Pathogenese der Immunsuppression nach stumpfem Weichteiltrauma

Inaugural-Dissertation
zur
Erlangung des Doktorgrades
Dr. rer. nat.
der Fakultät für
Biologie
an der
Universität Duisburg-Essen

vorgelegt von
Florian Wirsdörfer
aus Essen
Juni 2011
„Die Wissenschaft ist ein erstklassiges Möbelstück für das Oberstübchen eines Mannes, der gesunden Menschenverstand im Erdgeschoss hat."

Oliver Wendell Holmes sen. (1809-94)

Für Alle, die mich bis hierhin gebracht und begleitet haben
Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden in der AG Chirurgische Forschung, Klinik für Unfallchirurgie, Universitätsklinikum Essen durchgeführt.

1. Gutachter: PD Dr. rer. nat. Stefanie B. Flohé
2. Gutachter: Prof. Dr. rer. nat. Verena Jendrossek
3. Gutachter: -
Vorsitzender des Prüfungsausschusses: Prof. Dr. sc. nat. Ann Ehrenhofer-Murray

Tag der mündlichen Prüfung: 24.08.2011
1. **Einleitung** ... 1

1.1. **Das Immunsystem – Ein Überblick** ... 1

1.1.1. Das angeborene Immunsystem ... 2

1.1.1.1. Dendritische Zellen .. 2

1.1.1.2. NK-Zellen .. 4

1.1.1.3. Lösliche Komponenten ... 5

1.1.2. Das adaptive Immunsystem ... 7

1.2. **Antigenerkennung, Antigenpräsentation und Aktivierung von T-Lymphozyten** ... 10

1.3. **Trauma: Die Rolle des immunsystems** ... 13

1.3.1. Molekulare und zelluläre Komponenten der Immunantwort nach Trauma 15

1.4. **Ziele der Arbeit** .. 18

2. **Material** ... 20

2.1. Verbrauchsmaterial ... 20

2.2. Labor-Geräte .. 20

2.3. Chemikalien ... 20

2.4. Puffer, Lösungen, Reagenzien und Bakterien ... 21

2.4.1. Puffer und Lösungen .. 21

2.4.2. Reagenzien und Stimuli ... 21

2.4.3. Bakterien .. 22

2.5. Seren und Medien .. 22

2.5.1. Seren .. 22

2.5.2. Zellkulturmedium .. 23

2.5.3. Medium für Bakterien ... 23

2.6. **Antikörper** ... 23

2.6.1. Antikörper zur Anreicherung verschiedener muriner Zelltypen 24

2.7. Versuchstiere ... 24

3. **Methoden** .. 26

3.1. **Versuchstiere** .. 26

3.1.1. Tier-Modell zur Induktion eines Weichteiltraumas bei der Maus 26

3.1.2. Lungeninfektions-Modell mit Pseudomonas aeruginosa bei der Maus 27

3.1.2.1. Anzucht des Bakterienstammes Pseudomonas aeruginosa 27

3.1.2.2. Infektion der Versuchstiere mit Pseudomonas aeruginosa 28
3.1.2.3. Bestimmung der bakteriellen Beladung in der Lunge ... 28
3.1.3. Applikationsarten .. 28
3.1.4. Isolierung von Lymphknotenzellen .. 29
3.1.5. Isolierung von Milzzellen ... 30
3.1.6. Isolierung von zellen aus dem Muskel .. 31
3.1.7. Isolierung von Knochenmarkzellen und Differenzierung von DC 32
3.1.8. Entnahme der Lunge .. 33
3.2. Kommerzielle Standardtestverfahren .. 34
3.2.1. Anreicherung von murinen Zelltypen mittels MACS .. 34
3.2.1.1. Prinzip .. 34
3.2.1.2. Isolation von CD3+ T-Zellen aus den Lymphknoten ... 35
3.2.1.3. Gewinnung von APZ aus der Milz .. 36
3.2.2. Bestimmung der Proliferation mittels Cell Tracer Kit ... 37
3.2.3. Analyse von Zellen mittels Durchflusszytometrie .. 38
3.2.3.1. Prinzip .. 39
3.2.3.2. Färbungen von Zelloberflächenmolekülen ... 41
3.2.3.3. Intrazelluläre Färbungen .. 41
3.2.4. Zytokeinnachweis mittels Cytometric Bead Array (CBA) .. 42
3.2.5. Zytokeinquantifizierung in Zellkultur-Überständen .. 43
3.2.5.1. Prinzip .. 43
3.2.5.2. Maus IL-2-, IL-10-, IFN-gamma und TGF-ß-ELISA .. 44
3.3. Versuchsverlauf, Applikation und Zellkultur ... 45
3.3.1. Untersuchung der antigen-spezifischen T-Zell-Aktivierung in vivo.................................. 45
3.3.2. OVA-spezifische T-Zell-Aktivierung in vitro ... 46
3.4. Statistische Analysen ... 47
4. Ergebnisse ... 48
4.1. Analyse der Antigen-spezifischen T-Zell-Aktivierung nach s.c. Antigen-Applikation .. 48
4.1.1. Reinheit von CD3+ DO11.10 Zellen .. 49
4.1.2. CD25 und CD69 Expression Antigen-spezifischer T-Zellen in vivo............................. 50
4.1.3. Proliferation Antigen-spezifischer T-Zellen in vivo ... 51
4.1.4. Restimulation von LNC in vitro ... 51
4.1.5. Zytokein-Expression im Antigen-spezifischen T-Zell-Assay in vitro 52
4.2. Nachweis des Antigens in den poplitealen Lymphknoten .. 54
4.3. Untersuchung einer beeinträchtigten Antigenpräsentation in den Lymphknoten.. 55
4.3.1. CD25 und CD69 Expression Antigen-spezifischer T-Zellen in vivo

4.3.2. Proliferation Antigen-spezifischer T-Zellen in vivo

4.3.3. Zytokin-Expression im Antigen-spezifischen T-Zell-Assay in vitro

4.4. Untersuchung der Beteiligung von endogenen T-Zellen bei der Entstehung einer Immundysfunktion

4.4.1. Analyse eines Adoptivtransfers von T-Zellen in naive Versuchstiere

4.4.2. Nachweis einer Beteiligung endogener T-Zellen im RAG-2 Knockout Modell

4.4.3. Weitere Untersuchung endogener T-Zellen in einem T-Zell Assay in vitro

4.4.3.1. Reinheit von CD3-negativen Milzzellen

4.4.3.2. Zytokin-Expression im T-Zell Assay nach Stimulation in vitro

4.4.3.3. Reinheit von CD3-negativen Milzzellen

4.4.3.4. Zytokin-Expression im T-Zell Assay nach Stimulation in vitro

4.5. Untersuchung der Beteiligung von NK-Zellen bei der Enstehung einer Immundysfunktion

4.5.1. Effekt der Inaktivierung/Depletion von NK-Zellen auf die Expression der Aktivierungsmarker CD69 und CD25 auf den T-Zellen in vitro

4.5.2. Effekt der NK-Zell-Inaktivierung/Depletion auf die Zytokin-Expression der T-Zellen in vitro

4.5.3. Oberflächenmoleküle auf NK-Zellen nach Trauma in vivo

4.6. Charakterisierung der Immunsuppression nach Trauma im Lungeninfektionsmodell in vivo

4.7. Charakterisierung von APZ im Muskel

4.7.1. Expression von MHC-II und co-stimulatorischen Molekülen auf APZ im Muskel

4.8. Analyse der Antigen-spezifischen T-Zell-Aktivierung nach i.m. Antigen-Applikation

4.8.1. CD25 und CD69 Expression Antigen-spezifischer T-Zellen in vivo

4.8.2. Proliferation Antigen-spezifischer T-Zellen in vivo

4.8.3. Zytokin-Expression im Antigen-spezifischen T-Zell-Assay in vitro

4.9. Umkehr der T\(_{\text{H}}\)-Zell Suppression nach Trauma über Dendritische Zellen im Muskel

4.9.1. CD25 und CD69 Expression Antigen-spezifischer T-Zellen in vivo

4.9.2. Proliferation Antigen-spezifischer T-Zellen in vivo

4.9.3. Zytokin-Expression im Antigen-spezifischen T-Zell-Assay in vitro

5. Diskussion

6. Zusammenfassung

7. Literaturverzeichnis
Inhalt

8. **Anhang** ... 117

8.1. Abkürzungsverzeichnis .. 117
8.2. Abbildungsverzeichnis ... 120
8.3. Tabellenverzeichnis .. 122
8.4. Danksagung ... 123
8.5. Lebenslauf ... 124
8.6. Erklärungen ... 126

1 Einleitung

1.1.1. DAS ANGEBORENE IMMUNSYSTEM

1.1.1.1. DENDRITISCHE ZELLEN

Weiterhin gehören NK-Zellen und Mastzellen zur angeborenen Immunität. Ihre Abwehrmechanismen zeichnen sich durch eine unspezifische Antwort aus, d. h. die fremden Moleküle werden im eigentlichen Sinne nicht unterschieden.
1.1.1.2. NK-ZELLEN

von NK-Zellen in lymphoide Gewebe durch Induktion von IL-12 liefert somit eine erste Quelle für IFN-γ und fördert dadurch eine Typ-TH1 Immunantwort [103, 115] (s. Abb. 1.2).

1.1.1.3. LÖSLICHE KOMPONENTEN

Die Funktion der Zytokine ist dagegen die Vermittlung und Regulation des Zusammenspiels der Immunzellen. Zytokine werden definiert als von Zellen freigesetzte Proteine, die das Verhalten von anderen Zellen, die einen spezifischen Rezeptor für sie tragen, beeinflussen. Zytokine sind kleine bis mittelgroße Polypeptide, die hochwirksame biologische Auswirkungen auf viele Zelltypen vermitteln. Sie spielen eine zentrale Rolle bei der interzellulären Kommunikation und sind essentiell für die Vermittlung und Regulation von immunologischen Reaktionen. Sie werden vorwiegend von Lymphozyten und APZ gebildet, aber auch von nicht immunologischen Zellen wie Endothelzellen und Keratinozyten [83]. Ihre biologische Aktivität ist charakterisiert durch Pleiotropie, d. h. Zytokine haben verschiedenartige Effekte auf eine Vielzahl von Zellen, wobei die Zielzelle entweder die Zelle, die das Zytokin sezerniert (autokrine Wirkung), eine Zelle in der Nähe (parakrine Wirkung) oder eine räumlich weit entfernte Zelle (endokrine Wirkung) sein kann [140]. Weiterhin weisen verschiedene Zytokine gleiche Wirkungen auf, sie sind redundant [141].

Die Regulation der Zytokinsekretion kann auf transkriptioneller Ebene, durch Beeinflussung der Stabilität der entstehenden messenger ribonucleic acid (mRNA) oder durch posttranslationale Mechanismen, wie proteolytische Spaltung erfolgen. Die Wirkung von Zytokinen wird durch Bindung an spezifische Rezeptoren auf der Oberfläche der Zielzellen vermittelt [19]. Zytokinrezeptoren sind Transmembranproteine, die eine sehr hohe Affinität für ihre Liganden aufweisen. Daraus ergibt sich, dass nur geringe Mengen eines Zytokins zur Entfaltung einer biologischen Wirksamkeit benötigt werden. Die Funktion des Zytokinreceptors besteht in der Umwandlung eines extrazellulären Signals in ein intrazelluläres Signal, was meistens mit der Transkription neuer Gene verknüpft ist [135].

Zytokine werden nach ihren Effekten während eines Entzündungsprozesses in pro-inflammatorische und anti-inflammatorische Zytokine unterteilt. Zu den Zytokinen, die den Entzündungsprozess stimulieren, gehören z. B. TNF-α, IFN-γ, IL-1, IL-2, IL-8, IL-12, Makrophagen-Kolonie-stimulierender Faktor (M-CSF), GM-CSF. Zytokine, die eine inhibitorische Wirkung auf die Entzündungsantwort haben, sind z. B. IL-10 und Transforming growth factor (TGF-ß) [83, 96, 122, 126, 139].
Die angeborene Immunität bildet eine erste schnelle Abwehr. Weiterhin spielt sie eine wesentliche Rolle bei der Steuerung der adaptiven Immunität [83].

1.1.2. DAS ADAPTIVE IMMUNSYSTEM

Einleitung

T-Zellen, CD4+ und CD8+ Natürliche Killer-T-(NKT-Zellen), sowie CD4+ T-Zellen, die sich weiter unterteilen in \(T_{H1} \), \(T_{H2} \), \(T_{H17} \) und regulatorische T-Zellen (Treg) (s. Abb. 1.3). Des Weiteren gibt es gamma delta (\(\gamma \delta \)) T-Zellen, die noch weitestgehend unerforscht sind und als möglicher Link zwischen dem angeborenen und adaptiven Immunsystem gelten [77].

NKT-Zellen sind eine einzigartige Subpopulation von Lymphozyten, welche neben NK-Zell-Markern, wie CD161 und CD94, auch einen T-Zell Rezeptor (TCR) α/β, mit einer eingeschränkten Funktion, exprimieren. Der TCR von NKT Zellen ist dadurch gekennzeichnet, dass er nicht mit MHC Molekülen der Klasse I und II interagieren
kann (s. a. Punkt 1.2). Stattdessen erkennt der TCR Glykolipide über CD1d, welches ein nicht klassisches Antigen-präsentierendes Molekül darstellt [9, 70]. NKT-Zellen unterscheiden sich von herkömmlichen funktional differenzierten α/β TCR tragenden T-Zellen dadurch, dass sie autoreaktiv sind (d. h., sie erkennen eigene Glykolipide) und produzieren sowohl TH-1-Antwort Typ 1 (TH1)- als auch TH-1-Antwort Typ 2 (TH2)-assozierte Zytokine nach Stimulation mit ihrem Liganden [175]. Mit NKT-Zellen konnte gezeigt werden, dass sie sowohl protektive als auch regulierende Immunfunktionen vermitteln. Dazu gehören Tumorabstoßung, Schutz gegen infektiöse Pathogene, die Aufrechterhaltung der Toleranz eines Transplantats und die Hemmung von Autoimmunerkrankungen [175].

Eine weitere Subpopulation unter den CD4⁺ Zellen stellen Treg dar, die wie der Name schon sagt, regulierende Funktionen einnehmen. Darunter fallen die Kontrolle von Immunreaktionen und das Verhindern einer überschießenden Entzündung [78, 133]. Grob eingeteilt werden Treg in natürliche und adaptive (induzierte) Treg. Natürlich vorkommende Treg (nTreg) entstehen im Thymus und emigrieren von dort, um ihrer Aufgabe der Immunhomöostase nachzukommen. nTreg sind CD4⁺CD25⁺ und beginnen ihre suppressive Wirkung über die Expression des Transkriptionsfaktors Forkhead box protein 3 (Foxp3) [64]. Dazu gehören die Sekretion von Zytokinen wie IL-10 und TGF-β, die Zellzyklus-Arrest oder Apoptose in

1.2. ANTIGENERKENNUNG, ANTIGENPRÄSENTATION UND AKTIVIERUNG VON T-LYMPHOZYTEN

Über so genannte PRR (pathogen oder pattern recognition receptors) können Phagozyten bestimmte Pathogen-typische Strukturen, auch PAMP (pathogen associated molecular patterns) bezeichnet, erkennen. Als PAMP werden Zellwandbestandteile von Bakterien, wie Peptidoglycan oder bestimmte nicht methylierte DNA- (desoxyribonucleic acid) Sequenzen, die nur bei Bakterien vorkommen (CpG-Oligonukleotide), bezeichnet. Zu den wichtigsten PRR zählen die

gegenüber den TH2-Zytokinen und auch anders herum. So hemmt IL-10 die Entwicklung einer TH1-Antwort, während IFN-γ die Polarisierung in Richtung TH2-Zellen verhindert [20, 131, 145].

1.3. TRAUMA: DIE ROLLE DES IMMUNSYSTEMS

Der Begriff Trauma ist vom griechischen Wort τράυμα abgeleitet, welches Verletzung oder Wunde bedeutet. Im medizinischen Sprachgebrauch wird unter einem Trauma die Verletzung eines Körpers durch Gewalteinwirkung von außen verstanden. Speziell wird der Begriff „Trauma“ in der Medizin einerseits im Zusammenhang mit seelischen Störungen verwendet, vor allem aber findet er Verwendung im Zusammenhang mit körperlichen Verletzungen, wie Sturz- und Verkehrsunfall-Verletzungen (stumpfe Traumata), sowie Schuss- und Stich-Verletzungen (penetrierende Traumata) [108]. Traumatische Ereignisse stellen Eingriffe in die körperliche Integrität dar, die zu immunologischen, metabolischen und mikrozirkulatorischen Komplikationen, im schlimmsten Fall mit Todesfolge, führen können.

zur Klassifizierung der Verletzungsschwere gefunden. Trotz der Möglichkeit, große Patientengruppen zu beurteilen, scheint eine Einschätzung der individuellen Prognose schwierig [39, 100].

Methicillin-resistente *Staphylococcus aureus* und *Acinetobacter baumannii* [71, 121, 137, 172].

Neben einer Monozytendeaktivierung, die gekennzeichnet ist durch eine verminderte TNF-α und IL-12 Produktion [129], ist auch eine Unterdrückung der Lymphozyten-Funktion nach Trauma zu beobachten [134]. *Ex vivo* mit Mitogen stimulierte Lymphozyten aus Polytrauma-Patienten zeigen eine verminderte Proliferation und eine reduzierte Fähigkeit IFN-γ zu sezernieren im Vergleich zu Lymphozyten gesunder Probanden. Dagegen sezernieren die Lymphozyten der Patienten vermehrt die T_{H}2-Zytokine IL-4, IL-5 und IL-10 [21]. Die Zunahme von anti-inflammatorischen Zytokinen resultiert in der Verschiebung des T_{H}1/ T_{H}2 Gleichgewichts in Richtung T_{H}2. Dadurch kommt es zur Hemmung einer T_{H}1-Antwort, welche jedoch wichtig für eine Immunität gegen bakterielle Infektionen ist.

