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1 Introduction

Water is the most widespread and important media in the world. Almost all global environmen-

tal processes deal with water. Indeed, oceans cover about 71 % of the Earth globe surface, water

accumulates in the sky forming clouds, and it accesses all lands on the Earth via precipitations.

Moreover, all biochemical processes take place in aqueous media: protein-ligand binding, par-

ticles transport in the blood stream, synthesis of biopolymers, etc. In chemical industry water

remains one of the most widely used solvents [1].

The hydration free energy (HFE) is one of the key parameters characterizing the aqueous

solution of a solute. First, HFE shows the strength of solute-water interactions which is impor-

tant for such processes as biopolymer stabilization in aqueous solutions (proteins, DNA, etc.)

[2, 3, 4, 5, 6]. Second, HFE is crucial for the complex formation and binding processes taking

place in aqueous media. It determines the free energy loss in the process of partial dehydration

of interacting molecules which inevitably occurs during direct contact formation in solution

(e.g., ligand binding to a protein) [7, 8, 9]. Third, HFE of a compound determines partition of

the compound between gaseous and aqueous phases, and, thus, is significant for modeling of

molecules’ pathways in the environment (see the paragraph HFE in environmental chemistry)

[10, 11].

HFE equals the change of the Gibbs free energy that accompanies the transfer of solute

from gaseous phase to aqueous solution [12]. We note, that the amount of the transferred solute

molecules should be consistent with HFE units (e.g. HFE expressed in the terms of kcal/mol

corresponds to the transfer of 1 mole of the solutes molecules).

HFE also can be defined from the thermodynamic cycle: crystal – gaseous phase – solution

(Fig. 1). In this case, HFE can be derived in terms of two other thermodynamic properties:

sublimation free energy and solution free energy. Sublimation free energy (ΔGsub) equals to

the change of the Gibbs free energy that accompanies the transfer of the solute from crystal to

gaseous phase, while solution free energy (ΔGsoln) equals to the change of the Gibbs free energy

that accompanies the transfer of the solute from crystal to diluted aqueous solution (Fig. 1).

ΔGhyd = ΔGsoln − ΔGsub (1)

Another important physical/chemical property that characterizes a solute molecule behavior

in a solution is the partial molar volume (PMV). It is a thermodynamic quantity which indi-

cates how volume of a solution varies with addition of component i to the system at constant

temperature and pressure:
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Figure 1: Thermodynamic cycle of a dissolution process. The solution free energy (ΔGsoln) of a

compound can be represented a s a sum of the hydration free energy (ΔGhyd) and the sublimation

free energy (ΔGsub).

V̄ =
(
∂V
∂ni

)
T,P,n j�i

(2)

One should note that the PMV contains not only information about the immersed solute

geometry but also the important data about the solute-solvent interactions.

HFE in environmental chemistry. HFE determines the partition of solute molecules be-

tween gaseous and aqueous phases which is required for modeling of the air-water exchange

in the environmental chemistry [10, 11, 13, 14, 15]. Nowadays, one of the most important

environmental and ecological problems is understanding and clarifying the global fate of per-

sistent organic pollutants (POPs) which are characterized by: (i) long-term persistence, (ii)

long-range atmospheric transport and deposition, (iii) bioaccumulation, (iv) adverse effects on

biota [16, 17, 11, 18]. For a long time, in many countries, POPs (such as polychlorobiphenyls,

hexachlorobenzene, etc.) were used in agriculture as pesticides, fungicides, and agents control-

ling arthropods [16]. Although POPs have been banned from further use and production [19],

their persistence in biological compartments (e.g., soil, water, plants, and sediment) means that

they still pose a significant environmental hazard. The semivolatile nature of POPs allows them

to evaporate from the soil and water into the atmosphere, where they can exist both in gaseous

and particle-absorbed forms (these can be atmospheric aerosol particles, e.g., cloud droplets,

as well as dust particles). Both forms allow long-range transport and deposition of POPs [11].
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Figure 2: Hydration free energy
(
ΔGhyd

)
is an important thermodynamic parameter to describe

main processes of a molecule distribution between atmosphere and water (see Eq. 3, Eq. 5)

Several dominant mechanisms that determine the distribution of POPs between atmosphere and

water are shown in Fig. 2.

There are several physical/chemical properties of POPs that determine their global fate: va-

por pressure, aqueous solubility, partition coefficients between different media, and half-lives in

air, solid, and water. These parameters are intensively used in mathematical models describing

the global fate and long-range transport of POPs [20, 21, 22, 23, 14]. One of the most important

parameters in these models is the flux across surfaces, which characterizes the exchange of the

compound between compartments [15, 11]. As an example, the flux of molecules i between

two compartments 1 and 2 can be modeled by:

F1→2 = K1/2(i)
(
C1(i) −

C2(i)
Pi,eq

)
, (3)

where F1→2 is the flux (g ·m−2 · s−1) from compartment 1 to compartment 2; K1/2(i) is the kinetic

parameter represented by the mass transfer coefficient on the molecules i (m · s−1); C1(i) and

C2(i) are molecular concentrations of the molecules i in the compartments 1 and 2, respectively

(g · m−3); Pi,eq is the equilibrium partition coefficient of the molecules i between the two com-

partments.

Thus, accurate data for the partition coefficients are of a high importance for modeling POPs

exchange between compartments. In the case of the air-water flux, the widely used partition co-

efficient is the Henry’s law constant (KH) which shows the distribution of a compound between
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gaseous phase and aqueous phase [24]:

KH =
[i]aq

[i]g
(4)

where [i]aq and [i]g are equilibrium molecular concentrations of the molecules i in aqueous and

gaseous phases, respectively.

We note that the KH is closely related with the HFE as:

ΔGhyd = −RT ln (KH) , (5)

where ΔGhyd is the hydration free energy, KH is the Henry’s law constant, R is the ideal gas

constant, and T is the temperature.

HFE in biochemistry. Many physical/chemical properties of bioactive molecules are defined

by their solvation, which can be estimated from their HFEs. For example, HFEs have been

used in the calculation of acid-base dissociation constants (pKa, pKb) (Eq. 6) [25], aqueous

solubilities (Eq. 7) [26, 27], octanol-water partition coefficients (Eq. 8) [28, 29, 30], and

protein-ligand binding affinities (Eq. 9) [31].

ΔG(aq)reaction = ΔG
(g)
reaction + ΔGhyd(A

−) + ΔGhyd(H+) − ΔGhyd(HA),

= ln(10)RT pKa,
(6)

Here ΔG(aq)reaction and ΔG
(g)
reaction are free energies of the reaction (dissociation of the acid HA) in

aqueous solution and gaseous phase, accordingly, ΔGhyd(A−), ΔGhyd(H+), and ΔGhyd(HA) are

hydration free energies of acidic anion A−, proton H+, and protonated acid HA, accordingly,

pKa is the acid dissociation constant, R is the ideal gas constant, T is the temperature.

ΔGsub + ΔGhyd = −RT ln
(
Vm · S aq

)
, (7)

Here ΔGsub is the sublimation free energy, ΔGhyd is the hydration free energy, Vm is the molar

volume of the solute, and S aq is the aqueous solubility.

− ln(10)RT log Poct/wat = ΔGsolv(oct) − ΔGhyd, (8)

Here log Poct/wat is the logarithm of partition coefficient of the solute between water and octanol,

ΔGsolv(oct) is the solvation free energy in octanol.

ΔG(aq)reaction = ΔG
(g)
reaction + ΔGhyd(PL) −

(
ΔGhyd(P) + ΔGhyd(L)

)
,

= −RT lnKcomp,
(9)
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Here ΔGhyd(PL), ΔGhyd(P), and ΔGhyd(L) are hydration free energies of the protein-ligand com-

plex, the free protein, and the free ligand, accordingly, Kcomp is the complex formation constant.

As these physical/chemical properties are used in predicting the pharmacokinetics behavior

of novel pharmaceutical molecules (e.g., oral digestion, membrane penetration, and absorption

in different tissues [27, 29, 32]) accurate and fast methods for determination of HFEs would

have wide-spread benefits.

Experimental methods for HFE determination. Despite the great importance of HFEs,

there are not many reliable experimental data sources available to the scientific community

[33, 34, 35]. One reason for this observation is that it is difficult to measure HFE directly. Usu-

ally, to obtain HFEs for a compound one performs several measurements of solubility and vapor

pressure at different temperatures [12, 30, 36, 37, 38, 39] (Fig. 3). These experiments are often

complicated by the fact that many interesting compounds have low chemical stabilities and/or

low solubilities [40, 41]. In total, it may take up to one month to obtain the HFE for one solute,

which is too slow for applications to practical problems in the natural sciences (Figure 3).

Computational methods for HFE predictions. Computations offer an alternative way to

obtain HFEs. At the present time, there is a lot of work being done in this direction [42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53]. There are two main groups of methods which differ by the

representation of solvent in a system (Fig. 4). The first group of methods (molecular dynamics

and Monte Carlo methods) treats solvent explicitly via taking into account detailed structure of

the solvent molecules. Due to that they provide the most accurate HFE predictions but require

sufficient computational resources [45, 54, 42, 43, 55, 26, 56, 57, 47, 58, 59].

In turn, the second group of methods - implicit solvent methods, contains more rough

approximations of the solvent structure in the system which allow one to obtain thermody-

namic parameters of solvation without large computational expenses but with less accuracy

[60, 44, 61]. Nowadays, the most challenging task is to develop an HFE prediction by the

implicit solvent models with the accuracy comparable to those for explicit models.

The most widely used approximation for implicit models treats solvent as a continuum me-

dia which is characterized by the dielectric constant (continuum methods) [60, 44, 61]. The

approximation fails to reproduce specific interactions such as hydrogen bonds. Nevertheless,

such simplification of the system allows accurate HFE predictions for neutral monofunctional

solutes but leads to sufficient errors of HFE for polyfunctional compounds [62]. Range of sol-

vation continuum models (SMx) which reduce the errors with a number of empirical corrections
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Figure 3: It is difficult to measure HFE directly. Usually, to obtain HFEs for a compound one

performs several measurements of solubility and vapor pressure at different temperatures. The

figure shows estimations of the number of experimental points and the time of measurements

to obtain HFE value for one compound [12, 30, 36, 37, 38, 39] (ΔGsoln is the solution free

energy, Vm is molar volume, S aq is aqueous solubility, ΔGTsub is the sublimation free energy at

temperature T , P and P0 are the vapor pressure of the compound and the atmospheric pressure,

accordingly, R is the ideal gas constant)

allows one to improve results for HFE predictions [63, 33]. In addition, the continuum models

can be combined with quantum mechanical description of solutes in a straightforward manner

that allows one to model the solvent effects on the electronic structure of the solute [60, 44, 61].

Another approximation is one of the most promising for describing hydration processes

because it has an intermediate position between the fully atomistic representation of the sol-

vent structure (MD, MC) and the continuum models. Within the approximation the solvent

molecules are treated as a set of sites (atoms) interacted via potentials. The solvent density

distribution around a solute molecule is described with a set of correlation functions that are

connected via set of integral equations – the Reference Interaction Sites Model (RISM) of

the integral equation theory (IET) of molecular liquids [64, 65, 66, 67, 68, 69]. The original

RISM method pioneered by Chandler and Andersen [64] requires a solution of the site-site

Ornstein-Zernike (SSOZ) integral equations combined with a local algebraic relation, so-called

hypernetted chain (HNC) closure (see the section Theoretical Background).

However, it was shown that the RISM approach allows only the qualitative correct descrip-
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Figure 4: Computational methods for modeling solvent effects on a solute. There are two main

groups of methods which differ by the representation of solvent in a system: explicit solvent

methods and implicit solvent methods.

tion of the structure of a hydration system [70, 71]. Predicted energetic parameters of the system

under investigation are considerably overestimated [72, 73]. By now a number of studies have

been published on the RISM applications to HFE calculations [66, 44, 74, 75, 76, 77]. Although

some of the applications give good qualitative agreement with experimental data, systematic

studies [78, 72, 79, 80, 81] have indicated that the accuracy of HFEs calculated within the

RISM approach is not satisfactory and may differ from the corresponding experimental values

by an order of magnitude.

State of Research. To overcome the shortcoming of the RISM approach, various methodolo-

gies have been proposed such as the ’three-dimensional’ (3D) extension of the RISM [82, 83,

66, 84], applications of repulsive bridge corrections [85, 86, 81, 76], or diagrammatic proper in-

tegral equations [87]. However, despite of all these improvements, accurate RISM calculations

of HFEs for a wide range of organic compounds still remain a challenge.

Many efforts have been spent to improve the theoretical background of the RISM-based

expressions for HFE calculations. Several advanced models have been developed to describe

thermodynamics of hydration more accurately than previous methods (all HFE expressions are

presented in the section Theoretical Background). One of the earliest models developed by

Chandler, Singh and Richardson assumes Gaussian fluctuations (GF) of the solvent molecules
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[88]. Although GF free energy expression provides better agreement with experimental data

for some solutes [78], it is not widely used due to the improper account of molecular effects

for polar solutes [79]. Later, yet another approach referred as the partial wave (PW) model

has been proposed by Ten-no and Iwata [89]. This approach is based on the distributed partial

wave expansion of solvent molecules around the solute [89]. The recent analysis [80] has

indicated that the PW model sufficiently overestimates HFE for non-polar solutes. However,

the analysis [80] showed also significant correlations between the error of HFEs calculated with

PW method and solutes’ partial molar volume (PMV). The corresponding correction on PMV

was implemented in the Partial Wave Correction (PWC) model [80]. For 19 organic solutes

the PWC model provided better agreement with experimental data than the original PW model.

However, due to the inherent limitations of the PWC model (poor parameterization and small

number of corrections), it cannot be applied ’as is’ for a wide range of organic solutes [80].

Parameterization of a property with a set of corrections is a common practice these days

known as a quantitative structure - activity/property relationships (QSAR/QSPR) within chem-

informatics [90, 26, 91, 92, 93, 94, 95, 27, 29]. With respect to HFE calculations, such

parametrization has been used for implicit models to improve the accuracy of calculations

within the framework of continuum electrostatics [63, 33, 96, 97, 27, 53]. The choice of

mathematical model for the parametrization is rather wide: statistical analysis [98], physical

assumptions (e.g. the linear response theory [99, 100]), etc. The number of required descriptors

for empirical corrections may vary from just a few of them (e.g., descriptors based on physi-

cal/chemical properties of solutes [97]) to up to a 102−103 descriptors (e.g., descriptors derived

from the group/atom contribution approach [101]). Application of the atomic or group structural

descriptors becomes complicated for polyfunctional compounds due to the enormous number

of the descriptors (each combination of functional groups requires its own descriptor) [101, 53].

In turn, more general physical/chemical descriptors can be successfully applied only for some

particular classes of solutes, but it is difficult to transfer the descriptors from one chemical class

of solutes to another.

Aims of the study. Aims of this thesis are (i) to develop a hybrid model based on the combi-

nation of HFEs obtained by RISM with a small set of structural corrections to improve the poor

accuracy of thermodynamics calculations with RISM approaches; (ii) to analyze the perfor-

mance of the model with different input parameters and to find their optimal combination; (iii)

to analyze the model predictive ability on a wide range of compounds from different chemical

classes; (iv) to compare the accuracy of thermodynamic parameters obtained by the model with
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that for standard methods (e.g., continuum solvation models) and the corresponding cheminfor-

matics approach with the same set of descriptors.
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2 Theoretical Background

2.1 Molecular Ornstein-Zernike integral equation

The integral equation theory (IET) of molecular liquids is a statistical mechanics approach to

describe thermodynamic properties of molecular liquids. This theory is based on the method of

distribution ρ(n)(r1, ..., rn,Θ1, ...,Θn) and correlation functions g
(n)(r1, ..., rn,Θ1, ...,Θn) in clas-

sical statistical mechanics [102, 103, 104] (symbol (n) – represents the n-particle distribu-

tion/correlation function, ri and Θi are spatial and orientation coordinates of the i-th molecule).

Within the framework of IET, the fundamental six-dimensional molecular Ornstein-Zernike

(MOZ) integral equation can be written, which operates with pair correlation functions

g(2)mk(r1, r2,Θ1,Θ2) of different components of the liquid (indexesm, k denote the component type

in liquid) [104, 102]. For homogeneous liquids, the correlation functions depend only on the rel-

ative position and orientation of molecules with respect to one another, thus the pair correlation

function can be written as g(2)mk(r1 − r2,Θ1 −Θ2). The MOZ equations can be more conveniently

written via the total correlation functions, hmk(r1 − r2,Θ1 − Θ2) = gmk(r1 − r2,Θ1 − Θ2) − 1.

The MOZ equations relate the total correlation functions with the so-called direct correlation

functions cmk(r1 − r2,Θ1 − Θ2) [104, 66] (the meaning of the direct correlation function is not

straightforward but can be understood via the density functional theory of molecular liquids

[104, 105, 103]):

hmk(r1 − r2,Θ1 − Θ2) = cmk(r1 − r2,Θ1 − Θ2)+
Ncomponent∑
t=1

ρt

8π2

∫
R3

∫
Ω

cmt(r1 − r3,Θ1 − Θ3)hmt(r2 − r3,Θ2 − Θ3)dr3dΘ3,

m = 1...Ncomponent, k = 1...Ncomponent

(10)

where ρt is the bulk density of the t-th component of the system, Ncomponent is the number of

components,Θ = {ψ, θ, ϕ} is the set of Euler angles: ψ ∈ [0, 2π], θ ∈ [0, π], ϕ ∈ [0, 2π]; Ω

contains all possible orientations of a molecule, and 8π2 is the "phase volume" of Ω [104].

To calculate the HFE, we consider a system containing only two components: a solute in a

pure water. In the case of an infinitely dilute solution (when the density of solute component

tends to zero), the MOZ equations can be split into three independent equations, operating with

solvent - solvent, solute - solvent and solute - solute correlation functions, respectively, which

can be solved separately [66].

The MOZ equations are difficult to solve because of the high dimensionality of the problem.

There are several methods originating from the work of Chandler et al. [64], generally named
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Reference Interaction Site Models (RISM), which can reduce the dimensionality of original

MOZ equations, and are used nowadays for a wide range of applications in chemical sciences

[106, 107, 80, 108, 84, 5, 109, 110].

2.2 3D Reference Interaction Site Model (3D RISM)

In the three dimensional RISM (3D RISM) method, the six-dimensional solute-solvent MOZ

equation is approximated by a set of 3D integral equations via partial integration over the orien-

tation coordinates [66, 82]. Thus, instead of one 6D MOZ equation one has to solve Nsolvent 3D

equations, which is computationally feasible. These equations operate with the intermolecular

solvent site - solute total correlation functions {hα(r)}, and direct correlation functions {cα(r)}

(Fig. 5, a):

hα(r) =
∑Nsolvent
ξ=1

∫
R3 cξ(r − r

′)χξα(|r′|)dr′,

α = 1...Nsolvent
(11)

where ξ, α denote the index of sites in a solvent molecule, χξα(r) is the bulk solvent susceptibility

function, and Nsolvent is the number of sites in a solvent molecule.

The solvent susceptibility function χξα(r) describes the mutual correlations of the sites of a

solvent molecules in the bulk solvent. In general, the function can be obtained from the solvent

site-site total correlation functions (hsolv
ξα
(r)) and the 3D structure of a single solvent molecule

(intramolecular correlation function ωsolv
ξα
(r) (Fig. 5, c) [5, 66]:

χξα(r) = ωsolvξα (r) + ρh
solv
ξα (r) (12)

where ρ is the bulk density of the solvent (here and after we imply that each molecule site is

unique in the molecule, so that ρα = ρ for all α).

The solvent susceptibility functions can be calculated once for a given solvent at certain

thermodynamic conditions and then they enter the 3D equations as known input parameters.

To make Eq. 11 complete, Nsolvent closure relations are introduced:

hα(r) = exp(−βuα(r) + hα(r) − cα(r) + Bα(r)) − 1

α = 1, . . . ,Nsolvent
(13)

where uα(r) is the 3D interaction potential between the solute molecule and α site of solvent,

Bα(r) are bridge functions, β = 1/kBT , kB is the Boltzmann constant, and T is the temperature.

The 3D interaction potential between the solute molecule and α site of solvent (uα(r), Eq.

13) is estimated as a superposition of the site-site interaction potentials between solute sites and
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Figure 5: Correlation functions in the 3D and 1D RISM approaches. (a) 3D intermolecular

solute-solvent correlation function hα(r) around a model solute; (b) 1D spherically-symmetric

correlations: site-site intramolecular (ωss′(r)) between the site of solute molecule and inter-

molecular (hsα(r)) correlation functions between sites of solute and solvent molecules. The

inset plot shows the radial projections of solute site-oxygen water density correlation functions.

(c) Solvent-solvent correlations in both 1D and 3D RISM methods: site-site intramolecular cor-

relation functions (ωsolv
γξ
(r)) and intermolecular correlation functions (hsolv

αξ
(r)) between sites of

solvent molecules. The inset shows the radial projections of water solvent site-site density cor-

relation functions: oxygen-oxygen (OO, blue dashed), oxygen-hydrogen (OH, green solid) and

hydrogen-hydrogen (HH, red dash-dotted).
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the particular solvent site (usα(r), where index s denotes the site in a solute molecule and index

α is the site in a solvent molecule), which depend only on the absolute distance between the two

sites:

uα(r) =
Nsolute∑
s=1

usα(|rs − r|) (14)

where rs is the radius-vector of solute site (atom).

We used the common form of the site-site interaction potential represented by the long-range

electrostatic term uelsα(r) and short-range Lennard-Jones (LJ) term uLJsα (r) as:

usα(r) = uelsα(r) + uLJsα (r),

uelsα(r) =
qsqα
r ; uLJsα (r) = 4εLJsα

[(
σLJsα
r

)12
−

(
σLJsα
r

)6]
,

(15)

where r = |rs − r|, {qs, qα} are the partial electrostatic charges of the corresponding solute and

solvent sites, and {εLJsα , σLJsα } are the LJ solute-solvent interaction parameters.

In general, the bridge functions Bα(r) in Eq. 13 can be written as an infinite series of

integrals over high order correlation functions and are therefore practically incomputable. Thus,

some approximations are introduced [65, 111, 66]. The most straightforward and widely used

model is the HNC closure, which sets Bα(r) to zero [112]. However, due to the uncontrolled

growth of the argument of the exponent the use of the HNC closure can lead to divergence of the

numerical solution of the RISM equations. One way to overcome this problem is to linearize

the exponential function for arguments larger than a certain constant C:

hα(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ exp(Ξα(r)) − 1 when Ξα(r) < C

Ξα(r) + exp(C) −C − 1 when Ξα(r) > C
(16)

where Ξα(r) = −βuα(r) + hα(r) − cα(r). The partially linearized HNC (PLHNC) closure for the

case C = 0 was proposed by Hirata and Kovalenko in [113]. We note that in the literature the

combination of the PLHNC closure relations (Eq. 16) and the 3D RISM equations (Eq. 11) are

usually referred to as 3D RISM-KH theory [5, 108], but for succinctness we will use 3D RISM

instead.

2.3 1D Reference Interaction Site Model (1D RISM)

In the one dimensional RISM (1D RISM) approach, the 3D RISM equations are further approx-

imated by a set of one-dimensional integral equations, operating with the intermolecular solvent
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site - solute site total correlation functions {hsα(r)}, and direct correlation functions {csα(r)} (s, α

denote the index of sites in solute and solvent molecules respectively) [66, 64] (see Fig. 5, b):

hsα(r) =
Nsolute∑
s′=1

Nsolvent∑
ξ=1

∫
R3

∫
R3
ωss′(|r1 − r′|)cs′ξ(|r′ − r′′|)χξα(|r′′ − r2|)dr′dr′′ (17)

where r = |r1 − r2| and χξα(r) are the bulk solvent susceptibility functions, Nsolute and Nsolvent are

the number of sites in the solute molecule and the solvent molecule, ωss′(r) = δ(r − rss′)/(4πr2ss′)

are intramolecular correlation functions describing the 3D structure of the solute molecule (rss′

is the distance between the sites s and s′ of the solute molecule, δ is the Dirac delta function).

To make the 1D RISM equations complete, Nsolute × Nsolvent site-site closure relations are

introduced:
hsα(r) = exp(−βusα(r) + hsα(r) − csα(r) + Bsα(r)) − 1

s = 1, . . . ,Nsolute; α = 1, . . . ,Nsolvent
(18)

where usα(r) is a pair interaction potential between the sites s and α, Bsα(r) are site-site bridge

functions, β = 1/kBT , kB is the Boltzmann constant, T is the temperature.

The PLHNC closure in the case of 1D RISM reads as:

hsα(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ exp(Ξsα(r)) − 1 when Ξsα(r) < C

Ξsα(r) + exp(C) −C − 1 when Ξsα(r) > C
(19)

where Ξsα(r) = −βusα(r) + hsα(r) − csα(r) and C is set to zero.

In the case of the 1D RISM method, instead of Nsolvent 3D RISM equations one has to solve

Nsolute × Nsolvent 1D equations, which requires much less computation.

The calculation scheme for the both 3D RISM and 1D RISM is shown in Fig. 6
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Figure 6: Scheme of HFE calculations in the RISM approach. Upper rectangles show the input data for the solute and solvent molecules. Here {xi, yi, zi}

are the spatial coordinates of the site i, {σi, εi} are the LJ parameters of the site i, {qi} is the partial charge on the site i. The RISM solver contains

the corresponding closure and RISM equations and is shown as a grey rectangle. We note that the solute site-site intramolecular correlation functions,

{ωss′(r)}, are used only in the 1D RISM approach (that is why it has a dashed arrow).
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2.4 Hydration Free Energy Expressions within the 1D RISM approach

Chemical potential (μ) of a thermodynamic system is the amount by which the energy of the

system would change if an additional particle was introduced, with the entropy and volume

held fixed. Let us consider a thermodynamic system containing n constituent species. Its total

internal energy U is postulated to be a function of the entropy S , the volume V , and the number

of particles of each species N1, ...,Nn: U = f (S ,V,N1, ...,Nn). By referring to U as the internal

energy, it is emphasized that the energy contributions resulting from the interactions between

the system and external objects are excluded. The chemical potential of the i-th species, μi is

defined as the partial derivative:

μi =

(
∂U
∂Ni

)
S ,V,Nj�i

, (20)

where the subscripts emphasize that the entropy, volume, and the other particle numbers are to

be kept constant.

