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cRNA   Complementary RNA 
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DMEM  Dulbecco`s Modified Eagle Medium 
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HNF   Hepatocyte nuclear factor (human protein) 
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MODY  Maturity-onset diabetes of the young 
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ORF  Open reading frame  

PAS  Polyadenylation signal  
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PCR   Polymerase chain reaction 

pH   Potentia hydrogenii 

qRT-PCR Quantitative real-time PCR 

RCC  Renal cell carcinoma 

RISC  RNA-induced silencing complex 

RL  Renilla 

RNA   Ribonucleic acid 

RNAi   RNA interference 

RNase  Ribonuclease 

rpm   Revolutions per minute 

RT-PCR  Reverse transcription PCR 

SDS   Sodium dodecyl sulfate 

SINE  Short interspersed repetitive element 

siRNA  Short interfering RNA 

SNP  Single nucleotide polymorphism 

SV40  Simian Virus 40 

SYBR   Asymmetrical cyanine dye 
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A Introduction 

1 The cell-specific transcription factor HNF4A 

The cell-specific transcription factor hepatocyte nuclear factor 4 alpha (HNF4A, NR2A1) is a 

highly conserved member of the nuclear receptor superfamily (Sladek et al., 1990). Other 

members of subfamily 2, group A (Nuclear Receptors Nomenclature Committee 1999), 

include HNF4B (Holewa et al., 1997), so far exclusively identified in Xenopus, and HNF4G 

present in humans (Drewes et al., 1996) and mice (Taraviras et al., 2000).  

HNF4A consists of six structural domains A-F responsible for specific functions (Fig. 1A). 

The A/B domain is positioned at the N-terminus and includes the transactivation domain 

AF-1 comprised of the N-terminal 24 amino acids (Hadzopoulou-Cladaras et al., 1997; Green 

et al., 1998). The DNA binding domain (DBD, C domain), highly conserved among nuclear 

receptors, consists of two zinc fingers and is linked by the flexible D domain to the large 

hydrophobic ligand binding domain (LBD, E domain). This second highly conserved region 

functions as a ligand binding, homodimerisation and second activation domain (AF-2; Jiang 

and Sladek, 1997; Hadzopoulou-Cladaras et al., 1997). Hence, it is involved in transcriptional 

activation and interactions with other transcription factors and coregulators (Ktistaki and 

Talianidis, 1997). In contrast to the majority of nuclear receptors, the C-terminal F domain of 

HNF4A is unusually long and includes a repressor function that inhibits access of 

coactivators to AF-2, and possibly to other regions (Suaud et al., 1999; Sladek et al., 1999).  

 

HNF4A was long considered an orphan receptor as no activity modulating ligand could be 

identified. The search for ligands caused much controversy. Long-chain fatty acids were 

shown to bind as acyl-CoA thioesters to the LBD of HNF4A and function as transactivational 

agonists or antagonists, depending on their chain length and degree of saturation (Hertz et 

al., 1998). Crystal structures of the LBD of bacterially expressed HNF4A confirmed that the 

ligand-binding pocket is occupied by fatty acids, but excluded acyl-CoAs (Dhe-Paganon et 

al., 2002; Wisely et al., 2002; Duda et al., 2004). Fatty acids were bound firmly and could not 

be exchanged, suggesting that HNF4A is constitutively bound and activated by fatty acids. 

Hence, fatty acids seemed to act more as structural cofactors rather than classical regulatory 

ligands (Benoit et al., 2004). However, in a recent study, mammalian expressed HNF4A was 

shown to be bound to the essential fatty acid linoleic acid (LA; C18:2). Although binding is 

reversible, no effect was observed on the transactivation function of HNF4A (Yuan et al., 

2009). 
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Figure 1: HNF4A gene structure (A) and isoforms (B).  
(A) The six structural (A-F) and functional domains are illustrated above the exon structure (not drawn 
to scale). The P2 and P1 specific exon 1D and 1A are indicated by red and green, respectively. Novel 
exon 1E (P2) is given in pink. Transcriptional termination at a polyadenylation signal (PAS) in intron 8 
(8+) results in an alternative C-terminus (light blue box). Presence of 10 amino acids due to alternative 
splicing at exon 9 is indicated by a black box. The presence and significance of exon 1B is not clearly 
established. (B) The P1 and P2 specific isoforms and their exon structure are listed, excluding 
disputable isoforms HNF4A4/5/6. Abbreviations: Activation function 1 (AF-1); DNA binding domain 
(DBD); non-conserved “hinge” region; multi-functional domain for ligand-binding domain (LBD), 
receptor dimerization and activation function 2 (AF-2); inhibitory “F” domain. (Figure adapted from 
Huang et al., 2009a). 

 

Several other endogenous or external circumstances are known to influence the 

transcriptional activity or expression of HNF4A. These include bile acids (Zhang and Chiang, 

2001), cytokines (Li et al., 2006b), hypoxia (Mazure et al., 2001), diet (Viollet et al., 1997), 

exposure to drugs (Hertz et al., 2001) and nitric oxide (NO; Vossen and Erard, 2002). 

Furthermore, HNF4A function is modulated by phosphorylation (Jiang et al., 1997; Sun et al., 

2007; Gonzalez, 2008) as well as methylation (Barrero and Malik, 2006) and acetylation 

(Soutoglou et al., 2000). Its expression is regulated by a variety of different transcription 

factors that target both promoter and enhancer sequences (Hatzis and Talianidis, 2001; 

Bailly et al., 2009) and is also autoregulated by HNF4A itself (Hatzis and Talianidis, 2001; 

HNF4A1/A2

HNF4A3

HNF4A7/A8

HNF4A9

HNF4A10/A11

HNF4A12

(A)

(B)

A/B               C                 D                      D/E                         F

AF-1                 DBD         hinge        LBD/dimerization

AF-2 inhibitory “F“
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Magenheim et al., 2005; Bailly et al., 2009). Interestingly, HNF4A, HNF1A and HNF1B, which 

have key roles in embryonic development and in mature homeostasis, are part of an 

autoregulatory network in mammalian pancreas, kidney, liver and gut (Ferrer, 2002; Harries 

et al., 2009). However, expression of HNF4A is not dependent on HNF1A in hepatocytes 

(Boj et al., 2001; Ferrer, 2002). Taken together, the versatile interactions of HNF4A with a 

variety of different transcription factors, coregulators and modifying enzymes can cause up- 

and downregulation of HNF4A as well as increased and decreased transcriptional activity 

(Sladek and Seidel, 2001; Kyrmizi et al., 2006; Gonzalez, 2008; Tomaru et al., 2009). 

 

In humans, the HNF4A gene spans about 74 kb on chromosome 20 and comprises at least 

12 exons (Avraham et al., 1992; Drewes et al., 1996; Sladek and Seidel, 2001; Huang et al., 

2009a). Two promoters, P1 and P2, have been identified that drive the expression of at least 

six different splice variants (HNF4A1-A3 and HNF4A7-A9; Fig. 1B). Expression of predicted 

variants HNF4A4-A6 is controversial (Drewes et al., 1996; Huang et al., 2008; Harries et al., 

2008) and therefore not included in Figure 1B. Recently, three new isoforms (HNF4A10-A12) 

were described (Huang et al., 2009a) including exon 1E that was previously not detected. 

The proximal P1 and distal P2 promoter are separated by about 45.5 kb in the human 

HNF4A gene (Thomas et al., 2001). Despite the conserved structure in rodents, the two 

promoters are located approximately 36.6 kb and 40.2 kb apart in rat and mouse, 

respectively (Huang et al., 2009a). AF-1 is exclusively contained in proteins derived from the 

P1 promoter due to the P1 and P2 promoter specific first exon 1A and 1D, respectively. The 

isoform specific differences in the F domain are splice dependent. Importantly, the variant-

specific domain makeup causes functional variations (Sladek et al., 1999; Torres-Padilla et 

al., 2001; Eeckhoute et al., 2003; Briancon and Weiss, 2006). HNF4A2 (P1), used in this 

work contains a 10 amino acid insert in the middle of the F domain in comparison to the 

initially identified HNF4A1 (Sladek et al., 1999). The corresponding isoform HNF4A8 is 

expressed from the P2 promoter and thus lacks AF-1. The use of the two promoters 

including distinct regulatory elements, in a temporal and spatial-specific fashion results in a 

complex regulation of the isoforms and their different physiological roles (Torres-Padilla et 

al., 2001; Kyrmizi et al., 2006; Huang et al., 2008; Harries et al., 2008). The major tissues in 

which the P1 promoter is active includes the adult kidney, liver, stomach and colon as well as 

fetal liver and pancreas. The P2 promoter is predominantly expressed in adult colon, 

pancreas, stomach and small intestine as well as in fetal pancreas and liver (Bolotin et al., 

2010). In other tissues expressing HNF4A the promoter usage has not been established.  

 

HNF4A usually binds as a homodimer (Jiang et al., 1995) to a direct repeat element 

(AGGTCA) with either a one or two nucleotide spacer, designated DR1 or DR2, respectively, 
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in the regulatory sequences of its target genes (Jiang and Sladek, 1997; Ellrott et al., 2002). 

However, HNF4A is predicted to bind to thousands of different variations of the response 

element (Badis et al., 2009). To regulate gene expression, transcriptional coactivators and 

other accessory proteins are recruited by HNF4A. Many sites targeted by HNF4A are also 

bound by other nuclear receptors including COUP transcription factors, RXR and PPARs, 

resulting in the expression of many of the same genes.  

The impact of HNF4A on gene regulation has been elucidated by identifying numerous target 

genes in several tissues involved in various processes such as homeostasis, metabolism, 

immune and stress response, cell structure, apoptosis and cancer. A list of target genes can 

be found at http://www.sladeklab.ucr.edu/hnf43.pdf. In the liver many target genes of HNF4A 

were initially identified by classical techniques such as promoter deletions, gel shifts and 

luciferase assays. Recently genome-wide techniques have been applied to identify more 

than a thousand potential target genes in the liver, but also in other tissues such as kidney 

and pancreas. Expression profiles of HNF4A regulated genes have been determined in 

different human cell lines including HEK293 (embryonic kidney; Lucas et al., 2005; Grigo et 

al., 2008), HuH-7 (hepatocyte; Naiki et al., 2002), HepG2 (hepatocyte; Bolotin et al., 2009), 

HCT116 (colon; Yuan et al., 2009) and in human liver (Boj et al., 2009), as well as in different 

mouse and rat tissues (Garrison et al., 2006; Battle et al., 2006; Waxman and O'Connor, 

2006; Erdmann et al., 2007; Gupta et al., 2007; Ishikawa et al., 2008; Boj et al., 2009; 

Darsigny et al., 2009). ChIP-chip analyses were performed in hepatocytes purified from 

human (Odom et al., 2004; Odom et al., 2006; Odom et al., 2007) and mouse liver (Odom et 

al., 2007), HepG2 cells (Rada-Iglesias et al., 2005; Wallerman et al., 2009), pancreatic islets 

(Odom et al., 2004), the human intestinal cell line CaCo2 (Boyd et al., 2009) and in liver of 

human, mouse, dog, opossum and chicken by ChIP-seq (Schmidt et al., 2010). However, 

which of these genes are directly dependent on HNF4A in vivo and the functional 

significance of this binding, remains to be analyzed.  

 

HNF4A plays an important role in early embryogenesis. This transcription factor is present as 

a maternal component in the Xenopus egg (Holewa et al., 1996) and is detected in the 

primary endoderm of mouse embryos at day 4.5 (Duncan et al., 1994). Its essential function 

in vertebrate development is evident in homozygous knockout mice that die during early 

gastrulation due to dysfunction of the visceral endoderm (Chen et al., 1994; Duncan et al., 

1997). Furthermore, HNF4A is essential in the adult as shown by severe defects in mice 

lacking hepatic Hnf4a expression resulting in death within six weeks (Hayhurst et al., 2001). 

HNF4A is crucial to establish and maintain the heptatocyte phenotype by regulating genes 

involved in the control of lipid homeostasis (Li et al., 2000; Hayhurst et al., 2001; Naiki et al., 

2005) and the liver architecture (Parviz et al., 2003; Battle et al., 2006). In the embryonic 
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liver, HNF4A expression is driven by the P1 and P2 promoter, while in adults, the P1 

promoter is mainly active. Hence, in the adult liver Hnf4a2 is the main isoform besides 

Hnf4a1, while Hnf4a7 and Hnf4a8 are absent (Nakhei et al., 1998; Torres-Padilla et al., 

2001).  

In addition to the liver, where HNF4A (A1) was initially identified (Costa et al., 1989), HNF4A 

function in the pancreas has been quite thoroughly investigated. It is expressed in the 

endocrine and exocrine cells of the pancreas, although at a lower level than in liver (Miquerol 

et al., 1994; Tanaka et al., 2006; Nammo et al., 2008). Hnf4a was described to regulate the 

expression of genes associated with β-cell glucose metabolism and insulin secretion in rat 

insulinoma cells (INS-1; Wang et al., 2000). Location analysis, which combined ChIP with a 

custom DNA microarray containing parts of the promoter regions of 13,000 human genes, 

resulted in the presumption that HNF4A regulates >40% of the active promoters in the islets 

(Odom et al., 2004). The vast majority of genes were not verified in β-cell-specific Hnf4a 

knockout mice. Although there is substantial discrepancy in the different studies concerning 

HNF4A targets genes and HNF4A dependent phenotype, disruption of Hnf4a in β-cells of 

mice causes impaired glucose tolerance due to attenuated glucose-stimulated insulin 

secretion (Gupta et al., 2005; Miura et al., 2006; Gupta et al., 2007). Furthermore, Hnf4a 

seems to be essential for adult β-cell mass expansion upon enhanced metabolic demand 

(Gupta et al., 2007). In humans, transcripts derived from the P1 promoter comprise up to 

23% of total HNF4A expression in fetal pancreas from nine weeks until at least 19-26 weeks 

post-conception (Harries et al., 2008). Hnf4a mRNAs transcribed from both promoters are 

also detected in mouse pancreas during embryonic periods (Kanazawa et al., 2009). Several 

reports constrained HNF4A expression in the adult to the P2 promoter in human and rat 

pancreases (Thomas et al., 2001; Boj et al., 2001; Hansen et al., 2002; Ihara et al., 2005; 

Tanaka et al., 2006). This is in contrast to one study reporting the expression of P1 specific 

isoforms in human adult β-cells (Eeckhoute et al., 2003). 

Despite high expression of HNF4A in selected parts of the kidney, little is known about its 

functions in this organ. In the metanephros of the mouse, Hnf4a is initially detected in the 

epithelial cells of the comma-shaped body, then distributed widely throughout the developing 

nephron and is finally restricted to the proximal tubules (Taraviras et al., 1994; Kanazawa et 

al., 2009). Hnf4a expression in those embryonic periods is driven by both promoters, but 

predominantly by P1 (Kanazawa et al., 2009). In the adult kidney, HNF4A expression is 

observed in the proximal tubules as determined in human kidney tissue specimens 

(Chabardes-Garonne et al., 2003; Tanaka et al., 2006) and verified on protein level (Jiang et 

al., 2003). HNF4A is not detected in the glomerulus, distal and collecting tubular epithelial 

cells of the kidney nor in HEK293 cells (Jiang et al., 2003; Lucas et al., 2005; Tanaka et al., 

2006). In the adult kidney, HNF4A expression is restricted to the P1 promoter in humans, 
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mouse and rat as established on RNA and protein level (Nakhei et al., 1998; Jiang et al., 

2003; Tanaka et al., 2006; Kanazawa et al., 2009).    

2 HNF4A and human diseases  

In humans, no homozygous mutations have been identified in HNF4A, consistent with the 

embryonic lethality in mice (Chen et al., 1994; Ellard and Colclough, 2006). However, 

monoallelic mutations in the HNF4A gene have been directly linked to Maturity Onset 

Diabetes of the Young 1 (MODY1; Yamagata et al., 1996). In addition, a mutation in the 

HNF4A binding site within the HNF1A promoter has been associated with MODY3 (Gragnoli 

et al., 1997). Indirectly, HNF4A is linked to many human diseases via the target genes it 

regulates. Due to the impact on the majority of apolipoproteins in the liver, a role in 

atherosclerosis is suggested (Sladek and Seidel, 2001). Increasing evidence links HNF4A 

misregulation to the pathogenesis of various human cancers (Tanaka et al., 2006). The 

tumor repressive effect is supported by findings that HNF4A inhibits cell proliferation in 

various cell types, including murine hepatocellular carcinoma cells (Lazarevich et al., 2004; 

Yin et al., 2008), endothelial lung and embryonal carcinoma cells (Chiba et al., 2005), 

insulinoma cells (Erdmann et al., 2007) as well as embryonic kidney cells (Lucas et al., 2005; 

Grigo et al., 2008).  

2.1 Diabetes  

The pancreas is comprised of exocrine and endocrine (<5%) parts. The latter consists of the 

islets of Langerhans which includes five cell types: glucagon-producing α-cells, insulin-

producing β-cells, somatostatin-producing δ-cells, ghrelin-producing ε-cells and pancreatic 

polypeptide-producing cells. Heterozygous mutations in the coding sequence of the human 

HNF4A gene or in the P2 promoter lead to MODY1 (Bell et al., 1991; Yamagata et al., 1996; 

Harries et al., 2008), while mice heterozygous for Hnf4a show no signs of diabetes (Stoffel 

and Duncan, 1997). This form of type 2 diabetes mellitus (T2DM) is characterized by an 

autosomal dominant mode of inheritance, early onset around 20 to 40 years of age and 

impaired glucose-stimulated insulin secretion due to pancreatic β-cell dysfunction (Yamagata 

et al., 1996; Ryffel, 2001; Owen and Hattersley, 2001). Infants heterozygous for HNF4A may 

exhibit macrosomia and hypoglycemia at birth, reflecting increased insulin secretion in utero 

and during the neonatal period, respectively (Pearson et al., 2007). However, pancreatic 

β-cells usually produce adequate insulin at first and insulin deficiency is slowly progressive 
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resulting in overt hyperglycemia typically in early adulthood (Hattersley, 1998). The age-

related penetrance varies considerably, but by the age of 55, about 95% of mutation carriers 

have developed diabetes (Frayling et al., 2001). Since many studies exclude a dominant-

negative effect of the mutated HNF4A, but rather imply a loss-of-function mechanism, a 

haploinsufficiency mechanism is discussed (Stoffel and Duncan, 1997; Sladek et al., 1998; 

Navas et al., 1999; Lausen et al., 2000). In accordance with that assumption, are the 

identified mutations in the P2 promoter of HNF4A. The complex regulation of HNF4A via both 

promoters, resulting in various isoforms at different time points in the pancreas has been 

described above. The distinct isoforms give rise to proteins with different properties 

functioning in a unique network. Hence, depending on the location of the mutation, different 

isoforms and subsequent interaction partners are affected, which might at least in part 

explain the differential diabetic phenotype of HNF4A mutation carriers (Harries et al., 2008; 

Harries et al., 2009). Up to date 45 different HNF4A mutations in 190 patients from 58 

families have been identified (Harries et al., 2008). The R154X MODY mutation, which 

results in a truncated protein lacking most of the ligand binding domain (Lindner et al., 1997; 

Laine et al., 2000) is used in this work. Given the large number of genes regulated by 

HNF4A, a pleiotropic phenotype is expected. However, MODY1 patients show only few 

symptoms in other organs (Froguel and Velho, 1999). In some HNF4A mutation carriers low 

levels of triglycerides, lipoprotein(a) and apolipoproteins (AII and CIII) have been noticed,  

indicating a primary hepatic defect (Lehto et al., 1999; Shih et al., 2000).  

 

The common late-onset T2DM is characterized by relative insulin deficiency due to defective 

insulin secretion and/or insulin sensitivity (Martin et al., 1992; DeFronzo et al., 1992; Weyer 

et al., 1999). Although this complex heterogenous disease is considered a polygenic 

disorder, little is known about the responsible genes. Several groups have observed linkage 

of T2DM to chromosome 20q12-q13.1, the region HNF4A is localized in (Zouali et al., 1997; 

Bowden et al., 1997; Ghosh et al., 1999; Klupa et al., 2000; Permutt et al., 2001). Hence, an 

important role for HNF4A in T2DM is suggested (Gupta and Kaestner, 2004), which is 

significantly downregulated in pancreatic islets of patients with T2DM (Gunton et al., 2005). 

One study reported that a deletion of seven base pairs in the proximal promoter, deleting a 

single putative Sp1 binding site, can confer a severe form of T2DM causing renal target 

organ damage (Price et al., 2000). Single nucleotide polymorphisms (SNPs) in the promoter 

area as well as in exon 1-3 of HNF4A were associated with T2DM (Silander et al., 2004; 

Love-Gregory et al., 2004; Damcott et al., 2004). Furthermore, Hnf4a was shown to be 

essential for adult β-cell mass expansion upon increased metabolic demand, the failure of 

which is a hallmark of T2DM (Dickson and Rhodes, 2004; Gupta et al., 2007). In addition 
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there is evidence that loss of Hnf4a in other organs such as liver contribute to the 

progression to T2DM. (Zhu et al., 2003; Gupta et al., 2005).  

 

Recently, microRNAs (miRNAs) were shown to be required during pancreas development by 

conditional Dicer knockout early in pancreas development in mice (Lynn et al., 2007). 

Although severe defects were observed in all pancreatic lineages, the β-cells were reduced 

the most. miRNAs are reported to play significant roles in insulin production, action and 

secretion as well as in diverse parts of glucose and lipid metabolism, indicating a critical role 

in the pathogenesis and progression of diabetes (Tang et al., 2008; Pandey et al., 2009). An 

example is miR-375, which is the most abundant intra-islet miRNA (Bravo-Egana et al., 

2008) and was shown to directly target myotrophin (Mtpn), which inhibits insulin secretion 

and 3'-phosphoinositide-dependent protein kinase-1 (PDK1). miR-375 suppresses glucose-

stimulated insulin secretion in a calcium independent manner, while inhibition of miR-375 

enhanced insulin release (Poy et al., 2004; El Ouaamari A. et al., 2008). Furthermore, a role 

in pancreatic β-cell development is suggested due to decreased total β-cell mass and insulin 

levels in mice with homozygous deletion of miR-375 (Poy et al., 2007). Several other 

miRNAs have been experimentally linked to diabetes (Tang et al., 2008; Pandey et al., 

2009). A few miRNA microarrays have been performed, comparing miRNA expression in 

mouse embryonic pancreas at two different developmental stages (Baroukh et al., 2007), in 

the mouse insulinoma cell line MIN6B1 exposed to fatty acid (palmitate; Lovis et al., 2008) 

and in MIN6 cells in response to changes in glucose concentrations (Tang et al., 2009). 

Although those analyses shed some light on the potential role of miRNAs in diabetes, it is not 

known, whether miRNAs are dysregulated in T2DM or MODY and whether they influence 

HNF4A expression.   

2.2 Cancer  

Hepatocellular carcinoma (HCC) is one of the world´s most common cancers. Even though 

epidermal growth factor (EGF) and transforming growth factor α (TGF- α) seem to play an 

important role (Tonjes et al., 1995), the molecular mechanism underlying HCC progression 

remains obscure. HNF4A is known to be a central regulator of the differentiated hepatocyte 

phenotype (Li et al., 2000; Hayhurst et al., 2001; Parviz et al., 2003). Initially, differences in 

the biologic properties of experimental systems and tumor samples gave rise to conflicting 

reports concerning the role of HNF4A in HCC progression (Stumpf et al., 1995; Flodby et al., 

1995; Kalkuhl et al., 1996; Xu et al., 2001; Choi et al., 2004). However, dysfunction of 

HNF4A due to structural aberrations or modification of upstream regulatory signaling 

cascades, has been associated with the progression of rodent and human HCC and 
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contributes to accelerated cell proliferation, loss of epithelial morphology, dedifferentiation 

and the ability for invasion and metastasis (Lazarevich and Fleishman, 2008). Furthermore, 

re-expression of HNF4A in dedifferentiated hepatoma cells results in partial reversion of the 

malignant phenotype both in vitro and in vivo (Lazarevich et al., 2004; Yin et al., 2008). 

Usually the HNF4A P1 promoter is active in the adult liver and decreased P1 promoter 

expression has been reported in HCC (Tanaka et al., 2006). Recently a switch from P1 to P2 

expression was detected in transgenic livers and HCCs of EGF overexpressing mice and 

human HCCs. The switch to fetal liver programs in HCC is presumed to predispose liver cells 

to malignant transformation prior to loss of HNF4A expression (Niehof and Borlak, 2008).  

 

Renal cell carcinoma (RCC) is a type of kidney cancer that accounts for 3% of all 

malignancies and is classified into different subtypes including clear cell (cc), papillary (p), 

chromophobe (ch) and colleting duct (c) RCC (Kovacs et al., 1997). Those carcinomas are 

associated with distinct molecular alterations and different clinical outcomes. ccRCC is the 

most common and aggressive form in adults, accounting for 70-80% of kidney cancers 

(Jones and Libermann, 2007). The genetics of ccRCC are distinctive, but in most cases 

somatic or germline inactivating mutations in the von Hippel-Lindau (VHL) gene have been 

reported (Kaelin and Maher, 1998; Dalgliesh et al., 2010). Under normal oxygen pressure 

VHL causes the degradation of hypoxia-inducible factors (HIFs). VHL inactivation results in 

accumulation of HIFs which triggers transcription of genes such as VEGF, PDGF-β, TGF-α 

and EPO involved in angiogenesis, cell growth, migration and proliferation (Gnarra et al., 

1993; Calzada and del, 2007; Rathmell and Chen, 2008). However, other molecular factors 

associated with RCC initiation and progression are largely unknown. To gain insight into the 

mechanism of RCC, several microarray analyses have been performed over the years. 