1.3.1. MOLEKULARE UND ZELLULÄRE KOMPONENTEN DER IMMUNANTWORT NACH TRAUMA

(A) Alarmin sind Moleküle, die unverzüglich nach nicht-programmiertem Zelltod freigegeben werden. (B) Alarmin können auch von Immunzellen, ohne Zelltod, über spezialisierte Sekretions-Systeme sezerniert werden. (C) Alarmin können
angeborene Immunzellen aktivieren und rekrutieren Makrophagen und DC. (D) Alarmine stellen die zelluläre Homöostase durch Förderung der Geweberekonstruktion wieder her (s. a. Abb. 1.5).

Durch diese Eigenschaften wurden Alarmine und andere endogene Alarmsignale der Familie der DAMP (damage associated molecular patterns) zugeordnet [15]. Kandidaten für diese endogenen Alarmsignale sind z. B. intrazelluläre Hitze-Schock-Proteine (HSP), Harnsäure, Ubiquitin, high mobility group box 1 (HMGB1), extrazelluläres Adenosin-Tri-Phosphat (ATP), mitochondriale DNA und viele weitere [92]. Einige dieser Alarmsignale werden direkt von zellulären Rezeptoren erkannt und induzieren die Generierung von pro-inflammatorischen Mediatoren. Andere fungieren als Alarmsignal, indem sie pro-inflammatorische Mediatoren aus extrazellulären Komponenten generieren, z. B. aus der extrazellulären Matrix oder dem Komplement [157]. HMGB1 z. B. wird von nekrotischen, aber nicht-apoptopischen Zellen
Einleitung

Seine acetylierte Form kann aktiv sekretiert werden und stimuliert angeborene Immunzellen, wie Monozyten/ Makrophagen und DC [144]. Für mitochondriale DAMP (formylierte Peptide und mitochondriale DNA) konnte gezeigt werden, dass diese systemisch nach schwerem Trauma freigesetzt werden. Mitochondriale DNA aktiviert dabei Neutrophile, wahrscheinlich über TLR9, und induziert dadurch eine Entzündungsreaktion [200].

differenzieren, sondern auch in inflammatorische DC, welche TNF-α und induzierbares Stickstoffoxid produzieren können [164, 196].

Diese Übersicht verdeutlicht die pathophysiologischen Folgen eines Traumas und die Auswirkungen auf das Immunsystem. Das Verständnis dieses komplexen Zusammenspiels multiplier Faktoren stellt immer noch eine große Herausforderung für Unfallchirurgen und Forscher in aller Welt dar und ist noch lange nicht vollends aufgeklärt.

1.4. ZIELE DER ARBEIT

Mit Hilfe eines Mausmodells zur Induktion eines isolierten, stumpfen Weichteiltraumas der Gastrocnemius-Muskeln sollte in der vorliegenden Arbeit die Rolle dieses Weichteiltraumas auf eine mögliche Immunmodulation insbesondere bei der Entstehung der Immunsuppression hin untersucht werden. Dabei sollte der Mechanismus einer Immunmodulation betrachtet werden und mögliche Ziele des angeborenen und adaptiven Immunsystems identifiziert und näher charakterisiert werden. Weiterhin sollte die Interaktion zwischen dem regenerierenden Gewebe (lösliche Mediatoren, infiltrierende Zellen) und dem Immunsystem im Zusammenhang mit einer Immunmodulation näher untersucht werden.

Erkenntnisse aus dieser Arbeit, über die Modulation von Immunantworten nach isoliertem, stumpfem Weichteiltrauma, könnten zum Verständnis der gestörten Immunabwehr nach Trauma beitragen und neue Hinweise liefern, um zukünftig geeignete Therapieansätze der Immunsuppression zu entwickeln.
2. MATERIAL

2.1. VERBRAUCHSMATERIAL

Die Verbrauchsmaterialien, die unter anderem die Zellkulturplatten, Pipetten, PP-Schraubenverschlussröhrchen, Pipettenspitzen, Kanülen, Einmalspritzen, Zellsiebe und Reaktionsgefäße umfassten, wurden von den Firmen Falcon BD (Heidelberg), Becton, Dickinson and Company BD (Heidelberg), STARLAB (Ahrensburg), Greiner bio-one (Frickenhausen), Eppendorf (Hamburg) und Nunc (Wiesbaden) bezogen.

2.2. LABOR-GERÄTE

Für die Arbeiten im Labor wurden die unter Tabelle 2.1 aufgeführten Geräte verwendet.

Tabelle 2.1 Verwendete Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auflichtmikroskop Axiovert 25</td>
<td>Carl Zeiss Jena GmbH, Jena</td>
</tr>
<tr>
<td>Auflichtmikroskop Axiostar plus autoMACS®</td>
<td>Carl Zeiss Jena GmbH, Jena</td>
</tr>
<tr>
<td>CO₂ Inkubator Forma Scientific</td>
<td>Miltenyi Biotec, Bergisch Gladbach</td>
</tr>
<tr>
<td>Durchflusszytometer FACSCalibur®</td>
<td>Thermo Fisher Scientific, Dreieich</td>
</tr>
<tr>
<td>Dynal MPC-1® Magnet</td>
<td>Miltenyi Biotec, Bergisch Gladbach</td>
</tr>
<tr>
<td>Mikroplatten-Absorptionsreader ELx808</td>
<td>Becton, Dickinson and Company (BD), Heidelberg</td>
</tr>
<tr>
<td>Spectrophotometer DR/2010</td>
<td>Thermo Fisher Scientific, Dreieich</td>
</tr>
<tr>
<td>Thermomixer comfort</td>
<td>BioTek Instruments GmbH, Bad Friedrichshall</td>
</tr>
<tr>
<td>Werkbank antair BSK</td>
<td>HACH LANGE GmbH, Düsseldorf</td>
</tr>
<tr>
<td>Zentrifuge Varifuge 3.0RS</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Zentrifuge BIOFUGE fresco</td>
<td>Heraeus, München</td>
</tr>
<tr>
<td>Zentrifuge 5810</td>
<td>Eppendorf, Hamburg</td>
</tr>
</tbody>
</table>

2.3. CHEMIKALIEN

Die hier verwendeten Chemikalien wurden im Reinheitsgrad „zur Analyse“ und, sofern nicht anders angegeben, von den Firmen Sigma Aldrich (Taufkirchen), Promega (Mannheim), Merck (Darmstadt) und Serva Elektrophoresis (Heidelberg) bezogen. Von der Hauseigenen Apotheke wurde Ethanol bezogen.
2.4. PUFFER, LÖSUNGEN, REAGENZIEN UND BAKTERIEN

2.4.1. PUFFER UND LÖSUNGEN

Zum Ansetzen der Puffer und Lösungen (siehe Tabelle 2.2) wurden, soweit nicht anders angegeben, die Chemikalien der unter 2.3 angegeben Firmen verwendet. Als Lösungsmittel wurde entionisiertes Wasser aus der hauseigenen Anlage, selbst angesetztes PBS (Phosphat-buffered Saline) oder Aqua ad injectabilia (Braun, Melsungen) verwendet. Das in der Zellkultur und bei der Aufreinigung von Zellen mittels autoMACS eingesetzte PBS wurde von Gibco/Invitrogen (Karlsruhe) bezogen und besaß einen Endotoxingehalt von ≤ 1 EU/ml. Die Puffer und Lösungen, die Anwendung in der Zellkultur fanden, wurden vor Gebrauch mit einem 0,22 µm Filter steril filtriert.

Tabelle 2.2 Puffer und Lösungen

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>autoMACS® Bindepuffer</td>
<td>2 mM EDTA; 0,5 % v/v FCS (Biochrom) in PBS</td>
</tr>
<tr>
<td>autoMACS® Cleaning Solution</td>
<td>70 % v/v Alcohol</td>
</tr>
<tr>
<td>autoMACS® Rinsing Solution</td>
<td>2 mM EDTA in PBS</td>
</tr>
<tr>
<td>autoMACS® Running Buffer</td>
<td>2 mM EDTA; 0,5 % v/v FCS (Biochrom) in PBS</td>
</tr>
<tr>
<td>Blockierlösung (für ELISA)</td>
<td>1 % FCS in PBS</td>
</tr>
<tr>
<td>Cellwash®</td>
<td>BD Biosciences, Heidelberg</td>
</tr>
<tr>
<td>Cytoperm/Cytofix®</td>
<td>BD Biosciences, Heidelberg</td>
</tr>
<tr>
<td>EDTA</td>
<td>250 mM Stocklösung</td>
</tr>
<tr>
<td>ELISA-Waschpuffer</td>
<td>D-PBS * 0,05 % Tween 20</td>
</tr>
<tr>
<td>Erythrozyten-Lysepuffer, pH 7</td>
<td>0,15 M NH₄Cl; 10 mM KHCO₃; 0,1 mM Na₂EDTA*2H₂O</td>
</tr>
<tr>
<td>Ethanol</td>
<td>100% v/v, Apotheke Universitätsklinikum Essen</td>
</tr>
<tr>
<td>D-PBS (für ELISA)</td>
<td>1,5 M NaCl, 26,8 mM KCl, 14,7 mM KH₂PO₄, 27,1 mM Na₂HPO₄</td>
</tr>
<tr>
<td>Physiologische Trypanblaulösung</td>
<td>0,4 %, Sigma-Aldrich</td>
</tr>
<tr>
<td>TMB Substrate Reagent Set</td>
<td>BD OptEIA™, BD Biosciences, Heidelberg</td>
</tr>
</tbody>
</table>

2.4.2. REAGENZIEN UND STIMULI

Tabelle 2.3 Reagenzien und Stimuli

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti asialo GM1 Antiserum</td>
<td>Wako Chemicals GmbH, Neuss</td>
</tr>
<tr>
<td>BD™ Cytometric Bead Array (CBA) Flex Sets für Mouse IL-4, IL-5, IL-13</td>
<td>BD Biosciences, Heidelberg</td>
</tr>
<tr>
<td>Dynabeads® M-450</td>
<td>Dyna®, Invitrogen, Carlsbad, USA</td>
</tr>
<tr>
<td>Human/Mouse TGF beta 1 ELISA Ready-SET-Gol®</td>
<td>eBioscience, Frankfurt</td>
</tr>
<tr>
<td>ELISA DuoSets IL-10, IL-2, IFN-γ</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
<tr>
<td>Foxp3 Staining Buffer Set</td>
<td>eBioscience, Frankfurt</td>
</tr>
<tr>
<td>Liberase Blendzym 2</td>
<td>Roche Diagnostics GmbH, Mannheim</td>
</tr>
<tr>
<td>Vybrant CFDA SE CellTracerKit</td>
<td>MolecularProbes, Göttingen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stimulus</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concanavalin A (Con A)</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>Ovalbumin-Peptid (Peptidname: OVA 323-339)</td>
<td>AnaSpec, San Jose, USA</td>
</tr>
<tr>
<td>Ovalbumin-Protein</td>
<td>Sigma-Aldrich, Taufkirchen</td>
</tr>
<tr>
<td>rekombinanter muriner Granulozyten-Makrophagen Kolonie-stimulierender Faktor (rmGM-CSF)</td>
<td>R&D Systems, Wiesbaden</td>
</tr>
</tbody>
</table>

2.4.3. BAKTERIEN

Der *Pseudomonas aeruginosa* (*P. aeruginosa*) Bakterienstamm ATCC 27853 wurde von PROF. DR. GULBINS (Universitätsklinikum Essen, Deutschland) zur Verfügung gestellt und fand Verwendung in der intranasalen (i.n.) Infektion von Versuchstieren.

2.5. SEREN UND MEDIEN

2.5.1. SEREN

Das verwendete Fötale Kälber Serum (*Fetal Calf Serum, FCS*) stammte von der Firma Biochrom (Berlin). Es wurde zur Inaktivierung der Komplementkomponenten 30 Min bei 56°C im Wasserbad erhitzt und in 50 ml Portionen bei -20°C aufbewahrt. Der Endotoxingehalt lag bei 1,00 EU/ml. Normales Kaninchenserum wurde aus Kaninchenblut nach Inkubation des Blutes bei Raumtemperatur (RT) und Abschluss der dabei eintretenden Gerinnung durch Zentrifugation gewonnen. Das Kaninchenblut wurde von einem naiven Kaninchen im Zentralen Tierlabor des Uniklinikums Essen ohne Zusatz von Gerinnungshemmern abgenommen. Eine
Hitze-Inaktivierung des Kaninchenserums erfolgte nicht. Das Serum wurde in 500 µl Aliquots bei -20° C aufbewahrt.

2.5.2. ZELLKULTURMEDIUM
Als Kulturmedium diente für alle Arbeiten in der Zellkultur very low endotoxin medium (VLE) RPMI 1640 der Firma Biochrom (Berlin). Als endotoxinfreie Zusätze enthielt das Kulturmedium 10 mM HEPES (Biochrom, Berlin), 0,06 mg/ml Penicillin (Sigma Aldrich, Taufkirchen), 0,02 mg/ml Gentamicin (Sigma Aldrich, Taufkirchen) und 0,05 mM β-Mercaptoethanol. L-Glutamin war in dem RPMI Medium in stabiler Form enthalten. Zur Kultivierung wurden dem Kulturmedium 10 % Hitze-inaktiviertes FCS zugesetzt.

2.5.3. MEDIUM FÜR BAKTERIEN
Die Kultivierung des Bakterienstammes \textit{P. aeruginosa} erfolgte auf Tryptic-Soy-Agar (TSA)-Platten. Der hierfür verwendete Agar stammte von Sigma-Aldrich (Taufkirchen) und das \textit{tryptic soy broth} (Tryptic-Soja-Bouillon, TSB) wurde von Bacto™ (BD, Heidelberg) bezogen. Für die Herstellung der TSA-Platten wurden 10,5 g TSB und 5,2 g Agar in 350 ml destilliertem H₂O gelöst und für 15 min bei 121°C autoklaviert. Von diesem Ansatz wurden jeweils 10 ml. in sterile Petrischalen gegossen und bis zur weiteren Verwendung bei 4°C gelagert. Für die Anzucht der Bakterien wurde Trypticase™ Soy Agar Medium (BD, Heidelberg) verwendet.

2.6. ANTIKÖRPER
Die in der Tabelle 2.4 aufgelisteten Antikörper dienten der Charakterisierung von Zellen bezüglich ihrer Oberflächen-Rezeptoren mittels Durchflusszytometrie.
Tabelle 2.4 Antikörper

<table>
<thead>
<tr>
<th>Spezifität</th>
<th>Konjugation</th>
<th>Klon</th>
<th>Bezugsquelle</th>
<th>Isotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>FITC</td>
<td>17A2</td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
<tr>
<td>CD4</td>
<td>PE</td>
<td>145-2C11</td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>PerCPCy5.5</td>
<td>M1/70</td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
<tr>
<td>CD11c</td>
<td>APC</td>
<td>N418</td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
<tr>
<td>CD16/CD32 (Fcy III/II)</td>
<td>PC61.5</td>
<td>eBioscience, Frankfurt</td>
<td>Arm. Hamster IgG1,κ</td>
<td></td>
</tr>
<tr>
<td>CD25</td>
<td>PECy7</td>
<td>PC61.5</td>
<td>eBioscience, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>FITC</td>
<td>HM40-3</td>
<td>eBioscience, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>CD49b</td>
<td>APC</td>
<td>DX5</td>
<td>eBioscience, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>CD69</td>
<td>PE</td>
<td>H1.2F3</td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
<tr>
<td>CD86</td>
<td>PE</td>
<td>GL1</td>
<td>BD Biosciences, Heidelberg</td>
<td>Rat IgG2a, κ</td>
</tr>
<tr>
<td>CD335</td>
<td>APC</td>
<td>BioLegend, San Diego, USA</td>
<td>Rat IgG2a, κ</td>
<td></td>
</tr>
<tr>
<td>DO11.10 TCR</td>
<td>APC</td>
<td>KJ1-26</td>
<td>eBioscience, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>Foxp3</td>
<td>PE</td>
<td>FJK-16s</td>
<td>eBioscience, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>I-A/I-E</td>
<td>FITC</td>
<td>2G9</td>
<td>BD Biosciences, Heidelberg</td>
<td>Rat IgG2a, κ</td>
</tr>
<tr>
<td>NKG2A/C/E</td>
<td>Biotin</td>
<td>2G9</td>
<td>BD Biosciences, Heidelberg</td>
<td>Rat IgG2a, κ</td>
</tr>
<tr>
<td>NKG2D</td>
<td>PE</td>
<td>eBioscience, Frankfurt</td>
<td>Rat Ig1, κ</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>PerCPCy5.5</td>
<td></td>
<td>BD Biosciences, Heidelberg</td>
<td></td>
</tr>
</tbody>
</table>

2.6.1. ANTIKÖRPER ZUR ANREICHERUNG VERSCHIEDENER MURINER ZELLTYPEN

Zur Anreicherung von CD3⁺ Zellen wurde der *Pan T Cell Isolation Kit* (αCD45R, αCD49b, αCD11b, αTer-119, Anti-Biotin *MicroBeads*) der Firma Miltenyi Biotec (Bergisch Gladbach) verwendet. Die Depletion von CD3⁺ Zellen erfolgte durch Verwendung von Antikörper αCD3 Klon 17A2 (s. Tab. 2.4), Dynabeads® M-450 Schaf anti-Ratte IgG und einem DynaMag™ Magnet (Dynal®, Invitrogen, Carlsbad, USA).

