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1 Introduction 

Control engineering deals with the theory, design and application of control systems. The pri-
mary objective of control systems is to maximise profits by transforming raw materials into 
products while satisfying criteria such as product-quality specifications, operational constraints, 
safety and environmental regulations (Seborg et al., 2004). The design, tuning and implementa-
tion of control strategies and controllers are undertaken within the first phase in the solution of 
control problems. When properly carried out, the result of this phase should be a well function-
ing and performing control system. However, after some time in operation, changes in the char-
acteristics of the material/product being used, modifications of operation strategy and changes in 
the status of the plant equipment (aging, wear, fouling, component modifications, etc.) may lead 
to the degradation of control performance. Problems can arise even in well-designed control 
loops for a variety of reasons, ranging from a need for re-tuning due to the changes mentioned, to 
difficulties with the sensors, or actuator operation, which can occur in an unpredictable fashion.  

Therefore, the second phase in the solution of control problems should be the supervision of 
the control loops and the early detection of performance deterioration. This task has traditionally 
been made by the plant personnel, i.e., maintenance and control staff. However, the rationalisa-
tion pressure in the process industries during the last decades has led to a drastic reduction of 
personnel. Moreover, the process industries are faced with ever-increasing demands on product 
quality, productivity and environmental regulations. These force companies to operate their 
plants at top performance, hence the need for control systems with consistently high perform-
ance. Control systems are thus increasingly recognised as capital assets that should be main-
tained, monitored and revised routinely and automatically. These tasks are performed today 
within the framework of control performance monitoring (CPM), which has got considerable 
attention from both the academic and industrial communities in the last decade.  

Evidence of this was shown at recent conferences, e.g., American Control Conference 2000, 
Chemical Process Control Conference 2001, European Control Conference 2001, IFAC World 
Congress 2002, Control 2004, ADCHEM 2006, where entire sessions or workshops were de-
voted to the topic of CPM. Also, a special issue of the International Journal of Adaptive Control 
and Signal Processing (2003: Vol. 17, Issue 7–9) has been devoted to this subject.  

This young field of research is emerging towards new and more efficient maintenance and 
plant-asset management practices. This thesis try to speed up the development by sharing our 
experiences in this exciting and useful area of automation and working out a new integrated 
framework for control performance monitoring, diagnosis and optimisation. The aim is to con-
tribute to shift the control maintenance practice in the process industries from either scheduled or 
reactive to anticipatory, centred around continuous assessment and prediction of the perform-
ance degradation of control systems. Such a paradigm shift means a control-system life-cycle 
management, in which control systems are assessed and improved throughout their life cycle, 
starting from commissioning and continuing through the entire manufacturing process and usage 
phase. The performance of the controllers, as well as of the other loop components, can thus be 
improved continuously, ensuring products of consistently high quality. Of course, it may be too 
idealistic to hope that all control loops could be on a scheduled maintenance list, and perhaps this 
is not the best way to proceed in any case because of the random nature of faults and the minor 
importance of some loops. But there is no question that control system performance need super-
vision and maintenance that is proactively data-driven, not reactively complaint-driven.  



2  1. Introduction 
 

1.1 Need for Control Performance Monitoring (CPM) 

A control system is an interconnection of components, i.e., sensor, process/plant, actuator and 
controller, forming a system configuration that has the general objective to influence the behav-
iour of the system in a desired way; see the block diagram in Figure 1.1. The central component 
is the process whose output is to be controlled. The controller seeks to maintain the measured 
process variable (PV) at a specified set point (SP) in spite of disturbances acting on the process. 
The actuator is the device that includes the final control element (a valve, damper, etc. and its 
associated equipment such as a positioner). This receives the controller output (OP) signal, react 
in appropriate fashion to impact the process, and consequently cause the PV to respond in the 
desired manner. The combination of process and actuator is usually called the plant, but the 
terms “process” and “plant” are often used interchangeably, since process and actuator are inti-
mately connected.  

Optimal process control can only be achieved when all aforementioned components are 
working properly. Hence, before tuning a loop, one must verify that each component is operating 
as specified and that the design is appropriate. Already for single control loops, it is clear that the 
task of getting and keeping all components in good health is not trivial. The fact, that a plant in 
the process industry typically comprises hundreds to thousands control loops, reveals the huge 
challenge of monitoring and ensuring top performance of such complex control systems.  
 
 

 
Figure 1.1. Component block diagram of a closed-loop system.  

1.1.1 Objectives and Importance of Control Assets 

Before discussing specific control performance monitoring methods, it is essential to recall that 
there is a rich variety of control problems with very diverse goals. The most important control 
problems to be distinguished are:  
• Steady-state Regulation. This refers to the process of holding the system output y close to 

an operating, usually constant reference or set-point r. The controller is usually called regu-
lator. The key problems are load disturbances, measurement noise and process variations. In 
process control, set points are normally kept constant most of the time; changes are typically 
made only when material or production is altered. Rejection of load disturbances is thus the 
key issue in process control. 

• Set-point Tracking (or Servo Control). The controller is designed such that certain con-
trolled variables are forced to follow prescribed trajectories or references as closely as pos-
sible. Tracking typically occurs in motion control and robotics.  
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• Surge Attenuation. For some applications, such as tank level controllers, averaging level 
control is the more appropriate strategy rather than to held the tank level at a particular set 
point.  

When tuning a control loop, compromises between robustness, i.e., sensitivity to changes in 
the plant parameters, and speed of response for good regulation or tracking must be taken. Tun-
ing means the proper selection of the controller settings, e.g., the proportional gain Kc, the inte-
gral time TI and the derivative time TD for a PID controller. Also, the control effort is generally 
of main concern, as it is related to the final cost of the product and to the wear and life span of 
the actuators. It should be therefore kept at a minimum level. 

The performance of a control system is usually specified by different criteria, which can be 
divided into the following categories (Figure 1.2): 
• Deterministic Performance Criteria. These are the traditional performance measures used 

in the case of deterministic disturbances, i.e., set-point changes or sudden load disturbances, 
such as the rise time, settling time, overshoot, offset from set-point and integral error crite-
ria.  

• Stochastic Performance Criteria. These typically include the variance, or equivalently the 
standard deviation, of the controlled variable or control error. Such criteria have direct rela-
tionship to process performance, product quality and energy or material consumption. In 
process control, steady-state regulation is the essential problem. Therefore, load-disturbance 
responses are more important than those to set points, as emphasised by Shinskey (1996). 
The most widespread (stochastic) criterion considered for performance assessment in proc-
ess control is the variance (or, equivalently, the standard deviation), particularly for regula-
tory control:  
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Figure 1.2. Disturbances usually considered for control design. 
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In many applications, it is useful to combine stochastic and deterministic criteria. This is 

standard in the field of optimal and model-predictive control, where the control effort is penal-
ised.  

The widespread use of the variance as performance criterion is due to the fact that it typically 
represents the product-quality consistency. The reduction of variances of many quality variables 
not only implies improved product quality but also makes it possible to operate near the con-
straints to increase throughput, reduce energy consumption and save raw materials. This rela-
tionship is illustrated in Figure 1.3.  

By identifying, diagnosing and tuning key control loops, the variance can be reduced from 
2
,1yσ  to 2

,2yσ , so that the set point can be moved closer to the plant boundary, i.e., from SP1 to 
SP2. For example, the rolling force in a rolling mill can be scheduled higher near the boundary 
limit when it is ensured that the strip flatness variance is sufficiently low. Increasing the rolling 
force directly implies higher throughput, and thus higher profit. 
 
 

 
Figure 1.3. Relationship between economic performance and variance reduction. 

 
It is well recognised that control assets are the foundation of plant performance. It is esti-

mated that 75% of physical assets in a plant are under process control (ARC Advisory Group). 
Control delivers the following benefits (Brisk, 2004), affecting the financial performance (Figure 
1.4): 
• Safer Operation and Reduced Environmental Impact. Keeping process operation steady 

will always help reduce incidents, which may create hazardous conditions, or undesirable 
emissions to the environment.  
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• More Sustainable Manufacturing. Better control can achieve more efficient raw material 
and energy usage per unit of product. Apart from the financial benefits, this yields waste re-
duction and better conserving of non-renewable resources.  

• Efficiency Gains. These have been achieved from the very earliest days of process control 
application, and certainly for advanced control, from the 1970s onwards until today.  

• Quality Gains. Maintaining consistent product quality is a key factor in ensuring and poten-
tially growing a company’s market share. From the early 1990s onwards, in an increasingly 
competitive and often global marketplace, control focusing on product quality became par-
ticularly important. 

• Agility Gains. From the turn of the century and into the immediate future, new factors gov-
erning processing profitability include manufacturing flexibility, customer responsiveness 
and the related need to reduce working capital by processing to order, not to stock. This re-
quires an agile processing capability, with responsive plant exploiting the full potential that 
well performing control can provide. 

 
 

 
Figure 1.4. Effect of poor control performance. 

 
Poor control performance, therefore, leads to poor plant performance, and that in turn implies 

poor financial performance. This, again, underlines the need for some form of regular scheduled 
maintenance of control loops to ensure consistently high levels of performance.  

1.1.2 State of Industrial Process Control Performance 

Many surveys analysed the state of performance of control loops in different process industries. 
The main conclusion was that too often basic control principles are ignored, control algorithms 
are incorrectly chosen and tuned, while sensors and actuators are poorly selected or maintained. 
Consequently, the control performance of many loops can be significantly improved by proper 
loop retuning, controller redesign or equipment maintenance. In the following items, the results 
of some published audits are summarised to figure out the „health“ of control systems in the 
process industries (see Table 1.1):  
• Bialkowski (1993). These audits of paper mills in Canada reveal that only 20% of the control 

loops worked well and decreased process variability. The reasons why the performance was 
poor are bad tuning (30%) and valve problems (30%). The remaining 20% of the controllers 
functioned poorly for a variety of reasons, such as sensor problems, bad choice of sampling 
rates and poor or non-existing anti-aliasing filters.  

• Ender (1993). Similar observations are given in this study, where it is claimed that 30% of 
installed process controllers operated in manual mode, 20% of the loops use default parame-
ters set by the controller manufacturer (so-called „factory tuning“), and 30% of the loops 
showed poor performance because of equipment problems in valves and sensors.  

• Desborough and Miller (2002). This comprehensive audit of thousands of industrial basic 
control loops in the U.S. process industry led to the conclusion that, despite high service fac-
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tor (i.e., time in-auto-mode), only one third of the controllers were classified as acceptable 
performers, and the rest had significant improvement opportunity. 32% of the controllers 
classified as “poor” or “fair” in this survey showed problems/faults in control valves. 

• Paulonis and Cox (2003). This assessment study covered more than 9.000 PID controllers 
(for flow, pressure, level and temperature) in 40 (chemical) plants at 9 sites worldwide. 41% 
of the control loops was found to belong to the “poor” and “fair” performance class, particu-
larly due to hardware problems (valve/positioner/transducer). 

• Ruel (2003a). Different studies as well as observations confirm that typical performance 
distribution of North American control loops delineates as follows: 30% of the loops has 
control valves in poor quality or in poor condition, 60% poor controller tuning, 85% poor 
loop design, 15% controller in manual mode, 30% not performing according to control ob-
jectives, 85% performing better in automatic than manual mode. 

• Torres et al. (2006). Control loop auditing on 700 control loops from 12 different Brazilian 
companies (petrochemical, pulp and paper, cement, chemical, steel and mining segments) 
from July/2004 to October/2005 showed in average that 14% of loops showed excessive 
valve wear, 15% of valves showed problems with stiction and hysteresis, 16% of loops were 
in manual mode, 16% of loops had severe tuning problems, 24% of loop’s controller outputs 
were saturated most of the time, and 41% of loops oscillated due to tuning problems, cou-
pling, disturbances and actuator problem.  

 

Table 1.1. Control performance classification code (Paulonis and Cox, 2003). 

Class 
(colour) 

Description 

Best/ 
Excellent 
(dark green) 

Loops are performing well and do not need attention. They are typically tracking the 
set point well, with very few or no significant deviations.  

Good  
(light green) 

Loops are performing adequately, but may have some component of performance that 
could be improved. Benefit to cost ratio for making improvements is, however, likely 
to be small. 

Fair  
(orange/yellow) 

Loops are not performing up to potential. Control is probably being maintained in a 
broad sense, but there is clear potential for performance improvement. It is recom-
mended to improve these loops.  

Poor 
(red) 

Loops typically have a serious performance problem, e.g., high oscillations or large 
and frequent control errors. Investigation of these loops is imperative and promises 
substantial performance improvements. 

 
 
Certainly, some problems may have been solved within revamping measures carried out in 

the last years. However, the performance has not improved much in this period, as reported in 
recent studies, although there has been great deal of academic work in the CPM area. In the ex-
perience of the author, a similar situation is found in the metal processing field. Figure 1.5 illus-
trates some time trends of process variable and controller output typically found in different 
process industries. It is difficult to distinguish between the sources of bad control performance of 
these loops from just looking at the measured trends, except the fact that all loops are more or 
less oscillating. For discriminating between the causes, appropriate performance indices and 
diagnosis techniques are needed. Most of these and similar data sets will be analysed later in this 
thesis.  
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Figure 1.5. Typical time trends (measured data) found in the process idustries showing poor control 
peformance due different causes: a) intermittent oscillation; b) stiction and tight tuning; c) quantisation; d) 
tuning problem; e) sensor fault; f) saturation; g) stiction; h) stiction; i) external disturbances.  

1.1.3 Root Causes of Control Performance Problems  

It is essential to understand the possible root-causes of control performance problems to be in the 
best position to suggest the proper measures for their solution. Generally, once commissioned 
and properly tuned, control assets deliver performance benefits quickly. The control performance 
then degrades over time; see Figure 1.6. Various studies indicate that the half-life of good control 
loop performance is about six months (Bialkowski, 1993; Ruel, 2002). This can be caused by 
many effects, including reliability issues, operational issues, human factors and maintenance 
aspects. Some key issues are discussed below. 

1.1.3.1 Inadequate Controller Tuning and Lack of Maintenance 

This may be due to the fact that the controller has never been tuned or that it has been tuned 
based on a poor model, or even an inappropriate controller type has been used. More than 90% 
of the controllers installed in automation systems are of the PID type, even in cases where other 
controllers are more appropriate. The most common cause of poor control performance is, how-
ever, that controllers are normally designed and tuned at the commissioning stage, but left un-
changed after that for years or even decades, although the performance of many control loops 
decays over time owing to  
− Changes in the characteristics of the material/product being used; 
− Modifications of operating points/ranges, strategies, or feed stocks; 
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− Variations in the status of the plant equipment, such as wear, increased friction, and plant 
modifications; 

− Failures in software or hardware. 
The controller settings are then no longer adequate and the loop may become under-damped or 
too sluggish.  

 
 

 
Figure 1.6. Typical performance decay of industrial process control due to different factors.  

 
In the industrial practice, the main reasons quoted for lack of tuning and maintenance are: 

• Limited Time and Resources for Commissioning. The commissioning engineers often tune 
the controllers until they “work”, even poorly. They do not have enough time to undertake 
rigorous testing or optimise the control performance. Most controllers are tuned once they 
are installed and then never again.  

• Conservative Tuning. Often, the controllers are conservatively tuned, i.e., for the “worst 
case”, to retain stability when operating conditions change in non-linear systems. This leads 
to sluggish controller behaviour.  

• Limited Maintenance Resources for a Huge Number of Control Loops. There are few 
people responsible for maintenance of automation systems, and all are fully busy with keep-
ing the control systems in operation, i.e., they have no or very little time for improving con-
trollers. Moreover, typically a remarkable number of controllers have to be maintained by a 
very small number of control engineers, who survived decades of downsizing and outsourc-
ing in the production factories. Usually, nothing happens until the operators complain very 
loudly, or even final customers reject products.  

• Shortage of Skilled Personnel. Plant operators and engineers often do not have the neces-
sary education and skill of process control to be able to know what can be expected of the 
control, or what the causes are behind poor performance. Sometimes, the poor control per-
formance becomes the norm and production people accept it as normal (“It has always been 
like this”), or the operators switch to manual control, and in many cases the economic bene-
fits drop to zero. 

1.1.3.2 Equipment Malfunction or Poor Design  

To achieve the control performance target, all elements of a control loop must be „healthy and 
work in harmony”. Poor control performance may thus be the result of failing or malfunctioning 
sensors or actuators, e.g., due to excessive friction. More serious is the problem when a process 
or a control-loop component is not appropriately designed. The relation between process design 
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and control can be succinctly summarised by the following quotation from a paper by Ziegler 
and Nichols (1943): “In the application of automatic controllers, it is important to realize that 
controller and process form a unit; credit or discredit for results obtained are attributable to one 
as much as the other. A poor controller is often able to perform acceptably on a process which is 
easily controlled. The finest controller made, when applied to a miserably designed process, may 
not deliver the desired performance. True, on badly designed processes, advanced controllers are 
able to eke out better results than older models, but on these processes there is a definite end-
point which can be approached by the instrumentation and it falls short of perfection”. Thus, the 
problems mentioned in this item cannot be overcome by re-tuning the controller. This underlines 
the importance of checking the control loop properties, e.g., signal levels, noise levels, non-
linearities and equipment conditions, before applying an automatic tuning procedure. It is within 
the framework of CPM to continuously check these properties and detect malfunctions of the 
loops based on routine operating data.  

1.1.3.3 Inappropriate Control Structure  

Inadequate input/output pairing, ignoring mutual interactions between the system variables, 
competing controllers, insufficient degrees of freedom, the presence of strong non-linearities and 
the lack of time-delay compensation in the system are frequently found as sources for control-
structure problems. If not properly addressed by means of feedforward control actions, external 
disturbances may also deteriorate the control performance. In the experience of the author, PID 
control is often used for systems with dominant time delays, instead of the more suitable time-
delay compensators, i.e., Smith predictor, internal model control or even model predictive con-
trol. We also often find controllers operating with fixed settings for the whole operating range 
enforcing very conservative tuning. Implementing just gain-scheduling (as a special case adap-
tive control) in these situations would significantly improve the control performance.   

1.1.3.4 Automation System (Platform) Constraints  

One of the biggest barriers for practical controller-performance analysis is data access and com-
puting power. Many plants in the process industries have control systems which are between ten 
and fifteen years old, thus are not up to the task from a computing horsepower perspective. 
However, the situation has changed in the last few years owing to major upgrading steps, so that 
the introduction of powerful CPM tools should now be possible more than ever.  

1.2 Principle and Tasks of Control Performance Monitoring  

The main objective of control performance monitoring (CPM) is to provide online automated 
procedures that evaluate the performance of the control system and deliver information to plant 
personal for determining whether specified performance targets and response characteristics are 
being met by the controlled process variables; see Figure 1.7. This should help detect and avoid 
performance deterioration owing to variations in the process and operation. Recommendations 
and/or actions are generated to inspect/maintain control loop components, e.g., sensors, actua-
tors, or to re-tune the controller based on the calculated performance metrics within the assess-
ment step. 

The term monitoring means the action of watching out for changes in a statistic that reflects 
the control performance over time. The term assessment refers to the action of evaluating the 
considered statistic at a certain point in time. Note, however, that both terms are used somewhat 
interchangeably in the literature. Other synonyms used are loop auditing, control loop manage-
ment, control performance supervision and control loop benchmarking.  

Control performance assessment techniques ponder important process diagnostic questions, 
such as:  
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1. Benchmark Selection. What is the best achievable performance against which the perform-
ance of the installed controller should be assessed? 

2. Assessment. Is the controller “healthy”? Is it doing its job satisfactory? Is the current control 
system achieving the best performance, i.e., the performance of benchmark? 

3. Diagnosis. If not, why is it in “poor health”? How can one arrange for a performance bench-
mark to figure out the improvement potential without disturbing the running system?  

4. Improvement. What measures and steps would improve the performance of a problematic 
loop? Is it sufficient to re-tune the controller, or should some loop components be main-
tained, or even re-designed?  
 
 

 
Figure 1.7. Simplistic statement of control performance assessment problems. 

1.2.1 Control Performance Indices 

The key features of performance metrics should ideally include (Hugo, 1999; Xia et al., 2003) 
• Controller Orientation. Metrics should be sensitive to detuning and process model mis-

match or equipment problems and independent of disturbance or set-point spectrums, which 
can vary widely in a plant. 

• Easily Computation. Metrics should be non-invasive, i.e., should not require plant tests, able 
to be automated and require minimum specification of process dynamics. All this implies the 
use of normal (closed-loop) operating data for the metric calculation. The capability of being 
automated is important since usually a large number of loops in a plant have to be assessed. 

• Objectivity and Accuracy. The confidence interval of the metric should be provided or the 
accuracy can be tested by plant data. They should be non-arbitrary measures that compare the 
current quality of control to some universal standard (perfect control, minimum variance con-
trol, optimal control, best possible control, etc.). 

• Improvement Indication. Ideally, the metrics should be realistic and achievable under the 
physical constraints and indicative of why the controller is performing poorly. It should also 
measure the improvement in profit (reduction in variance, pushing the process to constraints, 
etc.) due to the controller. 
These guidelines serve as a reference when selecting a benchmarking criterion. Obviously, 

any benchmarking metric does not need to possess all these features. However, it should fulfil as 
many aforementioned properties as possible.  

In the industrial practice, it is useful to select and present the performance figures in such a 
manner that different types of production people (executive and managers, production unit man-
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agers, production and automation engineers) have a presentation, which gives the results in a 
manner focused for their purposes; see Åkesson (2003) and Rakar et al. (2004) for more details.  

Typically, the integrated squared error (ISE) and the output error variance have been com-
monly used as statistics for monitoring the effectiveness of a control strategy. Such statistics are, 
without any doubt, important with respect to rating the overall process performance. Historically, 
standard deviation monitoring of the controlled variable error from set point has often been car-
ried out and found useful. From the perspective of controller performance monitoring, experi-
ence has shown that this information can be both limited and misleading. Set-point error standard 
deviation is a function of the magnitude of loop upsets. Changes in this statistical information 
can be a function of changing process conditions and may not necessarily reflect the performance 
of a controller. During periods of large plant upsets, higher standard deviations are to be ex-
pected despite the fact that controllers are responding as designed. During calm periods of opera-
tion, low standard deviations can be observed with poorly-designed controllers (Kozub, 2002). 

Moreover, there are always some random disturbances that are inherent to the process itself 
and cannot be normally compensated by the control system. This limits the control loop to a 
certain lower bound of variance representing the optimum (Shunta, 1995). A further variance 
decrease below this minimum can only be achieved by changing plant equipment or instrumenta-
tion. This again underlines the need for considering performance metrics relative to the optimum 
to get an objective performance assessment of control systems.  

Therefore, for the purpose of controller performance monitoring and diagnosis, relative 
measures, called performance indices, setting certain performance metrics in relation to what can 
be achieved by an optimal controller or a controller with desired properties are of key concern. 
This is the reason why performance monitoring approaches usually have certain performance 
benchmark with which the current performance of the loop is compared. The benchmark gives 
an indication of the inherent optimum that is set by the process design and equipment.  

Moreover, with respect to the quality of feedback control, a variance or ISE statistic is essen-
tially meaningless unless it can be compared to the controller with best/optimal performance. 
Therefore, within the CPM framework, the performance of a control system is always quantified 
by a relative metric, the control performance index (CPI), generally defined as: 

des

act

J
J

η = , (1.2) 

where Jdes is any ideal, optimal or desired/expected value for a given performance criterion (typi-
cally the variance), to be minimised. Jact is the actual value of the criterion, to be extracted from 
measured process data under the installed controller. In this context, two important cases have to 
be distinguished:  
• Perfect or Optimal Control as Benchmark. The control performance index is a single sca-

lar usually scaled to lie within [0, 1], where values close to 0 indicate poor performance, and 
values close to 1 mean better/tighter control. This indeed holds when perfect control is con-
sidered as benchmark. In this case, the cost function is split into two terms: the feedback-
invariant, i.e., unpredictable, part Jmin and the controller-dependent, i.e., predictable part Jc. 
Thus, CPI can be written as 

min

min c

J
J J

η =
+

. (1.3) 

Jmin results from fundamental limitations on performance in control systems, e.g., imposed by 
time delays, right-half plane (RHP) zeros, or constraints. It is obvious to see that for per-
fect/optimal control, i.e., Jc = 0: η = 1. The maximum possible percent improvement can be 
calculated by 
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p (1 ) 100%I η= − ⋅ . (1.4) 

• User-specified Benchmark. When a more realistic or less severe benchmark is specified, a 
performance index may take values higher than unity, thereby indicating that the current 
controller is doing better than required, i.e., Jact < Jdes, in terms of the specified criterion.  

It must be stressed that the performance indices are usually relative quantities, i.e., set into 
relation to a specified performance benchmark, as defined in Equation 1.2, rather than using 
absolute performance criteria. This is a key feature and difference of the CPM technology when 
compared to the traditional performance evaluation practice. CPM can thus be regarded as the 
teaching of control performance indices, which are introduced to simply assess many phenomena 
in control loops. Examples are oscillation indices, non-linearity indices, saturation indices and 
stiction indices. All these and other new indices will be presented throughout this thesis.  

1.2.2 Basic Procedure for Control Performance Monitoring 

The assessment of the performance of a control system is a complex task, which should be gen-
erally performed by applying the following main stages (Jelali 2006; Figure 1.8): 
1. Determination of the Capability of the Running Control System. This is concerned with 

the quantification of current performance (Jact). Measured routine-operating data are used and 
analysed to compute the performance figures of the current control system, e.g., the output 
variances.  

2. Selection or Design of a Benchmark for Performance Assessment. This step specifies the 
benchmark (Jdes), against which the current control performance will be evaluated. This may 
be the minimum variance, as an upper but not achievable performance bound, or any other 
user-specified criterion, which defines the desired or best-possible performance given the ex-
isting plant and control equipment. It is important to note that it is not always required to im-
plement the benchmark at the plant.  

3. Assessment and Detection of Poor Performing Loops. Based on calculations using meas-
ured data, the closeness of the current control performance to the selected benchmark is 
tested for. This results in the performance classification best/good/fair/ poor of the control 
loop based on the performance index (η). Since most plants have at least hundreds of control 
loops located in different levels of hierarchy, it is important to first select the suitable moni-
toring paradigm (prioritisation/ranking approach, bottom-up/top-down strategy) to be fol-
lowed. It is not necessary to further diagnose a process and controller when its performance is 
entirely satisfactory with respect to safety, product quality and plant profit. Only those con-
trol loops, which are not adequately performing and offer potential benefit, are considered in 
the subsequent diagnostic steps.  

4. Diagnosis of the Underlying Causes. When the analysis indicates that the performance of a 
running controller deviates from good or desired performance, i.e., when the control loop 
performance is classified as „fair„ or „poor“, the reasons for this should be fixed in one of the 
problems/sources mentioned in Section 1.1.3. The diagnostic step is the most difficult task of 
CPM, where only a few approaches and studies are available. Until recently, the plant per-
sonnel must do this time consuming „detective job“. 

5. Performance Improvement/Optimisation. After isolating the causes of poor performance, 
corrective actions should be suggested to restore the health of the control system. In most 
cases, poor working controllers can be improved by retuning, i.e., adjusting their parameter 
settings. When the assessment procedure indicates that the desired control performance is not 
possible with the current process and control structure, more substantial modifications to im-
prove the control system performance are required.  
It can be easily deduced that different approaches can be selected for each stage of the proce-

dure, and they have to be properly integrated to design a consistent overall strategy for perform-



 1.2 Principle and Tasks of Control Performance Monitoring 13 
 

ance monitoring. Complete and detailed CPM procedures will be developed and discussed 
throughout this thesis.  
 
 

 
Figure 1.8. Generic procedure for control performance assessment. 

1.2.3 Controller Performance Assessment Benchmarks 

Control performance assessment involves a comparison of the performance achieved by the 
current controller to the performance that could be attained by some standard or benchmark. 
Various benchmarks exist, which can be ranked based on the tightness of control quantified by 
the loop output variance, as shown in Figure 1.9. Therefore, a key decision at the early stage of 
controller performance assessment is to select the most suitable benchmark for the application at 
hand. Some benchmarks are briefly introduced as follows (Hugo, 1999):  
• Perfect Control. While this may appear to be an unrealistic standard, it is in fact commonly 

invoked, at least implicitly. Assessing controllers based on output variance implicitly com-
pares the performance to zero variance. Without any doubt, this is too high a standard, having 
in mind that the output variance largely depends on the set-point change and disturbance 
spectrum.  

• Best Possible Non-linear Controller. Two fundamental limitations to controller perform-
ance are the measurement error and the dead time: no controller can have tighter control than 
the random measurement error variance; and no controller can affect the process before the 
dead time has elapsed. The best possible non-linear controller therefore represents a lower 
bound on what is achievable using a controller. However, non-linear controllers are rare in 
industry due to both their complexity and the difficulty of obtaining a nonlinear model. For 
these reasons, there does not appear to be any performance index based on non-linear con-
trollers.  

• Minimum Variance Control. For linear systems, a minimum variance controller results in 
the smallest possible closed-loop variance. Whereas the MVC itself may require specification 
of process and disturbance models, it is possible to assess the controller performance against 
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MVC using only closed-loop data and an estimate of the process time delay. This makes 
MVC-based assessment so valuable to be adapted as a standard benchmark in CPM. 

• Best Possible MPC Controller/LQG Controller. A more realistic index accounts for the 
simplified step-disturbance model of model predictive controllers (i.e., DMC), in that it de-
termines what the closed-loop variance would be if an MPC were applied that had no process 
model error or move suppressions. This index explicitly addresses the fact that disturbance 
model in MPC may differ from the true disturbance. 

• Open-Loop. Obviously, the variance of the open-loop process is a very perfunctory standard. 
Nonetheless, it is somewhat surprising that many control loops do not meet even this crite-
rion. The study by Spencer and Elliot (1997/98) has found that up to 80% of controllers lead 
to an increase in variance over open-loop. The open-loop standard is however useful for de-
termining whether any control should be applied – the usual benefits of introducing control 
have to be balanced against costs for measurement, control valve, installation and tuning. 
 
 

 
Figure 1.9. Ranking of control performance standards in terms of achievable loop output variance. 

 
Note that the ranking given above should be understood as fluent in the sense that under cer-

tain circumstances, e.g., the best possible MPC control can achieve the same performance as the 
MVC, or the best possible non-linear control can yield a variance identical to measurement 
noise.  

The selection of the performance standard particularly depends on the type and level of hier-
archy of the controller to be assessed. For lower-level controllers, usually operated at regulatory 
mode, MVC-based benchmarks are the standard choice. When higher-level controllers are to be 
evaluated, LQG or MPC may be the right option, particularly, if the running controllers are of 
the MPC or even non-linear type.   

1.2.4 Challenges of Performance Monitoring Applications 

As for the application of advanced control methods, there are obviously some serious problems, 
which prevent the widespread use of performance monitoring techniques in many process indus-
tries, even in the cases where the need is obvious and the potential benefit is known to be sub-
stantial: 
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• Complexity of Process Control Systems. There are a host of different types of industrial 
systems with different automation systems and hierarchies, which have to be optimised in-
dividually. Even in the same factory, there exist a large number of control loops to be moni-
tored. Typical plants in the process industry usually contain some hundreds or even thou-
sands control loops. The performance assessment of such complex process-control systems 
requires the use of systematic monitoring paradigms and strategies. It is impossible to evalu-
ate each loop manually and individually, having in mind the sheer amount of data to be ana-
lysed. Also the number of measurement and control staff is usually limited, a fact making 
loop maintenance difficult.  

• Non-invasiveness. Efficient CPM systems should be able to work only with routine operat-
ing (closed-loop) data without requiring any experimentation with the plant. This property is 
one key prerequisite for the acceptance of CPM in industrial practice. On the other hand, it 
makes the CPM task very challenging.  

• Diversity of Sources of Performance Degradation. The causes of poor control performance 
are numerous and can be inherent to a particular control loop itself, to the plant design, to 
the interaction between plant components or loops, etc. For instance, an oscillation in a con-
trol loop may be due aggressive controller tuning, sensor or actuator faults (such as too ex-
cessive valve stiction), external disturbances, or combination of these problems.  

• Need for Specific Process Knowledge for Final Diagnosis. The formal application of per-
formance monitoring methods without understanding the physical fundamentals of the proc-
esses considered and without tailoring the methods to the existing automation structures may 
not lead to satisfactory results. Particularly for the diagnostic task, specific process knowl-
edge is essential. Thus, a close co-operation between process engineers, control engineers 
and control technology consulters is necessary. Note that no kind or amount of „artificial in-
telligence“ can replace real process knowledge/understanding.  

• Need for Specialised Software and Hardware. The implementation and maintenance of 
monitoring systems requires specialised software and hardware resources, as well as high 
qualified and thus expensive staff. Of major concern is the data sampling rate. In theory, the 
data should be sampled as fast as the control interval. In practice, a sampling period of ap-
proximately 1/3 of the process open-loop time constant is sufficient (Hugo, 1999). This fast 
sampling presents a problem for many plant historians. Generally, these databases log data 
at a higher sample time are not adequate for performance assessment of fast loops. To over-
come this limitation, specialised data collection programs have to be installed. However, the 
increasingly availability of automatic data analysis tools greatly reduce the effort spent to 
profit from CPM technology.   

• Integration into the Maintenance Practice. Perhaps the biggest challenge of introducing 
CPM systems is related to the human factors surrounding their use. The critical success fac-
tor is how a CPM application or tool integrates with existing work practices and mainte-
nance procedures. A CPM system should work with high reliability to be accepted by the 
plant staff: too many false alarms or missed detections result in a reduced trust and use of 
the CPM system. 

1.3 Key Dates of the Development of CPM Technology and 
Literature Survey 

Control-performance monitoring and assessment (CPM) is an important technology to keep 
highly efficient operation of automation systems in production plants. This is achieved by indi-
cating how far a control system is operating from its inherent optimum and what can be done to 
ensure that the gap between the optimum and the current performance is as small as possible 
over the longest possible period of operation. Usually, CPM is concerned with the assessment of 
the output variance due to unmeasured, stochastic disturbances, which are further assumed to be 
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generated from a dynamic system driven by noise. For this reason, this class of CPM methods is 
referred to as stochastic performance monitoring. Whereas these methods provide an important 
aspect of the controller performance, they do not bring up any information about the traditionally 
concerned performance, such as step changes in set-point or disturbance variables, settling time, 
decay ratio and stability margin of the control system. This class of CPM techniques is known as 
deterministic performance monitoring; see Figure 1.10.  
 
 

 
Figure 1.10. Family tree of methods for evaluating the level of control performance.   

 
Control performance monitoring is a relatively young research field. Most theory and appli-

cations of CPM evolved during the last decade. The objective of this section to point out some of 
the moments in the evolution of the field, which we believe were particularly important; see 
Table 1.2.   
 
 

Table 1.2. A few key dates of the development of control performance assessment technology. 

1989 Harris: minimum variance benchmark. 
1993/1994 Ender/Bialkowski: audits of industrial control performance. 
1995 Jofriet et al.: first control-performance assessment package. 
1996 Harris et al.: assessment of MIMO control systems. 
1999 • Thornhill et al.: plant-wide assessment, prediction horizon method.  

• Huang and Shah: FCOR algorithm, LQG benchmark.   
• Hägglund: idle index. 

2001 • Ko and Edgar: MPC assessment. 
• Paulonis and Cox:  Honeywell’s study of large-scale CPM. 

2002 Grimble: GMV benchmark; restricted-structure assessment. 
 
 
Interest in theory and methods for the online analysis of control performance can be tracked 

back to Åström (1970, 1976) and DeVries and Wu (1978). However, it was Shinskey (1990, 
1991), Ender (1993) and Bialkowski (1994), who brought control performance problems in the 
process industry to a broader audience in the early 1990s. Since then, there was a widespread 
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awareness that is beneficial to assess the performance of control loops. The breakthrough of the 
topic was due to Harris (1989), who demonstrated that the minimum variance benchmark can be 
estimated from normal closed-loop operation data. The celebrated Harris index, which is based 
on comparison with performance obtained by minimum variance control, was then born. The 
underlying principles originate from work by Åström (1970) and Box and Jenkins (1970) who 
established the theory of minimum-variance control (MVC) and DeVries and Wu (1978) who 
used these ideas for performance assessment. Desborough and Harris (1992) connected the Har-
ris index to the squared correlation coefficient usually calculated in multiple regression analysis. 
The concept of MV benchmarking has then later been extended to feedback/feedforward loops; 
see Desborough and Harris (1993), Stanfelj et al. (1993) and Huang et al. (2000b). The Harris 
concept has been applied in various process control applications over all process industry sec-
tors, and is still the standard for benchmarking control loops.  

Extensions of the Harris index to unstable and non-minimum-phase systems have been re-
ported by Tyler and Morari (1995; 1996) who introduced statistical likelihood ratio tests. Lynch 
and Dumont (1996) used Laguerre networks to evaluate the performance index.  

Soon, the drawbacks of minimum variance benchmarking have been recognised, and several 
modified versions of the Harris index introduced. They include design specifications of the user, 
leading to more realistic performance indices, referred to as user-specified benchmarks. Work in 
this area was done by Kozub and Garcia (1993), Huang and Shah (1998) and Horch and Isaksson 
(1999). To the same category belong historical data benchmarks or reference data set bench-
marks (Patwardhan et al., 1998; Huang et al., 1999; Gao et al., 2003).  

The great majority, i.e., more than 90%, of practical controllers are of PID-type, and have or-
der, structure and action constraints. Therefore, realistic performance indicators should be ap-
plied for their assessment, as first proposed by Eriksson and Isaksson (1994) and Ko and Edgar 
(1998). These approaches calculate a lower bound of the variance by restricting the controller 
type to PID only (optimal PID benchmarking) and allow for more general disturbance models. 
An explicit “one-shot” solution for the closed-loop output was derived by Ko and Edgar (2004) 
as a function of PID settings. Recent developments in this pragmatic direction have been worked 
out in Horton et al. (2003) and Huang (2003). Moreover, Grimble (2002b, Grimble 2003) pro-
vided a theoretical framework on the topic, referred to as restricted-structure controller bench-
marking.  

In 1995, the (likely) first CPM (expert) system called QCLiP (Queen's/QUNO Control Loop 
Performance Monitoring) making use of an MVC-based performance index and other analyses 
of closed-loop process data was reported by Jofriet et al. (1995); see also Harris et al. (1996b). 

In the same year, Hägglund (1995) has shown that one of the main problems with control 
loop performance is the presence of oscillations in the loops. An oscillation index based on the 
magnitude of the integrated absolute error (IAE) between successive zero crossings of the con-
trol error and a procedure for detecting oscillations in control loops were introduced. Similar 
methods have been proposed by Forsman and Stattin (1999) and Mia and Seborg (1999). Since 
then, this topic has attracted much attention of research and application, starting with a series of 
papers by Thornhill and Hägglund (1997), Thornhill et al. (2001; 2003b). Oscillation detection 
and diagnosis is still one of the very active areas in CPM today. A special, very rich topic is the 
diagnosis of valve stiction, where many methods have been developed, such as by Horch (1999, 
2000), Kano et al. (2004), Kariwala et al. (2004), Singhal and Salsbury (2005), Yamashita 
(2005) and He et al. (2005). Recent contributions are found by Choudhury et al. (2006) and Jelali 
(2008).  

In the mid-1990s, academic research interest has shifted to the assessment of MIMO control 
systems using the minimum variance benchmark (Harris et al., 1996a; Huang et al., 1997; 
Huang, 1997). In the performance assessment of MIMO feedback systems, the so-called interac-
tor matrix plays an important role. The assumption that the interactor matrix be known turned 
out to be a major restriction on the generality of the method, since its estimation is quite involved 
and the accuracy problematic in general. Thus, it is highly desirable to get around the problem. 
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Approaches in this practical direction have been proposed by Ettaleb (1999), Ko and Edgar 
(2001b), McNabb and Qin (2003) and recently Huang et al. (2005) and Xia et al. (2006).  

The other important research direction was aimed towards plant-wide (large-scale) control-
loop-performance assessment. A significant advance in this topic was due to Thornhill et al. 
(1999), who showed that it is useful to provide default parameters for the performance index 
algorithm for various generic categories of refinery control loops. This work substantially low-
ered the barrier to large-scale implementation of performance-index-based monitoring. Espe-
cially, the extended horizon performance index (EHPI) method has been systematically devel-
oped further. Advances and new directions in this topic are well documented in Thornhill and 
Horch (2006). Just to mention Thornhill et al. (2003) and Xia and Howell (2003).  

In 1999, the first textbook on „Performance Assessment of Control Loops“ by Huang and 
Shah appeared. The book authors presented an efficient, stable filtering and correlation (FCOR) 
method to estimate the MV benchmark for SISO, MIMO and feedback/feedforward control sys-
tems. They also proposed the linear-quadratic Gaussian (LQG) regulator as an alternative to the 
MV benchmark to take into account the control effort in the performance assessment. 

As a deterministic performance-assessment method, Swanda and Seborg (1997; 1999) pro-
posed the dimensionless settling time of the closed-loop and the dimensionless integral of abso-
lute value of control error as performance indices. Also in 1999, Hägglund presented a method to 
detect sluggish control loops by using the so-called idle index to detect conservatively tuned 
controllers when load disturbances occur. 

As the ultimate multivariable controller in many process industries is model predictive con-
trol (MPC), active research is going on to assess the performance of MPC, initiated by Patward-
han et al. (1998), Patwardhan (1999) and Zhang and Henson (1999). Recent work on the subject 
is found by Ko and Edgar (2001a), Shah et al. (2001), Schäfer and Çinar (2002), Gao et al. 
(2003) and Julien et al. (2004).  Given the complexity of MPC that involves model errors, distur-
bance changes, optimal target settings, active constraint sets and controller tuning, the MPC 
performance monitoring is largely an unsolved problem. 

Also, it is worth-wile to mention the large-scale performance assessment study/audits by 
Desborough and Miller (2002), already published in 2001. They provided a very good documen-
tation of the current status of industrial controller performance and suggested future directions of 
research as well as desired attributes of CPM systems.   

A straightforward extension of the MV benchmark by considering control action penalisation 
leads to the more flexible approach of generalised MV (GMV) benchmarking suggested by 
Grimble in 2002. A multivariable version of the GMV control assessment was derived by Ma-
jecki and Grimble (2004b) using the concept of the interactor matrix of the generalized plant.  

Recent trends in the field are dealing with plant-wide (large-scale) monitoring, approaches to 
automate the controller diagnosis, transforming the performance indices into economic values 
and integration of CPM into maintenance practices and asset management strategies (Grimble 
and Uduehi, 2001; Ahsan et al., 2004; Farenzena and Trierweiler, 2006; Xu et al., 2006). Also 
recent work is on extending the CPM techniques for time-varying systems (Huang, 2002; 
Olaleye et al., 2004) and non-linear systems (Majecki and Grimble, 2004).  

Several authors have published reviews of CPM theoretical issues and applications, such as 
the papers by Qin (1998), Harris et al. (1999), Harris and Seppala (2001) and Shah et al. (2001), 
Dittmar et al. (2003) and Thornhill et al. (2003a). Jelali (2006) provides an overview of the latest 
technical developments and industrial applications in the CPM field. 

1.4 Objectives and Contributions of the Thesis 

In the light of the control-system life-cycle management introduced above, the first contribution 
of our work is to provide strategies and methods for establishing a new practice of integrated 
control design and performance supervision of technical processes, as illustrated in Figure 1.11. 
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The focus of this thesis is only on the last three stages, i.e., performance monitoring, condition 
monitoring and diagnosis, and CPM-based controller retuning. The thesis is however NOT on 
control system design or implementation, which is the topic of many standard texts. To the 
knowledge of the author, all major aspects of CPM, from controller assessment (minimum-
variance-control-based and advanced methods), over detection and diagnosis of control loop 
problems (process non-linearities, oscillations, actuator faults), to the improvement of control 
performance (maintenance, re-design of loop components, automatic controller re-tuning) are 
treated for the first time in this work from a common viewpoint.  

 

 

Figure 1.11. Flow diagram of the process control design and supervision procedure. 

 
More specifically, the contributions and massages of the present thesis are stated as follows:  

1. Review, Evaluation and Industrial Application of Available Methods and Systems. A 
comprehensive and critical review of the current status in the complete CPM technology, in-
cluding techniques for performance assessment, diagnosis and improvement. Standard meth-
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ods and advanced new methods are presented as well. This provides an insight into the as-
sumptions and fundamental limitations of each control performance assessment method, 
since each of the various techniques signifies specific information about the nature of the 
process. Most CPM algorithms presented in the thesis have been implemented and tested by 
the author in MATLAB/Simulink. 

An evaluation of publications during the 15 years after the key work by Harris (1989) 
shows some trends in the application of a number of control performance metrics and meth-
ods in different process industries. Also included is an overview of CPM packages that have 
been developed and/or which are commercially available. Merits and drawbacks of the meth-
ods are also highlighted. Some control benchmarking techniques are compared in terms of 
parameters/data requirements and performance to draw guidelines for the choice of the most 
suitable technique or combination of techniques.  

The majority of the methods presented are illustrated with real data from industrial con-
trol loops from different industrial fields, including chemicals, petrochemicals, pulp & paper 
plants, commercial buildings, power plants, mineral processing, mining and metal process-
ing. Some information about these loops is given in Appendix C.  

2. Improved and New Methods for Control Performance Assessment and Diagnosis. It is 
not sufficient and often dangerous to rely on a single index, or a single performance analysis 
method, by itself for performance monitoring and diagnosis, as each criterion has its merits 
and limitations. The best results are often obtained by the collective application of several 
methods that reflect control performance measures from different aspects. Based on our ex-
perience from application of different assessment methods to control systems in the steel 
processing field, systematic procedures for automatic and continuous control performance 
monitoring, maintenance and optimisation will be recommended, combining different control 
performance metrics and assessment methods. Guidelines for how to select or determine the 
specific parameters, e.g., model orders and time delay, are worked out. Many improved and 
new CPM techniques developed by the author are presented. For instance, a new framework 
and method for detection and quantification of stiction in control valves is developed based 
on Hammerstein modelling and estimation using global search algorithms. Moreover, the 
method is extended for comprehensive oscillation diagnosis, i.e., discriminating between dif-
ferent causes generating the oscillation, even in the case of multiple faults.  

3. Introducing Anticipatory Control Maintenance Practices. Bridging the fields „Condition 
Monitoring and Diagnosis“, „Control Performance Assessment and Monitoring“ and „Auto-
matic Controller Tuning and Adaptation“ is a core objective of this monograph; see Figure 
1.12. Loop condition monitoring and diagnosis is needed to investigate the properties of con-
trol loop components in terms of signal levels, noise levels, non-linearities and equipment 
conditions. This particularly includes the detection of oscillations possibly generated by ag-
gressive controller tuning, the presence of non-linearities (e.g., static friction, dead-zone, hys-
teresis), or (internal and external) disturbances. Performance assessment is used to supervise 
the control loops during operation and ensure that they meet the performance specifications. 
Failure to meet the specifications should give an alert. It is then decided to inspect/maintain a 
control loop component or to retune the controller. Methods and procedures for how to assist 
or partly automate this decision are presented.  

4. Automatic CPM-based Controller Re-tuning or Re-design. When controller tuning is 
suggested, the control performance assessment results, i.e., indices, are used to generate new 
controller parameters, which can be down-loaded to the controller on demand of the user or 
of a supervision mechanism. The main aim is to sustain top control performance despite dif-
ferent operational issues. For this purpose, new methods and procedures for CPM-based con-
troller re-tuning are developed.  
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5. Transfer the CPM Technology to Metal Processing Industry. The comprehensive CPM 
review by Jelali (2006) revealed a remarkable number of industrial applications to date, with 
a solid foundation in refining, petrochemical, chemical sectors and pulp & paper plants. 
However, only a few applications appeared in other industrial sectors. A substantial contribu-
tion of this thesis is thus to transfer the CPM technology into a new industrial area, the metal 
processing, where not much work has been done before. It is shown that the CPM algorithms 
can still perform well in this more computationally demanding environment, where the speed 
is much faster and the time constants much smaller than in the traditional refining and 
chemicals applications. Thus many special aspects have to be considered.  

As stated by Shah et al. (2005), the challenges are primarily not related to whether the 
CPM technology itself is effective, but rather than related to the human factors surrounding 
the use of CPM applications. The critical success factor is how an application integrates with 
existing work practices and maintenance procedures. A substantial part of this work illus-
trates the monitoring methods in successful applications and tailored CPM tools integrated 
into maintenance procedures in rolling mills, developed within research projects initiated or 
managed by the author.  
 

 

 
Figure 1.12. Proposed framework for control-performance-monioring-based optimisation of control loops.  

1.5 Outline of the Contents of the Thesis 

The overall structure and an overview of the main contents of the thesis are illustrated in Figure 
1.13. The thesis is divided into four parts comprising 16 chapters briefly described as follows.  

The first step in the solution of any CPM task is to automatically identify problematic loops 
that present the best opportunities for improvement on a plant-wide scale. Part I is devoted to 
reviewing the state-of-the-art in performance assessment, including basic and advanced perform-
ance benchmarking methods, and is divided into six chapters. An in-depth presentation of the 
state of the art in control performance assessment, i.e., the evaluation of the level of performance 
of control loops is provided in Chapter 2. The assumptions and fundamental limitations of the 
methods are described as well as their strengths and weaknesses. The review starts with giving 
some basic system descriptions. The main focus of the chapter is on presenting assessment meth-
ods based on minimum variance control (MVC) for single feedback control, combined feedback 
and feedforward control and cascade control loops. Since MVC benchmarking has drawbacks in 
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practice, many alternative benchmarks have been proposed. User-specified assessment methods 
are treated in Chapter 3. They mainly consider user design preferences to evaluate control per-
formance.  

 
 

 
Figure 1.13. Overview of the main contents of the thesis. 

 
Chapter 4 is devoted to detailed discussion of advanced assessment techniques, including 

linear-quadratic Gaussian (LQG) benchmarking, generalised minimum variance (GMVC) bench-
marking and model predictive control (MPC) assessment. The notion of performance limit curve 
is introduced and used as the main vehicle for evaluating control loop performance by consider-
ing a combined performance objective with penalty on control moves. Chapter 5 contains three 
deterministic assessment techniques, namely: an assessment method based on set-point response 
data, a method for the load-disturbance assessment of PI controllers, combining some perform-
ance indices (the area index, the idle index and the output index) and the idle index method for 
detecting sluggish control. Chapter 6 provides an overview of control performance assessment 
of multivariable control systems, with an emphasis on methods which do not require the (diffi-
cult) computation of the interactor matrix, i.e., time-delay matrix. In Chapter 7, guidelines are 
provided for the implementation and parameterisation of the assessment methods described in 
the previous chapters. The focus is on the pre-processing of data, the selection of model types 
and their identification from routine process data. Particular attention is paid to how to determine 
the model order and time delay. Some of the basic models and identification techniques are 
compared, concerning assessment accuracy and computational load, to provide suggestions of 
the best suited approaches in practice.  
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Performance monitoring can be effective and return value only if the performance problems 

are fixed. Part II of the thesis is concerned with how to detect, diagnose and isolate loop faults 
with further tests and analysis. After giving the main sources of poor control performance, meth-
ods and procedures for automatic and non-invasive detection of unwanted oscillations in control 
loops are treated in Chapter 8. Techniques based on integrated absolute control error and zero 
crossings and those based of the auto-covariance function are discussed in detail. Features and 
practical issues of the methods are given and illustrated by industrial data. Chapter 9 presents 
techniques for detecting the presence of process non-linearities that may lead to limit cycles in 
the loop. This includes non-invasive data-based methods based on the analysis of bicoherence 
and surrogates of time series. The bicoherence and surrogates methods are demonstrated and 
compared with two industrial case studies, in which the main task is to find out the source of 
oscillations propagating through whole plants. Also discussed in this chapter is how to detect 
saturating controller outputs that may also lead to limit cycles. In Chapter 10, it is shown how 
actuator problems in control loops can be automatically detected and diagnosed. The main focus 
is on analysing and detecting static friction (stiction) in control valves, being the most common 
cause of oscillations found in the process industry. Non-invasive stiction detection methods 
based on cross-correlation, curve fitting and elliptic patterns of PV–OP plots are presented and 
discussed in detail. Tests for confirming the presence of stiction are then described. An oscilla-
tion diagnosis procedure that combines different techniques is proposed. In Chapter 11, we 
develop a novel technique for detection and quantification of valve stiction in control loops from 
normal closed-loop operating data based on two-stage identification of a Hammerstein model. 
This method ends up with a diagnosis algorithm that helps discriminate between loop problems 
induced by valve stiction, external disturbances, or aggressive controller.  

Part III of this monograph provides remedies for control loop faults and performance im-
provement. In Chapter 12, some paradigms and strategies for monitoring the performance of 
complex process-control systems are introduced and discussed. A comprehensive procedure for 
performance monitoring is suggested that combines different methods described in the previous 
chapters. Chapter 13 presents a new contribution towards further development of the field of 
controller auto-tuning within the framework of CPM. The main objective is to propose novel 
methods for controller tuning based on control performance assessment results, i.e., performance 
criteria and indices. This includes optimisation-based assessment and tuning techniques as well 
as iterative assessment and tuning based on normal operating data, aiming to maximise the con-
trol performance index. New control performance indices and controller re-tuning techniques are 
presented. Illustrative examples demonstrate the applicability and efficiency of the proposed 
methods.  

Part IV of the thesis is concerned with the CPM technology in industrial practice. The de-
tailed current status in industrial CPM technology and applications is given in Chapter 14. Some 
trends in the application of a number of control-performance metrics and methods in different 
process industries are shown based on an evaluation of publications during the 15 years after the 
key research by Harris (1989). The chapter also includes an overview of CPM packages that 
have been developed and/or which are commercially available, to illustrate how some control 
performance indices and monitoring methods are already used in products. Chapter 15 is de-
voted to transfer the CPM technology into the challenging field of metal processing ⎯ one of the 
main contributions of the present thesis. First, an introduction to the metal processing technology 
and automation is provided. Successful application studies and tailored CPM tools from cold 
rolling area are described and discussed. It is finally shown how the developed CPM systems are 
integrated into the mill infrastructure (automation) and the maintenance practices of the cus-
tomer.   

The last Chapter (16) of the thesis surveys the potential directions for future research. Ap-
pendix A and Appendix B contain reviews of some definitions, relationships and properties of 
basic and higher-order statistics, respectively. These concepts are used throughout the thesis. 
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Industrial control loops from which data are used within the thesis to illustrate the methods are 
described in Appendix C.  

1.6 Background of the Work  

The material in this thesis has been the outcome of several years of research and development by 
the author, partly within the EU research project AUTOCHECK (2003–2007). A significant 
portion of the material in the thesis has appeared in archival journals. An overview of these peer-
reviewed contributions is given below.  
• The Chapters 2–5, 7–9 and 14 are substantial extensions of the review published in Control 

Engineering Practice, Vol. 14(2006), M. Jelali, „An overview of control performance as-
sessment technology and industrial applications“.  

• Chapter 11 is mostly reproduced from material published in Journal of Process Control, Vol. 
18(2008), M. Jelali, „Estimation of valve stiction in control loops using separable least-
squares and global search algorithms”.  

• The integrating approaches in Chapter 12 have been introduced in at-Automatisierungs-
technik, Vol. 54(2006), M. Jelali, „Regelkreisüberwachung in der Metallindustrie. Teil 1: 
Klassifikation und Beschreibung der Methoden (Control performance monitoring in the metal 
industry. Part I: Classification and description of methods)“ and  

• „Regelkreisüberwachung in der Metallindustrie. Teil 2: Anwendungskonzept und Fallstudie 
(Control performance monitoring in the metal industry. Part II: Application concept and case 
study)“.  

• The methods in Chapter 13 were published in at-Automatisierungstechnik, Vol. 55(2007), M. 
Jelali, „Automatisches Reglertuning basierend auf Methoden des Control Performance Moni-
toring (Automatic controller tuning based on control performance monitoring)“.  

• Parts of Chapter 15, i.e., Sections 15.2, 15.3.1 and 15.3.2, are reprinted from material pub-
lished in Journal of Process Control, Vol. 17(2007), M. Jelali, „Performance assessment of 
control systems in rolling mills – Application to strip thickness and flatness control”.  
Other contributions, which have been presented at conferences and appeared in associated 

proceedings, are: 
• M. Jelali, Regelkreisüberwachung in der Metallindustrie: Anforderungen, Stand der Technik 

und Anwendungen (Control performance monitoring in the metal industry: requirements, 
state of the art and applications), VDI-Berichte Nr. 1883, S. 429–439 (GMA-Kongress 2005, 
Baden-Baden).  

• H. Ratjen, M. Jelali, Performance monitoring for feedback and feedforward control with 
application to strip thickness control, Proc. Research and Education in Mechatronics, June 
15-16, 2006, KTH, Stockholm, Sweden. 

• M. Jelali, M. Thorman, A. Wolff, P. Foerster, T. Müller, A. Metzul, R. Nötzel, How to get 
control systems working best: new ways to monitor and ensure peak control performance in 
steel processing, Proc. METEC InSteelCon (International Steel Conference on New Devel-
opments in Metallurgical Process Technologies), 11–15 June 2007, Düsseldorf/Germany. 
385–393. 

 



 
 
 

Part I 
 

Evaluation of the Level of Control Performance



 



2 Assessment Based on Minimum Variance Principles 

An important goal of quality improvement in manufacturing is the reduction of variability in 
product attributes. Producing more consistent output improves product performance and may 
reduce manufacturing costs. Therefore, the most frequently used control performance assessment 
methods are based on the MV principle or modifications of it. The key point is that the MV 
benchmark (as a reference performance bound) can be estimated from routine operating data 
without additional experiments, provided the system delay is known, or can be estimated with 
sufficient accuracy.   

This chapter provides an introduction to the theory of MV performance assessment. Some 
basic notations and concepts are given in Section 2.1. The derivation of minimum variance con-
trol is recalled in Section 2.2. In Section 2.3, the auto-correlation test to check minimum variance 
is considered. Section 2.4 presents the celebrated MVC-based performance index, known as the 
Harris index, and how to estimate it using different algorithms. In Section 2.5 the extension of 
MV assessment to feedback-plus-feedback loops is described. Its extension to the assessment of 
set-point tracking and cascade control will be provided in Section 2.6. All methods presented are 
illustrated using many examples.  

2.1 System Descriptions and Basics  

For the description of the methods in this chapter, we assume generic feedback control systems 
shown in Figure 2.1, where r(k) is the set point, u(k) the controller output, e(k) the control error, 
y(k) the process output and ε(k) is the unmeasured disturbance. Gc, Gp and Gε denote the transfer 
functions of the feedback controller, the process and disturbance dynamics, respectively. The set 
point is set to zero by convenience and the disturbances are assumed to be zero mean. If the 
reference value and/or the mean of the disturbances are not zero, they can be made mean-free by 
a simple transformation.  

Let the system under consideration be described by an ARMAX model (see Figure 2.1)  

( ) ( ) ( ) ( ) ( ) ( )A q y k q B q u k C q kτ ε−= + , (2.1) 

where ε(k) is a zero-mean white noise with the variance 2
εσ , also referred to as chocks. A(q), 

B(q) and C(q) are polynomials1 in q–1 of order n, m and p respectively: 
1 2

1 2( ) 1 n
nA q a q a q a q− − −= + + + +…  

1 2
0 1 2( ) m

mB q b b q b q b q− − −= + + + +…  
1 2

1 2( ) 1 p
pC q c q c q c q− − −= + + + +… . (2.2) 

τ is an integer number of sampling periods2 (i.e., the dynamics contain a delay of τ samples), so 
that the leading term of B is non-zero constant. This means that B is strictly rational or that the 

                                                           
1
 Following Ljung (1999), q is chosen as an argument of the polynomials rather than q–1 (which perhaps 
would be more natural in view of the right side) in order to be in formal agreement with z-transform and 
Fourier-transform expressions.  

2
 For discrete systems with no time delay, there is a minimum 1–sample delay because the output depends 
on the previous input, i.e., τ = 1.  
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input u does not affect the output y immediately, i.e., there is at least one sample delay (τ ≥ 1). 
Also note that the polynomials A and C are monic, because their leading term is unity.  

The noise model of an ARMAX model includes only random steps. For a generalisation of 
the treatment, an ARIMAX model of the form 

( )( ) ( ) ( ) ( ) ( )C qA q y k q B q u k kτ ε−= +
Δ

 (2.3) 

may be needed to describe drifting (non-stationary) disturbances. As before, u is the input, y is 
the output, and ε is the white noise. Δ is the backward difference operator, i.e., Δ = 1 − q−1. ARI-
MAX models are typically used for the design of model predictive controllers, particularly DMC 
and GPC.  
 

 
Figure 2.1. Generic feedback control system structure. 

 
If the process is assumed to be stable, it can be expressed as the infinite impulse response 

(IIR) 

p ( ) lim 0i
i iii

G q h q h
τ

∞
−

→∞=

= =∑ . (2.4) 

In practice, the impulse response is truncated at time np, called “time-to-steady-state”:  

p

p ( ) lim 0
n
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i iii

G q h q h
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≈ =∑ . (2.5) 

When considering an ARIMAX model, the disturbance transfer function is marginally stable due 
to the pole at q = 1  so it can be shown that 

0
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G q e qε
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=∑ , (2.6) 

where the coefficients ei converge to C(1)/A(1). Defining nε as the settling time of the distur-
bance dynamics enables Equation 2.6 to be expressed as 

0 1

( )
n

i i
i n

i i n

G q e q e q
ε

ε
ε

ε

∞
− −

= = +

= +∑ ∑ . (2.7) 

As the “differenced” load transfer function, i.e., ΔGε, is stable, it can be written as 
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with d0 = e0 = 1, di = ei − ei − 1 for i = 1, 2, …, nε.  
 

Note on Input–Output Models 

Following the system identification and control performance monitoring literature, the polyno-
mial operator form is used throughout this thesis for the description of input–output models. This 
makes use of the backwards-shift (or unit delay) operator q−1 defined as 

1 ( ) ( 1) .q f k f k− = −   

For instance, the difference equation of a linear system 

1 0 1( ) ( 1) ( ) ( ) ( 1) ( ) ,n my k a y k a y k n b u k b u k b u k m+ − + + − = + − + + −  (2.9) 

thus becomes 
1 1

1 0 1(1 ) ( ) ( ) ( ) .n m
n ma q a q y k b b q b q u k− − − −+ + + = + + +  (2.10) 

This will simply be denoted by 

( ) ( ) ( ) ( ) ,A q y k B q u k=   (2.11) 

where A(q) and B(q) are the following polynomials, in fact, depending on q−1 in the form 
1

1( ) 1 n
nA q a q a q− −= + + +  (2.12) 

1
0 1( ) .m

mB q b b q b q− −= + + +  (2.13) 

The ratio of both polynomials  

( )( )
( )

B qG q
A q

=  (2.14) 

is considered as the discrete transfer operator of the discrete transfer function (strictly speaking, 
G(z) should be used in the latter case) of the system. For time-invariant linear systems, the for-
ward-shift operator q and the complex variable z defining the z-transform are equivalent. In this 
case, one can use either one (q is just replaced with z) and the appropriate signification will result 
from the context; see Ratjen and Jelali (2006). 

However, the shift operator q and thus the transfer operator G(q) can be applied for any dis-
crete-time system, thus as well to linear systems with time-varying coefficients (e.g., in the con-
text of adaptive control) or non-linear systems, where the z-transform and thus the concept of 
transfer function does not apply.  

Note that the variable z is analytical: we speak of numerical values zi of the poles of a transfer 
function G(z). The operator q does not possess any numerical values; it gives the transfer func-
tion G(q), whose mathematical expression is strictly identical to G(z).  

2.2 Minimum Variance Control (MVC) 

The minimum variance control (MVC), also referred to as optimal H2 control and first derived by 
Åström (1979), is the best possible feedback control for linear systems in the sense that it 
achieves the smallest possible closed-loop output variance. More specifically, the MVC task is 
formulated as minimisation of the variance of the error between the set point and the actual out-
put at k + τ , given all the information up to time k:  

{ }2E [ ( )]J r y k τ= − +  (2.15) 
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or 

{ }2E ( )J y k τ= + , (2.16) 

when the set point is assumed zero (without loss of generality), i.e., the case of regulation or 
disturbance rejection is considered. The discrete time delay τ is defined as the number of whole 
periods of delay in the process, i.e., (Harris, 1989) 

d s1 1 int( / )f T Tτ = + = + , (2.17) 

where Td is the (continuous) process delay arising from true process dead time or analysis delay, 
and Ts denotes the sampling time. f is the number of integer periods of delay.  

The design of minimum-variance controller requires a perfect system model and a perfect 
disturbance model and will result in a complete cancellation of the error (other than measure-
ment noise) one sample time after the system time delay τ. The test (see in Section 2.3) for de-
tecting MVC follows immediately: if the sample auto-correlations of the system output are zero 
beyond τ, then MVC is being achieved3. Further, if there is no process noise, i.e., ε(k) = 0, then 
MVC is equivalent to a deadbeat controller.  

To enable minimisation of Equation 2.15 with respect to the control input u, first we need to 
relate the controlled output y to u. When both sides of Equation 2.1 are multiplied by Eτ and the 
left side is substituted using the Diophantine equation, also known as the polynomial division 
identity, 

( ) ( ) ( ) ( )E q A q q F q C qτ
τ τ

−= − + , (2.18) 

where 
1 2 ( 1)

0 1 2 1( )E q e e q e q e q τ
τ τ

− − − −
−= + + + +…  (2.19) 

1 2 ( 1)
0 1 2 1( ) n

nF q f f q f q f qτ
− − − −

−= + + + +… , (2.20) 

we get the prediction of the output τ steps ahead as  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
F q E q B q

y k y k u k E q k
C q C q

τ τ
ττ ε τ+ = + + + . (2.21) 

The right-hand side of this equation contains the three terms: present and past output signals, 
present and past control signals and future error signals, respectively. As future terms are not 
available at time k, only the realisable terms of the optimal output prediction are then given by 

( ) ( ) ( )ˆ( ) ( ) ( )
( ) ( )

F q E q B q
y k y k u k

C q C q
τ ττ+ = + . (2.22) 

Now, the control action is selected to optimise the variance of the output (τ steps ahead), i.e.,  

{ }2

( ) ( )
min ( ) min E ( )
u k u k

J k y k τ= +  

( )

( ) ( ) ( )
min E ( ) ( ) ( ) ( )

( ) ( )u k

F q E q B q
y k u k E q k

C q C q
τ τ

τ ε τ⎧ ⎫
= + + +⎨ ⎬

⎩ ⎭
. (2.23) 

                                                           
3 One should here remember the linear correlation test used for the validation of identified linear models; 

see Section 2.3. 
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(The set-point is first assumed to be zero.)4 This equation contains past inputs, past outputs and 
future disturbances. As the disturbance is assumed to be white noise, its future values cannot be 
correlated with past signals. Therefore, the minimum will be achieved when the sum of the first 
two components is set to zero: 

( ) ( ) ( )( ) ( ) 0
( ) ( )

F q E q B qy k u k
C q C q

τ τ+ = , (2.24) 

which gives the MVC law 

( )( ) ( )
( ) ( )
F qu k y k

E q B q
τ

τ

= − . (2.25) 

The same procedure applied to ARIMAX models (Equation 2.3) leads to 

( )
( ) ( )

( ) ( )
F q

u k y k
E q B q

τ

τ

Δ = − . (2.26) 

These control laws imply that, no matter what the system dynamics is, all system poles (in-
cluded in A(q) and thus F(q)) and zeros, included in B(q), are cancelled by MVC. Consequently, 
the basic MVC design is restricted for stable and minimum-phase systems. In practice, cancel-
ling of system dynamics means to exert aggressive control effort, which may not be tolerated 
from the operational point of view. Another limitation is the sensitivity against system changes, 
i.e., the lack of robustness to modelling errors. 

For non-minimum-phase systems, i.e., with unstable B(q), MVC can be designed with some 
(minor) modifications. The unstable zeros are not inverted, similar to the treatment in the IMC 
design (Morari and Zafiriou, 1989). The control law for non-minimum-phase (ARMAX) proc-
esses is given by  

( )( ) ( )
( )

S qu k y k
R q

Δ = − , (2.27) 

where S and R are the solution of the Diophantine equation 
1( ) ( ) ( ) ( ) ( ) ( ) ( )A q R q q B q S q C q B q B qτ− −

− += − + . (2.28) 

The polynomial B is decomposed into a minimum phase part B− and non-minimum phase part 
B+.  

From the MVC laws given above, it is clear that the main vehicle for calculating minimum 
variance controllers is the solution of the Diophantine Equations 2.18 and 2.28. For simple cases, 
it is possible to get solutions; see Example 2.1. However, constructing solutions for Diophantine 
equations usually requires the use of a software package. A standard one for this purpose is 
available from Kwakernaak and Sebek (2000). Another solver is provided by Moudgalya (2007) 
in form of a MATLAB function called xdync.  

Using the MVC, the minimum value of the output variance, shortly denoted minimum vari-
ance, is achieved: 

{ } { }2
min ( )

( ) min E ( ) E ( ) ( )
u k

J k y k E q kττ ε τ= + = +  

                                                           
4 The basic MVC is designed to solve regulation problems, where the objective is to compensate for sto-

chastic disturbances and not to follow a reference trajectory. However, MVC can be extended to include 
variations in the reference, as described below. 
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1
2 2 2

MV
0

i
i

e
τ

εσ σ
−

=

⎛ ⎞= ≡⎜ ⎟
⎝ ⎠
∑ , (2.29) 

where 2
εσ  is the (disturbance) noise variance. Note that 2

MVσ  is the same as the variance of the 
prediction error ˆy y− . The achieved output of the closed-loop system under MVC is 

( ) ( ) ( )y k E q kτ ε= . (2.30) 

Note that whereas the controller itself may require the specification of the system model and 
disturbance model, both are not needed for MVC-based performance assessment, as described 
below (Section 2.4). It is important to stress that the adoption of MVC as a benchmark does not 
imply that it should be the goal towards which the existing control should be driven, or that it is 
always practical, desirable, or even possible to implement. Nevertheless, the performance bound 
set by the MVC is exceeded by all other (linear) controllers; hence, it serves as an appropriate 
benchmark against which the performance of other controllers may be compared. 

The reader is encouraged to consult the textbook by Moudgalya (2007:Chap. 11), including 
many examples and MATLAB functions (mv for minimum phase systems, mv_nm for non-
minimum phase systems). Minimum variance control (placed in a conventional feedback struc-
ture) can be viewed in an IMC structure or an SPC structure; see Section 3.2. The equivalence 
between MVC and IMC was revealed by Bergh and MacGregor (1987) to analyse the robustness 
of MVC. Refer also to Qin (1998), who derived the MVC using the IMC structure.  

 
Example 2.1. Consider the first order system described by the transfer function 

1 1
1 1

1( ) ( ) ( )
1 1

qy k u k k
a q a q

τ

ε
−

− −= +
+ +

 (2.31) 

with a1 = −0.9 and the time delay τ = 3. This is an ARMAX model with  
1 1

1( ) 1 1A q a q n− −= + =   
1( ) 1 0B q m− = =   
1( ) 1 0C q p− = = .  

The Diophantine equation 2.18 takes the form  

1 1 1 1
3 3

1 2 1 3
1 2 1 0

( ) ( ) ( ) ( )
(1 )(1 ) 1.
E q A q q F q C q

e q e q a q f q

τ− − − − −

− − − −
+ =

+ + + + =
  

Comparing the same powers of q−1 gives 
0

1
1 1 1 1

2 2
2 1 1 2 1

3 3
1 2 0 0 1

: 1 1
: 0
: 0
: 0 .

q
q e a e a
q e a e e a
q a e f f a

−

−

−

=
+ = ⇒ = −
+ = ⇒ =

+ = ⇒ = −

  

The closed loop is then given by (Equation 2.30) 
1 1 2 2

1 1( ) ( ) ( ) (1 ) ( )y k E q k a q a q kτ ε ε− − −= = − + +…    

In fact, the first three terms will be the same irrespective of the (linear) controller used. The MVC law has 
the form (Equation 2.25): 

3
1

1 2 2
1 1

( ) ( )
1

au k y k
a q a q− −

−= −
− +

.  



 2.3 Auto-correlation Test for Minimum Variance 33 
 

This gives for a1 = −0.9: 

1 2

0.729( ) ( )
1 0.9 0.81

u k y k
q q− −= −

+ +
. (2.32) 

This control law can also be determined using the function mv from Moudgalya’s MATLAB software 
(Moudgalya, 2007:Sect. 11.4).  

2.3 Auto-correlation Test for Minimum Variance 

Auto-correlation is a method that is used to determine how data in a time series are related. 
Auto-correlation-based analysis provides to discover the nature of disturbances acting on the 
process and how they affect the system by comparing current process measurements patterns 
with those exhibited in the past during “normal” operation.  

A fundamental test for assessing the performance of control loops is to check the auto-
correlation of the output samples: the autocorrelation should die out beyond the time delay τ. 
Using a representative sample of measured output data, the sample auto-correlation can be com-
puted (i.e., estimated). Statistically significant values of the estimated auto-correlations existing 
beyond the delay provide evidence that the current controller is not minimum variance. Further-
more, if there exist many large auto-correlation values that persist beyond τ, the control perform-
ance deviates substantially from the MV performance bound. If only few slightly significant 
values exist beyond τ, the performance is close to that of MVC. Since the auto-correlations are 
statistical estimates based on a finite sample of data, they will never be truly zero. Therefore, to 
assess whether the true auto-correlations ρyy(j) might be zero or not, their estimated values must 
be compared to their statistical confidence intervals, e.g., 95% or 2σ. Box and Jenkins (1970) 
showed that, if ρyy(j) is zero for j ≥ τ, then the variance is 

12 2
1

1var{ ( )} 1 2 ( ) ;yy yyi
j i j

N
τσ ρ ρ τ−

=
⎡ ⎤= ≈ + ≥⎣ ⎦∑ . (2.33) 

Therefore, the 95% confidence interval for ρyy(j) is [−2σ, 2σ]. If most auto-correlation coeffi-
cients ρyy(j) are inside this interval for j ≥ τ, the control is roughly achieving minimum variance; 
otherwise, it is not.  
 
Example 2.2. Figure 2.2 depicts the auto-correlation estimates for a gauge control loop and their 
95% confidence levels. It is observed that the auto-correlation functions are far outside the con-
fidence limits after the time delay of 10. Therefore, we conclude that the control is not achieving 
minimum variance. Furthermore, the auto-correlation function is oscillatory, indicating that os-
cillation exists in the original data. 

 
The motivation behind the use of auto-correlation function (ACF) is that it can be easily es-

timated from plant response data. Moreover, the dynamic response characteristics for data trends 
can be inferred without having to resort to the more complicated tasks associated with the identi-
fication and interpretation of time-series models. For example, a slowly decaying auto-
correlation function implies an under-tuned loop, and an oscillatory ACF typically implies an 
over-tuned loop. For multivariable systems, off-diagonal plots can be used to trace the source of 
disturbance or the interaction between each process variables. Figure 2.3 shows an example 
taken from Huang et al. (1999), clearly indicating that the first loop has relatively poor perform-
ance while the second loop has very fast decay dynamics and thus good performance. The off-
diagonal subplots indicate interaction between the two loops. Note that the ACF plot of the mul-
tivariate system is not necessarily symmetric. 
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Figure 2.2. Example of auto-correlation test. 

 
 

 
Figure 2.3. Correlation functions of a multivariate process (Huang et al., 1999). 

2.4 Minimum Variance Index / Harris Index 

In the following, we present algorithms that will use routine (closed-loop) operating data to as-
sess the performance of control loops against MVC as benchmark. MVC-based assessment first 
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described by Harris (1989) compares the actual system-output variance 2
yσ  to the output vari-

ance 2
MVσ  as obtained using minimum-variance controller applied to an estimated time-series 

model from measured output data. The Harris index is defined as 
2
MV

MV 2
y

ση
σ

= . (2.34) 

This index will of course be always within the interval [0, 1], where values close to unity indi-
cate good control with respect to the theoretically achievable output variance. „0“ means the 
worst performance, including unstable control. No matter what the current controller is, we need 
only the following information about the system: 
• Appropriately collected closed-loop data for the controlled variable. 
• Known or estimated system time delay (τ) 

Moreover, there are two advantages for using this index over a simple error variance metric: 
1. Taking the ratio of the two variances results in a metric that is (supposedly) independent of 

the underlying disturbances – a key feature in an industrial situation, where the disturbances 
can vary widely. 

2. The metric is scale independent, bounded between 0 and 1. This is an important considera-
tion for a plant user, who might be faced with evaluating hundreds or even thousands of con-
trol loops.  

2.4.1 Estimation from Time-series Analysis 

From the measured (closed-loop) output data, a time-series model, typically of AR/ARMA type, 
is estimated:  

ˆ ( )( ) ( )ˆ( )
C qy k k
A q

ε= . (2.35) 

A series expansion, i.e., impulse-response, of this model gives  

0
( ) ( )i

i
i

y k e q kε
∞

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  

( ) ( )1 2 ( 1) ( 1)
0 1 2 1 1

feedback-invariant feedback-varying

( ) ( )e e q e q e q k e q e q kτ τ τ
τ τ τε ε− − − − − − +

− += + + + + + + +… … . 

 (2.36) 

The first τ impulse response coefficients can be estimated through τ-term polynomial long divi-
sion, or equivalently via resolution of the Diophantine identity: 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )C q E q A q q F qτ
τ τ

−= + , (2.37) 

where Êτ  is an estimate of Eτ  in Equation 2.18. The feedback-invariant terms are not a function 
of the process model or the controller; they depend only on the characteristics of the disturbance 
acting on the process.  

Since the first τ terms are invariant irrespective of the controller (Figure 2.4), the minimum-
variance estimate corresponding to the feedback-invariant part is given by 

1
2 2 2
MV

0
i

i
e

τ

εσ σ
−

=

=∑ . (2.38) 
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The first coefficient of the impulse response, e0, is often normalised to be equal to unity.  
The estimate of the actual output variance can be directly estimated from the collected output 

samples using the standard relation in Equation 1.1. However, it is suggested to use the (already) 
estimated time-series model also for evaluating the current variance. From the series expansion 
of the time-series model (Equation 2.36), we obtain 

2 2 2

0
y i

i
e εσ σ

∞

=

=∑ . (2.39) 

Since the noise variance will be cancelled in Equation 2.34, it is neither needed nor has an effect 
on the performance index. This compares the sum of the τ first impulse-response coefficients 
squared to the total sum; see Figure 2.4.  

The performance index ηMV corresponds to the ratio of the variance, which could theoreti-
cally be achieved under minimum variance control, to the actual variance. ηMV is a number be-
tween 0 (far from minimum variance performance) and 1 (minimum variance performance) that 
reflects the inflation of the output variance over the theoretical minimum variance bound. As 
indicated in Desborough and Harris (1992), it is more useful to replace 2

yσ  by the mean-squares 
error of y to account for offset 

2 2
MV MV

MV 2 2

ˆ ˆ
ˆMSE y y

σ ση
σ

= =
+

. (2.40) 

See also Section 2.4.2. If ηMV is considerably less than 1, retuning the controller will yield bene-
fits. If ηMV is close to 1, the performance cannot be improved by retuning the existing controller; 
only process or plant changes, such as changes in the location of sensors and actuators, inspec-
tion of valves, other control loop components, or even alterations to the control structure can lead 
to better performance.  

 
 

 
Figure 2.4. An impulse response showing the contributions to the Harris index.  

