

Evaluation and Optimisation of
Multi-Path Transport using the

Stream Control Transmission Protocol

H A B I L I T A T I O N T R E A T I S E

in Computer Science

Submitted to the
Faculty of Economics and Business Administration

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen

by
Dr. Thomas Dreibholz

born on September 29, 1976 in
Bergneustadt, Nordrhein-Westfalen, Germany

President of the University of Duisburg-Essen:
Prof. Dr. Ulrich Radtke

Dean of the Faculty of Economics and Business Administration:
Prof. Dr. Michael Goedicke

Reviewers:

1. Prof. Dr.-Ing. Erwin P. Rathgeb
2. Prof. Dr.-Ing. Ralf Steinmetz
3. Prof. Dr. Paul Müller

Submitted on: September 8, 2011
Date of Publication: March 13, 2012

ii

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbständig ohne fremde Hilfe verfaßt und nur die angege-
bene Literatur und Hilfsmittel verwendet zu haben.

Thomas Dreibholz
March 13, 2012

iii

iv

Abstract

The Stream Control Transmission Protocol (SCTP) as defined in RFC 4960 is an advanced Transport
Layer protocol that provides support for multi-homing. That is, SCTP endpoints may simultaneously
use multiple Network Layer addresses, which allows to connect the endpoints to multiple networks
for redundancy purposes. However, for the transfer of user data, only one of the possible paths is
currently used at a time. All other paths remain as backup and are only used for retransmissions.

Clearly, the existence of multiple paths has led to the idea of applying load sharing among the
paths. An extension to SCTP – denoted as Concurrent Multipath Transfer (CMT) – realises this load
sharing functionality. While this approach works well for similar paths, i.e. paths having similar
characteristics regarding bandwidths, bit error rates and delays, the use of dissimilar paths does not
work that neatly.

In this thesis, the issues of dissimilar paths for CMT-based load sharing will be demonstrated
first. The reasons for these issues will be identified and solutions proposed. These solutions will be
evaluated in simulations, as well as partially also in a real-world Internet testbed setup, in order to
show their effectiveness. In particular, it will be shown that a combination of multiple mechanisms is
necessary to make CMT work as expected under a wide range of network and system parameters.

Furthermore, the fairness of CMT-based transport – in concurrency to classic non-CMT flows –
will be analysed. The usage of plain CMT leads to an overly aggressive bandwidth occupation on so-
called shared bottlenecks. As a countermeasure, the idea of Resource Pooling will be utilised. For this
purpose, two new and one adapted congestion control approach – all based on the Resource Pooling
principle – will be introduced and examined in similar as well as dissimilar path setups, in order to
show how to fairly deploy CMT transport in the Internet.

The results of this work have also been contributed to the ongoing IETF standardisation process
of SCTP and its extensions.

Keywords:
Stream Control Transmission Protocol (SCTP), Multi-Path Transport, Dissimilar Paths, Fairness,
Evaluation, Optimisation

v

vi

Zusammenfassung

Das Stream Control Transmission Protocol (SCTP), welches im RFC 4960 spezifiziert wurde, ist
ein fortgeschrittenes Transport-Layer-Protokoll mit Unterstützung für Multi-Homing. Dies bedeutet,
dass aus Redundanzgründen SCTP-Endpunkte an mehrere Netzwerke gleichzeitig angeschlossen sein
können. Allerdings wird für die Übertragung von Benutzerdaten immer nur ein einziger der möglichen
Pfade verwendet. Alle anderen Pfade verbleiben als Ersatz und werden nur für Wiederholungen (engl.
retransmissions) verwendet.

Das Vorhandensein von mehreren Pfaden legt natürlich nahe, Lastverteilung (engl. load sharing)
auf den Pfaden einzusetzen. Eine Erweiterung von SCTP – welche als Concurrent Multipath Trans-
fer (CMT) bezeichnet wird – realisiert eben diese Funktionalität. Dieser Ansatz funktioniert gut für
gleichartige (engl. similar) Pfade, das heißt Pfade mit ähnlichen Charakteristika wie Bandbreiten,
Verzögerungen und Bitfehlerraten. Auf ungleichartigen (engl. dissimilar) Pfaden jedoch zeigen sich
erhebliche Performanzprobleme.

In dieser Habilitationsschrift werden zunächst die Schwierigkeiten von CMT-basierter Lastvertei-
lung auf ungleichartigen Pfaden gezeigt. Dabei werden die Ursachen der Probleme aufgezeigt sowie
Lösungen vorgeschlagen. Diese Lösungen werden sowohl durch Simulationen als teilweise auch in
einem realistischen Internet-Testbettaufbau bewertet, um ihre Leistungsfähigkeit zu verdeutlichen. Im
Besonderen wird dabei gezeigt, dass eine Kombination von mehreren Mechanismen notwendig ist,
um CMT mit der erwarteten Leistung innerhalb eines großen Bereiches von Netzwerk- und System-
parametern zu betreiben.

Des Weiteren wird die Fairness von CMT-basiertem Transport – im Wettbewerb mit klassischen,
Nicht-CMT-Datenströmen, analysiert. Die Verwendung von reinem CMT führt zu einer übermäßig ag-
gressiven Bandbreitenbelegung auf sogenannten gemeinsamen Engpässen (engl. shared bottlenecks).
Als Gegenmaßnahme wird die Idee des Resource Poolings aufgegriffen. Zu diesem Zweck werden
zwei neue sowie ein angepasster Ansatz zur Überlastkontrolle – alle basierend auf dem Resource-
Pooling-Prinzip – eingeführt und sowohl in Szenarien mit gleichartigen als auch ungleichartigen Pfa-
den untersucht, um zu zeigen wie CMT fair im Internet eingesetzt werden kann.

Die Ergebnisse dieser Arbeit sind zudem in den laufenden IETF-Standardisierungsprozess von
SCTP und seinen Erweiterungen eingeflossen.

Schlagwörter:
Stream Control Transmission Protocol (SCTP), Multi-Path-Transport, Ungleichartige Pfade, Fairness,
Evaluierung, Optimierung

vii

viii

Acknowledgements

This thesis is the result of my work as assistant professor in the Computer Networking Technology
Group of the Institute for Experimental Mathematics at the University of Duisburg-Essen. At this
point, I would like to express my acknowledgement to everybody who has supported me during my
research on Reliable Server Pooling (RSerPool) as well as on the Stream Control Transmission Pro-
tocol (SCTP) during the last decade.

In particular, I would like to thank my thesis advisor, Erwin Paul Rathgeb, for his support of my
SCTP research and this thesis, as well as the reviewers Paul Müller and Ralf Steinmetz for having
agreed to review this large document within the tight time schedule. Also, I would like to thank the
members of my habilitation commission, and in particular the commission chairman Bruno Müller-
Clostermann, for the timely processing of my habilitation.

Furthermore, I would like to express my special thanks to my colleagues Hakim Adhari and Mar-
tin Becke for their great cooperation with respect to discussions on buffer splitting and congestion
control variants as well as configuring and debugging the SCTP testbed environment. I would like to
furthermore thank my former colleague Jobin Pulinthanath for his help with building up the testbed
environment and negotiating the contract details with the ADSL Internet service provider. For his
help with the acquisition of the testbed hardware, I would also like to thank our computer systems
technician Nihad Cosić.

Clearly, I would furthermore like to express my special thanks to my colleagues Irene Rüngeler,
Robin Seggelmann and Michael Tüxen from the Münster University of Applied Sciences in Burg-
steinfurt for their input during the discussions about buffer splitting, their help with setting up and
debugging the testbed environment as well as debugging the SCTP simulation model. Also, I would
like to thank Randall R. Stewart for the initial discussions about receive buffer splitting.

Also, I would like to thank the Deutsche Forschungsgemeinschaft (DFG) for sponsoring the
project on SCTP this thesis has been performed within.

Last but not least, I would like to thank my father Ernst Günter Dreibholz and my mother Annelore
Dreibholz for the years of encouragement and support.

http://tdrwww.iem.uni-due.de/dreibholz/sctp/

ix

http://tdrwww.iem.uni-due.de/dreibholz/sctp/

x

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

Contents xi

Glossary xxii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Related Work . 2

1.2.1 Efficient Handling of Dissimilar Paths . 2
1.2.2 Fairness on Shared Bottlenecks . 2

1.3 Goals . 3
1.4 Organisation . 4

2 Basics 5
2.1 Formal Terminology Definitions . 5

2.1.1 Network . 5
2.1.2 Adjacency . 8
2.1.3 Trail . 8
2.1.4 Disjointness of Trails . 9
2.1.5 Path . 10

2.2 Data Communications . 10
2.2.1 Protocols . 11
2.2.2 Services . 12
2.2.3 Reference Models . 13

2.2.3.1 The OSI Reference Model . 13
2.2.3.2 The TCP/IP Reference Model . 14

2.2.4 Beyond the Layered Protocol Stack . 15
2.3 Classification of Data Communication Services . 15

2.3.1 Participating Entities . 15
2.3.2 Transfer Directions . 17
2.3.3 Transferred Data Units . 17
2.3.4 Transfer Arrangement Procedures . 18

xi

2.4 Quality of Service . 19
2.4.1 Throughput . 19

2.4.1.1 Units and Ambiguity . 19
2.4.1.2 Overhead and Efficiency . 20

2.4.2 Delay . 21
2.4.3 Jitter . 23
2.4.4 Errors . 23
2.4.5 Guaranteed Services and Best Effort . 24

2.5 Corruption Detection and Correction . 25
2.5.1 Checksums . 25

2.5.1.1 Internet-16 . 25
2.5.1.2 Adler-32 . 26
2.5.1.3 Cyclic Redundancy Check . 26

2.5.2 Forward Error Correction . 27
2.6 Sequence Numbering . 28
2.7 Segmentation and Reassembly . 28
2.8 Ordered Delivery . 30
2.9 Reliable Transfer . 30

2.9.1 Naı̈ve Approach: Stop and Wait . 30
2.9.2 Pipelined Approach: Sliding Window . 31

2.9.2.1 Principle . 31
2.9.2.2 Retransmission Strategies . 33
2.9.2.3 Window Size Constraints . 33

2.9.3 Overhead Reduction and Performance Improvements 34
2.9.3.1 Delayed Acknowledgement . 34
2.9.3.2 Piggybacking . 34
2.9.3.3 Bundling . 35
2.9.3.4 Fast Retransmission . 35
2.9.3.5 Handling of Data Corruption . 35

2.10 Flow Control . 36
2.10.1 Approaches . 36
2.10.2 Silly Window Syndrome . 36
2.10.3 Zero-Window Probing . 37

2.11 Congestion Control . 37
2.11.1 Overview of Approaches . 37
2.11.2 Window-Based Congestion Control . 37

2.11.2.1 Increasing the Congestion Window 38
2.11.2.2 Decreasing the Congestion Window 38

2.11.3 A Congestion Control Example . 39
2.11.4 Dynamic Retransmission Timeout . 39
2.11.5 Performance Improvements . 41

2.12 Protocol Standardisation . 41
2.12.1 Wide Area Network Standards . 42
2.12.2 Local Area Network Standards . 43
2.12.3 Internet Standards . 43

2.12.3.1 Overview . 44
2.12.3.2 Standardisation Process . 45

xii

2.13 Internet Protocols . 46
2.13.1 Physical Layer and Data Link Layer . 47
2.13.2 Network Layer . 47
2.13.3 Transport Layer . 48
2.13.4 Session Layer, Presentation Layer and Application Layer 49

2.14 Summary . 50

3 The Stream Control Transmission Protocol 51
3.1 Introduction . 51
3.2 Packets and Chunks . 51
3.3 Association Establishment . 53
3.4 Multi-Homing . 54

3.4.1 Principle . 54
3.4.2 Formal Definition . 54
3.4.3 Path Monitoring . 55

3.5 Multi-Streaming . 55
3.6 Segmentation and Reassembly . 56
3.7 Reliable Transfer . 57
3.8 Congestion Control . 58
3.9 Burst Mitigation . 59
3.10 Association Teardown . 60
3.11 Protocol Extensions . 60

3.11.1 Chunk Authentication . 61
3.11.2 Dynamic Address Reconfiguration . 61
3.11.3 Partial Reliability . 61
3.11.4 Stream Reset . 61
3.11.5 Non-Renegable Selective Acknowledgement 61
3.11.6 SACK Immediately . 62
3.11.7 Secure SCTP . 62
3.11.8 Packet Drop Reporting . 62
3.11.9 “Potentially Failed” Path State . 63
3.11.10 Concurrent Multipath Transfer . 63

3.12 Compatibility and Interoperability . 63
3.12.1 Application Programming Interface . 63
3.12.2 UDP Encapsulation . 63
3.12.3 Checksum Offloading . 63

3.13 Implementations . 64
3.14 Application Scenarios . 64

3.14.1 SS7 over IP Networks . 65
3.14.2 IP Flow Information Export . 65
3.14.3 Reliable Server Pooling . 65
3.14.4 Further Application Scenarios . 65

3.15 Summary . 66

xiii

4 Multipath Transfer 67
4.1 Introduction . 67

4.1.1 Data Link Layer Approaches . 67
4.1.2 Network Layer Approaches . 67
4.1.3 Transport Layer Approaches . 68
4.1.4 Higher-Layer Approaches . 69

4.2 CMT-SCTP – Multipath Transfer for SCTP . 70
4.2.1 Basic Approach . 70
4.2.2 Split Fast Retransmission . 70
4.2.3 Congestion Window Update for CMT . 71
4.2.4 Delayed Acknowledgement for CMT . 73

4.3 Multi-Path TCP – Multipath Transfer for TCP . 74
4.4 Identifier/Locator Split – Multipath Transfer on the Network Layer 75
4.5 Summary . 76

5 The Simulation Environment 77
5.1 Introduction . 77
5.2 OMNeT++ . 78
5.3 The INET Framework . 78
5.4 The CMT-SCTP Model . 80

5.4.1 Added Features and Parameters . 81
5.4.2 Interaction with TCPDump Module and External Interface 82

5.5 The NETPERFMETER Simulation Model . 83
5.6 The Multi-Homed Auto-Routing Module . 85
5.7 The Simulation Processing Tool-Chain . 88
5.8 Summary . 88

6 The Testbed Environment 89
6.1 Introduction . 89
6.2 The FreeBSD Kernel SCTP Implementation . 90
6.3 The NetPerfMeter Application . 91

6.3.1 Existing Performance Test Software . 91
6.3.2 Design Goals and Features . 92
6.3.3 Instances and Protocols . 93
6.3.4 Measurement Processing . 93

6.3.4.1 Measurement Setup . 94
6.3.4.2 Measurement Run . 95
6.3.4.3 Measurement Termination . 95

6.3.5 Result Collection . 95
6.3.6 Measurement Execution, Result Post-Processing and Visualisation 95
6.3.7 Reusability . 96

6.4 Wireshark and the SCTP Analysis Tools . 96
6.5 The Testbed . 97

6.5.1 Local Setup . 97
6.5.2 Distributed Setup . 99
6.5.3 The Reality – Challenges and Lessons Learned 99

6.5.3.1 Power Control Unit and Keyboard/Video/Mouse Switch 100

xiv

6.5.3.2 Peculiarities of DUMMYNET . 100
6.5.3.3 Challenges of ADSL Configuration 101
6.5.3.4 Challenges of Ethernet Hardware 101

6.6 Virtualisation of the Testbed . 102
6.7 Summary . 102

7 Efficient Handling of Dissimilar Paths 103
7.1 Introduction . 103
7.2 Scenario Setup . 104
7.3 Model Validation on Similar Paths . 105
7.4 Buffer Size Considerations . 107
7.5 Buffer Blocking Issues . 108

7.5.1 Send Buffer Blocking . 108
7.5.1.1 Transmission-Induced Send Buffer Blocking 108
7.5.1.2 GapAck-Induced Send Buffer Blocking 110

7.5.2 Receive Buffer Blocking . 110
7.5.2.1 Advertised-Window-Induced Receive Buffer Blocking 110
7.5.2.2 Reordering-Induced Receive Buffer Blocking 112

7.6 Buffer Splitting . 112
7.6.1 The Approach . 112

7.6.1.1 Buffer Splitting based on Buffered Bytes 113
7.6.1.2 Buffer Splitting based on Outstanding Bytes 113

7.6.2 A Proof of Concept . 114
7.6.3 Buffer Bloat – A Challenging Real-World Internet Scenario 114

7.6.3.1 The ADSL Scenario . 114
7.6.3.2 Simulation Results . 116
7.6.3.3 Impact on the Congestion Control Behaviour 118
7.6.3.4 From Simulation to Reality . 120

7.7 Unordered Delivery . 121
7.7.1 Dissimilar Bandwidths . 121
7.7.2 Dissimilar Bit Error Rates . 124
7.7.3 Dissimilar Delays . 126
7.7.4 Summary . 128

7.8 Chunk Rescheduling . 129
7.9 Ordered Delivery . 132

7.9.1 Dissimilar Bandwidths . 132
7.9.2 Dissimilar Bit Error Rates . 135
7.9.3 Dissimilar Delays . 138
7.9.4 The Influence of the Burst Mitigation Variant 138

7.9.4.1 The Burst Mitigation Challenge 140
7.9.4.2 Smart SACK Path Selection . 141
7.9.4.3 Alternative Burst Mitigation Variants 141
7.9.4.4 Evaluation . 142

7.9.5 Ongoing and Future Work . 144
7.10 Predefined Stream Mapping . 144

7.10.1 Optimised Stream Scheduling for CMT-SCTP 144
7.10.2 Decoupled Streams . 145

xv

7.10.3 Scenario Setup . 145
7.10.4 Dissimilar Delays . 146
7.10.5 Dissimilar Bandwidths . 148
7.10.6 Dissimilar Bit Error Rates . 149
7.10.7 Ongoing and Future Work . 150

7.11 Summary . 150

8 Fairness on Shared Bottlenecks 151
8.1 Introduction . 151
8.2 Resource Pooling . 152
8.3 Resource-Pooling-Based Congestion Control for CMT-SCTP 152

8.3.1 CMT/RP Congestion Control . 153
8.3.1.1 Version 1 – CMT/RPv1 . 153
8.3.1.2 Version 2 – CMT/RPv2 . 154

8.3.2 MPTCP-Like Congestion Control . 154
8.4 The Challenge of Chunk-Based Segmentation . 155
8.5 Scenario Setup . 156
8.6 Handling Shared Bottlenecks . 158

8.6.1 Varying the Number of Bottleneck Paths . 158
8.6.2 Congestion Control Behaviour on Bottleneck Paths 159
8.6.3 Using a Long Queue before the Bottleneck 161

8.7 Handling Disjoint Paths . 163
8.8 Dissimilar Paths . 164

8.8.1 Bandwidth Variation on the Exclusively Used Path 164
8.8.2 Bandwidth Variation on the Shared Path . 165
8.8.3 Congestion Control Behaviour on Dissimilar Disjoint Paths 167

8.9 Ongoing and Future Work . 169
8.10 Summary . 169

9 Conclusion and Outlook 171
9.1 Achieved Goals and Obtained Results . 171

9.1.1 Simulation Environment and Testbed Environment 171
9.1.2 Efficient Handling of Dissimilar Paths . 171

9.1.2.1 Unordered Delivery . 172
9.1.2.2 Ordered Delivery . 172
9.1.2.3 Multi-Streaming . 173

9.1.3 Fairness on Shared Bottlenecks . 173
9.1.4 Standardisation Contributions . 174

9.2 Outlook and Future Work . 174

A Reliable Server Pooling 177
A.1 Architecture . 177
A.2 Registrar Operations . 178
A.3 Pool Element Operations . 178
A.4 Pool User Operations . 178
A.5 Automatic Configuration . 179
A.6 Application Scenarios . 179

xvi

A.7 Summary . 179

B SimProcTC – The Simulation Processing Tool-Chain 181
B.1 Overview . 181
B.2 Simulation Parametrisation and Processing . 182

B.2.1 Formal Definitions . 182
B.2.2 Realisation . 183
B.2.3 Handling Model Enhancements . 185

B.3 Distributed Simulation Processing . 186
B.3.1 Overview . 186
B.3.2 The Scripting Service . 186
B.3.3 The Pool Setup . 187
B.3.4 The Component Status Protocol . 188
B.3.5 The Scripting Service Pool – A Stress Test for SCTP Implementations 189

B.4 Results Post-Processing and Visualisation . 189
B.4.1 Scalars Summarisation . 189
B.4.2 Plotting . 190
B.4.3 Plotting Templates . 192

B.5 Summary . 192

List of Figures 193

List of Listings 197

List of Tables 199

Bibliography 201

Index 229

Curriculum Vitae 239

xvii

xviii

Glossary

3GPP 3rd Generation Partnership Project
ACK Acknowledgement
ADSL Asymmetric Digital Subscriber Line
AF Assured Forwarding
AIMD Additive Increase, Multiplicative Decrease
API Application Programming Interface
APP Applications Area (IETF)
ARP Address Resolution Protocol
ASAP Aggregate Server Access Protocol
ASCII American Standard Code for Information Interchange
ATM Asynchronous Transfer Mode
ATU−C ADSL Transceiver Unit – Central Office
ATU−R ADSL Transceiver Unit – Remote
BDP Bandwidth-Delay Product
BGP Border Gateway Protocol
BIPM Bureau International des Poids et Mesures
BMBF Bundesministerium für Bildung und Forschung
BRAS Broadband Remote Access Server
BSD Berkeley Software Distribution
CCITT Comité Consultatif International Téléphonique et Télégraphique
CMT Concurrent Multipath Transfer
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CRC− 32/4 Cyclic Redundancy Check, 32 bits, variant 4
CRC− 32C Cyclic Redundancy Check, 32 bits, Castagnoli
CSP Component Status Protocol
CumAck Cumulative Acknowledgement
CVE Common Vulnerabilities and Exposures
CVS Concurrent Versions System
cwnd Congestion Window
DCCP Datagram Congestion Control Protocol
DFG Deutsche Forschungsgemeinschaft
DFN Deutsches Forschungsnetz
DiffServ Differentiated Services
DSL Digital Subscriber Line
DSLAM Digital Subscriber Line Access Multiplexer
ECMP Equal-Cost Multi-Path

xix

ECN Explicit Congestion Notification
EF Expedited Forwarding
ENRP Endpoint haNdlespace Redundancy Protocol
FEC Forward Error Correction
FIFO First In First Out
FTP File Transfer Protocol
G− Lab German Lab
GapAck Gap Acknowledgement
GEN General Area (IETF)
GNU GNU is Not Unix
GPL GNU General Public License
GPLv3 GNU General Public License, version 3
HIP Host Identity Protocol
HTTP HyperText Transfer Protocol
I−D Internet Draft
IAB Internet Architecture Board
IANA Internet Assigned Numbers Authority
IAOC Internet Administrative Oversight Committee
ICI Interface Control Information
ICMP Internet Control Message Protocol
ICMPv4 Internet Control Message Protocol, version 4
ICMPv6 Internet Control Message Protocol, version 6
ID Identifier
IDU Interface Data Unit
IEC International Electrotechnical Commission
IEEE Institute for Electrical and Electronics Engineers
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IMT− 2000 International Mobile Telecommunications 2000
INT Internet Area (IETF)
IntServ Integrated Services
IP Internet Protocol
IPFIX IP Flow Information Export
IPPM IP Performance Metrics
IPR Intellectual Property Rights
IPv4 Internet Protocol, version 4
IPv6 Internet Protocol, version 6
IRTF Internet Research Task Force
ISBN International Standard Book Number
ISDN Integrated Services Digital Network
ISO International Standards Organisation
ISOC Internet Society
ISP Internet Service Provider
ISSN International Standard Serial Number
ITU International Telecommunications Union
ITU−D ITU Telecommunication Development Sector
ITU−R ITU Radiocommunication Sector

xx

ITU−T ITU Telecommunication Standardization Sector
KVM Keyboard/Video/Mouse
LAN Local Area Network
LGPL GNU Lesser General Public License
MD5 Message Digest Algorithm No. 5
MPI Message Passing Interface
MPTCP Multi-Path TCP
MTU Maximum Transmission Unit
NAK Negative Acknowledgement
NED Network Definition Language (OMNeT++)
NetPerfMeter Network Performance Meter
NPMP−CONTROL NETPERFMETER Control Protocol
NPMP−DATA NETPERFMETER Data Protocol
NR− SACK Non-Renegable Selective Acknowledgement
NS− 2 Network Simulator 2
NTP Network Time Protocol
OMNeT + + Objective Modular Network Testbed in C++
OPS Operations and Management Area (IETF)
OSI Open Systems Interconnection
OSPF Open Shortest Path First
OSPFv2 Open Shortest Path First, version 2
OSPFv3 Open Shortest Path First, version 3
PC Personal Computer
PCAP Packet Capture
PCI Protocol Control Information
PCU Power Control Unit
PDF Portable Document Format
PDU Protocol Data Unit
PE Pool Element
PHB Per-Hop Behaviour
PNG Portable Network Graphics
POTS Plain Old Telephone System
PPID Payload Protocol Identifier
PPP Point-to-Point Protocol
PPPoE Point-to-Point Protocol over Ethernet
PR Pool Registrar
PR−H Home Pool Registrar
PU Pool User
QDisc Queuing Discipline
QoS Quality of Service
RAI Real-time Applications and Infrastructure Area (IETF)
RED Random Early Detection
RFC Request for Comments
RIP Routing Information Protocol
RIPng Routing Information Protocol, next generation
RIPv2 Routing Information Protocol, version 2
RP Resource Pooling

xxi

RSerPool Reliable Server Pooling
RTG Routing Area (IETF)
RTO Retransmission Timeout
RTT Round-Trip Time
RTTVAR Round-Trip Time Variance
RTX Retransmission
SACK Selective Acknowledgement
SAP Service Access Point
SCTP Stream Control Transmission Protocol
SDU Service Data Unit
SEC Security Area (IETF)
SHA− 1 Secure Hash Algorithm No. 1
SI Système International d’Unités
SIGTRAN Signalling Transport Working Group (IETF)
SimProcTC Simulation Processing Tool-Chain (software package)
SRTT Smoothed Round-Trip Time
SS Scripting Service
SS7 Signalling System No. 7
SSH Secure Shell
SSN Stream Sequence Number
SSP Scripting Service Protocol
ssthresh Slow-Start Threshold
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TSN Transport Sequence Number
TSV Transport Area (IETF)
TSVWG Transport Services Working Group (IETF)
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications Systems
UTF− 8 Universal Character Set Transformation Format – 8-bit
VoIP Voice over IP
W3C World Wide Web Consortium
WAN Wide Area Network
WG Working Group (IETF)
XMPP Extensible Messaging and Presence Protocol

xxii

Chapter 1

Introduction

This chapter describes the motivation of this thesis, defines its goals and finally shortly introduces its
structure.

1.1 Motivation

Since the dawn of the Internet age, the TCP/IP-based protocols have been designed with one fun-
damental assumption: an endpoint is connected to a single network and addressed by only one Net-
work Layer address. However, the rising popularity of the Internet has also led to the deployment
of resilience-critical applications – e.g. e-commerce, e-health and emergency services – which must
eliminate single points of failure. Solutions on the Application Layer and Session Layer – like Reli-
able Server Pooling described by [DR09, LOTD08] – provide endpoint redundancy, i.e. they take care
of handling host failures. However, a Transport Layer solution could provide a very quick resolution
of network failures, which is a likely failure scenario (consider e.g. a cable cut due to roadworks or
mistakenly unplugged by the charlady). Therefore, a new Transport Layer protocol called Stream
Control Transmission Protocol (SCTP) had been developed and standardized in [Ste07]. SCTP is
a general-purpose, datagram-oriented and reliable Transport Layer protocol which supports multiple
addresses per endpoint, i.e. particularly addresses on different interfaces being connected to disjoint
networks. Furthermore, the application may configure ordered or unordered delivery for each message
independently, i.e. specify whether the remote peer has to ensure the message sequence by reorder-
ing out-of-sequence messages in its reception buffer, before forwarding them to the peer application.
While SCTP has been initially motivated by the requirements of telephone signalling over IP net-
works, as described in [JRT02], it is a fully-featured Transport Layer protocol which can replace TCP
– as suggested by [DR08c] – for applications benefiting from the advanced features of SCTP.

In the context of SCTP, a Path denotes the unidirectional data flow from one endpoint to a given
remote Network Layer address of the peer endpoint. An example is shown in Figure 1.1: Endpoint A
has three paths (addresses B1, B2 and B3) to its peer Endpoint B, and Endpoint B has three paths
(addresses A1, A2 and A3) to Endpoint A. Note, that a break of the radio access link would remove
addressB3 from EndpointB, i.e. the number of paths from EndpointA to EndpointB would decrease
– but the three paths from Endpoint B to Endpoint A would remain.

Although SCTP supports multiple paths, only a single, designated path is actually used for user
data transmission. The other paths remain for backup and are only used for retransmissions. Obvi-
ously, the existence of multiple paths leads to the desire of applying Load Sharing – as suggested
by [DWPW07] – to utilise all paths simultaneously.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Multi-Homed Nodes in a Communications Network

1.2 Scope and Related Work

Load sharing for SCTP has initially been proposed by [ASL03]. However, as discussed by [JR06,
Subsubsection 5.1] in detail, this approach adds unnecessary protocol overhead. Ideas for improve-
ments have been evaluated in [Jun05, Chapter 6]; a more advanced approach has been realised by the
Concurrent Multipath Transfer (CMT) extension described in [IAS06]. At a first glance, SCTP with
CMT – denoted as CMT-SCTP – looks quite straightforward and simple. However, load sharing leads
to a set of non-trivial issues, which will be described in the following.

Although CMT-SCTP directly refers to the SCTP protocol, the challenges of load sharing are
generic and apply to other multipath transfer approaches as well. Particularly, they are also a topic
for Multi-Path TCP (MPTCP), which denotes an experimental multipath transfer extension for the
TCP protocol that is introduced by [FRH+11]. Therefore, the research on challenges and solutions
for efficient multipath-capable transport has become a very actively discussed topic.

1.2.1 Efficient Handling of Dissimilar Paths

[IAS06] has only examined CMT-SCTP in similar path setups, i.e. for using paths having nearly the
same bandwidths, delays and loss rates. However, such similar paths are unlikely in networks like the
Internet. Particularly, multi-homed systems – like the example illustrated in Figure 1.1 – usually apply
different access technologies (like DSL and UMTS) for redundancy reasons. These technological
differences clearly lead to highly dissimilar paths. Initial testbed probing using such dissimilar paths
has revealed certain scenarios with a CMT-SCTP throughput even lower than standard, non-CMT
SCTP throughput.

1.2.2 Fairness on Shared Bottlenecks

CMT-SCTP as defined by [IAS06] also simply assumes that all paths are disjoint, i.e. they do not
share links or routers, as illustrated in Subfigure 1.2(a). While this constraint may be fulfilled by
carefully designed networks, it cannot be assured for arbitrary networks like the Internet. Even worse,
non-disjoint paths are actually quite likely in current Internet setups, e.g. when tunnelling IPv6 over
IPv4. Since the congestion control of CMT-SCTP handles each path independently, a bottleneck
shared by two paths – as illustrated in Subfigure 1.2(b) – causes a fairness issue: each of the two paths
occupies as much bandwidth as a single non-CMT flow (e.g. a TCP or standard SCTP connection)

1.3. GOALS 3

(a) Two Disjoint Paths

(b) Two Paths Sharing a Bottleneck Link

Figure 1.2: Multipath Transfer over Disjoint Paths and Shared Bottleneck

over the same bottleneck. That is, CMT-SCTP occupies twice the bandwidth, which is clearly unfair
to concurrent non-CMT flows over the same bottleneck. An approach for handling this problem is the
idea of Resource Pooling by [WHB08], which denotes “to make a collection of resources behave like a
single pooled resource”. However, a concrete adaptation to CMT-SCTP – and therefore a performance
analysis – did not exist.

1.3 Goals

The overall goal of this thesis is – of course – to find solutions for the described challenges of multi-
path transfer. This work has been performed within in the research project “Systematic Evaluation and
Further Development of the Transport Protocol SCTP”1 (German title: “Systematische Untersuchung
und Weiterentwicklung des Transportprotokolls SCTP”) funded by the Deutsche Forschungsgemein-
schaft2 (DFG), which is a cooperation between

• the Computer Networking Technology Group3 at the Institute for Experimental Mathematics of
the University of Duisburg-Essen and

• the Department of Electrical Engineering and Computer Science4 at the Münster University of
Applied Sciences.

This thesis can be subdivided into three core parts:

1See http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=62543436.
2Deutsche Forschungsgemeinschaft: http://www.dfg.de/.
3See http://tdrwww.iem.uni-due.de/.
4See https://www.fh-muenster.de/fb2/.

http://gepris.dfg.de/gepris/OCTOPUS/?module=gepris&task=showDetail&context=projekt&id=62543436
http://www.dfg.de/
http://tdrwww.iem.uni-due.de/
https://www.fh-muenster.de/fb2/

4 CHAPTER 1. INTRODUCTION

1. Development of a simulation environment and a real testbed as tools for the research work.

2. Investigation and enhancement of the load sharing performance over dissimilar paths.

3. Analysis and improvement of the load sharing fairness.

Besides the research part, it is also intended to bring the developed ideas from research to appli-
cation – by contributing to the ongoing IETF standardisation process for the SCTP protocol and its
extensions. As long-term goal, the work on SCTP is intended to foster the deployment of SCTP, as
described further in [DRS+11, DR08c].

1.4 Organisation

This thesis is organised as follows: Chapter 2 provides an introduction to the basic terminology and
protocol mechanisms. Furthermore, it gives a brief overview of the protocols being relevant in the
context of this thesis. The following Chapter 3 provides an introduction to SCTP and its extensions.
Chapter 4 introduces multipath transfer, with a strong focus on the CMT-SCTP extension.

The CMT-SCTP simulation model as well as the simulation processing tool-chain, which have
been developed as part of this thesis, are explained in Chapter 5; the real network testbed environment
including the developed measurement tool-chain is introduced in Chapter 6.

The analysis of CMT-SCTP-based multipath transfer performance on dissimilar paths can be
found in Chapter 7; the examination and improvement of fairness issues is documented in Chapter 8.
Finally, a summary of the results and an outlook to future work is provided in Chapter 9.

For the contents of this thesis, colours have been used to enhance the comprehensibility of the
figures. It is therefore recommended – but not mandatory – to apply colour printing when repro-
ducing this document. Names of software packages are emphasised by small caps style typesetting
(e.g. NETPERFMETER); the names of commands use typewriter style typesetting (e.g. sysctl).
When terminology is defined, the first occurrence of a newly introduced term is emphasised by italics
style typesetting and capitalised words (e.g. Buffer Splitting). Also, this first occurrence will be the
main reference point for the index. The electronic version of this document makes intensive use of
hyper-references. External references are shown in blue colour, references within this document are
represented by dark blue colour.

Chapter 2

Basics

This chapter formally defines some basic networking terminology first. After that, important concepts
of reference models, services and data communications are introduced. Furthermore, the basic pro-
tocol mechanisms for data communications are explained. The chapter closes with an overview of
protocol standardisation with a focus on Internet protocols.

2.1 Formal Terminology Definitions

First of all, it is necessary to formally define some basic terminology. A formal definition is neces-
sary here, since terms like networks and paths have different notions when applied in the context of
different viewpoints, e.g. from a routing-centric view or a transport-centric view. In order to define
an unequivocal terminology – for the discussion of multipath transport in general and this thesis in
particular – the methods of discrete mathematics (see [Aig99, DP88]) are applied.

2.1.1 Network

Clearly, the first term to be defined is a network.

Definition 2.1.1. A network Γ = (L,N,C, c) is defined as:

• L – a finite locator set,

• N ⊆ P(L) – a node set,

• C ⊆ L× L – a connectivity set and

• c : L× L→ N0 ∪ {∞} – a cost function.

The following two conditions apply:

1. “Uniqueness of Locators”:

∀n1, n2 ∈ N : [n1 ∩ n2 6= ∅]⇒ [n1 = n2].

2. “Forwarding”:

∀n ∈ N ∀λ1, λ2 ∈ n : [(λ1, λ2) ∈ C]⇒ [c(λ1, λ2) = 0].

5

6 CHAPTER 2. BASICS

Figure 2.1: An Example Network

The Locator Set L defines a finite set of network-unique Locators. In a real network, a locator
l ∈ L could e.g. be a Network Interface Card (NIC) or IP address. Then, a Node n (e.g. a host in the
network) is simply defined by a subset of the locator set (n ⊆ L; e.g. the interfaces or IP addresses of
the host). The “Uniqueness of Locators” condition ensures that node locators are unique within the
network (i.e. two distinct nodes must not use the same locator).

Connectivity among the nodes is described by the Connectivity Set C ⊆ L×L. An element ω ∈ C
is denoted as Channel. The cost function c defines its cost; the “Forwarding” condition ensures that
connectivity among locators of the same node is complimentary. Note, that a channel between two
nodes is directed, i.e. it may just be unidirectional. Also, one physical Link, i.e. the actual implemen-
tation of a physical data transfer (e.g. an Ethernet), may consist of multiple channels.

For convenience, terminology for two distinct types of nodes is defined:

Definition 2.1.2. Let Γ = (L,N,C, c) be a network.

• A node n ∈ N is denoted as Router⇔ ∃λ1 ∈ n ∃λ2 ∈ n : [λ1 6= λ2 ∧ (λ1, λ2) ∈ C].

• A node n ∈ N is denoted as Endpoint⇔ n is not a router.

That is, a router provides connectivity among at least two of its locators. An example of a net-
work Γ = (L,N,C, cD) is presented in Figure 2.1. It models a network according to the motivation
example presented in Figure 1.1. The colours of the nodes and channels have been used accordingly,
in order to make the abstraction step from the “real-world setup” visible. L and N are defined as
follows:

L = {A1, A2, A3,

B1, B2, B3,

R1a,R1b, R2a,R2b, R2c,R3a,R3b, R3c,R3d,

R4a,R4b, R5a,R5b, R5c,R6a,R6b,

Θ0,Θ1} ,

NEndpoints =

{A1, A2, A3}︸ ︷︷ ︸
Node A

, {B1, B2, B3}︸ ︷︷ ︸
Node B

 ,

2.1. FORMAL TERMINOLOGY DEFINITIONS 7

NRouters =

{R1a,R1b}︸ ︷︷ ︸
Node R1

, {R2a,R2b, R2c}︸ ︷︷ ︸
Node R2

, {R3a,R3b, R3c,R3d}︸ ︷︷ ︸
Node R3

,

{R4a,R4b}︸ ︷︷ ︸
Node R4

, {R5a,R5b, R5c}︸ ︷︷ ︸
Node R5

, {R6a,R6b}︸ ︷︷ ︸
Node R6

 ,

N = NEndpoints ∪NRouters.

Note, that the locator set contains the locators Θ0 and Θ1, which are not part of any node (like e.g.
spare NICs or unused IP addresses). The connectivity set C of Γ is defined as follows:

C = {(A1, R3c), (R3c, A1), (R3d,B3), (B3, R3d),

(A2, R1a), (R1a,A2), (R1b, R2a), (R2a,R1b),

(R2b, R3a), (R3a,R2b), (R3b, B2), (B2, R3b),

(R2c,R5c), (R5c,R2c),

(A3, R4a), (R4a,A3), (R4b, R5a), (R5a,R4b),

(R5b, R6a), (R6a,R5b), (R6b, B1), (B1, R6b), } ∪⋃
r∈NRouters

⋃
λ−∈r

⋃
λ+∈r

{(λ−, λ+)}︸ ︷︷ ︸
Forwarding by Routers

∪
⋃
n∈N

⋃
λ∈n
{(λ, λ)}︸ ︷︷ ︸

Node-Internal Connectivity

.

The simple cost function “Directly Connected” cD : L× L→ N0 ∪ {∞} is defined as:

(λ−, λ+) 7→

0 (∃n ∈ N : [λ− ∈ n ∧ λ+ ∈ n)]
1 ((λ−, λ+) ∈ C)
∞ (else)

.

That is, using the cost function cD, locators of the same node can be reached for free (i.e. cost is zero)
and locators of a neighbour can be reached at cost 1. The cost to reach all non-neighbour locators is
unknown (i.e.∞).

For conveniently describing the mapping of a locator to its node (if there is any), it is useful to
define a mapping function.

Definition 2.1.3. The “Locator to Node Mapping Function” n̂ is defined as:

n̂ : L→ N

l 7→ {n ∈ N |l ∈ n} .

That is, n̂ maps a locator l ∈ L to ∅ if it is not part of a node – or to its only node if it is part
of a node. This uniqueness is a direct implication of the “Uniqueness of Locators” condition. In the
example above, n̂ maps as follows:

n̂(R3c) = {{R3a,R3b, R3c,R3d}︸ ︷︷ ︸
Node R3

},

n̂(Θ0) = ∅.

8 CHAPTER 2. BASICS

2.1.2 Adjacency

For a more convenient description of “node neighbourhood”, the definition of four terms is useful:

Definition 2.1.4. Let Γ = (L,N,C, c) be a network.

• Locator λ1 is Half-Adjacent to locator λ2 in Γ⇔ (λ1, λ2) ∈ C.

• Locator λ1 is Adjacent to locator λ2 in Γ⇔

[λ1 is half-adjacent to λ2]︸ ︷︷ ︸
Forwards Direction

∧ [λ2 is half-adjacent to λ1]︸ ︷︷ ︸
Backwards Direction

.

• Node n1 is Half-Adjacent to node n2 in Γ⇔

∃λ1 ∈ n1 ∃λ2 ∈ n2 : [λ1 is half-adjacent to λ2].

The definition of half-adjacency is particularly useful in wireless networks, e.g. node n1 may
reach node n2, but the transmission power of node n2 may be insufficient to reach node n1.

• Node n1 is Adjacent to node n2 in Γ⇔

∃λ1, λ1 ∈ n1 ∃λ2, λ2 ∈ n2 :
[

[λ1 is half-adjacent to λ2]︸ ︷︷ ︸
Forwards Direction

∧ [λ2 is half-adjacent to λ1]︸ ︷︷ ︸
Backwards Direction

]
.

Note, that the “backwards direction” may use different locators.

2.1.3 Trail

By using the half-adjacency, it is now possible to specify directed trails throughout a network:

Definition 2.1.5. Let Γ = (L,N,C, c) be a network. The Set of Trails TΓ(n1, n2) from node n1 to
node n2 in Γ is defined as:

TΓ(n1, n2) :=

(λ1, . . . , λk) ∈ Lk
∣∣∣∣∣1 ≤ k ≤ |L| ∧ λ1 ∈ n1︸ ︷︷ ︸

Source

∧ λk ∈ n2︸ ︷︷ ︸
Destination

∧

∀i : [1 ≤ i ≤ k − 1]⇒ [(λi, λi+1) ∈ C]︸ ︷︷ ︸
Next Locator in Sequence is Half-Adjacent

∧

∀i, j : [1 ≤ i < j ≤ k]⇒ [λi 6= λj]︸ ︷︷ ︸
Sequence of Locators is Loop-Free

∧

∀i,m, j :
[
[1 ≤ i < m < j ≤ k] ∧ [n̂(λi) = n̂(λj)]

]
⇒
[
n̂(λm) = n̂(λi)

]︸ ︷︷ ︸
Sequence of Nodes is Loop-Free

 .

An element τ ∈ TΓ(n1, n2) is denoted as Trail from node n1 to node n2 in Γ.

2.1. FORMAL TERMINOLOGY DEFINITIONS 9

That is, a trail τ from node n1 to node n2 is a sequence of half-adjacent locators. The first entry
of τ is a locator in n1 (“source”), the last entry of τ is a locator in n2 (“destination”). The last part of
the conjunction ensures that the trail is loop-free, i.e.

1. each locator may appear at most once and

2. for two locators λi and λj mapping to the same node (i.e. n̂(λi) = n̂(λj)), all locators λm
between (i.e. i < m < j) must also map to this node (i.e. n̂(λi) = n̂(λm) = n̂(λj)).

In the example depicted in Figure 2.1, τ1 and τ2 are trails from Node A to Node B:

τ1 = (A1, R3c,R3b, B2)

τ2 = (A2, R1a,R1b, R2a,R2b, R3a,R3d,B3)

τ3 = (A1, R3c︸︷︷︸
okay

, R3a,R3b, R3c︸︷︷︸
�

, R3d,B3)

τ4 = (A1︸︷︷︸
Node A

, R3c,R2b, R2a,R1a, A2, A3︸ ︷︷ ︸
Node A�

, R4a,R4b, R5a,R5b, R6a,R6b, B1)

On the other hand, τ3 is not a valid trail – it violates the condition of loop-freeness by passing loca-
tor R3c twice. τ4 passes node A twice: between locators A1 and A2 – which both belong to Node A
– are locators of Node R3, Node R2 and Node R1.

Having a set of trails, it is highly useful to have a cost metric in order to identify e.g. the least-
cost trail. Using the cost function c of the network Γ, the cost function ĉ for its trails can be defined
straightforwardly:

Definition 2.1.6. Let Γ = (L,N,C, c) be a network. The Trail Cost Function ĉ is defined as:

ĉ : ∪1≤k≤|L|L
k → N0 ∪ {∞}

(λ1, . . . , λk) 7→
∑

1≤i≤k−1

c
(
(λi, λi+1)

)
In the example above, which uses the “Directly Connected” cost function cD defined in Subsec-

tion 2.1.1, the resulting costs are ĉ(τ1) = 2 and ĉ(τ2) = 4. By using cD, the trail cost function ĉ
simply leads to the “Hop Count” metric as defined by [Mal98].

2.1.4 Disjointness of Trails

Comparing two trails τ1 and τ2, the existence of a common locator is a crucial property:

Definition 2.1.7. Let τ1 = (λ1
1, . . . , λ

1
r) and τ2 = (λ2

1, . . . , λ
2
s) be trails in TΓ(n1, n2). τ1 and τ2 are

denoted as Disjoint

⇔
[
λ1

1 6= λ2
1

]︸ ︷︷ ︸
Different Source Locators

∧
[
λ1
r 6= λ2

s

]︸ ︷︷ ︸
Different Destination Locators

∧

[{n̂(λ1
1), . . . , n̂(λ1

r)}︸ ︷︷ ︸
Nodes of Trail τ1

∩{n̂(λ2
1), . . . , n̂(λ2

s)}︸ ︷︷ ︸
Nodes of Trail τ2

]
−
[

{n1, n2}︸ ︷︷ ︸
Source and Destination Nodes

]
= ∅

 .

10 CHAPTER 2. BASICS

That is, disjoint trails have different source locators (i.e. λ1
1 6= λ2

1), different destination locators
(i.e. λ1

r 6= λ2
s) as well as no common node except for source node n1 and destination node n2. In the

example depicted in Figure 2.1, there are two disjoint trails between Node A and Node B:

τ1 = { A2︸︷︷︸
Node A

, R1a,R1b︸ ︷︷ ︸
Node R1

, R2a,R2b︸ ︷︷ ︸
Node R2

, R3a,R3b︸ ︷︷ ︸
Node R3

, B2︸︷︷︸
Node B

},

τ2 = { A3︸︷︷︸
Node A

, R4a,R4b︸ ︷︷ ︸
Node R4

, R5a,R5b︸ ︷︷ ︸
Node R5

, R6a,R6b︸ ︷︷ ︸
Node R6

, B1︸︷︷︸
Node B

}.

On the other hand, τ1 and the trail

τ3 = { A1︸︷︷︸
Node A

, R3c,R3d︸ ︷︷ ︸
Node R3

, B3︸︷︷︸
Node B

}

are non-disjoint, since τ1 and τ3 both use Node R3.

2.1.5 Path

Definition 2.1.8. Let Γ = (L,N,C, c) be a network. The Set of Paths PΓ(n1, n2) from node n1 to
node n2 in Γ is defined as:

PΓ(n1, n2) :=
{
d ∈ n2

∣∣ ∃s ∈ n1 ∃k ∈ {0, . . . , |L|} ∃λ1, . . . , λk ∈ L :

(s, λ1, . . . , λk, d) ∈ TΓ(n1, n2)
}
.

An element of PΓ(n1, n2) is denoted as Path from node n1 to node n2 in Γ.

That is, a path from node n1 to a node n2 is defined as a locator of node n2, which is reachable
by a trail in Γ by using any source locator in n1. The distinction between trail and path decouples the
routing (i.e. trails – “how to reach the other node”) from node locators (i.e. paths – “the other node is
reachable”). In the example depicted in Figure 2.1, there are three paths from Node A to Node B, as
well as three paths in the reverse direction:

PΓ({A1, A2, A3}︸ ︷︷ ︸
Node A

, {B1, B2, B3}︸ ︷︷ ︸
Node B

) = {B1, B2, B3},

PΓ({B1, B2, B3}︸ ︷︷ ︸
Node B

, {A1, A2, A3}︸ ︷︷ ︸
Node A

) = {A1, A2, A3}.

Note, that e.g. removing the adjacency between R3d and B3 from Γ – creating a network Γ− – would
only remove B3 from the paths to Node B. The paths in the reverse direction would remain as shown
above:

PΓ−({A1, A2, A3}︸ ︷︷ ︸
Node A

, {B1, B2, B3}︸ ︷︷ ︸
Node B

) = {B1, B2},

PΓ−({B1, B2, B3}︸ ︷︷ ︸
Node B

, {A1, A2, A3}︸ ︷︷ ︸
Node A

) = {A1, A2, A3}.

2.2 Data Communications

A formal definition for the transfer of data units (e.g. bytes or packets) between endpoints is neglected
here, since the concept should be clear and undisputed for the reader. Instead, the following sections
describe the basic mechanisms of data transfer in a less formal but more implementation-centric way.

2.2. DATA COMMUNICATIONS 11

Figure 2.2: The Layered Protocol Stack

2.2.1 Protocols

A data communication between two entities is described by a so-called Protocol. A protocol is defined
according to [MP93] as a “formal description of message formats and the rules two computers must
follow to exchange those messages. Protocols can describe low-level details of machine-to-machine
interfaces (e.g. the order in which bits and bytes are sent across a wire) or high-level exchanges
between allocation programs (e.g. the way in which two programs transfer a file across the Internet).”

In order to reduce the complexity of a communication system, the communication necessary to
perform a sophisticated task – like transferring a file from a node A to a node B – is not realised by
a single protocol. Instead, as introduced in [ITU94, Chapter 5], a hierarchy of protocols is used. This
so-called Protocol Stack is illustrated in Figure 2.2. It is organised in so-called Layers. The base of
the hierarchy is the so-called Physical Medium, which provides an arbitrary way to transfer data units
between the lowest layers of both endpoints (e.g. voltage levels on a copper wire). Each layer n uses a
well-defined so-called (n−1)-Service of layer (n−1) and provides its own n-service to layer (n+1).
The (n− 1)-service consists of a set of (n− 1)-Service Primitives, which define operations provided
to the layer n. That is, the service primitives define what a layer can perform for the next layer, but
not how it is actually realised. The so-called n-Entity, i.e. the actual realisation of layer n on the local
endpoint, communicates with the corresponding n-entity on the other endpoint – which is denoted as
Peer – using the n-protocol.

Here, the layered protocol stack shows its advantages:

Adaptability It is easy to replace complete layers, i.e. to replace one protocol by a more advanced
one. For example, a slow and error-prone modem transmission could be replaced by the latest
fibre technology. There is no need to modify the higher layers as long as the service primitives
of the lower layers are not changed.

Reusability Two different n-entities may simply use the same (n − 1) to 1-services. That is, “re-

12 CHAPTER 2. BASICS

Figure 2.3: The Interface to a Service

inventing the wheel” for the (n − 1)-service down to the 1-service becomes unnecessary. The
same underlying services may be used by different n-entities.

2.2.2 Services

The n-entity does not need any knowledge about the (n − 1)-protocol that is used by its underlying
layer (n − 1). Instead, it uses the so-called (n − 1)-Interface of the underlying (n − 1)-entity, as
illustrated in Figure 2.3. That is, it generates a so-called (n − 1)-Interface Data Unit (IDU), which
is then provided to the (n − 1)-entity via a so-called (n − 1)-Service Access Point (SAP). The IDU
consists of

1. the n-payload data (e.g. the contents of a complete image file), which is denoted as the (n− 1)-
Service Data Unit (SDU), as well as

2. some information about what the (n − 1)-entity should do with the (n − 1)-SDU (e.g. “com-
pletely transfer the payload data to the peer entity, without reordering or losing information”),
which is denoted as the (n− 1)-Interface Control Information (ICI).

The (n − 1)-entity removes the (n − 1)-ICI from the (n − 1)-IDU and processes the (n − 1)-SDU,
according to the instructions provided by the (n − 1)-ICI. Possibly, one or more (n − 1)-Protocol
Data Units (PDU) are generated from the (n− 1)-SDU. An (n− 1)-PDU contains

1. data generated from the (n− 1)-SDU (e.g. a fraction of the (n− 1)-SDU, which is split up into
multiple smaller pieces), as well as

2. information how to re-create the (n − 1)-SDU from the (n − 1)-PDUs (e.g. an offset of the
contained data) as so-called (n− 1)-Protocol Control Information (PCI).

2.2. DATA COMMUNICATIONS 13

Figure 2.4: The OSI and TCP/IP Reference Models

The splitting of an (n− 1)-SDU into multiple (n− 1)-PDUs is denoted as Segmentation; the reverse
direction is denoted as Reassembly. Both will be explained in detail in Section 2.7.

An (n − 1)-PDU becomes the payload for layer (n − 2), i.e. it is combined with an (n − 2)-ICI
to an (n− 2)-IDU and provided to the (n− 2)-entity via an (n− 2)-SAP. After transmission over the
physical medium on the bottom of the hierarchy, the data takes the reverse path on the peer protocol
stack. Therefore, a further explanation is omitted here. A more detailed introduction as well as an
illustrative example are provided in [Tan96, Subsection 1.3.1].

In the following, the set of all n-PDUs belonging to the same communication, e.g. an individual
file transfer between two nodes, is denoted as n-Flow. If the layer is irrelevant in the described context,
it is just denoted as Flow.

2.2.3 Reference Models

While a layered protocol stack in principle allows to split up communication tasks into an arbitrary
number of layers, two reference models have shown their usefulness in practise and are relevant for
this thesis:

• the seven-layered Open Systems Interconnection Reference Model (OSI Reference Model) as
well as

• the four-layered TCP/IP Reference Model.

Figure 2.4 illustrates the models including their layer counterparts as well as their common PDU
naming. Both models will be briefly introduced in the following. A more detailed description can e.g.
be found in [Tan96, Section 1.4].

2.2.3.1 The OSI Reference Model

The OSI reference model has been developed and initially published by the International Organisa-
tion for Standardisation1 (ISO). Later, the publication task has been taken over by the International
Telecommunication Union. The latest version of the OSI reference model can be found in [ITU94,
Chapter 6]. It consists of seven layers which have the following responsibilities:

Physical Layer: This layer handles the physical transmission of data over a certain physical medium.
Particularly, it defines how to transmit bits via e.g. a cable or a wireless channel.

1ISO: http://www.iso.org/.

http://www.iso.org/

14 CHAPTER 2. BASICS

Data Link Layer: The second layer is responsible for the transfer of data between nodes. This in-
cludes physical addressing as well as data framing and error correction. The PDU of the Data
Link Layer is denoted as Frame.

Network Layer: Functionalities for transferring variable-length data sequences from a source to a
destination endpoint via one or more networks are duties of this layer. In particular, they include
a logical, hierarchical addressing scheme and network routing. The PDU of the Network Layer
is called Packet.

Transport Layer: This layer takes care of the transfer of user data and includes the segmentation
and reassembly of large data blocks, ordered delivery and reliable transfer as well as flow and
congestion control. These mechanisms will be introduced in detail later. The payload data unit
of the Transport Layer is denoted as Segment. It is usually a byte or a datagram.

Session Layer: Dialogue control between end-user applications is the duty of this layer. This in-
cludes mechanisms for duplex or half-duplex operation and the definition of checkpoints, ad-
journment and restart of a session. Particularly, this also includes failover handling in high-
availability systems (see also [DR09, Dre07]).

Presentation Layer: The Presentation Layer is responsible for translating data encodings between
different systems, e.g. the conversion between different character sets like ASCII2 and UTF-83.
In particular, the Presentation Layer is also responsible for encryption and decryption as well
as compression and decompression of data.

Application Layer: This layer is responsible for the actual service of the end-user application, e.g.
the reliable transfer of files.

The seven-layered model is sometimes extended by two more layers: the Financial Layer (layer 8)
and the Political Layer (layer 9). While this can mainly be seen as humour, it is not too far away from
reality. In some other literature, layer 8 defines the User Layer, i.e. problems caused by the human
user are often denoted as “layer 8 problems”.

2.2.3.2 The TCP/IP Reference Model

The TCP/IP reference model is based on the historic roots of the TCP/IP-based Internet, which are
described in [CK74]. The layering has later been clarified in [Bra89, Subsubsection 1.1.3]. In com-
parison to the OSI reference model, the TCP/IP reference model is a simplification from seven to four
layers. These four layers have the following responsibilities:

Host-to-Network Layer: This layer combines the functionalities of the Physical and Data Link Lay-
ers in the OSI reference model. That is, it includes the physical transmission as well as the
controlled access to a transport medium.

Internetwork Layer: The Internetwork Layer corresponds to the Network Layer of the OSI refer-
ence model. Therefore, each Internetwork Layer protocol can also be seen as a Network Layer
protocol.

2American Standard Code for Information Interchange, see also [Fis00].
3Universal Character Set Transformation Format – 8-bit, see also [Yer03].

2.3. CLASSIFICATION OF DATA COMMUNICATION SERVICES 15

Transport Layer: The Transport Layer of the TCP/IP reference model directly maps to the corre-
sponding layer of the OSI reference model.

Application Layer: The Application Layer of the TCP/IP reference model combines the functionali-
ties of the Session, Presentation and Application Layers in the OSI reference model. It is impor-
tant to note here that a unique mapping of Application Layer protocols from the TCP/IP refer-
ence model to the OSI reference model is not possible. For example, the File Transfer Protocol
(defined in [PR85]; to be introduced in Subsection 2.13.4) provides the conversion of character
encodings. This may be seen as a Presentation Layer functionality. As a result, mappings in
literature vary.

To overcome the ambiguity of the Application Layer mappings described above, the following
convention is used throughout this thesis: all protocols directly interacting with the service provided
for the user are mapped to the Application Layer of the OSI reference model.

2.2.4 Beyond the Layered Protocol Stack

Although the layered protocol stack already provides significant advantages over a naı̈ve “everything
in one protocol” approach, the ongoing development of the Internet towards the so-called Future
Internet shows its limits. For practical reasons, as described in more detail in [Ros06, BM02], it is
not always possible to clearly separate a service into independent layers. Instead, the approach of
so-called Cross-Layer Optimisation introduces inter-layer interaction to provide more efficient data
communication services. Details on cross-layer optimisation can be found in [SM05]. Of course, this
approach makes an adaptation of the protocol stack by replacing individual layers significantly more
difficult.

Therefore, the focus of current research on Future Internet is to get rid of the layered protocol
stack altogether, and realise services as a composition of loosely coupled, non-hierarchical Functional
Building Blocks. Such so-called Clean Slate approaches are e.g. proposed by [DRB+07, BFH03].
However, since the SCTP protocol takes a more evolutionary than revolutionary path of further In-
ternet development (as described in [DR08c]), the current “work in progress” research ideas and
approaches for the Future Internet are not introduced in more detail here. Nevertheless, the general
ideas and insights of this thesis also apply to these approaches, as discussed in [DBHR10].

2.3 Classification of Data Communication Services

According to [Bla07], Data Communications denotes “the transfer of data or information between a
source and a receiver node [within a network]. The source transmits the data and the receiver receives
it”. That is, the term Data Communication Service describes a service which transfers payload data
among the entities participating in the communication, by using an appropriate protocol. However,
this definition is rather generic. For practical reasons, it is therefore useful to further classify data
communication services into subtypes.

2.3.1 Data Communication Services by Participating Entities

Clearly, the most obvious approach of classification is by the entities that are participating in the data
transfer. The four types are illustrated in Figure 2.5. Note, that for the classification by participating
entities, only the numbers of senders and receivers – but not the direction of the communication – are
relevant.

16 CHAPTER 2. BASICS

(a) Unicast Communication (b) Broadcast Communication

(c) Concast Communication (d) Multicast Communication

Figure 2.5: Classification of Data Communication Services by Participating Entities

Unicast Communication denotes the most basic type: a 1:1 communication between one sender and
one receiver, as illustrated in Subfigure 2.5(a). Since the SCTP protocol uses this type of com-
munication, it will be explained in more detail below. An example for a unicast communication
is e.g. the transfer of a file between two nodes.

Broadcast Communication is a 1:* communication between one sender and an unrestricted number
of receivers, as shown in Subfigure 2.5(b). In particular, the sender has no information about
the number and the identities of its receivers. The straightforward example for this kind of
communication is free-to-air satellite radio and TV transmission.

Concast Communication describes an m:1 communication between m senders and one receiver,
as depicted in Subfigure 2.5(c). An example for concast communication is e.g. the transfer
of status information to a central monitoring component (such an application is introduced in
Subsection B.3.4).

Multicast Communication describes a 1:n communication between one sender and n receivers, as
presented in Subfigure 2.5(d). In contrast to broadcast communications – where the set of re-

2.3. CLASSIFICATION OF DATA COMMUNICATION SERVICES 17

ceivers is unrestricted – the multicast receivers belong to a well-defined group. That is, the
receivers need to explicitly join a group in order to receive the corresponding transmission. An
example for this kind of communication is pay-TV, where the set of receivers is restricted to
subscribers in possession of the required decryption component.
A special form of multicast communication is so-called Multipeer Communication, which de-
scribes an m:n communication between m senders and n receivers. Multipeer communication
is e.g. used for video conferences, where each participant receives data from as well as sends
data to all other participants (see also [Ste00, Chapter 17]).

It should be noted that sender as well as (one of the) receivers may be situated on the same node.
Such a kind of node-local communication within a node itself is commonly denoted as Loopback
Communication.

2.3.2 Data Communication Services by Transfer Directions

The second approach to classify data communication services is by their data transfer directions:

Unidirectional Communication transmits data in just one direction, i.e. from a sender node A to
a receiver node B within their network Γ. The direction remains fixed throughout the whole
communication. Typical examples of unidirectional communication are satellite radio and TV
transmissions. For unidirectional communication, only a trail τA→B ∈ TΓ(A,B) from the
sender A to the receiver B is required.

Bidirectional Communication on the other hand transmits data between two nodes A and B within
their network Γ in both directions, i.e. A and B are senders as well as receivers. Clearly, almost
all Internet applications – e.g. requesting and transferring a file – use this kind of communica-
tion. For bidirectional communication, two trails are required: a trail τA→B ∈ TΓ(A,B) for
the direction from node A to B, as well as a return trail τB→A ∈ TΓ(B,A) back from node B
to A.

2.3.3 Data Communication Services by Transferred Data Units

A classification by the transferred data units is the third approach to distinguish different kinds of
data communication services. Clearly, the Bit (Binary Digit) – with its two distinct states 0 (zero)
and 1 (one) – is the canonical data unit of all data communications. However, for practical reasons,
all relevant modern communication systems group eight bits to a Byte, which is often also denoted
as Octet. That is, they transmit a multiple of eight bits – which implies an integer number of bytes.
Groups of bytes may further be assembled to larger groups, which are denoted as Datagrams. In
particular, each datagram consists of a well-defined begin and end.

Two data communication variants with respect to the transferred data units are relevant:

Stream-Oriented Communication denotes the transfer of a byte stream, i.e. an arbitrary sequence of
bytes. The participating entities have no notion of grouping these bytes to any larger unit. Any
grouping is completely in the responsibility of the service user which sends and receives such
byte streams. For example, the TCP protocol (defined in [Pos81c]) provides stream-oriented
communication.

Datagram-Oriented Communication denotes the transfer of full datagrams. Particularly, begin and
end of each datagram are preserved during transfer. That is, the transfer service may not split or

18 CHAPTER 2. BASICS

join datagrams. If segmentation is necessary, a proper reassembly is required before delivering
the datagram to the upper layer of the peer entity. A protocol example providing datagram-
oriented communication is the IP protocol (defined in [Pos81b]).

Clearly, it is possible to provide a datagram-oriented data communication service over a stream-
oriented data communication service by adding additional control information on beginnings and
ends of datagrams at the sender node, as well as processing this information at the receiver node. An
example for this way of communication is the ZModem protocol defined in [For88], which provides a
datagram-oriented data communication service over the stream-oriented data communication service
provided by modems in the Plain Old Telephone System (POTS) network.

Obviously, providing a stream-oriented data communication service over a datagram-oriented data
communication service is trivial: the receiver node can just ignore the beginning and the end of each
datagram. This is applied for all TCP over IP communications.

2.3.4 Data Communication Services by Transfer Arrangement Procedures

The fourth approach of classifying data communication services is by the arrangement procedures for
a payload data transfer:

Connection-Oriented Communication requires the establishment of a so-called Connection before
– and its release after – any transfer of payload data among entities. A connection denotes the
successful completion of necessary arrangements to transfer payload data. All payload data is
then associated with its connection. This property can e.g. be used to ensure that SDUs are
provided to the service user on the peer side in the same order as they came from the service
user on the local side (to be described in detail in Section 2.7). That is, connection-oriented
communication consists of three phases (see also [MP93]):

1. Connection establishment,

2. Payload data transfer and

3. Connection release.

For example, a connection-oriented communication service is provided by the POTS: in order
to talk to a peer person, it is first necessary to establish a call by dialling. After the talk, the
connection is released by hanging up.

Connection-Less Communication on the other hand does not need a connection to transfer payload
data. An example for a connection-less communication service is the postal system: letters may
be sent and received without letter-specific transfer arrangements. Since different letters (i.e.
PDUs) are handled independently by a connection-less service (since there is no association
with a single connection), it is e.g. not possible to ensure an in-sequence delivery to the service
user of the peer side if the underlying service does not ensure a reordering-free transfer.

Note the difference between “connection” and “flow”: in the context of this thesis, the term “flow”
(see also Subsection 2.2.2) denotes PDUs of an individual communication, regardless of whether it is
connection-oriented or connection-less. On the other hand, the term “connection” directly implies the
flow of a connection-oriented communication.

2.4. QUALITY OF SERVICE 19

Prefix Symbol 10n 1000n Long-Scale Name Short-Scale Name
Kilo K (k) 103 10001 Thousand Thousand
Mega M 106 10002 Million Million
Giga G 109 10003 Milliard Billion
Tera T 1012 10004 Billion Trillion
Peta P 1015 10005 Billiard Quadrillion
Exa E 1018 10006 Trillion Quintillion
Zeta Z 1021 10007 Trilliard Sextillion
Yotta Y 1024 10008 Quadrillion Septillion

Table 2.1: The SI Decimal Prefixes and Symbols

2.4 Quality of Service

Since the SCTP protocol only supports unicast communication, details of broadcast, concast and
multicast communication services are neglected here. An introduction to such services can e.g. be
found in [Ste00, CHW98]. Instead, the focus is on unicast communication in the following.

The term Quality of Service (QoS) denotes the capability of a service to provide a “better” service
to selected flows. Of course, the meaning of “better” is strongly dependent on the service itself. An
application providing video streaming is e.g. concerned about the users’ perceptual quality of the
playback (see also [RRAW98, Dre01]). Since the focus of this thesis is on the services provided
by the Network and Transport Layers (i.e. “lower-layer QoS”), service quality can be reduced to the
following four QoS properties here:

1. Throughput,

2. Delay,

3. Jitter, as well as

4. Errors.

These QoS properties will be introduced in the following. Further details on “higher-layer QoS” can
e.g. be found in [Ste00].

2.4.1 Throughput

2.4.1.1 Units and Ambiguity

Throughput denotes the amount of data units per time unit that is transported over a path in a network.
That is, the resulting throughput ρTransfer (in bit/s) for transferring an amount of σData (in bit) during
a time interval of tElapsed (in s) can be calculated as:

ρTransfer =
σData

tElapsed
.

Some more information on measuring throughput is provided in [MA01]; this document is part of the
IP Performance Metrics (IPPM) framework introduced in [PAMM98].

20 CHAPTER 2. BASICS

Prefix Symbol 2n 1024n ≈ 10n

Kibi Ki 210 10241 > 103

Mebi Mi 220 10242 > 106

Gibi Gi 230 10243 > 109

Tebi Ti 240 10244 > 1012

Pebi Pi 250 10245 > 1015

Exbi Ei 260 10246 > 1018

Zebi Zi 270 10247 > 1021

Yobi Yi 280 10248 > 1024

Table 2.2: The IEC Binary Prefixes and Symbols

Throughput is also commonly denoted as Data Rate or Digital Bandwidth4. It is – usually –
measured in bits per second (bit/s). For practical reasons, throughput values are written using the
Système International d’Unités (SI) prefixes and symbols defined by the Bureau International des
Poids et Mesures5 (BIPM) in [BIP06], in order to shorten their presentation (e.g. 1 Gbit/s instead
of 1,000,000,000 bit/s). These standard prefixes are summarised in Table 2.1. In some literature,
throughput may also be presented in text form (e.g. “one billion bits per second”). This leads to
ambiguity, due to the fact that “one billion” denotes 1012 in the so-called Long-Scale Notation (which
is e.g. used in the Commonwealth and Europe), but only 109 in the so-called Short-Scale Notation
(mainly used in the U.S.A.). In order to avoid this ambiguity, the throughput presentations throughout
this thesis consequently apply the SI prefix notation.

Since data communication services above the Physical Layer usually work with full bytes, it is
practical to present the Size of data in bytes (symbol: B) instead of bits. Furthermore, it is useful
to work with data sizes using an integer power of two bytes. Since the SI prefixes define decimal
units (i.e. power of 10), they are impractical to represent byte sizes. Therefore, the International
Electrotechnical Commission6 (IEC) prefixes and symbols (see [NIS07] and [BIP06, Section 3.1]) –
which are shown in Table 2.2 – introduce appropriate binary prefixes (e.g. kibibyte for 1,024 bytes).
These definitions are relatively new. Therefore, a large amount of literature still uses the ambiguous
convention of combining SI prefixes with bytes (e.g. kilobyte for 1,024 bytes). In this thesis, ambiguity
is avoided by consequently applying the new IEC prefixes and symbols (e.g. 1 KiB for 1,024 bytes).

2.4.1.2 Overhead and Efficiency

As explained in Subsection 2.2.2, an n-entity combines n-payload with an n-PCI to an n-PDU. From
a bit or byte perspective, this means adding additional data – the n-PCI – to the n-payload. This
additional data is called Overhead. The overhead can be placed before the payload (in this case it is
denoted as Header) and/or placed after the payload (in this case it is denoted as Trailer). An example
is depicted in Figure 2.6. Here, layer (n + 1) and layer n add headers as well as trailers, while
layer (n− 1) only adds a header. Regardless of its placement, the overhead reduces the throughput of

4In contrast, Analogue Bandwidth – measured in Hertz – provides the difference between the upper and lower frequencies
of a contiguous frequency band. See also [Tan96, Section 2.1.2].

5BIPM: http://www.bipm.org/.
6IEC: http://www.iec.ch/.

http://www.bipm.org/
http://www.iec.ch/

2.4. QUALITY OF SERVICE 21

Figure 2.6: Payload as well as Overhead by Headers and Trailers

Approximated Propagation Speed vPropagation

Physical Medium ×c0 m/s km/h
Thick Coax 0.77 2.308 ∗ 108 0.831 ∗ 109

Thin Coax 0.65 1.948 ∗ 108 0.702 ∗ 109

Twisted Pair 0.59 1, 769 ∗ 108 0.637 ∗ 109

Fibre 0.66 1, 979 ∗ 108 0.712 ∗ 109

Radio Wave (in air) 0.9997 2, 997 ∗ 108 1.079 ∗ 109

Table 2.3: Approximated Propagation Delays of Physical Media

a service. The Efficiency of a data communication service on layer n is therefore defined as:

Efficiencyn =
Payloadn

[Payloadn + [Headern + Trailern︸ ︷︷ ︸
Size of n-PCI

]]

︸ ︷︷ ︸
Size of n-PDU

≤ 1.

The efficiency of a service cannot exceed 1. Clearly, a protocol realising a service should try to
maximise the efficiency by keeping the overhead as small as possible.

2.4.2 Delay

Every data transfer takes time, which is denoted as Latency or Delay. The actual delay δTotal of a data
transfer between two nodes consists of five components:

δTotal = δBundling + δPropagation + δTransmission + δProcessing + δQueuing.

The meaning of these five components is as follows:

22 CHAPTER 2. BASICS

Bundling Delay: A datagram-oriented service (see Subsection 2.3.3) bundles bytes to datagrams, in
order to improve efficiency by decreasing the per-byte overhead (see Subsubsection 2.4.1.2).
That is, some data may have to be collected before it can be transmitted. Having a data gen-
eration rate of ρGeneration (in bit/s) and a bundle size of σBundle (in bit), the resulting bundling
delay (in s) can be computed as:

δBundling =
σBundle

ρGeneration
.

For example, the bundling of an audio stream in Compact Disc quality (i.e. 44100 Hz sampling
rate, 16 bits per sample, stereo) into datagrams of 1,452 bytes leads to a bundling delay of
δAudio

Bundling ≈ 8.2 ms.

Propagation Delay: The propagation delay δPropagation denotes the time required for the signal to
travel between two nodes. On the Physical Layer, it is:

δPropagation =
lMedium

vPropagation
,

where lMedium denotes the length of the physical medium (in m) and vPropagation the propaga-
tion speed (in m/s). An overview of typical propagation speeds is presented in Table 2.3: for
wireless and wired transmissions (speed values based on [Mes05]), it is in the same order of
magnitude as the speed of light in vacuum c0 = 299, 792, 458 m/s ≈ 3 ∗ 108 m/s, as defined
in [BIP06, Table 7]. That is, δPropagation is in the range of ms for realistic communication
distances on earth, e.g. δFibre

Propagation ≈ 51 ms for 10,000 km over fibre cable.

Transmission Delay: The delay δTransmission for actually transmitting an n-PDU depends on the size
of the n-PDU σn−PDU as well as the (n − 1)-SDU throughput of the underlying (n − 1)-
service ρ(n−1)−Service:

δTransmission =
σn−PDU

ρ(n−1)−Service
.

For example, the transmission delay for transmitting a PDU of 1,500 bytes over a 100 Mbit/s
channel is δ100

Transmission = 0.12 ms.

Processing Delay: Nodes also introduce delays for processing data: they need to decode it and decide
what to do with it, e.g. to forward it to another node or to provide it to an application on the
node itself. This delay is denoted as processing delay δProcessing. It is usually in the range of µs
to a few ms.

Queuing Delay: If it is temporarily not possible to transmit data, e.g. when the underlying physical
medium is in use by another transfer, the data is usually stored in a queue. Various types of
queues – denoted as Queuing Disciplines (QDisc) – are available. Regardless of the applied
QDisc, the waiting time in a queue adds a queuing delay δQueuing to the data transfer.

Clearly, the total One-Way End-to-End Delay of a unidirectional data transfer between two end-
pointsA andB is the sum of all per-hop delays on the used trail. Its measurement within the endpoints
is challenging, since it requires their clocks to be accurately synchronised. More details on the mea-
surement of the one-way end-to-end delay are described in [AKZ99a].

For bidirectional transmission, the so-called Round Trip Time sums up the end-to-end delays from
Endpoint A to Endpoint B, as well as the backwards direction from Endpoint B to A. The RTT

2.4. QUALITY OF SERVICE 23

provides a lower bound for the Response Time of a service: to get an answer for a request to a remote
endpoint, it takes at least one RTT to send the request and receive a response. In comparison to
the one-way end-to-end delay, a measurement of the RTT within an endpoint is relatively easy: an
endpoint just has to take the difference of answer reception time stamp and request sending time
stamp. See also [AKZ99c] for some more details on measuring the RTT.

The choice of a QDisc and its parameters are important configuration settings. Various QDiscs are
available; an overview is provided in [Bro06]. In the context of this thesis, two QDiscs are relevant:

First In First Out (FIFO) is the simplest QDisc; it applies the “first come, first served” principle:
new data is added to the tail of the queue and data for transmission is taken from its head. As
long as the queue does not exceed its size limit, no data is lost. Otherwise, any further data is
discarded.

Random Early Detection (RED) introduced by [FJ93] extends the FIFO principle by introducing
the two thresholds MinTh and MaxTh: whenever the average fill level of the queue is between
these two thresholds, a packet to be newly enqueued is dropped with a linearly increasing prob-
ability from 0 to MaxP. For an average fill level exceeding MaxTh, all new packets are dropped.
In combination with window-based congestion control – which will be introduced in Subsec-
tion 2.11.2 – RED improves the throughput of flows by desynchronising concurrent senders.
More details on this subject are provided by [BCC+98]. Guidelines for the configuration of the
RED parameters can be found in [Flo97].

