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1 Introduction

1.1 Salt effects at solvation interfaces

Electrolyte solutions are widely present in nature. Indeed, almost whole liquid water on Earth

possesses dissolved salts: oceans, seas, and to less extent lakes and rivers are solution of dif-

ferent salts. Consequently, all the biological liquids: cytoplasm, blood, lymph, etc. contain

ions. Most of the technological liquids contain, either as additives or impurities, dissolved ions.

Thus, understanding ionic solvation is important for almost any process taking place in liquid

phase.

There are very many known salts: from alkali halides (like NaCl) to salts constituting of

bulky molecular ions (like ionic liquids). Different ions have different solvation properties.

Some salts are very well soluble (like NaCl in water), some are not (like BaSO4 in water).

Different ions interact with solvent molecules and other ions in a different way. Thus, using

different ions one can adjust the properties of the buffer solvent. The pioneering work in this

direction was done by Franz Hofmeister [1], who investigated effects of different ions on the

stability of proteins in aqueous solutions. Since then, a lot of work has been done on specific

ion effects [2, 3]. But still there are open question and a lot of new studies appear in the field.

1.2 Carbon nanomaterials

There is a big breakthrough in nanotechnology nowadays [6]. Carbon nanomaterials (CNM)

are promising objects for a wide range of applications in different areas: photonics, electronics,

supercapacitors, sensorics, drug delivery, etc. [7]. There are different carbon nanomaterials:

carbon nanotubes, fullerenes, carbon “nanoonions“, etc. (see Figure 1).

Carbon "nanoonions" (CNOs) are spherical nanoparticles with 5-10 nm diameter con-

sisting of concentric shells of graphene sheets that can be considered as multi-shell fullerenes

[8] (see Figure 1b). Due to their ability to handle high power, CNOs have recently attracted

attention for electrodes of micro-supercapacitors [8].

Carbon nanotubes (CNTs) are cylindrical nanoobjects which can be considered as the

rolled-up graphene sheets. There are single-wall and multi-wall CNTs [7]. Single-wall CNTs

(SWNTs) have diameter range from 0.4 to 3 nm [7]. Despite the structure of a SWNT is similar

to the structure of a single graphene sheet, which possesses semi-conductor properties, SWNTs

can be both metallic or semiconducting [7]. Whether a SWNT is metallic or semiconducting is

determined by the direction about which the graphene sheet is rolled to form the SWNT (see
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Figure 1: Carbon nanomaterials considered in the study. a) Carbon nanotubes: a.1. transmission

electron microscopy (TEM) image of single walled CNTs (replotted from the reference [4] with

permissions, Copyright c©2003, American Association for the Advancement of Science), a.2.
model of the single-walled CNT in molecular dynamics (MD) simulations, carbon atoms are

represented by grey balls, a.3. slice of the model CNT. b) Carbon "nanoonions": b.1. TEM

image of the carbon "nanoonions" (replotted from the reference [5] with permissions, Copyright

c©2007 Elsevier), b.2. model of the carbon "nanoonion" in MD simulations, carbon atoms are
represented by grey balls, b.3. slice of the model carbon "nanoonion" representing the layered

structure.

Figure 2). This direction is uniquely defined by the chiral vector of the CNT, which can be

specified by two integer coefficients (n,m) in the superposition of the graphene unit vectors a1

and a2 (see Figure 2a). To construct a SWNT of certain chirality from the graphene sheet one

has to roll the graphene sheet around the axis perpendicular to SWNT chiral vector, such that

the start and end points of the chiral vector "meet" each other in one point. The chiral vector

can be written as:

C = na1 + ma2, (1)

where a1 and a2 are graphene units vectors (as defined on the Figure 2), n andm are integer coef-
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ficients. One can distinguish several types of SWNT chiralities: armchair (n=m), zigzag (n=0 or

m=0), or chiral (all other variants of the n and m combination) [7] (see Figure 2b). All armchair

SWNTs are metallic. Those SWNTs with (n − m) evenly divisible by 3 are semi-conductors
with a tiny band-gap, thus we consider them as metallic. All others are semiconductors having

the band gap inversely proportional to the nanotube diameter [7]. Multi-wall CNTs (MWNTs)

are usually metallic, because there is a high probability to observe a metallic SWNT inside a

MWNT.

Figure 2: Carbon nanotubes are rolled graphene sheets. a) Representation of a graphene sheet.

By the blue lines we illustrate the possible rolling axes of the graphene sheet. The vectors a1

and a2 are unit vectors of the graphene lattice. The picture is adopted from Ref. [9]. b) Carbon

nanotube chirality resulting from different chiral vectors. The chiral vector C is a superposition

of the unit vectors of the graphene sheet. To construct a SWNT of certain chirality from the

graphene sheet one has to roll the graphene sheet around the axis perpendicular to SWNT chiral

vector, such that the start and end points of the chiral vector "meet" each other in one point.

1.3 Importance of carbon nanomaterial dispersions

Most of applications require solubilisation of CNMs because solutions provide a convenient in-

strument to manipulate the materials. Liquid dispersions of carbon nanomaterials, and in partic-

ular CNTs, are a subject of intensive research these days due to their wide areas of applications

[10, 11, 12, 13, 14]. However, the inert nature of the CNM surface makes them extremely solvo-

phobic to the most of commonly used solvents [10, 11, 12, 13, 14]. That poses a great challenge

for chemists and nanoscientists working on CNM applications. As a consequence, there have

been spent many efforts to find efficient ways of dispersing CNMs in liquid phase either through
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chemical modification of their surface [10, 11, 12, 15, 16] or through adding dispersing agents

(e.g. surfactants) into solution to stabilize the CNM dispersions [14, 17, 18, 19, 20, 10, 21, 22].

1.3.1 Aqueous dispersions

The CNM aqueous dispersions are important for many application areas of CNMs such as

photonics, biological and environmental sensing, drug delivery and bioimaging [7, 23, 24].

CNM aqueous dispersions hold great promise as functional or processing liquids in micro/nano

systems. The CNMs aqueous dispersions could be used inside of micro-fluidic devices targeting

specific biomolecules [25] or as essential components in the emerging solvent based molecular

engineering processes, e.g. in the Langmuir-Blodgett deposition of aligned CNTs array [26] or

nano-ink printing of CNT functional arrays [27].

Although water as a solvent is unavoidable in many bio-related applications of CNMs

[17, 16, 28], this is not the best solvent for making stable CNM dispersions [29, 30]. It is

practically impossible to disperse any noticeable amount of pristine CNTs in bulk water, where

in the absence of dispersants any pristine carbon materials instantly precipitate [14, 29]. Thus,

solubilization of carbon nanotubes in water requires either covalent or noncovalent functional-

ization of nanotubes [20, 15, 10].

1.3.2 Organic solvent dispersions

Recently, it has been shown that several organic solvents, like N-methyl-2-pyrrolidone (NMP)

are much more efficient for dispersing CNTs and other CNMs than water [29, 30, 31, 32]. Such,

it has been shown that it is possible to disperse considerable amounts of pristine CNTs and

graphene in bulk NMP without adding any dispersing agents [31]. That explains why these days

non-aqueous (organic) solvents attract considerable attention of experimental nanoscientists as

well as theoreticians [30, 32, 33, 34].

Recently, the mechanisms of interactions between CNM species in organic solvents were

investigated by molecular dynamics simulations. In the work of Mac Kernan and Blau [34] it

was found that a single layer of NMP raises a big barrier between interacting carbon nanotubes

in CNT-NMP dispersions, preventing their aggregation into bundles. Similar effects were ob-

served for graphene sheets by Shih et al. [32]. They showed that the origin of the barrier is

the strong van der Waals interactions of the confined NMP molecules with the surface of the

graphene sheets. In contrast, as the results of Ref. [32] show, there is almost no such a barrier

in aqueous solution, because of the weak water molecules interactions with the inert surface of
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graphene [32]. We note, however, that the discussed works were mainly focused on the mecha-

nisms of CNM aggregation, rather than on molecular effects of solvent environment associated

with dispersion mechanisms of a single CNT or graphene sheet in NMP. Still, there is lack of

information about the molecular-scale effects at the CNM-organic solvent interface. The role of

other dispersion components (ions, cosolvents, cosolutes) is also not clear.

1.3.3 Ionic Liquid dispersions

Interest in CNMs dispersed in room temperature ionic liquids (RTILs) is rapidly growing these

days [35, 36, 37, 38]. One of the main reasons is the extraordinary electrochemical properties

of RTILs [39, 40, 41, 42, 43] as well as of CNM composite materials [35, 36, 44]. Such, the

use of CNTs (e.g. nanotube forest) and ionic liquids has promising supercapacitor applications

[36, 45, 37]. We also note that in many emerging electrochemical applications, RTILs are

actively used in mixtures with organic solvents (e.g. acetonitrile) to avoid problems related

with the high viscosity of neat RTILs [46, 36, 47].

It has been shown that RTILs based on a combination of imidazolium-based cations with

hydrophobic anions (e.g. BF4 or bis (trifluoromethylsulfonyl) imide (TFSI)) are moisture stable

and have promising electrochemical applications [42]. Among those, the TFSI-based RTILs

have good stability (such, in Ref. [42] there have been discussed that the BF4 anion is not stable

against carbon electrodes) and have large electrochemical window [48, 49]. Ion conductivity

of EMIm-TFSI (EMIm satys for 1-ethyl-3-methylimidazolium) is comparable to the best of

organic electrolyte solutions [35] and this liquid is stable (no decomposition) up to 300-400◦C.

The TFSI-based ionic liquids are practically not miscible with water but they are well miscible

with several organic solvents as, e.g., acetonitrile [50].

It has been shown in many experimental [51, 52, 41, 53, 54, 55, 56, 57] and theoretical

[58, 59, 60, 61, 62, 63, 64, 65, 66] studies that the molecular structure of RTIL ions strongly in-

fluences the structure of the RTIL liquids at different charged and uncharged interfaces. Such, in

several experimental studies the orientation of ionic liquid molecular ions were investigated at

the liquid - vacuum interface [52, 67, 68]. Nakajima et al. [67] investigated the liquid - vacuum

interface of different 1-alkyl-3-methylimidazolium – bis (trifluoromethylsulfonyl) imide ionic

liquids using the high-resolution Rutherford backscattering spectroscopy. They showed that,

due to the solvophobic nature, long alkyl chains of cations point away from the bulk liquid to

vacuum and therefore stimulate the imidazolium ring to stay perpendicular to the surface. Lock-

ett et al. [52] showed that asymmetry in the size and shape of molecular ions results in unequal
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distribution of molecular cations and anions in a direction normal to the RTIL-vacuum inter-

face. These results suggest that the molecular structure of RTIL ions should make significant

effects at the CNM-RTIL interfaces. However, there is a lack of molecular level information on

the mechanisms of the RTIL interactions with nanocarbon electrodes. Even less is known about

the molecular effects of organic solvent on the interface properties of RTIL-solvent mixtures at

the nanocarbon surfaces. The basic mechanisms of the electrical double layer formation in such

systems (particularly, in RTIL-acetonitrile mixtures) are also not sufficiently explored.

Due to the recent progress in molecular-level experimental techniques there has been ob-

tained very important information on the layering structure of ionic liquids at neutral and

charged interfaces [69, 55, 56, 70]. Endres et al. [56] quoted an "undoubted" formation of

at least three solvation layers of EMIm-TFSI on metal electrodes detected by atomic force

microscopy (AFM) (note, that they name EMIm-TFSI as 1-ethyl-3-methylimidazolium bis [tri-

fluoromethylsulfonyl] amide). Recently, Hayes et al. [70] investigated the influence of the

electric potential on the interface solvation layers in 1-ethyl-3-methylimidazolium tris (pentaflu-

oroethyl) trifluorophosphate ([EMIm]FAP) and 1-butyl-1-methylpyrrolidinium tris (pentafluo-

roethyl) trifluorophosphate ([Py]FAP) by AFM. Applying an electric potential, they found that

the innermost layer changes its structure and becomes more strongly bound to the surface. At

the cathode, for "the first time an interfacial (innermost) anionic layer at a solid interface has

been detected by AFM".

However, still many details of the interface structure of RTILs and their mixtures are not

easily accessible by direct experiments. Molecular simulations can provide complimentary

information to the experimental data that should help to obtain a detailed picture of the interface

phenomena in RTIL systems (see more discussion on this subject in Ref. [36]). Therefore,

we decided to use fully atomistic simulation methods to study basic mechanisms of the RTIL

interactions with the CNT surface.

1.4 Ion effects on carbon nanomaterial dispersion properties

The effects of ions may be of particular interest here because, as it is known from biochemical

and colloidal sciences, ions may have profound effects on stability of biomolecular [71, 72, 73]

and colloidal dispersions [74, 75, 76, 77], interacting in different ways with biomolecules and

dispersed particles [71, 78, 79]. Recently, ion effects attracted attention of scientists working

on CNMs dispersions.

Firstly, the most of technical and biological aqueous environments of CNMs contain differ-
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ent salts and, as it has been recently reported by several groups, the salt ions make significant

effects on physical-chemical properties of CNMs in water solutions [80, 81, 82, 83, 84].

Secondly, as it has be discussed earlier, SWNTs of different chirality possess very different

properties. Thus, to efficiently exploit the properties of a certain CNT chirality, one has to find

a way of effective chirality separation, because as prepared samples of CNTs contain mixtures

of metallic and semiconducting CNTs with a wide range of diameter distributions [7]. The

selective separation of CNTs chiralities is a great challenge, which limits nanotechnological

applications of CNTs. But so far there is no universal and efficient method for CNT separa-

tion. Recently, it has been shown that a salt addition into the SWNT dispersions might serve

as an efficient tool for chirality separation of CNTs [81, 80, 84]. Niyogi et al. reported a way

of "diameter-dependent separation of metallic and semiconducting SWNTs, without the use

of any additional cosurfactant" with the use of salt addition in the SWNT dispersions and the

subsequent ultracentrifugation [81]. Ju et al. showed that an efficient individualization and chi-

rality enrichment of the (8,6) SWNTs from a nanotube sample with broad diameter distribution

could be achieved using two types of surfactants and a salt addition [85]. These works indicate

the potential and importance of the use of salt addition as a tool for tuning physico-chemical

properties and stability of nanoobject solutions and dispersions, and for selective diameter and

chirality separation of the CNTs from their dispersions.

The solvation properties of SWNTs are usually monitored by absorption, photolumines-

cence (PL) and Raman spectroscopy via investigation of resonance features for specific nan-

otubes chiralities [80, 81]. Semiconducting SWNTs produce photoluminescence (PL) spectra

[86]. Importantly, the semiconducting SWNTs show different characteristic "spots" on the

excitation-emission PL two dimensional map [86], which makes it possible to analyze the

SWNT chirality population in the SWNT dispersions. The SWNT PL is of vital importance

for realization of CNT sensor applications using the fluorescence resonance energy transfer

between CNT and its biological/chemical surroundings and for the development of ultrafast

photonics CNT-based devices using PL quenching effects [29, 87, 88, 89, 90]. It was shown

that different ions can make various effects on the PL spectra of SWNTs in aqueous dispersions

stabilized by surfactants [80, 81, 82, 83, 84]. However, we are not aware about a detailed study

of ion effects on CNTs in their organic solvent dispersions. Partially, this can be explained by

the fact that many commonly used inorganic salts (e.g. NaCl) are hardly soluble in organic

solvents such as NMP [91]. The salts addition manifests itself in modification of the electric

field around nanotubes by ions, resulting in the quenching of PL of SWNTs [80, 81, 82]. Im-

portantly, Brege et al. revealed that the strength of PL quenching effect has strong correlation
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with the ionic radius of the quenching ions, showing the increase in quenching with the increase

in the ionic radius [82, 83].

Despite of the widespread reports on significant ion effects on physical-chemical properties

of CNMs, the molecular mechanisms of ion interactions with the CNM surfaces are still far from

complete understanding and further experimental and theoretical investigations are required.
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2 Theoretical background

2.1 Molecular parameters and functions describing ionic solutions

2.1.1 Radial Distribution Function

The radial distribution function g(r) (RDF) is an important property characterizing the structure

of condensed systems. It can be obtained experimentally from X-ray or neutron scattering

(see for example Ref. [92]). The RDF function is defined through the following relation (for

distribution of particles a around particles x) [93]:

ρa

∫
gxa(r)4πr2dr = Na − 1 (2)

where ρa is the number density of the particles a, Na is the number of particles a in the sample,

r is the distance between particles x and certain point in the the space.

The function shows the ensemble average of the relative density profile of particles a at the

certain distance r from a particle x:

gxa(r) =
〈
ρa(r)
ρ0a

〉
ensemble

(3)

where ρ0a is the number density of particles a in the bulk liquid.

An example RDF is given on the Figure 3.

2.1.2 Pair Correlation Function

For homogeneous liquid systems the RDF function is equal to the Pair Correlation Function

(PCF) of the corresponding particles [93]. For simplicity let us consider the distribution of

particles a around the particles of the same type in an one-component liquid. We consider

ensemble of indistinguishable particles. The general definition of the PCF is given via Pair

(ρ(2)(r1, r2)) and Unitary Distribution Functions (ρ(1)(ri)) (we omit subscript a at the functions

for simplicity):

g(2)(r1, r2) =
ρ(2)(r1, r2)
ρ(1)(r1)ρ(1)(r2)

(4)

where ri is the radius-vector of the particle i in the space.

The Pair Distribution Function (ρ(2)(r1, r2)) shows the probability that one molecule of the

system will be found in elementary volume dr1 at r1 and another in dr2 at r2, if a configuration

of the system is observed [93].

The ensemble average definition of the PCF would be [93]:

g(2)(r1, r2) =
N(N − 1)
ρ(1)(r1)ρ(1)(r2)

∫
...
∫
U(r1...rN)dr3...drN
Zcon f

(5)
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Figure 3: Definition of the solvation shells based on the particle-solvent radial distribution

function g(r). Distance is given in the diameters of the solvent molecules (σ). Thin dashed

lines indicate the boundaries of the first, second and so on solvation shells (SS), which usually

correspond to the positions of the minima on the g(r).

where the Zcon f is the configuration integral of the system, N is the number of molecules in the

ensemble, U is the potential energy of the system, kB is the Boltzmann constant, T is tempera-

ture. The integration is performed over the positions of all particles in the ensemble except two

of them.

For homogeneous liquid the Unitary Distribution Functions is constant and equal to the bulk

density of the liquid (ρ(1)(ri) = ρ) [93]. The mutual correlations of the particles depend only on

the relative distance between particles r = |r1 − r2|, rather than on the absolute positions of the
particles. Thus, the Equation 4 reduces to:

g(2)(0, r) =
ρ(2)(0, r)
ρ2

(6)

which corresponds to the definition of the RDF.

2.1.3 Potential of Mean Force

Potential of Mean Force (PMF) can be defined in different ways. Let us consider a homogeneous

system containing N spherically symmetric particles in volume V with temperature T (NVT -

ensemble). The most intuitive way to define the PMF would be as follows:
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1. PMF is an effective potential acting between two molecules i and j in the condensed

phase. Let us first consider the interaction between two molecules (i and j) in the gas phase,

where we may neglect the interactions of the two molecules with all others. The interaction

between the two molecules results in the forces acting on these two molecules, since the force

is the minus gradient of the interaction potential. The forces result in the accelerations of the

particles. So, the ith molecule causes force on the jth molecule, and the jth molecule causes

force on the ith molecule.

We employ the same scheme for the liquid phase. Let us consider molecules i and j out of

an ensemble of N molecules. In the ensemble of molecules the forces acting on the molecules

i and j are not only the result of mutual interaction of the molecules i and j but also their

interactions with all other molecules in the ensemble of N molecules. Let us formulate this in

the following way: the molecules i and j interact with each other via a modified (compared to

the gas phase) potential, this potential includes an average influence of all particles onto i and j

molecules. This potential is called the Potential of Mean Force (PMF). This potential results in

a force acting on the molecule j at the distance r from the molecule i. The force is exactly the

averaged (over the ensemble) force acting on the molecule j having occurred at distance r from

the molecule i in the ensemble of N molecules.

The definition of the PMF via ensemble average of the force acting on the particle j (−−−−→grad jU)
reads:

− −−−→grad jPMF(ri j,Ωi j) =
∫
...
∫
exp(−βU)(−−−−→grad jU)dr3...drNdΩ3...dΩN∫
...
∫
exp(−βU)dr1...drNdΩ1...dΩN

(7)

where β is the inverse temperature (β = (kBT )−1), U is the potential energy of the system,
−−−→
grad j

is gradient operator on the position of particle j, the denominator is the configuration integral of

the system (Zcon f ). Thus PMF is the potential that causes the mean force acting on the particle

j.

From this definition PMF can be calculated in the following way. Let us consider the Molec-

ular Dynamics (MD) simulation of the system of N spherical particles. On each integration step

we choose 2 molecules, let say i and j, calculate the distance r between them, and store the

forces acting on the molecule j (calculated in the MD scheme). Then we repeat the procedure

for a sufficient number of MD integration time steps. Finally we average all the stored forces

that appeared we collected for the same separations between particles from r to r+dr, where dr

is a specified resolution of the PMF function. Now, we have the "mean force" between two par-

ticles in the system as the function of r. Integral of the "Mean Force" will give us the "Potential

of Mean Force" as the function of r.
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PMF can be calculated not only as a function of r, but actually as a function of any spatial

variable (e.g. angles) and their combinations. It may also be a function of coordinates of several

particles.

2. PMF can be defined through the n-particle correlation functions.

Let us define the PMF between two non-spherical particles in a one-component homoge-

neous system in NVT -ensemble through the following relation [94]:

PMF(ri j,Ωi j) = −kBT ln g(ri j,Ωi j)

where g(ri j,Ωi j) is the molecular pair correlation function, ri j = {xi j, yi j, zi j} andΩi j = {φi j, θi j, ψi j}
are the radius-vector between ith and jth molecules (e.g. between their center of masses) and the

relative orientations of the ith and jth molecules (given by a set of Euler angles). Equivalently

we can write:

g(ri j,Ωi j) = e−βPMF(ri j,Ωi j) (8)

where β is the inverse temperature (β = (kBT )−1).

It can be showed [94] that substituting the expression (Equation 8) into the definition of the

pair correlation function (Equation 5) will result in Equation 7.

3. PMF can be defined through the thermodynamic cycle.

PMF is the work involved (the Helmholtz energy in the NVT-ensemble or the Gibbs energy

in the NPT-ensemble) in bringing two (or many) selected particles from infinite separation (in

the condensed phase) to the final configuration (in the condensed phase) [94].

For homogeneous system containing N spherically symmetric particles in volume V with

temperature T (NVT -ensemble) the two particle PMF would be:

PMF(r) = A(r) − A(∞) (9)

where A is the Helmholtz free energy.

All the three definitions of PMF are equivalent.