 
Although ε(k) is unknown, it can be replaced by the estimated innovations sequence. This can 

be obtained by pre-whitening the system output variable y(k) via time series analysis based on an 
AR or ARMA model (alternatively a Kalman filter based innovation model in state-space form); 
see Box and MacGregor (1974), Söderström and Stoica (1989) and Goodwin and Sin (1984). An 
estimate for the random chocks is then found, e.g., by inverting the estimated ARMA model 
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1ˆ ˆ( ) ( ) ( ) ( )k C q A q y kε −= . (2.41) 

The aim of pre-whitening (or simply whitening) is at tracking back the source of variations in 
a regulatory closed-loop system to white noise excitation („the driving force“), as shown in 
Figure 2.5. This means reversing the relationship between y(k) and ε(k). The process of obtaining 
a „whitening“ filter is analogous to time-series modelling, where the final test of the adequacy of 
the model, i.e., validation, consists of checking if the residuals are „white“. These residuals are 
the estimated white noise sequence. In contrast to time-series modelling, where the estimation of 
the model is of core interest, the residual or innovation sequence is the main item of interest in 
the „whitening“ process, and thus in control performance assessment. 

 
 

 
Figure 2.5. Schematic representation of the white noise or innovation sequence estimation.  

 
To summarise, the complete algorithm to evaluate the MVC-based (Harris) index and to as-

sess feedback controls contains the steps described in Procedure 2.1.  
 

Procedure 2.1. Performance assessment based the Harris index. 
1. Preparation. Select the time-series-model type and orders. 
2. Determine/estimate the system time delay τ. 
3. Identify the closed-loop model from collected output samples [ar/arma(x)]. 
4. Calculate the series expansion (impulse response) for the estimated model (Equation 2.36) [dim-

pulse]. 
5. Estimate the minimum variance from Equation 2.38. 
6. Estimate the actual output variance from Equation 1.1 or 2.39. 
7. Compute the (Harris) performance index (Equation 2.34). 

2.4.2 Estimation Algorithms 

In this section, some different algorithms are described for the estimation of the Harris index 
from normal operating data, irrespective of the controller installed on the process. These algo-
rithms do not necessitate the solution of Diophantine equation.  

2.4.2.1 Direct Least-squares Estimation  

A simple way to estimate the Harris index ηMV from closed-loop routine data is to use linear 
regression methods, without the necessity of solving any Diophantine equation or performing 
polynomial long divisions. From Equation 2.21, the process output under any installed feedback 
controller Gc(q) can be expressed as 

c( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( )

F q B q E q G qy k E q k q y k
C q

τ τ τ
τ ε τ − −

= + + . (2.42) 
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Under the assumption of closed-loop stability, the second term in the previous equation can be 
approximated by a finite-length (n) AR model:  

1
( ) ( 1) ( ) ( )

n

i
i

y k y k i E q kτΘ τ ε
=

= − − + +∑  (2.43) 

with the unknown model parameters Θi. 
Running k over a range of values and stacking up similar terms yields: 

( ) ( )E q kτ= +y X εΘ  (2.44) 

with 

1

2

( ) ( ) ( 1) ( 1)
( 1) ( 1) ( 2) ( )

( ) ( ) ( 1) (1) n

Θy N y N y N y N n
Θy N y N y N y N n

Θy n y n y n y

τ τ τ
τ τ τ

τ

− − − − − + ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − − − − ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

y X Θ  

The parameter vector Θ  can be estimated with LS method, i.e., by fitting the recorded 
closed-loop data {y1, y2, …, yN} to the model Equation 2.43. The LS solution follows as  

T 1 Tˆ ( )−= X X X yΘ . (2.45) 

An estimate of the minimum variance can be determined as the residual mean square error  

2 T
MV

1ˆ ( ) ( )
2 1N n

σ
τ

= − −
− − +

y X y XΘ Θ , (2.46) 

while the actual variance results as 

2 T1ˆ
1y N n

σ
τ

=
− − +

y y . (2.47) 

The Harris index can then be formed as 
2 T
MV

MV 2 T

ˆ 1 ( ) ( )ˆ ( )
2 1ˆ y

N n
N n

σ τη τ
τσ

− − + − −= =
− − +

y X y X
y y

Θ Θ  (2.48) 

or  
2 T
MV

MV T 2

ˆ 1 ( ) ( )ˆ ( )
MSE 2 1 ( 1)

N n
N n N n

σ τη τ
τ τ

− − + − −= =
− − + + − − +

y X y X
y y y

Θ Θ . (2.49) 

when the mean square error is used rather than the variance to penalise non-zero steady-state 
errors; see Equation 2.40. It is important to note that the signal y(k) has always to be made free 
from the set point value prior to the index calculation.  

Exact distributional properties of the estimated performance indices are complicated and not 
amenable to a closed-form solution. Desborough and Harris (1992) approximated first and sec-
ond moments for the estimated performance indices and resorted to a normal theory to develop 
approximate confidence intervals. Asymptotically, the performance indices are ratios of corre-
lated quadratic forms, and as such the distributions of the performance indices are non-
symmetric. Refinements to the confidence intervals developed in Desborough and Harris (1992) 
can be obtained with little extra computational effort, by resorting to the extensive statistical 
literature on the distributional properties of quadratic forms (Harris, 2004). 
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2.4.2.2 Online/Recursive Least-squares Estimation  

One advantage of the LS approach is that recursive algorithms to find MVˆ ( )kη  are readably 
available. An online estimation of the index becomes possible. This is useful to detect change 
points in control monitoring. Also, if the process is non-linear and the dynamics are slow enough 
that the process can be considered locally linear, recursive estimation of the performance index 
provides a local estimate of the controller performance. Alternatively, MVˆ ( )kη can be used 
online as a tuning tool to immediately show whether the tuning changes have improved or de-
graded control performance (Desborough and Harris, 1992). This assumes that the disturbance 
model does not change significantly.  

Typically, recursive LS (RLS) algorithms minimise a cost function of the form  
T( ) ( )V = − −y X Λ y XΘ Θ , (2.50) 

where Λ is a diagonal matrix with elements (λ, λ2, …, λN). λ is the so-called forgetting factor 
used to place more emphasis on recent data. An estimate of the MV at time k is given by 

2 2 2
MV MV( ) ( 1) ( )k k kσ λσ ε= − + . (2.51) 

An estimate of the performance index is computed as 
2
MV

MV 2

( )ˆ ( )
( )y

kk
k

ση
σ

= , (2.52) 

where 2 ( )y kσ  is the exponentially weighted moving mean square error 

2 2 2( ) ( 1) ( )y yk k y kσ λσ= − + . (2.53) 

Instead of a RLS method, a stochastic gradient algorithm, which does not need matrix com-
putations, can be used as well. This has been proposed by Ingimundarson (2002, 2003) for per-
formance assessment of λ-tuned PI controllers.  

As stated by Taylor & Morari (1995), the recursive estimation described works well as long 
as the closed loop is accurately represented by an AR(MA) model. This does not apply for 
closed-loop models with moving average parameters. An alternative approach to the recursive 
index estimation is therefore to use a hierarchical method based on data windowing: the data are 
first broken into segments with similar dynamic properties. Efficient algorithms, such as those 
proposed by Basseville (1988), can be applied to rapidly detect changes in the closed-loop dy-
namics. Once a change has been detected, the Harris index can be computed for the largest data 
segment available with similar dynamics.  

In practice, it is often sufficient to use moving windows to study the change in performance 
of the process over time. Drops or drifts in the performance index can be easily observed in such 
performance pictures like those shown in Figure 2.6 (N = 500). However, care has to be taken to 
not use too small data windows; see the guidelines in Sections 7.1.2 and 7.3.2. In this example, a 
performance deterioration caused by a big (non-stationary) disturbance appearing at time 
k = 2025 can be observed.  
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Figure 2.6. An example of the Harris index trend computed for moving data windows (gauge control loop).   

2.4.2.3 Filtering and Correlation Analysis (FCOR) Method 

Huang et al. (1997, 2000) have developed a method to derive the MVC-based performance index 
by filtering (i.e., pre-whitening) and subsequent correlation analysis (thus called FCOR) between 
of the delay-free output and estimated random shocks obtained by a pre-whitening filter. Calcu-
lation of the system correlation eliminates the need to determine the impulse response coeffi-
cients from the estimated closed-loop transfer function. The FCOR algorithm is presented in this 
section following Huang and Shah (1999). 

Consider the (stable) closed-loop system described by the infinite-order moving average 
process in Equation 2.36. Multiplying this equation by ε(k), ε(k − 1), ..., ε(k − τ + 1) respectively 
and then taking the expectation of both sides of the equation yields 

{ } 2
0(0) E ( ) ( )yr y k k eε εε σ= =  

{ } 2
1(1) E ( ) ( 1)yr y k k eε εε σ= − =  

{ } 2
2(2) E ( ) ( 2)yr y k k eε εε σ= − =  

 
{ } 2

1( 1) E ( ) ( 1)yr y k k eε τ ετ ε τ σ−− = − + = . (2.54) 

Therefore, the minimum variance is  
2

1 1 1
2 2 2 2 2 2
MV 2

0 0 0

( )
( ) /y

i y
i i i

r i
e r i

τ τ τ
ε

ε ε ε ε
ε

σ σ σ σ
σ

− − −

= = =

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . (2.55) 

Substituting Equation 2.55 into Equation 2.34 leads to the performance index 
1 1

2 2 2 2 T
MV,cor

0 0
( ) /( ) ( )y y y

i i
r i i

τ τ

ε ε εη σ σ ρ
− −

= =

= = =∑ ∑ Z Z , (2.56) 

where Z is the cross-correlation coefficient vector between y(k) and ε(k) for lags 0 to τ − 1 and is 
denoted 
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T: [ (0), (1), (2), , ( 1)]y y y yε ε ε ερ ρ ρ ρ τ= −…Z . (2.57) 

The corresponding sampled version of the performance index is therefore given by 
1

2 T
MV,cor

0

ˆ ˆˆˆ ( )y
i

i
τ

εη ρ
−

=

= =∑ Z Z , (2.58) 

where 

1
2 2

1 1

( ) ( )
ˆ ( )

( ) ( )

M

k
y M M

k k

y k k l
l

y k k
ε

ε
ρ

ε
=

= =

−
= ∑
∑ ∑

. 

ε(k) can be determined from pre-whitening of y(k) via time series, as explained in Section 2.4.1. 
The complete FCOR algorithm is described in Procedure 2.2. 

 
Procedure 2.2. Filtering and correlation-based (FCOR) algorithm. 
1. Preparation. Select the time-series-model type and orders. 
2. Determine/estimate the system time delay τ. 
3. Identify an appropriate closed-loop model from collected output samples y(k). 
4. Filter the system output data y(k) from the model to obtain an estimate for the whitened sequence 

(2.41). 
5. Calculate the cross-correlation coefficients between y(k) and ε(k) for lags 0 to τ − 1 from Equation 2.54. 
6. Use Equation 2.58 to compute the performance index. 

2.4.2.4 Examples 

The following examples illustrate the performance assessment results in terms of the Harris in-
dex obtained using Procedure 2.1. Some controller tuning rules will be evaluated using the 
MVC-based assessment introduced above.  
 
Example 2.3. Consider the first order system from Example 2.1. The MVC is used here just to simulate the 
process under this ideal controller and to show that the Harris index will take the value of 1 in this case. 
This is confirmed by the Harris index value given in Table 2.1 (fourth row). In this simulation, ε(k) was a 
normally distributed noise with the variance 2 0.01εσ = . The Harris index values have been determined 
from using N = 1500 simulated data points (Ts = 0.5) and modelling the closed loop by an AR model of 
order n = 30.  

The impulse responses for a P-only controller with different gains and for the MVC are illustrated in 
Figure 2.7. It can be seen that P1 is a sluggish controller, P2 a well-tuned controller and P3 an aggressive 
controller. The figure also shows how the impulse response for the MVC dies beyond τ = 3. The first three 
(controller-invariant) coefficients are marked with circles in the figure. From this example, it can be learned 
that the Harris index for a well-tuned controller (η = 0.76) does not always achieve that of MVC 
(η = 0.99 ≈ 1).  
 
 

Table 2.1. Harris index value for the different controllers. 

Controller Kc η̂  
P1 0.05 0.62 
P2 0.25 0.76 
P3 0.50 0.37 
MVC - 0.99 
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Figure 2.7. Impulse responses for different controllers. 

 
 
In the following, we consider two simulated processes used by Seborg et al. (2004:Chap. 12) to 
compare different controller tuning rules in terms of (deterministic) set-point tracking and dis-
turbance rejection. Here we evaluate the stochastic control performance using the Harris index. 
For all processes, we assume that the process model (without time delay) and disturbance model 
are identical and the disturbance is normally distributed noise with the variance 2 0.01εσ = . 
 
Example 2.4. A blending system with a measurement time delay modelled by 

1.07
p

1.54( )
5.93 1

sG s e
s

−=
+

 (2.59) 

and controlled by a PI controller is considered. Table 2.2 illustrates the results gained from modelling the 
closed loop by an AR model of order n = 20 using 1500 output samples. IMC and ITAE (set point) yield the 
best performance and ITAE (disturbance) the least performance, as a consequence of the most aggressive 
settings; see Figure 2.8. Note that IMC2 and ITAE (set point) have almost identical impulse responses for 
this example, but this is not true in general.  
 
 

Table 2.2. Harris index value for the blending process and different controllers. 

Controller/tuning rule Acronym Kc TI η 
IMC (λ = T/3) IMC1 1.27 5.93 0.76 
IMC (λ = Td) IMC2 1.80 5.93 0.81 
Hägglund and Åström HA 1.10 2.95 0.65 
ITAE (disturbance) ITAE1 2.97 2.75 0.59 
ITAE (set point) ITAE2 1.83 5.93 0.81 
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Figure 2.8. Impulse responses for the blending process and different controllers.  

 
 

Example 2.5. This example is a lag-dominant model with Td/T = 0.01:  

p
100( )

100 1
sG s e

s
−=

+
. (2.60) 

Table 2.3 contains the results gained from modelling the closed loop by an AR model of order n = 20 using 
1500 output samples. IMC1 leads to the best performance and both IMC2 and DS-d to the least perform-
ance, which have almost identical controller settings and thus almost identical impulse responses; see 
Figure 2.9.  
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Figure 2.9. Impulse responses for the lag-dominant process and different controllers. 
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Table 2.3. Harris index value for the lag-dominant process and different controllers. 

Controller/tuning rule Acronym Kc TI η̂  
IMC (λ = 1.0) 
 

IMC1 0.5 100 0.63 

IMC (λ = 2.0) based on  
integrator approximation 

IMC2 0.556 5 0.52 

IMC (λ = 1.0) based on  
Skogestad's modification 

IMC3 0.5 8 0.56 

Direct synthesis (disturbance) 
 

DS-d 0.551 4.91 0.52 

 

2.5 Assessment of Feedback/Feedforward Controls 

Feedforward control (FFC) should always be introduced to reduce the process variability due to 
disturbances. An ineffective FFC will contribute to a large variance due to the measured distur-
bances. Therefore, one additional task in assessing feedback/feedforward control loops is to 
diagnose whether a poor performance is due to feedback control or feedforward control. This 
section focuses on the analysis of variance (ANOVA), to quantify major contributions to system-
output variance (Desborough and Harris, 1993; Huang and Shah, 1999). A detailed derivation of 
the algorithm can also be found by Ratjen and Jelali (2006). 

The MV is calculated differently in feedback/feedforward control (Figure 2.10) than feedback 
control alone. The major difference is in the estimation of the variance of the unmeasured distur-
bance ε(k). An ARMAX model of the MISO form 

1 1

1 1
1

( ) ( )( ) ( ) ( )
( ) ( )

p

j j
j

C q B qy k k d k
A q A q

ε τ
− −

− −
=

= + −∑  (2.61) 

should be used for identifying the closed-loop model to include the effect of p measured distur-
bances dj, as opposed to an AR(MA) model only. Then each measured disturbance model is 
identified as an AR(I)MA time-series model, i.e., Aj(q)dj(k) = Cj(q)wj(k), leading to 

1 11

1 1 1
1

( ) ( )( )( ) ( ) ( )
( ) ( ) ( )

p
j j

j j
j j

B q C qC qy k k w k
A q A q A q

ε τ
− −−

− − −
=

= + −∑ . (2.62) 

 
 

 
Figure 2.10. Generic feedback plus feedforward control system structure. 

 
Time delays (τ and τj) are required and the model orders also need to be determined. The 

identified closed-loop model is then used to carry out an ANOVA table for the output y based on 
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the time delays in the feedforward and feedback paths. This method can yield valuable informa-
tion about the sources of variability provided that all measured disturbances are mutually inde-
pendent. 

The cross-correlation between the measured disturbances (as potential feedforward variables) 
and the output can be used to determine which of them could be used for FFC. The analysis of 
variance (Desborough and Harris, 1993) highlights the contribution of the disturbances to the 
overall variance (Table 2.4):  

2 2 2 2 2 2
MV, FB, MV, FF, FB/FF,1

( )w

j j j

n
y w w wjε εσ σ σ σ σ σ

=
= + + + +∑ , (2.63) 

where  
• 2

MV,εσ : the minimum variance of the FBC, arising from unmeasured disturbance ε 

• 2
FB,εσ : the variance due to the non-optimality of the FBC 

• 2
MV,1 j

p
wj

σ
=∑ : the minimum variance of the FFC, coming from r measured disturbances wi 

• 2
FF,1 j

p
wj

σ
=∑ : the variance due to the non-optimality of the FFC 

• 2
FB/FF,1 j

p
wj

σ
=∑ : the variance due to the non-optimality of the combination FBC/FFC.  

The bottom row in Table 2.4 consists of, from left to right, the summation of the minimum 
variances, the sum of all the variance due to non-optimality of the controller components and the 
total variance. It is important to note that it is not possible to unambiguously attribute variance 
inflation to either the feedback controller alone or the feedforward controller alone, hence the 
column labelled “FF/FB” in the table. Note that if the process is invertible, it is always possible 
to eliminate the variance inflation due to both this component and the feedforward component 
using a feedforward controller, regardless of the feedback controller (Desborough and Harris, 
1993). If one row contains a considerable portion of the total variance in the columns FF and 
FB+FF, this implies that retuning is needed. If only the term FB+FF is large, it can be expected 
that the feedback controller may handle the disturbance satisfactory. The analysis of variance 
helps quantify how much the performance of the control loop can be improved, which can be 
translated in terms of increased product quality and/or material/energy consumption; see Section 
12.2.3.  

 
 

Table 2.4. Analysis of variance for feedback plus feedforward control. 

Disturbance MV FB FF FB/FF Total 

ε(k) 2
MV,εσ  2

FB,εσ  — — 2
,y εσ  

w1(k) 1

2
MV,wσ — 1

2
FF,wσ  

1

2
FB/FF,wσ  

1

2
,y wσ  

      
wp(k) 2

MV, pwσ — 2
FF, pwσ  2

FB/FF, pwσ  2
, py wσ  

Total 2
MVσ  2 2

MVyσ σ−  2
yσ  

 
 
The procedure for variance estimation for feedforward/feedback control loops can be out-

lined as follows. It is demonstrated in simulation studies discussed below. An industrial applica-
tion of this algorithm is presented in Section 15.3.1 
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Procedure 2.3. Variance estimation for feedforward/feedback control. 
1. Determine or estimate the time delays. 
2. Fit an ARMAX model to the closed-loop output samples y(k) and measured disturbance samples di(k) 

as inputs. 
3. Fit individual AR(IMA) models to each of the feedforward variables di(k).  
4. Calculate the series expansions (impulse responses) for the estimated models. 
5. Compute the variances as in Table 2.4. 
 
Example 2.6. The system consists of a pure time-delay process affected by output noise and a measurable 
disturbance. This linear system, adopted from Desborough and Harris (1993), has the structure and parame-
ters illustrated in Figure 2.11. For the simulation study, the driving noises were Gaussian random signals 
with the variances 2

wσ  and 2.εσ  A simple integral feedback controller was used as the initial controller.  
Five cases will be studied. The first case considers the effect of weak disturbances, i.e., with low distur-

bance variance. In the second case, we increase the disturbance variance, compared to the first case. In the 
third case, the disturbance dynamics will be altered so that its average residence time will be significantly 
shorter. In the first three cases, the system was operated under feedback-only control, so the assessment 
method will give hints whether the loop should be extended with feedforward control. In the forth case, a 
feedforward component will be added to the controller. Finally, the feedback controller will be retuned and 
evaluated again. 
 
 

 
Figure 2.11. Structure and transfer functions of the considered control loop. 

 
Case 1. Weak Disturbances. The variances of the driving noises were 2 0.1wσ =  and 2 1.εσ =  A simulation 
of the system was carried out and equidistant data were collected at a sampling time Ts = 0.1s. Steady-state 
operating data with 1000 samples were selected for calculating the ANOVA table; see Table 2.5. From this, 
it can be deduced that the feedback controller 2

,( 96.3%)y εσ =  is far from the minimum achievable variance 
2
MV,( 53.4%)εσ =  for the unmeasured noise. There is a major portion of the variance (42.8%) which can be 

handled by a feedback tuning. However, the contribution (3.7%) to the variance from the measured distur-
bance is small. 3% can be reduced if an optimal feedforward controller is implemented. There is also a 
negligible portion of the variance (0.7%) which can be handled by a combination of feedforward/feedback 
tuning. The conclusion is that the assessment method suggests that the feedback controller would benefit 
from improved tuning. However, an implementation of a feedforward controller is not recommended.  
 
 

Table 2.5. Analysis of variance table [% of total variance] for Case 1. 

Disturbance MV FB FF FB/FF Total 
ε(k) 53.4 42.8 — — 96.3 
w(k) 0 — 3.0 0.7 3.7 
Total 53.4 46.5 100 
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Case 2. Strong Disturbances. Here the transfer functions of the system are left unchanged, but the noise 
variance of the disturbance has been increased, i.e., 2 2 1.w εσ σ= =  Performing an ANOVA-analysis shows 
that the measured disturbance is now responsible for 27.7% of the total variance, from which 22.6% can be 
handled by feedforward control, see Table 2.6. This implies that the control loop will benefit from imple-
menting a feedforward controller in this case.  
 
 

Table 2.6. Analysis of variance table [% of total variance] for Case 2. 

Disturbance MV FB FF FB/FF Total 
ε(k) 40.5 31.9 — — 72.3 
w(k) 0 — 22.6 5.0 27.7 
Total 40.5 59.5 100 

 
 
Case 3. Speed-up of Disturbance Dynamics. In this case, the disturbance dynamics have changed such 
that there is no time delay, i.e., 

d
0.8( )

1 4
G s

s
=

+
 (2.64) 

The variances of the driving noises are the same as in Case 2. From performing similar simulations and 
looking at the ANOVA table (Table 2.7), the same conclusions can be drawn as in Case 1.  
 
 

Table 2.7. Analysis of variance table [% of total variance] for Case 3. 

Disturbance MV FB FF FB/FF Total 
ε(k) 61.3 38.1 — — 99.4 
w(k) 0 — 0.4 0.2 0.6 
Total 61.3 38.7 100 

 
 
Case 4. Effect of Feedforward Control. The implementation of a simple proportional feedforward con-
troller GFF = 0.5 leads to a 7% decrease of the feedforward portion of variance, as shown in the ANOVA 
Table 2.8, compared to the performance in Case 2 (Table 2.6). This is due to the static feedforward which 
attempts to compensate for changes in the feedforward variable before these changes appear in the output. 
When now a 2-sample delay is included in the feedforward controller, i.e., GFF = 0.5q−2, the feedforward 
portion of variance decreases up to 6%, as shown in the ANOVA Table 2.9. From this table, it can also be 
deduced that retuning or redesigning the feedback controller will yield the largest return, since it is still far 
from the minimum variance performance.  
 
 

Table 2.8. Analysis of variance table [% of total variance] for Case 4 with static feedforward control. 

Disturbance MV FB FF FB/FF Total 
ε(k) 46.1 38.1 — — 84.2 
w(k) 0 — 15.4 0.4 15.8 
Total 46.1 53.9 100 

 
 

Table 2.9. Analysis of variance table [% of total variance] for Case 4 with dynamic feedforward control. 

Disturbance MV FB FF FB/FF Total 
ε(k) 49.8 41.7 — — 91.6 
w(k) 0 — 6.0 2.4 8.4 
Total 49.8 50.1 100 
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Case 5. Retuning of the Feedback Controller. Just an increase of the proportional controller gain to 
Kc = 0.31 yields substantial performance improvement for the feedback controller, as can be seen in Table 
2.10. A further decrease of variance may be only achieved by redesigning the controller.  
 
 
Table 2.10. Analysis of variance table [% of total variance] for Case 5 with dynamic feedforward control 
and retuned feedback control. 

Disturbance MV FB FF FB/FF Total 
ε(k) 71.4 14.1 — — 85.6 
w(k) 0 — 8.5 6.0 14.4 
Total 71.4 28.6 100 

 

2.6 Assessment of Set-point Tracking and Cascade Control 

Most of the techniques presented above can be applied to single control loops operating in a 
regulatory mode, i.e., with constant set point. However, when set-point variations occur fre-
quently, neglecting them will lead to under-estimation of the regulatory performance improve-
ment. Equation 2.30 has to be extended to include the transfer function relating the control error 
to the set-point changes. The superposition principle gives the resulting closed-loop relation 

( )
( ) ( ) ( ) ( )

( ) ( )
F q

y k q r k E q k
E q A q

ττ
τ

τ

ε−= + . (2.65) 

The estimation procedure of Section 2.4 thus has to be modified by estimating an ARMAX 
model with r(k) as the input signal, similar to the case of feedback plus feedforward control; see 
Section 2.5. 

2.6.1 Performance Assessment of Cascade Control Systems 

In process control applications, the rejection of load disturbances is often of main concern. To 
improve the control performance for this task, the implementation of a cascade control system is 
a good option. Indeed, cascade control is widely used in the process industries and is particularly 
useful when the disturbances are associated with the manipulated variable or when the final 
control element exhibits non-linear behaviour (Shinskey, 1996). Therefore, the main criterion to 
assess cascade control loops is its capability to reject load disturbances. Typical examples of 
cascade control from the metal processing industry are strip thickness control and flatness con-
trol systems; see Chapter 15.  

The minimum achievable variance with cascade control is generally lower than that from sin-
gle-loop feedback control and can provide useful information on potential performance im-
provement. The above techniques can directly be used to analyse the performance of the primary 
loop under the assumption of constant set point, but requires modifications for the analysis of the 
secondary loop. The relationships for the minimum variance assessment of cascade control sys-
tems (Figure 2.12) are derived following Ko and Edgar (2000).  

Subscript 1 in this figure refers to the primary control loop, while subscript 2 refers to the 
secondary control loop. C1(k) and C2(k) are the process outputs of primary loop and the secon-
dary loop, respectivley. C1(k) is the deviation variable from its set point and C2(k) the deviation 
of the secondary output from its steady-state value, which is required to keep the primary output 
at its set point. 1*

1 1( ) ( )G q G q q τ−≡  is the process transfer function in the primary loop with time 
delay equal to τ1 and *

1 ( )G q  is the primary process model without any time delay. It is assumed 
that G1(q) has a stable inverse, i.e., all zeros lie inside the unit circle. The disturbance filters 
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GL11(q) and GL12(q) are assumed to be rational functions of q−1, and they are driven by zero-mean 
white noise sequences ε1(k) and ε2(k), respectively. Similarly, for the secondary loop, we have 

2*
2 2( ) ( )G q G q q τ−≡  as the process transfer function in the secondary loop with time delay equal 

to τ2 and *
2 ( )G q  is the secondary process model without any time delay. G2(q) is also assumed to 

be minimum-phase. The combined effect of all unmeasured disturbances to the secondary output 
is represented as a superposition of disturbance filters GL21(q) and GL22(q) driven by zero-mean 
white noise sequences ε1(k) and ε2(k), respectively. 
 
 

 
Figure 2.12. Block diagram of a cascade control system.  

 
Using block-diagram algebra, it can simply be seen that from Figure 2.12: 

1 1 2 L11 1 L12 2( ) ( ) ( ) ( ) ( ) ( ) ( )C k G q C k G q k G q kε ε= + +   

2 2 2 L21 1 L22 2( ) ( ) ( ) ( ) ( ) ( ) ( )C k G q u k G q k G q kε ε= + + , (2.66) 

where u2(k) is the manipulated variable in the secondary control loop. The MVC algorithm for 
the system Equations 2.66 is given by 
• Primary Controller 

1 1

*
1 22 21 21 22 11 1 L22 12 2 L21

c1,MV * *
11 1 12 2 1 22 12 2 11 1 1 21

( ) ( ) ( )
( )( ) ( )( )

G Q R Q R R T G R T GG
Q S q R T G R Q S q R T G Rτ τ− −

− + + − +=
+ + + − + + +

(2.67) 

• Secondary Controller 
1 1

2

* *
11 1 12 2 1 22 12 2 11 1 1 21

c2,MV *
1 L11 2 L12 1 11 12 12 11

( )( ) ( )( )
( )

Q S q R T G R Q S q R T G RG
G G S G S R Q R Q q

τ τ

τ

− −

−

+ + + − + + +=
⎡ ⎤− + −⎣ ⎦

(2.68) 

where Q11(q) and Q12(q) are polynomials in q−1 of order τ1 + τ2 − 1, and Q21(q), Q22(q), S1(q) and 
S2(q) are polynomials in q−1 of order τ2 − 1 and Rij(q) (i, j = 1, 2) are proper transfer function that 
satisfy the following Diophantine identities 

1 2
L11 11 11G Q R q τ τ− −= +  

1 2
L12 12 12G Q R q τ τ− −= +  

2
L21 21 21G Q R q τ−= +  
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2
L22 22 22G Q R q τ−= +  

2*
1 21 1 1G Q S T q τ−= +  

2*
1 22 2 2G Q S T q τ−= + . (2.69) 

The primary output C1(k) under this optimal control algorithm is MA process of order 
τ1 + τ2 − 1  

1 1
1 11 1 1 12 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )C k Q q S q q k Q q S q q kτ τε ε− −⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦  (2.70) 

and the MV of C1(k) is 

( ){ }1 1

1

12 T
,MV 0

traceC i ii

τ τ
εσ + −

=
= ∑ N N Σ , (2.71) 

where Ni (i = 0, 1, …, τ1 + τ2 − 1) are defined as the coefficient matrices of the matrix polyno-
mial 1 1

11 1 12 2[( )( )]Q S q Q S qτ τ− −+ + , and εΣ  is the variance-covariance matrix of the white noise 
vector [ε1(k) ε2(k)]T. The derivation of the above relationships can be found by Ko and Edgar 
(2000). Since the polynomials Q11, Q12, S1, S2 in Equation 2.70 are all feedback-invariant, the 
expression for the primary output under MV cascade control can be estimated from the first 
τ1 + τ2 − 1 MA coefficients of the closed-loop transfer functions relating ε1(k) to C1(k) and ε2(k) 
to C1(k). No joint identification of the process dynamics and the disturbance model is needed.  

The closed-loop transfer functions in this case can be obtained from the first row of the trans-
fer function matrix estimated via multivariate time-series analysis of [C1(k), C2(k)]T. For this 
analysis, an AR model [arx setting an empty input] can be used efficiently with its computa-
tional speed. Alternatively, a state space model can be estimated via the prediction error method 
[pem] or a subspace identification method [n4sid]; see Section 7.4. The sample variance-
covariance matrix of the residual vectors thus provides an estimate of the variance and the co-
variance elements of the innovation sequences. The closed-loop impulse-response coefficients 
can then be determined via simple correlation analysis between the output variables and the 
estimated innovations sequences, or by solving a suitable Diophantine identity concerning the 
estimated parameter matrix polynomial,  

1 1

1 1 1

( 1)2 1
,MV 10 11 1, 1 1var{( )C h h q h q τ τ

τ τσ ε− + −−
+ −= + + +   

1 1

1 1

( 1)1
20 21 2, 1 2( ) }h h q h q τ τ

τ τ ε− + −−
+ −+ + + +  

( ){ }1 1 1 T
0

ˆ ˆ ˆtrace i ii

τ τ
ε

+ −

=
= ∑ N N Σ . (2.72) 

The MV performance index for the cascade control system is defined as 

1

1

2
,MV
2
C

Cσ
η

σ
= . (2.73) 

Naturally, the question arises if the MV can be calculated by just applying univariate analysis 
on C1(k). Indeed, this would lead to similar results, but only in the case where the net disturbance 
effect driven by ε2(k) is negligible. Otherwise, the estimated performance index from univariate 
analysis is higher than the estimated performance index value obtained through multivariate 
analysis. Thus, univariate analysis of cascade control loops would yield an over-estimate of the 
control performance.  
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Example 2.7. We consider the example of a process described by Equations 2.66 with (Ko and Edgar, 
2000)   

2 1

1 L11 L121 1 1

1( ) ; ( ) ; ( )
1 0.9 1 0.8 1 0.1

q qG q G q G q
q q q

− −

− − −= = =
− − −

,  

1 1

2 L21 L221 1 1

1( ) ; ( ) ; ( )
1 0.5 1 0.2 1 0.3

q qG q G q G q
q q q

− −

− − −= = =
− − −

 (2.74) 

to illustrate how the assessment procedure of cascade control systems works in detail. For this system, the 
primary process time delay is two samples (τ1 = 2) and the secondary process time delay is one sample 
(τ2 = 1). The process is subjected to disturbances in the form of white noise sequences {ε1(k), ε2(k)} with 

unity variance-covariance matrix 
1.0 0.1

.
0.1 1.0ε
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ  A closed-loop simulation was performed using a PI 

controller for the primary loop and P-only controller for the secondary loop. The transfer functions for the 
controllers used are 

1

c1 c21

0.48 0.4( ) ; ( ) 0.7
1

qG q G q
q

−

−

−= =
−

.  

A data set of 2000 samples for the primary and secondary outputs was collected and a multivariate AR 
model of 25th order was fitted to the gathered data. The estimated variance-covariance matrix of the white 

noise sequence is 
1.36 0.43ˆ .
0.43 1.30ε
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ  From this model, the estimated closed-loop impulse responses have 

been obtained, as shown in Figure 2.13.  
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Figure 2.13. Closed-loop impulse responses from simulated data. 

 
 
The estimated minimum variance by multivariate analysis is (Equation 2.72) 

[ ] [ ]
1

2
,MV

1 0.48
trace 1 0 0.48 0.81

0 0.81Cσ
⎧⎛ ⎡ ⎤ ⎡ ⎤⎪= +⎜⎨ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪⎝⎩

, 
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[ ]0.49 1.36 0.43
0.49 1.03 5.01

1.03 0.43 1.30
⎫⎞⎡ ⎤ ⎡ ⎤⎪+ ≈⎟ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎪⎠ ⎭
. (2.75) 

This gives the estimated performance index (Equation 2.73) 

1

1

1

2
,MV

,multi 2

5.01 0.69
7.28

C
C

C

σ
η

σ
= = ≈ . (2.76) 

For a comparison, univariate analysis using an AR model of 25th order fitted to the primary response 
data C1(k) has also been carried out. The obtained univariate closed-loop impulse response is also illustrated 
in Figure 2.13. The estimated minimum variance by the univariate analysis is (Equation 2.38) 

1

2 2 2 2
,MV (1.0 0.836 0.534 )(2.822) 5.596Cσ = + + = . 

This yields the estimated performance index as 

1

1

1

2
,MV

,uni 2

5.596 0.79
7.28

C
C

C

σ
η

σ
= = ≈ . (2.77) 

The estimated performance index by univariate analysis is (13%) higher than the estimated performance 
index value obtained through a multivariate analysis. Thus, univariate analysis of cascade control loops 
would yield an over-estimate of the controller’s performance. Note that analysis of the inner loop yields an 
estimated performance index of  

2 ,uni
2.76 0.92
2.61Cη = ≈   

indicating very good performance. 
Just to theoretically confirm the results achieved above, we now calculate the minimum variance from 

the full knowledge of the process and disturbance models by solving Diophantine equations 2.69 using 

1
0

1
1

i i

i

a q
aq

∞
−

−
=

=
− ∑ . (2.78) 

This gives specifically for the considered case
5
:   

1 2 3 3
11 111

1 1 0.8 0.64 0.512
1 0.8

q q q Q R q
q

− − − −
− = + + + = +

−
 

1
1 1 2 3

12 121 (1 0.1 0.01 )
1 0.1

q q q q Q R q
q

−
− − − −

− = + + = +
−

 

1
1 1

21 211 (1)
1 0.2

q q Q R q
q

−
− −

− = = +
−

 

1 1
22 221

1 1 0.3
1 0.3

q Q R q
q

− −
− = + = +

−
 

1
21 1 11

1
1 0.9

Q S T q
q

−
− = +

−
 

1
22 2 21

1
1 0.9

Q S T q
q

−
− = +

−
,  

where Q11 and Q12 are polynomials in q−1 of order 2, Q21, Q22, S1 and S2 are constants, and Qij and Ti (i, 
j = 1, 2) are proper transfer functions. The solution of these identities yields  

                                                           
5
 Remaining error terms are ignored here for simplicity. 
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1 2
11 111 0.8 0.64 0.512Q q q R− −= + + =  

1 2
12 120.1 0.01Q q q R− −= + =  

21 210 1Q R= =  

22 221 0.3Q R= =  

1 10 0S T= =  

2 21 0.9S T= = .  

Thus, from Equation 2.70, the primary output C1(k) under minimum variance cascade control is given by 
1 2 1 2

1 1 2( ) 1 0.8 0.64 ( ) 1.1 ( )C k q q k q q kε ε− − − −⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ . (2.79) 

The minimum variance follows as (Equation 2.72) 

[ ] [ ] [ ]
1

2
,MV

1 0.8 0.64 1 0.1
trace 1 0 0.8 1 0.64 1.1 4.56

0 1 1.1 0.1 1Cσ
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= + + ≈⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

, 

which is close to the value in Equation 2.75, estimated only from the simulated closed-loop data and the 
knowledge of process time delays.  

2.6.2 Assessment of Different Tuning Strategies  

The conventional strategy to tune a cascade control loop is to first tune the secondary controller 
with the primary controller in the manual mode. Then the primary controller is transferred to 
automatic and it is tuned. If the secondary controller is re-tuned for some reason, usually the 
primary controller must also be re-tuned. It has been devised by Seborg et al. (2004) to tune the 
slave loop tighter than the master loop to get improved stability characteristics and thus allow 
larger values of Kc1 to be used in the primary control loop. Note that the presence of an integrator 
in the secondary loop is not strictly necessary since the null steady-state error can be assured by 
the primary loop controller. If integral action is employed in both the master and the slave con-
trollers, the integrator windup should be carefully handled. A typical approach is to stop the 
integration of the primary controller when the output of the secondary controller attains its limits 
(Visioli, 2006).  

Principally, any (appropriate) tuning method can be applied to both controllers. However, 
there are some tuning methods explicitly tailored for cascade control systems, such as relay feed-
back simultaneous tuning, IMC-based simultaneous tuning and SPC-based simultaneous tuning. 
These will not be described here, but the reader is referred to Visioli (2006:Chap. 9) and the 
references included therein. As the usual sequential tuning is time-consuming, simultaneous 
tuning methods should be preferred.  

 
Example 2.8. Consider the cascade system with the transfer functions  

1 23

1 1( ) ( )
( 1) 1

G s G s
s s

= =
+ +

. (2.80) 

This system was used by Åström and Hägglund (2006) to show the improved performance for deterministic 
load disturbance rejection of cascade control, compared with conventional PI control. The parameters of the 
latter controller were Kc = 0.37 and TI = 2.2. For cascade control, a P controller with Kc = 5 was placed in 
the secondary loop and a PI controller with Kc = 0.55 and TI = 1.9 in the primary loop. A high gain control-
ler is possible in the secondary loop, as its response to the control signal is quite fast.  

We now evaluate the performance of both control systems in terms of stochastic disturbance rejection 
using the MV index. The hypothetical disturbances dynamics and variances are assumed to be the same as 
in Example 2.7. Under these circumstances, the computed performance index values were η1,uni = 0.62 for 
the conventional controller and η1,uni = 0.85, η1,multi = 0.77 for the cascade control. These results reveal the 
increase of stochastic performance achieved by the cascade control. 
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Example 2.9. An evaluation and comparison of the cascade-control tuning methods mentioned above in the 
context of CPM is provided using the following example:  

4 0.2

1 22( ) ( )
(5 1) 1

s se eG s G s
s s

− −

= =
+ +

. (2.81) 

The different PID controller settings derived by Visioli (2006) are given in Table 2.11. This also contains 
achieved values of the performance indices, the MV index η2,uni for the inner loop and the MV index η1,multi 
for the outer loop based on the multivariable performance analysis. The results confirm again the need for 
multivariable analysis; otherwise the performance is overestimated.  

All tuning methods yields similar and satisfactory, but not excellent, control performance in the primary 
loop, despite the excellent (stochastic) performance in the inner loop. Therefore, there is still improvement 
potential for the primary loop from stochastic performance view point. If, for instance, the primary control-
ler is significantly detuned, i.e., λ is increased, the variance is increased, however, only at the expense of 
increased rise time.  

From this example, we also learn that tuning cascade control should always be driven towards maximis-
ing the Harris index (calculated using multivariable analysis) of the primary loop, when the variance is the 
main point. Thereby, it is not necessary to maximise the Harris index for the secondary loop. This conclu-
sion seems to be not in agreement with the conventional approach of tuning cascade controllers. A similar 
conclusion was also pointed out by Teo et al. (2005) from their experience on another example.  

 
 

Table 2.11. Used controller parameters and assessment results.  

Controller Primary controller Secondary controller Minimum variance 
assessment 

                          Parameter 
Tuning method 

Kc1 TI1 TD1 Kc2 TI2 TD2 η2,uni η1,uni η1,multi 

Initial tuning 
 

1.0 12.0 0 0.5 4.0 0 0.82 0.72 0.64 

Relay feedback tuning 
 

1.18 18.9
9 

4.75 0.56 2.14 0 0.95 0.77 0.70 

IMC-based tuning  
 

0.94 10.0
2 

1.89 3.31 1.06 0.07 0.81 0.71 0.63 

 
 

0.22 8.30 0.56 2.48 1.04 0.03 0.84 0.89 0.83 

SPC-based tuning 
 

1.5 8.22 0.91 3.17 1.05 0 0.91 0.78 0.58 

 

2.7 Summary and Conclusions 

Performance assessment based on minimum variance control, as the standard method for evalu-
ating controllers, has been presented in detail. Besides batch calculation, the performance index 
can also be computed recursively, enabling the use of control charts for online monitoring of 
changes in controller performance. The following advantages of MV benchmarking contributed 
to its popularity and usage in the majority of CPM applications: 
• Metrics based on MVC are the main criteria used in stochastic performance assessment, pro-

viding a direct relationship between the variance of key variables and product quality or en-
ergy/material consumption, which are correlated with financial benefits.  

• MV benchmarking is easy to apply and implement and remains valuable as an absolute 
bound on performance against which real controllers can be compared. Performance monitor-
ing should always include at least a look at the Harris index, as a first pass-assessment layer 
to bring obvious problems to immediate attention. 
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• Considering the MVC lower bound in setting performance targets will ensure that overly 
optimistic and conservative performance targets are avoided. MVC information can also be 
beneficial in incentive studies. 
However, one should be aware about some serious drawbacks: 

• A well functioning loop in the process industry has frequently variance well above the mini-
mum variance. Also industrial controllers (usually of the PID-type) do not have always a 
chance to match the MVC performance.  

• Even though, MV control action can lead to highly undesirable, aggressive control and poor 
robustness.  
Principally, MVC-based assessment is useful irrespective of the type of controller installed at 

the plant. However, tailored versions of MV assessment, such as those for feedback-plus-
feedforward control and cascade control, can also be applied when the controller structure is 
known. Both control strategies are of widespread use in the process industry.  The analysis of 
variance for feedback-plus-feedforward control helps quantify how much the performance of the 
control loop can be improved by re-tuning the feedforward component, or introducing such a 
component if not yet implemented. For cascade control, it was shown that multivariate perform-
ance analysis should be generally applied, since univariate analysis may yield over-estimated 
loop performance, thus giving missleading conclusions. Also, tuning cascade control should 
always be driven towards maximising the Harris index (calculated using multivariable analysis) 
of the primary loop, when the variance is the main point.  



 



3 User-specified Benchmarking 

Minimum variance benchmarking only considers the most fundamental performance limitation 
of a control loop owing to the existence of time delays. In practice, however, there are many 
other limitations on the achievable control performance, such as constraints on controller order, 
structure and action. A controller showing poor performance relative to MVC is not necessarily a 
poor controller. Further analysis using a more realistic performance benchmark is usually re-
quired.  

Many researchers have introduced modified/extended versions of the Harris index to include 
design specifications of the user (such as the rise time and settling time) and take into account 
time delays in the system, leading to more realistic performance indices, referred to as user-
specified benchmarks (in terms of user-specified closed-loop dynamics). Unlike the Harris index, 
extended (user-specified) performance indices do not provide information about how close the 
current performance is to optimal performance. An extended performance index rather reflects 
how well the control loop is doing compared to design specifications in terms of a specified 
prediction horizon, settling time, overshoot, or other parameters.  

Section 3.1 provides a general setting for user-specified performance assessment. In Section 
3.2, the framework of IMC-achievable performance assessment is presented. Section 0 deals 
with the very popular extended-horizon approach. A special performance index based on desired 
pole location is described in Section 3.4. The simplest method of performance assessment is to 
use criterion values extracted from historical data widows where the controller is believed to 
perform well. This technique known as historical benchmarking is given in Section 3.5. Section 
3.6 deals with assessment methods based on reference models.  

3.1 General Setting 

Consider again the impulse-response representation of the closed-loop dynamics in Equation 
2.36 and rewrite it as 

R( ) ( ) ( ) ( )y k E q q G q kτ
τ ε−⎡ ⎤= +⎣ ⎦ . (3.1) 

Since the first term of this equation is, as before, control invariant, the user has only the option to 
specify GR as a stable and proper transfer function. This desired behaviour of the closed loop has 
to be achieved by a correspondingly designed or tuned controller. Many ways exist to achieve 
the desired behaviour, such as the specification of the closed-loop rise time, settling time, decay 
ratio, overshoot, frequency characteristics, robust performance measures, etc. Therefore, the side 
effect of user-specified performance assessment is that no clear guidelines exit on which measure 
should be specified to get optimal performance and how a certain choice actually affects the 
performance and robustness of the control system at hand (Huang and Shah, 1997). It remains 
something subjective and arbitrary. Nevertheless, there are some interesting user-specified 
benchmarking methods that are worth consideration in practice, to be discussed below.  

User-specified performance indices are generally defined as  

user
user

act

J
J

η = , (3.2) 
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where Juser ist the corresponding value of the user-specified performance measure. Note that 
performance index can now take values higher than unity, thereby indicating that the current 
controller is doing better than required, i.e., Jact < Juser. In the stochastic performance framework, 
the variance of the user-specified benchmark control can be calculated from Equation 3.1, to give 
the “variance-related” performance index 

2
user

user 2
y

ση
σ

= . (3.3) 

At this point, note that the term “user-specified performance” does not imply that users can 
specify the desired control performance arbitrary, without considering physical limitations. For 
instance, it is useless to specify closed-loop response within the time-delay period, as it is control 
invariant. Also, users cannot desire to cancel non-minimum phase zeros.  

3.2 IMC-achievable Performance Assessment  

Internal Model Control (IMC), first proposed by Frank (1974) for process control, is a class of 
model-based control design proven to have good performance and robustness properties against 
parameter uncertainties. It is well known that the IMC scheme is equivalent to the celebrated 
Yula–Kucera parameterisation or Q-parameterisation of all stabilising controllers (Youla et al., 
1976) for a stable system. In a famous series of papers (García and Morari, 1982, 1985; Econo-
mou et al., 1986; Economou and Morari, 1986; Rivera et al., 1986), Morari and his co-workers 
greatly expanded on the IMC-design methods and placed the methodology in a sound theoretical 
framework. García and Morari (1982, 1985) provided a unifying review on IMC and further 
extended it to multivariable systems. Developments of IMC in the case of non-linear systems 
have been proposed, mainly for continuous-time models, by Economou et al. (1986), Calvet and 
Arcun (1988) and Henson and Seborg (1991), but also for particular classes of discrete-time 
models by Alvarez (1995). The interested reader may also wish to consult Morari and Zafiriou 
(1989) for thorough information on the topic.  

The IMC structure is shown in Figure 3.1. It generally consists of three parts: 
• A (forward) prediction model (Gp) of the process. 
• A controller *

IMC( )G  based on the invertable part of the process model. 
• A (low-pass) filter (GF). 

 

 
Figure 3.1. Structure of internal model control. 

 
In the IMC scheme, the role of the system models is emphasised: it is used directly as ele-

ment within the feedback loop. The filter is used to introduce robustness in the IMC structure in 
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the face of modelling errors (by appropriate reducing of the loop gain) and to smooth out noisy 
and/or rapidly changing signals, and thus reduces the transient response of the IMC. With non-
linear systems and models, the filter must be designed empirically, usually as a first-order or 
second-order system.  

3.2.1 IMC Design 

The IMC-design procedure, although sub-optimal in a general (norm) sense, provides a reason-
able balance between performance and robustness. It consists of two basic steps (Morari and 
Zafiriou, 1989): 
1. Nominal Performance Design. The system model is factorised into one („bad“ allpass) part 

p( ),G+  which contains all non-minimum-phase elements (i.e., all RHP zeros and time delays)6 
and one „good“ minimum-phase and invertible part p( ):G−  

p p pG G G+ −= . (3.4) 

The IMC controller is then usually set to 
* 1
IMC p( )G G− −= , (3.5) 

which is physically realisable, i.e., stable and causal, in contrast to the inversion of p ,G+  
which is non-realisable, i.e., unstable and non-causal. In this step, no care is taken of con-
straints and model uncertainty.  

2. Ensuring Robust Stability and Robust Performance. An appropriate low-pass filter GF is 
introduced and designed such that the final IMC controller *

IMC IMC F( )G G G=  is now, in addi-
tion to stable and causal, proper (in the sense that it does not require signal derivatives), i.e., 
GIMC must be finite, as its argument (s/q) goes to infinity7. Note that the controller properness 
(usually semi-properness) is not a must, but an option commonly used. The inclusion of the 
filter provides the roll-off necessary for robustness and milder action of the manipulated vari-
ables and implies that the controller is detuned to sacrifice performance for robustness, i.e., 
we no longer obtain „optimal control“. Usually, the filter parameters are fixed up to the filter 
gain λ used for tuning (determining the speed of response and the robustness of the closed-
loop system).  
For linear (time-discrete) systems, a possible factorisation of the process model is 

(Moudgalya, 2007) 
s nm

p
( ) ( ) ( )( )

( )
B z B z B zG z z

A z
τ

− +
−= , (3.6) 

where (Figure 3.2) 
• s ( )B z  is the factor of B(z) with roots inside the unit circle and with positive real parts. 
• ( )B z−  denotes the factor of B(z) with roots that have negative real parts, irrespective their 

position from the unit circle. 
• nm ( )B z+  refers to that part of B(z) containing non-minimum zeros of B(z) with positive real 

parts. 
With this factorisation, the IMC becomes: 

                                                           
6
 The inversion of RHP zeros and time delays leads to unstability and non-causality, respectively. 

7
 In the linear case, this means that the transfer-function denominator order is equal or greater than nomina-

tor order. 
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*
IMC s nm+

steady reversed

( )( )
( ) ( ) ( )

A zG z
B z B z B z−= , (3.7) 

where steady ( )B z−  is the steady-state equivalent of ( )B z− , i.e., steady 1( ) ( ) |zB z B z− −
== , and 

nm
reversed ( )B z+  is nm ( )B z+  with reversed coefficients, i.e., nm nm

reversed reversed coefficients( ) ( ) |B z B z+ += . For 
instance, nm+ 1 nm+ 1

reversed( ) 1 1.3 ( ) 1.3.B z z B z z− −= − ⇒ = −  
 

 
Figure 3.2. Dividing z-plane region into good, bad and non-minimum phase parts. 

 
Three attractive characteristics of IMC are stated as follows: 

• Inherent Stability. If the controller and the process are input–output stable and a perfect 
model of the process is available, the closed-loop system is input–output stable.  Should the 
system be not input–output stable, but stabilisable by feedback, IMC can still be applied. 

• Perfect Control. If the controller is an exact model inverse and the closed-loop system is 
stable, then an ideal (i.e., error-free) control performance is achieved (i.e., y = r). In practice, 
however, a perfect model/control can never be obtained, and the infinite gain required by per-
fect control would lead to sensitivity problems under model uncertainties. Hence, a suitably 
designed filter is introduced to reduce high gains and provide robustness in the IMC scheme. 

• Zero Offset. If the controller is an exact model inverse and the closed-loop system is stable 
with an ideal/optimal controller, then offset-free control is attained for asymptotically con-
stant inputs. 
Note that the IMC structure can be rearranged to get an equivalent standard feedback control-

ler, where  
*

IMC F IMC
c *

p IMC p F IMC1 1
G G G

G
G G G G G

= =
− −

. (3.8) 

Note also that the Smith-predictor control (SPC; Figure 3.3), a very popular and effective 
time-delay compensator, can be rearranged to get an equivalent IMC structure, where  

SPC
c *

SPC p1
G

G
G G

=
+

. (3.9) 
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From this representation, many aspects like stability properties of the SPC can be inferred, as 
reported by Lee et al. (1996), Litrico and Georges (1999) and Sunan et al. (2002). Note that GSPC 
is usually a PID controller.  
 

 
Figure 3.3. Block diagram of Smith-predictor control. 

3.2.2 IMC Benchmark 

IMC is a popular technique for controller design in the process industry, including special vari-
ants, such as Dahlin’s controller and lambda(λ)-tuning. The strength of the IMC approach is that 
it provides a good trade-off between performance and robustness to process changes and model-
plant mismatch, while reducing the controller-tuning parameters to a single coefficient, the filter 
constant λ. λ is also equivalent to closed-loop time constant. These properties provide enough 
motivation to consider IMC-achievable performance as a performance assessment benchmark.  

Consider a process described by the model 

p
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

B q C qy k G u k G k q u k k
A q A q

τ
ε ε ε−= + = + . (3.10) 

From IMC block diagram (Figure 3.1), we can derive the general relationship 

IMC p

c p IMC p IMC p

11( ) ( ) ( )ˆ1 1

G G
y k G k G k

G G G G G Gε εε ε
−

= =
+ − +

. (3.11) 

If perfect process modelling, i.e., p p
ˆ ,G G=  is assumed, the process output is given by 

*
p IMC p IMC( ) ( ) ( ) ( ) ( )y k G k G G G k G k q G G G kτ

ε ε ε εε ε ε ε−= − = − , (3.12) 

where *
pG  is the delay-free part of the process model Gp.  

Huang and Shah (1997) proposed to specify GR in Equation 3.1 as 

F1
R

GG
Rτ

−
== , (3.13) 

where GF is the (stable and proper) IMC filter and Rτ the relational proper transfer function de-
fined by the Diophantine Equation  

( ) ( ) ( )G q E q q R qτ
ε τ τ

−= + . (3.14) 
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A low-pass filter of the form 

s( / )
F 1

(1 )( ) ; e
1

TG q
q

λα α
α

−
−

−= =
−

 (3.15) 

with a specified closed-loop time constant λ, is usually included to ensure a trade-off between 
performance and modelling errors. Substituting Equation 3.14 into 3.12 yields 

p IMC( ) ( ) ( )y k E k q R G G G kτ
τ τ εε ε− ⎡ ⎤= + −⎣ ⎦ . (3.16) 

Comparing with Equation 3.1 leads to 

p IMC IMC *
p

R
R

R G
G R G G G G

G G
τ

τ ε
ε

−
= − ⇒ = . (3.17) 

From Equations 3.13 and 3.17, we get the IMC controller  

F
IMC *

p

G R
G

G G
τ

ε

= . (3.18) 

Since this controller is stable and proper, the closed-loop response specified in Equation 3.1 is 
achievable. Substituting back into Equation 3.16 gives 

F( ) ( ) (1 ) ( )y k E k q R G kτ
τ τε ε−= + − . (3.19) 

From this, it easy to see that if GF = 1 we get the MVC response.   
To further simplify the assessment task, let assume the disturbance model being of the ran-

dom-walk type, i.e., 

1

1( )
1

G q
qε −=

−
. (3.20) 

This can be expanded using long division as  

1 2
1

1( ) 1
1

E
R

G q q q q
q

τ

τ

τ
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− − −
−= + + + +

−
… . (3.21) 

Substituting Rτ into Equation 3.19 gives  

1( ) ( ) ( )
1

y k E k q k
q

τ
τ

αε ε
α

−
−= +

−
. (3.22) 

The best IMC-achievable variance of y for a desired closed-loop time constant is therefore 
2 2

2 2 2 2 2
IMC MV 2 21 1ε ε ε

α ασ σ σ τσ σ
α α

= + = +
− −

, (3.23) 

which is, of course, larger than the minimum variance 2
MV.σ  The variance 2

IMCσ  can be used to 
assess the performance degradation due to the requirement of robustness in the controller design. 
For a given desired closed-loop time constant λ, the best achievable performance should be 

2
IMC.σ  Equation 3.23 also reveals an important conflict between minimum variance and robust-
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ness: a larger α results in more robust control, but dramatically increases the IMC-achievable 
variance. The IMC-performance index can now be introduced as 

2 21 1
2 2 2 2

2 2 2
IMC 0 0

IMC 2
2 2 2

0 0

ˆ 1 1
ˆ

i i
i i

y
i i

i i

e e

e e

τ τ

ε ε

ε

α ασ σ
σ α αη
σ σ

− −

= =
∞ ∞

= =

+ +
− −= = =

∑ ∑

∑ ∑
. (3.24) 

Note that only routine operating data and the knowledge/estimation of the time delay are needed 
to estimate the index ηIMC.  
 
Example 3.1. We illustrate the IMC-achievable performance assessment with the model of a paper machine 
given by Åström and Wittenmark (1997):  

3

1 1

0.63 1( ) ( ) ( )
1 0.37 1

qy k u k k
q q

ε
−

− −= +
− −

. (3.25) 

The noise ε is assumed to have unity variance. The IMC design for this system is obtained as 
1

IMC 1

1 0.37 (1 )
0.63 1

qG
q
α

α

−

−

− −=
−

.  

Let the desired closed loop time constant be λ = 5Ts with Ts = 1s, corresponding to α ≈ 0.82. The IMC-
achievable variance can be calculated from Equation 3.23 as 2 2

IMC 5.0525 .εσ σ=  Consider the process under 
integral control   

c 1

0.1
1

G
q−=

−
.  

The closed-loop system was simulated and 5000 data points were recorded.  
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Figure 3.4. Closed-loop impulse responses from paper machine simulation.  

 
A truncated AR model is estimated from the gathered data and used for calculating the im-

pulse response coefficients and the Harris index. The output variance with the integral controller 
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is 2
I 6.3868.σ =  Figure 3.4 shows the impulse response with the integral controller and IMC. Of 

course, the closed-loop dynamics with IMC requires complete knowledge of the process and 
disturbance models. This is, however not needed for computing the IMC-achievable performance 
index. The IMC-achievable performance index and Harris index were computed as ηIMC = 0.79 
and ηMV = 0.47, respectively. The conclusion is that the controller achieves good performance 
compared to the IMC performance, although it is far from MV performance. 

3.3 Extended Horizon Approach 

To consider user specifications and/or to avoid requiring the loop time delay for calculating the 
performance index, Desborough and Harris (1992) and Thornhill et al. (1998; 1999) proposed 
the use of the extended horizon performance index (EHPI). The general expression to calculate 
the performance index is the following 

1 2
0

2
0

b
ii

b

ii

e

e
η

−

=
∞

=

= ∑
∑

,  (3.26) 

where b is the prediction horizon. If b equals the time delay of the system, ηb is identified to be 
the Harris index η (Equation 2.34). When ηb is calculated for b larger than the time delay, it is 
referred to as an extended horizon performance index. In this case, an interpretation is that ηb 
gives the portion of the variance that can be accounted for with a b-step-ahead predictor.  

For a general b, the index tells us how large the portion of the variance of the control signal 
comes from noise older than b samples. Figure 2.4 can again be used for a visual interpretation 
of the contributions to ηb, just replacing τ with b. A rise in ηb means that impulse-response coef-
ficients older than b have decreased compared to the first b ones. As a consequence, the bench-
mark is no longer minimum variance control and the quality of control in the interval between 
the time delay and the prediction horizon is not assessed.  

Thornhill et al. (1999) suggested a practical approach, which can be applied when prior 
knowledge of the time delay is not available: the performance indices are calculated over a range 
of time-delay values and are known as extended horizon performance indices. A plot of η vs. 
time-delay values (Figure 3.5) helps one in selecting an appropriate value of the prediction hori-
zon, to be used instead of the time delay for performance assessment. A good choice falls on the 
region where the CPI does not vary rapidly (flat area) (Thornhill et al., 1999). Our experience 
with this method suggests to take the prediction horizon somewhere near the first inflexion point 
(Jelali, 2006a).  

This approach avoids the time consuming determination of time delays (Section 7.3.1) and 
regards the prediction horizon as an engineering criterion, representing a demand made on the 
control loop: the predictable (and thus controllable) components of the control error should be 
dealt with within the specified time horizon b.  

Ingimundarson and Hägglund (2005) also suggested to monitor the EHPI. However, they rec-
ommend to select the prediction horizon and an alert limit not according to the type of loop, as 
done by Thornhill et al. (1999), but from the tuning of the loop, i.e., to fulfil design specifica-
tions. At each performance-evaluation instant, an index estimate is compared to the alert limit, 
say 0.8. If the estimate falls below the alert limit, the loop is not rejecting disturbances as it 
should. This information is highly desirable in the cases where plant staff is interested in know-
ing whether the control performance is acceptable, but not how far it is from an optimum.  
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Figure 3.5. Prediction horizon plot for finding a good choice of the prediction horizon. In this 
case, the loop has a time delay τ = 6 (Loop: thickness control, coil no. 90).  

 
Ingimundarson (2003) suggested to choose the prediction horizon as b = τ + h for self-

regulating systems and b = τ + 2h for integrating systems. h is a specified (desired) number of 
samples for the closed-loop response (corresponding to λ, the time constant of the continuous-
time model), particularly used when the (PI) controller is set by λ-tuning. This is a widely used 
method in the pulp & paper and chemical industries. Note that even in the case where the time 
delay is known or properly estimated, the prediction horizon approach is useful to get more real-
istic assessments. 

Moreover, prediction horizon plots give an opportunity for a cross-check on the choice of 
sampling interval. In cases, where the choice of sampling interval has been clear from a consid-
eration of the estimated impulse response, it has always been found that the best prediction hori-
zons are typically between three and 10 sampling intervals. Therefore, it is recommended that if 
the selected prediction horizon exceeds 10 sample intervals, then an increase in the sampling 
interval should be considered (Thornhill et al., 1999).  

3.4 Performance Index Based on Desired Pole Locations 

Inspired by the observations of Kozub and Garcia (1993), Horch and Isaksson (1999) proposed a 
modified performance index based on desired pole locations. Instead of comparing the actual 
variance to MV, which corresponds to placing all closed-loop poles at the origin, they compare 
the actual variance to the variance that would be obtained when placing all closed-loop poles but 
one at the origin. The pole not placed at the origin would determine the closed-loop speed and 
bandwidth, according to its location. The choice of the closed-loop pole (µ) can be based on 
either control-design guidelines (robustness margins) or additionally available system knowl-
edge, such as the lowest system time constant.  

The Horch–Isaksson index is defined by 
2
MV,mod

HI 2
y

σ
η

σ
= , (3.27) 
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where the modified minimum variance 2
MV,modσ  is now calculated as 
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This variance has two parts: the minimum variance and the contribution from the first-order 
decay (corresponding to the specified pole µ). Thus, the assessment algorithm for this modified 
index is the same as that for the Harris index (Section 2.4.1), but replacing the minimum vari-
ance by its modified version (Equation 3.28) in the performance-index calculation (Equation 
3.27); see Procedure 3.1. Comparing Equation 3.28 with Equation 3.23 shows that the Horch–
Isaksson index is equivalent to the IMC-achievable index.  
 
Procedure 3.1. Performance assessment based on the Horch–Isaksson index. 
1. Preparation. Select the time-series-model type and orders. 
2. Determine/estimate the system time delay τ. 
3. Identify the closed-loop model from collected output samples. 
4. Calculate the series expansion (impulse response) for the estimated model (Equation 2.36). 
5. Estimate the minimum variance from Equation 2.38. 
6. Calculate the modified minimum variance from Equation 3.28. 
7. Estimate the actual output-variance from Equation 1.1 or 2.39. 
8. Compute the (Horch–Isaksson) performance index (Equation 3.27). 

3.5 Historical or Reference Benchmarks 

In practice, it is often decided to specify “benchmark” criteria corresponding to assessment val-
ues extracted from historical data during a time period when the control system was “doing its 
job well” from the viewpoint of control or maintenance engineers. Such criteria have been intro-
duced under different terms, such as baselines (Gerry, 2002), historical data benchmarks (HIS), 
reference data set benchmarks (Patwardhan et al., 1998; Huang et al., 1999; Gao et al., 2003), or 
reference distributions (Li et al., 2004).  

This approach requires a priori knowledge that the performance was good during certain time 
period according to some expert assessment. For the selected input and output data, the historical 
benchmark index is defined as the ratio 

his
his

act

J
J

η = . (3.29) 

where Jhis is the value of the selected performance criterion (typically the variance), extracted 
from historical data, and Jact the actual value of the criterion, to be extracted from measured 
process data under the installed controller. 

Historical benchmarking techniques do not require a process model or knowledge of process 
delay, and therefore are suitable for monitoring time-varying and non-linear processes as well. 
They only need a window of the control-error data collected during a representative period de-
fined as having good control by the user and these data are used to build the reference value of a 
performance index. Once the reference value is built, only the control-error data are needed to 
run the control performance monitor.  

However, one should be careful when applying HIS and EHPI benchmarking, as they may be 
too subjective and rely too much on the current performance situation. Often, the controller is 
“felt” to work satisfactory although it is badly performing compared with other benchmarks. 
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3.6 Reference-Model/Relative Performance Index 

The methodology proposed by Li et al. (2003) is based on a reference model that specifies the 
required closed-loop behaviour and generates the performance index as the ratio of reference and 
actual value of a performance metric (Figure 3.6). This is called the relative performance index 
and defined as: 

ref
RP

( )
( )

M e
M e

η = , (3.30) 

where M is a performance metric to be selected, such as the mean squared error (MSE), the mean 
absolute error (MAE), or recursive versions of them, like the exponentially-weighted moving 
average of squared error (EWMASE):  

2
1 (1 )k k kM M eλ λ−= + − . (3.31) 

 
 

 
Figure 3.6. Principle of the relative performance monitor.  

 
The RPI provides a measure of the relative performance of the control loop and the reference 

model, and 1 − ηRP represents the improvement potential in control-loop performance if retuning 
the loop to the reference-model level of performance. The RPI value can be interpreted as fol-
lows (Li et al., 2003):  
1. A RPI value close to 1.0 means that the control-loop performance is close to that of the refer-

ence model.  
2. A RPI value  << 1.0 indicates that the loop performance is much worse than that of the refer-

ence model, and something should be done on the control loop, such as re-estimating the 
plant model, retuning the controller parameters, checking for valve stiction, etc. In this case 
the selected performance metric, such as MSE or EWMASE, may be reduced by 
100 (1 − ηRP) % under similar input conditions if the control loop is restored to reach the 
same performance level represented by reference model.  

3. A RPI value > 1.0 implies that the control loop has a better performance than the reference 
model. If the RPI values are much greater than 1.0, the current performance is better than that 
of the reference model, and an update the reference model might be useful. 
It is not intended to present the RPI computation algorithm in detail here; for this the reader 

should refer to Li et al. (2003). Below, the main features are briefly described.  

Selection of the Reference Model 

In principle, there are many ways to specify the reference model. However, it is not practical at 
all to use more complicated reference models than a first-order or a second-order model with a 
unity gain. Thus, one or two free parameters have to be selected depending on the application at 
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hand. Always, the user has to specify these parameters, which necessitates corresponding skills 
or a priori knowledge about how well the controller should actually work.  

Disturbance Estimation 

A key factor in the calculation of the RPI is the estimation of the unmeasured disturbances. As 
for the reference model, it is useful and sufficient in most cases to use a simple model for the 
disturbance estimation. Li et al. (2003) propose to choose a first-order ARX model to describe 
the plant and then estimate the model parameters so that the deviation between the model output 
and the measured process output is minimised. The resulting deviation provides an estimate of 
the acting disturbance. The disturbance estimation process can be formulated using either a batch 
or recursive variant of least-square parameter estimation. The latter version has the advantage 
that it can handle time-variant and non-linear systems commonly found in the process industry.  

Selection of Critical Index Value 

To automatically flag poor performance, a critical or threshold value ηRP,crit of the RPI must be 
specified. A good choice of the threshold, e.g., 0.75, depends not only on the noise level of the 
data but also on the user’s tolerance level on the deviation of a control-loop performance from 
that of the reference model. Statistical tests like the F-test could also be used to establish values 
for controller-monitor flagging. However, this method for determining the threshold would add 
complexity. 

Index Properties 

Although the RPI may be a useful index for control performance assessment, a lot of options and 
parameters must be specified by the (experienced) user. This makes the index much more in-
volved than calculating the MV index. A strength of using the RPI, which should be highlighted 
here, is that its values have been observed to be in agreement with time-domain criteria, usually 
used to assess set-point tracking performance. This is not the case for minimum variance bench-
marks, which are more suited for the assessment of stochastic disturbance-rejection performance. 
Therefore, this RPI characteristic complements those of the MV index. Also, the RPI is able to 
differentiate oscillations caused internally and those induced externally. This also complements 
the MV index, so that a good strategy may be to simultaneously calculate both indices. When the 
MV index signals poor control performance and the RPI does not, external oscillatory distur-
bances should be concluded to occur. 

3.7 Summary and Conclusions 

The general setting and different methods of user-specified performance assessment have been 
presented. Although these approaches may be useful in many situations, their main dilemma is 
that the specifications are arbitrary in some way, and it is not always clear how such specifica-
tions affect the closed-loop dynamics, e.g., in terms of performance optimisation and robustness 
(Huang and Shah, 1999). For each specification type (settling time, decay ratio, overshoot, de-
sired variance, or even reference model, etc.), there is usually an infinite number of possibilities 
that can be considered, but no general guidelines exist on which option is the best to get per-
formance closest to optimal control. Often, the decision will remain up to an experienced user or 
control engineer.  

Of particular interest remains the extended horizon approach which is useful to apply when 
no information is available about the time delay. Historical benchmarking can also be attractive 
due to its simplicity, but must be considered with care, because the subjective definition of the 
benchmark values.  
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Still to note that Rhinehart (1995) and Venkataramanan et al. (1997) proposed and applied a 

statistical test (called r-statistic), which detects deviations from set-point, regardless of the out-
put-noise amplitude. 



 



4 Advanced Control Performance Assessment 

This chapter deals with extensions of the MV benchmark, which need substantially more infor-
mation about the plant than just the time delay. An extension of the MV benchmark is the ap-
proach of generalised MV (GMC) benchmarking, minimising a weighted sum of the control 
error and control effort; see Section 4.1. A more general, but rigorous extension is the linear-
quadratic Gaussian (LQG) benchmark presented in Section 4.2. Both benchmarks are useful 
when more information on controller performance, such as how much can the output variance be 
reduced without significantly affecting the controller output variance, is needed (Shah et al., 
2001), or for cases where actuator wear is a concern.  

Model predictive control (MPC) technology has been widely implemented throughout many 
process industries, such as the chemical, petro-chemical, metallurgical and pulp & paper indus-
tries, over the past three decades. Therefore, it is also important to use tailored techniques for the 
assessment of MPC performance. Section 4.3 provides an overview of these methods. It is par-
ticularly shown how to use routine operating data to distinguish between poor performance due 
to plant–model mismatch and that due to improper tuning of the MPC controller. Moreover, 
performance measures, which estimate potential benefit from re-identification of the process 
model or re-tuning of the controller, are introduced. This is essential in MPC monitoring, as a 
process model is a substantial component of the MPC controller.  

4.1 Generalised Minimum Variance Control (GMVC) 
Benchmarking 

A straightforward extension of the MV benchmark by considering control action penalisation 
leads to the more flexible approach of generalised MV (GMV) benchmarking suggested by 
Grimble (2002). This control performance assessment technique is described in this section.  

4.1.1 GMV Control  

The derivation of the GMV control law is simpler than that of the LQG control law, to be dis-
cussed in Section 4.2. By analogy with MV control law, the GMV control algorithm can be de-
fined as one that minimises the following cost function (Grimble, 2002a): 

2
GMV 0E{ }J φ= , (4.1) 

where φ0 is the “generalised” output signal (Figure 4.1) 
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and Pc and Fc denote appropriate weighting functions: 
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The error weighting Pc usually includes an integral term. The control weighting Fc is defined to 
include the time delay, as the control signal affects the output with a τ step delay. Unlike the 
related LQG control law, the price to be paid for the “simplicity” is that the dynamic weightings 
cannot be chosen arbitrary. Rather, the restricting assumption imposed on the dynamic weight-
ings must be fulfilled to ensure the stability of the closed-loop system: 

c cn cd c cd: must be stablekD P F B F P A= − . (4.5) 

 
 

 
Figure 4.1. Principle of GMV benchmarking. 

4.1.2 Selection of Weightings  

The GMV benchmark algorithm needs a set of dynamic error and control weights to compute the 
performance index. These weights act as design parameters that specify the type of optimal con-
troller required (regulatory performance, tracking/disturbance rejection, level of robustness): the 
user is required to know and specify the optimal performance requirements for the control loop 
under assessment. Guidelines for the selection of the weightings can be found by Grimble and 
Uduehi (2001) and Grimble and Majecki (2004).  

In general, the frequency dependence of the weightings can be used to weight different fre-
quency ranges in the error and control signals. According to Grimble and Majecki (2004), the 
standard procedure is that the error weighting Pc normally includes an integral term 

cn
c 1( )

1
PP q

q−=
−

. (4.6) 

Pcn may be constant or have the form (1 − αq−1), where 0 < α < 1 is a tuning parameter; the lar-
ger α the sooner integral action is “turned off”. This term leads to integral action in the control-
ler. The general effect of introducing integral error weighting is, however, to introduce high gain 
into the controller at low frequencies.  

The control weighting Fc is chosen as a constant, or as a lead term, i.e.,  
1

c cor ( ) (1 )F F q qρ ρ γ −= = − . (4.7) 

This weighting provides one mechanism of ensuring the controller rolls-off in high frequencies 
and does not amplify the measurement noise. ρ and γ are tuning parameters. An additional scalar 
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may be used to balance the steady-state variances of the error and control signals. Controller roll-
off at high frequencies is naturally included in LQG or H2 designs by using of a measurement 
noise model. When such a model is absent, GMV and LQG designs can give too high a gain at 
high frequencies. An example of the weightings  

1
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c c1

1 0.85( ) ; ( ) 0.015(1 0.1 )
1

qP q F q q
q τ

−
−

−

−= = − −
−

. (4.8) 

is shown in Figure 4.2.  
 
 

 
Figure 4.2. Example of selection of GMV weighting functions (Grimble and Majecki, 2005).  

 
If the considered system is controlled by a PID controller or some other well defined classical 

control structure, Ordys et al. (2007) suggest to select the ratio of the error weighting to the con-
trol weighting equal to the aforementioned controller as starting choice of GMV cost function 
weighting. Then some slight adjustment, usually reducing the value of the control weighting, 
should follow.  

Despite these guidelines, it should be clear that the full utilisation of the dynamic weighting 
is only possible when full knowledge of the process model linearised around the working point is 
available. This makes the application of GMV benchmarking more demanding than other meth-
ods. However, the model does not need to be very accurate, i.e., a simple first-order or second-
order approximation often suffices. See Ordys et al. (2007) for details.  

While selecting the dynamic weightings, one has to be aware of the restriction stated on the 
weightings (Equation 4.5). Note that the benchmarking algorithm will still return a controller 
performance index even if the condition is not satisfied. This, however, will involve the assess-
ment against an inadmissible controller, effectively under-estimating the controller performance 
index.  
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4.1.3 GMVC with Static Weightings 

Selecting static weightings, i.e.,  

{ }2 2E ( ) ( )J y k u kτ ρ= + +    or   { }2 2E ( ) ( ) ( )J y k u kτ ρ= + + Δ  (4.9) 

leads to a simple version of GMVC. An approximate solution to this problem is given by (Mac-
Gregor, 1977): 
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The MATLAB function gmv from Moudgalya (2007:Chap. 11) can be used for the calculation of 
the GMV control law in Equation 4.10. Note, however, that it is not required to apply the GMV 
control law on the process to determine the GMV performance index (Section 4.1.4).  

4.1.4 Assessment Index and Procedure  

The GMV performance index is defined as the ratio: 

GMV
GMV

act

J
J

η = . (4.11) 

where JGMV is the value of the cost function under GMV, and Jact its actual value under the in-
stalled controller. As for the MV index, there is no need to implement the GMV for calculation 
of the index.  

The GMV control law has the same type of structural characteristics as the MV control law. 
Thus, exactly the same procedure for computing the Harris index (Section 2.4.1 or 2.4.2.3) can be 
applied for the estimation of GMV performance index from data, but replacing the output signal y 
(or control error e) by the fictitious signal φ0. This fact is a unique feature of GMV benchmark-
ing, compared to other advanced designs and could motivate the application of this benchmarking 
method in practice. The drawback is, again, the weighting selection process, which is not simple 
at all, unless static weightings are used. 
 
Example 4.1. Consider again the first-order system in Equation 2.31, now with a1 = −0.8 and τ = 2. The 
example comes from Uduehi et al. (2007a). A PID controller of the form  

1

c 1 1

1 0.4( )
(1 )(1 0.5 )

qG q
q q

−

− −

−=
− +

  

is initially adopted. The process output obtained by setting a unity noise variance is shown in Figure 4.3 
(only 150 samples are plotted). For performance assessment, 3000 samples have been recorded from simu-
lation. 

The dynamic weightings for GMV benchmarking have been chosen as 
1

2
c c1

1 0.2( ) ( )
1

qP q F q q
q

−
−

−

−= = −
−

.   
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The performance indices for the installed controller result to be ηMV = 0.29 and ηGMV = 0.41. Both indices 
indicate unsatisfactory (stochastic) performance. The impulse responses show that the controller is too 
aggressive. When the analytically derived GMV controller  

1

c 1 1

2.44 1.44( )
(1 )(2 1.8 )

qG q
q q

−

− −

−=
− +

  

is used, one gets ηMV = 0.57, which signals fair but not yet optimal controller performance. The same con-
clusion can be stated from looking at the impulse response (IR(y)). However, the GMV index ηGMV = 0.98 
indicates maximum performance, which is confirmed by a look at the impulse response (IR(φ0)). This show 
how the GMV criterion provides a means of balancing error and control variances and makes the bench-
mark more realistic.  
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Figure 4.3. “Generalised” output signal φ0 and its impulse responses with the PID controller (left) and the 
GMV controller (right).  