2.7. VERSUCHSTIERE

Als Versuchstiere wurden männliche Mäuse vom Stamm BALB/c verwendet, die von Harlan Winkelmann (Borchen, Deutschland) bezogen wurden, oder aus eigener Zucht stammten. Die Zucht der BALB/c Mäuse im Zentralen Tierlaboratorium (ZTL)
3. METHODEN

3.1. VERSUCHSTIERE

3.1.1. TIER-MODELL ZUR INDUKTION EINES WEICHTEILTRAUMAS BEI DER MAUS

Das hier genutzte Modell stammt im Original von CRISCO et al. [40] und wurde in diesem Labor auf die Maus adaptiert und etabliert. Zur Untersuchung der Wirkung eines lokalen Weichteiltraumas bei Mäusen wurde ein Traumamodell verwendet, bei dem ein geschlossenes Trauma ohne Fraktur erzeugt wird. Männliche BALB/c, RAG-2⁻/⁻ und IFN-γ⁻/⁻ Mäuse wurden unter Inhalationsnarkose mit Isofluran (Abbott GmbH & Co. KG, Wiesbaden) intramuskulär (i.m.) mit 57,5 mg/ kg Gewicht Ketamin und 6,5 mg/ kg Körpergewicht Xylazin (CEVA, Sante Animal, Düsseldorf) in 0,9 %iger NaCl-Lösung narkotisiert. Die i.m. Injektion erfolgte in einem Volumen von 50 µl in den rechten Vorderlauf. Das Muskeltrauma wurde auf dem musculus gastrocnemius beidseitig durchgeführt. Zur Vorbereitung wurde ein Stempel auf den musculus gastrocnemius aufgesetzt. Ein Gewicht von 20 g wurde aus einer Höhe von 120 cm, geführt in einer Plexiglasröhre, auf den Stempel fallengelassen. Die Energie des Aufpralls des Fallgewichts übertrug sich auf den Stempel und induzierte ein reproduzierbares und lokal begrenztes Weichteiltrauma (s. Abb. 3.1).

Als Negativkontrolle zu den traumatisierten Tieren wurden Versuchstiere wie oben beschrieben narkotisiert aber kein Trauma induziert. Um genügend Lymphknotenzellen (LNC) für die anschließenden Versuche zu erhalten, wurden mindestens drei Mäuse einem Trauma unterzogen und mindestens drei Mäuse dienten als Narkosekontrolle. Nach Behandlung der Tiere verweilten diese noch maximal 10 Tage im ZTL.
3.1.2. LUNGENINFEKTIONS-MODELL MIT *PSEUDOMONAS AERUGINOSA* BEI DER MAUS

3.1.2.1. ANZUCHT DES BAKTERIENSTAMMES *PSEUDOMONAS AERUGINOSA*

Einen Tag vor Infektion erfolgte die Anzucht der Bakterien. Dafür wurden Bakterien für 14 h auf TSA Platten (BD™ Trypticase™ Soy Agar, BD, Heidelberg) bei 37°C inkubiert. Im Anschluss wurden Erlenmeyerkolben, gefüllt mit 8 ml TSB (Universal-Anreicherungsmedium), mit den Bakterien angeimpft und bei 37°C, im Wasserbad, für eine 1 h kultiviert. Während der logarithmischen Wachstumsphase erfolgte das Ernten der Pseudomonaden durch Überführen in ein 50 ml PP-Röhrchen und Zentrifugation (1300 g, 10 min). Nach Resuspendieren in 20 ml RPMI Medium (Gibco®, Invitrogen, Darmstadt), welches 10 mM Hepes und stabiles L-Glutamin enthielt, wurde die Bakterienzahl mit Hilfe eines Photometers und der Bestimmung der Absorption der Bakterien-Lösung bei 550 nm bestimmt. Bei dem verwendeten Photometer entsprach eine Absorption von 1,0 einer Bakterienzahl von $2,1 \times 10^9/$ml. Nach zweimaligem Waschen (Zentrifugation und anschließendes Resuspendieren) in...
RPMI Medium wurden die Bakterien auf die gewünschte Zielzahl durch die Verdünnung mit Medium eingestellt.

3.1.2.2. INFEKTION DER VERSUCHSTIERE MIT PSEUDOMONAS AERUGINOSA

Für die Infektion von Kontroll- bzw. Trauma-induzierten Versuchstieren des Stammes BALB/c wurden 5 x 10⁸ Kolonie-bildende Einheiten (Colony-Forming Units, CFU) i.n. appliziert. Hierfür wurden die Mäuse kurz mit Diethylether narkotisiert und die gewünschte Menge an P. aeruginosa wurde in einem Volumen von 20 µl mit Hilfe einer Mikropipette zügig in ein Nasenloch appliziert. Die narkotisierten Versuchstiere wurden während des Eingriffs, bis zur Erlangung des Bewusstseins, in senkrechter Lage positioniert, um die vollständige Aufnahme des Flüssigkeitsvolumens in den Atemtrakt zu gewährleisten.

3.1.2.3. BESTIMMUNG DER BAKTERIELLEN BELADUNG IN DER LUNGE

Vierundzwanzig Stunden nach der Infektion der Versuchstiere mit P. aeruginosa wurden die Lungen entnommen (siehe 3.1.8). Mittels eines Duall Homogenisators mit Glaspistill wurden die Lungen in je 1 ml PBS homogenisiert. Zur Bestimmung der Zahl der Bakterien in den Lungen wurden 100µl des Homogenisats für 10 min unter Zugabe von 5 mg/ml Saponin lysiert, um die intrazellulär vorkommenden Bakterien freizusetzen. Durch die Zugabe von 900 µl PBS wurde 1 ml einer 1:10 Verdünnung des Lungenhomogenisates hergestellt, welches zur weiteren seriellen Verdünnung verwendet wurde. Jeweils 900 µl der serienellen Verdünnungen wurden auf TSB-Agar-Platten für 18 h bei 37°C inkubiert und anschließend wurden die CFU ausgezählt.

3.1.3. APPLIKATIONSARTEN

Den Versuchstieren wurden auf unterschiedlichen Applikationswegen Substanzen verabreicht. Dazu zählten Applikationen der Arten i.m., subkutan (s.c.), intravenös
(i.v.), intraperitoneal (i.p.) und i.n.. Als Injektionslösung diente steriles PBS mit geringem Endotoxinwert.

Bei i.m. und s.c. Applikationen wurden je nach Versuch an Tag 1, 4 oder 7 nach Trauma den Versuchstieren Ovalbumin-Protein (OVA, 0,5 mg/ml) im Volumen 3 x 20 µl (∑ 30 µg/ Bein) i.m. in den musculus gastrocnemius oder s.c. im Volumen 30 µl/ Fuß in die Fußsohle appliziert. Versuche mit OVA-FITC erfolgten nach dem gleichen Prinzip wie mit unkonjugiertem OVA.

Für in vivo Versuche mit Knochenmark-gereiften DC (bone marrow derived dendritic cells, BMDC) wurden 1 x 10⁵ BMDC in einem Volumen von 1 x 30 µl s.c. in Kontroll- und Traumatiere injiziert.

Bei i.v. Applikationen wurden den Tieren je nach Versuch einen Tag vor der Applikation von OVA 5 x 10⁶ CD3⁺ DO11.10 Zellen teilweise in Kombination mit T-Zellen aus Kontroll- bzw. Traumatiere im Volumen 100 µl appliziert.

Um eine immunmodulierende Rolle von NK-Zellen bei der T-Zell-Aktivierung zu untersuchen, wurde den Versuchstieren einen Tag vor Trauma und zwei nach Trauma 50 µl Anti asialo GM1 Antiserum i.p. injiziert. Bei dem Anti asialo Serum handelt es sich um ein Serum, das aus Kaninchen gewonnen wird und die Aktivität von NK-Zellen in verschiedenen Ratten- und Maus-Stämmen eliminiert. Das mit Salzen lyophilisierter vorliegende Serum wurde nach den Angaben des Herstellers in 1 ml destillierten Wasser gelöst. Als Kontrolle der Wirkung des Anti asialo Serums wurden auch Kontrollgruppen von Versuchstieren untersucht, denen anstelle des Anti asialo Serums 50 µl eines Kaninchenserums (Kontrollserum) i.p. verabreicht wurden.

Eine i.n. Applikation erfolgte nur in Kombination mit dem Bakterium P. aeruginosa. Hier erfolgte die Gabe von 5 x 10⁸ Bakterien in einem Volumen von 20 µl in das Nasenloch der narkotisierten Maus (s. auch Punkt 3.1.2.2).

3.1.4. ISOLIERUNG VON LYMPHKNOTENZELLEN

Die Isolierung von LNC aus den poplitealen (lat. poples, poplitis m., Kniekehle) Lymphknoten (LN) der Versuchstiere erfolgte unter der Sterilbank. Für die Isolierung der LNC wurden die Versuchstiere nach Tötung in Rückenlage an den hinteren Extremitäten fixiert und das Fell im Bereich der Hinterbeine mit 70 % Ethanol

3.1.5. ISOLIERUNG VON MILZZELLEN

Zur Isolierung von Milzzellen wurden die Mäuse durch CO₂-Begasung getötet. Die Tiere wurden auf die rechte Seite gelegt und nach Desinfektion des Fells mit 70 % Ethanol wurde unter sterilen Bedingungen auf der linken Seite im Bereich der Milz ein Hautschnitt vollzogen. Nach Öffnung des Peritoneums wurde die Milz der
Bauchhöhle entnommen. Dazu wurde sie mit Hilfe einer Schere und einer Pinzette vom umliegenden Gewebe getrennt und in eine Petrischale (100 x 15 mm, Falcon, BD Biosciences) überführt, die Kulturmedium enthielt. Um die Zellen aus der Milz zu präparieren, wurde diese in drei Teile geschnitten und durch einen 70 µm Zellfilter in eine Petrischale gerieben. Die Gesamt-Milzzellen (TSC) wurden in der Petrischale in 20 ml Kulturmedium aufgenommen, das 5 mM EDTA enthielt. Das EDTA diente zur Dissoziation vorhandener Zell-Cluster. Im Anschluss wurden die Milzzellen durch einen weiteren kleineren Filter (Ø 40 µm) in ein 50 ml Greinerröhrchen überführt. Nach einer Zentrifugation bei 300 g (1200 rpm) für 10 Min und 4° C konnten die Milzzellen in Kulturmedium aufgenommen werden. Die Zellzahl wurde nach Verdünnung der Zellen im Verhältnis von 1:10 mit Trypanblau mit Hilfe einer Neubauer-Zählkammer bestimmt.

Die so erhaltenen Milzzellen stammten aus DO11.10 Mäusen und dienten als Quelle zur Anreicherung von OVA-spezifischen T-Zellen.

Des Weiteren wurden Milzzellen aus BALB/c Mäusen gewonnen und für die Anreicherung von APZ verwendet.

3.1.6. ISOLIERUNG VON ZELLEN AUS DEM MUSKEL

Für die Isolierung der Muskelzellen wurde den Tieren nach Tötung durch CO₂-Begasung das Fell im Bereich der Hinterbeine mit 70 % Ethanol desinfiziert. Zur Freilegung und Entnahme des *musculus gastrocnemius* wurde die Haut über den gesamten Bereich der Hinterbeine hinweg aufgeschnitten und von den Beinen getrennt. Mit einer Präparierschere wurde der *musculus gastrocnemius* vom Bein getrennt und in eine Petrischale mit PBS überführt. Anschließend wurde der Muskel so klein wie möglich mit der Schere geschnitten und in ein 15 mm Greinerröhrchen mit 1 ml Liberase Blendzyme 2 (4 µg/ml) überführt. Nach einer Stunde Verdau im Wasserbad bei 37° C wurden die Muskelstücke erst durch ein 40 µm Zellsieb gerieben und die gewonnene Zellsuspension wurde nach Waschen und Zentrifugation bei 460 g (1500 rpm) für 6 Min und 4° C durch einen weiteren Filter mit Maschenstärke 30 µm (MACS Pre-Seperation Filter, Miltenyi Biotec) getropft, um den Debris in der Zellsuspension zu begrenzen. Die Zellen aus dem Muskelverdau wurden nach weiterem Waschen und Zentrifugation bei 460 g (1500 rpm) für 6 Min
3.1.7. ISOLIERUNG VON KNOCHENMARKZELLEN UND DIFFERENZIERUNG VON DC

Für die Kultivierung der BMC wurden diese in Petrischalen (100 x 15 mm, Falcon, BD Biosciences) in einer Dichte von 2 x 10⁶ in 10 ml Kulturmedium, das 20 ng/ml murines rekombinantes GM-CSF enthielt, ausgesät. Die Inkubation der BMC erfolgte in wassergesättigter Atmosphäre (95 %) bei 5 % CO₂ und 37° C im Brutschrank. Nach drei Tagen Kultur wurden 10 ml Kulturmedium, welches 20 ng/ml GM-CSF enthielt, zu jeder Petrischale zugefügt. Am siebten Tag der Kultur wurden alle nicht-adhärennten Zellen geerntet, abzentrifugiert und gezählt. Bevor die Zellen für weitere Kulturen eingesetzt wurden, wurde die Zahl der ausgereiften BMDC mittels durchflusszytometrischer Analyse bestimmt.

Für in vivo Versuche wurden die ausgereiften BMDC für 1 h in einer Dichte von 5 x 10⁶ Zellen in einer 6 well-Flachbodenplatte in einem Volumen von 2 ml ausgesät und mit 100 µg/ml Ovalbumin-Protein stimuliert. Die nicht-adhärennten Zellen wurden danach geerntet und gezählt. Anschließend wurden 1 x 10⁵ BMDC in einem Volumen von 1 x 30 µl s.c. in Kontroll- und Trauma-Tiere injiziert (s. Punkt 4.3).

3.1.8. ENTNAHME DER LUNGE

Zur Entnahme der Lunge wurden die Versuchstiere in Rückenlage fixiert. Nach der Desinfektion mit 70% Ethanol wurde das Fell auf der Bauchseite mittels einer Schere auf der kompletten Körperlänge aufgeschnitten. Im Anschluss an die Freilegung des Thorax (Brustkorb) wurde die Brusthöhle durch das Durchschneiden des Zwerchfells und Entfernung der Rippen und des Brustbeins eröffnet. Die Lungenflügel wurden mit Hilfe einer Schere und stumpfen Pinzette vorsichtig von der Trachea und der Lungenarterie und –vene getrennt, aus dem Brustkorb entnommen und sofort mit einem Duall Homogenisator mit Glaspistill in 1 ml PBS homogenisiert (s.a. 3.1.2.3).
3.2. KOMMERZIELLE STANDARDTESTVERFAHREN

3.2.1. ANREICHERUNG VON MURINEN ZELLTYPEN MITTELS MACS

Die magnetische Sortierung von murinen Zellen diente dazu, Zellen aus der Milz und den LN anzureichern. Um die Zellen zu separieren, wurde zum einen ein autoMACS™® Gerät und die entsprechenden Isolierungs-Kits der Firma Miltenyi Biotec (Bergisch Gladbach) verwendet, sowie ein Handmagnet (Dynal MPC-1®, Dynal®, Oslo, Norwegen) zur manuellen Aufreinigung.

3.2.1.1. PRINZIP

Mit Hilfe der magnetischen Zellseparation (engl.: Magnetic-Activated Cell Sorting, MACS) können Zellen aus komplexen Zellgemischen mit hoher Reinheit für weitere Untersuchungen isoliert werden. Bei diesem System werden mit superparamagnetischen Mikropartikeln (ca. 50 nm Durchmesser) konjugierte Antikörper (MACS MicroBeads) verwendet. Die gewünschten Zellen werden durch spezifische Antikörperbindung mit den MicroBeads markiert und auf eine spezielle Trennsäule gegeben, die mit Stahlwolle oder Stahlkugeln gefüllt ist (s. Abb. 3.2).

Abb. 3.2 Prinzip der positiven Selektion des magnetic associated cell sorting (MACS). Die zu isolierenden Zellen werden mittels magnetischer MicroBeads gekennzeichnet und über eine Säule getrennt. Während die Säule von einem magnetischen Feld umgeben ist, werden die magnetisch gekennzeichneten Zellen zurückgehalten und nach Entnehmen der Säule aus dem Magnetfeld können die Zellen eluiert werden (Miltenyi Biotec, 2011, modifiziert).

Die Trennsäule befindet sich zwischen den Magnetpolen eines Hochleistungsmagneten. Zwischen den Stahlkugeln entsteht ein Hochgradienten-
Magnetfeld, so dass die markierten Zellen in der Säule zurückgehalten werden, während die unmarkierten Zellen die Säule durchlaufen und als negative Fraktion aufgefangen werden. Die markierten Zellen lassen sich durch Ausspülen der Säule außerhalb des Magnetfeldes gewinnen (Elution). Das MACS-System kann zur Anreicherung (positive Selektion) oder zur Depletion (negative Selektion) von Zellpopulationen verwendet werden.

3.2.1.2. ISOLATION VON CD3⁺ T-ZELLEN AUS DEN LYPHKNOTEN

3.2.1.3. GEWINNUNG VON APZ AUS DER MILZ

Die Depletion von CD3⁺ Zellen aus der Milz, zwecks Gewinnung von APZ, erfolgte durch Verwendung von Antikörper αCD3 (BD Bioscience) und Dynabeads® M-450 Schaf anti-Ratte IgG (Dynal®, Invitrogen, Carlsbad, USA) im 5 ml Rundboden Greinerröhrchen unter Nutzung des CD3⁺ Depletionspuffers. Dazu wurde der Zellsuspension 1,5 µl αCD3 Antikörper pro 1 x 10⁶ erwarteter Zellen nach Depletion hinzugefügt und für 20 Min bei 4° C inkubiert. Im Anschluss wurde mit CD3⁺ Depletionspuffer gewaschen und in 1 ml pro 1 x 10⁷ Zellen resuspendiert. Der Zellsuspension wurden 50 µl Dynabeads® pro 1 x 10⁷ Zellen hinzugefügt und für 30 Min bei 4° C auf einem Rotatore inkubiert. Um die unspezifische Depletion nicht gebundener Zellen zu limitieren wurden weitere 200 µl Puffer zugegeben und das Röhrchen wurde dann für 2 Min an einen Magneten (Dynal MPC-1®) gestellt. Die markierten Zellen sammelten sich an der Gefäßwand und der Überstand mit den unmarkierten Zellen wurde vorsichtig mit einer Pasteurpipette abgesaugt und in ein neues 5 ml Rundboden Greinerröhrchen überführt. Um eine höhere Reinheit zu erzielen wurde ein weiteres Mal mit CD3⁺ Depletionspuffer gefüllt und der Vorgang wiederholt. Nach einer Zentrifugation wurden die Zellen in Medium aufgenommen und die Zellzahl bestimmt.