2.4.3 Jitter

Jitter denotes the delay variation. For interactive multimedia applications, the jitter is important for
the appropriate configuration of playback buffers. These buffers at receiver endpoints are necessary
to store data which arrives too early. Also, they are necessary to avoid that a delayed reception of
data disrupts the playback. Clearly, the larger the playback buffer, the higher the total delay between
sending the data and actually using it for playback. This may lead to a poor user perception.

Details on measuring jitter can be found in [DC02]. A frequently used metric for the jitter is
defined in [SCFJ03, Subsection A.8]. It is applied e.g. for Voice over IP (VoIP), which is a highly
delay-sensitive and therefore jitter-critical application (see [KR08, Subsection 6.1.2]).

2.4.4 Errors

During transfer over a network, multiple error situations may occur:

Reordering denotes a change of the data sequence during transfer. Reordering occurs when an over-
taking of datagrams is possible in a datagram-oriented service, e.g. if using varying trails for
transferring different PDUs. Further information on reordering can be found in [MCR+06].

Duplication means that data within the network is duplicated. This can happen due to misconfigura-
tion or malfunction of nodes. [Uij09] explains the measurement of duplication in more detail.

Corruption denotes the distortion of data, e.g. due to transmission problems on the physical medium.
It frequently occurs for wireless transmission, due to signal attenuation or interferences.

Loss refers to the loss of data, i.e. sent data that never gets delivered at the receiver node. It may
happen due to congestion (i.e. overload) in the network. [AKZ99b] provides some details on
measuring losses.

24 CHAPTER 2. BASICS

2.4.5 Guaranteed Services and Best Effort

In order to guarantee that certain QoS properties (throughput, delay, jitter and errors rates) are met for
PDUs when using a transfer service over a network, mechanisms to reserve forwarding resources on
the nodes are necessary. Three variants are possible:

Integrated Services (IntServ) reserves resources for individual flows. In the Internet, IntServ can
be realised by the Resource ReSerVation Protocol (RSVP), which provides two types of per-
flow reservations: Controlled Load (defined in [Wro97]) for reserving bandwidth, as well as
Guaranteed QoS (defined in [SPG97]) to guarantee a certain bandwidth and a maximum de-
lay. Since RSVP requires per-flow state information within the network, it lacks scalability.
This makes a large-scale deployment difficult. More details about this problem can be found
in [MBB+97, Subsection 2.1]. Some ideas on efficiently identifying flows in a network are
described in [Dre12a]. A detailed introduction on IntServ and RSVP is provided in [Ste00].

Differentiated Services (DiffServ) does not reserve resources for individual flows. Instead, the re-
sources are reserved and guaranteed for a small set of service classes. In the context of DiffServ
in IP networks (see [BCD+98] for details), the number of service classes is limited to 64 (due to
6 bits in the IPv4 and IPv6 headers for class identification; see [NBBB98]). That is, individual
flows have to be mapped to one of the service classes; guarantees are only provided for these
aggregates of flows. Two types of service classes have been standardised in form of so-called
Per-Hop Behaviours (PHB) for the Internet:

• Expedited Forwarding (EF; see [DCB+02]), which can be applied for fixed-bandwidth
with low delay and low jitter services (e.g. for interactive real-time applications), as well
as

• Assured Forwarding (AF; see [HBWW99, Gro02]), which defines a set of four service
classes. Each AF class contains three drop precedences. AF allows to overload a class
temporarily. But in case of congestion, the drop probability of a PDU increases with
its drop precedence. Therefore, AF can be applied for real-time applications with some
loss-tolerance. An overloaded AF class may be allowed to borrow resources from an
underutilised class. Analogously, an underutilised class may share its temporarily unused
resources with other classes.

Note, that PHBs only provide an informal description of a service class. Their actual imple-
mentation has to be realised by appropriate QDiscs. An application example and further details
on using and configuring DiffServ classes can be found in [Dre01, DSV00]; [Ste00] provides a
more detailed introduction to DiffServ.

Best Effort reserves no resources. The network service just tries its best to forward PDUs – hence its
name “best effort” – but cannot guarantee any QoS. That is, in case of network overload, data
may be lost or arbitrarily delayed.

The Network Layer service of the Internet (see [CK74]) – represented by the IPv4 and IPv6
protocols (see [Pos81b, DH98]) – only provides a datagram-oriented, connection-less, bidirectional
best effort service. That is, no QoS properties can be ensured for a service on top of it. In particular,
reordering, duplication, corruption and loss may occur. The application of IntServ or DiffServ in the
Internet is still very rare yet. That is, services based on top of the Network Layer service in the Internet
need to implement appropriate mechanisms to cope with the characteristics of this underlying service.

2.5. CORRUPTION DETECTION AND CORRECTION 25

Listing 1 The Internet-16 Checksum Algorithm

1 u i n t 1 6 t c a l c u l a t e I n t e r n e t 1 6 (c o n s t vo id * da ta , s i z e t c o u n t)
2 {
3 c o n s t u i n t 1 6 t * add r = (c o n s t u i n t 1 6 t *) d a t a ;
4 u i n t 3 2 t sum = 0 ;
5

6 whi le (c o u n t >= s i z e o f (* add r)) { / / Main c a l c u l a t i o n loop
7 sum += * add r ++;
8 c o u n t −= s i z e o f (* add r) ;
9 }

10 i f (c o u n t > 0) { / / Add l e f t −over by t e , i f any
11 sum += *(c o n s t u i n t 8 t *) add r ;
12 }
13 whi le (sum >> 16) { / / Fold 32− b i t sum t o 16 b i t s
14 sum = (sum & 0xFFFF) + (sum >> 1 6) ;
15 }
16 re turn (˜ sum) ;
17 }

These protocol mechanisms – mainly realised by Transport Layer services – will be introduced in the
following.

2.5 Corruption Detection and Correction

One of the elementary protocol mechanisms to cope with errors is the detection and correction of data
corruptions, which may occur due to transmission errors like interferences or attenuation.

2.5.1 Checksums

Obviously, in order to handle corrupted data, it is first necessary to detect any corruption. That is, a
receiver must be able to detect whether a received PDU contains the same bit sequence as it has been
transmitted by its sender. This can be realised by so-called Checksums, which are computed over a
PDU and transported – as part of the PDU itself – to the receiver side. In case of corruption, the newly
computed checksum at the receiver side differs from the value within the PDU. In the context of this
thesis, three kinds of checksum algorithms are relevant. These algorithms will be introduced shortly.

2.5.1.1 Internet-16

A very basic checksum algorithm is Internet-16, which is defined in [BBP88, Rij94]. Listing 1 pro-
vides a pseudo-code representation of this algorithm:

• Adjacent bytes are paired to 16-bit values. These values are summed up in a 32-bit variable,
which stores the 1’s complement sum (lines 6 to 9).

• A remaining single byte is also added (lines 10 to 12).

• Since modern computer systems use the 2’s complement notation, the 1’s complement sum
must be computed by adding any overflows into the least significant bits.

26 CHAPTER 2. BASICS

Listing 2 The Adler-32 Checksum Algorithm

1 # d e f i n e BASE 65521 / / l a r g e s t pr ime s m a l l e r than 65536
2

3 u i n t 1 6 t c a l c u l a t e A d l e r 3 2 (c o n s t vo id * da ta , c o n s t s i z e t c o u n t)
4 {
5 u i n t 3 2 t s1 = 1 ;
6 u i n t 3 2 t s2 = 0 ;
7

8 f o r (s i z e t i = 0 ; i < c o u n t ; i ++) { / / Compute s1 and s2
9 s1 = (s1 + ((c o n s t u i n t 8 t *) d a t a) [i]) % BASE ;

10 s2 = (s2 + s1) % BASE ;
11 }
12 re turn ((s2 << 16) + s1) ; / / Combine s1 and s2 t o 32− b i t checksum
13 }

Important properties of the Internet-16 algorithm are that it is simple and easy to implement. Further-
more, it is possible to calculate it incrementally. It is therefore used for a number of important Internet
protocols (more details on these protocols will follow in Section 2.13). In order to insert a checksum
into a PDU, the checksum field within the PDU is set to zero, the checksum is computed over the
PDU and finally written into the checksum field. The receiver can re-compute the checksum again,
including the field with the sender’s checksum. If the result is 0xFFFF (i.e. -0 in 1’s complement
notation), no corruption has been detected.

The computed 16-bit checksum results in 216=65,536 possible values. Therefore, when transmit-
ting a lot of data, there is some chance – 1:65,535 – that a corruption remains undetected. Therefore,
more advanced checksum algorithms have been developed.

2.5.1.2 Adler-32

A more advanced approach is the Adler-32 checksum algorithm, defined in [DG96, Subsection 8.2].
The corresponding pseudo-code is presented in Listing 2. In fact, the algorithm computes two 16-bit
checksums s1 and s2, which are finally combined to a 32-bit checksum (line 12). s1 sums up one
(line 5) plus all bytes of the data, modulo 65,521 (which is the largest prime number smaller than 216;
line 9); s2 sums up the values of s1 in each step, also modulo 65,521 (line 10). Adler-32 is quite
simple and can be computed very efficiently. However, it has a weakness: e.g. for a 128 bytes PDU,
the maximum value for s1 is 128*255=32,640. That is, the 16-bit space is not fully utilised for short
messages. In result, corruptions may remain undetected more easily for smaller messages. A more
detailed analysis of the Adler-32 weakness can be found in [SSO02].

2.5.1.3 Cyclic Redundancy Check

A widespread approach for stronger corruption detection (overcoming the described weaknesses of
Internet-16 and Adler-32) is the Cyclic Redundancy Check (CRC). CRC is based on division in the
ring of polynomials over the Galois Field7 GF(2). These polynomials have binary coefficients, i.e.
their value is either 0 or 1; arithmetic is performed modulo 2. A PDU consisting of m bytes is

7An introduction to the mathematical basics of Galois Fields can be found in [Cam03].

2.5. CORRUPTION DETECTION AND CORRECTION 27

interpreted as a polynomial M(x) of degree 8 ∗m− 1:

M(x) =

8∗m−1∑
i=0

ai ∗ xi

= a8∗m−1 ∗ x8∗m−1 + a8∗m−2 ∗ x8∗m−2 + . . .+ a0 ∗ x0.

The bits of the PDU define the coefficients of M(x). For example, the j-th bit of the k-th byte may
correspond to a8∗(m−k)−(8−j); bytes numbered from 0 to m − 1, bits numbered from 0 to 7. The g
coefficients in M(x) that correspond to the checksum to be inserted into the PDU are initialised to 0.

The actual checksum is the remainder R(x) of a polynomial division by a so-called Generator
Polynomial G(x) of degree g:

R(x) = (xg ∗M(x)) mod G(x).

Multiplication by xg ensures that the dividend always has a higher degree than G(x). In result, the
remainderR(x) has a degree of g−1 or less. The corresponding coefficient bits of the checksumR(x)
are mapped back into the PDU, which then represents the polynomial T (x). At the receiver side,
M ′(x) (representing the original PDU M(x)) and R′(x) (representing the checksum R(x)) can be
extracted from T (x). The PDU is assumed to be uncorrupted, if:

(xg ∗M ′(x)) mod G(x) = R′(x).

Depending on the choice ofG(x) (and in particular its degree g), CRC can reliably detect various types
of corruption occurring during transmission. Note, that CRC cannot protect against specially-crafted
modification (e.g. in attack scenarios), i.e. CRC is not applicable as cryptographic hash function.
A more detailed analysis of different CRC variants can be found in [Koo02, HŘS+06]; a detailed
introduction including a numerical example is provided by [Tan96].

Relevant for this thesis is the CRC variant CRC-32C, which is defined in [CBH93]8. CRC-32C
uses the following generator polynomial GCRC−32C(x)9:

GCRC−32C(x) = x32 + x28 + x27 + x26 + x25 + x23 + x22 + x20 + x19+

x18 + x14 + x13 + x11 + x10 + x9 + x8 + x6 + x0 .

That is, the resulting CRC code has a size of 32 bits. Some details on the implementation of CRC-32C
– including code written in C – can be found in [Ste07, Appendix B]. In comparison to Adler-32, an
implementation is significantly more complex, leading to increased processing time requirements.

2.5.2 Forward Error Correction

While a checksum can only detect the corruption of a PDU, it is not possible to fix it. The usual
procedure therefore is to just drop corrupted PDUs and handle them as being lost (to be explained in
Section 2.9). However, in certain application cases, it is not possible to re-transmit the data efficiently.
For example, to recover mangled data stored on a harddisk, the user would need to restore a – hopefully
existing – backup. In such cases, so-called Forward Error Correction (FEC) can be applied. FEC adds
redundancy information to PDUs, which makes it possible to correct a limited number of corrupted

8The paper by [CBH93] denotes CRC-32C as CRC-32/4. In later literature, e.g. [Ste07, SSO02], it is commonly denoted
as CRC-32C, after the first author Castagnoli.

9The numerical representation of GCRC−32C(x) is 0x11EDC6F41.

28 CHAPTER 2. BASICS

bits. The higher the possible corruption rate, the more bits are actually needed for redundancy in order
to fix a corruption. That is, FEC may significantly increase the overhead.

A more detailed introduction is neglected here, since FEC is not directly relevant in the context of
this thesis. Some more information on FEC can be found in [Tan96, Subsection 3.2.1], an overview
of FEC algorithms is provided by [MZ08].

2.6 Sequence Numbering

Like corruption detection and correction, the unique enumeration of objects – in form of so-called
Sequence Numbers – is another common protocol mechanism. A sequence number is an integer
counter q ∈ N0. Whenever a unique identifier o has to be allocated to a new object, o is set to the
value of q and q is incremented by 1. Let q = 0 on initialisation. Then, the identifier o1 = q = 0 will
be allocated to the first object. After that, q = 1. The second object will get the identifier o2 = 1,
leading to q = 2, etc.. Obviously, all object identifiers are unique, and – since |N0| =∞ – a countably
infinite number of objects can be enumerated theoretically.

In practise, memory is limited and therefore the size of a sequence number is restricted, too.
That is, q ∈ [0, . . . , 2SeqNumberBits − 1] ⊂ N0, for SeqNumberBits ∈ N an appropriate num-
ber of bits. This results in 2SeqNumberBits possibilities to uniquely allocate identifiers. In order to
keep SeqNumberBits small (i.e. to reduce space requirements), it is possible to remember the pool of
unallocated identifiers and install a procedure to release allocated identifiers when they are not needed
any more. Remembering unallocated identifiers could e.g. be realised by a bit field. However, the
allocation and deallocation procedures in this case add additional time and space complexity.

An alternative is therefore to retain the original allocation procedure of mapping the identifier to
the current sequence number value and incrementing it. However, this leads – due to the limited value
space of q – to an overflow when trying to increment q: (2SeqNumberBits − 1) + 1 = 0. This overflow
is denoted as Counter Wrap; it may lead to a non-unique identifier allocation. Therefore, it puts a
constraint on the sequence number usage: the sequence number user must always ensure that when
allocating identifier oi, there is no more object oj with oj = oi. Under this condition, the space-limited
sequence number still ensures unique identifiers.

Note, that the choice of SeqNumberBits limits the identifier allocation rate: given a maximum
lifetime MaxLifetime (in s), the allocation rate AllocationRate (in objects/s) is limited to

AllocationRate ≤ 2SeqNumberBits

MaxLifetime
.

For example, AllocationRate ≤ 1, 092 for MaxLifetime=60 s and SeqNumberBits=16 bits. An
inappropriate choice of SeqNumberBits may lead to a future limitation of the system, e.g. when
the allocation rate needs to be increased to meet extended requirements. More details on sequence
numbers are e.g. provided by [EB96].

2.7 Segmentation and Reassembly

A further important protocol mechanism – which is usually realised on the Network and/or Transport
Layer – is the Segmentation and Reassembly of n-SDUs, as illustrated in Figure 2.7. Here, the un-
derlying layer (n − 1) limits the maximum (n − 1)-SDU size. This limit is denoted as Maximum
Transmission Unit (MTU). Therefore, layer n has to carefully craft the n-PDUs, in order to avoid

2.7. SEGMENTATION AND REASSEMBLY 29

Figure 2.7: Segmentation and Reassembly

exceeding the MTU. That is, the maximum size of the n-payload – which is denoted as Maximum
Segment Size (MSS) is:

MSSn = MTUn−1 − Size of PCIn.

The MTU is usually a compromise between efficiency by reduced overhead (larger MTU is better;
see Subsubsection 2.4.1.2) and reduction of data loss on corruption (smaller MTU is better; see Sec-
tion 2.5). In a network Γ = (L,N,C, c), the MTU for a trail τ ∈ TΓ(n1, n2) between two nodes n1

and n2 is given by the minimum MTU of any channel used by τ (i.e. “the weakest link in the chain”).
The sender n-entity has to split up too-large n-SDUs into appropriately-sized n-PDUs; the peer

entity has to put the n-payloads of these n-PDUs together to reconstruct the payload of the original
n-SDU. Note, that it is not necessary to reconstruct the original n-SDU itself for stream-oriented
communication. The n-payloads may be delivered in form of multiple n-SDUs, within a larger n-
SDU, etc.. The original n-SDU has to be reconstructed for datagram-oriented communication only,
in order to preserve begin and end of each datagram (see also Subsection 2.3.3).

The information necessary to reassemble the n-payloads has to be written into the n-PCIs of the n-
PDUs. The n-PDUs are commonly denoted as Segments (hence the name of the Transport Layer data
units) or Fragments. In the context of this thesis, the following mechanisms for actually implementing
segmentation and reassembly are relevant:

• A segment can store a unique identifier (usually a sequence number; see Section 2.6) of its
original n-SDU, as well as the offset – i.e. a byte position – of its payload within the payload of
the original n-SDU.

• Alternatively, the segments can be enumerated (by a sequence number; see Section 2.6). Then,
the peer entity is aware of their order and can reconstruct their original position within the
payload.

30 CHAPTER 2. BASICS

Figure 2.8: The Principle of “Stop and Wait” for Reliable Transfer

• If the first as well as the last segment of a datagram are marked appropriately, it is also possible
to reconstruct the original n-SDU (i.e. the original datagram).

2.8 Ordered Delivery

The protocol mechanism of segmentation and reassembly ensures that n-SDUs are transferred com-
pletely. However, it does not ensure that the n-SDUs are delivered by the peer entity to its (n + 1)-
entity in the same order they have been provided by the local (n + 1)-entity. If the n-PDUs are
transferred via different trails in the network, they may overtake each other. A delivery which may be
out of its original order is denoted as Unordered Delivery.

In order to provide a so-called Ordered Delivery, i.e. preserving the original order of all segments,
sequence numbers for the n-PDUs may be applied – similar to segmentation. However, instead of just
ensuring the order within an n-SDU, the order of the whole set of n-SDUs is ensured. For efficiency
reasons, segmentation and ordered delivery may be combined by using the same sequence number
within the n-PCIs of the n-PDUs (i.e. a reduction of overhead space).

2.9 Reliable Transfer

The ordered delivery protocol mechanism just ensures that the order of the data is preserved. How-
ever, losses of n-PDUs result in “gaps” in the data sequence. Such a transport service is denoted as
Unreliable Transfer. It may e.g. be acceptable for video streaming, where some missing data just
results in a temporary artefact (see also [Ste00]). However, a large fraction of services – like e.g. a file
transfer – does not tolerate any partial loss of data. These services require a Reliable Transfer service,
which ensures that no data is lost.

2.9.1 Naı̈ve Approach: Stop and Wait

A naı̈ve approach for a protocol mechanism to realise a reliable transfer is denoted as Stop and Wait.
Its principle is illustrated in Figure 2.8: segments are enumerated by a sequence number (see Sec-
tion 2.6). In order to reliably transfer a segment s, the sender sends it as Data-n-PDU; its n-PCI
includes the sequence number. Furthermore, it starts the Retransmission Timer, which counts the time

2.9. RELIABLE TRANSFER 31

from a configured Retransmission Timeout (RTO) down to zero. When eventually the segment s ar-
rives at the receiver, it generates an Acknowledgement (ACK) for segment s, in form of an Ack-n-PDU
including the sequence number to be acknowledged – here: s – in its n-PCI. This acknowledgement
tells the sender about the successful reception of segment s. It can now cancel the retransmission
timer and proceed – in the same way – with segment s + 1. This is the ideal case, i.e. no loss has
occurred.

However, two things could go wrong:

Loss of Data-n-PDU If a Data-n-PDU (i.e. a segment) is lost, the receiver obviously cannot ac-
knowledge it. When the retransmission timer expires, the sender just has to retransmit the
Data-n-PDU (i.e. to send it again). This procedure is denoted as Retransmission (RTX).

Loss of Ack-n-PDU A lost acknowledgement finally results in the sender assuming the Data-n-PDU
as being lost. It has to retransmit it upon expiration of the retransmission timer. The receiver
will get a duplicate. However, by remembering the sequence number of the last successfully
accepted Data-n-PDU, it detects the duplicate, ignores it, but resends its Ack-n-PDU.

Note, that the sequence number for stop and wait may have the size of a single bit only (i.e.
SeqNumberBits=1; see Section 2.6), if the underlying service ensures ordered delivery for the n-
PDUs (i.e. the segments). Otherwise, the time between two Counter Wraps must be higher than the
maximum lifetime of an n-PDU in the network.

The stop and wait protocol mechanism is already sufficient to provide a reliable transfer service.
However, its throughput is limited by the RTT between sender and receiver: the transport of each
segment requires at least one RTT (i.e. from starting to send the Data-n-PDU until having received
the corresponding Ack-n-PDU). That is, the throughput is at most 1

RTT n-segments/s in the ideal case
(i.e. without any loss).

2.9.2 Pipelined Approach: Sliding Window

Pipelining is an approach to overcome the key problem of stop and wait (i.e. having to wait most
of the time for an acknowledgement, unless the RTT is extremely small). That is, instead of having
at most one segment on travel through the network and not yet acknowledged, which is denoted as
Outstanding or In Flight, multiple segments may be outstanding.

2.9.2.1 Principle

The principle of the so-called Sliding Window protocol mechanism, as illustrated in Figure 2.9, is
to have a so-called Send Window at the n-entity of the sender side. This send window has a size
of WS segments; the larger WS , the more segments may be outstanding. In the depicted exam-
ple, WS=6 segments. This means that after sending segment #42, five more segments (i.e. WS=6
in total) may be transferred prior to receiving any acknowledgement from the receiver side. Here,
segments #42 to #47 have actually been sent. However, although they have been sent, they must re-
main in the so-called Send Buffer until being acknowledged. Two of the eight segments in the send
buffer (segment #48 and #49) are still waiting for their transfer. Since only up to WS=6 outstanding
segments are allowed, they may not be sent yet.

Segment #42 as well as segments #44 to #46 have successfully arrived at the n-entity of the re-
ceiver side. The receiver n-entity accepts them, because these segments fall into its so-called Receive
Window. In the example depicted in Figure 2.9, the size of the receive window is WR=8 segments.

32 CHAPTER 2. BASICS

Figure 2.9: The Principle of a “Sliding Window” for Reliable Transfer

Here, the receive window covers the complete space of the Receive Buffer, i.e. the place where re-
ceived segments are stored to ensure ordered delivery. Since segment #42 is the first segment in the
receive window, it is advanced to segment #43. That is, all segments until #42 have been successfully
received – if such segments are received again, they must be duplicates and will be ignored therefore.
The new lowest segment to be accepted is segment #43. Since the receive window size WR remains
constant, the highest segment to be accepted is increased to segment #51. Since segment #43 has
been lost, there is a gap in the segment sequence. The receiver therefore sends a so-called Cumulative
Acknowledgement (CumAck) – in form of a CumAck-n-PDU – for segment #42, denoting that all
segments including segment #42 have been received successfully.

When the sender n-entity processes this CumAck, it may shift its send window ahead, then having
segment #43 as the first segment and segment #48 as the last one. That is, segment #48 may be
transferred now. Furthermore, since the send buffer space that had been occupied by segment #42
before has become available, the newly gained space can be filled by segment #50. This new segment
may be generated from further n-SDUs of layer (n+ 1).

Due to the shifting of send and receive windows within the segment sequence number space, the
protocol mechanism is denoted as sliding window.

The following error handling procedures have to be applied:

• The n-entity detects the loss of a Data-n-PDU si by receiving an out-of-sequence Data-n-
PDU sj with si < sj . In this case, it sends a CumAck-n-PDU for the last in-sequence segment.

• The loss of the last sent Data-n-PDU cannot be detected by the receiver side (since the receiver
is not aware of its existence). Like for stop and wait, a retransmission timer is necessary to
detect this loss at the sender side.

• Due to cumulative acknowledgements, a lost CumAck-n-PDU is superseded by the following
one. If the last CumAck-n-PDU of a sequence is lost, the retransmission timer triggers a seg-
ment retransmission. The reception of a duplicate segment finally results in sending a new
CumAck-n-PDU.

2.9. RELIABLE TRANSFER 33

2.9.2.2 Retransmission Strategies

In order to actually retransmit a lost segment, multiple so-called Retransmission Strategies are possible
and frequently applied (see also Section 2.13):

Go Back N In the simplest case, WR=1. Then, the reception of each out-of-sequence segment trig-
gers a CumAck-n-PDU for the last successfully received segment being in sequence. That is,
the receiver side only accepts in-sequence segments; any out-of-sequence segments are ignored
– and must be retransmitted by the sender later (starting from the first missing segment N ,
hence the name Go-Back N). This mechanism works well when losses are rare, but may be-
come extremely inefficient for an error-prone and high-RTT connection (due to a large number
of in fact unnecessary retransmissions).

Selective Repeat Instead of ignoring all out-of-sequence segments (as for Go-Back N), the n-entity
of the receiver side may generate CumAcks as before, but including a list of so-called Gap
Acknowledgements (GapAcks) listing the successfully received segments ahead of the cumula-
tively acknowledged segment. Such an acknowledgement – containing a CumAck and possibly
GapAcks – is denoted as Selective Acknowledgement (SACK). Therefore, the corresponding
n-PDU will furthermore be denoted as SelAck-n-PDU.
In the example shown in Figure 2.9, this acknowledgement would contain a CumAck for seg-
ment #42, as well as GapAcks for segments #44 to #46. Then, the sender is able to just skip
the retransmission of segments that have been acknowledged by GapAcks. Clearly, for ordered
delivery, the receiver must now keep segments #44 to #46 in its receive buffer, until the missing
segment #43 has arrived. Then, all segments may be forwarded to the (n+ 1)-entity (in form of
n-SDUs). On the other hand, for unordered delivery, the segments may leave the receive buffer
immediately.

Cyclic Preventive Retransmission If the RTT is high, it may furthermore be useful for a sender
to cyclically start retransmitting the segments in the send window – even without having the
information about a segment loss.

In the following, segments that have been acknowledged by a CumAck are denoted as being
CumAck’ed. Analogously, a GapAck’ed segment has been acknowledged by a GapAck.

2.9.2.3 Window Size Constraints

The sizes of send and receive window – WS and WR – are limited by the size of the sequence number
space used for enumerating the segments. Let SeqNumberBits be the sequence number size in bits
(see also Section 2.6). Then, the following constraints apply:

WS ≤ 2SeqNumberBits

2
,

WR ≤ 2SeqNumberBits

2
.

These limits are necessary to ensure uniqueness of the segment numbers. Let SeqNumberBits=3 (i.e.
segment numbers out of [0, . . . , 7] ⊂ N0) and WR=8 (i.e. WR = 23). Then, after having sent the
segments from #0 to #7, a CumAck for segment #7 will acknowledge all of them. However, if all of
them have been lost, a CumAck for segment #7 would be an acknowledgement of the previous round
(telling the sender that its previously sent segments have to be sent again, starting from segment #0).

34 CHAPTER 2. BASICS

This ambiguity leads to data loss. The constraint above ensures that the window size is at most half of
the sequence number space, ensuring uniqueness of the segments. A setting of SeqNumberBits ≥ 4
solves the problem here.

In order to achieve the optimum segment throughput, the minimum size of WS must at least cover
the so-called Bandwidth-Delay Product (BDP; see also [CXSN04]), which is given by the segment
throughput (Throughputn; in segments/s) as well as the RTT between sending a segment until pro-
cessing its acknowledgement (RTTn; in s):

BDPn = Throughputn ∗ RTTn.

Note, that “delay” for the BDP means the time from sending a segment until it gets acknowledged,
i.e. the RTT (see also Subsection 2.4.2). Therefore, in order to avoid ambiguity, the BDP will be
denoted as Bandwidth-RTT Product in the context of this thesis. That is, WS (in segments) must
ensure that there can be at least as many segments outstanding as segments can be transmitted at the
given throughput (Throughputn; in segments/s) during one RTT (RTTn; in s):

WS ≥ Throughputn ∗ RTTn︸ ︷︷ ︸
BDPn

.

This implies that a too-small setting of WS limits the achievable throughput:

Throughputn ≤
WS

RTTn
.

An appropriate choice of windows size limits – with respect to future advances in throughput and
changes of the RTT – is therefore an important design decision. Details on extending the window
sizes of the TCP protocol – which had shown to be too small for fast, intercontinental connections
– are explained by [JB88]. A more detailed introduction to the sliding window protocol mechanism,
including examples and code listings, can be found in [Tan96, Section 3.4].

2.9.3 Overhead Reduction and Performance Improvements

In order to further reduce the overhead and improve the performance of reliable transfer, multiple
mechanisms are commonly used.

2.9.3.1 Delayed Acknowledgement

Since CumAcks are cumulative, a subsequent CumAck supersedes a former CumAck. That is, instead
of generating a new SelAck-n-PDU as soon as a Data-n-PDU has been received, a receiver may
wait some time for the reception of further Data-n-PDUs. Then, a single CumAck may acknowledge
multiple Data-n-PDUs. This optimisation is denoted as Delayed Acknowledgement (see also [Bra89]).

2.9.3.2 Piggybacking

For bidirectional transfer, the overhead of acknowledgements may be further reduced by applying
so-called Piggybacking (see also [Tan96]): instead of sending a separate SelAck-n-PDU (containing
a CumAck’ed sequence number and possibly a list of GapAcks in its PCI), the acknowledgement
information can be added to the PCI of a Data-n-PDU in reverse direction. That is, instead of having
to transfer two separate PDUs (one SelAck-n-PDU and one Data-n-PDU) in reverse direction, just a
single combined DataSelAck-n-PDU may be used.

2.9. RELIABLE TRANSFER 35

2.9.3.3 Bundling

As described in Subsubsection 2.4.1.2, the efficiency of a data transfer is best when the overhead
remains small. That is, for bulk data transfer on layer n, it is useful to fully utilise the n-MSS (see
also Section 2.7). If the (n + 1)-entity generates lots of small n-SDUs, an immediate transfer of the
corresponding n-PDUs leads to a low efficiency.

The strategy to improve efficiency is denoted as Bundling. At the expense of increased delay, it
defers the generation of n-PDUs. Instead, the data of the n-SDUs is collected (in a buffer) until there
is either enough data to fill an (n− 1)-MTU, or a timer – denoted as Bundling Timer, which has been
initially set to the Bundling Timeout – expires. Then, an appropriate n-PDU is generated, including
the collected data en bloc. This protocol mechanism is frequently denoted as Nagle’s Algorithm (see
also [Nag84]).

2.9.3.4 Fast Retransmission

In order to avoid waiting for the expiration of the retransmission timer (i.e. waiting up to a full RTO,
as explained in Subsection 2.9.1), it is useful to introduce so-called Fast Retransmission, as defined
in [APB09, Subsection 3.2]: a fast retransmission is triggered when a segment j that has been reported
as missing for a certain number of times. Segment j is assumed to be missing if a SelAck-n-PDU
contains a CumAck for segment i and a GapAck for a segment k with i < j < k. The threshold for
the number of such SelAck-n-PDUs is denoted as Duplicate Threshold and set to three in [APB09,
BAFW03]. When reaching this threshold, the fast retransmission for j is triggered once. That is,
segment j is retransmitted as soon as possible, and its retransmission timer is reset.

Any further retransmissions are handled – as before – by expiration of the retransmission timer.
Therefore, these retransmissions will further be denoted as Timer-Based Retransmissions.

Note, that using fast retransmission with delayed acknowledgement (as described in Subsubsec-
tion 2.9.3.1) requires to send an acknowledgement immediately when receiving an out-of-sequence
segment.

2.9.3.5 Handling of Data Corruption

In combination with corruption detection by a checksum mechanism (see Subsection 2.5.1), the reli-
able transfer mechanism can also be used to handle corruptions: mangled n-PDUs are simply ignored.
Then, they will be handled as lost and finally retransmitted.

This mechanism may be improved further by the introduction of a so-called Negative Acknowl-
edgement (NAK), which is generated by the receiver upon reception of a corrupted Data-n-PDU. A
Nak-n-PDU can tell the sender not to wait for the expiration of its retransmission timer, but instead to
retransmit the corresponding Data-n-PDU as soon as possible.

Of course, in order to tell the sender which Data-n-PDU has to be retransmitted, the receiver
must examine the corrupted PDU. In practise, it can check the required information (particularly,
the sequence number) for plausibility and send a Nak-n-PDU when this information seems to be
reasonable. In the – very unlikely – case of a corrupted but plausible sequence number, a retransmitted
Data-n-PDU becomes a duplicate and will just be ignored.

36 CHAPTER 2. BASICS

2.10 Flow Control

When a powerful sender transfers data over a high-throughput network to a low-performance receiver,
the receiver may easily become overloaded. That is, it becomes incapable of accepting any new
segments (e.g. if the receive buffer is full and data cannot be forwarded quickly enough to the (n+1)-
entity). In this case, newly incoming segments will get lost. Reliable transfer will – of course –
trigger retransmissions and ensure a loss-free communication for layer (n+1). However, unnecessary
retransmissions reduce the efficiency. So-called Flow Control denotes protocol mechanisms which are
responsible of protecting the receiver from overload.

2.10.1 Approaches

In the simplest case, the sender could just use a limited throughput that is known to be acceptable for
the receiver. This approach is denoted as Open-Loop Flow Control, since the sender does not need
any feedback from the receiver. On the other hand, so-called Closed-Loop Flow Control requires such
feedback. This feedback could e.g. be provided in the form of special n-PDUs to let the receiver tell
the sender to temporarily suspend transmission (“Receiver not Ready”), or to resume transmission
again (“Receiver Ready”). [Tan96, Subsection 3.6.1] provides a protocol example.

Alternatively, as explained in detail by [Tan96, Subsection 6.2.4], the maximum allowed number
of outstanding bytes may be dynamically adapted, in order to throttle the sender. That is, the receiver
tells its desired limit to the sender; this size is known for the receiver to work properly (e.g., the
receiver has allocated an appropriately-sized buffer to accept the given number of segments). This
information may be provided by adding a so-called Advertised Receiver Window to the SelAck-n-
PDUs. The advertised receiver window AdvertisedReceiverWindown (in segments) contains the
amount of available space in the receive buffer, at the time of sending the acknowledgement. The
sender can calculate the actual amount of new segments it is allowed to send – denoted as Peer Re-
ceiver Window PeerReceiverWindown (in segments) – with its knowledge of the amount of currently
outstanding segments Outstandingn (in segments):

PeerReceiverWindown = AdvertisedReceiverWindown −Outstandingn.

That is, the peer receiver window contains the amount of acceptable segments minus the number of
segments being outstanding (i.e. not yet acknowledged, but already on their way).

2.10.2 Silly Window Syndrome

A problem which can occur for window-based flow control is denoted as the Silly Window Syndrome.
It is described in [Bra89]: when the data from the receive buffer can only be forwarded to the (n+ 1)-
entity in small pieces – because of e.g. low processing performance – the advertised receiver window
goes down to zero, telling the sender to suspend transferring new segments. When the next piece of
data leaves the receive buffer (which could be as small as a single byte), the receiver may advertise
this small amount of available space. The sender may then fill it quickly, and the same procedure is
repeated. Clearly, this leads to a high overhead and therefore to a low efficiency.

To overcome the Silly Window Syndrome, it is recommended to advertise newly available receive
buffer space after suspending the transmission only when an “appropriate” amount of buffer space
(e.g. enough to accept at least one full MSS; see Section 2.7) has become available again.

2.11. CONGESTION CONTROL 37

2.10.3 Zero-Window Probing

Suspending the sender by an advertised receiver window of zero leads to a further error case: if the
SelAck-n-PDU for resuming the transfer again (by advertising a non-zero window) is lost, the sender
may wait indefinitely. Therefore, in case of a suspended transfer, the sender has to perform a regular
Zero-Window Probing, i.e. to check whether the receiver is able to accept new segments. This could
e.g. by realised by trying to send a single new segment, or by introduction of a special n-PDU for
probing.

2.11 Congestion Control

While flow control protects the receiver from overload, it does not protect the network. The superposi-
tion of the data flows from many senders, or just a powerful sender, may cause overload in a network.
This overload is denoted as Congestion; its analogue is a traffic jam on a crowded motorway. The
protocol mechanism of Congestion Control is responsible for avoiding congestion.

2.11.1 Overview of Approaches

An obvious solution to protect a network from overload is to apply IntServ or DiffServ (see also
Subsection 2.4.5): forwarding resources (in particular: bandwidth and queue capacities) are explicitly
reserved. This approach is e.g. applied by ATM networks, which are described in [RW97]. Details on
these congestion control approaches can also be found in [Wel05]. Since the Internet – which is in the
focus of this thesis – only provides a best effort service, they are not explained in detail here.

In a network which is only able to provide a best effort service, congestion results in packet
losses. In the early days of the Internet, as described in [CK74], congestion control was not realised.
The problems related with this effect were first seen in the network of the Ford Motor Company, after
adding more and more channels of widely varying throughputs and delays. Increased load has filled
up the queues in the routers, increasing RTTs, and finally resulting in retransmission timers expiring
before packets actually got delivered at their destination. Research by [Nag84] has shown that this
so-called Congestion Collapse – once this state has been reached – remains stable.

As a solution to the congestion challenge, [JK88] has proposed the “Conservation of Packets
Principle”: for a flow in equilibrium, i.e. running stably with a full send window of segments in
transit, a new segment should not be put into the network until an old segment has left it. That is,
new segments should only be transferred after older ones have been acknowledged. Packet losses are
assumed to be the result of congestion.

2.11.2 Window-Based Congestion Control

The Internet approach to congestion control is window-based. That is, the sender endpoint maintains
a Congestion Window10 variable c (in segments), which denotes the maximum allowed number of
outstanding segments. So-called Additive Increase, Multiplicative Decrease (AIMD) behaviour is
used to adapt c to changing network conditions:

• Acknowledgements for segments mean a successful transmission and trigger an additive in-
crease of the congestion window c,

10The congestion window is frequently abbreviated as cwnd in literature.

38 CHAPTER 2. BASICS

• Segment losses are considered as sign of congestion and trigger a multiplicative decrease of the
congestion window c.

The state-of-the-art congestion control procedures, which are shortly introduced in the following, are
described in [APB09].

2.11.2.1 Increasing the Congestion Window

In order to increase the congestion window c on reception of a SelAck-n-PDU, the following two
conditions must have been met:

1. α segments in the SelAck-n-PDU have been newly acknowledged, leading to an advance of
the send window. That is, new segments have been acknowledged by a CumAck. Previously
GapAck’ed segments do not count here; they would otherwise lead to a “jump” of α.

2. The congestion window c must have been fully utilised. That is, the maximum allowed number
of segments has been outstanding, without causing congestion.

If both conditions are met, c is increased as defined in [APB09, Subsection 3.1]:

c = c+

{
min{α,MSS} (c ≤ s)
MSS (c > s ∧ p ≥ c)

.

Here, s denotes the so-called Slow-Start Threshold11 variable s (in segments). For c ≤ s, the increase
phase is denoted as Slow Start and leads to an exponential growth of c. Advancing c by the minimum
of the acknowledged segments α and one MSS is denoted as Appropriate Byte Counting in [All03].
It avoids that a receiver (e.g. a download user) is able to “tune” its incoming data rate by sending
multiple small (i.e. α < MSS) acknowledgements to get c increased by a full MSS each time. This
would in result lead to a higher (and therefore unfair) bandwidth share for the cheating user.

The second case, i.e. c > s, is denoted as Congestion Avoidance phase. Here, c is only increased
by one MSS when a full window c has been acknowledged. [APB09, Subsection 3.1] recommends
to decide whether enough data has been acknowledged to advance c during congestion avoidance by
adding another variable p (“partially acknowledged”), which counts the previous acknowledgements.
A window advance is possible for p ≥ c; on advance, p is reset.

2.11.2.2 Decreasing the Congestion Window

For decreasing the congestion window, various variants are possible. In the context of this thesis, only
the variant from [APB09, Subsection 3.1] – which makes use of selective acknowledgements (see
Subsubsection 2.9.2.2) – is relevant. In case of a fast or timer-based retransmission for a segment j,
the congestion window c is decreased as follows:

s = max
{ c

2
, 2 ∗MSS

}
,

c =

{
s (Fast Retransmission)
MSS (Timer-Based Retransmission)

.

That is, the slow-start threshold s is halved, with a minimum of 2 ∗MSS. A timer-based retrans-
mission of segment j leads to resetting the congestion window c to a single MSS, i.e. the minimum

11The slow-start threshold is frequently abbreviated as ssthresh in literature.

2.11. CONGESTION CONTROL 39

useful value for an efficient transfer (see also Subsubsection 2.4.1.2). The congestion control therefore
goes into slow start mode.

On a fast retransmission of segment j, the congestion window c is set to the slow-start threshold s,
i.e. the congestion control goes into congestion avoidance mode. Furthermore, the fast retransmission
leads to entering the so-called Fast Recovery mode defined in [BAFW03]: the sequence number h of
the highest acknowledged segment is remembered (i.e. h > j). As long as the fast recovery mode is
active, any processing of a newly incoming SelAck-n-PDU must not change the congestion window c.
The fast recovery mode is left when all segments up to h have finally been CumAck’ed, or if a timer-
based retransmission has become necessary.

2.11.3 A Congestion Control Example

A window-based congestion control example for three flows sharing a common bottleneck is depicted
in Figure 2.10; the plots are the result of an SCTP simulation based on the model described later
in Chapter 5. At time t=0 s, the first flow (see Subfigure 2.10(a)) starts. Initially, the slow-start
threshold of Flow #1 is set to the size of the peer receiver window (see Subsection 2.10.1), which is
125,000 bytes in this example. The congestion window of Flow #1 is increased from 4,380 bytes (the
initial value of SCTP) using slow start. At around t=2.1 s, a loss results in a fast retransmission. In
the following, the flow remains in congestion avoidance, always trying to increase its throughput (as
described in Subsubsection 2.11.2.1) until a loss – and therefore a fast retransmission – occurs. The
loss event then leads to halving the congestion window (as described in Subsubsection 2.11.2.2) and
continuing in congestion avoidance.

The starts of Flow #2 (at t=20 s; see Subfigure 2.10(b)) and Flow #3 (at t=40 s; see Subfig-
ure 2.10(c)) lead to a reduction of the average congestion window of Flow #1. The result is an equal
throughput share for each of the active flows. After the additional flows have been stopped at t=62 s,
the congestion window of Flow #1 is able to grow larger again. Then, Flow #1 is able to fully utilise
the available bandwidth again.

2.11.4 Dynamic Retransmission Timeout

The appropriate configuration of the RTO – i.e. the retransmission timeout as introduced in Subsec-
tion 2.9.1 – is crucial for effective congestion control. That is, a too-large RTO leads to an overly long
waiting time for acknowledgements, implying a reduced throughput. On the other hand, a too-small
RTO leads to retransmission of segments that are still in flight. The latter has significantly contributed
to the congestion collapse observed by [Nag84]. Therefore, it is clearly useful to dynamically adapt
the RTO, according to the current network state.

While there are various possible ways to set the RTO dynamically, the mechanisms in [PA00] are
relevant for the major Internet protocols. Due to their importance in the context of this thesis, they
are shortly explained here. The key idea of the described mechanisms is to compute the RTO from
a Smoothed Round Trip Time (SRTT) as well as the Round-Trip Time Variance (RTTVAR), by using
RTT measurements (i.e. the time from sending a segment until processing of its acknowledgement,
either by CumAck or GapAck). On availability of the first RTT measurement R0, the variables are
initialised:

SRTT0 = R0,

RTTVAR0 =
R0

2
,

RTO0 = SRTT0 + max{G, 4 ∗ RTTVAR0}

40 CHAPTER 2. BASICS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0
3
0
0
0
0

6
0
0
0
0

9
0
0
0
0

1
2
0
0
0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Vector γ

γ=Congestion Window
γ=Slow−Start Threshold

(a) Flow #1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0
3
0
0
0
0

6
0
0
0
0

9
0
0
0
0

1
2
0
0
0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Vector γ

γ=Congestion Window
γ=Slow−Start Threshold

(b) Flow #2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0
3
0
0
0
0

6
0
0
0
0

9
0
0
0
0

1
2
0
0
0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Vector γ

γ=Congestion Window
γ=Slow−Start Threshold

(c) Flow #3

Figure 2.10: A Three-Flow Congestion Control Example

2.12. PROTOCOL STANDARDISATION 41

G denotes the Clock Granularity, i.e. the steps of the clock used for the RTT measurements. It
depends on the used hardware, of course; a clock counting the time in steps of 10 ms has a setting of
G = 0.010 s.

Each following measurement of the RTT Ri results in an update of the variables:

RTTVARi = (1− β) ∗ RTTVARi−1 + β ∗ |SRTTi−1 −Ri| ,
SRTTi = (1− α) ∗ SRTTi−1 + α ∗Ri,
RTOi = SRTTi + max{G, 4 ∗ RTTVARi}.

Here, α and β denote Smoothing Factors, which are used to straighten out outliers in the RTT mea-
surements; [PA00, Section 2] recommends12 the settings of α = 1

8 and β = 1
4 .

In order to accurately measure the RTT, and in result to appropriately configure the RTO, two
mechanisms are necessary. These mechanisms have been proposed by [KP91] and are commonly
known as Karn’s Algorithm (see also [PA00, Section 3]):

1. Calculating the RTT of retransmitted segments may lead to ambiguity: it is not known whether
the RTT belongs to the initial transmission of a segment, or to a retransmission. Therefore,
retransmitted segments are simply ignored in the RTT computation.

2. When the retransmission timer expires, the RTO is doubled (“back off the timer”). This ensures
that the RTO increases when there is a sudden delay jump – even if all segments (and therefore
acknowledgements for RTT calculation) get lost.

2.11.5 Performance Improvements

Since classic best effort networks have no mechanisms to inform a sender about congestion, their
only possibility is to drop PDUs on overload. Therefore, reliable transfer usually assumes that all
segment losses are the result of congestion. However, using network access technologies like wireless
transmission, data corruption occurs frequently, e.g. due to interferences. This leads to a non-optimal
throughput, since each loss – regardless of whether it has been caused by real congestion or data
corruption – leads to a reduction of the congestion window.

The approach of Explicit Congestion Notification (ECN) allows the network to notify endpoints
about congestion by PCI information, instead of just dropping packets. An ECN-capable congestion
control may use this information to differentiate between congestion and other kinds of segment losses
(e.g. hardware problems or data corruptions), resulting in an improved throughput. However, although
ECN has also been defined for the Internet in [RFB01] and provides significant performance improve-
ments as shown by [Kuz05], it is not widely deployed yet. More details on this kind of congestion
control improvement can also be found in [Wel05]. Since these mechanisms are not directly relevant
in the context of this thesis, a further introduction is omitted here.

2.12 Protocol Standardisation

A certain service may be realised by an almost arbitrary number of completely different protocols.
However, in order to ensure interoperability among different applications and devices, it is useful to
commonly agree on one protocol (or at least a very small number of protocols). This is denoted as
Standardisation. A number of international standardisation organisations is existing for this particular

12These recommendations are based on an analysis by [JK88].

42 CHAPTER 2. BASICS

purpose. In the following, the organisations and protocols that are relevant in the context of this thesis
will be briefly introduced.

2.12.1 Wide Area Network Standards

The most important organisation for Wide Area Network (WAN) – i.e. large-scale international tele-
communication – standards is the International Telecommunication Union13 (ITU), which consists of
three sectors:

Radiocommunication Sector (ITU-R) is responsible for allocating radio frequencies and satellite
orbits.

Telecommunication Development Sector (ITU-D) takes care of the non-technical development of
international telecommunications.

Telecommunication Standardisation Sector (ITU-T) develops standards for telecommunications.
It is the former Comité Consultatif International Téléphonique et Télégraphique (CCITT).

Relevant in the context of this thesis are some of the Physical Layer/Data Link Layer standards pub-
lished by the ITU-T. They will be very briefly introduced in the following. For a more detailed
introduction, see [Tan96, KR08].

One well-known standard is the Integrated Services Digital Network (ISDN), the fully-digital
phone network which is the successor of the analogue POTS. ISDN provides a connection-oriented,
bidirectional, stream-oriented and unicast communication service with a throughput of 64 Kbit/s per
connection. Two connections may be bundled to achieve a throughput of 128 Kbit/s. A detailed
introduction to ISDN can be found in [Tan96, Section 2.5].

Furthermore, in conjunction with the ATM Forum (now: Broadband Forum14), the ITU-T has
been involved in the standardisation of Asynchronous Transfer Mode (ATM), a high-speed telecom-
munications network. It provides a connection-oriented, bidirectional, datagram-oriented and unicast
communication service with IntServ support. Furthermore, ATM connections can also be used for
transferring data with variable throughputs. Details on ATM can e.g. be found in [RW97]; some
details on transferring multimedia traffic over ATM networks are described in [Ste00].

Strongly related to ATM – and as well standardised by the ITU-T – is the Digital Subscriber
Line (DSL) family of technologies. A detailed overview can be found in [JDS06]. It provides stan-
dards for multiplexing data transmissions over analogue telephone lines, in order to connect subscriber
networks to Internet Service Providers (ISP) for providing Internet access. The ITU-T DSL standards
differ in maximum distance, as well as in maximum throughputs from ISP to subscriber (so-called
Downstream) and from subscriber to ISP (so-called Upstream). For a more detailed overview of DSL
variants, see [BMR07, All07].

In the context of this thesis, only the variant Asymmetric Digital Subscriber Line (ADSL) is rel-
evant: it provides faster downstream and slower upstream throughputs. Due to its focus on high
download speed, it is mainly intended for home users. In Germany, it is by far the most popular ac-
cess technology for Internet connectivity. At the subscriber side, a modem (which is denoted as ADSL
Transceiver Unit – Remote (ATU-R)) connects to a modem (which is denoted as ADSL Transceiver
Unit – Central Office (ATU-C)) at a central office of the ISP. The ATU-C is part of a device called

13ITU: http://www.itu.int/.
14Broadband Forum: http://www.broadband-forum.org/.

http://www.itu.int/
http://www.broadband-forum.org/

2.12. PROTOCOL STANDARDISATION 43

Digital Subscriber Line Access Multiplexer (DSLAM); it multiplexes DSL services from many sub-
scribers over an ATM network to a Broadband Remote Access Server (BRAS). The BRAS terminates
the subscriber lines and interconnects them to the Internet.

A further notable family of standards published by the ITU-T, in cooperation with the 3rd Gener-
ation Partnership Project15 (3GPP), is International Mobile Telecommunications 2000 (IMT-2000). It
includes the Universal Mobile Telecommunications System (UMTS), which is becoming increasingly
popular for providing mobile high-speed Internet access to smartphones and other mobile devices.

2.12.2 Local Area Network Standards

Unlike WANs, Local Area Networks (LAN) are restricted to a single administrative domain (e.g. a
department or a company). Therefore, WAN and LAN standardisation have traditionally been inde-
pendent. The major organisation for the standardisation of LAN protocols is the Institute for Electrical
and Electronics Engineers16 (IEEE), in particular the IEEE 802 working group.

In the context of this thesis, two IEEE 802 Physical Layer/Data Link Layer standards are relevant:

IEEE 802.3 describes Ethernet, a standard for communications over copper or fibre wires. It provides
a bidirectional, datagram-oriented, connection-less frame transfer using transmission speeds
ranging from 10 Mbit/s to currently 100 Gbit/s. The usual MTU is 1,500 bytes, although newer
components can be configured for an MTU of 9,000 bytes (in this case, all devices in the
network must support this MTU). Corruption of frames is detected by using a 32-bit CRC (see
Subsubsection 2.5.1.3); corrupted frames are simply ignored. Besides unicast transmission,
Ethernet also supports multicast and broadcast communications.

IEEE 802.11 defines Wireless LAN (WLAN), a standard for short-range wireless communications.
Similar to Ethernet, it provides bidirectional, datagram-oriented, connection-less frame trans-
fer, with support for unicast, multicast and broadcast communications, usually using an MTU
of 1,500 bytes. The data frame format is the same as for Ethernet, making data frame exchange
on the Data Link Layer possible (so-called Bridging). WLAN automatically adapts the trans-
mission speed from 1 Mbit/s to currently 600 Mbit/s, depending on hardware capabilities and
interferences.

A detailed introduction to Ethernet, WLAN and the various other IEEE 802 standards can be found
in [KR08, Tan96].

2.12.3 Internet Standards

Using a common Network Layer, the Internet interconnects LANs over WANs. The most important
organisation for the standardisation of Internet protocols (mostly Network Layer and above) is the
Internet Engineering Task Force17 (IETF). Since the research and development ideas from this thesis
are contributed to the IETF standardisation of SCTP, the IETF – as well as its standardisation process
– are briefly described here. A much more detailed overview of the IETF and its standardisation
process can be found in [HH06].

44 CHAPTER 2. BASICS

Figure 2.11: An Overview of the Internet Society

2.12.3.1 Overview

The IETF is a part of the Internet Society18 (ISOC), a membership organisation similar to the IEEE.
Figure 2.11 depicts the structure of the ISOC. Further parts are:

Internet Architecture Board (IAB) being responsible for the long-range planning and coordination
of IETF activities (i.e. the “big picture” of the Internet);

Internet Administrative Oversight Committee (IAOC) taking care of the administrative tasks of
the ISOC (particularly, planning and organisation of IETF meetings and development of tools
for the work of IETF working groups); as well as

Internet Research Task Force (IRTF) being concerned with longer-term research issues related to
the Internet.

The IETF – in contrast to the IRTF – focusses on the shorter-term issues of engineering and
standardisation. It is organised into currently eight areas, which are shown in Table 2.4. Every area
consists of a set of Working Groups (WG), each dealing with certain topics defined in the milestones
of the WG. Of interest – in the context of this thesis – is only the Transport Services Area (TSV),
containing the following relevant WGs:

Transport Services Working Group (TSVWG) is responsible for SCTP, but also for TCP exten-
sions, as well as for DiffServ and IntServ.

Signalling Transport (SIGTRAN) has standardised signalling transport protocols for transporting
telephone signalling (e.g. used for ISDN) over the Internet.

Reliable Server Pooling (RSerPool) is responsible for server pool and session management.

153GPP: http://www.3gpp.org/.
16IEEE: http://www.ieee.org/.
17IETF: http://www.ietf.org/.
18ISOC: http://www.isoc.org/.

http://www.3gpp.org/
http://www.ieee.org/
http://www.ietf.org/
http://www.isoc.org/

2.12. PROTOCOL STANDARDISATION 45

Area Description
Applications (APP) Protocols seen by user programs (e.g. email and the web)
General (GEN) Catch-all for WGs that do not fit in other areas
Internet (INT) Different ways of moving IP packets and DNS information
Operations and Management (OPS) Operational aspects, network monitoring, configuration
Real-time Apps. and Infrastr. (RAI) Delay-sensitive interpersonal communications
Routing (RTG) Getting packets to their destinations
Security (SEC) Authentication and privacy
Transport Services (TSV) Special services for special packets

Table 2.4: The Areas of the IETF

Figure 2.12: The IETF Document Lifecycle

A starting point for a more detailed overview on the other seven areas and their various WGs is
provided by [Bra05a]. It also gives a more detailed introduction to the structure of the ISOC.

RFC Editor19 and Internet Engineering Steering Group20 (IESG) are important entities in the
standardisation process; their roles will be described below.

2.12.3.2 Standardisation Process

The IETF standardisation process – described in detail in [Bra96] – is illustrated in Figure 2.12:
proposals for standardisation are submitted in form of an Internet Draft (I-D), either as so-called
Individual Submission (document name prefix is then “draft-[submitter name]”, e.g. “draft-tuexen-
rserpool-policies”) or as Working Group Draft (document name prefix is then “draft-ietf-[WG name]”;
e.g. “draft-ietf-rserpool-policies”). The usual case is that a draft starts as an individual submission.
After that, it is discussed on IETF mailing lists and/or at IETF meetings, and iteratively improved.
When discussions have reached a rough consensus, the draft may be adopted by the corresponding

19RFC Editor: http://www.rfc-editor.org/.
20IESG: http://www.ietf.org/iesg/.

http://www.rfc-editor.org/
http://www.ietf.org/iesg/

46 CHAPTER 2. BASICS

WG as working group draft, and furthermore iteratively improved again. Each improvement cycle
results in re-submitting the updated draft under the next version number. The version number is
appended to the document name in form of a two-digit decimal number; the initial version is 00, e.g.
“draft-ietf-rserpool-policies-00”. That is, Internet Drafts may be considered as “work in progress”.

When there is finally a rough consensus that a draft is “ready”, it is submitted to the IESG for
approval. The IESG performs a “Last Call”, i.e. a final request for comments, on the main IETF
mailing list. Everybody interested in the document is invited to review it, i.e. a public and open
community review of the document is performed. For protocol documents, the IETF standardisation
process strongly relies on “running code”, i.e. it is required that at least a “proof of concept” imple-
mentation, or – even better – multiple, independently-developed and interoperable implementations,
are available at this point. In case of raised concerns or problems, the IESG will return the draft for
further improvement, and the update procedure repeats. When finally the “Last Call” reaches a rough
consensus, the draft is approved by the IESG and forwarded to the RFC Editor.

The RFC Editor makes final editorial changes (e.g. correcting typos and grammar, resolving ref-
erence dependencies, etc.). Also, if necessary, the RFC Editor interacts with the Internet Assigned
Numbers Authority21 (IANA) for number registrations. The IANA manages various registries (e.g.
protocol numbers, standard TCP ports, etc.); a draft may need such registrations, or even create a
completely new registry. IANA considerations are written in the corresponding section of a draft;
[NA08] describes these procedures in detail.

After the changes of the RFC Editor have been approved by the author(s), the document is pub-
lished as a new Request for Comments (RFC), with a unique RFC number (e.g. RFC 5351 for the draft
example above). RFCs represent the final standards documents of the IETF. Due to the community re-
view process, citations of RFCs may be considered equivalent to scholarly publications, as discussed
in [CP10].

Some further important information on Intellectual Property Rights (IPR) in RFCs can be found
in [Bra05b]. IPR in this context mainly denotes software patents. Actually, it is possible for an RFC
to contain patented technologies, as long as they can be implemented under “reasonable and non-
discriminatory terms”. However, the IESG intentionally does not make any explicit determination of
these terms, as described in [Bra05b, Subsection 4.1]. In practise, this means that patented technolo-
gies will only become part of an RFC if no suitable, patent-free alternative is available. As described
by [Dre07, Subsection 3.10.5], an extension of the Internet-16 checksum (see Subsubsection 2.5.1.1)
to more than 16 bits might be covered by a Motorola patent. Therefore, the existing Internet-16 al-
gorithm instead of a 32-bit version has been used in the RFC 5353 (i.e. the ENRP protocol defined
in [XSS+08]; to be introduced in Section A.2).

2.13 Internet Protocols

In the following, the IETF protocols that are relevant for this thesis are briefly introduced. The focus
of this introduction is to bring the protocols into the context of the OSI reference model and the
explained basic protocol mechanisms. Detailed introductions to the internal protocol procedures are
omitted here, since this would greatly exceed the scope of this overview; they can be found in the
referenced RFCs.

21IANA: http://www.iana.org/.

http://www.iana.org/

2.13. INTERNET PROTOCOLS 47

2.13.1 Physical Layer and Data Link Layer

An important Data Link Layer protocol standardised by the IETF in [Sim94] as RFC 1661 is the Point-
to-Point Protocol (PPP). It provides an adaptation service for a unicast, bidirectional, connection-
oriented, datagram-oriented communication over a stream-oriented channel (see Subsection 2.3.3),
using a CRC checksum of 16 or 32 bits for corruption detection (see Subsubsection 2.5.1.3) as
well as a sliding-window-based reliable transfer (see Subsection 2.9.2) and flow control (see Subsec-
tion 2.10.1). It is in widespread use for Internet communication over modem and ISDN channels. In
the context of this thesis, the PPP over Ethernet (PPPoE) variant – defined in [MLE+99] as RFC 2516
– is relevant: it is frequently used for ADSL communication, where Internet communications between
BRAS and subscriber-side router are transported via Ethernet frames. Since PPPoE uses a header of
8 bytes, it leads to a Layer 2-MTU of 1,492 bytes (if transported over Ethernet with its standard MTU
of 1,500 bytes).

The IETF has also standardised some special-purpose22, high-delay Physical Layer protocols, no-
tably Avian Carrier (in [Wai90] as RFC 1149), Semaphore Flags (in [HBZ07] as RFC 4824) and IPv6
over Social Networks (in [Vyn09] as RFC 5514). These standards include their own Data Link Layer,
providing a unicast, bidirectional, connection-oriented, datagram-oriented communication service.

2.13.2 Network Layer

Clearly, the relevant Network Layer protocols of the IETF are the Internet Protocol, version 4 (IPv4)
– defined in [Pos81b] as RFC 791 – as well as its successor, the Internet Protocol, version 6 (IPv6)
– defined in [DH98] as RFC 2460. Both protocols are so-called Routed Protocols, i.e. they take care
of forwarding packets among endpoints. Therefore, a key functionality provided by IPv4 as well as
IPv6 is hierarchical addressing; IPv4 uses a 32-bit address space, while IPv6 uses a 128-bit one. In
the following, both protocol versions are commonly denoted as Internet Protocol (IP), unless referring
to a specific version.

IP is connection-less, i.e. each packet may take its individual trail through the network. Routing is
performed on a hop-per-hop basis. That is, each node (i.e. router or endpoint) uses a so-called Routing
Table to look up the next hop to forward a packet to its given destination. The setup of routing tables
is out of the scope of IP; they may be configured statically, or – in large networks – dynamically by a
Routing Protocol.

IP provides bidirectional, datagram-oriented communication with support for unicast, multicast as
well as broadcast. Only unreliable transfer and unordered delivery, with neither flow nor congestion
control, are supported. Furthermore, only IPv4 provides corruption detection using the Internet-16
checksum algorithm (see Subsubsection 2.5.1.1) for its header, but not for its payload. IPv6 omits
corruption detection altogether, in order to improve forwarding efficiency. Any more advanced feature
– if needed for a certain service built on top of IP – has to be provided by a higher layer.

IP supports segmentation and reassembly of large 3-SDUs over a small Layer 2-MTU:

• IPv4 defines no Layer 2-MTU, but it requires the receiver side to accept or reassemble packets
of at least 576 bytes. The maximum supported 3-SDU size is 65,535 bytes (i.e. 216 − 1 bytes).
A 16-bit segment sequence number and a byte offset are used for reassembly (see Section 2.7).
Each IPv4 node (i.e. endpoints as well as routers) may perform segmentation.

• IPv6 requires a Layer 2-MTU of at least 1,280 bytes. For a smaller low-layer MTU, an adapta-
tion layer like PPP (see Subsection 2.13.1) may be used below IPv6. In contrast to IPv4, only

22The reader is suggested to take note of the publication date of these IETF standards documents.

48 CHAPTER 2. BASICS

the sender endpoint may perform segmentation. Also, IPv6 applies a 32-bit segment sequence
number and a byte offset for reassembly (see Section 2.7). Both constraints allow a more effi-
cient packet forwarding. Similar to IPv4, the maximum 3-SDU size is 65,535 bytes. However,
by applying the IPv6 Jumbogram extension defined in [BDH99] as RFC 2675, the limit can be
increased to 232 − 1.

In conjunction with IP, which is used for the payload data transfer, the Internet Control Message
Protocol (ICMP), with its variants ICMPv4 for IPv4 (defined in [Pos81a] as RFC 792) and ICMPv6
for IPv6 (defined in [CDG06] as RFC 4443), is used for connectivity testing and error reporting. ICMP
is built on top of IP, it also serves for certain kinds of error handling for Transport Layer protocols.
Therefore, its layer in the OSI reference model can be seen as 3.5, i.e. between Network and Transport
Layer. The particularly relevant feature of ICMP in the context of this thesis is the so-called Path MTU
Discovery, which is used to find out the MTU of a certain path (i.e. with respect to the trails the packets
actually take; see also Subsection 2.1.3 and Subsection 2.1.5). Knowledge of the path MTU is crucial
for IPv6, since the sender must segment its packets accordingly. Furthermore, higher-layer protocols
with built-in segmentation and reassembly features may improve transfer efficiency by using this
information. The actual procedure for path MTU discovery is defined in [MH07] as RFC 4821, the
handling of common problems – in particular badly configured firewalls dropping ICMP packets – is
described in [Lah00] as RFC 2923.

A detailed introduction to IP can be found in [KR08, Chapter 4], an introduction to Network Layer
protocols in general is provided by [Tan96, Section 5.5].

2.13.3 Transport Layer

An important task of the Transport Layer is to identify applications on endpoints. For this purpose, the
four IETF Transport Layer protocols being relevant in the context of this thesis use so-called Ports,
which are endpoint-unique 16-bit application addresses.

The User Datagram Protocol (UDP) – defined in [Pos80] as RFC 768 – is the simplest of the
four Transport Layer protocols. Like IP, it provides connection-less, bidirectional, datagram-oriented
communication with support for unicast, multicast as well as broadcast. Also, only unreliable transfer
and unordered delivery, with neither flow nor congestion control are supported. UDP only adds the
mentioned application identification by ports, as well as data corruption detection – covering the whole
UDP-PDU – by applying the Internet-16 checksum algorithm (see Subsubsection 2.5.1.1).

Like UDP, the Datagram Congestion Control Protocol (DCCP) – which is defined in [KHF06]
as RFC 4340 – provides bidirectional, datagram-oriented communication with unreliable transfer and
unordered delivery. However, DCCP only supports unicast communication, and it works connection-
oriented. Its key feature is the support of window-based congestion control (see Subsection 2.11.2),
including support for ECN (see Subsection 2.11.5). The actual congestion control algorithm is ne-
gotiated between the endpoints. Corruption detection is provided by an Internet-16 checksum for the
DCCP header as well as the DCCP payload (completely or in part). Furthermore, it is possible to
optionally use a CRC-32C checksum (see Subsubsection 2.5.1.3) for the payload.

Reliable transfer and ordered delivery with window-based flow and congestion control for bidi-
rectional, connection-oriented and unicast communication is provided by the Transmission Control
Protocol (TCP), which is defined in [Pos81c] as RFC 793. Originally, TCP has only provided support
for CumAcks (see Subsection 2.9.2); the selective acknowledgements extension defined in [MMFR96]
– which is now used by all major implementations – also adds GapAcks (see Subsubsection 2.9.2.2).
State-of-the-art TCP implementations – as described in [APB09] as RFC 5681 – furthermore support

2.13. INTERNET PROTOCOLS 49

selective repeat (see Subsubsection 2.9.2.2), delayed acknowledgement (see Subsubsection 2.9.3.1),
fast retransmission (see Subsubsection 2.9.3.4) and ECN (see Subsection 2.11.5). Unlike UDP and
DCCP, TCP provides stream-oriented communication. The size of a TCP segment is one byte;
bundling is used to fill the MSS. Like UDP and DCCP, TCP uses the Internet-16 checksum algorithm
(see Subsubsection 2.5.1.1) to detect data corruption. Corrupted TCP-PDUs are simply dropped and
retransmitted (see Subsubsection 2.9.3.5).

Like TCP, the Stream Control Transmission Protocol (SCTP) – which is defined in [Ste07] as
RFC 4960 – provides reliable transfer with window-based flow and congestion control for connection-
oriented, bidirectional, datagram-oriented and unicast communication. SCTP will be introduced in
detail in Chapter 3.

A more detailed introduction to the Transport Layer protocols UDP and TCP is e.g. provided
by [Tan96, Section 6.4] as well as by [KR08, Chapter 3].

2.13.4 Session Layer, Presentation Layer and Application Layer

The first and currently only Session Layer protocol defined by the IETF is the Aggregate Server Access
Protocol (ASAP) – defined in [SXST08a] as RFC 5352 – which is part of the Reliable Server Pooling
framework. It will be introduced shortly in Appendix A.

A well-known IETF Presentation Layer standard is Portable Network Graphics (PNG), a lossless
image format defined in [Bou97] as RFC 2083. Furthermore, the IETF has standardised the Hypertext
Markup Language (HTML), version 2.0, in [BLC95] as RFC 1866. It is used as markup language for
web pages. However, all later versions are maintained23 by the World Wide Web Consortium (W3C).
A short introduction to HTML is provided by [Ste00, Section 20.5].

Notable IETF Application Layer protocols in the context of this thesis are:

HyperText Transfer Protocol (HTTP) – defined in [FGM+99] as RFC 2616 – to provide file trans-
fer, on top of TCP;

Trivial File Transfer Protocol (TFTP) – defined in [Sol92] as RFC 1350 – to provide a simple file
transfer on top of UDP (realising stop and wait – as explained in Subsection 2.9.1 – for ordered
delivery as well as flow and congestion control);

Network Time Protocol (NTP) – defined in [MMBK10] as RFC 5905 – to accurately synchronise
clocks among endpoints, on top of UDP;

File Transfer Protocol (FTP) – defined in [PR85] as RFC 959 – to provide file management, on top
of TCP;

Secure Shell (SSH) Protocol – defined in [YL06] as RFC 4254 – for a secure, interactive remote
shell and connection tunnelling, usually on top of TCP; as well as

Extensible Messaging and Presence Protocol (XMPP) – a framework24 for instant messaging on
top of TCP – defined in [SA11b, SA11c, SA11a] as RFC 6120, RFC 6121 and RFC 6122.

Furthermore, protocols for dynamically adapting routing tables – denoted as Routing Protocols –
also belong to the Application Layer. Important protocols are the Routing Information Protocol (RIP)
with its variants RIPv2 for IPv4 (defined in [Mal98] as RFC 2453) and RIPng for IPv6 (defined

23The current specification of HTML can be found in [Hic11, AM10].
24XMPP is frequently denoted as “Jabber”, which has been the initial name for this framework.

50 CHAPTER 2. BASICS

in [MM97] as RFC 2080), the Open Shortest Path First (OSPF) with its variants OSPFv2 for IPv4
(defined in [Moy98] as RFC 2328) and OSPFv3 for IPv6 (defined in [CFM99] as RFC 2740), as well
as the Border Gateway Protocol (BGP) defined in [RLH06] as RFC 4271 (for both, IPv4 and IPv6).
An introduction to the basics of routing protocols and to the protocols themselves can be found in
[Tan96, KR08].

2.14 Summary

This chapter has introduced the protocol-independent terminology and mechanisms which are used
throughout this thesis. In particular, common basic protocol mechanisms – providing segmentation
and reassembly, ordered delivery, reliable transfer, flow control as well as congestion control – have
been introduced. Finally, an overview of protocol standardisation, including the standard protocols
being relevant in the context of this thesis, has been provided.

Chapter 3

The
Stream Control Transmission Protocol

This chapter introduces the SCTP protocol. This introduction first covers the core SCTP protocol
itself, including its features, the basic communication procedures as well as the actually used protocol
mechanisms. Furthermore, important SCTP protocol extensions are described. This chapter closes
with a short overview of available SCTP implementations and important application scenarios.

3.1 Introduction

SCTP is a general-purpose, unicast, bidirectional, connection-oriented and datagram-oriented Trans-
port Layer protocol. It has initially been defined by the IETF SIGTRAN WG, for the purpose of
transporting telephone signalling traffic over the Internet (to be explained in Subsection 3.14.1). In
October 2001, it has been published in [SXM+00] as RFC 2960. Later, the IETF TSVWG WG
has continued the SCTP development; a revised version – based on experiences with implementation
and deployment in productive environments – has been published in September 2007 in [Ste07] as
RFC 4960. A more user-oriented introduction to SCTP can be found in [SX01]; a summary of the re-
cent IETF standardisation activities on SCTP – which are still ongoing in form of protocol extensions
for special use cases – is provided by [DRS+11].

3.2 Packets and Chunks

A connection in the terminology of SCTP is denoted as an Association. Like TCP, UDP and DCCP,
SCTP also uses the concept of ports to add application addressing (see Subsection 2.13.3). The struc-
ture of the SCTP packets (i.e. SCTP-PDUs being transferred as part of an association) is presented in
Figure 3.1. This structure is the same for all SCTP packets and contains a fixed 12-bytes header. This
so-called Common Header contains the source and destination port, defining the source application
on the sender side and the destination application of the receiver side.

Furthermore, a 32-bit checksum (see Subsection 2.5.1) is used to detect corruption within the
whole SCTP packet. In the initial definition of SCTP in [SXM+00] (RFC 2960), the Adler-32 check-
sum algorithm had been used (see Subsubsection 2.5.1.2). However, later, the weaknesses of this
algorithm had shown to be problematic in certain application scenarios using small packets. The
checksum algorithm had therefore been replaced by CRC-32C (see Subsubsection 2.5.1.3), using an

51

52 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.1: The Structure of an SCTP Packet

update to the initial specification in [SSO02] as RFC 3309. Clearly, the current specification in [Ste07]
as RFC 4960 also uses CRC-32C. An interesting fact of this change is that instead of making the
checksum algorithm configurable, and providing interoperability between old and new implementa-
tions, the algorithm had just been replaced. In order to make this replacement possible – which in fact
invalidates a part of the original specification – all implementers of SCTP had agreed to make this
change.

The last part of the common header is the Verification Tag. The verification tag is a random, 32-bit
number. It is negotiated during association setup – to be explained in Section 3.3 – for each transport
direction. During the whole lifetime of an association, a verification tag remains fixed and must be
supplied in each SCTP packet. This mechanism is applied to prevent a blind Denial of Service attack:
if port numbers are fixed, it would be quite easy for an attacker to insert its own packets into the packet
flow of an association, and e.g. cause associations breaks (i.e. service interruptions) or even hijack an
association. By applying the verification tag, an attacker not only has to guess the right port numbers
but also the correct 32-bit verification tag (i.e. one number in 232 possibilities).

Next to the common header, an SCTP packet includes one or more Chunks, which may include
user data (DATA chunk) or control information (Control Chunk). Each chunk has a variable length and
consists of a chunk type, some type-specific flags, the length of the chunk, its actual data and possibly
a padding which ensures that the total length of the chunk is a multiple of four bytes. Since the
chunk format is generic, a receiver entity is able to parse a received packet, even if it does not support
some of the contained chunk types. The SCTP specification also defines how to handle unknown
types (silently skip the chunk, skip the chunk but report skipping to the sender instance, silently skip
the whole packet, skip the whole packet but report an error to the sender instance; see also [Ste07,
Subsection 3.2]). This allows for easily adding protocol extensions (to be explained in Section 3.11)
by defining new control chunk types.

3.3. ASSOCIATION ESTABLISHMENT 53

Figure 3.2: The Chunk Sequence of the SCTP Association Setup

3.3 Association Establishment

An association establishment is performed by a so-called 4-Way Handshake, as shown in Figure 3.2.
The initiating side (here: Endpoint A) sends a packet containing an INIT Chunk, the peer side (here:
Endpoint B) responds with a packet containing an INIT ACK Chunk. It is important to note that
EndpointB does not store any state information yet. Instead, all information necessary for association
setup is stored in a so-called Cookie, which is a part of the INIT ACK chunk. Endpoint Amust send a
copy of this cookie as part of a COOKIE ECHO Chunk back to EndpointB. A signature in the cookie,
with a key only known to Endpoint B, ensures integrity and authenticity. Using the information from
the cookie, Endpoint B actually establishes the association and confirms the completion of the setup
procedure using a COOKIE ACK Chunk.

The 4-way handshake makes SCTP resilient against denial of service attacks using connection
initiation flooding, in contrast to SYN Flooding for the 3-Way-Handshake of TCP (see also [Edd07]):
since no connection resources are actually reserved upon reception of an INIT chunk, an attacker can-
not exhaust them. To actually set up an association, Endpoint A must be reachable, in order to receive
the cookie in an INIT ACK chunk and send it back in a COOKIE ECHO chunk. A TCP server – on
the other hand – allocates resources on reception of each SYN request (i.e. the first packet of a 3-way
handshake; see [Pos81c]), without having any knowledge about the existence of the potential client.
Depending on the TCP implementation, resources remain reserved for several minutes, preventing
legitimate users of the server to connect to it due to a lack of resources.

The INIT and INIT ACK chunks are also used to negotiate the verification tag for each transport
direction. Furthermore, the configuration of various other protocol options – like the support of certain
protocol extensions (to be described in Section 3.11) – is possible.

