicates that the

newly added button opens something called ‘SV1’. As it will be seen below, SV1 is a special

valve in a simulated steam water circuit in the primary feed water circuit of a nuclear power

plant.

By activating the button by clicking on it (step Ì), its associated interaction process pops up

in the VFILLEditor, showing an canvas that initially contains only an output proxy representing

the click event of the button element. Next, loaded system and interaction-logic operations can

be added from the palette on the left to the canvas via drag and drop. Here, an interaction-logic

operation called createBooleanValue is added; it creates the Boolean value true. Furthermore,

a system operation has been added labeled setSV1Status; it sets the inputted Boolean value

as the status of the valve SV1 (thus, true means ‘open the valve SV1’). By connecting these

two operations using edges, as shown in the last step (step Î) in Figure 5.8, a click event of

the button that occurs during runtime of simulation of the modeled user interface is sent to

the interaction-logic operation, creating a true Boolean value. This value is then sent to the

system operation, setting the status of valve SV1 to true. Now, pressing the button labeled

‘Open SV1’ sets the status of valve SV1 to true; this opens the valve as long as the created user

interface is simulated with the associated system interface, the system, and the interaction-logic

operation.

In the next section, the simulation module of the UIEditor framework will be introduced in

detail, beginning with the creation of simulation files and ending with the loading and execution

of a created simulation.

Simulation

The simulation module of the UIEditor framework provides components to create simulation

files and to execute them. It does so by loading a modeled user interface, starting a connected

system simulation, and connecting these two elements via the transformed reference net from

the interaction logic modeled in the form of a VFILL graph. As part of the workflow shown

in Figure 5.3, the simulation can be identified as a subsumption of modules in the UIEditor

module structure shown in Figure 5.9. For the simulation, a .sim file referencing a specific user

interface in the form of a .uie file and an interaction logic represented in serialized form as

a .pnml file has to be created (step Ê). In step Ë, the simulation, which combines these files

with all the interaction elements, implementations of interaction-logic operations in Java byte

code, and the system interface in Java byte code, is loaded by the simulator. Then, simulation

can begin. This is handled by the Simulator module, as is the interaction logger, which logs

all interaction operations instigated by the user, as well as the system state as provided by

the system interface’s implementation (step Ì). In the following, these subprocesses will be

described in greater detail, as will the relevant data structures and formats.

140



5.2. The UIEditor Framework

   Add Interaction 
Element to Canvas

   Labeling the IE

   The empty Interaction Process 
shows up in the VFILLEditor

   Add Operation Nodes to the 
(empty) Interaction Process

   Connect them 
with Edges

1

2

3

4

5

Figure 5.8.: Exemplary modeling process using the visual editors in the UIEditor framework to

create the physical representation and interaction logic of a user interface

Creation of Simulation

Before starting and running a simulation, the simulation must be created as a file using the

workflow that can be seen in Figure 5.10. The user of the UIEditor framework only has to select

a certain user interface serialized as .uie file and then to define a name for the simulation file to

be created. The rest of the workflow is implemented as a fully automatic creation process. The

resulting file, which has the extension .sim, is a selection of references or URLs including one

to the interaction logic in its representation as a reference net, a URL referencing the formal

user interface, and URLs referencing the Java implementation of the system interface and the

implementation of used interaction-logic operations. This reference net has to be created by

the RefNetTransformator in PNML format [112] from the description of the user interface, a

.uie file. The same is true for the stub file that is necessary for the simulation of the reference

net, especially for its connection to Java code and the XML-based serialization of the user

interface itself when using Renew. For the simulation, references to the implementation of the

interaction logic operations and the system interface are also necessary. They are part of the user

interface serialization. In conclusion, the SimulationCreator as part of the simulation module of

the UIEditor framework consists of the RefNetTransformator, which generates a reference net

from a given VFILL graph serialized in the .uie file using the introduced algorithm in Section

3.4, and the RefNetStubCreator, which generates a stub used by the Renew net simulator to

apply communication between the Java code and the simulated reference net. The output is a

simulation file (with the extension .sim) that references the stub, the reference net in PNML

format, and the file representing the user interface with its physical representation as a set of

Java Swing-based interaction elements, interaction logic in the form of a VFILL graph in its

XML-based representation, and all references to the relevant ILInterface and SystemInterface

implementations.

141



5. Modeling and Simulation of Formal User Interfaces

Re
co

nf
ig

ur
at

or

UIESerializer UIELoader

Re
co

nf
ig

ur
er

Analysis

Simulator

SimulationCreator

Interaction logic
operations

System Interface

Interaction Logger

.uie File

.pnml File .sim File .log File 

Interaction Elements
(Java Byte-Code)

RefNetTransformator

Use Phase
Simulation

1 1

2 3

1 2 3

Figure 5.9.: Extraction of modules for simulation of user interfaces using the UIEditor

framework

Loading a Simulation

The next step is to start and run a simulation. This process occurs when the simulation module

loads a simulation file using the SimulationLoader component after a file has been selected by

the user. Figure 5.11 shows the loading process. This process can be subdivided into three

sub-processes that are related to the files referenced by a simulation file. In Figure 5.11, this

file is named foo.sim.

The first process is handling the stub, which is necessary for the simulation of the reference

net shown as file foo.pnml in Figure 5.11. The stub file is compiled by the StubCompiler in

Renew, which creates a Java source file. This source has to be compiled by the javac compiler,

which can be used via the Java package com.sun.tools.javac.Main during runtime. The resulting

.class file is then read by the Java class loader, which is part of Java’s virtual machine and the

RefNetTransformator

SimluationCreator

.sim File

MySystemInterface

MyILInterface

<<interface>>
SystemInterface

<<interface>>
ILInterface

implements

implements

ref

ref

ref

ref

RefNetStubCreator

ref

.uie File

.pnml File.stub File

Figure 5.10.: Components and data objects involved in the creation of a simulation file with the

file extension .sim

142



5.2. The UIEditor Framework

Simulation

MyILIInstance :MyILInterface

SimluationLoader

foo.sim

foo.uie File

foo.pnml

foo.stub

ClassLoader
MySIInstance :MySystemInteface

javac.Main
.compile

StubCompiler
.compileStub

fooStub.java fooStub.class ClassLoader

UIRenderer
fooSwingInteface :JPanel

PNMLToSNSConverter foo.sns

fooStub :NetInstanceImpl

RefNetImporter
fooSNS :ShadowNetSystem SimulationPlugin

.loadSNS
refnetSimulator :SimulationPlugin

UIEditor Java Renew
Functionality 
supported by:SimluationCreator

Figure 5.11.: Components and data objects that are involved in the loading process of a simu-

lation file foo.sim

central module of the Java reflection API. Using the class loader, class files can be instantiated

as objects of type Class. This object-based representation of Java classes during runtime makes

it possible to reload classes. The resulting stub instance is the first part of the loaded simulation.

The second process in Figure 5.11 shows the instantiation of a reference net, shown as .pnml

file; this is a shadow net system, a data structure defined and used by Renew. A shadow net

system represents the reference net as a specific data structure meeting the requirements for

simulation. For this purpose Jan Stückrath [265] implemented two software components: (a) the

PNMLToSNSConverter (where SNS stands for Shadow Net System), which converts a reference

net in PNML format to a serialized SNS form, and (b) the RefNetImporter, which instantiates a

serialized SNS that can then be loaded by the SimulationPlugin, which is supported by Renew.

The result of this process is Renew’s SimulationPlugin initiated by a reference net representing

the interaction logic of the given user interface.

The third and final process deals with the user interface itself. Using Java’s class loader, the

specified implementations of the ILInterface and SystemInterface interfaces are instantiated.

The second part of the process generates a JPanel that contains all the interaction elements

initiated, with the specified physical parameters that have been assigned to them using the

PhysicalUIEditor.

All created instances will be accumulated in a data object of type Simulation for simpler

transfer to the main component of the simulation module, the Simulator.

Running a Simulation

The last component of the simulation module described here is the simulator itself. Its main

functionality is the organization of communication between the rendered physical representation

as JPanel, the simulation of the interaction logic in Renew, and the system sending data from

the net to the system interface and back from the system to the net.

In Figure 5.12, the EventInterface component can be seen as element for controlling the former

described communication between the instances loaded by the SimulationLoader. The whole

structure is multi-threaded. This means that all components, the physical representation as

JPanel, the system and the interaction logic interfaces, and the simulation of the reference net in

Renew are independent, only connected by passing data that is controlled by the EventInterface.

Communication by the EventInterface with the Swing-based physical representation is im-

plemented using the Swing event system [164]. The EventInterface implements all existing

listeners, such as the MouseMotionListener or the ActionEventListener. Depending on the

143



5. Modeling and Simulation of Formal User Interfaces

type of interaction element, the EventInterface will be added to it as a listener during initial-

ization. Which listener is added to which interaction element can change, depending on the

element. This information is separately stored in an XML-based configuration file. To identify

the transition to be associated with a given interaction element, the id called ieID is used, which

was introduced in Section 3.4. If data is to be sent for output to the physical representation,

the correct matching of transition and interaction element is again implemented using the ieID

and the setMethod appropriate to the interaction element. Data as to which method has to

be called for each interaction element is stored in a separate file, which also defines the event

mapping.

Communication to the simulated reference net in Renew is implemented using two compo-

nents: (a) the stub, which handles calls to the net firing transitions, and (b) the implementa-

tion of the EventInterface as a singleton offering the possibility of defining methods as public

static. This means that they can be called directly without containing an instance of the

class EventInterface. The singleton pattern described by Gamma et al. [94] provides the ability

to define a type that can only be instantiated once. This solves the problem of static ac-

cess to methods and values of an object that can generate problematic side-effects in standard

object-oriented programming. Here, using a singleton pattern makes it much simpler to call

methods from the net because there is no need to pass an instance of the EventInterface class

to Renew. Calls to the net are handled by the stub, where an instance can be accessed by the

EventInterface without further problems.

For communication with the system and interaction logic interface(s), the EventInterface uses

the same mechanism as used for communication with the physical representation. Here, ids are

not used to identify the correct method (because there is only one method with any given

name). Instead, they are used to identify the correct re-entry point into the net. For instance,

if an interaction logic operation is triggered in the net, the net calls the associated method in

the ILInterface implementation. After the method has finished its calculation and the result

has to be sent back to the net, the correct re-entering transition is identified by an id through

unification (cf. Section 3.4). This is necessary because one interaction logic operation may be

used several times in an interaction logic. It would be fatal to fire the wrong re-entry transition

because this would initiate the wrong interaction process and the wrong value might be set, to

the wrong input value in the system. For system operations, there is no such problem because

multiple appearances of a system operation are reduced in the transformed reference net to

exactly one representation. For identification, the correct interaction process after a system

operation has been finished, the id called procID is used to identify an interaction process.

If the simulator is prevented from simulating, the UIEditor framework will automatically load

the reconfiguration module, which will described in the next section.

Reconfiguration

Figure 5.13 illustrates the extraction of modules by the UIEditor during the process of recon-

figuration. Here, reconfiguration is sub-divided into three main steps, where step Ê indicates

loading of the .uie file, which represents the user interface to be reconfigured (mainly for

redesign issues) and the .pnml file, which represents the interaction logic of the loaded user

interface as a reference net (mainly for reconfiguring the interaction logic). After loading these

two files along with the user interface, reconfiguration operations are iteratively applied to the

user interface (step Ë), which sometimes involves the IEClassifier, which supports the user in

144



5.2. The UIEditor Framework

Simulation

ILIInstance :MyILInterface

SIInstance :MySystemInteface

SwingInterface :JPanel

Stub :NetInstanceImpl

refnetSimulator :SimulationPlugin

javax.swing.Event OutputData

Ev
en

tI
nt
er
fa
ce

Si
m
lu
at
io
nL
oa

de
r

Figure 5.12.: Components and data objects used for simulation and controlled by the EventIn-

terface

identifying the correct interaction element for appropriate and accurate replacement (step Ì).

The UIEditor’s reconfiguration module is based on the implementation of the PhysicalUIEd-

itor, with the exception of the palette for adding interaction elements. Still, by double-clicking

interaction elements, the user can change physical parameters of the interaction elements, in-

cluding their position and size. Reconfiguration can be applied by using the buttons of a

toolbar added at the top of the visual interface of the reconfiguration module. Figure 5.14

shows a screen-shot of the reconfiguration module. From left to right the following reconfigura-

tion operations are implemented and can be used: (a) parallelization, (b) sequentialization, (c)

discretization, (d) replacement and merging of interaction elements for output, (e) duplication,

and (f) deletion. The button with the arrow icon can be used to restart the simulation using

the newly reconfigured user interface. Before applying the reconfiguration operations to the

user interface, however, the user has to select the interaction elements to be involved in the

reconfiguration, for instance, the buttons labeled ‘SV1’ and ‘SV2’, by clicking on them and

then pressing the parallelization button in the toolbar. A new button will be added to the user

interface that triggers the parallelized interaction processes. The user may also have to enter

other information, as is the case with sequentialization. Here, the interaction elements must be

sorted into a list to define the sequence in which the associated interaction processes should take

place. Here, too, a new button will be added to the user interface that automatically triggers

the sequence of interaction processes.

The implementation of the reconfiguration module and the data files involved can be seen

in Figure 5.15. The information resulting from the selection of interaction elements and the

subsequent application of a reconfiguration operation, the RuleGenerator generates a DPO rule

(cf. Section 4.2) involving the reference net in PNML format. This involvement is important

because the RuleGenerator has to create the correct mapping to the net and probably has to

duplicate parts of the original net (cf. Section 4.2). To extract specific interaction processes from

the interaction logic as a whole, the RuleGenerator implements a simple algorithm for extracting

145



5. Modeling and Simulation of Formal User Interfaces

Interaction Logger

Interaction logic oper-
ations (Java Byte-Code)

VFILLEditorPhysicalUIEditor

Simulator

UIESerializer

SimulationCreator

.sim File

UIELoader

UIELoader

RefNetTransformator

IE Creator

Interaction Elements
(Java Byte-Code)

Re
co

nf
ig

ur
at

orR
ec

on
fig

ur
er

IE Classifier

.uie File

.pnml File

1

2

1

3

Adaption Phase

Reconfiguration

1 2 3

Figure 5.13.: Extraction of modules for reconfiguration of user interfaces using the UIEditor

framework

the subnets of the specified reference net. Still, there is space to extend the algorithmic support

for this kind of extraction of interaction processes. These aspects will be described in detail in

the next subsection.

After a rule has been created, it is applied to the original PNML-formatted reference net using

the implementation developed by Jan Stückrath [265], here subsumed by the PNReconfigurer

component.

Interaction Process Tracing

Algorithm 5.1 (closely related to Java source code) traces interaction processes. The data

structure required by the algorithm is a Stack, which is defined much as it is in the basic

literature [101, 233], and a data structure representing a reference net, which has been read

from a PNML file and is suitable as input to Algorithm 5.1. Figure 5.16 illustrates the data

structure of a reference net and presents it as a UML class diagram. It is built on two basic types

representing edges (class Edge) and nodes (class Node) in a reference net, where the type Node

is further specialized to the types Place and Transition. Any Node or Edge has an inscription

defining references to variables of a specific type. Instances of the classes Place, Transition, and

Edge are accumulated in a object of type ReferenceNet.

Based on this data structure, the tracing algorithm can be implemented as in Algorithm 5.1.

The ReferenceNet R serves as input for the algorithm and contains the interaction process to

be traced, the starting transition node t, and the process id procID of the interaction process

146



5.2. The UIEditor Framework

Figure 5.14.: Screenshot of the visual interactive interface for reconfiguring user interfaces

to be traced. The transition t can be derived from its associated Widget by the WidgetEvent

object associated with that widget and derived from the .uie file. The process id procID can

be derived from the outgoing edge of transition t. Resulting from the transformation algorithm

in Section 3.4, any WidgetEvent is transformed into a transition node connected by an outgoing

edge to a place node. Thus, this transition always has only one outgoing edge with an inscribed

tuple, where the first element of the tuple defines the process id of the process that is triggered

by this transition.

This algorithm generates a ReferenceNet trace that holds only those elements of R that are

part of the interaction process, with process id procID triggered by transition t in reference

net R. To generate trace, a Stack edges is instantiated that holds all outgoing edges of a

current node in the algorithm that is part of the interaction process. Any edge in edges will

be processed iteratively. If the edge has the same process id in its inscription or a variable for

the process id, the target node is part of the process. The outgoing edges of the target node

will be added to edges for further processing. The inner IF clause of Algorithm 5.1 handles

the case if the node references another node with no outgoing edges. These nodes are, for

instance, transitions representing an interaction logic operation or a system operation, where

the process is redirected to a Java implementation and returns to the reference net. Interpreting

such references also identifies channel operations.

147



5. Modeling and Simulation of Formal User Interfaces

PNReconfigurer

Re
co
nf
ig
ur
er

RuleGenerator

.pnml File .stub File

VisualReconfigurationInterface

.uie File

rule.xml File

Involved
Interaction 
Elements

Applied
Reconfiguration

Operation

Figure 5.15.: Components and data objects that are used for simulation and are controlled by

the EventInterface

ReferenceNet

- places:Vector<Place>
- transitions:Vector<Transition>
- edges:Vector<Edge>

Node

- inscription:String

+ getOutgoingEdges():Vector<Edge>
+ getIncomingEdges():Vector<Edge>
+ getInscription():String

Place

Edge

- inscription:String

+ getTarget():Node
+ getSource():Node
+ getInscription():String

Transition

Figure 5.16.: UIEditor framework’s data structure, representing a reference net for processing

using an object-oriented programming language

For interaction processes that process data for output, the algorithm is almost the same. It

only changes in that incoming rather than outgoing edges and the target rather than the source

node are investigated.

Figure 5.17 provides an example of how Algorithm 5.1 is applied to an interaction logic.

The interaction logic shown is the same as that shown in Figure 3.28 in Section 3.4, where

the various functional parts of a transformation can be seen. In Figure 5.17, the result of

applying Algorithm 5.1 to this partial interaction logic is identified by the black transitions

and places. The first element in this trace results from the transition with the inscription

:m input5974981199492591878(var3), which identifies an event of a certain interaction ele-

ment in the physical representation. Thus, the partial interaction process traced in the diagram

represents the interaction process that is triggered by the event identified by the id beginning

with 597498119.... Furthermore, it can be seen in Figure 5.17 that the process id is not stable

throughout the interaction process. Thus, an interaction process is not identified by only one id

but by a set of ids, where every set is pairwise disjunct to all other sets representing interaction

148



5.2. The UIEditor Framework

processes. The extension of the above algorithm to this fact is simple. The current valid ids

identifying the interaction process have to be stored in an array or Vector, thus enabling the

correct edges to be identified.

Algorithm 5.1 (Generating reconfiguration rules from inputted data)

(1) INPUT R, t, procID.

(2) Stack edges = new Stack( t.getOutgoingEdges() ).

(3) ReferenceNet trace = new ReferenceNet().

(4) trace.addNode(t).

(5) WHILE edges is NOT empty DO

Edge e = edges.pop()

Node target = e.getTarget()

IF ( e.getProcID.equals(procID) )

IF ( target.getOutgoingEdges().size() == 0 & target.getReferencedNode() != null )

edges.push(target.getReferencedNode.getOutgoingEdges())

ELSE edges.push( target.getOutgoingEdges() )

trace.addNode(target)

trace.addEdge(e).

(6) OUTPUT trace.

Serialization

The main motivation for serializing a formally modeled user interface is to make it persistent

based on a format that conforms with XML so that it can serve as a basis for the above-

introduced simulation and reconfiguration workflows and processes. It was decided to develop a

proprietary format based on XML to serialize a user interface that is modeled based on VFILL

on the logical layer and combine it with a physical model without making compromises by

using existing formats that may result in loss of information or overhead. Still, because this

format, called UIEML (where UIE reference to the UIE in UIEditor and ML stands for Markup

Language), is based on XML, it can be easily transformed or exported to other standardized

formats, like UIML. Figure 5.18 shows the structure of the format. All file formats used are

specified as RelaxNG schema in Appendix A as they were implemented in the UIEditor frame-

work.

The root node ui has three basic child nodes describing (1) the physical representation

(design node), (2) the interaction logic (interactionlogic node) as a FILL graph, and (3)

Java classes (programminterfaces node) defining the connection to implemented interaction-

logic operations (ilopinterface node) and to the system interface (systeminterface node).

The physical representation of a user interface is further divided into interaction elements rep-

resented as a set of widget nodes, where every widget node is further split into its physical

149



5. Modeling and Simulation of Formal User Interfaces

Figure 5.17.: Example of a traced sub-process of a given interaction logic as a reference net

parameters (bounds and parameter nodes) and an interface node. The interface node defines

widgetport and event nodes as its children, which represent either values that can be set to the

interaction element or events that are emitted by the interaction element. Furthermore, these

two types of nodes define proxies in the interaction logic, where edges in the FILL serialization

reference the id of these node types. The function nodes of the widgetport and event nodes

define the Java method associated with the interaction element to be called on either the system

or the interaction-logic implementation.

The interactionlogic node that represents the interaction logic of a user interface is sub-

divided into a set of ilmodule nodes, each of which represents one interaction process that

is associated with exactly one interaction element. Thus, the set of all ilmodule nodes de-

fines the entire interaction logic. Any ilmodule node is further divided into a set of op-

erations (operations node) and a set of edges, called connectors (connectors node). The

operations node has children of type bpmn representing BPMN nodes, channeloperation

representing channel operations, iloperation representing interaction-logic operation, and

systemoperation representing system operations in a FILL graph. All these nodes except,

the bpmn node, have children, which represent (1) visualization aspects for a visual presentation

150



5.2. The UIEditor Framework

<ui>

<design> <interactionlogic>

<widget> <ilmodule>
bounds:  x, y, width, height
bpmn: id, type, inscription
channel: id, name
channeloperation: type, id, name
connector: source, target, type,

 inscription
event: id, type, value, datatype
function: name
ilmodule: ref
iloperation:  id, name
ilopinterface: path
iport: id, datatype
oport: id, datatype
parameter: name, datatype, value
systeminterface: path
systemoperation: type, id, name
ui: name
widget: id, type, name
widgetport: id, name, datatype, index

<operations> <connetctors>

<connetctor><iloperation> <systemoperation>

<bounds><interface>

<widgetport> <event>

<function><function>

<programminterfaces>

<systeminterface> <ilopinterface>

<channeloperation>

<initialparameter>

<parameter>

<iport> <oport><description> <function>

<channel>

<bounds>

<bpmn>

<bounds> **
**

Figure 5.18.: Proprietary file format for serialization of user interfaces created using the UIEd-

itor framework called UIEML (.uie)

as a FILL graph (bounds node), (2) the Java method they are associated with (function node),

and (3) a description (description node). The input and output ports of FILL operations are

represented as iport and oport nodes.

Interaction-logic operations also have child nodes of type initialparameter. These nodes

define individual information attached to exactly this operation. For instance, an interaction-

logic operation generating a fixed Integer value could be used several times in an interaction-logic

model but should not always generate the same value. Therefore, the user sets a specific value

for the interaction-logic operation stored in the initialparameter node. Furthermore, channel

operations define a child node of type channel that specifies the channel they are connected

to. BPMN nodes are only described by their position in a visualization as a bounds node. The

type of any given BPMN node is defined by the type attribute of the XML node.

The box on the ride side of Figure 5.18 contains the attributes associated with these nodes.

The values of id attributes are always unique for every node in a UIEML file. Other attributes

use the ids of other nodes to reference those nodes. Examples are the ref attribute of the

node ilmodule and the source and target attributes of the node connector. Most attributes

are self-explanatory because they are used in the same way as in other XML-based description

languages.

As mentioned above, the UIEditor framework implements components for reading and writing

serialized data. Still, this XML-based representation uses an object-oriented data structure

implemented in Java, as can be seen in Figure 5.5. In addition to being able to transform

UIEML using, for instance, XSLT, this representation can also be used to generate and serialize

other formats. One example of a possible serialization of a user interface or, more specifically, its

physical representation, is SwiXML as introduced and described by Paulus [213]. This format

is an XML-based description language for Java’s Swing API. In the first version of the UIEditor

framework, it was planned to use SwiXML to serialize the physical representation. However,

this plan was rejected because of the specific requirements to define input and output proxies.

151



5. Modeling and Simulation of Formal User Interfaces

5.3. Future Extensions

The UIEditor framework supports a broad set of modules for modeling interactively and visually

formal user interfaces, storing them using implemented serialization components and XML-

based description languages, creating and executing simulations, and applying reconfiguration

on the basis of formal interaction logic and a visual and interactive editor. Three main areas still

require further investigation and implementation: (a) the module for analysis, (b) the module

for modeling interaction elements, and (c) a module implementing the use of distributed user

interfaces for multi-person, multi-interface scenarios.

Analysis

It has been already said that analysis is a big issue in formal user interface modeling but still

has not been investigated and implemented in a satisfying way. To this end, the following list

offers some ideas concerning future implementation and the necessary inclusion of third-party

libraries.

Verification and Validation One main issue is the verification and validation of formally

modeled interaction logic. Possible approaches include the use of state-space analysis from

process investigation in higher Petri net studies. Furthermore, analysis of reachability in

state-space analysis could be another possible extension.

Log and interaction analysis Some work has already been done in the analysis of

log data. Still, future work might include interaction analysis during runtime. Paired

with learning algorithms and powerful knowledge representation concepts, these analy-

sis methods could be used, for instance, to identify errors during runtime and generate

reconfiguration suggestions.

Formal usability A further field of investigation and implementation is that of formal

usability. The next step here would be to investigate the degree to which usability can be

defined using a certain formalism, like Petri nets, and how this kind of usability might be

checked against a (formal) user interface model.

Online analysis and error detection Using data analysis techniques and formal model-

ing approaches, errors during user interaction with a system can be identified and used for

triggering reconfiguration. This serves as a knowledge base for generating reconfiguration

rules. Further insight into this subject will be offered in Chapter 8.

In general, an Analysis module as introduced in Figure 5.2, can be used in various processes

and subprocesses. The results of this analysis can be used in a creation phase to support

the modeler through such means as formal usability concepts. Furthermore, analysis can also

trigger reconfiguration and serve as an information source for generating reconfiguration rules.

In simulation, online analysis can also provide the user with additional information, for instance,

by predicting situations that may occur during subsequent interaction.

Creation of Interaction Elements

In cooperation with Emeljanov [81], the author developed a formal approach to modeling in-

teraction elements using a layered structure paired with reference nets, as described in Section

152



5.4. Conclusion

3.6, as an extension of the creation phase in the general working process. Still, tool support for

interactive and visual modeling has not been fully developed. Emeljanov started to implement

a visual editor that supports a click-and-drag-based canvas implementation for modeling the

image and event boxes paired with a visual editor for modeling reference nets implemented in

the Renew framework. However, further implementation still needs to be done to complete

this basic implementation for the UIEditor framework. Besides finishing the visual editor, a

data-structure accompanied by a serialization format still has to be developed to make the

interaction elements persistent and usable for modeling, simulation, and reconfiguration.

Distributed User Interface Creation and Simulation

Up to now, the UIEditor framework implements modules providing tools for one-person, one-

interface, one-system scenarios only, which is the case in most (historical) HCI research. One

important issue in future work will be the transformation of formal concepts to multi-user,

multimodal scenarios also supporting various instances of user interfaces as extensions of the

working process introduced in Figure 5.3. For this purpose, the framework should offer extended

modeling support, as well as extended simulation support for the distributive simulation of user

interfaces. Modules for distributed simulation and distributed reconfiguration should implement

various concepts known from research on distributed systems (cf. Tanenbaum et al. [266]

and Coulouris et al. [49]), like distributed communication protocols (cf. Newman [185]) or

transactions in distributed reconfigurations (cf. Moss [174]).

In this context of extension, the general workflow described above, which mainly addresses the

one-person, one-user interface, one-machine scenario, further extensions to this workflow are also

thinkable. Thus, questions of distributed interaction could extend the workflow, as could further

implementations of mobile interaction. Furthermore, introducing the context for interaction,

such as the surrounding environment (which up to now completely has been excluded from

the scope of this dissertation), can extend the workflow in all three phases. Involving the

environment explicitly in the modeling of user interfaces results in the need for further modeling

approaches and tools. This is also the case with context-sensitive reconfiguration or simulation.

Thus, a lot of future work remains to be done. Further aspects of future work are described in

Chapter 9. All these extensions have to be supported by an implementation of multi-view user

interfaces on modeling, simulation, and reconfiguration layer. This is still part of future work

but has been considered in the basic software structure of the framework.