Die so gewonnenen APZ wurden vor dem Aussähen mit einer Einzeldosis von 5 Gray (Gy) im Institut für Medizinische Strahlenbiologie nach Anleitung von PROF. DR. Iliakis bestrahlt. Dadurch wurde eine reproduktive Inaktivierung bewirkt.
3.2.2. BESTIMMUNG DER PROLIFERATION MITTELS CELL TRACER KIT

Um die Proliferation einzelner Zellpopulationen bestimmen zu können, wurde der Fluoreszenzfarbstoff Carboxyfluorescein Succinimidylester (CFSE) verwendet. Das Prinzip dieser Methode beruht darauf, dass das eigentliche farblose Carboxyfluorescein Diacetat-Succinimidylester (CFDA SE) von den Zellen aufgenommen wird und durch zelleigene Esterasen in die fluoreszierende Form CFSE überführt wird, die über Aminogruppen kovalente Bindung mit endogenen Proteinen eingehen kann und so die Zelle anfärbt (s. Abb. 3.3).

Teilt sich eine solche Zelle, verteilt sie rund 50 % ihrer (markierten) Proteine auf ihre Tochterzellen und dadurch auch die Hälfte der Gesamtfluoreszenz. Zellen, die sich noch nicht geteilt haben, lassen sich deshalb durchflusszytometrisch anhand von einem klar getrennten Peak von solchen unterscheiden, die bereits eine oder mehrere Mitosen durchgeführt haben.
Um die Zellen vor der in vivo Untersuchung zu markieren und die Proliferation zu analysieren, wurde das Vybrant CFDA SE CellTracerKit verwendet. Für die CFSE-Färbung wurden die isolierten Zellen zunächst in ein 15 ml Greinerröhrchen überführt, zentrifugiert (460 g, 6 Min, 4° C) und in 1 ml vorgewärmtem PBS pro 10 - 15 x 10⁶ Zellen aufgenommen. Zu den Zellen wurden anschließend 0,5 µM CFDA SE (in vitro) oder 1,5 µM CFDA SE (in vivo) pro 10 – 15 x 10⁶ Zellen zugefügt. Entnommen wurde das CFDA SE aus einer 10 mM Stock-Lösung, welche im Verhältnis 1:100 in PBS verdünnt wurde. Für die Herstellung der 10 mM CFDA SE Stock-Lösung musste die dem Kit zugehörende CFDA SE-Lösung im Verhältnis 1:10 mit Dimethylsulfoxid (DMSO) (im Lieferumfang enthalten) verdünnt werden. Nach sorgfältigem Mischen der Zellen im 15 ml Greinerrörhrchen mit der entsprechenden Menge an CFDA SE folgte eine Inkubation der Zellen für 12 Min bei 37° C im Wasserbad. Anschließend wurden die Zellen zentrifugiert (300 g, 10 Min, 4° C) und das Zellpellet wurde in 1 ml vorgewärmtem Medium resuspendiert. Die Zellen wurden erneut für 30 Min bei 37° C im Wasserbad inkubiert, um das CFSE in der Zelle zu fixieren und überschüssiges CFSE zu lösen. Danach erfolgte eine weitere Zentrifugation (300 g, 10 Min, 4° C) der Zellen, welche im Anschluss daran in geeigneter Menge Medium aufgenommen und gezählt wurden.

3.2.3. ANALYSE VON ZELLEN MITTELS DURCHFLUSSZYTOMETRIE

3.2.3.1. PRINZIP

3 Methoden

Abb. 3.4 Lichtstreuungs-Eigenschaften einer Zelle. Das Seitwärtsstreulicht (side scatter, SSC) ist eine Bemessung des Lichtes, das von extra- und intrazellulären Strukturen der Zelle gebrochen und reflektiert wird. Es wird in einem ca. 90° Winkel zum Laserstrahl von einer Sammellinse erfasst und zum entsprechenden SSC-Detektor weitergeleitet. Das Vorwärtsstreulicht (forward scatter, FSC) ist das Licht, welches aufgrund der Größe der Zellen gebeugt wird. Es wird in Richtung des einfallenden Laserstrahls von einer Fotodiode erfasst und ist proportional zur Zellgröße. Fluoreszenzfärbstoffe welche an der Zelle gebunden sind werden von Lasern erfasst und die Emission des Farbstoffes ermittelt (DRK Blutspendedienst West, modifiziert)

Neben der Lichtstreuung misst das Durchflusszytometer auch die spezifische Fluoreszenz und die entsprechende Fluoreszenzintensität. Zu diesem Zweck stehen Systeme aus Bandpassfiltern und Fotoröhren zur Verfügung, in der Regel für 530 nm (Fluoreszenzkanal FL 1), 585 nm (FL 2), 670 nm (FL 3) und 661 nm (FL 4). Dabei ist die Fluoreszenzintensität 1 (FL 1) proportional zur Intensität der Anfärbung mit FITC. FITC hat ein Absorptionsmaximum von 495 nm und ein Emissionsmaximum von 519 nm. Die Fluoreszenzintensität 2 (FL 2) ist proportional zur Intensität der Anfärbung einer Zelle mit PE, wobei in diesem Fall die Absorptionsmaxima bei 488 und 565 nm und das Emissionsmaximum bei 578 nm liegt. Proportional zur Anfärbung einer Zelle mit PerCP verhält sich die Fluoreszenzintensität 3 (FL 3). Das Absorptionsmaximum liegt hier bei 488 nm, das Emissionsmaximum bei 695 nm. Schließlich wird noch die Fluoreszenzintensität 4 (FL 4) gemessen, die sich proportional zur Anfärbung einer Zelle mit APC verhält. APC wird bei 650 nm angeregert und hat ein Emissionsmaximum von 660 nm. Zur Charakterisierung von Zellen im Durchflusszytometer setzt man Antikörper ein, die spezifische Oberflächenmoleküle erkennen und mit unterschiedlichen Fluorochromen gekoppelt sind. Die Anzahl der im Durchflusszytometer detektierten Fluoreszenzsignale ist

3.2.3.2. FÄRBUNGEN VON ZELLOBERFLÄCHENMOLEKÜLEN

3.2.3.3. INTRAZELLULÄRE FÄRBUNGEN

Zum Nachweis von intrazellulärem Foxp3 wurden die Zellen nach der Oberflächenfärbung einmal in Cellwash gewaschen, bei 460 g (1500 rpm) für 6 Min
3 Methoden

und 4°C zentrifugiert und anschließend nach dem Protokoll des Herstellers des *Foxp3-Staining Sets (Foxp3 Staining Set, eBioscience, San Diego, USA)* fixiert und permeabilisiert. Nach einmaligem Waschen mit dem entsprechenden PermWashPuffer wurden die Zellen mit 100 µl PermWash-Puffer mit 0,5 µl Foxp3-Antikörper für etwa 45 Min bei 4°C im Dunkeln inkubiert. Die Zellen wurden anschließend einmal mit PermWash-Puffer und einmal mit Cellwash gewaschen (460 g; 6 Min), in einem Volumen von 300 µl FACS-Puffer resuspendiert und in Rundbodenröhrchen überführt. Die Messung und Auswertung erfolgte wie auch bei der Färbung der Oberflächen-Moleküle mit Hilfe eines FACSCalibur® und mit der Software Cell Quest Pro.

3.2.4. ZYTOKINNACHWEIS MITTELS CYTOMETRIC BEAD ARRAY (CBA)

einer Standard-Kurve kann so die Konzentration an Zytokinen in den zu untersuchenden Proben quantifiziert werden.

3.2.5. ZYTOKINQUANTIFIZIERUNG IN ZELLKULTUR-ÜBERSTÄNDEN

3.2.5.1. PRINZIP

Um die löschlichen Zytokine in den Überständen der verschiedenen Zellkulturen zu detektieren und quantitativ zu bestimmen, wurden ELISA (*Enzyme-linked immunosorbent assay*) durchgeführt (s. Abb. 3.5).

Abb. 3.5 *Schematische Darstellung der Methode des Sandwich ELISA*. Der auf einer Platte immobilisierte Primär-Antikörper bindet das Ziel-Protein, z. B. ein bestimmtes Zytokin oder Antigen. Der Sekundär-Antikörper bindet das Zielprotein an einer anderen Stelle, so dass ein Sandwich-Komplex entsteht. Durch Zugabe von Streptavidin-Horseradish Peroxidase (HRP) entsteht ein Komplex mit dem die Antigene detektiert werden können, da das Enzym ein zugefügtes Substrat zu farbigen Produkten umsetzen kann. (Cell Signaling Technology, Inc., Danvers, USA)

Die ELISA-Systeme wurden auf dem Prinzip der Sandwich-Technik entwickelt. Immunglobuline haften unspezifisch auf Kunststoffoberflächen. Antikörper gegen die zu testende Substanz werden über unspezifische Wechselwirkungen auf eine Flachboden-Mikrotiterplatte gekoppelt (*Coaten*). Nach dem Entfernen überschüssiger Antikörper (Waschen) werden die nichtbesetzten Absorptionsstellen auf der Oberfläche mit Serumproteinen abgedeckt (Blocken). Die Zellüberstände werden aufgebracht und die darin vorhandene zu bestimmende Substanz bindet spezifisch

3.2.5.2. MAUS IL-2-, IL-10-, IFN-GAMMA UND TGF-β-ELISA

3.3. VERSUCHSVERLAUF, APPLIKATION UND ZELLKULTUR

3.3.1. UNTERSUCHUNG DER ANTIGEN-SPEZIFISCHEN T-ZELL-AKTIVIERUNG IN VIVO

5 x 10⁶ CFSE-markierte CD3⁺ T-Zellen aus der Milz von DO11.10 Tieren wurden in 100 µl PBS i.v. in die Schwanzvene injiziert. In verschiedenen Ansätzen zur Untersuchung der Funktion von T-Zellen aus den LN nach Trauma wurden zusätzlich zu den 5 x 10⁶ DO11.10 noch 5 x 10⁶ unmarkierte CD3⁺ T-Zellen aus den LN von Wildtypieren appliziert (s. Versuchsverlauf im Ergebnisteil). Einen Tag später wurden den Versuchstieren OVA (0,5 mg/ml) im Volumen 30 µl/ Fuß s.c. in die Fußsohle injiziert. Bei Versuchsreihen mit i.m. Applikation wurde OVA (0,5 mg/ml) im Volumen 3 x 20 µl ∑ 30 µg/ Bein i.m. in den musculus gastrocnemius injiziert. Nach drei Tagen erfolgte die Entnahme der poplitealen LN mit anschließender Isolierung der Zellen und deren Restimulation in vitro (s. Abb. 3.6).
3.3.2. OVA-SPEZIFISCHE T-ZELL-AKTIVIERUNG IN VITRO

Die unter Punkt 3.2.1.2 und 3.2.1.3 gewonnenen T-Zellen und APZ wurden für diesen Versuchsansatz verwendet. Die in der Kultur benutzten APZ wurden vor dem Aussähen mit 5 Gy bestrahlt und dann zur T-Zellstimulation eingesetzt. Durch die Bestrahlung wird die Proliferation der APZ inhibiert ohne deren Funktion zu beeinträchtigen. Zur Untersuchung der endogenen T-Zellen wurden in einer Kultur 3×10^5 naive APZ mit 2×10^5 naiven CD3\(^+\) DO11.10 Zellen und in verschiedenen Ansätzen $0,5 – 2 \times 10^5$ CD3\(^+\) T-Zellen aus Trauma-/- Kontroll-behandelten (24 h nach Trauma) Tieren pro 200 µl in Triplikaten in 96 well Flachbodenplatten ausgesät und mit 100 µg/ml pOVA stimuliert. Als Negativkontrolle dienten eine Kultur ohne endogene T-Zellen von Kontroll-/ Trauma-behandelten Tieren und ein Ansatz ohne Stimulation. Nach drei Tagen Stimulation erfolgte einen Zytokinbestimmung im Überstand der Kultur mittels ELISA.
3.4. STATISTISCHE ANALYSEN

Für statistische und graphische Analysen wurde die Software GraphPad 4.0 verwendet. Die Ergebnisse wurden dargestellt als Mittelwerte ± Standardabweichungen (SD für Standard Deviation). Die Unterschiede zwischen den Kontroll- und Trauma-behandelten-Gruppen wurden mit einem ungepaarten student t-Test untersucht. Die Darstellung der bakteriellen Beladung der Lungen erfolgte als eine Punktwolke, die die Streuung der einzelnen Messwerte veranschaulicht und den Median beinhaltet. Hier wurden die Daten mit Hilfe des nicht-parametrischen Mann-Whitney-U-Tests analysiert. Ein Ergebnis ab p < 0.05 wurde als signifikant erachtet.
4. ERGEBNISSE

4.1. ANALYSE DER ANTIGEN-SPEZIFISCHEN T-ZELL-AKTIVIERUNG NACH S.C. ANTIGEN-APPLIKATION

Ziel dieses Versuches war es herauszufinden, wie eine Immunantwort im drainierenden LN aussieht, wenn es zum simulierten Kontakt mit einer bakteriellen Komponente kommt. Der popliteale LN drainiert sowohl den *m. gastrocnemius* als auch die Fußsohle. Eine Applikation in die hintere Fußsohle löst somit eine Immunantwort im drainierenden LN unter Umgehung des traumatisierten Gewebes aus.

Für den Versuch wurden, wie unter Punkt 3.2.2 beschrieben, CFSE-markierte CD3⁺ DO11.10 Zellen zu verschiedenen Zeiten nach Kontroll- bzw. Trauma-Behandlung i.v. injiziert. Einen Tag später, d. h. an Tag 1, 4 oder 7 nach Trauma erfolgte eine s.c. Applikation von OVA. Drei Tage darauf wurden die poplitealen LN entnommen und die LNC wurden mit pOVA in einer in vitro Kultur restimuliert. Die Mengen an
Zytokinen im Überstand wurde mittels ELISA quantifiziert (s. Punkt 3.2.4 und 3.3.1). Die OVA-spezifischen T-Zellen in den LN wurden außerdem durchflusszytometrisch auf ihren Aktivierungsgrad und die Proliferation hin geprüft.

4.1.1. REINHEIT VON CD3⁺ DO11.10 ZELLEN

Um die Reinheit der mittels autoMACS isolierten CD3⁺ DO11.10 Zellen zu bestimmen, wurden die Zellen durchflusszytometrisch untersucht. Dafür wurden die Zellen mit Antikörpern gegen CD3 gefärbt. Der *DotPlot* in Abb.4.1 zeigt eine Auftrennung der Zellen nach CD3 und FL2-H (rot fluoreszierender Farbkanal). Die CD3⁺ Population liegt im markierten Bereich. Die Reinheit lag im Durchschnitt bei > 95 %.

Abb. 4.1 Anreicherung von CD3⁺ DO11.10 Zellen. CD3⁺ DO11.10 Zellen wurden mittels autoMACS aufgereinigt und, durchflusszytometrisch untersucht. Im *DotPlot* werden die Zellen nach CD3 und FL2-H (PE fluoreszierender Farbkanal) aufgetrennt. Die CD3 Population liegt im markierten Bereich. Im Durchschnitt lag die Reinheit bei > 95 %. Es wird ein repräsentatives Experiment gezeigt.
4.1.2. CD25 UND CD69 EXPRESSION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

4.1.3. PROLIFERATION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

Zur Betrachtung der Proliferation der OVA-spezifischen T\textsubscript{H}-Zellen wurde die Verteilung der CFSE-Markierung in den gegateten CD4+KJ1-26+ Zellen betrachtet. Im Histogramm wurden ca. 2500 Zellen angezeigt. Jeder Teilungspunkt wird durch einen Peak im Histogramm der CFSE-Messung sichtbar.

In Abb. 4.3 erkennt man zum Zeitpunkt 24 h, vier Tage und sieben Tage nach Trauma fünf Peaks bei Kontrolle und Trauma (s. Markierung). Die Höhe der Peaks variierte zwischen den einzelnen Versuchen. Jedoch ließ sich anhand der Peak-anzahl die Teilungshäufigkeit bzw. Proliferation bestimmen. Die Proliferation der OVA-spezifischen T\textsubscript{H}-Zellen war zu jedem Zeitpunkt in den Kontroll- und Trauma-behandelten Tieren ähnlich ausgeprägt.

4.1.4. RESTIMULATION VON LNC IN VITRO

Die Restimulation der LNC in Kultur erfolgte wie unter Punkt 3.1.4 beschrieben. Der Aktivierungszustand der LNC nach in vitro Restimulation wies in allen Versuchsreihen bei Kontrolle und Trauma auf eine Aktivierung aller T-Zellen hin. Die Proliferationshistogramme zeigten nach Restimulation keinen Unterschied zwischen
Kontrolle und Trauma. Die graphische Darstellung der Daten bezüglich ihrer Aktivität und Proliferation wird daher nicht gezeigt.

4.1.5. ZYTOKIN-EXPRESSION IM ANTIGEN-SPEZIFISCHEN T-ZELL-ASSAY IN VITRO

Eine Quantifizierung der Zytokine IFN-γ, IL-2 und IL-10 im Überstand der restimulierten LNC erfolgte nach drei Tagen Kultur (s. Punkt 3.2.4.2). Gezeigt werden in Abb. 4.4 Balkendiagramme, in denen die produzierte Zytokinmenge von Kontrolle und Trauma unter Berücksichtigung der Stimulation und des Zeitpunkts nach Trauma gezeigt werden. Die Werte der TH2-Zytokine IL-4, IL-5, und IL-13 lagen unterhalb der Bestimmungsgrenze. Daten werden daher nicht gezeigt.