54 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.3: The Multi-Homing Feature of SCTP

3.4 Multi-Homing

3.4.1 Principle

Unlike TCP (see [Pos81c]) or DCCP (see [KHF06]), each SCTP endpoint may use multiple Network
Layer addresses for the packet transfer of an association. Therefore, during association setup, each
SCTP endpoint provides a list of its Network Layer addresses to be used for the association in the
INIT and INIT ACK chunks. In particular, an endpoint may mix IPv4 and IPv6 addresses, i.e. both
underlying Network Layer protocols may be used simultaneously. Each Network Layer address of a
peer endpoint defines a unidirectional Path to that endpoint (this definition is analogue to the formal
definition of a path in Subsection 2.1.5). The existence of multiple endpoint addresses is denoted as
Multi-Homing. Figure 3.3 illustrates the principle: in each direction, one path is selected as so-called
Primary Path. This selected path is used for the actual data transmission. The other paths are used
as backup; they are only used for retransmissions (to be explained in Section 3.7) or if a primary
path becomes unavailable. Note, that standard SCTP – as defined in [Ste07] – does not perform load
sharing among its paths; the protocol extension for this feature will be explained in Chapter 4.

3.4.2 Formal Definition

Using the terminology definitions from Section 2.1, it is possible to exactly define an association in a
formal way:

Definition 3.4.1. Let Γ = (L,N,C, c) be a network. An association κ = (a, b, Pa→b, Pb→a) between
node a and node b in network Γ is defined as follows:

• a ∈ N – local node,

• b ∈ N – peer node,

• Pa→b ⊆ PΓ(a, b) – paths from node a to node b,

• Pb→a ⊆ PΓ(b, a) – paths from node b to node a.

3.5. MULTI-STREAMING 55

Figure 3.4: The Concept of SCTP Multi-Streaming

The following conditions apply:

• |Pa→b| ≥ 1 (“connectivity from node a to node b”),

• |Pb→a| ≥ 1 (“connectivity from node b to node a”).

That is, an association between two nodes a and b consists of at least one path in each direction.
Therefore, |Pa→b|+ |Pb→a| ≥ 2. In order to further emphasise the number of paths, two more terms
are defined:

Definition 3.4.2. Let κ = (a, b, Pa→b, Pb→a) be an association in network Γ.

• κ is denoted as a Single-Homed association⇔ |Pa→b|+ |Pb→a| = 2.

• κ is denoted as a Multi-Homed association⇔ |Pa→b|+ |Pb→a| > 2.

3.4.3 Path Monitoring

In order to ensure that a path of an association is actually working, so-called Path Monitoring is
applied. That is, in a configurable interval, each SCTP endpoint sends a HEARTBEAT Chunk over a
path. Upon reception, the peer side answers a HEARTBEAT chunk with a HEARTBEAT ACK Chunk.
When the sender side receives this answer, the path is known to work.

3.5 Multi-Streaming

A further important feature of SCTP is the so-called Multi-Streaming. SCTP supports the multiplex-
ing of up to 65,535 (i.e. 216 − 1) unidirectional, independent data flows – denoted as Streams – for
each transfer direction over a single association. The number of these streams is negotiated at as-
sociation setup. Since streams are independent, SCTP does not need to take care of sequential data
delivery across streams. This avoids the problem of Head-of-Line Blocking: if data of a stream is

56 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.5: The Structure of a DATA chunk

delayed (e.g. if it has to be retransmitted), a coexisting stream does not have to wait for this data. An
example is provided in Figure 3.4: EndpointA uses n streams to EndpointB. If the packet containing
DATA chunks of streams #2 and #n gets lost, only stream #2 and stream #n would have to wait for a
retransmission before an ordered delivery of subsequent DATA chunks within these streams. There is
no need to delay delivery within the other streams.

3.6 Segmentation and Reassembly

SCTP provides segmentation and reassembly by segmenting the datagrams – which are denoted as
Messages in the terminology of SCTP – into DATA chunks. The structure of such a DATA chunk is
depicted in Figure 3.5.

A 32-bit sequence number (see Section 2.6) – called Transport Sequence Number (TSN) – is used
to uniquely enumerate the DATA chunks. The initial TSNs for each transport direction are randomly
selected and negotiated during association setup. When a message gets segmented, consecutive TSNs
are allocated to the resulting DATA chunks. That is, a DATA chunk constitutes a segment of SCTP,
in contrast to TCP using a byte as segment. This property becomes important for congestion control,
as will be explained in Section 3.8. The first DATA chunk of a message is marked by a set “Begin of
Message” bit (B-bit) within the Flags field; the last DATA chunk is marked by the “End of Message”
bit (E-bit). Since the TSNs of a message are consecutive, message framing can be preserved during
reassembly.

SCTP supports multi-homing, and the DATA chunks of a message may possibly take different
paths (e.g. due to a retransmission). Therefore, segmentation – as introduced in Section 2.7 – is per-
formed by using the so-called Smallest Path MTU. It denotes the smallest known MTU of any of
the paths belonging to the association, found out by path MTU discovery as described in Subsec-
tion 2.13.2. It should therefore be a safe setting. However, for the – probably extremely rare – case
of an abrupt decrease of an MTU, SCTP relies on the underlying Network Layer protocol to seg-
ment already-created DATA chunks appropriately. This avoids the introduction of high complexity to
re-allocate TSNs in order to handle this event.

The number of the stream a DATA chunk belongs to is given in the Stream Identifier field; the
Stream Sequence Number (SSN) is a 16-bit sequence number that provides the sequence of a mes-
sage for ordered delivery within its stream (starting from zero). SCTP provides ordered as well as

3.7. RELIABLE TRANSFER 57

Figure 3.6: The Structure of a SACK Chunk

unordered delivery per message. The “Unordered” bit (U-bit) within the Flags field denotes whether
the message of the DATA chunk must be delivered in-sequence (U=0, i.e. ordered delivery) or may be
delivered out-of-sequence (U=1, i.e. unordered delivery).

The Payload Protocol Identifier (PPID) provides the number of the upper-layer protocol trans-
ported via SCTP. That is, within a single stream, multiple different upper-layer protocols may be
multiplexed; the PPID can be used to differentiate among these protocols. The IANA runs a registry
for SCTP PPIDs1 (see also Subsubsection 2.12.3.2). Last entry of the DATA chunk is the variable-
length User Data field. It contains the actual segment payload.

3.7 Reliable Transfer

Besides the segmentation and reassembly, the TSNs are also used for providing reliable transfer using
a sliding-window-based mechanism with selective repeat. The necessary acknowledgement mecha-
nism is realised by a SACK Chunk, containing a selective acknowledgement. Its structure is depicted
in Figure 3.6.

The Cumulative Acknowledgement field contains the CumAck for the highest in-sequence TSN
received. Further TSN GapAck ranges may be provided as variable-length list, defining the first
and the last GapAck’ed TSN of a block. The number of these blocks is given in the Number of
GapAck Blocks field. Furthermore, the SACK may contain the TSNs of DATA chunks which have
been received multiple times (i.e. being duplicates), as variable-length list of Duplicate TSNs. The
number of these duplicate TSN entries is given in the Number of Duplicate TSNs field.

SCTP furthermore applies the protocol mechanisms of bundling (see Subsubsection 2.9.3.3), pig-
gybacking (see Subsubsection 2.9.3.2), delayed acknowledgement (see Subsubsection 2.9.3.1) and
fast retransmission (see Subsubsection 2.9.3.4) with fast recovery (see Subsubsection 2.11.2.2). Since

1IANA SCTP Parameters Registry: http://www.iana.org/assignments/sctp-parameters.

http://www.iana.org/assignments/sctp-parameters

58 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.7: A Selective Acknowledgement Example

multiple chunks may be placed in a single packet, SCTP delays the transfer of a new packet by de-
fault for up to 200 ms, in order to try utilising a complete MTU. Furthermore, a SACK chunk is by
default generated only for every second received packet containing a DATA chunk (i.e. the number
of DATA chunks in these packets is not relevant), being received within 200 ms of the arrival of
any unacknowledged DATA chunk (see also [Ste07, Subsection 6.2]). These mechanisms reduce the
acknowledgement overhead. But when receiving a DATA chunk having an out-of-sequence TSN, a
SACK chunk is sent immediately. This is useful to quickly tell a sender about missing DATA chunks.
Missing DATA chunks are handled in two different ways:

• Once a DATA chunk has been reported as missing for three times (by default), it is retransmitted
immediately on the same path as fast retransmission (as defined in [Ste07, Subsection 7.2.4];
see also Subsubsection 2.9.3.4).

• Any further retransmissions are timer-based retransmissions (see also Subsubsection 2.9.3.4).
If possible, they should use alternative paths (because the original path seems to have problems,
since two previous transmissions have been lost already).

A SACK chunk is also used for flow control (see also Section 2.10): the Advertised Receiver
Window field contains the number of payload bytes (i.e. not DATA chunks or messages) which are
still acceptable by the receiver. Note, that from the perspective of an implementer, this value is usually
based on a heuristic: e.g. 1,000 bytes in messages of 1 byte require significantly more storage space
than a single message of 1,000 bytes. See also [Ste07] for more details on this subject.

The need to possibly free buffer space occupied by already GapAck’ed DATA chunks leads to
so-called Reneging. Figure 3.7 shows a SACK example, consisting of a CumAck for TSN #2 and
GapAcks for TSN #4 to TSN #7. TSN #3 is still needed to perform an advancement of the Cum-
Ack. While CumAcks are obviously non-renegable, the receiver may revoke GapAcks, in this case:
TSN #8. This may e.g. happen when the receive buffer gets too full to store earlier chunks being
necessary for the next CumAck. Although reneging usually occurs rarely, since implementations try
to avoid reneging for efficiency reasons, the sender must always be prepared to reneg GapAck’ed
TSNs. That is, GapAck’ed chunks must remain stored in the send buffer, although these chunks are
not currently being outstanding any more.

3.8 Congestion Control

SCTP uses a window-based congestion control with AIMD behaviour including appropriate byte
counting (see Subsubsection 2.11.2.1) and fast recovery (see Subsubsection 2.11.2.2) for each path

3.9. BURST MITIGATION 59

independently. However, two differences apply:

1. SCTP has no specific MSS, since its chunks have a variable size. Instead of a MSS, the conges-
tion control for path P uses the MTU of path P , denoted as MTUP .

2. Since SCTP uses DATA chunks as its segments, which are created during segmentation and are
therefore fixed in size (see Section 3.6), the minimum useful congestion window setting is one
smallest path MTU. In contrast, TCP uses bytes as segments; its congestion window may be a
fraction of one MSS.

That is, on α newly acknowledged bytes on path P in a fully-utilised congestion window cP for
slow-start threshold sP , cP is increased – as defined in [Ste07, Subsubsection 7.2.1 and Subsubsec-
tion 7.2.2] – as follows:

cP = cP +

{
min{α,MTUP } (cP ≤ sP)

MTUP (cP > sP ∧ pP ≥ cP)
.

The variable pP is the “partially acknowledged” counter for path P in congestion avoidance mode (see
Subsubsection 2.11.2.1). In case of a retransmission (i.e. fast or timer-based) on path P , sP and cP
are reduced – as defined in [Ste07, Subsubsection 7.2.3] – as follows:

sP = max

{
cP −

1

2
∗ cP , 4 ∗MTUP

}
,

cP =

{
sP (Fast Retransmission)
MTUP (Timer-Based Retransmission)

.

The RTO is dynamically calculated for each path separately, as described in Subsection 2.11.4.
Furthermore, RFC 4960 introduces lower and upper bounds – denoted as RTO.Min and RTO.Max –
in [Ste07, Subsubsection 6.3.1]. That is, whenever the computed RTO is less than RTO.Min, it is
rounded up to RTO.Min. Analogously, whenever the computed RTO exceeds RTO.Max, it is rounded
down to RTO.Max. The default settings are RTO.Min=1 s and RTO.Max=60 s (as defined in [Ste07,
Section 15]). Further details on the SCTP congestion control can be found in [Ste07, Section 7].

SCTP also supports ECN (see Subsection 2.11.5); the exact behaviour is described in [Ste07,
Appendix A]. Since ECN is not relevant within the context of this thesis, a further introduction is
omitted here.

3.9 Burst Mitigation

In certain situations, a SACK may newly CumAck or GapAck a larger amount of TSNs, correspond-
ing to multiple MTU-sized packets. This may e.g. happen when SACKs get lost, or because of timer-
based retransmissions: the receiver may get some DATA chunks on an alternative, longer-delay path.
According to the SACK handling rules of SCTP (see [Ste07, Subsection 6.7]), delayed acknowl-
edgement defines that the path for sending a SACK is the last DATA chunk reception path. If some
consecutive SACKs take a long-delay path, a newly sent SACK over a low-delay path may arrive at
the DATA chunk sender first. This SACK, of course, newly acknowledges all DATA chunks, includ-
ing the DATA chunks which have triggered the – yet not arrived – SACKs on the long-delay path.
Due to the sudden fall in the number of Outstanding Bytes (i.e. the amount of yet unacknowledged
data), the sender may immediately fill the gap between outstanding bytes and congestion window by

60 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.8: The Chunk Sequence of the SCTP Association Teardown

sending new DATA chunks. Of course, this leads to a burst of newly transmitted data – and possibly
to congestion within the network.

[Ste07, Subsection 6.1] suggests to apply so-called Burst Mitigation (i.e. this feature is optional):
before sending out new DATA chunks on path P , the sender should adapt its congestion window cP :

cP =

{
OutstandingP + MaxBurst ∗MTUP (OutstandingP + MaxBurst ∗MTUP < cP)

cP (else)
.

MaxBurst denotes the maximum number of packets which may be sent in a burst. The suggestion
from [Ste07, Section 15] is MaxBurst=4. That is, the sender must always utilise its congestion win-
dow cP with outstanding bytes on path P (denoted by OutstandingP), with a tolerance of four times
the MTU; otherwise, it will be reduced. Due to this behaviour, the suggested mechanism is denoted
as “Use It or Lose It” by [AB05].

3.10 Association Teardown

At the end of an SCTP communication, an association is normally terminated by a three packet
exchange – as shown in Figure 3.8 – based on the SHUTDOWN, SHUTDOWN ACK and SHUT-
DOWN COMPLETE Chunks. This is the reliable form of an association teardown. It ensures that all
sent user messages are received by the peer.

SCTP also provides the possibility of a “hard” break of an association, terminating the association
immediately and taking message loss into account. This is performed by an ABORT Chunk.

3.11 Protocol Extensions

As explained in Section 3.2, SCTP can be extended easily by adding new chunk types. Multiple
protocol extensions are existing – some as RFCs, some still as Internet Drafts – for additional features.

3.11. PROTOCOL EXTENSIONS 61

3.11.1 Chunk Authentication

The Chunk Authentication extension defined in [TSLR07] as RFC 4895 provides the possibility to
authenticate selected types of chunks, by using a signature key combined of a key negotiated at asso-
ciation setup (i.e. being transferred as part of the handshake procedure; see also Section 3.3) and an
optional pre-shared key (i.e. not transferred as part of the association). Chunk authentication can be
applied to avoid attacks based on modification of the chunks of an association. It protects the integrity
and authenticity of the chunks, but not their confidentiality.

3.11.2 Dynamic Address Reconfiguration

[SXT+07] defines the Dynamic Address Reconfiguration extension as RFC 5061. It allows to add and
remove Network Layer addresses during association lifetime. Furthermore, it can notify a peer to set
a certain path as primary path. A particular use case for dynamic address reconfiguration is endpoint
mobility, i.e. it can be used to provide a seamless handover without the need of any support by the
underlying Network Layers.

Since dynamic address reconfiguration would allow an attacker to hijack an association (by adding
its own address and removing all other ones), the usage of the chunk authentication extension de-
scribed in Subsection 3.11.1 is mandatory.

3.11.3 Partial Reliability

The Partial Reliability extension defined in [SRX+04] as RFC 3758 provides the possibility of so-
called Partially Reliable Transfer, i.e. an intermediate step between unreliable and reliable transfer
(see Section 2.9). According to a configurable Retransmission Policy for each message using partially
reliable transfer, retransmissions are tried. If these retransmissions are not successful, the receiver
side is finally told to ignore the missing message(s) and go ahead. This is realised by the FOR-
WARD TSN Chunk, containing a new cumulative TSN up to which all former messages are to be
ignored.

A retransmission policy is completely realised at the sender side. While [SRX+04] only defines a
limitation of the message lifetime, other variants – like limiting the number of retransmission trials –
are also possible and used by some implementations (see also [DRS+11]).

3.11.4 Stream Reset

At association setup, the number of streams in each transport direction is negotiated. Furthermore, the
SSN of each stream starts at zero. Some kinds of applications need to be able to increase the number
of streams, as well as to reset the SSN of a stream, during association lifetime. These functionalities
are provided by the Stream Reset extension defined in [STL12] as RFC 6525.

3.11.5 Non-Renegable Selective Acknowledgement

GapAcks in SACK chunks are renegable, i.e. GapAck’ed DATA chunks must remain in the send
buffer until acknowledged by a CumAck. In order to non-renegably GapAck DATA chunks, the
Non-Renegable Selective Acknowledgement (NR-SACK) extension defined in [EAN+11] as Internet
Draft introduces the so-called NR-SACK Chunk. It is analogue to the SACK chunk described in
Section 3.7, but further adds non-renegable GapAck blocks. DATA chunks being acknowledged by a

62 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Figure 3.9: A Non-Renegable Selective Acknowledgement Example

non-renegable GapAck may be deleted from the send buffer immediately. NR-SACK therefore saves
send buffer space.

Figure 3.9 provides an example: the CumAck for TSN #2 cumulatively acknowledges the TSN #1
and TSN #2. Furthermore, TSN #4 and TSN #5 are non-renegably GapAck’ed and their corre-
sponding DATA chunks may also leave the send buffer – without waiting for TSN #3. However,
the DATA chunks corresponding to TSN #6 and TSN #7 must still wait – they are normally Gap-
Ack’ed (i.e. renegable). Furthermore, TSN #8 has been reneged. An evaluation of NR-SACK and
further details can be found in [NEY+08].

3.11.6 SACK Immediately

Delayed acknowledgement (see Subsubsection 2.9.3.1) improves the transport efficiency, but intro-
duces additional delay. In some cases, it may be useful that a SACK for a DATA chunk is not delayed,
but immediately sent. For example, if a DATA chunk is the last one of a sequence, there are no further
DATA chunks to wait for. The SACK Immediately extension defined as Internet Draft in [TRS11] de-
fines the “SACK Immediately” bit (I-bit) for the Flags field of the DATA chunk (see also Section 3.6).
If I=1, the receiver is requested to send a SACK chunk without delay. An evaluation of this extension
can be found in [Rün09].

3.11.7 Secure SCTP

In order to also protect the confidentiality of SCTP messages – in addition to integrity and authenticity
as also provided by chunk authentication (see Subsection 3.11.1) – the Secure SCTP extension defined
in [HDU12] as Internet Draft adds encryption and authentication mechanisms to SCTP. A detailed
introduction and evaluation is provided in [HRUT07, Unu05, URJ04].

3.11.8 Packet Drop Reporting

Corrupted SCTP packets are simply dropped. However, since lost DATA chunks are assumed to
be the result of congestion (see Subsection 2.11.2), the congestion control reduces the congestion
window – which leads to a reduced throughput. The Packet Drop Reporting extension defined as
Internet Draft in [SLT12] allows a receiver, as well as intermediate systems (e.g. satellite routers), to
report a corrupted SCTP packet to its sender, in form of a PKTDROP Chunk. That is, it realises a

3.12. COMPATIBILITY AND INTEROPERABILITY 63

negative acknowledgement mechanism, as introduced in Subsubsection 2.9.3.5. Then, the sender may
retransmit the corresponding packet as soon as possible, without reducing the throughput. A detailed
evaluation of this extension is provided by [RTR09].

3.11.9 “Potentially Failed” Path State

A performance improvement on path failures can be achieved by the Potentially Failed Path State
extension, which is proposed in [NEA+08] and defined as Internet Draft in [NN11]. When a path
is considered unreliable, it enters the “Potentially Failed” state. In this state, it is not used for any
new data transmissions, thus avoiding a performance degradation until the failed path gets actually
deactivated by a timeout. Some further details on SCTP path failure handling and its performance are
provided by [FJQ+08, JRT02].

3.11.10 Concurrent Multipath Transfer

The concurrent multipath transfer extension, which is shortly denoted as CMT-SCTP, provides the
CMT functionality which will be introduced in detail in Section 4.2. CMT-SCTP is defined as Internet
Draft in [ABD+12].

3.12 Compatibility and Interoperability

Besides the protocol extensions defined in Section 3.11, there are some further documents on SCTP,
defining mechanisms and procedures for compatibility and interoperability with other protocols and
systems.

3.12.1 Application Programming Interface

The Application Programming Interface (API) of SCTP is defined in [STP+11] as RFC 6458. This
document also contains the API definitions for most of the protocol extensions described in Sec-
tion 3.11. An introduction to SCTP programming can be found in [SX01].

3.12.2 UDP Encapsulation

The Internet Draft [TS12] defines the encapsulation of SCTP packets into UDP packets. This mech-
anism may be applied to traverse firewalls not allowing SCTP traffic, or to use SCTP on non-SCTP-
capable operating systems. For example, UDP encapsulation is applied by [DZB+10, DR07] to run
SCTP applications in the PLANETLAB – a platform only allowing UDP and TCP packets.

3.12.3 Checksum Offloading

In comparison to Internet-16 or Adler-32, the computation of CRC-32C checksums requires signifi-
cantly more CPU power (see also Subsection 2.5.1). However, new NIC chipsets – like the Intel 82576
chipset – provide the capability to compute CRC-32C sums in hardware, leading to a relief of the CPU.
Obviously, this feature of advanced NIC chipsets may be used by SCTP implementations to perform
so-called Checksum Offloading. That is, SCTP checksums for outgoing and incoming SCTP packets
are calculated by the NIC, instead of using the CPU.

An overview, and further details on the SCTP protocol extensions and the ongoing work on SCTP
standardisation, have also been published in [DRS+11].

64 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

Feature Linux FreeBSD MacOS Windows Solaris sctplib OMNeT++

Standard SCTP (RFC 4960) yes yes yes yes yes yes yes
Explicit Congestion Notification yes yes yes yes no no no
Chunk Authentication yes yes yes yes yes no yes
Dynamic Address Reconfiguration yes yes yes yes yes exp. yes
Partial Reliability yes yes yes yes yes yes yes
NR-SACK no yes yes yes no no yes
SACK Immediately no yes yes yes no no yes
Secure SCTP no no no no no exp. no
Stream Reset no yes yes yes no no yes
Packet Drop Reporting no yes yes yes no no yes
“Potentially Failed” Path State no yes yes yes no no no
CMT-SCTP no yes yes yes no no yes
UDP Encapsulation no yes yes yes no yes no
SCTP API yes yes yes yes mostly yes (not useful)
Checksum Offloading yes yes no no yes no (not useful)

Table 3.1: An Overview of SCTP Implementations and Supported Features

3.13 Implementations

Table 3.1 provides an overview of the features provided by the major SCTP implementations, as of
March 2012:

Linux Kernel SCTP in the Linux kernel 3.32,

FreeBSD Kernel SCTP in the FreeBSD release 9.03,

MacOS X Kernel SCTP for Apple MacOS 10.74 (based on the FreeBSD kernel implementation),

Windows Kernel SCTP for Microsoft Window XP, Vista and 75 (based on the FreeBSD kernel im-
plementation),

Solaris Kernel SCTP in OpenSolaris 2009.066,

SCTPLIB Userland SCTP stable release 1.0.117, as well as

OMNeT++/INET Simulation Model development version8 (to be described in detail in Chapter 5).

3.14 Application Scenarios

In the following, some important SCTP application scenarios will be introduced shortly, in order to
show where the features of SCTP and its extensions are used.

2ftp://ftp.kernel.org/pub/linux/kernel/v3.0/.
3http://www.freebsd.org/.
4http://sctp.fh-muenster.de/sctp-nke.html, not officially supported by Apple.
5http://www.bluestop.org/SctpDrv/, not officially supported by Microsoft.
6http://www.opensolaris.org/.
7http://www.sctp.de/sctp.html; “experimental” features only available in experimental versions.
8See [DBPR10b]; public version to be released soon.

ftp://ftp.kernel.org/pub/linux/kernel/v3.0/
http://www.freebsd.org/
http://sctp.fh-muenster.de/sctp-nke.html
http://www.bluestop.org/SctpDrv/
http://www.opensolaris.org/
http://www.sctp.de/sctp.html

3.14. APPLICATION SCENARIOS 65

3.14.1 SS7 over IP Networks

The initial motivation for SCTP has been the transport of telephone signalling over IP networks, based
on the Signalling System No. 7 (SS7) introduced by [ITU93]. Such telephone signalling has very strict
availability requirements, e.g. in order to still handle emergency calls even when some signalling
components fail. [Jun05, Subsection 2.1.3] describes these requirements in detail. Particularly, the
SS7 transport requires support for multi-homing, multi-streaming, datagram-oriented transfer (i.e.
preservation of message framing) and per-message configurable ordered/unordered delivery. Clearly,
TCP has not been able to fulfil the requirements. This has led to the standardisation of SCTP by the
IETF SIGTRAN WG (see also Subsubsection 2.12.3.1).

3.14.2 IP Flow Information Export

Another SCTP-based application is the IP Flow Information Export (IPFIX) architecture defined
in [SBCQ09] as RFC 5470, with the IPFIX protocol defined in [Cla08, QBC+08, TB08] as RFCs 5101
to 5103. IPFIX provides the export of information about flows running through a network, which are
collected by so-called Observation Points (e.g. routers or special monitoring devices), to so-called
Collectors. A collector may use this information for accounting, billing or debugging purposes.

IPFIX makes use of SCTP because of its reliability features. Furthermore, the partial reliability
extension (see Subsection 3.11.3) may be applied to avoid overload situations: if the current amount of
generated flow information cannot be exported to a collector any more, the partial reliability extension
may drop old information in favour of new data. That is, the export is not blocked to reliably transfer
old data (which may be out of date already). Instead, new (i.e. up to date) flow information may be
sent. More details on IPFIX and SCTP can be found in [Cla08, Subsection 10.2].

3.14.3 Reliable Server Pooling

Another notable SCTP application is Reliable Server Pooling (RSerPool), which has been standard-
ised by the IETF RSerPool WG (see Subsubsection 2.12.3.1) in [LOTD08, SXST08a, XSS+08,
SXST08b, DT08, DM09] as RFCs 5351 to 5356 and RFC 5525. It provides a lightweight frame-
work for server redundancy and session failover, in order to support availability-critical applications
as well as load balancing.

Since RSerPool is used for the simulation tool-chain described in Appendix B, a brief overview
will be presented in Appendix A. More detailed introductions to RSerPool are provided by [Dre11,
DR09, DR08b, Dre07].

3.14.4 Further Application Scenarios

As described in [DRS+11], SCTP provides the same service as TCP, plus a set of advanced features
to utilise the enhanced capabilities of modern IP networks and to support increased application re-
quirements. That is, SCTP may be deployed in all application cases where TCP is currently used. By
just replacing the Transport Layer, from TCP to SCTP, applications may already take benefit of fea-
tures like multi-homing, dynamic address reconfiguration, the enhanced security of 4-way handshake
and verification tag as well as the improved detection of data corruption by CRC-32C. With increas-
ing maturity of SCTP implementations, more and more applications may use SCTP in the future, as
suggested by [DR08c].

66 CHAPTER 3. THE STREAM CONTROL TRANSMISSION PROTOCOL

3.15 Summary

In this chapter, the core SCTP protocol as well as the existing protocol extensions have been in-
troduced. Furthermore, a brief overview of available SCTP implementations and SCTP application
scenarios has been given.

Chapter 4

Multipath Transfer

This chapter introduces multipath transfer, and in particular the corresponding extension for SCTP.
Here, the state of the art before begin of this habilitation project is presented. Optimisations and
extensions which are the result of this project are described together with the evaluations in Chapter 7
and Chapter 8. Furthermore, an overview of alternatives and related work to SCTP-based multipath
transfer is presented.

4.1 Introduction

As motivated in Section 1.1, the existence of multiple addresses per endpoint may lead to multiple
paths among endpoints. It is therefore desirable to apply so-called Load Sharing to distribute traf-
fic among the – possibly disjoint – paths, in order to improve the application payload throughput.
Approaches for load sharing may be applied on different layers of the OSI reference model (see Sub-
subsection 2.2.3.1). The following short overview of the approaches on the different layers uses the
terminology which has been defined formally in Section 2.1.

4.1.1 Data Link Layer Approaches

The application of multipath transfer on the Data Link Layer is quite straightforward: multiple links
are bundled to appear to the Network Layer as a single, high-capacity one. That is, data is split up
appropriately (e.g. by packets, bytes or bits), transferred over the links and joined at the peer side.
Clearly, approaches based on the Data Link Layer are specific for one transfer technology.

The approach of multipath transfer on the Data Link Layer is commonly used for ISDN (see Sub-
section 2.12.1 and in particular [Tan96, Section 2.5]), which allows to bundle two 64 Kbit/s channels
to a 128 Kbit/s channel.

4.1.2 Network Layer Approaches

The idea of applying load sharing on the Network Layer, which is independent of the underlying
transfer technologies, is already quite old. The approach of Dispersity Routing by [Max75] splits up
packets into sub-packets, which are sent over different paths. Also, it distinguishes between redundant
and non-redundant dispersity routing: the redundant variant sends copies of the sub-messages on other
paths, in order to increase the probability that the whole packet can be reassembled, even when some
sub-packets get damaged or lost. Due to evolution of the network technologies, the idea of dispersity
routing has become less useful and more difficult to implement, as it is reasoned by [Max07] in detail.

67

68 CHAPTER 4. MULTIPATH TRANSFER

Today, the common approach of load sharing on the Network Layer is to distribute whole packets
to different paths. Since the window-based congestion control (as described in Subsection 2.11.2) is
based on the assumption that a path usually uses the same trail, packet reordering is considered as a
sign of congestion. Therefore, the relevant approaches typically use a hash over parts of the Network
Layer PCI (e.g. destination and source IP addresses) to define a mapping of packet flows to trails.
Practical solutions for such a mapping are introduced by [TH00, Section 4]. They are commonly
applied for so-called Equal-Cost Multi-Path (ECMP) routing, which means that a routing protocol
computes multiple trails. Then, routers distribute traffic among all trails having the same least cost.
One possible approach for ECMP is defined in [Hop00] as RFC 2992.

Multipath routing is also an interesting approach in the context of sensor networks. Here, data
is primarily sent over multiple paths for redundancy reasons, in order to improve the reliability of a
data transfer. However, newer approaches – such as a system for weather measurements presented
by [RMMG11] – also consider load sharing, in order to improve the data throughput. An overview of
approaches for ad-hoc networks is presented by [DV06, TH01], with a focus on the efficient handling
of frequent topology changes.

Of course, from the perspective of the Transport Layer, a certain Transport Layer flow – like a TCP
connection or an SCTP association – uses the same path on the Network Layer. That is, load sharing
on the Network Layer results in an Inter-Flow Load Sharing: only packets of different Transport Layer
flows may take distinct paths. This also means that the QoS characteristics of different Transport Layer
flows (i.e. throughput, delay, etc.; see also Section 2.4) may vary, e.g. two TCP connections – one via
a slow, the other one via a fast path – will observe dissimilar bandwidths. The end-to-end effects of
Internet path selection are examined in detail by [SCH+99]. Therefore, inter-flow load sharing is also
often denoted as Load Spreading.

A Network Layer approach for multipath transfer may also hide the existence of multiple paths
from the Transport Layer, in order to keep the corresponding protocols unmodified. This approach –
denoted as identifier/locator split – will be introduced in some more detail in Section 4.4.

4.1.3 Transport Layer Approaches

The idea of inter-flow load sharing, as applied by the Network Layer approaches, may also be trans-
ferred to the Transport Layer. As example, the approach of Multipath Aware TCP by [DZT06] lets an
adapted TCP protocol choose the outgoing path for each connection separately, based on up-to-date
path information (RTTs and packet losses) collected by the TCP protocol itself.

Intra-flow load sharing is the more important and interesting approach on the Transport Layer.
Unlike inter-flow load sharing, it allows to utilise the bandwidths of multiple paths to enhance the ap-
plication payload throughput of a single Transport Layer flow. Notable approaches are the following:

• The Reliable Multiplexing Transport Protocol by [MK01] applies load sharing among the paths
of a transport connection to improve the throughput of bulk data transfers over low-speed wire-
less access technologies. The protocol is rate-based, i.e. it behaves very differently from the
window-based congestion control (see Subsection 2.11.2) applied in the Internet.

• Parallel TCP by [HS02] applies the striping of a connection to TCP-like so-called mircoflows
over different paths. The striping is based on the bandwidth of each path P , which is computed
as the ratio cP

RTTP
of congestion window cP and round-trip time RTTP (see also Subsubsec-

tion 2.9.2.3). A control component handles the interaction among the microflows.

4.1. INTRODUCTION 69

• The mTCP approach by [ZLK+04] is similar to Parallel TCP, but with emphasis on the robust-
ness of the data transfer against path failures. It also addresses the fairness issue on shared
bottlenecks (see Subsection 1.2.2) by performing ICMP-based traceroute measurements
(see [KR08, Section 1.4] and [Mal93, Section 1]), in order to try a detection of such bottle-
necks. However, this measurement approach is only applicable in carefully set up networks.
The Internet – containing e.g. IPv6 over IPv4 tunnels, firewalls, routers not supporting these
measurements, etc. – prevents a reliable detection of shared bottlenecks by such measurements.

The described research approaches are not applied in practise. However, they have influenced the
two approaches relevant in the currently ongoing IETF activities on multipath transport: CMT-SCTP
as well as MPTCP. Since these approaches are also relevant in the context of this thesis, they will be
introduced in some more detail in Section 4.2 (CMT-SCTP) and Section 4.3 (MPTCP).

4.1.4 Higher-Layer Approaches

Similar to the striping of data transfers among multiple paths on the Transport Layer, this functionality
may also be applied on higher layers of the OSI reference model. However, the difficulty in this case
is that – for efficient operation – a tight interaction with the Transport Layer is required. That is,
the striping of flows via different paths particularly requires mechanisms to avoid that the flow and
congestion control on one path may block the whole communication. Some notable approaches are
the following:

• [HAN02] uses striping over multiple TCP connections – which are transported over the same
path – in order to improve the throughput of a bulk data transfer. This approach mitigates the
impact of non-congestion losses, but directly implies unfairness to concurrent standard TCP
connections.

• [SBG00] applies striping similar to the approach by [HAN02], with the focus on using TCP
implementations not being state-of-the art. That is, since the maximum achievable through-
put with a sliding-window-based reliable transfer is limited by the bandwidth-RTT product, as
described in Subsubsection 2.9.2.3, and old TCP implementations limit the maximum send win-
dow to typically at most 64 KiB (as explained in [JBB92, Subsection 1.1]), a striping approach
on top of such TCP implementations can improve the performance. Therefore, this approach
is of practical usefulness in situations where the problem source – which is the limitation of
the TCP implementation – cannot be solved, e.g. when a proprietary operating system does not
support state-of-the-art TCP.

• A similar striping approach is also used by [AKO97], with the focus on improving the through-
put performance over a satellite link.

• Multi-Connection TCP by [Sch10] introduces a striping protocol on top of TCP, with some
flow control extensions to the TCP protocol itself. Each sub-connection uses another path.
That is, this approach extends the striping ideas by the possibility to use different paths. Paths
may or may not be disjoint, leading to the fairness issue on shared bottlenecks, as described in
Subsection 1.2.2.

The necessary cross-layer interaction for higher-layer striping approaches blurs the borders among
the layers and makes the management complex. Particularly, from an implementer’s perspective, the
proposed approaches also need a high interaction between the kernel (which provides the transport

70 CHAPTER 4. MULTIPATH TRANSFER

Figure 4.1: Applying Multipath Transfer for SCTP with the CMT-SCTP Extension

protocol) and the userland (which realises the striping functionality). Some more details on the prob-
lems of higher-layer approaches for multipath transfer are presented in [HS02, Section 4.3]. Since
none of the described approaches has a practical relevance, a further discussion is omitted here.

4.2 CMT-SCTP – Multipath Transfer for SCTP

The application of multipath transfer on the Transport Layer seems to be the most practicable solution
when intra-flow load sharing is desired. Applying SCTP as Transport Layer protocol, the usage of
multipath transfer seems – at least at first sight – quite straightforward.

4.2.1 Basic Approach

Since SCTP supports multi-homing, an SCTP entity just has to distribute its DATA chunks among
all of its paths, instead of using a designated primary path. The principle is illustrated in Figure 4.1.
Clearly, this is also the approach of the Concurrent Multipath Transfer extension for SCTP suggested
by [IAS06], which is further denoted as CMT-SCTP.

CMT-SCTP assumes that all paths are disjoint, i.e. the trails actually used for routing must be
disjoint (see also Subsection 2.1.4). This requires a careful configuration of the routing within the
network. Having disjoint paths, the SCTP congestion control – as introduced in Section 3.8 – may be
reused without any change.

However, just modifying standard SCTP to send its DATA chunks over multiple paths leads to a
very poor throughput performance. In order to perform multipath transfer efficiently, three additional
optimisations are necessary and included in CMT-SCTP as described by [IAS06]. These mechanisms
will be introduced in the following, based on examples which have also been published in [DBPR10b].

4.2.2 Split Fast Retransmission

When sending over multiple paths, DATA chunks may overtake each other due to different path delays.
An example is illustrated in Figure 4.2: sending TSN #9 over Path #1 and TSN #10 to TSN #12 over

4.2. CMT-SCTP – MULTIPATH TRANSFER FOR SCTP 71

Figure 4.2: The Challenge of Fast Retransmission with CMT-SCTP

Path #2, the receiver may first see the TSN #10 to TSN #12, while TSN #9 is still on its travel through
the network. Consequently, it will notice three out-of-sequence TSNs and acknowledge each one –
as described in Section 3.7 – with a CumAck for TSN #8 (i.e. the last in-sequence TSN) and corre-
sponding GapAcks for the already-received TSNs #10 to #12. Then, the sender sees three CumAcks
for the same TSN and therefore triggers a fast retransmission – which requires a retransmission of
TSN #9 and leads to a reduction of the congestion window. When finally the original TSN #9 arrives
at the receiver, the following retransmitted chunk – being a duplicate – can be ignored (i.e. network
bandwidth has been wasted), and the congestion window has to grow again (i.e. time will be wasted).

The solution to this problem – denoted as Split Fast Retransmission – is reasonably simple: the
SACK handling has to take care of the individual paths. For each transmitted DATA chunk, the path
on which it has been sent is remembered. On reception of a SACK, the path P of a chunk with
TSN τMissing reported as missing is checked. TSN τMissing is only assumed as missing if τMissing is
smaller than the TSN of the highest successfully acknowledged chunk τPHighestAckedOnPath on path P .
Since both, the chunks with TSNs τMissing and τPHighestAckedOnPath have been transmitted on path P ,
and the later TSN τPHighestAckedOnPath has been received successfully, TSN τMissing is probably lost.
Otherwise, there is nothing to do.

In the example above, this means that TSN #9 would be fast retransmitted if a new TSN #13 on
Path #1 would have been acknowledged while still awaiting TSN #9.

4.2.3 Congestion Window Update for CMT

When a new CumAck has been received, the congestion window may grow, as explained in Sec-
tion 3.8. On the reception of SACKs with the same CumAck’ed TSN, the congestion window is left
unchanged. An example is illustrated in Figure 4.3, where EndpointA sends the chunks with TSN #13
and TSN #14 over Path #1 to Endpoint B. The chunks with TSNs #15 to #18 use Path #2. Due to
congestion and reordering, the chunks with TSNs #14 and #17 do not arrive before a SACK chunk is
sent back to Endpoint A. This SACK contains a CumAck for TSN #13 (i.e. all chunks up to TSN #13
have been received successfully) and GapAcks for the TSNs #15, #16 and #18.

If EndpointA applies the congestion window update strategy of standard SCTP, it sees an increase
of the CumAck to TSN #13. That is, the SACK has acknowledged one TSN on Path #1 and the sender
may grow the congestion window of Path #1. However, the congestion window on Path #2 would not
increase, since TSN #14 – which has been sent on the other path – is still unacknowledged. Also,

72 CHAPTER 4. MULTIPATH TRANSFER

Figure 4.3: The Challenge of Congestion Window Updates with CMT-SCTP

the congestion window handling of later SACKs will only take care of newly acknowledged TSNs.
That is, when the missing TSNs are eventually acknowledged later, the window must not grow. This
restriction is necessary to avoid sudden increases of the congestion window leading to bursts of newly
sent data (see also Subsubsection 2.11.2.1).

In order to improve the efficiency of CMT-SCTP, the Congestion Window Update for CMT strat-
egy takes the existence of different paths into account. On reception of a SACK, it looks for the
earliest outstanding TSN on each path. For the example in Figure 4.3, this is TSN #14 on Path #1 and
TSN #17 on Path #2. Therefore:

1. On Path #1, the SACK has newly acknowledged the TSN #13 – i.e. one new TSN has been
acknowledged and the congestion window on Path #1 may grow accordingly.

2. On Path #2, there are no outstanding TSNs smaller than TSN #15; the TSNs #15 and #16
have been acknowledged newly. Therefore, the congestion window on Path #2 may also grow
accordingly. Note, that TSN #17 cannot be assumed as lost here yet – it may just be reordered.
On reception of the – by default – third SACK reporting it as missing, a fast retransmission
would be scheduled.

Since the CMT congestion window update strategy maintains a virtual CumAck for each path, it
is also denoted as PseudoCumAck. A further improvement – denoted as Congestion Window Update
for CMT, version 2 – also takes care of TSNs being retransmitted. When there is a retransmission of
a TSN on a path differing from the original one, the update strategy cannot reliably keep track of the
PseudoCumAck of either path. Therefore, the improved version makes a distinction between TSNs

4.2. CMT-SCTP – MULTIPATH TRANSFER FOR SCTP 73

Figure 4.4: The Challenge of Delayed Acknowledgement with CMT-SCTP

which have been transmitted only once, and TSNs having been retransmitted. A second PseudoCum-
Ack – denoted as Retransmission PseudoCumAck – is maintained; whenever one of these two Pseu-
doCumAcks is increased, the congestion window may grow according to the procedures explained in
Subsubsection 2.11.2.1.

4.2.4 Delayed Acknowledgement for CMT

When DATA chunks arrive in sequence, SCTP does not immediately send a SACK chunk for ac-
knowledgement. Instead, it applies delayed acknowledgement – as described in Section 3.7 – in order
to reduce overhead traffic. But for reordered chunks, a SACK chunk is sent immediately. By default,
the reception of three SACKs for the same TSN triggers a fast retransmission to retransmit a lost
DATA chunk; a loss on reordering is likely in the non-CMT case. However, in case of CMT, reorder-
ing is frequent and usually does not imply a loss. But each received out-of-sequence DATA chunk
would require the immediate transmission of a SACK chunk. Unnecessary fast retransmissions are
avoided by split fast retransmission already (see Subsection 4.2.2), but the increased SACK traffic
overhead remains.

In order to overcome this inefficiency for CMT, the Delayed Acknowledgement for CMT strategy
simply delays all SACK transmissions. However, this would also delay the recovery of a real packet
loss, which is triggered by the SACKs. An example is provided in Figure 4.4:

1. TSN #20 is lost. No SACK chunk will be transmitted.

2. The TSNs #21 and #22 are received and acknowledged by a SACK chunk. Endpoint A recog-
nises the missing TSN #20 for the first time.

3. The TSNs #23 and #24 are received and another SACK chunk is sent. Endpoint A recognises
the gap for the second time.

4. The TSNs #24 and #25 are received and SACK’ed. Endpoint A sees the gap for the third time.
This is the default threshold for a fast retransmission of the lost DATA chunk.

That is, the loss is detected after six more chunks have been sent. Using standard SCTP behaviour,
it would have been detected after only three chunks (the third SACK would have been sent after
receiving the out-of-sequence TSN #23).

74 CHAPTER 4. MULTIPATH TRANSFER

Delayed acknowledgement for CMT solves the problem by two steps: first, the receiver has to
put the number of TSNs received since sending the previous SACK chunk into each SACK chunk.
Then, the SACK handling procedure of split fast retransmission (see Subsection 4.2.2) for a missing
TSN τMissing has to be modified. An incoming SACK is handled as follows:

• If all newly acknowledged TSNs have been transmitted over the same path P :

– If there are newly acknowledged TSNs τL and τH so that τL < τMissing < τH , the missing
count is incremented by one; there may have been some reordering on the path P .

– Else, if all newly acknowledged TSNs τN satisfy the condition τMissing < τN , the missing
count is incremented by the number of TSNs reported in the SACK chunk; the corre-
sponding DATA chunk is probably lost.

• Otherwise (i.e. there are newly acknowledged TSNs on different paths), the missing count is
incremented by one (just like for standard SCTP).

For the example shown in Figure 4.4, applying delayed acknowledgement for CMT means that
TSN #21 is GapAck’ed with a CumAck for TSN #19. Since this SACK chunk contains newly ac-
knowledged TSNs on both paths, the missing counter for TSN #20 will be increased to 1. After
receiving the second SACK chunk – containing the newly GapAck’ed TSNs #22 and #23 and a count
of 2 TSNs since the last SACK – the missing counter for TSN #20 grows by 2 to 3. By default, this
is the threshold for a fast retransmission. That is, this retransmission is triggered after three TSNs –
which is as quickly as in a non-CMT scenario.

4.3 Multi-Path TCP – Multipath Transfer for TCP

Multi-Path TCP (MPTCP), which is introduced by [FRH+11], denotes an experimental multipath
transfer extension for the TCP protocol. TCP – as described in Sebsection 2.13.3 – is a well-known
and widely deployed protocol. During the now 30 years after its definition in [Pos81c] as RFC 793, it
has been improved by various protocol extensions.

In contrast to SCTP, which is relatively new, the backwards compatibility to existing TCP imple-
mentations and middlebox devices is a very important design criteria of MPTCP. The term Middlebox
in this context particularly denotes firewalls performing stateful packet inspection as well as routers
providing Network and Port Address Translation, i.e. changes of Network and Transport Layer ad-
dresses (i.e. IP addresses and TCP ports) as defined in [EF94] as RFC 1631 as well as in [SE01] as
RFC 3022, respectively. The need for interoperability implies that – from the perspective of a non-
MPTCP-aware middlebox device – the packet flow of a single MPTCP path must look like a regular
TCP connection. This leads to two fundamental differences in comparison to CMT-SCTP:

1. An MPTCP Path is defined by a tuple consisting of source and destination address (as being
further explained in [FRHB11, Section 3]), in contrast to just the destination address as for
SCTP (as defined in Subsection 3.4.1). This is necessary in order to let each path appear like a
single standard TCP connection to middlebox devices.

2. Furthermore, each MPTCP path must use its own sequence number space, in order to mimic a
contiguous segment sequence for the middlebox devices on the path.

Clearly, the first constraint implies that the number of MPTCP paths is much higher: m ∗ n paths for
m local and n remote addresses, in contrast to only m+ n paths for SCTP. Also, the management of

4.4. IDENTIFIER/LOCATOR SPLIT – MULTIPATH TRANSFER ON THE NETWORK LAYER75

Figure 4.5: The Principle of Identifier/Locator Split on the Network Layer

multiple sequence number spaces introduces additional complexity. More details on MPTCP can be
found in [BPB11, RBP+11].

4.4 Identifier/Locator Split – Multipath Transfer on the Network Layer

While Transport Layer solutions for load sharing require significant changes of the corresponding
Transport Layer protocols, approaches based on the Network Layer may leave the higher layers un-
touched. The common approach for the Network Layer is denoted as Identifier/Locator Split; its
principle is illustrated in Figure 4.5. The Network Layer is split up into two Sublayers:

Endpoint Sublayer This sublayer is responsible for the unique identification of an endpoint. The
endpoint identification functionality is realised by Identifiers.

Routing Sublayer The responsibility of this sublayer is the forwarding of data; it resembles the
functionalities provided by the “classic” Network Layer as described in Subsubsection 2.2.3.1.
The addresses used for the routing are denoted as Locators.

While the upper layers only have to take note of the identifier, the extended Network Layer is respon-
sible for translating the identifier into locator(s), in order to forward data over a useful Network Layer
path. Since the upper layers are unaware of this translation, load sharing for the same Transport Layer
flow is not possible – functionalities like window-based congestion control (see Subsection 2.11.2)
would not work properly. That is, identifier/locator split approaches cannot perform intra-flow load
sharing, but they can do inter-flow load sharing. Furthermore, the multi-homing functionality intro-
duced by these approaches also implies an easy support for mobility (i.e. locator changes) without the
need to adapt higher-layer protocols.

Two IETF standards for identifier/locator split are relevant:

• The Host Identity Protocol (HIP) is suggested by [JNM+04] and defined in [MN06] (architec-
ture; as RFC 4423) and [MNJH08] (protocol; as RFC 5201). It introduces an identifier space –
being based on a public key infrastructure – which defines Host Identities. HIP is defined for
IPv4 as well as IPv6, i.e. the IP addresses are the locators. Clearly, upper-layer protocols must
be capable to handle the host identities, which requires changes of the protocols.

• The Shim6 protocol, which is suggested in [Sav06, dLB06] and finally defined in [NB09] as
RFC 5533, provides an identifier/locator split approach for IPv6 only. The identifiers introduced
by Shim6 – called Upper-Layer Identifiers – have a size of 128 bits, i.e. they can just be handled
like IPv6 addresses (see also Subsection 2.13.2). Therefore, no changes of the upper-layer

76 CHAPTER 4. MULTIPATH TRANSFER

protocols are necessary. This reduces complexity and makes a deployment of Shim6 much
easier compared to HIP, but – of course – also restricts it to IPv6 only.

Since identifier/locator split does not provide intra-flow load sharing, these approaches are not
discussed in more detail here. Further details on these approaches can e.g. be found in [SC05].

4.5 Summary

In this chapter, the idea of multipath transfer as well as possibilities to realise it on different layers of
the OSI reference model have been presented. Furthermore, some important realisations have been
introduced: CMT-SCTP and MPTCP on the Transport Layer as well as identifier/locator split – with
HIP and Shim6 – on the Network Layer.

Chapter 5

The Simulation Environment

This chapter describes the simulation environment which has been used and extended, in order to
perform a performance evaluation of CMT-SCTP. That is, it introduces the underlying discrete event
simulation environment, its network protocols package as well as the CMT-SCTP model itself and the
application model.

5.1 Introduction

In order to create a simulation environment for CMT-SCTP, it had clearly been useful to extend the
SCTP model of an existing discrete event simulation environment. Three models in three different
environments had been available:

1. The open source package NS-21 (Network Simulator 2) – as described by [FV10] – is a
well-known and widespread simulation environment. Also, NS-2 includes an SCTP simula-
tion model, which is shortly described by [HG02]. However, this model is unmaintained and
therefore does not include state-of-the-art features of SCTP and its extensions.

2. Another alternative is the commercial, closed source OPNET MODELER2, which is introduced
in [SP03]. An SCTP model for the OPNET MODELER is described by [Jun05], it had been
developed as part of a Ph.D. thesis at the University of Duisburg-Essen. However, due to high
licensing costs of the underlying simulation environment, development had been ceased after
the end of this project and the expiration of the OPNET MODELER licence. Therefore, the
SCTP model had been out-of-date.

3. The third environment is the open source OMNET++3 (Objective Modular Network Testbed
in C++), as introduced in detail by [Var10]. Also, there had been a state-of-the-art and actively
maintained SCTP model by [RTR08], which had in fact been a highly updated port of the
OPNET MODELER model described above, developed as part of a Ph.D. thesis by [Rün09] at
the University of Duisburg-Essen.

Clearly, since the OMNET++-based SCTP model had been state-of-the-art, and there had already
been a lot of experience with the OMNET++ environment as result of former research work on

1NS-2: http://www.isi.edu/nsnam/ns/.
2OPNET MODELER: http://www.opnet.com/.
3OMNET++: http://www.omnetpp.org/.

77

http://www.isi.edu/nsnam/ns/
http://www.opnet.com/
http://www.omnetpp.org/

78 CHAPTER 5. THE SIMULATION ENVIRONMENT

RSerPool (see [Dre07]), the choice of this environment had been clear and straightforward. Therefore,
the alternatives are not discussed in more detail here.

5.2 OMNeT++

In the following, a brief overview of the important basics of OMNET++ is provided, in order to
understand the following description of the IP network and SCTP models. Details on OMNET++, in-
cluding very detailed examples, can be found in [Var10]. An introduction to discrete event simulation
in general is provided by [Got10].

Each OMNET++ simulation model consists of a so-called Network. It is the root in a hierarchy
of so-called Modules. Two types of modules are existing:

1. A Simple Module is atomic; its functionalities require implementation – in C++ language – by
the developer of the module.

2. On the other hand, a Compound Module consists of at least one sub-module; each sub-module
may again be a compound module or a simple module.

The interfaces between modules are denoted as Gates. A Connection links a gate to the gate of
another module. The gate connections are used for the transport of Messages among the modules.
Connections may use so-called Channels to introduce bandwidth limitations, delays, losses and er-
rors4 to messages. The global Future Event Set realises timers by allowing to schedule a message
to a module itself, at a certain time stamp. As soon as this time stamp is reached by the simulation
time, the message gets delivered. The definition of messages is performed in an OMNET++-specific
message definition language. Networks as well as modules with their gates, connections and channels
are specified in the OMNET++ NEtwork Description Language (NED).

A simulation – consisting of a definition of its network by an NED file and its compiled executable
– can be parametrised by configuration settings read from a so-called .ini file (named due to its suffix).
For example, an own .ini file may be created for each run, specifying the particular simulation run
configuration including its random number generator seed. During a simulation run, two output files
are generated:

1. The Vector File contains Vectors; a vector denotes a time series, e.g. the congestion window
as tuples of recording time stamp and value. That is, vectors are frequently used to display
time-based state changes.

2. The other file is the Scalar File, which contain Scalars. A scalar denotes a single result value,
e.g. the average received throughput over the whole measurement time.

The OMNET++ package (in the used release version 4.1) itself contains the full implementation
of the discrete event simulation core, including message, NED and .ini file handling, as well as some
example modules. However, it does not include IP network modules.

5.3 The INET Framework

The IP network modules of OMNET++ are provided by a separate package, which is denoted as the
INET FRAMEWORK5 and documented in [Var12]. Like OMNET++, the INET FRAMEWORK is

4A bit error is introduced by setting an error flag in the message object. The actual message remains unmodified; the
receiving module has to take care of the error flag and implement appropriate reactions.

5INET FRAMEWORK: http://inet.omnetpp.org/.

http://inet.omnetpp.org/

5.3. THE INET FRAMEWORK 79

(a) StandardHost (b) Gates and Connections

Figure 5.1: An Instance of the StandardHost Compound Module and one of its PPP Interfaces

also open source. It provides models for the common protocols, particularly Ethernet (see Subsec-
tion 2.12.2), PPP (see Subsection 2.13.1), IPv4 and ICMP as well as IPv6 and ICMPv6 (see Subsec-
tion 2.13.2), UDP and TCP (see Subsection 2.13.3), as well as some test applications. The model for
the SCTP protocol (see Chapter 3) had originally been developed separately, as described in [RTR08],
but later been contributed to the standard INET FRAMEWORK package.

A particularly useful feature of the INET FRAMEWORK is its external interface, which is de-
scribed in detail by [TRR08]. It makes it possible to exchange messages between the simulation and
the real world. That is, using a real-time scheduler for the simulation core, external components (e.g.
SCTP test programs on a FreeBSD machine) may communicate with simulated network components.
This may e.g. be used to apply a complex virtual topology with specific QoS properties for tests and
measurements between real components. Furthermore, it provides a powerful possibility for model
validation: to an external component (e.g. using FreeBSD kernel SCTP), the SCTP implementation
within the simulation just behaves like any other real SCTP implementation. Therefore, the simulation
model has been successfully tested against the other relevant SCTP implementations (see Section 3.13
and also [DRS+11]) at the 9th SCTP Bakeoff6, i.e. the official SCTP implementers meeting for in-
teroperability testing. Unlike other SCTP simulation models (see Section 5.1), the SCTP model in
the INET FRAMEWORK is therefore also a “real” SCTP implementation, which has furthermore been
validated intensively.

Since the external interface provides code to translate between OMNET++ messages and real
IPv4/IPv6 packets, a straightforward feature is provided by the TCPDump module: it allows compo-
nents to dump packet traces in the well-known Packet Capture (PCAP) format, which is also used by
TCPDUMP7 (see also [Tan96]). These traces may be used for protocol analysis and debugging (to be
explained in Section 6.4).

69th SCTP Bakeoff: http://www.interop.sctp.jp/.
7TCPDUMP: http://www.tcpdump.org/.

http://www.interop.sctp.jp/
http://www.tcpdump.org/

80 CHAPTER 5. THE SIMULATION ENVIRONMENT

Figure 5.2: A Topology Consisting of StandardHost Instances

An important module of the INET FRAMEWORK is the StandardHost compound module, as
depicted in Figure 5.1. Subfigure 5.1(a) shows an example instance of this module. It includes a
Network Layer instance (networkLayer; here: IPv4) as well as instances of TCP, UDP and SCTP (tcp,
udp and sctp, respectively). Like a real network host, it also contains a routing table (routingTable) and
an interface table (interfaceTable). In the shown example, the node has two PPP interfaces: ppp[0]
and ppp[1]. The configurations for both, interfaces and routing, may be read from a configuration
file. tcpdump denotes the instance of the TCPDump module introduced above. It is located between
Network Layer instance and interfaces and may be used to write an IP packet trace to a PCAP file.

The egress gate configuration of interface ppp[0] is shown in Subfigure 5.1(b). Its PPP instance
is connected to a router, using a channel with a throughput (denoted by datarate) of 1 Gibt/s (i.e.
1 ∗ 109 bit/s and a delay (denoted by delay) of 0.0001 s (i.e. 0.1 ms), without bit errors (denoted by
ber – bit error rate) or packet losses (denoted by per – packet error rate). The ingress side (not shown
here) looks similar.

Using the StandardHost module, it becomes easy to create complex network topologies, as shown
in the example in Figure 5.2. Each client, server and router is simply an instance of StandardHost;
the number of interfaces, types and numbers of applications, etc. as well as the behaviour is simply
a parameter setting of the corresponding instance. For example, a router is simply a StandardHost
with IP packet forwarding enabled. The StandardHost instance shown in Subfigure 5.1(a) displays
the server serverMain[0]. Instances of models are hierarchically labelled, with the network as root. In
the example shown here, the network is named cmttest4. The topology shown in Figure 5.2 is the first
instance of a compound module within an array named core, i.e. its name is core[0]. Then, the server
serverMain[0], which is the first instance in the array serverMain and whose StandardHost instance
is presented in Subfigure 5.1(a), has the full name cmttest4.core[0].serverMain[0]. This naming is
also used within the .ini file containing the parameters of a simulation run, i.e. each instance may be
configured separately.

A more detailed introduction is omitted here, since this would greatly exceed the scope of this brief
overview. An extensive documentation of the INET FRAMEWORK and its large library of modules is
provided in [Var12].

5.4 The CMT-SCTP Model

To actually examine CMT-SCTP, the SCTP model introduced by [RTR08] – which is part of the INET
FRAMEWORK – has been extended. This enhanced model – which is denoted as CMT-SCTP Model

5.4. THE CMT-SCTP MODEL 81

Parameter Functionality Default Setting
cmtCCVariant CMT and Congestion Control Variant off
cmtUseSFR Enable/Disable Split Fast RTX true
cmtUseDAC Enable/Disable Delayed Ack. for CMT true
cmtCUCVariant Congestion Window Update Strategy pseudoCumAckV2

checkSackSeqNumber Verify (NR-)SACK TSN Sequence false
checkQueues Verify Integrity of Chunk Bookkeeping false
maxBurstVariant Burst Mitigation Variant useItOrLoseIt
maxBurst Per-Path Maximum Burst Size (packets) 4
nrSack Enable/Disable NR-SACK Extension false
disableReneging Enable/Disable Reneging false
cmtSmartFastRTX Enable/Disable Smart Fast RTX true
cmtSackPath SACK/NR-SACK Path Selection smallestSRTT
cmtBufferSplitVariant Buffer Splitting Strategy none
cmtBufferSplittingUsesOSB Buffer Splitting on Outstanding Bytes false
cmtChunkReschedulingVariant Check Rescheduling Strategy none
cmtChunkReschedulingThreshold Check Rescheduling Threshold 0.5
rpPathBlocking Enable/Disable RP Path Blocking true

Table 5.1: The Important CMT-SCTP Parameters of the SCTP Module

in the following – is also shortly introduced in [DBPR10b].

5.4.1 Added Features and Parameters

The existing SCTP module has been extended by CMT-SCTP, i.e. all SCTP-based INET simulation
models could make use of CMT. In order to configure the CMT-SCTP functionality, the parameters
summarised in Table 5.1 have been added. By default, CMT is turned off (i.e. cmtCCVariant set to
“off”). Unless explicitly changing cmtCCVariant, the new SCTP module behaves exactly like the
old, non-CMT model. The setting of cmtCCVariant=“cmt” activates CMT-SCTP, as described in
Chapter 4. The parameters cmtUseSFR and cmtUseDAC enable or disable the split fast retransmis-
sion (see Subsection 4.2.2) and the delayed acknowledgement for CMT (see Subsection 4.2.4) optimi-
sations. The useful default is to turn on both, of course. cmtCUCVariant selects the congestion win-
dow update strategy (see Subsection 4.2.3): “normal” as for standard SCTP, “pseudoCumAck” (with
PseudoCumAck) or “pseudoCumAckV2” (with PseudoCumAck and Retransmission PseudoCumAck
– the useful default). The previously described four parameters realise CMT-SCTP as initially defined
by [IAS06], i.e. CMT-SCTP before this habilitation project.

As part of this project, further features have been added. Their important parameters are shortly
introduced here to complete the description of the model. However, the actual description of their
functionalities follows in Chapter 7 and Chapter 8:

• checkSackSeqNumber and checkQueues enable (“true”) or disable (“false”) features to verify
the TSN sequence of SACK chunks as well as of the DATA chunk bookkeeping structures
(including statistics counters). These features are for debugging purposes only; they do not add
actual protocol features but are highly useful for a researcher extending the model.

82 CHAPTER 5. THE SIMULATION ENVIRONMENT

• The burst mitigation variants described in [AB05] for TCP have been adapted to SCTP (to be
described in Subsubsection 7.9.4.3) and added to the model. The parameter maxBurstVariant
selects the variant (“useItOrLoseIt” for Use It or Lose It – the suggested variant in [Ste07,
Section 6.1], “congestionWindowLimiting” for Congestion Window Limiting, “maxBurst” for
Max Burst). The maximum number of packets which may be sent in a burst may be limited by
the parameter maxBurst (default is 4; recommendation from [Ste07, Section 15]).

• The NR-SACK extension (as described in Subsection 3.11.5) has been added. The option
nrSack enables (“true”) or disables (“false”) it. Furthermore, the parameter disableReneging
may be used to disable reneging completely (“true”) or behaving like standard SCTP (“false”).

• The parameter cmtSmartFastRTX activates (“true”) or deactivates (“false”) the smart fast re-
transmission functionality to be introduced in Subsection 7.7.3. Furthermore, cmtSackPath
controls the choice of paths to send SACK/NR-SACK chunks on when using CMT. The setting
“standard” uses the path of the last DATA chunk (like standard SCTP defined in [Ste07]); the
default “smallestSRTT” applies smart SACK path selection (to be introduced in Subsubsec-
tion 7.9.4.2).

• cmtBufferSplitVariant configures the variant of buffer splitting (“none”, “senderSide”, “re-
ceiverSide”, “bothSides”), which will be introduced in Section 7.6. Furthermore, the option
cmtBufferSplittingUsesOSB defines whether buffered bytes (“false”) or outstanding bytes
(“true”) are used for applying buffer splitting.

• cmtChunkReschedulingVariant sets the variant of chunk rescheduling (“none”, “senderSide”,
“receiverSide”, “bothSides”), to be introduced in Section 7.8. The corresponding blocking
fraction threshold is set by the parameter cmtChunkReschedulingThreshold.

• Furthermore, additional settings for cmtCCVariant – defining different variants of CMT con-
gestion control – are defined:

– “off” deactivates CMT (default setting). All other settings turn CMT on.
– “cmt” sets plain CMT-SCTP congestion control (as described in Subsection 4.2.1).
– “cmtrp” sets CMT/RPv1 congestion control (to be defined in Subsubsection 8.3.1.1).
– “cmtrpv2” sets CMT/RPv2 congestion control (to be defined in Sububsection 8.3.1.2).
– “mptcp-like” sets MPTCP-like congestion control (to be defined in Subsection 8.3.2).

• Finally, rpPathBlocking controls the usage of RP path blocking (to be introduced in Sec-
tion 8.4) for congestion controls based on resource pooling. “true” activates this feature, “false”
turns it off.

5.4.2 Interaction with TCPDump Module and External Interface

Like the original SCTP model, the CMT-SCTP model also supports the external interface provided
by the INET FRAMEWORK. The procedures to translate between OMNET++ message objects and
real SCTP packets have been adapted appropriately, including support for the NR-SACK extension.
This also means that the TCPDump module to write PCAP traces is supported. The latter is particu-
larly useful to analyse an OMNET++-generated packet trace by using the packet trace analysis tool
WIRESHARK, which is also used in the real network testbed. It will be introduced in more detail –
together with the testbed environment – in Section 6.4. WIRESHARK has been intensively used for
validating and debugging the model.

5.5. THE NETPERFMETER SIMULATION MODEL 83

Parameter Functionality Default Setting
activeMode Active Mode (true) or Passive Mode (false) true
protocol Transport Protocol (“SCTP”, “TCP” or “UDP”) “SCTP”
localAddress Local IP Address (“” for “any” Address) “”
localPort Local Port 9000
remoteAddress Remote IP Address (Active Mode only) “”
remotePort Remote Port (Active Mode only) 9000
primaryPath Primary Path (SCTP only) “”
outboundStreams Number of Outbound Streams (SCTP only) 1
maxInboundStreams Maximum Number of Inbound Streams (SCTP only) 16
connectTime Absolute Time of Connection Establishment 0s
startTime Relative Time of Payload Data Transfer Start 1s
resetTime Relative Time of Measurement Start 5s
stopTime Relative Time of Measurement Stop 30s
frameRate Frame Rate (0Hz = saturated sender) 10Hz
frameSize Frame Size (0B = flow turned off) 1452B
frameRateString Outgoing Frame Rate per Stream, separated by “;” “”
frameSizeString Outgoing Frame Size per Stream, separated by “;” “”
maxMsgSize Maximum Message Size (SCTP and UDP only) 1452B
queueSize Queue Size (SCTP and TCP only) 1000B
unordered Fraction of Unordered Messages (SCTP only) 0.0
unreliable Fraction of Unreliable Messages (SCTP only) 0.0
decoupleSaturatedStreams Decouple Saturated Streams (SCTP only) true

Table 5.2: The Parameters of the NETPERFMETER Module

5.5 The NETPERFMETER Simulation Model

The INET FRAMEWORK itself includes some test application modules: SCTPClient and SCTPServer
for SCTP, TCPBasicClientApp and TCPSinkApp for TCP, and UDPBasicApp for UDP. However, these
modules lack statistics features and were therefore not really useful for performance analyses. Also,
these applications are protocol-specific, i.e. the SCTP application works with SCTP only and its con-
figuration and behaviour significantly differs from the TCP application, etc.. Therefore, trying to
compare different protocols with these applications would have been useless. Instead, a new applica-
tion model has been created from scratch: the NETPERFMETER model. It is also briefly described
in [DBPR10b].

The corresponding NetPerfMeter simple module has been integrated as a sub-module into the
StandardHost compound module, as shown in the example of Subfigure 5.1(a). Similar to the real
Linux/FreeBSD-based performance metering program NETPERFMETER, which will be introduced in
Section 6.3, the application module provides the unidirectional and bidirectional transfer of saturated
and non-saturated flows as well as statistics recording. Its parameters are listed in Table 5.2.

For a performance test, a connection is established between two NETPERFMETER instances. This
connection establishment process, by using the protocol specified by the parameter protocol (i.e.

84 CHAPTER 5. THE SIMULATION ENVIRONMENT

Figure 5.3: An Illustration of the NETPERFMETER Timing Configuration

“SCTP”, “TCP” or “UDP”8), is triggered by the instance in the so-called Active Mode (i.e. the client
side). The mode of an instance is configured using the activeMode parameter; a setting of “true” turns
the instance into Active Mode. Address and port of the remote instance in the so-called Passive Mode
(i.e. the server side; configured by setting activeMode to “false”) are provided by the parameters
remoteAddress and remotePort. The local address and port of an instance – in either mode – may
be set by the parameters localAddress and localPort. Since SCTP supports multi-homing, the local
address may actually be a list of addresses, or – in the usual case – just left empty. In this case,
all available Network Layer addresses are used. The primary path may be set by the primaryPath
parameter. Also, for SCTP, the number of outbound streams (parameter: outboundStreams) and the
maximum number of inbound streams (parameter: maxInboundStreams) can be configured. These
settings are used during the SCTP association setup to negotiate the number of streams in each transfer
direction (see also Section 3.5).

Figure 5.3 provides an illustration of the NETPERFMETER connection timing configuration. The
connection setup is started at the given Connect Time (parameter: connectTime). After a given Start
Time (parameter: startTime; relative to the begin of the connection establishment), the transfer of
payload data starts. At that time, the connection must have been established; otherwise, the simulation
stops with an appropriate error message. Usually, the beginning of a communication leads to some
kind of irregular initialisation behaviour. For example, the congestion window may have to grow
using slow start (see Subsection 2.11.3), etc.. In order to avoid these effects distorting the results, the
Reset Time time (parameter: resetTime; relative to the connect time) defines the length of a settling
time span. After that time, all previously generated statistics are reset. The actual duration of the
statistics recording phase is given by the Stop Time time (parameter: stopTime; relative to the time of
the statistics reset). At the end of this phase, the data transfer is stopped, scalar statistics are written
and the connection is finally shut down.

Outgoing payload data is transmitted as frames in a given interval with a given size. Frames are
split up into to datagrams, with a maximum size given by maxMsgSize. The parameters to con-
figure frame rate and frame size are frameRate and frameSize, respectively. The special setting of
frameSize=0 B turns the flow off; frameRate=0 Hz configures a saturated sender. A saturated sender
tries to send as much data as possible. The message queue is therefore filled with up to queueSize
messages. Since UDP has no flow control, as described in Subsection 2.13.3, a saturated sender is
only possible for SCTP and TCP.

For using SCTP, if there are multiple outbound streams, the frame rate and frame size of each

8There is no module for DCCP – see Subsection 2.13.3 – in the INET FRAMEWORK, yet.

5.6. THE MULTI-HOMED AUTO-ROUTING MODULE 85

stream may be configured separately by providing them as colon-separated strings by the parameters
frameRateString and frameSizeString, respectively. The application of strings in this case is nec-
essary, since OMNET++ does not support parameter arrays. Furthermore, it is possible to send a
given fraction of the datagrams using unordered delivery (see Section 3.6; parameter: unordered) or
using partially reliable transfer (see Subsection 3.11.3; parameter: unreliable). For each message, its
kind of delivery (ordered or unordered delivery) and reliability (reliable or partially reliable transfer)
is selected randomly, using uniform distribution, according to the configured fractions.

Finally, the parameter decoupleSaturatedStreams turns the decoupling of saturated streams
on (i.e. “true”, the default) or off (i.e. “false”), as will be further explained in Subsection 7.10.2.

5.6 The Multi-Homed Auto-Routing Module

The configuration of interfaces and routing – by writing a configuration file for each node in the net-
work – is error-prone and rather time-consuming. In order to simplify this task, the INET FRAME-
WORK provides modules for so-called Auto-Routing. That is, such a module automatically assigns
IP addresses to the interfaces and sets up the routing tables of the nodes (e.g. the instances of Standard-
Host). Two of such auto-routing modules have already been provided by the INET FRAMEWORK:
FlatNetworkConfigurator (for flat, i.e. non-hierarchical network topologies) and NetworkConfigura-
tor (for arbitrary topologies). Both apply Dijkstra’s Algorithm (see [KR08, Subsection 4.2.1]) to build
routing tables, according to the least-cost trail among nodes. However, these auto-routing modules do
not take multi-homing into account: depending on the configuration, a Path #1 which is intentionally
longer (i.e. more expensive) would not be used in favour of a shorter (i.e. less expensive) Path #2; see
also Figure 4.2 in Subsection 4.2.2 for an example.

Since auto-routing is highly crucial for a quick and easy simulation configuration, a new auto-
routing module for multi-homed networks has been developed from scratch: the MultihomedFlatNet-
workConfigurator module. It is also briefly described in [DBPR10b]. For each link between two
nodes, the new channel parameter netID may be specified. The netID provides the unique identifica-
tion of an independent network. A network interface connected to a link belongs to the corresponding
network. For the routing table computation, Dijkstra’s Algorithm is applied on the network corre-
sponding to each netID setting separately. That is, paths within one network will not interfere with
paths in a different network. The setting of netID=0 has a special meaning: links using this netID
value belong to all networks. That is, such links may be shared by multiple networks.

The NED file of a 16-endpoint dual-homed example setup is presented in Listing 3, the resulting
setup is shown in Figure 5.4. This scenario is used in an evaluation of CMT-SCTP for MPI (Message
Passing Interface) applications in [PTIW07]. The test network consists of a configurable number of
endpoints (parameter: numHosts; see lines 27 to 30), connected to a configurable number of inde-
pendent networks (parameter: numNetworks). Each network has its own router (see lines 31 to 34),
which constitutes the centre of a star topology. The channel for the links (defined in lines 18 to 25)
defines the attribute netID (in line 23), which is used in lines 39 to 42 to define the connections of
the independent networks. Line 5 imports the new MultihomedFlatNetworkConfigurator module; it
is instantiated in lines 35 to 38. Similar to the auto-routing modules already available in the INET
FRAMEWORK, its instance does not require any connections. The @display commands set so-called
Display Strings, which define how the module instances are displayed on screen (e.g. icons, position-
ing, background image, etc.; see [Var10, Section 7.1] for details).

86 CHAPTER 5. THE SIMULATION ENVIRONMENT

Figure 5.4: A Dual-Homed Example Network

5.6. THE MULTI-HOMED AUTO-ROUTING MODULE 87

Listing 3 The NED File for the Dual-Homed Example Network

1 package i n e t . examples . s c t p . i p c t e s t c m t ;
2

3 import i n e t . nodes . i n e t . DumpRouter ;
4 import i n e t . nodes . i n e t . S t a n d a r d H o s t ;
5 import i n e t . n e t w o r k l a y e r . a u t o r o u t i n g . M u l t i h o m e d F l a t N e t w o r k C o n f i g u r a t o r ;
6 import ned . D a t a r a t e C h a n n e l ;
7

8 network IPCNetwork
9 {

10 parameters :
11 @display (” b g i =maps / europe , s ; bgb =1024 ,768 ”) ;
12

13 i n t numHosts ;
14 i n t numNetworks ;
15 . . .
16

17 t y p e s :
18 channel p a t h ex tends D a t a r a t e C h a n n e l
19 {
20 / / ne t ID i s a s e t t i n g f o r M u l t i h o m e d F l a t N e t w o r k C o n f i g u r a t o r :
21 / / a t r a i l e i t h e r b e l o n g s t o a l l n e t w o r k s (ne t ID =0) or
22 / / t o a s p e c i f i c ne twork (ne t ID=n , n>0) .
23 i n t ne t ID = d e f a u l t (0) ;
24 d a t a r a t e = 1Gbps ;
25 }
26 submodules :
27 h o s t [numHosts] : S t a n d a r d H o s t {
28 parameters :
29 @display (” p =112 ,84 , r i n g , 4 0 0 , 3 0 0 ; i = d e v i c e / m a i n f r a m e v l ”) ;
30 }
31 r o u t e r [numNetworks] : DumpRouter {
32 parameters :
33 @display (” p =462 ,384 , r , 1 0 0 ; i = a b s t r a c t / r o u t e r l ”) ;
34 }
35 c o n f i g u r a t o r : M u l t i h o m e d F l a t N e t w o r k C o n f i g u r a t o r {
36 parameters :
37 @display (” p =950 ,50 ”) ;
38 }
39 c o n n e c t i o n s :
40 f o r j = 0 . . numNetworks−1, f o r i = 0 . . numHosts−1 {
41 h o s t [i] . pppg++ <−−> p a t h { ne t ID = j +1; } <−−> r o u t e r [j] . pppg ++;
42 }
43 }

88 CHAPTER 5. THE SIMULATION ENVIRONMENT

5.7 The Simulation Processing Tool-Chain

The extended simulation model – including CMT-SCTP, NETPERFMETER and the MultihomedFlat-
NetworkConfigurator module – have been used for quantitative performance analyses. But such sim-
ulations may consist of thousands of individual runs, making parametrisation, processing as well as
finally visualising the results a very complex and time-consuming task. Therefore, the SIMPROCTC
simulation processing tool-chain has been developed in order to support the following tasks:

• Parametrisation of simulations,

• Distributing the simulation runs in an RSerPool-based computation pool,

• Collecting and post-processing the results as well as

• Visualising the results.