4.2 Linear-quadratic Gaussian (LQG) Benchmarking 

The linear-quadratic Gaussian (LQG) benchmark was proposed by Huang and Shah (1999) as an 
alternative to or the next step after applying the MV benchmark, when the latter indicates poor 
performance. As for MVC, this benchmark does not require that a LQG controller be imple-
mented for the given process. Rather the benchmark provides the performance bound for any 
linear controller in terms of the weighted input and output variance. This is useful when we are 
interested in knowing how far away the control performance is from the “best” achievable per-
formance with the same control effort. In mathematical form, this means that the solution of the 
following problem may be of interest: 

2 2Given that E{ } , what is the lowest achievable E{ }u yα≤ . (4.12) 
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The solution, i.e., the achievable performance, is given by the trade-off curve, also known as 

the performance limit curve in Figure 4.4. This curve can be generated from solving the H2/LQG 
problem (Kwakernaak and Sivan, 1972; Harris, 1985; Boyd and Barratt, 1991; Grimble, 2006), 
where the H2/LQG objective function is defined by8:  

2 2( ) E{ ( )} E{ ( )}J y k u kλ ρ= + ,  

LQG var{ ( )} var{ ( )}J y k u kρ= + . (4.13) 

 
 

 
Figure 4.4. LQG trade-off curve with a typical performance point A of a controller showing improvement 
potential, i.e., reduction of input and output variance.  

 
By varying the move suppression weight ρ, various optimal solutions of E{y2} and E{u2} can 

be calculated. Thus a curve with the optimal output variance as ordinate and the incremental 
manipulated variable variance as the abscissa can be plotted from these calculations. Boyd and 
Barratt (1991) have shown that any linear controller can only operate in the region above this 
curve. Consequently, the trade-off curve defines the limit of performance of all linear controllers, 
as applied to a linear time-invariant process, including the minimum variance control law. Al-
though the LQG design can handle tracking problems, the approach is generally applied mainly 
for disturbance rejection.  

Depending on the current performance level under the installed controller, one can decide 
whether the control system can be improved. Suppose the actual measured performance of a loop 
with the implemented controller (usually not LQG) is given by the point 2 2

A AA ( , ).u yσ σ=  From 
the plot, it is clear that one of the following is possible, by switching over, if necessary, to a LQG 
controller: i) one can achieve the same output variance 2

A( )yσ  for smaller control effort 
0

2
A( )uσ ; 

ii) for the same control effort 2
A( )uσ , one can achieve smaller output variance 

0

2
A( )yσ . Neverthe-

less, working at the limits of this trade-off curve may not give a robust solution (Moudgalya and 
Shah, 2004).  

                                                           
8
 This assumes a system model of the ARMAX type. If a model of the ARIMAX type, i.e., with integrating 

disturbance term, is considered, u(k) has to be replaced by Δu(k). 
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In total, five optimal controllers may be identified from the trade-off curve shown in Figure 

4.5. They are explained as follows (Huang and Shah, 1999): 
• Minimum Cost Control. This is an optimal controller identified at the left end of the trade-

off curve. The minimum cost controller is optimal in the sense that it offers an offset-free 
control performance with the minimum possible control effort. It is worthwhile pointing out 
that this controller is different from the open-loop mode since an integral action is guaranteed 
to exist in this controller. 

• Least Cost Control. This optimal controller offers the same output error as the current or 
existing controller but with the least control effort. So if the output variance is acceptable but 
actuator variance has to be reduced, then this represents the lowest achievable manipulative 
action variance for the given output variance. 

• Least Error Control. This optimal controller offers least output error for the same control 
effort as the existing controller. If the input variance is acceptable but the output variance has 
to be reduced then this represents the lowest achievable output variance for the given input 
variance. 

• Trade-off Control. This optimal controller can be identified by drawing the shortest line to 
the trade-off curve from the existing controller; the intersection is the trade-off control. 
Clearly, this trade-off controller has performance between the least cost control and the least 
error control. It offers a trade-off between reductions of the output error and the control ef-
fort.  

• Minimum Error (Variance) Control. This is an optimal controller identified at the right 
end of the trade-off curve. The minimum error controller is optimal in the sense that it offers 
the minimum possible error. Note that this controller may be different from the traditional 
minimum variance controller due to the existence of integral action. 
 
 

 
Figure 4.5. LQG trade-off curve with several optimal controllers. 

 
LQG benchmark is more realistic than MVC, but it still represents an unattainable standard, 

even for MPC. Also, much more information on the process is required, i.e., measurement of the 
manipulating variable(s) and/or process/disturbance models. The uncertainty in the estimated 
model then has to be “mapped” onto the LQG curve, in which case it would become a fuzzy 
trade-off curve. Alternately the uncertainty region can be mapped into a region around the cur-
rent performance of the controller relative to the LQG curve; see Patwardhan and Shah (2002). 
Moreover, the use of an LQG benchmark for performance assessment is much more complicated 
and leads to a higher computational burden (a state estimator and the solution of algebraic Ric-
cati equations, as shown below) than the traditional methods based on the MVC. Serious critical 
issues related to LQG-based performance assessment can be found in Kozub (2002). All these 
demanding requirements and drawbacks make the calculation and use of – at least – the standard 
LQG benchmark not always practical.   
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4.2.1 Classical LQG Framework 

An alternative approach to the design of pole-placement controllers is to specify an optimisation 
index to be minimised. This underlies the concept of linear-quadratic regulator (LQR), obtained 
by minimising a quadratic index. When the states required are estimated by a Kalman filter, the 
estimator–regulator combination is known as LQG controller. The LQG-control problem is to 
find the first input u1 of the sequence uf = (u1, …, uN) that minimises the quadratic cost function 
J over the horizon N  

T T

1

ˆ ˆ
N

k k k k
k

J
=

= +∑ y Qy u Ru , (4.14) 

where ˆky  is the k-step-ahead optimal predicted output given past inputs and outputs and future 
inputs up to time k. When setting Q = I and R = ρI, Equation 4.14 becomes Equation 4.13. The 
classical approach of solving the LQG problem consists of three stages: 1) system identification 
of a state-space model, 2) Kalman-filter design and 3) LQ-controller design. For details, readers 
are referred to standard texts on this topic, such as Kwakernaak and Sivan (1972) and Anderson 
and Moore (1991).  

MATLAB’s Control System Toolbox provides the functions lqry or dlqr to design a LQG 
controller and kalman or dlqe to design a Kalman filter. If the state transition matrix is singu-
lar, e.g., owing to time delays, then the function dlqe2 in the MATLAB MPC Toolbox can be 
used. Moreover, the function lqgreg is available to form the feedback regulator.  

4.2.2 Polynomial Domain Approach 

An equivalent polynomial approach can also be formulated to design the LQG controller using 
transfer functions; see Grimble and Johnson (1988), Åström and Wittenmark (1997). An excel-
lent recent reference is Grimble (2006a). The polynomial approach has the advantage that it does 
not require concepts, such as states, controllability and observability. Moreover, in the polyno-
mial approach, complicated noise models as well as different kinds of weightings of the signals 
in the performance measure can easily be handled (Moudgalya and Shah, 2004). We found that 
the polynomial approach is much easier for generating LQG performance limit curves. 

Polynomial solutions are based on spectral factorisation, for which good numerical methods 
exist, e.g., Kucera (1979), Harris and Davis (1992). The required LQG controllers can be com-
puted, for instance, using the MATLAB function doflq (Kammer, 1996) or the function lqg 
(Moudgalya, 2007:Chap. 13).  

4.2.3 LQG Framework as Special Case of MPC 

As recommended by Huang and Shah (1999), it is more useful to solve the LQG problem using 
the MPC approach, specifically via an infinite general-predictive control (GPC) solution, i.e., 
with an infinite prediction horizon and an infinite control horizon. Nevertheless, in practice, a 
finite value of the prediction horizon is usually sufficient to achieve the approximate infinite 
horizon LQG solution via the GPC approach. This means also that the trade-off curve for MPC 
always lies above that for LQG; see Section 4.3.  

4.2.4 Subspace-based LQG Design 

In state-space-based controllers, the state is used as an intermediate variable between the past 
and the future to find the control inputs. Indeed, in the case of an LQG-controller, the state esti-
mate that minimises the prediction criterion (Kalman filter) is calculated from the past inputs and 
outputs. In a second step, the future inputs that minimise the control criterion (LQ controller) are 



 4.2 Linear-quadratic Gaussian (LQG) Benchmarking 79 
 

then found from the state. This idea is also clearly present in subspace system identification, 
where the Kalman filter state sequence serves as interface between the past and future through 
the projection of the future outputs Yf into the past inputs Uf and outputs Yp, and future inputs Uf. 
The big advantage in subspace identification is that the Kalman filter states can be found without 
the knowledge of the system parameters A, B, C, D, K and S, and thus without having to solve 
the Kalman filter equations. This property is exploited to straightforwardly calculate the control 
law. Details of this method are given by Favoreel et al. (1999). Here, we only show the steps of 
both LQG-design approaches in Figure 4.6 for comparison. The main conclusion is that the three 
steps involved in the classical approach are short-circuited and replaced by a QR and an SVD of 
matrices directly constructed out of input and output data gathered. Therefore, the subspace-
based approach for LQG design should always be preferred. 

 

 
Figure 4.6. Steps of both LQG-design methods. 

 
So far the LQG design can be efficiently performed based on subspace identification, pro-

vided the first nIR impulse-response coefficients of the controller are known. This can, however, 
be a serious limitation in the industrial practice, where the parameterisation of the controller is 
often not easy to discover. In such a situation, one might try to identify the controller parameters 
from data, as proposed by Bezergianni and Georgakis (2003). However, the best way should be 
to apply methods, such as that proposed by Kadali and Huang (2002), which does not need the 
knowledge of the controller at all. This approach needs however set-point excitation for proper 
closed-loop identification of the subspace matrices.  

4.2.5 Generation of the LQG Performance Limit Curve 

For the construction of the LQG performance limit curve, an LQG controller minimising the 
objective function in Equation 4.13 is computed as9 

( )( ) ( )
( )

S qu k y k
R q

= − , (4.15) 

                                                           
9
 The more general form of this control law is ( ) ( ) ( ) ( ) ( ) ( )R q u k S q y k T q r k= − + , referred to as RST regula-

tor. 
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where for simplicity the controller set point is assumed constant at its initial steady-state value, 
i.e., r = 0. Inserting this control law into the system description in Equation 2.1 gives the closed-
loop relationships: 

( ) ( )( ) ( )
( ) ( ) ( ) ( )

C q R qy k k
A q R q q B q S qτ ε−=

+
, (4.16) 

( ) ( )( ) ( )
( ) ( ) ( ) ( )

C q S qu k k
A q R q q B q S qτ ε−=

+
. (4.17) 

Applying Parseval’s theorem to Equations 4.17 and 4.16 yields the variances of the process out-
put and input as 

22
2

| | 1

( ) ( ) dvar{ ( )}
2π ( ) ( ) ( ) ( )y z

C q R q zy k
j zA q R q q B q S q

ε
τ

σσ −=
= =

+∫ , (4.18) 
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| | 1

( ) ( ) dvar{ ( )}
2π ( ) ( ) ( ) ( )u z

C q S q zu k
j zA q R q q B q S q

ε
τ

σσ −=
= Δ =

+∫ . (4.19) 

These equations can be numerically solved using a contour integration algorithm, such as that 
given by Åström (1979). In MATLAB, the function covar can be used for the evaluation of 
such integrals. Without loss of generality, the white noise sequence is supposed to have unity 
variance, i.e., var{ε(k)} = 1. If this is not the case, the system description can always be scaled to 
satisfy this assumption. Instead of evaluating the Parseval’s integrals, one can simulate the 
closed loop and compute the variances from the calculated signals. Obviously, these will not 
exactly match the real variances owing to the finite simulation time. It is essential to note that the 
variance calculation requires the knowledge of the disturbance dynamics, which is usually not 
needed for controller design. The procedure for generating the LQG performance limit curve is 
summarised below.  
 
Procedure 4.1. Construction of the LQG trade-off curve. 
1. Determine a system model in the form of Equation 2.1.  
2. By varying ρ, compute a series of LQG control laws (Equation 4.15).  
3. Solve the Parseval integral Equations 4.18 and 4.19 using contour integration, or simulate the closed 

loop, to give the variances of y and u for each ρ value. 
4. Plot var{y(k)} vs. var{u(k)} to provide the trade-off curve.   

 
For the MIMO case, the objective function of the LQG control is expressed as 

T T
LQG E{ ( ) ( )} E{ ( ) ( )}J k k k kρ= +y Wy u Ru , (4.20) 

where W is the output weighting, which should be selected so that it reflects the relative impor-
tance of the individual outputs. Similarly, the control weighting R has to be chosen according to 
the relative cost of the individual inputs. As in the SISO case, by varying ρ, different LQG con-
trol laws can be computed. Then solving the Paseval integral equations or simulating the closed 
loop provides the H2 norms E{yT(k)Wy(k)} and E{uT(k)Ru(k)} which can be used to plot the 
trade-off curve.  

4.2.6 LQG Assessment Using Routine Operating Data 

As mentioned above, the construction of the LQG trade-off curve necessitates the complete 
knowledge of the plant and disturbance models, i.e., Gp and Gε. A disturbance model can be 
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determined from fitting a time series model, e.g., an AR model, to routine operating data, as for 
the computation of the Harris index. However, the estimation of the plant model, when not avail-
able, is much more involved. The addition of a dither signal to the set point or controller output 
is generally required to introduce a source of external excitation into the feedback loop; see Sec-
tion 6.1.3. Note that the injection of dither signals is highly undesirable and seldom allowed in 
industrial practice.  

To assess the performance of an installed controller relative to the LQG benchmark, the fol-
lowing performance indices are defined (see Figure 4.7): 

0

22
A,LQG

2 2
A

yy
y

y y

σσ
η

σ σ
= = , (4.21) 

0

22
A,LQG

2 2
A

uu
u

u u

σσ
η

σ σ
= = . (4.22) 

ηy and ηu vary between 0 and 1. If ηy is equal to 1, for the given input variance, then the control-
ler is giving optimal performance with respect to the process variance. If not, then the controller 
is non-optimal and there is scope for improvement in terms of process response without affecting 
the input variance. Similarly, if ηu is equal to 1, for the given output variance, then the controller 
is giving optimal performance with respect to the input variance. If not, then the controller is 
non-optimal and there is scope to reduce input variance without affecting the output variance. 
Using these two measures, one can see how far the control performance is from the LQG bench-
mark. For specific values ηy and ηu, there is a potential of decreasing the output variance and 
input variance by 100(1 − ηy)% and 100(1 − ηu)%, respectively. Note that the performance meas-
ures do have inherent variability. Harris (2004) have given the sampling distribution statistical 
properties of some related quadratic-type performance indices. 
 
 

 
Figure 4.7. LQG trade-off curve with definition of LQG performance indices. 
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The whole procedure for assessing the performance of control systems against the LQG 

benchmark is given as follows. 

Procedure 4.2. Performance assessment with LQG benchmark.  
1. Estimate a disturbance model Gε from normal operating data.  
2. When Gp is not available, try to identify at least a rough estimate for Gp from normal operating data 

using the method by Ko and Edgar (1998) or that by Julien et al. (2004); see Section 7.2.7. If this is not 
feasible, i.e., in the case the time delay is too short relative to the disturbance dynamics, estimate a 
process model Gp from closed-loop operating data under the injection of a dither signal to the set point 
or controller output. If the insertion of such a signal is not possible/allowed, it is indispensable to per-
form open-loop tests for the (re)estimation of Gp.  

3. Generate the LQG trade-off curve using Procedure 4.1. 
4. Evaluate the trade-off curve to determine the variances 

0

2
Ayσ  and 

0

2
A .uσ   

5. Calculate the performance indices (Equations 4.21 and 4.22) to assess the performance and deduce the 
possible improvement potential. 

Confidence Limits for Variances 

It is useful to give confidence limits for the variances 2
yσ Δ  and 2

uσ  calculated using measured 
data from control loop under the installed controller. If the data y(k) and Δu(k) were uncorrelated 
Gaussian white noise sequences, an approximate joint 95% confidence region would be defined 
by the intervals (Montgomery and Runger, 1992; Julien et al., 2004):  

2 2
2

2 2
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( 1) ( 1)ˆu u
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N N

N N
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σ σ
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χ χ− − −
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where 2
/4, 1Nαχ −  and 2

1 /4, 1Nαχ − −  are the upper and lower α/4 percentage points of the chi-square 
distribution with N − 1 degrees of freedom, respectively, and α = 0.05. The limits calculated 
from the aforementioned equations give a rectangle around the variance values calculated from 
data. However, these confidence limits are ideal values, i.e., they do not take into account the 
correlation between y(k) and Δu(k) usually induced by feedback control.  
 
Example 4.2. Reconsider Example 2.3. For this system, the LQG trade-off curve has been generated using 
the MATLAB function lqg from Moudgalya (2007:Chap. 13) for λ in the range 0.01–100; the closed loop 
has been simulated using the function cl. From the curve in Figure 4.8, it can be seen that the performance 
of controllers P1 lies on the trade-off curve, thus P1 is optimal relative to the LQG benchmark, but the 
controller will be sluggish, as the weighting parameter is too high. P3 (not shown in the figure) is far from 
the trade-off curve, i.e., far from optimum.  

The performance indices for P2 have been calculated as:  

,P2
2.617 0.93
2.825yη = ≈                    ,P2

0.0946 0.54
0.1766uη = ≈ .  

Although the controller performance is close to optimal with respect to the process output variance 
(94% of the optimal), the performance index with respect to the input variance is only 0.54. This indicates a 
maximum possible scope of 46% to reduce the input variance without increasing the output variance; see 
Figure 4.8. It can also be concluded that the measures of achievable performance with LQG as benchmark 
are more realistic than those obtained relative to the MVC, when control action cannot be allowed to exceed 
certain level. 

The performance point for MVC is obtained, as expected, for ρ → 0. We have calculated the LQG con-
trol law for ρ = 0.001 to get   
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u k y k
q q− −= −

+ +
  

just to confirm that it is very close to the exact transfer function of the MVC in Equation 2.32. 
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Figure 4.8. LQG performance curve and performance points of the considered controllers (Example 4.2).  

 
Example 4.3. This example taken from Hugo (2006) has an integrating disturbance:  

3

1 1

0.08 1( ) ( ) ( ) ; var{ } 0.02
1 0.92 1

qy k u k k
q q

ε ε
−

− −= − + =
− −

. (4.25) 

A PI controller with Kc = 3.33 and TI = 6.94 is used to close the loop. These tuning parameters were deter-
mined using the ITAE tuning rules for load disturbances. For this system, the minimum variance index 
were found to be 0.74, indicating good performance, but also that a time-delay compensator would improve 
control performance. This was expected as the ITAE tuning rules should give a response that is close to 
minimum variance for PI controllers. The LQG trade-off curve has been constructed for λ in the range 
0.006–2.0 and is shown in Figure 4.9.  

The performance indices according to Equations 4.21 and 4.22 have been calculated: 

0.0698 0.92
0.0761yη = ≈ ;                   0.248 0.49

0.502uη = ≈ .  

Again, the LQG benchmark is more realistic, indicating near optimal performance with respect to the output 
variance (92% of the optimal). However, the performance index with respect to the input variability is only 
0.49. Hence there is a maximum possible scope of 51% to reduce the input variance without increasing the 
output variance.   
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Figure 4.9. LQG performance limit curve and performance point of the current controller (Example 4.3).  

4.3 Model Predictive Control (MPC) Assessment 

A major innovation in the field of process control over the last millennium (since 1970s) has 
been the development of MPC. Model predictive control or receding horizon control (RHC) is a 
form of control, in which the current control action is obtained by solving on-line, at each sam-
pling instant, a finite horizon open-loop optimal control problem, using the current state of the 
plant as the initial state. The optimisation carried out based on a prediction model yields an op-
timal control sequence and the first control in this sequence is applied to the plant; see Figure 
4.10. This is its main difference from conventional control which uses a pre-computed control 
law.  

 

 
Figure 4.10. Schematic block diagram for model predictive control. 
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MPC has wide popularity in many process industries, owing to its general way of coping with 

process-control problems. It can be recognised that the most important feature of model predic-
tive control is its ability to handle constraints explicitly in the design. Nowadays, MPC algo-
rithms are the secondly most used algorithms in the process industry – besides PID control. With 
over 4500 industrial installations, model predictive control (MPC) is currently the most widely 
implemented advanced process control technology for process plants (Qin and Badgwell, 2003). 

4.3.1 Basic Principle and Properties 

The methodology of all the controllers belonging to the MPC family is characterised by the fol-
lowing strategy, represented in Figure 4.11, referred to as “receding/moving horizon control”: 
1. Prediction. The future outputs for the prediction horizon N2 are predicted at each instant k 

using the plant model. These predicted outputs ˆ( | )y k i k+  for i = 1, 2, ..., N2 depend on past 
inputs and past outputs, and on the future control signals u(k + i | k), i = 0,…, Nu − 1, which 
are those to be sent to the system and to be calculated. Nu ≤ N2 denotes the control horizon, 
within which the control signal is changed. 

2. Optimisation. The set of future control signals is calculated by minimising a determined 
criterion in order to keep the system as close as possible to the reference trajectory r(k + L) 
(which can be the set point itself or an approximate of it). An explicit solution can be ob-
tained if the criterion is quadratic, the model is linear and there are no constraints, otherwise 
an iterative optimisation method has to be used. Some assumptions about the structure of the 
future control law are also made in some cases, such as that it will be constant from a given 
instant. 

3. Applied Control Signal. Not the entire control-input sequence, but only the first element 
u(k | k) is applied to the system, whereas the next control signal values calculated are re-
jected. This is because at the next sampling instant y(k + 1) is already known and step 1 is re-
peated with the new value and all the sequences are brought up to date. Also, the set point 
may change over the next intervals. Thus, the u(k + 1 | k + 1) is calculated (which in principle 
will be different to the u(k + 1 | k) because of the new information available) using the reced-
ing horizon concept.  

4. Model Update. Current measurement information is used to estimate the (unmeasured) dis-
turbances by making assumptions about their nature, and thus adapt the prediction model. 
The simplest approach (used in most MPC methods) is to assume that the disturbance is con-
stant as the difference between the actual and estimated output, and to keep this unchanged 
during the prediction horizon.  
Observe the IMC structure in Figure 4.10, which is inherent for most MPC schemes.  
MPC is the only control methodology born in industry and it has made a significant impact 

on industrial control engineering. It has so far been applied mainly in chemical and petro-
chemical industry, but the benefits of MPC are currently being increasingly discovered in other 
sectors of the process industry.  

The penetration of MPC into industrial practice has been motivated by the following facts: 
• Its underlying idea is intuitive and easy to understand. 
• It can be used to control a great variety of processes, from those with relatively simple dy-

namics to other more complex ones, including “difficult” systems, such as those containing 
long time delays or non-minimum-phase ones. It is thus much more powerful than PID con-
trol. 

• Its basic formulation extends to multivariable plants with almost no major modifications. 
• It intrinsically compensates for (dominant) time delays. 
• Feedforward control for disturbance compensation can be integrated in MPC schemes in a 

straightforward way. 
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• The extension of MPC to the treatment of constraints is conceptually simple, and these can be 
systematically included already during the design phase and not ad hoc during commission-
ing. 

• It is very useful when future references, e.g., for path following, set-point tracking or batch-
process control, are known. 

• Operational and economical criteria may be incorporated in the objective function. 
 

 

 

Figure 4.11. Principle of MPC Strategy.  

 
Predictive control comes in a large variety of shapes using a lot of different names, such 

model predictive heuristic control (MPHC) (Richalet, 1978), dynamic matrix control (DMC) 
(Cutler & Ramaker, 1979), quadratic DMC (QDMC) (Garcia & Morshedi, 1986; Prett & Garcia, 
1988) and generalised predictive control (GPC) (Clarke et al., 1987), to just mention a few. 
However, the underlying ideas are the same in all methods, it is the details that distinguish them 
from one another. The various MPC techniques are thoroughly presented in many standard text 
books, e.g., by Soeterboeck (1992), Camacho and Bordons (1999) and Maciejowski (2002). 
Contributed books on the subject have published by Allgöwer and Zheng (2000) and Kouvari-
takis and Cannon (2001). Notable reviews of MPC theory include those of García et al. (1989), 
Ricker (1991), Morari and Lee (1991), Muske and Rawlings (1993), Rawlings et al. (1994), 
Mayne (1997) and Lee and Cooley (1997). Excellent reviews of industrial MPC technology are 
provided by Qin and Badgwell (1997, 2003).  

MPC systems should be monitored on a regular basis to ensure that their performance does 
not degrade owing to changes in the process, instrumentation, or process conditions, including 
disturbances. If the performance becomes significantly worse, re-tuning the controller or re-
identifying the process model may be required. An important motivation for introducing MPC is 
that it facilitates process operation closer to targets and limiting constraints. Thus, an evaluation 
of MPC performance should include measures to check whether these objectives have been 
achieved (Seborg et al., 2004).  
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A standard objective function often used in MPC is (assuming zero set point) 

2

1

2 2
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ˆ ( ) Δ ( 1)
uNN

i N i
J y k i u k iρ

= =

= + + + −∑ ∑ , (4.26) 

where N1 and N2 are the minimum and the maximum prediction horizons, and Nu the control 
horizon. ˆ( )y k i+  is an optimal i-steps-ahead forecast of the controlled variable to be formulated 
via the process model.  

From accumulated experience of applying MPC algorithms in the last decades, a number of 
engineering rules have been indentified to obtain appropriate values of MPC tuning parameters 
for good control performance. Some of these guidelines are recalled: 
• Prediction Horizons. N1 and N2 mark the limits of the time interval in which it is desired for 

the process variable to follow the reference. Typically, N1 is chosen to be zero. However, for 
systems with time delay, there is no reason to select N1 less than the number of time delay 
samples, since the output will only begin to evolve passed this time. N2 is usually chosen ap-
proximately as the settling time in samples. Smaller values of N2 make the control action 
more aggressive. Nothing is gained when costing future errors that cannot be influenced by 
future control actions. 

• Control Horizon. Nu should be less than N2. Typically, Nu is taken to be about one-half to 
one-third of N2 − N1 for plants having large time constants, as is usual for chemical processes. 
Nu should be greater or equal to the number of unstable poles in the process to guarantee the 
stability of infinite horizon MPC. Large Nu tends to make control more aggressive. An advan-
tage of a large Nu is that it allows detect constraint violations before they are reached, aver-
ages the control objective over time and handles unknown variable time delays.  

• Control Weighting. ρ is to be selected large or small, depending on whether less or more 
aggressive control is desired. Increasing ρ makes control more damped; in the opposite direc-
tion, decreasing ρ makes the control action more aggressive and the control response faster. 
For multivariable systems, the parameter ρ (which is then a matrix) becomes especially use-
ful to weight the different control efforts. Note that the parameters ρ and Nu are strongly re-
lated to each other.  
Theses rules provide only a basis for tuning MPC controllers. In practice, the parameters are 

often selected per trial and error, a procedure that can be time-consuming, since the parameters 
are dependent on each other. Note also that not all parameter combinations guarantee a stable 
controller. Tuning methods for MPC have been proposed by some researcher, e.g., Clarke and 
Scattoloni (1991), MacIntosh et al. (1992), Rawlings and Muske (1993).  

Many approaches exist for the benchmarking of MPC systems; see Schäferand and Çinar 
(2002) for an overview. Some methods are briefly discussed in the following. Remember that in 
MPC, the process model and the optimisation are substantial components of the (online) control-
ler design; see Qin and Badgwell (1997). In contrast to the assessment of PID controllers, where 
no model is directly involved, a fundamental question related to the performance assessment of 
model-based control, particularly MPC, is whether detected poor control performance is due to 
bad controller tuning or inaccurate modelling.  

4.3.2 Constrained Minimum Variance Control 

An approach based on constrained minimum variance controller has been proposed by Ko and 
Edgar (2001a) for the assessment of MPC. First, a constrained MVC is designed using the reced-
ing horizon concept, the same method of constrained optimisation applied in MPC design. Sub-
sequently, the achievable MV performance bounds in constrained MPC systems via disturbance 
model identification and (constrained) closed-loop simulation with the constrained MVC are 
estimated. Knowledge of the process model is thus required to develop the constrained MVC. It 
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is also assumed that the process model has a stable inverse. When the constraints become inac-
tive, the proposed approach naturally recovers unconstrained MV performance bounds.  

4.3.3 Design-case MPC Benchmarking 

The so-called design-case benchmarking, recommended by Patwardhan et al. (1998), Shah et al. 
(2001) and Gao et al. (2003), evaluates the controller performance using a criterion commensu-
rate with the actual design objective(s) and then compares it with the achieved performance:  
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where ê  is the estimated control error, Δu∗ the optimal control moves, and e and Δu the meas-
ured values of outputs and inputs, respectively, at corresponding sampling instants. Q and R are 
weightings of relative importance of controlled and manipulated variables.The performance 
index will be equal to unity when the achieved performance exactly meets the design require-
ments. The actual output may differ significantly from the predicted output due to inadequacy of 
the model structure, non-linearities, modelling uncertainty, etc. The inputs will differ from de-
sign values in part due to the receding horizon nature of the MPC law.  

Another benchmarking method (very similar to the design-case method) referred to as the 
expectation-case approach has been proposed by Zhang and Henson (1999): the actual perform-
ance is compared (online) to the expected performance (judged to be satisfactory) obtained when 
controller actions are implemented on the process model instead of the plant:  
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The performance is then assumed to be generated by an ARMA process 
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whose parameters are estimated via standard identification techniques and used to detect statisti-
cally significant changes in controller performance. The estimated noise variance is used to 
compute 95% confidence limits on ΔηMPC(k).  

The advantage of using any of the above criteria for the purpose of performance assessment 
is that it is a measure of the deviation of the controller performance from the (user-specified) 
design or expected performance. Thus, a low performance index truly indicates changes in the 
process or the presence of disturbances, resulting in sub-optimal control. The estimation of the 
indices in Equations 4.27 and 4.28 does not involve any time series analysis or identification: i) 
the design objective (Jopt or Jexp) is calculated by the controller at every instant, i.e., from the 
optimisation step in MPC, which implies that the online predicted values of ê  and Δu∗ have to 
be available for the design-case approach; ii) only the measured input and output data are needed 
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to find the achieved performance (Jact). Moreover, the design objective approach has no restric-
tive assumptions, thus can deal with the multivariate and constrained nature of MPC. 

Nevertheless, the application of the aforementioned methods is limited by the fact that in-
stalled MPC routines may not return the design value of the cost index for user inspection. In 
addition, it must be recognised that a low performance index could be caused by errors in the 
plant and/or disturbance models. Thus a further task is to distinguish between both possible 
causes of poor performance.  

4.3.4 Infinite-horizon Model Predictive Control  

The derivation of MPC control laws is usually based on a system model of the ARIMAX type 
(Equation 2.3), typically (as in DMC) presuming the unmeasured disturbance be a random walk, 
i.e., 

1( ) ( ) ( ) ( ) ( )A q y k q B q u k kτ ε−= +
Δ

. (4.30) 

The objective of MPC is to minimise the cost function in Equation 4.26. For N1 = 1, Nu = N2 and 
N2 → ∞, Equation 4.26 converges to the LQG objective function, i.e.,   

MPC LQG
2

1 var{ ( )} var{ ( )}J J y k u k
N

ρ→ = + Δ . (4.31) 

The solution is known as the infinite-horizon MPC controller. This controller is usually adopted 
for MPC assessment although finite-horizon MPC will be found in practice, owing to the follow-
ing facts: 
• If the prediction horizon N2 is at least equal to the plant time-to-steady-state, as always rec-

ommended, a finite-horizon MPC will be virtually identical to the infinite-horizon MPC and 
provides a reasonable approximation of several commercial MPC systems (Huang and Shah, 
1999; Julien et al., 2004).  

• The infinite-horizon LQG algorithm endows the algorithm with powerful stabilising proper-
ties. For the case of a perfect model, it was shown to be stabilising for any reasonable linear 
plant as long as ρ is positive (Mayne et al., 2000; Qin and Badgwell, 2003). 

• The use of MPC benchmarks commensurate with the actually designed controller requires 
that details of the installed MPC controller (used disturbance model, parameters N1, N2, Nu, 
etc.) to be available from MPC software supplier. This is, however, often more a hope than 
reality, due to know-how protection reasons.   

4.3.4.1 Generation of MPC Performance Limit Curve  

As for LQG, the MPC performance limit curve can be simply constructed by plotting var{y} vs. 
var{Δu} for values of ρ in the range [0, ∞). Obviously, this generally requires the knowledge of 
the complete system model. When assessing the performance of MPC, this assumption is nothing 
special having in mind that a system model is explicitly integrated in the design of a model pre-
dictive controller. Note that many commercial MPC systems use a random walk to model the 
disturbances. Moreover, the (infinite-horizon) MPC controller has to be expressed in the RST 
form of Equation 4.15, so that the MPC performance curve can be computed by solving Equa-
tions 4.18 and 4.19. For this purpose, any solution to the LQG optimisation problem (Section 
4.2) can be adopted.  

However, during subsequent months and years of control-system operation, the controller 
performance is not expected to fall on the original MPC performance curve due to changes in 
process/plant characteristics. Therefore, a periodical performance assessment of MPC by re-
calculating the performance curve is highly recommended, ideally when it can be generated from 
routine operating data. If the current performance point does not fall on or near the MPC curve, 
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this is a strong indication of mismatch in the plant and/or disturbance models. If a significant 
portion of this deviation can be attributed to error in the plant model, then additional response 
testing should be carried out before commissioning is resumed (Julien et al., 2004).  

The MATLAB function gpc_Nc from Moudgalya (2007:Chap. 12) can be used to express a 
GPC controller with specified parameters N1, Np, Nc and ρ in a RST form. The author of this 
thesis makes also use of MATLAB routines kindly provided by the Julien et al. (2004) for the 
computation of infinite-horizon MPCs.   

4.3.4.2 Assessing the Potential Performance Improvement of MPC 

It has been shown by Julien et al. (2004) that it is possible under certain circumstances to iden-
tify a model of the plant dynamics only from normal operating data, i.e., without the injection of 
a dither signal as is usual in closed-loop identification, but with the knowledge of the time delay; 
see Section 7.2.7 for details. Once an updated process model pĜ  has been generated using this 
method, a new performance curve can be obtained. Using the new model and the old, i.e., in-
stalled controller, the so-called old controller & new process model (OCNP) performance curve 
can be constructed, again by solving Equations 4.18 and 4.19. Inspection of the OCNP curve 
may indicate that it is possible to re-tune the existing controller to a desirable performance region 
despite the presence of plant–model mismatch, eliminating the need for a new identification 
experiment. Performance indices like those defined by Equations 4.21 and 4.22 can be calculated 
to quantify the possible improvement potential. 

On the other hand, one can design a new MPC controller based on the new model and then 
generate the so-called new controller & new process model (NCNP) performance curve, also 
referred to as MPC-achievable performance curve. The distance between the NCNP curve and 
the OCNC curve indicates the performance deficiency due to the plant–model mismatch; see 
Figure 4.12.  
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Figure 4.12. MPC performance curves. 
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The OCNP curve shows how the performance would be affected were the controller to be re-

tuned by varying the move suppression coefficient, ρ. Hence, the OCNP and NCNP curves en-
able the user to differentiate between variance inflation caused by tuning vs. plant–model mis-
match. The potential benefit of re-identifying the plant can then be weighed against the time and 
expense associated with a new response test. 

4.3.4.3 MPC Assessment Procedure  

A complete procedure for assessing the performance, diagnosing possible reasons for poor per-
formance and quantifying improvement potential of MPC-controlled loops is given as follows. 
 
Procedure 4.3. MPC performance assessment and diagnostic (Julien et al., 2004).  
1. Construct the OCOP performance curve for the MPC regulator in the form of Equation 4.15, based on 

the initial plant and disturbance models identified prior to commissioning.  
2. Using routine operating data, compute the input 

0

2
A( )uσ Δ  and output 

0

2
A( )yσ  sample variances for the 

existing controller and compare its performance to the OCOP curve. If the curve does not intersect the 
joint confidence region for 

0 0

2 2
A A( , )u yσ σΔ  (Equations 4.23 and 4.24), one can conclude that there is 

process-model mismatch.  
3. Use routine operating data to re-estimate the process and disturbance model when feasible, as de-

scribed in Section 7.2.7. This is usually successful when the time delay is at least 15% of the distur-
bance settling time and exceeds the duration of any initial wrong-way transients in the disturbance im-
pulse response by at least four intervals.  

4. Construct the OCNP performance curve based on the new system model and the MPC controller de-
signed for the original model. This curve should pass through the confidence region for 

0 0

2 2
A A( , )u yσ σΔ  

if the closed-loop identification has been successful. If not, then stop: an identification experiment 
must be carried out to estimate Gε and Gp. 

5. Compute the NCNP performance curve based on the updated system model and a new MPC controller 
designed for the updated plant model: this curve summarises the closed-loop performance one could 
expect the MPC strategy to exhibit if it were rebuilt based on data collected during a new response test.  

This procedure is limited to cases where the process time delay is “large” relative to the set-
tling time of the disturbance, as only in this case the process model can be estimated from rou-
tine operating data (Section 7.2.7). Moreover, it should be recognised that large data sets may be 
required to ensure that the process models converge, and so this method will evaluate an “aver-
age” controller performance over the range of disturbances encountered. Note also that the ex-
tension of this method to multivariate MPC systems with constraint needs further research.  

 
Example 4.4. We illustrate the MPC performance assessment technique with the paper machine model of 
Example 3.1. The noise ε is assumed to have the variance 2 0.02.εσ =  The assessment calculations are based 
on data sets containing 10000 observations of u and y, generated by simulated closed-loop model (Ts = 1). 
The adopted initial controller is an infinite-horizon MPC regulator determined for the “old process” (Equa-
tion 3.25) with a penalty on move of ρ = 0.5 as (“old controller”) 
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We consider the scenario where the disturbance dynamics has changed so that the “new process” is 
given by 

3
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Steps 1 and 2 of Procedure 4.3 are applied to generate the performance curves and evaluate the control-
ler performance. Looking at the OCOP curve (Figure 4.13) indicates significant degradation in perform-
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ance. However, it is still not known whether the performance degradation is due to changes in the plant 
and/or disturbance dynamics.  
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Figure 4.13. Old controller & old process curve and installed controller performance (Example 4.4). 
 
As in Step 3 of the procedure, the disturbance dynamics is estimated from routine operating data and 

turns out that the disturbance impulse response does not settle out before the time delay, but extrapolation 
can be applied to yield Figure 4.14. 
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Figure 4.14. True and extrapolated impulse response of disturbance model (Example 4.4). 
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As the extrapolated coefficients fit well with the true ones, an estimate of the plant dynamics Gp is iden-

tified from the pre-filtered input–output data (Section 7.2.7; Equation 7.27). Figure 4.15 compares the step 
response of the estimated process model with that of the true one and indicates good agreement.  
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Figure 4.15. True and estimated step response of process model (Example 4.4). 

 
Using the estimated process model, step 4 and 5 of Procedure 4.3 can be carried out and leads to the 

OCNP and NCNP performance curves shown in Figure 4.16. Both curves fall together and pass through the 
confidence region (rectangle) for the actual variances. This implies that no real benefit would be gained by 
carrying out a new response test and re-design of the MPC controller. This is indeed the right conclusion, as 
we only changed the disturbance dynamics.   
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Figure 4.16. Update performance curves (Example 4.4). 
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Example 4.5. Consider again the paper machine model in Equation 3.25. In this case, both the plant and 
disturbance dynamics are changed so that the “new process” is expressed by 

3
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.   

The updated performance curves are shown Figure 4.17.  
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Figure 4.17. Update performance curves (Example 4.5). 

 
 

The clear distance between the OCNP and NCNP curves indicate the potential from performance im-
provement by re-testing the plant and re-designing the MPC controller. For instance, if the current level of 
the input variance is maintained, there is a maximum possible scope of   

0.1314 0.1056 100 20%
0.1314

− × ≈    

to reduce the output variance.  
 
Example 4.6. The viscosity control problem presented by MacGregor (1977) is considered:  
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The noise ε is assumed to have unity variance. For this system, we construct the performance curves for 
LQG, GMVC and GPC (N2 = Nu = 2), shown in Figure 4.18. It can seen how the GMVC and GPC curves 
lie significantly above the LQG curve and fall together for smaller ρ. The MVC may be adopted if the large 
input variance is acceptable. A possible comparison strategy of the other controllers is to determine the 
output variances for comparable input variances, as listed in Table 4.1. This shows that LQG achieves a 
smaller output variance than GMVC or GPC. In view of this criterion, we would prefer the LQG controller, 
but this is not a general suggestion.  
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Note that as the weighting parameter ρ is reduced to zero the performance of an LQG controller be-

comes that of the MVC, while satisfying closed-loop stability. In contrast, closed-loop systems with GMVC 
and GPC become unstable for non-minimum phase processes when the control effort goes to zero 
(Moudgalya, 2007). This is the reason why in Figure 4.18 the GMVC and GPC performance curves move 
upwards as ρ → 0. In view of this, the LQG benchmark is also the recommended assessment method.  

 
 

Table 4.1. Comparison of MVC, GMVC, LQG and GPC controllers for MacGregor’s viscosity problem. 

 MVC GMVC; ρ = 1.0 LQG; ρ = 1.4 GPC; ρ = 2.8 
2
yσ  1.4070 1.7194 1.6452 1.6591 
2
uσ Δ  1.2994 0.1867 1.1878 0.1864 
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Figure 4.18. Performance curves for LQG, GMVC and GPC of MacGregor’s viscosity problem. 

4.3.5 Assessing the Effect of Constraints  

The most important feature of MPC is that it provides a very flexible approach to incorporate 
constraints into the computation of optimal control inputs. It is clear that the performance of a 
constrained loop is different to that of the unconstrained loop (when the constraints are active). 
Most commercial MPC packages use quadratic program (QP) solutions to calculate the optimal 
input sequence, and the resulting control law is generally non-linear. Performance assessment of 
MPC loops with constraints is thus more complicated. 

To evaluate the effect of the constraint imposed on the process, the installed controller per-
formance may be compared to that of the unconstrained MPC controller. The performance gap 
between both controllers is only due to the constraints. Obviously, the actual variance in process 
output converges to that in the unconstrained case, when the constraints become inactive. There-
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fore, if the constrained MPC loop works near the unconstrained controller benchmark, it indi-
cates that the constraints have little effect on the system performance. If the constrained MPC 
loop works far from the unconstrained controller benchmark, one can conclude that the con-
straints greatly affect the loop performance. Recall that the design-case MPC assessment ap-
proach, introduced in Section 4.3.2, is well suited for evaluating MPC with constraints.  

MPC performance assessment with respect to constraints and economical benefits is an active 
CPM field. In this context, two statistical approaches for MPC constraint analysis and tuning 
have been recently proposed by Agarwal et al. (2007). In the same direction goes the contribu-
tion by Xu et al. (2007).   

4.4 Summary and Conclusions 

This chapter has provided advanced methodologies for controller performance assessment. The 
main feature of these important methods is to minimise a weighted sum of the set-point error and 
the control effort, and thus avoid excessive control action that can result from minimum variance 
control. For the assessment purpose, a performance curve is constructed by plotting the variance 
of the process variable against that of the (differenced) input over a range of values of the move 
suppression parameter. Such a trade-off curve is particularly valuable when assessing the per-
formance model-predictive controllers. A formal procedure was described (Section 4.3.4.3) 
which utilises routine operating data to update the plant and disturbance models for MPC. Al-
though not universally applicable, the method provides a useful way to determine when it be-
comes worthwhile to invest in re-identification of the plant dynamics and re-commissioning of 
MPC. Moreover, LQG benchmarking (with its performance curve) remains the standard against 
which other controllers should be compared, when the penalisation of control effort is important.   

Despite these nice features, there are enough reasons for not using advanced benchmarking 
techniques, for instance: 
1. Advanced assessment methods normally require a full system model to calculate the perform-

ance indices. Although it is possible under certain circumstances to estimate a process model, 
a disturbance model, or both from closed-loop data, this method can be complicated and rely 
on an adequate signal to noise ratio in the data set.   

2. If a move suppression weight (LQG, MPC) or even more complex dynamic weightings 
(GMV) are needed, the user must specify them and decide whether the current controller 
variance is sufficiently close to somewhat detuned controller to be acceptable. This is not a 
trivial task having in mind that the output variance is very non-linear function of the move 
suppression parameter. Moreover, a priori knowledge and/or simulations are usually neces-
sary to select proper design parameters of advanced benchmarking techniques.  

3. Such involved methods are only applicable and useful for the assessment of model-based 
controllers, which are used in maximally 10% of industrial control loops.  
Inspired by Clegg (2002), the benchmarking methods, HIS, EHPI, MV, GMV, LQG and 

MPC, are compared in terms of parameters/data requirements and benefits; see Figure 4.2 and 
Figure 4.3. It can be concluded that, usually, calculating more sophisticated and realistic bench-
marks requires more prior knowledge and data and is computationally expensive. On the other 
hand, using historical benchmarks (which do not require model identification) is the easiest ap-
proach, but must be taken with care, as it is too subjective and may be misleading.  
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Table 4.2. Summary of requirements of different control benchmarking methods. 

           Method HIS EHPI MV GMV LQG MPC 
Time delay       
Control error       
Control input ( )      
Weightings       
Process/disturbance model      ( ) 
Controller structure       
 

Table 4.3. Summary of benefits of different control benchmarking methods. 

                                  Method HIS EHPI MV GMV LQG MPC 
Control benchmark       
Limitation of actuator energy        
Reflection of controller structure  ( ) ( )     
Required computational burden

10
 * ** ** *** ***** ***** 

                                                           
10

 Low: * – high: ***** 





5 Deterministic Controller Assessment 

Systems in the process industries normally have at least one stochastic source acting on the sys-
tem process and are operated around a constant operating point for long period of time or within 
the batches. Also, for most of these systems, reducing the output variances leads to improved 
product quality, reduced energy/material consumption, and thus higher efficiency and productiv-
ity. Therefore, for such systems, considering MV and related benchmarks is quite natural and 
useful.  

However, systems in some other industrial fields, such as power and servo industry and ro-
botics, show references and disturbances tending to be more deterministic rather than stochastic. 
In these cases, the processes are operated with frequent changes in the references and hence 
output levels. For instance, power plants have to follow a daily load program, which is fixed as 
function of typical load demand and energy market requirements (Uduehi et al., 2007c). So, for 
such systems, deterministic assessment techniques are needed. 

This chapter presents three methods for control performance assessment based on determinis-
tic criteria: settling time and IAE indices gained from set-point response data (Section 5.2), the 
idle index for detection of sluggish control (Section 5.3) and the area index for evaluating deter-
ministic load-disturbance rejection performance (Section 5.4). These techniques are compared 
and discussed using simulation examples in Section 5.4.3.  

5.1 Performance Metrics 

It has been a tradition in (PID) control engineering to judge the control performance based on 
step changes in set points or load disturbances. When analysing a set-point response, the criteria 
used to describe how well the process responds to the change can include the rise time, settling 
time, decay ratio, overshoot and steady-state error (Figure 5.1, Table 5.1).  
 

Tset
Tr

Period T 

y 

t 

b 

a 

c 

 
Figure 5.1. Set-point response features. 
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These criteria can be used both as specifications for tuning/commissioning of control loops as 

well as for documenting changes in performance due to the adjustment of the controller or proc-
ess parameters. Typically, designers select one of the above metrics and define optimal control 
as the tunings that achieve the minimum value of the criteria. 

 
 

Table 5.1. Typical set-point response criteria. 

Criterion Definition and Interpretation 
Rise time 
Tr 

Inverse of the largest slope of the step response or the time it takes for the step response to 
change from 10 to 90% of its steady-state value. A large rise time may be the result of a 
sluggish controller. 

Settling 
time 
Tset 

Time it takes before the step response remains within p % (commonly p = 1, 2, or 5%) of its 
steady-state value. Time spent outside the desired level generally relates to undesirable 
product. Therefore, a short settling time is sought. 

Decay ratio 
d = c/a 

Ratio between two consecutive maxima of the error. A large decay rate is associated with 
an aggressive controller, and visible oscillations are present in the set-point response. The 
smaller the decay rate, the faster the oscillations will be dampened. Traditionally, a quarter 
amplitude damping (i.e., d = 1/4) has been used. This value is, however, often too high. 

Overshoot 
α = 100 a/b 

Ratio between the difference between first peak and the steady-state value of set-point 
response. An aggressive controller can increase the amount of overshoot associated with a 
set-point change. Commonly, an overshoot of 8 to 10% is specified. In many situations, it is 
desirable, however, to have an over-damped response with no overshoot. 

Steady-
state error 

Steady-state control error. This is always zero for a controller with integral action.  

 
 

The set-point response criteria explained above are based on a single point of the response 
curve. Other closed-loop performance metrics include the integral of error criteria, which focus 
on deviation from set point, and thus characterise the entire closed-loop response curve. It is 
common to use some features of the control error, typically extrema (e.g., maximum error, time 
where maximum error occurs), asymptotes, areas); see Table 5.2. Shinskey (1996) argues that 
the IAE value is a good economic performance measure because the size and length of the error 
in either direction is proportional to lost revenue. 
 

Table 5.2. Typical integral error criteria. 

Criterion Formula Comment 
Integral of the squared 
error (ISE) 

2

0
( )de t t

∞

∫  Very aggressive criterion because squaring the error 
term provides a greater punishment for large error. 

Integral of the absolute 
value of the error (IAE) 0

| ( ) | de t t
∞

∫  Tends to produce controller settings that are between 
those for the ITAE and ISE criteria. 

Integral of the time-
weighted absolute error 
(ITAE) 

0
| ( ) | dt e t t

∞

∫  Most conservative of the error criteria; the multiplica-
tion by time gives greater weighting to error that 
persists over a longer passage of time. 

Integral of multiplied 
absolute error (ITNAE) 0

| ( ) | dnt e t t
∞

∫  Most conservative of the error criteria; the multiplica-
tion by time gives greater weighting to error that 
persists over a longer passage of time. 

Quadratic error (QE) 2 2

0
( ) ( ) de t u t tρ

∞
⎡ ⎤+⎣ ⎦∫

 

Standard criterion used for optimal control design. ρ is 
a weighting factor.  
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5.2 Controller Assessment Based on Set-point Response Data 

Performance indices based on set-point data have been developed by Swanda and Seborg (1997, 
1999) to characterise the performance of PID-type feedback control loops. Index values are de-
termined to indicate the transition point from satisfactory control to unsatisfactory control for 
various control objectives. The method will be outlined in the following.   

5.2.1 Normalised Criteria 

As mentioned in Section 5.1, two traditional performance criteria are the settling time Tset and the 
integral of absolute errors IAE. However, the absolute values of Tset and IAE give little indication 
of control loop performance without relation to the process dynamics. The rationale of Swanda 
and Seborg’s approach is to compare the achieved performance with that of a PI controller tuned 
with the IMC rule based on a FOPTD process model:  

a
pe

( )
1

T sK
G s

Ts

−

=
+

, (5.1) 

where Kp is the static process gain, Ta the apparent time delay, and T is the (apparent) time con-
stant or lag. The term “apparent” is used to emphasise that the parameters are approximate. τa is a 
simple mean to characterise the net time delay, right-half-plane zeros and system order. In this 
context, two important performance indications, namely, the normalised versions of the settling 
time Tset and the IAE are considered: 

* set
set

a

TT
T

=  (5.2) 

d
a| |

IAEIAE
r T

=
Δ

, (5.3) 

where Δr the size of the set-point step change. Both criteria are related to each other by (Swanda 
and Seborg, 1999)  

*
*set

d set0.565 for 3.30
2.30
TIAE T≈ + ≥ . (5.4) 

The corresponding gain margin Am and phase margin ϕm can also be expressed as functions of 
*

setT  by 

*
set

m
π 0.565
2 2.30

TA
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, (5.5) 

m *
set

π 1
2 0.565

2.30
T

ϕ = −
+

, (5.6) 

These relationships have been derived by fitting the parameters to the analytical solutions for 
different models controlled by an IMC-PI controller and for a settling time defined at y = 0.9Δr. 
Swanda and Seborg (1999) claimed that they are accurate enough and applicable to other process 
models.  
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5.2.2 Assessment Methodology 

Optimal *
setT  and IAEd values have been determined by Swanda and Seborg (1999) for different 

representative models and serve as benchmarks for control system performance. Controller set-
tings which minimise *

setT  and IAEd criteria were determined using the MATLAB Optimization 
Toolbox.  

To quantify how far a PI controller is from the best achievable performance and to identify 
poorly performing control loops, different performance classes are defined, as given in Table 5.3. 
For a particular class, both conditions in Table 5.3 should be met. However, this definition can 
be relaxed to a single bound if one performance index is favoured over another (Swanda and 
Seborg, 1999).  

 

Table 5.3. Swanda and Seborg’s performance classes for PI control. 

Class  Dimensionless settling time *
setT  Overshoot α [%] 

High performance  *
set 4.6T ≤  - 

Fair/Acceptable performance *
set4.6 13.3T< ≤  - 

Excessively sluggish *
set 13.3T >  ≤ 10 

Aggressive/Oscillatory   *
set 13.3T >  > 10 

 
The assessment strategy can be interpreted as follows: 

• An overshoot value of 10% is used to distinguish between the excessively sluggish and 
poorly tuned controllers. A characteristic of a detuned controller is that it has little or no 
overshoot. No overshoot is a definitive indication of sluggish control. Therefore, if α > 10% 
and the upper bounds of *

setT  and IAEd are exceeded, then the controller is considered to be 
poorly tuned. In fact, an α ≤ 10% bound can be applied regardless of the values of the nor-
malised performance indices.  

• If the best achievable performance of PI control is desired, than the controller should be re-
tuned if the calculated the index values are outside those for the high-performance class. Fur-
thermore, determining if a controller has the best achievable performance is useful, because if 
this ideal limit does not meet manufacturing specifications, then retuning the PI controller 
will not solve the problem. In this situation, a more advanced controller, such a model predic-
tive controller, would need to be considered.  
Furthermore, the approximate relationships in Equations 5.5 and 5.6 can be used to determine 

robustness benchmarks for the current level of performance. For example, if *
set 5,T =  the corre-

sponding benchmark values for Am and ϕm, are 4.3 and 69°. If it is determined that the Am and ϕm 
values are significantly less than the benchmarks, then the controller has a poor performance-
robustness trade-off and re-tuning of the controller is advisable. 

The assessment procedure described here can be summarised in the following Procedure. 

Procedure 5.1. Performance assessment based on dimensionless settling time. 

1. Carry out a set-point step experiment with the closed loop. 
2. Identify the values of apparent time delay Ta, settling time Tset and overshoot α from collected output 

data. 
3. Calculate the normalised settling time *

setT  value. 
4. Use Table 5.3 to assess the control performance. 
5. Calculate the corresponding values of gain margin Am and phase margin ϕm (Equations 5.5 and 5.6, 

respectively) and assess the performance-robustness trade-off. 
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5.2.3 Determination of Apparent Time Delay from Step Response 

A key point in the performance assessment based on dimensionless settling time is the determi-
nation of the apparent time delay τa. For this purpose, the step response is approximated by a 
FOPTD (Equation 5.1), or a second-order-plus-time-delay (SOPTD) model 
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p

2

2
00

( )
2 1

T sK e
G s

s D s
ωω

−

=
+ +

, (5.7) 

depending on the damping behaviour. Pragmatically, one can first try a SOPTD approximation. 
If the damping coefficient value is higher than unity, a FOPTD model may be sufficient.  

5.2.3.1 FOPTD Approximation 

When the system response is over-damped, it is sufficient to approximate the step response by a 
FOPTD. There are many methods to generate such approximations. One of the first methods, the 
tangent method, was described by Ziegler and Nichols (1942) for systems with essentially mono-
tone step responses; see Figure 5.2.  

The tangent method for obtaining the time constant suffers from using only a single point to 
estimate the time constant. Use of several points from the response may provide a better esti-
mate. Strejc (1959) proposed to use two data points A(t1, y1) and B(t2, y2), e.g., A(t20%, y20%) and 
B(t85%, y85%) of the measured reaction curve to give the model parameters: 
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. (5.9) 
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Figure 5.2. Approximation of a step response using the tangent method. 
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5.2.3.2 SOPTD Approximation 

This is the right option when the step response is under-damped. There are many methods avail-
able in the literature to perform this approximation, e.g., Yuwana and Seborg (1982), Rangaiah 
and Krishnaswamy (1994; 1996). This technique belongs to those involving allowing y(t) and its 
model approximation to intersect at two to five points, including the point of inflection (ti, yi), the 
first peak (tp1, yp1), as shown in Figure 5.3. In the context of controller assessment based on set-
point response data, we found that the three-point approximation method by Rangaiah and 
Krishnaswamy (1996) is the most reliable approach.  

The maximum point is used to calculate the maximum overshoot Mp1 and the damping coef-
ficient D as (Huang and Chou, 1994) 

p1
p1

y y
M

y
∞

∞

−
= ,  

2
p1

2 2
p1

lnˆ
π ln

M
D

M
=

+
, (5.10) 

respectively.  
Now that an estimate for D is available, the task reduces to a two-parameter problem of esti-

mating τa and T so as to achieve a good model fit. For this purpose, the step response is normal-
ised to a gain of unity *( ( ))y t  and with respect to T, i.e., *

a( ) / .t t T T= −  The three-point method 
(Rangaiah and Krishnaswamy, 1996) requires values of * *

p1 p1( , ),t y  * *
i i( , )t y  and * *

2 2( , ),t y  and per-
forming the following procedure.  
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Figure 5.3. Typical step-response data points used for approximation of an under-damped second-order-
plus-time-delay process. 
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Procedure 5.2. Estimating second-order plus time delay parameters using the three-point method of Ran-
gaiah and Krishnaswamy (1996). 
1. Locate the first peak (tp1, yp1) from the measured system response and estimate the damping ratio from 

Equation 5.10. 
2. Compute *

iy  from an analytical expression derived by Huang and Clements (1982) 

2 2
*
i 2 2

ˆ ˆ ˆ1 1 11 exp arctan sin 2arctanˆ ˆˆ ˆ1 1

D D Dy
D DD D

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= − −
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (5.11) 

read off the corresponding ti from the measured system response and calculate 

2
*
i 2

ˆ1 1arctan ˆˆ1

Dt
DD

−=
−

. (5.12) 

3. Estimate *
2y  from the empirical relation  

* 2
2

ˆ ˆ1.8277 1.7652 0.6188y D D= − +  (5.13) 

read off the corresponding t2 from the measured system response and calculate 

* 2
2

ˆ ˆ3.4752 1.3702 0.1930t D D= − +  (5.14) 

4. Evaluate T̂  from  

2 i
* *
2 i

ˆ t tT
t t

−=
−

. (5.15) 

An estimate for the time delay is then obtained from 

*
a i i
ˆ ˆT t t T= − . (5.16) 

Note that this approximation method is particularly suited for under-damped processes, i.e., 
0.4 < D < 0.8. Outside this range, the following methods could be used: (i) for D < 0.4, i.e., when 
oscillations are significant, the method by Yuwana and Seborg (1982) may be performed; (ii) for 
D > 0.8, i.e., when the response is sluggish, the method by Rangaiah and Krishnaswamy (1994) 
is recommended.  

5.2.3.3 Optimisation-based Approximation  

The main problem of the application of most FOPTD- and SOPTD-approximation methods is 
their high sensitivity to noise in the measured output signal. Also, the techniques will fail when 
the step response is not complete, i.e., the steady state is not reached, or even when the system 
input is not an ideal step, e.g., a steep ramp. A method that works well despite the presence of 
noise is to fit a FOPTD- or SOPTD to the measured response data based on an optimisation algo-
rithm, e.g., Nelder−Mead minimisation using the routine fminsearch of the MATLAB Opti-
mization Toolbox. This means to identify the parameters of a FOPTD- or SOPTD model, which 
minimise the objective function  
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V y k y k

=

= −∑Θ Θ  (5.17) 
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with T
p a[ , , ]K T T=Θ  for a FOPTD model and T

p a[ , , , ]K T D T=Θ  for a SOPTD model. It is 
then recommended to use the estimated response data for the calculation of the settling time and 
overshoot, rather than considering the measured (noisy) response data.  

5.2.4 Application Examples 

5.2.4.1 Simulation Example 

We consider a process represented by the model (Ts = 1s) 
95e 1( ) ( ) ( )

(10 1)( 1) (10 1)( 1)

s

y s u s s
s s s s

ε
−

= +
+ + + +

, (5.18) 

controlled by a PI controller with the settings Kc = 0.144 and TI = 6s. Some approximation meth-
ods have been applied to give the SOPTD model parameters in Table 5.4. Overall, the optimisa-
tion-based method seems to yield the best approximation (Figure 5.4). Having in mind the 
aforementioned advantages, it should always be the preferred method. Note that the obtained 
models approximate the closed-loop behaviour and should not be confused with the parameters 
of process model in Equation 5.18.  

Table 5.4 also contains the set-point-response-based performance assessment results. What-
ever the approximation method is used, the results clearly indicate oscillatory/aggressive control-
ler tuning; look at Table 5.3.  
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Figure 5.4. Simulated and estimated step responses used for performance assessment of the control loop in 
the simulation example (top: Yuwana and Seborg (1982); middle: Rangaiah and Krishnaswamy (1996); 
bottom: optimisation-based). 
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Table 5.4. Set-point-response approximation and assessment results for the simulation example. 

Approximation method Estimated SOPTD  
parameters 

Assessment results 

 Kp ω0 D Ta *
setT  IAEd α 

Yuwana and Seborg (1982) 1.0 0.13 0.11 11.0 25.7 11.5 67.5 
Rangaiah and Krishnaswamy (1996) 1.0 0.18 0.09 13.0 20.5 9.3 74.7 
Optimisation-based  1.0 0.11 0.12 6.6 23.1 10.4 69.5 

5.2.4.2 Industrial Example  

The set-point assessment technique is applied to data shown in Figure 5.5, which were gathered 
from a flow control loop in a pulp mill. The set point was changed stepwise while the gain Kc of 
the PI controller was changed from 0.2 to 0.04 at time 840s and to 0.35 at time 1690s. The inte-
gral time was TI = 9s in all cases. It is known from the loop that the time delay varies rather much 
(Horch and Stattin, 2002). FOPTD models have been estimated by the optimisation function 
fminsearch, and the estimated step responses (Figure 5.6) were used to calculate the settling 
times and overshoots. In contrast, the approximation methods in Section 5.2.3.1 fail, as the step 
responses are too noisy. The performance assessment results (Procedure 2.1) are summarised in 
Table 5.5 for the different data segments with different controller settings. The assessment re-
sults found are in good agreement with the knowledge about the control loop.  

Note that similar results have been achieved by Horch and Stattin (2002), who identified 
Kautz models to compute the settling times and overshoots of the closed-loop step responses and 
Laguerre models to estimate the time delays; see also Sections 7.2.5 and 7.3.1.  
 

Table 5.5. Set-point-response-based assessment results for the flow control loop. 

Data segment 
no. 

Ta *
setT  IAEd α Assessment 

1  14.8 3.0 2.1 0 High performance 
2  26.7 6.0 3.3 0 Fair performance 
3 7.8 2.8 2.0 0 High performance 
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Figure 5.5. Data from a flow control loop. The instants of controller retuning are denoted by vertical 
dashed lines. 
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Figure 5.6. Measured and estimated step responses used for performance assessment of the flow control 
loop. Compared to Figure 5.5, the data are mean-centered for each window prior to identification.  

5.3 Idle Index for Detecting Sluggish Control 

Very conservative tuning, usually with fixed controller settings, is often established in the proc-
ess industry due to lack of time to optimise controllers during commissioning of control systems. 
This results in sluggish control when operating conditions change, and thus unnecessarily large 
and long deviations from the set point remain. Therefore, it is often beneficial to detect sluggish 
control loops using tailored methods for this purpose. This section reviews the idle-index tech-
nique proposed by Hägglund (1999) and discusses some key aspects when the method is applied 
to real-world data. 

5.3.1 Characterisation of Sluggish Control  

Figure 5.7 shows two responses to load disturbances in the form of step changes at the process 
input. One response is good, with a quick recovery with small undershoot. The second response, 
however, is very sluggish. Both responses have an initial phase where the two signals go in op-
posite directions, i.e., ΔuΔy < 0, where Δu and Δy are the increments of control signal and the 
process output, u and y, respectively. Characteristic for the sluggish response is that, after this 
initial phase, a very long time period occurs, where the correlation between the two signal in-
crements is positive. 

5.3.2 Idle Index 

Hägglund (1999; 2005) presented a method to detect sluggish control loops by using the so-
called idle index. It assesses the time for a loop needed to recover from a stepwise load distur-
bance. The idle index describes the relation between times of positive and negative correlation 
between the control signal and the process output increments, Δu and Δy, respectively. 

The idle index (Ii) is defined as 
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 (5.19) 

for loops with a positive gain, and 
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for loops with a negative gain. 
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Figure 5.7. Good (solid) and sluggish (dash) control of load disturbances.  

 
To form the index, the time periods when the correlations between the signal increments are 

positive and negative, respectively, are calculated first. The following quantities are updated at 
every sampling instant 
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 (5.21) 

where Ts is the sampling time.  
Ii is bounded in the interval [−1, 1]. A positive value of Ii close to 1 means that the control is 

sluggish. Values close to 0 indicate that the controller tuning is reasonably good. Negative values 
of Ii close to −1 may imply well-tuned control, but can also be obtained for oscillatory control as 
well. Therefore, it is necessary to combine the idle index calculation with an oscillation-detection 
procedure to make the right decision. Also, the idle index tool requires that the set point is avail-
able to exclude periods when the excitation is caused by set-point changes. 

5.3.3 Practical Conditions and Parameter Selection 

When the methodology described in Section 5.3.2 has to be applied in practical cases, there are 
many technical problems to be solved. It was Kuehl and Horch (2005) who revealed these issues 
and suggested appropriate data-processing techniques. 
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5.3.3.1 P-only Control  

It is evident that the idle index is not designed to reasonably assess the control performance of 
loops with P-only controllers (luckily not very frequent in the process industries). This becomes 
clear when considering the controller equation for P-control Δu = −KcΔy. All increments of y and 
u will be of different sign, no matter how fast or sluggish the controller performance may be. The 
idle index for data from loops with pure P-control will hence always have a value close to −1. 

5.3.3.2 Need for Signal Filtering  

The procedure is very sensitive to noise, since increments of the signals are studied. Without 
proper filtering, the index completely fails. To find a suitable filter time-constant, it is necessary 
to have some information about the process dynamics. When the analysis is done offline, non-
causal (zero-phase) filtering [filtfilt] should be applied. 

Low-pass Filtering  

Low-pass filtering is the simplest and most common choice. To keep sudden changes in the 
signals, it is necessary to permanently supervise the deviation between the input x and output xf 
of the filter. As soon as the deviation exceeds a certain limit ε, this should be interpreted as a 
relevant change in the variable and the filter is re-initialised with the current signal value: 

f f 0( ) ( ) if | ( ) ( ) |x k x k x k x k ε= − > . (5.22) 

Kuehl and Horch (2005) proposed the heuristic rule: 0.4σε < ε0 < 0.6Δd, where σε is the standard 
deviation of the noise and Δd the typical size of load disturbances. A noise-level estimate can be 
determined as the standard deviation of the prediction error resulting from fitting an AR(MA)X 
model to the data.  

Regression Filtering  

Regression filtering is also a simple method for suppressing noise. First, the data set is split up 
into segments containing single load disturbances by using a simple disturbance detection algo-
rithm that begins collecting data once the disturbance is larger than a given threshold ε, as men-
tioned above, and stops when reaching the consecutive disturbance. There, the next segment 
begins. An ordinary regression is then performed within each segment by fitting a polynomial 
[polyfit & poylval] of default order n = 10 to the data in the least-squares sense. The poly-
nomial order surely is subject to further optimisation. Yet, orders higher than 10 tend to over-fit 
the data and very small orders produce rather slurry results (Kuehl and Horch, 2005). This pro-
cedure acts very similar to the low-pass filter with re-initialisation but suppresses noise more 
rigorously. 

Wavelet Denoising  

Wavelet denoising is a much more involved method, but does not show any big advantage com-
pared with the other techniques in the considered context. For details of this approach, consult 
Kuehl and Horch (2005) and the references cited therein. 

5.3.3.3 Exclusion of Steady-state Data  

The performance indications drawn from the idle index assume that the load disturbances are 
step changes or at least abrupt changes – a reasonable assumption in many situations, since load 
changes are often caused by sudden changes in production. However, if the load disturbances are 
varying slowly, the idle index may become positive and close to one even in situations when the 
control is not sluggish (Hägglund, 2005). To avoid this, it might be advantageous to calculate the 
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idle index only during periods when there are abrupt load changes, which may be accomplished 
using load-detection procedures; see Hägglund (1995) and Hägglund and Åström (2000). 

Calculations of the idle index near the steady state should thus be avoided, when the signal-
to-noise ratio is small. A simple way to ensure this is to perform the calculations only when 

0| |e e>  (5.23) 

where e0 is a threshold based on a noise-level estimate or fixed to a few percent of the signal 
range. The exclusion of steady-state data can also be done by the algorithm proposed by Cao and 
Rhinehart (1995).   

5.3.3.4 Signal Quantisation  

Quantisation can be described as  

f
quant round xx q

q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (5.24) 

where xquant is the quantified signal, xf the filtered signal and q the quantisation level. The choice 
of q is suggested to follow the heuristic rule: q = [0.05–0.1] ymax, where ymax is the maximum 
change of the output variable due the disturbance step (Kuehl and Horch, 2005).  

In our experience, quantisation should not be applied when the signals are properly filtered, 
e.g., using a zero-phase filter with appropriately selected cut-off frequency. In such a case, quan-
tisation would lead to an artificial increase of the idle index and thus may be misleading; see also 
Example 5.1. This finding is consequence of the fact that the choice of the quantisation level is a 
matter of how much noise is left in the signals.  

5.3.3.5 Combined Methods 

A number of methods can be combined for handling noise and avoiding misleading results. A 
suitable data pre-processing procedure proposed by Kuehl and Horch (2005) looks as follows: 
3. Filtering with 

(a) re-initialised low-pass filter or, 
(b) linear regression with re-initialisation or, 
(c) Wavelet denoising. 

4. Exclusion of steady-state data. 
5. Quantisation. 
 
MATLAB software implementing this method was provided by A. Horch and was used for the 
following illustrative example.   
 
Example 5.1. A FOPTD model described as G(s) = 1/(10s+1)e−5s is perturbed with a single stepwise load 
disturbance of amplitude 1 at the process entry. White noise with a variance of 0.002 has been added to the 
process output. The process is controlled with a sluggishly tuned PI controller with Kc = 0.8 and TI = 30.0. 
The process output y and controller output u (Figure 5.8) are subject to an idle index evaluation. In a first 
step, zero-phase filtering and linear regression, as described in Section 5.3.3 are applied, respectively. The 
results can be seen in Figure 5.9 and Figure 5.10. Finally, the processed data is quantised as described in 
Section 5.3.3.4 with the same quantisation interval chosen as q = 0.001 for all data sets.  

For some steps in the signal processing chain, the corresponding idle index value has been calculated. 
This example confirms that the idle index calculation completely fails when using noisy data. A comparison 
to the value in the noise-free case then reveals improvements due to signal processing. All idle index values 
are summarised in Table 5.6. Apparently, quantisation does not really help in this example, bearing in mind 
the danger of using a higher q than required. The best performing method is zero-phase filtering. However, 
this method can only be applied offline, as the filter is non-realisable.  
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Figure 5.8. Simulated data corrupted with noise. 
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Figure 5.9. Simulated data after zero-phase filtering.  
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Figure 5.10. Simulated data after regression filtering.  
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Table 5.6. Idle index values after some stages of data processing. 

Condition / processing method Idle index value 
No noise 0.82 
Noisy −0.99 
Zero-phase filtering (ωc = 0.008) 0.72 
Regression filtering (n = 10) 0.56 
Low-pass filtering  −0.96 
Regression filtering & quantisation with q = 0.001 0.28 
Low-pass filtering & quantisation with q = 0.001 −0.11 

 

5.4 Assessment of Load Disturbance Rejection Performance 

The aim of the methodology proposed by Visioli (2005) is to verify, by evaluating an abrupt load 
disturbance response, if the tuning of the adopted PI controller guarantees good load-disturbance 
rejection performance. The IAE criterion is thus used to ensure a low error magnitude and a 
stable response, i.e., low settling time, at the same time (Shinskey, 1996).  

5.4.1 Methodology 

Visioli’s technique is based on the analysis of the control signal when an abrupt load disturbance 
occurs on the process and it aims to estimate a generalised damping index of the closed-loop 
system. The performance index proposed is called the area index (AI) and is based on the control 
signal u(t) that compensates for a step load disturbance occurring on the process; see Figure 5.11. 
The value of the area index then decides whether it can be deduced if the control loop is too 
oscillatory.  
 

 
Figure 5.11. Closed loop with acting load disturbance l(t). 

 
The area index is calculated as the ratio between the maximal value of the determined areas 

(Figure 5.12) and the sum of them, excluding the area A0, i.e., the area between the time instant 
in which the step load disturbance occurs and the first time instant at which u(t) attains u0. For-
mally, the area index is defined as: 
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where u0 denotes the new steady-state value achieved by the control signal after the transient 
load disturbance response, t0 the time instant in which the step load disturbance occurs, 
t1, …, tN − 1 the subsequent time instants and tN the time instant in which the transient response 
ends and the manipulated variable attains its steady-state value u0. From a practical point of 
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view, the value of tN can be selected as the minimum time after that u(t) remains within a p% 
(e.g., 1%) range of u0. 
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Figure 5.12. Significant parameters for determining the area index. 

 
The area index can be combined with other indices to assess the performance of PI control-

lers. Based on the results obtained, the rules presented in Table 5.7 have been devised by Visioli 
(2005) to assess the tuning of the PI settings. The value of the area index is considered to be low 
if it is less than 0.35, medium if it is 0.35 < Ia < 0.7 and high if it is greater than 0.7. The value of 
the idle index is considered to be low if it is less than −0.6, medium if it is −0.6 < Ii < 0 and high 
if it is greater than zero.  

 
Table 5.7. Visioli’s performance-assessment rules for PI controllers. 

                    Ii  

Ia    
< −0.6 
(low) 

∈ [−0.6, 0]  
(medium) 

> 0 
(high) 

> 0.7 
(high) 

Kc too low Kc too low, TI too low Kc too low, TI too high 

∈ [0.35, 0.7] 
(medium) 

Kc ok, TI ok Kc too low, TI too low - 

< 0.35 
(low) 

Kc too high and/or TI too low TI too high TI too high 

 
 
From Equation 5.25, it can be deduced that the value of the area index is always in the inter-

val (0, 1]. Also, Visioli (2005) showed that the index can be related to the damping factor D of 
the closed-loop transfer function from the load disturbance signal l(t), acting at the process input, 
to the the controller output. It has been concluded that the more the value of AI approaches zero 
the more the control loop is oscillatory, whilst the more the value of AI approaches unity the 
more the control loop is sluggish. Therefore, a well-tuned controller gives a medium value of AI.  
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When both the values of the area index and of the idle index are low it is not possible to take 

decision based on both indices. In this situation, it is convenient to evaluate the following output 
index:  
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,negativo 1
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with 
1

0| ( ) |d 0,1, , 1i

i

t

i t
A y t y t i N+= − = −∫ … . (5.27) 

In case Io < 0.35 it can be concluded that both the proportional gain and integral time constant 
values are too high. Otherwise, the oscillatory response is caused by a too high value of Kc 
and/or a too low value of TI. In the latter case, experience suggested to decrease the value of the 
proportional gain anyway (Visioli, 2005). 

5.4.2 Practical Conditions 

As all control-error-area-based methods, the area index determination is extremely sensitive to 
noisy signals. As the area index is (usually) determined off-line, a standard filtering procedure 
can be applied before calculating the different areas. Alternatively, the concept of noise band, 
successfully applied in industry (Shinskey, 1996), can be sufficient. This means to discard those 
areas Ai whose value is less than a pre-defined threshold from the analysis, because they are 
actually due to the noise. This threshold can be determined by considering the control signal for 
a sufficiently long time interval when the process is at an equilibrium point and by determining 
the maximum area between two consecutive crossings with respect to its steady state value. The 
latter can be calculated as the mean value of the control signal itself in the considered time inter-
val.  

Another aspect that has to be taken into account is that the area index is significant only when 
an abrupt load change occurs, i.e., when the load change is fast enough with respect to the dy-
namics of the complementary sensitivity function. Thus, the method has to be applied only in 
these situations, e.g., when a sudden change in the production occurs or, obviously, when a step 
signal is deliberately added to the manipulated variable for this purpose. Otherwise, a higher 
value of the index might result (Visioli, 2005). To verify that this condition applies, or to detect 
those phases with significant load-disturbance changes, many methods exist, which can be ap-
plied, e.g., Hägglund (1995), Hägglund and Åström (2000). 

Among the different indices proposed in the literature, the merit of the area index is to pro-
vide an indication on in which direction the controller parameters have to be retuned. This will 
be used as the basis for a new iterative PI-controller tuning procedure presented in Section 
13.4.1. 

5.4.3 Illustrative Example 

The following fourth-order process is considered: 

p 4

1( )
( 1)

G s
s

=
+

. (5.28) 

The optimal tuning has been given by Visioli (2005) as Kc = 1.65 and TI = 4.15, leading to 
Ii = −0.80 and Ia = −0.35. Looking Table 5.7 confirms that this tuning is optimal (Kc ok, TI ok). In 
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the first case, only the integrator time is increased to TI = 9.0. The resulting values of the indices 
are Ii = −0.16 and Ia = 0.03, indicating that TI is too high, which is the right conclusion. The case 
tried next is Kc = 2.7 and TI = 9.0, giving Ii = −0.91 and Ia = 0.24. This signals that either Kc is 
too high and/or TI is too low. The same conclusion is obtained when we consider the tuning 
Kc = 2.2 and TI = 3.1 (case 3), giving Ii = −0.75 and Ia = 0.15. It appears that the idle index and 
area index alone are not able to distinguish between the two last cases. However, calculating the 
output index values 0.05 (case 2) and 0.43 (case 3), indicate that both Kc and TI are too high in 
case 2, and Kc is too high and/or TI is too low in case 3. In this latter case, the value of Kc should 
be decreased anyway. The results of the whole case study are summarised in Table 5.8. The unit 
step load disturbance responses, together with the corresponding manipulated variable signals 
are plotted in Figure 5.13. Note the difference between the step responses (y) in case 2 and case 
3, which is characterised by the output index, which is based on computing the ratio of the sum 
of negative output areas to the overall sum of areas. 
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Case 2) Too high values of Kc and TI 
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Case 3) Too high value of Kc; too low value of TI 
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Figure 5.13. Load disturbances responses for the different cases of the illustrative example. 
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Table 5.8. Assessment results for the illustrative example. 

Case Kc TI Ii Ia Io IAE Assessment 
0 1.65 4.15 −0.80 0.35 - 2.79 Kc ok, TI ok (optimal tuning). 
1 1.65 9.00 −0.16 0.03 - 5.44 TI too high. 
2 2.70 9.00 −0.91 0.24 0.05 3.60 both Kc and TI too high. 
3 2.20 3.10 −0.75 0.15 0.43 5.24 Kc too high or TI too low; decrease Kc anyway. 

 

5.5 Comparative Simulation Studies  

The approaches minimum variance assessment (Section 2.4), deterministic assessment of set-
point tracking (Section 5.1) and load-disturbance rejection (Section 5.3) are now applied and 
compared. For this purpose, three different processes are considered: the loop from Example 2.4 
(P1) and two loops discussed by Visioli (2006): the process in Equation 5.28 (P3) and that having 
the transfer function (P2) 

5
p

1( )
10 1

sG s e
s

−=
+

. (5.29) 

The results are presented in Tables 5.9−5.11.  
The calculated performance indices confirm the known fact that IMC tuning is more suitable 

for set-point tracking than disturbance rejection. It is observed that PI controllers tuned for top 
load-rejection performance exhibit large values of overshoot and decay ratio, which results in 
long settling times. The optimal values for Visioli’s indices are achieved when applying the 
ITAE (disturbance) tuning rule. It is expected that this rule gives a response that is very close to 
minimum variance for PI controllers.  