Abb. 4.4 Subkutane Antigen-Applikation. Zytokin-Expression der LNC nach Restimulation. Zu den angegebenen Zeitpunkten nach Kontroll-/Trauma-Behandlung und Applikation der Antigenspezifischen T-Zellen, erfolgte die s.c. Injektion des Antigens. Drei Tage später wurden die LN entnommen. Eine Quantifizierung der Zytokine von IFN-γ, IL-2 und IL-10 im Überstand der restimulierten LNC erfolgte nach drei Tagen Kultur. Gezeigt werden Balkendiagramme, in denen die Zytokinmenge von LNC aus Kontroll- und Trauma-behandelten Tieren unter Berücksichtigung der Stimulationsart und des Zeitpunkts in den Überständen eines dreitägigen Assay gemessen wurde. Für jeden Zeitpunkt und jede Stimulationsart wurden die Triplikate des Assay gemittelt und mit Standardabweichung dargestellt. Es wird zu jedem Zeitpunkt ein repräsentatives Experiment aus \(n = 3 \) mit drei Versuchstieren pro Versuchsgruppe gezeigt. Die Unterschiede wurden mit Hilfe des ungepaarten „student t-test“ analysiert. *\(p < 0.05 \) **\(p < 0.01 \).

Die Ergebnisse der IL-10 Zytokinquantifizierung zeigten generell eine schwache Expression, die kaum nachweisbar war. Die IL-10 Produktion ohne Stimulus war auch hier zu allen Zeitpunkten bei Kontrolle und Trauma nicht zu erkennen. Bei einer Restimulation zeigte sich eine ähnliche Varianz in der IL-10 Produktion zwischen den einzelnen Experimenten wie in der IFN-γ Produktion. Dabei konnte auch hier zu jedem Zeitpunkt nach Kontroll- oder Trauma-Behandlung beobachtet werden, dass die restimulierten LNC aus den Trauma-behandelten Tieren signifikant weniger IL-10 als die Zellen der Kontroll-behandelten Tiere synthetisierten.

Gelangt ein Antigen nach Applikation in die Fußsohle in den poplitealen LN, so kommt es dort zur Aktivierung und Proliferation von Antigen-spezifischen Th1-Zellen. In Kontroll-behandelten Tieren findet dabei eine Polarisierung der Th1-Zellen in Richtung Th1 statt. Im Fall einer vorhergehenden Schädigung des Gastrocnemius-Muskels wird die Th1-Polarisierung gehemmt.
4.2. NACHWEIS DES ANTIGENS IN DEN POPLITEALEN LYMPHKNOTEN

Um auszuschließen, dass durch das induzierte Weichteiltrauma die Lymphbahn geschädigt wird und daher das Antigen nicht vollständig oder gar nicht den LN erreicht, wurde OVA-FITC oder unmarkiertes OVA s.c. in die Fußsohle sieben Tage nach Kontroll- bzw. Trauma-Behandlung injiziert. Die LNC wurden 2 Tage später präpariert, gefärbt und durchflusszytometrisch untersucht. Eine Antigen-Aufnahme und der -Transport wurden am Beispiel von DC, als professionelle APZ untersucht. Dazu wurde ein Antikörper gegen CD11c, dem spezifischen Marker von DC, gewählt. Abbildung 4.5 zeigt in DotPlots CD11c positive Zellen, die aufgetrennt nach CD11c und OVA-FITC bzw. nach OVA (Negativkontrolle zu OVA-FITC) dargestellt werden.

Nach s.c. Applikation wurde kein Unterschied in dem Anteil an OVA-beladenen DC zwischen Kontrolle und Trauma erkannt. Die Wanderung von OVA-beladenen DC in
den LN wurde durch das Trauma nicht beeinträchtigt. Die Negativkontrolle OVA ohne Farbkonjugat zeigte, dass im gleichen Messfenster wie bei OVA-FITC wenige Zellen zu messen waren.

4.3. UNTERSUCHUNG EINER BEEINTRÄCHTIGTEN ANTIGENPRÄSENTATION IN DEN LYMPHKNOTEN

Die nach Weichteiltrauma verminderte IFN-γ Produktion könnte demnach auf eine eingeschränkte Antigenpräsentation durch die einwandernden DC im LN zurückzuführen sein. Daher wurde ein Versuchsansatz gewählt, in dem eine mögliche Beeinträchtigung der APZ untersucht wurde (s. Abb. 4.6).

Abb. 4.6 Versuchsverlauf zur Untersuchung einer Beeinträchtigung von APZ nach Trauma. Drei Tage nach Kontroll-/Trauma-Behandlung wurden CD3⁺ DO11.10 T-Zellen i.v. in naive Versuchstiere appliziert. Vierundzwanzig h später erfolgte die Applikation von OVA-beladenen BMDC subkutan. Nach weiteren 3 Tagen wurden die poplitealen LN entnommen und die gewonnenen Zellen in Kultur restimuliert.

Um dies zu überprüfen wurden im Vorfeld, wie unter Punkt 3.1.7 beschrieben, naive BMDC generiert und mit OVA für 1h beladen. Des Weiteren wurden für diesen Versuch, wie unter Punkt 3.2.2 beschrieben, CFSE-markierte CD3⁺ DO11.10 Zellen drei Tage nach Kontroll- bzw. Trauma-Behandlung i.v. injiziert. Einen Tag später,
Ergebnisse

Die in vitro generierten BMDC wurden vor einer Applikation durchflusszytometrisch untersucht, um ihre Qualität und Funktion als APZ zu überprüfen. Abbildung 4.7 zeigt die Färbung von CD11c gegen MHC-Klasse-II von generierten BMDC. Der Prozentsatz CD11c positiver Zellen lag im Durchschnitt bei 60-70 %. Des Weiteren betrug die Expression von MHC-Klasse-II auf CD11c⁺ Zellen im Durchschnitt 80%.

Abb. 4.7 Reinheit der generierten BMDC. Die in vitro generierten BMDC wurden vor einer Applikation durchflusszytometrisch untersucht, um ihre Qualität und Funktion als APZ zu überprüfen. Im DotPlot werden die generierten BMDC nach CD11c und MHC-Klasse-II aufgetrennt. Die Zahl der CD11c⁺ Zellen lag im Durchschnitt bei 60-70 % und die Expression von MHC-Klasse-II auf CD11c⁺ Zellen lag bei ca. 80 %. Es wird ein repräsentatives Experiment aus n = 3 gezeigt.

4.3.1. CD25 und CD69 Expression antigen-spezifischer T-Zellen in vivo

Der Aktivierungszustand der TH-Zellen im LN wurde auch in diesem Experiment überprüft. Dabei konnte kein Unterschied zwischen der Kontroll-/ Trauma-behandelten Gruppe in der Expression der Aktivierungsmarker CD69 und CD25 erkannt werden. Es wird der Anteil an CD69 und CD25 positiven TH-Zellen in den jeweiligen Ansätzen in Abbildung 4.8 dargestellt.
4.3.2. PROLIFERATION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

4 Ergebnisse

4.3.3. ZYTOKIN-EXPRESSION IM ANTIGEN-SPEZIFISCHEN T-ZELL-ASSAY IN VITRO

Nach Gabe von OVA in die Fußsohle konnte, wie zuvor bereits gezeigt, eine verminderte IFN-γ Expression in der Trauma-behandelten Gruppe beobachtet werden (s. Abb. 4.10A). Nach Applikation der OVA-beladenen BMDC zeigte sich in beiden Versuchsgruppen eine stärkere Expression von IFN-γ gegenüber der Applikation mit löslichem OVA. Die restimulierten LNC der Trauma-behandelten Tiere
produzierten signifikant mehr IFN-γ als die Tiere der Kontroll-behandelten Gruppe (s. Abb. 4.10B).

Eine Hemmung der TH1-Polarisierung nach Weichteiltrauma hängt möglicherweise von der Art der APZ während der TH-Zell Aktivierung ab.

4.4. UNTERSUCHUNG DER BETEILIGUNG VON ENDOGENEN T-ZELLEN BEI DER ENTSTEHUNG EINER IMMUNDYSFUNKTION

4 Ergebnisse

4.4.1. ANALYSE EINES ADOPTIVTRANSFERS VON T-ZELLEN IN NAIVE VERSUCHSTIERE

Um zu prüfen, ob bereits nach Trauma endogene T-Zellen im LN vorliegen, die die Aktivität der applizierten OVA-spezifischen T\(_H\)-Zellen modifizieren könnten, wurden CD3\(^+\) T-Zellen aus Tieren nach Kontroll- bzw. Trauma-Behandlung zusammen mit DO11.10 T-Zellen i.v. in naive Versuchstiere appliziert. Vierzehn Stunden später wurde den Tieren OVA s.c. injiziert und insgesamt vier Tage nach i.v. Applikation erfolgte die Lymphknotenentnahme mit anschließender Restimulation in Kultur (s. Punkt 3.1.4 und Abb. 4.11). Die Zellen wurden im Anschluss durchflusszytometrisch untersucht und mittels ELISA erfolgte eine Zytokinquantifizierung der Überstände der restimulierten Zellen.

[Diagramm]

Abb. 4.11 Versuchsverlauf zur Untersuchung der Beteiligung von endogenen T-Zellen. Vierzehn Stunden nach Kontroll-/Trauma-Behandlung wurden CD3\(^+\) T-Zellen aus den poplitealen LN isoliert und zusammen mit CD3\(^+\) DO11.10 T-Zellen i.v. in naive Versuchstiere appliziert. Vierzehn Stunden später erfolgte die Applikation des Antigens subkutan. Nach weiteren drei Tagen wurden die poplitealen LN entnommen und die gewonnen Zellen in Kultur restimuliert.

Der Anteil an DO11.10 Zellen in den LN war in allen Tieren ähnlich. Vor der Restimulation wurden die T-Zellen aus den LN auf ihren Aktivierungszustand und die

In Abb. 4.13 wird die Zytokinquantifizierung von IFN-γ und IL-10 im Überstand der restimulierten Zellen nach drei Tagen Kultur gezeigt. Balkendiagramme stellen die produzierte Zytokinmenge von Kontrolle und Trauma unter Berücksichtigung der Stimulation dar. Die Diagramme zeigen die Daten von Versuchsgruppen, die 5 x 10⁶ Kontroll- / Trauma-T-Zellen in Kombination mit 5 x 10⁶ DO11.10 Zellen appliziert bekommen hatten. Bei der Bestimmung der Zytokinmenge an IL-2 konnte kein Unterschied zwischen den zu untersuchenden Gruppen erkannt werden. Eine graphische Darstellung wird daher nicht gezeigt.

In diesem Versuch konnte gezeigt werden, dass transferierte endogene T-Zellen aus Trauma-Tieren dazu befähigt waren, andere T-Zellen in naiven Tieren so zu modulieren, dass diese weniger Zytokine produzierten.

4.4.2. NACHWEIS EINER BETEILIGUNG ENDOGENER T-ZELLEN IM RAG-2 KNOCKOUT MODELL

Im Wildtyp zeigten die Trauma-behandelten Tiere, wie bereits unter Punkt 4.1.5 dargestellt, eine verminderte IFN-γ Produktion im Vergleich zur Kontroll-behandelten Gruppe. Betrachtet man die Zytokin-Expression im RAG-2⁻/⁻ Tiermodell, so zeigte sich in der Trauma-behandelten Versuchsgruppe eine signifikant verstärkte Zytokinantwort in Vergleich zur Kontroll-behandelten Gruppe. Die dritte Versuchsgruppe, RAG-2 knockout Tiere, welche vor Kontroll-/ Trauma-Behandlung naive T-Zellen i.v. erhalten hatten, zeigte im Zytokinmuster ein ähnliches Bild wie die Wildtypgruppe. So betrug die IFN-γ Expression der LNC der Trauma-behandelten Gruppe nur etwa 50% der Expression der LNC der Kontroll-behandelten Gruppe.

4.4.3. WEITERE UNTERSUCHUNG ENDOGENER T-ZELLEN IN EINEM T-ZELL ASSAY IN VITRO

Abb. 4.17 *Untersuchung endogener T-Zellen in einem T-Zell Assay in vitro*. Zur Untersuchung der endogenen T-Zellen wurden in einer Kultur 3×10^5 naive APZ (bestrahlt) mit 2×10^5 naiven CD3⁺ DO11.10 Zellen und in verschiedenen Ansätzen $0.5 - 2 \times 10^5$ CD3⁺ T-Zellen aus Trauma-/Kontroll-behandelten (24 h nach Trauma) Tieren mit 0.1 µg/ml pOVA stimuliert. Anschließend wurden die Zytokine in den Überständen eines dreitägigen Assay gemessen.

4.4.3.1. REINHEIT VON CD3-NEGATIVEN MILZZELLEN

Die APZ für den Assay wurden wie unter Punkt 3.2.1.3 beschrieben angereichert und nach Depletion von CD3⁺ Zellen als APZ verwendet. Um sicherzustellen, dass bei der Depletion der CD3⁺ Zellen aus der Milz mittels Dynabeads® eine hohe Reinheit erzielt wurde, mussten die Proben durchflusszytometrisch untersucht werden. Dazu wurden die Zellen mit einem Antikörper gegen CD3 markiert (s. Punkt 3.2.1.3). Der *DotPlot* in Abb.4.15 zeigt eine Auftrennung der Zellen nach CD3 und FL2-H (rot fluoreszierender Farbkanal). Die CD3 negative Population liegt im markierten Bereich. Die Reinheit lag im Durchschnitt bei > 95 %.
4.4.3.2. ZYTOKIN-EXPRESSION IM T-ZELL ASSAY NACH STIMULATION IN VITRO

Abb. 4.19 Zytokin-Expression im T-Zell Assay in vitro. Zur Untersuchung der endogenen T-Zellen wurden in einer Kultur 3 x 10⁵ naive APZ (bestrahlt) mit 2 x 10⁵ naiven CD3⁺ DO11.10 Zellen und in verschiedenen Ansätzen 0,5 – 2 x 10⁵ CD3⁺ T-Zellen aus Trauma-/ Kontroll-behandelten (24 h nach Trauma) Tieren mit 0,1 µg/ml pOVA stimuliert. Dargestellt werden Balkendiagramme, in denen die IFN-\(\gamma\) Zytokinproduktion bei verschiedenen Konditionen in den Überständen eines dreitägigen Assay gemessen wurde. Für jeden Ansatz wurden die Triplikate des Assay gemittelt und dargestellt. Es wird ein repräsentatives Experiment aus \(n = 5\) gezeigt.
Im \textit{in vitro} T-Zell Assay konnte durch Zugabe von 0.5×10^5 T-Zellen aus Kontroll- und Trauma-behandelten Tieren im Gegensatz zur Kontrolle (3×10^5 APZ + 2×10^5 DO11.10 Zellen) eine erhöhte IFN-\(\gamma\) Produktion gemessen werden. Jedoch zeigte sich kein Unterschied zwischen der Zugabe von T-Zellen aus Kontroll- oder Trauma-behandelten Tieren. Des Weiteren konnte beobachtet werden, dass eine größere Menge an T-Zellen (1×10^5, 2×10^5) zu einer größeren Menge an IFN-\(\gamma\) führte. In allen Ansätzen fand sich jedoch kein signifikanter Unterschied in der IFN-\(\gamma\) Produktion zwischen der Zugabe von T-Zellen aus Kontroll- / Trauma-behandelten Tieren und deren Einfluss auf die Aktivierung oder Zytokinproduktion der Antigen-spezifischen T-Zellen \textit{in vitro}.

Die Beobachtungen im \textit{in vitro} T-Zell Assay führen zu der Annahme, dass T-Zellen nicht allein für die Vermittlung einer Immundysfunktion nach Trauma verantwortlich sind, und dass \textit{in vivo} möglicherweise weitere Zellpopulationen beteiligt sind.

\section*{4.5. \textbf{Untersuchung der Beteiligung von NK-Zellen bei der Enstehung einer Immundysfunktion}}

Um den Effekt der Inaktivierung/Depletion mit Anti-asialo GM1 Antiserum zu ermitteln, wurden die LNC vor der Restimulation durchflusszytometrisch auf CD3 und CD49b (DX5), der spezifische Marker für NK-Zellen, untersucht (s. Abb. 4.21).
konnte auch noch 5 Tage nach der letzten Anti asialo Serum Injektion beobachtet werden und zeigte dort noch eine ca. 50%ige Reduzierung an NK-Zellen in den Lymphknoten der Kontroll- und Trauma-behandelten Versuchstiere von ca. 0.75% auf 0.35% der Gesamtzellen

4.5.1. EFFEKT DER INAKTIVIERUNG/ DEPLETION VON NK-ZELLEN AUF DIE EXPRESSION DER AKTIVIERUNGSMARKER CD69 UND CD25 AUF DEN T-ZELLEN IN VITRO

![Abb. 4.22 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach NK-Zell Depletion: Der Anteil an CD69⁺ und CD25⁺ CD4⁺ KJ1-26⁻ Tₜₘ-Zellen der jeweiligen Versuchsgruppen wird als Balkendiagramm in einem Graphen dargestellt und verglichen. (A) Gezeigt wird der Aktivierungszustand der Tₜₘ-Zellen im LN nach Applikation des Kontrollserums. (B) Gezeigt wird der Aktivierungszustand der Tₜₘ-Zellen nach Depletion der NK-Zellen mittels Anti asialo Serum (aa). Die Mittelwerte aus n = 3 Experimenten mit drei Tieren pro Versuchsgruppe werden bei Kontrolle und Trauma mit Standardabweichung gezeigt.}
4.5.2. EFFEKT DER NK-ZELL-INAKTIVIERUNG/ DEPLETION AUF DIE ZYTOKIN-EXPRESSION DER T-ZELLEN IN VITRO

Die Kontroll-behandelte Gruppe zeigte nach Anti asialo Behandlung keine veränderte IFN-\(\gamma\) Produktion gegenüber der Kontroll-behandelten Gruppe nach Kontrollserum Behandlung. Die IFN-\(\gamma\) Produktion lag in beiden Fällen bei ca. 4000 pg/ml. Betrachtet man dagegen die Zytokinproduktion der Zellen aus Trauma-behandelten Tieren so zeigte sich, dass bei der Trauma-behandelten Gruppe nach Anti asialo
Applikation mehr IFN-γ produziert wurde, als in der Trauma-behandelten Gruppe, der Kontrollserum appliziert worden war. Das Experiment nach Inaktivierung/Depletion von NK-Zellen zeigte, dass nach Depletion in der Trauma-behandelten Gruppe mehr IFN-γ produziert wurde als in der Trauma-behandelten Gruppe ohne NK-Zell-Depletion. Eine verminderte IFN-γ Produktion nach Trauma, wie es die Kontrollserum-behandelte Trauma-Gruppe zeigt, ist nach Depletion der NK-Zellen nicht mehr zu erkennen.