Laboratory experiments are often performed under conditions of constant temperature T and

pressure P. Under these conditions, the chemical potential corresponds to the partial derivative

of the Gibbs energy with respect to number of particles:

μi =

(
∂G
∂Ni

)
T,P,Nj�i

. (21)

In the case of the infinitely diluted solution the change in chemical potential in the process of

hydration, Δμhyd, corresponds to the HFE. Within the RISM approach for HFE calculations one

has to determine the relationship between the change of chemical potential (Δμhyd) and pair

correlation functions (g(2)(r1, r2,Θ1,Θ2)).

Generally, the thermodynamic integration can be used for this purpose [77, 114]. The main

idea behind the method is the following. To compute the free energy of a system, one should

find the reversible pathway in the coordinates pressure-temperature (in the case of the Gibbs

free energy) that links the system under investigation and the reference system for which the

value of free energy is known.

Let us consider the system containing N particles with the potential energy function U. We

assume that U depends linearly on a coupling parameter λ such that, for λ = 0, U corresponds

to the potential energy of the reference system I, while for λ = 1 we will obtain the potential

energy of the system under investigation II [114].

The partition function for a system with a potential energy function that corresponds to a

value of λ between 0 and 1 is:
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Q(N, P,T, λ) =
1

Λ3NN!

∫
drN exp

[
−βU(λ)

]
, (22)

where Λ =
√
2πh2
mkT is the thermal de Broglie wavelength, h is Planck’s constant, m is the mass of

the particle, k is Boltzmann’s constant, T is the temperature, β = 1/kBT .

The derivative of the Gibbs free energy with respect to λ can be written as an ensemble

average [114]:

(
∂G(λ)
∂λ

)
N,P,T

= − 1
β
∂
∂λ
lnQ(N, P,T, λ) = − 1

βQ(N,P,T,λ)
∂Q(N,P,T,λ)

∂λ

=

∫
drN (∂U(λ)/∂λ) exp−βU(λ)∫

drN exp−βU(λ)

=
〈
∂U(λ)
∂λ

〉
λ
,

(23)

where G is the Gibbs free energy, Q is the partition function (Eq. 22), λ is the coupling param-

eter, < ... >λ denotes an ensemble average.

The free energy difference between systems I and II can be obtained by the Kirkwood’s

integral equation [115]:

G(λ = 1) −G(λ = 0) =
∫ 1

0
dλ

〈
∂U(λ)
∂λ

〉
λ

. (24)

Within the 1D RISM approach in the case infinitely diluted solution Eq. 24 can be written

as following:

βΔμhyd = 4πρ
∑
sα

∫ 1

0
dλ

∫ ∞

0
(1 + hsα(r, λ))

∂Usα
∂λ

r2dr, (25)

where Δμhyd is the change of the chemical potential in the process of hydration, β = 1/kBT , ρ is

the density of solvent, Usα(r, λ) is the interaction potential.

Equation 25 requires calculations of the total correlation function hsα(r, λ) at various λ.

In average, to determine the HFE for one compound one should to perform about 10 – 100

computer simulations, which in the case of complex organic molecules requires an enormous

computer resources.

Chandler [88], Singer [112], and Ten-no [72] showed that at some approximations Eq. 25

can be replaced by simpler models which allow one obtaining the value of Δμhyd from the total

hsα(r) and direct csα(r) correlation functions on the base of single-point computer simulation. In

this thesis we discussed the accuracy of the most popular HFE expressions, namely HNC (Eq.

26) [112, 66], GF (Eq. 27) [88], KH (Eq. 28) [116], PW (Eq. 29) [72], HNCB expression (Eq.

30) [85], and PWC (Eq. 32) [80], which are given by the equations below.

ΔμHNChyd = 2πρkBT
Nsolute∑
s=1

Nsolvent∑
α=1

∞∫
0

[−2csα(r) − hsα(r) (csα(r) − hsα(r))] r2dr (26)
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ΔμGFhyd = 2πρkBT
Nsolute∑
s=1

Nsolvent∑
α=1

∞∫
0

[−2csα(r) − csα(r)hsα(r)] r2dr (27)

ΔμKHhyd = Δμ
GF
hyd + 2πρkBT

Nsolute∑
s=1

Nsolvent∑
α=1

∞∫
0

h2sα(r)Θ(−hsα(r))r2dr (28)

ΔμPWhyd = Δμ
GF
hyd + 2πρkBT

Nsolute∑
s=1

Nsolvent∑
α=1

∞∫
0

h̃sα(r)hsα(r)r2dr (29)

where r = |r1 − r2| and

h̃sα(|r2 − r1|) =
Nsolute∑
s′=1

Nsolvent∑
ξ=1

∫
R3

∫
R3

ω̃ss′(|r1 − r′|)hs′ξ(|r′ − r′′|)ω̃solvαξ (|r
′′ − r2|)dr′dr′′,

ω̃ss′(r) and ω̃solvαξ (r) are the elements of matricesW
−1,W−1

solv which are inverses to the matrices

W = [ωss′(r)]Nsolute×Nsolute and Wsolv =
[
ωsolv
αξ
(r)

]
Nsolvent×Nsolvent

built from the solute and solvent

intramolecular correlation functions ωss′(r) and ωsolvαξ (r) respectively.

The HFE expression for the HNCB model is [85]:

ΔμHNCBhyd = ΔμHNChyd +

2πρkBT
∑
sα

∞∫
0

(hsα(r) + 1)(e−B
R
sα(r) − 1)r2dr.

(30)

Here {BRsα(r)} are repulsive bridge correction functions, defined for each pair of solute s and

solvent α atoms by the expression:

exp(−BRsα(r)) =
∏
ξ�α

〈
ωαξ ∗ exp

(
−βεsξ

(σsξ
r

)12)〉
(31)

where ωαξ(r) are the solvent intramolecular correlation functions, and σsξ and εsξ are the site-

site parameters of the pair-wise LJ potential.

The PWC HFE expression is given by:

ΔμPWChyd = Δμ
PW
hyd + aρβ

−1V̄ + bδOH, (32)

where ΔμPWhyd is HFE obtained by the PW HFE expression (Eq. 29), ρ is the number density of

solvent (water), V̄ is the partial molar volume of the solute (see Eq. 35), and deltaOH is the delta-

function which equals 1 if OH-group presents in the solute molecule, otherwise it equals zero,

a and b are the correction coefficients which are determined by the corresponding regression

against the experimental values of the HFEs for a training set [80].
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2.5 Thermodynamic parameters within the 3D RISM approach

Within the framework of the 3D RISM theory there are few approximate expressions that allow

one to calculate HFEs analytically from the total and direct correlation functions. In this thesis,

we discussed the accuracy of the GF HFE expression adopted by Kovalenko and Hirata for the

3D RISM case [108] (Eq. 33), and the KH free energy expression proposed by Kovalenko and

Hirata for the PLHNC closure [113] (Eq. 34) [116].

Δμ3DRIS M−GFhyd = ρkBT
Nsolvent∑
α=1

∫
R3

[
−cα(r) −

1
2
cα(r)hα(r)

]
dr; (33)

Δμ3DRIS M−KHhyd = ρkBT
Nsolvent∑
α=1

∫
R3

[
1
2
h2α(r)Θ(−hα(r)) − cα(r) −

1
2
cα(r)hα(r)

]
dr, (34)

where ρ is the number density of a solute sites α, Θ(x) is the Heaviside step function:

Θ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1 f or x > 0,

0 f or x < 0

2.6 Partial molar volume expressions in RISM approaches

The dimensionless PMV (DPMV) calculations within the framework of the 1D RISM approach

for the case of infinitely diluted solution can be obtained using the following expression [80]:

ρV̄ = 1 +
4πρ
Nsolute

∑
s

∞∫
0

(
hsolvoo (r) − hso(r)

)
r2dr, (35)

where hsolvoo (r) is the total oxygen-to-oxygen correlation function of bulk water, hso(r) is the total

correlation function between the solute site s and the water oxygen.

Within the 3D RISM approach we estimate the solute DPMV via solute-solvent site corre-

lation functions using the following expression [117, 118, 3]:

ρV̄ = ρkBTη
⎛⎜⎜⎜⎜⎜⎝1 − ρ Nsolvent∑

α=1

∫
R3
cα(r)dr

⎞⎟⎟⎟⎟⎟⎠ (36)

where η is the pure solvent isothermal compressibility.
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3 Computational Details

3.1 1D RISM calculations

The HFEs were calculated with the 1D RISM method using the home-made collection of nu-

merical routines developed by our group [77, 119, 120]. Calculations were performed for the

case of infinitely diluted aqueous solutions at T=300K. We used the Lue and Blankschtein ver-

sion of the modified SPC/E model of water (MSPC/E) [121], proposed earlier by Pettitt and

Rossky [122]. It differs from the original SPC/E water model [123] by the addition of LJ po-

tential parameters for the water hydrogen (σLJHw = 0.8Å and ε
LJ
Hw = 0.046 kcal/mol), which were

altered to prevent possible divergence of the algorithm [124, 78, 85, 80]. We took the MSPC/E

bulk solvent correlation functions from the work [125] where they were calculated by RISM

equations for solvent-solvent correlations [66] using wavelet-based algorithms [126, 127].

Figure 7: (a) Representation of the 3D-grid box in calculations of total correlation function

(hα(r), where α is the solvent site) within the 3D RISM. Grid points are shown only at the edges

of the 3D-box. Benchmarking of the input parameters (spacing and buffer) is discussed in the

section Benchmarks of the 3D RISM calculations. (b) Representation of a grid in calculations

of total site-site correlation function (hsα(r), where s and α are solute and solvent sites, accord-

ingly) within the 1D RISM. Number of grid points and values of grid step and cutoff distance

are specified in the text.
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The set of the 1D RISM equations was solved by the standard numerical iterative scheme

using the Bessel-Fourier transforms for the calculation of the convolution integrals [65, 119]. To

speeding-up the iterations the multigrid technique was used (see the sectionMultigrid technique).

Six levels of numerical grids were employed for the calculations. The coarsest grid, where the

most of the iterations were done, had 128 grid points and grid-step of 0.4 Bohr (0.212 Å) (see

Figure 7, b). The solution was obtained on the finest grid, which had 4096 grid points, grid step

was 0.05 Bohr (0.0265 Å) and cutoff distance was 204.8 Bohr (108.4 Å). The accuracy of the

iterations was controlled by the norm of difference between the solutions on the sequential iter-

ations (Eq. 37). Iteration process was stopped when the accuracy of n-th iteration had reached

the threshold εthres: Δn < εthres.

Δn =
1

NsoluteNsolvent

Nsolute∑
s=1

Nsolvent∑
α=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∫
0

[(
h(n+1)sα (r) − h(n)sα (r)

)
−

(
c(n+1)sα (r) − c(n)sα (r)

)]2
dr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2

(37)

where h(n)sα (r), c(n)sα (r), h(n+1)sα (r), c(n+1)sα (r) are the total and direct correlation functions approxima-

tions on the n-th and (n + 1)-th iteration steps respectively.

In the current work, the RISM equations were solved up to the accuracy εthres = 10−4. To

check, whether this accuracy is sufficient for the accurate HFE calculations additional numerical

experiments were performed. It was shown, that for 10 randomly chosen non-polar compounds

the numerical error of the 1D RISMHFE calculations with PWmethod is about 0.008 kcal/mol.

For polar compounds the numerical error is approximately 0.024 kcal/mol. These errors are

essentially lower than a typical error of experimental HFE measurements (∼ 0.24 kcal/mol)

[36]. Therefore, we assume that the numerical accuracy εthres = 10−4 is sufficient.

To perform the calculations one needs three sets of input data: 1) solute atomic coordinates,

2) partial charges on the atoms, and 3) the atoms’ LJ potential parameters (see Fig. 6). Coor-

dinates for linear alkanes, several alkylbenzenes and phenols were taken from the Cambridge

Structural Database [128]. Due to the fact that hydrogen positions determined by standard

X-ray methods differ systematically from those determined by neutron methods [129], we op-

timized the length of the carbon-hydrogen bonds (C-H) using the QM (quantum mechanical)

energy minimization at the MP2/6-311G** level of theory with constrained bonds between

heavy atoms (e.g. C-C). The geometrical parameters of all other solutes (not presented in the

Cambridge Structural Database) were found by the structural optimization at the same level of

theory but without geometrical constrains for the bond lengths between heavy atoms. For all

QM calculations we used Gaussian 03 quantum chemistry software [130]. We modeled all com-

pounds with OPLS-AA (Optimized Potential for Liquid Simulations - All Atom) LJ potential



3 COMPUTATIONAL DETAILS 28

parameters [131, 132, 133]. These parameters were assigned to each atom automatically by the

Maestro software (the Schroedinger Inc.).

We consider two types of partial charges. First one is the OPLS-AA partial charges (for the

sake of brevity, in the rest of the paper we will use for them the shorter abbreviation OPLS). The

second set of partial charges was obtained with the CHELPG procedure [134] at MP2/6-311G**

and B3LYP/6-31G** levels of theory using the Gaussian 03 quantum chemistry software [130].

Comparison of the partial charges for several aliphatic and aromatic compounds is presented in

the section 1D RISM-SDC model with QM-derived partial charges.

We note, that the convergence of the RISM calculations with the original geometric mixing

rules (Eq. 38) is very poor (see Table 7).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σsα =

√
σs · σα

εsα =
√
εs · εα

(38)

To avoid this problem with convergence we performed calculations with the Lorentz-Berthelot

mixing rule for the solute-water LJ potential parameters [135]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σsα =

σs+σα
2

εsα =
√
εs · εα

(39)

The set of structural descriptors was assigned to each molecules automatically using the

computer program "checkmol" [136] and Python scripts.

3.2 3D RISM calculations

The 3D RISM calculations were performed using the NAB simulation package [137] in the

AmberTools 1.4 set of routines [138]. The 3D-grid around a solute was generated such that the

minimal distance between any solute atom and the edge of solvent box (buffer in NAB notation)

was equal to 30 Å, whereas the linear grid spacing in each of the three directions was 0.3 Å (see

the paragraph Benchmarks of the 3D RISM calculations). We employed the MDIIS iterative

scheme [139], where we used 5 MDIIS vectors, MDIIS step size - 0.7, and residual tolerance is

10−10. The PLHNC closure was used for solution of the 3D RISM equations.

The solvent susceptibility functions for 3D RISM calculations were obtained by the 1D

RISM method present in the AmberTools 1.4. The dielectrically consistent 1D RISM (DRISM)

was employed [140] with the PLHNC closure [113]. The grid size for 1D-functions was 0.025

Å, which gave a total of 16384 grid points. We employed the MDIIS iterative scheme [139],
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where we used 20 MDIIS vectors, MDIIS step size - 0.3, and residual tolerance - 10−12. The

solvent was considered to be pure water with the number density 0.0333 Å−3, a dielectric con-

stant of 78.497, at a temperature of 300K. The final susceptibility solvent site-site functions

were stored and then used as input for the 3D RISM calculations.

Within the 3D RISM approach we perform HFE calculations with the following solutes pa-

rameters:

(1) Coordinates of each molecule were optimized using the AM1 Hamiltonian [141] via the an-

techamber [142] suite, which uses the sqm [138] program for semiempirical QM calculations.

The initial configurations for these QM geometry optimizations were taken from the previous

1D RISM calculations (see the section above).

(2) Atomic partial charges were calculated using the AM1-BCC method [143, 144, 142] imple-

mented in the antechamber from the AmberTools 1.4 package [138].

(3) The LJ parameters from the General Amber Force Field (GAFF) [142] were assigned to

solute atoms with the antechamber and he tleap programs [142]. In the case of 1D RISM cal-

culations, for all atoms with zero GAFF LJ potential parameters the following parameters were

used σLJ =0.4 Å and εLJ =0.1185 kcal/mol to prevent divergence of the algorithm.

In this thesis, we compare the accuracy of the 1D RISM and the 3D RISM for HFE calcula-

tions. To make the comparison consistent, we performed additional 1D RISM HFE calculations

with the same solutes parameters.

Benchmarks of the 3D RISM calculations. Two input parameters in the 3D RISM were

investigated in [145]. Buffer, the smallest distance between solute atoms and a 3D box side and

spacing, the distance between grid points in 3D-grid (Figure 7). The tolerance (the L2 norm of

the difference between two subsequent solutions of 3D RISM iterations) was set to 10−10 and

the number of vectors used by MDIIS solver was 5 following the works of the developers of the

3D RISM in the AmberTools [137, 138]. The benchmarks were performed on a paracetamol

molecule as a solute. It was found that accurate HFE calculations within the 3D RISM approach

(error in a range of 0.02 kcal/mol) can be achieved with the following parameters: buffer = 30

Å, spacing = 0.3 Å.

3.3 Multigrid technique

Even for the simplest case of an isotropic liquid the IET of molecular liquids requires a non-

trivial numerical solution of a system of integral equations of the Ornstein-Zernike (OZ) type
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Figure 8: Numeric errors of the HFE of paracetamol calculated by the KH free energy expres-

sion as a function of the buffer distance. The value calculated with buffer = 50
◦
A is chosen to

be a reference. The spacing and tolerance were set to be 0.5
◦
A and 10−10, respectively.

Figure 9: Numeric errors of the HFE of paracetamol calculated by the KH free energy expres-

sion as a function of spacing. The value calculated with spacing = 0.25
◦
A is chosen to be a

reference. The buffer and tolerance were set to be 30
◦
A and 10−10, respectively.
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[105]. The complexity of solution dramatically increases with the increasing number of different

interacting sites of the system [146, 66, 137]. The most simple and straightforward algorithm to

solve the OZ-type equations is the Picard algorithm (see the section One-level Picard iterations)

which is based on a successive substitution scheme (this method is sometimes called “direct it-

eration method”). This technique is easy to implement but it suffers from poor convergence

[147, 66, 77]. These days multigrid numerical methods [148, 149, 150, 151, 152] become

very popular in different areas of science and engineering. The multigrid approach to com-

plex computational problems is actively used in computational chemistry to accelerate quantum

chemistry calculations [153, 154, 155, 156] as well as for the treatment of electrostatic interac-

tions in classical molecular dynamics simulations [157, 158]. A universal multigrid technique

for the numerical solution of the OZ type integral equations was implemented in the home-

made collection of numerical routines developed by our group [77, 119, 120]. This approach

is based on ideas coming from the multigrid methods for numerical solutions of integral equa-

tions [148, 149]. Instead of the nested iteration method used in [147] the coarse-grid correction

method was used. It had been shown to provide better convergence than the nested iteration

method [148].

3.3.1 One-level Picard iterations

There are only a few special cases where Eqs. (17) and (18) can be solved analytically and,

therefore, numerical solutions are necessary. For numerical calculations, the Fourier represen-

tation of the OZ equation, is usually applied:

ĥ(k) − ĉ(k) =
ρĉ2(k)
1 − ρĉ(k)

, (40)

where the hat means the Fourier transform (FT).

For numerical treatment of the OZ equation it is common to introduce a new function γ(r) =

h(r) − c(r) and rewrite Eqs. (18) and (40) in the following way:

c(r) = exp[−βU(r) + γ(r) + B(r)] − 1 − γ(r), (41)

and

γ̂(k) =
ρĉ2(k)
1 − ρĉ(k)

. (42)

One can reformulate the problem of finding a numerical solution of the system (41) –(42)

with functions γ(r) and c(r) represented on a grid ΩL as the solution of a nonlinear equation:

γ(r) = F(γ(r)), (43)
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where F(γ(r)) is given by

F(γ(r)) = T−1 ∗
ρ(T ∗ c(r))2

1 − ρ(T ∗ c(r))
, (44)

and c(r) is given by Eq. (41). Here T and T−1 are Fourier transformation (FT) and inverse

Fourier transformation (IFT), accordingly.

The simplest way of finding the numerical solution of (Eq. 43) is the Picard scheme of

successive iterations [159, 160] where an i-iteration is given by:

γi(r) := F(γi−1(r)). (45)

To facilitate the convergence the damped Picard method [160] is often used where the i-th

iteration is given as

γi(r) := εF(γi−1(r)) + (1 − ε)γi−1(r), 0 < ε ≤ 1; (46)

where ε is a damping parameter. In the following we will refer on the damped Picard method

applied to the problem (Eq. 41) as Picard method and denote an n-steps Picard iteration for (Eq.

41) as

γ(r) := Υn(γ(r), ε). (47)

We note that the convergence of the method is not guaranteed and normally it is quite slow.

Nevertheless, the method is still commonly used in the theory of liquids (often in combination

with other methods) [66, 77] because it is very easy to implement.

3.3.2 Two-grid iteration

In this subsection we will briefly describe the two-grid iteration method (TGM) which is the

base for the construction of multi-grid iterations [148, 149]. The proposed approach mimics the

idea of the TGM method for linear problems with coarse-grid correction [148, 149].

Let us firstly introduce two inter-grid conversion operators: a restriction or fine-to-coarse

operator R which maps the function f from the fine grid ΩL to the coarse grid ΩL−1 :

fL−1 = R ∗ fL, (48)

and a reciprocal operator to restriction - prolongation or coarse-to-fine operator P which inter-

polates the function f given on the coarse grid ΩL−1 to the fine grid ΩL:

fL = P ∗ fL−1. (49)
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There are many possible choices of these operators and advantages and disadvantages of some

of them are well described in [148]. In our work we use the trivial injection [148, 149] for the

restriction operator I and the cubic spline interpolation [160] for the prolongation operator P.

Let us now consider the problem of finding a numerical solution of Eq. (43) on the fine grid

ΩL starting from an initial guess initialL .

Let us assume that there is an iterative process Φ0 (e.g. Eq. (47) with a reasonably large

n) which gives an accurate numerical solution of the problem on the coarse grid ΩL−1 starting

from γinitialL−1 = R ∗ γ
initial
L

γacc.L−1 = Φ0(γ
initial
L−1 ). (50)

Therefore, the correction or defect of the solution on the level L − 1 is given by

dL−1 = γacc.L−1 − γ
initial
L−1 . (51)

The main idea of the TGM iterations is to interpolate this correction to the fine level L using

the prolongation operator P and improve the solution on this level as:

γL = γ
initial
L + P ∗ dL−1. (52)

The procedure then can be repeated to achieve the required accuracy of the solution on the

fine grid. It has been shown in [148] that the convergence of the iterations can be sufficiently

improved by additional one-level smoothing steps (Eq. 47) before and after the coarse-grid

correction (Eq. 52). As a result we obtain the TGM iteration loop (see Algorithm 1).

Algorithm 1 Two-grid iteration.

procedure γout :=TGM (L, γin, n1, n2)

γ := Υn1(γin, ε = 1); (pre-smoothing)

γr := R ∗ γ; (restriction)

γ := γ + P ∗ (Φ0(γr) − γr); (coarse-grid correction)

γout := Υn2(γ, ε = 1); (post-smoothing)

3.3.3 Multi-grid iterations

The extension of the TGM iterations to a more general multi-grid case is very straightforward:

the main idea is to substitute the accurate solution on the coarse level L − 1 by a recursive

approximation of the solution with another two-grid iteration on level L − 2, L − 3 and so on
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until the coarsest level L0 where the coarsest solution is found as γacc.0 = Φ0(γinitial0 ). As the

general principles of the multi-grid iterations construction are well explained in [148] we will

only briefly describe our algorithm below:

Algorithm 2Multi-grid iteration.

procedure γout :=MGM (L, γin, n1, n2, μ)

if L = 0 then γout := Φ0(γin) else

γ := Υn1(γin, ε = 1); (pre-smoothing)

γr := R ∗ γ; (restriction)

for j := 1 step 1 until μ do γout :=MGM(L − 1, γr, n1, n2), μ)

γ := γ + P ∗ (γout − γr), (coarse-grid correction)

γout := Υn2(γ, ε = 1); (post-smoothing)

The parameter μ is rarely chosen bigger than 2 when the iteration is usually called W-

iteration. If μ is equal to 1 it is common to call such iteration as V-iteration. In all our calcula-

tions we used n1 = n2 = 1 steps for pre- and post-smoothing.

As there is no way to find an exact solution of the problem the choice ofΦ0 is quite ambigu-

ous. It could be, e.g., the Picard process (Eq. 47) with a sufficiently large number of iterations

as well as the more efficient but more computationally expensive Newton-Raphson iterations

algorithm [160, 77] or any other numerical procedure which can provide a coarse-grid solution

with a reasonable accuracy (see [159, 147, 120]).
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4 Structural Descriptors Correction (SDC) model

4.1 The QSPR basis of the model

Quantitative Structure - Property Relationship (QSPR) models are based on the idea that a

physical/chemical property can be related to a set of molecular descriptors of the compound

[161, 91]. The main assumption behind the QSPR approach is that similar molecules have

similar properties. Thus, one can predict a property of a target compound using its structural in-

formation and the mathematical relationship, obtained previously on a separate set of molecules

(training set). We note that the predictive ability of the QSPR approach strongly depends on

the choice of molecules for the training set and quality of experimental data for the selected

molecules.

The mathematical relationship obtained in a QSPR model may be linear (single- or multi-

parameter linear regression) or non-linear (neural networks, random forests, etc.). In this thesis

we consider only linear regression models. In the case that the property of interest Y is related to

one molecular descriptor D, the corresponding one-parameter linear regression can be written

as

Y = a0 + aD, (53)

where Y and D are vectors of the property values and the molecular descriptor values for a

training set of molecules, accordingly. Alternatively, the property Y may depend linearly on

several molecular descriptors. It this case, the corresponding multi-parameter regression can be

found as (see the section Multi-parameter linear regression for details):

Y = a0 + a1D1 + a2D2 + a3D3 + · · · + anDn
= a0 +

∑n
i=1 aiDi.

(54)

The basic stages in developing a QSPR model are the following (see Fig. 10):

1. Preparation of input parameters: Select a set of molecules on which the QSPR model

will be obtained and store a set of 1D (or 2D) structural information of the selected

molecules as well as their experimental values of the property of interest in a computer-

acceptable format. The majority of molecular descriptors (generated in the next step) re-

quire the 3D structure of the molecules as an initial parameter [162] which can be either

extracted from experimental data (e.g. X-ray structures from the Cambridge Structural

Database [128]) or determined with a computational software (e.g., with Gaussian 03

chemical software [130] which combines a molecular editor (for 2D structure generation)

with a geometry optimization routine).



4 STRUCTURAL DESCRIPTORS CORRECTION (SDC) MODEL 36

Figure 10: Stages of the Quantitative Structure – Property Relationship (QSPR) model devel-

opment: representation a compound chemical structure with a set of structural descriptors, and

development of a mathematical model that connects the structural descriptors with a property

of interest.

2. Generate set of descriptors: There are several basic types of molecular descriptors:

topological, geometrical, electronic, or hybrid [162]. Topological descriptors can be de-

rived from the connection table representation of a molecule structure. They contain atom

and bond counts, fragment counts, connectivity indexes, distance-sum connectivity, etc.