2.1.4 Solvation/Hydration shell

Let us consider an ion dissolved in water. Ion attracts water molecules, and as the result, a

certain number of attracted water molecules are situated around the ion. The water molecules

form a "shell" around the ion. The rest water molecules are also attracted to the ion, but no

more water molecules can be accommodated in the very vicinity of the ion because there is not

enough space left. These water molecules are situated next to the water molecules in the first
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shell around the ion. These molecules form the second shell molecules around ion. In the same

way we can distinguish the third, forth, ... shells of solvent molecules around the ion, until

the water molecules at a certain distance from the ions do not feel the influence of the ion and

behave as water molecules in bulk water phase. All the water molecules that we decide to be

distinct from the bulk water molecules form the hydration shell around ion, which can be split

into first, second, etc., hydration shells (HSs) according to their distances from the ion. One

should note, that the described solvent shells around the ion are not static, but rather mobile

structures with not well-defined boundaries. The same formalism can be applied not only to

the aqueous solutions, but rather to any solution. In this case we operate with a solvent, and all

the characteristics introduced for the hydration process, are transferred to the solvation process

(e.g. the term "hydration shell" is changed to the term "solvation shell" (SS), etc.).

A question arises: how to distinguish where the first HS ends and the second starts? The

question has no direct answer. One has to introduce some criteria. The most frequently used

criteria is to use ion-water radial distribution function (see Section 2.1.1). For condensed sys-

tems the ion-solvent RDF has an oscillatory view (see Figure 3). Usually, the boundary for the

first SS is chosen to be the position of the first minimum on the RDF, for the second shell from

the position of the first minimum to the position of the second minimum on g(r) and so on. In

general, one can implement more sophisticated criteria.

2.1.5 Coordination number

Coordination number is an average number of solvent molecules in the first solvation shell

of a solute molecule. The coordination number can be calculated from the radial distribution

function in the case of a homogeneous liquid. The running coordination number of particles β

in the sphere with radius r around a particle α (nαβ(r)) reads:

nαβ(r) = 4πρβ
∫ ∞

0
gαβ(r)r2dr

where gαβ(r) is the α − β radial distribution function, ρβ is the number density of the particles β
in the system.

The coordination number of particles β in the first solvation shell of particles α equals to

the value of the running coordination number at the distance equal to the position of the first

minimum on the g(r) function. When the solvent is water the coordination number is called

also as hydration number.



2 THEORETICAL BACKGROUND 22

2.1.6 Residence time

Residence time of a solvent molecule in the first solvation shell of a solute molecule is the mean

time one solvent molecule stays within the boundaries of the first solvation shell. The escape of

water molecule from the first hydration shell of an ion can be considered as the reaction process:

ion − watern = ion − watern−1 + waterbulk1

where n is the hydration number of the ion.

The free energy profile along the reaction coordinate of the water escape from the first HS is

given by the ion-water PMF. Thus, the activation energy is the difference of the first maximum

and the first minimum on the ion-water PMF (see Refs. [95, 96, 97]):

Ea = PMF(r1stmax) − PMF(r1stmin)

Figure 4: The process of the one water molecule release from the hydration shell of an ion. (left

side) Pictorial representation of the process. (right side) The ion-water potential of mean force:

the free energy profile of the process. The first barrier on the profile represents the activation

free energy of water molecule release from the hydration shell of an ion.

From the kinetic theory (see e.g. [96]) we have the following relation between the residence

time and the energetic barrier along the reaction coordinate between initial (ion − watern) and
final (ion − watern−1) states:

1
tR
∝ e−βEa

where tR is the residence time, Ea is the activation energy of the process (energetic barrier along

the reaction coordinate, see Figure 4).
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The conventional way to calculate the residence time is the method proposed by Impey et al.

[98]. The residence time is found through fitting the auto correlation function of water molecule

escape from the hydration shell of an ion:

R(t) =
1
Nh

∑
i=1

Nh 〈θi(0) · θi(t)〉

with the exponent decay function:

exp(−t/tR)

where θi(t) is the Heaviside step function (it equals to 1 if the water molecule i is in the first

hydration shell of the ion at time t and to zero otherwise), Nh is the instant coordination number

of the ion.

An additional criteria is usually introduced: the absence time tabsence. If a water molecule,

that left the hydration shell, returns back in time less than the absence time then it is assumed

that it has not left the hydration shell. This criteria is introduced to get rid of the possible

oscillatory motion of the molecules at the boundary of the hydration shell, which are always

set "ad-hoc" (see the discussion in the Section 2.1.4). Impey et al. proposed the absence time

equal to 2 ps. The most of the authors (see e.g. Ref. [99]) usually provide calculations of the

residence time for the two cases: with tabsence = 0 ps and with tabsence = 2 ps.

Another way to calculate the residence time is to follow its definition. From the trajectories

of the MD simulations one can estimate the average time a water molecule stays within the

first hydration shell. This method is very sensitive to the input parameters (e.g. criteria of the

boundary of the first hydration shell, etc.).

2.1.7 Samoilov’s energy

Samoilov obtained from the experimental data the ratio of the residence times of a water

molecule in the HS of an ion and in the HS of a water molecule in the bulk water phase [95].

The ratio is related to the energetic barrier, which is usually referred to the Samoilov’s energy

(ΔESamoilov) [95]:
tsolR
t0R
= e−βΔESamoilov

where tsolR and t
0
R the residence time of a water molecule in the HS of the solute and the residence

time of a water molecule in the HS of a water molecule in the bulk water phase, β is the inverse

temperature.

The Samoilov’s energy can be calculated from the activation energy of one water molecule

release from the hydration shell of an ion and activation energy of one water molecule release
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from the hydration shell of a water molecule in the bulk water phase [96]:

ΔESamoiliov = Eion−watera − Ewater−watera (10)

2.1.8 Positive and negative hydration

According to Samoilov [95], the hydration is called positive (negative) if the residence time

of a water molecule in the hydration shell of the solute is larger (smaller) than the residence

time of a water in hydration shell of a water molecule in the bulk solvent. Mathematically it is

written as: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tsolR ≥ t0R corresponds to the "positive hydration",

tsolR < t
0
R corresponds to the "negative hydration".

where tsolR and t
0
R are the residence time of a water molecule in the HS of the ion and the residence

time of a water molecule in the HS of a water molecule in the bulk water phase [95, 96].

2.1.9 Solvation Free Energy

"Solvation free energy is the change in Gibbs energy when [an ion or] molecule is transferred

from a vacuum (or the gas phase) to a solvent. The main contributions to the solvation energy

come from: (a) the cavitation energy of formation of the hole which preserves the dissolved

species in the solvent; (b) the orientation energy of partial orientation of the dipoles; (c) the

isotropic interaction energy of electrostatic and dispersion origin; and (d) the anisotropic energy

of specific interactions, e.g. hydrogen bonds, donor-acceptor interactions etc." This definition

is taken from: IUPAC Compendium of Chemical Terminology 2006 [100].

This quantity characterizes the strength of the solute-solvent interactions, compensated by

the entropic terms.

2.2 Asymmetry of ion hydration

2.2.1 Charge overscreening

There is a strong asymmetry of the ions hydration. This term means that hydration characteris-

tics of the imaginary cation and anion of the same size are considerably different. On the Figure

5 one can see the g(r) functions of the water hydrogen and oxygens around a cation and an anion

of the same size (the data is adopted from the Ref. [101]). Small positively charged hydrogen

sites of water molecules can come much closer to the anion surface rather than bulky oxygen

atoms to the cation surface. Both, the charge of the cation and the charge of the anion, are
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"overscreened" by the partial charges on the water molecules as can be seen from the screening

factors on the Figure 5. There is a more strong overscreening of the anion in comparison to the

cation, and as a result the electrostatic potentials around the cation and anion dissolved in water

are similar (see Figure 5), despite the fact that the charges of these ions are of different sign.

Figure 5: Asymmetry of ion hydration: top) radial distribution functions of water oxygen and

hydrogen around the model cation and anion of the same size and charge, middle) the corre-

sponding electrostatic potentials around ions, bottom) the corresponding screening functions.

Adopted from the Ref. [101], Copyright c©2007 Taylor & Francis.

2.2.2 Ion hydration thermodynamics

Asymmetry of ion hydration results in the different thermodynamics of ion hydration. Such,

the dehydration free energies of cations and anions as a function of ionic radii lay on different

curves (Figure 6). The data show that anions are stronger hydrated than cations of the same

size. This happens because of the strong interactions of the water hydrogens with the surface of

the anions [104].

The entropies of the ion hydration also reveal the asymmetry of ion hydration (see Figure 7).

There is a classification of ions, which characterizes ions according to their ability to increase

the order of the solvent around them ("order-makers", kosmotropes) or decrease it ("order-
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Figure 6: Asymmetry of ion hydration: the ion dehydration free energies (−ΔGhyd). The figure
illustrates the data from Ref. [102], the ionic radii are taken from Ref. [103]. For the same size

anions are stronger hydrated (the dehydration free energy is bigger) than cations.

Figure 7: Asymmetry of ion hydration: ion hydration excess entropies [105] (adaptation of data

of Krestov as presented by Samoilov (see Ref. [106])). The ions can be classified in two groups:

kosmotropes and chaotropes. The kosmotropes increase the order of the water around them, i.e.

decrease the entropy of the water molecules compared to the bulk water phase. The chaotropes

decrease the order (increase the entropy) of the water molecules around them.

breakers", chaotropes) [105]. A convenient quantity, which can quantify this property, is the ion

hydration excess entropy (see Figure 7). The ion hydration excess entropy shows the difference

between the entropy of water molecules in the bulk water phase and water molecules in the HS

of an ion (see Ref. [105]).
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2.3 Ion direct contact formation in solution

2.3.1 General scheme

Collins et al. analyzed the process of the ion direct contact formation, and how this depends on

the hydration characteristics of the single ions [105]. In the article describing the probability

of the ion direct contact formation authors discuss the interplay of the ion-ion, ion-water and

water-water interactions [105]. In this section inspired by the mentioned discussions we develop

a general scheme of the ion direct contact formation in aqueous solutions. The general scheme

is represented on the Figure 8.

Formally, the process of ion direct contact formation in a solution can be decomposed into

three steps. Firstly, the partial dehydration of ions have to occur, when two ions make a direct

contact. The contacting ions release some water molecules from their hydration shells. The en-

ergy cost of this process is usually referred to the penalty for partial dehydration. The stronger

the interaction of the dissolved ions with water the larger is the penalty for their partial dehy-

dration. Thus, formally we may say that the process of the partial dehydration is determined by

the strength of the ion-water interactions.

Secondly, making a direct contact the ions interact with each other. The potential between

ions contributes to the energetic changes upon the ion direct contact formation. Thus, this part

represents the impact of the ion-ion interactions on the process.

Thirdly, the released solvent molecules must be hydrated in the bulk water phase. Energetic

gain of this process depends on the strength of water-water interactions.

The described scheme is not perfect by any means but it brings a picture "how to think

about" the phenomena of the solvent mediated interactions in solutions. One has to be careful

in more tiny details, like solvent reorganization in the solvation shells of ions upon the ion direct

contact formation, which is not rigorously captured by the described scheme.

The main conclusion from the above described statements is that the process of the ion di-

rect contact formation in solution is determined by the interplay of the ion-ion, ion-water and

water-water interactions. We believe that the described scheme can be extended to more com-

plicated systems: particle interactions with different surfaces mediated by a solvent, which can

be many component. Adjusting the interaction between the species (varying the chemical nature

of the components) one can obtain different effects: like, preferential adsorption or depletion of

particles to/from the surface, etc.



2 THEORETICAL BACKGROUND 28

Figure 8: The mechanism of the ion direct contact formation in aqueous solutions. The pro-

cess can be formally decomposed into three steps: 1) partial dehydration of the ions, 2) direct

interaction of the ions, 3) hydration of the released water molecules.

2.3.2 Collins pyramid: the "law of matching water affinities"

The Collins pyramid [105] represents the principle "like likes like" [107]. The principle tells

that the probability to form an ion-ion direct contact in a solution is bigger for ions of similar

sizes, and smaller for ions of different sizes. This principle is a consequence of the interplay

of the ion-ion, ion-water and water-water interactions [105], discussed in the Figure 8. Indeed,

if an ion is big then it has a low surface charge density and, thus, it weakly interacts with the

water molecules. The strength of the water-water interactions exceeds the the strength of the

ion interactions with water, in this case the absolute value of the ion hydration enthalpy is low.

Next, if there is a big counterion in the solution, then following the same statements, we may

conclude that the absolute value of its hydration enthalpy also would be low. Thus, the case

of the big ion - big counterion a corresponds to the region close to zero on the X-axis of the

Collins "volcano" plot (see Figure 9a). Because the strength of the water-water interactions is

stronger than the ion-water interactions for both the big ion and the big counterion, the ions will
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Figure 9: Collins "volcano" plots. a) The dependence of the salt dissolution enthalpy (ΔHdissol)

and the difference between the enthalpies of hydrations of anions and cations for different alkali

halide salts. b) the same in the view of chaotropic and kosmotropic ions (please see the Ref.

[105]). Adaptation of the data presented in Ref. [105]. Please, see the text (Section 2.3.2) for

more details.

be "pushed" to form the direct contact to allow more water molecules interact with other water

molecules, rather than with the ions. Thus, the probability of the big ion - big counterion direct

contact will be high, and this reflects in the positive dissolution enthalpy (endothermic process)

of the salt formed by these ions. The case of the big ion - big counterion would fall on the top

of the Collins pyramid (see Figure 9).

The case of the small ion - small counterion also falls on the top of the Collins pyramid,

because the strength of the ion-water interactions is not large enough to compete with strong

electrostatic attraction between the small ions with the high surface charge densities. In this

case the probability of the ion direct contact would also be high and the single ion hydration

enthalpies would be of the same order of magnitude (there difference will be close to zero).

The cases of the small ion - big counterion fall on the foot o the "volcano" plot. In these

cases the strength of the ion-water interactions will be high for the small ion and low for the big

ion. As a result the hydration enthalpy of the small ion will be higher in absolute value than the

hydration enthalpy of the big ion and, thus, the corresponding point will be either on the right

hand side or the left hand side on the "volcano" plot. The strong small ion - water interactions

will prevent the partial dehydration of the small ion and as the result the small ion will stay in

the solution. Thus, the big counterion would also have to be in the solution. As a result the

ions will stay apart from each other in the solution (the probability of the direct contact will be



2 THEORETICAL BACKGROUND 30

low). Due to the differences of the ion sizes the salt crystal formed by these ions would be not

as stable as in the case of the ions with similar ionic radii. This is reflected in the negative salt

dissolution enthalpies for the salts formed by the ions of considerably different radii (see the

Figure 9).
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3 Modelling approach

3.1 Molecular Dynamics simulation

In this section we describe the Molecular Dynamics technique. The information is interpreted

from the books of Frenkel, Smit [108] and Allen, Tildesley [109].

Molecular Dynamics simulation is a technique for computing the equilibrium and transport

properties of a mechanic N-particle system, where the dynamics of the particles obey the laws

of classical mechanics. We integrate the equations of particles motion where the Lagrangian

depends on the positions of all the particles in the system. As a result, we obtain coordinates,

velocities and accelerations for each particle in the system as functions of time. Applying

statistical mechanics we can determine thermodynamic and dynamic properties of this system.

Classical mechanics is an appropriate approximation for a wide range of systems. Only

when we consider the translational or rotational motion of light atoms or molecules (He, H2,

D2) or vibrational motion with a high frequencies ν, so that hν > kBT , should we worry about

quantum effects.

In classical mechanics the Lagrangian of the mechanical system is written as:

L (x, ẋ, t) =
3N∑
i=1

1
2miẋ

2
i − U (x, t)

where U is the potential energy of the system, xi is the spatial coordinate of a particle in the

system, N is the number of particles in the system, x = {x1, ..., x3N} is the vector of all the
particle coordinates in the system (each particle has three spatial coordinates, since we work in

3D space), ẋi is the velocity vector component, ẋ is the vector of all particle velocity components

in the system, mi is the mass of the particle which has xi spatial coordinate, t is time.

The equations of particle motion can be written as:

d
dt
∂L
∂ẋi
− ∂L
∂xi
= 0, (i = 1, ..., 3N)

or equivalently as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 ẍ1 = −∂U(x1,x2,...,x3N )∂x1
,

m2 ẍ2 = −∂U(x1,x2,...,x3N )∂x2
,

..........................................

m3N ẍ3N = −∂U(x1,x2,...,x3N ).∂x3N

(11)

where −∂U(x1,x2,...,x3N )
∂xi

= Fi is the force vector component acting on the particle with xi spatial

coordinate, ẍi is the acceleration vector component.
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In molecular dynamics we solve the equations of motion (Equation 11). As a result we

obtain x(t), ẋ(t) that are sufficient for the full mechanical description of the mechanical system.

The system of the equations of motion does not have an analytical solution for the number

of particles more than two. This is a well-known "many body problem". That is why one has

to solve this with some numerical integrators. Nowadays, efficient algorithms and computer

facilities allow one to solve the equation of motions with the number of particles of about

N = 104 − 105 and number of iterations for sufficient statistics of about 106 − 109.

3.2 Integration schemes

In this section we describe different schemes to solve the equation of motions (Equation 11) of

the mechanical system numerically. The numerical method to solve the equations is called an

integrator. To derive integrators, let us write the Taylor expansion of coordinate with respect to

time [108]:

xi(t + Δt) = xi(t) + ẋi(t)Δt +
ẍ(t)
2
Δt2 +

...x
3!
Δt3 +

....x
4!
Δt4 + ... (12)

The simplest integrator is the Euler type scheme. It uses only 3 terms in this expansion.

More rational integrators are the Verlet integrator and its derivatives. These integrator exploit 4

terms. All others integrators are called higher − order algorithms.
There are several criteria which are crucial for characterization of the integrator schemes.

An integration scheme should be:

1. Time-reversible. Newton equations are time-reversible, and that is why integrator should

obey this condition. Such integrators are more stable.

2. Stable for large timesteps (iteration steps). Larger timesteps allow a mechanical system

to sample the phase space with less amount of iterations.

3. Preserving the constants of motion. Depending on statistical ensemble during integration

different values should remain constant (total energy, temperature, etc.)

4. Area-preserving. The integrator should leave the magnitude of any volume element in

phase space unchanged [108].

3.2.1 Verlet integrator

The most appropriate choice of the integration scheme for MD simulations is the Verlet inte-

grator and its derivatives [108], because it is time-reversible, good for long-time conservation

of constants of motion, area-preserving and allows relatively big timesteps.
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Figure 10: Representation of the inter- and intra-molecular interactions in a usual molecular

dynamics simulation. The figure is adopted from Reference [110]. See the text for more details.

To derive the Verlet integrator we write the Taylor expansion of a particle coordinate around

the time similar to Equation 12, but with the negative Δt:

xi(t − Δt) = xi(t) − ẋi(t)Δt − ẍ(t)2 Δt
2 −

...x
3!
Δt3 −

....x
4!
Δt4 + ... (13)

Summing up the two equations 12 and 13 we get:

x(t + Δt) = 2x(t) − x(t − Δt) + ẍ(t) · Δt2 + O(Δt4) (14)

where ẍ(t) =
F(t)
m
.

Thus, with the Verlet integration scheme we can estimate the new positions of particles in

the next time step with the error proportional only to the Δt4 term.

3.3 Force calculation

The most part of computer resources in MD simulations (about 95%) is consumed by force

calculations [108]. Forces are obtained directly from the potential energy by its partial differen-

tiation:

−∂U(x1, x2, ..., x3N)
∂xi

= Fi

Let us describe the potential energy calculation in MD. Molecular interactions considered

in the MD calculation have electrostatic origin (interaction of electrons and nuclei). To evaluate

the potential energy in general case we need to solve the Shrödinger equation for huge number

of particles, which makes it unfeasible to calculate. That is why in most of computer simulation
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of liquids the molecular interactions are approximated by some effective terms. In classical

Molecular Dynamics simulation molecules are split into atomic sites, interacting with each

other through effective potentials (see Figure 10). The collection of effective parameters for each

atomic site is called a Force Field. Thus, by introducing atomic sites instead of the number of

nuclei and electrons we reduce dramatically the number of degrees of freedom in the system and

can avoid dealing with objects of quantum nature. The effective parameters for the interatomic

potential should be parameterized by fitting against experimental data or high level quantum

chemistry calculations.

Molecular interactions are classified into intramolecular ("bonded") and intermolecular ("non-

bonded") interactions, and thus the potential energy of the system can be written as:

U = Ubon + Unb

where Ubon and Unb are the potential energies of all the bondeed and nonbonded interactions

respectively.

Intra-molecular interactions are the interactions between the atoms in the same molecule

which are separated usually by no more than three covalent bonds. Usually, the intermolecular

potentials in the molecule are approximated by stretching, bending and dihedral terms (see

Figure 10). For the neighbor atoms a stretching term is introduced, which is usually represented

by a harmonic potential, which restraints the deviation of the bond length to its equilibrium

value. For three atoms belonging to the two neighboring covalent bonds a bending potential

is introduced, usually it is also harmonic, which restraints the angle between the two covalent

bonds to its equilibrium value. The dihedral potential determines the rotation of the two molec-

ular groups around a bond. This is usually represented via Fourier series. The intramolecular

potential energy of the system is written as:

Ubon =
∑
Nbonds

kb(r − r0)2 +
∑
Nangles

kθ(θ − θ0)2 +
∑

Ndihedrals

∑
n

Vn
2
(1 + cos(nφ + γ))

where kb and kθ are the stretching and bending force constant s, r0 and θ0 are the equilibrium

values of the bond length and angle respectively, Vn are the Fourier series coefficients, γ is the

cosine phase: all these parameters are empirical parameters which one has to parameterize.

The intermolecular interactions are usually subdivided into Van-der-Waals interaction and

Coulomb interaction of partial charges on atoms. The Van der Walls interactions are usually

represented by the so-called atom-atom Lennard-Jones (LJ) potential. Thus, the potential en-
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ergy of all the nonbonded interactions reads:

Unb =
∑
Nnb

⎧⎪⎪⎨⎪⎪⎩4εi j
⎡⎢⎢⎢⎢⎢⎣
(
σi j

ri j

)12
−
(
σi j

ri j

)6⎤⎥⎥⎥⎥⎥⎦ + qiq jri j
⎫⎪⎪⎬⎪⎪⎭

where εi j and σi j are the LJ potential parameters, and qi and qj are the partial charges, ri j is the

distance between the particular atoms i and j.

In MD simulation the intermolecular interaction usually are approximated to be pair-wise

additive. This results into the fact that the complexity of the energy calculation of the system

containing N particles is proportional to N2.

The Lennard-Jones potential decays very quickly with the increase of the inter-particle dis-

tance (proportional to the r−6), usually it is classified as short-range interaction. Thus, evalua-

tion of the short-range interaction is necessary to do only for small distances between particles.

Therefore without loss of accuracy in MD simulations one usually introduces the cutoff dis-

tance (Rcut) for the LJ potentials. This allows to model relatively small systems size, because

the molecules "feel" each other only for short distances.

In turn, the Coulomb term decays slowly (proportional to as r−1), thus it is considered to

be a long-range interaction. And thus the use of simple cutoff technique would lead to serious

artifacts. This will be discussed in the section Section 3.6 in more detail.

3.4 Periodic boundary condition

Usually, for chemical applications one needs to calculate the properties of a bulk solution (e.g.

a protein dissolved in water). This implies regarding the large number of molecules in the sys-

tem, which comprise the bulk solution. If we set initial coordinates of our molecules (feasible

number of 104 − 105) in a cubic simulation box, a lot of molecules would be situated at the
boundary of the box. Without any corrections this will lead to not correct representation of the

bulk solution properties, because the properties of the molecules close to the surface are differ-

ent from the properties of molecules in the bulk solution. One way to overcome the problem is

to increase the box size, which would increase the number of molecules, and as well the com-

putation consumptions dramatically. Another way is to use the Periodic Boundary Conditions

(PBC), which allows to model the bulk solution properties, without introducing the large num-

ber of molecules. The PBC technique works in the following way. We create 26 images of the

initial box (see Figure 11). Particles in image boxes "copy" the motion of the initial particles.