4.5.3. OBERFLÄCHENMOLEKÜLE AUF NK-ZELLEN NACH TRAUMA IN VIVO

Abb. 4.24 Aktivierungszustand von NK-Zellen nach Trauma: Nach Kontroll-/Trauma-Behandlung wurden die NK-Zellen im drainierenden LN durchflusszytometrisch untersucht. Der NKG2A bzw. NKG2D positive Anteil an NK-Zellen Zellen der jeweiligen Versuchsgruppen wird als Balkendiagramm in einem Graphen dargestellt und verglichen. Die Mittelwerte aus n = 2 Experimenten mit drei Tieren pro Versuchsgruppe werden bei Kontrolle und Trauma mit Standardabweichung gezeigt.

4.6. Charakterisierung der Immunsuppression nach Trauma im Lungeninfektionsmodell in vivo

Um neben der gezeigten T_H-Zell Hemmung im drainierenden poplitealen LN auch eine Hemmung des angeborenen Immunsystems nach Weichteiltrauma zu überprüfen, wurde ein in vivo Lungeninfektionsmodell gewählt. Dadurch kann geprüft werden, ob es zu einer systemischen Immunsuppression nach Weichteiltrauma kommt, was wiederum eine klinische Relevanz dieser Verletzung verdeutlichen würde. Um dies zu untersuchen, wurde den Versuchstieren 4d nach Kontroll- oder Trauma-Behandlung intranasal eine nicht-letale Dosis von *P. aeruginosa* injiziert. Weitere 24 h später erfolgte die Entnahme der Lungen und anschließend die Homogenisation und Ausplattierung dieser. Nach weiteren 24h wurden die CFU ausgezählt und die bakterielle Beladung pro Lunge berechnet. (s. Punkt 3.12 und Unterpunkte, sowie Abb. 4.25.

*Abb. 4.25. Versuchsverlauf im Lungeninfektionsmodell mit *P. aeruginosa* in vivo.* Vier Tage nach Kontroll-/ Trauma-Behandlung erfolgte die einmalige intranasale Infektion mit 5x10⁸ *Pseudomonas aeruginosa*. Weitere 24 h später erfolgte die Entnahme der Lungen und anschließend die Homogenisation und Ausplattierung dieser. Nach weiteren 24h wurden die CFU ausgezählt und die bakterielle Beladung pro Lunge berechnet.
Die Abbildung 4.26 zeigt Punktwolken mit Median, in denen die CFU/Lunge der einzelnen Versuchstiere dargestellt werden. Es zeigte sich, dass die zuvor Traumabehandelte Versuchsgruppe 24 h nach intranasaler *P. aeruginosa* Infektion eine signifikant höhere bakterielle Beladung in den Lungen hatte, als die Kontrollbehandelte Versuchsgruppe nach Infektion.

Die Ergebnisse lassen vermuten, dass das Weichteiltrauma zu einer systemischen Suppression des Immunsystems führt.

Abb. 4.26 *Bakterielle Beladung der Lungen nach P. aeruginosa Infektion in der Lunge*. Vier Tage nach Kontroll-/Trauma-Behandlung erfolgte eine intranasale Infektion mit *P. aeruginosa*. Vierundzwanzig h später wurden die Lungen entnommen und deren Homogenisat auf Agarplatten über Nacht inkubiert. Weitere 24 h später erfolgte die Bestimmung der bakteriellen Beladung pro Lunge (CFU/lung). Gezeigt werden die Mediane der Einzeltiere. Es wird ein repräsentatives Experiment aus *n = 2* mit fünf Versuchstieren pro Gruppe dargestellt. Hier wurden die Daten mit Hilfe des nicht-parametrischen Mann-Whitney-U-Test analysiert. **p < 0.01.

4.7. CHARAKTERISIERUNG VON APZ IM MUSKEL

Im Rahmen einer Dissertation in unserer Arbeitsgruppe konnte bereits gezeigt werden, dass Granulozyten, Makrophagen und DC den traumatisierten Muskel sequentiell infiltrieren. Des Weiteren wurde gezeigt (s. Abb. 4.10), dass die Applikation von OVA-beladenen BMDC die Hemmung der Antigen-spezifischen Th1-Polarisierung nach Trauma aufheben. Daher stellte sich die Frage, ob den Muskel
infiltierende DC, die Antigen-specifische Tₜ-Cell Antwort im drainierenden LN beeinflussen können.

4.7.1. EXPRESSION VON MHC-II UND CO-STIMULATORISCHEN MOLEKÜLEN AUF APZ IM MUSKEL

Abbildung 4.28 A zeigt die Expression von MHC-Klasse-II auf CD11c⁺ DC und CD11b⁺CD11b⁺ Monozyten/ Makrophagen in DotPlots. Diese Zeitpunkte wurden
anhand der bereits erwähnten Dissertation ausgewählt. In dieser konnte gezeigt werden, dass im Gegensatz zur raschen Infiltration der Granulozyten innerhalb von 24 Stunden nach Trauma, DC erst ab dem Zeitpunkt 4 bzw. 7 Tage nach Trauma verstärkt im traumatisierten Gewebe erscheinen.

Abb. 4.28 Charakterisierung von APZ im Muskel. Gezeigt werden durchflusszytometrische Messungen von CD11b⁺ bzw. CD11c⁺ Zellen nach Muskelverdau, die je nach Population gega

Betrachtet man die gegateten DC so zeigte sich, dass sich die Expression von MHC-Klasse-II positiven DC von 30% an Tag 4 nach Trauma bis hin zu 70% an Tag 7
nach Trauma erhöht. Im Gegensatz dazu zeigte sich, dass nur ein geringerer Anteil an Monozyten/Makrophagen MHC-Klasse-II Moleküle zu diesen Zeitpunkten exprimierte (11% Tag 4, 23% Tag 7). In den Kontroll-behandelten Tieren konnte keine verstärkte Expression von MHC-Klasse-II beobachtet werden.

Im Weiteren wurde die Expression co-stimulatorischer Moleküle auf DC untersucht. Abbildung 4.28 zeigt in einer Kinetik DotPlots gegateter DC unter Betrachtung von CD40 und CD86. Parallel wurde neben der zuvor gezeigten Expression von MHC-Klasse-II ein Zeit-abhängiger Anstieg der Expression co-stimulatorischer Moleküle auf DC von 32% an Tag 4 auf 56% an Tag 7 nach Trauma beobachtet. Es kommt demnach zu einer Zeit-abhängigen Reifung der DC im traumatisierten Gewebe.

Das Zytokin IFN-γ fördert eine Reifung von DC und könnte somit ein wichtiger Faktor bei der Reifung von DC im geschädigten Muskel sein [69]. Um eine Beteiligung von IFN-γ an der Reifung der DC im Muskel nach Trauma zu prüfen, wurde die Expression co-stimulatorischer Moleküle auf DC im Muskel von Wildtyp bzw. IFN-γ−/− Mäusen sieben Tage nach Trauma untersucht. Abbildung 4.29 zeigt im Balkendiagramm die mittlere Fluoreszenzintensität (MFI) von CD40 und CD86 auf gegateten DC nach einem 7d Trauma in Wildtyp und IFN-γ−/− Mäusen. In diesem Versuch konnte gezeigt werden, dass es zu keinem Unterschied bei der Reifung von DC im geschädigten Muskel zwischen Wildtyp und IFN-γ−/− Mäusen kam.

![Expression co-stimulatorischer Moleküle auf DC im Muskel von IFN-γ−/− Mäusen.](Image)

Abb. 4.29 Expression co-stimulatorischer Moleküle auf DC im Muskel von IFN-γ−/− Mäusen. Sieben Tage nach der Kontroll-/ Trauma-Behandlung werden die Gastrocnemius-Muskeln entnommen und die Leukozyten isoliert, gefärbt und durchflusszytometrisch untersucht. Gatingstrategie siehe auch Abb. 4.27. Das Balkendiagramm zeigt die mittlere Fluoreszenzintensität (MFI) von CD40 und CD86 auf gegateten CD11c+ DC nach einem 7d Trauma in Wildtyp und IFN-γ Knockout Mäusen. Die Mittelwerte aus n = 3 Experimenten mit drei Tieren pro Versuchsgruppe werden bei Kontrolle und Trauma mit Standardabweichung gezeigt. Dabei zeigt sich kein Unterschied zwischen den Wildtyp und IFN knockout Mäusen.
Es konnte gezeigt werden, dass DC im traumatisierten Muskel an Antigen-Präsentation und T-Zell Aktivierung beteiligte Moleküle sequentiell nach Trauma exprimieren.

4.8. ANALYSE DER ANTIGEN-SPEZIFISCHEN T-ZELL-AKTIVIERUNG NACH I.M. ANTIGEN-APPLIKATION

4.8.1. CD25 UND CD69 EXPRESSION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

4. Ergebnisse

Abb. 4.30 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach i.m. Applikation von OVA. Drei Tage nach i.m. Applikation wurden die poplitealen LN entnommen und die LNC wurden durchflusszytometrisch auf ihren Aktivierungsgrad überprüft. A: In einem DotPlot wird die Population der CD4⁺ DO11.10 Zellen gegated dargestellt. Der DotPlot zeigt ein repräsentatives Experiment aus n=3. B/ C: Der Anteil der CD25 bzw. CD69 exprimierenden CD4⁺ KJ1-26⁺ Zellen der jeweiligen Versuchsgruppen und Zeitpunkte wird als Balkendiagramm in einem Graphen dargestellt und verglichen. Die Mittelwerte aus n = 3 Experimenten mit drei Tieren pro Versuchsgruppe werden bei Kontrolle und Trauma mit Standardabweichung gezeigt. Die Unterschiede wurden mit Hilfe des ungepaarten „student t-test“ analysiert. *p < 0.05.

4.8.2. PROLIFERATION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

In Abb. 4.31 erkennt man zum Zeitpunkt 24 h bzw. vier Tage nach Trauma sechs Peaks bei Kontrolle und Trauma und sieben Tage nach Trauma fünf Peaks bei Kontrolle und Trauma. Jedoch ließ sich anhand der Peak-Anzahl die Teilungshäufigkeit bzw. Proliferation bestimmen. Die Proliferation der OVA-spezifischen T₃⁺-Zellen zwischen der Kontroll- und Trauma-behandelten Gruppe war zu jedem Zeitpunkt ähnlich.
4 Ergebnisse

Abb. 4.31 Proliferation Antigen-spezifischer T-Zellen in vivo. Drei Tage nach i.m. Applikation wurden die poplitealen LN entnommen und die LNC wurden durchflusszytometrisch auf ihre Proliferation überprüft. In Histogrammen wird die Proliferation der CD4⁺ KJ1-26⁺ Th-Zellen dargestellt. Jeder Peak in den Histogrammen stellt eine Teilung der Zellen dar. Die dargestellten Histogramme zeigen ein repräsentatives Experiment aus n = 3 mit drei Tieren pro Versuchsgruppe. Im Histogramm werden 2500 Zellen dargestellt.

4.8.3. ZYTOKIN-EXPRESSION IM ANTIGEN-SPEZIFISCHEN T-ZELL-ASSAY IN VITRO

Eine Quantifizierung von IFN-γ, IL-2 und IL-10 im Überstand der restimulierten LNC erfolgte nach drei Tagen Kultur (s. Punkt 3.2.4.2). Gezeigt werden in Abb. 4.32 Balkendiagramme, die die produzierte Zytokinmenge der LNC von Kontroll- und Trauma-behandelten Versuchstieren unter Berücksichtigung der Stimulation und des Zeitpunkts nach Trauma darstellen. Die Menge der Th2 Zytokine IL-4, IL-5, und IL-13 in den Überständen der LNC-Kultur lagen unterhalb der Bestimmungsgrenze, Daten werden daher nicht gezeigt.

Die IFN-γ Produktion ohne Stimulus war an allen Zeitpunkten bei den LNC aus den Kontroll- und Trauma-behandelten Tieren nicht messbar. Nach Restimulation der LNC aus Trauma-behandelten Tieren zum Zeitpunkt 24 h mit 0.1 µg/ml pOVA produzierten diese signifikant weniger IFN-γ als die LNC der Kontrolltiere zum selben Zeitpunkt. Diese geringere IFN-γ Produktion nach Trauma war zum Zeitpunkt 4 d nicht mehr sichtbar. Sieben Tage nach i.m. Applikation zeigte sich dagegen eine deutlich größere IFN-γ Produktion gegenüber der Kontrolle. Bei einer Stimulation mit 1 µg/ml pOVA fiel die Zytokinproduktion an den gezeigten Zeitpunkten ähnlich aus.
Betrachtet man die IL-2 Messungen, so kam es zur Produktion ähnlicher Zytokinmengen in den Überständen der LNC in Kontrolle und Trauma. Es ergab sich kein signifikanter Unterschied. Eine Veränderung der IL-2 Produktion war nur pOVA-konzentrationsabhängig. So wurde effektiv mehr Zytokin bei einem Stimulus von 1 \(\mu g/ml \) gegenüber 0,1 \(\mu g/ml \) pOVA erzielt. Die Ergebnisse der IL-10 Zytokinquantifizierung zeigten ein ähnliches Bild wie die der IFN-\(\gamma \) Messung. Eine IL-10 Produktion in Abwesenheit von pOVA war auch hier an allen Zeitpunkten bei Kontrolle und Trauma kaum messbar. Bei einer Restimulation zeigte sich in den Proben der Trauma-behandelten Gruppe nach 24 h eine geringere Produktion IL-10 als in der Kontroll-behandelten Gruppe. Diese verminderte Produktion war nach vier Tagen immer noch zu erkennen, fiel aber nicht mehr so deutlich aus. Nach sieben Tagen war auch in der IL-10 Produktion eine signifikante Erhöhung gegenüber der Kontrolle zu erkennen. IFN-\(\gamma \) und IL-10 zeigten im Gegensatz zur Kontrolle 24 h nach Trauma verringerte Zytokinmengen in den Überständen. Sieben Tage nach Trauma schien sich dies zu verändern und es kam zu einer erhöhten Zytokinproduktion.

Unabhängig vom Zeitpunkt der i.m. Applikation von OVA kam es zu einer ähnlichen Proliferation und Aktivierung der OVA-spezifischen T\(_H \)-Zellen. In Abhängigkeit von der Zeit nach Trauma kam es zu einem Anstieg der IFN-\(\gamma \)- und IL-10-, jedoch nicht der IL-2-Produktion durch die OVA-spezifischen T-Zellen.

4.9. **UMKEHR DER T\(_H \)-ZELL SUPPRESSION NACH TRAUMA ÜBER DENDRITISCHE ZELLEN IM MUSKEL**

Die Antigen-spezifische T\(_H \)-Zellantwort in den poplitealen Lymphknoten traumatisierter Mäuse war entweder supprimiert (nach s.c. Applikation des Antigens) oder verstärkt (nach i.m. Applikation des Antigens) im Vergleich mit der T-Zellantwort Kontroll-behandelter Mäuse. Durch diese Kenntnis stellte sich die Frage, ob einer T\(_H \)-Zell-Suppression, wie sie nach subkutaner Applikation auftritt, durch eine vorhergehende intramuskuläre Antigen-Applikation in den traumatisierten Muskel entgegengewirkt werden kann. Um dies zu überprüfen, erhielten die Versuchstiere an Tag 4 nach Kontroll-/ Trauma-Behandlung eine i.m. Applikation mit OVA und zusätzlich eine s.c. Applikation mit OVA an Tag 7. Identisch mit den vorhergehenden
Experimenten erhielten die Versuchstiere 24h vor jeder OVA-Applikation OVA-spezifische T-Zellen intravenös. Drei Tage nach subkutaner Applikation erfolgte die *in vitro* Restimulation der LNC in Kultur (s. Abb. 4.33).

Abb. 4.33 Umkehr der T\(_H\)-Suppression nach Trauma über Dendritische Zellen im Muskel. Die Versuchstiere erhielten an Tag 4 nach Kontroll-/Trauma-Behandlung eine i.m. Applikation mit OVA und zusätzlich eine s.c. Applikation mit OVA an Tag 7. Identisch mit den vorhergehenden Experimenten erhielten die Versuchstiere 24h vor jeder OVA-Applikation (Tag 3 und 6 nach Trauma) OVA-spezifische T-Zellen intravenös. Drei Tage nach subkutaner Applikation (Tag 10) erfolgte die *in vitro* Restimulation der LNC in Kultur.

4.9.1. CD25 UND CD69 EXPRESSION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

4.9.2. PROLIFERATION ANTIGEN-SPEZIFISCHER T-ZELLEN IN VIVO

Zur Beobachtung der Proliferation der OVA-spezifischen T-Zellen wurde die Verteilung der CFSE-Markierung in den gegateten CD4\(^+\)KJ1-26\(^+\) Zellen der LN betrachtet.
Abb. 4.34 Proliferation Antigen-spezifischer T-Zellen in vivo. An Tag 10 nach Kontroll-/Trauma-Behandlung wurden die poplitealen LN entnommen und die LNC wurden durchflusszytometrisch auf ihre Proliferation überprüft. In Histogrammen wird die Proliferation der CD4⁺KJ1-26⁺ T\(_{H}\)-Zellen dargestellt. Jeder Peak in den Histogrammen stellt eine Teilung der Zellen dar. Die dargestellten Histogramme zeigen ein repräsentatives Experiment aus \(n = 2 \) mit drei Tieren pro Versuchsgruppe.