However, there is very little agreement as to which genes are differentially regulated among 

these studies (Lenburg et al., 2003). Those genes repeatedly identified as differentially 

expressed genes in RCC are involved in a broad range of processes such as glycolysis, cell 

adhesion, signal transduction, or nucleotide metabolism (Greenman et al., 2007). However, 

due to the various discrepancies among the studies, genes that failed to be identified multiple 

times might still be essential for RCC progression. Gene specific analyses are needed to 

clarify which factors are indeed associated with RCC. Expression of HNF4A is 4.7 fold 

downregulated in RCC compared to normal tissue (Lenburg et al., 2003). Furthermore, the 

amount and DNA binding activity of HNF4A is reduced in RCC compared to normal tissue 

(Sel et al., 1996). Overexpression of HNF4A in the HEK293 cell line results in a decrease in 

cell proliferation and is accompanied by a failure of cells to grow in an epithelium-like 

monolayer (Lucas et al., 2005). HNF4A dependent microarray analyses in those cells 

revealed several target genes that have been shown to be deregulated in RCC (ACY1, WT1, 
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SELENBP1, COBL, EFHD1, AGXT2L1, ALDH5A1, THEM2, ABCB1, FLJ14146, CSPG2, 

TRIM9 and HEY1; Lucas et al., 2005). HNF4A has been described to function in a network of 

transcription factors including HNF1A and HNF1B that control gene expression in embryonic 

and adult tissues, particularly in liver, pancreas and kidney (Ferrer, 2002; Harries et al., 

2009). Misregulation of HNF1A and HNF1B has been suggested as predisposing factors 

contributing to renal tumors (Sel et al., 1996; Rebouissou et al., 2005). HNF1B is expressed 

along the length of the nephron, whereas HNF1A expression is restricted to the proximal 

tubules comparable to HNF4A. The two most common forms of RCC, ccRCC and pRCC, 

originate from the proximal tubules as well. mRNA expression of HNF1A and HNF4A seems 

to be co-regulated in tumor and non-tumor renal tissue (Rebouissou et al., 2005) and 

disruption of the HNF4A/HNF1A pathway is assumed to be a molecular event contributing to 

renal cell carcinogenesis (Sel et al., 1996). Taken together, loss of HNF4A function might 

contribute to the progression of RCC (Lucas et al., 2005). However, so far no mutation in the 

HNF4A gene has been identified (Lausen et al., 2000; Dalgliesh et al., 2010) that may 

explain the downregulation of HNF4A in RCC. 

 

Various mice with conditional Dicer knockout in different parts of the kidney have been 

generated, revealing a critical role for miRNAs in kidney development and maintenance of 

function (Saal and Harvey, 2009). In addition, several miRNA expression profiles from 

mouse, rat and human kidney, identified an overlap of 73 miRNAs with conserved expression 

in the kidney (Saal and Harvey, 2009). For a few miRNAs a specific target and function have 

been described and some of them have been linked to kidney diseases such as diabetic 

nephropathy and polycystic kidney disease (Saal and Harvey, 2009; Kato et al., 2009). 

miRNA expression profilings in RCC have revealed a large number of miRNAs that are either 

up- or downregulated in the tumors compared to normal tissue (Gottardo et al., 2007; Dutta 

et al., 2007; Kort et al., 2008; Nakada et al., 2008; Jung et al., 2009; Petillo et al., 2009; 

Huang et al., 2009b; Chow et al., 2010; Juan et al., 2010). A recent study set out to identify 

direct mRNA targets of miRNAs dysregulated in RCC (Liu et al., 2010). The method is mainly 

based on the anti-correlation of miRNA/mRNA levels strongly dysregulated in tumor versus 

normal cells of the same patient. Several miRNA/mRNA pairs were identified and the 

reduction of SEMA6A upon pre-miR-141 expression was confirmed by semi-quantitative 

RT-PCR. Another study reported the downregulation of Kallikrein-related peptidase 1 (KLK1) 

protein by miR-224 and a decrease in luciferase activity of a KLK1 reporter upon let-7f 

transfection (White et al., 2010). Even in those two examples where functional assays were 

applied, the specific interaction of the miRNA with the target site in the mRNA was not 

proven. Ago1 is expressed at a low to medium level in most tissues, but particularly high in 

embryonic kidney. In Wilms` tumor, the most frequent renal tumor in children, that lack the 
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Wilms` tumor suppressor gene WT1, Ago1 expression is increased (Carmell et al., 2002). 

Despite good indication for miRNA misregulation in RCC, direct linkage of those miRNAs to 

the corresponding mRNAs with regards to RCC by functional assays is still missing.  

3 Transcriptional and posttranscriptional regulation 

3.1 Promoter regulation by transcription factors 

Transcription is the first step of a process that converts the encoded information from the 

DNA into RNA which is then translated into protein. Gene expression is regulated at several 

steps, but regulation at transcription initiation is most commonly studied (Maston et al., 

2006). A promoter is composed of a core promoter and proximal regulatory elements which 

together usually span less than 1 kb. Distal regulatory elements can include enhancers, 

silencers, insulators, and locus control regions (LCR) which can be spread up to 1 Mb away 

from the promoter. All cis-acting transcriptional regulatory elements are targeted by trans-

acting transcription factors that can either enhance or repress transcription. In case of protein 

coding genes, general transcription factors, required for transcription of almost all genes, 

assemble on the core promoter, direct RNA polymerase II to the transcription start site and 

can cause basal transcription. About 1850 promoter specific transcription factors have been 

discovered that bind to upstream regulatory elements (6-12 bp DNA binding site) and greatly 

enhance transcriptional activity in a spatial and temporal fashion. The numerous transcription 

factors are distinguished from each other by different DNA-binding domains such as zinc 

finger (Laity et al., 2001), helix-turn-helix (Wintjens and Rooman, 1996), basic leucine zipper 

domain (Vinson et al., 2002) and many more (Pabo and Sauer, 1992). Interaction of different 

regulatory elements is achieved by looping out intervening DNA and coactivators often 

provide a link between different proteins without binding to DNA themselves (Maston et al., 

2006). However, transcriptional regulation is even more complex and is influenced by 

chromatin structure and by histone modifications such as methylation and acetylation (Li et 

al., 2007a). Transcriptional elongation, in which the RNA transcript is synthesized, is followed 

by the termination process, when dissociation of the polymerase, DNA template and RNA 

transcript takes place.  

As sequence specific binding of transcription factors to promoters is a critical component of 

transcriptional control, sequence variations in the target site may alter or abolish the binding 

capacity (Kadonaga, 2004). Disruption of the normal process of gene expression, 

subsequently increases or decreases the amount of mRNA and thus protein (Cooper, 2002). 
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Mutations in transcription factor binding sites likely underlie a substantial component of the 

phenotypic variability within and across species (Wray, 2007). Furthermore, several 

mutations in the different transcriptional regulatory elements have been linked to human 

diseases (Maston et al., 2006) such as β-thalassemia (Hardison et al., 2002), Bernard-

Soulier syndrome (Ludlow et al., 1996) and pyruvate kinase deficiency (Manco et al., 2000; 

van et al., 2003). In hemophila B (Crossley and Brownlee, 1990; Reijnen et al., 1992; Carew 

et al., 2000) and MODY3 (Gragnoli et al., 1997), the mutations are in part located within 

HNF4A binding sites. Despite the known impact of promoter mutations on gene expression, 

promoter analysis is not a regular part of DNA diagnostics and of a total of 85,558 registered 

mutations in the Human Gene Mutation Database (HGMD) only 1.6% are regulatory 

(Stenson et al., 2009). The majority of those regulatory mutations are located between 

nucleotides +50 and -500 from the transcription start site (de Vooght et al., 2009). In addition, 

59% of functional SNPs were identified in the first 500 nucleotides upstream of the 

transcription start site in human promoters (Rockman and Wray, 2002). Sequence variations 

identified in the HNF4A P2 promoter that are linked to MODY1 have so far been located in 

close vicinity to the transcription start site as well. The first identified HNF4A promoter 

mutation was a heterozygous -146T>C substitution that impairs binding and attenuates the 

transactivation potential of the β-cell-specific transcription factor insulin promoter factor-1 

(IPF-1; Thomas et al., 2001; Hansen et al., 2002). The second mutation causing reduced 

HNF4A activation is located within the HNF1 binding sites at position -181G>A and impairs 

binding of the transcription factor HNF1A (Hansen et al., 2002). Further artificial mutations in 

various transcription factor target sites in the regulatory elements of HNF4A have been 

shown to interfere with gene expression, but have not yet been identified in any diseases 

(Bailly et al., 2009). In other cases, rare variants in the P2 promoter of patients have either 

not correlated with diabetes and/or failed to cause an impaired function in vitro (Mitchell et 

al., 2002; Vaxillaire et al., 2005). It is known that effects of promoter mutations are often 

subtle and difficult to detect (de Vooght et al., 2009). Interestingly, a -192C>G mutation in the 

HNF4A P2 promoter is linked to diabetes in several families as revealed by two independent 

studies and was even shown to disrupt binding of an unidentified protein in vitro (Ek et al., 

2006; Raeder et al., 2006b). However, reporter gene assays did not confirm an effect of this 

mutation in vitro.  

3.2 3’UTR regulation by RNA-binding proteins 

Transcription is intimately linked to processing of pre-mRNA (Proudfoot et al., 2002; 

Rosonina et al., 2006; Moore and Proudfoot, 2009). In human cells, the polyadenylation 

machinery that recognizes and processes poly(A) sites has been shown to involve about 90 
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protein factors (Shi et al., 2009). Both upstream (e.g., PAS) and downstream (e.g., U-rich 

and GU-rich) elements surrounding a poly(A) site are critical for mRNA polyadenylation (Hu 

et al., 2005; Nunes et al., 2010). The length of the poly(A) is species specific and in 

mammals about 150-250 nucleotides long (Brown and Sachs, 1998). About half of the genes 

in mammals contain multiple poly(A) sites that produce transcript variants with different 

3’UTRs or coding regions if the poly(A) site is located within an alternative intron (Tian et al., 

2005). The length of 3’UTRs varies a lot within a species, ranging from several nucleotides to 

a few thousand and is on average about one thousand nucleotides long (Mignone et al., 

2002). Alternative 3’UTRs are usually about two fold longer than constitutive regions and 

contain more cis-elements (Ji et al., 2009). Hence, variant 3’UTRs have been shown to alter 

mRNA metabolism depending on the different cis-elements located in the corresponding 

3’UTR (Majoros and Ohler, 2007; Ji et al., 2009; Mayr and Bartel, 2009). Although 

posttranscriptional regulation was long neglected in research in contrast to transcriptional 

control, it has become evident that the former process is equally as important for normal cell 

function and that its dysfunction is linked to the pathogenesis of many diseases (Danckwardt 

et al., 2008; Chatterjee and Pal, 2009). Eukaryotic 3’UTRs contain several types of repeats 

including short interspersed repetitive elements (SINEs), long interspersed repetitive 

elements (LINEs), minisatellites and microsatellites (Mignone et al., 2002). In general there 

are two main classes, regulatory proteins (Moore, 2005) and miRNAs (Bartel, 2009; Inui et 

al., 2010) that target cis-elements and mediate the 3’UTR dependent control of mRNA 

localization, stability, translation and even transcriptional initiation (Pesole et al., 2000; 

Chatterjee and Pal, 2009; Thomas et al., 2010). 

 

Localization of mRNAs to different subcellular regions allows for a spatial and temporal 

specific regulation of protein expression due to local stimuli (Martin and Ephrussi, 2009; 

Meignin and Davis, 2010). Furthermore, translation of localized mRNAs is more efficient than 

transporting each protein one by one to a specific region. Several localized mRNAs have 

been reported in various species and processes such as bicoid, oskar and nanos mRNAs in 

Drosophila (Johnstone and Lasko, 2001) and VegT in Xenopus (King et al., 2005). In 

addition, localization of several mRNAs has been identified during brain development (Lin 

and Holt, 2007), but also in the mature brain (Martin and Zukin, 2006). Localization is 

determined by the sequence of cis-acting elements located mainly in the 3’UTR of mRNAs 

(Oleynikov and Singer, 1998; Martin and Ephrussi, 2009). Those elements ranging in length 

from five to several hundred nucleotides are often repeated and a combination of unique 

elements mediates different functions in mRNA localization (Macdonald et al., 1993; Lewis et 

al., 2004; Martin and Ephrussi, 2009). Although, no clear consensus motif has been 

established yet, bioinformatic analysis suggests that repeats of CAC motifs may be important 
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(Betley et al., 2002). RNA-binding proteins targeting those elements seem to be loaded on 

the mRNA already during transcription and nuclear mRNA processing and often function 

both in localization and translational regulation (Martin and Ephrussi, 2009). mRNAs are 

transported together with RNA-binding proteins within large RNA transport particles by motor 

proteins along cytoskeletal elements (Oleynikov and Singer, 1998; Meignin and Davis, 2010). 

During delivery, mRNAs are often translationally silenced in part through the association with 

eukaryotic translation initiation factor-4G and get re-activated appropriately (Besse and 

Ephrussi, 2008). 

 

The control of mRNA stability is crucial, since changes in mRNA turnover alters the 

abundance of the corresponding protein. Hence, mRNAs of early-response-genes have half-

lives of 5 to 30 minutes, whereas other mRNAs (e.g., β-globin) are stable for several hours or 

even days (Laroia et al., 1999). The most common cis-acting elements are the highly 

conserved AU-rich elements (AREs) that have been identified in mRNAs of functionally 

diverse proteins (Chen and Shyu, 1995; Khabar, 2005; Halees et al., 2008). AREs differ in 

their sequence feature, but are divided broadly into three classes: (1) 1-3 copies of AUUUA 

motifs including nearby U-rich region or U stretch; (2) minimum of two overlapping copies of 

the nonamer UUAUUUA(U/A)(U/A) in a U-rich region; (3) lacks a core AUUUA sequence but 

has a U-rich region (Chen and Shyu, 1995; Chen et al., 2006). Several ARE-binding proteins 

(AREBPs) have been identified (e.g., AUF1 and HuR) that can either promote or inhibit the 

degradation of mRNAs containing AREs in their 3’UTR in response to various stimuli such as 

development, stress and proliferation (Khabar, 2005; Barreau et al., 2006; Glisovic et al., 

2008). Various other elements have been described to impact the stability of its mRNAs such 

as cytosine- or pyrimidine-rich elements, AG-rich elements and iron-responsive elements 

(IREs; Chen et al., 2006).  

 

Translational regulation provides a rapid mechanism to control gene expression and is often 

linked to mRNA localization. Such a dual role is described for the zipcode binding protein 1 

(ZBP1) on β-actin mRNA. The block of translational initiation is assumed to be abolished 

upon phosphorylation of ZBP1 which leads to a decreased binding affinity to β-actin mRNA 

(Hüttelmaier et al 2005). AREs and AREBPs also seem to play a minor role in the 

translational control of some genes. T-cell intracellular antigen 1 (TIA-1) is a translational 

repressor known to target AREs located in the tumor necrosis factor-α (TNFA) and 

cyclooxygenase 2 (COX2) 3’UTRs (Piecyk et al., 2000; Dixon et al., 2003). 

Immunoprecipitation experiments identified a 30-37 nucleotide long motif in TIA-1 targeted 

mRNAs that is highly U-rich in the 5’ segment and AU-rich in the 3’ stem (Lopez, et al., 

2005). 
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3.3 Regulation by miRNAs 

The first miRNA gene (lin-4) was described in Caenorhabditis elegans 17 years ago (Lee et 

al., 1993; Wightman et al., 1993). Since then, miRNA research has been extensive, resulting 

in 15,632 mature miRNAs entries across 133 virus, plant and animal species in the records 

of miRBase (http://www.microrna.sanger.ac.uk, V 15.0 April 2010). The 940 discovered 

human miRNAs seem to play a crucial role in posttranscriptional gene regulation of almost 

every process investigated including development, cell proliferation, differentiation, 

apoptosis, signaling pathways, metabolism and life span (Kloosterman and Plasterk, 2006).  

 

 
 
Figure 2: Biogenesis and mechanism of action of miRNAs.  
The primary miRNA transcript (pri-miRNA) is generated mainly by RNA polymerase II (RNA Pol II). 
After cleavage, the precursor miRNA (pre-miRNA) is exported into the cytoplasm and processed by 
Dicer. The mature miRNA is loaded into the RNA-induced silencing complex (RISC) together with 
Argonaute (Ago) proteins and functions mostly by inhibiting gene expression. For a detailed 
description of miRNA biogenesis and function refer to text. (Figure from Winter et al., 2009). 

 

miRNAs are 20-25 nucleotide-long noncoding RNAs (ncRNAs) that are mainly described to 

modulate gene expression by base-pairing to partially complementary sequences in the 

3’UTR of its target mRNAs. Their genes can be monocistronic or expressed as clusters of 
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miRNAs from within one locus (polycistronic; Lagos-Quintana et al., 2001; Zeng, 2006). 

miRNA genes have been found within introns of protein coding genes and in introns and 

exons of longer ncRNAs, located in sense and anti-sense orientation (Rodriguez et al., 2004; 

Zeng, 2006). Furthermore they can be transcribed from their own promoter, promoters from 

nearby genes or be regulated together with their host genes. Usually miRNAs are transcribed 

by RNA polymerase II as part of longer primary constructs (pri-miRNA) including a 5’ cap 

structure and 3’ poly(A) tail (Bartel, 2004; Fig. 2). Those pri-miRNAs fold into a hairpin 

structures and are processed in the nucleus by a microprocessor complex, which consists of 

the RNase III type endonuclease Drosha and its partner DGCR8 (Denli et al., 2004). The 

resulting 65-85 nucleotide stem loop termed precursor miRNA (pre-miRNA) is actively 

transported into the cytoplasm by Exportin-5 and its cofactor RAN-GTP (Lund et al., 2004). 

Final processing is carried out by the RNase II type endonuclease Dicer in association with 

TAR RNA-binding protein (TRBP or TARBP2; Hammond, 2005). Usually one strand of the 

resulting 20-25 nucleotide mature miRNA duplex is degraded, while the mature miRNA is 

loaded into the RNA-inducing silencing complex (RISC) containing Argonaute (Ago) proteins 

(Gregory et al., 2005). Within the RISC complex, the miRNA guides target selection, resulting 

in mainly negative regulation of target mRNAs by different mechanism (Carthew and 

Sontheimer, 2009). Aside from this linear miRNA processing pathway, various miRNA 

specific differences have been described such as transcription by RNA polymerase III or 

RNA editing, allowing for multiple regulatory options to express and process individual 

miRNAs differentially (Winter et al., 2009). The importance of certain factors involved in 

miRNA biogenesis and function have been demonstrated by mouse models of Dicer 

(Bernstein et al., 2003), Dgcr8 (Wang et al., 2007) or Ago2 (Liu et al., 2004) knockout that 

displayed embryonic lethality.  

 

The main mechanisms causing gene silencing influence mRNA cleavage, stability and 

translational repression of the target gene. The choice of mechanism depends in part upon 

the degree of complementarity between a miRNA and its target (Hutvagner and Zamore, 

2002; Zeng et al., 2003). Perfect or near perfect base pairing promotes cleavage of the 

mRNA, a rare event in animals that depends on the slicer activity of Ago2 (Yekta et al., 2004; 

Liu et al., 2004; Meister et al., 2004). In vertebrates, miRNA base pairing is usually imperfect 

and is thought to cause inhibition of translation of the target mRNA, followed by a variable 

degree of mRNA degradation (Pillai et al., 2005). Several mechanisms of translational 

repression by miRNAs have been suggested, including blocking of both initiation and post-

initiation steps and sequestrations of the mRNA targets together with miRNAs and Ago 

proteins into P-bodies, specialized cytoplasm compartments where translational repression 

and mRNA turnover takes place (Pillai et al., 2007). This miRNA mediated repression and 
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P-body localization of mRNAs seems to be reversible in response to certain environmental or 

developmental cues (Bhattacharyya et al., 2006; Pillai et al., 2007). Destabilization has been 

shown to occur by mRNA deadenylation, followed by decapping and subsequent 5’-3’ 

exonucleolytic degradation (Wu et al., 2006; Behm-Ansmant et al., 2006; Chekulaeva and 

Filipowicz, 2009). A recent study combined ribosome and mRNA profiling analyses and it is 

claimed that >84% of the miRNA dependent decrease in protein production is caused by 

destabilization of target mRNAs while the influence on translational efficiency is modest (Guo 

et al., 2010).  

In a few cases activation of gene expression was reported involving different circumstances. 

One group reported that miRNAs act as translational activators only in cells arrested in 

G0/G1 involving Ago2 and FXR1 proteins (Vasudevan and Steitz, 2007; Vasudevan et al., 

2007). In another case, miR-10a enhanced translation by targeting the 5’UTR of ribosomal 

protein mRNAs (Orom et al., 2008). miR-122 stimulated translation of hepatitis C virus if 

bound to the 5’UTR, while binding to the 3’UTR of a reporter resulted in downregulation of its 

activity (Jopling et al., 2005; Jopling et al., 2008; Henke et al., 2008). 

The RNA interference (RNAi) process triggered by small RNAs was thought to silence gene 

expression at the posttranscriptional level. Over the past few years, components of the RNAi 

machinery have also been identified to function in the nucleus. Transcriptional gene silencing 

in mammals was discovered by the use of promoter-directed, synthetic, small interfering 

RNAs (siRNAs; Morris et al., 2004; Ting et al., 2005) and shown to be accompanied by 

dimethylation of lysine 9 (H3K9) and trimethylation of lysine 27 (H3K27) in histone H3 (Ting 

et al., 2005; Kim et al., 2006; Weinberg et al., 2006; Han et al., 2007). Ago1 and Ago2 

proteins are recruited to the promoter and involved in the formation of silent chromatin 

domains (Janowski et al., 2006; Kim et al., 2006). More recently, such synthetic, promoter-

directed antigene RNAs (agRNAs) were also described to activate gene expression in 

human cancer cell lines (Li et al., 2006a; Janowski et al., 2007). Transcriptional activation is 

associated with demethylation of H3K9 (Li et al., 2006a) and increased di- and trimethylation 

of H3K4 (Janowski et al., 2007). Both, gene activation and inactivation by agRNAs is 

sequence specific, but no position dependent rules could be identified that cause gene 

silencing versus activation (Li et al., 2006a; Janowski et al., 2007). Recently, it has been 

reported that for both inhibition and activation, agRNAs recruit Ago proteins to antisense 

transcripts of the promoter and mediate formation of complexes with proteins and 

chromosomal DNA (Schwartz et al., 2008).  

Currently, there are only a few reports in mammals providing evidence of miRNAs 

modulating gene expression by promoter recognition. In one study an epigenetic mechanism 

of miRNA directed transcriptional gene silencing has been suggested (Kim et al., 2008). 

They found that miR-320 targets the promoter location of the POLR3D gene from which it is 
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transcribed in antisense direction and showed that expression of this miRNA and protein 

coding gene, are anti-correlated. Another study reported the activating effect of miR-373 and 

pre-miR-373 in the presence of Dicer on E-cadherin and cold-shock domain-containing 

protein C2 (CSDC2), which was associated with an enrichment of RNA polymerase II at both 

promoters (Place et al., 2008). Activation was specific to the miR-373 sequence and 

dependent on the predicted target site within the promoter sequences.  

 

Not all protein coding genes are regulated by miRNAs. Some genes that are involved in 

basic cellular processes seem to even avoid miRNA regulation due to short 3’UTRs that are 

specifically depleted of miRNA binding sites (Stark et al., 2005). However, about 30% of 

protein coding genes are estimated to be regulated by miRNAs (Lewis et al., 2005) with a 

high probability for transcription factors (John et al., 2004). Several target prediction 

programs have been developed to predict miRNA binding sites (John et al., 2004; Krek et al., 

2005; Grimson et al., 2007). However, accurate prediction is made difficult since target 

sequences are very short and base pairing is mostly imperfect between the miRNA and 

regulated mRNAs. Perfect complementarily of the seven nucleotides between positions two 

to eight (seed sequence) of the miRNA and its target mRNA have been shown to be crucial 

in various cases, resulting in perfect seed sequences as a prerequisite in the majority of 

search algorithms (Lewis et al., 2005). Other features include thermodynamically stability of 

the duplex miRNA-mRNA, phylogenetic conservation, position within the 3’UTR, multiple 

target sites in a single mRNA by the same or different miRNAs and absence of stable 

secondary structures (Grimson et al., 2007). In contrast to the majority of programs available, 

RNA22 can upload and analyze a specific target sequence and miRNAs of interest and does 

not rely upon cross-species conservation (Miranda et al., 2006). Although many miRNA 

genes have been identified and potential targets have been bioinformatically predicted, the 

challenge is to provide experimental evidence of miRNA-mRNA interactions and identify their 

biological relevance (Kuhn et al., 2008). 

Because miRNAs are important regulators of gene expression, misregulation or mutations of 

miRNAs seem to play key roles in several diseases including many types of cancer, genetic 

disorders and viral infections (Croce and Calin, 2005; Garofalo et al., 2008). They can 

function as oncogenes (e.g., miR-21 regulating the tumor-suppressor tropomyosin 1 (TPM1; 

Zhu et al., 2008)) or tumor suppressors (e.g., let-7 regulating RAS oncongene mRNAs; 

Johnson et al., 2005) and affect various steps of tumor formation from initiation to metastasis 

(Hanahan and Weinberg, 2000; Kent and Mendell, 2006; Shenouda and Alahari, 2009; 

Ventura and Jacks, 2009; Croce, 2009). Interestingly, dual oncogenic and tumor-suppressive 

roles are reported for several miRNAs, depending on the cell type and pattern of gene 

expression (Fabbri et al., 2007).  



Introduction 

 27

4 Objective of this study 

HNF4A2 overexpression results in a significant decrease in cell proliferation. The aim of the 

first part of this project is to narrow down the number of potential HNF4A target genes to 

those crucial for proliferation control. For this purpose, a HNF4A isoform with no impact on 

cell proliferation decrease is sought. A cell line conditionally expressing this isoform will be 

established to subsequently determine its target genes by microarray analyses. Any 

identified gene is likely irrelevant for proliferation control and can thus be eliminated from the 

numerous potential HNF4A2 target genes identified previously. Detailed analyses, by means 

of qRT-PCR, RNAi and generation of inducible cell lines, of promising HNF4A target genes 

will be conducted to corroborate the impact on cell proliferation control.  

 

The second part of this project addresses the transcriptional regulation of HNF4A itself. The 

impact of mutations identified within the P2 promoter, active in the pancreas, of patients with 

clinical signs of MODY1, will be analyzed in reporter gene studies. The aim is to link novel 

mutations in the regulatory sequences of HNF4A to MODY1.  