A main lesson to be learned from the results of this example is that the control objective, in-
cluding the expected type of disturbances, of the loop must guide the selection of the right as-
sessment method. In other words, when assessing a controller with the three approaches, one can 
directly see for what purpose the control loop has really been tuned. Also, different tunings for 
the same objective can be compared to pick up the best one during controller commissioning.  

 
 

Table 5.9. Performance assessment results for example P1. 

 Minimum variance 
assessment 

Assessment based on set-point re-
sponse data 

Assessment of load-
disturbance rejection 
performance 

Index η  *
setT  IAEd α Ia Ii 

0.76 3.6 2.4 0.0 1.0 −0.08 IMC1 
Good performance High performance Kc too low, TI too low 
0.81 3.4 2.3 4.3 0.96 −0.63 IMC2 
High performance High performance Kc too low 
0.65 27.5 12.2 18.6 0.92 −0.46 Hägglund 

and Åström Good performance Oscillatory/aggressive Kc too low, TI too low 
0.59 9.1 4.6 61.3 0.68 −0.77 ITAE  

(disturbance) Fair performance Fair/acceptable performance Kc ok, TI ok 
0.81 3.4 2.3 4.8 0.95 −0.63 ITAE 

(Set point) High performance High performance Kc too low 
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Table 5.10. Performance assessment results for example P2. 

 Minimum variance 
assessment 

Assessment based on set-point re-
sponse data 

Assessment of load-
disturbance rejection 
performance 

Index η  *
setT  IAEd α Ia Ii 

0.86 7.2 3.8 12.8 0.14 −0.12 Kc = 1.86, 
TI = 20.0 High performance Fair/acceptable performance TI too high 

0.82 7.0 3.7 38.3 0.61 −0.75 Kc = 1.86, 
TI = 10.36 High performance Fair/acceptable performance Kc ok, TI ok 

0.56 27.5 12.2 18.6 0.20 −0.90 Kc = 3.0, 
TI = 20.0 Good performance Oscillatory/aggressive Either Kc too high or TI 

too low 
 
 

Table 5.11. Performance assessment results for example P3. 

 Minimum variance 
assessment 

Assessment based on set-point re-
sponse data 

Assessment of load-
disturbance rejection 
performance 

Index η  *
setT  IAEd α Ia Ii 

0.89 9.3 4.7 27.6 0.35 −0.78 Kc = 1.65, 
TI = 4.15 High performance Fair/acceptable performance Kc ok, TI ok 

0.79 8.9 4.6 51.3 0.40 −0.51 Kc = 1.2, 
TI = 2.0 Good performance Fair/acceptable performance Kc too low, TI too low 

 

5.6 Summary and Conclusions 

Three deterministic methods for performance assessment have been presented, discussed and 
compared in this chapter. The first technique assesses the performance of PI controllers from 
closed-loop response data for a set-point step change. For this purpose, two dimensionless per-
formance indices, the normalised settling time and the normalised integral of the absolute value 
of the error are used. The methodology identifies poorly performing control loops, such as those 
that are oscillatory or excessively sluggish. This technique also provides insight concerning the 
performance-robustness trade-off inherent in the IMC tuning method and analytical relationships 
between the dimensionless performance indices, the gain margin and the phase margin. To work 
properly, it is necessary for the method to have accurate estimates of the apparent time delay, the 
settling time and the overshoot from step response. Methods for this purpose have been pre-
sented with the conclusion that it is recommended to identify the parameters from fitting a 
FOPTD or SOPTD model to the step response to avoid problems with noisy signals. 

The idle index is an apparently simple indicator for sluggish control. It evaluates controller 
action due to significant, step-wise load disturbances with a focus on the transient behaviour of 
the control loop. However, in practical situations, where the signals are noisy and show different 
behaviour (steady-state, transients), the idle index completely fails. Therefore, careful pre-
processing of the data, such as steady-state detection, filtering and signal quantisation, can be 
necessary. A set of techniques have been described to perform these tasks. Despite these pre-
treatment measures, the existence of distinct load step disturbances is still decisive for the capa-
bility of detecting sluggish loops using the idle index. Moreover, a problem associated with the 
idle index is that a negative value close to −1 may be obtained both from a well-tuned loop or 
from an oscillatory loop. Thus, an oscillation detection technique (Chapter 8) has be combined 
with the idle index method to get the right indication.  
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The idle index method can be improved by considering additional indices, namely, the area 

index and the output index. This combination provides an efficient way to assess the tuning of PI 
controllers with respect to load disturbance rejection performance. It has been shown that the 
three indices give valuable indication on how PI controller parameters, i.e., proportional gain and 
integral time, have to be modified to achieve better performance. Note that the same practical 
issues to be considered for the computation of the idle index are also relevant for the calculation 
of the area index. The method is particularly sensitive to noise, thus pre-filtering is essential.  

From the comparative study presented, we concluded that the control objective, including the 
expected type of disturbances, of the loop must guide the selection of the right assessment 
method. In other words, when assessing a controller with the different methods, one can directly 
see for what purpose the control loop has really been tuned. Also, different tunings for the same 
objective can be compared to pick up the best one during controller commissioning.  



 



6 Minimum Variance Assessment of Multivariable 
Control Systems 

The simplest approach for assessing multivariable control systems is to split the problem into p 
MISO (or SISO) systems and then apply single-loop assessment methods. This strategy, how-
ever, would only indicate the potential for performance improvement by adjusting the individual 
loops. Since the loops can be coupled, a multivariable control strategy can further reduce process 
variations, thus, only multivariable assessment can provide the right measure of performance 
improvement potential in the general case. In this chapter, methods for multivariable minimum 
variance benchmarking will be presented.  

The chapter is organised as follows: Section 6.1 introduces the interactor matrix and gives 
ways to determine or estimate it. In Section 6.2, it is shown how to use the interactor matrix to 
derive the multivariable variant of MVC. Section 6.3 presents the FCOR algorithm (Huang et al., 
1997), as the most known algorithm for assessing MIMO control systems based on routine oper-
ating data and the knowledge of the interactor matrix. As the interactor matrix is hard to deter-
mine, and thus control assessment based on it is difficult, an assessment procedure that does not 
require the interactor matrix is proposed in Section 6.4. Numerous examples will be given to 
illustrate how the methods presented.  

6.1 Interactor Matrix: Time-delay Analogy 

The introduction of the interactor matrix is important not only because it solves the multivariable 
minimum variance control problem (Section 6.1.3), but also it provides a basic tool to seek for 
the performance assessment index for multivariable processes (Section 6.3).  

6.1.1 Definition and Special Forms 

The delay structure of a multivariable plant has a direct effect on the minimum achievable vari-
ance and becomes in some sense the so-called interactor matrix (Wolovich and Falb, 1976; 
Goodwin and Sin, 1984). The interactor matrix is defined for any r × m proper, rational polyno-
mial transfer-function matrix Gp as the unique, non-singular r × r lower left triangular polyno-
mial matrix D that satisfies the conditions 

(i) det ( ) nq q=D  

1 p
0

(ii) lim ( ) ( ) ;  finite and full rank
q

q q
− →

=D G K K , (6.1) 

where n is the number of infinite zeros of Gp. D can be written in the Markov parameter repre-
sentation as 

1
0 1( ) v

vq q q qτ τ τ− −= + + +D D D D , (6.2) 

where τ denotes the order of the interactor matrix and is unique for a given transfer-function 
matrix, v is the relative degree of the interactor matrix, i.e., the difference between the maximum 
and minimum power of q in D, and Di (i = 0, 1, …, v) are the coefficients matrices.  

The interpretation of the interactor is that it is a part of the transfer-function matrix that is 
feedback-invariant and therefore constitutes a fundamental performance limitation in the system. 
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This is equivalent to the role that the time delay plays in SISO systems; however, the multivari-
able case is normally more complex due to interactions between loops. 

The general interactor matrix has a full matrix and is not unique. The uniqueness is the result 
of restricting the interactor matrix to be lower left triangular. Some important special forms of 
the (general) interactor matrix can be distinguished: 
• Simple Interactor Matrix. If all the delays are equal, then the simple interactor matrix is 

obtained:  

( ) rq qτ=D I  (6.3) 

and this is the direct equivalent of the scalar time delay. 
• Diagonal Interactor matrix. In the next simple case, the interactor may have a diagonal 

structure:  
1 2( ) diag( , , , )rq q q qτ τ τ= …D , (6.4) 

where τi is the minimum delay between all the inputs and output i. 
• Unitary Interactor Matrix. A particularly useful form is the unitary interactor matrix (Peng 

and Kinnaert, 1992) which satisfies 
T 1( ) ( )q q− =D D I . (6.5) 

The weighted unitary interactor matrix has the form: 
T 1( ) ( )w wq q− =D D W , (6.6) 

where W > 0 is a symmetric weighting matrix. The important property of a unitary matrix is 
that it does not change the spectral properties of a filtered signal, i.e., ||Dx||2 = ||x||2. In par-
ticular, the variance of the filtered signal remains the same as that of the original signal. This 
property will be exploited later in this chapter (Section 6.2) to derive the MIMO MV control 
law.  
The knowledge of the interactor matrix is a prerequisite for standard controller performance 

assessment algorithms. The interactor can be calculated from the plant transfer-function matrix, 
e.g., using the algorithm given by Rogozinski et al. (1987), or estimated from plant data, as sug-
gested by Huang and Shah (1999).  

Generally, the algorithms for determining the interactor matrix require a priori knowledge of 
the entire transfer matrix, which can be gained from open-loop identification. To weaken these 
requirements, Shah et al. (1987) have suggested (i) estimating the first few Markov parameters 
from closed-loop data via a (relatively high-frequency) dither signal or set-points changes and 
(ii) factorising the interactor directly from the estimated Markov parameters.  

6.1.2 Recursive Determination of Unitary Interactor Matrices 

When the process transfer function Gp is known, which is a strong requirement in the CPM con-
text, a unitary interactor matrix can be determined using different algorithms available in the 
literature. One common feature of these algorithms is to use the Markov parameter representa-
tion of Gp   

( 1)
p

0

i
i

i
q

∞
− +

=

=∑G G  (6.7) 

and that of the interactor matrix (Equation 6.2). From Equation 6.1, we can write 

0 0 = 0D G   
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1 0 0 1+ = 0D G D G   
  

1 0 1 2 0 1τ τ τ− − −+ + + =D G D G D G K   

or in matrix form 

[ ] [ ]

0

1 0

1

2 3

1 2 0

, ..., , , ....,τ

τ τ

τ τ

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0
0 0

0 0

…G
G G

D D K
G G
G G G

  

or simply 

' ' '=D G K , (6.8) 

where G′ is a block-Toeplitz matrix. Solving these algebraic equations gives the general solution 
of the interactor matrix. However, there is no unique solution for Equation 6.8, and a direct in-
version will not be always possible. This fact implies that an “optimal” (application-dependent) 
solution is sought, thus different algorithms have been proposed, e.g., by Rogozinski et al. 
(1987), Panlinski and Rogozinski (1990), Peng and Kinnaert (1992) and Bittanti et al. (1994).  

In what follows, the method suggested by Huang and Shah (1999) is presented. It applies for 
systems having a full rank n × m and proper rational polynomial transfer function matrix, i.e., 
rank(Gp) = min(n, m) and 

1 p
0

lim ( ) .
q

q
− →

< ∞G   

 
Procedure 6.1. Computation of the unitary interactor matrix. 
1. Construct the matrices G ′ and K′. 
2. Compute a singular value decomposition  (SVD) of G′ as 

T
T 1

1 2 T
2

'
⎡ ⎤⎡ ⎤

= = ⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

0
0 0

rΣ V
G UΣV U U

V
, (6.9) 

where [U1, U2] and [V1, V2]T are orthogonal matrices, the columns of U2 span the null space of G′in the 
sense that T

2 ' ,= 0U G  Σr is a full rank diagonal matrix and the rows of T
1V  span the row space of G′. 

3. Check if  

rank( ') rank( ') rank( ) min( , )n m≥ = =G K K  (6.10) 

and if each row of K′ is within the row space spanned by T
1V  or orthogonal to the row space spanned 

by T
2 ,V  i.e., 

2' = 0K V . (6.11) 

These conditions, when fulfilled, also determine the order of the interactor matrix min( , ).n mτ =  Note 
that the condition in Equation 6.11can be simplified by writing  

21

22
2 21

2

' , , ,

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥= … =⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0

V
V

K V K KV

V

, (6.12) 
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where V21 is the upper partition of V2 with its row dimension the same as the column dimension of Gp. 
Thus, the aforementioned condition is equivalent to 

21 = 0KV , (6.13) 

or even  

21 = 0V . (6.14) 

if K (or Gp) is a square matrix or is an n × m non-square matrix with n > m. 
4. If the conditions are not satisfied, expand the block-Toeplitz matrix by adding more Markov parameters 

until they are satisfied.  
5. Construct a block matrix of the first τ Markov parameters as 

0

1

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G
G

Λ

G

. (6.15) 

6. Apply the recursive algorithm of Rogozinski et al. (1987) and Peng and Kinnaert (1992), to give the 
interactor matrix D.  
Care has to be taken when calculating the numerical rank for the case where rows or columns 

of a matrix are very small, i.e., very close to zero. This will result in singular values very close to 
zero. Thus, a regularisation of the matrix G′ is recommended. In our experience, the aforemen-
tioned procedure is difficult to automate so that it is always suggested to carefully inspect the 
results of each step.   

 
Example 6.1. Consider a 2 × 2 multivariable process with a diagonal transfer function matrix and the same 
time delay of 2 samples (τ = 2) for both input/output channels: 

2

1

p 2

1

0
1 0.1

( )
20

1 0.4

q
q

q
q

q

−

−

−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

G . (6.16) 

Since 

1

2
p

0

1 0
lim :

0 2q
q

− →

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

G K   

is a constant full-rank matrix, the process has a simple interactor matrix of the form D = q2I.  
 
Example 6.2. The system considered here has a diagonal transfer function matrix, but the input/output 
channels have now different time delays (τ1 = 2, τ2 = 3): 

2

1

p 3

1

0
1 0.1

( )
20

1 0.4

q
q

q
q

q

−

−

−

−

⎡ ⎤
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

G . (6.17) 

Since 

1

2

p30

1 00
lim :

0 20q

q
q− →

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

G K   



 6.1 Interactor Matrix: Time-delay Analogy 125 
 

is a constant full-rank matrix, the process has a diagonal interactor matrix of the form D(q) = diag(q2, q3).  
 
Example 6.3. The process transfer function is changed to  

1 1

1 1

p 1 1

1 1

1 0.1 1 0.1
( )

2
1 0.3 1 0.4

q q
q q

q
q q

q q

− −

− −

− −

− −

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

G . (6.18) 

It can easily be seen that the system still has a simple interaction matrix D = qI, as we can write 

1 p
0

0 1 0
lim :

0 0 2q

q
q− →

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
G K ,  

which is a constant full-rank matrix. 
 
Example 6.4. Consider a 2 × 2 multivariable process with the transfer function matrix (Huang and Shah, 
1998)  

1 2
12

1 1

p 1 2

1 1

1 0.4 1 0.1
( )

0.3
1 0.1 1 0.8

q K q
q q

q
q q

q q

− −

− −

− −

− −

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

G , (6.19) 

where K12 controls the extent of interaction among the controlled variables. In this example, K12 = 1 is 
taken. There is no chance to find a simple or diagonal interactor matrix for this system, i.e., it has a general 
interactor matrix. Using Equation 2.78 leads to the Markov parameter representation 

1 1 2 1
0 1 2

p 1 1 2 1

1 0 0.4 1(1 0.4 ) (1 0.1 )
( ) 0

0.3 0 0.3 10.3 (1 0.1 ) (1 0.8 )
q q q q

q q q q
q q q q

− − − −
− −

− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + +
= = + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + + ⎣ ⎦ ⎣ ⎦⎣ ⎦

G . 

Skipping the first step G′ = G0, which is obviously rank deficient, the block-Toeplitz matrix is formed as 

1 0 0 0
0.3 0 0 0

'
0.4 1 1 0
0.3 1 0.3 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G .  

Applying the SVD (Equation 6.9) gives 

0.2205 0.9320 0.0146 0.2873
0.0662 0.2796 0.0044 0.9578
0.7919 0.1964 0.5782 0
0.5656 0.1211 0.8157 0

− − − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
−⎢ ⎥⎣ ⎦

U   

1.8154 0 0 0
1.8154 0 0

0 0.9832 0 0
0 0.9832 0

0 0 0.4094 0
0 0 0.4094

0 0 0 0

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⇒ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

rΣ Σ   
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21

0.4004 0.9163 0.0060 0
0.7478 0.3229 0.5801 0 0
0.5297 0.2367 0.8145 0 0

0 0 0 1.0

− − −⎡ ⎤
⎢ ⎥− ⎡ ⎤⎢ ⎥= ⇒ = ⎢ ⎥⎢ ⎥− − ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

V V .  

Therefore, both necessary conditions in Equation 6.10 and 6.14 are satisfied, giving the order of the interac-
tor matrix τ = min(n, m) = 2. The block matrix of the first two Markov parameters can be constructed as 

0

1

2

0 0
0 0
1 0

0.3 0
0.4 1
0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G
Λ G

G
.  

Applying the factorisation algorithm of Rogozinski et al. (1987) yields the interactor matrix 

2 2

0.9578 0.2873
( )

0.2873 0.9578
q q

q
q q

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

D .  

It can be easily verified that the condition 6.5 is satisfied.  

6.1.3 Estimation from Closed-loop Identification 

It is a well known fact that the delay structure or the interaction matrix is “feedback-control 
invariant” (Wolovich and Falb, 1976). This implies that although the Markov parameters of the 
open and closed-loop transfer function matrix are different, their linear combination yields the 
same interactor matrix; see also Huang and Shah (1999) for the mathematical proof. Exploiting 
this result, the interactor matrix of an open-loop transfer function can be estimated from the 
closed-loop data, provided one is allowed to insert a dither signal w(k) to the set points r(k) or to 
the controller outputs u(k); see Figure 6.1. A dither signal should be high-frequency random, 
ideally a white noise. The magnitude of the dither signal should be selected such that it has a 
very weak effect on the process output relative to the existing process disturbances.  
 
 

 
Figure 6.1. Diagram of control loop with dither-signal injection. 

 
In practice, however, the injection of such dither signals will be seldom allowed. In such 

situations, a series of simple changes of the set point may be conducted instead, and parametric 
models, e.g., ARX, ARMAX or PEM models, may be fitted to the gathered data. When using the 
armax function of the MATLAB identification toolbox, the MIMO system has to be split into p 
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MISO subsystems, and the identification task is carried out for each output separately. The dim-
pulse function can then be applied to each submodel. The resulting coefficients are combined 
to form the Markov parameter representation required for the determination of the interaction 
matrix using the technique already described in Section 6.1.2. Note that the identification task 
primarily seeks to estimate the closed-loop transfer function, i.e., from w to y.  
 
Example 6.5. We consider the multivariable control system (Figure 6.1) with the following transfer func-
tions and covariance matrices (Huang and Shah, 1999) 

1 2
12

1 1 1 1

p 1 2

1 11 1

1 0.6
1 0.4 1 0.8 1 0.5 1 0.5

( ) ( )
0.5 10.3

1 0.5 1 0.51 0.1 1 0.8

q K q
q q q q

G q q
q q

q qq q
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− − − −

− −

− −− −

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −− −⎢ ⎥ ⎣ ⎦⎣ ⎦

G  

1

1

c 1

1 1

0.5 0.2 0
1 0.5

( )
0.25 0.20

(1 0.5 )(1 0.5 )

q
q

q
q

q q

−

−

−

− −

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥

− +⎢ ⎥⎣ ⎦

G . (6.20) 

The set point and K12 are assumed to be zero. The disturbances are white random noises with unit variance. 
The dither signal is a two-dimensional white noise sequence with the variances of 0.05 and 0.07, passed 
through the transfer function Gw, which is selected as the discrete version of a high-pass filter s/( s + 1) for a 
sampling time Ts = 0.1s. For the sake of comparison, we will present not only the results achieved from 
identified models, but also those calculated using the knowledge of the exact transfer matrices.  

A data set of 3000 samples has been used for the identification. The first three Markov-parameter ma-
trices are calculated as 

0

1

2

0.0239 0.0516 0 0
0.0127 0.1407 0 0ˆ

1.0357 0.0517 1 0ˆ ˆ' '
0.2997 0.0920 0.3 0

ˆ
0.1060 0.1443 0.4 0
0.0830 0.8524 0.03 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎡ ⎤ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥= = =⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G

G G G

G

.  

The deviations between the estimated and the theoretical values are mainly due to the non-sufficient excita-
tion through the dither signal. Increasing the frequency of the high-pass filter reduces these deviations. For 
the determination of the interactor matrix, it is important to omit singular values very close to zero, i.e., less 
than a threshold a. A rule of thumb is to use 2 / ,a N=  where N is the data length. This did not help here, 
thus a = 0.16 has been used to give 

0 0
0 0

1.0363 0.0234ˆ '
0.2975 0.0067
0.0102 0.1355
0.0646 0.8538

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥⎣ ⎦

G .  

Despite the deviations between the identified and theoretical block-Toeplitz matrix entries, using the algo-
rithm in Section 6.1.2 yields an estimate of the interaction matrix 

2 2

0.9612 0.2759ˆ ( )
0.2759 0.9612

q q
q

q q
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
D ,  
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which is very close to the theoretical interaction matrix 

2 2

0.9578 0.2873
( )

0.2873 0.9578
q q

q
q q

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

D .  

 
Example 6.6. Consider the system with the transfer functions given by (Huang and Shah, 1999) 

2 2

1 1 1 1

p 1 2

1 11 1

2 2 1
1 0.4 1 0.5 1 0.9 1 0.3

( ) ( )
1 2

1 0.4 1 0.51 0.1 1 0.2

q q
q q q q

G q q
q q

q qq q

ε

− −

− − − −

− −

− −− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −− −⎢ ⎥ ⎣ ⎦⎣ ⎦

G   

c

0.2 0
( )

0 0.2
q

⎡ ⎤
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⎣ ⎦

G . (6.21) 

All other parameters are selected as in Example 6.5. The same procedure applied here leads to the estimate 
of the interaction matrix  

2 2

0.5700 0.8216ˆ ( )
0.8216 0.5700

q q
q

q q
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
D ,  

which shows remarkable deviations from the theoretical matrix  

2

0ˆ ( )
0
q

q
q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D .  

If the variance of the dither signals is increased to 2 0.2,wσ =  we get 

2 2

0.0602 0.9982ˆ ( )
0.9982 0.0602

q q
q

q q
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
D ,  

which now agrees well with the theoretical result. This example shows the importance of selecting the right 
dither signal for the estimation process. Recall that the dither signal should not affect the process output a 
lot, compared to the disturbances “routinely” occurring during the normal process operation.  

6.2 Interactor-matrix-based Minimum Variance Control Law 

The minimum variance control law can easily be extended to the multivariable case if the unitary 
interactor matrix is known, which is a strong requirement in CPM. Consider first a MIMO proc-
ess  

p( ) ( ) ( ) ( ) ( )k q k q kε= +y G u G ε   
1

p p p( ) ( ) ( ) ( ) ( ) ( ) : ( ) ( )q q k q k q q qε
−= + =D G u G ε G D G  (6.22) 

with a general unitary interactor matrix D. Multiplying both sides of Equation 6.22 by q−τD 
yields 

p( ) ( ) ( ) ( ) ( ) ( ) ( )q q k q q k q q q kτ τ τ
ε

− − −= +D y G u D G ε   

p ( ) ( ) ( ) ( )q q k q kτ
ε

−= +G u G ε , (6.23) 
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where : q τ
ε ε

−=G DG  is a proper transfer function matrix. By defining the interactor-filtered 
output ,q τ−=y Dy  Equation 6.23 can be transformed to a process with a simple interactor ma-
trix, i.e., 

p( ) ( ) ( ) ( ) ( )k q q k q kτ
ε

−= +y G u G ε . (6.24) 

Substituting the Diophantine identity  
1 ( 1)

0 1 1q q q qτ τ τ
ε ε τ

− − − − −
−= = + + + +

F

G DG F F F R , (6.25) 

where R  is the remaining proper and rational transfer function matrix, into Equation 6.24 leads 
to  

p( ) ( ) ( ) ( ) ( ) ( )k q k q k kτ τ= − + − +y G u R ε Fε . (6.26) 

The last term in this equation cannot be affected by the control action, i.e.,  
Tvar{ } E{ } var{ }= ≥y yy Fε .  

Therefore 
TE{ } trace(var{ })≥y y Fε .  

The minimum variance control is achieved when the sum of the first two terms on the right-hand 
side of Equation 6.26 is set to zero, i.e., 

p ( ) ( ) ( ) ( )q k q kτ τ− + − = 0G u R ε .  

This gives 
1

p( ) ( ) ( ) ( )k q q k−= −u G R ε . (6.27) 

Substituting Equation 6.27 into 6.26 yields 

( ) ( ) ( )k q k=y F ε . (6.28) 

Therefore 
1( ) ( ) ( )k q k−=ε F y . (6.29) 

Substituting Equation 6.29 into 6.27 gives the MV control law 
1 1 1 1

p p( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k q q q k q q q q q kτ− − − − −= − = −u G R F y G R F D y . (6.30) 

So far, the optimal control law, which minimises the LQ objective function of the interactor-
filtered output  

TE{ }J = y y  (6.31) 

has been found.  
However, as already mentioned in Section 6.1.1, if D is a unitary interactor matrix (Equation 

6.5), the variance is “filter-invariant”. Thus, the control law in Equation 6.30 also minimises the 
original LQ objective function of the original output  

TE{ }J = y y  (6.32) 
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and even J J=  holds. It can also be proven that this control law is unique, output-ordering 
invariant and scaling invariant. However, the value of the minimum variance itself depends on 
the type of interaction matrix used (Ettaleb, 1999). Note that the MV control will not be required 
for calculating the performance index. Also it is not needed to be implemented at the plant at all.  

6.3 Assessment Based on the Interactor Matrix 

There exist many approaches/algorithms to assess the performance of multivariable systems 
from routine-operating data. Examples are the FCOR approach (Huang et al., 1997; Huang and 
Shah, 1999), the spectral-factorisation-based approach (Harris et al., 1996a) and the admissible 
minimum-variance and minimum ISE control approaches for multivariable processes with un-
stable zeros (Tsiligiannis and Svoronos, 1989). In this section, we describe the computationally 
simple FCOR performance assessment algorithm, largely based on the descriptions by Huang et 
al. (1997) and Huang and Shah (1999).  

As for the SISO case, but now the interactor-filtered, routine operating data (under control) 
( )ky  are modelled by a multivariate MA process  

0 1 1

( )

E{ } ( 1) ( ( 1))
k

k kτ τ−− = + − + + − −
ε

y y F F ε F ε   

0 1

( )

( ) ( ( 1))
k

k k
τ

τ τ
−

+ − + − + +
w

L ε L ε , (6.33) 

which leads to an estimate of the white noise ε(k) (pre-whitening). Then the MV term, 
( ) ( ),k k=ε Fε  consists of the first τ terms of this MA model and, thus, can be separated from 

time-series analysis of the data and used as benchmark measure of multivariate MVC.  
From Equation 6.33, the covariance between ( )ky  and the white noise sequence at lag i (for 

i < τ) is given by 

{ }T T( ) E ( ) ( ) E{ } .ii k k i= − = =yε ε εΣ y ε F Σ Σ εε  (6.34) 

From  

0 1 1mv mv
( ) ( ) ( ) ( ) ( ) ( 1) ( ( 1)) ,k q q y k k k k kτ

τ τ−
−= = = + − + + − −y D ε F ε F ε F ε   

one can obtain  

1
0 1 1mv

( ) ( ) ( ) ( 1) ( ( 1))k q q k k kτ
τ τ−

−⎡ ⎤= + − + + − −⎣ ⎦y D F ε F ε F ε . (6.35) 

For the unitary matrix D(q), the property in Equation 6.5 gives 

( ) 11 T T 1
0 1 0 1( )q q q q qτ τ

τ τ

−− − −
− −= + + = + +D D D D D .  

Substituting this into Equation 6.35 yields 

( )( )T T 1 1 ( 1)
0 1 0 1 1mv

( ) ( )k q q q q q kτ τ τ
τ τ

− − − − −
− −= + + + + +y D D F F F ε . (6.36) 

Multiplication and grouping the coefficients for each q−i, having in mind that any term with posi-
tive power in q must be zero (to ensure causality), leads to 

( )1 ( 1)
0 1 1mv

( ) ( )k q q kτ
τ

− − −
−= + + +y E E E ε . (6.37) 
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Equation 6.36 can also be transformed in the compact matrix form 

0 1 1

1
T T T

0 1 1 0 1 1

1

1

[ , , , ] [ , , , ]

τ

τ τ

τ

τ

−

− −

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

F F F
F

E E E D D D
F

F

. (6.38) 

The matrices Ei correspond to the Markov parameters and the variance under MVC can be given 
as  

T T T
mv 0 0 1 1mv

var{ ( ) } :k τ τ− −= = + + =ε εΣ y E Σ E E Σ E XX   
1/ 2 1/ 2 1/2

0 1 1where [ , , , ] .τ −= ε ε εX E Σ E Σ E Σ  (6.39) 

The similarity to the SISO case (Equation 2.38) can be clearly observed. From Equation 6.34, we 
have 

1( ) .i i −= yε εF Σ Σ  (6.40) 

Substituting this in Equation 6.39 yields 
1/ 2 1/ 2 1/ 2

1/ 2
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0 1 1
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yε ε yε ε yε ε
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X D D D
Σ Σ
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.  

 (6.41) 

The multivariable performance index can now be determined by 
T T

mv mv
T T

E{ } trace( )minimum variance trace( )
actual variance trace( )E{ } trace(E{ })

η = = = =
y

y y Σ XX
Σy y y y

. (6.42) 

Often, one is interested in comparing the variance-covariance matrix of the actual output with 
the variance-covariance matrix of the ideal output under MVC. For this purpose, the perform-
ance indices of individual outputs are obtained from the diagonal elements  

1

T 1 T 1
mv[ , , ] diag( ) diag( ); diag( )

py yη η − −= = =y y y yΣ Σ XX Σ Σ Σ . (6.43) 

The individual output performance indices represent the performance of each output with respect 
to the ideal output under MVC. If an offset exists in the process output, then the output variance 
Σy should be replaced by the output mean-square error E{(y − yref)(y − yref)T} in the above calcu-
lations of the performance indices. This is however not necessary, as usually the measured out-
put signals are mean-centred prior to the index calculation.   

In summary, the implementation of the FCOR algorithm consists of the following steps. 
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Procedure 6.2. MIMO FCOR algorithm (Huang et al., 1997).   

1. Filter the (mean-centred) process output data y(k) by an appropriate time-series model to obtain the 
“whitened” sequence ε(k) (Equation 2.41).  

2. Form an a priori knowledge or estimate of the interactor matrix D(q) and transform y(k) to the interac-
tor-filtered form: ( ) ( ) ( ).k q q kτ−=y D y  

3. Calculate the covariance yεΣ  between ( )ky  and e(k) up to lag τ − 1 and the auto-covariances Σy and 

Σε using the y(k) and ε(k) sequences, respectively, and the offset δ = E{y(k)} − yref if any.  
4. All required information is now available to calculate the performance indices using Equations 6.41, 

6.42 and 6.43. 
 
Example 6.7. Consider again the system from Example 6.4 with K12 = 0.5 and the disturbance transfer 
matrix: 

1

1 1

1

1 1

1
1 0.5 1 0.6

( )
1

1 0.7 1 0.8

q
q q

q
q

q q

ε

−

− −

−

− −

⎡ ⎤−
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

G . (6.44) 

With the unitary interactor matrix determined in Example 6.4, we compute the Diophantine identity (Equa-
tion 6.25) as 

1 1
2

1 1

0.9578 0.2873
0.2873 0.8142 0.9578 1.0536

q q
q q

q q
τ

ε ε

− −
− −

− −

⎡ ⎤− −
= = +⎢ ⎥− − −⎣ ⎦

F

G DG R . 

The minimum variance term can be written as (Equation 6.33) 

10 0 0.9578 0.2873
( ) ( ) ( )

0.2873 0.9578 0.9291 1.0536
k k q k− − −⎡ ⎤ ⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
ε Fε ε .  

Therefore (Equation 6.35) 

1 1
mv

1.0 0.0 0.2670 0.3028
( ) ( ) ( )

0.0 1.0 0.8899 1.0092
k q k q kτ − −⎛ ⎞− − −⎡ ⎤ ⎡ ⎤

= = +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠
y D ε ε .  

This explicit expression can always be estimated from routine operating data under any feedback control 
with a priori knowledge of the unitary interactor matrix. If we assume the disturbances be unit-variance 
noises, i.e., TE{ } ,= =εΣ εε I  then the minimum variance can be calculated as (Equation 6.39) 

mv mv

1.1629 0.5431
var{ ( ) }

0.5431 2.8104
k

−⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

Σ y   

and with the quadratic performance measure (H2 norm) as (Equation 6.42) 
T

mv mvE{ } trace( ) 3.9733= =y y Σ .  

A data set of 3000 samples has been used to determine the performance indices for the system output 
controlled by the multi-loop MV controller based on two single loops without interaction compensation:  

1

c 1

c 1

1 1
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(1 0.5 )(1 0.5 )

qK
q

q
q

q q

−

−

−

− −

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
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G  (6.45) 
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with Kc = 1. The multivariable performance index has been calculated as (Equation 6.42) 

mvtrace( ) 3.9733 0.63
actual variance 6.2805

η = = ≈Σ   

and the individual output performance indices as (Equation 6.43) 

1

1

2

1.1629 0.5431 2.2175 0 0.52
diag

0.5431 2.8104 0 4.0630 0.69
y

y

η
η

−⎧ ⎫⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= ≈⎢ ⎥ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎩ ⎭
.  

The performance assessment is then carried out for increasing K12 and the results obtained for the overall 
index and for the individual output indices are illustrated in Figure 6.2. In this example, when K12 → 0, all 
performance indices converge to a similar value of about 0.6 owing to the weak interaction. However, if the 
interaction increases, the indices clearly diverge from each other. The control performance quickly deterio-
rates with increasing K12, as indicated by the decrease of the overall index η as well as the index ηy1. The 
performance degradation is due to the fact that the interaction part is not compensated by the multi-loop 
controller. It appears that the performance of y1 is much more sensitive to the interaction measure K12 than 
that of y2. One can conclude that there is enough incentive to re-tune the controller or implement advanced 
multivariable control.  
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Figure 6.2. Performance assessment of a MIMO process under multiloop MVC vs. interaction factor K12. 

 
 

Now, the interaction factor is set to K12 = 6 and the controller gain Kc (Equation 6.45) is varied with the 
objective to investigate its influence on the performance indices. The obtained results are shown in Figure 
6.3. It can be seen that a maximum overall (MIMO) index of about 0.28 can be achieved for Kc ≈ 1.15. This 
indicates that the controller structure limits the achievable performance, and thus a re-design of the control-
ler is needed in this case. It is also observed that the influence of the controller gain on both outputs is 
“unbalanced”: the individual performance index for y2 is much higher than that of y1. This implies that the 
improvement work has to be focused on loop 2, but the implementation of a multivariable controller will be 
the best solution.    
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Figure 6.3. Performance assessment of a MIMO process under multiloop MVC vs. controller gain Kc. 

6.4 Assessment without Knowledge of the Interactor Matrix 

A major problem of the assessment of MIMO control systems described so far is the need for the 
interactor matrix, which is not unique and generally requires the complete knowledge of the 
entire transfer matrix of the system at hand. For this reason, it is highly desirable to get around 
the problem and to obtain bounds on the controller performance index by using easily obtained 
plant information. Some methods and procedures for performance assessment without knowl-
edge of the interactor matrix will be briefly described in this section. Generally, these approaches 
will lead to suboptimal but practical performance benchmarks, which can be estimated from 
routine operating (closed-loop) data with a minimum of a priori knowledge.  

It was Ettaleb (1999) who first proposed to define an absolute lower bound on the achievable 
value for each output variance, thus avoiding the need to identify the interactor matrix. Ko and 
Edgar (2001b) developed a method which integrates the calculation of interactor matrix and the 
estimation of performance index without explicitly calculating the interactor matrix. However, 
this approach still needs to have the Markov matrices of the system transfer function matrix as a 
priori.  

Huang et al. (2004) developed a truly model-free and interactor-free method to calculate the 
performance index directly from input/output data without the knowledge of interactor matrix or 
Markov matrices. With this algorithm, there is no need to know interactor matrix, Markov pa-
rameters, or transfer function matrices. The only information needed is two sets of data, one 
open-loop experiment data and one closed-loop routine operating data. 

Recently, it has been proven by Xia et al. (2006) that, given a diagonal delay matrix 
Di/o = diag(τi,min) with the order τ, the least conservative lower bound of Jlmv ≤ Jmv for the mini-
mum variance can be found by calculating the MV performance index using 
D = Di/o = diag(τi,min), which yields a significant simplification of the performance assessment of 
MIMO control systems. Similar approaches to simplify the MVC-based performance assessment 
of multivariable systems can be found by Huang et al. (2006). Particularly, two data-driven sub-
space algorithms have been proposed to compute the optimal prediction errors and closed-loop 
potentials. 
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Based on these works, we propose a practical method and procedure to assess the perform-

ance of the multivariable control systems, requiring only closed-loop data from normal process 
operation and the knowledge of time delays.   

6.4.1 Lower Bound of MIMO Performance Index 

The MIMO system is decomposed into p MISO systems. An absolute measure of the controller 
performance can be built by defining the performance index associated with each output yi(k) as 

2

mv
2

i

i

i

y

y
y

σ
η

σ
= , (6.46) 

where 2
iyσ  is the actual variance of the output yi and 2

mviyσ the minimum achievable output vari-

ance of the MISO system (see Equation 2.38) 

,min 1
2 T

, ,mv
0

i

iy i k i k
k

τ

σ
−

=

= ∑ εf Σ f , (6.47) 

where fi,k are the impulse-response coefficients (Markov parameters) associated with the output yi 
and τij is the minimum delay, i.e.,  

,min 1
mini ijj m

τ τ
≤ ≤

=  (6.48) 

is used. Therefore, the methods and algorithms presented in Section 2.4 for the SISO case can be 
applied to estimate 

iyη  from routine operating data, setting τ = τij. Note that to know whether 
those bounds defined in Equation 6.47 are all achievable, it is necessary to determine the interac-
tor matrix D and check whether it is diagonal, i.e., D = diag(τ1,min,..., τp,min).  

The MIMO (overall) performance index is then determined by 
,min 1

T
2 , ,1

1 mv 0
2 2
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p p
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= =
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∑ ∑∑

∑ ∑

εf Σ f
, (6.49) 

where fk is is the k-th row of Markov-parameter matrix. This gives for the special case of 2 × 2 
multivariable process: 

1,min 2,min 2,min

1 2

1 1 1
2 2

1, 11 1, 22 1, 2, 12 21
0 0 0

2 2
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k k k

y y

f f f f
τ τ τ

Σ Σ Σ Σ
η

σ σ

− − −

= = =

+ + +
=

+

∑ ∑ ∑
 (6.50) 

with 11 12

21 22

.
Σ Σ
Σ Σ
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⎣ ⎦

εΣ   

If the covariance matrix Σε is diagonal, Equations 6.47 and 6.49 can be further simplified as 
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k
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= ∑ , (6.51) 
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respectively. For a 2 × 2 multivariable process, we have 
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6.4.2 Upper Bound of MIMO Minimum Variance Benchmark 

Looking again at Equations 6.23 and 6.35, it can be easily seen that setting a simple interactor 
matrix, i.e., D = qτI, would significantly simplify the calculation of the MV performance index, 
provided the order τ of the interactor matrix (equivalent to the time delay in the univariate case) 
is known. Otherwise, we may assume that τ is equal to the largest time delay. Then, the variance 
of the first τ terms may be used to represent the “minimum variance” as in the univariate case, 
i.e., 

( )1 ( 1)
0 1 1umv

( ) ( )k q q kτ
τ

− − −
−= + + +y F F F ε .  (6.54) 

Strictly speaking, this represent the minimum variance τ-step ahead prediction error (Huang et 
al., 2005). Thus, an upper bound Jumv ≥ Jmv for the minimum variance follows for all unitary 
matrices of order τ.  

Although this bound is not necessarily achievable, it does provide us with an estimate of the 
maximum potential to improve the control performance. This is similar to the minimum variance 
control benchmark that is not necessarily achievable but delivers an estimated maximum poten-
tial of improvement. Huang et al. (2005b) have shown that the difference between Jumv and Jmv 
depends on the relative degree v of the interaction matrix D (Equation 6.2): the higher v the big-
ger the difference between Jumv and Jmv. When v is known, an upper bound on difference be-
tween Jumv and Jmv can be calculated without the knowledge of the interaction matrix: 

T T
umv mv 1trace{ }v vJ J τ τ τ− − −− ≤ + +ε εF Σ F Σ F .  (6.55) 

6.4.3 Recommended Procedure for the Assessment of MIMO Control 
Systems 

A practical procedure suggested here for control loop performance assessment of multivariable 
controllers consists of the following steps. 
 
Procedure 6.3. MIMO assessment without interaction matrix. 

1. Determine the (minimum) delays between process inputs and outputs. 
2. Fit a MIMO AR(MA) model to the process output data, to obtain the estimated noise sequences εi(k) 

and the covariance matrix Σε.  
3. Determine the estimated lower output variance bounds of different outputs by use of Equation 6.47. 
4. Calculate the actual variances 2

iyσ  of the output yi. 
5. Determine the (lower bounds of) performance indices associated with different outputs (Equation 6.46) 

to know what the achievable limit for each individual output. 
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6. Determine the lower bound of overall performance index (Equation 6.49), i.e., assuming a diagonal 
interaction matrix D = diag(τ1,min,..., τp,min). 

7. Determine the upper bound of overall performance index (Equation 6.54), i.e., assuming a diagonal 
interaction matrix D = qτI with τ is an a priori known value of the order of the interaction matrix, or 
(otherwise) the largest time delay. 
The big advantage of this approach is that it does not need any knowledge of process models 

or experimentation with the process. Only normal operating data and the knowledge of minimum 
time delays are required. Also, all steps of the procedure can be performed in a small amount of 
computation. Several examples will be given below to demonstrate the efficiency and practical-
ity of the proposed approach, which has been implemented11 in MATLAB. Note that it has some 
common features with the assessment procedures suggested by Ettaleb (1999), Huang et al. 
(2006) and Xia et al. (2006).  

 
Example 6.8. In this study, a series of processes (Table 6.1) are considered and simulated to demonstrate 
the calculation of the true MV benchmark and both performance bounds presented in Section 6.4. In all 
cases, the noise excitation ε (k) is a two-dimensional normal-distributed white noise sequence with Σε = I. A 
set of 3000 samples of the closed-loop output was used for each simulation. All calculations are performed 
using both the theoretical models and estimated models from routine operating data. The results are pre-
sented in Table 6.2. It can be deduced that the estimated indices are in good agreement with their theoretical 
counterparts for all considered processes and simulation scenarios. Note that for P4 a relatively strong 
dither signal with the variance of 0.2 was required (see Example 6.6) for the estimation of the interaction 
matrix. For P5–P7, it was necessary to omit values of the Markov parameters which are less a = 0.1 for the 
determination of the interaction matrix. ηlower and ηupper can be regarded as practical indices that give 
sufficient assessment of the MIMO controllers, having in mind that the interactor is not needed at all.  
 
 

Table 6.1. Transfer functions of the considered processes. 

No. Process model Gp  Disturbance model Gε  Controller Gc 
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P2 Same transfer functions as in 1 but with K12 = 4. 
P3 Same transfer functions as in 1 but with K12 = 10. 
P4 2 2
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P6 Same transfer functions as in 5 but with τ = 3. 
P7 Same transfer functions as in 5 but with τ = 7. 

 
                                                           

11
 The basic algorithms were implemented by Martina Thormann and Heinrich Ratjen.  
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Table 6.2. Theoretical and estimated minimum variance index and its bounds. 

 Theoretical Estimated 
 ηinteractor  ηlower  ηupper ηinteractor  ηlower  ηupper 
P1 0.93 0.82 1.0 0.98 0.87 0.99 
P2 0.45 0.40 0.50 0.49 0.44 0.50 
P3 0.10 0.09 0.11 0.08 0.07 0.08 
P4 0.60 0.55 0.60 0.62 0.57 0.62 
P5 0.61 0.32 0.79 0.69 0.40 0.78 
P6 0.74 0.62 0.78 0.83 0.70 0.85 
P7 0.54 0.53 0.54 0.56 0.53 0.56 

 
 
Example 6.9. The system considered in this example is adopted from Xia et al. (2006). It is a slightly modi-
fied version of the control system from Example 6.5, i.e., Equation 6.20, but with 
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. (6.56) 

When assuming full knowledge of the plant, a corresponding unitary interactor matrix can be determined as 
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D .  

The order of the interactor matrix is equal to the largest time delay of the system, however generally this 
does not have to be the case.  

For increasing values of τ, the MIMO performance index (using the interaction matrix) and its bounds 
(which do not need the interaction matrix) have been computed. The obtained estimates of the performance 
indices are presented in Table 6.3 and shown graphically in Figure 6.5. The upper bound values are very 
close to the real ones (Table 6.3 and Figure 6.4), confirming that the corresponding benchmark is valuable 
for providing an estimate for the performance improvement potential. The difference between the curves 
decreases rapidly with the increasing time delay (or interactor order) τ. Little difference is observed be-
tween the upper and lower bound when τ is larger than 5. This is because, for a stable disturbance model, 
the Markov coefficient matrices that determine this difference become smaller and smaller. All indices 
correctly indicate performance deterioration of this fixed controller with increasing time delay due to the 
increased time-delay restriction. Therefore, there is enough incentive to improve the loop performance by 
retuning the controller or implementing advanced multivariable control with a time-delay compensation 
feature.  

 
 

Table 6.3. True and estimated values of the minimum variance index and its bounds. 

τ 3 4 5 6 7 8 9 10 
ηupper 0.81 0.76 0.71 0.62 0.58 0.56 0.55 0.46 

upperη̂  0.87 0.80 0.73 0.66 0.59 0.51 0.52 0.46 

ηinteractor 0.77 0.73 0.70 0.62 0.55 0.53 0.52 0.44 

interactorη̂  0.73 0.73 0.70 0.64 0.58 0.51 0.51 0.46 

ηlower  0.55 0.64 0.64 0.58 0.54 0.53 0.52 0.43 

lowerη̂  0.54 0.64 0.65 0.61 0.56 0.50 0.51 0.46 
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What can be learned from this example is that the consideration of the easily computable lower and up-

per bounds as performance measures suffices to get a clear performance figure, and the estimation of the 
interaction matrix seems to be practically dispensable. Note that similar performance assessment results 
have been achieved by Xia et al. (2006) for this example, but under consideration of other approaches for 
the calculation of the lower and upper bounds. 
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Figure 6.4. True values of the minimum variance index and its bounds.  
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Figure 6.5. Estimated values of the minimum variance index and its bounds.  

 
Example 6.10. In this study, we reconsider the system P4 from Table 6.1, but vary the controller propor-
tional gain Kc. The objective is to compare the controller performance for different settings. For each Kc 
value, both bounds of the MV index were calculated. From the plot in Figure 6.6, it can be deduced that the 
optimal controller gain is about 0.15. With increasing gain above this gain, the process becomes more and 
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more oscillatory up to instability for gains higher than 0.4. For this example, the MV index and its upper 
bound are identical, since the system has a simple interaction matrix q2 I2, thus v = 0 holds. Also for this 
example, the lower and upper indices give sufficient assessment of the system.  
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Figure 6.6. Minimum variance index bounds vs. the proportional gain Kc for P4.  

6.5 Summary and Conclusions 

MVC benchmarking in the multivariable case has been shown to be formally similar, but much 
more involved than in the univariate case, as it normally requires the knowledge or estimation of 
the interactor matrix. Although many methods for its factorisation or estimation exist, this task 
remains very difficult to handle and needs a complete process model or at least its first Markov 
parameters. Therefore, estimating a lower bound and an upper bound of the minimum achievable 
variance was recommended instead of the minimum variance itself. Both indices are easily com-
putable and can be found from routine operating data and require only the knowledge of the time 
delays between each pair of system inputs and outputs. This represents a much weaker assump-
tion than requiring complete process information or needing for the highly undesirable external 
excitation of the process to estimate the interaction matrix.  



7 Selection of Key Factors and Parameters in 
Assessment Algorithms 

The performance assessment algorithms presented in the previous chapters contain many options 
and parameters that must be specified by the user. These factors substantially affect the accuracy 
and acceptability of the results of assessment exercises. A fundamental basis for performance 
assessment is to record and carefully inspect suitable closed-loop data. Pre-processing opera-
tions, which are suggested and those which should be strictly avoided, will be given in Section 
7.1. The first decision in control performance assessment is the choice of a (time-series) model 
structure for describing the net dynamic response associated with the control error. There are 
different possible structures and different possible identification techniques. The most widely 
used of them are briefly described Section 7.2. Particularly for MV and GMV benchmarking, it 
is decisive to properly select or estimate the parameters time delay and model orders. This topic 
is discussed in Section 7.3. Some of the basic models and identification techniques are compared 
in Section 7.4, concerning assessment accuracy and computational load, to provide suggestions 
of the best suited approaches to be applied in practice. 

7.1 Data Pre-processing 

An attractive property of the MV benchmarking is that the performance index can be estimated 
from routine operating data without additional experiments, provided the system time delay is 
known, or can be estimated with sufficient accuracy. No matter what the current controller is, 
measuring the controlled variable suffices for performance evaluation based on a closed-loop 
model. For many other methods, the measurement of the manipulated variable is necessary, as 
open-loop and closed-loop models are needed to be identified, when not available. Operating 
data must also include the set point, when it is varying, to give the control error.  

The first basic step in CPM is data acquisition and preparation for analysis. Comprehensive 
data needed for the development and implementation of performance evaluation systems are 
usually available on different sources of the considered plant(s). Thus, much time has to be spent 
to properly collect the data in different ways, i.e., using several communication networks in the 
plants to interface the process/automation computers/controllers. Sometimes access to signals 
needed has to be implemented, or even new sensors must be added, but this is seldom the case.  

A number of pre-processing techniques should then be applied prior to the assessment task to 
ensure that the data samples are free from undesired noise or trends, outliers and other corrup-
tions. When ever possible, the data should be first inspected visually to detect corruptions or 
errors, such as outliers, clipped saturation, or quantisation effects. If the data are not evenly or 
regularly sampled, they need interpolation to make it evenly sampled before any numerical 
analysis can proceed. 

7.1.1 Selection of Sampling Interval 

Basically, the data sampling time for CPM should be the same as the controller sampling time. In 
practice, however, it is recommended to properly down-sample the data to save computation 
time. Also, Thornhill et al. (1999) stated that the choices of the sampling interval and the number 
of terms in the model are not independent of one another because they both influence the total 
time span captured by the autoregressive terms. The strategy proposed by Thornhill et al. (1999) 
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is to choose the length of the AR model to be n = 30 for all types of control loops and to adjust 
the sampling interval individually for each loop. The suggestion is to select the sampling interval 
such that a typical closed-loop impulse response is fully captured within 30 samples. An example 
is shown in Figure 7.1. The data are from a thickness control loop in a cold rolling mill.   
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Figure 7.1. Effect of sampling time on the impulse response (Loop: thickness control).   

 
It is worth noting that the performance index itself is not sensitive to the sampling interval 

provided the prediction horizon, b, is adjusted accordingly. That is, if b is 10 sample intervals for 
1s data, it would be 5 sample intervals for 2s data. The reason for optimising of the sampling 
interval relates to the diagnosis of the likely cause of poor loop performance. In a spectral analy-
sis, for instance, the spectral features are properly resolved only when the sampling interval is 
correctly adjusted. The estimated closed-loop impulse response can serve as a diagnostic tool 
and its ability to resolve key features is influenced by the sampling interval.  

It is necessary to avoid both over-sampling and under-sampling. If the data are sampled too 
frequently, the transient part of the closed-loop impulse response does not settle within the 30 
samples. If the data are under-sampled, the closed-loop impulse response is seen to settle within 
just a few samples and is not adequately captured because interesting features may be missed 
between samples (Thornhill et al., 1999). In the aforementioned example (Figure 7.1), an appro-
priate sampling time should be selected not higher than 100ms to avoid over-sampling, but also 
not lower than 50ms to prevent under-sampling.   
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7.1.2 Selection of Data Length  

The data ensemble length has clear effect on the statistical confidence in the performance-index 
value, which improves as the data ensemble length increases. When data of the control error are 
considered, it is not necessary for the loop to stay at the same set point throughout the period of 
data recording, but it is desirable that the loop characteristics remain unchanged. Data episodes 
during instrument recalibration episode or known plant disturbances such as feed switches or 
partial trips have, therefore, to be avoided (Thornhill et al., 1999).  

The effect of data ensemble length has been assessed using the confidence limits given by 
Desborough and Harris (1992):  
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which simplifies to 
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for systems without time delay, i.e., τ = 1. ρy(k) and ρε(k) stand for the auto-correlations of y and 
ε, respectively. The statistical property in Equation 7.1 also enable us to examine the explicit 
dependence that time delay and auto-correlation structure of the process have on the uncertainty 
associated with the estimated index.  

As can be seen from the above equation, short data segments will increase the standard devia-
tions of the statistical estimates. On the other hand, long data segments lead to lower standard 
deviations. However, too long data sets can give misleading results when many different re-
sponse characteristics are juxtaposed into one long data set (Kozub, 1996). It is agreed by many 
researchers that a good balance between statistical confidence and the steadiness of the loop 
characteristics is achieved with a data ensemble between 1000 and 2000, say, 1500 samples.  

As an example we consider data measured from a strip-thickness control loop to show the ef-
fect of the data length N. The upper panel in Figure 7.2 shows the time trend of the control error 
for 2334 samples. When all data points are used, the Harris index is 0.724 with a standard devia-
tion of 0.101. The lower four subplots in Figure 7.2 show the index values and the standard de-
viations when shorter data ensembles are used. For instance, in the lower right hand plot the data 
ensembles are 300 points each (σ = 0.102–0.406). They have considerable variability and the 
error bars, which represent the standard deviations, are quite large. By contrast, the standard 
deviations for data ensemble of 1500 points are somewhat smaller (σ = 0.102). Particularly in the 
subplot for N = 300, it can be clearly seen that shorter sequences are more responsive to changes 
in the loop's characteristics. Look at the disturbance episodes between the samples 1020 and 
1150 and between the samples 1550 and 1675. Thus, there is a trade-off between confidence in 
the index value and its sensitivity to features in the data, as also demonstrated by Thornhill et al. 
(1999) on data from different refinery loops.  

The conclusion is that N = 1500 is the recommended choice. Certainly, one may use shorter 
data ensembles of 1000 or even 500 samples, but only at the price of a broader confidence inter-
val for the performance index. The use of data ensembles of less than 500 samples is not recom-
mended at all because the scatter during normal running is relatively large and the standard de-
viations are high.  

 
 



144  7. Selection of Key Factors and Parameters in Assessment Algorithms 
 

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-15

-10

-5

0

5

Samples

Co
nt

ro
l e

rr
or

 
 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
N = 1500

H
ar

ris
 in

de
x 

 η

0 1 2 3
0

0.2

0.4

0.6

0.8

1
N = 1000

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
N = 500

Data windows

H
ar

ris
 in

de
x 

 η

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
N = 300

Data windows  
Figure 7.2. Top: assessed control error trend; bottom: Effect of data set length on the standard 
deviations of the Harris index (Loop: thickness control, coil no. 33).  

7.1.3 Removing of Outliers, Detrending and Pre-filtering 

Various unexpected events, such as abnormal pulses, temporary sensor failures, transmitter fail-
ures, non-stationary trends, or process disturbances can corrupt the raw data samples. Such bad 
data should be removed from the data set.  
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Outlier Elimination  

Outliers are observations that do not follow the statistical distribution of the bulk of the data, and 
consequently may lead to erroneous results with respect to statistical analysis. They tend to ap-
pear as spikes in the sequence of prediction error and will hence give large contributions to the 
loss function. However, removing certain points or time intervals from the data set is possible 
only for static data, otherwise it will give rise to transients. Therefore, it may be preferable for 
dynamic systems to carry out the experiment again to get a better data set. Methods for cleaning 
data from outliers can be found by Rousseeuw and Leroy (1987), Davies and Gather (1993), 
Perarson (2002), Liu et al. (2004) and references included therein. As will be shown in Section 
9.3, outlier removing is essential for non-linearity detection based on surrogate data. However, 
the presence of outliers does not affect much the value of the Harris index.  

Detrending 

It is important to remove slowly drifting signals to make it more stationary. The MATLAB func-
tion detrend can be used for this purpose: it fits a straight line through the data and removes 
this line from the points. When working with FFT in MATLAB it is always recommended to 
detrend the data first. Particularly, non-linearity assessment based on higher-order statistics (Sec-
tion 9.2) requires the elimination of non-stationary trends to avoid misleading results.    

Pre-filtering or Down-sampling 

This is usually necessary to avoid aliasing and to remove noise, periodic disturbances, offsets 
and drifts from the measured signals. Analogue anti-aliasing (low-pass) filters should be used 
prior to the sampling. The bandwidth of filters should be smaller than the sampling frequency. 
The rule of thumb governing the design of the filter is that the upper frequency should be about 
twice the desired system bandwidth and the lower frequency should be about one-tenth the de-
sired bandwidth. For data down-sampling, MATLAB offers the function resample.   

7.1.4 Scaling  

Particularly in MIMO systems, it is common to have inputs and outputs of different amplitude 
ranges. Such a diversity in amplitudes can make the model estimation ill-conditioned, which 
deteriorates the precision of the dynamic response. It is highly recommended to normalise all 
signals to the same scale and variance. Indeed, scaling makes the estimation algorithm numeri-
cally robust, leads to faster convergence and simply tends to give better model quality. Typically, 
the measured input u(k) and output y(k) sequences are scaled to zero mean and unity variance by  

* ( ) E{ ( )} ( )( )
u u

u k u k u k uu k
σ σ

− −= = , (7.3) 

* ( ) E{ ( )} ( )( )
y y

y k y k y k yy k
σ σ

− −= = , (7.4) 

where *( ) ,  E{},  ( )⋅ ⋅ ⋅  stand for the normalised, the expected and the mean value, respectively. σ is 
the standard deviation of the corresponding signal. The mean value is subtracted to get data cen-
tred at the origin. The division by the standard deviation ensures that input dimensions with a 
large range do not dominate the variance terms. For readability, we do not always differentiate 
between scaled and non-scaled quantities throughout the thesis.  
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7.1.5 Effect of Smoothing, Compression and Quantisation 

It is imperative that closed-loop data used for control performance assessment are unsmoothed 
and uncompressed, i.e. the data must be exactly identical to the feedback information utilised by 
the loop controller. Therefore, it is not advisable to use archived data for the purposes of control 
performance analysis. The reason for caution is that archiving systems often modify the stored 
data. For example, the measurements may be smoothed to remove noise and compression may 
be applied both to keep up with increasing demands for stored information and to extract sum-
mary statistics.  

Both smoothing and compression affect the calculated performance indices. The purpose of 
smoothing is to reduce the effects of noise by averaging over previous measured values. The 
smoothed values thereby become correlated and the sequence is more predictable than the origi-
nal sequence. Smoothing thus has an impact on the performance index because the index is a 
measure of predictability. Compression algorithms used in online data historians decide whether 
or not to archive a point using a variety of rules. The rules are designed to capture the start and 
end of a trend and any exceptional values, but they are not designed to retain the noise and subtle 
predictable components that the performance index needs for its assessment. Techniques for data 
smoothing or compression are reviewed in the paper by Thornhill et al. (2004). The authors also 
investigated the effect of data compression on different the quantities commonly used in data-
driven process analyses. The main conclusion is that minimum variance and non-linearity as-
sessment are two procedures that require high-fidelity data; data compression alters these meas-
ures significantly.  

Thornhill et al. (2004) proposed the following simple methods for automatic detection of 
compression and quantisation. Suppose that the reconstructed data set is piecewise linear. Its 
second derivative is zero everywhere apart from at the places where the linear segments join. 
Therefore the presence of the characteristic linear segments can be detected by counting of zero-
valued second differences calculated from (i = 2, …, N – 1) 
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where ŷ  is is the reconstructed signal. This gives n0 zero second derivatives. The compression 
factor can be estimated from 
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Quantisation estimation is based on computing the non-zero (first) derivatives  
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giving 0≠Δy , i.e., the vector of elements diffrering from zero. The quantisation factor can be 
estimated from 

0
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y
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The data set should be considered unsuitable for control performance assessment (at least mini-
mum variance and non-linearity assessment) if est est3 0.4CF QF> ∨ > . 
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7.2 Prediction Models and Identification Methods 

The first step in control-performance assessment is the choice of a (time-series) model structure 
for describing the net dynamic response associated with the control error. Even though system 
identification is used as a vehicle, its goal in CPM is not the estimation of model parameters 
themselves, but the estimation of the dynamic of the process and the noise model in impulse-
response form. Therefore, any approaches that reduce the modelling burden should be preferred.  

7.2.1 Implication of the Use of Routine Operating Data 

No matter which model for performance assessment is used, it should always be identified from 
available operating data without requiring time consuming active identification experiments. 
Indeed, safety, product quality, or efficiency considerations do not allow the process to run in 
open loop or to be excited by artificial signals in most practical situations, except in the stage of 
control system commissioning. Often, the only hope is to have some set-point changes in the 
data. Nevertheless, closed-loop data are usually sufficient for an accurate closed-loop modelling 
serving for control performance assessment. Sometimes, it may also be necessary to identify the 
controller itself if the controller parameters are either not easily available or the controller has 
been detuned and its actual parameters are not as originally recorded; see Bezergianni and Geor-
gakis (2003) for this topic.  

As pointed out by many researchers, e.g., Söderström and Stoica (1989) and Ljung (1999), 
the fundamental problem with closed-loop data is the correlation between the unmeasurable 
noise and the input. When feedback is used, the input u and noise will be correlated because u is 
determined from the process variable, which contains the noise. Under some circumstances, an 
identification algorithm may lead to the inverse controller transfer function as an estimate of the 
process model.   

The application of closed-loop identification methods for derivation of models that serve as a 
basis for control design has been established as “identification for control”; see Isermann (1971), 
Hjalmarsson et al. (1996) and Van den Hof and Schrama (1995). Traditional closed-loop identi-
fication approaches fall into the prediction error methods (PEMs) framework. The advantage of 
PEMs is that the convergence and asymptotic variance results are available (Ljung, 1999). The 
disadvantage of PEMs is that they involve in a complicated parameterisation step, which makes 
them difficult to apply to MIMO-system identification problems. In general, the estimates from 
subspace methods are not as accurate as those from PEMs.  

It is beyond the scope of this thesis to discuss these methods in detail. Overview papers and 
more details on closed-loop identification can be found by, e.g., Van den Hof and Schrama 
(1995) and Qin et al. (2002). A two-step closed-loop identification scheme has been proposed by 
Huang and Shah (1999:Chap. 15). The motivation of circumventing the complicated parameteri-
sation of PEMs gave birth to subspace identification methods, which are now popular techniques 
for closed-loop identification in the context of CPM; see Kadali and Huang (2002a, 2002b, 
2004) and Huang et al. (2006). These developments are described in a recent book by Huang and 
Kadali (2008). An overview of subspace identification methods is provided by Qin (2006).  

7.2.2 Role of the Estimated Model 

In the CPM context, the modelling objective is to create a disturbance model, but not for the 
traditional purpose of prediction or simulation; rather, only the first τ impulse-response coeffi-
cients are used to estimate the minimum variance. The model is only required to be an adequate 
fit to the (multi-step ahead) predictable component within the data set (Desborough and Harris, 
1992; Thornhill et al., 1999). The residuals or the innovation sequence are of primary interest. 
The model parameters themselves are of no interest, and so the model validation does not play a 
big role in the CPM framework. 
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Consequently, any models and identification methods can be applied, so long as they deliver 

a model of sufficient (prediction) quality. Even general non-linear modelling approaches, such as 
non-linear ARMA(X) model structures or artificial neural networks, could be applied, when 
useful or necessary. In practice, however, it is strongly recommended to keep the model as sim-
ple as possible, preferably of the AR(X) type because of its simple and fast estimation. 

7.2.3 AR(X)-type Models  

The linear black-box structures frequently used in practice are all variants of the general family, 
known as Box-Jenkins (BJ) models (Ljung, 1999) 

( ) ( )( ) ( ) ( ) ( )
( ) ( )

B q C qA q y k q u k e k
F q D q

τ−= + , (7.9) 

using different ways of picking up “poles” of the system and different ways of describing the 
noise characteristics. A(q), B(q), C(q), D(q) and F(q) are polynomials in q–1 of order n, m, p, l 
and r respectively:  
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Special forms of the general model are shown in Figure 7.3. 
Usually, a high-order autoregressive (AR) model is used due its simplicity and the ability to 

be identified by a least-squares estimator without numerical iterations. Too-high-order AR mod-
els may, however, be needed to approximate systems that exhibit oscillating behaviour, which 
might lead to numerical problems or poor estimation. Theoretically, an ARMA model is the 
better option; the estimation of its parameters needs a non-linear optimisation routine. ARMA 
models are now reaching the point of widespread use in control performance analysis owing to 
their many merits (Kozub, 2002): simplicity, easy access and interpretability. An optimal model 
order can be found by using many methods, such as the Lipschitz quotients method (He and 
Asada, 1993) or the deterministic subspace identification method (Van Overschee and De Moor, 
1996).  

For MV assessment of feedback/feedforward control loops or LQG-based performance as-
sessment, AR(MA)X models may be needed to be identified from input/output data of the proc-
ess. The assessment of LTV processes requires the estimation of LTV ARMA models using any 
recursive time-series analysis algorithm; see Huang (2002). The models mentioned can also be 
formulated in equivalent state-space forms, which can effectively be estimated by means of pre-
diction error methods or subspace-based methods.  

The topic of identification of linear black-box models using LS or PEM algorithms can be 
considered mature and will not be treated here. See standard textbooks such as Ljung and Söder-
ström (1987), Söderström and Stoica (1989), Isermann (1992), Johansson (1993) and Ljung 
(1999). A more recent treatment of the subject, including non-linear identification methods, can 
be found by Nelles (2001). Also, many widespread commercial packages contain system identi-
fication toolboxes, such as the MATLAB Identification Toolbox and the LabVIEW System Iden-
tification Toolkit.  

 



 7.2 Prediction Models and Identification Methods 149 
 

 
Figure 7.3. Overview of common linear dynamic models; time-series models, i.e. AR, ARMA 
and ARAR, result by setting B = 0.  

7.2.4 ARI(X)-type Models  

The only difference between BJ models (Equation 7.9) and their integrated version  

( ) ( )( ) ( ) ( ) ( )
( ) ( )

B q C qA q y k q u k e k
F q D q

τ−= +
Δ

 (7.11) 

is that in latter a Δ-term, i.e., an integrator is included to consider drifting disturbances. A simple 
approach to handle such models is to multiply Equation 7.11 by Δ, to give: 
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Consequently, the same methods as for BJ models can be applied to the integrated version, but 
just taking the differenced signals Δy(k) = y(k) – y(k – 1) and Δu(k) = u(k) – u(k – 1) as input and 
output data, respectively. However, it should be emphasised that this approach only works well 
when the input and output data sets do not contain much high-frequency information.  

7.2.5 Laguerre Networks 

The use of Laguerre models in control-performance assessment has been first proposed by Lynch 
and Dumont (1996) owing to their attractive properties (Zervos and Dumont, 1988; Gunnarsson 
and Wahlberg, 1991; Fu and Dumont, 1993). Laguerre functions can be used to represent stable 
functions. They are particularly suitable for the design of adaptive control of systems with long 
and unknown or time-varying delays, such as encountered in process industries. In theory, any 
stable system can be represented exactly by an infinite Laguerre series; obviously, in practice, a 
truncated series is used. As for AR(MA)-type models, the Laguerre-network parameters can be 
identified using least-square or prediction-error methods.  

Laguerre-filter models are special versions of the orthonormal basis Functions (OBFs)  
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as an approximation of the series expansion, i.e. impulse response of the system, 
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where gi is the ith Laguerre gain and Li(q) the ith Laguerre filter. OBFs can be viewed as gener-
alised FIR filters, where q−i is replaced by a filter Li(q). The goal is to find such that filters Li(q) 
that yield fast converging coefficients gi so that the infinite series expansion (Equation 7.14) is 
approximated to a required degree of accuracy by Equation 7.13 with an order m as small as 
possible.  

The choice of the filters Li(q) in OBF models can be seen as the incorporation of  prior 
knowledge, which can stem from many sources like physically-based modelling, step responses, 
or correlation analysis. Thus, there are different options for selecting the filters. Perhaps the most 
popular OBF model is the Laguerre-filter model extensively studied by Wahlberg (1991). It can 
be expressed by Equation 7.13, where  

12 1 1

1 1

1( )
1 1

i

i
q qL q

q q
α α
α α

−− −

− −

⎛ ⎞− −= ⎜ ⎟− −⎝ ⎠
 (7.15) 

or recursively 
1 2 1

1 11 1

1( ) ( ) ; ( )
1 1i i
q qL q L q L q

q q
α α

α α

− −

−− −

− −= =
− −

. (7.16) 

α ≤ 1 is the pole location of the first filter Li(q) (a first-order system), known as the filter time 
scale, or simply filter pole.  

Now, the closed-loop transfer function (between ε and y) is approximated by a Laguerre net-
work: 
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where the unknown noise sequence ε(k), as the input of the Laguerre model, has to be simultane-
ously estimated together with the filter gains gi. Therefore, the Laguerre network identification, 
despite sporadic claims to the contrary in literature, is non-linear in the parameters when used in 
stochastic identification of disturbance models.  

For parameter estimation and calculation of the Harris index, it is convenient to use the dis-
crete Laguerre network in state-space form (Lynch and Dumont, 1996): 

( 1) ( ) ( )k k kε+ = +x Ax b   
T( ) ( ) ( )y k k kε= +c x , (7.18) 

where 
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The minimum variance is determined from 
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where hi = cTAib are the impulse response coefficients or Markov parameters of the system.  
The Laguerre model can be effectively estimated by PEM, or by applying the extended RLS 

algorithm (Ljung and Söderström, 1987) 
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T
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Tˆ ˆ ˆ( ) ( 1) ( ) ( )[ ( ) ( 1) ( )]k k k k y k k k= − + − −c c P x c x ,  
Tˆ( ) ( ) ( ) ( )k y k k kη = − c x . (7.21) 

The residual η gives an estimate of the noise sequence ε and can be used to estimate the noise 
variance 2

εσ  which is required in Equation 7.20. The estimated minimum variance will then be 
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ˆˆ ˆ1 i

i
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ησ σ
−

=

⎡ ⎤= +⎢ ⎥
⎣ ⎦
∑ c A b . (7.22) 

The optimum filter pole α depends on the characteristics of the system impulse response, 
such as its rate of decay, its smoothness and the time delay. An optimum value can be deter-
mined using the relationships derived in Fu and Dumont (1993):  
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As this method needs the discrete impulse response of the system, we propose and have good 
experience with first identifying a higher-order AR model and then using it for generating the 
impulse response. 

A procedure for estimating the Harris index using Laguerre networks can be formulated as 
follows. 

 
Procedure 7.1. Performance assessment based on Laguerre networks. 
1. Preparation. Select the filter order. 
2. Determine/estimate the system time delay τ. 
3. Estimate a higher-order AR model from closed-loop data to estimate the impulse response. 
4. Determine the optimum filter pole using the impulse response estimated in Step 3 and Equation 7.23.  
5. Identify the Laguerre gains and noise sequence using PEM or RLS from collected output samples. 
6. Estimate the minimum variance from Equation 7.22. 
7. Calculate the output variance (Equation 1.1 or 2.39). 
8. Compute the (Harris) performance index (Equation 2.34). 

A thorough treatment of modelling with Laguerre filters can be found by Wahlberg and Han-
nan (1993). They conclude that – having chosen the Laguerre-filter pole appropriately – the 
number of parameters needed to obtain useful approximations can be considerably reduced, 
compared to AR modelling. Another nice feature of Laguerre approximations is that they can 
well capture the behaviour of time delays (as a part of the model), without choosing an explicit 
delay value τ. Once the Laguerre-filter model is identified, an estimate of τ can be determined 
from the model zeros; see Section 7.3.1.  

Even if the Laguerre approach is superior to AR modelling, as advocated by Lynch and 
Dumont (1996) and Wang and Cluett (2000), it still has some drawbacks: systems with several 
scattered dominating poles cannot be well described, and resonant poles cause problems in terms 
of slow convergence since they occur in complex-conjugated pairs. The obvious way to circum-
vent these difficulties is to use several, possibly complex poles, leading to Kautz filters (Wahl-
berg, 1994), or their generalised versions (Van den Hof et al., 1995). However, the use of these 
models would require more a priori knowledge about the system in terms of two or more pole 
locations.  

7.2.6 Model-free (Subspace) Identification  

Besides some conceptual novelties, such as re-emphasizing of the state in the field of system 
identification, subspace methods are characterised by several advantages with respect to PEMs 
(Favoreel et al., 2000):  
• Parameterisation. In subspace methods, the model is parameterised by the full state space 

model, and the model order is decided upon in the identification procedure.  
• Use for MIMO Systems. There is no basic complication for subspace algorithms in going 

from SISO to MIMO systems. This is, however, particularly non-trivial for PEMs.  
• Initial Guess. A non-zero initial state poses no additional problems in terms of parameterisa-

tion, which is not the case with input-output based parameterisations, typically used in PEMs.   
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• Numerical Properties. Subspace methods, when implemented correctly, have better numeri-
cal properties than PEMs. For instance, subspace identification methods do not involve non-
linear optimisation techniques which means they are fast (since non-iterative) and accurate 
(since no problems with local minima occur).  

• Use for Unstable Systems. Stable systems are treated exactly the same way as unstable ones.  
The price to be paid for all these nice things is that they are sub-optimal. To demonstrate this 

trade-off, Favoreel et al. (2000) have compared the two methods on 10 industrial examples12. The 
conclusion of this comparison was that subspace methods represent a valid alternative to the 
“classical” versions of PEMs. They are fast because no iterative non-linear optimisation methods 
are involved and moreover, they are sufficiently accurate in practical applications. From a theo-
retical point of view, PEMs are more accurate than subspace methods, as they clearly optimise 
an objective function. However, if a good initial estimate of the model parameters is not avail-
able, the found solution might not be the optimal solution, owing to local minima in the optimi-
sation problem.  

Under the framework of subspace identification, a number of approaches and algorithms ap-
peared in the literature. As stated by Favoreel et al. (2000), the difference between the three 
subspace identification algorithms N4SID/MOESP/CVA is the way the weighting matrices are 
used in the algorithm. In fact, the MATLAB Identification Toolbox offers a feature called 
“N4weight” for the “N4SID” command wherein the user can specify MOESP or CVA and the 
respective weighting matrices will be used, so that it is equivalent to using MOESP/CVA sub-
space identification algorithms. Other refined algorithms can be found by Wang and Qin (2002) 
and Huang et al. (2005). 

Recent work by Kadali and Huang (2002a) allows the identification of only two of the sub-
space matrices, namely the deterministic subspace matrix and stochastic subspace matrix, from 
closed-loop data without requiring any a priori knowledge of' the controller. This method re-
quires, however, set-point excitation and has also been extended to the case of measured distur-
bances.  

A recent paper by Huang et al. (2005) contains a summary and detailed comparison of vari-
ous closed-loop subspace identification algorithms, incl. their pros and cons. Two conclusions 
drawn from this comparative study are: 
• For open-loop identification, all algorithms deliver similar performance in both bias and 

variance aspects.  
• The classical MATLAB algorithms (N4SID, MOESP and CVA) yield essentially the same 

performance and all are biased in the presence of feedback control. 

7.2.7 Estimation of Process Models from Routine Operating Data  

Usually, the open-loop transfer functions Gp and Gε cannot be identified from normal operating 
data, i.e., gathered under feedback control, even if the “true” model structure is employed; refer 
to Söderström et al. (1975). This is due to the fact that the feedback control the future input is 
correlated with past output measurement or past noise. Nevertheless, it has been shown by Julien 
et al. (2004) that it is possible under certain circumstances to identify a model of Gp only from 
normal operating data and the knowledge of the time delay, but without the injection of a dither 
signal as is usual in closed-loop identification. For this purpose, an (invertible) unmeasured dis-
turbance model Gε is first estimated from routine data, i.e., using pre-whitening, as carried out 
for the determination of the Harris index (Section 2.4.1). The process description in Figure 2.1 
can be re-written as 

                                                           
12

 The data sets considered can be downloaded freely from www.esat.kuleuven.ac.be/sista/daisy.  
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we have the infinite impulse representation  
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It can be proven that an unbiased estimate of the impulse response Gp may be determined 
through linear regression of yf against uf using normal operating data, provided the time-to-
steady-state np of plant model 
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G q h q
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−

=

=∑  (7.28) 

is chosen sufficiently large. An estimate 2ˆεσ  of the variance of the white noise sequence 2
εσ  can 

be determined from the mean square residual. This result is asymptotic, but may require suffi-
ciently large data sets to ensure the convergence of the estimates. However, it is not a big con-
cern today, as usually a huge amount of data should be available in plant data bases. For proof of 
this basic result, the reader should refer to Julien et al. (2004), who pointed out the following 
cases to be distinguished depending on the values of the time delay τ and the disturbance settling 
time nε: 
• Case 1. Disturbance settling time smaller than time delay, i.e., nε < τ. In this case, the 

coefficients of ˆ ( )E q  settle out within τ − 1 control intervals, i.e., 

1
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Using Equation 2.8 yields 
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Thus, ˆ ( )E q  derived from Equation 2.37 can be used to generate an FIR estimate of the dif-
ferenced disturbance dynamics as  
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with d0 = e0 = 1 and di = ei − ei – 1 for i = 1, …, nε.  
Note that random disturbance walks (Equation 4.30) basically used in MPC fall in this 

case and the impulse response settles out immediately, i.e.,   
1 2 ( 1)ˆ ( ) 1 1 1 1 ( ) 1E q q q q G qτ

ε
− − − −= + ⋅ + ⋅ + + ⋅ ⇒ Δ = . (7.32) 
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The associated pre-whitening filter is then simply Δ. This implies that Gp can always be iden-
tified by regression of routine, differenced input–output data when the disturbance is a ran-
dom walk.  

• Case 2. Disturbance settling time larger than time delay, i.e., nε ≥ τ. This is the more 
general case, where the coefficients of ˆ ( )E q  in Equation 2.37 will not completely describe 
the disturbance dynamics, hence, the regression of yf against uf will produce a biased estimate 
of the plant dynamics Gp. A pragmatic solution in this case is to forecast the remaining coef-
ficients of ˆ ( )E q  up nε to by extrapolation. This approach should reliably work if τ is “suffi-

ciently large” compared to nε, so that ˆ ( )E q  exhibits “most” of the disturbance dynamics. Of 
course, the quantification of this remains “fuzzy” and up to the user.  