Geometrical descriptors can be obtained from the 3D structure of the molecule: molec-

ular volume, solvent accessible surface area (SASA), etc. Electronic descriptors can be

represented with LUMO, HOMO energies, partial atomic charges, dipole moments, po-

larizability, etc. In turn, hybrid descriptors combine aspects of several of these descriptors

type.

3. Separation of the compounds into training and test sets: The selected set of molecules

(see step 1) is separated into training and test sets. The training set is employed to select

the significant molecular descriptors of the model and to determine the model coefficients

values. The test set is necessary for validation of the efficiency of the QSPR model.

4. Statistical treatment of data for the training set: The set of calculated molecular de-

scriptors (see step 3) is employed in a multi-parameter regression to predict the prop-

erty of interest. There are two main problems related to the employment of a large set
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of descriptors: (i) number of regression equations can be estimated as 2n − 1, where n

is the number of descriptors [163], which in the case of 102 descriptors is enormous,

(ii) calculated molecular descriptors are, usually, non-orthogonal (i.e., the corresponding

correlation coefficients deviate significantly from zero). Employment of non-orthogonal

descriptors leads to several QSPR equations which provide similar predictive accuracies.

Identification of relevant descriptors can be performed with, for example, the step-wise

strategy proposed by Katritzky [161] which involves extraction of the most relevant de-

scriptors with the Fisher criterion.

5. Prediction: Application of the obtained QSPR model to the test set of compounds; anal-

ysis of the accuracy of the obtained results using statistical measures such as the mean of

the error (Eq. 55), the standard deviation of the error (Eq. 56), and the root mean square

of the error (Eq. 57).

mean(ε) ≡ ε̄ =
1
N

N∑
i=1

εi (55)

std(ε) ≡ σ(ε) =

√√
1
N

N∑
i=1

(εi − ε̄)2 (56)

rms(ε) =

√√
1
N

N∑
i=1

ε2i =
√
σ(ε)2 + ε̄2 (57)

The semi-empirical model proposed in this thesis differs from standard QSPR models:

• Firstly, as a property of interest we chose not the physical/chemical parameter (hydra-

tion free energy) but the difference between its experimental and RISM-calculated values

(modeling error):

ε = Δμ
exp
hyd − Δμ

model
hyd , (58)

where Δμexphyd is the experimental value of HFE, Δμ
model
hyd is the HFE calculated by the RISM

approach (superscribe model denotes the RISM-based HFE expression, e.g. PW, GF,

etc.).

• Secondly, we assume that the modeling error can be parameterized with a small set of

structural corrections associated with the main structural features of solutes: partial molar

volume, aromatic rings, electron-donating/withdrawing substituents, etc.

Employment of these descriptors should simplify the procedure of the multi-parameter

equation development because almost all these descriptors are independent and the to-

tal number of these primary fragments is small (see the section Choice of descriptors).
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Figure 11: Schematic representation of a molecule (3,3’,5,5’-tetrachlorobiphenyl) as a combi-

nation of fragment counts. The SDC model equation as a linear combination of the correspond-

ing structural corrections: a1D1 is the DPMV correction, a2D2 is the correction on branches,

a3D3 is the correction on benzene ring, a4D4 is the correction on halogen atom, a0 is the cavity

independent systematic error (see Eq. 59).

Thus, the regression equation can be obtained without the orthogonal descriptors search.

However, in this case, one should analyze the significance of each proposed structural

descriptor. In the present study we chose the coefficient of determination, R2, as a criteria

for the descriptors selection (see the section Optimal set of corrections).

• Thirdly, in addition to the assumptions behind the standard QSPR approach we proposed

the following hypothesis: primary structural features of the solute molecule contribute

independently to the modeling error. That means that for polyfunctional solutes the mod-

eling error can be represented as a linear combination of primary corrections obtained on

monofunctional solutes (see Fig. 11). In other word, once calibrated, the model should

predict the property of interest for a wide range of polyfunctional solutes without an ad-

ditional reparametrization.

For this purpose, instead of random separation of the whole set of molecules on train-

ing and test set, the separation should be performed only for monofunctional molecules,

whereas polyfunctional molecules should be present only in the test set (see the section

Training and test sets).
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The methods described above resulted in a semi-empirical functional, first proposed in this

thesis, which combines the HFE calculated by RISM with a set of structural corrections to

remove its error - the Structural Descriptors Correction (SDC) model:

ΔμSDChyd = Δμ
model
hyd +

∑
i

amodeli Di + amodel0 (59)

where Δμmodelhyd is the HFE calculated with a model HFE expression within the RISM approach,

the second term is the set of structural corrections, amodel0 is a constant (the meaning of this term

will be explained below).

4.2 Multi-parameter linear regression

Let us consider a training set containing N molecules. Let Δμexp(1) , . . . ,Δμ
exp
(N) be the experimen-

tally measured HFEs of the molecules 1, . . . ,N respectively. Let Δμm(1), . . . ,Δμ
m
(N) be the HFEs of

molecules 1, . . . ,N, calculated via the RISM approach using the HFE expression m (m = PW,

GF, etc.). We define the vector Y of the differences between the experimental and calculated

HFE values:

Y = (y1, . . . , yN)T , where yi = Δμexp(i) − Δμ
m
(i), i = 1, . . . ,N (60)

Let D(i)1 , . . . ,D
(i)
n be the values of descriptors of the i-th molecule, where i = 1, . . . ,N. We define

the matrix of descriptor values:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(1)1 . . . D(1)n 1

D(2)1 . . . D(2)n 1
... · · · ...

...

D(N)1 . . . D(N)n 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(61)

We vary the free coefficients to obtain the best agreement between the SDC model and the

experimental measurements. For this purpose, we apply the standard least squares technique

[98]. Let a be the vector of the free coefficients:

a = (a1, . . . , an,C)T (62)

We can find the vector δ of the errors of the model:

δ = Y − Da (63)

Our goal is to minimize the squared error Δ:

Δ =

N∑
i=1

δ2i → min (64)
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To find a minimum we calculate the partial derivatives of the squared error Δ with respect

to the free coefficients and set them to be zero:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Δ

∂ak
=

∑N
i=1 δiD

(i)
k = 0

k = 1, . . . , n
∂Δ

∂C
=

∑N
i=1 δi = 0

(65)

The Eqs. (65) can be written in a matrix form:

DTδ = DT (Y − Da) = 0 (66)

From the Eq. (66) one may find the free coefficients a:

a =
(
DTD

)−1
DTY (67)

4.3 Training and test sets

Development of the SDC model requires two sets of molecules, training and test. The training

set is necessary for the model calibration. Particularly, the training set of compounds is used

to select significant molecular descriptors and to derive the SDC model coefficients values. In

turn, the test set of compounds is utilized for analysis of the accuracy of predicted results and

estimation of the SDC model predictive ability.

In this thesis, we used the internal set of 185 experimental HFEs for neutral organic small

solutes which was compiled from different literature sources [101, 164, 33, 34, 165, 45, 35].

The chosen solutes can be represented as a combination of several moieties: alkyl, alkenyl,

phenyl, hydroxyl, halo, aldehyde, carbonyl, ether, etc. In the present work we specified also

phenol fragment as a separate moiety. We name solutes consisting of either only alkyl moiety

or its combination with only one other moiety as "simple" solutes. In turn, we name solutes

consisting of combination of alkyl moiety with several others (of the same or different types)

as polyfragment. One of the basic ideas of the SDC model is to calibrate it on the training set

of "simple" organic molecules which can have only one functional group (substituent) apart

from an alkyl chain. Following this idea, we used a training set of 65 "simple" solutes for

the SDC model calibration. Another 120 solutes formed the internal test set, which contained

60 "simple" solutes from the same chemical classes as used in the training set as well as 60

polyfragment solutes. Detailed information about the training and test sets is presented in the

Appendix 1 together with the corresponding experimental HFEs.
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As an external test setwe used the set of 220 experimental HFEs for persistent organic pollu-

tants: 11 polychlorinated benzenes (see Table 14) and 209 polychlorobiphenyls (see Appendix

1), and the set of 21 druglike molecules (see Table 15).

4.4 Choice of descriptors

4.4.1 n−Alkanes.

First we considered the training set of n−alkanes that have no specific interactions with water

molecules, and, therefore, the excluded volume effect makes a significant contribution to their

hydration [166, 34, 45]. Several descriptors have been proposed which take into account the ex-

cluded volume effect: the solvent accessible surface area (SASA) [166, 167, 168], partial molar

volume (PMV) [80], their combination [169], number of carbon atoms [170], etc. In the present

work we used the dimensionless PMV (DPMV) descriptor obtained within the corresponding

RISM approach, ρV̄ (where V̄ is the solute partial molar volume and ρ is the number den-

sity of the solvent). The DPMV calculations within the framework of the 1D RISM approach

for the case of infinitely diluted solution are straightforward (Eq. 35) [80]. It is known that

n−alkanes have a linear relationship between their experimental HFEs and excluded volume

[166, 167, 168, 170]. For the given training set of n−alkanes we plotted both Δμexphyd and Δμ
PW
hyd

versus DPMV calculated by 1D RISM (Fig. 12, a). The 1D RISM-PW method gives qual-

itatively correct results (a linear dependence between ΔμPWhyd and DPMV), but the dependence

for the calculated data is considerably shifted with respect to the corresponding experimental

data, and these dependencies have different slopes. The major shift of the calculated data can

be corrected with the aPW0 free coefficient (-3.58 kcal/mol) of the SDC model (Eq. 59, the last

term). This correction eliminates a general systematic error of the 1D RISM which does not

depend on the solute PMV. For the sake of brevity, in the rest of the thesis we will mainly talk

only about contributions of the solute structure descriptors, although all calculations were done

including the aPW0 correction as well. We correct the slope of the HFEs calculated with the PW

method by the DPMV correction (aPW1 D1, where D1 =DPMV and a
PW
1 is the slope for the linear

dependence between ε (see Eq. 58) and DPMV for n−alkanes). We note, that this correction

was first proposed in [80].

4.4.2 Nonlinear alkanes.

On Fig. 12 (b) we plotted the difference between HFEs calculated with the aPW1 D1 correction

and corresponding values of Δμexphyd versus the DPMV for the whole training set of alkanes to
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check whether this correction is sufficient to provide a reasonable accuracy of HFE calculations

for branched alkanes. As one can see (Fig. 12, b), for n−alkanes the difference is close to zero.

The differences for the branched alkanes are shifted up with respect to those for n−alkanes.

We assumed that the values of the shifts are approximately constant for the alkanes with the

same number of branches and do not depend on DPMV. Analysis of the Fig. 12 (b) shows

that the shifts are proportional to the number of branches (Nbr). Thus, an introduction of one

branch into the carbon skeleton of a solute has a constant effect on the error of calculated

HFEs. This effect can be considered by another systematic error of the 1D RISM approach

which overestimates the influence of branches on the HFE. Therefore, we introduce another

correction for the number of branches in the carbon skeleton (aPW2 D2, where D2 = Nbr). Finally,

we found that for alkanes it is sufficient to use the combination of aPW1 D1 correction with the

aPW2 D2 correction to significantly decrease the error of calculated HFEs.
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Figure 12: a) HFEs calculated by the 1D RISM with the PW free energy expression ΔμPWhyd and experimental values Δμ
exp
hyd versus DPMV (ρV̄) for the

training set of n−alkanes. b) Difference between calculated Δμ(1)hyd and experimental Δμ
exp
hyd data (where Δμ

(1)
hyd = Δμ

PW
hyd + a

PW
1 D1 + a

PW
0 ) versus DPMV for

linear and branched alkanes (the training set).
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Figure 13: The difference between calculated Δμ(2)hyd and experimental Δμ
exp
hyd HFEs (where

Δμ
(2)
hyd = Δμ

PW
hyd +a

PW
1 D1+a

PW
2 D2+a

PW
0 ) versus Δμ

exp
hyd for the training set of solutes. Dashed lines

indicate mean values of the difference inside of chemical classes. Arrows indicate the biases of

mean values of corresponding molecular set with respect to zero.

4.4.3 Other compounds.

Next, we analyzed whether the described above empirical corrections (aPW1 D1 and a
PW
2 D2) are

sufficient to provide an accurate estimation of HFEs for all other chemical classes from the

training set. Figure 13 shows the differences between values of HFEs calculated with these

corrections and the corresponding experimental data against Δμexphyd for the whole training set of

solutes. The differences for all classes of solutes (except alkanes) are biased with respect to zero.

Each class of solutes has its own bias, but the standard deviation inside of the most of the classes

is small (Fig. 13). Thus, we supposed that the bias for each chemical class can be removed by

the use of the appropriate fragment correction. From this observation we may conclude that

introducing one of the functional groups for each class of solutes introduces a constant error in

the HFE calculated with 1D RISM approach. This result reveals the hidden systematic errors

in the 1D RISM method due to which the values of HFE are over- or underestimated for solutes

with different functional groups.

Previously it was found that the 1D RISM method considerably overestimates the specific
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interactions of solutes with water (e.g. H-bonds formation) that results in too low values of

corresponding HFEs [80, 171, 172]. For alcohols this drawback of the 1D RISM is illustrated

by Fig. 13 (green triangles). However, the phenol fragment effect on the HFE is not so clear.

From the Figure 13 (red diamonds) it is obvious that the phenol fragment contribution can not

be treated as a sum of OH-group and benzene ring contributions. Thus, we had to introduce a

descriptor for the number of phenol fragments (Nph). The detailed analysis of the correction for

the phenol fragment is shown in the section Results and Discussion.

Therefore, to obtain a high accuracy predictions for HFE calculations for a given set of so-

lutes we introduced a number of fragment descriptors associated with specific solute structures:

number of branches in a carbon skeleton (Nbr), number of double bonds (Ndb), number of ben-

zene rings (Nbz), number of hydroxyl groups (NOH), number of phenol fragments (Nph), number

of halogen atoms (Nhal), number of ether groups (Neth), number of aldehyde groups (Nald), and

number of ketone groups (Nket). Thus, for the given set of solutes (see Training and test sets)

the second term of the SDC model (Eq. 59) consists of 10 structural descriptors: 1 hybrid-type

descriptor, DPMV (it contains the information about both non-polar and specific solute-solvent

interactions) and 9 topological (fragment-based) descriptors. Representatives for each of given

class of solutes and their structural features requiring corrections are presented on Fig. 14. As

the 1D RISM approach takes into account the molecular details of the solvent structure, one can

see that each of specified structural features changes the solvent distribution around the solute

(Fig. 14).
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Figure 14: Structural descriptors illustrated on the representatives of chemical classes used in this thesis: a) alkene; b) alkane; c) haloalkane; d) alcohol;

e) benzene; f) ether; g) aldehyde; h) phenol; i) ketone. Gray balls are carbons, white balls are hydrogens, red balls are oxygens, and the green ball is

chlorine atom. The colormaps illustrate approximate water density distribution around the molecules, reconstructed from the 1D site-site g(r) (we denote

the positions of water molecules as the positions of water oxygens).
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4.5 Optimal set of corrections

To obtain an optimal combination of corrections we analyzed the influence of each term of

Eq. (59) on the coefficient of determination R2 (Eq. 68). We chose the following criteria for

the selection of corrections. If the difference between the coefficient of determination for the

SDC model with the total set of corrections and a reduced set (without one correction) is less

than 0.005, then the correction may be excluded. As one can see (Table 1), differences for all

considered sets of corrections are bigger that this criteria. Thus, the final equation of the 1D

RISM-SDC model contains all corrections, proposed in the previous section.

R2 = 1 −
∑n
i=1(yi − fi)2∑
i(yni=1 − ȳ)2

, (68)

where n is the number of observations, yi are the observed values, fi are the modeled (predicted)

values, ȳ is the mean of the observed data.

Table 1: Correlation coefficients of multi-parameter linear regressions for the SDC model with

different sets of corrections. The analysis was made for HFEs obtained by the 1D RISM with

the PW method and the PLHNC closure. The total set of corrections is shown in Table 3. Each

correction is significant.
Set of corrections R2 R2total − R

2
current

Total 0.947 0.000

without aPW0 0.852 0.096

without aPW1 D1 0.466 0.481

without aPW2 D2 0.795 0.153

without aPW3 D3 0.935 0.012

without aPW4 D4 0.904 0.043

without aPW5 D5 0.938 0.010

without aPW6 D6 0.933 0.014

without aPW7 D7 0.866 0.081

without aPW8 D8 0.901 0.047

without aPW9 D9 0.937 0.010

without aPW10 D10 0.861 0.087
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5 Results and Discussion

5.1 PMV estimations with 1D and 3D RISM approaches

The partial molar volume (PMV) is a useful quantity that shows not only information about the

immersed solute structure but also the important data about the solute-solvent interactions. One

should note that the PMV is a thermodynamic quantity and it cannot be presented as only a

geometric volume (van der Waals volume, molecular volume, etc.) of the solute [3, 173]. The

common way of the PMV analysis is its representation as a sum of contributions. According to

works [174, 3, 118] the PMV of solute at infinite dilution can be decomposed into the following

terms:

V̄ = VW + VT︸����︷︷����︸
VC

+VI + kBTχT , (69)

where VC ("cavity" volume) is the volume of the cavity created in the solvent large enough to

accommodate the solute molecule; it contains two contributions: (i) the solute "intrinsic" vol-

ume (for low molecular weight solutes it can be approximated by the van der Waals volume VW)

and (ii) the "thermal" ("empty", "void" [3, 173]) volume VT associated with thermally induced

molecular vibrations of both the solute and solvent molecules which lead to creation of empty

space around the solute molecule [174, 118] (see Fig. 15); VI ("interaction" volume) corre-

sponds to the decreasing of the system volume because of specific interactions between water

Figure 15: The solute’s cavity volume as a combination of two contributions: (i) the solute

"intrinsic" volume (for low molecular weight solutes it can be approximated by the van der

Waals volume, VW), (ii) the "thermal" volume VT .
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molecules and the solute molecule; kBTχT is the ideal term that describes the volume effect

related to the kinetic contribution to the pressure of a solute molecule due to translation degrees

of freedom, where χT is the isothermal compressibility of pure solvent, kB is the Boltzmann

constant, T is the temperature. It was found that the value of the ideal term is only about 1

cm3 · mol−1 [174], and therefore usually can be ignored.

In the current work we use the PMV obtained by the 1D and 3D RISM approaches as a

hybrid descriptor of the RISM-SDC model (see the section Choice of descriptors). However,

before employing the descriptor, we estimated the accuracy of calculated PMVs. For this pur-

pose, we collected experimental values of PMV from available literature sources [101, 175, 176,

177, 178] and revealed a lack of data for small organic molecules (in particular, for non-polar

solutes) (see Table 2). Comparison of averaged experimental PMVs with the corresponding

PMV values obtained by the 1D and 3D RISM is shown on Figure 16 (a). We obtained strong

linear correlations between experimental and calculated PMV values for both the 1D RISM

(r = 0.984) and the 3D RISM (r = 0.988). We note that the corrections were shown previously

for 20 amino acids in [179].

Table 2: Experimental values of partial molar volume from

available literature sources (cm3 ·mol−1). Values obtained by

different authors are in good agreement with each other. As

one can see, there is a lack of experimental data for non-polar

solutes.

Name [101] [175] [176] [177] [178] mean value

ethane 51.20 52.00 51.60

methane 37.30 37.30 37.30

propane 67.00 69.00 68.00

buta-1,3-diene 68.30 68.30

ethylbenzene 114.50 114.80 114.65

n-propylbenzene 130.80 130.80

toluene 97.71 97.50 98.40 97.87

2-methylbutan-2-ol 102.50 101.30 101.9

2-methylpropan-1-ol 86.75 86.50 86.70 86.65

butan-1-ol 86.48 86.60 86.60 86.60 86.57

Continued on next page
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Table 2 – continued from previous page

Name [101] [175] [176] [177] [178] mean value

butan-2-ol 86.65 86.60 86.60 86.62

ethanol 55.12 55.10 55.10 55.10 55.11

heptan-1-ol 133.43 133.00 133.22

hexan-1-ol 117.56 118.70 118.50 118.25

hexan-3-ol 117.14 117.14 117.14

methanol 38.25 38.15 38.20 38.20

pentan-1-ol 102.88 102.40 102.40 102.56

pentan-2-ol 102.55 102.55

pentan-3-ol 101.28 101.20 101.20 101.23

propan-1-ol 70.63 70.70 70.60 70.64

propan-2-ol 71.93 71.80 71.95 71.89

3-methylbutan-2-one 95.00 95.00

4-methylpentan-2-one 95.00 95.00

butanone 82.90 82.50 82.90 82.77

pentan-2-one 98.00 98.00 98.00 98.00

pentan-3-one 98.08 98.08

propanone 66.80 66.80

di-n-propyl ether 115.00 115.00

diethyl ether 90.40 90.40 90.40 90.40

diisopropyl ether 115.00 115.00

1,2-dimethoxyethane 95.88 95.70 95.79

2-butoxyethanol 122.91 122.91

2-ethoxyethanol 90.97 90.97

2-propoxyethanol 107.10 107.10

3-hydroxybenzaldehyde 97.90 97.90

4-hydroxybenzaldehyde 96.90 96.90

dimethoxymethane 80.50 80.50

As one can see (Figure 16, b), the PMVs obtained by the 3D RISM are slightly deviate from

the experimental data with a bias linearly related with the size of solutes. In turn, the PMVs

obtained by the 1D RISM approach significantly deviate from the experimental ones. However,
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Figure 16: (a) Comparison of PMVs calculated by the 1D RISM (Eq. 35) and 3D RISM (Eq. 36)

and averaged experimental values for alkanes, diene, alkylbenzenes, alcohols, ketones, ethers,

and several polyfragment solutes (see Table 2). Dashed line illustrates the ideal correlation,

while solid lines show the line-of-best-fit. (b) Difference between calculated and experimental

PMVs versus experimental data. As one can see, PMVs obtained by the 3D RISM are slightly

deviate from the experimental data with a bias linearly related with the size of solutes. In

turn, the PMVs obtained by the 1D RISM approach significantly deviate from the experimental

values with a bias rapidly increased with the increase of the solute size.

the bias also linearly depends from the size of a solute (rapidly increases with the increase of

the solute size). The linear behavior of errors in both the 1D and 3D RISM approaches allows

one to eliminate the errors with the following equation:

V̄ = bRIS M1 · V̄RIS M + bRIS M0 , (70)

where V̄RIS M is the PMV obtained by RISM approach, bRIS M1 is a scaling coefficient (b1DRIS M1 =

1.60 and b3DRIS M1 = 1.04), bRIS M0 is an intercept (b1DRIS M0 = −16.35 cm3 · mol−1 and b3DRIS M0 =

−2.64 cm3 · mol−1). In the rest of the work we used PMV in Å3.

In this thesis for the RISM-SDC model we used uncorrected PMV values obtained within

the same RISM approach. In this case, the coefficients bRIS M0 and bRIS M1 contribute to values of

the corresponding a0 and a1 coefficients of the RISM-SDC model (see Eq. 59).
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5.2 1D RISM-SDC model with OPLS partial charges

5.2.1 Calibration of the model

Values of coefficients {aPWi } of the 1D RISM-SDC model with OPLS solute’s partial charges

– the 1D RISM-SDC(OPLSq) model, (Eq. 59) with the considered set of descriptors (see the

section Choice of descriptors) were obtained by the multi-parameter linear regression analysis

(see the section Multi-parameter linear regression) with the training set of solutes (see the sec-

tion Training and test sets). Regression analysis was performed with the function regress from

Matlab Statistics Toolbox (MATLAB version 7.8.0.347(R2009a), the MathWorks Inc., 2009).

Results are shown in Table 3. All determined coefficients have the same order of magnitude

showing that each descriptor from the considered set is significant.

Table 3: Descriptors and the corresponding multi-parameter linear regression coefficients of the

1D RISM-SDC model with the PW free energy expression (see Eq. 59).

Descriptor Coefficient (kcal/mol)

Dimensionless partial molar volume (D1 = ρV̄) aPW1 = -1.51

Number of branches (D2 = Nbr) aPW2 = 1.07

Number of double bonds (D3 = Ndb) aPW3 = -0.92

Number of benzene rings (D4 = Nbz) aPW4 = -1.70

Number of OH-groups (D5 = NOH) aPW5 = 0.73

Number of phenol fragments (D6 = Nph) aPW6 = -1.52

Number of halogen atoms (D7 = NHal) aPW7 = -2.10

Number of ether groups (D8 = Neth) aPW8 = -1.69

Number of aldehyde groups (D9 = Nald) aPW9 = -0.91

Number of ketone groups (D10 = Nket) aPW10 = -2.44

In Fig. 17 the 1D RISM-SDC(OPLSq) model’s corrections together with experimental and

calculated HFEs are shown for two solutes: non-polar alkane (2,3-dimethylpentane) and polar

alcohol (2-methylpentan-3-ol). For the simplicity of comparison these two solutes were chosen

in such a way that they have almost the same structure but different side groups at the third

carbon atom. As one can see, the HFEs calculated with the uncorrected PW method (Fig. 17,

upper grey bars) are overestimated for both solutes: alkane with positive Δμexphyd and alcohol with

negative Δμexphyd (Fig. 17, red bars). As it was shown above, the major part of the difference

between ΔμPWhyd and Δμ
exp
hyd can be eliminated with the a

PW
0 and DPMV (aPW1 D1) corrections.
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Figure 17: HFEs and structural corrections of the 1D RISM-SDC(OPLSq) model with the PW

free energy expression for alkane (2,3-dimethylpentane) and alcohol (2-methylpentan-3-ol).

Red bars are experimental data, blue bars are HFEs calculated with the 1D RISM-SDC(OPLSq)

model, grey bars are contributions of the model. Depicted structural corrections can be pre-

sented as a product of the descriptor and the corresponding coefficient (e.g. DPMV correction

equals aPW1 D1, see Eq. 59). Values of dimensionless descriptors are given in the inset table.

Values of required coefficients aPW1 , a
PW
2 , and a

PW
5 are presented in Table 3.

In turn, structural corrections are required to increase the accuracy of HFE calculations by

removing other hidden systematic errors. Thus, the OH-group correction (aPW5 D5) has positive

value and compensates the overestimation of the strengths of specific interactions between the

OH-groups of the polar solute and water molecules. For branched solutes it is also necessary to

take into account the branches correction (aPW2 D2).