In addition, evidence for the potential regulation of the HNF4A P1 and P2 promoter by 

miRNAs will be investigated. Considering an activating effect of miRNAs on gene promoters, 

downregulation of miRNAs in RCC or diabetes might contribute to the downregulation of 

HNF4A in those diseases due to dysfunction of the P1 and P2 promoter, respectively. To 

approach this hypothesis, the impact of miRNA depletion on both HNF4A promoters as well 

as truncated constructs will be investigated with reporter analyses in a cell system allowing 

for the conditional knock-down of Dicer.  

 

The third part of this project will elucidate the previously unrecognized posttranscriptional 

regulation of HNF4A. Initially, the predicted as well as possible alternative HNF4A 3’UTRs 

will be assessed and their mode of regulation evaluated in reporter assays. Due to the 

impressive length of the 3’UTR, shortened constructs will be generated to facilitate the 

identification of crucial elements targeted by regulatory factors. To specifically investigate 

3’UTR regulation by any miRNA present in the cell, the conditional Dicer knock-down assay 

will be applied. In the case of evidence of miRNA regulation, selected miRNAs upregulated in 

RCC should be gathered from different profiling studies. Due to the repressive effect of 

miRNAs on 3’UTRs, overexpression of a specific miRNA targeting the 3’UTR should result in 

the downregulation of HNF4A. Such an effect measured by luciferase assays should be 

abolished upon destruction of the potential target sites in the mRNA.   
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B Materials and Methods 

The following procedures were taken from the methods collection of Sambrook et al. (1989), 

unless other sources are given as reference.  

1 Chemicals, enzymes and solutions 

Chemicals and enzymes were purchased from Aldrich, Amersham Biosciences, Bio-Rad, 

Boehringer Mannheim, Fluka, Gibco, Invitrogen, Merck, New England Biolabs, Pharmacia, 

Roche, Roth, Serva and Sigma in pro analysis quality, unless stated otherwise. Cell culture 

materials were purchased from TTP and Nunc. Oligonucleotides were obtained from 

Invitrogen. 

2 General DNA and RNA procedures 

Standard procedures such as gel electrophoresis, restriction digests, ligations, as wells as 

preparation of competent cells and bacterial transformation were carried out according to 

standard protocols (Sambrook et al., 1989). The “QIAquick PCR Purification Kit” (Qiagen) 

was used to purify DNA after enzymatic reactions. For mini-preparations of plasmid DNA up 

to 20 µg a method based on alkaline lyses was used. Large quantities of plasmid DNA up to 

500 µg were extracted with the „Nucleobond PC500 AX Kit“ (Machery und Nagel).  

Sequence analyses were carried out by the group of Prof. Küppers of the Institute of Cell 

Biology or by the sequencing service of the Institute of Human Genetics of the University 

Clinic Essen.  
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3 Oligonucleotides 

Primers used for esiRNA generation: 

Primer name  Primer sequence (5’-3’) 

T7      TAATACGACTCACTATAGGGA  

T3   TAATACGACTCACTATAGGGAAATTAACCCTCACTAAAGGGA  

HNF4A2 U  TAATACGACTCACTATAGGGAACCTGTTGC 

HNF4A2 L  TAATACGACTCACTATAGGGAACTTCCTGC   

 

Primers used for qRT-PCR: 

Primer name  Primer sequence (5’-3’) 

GAPDH U  GTCAGTGGTGGACCTGAC 

GAPDH L  ACCTGGTGCTCAGTGTAG 

hCIDEB-E6 U  AGTACTTTCTTTGGGCCAAGTC 

hCIDEB-E6 L  CCAAGCACAGCAAGGACAT 

mCideb-E6 U  CAAAACACAGCAAGGACAT 

mCideb-E6 L  AGTACTCTTTTAGGGCCAACTC 

 

Primers used for Cideb cloning: 

Primer name  Primer sequence (5’-3’) 

mCideb-cDNA U CCGGAATTCAATGGAGTACCTTTCAGCCTTCA 

mCideb-cDNA L CCGCTCGAGTTAGGAGTGGAGGTGTCTCTGC  

Underlined are the EcoRI and XhoI restriction sites.   

 

Primers used for 3’ RACE PCRs: 

Primer name  Primer sequence (5’-3’) 

Oligo-dT-adapter GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTTT 

Adapter AS  CCACGCGTCGACTAGTACTTT 

Proximal PA S CGGGATCCGGCTGCACTAAAATTCACTTAGGGTCG 

Distal PA S  CGGGATCCTTCTTACTCTTCTGTGTTTTAACAAAA 
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Primers used to amplify the HNF4A 3’UTR: 

The upper primers used to amplify parts of the HNF4A 3’UTR are always listed first and the 

lower primers second. The upper primers are either flanked by a SpeI (bold) or XbaI (bold 

and italics) restriction site, while the lower primers contain a NotI (underlined) site for ligation 

into the XbaI/NotI sites downstream of the renilla luciferase into the RL-Con plasmid. 

 

HNF4A 3’UTR (nt) Primer (5’-3’) 

      1 - 3180  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCTTAGAAAACATATGCGCCATTT 

1 - 2769  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCTGTCCCCCCAGCAAC 

1 - 2573  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCCTCCAGAAAGGGGTAGATTC 

      1 - 1746  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCGAGAAAAGCTGTCAAGAGTCATGA 

1 -   630  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCCCTGCCTGGTGCCT 

1 -   449  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCCGGCCGCTGCCCCAAGTGCCAC 

1 -   386  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCTAGGAGAGGAGAAGCACCAGG 

1 -   378  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCGAGAAGCACCAGGCTAGGG 

1 -   264  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCTGAAGGCAGTGGCTTCAAC 

1 -   258  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCAGTGGCTTCAACATGAGAAAA 

1 -   249  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCAACATGAGAAAGTTGTCCAAG 

1 -   241  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCGAAAAGTTGTCCAAGGCAGTAGA 

1 -   204  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCAAAGTCTTGTTATCCAGAGCAGG 

1 -   196  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCGTTATCCAGAGCAGGGCGT 

1 -   159  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCGTGGCCCTTAGGCCATG 
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1 -   151  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCTAGGCCATGTTCTCGGG 

1 -   134  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCCCTTCATCCTTCCCATTC 

1 -   126  GGACTAGTTAGCAAGCCGCTGGG 

   GCATGCGGCCGCCCTTCCCATTCCTGCTCTG 

  423 -   875  GGACTAGTCTGGGTCCAATTGTGGCA 

   GCATGCGGCCGCTCCCATCTCACCTGCTCTACC 

  850 -   899  GCTCTAGATGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCTGGCTCAGGCTGTTCTTTG  

  850 - 1013  GCTCTAGATGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCCTCAGCCTGGTGTTCCAGA  

  850 - 1167  GCTCTAGATGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCGTCCTCTCCAGCCCCAAG 

  850 - 1207  GCTCTAGATGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCCCTCCTGATGTCACTCTGAT 

  850 - 1259  GCTCTAGATGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCAGACAGTGCCTGGGAGTAAGG 

  850 - 1313  GGACTAGTTGGCTGGTAGAGCAGGTGA 

   GCATGCGGCCGCGGTTAATAGGGAGGAAGGGAGG 

  900 - 1013  GCTCTAGAAGGCCTAGTGGTAGTAAGAATCTAGC  

    GCATGCGGCCGCCTCAGCCTGGTGTTCCAGA  

  900 - 1167  GCTCTAGAAGGCCTAGTGGTAGTAAGAATCTAGC  

   GCATGCGGCCGCGTCCTCTCCAGCCCCAAG 

  900 - 1207  GCTCTAGAAGGCCTAGTGGTAGTAAGAATCTAGC  

   GCATGCGGCCGCCCTCCTGATGTCACTCTGAT 

1014 - 1167  GCTCTAGAGTCCTGATCAGCTTCAAGGAGT  

   GCATGCGGCCGCGTCCTCTCCAGCCCCAAG 

1014 - 1207  GCTCTAGAGTCCTGATCAGCTTCAAGGAGT 

   GCATGCGGCCGCCCTCCTGATGTCACTCTGAT 

1127 - 1207  GCTCTAGATAATGCGGGTGAGAGTAATGAG 

   GCATGCGGCCGCCCTCCTGATGTCACTCTGAT 

1208 - 1313  GCTCTAGAAATAAGCTCCCAGGGCCTG 

   GCATGCGGCCGCGGTTAATAGGGAGGAAGGGAGG 

1288 - 1460  GCTCTAGATAATCCTCCCTTCCTCCCTATT 

   GCATGCGGCCGCCTTCCTAGTTGTGTGAGTTTCAGAA 

1288 - 1513  GCTCTAGATAATCCTCCCTTCCTCCCTATT 
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   GCATGCGGCCGCAAGAGCTCCTGTTCTGATCCAG 

1288 - 1597  GCTCTAGATAATCCTCCCTTCCTCCCTATT 

   GCATGCGGCCGCTGTAGAAGGGAGCCGGAAG  

1288 - 1666  GCTCTAGATAATCCTCCCTTCCTCCCTATT   

   GCATGCGGCCGCCAGCCTCAGGCCAATCTT  

1288 - 1746  GGACTAGTTAATCCTCCCTTCCTCCCTATT 

   GCATGCGGCCGCGAGAAAAGCTGTCAAGAGTCATGA 

1336 - 1746  GCTCTAGATTCTCCTCCTCCCTCCCC  

   GCATGCGGCCGCGAGAAAAGCTGTCAAGAGTCATGA 

1392 - 1513  GCTCTAGATTACAGAAGCTGAAATTGCGTTC 

   GCATGCGGCCGCAAGAGCTCCTGTTCTGATCCAG 

1392 - 1746  GCTCTAGATTACAGAAGCTGAAATTGCGTTC 

   GCATGCGGCCGCGAGAAAAGCTGTCAAGAGTCATGA 

1461 - 1746  GCTCTAGATGGCTGAGTCAGGACTTGAA 

   GCATGCGGCCGCGAGAAAAGCTGTCAAGAGTCATGA 

1725 - 2573  GGACTAGTATGACTCTTGACAGCTTTTCTCTCT 

   GCATGCGGCCGCCCTCCAGAAAGGGGTAGATTC 

2574 - 3180  GGACTAGTAGAAACCCATTCCACCTTAATAAC 

   GCATGCGGCCGCTTAGAAAACATATGCGCCATTT 

2771 - 3180  GGACTAGTAGCGTGGGCACAATTTC 

   GCATGCGGCCGCTTAGAAAACATATGCGCCATTT 

 

SV40 PA   GCTCTAGATTCCCTTTAGTGAGGGTTAATGC 

   GGACTAGTATCACCCTAATCAAGTTTTTTGGG 

4 Plasmid constructions 

The pcDNA5/FRT/TO expression vector (Invitrogen) was used to generate the Flp-In T-Rex 

293 cell lines of interest. When co-transfected with the Flp recombinase expression plasmid 

pCSFLPe1 (Werdien et al., 2001) into the Flp-In host cell line, the pcDNA5/FRT/TO vector 

containing the gene of interest (GOI) is integrated in a Flp recombinase-dependent manner 

into the genome. Generation of pcDNA5/FRT/TO containing the myc-tagged open reading 

frame (ORF) of HNF4A8 was described previously (Erdmann et al., 2007).  

For Cideb, a full-length mouse cDNA clone was obtained from RZPD (IRAVp968B0424D6) 

and the ORF was amplified by PCR using primers (2.4 Oligonucleotides) containing 

restriction sites for EcoRI and XhoI. The digested PCR product was first cloned into the 
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EcoRI and XhoI sites of the pCS2+MT plasmid (Rupp et al., 1994) to add a myc-tag to the 

sequence and verified by sequencing. The myc-tagged Cideb was excised with BamHI and 

XhoI and cloned into the same sites of pcDNA5/FRT/TO.  

 

The HNF4A P2 promoter luciferase constructs were generated previously by introducing 

different PCR fragments of the P2 promoter sequence into XhoI and HindIII restriction sites 

of the pGL3-BasicII vector (Promega; Thomas et al., 2001). 

The QuikChange II Site-Directed Mutagenesis Kit (Stratagene) was used to introduce point 

mutations into P2/-285 and obtain P2/-285(-136A>G), P2/-285(-169-C>T) and P2/-285 

(-192C>G) (Wirsing et al., 2010). 

To obtain HNF4A P1 promoter fragments upstream of the firefly ORF in the pGL3 Basic 

plasmid (Promega), P1 promoter fragments were excised from hHNF4-luc plasmid that was 

generated previously (Thomas et al., 2002). P1/-1114 was restricted with KpnI and HindIII, 

P1/-590 with BamHI and HindIII, P1/-281 with XmaI and HindIII and P1/-132 with BglII and 

HindIII and all fragments were ligated to corresponding sites within the pGL3 basic plasmid.  

The CMV promoter was excised from the pCSGFP2 plasmid (Wild et al., 2000) with SalI and 

HindIII and cloned into the XhoI and HindIII sites of pGL3 basic.  

 

The HNF4A 3’UTR was amplified using a human BAC clone (RPCIB753B08466Q; 

imaGenes) as a template and primers containing flanking SpeI or XbaI and NotI sites (2.3 

Oligonucleotides). The restricted HNF4A 3’UTR and all shortened fragments were cloned 

into XbaI/NotI sites of pRL-Con (Schmitter et al., 2006) and subsequently sequenced.  

The sequence 631-3180 of the corresponding construct was excised from construct 1-3180 

with XbaI/NotI and ligated into the same sites of the RL-Con plasmid. To delete the 

sequence containing negative element A and B and obtain constructs 1-844+1720-3180 and 

631-844+1720-3180, two EcoRI sites present in the HNF4A 3’UTR sequence were used. 

The latter construct was also used to generate construct 631-849+1718-850+1719-3180, by 

re-introducing the excised EcoRI-fragment and selecting for clones containing this sequence 

in 3’-5’ direction. To get constructs 1-636+850-1207 and 1-636+1288-1666, a construct 

containing the 5’ 843 nt of the HNF4A 3’UTR was cut with XbaI/NotI and ligated into the 

XbaI/NotI restricted PCR products from 850-1207 and 1288-1666. To determine if negative 

element A and B function on RNA level, a XbaI/SpeI cleaved PCR product containing the 

SV40 PAS was introduced into the XbaI site upstream of negative element A and B 

constructs. Both orientations of the insert were identified by sequencing, resulting in 

construct 5’-3’ PAS + 850-1207, 3’-5’ PAS + 850-1207, 5’-3’ PAS + 1288-1666 and 3’-5’ PAS 

+ 1288-1666.  
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5 Cell culture 

All procedures with eukaryotic cells were performed under sterile conditions at a laminar flow 

hood.  

5.1 Growth and maintenance of cell cultures  

All cell lines were grown in DMEM or RPMI-1640 medium (Gibco-BRL) supplemented with 

10% heat inactivated fetal calf serum (FCS), penicillin/streptomycin (100 U/ml) and 2 mM 

glutamine at 37°C under 8% CO2 atmosphere and a relative humidity of 95%.  

The host cell line Flp-In T-Rex 293 was cultured in DMEM supplemented with 15 µg/ml 

blasticidin and 100 µg/ml zeocin. In case of the stable cell lines derived from the host cell 

line, zeocin was substituted with 50 µg/ml hygromycin B. Dicer-kd/2b2 cells (Schmitter et al., 

2006) were grown in DMEM supplemented with 10 µg/ml blasticidin and 50 µg/ml zeocin 

(Invitrogen). Expression of an anti-Dicer short hairpin was induced with 1 µg/ml of 

doxycycline (dox). HEPG2 cells were maintained in DMEM and HK120 cells (Stilla Frede, 

Institute of Physiology, University clinic Essen) were grown in RPMI-1640 medium. The 

INS-1 #5.3-19 cell line and INS-1 (HNF1B #1A) (Thomas et al., 2004) cells were cultured in 

RPMI-1640 medium supplemented with 1 mM sodium pyruvate, 10 mM HEPES, 50 µM 

mercaptoethanol, 10 µg/ml blasticidin and 200 µg/ml zeocin.  

All cells were routinely passaged at approximately 80% confluence. The culture medium was 

removed, cells washed with 10 ml PBS and detached by incubation in 1 ml Trypsin/EDTA for 

2-3 minutes in the incubator. Trypsin was inactivated by addition of 9 ml culture medium. 

Cells were diluted about 1:10 in fresh medium.  

5.2 Cryoconservation  

For long term storage, cell pellets were resuspended in 2 ml of cold freezing medium (culture 

medium without antibiotics and additional 10% FCS and 10% DMSO) after centrifugation for 

5 minutes at 900 rpm. 1 ml aliquots were transferred into cryo tubes (1.8 ml). After cooling 

down to -80°C for 24-48 hours, the cells were stored in liquid nitrogen (-196°C).  

Cell cultures were replaced from frozen stocks after 20-30 passages. Cells were thawed in a 

water bath at 37°C and then diluted with 9 ml cold medium. After centrifugation for 5 minutes 

at 900 rpm, the cell pellet was resuspended in fresh medium. After 24 hours medium was 

exchanged and antibiotics were added.  
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5.3 Cell counting  

To determine the number of cells per unit volume of a suspension, a counting chamber 

(hemocytometer) was used. Prior to counting, cells were trypsinized and resuspended in 

fresh medium. Cells were counted in each of the four corner squares. The average was 

multiplied with 1 x 104 to obtain the cell number per milliliter cell suspension.  

6 Generation of cell lines with the Flp-In T-Rex system 

6.1 Flp-In T-Rex 293 cells  

The Flp-In T-Rex 293 host cell line (Invitrogen) contains a single integrated FRT site which is 

recognized by the Flp-recombinase and stably expresses the tetracycline repressor. To 

obtain a cell line conditionally expressing the GOI, the host cell line was co-transfected 1:1 

with the pcDNA5/FRT/TO plasmid containing the GOI and a hygromycin resistance gene and 

the Flp recombinase expression vector pCSFLPe1 (Werdien et al., 2001). 3 x 105 cells were 

seeded in 6- wells and transfected the next day with a total of 1.6 µg plasmid DNA. 100 µl of 

lipofectamine (Invitrogen) were diluted 1:17.5 in Optimem (Invitrogen) in a polystyrene (PS) 

tube. The DNA was diluted in Optimem as well and added to the tube drop-by-drop. While 

incubating for 15 minutes at room temperature, the cell culture medium was exchanged with 

1.5 ml Optimem. The transfection mix was added to the cells and after four hours in the 

incubator, the medium was replaced with fresh DMEM including blasticidin, but no zeocin.   

One day after the transfection, the cells were trypsinized and transferred to a 10 cm dish. To 

select for cells including the GOI, 24 hours later, fresh medium including hygromycin (and 

blasticidin) was added. After 10-14 days the selection process was completed. The 

hygromycin resistant cell colonies were pooled and expanded to obtain a polyclonal cell line. 

As soon as the cells reached confluence, aliquots of the new cell lines were stored in liquid 

nitrogen.  

To verify that the GOI had integrated into the FRT site, each cell line was tested for the lack 

of β-galactosidase activity due to disruption of the functional lacZ-zeocin fusion gene. Cells 

expressing β-galactosidase cleave the substrate X-gal and transform it into a blue product 

easily visible by microscopy, while cells lacking that enzyme remain clear. The generated cell 

lines were seeded in 6-well dishes, washed 24 hours later with PBS and fixed in PBS 

containing 1% formaldehyde and 0.2% glutaraldehyde. Cells were washed in PBS again and 

incubated at 37°C for 1-24 hours with PBS containing 5 mM potassium ferricyanide, 5 mM 
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potassium ferrocyanide, 2 µM MgCl2 and 1 mg/ml X-Gal (5-bromo-4-chloro-3-indoyl-β-D-

galactopyranoside). After the incubation period, the cells were analyzed by light microscopy. 

Each cell line was only used for further experiments when containing less than 5% of blue 

cells.  

6.2 Induction of cell lines with doxycycline  

To induce expression of the stably integrated GOI, cells were cultivated with medium 

containing doxycycline (1 µg/ml). Doxycycline was used instead of tetracycline due to its 

longer half time of 48 hours versus 24 hours. Since doxycycline is dissolved in ethanol, 

control cells were treated with ethanol. If incubation times exceeded two days, medium 

including fresh doxycycline was exchanged regularly.  

7 Analyzing cell morphology and cell proliferation 

In the course of the experiments, cell morphology was monitored daily using a phase 

contrast microscope (Diavert, Leitz). Phenotypical changes of the cells were documented 

with digital fotography (Nikon Coolpix 4500).  

 

The MTS assay (Cell Titer 96 Aqueous One Solution Cell Proliferation Assay, Promega) was 

used to analyze cell proliferation. This colometric method is based on the metabolic activity 

of cells and thus determines the number of viable cells in proliferation. The tetrazolium 

compound MTS is bioreduced into the aqueous soluble formazan by dehydrogenase 

enzymes found in metabolically active cells, in the presence of the electron coupling reagent 

PMS. The absorbance of the formazan product is measured at 490 nm in a photometer and 

is directly proportional to the number of living cells in culture.  

Cells were seeded in a 96-well plate at a density of 2-10x103 cells in 100 µl medium per well. 

Doxycycline or ethanol was added after 24 hours and the cells were incubated for 3-6 days. 

20 µl MTS reagent was added to each well. After 60 minutes incubation at 37°C, OD490 was 

measured with a microplate photometer (Bio-Rad, Model 550). The measured values from 

the wells just containing medium, were used to determine the background. Each experiment 

was performed in triplicate. 
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8 Immunofluorescence microscopy 

Immunofluorescence microscopy was used to visualize the presence and localization of 

target proteins in the cell. 1 x 105 to 3 x 105 cells were seeded per well in a 6-well dish on top 

of cover glasses. For fixation, cells were washed with PBS, fixed with methanol for 10 

minutes at room temperature and washed again twice with PBS. To block unspecific binding 

of the antibody, the cells were incubated with PBS/10% goat serum for 60 minutes at 4°C. 

The primary antibody targeting the myc-tag (9E10 monoclonal) was diluted 1:4 in DMEM and 

incubated for 60 minutes at room temperature. The secondary antibody (anti-mouse Cy3; 

Jackson ImmunoResearch) was diluted 1:200 in PBS/10% goat serum for 60 minutes at 4°C 

protected from light. To visualize the nuclei, cells were incubated for 5 minutes at room 

temperature with Hoechst A 33342 (1:1000 in H2O, Sigma) to stain the DNA and 

subsequently mounted with Vectashield (Vector-Laboratories). The preparations were 

analyzed with a fluorescence microscope (DM IRE2, Leica) and documented with an 

attached digital camera (DC 500, Leica) and the image analysis software Qfluoro.  

9 Proteins 

9.1 Total cell protein extract and quantification  

To obtain whole cell protein extracts, the cells were detached from the petri dish by using 

trypsin and centrifuged for 5 minutes at 900 rpm at room temperature. The pellet was 

washed with 1 ml icecold PBS and transferred into a 1.5 ml microcentrifuge tube. After 

additional centrifugation (14,000 rpm, 1 min, 4°C) the cells were resuspended in icecold 

RIPA buffer (50 mM Tris-HCl pH 7.2, 150 mM NaCl, 0.1% SDS, 1% Natriumdeoxycholat, 1% 

Triton X-100) containing protease inhibitors (Sigma; P8340 1:500) and lysed 30 minutes on 

ice. Cell debris was separated by centrifugation (50,000 rpm, 10 min, 2°C) and the 

supernatant containing the whole cell protein extract was stored at -80°C. 

 

The Bradford assay (Bradford, 1976) is based on the observation that the absorbance 

maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 

595 nm when binding to protein occurs. The concentration of whole cell protein extracts was 

determined using the Bio-Rad Protein-Assay reagent. 2-10 µl protein solution were diluted in 

1600 µl H2O in a cuvette and mixed with 400 µl Bio-Rad Protein-Assay reagent. After 

incubation for 5 minutes at room temperature, the solution was measured in a 
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Spectrophotometer (S2000 WPA) at OD595. The OD595 of each sample was compared to a 

standard curve prepared with BSA (2-20 µg). RIPA buffer, in which the proteins were diluted, 

served as a control.  

9.2 Discontinuous SDS polyacrylamide gel electrophoresis (SDS-
Page)  

Protein samples were separated electrophoretically on a denaturing SDS-polyacrylamide gel 

according to Laemmli (1970). Depending on the size of the proteins, a 7.5% or 10% resolving 

gel was used in combination with a 5% stacking gel in a vertical Mini-Protean Gel chamber 

(Bio-Rad). 2x Laemmli buffer (Tris-HCL pH 6.8, 4% SDS, 20% glycerol, 0.2% bromphenol 

blue, 10% β-mercaptoethanol) was added to each sample in appropriate volumes and 

samples were denatured at 95°C for 5 minutes before application to gel slot. Electrophoresis 

was performed in 1x SDS running buffer under 100 V. The prestained protein ladder 

“Precision Plus protein Standards, Dual color” (Bio-Rad) was used as a standard.  

9.3 Western blot and protein detection  

A semi-dry blotting chamber was used to transfer the separated proteins from the 

polyacrylamide gel to a nitrocellulose membrane. All components were soaked in 1x transfer 

buffer (8 mM Tris, 40 mM glycine, 0.0375% SDS, 20% methanol) for 2 minutes before 

stacking them between the anode and cathode plate of the blotting chamber (Trans-Blot SD 

Semi-Dry Transfer Cell, Bio-Rad) in the following order: five Whatman papers, nylon 

membrane, gel, five Whatman papers. The transfer was performed for one hour at 2 mA/cm2. 

After the transfer, the membrane was blocked to prevent non-specific binding of antibodies to 

the membrane by incubating with blocking agent (Amersham) diluted 1:20 in blocking buffer 

(150 mM NaCl pH7.5, 100 mM Tris) for one hour at room temperature. The membrane was 

further incubated over night at 4°C with the mouse monoclonal primary antibody against the 

myc-tag (9E10, lab specific) at a dilution of 1:5 in PBS-T (PBS, 0.1% Tween-20). After the 

primary antibody, the membrane was incubated with the horseradish-peroxidase-conjugated 

anti-mouse secondary antibody (NXA 931, Amersham) at a dilution of 1:5000 in PBS-T for 

one hour at room temperature. After each incubation, the membrane was washed three 

times with PBS-T at room temperature. Immunoreactivity was detected using the ECL Kit 

(Amersham Bioscience) according to manufacturer´s instructions. The membrane was 

wrapped in a plastic film and put in a cassette for exposure of the film (HyperfilmTM ECLTM, 

Amersham Bioscience) for 5 sec to 50 min, depending on signal intensity.  
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10 Microarray analysis 

Microarray analyses were performed in collaboration with PD Dr. Ludger Klein-Hitpass 

(BioChip Lab, Institute of Cell Biology, University Clinic Essen). 