Extrapolation Model 

Julien et al.(2004) proposed fitting a second-order plus time delay (SOPTD) continuous model  
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to the impulse coefficients of ˆ ( )E q  before the time delay, and then using this model in obtaining 
the full disturbance model by extrapolation. The SOPTD parameters are estimated so that the 
objective function  
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is minimised. iψ  are the coefficients (up to nε) of discrete step response of G(s) parameterised by 
the current estimates K, ω0 and D. The integer dead time τd has to be specified by the user from 
inspecting the plot of the coefficients of ˆ ( )E q . τd is introduced to avoid any undesirable initial 

transients, e.g., inverse response observed in ( ),E q from being factored into the extrapolation 
(Julien et al., 2004). We found that it may often be sufficient to adopt a FOPTD approximation 
rather than a SOPTD one. The estimation of the extrapolation model can be easily carried out, 
e.g., using the fminsearch function of the MATLAB Optimization Toolbox. 

Fitting ARIMA Disturbance Model 

Another method for estimating the disturbance model involves fitting an ARIMA(n, p, l) to nor-
mal operating data. Ko and Edgar (1998) proposed an iterative procedure based on the non-linear 
least-squares minimisation of an objective function similar to Equation 7.34. However, in the 
author’s experience, it often suffices to fit an ARMA(2–5, 1, 1) model to the differenced data 
and augment it by an integrator (Section 7.2.4). Note that also this disturbance estimation method 
may be inaccurate for small time delays, i.e., for τ ≤ 2.  

7.3 Selection of Model Parameters  

Determining the time delay and model orders for the prediction-error methods is typically a trial-
and-error procedure. Some useful set of steps that can lead to a suitable model are (National 
Instruments, 2004).  
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1. Obtain useful information about the model order by observing the number of resonance peaks 
in the non-parametric frequency response function. Normally, the number of peaks in the 
magnitude response equals half the order of A(q)F(q). 

2. Obtain a reasonable estimate of delay using correlation analysis and/or by testing reasonable 
values in a medium size ARX model. Choose the delay that provides the best model fit based 
on prediction errors or other fit criterion.  

3. Test various ARX model orders with this delay choosing those that provide the best fit based 
on, e.g., Akaike’s Information Criterion (AIC). For this purpose, the MATLAB Identification 
Toolbox offers the functions arxstruc, ivstruc and selstruc.  

4. Since the ARX model describes both the system dynamics and noise properties using the 
same set of poles, the resulting model may be unnecessarily high in order. By plotting the ze-
ros and poles (with the uncertainty intervals) and looking for cancellations, the model order 
can be reduced. The resulting order of the poles and zeros are a good starting point for AR-
MAX, OE and/or BJ models with these orders used as the B(q) and F(q) model parameters 
and first- or second-order models for the noise characteristics. 

5. If a suitable model is not obtained at this point, try to find additional signals that may influ-
ence the output. Measurements of these signals can be incorporated as extra input signals. 
However, the application of these recipes to a large number of control loops to be assessed is 

time consuming and cannot be fully automated. Therefore, more simple rules are needed for 
selecting the model parameters, as presented below. 

From the prediction error viewpoint, the higher the order of the model is, the better the model 
fits the data because the model has more degrees of freedom, or number of parameters. However, 
more computation time and memory is needed for higher orders. Moreover, the parsimony prin-
ciple advocates choosing the model with the smallest number of parameters, if all the models fit 
the data well and pass the verification test.  

7.3.1 Time Delay Estimation  

A reliable estimate for the time delay in the closed-loop is necessary to utilise most of the pre-
sented performance assessment methods, particularly the MVC-based techniques. This is prob-
lematic when the time delay is unknown or varying. Various time-delay estimation (TDE) ap-
proaches have been proposed to address this problem. A classification, comprehensive surveys 
and comparative (simulation) studies of TDE methods are given in O’Dywer (1996) and Björk-
lund (2003).  

7.3.1.1 Some Time Delay Estimation Methods 

In the following, three of the most frequently used approaches for TDE are briefly described: 
• Cross-correlation method. The classical method for TDE is based on analysing the cross-

correlation between u and y as the two signals of interest. Both signals are put close to each 
other and then time-shifted until they agree the most. This can be formally written as 

ˆ max E{ ( ) ( )} max ( ) ( )
k

y k u k y k u k
τ τ

τ τ τ= − ≈ −∑ . (7.35) 

• Relational Approximation Method. The delay term in the continuous-time model is ap-
proximated by a low-order rational function, typically a Padé approximation. The time delay 
is then computed from the pole-zero excess. Isaksson (1997) proposed to estimate first a 
Laguerre model, followed by a calculation of the (discrete-time) zeros zi and their conversion 
into continuous-time zeros si. A comparison with a first-order Padé approximation gives an 
estimate of the (continuous) time delay, assuming that the plant has no non-minimum phase 
zeros, except those resulting from the time delay:  
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where r is the number of zeros in the right half plane. This method has been modified by 
Horch (2000) to avoid approximation error sources (i.e., conversion of discrete-time zeros 
into continuous-time zeros and the Padé approximation itself) by directly estimating the time 
delay from the discrete-time zeros of the Laguerre model 
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see also Dumont et al. (2002). Measures, such as zero guarding, have to be taken to pre-
vent/remove “false zeros” (close to but outside of the unit circle); see Björklund (2003) for 
details. Since the intended use here is performance monitoring, it is not at all critical that one 
actually gets a kind of “apparent time delay” (Swanda and Seborg, 1999) when the system 
(without time delay) is non-minimum phase.  

• Fixed model variable regression estimation (FMVRE). This is a simple two-step proce-
dure proposed by Elnaggar et al. (1991), consisting of (1) assuming some delay value (inter-
val) and estimating an auxiliary model of fixed order by a least-square method and (2) opti-
mising the least-square error performance index with respect to the delay value. The actual 
(recursive) algorithm exploits the fact that minimising this index is equivalent to maximising 
the cross-correlation function between the system input and output increments. This method 
has been advocated by Lynch and Dumont (1996).   
Several time-delay estimation algorithms have been compared in Isaksson et al. (2000) for 

application in a monitoring tool using Monte-Carlo simulations. Most methods make use of the 
well known first-order plus time-delay (FOPTD) approximation of the system.  

It is very important to realise that time delay cannot be estimated from routine operating data 
without external excitations or abrupt changes in the control signals. This fact often ignored by 
many researchers has been well proven in the theory of system identification literature; see 
Ljung (1999). Occasionally, this may be possible due to non-linearity or some natural perturba-
tion present in the process, but this is not always reliable.  

7.3.1.2 Comparative Study 

A comparative study of different TDE methods is now presented. Again, the data used come 
from a strip-thickness control loop. 145 data sets have been considered, each data set corre-
sponds to a rolled steel-strip coil. As the speed is measured for the process, the time delay can be 
computed accurately. The time delay values are in the range 5–16. The following TDE tech-
niques have been investigated: 
• TDE. Time-delay estimation using cross-cumulant method (function tde in the MATLAB 

Higher-order Spectral Analysis Toolbox). 
• TDEB. Time-delay estimation using conventional bispectrum method (function tdeb in the 

MATLAB Higher-order Spectral Analysis Toolbox). 
• TDER. Time-delay estimation using ML windowed cross-correlation (function tder in the 

MATLAB Higher-order Spectral Analysis Toolbox). 
• TDOE. Time-delay estimation based on OE model (function oestructd in the MATLAB 

Identification Toolbox). 
• TDARX. Time-delay estimation based on ARX model (function arxstructd in the MAT-

LAB Identification Toolbox). 
• TDMET. Time-delay estimation based on pre-filtered ARX model (function 

met1structd form Björklund (2003)). 
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• DELAYEST. Time-delay estimation based on a comparison of ARX models with different 
delays (function delayest in the MATLAB Identification Toolbox).  

• TDLAG. Time-delay estimation based on Laguerre-filter model (Equations 7.36 and 7.37). 
Table 7.1 contains the mean error ˆ( )τ τ−  and root mean square (RMS) error values of the 

time-delay estimates for the different methods. These give estimation quality measures which 
can be used to see how good the estimates are. It can be concluded that the correlation-based 
TDER and ARX-model-based (TDARX and DELAYEST) are best. The approximation method 
based on Laguerre filters is not as good as expected and reported in the literature. A problem 
with the method based on Laguerre model (Equation 7.36) is that it can deliver complex valued 
time-delay estimates, so only the real part is taken. The higher-order-statistics-based techniques 
(TDE and TDEB) are worst performing.  

 
 

Table 7.1. Estimation-quality measures for the different time-delay estimation techniques. 

 TDE TDEB TDER TDOE TDARX DELAY-
EST  

TDMET TDLAG 

Mean 3.5 4.2 −0.9 2.3 0.7 −1.8 −1.8 1.8 −5.0 
RMS 8.8 9.4 1.3 3.1 1.3   1.0   3.1 3.2 7.1 

 

7.3.2 Model Order Selection  

Care should be taken when selecting proper model orders; it does significantly affect the esti-
mated performance indices. In time varying closed-loop systems, the proper model order should 
be determined for each individual data segment. Different disturbances acting on the system will 
change the model order of the closed-loop system. Different suggestions for selecting model 
orders have been given in the literature: 
• Desborough and Harris (1992) proposed to start with some small model order like n = 5 and 

continuously increase n until the performance index estimate does not change so much; see 
Figure 7.4. In this case, a model order of 30 should be sufficient. Note that the time delay is 
τ = 5 for this control loop. 

• Thornhill et al. (1999) used a fixed 30th-order AR model and adjust the sample time such 
that the closed-loop impulse response is fully captured within 30 samples.  

• Horch (2000) found that a suitable model order for AR models is between 15 and 25.  
• Haarsma and Nikolaou (2000) recommended the following simple model-order selection 

procedure: (a) Start with the smallest model possible; (b) Increase the model order until the 
residuals are statistically white; (c) If a maximum model order is reached without any model 
producing statistically white residuals, select the model with the least coloured residuals. 

• Goradia et al. (2005) suggested to use n = 20 + τ.  
In our experience, appropriately selected model orders (typically n ≈ 20 + τ), and a minimum 

length of data, typically N ≥ 100–150τ, are necessary for obtaining reliable results. When the 
time delay is unknown, the use of the prediction horizon approach (Section 0) is highly recom-
mended. However, n should not be too high, as over-parameterisation induce very noisy impulse 
responses; see Figure 7.5. In other words, when the disturbance model impulse response is very 
noisy, it is a clear indication of over-parameterisation and the model order should be reduced.  
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Figure 7.4. Influence of the model order on the Harris index estimate. 
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Figure 7.5. Effect of over-parameterisation, i.e., a too high AR-model order, on the impulse 
response.   

 
When performance assessment is done offline and the residual plots can be inspected, it is 

recommended to look at the whiteness of the residuals. To check this, whiteness tests (Ljung, 
1999) or portmanteau lack-of-fit tests (Box and Jenkins, 1970) have been developed. MATLAB 
Identification Toolbox offers the function resid for checking the whiteness of the residuals; 
see Figure 7.6.  

For models with inputs, i.e., of the AR(I)MAX or more general BJ type, a cross-correlation 
test is also important to decide whether the selected model order set is sufficient. Figure 7.7 
shows an example where the model fitting does not pass both residual tests. The model orders 
have to be increased.  
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Figure 7.6. Effect of model order on the auto-correlation of residuals (Loop: thickness control, 
coil no. 5). 
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Figure 7.7. An example of ARMAX fitting that does not pass the residual tests.  

7.4 Comparative Study of Different Identification Techniques 

Five different stochastic identification techniques commonly used in the context of control per-
formance assessment will be compared. 144 data sets from a strip-thickness control loop with 
different features were selected to investigate performance of the different identification meth-
ods. A difficulty in comparing the methods and working with real data is that the true model and 
model structure are unknown. Also cross-validation is difficult to use since the disturbances 
acting on the system and therefore the disturbance models are constantly changing.  

The data analysed were gathered from a strip-thickness control loop in a rolling mill, de-
scribed in detail in Section 15.3.1. The following assessment algorithms were implemented 
based on some functions from MATLAB Identification Toolbox: 



 7.4 Comparative Study of Different Identification Techniques 161 
 

• AR LS. An AR model is identified using [ar] to estimate the noise sequence and calculate 
the disturbance impulse coefficients, required for computing the Harris index from impulse-
response coefficients; see Procedure 2.1. 

• ARMA LS-IV. An ARMA model is estimated using the MATLAB function armax, by 
omitting the input and the associated B polynomial order and setting equal orders for the 
polynomials A and C. The Harris index has been calculated from impulse-response coeffi-
cients; see Procedure 2.1.  

• SID. A state-space model is identified using the subspace algorithm [n4sid], selecting the 
option “CVA”. From this model, the impulse-response coefficients have been generated to 
compute the Harris index; see Procedure 2.1. 

• FCOR. The random shocks have been estimated from AR disturbance modelling. The calcu-
lation of the cross-correlation function eliminates the need to determine the impulse response 
coefficients from the estimated closed-loop transfer function; see Procedure 2.2.  

• Laguerre PEM. A Laguerre model in state-space form is estimated by [pem], i.e. the batch 
version of Procedure 7.1.  
The loop time delay is accurately known for each coil. The maximum model order was set to 

5 for both PEM and subspace identification methods, and 20 for the AR identification method. 
Increasing the maximum order did not yield more models with white residuals.  

7.4.1 AR vs. ARMA Modelling  

A first lesson to be learned from the results is that calculating the performance index using AR 
LS clearly over-estimates the performance, compared with the index values resulting from 
ARMA LS-IV; see Figure 7.8. This is due the fact that many data sets analysed show oscillating 
behaviour. The same conclusion was stated by Haarsma and Nikolaou (2000) who analysed data 
from a snack food process.  
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Figure 7.8. Comparison of Harris indices for a thickness control loop, determined based on AR 
and ARMA models.  
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Hoch (2000) already discovered this problem from the analysis of measured data from an os-

cillating flow control loop. Horch thus recommended to not rely on MVC-based index in cases 
where an oscillation is present, particularly when it caused by non-linearities. Therefore, oscilla-
tion detection is included in a very early stage in the comprehensive procedure proposed in Sec-
tion 12.3. 

Therefore, it is always wise to screen out oscillating loops by using specialised indices before 
evaluating the performance index, as will be described in Chapter 8. If one wants to calculate the 
Harris index for oscillating signals, ARMA modelling should be used. Note that the estimation 
of an ARMA model may be difficult, especially since stability cannot be guaranteed.  

7.4.2 Subspace Identification  

Haarsma and Nikolaou (2000) found that the PEM and AR methods produce better results than 
the subspace methods. The reason why subspace methods produce fewer models with white 
residuals was unknown. This cannot be completely confirmed here. The resulting indices from 
application of the subspace method (with the CVA option) in our study are very similar to those 
produced by PEM, but with some strange outliers (η > 1); see Figure 7.9. Note that per SID 
identified models were often numerically unstable, i.e., with ill-conditioned covariance matrix. 
This lowers the practicability of the method. 
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Figure 7.9. Comparison of Harris indices for a thickness control loop, determined based on 
ARMA LS-IV and SID methods.  

 
For data set showing a nice response and perfect performance (without oscillations), the dif-

ferent identification methods work equally well, i.e., they give very similar impulse responses 
and performance indices. For such cases, AR modelling is obviously to be preferred.  

7.4.3 Performance of the FCOR Algorithm  

The FCOR performance indices are nearly the same as those produced by the AR LS method; 
see Figure 7.10. The study by Haarsma and Nikolaou (2000) revealed, however, that several 
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performance indices resulted from FCOR algorithm are clearly above one. This cannot be con-
firmed in our study.  

The FCOR method uses the cross-correlation between the delay free output and estimated 
random shocks to compute the impulse response coefficients, instead of using the impulse re-
sponse coefficients directly from the disturbance model. This adds additional variance to the 
estimation of 2

MVσ  and η. The FCOR method, therefore, seems to not offer any advantage over 
the conventional method of computing impulse response coefficients. 

Non-iterative methods, i.e., subspace and AR LS, are computationally much faster than the 
iterative PEM methods. The computational cost for the PEM methods is not prohibitive, but it 
might become a problem for higher-order systems. 
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Figure 7.10. Comparison of Harris indices for a thickness control loop, computed from AR LS 
and FCOR methods.  

7.4.4 Use of Laguerre networks  

The assessment indices achieved from the identification of Laguerre networks are even higher 
than those from AR modelling, so the loop performance is clearly over-estimated; see Figure 
7.11. The actual reason cannot be fixed at this time. Possible problems may result from possibly 
not optimal choice of the filter order or time scale. Note again that the (batch) estimation of the 
indices based on Laguerre models requires the application of PEM rather than LS. All in all, we 
cannot confirm the advantages of using Laguerre networks in control performance assessment, as 
claimed in some literature.  
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Figure 7.11. Comparison of Harris indices for a thickness control loop, determined based on AR 
and Laguerre models. 

7.5 Model Estimation for Multivariable Processes  

When assessing multivariable control systems, the task of model identification is more crucial 
than the SISO case. The main problem of using conventional time series analysis is the large 
number of parameters to be estimated, which grows quickly with dimension of the model. Tak-
ing a two-inputs/two-outputs process as an example and selecting the model order to be just 
n = 2 means that 16 parameters have to be estimated. If the number of parameters increases, the 
complexity of the estimation algorithm becomes higher, and the danger of trapping in local min-
ima increases. In this context, it is needed to keep the number of parameters as small as possible. 
This implies that one should use, for instance, vector ARMA (VARMA) models rather than 
vector AR (VAR) models, since the former typically requires lower order.  

The topic of time series modelling for multivariable processes is discussed, e.g., in Seppala et 
al. (2002). Subspace methods are also a good option for the identification of multivariable sys-
tems, as advocated by Huang et al. (2005b).  

7.6 Summary and Conclusions 

Different key factors affecting the reliability of the performance assessment results have been 
discussed in this chapter. Suggestions were given for selecting the right options and parameters. 
It has been stressed that while data scaling, detrending and eliminating of outliers are recom-
mended, the use of archived data should be strictly avoided. This is because smoothing or com-
pression commonly used in data historians affect the performance index, leading to wrong as-
sessment statements, usually the over-estimation of the control performance. Recommendations 
were given for selecting a proper sampling time and data length (N) for assessments exercises. 
Particularly, the data length affects the accuracy of the calculated indices and should lie between 
1000 and 2000 (whenever possible). Increasing N may increase the assessment accuracy, but also 
increases the computational load. Using a lower N is not advisable, as it usually leads to a 
broader confidence interval for the performance index.  
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From the variety of models and techniques, which can be used as basis for performance as-

sessment, AR modelling remains the standard approach, since the associated model estimation is 
simple and fast by using LS methods. However, there are some situations where other methods 
such as PEM may be more useful. For instance, it has been concluded that oscillating signals are 
a potential problem when evaluating the Harris index based on AR modelling, i.e., the perform-
ance may be over-estimated. The best way is, therefore, to detect oscillations prior to the compu-
tation of the index. If this is not possible or desirable, ARMA or PEM modelling should be used. 
The only practical reason found for using subspace identification in calculating the MV and 
GMV benchmark indices is its fast computation compared to PEM. Moreover, this method 
seems to have more merits when carrying out more advanced assessment such as LGQ or MPC 
benchmarking.  

The knowledge of the time delay is essential to estimating the MV and GMV benchmark in-
dices (and similar ones). It is a real problem and not practical to use routine operating data for 
such assessments without first having knowledge of the loop delay or trying to estimate it from 
the data. For the latter task, however, the data must contain clear changes in the control vari-
ables, or experimentation with the process in terms of changes in the set point or the addition of a 
dither signal should be possible. Otherwise an estimation of the time delay will be unreliable. As 
suggested by Thornhill et al. (1999), the prediction horizon approach can be used to obtain a 
reasonable estimate of a suitable time delay for use in performance assessment. Note that when 
any other value for the time delay than the real one is used, the calculated index cannot be inter-
preted as MV/GMV benchmark, but should be regarded as a kind of user-defined performance 
index.  

The last critical issue discussed in this chapter is the proper selection of the model orders. 
Different simple rules have been described, which all ensure reliable results. Following these 
suggestions, the danger of under- or over-estimating the performance index should be mini-
mised. The experience suggests that n ≈ 20 + τ are adequate for most cases to achieve the bal-
ance between assessment accuracy and computational load. However, there is no absolute gen-
eral answer to how large the model order should be, as it depends on the plant-noise model and 
weighting functions (for GMV).  

In practical applications, it is always well spent time to investigate different combinations of 
data lengths and model orders of defined ranges until the variations in the calculated perform-
ance indices are small to achieve accurate assessment results. Of course, this will be only possi-
ble, when a few control loops are analysed; otherwise, the job would take much more time than 
can be invested in practice.  
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8 Detection of Oscillating Control Loops 

Since a control loop may exhibit poor performance for various reasons, it is not only important to 
detect poor performance, but the challenge is to trace the bad performance to its root cause. Not 
only controller design and tuning but also other elements in the control systems, such as sensors 
and actuators, are often responsible for the poor performance. There are many reasons for poor 
control performance, which can be detected using specialised methods and indices, without re-
quiring the knowledge of time delays or model identification. These are calculated simply based 
on the analysis of the some measured signals, such as the controller output (OP), the controlled 
(process) variable (PV) and Set point (SP). If the root cause is correctly identified, maintenance 
actions are more cost effective. In the present maintenance practice, plant personnel must do this 
time-consuming „detective job“.  

8.1 Root Causes of Poor Performance  

Attempt of this Part II of the thesis is to review and suggest procedures for semi- or fully auto-
matic diagnosis of poor performance of control loops. This covers: 
• Detection of Process Non-linearity. Non-linearities in actuators (such as saturation, dead-

band, or hysteresis in control valves), sensors or in the process itself may cause limit cycle 
oscillations. Thus chapter describes two of the prominent methods for detecting non-
linearities in control loops. Section 9.4 describes two simple saturation indices for the auto-
matic detection of saturated actuator actions. 

• Oscillation Detection. Oscillations in process control loops are a very common problem. 
Oscillations often indicate a more severe problem than irregular variability increase and 
hence require more advanced maintenance than simple controller re-tuning. There are several 
reasons for oscillations in control loops. They may be caused by excessively high controller 
gains, oscillating disturbances or interactions, but the most common reason for oscillations is 
friction in control valves. In Chapter 8, the most important methods for non-invasive oscilla-
tion detection are presented and compared.  

• Oscillation Diagnosis. Particular attention will be paid to the diagnosis of stiction (i.e., static 
friction resulting in “stick-slip” motion) in valves, which are often used as the final control 
elements in plants of the process industries. Stiction can be easily detected using invasive 
methods, such as the valve travel or bump test; see Section 10.8.2. However, it is neither fea-
sible nor effective to apply an invasive method across an entire plant site due to the require-
ment of significant manpower, cost and plant downtime. It is more convenient to first inves-
tigate gathered process data using a non-invasive method. Chapter 10 presents an overview of 
the methods for diagnosing the source of control valve problems. These methods enable one 
to discriminate between oscillation due to valve non-linearities, aggressive controller tuning 
or disturbances affecting the loop.  
For each method described, the basic assumptions, limitations, strengths and weaknesses will 

be clearly stated. The parameterisation of the methods is thoroughly discussed to give default 
settings for real applications. Industrial examples from different industrial fields (chemicals, 
refining, petro-chemicals, pulp & paper, mining, mineral and metal processing) are presented 
throughout the chapters to demonstrate the applicability of the methods. 
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Throughout the Chapters 8−10, the techniques presented for oscillation, non-linearity and 

stiction detection will be demonstrated using a MATLAB GUI (Figure 8.1) developed by the 
author, where all techniques are implemented, including some pre-processing methods. The GUI 
gives users the possibility to compare the method on a data set side-by-side, in a fast and user-
friendly way. The upper part of Figure 8.1 contains functions for data pre-processing (detrend-
ing, filtering, decimation, etc.) and for generating plots (time trends, PV−OP shape, power spec-
trum, etc.). In the middle part of the figure, methods for oscillation detection can be selected and 
applied to the data. The lower part of the figure provides the user with techniques for stiction 
detection.  

 

 
Figure 8.1. Oscillation and stcition detection GUI showing the analysis of industrial data from a sensor 
fault in a refiney. 

8.2 Characterisation and Sources of Oscillations in Control 
Loops 

There is no clear mathematical definition of “oscillation” that could be applied. Therefore, oscil-
lation detection is usually done somewhat heuristically: one speaks of oscillations as periodic 
variations that are not completely hidden in noise, and hence visible to human eyes (Horch, 
2007). According to Shoukat et al. (2008:Chap. 18), an oscillatory signal is a periodic signal 
with well-defined amplitude and frequency, e.g., a sinoisdal signal. However, the amplitude 
specification remains an ambiguous question since small oscillations are usually not a serious 
problem. There are other applications, e.g., signal processing for communication applications 
where periodic signals with very low signal/noise ratio are very common. These are, however, of 
no interest in the process industries. 
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Therefore, the knowledge of the quantifiable properties of oscillatory signals is necessary to 

make an expert assessment whether the fault is significantly large and requires a corrective ac-
tion to be taken. The strength of oscillations can be quantified using period, regularity and power 
(Thornhill et al., 2003): 
• Period. The reciprocal of the oscillation frequency is termed as period of oscillation. In other 

words, it is twice the time lapse between two zero crossings of oscillatory signal. In reality, 
this period may vary around a mean value due to the presence of measurement noise and 
other stochastic components of the process. In some cases, multiple oscillations with different 
period of oscillation may exist in the process variables resulting from multiple fault sources 
and hence the period may vary along the time. 

• Regularity. Regularity of oscillatory signal translates into a quantity that represents the non-
randomness behaviour. If the variation in the signal is due to random disturbances, the period 
of oscillation will hold a wider distribution compared to that of a true oscillatory nature. 
Regularity of oscillations can be defined as  
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 (8.1) 

where pT  is the mean value and σTp the standard deviation of the periods Tpi at adjacent sig-
nal intervals; see Section 8.7. 

• Power. Power of oscillations is a means to quantify the amplitude of the oscillatory signal. It 
is the sum of the spectral power in the selected frequency channels as a fraction of the total 
power; see Section 8.3. 
Oscillations (or vibrations) are a very drastic form of plant performance degradation. The 

most important sources of oscillations in control loops are: 
• Aggressive Tuning. Too high controller gains may lead to unacceptable oscillations in the 

process variable. If the controller is tuned such that the loop is (nearly) unstable, i.e., the con-
troller gains are selected too high, there will be an oscillation due to saturation non-linearity 
(as control-signal constraints always exist in real systems). 

• Non-linearities. Perhaps the most likely reason for control-loop oscillations is the presence 
of static non-linearities in the system, such as static friction (leading to stick-slip effect), dead 
zone, backlash, saturation and quantisation. Refer to the discussion of these phenomena by 
Horch (2000). 

• Disturbances. These are a challenge for an automatic CPM system. When having detected 
an oscillation, it is important to distinguish between internally and externally generated oscil-
lations. External disturbances usually come from upstream processes with the material trans-
ferred, or from other control loops due to interactions.  

• Loop Interactions. Control loops are often mutually interacting. Therefore, if one loop is 
oscillating, it will likely affect other loops too. In many cases, the oscillations are in a fre-
quency range such that the controller cannot remove them. Then, an oscillation is present 
even though the controller is well tuned (it might have been tuned for some other control 
task) (Horch, 2000). 
For reasons of safety and profitability, it is important to detect and diagnose oscillations. A 

number of researchers have suggested methods for detecting oscillating control loops. The meth-
ods fall into the following categories:  
i) Detecting spectral peaks (classical approach); see Section 8.3.  
ii) Methods based on time-domain criteria like the integral of absolute error (IAE) (Hägglund, 

1995; Thornhill and Hägglund, 1997; Forsman and Stattin, 1999; Salsbury and Singhal, 
2005; Salsbury, 2006). The method by Hägglund is described in Section 8.4, and that by 
Forsman and Stattin in Section 8.5. 
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iii) Methods based on the auto-covariance function (Miao and Seborg, 1999; Thornhill et al., 
2003c). Both techniques are presented in Sections 8.6 and 8.7. 

iv) Use of Wavelet plots; see Section 8.9. 

8.3 Detection of Peaks in the Power Spectrum 

Detecting oscillations by looking for peaks in the power spectrum is an obvious and classical 
approach. The amplitude of the highest peak outside the low frequency area has to be compared 
to the total energy in this frequency area. Visual inspection of spectra is therefore helpful be-
cause strong peaks can be easily seen, but determination of period and regularity from the spec-
trum is not recommended.  

The ratio between the position of a peak and its bandwidth gives a measure of the regularity 
of the oscillation, but the presence of noise in the same frequency channels causes difficulties 
with the determination of bandwidth (Thornhill et al., 2003). Also, automating the use of spectra 
for several hundreds or even thousand of loops is a difficult task, as visual inspection is generally 
necessary and the tuning parameters are manually specified. Moreover, the application of spec-
tral analysis becomes difficult if the oscillation is intermittent and periods vary every cycle. 
There are many methods for peak detection in a spectrum. For instance, a peak is defined as a 
point that is more than three times greater than the average of the surrounding (e.g., 40) samples. 
 
Example 8.1. Figure 8.2 and Figure 8.3 show the data and power spectrum for the control error of two 
industrial loops CHEM13 and CHEM17, respectively. The power spectrum of CHEM13 has a non-
sinusoidal nature of oscillation characterised by the presence of a harmonic in the spectrum. This is a clear 
indication of non-linearity in the loop, which has indeed a faulty steam flow sensor. By contrast, the power 
spectrum of the loop CHEM17 has a distinct spectral peak due to oscillation, which can be classified as a 
disturbance. 
 
 

 
Figure 8.2. Spectral analysis of the data from the industrial Loop CHEM14. 

8.4 Regularity of “Large Enough” Integral of Absolute Error 
(IAE) 

Perhaps the first automatic procedure for detecting oscillations in control loops was presented by 
Hägglund (1995). This methodology is based on computing the IAE between zero-crossings of 
the control error e, i.e. 
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where ti − 1 and ti are two consecutive instances of zero crossings. It is assumed that the controller 
has integral action, so that the average control error is zero. If no integral action is present, it is 
suggested to study the difference between the measurement signal and its average value obtained 
from a low-pass filter. It might be advantageous to use the second approach also for controllers 
with integral action, since it provides the possibility to detect oscillations that are not centred 
around the set point.  

 

 
Figure 8.3. Spectral analysis of the data from the industrial Loop CHEM17. 

8.4.1 Load-disturbance Detection 

A basic observation during periods of good control is that the magnitude of the control error is 
small, and the times between the zero crossings are relatively short; see Figure 8.4. In this case, 
the IAE values calculated according to Equation 8.2 become small. When a load disturbance 
occurs, the magnitude of e(t) increases, and a relatively long period without zero crossings, and 
thus a large IAE value, results. When the IAE exceeds a certain limit, denoted IAElim, it is there-
fore likely that a load disturbance has occurred. The choice of this limit is a trade-off between the 
demand for a high probability of detection and the requirement for a small probability of getting 
false detections. 
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Figure 8.4. Control error e during a period of good control affected by a load disturbance (data from strip 
thickness control loop in a tandem rolling mill). 
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The load-disturbance detection procedure can be used to detect oscillations. Suppose that the 

control error is a pure sinusoidal wave with the amplitude A and the frequency ω, and that this 
signal is to be detected as a sequence of load disturbances. This means that the integral of each 
half period of the oscillation must be greater than IAElim. The following upper limit of IAElim is 
then obtained: 
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lim 0
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The procedure should be able to detect oscillations in the low- and middle-range area. A re-
quirement is therefore that frequencies up to the ultimate frequency ωu should be detected. A 
reasonable choice of A is 1%, which means that 2% peak-to-peak oscillations are acceptable, but 
that oscillations with higher amplitude should be detected (Hägglund, 1995). Such a parameter 
choice gives 

lim
u

2IAE
ω

= . (8.4) 

This quantifies what “large enough” IAE means. The ultimate frequency ωu may be known when 
the controller is tuned with a relay auto-tuner, but normally it is unknown. With a properly tuned 
PI(D) controller, the integral time TI is of the same magnitude as the ultimate period Tu = 1/ωu. If 
ωu is unknown, it can therefore be replaced by the integral frequency ωI = 2π/TI in Equation 8.4, 
i.e. 

I
lim π

TIAE = . (8.5) 

8.4.2 Basic Appraoch 

The basic idea of the oscillation-detection procedure is to conclude the presence of an oscillation 
if the rate of load-disturbance detections becomes high. For this purpose, the behaviour of the 
control performance is monitored over a supervision time Tsup: if the number of detected load 
disturbances exceeds a certain limit, nlim, during this time, it can be concluded that an oscillation 
is present. 

The oscillation detection procedure has three parameters that must be selected: IAElim, Tsup, 
and nlim (Hägglund, 1995): 
• Set nlim = 10.  
• Select Tsup = 5nlimTu, where Tu is the ultimate period obtained from a relay auto-tuning ex-

periment. If such an experiment is not performed, one should replace Tu with the integral time 
TI.  

• Use IAElim = 2A/ωu, where A as the lower limit of the acceptable oscillation amplitude at the 
ultimate frequency ωu: a suggested value of a is 1% of the signal range. Again, if ωu is not 
available, it is replaced by ωI = 2π/TI.  

8.4.3 Detection Procedure  

The whole procedure for load-disturbance and oscillation detection can be summarised as fol-
lows. 
 
Procedure 8.1. load-disturbance and oscillation detection (Hägglund, 1995). 
1. Choose a suitable acceptable oscillation amplitude A, say A = 1%. 
2. Calculate IAElim = 2A / ωu if ωu is available; otherwise as IAElim = 2A / ωI  = ATI / π  
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3. Monitor the IAE, where the integration is restarted every time the control error changes sign.  
4. If the IAE exceeds IAElim, conclude that a load disturbance has occurred. 
5. Monitor the number of detected load disturbances (nl).  
6. If nl exceeds nlim, conclude that an oscillation is present.  

Note that, for on-line applications, it is more convenient to perform the calculations recur-
sively. The number of detected load disturbances is determined by 

l l

1 if a load disturbance is detected
( ) ( 1)

0 else
n k n k l lγ ⎧

= − + = ⎨
⎩

 (8.6) 

where γ is a weighting factor, to be set as: γ = 1 − Ts/Tsup.  

8.4.4 Method Enhancement for Real-time Oscillation Detection  

If the signal range of the process output is known, and if an estimate of the time constant of the 
loop is available, at least as TI, then it is possible to run the oscillation detection procedure auto-
matically without any further process information. This property is of vital importance in process 
control applications. A modified version of the method was suggested in Thornhill and Hägglund 
(1997), where no knowledge of the signal ranges is required or no integral term is used in the 
controller, as is often the case for integrating processes, such as in level-control loops. In these 
situations, the use of Δti, the time between zero crossings, in the criterion for detection of oscilla-
tions provides an alternative means to generate a threshold for real-time detection of deviations. 
The criterion for a 1% deviation (Equation 8.5) becomes: 

lim
2Δ
π

itIAE = . (8.7) 

That is, the local period of oscillation is taken to be 2Δti instead of TI. Note that in this case the 
calculation of Tp from zero crossings is sensitive to noise, and countermeasures (filtering, noise 
band) have to be taken to avoid spurious zero crossings.  

The use of 2Δti in place of TI also has benefits when the data are sub-sampled. Such a case 
might arise if the real-time oscillation detection were to reside in the plant information system 
layer of a DCS rather than in the PID layer, because the data may be sub-sampled to reduce traf-
fic across the communications link. In sub-sampling, the value captured at the sample instant is 
held constant until the next sampling instant and the IAE value calculated by integration from 
sub-sampled data can therefore be larger than expected. The effect gets worse as the sub-
sampling period becomes longer. If the sub-sampling interval is close to the controller integra-
tion time, then a deviation may be detected after just one sample. Therefore, the use of the alter-
native time-scale parameter Δti is again helpful. When the controller output range is unknown, 
the detection of oscillations is enhanced by use of the RMS value of the noise as a scaling pa-
rameter. Of course, the range is recorded with other loop parameters in the DCS, but assessing a 
scaling factor from the data reduces the dependence on extraneous information. For online use, 
the noise assessment would need to be assessed over, say, the past 24 hours using a recursive 
method of filtering (Thornhill and Hägglund, 1997).  

All these observations and enhancements show that Hägglungs’ online detection method can 
be applied even in cases where neither the controller-tuning settings nor the range of the process 
variables are known, and that it can be used for sub-sampled data. Its applicability has therefore 
been extended to wider range of cases often met in the industrial practice.  

 
Example 8.2. Hägglund’s oscillation-detection procedure is now demonstrated on the data of the flow 
control loop CHEM35. The flow controller was a PI controller with gain Kc = 0.6 and integral time TI = 42s. 
Figure 8.5 (upper panel) shows a window of data, i.e. control error, from the loop (Samples 1:800; Wiener 
filter [0.05, 1.0]). Because of stiction, the process oscillates with an amplitude of a few percent. The second 



176  8. Detection of Oscillating Control Loops 
 

panel shows the IAE value calculated between successive zero crossings of the control error, as well as 
IAElim: since the ultimate period was not available, IAElim was calculated from the integral time TI as 
IAElim = 2 / ωI = TI / π ≈ 13.3. The IAE values are significantly larger than IAElim, as can be expected be-
cause of the high oscillation amplitude. Finally, the third panel shows the rate of load detections nl and the 
rate limit nlim. The rate nl exceeds the rate limit nlim after about 18 min, and the detection procedure gives an 
alarm. The rate nl converges to about 25, 2.5 times larger than the rate limit. However, in the implemented 
version nl is reinitialized to zero every time nl exceeds nlim.  

 

 
Figure 8.5. Hägglund’s oscillation detection procedure applied to the control loop CHEM35. 

To summarise, Hägglund’s oscillation-detection method is very appealing but has two disad-
vantages: i) it is assumed that the loop oscillates at its ultimate frequency which may not be true, 
e.g., in the case of stiction; ii) the ultimate frequency is seldom available and the integral time 
(also not always available) may be a bad indicator for the ultimate period. A strength of the 
method is that it can be applied for online detection of oscillations.   

8.5 Regularity of Upper and Lower Integral of Absolute Errors 
and Zero Crossings 

8.5.1 Basic Methodology 

The underlying idea of this method introduced by Forsman and Stattin (1999) is that if e is near 
periodic then the time between successive zero-crossings and the successive IAEs should not 
vary so much over time. The IAEs are separated for positive and negative errors (Figure 8.6) 

2 1 2 2

2 2 1

| ( ) | d | ( ) | di i

i i

t t

i it t
A e t t B e t t+ +

+

= =∫ ∫  (8.8) 

to generate the oscillation index   

: A Bh hh
N
+

= , (8.9) 



 8.5 Regularity of Upper and Lower Integral of Absolute Errors and Zero Crossings 177 
 

1 11 1# ;
2

i i
A

i i

ANh i
A

δα γ
α δ γ

+ +⎧ ⎫⎪ ⎪= < < < ∧ < <⎨ ⎬
⎪ ⎪⎩ ⎭

, (8.10) 

1 11 1# ;
2

i i
B

i i

BNh i
B

εα γ
α ε γ

+ +⎧ ⎫⎪ ⎪= < < < ∧ < <⎨ ⎬
⎪ ⎪⎩ ⎭

, (8.11) 

where #S denotes the number of elements in the set S. 

 

 
Figure 8.6. Parameters for the calculation of the oscillations index. 

 
The oscillation index can be interpreted in the following way (Forsman and Stattin, 1999): 

• Loops having h > 0.4 are oscillative, i.e., candidates for closer examination. 
• If h > 0.8, a very distinct oscillative pattern in the signal is expected. 
• White noise has h ≈ 0.1. 

8.5.2 Practical Conditions and Parameter Selection  

Forsman and Stattin suggested to select α = 0.5–0.7, γ = 0.7–0.8 and stated that the criterion is 
fairly robust to variations in these tuning parameters. One reason for this is that there is a cou-
pling between the condition on the IAE and the condition of the time between zero-crossings. In 
practice, the error e should be pre-filtered prior to the index calculation, so that high frequency 
noise is attenuated. A simple low-pass filter (or exponential filter) can be used: 

f f f( ) ( ) (1 ) ( ) ; (1) (1)e k e k e k e eα α= + − = , (8.12) 

where ef is the filtered control error. Equation 8.12 is the digital version of the first-order filter 

f f f( ) ( ) ( )T e t e t e t+ = , (8.13) 

where Tf denotes the filter time constant. α and Tf are related by α = Ts / (Tf+ Ts). The choice of 
filter constant 0 < α ≤ 1 represents a trade-off between detecting fast, small oscillations (α = 1) 
and attenuating high frequency noise (α → 0), typically α = 0.1. That is, a smaller value α pro-
vides more filtering. For offline analysis, a non-causal filter [filtfilt] from MATLAB Signal 
Processing Toolbox can also be used.  
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8.6 Decay Ratio Approach of the Auto-covariance Function 

The ACF of an oscillating signal is itself oscillatory with the same period as the oscillation in the 
time trend. The advantage of using the auto-covariance function (ACF) for oscillation detection 
over time-trend-based methods is that the ACF in a sense provides a kind of filtering. The impact 
of noise is reduced because white noise has an ACF that is theoretically zero for lags greater than 
zero. Figure 8.7 clearly shows an example of the filtering effect of the auto-correlation function. 
Although the OP signal is noisy, its ACF is very clean. 

 

 
Figure 8.7. OP time trend (top) and its auto-covariance function (bottom) for loop POW3.  

8.6.1 Methodlodogy  

The patented1 method of Miao and Seborg (1999) is based on the analysis of the auto-covariance 
function of normal operating data of the controlled variable or the control error. The approach 
utilises the decay ratio Racf of the auto-covariance function, which provides a measure of oscilla-
tion in the time trend is. Figure 8.8 illustrates the definition of Racf, described by the equation: 

acf
aR
b

= , (8.14) 

where a is the distance from the first maximum to the straight line connecting the first two min-
ima and b the distance from the first minimum to the straight line that connects the zero-lag auto-
covariance coefficient and the first maximum.  

As the decay ratio of the auto-covariance function is directly related to the decay ratio of the 
signal itself, it is a convenient oscillation index. A value Racf smaller than 0.5, corresponding to a 
decay ratio in the time domain smaller than 0.35, may be considered as acceptable for many 
control problems. On the other hand, if Racf ≥ 0.5, then the signal is considered to exhibit an 
excessive degree of oscillation.  

Therefore, Racf can be used to detect excessive oscillations in control loops according to the 
following simple procedure. 

 
Procedure 8.2. Oscillation detection using the decay ratio of the auto-covariance function. 
1. Calculate the auto-covariance function of the measured y or e and determine the ratio Racf (Equation 

8.14). For the case where there are less than two minima, set the index value to zero. 

                                                           
1
 US Patent #5,719,788 (1998) 
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2. If Racf is greater than a specified threshold, say 0.5, it is concluded that the considered signal is exces-
sively oscillatory. 

Note that, as in every method, the selection of the threshold is somewhat subjective and applica-
tion-dependent.  
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Figure 8.8. Determination of the decay ratio of the auto-covariance function. 

8.6.2 Practical Conditions and Parameter Selection  

To calculate the oscillation index Racf from auto-correlation coefficients, it is necessary to have at 
least two minima and one maximum, i.e., 1.25 cycles, in the correlogram. Because the maximum 
lag is selected to be one quarter of the number of data points (Box et al., 1994), 1.25 cycles in the 
correlogram corresponds to five cycles in the signal data. Hence, an oscillation can be detected 
by the decay-ratio method if the data exhibit at least five cycles of a damped oscillation during 
the data-collection period Tc. This means that Tc must be at least five times the period of the 
lowest frequency of interest. This frequency range can be specified as suggested by Hägglund 
(1995), i.e., depending on the ultimate frequency ωu (when known) 

u
u10

ω ω ω≤ ≤  (8.15) 

or based on the controller integration time TI  

I I

2π 2π
10T T

ω≤ ≤ . (8.16) 

This also suggests selecting 

c I50T T> . (8.17) 

However, when the controller is poorly tuned, TI may be too small and the nominal data collec-
tion period Tc = 50TI would then be too short to detect low frequency oscillations. To avoid this 
potential problem, Miao and Seborg (1999) recommended repeating the auto-covariance analysis 
for Tc = 250TI whenever no oscillation is detected using Tc = 50TI.  

When the signal-to-noise ratio is small, a large number of local maxima and minima may oc-
cur in the correlogram. This would cause problems in the determination of the Racf index. There-
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fore, it is desirable to remove high frequency noise by filtering. Again, the selection of the filter 
time constant is a compromise between detecting fast, small oscillations and attenuating high fre-
quency noise. Excessive filtering attenuates the considered signal over the frequency range of 
interest and thus adversely affects the calculated Racf value.  

8.7 Regularity of Zero Crossings of the Auto-covariance 
Function 

The strength of oscillations can be quantified using three characteristics: period Tp, regularity r 
and power P of oscillation. A regular oscillation will cross the signal mean at regular intervals. 
Therefore, the intervals between zero crossings of an oscillatory time trend can be exploited for 
off-line detection of oscillations: the deviation of the intervals between zero crossings is com-
pared to the mean interval length; a small deviation indicates an oscillation. The threshold selec-
tion is signal independent, i.e., there is no need for scaling the individual signals. However, noise 
can cause “false” crossings and drift and transients will destroy the notion of a signal mean.  

Instead of looking at the zero crossings of the time trend, Thornhill et al. (2003c) suggested 
to use the zero crossings of the ACF. By looking at the regularity of the period, an oscillation can 
be detected. Regularity is assessed by the use of a statistic, r, termed the regularity factor. It is 
derived from the sequence of ratios between adjacent intervals Δti at which deviations cross the 
threshold. Thus, the mean period of the oscillation pT  can be determined from (Figure 8.7) 
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and the dimensionless regularity factor, r is (Thornhill et al., 2003c): 
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where σTp the standard deviation of Tpi. An oscillation is considered to be regular with a well-
defined period if r is greater than unity, i.e., 

1r > . (8.20) 

The regularity factor r can thus be regarded as an oscillation index. 
It is recommended to exclude the interval from zero-lag to the first zero crossing because it 

corresponds to only one half of a completed deviation. Also, one should not use the last zero 
crossings as they can be spurious in the case of very persistent oscillations. Thornhill et al. 
(2003c) suggested taking 10 intervals between the first 11 zero crossings for calculating the 
oscillation period.  

Again, the benefit of the ACF for oscillation detection is that the impact of noise is much re-
duced. The pattern of zero crossings of the ACF therefore reveals the presence of an oscillation 
more clearly than the zero crossings of the time trend. Practical considerations require that only 
signals with significant activity in the chosen frequency band be considered. The regularity test 
(Equation 8.20) should thus be only applied if the filtered signal has sufficient fractional power 
defined as 
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where Φ is the power spectrum, and ωn1 and n2 denote the lower and upper boundaries of the 
filter, respectively (Section 8.8). A low value of P indicates that the signal does not have signifi-
cant activity in the selected frequency, i.e., the behaviour of the signal is dominated by other 
frequencies. Thornhill et al. (2003c) suggested a threshold of 1% for P, but higher values (e.g., 
5%) can be used to avoid detection of insignificant oscillations.  

8.8 Pitfalls of Multiple Oscillations – Need for Band-pass 
Filtering 

In many data sets obtained from industrial control loops, slowly varying trends, high-frequency 
noise and multiple oscillations are observed, as can be seen in Figure 8.9. These effects often 
destroy the regularity of oscillations, which are then difficult to analyse. In this case, an auto-
mated algorithm may detect none or only one oscillation despite the spectrum shows multiple 
peaks.  
 
Example 8.3. Figure 8.9 shows the oscillation detection results for the unfiltered data from the industrial 
loop CHEM33 having a slowly varying trend induced by set point changes and two superimposed oscilla-
tion of different periods. This can clearly be seen in the power spectrum. The lower panel in the figure 
marks the positions of the zero crossings: the intervals between zero crossings of the auto-covariance func-
tion reflect neither oscillation accurately because the zero crossings of the fast and slow oscillations each 
destroy the regularity of each other’s pattern. Therefore, no oscillation detection method indicates clear 
oscillation, i.e., all oscillation indices have values below the alarm thresholds.  

 
 

 
Figure 8.9. Oscillation detection results for the unfiltered data from Loop CHEM33. 

 
This difficulty can be overcome by means of band-pass filtering, where the filter boundaries 

are selected from the inspection of the peaks present in the spectrum or the peaks in the bicoher-
ence plot. Frequency domain-based filtering, e.g., Wiener filter, which sets the power in un-
wanted frequency channels to zero, is one good option. The approximate realisation of a Wiener 
filter (Press et al., 1986) should be used because a true Wiener filter requires an estimate of the 
noise power within the wanted frequency channels, which would then be subtracted from those 
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channels. The detailed design algorithm is given in Thornhill et al. (2003c), who explain how to 
deal with aliased frequencies above the Nyquist frequency and constraints on the filter width and 
also discuss the automation of the frequency-domain filter. It has been suggested to select the 
filter width Δf centred at ±f0 so that 

0

0

2 5 or Δ
Δ 2.5

ff
f f

≤ ≥ . (8.22) 

 
Example 8.4. When the data from loop CHEM33 are filtered using a Wiener filter with the boundaries 
[0.050, 0.080], we get the oscillation detection results shown in Figure 8.10. Now a distinctively regular 
oscillation with ca. 15 samples per cycle is detected by Thornhill’s method. One should particularly notice 
the marked regular zero crossings of the control error. Also the other oscillation detection methods signal 
distinctive oscillation, as all oscillation indices have values higher than the alarm thresholds. The second 
oscillation having an oscillation frequency of ca. 10 samples per cycle is also detected by all methods when 
the filter boundaries are placed on [0.095, 0.110]; see Figure 8.11. The filter boundaries have been selected 
by inspecting the power spectrum in Figure 8.9. 

 
In our experience, any oscillation-detection method should be combined with a calculation of 

the regularity factor to avoid possibly “false” detection or “false” determination of the oscillation 
period. This can occur when more than one oscillation is present in the signal. The accurate 
value of the oscillation period is needed in the stage of the root-cause diagnosis of the oscillation. 
Also the inspection of the power spectrum is highly recommended to roughly set the filter 
boundaries. Indeed, this hybrid approach suggested here is a semi-automated method for oscilla-
tion detection. Although the method can be fully automated (Thornhill et al., 2003c), care must 
be taken to not get misleading results due to non-proper selection of the band-pass filter. There-
fore, it is recommended to use the method in a semi-automated fashion.   

 
 

 
Figure 8.10. Oscillation detection results for the filtered [0.050, 0.080] data from Loop CHEM33. 
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Figure 8.11. Oscillation detection results for the filtered [0.095, 0.110] data from Loop CHEM33. 

8.9 Detection of Intermittent Oscillations 

In the case of persistent oscillation in the time trend, the power spectrum gives a clear signature 
for the oscillation since it has a sharp peak of large magnitude at the frequency of oscillation. 
However, there are some cases where the oscillation is intermittent, i.e., non-persistent. In a set 
of such time trends, where the nature of the signal changes over time, the Fourier transform has 
to be used on subsets of the data to observe the time-varying frequency content. Alternatively, 
Wavelet analysis may be used.  

The technique of Wavelet transform and algorithms for its computation (Kaiser, 1994) can 
treat time and frequency simultaneously in time−frequency domain. This provides the signal 
amplitude as a function of frequency of oscillation (the resolution) and time of occurrence. One 
method of presentation shows times and resolution plotted on the horizontal and vertical axis, 
and amplitudes represented by hues in the contour lines corresponding to them on the 
time−frequency plane. It is then possible to analyse the relation between the timing of frequency 
emerging and disappearing in the process, thus providing more precise and deeper insights into 
the process behaviour. Wavelet analysis has been successfully applied to plant-wide disturbance 
(oscillation) detection or diagnosis by Matsuo et al. (2004). However, the evaluation of Wavelet 
plots is difficult to automate, so a visual inspection by a human expert is required.   

8.10 Summary and Conclusions 

The detection of oscillations in control loops can be regarded as a largely solved problem. Many 
methods exist for this purpose; some of them have been reviewed in this chapter. Emphasis was 
placed on discussing possible problems that can occur when the techniques are applied to real-
world data. These can be noisy, subject to abrupt changes, and may contain slowly varying 
trends and different superposed oscillations, i.e., with different frequencies. Particularly, the 
latter problem is still a challenge for automatic detection, without human interaction. Moreover, 
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the detection of plant-wide oscillations and finding their sources and propagation routes is an 
active research topic. Thornhill and co-workers provided some Methods and strategies to deal 
with plant-wide oscillations; see, e.g., Thornhill et al. (2003a, 2007),   



9 Detection of Loop Non-linearities  

Most of control performance methods assume that the system is (at least locally) linear. How-
ever, the presence of certain type of non-linearity may cause severe performance problems. For 
instance, stiction, hysteresis and dead-band in actuators, or faulty sensors can induce unwanted 
oscillations; see Chapter 10 for a thorough discussion. Thus, it is recommended to evaluate “how 
linear (or non-linear)” the closed loop under consideration actually is in an early step of the as-
sessment procedure.  

To understand the non-linearity detection techniques presented in this chapter, we recall the 
following important observations:  
• A control loop containing a non-linearity such as a sticking valve often exhibits self-

generated and self-sustained limit cycles. The waveform in a limit cycle is periodic but non-
sinusoidal and therefore has harmonics.  

• It is observed that the first and second order statistic (mean, variance, auto-correlation, power 
spectrum, etc.) are only sufficient to describe linear systems. Non-linear behaviour must be 
detected using higher-order statistics. For instance, the bicoherence, based on the Fourier 
transform of the data, is a measure of interaction of frequencies: its plot shows large peaks 
for frequencies that are interacting, indicating a strong non-linearity. 

• A distinctive characteristic of a non-linear time series is the presence of phase coupling 
which creates coherence between the frequency bands occupied by the harmonics such that 
the phases are non-random and form a regular pattern (Thornhill, 2005).  
These features of non-linear behaviour have been used as basis for the development of some 

non-linearity detection methods. The exploitation of the bicoherence property led to the bicoher-
ence technique described in Section 9.2. Section 9.3 presents the surrogates analysis method, 
which is based on the regularity of phase patterns in non-linear time series. If an actuator hits a 
constraint, then the discontinuity in its movement indicates a transient response, which can take 
the control loop back into saturation. Such a repeating pattern is also a limit cycle, which can be 
detected by specialised indices, as shown in Section 9.4. Section 9.5 contains a comparative 
study of both non-linearity detection techniques on some industrial data sets.  

9.1 Methods Review 

In the classical identification literature, many non-linearity test methods have been proposed; see 
the survey by Haber and Keviczky (1999:Chapter 4) and the references included therein. Almost 
all non-linearity detection methods assume that the system under investigation can be excited 
with certain input signals, which is not always possible or allowable in practice, and that both the 
controlled variables and the manipulated variables are available. Due their invasiveness, these 
methods for non-linearity detection are of no interest at all within the CPM framework. 

More interesting is the use of higher-order statistics-based methods (Appendix B) to detect 
certain types of non-linearities in time series. Such a test determines whether a time series could 
plausibly be the output of a linear system driven by Gaussian white noise, or whether its prop-
erties can only be explained as the output of non-linearity. For a control loop, this test is applied 
on the control error signal (SP – PV) to the controller because the error signal is more stationary 
than PV or OP signal. Moreover, If any disturbance is measurable, the test can be applied to 
check the linearity of the disturbance. 
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The assumption of Gaussianity allows implementation of statistically efficient parameter es-

timators, such as maximum likelihood estimators. A stationary Gaussian process is completely 
characterised by its 2nd-order statistics (auto-correlation function or equivalently, its power 
spectral density, PSD) and it can always be represented by a linear process. Since PSD depends 
only on the magnitude of the underlying transfer function, it does not yield information about the 
phase of the transfer function. Determination of the true phase characteristic is crucial in several 
applications, such as seismic deconvolution, blind equalisation of digital communications chan-
nels, and analysis of the non-linearity of a system operating under random inputs or disturbances. 
Use of higher-order statistics allows one to uniquely identify non-minimumphase parametric 
models. Higher-order cumulants of Gaussian processes vanish, hence, if the data are stationary 
Gaussian, a minimumphase (or maximumphase) model is the „best“ that one can estimate. Given 
these facts, it has been of some interest to investigate the nature of the given signal: whether it is 
a Gaussian process and if it is non-Gaussian, whether it is a linear process. 

Several cumulant-based methods have been designed to detect certain types of non-linearities 
in time series. The earliest tests of this type can be tracked back to Subba Rao and Gabr (1980) 
and then Hinich (1982). One of the earliest tests based upon testing of a sample estimate of the 
bispectrum has been presented by Subba Rao and Gabr (1980). Hinich (1982) has simplified the 
test of Subba Rao and Gabr (1980) by using the known expression for the asymptotic covariance 
of the bispectrum estimators. Modifications of Hinich’s linearity test has been presented by 
Fackrell (1996) and Yuan (1999). The next logical step would be to test for vanishing trispec-
trum of the record. This has been done in Molle and Hinich (1995) using the approach of Hinich 
(1982); extensions of the approach by Subba Rao and Gabr (1980) are too complicated. A com-
putationally simpler test using “integrated polyspectrum” of the data have been proposed in Tug-
nait (1987). The integrated polyspectrum (bispectrum or trispectrum) is computed as cross-
power spectrum and it is zero for Gaussian processes. Alternatively, one may test higher-order 
cumulant functions of the data in time domain. This has been done in Giannkis and Tstatsanis 
(1994). More recently, Choudhury et al. (2004) proposed an easy-to-use bicoherence-based tech-
nique for non-linearity detection, which is described in Section 9.2.  

Other methods of non-linearity detection use surrogate data (Theiler et al., 1992; Kantz and 
Schreiber, 1997), which have been found in many applications ranging from analysis of EEG 
recording of people with epilepsy (Casdagli et al., 1996), over the analysis of X-rays emitted 
from a suspected astrophysical black hole (Timmer et al., 2000), to the finding of non-linearity 
sources in chemical plants (Thornhill, 2005). Surrogate data are time series superficially con-
structed by randomisation of phases to remove the phase coupling, but under preservation of the 
same power spectrum and, hence, the same auto-correlation function as the test data.  

Non-linearity detection methods based on surrogate data consider a key statistic of the time 
series under test compared to that of a sufficiently large number of surrogates: non-linearity is 
diagnosed if the statistic significantly differs in the test data; otherwise, the null hypothesis, that 
a linear model fully explains the data, is expected. This will be described in-depth in Section 9.3. 

9.2 Bicoherence Technique 

Common to majority of the cumulant-based methods is to check whether the (squared) bicoher-
ence (Kim and Powers, 1979) – a measure of quadratic phase coupling and thus an indicator of 
non-linear signal generation mechanisms – is constant or not by performing two tests. One is for 
testing the zero squared bicoherence (Figure 9.1),  
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which shows that the signal is Gaussian and thereby the signal generating process is linear. The 
other is to test for a non-zero constant (squared) bicoherence, which shows that the signal is non-
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Gaussian but the signal generating process is linear. Remember that the bispectrum is defined as 
(see Appendix B) 

*
1 2 1 2 1 2( , ) E{ ( ) ( ) ( )}B f f X f X f X f f= + , (9.2) 

where X(f1) is the discrete Fourier transform of the test data x(k) at the frequency f1, X*(f1) the 
complex conjugate and E the expectation operator. All frequencies are normalised such that the 
sampling frequency is 1. 

A simple way to check the constancy of the squared bicoherence (i.e., the linearity) is to have 
a look at the 3D squared bicoherence plot and observe the “flatness” of the plot; see Figure 9.1. 
This method is, however, tedious and cumbersome when a large number of signals have to be 
analysed. Based on these approaches, Choudhury et al. (2004) have proposed practical auto-
mated tests, which are described in the following.  
 

 

 
 

Figure 9.1. Plot of the bicoherence function in the principal domain for a linear system (right) and a non-
linear system (left).  

9.2.1 Non-Gaussianity Index  

A modified test with better statistical properties but no frequency resolution is formulated by 
averaging the squared bicoherence over the triangle of the principal domain (PD: 0 < f1 < 0.5 & 
2f1 + f2 < 1.0) containing L bifrequencies. The test can be stated as follows: 
• Null hypothesis (H0): The signal is Gaussian. 
• Alternate hypothesis (H1): The signal is not Gaussian.  

Under H0, the test for the squared bicoherence average can be based on the following equa-
tion (Fackrell, 1996; Choundhury et al., 2004):  

2 2 2
crit crit

1( ) ; : [ 4 1]
4

zP bic bic bic c L
KL αα> = = + − , (9.3) 

where L is the number of bifrequencies inside the principal domain of the bispectrum, K the 
number of data segments used for DFT and zcα  the one-sided critical value from the standard 
normal distribution for a significance level of α. Typically, one selects 5.99zcα =  for the central 

2z χ=  dsitribution with α = 0.05. Equation 9.3 can be rewritten as (Choundhury et al., 2004) 

2 2
crit( 0) ; :P NGI NGI bic bicα> = = − , (9.4) 
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where NGI stands for the non-Gaussianity index. Therefore, at a confidence level α the follow-
ing rule-based decision can be formulated: 
• If NGI ≤ 0, the signal is Gaussian.  
• If NGI > 0, the signal is non-Gaussian. 

Therefore, a signal is Gaussian (non-skewed) at a confidence level of α if the NGI is less than 
or equal to zero. This index has been defined to automate the decision instead of checking the 
flatness of the bicoherence plots for all bifrequencies in the principal domain.  

If the signal is found to be Gaussian, the signal generating process is assumed to be linear. In 
the case of non-Gaussianity, the signal generating process should be tested for its linearity. If the 
signal is non-Gaussian and linear, the magnitude of the squared bicoherence should be a non-
zero constant at all bifrequencies in the principal domain.  

9.2.2 Non-linearity Index 

If the squared bicoherence is of a constant magnitude at all bifrequencies in the principal do-
main, the variance of the estimated bicoherence should be zero. To practically check the flatness 
of the plot or the constancy of the squared bicoherence (Figure 9.1), the maximum squared bico-
herence can be compared with the average squared bicoherence plus two or three times the stan-
dard deviation of the estimated squared bicoherence (depending on the confidence level desired). 
The automatic detection of this can be performed using the following non-linearity index (NLI), 
which is defined for a 95% confidence level as (Choundhury et al., 2004) 

2
2 2
max| ( 2 ) |

bic
NLI bic bic σ= − + , (9.5) 

where 2bic
σ is the standard deviation of the estimated squared bicoherence and 2bic  is the aver-

age of the estimated squared bicoherence. Ideally, the NLI should be 0 for a linear process, i.e., 
the magnitudes of squared bicoherence are assumed to be constant or the surface is flat. This is 
because if the squared bicoherence is a constant at all frequencies, the variance will be zero and 
both the maximum and the mean will be same. Therefore, it can be concluded that 
• if NLI = 0, the signal generating process is linear, 
• if NLI > 0, the signal generating process is non-linear. 
Since the squared bicoherence is bounded between 0 and 1, the NLI is also bounded between 0 
and 1. 

9.2.3 Procedure and Practical Conditions 

Figure 9.2 shows the flow diagram of the bicoherence-based non-linearity detection method. 
Once a control loop is identified as non-linear based on the analysis of the control error time 
trend, the cause of non-linearity should be diagnosed. This may be due to a non-linear process 
(component), the presence of stiction in the actuator(s), faulty sensors, etc. If the diagnosis sig-
nals that the loop is linear, other causes should be considered as the possible source for poor 
performance, such as an external oscillatory disturbance or an aggressively tuned controller. As 
for any data analysis, it is useful in practice to spent time in properly pre-processing the data. 
Some aspects to be considered when using the bicoherence technique are described in the fol-
lowing.  

Default Parameters 

Whenever possible, a large number of data points (e.g., 4096 samples) have to be used for the 
non-linearity detection algorithm. Standard choices of the parameters are: data length (N) of 
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4096, a segment length of 64, a 50% overlap, Hanning window with a length of 64 and a discrete 
Fourier transform (DFT) length of 128.   

Selection of Critical Values  

In practice, it is difficult to obtain an exact zero value for NGI for Gaussian signals. Therefore, a 
threshold value, NGIcrit, of NGI such that NGI < NGIcrit implies a Gaussian signal. An NGI value 
of less than NGIcrit should be assumed to be zero. Consequently, if NGI ≤ NGIcrit the signal can 
be assumed to be Gaussian at a 95% confidence level. Similarly, an NLI value less than NLIcrit is 
assumed to be zero, and consequently, the process is considered to be linear at a 95% confidence 
level. The larger the NLI, the higher is the extent of non-linearity. Recommended values for the 
thresholds NGIcrit and NLIcrit are given in Table 9.1.  
 
 

 
Figure 9.2. Decision flow diagram of the bicoherence-based methodology for the detection and diagnosis 
of loop non-linearity.  

 

Table 9.1. Threshold values for NGI and NLI (Choudhury et al., 2006). 

Data length NGIcrit NLIcrit 
1024 0.004 0.04 

2048 0.002 0.02 

4096 0.001 0.01 
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Bicoherence Estimation  

The bispectrum can be normalised in various ways to obtain bicoherence. There are more than 
one normalization in the literature. Particularly, some normalisation may not deliver bicoherence 
magnitudes bounded between 0 and 1. For example, the bicoherence function included in the 
freely available Higher-order Spectral Analysis Toolbox in MATLAB does not provide bounded 
values. Therefore, users are suggested to use the normalisation provided in Equation 9.1. More 
details on bicoherence estimation can be found in Appendix B and the references cited therein.    

Non-stationarity/Drift of the Data  

Most of the statistical analyses including bicoherence estimation assume that the signal is sta-
tionary. Therefore, slowly drifting trends should be eliminated (Section 8.8). The contribution of 
non-stationarity of the signal in NGI and NLI indices has been reduced by excluding the outer 
triangle and using the inner triangle of the principal domain of the bispectrum only during the 
calculation of the average squared bicoherence. To exclude any peak(s) obtained from the non-
stationary of the data, the outer triangle of the principal domain was excluded during the calcula-
tion of the average squared bicoherence (Nikias & Petropulu, 1993).  

Problem of Outliers and Abrupt Changes 

Bicoherence estimation is very susceptible to outliers or abrupt changes in the signal; see the 
thorough discussion by Fackrell (1996). Outliers should be removed and replaced by a suitable 
statistical method. Also, the portion of the signal used for bicoherence calculation should not 
have any step change or abrupt change.  

Dealing with Short Length Data 

Though in recent time, it is easy to obtain a longer length data set (e.g., N = 4096), sometime 
there is no alternative to a shorter length data set. In those cases, depending on the length of the 
data, certain amount of overlap can be used during the calculation of bicoherence using a direct 
method similar to Welch periodogram method (Choudhury, 2004). Also, the threshold values 
used for NGI and NLI should also be changed for obtaining reliable results with a minimum 
number false positives; see Table 9.1.  

9.2.4 Modified Indices   

In the estimation of the bicoherence, many spurious peaks arise due to the occurrence of small 
magnitudes of the denominator used to normalise the bispectrum (Equation 9.1). Recently, 
Choudhury et al. (2006) suggested an addition of a small and dynamically adapted constant ε to 
the denominator to remove these spurious peaks:  

2
2 1 2

1 2 2 2
1 2 1 2

| ( , ) |
( , ) :

E{| ( ) ( ) | }E{| ( ) | }
B f fbic f f

X f X f X f f ε
=

+ +
. (9.6) 

The selection of ε depends on the noise level. To obtain the value of ε automatically, it can be 
chosen as the maximum of the Pth percentiles of the columns of D (the denominator of Equation 
9.1). If it is assumed that there will be a maximum of 25% peaks in each column of D, the value 
of P can be chosen as 75 (Choudhury et al., 2006).  

The previously described NGI and NLI have then been modified to overcome their limita-
tions:  

2
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mod :
2
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L K

α= −∑ , (9.7) 
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NLI bic bic σ= − + , (9.8) 

where 2
significantbic  are those bicoherence which fail the hypothesis test in Equation 9.3, i.e., 

2
1 2( , )

2

zcbic f f
K
α> , L is the number of 2

significant ,bic  2
robustbic  and 2 ,robustbic

σ  are the robust mean and 

the robust standard deviation of the estimated squared bicoherence, respectively. They are calcu-
lated by excluding the largest and smallest Q% of the bicoherence. A good value of Q may be 
chosen as 10.  

Using NGImod, the following modified rule-based decision is suggested: 
• If NGImod ≤ α, the signal is Gaussian.  
• If NGImod > α, the signal is non-Gaussian. 

Similarily, the non-linearity can be checked by 
• if NLImod ≤ 0, the signal generating process is linear, 
• if NLImod > 0, the signal generating process is non-linear. 

Moreover, a total non-linearity index (TNLI) has been introduced by Choudhury et al. (2006) 
as a metric or measure quantify nonlinearities: 

2
significant:TNLI bic=∑ . (9.9) 

TNLI is bounded between 0 and L. TNLI quantifies the total non-linearity present in a time series 
if it is detected as non-linear by NGImod and NLImod. This is particularily important when compar-
ing the extent of non-linearities in various time series to detect the source of non-linearity; see 
Section 9.5.  
 
Example 9.1. Figure 9.3 shows the time trends and the PV–OP plot from a level control loop in a paper 
plant. Applying the bicoherence technique to 1024 data points with a segment length of 128, a 50% overlap, 
Hanning window and a DFT length of 128 yields the results given in Figure 9.4. The value of the non-
Gaussianity Index, NGImod = 0.36 > α = 0.05, implies that the process is non-Gaussian. The non-linearity 
index value NLImod 0.76 > 0 obtained reveals the presence of a non-linearity in the process data. The total 
non-lineaity index was TNLI = 2.57. Indeed, it was known that this loop suffers from valve stiction.  
 
 

 
Figure 9.3. Data and PV–OP plot for loop PAP3. 
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Figure 9.4. Non-linearity detection results for loop PAP3. 

9.3 Surrogate Data Analysis 

Non-linearity detection using surrogates analysis is based on the assumption that a time series 
with phase coupling (as symptom of non-linearity) has more regular pattern and, hence, is more 
predictable than a surrogate having the same power spectrum but with randomised phases 
(Theiler et al., 1992). The phase randomisation process aims at destroying the phase coupling. 
The first step of the analysis is to define some discriminating statistic that quantifies the predict-
ability of the time trend compared to that of an ensemble of surrogates, which mimics “linear 
properties” of the data under study. The decision whether dynamic non-linearities are present in 
the data or not is made as follows (Kaplan, 1997):  
• If the value of the statistic for the test data falls into the distribution for the surrogate data, 

then the statistic does not allows us to distinguish the test data from the surrogates and there 
is no evidence of dynamic non-linearities. 

• If the test data has a value for the statistic that is outside of the distribution for the surrogate 
data, then it can be concluded that the test data is somehow different from the surrogates. If 
the dynamics underlying the test data are assumed to be stationary, then some dynamic non-
linearity is evident in the data.   
In this context, there are many algorithms for generating surrogate data and many statistics 

suitable for the discrimination task. 

9.3.1 Generation of Surrogate Data 

As already mentioned, surrogate data are time series superficially constructed to have the same 
power spectrum and, hence, the same auto-correlation function as the original test data. For the 
generation of surrogate data, a three-step procedure is usually used: 

Procedure 9.1. Generation of surrogate data. 
1. Calculate the FFT of the test data, which gives amplitude and phase at each frequency:  

(test series)FFT=z . (9.10) 

2. Randomise the phase at each frequency to be uniformly distributed in [0, 2π], but preserve the asymme-
try around frequency 0:  
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3. Take the inverse Fourier transformation: 

surrsurrogate data ( )IFFT= z . (9.12) 

As test data have often a non-normal (non-Gaussian) distribution in practice, it may be neces-
sary to transform the test data’s distribution into a normal one before taking the DFT and to 
transform the generated Gaussian surrogate data back to the distribution of the test data. These 
transformations can be effectively done through sorting algorithms (Theiler et al, 1992) and 
would avoid problems with comparing non-normal test data to normal surrogate data. Different 
algorithms for the generation of surrogate data and their properties are described in detail by 
Theiler et al. (1992), Kaplan and Glass (1995) and Small and Tse (2002).  
 
Example 9.2. Figure 9.5 (upper panel) illustrates the time trend of the control error from Loop PAP3. It has 
a clearly defined pattern and thus a good prediction of where the trend will go after reaching a given posi-
tion. The lower panel of the figure shows an example of a surrogate of the time trend. By contrast to the 
original time trend, the surrogate lacks structure even though it has the same power spectrum. The removal 
of phase coherence has upset the regular pattern of peaks, i.e., it is not easy to forecast where the trajectory 
will go next from region to another. This signals non-linearity of the time trend.  
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Figure 9.5. Time trend of an industrial control loop (PAP3) and an example of its surrogate data. 

9.3.2 Discriminating Statistics – Non-linear Predictability Index 

Statistics used for non-linearity detection based on surrogate data usually determine the differ-
ence between a property obtained for the test data and the mean value of this property for a set of 
surrogates. The result is considered significant if the difference is clearly larger than some stan-
dard deviations. The property can be a correlation dimension, Lyapunov exponents, entropy, a 
non-linear predictability measure (Stam et al., 1998), or redundancy, known as mutual informa-
tion in the case of two variables (Paluš, 1995).  

A statistic based on a three-sigma test can be formulated using non-linear predictability as 
(Thornhill, 2005) 

surr test

surr3
NPI

Γ Γ
σ
−

= , (9.13) 
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where Γtest is the mean squared prediction error of the test data, surrΓ  the mean or the reference 
distribution and σsurr its standard deviation. This non-linearity test can be interpreted as follows: 
• If NPI > 1, then non-linearity is inferred in the data. The higher NPI the more non-linear is 

the underlying process. 
• If NPI ≤ 1, the process is considered to be linear. 
• Negative values in the range −1 ≤ NPI < 0 are not statistically significant and arise from the 

stochastic nature of the test. 
• Results giving NPI < −1 do not arise at all because the surrogate sequences, which have no 

phase coherence are always less predictable than non-linear time series with phase coherence.  
The basis of this test proposed by Thornhill (2005) is to generate predictions from near 

neighbours under exclusion of near-in-time neighbours so that the neighbours are only selected 
from other cycles in the oscillation, following a slightly modified version of the algorithm de-
scribed by Sugihara and May (1990). When nn nearest neighbours have been identified, then 
those near neighbours are used to make a H-step-ahead prediction. A sequence of prediction 
errors can thus be created by subtracting the average of the predictions of the nn nearest 
neighbours from the observed values. The root of mean square (RMS) value of the prediction 
error sequence is built to give the overall prediction error; see Section 9.3.3.  

Note that the uncertainty of the aforementioned statistical test is minimal, since the index is a 
three-sigma test and was set up like that to err on the side of caution, i.e., it gives false negatives 
rather than false positives. Thus, one can generally believe that if NPI > 1 then there really is 
some non-linearity present in the process considered.  

9.3.3 Non-linearity Detection Procedure  

The procedure for detecting non-linearities based on surrogate data analysis is summarised as 
follows: 

Procedure 9.2. Non-linearity detection using surrogate data analysis (Thornhill, 2005). 
1. Determine the period of oscillation Tp and thus the number S of samples per cycle; pre-process the data: 

mean-centring, possibly scaling and particularly end-matching (Section 9.3.4). As for the bicoherence 
technique, the elimination of slowly varying trends and high-frequency noise by means of frequency fil-
tering is highly recommended (Section 8.8).  

2. Form the embedded matrix from the pre-processed data subset of the test data x(1), …, x(N) as 

(1) (2) ( )
(2) (3) ( 1)
(3) (4) ( 2)

( 1) ( 2) ( )

x x x E
x x x E
x x x E

x N E x N E x N

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

X . (9.14) 

3. For each row xi of X find the indices jp (p = 1, …, nn) of nn nearest neighbour rows 
pj

x  having the nn 

smallest values of the (Euclidean) norm || ||
pj i−x x  subject to a near-in-time neighbour exclusion con-

straint |jp − i| > E/2. E is the number of columns in the embedded matrix.  
4. Calculate the sum of squared prediction errors for the test data 
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Γ
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= =

⎛ ⎞
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⎝ ⎠
∑ ∑ , (9.15) 

where H is the prediction horizon. 
5. Create M surrogate prediction errors Γsurr by applying the above Steps 2–4 to M surrogate data sets. 
6. Calculate the non-linearity index according to Equation 9.13. 
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Example 9.3. Figure 9.6 illustrates the prediction principle using the data (decimated by the factor 3) from 
the industrial Loop PAP3, where the embedding dimension E is 21 and thus the prediction is made 21 steps 
ahead. The upper panel shows the 228th row of the data matrix X which is a full cycle starting at sample 
228, marked with a heavy line. Rows of X that are nearest neighbours of that cycle begin at samples 77, 161 
and 277 and are also shown as a heavy lines in the lower panel. Note that the analysis is non-causal and any 
element in the time series may be predicted from both earlier and later values.  
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Figure 9.6. Illustration of the nearest neighbour concept: the highlighted (bold and star) cycles in the lower 
panel are the three nearest neighbours of the cycle in the upper panel (Loop PAP3).  

9.3.4 Spurious Non-linearity – Pitfalls in the Surrogate Data 

There are some situations that can cause surrogate data to be a misleading poor match to the test 
data, even though the power spectrum and histogram are the same in the test and surrogate data. 

Spikes in the Data 

Sharp spikes in the test data are transformed into white noise within the surrogate data genera-
tion. Therefore, one should carefully remove such spikes from the data set: even a single spike 
can have a statistically significant effect on the surrogate data. In the data set already shown in 
Figure 9.5, a superficial spike is inserted in the data at t = 150s; see Figure 9.7. If we compare the 
plots in Figure 9.5 and Figure 9.7, the surrogate data in the latter figure has additional noise 
turned by the spike. Even though the power spectrum of both data sets and their surrogates are 
identical, the spike is highly localised in time in the test data, but spread throughout the surrogate 
data.  

Strongly Periodic Time Series 

In the case of strongly cyclic data, the length of the data set will almost never be an exact integer 
multiple of the dominant period. Unless care is taken with data end-matching, a surrogate-data-
based non-linearity test may give false positive results, i.e., indicate non-linearity for a linear 
time series. The reason for this is the phenomenon of spectral leakage in the DFT caused by the 
use of a finite length data sequence. A phase-randomised surrogate derived from the DFT of 
non-properly end-matched test data would contain frequencies that are not present in the original 
signal and will, thus, be less predictable than the original signal giving a false indication of non-
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linearity. It is therefore essential to take special precautions before generating surrogate data. The 
simplest measure is to adjust the length of the test data. Some algorithms are briefly described as 
follows. Note, however, that industrial process data do not often suffer from the strong periodic-
ity problem because the cyclic behaviour is not normally strong, as found out by Thronhill 
(2005).   
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Figure 9.7. Time trend of an industrial control loop (PAP3) and an example of its surrogate data when 
introducing a sharp spike in the data at t = 150s. 

Length Adjustment Based on Zero Crossings 

Sine the determination of the zero crossings is a part of many oscillation detection algorithms 
(Chapter 8), it is not difficult at all to take a window of the data containing exactly an even num-
ber of zero crossings. Care should be taken when noise is present in the data. A noise band 
should be defined to exclude spurious zero crossings.   