If during the MD integration any particle crosses the initial box boundary, the corresponding

image molecule from the image box with the same momentum enters the initial box through the
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Figure 11: Schematic representation of the cubic periodic boundary conditions. The initial box

is marked by the blue color. The image boxes are marked by the digits (mind, in the 3D space

there are 26 images). The blue arrows represent the direction of the particle motion. The figure

is adopted from the Ref. [109].
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Figure 12: Schematic representation of the intermolecular interactions with the periodic bound-

ary conditions. The blue circle represents the cutoff boundary of the for the short-range inter-

actions. The figure is adopted from Ref. [109].

opposite side. The physical picture of this would be that the simulation box is "closed to itself".

The number of particles remains constant.

PBC works also for the energy and force calculations for particle interacting via the short-

range potentials (see Figure 12). For example, particle A interacts with particles C and D

directly in the simulation box, but with the particle B it interacts through the boundaries of the

box (it interacts with the image of the B particle - B′, see the Figure 12).

3.5 Short-range interactions (Cell lists)

There are some techniques to simplify the calculation of the short-range potential terms between

the particles in the system. One of the most effective is the "Cell lists" technique [108]. In this

method we divide the initial box into smaller cells with edge length slightly greater than Rcut

distance. We need to evaluate the short-range interaction between particles where the interpar-

ticle distance is less than the Rcut threshold. Thus, for a given cell only particles that are inside

the cell and all the particles in the nearest 26 cells are of potential interest for the short-range

interactions. Interactions with the particles situated in other cells can be neglected, and thus

this reduces the computational consumptions. For a particular time step we can store the data
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on which atoms are interacting with which into a list (the "cell list"), and then use the same list

for several subsequent integration time steps, this decreases the computational consumptions

further. Note, that in this case the cell lists would work only if the edge length of the cells is

larger then the Rcut. The time saving also results from the fact that we need to reevaluate the lists

only if a particle being not in the list enters the cutoff region of another particle. The procedure

of determining to which cell particles belong has O(N) complexity. Thus, for a large system the
cell lists method reduces the complexity of the evaluation of the short-range interactions from

O(N2) to O(N).

3.6 Long-range interactions

It is appropriate to use truncation radius technique only for short range potentials. The energy

we neglect in this case is written as the following:

Utail =
Nρ
2

∫ ∞

Rcut
dr · u(r)4πr2

where ρ is the number density, N is the number of particles. This equation shows that the

neglected energy diverges, unless the potential energy function u(r) decays faster than r−3 [108].

That is why we cannot use the simple truncation for the Coulomb potential.

3.7 Ewald summation method

One of the most popular techniques to calculate electrostatic energy in the MD simulations is

the Ewald summation method [108]. Let us consider a system of point charges being infinitively

replicated in all three directions (see Figure 13). We make an assumption that our liquid has the

structure like crystal structure with our cubic cell being the unit cell of the lattice.

In the Ewald summation method we calculate the potential energy of the electrostatic inter-

actions between our simulation box and its infinite lattice of replicas. This way we can capture

the effect of the long-range Coulomb interactions on the molecules in the unit cell. This con-

struction is just a model, therefore it can course artifacts.

The Coulomb energy of the system is a product of the charge and the potential at the certain

point in space, with further summation over all charges in the simulation box:

Ucoul = 1
2

N∑
i=1

qiφ(ri)

where φ(r) is the electrostatic potential at the point ri, qi is the electrostatic charge on the

particle i. The electrostatic potential comprises the potential created by all the charges in the
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Figure 13: Infinite lattice approximation in the Ewald summation method.

infinite lattice:

φ(ri) =
′∑
n

N∑
j=1

qj∣∣∣ri j + nL∣∣∣ (15)

where n is the lattice vector responsible for the determination of a cell out of the infinite lattice,

L is the unit box length, apostrophe on the summation sign means that one should sum over all

the pairs i − j except the pairs where i equals j and n = 0, 0, 0 (the initial simulation box).
This sum in Equation 15 is only conditionally-convergent [108]. To improve the conver-

gence of this sum and not to evaluate all the pair interactions over the infinite lattice, it is

possible to do the following trick: we divide the Coulomb potential into a fast decaying part

(short-range) for small r and a gradually decaying (long-range) for large r:

1
r
=
f (r)
r
+
1 − f (r)
r

where the f (r) is the "smearing" function.

In this case we can estimate the electrostatic energy coming from the short-range part using

the usual cutoff scheme for the short-range interactions. The gradually decaying (long-range)

term can be efficiently treated in the reciprocal (Fourier) space, where it can be represented by

a small number of k-vectors.
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Figure 14: Pictorial representation of the decomposition of the charge density of the infinite

lattice in the Ewald summation method into short-range and long-range parts. Figure is adopted

from the Ref. [108].

The most often choice of the "smearing" function is the complementary error function:

er f c(r) =
2√
π

∫ ∞

r
dt · exp(−t2)

Let us look at the Ewald summation procedure from another "side". It turns out that in-

troducing of the complementary error function is analogous to the following presentation of

electron density of the system (see Figure 14):

• for each point charge in the system we assign a screening Gauss charge distribution of the
opposite sign, which screens the initial charge.

• we introduce the same charge distribution but of the opposite sign to compensate the
changes.

3.7.1 Real space Ewald sum

To prove the above statement, let us show that the point charge screened by the Gauss distribu-

tion of the opposite charge produces the electrostatic potential of the form er f c(r)
r .

The Gauss charge distribution reads:

ρGauss(r) = −qi
(
α

π

)3
2 exp

(
−αr2

)
(16)

where α is a numeric parameter.
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The electrostatic potential produced by the Gauss charge distribution can be obtained by

solving the Poisson equation:

− ∇2φGauss(r) = 4πρGauss(r) (17)

Due to the spherical symmetry of the Gauss distribution we can rewrite this equation as

follows [108]:

− 1
r
∂2rφGauss(r)
∂r2

= 4πρGauss(r) (18)

Analytical integration of the equation 18 gives: (first, we put r under the differential and

then we take the integral of the Gauss distribution, the limits of the integration are taken to

cancel the free term after the integration)

−∂rφGauss(r)
∂r

= −4πqi
(
α

π

)3
2 ∫ r
∞ dr · r · exp(−αr2)

= 2qi
α
3
2

π
1
2

∫ ∞
r dr

2 · exp(−αr2)

= 2qi
(
α

π

)1
2 exp(−αr2)

The second integration gives the error function:

rφGauss(r) = −2qi
(
α

π

)1
2 ∫ r
0 dr · exp(−αr2)

φGauss(r) = −qir er f
(√
αr
) (19)

where

er f (x) ≡ 2√
π

∫ x

0
exp(−u2)du

is the error function.

Thus, the electrostatic potential originated from the point charge screened by a compensat-

ing Gauss charge distribution is written as the following:

φ(r) =
qi
r
− qi
r
er f (
√
αri j) =

qi
r
er f c(

√
αri j) (20)

The statement is proven.

This potential decays rapidly, it becomes short range. Thus, we can write the real space

Ewald sum as follows:

UEwald−real =
1
2

′∑
m

N∑
i, j=1

qiq j∣∣∣ri j + mL∣∣∣er f c(
√
α
∣∣∣ri j + mL∣∣∣) (21)

where the first sum is performed over only the nearest images of the initial cell. Their number

is determined by the α parameter. The complexity to evaluate this term is proportional to O(N).
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3.7.2 Reciprocal space Ewald sum

To complete the Ewald summation technique we need to evaluate the contribution of the com-

pensating charge density into the electrostatic energy of the system:

ρ(r) =
∑
n

N∑
j=1

qj
(
α
π

) 3
2 exp

(
−α
∣∣∣r − (r j + nL)∣∣∣2

)
(22)

The Poisson equation can be written in the Fourier space as follows [108]:

k2φ̃(k) = 4πρ̃(k)

where ∼ indicates the Fourier transformation of the corresponding function.
Let us obtain the Fourier transform of the charge density:

ρ̃(k) =
∫
V dr · exp(−ikr)ρ(r)

=
∫
V dr · exp(−ikr)

∑
n
∑N
j=1 qj

(
α
π

) 3
2 exp

(
−α
∣∣∣r − (r j + nL)∣∣∣2

)

=
∫
V dr · exp(−ikr)

∑N
j=1 qj

(
α
π

) 3
2 exp

(
−α
∣∣∣r − r j∣∣∣2

)

=
∑N
j=1 qj exp(−ikr j) · exp

(
−k2

/
4α
)

Then Poisson equation for this charge density in Fourier space is:

φ̃(k) =
4π
k2

N∑
j=1

qj exp(−ikr j) · exp
(
−k2

/
4α
)

This expression exists only if k is not equal to 0.

Now we can write the potential in the real space by applying the inverse Fourier transform:

φ(r) =
1
V
∑
k�0 φ̃(k) exp(ikr)

=
1
V
∑
k�0
∑N
j=1
4πqj
k2

exp
(
ik
[
r − r j

])
· exp

(
−k2

/
4α
)

The electrostatic energy resulting from the charge distribution can be found as a product of

the charges and the potential:

Ureciprocal =
1
V

∑
k�0

N∑
i, j=1

4πqjqi
k2

exp
(
ik
[
ri − r j

])
· exp

(
−k2

/
4α
)

Ureciprocal =
1
2V

∑
k�0

4π
k2
|S (k)|2 · exp

(
−k2

/
4α
)

(23)

where S (k) is the corresponding structure factor.

The structure factor is:

S (k) ≡
N∑
i=1

qi exp (ikri) (24)
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Evaluation of the expression (Equation 23) still has the complexity of O(N2). But here N is
a number of charges in the initial cell, rather than the infinite number of charges in the infinite

lattice, though the energy is computed for the infinite periodic lattice. This energy contains

an artificial term. When we calculated the real space Ewald sum we excluded the interactions

of a charge with itself and with its screening Gauss distribution. Here in the compensation

distribution, we have not excluded them in order to save the charge density function to be

periodic and smooth, because we needed to perform the Fourier transformation. Now we should

exclude this spurious term.

The electrostatic potential due to Gauss distribution is given in the Equation 19. The spuri-

ous term originates from the interaction of the point charge and the Gauss distribution. As the

charge is situated in the center of the Gaussian distribution, we should determine the potential

created by the this Gauss charge distribution at this point:

φGauss(0) = 2√
π
qi lim
r→0

1
r

∫ √αr
0 exp(−u2)du

(
0
0

)
= 2√

π
qi lim
r→0

d
dr

∫ √αr
0 exp(−u2)du

t =
√
αr → dt =

√
αdr

r → 0 → t → 0

=
2qi
√
α√
π
lim
t→0

d
dt

∫ t
0 exp(−u2)du

=
2qi
√
α√
π
lim
t→0
exp

(
−t2
)

=
2qi
√
α√
π

Thus, the artificial energy term reads:

Uarti f icial =
1
2

N∑
i=1

qiφ(ri) =
√
α√
π

N∑
i=1

q2i

This can be evaluated once at the very beginning of the simulation.

3.7.3 Ewald summation summary

Summary energy of point charges in the simulation box estimated by the Ewald summation

reads:

UCoul = 1
2

′∑
m

N∑
i, j=1

qiq j∣∣∣ri j + mL∣∣∣er f c(
√
α
∣∣∣ri j + mL∣∣∣)

+
1
2V

∑
k�0

4π
k2
|S (k)|2 · exp

(
−k2

/
4α
)
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−
√
α

π

N∑
i=1

q2i (25)

The forces can be computed analytically from the potential energy functions [108] (see

Equation 25):

Fi = qi
∑N
i, j=1 qj

∑′
m

(
2
√
α
π
exp

(
−α
∣∣∣ri j + mL∣∣∣2

)
+
er f c(

√
α|ri j+mL|)
|ri j+mL|

)
ri j+mL

|ri j+mL|2
+
qi
V
∑
j q j
∑
k�0

4πk
k2 |S (k)|2 · exp

(
−k2

/
4α
)
· sin(kri j)

(26)

The artificial term has no contribution to the forces.

Optimizing the value of the parameter α, the complexity of the Ewald summation can be

reduced to be O(N3/2). The parameter α determines the balance between the number of vectors
in the real and reciprocal sums. Usually, the real space sum is limited by truncation radius

of Lennard-Jones interactions, so in this case the main computation consumptions come from

the evaluation of the reciprocal sum. Thus, to speed up the MD simulations we at first should

exploit methods for efficient estimation of the electrostatic interactions in the reciprocal Ewald

sum.

3.8 Mesh Ewald methods

There exist an procedure to perform Fourier Transformation efficiently - the Fast Fourier Trans-

form (FFT), which scales as O(N · logN) [111, 112]. To employ FFT the charge density distri-
bution should be discretized on a uniform mesh. The most known mesh methods are the parti-

cle mesh Ewald (PME)[113], smooth particle mesh Ewald (SPME) [112] and particle-particle

particle-mesh Ewald (PPPM) (please see the references in Ref. [114]). The evaluation of the

reciprocal Ewald sum using the FFT procedure comprises the following steps [115, 116]:

1. Creation of a uniform mesh in 3D space

2. Assignment (interpolation) of the charge distribution onto the mesh knots

3. Calculation of the Fourier transformation of the "mesh" charge density using the FFT

procedure

4. Solution of the Poisson equation in the Fourier space

5. Transformation back to the real space. Force evaluation

6. Force assignment via the back interpolation of determined forces from the mesh knots

onto positions of the point charges in the system



3 MODELLING APPROACH 45

Let us describe the procedure of the charge assignment onto the mesh knots for the one

dimensional case. Let us create the mesh with points xp(p = 0,NM − 1). We define the charge
assignment functionW(x), so thatW(x− xp) is a part of an unit charge with x coordinate, which
will be assigned onto the mesh point with xp coordinate. Thus, the mesh charge density we

obtain by convolution of the true charge density and the charge assignment function:

ρM(xp) =
1
h

∫ L

0
dx ·W(x − xp)ρ(x)

where L is the simulation box length, h = L/NM is the distance between mesh points.

For PPPM and SPME methods the charge assignment function W(x − xp) is the cardinal
B-splines. The spline order shows the number of mesh points to assign charge on. For PME

method the charge assignment function is the Lagrange interpolation function. But this method

is less efficient [111] than B-spline interpolation. All mesh methods alter only the reciprocal

sum (Equation 23) of the initial Ewald summation.

For all the mesh Ewald methods the solution of the Poisson equation in the reciprocal space

is written via the back and forward Fast Fourier Transforms [111]:

Ureciprocal =
1
2

∑
l∈Z

(
ρM(l) · ←−−−−FFT

[
G̃(k) · −−−−→FFT [ρM](k)

])
(27)

where the ρM(l) is the charge distribution function discretized on the mesh, the l index of the

mesh knots, G̃(k) is the Fourier transformed "influence function" (please see the reference [111]

for more explanations), ←−−−−FFT [.] and −−−−→FFT [.] are the back and forward fast fourier transform
operators.

The equation 27 is common for all the mesh Ewald methods. The various methods differ in

the choice of the charge assignment function W(x), the form of the influence function G̃, and

the way to evaluate forces from the solution of the Poisson equation [111]. In the mesh Ewald

methods employing the direct and back FFT transformations we can calculate the reciprocal

Ewald term efficiently with complexity of O(NlogN)
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4 Results and discussion

4.1 Ion interaction with the carbon nanotube surface in aqueous solutions

The aim of the present study is to understand the basic mechanisms of alkali and halide ions

interactions with the CNT’s outer surface in water. Recent progress in atomistic computer

simulation methods causes a breakthrough in understanding of the molecular effects in the

liquid-CNT interfacial region [117, 118, 34, 119]. For example, Mac Kernan and Blau used

the Molecular Dynamics (MD) simulations method to explore the mechanisms of SWNT dis-

persion aggregation in N-methyl-2-pyrrolidone - a highly polar solvent [34]. In this work we

are using large-scale fully atomistic MD simulations to reveal the basic molecular mechanisms

of ion-CNT interactions in water. We focus on the mechanisms of ion interactions with a CNT,

because the CNTs are of primary importance for developing nanoelectronical and biomedical

applications of CNTs due to their monomolecular character and extraordinary PL properties

[90, 88].

However, in this study we deliberately do not consider the effects of functionalisation be-

cause we would like to reveal the mechanisms of selective ion interactions with the unmodified

CNT surface, independently from the interfering effects of surfactants and cosolvents (which

might complicate the general picture). The effects of functionalisation will be considered else-

where.

There are two main motivations of this study. First, the molecular-scale effects in the CNT-

solvent interface layer strongly affect the CNT aggregation and adsorption properties in so-

lution [34, 120]. As ions are known to make significant effects at solute-solvent interfaces

[121, 122, 123, 124], the detailed molecular study of ion interactions with CNT surface should

have important implications for understanding the molecular mechanisms of CNT aggregation

and dispersion in ionic solutions. This should facilitate future developments of drug delivery ap-

plications based on CNTs. Biological liquids contain significant amount of salts and that could

cause significant effects on CNTs in-vivo. The second reason is to understand the reported ef-

fects of ions on the CNT’s PL [80, 82, 83], when the nanoscale changes of ion concentrations in

the interfacial CNT-solvent region need to be taken into account. The MD simulations method

provides the most detailed picture of such molecular scale processes.

4.1.1 Simulation Methods

1) Systems under the investigation.
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Molecular Dynamics (MD) simulations were performed with the Gromacs 4.0.4 package

[125]. We have simulated a segment of a single-wall carbon nanotube solvated in neat water

and in seven different 0.3 M alkali halide water solutions (NaF, NaCl, NaBr, NaI, LiCl, KCl,

and CsCl). Additionally, we performed simulations of these solutions without the nanotube.

Figure 15: An example simulation box of CNT(7,0) dissolved in 0.3M NaF aqueous solution.

Grey balls represent the CNT, blue balls are sodium ions, yellow balls are fluoride ions, water

molecules are represented as sticks.

2) Topology and potential parameters.

The 252-carbon segment of SWNT (chirality (7,0), with diameter 0.565 nm) was placed in

a periodic rectangular simulation cell (5.50 ×5.50 ×3.92 nm3) and was aligned along the Z axis.
To generation teh coordinates of the CNT atoms we used the on-line TubeGen 3.3 tool [126]. We

used cubic periodic boundary conditions, where the CNT was treated as a “periodic molecule”.

The positions of CNT atoms were restrained to the initial values by harmonic potential with

1000 kJ · mol−1 · nm−2 force constant in each direction.
Nonbonded interaction parameters for the CNT carbon corresponded to the benzene OPLS-

AA (all-atom optimized molecular potential for liquid simulation)[127] carbon (opls_145 in

Gromacs notation), the partial charges were set to zero. The equilibrium values for the struc-

tural parameters of the bonded interactions (bond lengths, angles, dihedral angles) were taken

from the initially generated structure of the CNT, while the force constants for the bond and

angle harmonic potentials and the Fourier coefficients for dihedral angles were adopted from

the OPLS-AA force field [127]. The nonbonded interactions in the systems were pair-wise ad-
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ditive. The Lennard-Jones coefficients for atoms of different kinds were obtained as a geometric

mean value of the parameters of two corresponding particles:

εi j =
√
εii · ε j j

σi j =
√
σii · σ j j

(28)

where i and j indicate type of particle.

We used two different sets of parameters describing the structure and interaction potentials

for water molecules and ions. For the first set, we took the model parameters from the following

references: the TIP4P water model [128], Åqvist’s Na+ and Li+ cations [129], F− and Cl− [130],

Br− [131], I− [132] (Table 1). In the present work we refer to this set of potential parameters

as the Jorgensen set. For the second set, we took the model parameters from the following

references: the TIP4Pew water model [133] and the Joung and Cheatham’s parameters for ions

[134]. We refer to this set of potential parameters as the Cheatham set (see Table 1).

3) Molecular Dynamics algorithms details.

We used the leap-frog integrator [135] with 0.001 ps integration time step. For the Lennard-

Jones potential we used 1.00 nm cut-off radius with shifting potential method. The neighbor list

for the nonbonded interactions was updated each 10 integration steps. For accurate evaluation

of the long range Coulomb interactions we used the Particle Mesh Ewald method [112] with

1.10 nm cut-off radius for the real space sum. We used the 0.12 nm spacing for the mesh in the

real space and cubic B-splines to map the charges on the mesh.

For the NVT-ensemble (canonical ensemble) simulations we used the Nose-Hoover [136,

137] thermostat with the reference temperature of 300K and the relaxation time of 0.1 ps. For

the NPT-ensemble (isothermo-isobaric ensemble) simulations we used the Berendsen thermo-

stat and also the Berendsen barostat [138]. In this case the system was coupled to an external

pressure of 0.1013 MPa with the relaxation time of 0.5 ps. For the systems containing CNT,

we employed a semi-isotropic barostat which could change the size of the simulation cell only

in the directions perpendicular to the periodic CNT molecule. For the bulk solvent systems we

used the isotropic barostat.

4) Systems preparation and collection of statistics.

a) Jorgensen set:

In the case of the Jorgensen set, we simulated all the systems, except those containing KCl

and CsCl solutions. These systems were prepared in the following way. 3617 water molecules

were placed around the CNT in the periodic rectangular box. The system was equilibrated

during 200 ps of the simulation time in the NVT-ensemble and then 300 ps of the simulation
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Table 1: Potential parameters for some atoms. σ and ε are parameters for the Lennard-Jones

potential, q is a partial charge on atom.

Atom σ, nm ε, kJ/mol q, e

The Jorgensen set F− [130] 0.2733 3.012480 -1.00000

Cl− [130] 0.4417 0.492833 -1.00000

Br− [131] 0.4624 0.376560 -1.00000

I− [132] 0.5400 0.292880 -1.00000

Na+ [129] 0.3330 0.011598 1.00000

Li+ [129] 0.2126 0.076479 1.00000

The Cheatham set [134] F− 0,4522 0,006595 1.00000

Cl− 0.4918 0.048824 -1.00000

Br− 0.4932 0.127184 -1.00000

I− 0.5260 0.174624 -1.00000

Li+ 0.1440 0.435379 1.00000

Na+ 0.2184 0.705214 1.00000

K+ 0.2833 1.170065 1.00000

Cs+ 0.3364 1.651407 1.00000

Owater(M site of TIP4P) [128] 0.0315 0.648520 -1.04000

Owater(M site of TIP4Pew) [133] 0.1644 0.680962 -1.04844

CCNT [127] 0.3550 0.292880 0.00000
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time in the NPT-ensemble. The final coordinates were used to generate the systems with the

CNT in the saline water solvents. For preparation of 0.3 mol/L salt concentration, 42 water

molecules were randomly replaced with 21 ion pairs. Then each system was equilibrated dur-

ing 200 ps of the simulation time in the NVT-ensemble and 300 ps of the simulation time in

the NPT-ensemble. Then all the systems were simulated in the NVT-ensemble during 30 ns.

Coordinates of the system were sampled each 0.15 ps for the further analysis.