5.4. Conclusion

Every formal modeling approach needs effective tool support, as various examples show. For

instance, UML is supported by a broad set of tools for visual modeling and translation to source

code; one example is Poseidon5. Jeckle [123] provides a list of tools for UML modeling that

shows how important tool support is for modeling languages. The same is true for Petri nets

as the tool list6 on the website Petri Nets World7 shows. This chapter has introduced an im-

plementation of a framework for the visual modeling of user interfaces using VFILL, as well as

an editor for the visual modeling of the physical representation. Furthermore, various modules

5http://www.gentleware.com/
6http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
7http://www.informatik.uni-hamburg.de/TGI/PetriNets/index.html

153



5. Modeling and Simulation of Formal User Interfaces

have been described for simulating and reconfiguring formally modeled user interfaces. Never-

theless, described above, many issues remain to be dealt with in future work. Here, modules

for the analysis of formal interaction logic were briefly discussed, as were implementations for

the creation of interaction elements and a module for modeling, simulating and reconfiguring

distributed user interfaces based on the formal approach described above.

Chapter 2 through Chapter 5 described related work on which basis a formal approach to

modeling user interfaces in a three-layered structure was defined, followed by an introduction

to a formal reconfiguration approach for implementing adaptive user interfaces on a formal

basis. This concept of the formal modeling and reconfiguration of user interfaces is completed

by the implementation of the UIEditor framework, which was described in this chapter. The

next step will be to evaluate this approach with regard to its application in the field. To

do this, two major scenarios were identified and investigated. These investigations will be

described in the next two chapters. As will be seen, this research showed that, as hypothesized

human error in interaction can be reduced through user interface reconfiguration. The next

sections will introduce the three relevant studies, which were conducted in cooperation with

Prof. Dr. N. Baloian from the Universidad de Chile (study presented in Chapter 6) and with

Prof. Dr. A. Kluge and Dr. D. Burkolter from the University of Duisburg-Essen, who addressed

the psychological background for the studies presented in Chapter 7. These studies were also

covered in lectures at the University of Duisburg-Essen.

154



6. User Interface Reconfiguration in Interactive

Learning Systems

The investigation and development of interactive learning systems is a specific application area

of human-computer systems. User interfaces play a central role in this area because they have

to transmit the learning content to the learner. It has been shown that presentation and

interaction with learning content directly influence learning success. As an extension of a basic

one-learner-one-system approach, computer-supported cooperative learning systems integrate

group learning aspects, thus enhancing learning success.

To describe the reconfiguration of user interfaces as an extension of learning processes using

interactive learning systems, this section first provides a survey of related work in its thematic

context (Section 6.1). In a 2006 student project [142], a learning system called COBO was

implemented to support the cooperative learning of cryptographic protocols; this system has

since been extended by connecting it to the UIEditor framework, resulting in an implementation

called XCoBo (Section 6.3). To evaluate the impact of reconfiguration in cooperative learning

scenarios, an evaluation study was conducted in 2009, which yielded positive results (Section

6.4). The main concepts of this chapter were published in [289].

6.1. Introduction

This dissertation was motivated by several questions. First and foremost, to what extent can

the mental models of human users be transferred directly or indirectly to a user interface and,

especially, to its interaction logic? Furthermore, to what extent does the adaption of a given

interaction logic through reconfiguration to the user’s mental model influence the success of the

human-computer interaction, especially in the control of complex systems and processes. It has

been shown in related research, that building mental models is, on the one hand, influenced

by the experiences a person has had in the past and, on the other, by the study, training, and

practice that person has done. Experience is gained primarily through living and working; thus,

it is not normally directly controlled from outside. In contrast, study, training, and practice

can be defined and developed didactically, as with children at school and students at university.

Thus, there are procedural methods for building mental models through these didactic means.

Regarding the formal modeling of interaction logic and the relationship between interaction logic

and a person’s mental model, a question arises: To what extent can building a formal interaction

logic through reconfiguration construct and extend—or, put more simply, influence—a mental

model such that both the interaction logic and the mental model at some point converge,

becoming in the main equivalent? Thus, two hypotheses were formed: (a) an interaction logic

built by a user through the reconfiguration of a given user interface is a representation of the

mental model of the user and (b) this influences the success of any interaction between that

user and that system.

To investigate these hypotheses, an evaluation study was conducted in 2009 at the University

155



6. User Interface Reconfiguration in Interactive Learning Systems

of Duisburg-Essen, investigating the influence of user interface reconfiguration on the learning

process of a given cryptographic protocol and on the construction of a mental model. Since the

structure of most cryptographic protocols involves more than one participant, the investigation

was embedded in a cooperative learning scenario. Thus, if it was possible to show that reconfig-

uring interaction logic has a significant influence on the learning of certain content, this would

imply that interaction logic is a formal representation of the person’s mental model concerning

that content. In the study, students created a cryptographic protocol through reconfiguring a

user interface, such that the resulting interaction logic implemented all necessary operations and

data processing and the students were able to simulate the whole protocol. The user interface

the students created was an image of their mental model of the protocol. If the mental model

was erroneous, the interaction logic was also erroneous, and the students had to fix the problem

through reconfiguration. Thus, learning success was implicitly a validation of hypothesis (a)

because if there was no success, the mental model might be correct or incorrect, but its accu-

racy was unverifiable because the interaction logic was not correct. If the interaction logic was

correct and the students were able to validate it, because the students had built the interaction

logic from scratch, it verifiably represented the relevant parts of the students’ mental models.

Hypothesis (b), which deals with the influence of reconfiguration on interaction, was in-

vestigated in a subsequent evaluation study described in Chapter 7, which covers errors in

interaction.

6.2. Computer-Supported Cooperative Learning

The main goal of this section is to investigate the possible influence of reconfiguration on a

mental model. Mental models are generated through learning processes that can be supported

by computers (computer-supported learning, CSL). CSL is a broad research field, which also

contains the area of cooperative or collaborative learning systems (computer-supported coop-

erative learning, CSCL) [100, 235, 288]. CSCL is of particular interest in the integration of

user interface reconfiguration into learning systems, which results from further research on re-

configurable interfaces, or Concept Keyboards (CKs), which were evaluated in single-learner

systems and scenarios [143, 144, 248]. The next step was a multi-user scenario, investigated

and implemented by Kotthäuser et al. [142]. The combination of this multi-user approach with

the UIEditor framework offered complex reconfiguration operations to learners.

A learning strategy for which computer support is especially applicable is problem-based

learning (PBL) [141]. Here, the idea is to impart knowledge by having the learner apply various

methodologies with varying degrees of computer support in order to solve specific problems.

Problems to be solved can be of a theoretical or practical nature, depending on the learning

content. In a collaborative scenario, theoretical problems can be modeled and discussed in

the group using collaborative tool support. Often, theoretical problems are learning content in

computer studies. For instance, cryptographic algorithms and protocols can be learned using

a PBL-based approach. For instance, investigating security aspects of cryptographic protocols

could provide the subject of a collaborative learning scenario. These aspects could be formally

modeled in a first step by the learners and then validated or verified by the computer to generate

feedback to the learners [161].

In application-dependent problems, learners are asked to analyze concrete issues in a cooper-

ative manner. Here, the main goal of this analysis should be a solution that is not necessarily

reached. The computer supports only tools for displaying the practical problem, changing its

156



6.2. Computer-Supported Cooperative Learning

representation, interacting in a certain way with it, solving identified sub-problems, combining

various parts of a possible solution, and checking the correctness of a derived solution through

automated verification or through interactive simulation.

The current literature shows PBL as applied to a practical or a theoretical problem. The idea

of the approach described by Weyers et al. [289] is to combine these two different aspects in one

consistent environment to learn complex algorithms. The learner first models the algorithm

theoretically and then simulates it using a visualization tool to validate his model. In this

way, the learner can assume two perspectives on one problem, combining both approaches in

PBL. The first step in modeling, say, an algorithm, demands that the learner generate an

overview of the entire algorithm and its functionality without being bound to a concrete use.

In the second step, the learner is able to validate the mental model of the algorithm created

in the first step by such means as visual simulation and comparing the outcomes to an expert

model. This combination offers an iterative learning process that can be implemented using

reconfiguration techniques for user interfaces. The generated interaction logic can be used for

automatic verification of the learner’s results and offer further information for his validation

process.

As mentioned above, such a system was implemented using a system for visualization and

simulation of cryptographic algorithms called CoBo for the practical part of PBL combined

with the UIEditor framework, which supports the platform for reconfiguring the user interface

to model the algorithm on a formal level. Figure 6.1 provides a model for how the reconfiguration

of user interfaces in a CSCL environment can be applied. This model combines application-

driven modeling (through the reconfiguration of user interfaces) and a simulation layer for

informal validation paired with a formal validation based on Petri nets.

To model a cryptographic algorithm based on this architecture, the user has an initial user

interface where every button is associated with a certain operation in the algorithm. Through

ongoing reconfiguration by combining buttons to more complex ones, the learner implicitly

models the algorithm on the formal level as a reference net. Using the connection to CoBo, the

learner is able to validate the modeled algorithm by starting a simulation of the algorithm using

the modeled user interface. If the algorithm terminates with the correct result, the algorithm

was modeled correctly.

The idea of connecting interaction elements with conceptual elements in a subject to be

learned has been investigated in other works on CKs. CKs are physcial or virtual keyboards

that are easily adapted to different contexts. The primary feature of a CK is that keys trig-

ger assigned concepts in given contexts. CKs have already been successfully used in various

implementations (excluding reconfiguration) and evaluations of learning systems for developing

single-user scenarios supporting the learning of complex algorithms [15, 17].

To benefit from the positive impact of cooperative work in learning [259], informal validation

on the application layer has been implemented as a distributed simulation. To this end, CoBo

implements a module for the distributed simulation of cryptographic algorithms, such that every

involved party in, say, a key exchange protocol is controlled by one learner using CoBo in a

cooperative way. Through reconfiguration based on the UIEditor framework, a touch screen

can also be used for collaborative modeling of the algorithm.

In brief, the XCoBo system was implemented as a tool for a cooperative learning process that

will be described below in greater detail. This learning process is based on the combination of

two conceptual approaches familiar from PBL: the theoretical and the practical problem-solving

approach. The entire learning process combined with the described tools was evaluated in an

157



6. User Interface Reconfiguration in Interactive Learning Systems

OP1

OP2

OP3

OP4

OP2

OP4

OP1

Petri Nets

Physical 
Representation

Interaction Logic

User-driven 
Reconfiguration & 

Simulation

U
IA

pp
lic

at
io

n 
La

ye
r

Fo
rm

al
iz

at
io

n 
La

ye
r

Informal
Validation

Formal
Verification

Figure 6.1.: Application of reconfiguration of user interfaces in computer-supported cooperative-

learning

2009 study involving 66 students at the University of Duisburg-Essen.

The main motivation for extending Kraft’s single scenario approach for learning complex algo-

rithms [144] is the positive impact of group learning on success in learning complex algorithms,

as has been shown in work by Nickerson [187], Webb [277, 278], and others. Working in small

groups offers the opportunity to share insights (Bos [30]) and observe others’ problem-solving

strategies (Azmitia [11]).

The primary research focus in investigating environments for cooperative learning consists of

dealing with modeling tools that support cooperation, cooperative design, knowledge building,

and such issues as awareness (see Mühlenbrock et al. [176], among others). For the develop-

ment of a collaborative learning tool for learning cryptographic algorithms, works dealing with

algorithm visualization and simulation are of particular relevance. Many systems for algorithm

visualization have been implemented, as described by Diehl [59, 60], and Stasko [263]. The

positive impact of visualization on the understanding of complex systems and machines as a

more general perspective on an algorithmic problem is described by Diehl and Kunze [61]. In

addition to systems for algorithm visualization, several repositories for algorithm visualization

have been developed (e.g., Crescenzi et al. [52]). The work of Shaffer et al. [249] gives an

overview of state of the art for algorithm visualization. Solutions for algorithm visualization

paired with concepts for explanation are described by Kerren et al. [133] and others. Shakshuki

et al. [250] introduced an explanation system based on hypermedia concepts for web-based

structures. Eisenberg [78] presented an example of basic research in algorithm visualization.

In addition to the visualization of algorithms, their animation is an important aid for clearly

158



6.2. Computer-Supported Cooperative Learning

Figure 6.2.: Example of a concept keyboard used to interact with an animation of the AVL

algorithm

demonstrating how the algorithm and its several parts work together. Brown [34] introduces

and analyzes a taxonomy of systems for generating algorithm animation. Stasko [261] intro-

duces a framework called TANGO for algorithm animation, which is extended [262]. A further

overview of program visualization and algorithm animation is provided by Urquiza-Fuentes and

Velazquez-Iturbide [271].

The notion of using the reconfiguration of user interfaces based on a visual and interactive

editor was motivated by the use of CKs in the context of computer-supported learning. CKs

have proven to be helpful tools in teaching complex algorithms, as shown by Baloian et al.

[14, 18]. Another application area is the use of CKs in learning systems for blind and partially

sighted children. Douglas and McLinden [68] describe the use of CKs for teaching tactile reading

to blind children. This example shows the high flexibility of CKs. A physical implementation

of a CK can be seen in Figure 6.2. This CK is equipped with a touch-sensitive surface, which

can be covered by a simple piece of paper showing the concept keys. As the example in Figure

6.2 shows, every key is connected to a concept, which is itself associated with a concept in the

animated algorithm. The use of paper makes the appliance of CKs highly flexible. A CK can be

easily transformed into a software-based implementation using the UIEditor framework. The

design can be changed by the visual reconfiguration module, which also offers reconfiguration.

By combining the idea of CKs and formal reconfiguration in this way, the concepts associated

with the concept keys can be adapted by the learner to his individual understanding and learning

conception.

Reconfiguration as a concept in learning systems has also been investigated by Hundhausen

[116]. He concludes that software for algorithm visualization improves the level of comprehen-

sion and, more importantly, that “what learners do, not what they see, may have the greatest

impact on learning.” These findings support the notion of combining algorithm visualization

and animation with the use of CKs extended through the reconfiguration of user interfaces,

which provides an experimentation aspect to algorithm learning. Colella [46] showed the im-

pact of collaborative modeling in learning applications, which offers further support for the use

of reconfiguration techniques as a tool in collaborative learning environments.

159



6. User Interface Reconfiguration in Interactive Learning Systems

The implementation presented in the upcoming section focuses only on the input step in

controlling a cryptographic algorithm. This should be extended to reconfigure the output side

of the user interface—here the algorithm visualization or animation—as well. It has been shown

that multimodal user interfaces have a positive impact on learning success in learning complex

algorithms, as shown in [16, 17]. Thus, an important subject for future investigation is the

reconfiguration and adaption of algorithm visualizations and animations; initial work in this

area is described by Schmitz [242].

6.3. Simulation Environment for Cryptographic Algorithms

The use of user interface reconfiguration in learning systems will be described by introducing

the CoBo system and then explaining its connection to the UIEditor framework, which resulted

in the implementation of the software tool called XCoBo.

The Learning Process

Before explaining how reconfiguration techniques for user interfaces are used as extensions of

CoBo, it is first necessary to explore their use in learning systems in general. Here, the idea is

to create the CK as the first step in a learning process, followed by a validation step in the form

of a simulation. If an error occurs during the simulation, the CK has to be reconfigured in such

a way that an error-free simulation of the algorithm becomes possible. Figure 6.3 describes the

workflow of a small group of learners. After being introduced to the protocol (which has to

be learned) and the learning software, the learners are separated into small groups that reflect

the number of participants in the protocol. They start by creating the CKs for each role in

the protocol cooperatively, adding operations to keys on a (software) CK. Next, they define

the role in the protocol that each key is associated with. Thus, the learner who represents

a certain role sees only those keys that are associated with his role during simulation. After

they have finished creating the CK, they start to simulate the protocol. If errors occur during

simulation—for instance, if a certain operation is missing—they go back to the creation editor

and change the initial keyboard by adding, deleting, or reconnecting the CK keys to other

operations and roles. Once the simulation has been successfully completed without errors, the

learning session is closed with a concluding evaluation.

CoBo

CoBo is a learning software that was developed in a student project in 2006 [142]. It was

implemented to offer a tool that provides distributed simulation of cryptographic protocols,

including algorithm animation and CKs, to control the simulation by the learners. Here, each

learner is associated with a specific role in a cryptographic algorithm and can execute the

operations associated with this role using the keys on the CK. For instance, if Alice should send

a message to Bob in a certain situation in the protocol, the learner who represents Alice has to

press the key to send the message to Bob and so forth.

The main application scenario for cryptographic algorithms and protocols is the secure ex-

change of information over insecure communication channels or to solve problems that are

closely related to the exchange of information. For instance, most encryption algorithms need

keys that have to be shared before the communication starts. Therefore, key exchange proto-

cols were developed involving the two communication partners (often called Alice and Bob) and

160



6.3. Simulation Environment for Cryptographic Algorithms

Introduction

Cooperative Creation & 
Reconfiguration

Distributed
Simulation

Evaluation

Validation

Reconfiguration

Figure 6.3.: Workflow for using CoBo for interactive visualization of cryptographic algorithms

paired with a tool for user interface creation and reconfiguration to create CKs

in some cases a third party that shares a secret with both communication partners called the

trusted third party (TTP). Especially in the context of learning such protocols, a distributed

learning environment like CoBo is helpful. CoBo offers a framework for simulating and vi-

sualizing cryptographic protocols. Furthermore, it provides interfaces that allow the simple

implementation of new protocols as Petri nets that describe the protocol formally. Further-

more, CoBo implements error handling. It offers a basic implementation structure for the rich

animation of cryptographic protocols involving up to four communication partners. CoBo has

also been transfered to mobile devices, as described in [18].

In order to use CoBo, the learner has to connect his CoBo instance to an existing learning

session that defines the protocol to be learned. This session has to be started in advance

by using another CoBo instance. The session runs on an instance of the CoBo Server that

handles the distributed communication between all CoBo instances. The learner first connects

to an existing session and then selects a role; after all participants have been connected to a

session with their CoBo instance, the simulation begins. When the CoBo user interface (shown

in Figure 6.4) appears, it contains only the operation keys of the particular role the learner

selected beforehand and the initial visualization of the protocol. Next, the simulation starts,

and the learner who is associated with the active role in the protocol (indicated as a pale icon

in the algorithm visualization) can execute his operation keys. The animation associated with

this executed operation is shown to all the learners. If the learner with the active role tries to

execute an operation that is not correct in a given situation or state of the protocol, an error

message appears informing him of his mistake.

When considering cryptographic protocols instead of exploring an algorithm, as implemented

in a learning system called ConKAV [17], more complex supervision is needed during simulation

and interaction with the system. This is even more critical in a distributed scenario. Complex

system models or action logic is necessary to meet the requirement of the complex behavior

of the system and error recognition in the user’s actions. This led to the use of Petri nets

to implement structures for handling incorrect inputs by the learner. These modeled error

161



6. User Interface Reconfiguration in Interactive Learning Systems

Figure 6.4.: CoBo’s user interface during simulation in Needham and Shroeder’s key exchange

protocol

cases were connected to messages that were presented to learners who tried to execute incorrect

operations in a certain situation of the protocol. To this end, CoBo implements a simple

simulation environment for Petri nets with a referencing mechanism to Java code like that

of reference nets but on a much simpler level. It extends a basic Petri net formalism closely

related to S/T nets by error places, which are connected to special nodes called message boxes.

Depending on the number of tokens contained by an error place, an error message is sent to

CoBo’s user interface. In this way, it is possible to model a scaled message system reacting to

any incorrect execution of operations. Transitions can be called from Java code by sending a

fire event to the net indicating the label of the transition that should be fired. If it is enabled,

it fires. If it is not enabled, an else transition can be defined that is used, for instance, to add

a token to an associated error place.

Using Petri nets for modeling action logic combined with an error model enables more complex

supervision during simulation and interaction. It could be also used to model action logic for

systems like ConKAV that have been implemented for algorithm learning, for instance to learn

special types of sorting algorithms (Bubble sort, etc.) [17]. This basic, proprietary developed

Petri net format can easily be implemented using reference nets. During the development of

CoBo, there was no necessity to use a more complex and powerful formalism than the proprietary

one described above.

Besides the Petri net-based module for simulating action logic, which models the protocol,

CoBo offers interfaces for algorithm visualization and animation. The major component of the

algorithm visualization module is the canvas component that combines image-based animation

embedded as GIF animation and algorithms for animation implemented in Java. These two

162



6.3. Simulation Environment for Cryptographic Algorithms

CoBo Core System

ActionLogic
Simulator

Action Logic
(Petri Net)

Visualization
Control

Algorithm Animator Concept KeyboardImage Content
(GIF, PNG, JPG)

Java RMI

Figure 6.5.: CoBo’s architecture, showing a standard example of communication between three

CoBo instances in simulation mode

main tools can be combined in a complex algorithm animation. The main focus in CoBo

was the animation of cryptographic protocols for distributed simulation. Three aspects of

algorithm visualization were of special interest: (a) visualization of two or more participants

in a protocol, (b) visualization of the current knowledge the participants in the protocol have

in a certain situation (e.g., keys, messages, cryptograms), and (c) animation of the sending

of messages between participants. Aspect (a) is supported by adding images to the algorithm

description in XML that are automatically positioned and resized in the canvas. For aspect (b),

knowledge items like keys and messages are visualized using pixel graphics that are positioned

automatically under the images of the participants defined in (a). To animate the sending of

messages between participants (aspect [c]), Java-based implementations move images in the

canvas. Figure 6.4 describes the initial status of a visualization canvas: the Wide Mouth Frog

protocol with three participants—Alice, Bob, and the TTP.

Figure 6.5 shows the entire CoBo architecture. It combines the formally modeled action logic

as a simulation module that is directly connected to the implementation of the protocol. This

implementation offers functionality for the communication between the visualization module

and the CK. Interfaces for this kind of communication are offered by a core system, which also

implements the entire communication infrastructure for distributed simulation of the protocols.

The communication architecture is implemented on the basis of Java RMI1. Selvanadurajan

[248] extends this basic implementation through the addition of a help desk system. It has been

evaluated in a study of usability aspects involving computer science students at the University

of Duisburg-Essen with positive feedback.

Based on this flexible architecture for implementing distributed simulation of cryptographic

protocols paired with a potent algorithm visualization and animation framework, further im-

plementations are easy to deploy to the system. Kovácová [143] implements a new protocol for

CoBo in three steps, which are also suitable in all other cases: (a) modeling the action logic

as a Petri net, (b) creating images for visualization and animation, and (c) implementing the

code modeling the communication between action logic and visualization. Finally, these three

elements in (each) implementation of a CoBo protocol are in one of the following formats: XML

1http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

163



6. User Interface Reconfiguration in Interactive Learning Systems

Figure 6.6.: Special implementation of the visual editor in the UIEditor framework for creating

and reconfiguring CKs in CoBo

(action logic), Java code, and image data defined by a scenario definition in XML format.

Extension of CoBo by the UIEditor Framework

In order to create and reconfigure CKs in the above-described learning process (cf. Section 6.3),

the UIEditor framework was added to CoBo. The resulting combination is called XCoBo and

was used in the evaluation study that will be described below. The visual editor in XCoBo is

based on the standard implementations of the UIEditor framework (cf. Section 5.2) and can

be seen in Figure 6.6. It is divided into two main areas: (i) a canvas for creating the physical

representation of the CK (seen in the upper portion of Figure 6.6), which also offers a palette for

adding keys, and (ii) the interaction logic editor (seen in the lower portion of the figure), which

is trivial here. Thus, any key’s interaction logic consists only of a single system operation that

triggers a certain operation in the protocol. Furthermore, the interaction logic editor includes

an area that shows an animation of the operation, thus explaining what a given operation

does in the protocol. The animation appears when the learner drops an operation node in this

area. The operation will automatically relocate to its prior position. A second feature, which is

different from the basic implementation of the UIEditor framework, is the combo box. This is

where the desired role to be associated (or combined) with the selected key. In the figure, this

combo box appears above the operation palette.

A further extension to the UIEditor framework was implemented to export the newly created

164



6.4. Evaluation Study and Results

CK to a format similar to SwiXML [213], which can be easily read by CoBo. By loading a

scenario that uses this modeled CK, it will appear in the lower part of CoBo’s user interface

automatically embedded in CoBo’s simulation engine. In the case of an erroneous CK, learners

return to the modeling editor as shown in Figure 6.6 and apply changes to it before restarting

the simulation to validate the reconfigured CK.

6.4. Evaluation Study and Results

The following explanations, statements, descriptions, and scientific results appear here as pub-

lished in Weyers et al. [289]. It was decided to reproduce the material in order to avoid

unintended changes in the results of the 2009 evaluation study conducted at the University of

Duisburg-Essen.

Since earlier studies with CoBo have already dealt with the use of CKs for supporting learning

algorithms, in this section, the focus is on a formal evaluation of the above-described iterative

and cooperative approach to the creation and reconfiguration of CKs in the context of crypto-

graphic algorithms. Thus, the following aspects are important: (a) finding out how successful

this learning method is in helping learners to achieve their learning goals, and (b) how moti-

vating the learners find this approach and the impact of cooperation on the learning process.

Another point to evaluate was the usability of the UIEditor framework in creating and recon-

figuring CKs running on touchscreen interfaces.

Previous research has shown that, on the one hand, the use of CKs in algorithm simulation and

visualization is both effective and motivating [14]. On the other hand, it has been shown that

extensions of this approach that include cooperation [144] and distribution [142] also support

learning success and motivation [248]. After this previous work, the next step was to compare

the efficacy of the cooperative CK creation process as a learning tool with that of using static

and previously developed CKs to simulate the algorithm. Thus, learning success and motivation

remain of primary importance.

In the context of the formal creation, redesign and reconfiguration of user interfaces, besides

learning considerations, the usability of the creation and reconfiguration software is of central

interest. Without a usable tool that enables the iterative creation of CKs through the use of

a cooperative interface, the whole approach would be unsuccessful, with negative consequences

for learning success. Further points of interest are the usability of the interface for creating

CKs, the acceptance of the workflow, and the pieces of software involved as entities.

Based on these considerations and the earlier work, four hypotheses were formulated to

address the following: (1) learning success, (2) motivation, (3) usability and (4) acceptance of

the new approach to learning cryptographic protocols.

Hypothesis 1: Cooperative/autonomous creation of concept keyboards supports

the understanding of cryptographic protocols and enables the solving of more com-

plex questions.

Hypothesis 2: The iterative creation process motivates the learning of crypto-

graphic protocols.

Hypothesis 3: Interaction with the software to create the keyboards is intuitive

and simple to learn.

Hypothesis 4: The iterative creation process is preferred to other approaches.

165



6. User Interface Reconfiguration in Interactive Learning Systems

As part of the undergraduate studies of computer science at the University of Duisburg-

Essen, teaching algorithms using visualization tools is a primary goal. Especially in the context

of cryptographic algorithms, this is a significant issue. During the summer term of 2009, this

approach to cooperative learning of cryptographic algorithms was implemented and used in an

algorithm and data structure lecture to give students the chance to practice for their exams

and get feedback for further improvement.

Evaluation Study Setting

The testing was done in 15 sessions; every session had one or two learning groups and each group

comprised two to three students. There were two types of groups: cooperative (test group) and

non-cooperative (control group). In total, there were 32 students in cooperative groups and 34

in non-cooperative groups. Each session was organized in the following way: First, the entire

group of students received an introductory presentation on the asymmetric Needham-Schroeder

protocol and the two different software components to be used in the testing (UIEditor’s visual

editor and CoBo for simulation). The presentation and the lecture on the learning content

were written out in full and read out in the same way for each group and in every session in

order to assure that all the students received the same information. After the introduction, the

students were split into two groups to start the testing activity. Students in the cooperative

group had to build the asymmetric Needham-Schroeder protocol by creating a CK for the CoBo

simulation environment in a cooperative way. The students in the second group—the control,

or non-cooperative group—had to create the CK working independently, without the option of

communicating with one another or working together on a common interface. Each student

was assigned one explicit role in the protocol. The students in the non-cooperative group only

had to create the interface for their role-dependent part of the algorithm; the students in the

cooperative group created the whole keyboard for every role cooperatively. All the students

had 40 minutes to create the keyboards and simulate the protocol. If errors in the design of the

CK occurred during the simulation, they had to go back to the creation phase. As additional

aid, every student received a written description of the protocol as a handout. The written

information they received combined with the information from the introduction was sufficient

to complete the exercise.