Since the distribution of runs applies the SCTP-based RSerPool framework, this has also been a
stress test for SCTP. Particularly, these tests have also delivered some ideas to further enhance the
performance of SCTP. Since the details of the tool-chain would exceed the space for this chapter, they
can be be found in Appendix B. Furthermore, details on the SIMPROCTC tool-chain have also been
published in [DZR09].

5.8 Summary

In this chapter, the simulation environment for the CMT-SCTP evaluation has been introduced: the
discrete event simulation package OMNET++ with its INET FRAMEWORK, the CMT-SCTP model
itself, the NETPERFMETER application model as well as the auto-routing module for multi-homed
networks.

Chapter 6

The Testbed Environment

This chapter describes the setup of the testbed, which has been configured in order to validate the
simulation results in reality. Furthermore, the network performance test application NETPERFME-
TER, which has been designed for the evaluations in the testbed setup, is introduced. In particular, this
chapter also shows some lessons learned from building up a distributed network testbed.

6.1 Introduction

Besides a simulative analysis, as described in Chapter 5, it is also crucial to validate results in reality
– particularly, in order to validate the simulation model. Also, real hardware may have special or
unexpected properties. Such properties may result in a complex interaction with the various protocol
mechanisms used by SCTP, as will be shown in detail in Chapter 7.

In order to realise CMT-SCTP in reality, i.e. in a kernel SCTP implementation, the open source
kernel implementations introduced in Section 3.13 (see also [DRS+11]) had been considered:

• The Solaris implementation had not been state-of-the-art. Particularly, it had lacked of exten-
sions and API functionalities defined in [STP+11].

• The Linux implementation had mainly been state-of-the-art, but without support of the NR-
SACK and CMT-SCTP extensions.

• FreeBSD kernel SCTP had been state-of-the-art and had already provided NR-SACK (see Sub-
section 3.11.5) and CMT-SCTP as defined by [IAS06] (see Section 4.2).

• Kernel SCTP for MacOS X and Windows are just slightly adapted versions of the original
FreeBSD kernel SCTP. But MacOS X requires special and expensive hardware, while Windows
puts constraints on the software.

Clearly, the FreeBSD kernel SCTP implementation had been the appropriate choice for the testbed
setup, since the basis – particularly, the existing CMT-SCTP implementation – only had to be ex-
tended.

89

90 CHAPTER 6. THE TESTBED ENVIRONMENT

System Control Functionality Default Setting
net.inet.sctp.cmt on off CMT and Congestion Control Variant 0 (off)
net.inet.sctp.cmt use dac Enable/Disable Delayed Ack. for CMT 0 (off)
net.inet.sctp.nr sack on off Enable/Disable NR-SACK Extension 0 (off)
net.inet.sctp.buffer splitting Buffer Splitting 0 (none)

Table 6.1: The Important CMT-SCTP System Controls of the FreeBSD Kernel

6.2 The FreeBSD Kernel SCTP Implementation

All recent release versions of FreeBSD include SCTP in their default setup. Furthermore, it is possible
to obtain the latest developer release of the SCTP implementation, via anonymous CVS1 from the
developers2, and install a custom kernel3. This developer version has been used for the testbed setup,
with support by the FreeBSD SCTP developers.

The CMT-SCTP extension already provided by FreeBSD kernel SCTP is parametrised – as all
other settings of the kernel – by using System Controls. They can be queried and modified us-
ing the command sysctl; a detailed description can be found in [Fre11, Section 11.11]. Ta-
ble 6.1 summarises the important CMT-SCTP system controls. By default, CMT is turned off (i.e.
net.inet.sctp.cmt on off set to 0). Split fast retransmission (see Subsection 4.2.2) as well as Pseu-
doCumAck combined with Retransmission PseudoCumAck as congestion window update strategy
(see Subsection 4.2.3) are always active when using CMT. There is no switch to turn them off, since
this would make no sense in practise; see also [IAS06, DBPR10b]. The NR-SACK extension (as
described in Subsection 3.11.5) can be enabled (1) or disabled (0; the default setting) by the system
control net.inet.sctp.nr sack on off .

As part of the DFG project this habilitation thesis has been performed within, further features have
been added. Their important system controls are shortly introduced here to complete the description.
However, the actual description of their functionalities follows in Chapter 7 and Chapter 8:

• The NR-SACK extension has been debugged and reworked, since a couple of problems had
been found in the original version.

• net.inet.sctp.buffer splitting configures the variant of buffer splitting (0 – none, 1 – sender-
side only, 2 – receiver-side only, 3 – both sides), which will be introduced in Section 7.6. If
buffer splitting is enabled, it is always based on outstanding bytes.

• Furthermore, additional settings for net.inet.sctp.cmt on off4 – defining different variants of
CMT congestion control – are defined:

– 0 deactivates CMT (default setting). All other settings turn CMT on.

– 1 sets plain CMT-SCTP congestion control (as described in Subsection 4.2.1).

– 2 sets CMT/RPv1 congestion control (to be defined in Subsubsection 8.3.1.1).

1Concurrent Versions System; see also [Ced08].
2cvs -d :ext:anoncvs@stewart.chicago.il.us:/usr/sctpCVS co KERN; the password is “sctp”.
3See https://nplab.fh-muenster.de/groups/wiki/wiki/4b4b6/Updating SCTP sources on FreeBSD 82.html.
4The name containing “cmt on off” may be misleading, but has been retained for backwards compatibility. Originally,

the system control had only switched between non-CMT (0) and plain CMT (1) usage.

https://nplab.fh-muenster.de/groups/wiki/wiki/4b4b6/Updating_SCTP_sources_on_FreeBSD_82.html

6.3. THE NETPERFMETER APPLICATION 91

Feature IPERF NETPERF NTTCP UPERF TSCTP NETPERFMETER

UDP yes yes yes yes no yes
DCCP no yes no no no yes
TCP yes yes yes yes no yes
SCTP no limited no limited yes yes
Multi-Homing – no – no yes yes
Multi-Streaming – no – no yes yes
Unordered Delivery – no – no yes yes
Partial Reliability – no – no yes yes
CMT-SCTP – no – no yes yes
Multiple Flows no no no yes no yes
Bidirectional Flows no yes no yes no yes
Remote Control no yes no yes no yes

Table 6.2: An Overview of Network Performance Test Software

– 3 sets CMT/RPv2 congestion control (to be defined in Subsubsection 8.3.1.2).

– 4 sets MPTCP-like congestion control (to be defined in Subsection 8.3.2).

6.3 The NETPERFMETER Application

In order to evaluate CMT-SCTP setups and to compare them to other protocols – particularly to TCP
– in the SCTP testbed which will be described in Section 6.5, the application of existing network test
software has been considered first.

6.3.1 Existing Performance Test Software

Table 6.2 summarises the features of the considered application packages IPERF5, NETPERF6, NTTCP7,
UPERF8 and TSCTP9. While all examined test applications support FreeBSD, Linux, and MacOS X
(i.e. the operating systems being relevant for the testbed), a support for the SCTP protocol is only
provided by NETPERF, UPERF and TSCTP. However, only the TSCTP tool – which is a test application
provided by the FreeBSD kernel SCTP developers – supports the full capabilities of SCTP: optionally
unordered delivery and partially reliable transfer, multi-homing and multi-streaming. However, TSCTP

is only applicable for SCTP, which makes a comparison to other protocols – particularly to TCP –
impossible.

Besides the support of the full SCTP feature set as well as support for its extensions, the further
requirements for the testbed setup have been the possibility to simultaneously set up multiple flows,
to perform bidirectional data transfer as well as a remote control capability. The latter denotes that
the parametrisation of a measurement run should have been possible at only one side of the commu-
nication; the remote test endpoint is controlled by the local one, i.e. the complete test configuration is

5IPERF: http://Iperf.sourceforge.net/.
6NETPERF: http://www.netperf.org/.
7NTTCP: http://www.leo.org/∼elmar/nttcp/.
8UPERF: http://www.uperf.org/.
9TSCTP: available in FreeBSD kernel SCTP CVS repository.

http://Iperf.sourceforge.net/
http://www.netperf.org/
http://www.leo.org/~elmar/nttcp/
http://www.uperf.org/

92 CHAPTER 6. THE TESTBED ENVIRONMENT

performed at the local instance, which automatically ensures that the remote instance gets configured
appropriately.

In summary, no existing tool had provided the functionalities and flexibility needed for the CMT-
SCTP evaluation in the planned testbed setup. Therefore, a new, multi-platform and open source
tool-chain has been designed for this purpose: NETPERFMETER. A description and evaluation of
NETPERFMETER has also been published in [DBAR11a].

6.3.2 Design Goals and Features

The key goal of NETPERFMETER is to provide a tool for the performance comparison of multiple
transport connections, which are further denoted as Flows. That is, it is possible to configure different
flows between two systems using varying parameters, in order run a configured measurement, collect
the obtained results and post-process them for statistical analyses. Particularly, all four relevant IETF
Transport Layer protocols are supported:

1. UDP (see Subsection 2.13.3 and [Pos80]),

2. DCCP (see Subsection 2.13.3 and [KHF06]),

3. TCP (see Subsection 2.13.3 and [Pos81c]), as well as

4. SCTP (see Chapter 3 and [Ste07]).

Of course, this support includes the possibility to parametrise various protocol-specific options, partic-
ularly for CMT-SCTP (see Chapter 4). Note, that the protocol support by NETPERFMETER depends
on the underlying operating system. DCCP and some SCTP extensions are not available on all plat-
forms, yet.

Furthermore, each flow is able to apply its specific traffic behaviour:

• Each flow may use its own Transport Layer protocol (i.e. UDP, DCCP, TCP or SCTP).

• Bidirectional data transfer is possible.

• Flows may either be saturated (i.e. try to send as much as possible) or non-saturated. In the latter
case, a frame rate and a frame size have to be configured. Both may be distributed randomly,
using a certain distribution (like uniform, negative exponential, etc.). This feature allows to
mimic multimedia traffic (see also [Dre01] for details).

• For the stream-oriented SCTP, an independent traffic configuration is possible for each stream.

• Support for on-off traffic is provided by allowing to specify a sequence of time stamps when to
start, stop and restart a flow or stream.

• Also, for SCTP, it is possible to configure partial reliability (see Subsection 3.11.3) as well as
ordered and unordered delivery (see Section 3.6).

Clearly, the NETPERFMETER application provides features similar to the NETPERFMETER sim-
ulation model introduced in Section 5.5. It is therefore relatively easy – from the parametrisation
perspective – to reproduce NETPERFMETER simulation scenarios in reality.

6.3. THE NETPERFMETER APPLICATION 93

Figure 6.1: The NetPerfMeter Protocol Stack

Figure 6.2: The Concept of a NetPerfMeter Measurement

6.3.3 Instances and Protocols

Similar to the NETPERFMETER simulation model described in Section 5.5, an application instance
may either be in Active Mode or Passive Mode. Figure 6.1 illustrates the protocol stack of a NET-
PERFMETER node; the concept of a measurement is presented in Figure 6.2. The passive instance
accepts incoming NETPERFMETER connections from the active instance. The active instance con-
trols the passive instance, by using a control protocol denoted as NETPERFMETER Control Proto-
col (NPMP-CONTROL). That is, the passive instance may run as a daemon; no manual interaction by
the user – e.g. to restart it before a new measurement run – is required. This feature is highly practical
for a setup distributed over multiple Internet sites (like the distributed SCTP testbed to be described
in Subsection 6.5.2) and allows for parameter studies consisting of many measurement runs. The
payload data between active and passive instances is transported using the NETPERFMETER Data
Protocol (NPMP-DATA).

6.3.4 Measurement Processing

Figure 6.3 presents the message sequence of a NETPERFMETER measurement run.

94 CHAPTER 6. THE TESTBED ENVIRONMENT

Figure 6.3: A Measurement Run with NETPERFMETER

6.3.4.1 Measurement Setup

A new measurement run setup is initiated by the active NETPERFMETER instance by establishing an
NPMP-CONTROL association (using SCTP for transport) to the passive instance first. Then, the con-
figured NPMP-DATA connections are established by their configured Transport Layer protocols10.
The passive NETPERFMETER instance is informed about the identification and parameters of each
new flow by using NPMP-CONTROL Add Flow messages. On startup of the NPMP-DATA flow, an
NPMP-DATA Identify message allows the mapping of a newly incoming connection to a configured
flow by the passive instance. It acknowledges each newly set up flow by an NPMP-CONTROL Ac-
knowledge message. After setting up all flows, the scenario is ready to start the measurement run.

10For the connection-less UDP, the message transfer is just started.

6.3. THE NETPERFMETER APPLICATION 95

6.3.4.2 Measurement Run

The actual measurement run is initiated from the active NETPERFMETER instance using an NPMP-
CONTROL Start Measurement message, which is also acknowledged by an NPMP-CONTROL Ac-
knowledge message. Then, both instances start running the configured scenario by transmitting
NPMP-DATA Data messages over their configured flows.

During the measurement run, incoming and outgoing flow bandwidths may be recorded as vectors
– i.e. time series (see also Section 5.2) – at both instances, since NPMP-DATA Data traffic may be
bidirectional. Furthermore, the CPU utilisations – separately for each CPU and CPU core – are also
tracked. This allows to identify performance bottlenecks, which is particularly useful when debugging
and comparing transport protocol implementation performance. Furthermore, the one-way delay of
messages can be recorded. Of course, in order to use this feature, the clocks of both nodes need to be
appropriately synchronised, e.g. by using NTP (see Subsection 2.13.4).

6.3.4.3 Measurement Termination

The end of a measurement run is initiated – from the active NETPERFMETER instance – by us-
ing an NPMP-CONTROL Stop Measurement message. Again, it is acknowledged by an NPMP-
CONTROL Acknowledge message. At the end of the measurement, average bandwidth and one-way
delay of each flow and stream are recorded as scalars (i.e. single values; see also Section 5.2). They
may provide an overview of the long-term system performance.

6.3.5 Result Collection

After stopping the measurement, the passive NETPERFMETER instance sends its global vector and
scalar results (i.e. over all flows) to the active instance, by using one or more NPMP-CONTROL Re-
sults messages. Then, the active NETPERFMETER instance sequentially removes the flows by us-
ing NPMP-CONTROL Remove Flow messages, which are acknowledged by NPMP-CONTROL Ac-
knowledge messages. On flow removal, the passive instance sends its per-flow results for the corre-
sponding flow, again by using NPMP-CONTROL Results messages.

The active instance, as well, archives its local vector and scalar results data and stores them –
together with the results received from its peer – locally. All result data is compressed by using
BZIP2 (see [Sew07]), which may save a significant amount of bandwidth11 and disk space.

6.3.6 Measurement Execution, Result Post-Processing and Visualisation

By using shell scripts, it is possible to apply NETPERFMETER for parameter studies, i.e. to create a
set of runs for each input parameter combination. For example, a script could iterate over a send buffer
size σ from 64 KiB to 192 KiB in steps of 64 KiB as well as a path bandwidth ρX from 10 Mbit/s to
100 Mbit/s in steps of 10 Mbit/s and perform 5 measurement runs for each parameter combination.

The result post-processing and visualisation step is identical to the procedure applied for the sim-
ulations. The details can be found in Section B.4.

11Of course, the passive node compresses the data before transfer.

96 CHAPTER 6. THE TESTBED ENVIRONMENT

Figure 6.4: An SCTP Packet Trace Analysis with WIRESHARK

6.3.7 Reusability

NETPERFMETER has been designed with reusability in mind. Therefore, it has been released as open
source under GPLv3 licence. It is freely available for download on its web site12. Furthermore, it
has been contributed to Debian and Ubuntu Linux (allowing to install it directly from the distribu-
tions’ standard package repositories) as well as to FreeBSD (allowing to install it from the FreeBSD
ports collection). MacOS X and Solaris are also supported. Furthermore, the IANA has assigned
SCTP PPIDs (see also Section 3.6) and a DCCP Service Code (see [KHF06, Subsection 19.8]) for the
NETPERFMETER protocols.

6.4 Wireshark and the SCTP Analysis Tools

A very helpful tool during the test and debugging work with both, FreeBSD kernel SCTP as well as
the simulation model described in Chapter 5, has been WIRESHARK13. It is an open source packet
trace capturing and analysis tool; a very detailed introduction is provided by [LSW12].

12NETPERFMETER: http://www.iem.uni-due.de/∼dreibh/netperfmeter/.
13WIRESHARK: http://www.wireshark.org/.

http://www.iem.uni-due.de/~dreibh/netperfmeter/
http://www.wireshark.org/

6.5. THE TESTBED 97

WIRESHARK provides so-called Dissectors to decode packets, which may either be captured in
real-time from a network interface or read from a PCAP file. Figure 6.4 provides a screenshot of an
SCTP packet trace analysis session with WIRESHARK: the main window (upper left) provides a view
of the packet trace (upper part) and the decoded fields of a selected packet (lower part; here: an SCTP
packet containing an NR-SACK chunk). Besides the plain decoding feature, WIRESHARK also offers
SCTP association analysis tools:

• The Chunk Statistics tools (in the lower middle and right windows) provide a summary of the
transferred chunk types and the amount of data sent in each transport direction. They give a
brief overview whether the SCTP communication is working as expected.

• Furthermore, the TSN Graph tool (in the upper right window) provides a graphical representa-
tion of the sent and acknowledged (CumAck’ed and GapAck’ed; see also Section 3.7) TSNs.
This tool has been highly useful during the validation phase of the simulation model as well as
for analysing performance issues on dissimilar paths (to be explained in Chapter 7).

• Also, the Expert Info tool (in the lower left window) provides an analysis for potential mis-
behaviour of the SCTP communication. For example, it validates TSN sequences, checks for
potential protocol violations, “unusual behaviour”, etc.. In particular, this tool has been ex-
tended – as part of this work – with a validity check of GapAck TSN values.

For testing and debugging, WIRESHARK has also been equipped with dissectors for the two NET-
PERFMETER protocols (i.e. NPMP-CONTROL and NPMP-DATA; see Section 6.3) and the Scripting
Service Protocol (to be introduced in Subsection B.3.5). Both have been applied for stress tests. Fur-
thermore, a dissector for the Component Status Protocol (to be introduced in Subsection B.3.4) has
been added. All dissectors have been contributed to the WIRESHARK project and are now directly
provided within its application package.

6.5 The Testbed

Figure 6.5 presents the two setups of the testbed: a local setup (see Subfigure 6.5(a)) as well as a
distributed Internet setup between two sites (see Subfigure 6.5(b)). For both setups, PCs with dual-
core AMD CPUs under 64-bit FreeBSD 8.214 with the development version of SCTP (see Section 6.2)
are used. The PCs used for the protocol tests are equipped with Intel 82576-based, server-quality,
dual-port Gigabit Ethernet NICs providing support for SCTP CRC-32C checksum offloading (see
Subsection 3.12.3). NETPERFMETER version 1.1.8 (see Section 6.3) as well as WIRESHARK (see
Section 6.4) are installed on all nodes. Furthermore, all nodes run NTP (see Subsection 2.13.4) to
ensure accurately synchronised clocks, as well as SSH (see Subsection 2.13.4) to provide remote
logins.

6.5.1 Local Setup

The local testbed setup illustrated in Subfigure 6.5(a) uses the two PCs “West” and “East” as com-
munications endpoints. The routers on the two paths, “Northern Path” (in blue colour) and “Southern
Path” (in red colour), apply DUMMYNET to provide certain QoS characteristics: bandwidth limita-
tion, delay, bit errors and packet losses. DUMMYNET is part of the packet filtering infrastructure in
the FreeBSD kernel15. Further details are provided by [CR09].

14FreeBSD: http://www.freebsd.org/.
15DUMMYNET is an optional part of the FreeBSD kernel and must be activated at time of kernel compilation.

http://www.freebsd.org/

98 CHAPTER 6. THE TESTBED ENVIRONMENT

(a) Local Testbed in the Networking Lab in Essen

(b) Distributed Testbed between Essen and Burgsteinfurt

Figure 6.5: An Illustration of the Testbed Setup

6.5. THE TESTBED 99

In order to simplify the capture of packet traces on the two paths, the PC “Monitor” is connected to
the monitoring port of a managed switch; it is therefore able to see the packets of both paths and record
their actual timing sequence. This hardware-based solution for live packet capturing and analysis is
necessary, since the FreeBSD version of WIRESHARK is limited to capturing packets from only one
network interface (i.e. of a single path) at a time. The only alternative to obtain a multi-interface
packet trace on FreeBSD is to capture on each interface separately, and finally merge the obtained
PCAP trace files. Of course, this approach would prevent any real-time analysis of a multi-homed
communication.

6.5.2 Distributed Setup

In order to perform real Internet measurements, the testbed has been extended by an Internet setup, as
depicted in Subfigure 6.5(b). It links the sites of the two main project partners (see also Section 1.2):

• the Computer Networking Technology Group at the Institute for Experimental Mathematics of
the University of Duisburg-Essen in Essen/Germany16 and

• the Department of Electrical Engineering and Computer Science at the Münster University of
Applied Sciences in Burgsteinfurt/Germany17.

Both sites are interconnected via two disjoint paths:

1. The first path (which is shown in blue colour) uses a high-speed fibre optic connection over the
German Research Network (Deutsches Forschungsnetz18 – DFN), with a typical RTT of 4 ms.

2. The second path (which is shown in red colour) uses an ADSL connection in Essen (Versatel19;
800 Kbit/s upstream, 16 Mbit/s downstream) as well as an ADSL connection in Burgsteinfurt
(Telekom20; 1 Mbit/s upstream, 16 Mbit/s downstream); the typical RTT is 56 ms.

That is, the QoS characteristics of these two paths are highly dissimilar. As will be shown in Chapter 7,
this is an interesting challenge for CMT.

Like for the local setup described in Subsection 6.5.1, the distributed scenario may also use DUM-
MYNET for further adaptation of the QoS characteristics. Furthermore, the PC “Monitor” is again able
to perform a real-time analysis of the traffic on both paths, by using WIRESHARK.

6.5.3 The Reality – Challenges and Lessons Learned

While the schematic setup of the testbed illustrated in Figure 6.5 is straightforward and reasonably
simple, the reality is somewhat more complicated and challenging. Figure 6.6 presents the actual
setup at the site in Essen. The two PCs on the left-hand side on the table are the two routers; the two
PCs on the left-hand side below the table are the endpoints; the monitoring PC is located on the table
at the right-hand side of the display. When setting up this testbed environment, a couple of challenges
had to be solved. These challenges and their solutions are shortly described here, in order to provide
some “lessons learned” to other researchers who are going to build up similar setups.

16Location of the endpoint in Essen: 51° 28’ 32.16” North, 7° 0’ 42.27” East.
17Location of the endpoint in Burgsteinfurt: 52° 8’ 53.94” North, 7° 20’ 1.69” East.
18Deutsches Forschungsnetz: http://www.dfn.de/.
19Versatel: http://www.versatel.de/.
20Telekom: http://www.telekom.de/.

http://www.dfn.de/
http://www.versatel.de/
http://www.telekom.de/

100 CHAPTER 6. THE TESTBED ENVIRONMENT

(a) A Complete Picture (b) Routers, Ethernet Switches, KVM Switch and PCU

Figure 6.6: The Testbed Setup in Essen in Reality

6.5.3.1 Power Control Unit and Keyboard/Video/Mouse Switch

First, since the testbed is also used for debugging the SCTP implementations, system crashes and
deadlocks may occur. This frequently happens at very inappropriate times, e.g. when the building is
closed due to week-ends or public holidays. In order to avoid the need of physical access to the PCs
in order to reset them, all systems are attached to an Internet-connected Power Control Unit (PCU). It
provides a web interface for turning the power to selected nodes on or off, i.e. providing the possibility
for a remote-controlled hard reset.

Furthermore, in order to reduce hardware requirements, all PCs are connected to a so-called Key-
board/Video/Mouse (KVM) switch: it allows to share a single keyboard, mouse and video display
among all PCs.

6.5.3.2 Peculiarities of DUMMYNET

While DUMMYNET – as introduced by [CR09] – is a well-known and widely used tool to provide cer-
tain QoS characteristics, it is also important to know its peculiarities. The limitations of DUMMYNET

have been examined in some further detail in [BDRF11]. Particularly notable are the following points:

• The emulation of jitter is very limited. This restriction is important for real-time multimedia
traffic (e.g. telephony; see also [Ste00]). Since this kind of traffic is not used within the con-
text of this thesis, the limited jitter support is not important here. However, since CMT for
multimedia traffic is a topic of future work, it is important to mention here.

• Queue sizes are limited to 100 packets at most. This prevents the emulation of very long queues,
which are realistic for ADSL connections. However, since the testbed uses a real ADSL con-
nection, this limitation is not problematic in the context of this thesis.

An alternative to DUMMYNET may be NETEM21, a QDisc for applying QoS characteristics, which
is provided by the traffic control infrastructure of the Linux kernel and described by [Hem05]. Of

21NETEM: http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

6.5. THE TESTBED 101

course, its application would mean to replace the FreeBSD-based routers by Linux-based routers.
[BDRF11] provides a detailed performance comparison between DUMMYNET and NETEM.

6.5.3.3 Challenges of ADSL Configuration

The testbed – as illustrated in Figure 6.5 – consists of multiple subnets. In case of the DFN network
(in blue colour), the necessary subnetting – see also [Tan96] – has been realised without any prob-
lem. However, performing a subnet configuration for the DSL path (in red colour) had been more
complicated. The ISP had delivered a preconfigured ADSL router, providing an Ethernet port with
one large network configured. For subnetting, of course, static routes would have to be configured on
this device. However, its configuration had been fixed by the ISP – with no possibility to reconfigure
it22. Therefore, the solution had been to apply Proxy ARP (defined in [CMQ87] as RFC 1027) on the
FreeBSD router, in order to pretend one large network to the ADSL router and apply all static route
configuration on the own FreeBSD machine. For the communication performance, this setup has no
significant influence – its configuration is just awkward.

One more restriction caused by the ADSL network has been the lack of support for IPv6. Native
IPv6 connectivity is still very unusual for end-users in Germany. Most of the ISPs – including the
ADSL ISPs used for the testbed – still do not support it, yet. With IPv6 connectivity only via the DFN
network, the measurements had therefore been restricted to IPv4 only. However, the general behaviour
to be examined in this thesis is independent of the underlying Network Layer protocol. Therefore,
IPv6 connectivity would just have been a “nice to have” feature for implementation testing.

6.5.3.4 Challenges of Ethernet Hardware

A further important insight of the testbed setup is that Ethernet 6= Ethernet. Originally, in order to
set up the two paths illustrated in Figure 6.5, the on-board Ethernet interface as well as an additional
Ethernet NIC had been used for the PCs (i.e. endpoints and routers). However, this had led to ini-
tially inexplicable bandwidth drops during performance tests, i.e. the on-wire speed of 1 Gbit/s had
irregularly been reduced – for the fraction of a second – to 100 Mbit/s, and returned back to 1 Gbit/s
afterwards. An intensive testing to find the problem, which – in combination with some bugs in the
kernel – had taken several weeks, has finally identified the interaction of multiple problem sources:

• It had been shown that some combinations of cables, switches and NICs did not work well
together. Therefore, all cables had finally been replaced by straight from the factory ones of the
same vendor.

• The switches – which had initially been medium-cost workgroup switches – had been replaced
by more expensive devices of a well-known network equipment vendor.

• Some further tests had also shown some different behaviour of the NICs. Particularly, different
NIC vendors realise different queue lengths and characteristics. These differences, although
very small, had led to slightly dissimilar paths. However, these small dissimilarities had already
been sufficient to have a significant impact on the CMT-SCTP performance, as will be shown
in Chapter 7. Finally, Intel 82576-based, server-quality, dual-port NICs (i.e. one port for each
path) had been installed in all PCs of the setup.

22Applying a password recovery procedure would have been a solution for this problem, but – of course – this would
have violated the ADSL contract with the ISP.

102 CHAPTER 6. THE TESTBED ENVIRONMENT

The described changes have finally resulted in the testbed to behave as expected. But, at least, there is
also a positive effect of the prolonged search for the problem sources: multiple bugs in the FreeBSD
kernel SCTP implementation had been identified and fixed and – most importantly – the tests have
pointed out to the interesting research topic of CMT performance on dissimilar paths.

6.6 Virtualisation of the Testbed

Due to the various difficulties experienced when setting up the testbed, a partial virtualisation is con-
sidered for the future continuation of the research project on SCTP. Particularly, it is intended to utilise
the research platform G-LAB23 (German Lab), which is introduced in detail by [TGFS+09], for this
task. The G-LAB consists of a group of nodes, which are available as a large testbed for computer
networking and distributed systems research. A research project has access to a so-called Slice, which
consists of virtual machine access to a subset of the nodes. Virtual links may be combined with real-
existing physical links (like an ADSL connection or a wireless channel) to set up complex topologies
and perform experiments in these scenarios. This will bring significant benefits in terms of scalability,
extensibility, reliability and manageability of a testbed.

6.7 Summary

In this chapter, the FreeBSD-based, distributed testbed environment for the CMT-SCTP evaluation
has been introduced. This environment includes the NETPERFMETER network performance test ap-
plication, which has been developed in order to efficiently perform measurements in the testbed. Fur-
thermore, the packet trace analysis tool WIRESHARK – which has been used intensively for debugging
and testing the setup as well as during validation of the simulation model – has been described briefly.
Also, some important lessons learned from building up a distributed network testbed have been shown.

23G-LAB: http://www.german-lab.de/.

http://www.german-lab.de/

Chapter 7

Efficient Handling of Dissimilar Paths

This chapter indicates the begin of the CMT-SCTP evaluation part. In this chapter, the performance
evaluation of CMT-SCTP over dissimilar paths is described and analysed. First, the performance
issues for unordered delivery are analysed and solved by additional mechanisms. Based on these
mechanisms for unordered delivery, the evaluation and optimisation is extended to ordered delivery
as well. Finally, mechanisms to improve the performance of certain multi-streaming applications are
introduced.

7.1 Introduction

CMT-SCTP, as defined by [IAS06] and explained in Section 4.2, looks very straightforward at first
sight. However, this approach assumes that the paths used for the intra-flow load sharing are relatively
similar, i.e. they provide similar QoS characteristics like bandwidths, delays and bit error rates (see
also Section 2.4). As will be shown in this chapter, dissimilarities of these QoS characteristics cause
severe performance degradations. These problems are also not restricted to CMT-SCTP; they are
generic problems and apply to other Transport Layer approaches – particularly to MPTCP – as well.

Clearly, one of the core application scenarios of CMT-SCTP is bulk data transfer, e.g. in MPI
setups as described by [PTIW07]. Therefore, the performance metric is defined by the achievement
of the following two goals:

1. The overall payload throughput (see also [MA01]) should be maximised.

2. Furthermore, the overall payload throughput for CMT-SCTP should at least be equal to the
throughput of standard SCTP over the best path.

Unlike TCP/MPTCP, SCTP provides support for optional unordered delivery and multi-streaming.
That is, the three underlying protocol mechanisms of SCTP can be used and examined separately:

1. Unordered delivery (see Section 3.6),

2. Ordered delivery (see also Section 3.6 as well as Section 2.8) and

3. Multi-streaming (see Section 3.5).

Further details on the separation of these functional blocks can also be found in [DBHR10]. Due
to this separation, the resolution of the problems described in this chapter is simplified by applying

103

104 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

Figure 7.1: The Scenario Setup for the Performance Evaluations

the “Divide and Conquer” principle. That is, at first, the challenges of unordered delivery are exam-
ined and solved in Section 7.5, Section 7.6 and Section 7.7. This is followed by ordered delivery in
Section 7.8 and Section 7.9. Finally, multi-streaming is analysed in Section 7.10.

7.2 Scenario Setup

For the performance evaluation of CMT-SCTP, the simulation setup introduced in Chapter 5 as well
as the testbed setup introduced in Chapter 6 have been used. The general scenario is illustrated in
Figure 7.1. Unless otherwise specified, the following configuration parameters have been set:

• The sender has transferred a unidirectional SCTP payload data flow consisting of one stream to
the receiver. The stream has been saturated, i.e. the sender has tried to transfer as much data
as possible. The message size has been 1,452 bytes at an MTU of 1,500 bytes (i.e. MTU-sized
packets, see also [Ste07]).

• SCTP has used the standard settings defined in RFC 4960 (see also Chapter 3).

• SCTP has applied burst mitigation by using the variant “Max Burst” from [AB05] adapted to
SCTP. Burst mitigation and the reasons for this choice in favour of “Use It or Lose It” (see
Section 3.9) will be explained in detail in Subsection 7.9.4.

• The SCTP extensions SACK immediately (see Subsection 3.11.6) and NR-SACK (see Subsec-
tion 3.11.5) have been active, since they are provided by state-of-the-art SCTP implementations
(see Section 3.13 and [DRS+11]).

• The SCTP packet drop reporting extension (see Subsection 3.11.8) has been turned off. It will
be explicitly enabled in bit error scenarios.

• Of course, the CMT-SCTP extension as described in Section 4.2 has been active. Also, the
additional mechanisms defined by [IAS06] have been applied: split fast retransmission (see
Subsection 4.2.2), congestion window update for CMT, version 2 (see Subsection 4.2.3) and
delayed acknowledgement for CMT (see Subsection 4.2.4).

7.3. MODEL VALIDATION ON SIMILAR PATHS 105

• The additional mechanisms that have been developed as part of this thesis have been config-
ured as follows: smart SACK path selection (to be introduced in Subsubsection 7.9.4.2), smart
fast retransmission (to be introduced in Subsection 7.7.3; published in [DBRT10]) and buffer
splitting (both sides, based on outstanding bytes; to be introduced in Section 7.6; published
in [DBRT10, ADB+11]) have been activated. Chunk rescheduling (to be introduced in Sec-
tion 7.8; published in [DBRT10]) has been turned off.

• The QoS characteristics of the two paths (Path #1 shown in blue colour; Path #2 shown in red
colour) have been varied. By default, they have used a bandwidth of 100 Mbit/s, a delay of 1 ms
(realistic for a LAN setup) and no bit errors. The queue of each router applying the QoS settings
is a RED queue (see Subsection 2.4.2 and [FJ93]), using the parameters MinTh=30, MaxTh=90
and MaxP=10%. That is, the configuration has followed the recommendations by [Flo97]. All
other queues have been FIFO queues (see Subsection 2.4.2) with a capacity of 100 packets.

• The runtime of each simulation or measurement run has been 60 s. Tests have been repeated
multiple times (at least 24 times for simulations, at least 8 times for measurements) in order
to ensure a sufficient statistical accuracy. All result plots show the average values over these
repetitions and their corresponding 95% confidence intervals (details are described in Subsec-
tion B.4.2).

7.3 Model Validation on Similar Paths

A mandatory preliminary work of each simulative performance evaluation is to validate the model.
This validation has been performed by comparing the results of testbed measurements and simulation
results, for a similar path setup varying the bandwidth ρ of each path from 1 Mbit/s to 100 Mbit/s.
This initial performance evaluation has also been published in [DBPR10b]. The resulting application
payload throughput results are presented in Figure 7.2 (testbed results in Subfigure 7.2(a), simulation
results in Subfigure 7.2(b)).

As parameters for this evaluation, only the features of plain CMT-SCTP as defined by [IAS06]
and the defaults of standard SCTP as defined in RFC 4960 (see [Ste07]) have been used:

• Burst mitigation as suggested by [Ste07, Subsection 6.1] has been applied (i.e. the variant “Use
It or Lose It” – see Section 3.9).

• The SCTP extensions SACK immediately (see Subsection 3.11.6) and NR-SACK (see Subsec-
tion 3.11.5) have been turned off.

• Send buffer and receive buffer have had a size of 64 MiB (i.e. they have been huge, in order to
avoid any lack of space).

The expected “ideal case” throughput in this scenario can be computed theoretically, by using the
known sizes of payload and overhead:

• The payload of each SCTP packet is 1,452 bytes.

• The overhead consists of SCTP and DATA chunk headers (28 bytes in total), IPv4 header
(20 bytes), Ethernet header (14 bytes) as well as Ethernet preamble (8 bytes) and checksum
(4 bytes). That is, the total frame size is 1,526 bytes.

106 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 10 20 30 40 50 60 70 80 90 100

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Per−Path Bandwidth ρ [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Congestion Control Variant Γ

1: Γ=off
2: Γ=cmt

(a) Testbed Measurement Results

0 10 20 30 40 50 60 70 80 90 100

0
2

5
5

0
7

5
1

0
0

1
2

5
1

5
0

1
7
5

2
0

0

Per−Path Bandwidth ρ [Mbit/s]
N

e
tP

e
rf

M
e

te
r

A
p

p
lic

a
ti
o

n
 P

a
y
lo

a
d

 T
h
ro

u
g

h
p

u
t

[M
b

it
/s

]

Congestion Control Variant Γ / Cwnd Update Variant χ / Split Fast RTX σ

1: Γ=off, χ=normal, σ=false
2: Γ=cmt, χ=pseudoCumAckV2, σ=true
3: Γ=cmt, χ=pseudoCumAckV2, σ=false
4: Γ=cmt, χ=normal, σ=true
5: Γ=cmt, χ=normal, σ=false

(b) Simulation Results

Figure 7.2: The CMT-SCTP Performance in a Similar Paths Setup

That is, the application throughput for using one path (i.e. non-CMT) as well as two paths (i.e. CMT)
can be calculated as follows:

100 Mbit/s ∗ 1, 452 B

1, 526 B
≈ 95 Mbit/s,

2 ∗ 100 Mbit/s ∗ 1, 452 B

1, 526 B
≈ 190 Mbit/s.

Both, testbed measurement and simulation model reasonably well reach the expected throughput
performance for non-CMT at ρ=100 Mbit/s (curve 1; drawn in dark blue colour), while the corre-
sponding CMT performance is around 188 Mbit/s (curve 2; represented by a solid line in dark green
colour). This is just about 1% less than the theoretic optimum. Also, as expected, the simulation
results show the need for split fast retransmission (curves 2 and 4; see Subsection 4.2.2) and conges-
tion window update for CMT, version 2 (curves 2 and 3; see Subsection 4.2.3). Since turning these
options off is – obviously – not useful, a corresponding configuration option is not available in the
FreeBSD kernel SCTP implementation. Measurement curves are therefore not available here. In sum-
mary, testbed measurements and simulation results reach corresponding results, and the performance
of CMT-SCTP in this nearly similar setup is reasonably well.

Of course, there is a reason for the about 1% performance loss: the RED queues (see Subsec-
tion 2.4.2) introduce some temporary dissimilarities into the system. At non-deterministic times, the
RED queue drops packets and the sender has to adapt the congestion window, according to the AIMD
behaviour introduced in Section 3.8. These small dissimilarities trigger the issues also occurring on
intentionally dissimilar paths, where these problems have a significantly higher impact.

7.4. BUFFER SIZE CONSIDERATIONS 107

7.4 Buffer Size Considerations

The sizes of send and receive buffer – as explained in Subsection 2.9.2 – are very important system
parameters. While the configuration of the setup in Section 7.3 has used extremely large buffers to
avoid space shortages, the sizes of these buffers must be limited in practise, in order to fulfil memory
constraints of the used systems. It is therefore necessary to carefully configure the buffer sizes.

In an ideal scenario without any losses, the absolute lower bound BA
min for the size of send and

receive buffers, in a setup with paths P = {P1, . . . , Pn} as well as Bandwidthi the bandwidth and
RTTi the RTT of path Pi, is defined by the bandwidth-RTT product as described in Subsubsec-
tion 2.9.2.3:

BA
min = max

1≤i≤n
{RTTi} ∗

n∑
i=1

Bandwidthi.

That is, the buffer has to store at least the traffic generated within an RTT on the slowest path. After
that time, a CumAck frees space to transmit or receive new DATA chunks.

In reality, the AIMD congestion control behaviour, as introduced in Subsection 2.11.2, leads to
frequent losses of single packets – which is an intended behaviour: the congestion control tries to
utilise all available bandwidth by increasing the congestion window and gets a feedback from the
network – in form of packet losses – when too much data has been sent. These losses are handled
by fast retransmissions, which should therefore also be covered by the buffer to avoid transmission
interruptions. That is, the minimum buffer size BF

min for the send and receive buffers is:

BF
min = 2 ∗

[
max

1≤i≤n
{RTTi} ∗

n∑
i=1

Bandwidthi

]
.

Timer-based retransmissions occur in case of high congestion, i.e. they should be rare. In order
to also cover a timer-based retransmission, the minimum buffer size BT

min for the send and receive
buffers is:

BT
min =

(
3 ∗ max

1≤i≤n
{RTTi}+ max

1≤i≤n
{RTOi}

)
∗

n∑
i=1

Bandwidthi.

That is, in the worst case it takes three times the highest path RTT (first transmission, fast retransmis-
sion, timer-based retransmission) plus the highest path RTO (see Subsection 2.11.4).

Since the default minimum RTO is RTO.Min=1 s (as introduced in Section 3.8), the timer-based
retransmission coverage by the buffer space is usually too expensive. Figure 7.3 illustrates the buffer
space requirements for varying the sum of path bandwidths and highest RTT R for coverage of only
the first transmission (Θ=1st; solid lines), a fast retransmission (Θ=Fast, dashed lines) and a timer-
based retransmission (Θ=Timer-Based; dotted lines). For example, a 100/100 Mbit/s setup (i.e. a
bandwidth sum of 200 Mbit/s) having a highest path RTT of 110 ms (e.g. an inter-continental com-
munication; see also Subsection 2.4.2) requires send and receive buffer spaces of 32 MiB to cover
a timer-based retransmission. Considering a system with hundreds or thousands of simultaneous as-
sociations (e.g. in MPI setups as described by [PTIW07]), realistic scenarios can just cover a fast
retransmission – which still requires a buffer space of about 5.5 MiB here.

As an example, the default buffer size setting of FreeBSD kernel SCTP1 is only 233,016 bytes.
Obviously, buffer space is a limited resource – and this leads to problems.

1FreeBSD release 8.2.

108 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 25 50 75 100 125 150 175 200

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

Sum of Path Bandwidths [Mbit/s]

B
u
ff
e
r

S
iz

e
 [
M

iB
]

Maximum Round Trip Time R [ms] / Transmission Trial Θ

R=110, Θ=1st
R=110, Θ=Fast
R=110, Θ=Timer−Based
R=10, Θ=1st
R=10, Θ=Fast
R=10, Θ=Timer−Based
R=1, Θ=1st
R=1, Θ=Fast
R=1, Θ=Timer−Based

Figure 7.3: Required Sizes for Send and Receive Buffers

7.5 Buffer Blocking Issues

The core problem occurring when transmitting over dissimilar paths is caused by send and receive
buffer limitations, i.e. the problem subdivides between sender side and receiver side. Furthermore,
for each side, two sub-problems have been identified as part of this thesis. The initial results on these
so-called Buffer Blocking issues have been published in [DBRT10], with some refinements and the
classification in [ADB+11].

7.5.1 Send Buffer Blocking

Sender-side buffer blocking is denoted as Send Buffer Blocking. It can be classified into two sub-
problems.

7.5.1.1 Transmission-Induced Send Buffer Blocking

The first sender-side buffer blocking issue is denoted as Transmission-Induced Send Buffer Blocking.
An example is depicted in Figure 7.4. In this example, Endpoint A transmits DATA chunks over two
paths to Endpoint B. The send buffer of Endpoint A has the capacity to store eight DATA chunks; it
has been completely filled with outgoing data. The sender has transmitted seven DATA chunks over
the high-delay Path #1 (TSNs #19 to #25) and one over the low-delay Path #2 (TSN #18), since the
congestion windows allow2 seven and one DATA chunks, respectively. This, of course, is exactly the
intended behaviour of the congestion control (see Section 3.8 and Subsection 2.11.2).

The problem arises when TSN #18 – which has been sent over the low-delay path – gets acknowl-
edged to the sender side by the reception of a SACK chunk. According to the rules for increasing the
congestion window on reception of a new acknowledgement, the congestion window on Path #1 may
grow (see Subsubsection 2.11.2.1 and Subsection 4.2.3). However, since only DATA chunk #18 leaves

2For simplification, the congestion windows are given in units of DATA chunks here. In reality, they are given in units
of bytes. Nevertheless, the principle is the same.

7.5. BUFFER BLOCKING ISSUES 109

Figure 7.4: An Example for Transmission-Induced Send Buffer Blocking

Figure 7.5: An Example for GapAck-Induced Send Buffer Blocking

110 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

the completely occupied send buffer, only one new DATA chunk may be enqueued and transmitted.
That is, the sender cannot utilise its congestion window on Path #1; it is therefore unable to utilise the
full capacity of Path #1.

This problem of unbalanced distribution of buffer space among the paths caused by transmission-
induced send buffer blocking is particularly triggered by overly long router queues (here: on the
high-delay Path #1), as will be demonstrated in an ADSL setup in Subsection 7.6.2. It is important to
note here that it already occurs for unordered delivery, and therefore also for ordered delivery as well.

7.5.1.2 GapAck-Induced Send Buffer Blocking

The second sender-side buffer blocking issue is denoted as GapAck-Induced Send Buffer Blocking.
Figure 7.5 presents an example: EndpointA has transmitted the DATA chunks #27 and #28 on Path #1
as well as #29 to #34 on Path #2 using unordered delivery. On Path #1, the DATA chunk #27 is
successfully received – as well as the DATA chunks #29 to #34 on Path #2. This allows a CumAck
of TSN #27 and GapAcks for TSNs #29 to #34 (in form of a SACK chunk). The DATA chunk #28
is missing. Due to possible reneging, as described in Section 3.7, the succeeding DATA chunks #29
to #34 cannot be removed from the send buffer. Therefore, only the space of a single DATA chunk
may be freed (by the CumAck of TSN #27), allowing only a single more new one to be enqueued and
transmitted into the network.

In the worst case, DATA chunk #28 is a lost fast retransmission (i.e. it has already been transmitted
twice). Then, once the buffer is fully blocked, the transmissions on all paths are suspended until a
successful timer-based retransmission of this DATA chunk.

The NR-SACK extension – as described in Subsection 3.11.5 – is able to reduce the problem
in certain situations. In the example, TSNs #29 to #34 may be non-renegably GapAck’ed, allowing
the sender to remove the corresponding DATA chunks from its send buffer. However, while NR-
SACK works for unordered delivery without Segmentation, a receiver may need reneging in certain
other cases. Particularly, reneging may be necessary when using ordered delivery – as described in
Section 3.7.

7.5.2 Receive Buffer Blocking

Receiver-side buffer blocking is denoted as Receive Buffer Blocking. It can also be classified into two
sub-problems.

7.5.2.1 Advertised-Window-Induced Receive Buffer Blocking

An example for the first receiver-side buffer blocking issue – denoted as Advertised-Window-Induced
Receive Buffer Blocking – is depicted in Figure 7.6: Endpoint B has told Endpoint A its advertised
receiver window of eight DATA chunks. Therefore, Endpoint A has sent its eight DATA chunks #36
to #43 using unordered delivery to Endpoint B over two paths. After that, it has reduced the peer
receiver window to 0 (as defined in Subsection 2.10.1), i.e. it currently may not send any further
chunks.

Path #1 has a high delay and large queuing capacity. On the other hand, Path #2 is a high-
bandwidth path with a low delay and a small queuing capacity. The DATA chunks #36 and #38 are
the first chunks reaching Endpoint B; they may be delivered directly to the Application Layer. Using
delayed acknowledgement (see Subsubsection 2.9.3.1), Endpoint B will then send a SACK chunk to
Endpoint A, again with an advertised receiver window of eight DATA chunks. On reception of this

7.5. BUFFER BLOCKING ISSUES 111

Figure 7.6: An Example for Advertised-Window-Induced Receive Buffer Blocking

Figure 7.7: An Example for Reordering-Induced Receive Buffer Blocking

112 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

SACK chunk, Endpoint A knows that the TSNs #36 and #38 are not outstanding any more and adapts
its peer receiver window to two DATA chunks (since six more chunks are still outstanding). According
to the congestion window update rules, Endpoint A may also increase its congestion window for
Path #2 (see Subsection 4.2.3). But the peer receiver window only allows Endpoint A to send two
new DATA chunks into the network. That is, it will not be able to utilise the increased congestion
window.

In order to fully utilise its capacity, a path needs to steadily have at least a number of bytes given
by its bandwidth-RTT product outstanding (as described in Subsubsection 2.9.2.3). If it cannot have
this amount of data in flight, its throughput will suffer. In the example depicted in Figure 7.6, this
problem occurs since the queuing capacity of Path #1 is too large in comparison to the receive buffer
capacity of Endpoint B – which is provided to Endpoint A as advertised receiver window. That is,
Endpoint A has no possibility to send out further DATA chunks on Path #2 to utilise its capacity.

It is important to note here that advertised-window-induced receive buffer blocking may already
occur for unordered delivery, as shown in the example. Therefore, it is a problem for ordered delivery
as well. [IAS05] proposes specific retransmission strategies that can be used to alleviate some of the
throughput reduction related to advertised-window-induced receive buffer blocking. However, they
cannot solve the cause of the problem.

7.5.2.2 Reordering-Induced Receive Buffer Blocking

The second receiver-side buffer blocking issue is denoted as Reordering-Induced Receive Buffer
Blocking; Figure 7.7 presents an example: similar to GapAck-induced send buffer blocking as de-
scribed in Subsubsection 7.5.1.2, missing chunks preventing a CumAck lead to the issue of already-
received DATA chunks blocking receive buffer space. In this example, EndpointA has transmitted the
DATA chunks #46 and #47 on Path #1 as well as #48 to #52 on Path #2. DATA chunk #47 is delayed;
all other ones have arrived at Endpoint B.

Except for DATA chunk #50, all other chunks have used ordered delivery. That is, only the
DATA chunk #50 – which uses unordered delivery – may be delivered out of sequence. Therefore,
as soon as it has been received, it may be forwarded to the Application Layer and removed from the
receive buffer. On the other hand, the DATA chunks #48 to #49 and #51 to #52 have to be provided
to the Application Layer in sequence. For this reason, they must remain in the receive buffer until the
still missing DATA chunk #47 has arrived. Until then, the corresponding buffer space of these four
chunks remains occupied.

7.6 Buffer Splitting

The key problem of the observed buffer blocking problems has been the coupling – and therefore
the resulting unbalance – of the send and receive buffer fractions used by the paths of a CMT-SCTP
association.

7.6.1 The Approach

The approach, denoted as Buffer Splitting, which has been developed as part of this thesis, targets this
unbalance by a decoupling of the per-path buffer usage.

7.6. BUFFER SPLITTING 113

7.6.1.1 Buffer Splitting based on Buffered Bytes

In the initial version of buffer splitting, which has been published in [DBRT10], the metric for the
per-path usage of buffer space is the buffer size occupied by the DATA chunks on each path. In order
to avoid one path using too much send buffer space – which prevents other paths from sending out
new chunks – the solution denoted as Send Buffer Splitting based on Buffered Bytes simply splits the
send buffer of size BSender into n (i.e. the number of paths) sections. Let Bufferedi be the buffer size
occupied by chunks on path Pi and MTUi be the MTU on path Pi. Then, a new DATA chunk on
path Pi may be sent if its buffer share allows another MTU-sized packet:

Bufferedi + MTUi ≤
BSender

n
. (7.1)

Similar to the send buffer handling, the sender is also able to take care of the receive buffer, by tak-
ing notice of the peer receiver window size PeerReceiverWindow (described in Subsection 2.10.1).
Let Outstandingj be the buffer size occupied by outstanding (i.e. still unacknowledged) chunks on
path Pj . Using Receive Buffer Splitting based on Buffered Bytes, a new DATA chunk on path Pi may
be sent if:

Bufferedi ≤
PeerReceiverWindow +

∑n
j=1 Outstandingj

n
. (7.2)

The peer receiver window describes the sender’s current knowledge of available receive buffer space.
Therefore, the total receive buffer size is simply the peer receiver window plus the size of the currently
outstanding DATA chunks.

Note, that the approach of receive buffer splitting is completely realised at the sender side. That is,
for unidirectional CMT-SCTP payload data transfer, the receiver side requires no particular support
functionality. This may be useful in some deployment scenarios, where the SCTP implementation of
the receiver side cannot be updated easily.

Since both, sender-side and receiver-side buffer splitting approaches are based on buffer occupa-
tion, they are commonly denoted as Buffer Splitting based on Buffered Bytes.

7.6.1.2 Buffer Splitting based on Outstanding Bytes

The approach of buffer splitting based on buffered bytes has been refined by reconsidering the un-
balance of the buffer usage. Instead of using the complete buffer occupation of a path (i.e. all
DATA chunks, regardless of whether they are outstanding or have already been acknowledged), it
is already sufficient to just consider the number of outstanding bytes (see Subsection 2.9.2) on each
path. This approach has been published in [ADB+11].

The approach of Send Buffer Splitting based on Outstanding Bytes simply modifies the precondi-
tion of Equation 7.1 to transmit a new DATA chunk on path Pi as follows:

Outstandingi + MTUi ≤
BSender

n
(7.3)

Analogously, Receive Buffer Splitting based on Outstanding Bytes modifies the precondition of Equa-
tion 7.2 for the receive buffer handling as follows:

Outstandingi ≤
PeerReceiverWindow +

∑n
j=1 Outstandingj

n
(7.4)

Both approaches – i.e. send and receive buffer splitting based on outstanding bytes – are further
denoted as Buffer Splitting based on Outstanding Bytes. The difference to the approach based on
buffer occupation will be further examined in Subsection 7.6.3.

114 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

7.6.2 A Proof of Concept

As a proof of concept for buffer splitting based on outstanding bytes, the setup described in Section 7.2
has been used with FIFO router queues, since RED is non-deterministic and would therefore blur the
effects to be demonstrated. The maximum FIFO queue packet capacity κ (see Subsection 2.4.2) has
been varied; Path #1 has used a fixed bandwidth of 100 Mbit/s, Path #2 a fixed bandwidth of 10 Mbit/s.
Figure 7.8 presents the application payload throughput results for buffer splitting turned off (curve 3)
as well as send buffer splitting (curve 1; see Equation 7.3), receive buffer splitting (curve 2; see
Equation 7.4) and both simultaneously (curve 4), for three send buffer to receive buffer size ratios:

1. Using a send buffer smaller than the receive buffer (125,000 bytes vs. 250,000 bytes; shown in
Subfigure 7.8(a)), the application payload throughput falls from the expected about 106 Mbit/s
to just about 16 Mbit/s if no send buffer splitting is applied. Here, the queuing capacity of the
slow Path #2 introduces transmission-induced send buffer blocking (as explained in Subsub-
section 7.5.1.1) when it becomes too large. At κ=150 packets using an MTU of 1,500 bytes,
this capacity has already reached 225,000 bytes – which is almost the size of the complete send
buffer (that has to be shared by both paths). Send buffer splitting – alone (curve 1, drawn in
brown colour) or in combination with receive buffer splitting (curve 4, drawn in orange colour)
– solves the problem.

2. If the send buffer is larger than the receive buffer (250,000 bytes vs. 125,000 bytes; shown in
Subfigure 7.8(b)), the scenario turns around. Now, advertised-window-induced receive buffer
blocking (as explained in Subsubsection 7.5.2.1) occurs. Since the receive buffer – for both
paths – only has a size of 125,000 bytes, the capacity of the queue on the slow Path #2 al-
ready exceeds it at κ=85 packets (i.e. 127,500 bytes). The growing number of outstanding
DATA chunks on Path #2 limits the peer receiver window, leaving no more room to have enough
outstanding DATA chunks on the fast Path #1 to cover the bandwidth-RTT product. Receive
buffer splitting – alone (curve 2, drawn in magenta colour) or in combination with send buffer
splitting (curve 4, drawn in orange colour) solves the problem here.

3. For equal buffer sizes (250,000 bytes for both; shown in Subfigure 7.8(c)), the problem is solved
by send buffer splitting (curve 1, drawn in brown colour) or receive buffer splitting (curve 2,
drawn in magenta colour): avoiding an unbalance in the send buffer also prevents an unbalance
in the same-sized receive buffer, and vice versa. Clearly, the same effect is reached when
applying both mechanisms simultaneously (curve 4, drawn in orange colour).

In summary, applying send and receive buffer splitting simultaneously (i.e. curve 4) solves the
transmission-induced send buffer blocking and advertised-window-induced receive buffer blocking
issues in all three cases.

7.6.3 Buffer Bloat – A Challenging Real-World Internet Scenario

In order to further examine the usefulness of buffer splitting, to show the difference between buffer
splitting based on buffered bytes and buffer splitting based on outstanding bytes, and to also demon-
strate the handling of GapAck-induced send buffer blocking, the simulation scenario for the following
performance analysis is based on an ADSL setup.

7.6.3.1 The ADSL Scenario

The following parameters have been used:

7.6. BUFFER SPLITTING 115

50 75 100 125 150 175 200

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Per−Path FIFO Queue Packet Capacity κ [Packets]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π

1: Π=senderOnly
2: Π=receiverOnly

3: Π=none
4: Π=bothSides

(a) Send Buffer Size < Receive Buffer Size

50 75 100 125 150 175 200

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Per−Path FIFO Queue Packet Capacity κ [Packets]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π

1: Π=senderOnly
2: Π=receiverOnly

3: Π=none
4: Π=bothSides

(b) Send Buffer Size > Receive Buffer Size

50 75 100 125 150 175 200

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Per−Path FIFO Queue Packet Capacity κ [Packets]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π

1: Π=senderOnly
2: Π=receiverOnly

3: Π=none
4: Π=bothSides

(c) Send Buffer Size = Receive Buffer Size

Figure 7.8: A Proof of Concept for Buffer Splitting based on Outstanding Bytes

116 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

• The message size has been 1,444 bytes at an MTU of 1,492 bytes on the ADSL links (i.e. MTU-
sized packets). The reduced MTU size – instead of 1,500 bytes as for Ethernet – is caused by
the usage of PPPoE for the ADSL communication (as described in Subsection 2.13.1).

• The configurations of Path #1 and Path #2 have been based on the distributed testbed setup
described in Subsection 6.5.2:

– Path #1 has been a high-speed path with a configurable bandwidth ρHS and a delay of 2 ms
(i.e. the RTT has been 4 ms).

– Path #2 has been an ADSL path. Its bandwidth has been limited to ρADSL=800 Kbit/s, its
delay has been 28 ms (i.e. the RTT has been 56 ms). Furthermore, this path has used a
FIFO queue with a capacity of 100 packets (the reason will be described below).

• The send buffer has been set to 300,000 bytes, the receive buffer has been set to 100,000 bytes.

The reason for using an ADSL path is the challenge introduced by so-called Buffer Bloat, as
described by [Get11a, Get11b]. ADSL modems typically use very long FIFO queues. These long
queues intend to maximise transfer throughputs (which is a nice feature for marketing purposes in the
highly competitive ADSL ISP market), but also have a negative impact on the delay. Having a queue
size of 100 packets at a speed of 800 Kbit/s, the queuing capacity for packets of 1,492 bytes is:

100 packets ∗ 1, 492 B/packet
800,000 bit/s

8 bit/B

≈ 1.5 s.

This means that a fully-utilised queue adds an additional delay of 1.5 s – which is e.g. more than six
times the delay caused by a satellite link (distance of 2×36,000 km; see also Subsection 2.4.2). The
impact on a window-based congestion control, as described in Subsection 2.11.2, is an extreme growth
of the congestion window. Once the congestion window has reached the bandwidth-RTT product (see
Subsubsection 2.9.2.3), the throughput of the communication cannot be improved any more. Any
larger setting of the congestion window just increases the message delay.

7.6.3.2 Simulation Results

In order to evaluate the impact of the ADSL setup on the CMT-SCTP performance, the bandwidth ρHS

of the high-speed path (i.e. Path #1) has been varied from 10 Kbit/s to 10 Mbit/s. The resulting ap-
plication payload throughput results are presented in Figure 7.9. Subfigure 7.9(a) shows the results
for applying buffer splitting based on buffered bytes (as defined in Subsubsection 7.6.1.1), Subfig-
ure 7.9(b) presents the corresponding results for applying buffer splitting based on outstanding bytes
(as defined in Subsubsection 7.6.1.2). Since small settings of ρHS – resulting in a high dissimilarity of
the paths – are also interesting, the plots in Subfigure 7.9(c) and Subfigure 7.9(d) show an extract of
the results for ρHS=10 Kbit/s to ρHS=800 Kbit/s. The curves 1 and 2 (drawn in cyan colour) present
the results for buffer splitting turned off; the curves 3 and 4 show the performance for activated buffer
splitting. The impact of deactivating the NR-SACK extension is depicted by curves 2 and 4 (drawn as
dashed lines); otherwise, NR-SACK has been used (drawn as solid lines).

Obviously, if buffer splitting is turned off, the sender is unable to utilise the high-speed path
by having a sufficient number of outstanding DATA chunks in order to cover the bandwidth-RTT
product. Advertised-window-induced receive buffer blocking – as described in Subsubsection 7.5.2.1
– is caused by the long transmission queue on the ADSL path. The resulting buffer bloat leads to

7.6. BUFFER SPLITTING 117

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bandwidth on High−Speed Path ρHS [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(a) Buffer Splitting based on Buffered Bytes

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bandwidth on High−Speed Path ρHS [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(b) Buffer Splitting based on Outstanding Bytes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Bandwidth on High−Speed Path ρHS [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(c) Buffer Splitting based on Buffered Bytes (Extracted)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Bandwidth on High−Speed Path ρHS [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(d) Buffer Splitting based on Outstanding Bytes (Extracted)

Figure 7.9: Simulation Results for the Impact of Buffer Splitting in the ADSL Scenario

118 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

a large number of outstanding bytes on the slow ADSL path, leaving no more room for increasing
the outstanding bytes on the high-speed path. The outstanding bytes are limited by the advertised
receiver window (the receive buffer has a size of 100,000 bytes), which is clearly much smaller than
the size of the send buffer (300,000 bytes). This size difference is also the reason why NR-SACK
cannot improve the situation here: NR-SACK can help to reduce the send buffer space requirements
(see Subsection 3.11.5), but the send buffer is not the problem here.

The usage of buffer splitting – in either variant – leads to a significantly increased performance. If
combined with the usage of the NR-SACK extension (i.e. curve 3), both buffer splitting variants reach
the expected application payload throughput of nearly 10.4 Mbit/s at ρHS=10 Mbit/s. If NR-SACK
is turned off (i.e. curve 4), the throughput is significantly lower in more dissimilar path scenarios
(i.e. for ρHS<800 Kbit/s and ρHS>800 Kbit/s). Obviously, GapAck- and transmission-induced send
buffer blocking (see Subsubsection 7.5.1.2 and Subsubsection 7.5.1.1) occurs and prevents the high-
speed path from utilising its bandwidth. As introduced in Subsubsection 7.6.1.2, this problem is
clearly stronger when basing the buffer splitting on buffered instead of outstanding bytes. That is, the
improved variant of buffer splitting (based on outstanding bytes) achieves a significant performance
improvement when NR-SACK cannot be applied, e.g. if the receiver side does not support this pro-
tocol extension. Unlike buffer splitting, which is completely realised at the sender side, NR-SACK
requires support by sender and receiver (see also Subsection 3.11.5). However, the GapAck-induced
send buffer blocking can only be solved by applying the NR-SACK extension.

7.6.3.3 Impact on the Congestion Control Behaviour

In order to further explain the effects causing the throughput results shown above, Figure 7.10 presents
an extract from time t0=1 s to t1=3.2 s of the corresponding congestion window (drawn as solid lines)
and slow-start threshold (drawn as dashed lines) behaviour of the high-speed path (Path #1, shown in
blue colour) and the ADSL path (Path #2, shown in red colour) for each of the four cases (i.e. send
and receive buffer splitting based on outstanding bytes off/on; NR-SACKs off/on). The bandwidth of
the high-speed path ρHS has been set to 10 Mbit/s here.

Subfigure 7.10(a) shows the results for buffer splitting as well as NR-SACKs turned off. Obvi-
ously, the congestion window of the ADSL path steadily increases to almost the size of the advertised
receiver window (i.e. 100,000 bytes). As long as there is room in the receive window, the saturated
sender tries to increase the congestion window of a path on reception of a new acknowledgement, as
described in Subsubsection 2.11.2.1. The long ADSL queue of up to 100 packets leads to a linearly
increased message delay on growing queue occupation. Here, the rising number of outstanding bytes
on the ADSL path fills this queue – which causes a higher delay – but no further improvement of the
application payload throughput. Even worse, since the high-speed path is bandwidth-limited, the con-
gestion window of the ADSL path may take more buffer space when the high-speed path experiences
a packet loss, which occurs regularly as part of the normal AIMD behaviour (as introduced in Sub-
section 2.11.3). In the end, the ADSL path – experiencing no loss due to its long queue – almost fully
occupies the send buffer. This implies no possibility for the congestion window of the high-speed path
to grow large enough to cover at least the bandwidth-RTT product in order to fully utilise the capacity
of its path.

Only applying the NR-SACK extension has the effect that the congestion window growth for the
ADSL path becomes almost perfectly linear, as shown in Subfigure 7.10(b). Without the need to
wait for a CumAck, the sender may increase the outstanding bytes immediately on reception of an
acknowledgement, i.e. GapAck-induced send buffer blocking (as described in Subsubsection 7.5.1.2)
is avoided. Once the congestion window of the ADSL path is large enough – here for t ≥1.8 s – it

7.6. BUFFER SPLITTING 119

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

0
2

5
0

0
0

5
0

0
0

0
7

5
0

0
0

1
0

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=High−Speed, γ=Congestion Window
Ψ=High−Speed, γ=Slow−Start Threshold
Ψ=ADSL, γ=Congestion Window
Ψ=ADSL, γ=Slow−Start Threshold

(a) Without Buffer Splitting, Without NR-SACK

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

0
2

5
0

0
0

5
0

0
0

0
7

5
0

0
0

1
0

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=High−Speed, γ=Congestion Window
Ψ=High−Speed, γ=Slow−Start Threshold
Ψ=ADSL, γ=Congestion Window
Ψ=ADSL, γ=Slow−Start Threshold

(b) Without Buffer Splitting, With NR-SACK

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

0
2

5
0

0
0

5
0

0
0

0
7

5
0

0
0

1
0

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=High−Speed, γ=Congestion Window
Ψ=High−Speed, γ=Slow−Start Threshold
Ψ=ADSL, γ=Congestion Window
Ψ=ADSL, γ=Slow−Start Threshold

(c) Both-Side Buffer Splitting, Without NR-SACK

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

0
2

5
0

0
0

5
0

0
0

0
7

5
0

0
0

1
0

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=High−Speed, γ=Congestion Window
Ψ=High−Speed, γ=Slow−Start Threshold
Ψ=ADSL, γ=Congestion Window
Ψ=ADSL, γ=Slow−Start Threshold

(d) Both-Side Buffer Splitting, With NR-SACK

Figure 7.10: The Impact of Buffer Splitting and NR-SACKs on the Congestion Control Behaviour

120 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bandwidth on High−Speed Path ρHS [Mbit/s]

R
e
c
e
iv

e
d
 B

it
 R

a
te

 [
M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

Figure 7.11: Experimental Validation of Buffer Splitting in the Distributed Testbed Setup

causes advertised-window-induced receive buffer blocking (as described in Subsubsection 7.5.2.1),
which makes the typical AIMD behaviour on the high-speed path (i.e. growing until a loss, then
restarting from the slow-start threshold) impossible.

Subfigure 7.10(c) presents the results for only using buffer splitting based on outstanding bytes,
but without NR-SACKs. Clearly, the congestion window of the ADSL path can now only take a
send buffer space of at most half of the receive window (i.e. 50,000 bytes) – which would in fact
leave enough room for increasing the number of outstanding bytes on the high-speed path. However,
while the throughput of this path is actually increased (as shown by curve 4 in Subfigure 7.9(b)),
the congestion window curve of the high-speed path does not show the typical AIMD behaviour.
The reason is GapAck-induced send buffer blocking due to the need to wait for TSNs on the long-
delay3 ADSL path to be acknowledged, in order to CumAck a sequence of chunks. This CumAck is
mandatory in order to actually gain space in the send buffer for sending new DATA chunks.

Finally, when combining buffer splitting with NR-SACKs, the GapAck-induced send buffer block-
ing is solved, as shown in Subfigure 7.10(d). The feature of non-renegably acknowledging chunks
allows the sender to remove selectively – but not yet cumulatively – acknowledged chunks from the
send buffer and to gain the space required to put further DATA chunks in flight. This leads to fully
utilising both paths and achieving the expected payload throughput (see curve 3 in Figure 7.9).

7.6.3.4 From Simulation to Reality

Clearly, it is useful to also validate the results obtained by simulations in reality. Therefore, a mea-
surement corresponding to the simulation scenario has been performed in the distributed testbed setup
described in Subsection 6.5.2. Figure 7.11 shows the achieved application payload throughput in the
four configuration cases: buffer splitting based on outstanding bytes on both sides turned off (i.e.
curves 1 and 2 drawn in cyan colour) or on (i.e. curves 3 and 4 drawn in orange colour) as well as
NR-SACKs turned on (i.e. curves 1 and 3 drawn as solid lines) or off (i.e. curves 2 and 4 drawn as

3This delay is particularly high, due to the filling of the ADSL queue.

7.7. UNORDERED DELIVERY 121

dashed lines).
Comparing the measurement results to the simulation results presented in Subfigure 7.9(b), the

reality matches the expectations from the simulation results quite well. The payload throughput lin-
early increases with the growing high-speed path bandwidth ρHS if combining buffer splitting with
the usage of the NR-SACK extension (curve 3). Just applying buffer splitting alone (i.e. without NR-
SACKs; curve 4) still achieves a similar performance improvement, up to a certain dissimilarity of
the paths (here: ρHS ≥ 4 Mbit/s). This improvement is slightly higher than for the simulation, due to
Internet background congestion on the ADSL path. Since the real ADSL path sometimes experiences
losses which are not caused by the ADSL modem queue, it has to reduce its congestion window more
frequently, leaving a little more room for the other path. Without buffer splitting, only a quite constant
payload throughput of less than 2 Mbit/s is achieved – regardless of turning NR-SACKs on (curve 1)
or off (curve 2).

In summary, the proof of concept and the ADSL testbed scenario have shown that buffer splitting
is useful to avoid the issues of

• Transmission-induced send buffer blocking and

• Advertised-window-induced receive buffer blocking.

Furthermore, the NR-SACK extension prevents GapAck-induced send buffer blocking.

7.7 Unordered Delivery

In order to show how to provide efficient unordered delivery, a simulative parameter study has been
performed, covering a large parameter space of the basic QoS characteristics (as described in Sec-
tion 2.4) for path dissimilarity, i.e. bandwidth, bit error rate and delay. Note, that varying one of
these parameters also has an influence on the other parameters: changing the bandwidth of a path also
adapts its delay (due to queuing and buffer bloat; see Subsection 7.6.3), a higher bit error rate (i.e.
packet losses, which are assumed as sign of congestion; see Subsection 2.11.2) reduces the achievable
throughput (i.e. usable bandwidth), etc.. The initial version of the following parameter study has also
been published in [DBRT10].

7.7.1 Dissimilar Bandwidths

In order to show the impact of bandwidth dissimilarity, the bandwidth of Path #2 has been varied from
ρ2=10 Kbit/s (i.e. 0.01 Mbit/s) to ρ2=100 Mbit/s, while keeping the bandwidth of Path #1 constant
at ρ1=100 Mbit/s. Figure 7.12 presents the resulting application payload throughput for the three
possibilities of send buffer size to receive buffer size ratios. Subfigure 7.12(d) shows the actual buffer
sizes, Subfigure 7.12(e) presents the used combinations of mechanisms (i.e. both-side buffer splitting
based on outstanding bytes and NR-SACK) and their corresponding point symbols and curve numbers.
Note, that the throughput of 2×100 Mbit/s is 2.5 ∗ 107 bytes/s, which is more than 23.8 MiB/s. That
is, the buffer sizes are by two orders of magnitude smaller, as motivated in detail in Section 7.4.

For using neither buffer splitting nor NR-SACKs (curve 2), the performance is as expected.
GapAck-induced and transmission-induced send buffer blocking in combination with advertised-
window-induced receive buffer blocking result in a rather low performance. At a dissimilarity as
small as 100/50 Mbit/s, the application payload throughput performance hardly reaches the expected
performance for a non-CMT setup on Path #1 (which is about 95 Mbit/s, see also Section 7.3) for send
buffer size< receive buffer size (see Subfigure 7.12(a)) and send buffer size> receive buffer size (see

122 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 10 20 30 40 50 60 70 80 90 100

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(a) Send Buffer Size < Receive Buffer Size

0 10 20 30 40 50 60 70 80 90 100
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(b) Send Buffer Size > Receive Buffer Size

0 10 20 30 40 50 60 70 80 90 100

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.12(a)

125,000 B 250,000 B
7.13

7.12(c) 125,000 B 125,000 B
7.12(b) 250,000 B 125,000 B

(d) Buffer Size Configuration

Buffer Splitting NR-SACK
disabled enabled

disabled A(2) E(1)
enabled �(4) ��(3)

(e) Features Configuration

Figure 7.12: Throughput for Unordered Delivery over Paths with Dissimilar Bandwidths

7.7. UNORDERED DELIVERY 123

0 10 20 30 40 50 60 70 80 90 100

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

O
u
ts

ta
n
d
in

g
 B

y
te

s
 [
1
]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(a) Path #1

0 10 20 30 40 50 60 70 80 90 100

0
2
5
0
0
0

5
0
0
0
0

7
5
0
0
0

1
0
0
0
0
0

1
2
5
0
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]
O

u
ts

ta
n
d
in

g
 B

y
te

s
 [
1
]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true
2: Π=none, ν=false
3: Π=bothSides, ν=true
4: Π=bothSides, ν=false

(b) Path #2

Figure 7.13: Outstanding Bytes for Unordered Delivery over Paths with Dissimilar Bandwidths

Subfigure 7.12(b)). For send buffer size = receive buffer size (see Subfigure 7.12(c)), the situation is
even worse. Here, also the similar path setup (i.e. 100/100 Mbit/s) only reaches a throughput of only
about 130 Mbit/s.

Turning on the support for NR-SACKs (curve 1), the problem of GapAck-induced send buffer
blocking is solved. This is particularly useful when the send buffer size is smaller than the receive
buffer size (see Subfigure 7.12(a)), leading to the expected performance improvement. GapAck-
induced send buffer blocking is particularly problematic for small settings of ρ2, where the queue size
on Path #2 (MinTh=30, i.e. for up to 30 packets, the used RED queue behaves like a FIFO queue;
see also Subsection 2.4.2) leads to the issue of buffer bloat, as explained in Subsection 7.6.3. For
example, the additional delay caused by a queue loaded with 30 packets for ρ2=100 Kbit/s is:

30 packets ∗ 1, 500 B/packet
100,000 bit/s

8 bit/B

= 3.6 s.

Using buffer splitting, but without NR-SACKs – as presented by curve 4 – solves the problem of
transmission-induced send buffer blocking in combination with advertised-window-induced receive
buffer blocking. This gives a significant performance improvement over a scenario with both mech-
anisms turned off (i.e. in comparison to curve 2), but the higher the dissimilarity, the smaller the
improvement. At about ρ2≤20 Mbit/s, the effect of GapAck-induced send buffer blocking becomes
the main issue, which cannot be solved by buffer splitting.

The problems of dissimilar bandwidths can only be solved by using buffer splitting and the NR-
SACK extension simultaneously (curve 3), which results in a linear performance increase with the
expected application payload throughput results – over the whole, large parameter range of ρ2.

In order to further show the effects of buffer splitting and NR-SACKs, Figure 7.13 shows the
outstanding bytes on Path #1 (Subfigure 7.13(a)) and Path #2 (Subfigure 7.13(b)) for the send buffer
size of 125,000 bytes and the receive buffer size of 250,000 bytes. Since the other two scenarios

124 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

produce similar results, the corresponding plots have been omitted due to space reasons. While the
outstanding bytes on the fast Path #1 (i.e. ρ1=100 Mbit/s) without NR-SACKs drop to almost zero for
small settings of ρ2 (curves 2 and 4), they remain constant at 62,500 bytes (i.e. 125,000

2) when NR-
SACKs as well as buffer splitting are turned on (curve 3). In this case, the bandwidth-RTT product –
as described in Subsubsection 2.9.2.3 – is covered and the fast Path #1 can utilise its full bandwidth.