In the simulations of the bulk solvent systems 4079 water molecules were placed into a

cubic box with the edge length equal to 5.0 nm. The equilibration period took 30 ps of the

simulation time in the NVT-ensemble and 300 ps of the simulation time in the NPT-ensemble.

Similar to the systems containing CNT, the resulting coordinates for pure water simulation were

taken to prepare the initial coordinates for the salt-water systems (but 23 ion pair replaced water

molecules in this case). Each system was equilibrated during 30 ps of the simulation time in the

NVT-ensemble and 300 ps of the simulation time in the NPT-ensemble. The statistics was ac-

cumulated during subsequent simulation in the NVT-ensemble during 5 ns and the coordinates

of the system were sampled each 1.0 ps for the further analysis.

b) Cheatham set:

In the case of the Cheatham set we simulated all the systems including those containing

KCl and CsCl. We took the final coordinates of the systems after the 30 ns simulation for the

Jorgensen set as the initial coordinates for the simulations with the Cheatham set of potential

parameters. The systems with KCl and CsCl salts were created in a similar way to the systems

for the Jorgensen set. For the systems with the solvated CNT the equilibration period was 200

ps of the simulation time in the NVT-ensemble and 800 ps of the simulation time in the NPT-

ensemble, where the box dimensions were sampled each 0.01 ps. We took the last 500 ps of the

NPT-ensemble simulations to average the box dimensions. Then all the systems were simulated

in the NVT-ensemble during 30 ns where the box dimensions were set to the above-mentioned

averaged dimensions. Coordinates of the system were sampled each 0.15 ps for the further

analysis.

The bulk systems for the Cheatham set were equilibrated during 30 ps of the simulation

time in the NVT-ensemble and 500 ps of the simulation time in the NPT-ensemble. Last 450 ps

were used to average the box-dimensions. The statistics was accumulated during the subsequent

5 ns simulation in the NVT-ensemble and the coordinates of the system were sampled each 1.0

ps for the further analysis.

5) Particle-carbon nanotube Radial Density Profiles (RDPs).

1. Calculation details.
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We calculated the radial density profiles, averaged over cylindrical shells centered at the

axis of the CNT. These profiles were normalized to the bulk densities ρ0 of the corresponding

species. Our normalization procedure included the following steps. Initially we used an average

concentration in the simulation box to normalize the RDP curves (see Figure 16a).

However, this normalization is incorrect as we had to normalize the curves with respect to

the bulk concentration rather than to the average concentration in the simulation boxes (number

of particles/total volume). We note that in the simulation there is a large excluded volume of

the CNT, which is not accessible by the solvent. Because of this, the number density of species

is underestimated by g_rdf and, consequently, although the calculated RDPs become constant

at large r values, these constants are larger than 1.

We have to account the excluded volume effect of the CNT. To do that we averaged the

values of the radial density profile of water oxygen in the range of r of 1.6 - 2.5 nm (see Figure

16b)). Then to obtain the scalling factors we took the values in the−1 power. The scaling factors
for the renormalization were 0.975 for TIP4Pew water model and 0.976 for TIP4P model. Scal-

ing the oxygen water density profiles in different systems with these factors makes the curves

equal to unity for large r. Assuming that these factors are universal, we rescaled with them all

the ion-CNT and water hudrogen-CNT RDPs.

4.1.2 The carbon nanotube hydration shell

Firstly, we analyzed the density distributions of water and ions around the CNT by means of

radial density profiles (RDPs) averaged over cylindrical shells centered at the axis of the nan-

otube. We normalized the RDPs by the bulk concentrations of the molecular species to facilitate

the comparison between the different species. In the following analysis, description and inter-

pretation of our results, we will intensively employ the conception of solvation shells around a

solute (nanotube in our case) developed in Refs. [95, 139, 140, 141, 142, 143, 101]. Describing

the water-CNT interface layer we will use the terms the first and second CNT hydration shells

(see Figure 17a). In turn, the first CNT-ion interface shell indicates the volume around the CNT

surface where the ions are in direct contact with the CNT surface. Correspondingly, the sec-

ond CNT-ion interface shell indicates the volume around the CNT surface, where the ions are

separated from the surface by one water molecular layer. Discussing the properties of water

molecules around ions we will use the term ion hydration shell (see Section. 2.1.4).

Figure 17a shows the RDP of water oxygens around the CNT surface in the neat water so-

lution as well as a characteristic simulation snapshot of positions of water molecules in the first
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Figure 16: The calculated radial density profile of water oxygen around the CNT center of mass

for the CNT in pure water solution: a) normalized RDP with respect to the average density in

the volume of the simulation box. Far away from the CNT the curve comes to the constant

value that does not equal to unity because of the excluded volume effect of the CNT, b) the

same curve as in the case (a), scaled with a factor correcting the excluded volume effect of the

nanotube. The data are shown for the TIP4Pew water model.

two hydration shells of CNT. As given in works [117, 118], RDP of water oxygens around the

CNT surface (see Figure 17a) shows two significant peaks corresponding to the two distinctive

CNT hydration shells around the CNT surface with the second hydration shell being more dif-

fusive than the first one. Similar to the work [117], we found that the preferential orientation

of water molecules in the first CNT hydration shell is almost parallel to the CNT surface. This

can be seen from the positions of the water molecules in the first CNT hydration shell shown

on Figure 17a. The Radial Density Profiles for water oxygen and hydrogen for the system of

CNT in pure water are presented in Figure 18. The first peaks on the distributions being closely

positioned indicating that the first hydration shell of water molecules around CNT preferentially

lay on the CNT surface (the plane connecting centers of hydrogens and oxygen are parallel to

the CNT surface).
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Figure 17: Water molecules distributed around CNT. Colour selections show the first (blue) and

second (pink) hydration shells. The CNT-water RDP shows two significant peaks corresponding

to the first (I) and second (II) CNT hydration shells.

Figure 18: The water oxygen and hydrogen radial density profiles around the carbon nanotube.

4.1.3 Ion distributions around the carbon nanotube

Figure 19 shows the RDPs around the CNT surface and characteristic molecular snapshots for

two ions: i) fluoride (Figure 19, left side) as a representative of ‘small’ ions with high surface

charge densities, and, ii) iodide (Figure 19, right side) as a representative of ‘large’ ions with

low surface charge densities [105]. The distributions of other ions are presented on the Figure

21.

The density profile for fluoride ions on Figure 19 (left side) clearly shows that the fluoride
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Figure 19: (left side) This picture illustrates the water-separated contacts of fluoride ions with

the CNT surface. Small blue and green spheres correspond to the F− and Na+ ions. The size of

the selected fluoride ion (large green sphere) corresponds to the van-der-Waals (VDW) size of

the ion. The water molecules in the first hydration shell of the selected ion are shown by balls

and sticks; the VDW spheres of the water oxygens are shown as transparent red spheres. (right

size) The overall style of the picture is the same as for the previous one. I− ions are shown

by magenta spheres. Two characteristic positions of the iodide ions close to the CNT surface

correspond to the two selective peaks on the CNT-iodide RDP: direct contacts (top ion) and

water-separated contacts (bottom ion).

ions practically do not make direct contacts with the CNT surface and tend to be separated

from the CNT by at least one water layer as illustrated by the molecular picture on Figure 19

(left side). We attribute the slight increase of the ions density comparing to the bulk solution

in the second CNT-fluoride interface shell to the attraction of ions to the water in the first CNT

hydration shell. We found that the RDP of fluoride ions around the CNT surface is qualitatively

similar to RDPs of other ions of small size as it is shown on Figure 21.

Contrary to fluorides, the iodides do make direct contacts with the CNT surface. As in-

dicated by the CNT-iodide RDP, the concentration of iodides in the first CNT-iodide interface

shell is only half less than the bulk concentration of iodides (see Figure 19 (right side)). The

two selective peaks on the CNT-iodide RDP indicate a presence of two characteristic positions
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of the iodide ions close to the CNT surface: direct contacts of the iodides with the CNT sur-

face (first peak) and water-separated contacts (second peak). We found that the mechanism of

interaction of iodides with the CNT surface is qualitatively similar to other large ions with low

surface charge density (Cs+ and Br−) considered in this study (the corresponding data are given

in Figure 21).

We note, that an increase of the concentration of the large ions at different metallic surfaces

have been observed previously by Spohr et al. [144, 145], Perera and Berkowitz [146]. These

findings are in line with our observations.

4.1.4 Ion-carbon nanotube interface shell criteria

Figure 20: Ion-carbon nanotube interface shell.

To quantify the number of direct contacts of different particles with the CNT surface we

introduce the term particle-CNT interface shell. We consider the particles occurring in the first

particle interface shell of CNT to be in direct contact with the CNT surface (like water molecules

in the first hydration shell of CNT). We stress that it is important to consider different criteria for

different particles because of the differences in the particle sizes. In our case the particle-CNT

interface shell is the volume between two cylindrical layers around CNT, with the radius of the

inner layer being RI and the radius of the outer layer being RII . The RI is determined in the
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Figure 21: Radial density profiles for ions around carbon nanotube. The thin vertical lines

indicate the boundaries of the first CNT-ion interface shell. Solid lines - data for the Cheatham

set, dashed lines - data for the Jorgensen set of potential parameters. For the Jorgensen set there

are no data for Cs+ and K+ ions. Enhanced concentration of Li+ close to the interface shell is

very similar to what was found by Perera and Berkowitz [146].

following way:

RI = RCNT + Dcarbon−ion

where: RCNT is the CNT radius (equals to 0.283 nm), Dcarbon−ion is the closest ion-carbon dis-

tance, in this work it was set to the distance where the interaction energy between carbon atom

and the regarding ion equals to 10 kBT (arbitrary value to define the "hard core" impermeability

of the two particles).

For the outer boundary of the particle-CNT interface shell (RII) we chose a usual criteria

for the outer boundary of the solvation shell (the position of the first deep minimum on the

corresponding radial distribution profile of the solvent species around a solute (see Section

2.1.4). Thus for water the outer boundary of the water-CNT interface shell (RII) would be

the position on the first minimum on the water-CNT RDP (see Figure 17). We estimated the

positions of the outer boundary of the iodide-CNT and cesium-CNT interface shells also as the

positions of the first minima on the corresponding RDPs (see Figures 19 and 21).

For other ions the RDPs do not have the first minimum corresponding to outer boundary of

the CNT-ion interface shell (see Figures 19 and 21). Thus, we initially defined the RII for the
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ions except Cs+ and I− to be:

RII = RCNT + Rcarbon + 2Rion (29)

where: RCNT is the CNT radius (equals to 0.283 nm), Rcarbon and Rion is Van der Waals radii of

the carbon atom and an ion correspondingly, estimated as half the distance where the Lennard-

Jones potential of interaction of two particles of the same kind is equal to 1 kBT .

The described criteria for RII slightly overestimated (by 0.03 nm) the outer layer of the first

CNT-ion interface shell in the case of Cs+, where the RII is determined by the position of the first

minimum on Cs+-CNT RDP. Thus, for K+, Na+, Li+ we reduced the radius of the outer layer of

the first CNT-ion interface shell (estimated by Eq. 29) by 0.03 nm for keeping consistency.

In the case of anions only iodide RDP has a minimum corresponding to the outer layer of

the first CNT-ion interface shell. We had to reduce the calculated by Eq. 29 RII by 0.06 nm for

all anions distributions.

The obtained values of RII were then rounded to the nearest value of the discretized RDPs

curves. The interval between the nearest points on a RDP was 0.015 nm. The resulting criteria

for the Cheatham and Jorgensen sets of ion parameters are presented in Table 2.

4.1.5 Partial dehydration of ions at the carbon nanotube surface

Contacting a surface, ions undergo partial dehydration typically loosing about one water molecule

from their hydration shell [146, 144, 148]. Therefore, we assume a possible correlation between

the strength of ion-water interactions in the first hydration shell of ions and the concentration of

ions in the CNT-water interface layer.

To investigate the partial dehydration of ions we calculated the hydration number of ions

as functions of distance from the CNT surface (see Figure 22). From the Figure 22 one can

see that the hydration of ions (on examples of Cs+ and I−) is significantly perturbed by the

CNT surface: the hydration numbers reach their bulk values only at 1.5 nm distance from

the CNT axis (more than 1 nm from the CNT surface). Interestingly, the hydration numbers

of ions even slightly increase at r=0.85-0.90 nm compared to the values in the bulk. This

distance region corresponds to the water-separated contacts of the ions with the CNT surface

(see Figure 19 (right side) and Figure 21). We attribute this to the fact that the structure of the

water hydrogen-bond network at hydrophobic surfaces is disturbed by the surface, resulting in

weakening of water-water interactions (number of H-bonds) [149] which makes it easier for the

water molecules to interact with the ions increasing their hydration number.
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Table 2: The first CNT-ion interface shells of different ions for the Cheatham and Jorgensen sets

of potential parameters.

Ion Boundaries of the first CNT-

ion interface shell.

Concentration in the first CNT-ion

interface shell normalized by bulk

density.

ρs1/ρ0

RI RII

Cheatham set F− 0.543 0.675 0.00

Cl− 0.577 0.765 0.10

Br− 0.589 0.795 0.20

I− 0.603 0.825 0.41

Li+ 0.455 0.555 0.00

Na+ 0.499 0.615 0.02

K+ 0.534 0.675 0.13

Cs+ 0.560 0.735 0.32

Jorgensen set F− 0.540 0.645 0.00

Cl− 0.590 0.780 0.20

Br− 0.594 0.795 0.20

I− 0.616 0.855 0.46

Li+ 0.481 0.585 0.00

Na+ 0.514 0.645 0.04
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Figure 22: Cs+ and I− ion hydration numbers as a function of distance from the CNT. Decreasing

the distances lower than 0.85-0.90 nm (ions dive into the the CNT first hydration shell) results

in a gradual decreasing of the hydration number of ions. Similar functions were calculated for

different ions at a solid surface by Spohr [147] and Perera, Berkowitz [146].

Decreasing the distances lower than 0.85-0.90 nm (ions dive into the the CNT first hydration

shell) results in a gradual decreasing of the hydration number of ions (see Figure 22). The closer

an ion to the CNT surface the smaller is its hydration number. This clearly indicates that ions

become partially desolvated forming direct contacts with the CNT surface. The ion partial

desolvation at the CNT surface happens because of the steric restraints caused by the surface.

Indeed, the hydration shell of ions simply starts to overlap with the CNT surface, and thus

effectively the volume of the hydration shell decreases upon approaching the surface.

We have estimated the number of water molecules an ion releases when it attaches to the

CNT surface. This was estimated as the difference between the average hydration number of

ions in the bulk solution (see Table 3) and the average hydration number of ions in the CNT-ion

interface shell. We present the results on the Figure 23. The figure shows that to approach

the CNT surface cations have to release 1-2 water molecules from their hydration shells, but

anions release only 0-1 water molecules. This clearly indicates asymmetry of anion and cation

interactions with the CNT surface in aqueous dispersions. Indeed, cesium cation releases in
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Table 3: Hydration numbers of ions for the Cheatham and Jorgensen sets of potential param-

eters. The hydration number of ions are estimated as the average number of water oxygen

atoms within the distance of the first hydration shell of ions (position of the first minima on the

corresponding ion-water oxygen radial distribution functions).

Ion Jorgensen set Cheatham set Experimental[141]

F− 6.2 6.0 6.0

Cl− 6.7 6.5 5.9 - 8.5

Br− 7.0 6.8 4.2 - 8.9

I− 7.3 7.1 6.0 - 8.9

Li+ 3.6 3.8 4.0 - 6.0

Na+ 5.5 5.7 4.0 - 8.0

K+ - 6.5 6.0 - 8.0

Cs+ - 7.7 6.0 - 8.0

Figure 23: The number of water molecules an ion releases from its hydration shell when it

attaches to the carbon nanotube surface. For Li+ and F− no direct contacts were observed

during the 30 ns simulation time.

average about 1.3 water molecules from its hydration shell, while Cl− being of similar size

releases in average only about 0.3 water molecules.

We attribute the difference between cations and anons in the number of released water
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Figure 24: Ion hydration number as a function of ionic radii for the Cheatham set of potential

parameters (see Table 1).

molecules upon attaching the CNT surface to the difference in the structure of ions’ hydra-

tion shells. Cations have much denser hydration shell compared to anions (see Figure 24 and

Table 3). Indeed, the hydration number of Cs+ is about 1.2 water molecules larger than the

hydration number of Cl− despite their similar sizes. Thus around cations the water molecules

are denser packed. As a result, attaching to the surface cations must release more molecules

from their hydration shell. The sparser hydration shell of anions also suggests that when anions

attach the surface an anion not necessarily must release water molecules but rather the water

molecules can group in a more compact way around the anion. The later point is supported

by the fact that anions are much stronger hydrated than cations (see Section 2.2). This makes

the partial dehydration for anions to be much more unfavorable than for cations of the same

size. The described asymmetry of the cation and anion hydration shows that the structure of

the solvent around the ions has an important role in the process of the ion interactions with the

CNT surface. Thus, such effects can not be modeled in the studies with the implicit solvation

approaches describing the water solvent as a dielectric continuum media.

4.1.6 Measure of the penalty for partial dehydration

Ion-water potentials of mean force. To understand the role of ion hydration in the mecha-

nism of ion interactions with the CNT surface, we calculated potentials of mean force (PMFs)

between ions and water following similar approach used in Ref. [150, 78] for investigation of
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ion distributions at different surfaces. First, the atom-atom radial distribution functions (RDFs)

were calculated with the “g_rdf” program of the Gromacs 4.0.4 package and then the PMFs (in

the units of kBT , kB is Boltzmann’s constant and T is temperature) were found as:

PMF(r) = − ln(g(r)) (30)

Figure 25: The ion-water PMFs for the two sets of potential parameters. Solid lines - the data

for the Cheatham set, dashed lines - data for the Jorgensen set. For the Jorgensen set there are

no data for the Cs+ and K+ ions.

The resulting PMFs are shown on Figure 25. Ion-water PMFs serve as reaction profiles

of one water molecule release from the hydration shell of an ion to bulk solution (see Section

2.1.3).

On Figure 26 we compare the ion-water PMFs to the water-water PMF. The figure shows

that the fluorides have a very strong binding affinity to water comparing to the energy of thermal

fluctuations, 1 kBT . The fluoride-water binding is also stronger than the water affinity to itself,

as the depth of the first minimum of the water-water PMF is less than the one for the fluoride-

water PMF. In contrast, large I− and Cs+ ions have much less affinity to water and the depth of

the first minimum on their ion-water PMF is comparable to the one for the water-water PMF.

Thus, these ions can not compete with the water for water molecules and one water molecule

can be easily moved away from the hydration shell of these ions.
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Figure 26: Ion-water PMFs in comparison with the water-water PMF. The free energy to release

one water molecule from the ion hydration shell (ΔGWR) can be estimated as the depth of the

first minimum on the ion-water PMF.

Free energies of one water molecule release from the ion hydration shell. The PMFs show

the change in Gibbs free energy in the process of bringing two selected particles from infinite

separation to the selected distance from each other [94]. Thus, using the ion-water PMFs given

in Figure 25 we can estimate the free energy to release one water molecule from the hydration

shell of an ion (ΔGWR) as the depth of the first minimum on the ion-water oxygen PMF [151, 78].

We use the value ΔGWR as a measure of the penalty for partial desolvation of an ion. Our

estimations of ΔGWR are consistent with the available experimental data [152, 153, 154] (see

Table 4).

4.1.7 Ions concentration in the carbon nanotube-ion interface shell

To quantify the number of direct contacts we calculated the average concentrations of ions

in the the first CNT-ion interface shell. These concentrations were then normalized by the

bulk concentration of the species (see Figure 27, first row). The bulk concentrations were

calculated in the following way. For the systems containing CNT, the numbers of ions were

divided by the volumes of the simulation boxes. Then the effect of the CNT excluded volume

on the concentration of ions was corrected by dividing the calculated concentrations by the same

scaling factors (about 0.98) as we previously used for corrections of the normalized RDP values

(see Section 4.1.1).
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Table 4: Free energies of one water molecule release from the first hydration shell of ions, ΔGWR

(kBT units).

Ion External sourcesa Our datab

F− 2.0 [152] 2.0

Cl− 1.1 [152] 1.5

Br− 1.1 [152] 1.3

I− 0.5 [152] 1.1

Li+ (2.3 [155]; 2.1 [156]; 2.2 [156]; 2.6 [156])c 2.8

Na+ 1.8 [153] 2.2

K+ 1.7 [153] 1.7

Cs+ 1.1 [154]d 1.3

a Data from the external sources were calculated in the following way. For each ion we

estimated the value of the first maximum of the corresponding ion-water oxygen radial

distribution function from the published plots. The minimum value of the corresponding PMF

was found as natural logarithm of the maximum value of this RDF. We took the RDFs for the

most diluted ionic systems we could find;
b We provide here our simulations data with the set of potential parameters taken from Ref.

[134];
c The experimental publications provide either only the total distribution functions of lithium

in water [157] or the published radial distribution functions are too noisy [158]. We took the

data from the molecular dynamics simulations with different sets of potential parameters [156].

The lithium - water oxygen radial distribution function at 0.3 mol/kg concentration of LiCl was

taken from Ref. [155] ;
d From this source we took the cesium – water oxygen radial distribution function for the 1.5M

concentration of CsCl.
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Figure 27 illustrates the relationship between the strength of ion hydration described in terms

of ΔGWR and the concentration of ions in the CNT-ion interface shell. The figure clearly shows

a negative correlation between the strength of ion-water interactions and the concentration of

ions at the first CNT-ion interface shell: the interfacial region becomes increasingly populated

by ions with smaller ΔGWR. Thus, the concentration of strongly hydrated (ΔGWR >> 1 kBT )

ions such as Li+, F− and Na+ is negligible in the first CNT-ion interface shell. Contrary, there

is a significant amount of the weakly hydrated (ΔGWR ∼ 1 kBT ) ions (Cs+, I−) in the interface
area corresponding to direct contacts of ions with the CNT surface (up to 40% of the bulk

concentration for iodides). Because of the asymmetry in ion hydration (see Sections 4.1.5) the

data for cations and anions are analyzed separately. The general trends for cations and anions

are as follows: (i) the larger the size of the ions the larger is the local concentration of the ions

in the interface layer; (ii) the smaller the size of the ions the larger is their ΔGWR.

Figure 27: Normalized concentrations of ions in the first CNT-ion interface shells (top) to-

gether with the free energy to release one water molecule from the hydration shell of an ion,

ΔGWR(bottom). The spheres on the very top of the figure illustrate the relative sizes of the cor-

responding ions. The data for cations are shown on the left; the data for anions are shown on the

right. There is a general trend for all ions: the CNT-ion interfacial region becomes increasingly

populated by weakly hydrated ions with lower ΔGWR. Because of the asymmetry hydration (see

Sections 4.1.5) the data for cations and anions is presented separately.
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4.1.8 Ions residence times at the carbon nanotube-water interface

We found a positive correlation between the size of ions and the average residence time < tR >

of ions in the first CNT-ion interface shell. We define < tR > as the average time for a particle to

stay in the first CNT-particle interface shell. During the simulation the instant tR values for all

the particles of certain kind that left the first interface shell were collected in a numerical array.

The averaged value < tR > was obtained via averaging over the array of the instant tR values.