After the 40 minutes, all the students had to solve a second exercise individually (whether

they were members of the cooperative or the non-cooperative group), for which they had ten

minutes. The exercise was formulated in a printed document. The document described first how

an intruder can break into the communication and then presented seven possible amendments to

the protocol to avoid this problem. Two answers were feasible solutions; the other five answers

were not correct. After the second exercise, the students had to fill out a questionnaire designed

to validate or reject the four hypotheses presented above.

The questionnaire was broken down into the following eight parts:

1. Demographic data (five items)

2. A self-assessment concerning pre-knowledge of key exchange protocols as well as past

participation in a lecture on cryptography (two items)

⇒ These items were filled out before the students started the testing.

3. Post-test, textual description of the problem on an intruder and seven possible answers

166



6.4. Evaluation Study and Results

4. General statements concerning the exercises and experience with the software (three items)

5. Statements concerning the usability and understandability of the UIEditor (six items)

6. Statements concerning the workflow and work settings (seven items)

7. Statements concerning general issues with the workflow and motivation (five items)

8. A final question in which the students had to sort five different styles of learning on a

five-point scale from ‘I like using it’ to ‘I don’t like using it’.

Concerning the statements in points 4 to 7, the students were asked to what extent these

statements apply to them or not on a five-point Likert scale, ranging from ‘fully applies (++)’

through ‘don’t know (0)’ to ‘does not apply at all (–)’. The textual coding of the scale was

adapted in the evaluation to a numbered scale from 5 (for total agreement) to 1 (for total

disagreement). The neutral position was 3. The questionnaire was provided simultaneously in

German and in English. For the evaluation of the hypotheses, there were different numbers of

statements in points 4 to 7. For Hypothesis 1 there were 7 items; for Hypothesis 2, 1 item; for

Hypothesis 3, 6 items; and for Hypothesis 4, 4 items.

A pre-test for measuring students’ knowledge about the subject was not necessary because

they were all in a second semester course (first year) and had never attended a lecture on

cryptography, so their initial knowledge was almost nonexistent. This was confirmed by the

answers they gave to the two related questions on the questionnaire: Only five people out of

66 said they had previously learned something related to this in a lecture. Also, regarding

the self-assessment of prior knowledge about cryptography, the mean showed a value of 2.13

(Median 2), which indicates deficient prior knowledge (on a scale from 1 to 5, 1 for poor prior

knowledge, 5 for very good prior knowledge).

Results and Analysis

In this section, the results of the testing and the questionnaires will be described and analyzed.

The following abbreviations will be used: M stands for mean value, Med for Median, SD for

standard deviation, t for t-value in a t-test and p for the probability of error. In some cases

the interval of possible values for responses is given in square brackets [1, 5]. If no interval is

given, the Likert scale [1, 5] is assumed [162]. In every case the values are integers and have a

distance of 1. Other abbreviations will be introduced if necessary. All statistical analysis was

conducted using the SPSS c© tool in version 17 (PASW Statistics 17 c©, SPSS Inc.) [90]. The

demographic data was analyzed using Microsoft Excel R© spreadsheets [170]. Negative statements

concerning the validation of a hypothesis were inverted for the statistical analysis so that high

values always reflect a positive evaluation of the respective hypothesis. The responses to all

statements concerning one hypothesis were summarized in one variable and separated only for

the cooperative and the non-cooperative group. To evaluate the difference between the values

assigned by the members of the two groups, a two-sample t-test was applied to the variables. If

this test showed a significant difference between the cooperative and the non-cooperative group,

the results were evaluated separately.

The described approach was tested with the 66 students split into two groups. If students

knew each other, they were put into the cooperative group to avoid social problems influencing

the work result. Otherwise they were split randomly. Most of the students were in their

167



6. User Interface Reconfiguration in Interactive Learning Systems

0

0 1 2 3 4 5

1

2

01358

24691113

710121415

Value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number 1 - - 1 7 2 - 4 16 2 16 2 12 3 -
0
-

Figure 6.7.: Evaluation of post-test

2nd semester (Median) of computer science studies. Students of mathematics or physics and

students in an international program for studies in engineering and computer science (ISE) at

the University of Duisburg-Essen were also involved. The students were between 20 and 37

years old (Median 22); 15 female and 51 male students participated. Of the 66 participants, 61

had not participated in a lecture concerning cryptographic protocols and algorithms, as stated

above.

The post-test on solving the problem of the intruder was given to the students as the second

part of the questionnaire. A feasible way to rate the students’ answers was to reward correct

ones and penalize wrong ones. It was important that correct answers raise the rating of the item,

and that wrong ones lower it. The rating was done by writing down all possible combinations of

answers into a coordinate system. The number of correct answers was indicated by the ordinate;

the number of wrong answers was indicated by the abscissa. The rating was then generated

by starting at the best possible result of two correct answers and no wrong answer (a rating

of 15) with a zig-zag-pattern down to the worst possible answer of five wrong answers and no

correct answer (a rating of 0). The results of the rating process are shown in Figure 6.7. The

bold numbers in the diagram show the rating, and the size of the circles represents the number

of students included into the associated result (derived from the coordinates in the diagram)

of the post-test. The table translates the students’ results in whole numbers. It can be seen

that on the scale of 0 to 15 more students completed this exercise with a higher rating (values

from 9 to 14) than with a lower one (values from 1 and 8). It was decided in advance that if

a student selected no answers at all (0 correct and 0 wrong answers) or all possible answers (2

correct and 5 wrong answers), that test would not be rated. However, this situation did not

occur.

Based on the results of the self-assessment concerning prior knowledge of cryptographic algo-

rithms (on a [1,5] scale), which showed a significantly (t = 18.74, p < 0.1%) low result with M

= 2.13 (Med = 2 , SD = 0.93) the post-test provided good results. The ratings showed a highly

significant (t = 27.77, p < 0.1%) mean of M = 9.78 (Med = 11, SD = 2.86). Reformatting

the scale [0,15] to a scale of [1,5] by a conversion factor of 16/5 = 3.2 resulted in a mean of

168



6.4. Evaluation Study and Results

M’ = 3.06 on the intruder exercise. By comparing the mean of the self-assessment with that

of the post-test, it can be seen that the new learning approach resulted in an enhancement of

nearly 1 point. However, it should be noted that there was no significant difference between

the cooperative and the non-cooperative group (independent two-sample t-test: t = 0.33, p =

74.3 %). The two groups performed equally well.

In the fourth part of the questionnaire, three statements were presented to the students

concerning general issues:

1. I understood the tasks.

2. I am interested in interactive learning systems.

3. I would recommend this software to other people.

Again, there were no significant differences in the responses to these three statements. The

independent two-sample t-test provided the following values for item 1: t = 1.81, p = 7.5 %;

for item 2: t = 0.42, p = 68%; and for item 3: t = 1.36, p = 18%. Concerning Statement 1, the

results of the evaluation showed a significant (t = 43.23, p < 0.1%) mean M = 4.20 (Med = 4,

SD = 0.79). This mean value indicates that every student understood the exercises—creating

the keyboards and solving the intruder problem. This is important when discussing the results

of the intruder problem exercise. Without this evidence that all students understood the task,

the result would be meaningless.

Concerning Statement 2, the results of the evaluation showed a significant (t = 28.37, p <

0.1%) mean M = 3.91 (Med = 4, SD = 1.12). This mean value shows that most students are

interested in using such tools as CoBo and UIEditor for learning complex algorithms. This is

strengthened by the results of the evaluation of Statement 3, which produced a significant (t

= 31.578, p < 0.1%) mean M = 3.68 (Med = 4, SD = 0.93), showing that the students would

recommend the software as well as the learning method to other students.

Hypothesis 1: Cooperative/autonomous creation of concept keyboards supports the under-

standing of cryptographic protocols and enables the solving of more complex questions.

This hypothesis was separately analyzed for the cooperative and the non-cooperative group

because the two independent-sample t-tests showed a significant (t = 7.10, p < 0.1%) difference

between the two groups. Six statements were used to evaluate the hypothesis. Three of them

were adapted to the groups to reflect cooperation or non-cooperation. This adaption was

done in such a way that the meaning of each statement stayed the same. For example, the

statement in the questionnaire for the cooperative group was ‘The opportunity for discussion

contributed to my motivation to solve the task’. It was changed for the non-cooperative group

to ‘Working individually improved my motivation to solve the task’. Both statements have the

same meaning: The working style motivates the student to work, which reflects the hypothesis.

Two separate one-sample t-tests of the cooperative (t = 44.11, p < 0.1%) and of the non-

cooperative group (t = 32.78, p < 0.1%) showed significant mean-values that were totally

different. The cooperative group agreed with the statement with a mean value M = 3.68 (Med

= 4, SD = 1.16). The non-cooperative group weakly disagreed with a mean of M = 2.82 (Med

= 3, SD = 1.33). Thus, it can be seen that the cooperative group found the software more

helpful than did the non-cooperative group. But in the non-cooperative group there was still

no strong disagreement concerning the hypothesis.

169



6. User Interface Reconfiguration in Interactive Learning Systems

A possible reason for this outcome is the collaboration in the cooperative group. Both groups

had more or less the same pre-knowledge, which was pretty low (cf. the self-assessment). In

the cooperative group, people used the opportunity to discuss ideas and impressions and to

complete individuals’ memories of the introductory presentation by combining the information

remembered by every individual in the group. Another reason might be that it is easier to learn

to use software if people consult with each other on how to use it instead of sitting alone in

front of it.

Hypothesis 2: The iterative creation process motivates the learning of cryptographic proto-

cols.

The statement ‘I enjoyed the iterative construction of the keyboards’ dealt with this hy-

pothesis. The comparison of the two groups using the two independent-sample t-test showed a

significant difference between the groups with t = 2.813 and p = 0.7%. A separated analysis

showed a mean value M = 4.16 (Med = 4, SD = 0.81) for the cooperative and M = 3.47 (Med

= 4, SD = 1.13) for the non-cooperative group (both highly significant with t = 29.11 and t =

17.84; p < 0.1%). The cooperative group thus demonstrated higher motivation. Of course, the

non-cooperative group still indicated positive motivation. These phenomena can be explained

by the way the cooperative group worked. Often students motivated each other, arguing about

details of the protocol and trying to find a solution. Members of the non-cooperative group

often had to wait for others to simulate the protocol, which possibly contributed to the lower

motivation levels. But interactive computer-aided learning software tools in single scenarios

were also found to be motivating, as shown in a previous study [248].

A closer look at a statement on the questionnaire designed to evaluate Hypothesis 1 shows

interesting results for this hypothesis as well. Responses to the statement ‘The opportunity

for discussion contributed my motivation to solve the task / working individually improved my

motivation to solve the task’ validates the above results. The two independent-sample t-test

shows that both groups are independent (t = 2.57, p = 1.2%). The cooperative group shows a

significant (t = 32.11, p < 0.1%) mean M = 4.19 (Med = 4, SD = 0.74) and the non-cooperative

group a mean M = 3.5 (Med = 4, SD = 1.33, t = 15.33, p < 0.1%). This contributes to the

assumed reasons (see the above discussion) for a higher motivation in the cooperative group as

well as showing that the iterative construction is better to use in a cooperative scenario than

in the non-cooperative one it was initially developed for.

Hypothesis 3: Interaction with the software to create the keyboards is intuitive and simple

to learn.

Six items contributed to this hypothesis. The two independent-sample t-test indicated that

both groups are significantly different (t = 3.65, p < 0.1%). Thus, each group must be analyzed

separately. The cooperative group shows a significant (t = 50.04, p < 0.1%) mean M = 3.98

(Med = 4, SD = 1.10), and the non-cooperative group somewhat less strong but still highly

significant (t = 41.87, p < 0.1%) agreement of M = 3.55 (Med = 4, SD = 1.21). In brief, both

groups agree with the statement, and, thus, the hypothesis is valid.

The possible reason for this (significant) difference is that the procedure whereby students

explained to each other how to use the software was not possible in the non-cooperative group.

Thus, the students working cooperatively had fewer problems using the software than the

students in the non-cooperative group. Another possible reason is that, in the non-cooperative

group, every student had to understand how to use the software. This was not the case in

170



6.4. Evaluation Study and Results

1 2 3 4 5

5

10

15

20

25

30

10.5

24

Figure 6.8.: Evaluation of learning methods

the cooperative group, where, typically, one student used the interface to interact with the

UIEditor, and the other students helped him. Again, knowledge-sharing concerning the use of

the UIEditor was possible in this setting but was not possible in the non-cooperative group.

On the other hand, the result from the non-cooperative group is a stronger validation of the

hypothesis than the result from the cooperative group for the same reason. The students in the

non-cooperative group did not have a chance to ask anyone but nevertheless found the interface

intuitive (indicated by an average rating higher than 3).

Hypothesis 4: The iterative creation process is preferred to other approaches.

Four items contributed to this hypothesis. The independent sample t-test did not show any

significant (t = 0.24, p = 81%) difference between the results from the cooperative and those

from the non-cooperative group. Thus, the results can be analyzed as one sample. The result

is a mean of M = 3.28 (Med = 3, SD = 1.08). A one-sample t-test showed that this M is highly

significant with t = 49 and p < 0.1%. Concerning this mean value, there is no clear statement

concerning agreement or disagreement.

In the context of this hypothesis, we asked the students to rank five different learning methods

from ‘I like using it’ to ‘I don’t like using it’. The alternatives were (1) explanation of the learning

material by the teacher in a classroom with a chalkboard, (2) observing the protocol running

at the teacher’s computer, (3) interactive creation and simulation of the steps by yourself (the

presented and evaluated approach), (4) stepwise simulation of the protocol as an applet on a

web browser, and (5) textual book or internet material. The evaluation of all ratings of the first

position, ‘I like using it’, indicate that the alternatives 1, 2, 4, and 5 are uniformly distributed,

which is shown by a Chi2-test with a Chi = 1.81. Introducing Option 3 to the evaluation the

Chi value changes it to Chi=12.48, which means that the distribution is not uniform. The

results are shown in Figure 6.8. Option 3 is ranked in the highest position much more often

than the other options. While the other options are ranked highest with a mean rate of 10.5

times, Option 3 receives the highest rating 24 times.

There is also a strong agreement in both groups concerning the statement ‘I think that the

creation of the keyboard, followed by a simulation and repetition when an error occurs makes

sense’. The two independent-sample t-test showed that there is no significant difference between

171



6. User Interface Reconfiguration in Interactive Learning Systems

the answers of the cooperative and the non-cooperative group. Putting the results together in

one variable results in a mean of M = 4.05 (Med = 4, SD = 0.77), which is a highly significant

result (t = 42, p < 0.1%).

Evaluating the statement ‘I would recommend this software to other people’ provides a sig-

nificant (t = 31.578, p < 0.1%) mean M = 3.68 (Med = 4, SD = 0.93), which also strengthens

the validation of Hypothesis 4. The results described argue for a validation of Hypothesis 4.

6.5. Conclusion

This section described a new approach to algorithm visualization and animation using concept

keyboards in an extended learning process with cooperation and a thorough evaluation of the

cooperative interface creation process. Positive results from former evaluations of the use of CKs

in interactive learning activities motivated an extension of a distributed learning environment

and complex process contexts using cooperative techniques for the creation and reconfiguration

of CKs. Cryptographic protocols or algorithms are, in general, strongly specified and formally

described constructs that rarely leave room for creative problem solving like real-life processes.

It seems to be feasible that less strictly specified or informally described problems would offer

a better scope for using flexible interfaces with adaptive interaction logic. In [282] some ideas

concerning nondeterministic dynamic systems in combination with interface design issues are

proposed as future work.

The results show that cooperation paired with reconfiguration of user interfaces enables users

to build correct mental models of cryptographic protocols. Thus, hypothesis (a), proposed at

the beginning of this chapter, which states that interaction logic is a representation of a user’s

mental model of a learned protocol, can also be evaluated as true. The described learning

process instructed the students to use reconfiguration techniques to ‘build’ the protocol into

the interaction logic based on their individual understanding of it. Based on the successful

application in many cases, correct implementations were created. Therefore, the validation

step using simulation of the protocol based on the modeled user interface shows that the user’s

mental model is correct and, at the same time that the interaction logic accurately represents

this model. Without this connection, there would not be a positive validation of the created

user interface.

The positive results of the evaluation concerning the proposed interactive workflow as an

example of user interface redesign and reconfiguration motivates a further extension of the

approach to distributed cooperative learning as described in [288] and as a general approach

to formal design, redesign and reconfiguration of user interfaces [283]. The above-described

evaluation shows that such tools for interface redesign and reconfiguration are usable and readily

understood by users; they also render the cognitive computational process model of complex

problems in an understandable visual form. Through this visual and physical representation

of the cognitive model, the learner or user in general is able to reflect his mental model in

such a way that it is possible to achieve learning success. This learning process will also be

suitable in any other interaction scenario and application. Through the design, redesign, and

reconfiguration of a user interface, the interaction can be more efficient and less error-prone

because the user has the chance to adapt his computational process model step by step to the

real machine implementation.

172



7. Error Reduction through Reconfiguration of

User Interfaces

Error reduction was one of the primary motivations for formally modeling, reconfiguring, and

redesigning user interfaces. The upcoming sections will describe two evaluation studies that

investigated user reconfiguration of existing user interfaces. After introducing some basic ob-

jectives (Section 7.1) followed by a description of basic concepts and models from psychology

(Section 7.2), a case study dealing with reconfiguration of input interaction processes will be

examined (Section 7.3). Here, a simplified simulation of a steam-water reactor was embedded

in a scenario of controlling the process of generating electricity and handling system errors as

they occurred. This evaluation study was investigated in cooperation with Burkolter and Kluge

as described in [284, 285]. Next, an evaluation study simulating a chocolate manufacturing

process was used to investigate the reconfiguration and redesign of the output parts of a user

interface, representing mostly the system state of a machine or process (Section 7.4); this study

was developed and conducted primarily by Kohls and Berdys [138].

7.1. Introduction

The primary goal of HCI research is to increase the usability of user interfaces and thus to

decrease the amount of human error in interaction. An important hypothesis motivating this

dissertation is that individualizing and adapting user interfaces will result in a reduction of hu-

man error in interaction. This presumption has been investigated by others, such as Schneider-

Hufschmidt et al. [243], who looked at the use of adaptive user interfaces. Furthermore, it has

been shown above that the use of reconfiguration techniques is able to embed the user’s mental

model into formal user interfaces as interaction logic. The notion of attendant error reduction

is based on research in cognitive psychology, which identifies the influence of mental models on

human error. By approximating the interaction logic—and thereby the observable behavior of

a system to be controlled—to the user’s mental model, it should be possible to reduce errors

in interaction. This approximation is implemented when a user applies reconfiguration to the

initial state of a user interface, thus individualizing that user interface to match his or her

mental model.

In HCI research, different ways of individualizing user interfaces have been described from

various perspectives. Here, individualization is associated with adaptive user interfaces in the

sense that adaption is implemented by formal reconfiguration of interaction logic paired with

redesign of the physical representation of a user interface. This reconfiguration and redesign is

applied by the individual user.

In addition to this technical perspective, it is important to take human factors into account.

Here, the main hypothesis is that individualizing user interfaces through adaption by the indi-

vidual user will result in better understanding and mental representation of the process to be

controlled on the part of that user, thus reducing the probability of human error. Wickens and

173



7. Error Reduction through Reconfiguration of User Interfaces

Hollands [292] describe to what extent human factors influence the performance of a user in

interaction.

To investigate the influence of user interface reconfiguration and redesign on human error in

interaction, two different evaluation studies have been developed and conducted. One examined

the influence of reconfiguration and redesign of parts of a given user interface for input data,

and the other looked at the influence of changing parts of the user interface for output infor-

mation. To this end, the initial user interfaces were created as users would expect—offering

good usability. Furthermore, the physical representation was designed to give insight into the

process to be controlled. The interaction logic was modeled as simply as possible, mainly redi-

recting incoming events to the system or sending data emitted by the system to the physical

representation. When reconfiguration was applied by the user, it became more complex and

more highly individualized.

For both evaluation studies, the UIEditor framework was used for modeling, simulation, and

reconfiguration. The UIEditor’s logging system was used to create logs that were then analyzed

for errors in interaction and to evaluate users’ performance while they completed several tasks

with the system and their individual user interfaces.

Before describing the two evaluation studies, it is necessary to explore some basic principles

that provide a solid foundation for the studies from a psychological perspective. Then, the

studies and their structure will be described in detail. Finally, the results and their interpreta-

tions will be discussed. It will be shown that reconfiguration of the input and output parts of a

user interface and thus an adaption of user interfaces to users’ expectations and mental models

results in a reduction of human error.

7.2. Psychological Principles

From a psychological point of view, the individualization resulting from reconfiguration and

redesign conducted by the user himself on an initial user interface can evolve positively. Indi-

vidualization puts the focus on the user, such that the user interface ultimately corresponds

to the individual needs of the user. In adaptive user interface and usability research, tradi-

tional approaches in HCI research as introduced in Chapter 2 are based on designs that target

generally defined human capacities, thus ignoring the individual capabilities and disabilities of

individual users. Individualization of technical systems to individual real users as opposed to a

generalized ideal (expert) user is thus thought to enhance performance in the human-machine

or human-computer relationship, as described by Hancock et al. [103, 104]. Further positive

effects on human performance are shown by Miller and Parasuraman [171], where they describe

the positive effect of flexibility in human-adaptable automation.

Mental models, as described in Chapter 2, also play a central role in the study of human

error in interaction with complex processes. Wickens and Hollands point out that the user’s

mental model “forms the basis for understanding the system, predicting its future behavior,

and controlling its actions” [292]. Reconfiguration of a user interface by the individual user

adapts the interface to that specific user’s mental model. This means that, by reconfiguring

the user interface, the user implements his or her understanding of the system directly into it.

This compatibility in the interaction between user and user interface will result in a fewer errors

than will interaction between a user and an unindividualized user interface. This is supported

by the work of Wickens and Hollands, who state that successful performance is based on a good

mental model of a system. Thus, if the user’s mental model is directly implemented into the

174



7.3. Input Reconfiguration of User Interfaces

user interface, it should decrease any differences between the mental model and the control of

the system. This will be further investigated below.

Another psychological concept of interest here is how errors occur. A mental model is only

one element in the complex process of information processing. A general approach to cognition

was sketched in Chapter 2, Figure 2.1, and is specified by the concept of situation awareness

(SA) introduced by Endsley [83]. SA refers to the perception and comprehension of information

and the projection of future system states. Poor situation awareness can increase the probability

of occurrence of human errors in interaction because of the lower rate of perceived information

and the resulting wrong assumptions regarding future system states. With respect to HCI,

the design and logic of user interfaces greatly influence SA because they determine how much

information can be acquired, how accurate it is, and how correctly this information will be

interpreted. Correct interpretation is greatly influenced by the user’s expectation concerning

the behavior of the user interface and of the system as a whole.

Based on these considerations, it is assumed that user interface reconfiguration reduces human

error since it allows users to reconfigure the user interface according to their SA needs, thus

reducing mental workload and the probability of error. These issues were investigated in two

evaluation studies performed at the University of Duisburg-Essen in 2010.

7.3. Input Reconfiguration of User Interfaces

The first investigation sought to identify the effects of reconfiguring the input elements of a

user interface on the number of errors in interaction that occurred while the user interface was

being used to control a complex process and react to problems as they arose. A process was

selected that is simple enough to be learned and understood in a short period of time and

complex enough to make differences visible between users who reconfigured their user interface

and those who did not. It was decided to choose the feedwater steam circuit of a nuclear power

plant. In this circuit, pumps transport feedwater into the reactor tank, where the water is

evaporated by the thermal energy emitted by the nuclear chain reaction of the nuclear fuel.

This steam is transported by pipes to the turbine, where the thermal energy is transformed

to kinetic energy. The kinetic energy is finally transformed to electrical energy in a connected

generator. The cooled steam is then transported to the condenser, where a pump transports

cooling water through pipes, condensing the cold steam to water. This feedwater is again

transported by the feedwater pumps to the reactor tank, and so forth. In Figure 7.1, the whole

circuit can be seen as part of the initial user interface that was given to the test persons in the

evaluation study. Furthermore, this representation was used to continuously show the current

system state of the feed-water circuit. Coincidentally, this part of the user interface could not

be modified by the test persons because it was not part of the modeled user interface in the

UIEditor framework.

The test persons were commissioned to act as reactor operators with various options for

controlling the simulated feedwater circuit:

Pump speed Pump speed influences the amount of water pumped either from the con-

denser into the reactor core or through the condenser. This influences how much steam

can be condensed back to fluid feedwater.

Control rod position The position of the control rods in the reactor defines the amount

of thermal energy that is produced by the nuclear chain reaction in the core. When

175



7. Error Reduction through Reconfiguration of User Interfaces

WATER LEVEL:
2118 mm

PRESSURE:
308 bar

WP1: 1650 rpm

WP1: 0 rpm

WV1

WV2

CP: 685 rpm

WATER LEVEL:
2540 mm

PRESSURE:
27 bar

SV2

SV1
703 MW

RE
A
CT
O
R

Figure 7.1.: Feed-water circuit of a pressurized nuclear power plant

the control rods are removed, more thermal energy is generated and thus more steam

is generated, resulting in a higher amount of electrical energy being produced in the

generator (cf. the upper portion of Figure 7.1). If the control rods are pushed completely

into the core, no thermal energy will be produced and the production of electricity stops.

Valves The operator can control two sets of valves: feedwater valves (labeled WV1 and

WV2 ) and steam valves (labeled SV1 and SV2 ).

The main task of a reactor operator is to generate the maximum amount of electrical energy

while maintaining the reactor in a safe state. Here, the reactor is in a safe state if the water

level in the reactor tank is at around 2100mm and the pressure is at around 300bar. Thus,

Figure 7.1 shows a safe state with a maximum output at around 700MW . To hold the reactor

stable, the operator has to control and observe two critical parameters: (a) the water level in

the reactor tank and (b) the pressure. Both parameters can be controlled directly or indirectly

by the control rods and the generated steam, as well as by the speed of the feedwater pumps

controlling the amount of feedwater pumped into the reactor tank.

The process was simulated using the UIEditor framework including a simple Java implemen-

tation based on an implementation by Eriksson [86]. The initial user interface for controlling the

176



7.3. Input Reconfiguration of User Interfaces

WP1:

WP2:

CP:

Rods:

Figure 7.2.: Input interface for controlling the feed-water circuit of a nuclear power plant

process has been further modeled using the visual editors of the UIEditor framework to create

the physical representation and interaction logic as well. Figure 7.2 shows the user interface for

input control-information that was combined with the system visualization shown in Figure 7.1.

Buttons are used to open or close the various valves, and sliders are used to set the number of

rounds per minutes for the pumps and to define the position of the control rods in the nuclear

core.

Next, the evaluation study will be described and the analysis of log data presented. Finally,

the results will be interpreted.

Evaluation and Results

The following results and explanations were previously published by Weyers et al. [285]. It

has been decided to stay close to the original work to avoid loss of information and maintain

conformity with the published results.

For the accomplishment of the evaluation study, participants were randomly allocated to ei-

ther the reconfiguration group (Rec-Group, n = 38) and the non-reconfiguration group (NonRec-

Group, n = 34). The Rec-Group was given the ability to reconfigure their user interfaces, while

the NonRec-Group used the user interface provided, which is shown in Figures 7.1 and 7.2.

Thus, the NonRec-Group served as a control group.

Prior knowledge about nuclear power plants was controlled by asking the participants in both

groups to give a subjective assessment of their knowledge on a seven-point scale—ranging from

(1) poor to (7) very good—as well as completing a multiple-choice knowledge test with seven

questions about nuclear power plants (max. 14 pts). There were no significant differences in

subjective assessment of pre-test knowledge (Rec-Group: M = 4.17, SD = 1.78, NonRec-Group:

M = 4.13, SD = 1.63, t(66) = 0.09, ns) or the knowledge test (Rec-Group: M = 12.38, SD

= 2.17, NonRec-Group: M = 11.74, SD = 2.12, t(69) = -1.26, ns). After this pre-test, all

participants received an introduction to the process and the initial interface, as well as to how

177



7. Error Reduction through Reconfiguration of User Interfaces

to use the interface to control the simulated feedwater circuit. Then, participants were given

the opportunity to test and explore the simulator and the interface for five minutes. The Rec-

Group was then introduced to the reconfiguration module of the UIEditor framework. In order

to ensure the same amount of practice time and workload for all participants, the NonRec-

Group was shown a sequence from a documentary about simulations. This topic was chosen

as it had no direct relation to the nuclear power plant simulation, the interface, or the control

task. After this phase, both groups were trained on three tasks: (1) start-up of the reactor,

(2) shut-down of the reactor, and (3) handling the breakdown of the feedwater pump. All

participants were provided with checklists of the procedures for every task and practiced the

procedures for eight to ten minutes. After every practice session, the Rec-Group was given the

time and opportunity to reconfigure their user interfaces to be better able to perform the task.