Just using NR-SACKs alone only leads to a reasonable value for the outstanding bytes in cases of
extreme dissimilarity, where the congestion window of Path #2 – due to the buffer bloat – cannot grow
quickly enough to almost fully block Path #1. In this case, i.e. for ρ2<10 Mbit/s, the outstanding bytes
on Path #2 decrease (see Subfigure 7.13(b)), giving Path #1 the possibility to increase its outstand-
ing bytes (see Subfigure 7.13(a)). In result, due to the now better utilisation of the high-bandwidth
Path #1, the application payload throughput improves to almost the expected values (see Figure 7.12)
in many cases. However, in some other cases, like for the negative peak at ρ2=0.1 Mbit/s, an awkward
combination of conditions leads to a performance drop by introducing an unbalance to the number of
outstanding bytes (see Figure 7.13).

7.7.2 Dissimilar Bit Error Rates

For presenting the impact of bit error rate dissimilarity, the bit error rate of Path #2 has been varied
from ε2=0 to ε2=5 ∗ 10−6 errors/bit, while keeping Path #1 error-free (i.e. ε1=0). Figure 7.14 presents
the resulting application payload throughput for the three possibilities of send buffer size to receive
buffer size ratios. Subfigure 7.14(d) shows the buffer size configurations and Subfigure 7.14(e) the
used combination of mechanisms (both-side buffer splitting based on outstanding bytes, NR-SACK
and the packet drop reporting extension introduced in Subsection 3.11.8) with their corresponding
point symbols and curve numbers.

For example, at an MTU of 1,500 bytes, bit error rates of 1 ∗ 10−6 and 5 ∗ 10−6 errors/bit mean
average full-size packet damage rates of:

1 ∗ 10−6 errors/bit ∗ 8 bit/B ∗ 1, 500 B/packet = 1.2%,

5 ∗ 10−6 errors/bit ∗ 8 bit/B ∗ 1, 500 B/packet = 6.0%.

That is, about every 83rd or 16th packet, respectively, is damaged. Note, that these error rates –
while being unlikely for properly-working cabled networks – may be realistic for wireless networks
in presence of interferences or under poor reception conditions.

Clearly, a significant performance problem is caused by GapAck-induced send buffer blocking
when NR-SACKs as well as buffer splitting are turned off (i.e. curves 3 and 4). At ε2=1 ∗ 10−6, only
the curve 3 – for packet drop reporting activated – in the scenario of send buffer size > receive buffer
size (see Subfigure 7.14(b)) can exceed the non-CMT ideal-case (i.e. loss-free) application payload
throughput performance of about 95 Mbit/s. This scenario – with its larger send buffer – is clearly
less susceptible for the send buffer blocking issue. All other scenarios have a significantly lower
throughput.

Note the interesting behaviour of curve 3 in Subfigure 7.14(a) and Subfigure 7.14(c). Here, the
application payload throughput falls to a minimum at about ε2 = 1 ∗ 10−6 errors/bit and starts rising
again for higher settings of ε2. The reason for this effect is that the rising number of reported packet
drops slightly countervails the effect of transmission-induced send buffer blocking (which is prevalent
in the scenarios of send buffer size ≤ receive buffer size) by temporarily clearing space in the peer
receiver window. Since transmissions are handled in a round-robin manner among the paths, this
space may be used for a packet on the other path first (i.e. before the retransmission of the dropped
chunk).

7.7. UNORDERED DELIVERY 125

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Use Packet Drop ∆

1: Π=none, ν=true, ∆=true
2: Π=none, ν=true, ∆=false
3: Π=none, ν=false, ∆=true
4: Π=none, ν=false, ∆=false
5: Π=bothSides, ν=true, ∆=true
6: Π=bothSides, ν=true, ∆=false

(a) Send Buffer Size < Receive Buffer Size

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Use Packet Drop ∆

1: Π=none, ν=true, ∆=true
2: Π=none, ν=true, ∆=false
3: Π=none, ν=false, ∆=true
4: Π=none, ν=false, ∆=false
5: Π=bothSides, ν=true, ∆=true
6: Π=bothSides, ν=true, ∆=false

(b) Send Buffer Size > Receive Buffer Size

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Use Packet Drop ∆

1: Π=none, ν=true, ∆=true
2: Π=none, ν=true, ∆=false
3: Π=none, ν=false, ∆=true
4: Π=none, ν=false, ∆=false
5: Π=bothSides, ν=true, ∆=true
6: Π=bothSides, ν=true, ∆=false

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.14(a) 125,000 B 250,000 B
7.14(c) 125,000 B 125,000 B
7.14(b) 250,000 B 125,000 B

(d) Buffer Size Configuration

Buffer Splitting Packet Drop Rep.
disabled enabled

disabled, SACK only �(4) ��(3)
disabled, NR-SACK A(2) E(1)
enabled, NR-SACK C(6) F(5)

(e) Features Configuration

Figure 7.14: Throughput for Unordered Delivery over Paths with Dissimilar Bit Error Rates

126 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

Turning the support for NR-SACKs on, a significant performance gain is reached compared to the
previous scenarios. For send buffer size> receive buffer size (see Subfigure 7.14(b)) and using packet
drop reporting (i.e. curve 1; it is superimposed by curve 5 in this plot), the performance even reaches
the expected value. However, for smaller settings of the send buffer size, transmission-induced send
buffer blocking prevents the full utilisation of the bandwidth (see curve 1 in Subfigure 7.14(a) and
Subfigure 7.14(c)). Also, note the – in comparison to the other curves – larger confidence intervals of
curve 1, which indicate a significant variance of the achieved throughput values.

Obviously, the best performance is reached by turning buffer splitting as well as the NR-SACK
extension on simultaneously. When not using packet drop reporting (i.e. curve 6), the bandwidth of
the error-prone Path #2 cannot be fully utilised. Packet losses due to corruption leads to a reduction
of the congestion window, as explained in Subsection 2.11.2. Nevertheless, even for a bit error rate
as high as ε2=5 ∗ 10−6 errors/bit, the achieved application payload throughput performance is still
about 105 Mbit/s, which is by about 10 Mbit/s better than the non-CMT throughput on Path #1 alone.
Clearly, in the ideal case, packet drop reporting is supported. Then, even such a high bit error rate
only slightly decreases the total throughput to just about 185 Mbit/s. However, in order to achieve this
performance, the packet drop reporting extension requires that corrupted packets are still delivered4

to the destination endpoint, in order to report packets as corrupted. Alternatively, intermediate nodes
(i.e. routers) may generate such reports, which – of course – requires support for SCTP packet drop
reporting by these nodes as well.

7.7.3 Dissimilar Delays

When paths have different delays, the occasional appearance of timer-based retransmissions – as ex-
plained in Subsubsection 2.9.3.4 – can cause a problem: according to RFC 4960 (see [Ste07, Subsub-
section 6.3.3]), any outstanding DATA chunk on the affected path “should be marked for retransmis-
sion”. Unlike fast retransmissions, timer-based retransmissions are rare and seen as sign of problems
(like severe congestion) on a path. Therefore, if multiple paths are available, a timer-based retrans-
mission is made on an alternative path. This behaviour is useful, since it shifts traffic away from a
possibly broken path to a working one.

But if such an outstanding DATA chunk with TSN c has just been delayed and its timer-based
retransmission has been made rashly, DATA chunk c exists in the network twice. That is, it exists
on the original path and – as retransmission – on the alternative one. If the original transmission
of c gets acknowledged, it appears to the sender as an acknowledgement of c on the new path (i.e. the
alternative one), since the original transmission of TSN c has been assumed as lost. The problem arises
if c somewhat differs from the TSN range on the new path (i.e. its TSN is lower or higher, due to the
delay difference between the paths). Then, the CMT-SCTP fast retransmission handling – as described
in Subsection 4.2.2 – may assume large gaps in the TSN sequence of the new path. These putative
gaps trigger bursts of unnecessary fast retransmissions. While the resulting duplicate DATA chunks
are simply dropped by the receiver, the fast retransmissions lead to a congestion window reduction –
which in result reduces the throughput of the corresponding path. [IAS06] proposes some heuristics
to cope with this problem.

Instead of using heuristics, which are difficult to manage and implement, a simpler and easier to
realise approach – denoted as Smart Fast Retransmission – has been developed as part of this thesis
and published in [DBRT10]. It simply does not consider DATA chunks that have been moved from
another path in the decision about fast retransmissions on their new path.

4Of course, the destination information inside IP and SCTP headers must still be intact. See also Subsubsection 2.9.3.5.

7.7. UNORDERED DELIVERY 127

0 5 10 15 20 25 30 35 40

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Smart Fast RTX τ

1: Π=none, ν=true, τ=true
2: Π=none, ν=true, τ=false
3: Π=none, ν=false, τ=true
4: Π=none, ν=false, τ=false
5: Π=bothSides, ν=true, τ=true
6: Π=bothSides, ν=true, τ=false

(a) Send Buffer Size < Receive Buffer Size

0 5 10 15 20 25 30 35 40
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Smart Fast RTX τ

1: Π=none, ν=true, τ=true
2: Π=none, ν=true, τ=false
3: Π=none, ν=false, τ=true
4: Π=none, ν=false, τ=false
5: Π=bothSides, ν=true, τ=true
6: Π=bothSides, ν=true, τ=false

(b) Send Buffer Size > Receive Buffer Size

0 5 10 15 20 25 30 35 40

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν / Smart Fast RTX τ

1: Π=none, ν=true, τ=true
2: Π=none, ν=true, τ=false
3: Π=none, ν=false, τ=true
4: Π=none, ν=false, τ=false
5: Π=bothSides, ν=true, τ=true
6: Π=bothSides, ν=true, τ=false

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.15(a) 1,250,000 B 2,500,000 B
7.15(c) 1,250,000 B 1,250,000 B
7.15(b) 2,500,000 B 1,250,000 B

(d) Buffer Size Configuration

Buffer Splitting Smart Fast Ret.
disabled enabled

disabled, SACK only �(4) ��(3)
disabled, NR-SACK A(2) E(1)
enabled, NR-SACK C(6) F(5)

(e) Features Configuration

Figure 7.15: Throughput for Unordered Delivery over Paths with Dissimilar Delays

128 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

In order to examine the impact of dissimilar delays, the delay of Path #2 has been varied from
δ2=1 ms to δ2=40 ms, while keeping the delay of Path #1 fixed at δ1=1 ms. Figure 7.15 presents
the resulting application payload throughput for the three possibilities of send buffer size to receive
buffer size ratios. Subfigure 7.15(d) provides the buffer size configurations; Subfigure 7.15(e) con-
tains the used combination of mechanisms (i.e. both-side buffer splitting based on outstanding bytes,
NR-SACK and smart fast retransmission) and their corresponding point symbols and curve numbers.
Note, that the buffer sizes are larger in comparison to the bandwidth and bit error rate scenarios of
Subsection 7.7.1 and Subsection 7.7.2, due to the higher bandwidth-RTT product (see Subsubsec-
tion 2.9.2.3) of Path #2 for higher delays.

As expected, the performance for buffer splitting as well as NR-SACKs turned off is not very
good, regardless of smart fast retransmission usage (curves 3 and 4; the curves are superimposed).
The achieved application payload throughput remains quite constant at about 155 Mbit/s. Clearly,
this is better than the ideal-case non-CMT performance of about 95 Mbit/s. That is, the mechanisms
of CMT-SCTP to handle delay differences among the paths (split fast retransmission as described in
Subsection 4.2.2, congestion window update for CMT as described in Subsection 4.2.3) avoid extreme
performance effects. Note, that the buffer size settings in this scenario even do not reach the full
performance for a similar path setup (i.e. δ2=1 ms), due to GapAck-induced send buffer blocking. This
underutilisation of the paths (by short transmission stalls) results in no visible impact of the congestion
window reductions caused by unnecessary fast retransmissions, i.e. smart fast retransmission (curve 3)
shows no difference to the configuration without this feature (curve 4).

The issue of GapAck-induced send buffer blocking is avoided by turning on NR-SACKs (curves 1
and 2 as well as curves 5 and 6), which achieves a significant performance improvement – particularly
for δ2<40 ms. The usage of buffer splitting (curves 5 and 6) in comparison to buffer splitting turned
off (curves 1 and 2) does not have a significant impact on the performance. That is, the curves 1
and 5 as well as 2 and 6 are superimposed. As explained above, the mechanisms already provided by
CMT-SCTP handle delay differences very well.

The usage of smart fast retransmission (i.e. curves 1 and 5, drawn as solid lines) significantly
improves the performance for higher settings of the Path #2 delay δ2. At e.g. δ2=40 ms, a throughput
of 175 Mbit/s is achieved in comparison to only about 155 Mbit/s for turning this feature off (curves 2
and 6, drawn as dashed lines). As explained in Section 3.8, a fast retransmission halves the congestion
window. Since each growth step – by just one path MTU – in congestion avoidance mode requires
the successful acknowledgement of a complete congestion window of data, the congestion window
for a high-delay path returns to its original size very slowly. Therefore, avoiding any unnecessary
fast retransmission becomes important, which makes smart fast retransmission a necessary feature to
achieve a good performance on dissimilar paths with high delay differences.

7.7.4 Summary

In summary, the parameter study for unordered delivery has shown that efficient CMT-SCTP-based
load sharing over dissimilar paths is possible over a wide parameter range, if applying the following
mechanisms in combination:

• Buffer splitting based on outstanding bytes (see Section 7.6) to avoid transmission-induced send
buffer blocking as well as advertised-window-induced receive buffer blocking,

• the NR-SACK extension (see Subsection 3.11.5 and [NEY+08]) to prevent GapAck-induced
send buffer blocking,

7.8. CHUNK RESCHEDULING 129

Figure 7.16: The Principle of Chunk Rescheduling

• Smart fast retransmission (see Subsection 7.7.3) to avoid spurious bursts of fast retransmissions
for dissimilar delays as well as

• the Packet drop reporting extension (see Subsection 3.11.8 and [RTR09]) to efficiently handle
packet corruption.

7.8 Chunk Rescheduling

Based on the solved challenges of unordered delivery, it is straightforward to continue with data
transfer using ordered delivery. As explained in Subsubsection 7.5.2.2, reordering-induced receive
buffer blocking leads to missing DATA chunks blocking a CumAck – and therefore preventing a
removal of a possibly large set of other DATA chunks – in the receive buffer. Since for ordered
delivery all DATA chunk payload must be delivered to the upper layer in sequence, a forwarding of
received DATA chunks – as it can be performed for unordered delivery – is no possibility here.

An example is provided in Figure 7.16. Here, the DATA chunks #54 to #61 have been sent by
Endpoint A. The destination, Endpoint B, has already GapAck’ed the TSNs #55 to #58. However, in
order to perform a CumAck for TSN #58, the DATA chunk #54 – which has been the only chunk sent
via Path #1 – is still missing yet. Without this chunk, the already received data cannot be provided
to the upper layer in sequence. Since the send buffer is full, no further new DATA chunks can be
sent into the network. That is, the transmission will be stalled until a successful acknowledgement
of DATA chunk #54 (by a CumAck for TSN #58). In particular, the DATA chunks on Path #2 are
blocked by the missing chunk on Path #1.

As a solution to the reordering-induced receive buffer blocking, the approach of Chunk Reschedul-
ing has been developed as part of this thesis and published in [DBRT10]. In short, if one path occu-
pies a significant fraction of the buffer space by queued – but not outstanding – DATA chunks, the
first DATA chunk which is still outstanding and therefore contributing to the problem is scheduled
for retransmission on this path. This procedure is denoted as Rescheduling. In the example above,
DATA chunk #54 is rescheduled and retransmitted on Path #2, which would otherwise be under-

130 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

utilised anyway. When either the original chunk or the retransmission arrives at Endpoint B, the
receiver instance can generate a CumAck for TSN #58 and therewith solve the blockade.

In order to detect whether one path P of the n paths to a peer side is blocking the send buffer, the
so-called Sender Blocking Fraction is calculated as follows:

SenderBlockingFractionP =

{
QueuedP−OutstandingP

BSender (No Buffer Splitting)
QueuedP−OutstandingP

BSender/n
(Buffer Splitting)

.

Here, QueuedP denotes the number of queued bytes on path P . When applying buffer splitting, each
of the n paths should get its 1

n -th share of the send buffer.
Similar to the sender blocking fraction, the so-called Receiver Blocking Fraction can be calculated

by estimating the size of the receive buffer from the peer receiver window (similar to receive buffer
splitting, as described in Subsubsection 7.6.1.1):

ReceiverBlockingFractionP =

QueuedP−OutstandingP

PeerReceiverWindow+
∑

p Queuedp
(No Buffer Splitting)

QueuedP−OutstandingP

(PeerReceiverWindow+
∑

p Queuedp)/n
(Buffer Splitting)

.

Note, that the calculation must add the queued bytes to the peer receiver window here, since the
receive buffer will not only be utilised by DATA chunks that are still in-flight. It actually is utilised
by the queued but already acknowledged bytes, which cannot be CumAck’ed yet. Would they have
been forwarded to the upper layer, they would have been NR-SACK’ed – and would therefore also
not utilise the send buffer any more.

Based on the definitions of sender blocking fraction and receiver blocking fraction of a path P ,
the chunk rescheduling algorithm as presented in Listing 4 can be applied:

• If the path P is in fast recovery mode (as described in Subsubsection 2.11.2.2) or already
blocked (to be explained below), nothing has to be done (lines 4 to 6). Since the path at the
moment has a – temporary – difficulty, it seems not to be a good idea to further add preventive
retransmissions to this path.

• Otherwise, the sender blocking fraction and receiver blocking fraction are obtained (lines 9
and 10).

• If either one blocking fraction value exceeds the threshold ChunkReschedulingThreshold,
the chunk rescheduling functionality is triggered (lines 12 and 13). A setting of 50% for this
parameter has shown to be useful, since it does not trigger the chunk rescheduling too early, but
still leaves some time for the preventive retransmission to succeed.

• Then, it is checked whether the DATA chunk with the lowest TSN t in the send buffer satisfies
the following conditions (lines 16 to 20):

1. It is still outstanding (i.e. it had been transmitted, but it has not been acknowledged yet),

2. It has not been moved from another path to P by a prior chunk rescheduling invocation
(in order to avoid oscillation),

3. It has not been transmitted on path P or its transmission on P has occurred at least two
times the SRTT (i.e. the smoothed round-trip time as defined in Subsection 2.11.4) of
path P ago (i.e. it has quite likely been lost).

7.8. CHUNK RESCHEDULING 131

Listing 4 The Chunk Rescheduling Algorithm
,

1 void c h u n k R e s c h e d u l i n g C o n t r o l (Pa th * P)
2 {
3 / / ====== Noth ing t o do when P i s i n Fas t Recovery or b l o c k e d ========
4 i f ((P−>I s I n F a s t R e c o v e r y) | | (P−>I s B l o c k e d)) {
5 re turn ;
6 }
7

8 / / ====== C a l c u l a t e B l o c k i n g F r a c t i o n s ===============================
9 C a l c u l a t e S e n d e r B l o c k i n g F r a c t i o n [P] ;

10 C a l c u l a t e R e c e i v e r B l o c k i n g F r a c t i o n [P] ;
11

12 i f ((S e n d e r B l o c k i n g F r a c t i o n [P] >= C h u n k R e s c h e d u l i n g T h r e s h o l d) | |
13 (R e c e i v e r B l o c k i n g F r a c t i o n [P] >= C h u n k R e s c h e d u l i n g T h r e s h o l d)) {
14 / / ====== Path P b l o c k s s i g n i f i c a n t f r a c t i o n o f a b u f f e r ==========
15

16 t = ge tLowes tTSNinSendBuf fe r () ;
17 i f ((Chunk [t]−> I s O u t s t a n d i n g == t rue) &&
18 (Chunk [t]−>HasBeenMoved == f a l s e) &&
19 ((Chunk [t]−>L a s t P a t h != P) | |
20 (Chunk [t]−>LastSendTime + (2 * P−>SRTT) < g e t C u r r e n t T i m e ())))
21 {
22 / / ====== R e s c h e d u l e chunk ====================================
23 moveChunkToPath (Chunk [t] , P) ;
24

25 i f ((Chunk [t]−>L a s t P a t h != P) &&
26 (Chunk [t]−>L a s t P a t h−>I s B l o c k e d == t rue)) {
27 / / ====== Path i s a l r e a d y b l o c k e d ===========================
28 / / No th ing t o do
29 }
30 e l s e i f ((Chunk [t]−>L a s t P a t h != P) &&
31 (Chunk [t]−>L a s t P a t h−>I s I n F a s t R e c o v e r y == t rue)) {
32 / / ====== Path i s i n Fas t Recovery => b l o c k i t ==============
33 Chunk [t]−>L a s t P a t h−>I s B l o c k e d = t rue ;
34 Chunk [t]−>L a s t P a t h−>B l o c k U n t i l = g e t C u r r e n t T i m e () +
35 Chunk [t]−>L a s t P a t h−>SRTT ;
36 / / No more *new* chunks on t h i s path , f o r one RTT !
37 }
38 e l s e {
39 / / ====== Path i s n o t i n Fas t Recovery y e t ==================
40 s t a r t F a s t R e c o v e r y (Chunk [t]−>L a s t P a t h) ;
41 }
42 }
43 }
44 }

132 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

• If such a DATA chunk t has been found, it is rescheduled on path P for preventive retransmis-
sion (line 23). Since a quick acknowledgement of the missing DATA chunk t is highly important
for the transmission progress, its I-Bit is set if the SACK immediately extension (as explained
in Subsection 3.11.6) is supported. That is, the receiver should send an acknowledgement for
this DATA chunk immediately, without applying delayed acknowledgement.

• Then, the previous transmission path Q of the rescheduled DATA chunk t is processed as fol-
lows (lines 25 to 41):

– If path Q, Q 6= P is already blocked (to be described below), nothing is done.

– Else, if path Q, Q 6= P is in fast recovery mode (see Subsubsection 2.11.2.2), it will be
blocked for new DATA chunk transmissions for one SRTT of path Q (see also Subsec-
tion 2.11.4). That is, it will not be used for any new data, but retransmissions and control
chunks are – of course – still sent on the blocked path Q. The reason is to let the path
recover from possible congestion issues.

– Else, since path Q (Q = P or Q 6= P) is not in fast recovery yet, a fast recovery is
started. This in particular also means to decrease the congestion window of path Q (see
Subsubsection 2.11.2.2).

Note, that from the congestion control perspective, the previous path Q of a DATA chunk having
been rescheduled is handled like having lost this chunk due to congestion. Rescheduled retransmis-
sions are handled like regular retransmissions, i.e. a DATA chunk is only sent into the network when
the congestion window of the corresponding path allows its transmission. Furthermore, since it is not
known for sure on which path the retransmitted DATA chunk finally gets acknowledged (the original
transmission may have been successful), a rescheduled DATA chunk will not be counted as new ac-
knowledgement during the congestion window update procedure explained in Subsection 4.2.3. That
is, it will not contribute to a congestion window growth. Therefore, chunk rescheduling is not more
aggressive than regular CMT-SCTP.

7.9 Ordered Delivery

In order to show how to provide efficient ordered delivery with chunk rescheduling, a simulative
parameter study has been performed. Its structure is similar to the unordered delivery case described
in Section 7.7, i.e. separated into dissimilarity introduced by varying bandwidth, bit error rate and
delay. The initial version of this parameter study has also been published in [DBRT10].

7.9.1 Dissimilar Bandwidths

In order to demonstrate the influence of bandwidth dissimilarity on ordered delivery, the bandwidth
of Path #2 has been varied from ρ2=10 Kbit/s (i.e. 0.01 Mbit/s) to ρ2=100 Mbit/s, while keeping the
bandwidth of Path #1 fixed at ρ1=100 Mbit/s. Figure 7.17 presents the resulting application payload
throughput for the three possibilities of send buffer size to receive buffer size ratios. Subfigure 7.17(d)
shows the buffer size configurations, Subfigure 7.17(e) contains the used combinations of mechanisms
(chunk rescheduling and buffer splitting based on outstanding bytes) and their corresponding point
symbols and curve numbers. That is, while the throughput of 2×100 Mbit/s is 2.5 ∗ 107 bytes/s
(i.e. more than 23.8 MiB/s), the buffer sizes are by one order of magnitude smaller, as motivated in
Section 7.4.

7.9. ORDERED DELIVERY 133

0 10 20 30 40 50 60 70 80 90 100

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=bothSides
2: Ψ=none, Π=none
3: Ψ=bothSides, Π=bothSides
4: Ψ=bothSides, Π=none

(a) Send Buffer Size < Receive Buffer Size

0 10 20 30 40 50 60 70 80 90 100
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=bothSides
2: Ψ=none, Π=none
3: Ψ=bothSides, Π=bothSides
4: Ψ=bothSides, Π=none

(b) Send Buffer Size > Receive Buffer Size

0 10 20 30 40 50 60 70 80 90 100

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=bothSides
2: Ψ=none, Π=none
3: Ψ=bothSides, Π=bothSides
4: Ψ=bothSides, Π=none

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.17(a) 2,500,000 B 5,000,000 B
7.17(c) 2,500,000 B 2,500,000 B
7.17(b)

5,000,000 B 2,500,000 B
7.18

(d) Buffer Size Configuration

Chunk Rescheduling Buffer Splitting
disabled enabled

disabled A(2) E(1)
enabled �(4) ��(3)

(e) Features Configuration

Figure 7.17: Throughput for Ordered Delivery over Paths with Dissimilar Bandwidths

134 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 10 20 30 40 50 60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

R
e
c
e
iv

e
 B

u
ff
e
r

U
ti
liz

a
ti
o
n
 [
%

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=bothSides
2: Ψ=none, Π=none
3: Ψ=bothSides, Π=bothSides
4: Ψ=bothSides, Π=none

(a) Receive Buffer Utilisation

0 10 20 30 40 50 60 70 80 90 100

0
4

8
1
2

1
6

2
0

2
4

2
8

3
2

Bandwidth on Path #2 ρ2 [Mbit/s]
C

h
u
n
k
 R

e
s
c
h
e
d
u
lin

g
 R

a
te

 [
1
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=bothSides
2: Ψ=none, Π=none
3: Ψ=bothSides, Π=bothSides
4: Ψ=bothSides, Π=none

(b) Chunk Rescheduling Rate

Figure 7.18: Dissimilar Bandwidths in the Send Buffer Size > Receive Buffer Size Scenario

First, if chunk rescheduling is turned off (curves 1 and 2), the usage of CMT-SCTP clearly im-
proves the ordered delivery performance in comparison to a non-CMT configuration. For example,
at ρ2=50 Mbit/s, the achieved application payload throughput is about 130 Mbit/s in all three cases
of send buffer size to receive buffer size ratios. However, this is not the full expected throughput.
Furthermore, a too-dissimilar setup – e.g. ρ2≤1 Mbit/s – leads to an extreme performance drop.

The reason for this performance drop is reordering-induced receive buffer blocking (as described
in Subsubsection 7.5.2.2), which means that missing DATA chunks prevent a CumAck of already-
received chunks in the receive buffer. In consequence, the lack of a CumAck causes the issue of
advertised-window-induced send buffer blocking (as described in Subsubsection 7.5.2.1). Since this
effect is clearly the strongest when the receive buffer is smaller than the send buffer, this case shows
the highest performance reduction (see Subfigure 7.17(b)). This reduction can particularly also be
observed in “relatively similar” bandwidth cases (here: ρ2≥70 Mbit/s to ρ2=100 Mbit/s).

In order to further explain these effects, Figure 7.18 presents a more detailed look at the buffer
behaviour: the average receive buffer utilisation is shown in Subfigure 7.18(a). For buffer splitting
turned off (curve 2), there are local peaks for the receive buffer utilisation at ρ2≥70 Mbit/s, due
to advertised-window-induced receive buffer blocking. Here, the two – relatively fast – paths eas-
ily reduce the peer receiver window (see Subsection 2.10.1) down to zero, frequently leading to a
temporarily stalled transmission. Buffer splitting (curve 1) solves the problem of advertised-window-
induced receive buffer blocking, but the issue of high reordering-induced buffer blocking due to the
high path bandwidths remains.

Furthermore, the receive buffer utilisation quickly rises to slightly below 100% for a highly dis-
similar setup at ρ2≤5 Mbit/s if buffer splitting is turned off (curve 2). The reason is the issue of buffer
bloat (see also Subsection 7.6.3), which causes an overly long delay for the DATA chunks on Path #2
at small bandwidth settings ρ2. Buffer splitting (curve 1) cannot reduce the problem, since it does not
prevent reordering-induced receive buffer blocking.

Turning on chunk rescheduling (curves 3 and 4) solves the problems caused by reordering-induced

7.9. ORDERED DELIVERY 135

receive buffer blocking. As shown in Figure 7.17, the application payload throughput is significantly
improved in all three cases. In particular, it now reaches the theoretically expected value in most cases
and there is no performance drop for highly dissimilar scenarios of ρ2≤1 Mbit/s. Chunk rescheduling
even achieves an acceptable performance at ρ2=10 Kbit/s (i.e. 0.01 Mbit/s), which is by four orders of
magnitude smaller than the throughput of ρ1=100 Mbit/s of Path #1. For comparison, without chunk
rescheduling, the achieved throughput here is almost zero Mbit/s (see curves 1 and 2). While turning
off buffer splitting still improves the performance (curve 4), the best performance is reached when
applying chunk rescheduling in combination with buffer splitting (curve 3).

Concerning overhead, chunk rescheduling is also reasonably inexpensive, as shown by the chunk
rescheduling rate depicted in Subfigure 7.18(b) for the most challenging scenario of the send buffer
larger than the receive buffer. For ρ2≤30 Mbit/s, the chunk rescheduling rate (i.e. the number of
rescheduled chunks per second; see lines 21 to 42 of Listing 4) is less than 1 chunk/s (i.e. one full-
sized packet/s). For comparison, the number of 1,500 bytes packets at a bandwidth of 100 Mbit/s
is 8,333.3 packets/s. Even in the highly dissimilar scenarios at ρ2≤1 Mbit/s, the chunk rescheduling
rate is only about 30 chunks/s. That is, the number of possibly duplicated DATA chunks in order to
significantly improve the performance remains small.

A further notable observation on the chunk rescheduling rate is the difference between buffer split-
ting enabled (curve 3) and buffer splitting disabled (curve 4) for a Path #2 bandwidth of ρ2≤30 Mbit/s.
While there is no significant application payload throughput difference between these two cases (see
Figure 7.17), the overhead is higher when buffer splitting is applied. Here, the buffer splitting rules
(see Section 7.6) sometimes delay the transmission of rescheduled chunks, since the limit for the
outstanding bytes of a path is reached. Then, a further chunk rescheduling (for the next chunk in
the send buffer) may be triggered, leading to the increased overhead without a further performance
improvement. As future work, a heuristic may be developed to prevent this overhead.

7.9.2 Dissimilar Bit Error Rates

For presenting the impact of bit error rate dissimilarity, the bit error rate of Path #2 has been var-
ied from ε2=0 to ε2=5 ∗ 10−6 errors/bit, while keeping Path #1 error-free (i.e. ε1=0). Figure 7.19
presents the resulting application payload throughput for the three possibilities of send buffer size to
receive buffer size ratios; Subfigure 7.19(d) lists the buffer size configurations and Subfigure 7.19(e)
shows the used combinations of mechanisms (chunk rescheduling, buffer splitting based on outstand-
ing bytes and the packet drop reporting as described in Subsection 3.11.8) with their corresponding
point symbols and curve numbers.

Clearly, as already observed for the dissimilar bandwidth scenario described in Subsection 7.9.1,
the performance quickly decreases for an increasing bit error rate dissimilarity. At a Path #2 bit error
rate of ε2=5 ∗ 10−6 errors/bit for the send buffer size ≤ the receive buffer size, the achieved appli-
cation payload throughput is only about 30 Mbit/s if packet drop reporting is turned off (curves 2
and 4 in Subfigure 7.19(a) and Subfigure 7.19(c)) – which is approximately only one third of the
non-CMT ideal-case (i.e. loss-free) performance. The scenario of send buffer size > receive buffer
size (see Subfigure 7.19(b)) is even worse. At the same bit error rate, the throughput drops down to
almost zero Mbit/s. Obviously, the situation with support for packet drop reporting (curves 1 and 3)
is significantly better, but does not solve the core problem – which is reordering-induced receive
buffer blocking. Again, buffer splitting only slightly improves the situation (curves 3 and 4), since
it is a countermeasure against advertised-window-induced receive buffer blocking (see Subsubsec-
tion 7.5.2.1), but not against reordering-induced receive buffer blocking (see Subsubsection 7.5.2.2).

Figure 7.20 presents a more detailed look at the buffer behaviour. The average receive buffer

136 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π / Use Packet Drop ∆

1: Ψ=none, Π=none, ∆=true
2: Ψ=none, Π=none, ∆=false
3: Ψ=none, Π=bothSides, ∆=true
4: Ψ=none, Π=bothSides, ∆=false
5: Ψ=bothSides, Π=bothSides, ∆=true
6: Ψ=bothSides, Π=bothSides, ∆=false

(a) Send Buffer Size < Receive Buffer Size

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π / Use Packet Drop ∆

1: Ψ=none, Π=none, ∆=true
2: Ψ=none, Π=none, ∆=false
3: Ψ=none, Π=bothSides, ∆=true
4: Ψ=none, Π=bothSides, ∆=false
5: Ψ=bothSides, Π=bothSides, ∆=true
6: Ψ=bothSides, Π=bothSides, ∆=false

(b) Send Buffer Size > Receive Buffer Size

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π / Use Packet Drop ∆

1: Ψ=none, Π=none, ∆=true
2: Ψ=none, Π=none, ∆=false
3: Ψ=none, Π=bothSides, ∆=true
4: Ψ=none, Π=bothSides, ∆=false
5: Ψ=bothSides, Π=bothSides, ∆=true
6: Ψ=bothSides, Π=bothSides, ∆=false

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.19(a) 2,500,000 B 5,000,000 B
7.19(c) 2,500,000 B 2,500,000 B
7.19(b)

5,000,000 B 2,500,000 B
7.20

(d) Buffer Size Configuration

Chunk Rescheduling Packet Drop Rep.
disabled enabled

disabled A(2) E(1)
disabled, Buffer Splitting �(4) ��(3)
enabled, Buffer Splitting C(6) F(5)

(e) Features Configuration

Figure 7.19: Throughput for Ordered Delivery over Paths with Dissimilar Bit Error Rates

7.9. ORDERED DELIVERY 137

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

Bit Error Rate on Path #2 ε2 [1/Bit]

R
e

c
e

iv
e

 B
u

ff
e

r
U

ti
liz

a
ti
o

n
 [
%

]

Chunk Rescheduling Ψ / Buffer Splitting Π / Use Packet Drop ∆

1: Ψ=none, Π=none, ∆=true
2: Ψ=none, Π=none, ∆=false
3: Ψ=none, Π=bothSides, ∆=true
4: Ψ=none, Π=bothSides, ∆=false
5: Ψ=bothSides, Π=bothSides, ∆=true
6: Ψ=bothSides, Π=bothSides, ∆=false

(a) Receive Buffer Utilisation

0e+00 1e−06 2e−06 3e−06 4e−06 5e−06

0
1

2
3

4
5

6

Bit Error Rate on Path #2 ε2 [1/Bit]
C

h
u
n
k
 R

e
s
c
h
e
d
u
lin

g
 R

a
te

 [
1
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π / Use Packet Drop ∆

1: Ψ=none, Π=none, ∆=true
2: Ψ=none, Π=none, ∆=false
3: Ψ=none, Π=bothSides, ∆=true
4: Ψ=none, Π=bothSides, ∆=false
5: Ψ=bothSides, Π=bothSides, ∆=true
6: Ψ=bothSides, Π=bothSides, ∆=false

(b) Chunk Rescheduling Rate

Figure 7.20: Dissimilar Bit Error Rates in the Send Buffer Size > Receive Buffer Size Scenario

utilisation depicted in Subfigure 7.20(a) makes the problem clearly visible: the higher the dissimilarity
of the paths, the higher the buffer utilisation due to the reordering-induced receive buffer blocking.

An interesting observation is the negative peak of curve 1 (i.e. chunk rescheduling as well as
buffer splitting turned off, but with packet drop reporting). For reasonably small error rates, the
drop reports reduce the advertised-window-induced receive buffer blocking. A DATA chunk that
has been reported as dropped increases the peer receiver window, since it is not outstanding any
more (see also Subsection 2.10.1). Since the transmissions on the paths are handled in a round-robin
manner, a non-zero peer receiver window may give a DATA chunk on the other path the chance
to be sent before the retransmission of the dropped chunk. In consequence, the better scheduling
of DATA chunks among the paths also reduces the reordering-induced receive buffer blocking issue
and leads to some throughput performance improvements (see Subfigure 7.19(b)) in comparison to
the error-free case (i.e. ε2=0). However, this effect is small and highly varies, as indicated by the
relatively large confidence intervals. Simply turning on buffer splitting (curve 3) is a significantly
more effective countermeasure against advertised-window-induced receive buffer blocking.

Chunk rescheduling in combination with buffer splitting (curve 5) solves the problem for all three
send buffer size to receive buffer size ratios (see Figure 7.19). While with support of packet drop
reporting the achieved payload throughput at a Path #2 bit error rate of ε2=5 ∗ 10−6 errors/bit is
only slightly lower than for the error-free scenario (about 185 Mbit/s vs. 190 Mbit/s), it still achieves
about 120 Mbit/s without this support (curve 6). For the whole examined bit error rate range of ε2, the
average receive buffer utilisation remains at about 12% or less (see Subfigure 7.20(a)).

Furthermore, the applied chunk rescheduling – while significantly improving the achieved perfor-
mance – is reasonably inexpensive, as shown by the chunk rescheduling rate plot depicted in Sub-
figure 7.20(b): with packet drop reporting support, it is less than one rescheduled DATA chunk/s
(curve 5), since a chunk having been reported as dropped is immediately retransmitted without need
for rescheduling. Even without packet drop reporting, the number of rescheduled chunks/s does not
exceed 6 chunks/s (curve 6).

138 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

7.9.3 Dissimilar Delays

In order to examine the impact of dissimilar delays, the delay of Path #2 has been varied from δ2=1 ms
to δ2=40 ms, while keeping the delay of Path #1 fixed at δ1=1 ms. Figure 7.21 presents the result-
ing application payload throughput for the three possibilities of send buffer size to receive buffer
size ratios. The buffer size configurations are shown in Subfigure 7.21(d), the used combinations of
mechanisms (chunk rescheduling and buffer splitting based on outstanding bytes) can be found in
Subfigure 7.21(e).

As already observed for the unordered delivery scenario in Subsection 7.7.3, CMT-SCTP provides
mechanisms to cope with some delay differences. The problem for ordered delivery arises when one
path loses a DATA chunk that is needed for a CumAck. In consequence, this may lead to a filled
send or receive buffer and a stall of the transmission on all paths until the missing chunk either gets
acknowledged or successfully retransmitted.

Without chunk rescheduling (curves 1 and 2), the achieved application payload throughput per-
formance slightly reduces from around 170 Mbit/s at a Path #2 delay of δ2=1 ms to 160 Mbit/s
for δ2=40 ms (in the scenarios of send buffer size ≤ receive buffer size). The scenario of send buffer
size > receive buffer size is – as already observed for the bandwidth and bit error rate dissimilarity
scenarios in Subsection 7.9.1 and Subsection 7.9.2 – slightly more critical.

The problem caused by the reordering-induced receive buffer blocking is solved by applying
chunk rescheduling in combination with buffer splitting (curve 3), which then achieves the expected
throughput of about 190 Mbit/s in the similar setup (i.e. δ2=1 ms) and still about 175 Mbit/s for a
Path #2 delay of δ2=40 ms.

Figure 7.22 presents a more detailed look at the buffer behaviour; the average receive buffer util-
isation is depicted in Subfigure 7.22(a). The results here are interesting in comparison to the results
of the bandwidth and bit error rate dissimilarity scenarios in Subsection 7.9.1 and Subsection 7.9.2.
Even without chunk rescheduling, the average receive buffer utilisation is up to at most 20% – even
in the highly dissimilar setup at δ2=40 ms. For delay dissimilarity, the problem of reordering-induced
receive buffer blocking occurs infrequently, when a temporary congestion window reduction (due to
the AIMD behaviour, see Subsection 2.11.2) leads to a short stall of the transmission. After recovering
from this temporary problem, the following CumAck solves the blockade. Due to the infrequent oc-
currence of these stalls, the overall application payload throughput reduction remains small, but chunk
rescheduling can ensure to solve these situations more quickly and gain an even better performance.

Again, this performance improvement is very inexpensive, as shown by the chunk rescheduling
rate in Subfigure 7.22(b) of only about 0.5 to 2 DATA chunks/s. Note the large confidence intervals.
They are caused by the quite rare occurrence of a congestion window reduction for a higher delay,
since it takes one RTT to rise the congestion window by one MTU in congestion avoidance mode
(see Section 3.8). However, when there is a drop of the congestion window, chances are good that
chunk rescheduling is triggered multiple times in sequence. Due to the non-determinism of congestion
window reductions caused by the RED queues, the total number of reschedules per run varies.

7.9.4 The Influence of the Burst Mitigation Variant

When transferring DATA chunks with ordered delivery using size-limited buffers, short pauses of
the transmission on a path occur sometimes, due to reordering-induced receive buffer blocking, as
observed in the delay dissimilarity scenario described in Subsection 7.9.3.

7.9. ORDERED DELIVERY 139

0 5 10 15 20 25 30 35 40

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=none
2: Ψ=none, Π=bothSides
3: Ψ=bothSides, Π=bothSides

(a) Send Buffer Size < Receive Buffer Size

0 5 10 15 20 25 30 35 40
0

2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=none
2: Ψ=none, Π=bothSides
3: Ψ=bothSides, Π=bothSides

(b) Send Buffer Size > Receive Buffer Size

0 5 10 15 20 25 30 35 40

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

1
7
5

2
0
0

Delay on Path #2 δ2 [ms]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=none
2: Ψ=none, Π=bothSides
3: Ψ=bothSides, Π=bothSides

(c) Send Buffer Size = Receive Buffer Size

Figure Send Buffer Receive Buffer
7.21(a) 2,500,000 B 5,000,000 B
7.21(c) 2,500,000 B 2,500,000 B
7.21(b)

5,000,000 B 2,500,000 B
7.22

(d) Buffer Size Configuration

Chunk Rescheduling Buffer Splitting
disabled enabled

disabled E(1) A(2)
enabled ��(3)

(e) Features Configuration

Figure 7.21: Throughput for Ordered Delivery over Paths with Dissimilar Delays

140 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 10 20 30 40

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Delay on Path #2 δ2 [ms]

R
e
c
e
iv

e
 B

u
ff
e
r

U
ti
liz

a
ti
o
n
 [
%

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=none
2: Ψ=none, Π=bothSides
3: Ψ=bothSides, Π=bothSides

(a) Receive Buffer Utilisation

0 5 10 15 20 25 30 35 40

0
1

2
3

4
5

6

Delay on Path #2 δ2 [ms]
C

h
u
n
k
 R

e
s
c
h
e
d
u
lin

g
 R

a
te

 [
1
/s

]

Chunk Rescheduling Ψ / Buffer Splitting Π

1: Ψ=none, Π=none
2: Ψ=none, Π=bothSides
3: Ψ=bothSides, Π=bothSides

(b) Chunk Rescheduling Rate

Figure 7.22: Dissimilar Delays in the Send Buffer Size > Receive Buffer Size Scenario

7.9.4.1 The Burst Mitigation Challenge

While these pauses are usually very short (i.e. a few ms), they have an impact on the congestion
window. If following the suggestion of RFC 4960 (see [Ste07, Subsection 6.1]), the mechanism of
“Use It or Lose It” burst mitigation – as explained in Section 3.9 – limits the congestion window when
it is not adequately utilised.

An example is illustrated in Figure 7.23: the DATA chunks #78 to #83 have been sent from End-
pointA to EndpointB over the high-delay Path #1, while the DATA chunks #84 to #89 have been sent
over the low-delay Path #2. According to the SACK generation rules defined in RFC 4960 (see [Ste07,
Subsection 6.7]) and the application of delayed acknowledgement for CMT (see Subsection 4.2.4),
the following events happen at the receiver:

• The DATA chunks #78 and #79 (both on Path #1) arrive. A SACK chunk is sent via the high-
delay Path #1, since this is the path of the last received DATA chunk.

• The same happens after arrival of the

– DATA chunks #84 (Path #2) and #80 (Path #1),

– DATA chunks #85 (Path #2) and #81 (Path #1),

– DATA chunks #86 (Path #2) and #82 (Path #1) and

– DATA chunks #87 (Path #2) and #83 (Path #1).

• The DATA chunks #88 (Path #2) and #89 (Path #2) arrive. Now, a SACK chunk is sent via
Path #2.

Since Path #2 is a low-delay path, chances are good that the last SACK chunk that has been sent
via Path #2 arrives at the Endpoint A first. This chunk contains new acknowledgements for six

7.9. ORDERED DELIVERY 141

Figure 7.23: The Challenge of Burst Mitigation

DATA chunks on Path #1 as well as six DATA chunks on Path #2. That is, the corresponding number
of chunks may be newly transmitted into the network. When eventually the SACKs on Path #1 arrive
at Endpoint A, they are obsolete and are just ignored therefore.

In order to avoid the sender overloading the network by bursts triggered by such large acknowl-
edgement blocks, the burst mitigation limits the number of newly sent DATA chunks. Using the ap-
proach “Use It or Lose It”, the congestion window is limited so that only MaxBurst new DATA chunks
(by default: 4, as defined in RFC 4960; see [Ste07, Section 15]) can be sent into the network. How-
ever, this means that the congestion window is reduced and has to grow again. Of course, if the
reduced congestion window does not cover the bandwidth-RTT product, the throughput performance
will suffer.

7.9.4.2 Smart SACK Path Selection

Since the key problem of the example in Figure 7.23 has been the consecutive usage of the high-delay
path for SACKs (here: five times), an approach to mitigate this problem is quite straightforward: the
paths of all DATA chunks received since the last SACK (or startup of the association) are remembered.
Of these paths, the path having the smallest SRTT (i.e. the smoothed round-trip time as defined in
Subsection 2.11.4) is used for sending out a new SACK chunk. This approach, which has been
developed as part of this thesis, has been called Smart SACK Path Selection.

Note, that smart SACK path selection cannot introduce any unfairness in comparison to non-CMT
SCTP. All paths under consideration for sending out the next SACK chunk have just (i.e. since the
transmission of the last SACK chunk) received DATA chunks. Also, of course, if only DATA chunks
on the high-delay path have been received, the next SACK chunk will be sent on this high-delay path.

7.9.4.3 Alternative Burst Mitigation Variants

Smart SACK path selection reduces the chance that a large burst occurs due to an awkward reception
sequence of the DATA chunks. However, it cannot completely avoid it – e.g. when a sequence of
DATA chunks had been received on a high-delay path, also having been acknowledged on this path,
and these acknowledgements are overtaken by a SACK chunk on the low-delay path. It is therefore
useful to think about alternative burst mitigation variants.

142 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

[AB05] provides a survey of burst mitigation approaches for TCP. Therefore, the adaptation of
these approaches to SCTP has been considered:

Use It or Lose It This is the algorithm suggested in RFC 4960 (see [Ste07, Subsection 6.1]) and
described in Section 3.9.

Congestion Window Limiting The “Congestion Window Limiting” approach is very similar to “Use
It or Lose It”. If the congestion window c is going to be reduced, and if the slow-start threshold s
is smaller than c, s is set to c. Then, c is reduced like for “Use It or Lose It”. Since the congestion
control is now in slow start mode, the original value of c may be reached again more quickly
than for “Use It or Lose It”.

Max Burst The “Max Burst” approach simply leaves the congestion window unaffected. Instead, it
just counts the number of packets and only allows MaxBurst packets at a time. When the next
SACK arrives, a further burst of MaxBurst packets may be sent, etc. – as long as the congestion
window allows their transmission, of course.

Aggressive Max Burst The “Aggressive Max Burst” takes obsolete (i.e. reordered) acknowledge-
ments into account, which is useful for TCP implementations without selective acknowledge-
ment. Since SCTP always supports this feature, this burst mitigation strategy is not useful here.

The conclusions drawn by [AB05, Section 5] show that “Use It or Lose It”, “Congestion Window
Limiting” and “Max Burst” are all fulfilling their task of mitigating bursts for the single-path TCP
protocol, and no particular recommendation for one of these mechanisms is given. The choice of
approach – for non-CMT transfer – is mainly an implementation decision, and “Use It or Lose It” is
easily realisable by just a single line of C/C++ code.

7.9.4.4 Evaluation

In order to demonstrate the impact of the burst mitigation variants, Figure 7.24 shows the congestion
window (drawn by solid lines) and slow-start threshold (drawn by dashed lines) behaviour of the three
variants for Path #1 (drawn in blue colour) and Path #2 (drawn in red colour) in the dissimilar delays
scenario with chunk rescheduling from Subsection 7.9.3 at a Path #2 delay of δ2=40 ms:

• Using “Use It or Lose It”, as depicted in Subfigure 7.24(a), the problem becomes clearly vis-
ible. Path #1 shows the typical AIMD congestion control behaviour, as described in Subsec-
tion 2.11.2, i.e. the congestion window rises linearly and it is halved when the RED queue
causes a loss. Unfortunately, the temporarily reduced rate of DATA chunks on Path #1 may
lead to multiple SACKs in sequence using Path #2. When the congestion window of Path #1 re-
covers, which happens quite quickly due to a Path #1 delay of δ1=1 ms, the new SACKs take the
low-delay path and overtake the previous SACKs on Path #2. This causes the burst mitigation
issue described in Subsubsection 7.9.4.1, by getting a large number of DATA chunks simulta-
neously acknowledged on Path #2. This results in the ragged look of the congestion window of
Path #2. The resulting application payload throughput in this case is only about 160 Mbit/s.

• “Congestion Window Limiting”, as shown in Subfigure 7.24(b), reduces the problem by “sav-
ing” the previous value of the congestion window as slow-start threshold. This results in a faster
recovery from the burst mitigation event. In this case, the resulting throughput performance is
about 165 Mbit/s.

7.9. ORDERED DELIVERY 143

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

8
e
+

0
5

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(a) Use It or Lose It

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

8
e
+

0
5

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(b) Congestion Window Limiting

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

8
e
+

0
5

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(c) Max Burst

Figure 7.24: The Impact of Burst Mitigation Variants on the Congestion Control Behaviour

144 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

• On the other hand, “Max Burst”, as presented by Subfigure 7.24(c), lets the congestion window
unaffected. That is, compared to “Use It or Lose It” or “Congestion Window Limiting”, no rag-
ging is observable. This leads to a further improvement of the application payload throughput
to about 175 Mbit/s.

That is, for the best performance, it is strongly recommended to apply “Max Burst” in favour of
“Use It or Lose It” for CMT-SCTP. A possible alternative is to turn off the optional burst mitigation
altogether, as it is currently performed by FreeBSD kernel SCTP5. Since TCP does not apply burst
mitigation by default, the FreeBSD developers have just decided to also turn it off for SCTP by default.
However, avoiding bursts in carefully configured networks – i.e. without overly long queues causing
buffer bloat – seems to be a useful feature that should not be omitted without a thorough evaluation.

7.9.5 Ongoing and Future Work

The simulations on chunk rescheduling have shown that this approach is useful to achieve a good
CMT-SCTP performance for ordered delivery in the single-stream case. Scenarios using only a single
stream are highly crucial, since most of the non-multimedia applications of today do not (yet) make
use of multi-streaming.

As part of the ongoing work on CMT-SCTP in the DFG project this habilitation thesis has been
performed within, chunk rescheduling is going to be implemented into the FreeBSD kernel SCTP
implementation, in order to perform a testbed-based evaluation. Particularly, a further evaluation
of the burst mitigation impact seems to be useful. These real-world evaluations are also necessary
to support the contribution of chunk rescheduling into the IETF standardisation process for SCTP.
Also, some additions for better support of multi-streaming and bundling (particularly, the transport of
multiple DATA chunks in one packet; see also Subsubsection 2.9.3.3) are under consideration.

7.10 Predefined Stream Mapping

While chunk rescheduling copes with the problem of transferring a single stream over multiple paths,
which is similar to TCP, an idea for having multiple streams is to map certain streams to certain paths.

7.10.1 Optimised Stream Scheduling for CMT-SCTP

In the example illustrated in Figure 7.25, two streams are transported via a single CMT-SCTP associ-
ation over two paths. The Stream Scheduler of an SCTP instance decides which DATA chunk is trans-
ported over which path. RFC 4960 (see [Ste07]) makes no definition of how to apply or implement
a stream scheduler. Instead, it is a decision of the SCTP implementer. A survey of scheduling algo-
rithms is provided by [STR10], the most common approaches are round-robin (e.g. used by FreeBSD
and MacOS) or first-come, first-served (e.g. used by Linux and Solaris).

As part of this thesis and in cooperation with Robin Seggelmann from the Münster University
of Applied Sciences, a simple approach has been developed, which is denoted as Predefined Stream
Mapping. It has also been published in [DSTR10]. The idea of predefined stream mapping is to apply
a fixed mapping of streams to paths. That is, except in case of a path failure, the DATA chunks of
the same stream always use the same path. The advantage of this approach is that delays (e.g. due to
retransmissions) only affect a subset of the streams, and not the whole association. As a result, the
message delay and buffer space requirements are reduced.

5FreeBSD 8.2 release version.

7.10. PREDEFINED STREAM MAPPING 145

Figure 7.25: The Principle of Predefined Stream Mapping

7.10.2 Decoupled Streams

The buffers of an SCTP instance are shared among all streams. In particular, the interface between
SCTP and the upper layer – as introduced in Subsection 3.12.1 and defined in [STP+11] – only pro-
vides a mechanism to trigger the generation of new messages when space in the send buffer becomes
available. This is sufficient for the regular SCTP and CMT-SCTP behaviour, where streams are cou-
pled. If two saturated streams are transmitted over the same association, each stream achieves a similar
throughput. That is, the streams – regardless of the underlying paths – are similar.

On the other hand, the application of predefined stream mapping over dissimilar paths results in
dissimilar streams, i.e. a stream over a high-bandwidth path may get a better throughput than a stream
over a low-bandwidth path. In order to let the upper layer fill the send buffer appropriately, i.e. more
messages for a high-bandwidth stream, an API extension is necessary. The proposed API extension,
denoted as Decoupled Streams, allows the sender to query the per-stream send buffer utilisation.
By making the Application Layer aware of the stream dissimilarity introduced by predefined stream
mapping, the sender-side application can generate an appropriate amount of messages for each stream.
This is particularly useful for all kinds of SCTP-based tunnelling applications, e.g. SSH channels (see
Subsection 2.13.4 and [YL06]) or signalling applications like SS7 over IP networks (as described
by [SMPB02]). The decoupled streams API extension, which has been developed as part of this
thesis, has also been published as Internet Draft in [DSB12], and therewith contributed to the IETF
standardisation process of SCTP.

7.10.3 Scenario Setup

The scenario setup for the following simulations has used the parameters described in Section 7.2,
with the following modifications:

• The default QoS characteristics of the paths have been a bandwidth of 10 Mbit/s and a delay

146 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

of 10 ms without bit errors.

• The sender has transferred two unidirectional, saturated streams using ordered delivery over a
single CMT-SCTP association to the receiver. The decoupled streams API extension, as de-
scribed in Subsection 7.10.2, has been used.

• Send and receive buffers have had the same length σ.

• When applying predefined stream mapping, Stream #0 maps to Path #1 and Stream #1 maps to
Path #2.

7.10.4 Dissimilar Delays

The simulation results for varying the send/receive buffer size σ from σ=16 KiB to σ=320 KiB, for
using round-robin scheduling (i.e. curves 1 to 3 drawn in red colour) and predefined stream mapping
(i.e. curves 4 to 6 drawn in purple colour) at Path #2 delays of δ2=10 ms (i.e. similar paths), δ2=50 ms
and δ2=75 ms are displayed in Figure 7.26.

Subfigure 7.26(a) presents the resulting application payload throughput. As expected from the
preliminary considerations in Subsection 7.10.1, the full application payload throughput performance
of about 19.2 Mbit/s is already reached for smaller settings of σ when applying the predefined stream
mapping scheduling strategy (curves 4 to 6) instead of round-robin scheduling (curves 1 to 3) when
the scenario becomes dissimilar (i.e. δ2>10 ms; curves 2 and 3 as well as curves 5 and 6). Temporary
delays due to losses and fast retransmissions only affect a single stream, which avoids reordering-
induced receive buffer blocking for the DATA chunks of the other stream (which is transmitted over
the other path). GapAck-induced send buffer blocking in this case is prevented by the usage of NR-
SACKs. As expected, there is no difference between the two stream scheduler approaches in a similar
path setup (i.e. δ2=10 ms; curves 1 and 4).

The corresponding average message delay (i.e. the time from message generation at the sender-
side application until reception at the peer application) is presented in Subfigure 7.26(b) (Stream #0)
and Subfigure 7.26(c) (Stream #1). As expected, there is no significant message delay difference
between Stream #0 and Stream #1 in the similar 10 ms/10 ms case for both scheduling approaches
(curves 1 and 4). Also, the message delay linearly increases with the send/receive buffer size σ, once
it is large enough to cover the bandwidth-RTT product (see Subsubsection 2.9.2.3). Any higher setting
of σ cannot further improve the application payload throughput. Instead, it just increases the time the
DATA chunks of a message have to wait in the send buffer until they actually get transmitted over the
network. In consequence, this increases the overall message delay.

When the scenario becomes dissimilar (i.e. δ2>10 ms), round-robin scheduling results in both
streams having similar message delays, regardless of the path delay dissimilarity (curves 2 and 3) –
which is the expected behaviour. On the other hand, applying predefined stream mapping (curves 5
and 6) results in dissimilar streams: Stream #0, which uses Path #1 with a delay of δ1=10 ms,
has a significantly smaller message delay than Stream #1, which uses Path #2 with a higher delay
of δ2≥50 ms. Of course, once the send/receive buffer size σ covers the bandwidth-RTT product, the
resulting throughputs of both streams become equal. Therefore, a plot for the per-stream throughputs
is omitted here.

In summary, predefined stream mapping can – in comparison to round-robin scheduling – achieve
the maximum throughput and a reduced delay at smaller send/receive buffer sizes.

7.10. PREDEFINED STREAM MAPPING 147

0 32 64 96 128 160 192 224 256 288 320

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

Send/Receive Buffer Size σ [KiB]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Scheduler Σ / Delay on Path #2 δ2 [ms]

1: Σ=roundRobin, δ2=10
2: Σ=roundRobin, δ2=50
3: Σ=roundRobin, δ2=75
4: Σ=pathManual, δ2=10
5: Σ=pathManual, δ2=50
6: Σ=pathManual, δ2=75

(a) Cumulative Payload Throughput

0 32 64 96 128 160 192 224 256 288 320

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

Send/Receive Buffer Size σ [KiB]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 M

e
s
s
a
g
e
 D

e
la

y
 [
m

s
]

Scheduler Σ / Delay on Path #2 δ2 [ms]

1: Σ=roundRobin, δ2=10
2: Σ=roundRobin, δ2=50
3: Σ=roundRobin, δ2=75
4: Σ=pathManual, δ2=10
5: Σ=pathManual, δ2=50
6: Σ=pathManual, δ2=75

(b) Delay for Stream #0

0 32 64 96 128 160 192 224 256 288 320

0
2
5

5
0

7
5

1
0
0

1
2
5

1
5
0

Send/Receive Buffer Size σ [KiB]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 M

e
s
s
a
g
e
 D

e
la

y
 [
m

s
]

Scheduler Σ / Delay on Path #2 δ2 [ms]

1: Σ=roundRobin, δ2=10
2: Σ=roundRobin, δ2=50
3: Σ=roundRobin, δ2=75
4: Σ=pathManual, δ2=10
5: Σ=pathManual, δ2=50
6: Σ=pathManual, δ2=75

(c) Delay for Stream #1

Figure 7.26: Using Predefined Stream Mapping for Paths with Dissimilar Delays

148 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

0 128 256 384 512 640 768 896 1024

0
1

0
2

0
3

0
4

0
5

0

Send/Receive Buffer Size σ [KiB]

N
e

tP
e

rf
M

e
te

r
A

p
p

lic
a

ti
o

n
 S

tr
e

a
m

 P
a
y
lo

a
d

 T
h

ro
u

g
h

p
u

t
[M

b
it
/s

] Scheduler Σ / Decouple Streams χ / Bandwidth on Path #2 ρ2 [Mbit/s]

1: Σ=roundRobin, χ=false, ρ2=50
2: Σ=roundRobin, χ=false, ρ2=25
3: Σ=pathManual, χ=true, ρ2=50
4: Σ=pathManual, χ=true, ρ2=25
5: Σ=pathManual, χ=false, ρ2=50
6: Σ=pathManual, χ=false, ρ2=25

(a) Stream #0

0 128 256 384 512 640 768 896 1024

0
1

0
2

0
3

0
4

0
5

0

Send/Receive Buffer Size σ [KiB]
N

e
tP

e
rf

M
e

te
r

A
p

p
lic

a
ti
o

n
 S

tr
e

a
m

 P
a
y
lo

a
d

 T
h

ro
u

g
h

p
u

t
[M

b
it
/s

] Scheduler Σ / Decouple Streams χ / Bandwidth on Path #2 ρ2 [Mbit/s]

1: Σ=roundRobin, χ=false, ρ2=50
2: Σ=roundRobin, χ=false, ρ2=25
3: Σ=pathManual, χ=true, ρ2=50
4: Σ=pathManual, χ=true, ρ2=25
5: Σ=pathManual, χ=false, ρ2=50
6: Σ=pathManual, χ=false, ρ2=25

(b) Stream #1

Figure 7.27: Using Predefined Stream Mapping for Paths with Dissimilar Bandwidths

7.10.5 Dissimilar Bandwidths

In order to demonstrate the impact of bandwidth dissimilarity, Figure 7.27 presents the application
payload throughput results for varying the send/receive buffer size from σ=64 KiB to σ=1,024 KiB,
for the two scheduling strategies (round-robin for curves 1 and 2 drawn in red colour; predefined
stream mapping for curves 3 to 6 drawn in purple colour) at Path #2 bandwidths of ρ2=25 Mbit/s and
ρ2=50 Mbit/s. The bandwidth of Path #1 remains fixed at ρ1=10 Mbit/s. Curves for the similar path
scenario (i.e. ρ2=10 Mbit/s) have been omitted, since the results are obvious.

Clearly, round-robin scheduling (see curves 1 and 2) leads to an equal split of the cumulative band-
width between both streams. That is, when the bandwidth-RTT product (see Subsubsection 2.9.2.3)
is covered by the send/receive buffer size σ; e.g. for σ=768 KiB, the expected application payload
throughputs of nearly ρ1+ρ2

2 Mbit/s per stream are reached.
When using predefined stream mapping, but without decoupled streams as explained in Subsec-

tion 7.10.2 (curves 5 and 6), the achieved application payload throughput for each stream is only the
throughput of the stream on the slowest path (curves 5 and 6). That is, although Stream #1 uses the
fast Path #2 with a bandwidth of ρ2≥25 Mbit/s, its throughput remains fixed at about 9.5 Mbit/s. The
problem here is that the sender-side application is not aware of the stream dissimilarities, i.e. it can-
not provide enough messages to be transferred on Stream #1. Turning on the support for decoupled
streams (curves 3 and 4) leads to the expected performance results. Now, the send buffer can be filled
appropriately by the application. In result, CMT-SCTP is able to fully utilise the fast Path #1.

The throughput peaks at smaller settings of σ are caused by the limited buffer sizes. If the con-
gestion window cannot grow large enough to exceed the RED queue MinTh of 30 packets (see also
Subsection 2.4.2), no losses will occur. This leads to a constant size of the congestion window, in-
stead of the typical AIMD behaviour as described in Subsection 2.11.2. Due to the high bandwidth of
Stream #1 in curve 3, this effect is seen most clearly here.

Note, that predefined stream mapping already achieves this full bandwidth utilisation with a setting

7.10. PREDEFINED STREAM MAPPING 149

0 32 64 96 128 160 192 224

0
1

2
3

4
5

6
7

8
9

1
0

Send/Receive Buffer Size σ [KiB]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 S

tr
e
a
m

 P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

] Scheduler Σ / Bit Error Rate on Path #2 ε2 [1/Bit] / Use Packet Drop ∆

1: Σ=roundRobin, ε2=1e−06, ∆=true
2: Σ=roundRobin, ε2=1e−06, ∆=false
3: Σ=pathManual, ε2=1e−06, ∆=true
4: Σ=pathManual, ε2=1e−06, ∆=false
5: Σ=pathManual, ε2=0, ∆=true
6: Σ=pathManual, ε2=0, ∆=false

(a) Stream #0

0 32 64 96 128 160 192 224

0
1

2
3

4
5

6
7

8
9

1
0

Send/Receive Buffer Size σ [KiB]
N

e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 S

tr
e
a
m

 P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

] Scheduler Σ / Bit Error Rate on Path #2 ε2 [1/Bit] / Use Packet Drop ∆

1: Σ=roundRobin, ε2=1e−06, ∆=true
2: Σ=roundRobin, ε2=1e−06, ∆=false
3: Σ=pathManual, ε2=1e−06, ∆=true
4: Σ=pathManual, ε2=1e−06, ∆=false
5: Σ=pathManual, ε2=0, ∆=true
6: Σ=pathManual, ε2=0, ∆=false

(b) Stream #1

Figure 7.28: Using Predefined Stream Mapping for Paths with Dissimilar Bit Error Rates

of σ≥256 Kbit/s at a Path #2 bandwidth of ρ2=50 Mbit/s, while round-robin scheduling needs a size
of σ≥768 Kbit/s. That is, predefined stream mapping can utilise the bandwidths of the two paths with
smaller buffers. However, the application has to be aware of this mapping by supporting decoupled
streams and it has to ensure that the send buffer gets appropriately filled with messages for each
stream.

7.10.6 Dissimilar Bit Error Rates

In order to demonstrate the effects of dissimilar bit error rates, Figure 7.28 presents the per-stream ap-
plication payload throughput results (Stream #0 in Subfigure 7.28(a), Stream #1 in Subfigure 7.28(b))
for varying the send/receive buffer size σ from σ=16 KiB to σ=224 KiB, for using round-robin
scheduling (curves 1 and 2 drawn in red colour) and predefined stream mapping (curves 3 to 6
drawn in purple colour) at Path #2 bit error rates of ε2=0 errors/bit (i.e. similar paths without errors)
and ε2=1∗10−6 errors/bit, with support of the packet drop reporting extension (see Subsection 3.11.8)
turned on (i.e. curves 1, 3 and 5) and off (i.e. curves 2, 4 and 6). Since the behaviour of round-robin
scheduling in the similar, error-free case is obvious, the corresponding curves have been omitted in
order to enhance the readability of the plots.

When using round-robin scheduling, bit errors on one path have a negative impact on the perfor-
mance of both streams. In particular, with packet drop reporting turned off (curve 2), the achieved
per-stream application payload throughput does not exceed 8 Mbit/s. Clearly, as expected from the
results described in Subsection 7.7.2, turning the support for packet drop reporting on (curve 1) sig-
nificantly improves the situation. However, the performance of both streams remains coupled – as
observed for the bandwidth dissimilarity scenario described in Subsection 7.10.5.

Applying predefined stream mapping decouples the performances. That is, Stream #0 is now
able to utilise the full bandwidth of Path #1. Regardless of the support for packet drop reporting,
the application payload throughput becomes equal to the bit error-free scenario on this path (compare

150 CHAPTER 7. EFFICIENT HANDLING OF DISSIMILAR PATHS

curves 3 and 5 as well as curves 4 and 6 in Subfigure 7.28(a)). On the other hand, Stream #1 now
suffers from the bit errors on Path #2 alone (curves 3 and 4 in Subfigure 7.28(b)).

In summary, predefined stream mapping over paths with dissimilar bit error rates can be used to
improve the performance of selected streams (by mapping them to low-error paths), while the effects
of losses are concentrated on the other streams. This may be useful in certain scenarios where streams
have different QoS requirements, e.g. some interactive streams mixed with non-interactive ones within
the same SCTP association.

7.10.7 Ongoing and Future Work

The simulations on predefined stream mapping have shown that this approach is a useful extension
for CMT-SCTP in multi-streaming scenarios. However, it requires a careful configuration by the
application user in order to appropriately map streams to paths. For example, for an SSH association
(see Subsection 2.13.4), the mapping should use a low-delay but possibly low-bandwidth path for a
stream transporting an interactive shell session, but a high-bandwidth path for a protocol tunnelling
stream. The reverse choice would clearly lead to a poor user experience.

Therefore, a dynamic algorithm which automatically performs an appropriate mapping is desir-
able. Also, of course, an implementation and an evaluation in the testbed are part of the ongoing work
on stream mapping.

7.11 Summary

In this chapter, the performance of CMT-SCTP for unordered delivery, ordered delivery and multi-
streaming on dissimilar paths has been evaluated. In any realistic configuration, the sizes of send and
receive buffers must be reasonably small. As a challenge in this situation, the issue of buffer blocking
has been identified, which has further been categorised into four sub-problems.

For unordered delivery, the buffer splitting approach has been introduced as a solution and the
effectiveness has been shown by simulations as well as testbed measurements in a real-world Internet
setup. Buffer splitting decouples the send and receive buffer occupations among the paths of an
association. This avoids that one path can take an overly large fraction of the send and receive buffers
for its DATA chunks, leaving no more room for the other paths. Furthermore, it has been shown that
buffer splitting should be combined with the non-renegable selective acknowledgements extension, in
order to be able to remove successfully transmitted chunks from the send buffer as soon as possible.

As solution for ordered delivery, the approach of chunk rescheduling has been described. It re-
alises a preventive retransmission in order to avoid stalling the data transfer by the need to wait too
long for missing DATA chunks. While chunk rescheduling is quite effective, as it has been shown by
simulations, the overhead for these preventive retransmissions remains reasonably small.

Finally, as an improvement for multi-streaming with ordered delivery, the approach of predefined
stream mapping has been presented and evaluated. It applies a fixed mapping of streams to paths,
which reduces the space requirements for send and receive buffers.

Chapter 8

Fairness on Shared Bottlenecks

This chapter introduces CMT-SCTP congestion control variants based on resource pooling, in order
to address the fairness issue on shared bottlenecks, first. After that, the performance impact of these
variants is analysed in a shared bottleneck scenario. Finally, their performance impact is also evaluated
in disjoint path scenarios.

8.1 Introduction

A very important requirement of IETF Transport Layer protocol standardisation is TCP-Friendliness,
as introduced in [BCC+98]. That is, a new protocol must not claim bandwidth more aggressively
than a comparable TCP connection. Therefore, standard SCTP as defined in RFC 4960 (see [Ste07]
and Chapter 3) only utilises its primary path and applies a congestion control similar to TCP. In order
to standardise the CMT-SCTP load sharing extension, TCP-friendliness is a mandatory requirement,
too.

A fundamental assumption of CMT-SCTP, as defined by [IAS06] and explained in Section 4.2,
is that all paths of an association are disjoint. That is, the trails used to transfer the packets of each
path have to be disjoint (as defined in Subsection 2.1.4). This makes congestion control easy: each
path just has to be handled independently by using the standard SCTP congestion control mechanisms
introduced in Section 3.8.

In scenarios like SS7-based telephone networks (see Subsection 3.14.1), the constraint of dis-
jointness is quite trivial. SS7 networks are designed to provide a very high reliability, as described
by [GKT00]. That is, paths must be physically redundant in order to avoid a simultaneous failure of
multiple paths due to a single incident, e.g. a cut of cables due to earth works. The cables of different
paths are therefore laid out at physically separate locations. Clearly, the same reliability require-
ments also apply when transporting SS7 signalling over IP networks by using the SCTP protocol, as
described in [JRT02].

In contrast to SS7-based networks, the Internet has not been designed for high reliability. It only
provides a best effort service, as described in Subsection 2.4.5. Clearly, well-defined parts of the
Internet can be configured to provide disjoint paths by setting up certain routes. That is, for each path
between two endpoints, the administrator may define appropriate trails to ensure disjointness. An
example for this approach is the Internet-based testbed setup described in Subsection 6.5.2. However,
in the general case, it is not possible to guarantee that paths between any two endpoints in the Internet
are disjoint.

From the congestion control perspective, it is necessary to know whether paths are disjoint, in

151

152 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

order to avoid unfairness. By using plain CMT-SCTP congestion control as defined in Section 3.8,
n paths of a CMT-SCTP association over the same, shared bottleneck behave like n non-CMT associa-
tions on the same bottleneck. Therefore, a CMT-SCTP association claims n-times the bandwidth share
of a non-CMT association on this bottleneck. Note, that the plain CMT-SCTP congestion control only
requires a logical disjointness of the paths. That is, in contrast to SS7-based networks designed for
redundancy, multiple paths may physically share a single cable (e.g. by using different wavelengths,
etc.). The only requirement here is that traffic on one path does not influence the QoS characteristics
(i.e. bandwidth, delay, jitter and loss rate; see also Section 2.4) of another path.

In order to handle the bandwidth fairness issue on shared bottlenecks for intra-flow load sharing,
the following approaches are possible:

• So-called Bottleneck Detection as presented by [YWY08b, YWY08a, RKT02] tries to recognise
shared bottlenecks by correlating path statistics (e.g. RTTs and packet losses). While these
ideas are interesting, a thorough performance evaluation in the Internet is still missing. These
approaches are particularly difficult to evaluate due to the extreme heterogeneity of the Internet.

• The approach of A-Priori Knowledge lets the user (or administrator) decide whether paths are
disjoint and load sharing should be used. This approach is applied for CMT-SCTP; it has to be
enabled e.g. by a system control (as for FreeBSD described in Section 6.2) or an API option
(as described in [DBA12]). While this approach is rather trivial to realise, it provides a high
potential for configuration errors: CMT-SCTP could be enabled when the paths are actually
shared (i.e. causing unfairness to other users), nor CMT-SCTP could be disabled even if the
paths are disjoint (i.e. wasting usable bandwidth).

• The most promising approach – introduced by [WHB08] – is to assume that all paths are shared
(i.e. the load sharing will be fair by default) and try to make the best of this situation (i.e. to
improve the application payload throughput in comparison to non-CMT associations).

8.2 Resource Pooling

[WHB08] defines the approach of Resource Pooling (RP) as “making a collection of resources behave
like a single pooled resource”. Adapted to CMT-SCTP, this means that the set of all paths should
behave like a single, high-capacity one. As performance metric for RP-enabled CMT-SCTP, the fol-
lowing three goals are set:

Utilisation A CMT-SCTP association should get at least as much bandwidth as a non-CMT associa-
tion via the best path.

Fairness A CMT-SCTP association should not take more capacity on a shared bottleneck path than a
non-CMT association via the same bottleneck.

Congestion Balancing A CMT-SCTP association should balance congestion on all of its paths. That
is, it should try to shift congestion away from highly-utilised paths.

8.3 Resource-Pooling-Based Congestion Control for CMT-SCTP

The concept of RP as defined by [WHB08] is generic. However, for an evaluation of RP-based con-
gestion control for CMT-SCTP, this concept had to be adapted to a concrete, window-based congestion

8.3. RESOURCE-POOLING-BASED CONGESTION CONTROL FOR CMT-SCTP 153

control mechanism that fits with the properties of CMT-SCTP. Three mechanisms have been realised:
two RP-based congestion control variants which have been the result of observations in the testbed
(see Chapter 6) and experiments with the simulation model (see Chapter 5) as well as an adaptation
of the suggested congestion control for MPTCP as defined in [RHW09] to CMT-SCTP.

8.3.1 CMT/RP Congestion Control

Two variants of the simple congestion control – denoted as CMT/RP (i.e. CMT with RP) – have been
developed as part of this thesis.

8.3.1.1 Version 1 – CMT/RPv1

CMT/RP version 1 – shortly denoted as CMT/RPv1 – has been the initial approach of applying RP to
CMT-SCTP. It has been published in [DBPR10a] and is now also provided by FreeBSD kernel SCTP
(stable release 8.2; see [DRS+11]). CMT/RPv1 assumes the slow-start threshold to be a useful metric
for the stable capacity of a path. For each path P , the Slow-Start Threshold Ratio ŝP is defined as:

ŝP =
sP∑
i si

. (8.1)

That is, ŝP is the ratio between the slow-start threshold sP on path P and the sum of the slow-start
thresholds si over all paths.

In order to increase the congestion window cP on α acknowledged bytes on path P in a fully-
utilised congestion window, CMT/RPv1 adapts it as follows:

cP = cP +

{
dŝP ∗min{α,MTUP }e (cP ≤ sP)

dŝP ∗MTUP e (cP > sP ∧ pP ≥ cP)
.