10.1 Microarray chips  

The Affymetrix Genechip HG_U133_2.0_Plus is a high density oligonucleotide microarray 

which detects 54,000 probe sets representing about 38,500 genes. Oligonucleotides, usually 

25-mers, are directly synthesized onto a glass wafer by a combination of photolithography 

and solid phase chemical synthesis technology. Each gene sequence is represented by 

eleven pairs of oligonucleotide probes, present in millions of copies. A pair consists of a 

perfect match (PM) probe that is entirely complementary to the gene sequence and a 

corresponding mismatch (MM) probe that contains a single base substitution in the middle of 

the sequence, reducing binding of the corresponding transcript. This setup helps to 

determine the background and nonspecific hybridization that contributes to the signal 

measured for the PM probe. To obtain the absolute or specific intensity value for each 

probes set, the hybridization intensities of the MM probes are substracted from those of the 

PM oligonucleotides.  

10.2 RNA isolation for microarray analysis  

Total RNA was extracted from induced (+dox) and uninduced (-dox) HEK293 HNF4A8# 11 

and HNF4A8 #14 cells using peqGold RNAPure (PeqLab) according to the manufacturer’s 

instructions. For a 10 cm dish, 3 ml peqGOLD RNA pure were used and the isolated RNA 

was dissolved in 30 µl RNase-free water. The RNA was further purified using the RNeasy 

Mini Kit (Qiagen) according to the standard protocol including on column DNase digestion 

with the RNase-free DNase set (Qiagen). After determining the concentration in a ND-1000 

Spectrophotometer (NanoDrop Technologies), the RNA was stored at -80°C.   

10.3 Synthesis of cDNA, marking and hybridization  

mRNA, comprising about 0.2-0.4% of total RNA was reverse transcribed into single-stranded 

cDNA using a T7-d(T)21 primer. The complementary cDNA strand was synthesized by DNA 

polymerase I, DNA ligase and RNase H. Using the T7 RNA polymerase recognizing the 
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introduced T7 promoter sequence, the double-stranded cDNA was used as a template to 

synthesize biotinylated antisense cRNA by in vitro transcription. Labeled cRNA was purified, 

fragmented and hybridized to the chip. Non-complementary cRNAs were removed by 

washing and the arrays were stained. Fluorescence intensity emitted by labeled cRNA/cDNA 

upon laser treatment was measured and quantified using a GeneArray Scanner (25000, 

Agilent). All steps were carried out according to the Affymetrix Gene Expression Analysis 

Technical Manual.  

10.4 Data analyses  

The Affymetrix Microarray Suite Version 5.0 software was used to process array images and 

determine signal intensities and detection calls, which are defined as present (P), absent (A) 

or marginal (M) for each probe set. To compensate for variations in the amount and quality of 

the cRNA samples and other experimental variables of non-biological origin, scaling across 

all probe sets of a given array to an average intensity of 1000 was conducted. Differentially 

expressed genes between induced and uninduced cells were determined by comparing the 

values of each probe set in a pairwise manner using the Affymetrix Microarray Suite 5.0 

software, which calculates the significance (change P-value) of each change in gene 

expression based on a Wilcoxon ranking test. To identify target genes, the data was filtered 

by applying specified cut-offs using the Affymetrix Data Mining Tool 3.0 Software.  

11 Quantitative real-time PCR 

11.1 RNA isolation and cDNA synthesis for qRT-PCR  

Total RNA was isolated from cells using peqGold RNAPure (PeqLab) according to the 

manufacturer’s instructions. To prevent false results due to DNA contamination, the RNA 

samples were digested with DNase using the RNase-free DNase Set (Qiagen). The RNA 

concentration was determined in a ND-1000 Spectrophotometer (NanoDrop Technologies) 

and aliquots were frozen at -80°C. cDNA was synthesized using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) including random hexamers.  
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11.2 qRT-PCR  

To obtain relative expression data of several genes, qRT-PCR was performed using the 

POWER SYBR Green PCR Master Mix from Applied Biosystems. This dye binds to dsDNA 

during amplification and upon excitation emits light. As PCR product accumulates, 

fluorescence increases. A dissociation curve stage after the PCR amplification was included 

to make sure only one sharp peak is detected at the melting temperature of the amplicon and 

no primer dimers are detected. The gene specific primers used are listed in section 2.3. Each 

reaction of 20 µl included the SYBR Green Master Mix, primers at a concentration of 0.3 µM 

and 2-4 ng cDNA. A 10 minute incubation period at 95°C was followed by 40 cycles 

comprised of 15 s at 95°C (denaturation) and 60 s at 60°C (annealing-extensions). 

Amplification and detection of the cDNA was carried out with the 7900HT Sequence 

Detection System (Applied Biosystems) and the corresponding software.  

Gene expression was relatively quantified with the 2-∆∆Ct method (2 power of [(Ct target - Ct 

reference) of calibrator - (Ct target - Ct reference) of sample] (Livak and Schmittgen, 2001). 

Hence, the averaged values of the reference gene (GAPDH) were substracted from the 

averaged values of the target gene to obtain ∆Ct. To calculate ∆∆Ct the ∆Ct values of the 

cells treated with doxycycline were substracted from the ∆Ct of the control cells (-dox) that 

served as the calibrator. Each cDNA was measured at least twice in one approach and 

control reactions without reverse transcriptase were included. 

12 Gene inactivation using RNAi 

RNAi is used to silence gene expression by using small RNAs complementary to target 

mRNAs (Echeverri and Perrimon, 2006). In this study the cost-efficient endonuclease-

prepared short interfering RNA (esiRNA) method was applied (Kittler and Buchholz, 2003; 

Kittler et al., 2004; Kittler et al., 2007).  

12.1 esiRNA generation  

An esiWay silencer was used to generate CIDEB specific esiRNAs (p3000E01609, RZPD). 

The CIDEB sequence within the esiWay silencer plasmid (about 550 bp) is flanked by T7 and 

T3 promoter sequences for amplification by PCR. The T7 sequence was attached to the T3 

primer used together with the T7 primer for the PCR reaction to be able to perform the in 

vitro transcription later on. The same primers were used to amplify the tomato sequence, 

coding for a red fluorescent protein, which had been cloned into the pBluescript II SK+ vector 
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in our lab previously (Roose et al., 2009). The HNF4A sequence was amplified using the 

pcDNA5/FRT/TO HNF4A2 vector as a template and gene specific primers linked to the T7 

sequence. All primers are listed in section 2.3. PCR reaction was performed in volumes of 

50 µl with the Pwo-DNA polymerase (Peqlab) in a Gene AmpPCR System 2400 

thermocycler (Perkin Elmer). An aliquot of 4 µl was used to confirm the expected size of the 

amplicon on a gel.  

 

The in vitro transcription was performed using the MEGAscript Kit (Ambion) according to 

manufacturer´s instructions, but in half the recommended volume. The reaction including 4 µl 

of the PCR product was incubated over night at 37°C. The RNA was annealed after an initial 

denaturation step at 95°C for 3 minutes and slowly cooled down to room temperature. The 

dsRNAs were digested for 30 minutes at 37°C, using the ShortCut RNase III (Biolabs) to 

restrict long dsRNAs to small RNAs, 18-25 bp of size. This digestion step was a modification 

to the original protocol (Kittler and Buchholz, 2003) as well as the following purification step 

using the RNeasy Kit (Qiagen) as described by Byrd and Watzl (Lab Times online, Lab 

Trick4: Money saving siRNA purification: http://www.labtimes.org/tricks/ index.html). The 

correct sizes of the RNA fragments were confirmed on gels after the in vitro transcription, 

RNA digestion and purification step. For the last two cases, a 5% gel for small fragments 

(Roth) was used. The esiRNA concentration was determined in a ND-1000 Spectro-

photometer (NanoDrop Technologies). 

12.2 esiRNA dependent cell proliferation assays  

24 hours before transfection, 2 x 103 HNF4A2 #4 (Lucas et al., 2005) cells were seeded in a 

96-well plate in DMEM medium without antibiotics. Transient transfections were carried out 

using ExtemeGene transfection reagent (Roche) according to manufacturer´s instructions. A 

reaction mix contained 0.1 µg esiRNA and 1µl transfection reagent. Four hours after the 

transfection process antibiotics were added to the cells as well as 1 µg/ml doxycycline for 

induction of HNF4A2 expression or an equal amount of ethanol. After three days the medium 

was exchanged and after four days cell proliferation rate was determined using the MTS 

assay (Promega).  
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13 3’ RACE PCRs 

Total RNA was isolated from HEPG2 and HK120 cells as described above (11.1 RNA 

isolation and cDNA synthesis for qRT-PCR). cDNA was synthesized using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) together with an oligo-dT-adapter 

primer (2.3 Oligonucleotides).  

PCR was performed (FailSafe PCR System, EPICENTRE) using a sense gene specific 

primer for the proximal and distal PA of HNF4A together with an antisense adapter primer 

(2.3 Oligonucleotides). PCR products were analyzed on an agarose gel and then cloned into 

pBluescript and sequenced or sequenced directly.  

SYBR-Green real time PCR was performed as described above (11.2 qRT-PCR). Templates 

were determined in triplicate and the housekeeping gene GAPDH served as a reference. To 

check for DNA contamination, control reactions without reverse transcriptase were 

performed. The primers used were the same as for the standard PCR. To determine the 

abundance of different HNF4A 3’UTRs, 2-∆Ct was calculated using GAPDH as a reference. 

14 Transient transfections and luciferase assays 

For each assay, 1 x 104 to 2.5 x 104 cells were seeded into a 96-well plate in 100 µl DMEM 

medium without antibiotics, 24 hours before transfection. The transfection mix was prepared 

in PS tubes and included a total of 40 ng DNA and 0.2 µl FuGene HD (Roche) diluted in 5 µl 

OptiMEM per well. The DNA mix was comprised of renilla reporter plasmids and firefly 

plasmids used for normalization of transfection efficiencies or firefly was used as a reporter 

and the renilla plasmid RL-Con served to control for transfection efficiency. The total amount 

of DNA was adjusted to 40 ng with Rc/CMV (Invitrogen) if necessary. After a 15 minute 

incubation period at room temperature, the mix was carefully added to the cell medium. 

24 hours after transfection, cells were lysed by addition of 25 µl 1x lysis buffer (Promega) per 

well followed by incubation at room temperature with continual rocking for 15 minutes. A 

5-15 µl sample of the lysate was transferred into a white 96-well plate to avoid crossover 

luminescence from neighboring wells. Firefly and renilla luciferase activities were measured 

sequentially with a luminometry (Centro LB 960, Berthold) using the Dual-Luciferase 

Reporter Assay Kit (Promega) according to the manuals instruction, but adding only 50 µl of 

the reagents. Specifics and alterations to this procedure are described below.  

 

For HNF4A P2 promoter mutation analyses, HEK293 (HNF1B) (Senkel et al., 2005) and 

INS-1 (HNF1B #1a) (Thomas et al., 2004) cell lines, both containing a tetracycline inducible 
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HNF1B transgene were used. 30 ng of the P2 specific firefly promoter constructs were 

co-transfected with 0.01 ng pRL-Con for normalization of transfection efficiencies. Four hours 

after transfection, HNF1B expression was induced by the addition of 1 µg/ml tetracycline.   

 

For Dicer knock-down experiments, expression of the short hairpin targeting Dicer (Schmitter 

et al., 2006) was induced with 1 µg/ml of doxycycline in total for three or seven days. To 

determine regulation of the HNF4A promoters by miRNAs, 8 ng of firefly promoter constructs 

were co-transfected with 0.01 ng pRL-Con. For miRNA dependent HNF4A 3’UTR analyses, 

transfection assays were performed using 0.08 ng of renilla reporter plasmids and 0.02 ng of 

the firefly construct. Four hours after transfection, addition of doxycycline was repeated and 

48 hours after transfection, luciferase activities were determined. The normalized values for 

each construct obtained for uninduced cells, treated with ethanol, were always set to 100% 

and used for standardization.  

 

In case of transfecting different 3’UTR fragments, the DNA mix was comprised of 

0.05-0.08 ng RL reporter plasmid to obtain equal molar amounts and 0.02 ng firefly luciferase 

construct (pGL3). Normalized renilla activities in cells transfected with pRL-Con was always 

set to 100% and used for standardization.  

 

To determine the impact of specific miRNAs on the HNF4A 3’UTR, 0.08 ng of the renilla 

reporter plasmids were co-transfected with 0.02 ng of the firefly construct and 50 ng of 

miRNA expression plasmids (pSM-122 (Lin et al., 2008), pCMV-miR-21 (Zhu et al., 2007) or 

pri-miR-34a (Lodygin et al., 2008)). As a negative control 50 ng Rc/CMV or 50 ng pSM-155 

(Du et al., 2006) were used instead of the miRNA expression plasmid and the obtained 

normalized values were used for standardization (100%).  

15 miRNA expression profile 

RNA was isolated from HEK293 cells by using the mirVanaTM RNA isolation Kit (Ambion) 

according to the manufacturer’s instructions. RNA samples (20 ng) were reverse transcribed 

(TaqMan MicroRNA RT Kit, Applied Biosystems) using eight different 48plex stem-loop RT 

primer pools. The cDNAs were quantified by real-time PCR using the corresponding 8x48 

individual miRNA Taqman Assays in duplicate reactions (10 µl) containing 0.1 ng of cDNA, 

1x Universal Master Mix and 1x assay. Data were analyzed by the ∆CT method using 

RNU48 as a normalization control. Microarray analyses were performed in collaboration with 

PD Dr. Ludger Klein-Hitpass (BioChip Lab, Institute of Cell Biology, University Clinic Essen). 
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16 In silico analyses 

Target sites for 20 miRNAs (Table 2) were predicted within the 3180 nt HNF4A 3’UTR with 

RNA22 (Miranda et al., 2006) using 1, 7, 14 and -20 for unpaired bases, seed/nucleus in 

nucleotides, minimum number of paired-up bases and maximum folding energy in 

heteroduplex, respectively. The proximal miR-34a target site in the 5’ 449 nt of the HNF4A 

3’UTR was predicted with TargetScan (Lewis et al., 2003). The UTRdb database (Grillo et 

al., 2009) was used to identify regulatory motifs within the HNF4A 3’UTR. MIRb and MIRc 

were predicted using the RepeatMasker function from the UCSC Genome Browser of Human 

Feb. 2009 Assembly (http://www.genome.ucsc.edu/cgi-bin/hgGateway).  
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C Results 

1 Search for proliferation relevant target genes 
regulated by HNF4A  

Overexpression of HNF4A2 causes a decrease in cell proliferation and morphological 

changes. An approach to narrow down the large number of predicted target genes of HNF4A 

involved in various processes, to those responsible for the proliferation decrease is based on 

a microarray analysis with an HNF4A isoform that has no impact on cell proliferation. All 

genes regulated by this isoform should not be relevant for the cell proliferation decrease and 

could thus be eliminated from the numerous HNF4A2 target genes determined by previous 

microarray analyses in HEK293 cells (Lucas et al., 2005; Grigo et al., 2008). 

1.1 Generation and characterization of HEK293 cells conditionally 
expressing HNF4A8 

HNF4A8, expressed from the P2 promoter is the alternative isoform to P1 specific HNF4A2 

and thus lacks the N-terminal activation domain (Sladek and Seidel, 2001). To analyze the 

effect of HNF4A8 on cell proliferation in HEK293 cells, a cell line conditionally expressing 

HNF4A8 was generated. Using the Flp-In T-Rex 293 cell system (Invitrogen) and the 

pcDNA5/FRT/TO plasmid containing the myc-tagged HNF4A8 sequence (Erdmann et al., 

2007), three independent cell lines, HNF4A8 #9, HNF4A8 #11 and HNF4A8 #14, were 

generated. All three HNF4A8 cell lines are fully functional and show a comparable 

expression pattern to other established HNF4A cell lines as determined by the following 

assays. Insertion of the cassette containing the GOI into the FRT site disrupts the functional 

lacZ-Zeocin transcriptional unit. Lack of β-galactosidase activity, validated the integration of 

HNF4A8 at the right locus (data not shown). To test for proper HNF4A8 expression upon 

addition of doxycycline, western blot analyses and immunofluorescence microscopy using a 

myc-specific antibody were performed. After induction with doxycycline for 24 hours, 

HNF4A8 was expressed in all three cell lines to a similar amount, while no protein was 

detected in uninduced cells (Fig. 3A). Loading two different amounts of protein lysate for 

each induced cell line resulted in a correspondent change in signal detection. 

Immunofluorescence analysis validated the doxycycline dependent expression of HNF4A8 in 

about 99% of the cells in all three cell lines and also confirmed the location of this 

transcription factor in the nucleus (Fig. 3B).  



Results 

 47

 
 

 
 

Figure 3: Establishment of HEK293 cells conditionally expressing HNF4A8.  
Cells were treated with 1 µg/ml doxycycline (+) or ethanol (-) and expression of the different HNF4A 
isoforms was detected using the monoclonal antibody 9E10 that recognizes the myc-tag. (A) The 
upper part of the western blot image compares HNF4A expression of cells treated with doxycycline or 
ethanol for three days, while in the lower part two different amounts of protein extract of cells induced 
for 24 hours were probed. The artificial HNF4A mutant C106R has a point mutation in the second zinc-
finger of the DNA-binding domain and acts as a loss-of-function mutation with a weak dominant 
negative effect (Taylor et al., 1996). (B) Hoechst staining and immunofluorescence are given for three 
independent HNF4A8 cell lines treated with doxycycline or ethanol for 24 hours. 
 

To determine if HNF4A8 regulates cell proliferation as known for HNF4A2, the proliferation of 

induced (+dox) and uninduced (-dox) cells was compared by measuring the metabolic 

activity using the MTS assay (Fig. 4A). For each cell line the values of the untreated cells 

were used for standardization (100%). Overexpression of HNF4A2, used as a positive 

control, clearly reduced cell proliferation after three and even more pronounced after six 

days. Induction of HNF4A8 #9 inhibited growth as well, but just after six days and only to 

about 90%. The metabolic activity of the other two HNF4A8 cell lines was highly comparable 

to the artificial mutant C106R and resulted in part in a minor increase in activity which was 

significant for C106R and HNF4A8 #14 after three days of induction.  

 

Hoechst          Myc antibody Myc antibody Hoechst                  

– Dox + Dox

H
N

F
4
A

8
 #

1
4

  
H

N
F

4
A

8
 #

1
1
  
 H

N
F

4
A

8
 #

9

(A) 

(B) 



Results 

 48

 
 

 

 
Figure 4: Expression of HNF4A8 has no impact on cell proliferation rate and morphology.  
The cell line HNF4A2 #4 and mutant C106R served as positive and negative control, respectively. (A) 
Proliferation of cell lines induced with 1 µg/ml doxycycline for three and six days to express the given 
HNF4A isoform was determined using the MTS assay (Promega). The values were standardized to 
untreated cells grown under the same conditions. The results are means±SD of three independent 
experiments performed in triplicate. P values were determined using a one-sample t test. P values of 

< 0.05 and of < 0.01 are indicated by * or **, respectively. (B) Cells were analyzed by phase-contrast 
microscopy after treatment with 1 µg/ml doxycycline (+) or ethanol (-) for three and six days.  
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Overexpression of HNF4A2 has been shown to change morphology in HEK293 cells (Lucas 

et al., 2005). While uninduced cells exhibit a small, polygonal-shaped morphology and form a 

closely packed monolayer at confluence, induced cells change to a rounded phenotype, 

clump together building aggregates and fail to grow in an epithelium-like monolayer. 

Comparable to the negative control C106R, cell morphology was not altered in the three 

HNF4A8 cell lines upon HNF4A8 expression as assessed by phase-contrast microscopy 

after three and six days of treatment with doxycycline or ethanol (Fig. 4B).  

1.2 Comparing microarray analyses of HNF4A8 with HNF4A2 

In contrast to HNF4A2, HNF4A8 is clearly not affecting cell proliferation or morphology upon 

overexpression in the two HEK293 cell lines HNF4A8 #11 and #14. To exclude target genes 

of HNF4A not involved in proliferation control, the expression profile upon HNF4A8 

overexpression was determined using the Affymetrix GeneChip HGU 133_Plus_2.0 that 

probes approximately 38,500 human protein coding genes (54,000 probe sets). RNA isolated 

from uninduced cells and cells treated with doxycycline for 24 hours was compared from the 

two HNF4A8 cell lines. Target probe sets were identified using the following filter conditions. 

The probe sets had to be induced (I) or decreased (D), the candidates had to score a change 

p-value < 0.0045 for induced probe sets or p > 0.9955 for decreased probe sets and had to 

include at least one present call in the uninduced versus induced sample pair.  

 

 

 
Figure 5: HNF4A8 regulates only few target genes in comparison to HNF4A2.  
Microarray analyses were performed with the two independent HNF4A8 cell lines #11 and #14. The 
expression profile of cells treated with 1 µg/ml doxycycline for 24 hours was compared to untreated 
cells (ethanol). The 199 probe sets consistently regulated by HNF4A8 were compared to the 1781 
probe sets determined in two HNF4A2 cell lines (Grigo et al., 2008). 119 probe sets were regulated by 
both HNF4A isoforms. All microarrays were performed with the Affymetrix HGU 133_Plus_2.0 
GeneChip using the same filter conditions (increase: p < 0.0045; decrease: p > 0.9955). 
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Microarray analysis revealed 956 and 730 differentially expressed probe sets for 

HNF4A8 #11 and HNF4A8 #14, respectively and 199 probe sets were collectively regulated 

by HNF4A8 (Fig. 5). An overlap of 1781 probe sets was determined between target genes 

regulated by HNF4A2 #1 (3820 probe sets) and HNF4A2 #4 (3819 probe sets) by previous 

microarray analyses under the same conditions (Grigo et al., 2008). In conclusion, 119 probe 

sets were consistently regulated by both HNF4A isoforms, HNF4A2 and HNF4A8. Since 

some genes are represented by several probe sets on the chip, 119 probe sets correspond 

to 111 genes. Several differences were observed between the HNF4A8 and HNF4A2 

dependent microarray analyses. While about two-thirds of the genes were upregulated (126 

versus 55) by HNF4A8, the number of genes downregulated (628) upon HNF4A2 expression 

was almost as high as the increased (783) gene number. Even more striking is the four to 

five times higher number of target genes identified for HNF4A2 in comparison to HNF4A8 in 

the individual cell lines. The overlap of targets between HNF4A2 #1 and HNF4A2 #4 of 

almost 50% is clearly greater than for the two HNF4A8 cell lines with about 25%. This 

difference is quite remarkable considering that the two cell lines were established using the 

same host cell line at the same time, should have HNF4A8 integrated at a defined locus and 

had a highly similar phenotype in the conducted assays. Despite the low number of 

collectively regulated genes by the two HNF4A8 cell lines, the overlap of genes regulated by 

both isoforms is relatively high with over 60% of genes regulated by HNF4A8. However, only 

111 of 1411 HNF4A2 target genes were ruled out to have a significant impact on cell 

proliferation control or morphology using this approach. Although still left with 1300 potential 

HNF4A target genes involved in proliferation control, one gene (CIDEB) seemed worthwhile 

to pursue in more detail.  

1.3 CIDEB is involved in the HNF4A2 dependent decrease in cell 
proliferation 

CIDEB, a gene described to induce apoptosis, was highly upregulated in the two HNF4A2 

cell lines as determined in two independent microarray analyses (Lucas, 2005; Grigo, 2007). 

The HNF4A2 dependent upregulation of CIDEB could previously not be validated by 

qRT-PCR using the TaqMan Low Density Array (Applied Biosystems) and CIDEB was thus 

neglected (Lucas, 2005; Grigo, 2007). Interestingly, CIDEB expression as determined in the 

present microarray analyses was not altered by overexpression of HNF4A8 or the HNF4A 

mutants C106R and R154X, which do not decrease cell proliferation (Fig. 6). Since it is 

possible, that the primer pair used to detect CIDEB in the low density array was not 

functional, new primers were generated. qRT-PCR using the same RNA as for the 

expression profile, validated the microarray data for the HNF4A isoform specific regulation of 
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CIDEB (Fig. 6). Some differences in transcript detection between the two methods are likely 

based on the higher sensitivity of qRT-PCR. In contrast to the qRT-PCR data, in the 

microarray analyses CIDEB expression was absent in the HNF4A mutants, uninduced 

HNF4A2 #1 cells and both HNF4A8 cell lines. Upregulation of CIDEB upon HNF4A2 

expression in both cell lines was higher in the microarray analyses than in the qRT-PCR 

data. However, comparing the expression level of CIDEB in the induced HNF4A2 #1 and 

HNF4A2 #4 cell lines for each method, CIDEB showed a higher upregulation upon HNF4A2 

expression in HNF4A2 #1 cells by microarray analyses and in HNF4A2 #4 cells by qRT-PCR 

analyses. This observation is likely based on the absent call of CIDEB in uninduced 

HNF4A2 #1 cells in the microarray data, since the fold induction from an absent call is not as 

precise as from a present call. 

 

 

 
Figure 6: CIDEB is upregulated upon HNF4A2 expression.  
CIDEB induction was compared between cells induced with 1 µg/ml doxycycline or ethanol for 24 
hours in cell lines expressing the different types of HNF4A as indicated. The HNF4A mutant cell line 
R154X expresses a truncated HNF4A protein that lacks most of the ligand binding domain (Lausen et 
al., 2000; Laine et al., 2000). The fold induction from the microarray analyses for CIDEB is given in the 
bottom row. Values obtained in qRT-PCR were normalized to the house keeping gene GAPDH. The 
results are means±SD of one experiments performed at least in duplicate. 

 

RNA interference was used to determine if CIDEB is not only a target gene of HNF4A2, but 

also involved in the HNF4A2 dependent proliferation control. The endoribonuclease-prepared 

short interfering RNA (esiRNA) method was used to generate a pool of specific esiRNAs 

targeting various parts of the target mRNA to inhibit its expression (Kittler et al., 2004). 