To correct the artifacts produced by the oscillatory motion of the particles located at the

CNT-particle interface shell boundary, we applied two additional parameters for the calculation

of the instant residence times tR: tGAP - the minimum "absence time" of the particle in the

CNT-particle interface shell; and tmin - the minimum residence time of the particle in the CNT-

particle interface shell. tGAP has the following physical meaning: if the particle that left the first

CNT-particle interface shell returns back in a period of time less than tGAP, then this particle

is considered being not left the interface shell. Similarly, the meaning of tmin is: if the particle

stays in the first CNT-particle interface shell less than tmin then we assume that it did not enter

the interface shell. Following the work of Impey et al. [98], we set tGAP to 2 ps; and we set tmin

to 0.5 ps.

The boundaries for the first CNT-ion interface shells are presented in the Table 2. The water-

CNT interface boundary was set to - 0.778 nm - the position of the first minimum on the water

oxygen-CNT radial density profile (see Figure 18).

The residence time for the sodium ions located in the first CNT-sodium interface shell did

not exceed the minimum value of the residence time tmin in the above described criteria. On the

Figure 28 the average residence time for Na+ was set to 0.5 ps, showing the upper limit of this

value.

We note that the described way to calculate the residence times of particles differs from the

conventional method which manipulates with the so-called "residence time correlation function"

[159, 98]. The scheme used in this study directly answers the question "how long a particle stays

in the CNT-ion interface shell" and thus can be easily understood. We note, however, that the

residence times estimated with this method would depend on the two additional parameters

tGAP and tmin, but in this study we are interested only in the general trends and thus the described

method is sufficient.

The average ion residence times in the first CNT-ion interface shell are in the range of 2÷ 9
ps. The < tR > data for ions and water are presented in Figure 28, showing an increase in < tR >

with the growth of ion size. We note, that the water residence time is about twice higher (∼ 18
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Figure 28: Average residence times, < tR >, of ions and water in their CNT interface shells.

The spheres on the bottom of the figure illustrate the relative sizes of the corresponding ions.

< tR > practically equals zero for Li+ and F− ions due to the negligible concentration of the ions

in the CNT-Li+ and CNT-F− interface shells (see Figure 27).

ps) than the maximum residence time for ions (∼ 9-10 ps). This observation correlates with
the significant increase of water density in the first CNT-water interface shell comparing to the

bulk density (see Figure 17a).

4.1.9 Discussion of the simulation results in light of experimental data

The observation that the CNT-ion interfacial region becomes increasingly populated by weakly

hydrated ions (with smaller ΔGWR) correlates with the experimental observations in Ref. [160]

showing that large halogens form complexes with nanotubes in polar solvents. Our findings are

consistent with results of other studies on ion interactions with hydrophobic surfaces [121, 122,

123, 124, 161], also showing correlations between the size of ions and the local concentration

of ions in the surface layer of water.

Our results can help in understanding the observed correlation between the radii of ions

and the strength of ion effects on the CNT photoluminescence quenching in aqueous solutions

observed in experimental works [82, 83]. Indeed, weakly hydrated ions (like iodide or cesium)

have large probability to lose water molecules from their hydration shell and to approach the

CNT surface to form direct contact. The formation of the direct contact is important for the
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Dexter mechanism of photoluminescence quenching [162], which "can occur only when the

fluorophore and quencher are close enough to allow orbital overlap" [163].

4.1.10 Conclusions

There are the following conclusions from this section:

1. Small ions with high surface charge density (e.g. Li+, F−) make no direct contacts with

the CNT surface. The reason of this is the strong hydration of the ions. As a result, ions

unable to approach the CNT surface closer that the size of one water molecule.

2. Large ions with low surface charge density (Cs+, Br−, I−) can make a significant amount

of direct contacts with the CNT surface. This is because these ions are weakly hydrated

due to their low surface charge. Consequently, their hydration shells can easily lose one

water molecule that allows them to make direct contacts with the CNT surface.

3. There is a strong negative correlation between the strength of ion hydration and the prob-

ability of a direct CNT-ion contact: the interfacial region becomes increasingly populated

by weakly hydrated ions with lower ΔGWR.

We believe that these findings should be interesting for the many scientists working in the

field of CNTs dissolution and surface-specific effects in CNTs and will provoke more exper-

imental studies on interfacial ion effects on CNTs. Importantly, our results could help the

understanding of the mechanisms of ion effects on CNTs photoluminescence in aqua solution

that should help the development of new nanotube-based functional devices by using bottom-up

molecular engineering in the liquid phase.
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4.2 Ion interaction with the carbon nanotube surface in N-methyl-2-pyrro-

lidone dispersions

In this section we study the salt (NaI) effects on CNT-NMP dispersions by a combination of

fully atomistic molecular simulations. We have chosen N-methyl-2-pyrrolidone (NMP) as an

organic solvent because this is one of the most promising solvents for making dispersions of

pristine CNMs [31, 32]. Such, it is possible to obtain at least 0.02 mg/mL concentration of

CNTs in the bulk NMP solution without any additional dispersing agents and the dispersion

may stay stable for weeks [164]. To study the ion effects we use the sodium iodide salt because

in contrast to sodium chloride and many other inorganic salts, NaI is soluble in NMP at least up

to 0.2M [165].

We note that, an addition of surfactants (e.g. polyvinylpyrrolidone, Triton X-100 etc.) can

increase the concentration of the CNTs in the dispersion much further than 0.02 mg/mL [166].

However, we focus on the ion effects in bulk NMP-CNT dispersions to avoid any interference

of ion effects on CNTs with possible ion effects on the surfactant molecules.

4.2.1 Simulation details

We performed Molecular Dynamics (MD) simulations of a single-wall CNT with (8,6) chirality

dissolved in 0.15M NaI NMP solution to reveal the basic molecular mechanisms of ion inter-

actions with the carbon nanotube surface. Overall, the simulation strategy is the same as in the

case of aqueous solutions (see Section 4.1.1).

1) Systems under the investigation.

We performed Molecular Dynamics (MD) simulations using the Gromacs 4.5 MD software

package [167]. We simulated a segment of CNT (8,6) of 5.186 nm length solvated in pure

NMP (N-methyl-2-pyrrolidone) and 0.15M NaI NMP solution. Additionally we performed

simulations of the bulk NaI-NMP solvent.

2) Molecular topology and potential parameters used in the simulations.

Firstly, we generated a molecular simulation topology for a CNT segment consisted of 592

carbon atoms (chirality (8,6) with tubule radius of 0.477 nm). For generation of the CNT topol-

ogy we used the on-line TubeGen 3.3 tool [126]. Then the CNT was placed in a rectangular

simulation box (7.50 × 7.50 × 5.19 nm3) and was oriented along the Z axis of the box. We
used the rectangular periodic boundary conditions, where the CNT was treated as a “periodic

molecule”. The positions of the CNT atoms were restrained to the initial values by harmonic

potential with 1000 kJ · mol−1 · nm−2 force constant in each direction. The set of potential pa-
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rameters and molecular topology of the CNT was defined the same way as in the Section 4.1.1.

But in the present case we have not applied the potentials on the dihedral angles, the absence of

dihedral potentials is compensated by the restraining potential. The Lennard-Jones coefficients

for atoms of different kinds were obtained as a geometric mean value of the parameters of two

corresponding particles (Equation 28).

We employed the fully atomistic OPLS-AA force field [168, 169, 170] which has been thor-

oughly tested for NMP and similar organic solvents in Refs. [32, 171, 172]. The OPLS-AA

potential parameters were assigned to NMP molecule with the use of Shrodinger Maestro soft-

ware [173]. The parameters were then transformed into the Gromacs topology format, where

the Fourier coefficients of the dihedral potential term were transformed into the Ryckaerd-

Bellemans type [174]. For sodium iodide, we used the recent set of ion parameters developed

consistently with the general framework of the OPLS force field [170]. However, to prevent pos-

sible crystallization of the salt during the simulation time we increased the interionic σNa+−I−

Lennard-Jones term, estimated by Equation 28 by 0.05 nm. We believe that this is reasonable,

because the ion potential parameters were parameterized to match properties of the infinitely

diluted aqueous solutions where the LJ cross terms (σNa−I and εNa−I) were not parameterized

and were taken estimated according to the general OPLS combining rules (Equation 28).

3) MD algorithms details.

We used the leap-frog integrator with 0.002 ps integration time step. For the Lennard-Jones

potential we used 1.00 nm cut-off radius with shifting potential method. The neighbor list for

the nonbonded interactions was updated each 10th integration step. For accurate evaluation of

the long range Coulomb interactions we used the Particle Mesh Ewald method with 1.10 nm

cut-off radius for the real space sum and 0.12 nm spacing for the mesh in the real space. The

cubic B-splines were used to map the charges on the mesh.

The length of all the bonds with hydrogen atoms were fixed to the force field equilibrium

values by the LINCS algorithm [175].

For the NVT-ensemble (canonical ensemble) simulations we used the Berendsen thermostat

with the reference temperature of 300K and the relaxation time of 2.0 ps in the case of “pro-

duction run” and 1.0 ps in the case of “equilibration run”. For the NPT-ensemble (isothermo-

isobaric ensemble) simulations we used the Berendsen thermostat and also the Berendsen baro-

stat. In this case the system was coupled to an external pressure of 0.1013 MPa with the

relaxation time of 2.0 ps.

4) Systems preparation and collection of statistics.

1600 NMP molecules, 27 Na+ ions and 27 I− ions were placed inside the simulation box
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with the help of Packmol program [176]. The initial configuration was firstly optimized by

the energy minimization [167], and then the density of the system was equilibrated during a

0.2 ns simulation in the NPT-ensemble. We collected statistics over 60 ns simulation run in

the NVT-ensemble at 300K. Coordinates of the system were sampled each 0.3 ps for further

analysis.

To analyze molecular mechanisms of ion solvation in NMP, we performed an additional

simulation of the NaI solution in bulk NMP (without the CNT) using similar simulation setup

to the one described above. The pure NMP-NaI solvent system contained 610 NMP molecules,

18 Na+ ions and 18 I− ions. The system was simulated during 100 ns of simulation time in

NVT-ensemble.

5) Details on the calculation of radial density profiles.

The radial density profiles (RDPs) of different species were calculated and normalized in the

same way as in the case of aqueous solutions (see Section 4.1.1). We have chosen a region on

each RDP where it reaches a plateau (in our case 2.5 nm < r < 3.0 nm) to correct the RDPs for

the excluded volume of the CNT. We averaged the RDPs over this region and correspondingly

rescaled the RDPs (divided by the mentioned value). On the Figure 31 of the main text the

scaled RDPs are shown. The bulk number density of salt was estimated as the density of the

bulk solvent in the cylindrical shell 2.5 nm < r < 3.0 nm, and it was 0.114 ion pairs/nm3.

4.2.2 Ion solvation in the bulk NaI – N-methyl-2-pyrrolidone solution

In our simulations we observe that ions dissolved in NMP have distinct solvation shells (See

Figure 29). That was expectable, because NMP is a very polar solvent (the dipole moment is

about 4.1 Debye) and, therefore, the NMP molecules strongly interact with the dissolved ions

due to the electrostatic charge-dipole interactions.

Both of the ion-NMP radial distribution functions show a peak (at r=0.42 and r=0.55 nm for

Na+ and I−, respectively) followed by a hollow (at r=0.50 and r=0.70 nm for Na+ and I−, respec-

tively), indicating formation of the first solvation shell around the ions [2]. The boundaries of

the ion solvation shell were estimated as the region with non-zero ion-NMP radial distribution

function ending at the first distinct minimum on the corresponding function. The structures of

the solvation shells of the ions are different: the negatively charged NMP oxygen atoms are

strongly attracted to the positively charged sodium ions (see the snapshot illustrating typical

configuration of NMP molecules around this ion on Figure 29A); from another side, the oxygen

atoms are placed outwards the negatively charged iodide ions (see the molecular snapshot on
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Figure 29: Ion-NMP (center of mass) radial distribution functions, g(r), in NaI-NMP solution

combined with corresponding simulation snapshots: A) sodium ion (shown as a blue sphere), B)

iodide ion (shown as a magenta sphere). The highly noticeable peaks on the g(r) functions indi-

cate distinct solvation shells around the ions. On the simulation snapshots the NMP molecules

in the first solvation shell around the ions are represented by thick sticks. The oxygen atoms in

these molecules are colored by red, nitrogens by blue, carbons by cyan and hydrogens by white.

Other molecules are shown by thin cyan lines.

Figure 29B). In general, similar to the mechanisms of ion solvation in water [73, 101] there is

a strong asymmetry in sodium and iodide solvation in NMP. As illustrated by the high peak on

Na+-NMP g(r) (Figure 29), the sodium ion solvation shell is very dense because the ion is rela-

tively small and, consequently, has a large surface charge density [106]. Therefore, the Na+ ions

strongly coordinate polar solvent molecules around them that resulted in the height of the first

peak on Na+-NMP radial distribution function to be about 8.0. On the other hand, the iodide ion

solvation shell is much more diffuse because of the larger size of the I− ion and, consequently,

its smaller surface charge density than of the Na+ ion [106]. As a result, the height of the first

peak on I−-NMP radial distribution function is much smaller than the one on the Na+-NMP

RDF (it is slightly above 3.0). The position of the first maximum on the I−-NMP RDF is also

shifted compared to the Na+-NMP RDF (from 0.42 nm to 0.55 nm). This is because of two

main reasons: (i) I− (r = 0.220 nm) has larger radius compared to Na+ (r = 0.102 nm); (ii) as

discussed above, the I−-NMP interactions are weaker than the Na+-NMP interactions (the ionic

radii are taken from Ref. [103] as presented in Ref. [2]).
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Figure 30: A) Solvation number of ions (the number of NMP molecules in the first solvation

shell of the ions) as a function of distance from the CNT. B) Schematic representation of the

partial desolvation of the ions upon the direct contact with the CNT surface. Because the iodide

ion is larger than the sodium ion it consequently has larger solvation number.

4.2.3 Ions behavior at the carbon nanotube surface in N-methyl-2-pyrrolidone disper-

sion

Results of our MD simulations indicate two major effects which take place during ion interac-

tions with the CNT surface:

1) Firstly, ions have to become partially desolvated to make direct contacts with the CNT

surface (see Figure 30). The partial desolvation of ions at the CNT surface happens because

of the steric restraints caused by the surface. The MD simulations show that upon approaching

the CNT surface the sodium ions have to release one NMP molecule and the iodide ions have

to release two NMP molecules from their solvation shells (there is a significant decrease of the

solvation number of ions at the CNT surface see, see Figure 30 A). The partial desolvation of

ions also means that the strong ion-NMP dipole interactions (discussed above) are substituted by

the much weaker Van-der-Waals interactions of ions with the non-polar CNT surface. That leads
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Figure 31: Radial density profiles of ions and NMPmolecules (center of mass) around the CNT.

There is a distinct salt depletion area at the CNT surface (marked by the beige color): a region

with enhanced concentration of NMP molecules but with much lower concentration of ions

than in the bulk. The simulation snapshot represents the NMP molecules in the first solvation

shell of CNT (shown by thick sticks) preferentially having two different orientations, flat and

perpendicular to the surface. These two preferential orientations correspond to the two distinct

peaks on the NMP radial density profile. The NMP molecules outside the first solvation shell

are represented as thin lines. The colored circles schematically show ions (Na+ by blue and I−

by magenta) in the solution.

to large energy costs for partial desolvation of ions (so-called desolvation penalty [177]) and,

overall, makes the direct contacts of ions with the CNT surface to be energetically unfavorable.

2) Secondly, to approach the CNT surface, ions have to squeeze through a very dense layer

of NMP molecules in the first CNT solvation shell (see Figure 31). Contrary to water, NMP

is known to interact strongly with the surface of carbon nanomaterials [32]. The dense CNT

solvation shell in NMP corresponds to a broad region on the CNT-NMP radial density profile

with two distinct high peaks in the vicinity of the CNT surface (see Figure 31). This NMP

enrichment area is followed by a deep hollow at about r = 1.1 nm (see Figure 31). Thus,

during the formation of ion-CNT direct contacts, not only the ions have to become partially
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desolvated (as shown on Figure 30), but also the CNT has to release some NMP molecules

from its solvation shell. This further increases the energetic barrier for the formation of ion-

CNT direct contacts.

To conclude, the energetic penalties in the processes of partial desolvation of ions and partial

desolvation of CNT can not be compensated by the weak Van-der-Waals interactions of the ions

with the non-polar CNT surface. As a result, ions prefer to stay in the bulk of the NMP solution

rather than close to the CNT surface. This leads to a formation of ion depletion area around

the non-polar CNT surface, where the concentration of ions is significantly lower than in the

bulk solution (Figure 31). Geometrically, the depletion area roughly corresponds to the CNT

solvation shell. The depletion area thickness is about 0.35 nm, which is about the width of one

NMP molecule. Ions can attach to the CNT solvation shell beyond the depletion area, where

there is even enhanced concentration of iodides nearby the boundary of the CNT solvation shell

(Figure 31, area around r ≈ 1.1 nm). The sodium ions can occasionally enter the CNT solvation
shell (there is small but non-zero peak on the Na+-CNT radial density profile at r ≈ 1.0 nm,
see Figure 31), while in the case of the iodide ions it happens very rare (I−-CNT radial density

profile is almost zero at shorter distances to the CNT than r ≈ 1.1 nm, see Figure 31).
To understand the main mechanisms of changes in Na+ and I− solvation upon approaching

the CNT surfaces we analyzed the solvation number (the average number of NMP molecules

in the first solvation shell of the ions) as a function of distance between the corresponding

ion and the CNT surface (see Figure 30). As illustrated by this figure, the difference in the

solvation strength of Na+ and I− results in different mechanisms of their penetration into the

CNT solvation shell. Na+ is strongly solvated, and therefore, it keeps its solvation number

unchanged until it comes very close to the CNT surface (see Figure 30A). The Na+ ions become

(abruptly) partially desolvated only at the very vicinity of the CNT surface (Figure 30A, r < 1.0

nm) when this is absolutely unavoidable because of the steric constraints posed by the CNT

surface. On the other hand, the iodide ion is much weaker solvated in NMP compared to Na+.

As a result, the I− ions gradually loose NMP molecules from their solvation shell (starting from

r ≈ 1.5 nm) diving into the CNT solvation shell (see Figure 30A).

4.2.4 Comparison to aqueous solutions

Here we also would like to briefly compare the proposed mechanisms of ion interactions with

the CNT surface in NMP solution to the previously discussed results on molecular simulations

of ion-CNT interactions in aqueous solutions as well as ion interactions with other non-polar
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surfaces [178, 161]. It is shown in Ref. [161] that the probability of a direct ion contact with

the CNT surface strongly correlates with the strength of ion hydration. The less hydrated is

the ion the bigger is its concentration at the CNT interface, see Section 4.1, [179]. Such, the

simulations in Ref. [179] show that the concentration of iodide at the CNT surface in aqueous

solution is about 40% of its bulk concentration, while the interface concentration of sodium

ions is practically zero. This is apparently not the case for NMP solutions, despite the fact that

the strength of the ion solvation in NMP as well as the strength of ion solvation in aqueous

solutions decreases from sodium to iodide. There are almost negligible concentrations of both

Na+ and I− ions in the ion-CNT interface shell (see Figure 31). In NMP both sodium and iodide

ions are depleted from the CNT surface. We attribute this to the fact that the CNT surface can

be much easier dehydrated in water, than desolvated in NMP. The dense CNT solvation shell in

the NMP solution prevents ions to come close to the surface, while in aqueous solutions ions do

not have such a barrier.

On Figure 32A one can see that the CNT surface is much stronger solvated in NMP, com-

pared to its hydration in water. In the NMP solution, there is a dense solvation shell around

CNT which is represented by a broad region on the NMP radial density profile that consists of

two distinct high peaks. In contrary, the water radial density profile has a much smaller height

of the first peak and much less deep hollow, showing that the CNT hydration shell is much more

diffuse compares to the NMP solvation shell. Thus, partial dehydration of CNT surface in water

is much easier than the partial desolvation of CNT in NMP, where the barrier is large. The

barrier of a solvent molecule exchange between the 1st solvation shell and the rest of solution is

more than 1 kBT higher in the NMP solution compared to the aqueous solution (Figure 32B).

4.2.5 Thermodynamics of ion depletion at the carbon nanotube surface

To quantify the effect of the salt depletion area on the solvation thermodynamics of CNTs in

CNT-NMP dispersions, we employ the Gibbs-Duhem relation (as described in Ref. [161]) and

an approach based on the Kirkwood-Buff (KB) theory of solutions [180] as discussed in Ref.

[181, 182, 183]. In general, within the framework of the KB theory of solution, the change in

the chemical potential of a solute molecule (S) dissolved in a solvent (V), upon addition of a

cosolvent (X) is written as [161]:

dμS = −ΓS X · dμX, (31)
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Figure 32: a) Radial density profiles of water (TIP4Pew model) and NMP (OPLS-AA param-

eters) around the CNT(7,0) and CNT(8.6) correspondingly. One can see that the CNT surface

is much more strongly solvated in NMP, rather than hydrated in water. b) Potential of mean

force of water (TIP4Pew model) and NMP (OPLS-AA parameters) around a CNT. One can see

a high barrier of 2.6 kBT preventing a free exchange of NMP molecules between the solvation

shell of the CNT and the rest of solution. Contrary, in the aqueous solution the barrier of wa-

ter exchange is only 1.5 kBT . The PMFs were estimated as negative natural logarithms of the

corresponding radial density profiles.

where dμS is the change in the chemical potential of solute, dμX is change of chemical potential

of the co-solvent, ΓS X is the solute - co-solvent preferential interaction coefficient (deficit or

excess of the number of co-solvent molecules around a solute molecule, compared to the same

volume of the bulk solution).

We substitute the differentials with the finite differences, and get the expression which can

be used in our calculations:

ΔμS ≈ −ΓS X · ΔμX (32)

The solute - co-solvent preferential interaction coefficient can be calculated within the

Kirkwood-Buff theory of solutions [181, 184]:

ΓS X = −
(
∂μS

∂μX

)
T,P,n2

= ρX (GSX −GSV) (33)

where ρX is the number density of species X, GSX and GSV are Kirkwood-Buff (KB) integrals

for species S and X, S and V respectively.

Initially the KB integral for any particles (let call them A and B) was defined via a molecule-

molecule radial distribution function gAB(r) [94]. A straightforward generalization for molecule-

molecule pair correlation function (gAB(r)) defined in 3D coordinate space would be (following
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Reference [184]):

GAB =
∫
V
(gAB(r) − 1) dr (34)

where V defines the whole “phase volume” of the r coordinate.

Because CNT (S) has spherical symmetry, we rewrite the KB integral (Equation 34) in

cylindrical coordinates through the radial density profile ρS X(r)
ρ0X
:

GSX =
∫ ∞

0

(
ρS X(r)
ρ0X

− 1
)
2πr · dr (35)

where ρS X(r) is the number density of particles X as a function of the distance r from the axis of

cylindrical symmetry of CNT (S), ρ0X is the number density of cosolvent X in bulk solution, the

integration is performed in cylindrical coordinates, 2πr ·dr is the volume of cylindrical segment
(the length of the cylinder is implied to be 1 nm).