The variable pP is the “partially acknowledged” counter for path P in congestion avoidance mode
(see Subsubsection 2.11.2.1). cP is increased according to the slow-start threshold ratio ŝP of P .
Note, that the ceiling function ensures that cP is at least increased by one byte. This is necessary in
order to always retain the AIMD behaviour, i.e. to try increasing the congestion window. Otherwise,
for an awkward setting of ŝP , the congestion window could remain constant and the path would lose
its capability to adapt to possible bandwidth increases.

Upon a retransmission on path P , CMT/RPv1 adapts the slow-start threshold sP and congestion
window cP as follows:

sP = max

{⌈
cP −

1

2
∗
∑
i

ci

⌉
, dŝ ∗MTUP e,MTUP

}
,

cP =

{
sP (Fast Retransmission)
MTUP (Timer-Based Retransmission)

.

That is, CMT/RPv1 reduces the congestion window cP by half of the total congestion window
∑

i ci
(i.e. the sum of the congestion windows ci on all paths) of the association, with a lower bound
of MTUP . The reason for this lower bound will be explained in Section 8.4.

154 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

8.3.1.2 Version 2 – CMT/RPv2

CMT/RPv1 assumes comparable slow-start thresholds si in the computation of the slow-start thresh-
old ratio ŝP (see Equation 8.1) of a path P . However, this may be difficult in case of dissimilar paths.
For example, buffer bloat on one path – like in the DSL scenario described in Subsection 7.6.3 – leads
to a very large congestion window and slow-start threshold at a low bandwidth, while a high-speed,
low-delay path only has a small congestion window and slow-start threshold. The advanced approach
CMT/RP version 2 – shortly denoted as CMT/RPv2 – overcomes the limitations of CMT/RPv1 by
considering path bandwidths. This approach has been published in [DBAR11b].

In order to increase the congestion window cP on α acknowledged bytes on path P in a fully-
utilised congestion window, the so-called Increase Factor îP is calculated:

îP =

cP
RTTP∑
i

ci
RTTi

.

The increase factor represents the current bandwidth share of path P on the total bandwidth of the
flow (see also Subsubsection 2.9.2.3). By using î, the congestion window cP is adapted as follows:

cP = cP +

{
d̂i ∗min{α,MTUP }e (cP ≤ sP)

d̂i ∗MTUP e (cP > sP ∧ pP ≥ cP)
.

Note, that the ceiling function here also ensures at least a congestion window growth of one byte, in
order to retain the AIMD behaviour.

For reducing cP on a packet loss on path P , the Decrease Factor d̂P is applied:

d̂P = max

{
1

2
,
1

2
∗
∑

i
ci

RTTi
cP

RTTP

}
.

d̂ represents the factor by which the bandwidth of path P should be reduced in order to halve the
total bandwidth of the flow. For example, two paths P1 (10 Mbit/s) and P2 (2 Mbit/s) lead to a total
bandwidth of 12 Mbit/s. A loss on P1 leads to d̂1 = 1

2 ∗
12
10 = 0.6; a loss on P2 to d̂2 = 1

2 ∗
12
2 = 3.0.

Note, that d̂P ≥ 1
2 , i.e. the following reduction of slow-start threshold and congestion window should

be at least as strong as for standard SCTP (see Section 3.8). By using d̂P , the slow-start threshold sP
and congestion window cP are adapted as follows:

sP = max
{
cP − dd̂P ∗ cP e,MTUP

}
,

cP =

{
sP (Fast Retransmission)
MTUP (Timer-Based Retransmission)

.

That is, the new setting of cP tries to halve the total bandwidth, with a lower bound of MTUP (to be
explained in Section 8.4).

8.3.2 MPTCP-Like Congestion Control

Like CMT/RP, the congestion control of MPTCP – as proposed by [RHW09] and published as Internet
Draft in [RHW11] – also applies RP to ensure fairness. However, the congestion control behaviour
is different: while CMT/RP tries to halve the total congestion window/total bandwidth on a packet

8.4. THE CHALLENGE OF CHUNK-BASED SEGMENTATION 155

loss on path P , MPTCP congestion control behaves exactly like standard TCP or SCTP by only
halving the path congestion window cP (see Section 3.8 for the formula). Since this behaviour alone
would cause unfairness, the increase behaviour has to be adapted. Therefore, MPTCP uses the idea of
controlling engineering: increase and decrease of cP have to be brought into equilibrium by adapting
the congestion window growth by a per-flow Aggressiveness Factor â.

Since the MPTCP congestion control introduced in [RHW09] is based on packets instead of bytes
and SCTP instead of TCP is used, the MPTCP congestion control had to be ported accordingly as part
of this thesis. That is, on α acknowledged bytes on path P in a fully-utilised congestion window, the
MPTCP-Like congestion control for CMT-SCTP adapts cP as follows:

cP = cP +

min
{⌈

cP ∗â∗min{α,MTUP }∑
i ci

⌉
,min {α,MTUP }

}
(cP ≤ sP)

min
{⌈

cP ∗â∗MTUP∑
i ci

⌉
,MTUP

}
(cP > sP ∧ pP ≥ cP)

.

Like for CMT/RP, the ceiling function here also ensures an increase of at least one byte (see also
Subsubsection 8.3.1.2). â denotes the per-flow aggressiveness factor, which is defined as:

â =

(∑
i

ci

)
∗

maxi

{
ci/MTUi

(RTTi)2

}
(∑

i
ci/MTUi

RTTi

)2 .

This formula is based on [RHW09], but has been transferred from a congestion window given in
TCP MSS to a congestion window given in bytes. This has been necessary, since the congestion
windows of SCTP are counted in bytes, as explained in Section 3.8.

Furthermore, the congestion window decrease behaviour has been slightly modified. In case of a
retransmission (i.e. fast or timer-based) on path P , sP and cP are reduced as follows:

sP = max

{
cP −

1

2
∗ cP ,MTUP

}
,

cP =

{
sP (Fast Retransmission)
MTUP (Timer-Based Retransmission)

.

The difference to original SCTP congestion control – as defined in Section 3.8 – is very small. Here,
only the lower limit for sP – and therefore also for cP – is reduced from 4 ∗MTUP to 1 ∗MTUP .
The reason for this modification will be explained in the following Section 8.4.

8.4 The Challenge of Chunk-Based Segmentation

As introduced in Section 3.6, SCTP segments messages into DATA chunks according to the smallest
path MTU of the association. Once a DATA chunk has been created, it remains atomic and the
assigned TSN cannot be changed. This means that the DATA chunks must be sent as a whole; a change
of the segmentation – e.g. into smaller pieces – is not possible. That is, DATA chunks leading to MTU-
sized packets imply the transmission of such packets. Therefore, SCTP uses a lower bound of MTUP

for the congestion window cP of path P (as defined by RFC 4960; see [Ste07, Section 7]). On the
other hand, the TCP protocol (see Subsection 2.13.3) – and therefore MPTCP as well (see Section 4.3)
– segments in units of bytes. That is, these protocols can flexibly adapt the payload of a packet to a
size as small as one byte. Clearly, from the perspective of overhead (see Subsubsection 2.4.1.2), it is
obviously useful to send MTU-sized packets to maximise the transport efficiency.

156 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

The challenge arising from the segmentation into DATA chunks is the fairness when transporting
MTU-sized packets over a bottleneck shared by multiple paths. For example, let two paths share a
common bottleneck with MTU1=1,500 bytes and MTU2=1,500 bytes, RTT1 and RTT2 the RTTs as
well as congestion windows c1=MTU1 and c2=MTU2. That is, the congestion window sizes are at
their minimum. Having a saturated sender, the used bandwidths of each path will not fall below MTU1

RTT1

and MTU2
RTT2

, respectively (see also Subsubsection 2.9.2.3) – regardless of any further loss events. That
is, whenever the congestion window of a path is at its minimum, at least a stop and wait with MTU-
sized packets on this path remains possible (see also Subsection 2.9.1). The higher the number of
paths, the higher the minimum used bandwidth – regardless of the congestion caused. When using
bytes as segments, as for TCP/MPTCP, the sender could simply generate smaller packets – although,
of course, this would reduce the efficiency of the transport.

In order to cope with the problem of the minimum congestion window necessary for CMT-SCTP,
a simple approach – denoted as RP Path Blocking – has been developed as part of this thesis. On each
path P , the RP-based congestion control is extended as follows:

• The RP-based congestion control mechanisms (CMT/RPv1, CMT/RPv2, MPTCP-like) are ap-
plied as introduced in Section 8.3.

• However, each time the congestion window cP would be reduced to a value less than MTUP

(which is prevented by the minimum function), the path P enters the “RP Blocked” state for
one RTO on path P . That is, with the default setting of RTO.Min=1 s (see Section 3.8), this
state will persist for at least 1 s.

• As long as the path P is in the “RP Blocked” state, it will not be used for transmitting new
DATA chunks. It can only be used for timer-based retransmissions as well as for control chunks
(particularly, HEARTBEAT and HEARTBEAT ACK chunks for the path monitoring; see also
Subsection 3.4.3). These exceptions are useful to retain path redundancy in case of path failures.

8.5 Scenario Setup

In order to show the performance effects of RP-based congestion control for CMT-SCTP, the simula-
tion model introduced in Chapter 5 has been applied again. The two simulation scenarios used in this
chapter are depicted in Figure 8.1:

• Subfigure 8.1(a) presents the shared bottleneck scenario, with all n paths sharing the same
bottleneck link.

• Subfigure 8.1(b) shows the disjoint path scenario, where all n paths are independent.

Clearly, CMT-SCTP associations use all n paths. In order to realise concurrency, non-CMT SCTP as-
sociations denoted as reference flows only use Path #n (i.e. the highest-numbered path). That is, the
concurrency between CMT-SCTP and non-CMT-SCTP flows occurs on this path only.

Unless otherwise specified, the SCTP parameters introduced in Section 7.2 for the dissimilar paths
performance evaluations of Chapter 7 have been used with the following adaptations:

• The delay of each path has been 10 ms. This is a reasonable setting for a WAN setup without
buffer bloat.

8.5. SCENARIO SETUP 157

(a) Shared Bottleneck

(b) All Paths Disjoint

Figure 8.1: The Scenario Setups for the Fairness Evaluations

158 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

1 2 3 4 5 6 7 8

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Number of Bottleneck Paths PB

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Congestion Control Variant Γ

1: Γ=cmt
2: Γ=cmtrpv1
3: Γ=cmtrpv2
4: Γ=mptcp−like

5: Γ=off

(a) CMT-SCTP Flow

1 2 3 4 5 6 7 8

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Number of Bottleneck Paths PB
N

e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Congestion Control Variant Γ

1: Γ=cmt
2: Γ=cmtrpv1
3: Γ=cmtrpv2
4: Γ=mptcp−like

5: Γ=off

(b) Non-CMT Reference Flow

Figure 8.2: Concurrency between CMT and Non-CMT Flow on a Shared Bottleneck

• There has been one CMT-SCTP flow and one non-CMT reference flow. Both senders, i.e. the
CMT-SCTP as well as the non-CMT-SCTP flow, have been saturated. Messages of 1,452 bytes
have been sent with unordered delivery at an MTU of 1,500 bytes, leading to MTU-sized pack-
ets.

• The send buffer and receive buffer sizes have been set to 5,000,000 bytes. They have been large
enough to cope with the scenarios used in this chapter (as described in detail in Section 7.4).

• For the RP-based congestion controls, RP path blocking (as introduced in Section 8.4) has been
applied.

• The runtime of each simulation run has been 300 s.

8.6 Handling Shared Bottlenecks

Clearly, the motivation of RP has been the fairness – according to the three RP goals defined in
Section 8.2 – on shared bottlenecks.

8.6.1 Varying the Number of Bottleneck Paths

In order to demonstrate the performance impact of a shared bottleneck, the initial simulation has
varied the number of bottleneck paths PB in the scenario depicted in Subfigure 8.1(a). The band-
width of the bottleneck has been 100 Mbit/s. Figure 8.2 presents the achieved application payload
throughput results of the CMT-SCTP flow (in Subfigure 8.2(a)) and the non-CMT reference flow (in
Subfigure 8.2(b)) for the different congestion control variants.

For comparison, curve 5 (drawn in gray colour) shows the performance for CMT turned off, i.e.
using standard SCTP as defined in RFC 4960 (see [Ste07]) for both flows. Obviously, the achieved

8.6. HANDLING SHARED BOTTLENECKS 159

throughput of both flows is equal and independent of the number of bottleneck paths PB . Note, that the
per-flow throughput of 43 Mbit/s is a result of the short RED queue (as explained in Subsection 2.4.2)
using MinTh=30, i.e. it behaves like a FIFO queue for up to 30 packets. At 100 Mbit/s, 30 packets at
an MTU of 1,500 bytes result in a delay of only

30 packets

(100∗106 bit/s)
/

(8 bit/B)

1,500 B/packet

= 3.6 ms.

That is, this configuration ensures a low-delay communication by avoiding buffer bloat (see Subsec-
tion 7.6.3). However, the effect on the congestion windows of the flows is that they remain small.
Losses, caused by the concurrency, lead to short phases of underutilisation. Therefore, the result-
ing throughput is slightly less than the theoretically achievable value of 95 Mbit/s

2 =47.5 Mbit/s. The
impact of a significantly longer queue will be examined in Subsection 8.6.3.

When turning on CMT-SCTP, all four CMT congestion control variants (curves 1 to 4) obviously
show no difference for having only one path (i.e. PB=1). Furthermore, the results for plain CMT-
SCTP congestion control (i.e. curve 1, drawn in dark green colour) indicates the expected unfairness
issue for a rising number of bottleneck paths. That is, the CMT-SCTP throughput at PB=8 is more
than 80 Mbit/s (curve 1 in Subfigure 8.2(a)), while the non-CMT flow not even reaches 10 Mbit/s
(curve 1 in Subfigure 8.2(b)).

By using CMT/RP – either in version 1 (curve 2, drawn in orange colour) or version 2 (curve 3,
drawn in red colour) – the fairness issue is solved for a reasonably small number of bottleneck
paths PB . For PB≤4, no significant throughput difference between the CMT and the non-CMT flow is
observable. Higher settings of PB show a slowly rising difference, but – in comparison to plain CMT-
SCTP (curve 1) – it remains small. At PB=8, the non-CMT reference flow still achieves a throughput
of 40 Mbit/s instead of less than 10 Mbit/s. Note, that there is no significant difference between
CMT/RPv1 and CMT/RPv2 in this case: all paths share the same bottleneck and have comparable
slow-start thresholds (see also Subsubsection 8.3.1.2).

The most interesting result is for MPTCP-like congestion control (curve 4, drawn in blue colour).
For the non-CMT reference flow (see Subfigure 8.2(b)), the performance is similar to CMT/RPv1
and CMT/RPv2 (curves 2 and 3). However, the throughput of the CMT flow (see curve 1 in Subfig-
ure 8.2(a)) is improved by the increasing number of bottleneck paths PB . The reason here is that the
MPTCP-like congestion control makes use of the underutilisation on the shared link. That is, it takes
the remaining bandwidth which is not utilised by the non-CMT reference flow. In order to further
explain this interesting effect, it is necessary to have a closer look at the congestion control behaviour
of the four variants.

8.6.2 Congestion Control Behaviour on Bottleneck Paths

In order to further explain the congestion control effects observed for the simulations in Subsec-
tion 8.6.1, Figure 8.3 presents the values of congestion window ci and slow-start threshold si of
Path #i for three bottleneck paths (i.e. PB=3) during the time interval from t=20 s to t=30 s.

Clearly, for plain CMT-SCTP congestion control as presented by Subfigure 8.3(a), each path be-
haves like an individual non-CMT flow. An interesting effect of the shared bottleneck can be observed
at around t=23.8 s: timer-based retransmissions on Path #2 (in green colour) and Path #3 (in red
colour) after RTOs of 1 s. This is a result of the concurrency on the bottleneck. Since these paths have
reduced their bandwidth before, Path #1 (in blue colour) is able to achieve a significantly larger con-
gestion window here. The synchronised occurrence of such congestion incidents (here: for Path #2

160 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold
Ψ=Path #3, γ=Congestion Window
Ψ=Path #3, γ=Slow−Start Threshold

(a) Plain CMT-SCTP Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold
Ψ=Path #3, γ=Congestion Window
Ψ=Path #3, γ=Slow−Start Threshold

(b) CMT/RPv1 Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold
Ψ=Path #3, γ=Congestion Window
Ψ=Path #3, γ=Slow−Start Threshold

(c) CMT/RPv2 Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold
Ψ=Path #3, γ=Congestion Window
Ψ=Path #3, γ=Slow−Start Threshold

(d) MPTCP-Like Congestion Control

Figure 8.3: The Impact of the Congestion Control Variant for Three Shared Paths

8.6. HANDLING SHARED BOTTLENECKS 161

and Path #3) on shared bottlenecks is also the motivation of statistics-based detection approaches, as
introduced by [YWY08b, YWY08a].

The behaviour of CMT/RPv1 (shown in Subfigure 8.3(b)) and CMT/RPv2 (shown in Subfig-
ure 8.3(c)) is very similar, due to the comparable slow-start thresholds of the paths. The effect caused
by CMT/RP – in either version – is that frequently one of the paths achieves a higher congestion
window. Then, the slow-start threshold ratios ŝ (CMT/RPv1; see Subsubsection 8.3.1.1) or increase
factors î (CMT/RPv2; see Subsubsection 8.3.1.2) of the other paths become small, leading to only
a slow growth rate of the corresponding congestion windows. When the congestion window of the
currently powerful path drops, this effect may change to another path. Particularly, for CMT/RP, a
congestion window cP for a path P with MTUP occurs relatively frequently, including triggering
the RP path blocking mechanism (see Section 8.4). The RP path blocking is visible by a constant
congestion window of cP = MTUP for one path RTO (in this case: 1 s, due to the lower limit of
RTO.Min=1 s).

For MPTCP-like congestion control (shown in Subfigure 8.3(d)), the behaviour is significantly
different from CMT/RP. This congestion control approach tries to balance the congestion windows,
leading to a more similar behaviour among the paths. In consequence, since the congestion window cP
of a path P only rarely falls down to MTUP , RP path blocking also needs to be triggered very
infrequently. Therefore, a drop of one of the congestion windows only leads to a slight reduction
of the throughput, which explains the ability of MPTCP-like congestion control to make use of the
otherwise underutilised bandwidth, as observed in Subsection 8.6.1.

8.6.3 Using a Long Queue before the Bottleneck

The simulation presented in Subsection 8.6.1 has used a short RED queue at the bottleneck, which has
led to a low delay but also to a slight underutilisation of the bottleneck link. In order to show the effect
of a long queue, the RED queue parameters (as explained in Subsection 2.4.2) have been adapted:

• The bottleneck link delay has been 10 ms, i.e. the RTT has been 20 ms. This time span can be
covered by setting MinTh=168:

168 packets

(100∗106 bit/s)
/

(8 bit/B)

1,500 B/packet

= 20.16 ms.

• According to the recommendations on RED queue configuration by [Flo97], MaxTh has been
set to 3*MinTh, i.e. MaxTh=504. The queue filled with 504 MTU-sized packets would there-
fore introduce an additional delay of 60.48 ms.

The achieved application payload throughput for varying the number of bottleneck paths PB is
presented in Figure 8.4. To enhance readability, the curves for the plain CMT-SCTP congestion
control case are omitted and the Y-axis is zoomed to the interesting range from 30 Mbit/s to 60 Mbit/s.
The performance of the CMT-SCTP flow is shown by solid lines (F=1); the non-CMT reference
flow throughput by dashed lines (F=2). These results, in an adapted form, have also been published
in [DBAR11b].

When CMT-SCTP is completely turned off, as shown for comparison by curves 7 and 8, the
changed queue configuration now ensures that the bandwidth of the bottleneck link can be fully
utilised. Both flows, applying standard SCTP as defined in RFC 4960 (see [Ste07]) reach the expected
throughput of about 47.5 Mbit/s. However, due to the large buffers, also the delay is significantly in-
creased. That is, the throughput is maximised by a slight buffer bloat (see also [Get11a, Get11b]).

162 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

1 2 3 4 5 6 7 8

3
0

3
5

4
0

4
5

5
0

5
5

6
0

Number of Bottleneck Paths PB

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Congestion Control Variant Γ / Flow F

1: Γ=cmtrpv1, F=1
2: Γ=cmtrpv1, F=2
3: Γ=cmtrpv2, F=1
4: Γ=cmtrpv2, F=2
5: Γ=mptcp−like, F=1
6: Γ=mptcp−like, F=2

7: Γ=off, F=1
8: Γ=off, F=2

Figure 8.4: Concurrency on a Shared Bottleneck with a Long Queue

While the delay increase here is still relatively small, this effect occurs to a much greater extent in
DSL setups as described in Subsection 7.6.3. Curves 7 and 8 show an almost perfect throughput share
between both flows. This is the baseline performance for the RP-based congestion control variants.

The application payload throughput results for CMT/RPv1 (curves 1 and 2) show an increasing
divergence for a rising number of bottleneck paths. Particularly, for PB>5, this divergence signifi-
cantly increases. The reason here is that paths become temporarily dissimilar, particularly also due to
the application of RP path blocking (see Section 8.4). This makes the slow-start threshold ratios (see
Subsubsection 8.3.1.1) of the paths less comparable, leading to an inappropriate increase behaviour
on the paths. In consequence, the throughput of the non-CMT reference flow is significantly reduced,
e.g. from the expected 47.5 Mbit/s to 38 Mbit/s at PB=8.

Obviously, CMT/RPv2 (curves 3 and 4) significantly improves the performance in these situations.
Here, the divergence between the flows increases linearly with the number of bottleneck paths PB .
Using the bandwidth of the paths to adapt the AIMD behaviour – as described in Subsubsection 8.3.1.2
– lets the congestion control behaviour adapt to the temporary dissimilarity of the paths. At PB=8,
the throughput of the reference flow only reduces from the expected 47.5 Mbit/s to about 43 Mbit/s.

Similar to CMT/RPv2, also the MPTCP-like congestion control (curves 5 and 6) shows a relatively
linear increase of the divergence between the throughputs of both flows. However, the difference is
stronger than for CMT/RPv2. That is, the throughput of the non-CMT reference flow is reduced to
about 40 Mbit/s at PB=8. The reason for this behaviour is the higher aggressiveness of MPTCP-
like congestion control. Since it tries to balance the size of the congestion windows, as explained in
Subsection 8.6.2, the case of reaching the minimum of cP = MTUP for a path P is rare. This also
means that RP path blocking is rarely triggered (see Section 8.4).

Despite the slight throughput divergence for an increasing number of bottleneck paths, it is impor-
tant to note that CMT/RPv2 and MPTCP-like congestion control still reach a significant improvement
on fairness for CMT-SCTP transport. In comparison, the throughput of the non-CMT reference flow
when applying plain CMT-SCTP congestion control would be less than 10 Mbit/s for PB=8 bottleneck
paths, which is less than one quarter of the performance achieved with CMT/RPv2 or MPTCP-like

8.7. HANDLING DISJOINT PATHS 163

1 2 3 4 5 6 7 8

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Number of Disjoint Paths PD

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t

[M
b
it
/s

]

Congestion Control Variant Γ / Flow F

1: Γ=cmt, F=1
2: Γ=cmt, F=2
3: Γ=cmtrpv1, F=1
4: Γ=cmtrpv1, F=2
5: Γ=cmtrpv2, F=1
6: Γ=cmtrpv2, F=2
7: Γ=mptcp−like, F=1
8: Γ=mptcp−like, F=2

Figure 8.5: Concurrency between CMT and Non-CMT Flow on Disjoint, Similar Paths

congestion control. That is, the RP-based congestion controls fulfil the first two goals set in Sec-
tion 8.2 – which are utilisation and fairness – reasonably well. For the third goal, i.e. congestion
balancing, it is necessary to examine disjoint path setups.

8.7 Handling Disjoint Paths

In order to analyse the performance on disjoint paths, it is useful to first examine a similar path setup
which uses the setup illustrated in Subfigure 8.1(b). The application payload throughput performance
results for varying the number of disjoint paths PD, each path having a bandwidth of 12.5 Mbit/s,
is presented in Figure 8.5. The curves for the CMT-SCTP flow (F=1) are drawn as solid lines; the
curves for the non-CMT reference flow (F=2) as dashed lines.

Obviously, the results for plain CMT-SCTP congestion control (curves 1 and 2) are not very
surprising: the CMT-SCTP flow can exclusively utilise PD − 1 paths plus half of the bandwidth
on Path #PD, i.e. the path shared with the reference flow. In result, the reference flow achieves the
expected application payload throughput of about 6 Mbit/s.

CMT/RPv1 as well as CMT/RPv2 ensure that the non-CMT reference flow achieves a signifi-
cantly higher throughput (curves 4 and 6) when the scenario becomes multi-homed (i.e. PD≥2). The
throughput rises to about 11 Mbit/s at PD=2 and remains almost constant for a higher number of paths.
That is, since the CMT-SCTP flow can utilise PD−1 paths exclusively, it gives most of the bandwidth
(i.e. 12.5 Mbit/s) on the path shared with the non-CMT flow to the non-CMT flow. This fulfils the
third goal, i.e. congestion balancing, defined for resource pooling in Section 8.2. However, the band-
width on the exclusively used paths is not fully utilised (curves 3 and 5). At PD=8, CMT/RPv1 only
achieves about 72 Mbit/s, while CMT/RPv2 just gets about 60 Mbit/s. The reason for the difference
between the two variants is that the path bandwidth, on which the CMT/RPv2 AIMD behaviour is
based, is significantly more varying in this setup. On the other hand, the slow-start threshold ratio,
which is used for CMT/RPv1, remains very stable on the exclusively used paths.

MPTCP-like congestion control, on the other hand, is able to fully utilise the bandwidth on the

164 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

8
9

1
0

Data Rate on Path #1 ρ1 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Congestion Control Variant Γ / Flow F

1: Γ=cmt, F=1

2: Γ=cmt, F=2
3: Γ=cmtrpv1, F=1

4: Γ=cmtrpv1, F=2

5: Γ=cmtrpv2, F=1

6: Γ=cmtrpv2, F=2

7: Γ=mptcp−like, F=1

8: Γ=mptcp−like, F=2

Figure 8.6: Bandwidth Variation on Path #1 being Exclusively Used by the CMT-SCTP Flow

exclusively used paths (curve 7), while it also gives about 11 Mbit/s to the non-CMT reference flow
(curve 8) for higher settings of PD (here: PD≥4). For a smaller number of paths, it is slightly more
aggressive. However, in all cases, the performance of the non-CMT flow is significantly improved in
comparison to using plain CMT-SCTP congestion control (curve 2). In order to further explain the
different behaviours of the congestion control variants, it is useful to have a look at disjoint paths that
are dissimilar.

8.8 Dissimilar Paths

In order to demonstrate the impact of dissimilar paths, the disjoint paths scenario illustrated in Sub-
figure 8.1(b) has been used with two paths. The following results – in a slightly adapted form – have
also been published in [DBAR11b].

8.8.1 Bandwidth Variation on the Exclusively Used Path

In the first scenario, the bandwidth ρ1 of Path #1 – which is exclusively used by the CMT-SCTP flow
– has been varied. The bandwidth of Path #2, which is shared with the non-CMT reference flow,
has been fixed at ρ2=6.25 Mbit/s. Figure 8.6 presents the resulting application payload throughput

8.8. DISSIMILAR PATHS 165

performance results; the curves for the CMT-SCTP flow (F=1) are drawn as solid lines, the curves for
the non-CMT reference flow (F=2) as dashed lines.

The results for plain CMT-SCTP congestion control are as expected. The CMT-SCTP flow
(curve 1) can utilise half of the bandwidth of Path #2 as well as the complete bandwidth of Path #1.
Therefore, the non-CMT reference flow (curve 2) takes the other half of the bandwidth on Path #2,
achieving the expected application payload throughput of about 3 Mbit/s. Clearly, this is the baseline
performance level.

CMT/RPv1 fails to meet this baseline performance for the CMT-SCTP flow (curve 3). For a
Path #1 bandwidth of ρ1≤2 Mbit/s, its throughput is smaller than 3 Mbit/s. On the other hand, the
non-CMT reference flow can always achieve a throughput of about 5 Mbit/s (curve 4). This obviously
violates the utilisation goal (see Section 8.2), i.e. the non-CMT flow should at least get a bandwidth
share which is as large as the share of a non-CMT flow on the best path (which is Path #2 in this
case). The reason for the performance problem of CMT/RPv1 is the dissimilarity of the paths, which
is particularly problematic for small settings of the Path #1 bandwidth ρ1. Path #1 is exclusively
used by the CMT-SCTP flow, i.e. its congestion window can grow large – particularly also due to
the RED queue with MinTh=30, which causes a slight buffer bloat for the small bandwidths ρ1 (see
Subsection 7.6.3). On the shared Path #2, losses due to the concurrency are frequent. Since the slow-
start threshold on this path is significantly smaller therefore, chances are good that the congestion
window reduction (see Subsubsection 8.3.1.1) also triggers the RP path blocking mechanism (see
Section 8.4), preventing the usage of this path for one RTO on this path (i.e. at least RTO.Min=1 s).
Obviously, CMT/RPv1 is not useful for dissimilar paths.

CMT/RPv2 can cope with the dissimilar paths as expected. Here, the performance of the CMT-
SCTP flow (curve 5) is always better than the baseline of 3 Mbit/s. The bandwidth of the non-CMT
reference flow (curve 6) increases with a rising Path #2 bandwidth ρ2 until about 5 Mbit/s. That
is, when there is sufficient bandwidth on the exclusively used Path #1, the non-CMT reference flow
can use most of the Path #2 bandwidth. This fulfils the goal of congestion balancing, as defined
in Section 8.2. Note, that particularly from ρ1≥1 Mbit/s to ρ1≤4 Mbit/s, the non-CMT reference
flow achieves a significantly higher bandwidth than the CMT-SCTP flow. This interesting effect of
congestion balancing does not violate the goals, since both flows achieve a better throughput than for
using Path #1 alone. It will be discussed in more detail in Subsection 8.8.2.

The same effect, although weaker, is also observable for the MPTCP-like congestion control re-
sults (curves 7 and 8). As already observed before, the MPTCP-like variant is more aggressive, occu-
pying a larger share of the Path #2 bandwidth for the CMT-SCTP flow. Therefore, at a Path #1 band-
width of ρ1=7 Mbit/s, the achieved throughput of the non-CMT reference flow is about 4.25 Mbit/s
(curve 8), in contrast to the about 5 Mbit/s achieved by CMT/RPv2 (curve 6). Clearly, also MPTCP-
like congestion control fulfils the goals defined in Section 8.2.

While this simulation has varied the bandwidth of the exclusively used path, the effects of varying
the bandwidth of the other path is also interesting.

8.8.2 Bandwidth Variation on the Shared Path

In order to examine the effects of varying the bandwidth of the path shared between the CMT-SCTP
flow and the non-CMT reference flow, the bandwidth of Path #1 has been fixed at ρ1=6.25 Mbit/s,
while the bandwidth ρ2 of Path #2 has been varied from 0.25 Mbit/s to 30.0 Mbit/s. Figure 8.7
presents the resulting application payload throughput results for the CMT-SCTP flow (F=1; solid
lines) as well as for the non-CMT reference flow (F=2; dashed lines).

The performance of plain CMT-SCTP congestion control is as expected. The non-CMT reference

166 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

0
2

4
6

8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

Data Rate on Path #2 ρ2 [Mbit/s]

N
e
tP

e
rf

M
e
te

r
A

p
p
lic

a
ti
o
n
 P

a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Congestion Control Variant Γ / Flow F

1: Γ=cmt, F=1

2: Γ=cmt, F=2
3: Γ=cmtrpv1, F=1

4: Γ=cmtrpv1, F=2

5: Γ=cmtrpv2, F=1

6: Γ=cmtrpv2, F=2

7: Γ=mptcp−like, F=1

8: Γ=mptcp−like, F=2

Figure 8.7: Bandwidth Variation on Path #2 being Shared with the Non-CMT Reference Flow

flow (curve 2) and the CMT-SCTP flow (curve 1) equally share the bandwidth of Path #2, while the
bandwidth of Path #1 is exclusively used by the CMT-SCTP flow. Therefore, the curves of both flows
are parallel. These two parallels define the baseline performance levels.

As already observed and explained in Subsection 8.8.1, CMT/RPv1 cannot cope appropriately
with dissimilar paths. Therefore, for about ρ2≥17.5 Mbit/s, the application payload throughput for
the CMT-SCTP flow falls below the baseline performance, while the non-CMT reference flow exceeds
it.

CMT/RPv2 can handle the path dissimilarity. However, the effect of congestion balancing as
already observed in Subsection 8.8.1 results in the CMT-SCTP flow performance (curve 3) converging
towards the lower baseline performance level (i.e. curve 2) for a higher dissimilarity of the paths
(here: for ρ2≥20 Mbit/s). On the other hand, the performance of the non-CMT reference flow is
significantly higher but cannot fully reach the upper baseline performance level (i.e. curve 1). Here,
the high bandwidth in combination with the relatively short RED queue (i.e. MinTh=30) results in the
effects for short queues that have been observed and explained in detail in Subsection 8.6.1. That is,
some bandwidth remains underutilised with this queue size. Nevertheless, CMT/RPv2 still fulfils the
three goals set in Section 8.2: the performance for CMT-SCTP is not worse than for a non-CMT flow
on the best path (utilisation), the non-CMT reference flow can even increase its bandwidth (fairness)
and load is moved away from the shared path (congestion balancing).

8.8. DISSIMILAR PATHS 167

The MPTCP-like congestion control performs slightly better in this scenario, by providing a higher
bandwidth for the CMT-SCTP flow (curve 7). Furthermore, for higher settings of the Path #2 band-
width ρ2 (here: ρ2≥25 Mbit/s), it also achieves a throughput for the non-CMT reference flow (curve 8)
which is almost as high as for using CMT/RPv2 (curve 6). That is, as observed and explained in Sub-
section 8.6.1, MPTCP-like congestion control can better utilise the bandwidth despite of the short
RED queues. Similar to CMT/RPv2, also the MPTCP-like congestion control variant fulfils the goals
set in Section 8.2.

Similar to CMT/RPv2, the achieved throughput of the non-CMT reference flow (curve 8) is better
than the throughput of the CMT-SCTP flow (curve 7) for ρ2≥16 Mbit/s. This effect of congestion
balancing does not violate the goals, since both flows perform at least as good as single-homed flows
on the best path. However, for the user of CMT-SCTP, the question may arise why to have an in-
creased effort (maintaining multiple paths, larger send/receive buffers, etc.) to slightly improve the
own throughput, while the non-CMT reference flow user gets a significant performance improvement
for free. On the other hand, from a global perspective, e.g. by the administrator of the network, this
observed behaviour may be quite useful: the bandwidth among the flows is more evenly distributed.
Clearly, these considerations point out to a need for further research on fairness with special respect to
multipath transfer and load balancing. This will be a very interesting topic for the ongoing and future
work.

8.8.3 Congestion Control Behaviour on Dissimilar Disjoint Paths

Finally, in order to further explain the differences between the congestion control variants, it is again
useful to have a closer look at the congestion control behaviour. Figure 8.8 presents the plots of
congestion windows and slow-start thresholds from time t=20 s to t=30 s for the CMT-SCTP flow in
the simulation scenario described in Subsection 8.8.2.

• The bandwidth of Path #1 has been 6.25 Mbit/s; the bandwidth of Path #2 has been 12.5 Mbit/s.

• Concurrency with the non-CMT reference flow has been on Path #2.

The behaviour of plain CMT-SCTP congestion control, as shown in Subfigure 8.8(a), is as ex-
pected. Both disjoint paths are handled independently. Note, that the heights of the congestion win-
dow sawteeth on the two paths are different, due to the path dissimilarity.

The plot for CMT/RPv1 in Subfigure 8.8(b) illustrates the lack of this congestion control variant
to cope with dissimilar paths. The congestion window of Path #2 can hardly grow, due to the minimal
slow-start threshold – and therefore a bad slow-start threshold ratio (see Subsubsection 8.3.1.1) – on
this path. Furthermore, after each congestion window drop on Path #2, RP path blocking is triggered,
leading to a paused transmission on this path for one path RTO (here: for RTO.Min=1 s).

CMT/RPv2 – as shown in Subfigure 8.8(c) – can better utilise Path #2 than CMT/RPv1. However,
in comparison to plain CMT-SCTP congestion control (see Subfigure 8.8(a)), the congestion window
of Path #2 still remains quite small. Particularly, also RP path blocking can be observed. This is
the reason for restrainedly claiming bandwidth on this path, leaving a larger share for the non-CMT
reference flow (see also Subsection 8.8.2).

Finally, the MPTCP-like congestion control variant shows its expected behaviour, as presented
in Subfigure 8.8(d). While the congestion window on Path #2 is still small in comparison to plain
CMT-SCTP congestion control (see Subfigure 8.8(a)) – as it is intended – it does not drop down to
the minimal value (i.e. one path MTU). Therefore, within this plot, also no occurrence of RP path
blocking is observable. The higher level of the congestion window values is the reason for the higher

168 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

5
0

0
0

3
0

0
0

0
4

5
0

0
0

6
0

0
0

0
7

5
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(a) Plain CMT-SCTP Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

5
0

0
0

3
0

0
0

0
4

5
0

0
0

6
0

0
0

0
7

5
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(b) CMT/RPv1 Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

5
0

0
0

3
0

0
0

0
4

5
0

0
0

6
0

0
0

0
7

5
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(c) CMT/RPv2 Congestion Control

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0

0
1

5
0

0
0

3
0

0
0

0
4

5
0

0
0

6
0

0
0

0
7

5
0

0
0

Time t [s]

W
in

d
o
w

 S
iz

e
 [

B
y
te

s
]

Path Ψ / Vector γ

Ψ=Path #1, γ=Congestion Window
Ψ=Path #1, γ=Slow−Start Threshold
Ψ=Path #2, γ=Congestion Window
Ψ=Path #2, γ=Slow−Start Threshold

(d) MPTCP-Like Congestion Control

Figure 8.8: The Impact of the Congestion Control Variant for Two Disjoint, Dissimilar Paths

8.9. ONGOING AND FUTURE WORK 169

throughput on Path #2, which leads to a reduced throughput for the non-CMT reference flow (see also
Subsection 8.8.2).

8.9 Ongoing and Future Work

The simulative analyses of the RP-based congestion controls have shown their usefulness. Clearly, as
ongoing work, it is also necessary to evaluate these variants in the testbed. While CMT/RPv1 had al-
ready been contributed to the FreeBSD release 8.2, CMT/RPv2 as well as the MPTCP-like congestion
controls have now also been realised in the FreeBSD kernel SCTP implementation. They are currently
evaluated in the local as well as the distributed Internet testbed environments introduced in Chapter 6.
The goal for the near future is to make the usage of CMT-SCTP in combination with a RP-based
congestion control variant a “safe default” setting for an SCTP implementation, i.e. to activate it by
default to make use of load sharing if possible, but cause no harm, i.e. significant unfairness, if paths
are shared.

Clearly, future work will further refine the RP-based congestion control variants. Particularly, this
work will also include theoretical considerations on more exact and formal definitions of fairness,
with special reference to multipath transfer. Such refined fairness definitions will allow a better tuning
of the performance, e.g. to reward the increased management complexity of multiple paths by a higher
throughput, to more equally balance throughputs regardless of the number of paths, etc..

Furthermore, a performance evaluation of CMT-SCTP versus MPTCP, with respect to fairness,
has currently started. Clearly, similar to the equal congestion control behaviour of SCTP versus TCP,
the same seems to be useful for their respective multipath transfer variants, too.

8.10 Summary

This chapter has first introduced the concept of resource pooling to handle the fairness issue on shared
bottlenecks. Furthermore, three congestion control variants based on this concept have been intro-
duced: CMT/RPv1 and CMT/RPv2 as well as the MPTCP-like congestion control which has been
adapted from MPTCP to CMT-SCTP.

The CMT/RPv2 as well as the MPTCP-like congestion control have shown to solve the fairness
issue reasonably well. Furthermore, both variants can also handle disjoint path setups with dissimilar
paths. While MPTCP-like congestion control is more aggressive, which leads to a better utilisation of
the path bandwidths, CMT/RPv2 achieves a slightly better fairness in certain setups. As part of future
work, a more exact definition of “fairness” seems to be useful, in order to better tune the performance
of congestion control for multipath transfer.

170 CHAPTER 8. FAIRNESS ON SHARED BOTTLENECKS

Chapter 9

Conclusion and Outlook

Finally, in the last chapter of this thesis, the achieved goals and results – on the efficient handling of
dissimilar paths as well as the fairness on shared bottlenecks – are shortly summarised. Furthermore,
an outlook to interesting ongoing and future work as well as open issues is provided.

9.1 Achieved Goals and Obtained Results

9.1.1 Simulation Environment and Testbed Environment

As initial steps for this thesis, the simulation environment as well as the testbed environment have
been designed and developed. These tools have been necessary, in order to appropriately perform the
research task. Both have been designed with reusability in mind, i.e. they will be used to process the
future work on CMT-SCTP.

Therefore, the OMNET++-based simulation models introduced in Chapter 5 will also be con-
tributed to the INET framework as open source in the very near future. That is, the CMT-SCTP model
(see Section 5.4), the NETPERFMETER protocol-independent application model (see Section 5.5) as
well as the multi-homed auto-routing module (see Section 5.6) will become freely available for all
interested researchers. Details on these models have also been published in [DBPR10b]. Further-
more, the SIMPROCTC tool-chain for the – possibly distributed – processing of simulation runs (to
be introduced in detail in Appendix B) is already publicly available as open source. An overview has
been published in [DZR09].

The NETPERFMETER network performance test application introduced in Section 6.3, which has
been developed for the testbed environment described in Chapter 6, is also available as open source.
It has furthermore been contributed to Debian and Ubuntu Linux as well as to the FreeBSD ports col-
lection. That is, users can easily install it and use it for their purposes. Particularly, NETPERFMETER

is also intended as multi-protocol performance test application within the G-LAB project. Details
on this application, including the lessons learned on building up a distributed Internet testbed envi-
ronment as described in Subsection 6.5.3, have been published in [DBAR11a]. Finally, some more
lessons learned on the work with DUMMYNET to ensure certain QoS characteristics within a testbed
can be found in [BDRF11].

9.1.2 Efficient Handling of Dissimilar Paths

Clearly, the major research part of this thesis has been the performance of CMT-SCTP in dissimilar
path setups. Since SCTP provides the possibility to separately configure unordered delivery, ordered

171

172 CHAPTER 9. CONCLUSION AND OUTLOOK

delivery and multi-streaming, it has therefore been possible and useful to split up this part into three
sub-parts.

9.1.2.1 Unordered Delivery

The first sub-part has been the performance of unordered delivery with CMT-SCTP. As a result of this
thesis, the issues occurring when using plain CMT-SCTP as defined by [IAS06] have been categorised
into four sub-problems:

1. Transmission-induced send buffer blocking (see Subsubsection 7.5.1.1),

2. GapAck-induced send buffer blocking (see Subsubsection 7.5.1.2),

3. Advertised-window-induced receive buffer blocking (see Subsubsection 7.5.2.1) and

4. Reordering-induced receive buffer blocking (see Subsubsection 7.5.2.2).

This categorisation has also been published in [ADB+11].
As key cause for the observed problems of unordered delivery, the unbalanced usage of send and

receive buffers among the paths has been identified. The proposed solution denoted as buffer split-
ting, which has been introduced in Section 7.6, tackles the unbalanced buffer usage by a sender-side
mechanism that takes care of the outstanding bytes on each path, with regard to send as well as re-
ceive buffer size. That is, it ensures that each path gets a sufficient share of the limited buffer space
at the sender as well as at the receiver side. The parameter study of Section 7.7 has shown that the
issues of transmission-induced send buffer blocking as well as advertised-window-induced receive
buffer blocking are effectively prevented by buffer splitting. Furthermore, it has shown that the com-
bination with non-renegable selective acknowledgement – which has originally been proposed for
standard SCTP by [NEY+08] (see also Subsection 3.11.5)– is necessary to also solve the issue of
GapAck-induced send buffer blocking. Finally, the mechanism of smart fast retransmission (see Sub-
section 7.7.3) has been developed to easily prevent spurious fast retransmissions. Buffer splitting as
well as the motivation to apply non-renegable selective acknowledgements, smart fast retransmission
and the parameter study have also been published in [DBRT10], with some further refinements to the
mechanisms and testbed evaluation results in [ADB+11].

9.1.2.2 Ordered Delivery

While a receiver instance may directly forward the data using unordered delivery to the upper layer,
the data using ordered delivery needs resequencing. Therefore, already received DATA chunks may
have to wait in the receive buffer until all earlier chunks have been received. Dissimilar paths there-
fore cause the problem of reordering-induced receive buffer blocking, which is neither prevented by
buffer splitting nor non-renegable selective acknowledgements. As countermeasure to this problem,
the approach of chunk rescheduling (see Section 7.8) has been developed. It defines a preventive re-
transmission strategy which monitors the send and receiver buffer occupations at the sender instance.
When there is a sign of a forthcoming reordering-induced receive buffer blocking, critical chunks are
rescheduled for preventive retransmission, in order to avert a transmission stall. The parameter study
in Section 7.9 shows a significant performance improvement at small additional overhead. Chunk
rescheduling as well as the parameter study have also been published in [DBRT10].

The application of burst mitigation in the variant suggested by RFC 4960 has been identified as
further performance issue for ordered delivery with CMT-SCTP. This variant, denoted as “Use It or

9.1. ACHIEVED GOALS AND OBTAINED RESULTS 173

Lose It”, reduces the congestion window of a path when it seems to be not appropriately utilised. Due
to reordered acknowledgements, these reductions occasionally occur for dissimilar path delays, which
reduce the throughput. The combination of two mechanisms has been useful:

• Smart SACK path selection (see Subsubsection 7.9.4.2) reduces the reordering of acknowledge-
ments by the appropriate selection of a path to send an acknowledgement on.

• Applying the burst mitigation variant “Max Burst”, which has been introduced by [AB05] for
single-homed TCP originally, realises burst mitigation by packet counters. Therefore, the con-
gestion window remains unaffected.

9.1.2.3 Multi-Streaming

When using multi-streaming with CMT-SCTP, the application performance can be improved by the
newly introduced mechanism of predefined stream mapping (see Subsection 7.10.1). This mechanism
allows a fixed mapping of streams to paths, which reduces the reordering within the streams. This
leads to a reduction of buffer size requirements and message delay. Particularly, this mechanism can
be applied for tunnelling applications, where different application communications are multiplexed
over a single CMT-SCTP association. In this case, the different properties of dissimilar paths can
be better utilised to enhance the user experience. For example, interactive streams may use a low-
bandwidth but low-delay path, while non-interactive bulk data transfer streams use a high-delay but
high-bandwidth path.

Furthermore, in order to take advantage of predefined stream mapping, the mechanism of de-
coupled streams has been developed (see Subsection 7.10.2). It is necessary to allow an application
to appropriately fill the send buffer with data for each stream. The evaluation of predefined stream
mapping with decoupled streams has shown the usefulness of these features. They have also been
published in [DSTR10].

9.1.3 Fairness on Shared Bottlenecks

The second part of this thesis has examined the fairness of CMT-SCTP transport over shared bottle-
necks. The key idea here has been to apply the concept of resource pooling introduced by [WHB08],
which means to couple the congestion controls among the paths to ensure a notion of fairness which
is defined together with this concept.

As a preliminary work in the context of this thesis, two new congestion control variants have been
developed:

• CMT/RPv1 (based on the slow-start threshold ratios of the paths; see Subsubsection 8.3.1.1)
and

• CMT/RPv2 (based on the bandwidths of the paths; see Subsubsection 8.3.1.2).

Furthermore, the approach of the congestion control proposed by [RHW09] for MPTCP, which is
based on an adaptive aggressiveness, has been adapted to CMT-SCTP (see Subsection 8.3.2) and
denoted as MPTCP-like congestion control. SCTP congestion control differs from TCP by two im-
portant properties:

• SCTP segments to complete chunks while TCP segments to bytes. Therefore, SCTP cannot
reduce the packet size for bandwidth reduction purposes.

174 CHAPTER 9. CONCLUSION AND OUTLOOK

• The congestion control of SCTP is based on bytes, while some TCP implementations – and
many congestion control approaches in literature – are based on maximum segment sizes.

The analyses in a shared bottleneck scenario have shown that CMT/RPv2 as well as MPTCP-
like congestion control are useful approaches to handle the fairness issue. The difference between the
throughput of a CMT-SCTP flow and a concurrent non-CMT reference flow is reasonably small. Here,
MPTCP-like congestion control shows a slightly larger difference. However, on the other hand, it is
better able to utilise the available bandwidth. Also, both congestion control approaches can handle
disjoint and dissimilar paths. Due to its higher aggressiveness, the MPTCP-like congestion control
variant is better able to utilise the available bandwidth here. Parts of these results have also been
published in [DBAR11b, DBPR10a].

9.1.4 Standardisation Contributions

Besides the research part, it has also been intended to bring the developed ideas from research to
application, by contributing to the ongoing IETF standardisation process for the SCTP protocol. As
result of this thesis project, three Internet Drafts have been submitted as work in progress (see also
Subsubsection 2.12.3.2):

• [DBA12] is an individual submission draft that introduces an API extension to configure the us-
age of CMT-SCTP as well as the congestion control variant in a platform-independent manner.

• [DSB12] is another individual submission draft that defines the API for the decoupled streams
mechanism, which is mandatory for an application to make use of predefined stream mapping.

• [ABD+12] is the result of a collaboration with the developers of CMT-SCTP (see [IAS06])
and non-renegable selective acknowledgements (see [NEY+08]). It contains all mechanisms
for efficient CMT-SCTP usage over dissimilar paths with a fair behaviour on shared bottle-
necks. In particular, this includes the mechanisms of buffer splitting, chunk rescheduling and
the congestion controls CMT/RPv1, CMT/RPv2 as well as the MPTCP-like congestion control.
While this draft is currently still an individual submission, a discussion of the document at the
81st IETF meeting in July 2011 has reached a consensus that this work should be forwarded.
That is, it is assumed that the document will become a working group draft in the very near
future.

An overview of the ongoing standardisation process for SCTP as well as a survey of the current
research on CMT-SCTP has also been published in [DRS+11].

9.2 Outlook and Future Work

While this thesis has evaluated a lot of important and interesting aspects of CMT-SCTP, there are still
many more things to be analysed in detail as part of future work – particularly also in the ongoing
DFG project on SCTP.

Clearly, for the performance on dissimilar paths, the main problems have been solved now. How-
ever, some details should be examined in more depth. Particularly, future work will analyse the
performance for non-saturated transfers with small messages. Non-saturated transfers may lead to
application-based bursts, in contrast to Transport Layer bursts which are handled by the “Max Burst”
burst mitigation variant. Therefore, a CMT-aware strategy that handles both kinds of bursts but avoids
the issues of “Use It or Lose It” and “Congestion Window Limiting” may be useful.

9.2. OUTLOOK AND FUTURE WORK 175

Furthermore, chunk rescheduling needs to be extended to the handling of small messages, which
are bundled in packets. Clearly, if one packet is lost or overly delayed, multiple DATA chunks could
be missing. Therefore, the chunk rescheduling algorithm may be extended to take bundling behaviour
into consideration and select multiple chunks for preventive retransmission within a single packet.

Another interesting topic is the performance optimisation of data structures to handle the ac-
knowledgement mechanism at the sender side. For dissimilar paths, the range between the lowest
unacknowledged TSN and the highest TSN in the send buffer may be large. This may lead to a perfor-
mance bottleneck on dissimilar high-speed paths (e.g.�100 Mbit/s), as it has been observed during
testbed measurements.

Finally, there is still much room for improvements of the congestion control. As currently ongo-
ing work, the three congestion control variants introduced in this thesis have been implemented into
FreeBSD kernel SCTP and are now evaluated in the testbed environment. An interesting observation
for the congestion controls has been the effect of congestion balancing, which may lead to only a small
performance improvement for a CMT-SCTP flow, but to a significant improvement for a concurrent
non-CMT flow in certain dissimilar path scenarios. While this effect does not violate the performance
goals and may also be intended – from a global view – to achieve a better distribution of bandwidth
among the flows of a network, it leads to the demand for a more exact definition of “fairness” in the
context of networks with multipath transfer. Obviously, there are different perspectives on fairness,
which points out to the necessity of future work to develop more fine-granular and formal defini-
tions of “fairness”, in order to allow more sophisticated congestion control variants to provide a better
tuning of the fairness performance to the needs of network providers, users and their applications.

176 CHAPTER 9. CONCLUSION AND OUTLOOK

Appendix A

Reliable Server Pooling

This appendix shortly introduces the Reliable Server Pooling (RSerPool) framework, which is used
by the simulation tool-chain described in Appendix B. A more detailed introduction is e.g. provided
in [Dre11, DR09, Dre07].

A.1 Architecture

Figure A.1: The Reliable Server Pooling Architecture

RSerPool provides a lightweight framework for the management of server pools and sessions
with these server pools, in order to support availability-critical applications as well as load balancing.
Figure A.1 depicts an overview of the RSerPool architecture, as defined by [LOTD08] as RFC 5351,
with its three types of components:

Pool Element (PE) denotes a server in a pool. PEs in the same pool provide the same service.

Pool User (PU) denotes a client that uses the service of a pool.

Pool Registrar (PR) – shortly denoted as Registrar – is the management component for the pools.

177

178 APPENDIX A. RELIABLE SERVER POOLING

Each pool is identified by a unique Pool Handle within its so-called Handlespace. The handlespace
denotes the set of all pools within an Operation Scope, which is the administrative domain of the
RSerPool setup. For example, this could be an organisation or a department.

The RSerPool architecture also provides a migration path for existing, non-RSerPool applica-
tions: Proxy Pool Users connect non-RSerPool clients to a server pool; Proxy Pool Elements let
non-RSerPool servers join a pool.

A.2 Registrar Operations

In order to avoid a PR becoming a Single Point of Failure, which leads to a service disruption upon
its failure, at least two PRs have to be deployed. The Endpoint haNdlespace Redundancy Proto-
col (ENRP, defined in [XSS+08, DZ12b]), takes care of synchronising a handlespace among the PRs
of an operation scope. SCTP is used as the underlying Transport Layer protocol.

In contrast to Grid Computing as introduced by [Fos02, FKNT02], an operation scope is restricted
to a single administrative domain. That is, all of its components are under the control of the same au-
thority. This property leads to small management overhead; details are described by [DR08b]. In
particular, it also allows for RSerPool usage on devices having only limited memory and CPU re-
sources (e.g. telecommunications equipment). Nevertheless, components may be distributed globally,
in order to continue their service even in case of “localised disasters” – like a flooding or an earthquake
– as described by [DR07].

A.3 Pool Element Operations

PEs may use an arbitrary PR of their operation scope to register into a pool, by using the Aggregate
Server Access Protocol (ASAP, defined in [SXST08a, Dre12c]) which is also transported over SCTP.
Upon registration at a PR, the chosen PR becomes the Home Pool Registrar (PR-H) of the newly
registered PE. A PR-H is responsible for monitoring the availability of its PEs by keep-alive messages,
which have to be acknowledged by a PE within a configured timeout. Furthermore, the PR-H is
responsible for propagating the information about its PEs to the other PRs of the operation scope.
PEs re-register regularly and for information updates; they may also intentionally deregister from
their pool. Similar to a registration and re-registration, the PR-H is also responsible for making a
deregistration known within its operation scope.

A.4 Pool User Operations

In order to access the service of a pool, a PU requests a PE selection – in form of a so-called Handle
Resolution – from an arbitrary PR of the operation scope, again by using ASAP. The chosen PR
selects the requested list of PE identities and returns them to the PU. The pool-specific selection rule is
denoted as Pool Member Selection Policy or – in short – Pool Policy. Two classes of load distribution
policies are supported: non-adaptive and adaptive strategies. While adaptive strategies base their
selections on the current PE state (requiring up-to-date state information), non-adaptive algorithms do
not need such data. Adaptive and non-adaptive pool policies are defined in [DT08, DZ12a]; a detailed
overview is provided by [Dre07, DR05, DR08b].

A further responsibility of ASAP is to let PUs report the unreachability of PEs. A PR counts
such unreachability reports and may remove a PE identity from the handlespace when a predefined

A.5. AUTOMATIC CONFIGURATION 179

threshold has been reached. This mechanism can ensure that “dead” entries are quickly removed from
the handlespace, without the need for an overly high (and therefore costly) monitoring interval. More
details on this mechanism can be found in [DR09, DZB+10].

Between PU and a pool, the ASAP protocol can provide a Session Layer functionality. That is,
a PU establishes a session with a pool, ASAP takes care of selecting a PE, maintaining a Transport
Layer connection and triggering a failover to a new PE in case of a failure. This Session Layer
functionality is described in more detail, including real-world examples and code listings, by [Dre11,
DB10, ZDB+10].

A.5 Automatic Configuration

While it is possible to configure a list of PRs into each RSerPool component, the RSerPool framework
provides also the possibility of auto-configuration: PRs may make themselves known within their
operation scope by sending so-called Announces, i.e. ASAP and ENRP messages which are regularly
sent over UDP via IP multicast. The announces of the PRs can be heard by the other components
(within the same multicast domain), which can maintain a list of the currently available PRs. That is,
RSerPool components are usually just turned on and everything works automatically. More details on
this mechanism are described by [Dre11].

A.6 Application Scenarios

Although the standardisation of the RSerPool framework had initially been motivated by the need
for availability of SS7 services over IP networks (as for SCTP, see also Subsection 3.14.1), it has
been designed for application independence. Research on the applicability and the performance of
RSerPool includes use cases like

• battlefield networks (see [UZF+03, UZF+04]),

• e-commerce systems (see [Dre02, DR09]),

• IPFIX (see [DCC12]),

• seamless mobility (see [CJL07, DJT03, DP12]),

• video on demand (see [MR06]),

• VoIP (see [RSB+05, BGPS04, CJR+02]),

• web server pools (see [Dre07]) and

• workload distribution (see [DR05, DR08a, Dre12b]).

A.7 Summary

This appendix has shortly introduced the RSerPool framework with its components, protocols and
core functionalities.

180 APPENDIX A. RELIABLE SERVER POOLING

Appendix B

SIMPROCTC –
The Simulation Processing Tool-Chain

This appendix describes the simulation tool-chain which has been developed in order to efficiently
perform the simulations with the model described in Chapter 5.

B.1 Overview

In order to handle simulation tasks efficiently, the model-independent Simulation Processing Tool-
Chain – shortly denoted as SIMPROCTC – has been developed. It has been published in [DZR09,
DR08a]; the GPLv3-licensed open source package – including a complete example simulation – can
be found on the project web site1. Figure B.1 shows an overview of SIMPROCTC:

• At its core, the statistics and data processing package GNU R2 (described by [R D11]) is ap-
plied to parametrise simulation runs (to be explained in Section B.3).

• The runs are processed by using GNU MAKE3 (documented by [SMS10]) – either on the local
machine or in an RSerPool-based computation pool (to be explained in Section B.3).

• The post-processing stage prepares the results for their visualisation (to be explained in Subsec-
tion B.4.1) as documents in the Portable Document Format (PDF; see [Ado08]).

• Optionally, SENDXMPP4 may be applied to send an instant message to the user on starting
as well as on finishing the processing and post-processing of a simulation, by using XMPP
(see Subsection 2.13.4). This feature is particularly convenient in combination with an XMPP
client on a smartphone, in order to get a nearly immediate notification when the results of a
long-running simulation are ready.

Up until now, SIMPROCTC has been successfully deployed for research on SCTP (e.g. docu-
mented in [DBAR11b, DRS+11, ADB+11, DBRT10, DSTR10, DBPR10a]), RSerPool (e.g. docu-
mented in [DZB+10, DR09, SDR08, DRZ08]) and QoS (e.g. documented in [ZDRZ09, ZDR08]).

1SIMPROCTC: http://www.iem.uni-due.de/∼dreibh/omnetpp/.
2GNU R: http://www.r-project.org/.
3GNU MAKE: http://www.gnu.org/software/make/.
4SENDXMPP: http://sendxmpp.platon.sk/.

181

http://www.iem.uni-due.de/~dreibh/omnetpp/
http://www.r-project.org/
http://www.gnu.org/software/make/
http://sendxmpp.platon.sk/

182 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

Figure B.1: An Overview of the SIMPROCTC Tool-Chain

B.2 Simulation Parametrisation and Processing

The first step of performing an OMNET++ simulation run is to parametrise the model by writing an
appropriate .ini file (see also Section 5.2). The core of SIMPROCTC is therefore a GNU R script
which is responsible for performing this simulation parametrisation task.

B.2.1 Formal Definitions

To describe the simulation parametrisation, the introduction of some formal definitions is necessary
first: let a simulation model have n Parameters p1, . . . , pn; P̂1, . . . , P̂n are the corresponding Pa-
rameter Spaces which contain all possible values. That is, pi ∈ P̂i for all i ∈ {1, . . . , n}. Then,
the Model Parameter Space is P̂ = P̂1 × P̂2 × . . . × P̂n (i.e. the Cartesian product of the parameter
spaces). Using the definition of the model parameter space P̂ , a Simulation S ⊂ P̂ simply contains
all parameter combinations s ∈ S for which a Run has to be performed.

Note, that the run number – which corresponds to a certain seed for the random number gener-
ator – is simply another input parameter. The simulation executable itself constitutes a Simulation
Function f , mapping the simulation S to a Result Space R:

f : S → R

s 7→ f(s)

That is, s ∈ S is mapped to a result f(s) ∈ R; the result consists of vectors and scalars (see Sec-
tion 5.2; a formal definition is omitted here). It is furthermore assumed that the same setting of s
generates the same – or a comparable – output. At least, differences must not falsify the results.
For example, the CMT-SCTP model writes the actual run execution real-time as a scalar to allow for
profiling (which, of course, depends on the processing system and its current load).

B.2. SIMULATION PARAMETRISATION AND PROCESSING 183

Listing 5 An Example Simulation Configuration in the CMT-SCTP Environment

1 s i m u l a t i o n C o n f i g u r a t i o n s <− l i s t (
2 # ====== Network QoS e t t i n g s =======================================
3 # −−−−− N o r t h e r n T r a i l −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 l i s t (” a l p h a T r a i l D a t a R a t e ” , 100000) ,
5 # −−−−− S o u t h e r n T r a i l −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 l i s t (” b e t a T r a i l D a t a R a t e ” , 10 , 100 , 1000 , 5000 , 10000 ,
7 15000 , 20000 , 25000 , 30000 ,
8 35000 , 40000 , 45000 , 50000 ,
9 55000 , 60000 , 65000 , 70000 ,

10 75000 , 80000 , 85000 , 90000 ,
11 95000 , 100000) ,
12

13 # ====== A p p l i c a t i o n Parame te r s ====================================
14 l i s t (” m ea s u r e me n tD u ra t i o n ” , 6 0) ,
15 l i s t (” u n o r d e r e d ” , 1 . 0) ,
16

17 # ====== SCTP Parame te r s ===
18 l i s t (” cmtCCVariant ” , ” cmt ” , ” cmtrp ” , ” cmtrpv2 ”) ,
19 l i s t (” c m t B u f f e r S p l i t V a r i a n t ” , ” none ” , ” b o t h S i d e s ”) ,
20 l i s t (” n rSack ” , ” f a l s e ” , ” t r u e ”) ,
21 l i s t (” q u e u e S i z e ” , 250000) ,
22 l i s t (” arwnd ” , 125000)
23

24 . . .
25)

B.2.2 Realisation

The parametrisation of a simulation S – which clearly consists of defining the model parameter space
subset S – is performed by a GNU R script, as shown in the example in Listing 5. The variable
storing S is called simulationConfigurations; it is a list containing sub-lists. Each sub-list includes
the parameter name (as first item) and all values to be used (as further items). That is, e.g. line 18
defines three settings of the parameter cmtCCVariant: “cmt”, “cmtrp” and “cmtrpv2”.

From the settings stored in simulationConfigurations, .ini files are created and finally processed
by the simulation model. These steps have to meet the following two goals, in order to achieve an
appropriate level of efficiency:

Extensibility It must be possible to add further values for some parameters, but without having to
reprocess already performed simulation runs.

Parallelism Simulation runs should be processed in parallel – either on the same system (i.e. on
multi-CPU and/or multi-core machines) or on different systems.

To achieve the first goal, the GNU R-based simulation script – denoted as simulation.R –
first creates a separate Run Directory for each run s ∈ S. The initial version of SIMPROCTC has
named the directory using a textual representation of s. Clearly, with a rising number of parameters,
this approach has easily reached the path length limit of the system5. Furthermore, directory names

5The limit on Linux systems is e.g. 4,032 bytes if using the REISERFS file system, but only 255 bytes for EXT3.

184 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

Listing 6 The Defaults Specification for the CMT-SCTP Environment

1 s c t p D e f a u l t C o n f i g u r a t i o n <− l i s t (
2 # ====== SCTP Parame te r s ===
3 l i s t (” cmtCCVariant ” , ” o f f ”) ,
4 l i s t (” cmtCUCVariant ” , ” pseudoCumAckV2 ”) ,
5 l i s t (” cmtUseSFR ” , ” t r u e ”) ,
6 l i s t (”cmtUseDAC” , ” t r u e ”) ,
7 l i s t (”cmtUseFRC” , ” t r u e ”) ,
8 l i s t (” c m t B u f f e r S p l i t V a r i a n t ” , ” none ”) ,
9 l i s t (” n rSack ” , ” f a l s e ”) ,

10 . . .
11

12 . . .
13)

requiring several screen lines to be printed were really unhandy. The solution has been to use a Secure
Hash Algorithm No. 1 (SHA-1, see [EJ01]) hash value over s as name base instead. This results in
appropriately small and usable directory names.

For each run s, a separate .ini file is generated by simulation.R in the corresponding run di-
rectory. It also specifies its own scalar and vector files, which will be placed in the same directory. A
model-specific function writes the parameter settings into the .ini file. That is: for each s ∈ S, the core
script sets GNU R variables – the names are given by the parameter names – to the actual values de-
fined by s. Then, a model-specific function called simCreatorWriteParameterSection() writes them
as parameters into the .ini file. For the example shown in Listing 5, the parameter cmtCCVariant de-
fines the configuration of CMT for the CMT-SCTP model. The network setup is as illustrated in
Figure 5.2 and described in Section 5.3, i.e. the actual instances of the StandardHost module includ-
ing an SCTP instance are part of a compound module array core. Therefore, the parameter lines
written into the .ini file e.g. look like: cmttest4.core[0].serverMain[0].sctp.cmtCCVariant=“cmt”.
The usage of GNU R script code in simCreatorWriteParameterSection() to actually write the .ini
file allows more sophisticated parametrisation – like writing multiple entries or even computing the
actual values to be used in the .ini file – as well.

Furthermore, simulation.R creates a Makefile for GNU MAKE – which is described in detail
by [SMS10] – for the whole simulation S. Each s ∈ S leads to an entry performing the following
tasks:

1. Old output files (i.e. vector, scalar and log files) are removed.

2. The simulation model executable is run, parametrised by the corresponding .ini file for s. A log
file of the run (containing text output for debugging purposes) as well as scalar and vector files
are written.

3. All output files are compressed by using the BZIP2 compression tool (described in detail
by [Sew07]). This achieves a significant disk space gain, since the output files contain plain
text.

4. Finally, a time-stamp file – denoted as Status File – is written after successfully processing all
former steps. Its existence tells GNU MAKE that the corresponding run has been completed
successfully.

B.2. SIMULATION PARAMETRISATION AND PROCESSING 185

A further run of the simulation script will update existing status files by default. That is, already
executed runs will not be reprocessed again – since their result would not change (due to the assump-
tion for f in Subsection B.2.1). If the simulation function f changes, this update step can be skipped.
Then, all runs will be processed again.

Run directories remain stored until they are deleted manually. This realises the desired caching
behaviour: if the simulation is modified from S to S′ ⊂ P̂ , S′ 6= S, it is only necessary to process the
new runs s ∈ S′\S. The runs s ∈ S\S′ remain stored and may be reused after further modification of
the simulation, e.g. after having made a couple of runs with a reduced number of parameter settings.

B.2.3 Handling Model Enhancements

A common task during simulation-based research is to extend the functionalities of an existing simula-
tion model. That is, new functionalities – and therefore new parameters – are added. Obviously, these
new parameters have to be set to perform runs of the new model. In the usual case, the new function-
alities and behaviours of the model can be turned on by some parameter settings (e.g. the CMT-SCTP
model has been enhanced by support for NR-SACK). Having already created a set of simulations
by using the parametrisation approach described in Subsection B.2.2, this leads to a problem: simply
running these scripts results in the lack of parameter specifications for the new functionalities. That is,
it would be necessary to modify all of these scripts to set the new parameters appropriately, in order to
turn the new functionalities off and retain the old behaviour of the model (e.g. not to use NR-SACK).

The approach for this challenge is straightforward: a global Default Configuration D for the
simulation environment is specified – in the same way the simulation S is defined. Listing 6 shows an
example for the CMT-SCTP environment. Each time a new parameter is added to the model, a default
for the new parameter is set here. An obviously useful setting is to turn the new functionality off by
default, i.e. the model behaves as before the change. The default configuration must contain exactly
one value for each parameter.

The following four Merging Rules are applied, in order to generate the actual simulation S∗ from
a simulation definition S and default settings D:

1. It is allowed that some parameter values are not specified in S. Formally, this could be reached
by having each parameter space P̂i containing an “undefined” entry ∅.

2. If a certain parameter pi is not specified in S, the corresponding value is taken from the default
settings D. That is: if there is no setting, the default for pi is used.

3. Else, if there is a setting for a parameter pi, it is used and the default value is simply ignored.

4. If there is a parameter setting in S but no default in D, the simulation script stops with an error
message. Since D contains a default for every parameter of the model, this cannot happen in
theory. However, this kind of error may be caused by typos in the parameter specification of S.
Avoiding this kind of problem is therefore highly useful in practise.

An example is provided by the simulation configuration simulationConfigurations S in List-
ing 5 and the default configuration sctpDefaultConfiguration D in Listing 6: according to Rule #3,
the parameter values for cmtCCVariant are taken from S (i.e. “cmt”, “cmtrp”, “cmtrpv2”). The
simulation parameter nrSack is not defined in S. It is therefore taken from the defaults D (i.e. us-
ing the default value “false”), according to Rule #1 and Rule #2. If there would be a parameter
someNonExistingParameter in S – which is not defined in the defaults D – this would cause an
error, according to Rule #4.

186 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

Another advantage of the default configuration mechanism is that the actual simulation configura-
tion S may remain small. In a usual simulation setup, there are only a few parameters which actually
have to be modified, while most parameters just use their default values. In particular, this keeps
the simulation file for S also easily understandable, e.g. by users having only limited knowledge of
the full set of configurable parameters provided by a complex simulation model. For example, the
configuration in Listing 5 is nearly complete, although more than 100 parameters are provided by the
CMT-SCTP simulation environment.

B.3 Distributed Simulation Processing

As last step, simulation.R executes GNU MAKE to actually perform the simulation runs.

B.3.1 Overview

In order to improve simulation processing performance, simulation.R already obtains the number
of CPUs/cores6 and lets GNU MAKE execute an appropriate number of runs in parallel7. That is, a
dual-core machine should perform two runs simultaneously. Nevertheless, all runs are processed by
only a single PC.

In order to allow parallel simulation processing in a PC pool, some solutions like AKAROA

(see [Var10, Section 9.5]) had been considered first. However, the configuration in the quite heteroge-
neous network (different Linux versions, different subnets, downtime when PCs are used for student
exercises or projects, etc.) had been challenging and a “lightweight” approach for simulation distri-
bution had been desired. Since RSerPool is a lightweight framework for server pool management and
workload distribution (see Appendix A), it has therefore been quite straightforward to utilise RSerPool
for this task.

B.3.2 The Scripting Service

The RSPLIB8 package is a GPLv3-licensed, open source implementation of the RSerPool framework.
It has been developed as part of the Ph.D. project by [Dre07] at the University of Duisburg-Essen, a
detailed introduction is also provided in [Dre11, Dre05, DT03]. The Scripting Service (SS), which is
included in the RSPLIB package as example application, provides workload distribution functionality:
the user of this service provides

• a TAR/GZIP-archived Work Package and

• optionally a TAR/BZIP2-archived Work Environment

to the scripting service PU. The PU creates a session with the scripting service pool and provides the
work package to a scripting service PE. Also, if the PE does not yet contain the work environment, it is
also transferred to the PE. The PE stores the work environment in its Environment Cache; further work
packages for the same work environment do not need another transfer. The differentiation between
work environments is realised by an SHA-1 hash value (see [EJ01]) computed over the work envi-
ronment data. Work environment and work package are extracted into a temporary directory. Then,
a script named ssrun, which is included in the work package, is executed. This script may write an

6By using the CPU information from /proc/cpuinfo.
7By using the GNU MAKE parameter -j [jobs].
8RSPLIB: http://tdrwww.iem.uni-due.de/dreibholz/rserpool/.

http://tdrwww.iem.uni-due.de/dreibholz/rserpool/

B.3. DISTRIBUTED SIMULATION PROCESSING 187

Figure B.2: The Scripting Service Pool used for the Simulation Computation

output archive, which is finally downloaded by the PU. The protocol used for communication between
PU and PE is denoted as the Scripting Service Protocol (SSP); like other RSerPool communications,
it uses SCTP for transport.

The scripting service pool applies the adaptive “Least Used” policy for PE selection (for details,
see also [DR09, DR08b, DR05]): the least-loaded PE is used, with round-robin selection among
equally loaded PEs. Each PE can handle up to SSMaxThreads sessions simultaneously; the load
value is set according to the currently handled number of sessions. By default, SSMaxThreads is set
to the number of CPUs/cores of the PC hosting the scripting service PE.

If a PE rejects a session (since it is already serving SSMaxThreads sessions), or if it goes out of
service (e.g. the PC is turned off), the session is simply restarted from scratch (“Abort and Restart”
principle) after a short delay (e.g. 5 s). This delay avoids overloading the network with reject-and-retry
floods (see also [ZDR07]) when there are too few PEs available.

Applying the scripting service of RSPLIB for the simulation processing is easy: the simulation
model executable as well as all files to run it, which particularly includes all used shared libraries as
well as the shared library loader itself, are packaged into a work environment archive. Furthermore,
instead of invoking the simulation model executable from the Makefile by GNU MAKE itself, a script
denoted as ssdistribute is called. This script simply archives the .ini file and a script called
ssrun into a work package archive and provides it, together with the work environment, to the
scripting service PU. The PU distributes this archive to a PE in the scripting service pool, and the PE
executes ssrun. The ssrun script actually calls the simulation model executable, collects scalar,
vector and log files and puts them together into an archive. This archive is downloaded by the PU and
finally extracted by ssdistribute into the corresponding run directory.

B.3.3 The Pool Setup

Figure B.2 illustrates the scripting service pool setup of the networking lab at the Institute for Ex-
perimental Mathematics of the University of Duisburg-Essen. It consists of 25 PEs running either
Kubuntu Linux 10.10 (“Maverick Meerkat”) or FreeBSD 8.2, with all of them having a dual-core
CPU (either 32 bit or 64 bit), i.e. the pool can process 50 parallel sessions in total. Further PEs may

188 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

Figure B.3: A Screenshot of the cspmonitor Output

be added temporarily in order to further increase the computing performance of the pool. The lab PCs
are connected via two independent Ethernets (blue and yellow), both using IPv4 and IPv6 simulta-
neously. That is, the systems are quad-homed. Automatic configuration as explained in Section A.5
is applied: each PE will automatically find a PR for registration; two PRs are installed to provide
redundancy. PEs may be dynamically added and removed, i.e. when the PCs are temporarily needed
for other tasks, the scripting service PEs may be stopped. On the PU side, GNU MAKE has to be
called with an appropriate number of simultaneous processes (at least 50 to utilise all 50 cores). Then,
there will be up to the given number of parallel simulation run sessions.

B.3.4 The Component Status Protocol

When deploying an RSerPool setup consisting of significantly more than a few components, the sce-
nario becomes confusing quickly. In order to get a complete picture of the current status of all compo-
nents (i.e. PRs, PEs and PUs), monitoring becomes a handy tool. Monitoring is not a part of RSerPool
itself, but RSPLIB provides this feature for all of its applications. It allows them to report their status,
including hostname, IP address(es), uptime, load and other useful status information to a central mon-
itoring component. This status reporting is realised by the simple, unidirectional Component Status
Protocol (CSP; details can be found in [Dre11]), transported over UDP. The simple monitoring appli-
cation provided by RSPLIB – called cspmonitor – displays this information on screen. Figure B.3
shows a screenshot of the output from the lab pool described in Subsection B.3.3, consisting of 2 PRs,
34 fully utilised PEs and 98 PUs (only 5 of them are visible in the screenshot). Note, that the setup
shown here consists of the lab pool described in Subsection B.3.3 (25 PEs) which has been extended
by 9 additional PEs.