According to the hypothesis that CIDEB is involved in the proliferation decrease triggered 

upon HNF4A2 overexpression, inhibiting CIDEB with esiRNAs should interrupt the signal 

cascade, resulting in an increased proliferation rate. Transfection of untreated cells not 
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expressing HNF4A (-dox) with negative control esiRNA lacking a human gene target 

(tomato) or with HNF4A esiRNA did not affect proliferation (Fig. 7). Thus, esiRNAs lacking 

endogenous target mRNAs do not exhibit any side effects. In contrast to the uninduced cells, 

transfection of cells expressing HNF4A (+dox) with tomato or HNF4A esiRNA resulted in a 

significant difference in cell proliferation decrease. Although this rescue effect was 

significant, the decrease in cell proliferation was not entirely abolished upon transfection of 

HNF4A esiRNA. Possibly not all cells were transfected and/or the esiRNAs were not active 

over the entire four day time period. However, this technique has been extensively used in a 

different study and the effect was highly reproducible (Grigo et al., 2008). Application of 

esiRNA targeting CIDEB rescued the inhibition of cell proliferation triggered by induction of 

HN4A2 expression for four days to a comparable degree as detected for the HNF4A esiRNA 

itself. Hence, CIDEB seems to be part of the signal cascade triggered by HNF4A2 

overexpression, resulting in a decrease in cell proliferation.  

 

 

 
Figure 7: CIDEB is involved in the HNF4A2 dependent decrease in cell proliferation.  
Cells were transfected with the indicated esiRNAs, four hours before addition of ethanol or 1 µg/ml 
doxycycline to induce HNF4A2 expression. As controls, esiRNA targeting tomato or HNF4A were 
used. Cell proliferation was assayed after four days using the MTS assay (Promega). The value given 
by adding tomato esiRNA and ethanol was used for standardization. The standardized value of cells 
transfected with tomato esiRNA and expressing HNF4A2 (+) was used to determine the rescue effect 
caused by HNF4A and CIDEB esiRNA in induced cells. The results are means±SD of one experiment 
run in triplicate with one exception. For CIDEB the results are means±SD of three experiments run in 
triplicate involving three independent esiRNA preparations. 

1.4 CIDEB only functions within a network of HNF4A2 target 
genes 

To determine if CIDEB is a key player in the proliferation decrease mediated by HNF4A2 and 

sufficient to cause a decrease in cell proliferation independently of HNF4A2 expression, a 

HEK293 cell line expressing Cideb upon demand was generated using the Flp-In technology. 

To be able to differentiate between the endogenous human CIDEB and the stable integrated 
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Cideb, an expression construct encoding the mouse sequence including a myc-tag at the 

N-terminus was introduced into the cells. The two independent cell lines Cideb #1 and 

Cideb #2 lacked β-galactosidase activity (data not shown) and expressed Cideb upon 

addition of doxycycline for 24 hours as determined by western blot analysis using a 

myc-specific antibody (Fig. 8A).  

 

 

 

 

 
Figure 8: Establishment of HEK293 cells conditionally expressing Cideb.  
Expression of Cideb or HNF4A was detected with the monoclonal antibody 9E10 targeting the 
attached myc-tag. Cells were treated with 1 µg/ml doxycycline (+) or ethanol (-) for 24 hours. HNF4A 
served as a positive control. (A) Two different amounts of protein extract were probed on the gel for 
the induced cells in the western blot analysis. (B) The images obtained after Hoechst staining and 
immunofluorescence analyses are given for the two Cideb cell lines.  

 

As visualized by immunofluorescence analysis, all cells expressed Cideb in the two cell lines 

after doxycycline treatment for 24 hours, while uninduced cells lacked Cideb expression. 

Furthermore, the localization of Cideb in cytosolic corpuscles was clearly visible in contrast to 

HNF4A being detected in the nucleus (Fig. 8B). Mitochondria localization of CIDEB has been 
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described to be essential for induction of apoptosis (Chen et al., 2000). However, 

morphological analysis of stained nuclei (Hoechst) of cells overexpressing Cideb in 

comparison to uninduced cells, showed no signs of apoptosis (data not shown).  

 

 
 

 
 
Figure 9: Expression of Cideb does not decrease cell proliferation or changes morphology.  
The cell line HNF4A2 #4 and mutant C106R served as positive and negative control, respectively. (A) 
Proliferation was measured using the MTS assay (Promega). Gene expression was induced by 
addition of 1 µg/ml doxycycline for three and six days. Cells treated with ethanol and grown under the 
same conditions were used for standardization. The results are means±SD of two independent 
experiments performed in triplicate. P values were determined using a one-sample t test. P values of 
< 0.05 and of < 0.01 are indicated by * or **, respectively. (B) Morphology of cells treated with 1 µg/ml 
doxycycline (+) or ethanol (-) for three and six days were analyzed by phase-contrast microscopy. 
 

The MTS assay was used to determine the effect of Cideb overexpression on cell 

proliferation in the two Cideb cell lines. The metabolic activity of cells treated with 
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doxycycline for three or six days was standardized to the values obtained for the uninduced 

cells of each cell line (100%). In each assay HNF4A2 and the mutant C106R were included 

as positive and negative control, respectively. Similar to the negative control, overexpression 

of Cideb in the two cell lines for three or six days resulted in a minor in part significant 

increase in cell proliferation (Fig. 9A).  

In agreement with the proliferation data, overexpression of Cideb did not change cell 

morphology after three or six days of induction in comparison to untreated cells (Fig. 9B). 

HNF4A2 #4 and the mutant C106R were included as positive and negative control, 

respectively. Hence, expression of Cideb, independent of HNF4A2 expression, does not 

decrease cell proliferation.  

 

The expression level of Cideb might not be sufficient to cause an effect in the two Cideb cell 

lines. Due to the lack of a functional CIDEB specific antibody targeting both, the mouse and 

human sequence, comparing the exogenous Cideb expression level in the Cideb cell lines 

with the endogenous CIDEB expression triggered by HNF4A2 overexpession on protein level 

was not possible.  

 

 

 
Figure 10: Relative expression level of CIDEB.  
CIDEB expression was determined by qRT-PCR in Cideb and HNF4A2 #4 cells treated for one or 
three days with doxycycline (+) or ethanol (-). The values were normalized to the house keeping gene 
GAPDH. Two different primer pairs were used to distinguish between the endogenous CIDEB (human, 
HEK293 cell derived) and exogenous Cideb (mouse, transfected) introduced into the Cideb cell lines. 
The results are means±SD of one experiment performed in duplicate involving Cideb #2 and 
doxycycline or ethanol treatment for 1 day. Values determined after three days of incubation include 
results performed in duplicate with Cideb #1 and #2 cells. mCideb, primer targeting the mouse 
sequence; hCIDEB, primer targeting the human sequence.  
 

To approach this issue at least on RNA level, qRT-PCR was performed (Fig. 10). Primers 

targeting the mouse Cideb sequence introduced into the Cideb cell lines were used to 

analyze the transgene. No transcripts were detected in the HNF4A2 #4, HNF4A8 and C106R 
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cell lines with those primers, proofing that they do not target the endogenous human CIDEB, 

but are specific for the mouse sequence (data not shown). Addition of doxycycline to the 

Cideb cell line for one and three days resulted in a six to seven fold increase in transgene 

Cideb expression. Using primers targeting the human sequence, endogenous CIDEB was 

shown to be present at a relative abundance of about 2% compared to the house keeping 

gene GAPDH in Cideb and untreated HNF4A2 #4 cells. Upon addition of doxycycline, 

endogenous CIDEB expression remained at the same level in Cideb cells, but increased in 

HNF4A2 #4 cells. Thus, induced expression of the Cideb transgene does not seem to 

influence endogenous CIDEB expression. The relative abundance of exogenous Cideb in the 

Cideb cell lines was more than twice as high as the endogenous CIDEB level upon 

overexpression of HNF4A2. Hence, at least the RNA expression level of Cideb is not too low 

to cause an effect in the Cideb cell lines. 

2 Transcriptional regulation of HNF4A via the P2 and P1 
promoter  

The regulation of HNF4A itself is crucial for proper function. At the transcriptional level, 

regulation of HNF4A is imparted by two promoters, P2 and P1, which mediate cell-specific 

activity (Thomas et al., 2001). The transcriptional regulation of both promoters was 

investigated with regards to dysregulation leading to human diseases.  

2.1 Mutations in the P2 promoter impair the function of the 
promoter in vitro and co-segregate with diabetes 

The -192C>G mutation in the HNF4A P2 promoter was linked to diabetes in several families 

by two independent studies, but an impact of the mutation on the promoter activity could not 

be confirmed by luciferase assays (Ek et al., 2006; Raeder et al., 2006a). From our 

colleagues in Exeter, Bratislava and Auckland we learned of two additional mutations in the 

P2 promoter of the HNF4A gene including a -136A>G mutation in a Slovak family and a 

-169C>T mutation in a New Zealand family. These mutations were not identified in >800 

control chromosomes (500 of which were of European Caucasian origin). The -136A>G 

mutation co-segregated with diabetes in two family members with normal body mass index 

and early diabetes onset (Fig. 11A). The -169C>T mutation co-segregated with diabetes in 

all but one family member (maternal aunt) who has features of T2DM (Fig. 11B). Details of 

clinical data have been published recently (Wirsing et al., 2010). 

 



Results 

 57

(A)   P2/-136A>G                     (B)                               P2/-169C>T  

 

 
Figure 11: Pedigrees of the families with P2/-136A>G (A) and P2/-169C>T mutations (B). 
Squares represent male; circles represent female; open symbols are normal glucose tolerant; and 
filled symbols are diabetic. Probands are indicated by an arrow. The text beside each individual 
represents: mutation carrier status (NM, HNF4A P2 mutation positive; NN, wild-type; and n.t., not 
tested); age at diagnosis if diabetic/current age, current diabetes treatment (diet; Met, metformin; SU, 
sulfonylurea; OAD, oral antidiabetic drug – type unknown; INS, insulin); body mass index; and 
birthweight standard deviation score. n.a., not available. Data as given in Figure 1 of Wirsing et al. 
(2010).  

 

The -136A>G mutation affects the region identified as the HNF6/OC2 binding site in the 

murine promoter (Briancon et al., 2004) and -169C>T mutates the HNF1 binding site of the 

P2 promoter (Thomas et al., 2001; Hansen et al., 2002). The latter site can be targeted by 

HNF1A and HNF1B since the DNA binding sequence specificity is almost identical for both 

transcription factors (Tronche and Yaniv, 1992). The previously described mutation -192C>G 

affects binding of an unknown factor enriched in human pancreatic islets and rat INS-1 cells 

(Ek et al., 2006). All three mutations alter nucleotides that are conserved from human to 

platypus (Fig. 12). To reveal the functional importance of these alterations, mutations for 

-136A>G, -169C>T and -192C>G were introduced into a firefly luciferase reporter construct 

containing the highly conserved P2 promoter region from -285 to -1 upstream of the 

translational start site (P2/-285; Fig. 12). Their effects were analyzed in transient transfection 

experiments in the HEK293 (HNF1B) cell line (Senkel et al., 2005) and INS-1 (HNF1B) cells 

(Thomas et al., 2004) allowing for homogenous induction of HNF1B expression. While 

HEK293 cells lack endogenous HNF1A and HNF1B expression (Lucas et al., 2005), 

endogenous HNF1A expression is higher than HNF1B in the INS-1 cell line (Thomas et al., 

2004). 
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Figure 12: Schematic representation of the P2 promoter region of the human HNF4A gene.  
The screen shot taken from the UCSC Genome Browser (assembly March 2006) displays the genome 
position from 42417570 to 42417866 of chromosome 20 and the degree of conservation across 28 
species indicated by black areas. The bracket locates the region included in the P2/-285 promoter 
luciferase construct from -285 to -1 relative to the ATG located in exon 1D (Thomas et al., 2001). The 
nucleotide sequence alignment of a highly conserved region and the position of the novel mutations 
-136A>G and -169C>T and the late-onset diabetes mutation -192C>G (Ek et al., 2006; Raeder et al., 
2006a) is shown below. The binding sites for HNF1A/HNF1B (Thomas et al., 2001; Hansen et al., 
2002), IPF1 (Thomas et al., 2001) and HNF6/OC2 (taken from the mouse data (Briancon et al., 2004)) 
are boxed. Data published in Wirsing et al. (2010). 

 

In HEK293 cells the basal activity of the P2/-285(-136A>G) and P2/-285(-169C>T) mutated 

constructs was significantly lower than the basal activity of the wild-type promoter construct 

P2/-285 (Fig. 13, upper part). Induction of HNF1B expression resulted in a fourfold activation 

of the wild-type promoter, but all three mutated constructs were activated at a significantly 

lower level. Mutation of the HNF1 binding site (-169C>T) resulted in the lowest 

transactivation by HNF1B. Comparing the activity in the presence of HNF1B, all three 

mutated constructs revealed a lower activity, although the effect of the -192C>G mutation 

was marginal. In INS-1 cells, the constructs P2/-285(-169C>T) and P2/-285(-192C>G) had 

significantly impaired basal activity compared with the wild-type promoter (Fig. 13, lower 

part). Following tetracycline induction of HNF1B expression, the activity of all of the 

constructs except P2/-285(-169C>T) decreased to about 50% of their uninduced activity. 

Comparing the activity in the presence of HNF1B, all three mutated promoter constructs had 

reduced activity compared to the wild-type promoter.  

In conclusion the two novel mutations, -136A>G and -169C>T and the previously identified 

late-onset diabetes mutation, -192C>G are linked to diabetes and impair the function of the 

HNF4A P2 promoter in vitro.  
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Figure 13: In vitro analyses of mutations in the P2 promoter of the HNF4A gene. 
The results of transient transfection assays in HEK293 and INS-1 cells are shown. The activity of the 
wild-type promoter was about threefold and fiftyfold higher than the value obtained from pGL3-Basic in 
HEK293 and in INS-1 cells, respectively. For each construct, eight transfection assays were 
performed involving four independent plasmid preparations. Each luciferase assay was performed in 
triplicate and a CMV driven renilla luciferase was used to control for transfection efficiency. The 
activity of the wild-type construct was used to standardize the basal activity (no HNF1B). The 
activation by HNF1B reflects the activation of the constructs by the induction of HNF1B. The activity 
with HNF1B compares the activity of the mutants with the wild-type in the presence of induced 
HNF1B. P values were determined using a one-sample t test for basal activity as well as for activity 
with HNF1B and an independent-samples t test for activation by HNF1B. P values of < 0.05, of < 0.01 
and of < 0.001 are indicated by *, ** or ***, respectively. 

2.2 The P1 and P2 promoter might be regulated by miRNAs 

In addition to transcription factors regulating the activity of promoters, few studies have 

described an activating effect of agRNAs (Li et al., 2006a; Janowski et al., 2007) and 

miRNAs on promoters (Place et al., 2008; Majid et al., 2010). Hence, miRNAs that are 

downregulated in diabetes and RCC might contribute to the downregulation of HNF4A in 

these diseases due to the loss of activation of the P2 and P1 promoter, respectively. 

Numerous potential miRNA binding sites were predicted within the HNF4A P2 and P1 

promoter using the RNA22 program (Miranda et al., 2006). To experimentally evaluate the 

possibility of any miRNA targeting the P2 and P1 promoter, a HEK293 cell line was used in 

which the Dicer protein can be conditionally knocked-down by doxycycline (Schmitter et al., 

2006). Since Dicer is required for miRNA biogenesis, its inhibition results in a lack of 

miRNAs. In the case of miRNAs targeting and activating a promoter, addition of doxycycline 

attenuates the activating effect. A reporter plasmid (pGL3 basic) containing the P2 promoter 

sequence extending from -2200 bp to the nucleotide preceding the translation initiation site 

(position -1) upstream of the firefly luciferase was transfected into cells depleted of Dicer. In 

comparison to uninduced cells, luciferase activity was decreased by about 25%, indicating a 

potential regulation of the HNF4A P2 promoter by miRNAs present in HEK293 cells 

(Fig. 14A). To locate the area of crucial miRNA binding sites, luciferase activity of various 5’ 

deletions constructs was assessed upon Dicer knock-down. However, even deleting the 
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promoter sequence up to position -135 bp upstream of the ATG codon (transcription start site 

at position -103 and TATA box starting at -136) still resulted in a highly similar decrease in 

luciferase activity upon miRNA depletion as for all other P2 constructs. To ensure that the 

observed effect was promoter specific, the impact of miRNA depletion was analyzed on the 

CMV promoter, resulting in no decreased activity (Fig. 14A). 

 

 

 
Figure 14: Dicer knock-down experiments to determine whether the HNF4A P2 (A) and P1 (B) 
promoters are regulated by miRNAs.  
The P2 and P1 promoter fragments are all cloned into the pGL3 basic plasmid. The longest P2 
promoter fragment contains 2200 base pairs upstream of the translation initiation site (excluding the 
ATG codon). The P1 promoter fragment of 1114 base pairs extends from nucleotides -998 to +117 
from the transcription start site. Dicer knock-down was triggered by addition of doxycycline to the 
Dicer-kd/2b2 cell line (Schmitter et al., 2006) for three and seven days. Firelfly reporter constructs 
were transiently transfected two days before luciferase activity was measured. At least three 
transfection assays were performed for each construct, involving two independent plasmid 
preparations, except for P1/-132 for which just one construct was available. Each assay was 
performed in triplicate and a CMV-driven renilla luciferase was used to control for transfection 
efficiency. The values obtained for each construct determined in the presence of Dicer (ethanol 
added) were used for standardization (100%) and are not shown. The P values were determined 
between the promoter constructs and pGL3 basic in induced cells using an independent-samples t 
test. P values of < 0.05 are indicated by *. 

 

Analyses of the 1114 bp P1 promoter revealed a highly reduced luciferase activity to 35% 

upon Dicer knock-down, suggesting an activating effect of miRNAs on the HNF4A P1 

promoter (Fig. 14B). Further 5’ deletion of this promoter, even up to -132 bp still conferred a 

reduced activity to 56% in comparison to cells expressing mature miRNAs. Although no 

effect had been detected using the CMV promoter, the activity of the CMV promoter was 

severalfold higher than the P1 and P2 activity. To rule out possible side effects from the 

residual sequence of the pGL3 reporter plasmid, which might be masked by the high activity 

of the CMV promoter in the corresponding construct, the Dicer dependent activity was 

determined for the pGL3 basic plasmid. Although this plasmid does not contain a promoter 

sequence, it was slightly active and also conferred a reduced activity upon Dicer knock-

down. However, upon miRNA depletion the activity of the P1 constructs containing 1114 bp 

and 282 bp was significantly reduced by about 50% in comparison to pGL3 basic. Although 

there is little knowledge about the regulation of promoters by miRNAs and adequate positive 

and negative controls are missing, the present data including the measurements of the pGL3 
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basic plasmid make the regulation of the HNF4A P2 promoter by miRNAs unlikely, but 

provides evidence for an activating effect of miRNAs on the P1 promoter.  

3 Posttranscriptional regulation of HNF4A via the 3’UTR 

While transcriptional regulation of HNF4A has been extensively studied, the 

posttranscriptional regulation has been entirely neglected to date. The evident role of 3’UTRs 

in translation, localization and stability of mRNAs and its impact on various diseases, has 

proven that it is essential to gain knowledge of the posttranscriptional regulation (Chatterjee 

and Pal, 2009; Thomas et al., 2010). To obtain a comprehensive understanding of HNF4A, 

the 3’UTR and its regulation was investigated.  

3.1 HNF4A expresses two alternative 3’UTRs 

The RefSeq sequences NM_000457.3 and NM_178849.1 of the human HNF4A mRNA 

encode a 3’UTR of 1724 bp that contains the non-canonical PAS GATAAA 15 nt upstream of 

the 3’ end (Fig. 15A). However, this PAS and the surrounding sequence are conserved in 

primates only, but not among other mammals. In contrast, the 3’UTR of the murine Hnf4a 

mRNA is 2816 nt in length (RefSeq NM_008261.2) and encompasses the canonical PAS 

AATAAA (Fig. 15A). This PAS and the surrounding sequence are highly conserved among 

different mammals including human. To determine which polyadenylation site is functional in 

human cells, 3’ RACE was performed with HNF4A mRNA isolated from the hepatoma cell 

line HEPG2 and the kidney cell line HK120. Sequence analyses of the cDNA revealed that in 

both cell lines the proximal as well as the distal PAS are used, resulting in cleavage of the 

mRNA 15 nt and 19 nt downstream of the PAS at position 1724 nt and 3180 nt, respectively.  

To determine the abundance of the short and long 3’UTR in the human HNF4A RNA of the 

HEPG2 and HK120 cell lines, qRT-PCR was performed using GAPDH as a reference. The 

amount of the HNF4A 3’UTR was about two-fold higher in HEPG2 than in HK120 cells 

(Fig. 15B). In both cell lines the distal PAS generating the long 3’UTR was used 

predominantly, representing about 75% and 60% of the HNF4A transcripts in the hepatoma 

and kidney cell line, respectively. These data reveal that in human cells in addition to the 

predicted HNF4A 3’UTR of 1724 nt, a much longer 3’UTR of 3180 nt is expressed.  
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Figure 15: Two distinct PAS in the human HNF4A mRNA.  
(A) Schematic representation of the HNF4A 3’UTR. The screen shot taken from the UCSC Genome 
Browser (assembly March 2006) depicts the known human HNF4A 3’UTR with the RefSeq sequences 
NM_000457.3 and NM_178849.1 and the genome position from 42,491,540 to 42,494,950 of 
chromosome 20. The degree of conservation across 17 species is indicated by black areas. The 
nucleotide sequence alignment of the region surrounding the proximal and distal PAS is shown below. 
Non-conserved nucleotides in comparison to the human sequence are given for the different species, 
while dots represent conserved nucleotides. The proximal and distal PAS are boxed and the 
corresponding cleavage sites, as determined by 3’ RACE and subsequent sequencing, are indicated 
by a vertical line. The last nucleotide of the short and long 3’UTR is marked at position 1724 and 3180, 
respectively. (B) The relative abundance of the short and long HNF4A 3’UTRs was determined in 
comparison to the house keeping gene GAPDH. Two independent RNA samples were prepared from 
each cell line and the qRT-PCR was performed in triplicates. Each column thus represents the 
mean±SD of six measurements.  

3.2 Both 3’UTRs confer a repressive effect 

To gain insight into the mode of regulation of HNF4A via its 3’UTR, the short and long 3’UTR 

was cloned downstream of the renilla luciferase ORF into the reporter plasmid RL-Con 

(Schmitter et al., 2006). The effect was analyzed in HEK293 cells using a firefly luciferase 

reporter as reference (Fig. 16, middle panel). The renilla luciferase activity was significantly 

reduced to about 60% by insertion of the long (1-3180) or short (1-1746) 3’UTR implying the 

existence of elements conferring a repressive effect.  
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Figure 16: Systematic reporter analyses of the human HNF4A 3’UTR.  
The results of luciferase assays 24 hours after transient transfections into HEK293 and INS-1 cells are 
shown. The numbers of the construct names refer to the nucleotide position in the HNF4A 3’UTR with 
1 being the first nucleotide after the stop codon. Each 3’UTR fragment was cloned downstream of the 
renilla luciferase ORF into the RL-Con plasmid. At least three transfection assays were performed for 
each construct, involving two independent plasmid preparations. Each assay was performed in 
triplicate and a CMV-driven firefly luciferase was used to control for transfection efficiency. The activity 
of the RL-Con plasmid was used for standardization to 100%. P values were determined using a one-
sample t test. P values of < 0.05 and of < 0.01 are indicated by * or **, respectively. 

 

To get an indication which cis-elements mediate the effect, an in silico search was 

performed. Only few potential cis-elements of RNA-binding proteins were found (Tab. 1). The 

sex-lethal (SXL) binding site consists of a polyuridine tract of eight or more residues and is 

bound by the SXL RNA-binding protein (Samuels et al., 1994). In Drosophila melanogaster 

this female specific protein functions as the master regulator of somatic sex determination 

and X-chromosome dosage compensation. It modulates splicing and translation of target 

pre-mRNAs (Johnson et al., 2010). The K-box (cTGTGATa) has been identified in the 

3’UTRs of many Notch pathway target genes in Drosophila melanogaster (Lai et al., 1998). 

Regulation by K-box is spatially and temporally ubiquitous and mediates negative 

posttranscriptional regulation, mainly causing decreased transcript levels. The Musashi 

binding element (MBE) is critical for early translational activation in Xenopus by interaction 

with the Musashi binding protein (Arumugam et al., 2010). In mammalian somatic cells, MBE 

seems to mediate repression of mRNAs at the translational level (Imai et al., 2001). 

Furthermore, the distal, but not the little conserved proximal PAS was found. Considering the 

large size of the 3180 nt long HNF4A 3’UTR, this raised the question if various other 

functional binding elements are missing. miRNA binding site prediction in turn revealed 

several hundred possible target sites. Depending on which miRNA prediction program and 

setting was applied, potential target sites for various miRNAs varied substantially. To 

address this issue of uncertain regulatory element prediction, functional assays were used to 

initially locate the area of crucial regulatory elements. 
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Table 1: Regulatory sites in the long 3’UTR of HNF4A. 

Binding sites identified by UTRdb (http://utrdb.ba.itb.cnr.it/; Grillo et al., 2009).  

 

Binding site Position Sequence 

SXL binding site 2680-2695 TTTTTTTTTTTTTTT 

K-box 2940-2947 CTGTGATC 

Musashi binding element 910-914  GTAGT 

Musashi binding element 2152-2157 ATTAGT 

Polyadenylation signal 3156-3180 AATAAATGGCGCATATGTTTTCTAA 

 

In a comprehensive systematic approach, the 3’UTR was dissected and a repressive activity 

was found in the 5’ part (1-630), whereas the 3’ part (2770-3180) had no influence (Fig. 16). 

Furthermore, a distinct activity located in fragment 631-3180 was observed that surprisingly 

had a much higher repressive effect, while a construct containing the sequence from 1-2769 

resulted in a decrease in luciferase activity similar to the one observed for the long 3’UTR. To 

pin down the area within the HNF4A 3’UTR which confers the strong repressive effect, short, 

mainly overlapping constructs were generated covering the entire 3180 nt of the 3’UTR. 

Whereas the majority of 3’UTR-fragments showed no or only minor effects, the two 

constructs comprising the 3’UTR sequences A (850-1313) and B (1288-1746) repressed 

luciferase activity down to 27% and 21%, respectively. Since in HEK293 cells the HNF4A 

gene is silent (Lucas et al., 2005), the activity of the same 3’UTR fragments was measured in 

the INS-1 cells expressing HNF4A (Thomas et al., 2004). In this cell line similar repressive 

activities were seen that were even more pronounced (Fig. 16, right panel). Taken together, 

the HNF4A 3’UTR contains several elements that negatively influence luciferase reporter 

activity.  