Results of HFE calculations with the 1D RISM-SDC(OPLSq) model for the whole training

set of solutes are shown on Fig. 18. Correlation coefficient between Δμ1DRIS M−SDChyd and Δμexphyd
equals 0.9870 showing that the 1D RISM-SDC(OPLSq) model with small set of structural de-

scriptors can accurately describe HFEs of 65 solutes with different chemical nature (see Table

4).
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Figure 18: (a) Correlation between HFEs calculated by the 1D RISM-SDC(OPLSq) model with the PLHNC closure and the PW free energy expression

(ΔμSDChyd ) and experimental values (Δμ
exp
hyd) for the training set of solutes. Solid line shows the ideal correlation, while dashed lines illustrate the std of

the error. (b) Difference between ΔμSDChyd and Δμexphyd versus experimental HFEs for the training set. Dashed lines indicate the corresponding std of the

difference (see Table 4).
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5.2.2 The model predictive ability

The predictive ability of the 1D RISM-SDC(OPLSq) model was analyzed using the internal

test set of 120 solutes and the same set of coefficients from Table 3 as for the training set.

Comparison of the predicted and experimental HFEs is shown on Fig. 20. As we previously

noted, the test set contains 60 polyfragment solutes. Among them there are dienes, dihydric al-

cohols, unsaturated aliphatic alcohols, styrenes, phenyl alcohols, di- and polychloroalkanes,

chlorobenzenes, chlorophenols, hydroxybenzaldehydes, alkenals, alkoxyphenones, oxyalco-

hols, phenylethers, and alkoxyphenols. As one can see (Fig. 20), the proposed 1D RISM-

SDC(OPLSq) model allows to predict HFEs of "simple" solutes with high accuracy. Details of

the model statistical profile are presented in Table 4.

In the case of polyfragment solutes, predictability of the 1D RISM-SDC(OPLSq) model is

sensitive to the chemical nature of solutes. One can see on Fig. 20, several polyfragment solutes

for which the difference Δμ1DRIS M−SDChyd − Δμexphyd exceeds the std of the error. Some of them are

small chloroalkanes (Nhal equals 2-5). Others are chlorobenzenes with 3 or 4 chlorine atoms.

We suppose that the main reason of this deviation is the fact that OPLS partial charges do not

take into account redistribution of electron density around electronegative groups.

We analyzed the ability to describe properties of polyfragment solutes with OPLS charges

on phenols as an example. For this purpose we made the comparison of three solutes, benzene,

phenol, and phenyl alcohol (Fig 19). In the case of benzene each type of atoms has its own

OPLS partial charge. QM-derived partial charges differ for symmetric atoms in the third digit

after point. As it was shown above (see the section Choice of descriptors) the phenol fragment

contribution can not be treated as a plain sum of the OH-group and benzene ring contributions.

Results of the regression analysis confirm that even taking into account all required corrections

(DPMV, branches, benzene ring, and OH-group corrections) the difference Δμcalchyd − Δμ
exp
hyd for

phenols is sufficiently biased with respect to zero (it is about 2 kcal/mol). We attribute this

effect to the oversimplified character of OPLS partial charges for phenol. It is well known that

substitution of a benzene hydrogen to an OH-group (electron-donating substituent) influences

the electron density distribution and, correspondingly, the partial charges on carbon atoms in

phenols [180]. The OPLS partial charges take into account only the change of the partial charge

on the carbon atom closest to OH-group (it has q =0.150 instead of q = -0.115 for benzene’s

carbons) [131]. All other atoms in benzene ring have the same parameters as for the "neat"

benzene (see Fig. 19). However, partial charges on other carbon atoms also change because

of the electron density redistribution, and, as a result, meta−, orto−, and para−positions in the
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Figure 19: Partial charges for heavy atoms of benzene, phenol, and benzyl alcohol. For simplic-

ity the hydrogen atoms are not shown. There are the two numbers next to each symmetry-unique

atom in the solute. The first number (in blue) is OPLS partial charge and the second number (in

magenta) is the QM-derived partial charge obtained with CHELPG procedure [134] at MP2/6-

311G** level of theory using the Gaussian 03 software [130]. Blue and magenta circles near

the numbers show the approximate ratio of the corresponding partial charges.

phenol ring become distinguishable (the mesomeric effect [180]). OPLS partial charges do not

reflect these details. Thus, phenols properties are not described in a proper way. Consequently,

we included the subset of phenols into the training set and introduced additional correction for

the number of phenol fragments (aPW6 D6, where D6 is the total number of phenol fragments).

However, the OPLS partial charges perform satisfactory for phenyl alcohols containing a carbon

spacer between the benzene ring and the OH-group which neglects the influence of oxygen on

the aromatic system (see Fig. 19). In this case the HFE correction can be approximated as a

sum of the benzene ring and the OH-group contributions with the additional DPMV correction

for the spacer.

For the rest of polyfragment solutes the deviation of predicted HFEs is comparable for

those of "simple" from the test set. That means that coefficients of the model determined with

the training set of "simple" solutes are transferable to polyfragment solutes. This indicates a

great potential of the 1D RISM-SDC(OPLSq) model for HFE predictions of various organic

molecules.

To analyze the accuracy of the data obtained with the 1D RISM-SDC(OPLSq) model we

calculated the mean values and standard deviation (std) of the difference Δμ1DRIS M−SDChyd − Δμexphyd
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Table 4: Composition of the training and test sets by chemical classes. Statistical profile of

the 1D RISM-SDC(OPLSq) model with the PW free energy expression: mean value and the

standard deviation (std) of the difference Δμ1DRIS M−SDChyd − Δμexphyd for the training and test sets of

solutes (kcal/mol).

Chemical class Fragmenta Training Set Test Set

N mean std N mean std

alkanes R-R(Rn) 11 0.00 0.36 11 -0.10 0.38

alkenes R=R 6 0.00 0.36 5 0.39 0.56

alkylbenzenes Ph(Rm) 6 0.00 0.32 11 0.27 0.67

monohydric alcohols R(OH) 8 0.00 0.38 14 0.18 0.35

phenols Ph(Rl)(OH) 5 0.00 0.31 8 0.19 0.46

chloroalkanes R-Hal 10 0.00 0.48 0 − −

aldehydes R-CHO 6 0.00 0.81 4 -0.20 0.25

ketones (R2)C=O 6 0.00 0.15 7 -0.53 0.33

ethers R-O-R 7 0.00 0.45 0 − −

Polyfragment Solutesb c 0 − − 60 -1.15 1.44

TOTAL: 65 0.00 0.45 120 -0.55 1.24

a [R= alkyl; n = 2, 3; m = 1 . . . 6; l = 1 . . . 5];
b dienes, dihydric alcohols, unsaturated aliphatic alcohols, styrenes, phenyl alcohols, di-

and polychloroalkanes, chlorobenzenes, chlorophenols, hydroxybenzaldehydes, alkenals,

alkoxyphenones, oxyalcohols, phenylethers, alkoxyphenols;
c combinations of the previous fragments

for both training and test sets (Table 4). As one can see, even with polychloroalkanes and

chlorobenzenes the std does not exceed 1.24 kcal/mol for the test set of solutes. We analyzed

whether this difference is biased with respect to zero. For this purpose we calculated mean

value of the difference Δμ1DRIS M−SDChyd − Δμexphyd . For the test set of solutes it equals -0.55 ± 0.11

kcal/mol (in this case and in the rest of the thesis the error of mean is the std divided by the

square root of number of solutes). As one can see, the difference between experimental and

predicted data is slightly biased, and the accuracy of the predicted HFEs depends mostly on the

deviation of calculated data.
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Figure 20: (a) Correlation between HFEs calculated by the 1D RISM-SDC(OPLSq) model with the PLHNC closure and the PW free energy expression

(ΔμSDChyd ) and experimental values (Δμ
exp
hyd) for the internal test set of solutes. Solid line illustrates the ideal correlation, whereas dashed lines show the

std of error. (b) Difference between ΔμSDChyd and Δμ
exp
hyd versus experimental HFEs for the test set. Dashed lines indicate the corresponding the std of the

difference.
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5.2.3 Comparison with other hydration free energy expressions

We compared the accuracy of HFEs calculated with different 1D RISM HFE expressions (see

the section Hydration Free Energy Expressions within the 1D RISM approach) for the test set

of 120 solutes. The mean values and std of the difference Δμmethodhyd − Δμexphyd for each of the

methods are presented in Fig. 21. As one can see, HNC and KH HFE expressions (Eqs. 26,

Figure 21: Normal distribution functions of the difference Δμmethodhyd − Δμexphyd . Accuracy of HFEs

calculations with different RISM HFE expressions is given in the table on the right: mean value

and standard deviation (std) of the difference for the test set of 120 solutes (kcal/mol). Data for

HNC and HNCB methods were calculated with HNC closure, data for all other methods were

obtained with PLHNC closure. The inset figure shows the same data for a smaller scale of HFE

coordinate.

28) give significantly overestimated values of HFE. The bias of the difference Δμmodelhyd − Δμexphyd
with respect to zero is the major contribution to the error (mean value of the difference is 38.8

kcal/mol). However, the bias removing is not sufficient to get a reasonable accuracy of HFE

calculations with the HNC and KH free energy expressions because the std of the error is con-

siderable (∼ 0.13 kcal/mol). HFEs calculated with the PW free energy expression (Eq. 29) are

also biased with respect to experimental data (mean value of the difference ΔμPWhyd − Δμ
exp
hyd is

10.91 ± 0.20 kcal/mol) but they are characterized with the noticeably less standard deviation.
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Thus, removing the bias of the error provides an ability to predict HFEs with high accuracy. Ap-

plication of the PWCmodel for the correction of PW data leads to the decrease of the difference

between experimental and calculated values (mean value of the difference ΔμPWChyd −Δμexphyd is 0.63

± 0.18 kcal/mol) but it only weakly affects the std of the error. In turn, the PW data corrected

with the 1D RISM-SDC(OPLSq) model are less biased with respect to experimental values

(see above), with the std of the error is 1.5 times less than that for the PW method. Thus, the

1D RISM-SDC(OPLSq) model improves the quality of the initial PW model and considerably

reduces the error of HFE calculation.

Figure 21 shows that the HFEs calculated with the GF HFE expression (Eq. 27) are less

biased with respect to the experimental values than the PW-calculated HFEs but have the std

of error is about 1.5 times higher as that for the PW data. Nevertheless, we applied the 1D

RISM-SDC(OPLSq) model for the GF data as well (see the results below).

1D RISM-SDC(OPLSq) model with GF free energy expression. In parallel with the PW

data correction by the 1D RISM-SDC(OPLSq) model we perform the correction of the HFEs

calculated with the GF HFE expression. Correlation coefficients were also obtained via the

multi-parameter regression analysis. One can find the corresponding regression parameters in

Table 5.

Table 5: Descriptors and the corresponding multi-parameter linear regression coefficients of the

1D RISM-SDC model with the GF free energy expression (see Eq. 59).
Descriptor Coefficient (kcal/mol)

Dimensionless partial molar volume (D1 = ρV̄) aGF1 = 0.64

Number of branches (D2 = Nbr) aGF2 = 1.39

Number of double bonds (D3 = Ndb) aGF3 = −1.23

Number of benzene rings (D4 = Nbz) aGF4 = −2.04

Number of OH-groups (D5 = NOH) aGF5 = 3.33

Number of phenol fragments (D6 = Nph) aGF6 = −2.35

Number of halogen atoms (D7 = NHal) aGF7 = −2.39

Number of ether groups (D8 = Neth) aGF8 = −1.38

Number of aldehyde groups (D9 = Nald) aGF9 = −0.07

Number of ketone groups (D10 = Nket) aGF10 = −2.02

It is known that the GF method overestimates the specific interactions [78, 79]. Indeed, the
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coefficient of the OH-group correction for the GF free energy expression (aGF5 = 3.33 kcal/mol)

is bigger than that for the PW free energy expression (aPW5 = 0.73 kcal/mol).

Performance of the model for the training and test sets of solutes is shown in Fig. 22.

We obtained the mean value of the difference Δμ1DRIS M−SDC(GF)hyd − Δμexphyd to be -0.38 kcal/mol

and the std = 1.26 kcal/mol for the internal test set of solutes. It was found that for "simple"

solutes the 1D RISM-SDC(OPLSq) model with the PW free energy expression is more efficient

for prediction of HFEs, whereas for polyfragment solutes predictabilities of these models are

comparable.

1D RISM-SDC(OPLSq) model with the HNC closure. HFEs calculations can be performed

with different closures (e.g. PLHNC, HNC). We analyzed the influence of the choice of clo-

sure on the results obtained by the 1D RISM-SDC(OPLSq) model with the PW free energy

expression as an initial approximation. In parallel with the correction of data obtained with

the PLHNC closure (see the sections above), we perform corrections of the HFEs calculated

with the HNC closure (Eq. 18). Results obtained by the 1D RISM-SDC(OPLSq) model for

the training and test sets of solutes is shown in Fig. 23. As one can see (Table 6), correction

coefficients of the 1D RISM-SDC(OPLSq) model with the HNC closure are higher that the

corresponding coefficient for the data obtained with the PLHNC closure (HFEs obtained by the

model are more overestimated with respect to the experimental data). The difference between

predicted and experimental data for the 1D RISM-SDC(OPLSq) with the HNC closure has the

mean of the error equals -0.30 kcal/mol with the std of the error equals 1.22 kcal/mol, which

are comparable with results obtained by the 1D RISM-SDC(OPLSq) model with the PLHNC

closure. We underline that the results for the test set of solutes were obtained with less coupling

parameter (Table 7) because of the worse convergence of 1D RISM calculations with the HNC

closure. Additionally, we found that 1D RISM calculations for the OPLS-AA mixing rules can

be performed only with the PLHNC closure. Otherwise, calculations do not converge.
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Table 6: Descriptors of the 1D RISM-SDC model with the HNC closure and the corresponding

parameters of multi-parameter linear regressions for PW method. Correction coefficients of

the 1D RISM-SDC(OPLSq) model with the HNC closure are bigger that the corresponding

coefficient for the data obtained with the PLHNC closure (see Table 3).
Descriptor Coefficient (kcal/mol)

Dimensionless partial molar volume (D1 = ρV̄) aPW1 = −1.56

Number of branches (D2 = Nbr) aPW2 = 1.48

Number of double bonds (D3 = Ndb) aPW3 = −1.03

Number of benzene rings (D4 = Nbz) aPW4 = −2.25

Number of OH-groups (D5 = NOH) aPW5 = 0.97

Number of phenol fragments (D6 = Nph) aPW6 = −1.88

Number of halogen atoms (D7 = NHal) aPW7 = −2.03

Number of ether groups (D8 = Neth) aPW8 = −1.78

Number of aldehyde groups (D9 = Nald) aPW9 = −0.77

Number of ketone groups (D10 = Nket) aPW10 = −2.76

Table 7: Parameters of 1D RISM calculations for training and test sets: mixing rules, closure

relations, and coupling parameter (λcoup). 1D RISM calculations with the OPLS-AA mixing

rules can be performed only with the PLHNC closure (the symbol "–" indicates that 1D RISM

calculations with the OPLS-AA mixing rules and the HNC closure do not converge).

Set closure mixing rules

Lorentz-Berthelot (Eq. 39) OPLS-AA (Eq. 38)

Training Set HNC λcoup = 0.5 –

PLHNC λcoup = 0.5 λcoup = 0.01

Test Set HNC λcoup = 0.2 –

PLHNC λcoup = 0.5 λcoup = 0.01
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Figure 22: HFEs obtained by the 1D RISM-SDC(OPLSq) model with the PLHNC closure and the GF free energy expression (ΔμSDC+GFhyd ) versus the

experimental values for training and internal test sets of solutes. Solid lines show the ideal correlation, while dashed lines indicate the std of the error.
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Figure 23: HFEs calculated by the 1D RISM-SDC(OPLSq) model with the PW free energy expression and the HNC closure (ΔμSDChyd ) versus the experi-

mental values for training and internal test sets of solutes. Solid lines show the ideal correlation, while dashed lines indicate the std of the error.
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5.3 1D RISM-SDC model with QM-derived partial charges

We have shown that the 1D RISM-SDC(OPLSq) model allows one to obtain HFEs for "sim-

ple" solutes with high accuracy (see the section The model predictive ability). In the case of

polyfragment solutes, the 1D RISM-SDC(OPLSq) model is more sensitive to the chemical na-

ture of solutes. Thus, the model allows one to predict HFEs with an accuracy of about 1 kcal/mol

for chlorinated benzenes with fewer than three chlorine atoms but it provides worse results for

chlorinated benzenes with larger number of chlorine atoms. The main reason of this deviation

is the fact that OPLS partial charges are not sensitive to the mesomeric effect in polyfragment

solutes (Fig. 19).

We found that the quality of the 1D RISM-SDC model can be significantly improved by

the model reparametrization using QM-derived partial charges instead of the originally used

OPLS partial charges – the 1D RISM-SDC(QMq) model. The further developed the 1D RISM-

SDC(QMq) model was applied for HFE predictions of persistent organic pollutants (see the

section The model predictive ability for pollutants). In this thesis we tested the partial charges

obtained by the CHELPG procedure [134] with the Gaussian 03 software [130] at MP2/6-

311G** and B3LYP/6-31G** levels of theory. The MP2/6-311G** method was used for the 1D

RISM-SDC(QMq) model calibration and testing (see the section Performance of the model). In

the case of pollutants, employment of this level of theory is quite expensive. Due to this fact,

HFE calculations for pollutants were performed with the partial charges obtained at B3LYP/6-

31G** level of theory.

5.3.1 Performance of the model

Values of coefficients {aPWi } of the 1D RISM-SDC(QMq) model with the same set of descriptors

were obtained by the multi-parameter linear regression analysis on the same training set of

solutes. Results are shown in Table 8.

As we showed above (Fig. 19), QM-derived partial charges are sensitive to the nature of

substituents in aromatic systems. Particularly, they are able to reproduce the mesomeric effect

in the phenol. Thus, error of HFE for phenols can be represented as a sum of contributions from

benzene ring and OH-group (Fig. 24, b). Due to that, the 1D RISM-SDC(QMq) model does

not contain the correction on phenol fragment (Table 8).

Predictive ability of the model with both OPLS and QM-derived partial charges for the in-

ternal test set of 120 solutes is shown in Figures 25 and 26. As it was discussed in the section

The model predictive ability, for "simple" solutes one should use the 1D RISM-SDC model



5 RESULTS AND DISCUSSION 66

with OPLS partial charges. Such combination allows one to obtain HFEs with small bias with

respect to experimental data and the standard deviation is about 0.5 kcal/mol (see Table 4, "sim-

ple" solutes). The main reason of the high performance of the 1D RISM-SDC(OPLSq) model

is the fact that the OPLS force field parameters were derived on the set of "simple" compounds

[131, 132, 133]. Analysis of the OPLS and QM-derived partial charges for 2-methylpropane

(see Table 9) showed that on one hydrogen (H6) the partial charges obtained by the CHELPG

procedure at different levels of theory have negative values. The same results (negative charges

on hydrogens) were obtained for linear alkanes, alkenes, and alcohols. Due to this drawback of

the analyzed QM-derived partial charges the corresponding 1D RISM-SDC(QMq) model per-

forms worse for "simple" and non-aromatic polyfragment solutes (Figures 25, 26). However,

in the case of aromatic solutes the QM-derived partial charges are sensitive to the electron-

donating/withdrawing nature of substituents, whereas the OPLS partial charges do not reflect

these details (see the partial charges of toluene in Table 10 and data for phenol in Fig. 19).

In this case, results obtained with the QM-derived charges are more reliable. Thus, for further

Table 8: Descriptors and the corresponding multiple regression coefficients of the 1D RISM-

SDC(QMq) model. The QM-derived partial charges are sensitive to the nature of substituents

in aromatic systems and are able to reproduce the mesomeric effect. Thus, error of HFE for

phenols can be represented as a sum of contributions from benzene ring and OH-group, and the

corresponding correction a6D6 can be removed (value of the corresponding coefficient aPW6 was

set to zero).

Descriptor Coefficient (kcal/mol)

Dimensionless partial molar volume (D1 = ρV̄) aPW1 = -1.60

Number of branches (D2 = Nbr) aPW2 = 1.03

Number of double bonds (D3 = Ndb) aPW3 = -0.37

Number of benzene rings (D4 = Nbz) aPW4 = -2.69

Number of OH-groups (D5 = NOH) aPW5 = -0.73

Number of phenol fragments (D6 = Nph) aPW6 = 0.00

Number of halogen atoms (D7 = NHal) aPW7 = -1.30

Number of ether groups (D8 = Neth) aPW8 = -1.06

Number of aldehyde groups (D9 = Nald) aPW9 = 0.68

Number of ketone groups (D10 = Nket) aPW10 = -0.60
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Figure 24: The difference between calculated (Δμ(2)hyd) and experimental (Δμ
exp
hyd) HFEs (where

Δμ
(2)
hyd = Δμ

PW
hyd + a

PW
1 D1 + a

PW
2 D2 + a

PW
0 ) versus experimental data for the training set of solutes.

Dashed lines indicate the mean of errors for chemical classes. Arrows indicate biases of the

mean values of corresponding molecular set with respect to zero. (a) Results for the 1D RISM-

SDC(OPLSq) model (equivalent to the Fig. 13); (b) Results for the 1D RISM-SDC(QMq)

model. As one can see, QM-derived partial charges are sensitive to the nature of substituents

in aromatic systems (they are able to reproduce the mesomeric effect). Thus, error of HFE for

phenols can be represented as a sum of contributions from benzene ring and OH-group.

HFE calculations we used the 1D RISM-SDC model with the QM-derived partial charges.

We note that for heterocyclic solutes the OPLS parameters were derived by the CHELPG

procedure at RHF/6-31G* level of theory using the Gaussian 94 software [131, 132, 133]. Com-

parison of the OPLS partial charges for pyridine, furan, and quinoline with the corresponding

partial charges obtained with the CHELPG procedure using Gaussian 03 software [130] at dif-

ferent levels of theory is shown in Table 11.
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Figure 25: Performance of the 1D RISM-SDC model with different sets of partial charges for

the internal test set of compounds. Solid lines correspond to the ideal correlation, while dashed

lines depict the std of the error. Solid circles indicate polyfragment aromatic solutes. Dashed

circles illustrate polyfragment non-aromatic solutes.

Figure 26: The mean and the std of errors of HFEs calculated by the 1D RISM-SDC model

with different sets of solutes’ partial charges. The errors are shown for two groups of solutes

from the test set: "simple" solutes and polyfragment compounds. In the case of polyfragment

solutes there are two bars for each parameter: transparent for all polyfragment solutes and solid

for aromatic polyfragment solutes only.
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Table 9: OPLS and CHELPG partial charges for 2-methylpropane (see the chemical structure

on the right). For the hydrogen atom 6H the partial charges obtained by the CHELPG procedure

at different levels of theory have negative values (see the bold text).

Atom OPLS CHELPG

RHF MP2 B3LYP MP2

6-31G* 6-311G**

1C -0.180 -0.400 -0.337 -0.297 -0.342

2H 0.060 0.086 0.062 0.053 0.062

3H 0.060 0.092 0.067 0.054 0.067

4H 0.060 0.086 0.062 0.053 0.062

5C -0.060 0.471 0.534 0.501 0.553

6H 0.060 -0.063 -0.097 -0.099 -0.103

7C -0.180 -0.407 -0.345 -0.285 -0.349

8H 0.060 0.093 0.069 0.051 0.069

9H 0.060 0.088 0.064 0.050 0.064

10H 0.060 0.088 0.064 0.050 0.064

11C -0.180 -0.391 -0.329 -0.276 -0.331

12H 0.060 0.083 0.060 0.047 0.059

13H 0.060 0.083 0.060 0.048 0.059

14H 0.060 0.090 0.065 0.050 0.064
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Table 10: Comparison of partial charges for toluene. Due to the electron-donating nature of the

CH3-group, toluene has a redistribution of the electron density in the phenyl ring (mesomeric ef-

fect). The CHELPG partial charges are sensitive to this effect. The partial charge on the carbon

atom 2C has a positive value (see the italic text). Carbon atoms at orto− and para−positions

(3C, 5C, 7C) have more negative partial charges. The OPLS partial charges do not reflect these

details.

Atom OPLS CHELPG

RHF MP2 B3LYP B3LYP MP2

6-31G* 6-311G**

1C -0.065 -0.226 -0.242 -0.240 -0.222 -0.236

2C -0.115 0.229 0.214 0.203 0.193 0.215

3C -0.115 -0.254 -0.235 -0.203 -0.200 -0.239

4C -0.115 -0.058 -0.059 -0.059 -0.047 -0.055

5C -0.115 -0.149 -0.155 -0.117 -0.140 -0.158

6C -0.115 -0.062 -0.059 -0.061 -0.045 -0.055

7C -0.115 -0.247 -0.235 -0.200 -0.199 -0.239

8H 0.060 0.065 0.068 0.067 0.064 0.067

9H 0.060 0.062 0.068 0.066 0.062 0.067

10H 0.060 0.065 0.070 0.070 0.065 0.069

11H 0.115 0.133 0.128 0.108 0.106 0.130

12H 0.115 0.101 0.099 0.085 0.081 0.097

13H 0.115 0.108 0.110 0.089 0.096 0.109

14H 0.115 0.101 0.099 0.085 0.079 0.097

15H 0.115 0.133 0.128 0.108 0.108 0.130
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Table 11: OPLS and CHELPG partial charges for hete-

rocyclic solutes. Data for symmetric atoms are skipped.

The atom numeration was taken from OPLS-AA force field

[131].

Atom OPLS CHELPG

RHF B3LYP MP2 MP2

6-31G* 6-311G**

pyridine

N -0.678 -0.687 -0.598 -0.673 -0.402

C1 0.473 0.487 0.416 0.466 0.139

C2 -0.447 -0.466 -0.380 -0.462 -0.233

C3 0.227 0.245 0.194 0.242 0.023

H1 0.012 0.010 0.004 0.019 0.117

H2 0.155 0.158 0.136 0.159 0.108

H3 0.065 0.063 0.054 0.066 0.115

furan

O -0.190 -0.185 -0.151 -0.195 -0.169

C1 -0.019 -0.019 -0.018 -0.025 -0.038

C2 -0.154 -0.160 -0.145 -0.155 -0.140

H1 0.142 0.141 0.122 0.147 0.144

H2 0.126 0.131 0.117 0.131 0.128

Continued on next page
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Table 11 – continued from previous page

quinoline

N1 -0.694 -0.701 -0.618 -0.683 -0.681

C2 0.425 0.440 0.367 0.408 0.410

C3 -0.359 -0.366 -0.298 -0.359 -0.357

C4 -0.008 -0.027 -0.012 -0.022 -0.030

C5 -0.197 -0.209 -0.162 -0.211 -0.222

C6 -0.112 -0.133 -0.112 -0.125 -0.121

C7 -0.070 -0.025 -0.028 -0.041 -0.037

C8 -0.307 -0.349 -0.288 -0.329 -0.333

C9 0.563 0.575 0.504 0.554 0.555

C10 -0.051 -0.026 -0.034 -0.023 -0.012

H2 0.028 0.024 0.017 0.036 0.035

H3 0.146 0.147 0.123 0.146 0.143

H4 0.119 0.125 0.096 0.124 0.127

H5 0.133 0.136 0.110 0.138 0.141

H6 0.113 0.117 0.100 0.115 0.112

H7 0.114 0.101 0.090 0.107 0.105

H8 0.157 0.168 0.138 0.165 0.165

5.3.2 The model predictive ability for persistent organic pollutants

The predictive ability of the 1D RISM-SDC(QMq) model for HFE calculations was analyzed

on the external test set of 220 persistent organic pollutants: 11 polychlorinated benzenes (from

chlorobenzene to hexachlorobenzene, Table 14) and 209 polychlorobiphenyls, PCBs (see Ap-

pendix 1). As it was mentioned above, for the set of pollutants the partial charges were obtained

with the CHELPG procedure at B3LYP/6-31G** level of theory because of its low level of

computational expenses. Parameters of the 1D RISM-SDC(QMq) model were obtained by fit-

ting against a training set of "simple" solutes containing 22 alkanes, 17 alkylbenzenes, and 7
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monochlorobenzenes. List of employed descriptors and values of the model coefficients are

shown in Table 12.