B.4. RESULTS POST-PROCESSING AND VISUALISATION 189

B.3.5 The Scripting Service Pool – A Stress Test for SCTP Implementations

Besides the usefulness of the scripting service setup to provide a distributed processing of simulation
runs, the scenario has also another important function: it provides a relatively hard stress test for the
SCTP implementations involved: a separate session, including association establishment and bidirec-
tional data transfer between quad-homed endpoints with simultaneous IPv4 and IPv6 usage, is used
for each simulation run. Furthermore, error cases – like unplugged cables, reconfigured interfaces,
etc. – occur frequently, since the lab PCs are also used for student exercises.

As result of these tests, multiple problems have been found and fixed. The most important issue
has been a bug9 in the Linux kernel SCTP implementation, which has been documented as CVE-2010-
343210 (Common Vulnerabilities and Exposures). This bug was remotely exploitable for causing a
denial of service attack on Linux systems with a wide set of affected kernel versions.

B.4 Results Post-Processing and Visualisation

When all simulation runs have eventually been processed, the results have to be visualised for analysis
and interpretation. SIMPROCTC provides support to visualise the scalar results, which are distributed
over the scalar files located in the run directories. Therefore, the first step necessary is to bring the
data from the various scalar files into an appropriate form for further post-processing. This step is
denoted as Summarisation; an introduction is also provided in [DZR09].

B.4.1 Scalars Summarisation

The summarisation task is performed by a C++-written program named createsummary. An exter-
nal program – instead of just using GNU R itself to perform this step – is used due to the requirements
on memory and CPU power. createsummary is called as last step of the Makefile and iterates over
all scalar files of a simulation S. Each file is read – with on-the-fly BZIP2-decompression – and
each scalar value as well as the configuration s ∈ S having led to this value – are stored in memory.
Depending on the number of scalars, the required storage space may have a size of multiple GiB.

Since usually not all scalars of a simulation are required for analysis (e.g. for an SCTP simulation,
it may be unnecessary to include IP or PPP statistics), a list of scalar name prefixes to be excluded from
summarisation can be provided to createsummary, in form of the so-called Summary Skip List.
This feature may significantly reduce the memory and disk space requirements of the summarisation
step. Since the skipped scalars still remain stored in the scalar files themselves, it is possible to simply
re-run createsummary with updated summary skip list later, in order to also include them.

Having all relevant scalars stored in memory, a data file – which can be processed by GNU R or
other programs – is written for each scalar. The data file is simply a table in text form, containing
the column names on the first line. Each following line contains the data, with line number and an
entry for each column (all separated by spaces); an example is provided in [DZR09, Listing 3]. That
is, each line consists of the settings of all parameters and the resulting scalar value. The data files are
also BZIP2-compressed on the fly, in order to reduce the storage space requirements.

9Bug in sctp packet config(): http://marc.info/?l=linux-netdev&m=128453869227715&w=3.
10CVE-2010-3432: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3432.

http://marc.info/?l=linux-netdev&m=128453869227715&w=3
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3432

190 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

B.4.2 Plotting

The results of a simulation may finally be presented visually by plotting the data from the output
files written by createsummary or alternatively other output data (particularly, the vectors). Since
GNU R – as described in [R D11] – also contains a rich set of graphics functions, and it has already
been used for simulation parametrisation, it has therefore been straightforward to also apply it for
plotting the results. In particular, it allows a very fine-granular control of the output plots to adapt
the presentation to special requirements (e.g. labels, grids, colours, line styles, etc.). Nevertheless,
of course, it would also be possible to apply any other tool – e.g. GNU PLOT11, GNU OCTAVE12,
LIBREOFFICE13 or even MICROSOFT OFFICE14 – for visualising the results.

For result analysis, it is crucial that the impact for variations of multiple parameters can be pre-
sented in an easy-to-understand form. Therefore, the plotting script – named plotter.R – applies
the idea of mapping parameters and the result to axes of the plot:

• The main parameter is displayed on the X-axis, the result (e.g. the value of a scalar) on the
Y-axis.

• There may be multiple lines per plot: the Z-axis identifies the line. For readability, a different
colour or shade (on a grey-scale plot) is used for each line.

• The Z-axis may be further subdivided by V- and W-axes: the V-axis uses a different line style;
the W-axis uses a different point style.

• On one page, there may be multiple plots: the A-axis divides the page in horizontal direction,
the B-axis in vertical direction (i.e. there is a separate plot for each A/B-axis value).

• Finally, the P-axis creates a new page for each P-axis value; each of these pages uses a distinct
background colour (on a colour plot).

To make the plot functionality clearer, Figure B.4 shows an example plot from a CMT-SCTP
simulation in a dual-homed environment. Here, the emphasis is on the presentation of the results,
not their actual meaning (the explanations can be found in Chapter 7 and Chapter 8). The X-axis
presents the bandwidth of Path #2 – denoted as ρ2 and the Y-axis the payload throughput achieved by
NETPERFMETER. The usage of buffer splitting Π, with two variants marked by two different colours
(Π=bothSides in orange colour; Π=none in cyan colour), is depicted by the Z-axis. Furthermore, the
V-axis represents the support of NR-SACK ν, with two variants marked by two different line styles
(ν=true as solid line; ν=false as dashed line).

The A-axis displays the congestion control variant Γ, with its three variants (Γ=cmt, Γ=cmtrp,
Γ=cmtrpv2); the B-axis shows the usage of outstanding bytes for Buffer Splitting Ω, with the two
possible variants (Ω=true, Ω=false). The values for A-axis and B-axis are displayed in different-
coloured boxes, which provides a good differentiability. Only one P-axis value is displayed here: a
Path #1 bandwidth of ρ1=100 Mbit/s (this value is shown below the plot title). The second P-axis
value is neglected here, due to space limitations. It would just be another plot page, with a different
background colour.

Further features of the plotter.R script are:

11GNU PLOT: http://www.gnuplot.info/; see also [Cra10].
12GNU OCTAVE: http://www.gnu.org/software/octave/; see also [Eat11].
13LIBREOFFICE http://www.libreoffice.org/.
14MICROSOFT OFFICE: http://office.microsoft.com.

http://www.gnuplot.info/
http://www.gnu.org/software/octave/
http://www.libreoffice.org/
http://office.microsoft.com

B.4. RESULTS POST-PROCESSING AND VISUALISATION 191

Ω
=

tr
u

e
Ω

=
fa

ls
e

U
s
e

 O
S

B
 f
o

r
B

u
ff
e

r
S

p
lit

ti
n

g
 Ω

Γ=cmt Γ=cmtrp Γ=cmtrpv2

Congestion Control Variant Γ

Application Payload Throughput

Bandwidth on Path #1 ρ1 [Mbit/s] = 100

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]
Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

0 20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

Bandwidth on Path #2 ρ2 [Mbit/s]

P
a
y
lo

a
d
 T

h
ro

u
g
h
p
u
t
[M

b
it
/s

]

Buffer Splitting Π / Use NR−SACKs ν

1: Π=none, ν=true

2: Π=none, ν=false

3: Π=bothSides, ν=true

4: Π=bothSides, ν=false

Figure B.4: A Complex Example Plot using X/Y/Z/V/A/B/P Axes

• The output can optionally be in black and white, grey scale or colour.

• A mapping from an axis label to a variable may be defined to simplify writing a description
(e.g. Γ→ Congestion Control Variant).

• If there are multiple values per plot point (e.g. from runs with different seeds), the average
value is taken for plotting. Furthermore, the confidence intervals (usually 95%) are computed
and displayed.

• The plots are written as PDF files (i.e. in a scalable vector graphics format; see also [Ado08]),
for inclusion into pdfLATEX documents. If necessary, these PDF files may be converted into
raster formats like PNG (see Subsection 2.13.4), e.g. for inclusion into LIBREOFFICE or MI-
CROSOFT OFFICE.

• Finally, the resulting PDF files may be processed by GHOSTSCRIPT15, in order to embed all
required fonts. This avoids display problems when processing the files on different platforms
(particularly, on a printer). Since this step also results in a compression of the files, their size is
furthermore reduced.

15GHOSTSCRIPT: http://www.ghostscript.com/.

http://www.ghostscript.com/

192 APPENDIX B. SIMPROCTC – THE SIMULATION PROCESSING TOOL-CHAIN

B.4.3 Plotting Templates

If there is a larger number of plots to be created, e.g. as for this thesis, the plot definition task becomes
increasingly time-consuming. Therefore, the SIMPROCTC plotter.R script provides the feature
of so-called Plot Templates, which may be applied to actually define plots. That is, such a template
specifies an axis input (e.g. a scalar data file created by createsummary), a possible manipulation
function (e.g. to convert bit/s to Mbit/s), a label (e.g. “Payload Throughput [Mbit/s]”) and a grid colour
(e.g. to give different Y-axis results – like average throughput and average delay – distinct colours to
enhance readability).

Then, defining the actual plot just means to map templates to the axes (X, Y, Z, V, W, A, B and P)
and setting a plot title (e.g. “Application Payload Throughput”). Optionally, ranges for the X- and
Y-axes (e.g. from 0 to 100 in steps of 10) and the sorting orders of the axes’ values (ascending or
descending) may be configured. Finally, a filter may be defined which skips certain results, e.g. to
only show results where CMT has been turned on, while the underlying data also contains results
for having this option turned off. A detailed example – including an example script – is provided
in [DZR09, Subsection 5.3].

B.5 Summary

In this appendix, the SIMPROCTC simulation processing tool-chain has been introduced. It supports
the tasks of

• Parametrising a simulation,

• Distributing the simulation runs in an RSerPool-based computation pool by using the scripting
service application,

• Collecting and post-processing the results as well as

• Visualising the results.

Particularly, by making use of the SCTP-based RSerPool framework with the scripting service, this
application has also been a very interesting stress test for a larger-scale deployment of SCTP. These
stress tests have influenced the research on SCTP by triggering some ideas for further performance
enhancements.

List of Figures

1.1 Multi-Homed Nodes in a Communications Network 2
1.2 Multipath Transfer over Disjoint Paths and Shared Bottleneck 3

2.1 An Example Network . 6
2.2 The Layered Protocol Stack . 11
2.3 The Interface to a Service . 12
2.4 The OSI and TCP/IP Reference Models . 13
2.5 Classification of Data Communication Services by Participating Entities 16
2.6 Payload as well as Overhead by Headers and Trailers 21
2.7 Segmentation and Reassembly . 29
2.8 The Principle of “Stop and Wait” for Reliable Transfer 30
2.9 The Principle of a “Sliding Window” for Reliable Transfer 32
2.10 A Three-Flow Congestion Control Example . 40
2.11 An Overview of the Internet Society . 44
2.12 The IETF Document Lifecycle . 45

3.1 The Structure of an SCTP Packet . 52
3.2 The Chunk Sequence of the SCTP Association Setup 53
3.3 The Multi-Homing Feature of SCTP . 54
3.4 The Concept of SCTP Multi-Streaming . 55
3.5 The Structure of a DATA chunk . 56
3.6 The Structure of a SACK Chunk . 57
3.7 A Selective Acknowledgement Example . 58
3.8 The Chunk Sequence of the SCTP Association Teardown 60
3.9 A Non-Renegable Selective Acknowledgement Example 62

4.1 Applying Multipath Transfer for SCTP with the CMT-SCTP Extension 70
4.2 The Challenge of Fast Retransmission with CMT-SCTP 71
4.3 The Challenge of Congestion Window Updates with CMT-SCTP 72
4.4 The Challenge of Delayed Acknowledgement with CMT-SCTP 73
4.5 The Principle of Identifier/Locator Split on the Network Layer 75

5.1 An Instance of the StandardHost Compound Module and one of its PPP Interfaces . . 79
5.2 A Topology Consisting of StandardHost Instances 80
5.3 An Illustration of the NETPERFMETER Timing Configuration 84
5.4 A Dual-Homed Example Network . 86

193

194 LIST OF FIGURES

6.1 The NetPerfMeter Protocol Stack . 93
6.2 The Concept of a NetPerfMeter Measurement . 93
6.3 A Measurement Run with NETPERFMETER . 94
6.4 An SCTP Packet Trace Analysis with WIRESHARK 96
6.5 An Illustration of the Testbed Setup . 98
6.6 The Testbed Setup in Essen in Reality . 100

7.1 The Scenario Setup for the Performance Evaluations 104
7.2 The CMT-SCTP Performance in a Similar Paths Setup 106
7.3 Required Sizes for Send and Receive Buffers . 108
7.4 An Example for Transmission-Induced Send Buffer Blocking 109
7.5 An Example for GapAck-Induced Send Buffer Blocking 109
7.6 An Example for Advertised-Window-Induced Receive Buffer Blocking 111
7.7 An Example for Reordering-Induced Receive Buffer Blocking 111
7.8 A Proof of Concept for Buffer Splitting based on Outstanding Bytes 115
7.9 Simulation Results for the Impact of Buffer Splitting in the ADSL Scenario 117
7.10 The Impact of Buffer Splitting and NR-SACKs on the Congestion Control Behaviour 119
7.11 Experimental Validation of Buffer Splitting in the Distributed Testbed Setup 120
7.12 Throughput for Unordered Delivery over Paths with Dissimilar Bandwidths 122
7.13 Outstanding Bytes for Unordered Delivery over Paths with Dissimilar Bandwidths . . 123
7.14 Throughput for Unordered Delivery over Paths with Dissimilar Bit Error Rates . . . 125
7.15 Throughput for Unordered Delivery over Paths with Dissimilar Delays 127
7.16 The Principle of Chunk Rescheduling . 129
7.17 Throughput for Ordered Delivery over Paths with Dissimilar Bandwidths 133
7.18 Dissimilar Bandwidths in the Send Buffer Size > Receive Buffer Size Scenario . . . 134
7.19 Throughput for Ordered Delivery over Paths with Dissimilar Bit Error Rates 136
7.20 Dissimilar Bit Error Rates in the Send Buffer Size > Receive Buffer Size Scenario . 137
7.21 Throughput for Ordered Delivery over Paths with Dissimilar Delays 139
7.22 Dissimilar Delays in the Send Buffer Size > Receive Buffer Size Scenario 140
7.23 The Challenge of Burst Mitigation . 141
7.24 The Impact of Burst Mitigation Variants on the Congestion Control Behaviour 143
7.25 The Principle of Predefined Stream Mapping . 145
7.26 Using Predefined Stream Mapping for Paths with Dissimilar Delays 147
7.27 Using Predefined Stream Mapping for Paths with Dissimilar Bandwidths 148
7.28 Using Predefined Stream Mapping for Paths with Dissimilar Bit Error Rates 149

8.1 The Scenario Setups for the Fairness Evaluations 157
8.2 Concurrency between CMT and Non-CMT Flow on a Shared Bottleneck 158
8.3 The Impact of the Congestion Control Variant for Three Shared Paths 160
8.4 Concurrency on a Shared Bottleneck with a Long Queue 162
8.5 Concurrency between CMT and Non-CMT Flow on Disjoint, Similar Paths 163
8.6 Bandwidth Variation on Path #1 being Exclusively Used by the CMT-SCTP Flow . . 164
8.7 Bandwidth Variation on Path #2 being Shared with the Non-CMT Reference Flow . . 166
8.8 The Impact of the Congestion Control Variant for Two Disjoint, Dissimilar Paths . . 168

A.1 The Reliable Server Pooling Architecture . 177

B.1 An Overview of the SIMPROCTC Tool-Chain . 182

LIST OF FIGURES 195

B.2 The Scripting Service Pool used for the Simulation Computation 187
B.3 A Screenshot of the cspmonitor Output . 188
B.4 A Complex Example Plot using X/Y/Z/V/A/B/P Axes 191

196 LIST OF FIGURES

List of Listings

1 The Internet-16 Checksum Algorithm . 25
2 The Adler-32 Checksum Algorithm . 26
3 The NED File for the Dual-Homed Example Network 87
4 The Chunk Rescheduling Algorithm . 131
5 An Example Simulation Configuration in the CMT-SCTP Environment 183
6 The Defaults Specification for the CMT-SCTP Environment 184

197

198 LIST OF LISTINGS

List of Tables

2.1 The SI Decimal Prefixes and Symbols . 19
2.2 The IEC Binary Prefixes and Symbols . 20
2.3 Approximated Propagation Delays of Physical Media 21
2.4 The Areas of the IETF . 45

3.1 An Overview of SCTP Implementations and Supported Features 64

5.1 The Important CMT-SCTP Parameters of the SCTP Module 81
5.2 The Parameters of the NETPERFMETER Module 83

6.1 The Important CMT-SCTP System Controls of the FreeBSD Kernel 90
6.2 An Overview of Network Performance Test Software 91

199

200 LIST OF TABLES

Bibliography

[AB05] Mark Allman and Ethan Blanton. Notes on Burst Mitigation for Transport Proto-
cols. ACM SIGCOMM Computer Communication Review, 35(2):53–60, 2005. ISSN
0146-4833. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
60.9560&rep=rep1&type=pdf, doi:10.1145/1064413.1064419. 60, 82, 104,
142, 173

[ABD+12] Paul D. Amer, Martin Becke, Thomas Dreibholz, Nasif Ekiz, Janardhan R. Iyengar,
Preethi Natarajan, Randall R. Stewart, and Michael Tüxen. Load Sharing for the Stream
Control Transmission Protocol (SCTP). Internet Draft Version 04, IETF, Network Work-
ing Group, March 2012. draft-tuexen-tsvwg-sctp-multipath-04.txt, work in progress.
Available from: http://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-multipath-04.txt. 63,
174

[ADB+11] Hakim Adhari, Thomas Dreibholz, Martin Becke, Erwin Paul Rathgeb, and Michael
Tüxen. Evaluation of Concurrent Multipath Transfer over Dissimilar Paths. In Pro-
ceedings of the 1st International Workshop on Protocols and Applications with Multi-
Homing Support (PAMS), pages 708–714, Singapore, March 2011. ISBN 978-0-7695-
4338-3. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
SCTP/Paper/PAMS2011.pdf, doi:10.1109/WAINA.2011.92. 105, 108, 113, 172,
181

[Ado08] Adobe. Portable Document Format – Part 1: PDF 1.7. ISO 32000-1, International Stan-
dards Organisation, July 2008. Available from: http://wwwimages.adobe.com/www.
adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000 2008.pdf. 181, 191

[Aig99] Martin Aigner. Diskrete Mathematik. Friedrich Vieweg & Sohn, Wiesbaden/Germany,
2nd edition, June 1999. ISBN 978-3528172688. 5

[AKO97] Mark Allman, Hans Kruse, and Shawn Ostermann. An Application-Level Solution
to TCP’s Satellite Inefficiencies. In Proceedings of the First International Workshop
on Satellite-based Information Services (WOSBIS), Rye, New York/U.S.A., Novem-
ber 1997. Available from: http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.52.
2516&rep=rep1&type=pdf. 69

[AKZ99a] Guy Almes, Sunil Kalidindi, and Matthew J. Zekauskas. A One-way Delay Metric for
IPPM. Standards Track RFC 2679, IETF, September 1999. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc2679.txt. 22

201

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9560&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9560&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1064413.1064419
http://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-multipath-04.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PAMS2011.pdf
http://dx.doi.org/10.1109/WAINA.2011.92
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2516&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2516&rep=rep1&type=pdf
http://www.ietf.org/rfc/rfc2679.txt

202 BIBLIOGRAPHY

[AKZ99b] Guy Almes, Sunil Kalidindi, and Matthew J. Zekauskas. A One-way Packet Loss Met-
ric for IPPM. Standards Track RFC 2680, IETF, September 1999. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc2680.txt. 23

[AKZ99c] Guy Almes, Sunil Kalidindi, and Matthew J. Zekauskas. A Round-trip Delay Metric for
IPPM. Standards Track RFC 2681, IETF, September 1999. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc2681.txt. 23

[All03] Mark Allman. TCP Congestion Control with Appropriate Byte Counting (ABC). RFC
3465, IETF, February 2003. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc3465.txt. 38

[All07] Allied Telesis. DSL White Paper, January 2007. Available from: www.alliedtelesis.
com/media/pdf/dsl wp.pdf. 42

[AM10] Murray Altheim and Shane McCarron. XHTML 1.1 – Module-based XHTML. Rec-
ommendation, W3C, November 2010. Available from: http://www.w3.org/TR/2010/
REC-xhtml11-20101123/xhtml11.pdf. 49

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control. Standards
Track RFC 5681, IETF, September 2009. ISSN 2070-1721. Available from: http://
www.ietf.org/rfc/rfc5681.txt. 35, 38, 48

[ASL03] Ahmed Abd El Al, Tarek Saadawi, and Myang Lee. Load Sharing in Stream Control
Transmission Protocol. Internet Draft Version 00, IETF, Individual Submission, May
2003. draft-ahmed-lssctp-00, work in progress. Available from: http://potaroo.net/ietf/
all-ids/draft-ahmed-lssctp-00.txt. 2

[BAFW03] Ethan Blanton, Mark Allman, Kevin Fall, and Lili Wang. A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP. Standards Track
RFC 3517, IETF, April 2003. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc3517.txt. 35, 39

[BBP88] Robert Braden, David A. Borman, and Craig Partridge. Computing the Internet Check-
sum. Standards Track RFC 1071, IETF, September 1988. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc1071.txt. 25

[BCC+98] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Stephen E. Deering, Deborah
Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Partridge, Larry Peterson, K. K.
Ramakrishnan, Scott Shenker, John Wroclawski, and Lixia Zhang. Recommendations
on Queue Management and Congestion Avoidance in the Internet. Informational RFC
2309, IETF, April 1998. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc2309.txt. 23, 151

[BCD+98] David L. Black, Mark A. Carlson, Elwyn Davies, Zheng Wang, and Walter Weiss. An
Architecture for Differentiated Services. Informational RFC 2475, IETF, December
1998. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2475.txt. 24

[BDH99] David A. Borman, Stephen E. Deering, and Robert M. Hinden. IPv6 Jumbograms.
Standards Track RFC 2675, IETF, August 1999. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc2675.txt. 48

http://www.ietf.org/rfc/rfc2680.txt
http://www.ietf.org/rfc/rfc2681.txt
http://www.ietf.org/rfc/rfc3465.txt
http://www.ietf.org/rfc/rfc3465.txt
www.alliedtelesis.com/media/pdf/dsl_wp.pdf
www.alliedtelesis.com/media/pdf/dsl_wp.pdf
http://www.w3.org/TR/2010/REC-xhtml11-20101123/xhtml11.pdf
http://www.w3.org/TR/2010/REC-xhtml11-20101123/xhtml11.pdf
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt
http://potaroo.net/ietf/all-ids/draft-ahmed-lssctp-00.txt
http://potaroo.net/ietf/all-ids/draft-ahmed-lssctp-00.txt
http://www.ietf.org/rfc/rfc3517.txt
http://www.ietf.org/rfc/rfc3517.txt
http://www.ietf.org/rfc/rfc1071.txt
http://www.ietf.org/rfc/rfc2309.txt
http://www.ietf.org/rfc/rfc2309.txt
http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2675.txt

BIBLIOGRAPHY 203

[BDRF11] Martin Becke, Thomas Dreibholz, Erwin Paul Rathgeb, and Johannes Formann. Link
Emulation on the Data Link Layer in a Linux-based Future Internet Testbed Envi-
ronment. In Proceedings of the 10th International Conference on Networks (ICN),
pages 92–98, St. Maarten/Netherlands Antilles, January 2011. ISBN 978-1-61208-002-
4. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/
Paper/ICN2011.pdf. 100, 101, 171

[BFH03] Robert Braden, Ted Faber, and Mark Handley. From Protocol Stack to Pro-
tocol Heap – Role-Based Architecture. ACM SIGCOMM Computer Com-
munication Review, 33:17–22, January 2003. ISSN 0146-4833. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1741&rep=
rep1&type=pdf, doi:10.1145/774763.774765. 15

[BGPS04] Marjan Božinovski, Liljana Gavrilovska, Ramjee Prasad, and Hans-Peter Schwe-
fel. Evaluation of a Fault-Tolerant Call Control System. Facta Universitatis Se-
ries: Electronics and Energetics, 17(1):33–44, 2004. ISSN 0353-3670. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.5766&rep=
rep1&type=pdf. 179

[BIP06] BIPM. Le Système international d’unités – The International System of Units. STEDI
Media, Paris/France, 8th edition, May 2006. ISBN 92-822-2213-6. Available from:
http://www.bipm.org/utils/common/pdf/si brochure 8.pdf. 20, 22

[Bla07] Eugene Blanchard. Introduction to Data Communications. Southern Alberta Institute of
Technology, Calgary/Canada, 2.1 edition, January 2007. Available from: http://learnat.
sait.ab.ca/ict/txt information/Intro2dcRev2/index.html. 15

[BLC95] Tim Berners-Lee and Daniel W. Connolly. Hypertext Markup Language – 2.0. Standards
Track RFC 1866, IETF, November 1995. ISSN 2070-1721. Available from: http://www.
ietf.org/rfc/rfc1866.txt. 49

[BM02] Randy Bush and David Meyer. Some Internet Architectural Guidelines and Philosophy.
Informational RFC 3439, IETF, December 2002. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc3439.txt. 15

[BMR07] Andreas Bluschke, Michael Matthews, and Philipp Rietzsch. Führungsposition vertei-
digt – Für hohe Bandbreiten sind neue xDSL-Generationen erste Wahl. NET Zeitschrift
für Kommunikationsmanagement, 2007. Available from: http://www.net-im-web.de/
pdf/Bluschke-xDSL.pdf. 42

[Bou97] Thomas Boutell. PNG (Portable Network Graphics) Specification. Informational RFC
2083, IETF, March 1997. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc2083.txt. 49

[BPB11] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure. MultiPath TCP: From
Theory to Practice. In Proceedings of the 10th International IFIP Networking Confer-
ence, pages 444–457, Valencia/Spain, May 2011. ISBN 978-3-642-20756-3. Available
from: http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf. 75

http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICN2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ICN2011.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1741&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1741&rep=rep1&type=pdf
http://dx.doi.org/10.1145/774763.774765
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.5766&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.5766&rep=rep1&type=pdf
http://www.bipm.org/utils/common/pdf/si_brochure_8.pdf
http://learnat.sait.ab.ca/ict/txt_information/Intro2dcRev2/index.html
http://learnat.sait.ab.ca/ict/txt_information/Intro2dcRev2/index.html
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc1866.txt
http://www.ietf.org/rfc/rfc3439.txt
http://www.net-im-web.de/pdf/Bluschke-xDSL.pdf
http://www.net-im-web.de/pdf/Bluschke-xDSL.pdf
http://www.ietf.org/rfc/rfc2083.txt
http://www.ietf.org/rfc/rfc2083.txt
http://inl.info.ucl.ac.be/system/files/networking-mptcp.pdf

204 BIBLIOGRAPHY

[Bra89] Robert Braden. Requirements for Internet Hosts – Communication Layers. Standards
Track RFC 1122, IETF, October 1989. ISSN 2070-1721. Available from: http://www.
ietf.org/rfc/rfc1122.txt. 14, 34, 36

[Bra96] Scott Bradner. The Tao of IETF: A Novice’s Guide to the Internet Engineering Task
Force. Informational RFC 2026, IETF, October 1996. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc2026.txt. 45

[Bra05a] Scott Bradner. IETF Structure and Internet Standards Process. In Proceedings of the
64th IETF Meeting, Vancouver/Canada, November 2005. Available from: http://mmlab.
snu.ac.kr/courses/2006 advanced internet/handout/1.%20IETF%20newcomers.pdf. 45

[Bra05b] Scott Bradner. Intellectual Property Rights in IETF Technology. Informational RFC
3979, IETF, March 2005. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc3979.txt. 46

[Bro06] Martin A. Brown. Traffic Control HOWTO, October 2006. Available from: http://
linux-ip.net/articles/Traffic-Control-HOWTO/. 23

[Cam03] Peter J. Cameron. Encyclopaedia of DesignTheory: Galois Fields, May 2003. Available
from: http://designtheory.org/library/encyc/topics/gf.pdf. 26

[CBH93] Guy Castagnoli, Stefan Bräuer, and Martin Herrmann. Optimization of Cyclic
Redundancy-Check Codes with 24 and 32 Parity Bits. IEEE Transactions on Communi-
cations, 41(6):883–892, June 1993. ISSN 0090-6778. Available from: http://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=00231911, doi:10.1109/26.231911. 27

[CDG06] Alex Conta, Stephen E. Deering, and Mukesh Gupta. Internet Control Message Proto-
col (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification. Standards Track
RFC 4443, IETF, March 2006. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc4443.txt. 48

[Ced08] Per Cederqvist. Version Management with CVS, May 2008. Available from: http://ftp.
gnu.org/non-gnu/cvs/source/stable/1.11.23/cederqvist-1.11.23.pdf. 90

[CFM99] Rob Coltun, Dennis Ferguson, and John T. Moy. OSPF for IPv6. Standards Track RFC
2740, IETF, December 1999. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc2740.txt. 50

[CHW98] Jon Crowcroft, Mark Handley, and Ian Wakeman. Internetworking Multimedia. UCL
Press, London/United Kingdom, December 1998. Available from: http://www.cl.cam.
ac.uk/∼jac22/out/mm.pdf. 19

[CJL07] C. S. Chandrashekaran, Walter L. Johnson, and Abhijit Lele. Method using Mod-
ified Chord Algorithm to Balance Pool Element Ownership among Registrars in a
Reliable Server Pooling Architecture. In Proceedings of the 2nd International Con-
ference on Communication Systems Software and Middleware (COMSWARE), pages
1–7, Bangalore/India, January 2007. ISBN 1-4244-0614-5. Available from: http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4268132, doi:10.1109/COMSWA.
2007.382489. 179

http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc2026.txt
http://mmlab.snu.ac.kr/courses/2006_advanced_internet/handout/1.%20IETF%20newcomers.pdf
http://mmlab.snu.ac.kr/courses/2006_advanced_internet/handout/1.%20IETF%20newcomers.pdf
http://www.ietf.org/rfc/rfc3979.txt
http://www.ietf.org/rfc/rfc3979.txt
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://designtheory.org/library/encyc/topics/gf.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00231911
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00231911
http://dx.doi.org/10.1109/26.231911
http://www.ietf.org/rfc/rfc4443.txt
http://www.ietf.org/rfc/rfc4443.txt
http://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.23/cederqvist-1.11.23.pdf
http://ftp.gnu.org/non-gnu/cvs/source/stable/1.11.23/cederqvist-1.11.23.pdf
http://www.ietf.org/rfc/rfc2740.txt
http://www.ietf.org/rfc/rfc2740.txt
http://www.cl.cam.ac.uk/~jac22/out/mm.pdf
http://www.cl.cam.ac.uk/~jac22/out/mm.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4268132
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4268132
http://dx.doi.org/10.1109/COMSWA.2007.382489
http://dx.doi.org/10.1109/COMSWA.2007.382489

BIBLIOGRAPHY 205

[CJR+02] Phillip T. Conrad, Andreas Jungmaier, Christopher Ross, Woon-Chiat Sim, and Michael
Tüxen. Reliable IP Telephony Applications with SIP using RSerPool. In Proceedings
of the State Coverage Initiatives, Mobile/Wireless Computing and Communication Sys-
tems II, volume X, pages 352–356, Orlando, Florida/U.S.A., July 2002. ISBN 980-07-
8150-1. Available from: http://www.recursosvoip.com/docs/english/SCI2002 Reliable
IP Telephony with SIP and RSerPool 16 07 2002.pdf. 179

[CK74] Vinton G. Cerf and Robert E. Kahn. A Protocol for Packet Network Intercom-
munication. IEEE Transactions on Communications, 22(5):637–648, May 1974.
ISSN 0090-6778. Available from: http://www.cs.princeton.edu/courses/archive/fall06/
cos561/papers/cerf74.pdf, doi:10.1109/TCOM.1974.1092259. 14, 24, 37

[Cla08] Benoı̂t Claise. Specification of the IP Flow Information Export (IPFIX) Protocol.
Standards Track RFC 5101, IETF, January 2008. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc5101.txt. 65

[CMQ87] Smoot Carl-Mitchell and John S. Quarterman. Using ARP to Implement Transparent
Subnet Gateways. Standards Track RFC 1027, IETF, October 1987. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc1027.txt. 101

[CP10] Brian E. Carpenter and Craig Partridge. Internet Requests for Comments (RFCs) as
Scholarly Publications. ACM SIGCOMM Computer Communication Review, 40:31–33,
January 2010. ISSN 0146-4833. Available from: http://www.cs.auckland.ac.nz/∼brian/
RFCs-CCR-201001.pdf, doi:10.1145/1672308.1672315. 46

[CR09] Marta Carbone and Luigi Rizzo. Dummynet Revisited. Technical report, Di-
partimento di Ingegneria dell’Informazione, Università di Pisa, Pisa/Italy, May
2009. Available from: http://www.onelab.eu/images/PDFs/Scientific papers/OneLab2/
20090531-ccr-dummynet rizzo.pdf. 97, 100

[Cra10] Dick Crawford. gnuplot 4.4 – An Interactive Plotting Program, March 2010. Available
from: http://www.gnuplot.info/docs 4.4/gnuplot.pdf. 190

[CXSN04] Kai Chen, Yuan Xue, Samarth H. Shah, and Klara Nahrstedt. Understanding Bandwidth-
Delay Product in Mobile Ad Hoc Networks. Computer Communications, 27(1):923–
934, 2004. ISSN 0140-3664. Available from: http://eecs.vanderbilt.edu/people/
yuanxue/publication-files/comcom04-chen-understanding.pdf. 34

[DB10] Thomas Dreibholz and Martin Becke. The RSPLIB Project – From Research to Appli-
cation. Demo Presentation at the IEEE Global Communications Conference (GLOBE-
COM), December 2010. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/Globecom2010-Demo.pdf. 179

[DBA12] Thomas Dreibholz, Martin Becke, and Hakim Adhari. SCTP Socket API
Extensions for Concurrent Multipath Transfer. Internet Draft Version 03,
IETF, Network Working Group, March 2012. draft-dreibholz-tsvwg-sctpsocket-
multipath-03.txt, work in progress. Available from: http://tools.ietf.org/id/
draft-dreibholz-tsvwg-sctpsocket-multipath-03.txt. 152, 174

http://www.recursosvoip.com/docs/english/SCI2002_Reliable_IP_Telephony_with_SIP_and_RSerPool_16_07_2002.pdf
http://www.recursosvoip.com/docs/english/SCI2002_Reliable_IP_Telephony_with_SIP_and_RSerPool_16_07_2002.pdf
http://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
http://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf
http://dx.doi.org/10.1109/TCOM.1974.1092259
http://www.ietf.org/rfc/rfc5101.txt
http://www.ietf.org/rfc/rfc1027.txt
http://www.cs.auckland.ac.nz/~brian/RFCs-CCR-201001.pdf
http://www.cs.auckland.ac.nz/~brian/RFCs-CCR-201001.pdf
http://dx.doi.org/10.1145/1672308.1672315
http://www.onelab.eu/images/PDFs/Scientific_papers/OneLab2/20090531-ccr-dummynet_rizzo.pdf
http://www.onelab.eu/images/PDFs/Scientific_papers/OneLab2/20090531-ccr-dummynet_rizzo.pdf
http://www.gnuplot.info/docs_4.4/gnuplot.pdf
http://eecs.vanderbilt.edu/people/yuanxue/publication-files/comcom04-chen-understanding.pdf
http://eecs.vanderbilt.edu/people/yuanxue/publication-files/comcom04-chen-understanding.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/Globecom2010-Demo.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/Globecom2010-Demo.pdf
http://tools.ietf.org/id/draft-dreibholz-tsvwg-sctpsocket-multipath-03.txt
http://tools.ietf.org/id/draft-dreibholz-tsvwg-sctpsocket-multipath-03.txt

206 BIBLIOGRAPHY

[DBAR11a] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin Paul Rathgeb. Evaluation
of A New Multipath Congestion Control Scheme using the NetPerfMeter Tool-Chain. In
Proceedings of the 19th IEEE International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), Hvar/Croatia, September 2011. ISBN 978-
953-290-027-9. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/
I-TDR/SCTP/Paper/SoftCOM2011.pdf. 92, 171

[DBAR11b] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin Paul Rathgeb. On the
Impact of Congestion Control for Concurrent Multipath Transfer on the Transport
Layer. In Proceedings of the 11th IEEE International Conference on Telecommuni-
cations (ConTEL), pages 397–404, Graz/Austria, June 2011. ISBN 978-953-184-152-
8. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/
Paper/ConTEL2011.pdf. 154, 161, 164, 174, 181

[DBHR10] Thomas Dreibholz, Martin Becke, Christian Henke, and Erwin Paul Rathgeb. An Ap-
proach for Transferring an End-to-End Transport Service into a Functional Building
Block Structure. In Proceedings of the 5th GI/ITG KuVS Workshop on the Future In-
ternet, Stuttgart/Germany, June 2010. Available from: http://www.future-internet.org/
files/2010/Folien/Abstract Dreibholz2.pdf. 15, 103

[DBPR10a] Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, and Erwin Paul Rathgeb. Apply-
ing TCP-Friendly Congestion Control to Concurrent Multipath Transfer. In Proceed-
ings of the 24th IEEE International Conference on Advanced Information Networking
and Applications (AINA), pages 312–319, Perth/Australia, April 2010. ISSN 1550-
445X. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
SCTP/Paper/AINA2010.pdf, doi:10.1109/AINA.2010.117. 153, 174, 181

[DBPR10b] Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, and Erwin Paul Rathgeb.
Implementation and Evaluation of Concurrent Multipath Transfer for SCTP in
the INET Framework. In Proceedings of the 3rd ACM/ICST International
Workshop on OMNeT++, Torremolinos, Málaga/Spain, March 2010. ISBN
978-963-9799-87-5. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/SCTP/Paper/OMNeT Workshop2010-SCTP.pdf, doi:10.4108/
ICST.SIMUTOOLS2010.8673. 64, 70, 81, 83, 85, 90, 105, 171

[DBRT10] Thomas Dreibholz, Martin Becke, Erwin Paul Rathgeb, and Michael Tüxen. On
the Use of Concurrent Multipath Transfer over Asymmetric Paths. In Pro-
ceedings of the IEEE Global Communications Conference (GLOBECOM), Mi-
ami, Florida/U.S.A., December 2010. ISBN 978-1-4244-5637-6. Avail-
able from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/
Globecom2010.pdf, doi:10.1109/GLOCOM.2010.5683579. 105, 108, 113, 121,
126, 129, 132, 172, 181

[DC02] Carlo Demichelis and Philip Chimento. IP Packet Delay Variation Metric for IP Per-
formance Metrics (IPPM). Standards Track RFC 3393, IETF, November 2002. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc3393.txt. 23

[DCB+02] Bruce Davie, Anna Charny, Jon Bennett, Kent Benson, Jean-Yves Le Boudec, Bill
Courtney, Shahram Davari, Victor Firoiu, and Dimitrios Stiliadis. An Expedited For-

http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/SoftCOM2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/SoftCOM2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ConTEL2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/ConTEL2011.pdf
http://www.future-internet.org/files/2010/Folien/Abstract_Dreibholz2.pdf
http://www.future-internet.org/files/2010/Folien/Abstract_Dreibholz2.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/AINA2010.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/AINA2010.pdf
http://dx.doi.org/10.1109/AINA.2010.117
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-SCTP.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/OMNeT__Workshop2010-SCTP.pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8673
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8673
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/Globecom2010.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/Globecom2010.pdf
http://dx.doi.org/10.1109/GLOCOM.2010.5683579
http://www.ietf.org/rfc/rfc3393.txt

BIBLIOGRAPHY 207

warding PHB (Per-Hop Behavior). Standards Track RFC 3246, IETF, March 2002.
ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc3246.txt. 24

[DCC12] Thomas Dreibholz, Lode Coene, and Phillip T. Conrad. Reliable Server Pooling Appli-
cability for IP Flow Information Exchange. Internet Draft Version 13, IETF, Individual
Submission, January 2012. draft-coene-rserpool-applic-ipfix-13.txt, work in progress.
Available from: http://tools.ietf.org/id/draft-coene-rserpool-applic-ipfix-13.txt. 179

[DG96] L. Peter Deutsch and Jean-Loup Gailly. ZLIB Compressed Data Format Specification
version 3.3. Informational RFC 1950, IETF, May 1996. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc1950.txt. 26

[DH98] Stephen E. Deering and Robert M. Hinden. Internet Protocol, Version 6 (IPv6). Stan-
dards Track RFC 2460, IETF, December 1998. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc2460.txt. 24, 47

[DJT03] Thomas Dreibholz, Andreas Jungmaier, and Michael Tüxen. A New Scheme for
IP-based Internet Mobility. In Proceedings of the 28th IEEE Local Computer
Networks Conference (LCN), pages 99–108, Königswinter/Germany, October 2003.
ISBN 0-7695-2037-5. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/LCN2003.pdf, doi:10.1109/LCN.
2003.1243117. 179

[dLB06] Cédric de Launois and Marcelo Bagnulo. The Paths towards IPv6 Multihom-
ing. IEEE Communications Surveys and Tutorials, 8(2):38–51, 2006. ISSN 1553-
877X. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.
5621&rep=rep1&type=pdf, doi:10.1109/COMST.2006.315853. 75

[DM09] Thomas Dreibholz and Jaiwant Mulik. Reliable Server Pooling MIB Module Definition.
RFC 5525, IETF, April 2009. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc5525.txt. 65

[DP88] Willibald Dörfler and Werner Peschek. Einführung in die Mathematik für Informatiker.
Hanser Fachbuchverlag, Wien/Austria, July 1988. ISBN 978-3446151123. 5

[DP12] Thomas Dreibholz and Jobin Pulinthanath. Applicability of Reliable Server Pooling for
SCTP-Based Endpoint Mobility. Internet Draft Version 11, IETF, Individual Submis-
sion, January 2012. draft-dreibholz-rserpool-applic-mobility-11.txt, work in progress.
Available from: http://tools.ietf.org/id/draft-dreibholz-rserpool-applic-mobility-11.txt.
179

[DR05] Thomas Dreibholz and Erwin Paul Rathgeb. On the Performance of Reliable Server
Pooling Systems. In Proceedings of the IEEE Conference on Local Computer Net-
works (LCN) 30th Anniversary, pages 200–208, Sydney/Australia, November 2005.
ISBN 0-7695-2421-4. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/LCN2005.pdf, doi:10.1109/LCN.
2005.98. 178, 179, 187

[DR07] Thomas Dreibholz and Erwin Paul Rathgeb. On Improving the Performance of
Reliable Server Pooling Systems for Distance-Sensitive Distributed Applications.

http://www.ietf.org/rfc/rfc3246.txt
http://tools.ietf.org/id/draft-coene-rserpool-applic-ipfix-13.txt
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2003.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2003.pdf
http://dx.doi.org/10.1109/LCN.2003.1243117
http://dx.doi.org/10.1109/LCN.2003.1243117
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.5621&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.5621&rep=rep1&type=pdf
http://dx.doi.org/10.1109/COMST.2006.315853
http://www.ietf.org/rfc/rfc5525.txt
http://www.ietf.org/rfc/rfc5525.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-applic-mobility-11.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2005.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2005.pdf
http://dx.doi.org/10.1109/LCN.2005.98
http://dx.doi.org/10.1109/LCN.2005.98

208 BIBLIOGRAPHY

In Proceedings of the 15. ITG/GI Fachtagung Kommunikation in Verteilten Sys-
temen (KiVS), Informatik aktuell, pages 39–50, Bern/Switzerland, February 2007.
Springer. ISBN 978-3-540-69962-0. Available from: http://www.tdr.wiwi.uni-due.
de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/KiVS2007.pdf, doi:10.
1007/978-3-540-69962-0_4. 63, 178

[DR08a] Thomas Dreibholz and Erwin Paul Rathgeb. A Powerful Tool-Chain for Setup, Dis-
tributed Processing, Analysis and Debugging of OMNeT++ Simulations. In Proceedings
of the 1st ACM/ICST International Workshop on OMNeT++, Marseille/France, March
2008. ISBN 978-963-9799-20-2. Available from: http://www.tdr.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeTWorkshop2008.pdf,
doi:10.4108/ICST.SIMUTOOLS2008.2990. 179, 181

[DR08b] Thomas Dreibholz and Erwin Paul Rathgeb. An Evaluation of the Pool Maintenance
Overhead in Reliable Server Pooling Systems. SERSC International Journal on Hybrid
Information Technology (IJHIT), 1(2):17–32, April 2008. ISSN 1738-9968. Avail-
able from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/
Publications/IJHIT2008.pdf. 65, 178, 187

[DR08c] Thomas Dreibholz and Erwin Paul Rathgeb. Towards the Future Internet – An Overview
of Challenges and Solutions in Research and Standardization. In Proceedings of
the 2nd GI/ITG KuVS Workshop on the Future Internet, Karlsruhe/Germany, Novem-
ber 2008. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
ReliableServer/Publications/FutureInternet2008.pdf. 1, 4, 15, 65

[DR09] Thomas Dreibholz and Erwin Paul Rathgeb. Overview and Evaluation of the Server Re-
dundancy and Session Failover Mechanisms in the Reliable Server Pooling Framework.
International Journal on Advances in Internet Technology (IJAIT), 2(1):1–14, June
2009. ISSN 1942-2652. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/IJAIT2009.pdf. 1, 14, 65, 177, 179, 181,
187

[DRB+07] Rudra Dutta, George N. Rouskas, Ilia Baldine, Arnold Bragg, and Dan Stevenson.
The SILO Architecture for Services Integration, controL, and Optimization for the
Future Internet. In Proceedings of the IEEE International Conference on Commu-
nications, pages 1899–1904, Glasgow/United Kingdom, June 2007. ISBN 1-4244-
0353-7. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.
3035&rep=rep1&type=pdf, doi:10.1109/ICC.2007.316. 15

[Dre01] Thomas Dreibholz. Management of Layered Variable Bitrate Multimedia Streams
over DiffServ with Apriori Knowledge. Masters thesis, University of Bonn, Institute
for Computer Science, February 2001. Available from: http://www.iem.uni-due.de/
∼dreibh/diplom/Thesis.pdf. 19, 24, 92

[Dre02] Thomas Dreibholz. An Efficient Approach for State Sharing in Server
Pools. In Proceedings of the 27th IEEE Local Computer Networks Confer-
ence (LCN), pages 348–349, Tampa, Florida/U.S.A., November 2002. ISBN
0-7695-1591-6. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/StateSharing-Paper-ShortVersion.pdf,
doi:10.1109/LCN.2002.1181806. 179

http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/KiVS2007.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/KiVS2007.pdf
http://dx.doi.org/10.1007/978-3-540-69962-0_4
http://dx.doi.org/10.1007/978-3-540-69962-0_4
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeTWorkshop2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeTWorkshop2008.pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.2990
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJHIT2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJHIT2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/FutureInternet2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/FutureInternet2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJAIT2009.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJAIT2009.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.3035&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.3035&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICC.2007.316
http://www.iem.uni-due.de/~dreibh/diplom/Thesis.pdf
http://www.iem.uni-due.de/~dreibh/diplom/Thesis.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/StateSharing-Paper-ShortVersion.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/StateSharing-Paper-ShortVersion.pdf
http://dx.doi.org/10.1109/LCN.2002.1181806

BIBLIOGRAPHY 209

[Dre05] Thomas Dreibholz. Das rsplib–Projekt – Hochverfügbarkeit mit Reliable Server
Pooling. In Proceedings of the LinuxTag, Karlsruhe/Germany, June 2005. Avail-
able from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/
Publications/LinuxTag2005.pdf. 186

[Dre07] Thomas Dreibholz. Reliable Server Pooling – Evaluation, Optimization and Exten-
sion of a Novel IETF Architecture. PhD thesis, University of Duisburg-Essen, Fac-
ulty of Economics, Institute for Computer Science and Business Information Sys-
tems, March 2007. Available from: http://duepublico.uni-duisburg-essen.de/servlets/
DerivateServlet/Derivate-16326/Dre2006-final.pdf. 14, 46, 65, 78, 177, 178, 179, 186

[Dre11] Thomas Dreibholz. Server-Redundanz und Lastverteilung einfach in eigene Anwendun-
gen integrieren – mit Reliable Server Pooling und RSPLIB. In Proceedings of the Lin-
uxTag, Berlin/Germany, May 2011. Available from: http://www.tdr.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/ReliableServer/Publications/LinuxTag2011.pdf. 65, 177,
179, 186, 188

[Dre12a] Thomas Dreibholz. An IPv4 Flowlabel Option. Internet Draft Version 15, IETF, Individ-
ual Submission, January 2012. draft-dreibholz-ipv4-flowlabel-15.txt, work in progress.
Available from: http://tools.ietf.org/id/draft-dreibholz-ipv4-flowlabel-15.txt. 24

[Dre12b] Thomas Dreibholz. Applicability of Reliable Server Pooling for Real-Time Distributed
Computing. Internet Draft Version 12, IETF, Individual Submission, January 2012.
draft-dreibholz-rserpool-applic-distcomp-12.txt, work in progress. Available from: http:
//tools.ietf.org/id/draft-dreibholz-rserpool-applic-distcomp-12.txt. 179

[Dre12c] Thomas Dreibholz. Handle Resolution Option for ASAP. Internet Draft Ver-
sion 10, IETF, Individual Submission, January 2012. draft-dreibholz-rserpool-
asap-hropt-10.txt, work in progress. Available from: http://tools.ietf.org/id/
draft-dreibholz-rserpool-asap-hropt-10.txt. 178

[DRS+11] Thomas Dreibholz, Irene Rüngeler, Robin Seggelmann, Michael Tüxen, Erwin Paul
Rathgeb, and Randall R. Stewart. Stream Control Transmission Protocol: Past,
Current, and Future Standardization Activities. IEEE Communications Magazine,
49(4):82–88, April 2011. ISSN 0163-6804. Available from: http://www.tdr.
wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/CommMag2011.pdf, doi:
10.1109/MCOM.2011.5741151. 4, 51, 61, 63, 65, 79, 89, 104, 153, 174, 181

[DRZ08] Thomas Dreibholz, Erwin Paul Rathgeb, and Xing Zhou. On Robustness and Counter-
measures of Reliable Server Pooling Systems against Denial of Service Attacks. In
Proceedings of the 7th International IFIP Networking Conference, volume 4982 of
Lecture Notes in Computer Science, pages 586–598, Singapore, May 2008. Springer.
ISBN 978-3-540-79548-3. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/Networking2008.pdf, doi:10.1007/
978-3-540-79549-0_51. 181

[DSB12] Thomas Dreibholz, Robin Seggelmann, and Martin Becke. Sender Queue Info Option
for the SCTP Socket API. Internet Draft Version 03, IETF, Network Working Group,

http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LinuxTag2005.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LinuxTag2005.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-16326/Dre2006-final.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-16326/Dre2006-final.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LinuxTag2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LinuxTag2011.pdf
http://tools.ietf.org/id/draft-dreibholz-ipv4-flowlabel-15.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-applic-distcomp-12.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-applic-distcomp-12.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-asap-hropt-10.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-asap-hropt-10.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/CommMag2011.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/CommMag2011.pdf
http://dx.doi.org/10.1109/MCOM.2011.5741151
http://dx.doi.org/10.1109/MCOM.2011.5741151
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/Networking2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/Networking2008.pdf
http://dx.doi.org/10.1007/978-3-540-79549-0_51
http://dx.doi.org/10.1007/978-3-540-79549-0_51

210 BIBLIOGRAPHY

March 2012. draft-dreibholz-tsvwg-sctpsocket-sqinfo-03.txt, work in progress. Avail-
able from: http://tools.ietf.org/id/draft-dreibholz-tsvwg-sctpsocket-sqinfo-03.txt. 145,
174

[DSTR10] Thomas Dreibholz, Robin Seggelmann, Michael Tüxen, and Erwin Paul Rathgeb. Trans-
mission Scheduling Optimizations for Concurrent Multipath Transfer. In Proceedings
of the 8th International Workshop on Protocols for Future, Large-Scale and Diverse
Network Transports (PFLDNeT), volume 8, Lancaster, Pennsylvania/U.S.A., Novem-
ber 2010. ISSN 2074-5168. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/SCTP/Paper/PFLDNeT2010.pdf. 144, 173, 181

[DSV00] Thomas Dreibholz, Jan Selzer, and Simon Vey. Echtzeit-Audioübertragung mit QoS-
Management in einem DiffServ-Szenario. Projektseminararbeit, Universität Bonn, In-
stitut für Informatik, August 2000. Available from: http://www.iem.uni-due.de/∼dreibh/
rn/Bericht.pdf. 24

[DT03] Thomas Dreibholz and Michael Tüxen. High Availability using Reliable Server Pool-
ing. In Proceedings of the Linux Conference Australia (LCA), Perth/Australia, January
2003. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/
ReliableServer/Publications/RSerPool-Paper.pdf. 186

[DT08] Thomas Dreibholz and Michael Tüxen. Reliable Server Pooling Policies. RFC 5356,
IETF, September 2008. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc5356.txt. 65, 178

[DV06] Petar Djukić and Shahrokh Valaee. Reliable Packet Transmissions in Multipath Routed
Wireless Networks. IEEE Transactions on Mobile Computing, 5(5):548–559, May
2006. ISSN 1536-1233. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.61.5646&rep=rep1&type=pdf, doi:10.1109/TMC.2006.72. 68

[DWPW07] Yu Dong, Dingding Wang, Niki Pissinou, and Jian Wang. Multi-Path Load Balanc-
ing in Transport Layer. In Proceedings of the 3rd IEEE EuroNGI Conference on Next
Generation Internet Networks, pages 135–142, Trondheim/Norway, May 2007. ISBN
1-4244-0857-1. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
4231831, doi:10.1109/NGI.2007.371208. 1

[DZ12a] Thomas Dreibholz and Xing Zhou. Definition of a Delay Measurement Infras-
tructure and Delay-Sensitive Least-Used Policy for Reliable Server Pooling. Inter-
net Draft Version 09, IETF, Individual Submission, January 2012. draft-dreibholz-
rserpool-delay-09.txt, work in progress. Available from: http://tools.ietf.org/id/
draft-dreibholz-rserpool-delay-09.txt. 178

[DZ12b] Thomas Dreibholz and Xing Zhou. Takeover Suggestion Flag for the ENRP Handle
Update Message. Internet Draft Version 07, IETF, Individual Submission, January 2012.
draft-dreibholz-rserpool-enrp-takeover-07.txt, work in progress. Available from: http:
//tools.ietf.org/id/draft-dreibholz-rserpool-enrp-takeover-07.txt. 178

[DZB+10] Thomas Dreibholz, Xing Zhou, Martin Becke, Jobin Pulinthanath, Erwin Paul Rathgeb,
and Wencai Du. On the Security of Reliable Server Pooling Systems. Interna-
tional Journal on Intelligent Information and Database Systems (IJIIDS), 4(6):552–
578, December 2010. ISSN 1751-5858. Available from: http://www.tdr.wiwi.uni-due.

http://tools.ietf.org/id/draft-dreibholz-tsvwg-sctpsocket-sqinfo-03.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PFLDNeT2010.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/SCTP/Paper/PFLDNeT2010.pdf
http://www.iem.uni-due.de/~dreibh/rn/Bericht.pdf
http://www.iem.uni-due.de/~dreibh/rn/Bericht.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/RSerPool-Paper.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/RSerPool-Paper.pdf
http://www.ietf.org/rfc/rfc5356.txt
http://www.ietf.org/rfc/rfc5356.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5646&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5646&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TMC.2006.72
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4231831
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4231831
http://dx.doi.org/10.1109/NGI.2007.371208
http://tools.ietf.org/id/draft-dreibholz-rserpool-delay-09.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-delay-09.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-enrp-takeover-07.txt
http://tools.ietf.org/id/draft-dreibholz-rserpool-enrp-takeover-07.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJIIDS2010.pdf

BIBLIOGRAPHY 211

de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJIIDS2010.pdf, doi:10.
1504/IJIIDS.2010.036894. 63, 179, 181

[DZR09] Thomas Dreibholz, Xing Zhou, and Erwin Paul Rathgeb. SimProcTC – The Design and
Realization of a Powerful Tool-Chain for OMNeT++ Simulations. In Proceedings of the
2nd ACM/ICST International Workshop on OMNeT++, pages 1–8, Rome/Italy, March
2009. ISBN 978-963-9799-45-5. Available from: http://www.tdr.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeT Workshop2009.pdf,
doi:10.4108/ICST.SIMUTOOLS2009.5517. 88, 171, 181, 189, 192

[DZT06] Peter Dimopoulos, Panlop Zeephongsekul, and Zahir Tari. Multipath Aware
TCP (MATCP). In Proceedings of the 11th IEEE Symposium on Computers and
Communications (ISCC), pages 981–988, Pula-Cagliari, Sardinia/Italy, June 2006.
ISBN 0-7695-2588-1. Available from: http://researchbank.rmit.edu.au/eserv/rmit:1475/
n2006000053.pdf, doi:10.1109/ISCC.2006.105. 68

[EAN+11] Nasif Ekiz, Paul D. Amer, Preethi Natarajan, Randall R. Stewart, and Janardhan R.
Iyengar. Non-Renegable Selective Acknowledgements (NR-SACKs) for SCTP. Inter-
net Draft Version 08, IETF, Network Working Group, August 2011. draft-natarajan-
tsvwg-sctp-nrsack-08, work in progress. Available from: http://tools.ietf.org/id/
draft-natarajan-tsvwg-sctp-nrsack-08.txt. 61

[Eat11] John W. Eaton. GNU Octave, 2011. Available from: http://www.gnu.org/software/
octave/doc/interpreter/. 190

[EB96] Robert Elz and Randy Bush. Serial Number Arithmetic. Informational RFC 1982, IETF,
August 1996. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc1982.txt. 28

[Edd07] Wesley M. Eddy. TCP SYN Flooding Attacks and Common Mitigations. Informational
RFC 4987, IETF, August 2007. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc4987.txt. 53

[EF94] Kjeld Borch Egevang and Paul Francis. The IP Network Address Translator (NAT).
Informational RFC 1631, IETF, May 1994. ISSN 2070-1721. Available from: http:
//www.ietf.org/rfc/rfc1631.txt. 74

[EJ01] Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1 (SHA1). In-
formational RFC 3174, IETF, September 2001. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc3174.txt. 184, 186

[FGM+99] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Mas-
inter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
Standards Track RFC 2616, IETF, June 1999. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc2616.txt. 49

[Fis00] Eric Fischer. The Evolution of Character Codes, 1874-1968, 2000. Available from: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.678&rep=rep1&type=pdf. 14

[FJ93] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993. ISSN 1063-
6692. Available from: http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.128.
5092&rep=rep1&type=pdf, doi:10.1109/90.251892. 23, 105

http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJIIDS2010.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/IJIIDS2010.pdf
http://dx.doi.org/10.1504/IJIIDS.2010.036894
http://dx.doi.org/10.1504/IJIIDS.2010.036894
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeT__Workshop2009.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/OMNeT__Workshop2009.pdf
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5517
http://researchbank.rmit.edu.au/eserv/rmit:1475/n2006000053.pdf
http://researchbank.rmit.edu.au/eserv/rmit:1475/n2006000053.pdf
http://dx.doi.org/10.1109/ISCC.2006.105
http://tools.ietf.org/id/draft-natarajan-tsvwg-sctp-nrsack-08.txt
http://tools.ietf.org/id/draft-natarajan-tsvwg-sctp-nrsack-08.txt
http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/
http://www.ietf.org/rfc/rfc1982.txt
http://www.ietf.org/rfc/rfc4987.txt
http://www.ietf.org/rfc/rfc4987.txt
http://www.ietf.org/rfc/rfc1631.txt
http://www.ietf.org/rfc/rfc1631.txt
http://www.ietf.org/rfc/rfc3174.txt
http://www.ietf.org/rfc/rfc2616.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.678&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.678&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5092&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.128.5092&rep=rep1&type=pdf
http://dx.doi.org/10.1109/90.251892

212 BIBLIOGRAPHY

[FJQ+08] Sheila Fallon, Paul Jacob, Yuansong Qiao, Liam Murphy, Enda Fallon, and
Austin Hanley. SCTP Switchover Performance Issues in WLAN Environ-
ments. In Proceedings of the 5th IEEE Consumer Communications and Net-
working Conference (CCNC 2008), pages 564–568, January 2008. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.7424&rep=
rep1&type=pdf, doi:10.1109/CCNC08.2007.131. 63

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration. Grid
Service Infrastructure WG, Global Grid Forum, June 2002. Available from: http://www.
globus.org/alliance/publications/papers/ogsa.pdf. 178

[Flo97] Sally Floyd. RED: Discussions of Setting Parameters, November 1997. Available from:
http://icir.org/floyd/REDparameters.txt. 23, 105, 161

[For88] Chuck Forsberg. The ZMODEM Inter Application File Transfer Protocol, October 1988.
Available from: http://gallium.inria.fr/∼doligez/zmodem/zmodem.txt. 18

[Fos02] Ian Foster. What is the Grid? A Three Point Checklist. GRID Today, July 2002. Avail-
able from: http://dlib.cs.odu.edu/WhatIsTheGrid.pdf. 178

[Fre11] FreeBSD Documentation Project. FreeBSD Handbook, 2011. Available from: ftp:
//ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2. 90

[FRH+11] Alan Ford, Costin Raiciu, Mark Handley, Sébastien Barré, and Janardhan R. Iyengar.
Architectural Guidelines for Multipath TCP Development. Informational RFC 6182,
IETF, March 2011. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc6128.
txt. 2, 74

[FRHB11] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. Internet Draft Version 04, IETF, In-
dividual Submission, July 2011. draft-ietf-mptcp-multiaddressed-04, work in progress.
Available from: http://tools.ietf.org/id/draft-ietf-mptcp-multiaddressed-04.txt. 74

[FV10] Kevin Fall and Kannan Varadhan. The NS Manual, May 2010. Available from: http:
//www.isi.edu/nsnam/ns/doc/ns doc.pdf. 77

[Get11a] Jim Gettys. Bufferbloat – Dark Buffers in the Internet, January 2011. Available from:
http://www.bufferbloat.net/attachments/9/BufferBloat11.pdf. 116, 161

[Get11b] Jim Gettys. What is Bufferbloat, Anyway?, 2011. Available from: http://gettys.
wordpress.com/what-is-bufferbloat-anyway/. 116, 161

[GKT00] Klaus D. Gradischnig, Stefan Krämer, and Michael Tüxen. Loadsharing – A Key to
the Reliability of SS7-Networks. In Proceedings of the Second International Work-
shop on the Design of Reliable Communication Networks (DRCN), pages 216–221, Mu-
nich/Germany, April 2000. ISBN 3896759280. Available from: http://www.sctp.de/
papers/drcn2000.pdf. 151

[Got10] Aitor Goti. Discrete Event Simulations. Sciyo, Rijeka/Croatia, August 2010. ISBN
978-953-307-115-2. Available from: http://www.intechopen.com/books/show/title/
discrete-event-simulations. 78

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.7424&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.7424&rep=rep1&type=pdf
http://dx.doi.org/10.1109/CCNC08.2007.131
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://icir.org/floyd/REDparameters.txt
http://gallium.inria.fr/~doligez/zmodem/zmodem.txt
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
ftp://ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2
ftp://ftp.freebsd.org/pub/FreeBSD/doc/en/books/handbook/book.pdf.bz2
http://www.ietf.org/rfc/rfc6128.txt
http://www.ietf.org/rfc/rfc6128.txt
http://tools.ietf.org/id/draft-ietf-mptcp-multiaddressed-04.txt
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.bufferbloat.net/attachments/9/BufferBloat11.pdf
http://gettys.wordpress.com/what-is-bufferbloat-anyway/
http://gettys.wordpress.com/what-is-bufferbloat-anyway/
http://www.sctp.de/papers/drcn2000.pdf
http://www.sctp.de/papers/drcn2000.pdf
http://www.intechopen.com/books/show/title/discrete-event-simulations
http://www.intechopen.com/books/show/title/discrete-event-simulations

BIBLIOGRAPHY 213

[Gro02] Dan Grossman. New Terminology and Clarifications for DiffServ. Informational RFC
3260, IETF, April 2002. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc3260.txt. 24

[HAN02] Thomas J. Hacker, Brian D. Athey, and Brian Noble. The End-to-End Performance
Effects of Parallel TCP Sockets on a Lossy Wide-Area Network. In Proceedings of
the 16th International Parallel and Distributed Processing Symposium (IPDPS), Fort
Lauderdale, Florida/U.S.A., 2002. ISBN 0-7695-1573-8. Available from: http://citeseer.
ist.psu.edu/viewdoc/download?doi=10.1.1.22.5958&rep=rep1&type=pdf. 69

[HBWW99] Juha Heinanen, Fred Baker, Walter Weiss, and John Wroclawski. Assured Forwarding
PHB Group. Standards Track RFC 2597, IETF, June 1999. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc2597.txt. 24

[HBZ07] Jogi Hofmüller, Aaron Bachmann, and Iohannes Zmoelnig. The Transmission of IP
Datagrams over the Semaphore Flag Signaling System (SFSS). Informational RFC
4824, IETF, April 2007. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc4824.txt. 47

[HDU12] Carsten Hohendorf, Thomas Dreibholz, and Esbold Unurkhaan. Secure SCTP.
Internet Draft Version 13, IETF, Individual Submission, January 2012. draft-
hohendorf-secure-sctp-13.txt, work in progress. Available from: http://tools.ietf.org/
id/draft-hohendorf-secure-sctp-13.txt. 62

[Hem05] Stephen Hemminger. Network Emulation with NetEm. In Proceedings of the Linux
Conference Australia (LCA), Canberra/Australia, April 2005. Available from: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf. 100

[HG02] Ibrahim F. Haddad and David Gordon. Network Simulator 2: A Simulation Tool for
Linux. Linux Journal, October 2002. Available from: http://www.linuxjournal.com/
node/5929/print. 77

[HH06] Paul Hoffman and Susan Harris. The Tao of IETF: A Novice’s Guide to the Internet
Engineering Task Force. Informational RFC 4677, IETF, September 2006. ISSN 2070-
1721. Available from: http://www.ietf.org/rfc/rfc4677.txt. 43

[Hic11] Ian Hickson. HTML5 – A Vocabulary and Associated APIs for HTML and XHTML.
Working draft, W3C, April 2011. work in progress. Available from: http://www.w3.
org/TR/2011/WD-html5-20110405/Overview.html. 49

[Hop00] Christian E. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. Informational
RFC 2992, IETF, November 2000. ISSN 2070-1721. Available from: http://www.ietf.
org/rfc/rfc2992.txt. 68

[HŘS+06] Petr Hlávka, Vojtěch Řehák, Aleš Smrčka, David Šafránek, Pavel Šimeček, and Tomáš
Vojnar. Formal Verification of the CRC Algorithm Properties. In Second Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS),
pages 55–62, 2006. ISBN 80-214-3287-X. Available from: http://www.fit.vutbr.cz/
∼smrcka/pub/fmcrc-MEMICS06.pdf. 27

http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc3260.txt
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5958&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.22.5958&rep=rep1&type=pdf
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc4824.txt
http://www.ietf.org/rfc/rfc4824.txt
http://tools.ietf.org/id/draft-hohendorf-secure-sctp-13.txt
http://tools.ietf.org/id/draft-hohendorf-secure-sctp-13.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.1687&rep=rep1&type=pdf
http://www.linuxjournal.com/node/5929/print
http://www.linuxjournal.com/node/5929/print
http://www.ietf.org/rfc/rfc4677.txt
http://www.w3.org/TR/2011/WD-html5-20110405/Overview.html
http://www.w3.org/TR/2011/WD-html5-20110405/Overview.html
http://www.ietf.org/rfc/rfc2992.txt
http://www.ietf.org/rfc/rfc2992.txt
http://www.fit.vutbr.cz/~smrcka/pub/fmcrc-MEMICS06.pdf
http://www.fit.vutbr.cz/~smrcka/pub/fmcrc-MEMICS06.pdf

214 BIBLIOGRAPHY

[HRUT07] Carsten Hohendorf, Erwin Paul Rathgeb, Esbold Unurkhaan, and Michael Tüxen. Se-
cure End-to-End Transport Over SCTP. Journal of Computers, 2(4):31–40, June 2007.
ISSN 1796-203X. Available from: http://www.academypublisher.com/jcp/vol02/no04/
jcp02043140.html. 62

[HS02] Hung-Yun Hsieh and Raghupathy Sivakumar. pTCP: An End-to-End Transport Layer
Protocol for Striped Connections. In Proceedings of the 10th IEEE International Confer-
ence on Network Protocols (ICNP), pages 24–33, Paris/France, November 2002. ISBN
0-7695-1856-7. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.3.396&rep=rep1&type=pdf, doi:10.1109/ICNP.2002.1181383. 68, 70

[IAS05] Janardhan R. Iyengar, Paul Amer, and Randall Stewart. Receive Buffer Blocking in
Concurrent Multipath Transfer. In Proceedings of the IEEE GLOBECOM, pages 121–
126, St. Louis, Missouri/U.S.A., November 2005. ISBN 978-1-4244-1707-0. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.7496&rep=
rep1&type=pdf, doi:10.1109/GLOCOM.2005.1577365. 112

[IAS06] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart. Concurrent Multipath
Transfer using SCTP Multihoming over Independent End-to-End Paths. IEEE/ACM
Transactions on Networking, 14(5):951–964, October 2006. ISSN 1063-6692. Avail-
able from: http://www.fandm.edu/jiyengar/papers/cmt-ton2006.pdf, doi:10.1109/
TNET.2006.882843. 2, 70, 81, 89, 90, 103, 104, 105, 126, 151, 172, 174

[ITU93] ITU-T. Introduction to CCITT Signalling System No. 7. Recommendation Q.700,
International Telecommunication Union, March 1993. Available from: http://www.item.
ntnu.no/fag/ttm4130/stottelitteratur/T-REC-Q.700.pdf. 65

[ITU94] ITU-T. Open Systems Interconnection – Base Reference Model. Recommen-
tation X.200, International Telecommunication Union, August 1994. Available
from: http://www.itu.int/rec/dologin pub.asp?lang=e&id=T-REC-X.200-199407-I!
!PDF-E&type=items. 11, 13

[JB88] Van Jacobson and Robert Braden. TCP Extensions for Long-Delay Paths. Standards
Track RFC 1072, IETF, October 1988. ISSN 2070-1721. Available from: http://www.
ietf.org/rfc/rfc1072.txt. 34

[JBB92] Van Jacobson, Robert Braden, and David A. Borman. TCP Extensions for High Perfor-
mance. Informational RFC 1323, IETF, May 1992. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc1323.txt. 69

[JDS06] JDSU. ADSL Technology – Overview, Line Qualification and Service Turn-up. Vi-
enna/Austria, April 2006. Available from: http://www.jdsu.com/ProductLiterature/
ADSL Technology White Paper.pdf. 42

[JK88] Van Jacobson and Michael J. Karels. Congestion Avoidance and Control. ACM SIG-
COMM Computer Communication Review, 18:314–329, August 1988. ISSN 0146-
4833. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.
3262&rep=rep1&type=pdf, doi:10.1145/52325.52356. 37, 41

http://www.academypublisher.com/jcp/vol02/no04/jcp02043140.html
http://www.academypublisher.com/jcp/vol02/no04/jcp02043140.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.396&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.396&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICNP.2002.1181383
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.7496&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.7496&rep=rep1&type=pdf
http://dx.doi.org/10.1109/GLOCOM.2005.1577365
http://www.fandm.edu/jiyengar/papers/cmt-ton2006.pdf
http://dx.doi.org/10.1109/TNET.2006.882843
http://dx.doi.org/10.1109/TNET.2006.882843
http://www.item.ntnu.no/fag/ttm4130/stottelitteratur/T-REC-Q.700.pdf
http://www.item.ntnu.no/fag/ttm4130/stottelitteratur/T-REC-Q.700.pdf
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.ietf.org/rfc/rfc1072.txt
http://www.ietf.org/rfc/rfc1072.txt
http://www.ietf.org/rfc/rfc1323.txt
http://www.jdsu.com/ProductLiterature/ADSL_Technology_White_Paper.pdf
http://www.jdsu.com/ProductLiterature/ADSL_Technology_White_Paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.3262&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.3262&rep=rep1&type=pdf
http://dx.doi.org/10.1145/52325.52356

BIBLIOGRAPHY 215

[JNM+04] Petri Jokela, Pekka Nikander, Jan Melen, Jukka Ylitalo, and Jorma Wall. Host Iden-
tity Protocol. In Proceedings of the Wireless World Research Forum (WWRF), Bei-
jing/People’s Republic of China, February 2004. Available from: http://www.jokela.
org/publications/wwrf8bis.pdf. 75

[JR06] Andreas Jungmaier and Erwin Paul Rathgeb. On SCTP Multi-Homing Perfor-
mance. Telecommunication Systems, 31(2-3):141–161, March 2006. ISSN 1018-4864.
Available from: http://www.springerlink.com/content/m44421l644h30510/fulltext.pdf,
doi:10.1007/s11235-006-6517-7. 2

[JRT02] Andreas Jungmaier, E. P Rathgeb, and Michael Tüxen. On the Use of SCTP in Failover-
Scenarios. In Proceedings of the State Coverage Initiatives, Mobile/Wireless Computing
and Communication Systems II, volume X, pages 363–368, Orlando, Florida/U.S.A.,
July 2002. ISBN 980-07-8150-1. Available from: http://tdrwww.iem.uni-due.de/inhalt/
forschung/sctp fb/sctp-failover.pdf. 1, 63, 151

[Jun05] Andreas Jungmaier. Das Transportprotokoll SCTP. PhD thesis, Universität Duisburg-
Essen, Institut für Experimentelle Mathematik, August 2005. Available from:
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-13244/
dissertation jungmaier.pdf. 2, 65, 77

[KHF06] Eddie Kohler, Mark Handley, and Sally Floyd. Datagram Congestion Control Proto-
col (DCCP). Standards Track RFC 4340, IETF, March 2006. ISSN 2070-1721. Avail-
able from: http://www.ietf.org/rfc/rfc4340.txt. 48, 54, 92, 96

[Koo02] Philip Koopman. 32-Bit Cyclic Redundancy Codes for Internet Applications. In
Proceedings of the IEEE International Conference on Dependable Systems and Net-
works (DSN), pages 459–472, Washington, DC/U.S.A., June 2002. ISBN 0-7695-
1597-5. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.
8323&rep=rep1&type=pdf. 27

[KP91] Phil Karn and Craig Partridge. Improving Round-Trip Time Estimates in Reliable Trans-
port Protocols. ACM Transactions on Computer Systems (TOCS), 9:364–373, November
1991. ISSN 0734-2071. Available from: http://citeseer.ist.psu.edu/viewdoc/download?
doi=10.1.1.122.7350&rep=rep1&type=pdf, doi:10.1145/55482.55484. 41

[KR08] James Kurose and Keith Ross. Computernetzwerke: Der Top-Down-Ansatz. Pearson
Studium, 2008. ISBN 978-3827373304. 23, 42, 43, 48, 49, 50, 69, 85

[Kuz05] Aleksandar Kuzmanović. The Power of Explicit Congestion Notification. ACM SIG-
COMM Computer Communication Review, 35:61–72, October 2005. ISSN 0146-
4833. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.
793&rep=rep1&type=pdf, doi:10.1145/1090191.1080100. 41

[Lah00] Kevin Lahey. TCP Problems with Path MTU Discovery. Informational RFC 2923, IETF,
September 2000. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2923.txt.
48

[LOTD08] Peter Lei, Lyndon Ong, Michael Tüxen, and Thomas Dreibholz. An Overview of Reli-
able Server Pooling Protocols. Informational RFC 5351, IETF, September 2008. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc5351.txt. 1, 65, 177

http://www.jokela.org/publications/wwrf8bis.pdf
http://www.jokela.org/publications/wwrf8bis.pdf
http://www.springerlink.com/content/m44421l644h30510/fulltext.pdf
http://dx.doi.org/10.1007/s11235-006-6517-7
http://tdrwww.iem.uni-due.de/inhalt/forschung/sctp_fb/sctp-failover.pdf
http://tdrwww.iem.uni-due.de/inhalt/forschung/sctp_fb/sctp-failover.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-13244/dissertation_jungmaier.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-13244/dissertation_jungmaier.pdf
http://www.ietf.org/rfc/rfc4340.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8323&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.8323&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.122.7350&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.122.7350&rep=rep1&type=pdf
http://dx.doi.org/10.1145/55482.55484
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.793&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.793&rep=rep1&type=pdf
http://dx.doi.org/10.1145/1090191.1080100
http://www.ietf.org/rfc/rfc2923.txt
http://www.ietf.org/rfc/rfc5351.txt

216 BIBLIOGRAPHY

[LSW12] Ulf Lamping, Richard Sharpe, and Ed Warnicke. Wireshark User’s Guide, February
2012. Available from: http://www.wireshark.org/download/docs/user-guide-a4.pdf. 96

[MA01] Matt Mathis and Mark Allman. A Framework for Defining Empirical Bulk Transfer Ca-
pacity Metrics. Informational RFC 3148, IETF, July 2001. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc3148.txt. 19, 103