3.3 Identification of two novel negative elements within the 
HNF4A 3’UTR 

Using UCSC Genome Browser the “mammalian interspersed repetitive elements” MIRb and 

MIRc were identified within sequence A (850-1313) and B (1288-1746), respectively (Fig. 17, 

left panel). MIRs are tRNA-derived SINEs found in all mammalian genomes, including 

marsupials (Smit and Riggs, 1995) and have a trend for PAS association (Lee et al., 2008). 

However, it was excluded that these repetitive elements mediate the repressive effects, as 

fragments retaining the sequence for MIRb (1208-1313) or MIRc (1392-1513) did not affect 

luciferase reporter activity in HEK293 and INS-1 cells (Fig. 17, middle and right panel).  
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Figure 17: Locating negative elements within sequence A and B of the HNF4A 3’UTR.   
The results of luciferase assays were derived and evaluated as in Figure 16. The grey boxes in the left 
panel indicate negative element A or B. The white box illustrates the mammalian interspersed 
repetitive elements (MIRb or MIRc) as predicted by the USCS Genome Browser.  

 

To locate the functional elements, the sequences were gradually trimmed from the 3’ and 5’ 

end. Shortening sequence A on the 3’ end to position 1259 and even to 1207 amplified the 

repressive effect in HEK293 cells to 16% and 15%, respectively. Further constriction on 

either side revealed a gradual release of the repressive effect, ruling out an essential role of 

the Musashi element (910-914) on the HNF4A 3’UTR (Tab. 1). Instead, the fragment 

extending from 850-1207 was defined as negative element A. Similarly, shortening sequence 

B on the 3’ and 5’ end, negative element B (1288-1666) was defined, as it mediates the 

highest repressive function and any truncation leads to a partial or even total loss of the 

repressor activity. A corresponding analysis in INS-1 cells gave similar result (Fig. 17, right 

panel).  

Taken together, two previously unknown elements were located within the HNF4A 3’UTR 

that are separated by about 80 bp. Their size of approximately 400 nt (357 nt and 378 nt) is 

quite large and based on their position they are present in the short as well as the long 

3’UTR of the HNF4A mRNA.  

 

The strong activity of negative element A and B was only observed when these elements 

were excised from the 3‘UTR (Fig. 16). Deleting a sequence containing both negative 

elements from the construct containing the long HNF4A 3’UTR did not change the luciferase 

activity in comparison to the entire 3’UTR (Fig. 18). In contrast, the high repressive effect of 
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construct 631-3180, was abolished upon deletion or inversion of the sequence containing 

negative element A and B. This implied a counteracting element in the 5’ part of the 3’UTR 

(1-630). Indeed, insertion of the sequence 1-630 nt upstream of element A or B largely 

abolished the repressive effect of the negative element A or B. The observation that the 

repressive effect of element A and B is lost upon inversion is consistent with a regulatory 

element functioning on the RNA level. To obtain further evidence, the SV40 3’UTR with its 

PAS was inserted upstream of negative element A or B. In both cases the repressive effect 

was lost, as expected if the transcript is polyadenylated at the SV40 PAS and thus does not 

include negative element A or B. However, the abolishment of the repressive effect was not 

seen, if the SV40 3’UTR was inserted in opposite direction leading to a PAS on the 

noncoding DNA. Additionally, this experiment excluded the possibility that any sequence 

introduced upstream of element A or B would abrogate the effect. All described effects were 

highly similar in HEK293 and INS-1 cells.  

 

 

 
Figure 18: Counteracting the two negative elements.  
The negative elements A and B are indicated by grey boxes, the deletion of the negative elements is 
illustrated by a broken line, whereas the inversion of this element is marked by backwards arrows. The 
insertion of the SV40 termination signal in sense and antisense is marked. The results of luciferase 
assays were derived and evaluated as in Figure 16. P values were determined between two columns 
as indicated by brackets. Non-significant changes are marked by ns and refer to p values > 0.01.  

3.4 The HNF4A 3’UTR is regulated by miRNAs 

To address the question experimentally whether HNF4A is regulated by miRNAs, initially a 

general approach was applied using the HEK293 cell line in which the Dicer protein can be 

conditionally knocked-down by doxycycline (Schmitter et al., 2006). Since Dicer is required 

for miRNA biogenesis, the repressive effect of miRNAs is relieved, if Dicer is downregulated. 

Using the renilla luciferase reporter with the entire 3180 nt HNF4A 3’UTR, depletion of Dicer 

resulted in an increase in luciferase reporter activity by 21% (Fig. 19A). The effect was not as 
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pronounced as for the RL-Perf reporter containing one perfect let-7a binding site or the 

RL-3xBulgeB reporter construct containing three bulged let-7a sites (Schmitter et al 2006), 

that mediated in the present study an increase of 55% and 89%, respectively. However, the 

significant increase indicated that miRNAs regulate the HNF4A 3’UTR. 

 

 

 
Figure 19: Dicer knock-down indicates that the HNF4A 3’UTR is regulated by miRNAs.  
To knock-down the Dicer protein, doxycycline was added to the Dicer-kd/2b2 cell line (Schmitter et al 
2006) for three or seven days. Two days before luciferase activity was measured, the cells were 
transiently transfected with reporter constructs. The nomenclature of the constructs is as in Figure 16. 
At least three transfection assays were performed for each construct, involving at least two 
independent plasmid preparations. Each assay was performed in triplicate and a CMV-driven firefly 
luciferase was used to control for transfection efficiency. The activity of each construct measured in 
the presence of Dicer (ethanol added) was used for standardization (100%) and is not shown. The 
3xBulgeB and RL-Con reporter (Schmitter et al 2006) harboring three bulged binding sites for let-7a 
and lack any binding sites, respectively, were included as a positive and negative control in each 
experiment (not shown). The P values were determined using an independent-samples t test. P values 
of < 0.05 and of < 0.01 are indicated by * or **, respectively. 

 

Several miRNAs misregulated in RCC have been identified, while no miRNA expression 

profiles for diabetic β-cells exist. To determine if HNF4A is regulated by miRNAs with regards 

to a physiological significance, binding sites for miRNAs that are upregulated in RCC were 

predicted. 20 miRNAs were selected due to the following criteria (Tab. 2). Each miRNA had 

to be upregulated in RCC according to at least one of the six studies (Gottardo et al., 2007; 

Kort et al., 2008; Nakada et al., 2008; Jung et al., 2009; Chow et al., 2010; Juan et al., 2010). 

One site with a perfect seed sequence was required within the 3180 nt of the HNF4A 3’UTR, 
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unless the miRNA was identified in more than four of six studies with a potential target site 

lacking a perfect seed sequence. The RNA22 program was used to search for binding sites 

for those 20 miRNAs, since it allows to specifically predict binding sites for miRNAs of 

interest within the queried 3’UTR sequence (Miranda et al., 2006). Despite the restriction to 

20 miRNAs overexpressed in RCC, still 140 potential binding sites for miRNAs were 

retrieved within the HNF4A 3’UTR.  

 

Table 2: Set of miRNAs upregulated in RCC.  

The 20 selected miRNAs upregulated in RCC are listed. For each miRNA the studies reporting an 
increase are given as indicated by 1-6 (1: Gottardo et al., 2007; 2: Kort et al., 2008; 3: Nakada et al., 
2008; 4: Jung et al., 2009; 5: Chow et al., 2010; 6:Juan et al., 2010). Eric J. Kort provided the original 
data on miRNA expression profiling (Kort et al., 2008). The average fold change for a miRNA is used 
when identified in more than one study. The predicted number of target sites by RNA22 (Miranda et 
al., 2006) including perfect seed sequences is given with the perfect seed sites also listed in brackets. 
The CT values were determined in HEK293 cells by qRT-PCR using 384 TaqMan human miRNA 
assays from Applied Biosystems and a multiplex RT protocol comprising eight different pools of stem-
loop RT primers. In cases only the opposite stem loop of the corresponding miRNA was on the 
TaqMan Array this is indicated. miRNAs not analyzed are marked as not determined (n.d.).  

 

 

Hence, to locate the area of crucial miRNA binding sites within the HNF4A 3’UTR, several 

fragments of the 3’UTR were analyzed. Transfection of the 5’ end of the 3’UTR (1-630) 

conferred a significantly increased luciferase reporter activity upon Dicer depletion, but the 

increase was even more pronounced for a construct containing the remaining sequence from 

631-3180 (Fig. 19, upper part). Therefore, the focus was set on the previously described 

miRNA References Fold induction N of target sites  

(seed) 

CT 

miR-7 1   1.25   8 (1)    33.4 

miR-18a* 2, 6   4.05 12 (1)     33.1 (miR-18a) 

miR-21 2, 4, 5, 6   3.50   7 (0)    34.3 

miR-27a 4   1.85 13 (1)    35.3 

miR-34a 2, 5, 6   2.95 14 (2)    34.2 

miR-106b* 4   2.30   9 (2)    29.8 (miR-106b) 

miR-122 2, 3, 4, 6 28.16   9 (0) > 40 

miR-140-5p 4 10.63   4 (2)    31.7 

miR-146b 2   1.70   2 (1)     35.0 

miR-155 2, 3, 5, 6   5.66   2 (0)    36.6 

miR-193a-3p 6   2.20   1 (1)    35.6 (miR-193a-5p) 

miR-210 2, 3, 4, 5, 6 11.85   9 (0)    33.1 

miR-224 2, 3, 4, 5, 6   7.05   2 (0) > 40 

miR-340* 4   2.41   9 (1)    34.1 (miR-340) 

miR-342-3p 4   2.35   4 (1)    29.5 

miR-342-5p 2   2.30 10 (1)    29.5 (miR-342-3p) 

miR-452* 2, 3, 6   8.50   2 (1) > 40    (miR-452) 

miR-584 4   2.91 14 (1)    n.d. 

miR-592 5   4.95   4 (1)    n.d. 

miR-1271 4   3.86   5 (1)    n.d. 
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fragments spanning the entire 3180 nt. Whereas miRNAs did not seem to target the 3’ end of 

the 3’UTR (2574-3180), the remaining fragments mediated a slight increase in reporter 

activity upon Dicer knock-down. However, only the 5’ fragment 1-449 nt showed a highly 

significant effect. To locate the area of crucial miRNA binding sites even further and possibly 

identify the exact location by loss of the effect, 12 gradually shortened constructs were 

analyzed within the 5’ 449 nt (Fig. 19, lower part). The significant increase upon miRNA 

depletion was still present in over 50% of the constructs, but lost for constructs containing 

196 or less nucleotides from the 5’ end. Hence, miRNA target sites significant for HNF4A 

regulation seem to be located within nucleotides 204-449. No significant loss of effect 

between two consecutive constructs was observed, possibly reflecting several miRNAs 

targeting this area with a similar effect. In that case depleting all miRNAs is useful to locate 

an area of crucial miRNA binding, but a more specific method is needed to pinpoint single 

miRNA binding sites. In conclusion, the data reveal potential functional miRNA target sites 

distributed within 2.6 kb of the 3.2 kb 3’UTR. 

3.4.1 miR-122 and miR-21 are not key regulators of the HNF4A 3’UTR 

To experimentally verify miRNAs upregulated in RCC that potentially target the HNF4A 

3’UTR (Tab. 2), miRNAs were specifically mimicked. miR-122 shows the highest fold 

induction in RCC and has nine potential binding sites predicted within the 3180 nt HNF4A 

3’UTR including one located within nucleotides 204-449 at position 249-270 according to 

RNA22. To ensure optimal experimental conditions, the miR-122 dependent downregulation 

of the validated reporter plasmid psi-CCNG1 was reproduced (Fig. 20A) using the expression 

plasmid pSM-122 (Lin et al., 2008). Transfection of the reporter plasmid containing the long 

HNF4A 3’UTR or fragment 631-3180, resulted in a similar significant decrease as obtained 

for psi-CCNG1, indicating the regulation by miR-122 (Fig. 20A). Further analysis of various 

shortened constructs including fragment 1-449, revealed a slightly inhibited activity, but no 

significant effect upon miR-122 expression in most of the cases. Deleting the remaining 

potential miR-122 binding site in construct 1-249, still caused the same decrease. Hence, to 

rule out side effects from the residual sequence of the reporter plasmid as observed in the 

promoter studies, the effect of miR-122 was determined on the RL-Con plasmid. Indeed, a 

significant decrease was observed, making the regulation of the HNF4A 3’UTR by miR-122 

unlikely. Furthermore, no regulation of the HNF4A 3’UTR by miR-122 was detected in INS-1 

cells (Senkel et al., unpublished data). 
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Figure 20: Reporter analyses of miR-122 (A) and miR-21 (B) sites in the HNF4A 3’UTR.  
HEK293 cells were co-transfected with reporter plasmids and miRNA expression vectors (pSM-122; 
Lin et al., 2008 and pCMV-miR-21; Zhu et al., 2007) 24 hours before cell collection. At least one 
transfection assay was performed for each construct, involving two independent plasmid preparations 
in case of two or more assays. Each assay was performed in triplicate and a CMV-driven firefly 
luciferase was used to control for transfection efficiency. The activity of each construct in the absence 
of the miRNA expression plasmid (replaced by pSM-155; Du et al., 2006 or Rc/CMV) was used for 
standardization (100%) and is not shown. psi-CCNG1 (Lin et al., 2008) and TPM1 (Luc-TPM1-V1-
UTR; Zhu et al., 2007) served as positive controls for miR-122 and miR-21, respectively, while TPM1 
mut (Luc-TPM1-V1-UTR-d; Zhu et al., 2007) was used as a negative control for miR-21. The firefly 
activity used to control for transfection efficiency was expressed from the same plasmid as the renilla 
activity in case of psiCCNG1. The positive and negative control for miR-21 expressed firefly luciferase 
so that the RL-Con plasmid was used to control for transfection efficiency. The grey boxes indicate 
potential miRNA target sites without a perfect seed sequence and the number of target sites is given 
underneath the box in case of more than one site. A black cross in the grey box illustrates a destroyed 
target site. P values were determined using a one-sample t test. P values of < 0.05 are indicated by *. 

 

While miR-122 is usually highly liver specific (Lagos-Quintana et al., 2002), miR-21 

expression is conserved in the kidney and data indicates it is involved in kidney disease and 

functions as an oncogene (Zhu et al., 2007; Saal and Harvey, 2009). Hence, miR-21 shows a 

moderate expression in HEK293 cells. The upregulation in RCC is less pronounced but 

frequently detected (Tab. 2). To ensure that miR-21 expression effects target genes despite 

the moderate endogenous miR-21 level, the decrease of the reporter construct Luc-TPM1-

V1-UTR was confirmed in the present study upon miR-21 expression (pCMV-miR-21), while 

no effect was detected for the TPM1 mutant (Luc-TPM1-V1-UTR-d) in which the miR-21 

bindings site is deleted (Zhu et al., 2007; Fig. 20B). Furthermore, an impact of miR-21 on 
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RL-Con was ruled out. Transfection of the 3180 nt HNF4A 3’UTR and the construct 

631-3180 resulted in a similarly small but significant decrease (Fig. 20B). Hence, the 

potential binding site at position 621-642 does not seem to be functional. Analyses of 

shortened constructs containing at least one potential binding site did not cause a decreased 

luciferase activity upon miR-21 expression. Thus, miR-21 seems to only have a slight impact 

on the HNF4A 3’UTR by targeting several sites simultaneously.  

3.4.2 miR-34a downregulates HNF4A by targeting several sites in the 3’UTR 

miR-34a has one of the highest numbers of potential target sites (14) within the HNF4A 

3UTR (Tab. 2). Two sites include a perfect seed sequence and one of them is located within 

the 5’ sequence of 1-449 nt of the HNF4A 3’UTR (RNA22). Although miR-34a is moderately 

expressed in HEK293 cells (Tab. 2), overexpression of pri-miR-34a downregulated the 

validated miR-34a reporter plasmid pGL3-CDK6-BS2 (Fig. 21A) containing one miR-34a 

target site (Lodygin et al., 2008). A similar effect was seen in INS-1 cells. An even more 

pronounced decrease by miR-34a was observed by using reporters including the 5’ end 

construct 1-449 or 1-378 of the HNF4A 3’UTR. Destroying the target sequence of the 

predicted miR-34a binding site in construct 1-249 clearly diminished the decrease, but did 

not entirely abrogate the effect. Therefore, additional miR-34a binding sites were searched 

for within the 5’ 249 nt and another potential site containing a perfect seed sequence was 

identified using TargetScan (Lewis et al., 2003). Transfection of constructs 1-159 and 1-151 

which both lack the seed sequence of the proximal miR-34a target site (Fig. 21B), resulted in 

loss of effect in HEK293 and INS-1 cells. Taken together, it is evident that the proximal and 

distal miR-34a binding site within the 5’ 449 nt are functional and their effect is additive.  

Examination of the entire 3180 nt 3’UTR revealed 13 additional potential miR-34a binding 

sites (Fig. 21C). Overexpression of miR-34a with the long 3’UTR luciferase reporter led to a 

decreased luciferase activity in HEK293 and INS-1 cells similar to the one observed for 

pGL3-CDK6-BS2 reporter construct. It was ruled out that this decrease was based entirely 

on the two identified miR-34a binding sites within the 5’ 449 nt fragment, as a miR-34a 

dependent drop in luciferase activity was measured with a construct (631-3180) lacking the 

5’ sequence. Therefore, several shortened constructs of the HNF4A 3’UTR were tested, 

each containing at least one potential miR-34a binding site. Since the construct 1288-1746 

was affected by miR-34a overexpression, it is assumed that this region contains several 

cooperating miR-34a sites.  
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Figure 21: Reporter analyses of miR-34a binding sites in the HNF4A 3’UTR.  
(A) Reporter plasmids and pri-miR-34a expression plasmids were co-transfected 24 hours before cell 
collection, into HEK293 (upper dark grey columns) and INS-1 cells (lower light grey columns). At least 
one transfection assay was performed for each construct, involving two independent plasmid 
preparations in the case of two or more assays. Each assay was performed in triplicate and a CMV-
driven firefly luciferase was used to control for transfection efficiency. The activity of each construct in 
the absence of pri-miR-34a (replaced by Rc/CMV) was used for standardization (100%) and is not 
shown. pGL3-CDK6-BS2 (Lodygin et al., 2008) and RL-Con served as positive and negative controls, 
respectively. Since pGL3-CDK6-BS2 expresses the firefly luciferase, the RL-Con plasmid was used to 
control for transfection efficiency. The black boxes indicate miR-34a target sites including a perfect 
seed sequence. A grey cross in the black box displays a partially destroyed target site. P values were 
determined using a one-sample t test. Values of HEK293 and INS-1 cells were combined for each 
construct. P values are < 0.05 (*) and < 0.01 (**). (B) Schematic diagram of the two potential miR-34a 
binding sites within the 5’ 449 nt of the HNF4A 3’UTR. The numbering refers to the first nucleotide 
after the stop codon as 1. The distal site located at 239-261 nt was predicted by RNA22 and 
TargetScan and is highly conserved among vertebrates. The proximal site extending from 149-171 nt 
was only predicted by TargetScan and is little conserved. The two perfect seed matches are indicated 
by vertical lines between the HNF4A 3’UTR and miR-34a sequence. The arrows at position 151, 159 
and 249 mark the last nucleotide of the HNF4A 3’UTR in the corresponding constructs.  (C) Analyzing 
miR-34a binding sites in the long HNF4A 3’UTR performed as in panel A. The grey and black boxes 
indicate miR-34a target sites with and without a perfect seed sequence, respectively. The number of 
target sites indicated by a box is given underneath the target site in case of more than one site.  
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D Discussion 

1 Search for proliferation relevant target genes 
regulated by HNF4A 

The transcription factor HNF4A is dysregulated in various diseases such as diabetes and 

cancer. Overexpression of HNF4A2 results in a clear decrease in cell proliferation and 

morphological changes in different tissues in contrast to the HNF4A mutant C106R (Lucas et 

al., 2005; Erdmann et al., 2007; Grigo et al., 2008). These facts together with the finding that 

C106R cannot bind to DNA, but contains the full protein sequence (Taylor et al., 1996), 

suggests that the effects are mediated by target genes transcriptionally regulated by HNF4A. 

Previous microarray analyses identified 1411 potential target genes of HNF4A2 in HEK293 

cells (Grigo et al., 2008). While in microarray experiments differentially expressed genes are 

revealed simultaneously among tens of thousands of genes with relative ease, the challenge 

is to retrieve direct target genes involved in the process of interest. Considering the 

numerous tissues and biological processes HNF4A is involved in (Bolotin et al., 2009), a 

significant amount of the potential 1411 HNF4A2 target genes are likely involved in 

mechanisms other than proliferation control and morphological changes. Selecting genes 

due to ontological analyses is associated with various limitations such as bias toward well 

annotated biological processes (Khatri and Draghici, 2005). To circumvent these issues, an 

expression profile of an HNF4A isoform, such as HNF4A8, with possibly no impact on 

proliferation control was sought for, to narrow down the 1411 HNF4A2 target genes to a 

reasonable number of proliferation relevant genes.  

1.1 Target genes of HNF4A8 which have no impact on cell 
proliferation 

HNF4A8 only differs in the first exon from HNF4A2 due to differential promoter usage and 

hence lacks the activation function AF-1 (Nakhei et al., 1998). Such a difference has been 

shown to be sufficient to cause functional distinction as reported for example for Hnf4a1 

versus Hnf4a7 (Briancon and Weiss, 2006) and is likely based on the distinct capacities of 

AF-1 and AF-2 to interact with cofactors (Wang et al., 1998; Sladek et al., 1999; Eeckhoute 

et al., 2003). In contrast to HNF4A2, it could be shown in the present study that cell lines 

conditionally expressing HNF4A8 have no impact on cell proliferation or morphology in 

HEK293 cells (Fig. 4A). Even though a single copy of the gene-of-interest is supposed to be 
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integrated at a defined locus in the Flp-In system, slight functional differences have been 

observed in the resulting cell lines (Lucas et al., 2005; Grigo et al., 2008). While 

overexpression in the cell line HNF4A8 #9 caused a small decrease in cell proliferation after 

six days of induction with doxycycline, a transient increase was observed for HNF4A8 #11 

and HNF4A8 #14 after three days (Fig. 4A). The same phenomenon was reported for 

HNF4A8 expression in INS-1 cells and seems to be based on an initial increase in metabolic 

activity measured by MTS assay, as no increase in cell number was detected by cell 

counting (Erdmann et al., 2007). In INS-1 cells, overexpression of HNF4A8 reduces cell 

proliferation and changes morphology, although cell reduction has a later onset and is not as 

pronounced as for HNF4A2 and cell morphology changes are distinct (Erdmann et al., 2007). 

Those differences in INS-1 cells, which express endogenous Hnf4a (Huang et al., 2008) in 

contrast to HEK293 cells (Jiang et al., 2003) are likely based on a distinct cofactor 

environment and subsequently on a diverse set of target gene. This assumption of tissue-

specific functioning is supported by a very limited overlap of HNF4A target genes determined 

by microarray analyses in hepatocytes (Naiki et al., 2002), insulinoma cells (Thomas et al., 

2004) and HEK293 cells (Lucas et al., 2005).  

In this study, microarray analyses revealed about 25% of consistently regulated target genes 

in both HNF4A8 #11 and HNF4A8 #14 cell lines (Fig. 5). A limited number of concordantly 

regulated genes of about 30% (Lucas, 2005) and about 50% (Grigo, 2007) has been 

previously observed for two independent HNF4A2 cell lines. Hence, the slight functional 

differences of the independent Flp-In cell lines containing the same GOI seem to be reflected 

by, in part, a distinct set of target genes. The amount of 181 consistently regulated target 

genes by HNF4A8 identified in this study is about eight times smaller than 1411 genes 

regulated by HNF4A2 in HEK293 cells (Grigo et al., 2008). This is in accordance with 

previous findings in INS-1 cells, identifying about three times less target genes for HNF48 in 

comparison to HNF4A2, although the difference is not as pronounced (Erdmann et al., 2007). 

Those data can be explained by the findings that HNF4A8 is a weaker transactivator than 

HNF4A2 due to the lack of AF-1 in the former isoform (Nakhei et al., 1998; Torres-Padilla et 

al., 2002; Eeckhoute et al., 2003; Ihara et al., 2005) and is supported by the identification of 

AF-1 dependent target genes (Briancon and Weiss, 2006). The majority of HNF4A8 target 

genes identified in this study are upregulated (~70%) in HEK293 cells, supporting the 

assumption of HNF4A as a mainly positive regulator due to the following data published 

previously. About 90% (Lucas et al., 2005) and 55% (Grigo et al., 2008) of genes were 

upregulated by HNF4A2 in HEK293 cells. In INS-1 cells about 70% of upregulated genes 

were detected upon HNF4A2 expression (Thomas et al., 2004). Another study using INS-1 

cells detected about 80% and 90% positive regulation for target genes upon HNF4A2 and 

HNF4A8 expression, respectively (Erdmann et al., 2007). Microarray analyses of human 
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hepatoma cells (HuH-7) additionally transfected with rat Hnf4a2 cDNA identified the majority 

of target genes (~90%) to be upregulated as well (Naiki et al., 2002).  

Similar to the 70% overlap of HNF4A8 target genes with HNF4A2 regulated genes in INS-1 

cells (Erdmann et al., 2007), about 60% of genes identified for HNF4A8 in the present study 

were also regulated by HNF4A2 in HEK293 cells (Fig. 5). But in contrast to INS-1 cells, 

where both isoforms cause a decrease in cell proliferation and morphological changes, in 

HEK293 these genes are assumed to have no impact on cell proliferation decrease or 

morphology. However, the elaborate approach to narrow down the number of 1411 potential 

HNF4A2 target genes to a reasonable number of proliferation relevant genes failed to do so 

in this study. Of only 181 target genes identified for HNF4A8, 111 genes were also regulated 

by HNF4A2 and thus deemed not to be relevant for proliferation, still leaving 1300 potential 

HNF4A target genes involved in proliferation control.  