Table 12: Descriptors and the corresponding multi-regression coefficients of the 1D RISM-

SDC(QMq) model for the training set of solutes (see description of the set in the text).

Descriptor Coefficient (kcal/mol)

aPW0 = -4.19

Dimensionless partial molar volume (D1 = ρV̄) aPW1 = -1.48

Number of branches (D2 = Nbr) aPW2 = 0.98

Number of benzene rings (D3 = Nbenz) aPW3 = -3.11

Number of halogen atoms (D4 = Nhal) aPW4 = -1.30

We note that the reliable experimental data are very important for estimations of the accu-

racy of predicted results. Due to that, before the analysis of calculated data we performed an

estimation of reliability of experimentally obtained HFE values for each class of compounds

from each class of compound from the external test set.

Polychlorinated benzenes (PCBzs). The set of experimental HFEs for PCBzs was compiled

from different literature sources: (i) HFEs were taken from [107]; (ii) logP(water/gas) values

were collected from [34] and recalculated to HFEs with Eq. 71; (iii) KH constants were taken

from [181, 182, 183, 184] and recalculated to HFEs with Eq. 5.

Δμhyd = − ln(10)RT log P(water/gas), (71)

where Δμhyd is the hydration free energy, log P(water/gas) is the logarithm of the partition

coefficient between gaseous phase and water, R is the ideal gas constant, T is the temperature.

First of all, we analyzed the difference between the experimental HFEs for PCBzs ob-

tained by different sources (see Table 14). Despite the fact that for several solutes (1,2,3-

trichlorobenzene, 1,3,5-trichlorobenzene, and hexachlorobenzene) the HFE values that were

recalculated from log P(water/gas) and KH differ by 0.5–0.6 kcal/mol (see Table 14), on av-

erage, HFE values obtained with different techniques deviate from the mean value by 0.2–0.3

kcal/mol. Thus, we concluded that experimental data for polychlorinated benzenes are suffi-

ciently accurate and can be used for the estimation of the accuracy of the predicted data.

The comparison of the predicted and experimental HFE values is shown in Fig. 27. To

quantify the accuracy, we calculated statistical parameters of the error ε = Δμcalchyd −Δμ
exp
hyd for the
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Figure 27: Correlation between the experimental HFE and values predicted by the 1D RISM-

SDC(QMq) model for the test set of polychlorinated benzenes. The insert data show the statis-

tical profile of the error ε = Δμcalchyd − Δμ
exp
hyd . Solid line illustrates the ideal correlation. Dashed

lines indicate the std(ε).

test set of polychlorinated benzenes (Fig. 27, insert data). As one can see, results obtained with

the 1D RISM-SDC(QMq) model are nonbiased (mean of the error equals 0.02 ± 0.11 kcal/mol)

and the standard deviation of the error is in the range of the deviation between different sources

of correspondent experimental data (∼ 0.4 kcal/mol).

Polychlorobiphenyls (PCBs). For PCBs, experimental values of neither HFE nor log P(water/gas)

are available in the literature. However, since 1980s, there have been several experimental in-

vestigations of KH of PCBs reported, where the experiments were carried out with two dynamic

techniques: (i) the gas stripping method (GSM) [185, 186, 187, 188] and (ii) the "wetted-wall

column" (WWC) or the concurrent flow technique [189, 190, 191]. All values are presented in

Fig. 29a; corresponding HFEs recalculated with Eq. 5 are presented in Fig. 29b. One can see

that the experimental KH values are presented mainly by two sets of data obtained by the GSM

(Bamford (2000) [186]) and the WWC technique (Brunner (1990) [190]). Other sets of KH

values are not very large and contain about 20-30 values from 209 possible. Figure 29 shows

that, for the same solutes, experimental KH values from the GSM and WWC sets can differ
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Figure 28: Schematic representation of apparatus for measurements of Henry’s law constants

(adapted from [192]): (a) Apparatus for the gas stripping method; (b) Apparatus for the wetted-

wall column technique. In the case of the gas stripping method, a compound is stripped from the

aqueous phase into a gaseous phase using a bubble column apparatus. The sorption of the solute

molecules to the surface of gas bubbles leads to higher compound’s concentration in gaseous

phase which, in turn, leads to overestimated KH value. With the wetted-wall column technique

one can avoid this drawback. In this case, the compound is equilibrated between thin layer of

water and concurrent flow of gas within the contact region, and sorption of the solute molecules

does not happened.

considerably. The difference increases with the increase in the number of chlorine atoms in a

solute. In terms of HFE, the difference varies from 1 kcal/mol for lighter PCB congeners (PCB

with 4 − 5 chlorine atoms) to up to 3 kcal/mol for heavier congeners (higher chlorinated PCBs)

(Fig. 29b).

Recently it was found that the GSM overestimate KH values for highly chlorinated biphenyls

[193, 194]. The problem is hidden in the technical implementation of the GSM. Within the

method, the KH of a compound is determined as a ration of equilibrium concentration of the

compound in aqueous solution and vapor, accordingly. The compound is stripped from the

aqueous phase into a gaseous phase using a bubble column apparatus (see Fig. 28, a). It was

found that the sorption of the solute molecules to the surface of gas bubbles leads to higher

compound concentration in the gaseous phase, which, in turn, results in the overestimated KH

value. With the WWC technique, one can avoid this drawback. The technical implementation
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of the method consists of the equilibration of a compound between a thin layer of water and a

concurrent flow of gas within the contact region (see Fig. 28, b). Due to that, we accepted the

experimental data obtained by the WWC method [190] as the most reliable set. Unfortunately,

the total number of experimental values published in [190] is only 57 from 209 possible.

Table 13: Statistical profiles of errors for results obtained by the implicit solvent models for the

test set of polychlorobiphenyls (N = 57): mean value, standard deviation (std), and root mean

square (rms) of the error ε = Δμcalchyd − Δμ
exp
hyd (kcal/mol); r is the correlation coefficient. Results

obtained by the SM6 and COSMO-SAC methods were collected form [195].

Model: 1D RISM-PW 1D RISM-SDC SM6 [195] COSMO-SAC [195]

mean(ε) 20.35 -0.72 1.28 1.15

std(ε) 1.62 0.55 0.78 0.94

rms(ε) 20.42 0.91 1.50 1.49

r -0.80 0.65 -0.35 -0.70

A comparison of HFEs, predicted by the 1D RISM-SDC(QMq) model, with the experimen-

tal data (Table 13) shows that the calculated values are biased with respect to experimental ones,

mean(ε) =-0.72 ± 0.07 kcal/mol, but have a small standard deviation of error. Figure 30 shows

that the error remains the same for the whole set of PCBs and does not increase for the heavier

PCB congeners.

Also, we performed a comparison of our results with HFEs obtained by other implicit mod-

els, SM6 and COSMO-SAC (the data were taken from [195]). Both of them treat the solvent

as a homogeneous medium characterized by its dielectric constant (continuum solvent meth-

ods). Statistical analysis of the literature results is shown in Table 13. As one can see (Fig.

30), HFEs obtained by these models are in a good agreement with each other. However, the

models allow predictions of HFE with high accuracy only for light congeners, whereas for the

heavier PCBs, the error of HFE increases with the increase in the number of chlorine atoms.

In the case of the highly chlorinated biphenyls (NCl = 8 − 9), the error is ∼ 3 kcal/mol. We

explain these results as follows. In the case of lighter PCB congeners, the chlorine atoms are

well-separated from each other. Thus, the total effect of chlorine atoms interactions with the

solvent molecules can be presented as a sum of single chlorine atoms’ contributions. Increasing

the number of chlorine atoms in biphenyl leads to the interference of the chlorine atoms’ inter-

actions with the solvent molecules and, as a result, to a nonlinearity of the solvent response in
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the process of hydration. We underline that the 1D RISM approach considers these effects in a

proper way, even in the case of higher chlorinated compounds. In turn, the continuum solvent

models (S M6 and COSMO-SAC) are not sensitive to the nonlinear solvent response. These re-

sults of this work show the potential of the 1D RISM-SDC(QMq) approach for the description

of hydration/solvation process for a wide range of chemical solutes.

The reported bias of the error of HFE obtained within the 1D RISM approach can be related

to the error of the biphenyl ring representation (∼ 0.3 kcal/mol). One way to overcome this

drawback is to introduce an additional correction for the biphenyl fragment. However, we

assume that the employment of more advanced 3D RISM will be the more efficient solution of

this problem.
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Figure 29: Experimental data for polychlorobiphenyls (PCBs): (a) Henry’s law constants, KH,

obtained with the wetted-wall column technique (WWC) [190, 191], the gas stripping method

(GSM) [185, 186, 187], or the modified GSM (MGSM) [188]; (b) HFEs recalculated from KH.

Dashed lines show the separation of the whole set of PCBs with respect to number of chlorine

atoms (shown on the top). Black arrows show deviation of experimental data.
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Figure 30: Errors for HFEs predicted by the 1D RISM-SDC(QMq) model with the PLHNC closure and PW free energy expression and literature data

taken from [195] for the test set of polychlorobiphenyls (PCBs). Dashed lines show the separation of the whole set of PCBs with respect to number of

chlorine atoms (shown on the top). One can see that the error of solvation continuum models (SM6 and COSMO-SAC) increases with the increase of the

number of chlorine atoms in biphenyl, whereas error of data predicted with 1D RISM-SDC(QMq) model is constant for all PCBs.
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Table 14: Descriptors of the 1D RISM-SDC model (Eq.

59) for polychlorinated benzenes. Hydration free energies

(ΔGhyd) predicted by the uncorrected PW free energy ex-

pression and the 1D RISM-SDC(QMq) model. Experimen-

tal values were averaged over different sources
(
expaverage

)
;

exp|max|−|min| shows the difference between the maximum and

minimum values from different literature sources.

Name D1 D2 D3 D4 ΔGhyd, kcal mol−1

ρV̄ branch benzene hal 1D RISM-PW 1D RISM-SDC expaverage exp|max|−|min|

1,2,3,4-tetrachlorobenzene 5.24 4 1 4 14.75 -1.83 -1.32 [34, 181, 184] 0.07

1,2,3-trichlorobenzene 4.85 3 1 3 13.77 -1.79 -1.49 [34, 184] 0.50

1,2,4,5-tetrachlorobenzene 5.30 4 1 4 15.40 -1.27 -1.34 [34, 184] 0.00

1,2,4-trichlorobenzene 4.89 3 1 3 14.23 -1.40 -1.22 [34, 181, 184] 0.29

1,2-dichlorobenzene 4.45 2 1 2 12.85 -1.69 -1.47 [107, 34, 181, 182, 184] 0.27

1,3,5-trichlorobenzene 4.93 3 1 3 14.71 -1.97 -1.09 [34, 184] 0.63

1,3-dichlorobenzene 4.48 2 1 2 13.24 -1.34 -1.13 [34, 182, 184] 0.29

1,4-dichlorobenzene 4.49 2 1 2 13.15 -1.44 -1.15 [34, 182, 184] 0.21

2-chlorotoluene 4.52 2 1 1 12.76 -0.55 -1.14 [34] −

chlorobenzene 4.04 1 1 1 11.98 -1.51 -1.07 [107, 34, 181, 182, 184] 0.22

hexachlorobenzene 5.95 6 1 6 16.33 -2.17 -2.26 [184, 183] 0.50
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5.4 3D RISM-SDC model

In the Introduction it was underlined that to overcome the drawbacks of the 1D RISM approach

its three-dimensional extension (3D RISM) was proposed [82, 83, 66, 84]. In the 3D RISM

method, the six-dimensional solute-solvent MOZ equation is approximated by a set of 3D inte-

gral equations via partial integration over the orientation coordinates (see the section

Theoretical Background).

In this section we compare the accuracy of the 1D RISM and the 3D RISM for HFE cal-

culations. To make the comparison consistent we performed additional 1D RISM calculations

with the same set of parameters as for the 3D RISM (see the section Computational Details).

For the rest of the thesis we use only one type on solutes partial charges (QM-derived). That is

why, the corresponding charge notation for the SDC model will be skipped.

5.4.1 Comparison of uncorrected data

Figure 31: HFEs obtained by the 1D and 3D RISM with the PLHNC closure using the GF free

energy expressions ( ΔμGFhyd) versus experimental values for the training set of solutes. Solid lines

show the ideal correlation. The 3D RISM approach performs much worse than 1D RISM. We

suppose that within the 1D RISM approach there is an effective cancellation of errors, which

does not happened in the 3D RISM.

HFEs were calculated for the training set of compounds using 1D and 3D RISM approaches

with the corresponding GF free energy expressions (Eqs. 33, 27). For both RISM approaches

the calculated values are considerably overestimated (Fig. 31). Unexpectedly, the 3D RISM

approach performs much worse than 1D RISM (the mean absolute error is 2.4 kcal/mol for



5 RESULTS AND DISCUSSION 82

1D RISM approach instead of 17.6 kcal/mol for 3D RISM). We suppose that within the 1D

RISM approach there is an effective cancellation of errors caused by the involved approxima-

tions, while 3D RISM contains less approximations and this cancellation does not happen. The

enormous errors between RISM-calculated and experimental HFE show that the uncorrected

RISM approaches are not able to provide quantitative description of hydration for wide range

of solutes.

5.4.2 Correction for the cavity formation (3D RISM-UC model)

In the section Choice of descriptors it has been shown that the errors of th HFEs calculated

by 1D RISM approach strongly depend on the PMV of the solute in water. This suggests

that the 1D RISM theory overestimates the energy required to create a cavity for a solute in

solution. This observation allows us to assume that the DPMV can be used with a proper

scaling coefficient for the correction of the 3D RISM-data as well. Indeed, we observed the

high correlation between the difference Δμ3DRIS M−GFhyd − Δμexphyd and the DPMV (Fig. 32). The

correlation coefficients are r = 0.99 and r = 0.97 for the training and test sets, respectively.

The results suggest that the calculated DPMV can be used as a Universal Correction (UC) to

Figure 32: Correlation between the dimensionless partial molar volume (ρV̄) and the difference

between the 3D RISM calculated and experimental HFEs. The solid line indicates the line-of-

best-fit. The strong linear correlation was obtained for all organic solutes from the training and

test sets.
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Figure 33: Correlation between the error in the HFEs calculated by the 3D RISM with the

PLHNC closure using the GF free energy expression: ΔμGFhyd − Δμ
exp
hyd , and the dimensionless

partial molar volume, ρV̄ . Red crosses are small organic molecules; black dots are druglike

solutes. The pharmaceutical molecules lie on the line-of-best-fit calculated for simple organic

molecules (the solid red line).

improve the accuracy of HFEs calculated by the 3D RISM and the GF free energy expression:

Δμ3DRIS M−UChyd = Δμ3DRIS M−GFhyd + aGF1 (ρV̄) + a
GF
0 , (72)

where Δμ3DRIS M−GFhyd is the HFE obtained by the 3D RISM-GF method, ρV̄ is the dimension-

less partial molar volume (DPMV), aGF1 (-3.31 kcal/mol) is the scaling coefficient, aGF0 (1.15

kcal/mol) is the intercept. Values of the scaling coefficient the intercept are obtained by linear

regression against the training data.

The 3D RISM-UC model gives very good predictions of HFEs for the test set of 185 organic

compounds from different chemical classes with the mean of the error equals 0.11 kcal/mol,

the std of the error equals 0.99 kcal/mol, and correlation coefficient between predicted and

experimental data equals 0.94. To demonstrate the transferability of the 3D RISM-UC model’s

coefficients we have used it to calculate HFEs for the external test set of 21 neutral druglike

molecules. We found that uncorrected HFEs for druglike compounds obtained by the 3D RISM-

GF method also have a strong linear correlation with the DPMV (r = 0.99). Moreover, the

pharmaceutical molecules lie on the line-of-best-fit calculated for the simple organic molecules

(Figure 33). Results obtained by the 3D RISM-UC model are shown in Table 15. As one can
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Table 15: Experimental and calculated parameters for the external test set of 21 druglike

molecule; Δμexphyd is the experimental HFE. Δμ
3DRIS M−GF
hyd is the (uncorrected) HFE calculated

by the 3D RISM using the GF HFE expression (kcal/mol;. ρV̄ is the dimensionless partial mo-

lar volume, where ρ is the number density of the solution; Δμ3DRIS M−UChyd is the HFE calculated

using the 3D RISM-UC model (kcal/mol).

Molecule Δμ
exp
hyd Ref. Δμ3DRIS M−GFhyd ρV̄ Δμ3DRIS M−UChyd

Paracetamol -14.83 [36] 5.25 6.18 -14.07

N-(3-hydroxyphenyl)acetamide -13.93 [38] 5.48 6.17 -13.81

Fenbufen -12.75 [196] 19.10 10.50 -14.15

N-(2-hydroxyphenyl)acetamide -11.61 [38] 7.27 6.18 -12.07

Phenacetin -10.91 [36] 13.08 7.94 -11.91

Ketoprofen -10.83 [197] 20.86 10.62 -12.77

2-methoxybenzoic acid -10.32 [39] 7.95 6.02 -10.85

Naproxen -10.35 [197] 18.68 9.51 -11.39

Acetanilide -9.72 [36] 8.41 6.04 -10.46

Methylparaben -9.52 [197] 8.76 6.07 -10.20

Propylparaben -9.35 [197] 15.17 7.80 -9.38

Diflunisal -7.63 [197] 19.70 8.76 -7.93

Ethylparaben -9.20 [197] 11.98 6.97 -9.89

4-methoxybenzoic acid -9.15 [39] 9.20 6.02 -9.63

3-methoxybenzoic acid -8.93 [39] 9.36 6.01 -9.43

Butylparaben -8.74 [197] 18.08 8.63 -9.13

Flurbiprofen -8.68 [197] 22.40 10.01 -9.26

Ibuprofen -7.01 [197] 24.70 9.98 -6.87

Tolfenamic acid -6.71 [198] 24.44 10.01 -7.22

Diclofenac -6.30 [199] 25.73 10.80 -8.49

Flufenamic -5.68 [200] 23.21 9.97 -8.34

see, for the set of 21 pharmaceutical molecules, the HFEs calculated by the 3D RISM-UCmodel

with the same set of coefficients are in good agreement with the corresponding experimental

data (mean of error is -0.72 kcal/mol, std of error is 0.78 kcal/mol, and rms of error is 1.06

kcal/mol).
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Table 16: (A) Parameters of the cavity corrected HFE expression with and without the cor-

rection on number of branches (a2D2, where D2 = Nbr). The coefficients were obtained with

the subset of alkanes (N=11) (kcal/mol). For the 3D RISM, value of the correction coefficient

(aGF2 ) is one order less than values of other coefficients. (B) Statistical profile of the error =

Δμcalchyd − Δμ
exp
hyd for the whole training set (kcal/mol), where Δμ

calc
hyd is the HFE calculated by

the corresponding cavity corrected free energy expression. Introduction of the correction on

number of branches does not improve the accuracy of the 3D RISM-UC model.

Theory: 3D RISM 1D RISM

(A)

Set of descriptors: ρV̄ and Nbr ρV̄ ρV̄ and Nbr ρV̄

Coefficients: aGF0 : 1.33 aGF0 : 1.15 aGF0 : -7.47 aGF0 : -6.42

aGF1 : -3.28 aGF1 : -3.31 aGF1 : 0.93 aGF1 : 1.13

aGF2 : -0.09 - aGF2 : -1.80 -

(B)

mean (error) 0.26 ± 0.10 0.24 ± 0.10 -0.12 ± 0.19 -0.81 ± 0.25

std (error) 0.71 0.71 1.40 1.84

rms (error) 0.77 0.75 1.41 2.01

The 3D RISM-UC model with the correction for number of branches. As it was shown in

the section Choice of descriptors, for the 1D RISM the cavity corrected HFE expression works

well only for a set of linear alkanes, while for branched alkanes the error depends almost linearly

on the number of branches in molecules (see Fig. 12, b). In line with these results, we analyzed

the efficiency of the 3D RISM-UC model with the correction on number of branches. We found

that the coefficient of the correction on number of branches (a2=0.09 kcal/mol) is one order less

than values of other coefficients and can be neglected. Indeed, introduction of this descriptor

does not improve the accuracy of the 3D RISM-UC model (Table 16). This suggests that the

3D RISM properly estimates the cavity created by a solute molecule in water.

Figure 34 shows the differences between HFEs calculated by the 1D and 3D RISM with the

cavity corrected HFE expressions and experimental values for the whole training set of solutes.

One can see that the cavity formation correction is sufficient to provide accurate values of HFE

for alkanes. Errors for all other classes of compounds are biased with respect to zero (Fig. 34).

We note that these biases are not random. Each class of solutes has its own bias, which depends
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Figure 34: Errors of HFEs calculated by the cavity corrected HFE expressions plotted against

the corresponding experimental HFEs. Dashed lines indicate the standard deviation of the error.

(a) Results for the 1D RISM approach (here Δμ(2)hyd = Δμ
GF
hyd+a

GF
1 D1+a

GF
2 D2+a

GF
0 ; see Table 16).

The subfigure is analogous to Figure 13. (b) Results for the 3D RISM-UC model (Eq. 72). The

predicted HFEs for molecules from different chemical classes are biased from the corresponding

experimental values by almost constant values with small deviations inside groups.

on the structural features of molecules. Moreover, there is a small std of error inside each

class of the compounds. In the case of 3D RISM, the std is considerably less then that of data

calculated by the 1D RISM. Thus, HFE predictions by the 3D RISM approach can be improved

more efficiently by introducing of empirical corrections for different functional groups.

5.4.3 Corrections for the functional groups

The remaining discrepancy of the difference between calculated and experimental HFEs can

be attributed to systematic errors in the RISM free energy calculations associated with cer-

tain functional groups. The values of the corresponding coefficients in the RISM-SDC ap-

proaches indicate the magnitude of the systematic errors. As one can see (Table 17), the 3D

RISM-SDC approach underestimates considerably the impact of hydrogen bond formation be-

tween hydroxyl group and water molecules on the HFE (corresponding coefficient a5 equals

-1.53 kcal/mol). Moreover, significant errors are associated with the halogen atoms, aldehyde

and benzene ring groups (the corresponding correction coefficients are -0.76, 0.79, and 0.56

kcal/mol, respectively), while the errors for the other groups are relatively small. In the case of

the 1D RISM-SDC approach, the absolute value for the majority of the coefficients is more then

1 kcal/mol, which indicates that there are considerable systematic errors in the 1D RISM pre-
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Table 17: Descriptors and the corresponding regression coefficients of the RISM-SDC model.

The coefficients aGF0 , a
GF
1 , and a

GF
2 were kept unchanged from the previous fit on the set of

alkanes (see Table 16)

Descriptor Coefficient (kcal/mol)

1D RISM 3D RISM

Number of double bonds (D3 = Ndb) aGF3 : -0.91 aGF3 : -0.31

Number of benzene rings (D4 = Nbz) aGF4 : -1.30 aGF4 : 0.56

Number of OH-groups (D5 = NOH) aGF5 : 1.82 aGF5 : -1.53

Number of halogen atoms (D6 = NHal) aGF6 : -1.79 aGF6 : -0.76

Number of aldehyde groups (D7 = Nald) aGF7 : 2.20 aGF7 : 0.79

Number of ketone groups (D8 = Nket ) aGF8 : 1.05 aGF8 : 0.28

Number of ether groups (D9 = Neth) aGF9 : 0.19 aGF9 : -0.22

dictions. Due to the number of approximations in 1D RISM theory, the cavity formation error

can not be separated from the errors associated with the functional groups as well as can be done

in the 3D RISM theory (see Fig. 34: the std of error inside one group of solute is considerable).

As a result, fitting the functional group corrections in 1D RISM approach is complicated by the

remaining cavity formation error. This makes the comparison of the fitting coefficients in 1D

and 3D RISM difficult.

Results of HFE calculations with the RISM-SDCmodels for the whole training set of solutes

are shown in Fig. 35. It shows that the 3D RISM-SDC approach with a smaller set of structural

descriptors can describe HFEs of solutes with different chemical nature with higher accuracy

than the 1D RISM-SDC approach. Details of the statistical profile of the RISM-SDC models

are presented in the inset information. The correlation coefficients between ΔμSDChyd and Δμexphyd
for 1D RISM and 3D RISM are to 0.985 and 0.999, respectively.

5.4.4 The 3D RISM-SDC model predictive ability

The predictive ability of the RISM-SDC model was analyzed using the internal test set of 98

solutes and the same set of coefficients as were determined from the training set (in total, 9

coefficients for the 3D RISM-SDC model and 10 coefficients for the 1D RISM-SDC model).

Comparison of predicted and experimental HFEs is shown on Fig. 36. The HFEs for the test

set of solutes were predicted by the 3D RISM-SDC approach with very high accuracy for both
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Figure 35: (a, b) HFEs corrected with the 1D and 3D RISM-SDC models (ΔμSDChyd ) versus

experimental values for the training set of solutes. Solid lines show the ideal correlation. Dashed

lines indicate the corresponding std of error (see the inset data, values are in kcal/mol). (c,

d) Difference between the SDC-corrected and experimental HFEs versus experimental values

for 1D RISM and 3D RISM, respectively. Dashed lines indicate the corresponding std of the

difference.

simple and polyfragment molecules. The rms of the error is 0.47 kcal/mol which is of the same

order of magnitude as the experimental accuracy (0.2-0.5 kcal/mol [30, 36, 38, 197, 49]).