In Abb. 4.34 erkennt man sieben Peaks bei Kontrolle und sechs Peaks bei Trauma. Die Proliferationsstärke, also die Zahl proliferierter Zellen, war in der Kontroll-behandelten Gruppe ab Peak Nr. 4 etwas weiter fortgeschritten als in der Trauma-behandelten Gruppe.

4.9.3. ZYTOKIN-EXPRESSION IM ANTIGEN-SPEZIFISCHEN T-ZELL-ASSAY IN VITRO

In Abb. 4.35 wird die Quantifizierung von IFN-\(\gamma \), IL-2 und IL-10 im Überstand der restimulierten Zellen nach drei Tagen Kultur gezeigt.

Die IFN-\(\gamma \) Produktion ohne Stimulus war in diesem Experiment bei den Überständen der LNC aus Kontroll- und Trauma-Tieren nicht messbar. Bei einer Restimulation mit 0.1 \(\mu g/ml \) pOVA und auch bei 1 \(\mu g/ml \) pOVA zeigte sich bei den LNC der Kontrolltiere eine schwache IFN-\(\gamma \) Produktion. Bei der Trauma-behandelten Gruppe zeigte sich nach Restimulation mit 1 \(\mu g/ml \) pOVA eine signifikant höhere IFN-\(\gamma \) Expression der LNC gegenüber IFN-\(\gamma \) Freisetzung durch LNC der Kontrollgruppe. Bei einer Stimulation mit 0.1 \(\mu g/ml \) pOVA konnte dies nicht beobachtet werden.
Betrachtet man die IL-10 Produktion so zeigte sich, dass in der Kontroll-behandelten Gruppe bei beiden Stimulationsarten ähnlich viel IL-10 produziert wurde. Im Vergleich dazu produzierten die LNC aus Trauma-behandelten Tieren zweimal so viel Zytokin.

Bei Betrachtung der IL-2 Produktion konnte kein Unterschied zwischen der Kontroll- und Trauma-behandelten Gruppe festgestellt werden.

Eine Antigen-Applikation direkt ins geschädigte Gewebe wirkt somit einer nach Weichteiltrauma bestehenden TH-Suppression entgegen.
5. DISKUSSION

Seit Jahrzehnten schon steht die immunologische Reaktion des Körpers auf ein Trauma im Fokus der klinischen Forschung. Schwerverletzte Patienten oder Patienten, die einer größeren Operation unterzogen wurden, entwickeln eine inflammatorische Reaktion, die mit Entzündungs-induziertem Multiorganversagen einhergehen kann. Zusätzlich leiden sie an einem erhöhten Risiko für infektiöse Komplikationen durch die Entwicklung einer Immunsuppression [6, 173]. Schwere Verletzungen stören dabei das Immunsystem und resultieren in einer progressiven Unterdrückung der Immunantwort. Folgen der Immunsuppression sind häufig Sepsis und das Multiorgan-Dysfunktions-Syndroms (MODS) [105].

Um die immunologische Antwort auf das isolierte Weichteiltrauma näher zu untersuchen, wurde ein Modell gewählt, in dem OVA-spezifische T-Zellen durch
subkutane Applikation ihres spezifischen Antigens im verletzten Gewebedrainierenden LN stimuliert wurden (s Punkt 4.1).

dass vornehmlich IFN-\(\gamma\) und im geringen Maße IL-10 produziert wurden [163]. In dieser Studie wurde verdeutlicht, dass IL-12 für eine IL-10 Produktion der TH1-Zellen benötigt wird. Dabei wird durch T-Zellen produziertes IFN-\(\gamma\) indirekt für eine IL-10 Produktion benötigt. Das IFN-\(\gamma\) wirkt dabei parakrin auf DC und induziert die IL-12 Produktion, welche im Gegenzug dann die IL-10 Produktion in TH1-Zellen induziert.

Eine weitere Studie zeigt dagegen, dass eine Co-Expression von IFN-\(\gamma\) und IL-10 durch TH1-Zellen, aber auch durch regulatorische Typ 1 T-Zellen, zu einer Suppression der immunstimulierenden Funktionen von DC führt [191]. Die hier vorliegende Arbeit zeigt, dass es nach Trauma zu einer Hemmung der TH1-Polarisierung kommt. Ob das IL-10, das ebenfalls nach Restimulation der Lymphknotenzellen gebildet wurde, aus Zellen stammte, die gleichzeitig IFN-\(\gamma\) produzierten, wurde hier nicht näher untersucht.

Betrachtet man jedoch die verminderte Produktion von IFN-\(\gamma\) in den LNC von Trauma-behandelten Tieren, und berücksichtigt dabei die wichtige Rolle des Zytokins bei der Immunabwehr gegen zahlreiche Bakterien, so stellt sich die Frage, ob eine Weichteiltrauma-induzierte T\(_{H1}\)-Suppression einer Immunabwehr gegen bakterielle Infektionen effektiv entgegenwirken kann. Seit langem ist bekannt, dass T-Zellen von schwerverletzten Patienten in ihrer IFN-\(\gamma\) Sekretion stark beeinträchtigt sind [36, 99, 118]. Diese Beobachtungen wurden bei Verletzungsmustern wie hämorrhagischem Schock oder Fraktur gemacht, jedoch nicht allein bei Weichteiltrauma untersucht [1, 89, 107, 120]. Des Weiteren konnte gezeigt werden, dass eine therapeutische Behandlung mit rekombinantem IFN-\(\gamma\) das Überleben schwerverletzter Traumapatienten leicht verbesserte und das Risiko infektiöser Komplikationen reduzieren konnte [152]. Eine verminderte IFN-\(\gamma\) Produktion nach Verletzung macht daher deutlich, wie essentiell IFN-\(\gamma\) für eine effektive Immunabwehr gegen Pathogene und eine Wiederherstellung der Immunantwort nach Trauma ist.

Es ist bekannt, dass ein Teil des Antigens nach s.c. Applikation in löslicher Form den LN erreicht und dort von APZ aufgenommen wird. Daher kann in diesem Versuchsansatz nicht ausgeschlossen werden, dass eine veränderte Immunantwort
erst durch eine Antigenaufnahme im LN stattfindet. In diversen Studien konnte gezeigt werden, dass die Initiierung einer CD4⁺ T-Zell Antwort nach subkutaner Applikation des löslichen Antigens dadurch ausgelöst wurde, dass DC das Antigen erst im LN prozessierten und präsentierten, erst danach folgten die in den LN migrierenden Antigen-beladenen DC aus der Haut [4, 82, 169]. Möglicherweise werden APZ durch Trauma derart verändert, dass sie das Th1-Priming im LN hemmen. Welche APZ dazu zählen, ist jedoch unklar. Frühere Versuche unserer Arbeitsgruppe zeigten jedoch, dass die in vitro Kultivierung Antigen-spezifischer T-Zellen mit APZ aus den LN Kontroll-/ Trauma-behandelter Tiere zu keinem Unterschied im Th1-Priming führte (Daten nicht gezeigt). Das Experiment mit OVA-beladenen BMDC zeigte jedoch, dass unabhängig von möglichen Modulationen der APZ nach Trauma eine veränderte Th1-Polarisierung stattfand.

Durch Applikation von OVA-beladenen BMDC, d. h. identische APZ wurden in Kontroll-/ Trauma-behandelte Tiere appliziert, kam es zum gleichen Ausmaß an Proliferation und Expression von Aktivierungsmarkern der Th-Zellen im LN (s. Abb. 4.8 + 4.9). Im Vergleich zu einer Applikation mit löslichem OVA gab es insgesamt eine geringere Menge an DO11.10 Zellen im LN. Eine mögliche Ursache hierfür liegt möglicherweise an der Zahl der injizierten BMDC (1 x 10⁵) und an einer möglichen relativ geringen Menge an BMDC, die den LN erreichen. Dadurch bedingt sinkt die Anzahl möglicher APZ/T-Zell Kontakte und eine T-Zell Proliferation fällt dementsprechend kleiner aus. Die Zahl der injizierten BMDC wurde so gewählt, dass sie in etwa die Zahl residierender DC widerspiegelte. Es konnte in der vorliegenden Arbeit kein Unterschied in der Proliferation zwischen der Kontroll- und Trauma-behandelten Gruppe beobachtet werden.

Das Weichteiltrauma induziert innerhalb von 24 h eine anhaltende Suppression der TH1-Polarisierung. Für die Mechanismen, die früh nach Trauma zu einer Hemmung der TH-Zell-Polarisierung führen könnten, spricht zum einen die Wirkung von löslichen zirkulierenden Mediatoren, die rasch nach Trauma in den LN gelangen könnten. Lösliche zirkulierende Mediatoren könnten z. B. endogene Rezeptor-Antagonisten oder lösliche Zytokinrezeptoren sein, wie *soluble TNF-receptor* (sTNF-R) oder IL-1R, die nach Trauma vermehrt sezerniert werden [38, 56]. Diese wirken einer pro-inflammatorischen Antwort entgegen und könnten an der Hemmung der TH1-Polarisierung im LN nach Trauma beteiligt sein. Des Weiteren könnten endogene Alarminen an einer Immun suppression beteiligt sein. Betrachtet man die Literatur, so findet sich wenig über eine immunsuppressiven Funktion von Alarminen. So weiß man, dass HSP60 und HMGB-1 eine Hemmung der TH-Zell Antwort über die Aktivierung von Treg induzieren können [80, 198]. MAJETSCHAK et al. berichten, dass extrazelluläres ubiquitin passiv nach Gewebeschaden freigesetzt wird und anti inflammatorisch in Trauma und bei Sepsis wirkt [110, 111]. Der früh auftretende Mechanismus, der dieser sehr schnellen Induktion der Trauma-induzierten TH1-Suppression zugrunde liegt, bleibt unklar. Auffällig ist jedoch, dass das suppressive
5 Diskussion

Da den endogenen T-Zellen nach Trauma eine hemmende Funktion zugeordnet werden konnte, wurde ein weiterer Versuchsansatz gewählt, um den Einfluss endogener T-Zellen nach Trauma weiter zu charakterisieren und deren Einfluss auf die Modulation der Antigen-spezifischen T-Zellen zu untersuchen. Im Experiment mit RAG-2\(^-\) Mäusen (s Abb. 4.14) zeigte sich, dass der Verlust von endogenen B-/ T-Zellen in unserem Modell zu einer verstärkten IFN-\(\gamma\) Immunantwort der Antigen-spezifischen T-Zellen nach Trauma-Induktion führte (s. Punkt 4.16). Die zuvor gezeigte Suppression des Antigen-spezifischen T\(_{H1}\)-\textit{Priming} nach Trauma wurde

In einem in vitro APZ/ T-Zell Assay wurde die in vivo gesehene Immunsuppression und Hemmung der Antigen-spezifischen T-Zellen durch endogene T-Zellen nicht beobachtet. Im Experiment führte eine stimulierte Co-Kultur aus APZ, Antigen-spezifischen T-Zellen und T-Zellen aus Kontroll- oder Trauma-behandelten Tieren zu keinem Unterschied in der T\textsubscript{H}1-Polarisierung der Antigen-spezifischen T-Zellen (s. Abb. 4.19). Diese Beobachtungen lassen vermuten, dass in vivo neben endogenen T-Zellen ein weiterer Faktor, möglicherweise in Form eines löslichen Mediators oder von akzessorischen Zellen, an der Weichteiltrauma-induzierten TH1-Suppression beteiligt ist.

Als möglicher Kandidat für eine akzessorische Zelle wurde die Rolle von NK/ NKT-Zellen in der Interaktion zur Entstehung der TH1-Zell Suppression nach Weichteiltrauma untersucht. Wie in der Einleitung bereits erwähnt, stehen NK-/ NKT-Zellen in engem Kontakt mit APZ und auch T-Zellen in inflammatorischen Geweben und LN.

Aufgrund der regulierenden Funktion von NK- / NKT-Zellen und dem engen Kontakt zwischen NK-/ NKT-Zellen und T-Zellen bzw. DC in LN erfolgten in dieser Arbeit Versuche mit NK-/ NKT-Zell-Depletion (s. Abb. 4.17). Diese Versuche zeigten, dass Antigen-spezifische T-Zellen aus LN von Trauma-behandelten Tieren vermehrt IFN-\textgamma sezernieren, wenn zuvor die NK-/ NKT-Zellen mittels Anti asialo Serum aus den LN depletiert worden waren (s. Abb. 4.23). Da das Anti asialo Serum sowohl NK- als

Nach Weichteiltrauma sind sowohl Zellen des adaptiven (T-Zellen) als auch des angeborenen (NK-/NKT-Zellen, APZ) Immunsystems an der Entwicklung einer
T\textsubscript{H}-Zell Hemmung beteiligt. Die Untersuchungen zeigen nur die lokale Hemmung der T\textsubscript{H1}-Polarisierung. Unklar ist jedoch, ob es auch systemisch zu einer Hemmung kommt. Da bekannt ist, dass NK-Zellen an der Beseitigung von Sekundärinfektionen in der Lunge maßgeblich beteiligt sind [42, 190], IFN-\(\gamma\) essentiell für die Bekämpfung einer Infektion ist, wurde ein \textit{in vivo} Lungeninfektionsmodell betrachtet (s. Abb. 4.25). Dadurch kann geprüft werden, ob es zu einer systemischen Immunsuppression nach Weichteiltrauma kommt, was wiederum eine klinische Relevanz dieser Verletzung verdeutlichen würde.

Im Rahmen einer Dissertation in unserer Arbeitsgruppe wurde beobachtet, dass neben Monozyten/ Makrophagen auch DC sequentiell in geschädigtem Muskelgewebe erscheinen. Um die Pathogenese der Immunmodulation nach Weichteiltrauma weiter zu charakterisieren, wurde die Rolle der APZ im geschädigten Muskel näher untersucht. Es wurde bereits dargestellt, dass OVA-beladene aus dem Knochenmark-generierte BMDC die T\textsubscript{H}-Zell Antwort im drainierenden LN wiederherstellen. Daher stellte sich die Frage, ob den Muskel infiltrierende DC, welche vornehmlich aus Blutmonozyten differenzieren, vergleichbar mit aus Knochenmark-generierten BMDC eine Immunantwort im drainierenden LN beeinflussen können.
Eine verstärkte Infiltration von DC fand ab einem Zeitpunkt 4 Tage bis 7 Tage nach Trauma statt (Daten nicht gezeigt). Diese Beobachtungen der Reparatur- und Regenerationsmechanismen sind seit längerem bei Wundheilungen bekannt [55]. Arbeiten, die sich mit Toxin-induzierten Gewebeschäden beschäftigten, konnten ähnliche Ergebnisse in der Kinetik und Sequenz der Infiltration beobachten [178]. Im Kontext mit Wundheilungen konnte diesen DC bislang noch keine Funktion zugeordnet werden. Die in der hier vorliegenden Arbeit erfolgte Charakterisierung der DC zeigte, dass von Tag 4 bis zu Tag 7 nach Trauma die Expression von CD40 und CD86 auf den DC kontinuierlich anstieg (s. Abb. 4.28 B). Außerdem verfügten die DC im geschädigten Muskel über große Mengen an MHC-Klasse-II Molekülen auf ihrer Oberfläche (s. Abb. 4.28 A), die charakteristischen Eigenschaften von APZ. Im Gegensatz dazu exprimierten residierende DC im unbehandelten Muskel nur geringe Mengen der co-stimulatorischen bzw. MHC-Klasse-II Moleküle.

Geweben unabhängig war von TNF-α und IFN-γ. Der Ursprung dieser DC Reifung bleibt weiterhin unklar, könnte aber z. B. auf Alarmine zurückzuführen sein.

Weitere DC aktivierende Mediatoren, die man nach Verletzung findet, sind z. B. Hyaluronsäure [176], β-Defensin-1-2 [17, 18], eosinophil-derived neurotoxin (EDN) [192, 193], HMGB1 [144], Harnsäure [167] und doppelsträngige DNA [81]. Bei vielen weiteren immunstimulierenden Molekülen, wie S100 Proteinen [76, 161], Nukleosomen [46, 74], Purinen (ATP und Adenosin) [41], Antimikrobiellen Peptiden [197] und mitochondrialen DAMP [201] ist eine Freisetzung und Beteiligung in der Nekrose-induzierten Inflammation in vivo unbekannt, wird aber nicht ausgeschlossen.

Die Literatur zeigt, dass die Palette an die DC-Reifung induzierenden Alarminen nach Verletzung zahlreich ist. Dass diese Alarmine auch in dem hier untersuchten Modell für Weichteiltrauma freigesetzt werden, ist naheliegend, aber nur zum Teil bewiesen.
So konnte durch unsere Arbeitsgruppe bereits nachgewiesen werden, dass kurz nach Weichteiltrauma Mediatoren wie S100 (nicht veröffentlicht) und auch HSP [62] freigesetzt werden. Die Reifung der DC im traumatisierten Muskel könnte durch oben erwähnte Alarmine vermittelt werden.

Bei der Zytokinquantifizierung in den Kulturüberständen ließ sich in der Trauma-Gruppe im Vergleich zur Kontroll-Gruppe eine ansteigende IFN-𝛾 Produktion der LNC nach Restimulation an Tag 7 um das 5-fache erkennen (s. Abb. 4.32). Der Anstieg der IFN-𝛾 und IL-10 Produktion von T-Zellen aus Trauma-behandelten Tieren im Vergleich zu Kontroll-behandelten Tieren im Verlauf von Tag 1 bis 7 nach Trauma korrelierte mit dem Erscheinen von DC im geschädigten Muskel und mit deren
ansteigendem Reifungsgrad. Diese Ergebnisse sprechen für einen Zusammenhang zwischen der Anwesenheit von DC im traumatisierten Muskel und der Zytokin-Expression im LN und unterstützen die Annahme, dass aktivierte DC im traumatisierten Muskel das Antigen aufnehmen, in den LN wandern und dort eine verstärkte Antigen-spezifische T-Zell Antwort induzieren können.