1.2 The multifaceted target gene CIDEB 

Despite the vast amount of potential target genes, CIDEB was analyzed in more detail. Out 

of all tested isoforms and HNF4A mutants it was exclusively upregulated upon HNF4A2 

expression (Fig. 6) which has a strong impact on proliferation decrease. Furthermore, it has 

been shown in HEK293 cells that HNF4A targets the internal CIDEB promoter and enhances 

its activity (Da et al., 2006). CIDEB is a member of the cell death-inducing DNA 

fragmentation factor-α-like effector (CIDE) family that contain an evolutionary conserved 

CIDE-N domain sharing sequence similarity with DNA fragment factor 40/45 (DFF40/45; 

Inohara et al., 1998). Hence, all initial publications described a cell death-inducing activity for 

CIDEB (Inohara et al., 1998; Lugovskoy et al., 1999; Chen et al., 2000; Erdtmann et al., 

2003; Reed et al., 2004). In previous experiments HNF4A2 was ruled out to induce apoptosis 

in HEK293 cells by propidium iodine staining in FACS, annexin staining and measuring 

caspase 3/7 activity (Lucas et al., 2005). This is in contrast to INS-1 cells where 

overexpression of HNF4A induced apoptosis (Erdmann et al., 2007). However, apoptosis 

triggered by Cideb in mammalian cells could not be inhibited by caspase inhibitors, 

suggesting a caspase independent mechanism (Inohara et al., 1998). This potentially 

provides an alternative mechanism via CIDEB causing a decrease in cell number upon 

HNF4A2 expression that would not be contradictory to the lack of HNF4A2 induced 

caspase 3/7 activity in HEK293 cells (Lucas et al., 2005). qRT-PCR validated the HNF4A2  

dependent increase in CIDEB expression in the present study (Fig. 6). This method is known 

to be more sensitive than microarray analysis and thus only qRT-PCR revealed constitutive 

expression of CIDEB in HEK293 cells independent of HNF4A expression. This is in contrast 

to previous data detecting no CIDEB mRNA in HEK293 cells likely due to application of less 
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sensitive northern blot analyses (Inohara et al., 1998). The short 1.3 kb CIDEB transcript that 

is activated by HNF4A is the major transcript and expressed at high levels in adult and fetal 

liver and at lower levels in various tissues including kidney (Inohara et al., 1998; Liang et al., 

2002). However, the primer pair used in this study targeted exon six and thus did not 

differentiate between the short and long transcript.  

RNAi experiments performed in the present study indicated that CIDEB has an impact on the 

HNF4A2 dependent decrease in cell proliferation (Fig. 7). The cost-efficient esiRNA method 

has been shown to be comparable to optimized siRNAs in its silencing effect (Kittler and 

Buchholz, 2003). The advantage lies in the pool of esiRNAs used for one target gene, since 

the individual concentration of each esiRNA is believed to be too low to cause off-target 

effects, but the sum of many esiRNAs targeting the same gene is high enough for efficient 

genet silencing (Kittler et al., 2007; Mathey-Prevot and Perrimon, 2007). Although, in the 

present study, the rescue effect was only partial using HNF4A and CIDEB specific esiRNAs, 

it was highly reproducible even with different sets of esiRNAs. The reliability of this assay is 

supported by a previous report in which only about 20% of selected, upregulated HNF4A2 

target genes showed a highly significant rescue effect (p>0.01) including p21 (CDKN1A) that 

was sufficient to cause a decrease in cell proliferation independent of HNF4A2 expression 

(Grigo et al., 2008).  

 

Flp-In cell lines conditionally expressing Cideb (Fig. 8) confirmed the previously reported 

location of this protein in cytosolic corpuscles (Liang et al., 2002). A more detailed study 

reported that Cideb is localized to the endoplasmic reticulum and lipid droplets (Ye et al., 

2009), while mitochondria localization as well as dimerization seems to be required for 

CIDEB induced apoptosis (Chen et al., 2000). Indeed, the observed corpuscular distribution 

of Cideb in the cytoplasm in the present study could reflect mitochondria location, but no 

signs of apoptosis such a chromatin condensation were observed in the Cideb cell lines upon 

induction (data not shown), in contrast to previous transient transfection studies (Inohara et 

al., 1998; Chen et al., 2000; Liang et al., 2002; Erdtmann et al., 2003). Notably, Cidea, 

initially recognized for its ability to trigger apoptosis just like Cideb (Inohara et al., 1998) does 

not induce cell death in liver of mice (Viswakarma et al., 2007) and no difference in apoptosis 

was observed in brown adipocytes between wild-type and Cidea-deficient mice (Gong et al., 

2009).   

In the present study, overexpression of Cideb in the two cell lines did not decrease cell 

proliferation as observed for HNF4A2, but instead resulted in a small increase after three 

days of induction which diminished after six days (Fig. 9A). This might be due to an initial 

increase in metabolic activity as described for HNF4A8 in INS-1 cells (Erdmann et al., 2007), 

but the cell number was not counted to confirm this hypothesis for Cideb. Possibly, cell line 
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dependent factors are responsible for the insufficiency of to cause a decrease in cell 

proliferation. For example, CIDEB induced apoptosis has been shown to be dose-dependent 

(Inohara et al., 1998; Liang et al., 2002). However, qRT-PCR ruled out that insufficient Cideb 

expression is the limiting factor, since the transgene is expressed more than twice as high as 

the endogenous CIDEB gene upon HNF4A2 expression (Fig. 10). Notably, the RNA level 

does not necessarily correlate with the protein amount due to posttranscriptional regulation. 

Endogenous and exogenous CIDEB protein level could not be compared, as commercially 

available antibodies were not specific enough to detect the protein unambiguously.  

In contrast to the lack of Cideb protein in untreated cells as determined by western blot and 

immunofluorescence analyses using a myc-tag antibody, Cideb RNA was detected by 

qRT-PCR even in uninduced Cideb cells. The two protein specific methods are less sensitive 

than qRT-PCR, although it cannot be ruled out that the RNA is not efficiently translated into 

protein. Obviously, the two Cideb cell lines are leaky, an issue of the Flp-In system which has 

been recently reported (Senkel et al., 2009). If increased expression levels of CIDEB trigger 

apoptosis and the system is leaky, no such cell line could be generated. Possibly the 

established Cideb cells have acquired genetic traits during the selection process to cope with 

elevated Cideb expression levels, which makes them insensitive to increased Cideb 

expression.  

 

Figure 22 summarizes some of the HNF4A dependent effects on cell function mediated by 

targets genes with emphasis on CIDEB as determined in the present and previous studies. 

While HNF4A8 has no impact on cell proliferation in HEK293 cells as demonstrated in this 

study, HNF4A2 mainly activates target genes resulting in a decrease in cell proliferation 

(Grigo et al., 2008). p21 is sufficient to inhibit cell proliferation independent of HNF4A2 

expression. CIDEB, extensively analyzed in this study, only contributes to the proliferation 

decrease in cooperation with other factors within the signal cascade triggered by HNF4A2. 

The same conclusion was already drawn in previous experiments for ANK3, ALDH6A1, 

BPHL, DSC2, EFHD1, EPHX2, NELL2, MME, PROS1, SEPP1, TGFA and THEM2 (Grigo et 

al., 2008). It is noteworthy that SEPP1, NELL2 and even p21 are activated by HNF4A8 to a 

highly similar extent as by HNF4A2. Hence, it is not possible to conclude that all target genes 

of HNF4A8 have no impact on cell proliferation due to the observation that HNF4A8 does not 

influence proliferation. Those findings further corroborate the assumption that not a single 

gene, but the complex interplay of numerous factors determines the overall function. For 

example, p21 was implicated as a target gene of HNF4A2 relevant for proliferation decrease 

(Grigo et al., 2008). Another study revealed a dichotomy between differentiation and 

proliferation due to interactions between Sp1, HNF4A1 and c-Myc proteins and the p21 

promoter (Hwang-Verslues and Sladek, 2008). In the absence of c-Myc, HNF4A1 activates 
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p21 by interaction with Sp1, causing a block in cell cycle and decreased cell proliferation. In 

the presence of c-Myc, activation of p21 by HNF4A1 is reduced due to several mechanism 

such as displacement of HNF4A1 from Sp1, resulting in increased proliferation.    

 

 
 

Figure 22: Impact of HNF4A via target genes such as CIDEB on various cell functions. 
Overexpression of HNF4A2, but not HNF4A8 inhibits cell proliferation in HEK293 cells mediated by 
several target genes. Most target genes including CIDEB are only functional within the HNF4A2 
dependent network, while p21 is sufficient to cause a decrease in cell proliferation. Genes depicted in 
grey were identified previously (Grigo et al., 2008). Genes activated by HNF4A8 as well are indicated 
by an asterix. In the liver, Cideb has been shown to influence metabolic processes (Gong et al., 2009; 
Li et al., 2010).  

 

In accordance with one gene mediating multiple functions under different circumstances, 

CIDE proteins including CIDEA, CIDEB and Fsp27 (CIDEC) have been recently associated 

in the development of metabolic disorders such as diabetes, liver steatosis and obesity. 

Cideb knock-out mice are lean and resistant to diet-induced obesity and liver steatosis. This 

phenotype is caused by increased insulin sensitivity despite lower levels of plasma insulin 

and reduced serum triacylglycerol (TAG) due to decreased hepatic lipogenesis and 

increased fatty acid β-oxidation (Li et al., 2007b; Gong et al., 2009; Fig. 22). Furthermore, a 

recent report observed decreased cholesterol biosynthesis in Cideb knock-out mice that 

showed increased hepatic cholesterol uptake and storage upon high cholersterol diet (Li et 

al., 2010; Fig. 22). The essential function of HNF4A in the liver has been thoroughly 

investigated and includes the regulation of genes involved in the control of lipid homeostasis 

(Li et al., 2000; Hayhurst et al., 2001; Naiki et al., 2005). HNF4A regulates the majority of 

apolipoproteins and is thus assumed to play a role in atherosclerosis (Li et al., 2000; Bolotin 

et al., 2010). Cideb was shown to interact with apoB (Ye et al., 2009) and is suggested to 

contribute to atherosclerosis as well (Li et al., 2010). HNF4A2, which upregulates CIDEB, is 

the main isoform in the adult liver, while expression of HNF4A8, which has no impact on 
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CIDEB expression as shown in this study, is absent (Torres-Padilla et al., 2001). A recent 

report used an integrated approach of genome-wide techniques, in silico predictions and 

functional assays to identify direct target genes of HNF4A and confirmed CIDEB as an 

HNF4A target gene in the liver (Bolotin et al., 2009). Taken together, CIDEB seems to be a 

crucial target gene of P1 specific HNF4A isoforms due to its involvement in proliferation 

control and energy homeostasis in a cell type dependent manner (Fig. 22).   

2 Transcriptional regulation of HNF4A via the P2 and P1 
promoter 

2.1 Impact of mutations in the P2 promoter on gene expression 

An overview of the regulation of HNF4A as determined mainly in this study and its implication 

on diabetes and cancer is given in Figure 23. Transcriptional regulation is mediated by 

transcription factors and miRNAs targeting the HNF4A P2 and P1 promoter, respectively. 

The posttranscriptional control is achieved via binding sites for miRNAs and regulatory 

factors within the two 3’UTRs identified for HNF4A.  

 

 

 
Figure 23: Transcriptional and posttranscriptional regulation of HNF4A.  
Mutations identified within the HNF4A P2 promoter that are linked to diabetes and impair the P2 
promoter activity in vitro as indicated by an arrow pointing downwards, are depicted. P2/-136 and 
P2/-169 were characterized in the present study (Fig. 13). P2/-146 (Thomas et al., 2001), P2/-181 
(Hansen et al., 2002) and P2/-192 (Ek et al., 2006; Raeder et al., 2006a) were reported previously, but 
the latter mutation was shown to reduce promoter activity in this study (Fig. 13). miRNAs potentially 
activate the HNF4A P1 promoter as displayed by an upwards pointing arrow. Downregulation of those 
miRNAs might contribute to the dysregulation of HNF4A in cancer such as RCC. Both 3’UTRs with a 
length of 1724 bp and 3180 bp confer a negative posttranscriptional regulation of HNF4A mediated by 
at least two binding sites for miR-34a and negative element A and B. Downwards pointing arrows 
describe the negative effects of miR-34a and factors targeting negative element A and B on HNF4A 
regulation. Upregulation of miR-34a, as detected in RCC for example or/and other factors likely cause 
downregulation of HNF4A relevant for cancer or diabetes progression. 

 

The families presented in Figure 11 are consistent with HNF4A associated diabetes, 

including either neonatal hypoglycaemia (-136A>G) or increased birth weight (-169C>T). 
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Diabetes was generally adequately controlled by sulphonylurea (SU) or diet alone. Mutations 

affecting the P2 promoter or P2-derived isoforms are typically diagnosed later (median age, 

31 years) compared with mutations that affect all isoforms of HNF4A (median age, 24 years; 

Harries et al., 2008). Most of the P2 promoter mutation carriers presented in this study were 

diagnosed before 25 years of age, suggesting that these mutations are relatively severe or, 

alternatively, this could represent case-finding bias leading to mutation suspicion and testing 

only in younger affected individuals. In contrast, the -192C>G mutation is linked to a later age 

of onset (mean age of diagnosis, 45 years) and few carriers were diagnosed before 25 years 

of age (Ek et al., 2006; Raeder et al., 2006a).  

Both novel HNF4A P2 promoter mutations, -136A>G and -169C>T, decrease the basal 

activity of the promoter in transient transfection assays in HEK293 cells (Fig. 13). Based on 

gene expression profiling, HEK293 cells do not express HNF1A, HNF1B, HNF6 or OC2 

(Lucas et al., 2005), implying that the mutations at -136 and -169 affect the binding of 

additional factors (Fig. 12). In contrast, -192C>G does not affect the basal activity in HEK293 

cells, but decreases the basal activity in INS-1 cells (Fig. 13), supporting previous evidence 

that this mutation affects binding of a cell-specific factor enriched in INS-1 cells (Ek et al., 

2006). All three mutations have decreased activity in the presence of HNF1B compared with 

the wild-type promoter in both kidney and β-cell lines. The -169C>T mutation, affecting the 

consensus sequence of the HNF1 binding site, shows the most marked reduction in activity 

with HNF1B. Since the other mutations are unlikely to affect binding of HNF1B directly, it is 

most likely that the reduced activity with HNF1B reflects a co-operative action of transcription 

factors at the HNF4A P2 promoter. An interplay of various tissue-specific transcription factors 

has also been assumed in previous P2 promoter analyses, since transactivation by CDX-2 is 

reduced for the mutated P2/-146T>C site, although it does not seem to interact directly with it 

(Thomas et al., 2001). In the present study in INS-1 cells, a consistent decrease in promoter 

activity was observed upon HNF1B induction for all of the constructs except 

P2/-285(-169C>T), which has a mutated HNF1 binding site. The decrease in activity is as 

expected, since the HNF1 binding site is recognized by HNF1A and HNF1B, but INS-1 cells 

express more HNF1A than HNF1B (Thomas et al., 2004). Thus endogenous HNF1A is 

outcompeted by the weaker transactivator HNF1B (Ryffel, 2010). A mutation upstream in the 

same HNF1 binding site at position -181G>A has been analyzed in more detail previously 

and revealed a decreased activation due to a reduced affinity for HNF1A (Hansen et al., 

2002). However, regulation by HNF1B was not determined. It is most likely that -169C>T 

affects binding of HNF1A in the same way.  

Previous experiments by two independent groups failed to show an impaired performance of 

the HNF4A P2 promoter mutation -192C>G in transfection assays in the MIN6 cell line and in 

CaCo2 cells (Ek et al., 2006), but also in INS-1 cells (Ek et al., 2006; Raeder et al., 2006a). 
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While promoter variants are known to affect promoter activity in a cell-specific manner as 

reported for the -146T>C mutation that caused a decreased activity in INS-1 cells but not in 

hepatoma cells (FT0-2B; Thomas et al., 2001), the lack of effect in INS-1 cells requires 

another explanation. Possibly, the use of a renilla luciferase construct as an internal control 

in the present experiments may have facilitated the detection of small changes. In addition, it 

is likely that the use of cell lines containing HNF1B as a stably integrated conditional 

transgene mimics the in vivo situation more efficiently.  

The present data establish that three HNF4A P2 promoter point mutations co-segregating 

with diabetes affect highly conserved nucleotide positions and, more importantly, impair the 

function of the mutated promoters in transfected cells. This makes it most likely that these 

mutations cause the diabetic phenotype. Taking into account the -146T>C (Thomas et al., 

2001) and -181G>A mutations (Hansen et al., 2002), there are now five mutations known in 

the P2 promoter that affect the performance of HNF4A in pancreatic β-cells and result in 

diabetes (Fig. 23). 

2.2 Impact of miRNAs on the P2 and P1 promoter 

So far it could only be assumed that binding of miRNAs to promoter regions follows the same 

guidelines as established for miRNAs targeting 3’UTRs, since corresponding data is lacking. 

A recent study examined computational methods for predicting miRNA binding sites within 

promoter sequences and indicates that those regulatory sequences are as good candidates 

for miRNA regulation as 3’UTRs (Younger et al., 2009). On average they identified about 30 

miRNA seed matches per promoter sequence analyzed (-200 to -1 relative to transcription 

start site) and suggest that minimum free energy as well as high complementarity between 

the miRNA and target sequence are useful criteria to prioritize miRNA target predictions 

within promoters, similar as known for 3’UTRs. In silico prediction using the online RegRNA 

software (available at http://regrna.mbc.nctu.edu.tw; Huang et al., 2006) revealed numerous 

potential miRNA binding sites within the HNF4A P2 promoter. Although this software was 

designed to predict regulatory motifs and miRNAs in RNA sequences, it predicted the 

miR-373 binding site within the E-cadherin and CSDC2 promoters. For both promoters the 

activating function was experimentally validated (Place et al., 2008). However, it is not 

possible to upload any miRNA sequences in order to obtain a specific map of potential 

miRNA binding sites for miRNAs of interest within the sequence analyzed. Using RNA22 

(Miranda et al., 2006), various potential binding sites were predicted within the HNF4A 

promoter regions for miRNAs that are downregulated in RCC.  
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An interplay of ubiquitous and cell-specific factors targeting various regulatory elements 

within promoter sequences as well as the chromatin context, regulate the activity of gene 

promoters and influence experimental procedures (Maston et al., 2006). While promoter 

regulation by transcription factors has been studied extensively, knowledge about promoter 

modulation by miRNAs and inevitable experimental limitations are scarce. Certainly, various 

properties for promoter regulation by transcription factors and miRNAs apply to both. In 

accordance with that, the effect of miR-373 on E-cadherin and CSDC2 is cell type specific 

(Place et al., 2008) as described for many transcription factors for example on the HNF4A 

promoters (Bailly et al., 2009). In contrast to transcription factors, small dsRNAs 

complementary to gene promoters have been shown to modulate transcription of target 

genes by recruiting members of the Ago family to RNA transcripts that originate from the 

target promoter in either sense or antisense direction (Janowski et al., 2006; Kim et al., 2006; 

Han et al., 2007; Schwartz et al., 2008). So far it is only assumed that miRNAs might 

regulate gene promoters by targeting such transcripts as well (Kim et al., 2008; Younger et 

al., 2009). In that case, generation of promoter transcripts might be disrupted by introducing 

only parts of the promoter sequences into a reporter plasmid. Induction of gene promoters by 

miR-373 was identified by analyzing the effect of this miRNA on the endogenous target gene 

and not by reporter analyses (Place et al., 2008). However, a recent study claims the 

regulation of the interleukin genes IL24 and IL32 by miR-205 via targeting specific sites in the 

promoter sequences (Majid et al., 2010). Besides demonstrating the miR-205 dependent 

regulation of the endogenous genes, they observed an activating effect of miR-205 on a 

co-transfected vector containing the 2.2 kb IL24 promoter sequence in luciferase assays. 

Hence, it seems to be possible to address miRNA regulation on at least large promoter 

fragments in transient transfection assays. Notably, this experiment was just shown for IL24, 

but not for IL32 and even more importantly, the predicted miR-205 binding sites within the 

promoter sequences were not mutated to confirm the sequence specific effect of miR-205 on 

the IL24 and IL32 promoters. Despite promising data, indirect effects of miR-205 on IL24 and 

IL32 promoter activation cannot be entirely excluded. The experimental limitations might 

explain the lack of research in this field. However, a recent study analyzed conserved short 

sequence (< 8 nt) located within 100 bp up- and downstream of the transcription start site. 

They postulate that the majority of the common sequences are frequently found within 

mature miRNAs and stem-loop sequences (Putta and Mitra, 2010) and hence provide further 

evidence of a possible widespread impact of miRNAs on promoter sequences.  

Due to the high degree of uncertainty in this field, in this study a general approach was 

applied by knocking down Dicer, to evaluate regulation of the two HNF4A promoters by any 

miRNA. Deletion of Dicer decreases or abrogates the production of mature miRNAs 

(Hutvagner et al., 2001; Grishok et al., 2001). Although depletion of the Dicer protein is not 



Discussion 

 83

complete in the cell line after addition of doxycycline (Schmitter et al., 2006), a significant 

relief of reporter constructs containing binding sites for let-7a in the 3’UTRs (RL-Perf, 

RL-3xBulge) was verified in contrast to RL-Con, lacking any binding site (data not shown). 

This data confirmed the miRNA specific functionality of the assay, but was restricted to 

3’UTR sequences, since positive controls for promoter sequences are lacking.  

The activity measured in this study for the gradually shortened HNF4A P2 and P1 promoter 

fragments in uninduced cells was differential, likely due to interruption of transcription factor 

binding sites as described previously for the P2 promoter (Thomas et al., 2001). However, in 

the current analyses the focus was set only on miRNA regulation by comparing activities 

between cells in the presence and absence of miRNAs for each construct. The decrease in 

activity of the P2 promoter upon Dicer knock-down (Fig. 14A), implies depletion of a miRNA 

functioning as an activator. However, this finding is controversial, since the decrease is not 

significant in comparison to the empty control vector pGL3 basic and is not abolished upon 

gradual deletion of the promoter sequence even up to constructs P2/-135 which essentially 

removes the promoter (transcription start site at -103) and mainly consists of 5’UTR 

sequence (~100 bp). In contrast, the CMV-promoter was not affected by miRNA depletion, 

which suggests a promoter specific effect. However, its activity is several hundred-fold higher 

in comparison to the P2 promoter and small alterations in its activity would thus be lost in 

detection due to the high expression. A potential influence of miRNAs on the P2 promoter 

mutations described in the previous section was not analyzed. Even in case of P2 regulation 

by miRNAs, the present data would indicate that miRNA targeting takes place downstream of 

-135 relative to the translational start site, but the identified P2 promoter mutations were all 

located upstream from this position.   

In general, the P1 promoter was more active than the P2 promoter. The former promoter 

seems to be predominantly active in the embryonic kidney and P1 specific Hnf4a1 was 

detected at a higher level in comparison to Hnf4a7 in murine kidney (Kanazawa et al., 2009). 

Regulation of the P1 promoter by miRNAs as determined in this study seems more likely 

since the effect varies to some extent with different fragments and is significantly reduced in 

comparison to pGL3 basic in case of P1/-1114 and P1/-281 (Fig. 14B). Interestingly, the 

activity of those two constructs in uninduced cells is comparable and higher than for P1/-590 

and P1/-132. However, since no preferential miRNA targeting was observed for any area 

within the 200 bp upstream of the transcription start site of promoters surveyed (Younger et 

al., 2009), any predicted miRNA within the P1/-281 construct (117 bp are 5’UTR sequence) 

is a potential candidate.  

 

Data obtained in this study by specifically mimicking or inhibiting certain miRNAs as 

described in this section is not shown. miR-187, miR-199b-5p and miR-200c are 



Discussion 

 84

downregulated in RCC according to at least two different studies (Kort et al., 2008; Nakada 

et al., 2008) and were predicted to have 5(2), 8(5) and 3(1) target sites within the sense 

strand of the HNF4A P1/-1114 (P1/-281) promoter as determined by RNA22. The approach 

to specifically inhibit certain miRNAs by using chemically synthesized, single-stranded, 

modified RNAs (Qiagen), was successfully established as inhibiting let-7a resulted in a 

significant increase in luciferase activity for the reporter constructs containing binding sites 

for let-7a in the 3’UTRs (RL-Perf, RL-3xBulge). No changes in activity were observed for 

RL-Con serving as a negative control. However, positive and negative controls specific for 

miRNA promoter analyses were lacking. Inhibiting miR-187, miR-199b-5p and miR-200c did 

result in a pronounced decrease in luciferase activity as expected if abolishing their activating 

effect on the promoter. However, the decreased activity was gradually lost with increasing 

inhibitor concentrations ranging from 50 nM to 250 nM and even turned into an increased 

activity at high concentrations. Notably, the same phenomenon was observed for miR-20a 

which is not predicted to target the P1/-281 promoter fragment and thus seems to be an 

unspecific effect. Mimicking miR-200c, using chemically synthesized, dsRNAs from Qiagen 

at concentration ranging from 1 nM to 100 nM had no effect on P1/-281 expression. 

Generating and transfecting a pre-miR-200c expression plasmid, the decrease on the 

validated pMIR-REPORT vector containing parts of the zinc-finger E-box binding homeobox 

1 (ZEB1) 3’UTR could be reproduced (Burk et al., 2008). One of the three potential miR-200c 

binding sites located upstream of position -281 in the P1 promoter exhibits high 

complementarity to the miRNA sequence including just four mismatches. Since high 

complementarity has been suggested to be a promising criteria for miRNA binding sites 

within promoter sequences (Younger et al., 2009), the effect of the pre-miR-200c expression 

plasmid was also tested on the P1/-590 and P1/-1114 constructs. For all three P1 promoter 

constructs a decrease in luciferase activity was observed, disagreeing with an activating 

function of miR-200c on the HNF4A P1 promoter. Taken together, the attempt to specifically 

inhibit or mimic certain miRNAs potentially targeting the HNF4A promoter failed due to 

ambiguous results under different conditions and the lack of reliable controls. 

 

Taken together, a tumor-suppressive role has been suggested for P1 driven HNF4A 

(Lazarevich et al., 2004; Lucas et al., 2005; Tanaka et al., 2006; Niehof and Borlak, 2008). 