During those periods, the NonRec-Group was asked to sketch ideas for possible improvements

and adaptions to the user interface. Thus, both groups performed comparable tasks. This kept

time on task similar for both groups. Furthermore, the sketches would help in later evaluation

of the extent to which the reconfigurations applied by the Rec-Group were intuitive and what

other possible reconfigurations might be welcome in addition to the restricted set offered to

the Rec-Group. While the NonRec-Group was sketching ideas to improve the interface, the

Rec-Group actually improved the interface using three types of reconfiguration operations: (a)

duplication, (b) serialization, and (c) parallelization (cf. the descriptions in Section 4.2).

After the practice phase of the study, a testing session was held. All participants (that

is, participants in both the Rec- and the NonRec-group) had to perform the following tasks:

(1) starting up the reactor and dealing with the fault state they had practiced (breakdown of

the feedwater pump) (2) starting up of the reactor and dealing with an unfamiliar fault state

(turbine breakdown), and (3) starting up and shutting down the reactor. The NonRec-Group

used the initial user interface, while the Rec-Group used their own reconfigured user interfaces

without the chance to further reconfigure it during the testing session. In tasks (1) and (2), the

participants did not know that the fault state would occur. During task (3), situation awareness

was measured by fading out the user interface and asking specific questions concerning pressure

and water level in the reactor tank. Finally, questionnaires regarding user acceptance and

mental workload were filled in by the participants. The complete evaluation study can be seen

in Figure 7.3.

Data Analysis

Data analysis was performed mainly on interaction logs created by the logging module of the

UIEditor framework. An interaction log is a file recording all inputs made on the user interface.

In a preprocessing step, the log files were reformatted to sequences of characters, each repre-

senting one specific operation. Continuous operations, like moving a slider to the right or left,

were summarized to one character representing the movement of a slider to the right or to the

left. Buttons controlling summarized operations in the reconfiguration group were identified by

a set of characters surrounded by square brackets.

To evaluate these sequences, an expert model was created and the distance between the

expert model and the test person’s sequence was evaluated manually. The expert model was

generated from the checklists that were handed to the test persons. Using this differentiation

between expert and test person sequences made it possible to detect errors of various types, as

shown in Figure 7.4.

178



7.3. Input Reconfiguration of User Interfaces

Task 1
Starting the Reactor

Group NonRec Group Rec

10
 m

in
10

 m
in

10
 m

in

Introduction to the Scenario and Software Demonstartion

Knowledge Pre-Test

10
 m

in
5 

m
in

5 
m

in
5 

m
in

5 
m

in
10

 m
in

10
 m

in
10

 m
in

Simulation Movie

Sketching Possible
Reconfiguration  Rekonfiguration

Task 2
Starting and Stopping the Reactor

10
 m

in

Task 3
Starting Reactor, Simulation Failure WP1, Running Failure Routine

NASA TLX

3 
m

in

Introdcution and Exploration of
the Tool for Reconfiguration of the UI

Exploration of Simulation Environment

Sketching Possible
Reconfiguration

 Reconfiguration

Sketching Possible
Reconfiguration

 Reconfiguration

10
 m

in
10

 m
in

10
 m

in
10

 m
in

10
 m

in
10

 m
in

10
 m

in
5 

m
in

5 
m

in

Reconfiguration

5 
m

in

Test Phase 1
Starting the Reactor, Unexpected Trained Failure of WP 1

Test Phase 2
Starting the Reactor, Unexpected Untrained Failure of Turbin

Test Phase 3 – SA Test
Starting and Stopping the Reactor, 3 Interruptions for SA Testing 10

 m
in

3 
m

in

5 
m

in

5 
m

in
5 

m
in

Questionaire

Closing

In
it

ia
liz

in
g 

Ph
as

e
Tr

ai
ni

ng
 P

ha
se

Te
st

in
g 

Ph
as

e

Figure 7.3.: Sequence of action in the evaluation study for investigating the influence of recon-

figuring interaction processes for input

Two major groups with seven error types in total were identified, based on the error concepts

of Hollnagel [113]: Magnitude errors and sequence errors. Magnitude errors are defined as

movements taken too far [188]. Two types of magnitude errors were identified in the logs:

oversteering and understeering. Five types of sequence errors were identified: (a) swapping two

neighboring operations (reversal), (b) premature operations performed too early in the sequence

(too early), (c) belated operations performed too late in the sequence (too late), (d) repeated

operations that have already been executed (repetition), and (e) incorrect actions not included

in the expert model (wrong actions).

Further data analysis was applied to log files generated by the feedwater circuit simulation.

The control performance of the test persons was evaluated in comparison with a linear expert

model shown in Figure 7.5. Meaningful parameters for such an evaluation are the water level

of the reactor tank as a safety critical parameter and the power output as a command variable.

The expert model in Figure 7.5 therefore shows both parameters in the three main phases of

control. The first phase is the initialization phase, where various valves are opened and the

cooling circuit of the condenser is started without producing electricity. In the second phase,

called the start-up phase, the production of electrical energy is started before the last phase, in

179



7. Error Reduction through Reconfiguration of User Interfaces

ababaghaaba
ababahgaaba

Swap

Expert:
Test Subject:

ababahaabaa
abhabaaabaa

Premature

ababahaabaa
ababaaabhaa

Belated

ababahaabaa
ababahhaaba

Repetition

ababahaabaa
ababagaabaa

False Operation

Sequence Errors (SE)

Magnitude Errors (ME)
ababaraaba
ababarlaaba

Oversteer

Expert:
Test Subject: r – move slider to the right

l – move slider to the left

ababalaaba
ababalraaba

Understeer

Figure 7.4.: Error types (cf. Hollnagel [113]) identified in interaction logs

0

200

400

600

800

0

500

1000

1500

2000

25001000

Power 
Output

Water
Level

Time

Initialization Phase Start-Up Phase Operation Phase

2100

700

Figure 7.5.: Expert model showing an optimal initialization, start-up, and operation phase of

the nuclear power plant

which the output has to be stabilized at 700 MW. For analysis, the system log files of every test

person and for every task in the testing phase have been evaluated as to the periods of time

used for the initialization, start-up, and operation phases.

Results

Descriptive statistics and results from t-tests for the seven error types during start-up of the

reactor and the practiced fault state can be found in Table 7.1. If the assumption of homogeneity

of variances was violated, degrees of freedom (df) were adjusted. Confirming our assumption,

overall, the Rec-Group committed significantly fewer errors than the NonRec-Group. While the

NonRec-Group committed on average 5.53 errors (SD = 2.71), the Rec-Group committed half

as many errors (M = 2.48, SD = 1.93). This proved to be a large effect (r = .54), accounting

for 27% of the variance [90]. With respect to the type of errors, the NonRec-Group made

significantly more oversteering errors, reversal errors, and wrong actions. However, the Rec-

Group committed significantly more repetition errors.

Also the results regarding start-up procedure and dealing with an unfamiliar fault are in line

with our assumptions (see Table 7.2). Again, the Rec-Group committed half as many errors

in total (M = 1.72, SD = 1.62) as the NonRec-Group (M = 3.38, SD = 2.32). This difference

180



7.3. Input Reconfiguration of User Interfaces

Table 7.1.: Start-up of reactor and practiced fault state: M, SD (in parentheses) and results of

t-test

Error types Rec-Group NonRec-group t(df), p (one-tailed), effect size r

Oversteering 0.38 (0.70) 2.38 (1.72) t (45.86) = -6.13, p = .000, r = .67

Understeering 0.15 (0.37) 0.15 (0.36) t (58) = 0.07, p = .472, r = .01

Swap 0.04 (0.20) 0.47 (0.86) t (37.40) = -2.83, p = .004, r = .42

Premature 0.23 (0.43) 0.24 (0.50) t (58) = -0.04, p = .486, r =.01

Belated 0.42 (0.58) 0.38 (0.70) t (58) = 0.24, p = .405, r = .03

Repetition 0.38 (0.70) 0.09 (0.29) t (31.54) = 2.04, p = .003 , r = .34

False Operation 0.96 (1.25) 1.82 (1.90) t (56.87) = -2.12, p = .020, r = .27

Total 2.48 (1.93) 5.53 (2.71) t (59) = -4.93, p = .000, r = .54

Table 7.2.: Start-up of reactor and unpracticed fault state: M, SD (in parentheses) and results

of t-test

Error types Rec-Group NonRec-group t(df), p (one-tailed), effect size r

Oversteering 0.45 (0.83) 1.50 (1.60) t (51.03) = -3.34, p = .001, r = .42

Understeering 0.10 (0.31) 0.18 (0.39) t (61) = -0.82, p = .209, r = .10

Swap 0.21 (0.41) 0.29 (0.52) t (61) = -0.73, p = .236, r = .09

Premature 0.10 (0.31) 0.38 (0.60) t (50.82) = -2.35, p = .011, r = .31

Belated 0.48 (0.69) 0.44 (0.56) t (61) = 0.26 , p = .396, r = .03

Repetition 0.07 (0.26) 0.00 (0.00) t (28.0) = 1.44, p = .081, r = .26

False Operation 0.31 (0.71) 0.59 (1.02) t (61) = -1.23, p = .111, r = .16

Total 1.72 (1.62) 3.38 (2.32) t (61) = -3.23, p = .001, r = .38

between the two groups was significant and constitutes a medium to large effect. Regarding

the types of errors, the NonRec-Group had a higher number of oversteering errors as well as

sequencing errors, performing actions too early in a sequence.

Results of evaluation of the time needed for initializing and starting-up the reactor and for

holding it stable after reaching the maximum output can be seen in Table 7.3. The amount

of time needed for the three phases has been normalized with regard to the time needed per

task. Thus, the values in Table 7.3 are percentages showing the time needed for the specific

phase relative to the time needed for the complete task. Here, it can be seen that the Rec-Group

needed significantly less time (M = 6.34, SD = 3.72) for the initializing phase than the NonRec-

Group (M = 15.42, SD = 6.62). There is no significant difference for the start-up phase, but

there is a significant difference for the operation phase, showing that the Rec-Group has more

time (M = 67.07, SD = 19.67) for operation then the NonRec-Group (M = 59.19, SD = 19.59).

Transforming this result into real life would mean that the test persons from the Rec-Group

produce more electrical energy then the test persons from NonRec-Group in the same amount

of time, resulting in more profit for the energy-producing business.

The mental workload and situation awareness of all subjects were also tested. Table 7.4

shows the results of the NASA TLX test for testing workload in the performance of a specific

task. Using a questionnaire, this test makes various demands in the context of solving a given

task. The test persons had to self-assess their mental and physical response to each demand

on a scale from 1 (low/easy/less) to 10 (high/complex/high) after finishing the test phase in

181



7. Error Reduction through Reconfiguration of User Interfaces

Table 7.3.: Comparison of need time for initializing, starting up, and operating the reactor: M,

SD (in parentheses) and results of t-test

Phase Rec-Group NonRec-group t(df), p (one-tailed)

Initialization 6.34 (3.72) 15.42 (6.62) t (122) = -9.56, p = .000

Start-Up 26.59 (18.95) 25.38 (16.86) t (121.98) = .37, p = .710

Operation 67.07 (19.67) 59.19 (19.59) t (120.08) = 2.23, p = .028

Start-Up + Operation 93.66 (3.72) 84.58 (6.62) t (122) = 9.56, p = .000

Table 7.4.: M and SD (in parentheses) of Mental Workload Variables (NASA TLX) as a Function

of Group Variables

Rec-Group NonRec-Group t(df), p (one-tailed)

Mental demand: Required

Activity

5.82 (1.92) 5.85 (1.91) t(70) = 0.08, p = .468

Mental demand: Task com-

plexity

5.03 (1.91) 5.42 (1.92) t(69) = 0.87, p = .193

Physical demand 3.66 (2.35) 4.50 (2.84) t(70) = 1.38, p = .085

Temporal demand 5.76 (1.70) 5.88 (1.80) t(69) = 0.28, p = .391

Performance 4.68 (2.23) 4.29 (2.01) t(70) = -0.78, p = .220

Effort 5.50 (1.75) 5.09 (2.29) t(70) = -0.86, p = .196

Frustration level 6.24 (1.94) 5.68 (2.24) t(70) = -1.14, p = .130

the evaluation study. Here, no significant differences were visible between the Rec- and the

NonRec-group.

This is also true for the SA test. Here, the test persons were asked three times during the

last task in the evaluation study to identify the value of a certain variable, to predict how this

variable would change in the next 30 seconds (increase, decrease, stay stable), and to say how

confident they were in the answers they had given. While they filled out the questionnaire, they

were not able to see the user interface and the current system state. The results, which can be

seen in Table 7.5, show no significant differences between the two groups. The questionnaires

were evaluated by comparing the answers to the system logs created during simulation. For

every correct answer, the test persons got one point. They were asked three times, and the

maximum number of points per question was 3.

Table 7.5.: M and SD (in parentheses) of Levels of Situation Awareness as a Function of Group

Situation Awareness

Rec-Group NonRec-Group t(df), p (one-tailed)

Level 1: Perception 2.14 (0.92) 1.97 (0.88) t (68) = 0.77, p = .22

(max. 3 pts.)

Level 2 and 3: Comprehension

and Prediction (max. 3 pts.)

1.54 (0.69) 1.58 (0.97) t (57.15) = -0.18, p = .43

Mean confidence in own 78.15 (13.37) 76.01 (17.02) t (60.60) = -0.58, p = .28

answers, given in percent

182



7.4. Output Reconfiguration of User Interfaces

Interpretation

The above-described data analysis of the 2010 evaluation study showed the strong influence of

individualizing user interfaces by the user applying reconfiguration operations to an initial user

interface. It was shown in a statistically significant way that reconfiguration reduces the number

of errors, especially the number of errors concerning oversteering, swapping of operations, false

operations and premature operations. Still, a slight increase in repetition errors was visible

in the Rec-Group, which can be traced back to the newly created operations, which were

sometimes erroneous and did not work well. In this case, some participants started pressing

their new button several times, hoping that it would work somehow. Nevertheless, the total

number of errors were reduced in a highly significant way (p ≤ .001). Thus, reconfiguration

applied by the user to a user interface reduces errors in controlling a complex process where

errors of the system can occur.

Besides the reduction in the numbers of errors, performance—that is, the production of

electrical energy—also increased in relation to the time needed to initialize the reactor. Still,

there is no significant difference between the test and the control group concerning workload

and situation awareness. Thus, it should be part of future work to investigate the influence of

user interface reconfiguration on situation awareness and which psychological principles are of

interest in this context.

In this evaluation study, the influence of reconfiguring user interfaces was reduced to the

reconfiguration of parts of the user interface for inputting information. The output part, which

represents the system state to the user, was not adapted. Thus, the next step was to investigate

the influence of reconfiguring the output portion of a user interface. To that end, Kohls and

Berdys [138] conducted an evaluation study very similar to the one described in this section,

but with a focus on reconfiguration of output interface elements. This study will be described

in the next section.

7.4. Output Reconfiguration of User Interfaces

The second investigation in context of error reduction sought to identify the influence of recon-

figuring output elements of a given user interface on the number of errors in interaction while

controlling a complex process combined with the reaction of test persons to upcoming problems

in the process. This study was modeled on the investigation described above and conducted by

Kohls and Berdys as part of their bachelor thesis [138]. The process to be controlled by the test

persons was the production of chocolate. This process is subdivided into five modules, where

each produces an intermediate product that is used by the downstream component as input.

This sequence of modules results in a process starting with row products offered by storage and

ending with the storage bearing the end product, chocolate, as can be seen in Figure 7.6. The

components of this process can be described as follows:

1. Storage The storage offers initial products like ground cacao beans, cacao butter, milk

powder, sugar and so forth, as well as storage for the end product.

2. Mélangeur The mélangeur kneads all initial products into a consistent mass.

3. Roller Mill: The roller mill mills the cacao mass produced by the mélangeur until the

grain size is smaller than 25 · 10−6m.

183



7. Error Reduction through Reconfiguration of User Interfaces

Storage

Mélangeur Roller Mill

Tempering

Conche

Finishing

Figure 7.6.: The six stages of the chocolate production process

4. Conche The milled mass is then passed to the conche, where it is heated to 90◦C while

being constantly mixed.

5. Tempering After the conche has heated and mixed the cacao mass, it has to be cooled

down without letting it crystallize.

6. Finishing Finishing handles the final portioning and molding of chocolate into bars.

In the study, for simulation reasons, various characteristics were adapted to the planned

evaluation setting. For instance, the time needed for every component to finish its sub-process

was reduced. In the real process, the conche requires 24 to 48 hours. This could not be

transformed to the context of a study meant to last 60 to 90 minutes per cycle. Furthermore,

various details were neglected in order to simplify the process so that it could be learned and

understood in a short period of time. For instance, the subjects did not have to define the

composition of the initial products, which in reality hardly dictates the quality of the end

product.

The task for the test persons was to monitor and control certain specific characteristics

and values, as well as certain parameters that were relevant to all components of the process.

General parameters to be observed by the test persons were the total number of staff and the

individual number of staff per component of the process. They also had to monitor parameters

like the amount produced and the number of rejects resulting from faulty control of components.

These might include factors like a worker entering the wrong temperature for the conche or the

tempering component or the wrong number of rounds per minute for the mélangeur and the

roller mill. The latter four parameters had to be checked by the test person. Faults in these

areas caused problems during the chocolate scenario just as they did in the nuclear power plant

scenario, when pumps broke down. In the chocolate production case, the test persons had to

handle these problems, as well as changes in staff over time. Concerning staff, the test persons

were able to distribute the available staff to all components, but, from time to time, some staff

members went on break, which resulted in stoppages for their components. The test person

had to identify this problem and stop the process or redirect working staff to the unmanned

component. If the test person did not do so, the result was reject because the sub-product of

the further component could only by stored for a short period of time.

Figure 7.7 shows the initial user interface that was adapted by the test group as was the case

for the power plant study. The user interface shows all necessary parameters in an intuitive

way. The various components of the production process are visualized and arranged in the order

184



7.4. Output Reconfiguration of User Interfaces

Employees:                44
Breaking Employees: 0

Produced (t):                0
Rejected Products (t): 0

Profits (in €):        0
Loss (in €):            0

Demand:                  10
Balance (in €):            0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Production time: --

Input:                   0

Output:                0

Used Capacity:    0

Employees: 0

Speed of Rotation:        0Speed of Rotation:        0 Temperature:        0 Temperature:        18.5

Max. Employees: 12
Capacity: 25

Storage

Max. Employees: 12
Speed: 50-55
Capacity: 5

Max. Employees: 12
Speed: 60-65
Capacity: 5

Max. Employees: 12
Temperature: 90° +/- 1°
Capacity: 5

Max. Employees: 12
Temperature: 29° - 31°
Capacity: 5

Max. Employees: 12
Capacity: 5

Mélangeur Roller Mill Conche Tempering Finishing

   

Figure 7.7.: Initial interface of the chocolate production scenario from Kohls and Berdys [138]

in which they produce the chocolate and its sub-products. Every component is equipped with

start and stop buttons for starting or stopping the component, indicated by the lower image.

A lamp indicates whether the component is running or not. Furthermore, every component has

a slider for assigning the working staff to the associated production component. For mélangeur

and roller mill, the rounds per minute can be selected using another slider. For the conche and

tempering units, the temperatures are also set by slider. In the upper part of the user interface

are the general parameters, such as the total number of unassigned staff, number of staff on

break, and so forth.

The process logic for the chocolate factory simulation was implemented in Java programming

language. The user interface was modeled, simulated, and reconfigured using the UIEditor

framework. To reconfigure output elements, Kohls and Berdys developed further interaction

elements [138]. Their main approach to reconfiguration was to combine several output values

represented as single values in the initial user interface in a more complex multi-value repre-

sentation. This representation also enables dependency visualization of certain values. This

permitted not only the combination, but also the visual representation of single values instead

of just text and numbers. To do this, they developed and implemented the interaction elements

shown in Figure 7.8, focusing on two goals. The first goal was to represent a single value in

a more comprehensive way. For instance, a temperature is visualized as a thermometer and a

speed as a speedometer. Furthermore, the interaction elements they developed showed various

intervals of good or bad values. Thus, the test person was able to predefine a certain interval

for, say, a temperature where the thermometer image is green; for values over or under the

specified interval, it turns red. The second goal was to offer a handy way to visualize a set of

values in relation to one another using bar or line graphs. This kind of visualization offers a

suitable way to compare different values and a quick overview of their interrelationship. For

185



7. Error Reduction through Reconfiguration of User Interfaces

Lamp 
presents two 
states

Speedometer
presents one 
continuous value, 
speed or rpm

Thermometer 
presents one 
continuous value, 
temperature

Bar Graph
presents up to six 
continuous values 

Line Graph
presents up to six 
continuous values 

Figure 7.8.: Five more or less complex interaction elements for representing up to six continuous

values in relation to one another

instance, some tasks in the study were meant to produce a predefined amount of chocolate with

less waste. For these tasks, it was helpful to visualize the amount of chocolate produced in

relation to waste.

The following sections describe the study and the data gathered. An interpretation of the

results will follow.

Evaluation and Results

Study participants were randomly allocated to either the reconfiguration group (Rec-Group, n

= 29) or the non-reconfiguration group (NonRec-Group, n = 30). The Rec-Group was given the

chance to reconfigure their user interface, while the NonRec-Group used the initial user interface

shown in Figure 7.7. Thus, the NonRec-Group served as a control group. The participants were

between 18 and 29 years old and most were students (88%).

Prior knowledge about chocolate production was tested for both groups. The test had two

sections, one dealing with prior knowledge of chocolate production and the other with prior

knowledge of personal computing. The main portion of the test dealing with chocolate pro-

duction consisted of seven multiple choice items with four answer choices per item. It did not

indicate any significant difference between the test and the control group (Rec-Group: M =

4.17, SD = 1.42, NonRec-Group: M = 4.13, SD = 0.94, t(59) = 0.090, ns). A further item

asking the participants to assess their pre-knowledge concerning the production of chocolate on

a seven-point scale from 1 (very good) to 7 (very bad). This item yielded a slightly significant

difference, but the arithmetic averages were very close (Rec-Group: M = 5.38, SD = 1.40,

NonRec-Group: M = 4.63, SD = 1.40, t(59) = 0.045, s). A short questionnaire examined the

participants prior knowledge relating to the use of personal computers. Again, a seven-point

scale was used, from 3 (completely agree) to -3 (completely disagree). The results showed no

significant difference between the Rec-Group and the NonRec-Group (Rec-Group: M = 0.10,

186



7.4. Output Reconfiguration of User Interfaces

SD = 1.31, NonRec-Group: M = -0.04, SD = 1.52, t(59) = 0.702, ns).

After the participants had filled out the test and the questionnaire, they received an intro-

duction to the chocolate production process and to the whole process for conducting the study.

They were asked to put themselves in the position of the shift supervisor who controls both the

equipment and the disposition of staff. As supervisor, they would also have to identify errors

in the process and in staff break scheduling. After identifying a problem, they had to take

measures to solve it.

Following the introduction, the participants were able to explore the system and the user

interface in a guided exploration involving instructions given by the study supervisor. Next,

the participants had to control the process on their own and fulfill a given task. The study

was split into the equivalent of five days of production. There were therefore five test runs.

Each test run had a different goal and a different type of failure in the process to be handled.

Some of these failures were introduced in advance, and some were not. Furthermore, the goals of

succeeding days became more and more ambitious. To permit a smooth progression of the study,

each student was equipped with instructions describing the whole scenario and the various runs

with their attendant goals.

After finishing the first day, the Rec-Group received training on how to reconfigure the user

interface and how these reconfiguration operations could be applied to the user interface using

the UIEditor framework. To keep the process equivalent for the two groups, the NonRec-

Group watched a short movie during this time. Afterwards, the Rec-Group had time to apply

certain reconfigurations to their interfaces, while the NonRec-Group sketched some ideas for

possible adaptions of the interface on paper as done in the study described above. After the

second day and the second run of reconfiguration and sketches were finished, the test phase

started without further opportunity to reconfigure the interfaces. Thus, the Rec-Group used

their reconfigured user interfaces, while the NonRec-Group continued to use the initial user

interface. The following two days involved both groups coping with various system failures,

and a fifth day was used to test situation awareness. After the last day was finished, the

participants filled out two questionnaires: one testing workload using the NASA TLX test and

another testing the study’s hypotheses, which were similar to those in the nuclear reactor study

described above. The whole process for the chocolate production study can be seen in Figure

7.9.

Data Analysis and Results

Various data sources were used to acquire date for analysis: (a) the system log files, (b) the SA

test questionnaires, (c) the NASA TLX test, and (d) the follow-up questionnaire. Degrees of

freedom (df) were adjusted to compensate for any violation of the assumption of homogeneity

of variances.

In evaluating the log files (a), the main goal was to identify the performance of participants in

controlling the process, especially in cases where system failures occurred. The basic hypothesis

in this context was that using a reconfigured user interface causes fewer errors in interaction

than using the user interface initially provided. Four parameters were identified that could be

assumed to result from errors in interaction. The first was the number of production rejects,

that is, the number of chocolates produced that could not be used for sale. Figure 7.11 contains

four diagrams showing the average values per group, per day, and per parameter. Diagram (i)

shows the number of rejects (rejected products); here, a slight difference can be seen on day

187



7. Error Reduction through Reconfiguration of User Interfaces

Task 1 (Day 1)
Start Production; Production of 10t Chocolate

Group NonRec Group Rec

5 
m

in
5 

m
in

Introduction to the Scenario and Software Demonstartion

Knowledge Pre-Test

10
 m

in
10

 m
in

10
 m

in
5 

m
in

10
 m

in Sketching Possible
Reconfiguration

Task 2 (Day 2)
Production of 20t Chocolate

Task 3 (Day 3)
Production of 30t Chocolate

NASA TLX

Introduction and Exploration of
the Tool for Reconfiguration of the UI

Exploration of Simulation Environment

10
 m

in
5 

m
in

10
 m

in
10

 m
in

10
 m

in
10

 m
in

Reconfiguration

SA Test (Day 5)
3 Interruptions for SA Testing

Questionaire

Closing
In

it
ia

liz
in

g 
Ph

as
e

Tr
ai

ni
ng

 P
ha

se
Te

st
in

g 
Ph

as
e

Film

10
 m

in Sketching Possible
Reconfiguration 10

 m
in

Reconfiguration

Task 4 (Day 4)
Start Production; Production of 30t Chocolate

5 
m

in

5 
m

in

5 
m

in

5 
m

in

10
 m

in

10
 m

in

5 
m

in

5 
m

in
5 

m
in

Figure 7.9.: Research procedure using a simulation of the chocolate production process

three that becomes significant on day four (Rec-Group: M = 4.66, SD = 4.81, NonRec-Group:

M = 8.66, SD = 8,256, t(56) = 2.254, p = .028, s). Thus, the Rec-Group produced significantly

fewer rejects on day four than the NonRec-Group. This indicates that the Rec-Group reacted

more effectively to system failures in contrast with the NonRec-Group and thus made fewer

errors while doing so. A further parameter was the profits from sales of produced chocolates

(measured in monetary units). Here, no clear significant difference was found, but a trend can

be seen in Figure 7.10: The t-values become smaller every day, reaching (t(56) = -1.739, p =

.088) on day 4, when the Rec-Group has greater profits then the NonRec-Group. This trend is

supported by the evaluation of loss (iii) measured in monetary units, also shown in Figure 7.11,

where the loss produced by the NonRec-Group is significantly larger on day 4 than is the case for

the Rec-Group (Rec-Group: M = 153620.69, SD = 158820.75, NonRec-Group: M = 285620.69,

SD = 272450.05, t(56) = 2.254, p = .028, s). The combination of profits and loss resulting in

the balance also supports this hypothesis. The balance is significantly higher for the Rec-Group

than for the NonRec-Group (Rec-Group: M = 803379.31, SD = 158820.75, NonRec-Group: M

= 625862.07, SD = 381542.43, t(56) = -2.313, p = .024, s). Thus, overall, the Rec-Group shows

significantly better results on day 4 than the NonRec-Group. The Rec-Group also makes fewer

errors in interaction than the NonRec-Group. Day 5 was not included in the analysis because

188



7.4. Output Reconfiguration of User Interfaces

Profits

Figure 7.10.: Evolution of p value of t-test applied to log data for investigation of profits

only the SA Test was conducted on that day. All the results of the analysis for day 4 can be

seen in Table 7.6.