Data End-matching by Minimising Discontinuities  

Hegger et al. (2004) recommend finding a subset of the non-matched data with N samples start-
ing at xi and ending with xi + N − 1 which minimises the sum of the normalised discontinuities 
(d0 + d1) between the initial and end values and the initial and end gradients, where 
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where x  being the mean of the sequence xi … xi + N − 1. However, the procedure should be modi-
fied to avoid the artifacts due to spectral leakage in oscillating signals, as proposed by Barnard et 
al. (2001). The aim is to creates a time trend where the last value is the first sample of another 
cycle. An end-matched sequence which contains an exact number of cycles is xi … xi + N − 2 de-
rived from the xi … xi + N − 1 sequence by omitting the last sample (Thornhill, 2005).  
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Data End-matching by Minimising the Frequency Mismatch Error  

Stam et al. (1998) proposed an algorithm to adjust the length of the data set such that it becomes 
an exact integer multiple of the length of the fundamental period (and its higher harmonics). For 
this purpose, a frequency mismatch error Efmm is defined as follows: 

2
fmm

1
( )

m

i k i
i

E x x +
=

= −∑ , (9.17) 

where {xi, i = 1, …, N} is the set of non-matched data. One starts with k = N − m, then decreases 
k in steps of 1 and calculates Efmm for each value of k. The new end-point of the time series N′ is 
the value of k for which Efmm reaches its first minimum. In this way, the length of the time series 
has been adjusted so that the beginning and the end will fit very smoothly. The goodness of fit 
can be adjusted by setting m. Stam et al. (1998) found out that choosing m = 10 is sufficient even 
in the case of periodic time series with very complex waveforms. A nice by-product of this algo-
rithm is that the problem of the “jump phenomenon” between the beginning and the end of the 
time series is solved. Because N′ will typically not be a power of 2, the DFT, instead of the faster 
FFT, must be used for generating phase-randomised surrogate data.  
 
Example 9.4. An example showing the extreme need for data end-matching is illustrated in Figure 9.8: 
when the data are not properly end-matched, then the resulting NPI value of 1.6 signals non-linearity (upper 
panel), which is however a wrong indication. One gets the right decision when end-matching (here based on 
zero crossings) is applied (lower panel). 
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Figure 9.8. Illustration of the effect of data end-matching on the non-linearity index for the industrial 
control loop (PAP13), which does not have any non-linearity.  

9.3.5 Default Parameter Values and Practical Issues 

Empirical studies carried out by Thornhill (2005) have shown that reliable results of surrogates 
testing can be achieved using the default values (Table 9.2) given for the parameters involved in 
the algorithm. In this context, some important remarks should be mentioned:  
• The maximum number of samples per cycle (S = Tp / Ts) is limited to have a trade-off be-

tween the S value needed to properly define the shape of a non-sinusoidal oscillation on the 
one hand and the speed of the computation on the other. Also, it would be infeasible to oper-
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ate with fewer than 7 samples per cycle because harmonics would not be satisfactory cap-
tured. Using a minimum S = 7 ensures capturing the third harmonic, as the most prominent 
harmonic in symmetrical oscillations having square or triangular wave, just to meet the Ny-
quist criterion of two sample per cycle.  

• The recommendation E = floor(S) is easy to implement since S is already known, as a by-
product of oscillation detection algorithms (Chapter 8). E should not be too small to avoid the 
phenomenon of false near neighbours (Rhodes and Morari, 1997), especially when time 
trends have high frequency features or noise.   

• It is not advisable to use less than 12 cycles of oscillation to avoid inconsistency in the non-
linearity index. Though in recent time, it is easy to obtain longer length data sets, sometime 
there is no alternative to a shorter length data set. This condition is therefore something re-
strictive in practice.  

• From common sense of reasoning, nn should be smaller than C, as some cycles may be lost 
during the end-matching process. This implies to select nn so that nn ≤ C − 4. Thornhill 
(2005) found the choice nn = 8 is quite satisfactory in practice. 

• Thornhill also concluded from studying different values for the number M of surrogates to be 
used in the statistical test that M = 50 should be sufficient. 

• Without further caution, the surrogates testing procedure will lead to non-linearity indices, 
which vary from one run to the other, due to the randomised surrogate generation. This is, 
however, very undesirable in practice. A pragmatic solution to the variability of NPI is to al-
ways use the same random number seed for the first surrogate, which forces all the surrogates 
to be the same each time the non-linearity test is applied to the same data set. Alternatively, 
one can repeat the surrogates testing some times and display the averaged index value.  
 

Table 9.2. Suggested default values for the parameters invloved in surrogates-analysis-based non-linearity 
detection algorithm (Thornhill, 2005). 

Description  Value 
Number of samples per cycle (S) 7 ≤ S ≤ 25 

Number of columns in the embedded matrix 
(E) 

E = floor(S) 

Prediction horizon (H) H = E 

Number of cycles of oscillation (C) C ≥ 12 

Number of near neighbours (k) nn = 8  

Number of surrogates (M) M = 50 
 
Example 9.5. The same loop data considered in Example 9.1 are now analysed using the surrogates 
method. The default parameters in Table 9.2 have been used, i.e., S = E = H = 21, C = 25, nn = 8 and 
M = 50. Note that the data have been decimated by factor 3, as S is too high without decimation. End-
matching was achieved based zero crossing. The analysis leads to a non-lineraity index NPI = 2.13 > 1.0, 
indicating the presence of non-linearity in the loop.   

9.4 Detection of Saturated Actuators 

The range of values taken by OP in control loops is generally scaled to be between 0 and 100%. 
Saturation is easily recognised by visual inspection because the time trend becomes flat and 
constrained either at the value 0 or at the value 100. Saturation cannot only result from poor 
controller tuning or missing anti-windup, but is often an indication of an inadequate actuator, 
e.g., control valve, sizing in practice.  
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9.4.1 Saturation Test Based on Statistical Distribution 

A saturation test proposed by Matsuo et al. (2004) evaluates the statistical distribution of samples 
in short sequence of the time trend and tests whether the sequence matches test sequences of the 
same length that are all 0 or 100. Such a statistical test can be applied to data having any arbi-
trary statistical distribution and requires little tuning. The method uses a two-sample Kolmo-
gorov–Smirnov goodness-of-fit hypothesis test [kstest2]: a Kolmogorov–Smirnov test is 
performed to determine if independent random samples are drawn from the same underlying 
continuous population with specified significance level α (default: α = 0.05). The result is inter-
preted as follows: 
• H = 0 ⇒ The null hypothesis is supported at significance level α, i.e., both considered se-

quences are sampled from the same underlying distribution, and thus saturation occurs.  
• H = 1 ⇒ The null hypothesis is rejected at significance level α, i.e., both considered se-

quences are not sampled from the same underlying distribution, and thus no saturation oc-
curs.  
Therefore a saturation index can be defined as 

sat 1 Hη = − . (9.18) 

A saturation index of 1 indicates saturation, ηsat = 0 implies no saturation.  
 

Example 9.6. The heavy black lines over the OP time trend in Figure 9.9 show episodes of saturated opera-
tion detected in the data of loop POW5 by applying the saturation index (Equation 9.18) based on the Kol-
mogorov–Smirnov test. The saturation index confirms the observation that the loop has a periodically satu-
rated actuator. This saturation problem causes a limit cycle, as shown by the oscillation analysis results in 
Figure 9.10.   
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Figure 9.9. Saturation analysis for loop POW5: the heavy black lines at 105 show episodes where OP 
became saturetd at 100%, detected by Kolmogorov–Smirnov test method.   
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9.4.2 Saturation Index for Valve Monitoring  

Another saturation index proposed by Jämsä-Jounela et al. (2003) for valve monitoring is de-
fined as the ratio of the time that a valve opening (MV) is greater than 90% or smaller than 10% 
to the time needed to carry out a set-point change: 

vc v v0
sat vc

v v

d 0 if ( 10%) ( 90%)
1 if ( 10%) ( 90%)

t t u u
t

u u

τ

η
τ

≥ ∧ ≤⎧
= = ⎨ < ∨ >⎩

∫  (9.19) 

where τ is an estimate of the time constant of the process. Values of ηsat close to 0 indicate a 
correct actuator sizing; values close to 1 are a sign of deficient actuator sizing. In this case, one 
should check if the valve has to be resized.   

 

 
Figure 9.10. Oscillation detection results for loop POW5; the data shown in the figure are pre-processed 
using a Wiener filter [0.01, 0.20].  

9.5 Comparative Studies 

The non-linearity techniques presented above are now demonstrated and compared with two 
industrial case studies. The main task in both studies is to find out the source of oscillations 
propagating through whole plants. It is thus important to realise the following propagation 
mechanism (Thornhill et al., 2002, 2003): a common source of oscillation is a limit cycle caused 
by a non-linearity, e.g., control valve with a deadband or excessive static friction. A process 
variable oscillating for that reason can readily propagate the oscillation to other variables and 
disturb other control loops, hence causing a plant-wide disturbance. A candidate for the root 
cause is the time series with the strongest non-linearity, i.e., showing largest non-linearity index. 
This is due to the fact that the dynamic behaviour of physical processes gives low-pass filtering 
and therefore removes non-linearity from the time series. Consequently, harmonics of a limit 
cycle are expected to become smaller further from the root cause and the time trends become 
more sinusoidal.  
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9.5.1 Unit-wide Oscillation Caused by a Sensor Fault 

The data in this study are from a refinery separation unit. The sampling interval was 20s. The 
control errors in Figure 9.11 show the presence of a unit-wide oscillation in the loops FC1, TC1 
and AC1 with a period of 21 sampling intervals or 7min. Measurements from upstream and 
downstream pressure controllers PC1 and PC2 are also available and show evidence of the same 
oscillation along with other disturbances and noise.  

It is known that there was a faulty steam sensor in the steam flow loop FC1. It was an orifice 
plate flow meter but there was no sweep-hole in the plate which had the effect that condensate 
collected on the upstream side until it reached a critical level, and the accumulated liquid would 
then periodically clear itself by siphoning through the orifice. The challenge for the analysis of 
this unit is to verify that the faulty steam flow loop is the root cause of the disturbance. A full 
worked analysis and diagnosis of the sources of disturbances in this data set (spectral and oscilla-
tion analysis; root-cause analysis using the surrogates method) is published by Thornhill (2007).  

In this study, we analyse the data using both non-linearity detection techniques, the bicoher-
ence method and the surrogates method and compare their performance. The numerical values on 
the right-hand side of Figure 9.11 show the results from non-linearity detection using the bico-
herence method (NLI/TNLI) and the surrogate data analysis (NPI). Both methods clearly indi-
cate that the FC1 control loop contains the source of the oscillation, since the highest index val-
ues have been determined for its control error signal. Nevertheless, whereas the surrogates 
method unambiguously points to FC1 as the sole non-linear signal, the bicoherence method de-
tects also all other signals as non-linear.  
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Figure 9.11. Time trends and non-linearity analysis results (NLI and NPI) for the refinery-wide oscillation 
data. 

 
The same analysis was also carried out for the OP signals and led to similar conclusions, with 

the exception that also the OP signal of AC1 was also detected as non-linear. This is due to the 
fact that the TC1 controller output is the set point of the FC1 loop because of the cascade con-
figuration. Thornhill (2007) pointed out that the reason for the oscillation in PC1 and PC2 is that 
(a) the tuning might be rather tight and (b) that these two pressure loops are interacting with one 
another.  
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Figure 9.12. Time trends and non-linearity analysis results (TNLI and NPI) for the refinery-wide 
oscillation data. 

9.5.2 Plant-wide Oscillation Caused by a Valve Fault 

A set of refinery data (courtesy of a SE Asian refinery) are examined in this section. This data set 
was previously used as benchmark for oscillation detection and diagnosis methods. Thornhill et 
al. (2001) had performed spectral PCA on the 34 loops recorded in the plant data and found 12 
loops that were associated with a plant-wide oscillation.  

Thornhill et al. (2001) and Thornhill (2005) applied non-linearity tests and concluded that the 
source of non-linearity was one of Tags 13, 33 or 34. The measurements from this plant have 
been discussed by Thornhill et al. (2002). Moreover, Zang and Howell (2004) compared some 
oscillation diagnosis techniques on this data set. Note that the real root cause for the 16.7min 
oscillation was not exactly known, but it has been emphasised that it is a valve fault.  

The purpose of this study is the application of the bicoherence and surrogates analysis meth-
ods to the data set and the comparison of both techniques. The results are shown on the right-
hand side of Figure 9.13. Surprisingly, both methods disagreed about the source of non-linearity. 
Whereas the surrogates testing method clearly indicates that Tag 34 has the largest non-linearity 
index, the bicoherence technique identifies Tag 13 as the signal with the strongest non-linearity. 
So far both tags belong to that group where the root cause is likely to be found. However, there is 
a complete disagreement of the non-linearity indices for Tag 34. Considering the results of the 
earlier studies mentioned above, it must be argued that the surrogates analysis method points out 
the right root cause, and thus provides the better measure. This result is however confirmed when 
using the total non-linearity index (Section 9.2.4); see Figure 9.14.  
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Figure 9.13. Time trends and non-linearity analysis results (NLI and NPI) for the SE Asian refinery data. 
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Figure 9.14. Time trends and non-linearity analysis results (TNLI and NPI) for the SE Asian refinery data. 
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9.6 Summary and Conclusions 

The very common problem of oscillating control loops can result from process non-linearities 
often present in sensors and actuators. Two non-linearity testing methods have been studied that 
help detect the root cause of such problems. The bicoherence technique based on higher-order 
statistics defines two indices, the non-Gaussianity index (NGI) and the non-linearity index 
(NLI), to determine whether a time series could plausibly be the output of a linear system driven 
by Gaussian white noise, or whether its properties could only be explained as the output of a 
non-linear system. The surrogates testing method is based on the relative predictability of test 
data and surrogate data and also provides a non-linearity index that can be calculated from given 
routine operating data. The key issues to be addressed when applying both methods to real-world 
data from different industrial control loops have been discussed. It was pointed out that the bico-
herence method is sensitive to non-stationary trends and abrupt changes. The surrogates method 
should be applied with extreme care concerning end-matching of the data.  

Both techniques are useful to diagnose the root cause of limit cycles not only in single control 
loops, but also in whole plants that usually contains a large number loops. The root cause of a 
limit cycle is to be found in the part of the plant where the non-linearity index is largest. The 
methods presented have been examined and compared on two data sets from industrial plants 
showing unit-wide oscillations. The results revealed that both techniques do not always agree 
about the root cause location, and it seems that surrogates testing is more reliable. Anyway, the 
total non-linearity index has to be applied when comparing the non-linearity extent of different 
time series.  

So far data-based non-linearity detection and diagnosis provide quantitative and rapid infor-
mation about the source of non-linearity induced limit cycles in processing units. However, proc-
ess understanding and know-how and/or active testing are still needed in the final stage of per-
formance monitoring to confirm the root cause and explain the interaction routes or mechanisms 
of propagation. 

 



10 Diagnosis of Stiction-related Actuator Problems 

Control valves are the most commonly used actuators or final control elements in the process 
industries. They are mechanical devices subject to wear and tear with respect to time. Therefore, 
valves may develop serious problems and should be regularily maintained. Surveys (Bialkowski, 
1993; Ender, 1993; Desborough and Miller, 2002; Paulonis and Cox, 2003) indicate that about 
20–30% of all control loops oscillate due to valve problems caused by valve non-linearities, such 
as stiction, hysteresis, dead-band or dead-zone. Many control loops in process plants perform 
poorly due to valve static friction (stiction), as one of the most common equipment problems. It 
is well-known that valve stiction in control loops causes oscillations in form of periodic finite-
amplitude instabilities, known as limit cycles. This phenomenon increases variability in product 
quality, accelerates equipment wear, or leads to control system instability.  

The literature contains several non-invasive methods to detect stiction in control loops by 
only using OP and PV signals. Among others, the following approaches are mentioned: the 
cross-correlation method of Horch (1999), the area-peak method of Singhal and Salsbury (2005) 
and Salsbury (2006), the relay method of Rossi and Scali (2005), the curve-fitting technique of 
He et al. (2007), the pattern recognition technique of Srinivasan et al. (2005a) and the bicoher-
ence and ellipse fitting method of Choudhury et al. (2006). Some other techniques available are 
based on additional knowledge about the characteristic curve of the valve or values of MV, i.e., 
valve position, e.g., Kano et al. (2004) and Yamashita (2006). Fairly complicated methods for 
detecting stiction were proposed by Horch and Isaksson (1998) and Stenman et al. (2003). Some 
stiction detection techniques have been reviewed and compared by Rossi and Scali (2005) and 
Horch (2007). Note that only a few methods have been published about the quantification of 
stiction, i.e., Choudhury et al. (2006) and Srinivasan et al. (2005b).  

This chapter is devoted to the illustration of the actuator stiction effect on control-loop per-
formance and to the review of the most important techniques for automatic stiction detection, to 
be incorporated in performance monitoring. In Section 10.1, a typical control loop with control 
valve is explained. Section 10.2 gives qualitative illustration of the stiction phenomenon and 
related effects in actuators. Section 10.3 contains a brief description of models and an analysis of 
how closed-loop variables change with stiction and process parameters.  

A review of some popular methods for automatic stiction detection will be given in the rest of 
this chapter. Section 10.4 describes methods that are based on MV–OP shape analysis, i.e., re-
quire the measurement of the valve position or an equivalent variable. Among many techniques, 
which are completely automatic and require only values of SP, OP and PV, the cross correlation 
method (Section 10.5), the curve-fitting technique and similar methods (Section 10.6) and non-
linearity techniques combined with ellipse fitting to PV–OP maps (Section 10.7) are presented. 
In Section 10.9, a basic oscillation diagnosis procedure is proposed.  

10.1 Typical Valve-controlled Loop 

Figure 10.1 shows a simple configuration of control loops actuated with a control valve. A typi-
cal example of such a configuration, i.e. a level control loop, is illustrated in Figure 10.2. In 
many applications in the process industry, pneumatic control valves are used. The diagram of a 
typical pneumatic valve is shown in Figure 10.3. The valve aims to restrict the flow of process 
fluid through the pipe that can be seen at the very bottom of the figure. The valve plug is rigidly 
attached to a stem that is attached to a diaphragm in an air pressure chamber in the actuator sec-



206  10. Diagnosis of Stiction-related Actuator Problems 
 

tion at the top of the valve. When compressed air is applied, the diaphragm moves up and the 
valve opens. At the same time, the spring is compressed.  
 
 

 
Figure 10.1. Simple feedback scheme for a valve-controlled process with definition of the variables (SP: 
set point; OP: controller output; MV: manipulating variable: valve positin; PV: process variable) used in 
this section.  

 

 
Figure 10.2. Level control loop. 

 
 

 
Figure 10.3. Diagram of a pneumatic control valve (Lunze, 2007). 
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Control valves should be maitained to have acceptable values for the parameters given in 

Table 10.1. Out of these, stiction is the most severe problem that can occur in a control valve. In 
many processes, stiction of 0.5% is considered too much, as stiction guarantees cycling and vari-
ability, and is thus more harmful than other valve problems. For instance, hysteresis is also unde-
sirable, but usually not really a problem up to 5%. Non-linear valve characteristic is another 
example, which can be handled using a non-linearity compensation technique (Ruel, 2000). As 
stiction is the most severe problem, it is important to detect it early on so that appropriate action 
can be taken and major disruptions to the operation can be avoided. Owing to the large number 
of loops in an industrial plant, this analysis should be performed automatically, limiting the pos-
sibility of false alarms and performing quantitative evaluation of performance loss. 
 

Table 10.1. Ideal values and acceptable ranges of valve parameters. 

Parameter Ideal Practical 
Process gain 1 < 0.5: too small; 0.5–3.0: acceptable; > 3.0: too high 
Noise band 0 < 0.5%: acceptable 
Hysteresis 0 < 3%: acceptable ; > 3%: to be checked. 
Stiction 0 << 1%: desirable ; > 1%: to be checked. 

 
Note that all stiction methods described in this chapter are based on utilising available indus-

trial data for OP and PV. This reflects industrial practice, where MV is usually not known, ex-
cept for flow control loops, where PV and MV are considered to be coincident.  

10.2 Effects Relating to Valve Non-linearity 

There are some terms such as dead-band, backlash and hysteresis, which are often misused in 
describing valve problems. For example, quite commonly a dead-band in a valve is referred to 
backlash or hysteresis. The following items review the American National Standard Institution’s 
(ANSI) formal definition of terms related to stiction. The aim is to differentiate clearly between 
the key concepts that underlie the ensuing discussion of friction in control valves. These defini-
tions can also be found in (EnTech, 1998; Fisher-Rosemount, 1999), which also make reference 
to ANSI (ISA-S51.1-1979, Process Instrumentation Terminology): 
• Backlash is a relative movement between interacting mechanical parts, resulting from loose-

ness, when the motion is reversed. 
• Hysteresis is that property of the element evidenced by the dependence of the value of the 

output, for a given excursion of the input, upon the history of prior excursions and the direc-
tion of the current traverse. Hysteresis is usually determined by subtracting the value of dead-
band from the maximum measured separation between upscale-going and downscale-going 
indications of the measured variable during a full-range traverse after transients have de-
cayed. Figure 10.4a and Figure 10.4c illustrate the concept. 

• Dead-band is the range through which an input signal may be varied, upon reversal of direc-
tion, without initiating an observable change in output signal. Deadband produces phase lag 
between input and output and is usually expressed in percent of span; see Figure 10.4b. 

• Dead-zone is a predetermined range of input through which the output remains unchanged, 
irrespective of the direction of change of the input signal. Dead zone produces no phase lag 
between input and output; see Figure 10.4d 
The above definitions show that the term “backlash” specifically applies to the slack or 

looseness of the mechanical part when the motion changes its direction. Therefore, in control 
valves it may only add dead-band effects if there is some slack in rack-and-pinion type actuators 
(Fisher-Rosemount, 1999) or loose connections in rotary valve shaft. ANSI (ISA-S51.1-1979) 
definitions and Figure 10.4 show that hysteresis and dead-band are distinct effects. Dead-band is 
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quantified in terms of input signal span (i.e., on the x-axis), while hysteresis refers to a separation 
in the measured (output) response (i.e., on the y-axis).  

 

 
Figure 10.4. Hysteresis, dead-band and dead-zone (redrawn from ANSI/ISA-S51.1-1979). 

 
Also for the term “stiction”, there exist numerous definitions in the literature. See Choudhury 

et al. (2005) who proposed a formal and general definition of stiction and its causing mechanism: 
“stiction is a property of an element such that its smooth movement in response to a varying 
input is preceded by a sudden abrupt jump called the slip jump. Slip jump is expressed as a per-
centage of the output span. Its origin in a mechanical system is static friction which exceeds the 
friction during smooth movement”.  

10.3 Stiction Analysis 

The basis for most detection techniques is the qualitative illustration of the phenomenon of stic-
tion and how closed loop variables change with stiction and process parameters, the topic of this 
section.  

10.3.1 Effect of Stiction in Control Loops 

Figure 10.5 shows the typical input–output behaviour of a sticky valve. Without stiction, the 
valve would move along the dash-dotted line crossing the origin: any amount of OP adjustment 
would result in the same amount of VP change. However, for a sticky valve, static and ki-
netic/dynamic friction components have to be taken into account. The input–output behaviour 
then consists of four components dead-band, stick band, slip jump and the moving phase and is 
characterised by the three phases (Rossi and Scali, 2005):  
1. Sticking. MV is constant with the time, as the valve is stuck by the presence of the static 

friction force Fs (dead-band plus stick band). Valve dead-band is due to the presence of Cou-
lomb friction Fc, a constant friction which acts in the opposite direction to the velocity (see 
Figure 10.7). 

2. Jump. MV changes abruptly, as the active force Fa unblocks the valve; 
3. Motion. MV varies gradually; Fa is opposed only by the dynamic friction force Fd.  

In Figure 10.5, S and J denote dead-band plus stick band and slip jump, respectively. Because 
stiction is generally measured as percentage of the valve travel range, for simplicity, all vari-
ables, i.e., S, J, u (OP), y (PV) and uv (MV), are translated into percentage of the valve range so 
that algebra can be performed among them directly. To illustrate how OP adjustments drive VP 
change in a sticky valve in Figure 10.5, suppose the valve rests at a neutral position A at the 
beginning. If the OP adjustment is between A′B′, the valve will not be able to overcome the 
static friction band so the VP will not change. However, if the OP moves outside of A′B′, say D′, 
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then the valve is able to overcome the static friction band at point B and jumps to point C. After 
that, the valve moves from C to D, overcoming the kinetic friction band only.  

 

 
Figure 10.5. Relation between controller output and valve position under valve stiction.   

 
Due to very low or zero velocity, the valve may stick again in between points C and G in 

Figure 10.5 while travelling in the same direction (EnTech, 1998). In such a case, the magnitude 
of dead-band is zero and only stick-band (DE/EF) is present. This can be overcome if OP is 
larger than the stick-band only, but is uncommon in industrial practice. The dead-band and stick 
band represent the behaviour of the valve when it is not moving, though the input to the valve 
keeps changing. Slip-jump represents the abrupt release of potential energy stored in the actuator 
chambers due to high static friction in the form of kinetic energy as the valve starts to move. The 
magnitude of the slip-jump is very crucial in determining the limit cyclic behaviour introduced 
by stiction (McMillan, 1995; Piipponen, 1996). Once the valve slips, it continues to move until it 
sticks again (point G in Figure 10.5). In this moving phase, dynamic friction is present which 
may be much lower than the static friction. The sequence motion/stop of the valve due to stiction 
is called stick-slip motion. 

In industrial practice, MV is usually not known, except for flow control loops, where PV and 
MV are considered to be coincident. The PV–OP plots for some industrial flow control loops 
with sticky valves are shown in Figure 10.6. In contrast to the idealised plot in Figure 10.5, real 
PV–OP plots have sometimes destroyed patterns produced due to the effect of process and con-
troller dynamics and external disturbances. This fact makes it difficult to detect stiction based on 
PV–OP plots and to estimate stiction model parameters from usually measured PV and OP sig-
nals.  

10.3.2 Physically-based Stiction Modelling 

Many models have been proposed in literature to describe the presence of friction in the actua-
tors. Surveys are reported in Armstrong-Hélouvry et al. (1994) and Olsson et al. (1996). Differ-
ent static friction models are shown in Figure 10.7. One standard method is to model friction as a 
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function of velocity, which is referred to as the Stribeck friction curve (after Stribeck, 1902); see 
Figure 10.7d. For more details, see Jelali and Kroll (2003). Particularly, the modelling of static 
friction is treated in Karnopp (1985).  

 

20 25 30 35 40 45

52

53

54

55

56

57

58

PV

Loop CHEM24

15 20 25 30 35 40

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

PV

Loop CHEM23

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-80

-60

-40

-20

0

20

40

60

PV

OP

Loop CHEM6

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

PV

OP

Loop CHEM11

 
Figure 10.6. PV–OP plots of four industrial flow control loops with stiction.   

 
Even though the number of parameters is not large, compared with other models, the lack of 

knowledge on values of critical variables is a major problem to describe the situation in a real 
plant. This problem is simplified with alternative approaches presented recently by Kano et al. 
(2004), Choudhury et al. (2005) and He et al. (2007). Data-driven models are adopted to describe 
the relationship MV = f(OP) illustrated in Figure 10.5. In particular, only the two parameters S 
and J are used. Depending on these parameters various characteristic curves of the control valve 
result. The models will be briefly discussed in the next section. 

 

 
Figure 10.7. Examples of static friction models: a) Coulomb friction; b) Coulomb plus viscous friction; c) 
stiction plus Coulomb and viscous friction; d) Stribeck friction (friction force decreasing continuously from 
the static friction level) (Olsson et al., 1998).  

10.3.3 Data-driven Stiction Modelling 

Data-driven models have parameters that can be directly related to plant data and can produce 
the same behaviour as physical models. Such a model needs only an input signal and the specifi-
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cation of dead-band plus stick band (S) and slip jump (J). It avoids the main disadvantages of 
physical modelling of a control valve, namely that it requires the knowledge of the mass of the 
moving parts of the actuator, spring constant and the friction forces. Using data-driven models, 
the effect of the change of these parameters on the control loop can be determined in an easy 
way, and stiction detection methods can be tested in simulation. 

A first data-driven stiction model has been proposed by Choudhury et al. (2005)2. Kano et al. 
(2004) presented an improved stiction model, derived for pneumatic control valves. Recently, He 
et al. (2007) claimed that both models have complicated logic and some deficiencies. A model 
that is fairly simple and overcomes these problems was also suggested. However, He’s model 
does not consider all stiction cases, i.e., undershooting stiction (J < S), no-offset stiction (J = S) 
and overshooting stiction (J > S).  

It is not within the scope of this section to describe all these models, so readers are referred to 
the mentioned papers. We only give the expression of the describing function for the stiction 
non-linearity derived by Choudhury et al. (2005): 

real im
1( ) ( )
π

N A P jP
A

= − − , (10.1) 

where 

real
πsin 2 2 cos 2( )cos

2 2
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⎝ ⎠
,  

im 3 cos 2 2 sin 2( )sin
2 2
A AP A S Jφ φ φ= − + + − − ,  

1sin A S
A

φ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (10.2) 

A is the amplitude of the input sinusoid. Describing function analysis is useful to study the stabil-
ity of closed loops with stiction and to find out how to influence the loop behaviour.  

Typical Nyquist plots for a self-regulating process (left panel) and an integrating process 
(right panel) with PI controllers are shown in Figure 10.8. The describing function is parameter-
ised by A; the open-loop frequency response function of the controller and controlled system by 
ω. Both systems are closed-loop stable and thus intersect the negative real axis between 0 and 1. 
One can see in the left-hand panel of Figure 10.8 that there will be a limit cycle for the self-
regulating control loop if a slip-jump (J) is present. J forces the −1/N curve onto the negative 
imaginary axis in the A = S/2 limit. Thus, the frequency response curve of the self-regulating 
loop and its PI controller is guaranteed to intersect with the describing function because the inte-
gral action means open-loop phase is always below −π/2, i.e., it is in the third quadrant of the 
complex plane at low frequency. 

The figure also shows the −1/N curve for the deadband limit cycle. In the A = S/2 limit, the 
curve becomes large, negative and imaginary. The self-regulating loop does not have a limit 
cycle if the non-linearity is a pure deadband, because the frequency response curve does not 
intersect the −1/N curve; consult also McMillan (1995) and Piipponen (1996). 

The integrating loop with PI controller has a frequency response for which the phase be-
comes −π at low frequency. The right-hand panel of Figure 10.8 shows that it will intersect the 
−1/N curves for the slip-jump cases and also for the pure deadband case. Therefore, a valve with 
a deadband and no slip-jump can cause a limit cycle oscillation for an integrating process with a 
PI controller. The frequency of oscillation is higher and the period of oscillation shorter when the 

                                                           
2
 A Simulink model of this stiction model is available for download at: http://www.ualberta.ca/slshah/valve 

stictionform.htm. 
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slip-jump is present because the −1/N curves with the slip-jump intersect the frequency response 
curve at higher frequencies than the −1/N curve for the deadband. 

 
 

 
Figure 10.8. Nyquist plots for a self-regulating process (left panel) and an integrating process (right panel) 
in closed loops with PI controllers (Choudhury et al., 2006).  

10.3.4 Typical Trends of Variables and Input–Output Shape Analysis 

In this section, an analysis of main features of the stiction phenomenon is carried out by observ-
ing trends of the loop variables (OP, MV and PV) and the resulting input–output shapes, as func-
tion of some parameters of process, stiction and controller. For this purpose, a FOPTD process 
(with different values of the ratio between the time delay τ and the time constant T) controlled by 
a PI controller is considered. In Figure 10.9, the effect of stiction in term of the ratio S/(2J) on 
MV, OP, PV, as well as MV–OP plot and PV–OP plot are illustrated for three values of the ratio 
Td/T. Similar analysis can be carried out for integrating processes. 

The following main features can be observed: 
• The controller output (OP) shows always triangular wave.  
• The manipulated variable (MV) maintains always typical square wave elements; the almost 

perfect square wave shape, shown for Td/T >> 1, can be slightly modified to saw-tooth shape, 
but the discontinuity on the derivative is maintained. 

• The controlled variable (PV) presents also the limit cycle but the effect of the process modi-
fies the typical square wave showed in MV. For decreasing values of S/(2J) and Td/T, the 
shape changes from square wave to triangular, much closer to a sinusoidal form.  
The effect of stiction can be distinguished from other oscillation root causes by the following 

observations:  
• In general, non-linearity induced oscillations, which are observed both on controller outputs 

and process variables, contain harmonics. 
• In the case of poor performance or external disturbance, both controller outputs and process 

variables follow sinusoidal waves; the induced oscillations have low harmonic content.  
• In the case of stiction, the controller output usually follows a triangular wave for self-

regulating processes; for integrating processes, the process variable shows a triangular 
wave. Triangular (symmetric) waveforms only contain odd harmonics. Triangular waves that 
are observed in controller outputs are usually asymmetric and contain both even and odd 
harmonics.  
The reason for this behaviour is that while the plant input is continuous for aggressive control 

(except when the controller output is saturated), valve stiction results in a discontinuous plant 
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input that closely resembles a rectangular pulse signal. Moreover, stiction-pattern shapes differ 
for different processes, as given in Table 10.2.  

 
 

    

S/2J = 2.5 
(J = 20) 

   

S/2J = 1 
(J = 10) 

   

S/2J = 0.5 
(J = 5) 

   

S/2J = 0.25 
(J = 2.5) 

   

S/2J = 0.125 
(J = 1) 

  

 Td/T = 0.2 Td/T = 1 Td/T = 10 

Figure 10.9. Wave shape of OP, MV and PV for a self-reglating process in case of stiction varying the 
system parameter: (a) variations of Td/T; (b) variations of S/2J. (T = 2; S = 5).  

 
Note that flow loops, e.g., steam flow loops, can be integrating. The same applies for pres-

sure loops: gas pressure is self-regulating when the vessel (or pipeline) admits more feed when 
the pressure is low, and reduces the intake when the pressure becomes high. Integrating proc-
esses occur when there is a pump for the exit stream (Seborg et al., 2004:326).  
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Table 10.2. Typical stiction-pattern shapes for different process types (Srinivasan and Rengaswamy, 
2005a). 

Fast processes (Flow) Measurements 
Dominant I 

action 
Dominant P 

action 

Slow processes 
(Pressure &  

Temperature) 

Integrating  
processes  
(Level) 

Level with 
PI control 

OP Triangular 
(Sharp) 

Rectangular Triangular 
(Smooth) 

Triangular 
(Sharp) 

Triangular 
(Sharp) 

PV Square Rectangular Sinusoidal Triangular 
(Sharp) 

Parabolic 

 
However, it is important to realise that valve stiction does not always lead to limit cycles in a 

control loop. Rather, the occurence of limit cyles depends on the type of the process and control-
ler and of the presence of deadband and stick slip; see Table 10.3. From this, one can conclude: 
• Deadband only cannot produce limit cycles in self-regulating processes. 
• A short-term solution that may solve the stiction problem is to change the controller to P-

only. In a selfregulating process, the limit cycle sould then disappear. This is not the case for 
integrating processes, but the amplitude of the limit cycle will probably decrease.  
 

Table 10.3. Occurence of limit cycles in control loops (Choudhury et al., 2008). 

Process Controller Deadband (J = 0, S ≠ 0) Stick slip (J ≠ 0, S ≠ 0) 

Self-regulating P-only No limit cycles No limit cycles 
Self-regulating PI No limit cycles Limit cycles 
Integrating P-only No limit cycles Limit cycles 
Integrating PI Limit cycles Limit cycles 

 

10.4 Stiction Diagnosis Based on Shape Analysis of MV–OP Plots 

Qualitative trends or shapes of a time series signal can be represented as a sequence of symbolic 
values. A stiction detection method based on the analysis of MV–OP patterns is presented in this 
section. The description is largly adopted from Yamashita (2006) and Manum (2006). 

The simplest representation would use three symbols: increasing (I), steady (S) and decreas-
ing (D). Figure 10.24 shows these three primitives in a time value plane. These three symbols are 
sometimes called plus (+), zero (0) and minus (−). They correspond to the signs of their respec-
tive derivatives. The identification of the symbols for each sampling point is based on the time 
derivatives of the signal. In the absence of noise, these symbols can be identified using finite 
differences with an appropriate window size. Thresholds must be defined to distinguish steady 
and increasing/decreasing states. In a noisy signal, some form of filter or a neural network can be 
used to identify the primitives (Rengaswamy & Venkatasubramanian, 1995). However, this 
makes the method much more complicated.  

 

 
Figure 10.24. Symbolic representations of a time series: Increasing (I), Steady (S) and Decreasing (D). 
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For a given time series signal the simplest way to describe the signal by symbols is to use the 

following three primers: increasing (I), decreasing (D) and steady (S). The primers can be identi-
fied using standard deviation of the differentials of the recorded signals as a threshold for identi-
fication. In words, the identification works like this: 
1. Calculate the differentials of the given signals. 
2. Normalise the differentials with the mean and standard deviation. 
3. Quantise each variable in three symbols using the following scheme (x is the recorded signal 

and x  is the normalised differentials): 
• If 1,x >  x is increasing (I) 
• If 1,x < −  x is decreasing (D) 
• If 1 1,x− ≤ ≤ , x is steady (S) 
By combining the symbols for the OP and MV signals we get a symbolic representation of 

the development in an (OP, MV) plot with time. The primers for the combined plot are shown in 
Table 10.4. The sticky motions, IS and DS are framed. These are the two primers when the con-
troller is either increasing (I) or decreasing (D) its output, while the valve position is steady (S).  
 

Table 10.4. Symbolic representation of behaviour of a time series in OP–MV plots. 

OP/MV D S I 

I ID IS II 

S SD SS SI 

D DD DS DI 

10.4.1.1 Stuck Indices  

The simplest idea for detecting stiction is counting the periods of sticky movement by finding IS 
and DS patterns in the input–output plots of the valve. Based on this idea, an index ρ1 to detect 
the loop with stiction can be defined in an appropriate time window: 

IS DS
1

total DS

τ τρ
τ τ

+
=

−
, (10.3) 

where τtotal is the width of the time window, and τIS and τDS are time periods for patterns IS and 
DS, respectively. This index will become large if the valve has severe stiction (0 ≤ ρ1 ≤ 1). As an 
extreme case, the index ρ1 becomes unity if the valve does not move at all for changes of con-
troller output. If the signals are random, the value of ρ1 is likely to become 0.25 because ρ1 
represents two out of eight patterns, i.e. 0.25 = 2/8. These two patterns can occur by various 
causes other than stiction: disturbances, time delay and noise. Improvement of the accuracy of 
detection is attainable by reducing these irrelevant causes in the movement sequence. Therefore, 
one can infer that the loop is likely to have valve stiction if the index value is greater than 0.25. 

A fragment of the movement sequence can be represented by a sequence of two successive 
patterns. For example, if pattern II follows the pattern IS, the movement is represented as (IS II). 
Using this representation, typical movement for valve stiction can be represented as four frag-
ments (IS II), (DS DD), (IS SI) and (DS SD) as shown in Figure 10.25. All sticky motions of 
valve stiction, IS and DS, should be a part of these patterns. The degree of stiction can be evalu-
ated by counting the time period of IS and DS in these four fragments of patterns. Subsequently, 
an improved index ρ2 can be defined as  

IS II IS SI DS DD DS SD
2

total SS

τ τ τ τ
ρ

τ τ
+ + +

=
−

, (10.4) 
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where τIS II is the total number of IS samples in all the found (IS II) movements in the observa-
tion window, τDS DD is the number of DS samples in the found (DS DD) movements and so on. 
This index includes only the sticky movements matched with the four typical fragment of a se-
quence of movement patterns. If the entire pattern is a typical stiction pattern, the value of ρ2 
should be identical to ρ1. One may consider that a loop has stiction if ρ2 is greater than 0.25, 
which is the same criterion for ρ1. 
 
 

 
Figure 10.25. Qualitative shapes typially found in sticky valves. 

 
Only patterns IS, SS and DS are found for the extreme case in which the valve does not 

move; thereby, the index ρ2 becomes 0, not 1. A more convenient index, ρ3, is introduced to 
avoid this inconvenience.  

Table 10.4 shows eight symbols for qualitative patterns. In general, to represent a sequence 
of two successive symbols, seven symbols can be used followed by the symbol, except for the 
symbol used in the first segment. Typical patterns for stiction are shown in Figure 10.25(a) and 
(b); they each include two patterns. Therefore, patterns that have nothing to do with stiction can 
be represented by one of five possible symbols following the symbol IS or DS. By removing 
these five patterns each from the index ρ1, a new index, ρ3, can be defined as 

3 1
total SS

x
x W

τ
ρ ρ

τ τ
∈= −

−

∑
, (10.5) 

where W is the set of all patterns that have nothing to do with stiction, i.e. in symbols, 
W = {IS DD, IS DI, IS SD, IS ID, IS DS, DS DI, DS SI, DS ID, DS II, DS IS}. For example, if 
the movement was (IS IS IS DD IS IS II), we should subtract 3/7 from the original, because the 
three first IS primes could not be a part of a stiction pattern since they were followed by a DD. 
Except for the special case that the valve does not move, ρ3 = ρ2. The experience with Yama-
shita’s method shows that ρ1 is always too high, particularly for cases without stiction, whereas 
ρ3 correctly rejects stiction in these cases. This implies that ρ3 should be used as the determining 
stiction index, not ρ1.  

10.4.1.2 Detection Procedure and Practical Conditions 

The automatic stiction detection procedure can be summarised as follows. 
 
Procedure 10.1. Stiction detection based on the shape analysis of OP–MV plots (Yamashita, 2006). 
1. Obtain data of the controller output and the valve position (or the corresponding flow rate).  
2. Calculate the time difference for each measured variable. 
3. Normalise the difference values using the mean and standard deviation. 
4. Quantise each variable in three symbols I, S and D. Use the standard deviation of the differentials of the 

recorded signals as a threshold. 
5. Describe qualitative movements in OP–MV plots by combining symbolic values of each variable.  
6. Skip SS patterns for the symbolic sequence. 
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7. Evaluate the index ρ1 by counting IS and DS periods in the patterns found (Equation 10.3). 
8. Find specific patterns and count stuck periods. Then evaluate the index ρ3 (Equation 10.5). Conclude 

stiction if ρ3 ≥ 0.25. 
This procedure is very easy to implement. The main practical problem of the method is that it 

requires measurement of the valve position or the flow rate, which are only available for smart 
valves. The method is therefore straightforward for flow control loops, of which there are a vast 
number in the chemical process industries. Connell (1996) notes that about half of the control 
loops in oil refineries are used for flow control. Also, the method is sensitive to noise as we use 
the derivative for finding the symbolic representations. The sampling time may affect the per-
formance of the method. Lowering the sampling time makes the method inefficient, as the calcu-
lation of the differentials will be too dominated by the noise. Setting the sampling time very high 
is also disadvantageous, so there must be an optimum where we avoid sampling too much. A 
good default setting for the sampling time is the dominant time constant of the process. More-
over, it has been reported that the method does not detect stiction for loops showing patterns like 
those illustrated in Figure 10.26, found in many industrial data sets. Yamashita’s method has 
been deeply examined by Manum (2006). The main results of this study can also be found by 
Manum and Scali (2006).  
 
 

 
Figure 10.26. A shape found in sticky valves in industrial plants, but not considered/detected by 
Yamashita’s approach.  

 
 

Example 10.1. Figure 10.41 shows the time trends and the PV–OP plot from a flow control loop in a paper 
plant. The application of Yamashita’s stiction detection method gives the indices ρ1 = 0.48 > 0.25 and 
ρ3 = 0.41 > 0.25. The indices have different values are different, but both indicate valve stiction, which is 
the correct conclusion.  
 
 

 
Figure 10.13. Data and PV–OP plot for loop PAP2 (flow control). 
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Note that two other methods based on qualitative shape analysis have also been suggested by 

Kano et al. (2004) for detecting valve stiction. The methods are based on the following observa-
tions (Figure 10.5) when stiction occurs: 
Method A. There are sections where the valve position does not change even though the con-

troller output changes. Stiction is stronger as such sections are longer. 
Method B. The relationship between the controller output and the valve position takes the shape 

of a parallelogram if the slip jump J is neglected. Stiction is stronger as the distance between 
l1 and l2 is longer. 
Detection algorithms are described in Kano et al. (2004). The main drawback of the methods 

of Kano et al. (2004) is that they require the valve position or the flow rate to be measured, 
which may not always available. Furthermore, many parameters have to be selected and seem to 
be process specific and sensitive to noise. Examples, which confirm problems with these meth-
ods, have been reported by Kano et al. (2004) and He et al. (2005).  

10.5 Cross-correlation-based Stiction Detection 

The simplest method for stiction detection is that proposed by Horch (1999). It is based on the 
following idea (Figure 10.14): 
• If the cross-correlation function Φuy(τ) between controller output u and process output y is an 

odd function (i.e., asymmetric w.r.t. the vertical axis), the likely cause of the oscillation is 
stiction.  

• If the cross-correlation function Φuy(τ) is even (i.e., symmetric w.r.t. the vertical axis), then 
stiction is not likely to have caused the oscillation. In this case, the oscillation may be due to 
external disturbances, interaction or aggressive tuning of the controller.  
The following assumptions are needed to apply this stiction detection method: 

• The process does not have an integral action. 
• The process is controlled by a PI controller. 
• The oscillating loop has been detected as being oscillatory with a significantly large ampli-

tude. 
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Figure 10.14. Cross-correlation between control signal and process output for the case of no stiction (left) 
and stiction (right).  
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For automatic distinction between odd and even Φuy(τ), the following measures are used 

(Figure 10.15): 

| |Δ
| |

l r

l r

τ ττ
τ τ

−
=

+
, (10.6) 

0 max

0 max

| |Δ
| |
Φ Φρ
Φ Φ

−
=

+
, (10.7) 

Where τr is the zero crossing for positive lags, −τl the zero crossing for negative lags, Φ0 the 
cross-correlation value at lag 0, i.e., Φuy(0) and 

max 0 [ , ]
sign( ) max | ( ) |

l r
uyτ τ τ

Φ Φ Φ τ
∈ −

= . (10.8) 

The approach is intended to distinguish the phase shift Δϕ by π/2 (odd CCF) and π (even 
CCF). Introducing π/6 margins (deviations of the CCF from “ideal” positions as shown in Figure 
10.14), the diagnostic method can be written as follows: 

2 30.0 Δ 0.072
2 3 Δ π no stiction
10.0 Δ
3

ρ
ϕ

τ

⎫−< ≤ ≈ ⎪⎪+ ⇒ = ⇒⎬
⎪< ≤ ⎪⎭

,  

2 3 10.072 Δ
32 3 no decision

1 2Δ
3 3

ρ

τ

⎫− ≈ < < ⎪⎪+ ⇒⎬
⎪< < ⎪⎭

,  

1 Δ 1.0
3 Δ π/2 stiction
2 Δ 1.0
3

ρ
ϕ

τ

⎫≤ ≤ ⎪⎪⇒ = ⇒⎬
⎪≤ ≤
⎪⎭

. (10.9) 
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Figure 10.15. Definition of key variables for the cross-correlation function.  
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The interval, where no decision is taken, corresponds to a CCF which is neither odd nor even. 

This will typically occur when the oscillation is strongly asymmetric. It may be an indication of a 
more unusual problem such as sensor or other equipment faults (Horch, 1999).   
 
Example 10.2. The results of the application of Horch’s stiction detection method to measured data from 
loop CHEM1 and PAP4 are illustrated. The cross-correlation plots and indices given in Figure 10.16 con-
firm the presence of stiction in the first loop and its absence in the second loop. These are the right conclu-
sions, as it is observed that the signals have typical stiction patterns (triangular) in the OP signals.   

 
 

  

  
Figure 10.16. Cross-correlation for loop CHEM1 (Δτ = 0.73; Δρ = 0.4) (left); and loop PAP4 (Δτ = 0.13; 
Δρ = 0.0) (right).  

 
To summarise, the stiction detection method by Horch (1999) is indeed simple and thus easy 

to use. Besides normal operating data, neither detailed process knowledge nor user interaction is 
needed. The drawbacks/pitfalls are that (i) the method cannot be applied to integrating systems 
and (ii) the phase shift depends on controller tuning: the phase lag is π for an aggressive control-
ler when the loop cycles due to controller output saturation; however, when stiction is present 
and the controller output is not saturated, the phase lag can lie between π/2 and π for a PI con-
troller; see below. Examples, which confirm these problems, have been given by Yamashita 
(2006) and He et al. (2007). The latter researcher has also theoretically analysed Horch’s first 
method and demonstrated its general inconsistency. 

 
Example 10.3. To illustrate this point, a FOPTD system e−s / (3s + 1) controlled by a PI controller is con-
sidered. Figure 10.17 shows the cross-correlation functions for three different controller settings, corre-
sponding to pahse shifts of −π, −3π/4 and −π/2. For these cases, Horch's method would conclude that there 
is stiction for the first case, undetermined for the second case, and no stiction for the third case, although 
there is no stiction in all three cases. 
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Figure 10.17. Different controller tunings result in different types of cross-correlation function between OP 
and PV. 

10.6 Diagnosis Based on Curve Fitting  

A common characteristic of the techniques described in this section is that they perform a fitting 
of PV, OP, or SP − PV data, to detect the typical signature of stiction and distinguish it from 
other causes. Based on the observations described in Section 10.3.3, He et al. (2007) proposed a 
valve-stiction-detection technique, in which the controller output or process variable are fitted 
piece-wise (every significant half cycle) to both triangular (Figure 10.18a) and sinusoidal (Figure 
10.18b) curve segments using a LS method. If the fit for the triangular wave is better, then stic-
tion is concluded; otherwise no stiction occurs. By comparing the error between real and fitted 
data, an evaluation of the accuracy of approximation and then a stiction index can be obtained.  

10.6.1 Sinusoidal Fitting 

The OP or PV signal is fitted piece-wisely for each half-period of oscillation (see Figure 10.18a), 
which means, each fitting piece may have different amplitude and/or frequency. This considera-
tion is reasonable, since real processes noise and disturbances are present in the signals, thus the 
oscillation magnitude and frequency may change from time to time, and also unsymmetrical 
signals may result. 

Denoting the signal to be fitted as y(t), the objective function for the sinusoidal fitting is 

sin 1 2
, ,

min || ( ) sin[ ( : ) ] ||i i i
A

J y t A t t t
ω ϕ

ω ϕ+= − − + , (10.10) 

where A is the amplitude, ω the frequency and ϕ the phase shift of the sinusoid. (ti:ti + 1) is the 
time range of fitting as in Figure 10.18a. Because the curve is fitted piece-wisely, we can set 
ϕ = 0. We use numerical iterative method, i.e., NLS method (MATLAB’s 
lsqnonlin/lsqcurvefit) to find the best fitting. The initial values for the oscillation pe-
riod Tp, and thus for ω, is determined from the oscillation-detection method. A can be initially set 
to the half peak value of the signal. However, ω and A are fitted for each half-period of the sig-
nal, as mentioned above. To get smooth transition of the approximating curve between both half-
periods, the use some overlapping data may be useful. The overall mean squared error for sinu-
soidal fitting MSEsin is the average of MSEs over all considered time periods. 
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Figure 10.18. Schematic of the curve fittings: (a) sinusoidal fitting; (b) triangular fitting. 

10.6.2 Triangular Fitting 

Triangular fitting as shown in Figure 10.18b is more difficult because it is a piece-wise curve 
fitting with two degrees of freedom: the location and the magnitude of the maxima. In our im-
plementation, we do not use the iterative algorithm proposed by He (2007), but fit two linear 
pieces to data in each half-period:   

tri 2
,

min || ( ) Δ ||
a b

J y t a t b= − + . (10.11) 

Δt is the time difference (or time-index difference) between each ti between tp and for the first 
linear LS fitting, and that difference between tp and ti + 1 for the second linear LS fitting. The 
fitting is performed by the MATLAB function polyfit with a polynomial degree of unity. 
Also here, the use some overlapping data may be useful to achieve smooth transition of the ap-
proximating curve between the half-periods. The overall mean squared error for triangular fitting 
MSEtri is the average of MSEs over all considered time periods. 

10.6.3 Stiction Index and Detection Procedure 

The algorithm of stiction detection based on piecewise curve fitting can be summarised as fol-
lows. 
 
Procedure 10.2. Stiction detection based on curve fitting. 
1. Check if the loop is oscillating and determine the zero crossings and the oscillation period (Use one of 

the methods described in Chapter 8).  
2. Fit a sinusoidal wave and a triangular wave to the measurements of controller output for a self-

regulating process or to the measurements of process variable for an integrating process as well as pos-
sible (i.e., solve the optimisation problems in Equations 10.10 and 10.11).  

3. If the fit for the triangular wave is significantly better than the fit for sinusoidal wave, conclude stiction. 
In the opposite case, conclude no stiction. If both are approximately equal (e.g., the difference is smaller 
than 10%), no decision is made.  
Step 3 of the algorithm can be based on the stiction index defined by 
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η
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stic 0.4 No stictionη ≤ ⇒ . (10.13) 

This stiction-detection method has many advantages: 
• Only measurements of the controller output for a self-regulating process or the process vari-

able for an integrating process are required, which are usually available. 
• The method is robust in handling noise owing to the formulation as least-squares problems. 
• It works consistently for both non-integral and integral processes.  

The following remarks discuss some limitations and application related issues of this method 
(He et al., 2006): 
• There is a grey area, where neither sinusoid nor triangle fits the signal well. In this case, He’s 

method cannot provide meaningful detection result.  
• External disturbances are assumed to be sinusoidal. This is true for most of the cases because 

disturbances will eventually become more sinusoidal as they propagate away from the source 
due to low-pass plant dynamics. However, if the disturbance source that leads to oscillation is 
close to the valve being diagnosed, such as limited cycle due to process and/or controller 
non-linearity, the method can fail or lead to wrong diagnosis. 

• An exact triangular wave will be obtained only if there is a pure integrator in the controller or 
process. However, a clear triangle is not required in order for the method to work. Processes 
with no or extremely weak integration should be treated as self-regulating processes and OP 
fitting should be applied.  

• For the case of varying load, a carefully designed high-pass or band-pass filter (see also Sec-
tion 8.8) might be a better approach to eliminate the low frequency drift in the process. How-
ever, because moving window approach is applied and piece-wise fitting is utilised, the im-
pact of the slightly biased crossing point determined by the algorithm is small. 

• The low-pass filter associated with a PI controller has no significant impact on He’s method. 
For valve stiction in integrating processes, although the triangular PV signal can be smoothed 
by the filter, because PV is fitted, the smoothing effect does not matter. For valve stiction in 
self-regulating processes, the rectangular wave will be smoothed by the filter, but after the in-
tegration action of the PI controller, the OP fitting still favors triangle if the stiction is not too 
weak, i.e., in the grey area.  
 

Example 10.4. We consider two industrial data sets; one is from a flow control loop in a refinery and the 
other a level control loop in a paper mill. The results of the curve fitting are shown in Figure 10.19. For the 
(self-regulating) flow loop, a triangular shape is the better fitting to the OP data, giving a stiction index 
ηstic = 0.83, indicating the presence of stiction. The PV signal of the (integrating) level loop can be better 
fitted by triangular shape. The corresponding stiction index has the value ηstic = 0.70, also indicating that 
the loop suffers from a stiction problem.  
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Figure 10.19. Curve fitting for loop CHEM1 (OP data) (top); and loop PAP3 (PV data) (right). 

10.6.4 Similar Techniques 

Rossi and Scali (2005) proposed a method, called relay technique, to fit the PV using three dif-
ferent models: the output response of a first order plus time delay under relay control (relay 
wave), triangular wave and sinusoidal wave. Relay and triangular waves are associated with the 
presence of stiction, while sinusoidal shape with the presence of external perturbations. A stic-
tion index has been defined as 

sin relay
stic

sin relay

MSE MSE
MSE MSE

η
−

=
+

. (10.14) 

This index takes values in the range [−1, 1]: negative values indicate a better approximation by 
means of sinusoids, positive values by means of relay or triangular approximations. Values close 
to zero indicate that the two approximations have similar errors and the procedure gives an un-
certain answer; by considering that noise can change the shape of the curve, the uncertainty zone 
is defined by |ηstic| < 0.21. This corresponds to a ratio MSEsin/MSErelay = 0.66 (Rossi and Scali, 
2004), in analogy to the limit value Δτ ≤  2/3 in Horch’s method (Section 10.5). Although this 
method is very similar to He’s method described above, the relay-wave approximation is very 
complex, and thus requires high computation effort.  

Note that the extension of the curve-fitting method for other signal patterns, such rectangular 
and trapezoidal waves, is straightforward. For this purpose, Srinivasan and Rengaswamy (2005a) 
proposed a technique based on qualitative pattern recognition. The algorithm aims to distinguish 
square, triangular and saw-tooth like signal shapes in both OP and PV. The technique used to 
classify the signals is dynamic time warping (DTW) and this is applied for each oscillation cycle 
individually rather than a complete data set at once. DTW is a classical technique from speech 
recognition used to compare signals with stored patterns (Table 10.2). DTW takes into account 
that different parts of the signal under investigation may be shorter or longer than the reference 
and also enables the detection of similarities in such cases.  

10.7 Non-linearity Detection and PV−OP Pattern Analysis 

In this method proposed by Choudhury et al. (2006), the detection of valve or process non-
linearity is first carried out using higher-order statistical method-based NGI and NLI indices 
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(Section 9.2). Once a non-linearity is detected, then the data are treated by a Wiener filter (PVf, 
OPf) and the PVf–OPf plot, generated from a segment of the data that has regular oscillations, is 
used to isolate its cause. A signature of valve stiction is when PVf–OPf plot shows cyclic or 
elliptic patterns. If no such patterns are observed, it is concluded that there are valve problems 
but these are not due to the stiction.  

For the purpose of this section, the following assumptions are important:  
• The process nonlinearity is negligible in the vicinity of the operating point where the data has 

been collected. This is a standard and reasonable assumption because the forthcoming diag-
nosis methods work with routine operating data of a control loop under regulatory control. In 
general, when processes are fairly well regulated at standard operating conditions, the loop 
can be assumed to behave linearly since a linear controller is capable of satisfactory regula-
tion of the plant. 

• The valve movement or change in input signal to the valve is kept within a range, so that the 
control loop exhibits linear behaviour under steady-state regulatory control. Choudhury et al. 
(2004) found out that this is the case when the operating range is about 25% of the full span 
(0–100%) of the valve, even when it is a square-root valve. This assumption is necessary to 
exclude that the non-linearity may come from the possibly non-linear valve characteristics, 
which is definitively not a fault. Therefore, when implementing any detection procedure, a 
check on the range of OP signal should be performed. If the range of OP is larger than 25%, a 
corresponding message should be issued to the user and let him consult valve characteristic 
information.  

10.7.1 Stiction Detection and Estimation Procedure 

The whole procedure is illustrated in Figure 10.20 and summarised as follows. It is largely 
adopted from Choudhury et al. (2006), but extended with the possibility to use surrogates analy-
sis instead of the bicoherence technique.  
 
Procedure 10.3. Stiction diagnosis based on non-linearity and ellipse fitting. 
1. Detection of Nonlinearity. Calculate NGI and NLI using the bicoherence method (Section 9.3) or NPI 

using the surrogate technique (Section 9.3) for the control error signal (SP–PV). If the indices do not 
indicate loop non-linearity, the poor performance is probably caused by a poorly tuned controller or an 
external oscillatory disturbance (refer to Figure 9.2), and the procedure is stopped. 

2. Pre-process Data. 
(a) Once the non-linearity is detected, select appropriate filter boundaries [fmin, fmax].  
(b) Filter PV and OP data using the Wiener filter to obtain PVf and OPf. Ideally, the filter should re-

move the effect of noise and the set point changes (if any), leaving only the clear stiction pattern in 
the filtered variables. When surrogate analysis is considered, elimination of spikes and data end-
matching are essential. 

3. Determination of the Segment of Data with most Regular Oscillations. 
a) Choose a segment length L, say L = 1000 (if data length permits). When surrogate analysis is used, 

the default parameter values (Table 9.2) are important.  
b) Divide the OPf data into segments of length L. OPf is chosen instead of PVf because often the OP 

signal is less noisy than the PV signal. 
c) Calculate the regularity factor ri and oscillation period Tp,i for each segment of OPf data. 
d) Obtain the maximum regularity factor r = max(ri). 
e) Take Tp, which is equal to the Tp,i of the segment of OP with r. 
f) If L > Tp, then choose L = 4Tp and go to step 3b. 
g) Now, OPf is the segment of the OPf data that corresponds to r and PVf is the part of the corre-

sponding PVf data. 
4. Fitting an Ellipse. Fit a conic to the mapping of PVf–OPf (Figure 10.21). If an ellipse can be fitted to 

the PVf–OPf plot, it can be concluded that the valve suffers from stiction problem. Algorithms for fit-
ting an ellipse to a set of data are given by Choudhury et al. (2006) and Manum (2006). 

 



226  10. Diagnosis of Stiction-related Actuator Problems 
 

 
Figure 10.20. Decision flow diagram of the methodology for stiction detection based on non-linearity 
anaylsis and conic fitting (Choudhury et al., 2006). 

 

 
Figure 10.21. Ellipse fitted to the PVf–OPf plot. 
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As a by-product of this method, apparent stiction can be quantified from the maximum width 

of the ellipse fitted in the PV–OP plot measured in the direction of OP quantifies stiction, i.e., 
(Choudhury et al., 2006): 

2 2 2 2

2Stiction plus deadband [%]
sin cos

abS
a bα α

≈
+

, (10.15) 

where a and b are the length of the minor and major axes of the fitted ellipse respectively and α 
is the angle of rotation of the ellipse from positive x-axis; see Figure 10.21. The quantified stic-
tion is termed as ‘‘apparent stiction’’, because it may be equal or different from the actual 
amount of stiction due to the influence of loop dynamics on PV and OP, in particular due to the 
effect of the controller to regulate PV and thus smooth the stiction effect (Choudhury et al., 
2006).  

10.7.2 Practical Issues 

As for any method, some issues have to considered, when dealing with industrial data that are 
usually subject to noise, drifts, etc.  

Choosing an Appropriate Segment of the Data 

In reality, the valve may stick for sometime and may not stick for some other time. Also the 
oscillation regularity factor values may differ from one data segment to another. Therefore, a 
data segment that show maximum regularity should be picked up.  

Selection of Filter Boundaries 

The selection of filter frequencies is crucial. Choudhury et al. (2006) suggested to obtain the 
frequency band (f1, f2) corresponding to the maximum bicoherence peak in step 1, i.e., 
[ωL = max(0.004, fmin − 0.05), ωH = min(0.5, fmax + 0.05)] with fmin = min(f1, f2) and 
fmax = max(f1, f2). Remember that all frequencies are normalised such that the sampling frequency 
is 1 and that 0.05 is subtracted or added from the frequencies to ensure that the exact location of 
the significant peak does not fall on the filter boundaries. The minimum possible value for the 
lower boundary is 0.004 or 250 samples/cycle. For oscillations with periods longer than this, the 
data can be down-sampled in such a way that the FFT length used in the bicoherence calculation 
consists at least 3 or 4 cycles.  

However, the experience with this automatic determination of filter boundaries revealed that 
even for simple loops this initial “automatic” setting does often not work and “tuning” was 
needed to get good results. This initial investigation of the method lowered the hopes of imple-
menting the method automatically, and research on other schemes is needed (Manum, 2006). 
Also, a look at the frequency spectrum is always recommended to adjust the filter boundaries. 
Even in the original work by Choudhury et al. (2006), the aforementioned rule has not been 
strictly followed.  

 
Example 10.5. The necessity of filtering to remove non-stationary trends is illustrated in this example. The 
row data shown in Figure 10.22 are from an industrial flow control loop in a refinery. Without filtering, it is 
clear that no distinct ellipse can be fitted to the PV–OP plot. On the contrary, if a Wiener filter with the 
boundaries [0.01, 1.0] is applied to the data, the PV–OP mapping has a clear and distinct elliptical 
pattern. It is also observed that the filtering has removed the slowly-varying mean-shift and high-frequency 
noise from the PV and OP signal. Equation 10.15 yields an estimate of the apparent stiction S = 0.43%.  
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Figure 10.22. Non-linearity detection and PV–OP plot for loop CHEM30 without Wiener filtering 
(NGI = 0.03; NLI = 0.58).  

 

 
Figure 10.23. Non-linearity detection and ellipse fitting results for loop CHEM30, when the data are pre-
processed using a Wiener filter [0.01, 1.0] (NGI = 0.04; NLI = 0.57).  

Ellipse Fitnesss 

When dealing with real data, the ellipse fitting algorithm will tend to produce an ellipse even in 
the case where it is not clearly distinctive. Therefore, it is useful to introduce a measure of fitness 
for the ellipse. This draws two confidence limit ellipses around the fitted ellipse and checks how 
many data points are within the limits. The percentage of theses data points is defined as the 
ellipse fitness. If the fitness is below a specified threshold, say 60%, the fitted ellipse should be 
rejected and thus no stiction is concluded. 

 
Example 10.6. Data for this example come from a level control loop in a power plant. Figure 10.24 shows 
the ellipse fitted to 1000 data points and the two limiting ellipses. In this case, 93.5% of the data points lie 
within the confidence limits (±10%). Therefore, it can be concluded that this loop suffers from valve stic-
tion. The apparent stiction band value is S ≈ 11.4.  
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Figure 10.24. Check of the validity of fitted ellipse for loop POW2. 

10.8 Tests to Confirm Stiction 

All stiction-detection methods presented above have an uncertainty zone where no decision is 
taken. In this case, the proposed methods cannot provide meaningful detection results. Even in 
the case a control loop is identified to have an oscillation problem probably caused by valve 
stiction, additional tests on the valve should be performed to pinpoint and confirm the problem.  

Moreover, the non-invasive detection methods presented above are capable of detecting stic-
tion in control valves. However, all of thee methods work with single control loops and do not 
take into account the propagation of oscillation. Stiction in one valve may generate limit cycle 
oscillations that can easily propagate to other loops of the connected adjacent units. That is why 
all non-invasive methods when applied to an entire plant site may falsely signal stiction in large 
number of control valves. To avoid this, plant tests are needed at the last stage to confirm and 
isolate the valves detected to be sticky. Using the stiction detection techniques presented below, 
the number of valves to be tested will be kept at minimum.  

A well-known test to confirm stiction in industrial practice is the valve travel test (Section 
10.8.2). Such a test should be done with the valve in service, as in-service checks are more accu-
rate than testing the valve out of service, i.e., at test-beds. Prior to these tests, we strongly advise 
to carry out a controller-gain change test (Section 10.8.1) to keep the other tests as the last mean 
of stiction confirmation.   

10.8.1 Controller Gain Change Test 

The presence of stiction in a control loop produces limit cycle oscillations in the controller vari-
able and the controller output. Changes in controller gain (Kc) have the peculiarity of affecting 
the oscillation frequency, without influencing its shape. Decreasing Kc causes a decrease of the 
oscillation frequency. An intuitive explanation of this behaviour can be given by considering that 
a lower value of Kc causes a lower rate of increase of the active force Fa. Therefore, longer times 
occur to overcome the static friction force Fs and, consequently, a lower frequency of oscillation 
result. A theoretical justification of this behaviour using describing function analysis is provided 
by Choudhury et al. (2005).   
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Figure 10.25. Effect of changing controller gains on oscillating signals in case of stiction: a frequency 
decrease is clearly seen.  
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Figure 10.26. Effect of changing controller gains on oscillating signals for the no-stiction case (bottom): 
the oscillation frequency does not change.  

 
Once stiction is detected in a loop using any non-invasive method, changes in oscillation fre-

quency due to variation in controller gain can help confirm the presence of stiction in the loop; 
see Figure 10.25 and Figure 10.26. This method is a simple alternative test that can be applied 
online without significant disruption of the plant production before applying an invasive stiction 
detection method. 

The technique of changing the controller gain is also very useful for confirmation of stiction 
in (connected) multi-loop systems. In such an environment, all (non-invasive) stiction-detection 
methods may detect stiction in all connected loops, irrespective of the nature of the acting distur-
bances, i.e., whether the loop oscillation is really caused by stiction or due to an external oscilla-
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tory disturbance from a neighbouring loop. Thornhill et al. (2003) showed an impressive exam-
ple of this phenomenon, where 26 variables were identified to oscillate with a similar time period 
as a condenser level. In such situations, the controller-gain-change can help distinguish between 
the loops suffering from stiction and those oscillating due to propagated oscillatory disturbance: 
if a limit oscillation enters in a loop as an external disturbance, a change in controller gain will 
NOT change the frequency of oscillation. 

10.8.2 Valve Travel or Bump Test  

Stiction in control valves is usually confirmed by putting the valve in manual and increasing the 
control signal in small increments until there is an observable change in the process output. More 
specifically, measuring stiction online can be performed by the following steps (Gerry and Ruel, 
2001): 
 
Procedure 10.4. Valve travel test for stiction quantification. 
1. Put the controller in manual with the output near the normal operating range. 
2. Change the controller output by 5 to 10% to overcome the hysteresis on the loop. If the process variable 

does not move from this change, repeat it until the process variable moves. 
3. Wait for the process variable to settle. 
4. Make a small change in the controller output, say about 0.2%, in the same direction as the last step. 

Wait for the same amount of time as the previous step to see if the process variable moves. 
5. Repeat Step 4 until the process variable moves, i.e., until the stiction band is overcome. 

 
 

 
Figure 10.41. Data collected for stiction check (Gerry and Ruel, 2001). 

 
The stiction in the loop is the total amount of OP change required to detect a change in the 

process variable. Figure 10.41 shows this series of tests performed on a flow loop. The vertical 
lines on the plot mark the “stiction band” or the difference in OP indicating the amount of stic-
tion present in the valve, ca. 1.2%. The test shows that stiction is a problem for this valve, since 
stiction of more than 0.2% will usually cause cycling.  

Again, this method of confirming stiction by putting the loop in manual is not convenient and 
cost-effective due to the risk of plant upset and production of more “off-spec” products. It should 
therefore be the last stage of any oscillation diagnosis procedure.  

10.9 Stiction Diagnosis Procedure  

The diagnosis procedure we propose in this section combines techniques individually described 
before; see Figure 10.28. It starts with oscillation detection (Chapter 8): when the control loop is 
found to be oscillating, the most probable origin is assumed to be valve stiction. However, non-
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linearity and saturation detection (Chapter 9) are also useful as a possible source of oscillation. 
We then apply a stiction detection method (Section 10.5 to 10.7) and estimate its level (Chapters 
8 and 10). If stiction is detected and has a significant level, then a gain-change test (Section 
10.8.1) should be performed following a cautious “belt and braces” approach before the costs of 
downtime and maintenance can be justified. When stiction is confirmed, valve travel test should 
be carried out (Sections 10.8.2), preferably with the valve in service. If the level of friction is 
high, the best solution is to undertake valve maintenance. If the valve is oversized, the sugges-
tion is to resize it, otherwise the impact of friction will stay high and thus improvement in the 
control performance will not be possible. The negative effects of stiction cannot be totally elimi-
nated without repairing the valve.  

In many cases, however, this is not possible because of some reasons (Gerry and Ruel, 2001):  
• It is economically not feasible to stop the production. 
• The valve/actuator type is the problem and it is necessary to use this type of valve/actuator 

for fail safe considerations.  
• Replacing the valve/actuator could be too expensive. 

In these cases, the negative effects of stiction cannot be totally eliminated, but methods for 
combating the stiction to reduce these effects are beneficial. Such techniques include (Gerry and 
Ruel, 2001):  
• Tune the positioner using a large proportional gain and no integral action. If derivative action 

is available, use some to make the valve continuously move. With integral action in the posi-
tioner, it may wind up, causing the valve to seemingly have a mind of its own. After some 
period of time, the stem will jump, after the positioner has wound up enough. By removing 
integral action from the positioner, this windup problem is eliminated. 

• If a smart positioner is used, adjust the parameters. Some positioners do not use PID but 
special algorithms to send a burst of pressure each time a new position is requested. The posi-
tioner action is to stop the valve at the requested position. 

• Use a PID controller (for the control loop) where the integral action has a variable strength: if 
the absolute error is smaller than some value, then take out the integral action, otherwise use 
it. Using this method, when the valve is within the stiction band, the integral action is missing 
from the controller, the controller output will not integrate, having the end effect of removing 
the stiction cycle from the loop. 

• Use a PID with gap: if the absolute error is smaller than a given threshold, the controller 
output is frozen; if not, the amount of error from the gap is used as the controller input. 
Another way to reduce the effect of friction is to compensate for it. A very simple way to 

eliminate some effects of friction is to use a dither (high-frequency) signal, which is added to the 
control signal. The effect of the dither is that it introduces extra forces that make the system 
move before the stiction level is reached. The effect is thus similar to removing the stiction. The 
effects of dither in systems with dynamic friction were studied by Panteley et al. (1997).  

Systems for motion control typically have a cascade structure with a current loop, a velocity 
loop and a position loop. Since friction appears in the inner loop it would be advantageous to 
introduce friction compensation in that loop. The friction force is estimated using some model, 
and a signal that compensates this force is added to the control signal (Olsson et al. 1998). Some 
friction compensation techniques for servo-hydraulic control systems have also been discussed 
by Jelali and Kroll (2003). 
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Figure 10.28. Diagnosis procedure to discover the cause of oscillations and recommeded actions to 
eliminate them. 

10.10 Summary and Conclusions 

The main problems that can occur in actuators have been described with focus on the analysis of 
stiction in control valves. The most important stiction detection techniques have been reviewed, 



234  10. Diagnosis of Stiction-related Actuator Problems 
 

including their assumptions, strengths and weaknesses. These are essential when applying any 
method to real-world data. The cross-correlation technique is simple and easy to implement, but 
may have problems with phase shift induced by controller tuning and is limited to self-regulating 
processes. Curve fitting is powerful technique to detect stiction are available in different ver-
sions. These methods rely on the signal pattern characterising stiction, which, however, may 
appear also for other control loop faults. Non-linearity detection followed by ellipse fitting has 
also been proven to be very efficient in detecting stiction, but the complexity of this technique 
and the difficulty of automatically selecting proper filter boundaries are clear weaknesses of the 
method. Therefore, we recommend to apply more than one technique to have redundancy.  

A systematic oscillation diagnosis procedure has been proposed, combining the some oscilla-
tion and non-linearity detection techniques, as well as additional tests and methods for check, 
elimination or compensation of valve stiction. 

 
 



 

11 Complete Oscillation Diagnosis Based on 
Hammerstein Modelling  

As should be learnt from the previous chapters, when a control loop is detected to be oscillating, 
the root cause of that oscillation may be aggressive controller tuning, external disturbance, or 
valve non-linearity, particularly stiction. Even in the case where stiction is detected by applying 
any of the techniques described in Chapter 10, it is desirable to quantify the extent of stiction. 
This is because we usually attempt to evaluate a large number of control loops, with valves being 
more or less sticky. To our best knowledge, only two methods have been published about quanti-
fication of stiction, i.e., Srinivasan et al. (2005) and Choudhury et al. (2006). The next useful 
feature missing up to now in the literature is to distinctly detect multiple faults in an oscillating 
control loop.    

This chapter presents a novel technique for detection and estimation of valve stiction in con-
trol loops from normal closed-loop operating data based on a two-stage identification algorithm. 
The control system is represented by a Hammerstein model including a two-parameter stiction 
model and a linear model for describing the remaining system part. Only OP and PV data are 
required for the proposed technique. This not only detects the presence of stiction but also pro-
vides estimates of the stiction parameters. Therefore, the method is useful in short-listing a large 
number of control valves more or less suffering from stiction in chemical or other plants, con-
taining hundreds or thousands control loops. This helps reduce the plant maintenance cost and 
increase the overall profitability of the plant. A unique feature of the proposed technique is also 
its capability to discriminate between the different oscillation sources or detect the situation 
when the loop suffers from two or more oscillation root causes simultaneously. Note that the 
method does not need any further experimentation with plant, hence, use only closed-loop oper-
ating data.   

The chapter is organised as follows: Section 11.1 presents the features of the framework pro-
posed for stiction quantification. The considered model structure is introduced in Section 11.2. 
The new stiction estimation algorithm is presented in Section 11.3. Some practical issues when 
analysing industrial data with the presented method are discussed in Section 11.4. Section 11.5 
contains simulation and industrial case studies to demonstrate the practicality and applicability of 
the proposed technique. The extension of the technique for complete oscillation diagnosis, i.e., 
detecting and distinguishing multiple faults is given in Section 11.6, where it is also illustrated 
with simulation and industrial examples.  

11.1 Features of the Proposed Framework  

The proposed procedure is partly an extension of similar approaches, e.g., Srinivasan et al. 
(2005b), having in common the fact that the non-linear part is represented by Hammerstein mod-
els, but the stiction model and the identification techniques are different. Global search tech-
niques, i.e., pattern search (PS) methods or genetic algorithms (GA), are used here to estimate 
the non-linear model parameters, subordinated with a least-squares (LS) identification of the 
linear model parameters. The author is not aware of any reports on the application of such algo-
rithms in the valve-stiction estimation. Moreover, estimates of both stiction-model parameters, 
dead-band plus stick band (S) and slip jump (J), are provided in this work. Only when both pa-
rameters S and J are known, it is possible to estimate the inner signal MV. In contrast, the el-
lipse-fitting method by Choudhury et al. (2006) estimates only the parameter S. The approach of 
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Srinivasan et al. (2005) is based on a separable LS identification algorithm proposed by Bai 
(2002) and applicable only to non-linearities with one single unknown parameter. Thus, Sriniva-
san et al. (2005) uses a simple relay model for describing the valve stiction. This model is, how-
ever, physically unrealistic and fails to capture the behaviour of loops with non-integrating proc-
esses. Note also that the slip jump J is very difficult to observe in PV–OP plots because the proc-
ess dynamics destroys the pattern. This makes the estimation of a two-parameter model much 
more challenging than those considered so far in the literature.  

The framework for oscillation diagnosis proposed consists of the following features:  
1. Two-parameter stiction models, which are more accurate and suitable for both self-regulating 

and integrating processes, particularly when time delay is present, are considered.  
2. The linear dynamics is represented through simple, i.e., low-order, models. Only partly auto-

mated structure selection is suggested. This choice keeps complexity and thus the required 
computational burden limited.  

3. Global search techniques, i.e., pattern search (PS) methods or genetic algorithms (GA), are 
used to estimate the non-linear model parameters, subordinated with a LS identification of 
the linear model parameters. 

4. The proposed parameter estimation is recommended as a second diagnosis stage, i.e., for 
stiction quantification after detecting stiction using other non-invasive methods.  

5. Since both the linear and the non-linear part will be estimated, closed-loop simulations with-
out the stiction model help identify possibly bad controller tuning or external disturbances, 
affecting simultaneously the loop performance (in addition to stiction). This ability of detect-
ing multiple loop faults is a unique feature of this technique.  

6. The method is not limited to sticky loops, but can also be applied when other non-linearities, 
such hysteresis or backlash, are present.  

7. This identification-based technique is robust against noise and drifting trends, usually cor-
rupting real-word data.  

11.2 Identification Model Structure  

In 2003, Jelali and Kroll have shown that hydraulic valves can be represented by models com-
bining linear dynamic blocks and one or more static non-linear block(s), such as the Hammer-
stein model, Wiener model, or even more general model structures. This depends on the valve 
type/complexity and the non-linearity under consideration. Note also that the estimation of fric-
tion-model parameters was proposed by Jelali and Kroll (2003) within the framework of grey-
box identification for hydraulic control systems, but not in the context of control performance 
monitoring. 