Cancer dependent downregulation of specific miRNAs usually targeting and activating the 

HNF4A P1 promoter as indicated in Figure 23, potentially decreases HNF4A expression and 

thus contributes to the progression of certain cancers. This hypothesis would explain why so 

far no mutations in the ORF have been identified causing the downregulation of HNF4A 

function in RCC (Lausen et al., 2000; Dalgliesh et al., 2010). Such a mechanism has most 

recently been described involving loss of transcriptional activation of the interleukin tumor 
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suppressor genes IL24 and IL32 in prostate cancer due to silencing of miR-205 targeting 

specific sites in their promoter sequences (Majid et al., 2010). 

3 Posttranscriptional regulation of HNF4A via 3’UTRs  

In addition to HNF4A gene regulation involving complex networks of cis-acting elements and 

trans-acting factors that work on the transcriptional level, Figure 23 summarizes the negative 

posttranscriptional regulation via two HNF4A 3’UTRs mediated by cis-elements targeted by 

miRNAs and other regulatory factors as determined in this study. Whereas on the 

transcriptional level promoter and enhancer elements with their corresponding DNA binding 

proteins have been well characterized (Mitchell and Tjian, 1989; Kadonaga, 2004), 

posttranscriptional control involving the 3’UTR of mRNAs has been largely neglected. This 

ignorance is quite surprising, as in many cases the 3’UTR of a given mRNA exceeds the 

length of the ORF substantially (Mignone et al., 2002) as exemplified also by HNF4A 

(Fig. 15A). Furthermore, only 39 motifs recognized by RNA-binding proteins are deposited in 

the database UTRdb (Grillo et al., 2009), whereas 457 transcription factor binding sites are 

available in JASPAR 2010 (Portales-Casamar et al., 2010).  

3.1 Posttranscriptional regulation by RNA-binding proteins 

Investigating the 3’UTR of human HNF4A for its regulatory potential, a non-canonical and 

canonical PAS was detected leading to a short (1.7 kb) and long (3.2 kb) 3’UTR, respectively 

(Fig. 15A). About 29% of mRNAs contain more than one PAS and the distal PAS tend to be 

canonical signals (Beaudoing et al., 2000). Using in silico predictions (Tab. 1) only the highly 

conserved, distal PAS was identified. In accordance with data showing that non-canonical 

signals are processed less efficiently than the canonical PAS (Beaudoing et al., 2000), the 

long 3’UTR is generated predominantly in HEPG2 and HK120 cells (Fig. 15B). 

In the present study, a systematic analysis of both 3’UTRs by reporter assays, significantly 

reduced luciferase reporter activity in HEK293 and INS-1 cells (Fig. 16), as described for 

other 3’UTRs in previous studies (Cok and Morrison, 2001; Mawji et al., 2004; Johnson et al., 

2005; Moncini et al., 2007; Sun et al., 2010). Only few potential cis-acting elements could be 

identified in the HNF4A 3’UTR by in silico studies (Tab. 1). The SXL-binding site is targeted 

by a sex-lethal (SXL) female-specific RNA-binding protein identified in Drosophila 

melanogaster (Kelley et al., 1995). In addition to its function, it is not likely to impact the 

HNF4A 3’UTR since no significant difference was observed between constructs 2574-3180 
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including the element and 2771-3180 lacking it. A K-box element was predicted at the 3’ end 

of the HNF4A 3’UTR (2940-2947). Constructs comprising this area show the highest 

luciferase activity of all constructs tested in HEK293 cells and also higher activities than the 

majorities of constructs in INS-1 cells (Fig. 16), but K-box is described to mediate negative 

regulation (Lai et al., 1998). Furthermore, this element was found to be complementary to the 

5’ end of many miRNAs (Lai, 2002). In Dicer knock-down experiments, construct 2574-3180 

including the potential K-box element showed no sign of regulation by miRNAs (Fig. 19). 

Taken together, it is very unlikely that the K-box element is functional in HNF4A. Using the 

UCSC browser, two elements named MIRb and MIRc were located right within sequence A 

and B, respectively (Fig. 17). However, those elements were not conserved in the mouse 

sequence, did not decrease luciferase activity as reported for sequence A and B and are 

thus unlikely to function as destabilizing elements. Instead, by deletion analyses, the two 

novel elements A and B were identified, conferring the highest repressive effect in both cell 

lines (Fig. 17). The Musashi binding element located within negative element A (910-914) 

might be functional, but is unlikely to be a crucial element, since the large size of negative 

element A cannot be restricted on either side without diminishing the effect (Fig. 17). Taken 

together, none of the predicted regulatory elements seems to be essential for 

posttranscriptional regulation of HNF4A, at least under the present physiological conditions, 

but instead several elements such as negative element A and B and the proximal, non-

canonical PAS are functional, but were not identified by in silico predictions. Those findings 

point out the need for more accurate prediction programs and also the importance of 

functional assays. To exclude that transcriptional elements located in the 3’UTR interfere in 

the assay, elements A and B were shown to act on RNA level, as the antisense sequences 

are not functional and a SV40 transcriptional stop codon upstream of the element destroys 

their function (Fig. 18). The size of elements A and B (~400 nt) is much larger than a binding 

site of a RNA-binding protein or a miRNA. The single-stranded RNA likely adopts a 

secondary structure possibly associated with RNA-binding proteins. Such elements have 

been found for instance in the 3’UTRs of the Vg1 mRNA (Gautreau et al., 1997) and bicoid 

mRNA (Seeger and Kaufman, 1990; Macdonald, 1990), where they are involved in the 

cytoplasmic localization of the mRNA.  

The pronounced negative effect of element A and B is masked within the HNF4A 3’UTRs 

due to an element located within the 5’ sequence 1-630 nt (Fig. 18). Depending on the level 

of transacting proteins that potentially target these distinct elements, the regulation of HNF4A 

via its 3’UTR could be altered. A similar complex regulation mediated by several, distinct 

functioning 3’UTR elements has also been described in Cox-2 (Cok and Morrison, 2001) 

Endothelin-1 (Mawji et al., 2004) and CDK5R1 (Moncini et al., 2007) mRNAs. Interestingly, 

an interaction of two quite large elements (~100 bp and ~300 bp) separated by about 2 kb 
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within the insulin-like growth factor II (IGF-II) 3’UTR has been described. Specific parts of the 

two elements can form a stable stem structure that is involved in the formation of RNA-

protein complexes. Those complexes are dependent on growth conditions and regulate 

IGF II mRNA levels involving endonucleolytic cleavage of the mRNA within downstream 

element II (Scheper et al., 1995; Scheper et al., 1996). It is conceivable that such direct 

or/and indirect interactions through a bridging ribonucleoprotein complex between different 

elements of the HNF4A 3’UTR take place as well. However, due to the very limited number 

of studies addressing the comprehensive interactions of different parts of the 3’UTR, the 

majority of phenomena observed are not clearly understood and a distinct biological function 

remains elusive. Further complexity has been revealed recently by identifying interplays 

between RNA-binding proteins and miRNAs. Binding of those proteins to mRNAs has been 

shown to facilitate or counteract miRNA function on 3’UTRs which is in part dependent on 

the mRNA or cellular context (Krol et al., 2010).  

3.2 Posttranscriptional regulation by miRNAs 

Although several target prediction algorithms are available, the majority of programs such as 

miRanda (John et al., 2004), PicTar (Krek et al., 2005) and TargetScan (Lewis et al., 2003), 

analyze the 3’UTRs and miRNAs contained in their databases. Since the 3180 nt HNF4A 

3’UTR is not included, the program RNA22 was used, which allows for the analyses of 

3’UTRs and miRNAs of interest. Furthermore, this program does not rely on cross species 

site conservation or a perfect seed sequence, but allows for GU pairing (Miranda et al., 

2006). The former two parameters have been shown not to be essential for functional miRNA 

binding sites, while GU pairing is tolerated (Grimson et al., 2007; Baek et al., 2008; Hammell 

et al., 2008; Chi et al., 2009; Wu et al., 2010). Due to the less stringent criteria of RNA22, too 

many potential miRNA targets were found in the HNF4A 3’UTR. Therefore, the analysis was 

restricted to the 20 miRNAs upregulated in RCC (Tab. 2), predicting 140 potential miRNA 

binding sites within the long HNF4A 3’UTR. The false-positive rate of target prediction is 

quite high (Bentwich, 2005; Rajewsky, 2006; Jiang et al., 2009; Wu et al., 2010) and 

therefore potential target sites can only be used as a guide (Sethupathy and Collins, 2008). 

In a recent study for example, out of a pool of 266 miRNAs predicted to target the p21 3’UTR 

by four different prediction programs including TargetScan, PicTar, miRanda and RNA22, 

only 28 miRNAs significantly reduced luciferase activity (Wu et al., 2010). To locate the area 

of crucial miRNA binding within the HNF4A 3’UTR in the present study a HEK293 cell line 

with a conditional Dicer knock-down (Schmitter et al., 2006) was used. Potential miRNA 

targets could be located within the 5’ 449 nt of the HNF4A 3’UTR with a high probability for 

sequence 204-449, since the significant increase upon miRNA depletion was lost for 
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constructs containing 5’ 196 or less nucleotides (Fig. 19). In accordance with findings 

describing the effects of miRNAs on proteins as quite modest (Baek et al., 2008; Selbach et 

al., 2008), derepression upon Dicer knock-down was moderate for the HNF4A 3’UTR, but 

significant. Dicer knock-down is quite elegant and attractive, but it reveals only targets of 

miRNAs present in HEK293 cells and those that are dependent on Dicer (Cifuentes et al., 

2010). In addition, cell death upon long term Dicer knock-down may lead to secondary 

effects. Thus, complementary experiments measuring the effect of specific miRNAs were 

needed.  

 

Regulation of the HNF4A 3’UTR by miR-122 as presented in Figure 20A was excluded, since 

the luciferase activity for HNF4A 3’UTR constructs was not significantly reduced in 

comparison to RL-Con, upon expression of miR-122. The decrease in luciferase activity for 

RL-Con upon miR-122 expression, confirms the importance of including such controls in 

miRNA dependent luciferase assays. miR-122 makes up 70% of all miRNAs in the adult liver 

(Lagos-Quintana et al., 2002; Chang et al., 2004) and has been identified as a significant 

regulator of hepatic lipid metabolism (Esau et al., 2006). mRNAs showed differential 

sensitivities to miR-122 levels and the degree of target mRNA modulation was at the most 

3.5-fold (Esau et al., 2006). The importance of the stoichiometry of target to miR-122 was 

already noted previously (Chang et al., 2004). The reporter expression level had to be 

lowered to observe an effect which then increased with rising levels of miR-122. HNF4A is an 

essential gene in the liver and expressed at a high level (Hayhurst et al., 2001). If HNF4A is 

regulated by miR-122 in the liver, it is likely that HNF4A is only responsive to very high 

miR-122 expression levels. miR-122 is highly overexpressed in RCC (~28-fold). Possibly, the 

level of miR-122 expression reached in the present study was not sufficient to cause an 

effect, considering that miR-122 expression is absent in HEK293 cells (Tab. 2). In a recent 

report Seitz suggested that many predicted miRNA binding sites do not function to repress 

their targets, but are pseudotargets that sequester a miRNA to prevent it binding to the 

authentic target (Seitz, 2009). Potentially HNF4A functions as such a “sponge“ for miR-122 in 

the liver.  

In the present study, miR-21 had a minor, but significant effect on the HNF4A 3’UTR which 

was dependent on several binding sites (Fig. 20B). HNF4A might not be responsive to 

increased, exogenous miR-21 expression levels due to the moderate miR-21 expression in 

HEK293 cells, which might be sufficient for HNF4A regulation. In that case a different 

threshold applies to TPM1 since miR-21 overexpression resulted in a clear decrease in 

luciferase activity (Fig. 20B). However, synergy of miRNA action has been described in 

previous reports (Doench et al., 2003; Chang et al., 2004; Grimson et al., 2007) and 

simultaneous repression of an mRNA by different miRNA species was shown to be additive 
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(Doench and Sharp, 2004). Possibly, miR-21 additionally requires other miRNAs for 

regulating the HNF4A 3’UTR efficiently. miR-21 is a ubiquitious, very well-studied miRNA 

(Krichevsky and Gabriely, 2009). It is one of the most abundant miRNAs in a large variety of 

cancers analyzed, including high expression in most cancer cell lines of various origins, but 

miR-21 is also upregulated in other human proliferative disorders. The oncogenic role is 

supported by several experiments overexpressing and inhibiting miR-21, resulting for 

example in enhanced and decreased cell proliferation, migration and invasion in cultured 

human hepatocellular cancer cells, respectively (Meng et al., 2007). In this specific case, the 

tumor suppressor phosphatase and tensin homolog (PTEN) was identified as a target of 

miR-21 by luciferase assays and contributed to some of the miR-21 effects. Other studies 

confirmed the miR-21 dependent regulation of PTEN in vitro and in vivo by using miR-21 

specific mimics, inhibitors and expression plasmids as analyzed by western blot analyses 

and in part by luciferase assays (Zhang et al., 2009; Roy et al., 2009). The predicted miR-21 

binding site within the PTEN 3’UTR does not contain a perfect seed sequence (Zhang et al., 

2009). Although this miR-21 site was not mutated to confirm the site specific regulation, the 

amount of data by different studies makes the functionality of this seedless miR-21 site quite 

likely. Another gene that is regulated by miR-21 via a seedless target site is RASGRP1 

(Wickramasinghe et al., 2009). The predicted miR-21 site was not mutated either, but the 

luciferase construct contained only the miR-21 site from the RASGRP1 3’UTR and five 

additional nucleotides on each site. Inhibition of miR-21 in MCF-7 cells resulted in increased 

luciferase activity for the RASGRP1 construct. Interestingly, miR-21 regulation of PTEN is 

cell-specific, as it was also detected in a colon cancer cell line (Asangani et al., 2008) and 

vascular smooth muscle cells (VSMCs; Ji et al., 2007), but not in MCF-7 breast cancer 

(Frankel et al., 2008), A549 non-small cell lung cells (Blower et al., 2008) or glioma cells 

(Gabriely et al., 2008). This data provides further evidence, that strong HNF4A regulation by 

miR-21 might require additional factors that are lacking in HEK293 cells. In addition to RCC 

(Tab. 2), miR-21 has been shown to be upregulated in human kidney disease of various 

causes (Saal and Harvey, 2009). In cultured podocytes and tubular epithelial cells apoptosis 

was inhibited by miR-21, while inhibition of miR-21 in TGF-β1 transgenic mice enhanced 

apoptosis in podocytes. Hence, miR-21 is suggested to have a protective role in diabetic 

nephropathy. Proinflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor 

(TNF)-α, cause defective insulin secretion and apoptosis of pancreatic β-cells and hence 

play a role in diabetes development (Donath et al., 2008). miR-21 expression is induced by 

IL-1β and TNF-α in MIN6 cells and human pancreatic islets and elevated miR-21 expression 

levels were also detected in islets of NOD mice, a well-established type 1 diabetes model 

(Giarratana et al., 2007), during development of pre-diabetic insulitis (Roggli et al., 2010). It 

was further shown that inhibiting miR-21 prevented the decrease in glucose-induced insulin 
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secretion triggered by IL-1β. Interestingly, miR-34a was associated with β-cell failure in the 

same fashion (Roggli et al., 2010). Possibly, miR-34a and miR-21 act synergistically to 

regulate the HNF4A 3’UTR, which might play a role in diabetes and cancer. 

In the present study, miR-34a overexpression experiments validated two bindings sites 

including perfect seed sequences within the 5’ 449 nt of the HNF4A 3’UTR as determined in 

HEK293 and INS-1 cells (Fig. 21A). A significant decrease in luciferase activity was also 

observed in HK120 cells for the 5’ 449 nt upon expression of miR-34a (data not shown), 

hence confirming the miR-34a dependent regulation of HNF4A in three different cell lines. 

Although the proximal miR-34a binding site is still present in the construct including the 

5’ 196 nt, the luciferase activity was not significantly reduced upon miR-34a overexpression. 

The accessibility of a target site influenced by flanking sequences and specific RNA- or 

protein-based cofactors seem to be major determinants of 3’UTR responsiveness to a 

miRNA (Bartel, 2009; Sun et al., 2010). Possibly, sequences downstream of the miR-34a site 

at position 149-171 nt that are necessary for miRNA binding and function were deleted in 

construct 1-196 nt or changes in the secondary structure resulted in loss of site accessibility. 

Deleting the 5’ sequence including the two miR-34a sites in construct 631-3180 resulted in 

no significant changes in the Dicer knock-down experiments in which all miRNAs are 

depleted (Fig. 19). This likely reflects the complex regulation of HNF4A by an interaction of 

various miRNAs. Hence, Dicer knock-down experiments seem to be useful to locate areas of 

extensive miRNA regulation, but not for a detailed analysis of specific miRNA binding sites. 

Both miR-34a sites located within the 5’ 449 nt contributed equally to repression, a 

characteristic of independent and noncooperative action termed multiplicative effect 

(Grimson et al., 2007; Fig. 21A). Recently, miR-34a regulation of the HNF4A mRNA has 

been reported independently in HepG2 cells (Takagi et al., 2010). The present data extends 

this report that described only the distal miR-34a binding site of the 3’UTR to be involved in 

repression of HNF4A. A recent paper by Sun and colleagues described that the repression of 

the RhoB 3’UTR by miR-223 varied with the reporter construct used, including either just the 

miRNA binding site, long fragments or the entire 3’UTR (Sun et al., 2010). Hence, it is 

important to validate miRNA function in different constructs including the full-length 3’UTR 

sequence to substantiate that this target site is functional in vivo. In the present study, 

miR-34a dependent repression of the long 3180 nt HNF4A 3’UTR was verified and by 

applying the assay in a renal and pancreatic cell type (Fig. 21C), miR-34a function was 

established in distinct cofactor environments. Since the remaining 13 potential miR-34a 

binding sites were functioning within construct 631-3180 nt and three even in construct 

1288-1746, multiple control elements in the 3’UTR of HNF4A are deduced that are targeted 

by miR-34a. This is further supported by the recent finding of a miR-34a target site within the 

ORF of HNF4A (Takagi et al., 2010).  
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miR-34a has primarily been characterized as a tumor suppressor, as it is inactivated in 

several tumors and transcriptionally activated by p53. In addition, ectopic miR-34a 

expression induces apoptosis, cell cycle arrest or senescence (Medina and Slack, 2008; 

Hermeking, 2010). In contrast, miR-34a is upregulated in RCC (Tab. 2), hepatocellular 

carcinoma (Pineau et al., 2010), breast cancer (Iorio et al., 2005), squamous cell lung 

carcinoma (Gao et al., 2010) and in chronic lymphocytic leukemia (Asslaber et al., 2010). 

Thus, it appears that mir-34a acts as a tumor suppressor or an oncogene, depending on the 

cell type specific targets and regulatory mechanisms. This observation has been established 

for several other miRNAs (Spizzo et al., 2009). In fact, miR-34a was clearly increased in 

stress induced renal carcinogenesis of the rat and inhibition of miR-34a significantly 

decreased cell proliferation in a rat RCC cell line, but also in HeLa and MCF-7 cells (Dutta et 

al., 2007). Furthermore, the oncogenic potential of miR-34a was implied by its upregulation in 

RCC and the correlated decrease of the tumor suppressor SFRP1 whose loss has been 

observed in a majority of RCC (Liu et al., 2010). Noteworthy, functional assays were not 

applied to validate the regulation of SFRP1 by miR-34a experimentally. An experimental link 

of miR-34a and endogenous HNF4A mRNA has been verified in HepG2 cells where 

overexpression decreased HNF4A mRNA (Takagi et al., 2010). Therefore, it can be 

speculated that the upregulation of miR-34a potentially causes the downregulation of HNF4A 

in RCC (Fig. 23), resulting in increased cell proliferation through misregulation of at least 14 

HNF4A target genes involved in proliferation control (Grigo et al., 2008).  

Although few miRNA expression profiles have been performed, for example in murine 

pancreas (Baroukh et al., 2007) and MIN6 cells (Lovis et al., 2008; Tang et al., 2009) under 

different conditions, no profiles from human β-cells exist that might shed some light on the 

contribution of miRNAs to diabetes development. However, elevated levels of plasma free 

fatty acid are believed to be a predisposing factor for the development of T2DM (Prentki and 

Nolan, 2006). Interestingly, miR-34a was increased in the mouse β-cell line MIN6B1 and 

pancreatic islets of rats upon prolonged treatment with palmitate. miR-34a levels were also 

elevated in the islets of diabetic db/db mice and overexpression of miR-34a decreased 

glucose-stimulated insulin secretion (Lovis et al., 2008). In addition, miR-34a was the most 

upregulated miRNA in livers of streptozotocin-induced type 1 diabetic mice and ob/ob mice 

(model of nonalcoholic fatty liver disease (NAFLD) and hyperglycemia) and is suggested to 

be linked to the regulation of glucose metabolism (Li et al., 2009). In a recent report, the 

impact of miR-34a on β-cell failure caused by proinflammatory cytokines was identified in 

MIN6 cells, human pancreatic islets and islets of NOD mice during development of pre-

diabetic insulitis as mentioned above (Roggli et al., 2010). In the present study 

overexpression of miR-34a in INS-1 cells resulted in a negative regulation of the HNF4A 

3’UTR mediated by several sites (Fig. 21). In view of the above mentioned observations, this 
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interaction might contribute to the downregulation of HNF4A linked to type II diabetes 

(Silander et al., 2004; Love-Gregory and Permutt, 2007) and MODY1 (Ryffel, 2001; Gupta 

and Kaestner, 2004; Fig. 23). 

 

Considering the remarkable lengths of the two HNF4A 3’UTRs, other miRNAs likely regulate 

HNF4A. The impact of miR-20a, miR-210 and miR-361-5p on the full-length HNF4A 3’UTR 

as well as shortened constructs was tested using mimics and/or inhibitors (Qiagen), but no 

consistent effects were determined (data not shown). Established target sites were 

introduced into reporter plasmids as positive controls. However, even those positive controls 

were not or only slightly affected by mimicking or inhibiting the corresponding miRNA. One 

explanation might be the lack of sequence surrounding the target site in vivo. The studies in 

which the miRNA binding sites were confirmed used larger 3’UTR fragments. Possibly, 

optimal experimental conditions were failed to achieve as well. Interestingly, pronounced 

effects were obtained for reporter constructs containing target sites completely 

complementary to the entire length of the miRNA for miR-20a, miR-34a and miR-122. 

Furthermore, using mimics (Qiagen, Dharmacon) for miR-34a, decreases in luciferase 

activity were absent or much less pronounced than the ones determined with the miR-34a 

expression plasmid (Fig. 21A, C). A recent study revealed the importance of pre-miRNAs on 

miRNA function, as the pre-miRNA loop nucleotides were responsible for distinct activities of 

miR-181a-1 and miR-181c that only differ in one nucleotide in the mature sequence (Liu et 

al., 2008). Considering the complex regulation of miRNA processing, an influence on the 

function of mature miRNAs is not surprising (Krol et al., 2010). Hence, the method applied to 

mimic or inhibit miRNAs seems to highly influence the outcome of the experiment. In the 

present study the use of primary-miRNA expression plasmids produced more consistent 

results.  

 

In conclusion the experiments show that HNF4A is not only regulated on the transcriptional 

level via its P1 (Hatzis et al., 2006) and P2 (Wirsing et al., 2010) promoters and the enhancer 

(Hatzis et al., 2006), but also on the posttranscriptional level via its two 3’UTRs. Regulation 

of HNF4A expression inevitable influences the numerous target genes and their functions.  
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E Summary 

HNF4A is a susceptibility gene for diabetes and is considered a tumor suppressor in certain 

cancers including RCC. Although several different HNF4A mutations have been linked to 

diabetes, in the majority of cases including RCC the reason for HNF4A dysregulation is 

unknown. In this study, regulation of proliferation relevant target genes of this transcription 

factor as well as transcriptional and posttranscriptional mechanisms that regulate the 

expression of HNF4A itself were investigated with the intention to illuminate how disruption of 

those processes could impact on diabetes and RCC.  

An inducible HNF4A8 expression cell line was established, which in contrast to HNF4A2 has 

no impact on cell proliferation decrease and morphology. To deduce proliferation relevant 

genes from the 1411 potential HNF4A2 target genes identified previously, an HNF4A8 

dependent microarray was performed. 111 from only 191 HNF4A8 target genes deemed to 

be irrelevant for proliferation control were also controlled by HNF4A2 and excluded, leaving 

1300 potential HNF4A2 target genes. qRT-PCR validated that the apoptosis and metabolism 

gene CIDEB is highly upregulated by HNF4A2 in contrast to HNF4A8 and HNF4A mutants. 

The impact of CIDEB on proliferation control was reasoned to be dependent on a network 

triggered by HNF4A2 as determined by RNAi and Cideb inducible cell lines.  

The two novel mutations -136A>G and -169C>T identified in the P2 promoter of patients with 

symptoms of HNF4A monogenic β-cell diabetes together with a previously reported -192C>G 

promoter mutation linked to late-onset diabetes in several families, were shown to impair the 

function of the HNF4A P2 promoter in vitro using a luciferase reporter assay system. 

Furthermore, evidence of miRNAs enhancing gene expression by targeting the HNF4A P1 

promoter was provided by Dicer dependent luciferase reporter assays.  

To elucidate the so far unrecognized posttranscriptional regulation of HNF4A, the predicted 

1.7 kb HNF4A 3’UTR was validated and an additional 3.2 kb long, predominantly used 3’UTR 

was identified. Both 3’UTRs conferred a repressive effect in HEK293 and INS-1 cells, which 

was even more pronounced in two distinct, previously unknown elements of about 400 nt 

located within the 3’UTR as determined by luciferase assays. These negative elements A 

and B were counteracted by an element located within the 5’ 630 nt. Dicer knock-down 

reporter assays inferred negative regulation of the 3’UTRs by miRNAs. More detailed 

overexpression experiments of selected miRNAs upregulated in RCC revealed a modest 

effect of miR-21 dependent on several sites within the HNF4A 3’UTR. miR-34a negatively 

regulated HNF4A by targeting at least two sites located at the 5’ end of both 3’UTRs.  

In conclusion, dysfunction of transcriptional and posttranscriptional regulation of the two 

promoters and 3’UTRs of HNF4A, respectively, mediated by proteins and miRNAs, alters the 

HNF4A dependent network cascade and likely contributes to the development and/or 

progression of diabetes and RCC.  
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