Situation awareness (b) was evaluated using a questionnaire paired with an analysis of log files

to validate answers given by the participants. Situation awareness was measured by controlling

the process, which was interrupted three times. Each time, the participants were asked three

questions. The first was a multiple choice question asking them to identify the current value of

a given parameter that is important in the chocolate production process. The second question

asked them to predict the development of that parameter over the next 30 seconds. That is,

they had to decide whether the parameter would increase, decrease, or stay stable. The last

question asked them to indicate how certain they were concerning the prediction they had just

made. The participants’ answers were compared with the real values in the log files. Correct

answer received one point; incorrect answers received 0 points. Statistical analysis yielded no

significant difference between the Rec-Group and the NonRec-Group, as can be seen in Table

7.7.

Table 7.8 shows the analysis of the NASA TLX test (c), which measured the perceived demand

of the cognitive and physical workload. Every item was measured on a 10-point scale from 0

(low/easy/less) to 9 (high/complex/more). Only in the case of the two items for cognitive

load did the Rec-Group differ significantly from the NonRec-Group (t(57) = -3.66, p = .001

and t(56.46) = -2.47, p = .017). In both cases, the Rec-Group perceived a higher cognitive

load than did the NonRec-Group. A possible explanation for this is that the participants of

the Rec-Group also rated the reconfiguration as part of the cognitive load, as opposed to the

NonRec-Group, who did not configure the user interface. A further result worthy of note is

that the perceived stress was identical for both groups. Thus, reconfiguration has less influence

on this factor than on errors in interaction.

The relevant results from the general questionnaires (d) was the evaluation of the UIEditor

framework used to reconfigure the interfaces. This was only rated by the Rec-Group. Three

items addressed the usability of the reconfiguration tool. All three were rated on a seven-point

scale from +3 (very good) to -3 (very bad). The statistical analysis showed a significantly

positive result for usability of the UIEditor reconfiguration tool (M = 1.06, SD = 1.40 , t(28) =

4.07, p = .000). Other results did not shown any significant differences between the Rec- and

the NonRec-Group.

189



7. Error Reduction through Reconfiguration of User Interfaces

Rec-Group
NonRec-Group

(i) (ii)

(vi)(iii)
Pr
of
its

Re
je
ct
s

Lo
ss

Ba
la
nc
e

Figure 7.11.: The four parameters investigated to evaluate the performance in controlling the

production process by participants separated into two groups (Rec-Group and

NonRec-Group): (i) production rejects, (ii) profits, (iii) loss and the (iv) balance,

or difference between profit and loss.

Table 7.6.: Participant’s performance on task (day) 4: M, SD (in parentheses) and results of

t-test

Performance Pa-

rameter

Rec-Group NonRec-group t(df), p (one-tailed)

Rejects 4.66 (4.81) 8.66 (8.26) t(56) = 2.25, p = .028

Receipts 957000.00 (.00) 911482.76 (140952.28) t(56) = -1.74, p = .088

Loss 153620.69 (158820.75) 285620.69 (272450.05) t(56) = 2.25, p = .028

Balance 803379.31 (158820.75) 625862.07 (381542.43) t(56) = -2.31, p = .024

Interpretation

As the results of the data analysis show, the reconfiguration of output interaction elements

significantly influence the interaction involved in controlling a complex process. In particular,

success in control can be positively influenced by an adequate and user-specific reconfiguration

of output elements. For other psychological aspects, some indication of an influence was found,

but this was not as clear as it was for performance while controlling the process and dealing

with problems as they occurred. Thus, the SA test revealed only slight differences without

statistical significance. The same is true for the NASA TLX test. The NASA TLX test showed

a significantly higher cognitive load for the Rec-Group in comparison with the NonRec-Group,

probably reflecting the higher workload involved in reconfiguration. In contrast, the post-test

questionnaire showed a significantly positive perceived usability in using the reconfiguration

tool as part of the UIEditor framework.

All in all, this evaluation study demonstrated that reconfiguring interaction elements for

190



7.5. Conclusion

Table 7.7.: Results of situation-awareness test: M, SD (in parentheses) and results of t-test

SA test Rec-Group NonRec-group t(df), p (one-tailed)

No. 1 1.14 (.69) .83 (.70) t(56.96) = -1.68, p = .098

No. 2 1.14 (.79) 1.17 (.70) t(55.66) = .15, p = .883

No. 3 1.66 (.61) 1.77 (.43) t(50.01) = .81, p = .424

Total 3.93 (1.46) 3.77 (1.14) t(52.82) = -.48, p = .632

Table 7.8.: Results of NASA TLX: M, SD (in parentheses) and results of t-test

NASA TLX Rec-Group NonRec-group t(df), p (one-tailed)

Cognitive Load I 5.52 (1.45) 3.87 (1.96) t(57) = -3.66, p = .001

Cognitive Load II 4.48 (1.77) 3.27 (2.02) t(56.46) = -2.47, p = .017

Physical Load 1.72 (2.05) 1.97 (2.01) t(56.83) = .46, p = .648

Time Load 5.00 (1.96) 4.27 (1.86) t(56.53) = -1.47, p = .146

Performance 2.14 (2.33) 2.33 (2.12) t(56.12) = .34, p = .738

Stress 3.52 (2.31) 3.53 (2.27) t(56.85) = .03, p = .979

Frustration 5.56 (2.35) 5.37 (2.48) t(56.98) = -.29, p = .770

output information has a promising positive influence. At the same time, the study raised

further questions that should be investigated in greater detail, especially the role of situation

awareness and the cognitive workload resulting from this scenario.

7.5. Conclusion

This chapter introduced two evaluation studies that investigated the influence of reconfiguration

applied by the user to an initial user interface on the number of human interaction errors. A

special focus lay on investigating the user’s reaction to known or unknown faults in the controlled

system and thus on validating the users’ ability to handle this situation and their understanding

of the process and the user interface.

The first study evaluated the influence of reconfiguration of part of the user interface for input

data and its processing. A simulation of the feedwater circuit of a boiling water reactor was

implemented and connected to the UIEditor framework, where a user interface was created for

simulation. This implementation was then evaluated by comparing two groups of participants:

one group that reconfigured the initial user interface, and one that did not. An evaluation of

the interaction logs showed significant differences in the number of errors due to error classes

defined by Hollnagel [113].

A second study, carried out by Kohls and Berdys [138], also showed the influence of this kind

of reconfiguration on controlling complex processes and handling system errors. Furthermore,

questions arose from this study concerning the cognitive load produced by reconfiguration and

how this influences the entire interaction process.

In conclusion, individualization through reconfiguration (that is, reconfiguration by the user)

applied to an initial user interface has a (significantly) positive influence on interaction, whether

the input or output parts of the user interface are reconfigured. It has been shown that through

reconfiguration (a) the mental model can be transferred to a representation as interaction logic

and thus become a part of the user interface and (b) a positive effect can be generated by

191



7. Error Reduction through Reconfiguration of User Interfaces

adapting interaction logic to the user’s mental model. Still, the question of what the effects

would be if both input and output aspects were reconfigured remains to be investigated. Fur-

thermore, future studies must also address the question of how having to reconfigure both input

and output aspects of an initial user interface will affect a user. Other questions arose from

these studies, as well. For instance, does reconfiguration increase situation awareness? In this

context, further investigation of automatic and semi-automatic reconfiguration is relevant. This

is because, when reconfiguring a user interface, the user will fail to identify some problems in

the individual adaption of the interface, which will not affect SA positively. Therefore, if the

reconfiguration system identifies problems in interaction that the user is not aware of, it can

propose certain reconfiguration operations and make the user aware of unperceived issues. The

following chapter will introduce some areas for future work that will extend the formal con-

cept of reconfiguration and the implementation of the UIEditor framework with concepts and

components for error-based automatic reconfiguration.

192



8. Automatic Reconfiguration of User

Interfaces

This chapter explores opportunities for future work concerning the application of automatic

reconfiguration to formal user interfaces. It begins with an introductory overview of a possible

scenario in which reconfiguration can be applied to a formal user interface (Section 8.1). This

overview does not cover various aspects currently being investigated, such as multi-user and

multimodal user interfaces, or topics involving greater involvement of formal modeling in cogni-

tive psychology and human-machine interaction from the perspective of control and automation.

These kinds of future work aspects will be discussed in Chapter 9. After the introduction, a

basic prototypical approach to a possible reconfiguration system will be described, providing a

summary of the work to be done in order to support efficient reconfiguration in the scenarios

described in Section 8.2. The final section in this chapter examines the work of several students

who, under the author’s supervision, developed and implemented approaches to interaction

analysis as a central factor in generating sufficient reconfiguration rules in a variety of scenarios

(Section 8.3).

8.1. Introduction

The previous chapter described and interpreted two evaluation studies involving reconfigura-

tion. However, in both studies, reconfiguration was applied manually by the user. The next step

will be to investigate automatically generated reconfiguration and redesign. Automatic recon-

figuration can be described from two main perspectives: on the one hand, how reconfiguration

is triggered and how much is applied, and, on the other, the extent to which the user should be

involved in reconfiguration. Furthermore, the goal(s) of reconfiguring the user interface has to

be taken into account: to reduce the incidence of errors or to fulfill other requirements, such as

multi-user access.

In this chapter, some of these aspects will be briefly discussed. In some cases, basic work has

already been carried out by various students trying to identify future questions in research and

implement basic software components for further development. Here, the primary focus was on

developing components to analyze interaction and provide a basis for further investigation of

automatic reconfiguration. Without a solid implementation of analysis methods for interaction,

it is not possible to identify errors or patterns in interaction that are key in user interface

reconfiguration. Further investigation is also needed into the introduction of knowledge about

the situation and environment in which the interaction is executed. Moreover, the involvement

of models of the system in the reconfiguration process should be studied to offer a knowledge

base for the creation of reconfiguration rules.

Figure 8.1 shows a three dimensional coordinate system in which the axes define when recon-

figuration is applied to a user interface (offline, interrupt, online), who triggers the reconfigura-

tion (user, reserved trigger by the system, exclusive the system), and how the reconfiguration is

193



8. Automatic Reconfiguration of User Interfaces

manual

semiAutomatic

automatic

offline onlineinterrupt

userTrigger

reservedTrigger

automaticTrigger

a

b

c

d

e

f

Figure 8.1.: Overview of possible future work scenarios

applied (manually, semi-automatically, automatically). Thus, every scenario is defined through

a three-dimensional vector

s ∈ V1 × V2 × V3,

where

V1 = {offline, interrupt, online},
V2 = {userTrigger, reservedTrigger, automaticTrigger}, and
V3 = {manual, semiAutomatic, automatic}.

Based on this scenario classification, an architectural approach to a reconfiguration system

involving the above-described aspects (user models, system models, various knowledge bases,

and analysis) can be developed. However, before doing so, the different types of axes will be

explained by the scenarios (a–f) indicated in Figure 8.1 as follows:

a=(offline, userTrigger, manual): This scenario is very basic and has been used in

all evaluation studies so far. Here, the interaction process is stopped completely, which

also includes the (simulation of the) controlled system. This is indicated by the first value

in the scenario vector: offline. The second value indicates whether the user or the system

triggers the reconfiguration. Here, the user decided when to reconfigure the user interface

indicated by the parameter value userTrigger. The last parameter value indicates who

decides how to reconfigure the user interface. Here, again the user makes this decision.

This is indicated by the parameter value manual as last element of the scenario vector.

b=(online, reservedTrigger, semiAutomatic): In contrast to scenario a, this is an

online scenario. Here, neither the user interface nor the controlled system for applying

reconfiguration is stopped. Thus, the user is able to continue interacting with the system

even while parts of the user interface are reconfigured. Furthermore, reconfiguration is

triggered reservedly and applied semi-automatically. Reserved triggering means that the

194



8.1. Introduction

reconfiguration system triggers the reconfiguration and includes the user in this decision.

The system also includes the user in the definition of reconfiguration by making sugges-

tions for possible adaptions without applying them directly to the user interface. This is

indicated by the parameter value semiAutomatic. This scenario would apply, for example,

in a real-life situation in which the system cannot be stopped because it is safety critical

and the reconfiguration extends the assisting features of a user interface.

c=(online, automaticTrigger, automatic): In this scenario, reconfiguration is fully

automatic. It is applied automatically by the reconfiguration system without involving

the user. Furthermore, the triggering of reconfiguration is controlled completely by the

system, and reconfigurations are applied to the user interface during runtime, as indicated

by the online value in the scenario vector. Here, the same safety-critical system can be

taken into account with another motivation for reconfiguration. Possible objectives for

implementing fully automatic reconfiguration of the user interface include limiting the

inputs the user can apply in order to reduce user error and supplying certain important

information to the user to steer his awareness.

d=(interrupt, userTrigger/reservedTrigger, semiAutomatic): One or more val-

ues of a scenario vector can also be fuzzily defined, which is the case for the trigger

parameter in this example. Here, both the system and the user are able to trigger re-

configuration. Moreover, a combination of automatic and user-triggered reconfiguration

is also possible. In this scenario, the reconfiguration is semi-automatically defined; this

means that, for instance, the system suggests a certain reconfiguration and the user is

asked to apply the suggested reconfiguration to the user interface or cancel it. In order to

apply a reconfiguration in this scenario where the system is still running, the interaction

is interrupted (indicated by the parameter value interrupt).

e=(online, userTrigger, manual): Here, the user triggers and manually applies the

reconfiguration while the system and the user interface are still running (online). Thus,

only the reconfigured part of the user interface is not usable for a short period of time

during reconfiguration. This is relevant if it is important that the system remain in

uninterrupted use. Furthermore, other users can still use the remaining user interface,

which is important in multi-user scenarios.

f=(offline, reservedTrigger, automatic): In the final scenario, the reconfiguration is

applied only after stopping the interaction and the system. The user is involved in the

triggering, but the system decides when to trigger the reconfiguration (reservedTrigger).

Furthermore, reconfiguration is then applied by the system, and the user has no influence

on what will be reconfigured. In a real situation, the system will ask for reconfiguration

and probably indicate what will be reconfigured, but the user has no further influence on

what will be reconfigured or how.

In general, this kind of classification of reconfiguration scenarios can be futher extended by

adding axes that indicate other factors, such as the number of users involved, or by changing

the granularity of the axes described above. The following list gives an overview of possible

extensions of the classification:

Influence Axis This dimension addresses the question of who influences the system on

a more general level with regard to applying reconfiguration. Direct influence, such as

195



8. Automatic Reconfiguration of User Interfaces

triggering reconfiguration, should be separated from indirect influences. Indirect influ-

ences might, for instance, come from the environment; an example is changes in time that

influence the user, the system, or both. Furthermore, direct influences could emanate

from a super-user, a supervisor, or the like. Thus, influence can originate with

a) human users, who may be organized in a hierarchical command structure (for in-

stance, controller, supervisor, chief, local directive, etc.),

b) the environment,

c) the system, and

d) an automatic source that has been implemented to influence the interaction and

reconfiguration process, such as an automatic triggering system as described above.

Motivation Axis This axis defines various types of motivation for reconfiguration. Here,

the following motivations can be mentioned:

Error reduction Here, the goal is to reduce errors in interaction in order to

strengthen the effectiveness of interaction and reduce risks.

Change of responsibility The responsibilities of human users can change over

time, which should be reflected in the user interface offering more or less access to

monitor and control the system.

Change in user psychology/capabilities During interaction, the ability of the

user to effectively and accurately interact with the system may change. For instance,

symptoms of fatigue could arise. In such cases, the requirements of the user interface

should adapt to the new situation. Thus, a user interface should be reconfigured

dependent on the user’s psychological abilities, which may vary over short or long

time periods.

Individualization Users usually have different requirements regarding a user inter-

face in context of a specific task and the system to be controlled. Thus, reconfigu-

ration should be applied to the interface to adapt it to the user’s needs and abilities

in controlling the system.

Automation and Assistance Growing experience and former experiences on the

part of a user with a given user interface or system can also result in the need

for automation of certain interaction and control processes. A growing need for

assistance can result, for instance, from a change in situation or environment, or

from certain usage.

Task axis A user interface should be reconfigured to reflect the various characteristics

that define a given task.

Context axis The context in which a task is solved also influences the demands on

the user interface involved, possibly necessitating reconfiguration. Even if the same task

is being done, a different context could require a completely different user interface to

perform that task.

This list is probably not complete but gives an overview of the broad spectrum of future

research topics that are of interest in the area of computer-supported reconfiguration of user

interfaces.

196



8.2. Reconfiguration System Architecture

The three-dimensional scenario classification described above provides an insight into the

complex nature of the problem of reconfiguration and seeks to highlight important topics for

further research and development. The following sections will describe a conceptual architecture

for implementing a reconfiguration system that contains all the necessary components and data

models. This is followed by examples of initial work in this area that addresses interaction

analysis in such a way that the scenario classification can be implemented in this architecture.

8.2. Reconfiguration System Architecture

Figure 8.2 introduces a possible architecture for implementing a reconfiguration system for ap-

plying reconfiguration to a (formally modeled) user interface. Various parts of the presented

system currently exist as modules in the UIEditor framework presented in Chapter 5. These

are the UI Executer, which is, for the most part, equivalent to the Simulator module; the User

Interface Model as a runtime instance of the .uie and .pnml files of the physical representation

and interaction logic of the relevant user interface; the Interaction Logger paired with the Inter-

action Logs as output; the Interactive Reconfiguration Editor, which is part of the Reconfigurer

in the UIEditor framework and indicated in Figure 8.2 by rounded corners to show that it is

controllable by the user as is the user interface; and the UI Reconfigurer, which applies gener-

ated rules to the user interface model that was identified as a component of the Reconfigurer

module in the UIEditor framework module structure. What is new is the Interaction Analyzer

component. This component analyzes the interaction during runtime or offline; it involves a

user model, a model of the system, and a task model that specifies what the user wants to do.

The main goal of this kind of analysis is to identify abnormalities in the interaction process by

analyzing the data passed through the interaction logic to and from the user or the system.

Identification of abnormalities can range from the identification of recurrent input operation

sequences to complex error detection involving complex context-aware modeling approaches.

This module was called the Analyzer module in the above-described module structure of the

UIEditor framework, but was not further discussed because its primary relevance is to future

work. If reconfiguration seems necessary from the perspective of the interaction analyzer, recon-

figuration is triggered by another new module called the Trigger Handler. The trigger handler

controls the triggering of reconfiguration by the interaction analyzer or the user or both (de-

pending on the scenario), as well as the stopping of the system and/or the user interface if

necessary. Furthermore, beside starting the trigger handler, the interaction analyzer generates

output for the Reconfiguration Rule Generator, who also generates rules based on predefined

knowledge indicated as Reconfiguration Patterns in Figure 8.2. These patterns can be of various

types, but in general can be seen as a source of knowledge for rule generation that is not derived

from actual current interaction.

The generation of reconfiguration patterns is another problem to be tackled in future work. In

general, these patterns can always be supported by experts who are familiar with user interface

modeling and creation as done in this work concerning the reconfiguration operations presented

in Section 4.2. This manual approach could be supported by intelligent algorithmic concepts

combined with more abstract modeling of interaction operations. Thus, by assigning interac-

tion operations to various classes, it could be possible to investigate reconfiguration operation

applied by the user to given user interfaces and to derive interaction patterns by classifying the

reconfiguration operations. For instance, if a user frequently combines two operations of a spe-

cific type with a given reconfiguration operation, the resulting pattern would be a more specific

197



8. Automatic Reconfiguration of User Interfaces

reconfiguration operation to be applied only to specific types of interaction operations. Nev-

ertheless, the creation of patterns will always need manual intervention by an expert modeler

who is able, on the one hand, to understand the theoretical background of the reconfiguration

system and the user interface model and, on the other, to model the reconfiguration patterns in

the correct modeling language (which also needs to be investigated in future work). In general,

this process of creating patterns will be an offline activity in a modeling process rather than

part of the runtime reconfiguration processes. Furthermore, all the patterns generated must

be proved not to create reconfiguration rules that violate the conditions introduced in Section

4.2 above. In future work, these conditions have to be tested for consistency and integrity,

preventing automatically created rules from changing the interaction logic in any unwanted

way.

The rules thus generated are then applied by the UI Reconfigurer module to the user interface

model, as was the case in the UIEditor framework.

Figure 8.2 shows other elements and modules that address the extension of axes to the basic

three-dimensional model for scenario classification introduced above. The hatched boxes indi-

cate elements to be added to the architecture in order to extend it further. Thus, environment

and context should be introduced as influences on the system, as well as on interaction analysis

and rule creation. These kinds of models could be introduced in the reference net-based model-

ing approach by referencing them resulting in a hybrid model of interaction logic. Furthermore,

the trigger handler should be extended by adding an interface for triggering reconfiguration

that does not result from interaction analysis but from other sources, like the authority of a

supervisor.

The most work remains to be done in the development of efficient approaches to interaction

analysis using a user interface that generates information important for triggering reconfigura-

tion and generating reconfiguration rules. To this end, various approaches can be considered

for inclusion in future research:

Interaction Log Analysis Interaction logs can be analyzed for different purposes, for in-

stance, to identify errors in interaction or special patterns that identify common sequences

of interaction operations.

Inclusion of System and Task Models The System Model can also be included in

interaction analysis. By including the system model, decisions can be made concerning

the current system state and which state should be positive in order to reach a specific

goal defined in a given task model. The user interface can be reconfigured such that this

state can be more easily achieved. The goal to be reached is then part of the user model.

Inclusion of User Interface Model Including the user interface model offers the identi-

fication of problems involved in a (formal mental) user model of a particular user interface.

Thus, problems and errors in interaction can be identified in advance or in combination

with interaction data during runtime.

This list is not complete, but provides a short overview of various aspects of analysis of the

interaction in this architecture. The following section will offer deeper insights into the subject

of log file analysis, which has been investigated by Altunok [3], Borisov [29] and Yu [303].

198



8.3. Interaction Analysis

User Interface Model

User Model

Task Model

System Model

Reconfiguration Rule
Generator

System
Action Logic

User Interface

UI Executer

Interaction Analyzer

Interaction Logger

Interaction Logs

Trigger
Handler

UI Reconfigurer

Analysis
Results

Re
co

nf
ig

ur
at

io
n

Ru
le

s

Interactive
Reconfiguration Editor

Reconfiguration
Patterns

Authority
(Supervisor, Administration,

Chief, etc.)

Environment
Context,

ConstraintsUser

Figure 8.2.: Possible architecture of a reconfiguration system covering the scenario space pre-

sented in Section 8.1

8.3. Interaction Analysis

The first work in this area was carried out by Altunok. In his thesis [3], he implemented a

software component that transforms log files into a cvs-based format based on strings, where

every character represents one operation derived from the log file. The main problem was to

represent continuous interaction operations with only one sign. Therefore, a continuous input

operation was transferred to one sign by encoding an increase value or decrease value.

Next, the created string representing a sequence of input operations (or the triggering event

of interaction processes for input data) was further analyzed using string-based algorithms

for pattern matching and prediction. The goal was to identify certain patterns in a given

interaction sequence using prediction algorithms and to verify the results using pattern-matching

approaches. The resulting patterns would then be used in interaction as input for the generation

of reconfiguration rules, for instance, to create new interaction processes that sequentialize

recurring patterns or to automate certain interaction sequences that have often been applied

by the user to the user interface.

For string-matching, Altunok implemented algorithms developed by Knuth et al. [137] that

extend the naive brute-force approach described Ottmann et al.[198] by taking advantage of

recognized parts of the searched pattern before a mismatch occurs. Based on this information,

the algorithm can skip several positions instead of only one in every step, as is the case in the

199



8. Automatic Reconfiguration of User Interfaces

brute-force approach. A further example is the algorithm developed by Boyer and Moore [32]

that uses heuristics to speed up the search process. To investigate the inner structure of strings,

Altunok implemented suffix trees, as described in works of Adjerho et al. [2] and Gusfield [102].

In the context of prediction algorithms based on interaction sequences represented as strings,

various studies have already been conducted. Künze [153] gives an overview of the use of action

prediction in adaptive user interfaces. Here, algorithms that predict the next action on the

basis of a specific number of prior actions are introduced in the context of probabilistic models,

such as Markov models. An example of an algorithm based on Markov models is the IPAM

algorithm, developed by Davison and Hirsh [54]. A further approach is using recurring patterns

to define probabilities for the recurrence of a given pattern. The PPM algorithm, developed

by Cleary and Witten [44], is one example of this approach; it was extended in 1990 by Moffat

[172] and in 1995 by Cleary et al. [45] to make PPM independent of a maximum Markov order.

The works of Borisov [29] and Yu [303] go a step further. Yu developed a formal modeling

approach for human errors in interaction that is based on finite automatons (cf. McNaugthon

[168]) with an extension of timing introduced by Alur [4]. The main goal here is to generate

error automaton from a given expert model. By applying automaton to interaction sequences,

certain errors can be identified during runtime, as well as offline. The information derived from

this formal error detection can be used to trigger reconfiguration, to identify correct patterns

for rule generation, and to instantiate these patterns based on the context in which the error

occurred.

Borisov worked on extending the UIEditor framework with an analysis module that includes

the approaches of Yu and Altunok. Furthermore, he started to develop and implement a

software component for analyzing log files chronicling interaction with multiple users. The data

structure developed for this approach will be further used for analysis based on data-mining

implementations like JDMP, which was developed by Arndt [8], paired with an implementation

for processing matrices, called UJMP Arndt et al. [9]; these are extended by data-mining

algorithms implemented in the WEKA project, which began in 1993 by Cunningham et al.

[53]. Thus, Borisov’s implementation can be seen as a seminal implementation of the Interaction

Analyzer indicated in the above described architecture for automatic reconfiguration and thus

as a foundation for future work on implementing the entire concept and creation process for

automatic reconfiguration.

8.4. Conclusion

This chapter anticipates the next one, which will introduce a major field for future work following

this dissertation. The foundation for this work has already been laid by various students who

investigated a variety of aspects of analysis of interaction sequences. Besides formal analysis

of interaction logic, the analysis of interaction sequences has been investigated in three theses:

Altunok investigated the role of string matching and prediction algorithms in logging-based

interaction analysis and implemented a broad set of different algorithms; Borisov extended

Altunok’s work by focusing on multi-user scenarios and the integration of these interaction

analysis tools into the UIEditor framework; Yu worked on formalizing and implementing models

representing human errors in interaction, based on timed finite automatons. The next chapter

will provide an overall conclusion for this dissertation and a broader perspective on future work,

including the initial steps in the direction of automatic reconfiguration of user interfaces.

200



9. Conclusion and Future Work

The main goal of this dissertation has been to develop a formal approach to user interface

modeling while differentiating between the physical representation and the interaction logic

of the user interface. Adaptive interfaces provide high usability while decreasing errors in

interaction. This approach led to the development of a formal language offering various modeling

techniques to describe data processing between the physical representation of a user interface

and the system to be controlled. This language was inspired by mental models developed

in cognitive psychology. The formal reconfiguration approach also draws on work in graph

rewriting applied to higher Petri nets. This entailed the development of a Java-based framework

for support tools to model, simulate, and interactively reconfigure a formal user interface. In

the end, this dissertation builds the foundation for further introduction of formal models into

the modeling of user interfaces and to close the gap between modeling and implementation.

In the course of this work, three evaluation studies were conducted at the university of

Duisburg-Essen. The first was carried out in 2009; its goal was to evaluate the influence of

user interface reconfiguration on learning complex algorithms within the context of a cooper-

ative scenario. The results showed that students using the new techniques for reconfiguration

performed significantly better than the control group. The results also confirmed that mental

models can be transfered to the interaction logic of a user interface.

Two studies conducted in 2010 investigated the reduction of human errors in interaction, one

through the reconfiguration of the input and the other through the reconfiguration of the output

parts of a formally modeled user interface. In both studies, the positive impact of reconfiguration

on the number of errors made was significant. These results provided motivation for extending

the approach through the use of intelligent algorithms and methods to apply fully automatic

reconfiguration to any given user interface. To this end, various approaches were described

and developed in three thesis projects supervised by the author of this dissertation. Thus, this

promising approach to formal modeling of user interfaces has been confirmed through a series

of successful empirical studies.