The HFEs predicted by the 1D RISM-SDC approach are considerably biased with respect

to corresponding experimental values. We note that the bias is present only for compounds con-

taining a benzene ring (e.g. alkylbenzenes, chlorobenzenes, and chlorophenols). We attribute

this to the fact that the corrections for the number of branches were obtained from the training set

of alkanes only. Indeed, for the 1D RISM-SDCmodel in the section The model predictive ability

we showed that, having obtained these corrections on the whole training set of compounds via

multi-parameter linear regression, the 1D RISM-SDC approach performs well for both aliphatic
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Figure 36: (a, b) HFEs predicted by the 1D and 3D RISM-SDC models with the PLHNC

closure and GF free energy expression (ΔμSDChyd ) versus experimental values for the test set of

solutes. Solid lines show the ideal correlation. Dashed lines indicate the corresponding std of

error (see the inset data, values are in kcal/mol); (c, d) Difference between the SDC-corrected

and experimental HFEs versus experimental values for 1D RISM and 3D RISM, respectively.

Dashed lines indicate the corresponding std of the difference.

and simple aromatic compounds.

The 3D RISM-SDC model based on the KH free energy expression. Kovalenko and Hi-

rata proposed a HFE expression for the PLHNC closure [113], the so-called KH free energy

expression (Eq. 34) [116]. The difference between HFEs calculated by the cavity corrected

KH free energy expressions and experimental HFEs versus experimental values are presented

in Fig. 37. In the case of 1D RISM, the cavity corrected KH free energy expression performs

much worse than the cavity corrected GF free energy expression (the deviation inside one class

of compounds is much bigger). Values of coefficients of the 1D and 3D RISM-SDC meth-
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Figure 37: The difference between HFEs calculated with the cavity correction based on the

KH free energy expression and experimental HFEs (Δμcalchyd −Δμ
SDC
hyd ) versus experimental values

(where Δμ(2)hyd = Δμ
KH
hyd + a

KH
1 D1 + a

KH
2 D2 + a

KH
0 ). The subfigure is analogous to Figure 13.

Dashed lines indicate the corresponding std of the difference (see Table 18). In the case of the

1D RISM, the cavity corrected HFE expression performs much worse than that for 3D RISM

approach (the deviation inside one class of compounds is much bigger).

ods based on the KH free energy expression (Eqs. 28 and 34) were obtained with the training

set of the compounds following the methodology described above. Results are presented in

Table 18. Predictive ability of the 1D and 3D RISM-SDC models with KH HFE expression

for both training and test sets is shown in Fig. 38. Statistical data of these models are shown

in the inset information. Analysis of the models efficiency allows us to conclude that the 1D

RISM-SDC model with the KH free energy expression performs worse than that with GF free

energy expression. In turn, the 3D RISM-SDC model is almost not sensitive to the initial HFE

approximation.
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Figure 38: HFEs obtained by 1D and 3D RISM-SDC models with the PLHNC closure and the

KH free energy expressions, versus experimental values for the training set and test sets. Solid

lines show the ideal correlation. Dashed lines indicate the corresponding std of error. The 1D

RISM-SDC model based on the KH free energy expression performs worse then the that with

the GF free energy expression. In turn, the 3D RISM-SDC model is almost not sensitive to the

initial HFE approximation.
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Table 18: Descriptors for the functional groups of the SDCmodels with KHHFE expression and

the corresponding regression coefficients. The coefficients a0, a1, and a2 were kept unchanged

from the fit on the set of alkanes.

Descriptor Coefficient (kcal/mol)

1D RISM 3D RISM

a0:18.74 a0:0.93

Dimensionless partial molar volume (D1 = ρV̄) a1:-13.99 a1:-4.66

Number of branches (D2 = Nbr) a2:-3.78 a2: –

Number of double bonds (D3 = Ndb) a3: 2.06 a3: -0.39

Number of benzene rings (D4 = Nbz) a4: 8.57 a4: 0.33

Number of OH-groups (D5 = NOH) a5: 0.03 a5: -1.90

Number of halogen atoms (D6 = NHal) a6: 1.71 a6: -0.89

Number of aldehyde groups (D7 = Nald) a7: 1.60 a7: 0.44

Number of ketone groups (D8 = Nket ) a8: 1.68 a8: -0.08

Number of ether groups (D9 = Neth) a9: 2.32 a9: -0.61

5.5 Comparison of the RISM-SDC model with the cheminformatics ap-

proach

We showed that the RISM-SDC model yields more accurate HFE predictions with respect to

other RISM-based HFE expressions. However, the biased data obtained by the uncorrected PW

and GF free energy expressions, employed in the RISM-SDC models as an initial approxima-

tion, (see Figures 21 and 31) lead to some doubts that the RISM approach can be a good starting

point for the HFE calculations.

To verify the importance of the RISM calculations for accurate HFEs predictions by the

RISM-SDC model we performed the simple cheminformatics prediction of the HFE. The same

fitting procedure, as in the case of the RISM-SDC approach, was performed but the HFE

(ΔμRIS Mhyd ) and the DPMV (ρV̄) calculated with the RISM were omitted. Indeed, in the case

of "simple" solutes the RISM-SDC model does not provide a significant improvement in com-

parison with the cheminformatics approach (an example of the comparison is shown in Table

19). However, the situation changes drastically for polyfragment solutes. In this case, HFEs

obtained by the cheminformatics approach are significantly less accurate. The corresponding

errors are twice larger than that for HFEs calculated by the RISM-SDC model (an example of
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Figure 39: There is a doubt that the RISM approach (the corresponding expression is denoted by

the green circle) can be a good starting point for accurate HFE calculations. To clarify this ques-

tion, we compare the data obtained by the 1D RISM-SDC(OPLSq) model with those derived

from the cheminformatics calculations based on the same set of descriptors (the corresponding

expression is denoted by the claret red rectangle).

On plots: Difference between HFEs obtained by the 1D RISM-SDC(OPLSq) model (left plot)

and the cheminformatics approach (right plot) for the polyfragment solutes from the test set.

Solid lines correspond to the mean of the difference between calculated and experimental data.

Dashed lines indicate the corresponding std of the difference. As one can see, the cheminfor-

matics approach calculations are significantly less accurate.

the comparison is shown in Figure 39).

This comparison indicates that the RISM approach represents the main important features

of the hydration phenomena which are not accessible in the cheminformatics approach.
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Table 19: Statistical profile of the 1D RISM-SDC(OPLSq) model (Eq. 59) and the chemin-

formatics approach (the SDC model without HFE and DPMV calculated by the RISM) for

"simple" and polyfragment solutes from the test set. In the case of polyfragment solutes, the

cheminformatics approach is significantly less efficient. The errors of HFEs obtained within the

cheminformatics framework are twice larger than that calculated with the use of the 1D RISM-

SDC (OPLSq) model. Values of the mean of error, the standard deviation (std) of the error, and

maximal deviation (|max|) of the error are in kcal/mol.

1D RISM-SDC(OPLSq) model Cheminformatics

“simple“ solutes (N = 60)

mean 0.06 -0.03

std 0.53 0.54

|max| 1.35 1.37

polyfragment solutes (N = 60)

mean -1.15 -3.10

std 1.44 2.70

|max| 5.83 9.05

TOTAL test set (N = 120)

mean -0.55 -1.57

std 1.24 2.48

|max| 5.83 9.05

6 Summary

1. We showed that the poor accuracy of hydration thermodynamics calculations with a

molecular integral equation theory, Reference Interaction Site Model (RISM), can be con-

siderably improved with a set of corrections associated with details of molecular structure.

In this thesis we developed a novel hybrid RISM-based method for calculation of hydra-

tion thermodynamics, the Structural Descriptors Correction (SDC)model (RISM-SDC).

The method uses a thermodynamic quantity obtained by RISM as an initial approximation

and a set of corrections to decrease the error of the calculated parameter. Each correc-

tion in the RISM-SDC model can be represented as a structural descriptor (Di) multiplied

by the corresponding correction coefficient (ai). One important descriptor (D1) is the di-

mensionless partial molar volume calculated by RISM. The rest of the structural descrip-
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tors correspond to the number of specific molecular fragments (double bonds, aromatic

rings, electron-donating/withdrawing substituents, etc.). The correction coefficients ai are

found by training the model on a set of monofunctional compounds. For the first time,

we showed that the RISM-SDC model allows to achieve the chemical accuracy of sol-

vation thermodynamics predictions within the RISM approach, that has been a challenge

for over 40 years [64, 112, 88, 116, 89, 85, 80]. In this thesis we demonstrated the high

efficiency of the proposed approach for predicting important hydration thermodynamic

quantities, hydration free energy (HFE) and partial molar volume (PMV).

2. We collected experimental values of PMV from available literature sources and analyzed

their quality. We revealed a lack of experimental data for small organic molecules (es-

pecially for non-polar compounds). In this thesis we showed strong linear correlations

between the experimental PMVs and corresponding values calculated by the 1D RISM

and 3D RISM on solutes from different chemical classes. We demonstrated small errors

of PMV obtained by the 3D RISM and significant errors of the corresponding values ob-

tained by the 1D RISM. However, we found that in both cases the errors can be corrected

with two empirical parameters.

3. To evaluate the general accuracy of HFEs obtained by RISM approach we collected

a large database (∼ 450 compounds) of corresponding experimental values from avail-

able literature sources. We performed a detailed analysis of the data errors and possible

sources of them.

For the first time, for the 1D RISM approach we performed a consistent comparison of

efficiency of existing HFE expressions (HNC, KH, HNCB, PW, GF, PWC) on a large

set of 120 compounds from different chemical classes. The comparison showed that

all analyzed HFE expressions give considerably overestimated HFEs for both non-polar

and polar solutes. The worst results were obtained by the HNC and KH free energy

expressions. In turn, the PW and GF free energy expressions were found to be the most

promising for the further development, since there is a potential opportunity to improve

HFEs obtained by these expressions with structural corrections.

4. In this thesis, for the first time, we performed a detailed analysis of errors of HFEs cal-

culated by the 1D RISM approach with the PW free energy expression. We found that

the major part of errors can be eliminated with the correction on partial molar volume

and free coefficient aPW0 which removes a general systematic error of the 1D RISM. To
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increase the accuracy of HFE calculations we developed a small set of corrections asso-

ciated with main structural features of chemical solutes (double bonds, aromatic rings,

electron-donating/withdrawing substituents, etc.). That resulted in the 1D RISM-SDC

model to estimate HFEs of organic molecules.

5. We found that efficiency of the 1D RISM-SDC model depends on the choice of RISM pa-

rameters and the methods used to describe solute molecules (e.g. atomic partial charges).

The optimal set of initial parameters was investigated to get the best performance of the

model.

(a) 1D RISM parameters (closure relation and HFE expression).

It was found out that the model predictive ability is almost not sensitive to the choice

of closure relation (HNC, PLHNC). However, the 1D RISM-SDC model with the

PLHNC closure is more efficient, since in many cases 1D RISM calculations with the

HNC closure do not converge. We showed that for "simple" solutes the 1D RISM-

SDC model with the PW free energy expression performs better than that with the

GF free energy expression. However, the accuracies of the model predictions for

polyfragment solutes are comparable for both free energy expressions.

(b) Solutes parameters.

For all molecules in the study we use estimations of the 3D structure obtained fromX-

ray data [128] and/or the structural optimization at MP2/6-311G** (B3LYP/6-31G**

for pollutants) level of theory [130]. In this thesis, we tested two sets of solutes’

partial charges: (i) OPLS (ii) QM-derived using the optimized structures. It was

shown that the model with OPLS partial charges gives reasonably accurate HFEs

only for "simple" organic molecules, whereas the model with the QM-derived partial

charges tested here allows HFE to be calculated accurately for polyfragment aromatic

solutes.

6. The results of the thesis show that for a fixed set of input parameters the RISM-SDC

model coefficients, {ai}, can be transferred to molecules of different chemical classes.

The 1D RISM-SDC model with QM-derived partial charges was tested on such polyfrag-

ment solutes as polychlorinated aromatic pollutants. We demonstrated that different struc-

tural features of a solute molecule contribute independently to the HFE error. Thus, for

polyfragment solutes HFE errors can be represented as a linear combination of structural

corrections calibrated on a set of "simple" solutes. This indicates a great potential of the
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RISM-SDC model to be used for HFE predictions of a wide range of organic solutes.

We compared HFEs predicted by the 1D RISM-SDC model with available experimen-

tal data, results of other standard methods such as continuum solvation models [195],

and data obtained by the cheminformatics approach (the SDC model without the RISM

calculated HFEs). We found that the 1D RISM-SDC model predicts reasonably well

the HFEs for both "simple" and polyfragment organic molecules (rms of error is ∼ 1.0

kcal/mol). This suggests that, despite of the number of approximations, the 1D RISM

approach is able to reproduce the non-linear solvent response around polyfunctional so-

lutes. However, neither the continuum solvent models nor the proposed cheminformatics

approach take into account this effect. These results allowed us to conclude that 1D

RISM-calculated HFEs are the essential part of the SDC model.

7. We showed the SDC model can be further improved by its combination with the 3D

RISM approach, which allowed to predict HFEs for small organic compounds with the

experimental accuracy (rms of error is ∼ 0.5 kcal/mol). We demonstrate that the 3D

RISM-SDC model requires less number of structural corrections compared to the 1D

RISM-SDC model. Particularly, the 3D RISM does not require the correction on num-

ber of branches because it properly estimates the cavity created by a solute molecule in

water. We found that the 3D RISM-SDC model is almost not sensitive to the initial HFE

expression and can be efficiently used with both GF and KH free energy expressions.

In this thesis, for the first time, we revealed that HFEs obtained by the 3D RISM can

be efficiently scaled with only one correction based on the PMV of solute. We showed

that the correction is universal for multiple different classes of organic molecules, from

"simple" organic compounds to druglike molecules (rms of error of predicted HFEs for

both cases is ∼ 1.0 kcal/mol).

Outlook.

The RISM-SDC model, proposed in this thesis, is a promising theoretical approach to pre-

dict thermodynamics of solvation. The RISM-SDC methodology can be easily applied to at

least two fields of computational chemistry: (1) high-throughput calculations of HFEs for large

databases of compounds (e.g. in pharmaceutical drug discovery or in assessing the environ-

mental fate of pollutant molecules, where the time required for each calculation is important

as well as the accuracy); (2) hybrid MC/RISM calculations where MC technique is applied for

sampling the conformations changes of a solute molecule in solution treated with the RISM



6 SUMMARY 98

approach [66]. 1 Both applications require many RISM calculations of HFEs (for many com-

pounds in the first case, and for many different MC-steps in the second case).

The results of this thesis show that for both "simple" and polyfragment solutes the 3D RISM-

SDC model predicts HFEs with a high accuracy (rms of error is ∼ 0.5 kcal/mol), whereas

the 1D RISM-SDC model with the same parameters provides moderate accuracy with the rms

of error is ∼ 1.0 kcal/mol. However a single 1D RISM-SDC calculation takes only a few

seconds on a PC, whereas a single 3D RISM-SDC HFE calculation is approximately 100 times

more computationally expensive. Therefore we suggest that one should use the 1D RISM-SDC

model for large scale high throughput screening of molecule hydration properties, while further

refinement of these properties for selected compounds should be carried out with the more

computationally expensive, but more accurate, 3D RISM-SDC model.

The fact that it is possible to improve the accuracy of RISM-based HFE predictions with the

SDC model opens up many new questions to theoreticians working in the field of the IET of

Molecular Liquids. There is no straightforward method to identify which approximation used

in the RISM theories (e.g. neglecting the bridge functional, reducing the order of 6D Ornstein-

Zernike equation, etc.) makes the most significant contribution to the error in calculated HFE.

We believe that more theoretical works in IET will bring more understanding of approximations

behind the RISM approach and provoke development of new methods of HFE calculation which

will allow more accurate predictions at lower computational cost.

The current limiting factor in further SDC model development is a lack of experimental

thermodynamic data for polyfragment organic molecules (e.g. pollutants, druglike molecules,

etc.). Computational and theoretical scientists can do very little to improve the situation in this

respect, but we hope that our results and analysis of available experimental data will provoke

experimentalists to revisit the question and, hopefully, to make additional independent measure-

ments of HFE. Such new experimental data would be very valuable in creating and testing new

models.

1In the MC/RISM approach the energy function in the Boltzmann factor is taken as a sum of the conformational

energy of a molecule and the HFE; the SDC model can be used in the MC/RISM approach to improve the accuracy

of HFEs of a molecule in a fixed conformation calculated on each MC-step.
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8 Appendix 1

Table 20: Composition of the training set (a) and test set

(b). The SDC model descriptors for molecules. Experimen-

tal HFEs [34, 101, 164, 35, 33, 45, 165] and corresponding

values calculated by 1D RISM with the PLHNC closure and

PW, GF free energy expressions as well as the 1D RISM-

SDC(OPLSq) model based on these expressions (kcal/mol).

Solutes parameters (partial charges and LJ parameters) were

taken from the OPLS-AA force fields [131, 132, 133].

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

2,2,4-trimethylpentane 4.86 3 0 0 0 0 0 0 0 0 9.79 -0.65 2.07 1.52 2.87 a

2,2,5-trimethylhexane 5.39 3 0 0 0 0 0 0 0 0 10.67 -0.94 2.14 1.58 2.79 a

2,2-dimethylbutane 4.14 2 0 0 0 0 0 0 0 0 10.22 2.20 2.52 2.53 2.57 a

2,4-dimethylpentane 4.65 2 0 0 0 0 0 0 0 0 11.15 1.98 2.69 2.63 2.87 a

2-methylbutane 3.86 1 0 0 0 0 0 0 0 0 11.25 4.34 2.90 3.10 2.38 a

2-methylhexane 4.88 1 0 0 0 0 0 0 0 0 12.83 3.65 2.94 3.06 2.93 a

n-decane 6.57 0 0 0 0 0 0 0 0 0 16.33 3.87 2.83 2.97 3.16 a

n-hexane 4.54 0 0 0 0 0 0 0 0 0 13.33 5.23 2.89 3.03 2.50 a

Continued on next page
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Table 20 – continued from previous page

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

n-octane 5.57 0 0 0 0 0 0 0 0 0 14.96 4.67 2.96 3.13 2.89 a

n-pentane 4.04 0 0 0 0 0 0 0 0 0 12.47 5.47 2.79 2.96 2.36 a

propane 3.00 0 0 0 0 0 0 0 0 0 10.70 5.96 2.57 2.79 1.97 a

2,2-dimethylpentane 4.63 2 0 0 0 0 0 0 0 0 11.07 1.73 2.63 2.38 2.88 b

2,3,4-trimethylpentane 4.82 3 0 0 0 0 0 0 0 0 9.56 -0.45 1.90 1.70 2.56 b

2,3-dimethylpentane 4.57 2 0 0 0 0 0 0 0 0 10.59 1.64 2.24 2.24 2.52 b

2-methylpentane 4.36 1 0 0 0 0 0 0 0 0 11.95 3.93 2.84 3.01 2.52 b

3-methylhexane 4.81 1 0 0 0 0 0 0 0 0 12.26 3.20 2.48 2.56 2.71 b

3-methylpentane 4.29 1 0 0 0 0 0 0 0 0 11.37 3.47 2.36 2.51 2.51 b

ethane 2.45 0 0 0 0 0 0 0 0 0 9.56 5.94 2.27 2.42 1.84 b

methane 1.79 0 0 0 0 0 0 0 0 0 7.66 5.11 1.37 1.17 1.98 b

n-butane 3.47 0 0 0 0 0 0 0 0 0 11.35 5.52 2.53 2.64 2.09 b

n-heptane 5.04 0 0 0 0 0 0 0 0 0 14.08 4.91 2.88 3.04 2.63 b

n-nonane 6.05 0 0 0 0 0 0 0 0 0 15.56 4.19 2.84 2.95 3.14 b

3-methylbut-1-ene 3.81 1 1 0 0 0 0 0 0 0 11.39 4.87 2.19 2.37 1.82 a

but-1-ene 3.38 0 1 0 0 0 0 0 0 0 11.17 5.78 1.55 1.63 1.37 a

ethene 2.22 0 1 0 0 0 0 0 0 0 8.41 5.21 0.55 0.31 1.28 a

Continued on next page
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Table 20 – continued from previous page

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

hept-1-ene 4.93 0 1 0 0 0 0 0 0 0 13.81 5.04 1.86 1.86 1.66 a

hex-1-ene 4.41 0 1 0 0 0 0 0 0 0 12.94 5.27 1.77 1.77 1.64 a

non-1-ene 5.95 0 1 0 0 0 0 0 0 0 15.43 4.44 1.93 1.91 2.06 a

2-methylbut-2-ene 3.84 1 1 0 0 0 0 0 0 0 11.90 5.69 2.66 3.21 1.31 b

oct-1-ene 5.45 0 1 0 0 0 0 0 0 0 14.68 4.79 1.94 1.94 2.08 b

pent-1-ene 3.90 0 1 0 0 0 0 0 0 0 12.11 5.58 1.71 1.74 1.66 b

propene 2.84 0 1 0 0 0 0 0 0 0 10.06 5.81 1.27 1.30 1.29 b

trans-hept-2-ene 4.98 0 1 0 0 0 0 0 0 0 14.42 5.66 2.39 2.52 1.67 b

ethylbenzene 4.59 1 0 1 0 0 0 0 0 0 10.59 2.35 -0.57 -0.45 -0.73 a

n-butylbenzene 5.59 1 0 1 0 0 0 0 0 0 12.19 1.58 -0.47 -0.60 -0.40 a

n-hexylbenzene 6.60 1 0 1 0 0 0 0 0 0 13.67 0.87 -0.51 -0.67 -0.04 a

n-pentylbenzene 6.09 1 0 1 0 0 0 0 0 0 12.87 1.21 -0.54 -0.65 -0.23 a

n-propylbenzene 5.11 1 0 1 0 0 0 0 0 0 11.66 2.23 -0.28 -0.25 -0.53 a

toluene 4.14 1 0 1 0 0 0 0 0 0 10.06 2.94 -0.40 -0.16 -0.84 a

1,2,3-trimethylbenzene 4.93 3 0 1 0 0 0 0 0 0 8.49 -0.71 -1.04 -0.52 -1.21 b

1,2,4-trimethylbenzene 5.06 3 0 1 0 0 0 0 0 0 9.52 0.23 -0.21 0.50 -0.83 b

1,3,5-trimethylbenzene 5.1 3 0 1 0 0 0 0 0 0 9.77 0.33 -0.01 0.62 -0.90 b

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

2-ethyltoluene 4.92 2 0 1 0 0 0 0 0 0 9.44 0.30 -1.14 -0.91 -1.04 b

4-ethyltoluene 5.14 2 0 1 0 0 0 0 0 0 11.01 1.62 0.10 0.55 -0.95 b

isobutylbenzene 5.34 2 0 1 0 0 0 0 0 0 10.21 -0.21 -1.00 -1.16 0.16 b

m-xylene 4.64 2 0 1 0 0 0 0 0 0 10.13 1.85 -0.02 0.47 -0.82 b

o-xylene 4.53 2 0 1 0 0 0 0 0 0 9.31 1.17 -0.69 -0.29 -0.90 b

p-xylene 4.69 2 0 1 0 0 0 0 0 0 10.55 2.27 0.32 0.91 -0.80 b

sec-butylbenzene 5.35 2 0 1 0 0 0 0 0 0 10.46 0.02 -0.76 -0.92 -0.45 b

tert-butylbenzene 5.15 3 0 1 0 0 0 0 0 0 9.13 -1.38 -0.73 -1.06 -0.44 b

2-methylbutan-1-ol 3.85 1 0 0 1 0 0 0 0 0 2.84 -6.87 -4.75 -4.79 -4.42 a

3-methylbutan-1-ol 3.88 1 0 0 1 0 0 0 0 0 3.74 -6.03 -3.90 -3.94 -4.42 a

4-methylpentan-2-ol 4.29 2 0 0 1 0 0 0 0 0 2.86 -7.92 -4.33 -4.17 -3.74 a

butan-1-ol 3.54 0 0 0 1 0 0 0 0 0 3.86 -4.88 -4.33 -4.38 -4.72 a

butan-2-ol 3.46 1 0 0 1 0 0 0 0 0 2.62 -6.06 -4.39 -4.23 -4.60 a

decan-1-ol 6.60 0 0 0 1 0 0 0 0 0 8.76 -6.62 -4.07 -4.17 -3.64 a

ethanol 2.47 0 0 0 1 0 0 0 0 0 1.63 -4.82 -4.95 -5.00 -5.00 a

heptan-1-ol 5.09 0 0 0 1 0 0 0 0 0 6.50 -5.56 -4.04 -4.08 -4.23 a

2-methylbutan-2-ol 3.78 2 0 0 1 0 0 0 0 0 2.52 -7.15 -3.91 -3.73 -4.43 b

Continued on next page
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Table 20 – continued from previous page

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

2-methylpentan-2-ol 4.28 2 0 0 1 0 0 0 0 0 3.31 -7.50 -3.87 -3.76 -3.93 b

2-methylpentan-3-ol 4.26 2 0 0 1 0 0 0 0 0 3.57 -7.13 -3.59 -3.40 -3.89 b

2-methylpropan-1-ol 3.43 1 0 0 1 0 0 0 0 0 2.88 -5.72 -4.08 -3.91 -4.51 b

hexan-1-ol 4.57 0 0 0 1 0 0 0 0 0 5.69 -5.27 -4.07 -4.12 -4.39 b

hexan-3-ol 4.48 1 0 0 1 0 0 0 0 0 4.64 -6.33 -3.91 -3.85 -4.07 b

methanol 1.88 0 0 0 1 0 0 0 0 0 -0.07 -5.46 -5.76 -6.02 -5.11 b

nonan-1-ol 6.10 0 0 0 1 0 0 0 0 0 8.02 -6.24 -4.05 -4.12 -3.89 b

octan-1-ol 5.60 0 0 0 1 0 0 0 0 0 7.26 -5.88 -4.05 -4.08 -4.09 b

pentan-1-ol 4.05 0 0 0 1 0 0 0 0 0 4.71 -5.09 -4.25 -4.28 -4.52 b

pentan-2-ol 3.97 1 0 0 1 0 0 0 0 0 3.51 -6.29 -4.26 -4.13 -4.39 b

pentan-3-ol 3.93 1 0 0 1 0 0 0 0 0 3.23 -6.65 -4.49 -4.52 -4.35 b

propan-1-ol 3.02 0 0 0 1 0 0 0 0 0 3.10 -4.45 -4.32 -4.28 -4.83 b

propan-2-ol 2.97 1 0 0 1 0 0 0 0 0 2.29 -5.25 -3.97 -3.73 -4.76 b

3,5-dimethylphenol 4.63 3 0 1 1 1 0 0 0 0 4.16 -6.42 -5.70 -5.45 -6.27 a

3-ethylphenol 4.59 2 0 1 1 1 0 0 0 0 4.45 -6.05 -6.42 -6.49 -6.26 a

4-ethylphenol 4.61 2 0 1 1 1 0 0 0 0 4.59 -5.91 -6.30 -6.34 -6.14 a

p-cresol 4.15 2 0 1 1 1 0 0 0 0 4.12 -5.29 -6.09 -6.01 -6.14 a

Continued on next page
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Table 20 – continued from previous page