Restricting attention to stiction non-linearities, it can easily be seen that a simple control 
valve model is of the Hammerstein type, as also recently considered in Srinivasan et al. (2005b) 
and illustrated in Figure 11.1. In our approach, we use one of the two-parameter models 
Mstic(J, S) mentioned in Section 10.3.3. Such a model can realistically capture the closed-loop 
behaviour, as shown by Choudhury et al. (2005a), in contrast to the simple model used in Srini-
vasan et al. (2005b). A comparison of the relay and Choudhury’s models can be found in Singhal 
and Salsbury (2005). It is pointed out that the relay model is a good approximation of Choud-
hury’s model only when the ratio time delay to time constant (θ/T) is small and the system order 
is low. The discrepancy between the results using both models increases with increasing θ/T and 
system order. This is due to the missing consideration of the sliding part in the valve characteris-
tic as shown in Figure 11.2. As the delay increases, the sliding part becomes larger compared to 
the slip jump and valve output moves with the controller output for a longer period of time. As 
the processes we mainly consider are those with significant time delays, a two-parameter stiction 
model is needed.  



 11.2 Identification Model Structure 237 
 

 

 

 
Figure 11.1. Process-control loop with valve stiction within an identification framework.  
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Figure 11.2. Typical discrepancy between a relay model (dashed lines) and a two-parameter stiction model 
(solid lines). 

 
The process dynamics, including the valve dynamics, is represented by an AR-

MAX(n, m, p, τ) model, as in Equation 2.1. For modelling the sticky valve, we use one of the 
data-driven two-parameter models NLstic(J, S), proposed by Kano et al. (2004), Choudhury et al. 
(2005a) and He et al. (2007).  

The stiction non-linearity can be written in the general form 

v stic v v( ) ( ( ), , (0), ( 1), , (0), , )u k NL u k u u k u J S= −… … , (11.1) 

parameterised by the parameter pair J and S, which are assumed to be constant. Note that the 
internal signal uv(k) is not measurable. Stiction non-linearity is a discontinuous function or 
“hard” non-linearity, which does not belong to the class of memoryless non-linearities, usually 
assumed in the estimation of block-oriented models. Stiction non-linearity thus results in non-
smooth and non-convex objective maps. These facts have two important implications:  
1. Most of known techniques, e.g., correlation analysis, prediction-error methods, for the esti-

mation of Hammerstein models cannot be applied for the stiction estimation and diagnosis 
problem.  

2. Gradient-based algorithms, known as local optimisation methods, would always stuck in a 
local minimum near the starting point. In contrast, global search, usually gradient-free, algo-
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rithms are not affected by random noise in the objective functions, as they require only func-
tion values and not the derivatives.  
We do not intend to discuss all approaches for the identification of Hammerstein models, but 

refer the reader to the excellent overview by Srinivasan et al. (2005b), where the inherent limita-
tions of “classical” methods in the estimation and diagnosis of stiction are pointed out. In this 
work, the use of a separable least-squares estimator combined with a global search algorithm is 
proposed.  

11.3 Identification Algorithm  
To simplify the Hammerstein model identification, a decoupling between the linear and non-
linear parts is useful, as recommended by Seborg and Viberg (1997) and Bai (2002) in the con-
text of open-loop identification of input non-linearities other than stiction. This technique is 
extended in this section for the application to the identification of stiction models parameterised 
by J and S. 

11.3.1 Linear Model Estimation  

To simplify the derivation, we first consider an ARX model (with m = n) to describe the linear 
system part in the time domain as   

T
v v( ) [ ( 1), , ( ), ( 1), , ( )] ( )y k y k y k n u k u k n kτ τ ε= − − − − − − +… …Θ  (11.2) 

with the unknown parameter vector  
T

1 1[ , , , , , ]n na a b b= − −… …Θ  (11.3) 

as well as J and S because of Equation 11.1. Let  

v stic v v
ˆˆˆ ˆ ˆ( ) ( ( ), , (0), ( 1), , (0), , )u k NL u k u u k u J S= −… … , (11.4) 

which provides an estimate of MV, i.e., the valve position uv(k), using Ĵ  and ˆ.S  Define the 
prediction error 

ˆ ˆˆ, ,
ˆ( ) ( ) ( )

J S
k y k y kε = −

Θ
 (11.5) 

T
v v

ˆ [ ( 1), , ( ), ( 1), , ( )]y k y k n u k u k nτ τ= − − − − − −… …Θ  (11.6) 

for k = 1, 2, …, N and the objective function (MSE: mean squared error) 

2
ˆ ˆˆ, ,

1

1ˆ ˆˆ( , , ) ( )
N

N J S
k

V J S k
N

ε
=

= ∑ Θ
Θ . (11.7) 

The associated estimates are 
T

Tˆ ˆ ˆ ˆˆ ˆ, , arg min ( , , )NJ S V J S⎡ ⎤ =⎣ ⎦Θ Θ , (11.8) 

where N is the number of data samples y(k), ˆ( )y k  is the estimate of y(k) or Hammerstein-model 

output and Θ̂  is the estimated parameter vector of the linear model part.  
With 
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the objective function VN can be rewritten as 

2
1 ˆ ˆˆ|| ( , ) ||NV J S
N

= −y Φ Θ . (11.10) 

For a given data set {y(k), u(k)}, i.e., {PV(k), OP(k)}, this minimisation involves three variables 
Ĵ , Ŝ  and ˆ .Θ  VN is non-smooth in Ĵ  and Ŝ , but smooth in Θ̂ . Moreover, 

T1 ˆ ˆ ˆ ˆˆ ˆ ˆ0 ( , ) ( , ) ( , )ˆ2
NV J S J S J S∂

= = − +
∂

Φ y Φ Φ Θ
Θ

. (11.11) 

Hence, if T ˆ ˆˆ ˆ( , ) ( , )J S J SΦ Φ  is invertible, the necessary and sufficient condition for Θ̂  to be op-
timal is 

1
T Tˆ ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , )J S J S J S

−
⎡ ⎤= ⎣ ⎦Θ Φ Φ Φ y , (11.12) 

provided that Ĵ  and Ŝ  are optimal. Therefore, by substituting Θ̂  in terms of Ĵ  and Ŝ  back 
into VN, it follows 

1
T T

2

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )NV J S J S J S J S
N

−
⎡ ⎤= − ⎣ ⎦I Φ Φ Φ Φ y . (11.13) 

When the two-parameter stiction model is used to calculate vˆ ( )u k , the dimension of the search 
space is reduced from 2n + 2 to 2, independent of the linear part. However, note that, in contrast 
to the non-linearities considered in Bai (2002), the stiction non-linearity cannot be expressed in 
closed form.   

The identification algorithm proposed for systems with stiction non-linearities parameterised 
by J and S can now be summarised as follows:  

 
Procedure 11.1. Hammerstein identification for stiction estimation. 
0. Determine the time delay and initial values for J and S. 
1. Consider the system Equation 11.2, collect a data set {y(k), u(k)} and construct y and ˆˆ( , ),J SΦ  as in 

Equation 11.9. 
2. Solve Equation 11.13 for the optimal Ĵ  and ˆ.S  

3. Calculate the optimal Θ̂  as in Equation 11.12.  

Thus, when an ARX is used, iterative optimisation needs only be performed with respect to the 
non-linear parameters (J and S). 
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To generalise the method, one may use ARMAX instead of ARX, which now implies the 
need for iterative (non-linear) estimation also for the linear model. Once the optimal values Ĵ  
and Ŝ  are obtained by a global search method, as described below, the stiction model is com-
puted to generate vˆ ( )u k . Based on vˆ ( )u k  and y(k), the parameters Θ̂  of the linear model are 
identified using an LS-IV (instrumental variables) algorithm or a prediction error method (PEM) 
(Ljung, 1999), combined with model-structure selection, i.e., for estimating the model orders and 
time delay (when not known or specified); see Section 11.4. This two-stage identification 
method is illustrated in Figure 11.3. The key elements of our approach are as follows: 
• The linear dynamics is modelled using a low-order model, the polynomial parameters of 

which are estimated using LS or PEM in a subordinated identification task. The number of 
unit delays τ, when not known, is determined by applying an appropriate time-delay estima-
tion method.  

• A pattern search algorithm or a genetic algorithm is employed to estimate the values of the 
parameters S and J of the stiction model so that the MSE is minimised (Equation 11.10). The 
time trend of MV can thus be estimated.  
The successful use of this approach requires the system to be sufficiently excited. As the 

loops of interest are those detected to be oscillating, this condition should be satisfied.  
 

 
Figure 11.3. Two-stage identification of the system parameters.  

 
Remark. Although the proposed stiction estimation method is principally able to detect stiction, 
it is more recommended as a second diagnosis stage, i.e., for stiction quantification after valve 
stiction has been detected by another simpler method. The presence of stiction non-linearity also 
ensures the identifiability of the model from normal closed-loop operating data. Also, the identi-
fiability is ensured when another non-linearity, such as deadband or deadzone, is present instead 
of stiction. However, when the loop oscillates due “linear” causes, such as external disturbances, 
the closed-loop identification can become difficult when sufficient excitation is not present. In 
such cases, the stiction diagnosis may yield wrong results. 

11.3.2 Non-linear Model Estimation  

Traditional derivative-based optimisation methods, like those found in the MATLAB Opti-
mization Toolbox, are fast and accurate for many types of similar optimisation problems. These 
methods are designed to solve “smooth”, i.e. continuous and differentiable, minimisation prob-
lems, as they use derivatives to determine the direction of descent. While using derivatives 
makes these methods fast and accurate, they are not suitable when problems lack smoothness, as 
is the case in the valve-stiction estimation problem. When faced with solving such non-smooth 
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problems, methods like genetic algorithms or pattern search methods are the effective alterna-
tives. Both methods are briefly discussed in the following.  

11.3.2.1 Genetic Algorithms  

Genetic algorithms (GAs) are search techniques, which imitate the concepts of natural selection 
and genetics. They were formally introduced by Holland (1975). GAs search the solution space 
of a function through the use of simulated evolution, i.e., the survival-of-the-fittest strategy. This 
provides an implicit as well as explicit parallelism that allows for the exploitation of several 
promising areas of the solution space at the same time. Instead of looking at one point at a time 
and stepping to a new point for each iteration, a whole population of solutions is iterated towards 
the optimum at the same time. Using a population allows us to explore multiple “buckets” (local 
minima) simultaneously, increasing the likelihood of finding the global optimum. GAs are thus 
well suited for solving difficult optimisation problems with objective functions that posses “bad” 
properties such as discontinuity and non-differentiability, as is the case for the stiction estimation 
problem.  

 
 

 
Figure 11.4. Basic procedure of genetic algorithms.  

 
In the GA-based optimisation approach (Figure 11.4), the (unknown) parameters are repre-

sented as genes, hence the name “genetic”, on a chromosome, representing an individual. Similar 
to the simplex search, a GA features a group of candidate solutions, the population or gene pool, 
on the response surface. Applying natural selection and using the genetic operators, recombina-
tion and mutation, chromosomes with better fitness, i.e., degree of “goodness”, are determined. 
Natural selection guarantees that chromosomes with the best fitness will propagate in future 
populations. Using the recombination operator, the GA combines genes from two parent chro-
mosomes to form two new chromosomes (children) that have a high probability of having better 
fitness than their parents. Mutation allows new areas of the response surface to be explored. One 
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of the reasons GAs work so well is that they offer a combination of hill-climbing ability through 
natural selection and a stochastic method through recombination and mutation.  

The main drawback of using GAs is the high computational burden. This is due their prohibi-
tively slow convergence to the optimum, when compared to gradient-based methods, especially 
for problems with a large number of design variables. Nevertheless, the continual progress of 
computer technologies has greatly reduced the effort required to implement such methods. 
Therefore, GAs are becoming increasingly popular in the last years. Complete discussions of 
genetic algorithms can be found in the books by Goldberg (1989) and Michalewicz (1999).  

11.3.2.2 Pattern Search Methods  

Pattern search (PS) is an attractive alternative to GAs, as they are often computationally less 
expensive. Pattern search operates by searching a set of points called a pattern, which expands or 
shrinks depending on whether any point within the pattern has a lower objective function value 
than the current point. The search stops after a minimum pattern size is reached. Like the genetic 
algorithm, the pattern search algorithm does not use derivatives to determine descent and so 
works well on non-differentiable, stochastic and discontinuous objective functions. Also, similar 
to the genetic algorithm, pattern search is often very effective at finding the global minimum 
because of the nature of its search.  

A pattern search algorithm can be generally described as follows: 
 
Procedure 11.2. General pattern search procedure. 
1. Initialise direction and mesh size. At each iteration k, the mesh is defined by the set 

{ : },D

k

n
k k

x S
M DΔ

∈
= + ∈∪ x z z  where n

kS ∈  is the set of points where the objective function f had 

been evaluated by the start of iteration k and Δk > 0 is the mesh size parameter that controls the fineness 
of the mesh. D is a set of positive spanning directions in .n  

2. Perform the following steps until convergence: 
o SEARCH step. Employ some finite strategy seeking an improved mesh point, i.e., where the 

value of the objective function is lower than that at the current point. The SEARCH step usually 
includes a few iterations using a heuristic, such as GA, random sampling, or the approximate 
optimisation on the mesh of surrogate function.  

o POLL step. If the SEARCH step was unsuccessful, evaluate the objective function at 
points in the poll set Pk = {xk + Δkd : d ∈ Dk ⊆ D} ⊂ Mk, i.e., at points neighbouring 
the current one on the mesh, until an improved mesh point is found. 

o Parameter UPDATE. 
• Success, i.e. when SEARCH or POLL finds an improved mesh point: accept new iterate and 

coarsen the mesh. 
• Failure: refine the mesh. 

The mesh size is updated according to the rule 1 ,kw
k kΔ τ Δ+ =  where τ > 1 is a fixed rational num-

ber, wk ∈ {0, 1, …, w+} for mesh coarsening and wk ∈ {w−, w− + 1, …, −1} for mesh refining and 
w− ≤ −1 and w+ ≥ 0 are two fixed integers. Typically, Δk + 1 = 2.0Δk is used for mesh coarsening 
and Δk + 1 = 0.5Δk for mesh refining.  

Depending on the mesh-forming method, the search heuristic and the polling strategy, differ-
ent pattern-search algorithms result. For detailed discussions of these algorithms, the reader 
should consult, for instance, Lewis and Torczon (1999; 2000).  

In fact, our experience with this method has early led to the conclusion that PS is very fast in 
finding a point somewhere in the region of the global minimum. Therefore, (GA-based) pattern 
search is the recommended approach for solving the stiction identification problem.  
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11.4 Key Issues 

11.4.1 Model Structure Selection 

As a good engineering rule says that one “should not try to estimate what is already known” 
(Ljung, 1993), it is highly recommended to use any a priori knowledge available, e.g., from 
physical insight or from experimentation with the process during the controller commissioning 
stage. In CPM, it is usually assumed that the time delay is known or can be estimated accurately. 
At least an interval, where the time delay may lie, should be given. All this information, when 
available, should be included in the model structure. This significantly accelerates the conver-
gence rate of the parameter estimation algorithm.  

Moreover, simulation studies carried out by Srinivasan et al. (2005b) indicate that a decoup-
ling in the accuracy of the estimate between the non-linear and the linear component of Ham-
merstein models with stiction non-linearity may exist. Particularly, the accuracy of the estimate 
of the non-linear component may be not affected by the complexity of the model structure used 
to describe the linear model part. This point also would suggest using a simple model for the 
linear valve and process dynamics.  

However, this nice feature seems to be valid only for one-parameter non-linearities. In fact, 
we observed an interaction between the two parameters slip jump J and time delay τ. No change 
is shown in MV up to the time when the controller output becomes larger than S; PV will change 
after a further delay since that. This may result in an identifiability problem with the conse-
quence that a good estimate of τ is required to accurately estimate J. To ensure this, a time-delay 
estimation (TDE) algorithm is included in our stiction identification approach.  

The following approaches for selecting the model structure of the linear model part have been 
investigated:  
1. Automatic Structure Selection. One may use the functions arxstruc/ivstruc and sel-

struc of MATLAB’s Optimization Toolbox, minimising Akaike’s information criterion 
(AIC) (Ljung, 1999). This estimation is quick since the ARX model can be written as a linear 
regression and can be estimated by solving a linear equation system. Our experience reveals 
that this method often fails to provide a good estimate of time delay, particularly when sub-
stantial noise is present. The same approach but using an ARMAX model, as suggested by 
Srinivasan et al. (2005b), can be followed. To simplify and thus accelerate the model identi-
fication process, we advice choosing the model order to be equal, i.e., nA = nB = nC = n, so 
that it is only necessary to search for two parameters. A search is performed over the range of 
possible orders [nmin:nmax] and numbers of unit delays [τmin:τmax] to find the minimum AIC for 
the ARMAX model. This approach, which requires relatively high computation burden, was 
not always successful, due to existence of many local minima.  

2. Time-delay Estimation. As mentioned above, we had good experience and thus recommend 
using a fixed-order model, e.g., ARMAX(2, 1, 2, τ̂ ), for which the optimal time delay is de-
termined (when not known). For this purpose, numerous methods exist; see Björklund (2003) 
for an intensive discussion and comparison. We investigated many of them, e.g. the pre-
filtered arxstruc method proposed by Björklund (2003) (and called met1struc) and some 
methods included in the MATLAB Higher-Order Spectral Analysis Toolbox, e.g., tder 
(windowed cross-correlation). None of these techniques was successful in all simulation and 
practical cases we studied. Therefore, we implemented a simple search over a range 
[τmin:τmax] for ARMAX(2, 1, 2, τ̂ ) and picked up the one with the minimum AIC. This ap-
proach led to good results, at the expense of higher computation burden. See Section 11.5.1.  
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11.4.2 Determination of initial parameters and incorporation of constraints 

As for every non-linear optimisation technique, pattern search needs some initial values for the 
parameters at the first iteration. It is obvious that a good initial guess speeds up the convergence 
of the algorithm and increase the probability of finding the global optimum. A good initialisation 
for the stiction estimation approach proposed can be determined as follows: 
1. Use the ellipse-fitting method by Choudhury et al. (2006) to yield an initial guess 0Ŝ  of the 

dead-band plus stick band S. 
2. Assuming S = S0, use a simple grid search with a rough step size to get a complete picture 

( )NV J , whose minimum represents an initial estimate 0Ĵ  for the slip jump J.  

This procedure provides a region where the global optimum should lie. Therefore, it is useful 
to constrain the search of the algorithm within this region, i.e., to specify a lower and upper 
bound for the parameters J and S, say 0 0[0.8 ,1.2 ]J J J∈  and 0 0[0.8 ,1.2 ]S S S∈ . This helps avoid 
problems with falling in local minima. The specified regions should be not too narrow, because 
the curve fitting method estimates “apparent stiction” which may differ from real stiction. How-
ever, it should be stressed that the proposed method can also be applied on its own without using 
the ellipse fitting method or any other technique.   

 
Remark. It may occur that a loop with a sticky valve has two (or more) distinct behaviours, e.g., 
stiction undershoot for one part of the data and stiction overshoot for the other part. An example 
of such behaviour is illustrated in Choudhury et al. (2005:Fig. 4). It is obvious that the stiction-
estimation algorithm will have problems in this case. Therefore, the careful inspection of the 
PV–OP plot should reveal this situation and the data parts should be separated.  
 
Remark. Decisive for successful optimisation is adding constraints to discriminate parameter 
combinations (S and J) that drive the stiction model output to zero for all time, which is useless 
as input for the inner identification process. If such a parameter combination is found, the esti-
mation error is assigned an extremely large value to make sure that the algorithm does not rese-
lect this candidate solution.  

11.5 Application and Results 

The utility of the proposed stiction-estimation technique is now illustrated in some simulation 
and industrial studies. Over a dozen industrial case studies (not all presented here) from different 
industrial fields have demonstrated the wide applicability and accuracy of this method as a useful 
stiction quantification technique. In all case studies, the number of cycles taken for the analysis 
lies in the range 10–15. 

All computations reported in this study were carried out using MATLAB and Simulink (Re-
lease 14). All open-loop and closed-loop simulations were accomplished using Simulink. To 
perform the optimisation tasks, we employed MATLAB in conjunction with the Genetic Algo-
rithms and Direct Search (GADS) Toolbox, i.e., the ga function and the patternsearch 
function (with the option “@searchga”). The code for the algorithms used in this work can be 
provided up to a request from the author. Most reliable results in the simulation and practical 
cases we studied were achieved by searching the time delay value τ that minimises AIC for an 
ARMAX model with fixed orders n = 3, m = p = 2. Computations were performed on a Pentium 
M 1.70GHz personal computer. 
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11.5.1 Simulation Studies 

Two of the investigated simulation studies are discussed below in a separate section for each of 
the loops. The transfer functions and (PI) controllers are shown in Table 11.1. The magnitudes of 
S and J are specified as a percentage (%) of valve input span and process output span, respec-
tively. Kano’s stiction model was used, but the same results can be found by considering Choud-
hury’s model. Results for the ideal case, where no noise is present and the time delay is speci-
fied, are not given, as they are not spectacular: the algorithm yields very accurate parameter 
estimates. Below, a few simulation results are given; however, a broad range of other test condi-
tions, i.e. low-order/high-order, self-regulating/integrating (τ/T = 0.1–10) and different stiction 
strengths (J/S = 0–5), have also been successfully tested. (The results are not shown here due to 
brevity.) The proposed algorithm produces good estimates of the stiction model parameters with 
deviations less than 10% of the actual values.  
 

Table 11.1. Process models and controllers used in the simulation studies. 

Process type Process model Controller 
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11.5.1.1 First-order-plus-time Delay Process  

This example, which models a concentration loop with slow dynamics and a large time delay, is 
taken from Choudhury et al. (2005a). A zero-mean Gaussian noise signal was added to process 
output. The stiction estimation algorithm with time-delay identification was applied to the “data” 
obtained for different stiction cases (undershoot, no offset and overshoot). Table 11.2 lists the 
test conditions and results for each scenario. (Ts denotes the sampling time.) It can be concluded 
that the presented technique accurately quantifies stiction in all scenarios considered. The esti-
mates of the recovered stiction models are very close to the true values.  
 

Table 11.2. Results for the process simulations. 

FOPTD ITPTD 
Test conditions 

(Ts = 1s) 
Estimated stiction 

parameters [%] 
Test conditions 

(Ts = 1s) 
Estimated stiction 

parameters [%] 
J  S Ĵ  Ŝ  J  S  Ĵ  Ŝ  

2.0 5.00 2.02 5.00 4.0 6.0 4.30 5.66 
5.0 5.00 4.97 4.89 3.0 3.0 3.12 3.27 
7.0 5.00 6.34 4.86 5.0 3.0 4.90 3.01 

 

11.5.1.2 Integrating Process with Time Delay  

The stiction estimation for a closed loop with an integrating process with time delay is tried next. 
As before, several scenarios were considered. The conditions tested and the results achieved are 
given in Table 11.2. They prove the reliability of the presented method for stiction quantification 
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also for integrating processes. The estimates of the recovered stiction models are close to the true 
values.  

11.5.2 Industrial Case Studies 

The objective of this section is to evaluate the proposed framework and techniques on different 
industrial control loops, including flow control (FC), pressure control (PC), level control (LC) 
and temperature control (TC). For each loop, the set point (SP), controlled output (PV) and con-
troller output (OP) data were available. The procedure suggested in Section 11.4.2 was used for 
finding good initial stiction parameters. Table 11.3 gives the summary of the results achieved by 
the application of the methodology described in Section 11.3. The results are commented below 
for each loop. In all examples, the linear part was approximated by an ARMAX(3, 2, 2, τ̂ ) 
model with τ̂  determined for minimum AIC. Table 11.3 also contains values of the oscillation 
regularity factor r and period Tp (Section 8.7) and the non-linearity index (NLI) (Section 9.2.2) in 
relation with ellipse fitting of the PV–OP plot (Section 10.7).  
 

Table 11.3. Summary of results for the industrial control loops. 

Oscillation detection results Initial 
guess for S 

from el-
lipse fitting

Estimated stiction 
parameters [%] 

Loop name Loop 
type 

r Tp [s] NLI S0 Ĵ  Ŝ  

CPU time 
[min] 

CHEM25 PC 5.6 192 0.56 1.80 0.59 1.80 21 
PAP2 FC 11.2 42.4 0.16 3.00 0.84 3.00 26 
CHEM24 FC 2.87 136 0.17 23.00 0.81 22.90 29 
POW2 LC 21.4 288 0.55 11.40 1.10 11.47 24 
POW4 LC 16.2 237 0.36 4.80 2.49 4.49 34 
MIN1 TC 4.0 6940 0.15 1.10 0.96 1.02 18 
CHEM70 FC 54.6 3135 - - 0.04 0.14 20 

 
It is important to see that, when the time delay is known, the computation time reduces sig-

nificantly, by up to 90%. This means that a major portion of the computation burden results from 
time delay estimation. Therefore, an efficient algorithm for this task is worth consideration in 
future research.  

11.5.2.1 Pressure Control Loop  

This is a pressure control loop in a refinery. Data from this loop were analysed by the ellipse-
fitting method to give a stiction band S0 = 1.8; see Figure 11.5. The presence of stiction is con-
firmed by the index value NLI = 0.56. Setting this valve as S0 and varying J yields V(J) shown in 
Figure 11.6. It can be seen that the minimum lies in the neighbourhood of J0 = 0.60. Using these 
initial parameter values, the proposed algorithm was run with the constraints [0.25,1.0]J ∈  and 

[1.5,2.2]S ∈  to give J = 0.59 and S = 1.80.  
Exemplarily for this loop, the estimated inner signal MV is illustrated in Figure 11.7. This 

figure clearly indicates both dead-band plus stick band and slip jump effects. The latter is large 
and visible, especially when the valve is moving in downward and upward directions (J is 
marked in the figure). Figure 11.8 shows how well the estimated model fits the measured data. 
The linear model identified has the polynomials (Equation 2.1, τ = 2)  
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Figure 11.5. Data from loop CHEM25 (pressure control). 
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Figure 11.6. Objective function V vs. J for loop 1 setting S = 1.8 for loop CHEM25 (pressure control).  

 
If we use a specified linear model structure, i.e., ARMAX(2, 2, 1, 1) and run the algorithm 

again, we get the estimates J = 0.60 and S = 1.87, which are close to the ones obtained above. 
The linear model has now been estimated to be (Equation 2.1, τ = 1)  

1 2 1

1
( ) 1 0.7181 0.1256 , ( ) 0.00659 0.0658 ,
( ) 1 0.2376 .

A q q q B q q
C q q

− − −

−
= − + = +
= +

  

The total model shows similar prediction quality, but the computation time reduces to 1.7min. 
This is to show the price we pay for not a priori knowing the time delay.   

 



248  11. Complete Oscillation Diagnosis Based on Hammerstein Modelling 
 

 

45 50 55 60 65 70 75 80 85 90 95

-1

-0.5

0

0.5

1

Samples

O
P,

 M
V

es
t

 

 

J

OP

 
Figure 11.7. Time trends (widow) of controller output (OP) and estimated valve position (MV) for loop 
CHEM25 (pressure control).  
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Figure 11.8. Measured vs. predicted PV data for loop CHEM25 (pressure control).  

11.5.2.2 Flow Control Loop   

This loop with valve stiction is taken from Horch (2007:FC525). Figure 11.9 illustrates the data 
considered for stiction quantification. The application of the approach proposed in this chapter 
led to the estimates J = 0. 84 and S = 3.0.  
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Figure 11.9. Data from loop PAP2 (flow control).  

11.5.2.3 Flow Control Loop with Set-point Changes   

This flow control loop has excessive stiction. It is an inner loop of a cascade control system, and 
thus is subject to rapid set point changes. The plant data are shown in Figure 11.10. The PV–OP 
plot shows a shape (parallelogram) very similar to Figure 10.5. The fact that the oscillations in 
OP and PV are varying in amplitude and time period makes stiction detection and quantification 
challenging. The stiction index clearly signals the presence of stiction in the loop. The stiction 
parameter estimates were found to be J = 0.81 and S = 22.9, which can be confirmed by a look at 
the PV–OP plot in the right side of Figure 11.10.  
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Figure 11.10. Data from loop CHEM24 (flow control).  

11.5.2.4 Level Control Loop  

This example represents a level control loop in a power plant; see Figure 11.11. Data from this 
loop were already analysed in Choudhury et al. (2005a:Fig. 3) and Choudhury et al. (2006: 
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Fig. 4) and the ellipse-fitting method was applied to give a stiction band S0 = 11.4. The estimated 
stiction parameters using the technique proposed here were J = 1.10 and S = 11.47. These results 
are in good agreement with the data plots given in the aforementioned literature, where the MV 
trend and MV–OP plot are also shown.  
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Figure 11.11. Data from loop POW2 (level control).  

11.5.2.5 Level Control Loop  

The data for this level control loop was also obtained from a power plant and are illustrated in 
Figure 11.12. The dead-band plus stick band was estimated to be S0 = 4.8 by applying the ellipse-
fitting method. The stiction parameters in this loop were estimated to be J = 2.49 and S = 4.49.  
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Figure 11.12. Data from loop POW4 (level control).  

11.5.2.6 Temperature Control Loop   

This loop on a furnace feed dryer system was also considered in Choudhury et al. (2005a:Fig. 6) 
and Choudhury et al. (2006:Fig. 10). Using the data shown in Figure 11.13, the proposed estima-
tion algorithm leads to the parameter estimates J = 0.96 and S = 1.02 (very small undershoot), 
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which are in good agreement with the data plots given in Choudhury et al. (2005a) and Choud-
hury et al. (2006), where the MV trend and MV–OP plot are also shown. The initial value for S 
was S0 = 1.1, determined using the ellipse-fitting method.  
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Figure 11.13. Data from loop MIN1 (temperature control).  

11.5.2.7 Flow Control Loop with External Disturbances  

The purpose of this example is to show that the presented approach can be principally used to 
detect stiction. A flow control loop is considered, for which the stiction indices indicate no stic-
tion; see Figure 11.14. It is also known that this loop suffers from external disturbances. This is 
confirmed by the stiction estimation algorithm. The latter yields negligible values of J and S. 
Remember that deadband, i.e., J = 0 and S > 0, cannot induce oscillation for self-regulating proc-
esses.   
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Figure 11.14. Data from loop CHEM70 (flow control).  
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11.6 Detection of Multiple Loop Faults 

Several different causes can have the responsibility of poor performance in a control loop, more 
common being: incorrect tuning of controllers, presence of stiction in actuators and external 
disturbances. It is of crucial importance to be able to distinguish correctly the cause in order to 
take the appropriate action. In this section, we focus on control loops that have been detected to 
oscillate. In the preceding part of this chapter emphasis was on detecting and discrimination the 
main (distinct) source of oscillation: stiction on the one hand, and aggressive controller or exter-
nal disturbance on the other hand. If the loop suffers from two or more faults simultaneously, the 
techniques presented so far will fail in most cases. At best, some techniques may indicate that the 
one root cause is more probable than the other.  

In this section, a new comprehensive oscillation diagnosis is proposed to detect possibly oc-
curring multiple faults in valve-controlled loops. The diagnostic procedure can be described as 
follows. It is a straightforward extension of the stiction estimation technique based on Hammer-
stein modelling (Section 11.3).  
 
Procedure 11.3. Complete oscillation diagnosis based on Hammerstein modelling (Figure 11.15). 
1. Detect the presence of oscillations using one of the techniques in Chapter 8. 
2. Detect the presence of stiction using one of the techniques in Chapter 10 (optional). 
3. Identify a Hammerstein model and quantify stiction using the technique proposed in Section 11.3. 
4. Use the identified Hammerstein model to estimate the PV trend ˆ( )y k . The signal ˆ ˆ( ) ( ) ( )d k y k y k= −  

gives an estimate of the external disturbances. If ˆ( )d k  is oscillatory, which can be quantified by an os-
cillation index (Chapter 8), the oscillation is due to external disturbances. 

5. Estimate the controller model (when not known) based on measured data SP – PV and OP, e.g., using 
the arx function from MATLAB identification Toolbox. Calculate the controller parameters depending 
on the controller type and representation.  

6. Use the identified linear model and the (estimated) controller to simulate the closed loop without stic-
tion. Apply, for instance, step changes on the loop and assess the controller, e.g., using the step-
response-based assessment method in Section 5.2. If the assessment indicates oscillatory/aggressive be-
haviour, aggressive controller tuning contributes to the loop oscillation.  
 
Step 5 is introduced to account for the fact that sometimes either the settings of the installed 

controller are not known, or some components have been added that affect the controller charac-
teristics. In the latter case, it might be useful to use operating data for identifying a controller 
model with higher order than the assumed structure. If, for instance, a PI controller of the dis-
crete form 

1
1 1 2

PI 1( )
1

K K qG q
q

−
−

−

+=
−

 (11.14) 

is adopted, the controller model can be identified using arx([OP, SP – PV, Ts],[1, 2, 0]). From 
Equation 11.14, the controller parameters are obtained as (based on the forward difference ap-
proximation) 

2 s
c 2 I

1 2

K TK K T
K K

= − = −
+

. (11.15) 

Even in cases, where the controller type is unknown, a controller model can be identified 
from measured OP/SP – PV data. In such a situation, one can consider subspace identification 
[N4SID] for the controller-model estimation, since it provides an automatic selection of the 
model order. Readers should refer to Bezergianni and Georgakis (2003) for a collection of con-
troller discrete transfer functions and more details about controller model estimation based on 
subspace identification.  
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Figure 11.15. Flow chart of the oscillation detection and diagnosis procedure.  

 
In the following sections, the oscillation diagnosis technique presented above is applied on simu-
lated and real data. The performance of the method is checked in terms of the detection of multi-
ple faults: valve stiction, aggressive tuning and oscillatory external disturbances. The estimates 
of stiction paramters J and S, of the PI controller model Kc and TI and of the external disturbance 
are compared with the real values, when known.  
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11.6.1 Simulation Examples 

We illustrate the proposed technique on the FOPTD process with stiction and PI controller, con-
sidered in Section 11.5.1.1. However, we additionally superpose PV with an external sinusoidal 
disturbance, i.e., d = 0.1sin(0.02t).  

If we now apply the proposed technique for oscillation diagnosis, the results in Figure 11.16 
are achieved. The first subplot (top/left) shows the simulated and predicted PV for the estimated 
stiction parameters J = 2.02 and S = 5.0 (nearly identical with the real ones). In the second sub-
plot (top/right), the simulated and estimated external disturbance trends are given. The oscilla-
tion indices (regularity factor r) clearly indicate this. The third subplot (bottom/left) illustrates 
the OP and estimated MV signals, indicating stiction patterns. The last subplot shows the re-
sponses of the closed loop without stiction to set-point and input steps. The controller parameters 
have been estimated as Kc = 0.18 and TI = 9.0s, which are close to the used settings. The result-
ing step response and its assessment are also shown in the figure. The obtained estimated exter-
nal disturbances and step responses are close to those used in the simulation. The value 

*
set 5.0T =  indicates acceptable (but not optimal) controller (deterministic) performance; see Sec-

tion 5.2. Overall, both faults and the controller settings have been correctly detected by the pro-
posed diagnosis method.   
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Figure 11.16. Results of the oscillation diagnosis for the FOPTD example with stiction and external 
disturbance.  

 
In a second szenario, we change the proportional gain to Kc = 0.45 to get aggressive control-

ler bahviour. Also in this case, the achieved estimates of the controller parameters and of the 
external disturbance are close to the real ones; see Figure 11.17. Moreover, the aggressive con-
troller tuning has been recognised by considering the values of the normalised settling time 

*
set 18.7T =  and the overshoot 63.4.α =  In summary, all three faults introduced have been cor-

rectly detected by the proposed oscillation diagnosis technique.   
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Figure 11.17. Results of the oscillation diagnosis for the FOPTD example with stiction, external 
disturbance and aggressive tuning. 

11.6.2 Industrial Examples 

The objective of this section is to demonstrate the application of the proposed method on some 
selected industrial control loop data. Date sets, containing the set point (SP), controller output 
(OP), and process variable (PV), are used for the diagnosis. Such data sets are usually available 
in the industrial practice. Controller tuning parameters and particularly time delays are, however, 
often unknown. From the industrial loops listed in Appendix C, the controller settings for the 
loops CHEM18–28 and CHEM32–39 were provided. For the loops investigated in the following, 
we now assume a Box-Jenkins model BJ(2, 2, 2, 2, τ̂ ) with automatically estimated time delay 
τ̂ .   

11.6.2.1 Flow Control Loop with Stiction 

The flow control loop data considered show clear stiction pattern; see Figure 11.18 (left side). 
The stiction index value ηstic = 0.95 confirms the presence of stiction in the loop. The stiction 
parameter estimates are ˆ 3.9J = and ˆ 26.8.S =  No regular external oscillation is detected 
(r = 0.7). The identification of the controller model gives the values c

ˆ 1.2K =  and Î 7.3s.T =  The 
simulation of closed loop using the estimated linear model and controller parameters lead to step 
responses shown in the figure (fourth subplot). The corresponding performance belongs to the 
acceptable performance class, as indicated by the normalised settling time value *

set 9.3.T =  
Hence, this loop suffers mainly from excessive stiction in the control valve, which should be 
repaired at the next shutdown of the plant.  
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Figure 11.18. Results of the oscillation diagnosis for Loop CHEM23 (flow control). 

11.6.2.2 Pressure Control Loop with Stiction and Aggressive Controller Tuning 

The diagnosis is performed on the data obtained from the pressure control loop CHEM25. It was 
known a priori that the control valve in this control loop contained stiction. The diagnosis results 
for this control loop are shown in Figure 11.19.  
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Figure 11.19. Results of the oscillation diagnosis for Loop CHEM25 (pressure control). 
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The oscillation detection algorithm applied to the tracking error signal d leads to a regularity 
value of 0.45, indicating no significant external oscillations. The stiction parameter estimates 
ˆ 0.36J =  and ˆ 1.74S =  indicate the presence of quantifiable stiction, which was causing the 

sustained oscillations in OP and PV signals. The step responses obtained from closed loop simu-
lations of identified process and controller models are excessively oscillatory. The estimated 
controller parameters are c

ˆ 5.4K =  and Î 24.5s,T =  which are close to the known real values 
Kc = 6.6 and TI = 30.0s. Hence, it can be concluded that stiction in the control valve and aggres-
sive controller tuning are responsible for the oscillatory trend this control loop. Therefore, repair-
ing the valve and changing the PI tuning parameters would solve the oscillation problem.  

11.6.2.3 Level Control Loop with Stcition, External Disturbance and Aggressive 
Controller Tuning 

Data from the level control loop in Section 11.5.2.4 are investigated again using the proposed 
discrimination procedure. This leads to slightly different estimates of stiction paramters 
ˆ 3.75J =  and ˆ 10.7.S =  Note that these values (particularily J) are different from those esti-

mated using an ARMAX model in Section 11.5.2.4. The diagnosis results are shown in Figure 
11.20. It can be seen that loop does not only suffer from stiction but also from aggressive con-
troller tuning, leading to oscillatory step responses, as indicated by the values of the normalised 
settling time *

set 97.5T =  and the overshoot 85.2.α =  There is also an external oscillating distur-
bance acting on the loop, as indicated by the oscillation index r = 1.9. It can be concluded that 
this loops is oscillating due to three faults: stiction, oscillatory disturbance and aggressive con-
troller tuning. To completely solve the oscillation problem of this loop, it is not only necessary to 
repair the valve and change the controller tuning, but also to find out the source of the external 
disturbance and eliminate it. 
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Figure 11.20. Results of the oscillation diagnosis for Loop POW2 (level control). 
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For this loop, the MV (or valve position) data were available and can now be compared with 
the estimated MV values from the idenitified stiction model; see Figure 11.21. One the one hand, 
the figure shows that the estimated stiction model behaviour is close to the measured MV. One 
the other hand, it can be seen that both a two-parameters stiction model can successfully repro-
duce the stiction behaviour of the valve.  
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Figure 11.21. Measured vs. predicted manipulated variable for loop POW2 (level control).  

 

11.7 Summary and Conclusions 

A novel procedure for quantifying valve stiction in control loops based on two-stage identifica-
tion has been presented in this chapter. The proposed approach uses PV and OP signals to esti-
mate the parameters of a Hammerstein system, consisting of a connection of a two-parameter 
stiction model and a linear low-order process model. A pattern search or genetic algorithm sub-
ordinated by a leas-squares estimator was proposed for the parameter identification. This particu-
larly yields a quantification of the stiction, i.e., estimating the parameters dead-band plus stick 
band (S) and slip jump (J), thus enabling one to estimate time trends of the valve position (MV). 
Needless to say that the method can also be applied in the case of one-parameter stiction models.  

The results on different processes under a range of conditions –low-order/high-order, self-
regulating/integrating, different controller settings and measurement noise, different stiction 
levels– show that the proposed optimisation can provide stiction-model parameter estimates 
accurately and reliably. The stiction quantification technique has been successfully demonstrated 
on two simulation case studies and on many data sets from different industrial control loops. 
Whenever possible, it is helpful to have a good estimate of the time delay because of its effect on 
the accuracy of the estimated models.  

The relatively high CPU time required for the identification process (particularly when the 
time delay is simulatneously estimated) is not critical, as the analysis is performed offline. Also, 
this work is inexpensive compared to the savings in experimentation with the process or in down 
time costs when invasive methods for stiction quantification would be applied. A faster algo-
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rithm for time delay estimation and a more efficient implementation of the algorithms, e.g., as C-
code, should significantly accelerate the computation. 

The stiction estimation method has also extended to a complete oscillation diagnosis ap-
proach, which allows the determination of the cause(s) of oscillating loop behaviour. This could 
be stiction in the control valve, poorly tuned controller, or the presence an external perturbation. 
The unique feature of the technique is that its can also detect multiple loop faults when present. 
The diagnosis approach can be extended easily to other non-linear valve problems, or to non-
linear final elements to detect if they work properly.  

 



 

 



 
 
 
 

Part III 
 

Performance Improvement





 
12 Performance Monitoring and Improvement 

Strategies and Procedures 

The final and most challenging objective of applying performance assessment methods and indi-
ces should always be to suggest measures to improve the control or process/plant performance. 
Even in the case the loop is found to work at acceptable performance level, it is useful to know 
how the performance can be improved to attain top level. In this chapter, possible performance 
improvement measures are briefly discussed (Section 12.1). Some paradigms and strategies for 
monitoring the performance of complex process-control systems are introduced in Section 12.2. 
Section 12.3 presents a comprehensive control-performance assessment procedure combining 
different methods described throughout the previous chapters of the thesis.  

12.1 Performance Improvement Measures 

Three categories of methods for performance improvement can be distinguished: 
• Controller Re-tuning. One of the direct results of a CPM procedure is to decide whether the 

running controller should be re-tuned to achieve improved loop performance, compared to 
that performance of the selected benchmark. Re-tuning is usually the easiest and cheapest 
way to improve the performance of control loops. Traditional controller tuning is usually un-
dertaken based on active experiments, e.g., step responses, with the plant. In Chapter 13, non-
invasive methods for controller re-tuning will be presented.  

• Control System Re-design. When it is predicted that controller re-tuning does not help 
achieve the desired performance, a complete re-design of the controller including its structure 
may be required. As controller re-design is a complicated and thus time-consuming task, the 
economical benefits of this measure should always be quantified in advance.  

Beyond the commonly implemented PID controllers, the introduction of special-
ised/advanced strategies is then needed. These include anti-windup schemes (Åström and 
Wittenmark, 1997; Glattfelder and Schaufelberger, 2003), feedforward control (Seborg et al., 
2004, Åström and Hägglund, 2006), cascade control (Shinsky, 1996; Visioli, 2006), multi-
loop and multivariable control (Skogestad and Postlethwaite, 1996; Goodwin et al., 2001; 
Lunze, 2008), time delay compensation techniques (SPC, IMC, MPC) (Smith, 1957; Morari 
and Zafiriou, 1989; Camacho and Bordons, 1999); Maciejowski, 2002) and gain scheduling 
or adaptive control (Rugh, 1991; Åström and Wittenmark, 1995). 

• Maintenance and Process/Plant Modifications. Abnormal process operation owing to 
equipment problems (wear, fouling, etc.) or instrumentation malfunctions (stiction in control 
valves, faulty sensors, etc.) should always be handled within the framework of plant inspec-
tion and maintenance. Also, re-selection or re-placement of sensors or actuators should be 
checked. 

In some cases, performance improvement will only be attained by changing the process 
flow, e.g., adding a bypass, or changing the sensor location. In other cases, some part of the 
random shocks, ε(k), is due to measurement error and can be reduced by a more precise sen-
sor (Stanfelj et al., 1993). We found many processes in the metal industry, where sensors are 
installed up to 7m or more away from the process itself. 
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In cases, where control input saturation is too frequently detected, it may be useful to 
check actuator sizing. In other cases, some quality deviations can only be eliminated by in-
troducing additional actuators. An example from the metal processing industry is strip flat-
ness control, which requires certain actuator for each type of control error to fight with; see 
Section 15.3.2. When the installed actuator system does not provide suitable components for 
controlling any flatness error type, the flatness controller, no matter how it is tuned, will not 
have the chance to correct for these errors. 

The disturbance structure and variance could be modified by introducing a well-mixed 
inventory upstream of the process considered. This would attenuate the variance of distur-
bance variables like feed composition and temperature. In metal processing, the variance of 
key quality variables in every production stage has to be minimised to ensure final product 
quality. For cold rolling, it is desirable to have uniform strip entry thickness and entry profile 
from hot rolling mill. For hot-dip galvanising, it is essential to get minimised strip flatness er-
rors from cold rolling mill. Good transfer properties of the aforementioned quality features 
are necessary because it is then difficult to affect them in the down-stream stage. Specifically, 
thickness profile cannot be changed much in cold rolling, and flatness errors produced in cold 
rolling cannot be removed in hot-dip galvanising, thus non-uniform zinc-layer thickness may 
result. This would affect the corrosion-resistance of the steel required by the automotive in-
dustry. 

It is worth noting that process changes can be costly and that some approaches requiring 
plant or sensor changes can be implemented only during infrequent plant shutdowns. There-
fore, every effort should be made to achieve the best performance from the existing system, 
minimising the need for process modifications. 
These performance-improvement measures are ingredients of the integrated framework al-

ready introduced in Chapter 1 and illustrated again in Figure 12.1 for convenience.  
 
 

 
Figure 12.1. Proposed framework for control-performance-monioring-based optimisation of control loops. 

12.2 Loop Monitoring Paradigms 

Any modern manufacturing facility, such an oil refinery, a chemical plant, a paper mill, a power 
plant, or a rolling mill, consists of many hundreds and sometimes thousands of control loops. 
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Most manufacturing plants are automated and the system components can be organised into the 
following hierarchy: 
• Main process.  
• Device level (sensors, actuators and communication devices).  
• Basic (secondary) control level (mostly PID).  
• Main (primary) control level (multivariable control, MPC, etc.).  
• Real-time optimisation level (plant-wide and individual plant optimisation, parameter estima-

tion, supervisory control, data reconciliation, etc.) 
• Planning and scheduling level (demand forecasting, raw materials and product plan-

ning/scheduling, etc.)  
Therefore, it is nearly impossible to monitor the performance of more than a few of the most 

critical control loops without some systematic/formalised procedures and automatic assessment 
tools. 

12.2.1 Bottom-up and Top-down Approaches 

The control loops are usually located in different, but clearly defined levels of hierarchy. There-
fore, the first task of a monitoring strategy is to decide whether a bottom-up or top-down strategy 
should be followed. It is not necessary to further diagnose a plant component and controller 
when its performance is entirely satisfactory with respect to safety, process-equipment service 
factor and plant profit. Only those control loops, which are not adequately performing and offer 
potential benefit, are considered in the subsequent diagnostic steps. 

12.2.1.1 Top-down Approach 

Control-loop performance assessment as important ingredient of maintenance work should be 
tied more closely to economic aspects. Key loops that are economically critical require top prior-
ity. These loops usually lie at higher level of hierarchy (i.e., supervisory or primary loops). An 
effective strategy for CPM could thus start with assessing the performance of higher-level con-
trol loops and then move to lower-level loops (Figure 12.2). This means that monitoring and 
maintenance effort is first focused on loops exhibiting performance problems in higher levels, 
which have direct impact on the economical performance of the plant. The number of control 
loops that need to be investigated can be significantly reduced in a first run. The benchmarking 
problem becomes not only manageable but also meaningful.  

Deterioration in a performance index for a higher level could indicate a more severe problem 
in a lower hierarchy level. In fact, the performance indices for the higher levels could help iden-
tify problematic loops, the repair of which provides a better return on maintenance effort. This 
means, for instance, introducing time-delay compensation, adding appropriate strategies for 
disturbance rejection and multivariable control to remedy loop interaction. 
 
 

 
Figure 12.2. Principle of top-down performance assessment strattegy. 
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12.2.1.2 Bottom-up Approach 

Many loop problems appear in the lowest level of the automation hierarchy, such as excessive 
sensor noise, or the very common problem of valve hysteresis and stiction. The problems first 
manifest themselves in drift, performance deterioration and the indices for the corresponding 
levels. As problems diffuse upward, they affect performance indices at higher levels. Therefore, 
there is also enough incentive to follow a bottom-up strategy for the assessment of complex 
control systems (Figure 12.3). This means starting with isolating low-level loop problems and 
then moving toward resolving performance faults at higher levels. However, it should be recog-
nised that the number of control loos remarkably increases at lower levels.  
 
 

 
Figure 12.3. Principle of bottom-up performance assessment strattegy. 

 
When applying a bottom-up CPM strategy, it is important to determine the influence of each 
lower loop on the performance of the upper loops and thus on the final product. For instance, a 
translation of the variance reduction of basic loops into the primary loops is desirable. For this 
purpose, the variability matrix introduced by Farenzena and Trierweiler (2006) may be consid-
ered. It is a matrix (similar to a static gain matrix), where the elements quantify how the change 
in the variance of the control loop produces a change in the variance of the main loop. Note, 
however, that it is not easy to identify the variability matrix in practice, since it requires some 
experimentation with the loops, or expensive modelling work.  

12.2.2 Loop Prioritisation and Ranking 

Within a hierarchy level, the question is now how to determine which loops are more important 
and thus should be assessed first. This problem of so-called loop prioritisation involves the use 
of control performance-assessment algorithms to determine the critical loops in large multivari-
able interacting processes. By focusing on the benchmarking of loops with the lowest perform-
ance indices the effort needed can be significantly reduced. This also promises to provide the 
biggest payback, particularly if a higher economic priority is assigned to the considered loops. 
The economic priority indicates the relative importance of each loop to others in the plant. If two 
loops have the same performance index but different economic priorities, the one with the higher 
priority will bubble to the top of the ranking. 

12.2.3 Relationship to Economical Benefits 

CPM techniques showed widespread use in the last years because improved performance of 
control loops has been recognised to have positive economic effects. However, it is usually diffi-
cult to quantify these benefits. 

The analysis of variance, for instance, can help quantify how much the performance of the 
control loop can be improved, which can be translated in terms of increased product quality 
and/or material/energy consumption. Principally, the variance can be transformed into an eco-
nomic measure by multiplying it by a weighting factor w: 

2
eco[€]b w σ= . (12.1) 
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However, substantial effort is required to obtain weighting factors for specific control loops: a 
deep understanding of the process and information about the interactions between the control 
loops are needed. This considers the fact that each loop usually contributes in a complicated way 
to the overall process performance.  

Moreover, the economical benefits must be derived from finding and fixing problem loops 
throughout a plant on the basis of data gathered over a long time period. In addition to these hard 
benefits, the soft benefits resulting from better maintenance will emerge. This includes reduction 
of unnecessary preventative maintenance actions, improved facility stability and process oper-
ability and increased equipment life cycle (Vatanski et al., 2005). 

12.3 Comprehensive Procedure for Performance Monitoring 

After selecting the suitable assessment strategy, work is focused on evaluating the performance 
each loop belonging to the group considered. It is not sufficient and sometimes dangerous to rely 
on a single statistic, or statistical analysis, by itself for performance monitoring and diagnosis, as 
each criterion has its merits and limitations (Kozub, 1996; Ogawa, 1998). The best results are 
often obtained by the collective application of several methods that reflect control performance 
measures from different aspects. Based on our experiences using different performance monitor-
ing methods in steel processing automation, the following systematic procedure for automatic 
and continuous control performance monitoring and optimisation is strongly advisable: 
1. Select Assessment Objectives. Gather as much information as possible about the control 

loops to be evaluated. Of particular importance is to decide which performance benchmark(s) 
should be considered. See Chapter 1.  

2. Pre-process the Data. Use raw data collected at a proper sampling frequency. Strictly avoid 
filtering/smoothing or compression of the data. It is always important to spent time preview-
ing and processing the data before proceeding to the analysis. Certain treatment of the data, 
such as the removal of outlines or bad data, mean entering and scaling is recommended. See 
Chapter 7. For non-linearity detection, varying drifts, abrupt changes and non-stationary 
trends should be removed from the data by appropriate band-pass filtering (Section 8.8). 

3. Find out Interactions between Control Loops when Dealing with MIMO Systems. Mul-
tivariate control performance assessment is only required when the loops are strongly cou-
pled. This can be found out by applying standard interaction measures, such as relative gain 
array (RGA). Cross-correlation analysis is also useful to assess the interaction between the 
control loops. Even in the case of significant interactions, one can apply a performance as-
sessment approach, which does not require the interactor matrix of the process. See Chapter 
6. 

4. Determine or Estimate the Time Delay(s). In metal processing applications, usually the 
strip processing speed is either measured or can be indirectly estimated. However, the speed 
is often varying. Therefore, the time delay should be automatically estimated or continuously 
updated based on input/output measurements, when sufficient excitation can be ensured. 
When the time delay is unknown, varying, or its determination is costly or even not possible, 
the extended prediction horizon approach can be applied. See Chapters 3 and 7. 

5. First-pass Analysis. The correlation (covariance) analysis of the control error is simple and 
should be always considered as a “first-pass” test before carrying out further performance 
analysis. The cross-correlation between measured disturbances and the control error can be 
used to qualitatively assess feedforward controls. Also spectral analysis of the closed-loop re-
sponse, which allows one to detect oscillations, offsets, non-linearities and measurements 
noises present in the process data, should be performed. See Chapter 2. 

6. Detect Oscillating Loops. As the presence of oscillation affect the performance index calcu-
lation, oscillations, due to aggressive tuning, the presence of non-linearities, loop interac-
tions, etc., need to be screened out using techniques presented described in Chapter 8.  
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7. Apply Non-linearity Detection Tests. It is important to detect loop non-linearities by apply-
ing one or several non-linearity tests described in Chapter 9. When hard non-linearities, such 
as hysteresis or stiction, are detected, immediate correction or compensation is needed (Chap-
ter 10). If changes in operating point or time-varying disturbances are present, the data must 
be properly segmented prior to the performance analysis, i.e., non-overlapping sliding data 
windows have to be used.  

8. Detect Sluggish Control, Evaluate Set-point Response or Load Disturbance Perform-
ance. Many undesired and easy to detect characteristics of the closed-loop behaviour can be 
detected using specialised methods and indices, provided in Chapter 5. These techniques are 
particularly important when deterministic performance is of the key point.  

9. Apply the Minimum-variance-control-based Assessment. This should be the standard 
benchmark to be applied. When the Harris index signals that the loop is performing well, 
then further assessment is neither useful nor necessary. In the case, where a poor performance 
relative to MVC is detected, there is a potential to improve the control loop performance, but 
no guarantee that this will be attained by means of retuning the existing controller. Further 
analysis is then warranted. See Chapters 2 and 6. 

10. Apply User-specified or Advanced Control Performance Benchmarking. Baselines and 
thresholds (historical benchmark values) using data with “perfect” controller performance, or 
other user design specifications can be applied. See Chapter 3. Moreover, the use of more ad-
vanced (LQG/GMV/MPC) benchmarking can be an option, particularly in the cases where 
performance improvement cannot be achieved by retuning the running controller and/or for 
supervisory control loops (usually model-based); see Chapter 4. 

11. Re-tune the Control Loop. Adjust some parameters of the control loop(s) detected to be 
poorly performing. Techniques are presented in Chapter 13. When retuning is not necessary 
or does not improve the control performance, modifications of the instrumentation, control 
system structure or the process itself will be required if the current product quality variation 
is deemed unacceptable by plant personal.  

12. Modify the Control Structure. When retuning does not improve the control performance, 
introduce some structural components such as anti-windup, feedforward control, cascade 
control or time-delay compensating techniques. This may also mean to employ a non-linear 
controller. 

13. Repair/re-design System Components. For instance, repair valves or sensors. When loops 
are identified to have an oscillation problem probably caused by the valve, additional (stic-
tion and hysteresis) tests on the valve should be carried out to pinpoint and verify the root 
cause. Another modification might be to alter the feedback dynamics, reducing the time delay 
by changing the process flow, e.g., adding a bypass, or changing the sensor location. Also, 
disturbance sources might be eliminated, or supplementary sensors be installed, to make FFC 
possible. 
In the procedure described above, many parameters have to be carefully selected by the user, 

as shown in Chapter 7. In our experiences, it is necessary and well spent time to carefully test, 
inspect and compare performance assessment results using different parameter choices. Usually, 
each control loop (category) will have its individually suitable parameters.  

A principal decision procedure, partly adopted from Hugo (1999), for carrying out the right 
measures for improving the performance of a control system is illustrated in Figure 12.4. A con-
tinuous CPM system indicates whether the control performance is acceptable, i.e., meets the 
required specification in terms of standard deviation or other measures, product quality, energy 
consumption, or even safety. This level is thus more related to the direct economical perform-
ance of the plant. When proceeding with the performance analysis, the current performance is 
compared to that of the selected benchmark, to find out whether the installed controller is per-
forming well under the current process conditions, using the techniques of Part I of this thesis.  

When the assessment reveals significant potential to improve the control performance either 
by re-tuning the controller or maintaining plant components, the diagnosis methods and tests 
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presented in Part II have to be applied. This helps identify the source of non-acceptable perform-
ance and suggest the right corrective actions.   

 
 

 
Figure 12.4. Decision procedure for performance improvement with differentiation between PID and MPC. 

 
In general, the major difference between a PID controller and a single-loop MPC controller is 

that the latter has some form of time-delay compensation and should perform much better on 
loops with significant time delays. Other proven strengths of MPC is its straightforward applica-
bility to multivariable systems with constraints. If the PID performance index indicates good 
tuning, but the process show dominant time delays, strong interactions, or constraints, then the 
MPC controller performance index may be calculated (Section 4.3) to determine whether there 
would be any improvement if a model predictive controller were applied to the process.  
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When a model-based, e.g., MPC, controller is installed at the plant, the reason for non-

acceptable control can be improper tuning or poor modelling, i.e., mismatch between the plant 
and the (internal) model. Consequently, either the controller has to be re-tuned, or the model 
should be re-identified. If the final assessment indicated that the desired level of control per-
formance cannot be achieved by re-tuning or re-designing the controller, the only chance is to 
introduce substantial modifications to the process. 

12.4 Summary and Conclusions 

In this chapter, the measures for improving performance of control loops have been mentioned 
and an integrated framework for performance monitoring and optimisation proposed. Important 
paradigms and strategies for monitoring the performance of complex process-control systems 
were introduced. It has been pointed out that a top-down strategy for CPM should be preferred 
because of the direct relationship between the performance of upper loops and economical fac-
tors. However, under certain circumstances, the bottom-up strategy has its strengths, particularly 
when basic control loops are guessed to perform poorly. The impact of improved loop perform-
ance on financial performance has been briefly addressed. We also proposed a comprehensive 
controller performance assessment procedure combining different methods described throughout 
the previous chapters. The main aim is to have a systematic and thus efficient way for loop per-
formance assessment avoiding relying on a single performance measure or a single assessment 
method, which may be misleading. It is also fundamental to recognise the key differences be-
tween performance assessment of PID controllers and MPC controllers. Although the assessment 
of MPC systems is much more difficult, it can give valuable hints on how to attain top perform-
ance, particularly in the case of multivariable systems with time delay and constraints.  



 
13 Controller Auto-Tuning Based on Control 

Performance Monitoring 

In this chapter, we assume that the first assessment stage has indicated that the control perform-
ance can be improved by re-tuning the controller. In other words, all other control-loop compo-
nents are found to be healthy, i.e., the process is well designed, and actuators and sensors have 
no major faults.  

In practice, it is the norm to perform controller tuning only at the commissioning stage and 
never again. A control loop that worked well at one time is prone to degradation over time unless 
regular maintenance is undertaken. Typically, 30% of industrial loops have poor tuning and 85% 
of loops have sub-optimal tuning. There are many reasons for the degradation of control loop 
performance, including changes in disturbance characteristics, interaction with other loops, 
changes in production characteristics (e.g., plant throughput, product grade), etc. Also, many 
loops are still “tuned by feel” without considering appropriate tuning methods — a practice often 
leading to very strange controller behaviour. The effects of poor tuning are then (George Buck-
bee, 2008): 
• Sluggish loops do not respond to upsets, causing disturbances to propagate and deteriorate 

the performance of other interacting loops. 
• Overly-aggressive loops oscillate, creating new disturbances and increasing the risk of plant 

shut-down. 
• Operators put the loops in manual. The loops then are unable to respond properly, leading to 

degradation of product quality, higher material and energy consumption and decreased pro-
ductivity. 

 
Continuous performance monitoring is therefore recommended to detect performance degrada-
tion and re-tune the controller and sustain top performance; see Figure 13.1.  

 
 

 
Figure 13.1. Development of control performance without and with continuous monitoring.  
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Controller tuning is a traditional topic in standard control texts, such as Åström and Häg-

glund (1988, 2006) and Seborg et al. (2004). A large number of tuning methods and rules are 
found. A comprehensive collection of more than 400 tuning rules is given by O’Dwyer (2003). It 
is therefore not within the scope of this chapter to consider the design or commissioning of any 
controllers using such methods, which normally require extensive experimental testing on the 
plant. The main innovation of the tuning methods presented in this work is to treat controller 
tuning in the context of control performance monitoring, and thus substantially extend the tradi-
tional field of controller auto-tuning. This means that control performance measures are continu-
ously monitored on a regular basis, i.e., during normal operation, and performance statistics used 
to schedule loop re-tuning and automatically determine the optimal controller parameters; see 
Figure 13.2. The overall aim is to find controller settings that maximise the control performance 
indices, i.e., guarantee best achievable controller performance, despite changes in the process 
operation conditions. 

 
 

 
Figure 13.2. Basic principle of CPM-based controller re-tuning. 

 
This chapter presents innovative techniques for automatic and non-invasive generation of op-

timal controller settings from normal operating data. It starts with recalling the basic concepts of 
PID auto-tuning and adaptation in Section 13.1 and a classification of CPM-based controller re-
tuning methods in Section 13.2. Techniques, which deliver optimal controller parameters by 
solving an optimisation problem, are described in Section 13.3. Section 13.4 presents new re-
tuning methods, which simultaneously provide the assessment of the controller performance and 
finding the optimal controller settings in an iterative way on the closed loop. Particularly, a new 
performance index based on the damping factor of the disturbance impulse response is intro-
duced in Section 13.4.2.5. Section 13.5 discusses some strategies for variation of controller pa-
rameters during the optimisation process. In Section 13.6, simulation studies are presented to 
compare the different techniques and make suggestions for using them.  

13.1 Basic Concepts of Controller Auto-Tuning and Adaptation 

There are many definitions of auto-tuning in the literature. According to Leva et al. (2001), an 
auto-tuner is something capable of computing the parameters of a controller connected to a plant 
automatically and, possibly, without any user interaction apart from initiating the operation. The 
auto-tuner is not part of the regulator: when no auto-tuning is in progress, the computation of the 
control signal in no sense depends on the auto-tuner’s presence.  
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It is also useful at this point to distinguish between auto-tuning and adaptation (or adaptive 

control). In the latter case, the controller parameters are computed without user intervention, 
while in the auto-tuning context the system may at best suggest the user to re-tune, but does not 
initiate a tuning operation. Therefore, we shall distinguish four cases of controller tuning (Leva 
et al., 2001): 
1. Tuning is initiated by the user as a deliberate decision, either explicitly or by making some 

manoeuvre to initiate a tuning, e.g., modifying the set point.  
2. Tuning is initiated by the user as a deliberate decision, but the regulator can suggest re-

tuning. In this case, the suggestion logic should be clearly documented and configurable.  
3. Tuning occurs automatically when some condition occurs, e.g., the error becomes “too big” 

for “a certain time”. In this case, the logic should also be precisely documented and configur-
able. Moreover, it must be possible to disable this functionality in the regulator configuration 
and to inhibit it temporarily from outside the regulator. 

4. Tuning occurs continuously. 
Cases (1) and (2) are to be classified as auto-tuning, case (4) is clearly continuous adapta-

tion, case (3) is somehow hybrid but, if the logic is properly configured, it is much more similar 
to auto-tuning than to continuous adaptation. It is important, when selecting an auto-tuner, to 
understand in which category it falls so as to forecast how it will possibly interact with the rest of 
the control system (Leva et al., 2001). The tuning methods presented in this chapter can be clas-
sified as CPM-based auto-tuning, where the decision for re-tuning is automatically taken based 
on the performance indices determined in the controller assessment stage. For safety reasons, it 
is recommended that the user should always confirm the need for the re-tuning action.   

13.2 Overview and Classification of CPM-based Tuning Methods 

The first approaches for simultaneous controller performance assessment and tuning were pro-
posed by Eriksson and Isaksson (1994) and Ko and Edgar (1998). These techniques calculate a 
lower bound of the variance by restricting the controller type to PID only (optimal PID bench-
marking) and allow for more general disturbance models. The optimal controller parameters are 
found by solving an optimisation problem with respect to the controller parameters. The PID-
achievable lower bound determined is generally larger than that calculated from MVC, but is 
possibly achievable by a PID controller. That is, one is interested in determining how far the 
control performance is from the “best” achievable performance for the pre-specified controller.  

Optimal (IMC-based) PID benchmarking has been implemented and studied by Bender 
(2003) using an iterative solution of the optimisation problem. An explicit “one-shot” solution 
for the closed-loop output was derived by Ko and Edgar (2004) as a function of PID settings. 
Recent developments in this (pragmatic) direction have been worked out in Horton et al. (2003) 
and Huang (2003). Note that these approaches require the process/disturbance model to be 
known or identified from measured input/output data and the use of (usually constrained) optimi-
sation algorithms to calculate the optimal controller settings. Although the optimisation is often a 
hard task, optimal parameters of the controller are a nice by-product. In the author’s experience, 
an IMC-based parameterisation of PID controllers is highly recommended to simplify the opti-
misation problem and improve its conditioning (only one parameter λ has to be selected). 

Grimble (2002) provides criteria by which restricted structure controllers (such as the PID 
controller) can be assessed and tuned. Though this approach takes control activity into account 
while defining the “cost of control”. It is a model-based procedure (as opposed to a data-based 
procedure) and places rather heavy emphasis on the not so easily available process knowledge. 

Recently, Ingimundarson and Hägglund (2005) discuss an approach where they used the ex-
tended horizon performance index (EHPI) curve to detect problematic control loops. Two pa-
rameters of their monitoring scheme (the horizon length and the alarm limit) are set based on the 
loop tuning itself. They consider loops in a pulp and paper mill, where λ-tuning is predominantly 
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employed. While useful for detecting problems, their method does not consider the follow-up 
problem which is to recover the performance by controller retuning.  

In the light of above description, CPM-based controller tuning methods can be classified into 
direct and indirect groups:  
• Direct Methods (Section 13.3). The optimal controller settings are determined by solving a 

parameter-optimisation problem based on available or identified process models and suitable 
measured data. These methods require more or less experimentation with the process or spe-
cific set-point or load-disturbance changes.  

• Indirect Methods (Section 13.4). The controller settings are determined from iterative tun-
ing on the closed loop, following the basic procedure: 
1. Collection and pre-processing of normal operating data; 
2. Computation of the actual performance indices; 
3. Comparison with benchmark/desired values;  
4. Decision whether the performance is optimal/sufficient and thus break the procedure, or 

to change the controller parameters and apply them on the process; thus go to Step 1 and 
repeat the procedure. 

The methods will be presented for PI(D) controller, but can be extended to more complicated 
controller types. It is important to note that the indirect methods are different from what is 
known as „iterative feedback tuning“ (IFT) proposed by Hjalmarsson et al. (1998). Although IFT 
also iteratively determines the controller settings on the closed loop using special calculation of 
the gradient of the control error, it requires several guided, so-called “recycling experiments” on 
the system. Moreover, IFT was introduced within the traditional field of controller auto-tuning 
rather than in the framework of control performance assessment.   

13.3 Optimisation-based Assessment and Tuning 

As learned from Chapter 2, the minimum variance is only exactly achievable when a minimum-
variance controller is used with perfectly known system and disturbance model, which requires 
at least a SPC structure for systems with (dominant) time delays. In practice, however, more than 
90% of industrial control loops are of PID type without time-delay compensation. Therefore, no 
matter how the PID parameters are tuned, the MVC-based variance is not exactly achievable for 
PID controllers when time delay is significant or the disturbance is non-stationary. Some ex-
periments performed by Qin (1998) showed that the minimum variance can be achievable for a 
PID controller when the time delay is very small or very large, but it is not achievable for a PID 
controller when the time delay is medium. Practical experience shows that about 20% loops in 
refinery can achieve minimum variance using PID controllers (Kozub, 1998).  

Eriksson and Isaksson (1994) and Ko and Edgar (1997) addressed this point and proposed 
more realistic benchmarks for control performance monitoring and assessment by introducing 
PID-achievable performance indices. These approaches calculate a lower bound of the variance 
by restricting the controller type to PID only (optimal PID benchmarking) and allow for more 
general disturbance models. The PID-achievable lower bound is generally larger than that calcu-
lated from MVC, but is possibly achievable by a PID controller. That is, one is interested in 
determining how far the control performance is from the “best” achievable performance for the 
pre-specified controller.  

13.3.1 Methods Based on Complete Knowledge of System Model 

When accurate plant models are available or can be estimated from gathered data, it is a straight-
forward task to determine the optimal controller parameters by using an optimisation algorithm. 
However, the generation of the models usually requires experimentation with the process, such 
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as introducing extra input signal sequences. This is usually allowed only in the commissioning 
stage, but not when the system is in normal operation.   

13.3.1.1 PID-achievable Performance Assessment  

Eriksson and Isaksson (1994) introduced an index that makes a comparison with the optimal PID 
controller instead of the MVC, i.e., 
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when the controller structure is restricted to PID. Φy(w) represents the spectrum of the output 
signal y and ∫  denotes the counterclockwise integral along the unit circle in the complex 
plane. A procedure for the evaluation of the integral in Equation 13.2 can be found by Åström 
(1970) when Hε has all its zeros inside the unit circle. With this method, however, it is difficult to 
obtain the output variance as an explicit function of the PID-controller parameters.  

Instead, the PID-achievable performance can be numerically determined by solving the fol-
lowing the optimisation problem 
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once the process and disturbance models (Gp and Gε) are given. Recall the relationship between 
the controlled variable and the external signals, i.e., set point and noise, under closed loop  
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The complete procedure for calculating the PID-achievable performance index is given in the 
following algorithm, called approximate stochastic disturbance realisation (ASDR) method (Ko 
and Edgar, 1998). 
 
Procedure 13.1. PID-achievable performance-assessment algorithm 
1. Preparation. Select the time-series-model types and orders. 
2. Determine/estimate the system time delay τ. 
3. Identify the closed-loop (noise) disturbance model from collected output samples based on the installed 

PID controller.  
4. Identify the open-loop system model from collected input–output samples. 
5. Estimate and calculate the series expansion (impulse response) for the closed-loop transfer function 

(Equation 2.36).  
6. Derive the PID-achievable variance by numerically solving the optimisation problem in Equation 13.3. 
7. Estimate the actual output variance from Equation 2.39 or directly from measured data (Equation 1.1).  
8. Compute the performance index (Equation 13.1) to see how far the actual performance from the optimal 

PID performance. 
It is apparent that this procedure is much more complex and difficult to implement than that 

based on MVC. The disadvantage is that to evaluate Equation 13.2, we first need to calculate the 
closed-loop transfer function Hε. This requires knowledge of the current controller parameters 
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and an explicit model Gp of the plant. Hence it is not possible to use only the output for identifi-
cation as done for the calculation of the Harris index. Furthermore, to be able to estimate the 
plant, it may be necessary to perturb the process with extraneous test signals. The closed-loop 
transfer function Hε can be approximated by a high-order AR model. Alternatively a low-order 
ARIMA(p, 1, 1) model with 2 ≤ p ≤ 5 can be used, as recommended by Ko and Edgar (1998).  

Note that there are some special situations, where it is not required to know the process 
model: 
• If the process time delay is “large” enough relative to the settling time of the disturbance, the 

process model can be estimated from routine operating data; refer to Section 7.2.7. 
• If the process model is assumed of the first-order type and the controller of the PI-type, the 

optimal PID performance index (but not the optimal PID parameters) can be estimated only 
from normal operating data and knowledge of the time delay; see Hugo (2006).  
The numerical solution of the optimisation problem in Equation 13.3 can be obtained using, 

for example, the MATLAB Optimization Toolbox (function fmincon or fminsearch) or the 
Genetic Algorithms and Direct Search (GADS) Toolbox (function ga or patternsearch). 
An implementation of the method using the fmincon function was carried out by Bender 
(2003) for control loops with PID controllers and IMC-tuned PID controllers. Later, a similar 
solution using Newton’s iterative method has been applied by Ko and Edgar (2004), to give the 
best-achievable performance in an existing PID loop with the process output data and the nomi-
nal process model (assumed in step response form).  

The author implemented a solution of the optimisation problem using the pattern search algo-
rithm. The results of this approach are illustrated on the following examples. We use the follow-
ing discrete representation for PI controllers: 

1
1 2

PID 1( )
1

K K qG q
q

−

−

+
=

−
. (13.5) 

The corresponding parameters Kc and TI of the continuous counterpart  

PI c
I

1( ) 1G s K
T s

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (13.6) 

can be calculated as (based on the backward difference approximation 1 1
s(1 ) / ( )s q T q− −≈ − ) 

s
c 1 I

2

1

;
1

T
K K T

K
K

= =
+

. (13.7) 

Other digital controller descriptions with corresponding parameter sets can be considered as 
well.  

 
Example 13.1. Consider the following system (Ts = 1s; 2 0.01):εσ =   

6
1 1 1

0.1 1( ) ( ) ( )
1 0.8 (1 0.7 )(1 )

y k q u k k
q q q

ε−
− − −= +

− − −
. (13.8) 

This example has been used by Ko and Edgar (2004) to illustrate their optimisation solution. We here dem-
onstrate the use of pattern search to achieve similar results. However, pattern search is more robust against 
falling in local minima. Initially, a PI controller  

1

PI 1

1.93 1.71( )
1

qG q
q

−

−

−=
−
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is adopted, resulting in a Harris index of η = 0.47 2( 0.6066),yσ =  indicating poor performance compared 
with MVC. Running the optimisation leads to the optimal PI controller 

1

PI,opt 1

2.16 1.94( )
1

qG q
q

−

−

−=
−

.   

The Harris index is now η = 0.48 2( 0.5996),yσ =  which is very near to the initial performance. This is 
however the maximally achievable performance when using a PI controller. Next, an optimal PID controller 
is sought to give:  

1 2

PID,opt 1

7.79 12.90 5.50( )
1

q qG q
q

− −

−

− +=
−

   

giving a Harris index of η = 0.74 2( 0.3947).yσ =  This implies a clear performance improvement compared 
with the PI controller, but the variance is still not in the neighbourhood of the MV. However, when relating 
the performance of the actual PI controller to that of the optimal PI/PID controller, we have ηPI,opt = 0.99 
and ηPID,opt = 0.65, respectively. Therefore, using the PID-achievable performance index is more sensible 
than using the Harris index, because the former is related to what is achievable in practice.  
 
Example 13.2. Consider again the FOPTD process in Equation 13.8, but with unity gain and unity variance. 
Inspired by Qin (1998), the purpose of this example is to study the PID-achievable performance as function 
of some fundamental performance limitations in control systems, namely time delay and the minimum 
phase behaviour and non-stationarity of disturbances affecting the process.  

The minimum variance and the PID-best-achievable variances have been computed for four different 
disturbance models, as given in Table 13.1. It can be deduced that the PID-best-achievable variance is 
always higher than the minimum variance, so the Harris index for the best possible PID controller is always 
smaller than unity. The gap between both variance values increases when the disturbance becomes non-
stationary, i.e., ARIMA instead of ARMA. We should also learn that PID control is able to significantly 
improve the performance for non-stationary disturbances, compared with PI control. This feature of PID 
control can be explained by the “prediction capability” of the derivative action.  

 
 

Table 13.1. Minimum variance, PID-best-achievable variance and Harris index for the FOPTD process 
with different disturbance models.  

Disturbance model Parameters of  
optimal PI/PID  
[K1; K2; K3] 

Best-
achievable 
variance 

Mini-
mum  

variance 

Harris 
index 

[0.142; −0.143] 1.19 1.07 0.90 1

1 1 1

1 0.2
(1 0.3 )(1 0.4 )(1 0.5 )

q
q q q

−

− − −

−
− + −

 
[0.135; −0.137; 0.0] 1.18 1.07 0.91 

[0.142; −0.143] 3.73 3.11 0.83 1

1 1 1

1 0.6
(1 0.6 )(1 0.5 )(1 0.7 )

q
q q q

−

− − −

+
− − +

 
[0.135; −0.137; 0.0] 3.67 3.10 0.85 

[0.208; −0.188] 17.71 11.05 0.62 1

1 1 1 1

1 0.2
(1 0.3 )(1 0.4 )(1 0.5 )(1 )

q
q q q q

−

− − − −

−
− + − −

 
[0.757; −1.279; 0.56] 12.71 10.98 0.86 

[0.234; −0.214] 123.67 53.98 0.44 1

1 1 1 1

1 0.6
(1 0.6 )(1 0.5 )(1 0.7 )(1 )

q
q q q q

−

− − − −

+
− − + −

 [0.853; −1.449; 0.64] 80.36 54.12 0.67 
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Next, we consider the system model 

1

1 1 1 1

0.1 1 0.2( ) ( ) ( )
1 0.8 (1 0.4 )(1 0.5 )(1 )

qy k q u k k
q q q cq

τ ε
−

−
− − − −

−= +
− + − −

 (13.9) 

with the free parameters τ and c to test the effect of the time delay and disturbance stationarity on the 
PI/PID-best-achievable performance; see Figures 13.3–13.6. On the one hand, it is observed that that the 
minimum variance can be achievable for a PI controller when the time delay is very small or very large, but 
it is not achievable for a PI controller when the time delay is medium. This observation is cannot be con-
firmed for PID controllers. On the other hand, it can be concluded that non-stationary disturbances gener-
ally make the MVC performance more difficult to achieve by PID than PI controllers.  
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Figure 13.3. Effect of time delay on variances and Harris index for a FOPTD process (c = 0.7) with optimal 
PI controller.  
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Figure 13.4. Effect of time delay on variances and Harris index for a FOPTD process (c = 0.7) with optimal 
PID controller.  
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Figure 13.5. Effect of disturbance stationarity on variances and Harris index for a FOPTD process (τ = 6) 
with optimal PI controller. 
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Figure 13.6. Effect of disturbance stationarity on variances and Harris index for a FOPTD process (τ = 6) 
with optimal PID controller. 

13.3.1.2 Maximising Deterministic Performance 

The PID-achievable assessment presented above aims to maximise the stochastic disturbance 
rejection performance, but may be not so appropriate if the objective is to change the output from 
one set point to another. However, the optimisation task can accordingly be re-formulated and 
solved if set-point tracking is the main control objective. Set-point changes are injected into the 
closed loop model. The PID controller parameters are determined so that the mean square error 
is minimised:   

PID

* 2
PID

1

1min ( ( ) ( ))
N

k
r k y k

N =

= −∑K
K . (13.10) 
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Therefore the same methods (and functions) can be used to solve the tracking optimisation task. 
At this point it is important to recall that disturbance rejection performance is the more important 
in the process industries.  
 