The formal concepts developed in this dissertation and its associated implementations open

a broad area of future work in various fields and from various perspectives. Thus, the main

objective of future work will be to extend this approach to a technology implementing con-

cepts and tools that combine cognitive psychology, engineering, and HCI from the perspective

of computer science. Using formal description languages, this approach can implement trans-

formations and applications from various fields without losing information in the process of

applying these concepts to computer-based systems.

Figure 9.1 provides a conceptual model of future work based on the outcomes of this disser-

tation. The following list describes these subjects in greater detail:

Application Scenario Nowadays, HCI is not restricted to one-user, one-interface scenarios.

More often, complex interaction scenarios take place in many situations, such as the control of

nuclear power plants, which is a classic example of teamwork involving the use of a complex,

201



9. Conclusion and Future Work

One User
One Interface

Multiple User
One Interface

Multiple User
Multiple Interfaces

Single Modal Multimodal

Manual
Reconfiguration

Pattern-Based
Reconfiguration

Intelligent
Reconfiguration/

Automation/
Assistence

No Verification
No Validation

Validation Formal Verification

Error-Based
Reconfiguration

Conceptional
Integration of

Cognitvie Psychology

Formalization of
Mental Models 

(MMs)

Automatic
Transformation and
Integration of MMs

Basic Evaulation of
Reconfiguration

Extended Evaluation
of Reconfiguration

Evaluation of
Complex Multi-User

Scenarios

This Dissertation
1 2 3 4 5

timeline/
year

Figure 9.1.: Future work building bridges between formal modeling, cognitive psychology, and

engineering

multiple-user interface. Furthermore, it is often the case that not only one specific interface

is used to solve a given task; instead, various types of user interfaces are needed and are

operated on various types of devices. In some cases, one interface is used by multiple users with

differing purposes and issues. Thus, the first step is to identify and classify possible scenarios

before solutions can be developed based on formal approaches. Cognitive psychology concepts

regarding teamwork should be taken into account, paired with research on technical systems

that involve control by more than one user.

Modality This dissertation concentrates on haptic input and visual output, leaving out all

other possible modalities for interaction, like speech, acoustics, gestures, emotions, and so forth.

Nevertheless, many studies have shown the high impact of modalities on HCI (cf. Section 2.8).

Thus, modeling multi-modality must be a major aspect of future work. The approach introduced

here must be broadened with regard not only to modeling but also to reconfiguration, where

there is currently no formal support for multimodal user interfaces.

Reconfiguration The studies described in this dissertation dealt with user-applied reconfig-

uration. Future work in the area of reconfiguration was discussed in detail in Chapter 8. In

addition to introducing results from interaction analysis, automation technology concepts must

also be included. Here, questions concerning interaction processes and how an interface is used

202



to control a system in any given situation need to be answered in order to develop concepts

for the application of reconfiguration to user interfaces. Then, controlling structures can be

introduced into the user interface and applied by reconfiguration; also appropriate concepts for

automating control can be applied to user interface models. Automation in this sense can also

implement structures in the formal user interface to help the user.

Verification and Validation This thesis provides a concrete basis for future work in this

area. Reference nets, as a special type of Petri nets, were chosen because of their broad range of

theories and tools for validation and verification. Especially in process modeling, various studies

have been conducted that can be applied to the formal modeling of interaction logic in order

to answer questions concerning such issues as accessibility. The introduction of verification

and validation concepts can be applied not only to a modeled user interface but also to its

reconfiguration. This enables mental models to be built and described and automation concepts

to be identified and verified. For instance, the correctness of reconfigured user interfaces can

be investigated before the user interface is changed.

Integration of Cognitive Psychology In this dissertation, results from psychology in-

formed the overall structure of interaction logic models. Still, a formal integration of cognitive

psychology was not developed and described. Therefore, an important objective for future

work is the closer integration of concepts and modeling approaches from cognitive psychology.

Thus, formalization of mental models and learning them from interaction are only two aspects

of a broad set of issues concerning the formal integration of cognitive psychology into formal

and adaptive user interfaces. Moreover, various modeling approaches from engineering can be

introduced directly into the modeled user interface depending on their formal basis.

Evaluation Certain aspects of the other concepts and tools introduced in the course of these

studies remain to be evaluated—namely those related to their performance in enhancing interac-

tion between human users and complex technical systems in extended scenarios and additional

technical modules.

Other aspects are also of interest. The first is new application scenarios, like virtual museums

and smart-city environments. Next, the application of the formal modeling approach to smart

living environments paired with an inversion of the roles of user and user interface plays a

central role in future work. Here, the system perceives the user’s behavior and his activities,

using those perceptions to provide relevant tools and services to the user via the interface. In

that sense, the system may be seen as controlling the user through the adaption of the user

interface. Another aspect is the involvement of models of the system in the reconfiguration;

here, changes applied to the interaction logic can be embedded in the system model and vice

versa. Thus, the system can learn from the user’s interaction and reconfiguration of the user

interface, and the interaction logic can be specified by the system if critical system states can

be reached.

In conclusion, in this dissertation a formal approach to user interface modeling was developed

that opens the door to a common basis for various disciplines interested in HCI. The use of the

implemented framework evinced a positive impact on HCI in various evaluation studies with

different objectives. This work suggested a broad range of topics for future work. A discussion

of those topics concluded this dissertation, revealing its many potential extensions.

203





A. The UIEditor Framework—File Formats

In this appendix, file formats used in the UIEditor framework will be specified using RelaxNG

Schema for defining XML-based file formats. First, the .uie file format will be introduced

followed by the .sim format. In a further section, the extended PNML format developed

by Stückrath [265] for serialization of reference nets will be introduced accompanied with the

specification of the format for defining DPO rules for formal reconfiguration. The UIEditor

framework uses the Java-based open source library Jing1 for file validation.

UIEditor Framework File Formats

.uie File Format

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 <grammar xmlns=” ht t p : // re laxng . org /ns/ s t r u c t u r e /1 .0 ”>

4

5 <s t a r t>

6 <element name=” u i c o n f i g ”>

7 <r e f name=” i n t e r f a c e s ”/>

8 <r e f name=” physrep ”/>

9 <r e f name=” i n t e r a c t i o n l o c ”/>

10 </ element>

11 </ s t a r t>

12

13 <d e f i n e name=” i n t e r f a c e s ”>

14 <element name=” programminter faces ”>

15 < i n t e r l e a v e>

16 <oneOrMore>

17 <element name=” s y s t e m i n t e r f a c e ”>

18 <a t t r i b u t e name=”path”/>

19 </ element>

20 </oneOrMore>

21 <zeroOrMore>

22 <element name=” i l o p i n t e r f a c e ”>

23 <a t t r i b u t e name=”path”/>

24 </ element>

25 </zeroOrMore>

26 </ i n t e r l e a v e>

27 </ element>

28 </ d e f i n e>

29

30 <d e f i n e name=” physrep ”>

31 <element name=” des ign ”>

32 <zeroOrMore>

33 <r e f name=” physrep . i e l ement s ”/>

1http://code.google.com/p/jing-trang

205



A. The UIEditor Framework—File Formats

34 </zeroOrMore>

35 </ element>

36 </ d e f i n e>

37

38 <d e f i n e name=” physrep . i e l ement s ”>

39 <element name=” widget ”>

40 <a t t r i b u t e name=” id ”/>

41 <a t t r i b u t e name=” type ”/>

42 <a t t r i b u t e name=”name”/>

43 < i n t e r l e a v e>

44 <r e f name=” element . bounds”/>

45 <zeroOrMore>

46 <element name=” parameter ”>

47 <a t t r i b u t e name=”name”/>

48 <a t t r i b u t e name=” datatype ”/>

49 <a t t r i b u t e name=” value ”/>

50 </ element>

51 </zeroOrMore>

52 <element name=” i n t e r f a c e ”>

53 <r e f name=” physrep . i e l ement s . i n t e r f a c e ”/>

54 </ element>

55 </ i n t e r l e a v e>

56 </ element>

57 </ d e f i n e>

58

59 <d e f i n e name=” physrep . i e l ement s . i n t e r f a c e ”>

60 <zeroOrMore>

61 <element name=” widgetport ”>

62 <a t t r i b u t e name=” id ”/>

63 <a t t r i b u t e name=”name”/>

64 <a t t r i b u t e name=” datatype ”/>

65 <a t t r i b u t e name=” index ”/>

66 <r e f name=” element . f unc t i on ”/>

67 </ element>

68 </zeroOrMore>

69 <zeroOrMore>

70 <element name=” event ”>

71 <a t t r i b u t e name=” id ”/>

72 <a t t r i b u t e name=” type ”/>

73 <a t t r i b u t e name=” datatype ”/>

74 <a t t r i b u t e name=” value ”/>

75 <r e f name=” element . f unc t i on ”/>

76 </ element>

77 </zeroOrMore>

78 </ d e f i n e>

79

80 <d e f i n e name=” i n t e r a c t i o n l o c ”>

81 <zeroOrMore>

82 <element name=” i lmodule ”>

83 < i n t e r l e a v e>

84 <element name=” ope ra t i on s ”>

85 <r e f name=” i n t e r a c t i o n l o c . ops”/>

86 </ element>

87 <element name=” connector s ”>

88 <r e f name=” i n t e r a c t i o n l o c . con”/>

89 </ element>

206



90 </ i n t e r l e a v e>

91 </ element>

92 </zeroOrMore>

93 </ d e f i n e>

94

95 <d e f i n e name=” i n t e r a c t i o n l o c . ops”>

96 <zeroOrMore>

97 <element name=”bpmn”>

98 <a t t r i b u t e name=” id ”/>

99 <a t t r i b u t e name=” type ”/>

100 <a t t r i b u t e name=” i n s c r i p t i o n ”/>

101 <r e f name=” element . bounds”/>

102 </ element>

103 </zeroOrMore>

104 <zeroOrMore>

105 <element name=” channe loperat ion ”>

106 <a t t r i b u t e name=” id ”/>

107 <a t t r i b u t e name=” type ”/>

108 <a t t r i b u t e name=”name”/>

109 < i n t e r l e a v e>

110 <element name=” channel ”>

111 <a t t r i b u t e name=” id ”/>

112 <a t t r i b u t e name=”name”/>

113 </ element>

114 <r e f name=” i n t e r a c t i o n l o c . ops . param”/>

115 </ i n t e r l e a v e>

116 </ element>

117 </zeroOrMore>

118 <zeroOrMore>

119 <element name=” i l o p e r a t i o n ”>

120 < i n t e r l e a v e>

121 <zeroOrMore>

122 <element name=” i n i t i a l p a r a m e t e r ”>

123 <a t t r i b u t e name=”name”/>

124 <a t t r i b u t e name=” datatype ”/>

125 <a t t r i b u t e name=” value ”/>

126 </ element>

127 </zeroOrMore>

128 <r e f name=” i n t e r a c t i o n l o c . ops . param”/>

129 </ i n t e r l e a v e>

130 </ element>

131 </zeroOrMore>

132 <zeroOrMore>

133 <element name=” systemoperat ion ”>

134 <r e f name=” i n t e r a c t i o n l o g . ops . param”/>

135 </ element>

136 </zeroOrMore>

137 </ d e f i n e>

138

139 <d e f i n e name=” i n t e r a c t i o n l o c . ops . param”>

140 < i n t e r l e a v e>

141 <r e f name=” element . f unc t i on ”/>

142 <r e f name=” element . bounds”/>

143 <op t i o na l>

144 <element name=” d e s c r i p t i o n ”><t ex t /></ element>

145 </ o p t i ona l>

207



A. The UIEditor Framework—File Formats

146 <zeroOrMore>

147 <element name=” i p o r t ”>

148 <a t t r i b u t e name=” id ”/>

149 <a t t r i b u t e name=” datatype ”/>

150 </ element>

151 </zeroOrMore>

152 <zeroOrMore>

153 <element name=” oport ”>

154 <a t t r i b u t e name=” id ”/>

155 <a t t r i b u t e name=” datatype ”/>

156 </ element>

157 </zeroOrMore>

158 </ i n t e r l e a v e>

159 </ d e f i n e>

160

161 <d e f i n e name=” i n t e r a c t i o n l o c . con”>

162 <zeroOrMore>

163 <element name=” connector ”>

164 <a t t r i b u t e name=” source ”/>

165 <a t t r i b u t e name=” t a r g e t ”/>

166 <a t t r i b u t e name=” type ”/>

167 <a t t r i b u t e name=” i n s c r i p t i o n ”/>

168 </ element>

169 </zeroOrMore>

170 </ d e f i n e>

171

172 <d e f i n e name=” element . bounds”>

173 <element name=”bounds”>

174 <a t t r i b u t e name=”x”><t ex t /></ a t t r i b u t e>

175 <a t t r i b u t e name=”y”><t ex t /></ a t t r i b u t e>

176 <a t t r i b u t e name=”width”><t ex t /></ a t t r i b u t e>

177 <a t t r i b u t e name=” he ight ”><t ex t /></ a t t r i b u t e>

178 </ element>

179 </ d e f i n e>

180

181 <d e f i n e name=” element . f unc t i on ”>

182 <element name=” func t i on ”>

183 <a t t r i b u t e name=”name”/>

184 </ element>

185 </ d e f i n e>

186

187 </grammar>

.sim File Format

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 <grammar xmlns=” ht t p : // re laxng . org /ns/ s t r u c t u r e /1 .0 ”>

4

5 <s t a r t>

6 <element name=” s imu la t i on ”>

7 < i n t e r l e a v e>

8 <element name=”pnml”>

9 <a t t r i b u t e name=”path”/>

10 <a t t r i b u t e name=”netname”/>

11 </ element>

12 <element name=” stub ”>

208



13 <a t t r i b u t e name=”path”/>

14 </ element>

15 <element name=” ui ”>

16 <a t t r i b u t e name=”path”/>

17 </ element>

18 <zeroOrMore>

19 <element name=” s y s t e m i n t e r f a c e ”>

20 <a t t r i b u t e name=”path”/>

21 </ element>

22 </zeroOrMore>

23 <zeroOrMore>

24 <element name=” i l o p e r a t i o n i n t e r f a c e ”>

25 <a t t r i b u t e name=”path”/>

26 </ element>

27 </zeroOrMore>

28 </ i n t e r l e a v e>

29 </ element>

30 </ s t a r t>

31

32 </grammar>

Extension of PNML to Colored Petri Nets

The extension of PNML format introduced below uses the overriding concept of RelaxNG similar
to concepts in object-orientation.

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 <grammar xmlns=” ht t p : // re laxng . org /ns/ s t r u c t u r e /1 .0 ”>

4

5 <i n c lude h r e f=”basicPNML . rng”>

6 <d e f i n e name=” nettype . u r i ” combine=” cho i c e ”>

7 <value>re fNet</ value>

8 </ d e f i n e>

9 </ inc lude>

10

11 <d e f i n e name=” net . l a b e l s ” combine=” i n t e r l e a v e ”>

12 < i n t e r l e a v e>

13 <op t i o na l>

14 <element name=”name”>

15 <r e f name=” text . node”/>

16 </ element>

17 </ o p t i ona l>

18 <op t i o na l>

19 <element name=” d e c l a r a t i o n ”>

20 <r e f name=” i n s c r i p t i o n . content ”/>

21 </ element>

22 </ o p t i ona l>

23 </ i n t e r l e a v e>

24 </ d e f i n e>

25

26 <d e f i n e name=” arc . l a b e l s ” combine=” i n t e r l e a v e ”>

27 < i n t e r l e a v e>

28 <op t i o na l><r e f name=” i n s c r i p t i o n . l a b e l ”/></ op t i ona l>

29 <op t i o na l><r e f name=” arc . type ”/></ o p t i ona l>

30 </ i n t e r l e a v e>

31 </ d e f i n e>

209



A. The UIEditor Framework—File Formats

32

33 <d e f i n e name=” arc . type ”>

34 <element name=” type ”>

35 <r e f name=” text . node”/>

36 </ element>

37 </ d e f i n e>

38

39 <d e f i n e name=” p lace . l a b e l s ” combine=” i n t e r l e a v e ”>

40 <op t i o na l><r e f name=” i n s c r i p t i o n . l a b e l ”/></ op t i ona l>

41 </ d e f i n e>

42

43 <d e f i n e name=” t r a n s i t i o n . l a b e l s ” combine=” i n t e r l e a v e ”>

44 <op t i o na l><r e f name=” i n s c r i p t i o n . l a b e l ”/></ op t i ona l>

45 </ d e f i n e>

46

47 <d e f i n e name=” i n s c r i p t i o n . l a b e l ”>

48 <element name=” i n s c r i p t i o n ”>

49 <r e f name=” i n s c r i p t i o n . content ”/>

50 </ element>

51 </ d e f i n e>

52

53 <d e f i n e name=” i n s c r i p t i o n . content ”>

54 < i n t e r l e a v e>

55 <op t i o na l>

56 <element name=” graph i c s ”>

57 <r e f name=” annotat i ongraph i c s . content ”/>

58 </ element>

59 </ o p t i ona l>

60 <r e f name=” text . node”/>

61 </ i n t e r l e a v e>

62 </ d e f i n e>

63

64 <d e f i n e name=” text . node”>

65 <element name=” text ”>

66 <t ex t />

67 </ element>

68 </ d e f i n e>

69

70 </grammar>

Definition of DPO Rules

In a first step, Stückrath defined a generic rule schema specifying the major structure of a

rule definition. In a second step, this generic definition was specified by applying the extended

PNML schema for colored Petri nets.

Generic Rule Definition

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 <grammar xmlns=” ht t p : // re laxng . org /ns/ s t r u c t u r e /1 .0 ”

4 datatypeLibrary=” h t t p : //www. w3 . org /2001/XMLSchema−datatypes ”>

5

6 <s t a r t>

210



7 <r e f name=” trans . r u l e ”/>

8 </ s t a r t>

9

10 <d e f i n e name=” trans . r u l e ”>

11 <element name=” r u l e ”>

12 < i n t e r l e a v e>

13 <r e f name=” trans . l e f t ”/>

14 <r e f name=” trans . i n t e r f a c e ”/>

15 <r e f name=” trans . r i g h t ”/>

16 <r e f name=” trans . mapping”/>

17 </ i n t e r l e a v e>

18 </ element>

19 </ d e f i n e>

20

21 <d e f i n e name=” trans . l e f t ”>

22 <element name=” de l e teNet ”>

23 <r e f name=” net . d e f i n i t i o n ”/>

24 </ element>

25 </ d e f i n e>

26

27 <d e f i n e name=” trans . i n t e r f a c e ”>

28 <element name=” i n t e r f a c e ”>

29 <r e f name=” net . d e f i n i t i o n ”/>

30 </ element>

31 </ d e f i n e>

32

33 <d e f i n e name=” trans . r i g h t ”>

34 <element name=” in s e r tNe t ”>

35 <r e f name=” net . d e f i n i t i o n ”/>

36 </ element>

37 </ d e f i n e>

38

39 <d e f i n e name=” net . d e f i n i t i o n ”>

40 <empty/>

41 </ d e f i n e>

42

43 <d e f i n e name=” trans . mapping”>

44 <element name=”mapping”>

45 <zeroOrMore>

46 <r e f name=” trans . mapping . element ”/>

47 </zeroOrMore>

48 </ element>

49 </ d e f i n e>

50

51 <d e f i n e name=” trans . mapping . element ”>

52 <element name=”mapElement”>

53 <a t t r i b u t e name=” i n t e r f a c e I D ”>

54 <data type=”ID”/>

55 </ a t t r i b u t e>

56 <a t t r i b u t e name=” de le te ID ”>

57 <data type=”ID”/>

58 </ a t t r i b u t e>

59 <a t t r i b u t e name=” in s e r t ID ”>

60 <data type=”ID”/>

61 </ a t t r i b u t e>

62 </ element>

211



A. The UIEditor Framework—File Formats

63 </ d e f i n e>

64

65 </grammar>

Reference Net Rule Definition

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 <grammar xmlns=” ht t p : // re laxng . org /ns/ s t r u c t u r e /1 .0 ”

4 datatypeLibrary=” h t t p : //www. w3 . org /2001/XMLSchema−datatypes ”>

5

6 <i n c lude h r e f=”refPNML . rng”>

7 <s t a r t combine=” i n t e r l e a v e ”>

8 <empty/>

9 </ s t a r t>

10 </ inc lude>

11

12 <i n c lude h r e f=” g e n e r i c r u l e . rng ”/>

13

14 <d e f i n e name=” net . d e f i n i t i o n ” combine=” i n t e r l e a v e ”>

15 <r e f name=” net . element ”/>

16 </ d e f i n e>

17

18 </grammar>

212



B. The UIEditor Framework—Availability

Availability

It is planned to provide the UIEditor framework as open source project after finishing the future

work implementation introduced in Chapter 8 and 9. Table B.1 shows all used libraries in the

UIEditor framework as preparation for publicize its source code.

Table B.1.: Used libraries in the UIEditor framework implementation

Library License URL

JFreeChart GNU Lesser Pub-

lic License

http://www.jfree.org/jfreechart/

JCommon GNU Lesser Pub-

lic License

http://www.jfree.org/jcommon/

JGoodies BSD Open Source http://www.jgoodies.com/downloads/

JDOM Apache Open

Source

http://www.jdom.org/

Renew GNU Lesser Pub-

lic License

http://www.renew.de

Log4j Apache License,

version 2

http://logging.apache.org/log4j/1.2/

JGraph BSD Open Source http://www.jgraph.com/jgraph.html

Jing Thai Open Source

Software Center

Ltd.

http://www.thaiopensource.com/relaxng/jing.html

213



B. The UIEditor Framework—Availability

214



List of Figures

1.1. Working packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Model of the human cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Situation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Comparison between open and closed systems . . . . . . . . . . . . . . . . . . . . 29

3.2. Three-layered architecture for formal modeling of user interfaces . . . . . . . . . 34

3.3. VFILL: Visual specification and explanation . . . . . . . . . . . . . . . . . . . . . 42

3.4. VFILL: Example of a possible VFILL graph modeling several interaction processes 44

3.5. S/T net example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6. Extended S/T net example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7. Switching of a transition in a colored Petri net . . . . . . . . . . . . . . . . . . . 51

3.8. Representation of a possible implementation of interaction logic . . . . . . . . . . 51

3.9. Separation of text filed’s behavior and their restrictions . . . . . . . . . . . . . . 52

3.10. Textual addresses mark synchronous channels . . . . . . . . . . . . . . . . . . . . 52

3.11. Re-use of synchronous channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12. Complete separation of text field’s behavior and interaction process . . . . . . . . 53

3.13. Example of two net patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.14. An example of using ‘=’ in a unification context of reference nets . . . . . . . . . 58

3.15. Example of using tuples to avoid modeling errors . . . . . . . . . . . . . . . . . . 61

3.16. Example of guard conditions in an XOR node . . . . . . . . . . . . . . . . . . . . 63

3.17. Example of group labels in an OR node . . . . . . . . . . . . . . . . . . . . . . . 65

3.18. Transformation of a VFILL system operation . . . . . . . . . . . . . . . . . . . . 69

3.19. Transformation of a VFILL interaction-logic operation . . . . . . . . . . . . . . . 71

3.20. Possible extension to the transformation algorithm . . . . . . . . . . . . . . . . . 72

3.21. Transformation of VFILL input and output proxies in a subnet of a reference net 74

3.22. Transformation of an input channel operation . . . . . . . . . . . . . . . . . . . . 75

3.23. Transformation of an output channel operation . . . . . . . . . . . . . . . . . . . 76

3.24. Transformation of fusing and branching AND nodes to a reference nets . . . . . . 80

3.25. Transformation of fusing and branching XOR nodes in reference nets . . . . . . . 82

3.26. Transformation of fusing and branching OR nodes in reference nets . . . . . . . . 84

3.27. Transformation of an edge to its representation as reference subnet . . . . . . . . 85

3.28. Example of partial interaction logic and its corresponding transformation . . . . 87

3.29. Physical representation of a user interface . . . . . . . . . . . . . . . . . . . . . . 88

3.30. Seeheim and ARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.31. Extended User Interface Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.32. Multi-user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.33. Architectural concept for modeling and creation of interaction elements . . . . . 94

3.34. Example of a created interaction element using a layered architecture . . . . . . 95

215



List of Figures

3.35. A possible behavior of the modeled interaction element in Figure 3.34 . . . . . . 95

4.1. Example of the application of a rule r = (m, p,R, L) to a graph G . . . . . . . . 101

4.2. Visual presentation of pushout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3. Example of the application of a rule s = (m, (l, r), L, I, R) to a graph G . . . . . 104

4.4. Violation of the identification condition and of the dangling condition . . . . . . 105

4.5. Pushout diagram with fixed left side of a DPO rule. . . . . . . . . . . . . . . . . 106

4.6. Pushout diagram applying homomorphisms to P/T nets . . . . . . . . . . . . . . 107

4.7. Pushout diagram showing the left side of a DPO rule. . . . . . . . . . . . . . . . 108

4.8. Violation of restrictions of total homomorphism in colored nets . . . . . . . . . . 111

4.9. Pushout diagram showing a DPO rule for colored Petri nets . . . . . . . . . . . . 111

4.10. Example of the application of order relation to the matching function m . . . . . 113

4.11. Example of a production of a DPO rule for rewriting colored Petri nets . . . . . 115

4.12. Example of a DPO rule for rewriting colored Petri nets given in PNML format. . 116

4.13. Taxonomy of possible reconfigurations of formal interaction logic—Input . . . . . 118

4.14. Three examples for reconfiguration interaction processes for input data . . . . . . 121

4.15. Taxonomy of possible reconfigurations of formal interaction logic—Output . . . . 121

4.16. Two examples of reconfiguration interaction processes for output data . . . . . . 123

5.1. Deming Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2. Diagram showing the structure of the modules of the UIEditor framework . . . . 132

5.3. Workflow for using the UIEditor framework . . . . . . . . . . . . . . . . . . . . . 135

5.4. Extraction of modules for interactive modeling . . . . . . . . . . . . . . . . . . . 136

5.5. Object-oriented data structure representing the formally modeled user interface . 137

5.6. Generating instances of classes ILOperation and SystemOperation . . . . . . . . . 138

5.7. Screenshot of the visual editors of the UIEditor framework . . . . . . . . . . . . . 139

5.8. Exemplary modeling process using the visual editors . . . . . . . . . . . . . . . . 141

5.9. Modules for simulation of user interfaces . . . . . . . . . . . . . . . . . . . . . . . 142

5.10. Components and data objects involved in the creation of a simulation file . . . . 142

5.11. Components and data objects involved in the loading process of a simulation . . 143

5.12. Components and data objects used for simulation . . . . . . . . . . . . . . . . . . 145

5.13. Extraction of modules for reconfiguration of user interfaces . . . . . . . . . . . . 146

5.14. Screenshot of the visual interactive interface for reconfiguring user interfaces . . . 147

5.15. Components and data objects that are used for simulation . . . . . . . . . . . . . 148

5.16. UIEditor framework’s data structure, representing a reference net . . . . . . . . . 148

5.17. Example of a traced sub-process of a given interaction logic as a reference net . . 150

5.18. Proprietary file format for serialization of user interfaces . . . . . . . . . . . . . . 151

6.1. Application of reconfiguration of user interfaces in CSCL . . . . . . . . . . . . . . 158

6.2. Example of a Concept Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3. Workflow for using CoBo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4. CoBo’s user interface during simulation . . . . . . . . . . . . . . . . . . . . . . . 162

6.5. CoBo’s architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.6. Special implementation of the visual editor in the UIEditor framework . . . . . . 164

6.7. Evaluation of post-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.8. Evaluation of learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

216



List of Figures

7.1. Feed-water circuit of a pressurized nuclear power plant . . . . . . . . . . . . . . . 176

7.2. Input interface for controlling the feed-water circuit of a nuclear power plant . . 177

7.3. Sequence of action in the evaluation study . . . . . . . . . . . . . . . . . . . . . . 179

7.4. Error types identified in interaction logs . . . . . . . . . . . . . . . . . . . . . . . 180

7.5. Expert model showing an optimal initialization, start-up, and operation phase . . 180

7.6. The six stages of the chocolate production process . . . . . . . . . . . . . . . . . 184

7.7. Initial interface of the chocolate production scenario . . . . . . . . . . . . . . . . 185

7.8. Five more or less complex output interaction elements . . . . . . . . . . . . . . . 186

7.9. Research procedure using a simulation of the chocolate production process . . . . 188

7.10. Evolution of p value of t-test applied to log data for investigation of profits . . . 189

7.11. Four parameters investigated to evaluate performance . . . . . . . . . . . . . . . 190

8.1. Overview of possible future work scenarios . . . . . . . . . . . . . . . . . . . . . . 194

8.2. Possible architecture of a reconfiguration system . . . . . . . . . . . . . . . . . . 199

9.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

217



List of Figures

218



List of Tables

3.1. Informal specification of BPMN node’s semantics in FILLEXT . . . . . . . . . . . 39

3.2. Conditions to adding guard conditions to BPMN nodes . . . . . . . . . . . . . . 66

7.1. Start-up of reactor and practiced fault state . . . . . . . . . . . . . . . . . . . . . 181

7.2. Start-up of reactor and unpracticed fault state . . . . . . . . . . . . . . . . . . . 181

7.3. Comparison of need time for initializing, start-up, and operate the reactor . . . . 182

7.4. Mental Workload Variables (NASA TLX) . . . . . . . . . . . . . . . . . . . . . . 182

7.5. Levels of Situation Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.6. Participants’ performance on task (day) 4 . . . . . . . . . . . . . . . . . . . . . . 190

7.7. Results of Situation Awareness test . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.8. Results of NASA TLX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.1. Used libraries in the UIEditor framework implementation . . . . . . . . . . . . . 213

219



List of Tables

220



Bibliography

[1] J. Adamek, H. Herrlich, and G. E. Stecker. Abstract and Concrete Categories. John Wiley

and Sons, 1999.