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

phenol 3.61 1 0 1 1 1 0 0 0 0 3.53 -4.68 -6.92 -7.13 -6.61 a

2,3-dimethylphenol 4.51 3 0 1 1 1 0 0 0 0 4.15 -6.24 -5.54 -5.34 -6.16 b

2,4-dimethylphenol 4.64 3 0 1 1 1 0 0 0 0 4.88 -5.62 -4.99 -4.64 -6.01 b

2,5-dimethylphenol 4.65 3 0 1 1 1 0 0 0 0 4.06 -6.35 -5.82 -5.37 -5.92 b

2,6-dimethylphenol 4.55 3 0 1 1 1 0 0 0 0 4.08 -6.24 -5.66 -5.32 -5.27 b

3,4-dimethylphenol 4.55 3 0 1 1 1 0 0 0 0 3.47 -6.99 -6.27 -6.07 -6.51 b

4-n-propylphenol 5.12 2 0 1 1 1 0 0 0 0 5.68 -6.04 -5.99 -6.14 -5.91 b

4-tert-butylphenol 5.15 4 0 1 1 1 0 0 0 0 3.25 -9.57 -6.33 -6.88 -5.95 b

o-cresol 4.12 2 0 1 1 1 0 0 0 0 4.63 -4.71 -5.53 -5.45 -5.88 b

1-chlorobutane 3.93 0 0 0 0 0 1 0 0 0 11.32 4.52 -0.31 -0.45 -0.16 a

1-chloroheptane 5.48 0 0 0 0 0 1 0 0 0 13.92 3.80 -0.05 -0.19 0.29 a

1-chlorohexane 4.97 0 0 0 0 0 1 0 0 0 13.14 4.13 -0.06 -0.18 0.00 a

1-chloropentane 4.45 0 0 0 0 0 1 0 0 0 12.20 4.32 -0.21 -0.32 -0.07 a

1-chloropropane 3.42 0 0 0 0 0 1 0 0 0 10.48 4.88 -0.37 -0.42 -0.30 a

2-chloro-2-methylpropane 3.78 2 0 0 0 0 1 0 0 0 10.83 4.31 1.57 2.02 1.09 a

2-chlorobutane 3.85 1 0 0 0 0 1 0 0 0 10.98 4.38 0.54 0.74 0.00 a

2-chloropropane 3.37 1 0 0 0 0 1 0 0 0 10.28 4.80 0.58 0.86 -0.25 a

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

chloroethane 2.9 0 0 0 0 0 1 0 0 0 9.29 4.77 -0.78 -0.86 -0.63 a

chloromethane 2.35 0 0 0 0 0 1 0 0 0 7.74 4.20 -1.49 -1.78 -0.54 a

acetaldehyde 2.37 0 0 0 0 0 0 0 1 0 4.65 0.15 -3.42 -3.50 -3.51 a

butyraldehyde 3.45 0 0 0 0 0 0 0 1 0 6.81 0.12 -2.90 -2.83 -3.18 a

formaldehyde 1.81 0 0 0 0 0 0 0 1 0 2.75 -0.88 -4.48 -4.88 -2.76 a

isobutyraldehyde 3.40 1 0 0 0 0 0 0 1 0 6.60 -0.02 -1.95 -1.62 -2.86 a

pentanal 3.97 0 0 0 0 0 0 0 1 0 7.68 -0.17 -2.81 -2.79 -3.03 a

propionaldehyde 2.93 0 0 0 0 0 0 0 1 0 5.71 0.14 -3.21 -3.15 -3.44 a

heptanal 5.00 0 0 0 0 0 0 0 1 0 9.42 -0.62 -2.64 -2.59 -2.67 b

hexanal 4.49 0 0 0 0 0 0 0 1 0 8.51 -0.41 -2.76 -2.71 -2.81 b

nonanal 6.02 0 0 0 0 0 0 0 1 0 10.96 -1.30 -2.62 -2.62 -2.07 b

octanal 5.52 0 0 0 0 0 0 0 1 0 10.22 -0.95 -2.61 -2.59 -2.29 b

3-methylbutan-2-one’ 3.79 2 0 0 0 0 0 0 0 1 6.54 -1.04 -3.07 -2.9549 -3.25 a

butanone 3.41 1 0 0 0 0 0 0 0 1 6.39 -0.22 -3.72 -2.95 -3.71 a

hexan-2-one 4.46 1 0 0 0 0 0 0 0 1 8.43 -0.43 -3.26 -3.76 -3.29 a

pentan-2-one 3.93 1 0 0 0 0 0 0 0 1 7.43 -0.26 -3.46 -3.31 -3.52 a

pentan-3-one 3.96 1 0 0 0 0 0 0 0 1 7.23 -0.44 -3.71 -3.48 -3.41 a

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

propanone 2.87 1 0 0 0 0 0 0 0 1 5.55 0.06 -3.74 -3.63 -3.81 a

4-methylpentan-2-one 4.28 2 0 0 0 0 0 0 0 1 7.16 -1.64 -3.19 -3.24 -3.05 b

decan-2-one 6.48 1 0 0 0 0 0 0 0 1 11.55 -1.75 -3.20 -3.34 -2.34 b

heptan-2-one 4.96 1 0 0 0 0 0 0 0 1 9.16 -0.77 -3.29 -3.34 -3.04 b

nonan-2-one 5.98 1 0 0 0 0 0 0 0 1 10.83 -1.36 -3.16 -3.27 -2.50 b

nonan-5-one 6.02 1 0 0 0 0 0 0 0 1 11.09 -1.13 -2.96 -3.02 -2.65 b

octan-2-one 5.48 1 0 0 0 0 0 0 0 1 9.98 -1.06 -3.24 -3.30 -2.88 b

undecan-2-one 6.99 1 0 0 0 0 0 0 0 1 12.26 -2.12 -3.25 -3.40 -2.16 b

di-n-butyl ether 5.91 0 0 0 0 0 0 1 0 0 13.43 1.86 -0.78 -0.84 -0.83 a

di-n-propyl ether 4.93 0 0 0 0 0 0 1 0 0 12.26 3.06 -0.47 -0.26 -1.16 a

diethyl ether 3.85 0 0 0 0 0 0 1 0 0 9.38 2.36 -1.72 -1.65 -1.60 a

diisopropyl ether 4.56 2 0 0 0 0 0 1 0 0 9.04 -0.11 -1.00 -0.89 -0.53 a

dimethyl ether 2.69 0 0 0 0 0 0 1 0 0 6.79 1.98 -2.55 -2.76 -1.90 a

methyl tert-butylether 3.97 2 0 0 0 0 0 1 0 0 7.61 -0.37 -1.54 -1.52 -2.21 a

methylethyl ether 3.26 0 0 0 0 0 0 1 0 0 8.03 2.08 -2.18 -2.30 -2.01 a

1,1,1,2-tetrachloroethane 4.29 2 0 0 0 0 4 0 0 0 12.92 6.27 -3.42 -2.86 -1.28 b

1,1,1-trichloroethane 3.86 2 0 0 0 0 3 0 0 0 11.71 5.53 -1.89 -1.49 -0.19 b

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

1,1,2,2-tetrachloroethane 4.19 2 0 0 0 0 4 0 0 0 12.11 5.46 -4.07 -3.74 -2.47 b

1,1,2-trichloroethane 3.77 1 0 0 0 0 3 0 0 0 8.99 2.90 -5.52 -5.57 -1.99 b

1,1-dichloroethane 3.35 1 0 0 0 0 2 0 0 0 10.15 4.93 -1.64 -1.41 -0.85 b

1,1-dichloroethene 3.20 1 1 0 0 0 2 0 0 0 11.44 6.92 -1.03 -0.75 0.25 b

1,2,3,4-tetrachlorobenzene 5.13 4 0 1 0 0 4 0 0 0 11.88 3.66 -5.29 -4.19 -1.34 b

1,2,3,5-tetrachlorobenzene 5.14 4 0 1 0 0 4 0 0 0 12.37 4.07 -4.81 -3.78 -1.62 b

1,2,3-trichlorobenzene 4.75 3 0 1 0 0 3 0 0 0 12.09 4.60 -3.48 -2.50 -1.24 b

1,2,4,5-tetrachlorobenzene 5.17 4 0 1 0 0 4 0 0 0 12.59 4.26 -4.64 -3.57 -1.34 b

1,2,4-trichlorobenzene 4.83 3 0 1 0 0 3 0 0 0 12.90 5.31 -2.78 -1.74 -1.12 b

1,2-dichlorobenzene 4.34 2 0 1 0 0 2 0 0 0 11.77 4.95 -2.14 -1.41 -1.41 b

1,2-dichloroethane 3.34 0 0 0 0 0 2 0 0 0 10.03 4.66 -2.81 -3.07 -1.77 b

1,2-dichloropropane 3.78 1 0 0 0 0 2 0 0 0 9.67 3.25 -2.76 -2.82 -1.27 b

1,2-dimethoxyethane 4.01 0 0 0 0 0 0 2 0 0 8.10 0.09 -4.94 -5.19 -4.84 b

1,2-ethanediol 2.53 0 0 0 2 0 0 0 0 0 -2.83 -11.81 -8.77 -8.64 -7.75 b

1,3,5-trichlorobenzene 4.84 3 0 1 0 0 3 0 0 0 13.37 5.73 -2.33 -1.32 -0.78 b

1,3-dichlorobenzene 4.39 2 0 1 0 0 2 0 0 0 12.46 5.58 -1.51 -0.75 -0.98 b

1,3-dichloropropane 3.83 0 0 0 0 0 2 0 0 0 9.47 2.83 -4.11 -4.59 -1.90 b

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

1,4-dichlorobenzene 4.40 2 0 1 0 0 2 0 0 0 12.52 5.62 -1.49 -0.70 -1.01 b

1,4-dichloropentane 4.76 1 0 0 0 0 2 0 0 0 11.24 2.60 -2.67 -2.84 -2.32 b

2,3-dimethylbuta-1,3-diene 4.04 2 2 0 0 0 0 0 0 0 11.35 4.72 1.95 2.52 0.40 b

2-butoxyethanol 4.85 0 0 0 1 0 0 1 0 0 5.23 -6.73 -6.64 -6.78 -6.26 b

2-chlorophenol 3.95 2 0 1 1 1 1 0 0 0 3.35 -5.35 -8.66 -8.59 -2.82 b

2-chlorotoluene 4.51 2 0 1 0 0 1 0 0 0 11.94 4.54 -0.12 0.68 -1.14 b

2-ethoxyethanol 3.82 0 0 0 1 0 0 1 0 0 3.22 -6.47 -7.09 -7.17 -6.70 b

2-methoxyphenol 4.29 2 0 1 1 1 0 1 0 0 2.25 -7.71 -9.85 -9.72 -5.58 b

2-methylbuta-1,3-diene 3.65 1 2 0 0 0 0 0 0 0 11.01 5.25 1.13 1.42 0.68 b

2-methylstyrene 4.87 2 1 1 0 0 0 0 0 0 10.66 2.06 -0.77 -0.42 -1.24 b

2-phenylethanol 4.61 1 0 1 1 0 0 0 0 0 3.81 -7.25 -6.63 -6.72 -6.80 b

2-propoxyethanol 4.33 0 0 0 1 0 0 1 0 0 4.40 -6.37 -6.70 -6.75 -6.41 b

3-chlorophenol 4.00 2 0 1 1 1 1 0 0 0 4.95 -3.75 -7.13 -6.95 -6.61 b

3-hydroxybenzaldehyde 4.08 2 0 1 1 1 0 0 1 0 1.38 -8.71 -9.62 -9.55 -9.51 b

3-methoxyphenol 4.32 2 0 1 1 1 0 1 0 0 3.93 -6.01 -8.22 -7.99 -7.66 b

3-phenylpropanol 5.12 1 0 1 1 0 0 0 0 0 2.96 -9.42 -8.25 -8.57 -6.93 b

4-chloro-3-methylphenol 4.48 3 0 1 1 1 1 0 0 0 5.42 -4.38 -6.31 -5.89 -6.79 b

Continued on next page
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Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

4-chlorophenol 4.03 2 0 1 1 1 1 0 0 0 5.08 -3.66 -7.04 -6.85 -7.04 b

4-hydroxybenzaldehyde 4.08 2 0 1 1 1 0 0 1 0 0.98 -9.15 -10.03 -9.98 -9.65 b

4-methoxyacetophenone 5.19 3 0 1 0 0 0 1 0 1 8.09 -2.29 -5.96 -5.34 -4.40 b

E-but-2-enal 3.37 0 1 0 0 0 0 0 1 0 7.04 0.77 -3.47 -3.47 -4.23 b

E-hex-2-enal 4.43 0 1 0 0 0 0 0 1 0 9.09 0.50 -3.01 -3.07 -3.68 b

E-oct-2-enal 5.43 0 1 0 0 0 0 0 1 0 10.58 -0.25 -3.04 -3.18 -3.44 b

acetophenone 4.47 2 0 1 0 0 0 0 0 1 7.59 -1.16 -4.75 -4.68 -4.54 b

allyl alcohol 2.88 0 1 0 1 0 0 0 0 0 1.81 -5.35 -6.31 -6.50 -5.10 b

benzyl alcohol 4.12 1 0 1 1 0 0 0 0 0 2.52 -7.21 -7.19 -6.99 -6.63 b

buta-1,3-diene 3.20 0 2 0 0 0 0 0 0 0 10.47 5.62 0.20 0.12 0.61 b

chlorobenzene 4.01 1 0 1 0 0 1 0 0 0 11.44 5.11 -0.93 -0.46 -1.09 b

cis-1,2-dichloroethene 3.12 0 1 0 0 0 2 0 0 0 9.47 4.83 -3.96 -4.28 -0.93 b

dichloromethane 2.84 0 0 0 0 0 2 0 0 0 8.93 4.63 -3.15 -3.43 -1.31 b

dimethoxymethane 3.52 0 0 0 0 0 0 2 0 0 6.66 -0.30 -5.63 -5.90 -2.97 b

ethyl phenyl ether 4.93 1 0 1 0 0 0 1 0 0 11.49 2.79 -1.87 -1.18 -2.22 b

hexa-1,5-diene 4.27 0 2 0 0 0 0 0 0 0 12.45 5.28 0.57 0.46 1.01 b

methyl phenyl ether 4.37 1 0 1 0 0 0 1 0 0 10.33 2.74 -2.19 -1.59 -2.45 b

Continued on next page
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Table 20 – continued from previous page

Name ρV̄ br db benz OH ph hal eth ald ket Δμ
PW
hyd ΔμGFhyd ΔμSDC+PWhyd ΔμSDC+GFhyd Δμ

exp
hyd Set

penta-1,4-diene 3.76 0 2 0 0 0 0 0 0 0 11.74 5.73 0.62 0.58 0.93 b

pentachloroethane 4.70 3 0 0 0 0 5 0 0 0 14.01 6.77 -3.98 -3.11 -1.39 b

tetrachloroethene 4.08 2 1 0 0 0 4 0 0 0 13.88 8.09 -3.06 -2.41 0.10 b

tetrachloromethane 3.84 2 0 0 0 0 4 0 0 0 13.21 7.55 -2.45 -1.87 0.08 b

trans-1,2-dichloroethene 3.17 0 1 0 0 0 2 0 0 0 10.85 6.18 -2.65 -2.90 -0.78 b

trichloroethene 3.63 1 1 0 0 0 3 0 0 0 12.13 6.87 -3.10 -2.91 -0.44 b

trichloromethane 3.36 1 0 0 0 0 3 0 0 0 10.95 5.84 -2.94 -2.88 -1.08 b
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Table 21: Composition of the training and test sets. The

SDC model descriptors for molecules. Experimental HFEs

(Δμexp) [34, 101, 164, 35, 33, 45, 165] and corresponding

values calculated by 1D and 3D RISM with the PLHNC clo-

sure using the GF free energy expression as well as corre-

sponding 1D and 3D RISM-SDC models based on this ex-

pression (kcal/mol). Solutes parameters are: AM1-BCC par-

tial charges and GAFF LJ parameters

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV̄ br db benz OH hal ald ket eth 1D 3D 1D 3D