Im Versuchsansatz (s. Punkt 4.9) konnte so gezeigt werden, dass eine intramuskuläre OVA-Applikation an Tag 4 nach Trauma die supprimierte TH1-Polarisierung verhinderte, die sonst nach subkutaner Antigen-Applikation in die Fußsohle auftrat. Es wird daher vermutet, dass DC nach intramuskulärer Injektion eines Antigens in den LN wandern. Wie oben erwähnt, sind endogene T-Zellen und NK-Zellen über einen bislang unbekannten Mechanismus an der Entstehung der TH-Zell Suppression beteiligt. Möglicherweise interagieren die aus dem Muskel stammenden DC mit den T- oder NK-Zellen und verhindern deren hemmende Wirkung auf die Antigen-spezifischen T-Zellen. Diese Funktion der DC im verletzten Gewebe könnte möglicherweise dazu dienen, den Körper auf eine schnelle Einleitung einer Immunantwort bei Infektion im geschädigten Bereich vorzubereiten.

DC im geschädigten Muskel könnten somit tatsächlich als „endogenes Adjuvans“ fungieren und einer TH-Zell Suppression entgegenwirken.

Durch Induktion eines sterilen stumpfen Weichteiltraumas beider Gastrocnemius-Muskeln konnte die Entstehung einer Immunsuppression beobachtet werden. Gezeigt werden konnte dies durch eine verschlechterte Abwehr einer *Pseudomonas aeruginosa*-vermittelten Infektion in der Lunge nach Weichteiltrauma, sowie durch die Hemmung der Antigen-spezifischen T\(_{H1}\)-Polarisierung im drainierenden LN. Diese Hemmung war bereits einen Tag nach Trauma zu erkennen und hielt mindestens 7 Tage an. Dabei konnte die Beteiligung von endogenen T-Zellen, sowie NK-Zellen an der Suppression der T\(_{H1}\)-Polarisierung nach Weichteiltrauma nachgewiesen werden.

Nach Trauma erschienen DC im verletzten Gewebe. Diese DC wiesen eine erhöhte Expression von MHC-Klasse-II- und co-stimulatorischen Molekülen auf. Eine Antigen-Applikation in den Muskel induzierte eine verstärkte T\(_{H1}\)-Polarisierung im LN. Dabei korrelierte das Ausmaß der verstärkten T\(_{H1}\)-Zell-Antwort mit der Expression co-stimulatorischer Moleküle auf den DC im geschädigten Muskel.

Die Präsentation des Antigens nach intramuskulärer Applikation konnte in den bisher unbekannten Mechanismus, der für eine supprimierte T\(_{H1}\)-Polarisierung in den LN verantwortlich ist, eingreifen und somit der T\(_{H1}\)-Zell Suppression entgegenwirken. Daher könnten DC als „endogenes Adjuvans“ im Rahmen einer Therapie der Immunsuppression nach Trauma genutzt werden, indem geeignete Stimuli in das traumatisierte Gewebe appliziert werden, um die Funktion der T\(_{H1}\)-Zellen wiederherzustellen. Dadurch könnte sich das Risiko für infektiöse Komplikationen nach Trauma verringern.

Die in dieser Arbeit beschriebenen pathophysiologischen und immunologischen Folgen eines Weichteiltraumas machen deutlich, wie wichtig es ist, neben rapider...
und adäquater Wundversorgung, Einleitung geeigneter Schritte für elektive Eingriffe (Minimalinvasiv) und post-traumatischem Immunmonitoring, einen geeigneten Ansatz für immunstimulierende und immunmodulierende Therapien zu entwickeln. Die Überlebenschancen von schwerverletzten Patienten auf Intensivstationen würden sich durch immunmodulierende Therapiemöglichkeiten stark verbessern.

44. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626-635

cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 100:1362-1372

immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487-496

8. ANHANG

8.1. ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td></td>
<td>APACHE</td>
<td>Acute physiology and chronic health evaluation</td>
</tr>
<tr>
<td></td>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td></td>
<td>APZ</td>
<td>Antigen-präsentierende Zelle</td>
</tr>
<tr>
<td></td>
<td>ATP</td>
<td>Adenosin-Tri-Phosphat</td>
</tr>
<tr>
<td>B</td>
<td>BMC</td>
<td>Bone-marrow cell</td>
</tr>
<tr>
<td></td>
<td>BMDC</td>
<td>Bone-marrow-derived dendritic cell</td>
</tr>
<tr>
<td></td>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>ca.</td>
<td>zirka</td>
</tr>
<tr>
<td></td>
<td>CARS</td>
<td>compensatory anti-inflammatory response syndrome</td>
</tr>
<tr>
<td></td>
<td>CBA</td>
<td>cytomteric bead array</td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td>cluster of differentiation (Lymphozytendifferenzierungsgruppe)</td>
</tr>
<tr>
<td></td>
<td>CFDA-SE</td>
<td>CarboxyFluoroscein Diacetat Succinimidyl Ester</td>
</tr>
<tr>
<td></td>
<td>CFSE</td>
<td>CarboxyFluoroscein Succinimidyl Ester</td>
</tr>
<tr>
<td></td>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td></td>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td></td>
<td>CpG</td>
<td>Cytosin-phosphatidyl-Guanosin</td>
</tr>
<tr>
<td></td>
<td>CTL</td>
<td>zytotoxische T-Zellen</td>
</tr>
<tr>
<td></td>
<td>Cy</td>
<td>Cyanin</td>
</tr>
<tr>
<td></td>
<td>Cy7/Cy5.5</td>
<td>Cyaninfarbstoffe</td>
</tr>
<tr>
<td>D</td>
<td>DAMP</td>
<td>damage associated molecular patterns</td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>Dendritic Cell (dendritische Zelle)</td>
</tr>
<tr>
<td></td>
<td>DIC</td>
<td>Disseminierte intravasale Gerinnung</td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td></td>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>E</td>
<td>EDN</td>
<td>eosinophil-derived neurotoxin</td>
</tr>
<tr>
<td></td>
<td>EDTA</td>
<td>Ethylen-Diamin-Tetraacetat</td>
</tr>
<tr>
<td></td>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td></td>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>F</td>
<td>FACS</td>
<td>Fluorescence Activated Cell Sorting</td>
</tr>
<tr>
<td></td>
<td>FCS</td>
<td>Fetal Calf Serum (Fötales Kälberserum)</td>
</tr>
<tr>
<td></td>
<td>FITC</td>
<td>Fluorescein Isothiocyanat</td>
</tr>
<tr>
<td></td>
<td>FL2-H</td>
<td>rot fluoreszierender Farbkanal</td>
</tr>
<tr>
<td></td>
<td>Foxp3</td>
<td>Forkhead box protein 3</td>
</tr>
<tr>
<td></td>
<td>FSC</td>
<td>Forward-scattered (Vorwärtsstreulicht)</td>
</tr>
<tr>
<td>G</td>
<td>GM-CSF</td>
<td>Granulozyten-/Makrophagen-Kolonie-stimulierender Faktor</td>
</tr>
<tr>
<td></td>
<td>Gp</td>
<td>Glykoprotein (Hitzeschockprotein)</td>
</tr>
<tr>
<td></td>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>H</td>
<td>HEPES</td>
<td>N-(2-Hydroxyethyl)-Piperazin-N'-2-Ethansulfonsäure</td>
</tr>
<tr>
<td></td>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td></td>
<td>HMGB1</td>
<td>high mobility group box 1</td>
</tr>
<tr>
<td></td>
<td>HRP</td>
<td>Horseradish (Meerrettich) Peroxidase</td>
</tr>
<tr>
<td></td>
<td>HSP</td>
<td>Hitze-Schock-Protein</td>
</tr>
<tr>
<td>I</td>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td></td>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td></td>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td></td>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td></td>
<td>i.m.</td>
<td>Intramuskulär</td>
</tr>
<tr>
<td></td>
<td>i.n.</td>
<td>intranasal</td>
</tr>
<tr>
<td></td>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td></td>
<td>iTreg</td>
<td>induzierte Treg</td>
</tr>
<tr>
<td></td>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>K</td>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>L</td>
<td>LN</td>
<td>Lymph Node (Lymphknoten)</td>
</tr>
<tr>
<td></td>
<td>LNC</td>
<td>Lymph Node Cells (Lymphknotenzellen)</td>
</tr>
<tr>
<td>M</td>
<td>MACS</td>
<td>Magnetic cell sorting</td>
</tr>
<tr>
<td></td>
<td>M-CSF</td>
<td>Makrophagen-Kolonie-stimulierender Faktor</td>
</tr>
<tr>
<td></td>
<td>MFI</td>
<td>Median fluorescence intensity</td>
</tr>
<tr>
<td></td>
<td>MHC</td>
<td>Major histocompatibility complex (Haupthistokompatibilitätskomplex)</td>
</tr>
<tr>
<td></td>
<td>MODS</td>
<td>Multiorgan-Dysfunktions-Syndrom</td>
</tr>
<tr>
<td></td>
<td>MOF</td>
<td>Multi organ failure (Multi-Organversagen)</td>
</tr>
<tr>
<td></td>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>N</td>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td></td>
<td>NK-Zelle</td>
<td>Natürliche Killerzelle</td>
</tr>
<tr>
<td></td>
<td>NKT-Zelle</td>
<td>Natürliche Killer- T-Zelle</td>
</tr>
<tr>
<td></td>
<td>nTreg</td>
<td>Natürlich vorkommende Treg</td>
</tr>
<tr>
<td>O</td>
<td>OVA</td>
<td>Ovalbumin-Protein</td>
</tr>
<tr>
<td>P</td>
<td>PAMP</td>
<td>pathogen associated molecular patterns</td>
</tr>
<tr>
<td></td>
<td>PBS</td>
<td>Phosphat-buffered Saline</td>
</tr>
<tr>
<td></td>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td></td>
<td>PECy7</td>
<td>Phycoerythrin konjugiert mit Cy7</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin-Chlorophyll-Protein</td>
<td></td>
</tr>
<tr>
<td>PerCPCy5.5</td>
<td>Peridinin-Chlorophyll-Protein konjugiert mit Cy5.5</td>
<td></td>
</tr>
<tr>
<td>PGE_2</td>
<td>Prostaglandin E$_2$</td>
<td></td>
</tr>
<tr>
<td>pOVA</td>
<td>Ovalbumin-Peptid</td>
<td></td>
</tr>
<tr>
<td>PRR</td>
<td>pathogen oder pattern recognition receptors</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>recombinante activating gene 2</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
<td></td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute Medium 1640</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
<td></td>
</tr>
<tr>
<td>SAV</td>
<td>Streptavidin</td>
<td></td>
</tr>
<tr>
<td>SIRS</td>
<td>systemic inflammatory response syndrome</td>
<td></td>
</tr>
<tr>
<td>s.c.</td>
<td>subkutan</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
<td></td>
</tr>
<tr>
<td>SOFA</td>
<td>Sequential organ failure assessment</td>
<td></td>
</tr>
<tr>
<td>SSC</td>
<td>Side-scattered (Seitwärtsstreulicht)</td>
<td></td>
</tr>
<tr>
<td>sTNF-R</td>
<td>Soluble TNF Receptor</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor (T-Zell-Rezeptor)</td>
<td></td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
<td></td>
</tr>
<tr>
<td>T_H</td>
<td>T-Helfer-Zelle</td>
<td></td>
</tr>
<tr>
<td>$T_H^{1/2}$</td>
<td>T-Helfer-Zelle des Typs 1/2</td>
<td></td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
<td></td>
</tr>
<tr>
<td>TSC</td>
<td>total spleen cells</td>
<td></td>
</tr>
<tr>
<td>Treg</td>
<td>T-regulatorische Zellen</td>
<td></td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic soy agar</td>
<td></td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic soy broth</td>
<td></td>
</tr>
<tr>
<td>Tween-20</td>
<td>Polyoxyethylen-(20)-sorbitan monolaurat</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/ v</td>
<td>by volume</td>
<td></td>
</tr>
<tr>
<td>VLE</td>
<td>Very Low Endotoxin</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Zum Beispiel</td>
<td></td>
</tr>
<tr>
<td>ZTL</td>
<td>Zentrales Tierlaboratorium des Universitätsklinikums Essen</td>
<td></td>
</tr>
</tbody>
</table>

8.2. ABBILDUNGSVERZEICHNIS

Abb. 1.1 Induktion der angeborenen Immunität ... 3
Abb. 1.2 Die NK-Zelle als Regulator und Initiator ... 5
Abb. 1.3 Schematische Darstellung der T-Lymphozyten Differenzierung 8
Abb. 1.4 Modell der Th1-/Th2-Differenzierung .. 12
Abb. 1.5 Zelltod und Inflammation .. 16
Abb. 3.1 Applikation eines geschlossenen Weichteiltraumas .. 27
Abb. 3.2 Prinzip der positiven Selektion des magnetic associated cell sorting (MACS) 34
Abb. 3.3 Schematische Darstellung des Mechanismus der CFSE-Markierung von Zellen. .. 37
Abb. 3.4 Lichtstreuungs-Eigenschaften einer Zelle .. 40
Abb. 3.5 Schematische Darstellung der Methode des Sandwich ELISA 43
Abb. 3.6 Versuchsverlauf zur Untersuchung der Antigen-spezifischen T-Zell-Aktivierung in vivo ... 46
Abb. 4.1 Anreicherung von CD3⁺ DO11.10 Zellen ... 49
Abb. 4.2 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach s.c. Applikation von OVA 50
Abb. 4.3 Proliferation Antigen-spezifischer T-Zellen in vivo ... 51
Abb. 4.4 Subkutane Antigen-Applikation. Zytokin-Expression der LNC nach Restimulation. .. 52
Abb. 4.5 OVA-FITC⁺ DC im LN von Kontroll- und Trauma-behandelten Tieren 54
Abb. 4.6 Versuchsverlauf zur Untersuchung einer Beeinträchtigung von APZ nach Trauma 55
Abb. 4.7 Reinheit der generierten BMDC ... 56
Abb. 4.8 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach s.c. Applikation von OVA-
beladenen BMDC: ... 57
Abb. 4.9 Proliferation Antigen-spezifischer T-Zellen in vivo ... 58
Abb. 4.10 Zytokin-Expression nach Applikation von OVA-beladenen BMDC in vitro 59
Abb. 4.11 Versuchsverlauf zur Untersuchung der Beteiligung von endogenen T-Zellen 60
Abb. 4.12 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach Adoptivtransfer von T-Zellen aus
Trauma-behandelten Tieren: .. 61
Abb. 4.13 Einfluss endogener T-Zellen. Zytokin-Expression der LNC nach Restimulation ... 62
Abb. 4.14 Versuchsverlauf zur Untersuchung der Beteiligung von endogenen T-Zellen in RAG-2
knockout Mäusen. .. 63
Abb. 4.15 Aktivierungszustand von CD4⁺ DO11.10 Zellen in RAG-2⁻⁻ Tieren: 64
Abb. 4.16 Immunantwort Antigen-spezifischer T-Zellen in RAG-2⁻⁻ Mäusen: 65
Abb. 4.17 Untersuchung endogener T-Zellen in einem T-Zell Assay in vitro: 66
Abb. 4.18 Anreicherung von CD3-negativen LNC: ... 67
Abb. 4.19 Zytokin-Expression im T-Zell Assay in vitro: ... 67
Abb. 4.20 Versuchsverlauf zur Inaktivierung/Depletion von NK-Zellen in vivo: 69
Abb. 4.21 Effekt der NK-Zell Depletion durch Anti asialo Serum: ... 69
Abb. 4.22 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach NK-Zell Depletion: 70
Abb. 4.23 Zytokin-Expression nach NK-Zell-Inaktivierung in vitro: .. 71
Abb. 4.24 Aktivierungszustand von NK-Zellen nach Trauma: .. 72
Abb. 4.25 Versuchsverlauf im Lungeninfektionsmodell mit P. aeruginosa in vivo: 73
Abb. 4.26 Bakterielle Beladung der Lungen nach P. aeruginosa Infektion in der Lunge: 74
Abb. 4.27 Gatingstrategie zur Betrachtung von DC und Monozyten/ Makrophagen im Muskel: . 75
Abb. 4.28 Charakterisierung von APZ im Muskel: ... 76
Abb. 4.29 Expression co-stimulatorischer Moleküle auf DC im Muskel von IFN-γ⁻⁻ Mäusen: 77
Abb. 4.30 Aktivierungszustand von CD4⁺ DO11.10 Zellen nach i.m. Applikation von OVA: 79
Abb. 4.31 Proliferation Antigen-spezifischer T-Zellen in vivo: .. 80
Abb. 4.32 Intramuskuläre Antigen-Applikation. Zytokin-Expression der LNC nach
Restimulation: ... 81
Abb. 4.33 Umkehr der Th-Suppression nach Trauma über Dendritische Zellen im Muskel: 83
Abb. 4.34 Proliferation Antigen-spezifischer T-Zellen in vivo: .. 84
Abb. 4.35 Subkutane mit vorhergehender intramuskulärer Antigen-Applikation. Zytokin-
Expression der LNC nach Restimulation: ... 85
8.3. TABELLENVERZEICHNIS

Tabelle 2.1 Verwendete Geräte.. 20
Tabelle 2.2 Puffer und Lösungen.. 21
Tabelle 2.3 Reagenzien und Stimuli... 22
Tabelle 2.4 Antikörper.. 24
8.4. DANKSAGUNG

Die Danksagung ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten
8.5. LEBENSLAUF

Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten
Der Lebenslauf ist in der Online-Version aus Gründen des Datenschutzes nicht enthalten
Erklärung:

Essen, den ___________________________ ________________________________
Stefanie B. Flohé

Erklärung:
Hiermit erkläre ich, gem. § 7 Abs. 2, c und e der Promotionsordnung der Math.-Nat.-Fachbereiche zur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbständig verfasst und mich keiner anderen als der angegebenen Hilfsmittel bedient habe und alle wörtlich oder inhaltlich übernommenen Stellen als solche gekennzeichnet habe.

Essen, den ___________________________ ________________________________
Florian Wirsdörfer

Erklärung:

Essen, den ___________________________ ________________________________
Florian Wirsdörfer