[2] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform: Data Com-

pression, Suffix Arrays, and Pattern Matching. Springer, 2010.

[3] C. Altunok. Serialisierung von Interaktionsverläufen und automatisches Erkennen von

Interaktionsmustern. Master’s thesis, University of Duisburg-Essen, Department of Com-

puter Science and Applied Cognitive Science, Germany, 2011.

[4] R. Alur. Timed automata. In N. Halbwachs and D. Peled, editors, Computer Aided

Verification, volume 1633 of Lecture Notes in Computer Science, pages 688–689. Springer,

1999.

[5] J. R. Anderson. Cognitive Psychology and Its Implications. W. H. Freeman & Co Ltd.,

5th edition, 2000.

[6] J. R. Anderson, C. F. Boyle, R. Farrell, and B. J. Reiser. Cognitive principles in the

design of computer tutors. In P. Morris, editor, Modelling Cognition, chapter 4. John

Wiley & Sons Ltd., 1987.

[7] J. H. Andrews. Logic Programming. Cambridge University Press, 1992.

[8] H. Arndt. The Java data mining package—A data processing library for Java. In Pro-

ceedings of the 33rd Annual IEEE International Computer Software and Applications

Conference, COMPSAC’09, pages 620–621, Seattle, WA, USA, 2009.

[9] H. Arndt, M. Bundschus, and A. Nägele. Towards a next-generation matrix library for

Java. In Proceedings of the 33rd Annual IEEE International Computer Software and

Applications Conference, COMPSAC’09, pages 460–467, Seattle, WA, USA, 2009.

[10] S. Awodey. Category Theory. Oxford University Press, 2010.

[11] M. Azmitia. Peer interaction and problem solving: When are two heads better than one?

Child Development, 59(1):87–96, 1988.

[12] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors,

Handbook of Automated Reasoning, Volume I, pages 447–533. Elsevier Science, 2001.

[13] J. Bagga and A. Heinz. JGraph—A Java based system for drawing graphs and running

graph algorithms. In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing,

volume 2265 of Lecture Notes in Computer Science, pages 459–460. Springer, 2002.

[14] N. Baloian, H. Breuer, and W. Luther. Concept keyboards in the animation of standard

algorithms. Journal of Visual Languages and Computing, 19(6):652–674, 2008.

221



Bibliography

[15] N. Baloian, H. Breuer, W. Luther, and C. Middelton. Algorithm visualization using con-

cept keyboards. In Proceedings of ACM Conference on Software Visualization, SoftVis’05,

pages 7–16, St. Louis, MO, USA, 2005.

[16] N. Baloian and W. Luther. Modeling educational software for people with disabilities:

Theory and practice. In Proceedings of International Conference on Computers and Ac-

cessibility, ASSETS’02, pages 111–118, Edinburgh, Scotland, UK, 2002.

[17] N. Baloian and W. Luther. Algorithm explanation using multimodal interfaces. In Pro-

ceedings of the 25th International Conference of the Chilean Computer Science Society,

page 21, Washington, DC, USA, 2005.

[18] N. Baloian and W. Luther. Cooperative visualization of cryptographic protocols using

concept keyboards. International Journal of Engineering and Education, 25(4):745–754,

2009.

[19] R. Bastide and P. A. Palanque. Petri net objects for the design, validation and prototyping

of user-driven interfaces. In Proceedings of the IFIP TC13 Third Interational Conference

on Human-Computer Interaction, INTERACT ’90, pages 625–631, Cambridge, UK, 1990.

[20] R. Bastide and P. A. Palanque. A visual and formal glue between application and inter-

action. Journal of Visual Languages and Computing, 10(5):481–507, 1999.

[21] B. Baumgarten. Petri Netze. Grundlagen und Anwendungen. Spektrum Akademischer

Verlag, 2nd edition, 1996.

[22] F. Bause and P. Kritzinger. Stochastic Petri Nets - An Introduction to the Theory. Vieweg

Verlag, 1996.

[23] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. An architecture for tailoring co-

operative multi-user displays. In Proceedings of the 1992 ACM Conference on Computer-

Supported Cooperative Work, CSCW ’92, pages 187–194, Toronto, Ontario, Canada, 1992.

[24] BPMN Offensive Berlin. BPMN 2.0—Business Process Model and Notation, online, URL:

http://bpmn.de/poster, last visited: 10-11-2011.

[25] L. Bernardinello and F. De Cindio. A survey of basic net models and modular net classes.

In G. Rozenberg, editor, Advances in Petri Nets, volume 609 of Lecture Notes in Computer

Science, pages 304–351. Springer, 1992.

[26] N. Bertrand, G. Delzanno, B. König, A. Sangier, and J. Stückrath. On the decidability

status of reachability and coverability in graph transformation systems. In Proceedings of

International Conference on Rewriting Techniques and Applications, RTA ’12, submitted,

2012.

[27] E. Best and C. Fernandez. Notations and Terminology on Petri Net Theory, volume 185

of Working Papers. GMD, 1987.

[28] J. Borchers. A pattern approach to interaction design. John Wiley, 2001.

222



Bibliography

[29] N. Borisov. Kontextabhängige Modellierung und Visualisierung von Interaktionsverläufen

in Mehrbenutzersystemen—Konzept und Realisierung. Master’s thesis, University of

Duisburg-Essen, Departement of Computer Science and Applied Cognitive Science, Ger-

many, 2012.

[30] M. C. Bos. Experimental study of productive collaboration. Acta Psychologica, 3:315–426,

1937.

[31] D. A. Bowman, E. Kruijff, and J. J. Laviola. 3D User Interfaces: Theory and Practice.

Addison-Wesley Longman, 2004.

[32] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of ACM,

20(10):762–772, 1977.

[33] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML

progress report: Structural layer proposal. In P. Mutzel, M. Jünger, and S. Leipert,

editors, Graph Drawing, volume 2265 of Lecture Notes in Computer Science, pages 501–

512. Springer, 2002.

[34] M. H. Brown. Perspectives on algorithm animation. In Proceedings of the SIGCHI con-

ference on Human Factors in Computing Systems, CHI ’88, pages 33–38, Washington,

DC, USA, 1988.

[35] G. Calvary, J. Coutaz, and L. Nigay. From single-user architectural design to PAC*: A

generic software architecture model for CSCW. In Proceedings of the SIGCHI conference

on Human factors in computing systems, CHI ’97, pages 242–249, Atlanta, GA, USA,

1997.

[36] A. Cansado, C. Canal, G. Salaün, and J. Cubo. A formal framework for structural recon-

figuration of components under behavioural adaptation. Electronic Notes in Theoretical

Computer Science, 263:95–110, 2010.

[37] X. Cao, C. Forlines, and R. Balakrishnan. Multi-user interaction using handheld projec-

tors. In Proceedings of the 20th Annual ACM Symposium on User Interface Software and

Technology, UIST ’07, pages 43–52, New Port, RI, USA, 2007.

[38] S. K. Card, T. P. Moran, and A. Newell. Computer text-editing: An information-

processing analysis of a routine cognitive skill. Cognitive Psychology, 12(1):32–74, 1980.

[39] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for user performance

time with interactive systems. Communications of ACM, 23(7):396–410, 1980.

[40] S. K. Card, T. P. Moran, and A. Newell. The psychology of human-computer interaction.

CRC Press, 2008.

[41] J. Carroll and J. Olson. Mental models in human-computer interaction. In J. A. Jacko

and A. Sears, editors, Handbook of Human-Computer Interaction, pages 45–65. Elsevier,

1988.

[42] J. L. Casti. Nonlinear System Theory, volume 175 of Mathematics in Science and Engi-

neering. Academic Press, 1985.

223



Bibliography

[43] S. Christensen and N. Damgaard Hansen. Coloured petri nets extended with channels for

synchronous communication. In R. Valette, editor, Application and Theory of Petri Nets,

volume 815 of Lecture Notes in Computer Science, pages 159–178. Springer, 1994.

[44] J. Cleary and I. Witten. Data compression using adaptive coding and partial string

matching. IEEE Transactions of Communications, 32(4):396–402, 1984.

[45] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts for PPM. The

Computer Journal, 40(2–3):67–75, 1997.

[46] V. Colella. Participatory simulations: Building collaborative understanding through im-

mersive dynamic modeling. The Journal of the Learning Sciences, 9(4):471–500, 2000.

[47] IMS Global Learning Consortium. IMS Learner Information Package Specification, online,

URL: http://www.imsglobal.org/profiles/, last visited: 10-11-2011.

[48] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic ap-

proaches to graph transformation—Part I: Basic concepts and double pushout approach.

In G. Rozenberg, editor, Handbook of graph grammars and computing by graph transfor-

mations, pages 163–246. World Scientific, 1997.

[49] G. Coulouris, J. Dollimore, and R. Kindberg. Distributed Systems: Concepts and Design.

Addison-Wesley Longman, 4th edition, 2005.

[50] J. Coutaz. PAC, an object oriented model for dialog design. In Poceedings of Interna-

tional Conference on Human-Comuter Interaction, Interact ’87, pages 431–436, Stuttgart,

Germany, 1987.

[51] D. Crane, E. Pascarello, and D. James. Ajax in Action. Manning Publications, 2005.

[52] P. Crescenzi, N. Faltin, R. Fleischer, C. Hundhausen, S. Näher, G. Rössling, J. Stasko,

and E. Sutinen. The algorithm animation repository. In Proceedings of the Second Inter-

national Program Visualization Workshop, pages 14–16, Arhus, Denmark, 2002.

[53] S. J. Cunningham and P. Denize. A tool for model generation and knowledge acquisi-

tion. In Proceedings of International Workshop on Artificial Intelligence and Statistics,

AISTATS ’93, pages 213–222, Fort Lauderdale, FL, USA, 1993.

[54] D. B. Davison and H. Hirsh. Predicting sequences of user actions. In Workshop on

Predicting the Future: AI Approaches to Time-Series Problems, ICML ’98, pages 5–12,

Madison, WI, USA, 1998.

[55] F. de Rosi, S. Pizzutilo, and B. de Carolis. Formal description and evaluation of user-

adapted interfaces. International Journal of Human-Computer Studies, 49(2):95–120,

1998.

[56] S. W. Dekker. Ten Questions about Human Error: A New View of Human Factors and

System Safety. Lawrence Erlbaum, 2005.

[57] W. E. Deming. Out of the Crisis. McGraw-Hill Inc., 1986.

[58] J. Dieckmann. Einführung in die Systemtheorie, volume 8305 of UTB für Wissenschaft.

W. Fink Verlag, 2005.

224



Bibliography

[59] S. Diehl. Future perspective—Introduction. In S. Diehl, editor, Software Visualization—

State-of-the-Art Survey, volume 2269 of Lecture Notes in Computer Science. Springer,

2002.

[60] S. Diehl. Software visualization. In Proceedings of the 27th International Conference on

Software Engineering, ICSE ’05, pages 718–719, St. Louis, MO, USA, 2005.

[61] S. Diehl and T. Kunze. Visualizing principles of abstract machines by generating in-

teractive animations. International Journal of Future Generation Computer Systems,

16(7):831–839, 2000.

[62] H. Dietrich, U. Malinowski, T. Kühne, and M. Schneider-Hufschmidt. State of the art

in adaptive user interfaces. In M. Schneider-Hufschmidt, T. Kühme, and U. Malinowski,

editors, Adaptive User Interfaces: Principles and Practice, pages 13–48. Elsevier, 1993.

[63] R. Dini, F. Paternò, and C. Santoro. An environment to support multi-user interac-

tion and cooperation for improving museum visits through games. In Proceedings of the

9th International Conference on Human Computer Interaction with Mobile Devices and

Services, MobileHCI ’07, pages 515–521, Singapore, 2007.

[64] A. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-computer interaction. Pearson

Prentice Hall, 3rd edition, 2004.

[65] K. C. Dohse, T. Dohse, J. D. Still, and D. J. Parkhurst. Enhancing multi-user interac-

tion with multi-touch tabletop displays using hand tracking. In Proceedings of the 1st

International Conference on Advances in Computer-Human Interaction, ACHI ’08, pages

297–302, Saint Luce, France, 2008.

[66] Y. Donchin, D. Gophe, M. Olin, Y. Badihi, M. Biesky, C. L. Sprung, R. Pizov, and

S. Cotev. A look into the nature and causes of human errors in the intensive care unit.

Critical Care Medicin, 23(2):294–300, 1995.

[67] D. Dörner. Logik des Misslingens. Rowohlt Verlag, 10th edition, 2003.

[68] G. Douglas and M. McLinden. The use of concept keyboards to teach early tactile reading.

Eye Contact, 19:31–33, 1997.

[69] E. Edwards. Introductory overview. In E. Wiener and D. Nagel, editors, Human Factors

in Aviation, pages 3–25. Academic, 1988.

[70] H. Ehrig. Introduction to the algebraic theory of graph grammars (a survey). In Proceed-

ings of International Workshop on Graph Grammars and Their Application to Computer

Science and Biology, pages 1–69, Bad Honnef, Germany, 1978.

[71] H. Ehrig. Tutorial introduction to the algebraic approach of graph grammars. In Proc-

cedings of the 3rd International Workshop of Graph Grammars and their Application

to Computer Science, volume 291 of Lecture Notes of Computer Science, pages 3–14.

Springer, 1986.

[72] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of Graph Grammars

and Computing by Graph Transformation. World Scientific, 1999.

225



Bibliography

[73] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Alge-

braic approaches to graph transformation. Part II: Single pushout approach and compari-

son with double pushout approach. In G. Rozenberg, editor, Handbook of graph grammars

and computing by graph transformation, chapter 4. World Scientific Publishing, 1997.

[74] H. Ehrig, K. Hoffmann, and J. Padberg. Transformation of Petri nets. Electronic Notes

in Theoretical Computer Science, 148(1):151–172, 2006.

[75] H. Ehrig, K. Hoffmann, J. Padberg, C. Ermel, U. Prange, E. Biermann, and T. Mod-

ica. Petri net transformation. In V. Kordic, editor, Petri Net, Theory and Applications,

chapter 1. InTech Education and Publishing, 2008.

[76] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial

Semantics, volume 6 of EATCS Monographs on Theoretical Computer Science. Springer,

1985.

[77] H. Ehrig and J. Padberg. Graph grammars and Petri net transformations. In J. Desel,

W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume

3098 of Lecture Notes of Computer Science, pages 65–86. Springer, 2004.

[78] M. Eisenberg. The thin glass line: Designing interfaces to algorithms. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems: Common Ground,

CHI ’96, pages 181–188, Reading, MA, USA, 1996.

[79] J. Eisenstein and A. Puerta. Adaptation in automated user-interface design. In Proceed-

ings of the 5th International Conference on Intelligent User Interfaces, IUI ’00, pages

74–81, New Orleans, LA, USA, 2000. ACM.

[80] M. Elkoutbi and R. K. Keller. User interface prototyping based on UML scenarios and

high-level petri nets. In Proceedings of the 21st International Conference on Application

and Theory of Petri Nets, ICATPN ’00, pages 166–186, Aarhus, Denmark, 2000.

[81] A. Emeljanov. Charakterisierung von Ausgabeelementen zur Rekonstruktion von Benutz-

erschnittstellen—Formale Beschreibung und Implementierung. Master’s thesis, University

of Duisburg-Essen, Department of Computer Science and Applied Cognitive Science, Ger-

many, 2010.

[82] M. R. Endsley. Measurement of situation awareness in dynamic systems. Human Factors,

37(1):65–84, 1995.

[83] M. R. Endsley. Toward a theory of situation awareness in dynamic systems. Human

Factors, 37(1):32–64, 1995.

[84] M. R. Endsley. Errors in situation assessment: Implications for system design. In P. F.

Elzer, R. H. Kluwe, and B. Boussoffara, editors, Human Error and System Design and

Management, pages 15–26. Springer, 2000.

[85] A. Ericsson and W. Kintsch. Long-term working memory. Psychological Review,

102(2):211–245, 1995.

[86] H. Eriksson. Control The Nuclear Power Plant, online, URL: http://www.ida.liu.se/

~her/npp/demo.html, last visited: 10-14-2011.

226



Bibliography

[87] M. Eysenck. Fundamentals of Cognition. Psychology Press, 2011.

[88] C. Faulkner. The Essence of Human Computer Interaction. Prentice Hall, 2001.

[89] K. C. Feldt. Programming Firefox: Building Applications in the Browser. O’Reilly, 2007.

[90] A. Field. Discovering Statistics Using SPSS (Introducing Statistical Method). Sage Pub-

lications Ltd., 3rd edition, 2009.

[91] G. Fischer. User modeling in human computer interaction. User Modeling and User-

Adapted Interaction, 11(1):65–86, 2001.

[92] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 2011.

[93] X. Fu, D. Gamrad, H. Mosebach, K. Lemmer, and D. Söffker. Modeling and imple-

mentation of cognitive-based supervision and assistance. In Proceedings of 6th Vienna

Conference on Mathematical Modeling on Dynamical Systems, MATHMOD ’09, pages

2063–2068, Vienna, Austria, 2009.

[94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley,

2nd edition, 1994.

[95] D. Gamrad and D. Söffker. Implementation of a novel approach for the simulation of

cognition based on situation-operator-modeling and high-level petri nets. In Proceed-

ings of ICROS-SICE International Joint Conference, ICCAS-SICE ’09, pages 1404–1410,

Fukuoka, Japan, 2009.

[96] D. Gamrad and D. Söffker. Simulation of learning and planning by a novel architecture for

cognitive technical systems. In Proceedings of IEEE Interantional Conference on System,

Man, and Cybernetics, SMC ’09, pages 2302–2307, San Antonio, TX, USA, 2009.

[97] F. Gerantabee and AGI Creative Team. Flash Professional CS5 Digital Classroom. Wiley,

2010.

[98] C. Girault and R.Valk. Petri Nets for System Engineering. Springer, 2003.

[99] A. Goldberg. SMALLTALK-80: The interactive programming environment. Addison-

Wesley, 1984.

[100] T. Gross and M. Koch. Computer-Supported Cooperative Work. Oldenbourg Verlag, 2007.

[101] H.-P. Gumm, M. Sommer, W. Hesse, and B. Seeger. Einführung in die Informatik. Old-

enbourg Verlag, 2001.

[102] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press, 1997.

[103] P. A. Hancock. Individuation: The n = 1 revolution. Theoretical Issues in Ergonomics

Science, 10(5):481–488, 2009.

[104] P. A. Hancock, A. A. Pepe, and L. L. Murphy. Hedonomics: The power of positive and

pleasurable ergonomics. Ergonomics in Design, 13(1):8–14, 2005.

227



Bibliography

[105] C. Hand. A survey of 3d interaction techniques. Computer Graphics Forum, 16(5):269–

281, 1997.

[106] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231–274, 1987.

[107] R. Heckel. Introductory tutorial on foundations and applications of graph transformation.

In A. Corradini, H. Ehrig, U. Montanari, L. Riberio, and G. Rozenberg, editors, Graph

Transformations, volume 4178 of Lecture Notes of Computer Science, pages 461–462.

Springer, 2006.

[108] C. Heij, A. C. Ran, and F. van Schagen. Introduction to Mathematical Systems Theory:

Linear Systems, Identification and Control. Birkhäuser Basel, 2006.

[109] I. Hermann and M. S. Marshall. GraphXML—An XML-based graph desription format.

In Proceedings of Symposium on Graph Drawing, GD ’00, Colonial Williamsburg, VA,

USA, 2000.

[110] M. Heumüller, S. Joshi, B. König, and J. Stückrath. Construction of pushout complements

in the category of hypergraphs. In Proceedings of the Workshop on Graph Computation

Models, GCM ’10, Enschede, The Netherlands, 2010.

[111] R. D. Hill. The abstraction-link-view paradigm: Using constraints to connect user in-

terfaces to applications. In Proceedings of the SIGCHI conference on Human Factors in

Computing Systems, CHI ’92, pages 335–342, Monterey, CA, USA, 1992.

[112] L. M. Hillah, E. Kindler, F. Kordon, L. Pertrucci, and N. Trèves. A primer on the Petri

net markup language and ISO/IEC 15909-2. Petri Net Newsletter, 76:9–28, 2009.

[113] E. Hollnagel. Cognitive Reliability and Error Analysis Method. Elsevier, 1998.

[114] E. Hollnagel, M. Kaarstad, and H.-C. Lee. Error mode prediction. Ergonomics,

24(11):1457–1471, 1999.

[115] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Pearson, Addison Wesley, 3rd edition, 2010.

[116] C. D. Hundhausen. Toward effective algorithm visualization artifacts: Designing for par-

ticipation and communication in an undergraduate algorithms course. PhD thesis, Uni-

versity of Hawaii at Manoa, USA, 1999.

[117] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation interfaces. Human

Computer Interaction, 1(4):311–338, 1985.

[118] ECMA International. ECMAScript language specification—ECMA-262, online, URL:

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf,

last visited: 10-11-2011.

[119] ISO. ISO8879 information processing—text and office systems—standard general-

ized markup language (SGML), online, URL: http://www.iso.org/iso/catalogue\

_detail.htm?csnumber=16387, last visited: 10-11-2011.

228



Bibliography

[120] ISO/IEC. ISO/IEC 14977:1996(e) - final draft of standard for EBNF, online, URL: http:

//www.cl.cam.ac.uk/~mgk25/iso-14977.pdf, last visited: 10-11-2011.

[121] A. Jameson. Adaptive interfaces and agents. In J. A. Jacko and A. Sears, editors, Human-

Computer Interaction Handbook, pages 305–330. Erlbaum, 2003.

[122] C. Janssen, A. Weisbecker, and J. Ziegler. Generating user interfaces from data models and

dialogue net specifications. In Proceedings of the INTERACT ’93 and CHI ’93 Conference

on Human Factors in Computing Systems, CHI ’93, pages 418–423, New York, NY, USA,

1993.

[123] M. Jeckle. Unified Modeling Language (UML), online, URL: http://www.jeckle.de/

unified.htm, last visited: 10-11-2011.

[124] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

[125] K. Jensen. Coloured Petri Nets—Analysis Methods, volume 2 of Monographs on Theoret-

ical Computer Science. Springer, 2nd edition, 1994.

[126] K. Jensen. Coloured Petri Nets—Basic Concepts, volume 1 of Monographs on Theoretical

Computer Science. Springer, 2nd edition, 1997.

[127] K. Jensen. Coloured Petri Nets—Practical Use, volume 3 of Monographs on Theoretical

Computer Science. Springer, 1997.

[128] K. Jensen, L. Kristensen, and L. Wells. Coloured Petri nets and CPN tools for mod-

elling and validation of concurrent systems. International Journal on Software Tools for

Technology Transfer, 9(3):213–254, 2007.

[129] M. Jüngel, E. Kindler, and M. Weber. Towards a generic interchange format for Petri

nets—Position paper. In Proceedings of 21st Meeting on XML/SGML based Interchange

Formats for Petri Nets, ICATPN ’00, pages 1–5, Aarhus, Denmark, 2000.

[130] E. Kaiser, A. Olwal, D. McGee, H. Benko, A. Corradini, X. Li, P. Cohen, and S. ven

Feiner. Mutual disambiguation of 3d multimodal interaction in augmented and virtual

reality. In Proceedings of the 5th International Conference on Multimodal Interfaces, ICMI

’03, pages 12–19, Vancouver, B.C., Canada, 2003.

[131] S. Kanat. Visueller Editor zur Erstellung komplexer Interaktionselemente unter Verwen-

dung von XML-basierter Beschreibungssprachen. Master’s thesis, University of Duisburg-

Essen, Department of Computer Science and Applied Cognitive Science, Germany, 2010.

[132] K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta. XISL: A language for describing

multimodal interaction scenarios. In Proceedings of the 5th International Conference on

Multimodal Interfaces, ICMI ’03, pages 281–284, Vancouver, B.C., Canada, 2003.

[133] A. Kerren, T. Müldner, and E. Shakshuki. Novel algorithm explanation techniques for

improving algorithm teaching. In Proceedings of the 2006 ACM Symposium on Software

visualization, SOFTVIS ’06, pages 175–176, Brighton, UK, 2006.

[134] D. Kieras and P. G. Polson. An approach to the formal analysis of user complexity.

International Journal of Man-Machine Studies, 22(4):365–394, 1985.

229



Bibliography

[135] R. H. Kluwe. Informationsaufnahme und Informationsverarbeitung. In B. Zimolong and

U. Konradt, editors, Ingenierpsychologie, chapter 2. Hogrefe, 2006.

[136] R. H. Kluwe and H. Haider. Modelle zur internen Repräsentation technischer Systeme.

Sprache und Kognition, 4(9):173–192, 1990.

[137] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM Journal on

Computing, 6(2):323–350, 1977.

[138] H. Kohls and P. Berdys. Bewertung der Rekonfiguration von Ausgabeschnittstellenele-

menten hinsichtlich der Steuerung eines zu implementierenden Beispielprozesses. Master’s

thesis, Univerisity of Duisburg-Essen, Department of Computer Science and Applied Cog-

nitive Science, Germany, 2010.

[139] P. Koopman, R. Plasmeijer, and D. Swierstra. Advanced Functional Programming.

Springer, 2009.

[140] D. Kopec, M. H. Kabir, D. Reinharth, O. Rothschild, and J. A. Castiglione. Human errors

in medical practice: Systematic classification and reduction with automated information

systems. Journal of Medical Systems, 27(4):297–313, 2003.

[141] T. Koshman, A. Kelson, P. Feltovich, and H. Barrows. Computer supported problem-

based learning: A principled approach to the use of computers in collaborative learning.

In T. Koschmann, editor, CSCL: Theory and Practice of an Emerging Paradigm, pages

87–124. Lawrence Erlbaum, 1995.

[142] T. Kotthäuser, A. Kovácová, W. Liu, W. Luther, L. Selvanadurajan, M. Wander, S. Wang,

B. Weyers, A. Yapo, and K. Zhu. Concept Keyboards zur Steuerung und Visualisierung

interaktiver krypthographischer Algorithmen. Technical report, University of Duisburg-

Essen, Department of Computer Science and Applied Cognitive Science, Germany, 2006.

[143] A. Kovácová. Implementierung des Needham-Schroeder Protokolls in einer verteilten

Simulationsumgebung für kryptografische Standardverfahren. Master’s thesis, Univer-

sity of Duisburg-Essen, Department of Computer Science and Applied Cognitive Science,

Germany, 2007.

[144] P. Kraft. Algorithmenvisualisierung mit selbstkonfigurierten Schnittstellen—Implemen-

tation und Evaluation. Master’s thesis, Univerisity of Duisburg-Essen, Department of

Computer Science and Applied Cognitive Science, Germany, 2005.

[145] M. Kreuzer and S. Kühling. Logik für Informatiker. Pearson, 2006.

[146] O. Kummer. A Petri net view on synchronous channels. Petri Net Newsletter, 56:7–11,

1999.

[147] O. Kummer. Tight integration of Java and Petri nets. In Proceedings of 6th Workshop of

Algorithms and Tools for Petri Nets, AWPN ’99, pages 30–35, Frankfurt, Germany, 1999.

[148] O. Kummer. Introduction to Petri nets and reference nets. Sozionik Aktuell, 1:1–9, 2001.

[149] O. Kummer. Referenznetze. PhD thesis, University of Hamburg, Germany, 2002.