Training Set

2,2,4-trimethylpentane 4.87 3 0 0 0 0 0 0 0 5.09 15.28 2.47 2.83 2.87

2,2,5-trimethylhexane 5.40 3 0 0 0 0 0 0 0 4.45 23.90 2.70 3.07 2.79

2,2-dimethylbutane 4.16 2 0 0 0 0 0 0 0 4.74 21.04 2.85 2.50 2.57

2,4-dimethylpentane 4.66 2 0 0 0 0 0 0 0 4.90 18.19 3.04 2.70 2.87

2-methylbutane 3.88 1 0 0 0 0 0 0 0 5.30 12.43 2.79 2.34 2.38

2-methylhexane 4.89 1 0 0 0 0 0 0 0 0.00 25.89 3.09 2.70 2.93

n-decane 6.57 0 0 0 0 0 0 0 0 -0.27 28.97 3.20 3.21 3.16

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

n-hexane 4.55 0 0 0 0 0 0 0 0 2.85 20.41 2.49 2.55 2.50

n-octane 5.55 0 0 0 0 0 0 0 0 2.57 23.39 2.84 2.86 2.89

n-pentane 4.01 0 0 0 0 0 0 0 0 4.58 15.24 2.07 2.39 2.36

propane 3.02 0 0 0 0 0 0 0 0 4.91 12.36 1.76 2.14 1.97

3-methylbut-1-ene 3.84 1 1 0 0 0 0 0 0 -4.25 12.88 2.28 1.53 1.82

but-1-ene 3.42 0 1 0 0 0 0 0 0 4.84 17.77 0.96 1.37 1.37

hept-1-ene 4.95 0 1 0 0 0 0 0 0 4.20 23.56 1.74 1.84 1.66

hex-1-ene 4.43 0 1 0 0 0 0 0 0 5.28 16.49 1.45 1.67 1.64

non-1-ene 5.97 0 1 0 0 0 0 0 0 -3.72 12.84 2.14 2.15 2.06

ethylbenzene 4.60 1 0 1 0 0 0 0 0 -1.61 11.79 -0.62 -0.77 -0.73

n-butylbenzene 5.59 1 0 1 0 0 0 0 0 -5.13 16.21 -0.43 -0.35 -0.40

n-hexylbenzene 6.59 1 0 1 0 0 0 0 0 -1.50 2.81 -0.16 -0.03 -0.04

n-pentylbenzene 6.08 1 0 1 0 0 0 0 0 6.16 13.55 -0.37 -0.20 -0.23

n-propylbenzene 5.11 1 0 1 0 0 0 0 0 -2.63 10.05 -0.35 -0.58 -0.53

2-methylbutan-1-ol 3.81 1 0 0 1 0 0 0 0 -3.45 10.42 -4.55 -4.39 -4.42

3-methylbutan-1-ol 3.83 1 0 0 1 0 0 0 0 -0.80 8.82 -4.00 -4.49 -4.42

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

4-methylpentan-2-ol 4.27 2 0 0 1 0 0 0 0 -1.19 8.71 -3.20 -3.93 -3.74

butan-1-ol 3.48 0 0 0 1 0 0 0 0 5.18 9.46 -5.04 -4.67 -4.72

butan-2-ol 3.43 1 0 0 1 0 0 0 0 -4.14 27.33 -4.10 -4.39 -4.60

decan-1-ol 6.54 0 0 0 1 0 0 0 0 1.73 23.95 -3.69 -3.72 -3.64

ethanol 2.41 0 0 0 1 0 0 0 0 2.58 18.20 -6.03 -4.99 -5.00

heptan-1-ol 5.03 0 0 0 1 0 0 0 0 2.10 12.28 -4.17 -4.19 -4.23

1-chlorobutane 3.93 0 0 0 0 1 0 0 0 -0.16 18.58 -0.50 -0.14 -0.16

1-chloroheptane 5.47 0 0 0 0 1 0 0 0 -2.62 4.31 0.29 0.33 0.29

1-chlorohexane 4.96 0 0 0 0 1 0 0 0 2.06 16.71 0.11 0.19 0.00

1-chloropentane 4.44 0 0 0 0 1 0 0 0 5.51 22.17 -0.21 0.04 -0.07

1-chloropropane 3.42 0 0 0 0 1 0 0 0 -3.21 18.68 -0.77 -0.29 -0.30

2-chlorobutane 3.87 1 0 0 0 1 0 0 0 5.70 19.27 0.73 -0.24 0.00

2-chloropropane 3.39 1 0 0 0 1 0 0 0 -1.05 14.66 0.61 -0.47 -0.25

chloroethane 2.89 0 0 0 0 1 0 0 0 -1.40 8.77 -1.38 -0.55 -0.63

acetaldehyde 2.39 0 0 0 0 0 1 0 0 1.67 9.29 -4.54 -3.61 -3.51

butyraldehyde 3.47 0 0 0 0 0 1 0 0 1.33 22.56 -3.24 -3.10 -3.18

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

isobutyraldehyde 3.42 1 0 0 0 0 1 0 0 4.55 32.31 -1.69 -3.10 -2.86

pentanal 3.97 0 0 0 0 0 1 0 0 5.72 20.77 -2.96 -2.92 -3.03

propionaldehyde 2.95 0 0 0 0 0 1 0 0 0.66 28.32 -3.59 -3.28 -3.44

3-methylbutan-2-one 3.89 1 0 0 0 0 0 1 0 5.14 26.45 -2.60 -3.35 -3.25

butanone 3.53 0 0 0 0 0 0 1 0 5.79 17.87 -3.93 -3.67 -3.71

hexan-2-one 4.55 0 0 0 0 0 0 1 0 0.93 25.44 -3.22 -3.26 -3.29

pentan-2-one 4.04 0 0 0 0 0 0 1 0 1.85 19.62 -3.59 -3.45 -3.52

pentan-3-one 4.06 0 0 0 0 0 0 1 0 4.96 27.92 -3.11 -3.26 -3.41

propanone 2.99 0 0 0 0 0 0 1 0 -0.93 11.76 -4.52 -3.98 -3.80

di-n-butyl ether 5.84 0 0 0 0 0 0 0 1 -0.49 11.91 -0.49 -0.81 -0.83

di-n-propyl ether 4.86 0 0 0 0 0 0 0 1 -1.39 11.62 -0.55 -1.13 -1.16

diethyl ether 3.78 0 0 0 0 0 0 0 1 6.41 12.30 -2.04 -1.59 -1.60

diisopropyl ether 4.54 2 0 0 0 0 0 0 1 -0.89 5.81 0.01 -0.87 -0.53

methylethyl ether 3.15 0 0 0 0 0 0 0 1 -1.06 5.83 -3.06 -1.73 -2.01

Test Set

2,2-dimethylpentane 4.64 2 0 0 0 0 0 0 0 6.82 20 2.72 2.70 2.88

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

2,3,4-trimethylpentane 4.83 3 0 0 0 0 0 0 0 7.22 20.20 2.66 2.70 2.56

2,3-dimethylpentane 4.58 2 0 0 0 0 0 0 0 5.78 17.48 2.66 2.57 2.52

2-methylpentane 4.37 1 0 0 0 0 0 0 0 1.04 18.93 2.86 2.52 2.52

3-methylhexane 4.82 1 0 0 0 0 0 0 0 7.34 20.25 2.64 2.67 2.71

3-methylpentane 4.31 1 0 0 0 0 0 0 0 6.43 18.01 2.50 2.52 2.51

ethane 2.48 0 0 0 0 0 0 0 0 1.89 19.34 1.20 2.06 1.84

methane 1.83 0 0 0 0 0 0 0 0 4.71 14.95 -0.35 2.08 1.97

n-butane 3.49 0 0 0 0 0 0 0 0 -0.99 10.72 1.80 2.22 2.09

n-heptane 5.06 0 0 0 0 0 0 0 0 6.85 18.36 2.72 2.71 2.63

n-nonane 6.05 0 0 0 0 0 0 0 0 1.77 19.50 3.00 3.02 3.14

2-methylbut-2-ene 3.90 1 1 0 0 0 0 0 0 5.30 15.40 2.61 1.18 1.31

oct-1-ene 5.46 0 1 0 0 0 0 0 0 5.34 15.40 2.00 1.98 2.08

pent-1-ene 3.93 0 1 0 0 0 0 0 0 2.26 23.32 1.28 1.52 1.66

propene 2.87 0 1 0 0 0 0 0 0 0.23 25.58 0.42 1.19 1.29

trans-hept-2-ene 5.01 0 1 0 0 0 0 0 0 4.53 16.63 2.16 1.68 1.67

1,2,3-trimethylbenzene 4.94 3 0 1 0 0 0 0 0 2.26 23.03 2.28 -1.02 -1.21

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

1,2,4-trimethylbenzene 5.08 3 0 1 0 0 0 0 0 -4.54 13.78 3.26 -0.89 -0.83

1,3,5-trimethylbenzene 5.11 3 0 1 0 0 0 0 0 -3.92 14.07 3.17 -0.93 -0.90

2-ethyltoluene 4.93 2 0 1 0 0 0 0 0 -4.84 13.46 0.31 -1.03 -1.04

4-ethyltoluene 5.15 2 0 1 0 0 0 0 0 -4.71 13.74 1.80 -0.62 -0.95

isobutylbenzene 5.34 2 0 1 0 0 0 0 0 -5.29 14.59 -0.61 -0.15 0.16

m-xylene 4.65 2 0 1 0 0 0 0 0 3.79 16.06 1.62 -1 -0.82

o-xylene 4.55 2 0 1 0 0 0 0 0 -5.21 8.74 0.93 -1.08 -0.90

p-xylene 4.69 2 0 1 0 0 0 0 0 0.88 18.83 2.02 -1.01 -0.80

sec-butylbenzene 5.35 2 0 1 0 0 0 0 0 5.56 16.06 -0.51 -0.38 -0.45

tert-butylbenzene 5.15 3 0 1 0 0 0 0 0 5.38 14.19 -0.33 -0.61 -0.44

2-methylbutan-2-ol 3.79 2 0 0 1 0 0 0 0 -4.58 13.44 -3.10 -4.05 -4.43

2-methylpentan-2-ol 4.28 2 0 0 1 0 0 0 0 -4.92 16.41 -2.98 -3.81 -3.93

2-methylpentan-3-ol 4.25 2 0 0 1 0 0 0 0 -4.74 16.26 -2.82 -3.81 -3.89

2-methylpropan-1-ol 3.39 1 0 0 1 0 0 0 0 4.45 20.67 -3.98 -4.54 -4.51

hexan-1-ol 4.52 0 0 0 1 0 0 0 0 -3.28 10.14 -4.40 -4.35 -4.39

hexan-3-ol 4.46 1 0 0 1 0 0 0 0 1.60 17.69 -3.36 -3.88 -4.07

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

methanol 1.78 0 0 0 1 0 0 0 0 -6.34 12.24 -7.49 -5.16 -5.11

nonan-1-ol 6.04 0 0 0 1 0 0 0 0 -5.12 11.74 -3.82 -3.88 -3.89

octan-1-ol 5.54 0 0 0 1 0 0 0 0 -5.18 13.04 -3.99 -4.04 -4.09

pentan-1-ol 3.99 0 0 0 1 0 0 0 0 -3.15 9.87 -4.76 -4.52 -4.52

pentan-2-ol 3.94 1 0 0 1 0 0 0 0 -10.14 5.78 -3.69 -4.17 -4.39

pentan-3-ol 3.91 1 0 0 1 0 0 0 0 -6.86 9.31 -4.45 -4.64 -4.35

propan-1-ol 2.97 0 0 0 1 0 0 0 0 3.82 23.40 -5.23 -4.80 -4.83

propan-2-ol 2.94 1 0 0 1 0 0 0 0 4.16 20.54 -4.10 -4.88 -4.76

2,3-dimethylphenol 4.52 3 0 1 1 0 0 0 0 -7.19 14.62 -1.87 -5.70 -6.16

2,4-dimethylphenol 4.64 3 0 1 1 0 0 0 0 -3.56 12.64 -1.14 -5.63 -6.01

2,5-dimethylphenol 4.64 3 0 1 1 0 0 0 0 -3.16 9.91 -2.06 -6.16 -5.92

2,6-dimethylphenol 4.55 3 0 1 1 0 0 0 0 2.17 19.73 -2.03 -5.64 -5.27

3,4-dimethylphenol 4.56 3 0 1 1 0 0 0 0 -10.48 5.32 -2.49 -6.42 -6.51

4-n-propylphenol 5.11 2 0 1 1 0 0 0 0 -2.27 14.71 -3.76 -5.91 -5.91

4-tert-butylphenol 5.15 4 0 1 1 0 0 0 0 -5.17 16.39 -3.80 -5.95 -5.95

o-cresol 4.12 2 0 1 1 0 0 0 0 -8.84 18.62 -3.31 -5.74 -5.88

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

heptanal 5 0 0 0 0 0 1 0 0 -0.90 7.12 -2.45 -2.62 -2.67

hexanal 4.49 0 0 0 0 0 1 0 0 -0.95 13.02 -2.74 -2.79 -2.81

nonanal 6.01 0 0 0 0 0 1 0 0 -1.57 18.75 -2.13 -2.31 -2.07

octanal 5.51 0 0 0 0 0 1 0 0 -3.45 11.54 -2.25 -2.45 -2.29

4-methylpentan-2-one 4.38 1 0 0 0 0 0 1 0 -3.32 5.01 -2.80 -3.13 -3.05

decan-2-one 6.56 0 0 0 0 0 0 1 0 -6.86 8.63 -2.61 -2.62 -2.34

heptan-2-one 5.05 0 0 0 0 0 0 1 0 5.89 11.64 -3.08 -3.08 -3.04

nonan-2-one 6.07 0 0 0 0 0 0 1 0 4.06 13.10 -2.64 -2.77 -2.50

nonan-5-one 6.08 0 0 0 0 0 0 1 0 -2.31 26.18 -2.19 -2.50 -2.65

octan-2-one 5.56 0 0 0 0 0 0 1 0 -1.78 8.07 -2.81 -2.94 -2.88

undecan-2-one 7.06 0 0 0 0 0 0 1 0 6.36 9.52 -2.44 -2.44 -2.16

1,2,3,4-tetrachloro-benzene 5.32 4 0 1 0 4 0 0 0 0.67 16.01 3.07 -3.33 -1.34

1,2,3,5-tetrachloro-benzene 5.33 4 0 1 0 4 0 0 0 -1.38 17.56 3.47 -3.06 -1.62

1,2,3-trichlorobenzene 4.88 3 0 1 0 3 0 0 0 -1.84 17.36 1.60 -2.89 -1.24

1,2,4,5-tetrachloro-benzene 5.36 4 0 1 0 4 0 0 0 5.75 17.76 3.62 -3.09 -1.34

1,2,4-trichlorobenzene 4.96 3 0 1 0 3 0 0 0 -2.97 15.82 2.33 -2.56 -1.12

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

1,2-dichlorobenzene 4.42 2 0 1 0 2 0 0 0 -3.67 16.36 0.09 -2.38 -1.41

1,2-dimethoxyethane 3.79 0 0 0 0 0 0 0 1 -1.65 14.47 -5.11 -3.57 -4.84

1,3,5-trichlorobenzene 4.97 3 0 1 0 3 0 0 0 -0.43 22.72 2.76 -2.20 -0.78

1,3-dichlorobenzene 4.46 2 0 1 0 2 0 0 0 2.45 16.58 0.72 -2.03 -0.98

1,4-dichlorobenzene 4.48 2 0 1 0 2 0 0 0 5.41 6.79 0.77 -2.07 -1.01

2,3-dimethylbuta-1,3-diene 4.10 2 2 0 0 0 0 0 0 -3.50 1.28 2.65 0.04 0.40

2-butoxyethanol 4.72 0 0 0 1 0 0 0 1 0.48 12.89 -6.74 -6.56 -6.26

2-chlorotoluene 4.54 2 0 1 0 1 0 0 0 6.01 14.94 1.07 -1.45 -1.14

2-ethoxyethanol 3.68 0 0 0 1 0 0 0 1 5.48 23.64 -7.62 -6.96 -6.70

2-methylbuta-1,3-diene 3.70 1 2 0 0 0 0 0 0 4.83 29.35 1.34 0.14 0.68

2-methylstyrene 4.89 2 1 1 0 0 0 0 0 -3.80 24.44 0.08 -1.61 -1.24

2-phenylethanol 4.55 1 0 1 1 0 0 0 0 -1.88 23.32 -7.25 -7.06 -6.80

2-propoxyethanol 4.20 0 0 0 1 0 0 0 1 -1.44 23.55 -7.05 -6.69 -6.41

3-chlorophenol 4.02 2 0 1 1 1 0 0 0 -2.46 23.11 -4.54 -6.89 -6.61

3-hydroxybenzaldehyde 4.01 2 0 1 1 0 1 0 0 -3.80 11.09 -7.55 -9.94 -9.51

3-methoxyphenol 4.22 2 0 1 1 0 0 0 1 1.87 16.27 -6.46 -8.41 -7.66

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

3-phenylpropanol 5.05 1 0 1 1 0 0 0 0 5.28 25.04 -7.63 -7.42 -6.93

4-chloro-3-methyl- phenol 4.50 3 0 1 1 1 0 0 0 -3.50 21.56 -2.70 -6.87 -6.79

4-chlorophenol 4.05 2 0 1 1 1 0 0 0 -1.58 20.42 -4.52 -6.97 -7.04

4-hydroxybenzaldehyde 4.01 2 0 1 1 0 1 0 0 -2.11 20.25 -7.89 -10.39 -9.65

E-but-2-enal 3.37 0 1 0 0 0 1 0 0 2.81 16.58 -3.95 -4.04 -4.23

E-hex-2-enal 4.41 0 1 0 0 0 1 0 0 6.00 16.41 -3.02 -3.59 -3.68

E-oct-2-enal 5.40 0 1 0 0 0 1 0 0 6.17 14.99 -2.73 -3.30 -3.44

acetophenone 4.52 1 0 1 0 0 0 1 0 -2.83 12.91 -5.15 -5.32 -4.54

allyl alcohol 2.83 0 1 0 1 0 0 0 0 -3.51 13.36 -7.25 -6.26 -5.10

benzyl alcohol 4.05 1 0 1 1 0 0 0 0 -4.25 12.87 -8.24 -7.81 -6.63

buta-1,3-diene 3.25 0 2 0 0 0 0 0 0 -2.35 7.21 -0.38 0.23 0.61

chlorobenzenes 4.04 1 0 1 0 1 0 0 0 -2.99 7.27 -0.92 -1.59 -1.09

dimethoxymethane 3.26 0 0 0 0 0 0 0 2 6.13 10.62 -6.60 -3.91 -2.97

ethyl phenyl ether 4.88 1 0 1 0 0 0 0 1 -0.33 22.32 -1.94 -2.76 -2.22

hexa-1,5-diene 4.31 0 2 0 0 0 0 0 0 -1.77 21.83 0.47 0.85 1.01

methyl phenyl ether 4.29 1 0 1 0 0 0 0 1 5.87 22.05 -2.68 -2.99 -2.45

Continued on next page
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Table 21 – continued from previous page

Name D1 D2 D3 D4 D5 D6 D7 D8 D9 ΔμRIS M−GF ΔμRIS M−SDC Δμexp

ρV br db benz OH hal ald ket eth 1D 3D 1D 3D

penta-1,4-diene 3.81 0 2 0 0 0 0 0 0 -2.60 29.09 0.43 0.78 0.93
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Table 22: Descriptors of the SDC model for the test set of

polychlorobiphenyls (PCBs). Experimental HFEs [190] and

corresponding values calculated by 1D RISM-SDC(QMq)

model with the PLHNC closure and PW free energy expres-

sion (kcal/mol). Solutes parameters are: CHELPG [134] par-

tial charges and OPLS-AA LJ parameters. [131, 132, 133].

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-1 6.01 3 2 1 14.11 -3.54

PCB-2 6.06 3 2 1 14.64 -3.09

PCB-3 6.08 3 2 1 14.71 -3.03

PCB-4 6.36 4 2 2 14.15 -4.33

PCB-5 6.41 4 2 2 14.75 -3.80 -2.76

PCB-6 6.41 4 2 2 14.84 -3.73 -2.71

PCB-7 6.46 4 2 2 15.33 -3.30 -2.65

PCB-8 6.46 4 2 2 15.09 -3.54

PCB-9 6.45 4 2 2 15.21 -3.41

PCB-10 6.37 4 2 2 14.36 -4.14

PCB-11 6.47 4 2 2 15.42 -3.24

PCB-12 6.49 4 2 2 15.60 -3.07 -3.05

PCB-13 6.48 4 2 2 15.48 -3.19

PCB-14 6.49 4 2 2 15.76 -2.91

PCB-15 6.50 4 2 2 15.59 -3.10

PCB-16 6.72 5 2 3 14.80 -4.54 -2.84

PCB-17 6.78 5 2 3 15.36 -4.06

PCB-18 6.77 5 2 3 15.22 -4.19 -2.71

PCB-19 6.68 5 2 3 14.38 -4.89 -2.76

PCB-20 6.88 5 2 3 16.46 -3.11 -2.98

PCB-21 6.79 5 2 3 15.61 -3.82

PCB-22 7.46 5 2 3 15.85 -3.88

PCB-23 6.81 5 2 3 16.00 -3.48

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-24 6.75 5 2 3 15.17 -4.21 -2.79

PCB-25 6.84 5 2 3 16.02 -3.49

PCB-26 6.83 5 2 3 15.93 -3.57 -2.84

PCB-27 6.77 5 2 3 15.15 -4.25

PCB-28 6.88 5 2 3 16.27 -3.30 -2.84

PCB-29 6.82 5 2 3 16.14 -3.34

PCB-30 6.79 5 2 3 15.79 -3.65

PCB-31 6.87 5 2 3 16.05 -3.50 -3.26

PCB-32 6.78 5 2 3 15.18 -4.23

PCB-33 6.82 5 2 3 15.72 -3.77

PCB-34 6.83 5 2 3 15.92 -3.57

PCB-35 6.86 5 2 3 16.23 -3.32

PCB-36 6.87 5 2 3 16.48 -3.07 -2.94

PCB-37 6.88 5 2 3 16.30 -3.27 -3.26

PCB-38 6.84 5 2 3 16.27 -3.24

PCB-39 6.88 5 2 3 16.47 -3.10

PCB-40 7.09 6 2 4 15.38 -4.82 -3.26

PCB-41 7.10 6 2 4 15.63 -4.58 -3.05

PCB-42 7.14 6 2 4 15.96 -4.32 -3.05

PCB-43 7.13 6 2 4 15.98 -4.27

PCB-44 7.13 6 2 4 15.77 -4.49

PCB-45 7.05 6 2 4 15.22 -4.92

PCB-46 7.04 6 2 4 14.99 -5.13

PCB-47 7.20 6 2 4 16.53 -3.83 -2.88

PCB-48 7.16 6 2 4 16.25 -4.05

PCB-49 7.82 6 2 4 16.15 -4.03

PCB-50 7.09 6 2 4 15.85 -4.35

PCB-51 7.09 6 2 4 15.56 -4.63

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-52 7.17 6 2 4 16.18 -4.14 -2.84

PCB-53 7.08 6 2 4 15.43 -4.76

PCB-54 6.98 6 2 4 14.68 -5.35

PCB-55 7.17 6 2 4 16.28 -4.03

PCB-56 7.17 6 2 4 16.21 -4.11

PCB-57 7.21 6 2 4 16.67 -3.71 -3.15

PCB-58 7.20 6 2 4 16.47 -3.89

PCB-59 7.14 6 2 4 15.94 -4.33

PCB-60 7.21 6 2 4 16.57 -3.80

PCB-61 7.15 6 2 4 16.37 -3.91

PCB-62 7.13 6 2 4 16.18 -4.08 -2.82

PCB-63 7.23 6 2 4 16.80 -3.60

PCB-64 7.16 6 2 4 16.04 -4.25

PCB-65 7.12 6 2 4 16.08 -4.16

PCB-66 7.23 6 2 4 16.81 -3.59

PCB-67 7.22 6 2 4 16.90 -3.49 -3.26

PCB-68 7.25 6 2 4 17.03 -3.40

PCB-69 7.19 6 2 4 16.52 -3.82

PCB-70 7.21 6 2 4 16.65 -3.73 -3.26

PCB-71 7.14 6 2 4 15.90 -4.37

PCB-72 7.24 6 2 4 16.85 -3.57

PCB-73 7.15 6 2 4 16.16 -4.14

PCB-74 7.26 6 2 4 17.06 -3.38 -3.26

PCB-75 7.20 6 2 4 16.62 -3.74

PCB-76 7.17 6 2 4 16.32 -3.99

PCB-77 7.25 6 2 4 17.02 -3.41

PCB-78 7.22 6 2 4 16.92 -3.48

PCB-79 7.26 6 2 4 17.21 -3.24

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-80 7.27 6 2 4 17.44 -3.02

PCB-81 7.24 6 2 4 17.04 -3.38

PCB-82 7.46 7 2 5 16.23 -4.84

PCB-83 7.49 7 2 5 16.59 -4.52

PCB-84 7.41 7 2 5 15.82 -5.16

PCB-85 7.52 7 2 5 16.80 -4.35 -3.50

PCB-86 7.46 7 2 5 16.41 -4.65

PCB-87 7.51 7 2 5 16.62 -4.51 -3.43

PCB-88 7.42 7 2 5 16.24 -4.77

PCB-89 7.40 7 2 5 15.80 -5.18

PCB-90 7.54 7 2 5 17.12 -4.07

PCB-91 7.46 7 2 5 16.40 -4.66

PCB-92 7.53 7 2 5 16.98 -4.19

PCB-93 7.42 7 2 5 16.23 -4.77

PCB-94 7.44 7 2 5 16.26 -4.77

PCB-95 7.46 7 2 5 16.29 -4.77

PCB-96 7.35 7 2 5 15.46 -5.43

PCB-97 7.52 7 2 5 16.75 -4.40 -3.43

PCB-98 7.45 7 2 5 16.41 -4.64

PCB-99 7.57 7 2 5 17.29 -3.93

PCB-100 7.51 7 2 5 16.97 -4.16 -3.40

PCB-101 8.23 7 2 5 16.77 -4.11

PCB-102 7.46 7 2 5 16.45 -4.62 -3.32

PCB-103 7.50 7 2 5 16.87 -4.25

PCB-104 7.40 7 2 5 16.10 -4.88

PCB-105 7.55 7 2 5 17.10 -4.10

PCB-106 7.53 7 2 5 17.11 -4.06

PCB-107 7.58 7 2 5 17.37 -3.87

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-108 7.58 7 2 5 17.31 -3.92

PCB-109 7.52 7 2 5 16.94 -4.21

PCB-110 7.52 7 2 5 16.66 -4.49

PCB-111 7.60 7 2 5 17.58 -3.68

PCB-112 7.52 7 2 5 16.83 -4.31

PCB-113 7.53 7 2 5 16.93 -4.24

PCB-114 7.57 7 2 5 17.30 -3.92

PCB-115 7.54 7 2 5 17.08 -4.10

PCB-116 7.44 7 2 5 16.59 -4.44

PCB-117 7.53 7 2 5 17.01 -4.15

PCB-118 7.61 7 2 5 17.65 -3.63

PCB-119 7.57 7 2 5 17.28 -3.94

PCB-120 7.61 7 2 5 17.82 -3.46 -3.60

PCB-121 7.58 7 2 5 17.57 -3.67

PCB-122 7.54 7 2 5 16.86 -4.32

PCB-123 7.59 7 2 5 17.46 -3.79

PCB-124 7.56 7 2 5 17.30 -3.92

PCB-125 7.48 7 2 5 16.47 -4.63

PCB-126 7.62 7 2 5 17.74 -3.55

PCB-127 7.63 7 2 5 17.94 -3.36

PCB-128 7.81 8 2 6 18.03 -3.86

PCB-129 7.82 8 2 6 17.00 -4.92 -3.99

PCB-130 7.87 8 2 6 17.39 -4.59 -3.84

PCB-131 7.82 8 2 6 17.23 -4.69

PCB-132 7.88 8 2 6 17.78 -4.22 -3.74

PCB-133 7.54 8 2 6 17.13 -4.06

PCB-134 7.78 8 2 6 16.76 -5.09 -3.68

PCB-135 8.28 8 2 6 18.43 -4.48 -3.60

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-136 7.71 8 2 6 16.24 -5.52

PCB-137 7.87 8 2 6 17.52 -4.46

PCB-138 7.89 8 2 6 17.57 -4.45 -4.18

PCB-139 7.86 8 2 6 17.26 -4.71

PCB-140 7.82 8 2 6 17.21 -4.70

PCB-141 7.86 8 2 6 17.35 -4.63 -4.13

PCB-142 8.39 8 2 6 17.56 -5.83

PCB-143 7.76 8 2 6 16.60 -5.22

PCB-144 7.83 8 2 6 17.29 -4.63

PCB-145 7.72 8 2 6 16.47 -5.29

PCB-146 7.92 8 2 6 17.88 -4.18 -4.08

PCB-147 7.83 8 2 6 17.36 -4.57 -3.65

PCB-148 7.86 8 2 6 17.61 -4.35

PCB-149 7.84 8 2 6 17.22 -4.71

PCB-150 7.07 8 2 6 13.99 -6.81

PCB-151 7.82 8 2 6 17.23 -4.69 -3.57

PCB-152 7.72 8 2 6 16.46 -5.29

PCB-153 7.83 8 2 6 17.22 -4.70

PCB-154 7.88 8 2 6 17.78 -4.22

PCB-155 7.66 8 2 6 16.43 -5.25

PCB-156 7.92 8 2 6 17.83 -4.22

PCB-157 7.92 8 2 6 17.70 -4.36

PCB-158 7.90 8 2 6 17.70 -4.33

PCB-159 7.93 8 2 6 18.02 -4.06 -4.21

PCB-160 7.84 8 2 6 17.35 -4.58 -4.21

PCB-161 7.91 8 2 6 17.93 -4.11

PCB-162 7.35 8 2 6 15.46 -5.44

PCB-163 7.89 8 2 6 17.59 -4.43 -4.38

Continued on next page
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Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-164 7.86 8 2 6 17.26 -4.71

PCB-165 7.91 8 2 6 17.90 -4.15 -3.99

PCB-166 7.85 8 2 6 17.47 -4.49

PCB-167 7.96 8 2 6 18.29 -3.82

PCB-168 7.91 8 2 6 17.86 -4.18

PCB-169 7.98 8 2 6 18.41 -3.74

PCB-170 8.19 9 2 7 17.78 -5.00 -4.68

PCB-171 8.15 9 2 7 17.62 -5.10

PCB-172 8.22 9 2 7 18.14 -4.69 -4.46

PCB-173 8.09 9 2 7 17.15 -5.48 -4.42

PCB-174 8.13 9 2 7 17.40 -5.29 -4.42

PCB-175 8.19 9 2 7 18.05 -4.71

PCB-176 8.08 9 2 7 17.24 -5.38

PCB-177 8.14 9 2 7 17.54 -5.17

PCB-178 8.18 9 2 7 17.95 -4.81 -4.13

PCB-179 8.08 9 2 7 17.23 -5.39 -4.10

PCB-180 8.25 9 2 7 18.36 -4.50 -4.62

PCB-181 8.15 9 2 7 17.75 -4.96

PCB-182 8.17 9 2 7 17.94 -4.80

PCB-183 8.21 9 2 7 18.22 -4.59

PCB-184 8.13 9 2 7 17.86 -4.83

PCB-185 8.14 9 2 7 17.60 -5.09 -4.34

PCB-186 7.04 9 2 7 13.46 -7.61

PCB-187 7.04 9 2 7 13.47 -7.60

PCB-188 8.13 9 2 7 17.84 -4.84

PCB-189 8.28 9 2 7 18.43 -4.47

PCB-190 8.21 9 2 7 18.02 -4.79

PCB-191 8.24 9 2 7 18.28 -4.57

Continued on next page



8 APPENDIX 1 149

Table 22 – continued from previous page

Name [201] D1 D2 D3 D4 Δμhyd Δμexp

ρV̄ br benz hal PW SDC

PCB-192 8.23 9 2 7 18.27 -4.56

PCB-193 8.23 9 2 7 18.10 -4.74

PCB-194 8.55 10 2 8 18.51 -5.11

PCB-195 8.24 10 2 8 17.54 -5.63 -4.56

PCB-196 8.50 10 2 8 18.37 -5.18 -4.62

PCB-197 8.45 10 2 8 18.21 -5.27

PCB-198 8.49 10 2 8 18.32 -5.21 -4.42

PCB-199 8.50 10 2 8 18.30 -5.25 -4.62

PCB-200 8.39 10 2 8 17.56 -5.83

PCB-201 8.45 10 2 8 18.21 -5.27

PCB-202 8.45 10 2 8 18.17 -5.31 -4.27

PCB-203 8.52 10 2 8 18.54 -5.04

PCB-204 8.43 10 2 8 18.18 -5.27

PCB-205 8.56 10 2 8 18.59 -5.04

PCB-206 8.81 11 2 9 18.65 -5.67

PCB-207 8.75 11 2 9 18.52 -5.72

PCB-208 8.75 11 2 9 18.47 -5.77

PCB-209 8.88 12 2 10 17.70 -7.05
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9 Appendix 2

9.1 List of Abbreviations

1D one dimensional

3D three dimensional

6D six dimensional

AM1 Austin model 1

AM1-BCC Austin model 1 with bond charge correction

B3LYP Becke, three-parameter, Lee-Yang-Parr exchange-correlation functional

CHELPG charges from electrostatic potential using a grid method

COSMO-SAC conductor-like screening model – segment activity coefficient

DPMV dimensionless partial molar volume

DRISM dielectrically consistent reference interaction sites model

FT Fourier transformation

GAFF General Amber force field

GF Gaussian fluctuations

GSM gas stripping method

HFE hydration free energy

HNC hypernetted chain

HNCB hypernetted chain closure with repulsive bridge correction functions

HOMO highest occupied molecular orbital

IET integral equation theory

IFT inverse Fourier transformation
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KB Kirkwood–Buff

KH Kovalenko–Hirata

LJ Lennard–Jones

LUMO lowest unoccupied molecular orbital

MC Monte Carlo

MD molecular dynamics

MDIIS modified direct inversion of the iterative subspace

MOZ molecular Ornstein–Zernike

MP2 second order Møller–Plesset perturbation theory

MSPC/E modified simple point charge/extended

NAB nucleic acid builder

OPLS-AA optimized potential for liquid simulations – all atom

OZ Ornstein–Zernike

PCB polychlorobiphenyl

PCBz polychlorinated benzene

PLHNC partially linearized hypernetted chain

PMV partial molar volume

POP persistent organic pollutant

PW partial wave

PWC partial wave correction

QM quantum mechanical or quantum mechanics

QSAR/QSPR quantitative structure - activity/property relationships

RHF restricted Hartree-Fock

RISM reference interaction sites model
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rms root mean square

SASA solvent accessible surface area

SDC structural descriptors correction

SMx solvation model No. x

SMILES simplified molecular input line entry specification

SPC/E simple point charge/extended

SSOZ site-site Ornstein–Zernike

std standard deviation

TGM two-grid iteration method

UC universal correction

WWC wetted-wall column
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9.2 Short summary

We showed that the poor accuracy of hydration thermodynamics calculations with a molecular

integral equation theory, Reference Interaction Site Model (RISM), can be considerably im-

proved with a set of corrections associated with details of molecular structure. In this thesis we

developed a novel hybrid RISM-based method for calculation of hydration thermodynamics,

the Structural Descriptors Correction (SDC) model (RISM-SDC). The method uses a ther-

modynamic quantity obtained by RISM as an initial approximation and a set of corrections to

decrease the error of the calculated parameter. Each correction in the RISM-SDC model can

be represented as a structural descriptor (Di) multiplied by the corresponding correction coeffi-

cient (ai). One important descriptor (D1) is the dimensionless partial molar volume calculated

by RISM. The rest of the structural descriptors correspond to the number of specific molecu-

lar fragments (double bonds, aromatic rings, electron-donating/withdrawing substituents, etc.).

The correction coefficients ai are found by training the model on a set of monofunctional com-

pounds. For the first time, we showed that the RISM-SDCmodel allows to achieve the chemical

accuracy of solvation thermodynamics predictions within the RISM approach, that has been a

challenge for over 40 years [64, 112, 88, 116, 89, 85, 80]. In this thesis we demonstrated the

high efficiency of the proposed approach for predicting important hydration thermodynamic

quantities, hydration free energy (HFE) and partial molar volume (PMV).
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b) Published:
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