Changing of the letter X to the letter V in Equation 35 would give the expression for the KB

integral of solvent around CNT. Thus, the solute – co-solvent preferential interaction coefficient

can be calculated via the radial density profiles of the corresponding species in the solution:

ΓS X = ρ
0
X

∫ ∞

0

(
ρS X(r)
ρ0X

− ρSV(r)
ρ0V

)
2πr · dr, (36)

where
{
ρ0X, ρ

0
V

}
are the number density of particles X and V correspondingly in the bulk solution,

{ρS X(r), ρSV(r)} are the densities of particles X and V as a function of the distance r from the
axis of cylindrical symmetry of CNT (denoted by the index S).

Following the works (Ref. [185]) we applied the Kirkwood-Buff theory for estimating the

preferential interaction coefficient of the NaI salt as a cosolvent around CNT. There is a pecu-

liarity in the Kirkwood-buff theory dealing with the electrolyte solutions [94]. The KB theory is

developed for open systems. But in an open system, one can not consider ions of the dissociated

salt as independent components, because of the electro neutrality condition. Thus an additional

restriction must be applied and the KB theory cannot be used in a straightforward way. Kusalik

and Patey described a rigorous way how to overcome the problem manipulating with the KB

theory equations in reciprocal (Fourier) space [186]. Chitra et al. [185] showed that these re-

sults of Kusalik and Patey are equivalent to the following “physical picture”: considering ions

as indistinguishable particles. Thus in this study we consider the indistinguishable ions as a

co-solvent. Following the work of [161] we estimated the RDP of the “indistinguishable ions“
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Figure 33: The calculated preferential interaction coefficient of salt for 1 nm of the CNT length.

A) Integrand function in Equation 36; B) Preferential interaction coefficient as a function of

distance (running integral of Equation 36). Te value of ΓS X, used in further calculations, was

set to ΓS X = −0.273 ion pairs / nm of CNT length. We consider the "indistinguishable ions" of
NaI salt as a co-solvent X, thus to get the dimensions of ion pair we divided the ρ0X by two.

as an arithmetic mean of the contributions coming from the sodium and iodide RDPs:

ρS X(r)
ρ0X

=
1
2

(
ρS Na+(r)
ρ0Na+

+
ρS I−(r)
ρ0I−

)
(37)

The bulk density of cosolvent ρ0X is the sum of bulk densities of individual ions.

The preferential interaction coefficient evaluated by Equation 36 is illustrated in Figure 33.

The changes in the chemical potentials of co-solvent and solvent in the bulk solution are related

by the following Gibbs-Duhem equation [161]:

dμX = − xVxX
· dμV (38)

ΔμX ≈ − xVxX
· ΔμV (39)

where xX and xV is the mole fraction of species X and V in bulk solution.

Change of the chemical potential of solvent upon the co-solvent addition can be written as

[161]:

ΔμV = kBT ln(aV) (40)

where kB is the Boltzmann constant, T is temperature, aV is the activity of the solvent.

Since in our case we have a diluted solution (0.15M), we may assume that the activity

of the solvent is equal to the mole fraction of solvent: aV ≈ xV . Considering cosolvent as
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indistinguishable ions we can estimate the mole fraction of solvent: xV = 1600
1600+27·2 . Thus,

the change of the chemical potential of solvent upon the co-solvent addition can be estimated:

ΔμV/kBT ≈ ln(xV) = −0.0332 kBT . Following the Equation 39: ΔμX ≈ − 16002·27 · (−0.0332) =
0.984 kBT .

The calculations using the Equation 32 show that the increase of the CNT surface free

energy by addition of the NaI salt into CNT-NMP dispersion is about 0.09 kBT per nm2 of the

CNT surface at 300K. Note, the final value calculated by the Equation 32, is then normalized

by the surface of the CNT of 1 nm length (S = 2πrCNT , where the radius of (8,6) CNT rCNT =

0.478 nm). The value is positive indicating an increase of the CNT solvophobicity upon the

salt addition. Analyzing the described expressions, we can estimate how an increase of salt

concentration would affect the thermodynamic stability of the CNT-NMP dispersions. The

combination of the above mentioned formulas gives the following relation of ΔμS and the salt

concentration xX:

ΔμS ≈ −ΓS X ·ΔμX ≈ ΓS X · xVxX
·ΔμV ≈ ΓS X · xVxX

· kBT ln(xV) ≈ ΓS X · 1 − xXxX
· kBT ln(1− xX) (41)

Assuming that the particle radial density profiles do not change much with the increase of

salt concentration (for little salt concentrations this is a reasonable approximation), we may as-

sume that the integral in Equation 36 is constant and that the preferential interaction coefficient

is proportional to the salt concentration, so ΓS X ≈ C · xX, where the C is a negative (C<0) con-
stant (see above), xX is the mole fraction of salt in NMP. For small salt concentrations used in

our experiments (1-10 mM) we also may assume ln(1 − xX) ≈ −xX and (1 − xX) ≈ 1. We get
the following relation:

ΔμS ≈ C · kBT · (−xX) (42)

Minding the negative constant C, we may conclude that with the increase of the salt concentra-

tion, ΔμS increases (becomes more positive), and, therefore, the CNT becomes more solvopho-

bic.

The results of our simulations and simple analysis of thermodynamic relations reveal that an

increase of the salt concentration increases the CNT solvophobicity in CNT-NMP dispersions.

This originates from the formation of the ion depletion area around CNTs, and that in turn re-

sults in an increase of the free energy of CNTs in NMP dispersions. These thermodynamic

changes should make the CNT-NMP dispersions less stable with the increase of the salt con-

centration. That means that CNTs can easier interact with each other forming CNT aggregates
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and bundles, decreasing the total CNT surface exposed to the salt NMP solutions. We refer to

this effect as “salting out” of CNTs from CNT-NMP dispersions.

We think that the mechanism of “salting out” of CNTs from NMP dispersions resulted from

the analysis of the simulation data in the current work has a similar origin to the well known

“salting out” effects in aqueous solutions, which are widely used in biotechnology for coagula-

tion and separation of biomolecules from aqueous solutions as well as for protein crystallization

[178].

4.2.6 Discussion of the simulation results in light of experimental data

To verify the general trends predicted by the simulations, our colleagues in Aston university

performed a series of experiments on the salting out of CNTs from CNT-NMP dispersions. The

CNTs (SWeNt CG100, Lot # 000-0012) were dispersed in neat N-methy-2-pyrrolidone (NMP;

spectrophotometric grade, ≥ 99%, Sigma-Aldrich) via ultrasonication (20 KHz, 200W, 1 hour)
with Nanoruptor sonicator (Diagenode). The dispersion was subjected to ultracentrifugation

(2.5 hours; 17oC; 47 000 RPM) using MLS 50 swinging bucket rotor in the Optima Max XP

ultracentrifuge (Beckman Coulter). The resulting CNT dispersion was divided on 5 samples

which we number as sample 0, 1, 2, 3 and 4 correspondingly. The sample 0 was used as a

control sample (without salt). Four different salt concentrations were put (0.1, 0.5, 1 and 10

mM) into the other samples. The final concentrations of the salt in the samples were prepared

as follows. Predefined amount of concentrated salt (NaI; ACS reagent, ≥ 99.5; Sigma-Aldrich)
solution in NMP was added to each sample with a calibrated micropipette. All samples were

exposed to shaking at 300 rpm for 10 min. Due to the small volume of the added drops of the

concentrated salt solution we did not take the dilution into account. The final salt concentrations

were 0.1, 0.5, 1 and 10 mM that correspond to the samples 1, 2, 3, and 4.

We note that in the simulations we used higher concentrations of salts than in our exper-

iments to make the simulations feasible (at lower salt concentrations it is difficult to collect

enough statistics). However, we think that the main molecular mechanisms of ion interactions

with the nanotube surface remain the same (at least qualitatively) also at lower concentrations

used in our experiments.

The changes in the CNT dispersions in response to addition of different amounts of salt

were investigated by using PhotoLuminescence (PL) spectroscopy and optical absorption spec-

troscopy as well as by visual inspection of the samples. We use PL spectroscopy as a tool for

monitoring the presence of isolated SWNTs and their small bundles in the dispersions [88, 90].
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Figure 34: (A) PL map of the control sample (a stable CNT-NMP dispersion); (B) the control

sample and samples with salt (NaI) addition aged for 5 hours. 0 - control (no salt), 1 - 0.1 mM;

2 - 0.5 mM; 3 - 1 mM; 4 - 10mM of NaI; (C) PL spectra of the control sample and samples with

salt (NaI) addition at excitation wavelength 570 nm.

Figure 35: Photographs of the samples containing the CNT-NMP dispersions with different

amounts of added salts: A) 15 minutes upon the salt addition; B) 5 hours upon the salt addition;

C) samples after ultracentrifugation.

We assume that the concentration of nanotubes within the sample correlates with the intensity

of the PL bands and optical absorbance for the corresponding nanotube chiralities. That allows

us to make quantitative analysis of the changes in the dispersions upon additions of salt.

Different quantity of inorganic salt (NaI) were added to CNT dispersion in NMP. After 15

min upon the salt addition we observed formation of CNT bundles (see Figures 34B, 35). The

quantity of the bundles increases with the increase of the salt concentration. The formed bundles

stay insoluble in time and can be removed from the dispersion.

The PL spectra of the control CNT-NMP dispersion presented on Figure 34A. A significant

drop in the PL intensity upon the salt addition indicates a decrease of the CNTs concentration

in dispersions [88, 90] (Figure 34C). At salt concentrations of 0.1mM and 0.5mM a certain



4 RESULTS AND DISCUSSION 83

Figure 36: Absorption spectra of the CNT-NMP dispersions with different salt concentrations

after an additional centrifugation. The centrifugation removes big CNT bundles from disper-

sion. For NaI concentrations above 0.5mM the spectra show practical absence of CNTs in

the dispersions after the additional centrifugation that corresponds to complete "salting out" of

CNTs from dispersions (note: the high increase of the intensity of the 10 mM spectra in the area

of 400-700 nm is caused by the high concentration of NaI, not by CNTs).

concentration of CNTs remains in the dispersion. However, the concentrations higher than

1mM apparently lead to complete precipitation of all CNTs in the dispersion. We note that in

the case of the control “no salt” sample (0) the additional centrifugation almost does not affect

the PL intensity. This is a clear illustration that the decrease in the PL intensity for other samples

is caused by the addition of salt, rather than aging of the dispersions.

The experiments show that the concentration of the CNTs in the dispersion can be regulated

by the quantity of added salts. Indeed, there is a monotonic drop in the PL intensity with the

increase of the salt concentration (Figure 34C).

Absorption spectroscopy allows determining the overall concentration of CNT in dispersion.

We used this method to support our PL data. Absorption spectroscopy measurements show the

same general trend: the intensity drops with the increase of the salt concentration (see Figure

36).

The experimental data clearly show that it is possible to “salt out” carbon nanotubes from

their NMP dispersions. The “salting out” effect is observed already at very small concentrations

of NaI salt (range of mM). The degree of CNT aggregation monotonically increases with the
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increase of the salt concentration, indicating an enhancement of the CNT solvophobicity in

the CNT-NMP dispersions. Thus, the conclusions coming from the computer simulation and

general physico-chemical principles of salt effects discussed in the paper are confirmed by direct

experiments on the CNT precipitation by salts.

4.2.7 Conclusions

The analysis of the simulation and experimental data on sodium iodide salt effects on CNT

dispersions in NMP results in the following conclusions:

1. To make the direct contacts with the CNT surface in CNT-NMP dispersion, ions have to

become partially desolvated. The partial desolvation is energetically unfavorable because

of the strong ion-solvent interactions in highly polar NMP solution.

2. The CNT itself has a very distinct and dense solvation shell in the NMP solution, and that

adds an additional barrier for ions to come close to the CNT surface.

3. As a result of the unfavorable interactions of ions with the CNT surface, a salt depletion

area is formed around the CNT, where the concentration of ions is much less than in the

bulk solution. The width of the salt depletion area corresponds to the width of the first

solvation shell of CNT in NMP.

4. The preferential depletion of ions from the CNT-NMP interface results in increase of the

solvophobicity of the CNTs in the CNT-NMP dispersions with the increase of the salt

concentration. As a consequence, the CNT-NMP dispersions become thermodynamically

less stable at higher concentrations of salts.

5. The increase of the CNT solvophobicity upon the salt addition was confirmed by direct

experiments in a collaboration with our colleagues in Aston university. Different amounts

of NaI salt were added to the prepared CNT dispersions in neat NMP and the precipitation

of the CNTs was observed. The degree of the precipitation increased with the increase of

salt concentration, which is in line with the results of the theoretical and simulation part

of the study.

We believe that the revealed mechanisms of the ion interaction with the CNT surface in

non-aqueous (NMP) dispersions should bring new insights on salt effects on nanotubes in non-

aqueous solutions [187]. We show that the ‘salting out’ effect leads to an efficient safe and inex-

pensive method of regulating the CNT concentration in non-aqueous dispersions. We hope that
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the results of the paper can be useful for rational development of new methods for processing

of liquid dispersions of carbon nanomaterials based on the “salting out” effect in non-aqueous

media.
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4.3 Interaction of molecular ions with the carbon "nanoonion" surface in

organic salt/acetonitrile solutions

In this section we study basic mechanisms of CNT interactions with two organic electrolytes:

tetraethylammonium tetrafluoroborate (TEA-BF4) and tetrabutylammonium tetrafluoroborate

(TBA-BF4) dissolved in acetonitrile (AN).

The tetraethylammonium salt solution in AN is widely used as electrolyte in electrical dou-

ble layer capacitors (EDLC) [36]. In the EDLC the energy is stored due to the compensation of

the potential on the electrode by the formation of the electric double layer (EDL). Such capac-

itors have several advantages compared to batteries: 1) the absence of redox reactions makes

the EDLC stable for a much larger number of the charge-discharge cycles, 2) charging and dis-

charging performs with high rates. Disadvantage is that the capacitance of EDLC is still by

order lower than the capacitance of the Li-ion batteries [36].

There are two main ways to improve the performance of the EDLC. The first one is to ad-

just the properties of the electrolyte. The electrolyte for EDLC should be non-viscous, possess

high conductivity, be stable up to high voltages, should allow the formation of the effective

EDL to compensate the potential on the electrodes. The use of AN as a solvent for the EDLC

electrolyte is convenient, because AN does not decompose up to relatively high voltages, while

aqueous electrolytes have a very narrow electrochemical window of 1.2 V [37]. Tetraalkylam-

monium BF4 salts are well soluble in AN, which allows to have electrolyte with large number

of dissolved ions. The tetraethylammonium salt solution in AN as electrolytes in EDLC are

well studied both experimentally [36] and theoretically [188]. It would be interesting to inves-

tigate how the change of the length of the alkyl chains of the tetralkylammonium ions affect the

structure of the EDL.

The second way to improve the performance of the EDLC is to optimize the material for

the capacitor electrodes [36]. Recently, it has been shown that the onion-like carbons (carbon

"nanoonions", CNOs) are superior to commonly used carbon materials for capacitive perfor-

mance of the EDLC [5, 36]. This phenomena is attributed to the fact that, for the same surface

area, there are not many small pores in the structure of the CNO, where the electrolyte can

be trapped [5] causing the diffusion limitations for ions. But still only limited information is

available about the ion interactions with the CNO surfaces in aqueous or organic electrolytes

[5, 36]. Thus, insights on the molecular level effects at the CNO surfaces at different surface

charge densities would be very beneficial for rational design and optimization of new materials

for the EDLC.
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4.3.1 Simulation details

Systems under the investigation Molecular Dynamics (MD) simulations were performed

with Gromacs 4.5.1-4.5.3 package [167]. As a model of a carbon "nanoonion" we took three

carbon fullerenes of different size: C720, C320, C60 (the numbers represent the number of

carbon atoms in the fullerenes). The diameter of the model "nanoonion" was about 2.5 nm (see

Figure 1).

Figure 37: Electrolytes for the carbon "nanoonion" simulations.

The "nanoonion" was solvated in acetonitrile (AN) which contained a dissolved organic

salt: tetraethylammonium (TEA) or tetrabutylammonium (TBA) tetrafluoroborate (BF4) with

molar concentration of 1.3 M (see Figure 37). We have performed simulations with different

surface charge densities on the model carbon "nanoonion": 0, 0.5 and -0.5 e/nm2 (0.5 e/nm2

corresponds to 3.1 C/cm2).

Topology and potential parameters. The initial structures of the fullerenes were taken from

the the M. Yoshida database of the Nanotube Modeler (JCrystalSoft). The positions of the

"nanoonion" atoms were restrained to the initial values by harmonic potential with 1000 kJ

mol−1 nm−2 force constant in each direction. Nonbonded interaction parameters for "nanoo-

nion" carbon corresponded to the benzene OPLS-AA (all-atom optimized molecular potential

for liquid simulation) carbon (opls_145 in Gromacs notation) [127]. For the simulation with

the 0.00 e/nm2 surface charge density on "nanoonion" the partial charges on carbon atoms were

set to zero. For the simulation with the 0.5 and -0.5 e/nm2 surface charge densities the partial

charges on carbon atoms belonging to the outer surface of the "nanoonion" (fullerene C720)
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Figure 38: An example simulation box. The "nanoonion" is represented by grey balls, acetoni-

trile by green sticks, TEA+ by blue and BF−4 by red thick sticks. The simulation box size is 6.9

x 6.8 x 6.9 nm.

were set to 0.015 e and -0.015 e respectively. The equilibrium values for the structural param-

eters of the bonded interactions (bond lengths, angles) were taken from the initial values in the

corresponding structures, while the force constants for the bond and angle harmonic potentials

were adopted from the OPLS-AA force field.

The OPLS-AA potential parameters [169, 127] were assigned to AN, TEA+, TBA+ and BF−4
molecule (molecular ions) with the use of the Maestro software [173].

MD algorithms details. We used the leap-frog integrator with 0.002 ps integration time step.

For the Lennard-Jones potential we used 1.00 nm cut-off radius. The neighbor list for the

nonbonded interactions was updated each integration step (since it was found that the neighbor

list update might not work correctly in some versions of the Gromacs software). For accurate

evaluation of the long range Coulomb interactions we used the Particle Mesh Ewald method

[112]. For the systems with the non-zero surface charge density in the "nanoonion" we used the

uniform background charge distribution of the opposite sign to compensate the non-zero charge

of the system.
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For the NVT-ensemble (canonical ensemble) simulations we used the "v-rescale" thermostat

[189, 174] with the reference temperature of 300K and the relaxation time of 2.0 ps in the

case of "productive run" and 1.0 ps in the case of "equilibration run". For the NPT-ensemble

(isothermo-isobaric ensemble) simulations we used the Berendsen barostat [138]. In this case

the system was coupled to an external pressure of 0.1013 MPa with the relaxation time of 1.0

ps.

Systems preparation and collection of statistics. Initial configurations for the MD simula-

tions were generated with the PackMol program [176]. 2400 AN molecules, 244 TEA+ and

244 BF−4 ions (1720 AN molecules, 244 TBA
+ and 244 BF−4 ions ) were distributed in 7.5 x 7.4

x 7.4 nm3 box. The "nanoonion" was placed in the center of the simulation box. The initial

configurations were optimized with the energy minimization simulations, equilibrated with 50

ps of the simulation time in NVT ensemble, then 1 ns of simulation time in NPT ensemble.

The production run was performed in the NVT-ensemble for at least 37 ns. Coordinates of the

system were sampled each 0.2 ps for the further analysis.

4.3.2 Structure of the carbon "nanoonion" interface shell

Figure 39 shows the distributions of molecular ions around the "nanoonion". For neutral

"nanoonion" (σ=0.0 e/nm2) there is a slight preferential adsorption of the molecular cations

against anions for both electrolyte solutions (see Figure 39a). The TBA+ and TEA+ molecular

cations are much bigger than the BF−4 species and possess long non-polar alkyl groups, which

are more likely to adsorb on the non-polar carbon "nanoonion" surface than the small highly

charged anions.

At the neutral carbon "nanoonion" surface the adsorption of the TBA+ ions is stronger com-

pared to the TEA+ ones: on the corresponding "nanoonion" - TBA+ g(r) there are three peaks,

against one peak on the "nanoonion" - TEA+ g(r). This happens because the TBA+ ions contain

lengthier non-polar alkyl chains than the TEA+ ions. The non-polar alkyl chains as well as the

non-charged carbon "nanoonion" surface should be able to release easily the polar acetonitrile

molecules from their solvation shells and, thus, to form direct contacts.

In turn, at the negatively charged carbon "nanoonion" surface the adsorption of molecu-

lar cations on the surface is stronger in the TEA+-BF−4 solution rather than in the TBA
+-BF−4

solution (see Figure 39, second column). Indeed, the first peak on the TEA+-"nanoonion" dis-

tribution function is higher and wider than the first peak on the TBA+-"nanoonion" distribution

function. We attribute this to the fact that the TBA+ ions are much bigger than the TEA+ ions
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Figure 39: a) Distribution of particles around the carbon "nanoonions" for the three surface

charge densities and two electrolytes (solvents): 1.3 M TEA+-BF−4 and TBA
+-BF−4 , both in

acetonitrile; the distributions are calculated as center of mass - center of mass distributions of

the corresponding molecular species. b) Snapshots from the corresponding simulations. Nota-

tion: molecular cations and anions are represented as blue and magenta spheres, respectively.

Acetonitrile molecules are green lines. Only those molecules in the simulation boxes are repre-

sented which are within 1.0 nm from the "nanoonion" surface. Molecular ions which are within

the range of 0.6 - 1.0 nm from the "nanoonion" surface are shown as transparent colored small

balls, and which are within 0.6 nm from the "nanoonion" surface are represented as big opaque

colored balls. c) Illustration of the used notations.

(see Figure 37) and as a result much less of them can occupy the same surface area of the

"nanoonion".

Because of the relatively high concentration of organic salts (C=1.3 M) the interionic cor-

relations of ions must be very strong, and can not be neglected in the description of the system.
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Indeed, bulk solution cation-anion radial distribution functions (Figure 40) indicate that a strong

pairing of ions in the solution occur: the first peak on the corresponding g(r)’s is relatively high.

(Note: because of the interionic correlations the mean field models, like Debye-Hückel one,

would fail to reproduce the properties of the system, thus, the use of the more computationally

demanding Molecular Dynamics method is justified).

Figure 40: a) Distribution of particles in bulk solutions; b) Snapshot of the 1.3 M TEA+BF−4 -

acetonitrile solution simulation. Molecular cations are represented as blue, anions as magenta

lines, acetonitrile is not visualized; c) The same as b), but for 1.3 M TBA+BF−4 - acetonitrile

solution.

The ion pairing is reflected in the ions distributions around the carbon "nanoonion" (Figure

40a), σ=0.0 e/nm2). There is a peak on the "nanoonion"-anion g(r) after the first peak on the

"nanoonion"-cation g(r) showing that the cations adsorbed on the "nanoonion" surface attract

a large number of the molecular anions. The same picture, but more pronounced, can be seen

on the particle distributions around negatively and positively charged "nanoonions" (see Figure

40a). For σ=-0.5 e/nm2 there is a diffuse layer of the BF−4 ions attracted by the adsorbed

molecular cations (there is a broad peak on the "nanoonion"-BF−4 g(r)). For σ=0.5 e/nm
2 the

layer of the cations attracted by the adsorbed BF−4 ions is much more narrow.