230



Bibliography

[150] O. Kummer, F. Wienberg, and M. Duvigneau. Renew—The reference net workshop,

online, URL: http://renew.de/, last visited: 10-11-2011.

[151] O. Kummer, F. Wienberg, and M. Duvigneau. Renew—User guide, online, URL: http:

//www.informatik.uni-hamburg.de/TGI/renew/renew.pdf, last visited: 10-11-2011.

[152] O. Kummer, F. Wienberg, M. Duvigneau, J. Schumacher, M. Köhler, D. Moldt, H. Rölke,

and R. Valk. An extensible editor and simulation engine for Petri nets: Renew. In

J. Cortadella and W. Reisig, editors, Applications and Theory of Petri Nets 2004, volume

3099 of Lecture Notes on Computer Science, pages 484–493. Springer, 2004.

[153] L. A. Künzer. Handlungsprädiktion zur Gestaltung einer adaptiven Benutzungsun-

terstützung in autonomen Produktionszellen. Shaker, 2005.

[154] R. Lachman, J. L. Lachman, and E. C. Butterfield. Cognitive Psychology and Information

Processing. Lawrence Erlbaum Associates, 1979.

[155] C. Lakos. From coloured Petri nets to object Petri nets. In G. de Michelis and M. Diaz,

editors, Application and Theory of Petri Nets, volume 935 of Lecture Notes in Computer

Science, pages 278–297. Springer, 1995.

[156] P. Langley. Elements of Machine Learning. Morgan Kaufmann Publishers Inc., 1995.

[157] P. Langley. Machine learning for adaptive user interfaces. In Proceedings of the 21st

Annual German Conference on Artificial Intelligence: Advances in Artificial Intelligence,

KI’97, pages 53–62, London, UK, 1997.

[158] P. Langley. User modeling in adaptive interfaces. In Proceedings of the 7th International

Conference on User Modeling, UMAP’99, pages 357–370, Secaucus, NJ, USA, 1999.

[159] M. E. Latoschik. A gesture processing framework for multimodal interaction in virtual

reality. In Proceedings of the 1st International Conference on Computer Graphics, Virtual

Reality and Visualisation, AFRIGRAPH ’01, pages 95–100, Camps Bay, Cape Town,

South Africa, 2001.

[160] M. E. Latoschik. Designing transition networks for multimodal VR-interactions using a

markup language. In Proceedings of the 4th IEEE International Conference on Multimodal

Interfaces, ICMI ’02, pages 411–416, Washington, DC, USA, 2002.

[161] A. C. Lemke and G. Fischer. A cooperative problem solving system for user interface. In

Proceedings of the Association for the Advancement of Artificial Intelligence, AAAI ’90,

pages 479–484, Boston, MA, USA, 1990.

[162] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,

22(140):1–55, 1932.

[163] M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical Com-

puter Science, 109(1–2):181–224, 1993.

[164] M. Loy, R. Eckstein, D. Wood, J. Elliot, and B. Cole. Java Swing. O’Reilly Media, 2003.

[165] N. Luhmann. Soziale Systeme. Grundriß einer allgemeinen Theorie. Suhrkamp, 2001.

231



Bibliography

[166] M. T. Maybury and W. Wahlster. Intelligent user interfaces: An introduction. In Pro-

ceedings of the 4th International Conference on Intelligent User Interfaces, IUI ’99, pages

3–4, Redondo Beach, CA, USA, 1999.

[167] G. McCluskey. Using Java Reflection, online, URL: http://java.sun.com/developer/

technicalArticles/ALT/Reflection/, last visited: 10-11-2011.

[168] R. McNaughton. Elementary Computability, Formal Languages, and Automata. Z B Pub

Industries, 1993.

[169] Microsoft. Expression Blend 4, online, URL: http://www.microsoft.com/expression/

products/blend\_overview.aspx, last visited: 10-11-2011.

[170] Microsoft. Microsoft Excel, online, URL: http://office.microsoft.com/de-de/

excel/, last visited: 10-11-2011.

[171] C. A. Miller and R. Parasuraman. Designing for flexible interaction between humans and

automation: Delegation interfaces for supervisory control. Human Factors, 49(1):57–75,

2007.

[172] A. Moffat. Implementing the PPM data compression scheme. IEEE Transactions on

Communictions, 38(11):1917–1921, 1990.

[173] G. Mori, F. Paternò, and C. Santoro. Tool support for designing nomadic applications.

In Proceedings of the 8th International Conference on Intelligent User Interfaces, IUI ’03,

pages 141–148, Miami, FL, USA, 2003.

[174] J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. PhD

thesis, Massachusetts Institute of Technology, USA, 1981.

[175] M. Mühlenbrock and H. U. Hoppe. Computer supported interaction analysis of group

problem solving. In Proceedings of the Conference on Computer Supported Collaborative

Learning, CSCL ’99, pages 398–405, Palo Alto, CA, USA, 1999.

[176] M. Mühlenbrock, F. Tewissen, and H. U. Hoppe. A framework system for intelligent

support in open distributed learning environments. In Proceedings of Artificial intelligence

in Education: Knowledge and Media in Learning Systems, AI-ED ’97, pages 256–274,

Kobe, Japan, 1997.

[177] B. A. Myers. A brief history of human-computer interaction technology. ACM Interac-

tions, 5(2):44–54, 1998.

[178] M. Nagl. A tutorial and bibliographical survey on graph grammars. In V. Claus, H. Ehrig,

and G. Rozenberg, editors, Graph-Grammars and their Application to Computer Science

and Biology, volume 73 of Lecture Notes of Computer Science, pages 70–126. Springer,

1978.

[179] D. Navarre, P. Palanque, and S. Basnyat. A formal approach for user interaction recon-

figuration of safety critical interactive systems. In M. Harrison and M.-A. Sujan, editors,

Computer Safety, Reliability, and Security, volume 5219 of Lecture Notes in Computer

Science, pages 373–386. Springer, 2008.

232



Bibliography

[180] D. Navarre, P. Palanque, R. Bastide, A. Schyn, M. Winckler, L. Nedel, and C. Freitas.

A formal description of multimodal interaction techniques for immersive virtual reality

applications. In M. Costabile and F. Paternò, editors, Human-Computer Interaction—

INTERACT 2005, volume 3585 of Lecture Notes in Computer Science, pages 170–183.

Springer, 2005.

[181] D. Navarre, P. Palanque, R. Bastide, and O. Sy. Structuring interactive systems speci-

fications for executability and prototypability. In P. Palanque and F. Paternò, editors,

Interactive Systems Design, Specification, and Verification, volume 1946 of Lecture Notes

in Computer Science, pages 97–119. Springer, 2001.

[182] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni. ICOs: A model-based user interface

description technique dedicated to interactive systems addressing usability, reliability and

scalability. ACM Transactions on Computer-Human Interaction, 16(4):1–56, 2009.

[183] D. Navarre, P. Palanque, J.-F. Ladry, and S. Basnyat. An architecture and a formal

description technique for the design and implementation of reconfigurable user interfaces.

In T. Graham and P. Palanque, editors, Interactive Systems. Design, Specification, and

Verification, volume 5136 of Lecture Notes in Computer Science, pages 208–224. Springer,

2008.

[184] A. Newell and S. K. Card. The prospects for psychological science in human-computer

interaction. Human-Computer Interaction, 1(3):209–242, 1985.

[185] M. Newman. Networks: An Introduction. Oxford University Press, 2010.

[186] W. M. Newman. A system for interactive graphical programming. In Proceedings of the

Joint Computer Conference, AFIPS ’68, pages 47–54, Atlantic City, NJ, USA, 1968.

[187] R. R. Nickerson. On the distribution of cognition: Some reflections. In G. Salomon,

editor, Distributed cognitions: Psychological and educational considerations, chapter 8.

Cambridge University Press, 1997.

[188] D. A. Norman. Design principles for human-computer interfaces. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’83, pages 1–10,

Boston, MA, USA, 1983.

[189] A. S. Nowak and R. I. Carr. Classification of human errors. In Proceedings of the Sym-

posium on Strucutral Safety Studies, pages 1–10, Denver, CO, USA, 1985.

[190] OASIS. User Interface Markup Language (UIML) Specification, online, URL: http:

//www.oasis-open.org/committees/uiml/, last visited: 10-11-2011.

[191] OASIS. Web Services Business Process Execution Language, Version 2.0: OASIS Stan-

dard, online, URL: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.

html, last visited: 10-11-2011.

[192] H. Oberheid and D. Söffker. Cooperative arrival management in air traffic control—A

coloured petri net model of sequence planning. In Proceedings of the 8th International

Conference on Application of Concurrency to System Design, ACSD’08, pages 348–367,

Xian, China, 2008.

233



Bibliography

[193] J. O’Brien and M. Shapiro. An application framework for collaborative, nomadic appli-

cations. Technical report, INRIA, 2006.

[194] D. R. Olsen. Propositional production systems for dialog description. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems: Empowering People,

CHI ’90, pages 57–64, Seattle, WA, USA, 1990.

[195] OMG. The current official UML specification, online, URL: http://www.omg.org/

technology/documents/modeling\_spec\_catalog.htm\#UML, last visited: 10-14-2011.

[196] OMG. UML specification 2.4, online, URL: http://www.omg.org/spec/UML/2.4/, last

visited: 10-11-2011.

[197] OMG. Updated BPMN 2.0 specification, online, URL: http://www.omg.org/cgi-bin/

doc?dtc/10-06-04, last visited: 10-11-2011.

[198] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen. Spektrum Akademis-

cher Verlag, 5th edition, 2012.

[199] J. Ou, S. R. Fussell, X. Chen, L. D. Setlock, and J. Yang. Gestural communication over

video stream: Supporting multimodal interaction for remote collaborative physical tasks.

In Proceedings of the 5th International Conference on Multimodal Interfaces, ICMI ’03,

pages 242–249, Vancouver, British Columbia, Canada, 2003.

[200] S. Oviatt. Ten myths of multimodal interaction. Communications of ACM, 42(11):74–81,

1999.

[201] P. Palanque. User-Driven user interfaces modeling using interactive cooperative objects.

PhD thesis, University Toulouse I, France, 1992.

[202] P. Palanque and R. Bastide. Petri net based design of user-driven interfaces using the

interactive cooperative objects formalism. In F. Paternò, editor, Interactive Systems:

Design, Specification, and Verification, pages 383–400. Springer, 1994.

[203] P. Palanque and R. Bastide. Formal specification and verification of CSCW using the

interactive cooperative object formalism. In Proceedings of 10th Conference on People

and Computers, HCI ’95, pages 213–231, Tokyo, Japan, 1995.

[204] P. Palanque and F. Paternò. Formal Methods in Human-Computer Interaction. Springer,

1998.

[205] R. Parasuraman and V. Riley. Humans and automation: Use, misuse, disuse, abuse.

Human Factors, 39(2):230–253, 1997.

[206] R. Parasuraman, T. Sheridan, and C. Wickens. A model for types and levels of human

interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics:

Systems and Humans, 30(3):286–297, 2000.

[207] A. J. Parkin. Essential Cognitive Psychology. Psychology Press, 2000.

[208] D. L. Parnas. On the use of transition diagrams in the design of a user interface for an

interactive computer system. In Proceedings of the 24th ACM National Conference, ACM

’69, pages 379–385, New York, NY, USA, 1969.

234



Bibliography

[209] F. Paternò. Model-Based Design and Evaluation of Interactive Applications. Springer

London, UK, 1999.

[210] F. Paternò. Model-based design of interactive applications. Magazine Intelligence,

11(4):26–38, 2000.

[211] F. Paternò and C. Santoro. One model, many interfaces. In C. Kolski and J. Vanderdonckt,

editors, Computer-Aided Design of User Interfaces III, chapter 13. Kluwer Academic

Publishers, 2002.

[212] J. F. Patterson, R. D. Hill, S. L. Rohall, and S. W. Meeks. Rendezvous: An architecture for

synchronous multi-user applications. In Proceedings of the ACM Conference on Computer-

Supported Cooperative Work, CSCW ’90, pages 317–328, Los Angeles, CA, USA, 1990.

[213] W. Paulus. SwiXML, online, URL: http://www.swixml.org/index.html, last visited:

10-11-2011.

[214] S. J. Payne and T. R. Green. Task-action grammars: A model of the mental representation

of task languages. Human-Computer Interaction, 2(2):93–133, 1986.

[215] P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. Ilmonen, J. Evans, A. Oulasvirta,

and P. Saarikko. It’s mine, don’t touch!: Interactions at a large multi-touch display in a

city centre. In Proceeding of the 26th Annual SIGCHI Conference on Human Factors in

Computing Systems, CHI ’08, pages 1285–1294, Florence, Italy, 2008.

[216] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, Germany,

1962.

[217] G. E. Pfaff, editor. User Interface Management Systems. Springer, 1983.

[218] C. Phanouriou. UIML: A Devie-Independent User Interface Markup Language. PhD

thesis, Virgina Polytechnic Institute and State University, USA, 2000.

[219] J. Preece. A Guide to Usability. Addison-Wesley, 1993.

[220] L. Priese and H. Wimmel. Petri-Netze. Springer, 2008.

[221] J. Protzenko. XUL. Entwicklung von Rich Clients mit der Mozilla XML User Interface

Language. Open Source Press, 2007.

[222] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, 1990.

[223] A. R. Puerta, E. Cheng, T. Ou, and J. Min. MOBILE: User-centered interface building.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: The

CHI is the Limit, CHI ’99, pages 426–433, Pittsburgh, PA, USA, 1999.

[224] J. Raskin. The Humane Interface. Addison Wesley, 11th edition, 2000.

[225] J. Rasmussen. Human errors. A taxonomy for describing human malfunction in industrial

installations. Journal of Occupational Accidents, 4(2–4):311–333, 1982.

[226] J. Rasmussen. Skills, rules, knowledge: Signals, signs, and symbols, and other distinc-

tions in human performance models. IEEE Transactions on Systems, Man, Cybernetics,

13(3):257–267, 1983.

235



Bibliography

[227] J. Rasmussen. Mental models and the control of action in complex environments. In

D. Ackermann, D. Tauber, and M. J. Tauber, editors, Mental Models and Human-

Computer Interaction, pages 41–70. Elsevier, 1990.

[228] M. Rauterberg, S. Schluep, and M. Fjeld. How to model behavioural and cognitive

complexity in human-computer interaction with Petri nets. In Proceedings of 6th IEEE

International Workshop on Robot and Human Communication, RO-MAN ’97, Sendai,

Japan, 1997.

[229] L. Razmerita, A. Angehrn, and A. Maedche. Ontology-based user modeling for knowledge

management systems. In Proceedings of the International Conference on User Modeling,

volume 2702 of Lecture Notes in Computer Science, pages 213–217. Springer, 2003.

[230] L. M. Reeves, J. Lai, J. A. Larson, S. Oviatt, T. S. Balaji, S. Buisine, P. Collings, P. Cohen,

B. Kraal, J.-C. Martin, M. McTear, T. V. Raman, K. M. Stanney, H. Su, and Q. Y. Wang.

Guidelines for multimodal user interface design. Communications of ACM, 47(1):57–59,

2004.

[231] J. Reimer. A history of the GUI, online, URL: http://arstechnica.com/old/content/

2005/05/gui.ars/, last visited: 10-11-2011.

[232] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer Science.

Springer, 1985.

[233] U. Rembold and P. Levi. Einführung in die Informatik für Naturwissenschaftler und

Ingenieure. Fachbuchverlag Leipzig im Carl Hanser Verlag, 2002.

[234] G. D. Rey and K. F. Wender. Neuronale Netze. Huber, 2011.

[235] M. Ringel, A. M. Piper, A. Cassanego, and T. Winogard. Supporting Cooperative

Language Learning: Issues in Interface Design for an Interactive Table, online, URL:

http://hci.stanford.edu/cstr/reports/2005-08.pdf, last visited: 10-11-2011.

[236] S. P. Robertson and J. B. Black. Planning units in text editing behavior. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’83, pages

217–221, Boston, MA, USA, 1983.

[237] G. Rosenzweig. ActionScript 3.0 Game Programming University. Que, 2nd edition, 2011.

[238] M. B. Rosson and J. M. Carroll. Usability Engineering. Kaufmann, 2006.

[239] W. B. Rouse and N. M. Morris. On looking into the black box: Prospects and limits in

the search for mental models. Psychological Bulletin, 100(3):349–363, 1986.

[240] N. B. Sarter and D. D. Woods. How in the world did we ever get into that mode? Mode

error and awareness in supervisory control. Human Factors, 37(1), 1995.

[241] N. B. Sarter, D. D. Woods, and C. E. Billings. Automation surprises. In G. Salvendy,

editor, Handbook of Human Factors & Ergonomics, pages 1–25. Wiley, 2nd edition, 1997.

[242] O. Schmitz. Understanding algorithms and abstract data structures by means of interface

configuration. Master’s thesis, University of Duisburg-Essen, Department of Computer

Science and Applied Cognitive Science, Germany, 2011.

236



Bibliography

[243] M. Schneider-Hufschmidt, T. Kühme, and U. Malinowsk. Adaptive user interfaces: Prin-

ciples and practice, volume 10 of Human Factors in Information Technology. North-

Holland, 1993.

[244] U. Schöning. Logik für Informatiker. Spektrum, 5th edition, 2000.

[245] C. Schubert. Dynamische Schnittstellenrekonfiguration im Rahmen einer verteilten Sim-

ulationsumgebung. Master’s thesis, University of Duisburg-Essen, Department of Com-

puter Science and Applied Cognitive Science, Germany, 2007.

[246] A. Schür and B. Westfechtel. Graph grammars and graph rewriting systems. Technical

report, RWTH Aachen, 1992.

[247] A. Sears and J. A. Jacko. The Human-Computer Interaction Handbook. Erlbaum, 2nd

edition, 2008.

[248] L. Selvanadurajan. Interaktive Visualisierung kryptographischer Protokolle mit Concept

Keyboards—Testszenarien und Evaluation. Master’s thesis, University of Duisburg-Essen,

Department of Computer Science and Applied Cognitive Science, Germany, 2007.

[249] C. A. Shaffer, M. Cooper, and S. H. Edwards. Algorithm visualization: A report on the

state of the field. ACM SIGCSE Bulletin, 39(1):150–154, 2007.

[250] E. Shakshuki, A. Kerren, and T. Muldner. Web-based structured hypermedia algorithm

explanation system. International Journal of Web Information Systems, 3(3):179–197,

2007.

[251] S. A. Shappell and D. A. Wiegmann. Applying reason—the human factors analysis and

classification system (HFACS). Human Factors and Aerospace Safety, 1(1):59–86, 2001.

[252] H. Sharp, Y. Rogers, and J. Preece. Interaction Design. Wiley, 2nd edition, 2007.

[253] B. Shneiderman. The future of interactive systems and the emergence of direct manipu-

lation. Behaviour & Information Technology, 1(3):237–256, 1982.

[254] B. Shneiderman and C. Plaisant. Designing the User Interface. Addison-Wesley, 5th

edition, 2010.

[255] A. Simon and S. Scholz. Multi-viewpoint images for multi-user interaction. In Proceedings

of IEEE Virtual Reality, VR ’05, pages 107–113, Bonn, Germany, 2005.

[256] D. Söffker. Systemtheoretische Modellbildung der wissensgeleiteten Mensch-Maschine-

Interaktion. Logos, 2003.

[257] I. Sommerville. Software Engineering. Pearson Studium, 8th edition, 2007.

[258] D. Sonntag, R. Engel, G. Herzog, A. Pfalzgraf, N. Pfleger, M. Romanelli, and N. Rei-

thinger. Smartweb handheld—multimodal interaction with ontological knowledge bases

and semantic web services. In T. Huang, A. Nijholt, M. Pantic, and A. Pentland, editors,

Artifical Intelligence for Human Computing, volume 4451 of Lecture Notes in Computer

Science, pages 272–295. Springer, 2007.

237



Bibliography

[259] G. Stahl, T. Koschmann, and D. Suthers. Computer-supported collaborative learning:

An historical perspective. In R. K. Sawyer, editor, Cambridge handbook of the learning

sciences, pages 409–426. Cambridge University Press, 2008.

[260] A. Stanciulescu. A methodology for developing multimodal user interfaces of information

systems. PhD thesis, University of Louvain, France, 2008.

[261] J. T. Stasko. TANGO: A framework and system for algorithm animation. SIGCHI

Bulletin, 21(3):59–60, 1990.

[262] J. T. Stasko. Animating algorithms with XTANGO. SIGACT News, 23(2):67–71, 1992.

[263] J. T. Stasko. Software visualization: Programming as a multimedia experience. MIT

Press, 1998.

[264] R. D. Stevens, A. D. Edwards, and P. A. Harling. Access to mathematics for visu-

ally disabled students through multimodal interaction. Human-Computer Interaction,

12(1):47–92, 1997.

[265] J. Stückrath. Inkrementelle Interaktionsmodellierung mit farbigen Petri-Netzen—Formale

Beschreibung und Implementierung. Master’s thesis, University of Duisburg-Essen, De-

partment of Computer Science and Applied Cognitive Science, Germany, 2010.

[266] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principals and Paradigms.

Prentice Hall International, 2nd edition, 2006.

[267] J. Tidwell. Designing Interfaces. O’Reilly, 2005.

[268] M. Trompedeller. A classification of Petri nets, online, URL: http://www.informatik.

uni-hamburg.de/TGI/PetriNets/classification/, last visited: 10-11-2011.

[269] E. Tulving. Episodic and semantic memory. In E. Tulving and W. Donaldson, editors,

Organisation of Memory, pages 381–403. Academic Press, 1972.

[270] E. Tulving. Elements of Episodic Memory. Oxford University Press, 1983.

[271] J. Urquiza-Fuentes and J. Velázquez-Iturbide. A survey of successful evaluations of pro-

gram visualization and algorithm animation systems. ACM Transactions on Computing

Education, 9(2):1–21, 2009.

[272] E. van der Vlist. Relax NG. O’Reilly, 2004.

[273] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D. Trevisan, and M. Florins.

UsiXML: A user interface description language for specifying multimodal user interfaces.

In Proceedings of W3C Workshop on Multimodal Interaction, WMI ’04, pages 35–42,

Sophia Antipolis, France, 2004.

[274] W3C. HTML5: A vocabulary and associated APIs for HTML and XHTML, online, URL:

http://www.w3.org/TR/html5/, last visited: 10-11-2011.

[275] W3C. XSL Transformations (XSLT) Version 2.0, online, URL: http://www.w3.org/TR/

xslt20/, last visited: 10-11-2011.

238



Bibliography

[276] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe. An automated formal approach

to managing dynamic reconfiguration. In Proceedings of International Conference on

Automated Software Engineering, ASE ’06, pages 37–46, Los Alamitos, CA, USA, 2006.

[277] N. M. Webb. Peer interaction and learning in cooperative small groups. Journal of

Educational Psychology, 74(5):642–655, 1982.

[278] N. M. Webb. Student interaction and learning in small groups. International Journal of

Educational Research, 52(3):421–445, 1982.

[279] M. Weber and E. Kindler. The Petri net markup language. In Petri Net Technology for

Communication-Based Systems—Advances in Petri Nets, volume 2472 of Lecture Notes

in Computer Science, pages 124–144. Springer, 2003.

[280] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A graph based architectural

(re)configuration language. SIGSOFT Software Engineering Notes, 26(5):21–32, 2001.

[281] B. Werther. Kognitive Modellierung mit Farbigen Petrinetzen zur Analyse menschlichen

Verhaltens. PhD thesis, Technical University of Braunschweig, Germany, 2006.

[282] B. Weyers. An error-driven approach for automated user-interface redesign—Concepts

and architecture. In N. Baloian, W. Luther, D. Söffker, and Y. Urano, editors, Proceedings

of the DAAD Summer University Chile, pages 104–113. Logos, 2008.

[283] B. Weyers, N. Baloian, and W. Luther. Cooperative creation of concept keyboards in

distributed learning environments. In Proceedings of 13 th International Conference on

CSCW in Design, CSCWD ’09, pages 534–539, Santiago, Chile, 2009.

[284] B. Weyers, D. Burkolter, A. Kluge, and W. Luther. User-centered interface reconfiguration

for error reduction in human-computer interaction. In Proceedings of the 3rd International

Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies,

and Services, CENTRIC ’10, pages 50–55, Nizza, France, 2010.

[285] B. Weyers, D. Burkolter, A. Kluge, and W. Luther. Formal modeling and reconfiguration

of user interfaces for reduction of human error in failure handling of complex systems.

International Journal of Human Computer Interaction, accepted, 2012.

[286] B. Weyers and W. Luther. Formal modeling and reconfiguration of user interfaces. In

Proceedings of Jornadas Chilenas de Computacion, JCC ’10. IEEE, Antofagasta, Chile,

2010.

[287] B. Weyers and W. Luther. Formal modelling and identification of operating errors for

formal user interface reconfiguration. In Proceedings of 7th Vienna Conference on Math-

ematical Modelling, MATHMOD ’12, Vienna, Austria, 2012.

[288] B. Weyers, W. Luther, and N. Baloian. Cooperative model reconstruction for crypto-

graphic protocols using visual languages. In L. Carrico, N. Baloian, and B. Fonseca,

editors, Groupware: Design, Implementation, and Use CRIWG 2009, volume 5784 of

Lecture Notes in Computer Science, pages 311–318. Springer, 2009.

239



Bibliography

[289] B. Weyers, W. Luther, and N. Baloian. Interface creation and redesign techniques in

collaborative learning scenarios. Future Generation Computer Systems, 27(1):127–138,

2011.

[290] S. A. White and D. Miers. BPMN Modeling and Reference Guide. Future Strategies Inc.,

2008.

[291] C. Wickens. Cognitive factors in aviation. In R. S. Nickerson, editor, Handbook of Applied

Cognition, pages 247–282. Wiley, 1999.

[292] C. Wickens and J. G. Hollands. Engineering Psychology and Human Performance. Pren-

tice Hall, 3rd edition, 2000.

[293] A. Wiegmann and A. Shappell. A Human Error Approach to Aviation Accident Analysis.

Ashgate, 2003.

[294] D. Wigdor, G. Penn, K.y Ryall, A. Esenther, and C. Shen. Living with a tabletop:

Analysis and observations of long term office use of a multi-touch table. In Proceedings

of International IEEE Workshop on Horizontal Interactive Human-Computer Systems,

TABLETOP ’07, pages 60–67, Newport, RI, USA, 2007.

[295] J. C. Wileden. Relationship between graph grammars and the design and analysis of con-

current software. In G. Goos and J. Hartmanis, editors, Proocedings of the International

Workshop on Graph Grammars and Their Application to Computer Science and Biology,

volume 73 of Lecture Notes in Computer Science, pages 456–463. Springer, 1978.

[296] P. Wilke. Zusammenhänge und Unterschiede zwischen Graph-Grammatiken und Petri

Netzen sowie verwandter Systeme. Master’s thesis, University of Erlangen, Department

of Computer Science, Germany, 1983.

[297] J. Williamson, R. Murray-Smith, and S. Hughes. Shoogle: Excitatory multimodal inter-

action on mobile devices. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI ’07, pages 121–124, San Jose, CA, USA, 2007.

[298] J. R. Wilsong and A. Rutherford. Mental models: Theory and application in human

factors. Human Factors, 31(6):617–634, 1989.

[299] D. D. Woods and N. B. Sarter. Learning from automation surprises and “going sour”

accidents. In N. B. Sarter and R. Amalberti, editors, Cognitive Engineering in the Aviation

Domain, pages 327–368. CRC Press, 2000.

[300] UIMS Tool Workshop. A metamodel for the runtime architecture of an interactive system.

SIGCHI Bulletin, 24(1):32–37, 1992.

[301] Petri Net World. Petri net world community website, online, URL: http://www.

informatik.uni-hamburg.de/TGI/PetriNets/, last visited: 10-11-2011.

[302] R. M. Young. The machine inside the machine: Users’ models of pocket calculators.

International Journal of Man-Machine Studies, 15(1):51–85, 1981.

[303] L. Yu. Regelbasierte automatische Rekonfiguration der Benutzerschnittstelle aus formal

beschriebenen Bedienungsfehlern. Master’s thesis, University of Duisburg-Essen, Depart-

ment of Computer Science and Applied Cognitive Science, Germany, 2011.

240



Bibliography

[304] G. Zurita, N. Baloian, and F. Baytelman. A collaborative face-to-face design support

system based on sketching and gesturing. Advanced Engineering Informatics, 22(3):340–

349, 2008.

241



Bibliography

242