[Mal93] Gary Scott Malkin. Traceroute Using an IP Option. Standards Track RFC 1393, IETF,
January 1993. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc1393.txt. 69

[Mal98] Gary Scott Malkin. RIP Version 2. Standards Track RFC 2453, IETF, November 1998.
ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2453.txt. 9, 49

[Max75] Nicholas F. Maxemchuk. Dispersity Routing. In Proceedings of the IEEE International
Conference on Communications (ICC), volume 41, pages 10–13, San Francisco, Califor-
nia/U.S.A., June 1975. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.68.2508&rep=rep1&type=pdf. 67

[Max07] Nicholas F. Maxemchuk. Dispersity Routing: Past and Present. In Proceedings of
the IEEE Military Communications Conference (MILCOM), pages 1–7, Orlando, Flori-
da/U.S.A., October 2007. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=4455301, doi:10.1109/MILCOM.2007.4455301. 67

[MBB+97] Allison Mankin, Fred Baker, Bob Braden, Scott Bradner, Michael O’Dell, Allyn Ro-
manow, A. Weinrib, and Lixia Zhang. Resource ReSerVation Protocol (RSVP) – Ver-
sion 1 Applicability Statement – Some Guidelines on Deployment. Informational RFC
2208, IETF, September 1997. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc2208.txt. 24

[MCR+06] Al Morton, Len Ciavattone, Gomathi Ramachandran, Stanislav Shalunov, and Jerry
Perser. Packet Reordering Metrics. Standards Track RFC 4737, IETF, November 2006.
ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc4737.txt. 23

[Mes05] James Messer. comp.dcom.lans.ethernet Frequently Asked Questions, January 2005.
Available from: http://www.NetworkUptime.com/faqs/ethernet. 22

[MH07] Matt Mathis and John W. Heffner. Packetization Layer Path MTU Discovery. Standards
Track RFC 4821, IETF, March 2007. ISSN 2070-1721. Available from: http://www.
ietf.org/rfc/rfc4821.txt. 48

[MK01] Luiz Magalhaes and Robin Kravets. Transport Level Mechanisms for Bandwidth Ag-
gregation on Mobile Hosts. In Proceedings of the 9th IEEE International Conference
on Network Protocols (ICNP), pages 165–171, Riverside, California/U.S.A., Novem-
ber 2001. ISBN 0-7695-1429-4. Available from: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.65.8201&rep=rep1&type=pdf, doi:10.1109/ICNP.2001.
992896. 68

[MLE+99] Louis Mamakos, Kurt Lidl, Jeff Evarts, David Carrel, Dan Simone, and Ross Wheeler. A
Method for Transmitting PPP Over Ethernet (PPPoE). Informational RFC 2516, IETF,
February 1999. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2516.txt.
47

http://www.wireshark.org/download/docs/user-guide-a4.pdf
http://www.ietf.org/rfc/rfc3148.txt
http://www.ietf.org/rfc/rfc1393.txt
http://www.ietf.org/rfc/rfc2453.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.2508&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.2508&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4455301
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4455301
http://dx.doi.org/10.1109/MILCOM.2007.4455301
http://www.ietf.org/rfc/rfc2208.txt
http://www.ietf.org/rfc/rfc2208.txt
http://www.ietf.org/rfc/rfc4737.txt
http://www.NetworkUptime.com/faqs/ethernet
http://www.ietf.org/rfc/rfc4821.txt
http://www.ietf.org/rfc/rfc4821.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.8201&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.8201&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICNP.2001.992896
http://dx.doi.org/10.1109/ICNP.2001.992896
http://www.ietf.org/rfc/rfc2516.txt

BIBLIOGRAPHY 217

[MM97] Gary Scott Malkin and Robert E. Minnear. RIPng for IPv6. Standards Track RFC 2080,
IETF, January 1997. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2080.
txt. 50

[MMBK10] David L. Mills, Jim Martin, Jack Burbank, and William Kasch. Network Time Protocol
Version 4: Protocol and Algorithms. Standards Track RFC 5905, IETF, June 2010. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc5905.txt. 49

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Selective Ac-
knowledgment Options. Standards Track RFC 2018, IETF, October 1996. ISSN 2070-
1721. Available from: http://www.ietf.org/rfc/rfc2018.txt. 48

[MN06] Robert Moskowitz and Pekka Nikander. Host Identity Protocol (HIP) Architecture.
Informational RFC 4423, IETF, May 2006. ISSN 2070-1721. Available from: http:
//www.ietf.org/rfc/rfc4423.txt. 75

[MNJH08] Robert Moskowitz, Pekka Nikander, Petri Jokela, and Thomas R. Henderson. Host
Identity Protocol. RFC 5201, IETF, April 2008. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc5201.txt. 75

[Moy98] John T. Moy. OSPF Version 2. Standards Track RFC 2328, IETF, April 1998. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc2328.txt. 50

[MP93] Gary Scott Malkin and Tracy LaQuey Parker. Internet Users’ Glossary. Informational
RFC 1392, IETF, January 1993. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc1392.txt. 11, 18

[MR06] A. Maharana and G. N. Rathna. Fault-tolerant Video on Demand in RSerPool Archi-
tecture. In Proceedings of the International Conference on Advanced Computing and
Communications (ADCOM), pages 534–539, Bangalore/India, December 2006. ISBN
1-4244-0716-8. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
4289950, doi:10.1109/ADCOM.2006.4289950. 179

[MZ08] Robert Morelos-Zaragoza. The Error Correcting Codes (ECC) Page, August 2008.
Available from: http://www.eccpage.com/. 28

[NA08] Thomas Narten and Harald Tveit Alvestrand. Guidelines for Writing an IANA Consid-
erations Section in RFCs. Informational RFC 5226, IETF, May 2008. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc5226.txt. 46

[Nag84] John Nagle. Congestion Control in IP/TCP Internetworks. Informational RFC 896,
IETF, January 1984. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc896.
txt. 35, 37, 39

[NB09] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for
IPv6. Standards Track RFC 5533, IETF, June 2009. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc5533.txt. 75

[NBBB98] Kathleen Nichols, Steven Blake, Fred Baker, and David L. Black. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. Technical Report
2474, IETF, December 1998. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc2474.txt. 24

http://www.ietf.org/rfc/rfc2080.txt
http://www.ietf.org/rfc/rfc2080.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc4423.txt
http://www.ietf.org/rfc/rfc4423.txt
http://www.ietf.org/rfc/rfc5201.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc1392.txt
http://www.ietf.org/rfc/rfc1392.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4289950
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4289950
http://dx.doi.org/10.1109/ADCOM.2006.4289950
http://www.eccpage.com/
http://www.ietf.org/rfc/rfc5226.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc5533.txt
http://www.ietf.org/rfc/rfc2474.txt
http://www.ietf.org/rfc/rfc2474.txt

218 BIBLIOGRAPHY

[NEA+08] Preethi Natarajan, Nasif Ekiz, Paul D. Amer, Janardhan R. Iyengar, and Randall
Stewart. Concurrent Multipath Transfer using SCTP Multihoming: Introducing the
Potentially-Failed Destination State. In Proceedings of the 7th International IFIP Net-
working Conference, pages 727–734, Singapore, May 2008. Springer. ISBN 978-3-
540-79548-3. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.135.5495&rep=rep1&type=pdf. 63

[NEY+08] Preethi Natarajan, Nasif Ekiz, Ertuğrul Yilmaz, Paul D. Amer, and Janard-
han R. Iyengar. Non-Renegable Selective Acknowledgments (NR-SACKs)
for SCTP. In Proceedings of the 16th IEEE International Conference on
Network Protocols (ICNP), pages 187–196, Orlando, Florida/U.S.A., October
2008. ISBN 978-1-4244-2506-8. Available from: http://www.cis.udel.edu/∼amer/
PEL/poc/pdf/ICNP2008-natarajanNonRenegableSacks.pdf, doi:10.1109/ICNP.
2008.4697037. 62, 128, 172, 174

[NIS07] NIST. The NIST Reference on Constants, Units and Uncertainty – Prefixes for Binary
Multiples, March 2007. Available from: http://physics.nist.gov/cuu/Units/binary.html.
20

[NN11] Yoshifumi Nishida and Preethi Natarajan. Quick Failover Algorithm in SCTP. In-
ternet Draft Version 04, IETF, Network Working Group, September 2011. draft-
nishida-tsvwg-sctp-failover-04, work in progress. Available from: http://tools.ietf.org/
id/draft-nishida-tsvwg-sctp-failover-04.txt. 63

[PA00] Vern Paxson and Mark Allman. Computing TCP’s Retransmission Timer. Standards
Track RFC 2988, IETF, November 2000. ISSN 2070-1721. Available from: http://
www.ietf.org/rfc/rfc2988.txt. 39, 41

[PAMM98] Vern Paxson, Guy Almes, Jamshid Mahdavi, and Matt Mathis. Framework for IP Perfor-
mance Metrics. Informational RFC 2330, IETF, May 1998. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc2330.txt. 19

[Pos80] Jonathan Bruce Postel. User Datagram Protocol. Standards Track RFC 768, IETF,
August 1980. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc768.txt. 48,
92

[Pos81a] Jonathan Bruce Postel. Internet Control Message Protocol. Standards Track RFC 792,
IETF, September 1981. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc792.txt. 48

[Pos81b] Jonathan Bruce Postel. Internet Protocol. Standards Track RFC 791, IETF, September
1981. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc791.txt. 18, 24, 47

[Pos81c] Jonathan Bruce Postel. Transmission Control Protocol. Standards Track RFC 793, IETF,
September 1981. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc793.txt.
17, 48, 53, 54, 74, 92

[PR85] Jonathan Bruce Postel and J. Reynolds. File Transfer Protocol (FTP). Standards Track
RFC 959, IETF, October 1985. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc959.txt. 15, 49

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.5495&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.5495&rep=rep1&type=pdf
http://www.cis.udel.edu/~amer/PEL/poc/pdf/ICNP2008-natarajanNonRenegableSacks.pdf
http://www.cis.udel.edu/~amer/PEL/poc/pdf/ICNP2008-natarajanNonRenegableSacks.pdf
http://dx.doi.org/10.1109/ICNP.2008.4697037
http://dx.doi.org/10.1109/ICNP.2008.4697037
http://physics.nist.gov/cuu/Units/binary.html
http://tools.ietf.org/id/draft-nishida-tsvwg-sctp-failover-04.txt
http://tools.ietf.org/id/draft-nishida-tsvwg-sctp-failover-04.txt
http://www.ietf.org/rfc/rfc2988.txt
http://www.ietf.org/rfc/rfc2988.txt
http://www.ietf.org/rfc/rfc2330.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc959.txt

BIBLIOGRAPHY 219

[PTIW07] Brad Penoff, Mike Tsai, Janardhan R. Iyengar, and Alan Wagner. Using CMT
in SCTP-based MPI to Exploit Multiple Interfaces in Cluster Nodes. In Pro-
ceedings of the EuroPVM/MPI, Paris/France, September 2007. ISBN 978-3-540-
75415-2. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.
4547&rep=rep1&type=pdf, doi:10.1007/978-3-540-75416-9_31. 85, 103,
107

[QBC+08] Jürgen Quittek, Stewart Bryant, Benoı̂t Claise, Paul Aitken, and Jeff Meyer. Information
Model for IP Flow Information Export. Standards Track RFC 5102, IETF, January 2008.
ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc5102.txt. 65

[R D11] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. Vienna/Austria, July 2011. Available from: http://cran.r-project.org/doc/manuals/
refman.pdf. 181, 190

[RBP+11] Costin Raiciu, Sébastien Barré, Christopher Pluntke, Adam Greenhalgh, Damon Wis-
chik, and Mark Handley. Improving Datacenter Performance and Robustness with Mul-
tipath TCP. In Proceedings of the ACM SIGCOMM, Toronto/Canada, August 2011.
Available from: http://inl.info.ucl.ac.be/system/files/mptcp-sigcomm.pdf. 75

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The Addition of Explicit Con-
gestion Notification (ECN) to IP. Standards Track RFC 3168, IETF, September 2001.
ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc3168.txt. 41

[RHW09] Costin Raiciu, Mark Handley, and Damon Wischik. Practical Congestion Con-
trol for Multipath Transport Protocols. Technical report, University College Lon-
don, London/United Kingdom, 2009. Available from: http://nrg.cs.ucl.ac.uk/mptcp/
mptcp-techreport.pdf. 153, 154, 155, 173

[RHW11] Costin Raiciu, Mark Handley, and Damon Wischik. Coupled Multipath-Aware Con-
gestion Control. Internet Draft Version 07, IETF, Network Working Group, July 2011.
draft-ietf-mptcp-congestion-07, work in progress. Available from: http://tools.ietf.org/
id/draft-ietf-mptcp-congestion-07.txt. 154

[Rij94] Anil Rijsinghani. Computing the Internet Checksum via Incremental Update. In-
formational RFC 1624, IETF, May 1994. ISSN 2070-1721. Available from: http:
//www.ietf.org/rfc/rfc1624.txt. 25

[RKT02] Dan Rubenstein, Jim Kurose, and Don Towsley. Detecting Shared Congestion
of Flows via End-to-End Measurement. IEEE/ACM Transactions on Networking,
10(3):381–395, June 2002. ISSN 1063-6692. Available from: http://citeseer.ist.psu.
edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf, doi:10.1109/
TNET.2002.1012369. 152

[RLH06] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol 4 (BGP-4).
Standards Track RFC 4271, IETF, January 2006. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc4271.txt. 50

[RMMG11] Maher Ali Al Rantisi, Ali Maqousi, Glenford Mapp, and Orhan Gemikonakli. The
Development of a Dynamic and Robust Event-Based Routing Protocol in Wireless

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.4547&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.4547&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-75416-9_31
http://www.ietf.org/rfc/rfc5102.txt
http://cran.r-project.org/doc/manuals/refman.pdf
http://cran.r-project.org/doc/manuals/refman.pdf
http://inl.info.ucl.ac.be/system/files/mptcp-sigcomm.pdf
http://www.ietf.org/rfc/rfc3168.txt
http://nrg.cs.ucl.ac.uk/mptcp/mptcp-techreport.pdf
http://nrg.cs.ucl.ac.uk/mptcp/mptcp-techreport.pdf
http://tools.ietf.org/id/draft-ietf-mptcp-congestion-07.txt
http://tools.ietf.org/id/draft-ietf-mptcp-congestion-07.txt
http://www.ietf.org/rfc/rfc1624.txt
http://www.ietf.org/rfc/rfc1624.txt
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6332&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TNET.2002.1012369
http://dx.doi.org/10.1109/TNET.2002.1012369
http://www.ietf.org/rfc/rfc4271.txt

220 BIBLIOGRAPHY

Sensor Networks for Environmental Monitoring. In Proceedings of the 1st IEEE
Conference on Communication, Science and Information Engineering (CCSIE), Lon-
don/United Kingdom, July 2011. Available from: http://eprints.mdx.ac.uk/8122/1/
ccsie2011 submission 30-1.pdf. 68

[Ros06] Timothy Roscoe. The End of Internet Architecture. In Proceedings of 5th ACM Work-
shop on Hot Topics in Networks (HotNets-V), Irvine, California/U.S.A., November
2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.
2772&rep=rep1&type=pdf. 15

[RRAW98] Antony Richards, Glynn Rogers, Mark Antoniades, and Varuni Witana. Mapping
User Level QoS from a Single Parameter. In Proceedings of the 2nd Interna-
tional Conference on Multimedia Networks and Services (MMNS), Versailles/France,
1998. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.
5059&rep=rep1&type=pdf. 19

[RSB+05] Thibault Renier, Hans-Peter Schwefel, Marjan Božinovski, Kim Larsen, Ramjee Prasad,
and Robert Seidl. Distributed Redundancy or Cluster Solution? An Experimental Eval-
uation of Two Approaches for Dependable Mobile Internet Services. Lecture Notes in
Computer Science, 3335, January 2005. ISBN 978-3-540-24420-2. Available from:
http://www.springerlink.com/content/pe4wlbrxd4kkla2e/fulltext.pdf. 179

[RTR08] Irene Rüngeler, Michael Tüxen, and Erwin Paul Rathgeb. Integration of SCTP in the
OMNeT++ Simulation Environment. In Proceedings of the 1st ACM/ICST International
Workshop on OMNeT++, Marseille/France, March 2008. ISBN 978-963-9799-20-
2. Available from: http://portal.acm.org/citation.cfm?id=1416310, doi:10.4108/
ICST.SIMUTOOLS2008.3027. 77, 79, 80

[RTR09] Irene Rüngeler, Michael Tüxen, and Erwin Paul Rathgeb. Considerations on Handling
Link Errors in SCTP. ICB Research Reports, University of Duisburg-Essen, 35, Au-
gust 2009. ISSN 1860-2770. Available from: http://www.icb.uni-due.de/fileadmin/ICB/
research/research reports/ICBReportNo35.pdf. 63, 129

[Rün09] Irene Rüngeler. SCTP – Evaluating, Improving and Extending the Protocol for
Broader Deployment. PhD thesis, University of Duisburg-Essen, Faculty of Eco-
nomics, Institute for Computer Science and Business Information Systems, De-
cember 2009. Available from: http://duepublico.uni-duisburg-essen.de/servlets/
DerivateServlet/Derivate-23465/DissPDF.pdf. 62, 77

[RW97] Erwin Paul Rathgeb and Eugen Wallmeier. ATM – Infrastruktur für die Hochleis-
tungskommunikation. Springer-Verlag, Berlin/Germany, September 1997. ISBN 978-
3540603702. 37, 42

[SA11a] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Address
Format. Standards track rfc, IETF, March 2011. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc6122.txt. 49

[SA11b] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. Stan-
dards Track RFC 6120, IETF, March 2011. ISSN 2070-1721. Available from: http:
//www.ietf.org/rfc/rfc6120.txt. 49

http://eprints.mdx.ac.uk/8122/1/ccsie2011_submission_30-1.pdf
http://eprints.mdx.ac.uk/8122/1/ccsie2011_submission_30-1.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.2772&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.2772&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.5059&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.5059&rep=rep1&type=pdf
http://www.springerlink.com/content/pe4wlbrxd4kkla2e/fulltext.pdf
http://portal.acm.org/citation.cfm?id=1416310
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICBReportNo35.pdf
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICBReportNo35.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-23465/DissPDF.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-23465/DissPDF.pdf
http://www.ietf.org/rfc/rfc6122.txt
http://www.ietf.org/rfc/rfc6120.txt
http://www.ietf.org/rfc/rfc6120.txt

BIBLIOGRAPHY 221

[SA11c] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Instant Mes-
saging and Presence. Standards Track RFC 6121, IETF, March 2011. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc6121.txt. 49

[Sav06] Pekka Savola. IPv6 Site Multihoming Using a Host-based Shim Layer. In
Proceedings of the 5th IEEE International Conference on Networking, Interna-
tional Conference on Systems and International Conference on Mobile Communi-
cations and Learning Technologies (ICNICONSMCL), April 2006. ISBN 0-7695-
2552-0. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.
1246&rep=rep1&type=pdf, doi:10.1109/ICNICONSMCL.2006.131. 75

[SBCQ09] Ganesh Sadasivan, Nevil Brownlee, Benoı̂t Claise, and Jürgen Quittek. Architecture
for IP Flow Information Export. Informational RFC 5470, IETF, March 2009. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc5470.txt. 65

[SBG00] Harimath Sivakumar, Stuart Bailey, and Robert L. Grossman. PSockets: The
Case for Application-level Network Striping for Data Intensive Applications us-
ing High Speed Wide Area Networks. In Proceedings of the ACM/IEEE Con-
ference on Supercomputing, Dallas, Texas/U.S.A., November 2000. ISSN 1063-
9535. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.
6140&rep=rep1&type=pdf, doi:10.1109/SC.2000.10040. 69

[SC05] Pekka Savola and Tim Chown. A Survey of IPv6 Site Multihoming Propos-
als. In Proceedings of the 8th IEEE International Conference on Telecommunicati-
ons (ConTEL), volume 1, pages 41–48, Zagreb/Croatia, June 2005. ISBN 953-184-
081-4. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.
2213&rep=rep1&type=pdf, doi:10.1109/CONTEL.2005.185815. 76

[SCFJ03] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RTP: A
Transport Protocol for Real-Time Applications. Standards Track RFC 3550, IETF, July
2003. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc3550.txt. 23

[SCH+99] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Thomas E. Anderson.
The End-to-End Effects of Internet Path Selection. In Proceedings of the ACM SIG-
COMM, pages 289–299, Cambridge, Massachusetts/U.S.A., August 1999. ISBN 1-
58113-135-6. Available from: http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.
1.38.9273&rep=rep1&type=pdf, doi:10.1145/316194.316233. 68

[Sch10] Michael Scharf. Multi-Connection TCP (MCTCP) Transport. Internet Draft Version
01, IETF, Individual Submission, July 2010. draft-scharf-mptcp-mctcp-01, work in
progress. Available from: http://tools.ietf.org/id/draft-scharf-mptcp-mctcp-01.txt. 69

[SDR08] Pascal Schöttle, Thomas Dreibholz, and Erwin Paul Rathgeb. On the Application
of Anomaly Detection in Reliable Server Pooling Systems for Improved Robustness
against Denial of Service Attacks. In Proceedings of the 33rd IEEE Conference on Local
Computer Networks (LCN), pages 207–214, Montréal, Québec/Canada, October 2008.
ISBN 978-1-4244-2413-9. Available from: http://www.tdr.wiwi.uni-due.de/fileadmin/
fileupload/I-TDR/ReliableServer/Publications/LCN2008.pdf, doi:10.1109/LCN.
2008.4664171. 181

http://www.ietf.org/rfc/rfc6121.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.1246&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.1246&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ICNICONSMCL.2006.131
http://www.ietf.org/rfc/rfc5470.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.6140&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.6140&rep=rep1&type=pdf
http://dx.doi.org/10.1109/SC.2000.10040
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.2213&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.2213&rep=rep1&type=pdf
http://dx.doi.org/10.1109/CONTEL.2005.185815
http://www.ietf.org/rfc/rfc3550.txt
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.38.9273&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.38.9273&rep=rep1&type=pdf
http://dx.doi.org/10.1145/316194.316233
http://tools.ietf.org/id/draft-scharf-mptcp-mctcp-01.txt
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2008.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/LCN2008.pdf
http://dx.doi.org/10.1109/LCN.2008.4664171
http://dx.doi.org/10.1109/LCN.2008.4664171

222 BIBLIOGRAPHY

[SE01] Pyda Srisuresh and Kjeld Borch Egevang. Traditional IP Network Address Transla-
tor (Traditional NAT). Informational RFC 3022, IETF, January 2001. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc3022.txt. 74

[Sew07] Julian Seward. bzip2 – A Program and Library for Data Compression, December 2007.
Available from: http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf. 95, 184

[Sim94] William Allen Simpson. The Point-to-Point Protocol (PPP). Standards Track RFC 1661,
IETF, July 1994. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc1661.txt.
47

[SLT12] Randall R. Stewart, Peter Lei, and Michael Tüxen. Stream Control Transmission Proto-
col (SCTP) Packet Drop Reporting. Internet Draft Version 13, IETF, Individual Submis-
sion, February 2012. draft-stewart-sctp-pktdrprep-13.txt, work in progress. Available
from: http://tools.ietf.org/id/draft-stewart-sctp-pktdrprep-13.txt. 62

[SM05] Vineet Srivastava and Mehul Motani. Cross-Layer Design: A Survey and the Road
Ahead. IEEE Communications Magazine, 43(12):112–119, December 2005. ISSN
0163-6804. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
1561928, doi:10.1109/MCOM.2005.1561928. 15

[SMPB02] Greg Sidebottom, Ken Morneault, and Javier Pastor-Balbas. Signaling System 7 (SS7)
Message Transfer Part 3 (MTP3) – User Adaptation Layer (M3UA). Standards Track
RFC 3332, IETF, September 2002. ISSN 2070-1721. Available from: http://www.ietf.
org/rfc/rfc3332.txt. 145

[SMS10] Richard M. Stallman, Roland McGrath, and Paul D. Smith. GNU Make – A Program
for Directing Recompilation, July 2010. Available from: http://www.gnu.org/software/
make/manual/make.pdf. 181, 184

[Sol92] Karen R. Sollins. The TFTP Protocol (Revision 2). Standards Track RFC 1350, IETF,
July 1992. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc1350.txt. 49

[SP03] Tommy Svensson and Alex Popescu. OPNET Modeler – Development of Lab-
oratory Exercises based on OPNET Modeler. Master’s thesis, Blekinge In-
stitute of Technology, Karlskrona/Sweden, June 2003. Available from: http:
//www.opnet.com/university program/teaching with opnet/textbooks and materials/
materials/Lab Exercices Modeler.pdf. 77

[SPG97] Scott Shenker, Craig Partridge, and Roch Guerin. Specification of Guaranteed Qual-
ity of Service. Standards Track RFC 2212, IETF, September 1997. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc2212.txt. 24

[SRX+04] Randall R. Stewart, M. Ramalho, Qiaobing Xie, Michael Tüxen, and Phillip T. Conrad.
Stream Control Transmission Protocol (SCTP) Partial Reliability Extension. Standards
Track RFC 3758, IETF, May 2004. ISSN 2070-1721. Available from: http://www.ietf.
org/rfc/rfc3758.txt. 61

[SSO02] Jonathan Stone, Randall R. Stewart, and Douglas Otis. Stream Control Transmission
Protocol (SCTP) Checksum Change. Standards Track RFC 3309, IETF, September
2002. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc3309.txt. 26, 27, 52

http://www.ietf.org/rfc/rfc3022.txt
http://www.bzip.org/1.0.5/bzip2-manual-1.0.5.pdf
http://www.ietf.org/rfc/rfc1661.txt
http://tools.ietf.org/id/draft-stewart-sctp-pktdrprep-13.txt
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1561928
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1561928
http://dx.doi.org/10.1109/MCOM.2005.1561928
http://www.ietf.org/rfc/rfc3332.txt
http://www.ietf.org/rfc/rfc3332.txt
http://www.gnu.org/software/make/manual/make.pdf
http://www.gnu.org/software/make/manual/make.pdf
http://www.ietf.org/rfc/rfc1350.txt
http://www.opnet.com/university_program/teaching_with_opnet/textbooks_and_materials/materials/Lab_Exercices_Modeler.pdf
http://www.opnet.com/university_program/teaching_with_opnet/textbooks_and_materials/materials/Lab_Exercices_Modeler.pdf
http://www.opnet.com/university_program/teaching_with_opnet/textbooks_and_materials/materials/Lab_Exercices_Modeler.pdf
http://www.ietf.org/rfc/rfc2212.txt
http://www.ietf.org/rfc/rfc3758.txt
http://www.ietf.org/rfc/rfc3758.txt
http://www.ietf.org/rfc/rfc3309.txt

BIBLIOGRAPHY 223

[Ste00] Ralf Steinmetz. Multimedia-Technologie – Grundlagen, Komponenten und Systeme.
Springer, Berlin/Germany, 3rd edition, August 2000. ISBN 978-3540673323. 17, 19,
24, 30, 42, 49, 100

[Ste07] Randall R. Stewart. Stream Control Transmission Protocol. Standards Track RFC 4960,
IETF, September 2007. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/
rfc4960.txt. 1, 27, 49, 51, 52, 54, 58, 59, 60, 82, 92, 104, 105, 126, 140, 141, 142,
144, 151, 155, 158, 161

[STL12] Randall R. Stewart, Michael Tüxen, and Peter Lei. Stream Control Transmission Pro-
tocol (SCTP) Stream Reconfiguration. Standards track rfc, IETF, February 2012. ISSN
2070-1721. Available from: http://www.ietf.org/rfc/rfc6525.txt. 61

[STP+11] Randall R. Stewart, Michael Tüxen, Kacheong Poon, Peter Lei, and Vladislav Ya-
sevich. Sockets API Extensions for Stream Control Transmission Protocol (SCTP).
Informational rfc, IETF, December 2011. ISSN 2070-1721. Available from: http:
//www.ietf.org/rfc/rfc6458.txt. 63, 89, 145

[STR10] Robin Seggelmann, Michael Tüxen, and Erwin Paul Rathgeb. Stream Scheduling Con-
siderations for SCTP. In Proceedings of the 18th IEEE International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), September 2010. ISBN
978-953-290-004-0. Available from: http://ieeexplore.ieee.org/iel5/5611454/5623609/
05623661.pdf?arnumber=5623661. 144

[SX01] Randall R. Stewart and Qiaobing Xie. Stream Control Transmission Protocol (SCTP):
A Reference Guide. Addison-Wesley, Amsterdam/Holland, 2001. ISBN 0-201721-86-4.
51, 63

[SXM+00] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp, Hanns Jürgen
Schwarzbauer, Tom Taylor, Ian Rytina, Malleswar Kalla, Lixia Zhang, and Vern Pax-
son. Stream Control Transmission Protocol. Standards Track RFC 2960, IETF, October
2000. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc2960.txt. 51

[SXST08a] Randall R. Stewart, Qiaobing Xie, Maureen Stillman, and Michael Tüxen. Aggregate
Server Access Protcol (ASAP). RFC 5352, IETF, September 2008. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc5352.txt. 49, 65, 178

[SXST08b] Randall R. Stewart, Qiaobing Xie, Maureen Stillman, and Michael Tüxen. Aggre-
gate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Proto-
col (ENRP) Parameters. RFC 5354, IETF, September 2008. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc5354.txt. 65

[SXT+07] Randall R. Stewart, Qiaobing Xie, Michael Tüxen, Shin Maruyama, and Masahiro
Kozuka. Stream Control Transmission Protocol (SCTP) Dynamic Address Reconfigu-
ration. Standards Track RFC 5061, IETF, September 2007. ISSN 2070-1721. Available
from: http://www.ietf.org/rfc/rfc5061.txt. 61

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle River, New
Jersey/U.S.A., 1996. ISBN 0-13-349945-6. 13, 20, 27, 28, 34, 36, 42, 43, 48, 49, 50,
67, 79, 101

http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc6525.txt
http://www.ietf.org/rfc/rfc6458.txt
http://www.ietf.org/rfc/rfc6458.txt
http://ieeexplore.ieee.org/iel5/5611454/5623609/05623661.pdf?arnumber=5623661
http://ieeexplore.ieee.org/iel5/5611454/5623609/05623661.pdf?arnumber=5623661
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc5352.txt
http://www.ietf.org/rfc/rfc5354.txt
http://www.ietf.org/rfc/rfc5061.txt

224 BIBLIOGRAPHY

[TB08] Brian H. Trammell and Elisa Boschi. Bidirectional Flow Export Using IP Flow Infor-
mation Export. Standards Track RFC 5103, IETF, January 2008. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc5103.txt. 65

[TGFS+09] Phuoc Tran-Gia, Anja Feldmann, Ralf Steinmetz, Jörg Eberspächer, Martina Zitter-
bart, Paul Müller, and Hans Schotten. G-Lab White Paper Phase 1 – Studien und
Experimentalplattform für das Internet der Zukunft, January 2009. Available from:
https://www.german-lab.de/fileadmin/Press/G-Lab White Paper Phase1.pdf. 102

[TH00] Dave Thaler and Christian E. Hopps. Multipath Issues in Unicast and Multicast Next-
Hop Selection. Informational RFC 2991, IETF, November 2000. ISSN 2070-1721.
Available from: http://www.ietf.org/rfc/rfc2991.txt. 68

[TH01] Aristotelis Tsirigos and Zygmunt J. Haas. Multipath Routing in the Presence of Frequent
Topological Changes. IEEE Communications Magazine, 39(11):132–138, November
2001. ISSN 0163-6804. Available from: http://www.ee.oulu.fi/∼carlos/papers/routing/
TS01.pdf, doi:10.1109/35.965371. 68

[TRR08] Michael Tüxen, Irene Rüngeler, and Erwin Paul Rathgeb. Interface Connecting the
INET Simulation Framework with the Real World. In Proceedings of the 1st Inter-
national Conference on Simulation Tools and Techniques for Communications, Net-
works and Systems (SIMUTools), pages 1–6, Marseille/France, March 2008. ISBN 978-
963-9799-20-2. Available from: http://dl.acm.org/citation.cfm?doid=1416222.1416267,
doi:10.1145/1416222.1416267. 79

[TRS11] Michael Tüxen, Irene Rüngeler, and Randall R. Stewart. SACK-IMMEDIATELY
Extension for the Stream Control Transmission Protocol. Internet Draft Ver-
sion 08, IETF, Individual Submission, October 2011. draft-tuexen-tsvwg-sctp-
sack-immediately-08.txt, work in progress. Available from: http://tools.ietf.org/id/
draft-tuexen-tsvwg-sctp-sack-immediately-08.txt. 62

[TS12] Michael Tüxen and Randall R. Stewart. UDP Encapsulation of SCTP Packets. Inter-
net Draft Version 03, IETF, Transport Area Working Group, March 2012. draft-ietf-
tsvwg-sctp-udp-encaps-03.txt, work in progress. Available from: http://tools.ietf.org/id/
draft-ietf-tsvwg-sctp-udp-encaps-03.txt. 63

[TSLR07] Michael Tüxen, Randall R. Stewart, Peter Lei, and Eric Rescorla. Authenticated Chunks
for the Stream Control Transmission Protocol (SCTP). Standards Track RFC 4895,
IETF, August 2007. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc4895.
txt. 61

[Uij09] Henk Uijterwaal. A One-Way Packet Duplication Metric. Standards Track RFC 5560,
IETF, May 2009. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc5560.txt.
23

[Unu05] Esbold Unurkhaan. Secure End-to-End Transport – A New Security Extension for
SCTP. PhD thesis, University of Duisburg-Essen, Institute for Experimental Mathe-
matics, July 2005. Available from: http://duepublico.uni-duisburg-essen.de/servlets/
DerivateServlet/Derivate-13053/Thesis%20Esbold%20Unurkhaan.pdf. 62

http://www.ietf.org/rfc/rfc5103.txt
https://www.german-lab.de/fileadmin/Press/G-Lab_White_Paper_Phase1.pdf
http://www.ietf.org/rfc/rfc2991.txt
http://www.ee.oulu.fi/~carlos/papers/routing/TS01.pdf
http://www.ee.oulu.fi/~carlos/papers/routing/TS01.pdf
http://dx.doi.org/10.1109/35.965371
http://dl.acm.org/citation.cfm?doid=1416222.1416267
http://dx.doi.org/10.1145/1416222.1416267
http://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-sack-immediately-08.txt
http://tools.ietf.org/id/draft-tuexen-tsvwg-sctp-sack-immediately-08.txt
http://tools.ietf.org/id/draft-ietf-tsvwg-sctp-udp-encaps-03.txt
http://tools.ietf.org/id/draft-ietf-tsvwg-sctp-udp-encaps-03.txt
http://www.ietf.org/rfc/rfc4895.txt
http://www.ietf.org/rfc/rfc4895.txt
http://www.ietf.org/rfc/rfc5560.txt
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-13053/Thesis%20Esbold%20Unurkhaan.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-13053/Thesis%20Esbold%20Unurkhaan.pdf

BIBLIOGRAPHY 225

[URJ04] Esbold Unurkhaan, Erwin Paul Rathgeb, and Andreas Jungmaier. Secure SCTP –
A Versatile Secure Transport Protocol. Telecommunication Systems, 27(2-4):273–
296, 2004. ISSN 1018-4864. Available from: http://www.springerlink.com/content/
l8mph67087w17107/fulltext.pdf. 62

[UZF+03] Ümit Uyar, Jianliang Zheng, Mariusz A. Fecko, Sunil Samtani, and Phillip T. Conrad.
Reliable Server Pooling for Future Combat Systems. In Proceedings of the IEEE MIL-
COM Military Communications Conference, volume 2, pages 927–932, Boston, Mas-
sachusetts/U.S.A., October 2003. Available from: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.60.9480&rep=rep1&type=pdf. 179

[UZF+04] Ümit Uyar, Jianliang Zheng, Mariusz A. Fecko, Sunil Samtani, and Phillip T. Conrad.
Evaluation of Architectures for Reliable Server Pooling in Wired and Wireless Envi-
ronments. IEEE JSAC Special Issue on Recent Advances in Service Overlay Networks,
22(1):164–175, 2004. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.105.2471&rep=rep1&type=pdf, doi:10.1109/JSAC.2003.818806.
179

[Var10] András Varga. OMNeT++ Discrete Event Simulation System User Manual – Version 4.1,
December 2010. Available from: http://www.omnetpp.org/doc/omnetpp41/Manual.pdf.
77, 78, 85, 186

[Var12] András Varga. INET Framework for OMNeT++/OMNEST release 20111118-0cc8077,
2012. Available from: http://inet.omnetpp.org/doc/INET/neddoc/index.html. 78, 80

[Vyn09] Eric Vyncke. IPv6 over Social Networks. RFC 5514, IETF, April 2009. ISSN 2070-
1721. Available from: http://www.ietf.org/rfc/rfc5514.txt. 47

[Wai90] David Waitzman. Standard for the Transmission of IP Datagrams on Avian Carriers.
RFC 1149, IETF, April 1990. ISSN 2070-1721. Available from: http://www.ietf.org/
rfc/rfc1149.txt. 47

[Wel05] Michael Welzl. Network Congestion Control: Managing Internet Traffic. John Wiley &
Sons, Chichester, West Sussex/United Kingdom, 2005. ISBN 978-0-470-02528-4. 37,
41

[WHB08] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The Resource Pool-
ing Principle. ACM SIGCOMM Computer Communication Review, 38(5):47–52, Oc-
tober 2008. ISSN 0146-4833. Available from: http://ccr.sigcomm.org/online/files/
p47-handleyA4.pdf, doi:10.1145/1452335.1452342. 3, 152, 173

[Wro97] John Wroclawski. Specification of the Controlled-Load Network Element Service. Stan-
dards Track RFC 2211, IETF, September 1997. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc2211.txt. 24

[XSS+08] Qiaobing Xie, Randall R. Stewart, Maureen Stillman, Michael Tüxen, and Aron J. Sil-
verton. Endpoint Handlespace Redundancy Protocol (ENRP). RFC 5353, IETF, Septem-
ber 2008. ISSN 2070-1721. Available from: http://www.ietf.org/rfc/rfc5353.txt. 46, 65,
178

http://www.springerlink.com/content/l8mph67087w17107/fulltext.pdf
http://www.springerlink.com/content/l8mph67087w17107/fulltext.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9480&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.9480&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.2471&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.2471&rep=rep1&type=pdf
http://dx.doi.org/10.1109/JSAC.2003.818806
http://www.omnetpp.org/doc/omnetpp41/Manual.pdf
http://inet.omnetpp.org/doc/INET/neddoc/index.html
http://www.ietf.org/rfc/rfc5514.txt
http://www.ietf.org/rfc/rfc1149.txt
http://www.ietf.org/rfc/rfc1149.txt
http://ccr.sigcomm.org/online/files/p47-handleyA4.pdf
http://ccr.sigcomm.org/online/files/p47-handleyA4.pdf
http://dx.doi.org/10.1145/1452335.1452342
http://www.ietf.org/rfc/rfc2211.txt
http://www.ietf.org/rfc/rfc5353.txt

226 BIBLIOGRAPHY

[Yer03] François Yergeau. UTF-8, A Transformation Format of ISO 10646. Standards Track
RFC 3629, IETF, November 2003. ISSN 2070-1721. Available from: http://www.ietf.
org/rfc/rfc3629.txt. 14

[YL06] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Connection Protocol. Stan-
dards Track RFC 4254, IETF, January 2006. ISSN 2070-1721. Available from:
http://www.ietf.org/rfc/rfc4254.txt. 49, 145

[YWY08a] Muhammad Murtaza Yousaf, Michael Welzl, and Bülent Yener. Accurate Shared Bot-
tleneck Detection Based On SVD and Outliers Detection. Technical Report NSG-DPS-
UIBK-01, University of Innsbruck, Institute of Computer Science, Innsbruck/Austria,
August 2008. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.140.3147&rep=rep1&type=pdf. 152, 161

[YWY08b] Muhammad Murtaza Yousaf, Michael Welzl, and Bülent Yener. On the Accurate
Identification of Network Paths having a Common Bottleneck. In Proceedings of
the ACM SIGCOMM, Seattle, Washington/U.S.A., August 2008. Poster Presenta-
tion. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.
1874&rep=rep1&type=pdf. 152, 161

[ZDB+10] Xing Zhou, Thomas Dreibholz, Martin Becke, Jobin Pulinthanath, Erwin Paul
Rathgeb, and Wencai Du. The Software Modeling and Implementation of Reli-
able Server Pooling and RSPLIB. In Proceedings of the 8th ACIS Conference on
Software Engineering Research, Management and Applications (SERA), pages 129–
136, Montréal, Québec/Canada, May 2010. ISBN 978-0-7695-4075-7. Avail-
able from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/
Publications/SERA2010.pdf, doi:10.1109/SERA.2010.26. 179

[ZDR07] Xing Zhou, Thomas Dreibholz, and Erwin Paul Rathgeb. A New Approach of
Performance Improvement for Server Selection in Reliable Server Pooling Sys-
tems. In Proceedings of the 15th IEEE International Conference on Advanced
Computing and Communication (ADCOM), pages 117–121, Guwahati/India, Decem-
ber 2007. ISBN 0-7695-3059-1. Available from: http://www.tdr.wiwi.uni-due.de/
fileadmin/fileupload/I-TDR/ReliableServer/Publications/ADCOM2007.pdf, doi:10.
1109/ADCOM.2007.19. 187

[ZDR08] Wenyu Zhu, Thomas Dreibholz, and Erwin Paul Rathgeb. Analysis and Evaluation of
a Scalable QoS Device for Broadband Access to Multimedia Services. In Proceed-
ings of the 33rd IEEE Conference on Local Computer Networks (LCN), pages 504–
505, Montréal, Québec/Canada, October 2008. ISBN 978-1-4244-2413-9. Available
from: http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/FlowRouting/Paper/
LCN2008-FlowRouting.pdf, doi:10.1109/LCN.2008.4664212. 181

[ZDRZ09] Wenyu Zhu, Thomas Dreibholz, Erwin Paul Rathgeb, and Xing Zhou. A Scalable QoS
Device for Broadband Access to Multimedia Services. SERSC International Journal
of Multimedia and Ubiquitous Engineering (IJMUE), 4(2):157–172, May 2009. ISSN
1975-0080. Available from: http://www.sersc.org/journals/IJMUE/vol4 no2 2009/14.
pdf. 181

http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc4254.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.3147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.3147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1874&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.1874&rep=rep1&type=pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/SERA2010.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/SERA2010.pdf
http://dx.doi.org/10.1109/SERA.2010.26
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/ADCOM2007.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/ReliableServer/Publications/ADCOM2007.pdf
http://dx.doi.org/10.1109/ADCOM.2007.19
http://dx.doi.org/10.1109/ADCOM.2007.19
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/FlowRouting/Paper/LCN2008-FlowRouting.pdf
http://www.tdr.wiwi.uni-due.de/fileadmin/fileupload/I-TDR/FlowRouting/Paper/LCN2008-FlowRouting.pdf
http://dx.doi.org/10.1109/LCN.2008.4664212
http://www.sersc.org/journals/IJMUE/vol4_no2_2009/14.pdf
http://www.sersc.org/journals/IJMUE/vol4_no2_2009/14.pdf

BIBLIOGRAPHY 227

[ZLK+04] Ming Zhang, Junwen Lai, Arvind Krishnamurthy, Larry Peterson, and Randolph Wang.
A Transport Layer Approach for Improving End-to-End Performance and Robustness
Using Redundant Paths. In In Proceedings of the USENIX Annual Technical Confer-
ence, pages 99–112, Boston, Massachusetts/U.S.A., June 2004. Available from: http:
//citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3109&rep=rep1&type=pdf. 69

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3109&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3109&rep=rep1&type=pdf

228 BIBLIOGRAPHY

Index

Deutsche Forschungsgemeinschaft, 3
3GPP, see 3rd Generation Partnership Project
3rd Generation Partnership Project, 43

A-Priori Knowledge, 152
Abort and Restart, 187
ABORT Chunk, 60
ACK, see Acknowledgement
Ack-n-PDU, 31
Acknowledgement, 31
Active Mode, 84, 93
Additive Increase, Multiplicative Decrease, 37
Adhari, Hakim, ix
Adjacent (Locators), 8
Adjacent (Nodes), 8
ADSL, see Asymmetric Digital Subscriber Line
Advertised Receiver Window, 36, 58
AF, see Assured Forwarding
Aggregate Server Access Protocol, 49, 178
Aggressive Max Burst, 142
Aggressiveness Factor (MPTCP-Like Congestion

Control), 155
AIMD, see Additive Increase, Multiplicative De-

crease
Analogue Bandwidth, 20
Announce, 179
API, see Application Programming Interface
Application Layer, 14, 15
Application Programming Interface, 63
Appropriate Byte Counting, 38
ASAP, see Aggregate Server Access Protocol
ASCII, 14
Association, 51, 54
Assured Forwarding, 24
Asymmetric Digital Subscriber Line, 42
Asynchronous Transfer Mode, 42
ATM, see Asynchronous Transfer Mode

ATM Forum, 42
Auto-Routing, 85

B-Bit, 56
Bandwidth, see Digital Bandwidth
Bandwidth-Delay Product, 34
Bandwidth-RTT Product, 34
BDP, see Bandwidth-Delay Product
Becke, Martin, ix
Begin of Message, 56
Best Effort, 24, 37
BGP, see Border Gateway Protocol
Bidirectional Communication, 17
Binary Digit, see Bit
BIPM, see Bureau International des Poids et Me-

sures
Bit, 17
Border Gateway Protocol, 50
Bottleneck Detection, 152
BRAS, see Broadband Remote Access Server
Bridging, 43
Broadband Remote Access Server, 43
Broadband Forum, 42
Broadcast Communication, 16
Buffer Bloat, 116, 161
Buffer Blocking, 108

Receive Buffer Blocking, 110
Send Buffer Blocking, 108

Buffer Splitting, 112
Based on Buffered Bytes, 113
Based on Outstanding Bytes, 113

Bundling, 35
Bundling Delay, 22
Bureau International des Poids et Mesures, 20
Burgsteinfurt, 99
Burst Mitigation, 60

Aggressive Max Burst, 142

229

230 INDEX

Congestion Window Limiting, 142
Max Burst, 142
Use It or Lose It, 60, 142

Byte, 17
BZip2, 95, 184, 186, 189

CCITT, see Comité Consultatif International Té-
léphonique et Télégraphique

Channel, 6
Channel (OMNeT++), 78
Checksum, 25
Checksum Offloading, 63
Chunk, 52

ABORT, 60
COOKIE ACK, 53
COOKIE ECHO, 53
DATA, 56
FORWARD TSN, 61
HEARTBEAT, 55
HEARTBEAT ACK, 55
INIT, 53
INIT ACK, 53
NR-SACK, 61
PKTDROP, 62
SACK, 57
SHUTDOWN, 60
SHUTDOWN ACK, 60
SHUTDOWN COMPLETE, 60

Chunk Authentication, 61
Chunk Rescheduling, 129
Chunk Statistics, 97
Clean Slate, 15
Clock Granularity, 41
Closed-Loop Flow Control, 36
CMT, see Concurrent Multipath Transfer
CMT/RP Congestion Control, 153
CMT/RPv1 Congestion Control, 153
CMT/RPv2 Congestion Control, 154
Collector, 65
Comité Consultatif International Téléphonique et

Télégraphique, 42
Common Header, 51
Component Status Protocol, 188
Compound Module, 78
Concast Communication, 16
Concurrent Multipath Transfer, 2, 63, 70
Concurrent Versions System, 90

Congestion, 37
Congestion Avoidance, 38
Congestion Collapse, 37
Congestion Control, 37

CMT-SCTP, 70
CMT/RP, 153
CMT/RPv1, 153
CMT/RPv2, 154
MPTCP-Like, 155
SCTP, 58

Congestion Window, 37
Congestion Window Limiting, 142
Congestion Window Update for CMT, 72
Congestion Window Update for CMT, version 2,

72
Connect Time, 84
Connection, 18
Connection (OMNeT++), 78
Connection-Less Communication, 18
Connection-Oriented Communication, 18
Connectivity Set, 6
Conservation of Packets Principle, 37
Controlled Load, 24
Controlling Engineering, 155
Control Chunk, 52
Cookie, 53
COOKIE ACK Chunk, 53
COOKIE ECHO Chunk, 53
Corruption, 23
Cosić, Nihad, ix
Counter Warp, 28
CRC, see Cyclic Redundancy Check
CRC-32C, 27
createsummary, 189
Cross-Layer Optimisation, 15
CSP, see Component Status Protocol
cspmonitor, 188
CumAck, see Cumulative Acknowledgement
CumAck’ed Segment, 33
CumAck-n-PDU, 32
Curriculum Vitae, 239
CVS, see Concurrent Versions System
cwnd, see Congestion Window
Cyclic Preventive Retransmission, 33
Cyclic Redundancy Check, 26

Data Communication Service, 15

INDEX 231

Data Communications, 15
Data Link Layer, 14
Data Rate, 20
Data-n-PDU, 30
Datagram, 17
Datagram Congestion Control Protocol, 48
Datagram-Oriented Communication, 17
DATA Chunk, 56
DATA chunk, 52
DCCP, see Datagram Congestion Control Proto-

col
Decoupled Streams, 145
Decrease Factor (CMT/RPv2), 154
Default Configuration, 185
Delay, 21
Delayed Acknowledgement, 34
Delayed Acknowledgement for CMT, 73
Denial of Service, 52
Deutsches Forschungsnetz, 99
DFG, see Deutsche Forschungsgemeinschaft
DFN, see Deutsches Forschungsnetz
Differentiated Services, 24
DiffServ, see Differentiated Services
Digital Bandwidth, 20
Digital Subscriber Line, 42
Dijkstra’s Algorithm, 85
Discrete Mathematics, 5
Disjointness (Paths), 151
Disjointness (Trails), 9
Dispersity Routing, 67
Display String, 85
Dissector, 97
Divide and Conquer, 104
Downstream, 42
Dreibholz, Annelore, ix
Dreibholz, Ernst Günter, ix
Dreibholz, Thomas, 239
DSL, see Digital Subscriber Line
Dummynet, 97
Duplicate Threshold, 35
Duplicate TSNs, 57
Duplication, 23
Dynamic Address Reconfiguration, 61

E-Bit, 56
ECMP Routing, see Equal-Cost Multi-Path Rout-

ing

ECN, see Explicit Congestion Notification
EF, see Expedited Forwarding
End of Message, 56
Endpoint, 6
Endpoint Handlespace Redundancy Protocol, 178
Endpoint Sublayer, 75
ENRP, see Endpoint Handlespace Redundancy P-

rotocol
Entity, 11
Environment Cache, 186
Equal-Cost Multi-Path Routing, 68
Equilibrium (Flow), 37
Essen, 99
Ethernet, 43
Expedited Forwarding, 24
Expert Info, 97
Explicit Congestion Notification, 41
Extensible Messaging and Presence Protocol, 49

Fast Recovery, 39
Fast Retransmission, 35
FEC, see Forward Error Correction
FIFO, see First In First Out
File Transfer Protocol, 49
Financial Layer, 14
First In First Out, 23
Flags (DATA Chunk), 56

B-Bit, 56
E-Bit, 56
I-Bit, 62
U-Bit, 57

FlatNetworkConfigurator Module, 85
Flow, 13, 18, 92
Flow Control, 36
Forward Error Correction, 27
FORWARD TSN Chunk, 61
Fragment, 29
Frame, 14
FTP, see File Transfer Protocol
Functional Building Blocks, 15
Future Event Set, 78
Future Internet, 15

G-Lab, 102
Gap Acknowledgement, 33
GapAck, see Gap Acknowledgement
GapAck’ed Segment, 33

232 INDEX

Gate, 78
Generator Polynomial, 27
GNU Make, 181, 186, 188
GNU Octave, 190
GNU Plot, 190
GNU R, 181, 190
Go-Back N , 33
Guaranteed QoS, 24
GZip, 186

Half-Adjacent (Locators), 8
Half-Adjacent (Nodes), 8
Handle Resolution, 178
Handlespace, 178
Handshake

3-Way, 53
4-Way, 53

Head-of-Line Blocking, 55
Header, 20
HEARTBEAT ACK Chunk, 55
HEARTBEAT Chunk, 55
HIP, see Host Identity Protocol
Home Pool Registrar, 178
Host Identity, 75
Host Identity Protocol, 75
Host-to-Network Layer, 14
HTML, see Hypertext Markup Language
HTTP, see HyperText Transfer Protocol
Hypertext Markup Language, 49
HyperText Transfer Protocol, 49

I-Bit, 62
I-D, see Internet Draft
IAB, see Internet Architecture Board
IANA, see Internet Assigned Numbers Authority
IAOC, see Internet Administrative Oversight

Committee
ICI, see Interface Control Information
ICMP, see Internet Control Message Protocol
ICMPv4, see Internet Control Message Protocol,

version 4
ICMPv6, see Internet Control Message Protocol,

version 6
Identifier/Locator Split, 75
Identifiers, 75
IEC, see International Electrotechnical Commis-

sion

IEEE, see Institute for Electrical and Electronics
Engineers

IEEE 802, 43
IESG, see Internet Engineering Steering Group
IETF, see Internet Engineering Task Force
IMT-2000, see International Mobile Telecommu-

nications 2000
In Flight (Segment), 31
Increase Factor (CMT/RPv2), 154
Individual Submission, 45
INET Framework, 78
INIT ACK Chunk, 53
INIT Chunk, 53
Institute for Electrical and Electronics Engineers,

43
Integrated Services, 24
Integrated Services Digital Network, 42
Intellectual Property Rights, 46
Interface (Protocol Stack), 12
Interface Control Information, 12
Interface Data Unit, 12
International Electrotechnical Commission, 20
International Mobile Telecommunications 2000,

43
International Organisation for Standardisation, 13
International Telecommunication Union, 42
Internet, 43
Internet Administrative Oversight Committee, 44
Internet Architecture Board, 44
Internet Assigned Numbers Authority, 46
Internet Control Message Protocol, 48
Internet Control Message Protocol, version 4, 48
Internet Control Message Protocol, version 6, 48
Internet Draft, 45
Internet Engineering Steering Group, 45
Internet Engineering Task Force, 43
Internet Protocol, version 4, 47
Internet Protocol, version 6, 47
Internet Research Task Force, 44
Internet Service Provider, 42
Internet Society, 44
Internetwork Layer, 14
IntServ, see Integrated Services
IP Performance Metrics, 19
Iperf, 91
IPFIX, see IP Flow Information Export
IPPM, see IP Performance Metrics

INDEX 233

IPR, see Intellectual Property Rights
IPv4, see Internet Protocol, version 4
IPv6, see Internet Protocol, version 6
IPv6 Jumbogram, 48
IP Flow Information Export, 65
IRTF, see Internet Research Task Force
ISDN, see Integrated Services Digital Network
ISO, see International Organisation for Standard-

isation
ISOC, see Internet Society
ISP, see Internet Service Provider
ITU, see International Telecommunication Union

Jabber, 49
Jitter, 23

Karn’s Algorithm, 41
Keyboard/Video/Mouse Switch, 100
KVM Switch, see Keyboard/Video/Mouse Switch

LAN, see Local Area Networks
Last Call, 46
Latency, 21
Layer (Protocol Hierarchy), 11
LibreOffice, 190
Link, 6
Load Sharing, 1, 67

Inter-Flow, 68
Intra-Flow, 68

Load Spreading, 68
Local Area Networks, 43
Locator, 6
Locator Set, 6
Locator to Node Mapping Function, 7
Locators, 75
Long-Scale Notation, 20
Loopback Communication, 17
Loss, 23

Müller, Paul, ix
Müller-Clostermann, Bruno, ix
Max Burst, 142
Maximum Segment Size, 29
Maximum Transmission Unit, 28
Merging Rules, 185
Message, 56
Message (OMNeT++), 78
Message Passing Interface, 85

Microsoft Office, 190
Middlebox, 74
Model Parameter Space, 182
Module (OMNeT++), 78
MPI, see Message Passing Interface
MPTCP, see Multi-Path TCP
MPTCP-Like Congestion Control, 155
MSS, see Maximum Segment Size
MTU, see Maximum Transmission Unit
Multi-Homed, 55
Multi-Homing, 54
Multi-Path TCP, 2, 74
Multi-Streaming, 55
Multicast Communication, 16
MultihomedFlatNetworkConfigurator

Module, 85
Multipeer Communication, 17

Nagle’s Algorithm, 35
NAK, see Negative Acknowledgement
Nak-n-PDU, 35
NED, see Network Description Language
Negative Acknowledgement, 35
NetEm, 100
netperf, 91
NetPerfMeter (Application), 92
NetPerfMeter (Simulation Model), 83
NetPerfMeter Control Protocol, 93

Acknowledge, 94, 95
Add Flow, 94
Remove Flow, 95
Results, 95
Start Measurement, 95
Stop Measurement, 95

NetPerfMeter Data Protocol, 93
Data, 95
Identify, 94

NetPerfMeter Module, 83
Network, 5

Forwarding, 5
Uniqueness of Locators, 5

Network (OMNeT++), 78
Network Description Language, 78
Network Interface Card, 6
Network Layer, 14
Network Simulator 2, see NS-2
Network Time Protocol, 49

234 INDEX

NetworkConfigurator Module, 85
NIC, see Network Interface Card
Node, 6
Non-Renegable Selective Acknowledgement, 61
NPMP-CONTROL, see NetPerfMeter Control P-

rotocol
NPMP-DATA, see NetPerfMeter Data Protocol
NR-SACK, see Non-Renegable Selective

Acknowledgement
NR-SACK Chunk, 61
NS-2, 77
NTP, see Network Time Protocol
nttcp, 91
Number of Duplicate TSNs, 57
Number of GapAck Blocks, 57

Objective Modular Network Testbed in C++, see
OMNeT++

Observation Point, 65
Octet, 17
OMNeT++, 77
One-Way End-to-End Delay, 22
Open Shortest Path First, 50
Open Systems Interconnection Reference Model,

see OSI Reference Model
Open-Loop Flow Control, 36
OPnet Modeler, 77
Ordered Delivery, 30
OSI Reference Model, 13

Application Layer, 14
Data Link Layer, 14
Financial Layer, 14
Network Layer, 14
Physical Layer, 13
Political Layer, 14
Presentation Layer, 14
Session Layer, 14
Transport Layer, 14
User Layer, 14

OSPF, see Open Shortest Path First
Outstanding Bytes, 59
Outstanding (Segment), 31
Overhead, 20

Packet, 14
Packet Capture, 79
Packet Drop Reporting, 62

Parameter, 182
Parameter Space, 182
Partial Reliability, 61
Partially Acknowledged, 38
Partially Reliable Transfer, 61
Passive Mode, 84, 93
Path, 1

Formal Definition, 10
MPTCP, 74
SCTP, 54

Path Monitoring, 55
Path MTU Discovery, 48
Payload Protocol Identifier, 57
PCAP, see Packet Capture
PCI, see Protocol Control Information
PCU, see Power Control Unit
PDF, see Portable Document Format
PDU, see Protocol Data Unit
PE, see Pool Element
Peer, 11
Peer Receiver Window, 36
Per-Hop Behaviour, 24
Performance Metric

CMT-SCTP, 103
Resource Pooling, 152

PHB, see Per-Hop Behaviour
Physical Layer, 13
Physical Medium, 11
Pipelining, 31
PKTDROP Chunk, 62
Plain Old Telephone System, 18
Plot Template, 192
plotter.R, 190
PNG, see Portable Network Graphics
Point-to-Point Protocol, 47
Point-to-Point Protocol over Ethernet, 47
Political Layer, 14
Pool Element, 177
Pool Handle, 178
Pool Member Selection Policy, 178
Pool Policy, see Pool Member Selection Policy
Pool Registrar, 177
Pool User, 177
Port, 48
Portable Document Format, 181
Portable Network Graphics, 49
Potentially Failed Path State, 63

INDEX 235

POTS, see Plain Old Telephone System
Power Control Unit, 100
PPID, see Payload Protocol Identifier
PPP, see Point-to-Point Protocol
PPPoe, see Point-to-Point Protocol over Ethernet
PR, see Pool Registrar
PR-H, see Home Pool Registrar
Predefined Stream Mapping, 144
Presentation Layer, 14
Primary Path, 54
Processing Delay, 22
Propagation Delay, 22
Protocol, 11
Protocol Control Information, 12
Protocol Data Unit, 12
Protocol Stack, 11
Proxy Pool Element, 178
Proxy Pool User, 178
PseudoCumAck, 72
PU, see Pool User
Pulinthanath, Jobin, ix

QDisc, see Queuing Discipline
QoS, see Quality of Service
Quality of Service, 19
Queuing Delay, 22
Queuing Discipline, 22

First In First Out, 23
Random Early Detection, 23

Rüngeler, Irene, ix
Random Early Detection, 23
Rathgeb, Erwin Paul, ix
Reassembly, 13, 28
Receive Buffer, 32
Receive Buffer Blocking, 110

Advertised-Window-Induced, 110
Reordering-Induced, 112

Receive Buffer Splitting, 113
Based on Buffered Bytes, 113
Based on Outstanding Bytes, 113

Receive Window, 31
Receiver Blocking Fraction, 130
Receiver Not Ready, 36
Receiver Ready, 36
RED, see Random Early Detection
Registrar, see Pool Registrar

Reliable Server Pooling, 44, 65, 177
Reliable Transfer, 30
Reneging, 58
Reordering, 23
Request for Comments, 46
Rescheduling, 129
Reset Time, 84
Resource Pooling, 152
Response Time, 23
Result Space, 182
Retransmission, 31
Retransmission Policy, 61
Retransmission Strategy, 33
Retransmission Timeout, 31
Retransmission Timer, 30
Retransmission PseudoCumAck, 73
RFC, see Request for Comments
RFC Editor, 45, 46
RIP, see Routing Information Protocol
Round Trip Time, 22
Round-Trip Time Variance, 39
Routed Protocol, 47
Router, 6
Routing Information Protocol, 49
Routing Protocol, 47, 49
Routing Sublayer, 75
Routing Table, 47
RP, see Resource Pooling
RP Blocked State, 156
RP Path Blocking, 156
RSerPool, see Reliable Server Pooling
RSPLIB, 186
RTO, see Retransmission Timeout
RTO.Max, 59
RTO.Min, 59
RTT, see Round Trip Time
RTTVAR, see Round-Trip Time Variance
RTX, see Retransmission
Run, 182
Run Directory, 183
Running Code, 46

SACK, see Selective Acknowledgement
SACK Immediately, 62
SACK Chunk, 57
SAP, see Service Access Point
Scalar, 78

236 INDEX

Scalar File, 78
Scripting Service, 186
Scripting Service Protocol, 187
SCTP, see Stream Control Transmission Protocol
SCTP Extension

Chunk Authentication, 61
Concurrent Multipath Transfer, 63, 70
Dynamic Address Reconfiguration, 61
Non-Renegable Selective

Acknowledgement, 61
Packet Drop Reporting, 62
Partial Reliability, 61
Potentially Failed Path State, 63
SACK Immediately, 62
Secure SCTP, 62
Stream Reset, 61

SCTP-PDU, 51
SDU, see Service Data Unit
Secure Hash Algorithm No. 1, 184
Secure SCTP, 62
Secure Shell, 49
Seggelmann, Robin, ix, 144
Segment, 14, 29
Segmentation, 13, 28
SelAck-n-PDU, 33
Selective Acknowledgement, 33
Selective Repeat, 33
Send Buffer, 31
Send Buffer Blocking, 108

GapAck-Induced, 110
Transmission-Induced, 108

Send Buffer Splitting, 113
Based on Buffered Bytes, 113
Based on Outstanding Bytes, 113

Send Window, 31
Sender Blocking Fraction, 130
SendXMPP, 181
Sequence Number, 28
Service, 11
Service Access Point, 12
Service Data Unit, 12
Service Primitives, 11
Session Layer, 14
Set of Paths, 10
Set of Trails, 8
SHA-1, see Secure Hash Algorithm No. 1
Shim6, 75

Short-Scale Notation, 20
SHUTDOWN ACK Chunk, 60
SHUTDOWN COMPLETE Chunk, 60
SHUTDOWN Chunk, 60
SI, see Système International d’Unités
Signalling System No. 7, 65
Signalling Transport, 44
SIGTRAN, see Signalling Transport
simCreatorWriteParameterSection(), 184
Simple Module, 78
SimProcTC, 181
Simulation, 182
Simulation Function, 182
Simulation Processing Tool-Chain, see SimProc-

TC
simulation.R, 183
Single Point of Failure, 178
Single-Homed, 55
Size, 20
Slice, 102
Sliding Window, 31
Slow Start, 38
Slow-Start Threshold, 38
Slow-Start Threshold Ratio (CMT/RPv1), 153
Smallest Path MTU, 56
Smart Fast Retransmission, 126
Smart SACK Path Selection, 141
Smoothed Round Trip Time, 39
Smoothing Factor, 41
Split Fast Retransmission, 71
SRTT, see Smoothed Round Trip Time
SS, see Scripting Service
SS7, see Signalling System No. 7
ssdistribute, 187
SSH, see Secure Shell
SSN, see Stream Sequence Number
SSP, see Scripting Service Protocol
ssrun, 186
ssthresh, see Slow-Start Threshold
StandardHost Module, 80
Standardisation, 41
Start Time, 84
Status File, 184
Steinmetz, Ralf, ix
Stewart, Randall R., ix
Stop and Wait, 30
Stop Time, 84

INDEX 237

Stream, 55
Stream Control Transmission Protocol, 1, 49
Stream Identifier, 56
Stream Reset, 61
Stream Scheduler, 144
Stream Sequence Number, 56
Stream-Oriented Communication, 17
Summarisation, 189
Summary Skip List, 189
SYN Flooding, 53
Système International d’Unités, 20

Tüxen, Michael, ix
Tar, 186
TCP, see Transmission Control Protocol
TCP/IP Reference Model, 13, 14

Application Layer, 15
Host-to-Network Layer, 14
Internetwork Layer, 14
Transport Layer, 15

TCPDump Module, 79
Telekom, 99
TFTP, see Trivial File Transfer Protocol
Throughput, 19
Timer-Based Retransmission, 35
Trail, 8
Trail Cost Function, 9
Trailer, 20
Transmission Control Protocol, 48
Transmission Delay, 22
Transport Layer, 14, 15
Transport Sequence Number, 56
Transport Services Area, 44
Transport Services Working Group, 44
Trivial File Transfer Protocol, 49
tsctp, 91
TSN, see Transport Sequence Number
TSN Graph, 97
TSV, see Transport Services Area
TSVWG, see Transport Services Working Group

U-Bit, 57
UDP, see User Datagram Protocol
UMTS, see Universal Mobile Telecommunicati-

ons System
Unicast Communication, 16
Unidirectional Communication, 17

Universal Mobile Telecommunications
System, 43

Unordered Delivery, 30
Unreliable Transfer, 30
uperf, 91
Upper-Layer Identifier, 75
Upstream, 42
Use It or Lose It, 60, 142
User Data, 57
User Datagram Protocol, 48
User Layer, 14
UTF-8, 14

Validation, 79
Vector, 78
Vector File, 78
Verification Tag, 52
Versatel, 99
Voice over IP, 23
VoIP, see Voice over IP

W3C, see World Wide Web Consortium
WAN, see Wide Area Network
Wide Area Network, 42
Wireless LAN, 43
Wireshark, 96
WLAN, see Wireless LAN
Work Environment, 186
Work in Progress, 46
Work Package, 186
Working Group Draft, 45
World Wide Web Consortium, 49

XMPP, see Extensible Messaging and Presence
Protocol

Zero-Window Probing, 37

238 INDEX

Curriculum Vitae

Name: Thomas Dreibholz

29.09.1976 born in Bergneustadt, Nordrhein-Westfalen, Germany

08/1983 - 09/1987 Student at the Grundschule Wiehl-Bielstein (Primary School), Germany

09/1987 - 06/1993 Student at the Realschule Wiehl-Bielstein (Junior High School), Germany
http://www.realschule-wiehl.de

08/1993 - 07/1996 Student at the Gymnasium Wiehl (High School), Germany
http://www.dbgwiehl.de

08/1996 - 04/2001 Student of Computer Science at the University of Bonn, Germany
http://www.uni-bonn.de

since 10/1998 Vordiplom (Bachelor’s Degree) of Computer Science at the
University of Bonn, Germany

since 04/2001 Diplom (Master’s Degree) of Computer Science at the
University of Bonn, Germany

since 03/2007 Ph.D. (Dr. rer. nat.) of Computer Science at the
University of Duisburg-Essen, Germany

since 05/2001 Assistant Professor in the
Computer Networking Technology Group at the
Institute for Experimental Mathematics of the
University of Duisburg-Essen in Essen, Germany
http://tdrwww.iem.uni-due.de

since 2002 Cisco™ Certified Network Associate (CCNA) and Cisco™ Certified
Academy Instructor (CCAI) at the Cisco™ Networking Academy of the
University of Duisburg-Essen in Essen, Germany
http://cna.uni-due.de

239

http://www.realschule-wiehl.de
http://www.dbgwiehl.de
http://www.uni-bonn.de
http://tdrwww.iem.uni-due.de
http://cna.uni-due.de

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Glossary
	Introduction
	Motivation
	Scope and Related Work
	Efficient Handling of Dissimilar Paths
	Fairness on Shared Bottlenecks

	Goals
	Organisation

	Basics
	Formal Terminology Definitions
	Network
	Adjacency
	Trail
	Disjointness of Trails
	Path

	Data Communications
	Protocols
	Services
	Reference Models
	The OSI Reference Model
	The TCP/IP Reference Model

	Beyond the Layered Protocol Stack

	Classification of Data Communication Services
	Participating Entities
	Transfer Directions
	Transferred Data Units
	Transfer Arrangement Procedures

	Quality of Service
	Throughput
	Units and Ambiguity
	Overhead and Efficiency

	Delay
	Jitter
	Errors
	Guaranteed Services and Best Effort

	Corruption Detection and Correction
	Checksums
	Internet-16
	Adler-32
	Cyclic Redundancy Check

	Forward Error Correction

	Sequence Numbering
	Segmentation and Reassembly
	Ordered Delivery
	Reliable Transfer
	Naïve Approach: Stop and Wait
	Pipelined Approach: Sliding Window
	Principle
	Retransmission Strategies
	Window Size Constraints

	Overhead Reduction and Performance Improvements
	Delayed Acknowledgement
	Piggybacking
	Bundling
	Fast Retransmission
	Handling of Data Corruption

	Flow Control
	Approaches
	Silly Window Syndrome
	Zero-Window Probing

	Congestion Control
	Overview of Approaches
	Window-Based Congestion Control
	Increasing the Congestion Window
	Decreasing the Congestion Window

	A Congestion Control Example
	Dynamic Retransmission Timeout
	Performance Improvements

	Protocol Standardisation
	Wide Area Network Standards
	Local Area Network Standards
	Internet Standards
	Overview
	Standardisation Process

	Internet Protocols
	Physical Layer and Data Link Layer
	Network Layer
	Transport Layer
	Session Layer, Presentation Layer and Application Layer

	Summary

	The Stream Control Transmission Protocol
	Introduction
	Packets and Chunks
	Association Establishment
	Multi-Homing
	Principle
	Formal Definition
	Path Monitoring

	Multi-Streaming
	Segmentation and Reassembly
	Reliable Transfer
	Congestion Control
	Burst Mitigation
	Association Teardown
	Protocol Extensions
	Chunk Authentication
	Dynamic Address Reconfiguration
	Partial Reliability
	Stream Reset
	Non-Renegable Selective Acknowledgement
	SACK Immediately
	Secure SCTP
	Packet Drop Reporting
	``Potentially Failed'' Path State
	Concurrent Multipath Transfer

	Compatibility and Interoperability
	Application Programming Interface
	UDP Encapsulation
	Checksum Offloading

	Implementations
	Application Scenarios
	SS7 over IP Networks
	IP Flow Information Export
	Reliable Server Pooling
	Further Application Scenarios

	Summary

	Multipath Transfer
	Introduction
	Data Link Layer Approaches
	Network Layer Approaches
	Transport Layer Approaches
	Higher-Layer Approaches

	CMT-SCTP – Multipath Transfer for SCTP
	Basic Approach
	Split Fast Retransmission
	Congestion Window Update for CMT
	Delayed Acknowledgement for CMT

	Multi-Path TCP – Multipath Transfer for TCP
	Identifier/Locator Split – Multipath Transfer on the Network Layer
	Summary

	The Simulation Environment
	Introduction
	OMNeT++
	The INET Framework
	The CMT-SCTP Model
	Added Features and Parameters
	Interaction with TCPDump Module and External Interface

	The NetPerfMeter Simulation Model
	The Multi-Homed Auto-Routing Module
	The Simulation Processing Tool-Chain
	Summary

	The Testbed Environment
	Introduction
	The FreeBSD Kernel SCTP Implementation
	The NetPerfMeter Application
	Existing Performance Test Software
	Design Goals and Features
	Instances and Protocols
	Measurement Processing
	Measurement Setup
	Measurement Run
	Measurement Termination

	Result Collection
	Measurement Execution, Result Post-Processing and Visualisation
	Reusability

	Wireshark and the SCTP Analysis Tools
	The Testbed
	Local Setup
	Distributed Setup
	The Reality – Challenges and Lessons Learned
	Power Control Unit and Keyboard/Video/Mouse Switch
	Peculiarities of Dummynet
	Challenges of ADSL Configuration
	Challenges of Ethernet Hardware

	Virtualisation of the Testbed
	Summary

	Efficient Handling of Dissimilar Paths
	Introduction
	Scenario Setup
	Model Validation on Similar Paths
	Buffer Size Considerations
	Buffer Blocking Issues
	Send Buffer Blocking
	Transmission-Induced Send Buffer Blocking
	GapAck-Induced Send Buffer Blocking

	Receive Buffer Blocking
	Advertised-Window-Induced Receive Buffer Blocking
	Reordering-Induced Receive Buffer Blocking

	Buffer Splitting
	The Approach
	Buffer Splitting based on Buffered Bytes
	Buffer Splitting based on Outstanding Bytes

	A Proof of Concept
	Buffer Bloat – A Challenging Real-World Internet Scenario
	The ADSL Scenario
	Simulation Results
	Impact on the Congestion Control Behaviour
	From Simulation to Reality

	Unordered Delivery
	Dissimilar Bandwidths
	Dissimilar Bit Error Rates
	Dissimilar Delays
	Summary

	Chunk Rescheduling
	Ordered Delivery
	Dissimilar Bandwidths
	Dissimilar Bit Error Rates
	Dissimilar Delays
	The Influence of the Burst Mitigation Variant
	The Burst Mitigation Challenge
	Smart SACK Path Selection
	Alternative Burst Mitigation Variants
	Evaluation

	Ongoing and Future Work

	Predefined Stream Mapping
	Optimised Stream Scheduling for CMT-SCTP
	Decoupled Streams
	Scenario Setup
	Dissimilar Delays
	Dissimilar Bandwidths
	Dissimilar Bit Error Rates
	Ongoing and Future Work

	Summary

	Fairness on Shared Bottlenecks
	Introduction
	Resource Pooling
	Resource-Pooling-Based Congestion Control for CMT-SCTP
	CMT/RP Congestion Control
	Version 1 – CMT/RPv1
	Version 2 – CMT/RPv2

	MPTCP-Like Congestion Control

	The Challenge of Chunk-Based Segmentation
	Scenario Setup
	Handling Shared Bottlenecks
	Varying the Number of Bottleneck Paths
	Congestion Control Behaviour on Bottleneck Paths
	Using a Long Queue before the Bottleneck

	Handling Disjoint Paths
	Dissimilar Paths
	Bandwidth Variation on the Exclusively Used Path
	Bandwidth Variation on the Shared Path
	Congestion Control Behaviour on Dissimilar Disjoint Paths

	Ongoing and Future Work
	Summary

	Conclusion and Outlook
	Achieved Goals and Obtained Results
	Simulation Environment and Testbed Environment
	Efficient Handling of Dissimilar Paths
	Unordered Delivery
	Ordered Delivery
	Multi-Streaming

	Fairness on Shared Bottlenecks
	Standardisation Contributions

	Outlook and Future Work

	Reliable Server Pooling
	Architecture
	Registrar Operations
	Pool Element Operations
	Pool User Operations
	Automatic Configuration
	Application Scenarios
	Summary

	SimProcTC – The Simulation Processing Tool-Chain
	Overview
	Simulation Parametrisation and Processing
	Formal Definitions
	Realisation
	Handling Model Enhancements

	Distributed Simulation Processing
	Overview
	The Scripting Service
	The Pool Setup
	The Component Status Protocol
	The Scripting Service Pool – A Stress Test for SCTP Implementations

	Results Post-Processing and Visualisation
	Scalars Summarisation
	Plotting
	Plotting Templates

	Summary

	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Index
	Curriculum Vitae