For σ = 0.5 e/nm2 the adsorption of BF−4 on the carbon "nanoonion" surface is stronger in

the case of the TEA+-BF−4 solution. Adsorbing to the surface BF
−
4 ions repel each other because

they possess the same charge. But, since there is always a counterion close to the BF−4 , the

repulsion is decreased (screened out), especially when the counterion is placed somewhere in

between two BF−4 ions (Figure 40b), as a result more BF
−
4 ions can come close to the surface.

The screening of the electrostatic repulsion between BF−4 ions is more efficient by TEA
+ cations

than by TBA+, because the later have much bigger excluded volume and can not easily be places

between BF−4 anions. As a result the adsorption of BF
−
4 ions at the positively charged surface is

stronger for the TEA+-BF−4 solution rather than for the TBA
+-BF−4 solution.
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4.3.3 Conclusions

The main conclusion from this sections are:

1. In the case of the neutral carbon "nanoonion" surface, the increase of the non-polar alkyl

chains of the tetraalkylammonium ions leads to an increase of the molecular cation ad-

sorption on the carbon "nanoonion" surface.

In turn, at high negative surface charge densities on the carbon "nanoonion" surface

the concentration of the tetraethylammonium ions is higher than the concentration of

tetrabutylammonium ions, which is attributed to the stronger sterical constraints for molec-

ular packing of the tetrabutylammonium ions.

2. The results indicate that the preferential adsorption of molecular ions at the CNM surface

can be governed by varying the structure of molecular ions and/or applying an external

electrostatic field.

3. The electrical double layer is not one-layer thick. The first layer of the ions in EDL

attracts the large number of counterions. This results in the ion-counterion concentration

"waves" around the carbon "nanoonions" in the organic electrolytes. Similar effects are

described by Kornyshev, Fedorov et al. in Refs. [40, 62, 63].
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4.4 Interaction of molecular ions with the carbon nanotube surface in

room temperature ionic liquids/acetonitrile mixtures

In this section we study basic mechanisms of CNT interactions with several different TFSI-

based (bis(trifluoromethylsulfonyl)imide) - based room temperature ionic liquids (RTILs) in

their mixtures with acetonitrile (AN). To understand the effects of the cation molecular geom-

etry on the properties of the interface structure in the RTIL systems, we investigate a set of

three RTILs with the same anion (TFSI) but with different cations, namely, EMIm (1-ethyl-3-

methylimidazolium), BMIm (1-butyl-3-methylimidazolium) and OMIm (1-octyl-3- methylimi-

dazolium). The cations have identical charged methylimidazolium ’head’ but different nonpolar

alkyl ’tails’ where the length of the tail increases from EMIm to OMIm.

We focus on the following questions:

• What is the interfacial structure of RTIL-AN mixture at the neutral CNT surface?

• How does the interfacial structure change at the positively charged CNT surface?

• How does the interfacial structure change at the negatively charged CNT surface?

• Does the length of the cation alkyl tails affect the interfacial RTIL-AN structure and
preferential orientation of the RTIL ions at the CNT surface?

• What is the role of acetonitrile solvent in these interfacial effects?

We note, that in this study we would like to focus on the interface effects at the outer surface

of CNT. In this study we use a CNT with (6,6) chirality which has a narrow pore. Taking

into account the molecular volume of the investigated ions (see Table 5) we assume that the

probability to find an ion inside the CNT pore is low and we can neglect these effects in this

particular case. Investigation of molecular mechanisms of RTIL interactions with the internal

surface of subnanometer CNT pores will be considered elsewhere.

4.4.1 Simulation details

We performed Molecular Dynamics (MD) simulations of CNT with (6,6) chirality dissolved in

several mixtures of RTILs with AN: EMIm-TFSI, BMIm-TFSI and OMIm-TFSI RTILs (see

Figure 41). The RTIL molar concentrations in all RTIL-AN mixtures were 2 mol/L. To un-

derstand the role of AN solvent on the studied interfacial effects we performed an additional

simulation of the CNT dissolved in neat EMIm-TFSI. In our simulations we employed the fully
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Figure 41: Sketch representation of the molecular species considered in the study. Cyan color

– carbon atoms, white color – hydrogen atoms, blue color – nitrogen atoms, green color –

fluorine atoms, yellow color – sulfur atoms, red color – oxygen atoms. Numbers at the atoms

show the corresponding atomic partial charges in e units: the numbers highlighted by the blue

color show positive partial charges and the numbers highlighted by the red color show negative

partial charges.

atomistic OPLS-AA force field [168, 169], with partial charges and dihedral angles potential

parameters developed by Lopes et al. [190, 191]. We used the Gromacs 4.5 software [167].

We used the TubeGen program to generate coordinates of the CNT atoms [126]. A segment

of CNT with length of 3.94 nm was placed in a rectangular box and was oriented along the

Z axis. Then, the RTIL molecular ions and AN molecules were randomly placed inside the

simulation boxes with the help of Packmol program [176]. We provide the resulting number of

molecular species in the simulation boxes in Table 5 (the numbers are shown for the zero CNT

surface charge). The simulation boxes contained 200 ion pairs (and additional molecular ions

for neutralization of the CNT surface charge, if applicable) for the systems of CNT dissolved

in 2M RTIL solution in AN. The number of AN molecules were adjusted in such a way that

the volume of the simulation box after the equilibration in NPT-ensemble differed not more

than 3% from system to system. The resulting volumes of the systems were in the range: 6.21-

6.23×6.21-6.23×3.94 nm3. The three systems containing CNT in neat EMIm-TFSI ionic liquid
after equilibration in NPT ensemble had volumes in the range 6.16-6.26×6.15-6.26×3.94 nm3

and contained 340 ion pairs.

All the systems were investigated at different CNT surface charge densities: σ=-0.5, 0.0,
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+0.5 e/nm2. Similar to Ref. [65], in the simulations of the charged CNT surface the non-

zero charge on the carbon nanotube was neutralized by addition of an extra number of cations

(negatively charged surface) or anions (positively charged surface): in our case we used 5 extra

ions for systems with σ=-/+0.5 e/nm2.

The generated initial molecular configuration were optimized by the energy minimization

algorithm implemented in Gromacs [167]. Then the systems were equilibrated in the NPT-

ensemble at T=343.15K and P=1 bar until the density becomes constant (it took at least 0.3

ns and up to 1.2 ns of the simulation time). After the NPT simulations we fixed the geometry

of the simulation boxes and heated the systems up to 1000-1500K and then annealed the final

configurations during 2 ns simulation time with gradual decrease of temperature from 1000-

1500K to 343.15K. Starting from the resulting configurations we then performed production 30

ns simulations for each system in the NVT ensemble at 343.15K to collect statistics. During

the production runs we stored the atomic coordinates of the systems each 0.3 ps for further

analysis.

Other simulation details were similar to those describes previously in Section 4.2.1.

To facilitate the analysis of the excluded volume effects on the formation of the interfacial

structures we calculated the volumes of cavities of molecular ions and AN molecule dissolved

in AN with the help of Gaussian03 software [192]. The geometries of the species were opti-

mized at the B3LYP/6-31g(d,p) level of theory. In the quantum mechanics calculations we used

the Self Consistent Isodensity Polarizable Continuum Model (SCI-PCM) [193] to model the

acetonitrile solvent.

Table 5: Numbers of the molecular species in the simulation boxes of the studied systems. The

numbers are shown for the simulations of the neutral CNT surface.

N (RTIL ion pairs) N (AN)

2M AN EMIm-TFSI 200 600

Neat EMIm-TFSI 340 -

2M AN BMIm-TFSI 200 480

2M AN OMIm-TFSI 200 250
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Figure 42: Radial density profiles of EMIm and TFSI molecular ions around CNT in 2M AN

EMIm-TFSI solution at the neutral CNT surface. The asymmetry of ion geometry (shape, size

etc., see Figure 41) results in a complicated molecular structure of the electrolyte at the CNT

surface. Molecular snapshots represent orientations of the molecules consistent with the peaks

on the corresponding RDPs. For simplicity, the whole molecules of EMIm ions are represented

by the cyan color, TFSI ions - by the magenta color, AN molecules - by the black color.

4.4.2 Neutral carbon nanotube surface

Firstly, we analyzed density distributions of the molecular ions around non-charged carbon

nanotube in 2M AN EMIm-TFSI solution. We present the radial density profiles (RDPs) of

EMIm and TFSI molecular ions on Figure 42. All RDPs were calculated for the centers of mass

of the molecules. The pronounced peaks on the RDPs show that both EMIm and TFSI ions

form distinct solvation shells around the CNT (see Figure 42).

EMIm cations tend to lay parallel to the surface: there is a strong peak on the EMIm RDP

around CNT at r=0.75 nm (marked as ‖). We consider the vector connecting the α-carbons at
the imidazolium ring as a “molecular vector” of the imidazolium-based cations and thus the

angle between this “molecular vector” and the CNT surface determines orientation of molec-

ular cations at the surface (see Figure 43). The second peak (at r=1.0 nm) corresponds to a

perpendicular orientation of the EMIm cations to the surface (⊥). However, the density peak
for cations with perpendicular orientation is less pronounced compared to the ‖ orientation.
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Figure 43: Orientation of molecular ions around CNT. Φ is the angle between “molecular vec-

tor” and a vector connecting the CNT axis and center of mass of the molecular ion (this vector

is perpendicular to CNT axis). A) EMIm orientation around CNT. We define the molecular

vector to be the vector connecting the alpha carbon atom at the imidazolium ring of the longer

alkyl chain to the alpha carbon atom of the methyl group at the imidazolium ring. The same

criteria are applied to other molecular cations: BMIm and OMIm. B) TFSI orientation around

CNT. We define the molecular vector to be the vector connecting two sulphur atoms. Due to the

symmetry of the TFSI ions the direction of the vector is chosen arbitrary.

Overall, there is an enrichment of EMIm cations in the region from r=0.75 to 1.0 nm from the

CNT axis (the relative density here is about 1.5 the bulk density). This region corresponds to all

intermediate orientations in between the two characteristic ones: ‖ and ⊥. The hollow at about
1.1 nm indicates the boundary of the first EMIm solvation shell around the CNT. We note, that

the EMIm cations form also at least one more solvation shell around the CNT as indicated by

the distinct peak at r=1.3 nm.

The first TFSI solvation shell around CNT is narrower compared to the EMIm solvation

shell (Figure 42B). TFSI ions may be thought as dumbbell particles where each bead consists

of a CF3-SO2 group. We consider the line connecting the centers of sulphur atoms as the

“molecular vector“ of the TFSI anions. TFSI ions (dumbbells) orient in 2 different ways around

CNT: parallel (‖) and perpendicular to CNT surface (⊥). This is indicated by the ’fine structure’
of the first large peak on the TFSI RDP that has two small peaks (see Figure 42B). However,

we note that due to internal flexibility of TFSI anions, the ”parallel“ to the surface orientation
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of TFSI dumbbells includes a variety of slightly non-parallel to the surface orientations of the

chosen ”molecular vector” of TFSI (sulphur-sulphur vector) (see, for instance, the molecular

picture of the ‖ orientation on Figure 42B: the CF3-SO2 groups are twisted one with respect
another). In this study for simplicity we consider all these orientations as ”parallel“ to the

surface orientations of TFSI ions.

The parallel (‖) and perpendicular (⊥) orientations of TFSI are almost equally probable
(the heights of the small peaks are similar, Figire 42B). The second solvation shell is not as

pronounced as for the EMIm distribution (the height of the peak at r=1.3 nm is around 1.1).

However, there is an evident third solvation shell of TFSI around CNT (peak at r=1.7 nm),

presumably due to the attraction of TFSI molecular ions to the second solvation shell of EMIm

around CNT (at r=1.3 nm, see Figure 42A).

4.4.3 Changes in the interfacial structures in response to the external field

In this section we describe the changes in the double layer in 2M AN EMIm-TFSI electrolyte

upon charging the CNT surface. The RDPs for different surface charge densities on CNT (σ=-

0.5, 0.0, +0.5 e/nm2) are presented on Figure 44, first row.

σ=-0.5 e/nm2. As expected, negatively charged CNT strongly attracts EMIm cations: there

is a high peak on the corresponding RDP (see Figure 44). At the negatively charged surface the

EMIm cations orient parallel to the surface (‖ EMIm orientation). The perpendicular orientation
to the surface (⊥ EMIm) becomes unfavorable. The second shell of EMIm ions around CNT
(at r=1.35 nm) does not change much compared to the system with neutral CNT.

The distributions of TFSI anions at the negatively charged CNT surface change considerably

compared to the neutral CNT. The CNT-TFSI RDP shows only one peak at r=1.0 nm compared

to the two peaks at r=0.9 and 1.0 nm in the case of neutral CNT. This peak corresponds to

a layer of TFSI anions with preferential parallel orientation to the first dense layer of EMIm

cations (see Figure 47 and Table 9 for more justification).

We note, that acetonitrile is not substituted by the cations adsorbed to the negatively charge

surface. There is even a little enhancement of AN concentration compared to the system with

neutral CNT (see Figure 45). This can be explained by the strong interactions of AN (having

strong dipole moment) with the charged surface. Overall, there is an enrichment of the density

of the RTIL-AN solvent at the negatively charged surface.

The polarization of the electrolyte spreads up to 2-2.5 nm from the CNT axis (about 2-3

solvation shells of CNT). The range of polarization remains the same for all the three surface
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Figure 44: Fisrt row: radial density profiles of EMIm, TFSI and AN around CNT in 2M AN

EMIm-TFSI solution for three surface charge densities on CNT: σ =-0.5, 0.0, +0.5 e/nm2.

There is an asymmetry of molecular ions response to the potential created by charged CNT.

The potential causes structural changes in the interfacial region. Second row: radial density

profiles of EMIm, TFSI around CNT in neat EMIm-TFSI solution for the three surface charge

densities on CNT.

Figure 45: Radial density profiles of AN around CNT in 2M AN EMIm-TFSI electrolyte at

different surface charge densities on the CNT.

charge densities.
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σ=+0.5 e/nm2. The positively charged CNT surface attracts TFSI anions, which prefer to

lay parallel to the surface (‖ TFSI orientation). In turn, the EMIm ions become preferentially
oriented perpendicular to the surface (⊥ EMIm orientation). For cations, parallel orientation to
the surface (‖ EMIm orientation) becomes unfavorable (the height of the first peak on the RDP
decreased more than 3.5 times).

We note, that the number of AN molecules at the anode surface drops down compared to the

system with neutral CNT (see Figure 45). This is presumably due to the excluded volume effects

because the anode interfacial region becomes occupied by the bulky TFSI anions. Indeed, the

TFSI anions are about 1.4 times larger than EMIm cations and about 2.9 times larger than AN

molecules (see Table 6). Thus, accommodation of large number of TFSI anions at the surface

results in transfer of considerable amount of AN molecules from the CNT interface to the bulk

solution.

Table 6: Volumes of solute cavities in acetonitrile

V Å3

AN 77.12

TFSI 224.39

EMIm 157.66

BMIm 203.03

OMIm 323.18

4.4.4 Effects of acetonitrile solvent on the electric double layer

In this section we compare the structures of the double layer in 2M AN EMIm-TFSI electrolyte

and neat EMIm-TFSI ionic liquid to see whether the acetonitrile solvent makes an effect on

the interfacial structures at the neutral and charged CNT surfaces. The RDPs of the molecular

species for neat EMIm-TFSI at different surface charge densities on the CNT surface (σ=-0.5,

0.0, +0.5 [e/nm2]) are presented in Figure 44, second row.

In neat EMIm-TFSI ionic liquid the polarization of the electrolyte spreads deap into the

bulk of the neat IL for more than 2.5 nm. There are at least two to three solvation layers at the

electrodes.

σ=0.0 [e/nm2]. The structures of the interfacial regions at the neutral CNT for the neat IL

and its mixture with AN are almost identical: addition of AN has minor effect on the RDPs
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of molecular ions (see Figure 44, second column). This indicates that the interface structure is

determined mainly by the CNT-ion interactions and ion-ion interactions.

σ=-0.5 [e/nm2]. At the negatively charged CNT the number of parallel oriented EMIm

ions (‖ EMIm orientation) and TFSI ions (‖ TFSI orientation) increased, whereas only few ions
oriented perpendicular to the surface are left (see the Supporting Information for more details).

The peak which corresponds to the ‖ TFSI orientation in the first layer is pushed away from
the surface by 0.1 nm. Also, in contrast to the solution in AN, the amplitude of the second and

subsequent layers is increased, indicating that the surface charge enhances the layering structure

of the interfacial ionic liquid. Addition of AN decreases the number of TFSI ions near the dense

layer of EMIm cations attached to the surface (see the change in the peak height differences (Δsolc
and Δneatc ) on Figure 44, first column). However, we note, that there are no changes in the peak

positions in the neat RTIL and 2M RTIL-AN RDPs.

σ=+0.5 [e/nm2]. The positively charged CNT surface has similar effect on the neat EMIm-

TFSI as on its mixture with AN. Parallel orientation for EMIm ions (‖ EMIm orientation) be-
comes unfavorable. But unlike in the AN solution, again the second and subsequent solvation

layer peaks (r > 1.2 nm) increase in their amplitude, indicating the strengthening of the layer-

ing pattern. AN has similar effect on the double layer as at the negatively charged CNT. AN

increases the difference between the relative number of the TFSI anions at the surface and the

number of the EMIm cations attracted to the first layer of the TFSI anions (see the change in

the peak height differences (Δsola and Δneata ) on Figure 44, first column). Similar to the negatively

charged surface, AN does not change the structural organization of the double layer (the peak

positions remain the same in the neat RTIL as well as in the RTIL-AN mixture).

That observation suggests that AN affects the interionic correlations making them less strong

(presumably due to the high polarity of AN), but does not lead to the structural reorganization

of the double layer.

4.4.5 Molecular ion orientations at the carbon nanotube surface

Because of the complicated shape of molecular ions their distributions around CNT can not

be resolved only by means of RDPs of the center of mass of molecular ions in contrast to

the spherically symmetric alkali halide ions. Orientation of molecules also has to be taken into

account. We resolved molecular orientations as the function of distance from the CNT by means

of 2D orientational distribution plots (see below). Orientation distributions were calculated with

the g_sorient program of Gromacs 4.5 suite, which was modified to be able to handle cylindrical
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symmetry of CNTs and to be able to resolve the orientation probability density as a function of

distance.

Figure 46: Radial Density Profile of EMIm (top) and orientation (cos(Φ)) probability density of

EMIm as the function of distance (bottom) for 2M EMIm-TFSI in AN at σ=0.0 e/nm2. Gray

arrows indicate the correspondence of peaks on the RDPs to the peaks on the orientation prob-

ability density map. Random distribution of molecular orientations would have the probability

density of 0.5 for all values of cos(Φ) from -1 to 1 (the integral of the probability density at

certain r is unity). The 2D map (bottom) shows for each r the probability density to find a

molecular ion at certain orientation around CNT (more specifically, at certain value of cos(Φ),

see Figure 43). See text for more explanations.

Molecular ion orientation at the carbon nanotube surface. Definitions To quantify the

molecular orientations we define a vector which is rigidly bound to a particular molecule (see

Figure 43). An example orientation distribution is shown on the Figure 46. The 2D map (Figure

46 bottom) shows for each r the probability density to find a molecular ion at certain orientation

around CNT (more specifically, at certain value of cos(Φ), see Figure 43). Mapping the peaks

on the RDP and the peaks on the 2D map of the ion orientation we can understand ions in which

orientation make a major contribution to the corresponding peak on the RDP. As one can see,
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there are two peaks on the EMIm RDP (top graph) for r < 1.13 nm. The first peak (at r = 0.8 nm,

cos(Φ) of about 0) on the 2D orientation map (marked by dashed black circle) shows that the first

peak on RDP is formed by EMIm ions which are parallel to the CNT surface (lay on the surface).

The peaks at r = 1.0 nm, cos(Φ) of about 1 and -1 (marked by dashed black circles) indicate that

the second peak on RDP is formed by EMIm ions which are perpendicular to the CNT surface.

Here and after we use the following criteria: if -0.5<cos(Φ)<0.5 (60o < Φ < 120o) then we

assume that molecular ion is parallel to the CNT surface, otherwise the ion is perpendicular

to the CNT surface (the criteria are marked by white dashed lines on the 2D orientation map).

In the case of random orientation distribution such criteria would give equal probabilities to

find a molecule in parallel and perpendicular orientations to the CNT surface. Zero probability

densities for all values of cos(Φ) at small r indicate that no molecules were observed at these

distances during the whole simulation time.
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Two dimensional orientation maps of molecular ions at the carbon nanotube surface

Table 7: Cation Radial Density Profiles (first rows) and ori-

entation probability densities as the functions of distance

(second rows) for all studied systems: A) 2M EMIm-TFSI

in AN solution, B) 2M BMIm-TFSI in AN solution, C) 2M

OMIm-TFSI in AN solution, D) neat EMIm-TFSI ionic liq-

uid. Gray arrows indicate the correspondence of peaks on

the RDPs to the peaks on the orientation distributions. The

signs ‖ or ⊥ indicate that the peaks on a RDP (at which they
are placed) are formed by molecular ions oriented parallel or

perpendicular to the CNT surface, respectively.

System Distributions of molecular cations

A) EMIm-TFSI (2M)

Continued on next page
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B) BMIm-TFSI (2M)

C) OMIm-TFSI (2M)

D) EMIm-TFSI (neat)
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Table 8: TFSI Anion Radial Density Profiles (first rows) and

orientation probability densities as the functions of distance

(second rows) for all studied systems: A) 2M EMIm-TFSI

in AN solution, B) 2M BMIm-TFSI in AN solution, C) 2M

OMIm-TFSI in AN solution, D) neat EMIm-TFSI ionic liq-

uid. Gray arrows indicate the correspondence of peaks on

the RDPs to the peaks on the orientation distributions. The

signs ‖ or ⊥ indicate that the peaks on a RDP (at which they
are placed) are formed by molecular ions oriented parallel or

perpendicular to the CNT surface, respectively.

System Distributions of molecular anions

A) EMIm-TFSI (2M)

B) BMIm-TFSI (2M)

Continued on next page
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C) OMIm-TFSI (2M)

D) EMIm-TFSI (neat)

Number of molecular ions oriented parallel and perpendicular to the carbon nanotube

surface We estimated the numbers of molecular ions oriented parallel and perpendicular to

the CNT surface in the CNT solvation shell per 1 nm of the CNT length. We defined the

boundary for the CNT solvation shell to be the position of the first deep minimum on the EMIm

center of mass RDP in 2M EMIm-TFSI in AN solution at σ=0.0 e/nm2. The boundary is r =

1.13 nm. We calculated the average number of particles at a certain distance r around CNT in

the following way:

nΔr=0.01nm(r) = ρ0 · ρ(r)
ρ0
· 2πr · Δr (43)

where ρ0is the bulk density of the corresponding particles, ρ(r)
ρ0
is the RDP of the corresponding

particles, nΔr=0.01nm(r) is the average number of particles at a certain distance r in the cylindrical
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Figure 47: Number of molecular cations (first row) and anions (second row) oriented parallel (‖,
filled bars) and oriented perpendicular (⊥, empty bars) to the CNT surface in the first solvation
shell of CNT (0<r<1.13 nm) for different surface charge densities in all the studied systems

(columns 1-4). The numbers are given per 1 nm of the CNT length.

volume segment with the difference between radii of smaller and larger cylinders of Δr (in our

case Δr =0.01 nm). Here we imply the length of the CNT segment to be 1 nm.

From 2D orientation maps for each distance r we estimated the probability to find a particle

in a parallel to the surface orientation (by integrating the cos(Φ) probability density at this r over

the interval -0.5<cos(Φ)<0.5 ) and to find a particle in a perpendicular to the surface orientation

(by integrating the cos(Φ) probability density at this r over the intervals 0.5<cos(Φ)<1.0 and

-1.0<cos(Φ)<-0.5 ). The discretization of the functions on the r coordinate was the same as for

the RDPs: Δr =0.01 nm.

Then we multiplied the number of particles at certain distance r by the probabilities to find

a molecule at the same r in a parallel to the surface orientation and in a perpendicular to the

surface orientation. We integrated the obtained functions over the interval 0<r<1.13 nm to

estimate the number of particles oriented parallel and perpendicular to the CNT surface in the

CNT solvation shell per 1 nm of the CNT length. We illustrate the resulting values on the Figure

47.
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Table 9: Ratio of the number of molecular cation (anions) oriented parallel and the number of

molecular cations (anions) oriented perpendicular to the CNT surface in the solvation shell of

CNT for different surface charge densities in all the studied systems. To analyze the table we

define a threshold: if the number of ions in one orientation is larger more than 25% than the

number of ions in another orientation then we assume that the former orientation is preferable,

otherwise both of them are equally probable. Thus, if the ratio is more than 1.250 then the par-

ticles are preferably oriented parallel to the CNT surface, if the ratio is less than 1/1.250=0.800

then the particles are preferably oriented perpendicular to the CNT surface, if the ratio is more

than 0.800 and less than 1.250 then both orientations are equally probable. We present the

results on the Figure 5 of the main text. The table reveals the following conclusions. 1) An

increase of the non-polar tail length increases propensity of imidazolium-based cations to lay

parallel to the surface. 2) At the cathode TFSI anions and cations are oriented mainly parallel to

the surface. 3) At the anode the TFSI anions are oriented preferentially parallel to the surface,

however the preferential orientations of cations depend on the length of non-polar tails. EMIm

cations are preferentially oriented perpendicular to the surface, BMIm are in both parallel and

perpendicular orientations, OMIm are preferentially oriented parallel to the surface. 4) An ad-

dition of acetonitrile into EMIm-TFSI ionic liquid does not qualitatively change the preferential

orientations of molecular ions.

Molecular ion System σ=-0.5 e/nm2 σ=0.0 e/nm2 σ=0.5 e/nm2

Cations EMIm-TFSI (neat) 2.287 1.214 0.652

EMIm-TFSI (2M) 2.703 1.219 0.694

BMIm-TFSI (2M) 3.289 1.457 0.940

OMIm-TFSI (2M) 4.352 2.202 1.676

TFSI anions EMIm-TFSI (neat) 1.252 1.135 1.388

EMIm-TFSI (2M) 1.303 1.081 1.604

BMIm-TFSI (2M) 1.336 1.130 1.570

OMIm-TFSI (2M) 1.383 1.085 1.807

4.4.6 Effects of the length of the cation alkyl chain on the structure of the electrical dou-

ble layer

To understand the role of the cation molecular geometry on the interfacial structure and on the

molecular orientation at the CNT surface we analyzed simulation results for AN mixtures with
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Figure 48: First row: radial density profiles of EMIm, TFSI and AN around CNT in 2M AN

EMIm-TFSI solution for three surface charge densities on CNT: σ =-0.5, 0.0, +0.5 e/nm2.

Second row: radial density profiles of BMIm, TFSI and AN around CNT in 2M AN BMIm-

TFSI solution for three surface charge densities on CNT: σ =-0.5, 0.0, +0.5 e/nm2. Third row:

radial density profiles of OMIm, TFSI and AN around CNT in 2MANOMIm-TFSI solution for

three surface charge densities on CNT: σ =-0.5, 0.0, +0.5 e/nm2. The length of the cation alkyl

chain does not make significant effects on the orientation of the RTIL molecules at the cathode.

However, it affects the structure of the interfacial layer at the neutral interface: the tendency for

cations to lay parallel to the CNT surface increases with increase of the length of the ’tail’. In

addition, the length of the ’tail’ affects the orientation of the cations in the double layer at the

anode. For the EMIm system with the shortest ’tail’, the EMIm cations form a second layer

after the first dense layer of TFSI anions and they are preferentially oriented perpendicular to

the surface. However, with an increase of the ’tail’ the concentration of the cations in the first

layer increases and they tend to be oriented parallel to the surface.
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RTILs varying the length of the cation alkyl chains. Figure 48 shows the RDPs of molecular

species at the charged and neutral CNT surfaces for EMIm-TFSI, BMIm-TFSI and OMIm-TFSI

mixtures with AN. We also analyzed the preferential orientation of the molecules in the inter-

facial layers that reveal themselves in the RDP peaks. The preferential orientations assigned to

the peaks are shown by the ‖ and ⊥ symbols on Figure 48.
σ=-0.5 e/nm2. The length of the cation alkyl chain does not make significant effects on the

orientation of the RTIL molecules at the CNT cathode. The RDPs and orientations of RTIL

ions do not change qualitatively for different cations. However, the height of the first peak

on the CNT-cation RDP decreases with lengthening of the alkyl chain. We attribute this to

the corresponding increase of the excluded volume of the cations (see Table 6) (the larger the

volume the more difficult is to ’pack’ the ions to the dense first layer).

σ=0.0 e/nm2. The length of the cation alkyl chain considerably affects the structure of the

interfacial layer at the neutral interface: the tendency for cations to lay parallel to the CNT

surface increases with an increase of the length of the ’tail’. These observations are in line with

the recent experimental findings indicating propensity of non-polar tails to absorb on the neutral

RTIL liquid-vacuum interface [52].

σ=+0.5 e/nm2. In addition, the length of the ’tail’ affects the orientation of the cation

molecules in the double layer at the positively charged CNT. For the EMIm system with the

shortest ’tail’, the EMIm cations form a layer after the first dense layer of TFSI anions and they

are preferentially oriented perpendicular to the CNT surface. However, increasing the length of

the alkyl chain the concentration of the RTIL cations in the first layer increases (the positions of

first TFSI and cation peaks become almost the same) and they tend to be oriented more parallel

to the surface.

4.4.7 Correlations with the experimental data

Atkin et al. [54] published an atomic force microscopy (AFM) study of the gold interface

solvated in EMIm-TFSI (note, that they name this as 1-ethyl-3-methylimidazolium bis [triflu-

oromethylsulfonyl] amide, [EMIm]TFSA). They reported several steps in the force curve [54],

which coincide well with the observed layered structure in MD simulations of neat EMIm-TFSI

at carbon nanotube surface in this study (see Figure 44). There is no pronounced third solvation

layer of CNT in our study, as it is indicated by the AFM at the gold surface. We attribute the

"weaker" layering pattern in our simulations to the differences in temperatures: temperature in

the simulations was about 70◦C, while "all force curves were acquired continuously at room
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temperature (22 ◦C)" for the AFM measurements [54].

There are some experimental studies on the orientation of IL molecules on the liquid - vac-

uum interface, see for example [52, 67, 68]. For the liquid - solid interface these data are difficult

to obtain. Nakajima et al. [67] investigated the liquid - vacuum interface of different 1-alkyl-

3-methylimidazolium – TFSI ionic liquids using the high-resolution Rutherford backscattering

spectroscopy. They showed that, due to the solvophobic nature, long alkyl chains of cations

point away from the bulk liquid to vacuum and therefore stimulate the imidazolium ring to stay

perpendicular to the surface. In our simulations on the RTIL-carbon interface we observe an

opposite effect: increase of alkyl chains increases the tendency for the imidazolium ring to lay

parallel on the surface. We attribute the differences between RTIL-vacuum and RTIL-carbon

nanotube interfaces to the strong Van der Waals attraction between the non-polar alkyl chains

and carbon nanotube surface. Contrary to the RTIL-vacuum interface, at the RTIL-CNT inter-

lace the alkyl chains of imidazolium-based cations tend to lay parallel on the CNT surface and

force the imidazolium rings also to lay flat on the carbon nanotube surface.

Hayes et al. [70] investigated the structure of different ionic liquids (1-ethyl-3-methyl imi-

dazolium tri (pentafluoroethyl) trifluorophosphate and 1-butyl-1 -methylpyrrolidinium (Py) tris

(pentafluoroethyl trifluorophosphate) at the charged Au(111) electrode. They showed that IL

layering is more pronounced at charged Au(111) surface compared to the neutral surface. They

showed that increase of the potential leads to flattening of the tightly bound cation layer, in-

dicating possible reorientation of cations (EMIm and Py) to lay flat on the surface [70]. We

observe similar, effects: increase of the potential at the CNT cathode increase significantly the

tendency of EMIm cation to lay flat on the surface (see Figure 44).

In this work, we show that applying potential on the CNT electrode or varying the structure

of molecular ions one can adjust molecular ion orientations and thus the structure of the CNT-IL

interface shell, which supports the experimental observations of Hayes et al. [70].

4.4.8 Conclusions

The analysis of the simulation data results in the following conclusions:

1. There is an enrichment of all molecular components of ionic liquids under study at the

CNT surface with formation of several distinct layers even at the non-charged CNT sur-

face.

2. Mixing RTIL with acetonitrile decreases ion-counterion correlations in the electric double

layer.
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3. Increase of the length of the non-polar cation ’tail’ increases propensity of imidazolium-

based cations to lay parallel to the CNT surface.

4. At the CNT cathode TFSI anions and molecular cations are preferentially oriented parallel

to the surface.

5. At the CNT anode the TFSI anions are oriented parallel to the surface, however the pref-

erential orientations of cations depend on the length of non-polar tail: EMIm cations

are oriented perpendicular to the surface, BMIm are in both parallel and perpendicular

orientations, OMIm are oriented parallel to the surface.

6. Applying potential on the CNT electrode or varying the structure of molecular ions one

can adjust molecular ion orientations, and thus the structure of the CNT-IL interface shell.
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5 Summary

In this thesis we investigated ion interactions with the surfaces of carbon nanomaterials dis-

persed in different aqueous and non-aqueous solvents: aqueous dispersions, N-methyl-2-pyrro-

lidone dispersions, organic salt/acetonitrile dispersions and room temperature ionic liquids/aceto-

nitrile dispersions. We used molecular dynamics simulations to understand the molecular-scale

mechanisms of ion interactions with the CNM surfaces. We considered carbon nanotube and

carbon "nanoonion" structures as representatives of the CNMs. Despite the high diversity of

the system compositions studied in the thesis, the main features of ion interactions with CNM

surfaces can be rationalized by similar mechanisms. The summary points of the thesis are:

1. Interaction of ions with the CNM surface in dispersions are determined by the interplay

of the different particle-particle interactions: ion-solvent, CNM surface-solvent as well

as solvent-solvent and ion-CNM surface interactions. The strength of the ion-solvent and

CNM-solvent interactions determines the penalty (energy losses) for the partial desol-

vation of the ion and CNM surface upon the ion-CNM direct contact formation. The

solvent-solvent interactions determine the energy gain originating from the solvation of

the released solvent molecules upon the partial desolvation of the particles. In turn, the

ion-CNM interactions determine the energy gain upon the ion-CNM surface direct contact

formation. This last term is negligible comparing to other terms for small alkali halide

ions, but becomes more significant for bigger molecular ions. The described scheme

brings a physical picture "how to think about" the phenomena of the solvent mediated

interactions in solutions. Based on the scheme, in this thesis, we rationalized the process

of ion interactions with the CNM surfaces in different systems. We believe that it can be

applied for rationalizing many other systems where the solvent mediated particle-particle

interactions take place.

2. The ion-solvent interactions play an important role in the process of the ion-surface di-

rect contact formation, since to make direct contacts with the carbon nanomaterial sur-

face, ions have to become partially desolvated. Depending on the strength of ion-solvent

interactions, however, the partial desolvation of ions might be energetically favorable or

unfavorable:

a) If the ions are strongly solvated (i.e. the energy of a solvent molecule release from ion’s

solvation shell is high) then the partial desolvation of ions is energetically unfavorable. In

this case the energy gain originating from the solvation of the released solvent molecules
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does not compensate the energy losses upon the partial desolvation of the ions. As a

result, a salt depletion area is formed around the CNM surface, where the concentration

of ions is less than in the bulk solution. This leads to "salting out" of CNMs from the

dispersions by addition of the salts.

b) In turn, if the ions are weakly solvated (i.e. the energy of a solvent molecule release

from ion’s solvation shell is low) then the partial desolvation of ions is favorable. In this

case the energy gain of the solvation of the released solvent molecules compensates the

energy losses upon the partial desolvation of the ions. As a result, there is a preferential

adsorption of the ions on the CNM surface. This should lead to "salting in" of CNMs in

the dispersions by addition of salts.

3. In this thesis we show that the penalty for partial desolvation of the CNM surface also

plays an important role in the process of the ion-CNM surface direct contacts formation.

The penalty for the partial desolvation of CNM surface adds an additional energetic “bar-

rier” for ions to come close to the CNM surface. In the case of weakly solvated CNM

surfaces (like in aqueous CNT dispersions) relatively big ions (like iodides) do form sig-

nificant amount of direct contacts with the CNM surfaces. In turn, if there is a dense

solvation shell at CNM surface (like in the case of CNT dispersions in NMP) the same

ions do not enter the solvation shell of CNM and, thus, do not form direct contacts with

the CNM surface.

4. In this thesis we showed that in the dispersions of carbon nanotubes in N-methyl-2-

pyrrolidone there is a preferential depletion of inorganic ions (Na+ and I−) from the CNT-

NMP interface due to the high energetic penalties for the partial desolvation of the ions

and the CNT surface. The ion depletion from the CNT surface results in the increase

of solvophobic interactions between the carbon nanotubes. As a consequence, the CNT-

NMP dispersions become thermodynamically less stable at higher concentrations of salts.

The increase of the CNT solvophobicity upon the salt addition was confirmed by direct

experiments in complementary studies in collaboration with our colleagues from the As-

ton university.

5. Asymmetry of cation and anion solvation has to be taken into account while rationalizing

the interaction of ions with different surfaces. We showed that alkali cations release more

water molecules from their hydration shells attaching to the CNT surface in aqueous so-

lutions than anions of a similar size. This is attributed to the fact that, firstly, the hydration
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shell of cations is much denser than the hydration shell of anions, and, secondly, to the

fact that anions interact much stronger with water molecules compared to cations, and

thus due to the hight penalty for partial dehydration, can not lose water molecules from

the hydration shells.

6. In this thesis we investigated the effect of the increase of the alkyl chain length of or-

ganic salt cations (tetraalkylammonium ions) on the structure of the electrical double

layer at neutral and electrified carbon "nanoonion" surfaces in organic salt-acetonitrile

solutions. We showed that, in the case of the neutral carbon "nanoonion" surface, the in-

crease of the non-polar alkyl chains of the tetraalkylammonium ions leads to an increase

of the molecular cation adsorption on the carbon "nanoonion" surface. In turn, at high

negative surface charge densities on the carbon "nanoonion" surface the concentration

of the tetraethylammonium ions is higher than the concentration of tetrabutylammonium

ions, which is attributed to the stronger sterical constraints for molecular packing of the

tetrabutylammonium ions. The results indicate that the preferential adsorption of molec-

ular ions at the CNM surface can be governed by varying the structure of molecular ions

and/or applying an external electrostatic field.

7. Complex shapes of the molecular ions in room temperature ionic liquids result in differ-

ent possible orientation of the molecules at the CNM surface in RTIL-acetonitrile mix-

tures. Such, an increase of the length of the the non-polar "tail" of the imidazolium-based

cations increases propensity of the cations to lay parallel on the CNT surface. At the

negatively charged CNT surface the TFSI anions and 3-methylimidazolium (MIm)-based

molecular cations are preferentially oriented parallel to the surface. At the positively

charged CNM surface the TFSI anions are also oriented parallel to the surface, however

the preferential orientations of cations depend on the length of the non-polar alkyl "tails":

ethyl-MIm cations are oriented perpendicular to the surface, butyl-MIm are in both par-

allel and perpendicular orientations, octyl-MIm are oriented parallel to the surface. Thus,

the preferential orientations of molecular ions at the CNM surface can be governed by

varying the structure of molecular ions and/or applying an external electrostatic field.

Outlook.

We believe that the findings of the thesis would be interesting for the many scientists working

in the field of solubilization of carbon nanomaterials. We hope that the results can be useful for

rational development of newmethods for processing liquid dispersions of carbon nanomaterials.
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Our results can help in understanding the observed correlation between the radii of ions

and the strength of ion effects on the CNT photoluminescence quenching in aqueous solutions

observed in experimental works [82, 83]. Indeed, weakly hydrated ions (like iodide or cesium)

have large probability to lose water molecules from their hydration shell and to approach the

CNT surface to form direct contact. The formation of the direct contact is important for the

Dexter mechanism of photoluminescence quenching [162], which "can occur only when the

fluorophore and quencher are close enough to allow orbital overlap" [163].

In this work we showed that one can use salt additions to alter the stability of the CNMs

dispersions. Such, we predicted the "salting out" of CNTs from the stable CNT dispersions in

N-methyl-2-pyrrolidone by addition of the NaI salt. This effect leads to an efficient safe and

inexpensive method of regulating the CNT concentration in non-aqueous dispersions. In turn,

the concentration of large molecular ions with long alkyl chains (like, tetraalkylammonium and

1-alkyl-3-methylimidazolium cations) could increase at the non-polar surfaces of the carbon

nanomaterials, thus suggesting that organic salts comprising these ions might serve as "salting

in" agents for CNMs in dispersions.

To increase stability of the CNMs dispersions chemists usually use surfactants, which con-

siderably increase the solubility of CNMs. The surfactant molecules preferentially adsorb on

the surface of the CNMs and prevent agglomeration of the dispersed particles. However, there is

always a difficulty to remove the bulky polymer surfactant molecules at the end of the process.

In the thesis we show that large ions (e.g. ion constituting organic salts or RTILs under this

study) also can preferentially adsorb onto the CNM surface and, thus, are potentially good for

stabilization of the CNM dispersions. The advantage to use such additions to common solvents

instead of surfactants is the ease to remove the additions afterwards (indeed, the RTILs are also

liquid solvents at room or slightly elevated temperatures, which could be washed out by an ex-

cess of aqueous or organic solvents). We believe that adjusting the strength of the interparticle

correlations one can develop an efficient mixed solvent for the pristine carbon nanomaterials.

To develop this point far more experimental and theoretical work is required.

One more direction for the future research would be the development of a simplistic model

to describe preferential interaction of co-solvents with the surface of nanoobjects. Such model,

operating with the effective parameters, like the length of co-solvent alkyl chain, ratio of the

polar and non-polar surface area of the molecules, etc. should predict whether the addition of

certain co-solvent would lead to stabilization or destabilization of the dispersion. A prerequisite

that such model can be developed is that the interaction of ions with CNMs surfaces in differ-

ent systems studied in the thesis could be rationalized by similar mechanisms. However, the
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development of such model would require more experimental and computer modelling data.
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7 Appendix

7.1 List of Abbreviations

2D two dimensional

3D three dimensional

AFM atomic force microscopy

AN acetonitrile

B3LYP Becke, three-parameter, Lee-Yang-Parr exchange-correlation functional

BMIm 1-butyl-3-methylimidazolium

CNM carbon nanomaterials

CNO carbon nanoonion

CNT carbon nanotube

EDL electrical double layer

EDLC electrical double layer capacitors

EMIm 1-ethyl-3-methylimidazolium

FAP tris(pentafluoroethyl)trifluorophosphate

FFT fast Fourier transform

HS hydration shell

IL ionic liquid

KB Kirkwood-Buff

LJ Lennard-Jones

MD molecular dynamics

MIm 3-methylimidazolium
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NMP N-methyl-2-pyrrolidone

OMIm 1-octyl-3-methylimidazolium

OPLS-AA optimized potential for liquid simulations – all atom

PBC periodic boundary conditions

PCF pair correlation function

PME particle mesh Ewald

PMF potential of mean force

PPPM particle-particle particle-mesh Ewald

Py 1-butyl-1-methylpyrrolidinium

QM quantum mechanical or quantum mechanics

RDF radial distribution function

RDP radial density profile

RPM revolutions per minute

RTIL room-temperature ionic liquid

SCI-PCM Self consistent isodensity polarizable continuum model

SPME smooth particle mesh Ewald

SS solvation shell

SWNT single-wall carbon nanotube

TBA+ tetrabutylammonium

TBA-BF4,TBA+BF−4 tetrabutylammonium tetrafluoroborate

TEA+ tetraethylammonium

TEA-BF4,TEA+BF−4 tetraethylammonium tetrafluoroborate

TEM transmission electron microscopy

TFSA bis(trifluoromethylsulfonyl)amide
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TFSI bis(trifluoromethylsulfonyl)imide

TIP4P four-point transferable intermolecular potential

TIP4Pew four-point transferable intermolecular potential optimized for Ewald summa-

tion
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7.2 Short summary

In this thesis we investigated ion interactions with the surfaces of carbon nanomaterials dis-

persed in different aqueous and non-aqueous solvents: aqueous dispersions, N-methyl-2-pyrro-

lidone dispersions, organic salt/acetonitrile dispersions and room temperature ionic liquids/aceto-

nitrile dispersions. We used molecular dynamics simulations to understand the molecular-scale

mechanisms of ion interactions with the CNM surfaces. We considered carbon nanotube and

carbon "nanoonion" structures as representatives of the CNMs. Despite the high diversity of

the system compositions studied in the thesis, the main features of ion interactions with CNM

surfaces can be rationalized by similar mechanisms:

1. Interaction of ions with the CNT surface in dispersions are determined by the interplay of

the particle-particle interactions: ion-solvent, CNT-solvent, solvent-solvent and ion-CNT

interactions.

2. To make direct contacts with the carbon nanomaterial surface, ions have to become par-

tially desolvated. The partial desolvation might be, however, energetically favorable or

unfavorable depending on the strength of ion-solvent interactions. In this thesis we show

that there is a strong negative correlation between the strength of ion solvation and the

probability of a direct CNM-ion contact: the interfacial region becomes increasingly pop-

ulated by weakly solvated ions.

3. The penalty for the partial desolvation of CNM surface adds an additional energetic "bar-

rier" for ions to come close to the CNM surface. This can be low (like in the case of

aqueous dispersions) and thus will not prevent ions to come to the surface, or it can be

high (like in the case of N-methyl-2-pyrrolidone dispersions) and, thus, will prevent ions

to come to the CNM surface.

In this thesis we compare the structure of the electric double layer (EDL) at a CNM electrode

for a neat ionic liquid (EMIm-TFSI) and its mixture with an organic solvent (acetonitrile).

Mixing RTIL with acetonitrile decreases the ion-counterion correlations in the EDL.

In this work we showed that one can use salt addition to alter the stability of the CNMs

dispersions. Such, we predicted the "salting out" of CNTs from the stable CNT dispersions

in N-methyl-2-pyrrolidone. This effect leads to an efficient safe and inexpensive method of

regulating the CNT concentration in non-aqueous dispersions.
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