Example 13.3. The process from Example 13.2 with the second disturbance model, i.e.,  

1
6

1 1 1 1

1 1 0.6( ) ( ) ( )
1 0.8 (1 0.6 )(1 0.5 )(1 0.7 )

qy k q u k k
q q q q

ε
−

−
− − − −

+= +
− − − +

 (13.11) 

is considered again. The results for maximal stochastic disturbance rejection have been given in Table 13.1 
(second row). However, looking at the resulting tracking behaviour shown in Figure 13.7 (left) reveals 
unacceptable performance. If we now optimise the PI controller to yield best tracking performance, we get 
the response shown in Figure 13.7 (right). The optimal PI controller settings are found to be: K1 = 0.199; 
K2 = –0.178. The high performance is confirmed by applying the assessment indices based on set-point 
response: *

set 4.3,T =  d 2.6,IAE =  and 18%α =  (Section 5.2). The side-effect is, however, that the Harris 
index is significantly lower: η = 0.75, but still indicating satisfactory stochastic performance.  
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Figure 13.7. Sept-point responses with PI controller optimised for best stochastic disturbance rejection 
(left) and tracking (right) (system Equation 13.11). 

 
The same analysis undertaken for the same process but with the fourth disturbance model, i.e., 

1
6

1 1 1 1 1

1 1 0.6( ) ( ) ( )
1 0.8 (1 0.6 )(1 0.5 )(1 0.7 )(1 )

qy k q u k k
q q q q q

ε
−

−
− − − − −

+= +
− − − + −

 (13.12) 

yields the step responses shown in Figure 13.8. In this case, the PI controller was only slightly detuned 
(K1 = 0.199; K2 = –0.178) to give optimal tracking performance, without significant change in the Harris 
index. Moreover, these controller settings seem to provide a good trade-off between stochastic disturbance 
rejection (η = 0.55–0.75) and tracking performance *

set( 4.3),T =  irrespective of the disturbance model used. 
This is very useful, since in practice one is always interested in using one set of controller parameters that 
can handle the whole range of disturbances acting on the process.  

 
 



 13.3 Optimisation-based Assessment and Tuning 281 
 

0 50 100 150 200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

r(
t),

 y
(t)

0 50 100 150 200

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

r(
t),

 y
(t)

 
Figure 13.8. Sept-point responses with PI controller optimised for best stochastic disturbance rejection 
(left) and tracking (right) (system Equation 13.12). 

13.3.1.3 Restricted Structure Optimal Control Benchmarking  

A method of restricted structure (RS) optimal control benchmarking has been introduced by 
Grimble (2000), in which the controller structure may be specified. If, for example, a PID struc-
ture is selected, the algorithm computes the best PID parameters to minimise an objective func-
tion, an LQG cost function, where the dynamic weightings are chosen to reflect the desired eco-
nomic and performance requirements, as in the case of GMV benchmarking. The benchmarking 
solution is obtained by solving an optimal control problem directly leading optimal controller 
parameters. The actual optimisation involves a transformation into the frequency domain and 
numerical optimisation of an integral cost term. Detailed descriptions of the restricted structure 
benchmarking method can be found by Grimble (2000), Grimble (2002b), or Ordys et al. 
(2007:Chap. 4).  

It is important to note that the RS-LQG algorithm does not use plant data to compute the per-
formance index. Instead, the process transfer function is required. Moreover, the user has to 
specify the type of restricted structure controller (P, PI or PID) against which the existing con-
troller should be benchmarked. The user must also define the models of the system disturbance 
and reference as transfer functions and specify the error and control weightings. The choice of 
these weightings must be consistent with the choice of optimal RS controller and the objectives 
of the control problem. The weighting selection for the RS-LQG design plays a decisive role on 
its success. The accuracy of the results achieved ultimately depends on the accuracy of the model 
used for benchmarking (Ordys et al., 2007). All in all, it can be concluded that RS-LQG bench-
marking is much more involved than other performance assessment and controller tuning meth-
ods presented in this chapter.     

13.3.2 Techniques Based on Routine and Set-point Response Data 

If the open-loop process model is not known, then an obvious procedure to calculate the PI-
achievable performance consists of the following steps:  
1. Obtain the open-loop process model using closed-loop experimental data. This experiment 

can involve a sequence of acceptable set-point changes. Suitable identification methods can 
be used to obtain the open-loop process model.  
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2. Use the optimisation-based methods in Section 13.3.1 with the identified process model to 
calculate the PID-achievable performance.  
This approach is, however, somewhat invasive and may be undesirable in practice. Agrawal 

and Lakshminarayanan (2003) proposed an alternate way of determining the PID-achievable 
performance from closed-loop experimental data without the need for identifying the open-loop 
process and noise models. This method is described next.  

13.3.2.1 Set-point Response Based Optimisation  

For this purpose, system identification can be employed to determine the closed-loop servo 
transfer function, which takes the form of an ARMAX model. Equation 13.4 gives  

p
c

;
(1 ) (1 )

r

r r

HGG G
G G G

ε
ε= =

− −
. (13.13) 

Assuming time-invariant process (Gp) and noise dynamics (Gε), the optimal closed-loop distur-
bance impulse response *Gε  can be given as 

*
* *
c p c

c

1
1 1r

G HG
G G GG

G

ε ε
ε = =

+ ⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

, (13.14) 

where *
cG  is the optimal controller to be determined. Equation 13.14 implies that, with the 

knowledge of the current closed-loop disturbance impulse response (Hε), the closed-loop servo 
transfer function (Gr) and the controller *

cG , it is possible to estimate the closed-loop disturbance 

impulse response *Gε  for any given controller *
cG . Specifically, to determine the optimal PI 

controller *
cG  (parameters *

cK  and *
IT ), the objective function to be minimised is 

PID

2 22
0* 2 PID

PID 2 2min(1 ) ; Gi

y y

h
ε εσση η

σ σ

∞

== − = =
∑

K
K , (13.15) 

This equivalently maximises the Harris index value η. Again, for instance, the fmin-
search/fmincon function from the MATLAB Optimization Toolbox or patternsearch 
function from the MATLAB GADS Toolbox can be employed to obtain the optimal controller 
parameters. Recall that noise variance 2

εσ  is estimated as the prediction error from ARMAX 
fitting to the data with the set-point change.  

To summarise, the optimal PID controller settings can be computed –at least theoretically– 
using only one set of closed-loop experimental data, without the need of estimating the open-
loop process or noise models. The obtained controller parameters will, however, be applied on 
the data set used to determine the closed-loop transfer functions. Therefore, it is important to use 
plant data that contain typical disturbances expected to affect the process. Our experience 
showed that it is sometimes necessary to repeat the estimation step once again to ensure conver-
gence to the optimal controller settings. Also for solving the optimisation task involved in this 
assessment and tuning technique we have good experience with employing the pattern search 
algorithm of the MATLAB GADS Toolbox. Note that two separate sets of routine operating data 
are needed to calculate values of the Harris index before and after controller re-tuning.   
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13.3.2.2 Filter-based Approach 

The set-point response based optimisation method can be reformulated to avoid usage of the 
closed-loop disturbance impulse response Hε. Consider again Equation 13.4 with zero set point, 
to write 

c p

( ) ( )
1

G
y k k

G G
ε ε=

+
. (13.16) 

This equation expressed with the optimal controller *
cG  gives the “new” output 

*
*
c p

( ) ( )
1

G
y k k

G G
ε ε=

+
. (13.17) 

Assuming time-invariant process and noise dynamics, we can write 
*

c p
*
c p

1( )
( ) 1

G Gy k
y k G G

+
=

+
. (13.18) 

Inserting the first relationship in Equation 13.13 yields 
*

c
*

c c

( )
( ) (1 )r r

Gy k
y k G G G G

=
− +

. (13.19) 

The right-hand side of this equation represents the filter that gives the “new routine closed-loop 
data series” y*(k) when the current output (routine data) data series y(k), passes through it. Thus, 
the method is termed filter-based approach (Jain and Lakshminarayanan, 2005). For any new 
controller *

cG , the filter is specified using the closed-loop servo model Gr and the installed con-
troller Gc. The original routine data y(k) can then be used to “generate” the routine closed-loop 
data y*(k) that would be obtained with the controller *

c .G  Using this y*(k), it is possible to calcu-
late the Harris index 

** y

y

σ
η

σ
=  (13.20) 

corresponding to the new controller *
c .G  Incorporating this methodology into an optimisation 

task, it is possible to determine the optimal controller parameters that maximise the control loop 
performance:  

PID

* * 2
PID min(1 )η= −

K
K . (13.21) 

This requires the knowledge of the installed controller, a corresponding routine data set and the 
the closed-loop servo model Gr, which has, as before, to be identified from a data set with a set-
point change. The noise model Gε is not needed anymore, but is implicitly included in the meas-
ured data y(k). 

13.3.2.3 Detection of Set-point Changes  

For the controller assessment and tuning method presented in this section, it is essential to ex-
tract data windows with distinctive load changes occurring during normal process operation. 
Techniques are thus needed for automatic detection of these changes to trigger the assessment 
and tuning task. In other words, the assessment and tuning algorithms must be provided with a 
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supervisory shell that takes care of those operating conditions, in which the algorithm would give 
wrong performance indications. Only set-point changes, which are significantly larger than the 
noise level of the process variable, should be used. The automatic detection of naturally occurred 
set-point changes (if any) is introduced here to make the method non-invasive.  

A convenient approach for excitation detection was suggested by Hägglund and Åström 
(2000) within adaptive control. The basic idea is to make a high-pass filtering of the measure-
ment signals u and y:  

hp
hp

( ) sG s
s ω

=
+

 (13.22) 

to give the corresponding high-pass filtered signals uhp and yhp. ωhp is chosen to be inversely 
proportional to the process time scale Tp. When the magnitude of the filtered variable exceeds a 
certain threshold, it is concluded that the excitation is high enough to trigger the performance 
assessment and tuning block; see Figure 13.9. Assuming that the process has a positive static 
gain, i.e., Gp(0) > 0, and that all zeros are in the left half-plane, both uhp and yhp then go in the 
same direction after a set-point change; both variables go in opposite directions when a load 
disturbance occurs.  
 
 

 
Figure 13.9. Controller assessment and tuning based on load and set-point change detection. 

13.3.2.4 Considering Stochastic and Deterministic Performance 

The aim of the optimisation-based controller assessment and tuning presented so far is to obtain 
a set of optimal controller settings that will provide good disturbance rejection and a high value 
of the Harris index. However, since the method requires a set-point change in closed-loop, set-
point tracking performance can be simultaneously evaluated. This is done by computing the 
deterministic performance indices, the normalised settling time *

setT  and IAEd, and related ro-
bustness margins, presented in Section 5.2, based on the set-point response data recorded. More-
over, it is possible to modify the objective function used for optimisation to  

[ ]
PID

2*
PID detmin (1 )(1 )w wJη= − − +

K
K . (13.23) 

This objective function provides a trade-off between the stochastic and deterministic perform-
ance measures. w (0 ≤ w ≤ 1) represents the weight given to the deterministic performance meas-
ure Jdet, e.g., IAEd or related measures such as gain and phase margins.  
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Example 13.4. We consider again the system in Equation 13.12 and apply the technique based on set-point 
response data on the closed-loop with an initial PI controller with Kc = 0.1 and TI = 25 (i.e., K1 = 0.1; K2 = –
0.096). If the closed-loop is simulated without any set-point change and the recorded “normal operating 
data” (3000 samples; 2 0.02yσ = ) are analysed to give the Harris index η = 0.17; see Figure 13.10.  

A set-point change experiment is performed on the closed loop. The gathered data for the process input 
and output are shown in Figure 13.11. From these data, an ARMAX(5, 3, 1, 6) model has been identified to 
give the closed-loop transfer function Gr. Pattern search is then run based on the identified model to yield 
the optimal controller settings as Kc = 0.22 and TI = 10.6 (i.e., K1 = 0.226; K2 = –0.205). 
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Figure 13.10. Normal operating data set under the initial controller. 
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Figure 13.11. Set-point response data used for identification. 

 
When the obtained controller is applied on the process, we get a Harris index η = 0.47 from the data set 

in Figure 13.12. The step response obtained when simulating the closed loop under the optimal controller is 
shown in Figure 13.13. It is observed how the variability of the input increases while the output variability 
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decreases when the initial controller is replaced by the optimal one. The substantial transfer of variability 
also symbolises the improvement in the stochastic control performance. 
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Figure 13.12. Normal operating data set under the optimal controller. 
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Figure 13.13. Set-point response with the optimal controller. 

 
When compared with the results in Example 13.3, the Harris index obtained here is slightly lower. Also 

the corresponding normalised settling time *
set 4.8T =  is slightly higher. This deviation can be mainly attrib-

uted due to modelling errors which are unavoidable in practice, irrespective of the method used. Recall that 
the technique applied here does not require the knowledge of the process model, as is the case for the 
method of Section 13.3.1.  

13.4 Iterative Controller Assessment and Tuning 

The methods presented in this section do not require any effort to model the process dynamics. 
Only the time delay is assumed to be known. This is especially advantageous having in mind that 
process models are not often available in industry and that their development is expensive. Des-
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borough and Miller (2001) estimated that process models are available for ca. 1% of chemical 
processes. The novel techniques of this section simultaneously provide the assessment of the 
controller performance and finding the optimal controller settings in an iterative way on the 
closed loop, following the procedure described in the beginning of Section 13.1. Appropriate 
performance criteria or empirical characteristics of the impulse response will be used to control 
the progress of the iteration towards finding the optimal controller parameters. 

13.4.1 Techniques Based on Load Disturbance Changes 

The aim of the proposed methodology based on Visioli’s area index (Section 5.4) is to verify, by 
evaluating an abrupt load disturbance response whether the tuning of the adopted PI controller is 
satisfactory, in the sense that it guarantees a good IAE. Based on this assessment, possible modi-
fications of the controller parameters are suggested when the controller performance can be im-
proved. 

13.4.1.1 Basic Approach 

In this section, a new method is proposed to generate a rule base for the tuning of PI controllers. 
It is based on the combination of the area index Ia, idle index Ii and the output index Io, already 
defined in Sections 5.3 and 5.4. The suggested tuning rules are given in Table 13.2. The values 
0.35 and 0.7 for Ia as well as −0.6 and 0 for Ii are just default values derived from many simula-
tion studies and may be slightly modified depending on the application and design specifications 
at hand. 

 
Table 13.2. PI-controller tuning rules generated from Visioli’s assessment rules. 

 Ia                          Ii < −0.6 
(low) 

∈ [−0.6, 0] 
(medium) 

> 0 
(high) 

> 0.7 
(high) 

Increase Kc Increase Kc, 
Increase TI 

Increase Kc,  
Decrease TI 

∈ [0.35, 0.7] 
(medium) 

Kc ok, TI ok Increase Kc, 
Increase TI 

Increase Kc,  
Decrease TI 

< 0.35 
(low) 

Decrease Kc;  
Io < 0,35: decrease TI 

Decrease TI Decrease TI 

 

The tuning rules in Table 13.2 provide the basis for the iterative assessment and tuning pro-
cedure illustrated in Figure 13.14. This new method assumes that data windows with step-wise 
or abrupt load changes exist, or additional OP steps l(t) can be applied to the closed loop (Figure 
5.11). Model identification or the knowledge of the time delay is not needed. Since the indices 
used are sensitive to noise, an appropriate filtering is required. Possible filtering techniques have 
been described in Section 5.3.3. 

The procedure in Figure 13.14 starts with using a recorded data set containing load distur-
bances to compute the three indices, the area index Ia, the idle index Ii and the output index Io. If 
the target region (0.35 ≤ Ia ≤ 0.7 & Ii ≤ −0.6) is attained, the procedure terminates and the current 
controller settings are the optimal ones. Otherwise, the controller parameters are changed accord-
ing to Table 13.2, the current controller settings (ensuring a stable closed loop) are applied on the 
process and a new operating data set is recorded. The same aforementioned steps are repeated. 
Of course, one can specify a target performance point (e.g., Ia = 0.6 & Ii = 0.7) rather than a 
“fuzzy” region, but usually this is not necessary in practice. We also do not recommend this 
because the number of iterations required would be much larger.  
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Figure 13.14. Flow chart of the iterative controller tuning based on the combination of the area index, the 
idle index and the output index. 

13.4.1.2 Detection of Load Disturbances  

For this assessment and tuning method, it is essential to extract data windows with distinctive 
load changes occurring during normal process operation. Techniques are thus needed for auto-
matic detection of these changes to be applied before activating the assessment and tuning task; 
see Figure 13.15. In other words, the assessment and tuning algorithms must be provided with a 
supervisory shell that takes care of those operating conditions, in which the algorithm would give 
wrong performance indications.  

 
 

 
Figure 13.15. Controller assessment and tuning based on load change detection and control error indices 
(area index, idle index and output index). 

The automatic detection of naturally occurred load disturbances (if any) is introduced here to 
make the method non-invasive. In addition to the method mentioned in Section 13.3.2, the tech-
nique proposed by Hägglund (1995) based on computing the IAE between zero-crossings of the 
control error (Section 8.4.3) can be used. 



 13.4 Iterative Controller Assessment and Tuning 289 
 

Example 13.5. To illustrate this new iterative tuning procedure based on the combination of the area index, 
the idle index and the output index, consider the following FOPTD process: 

5
p

1( )
10 1

sG s e
s

−=
+

. (13.24) 

The initial PI controller was set to Kc = 0.90; TI = 5.0. Running the procedure in Figure 13.14 with the rates 
of change ΔKc = 20% and ΔTI = 10% and applying a unit step in load disturbance on the process in each 
iteration leads to the final controller settings Kc = 1.87 and TI = 7.32. The history of the iterative tuning 
process is shown in Table 13.3. The found settings are close to the optimal controller parameters *

c 1.81K =  

and *
I 10.36T =  (corresponding to IAE = 6.11) given by Visioli (2005), minimising the IAE index. The 

responses to a unit load disturbance change before and after controller re-tuning are shown Figure 13.16. It 
is observed how the proposed method correctly recognised the sluggish control and adjusted the controller 
setting to attain optimal behaviour from deterministic load disturbance performance view point.  
 
 

Table 13.3. Details of the iterative tuning process for Example 13.5. 

Iteration 
no. 

Kc TI Ia Ia IAE 

0 0.90 5.00 0.68 −0.31 10.31 
1 1.08 5.50 0.68 −0.40 9.21 
2 1.30 6.05 0.66 −0.52 8.30 
3 1.56 6.66 0.60 −0.57 7.70 
4 1.87 7.32 0.50 −0.66 7.68 
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Figure 13.16. Load change responses for initial controller (top) and optimal controller (bottom). 

13.4.2 Methods Based on Routine Data and Impulse Response Assessment 

Usually, when the control system commissioning is completed and the plant is in normal opera-
tion, it is undesirable to perform even closed loop experiments, required for the determination of 
the PID-achievable performance indices. This is particularly the case, when the process is oper-
ated under regulatory control with only noise dynamics affecting the process. Obviously, this is 
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not true when set-point changes naturally occur, but this situation is not the rule in process indus-
tries.  

A methodology that can be very useful in the situations, where experimentation with the 
process is not possible or undesirable at all (neither in the open- nor the closed-loop), has been 
proposed by Goradia et al. (2005). In this method, optimisation is carried out directly on the 
control loop by carefully and systematically changing controller parameters, thereby eliminating 
the identification step altogether. The objective is to iteratively improve the present controller 
settings until the PID-achievable performance is attained. To control the progress of the iteration, 
the Harris index is used as a measure of control loop performance improvement and the closed 
loop disturbance IR curve as a diagnostic tool. This heuristic method seems to be appealing, easy 
to use and effective. Note again that this method intends to find the PID-achievable performance 
using routine data only, a highly desirable property in the industrial practice. In the following, 
we first present the technique by Goradia et al. (2005) in detail and then provide many improve-
ments to it.  

13.4.2.1 Classification of Control Performance  

Three classes of control behaviour have been defined by Goradia et al. (2005) to serve as basis 
for the assessment and tuning of the controllers; each class contains three categories, as illus-
trated in Figure 13.17.  
 
 

 
Figure 13.17. Standard nine signature patterns of the disturbance impulse response for controllers: (a) 
extremely detuned; (b) detuned; (c) slightly detuned; (d) optimally tuned; (e) optimally tuned; (f) optimally 
tuned; (g) extremely aggressive; (h) aggressive/very oscillatory; (i) mildly aggressive (Goradia et al., 2005).  

These patterns were obtained by Goradia et al. from analysing more than 20 simulated case 
studies involving a wide range of process and noise dynamics. The process tried range from first 
order to higher orders, open loop stable to open loop unstable and noise dynamics from integrat-
ing noise to noise affecting the process at more than one place. The three classes of control be-
haviour defined above are used to assess and tune the controllers are characterised as follows: 
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1. Under-tuned Controllers. The first class of under-tuned controllers shows similar impulse 
responses, which can be divided into 3 categories. The first category is very sluggish with or 
without offset (Figure 13.17a) and has no undershoot and no oscillations. The other category 
shows no offset, no oscillation and no undershoot (Figure 13.17b). These responses charac-
terise slightly aggressive tuning compared to that of the previous category. The third category 
in this classification (Figure 13.17c) shows impulse responses with slight undershoot and 
mild (one or two) oscillations obtained by keeping the controller settings slightly less aggres-
sive than that of optimally tuned controller, termed slightly detuned controller.  

2. Optimally-tuned Controllers. The second class was obtained by keeping the controller 
parameters at optimal settings obtained via optimisation with known process and noise mod-
els for various processes and noise dynamics. All the impulse responses for this class of tun-
ings are divided into three categories. The first category shows undershoot of −0.05 with a 
few oscillations (Figure 13.17d). If the IR is similar to Figure 13.17d, the PI-achievable per-
formance is often close to minimum variance performance, i.e., η ≈ 1, and one may not wish 
to tune the controller any further. This type of response is characteristic for systems, which 
are less sensitive to controller parameters and when the disturbance affecting the loop is not 
severe. The impulse responses in Figure 13.17e and Figure 13.17f were from optimally tuned 
loops of all the other types, where PI-achievable performance is far from the minimum vari-
ance performance. As we move from Figure 3d to 3f, the PI-achievable performance will fur-
ther drift from unity. One of the reasons for decreasing the performance index is increase in 
settling time of IR, when moving from Figure 13.17d to Figure 13.17i. Since we do not make 
any effort in modelling either the noise or process dynamics, it is better to check whether one 
can still obtain better performance index by retuning the controller (Even though the closed 
loop disturbance impulse response suggests that the controller is in proximity of optimally 
tuned controller, i.e., IR similar to Figure 13.17e and Figure 13.17f.)  

3. Aggressive Controllers. The third class of impulse response was obtained by keeping the 
controller parameters aggressive compared to that of optimally-tuned controller to different 
degrees. The first category shows oscillations that do not decrease in amplitude (Figure 
13.17g), i.e., limit cycle. This very oscillatory IR plot with undershoot of −0.2 or more is ob-
tained when controller is extremely aggressive and the loop is on the verge of stability. The 
second and third categories are of undershoot greater than −0.55 and more than four oscilla-
tions (Figure 13.17h). IR plot of a mildly aggressive controller (Figure 13.17i) has a few os-
cillations and undershoot of −1.0 or more.  

13.4.2.2 Basic Methodology  

The step-by-step iterative procedure to attain the PI-achievable performance for linear processes 
with time delay is summarised following the original work by Goradia et al. (2005); see also the 
flow chart in Figure 13.18. 
 
Procedure 13.1. Iterative controller tuning based on routine data and assessment of impulse response (IR). 
1. The first step is to obtain routine operating data of PV, calculate the Harris index (η) of the loop with a 

priori knowledge of process delay and to plot the estimated IR coefficients. The IRs are estimated using 
time series analysis, i.e., as by-product of the Harris index (Section 2.4). For a reliable estimate of η, 
several sets of routine data collected over different periods should be considered and the average Harris 
index subsequently used.  
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Figure 13.18. Flow chart of the methodology proposed by Goradia et al. (2005) for attaining PI-achievable 
performance; the signature patterns are those shown in Figure 13.17. 

 
2. The IR plot is compared with standard nine signature patterns in Figure 13.17. The calculated IR plot 

for the routine data will fit in with one of the following possibilities: 
• Case A. If the plot is similar to the pattern of detuned controller (Figure 13.17a to Figure 13.17c), 

then the existing controller is under-tuned and needs to be made aggressive to attain PI achievable 
performance; 

• Case B. If the plot resembles the pattern of an optimally tuned controller (Figure 13.17e to Figure 
13.17f), then the existing controller may be performing near the PI achievable performance. If the 
IR pattern is similar to that of Figure 13.17d, the Harris index will be very close to 1 and one may 
not wish to tune the controller any further. To confirm this, one should make the controller aggres-
sive and check for the improvement in η as suggested in Figure 13.18. However, it depends on the 
application at hand and on the desired performance, i.e., which IR pattern is specified as optimal.   
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• Case C. If the plot is similar to the pattern of aggressively tuned controller (Figure 13.17g to Figure 

13.17i), then the existing controller is aggressively tuned and needs to be detuned to attain PI 
achievable performance. 
In either Case A or C, the controller needs to be re-tuned to attain PI-achievable performance.  

3. This step is described assuming a detuned control (Case A); for the aggressively tuned controller (Case 
C), the action indicated in the bracket should be implemented. In Case B (optimally tuned controller), 
one needs to confirm that the controller is indeed performing close to the PI-achievable performance. If 
the IR plot is similar to Figure 13.17e or Figure 13.17f, consider the controller as aggressively tuned 
(Case C) and follow this step correspondingly. The reason for this is that, one should try to get the IR 
pattern similar to Figure 13.17d, as this IR pattern is very close to IR pattern of minimum variance con-
trol.  

Increase (decrease) the controller gain or integral time depending on the obtained IR plot by, e.g., 
20%. Implement the new controller settings and collect the routine operating data. In simulations, these 
data are obtained with new controller settings along with a new random number seed. Using the newly 
obtained routine data, calculate a new η value and generate the IR plot. Compare the new η value with 
that in the previous iteration. If the change is greater than the inherent variation in the Harris index, then 
one can accept it as an increase in performance and proceed in that direction of making controller more 
aggressive (detuned). If the change in η is less than the inherent variation in η compared to the previous 
iteration then one can increase the rate of change in controller gain up to 50% for subsequent iterations. 

Repeat Step 3 to make the controller aggressive (detuned) until IR plot matches that of optimal PI 
settings for PI-achievable performance (any one of Figure 13.17d to Figure 13.17f). Once the optimal 
settings are reached, further increase (decrease) in controller parameters will decrease the Harris index 
and the IR plot will resemble that of aggressive (detuned) controller. This indicates that the maximum 
Harris index has just been crossed. The optimal controller parameters are those at which η is the highest 
and IR plot resembles the signature of optimally tuned controller (Figure 13.17d to Figure 13.17f).  

4. Implement the optimal controller parameters and collect some sets of routine operating data. Calculate 
η for each data set and then the average of the Harris index values. This average Harris index is ex-
pected to be close to the theoretical PI-achievable performance.  

13.4.2.3 Introducing Impulse Response Features 

One shortcoming of the method by Goradia et al. (2005) is that it may take up to a few days to 
arrive at PI-achievable performance if one is dealing with slowly sampled loops. But this is the 
price one must pay for not having a process model or avoiding any experimentation and still 
wanting to reach top performance. Nevertheless, the technique by Goradia et al. (2005) will now 
be modified to be suitable for the integration into an automated CPM and controller tuning soft-
ware tool.  

For this purpose, the following modifications and extensions are introduced here: 
• The method is simplified by only considering the three main categories of the IR plot for 

sluggish, optimally-tuned and aggressive controllers, shown in Figure 13.19.  
• Suitable measures are used to characterize the IR response and thus avoid the visual inspec-

tion to classify the controller behaviour. 
• Pattern recognition techniques, such self-organising maps, are investigated for the automatic 

classification of the controller behaviour.  
Characteristics are introduced for automatically determining the signature pattern (out of the 

three signature patterns) that best matches the estimated IR trajectory. One possibility is to calcu-
late the IR characteristics offset, undershoot and number of oscillations, as described in 
Procedure 13.1, and use them for pattern matching.  

An alternative way is to apply the area index (Section 5.3) to the IR trajectory rather than the 
control signal, i.e.,  
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termed as impulse-response area index (IRAI). Ai stands for the area over or under the zero line 
of the IR curve:  
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Note that load disturbance changes are not required here. 
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Figure 13.19. Impulse-response plots for sluggish, optimally-tuned and aggressive controllers. 

 
The procedure in Figure 13.20 starts with using a routine operating data set to determine the 

impulse response (IR), the Harris index (η) and the impulse-response area index (Iai). If the Iai 
value lies in the target region, the controller parameters are slightly changed. It is then checked 
whether η is decreasing: if yes, the tuning is terminated and the optimal controller settings are 
found. In the cases where the target region is not attained or Harris the index is not decreasing, 
the controller parameters are changed according to the selected variation strategy, the current 
controller settings (ensuring a stable closed loop) are applied on the process and a new operating 
data set is recorded. The same aforementioned steps are repeated. The controller settings are 
systematically changed and applied to the closed loop until the IR area index Iai is within the 
range [0.3, 0.7] and the Harris index value η attains a satisfactory value, which should be close 
to the optimal (PID-achievable) performance. Figure 13.20 illustrates the flow chart of the new 
controller-tuning procedure.  
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Figure 13.20. Flow chart of iterative controller assessment and tuning based on routine data and the 
impulse-response area index. 

 
 

Example 13.6. The iterative assessment and tuning procedure based on routine data and impulse response 
area index is illustrated on the process model 
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 (13.27) 

with Ts = 1s and 2 0.01.εσ =  For the initial PI controller settings Kc = 0.14 and TI = 7.0, we get a Harris 
index value of η = 0.34, indicating poor control performance. Applying the proposed assessment and tuning 
procedure leads to the optimal controller settings Kc = 0.78 and TI = 4.1, giving a Harris index value 
η = 0.97. This means that approximately minimum variance can be achieved when re-tuning the PI control-
ler. The result confirms the fact that PI controllers achieve the minimum variance control performance for 
output disturbances represented by an integrated moving average (MA(0,1,1)) process (Ko and Edgar, 
2004). The procedure has been terminated by achieving an IR area index value of Iai = 0.66, which lies near 
the upper bound of the target region [0.3, 0.7]. The results obtained here are in excellent agreement with 
those achieved by Jain and Lakshminarayanan (2005), who analysed this example using their filter-based 
assessment method. The theoretically determined optimal controller has the parameters *

c 0.79K =  and 
*

I 5.0.T =  The details of the iterative tuning process are given in Table 13.4. 
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Table 13.4. Details of the iterative tuning process for Example 13.6. 

Iteration 
no. 

Kc TI Iai η 

0 0.14 7.0 1.00 0.34 
1 0.21 5.6 0.90 0.50 
2 0.32 4.5 0.72 0.69 
3 0.47 3.6 0.70 0.85 
4 0.71 2.9 0.66 0.92 
5 0.78 4.1 0.61 0.97 
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Figure 13.21. Impulse response sequence obtained during the iterative tuning process for Example 13.6. 

 
Example 13.7. An open loop stable, time delay process with integrating noise is considered in this example 
(Ko and Edgar, 1998):  
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The process is regulated by a (discrete) PI controller with the initial settings Kc = 1.1 and TI = 18.0. 
These give a Harris index value η = 0.24, indicating poor performance. Recall that these model details are 
only used for simulation, but only the time delay information is needed for the assessment and tuning using 
the presented method. This was run on a data set of 2000 samples gathered by simulation (Ts = 1s and 

2 1),εσ =  to yield the optimal PI parameters Kc = 2.28 and TI = 11.8, using the step sizes ΔKc = 20% and 
ΔTI = 10%. Four iterations were necessary to get these settings, which are close to the theoretical values 

*
c 2.32K =  and *

I 11.2T =  (Ko and Edgar, 1998) and to those found by Goradia et al. (2005) *
c 2.72K =  and 

*
I 11.0.T =  
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13.4.2.4 Use of Pattern Recognition Techniques 

As the shapes of the impulse response are clearly categorised in Figure 13.19, they can also be 
detected using pattern recognition techniques. The basic principle is to match between the tem-
plate shapes and those generated from data for the impulse response. A distance measure is de-
fined to capture the similarity between the template and the test data. To achieve the best mini-
mum possible, time alignment and normalisation are essential. For instance, dynamic time warp-
ing or artificial neural networks, e.g., self-organising maps (SOMs), can be used for pattern rec-
ognition.  

Neural networks have been shown to be good at pattern-recognition problems. Their utility 
for pattern classification and fault diagnosis has been shown before, e.g., by Venkatasubrama-
nian et al. (1990) and Kavuri and Venkatasubramanian (1994). Neural networks have been se-
lected because of two main advantages. The number of classes to be delineated is quite small, 
and thus one can expect good performance from the network. Further, the networks are not sensi-
tive to the discretisation size. Since the identification of primitives is solved purely as a pattern-
recognition problem, treating windows with different numbers of data points is relatively easy 
(Rengaswany and Venkatasubramanian 1995).  

Two key issues in training are that the training set should cover the space of interest as wide 
as possible and that a proper normalisation scheme for the training set is selected. In the case of 
this work, there are only a small number of output classes, i.e., three (or nine), to be trained, and 
hence exhaustive training is possible. Kohonen feature maps1 were used in this work. Note that 
the training does not require measured data, i.e., simulation data to generate the reference pattern 
suffice.  

As an illustrative example, we consider the IR test patterns shown in Figure 13.22. The re-
sults of the pattern detection procedure are illustrated in Figure 13.23. It is clearly observed the 
algorithm correctly detects the pattern template (Figure 13.19) for each test data set. The data set 
no. 2 has been classified as aggressive, the data sets 1, 3 and 4 as well tuned, and the data sets 5 
and 6 as sluggish. Remember that SOMs involve minimising a (Euclidean) distance measure to 
the prototypes.  
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Figure 13.22. Test data sets presented for the Kohonen feature maps. 

 

                                                           
1
 The used function for Kohonen feature maps has been implemented by Norbert Link.  
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The procedure in Figure 13.24 starts with using a routine operating data set to determine the 

impulse response (IR) and the Harris index (η). Pattern recognition is run to detect the template 
IR shape giving the minimal dissimilarity measure to the test IR shape. If the IR shape for well-
tuned control is detected, i.e., a specified minimum distance to the well-tuned pattern is 
achieved, the controller parameters are slightly changed. It is then checked whether η is decreas-
ing: if yes, the tuning is terminated and the optimal controller settings are found. In the cases 
where target region is not attained or Harris the index is not decreasing, the controller parameters 
are changed according to the selected variation strategy, the current controller settings (ensuring 
a stable closed loop) are applied on the process and a new operating data set is recorded. The 
same aforementioned steps are repeated until a minimal distance to the IR pattern for well-tuned 
controller (to be specified) is achieved.  

 
 

3: aggressive

Classified sets: ( 2 )

2: well tuned

Classified sets: ( 1 3 4 )

1: sluggish

Classified sets: ( 5 6 )

 
Figure 13.23. Results of pattern detection using Kohonen feature maps for the test data in Figure 13.22. 
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Figure 13.24. Flow chart of iterative controller assessment and tuning based on routine data and pattern 
recognition. 

13.4.2.5 A New Control Performance Index: Relative Damping Index 

An approach to automate the IR analysis is to fit a second-order plus time delay (SOPTD) con-
tinuous model  
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to the impulse coefficients. The model estimation can be easily carried out, e.g., using the 
fminsearch function of the MATLAB Optimization Toolbox; see Section 5.2.3.3. The esti-
mated parameters, the time delay Td,IR and the damping factor DIR provide measures of the dis-
turbance rejection performance. T0,IR gives an indication of how fast the disturbance is rejected 
by the controller. DIR is related to its aggressiveness: if DIR is greater than unity, the controller 
behaviour is over-damped; a value smaller than unity indicates that controller behaviour is over-
damped with tendency to oscillate. Note that the IR sequence has be transformed is such a way 
that it shows a behaviour comparable with the step response of a SOPTD system. This can be 
achieved by IR* = max(IR) − IR; see Figure 13.25. For this example, a SOPTD model with the 
parameters KIR = 1.0, Td,IR = 0.0, T0,IR = 3.35 and DIR = 0.35 has been estimated.  
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Figure 13.25. Fitting of a SOPTD model to transformed IR (left); back-transformed IR and its 
approximation (right). 

 
Example 13.8. To show how the IR damping factor provides an assessment of the IR responses and thus 
indicates in which direction the controller has to be re-tuned, a process described by  
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controlled by a PI controller is considered. Figure 13.26 illustrates the tuning map, i.e., the IR pattern and 
the values of DIR as function of the PI controller settings for this example. The central IR plot was gener-
ated using Kc = 1.0 and TI = 8.0, which can be considered are close the optimal PI parameters. For the sur-
rounding plots, Kc and TI  have been decreased and increased by 40% and 30% respectively.  
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Figure 13.26. A tuning map based on the IR damping factor 
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To get a relative measure of performance, the relative IR damping index is defined as  

IR IR,aggressive

IR,sluggish IR

D D
RDI

D D
−

=
−

, (13.31) 

where DIR is the damping factor of the fitted model, DIR,aggressive the limit of aggressive controller 
behaviour and DIR,sluggish the limit of aggressive controller behaviour. These performance limits 
should be selected according to the desired performance specification, typically DIR,aggressive = 0.3 
and DIR,sluggish = 0.6. Note that a similar performance index has been recently introduced by How-
ard and Cooper (2008), but in relation with the auto-correlation function. 

The RDI can be interpreted as follows: 
• If RDI ≥ 0, i.e., DIR,aggressive ≤ DIR ≤ DIR,sluggish, the control performance is good. 
• If −1 ≤  RDI < 0, i.e., DIR < DIR,aggressive, the control behaviour is aggressive. 
• If RDI < −1, i.e., DIR > DIR,sluggish the control behaviour is sluggish. 

Based on the RDI, a new straightforward strategy for optimal controller re-tuning is pro-
posed, as shown in Figure 13.27. The procedure starts with using a routine operating data set to 
determine the impulse response (IR) and the Harris index (η). The IR pattern is fitted to a 
SOPTD model to compute the damping factor DIR and the RDI. As long as RDI < −1 or the Har-
ris index is not decreasing, the controller parameters are changed according to the selected varia-
tion strategy, the current controller settings (ensuring a stable closed loop) are applied on the 
process and a new operating data set is recorded.   

 

 
Figure 13.27. Flow chart of iterative controller assessment and tuning based on the relative damping index. 
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This method is intuitive and can be completely automated. Simultaneously, the user the pos-

sibility to specify the target performance region by selecting corresponding the limits DIR,aggressive 
and DIR,sluggish. For stricter performance requirements, DIR,aggressive has to be increased and 
DIR,sluggish decreased. 

 
Remark. As the iterative techniques presented above mimics the work of an optimisation rou-
tine, there is a risk of trapping in local minima. This can happen when the objective function has 
such minima and bad starting parameters are selected. Therefore, it may be sometimes necessary 
to repeat the re-tuning task for different starting points, which means that the optimisation work 
takes longer time.  
 
Remark 2. The number of iterations needed for retuning the controller depends on the specified 
IR damping interval [DIR,aggressive, DIR,sluggish]. The stricter the performance requirement is, i.e., the 
narrower the interval limits are, the more iterations will be required. Moreover, it is recom-
mended to start with a large step size if the initial controller behaviour is too sluggish. As soon as 
RDI ≥ 0 is reached, the step size should be reduced.  
 
Example 13.9. Example 13.6 is reconsidered here. The iterative RDI-based assessment and tuning proce-
dure in Figure 13.27 was applied to the loop with DIR,aggressive = 0.3 and DIR,sluggish = 0.6. The results of the 
re-tuning process are illustrated in Table 13.5. The proposed technique leads to the “optimal” controller 
settings Kc = 0.69 and TI = 7.74, giving a Harris index value η = 0.77. This tuning is close to the optimal 
one. The procedure has been terminated by achieving an RDI value of 0.36. This corresponds to an IR 
damping factor of DIR = 0.36 which lies near the lower bound of the target region [0.3, 0.6]. Note that the 
step size has been reduced after reaching RDI ≥ 0 to the first time.  
 
 

Table 13.5. Details of the iterative tuning process for Example 13.6. 

Iteration 
no. 

Kc TI DIR RDI η 

0 0.14 7.00 1.24 −1.47 0.34 
1 0.21 5.60 0.57   9.54 0.49 
2 0.27 6.72 0.70 −3.95 0.55 
3 0.40 5.38 0.44   0.86 0.68 
4 0.53 6.45 0.42   0.67 0.74 
5 0.69 7.74 0.38   0.36 0.77 

 

13.5 Strategies for Variation of Controller Parameters 

Iterative controller tuning requires the specification of a proper step size for each controller pa-
rameter, usually given as percentage. Cautious adjustments to the controller parameters are nec-
essary to guarantee closed-loop stability and performance improvement. There are many strate-
gies for varying the controller settings in each iteration. Some of them are described in the fol-
lowing including their strengths and weaknesses. Basically, a large step size helps reduce the 
number of iterations required, but may increase the risk to converge to controller parameters that 
are far from optimum.  

13.5.1 Variation of Proportional Gain Alone and Fine Tuning of Integral 
Time 

The simplest approach is to vary only the proportional gain (Kc) unless the existing controller is 
either too sluggish or too aggressive. In such cases, the integral time (TI) can also be changed 
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(but only one parameter at a time). Otherwise, the variation of Kc only should lead one to a value 
near the optimum and then a “fine tuning” could be done by slight variation of TI. Results from 
many simulations showed that an initial change of 20% in Kc or TI in each iteration is reasonable 
to improve the controller without destabilising the loop. If the resulting change in the perform-
ance index η is not significant, then controller gain or integral time can be gradually increased up 
to 50% in the subsequent iterations (Goradia et al., 2005). However, this assumes that the current 
TI value is not far from the optimum. It should be clear that the number of iterations required for 
finding the optimum depends directly from the step size.  

Practically, some integral action is always desired in industrial environment for offset free 
set-point tracking and rejection of step-type disturbances. Hence, there should be at least moder-
ate integral action in the final controller suggested though this could come with a marginal drop 
in η.  

Moreover, Goradia et al. (2005) pointed out that the performance index takes a unimodal lo-
cus. Once the proper direction to improve the controller performance is determined, i.e., to make 
the controller aggressive or detuned, one can proceed iteratively in that direction as long as η 
continues increasing. After reaching the peak, η starts to decrease even though we are moving in 
the same direction. The peak value of η is the PI-achievable performance. The controller pa-
rameters are to be changed according to the guidelines mentioned in Section 13.4.2.2. The 
change in CPI in any iteration should be accepted only if it is greater than or less than the inher-
ent variation in the CPI (determined in Step 1 in the procedure given in Section 13.4.2.2). 

13.5.2 Simultaneous Variation  

The simultaneous adjustment of the controller settings, i.e., decreasing Kc, increasing TI (and 
possibly decreasing TD) when the controller is aggressive and vice versa in the case of a sluggish 
controller, is the fastest method to find the optimum tuning. However, this approach is not trans-
parent in practice and should be only considered by well-qualified users.  

13.5.3 Successive Variation 

In this approach, the proportional term is tuned first until the highest performance index value is 
reached. This is followed by tuning the integral time and possibly derivative time, which may 
lead to further improvement in η. The three cases of controller tuning in this strategy are as fol-
lows:  
1. If the estimated IR is similar to the sluggish IR profile, increase the proportional gain, Kc, 

until the highest η has been reached. Then, check the IR against the signature IR plots. If the 
controller is still sluggish (aggressive), decrease (increase) TI until the highest η is obtained. 

2. If the estimated IR is similar to the optimal IR profile, the controller is approaching optimal 
performance and does not need to be tuned too much. Slight tuning of the parameters by 
about 10% is sufficient to obtain the maximum performance index, i.e., to make sure that the 
maximum η has been crossed.  

3. If the estimated IR is similar to the aggressive IR profile, decrease Kc until the highest η has 
been reached. Then, check the IR used to determine the optimal controller settings against the 
signature IR plots. If the IR plot is sluggish (aggressive), decrease (increase) TI until the 
highest performance index is obtained. 
This approach is highly recommended in practice owing to its transparency, although it usu-

ally takes more iterations than the simultaneous strategy. In this context, one should be careful 
when the controller has low proportional gain and high integral action, resulting in a slow oscil-
latory closed-loop disturbance IR. This might be misunderstood as aggressive controller tuning 
unless other careful observations are made. Besides undershoot and number of oscillations, one 
should also look at the time when first “zero crossing” of the IR occurs. If it is very long com-
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pared to the process delay (which is assumed to be known), it suggests that the oscillations may 
be due to a less aggressive controller regulating an integrating or lag dominant process. Hence, 
one should try to decrease the controller integral action to the minimum required (to reject the 
low frequency disturbance) as a first step and then compare its IR to the standard patterns 
(Figure 13.17). This will eliminate the possibility of confusing the oscillatory IR due to higher 
integral action with that of real aggressive tuning. One should replace Figure 13.17f with Figure 
13.28 in the standard templates, as the only change in Goradia’s procedure when dealing with 
such processes.  

 

 
Figure 13.28. Closed-loop disturbance impulse response with optimally-tuned PI controller for integrating 
process undershoot of −0.2 and a few oscillations (Goradia et al., 2005). 

13.5.4 Constraints and Loop Stability 

In the context of parameter optimisation considered here for controller tuning, it is decisive to 
carefully formulate the optimisation task. This is because even not correctly formulated problems 
can be “solved”. Therefore, it is essential, when using optimisation:  
• To carefully formulate the criterion to be minimised; 
• To include all relevant constraints (in terms of stability and robustness); 
• To be aware of the several pitfalls of optimisation, such as the existence of local minima; 
• To realise that the computation burden may be excessive. 

If a system model is available, e.g., from the commissioning stage, or can be estimated from 
system identification, it is always advised to simulate the closed loop and ensure that each con-
troller parameter combination produces a stable system. For this purpose, the poles of the con-
trolled system have to be checked: if they are found to be unstable, i.e., outside the unit circle 
(for time-discrete systems), the corresponding parameter combination must be removed. Note 
that this also applies for the iterative tuning methods introduced in Section 13.4. As there is no 
need for having a model for these methods, knowledge of the ranges of the controller parameters 
ensuring a stable closed-loop helps avoid trial-and-error and the related risk of plant shut-down.       

13.6 Comparative Studies  

Table 13.6 provides a summary of the required parameters for the CPM-based controller tuning 
methods presented in this chapter. Inspecting this table reveals the following points:  
• Iterative tuning based on impulse response assessment is the most appealing strategy in prac-

tice, as it is completely non-invasive and necessitates a minimum of process knowledge.  
• If set-point changes occur during normal process operation, parameter optimisation based on 

routine and set-point response data is simple and effective.  
• If step-wise/abrupt changing load disturbances act on the process and these changes can be 

detected properly, iterative tuning based on load disturbance changes may be useful. 
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• Parameter optimisation based on complete knowledge of process models is the most involved 
tuning technique and will not be the first choice in practice, unless accurate models are avail-
able or can be estimated from routine operating data or with a minimum of experimentation 
on the closed loop.  

 
 

Table 13.6. Comparison of the CPM-based controller tuning methods. 

No. Method Required data and models/parameters 

1 Parameter optimisation based on 
complete knowledge of process 
models (Section 13.3.1) 

• Knowledge of the process model (incl. time delay) and 
routine operating data for the estimation the disturbance 
model.  

• Data from active experiments on the open system for the 
identification of the process model and routine operating 
data for the estimation the disturbance models. 

2 Parameter optimisation based on 
routine and set-point response data 
(Section 13.3.2) 

• Time delay and 
• Data for the identification of ARMAX model of the 

closed loop 

3 Iterative tuning based on load dis-
turbance changes (Section 13.4.1) 

Data for the calculation of the area index, idle index and 
output index. 

4 Iterative tuning based on impulse 
response assessment (Section 
13.4.2) 

• Time delay and 
• Routine operating data for the estimation the disturbance 

model (incl. impulse response). 
 
The four strategies have been implemented by the author in MATLAB and tested on numer-

ous and different simulated processes under a range of conditions, i.e., self-regulating/integra-
ting, delay-free/delayed, stable/unstable, different initial controller settings and measurement 
noise, etc. In the following the results are presented for three examples which have often been 
used in literature as benchmarks for controller tuning methods. The tables below contain the 
optimal controller settings *

PIK  achieved, the corresponding value of the performance index η* 
and the number of iterations Niter required for the iterative techniques. 

 
 

Example 13.10. A delay-free process described by  
1 1

1 1

1 0.2( ) ( ) ( )
1 0.8 1

q qy k u k k
q q

ε
− −

− −

−= +
− −

 (13.32) 

controlled by a PI controller is considered. The disturbance noise has the variance 2 0.01.εσ = In this case, a 
PI controller may achieve the minimum variance. Indeed, the results given in Example 13.10 show that 
MVC performance is attained. All methods yield (nearly) optimal (stochastic) performance and parameter 
settings in the neighbourhood of the optimal ones (given by Method no. 1); see Table 13.7. We found that 
Method no. 2 may be sensitive to the choice of the ARMAX model parameters. The results in Table 13.7 
were obtained based on the identification of an ARMAX(3,2,2,1) model and two iterations were needed. 
However, this is not generally the case.  
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Table 13.7. Tuning results for Example 13.10 (Initial parameters: Kc = 0.14; TI = 7.0 ⇒ η0 = 0.33). 

Method No. * * *
PI c I[ ; ]K T=K  η* Niter  

(Variation steps) 

1 [0.79; 5.00] 0.98 - 

2 [0.80; 5.30] 0.99 2 

3 [0.61; 5.70] 0.93 12 
(ΔKc = 30%, ΔTI = 20%) 

4 [0.78; 4.1] 

 

0.97 5 
(ΔKR = 20%, ΔTI = 10%) 

 

 
Example 13.11. Now we consider a process with time delay and affected by non-stationary disturbances 

2( 0.001):εσ =   

5

1 1 1 1

0.1 1( ) ( ) ( )
1 0.8 (1 0.6 )(1 0.3 )(1 )

qy k u k k
q q q q

ε
−

− − − −= +
− − − −

. (13.33) 

In this case, a PI controller has no chance to attain MVC performance. The results in Table 13.8 confirm 
that 50% of the minimum variance can be maximally achieved, η = 0.5. Method no. 3 is not suitable for 
such scenarios. This case exemplarily show that MVC-based benchmarking may not be the right (i.e., real-
istic) benchmarking option for PID-controlled loops. Rather the optimal PID controller itself should be 
taken as benchmark. Considering this, even the initial controller used does not have poor performance. Note 
that a predictive controller (compensating the time delay) is able to further reduce the variance, so that a re-
design of the controller would pay off.  
 

Table 13.8. Tuning results for Example 13.11 (Initial parameters: Kc = 1.6; TI = 15.0 ⇒ η0 = 0.37). 

Method No. * * *
PI c I[ ; ]K T=K  η* Niter  

(Variation steps) 

1 [2.57; 10.25] 0.50 - 

2 [2.61; 9.77] 0.50 - 

4 [2.30; 9.60] 0.50 3 
(ΔKc = 20%, ΔTI = 20%) 

 
 
Example 13.12. Consider a second-order process with time delay, represented by the time-continuous 
model 

2

1( ) ( )
2 1

y s u s
s s

=
+ +

. (13.34) 

The same disturbances as in Example 13.10 act on the process. The preferred Methods no. 2 and 4 yields 
optimal controller tunings which are very similar to those found by other researchers applying traditional 
tuning methods; see Table 13.9. It is worth stressing that Method No. 4 only needs solely routine data and 
the knowledge of the time delay, i.e., no invasive experimentation with the plant is necessary neither in 
open nor closed-loop.  
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Table 13.9. Tuning results for Example 13.12 (Initial parameters: Kc = 1.0; TI = 3.0; TD = 2.0 ⇒ η0 = 0.51). 

Method No. * * * *
PI c I D[ ; ; ]K T T=K  η* Niter  

(Variation steps) 

2 [1.41; 1.62; 1.03] 0.64 - 

4 [1.76; 1.47; 0.59] 0.57 6 
(ΔKc = 20%, ΔTI = 10%, ΔTD = 5%) 

Krishnaswamy 
et al. (1987) 

[1.89; 2.13; 0.53] 0.60 - 

Yuwana and 
Seborg (1982) 

[1.53; 2.42; 0.61] 0.64 - 

 

13.7 Summary and Conclusions 

This chapter has provided new techniques for automatic generation of controller settings based 
on the continuous assessment of the control loops using normal operating data. Four categories 
of CPM-based re-tuning methods have been presented and their properties discussed. Numerous 
illustrative examples showed the relative efficiency of the techniques.  

It can be concluded that parameter optimisation based on complete knowledge of process 
models is the most involved tuning technique and should not be the first choice in practice, 
unless accurate models are available. If set-point changes occur during normal process operation, 
parameter optimisation based on routine and set-point response data can be effective. If step-
wise/abrupt changing load disturbances act on the process, iterative tuning based on load distur-
bance changes may be useful, provided the changes can be detected properly. 

Therefore, iterative tuning based on impulse response assessment is the best suited strategy in 
practice, as it is completely non-invasive and necessitates a minimum of process knowledge. The 
approach mimics the way of solving model-based optimisation problems. Starting from the Har-
ris index value computed from routine data under the installed controller, the controller settings 
are cautiously updated and applied on the process, new data are used to recalculate the Harris 
index, until the optimal controller settings, which maximise the performance index, are attained. 
Impulse-response features and pattern-recognition have been introduced, to automate the itera-
tive controller assessment and tuning. There is no need for the injection of any input or reference 
dither signals, as is typically the case for closed-loop identification or for assessment methods 
based on such experiments. There is also need for any performing recycling experiments as is the 
case in iterative feedback control. Some guidelines have been given how to select the step size 
for updating the controller settings.    

Although the methods presented attempt to re-tune PI(D) controllers, the strategies included 
can be adopted for other controller types.  



 
 



 
 
 

Part IV 
 

Tools and Applications 





14 Industrial CPM Technology and Applications 

The growing acceptance of the CPM technology in some industries is due to the awareness that 
control software is recognised to be a capital asset that should be maintained, monitored and 
revised routinely. Control systems permanently showing top performance significantly reduce or 
even avoid product-quality degradation, loss of energy resources, waste of production, lost pro-
duction time and shortened lifetimes for plant components. The CPM field has now matured to 
the point, where a large number of industrial applications and some commercial algorithms 
and/or vendor services are available for control performance auditing or monitoring.  

The primary purpose of this paper is to present an overview of CPM industrial applications 
and (available) software products. The requirements for CPM algorithms and packages are given 
in Section 14.1. Section 14.2 contains a comprehensive overview of published CPM applications 
to industrial processes. Commercially available CPM products are presented in Section 14.3.  

14.1 Demands on Performance Monitoring Algorithms  

CPM algorithms aim to calculate performance indices repeatedly over time and comparing them 
to alert limits. Each alert limit can be decided from statistical characteristics of the index or by 
some other criteria. Desired properties of CPM algorithms and tools have been stated by many 
authors, e.g., Horch (2000), Vaught and Tippet (2001) and Ingimundarson (2003). The most 
important of these properties are: 
• Non-invasiveness. CPM procedures should run without disturbing the normal operation of 

the control loops. Data needed for assessment shall be acquired under normal plant produc-
tion conditions without any additional excitations. However, careful inspection of the col-
lected (routine operating) data is recommended, as they may be not as informative as they 
would be if a substantial external excitation were introduced in the system.  

• Ability to Run Automatically. Ideally, a CPM system does need only little or no manual 
intervention of the operators or engineers.  

• Use of Raw Data. The use of archived (usually modified) data is not advisable at all. For 
instance, data smoothing, data compression and data quantisation affect the calculated per-
formance indices (the loop performance will be over-estimated) and thus should be avoided.  

• Detection of Bad or Under-performing Control Loops.  This is the core aim of the moni-
toring and assessment of the control loops. Usually, a host of control loops, usually embed-
ded in different levels, will be evaluated. Different methods for performance assessment 
should be applied. See Chapters 2–7. 

• Low Error Rate. False alerts occur when the algorithm signals bad performance even 
though the performance is actually good. Missed detections are those situations when the al-
gorithm should give alert but does not. Too many false alerts or missed detections result in a 
reduced trust and use of the CPM system. In practice, it is then very likely that the system is 
ignored or even switched off.  

• Diagnosis of Under-performance Causes. The determination of the reason(s) of poor per-
formance is a much harder task than detecting poorly performing loops, as there are only a 
few systematic ways of detecting the underlying causes. Candidate reasons for poor control 
performance are (i) limitations on achievable performance arising due to a combination of 
system and controller design, (ii) changes in system dynamics, (iii) varying disturbances, (iv) 
sensor faults, (v) system non-linearity and (vi) unknown sources; see Chapters 8–11. 
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• Suggestion of Suitable Measures to Remove the Root-cause(s) of the Performance Dete-
rioration. Ideally, the measures should indicate what should be done to improve the control, 
whether the problems may be overcome by retuning the controller(s), introducing a new (ad-
vanced) controller structure (e.g., to compensate for time delays), or re-designing some sys-
tem components (such as valves due sticking), etc. (Chapters 12–13). 

• Appropriate Presentation of the Results to the User (Human-machine Interface). The 
interface is often the key to the user acceptance, and therefore must be intuitive and easy to 
use. The interface provides a summary of problem areas that may exist in the plant, as well as 
a detailed presentation of the data collected and the analysis done. The results will serve for 
plant staff and for maintenance purposes. Thereby, one should avoid providing too much in-
formation content, as this leads to an increase of complexity, requiring more knowledge for 
the interpretation of the results and suggested measures. See Chapter 15. 
The desirable properties mentioned cannot be simultaneously attained. Therefore, only a 

compromise between these conditions has to be achieved in actual implementations of CPM and 
diagnosis systems, depending on the preferences of the specific customers/users. Also, the per-
formance of control loops is always subject to a number of practical limitations. These arise from 
plant dynamics, such as time delay, non-minimum phase behaviour, saturations and dynamics of 
actuators, noise characteristics, the effect of model uncertainty (particularly when the controller 
is model-based) and non-linearities; see Patwardhan and Shah (2002) for a nice discussion of this 
topic. All this is important information when monitoring/assessing the performance of control 
loops. Methods have been presented in Chapter 13 to monitor performance to the best achievable 
subjected to the known limitations, such as controller structure limitations.  

One of the main advantages of this approach is that only information about these limitations 
is required. One of the disadvantages is that there are many types of limitations and it is difficult 
to know them at all operating levels. Furthermore, performance far away from the optimal one 
might be perfectly acceptable in some situations (Horch, 2000). In other situations, performance 
may be not acceptable even if it is close to what is optimally achievable considering the limita-
tions. Sometimes, the control objective is not to keep the process at a set point, e.g., in level 
control of surge vessels. The purpose is to dampen the changes in controlled flow while keeping 
the liquid level in the vessel between limits. This is indeed contrary to the implicit design of 
conventional (PID) controllers (Hugo, 2001). A variety of techniques have been development by 
Horton et al., 2003) for the specific assessment of industrial level controllers.  

14.2 Review of Control Performance Monitoring Applications 

Control performance monitoring applications have been found in 64 publications (including a 
few PhD theses and technical reports) appeared during 1989–2004 (without claiming complete-
ness). Note that only those applications have been included, which are published and where a 
minimum of statements (description of plant, control objectives and assessment results) is given. 
Pilot studies, simulations and advertisement-oriented “success stories” of CPM product vendors 
were not considered. The survey revealed a remarkable number of application-case studies to 
date. 

Besides, other published industrial case studies can be found in Stanfelj et al. (1993), Häg-
glund (1999), Haarsma and Nikolaou (2000), Desborough and Miller (2001), Bode et al. (2002) 
and Li et al. (2003). Pilot plant studies are found in Harris (1989), Harris et al. (1996a), Huang 
and Shah (1999), Jämsa-Jounela et al. (2002), Horton et al. (2003), Thornhill et al. (2003a). 

The used abbreviations in the following tables are: 
• CB: covariance-based 
• CC: cascade control 
• COR: correlation method 
• DCB: design-case benchmarking 
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• EHPI: extended horizon performance index 
• FD: frequency domain method 
• FBC: feedback control  
• FCOR: filtering and correlation-based MV  
• FFC: feedforward control  
• GMV: generalised minimum variance 
• GPC: generalised predictive control 
• HIS: historical benchmarking 
• HVAC: heating, ventilating and air-conditioning 
• ICA: independent component analysis 
• Ii: idle index 
• IMC: internal model control 
• ISE: Integral of squared error  
• LCD: load-change detection 
• LL: likelihood method 
• LQG: linear-quadratic Gaussian  
• LTV: linear time-variant 
• MIMO: multi-input multi-output (multivariable) 
• MPC: model predictive control 
• MPC-PI: MPC-based PI control 
• MV: minimum variance benchmarking 
• NLI: non-linearity index 
• NLD: non-linearity detection  
• OD: oscillation detection  
• OI: oscillation index 
• OPI(D): optimal PI(D) control 
• RPI: relative performance index 
• RS-LQG: restricted structure LQG  
• SET: settling-time benchmarking  
• SPA: spectrum analysis 
• TMP: thermo-mechanical pulp 

14.2.1 Analysis of Fields of Application 

The greatest number of applications has been registered in the fields of refining, petrochemicals 
and chemicals (Table 14.1). Likewise, a wide range of application from pulp & paper mills is 
found, as given in Table 14.2. However, applications appeared in the mining, mineral and metal 
processing sectors are scarce; see Table 14.3. The author and his group have recently completed 
many successful applications in the metal processing field; some of them will be presented in 
Chapter 15.  

14.2.2 Analysis of Type of Implemented Methods 

Analysis of the implementations according to the kind of assessment (benchmarking) methods 
shows that MV benchmarking has found wide application (about 60% of the case studies). This 
fact indicates that this technique is mature and is the standard method in everyday use at most 
plants. In about 20% of the case studies, oscillation detection methods are applied, confirming 
the frequent occurrence of oscillating loops in industrial processes. The use of advanced (model-
based) benchmarking methods is found in only about 10% of the case studies, but is concentrated 
over the last few (5) years. This is due to the increasing application of advanced control methods 
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and to the increasing interest in monitoring the performance of supervisory control loops in the 
process industries.  
 

Table 14.1. Control performance assessment applications in refining, petrochemical and chemical sectors 

References Applications Benchmarking 
methods 

Harris (1989),  
Desborough and Harris (1992; 
1993), Harris et al. (1996a), 
Harris and Seppala (2001) 

• Polymer production data 
• Chemical process: cascade level control 
• Distillation column: duty and temperature 

controls  
• Distillation column: flow and level loops  

MV 
CC MV 
 
MIMO MV 
 
MIMO MV 

Kozub and Garcia (1993), 
Kozub (1996) 

Different distillation columns: analyses of 
several control loops 

MV 

Stanfelj et al. (1993) Distillation column: inferential temperature 
control 

FFC+FBC COR 

Harris et al. (1996a) Fractionation column MIMO MV 
Tyler and Morari (1996) Distillation column: overhead temperature 

control  
LL 

Huang et al. (1997a) 
Badmus et al. (1998) 
Huang and Shah (1999),  
Huang et al. (1999; 2000b) 

• Absorption process: 2 level control loops 
• Nitrid acid production facility: ammonia 

flow rate/gauze temperature cascade loop 
• Composition (SO2/H2S) control loop  

MIMO MV 
(FCOR) 
MIMO MV 
(FCOR),  
LQG 
MV (FCOR) 

Kendra and Çinar (1997) Autothermal tubular packed-bed reactor: regu-
lation of exit concentration and bed tempera-
ture 

FD 

Thornhill and Hägglund 
(1997) 

Analysis of 10 oil refinery loops (pressure, 
flow, temperature, level) 

OD 

Vishnubhotla et al. (1997) Distillation columns: tray end temperature 
control 

FFC+FBC MV 

Patwardhan et al. (1998),  
Patwardhan (1999),  
Gao et al. (2003) 

• Para-Xylene distillation unit: data from 6 
controlled variables (Xylene feed, tempera-
ture, internal reflux ratio, OX hold up, OX 
reflux drum level, OX reflux ratio) 

• Propylene splitter (C3F) column: top and 
bottom impurity controls 

• Hydro-cracker unit: recycle surge drum level 
control 

MIMO MV 
(FCOR), SET, HIS 
 
 
MIMO SET, HIS 
(MPC) 
LQG, DCB (DMC) 

Huang (1999) Distillation column: tray end temperature con-
trol 

LTV MV 

Thornhill et al. (1999, 2001) • Analysis of 12 refinery loops (pressure, flow, 
temperature, level) 

• Oscillation detection examples (sticking 
valves)  

EHPI 
 
OD 

Swanda and Seborg (1999) Distillation column: 
• Temperature control loop 
• Reflux drum level control loop 

SET 
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Horch and Isaksson (1999), 
Horch (2000) 

2 distillation columns: tray end temperature 
controls 

MV, EHPI 

Miao and Seborg (1999) Distillation column: 4 control loops (2 flow, 
level, pressure) 

OD 

Huang et al. (2000a) Combined gas oil (CGO) coker: MPC system 
(level, temperature, flow) 

COR, SPA 

Huang et al. (2000b) Cracking furnace + distillation column: 2 ten-
sion control loops  

MIMO FBC+FFC 
MV (FCOR) 

Ko and Edgar (2000) Distillation column: level-to-flow cascade 
control system 

CC MV 

Huang (2002) Cascade (flow/temperature) reactor control 
loop  

LTV MV 

Kinney (2003) Catalytic cracking unit: several regulatory 
loops (flow, pressure, temperature, level) 

MV, OD 

Shah et al. (2001) • Capacitance drum control loops (pressure, 
level)  

• Ethane cracking furnace: regulatory layer + 
advanced (MPC) layer  

 

MIMO MV 
(FCOR) 
MIMO LQG 
(MPC) 

Thorhill et al. (2002),  
Thorhill et al. (2003a,b,c) 

• Plant consisting of 3 distillation columns, 
two decanters and several recycling streams: 
15 control loops (flow, level, temperature, 
etc.) 

• 5 level and flow loops: oscillation detection 
examples (sticking valves)  

OD 
 
 
MV, OD 

Hoo et al. (2003) • Polymer reactor: composition control data 
• Chemical process: temperature control loop 

MV 
- 

Horton et al. (2003) Level control loops from 
• Gasoline splitter reflux drum 
• Stripper cold feed surge drum 
• Fractionator reflux drum 
• Gas oil tower reflux drum 

MPC-PI, OPI, LQG 

Paulouis and Cox (2003) Analysis of 14.000 control loops in 40 plants at 
9 sites worldwide (flow, pressure, level, tem-
perature) 

- 

Xia and Howell (2003) Chemical plant: 9 control loops (flow, pressure, 
level, temperature) 

OLPI 

Choudhury et al. (2004) Chemical complex: 2 flow control loops  NLD (OD) 
Olaleye et al. (2004a,c) Sulphur recovery unit: tail gas ratio control  LTV MV 
Kano et al. (2004) Data from 4 chemical plants: 2 flow and 2 level 

control loops 
OD 

Ko et al. (2004) Hydrobon unit 
• HP separator level control 
• Stripper ov’hds receiver level and reflux 

flow controls 
• Rich Amine Regen feed flow control 

RPI, OD 

Bonavita et al. (2004) Polymer production plant: flow control loop OD 
Yamashita (2005) Chemical plant: 4 control loops (level, flow) OD 
PAM (2005a) Divided-wall distillation column: 2 control 

loops (temperature, pressure) 
MV, GMV, RS-
LQG, MIMO 
LQGPC 

Xia and Howell (2005b) Chemical plant: 9 control loops (flow, pressure, 
level, temperature) 

OD, ICA 
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Table 14.2. Control performance assessment applications in pulp and paper mills 

References Applications Benchmarking 
methods 

Perrier and Roche (1992) Kamyr digester: consistency, level and level-
flow cascade control 

MV 

Eriksson and Isaksson (1994) • Wood chip refiner: dilution water control  
• Paper mill: consistency loop 

MV, OPI 
MV, OPI 

Hägglund (1995; 2005) • Pulp concentration control 
• Pulp flow control  

OD 

Jofriet et al. (1995),  
Harris et al. (1996) 

Thick stock system + dry end of a paper ma-
chine: several control loops 

MV 

Lynch and Dumont (1996) • Reject refiner: motor load control 
• Kamyr digester: chip level control  

MV 
MV 

Owen et al. (1996) TMP mill + paper machine: 
• Dryer section pressure control loops 
• Broke consistency and flow control loops 
• Overview of complete analysis of 124 loops of 

TPM and 52 loops pf PM 

MV 
 
 
 

Huang et al. (1997b)  Headbox control system: 
• Total head (pressure + level) control 
• Pond level control 

 
MV (FCOR) 
MIMO MV (FCOR) 

Forsman (1998) Paper mill stock prep area: 11 flow loops, 3 level 
loops, 6 concentration loops, 1 pH loop 

OD, Ii, NLD 

Ogawa (1998) Paper mill: 
• Clay flow loop 
• Two consistency loops 

MV 
 
 

Forsman and Stattin (1999) Stock preparation process: 30 control loops 
(flow, consistency, level, etc.) 

OD 

Horch (1999; 2000) TMP refiner: motor load control 
Several consistency, flow and level control loops 
from different pulp & paper mills 

MV, EHPI 
OD  

Ingimundarson (2003),  
Ingimundarson and Hägglund 
(2005) 

Analysis of 19 pulp & paper loops (flow, tem-
perature, level) 

EHPI (λ-monitoring) 

Stenman et al. (2003) Paper mill: steam pressure control OD 
 

Table 14.3. Control performance assessment applications in other industrial sectors 

References Applications Benchmarking 
methods 

Qin (1998) Wastewater treatment pH reactor: pH control MV 
Horch and Isaksson (1999) Lime kiln: front end temperature control  MV, EHPI 
Foley et al. (1999),  
Huang et al. (1999) 

Acid leaching process: pH control  MV 

Ettaleb (1999) Lime kiln: control of feed-end temperature and 
excess of oxygen  

MIMO MV 

Hägglund (1999) Heat exchanger: water temperature control Ii 
Haarsma and Nikolaou 
(2000) 

Snack-food frying process: moisture and oil con-
tent control (MPC)  

MIMO (FCOR) 
MV 

Bender (2003),  
Gorgels et al. (2003) 

Cold tandem mill: strip thickness control MV 

Jämsä-Jounela et al. (2003) Zinc plant: flotation cells: 3 level control loops MV, OD, ISE 
Li et al. (2003) Water flow control loop RPI 
McNabb and Qin (2003a,b) wood waste burning power boiler: 5 flow and 

pressure control loops 
MIMO MV (CB) 
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Bode et al. (2004) Semiconductor manufacturing: run-to-run control 
(MPC) of overlay in lithography 

MV 

Salsbury (2005) HVAC: air-handling units: temperature control 
loops 

LCD 

Singhal and Salsbury (2005) Commercial building: room temperature control 
loop 

OD 

PAM (2005b) Coal-fired power plant: steam turbine: speed and 
load control 

RS-LQG 

 

14.3 Review of Control Performance Monitoring Systems 

14.3.1 CPM Tools and Prototypes  

Many authors have developed systems/tools/packages for CPM based on one or more of the 
methods described in the previous chapters of the thesis.  
• A CPM system called QCLiP (Queen’s/QUNO Control Loop Performance Monitoring) mak-

ing use of an MVC-based performance index and other analyses of closed-loop process data 
was reported by Jofriet et al. (1995); see also Harris et al. (1996b). This system requires the 
time delay of each loop to be specified by the user. An open-loop test and analysis for each 
controller was suggested to determine this parameter.  

• Owen et al. (1996) have set up a prototype online system for automatic detection and location 
of malfunctioning control loops. Particular emphasis was placed on the description of fea-
tures, which allow this system to perform reliably in non-linear, highly interactive dynamic 
environments in paper mills. 

• A data analysis and graphical representation system for control loop performance assessment 
has been developed by Ogawa (1998) and was installed for an integrated paper mill with 
three paper machines.  

• Miller et al. (1998) described a comprehensive system for CPM developed by Honeywell Hi-
Spec Solutions. This system is now offered to the process industries as an Internet service 
called Loop ScoutTM.   

• A CPM-software tool implemented in MATLAB has been mentioned by Horch (2000) con-
taining the algorithms related to his PhD thesis. This tool is not supposed to work in an 
autonomous manner.  

• Paulonis and Cox (2003) have presented a large-scale CPM system (over a huge number of 
controllers) developed by the Eastman Chemical Company. Emphasis is placed on the de-
scription of the web-based system architecture (software, hardware, interfaces) and fea-
tures/capabilities (performance and diagnostic reports) from practical viewpoint.  

• Also, DuPont developed its own control performance monitoring package, called Perform-
ance SurveyorTM (Hoo et al., 2003). It monitors large numbers of process variables/control 
loops and generates valuable performance metrics and reports used in detecting degradation 
in process conditions, process equipment, instrumentation or control equipment.  

• In 2003, the ACT (Advanced Control Technology) Club launched its own (offline) control-
loop-benchmarking tool, called PROBE. This tool allows the performance of control loops to 
be compared against a number of benchmarks, including MV, GMC and LQG benchmarks. 
This tool is only available for the member companies of the ACT Club. 

14.3.2 Commercial Products 

Some process equipment suppliers have already realised the importance of tools to assess the 
control performance of systems. Commercially available products are listed in Table 15.4. In our 



318  14. Industrial CPM Technology and Applications 
 

opinion, only the first three products do meet most of the desired features discussed in Section 
14.1.  
• Perhaps, the most complete CPM and diagnosis package is Matrikon’s ProcessDoctorTM, as 

it is the only product that provides assessment and monitoring of both regulatory (PID) con-
trols and supervisory (MPC) controls. 

• PlantTriageTM from ExperTune is also very recommended for industrial use. It provides 
components for process modelling, basic statistics, controller performance assessment, oscil-
lation detection and diagnosis, and PID analysis and tuning. A demo version of this CPM 
package is available.  

• The PCT Optimizer SuiteTM is a powerful package, which includes components for effective 
control-loop performance monitoring (PCT Loop Audit Evaluator), PID-tuning and redesign 
(PCT Loop Optimizer). This package developed by ProControl Technology (PCT) is 
used/licensed by many other (consulting) companies.  

• Honeywell’s Loop ScoutTM seems to be more an audit tool rather than a continuous real-time 
monitoring tool. Loop Scout requires transmitting process data over the Internet to Honey-
well for processing and provision of reports. Since this is not acceptable to many companies, 
these (e.g., Eastman Chemical and DuPont) prefer to develop in-house products rather than 
use a commercial tool.  

• Emerson’s DeltaV InspectTM provides (graphical) tools for identification of under-performing 
loops and quantification/statistics of different (loop) operating conditions. Controllers (PID 
and fuzzy) can be tuned by means of Emerson’s DeltaV Tune. Emerson (Process Manage-
ment) also offers the EnTech Toolkit for signal conditioning, data collection, controller moni-
toring (Analyse Module) and tuning (Tuner Module).  

• ControlSoft’s INTUNETM software tools automatically generate PID parameters, retune con-
trol loops for optimal performance and monitor multiple PID loops to determine how com-
plete systems are being controlled.  

• The PI ControlMonitorTM offered by OSIsoft oversees plant control systems and keeps his-
torical system record in terms of different statistical figures.  

• KCL’s KCL-CoPA is a system for analysing the performance of control loops, providing a 
ranking list and performance parameter histories (different indices). 
 

Table 14.4. Commercially available control-performance assessment and tuning products 

Company (web address) Product Name (Acronym) 
Matrikon (www.matrikon.com) ProcessDoctor 
ExperTune (www.expertune.com) PlantTriage 
ProControl Technology (www.pctworld.com) PCT Loop Optimizer Suite (PCT LOS)

1
 

ABB (www.abb.com) OptimizeIT Loop Performance Manager (LPM) 
Honeywell (www.acs.honeywell.com) Loop Scout 
Emerson Process Management 
(www.emersonprocess.com) EnTech Toolkit, DeltaV Inspect 

ControlSoft (www.controlsoftinc.com) INTUNE 
KCL (www.kcl.fi) KCL-Control Performance Analysis (KCL-CoPA) 
OSIsoft (www.osisoft.com) PI ControlMonitor 
AspenTech (www.aspentech.com) Aspen Watch 
Control Arts Inc. (www.controlartsinc.com) Control Monitor 
Invensys (www.invensys.com) Loop Analyst 
PAS (www.pas.com) ControlWizard 
Metso Automation (www.metsoautomation.com) LoopBrowser 
PAPRICAN (www.paprican.ca) LoopMD 

                                                           
1
 Older versions of the PCT Loop Optimizer SuiteTM were known as the ABB Loop Optimizer Suite and 
the ABB AdvaControl Loop Tuner.  
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There is scarce information about other CPM products, so no evaluation is possible to date. 

Also, only a small portion of the methods presented in this thesis can be found in these packages. 

14.4 Summary and Conclusions 

The CPM technology has progressed steadily in the 15 years since the key research step taken by 
Harris (1989). This chapter has provided a comprehensive review of the current status in indus-
trial applications of this emerging field. The survey reveals a remarkable number of application 
case studies to date, with a solid foundation in refining, petrochemical, chemical sectors and pulp 
& paper plants. However, only a few applications appeared in other industrial sectors.  

Analysis of the implementations according to the kind of assessment methods used shows 
that, whereas MV benchmarking and oscillation detection has found wide application, advanced 
benchmarking methods are still relatively seldom applied, but increasingly found interest in the 
last few years.  

The field of CPM has matured to the point where several commercial algorithms and/or ven-
dor services/products are available for control performance auditing or monitoring. However, 
only a small portion of the methods presented in this thesis can be found in these packages.  
 





15 Performance Monitoring of Metal Processing Control 
Systems 

The number of control loops used in process industry is growing continuously, whilst manpower 
is being reduced. Consequently even companies that have embraced new control technologies, 
struggle to maintain satisfactory performance over the long term. Numerous investigations have 
shown that the performance of control systems in the process industries is not satisfactory, as 
mentioned in Chapter 1. This particularly applies for the steel industry, where it is the norm to 
perform controller tuning only at the commissioning stage and then never again. A loop that 
worked well at one time is prone to degradation over time unless regular check and maintenance 
is undertaken. 

The field of metal processing continue to provide challenges in the application of process 
control and supervision at every level of the automation hierarchy, enterprise optimisation and 
system integration. To re-instate good performance for the large number of control loops in the 
different automation and production systems of a steel processing line requires highly skilled 
personnel, making it time consuming, costly and error-prone. The use of automatic and online 
performance monitoring and re-tuning systems is therefore highly desirable to detect control 
performance degradation and rapidly restore and sustain top performance level. This is not in-
tended to eliminate the role of maintenance/control engineers, but to reduce their workload and 
allow them to focus on higher operational issues and other production related “fire-fighting” 
duties. 

Techniques successfully used in other process industries have to be adapted to the specific 
properties and conditions of steel processing, particularly rolling mills, showing high sample 
rates, varying time delays and semi-continuous operation. This chapter provides a contribution in 
this direction. In Section 15.1, a brief introduction to the metal processing technology and auto-
mation is given. Then many practical aspects of CPM in metal rolling are discussed in Section 
15.2, including the special effect of oscillations, the batch-wise performance evaluation, the 
time-based vs. length-based setting and the use of specific performance indices. Successfully 
completed industrial case studies and tailored CPM tools are presented in Section 15.3. The 
studies involve the application of different CPM methods to different plants in the rolling area.  

15.1 Introduction to the Metal Processing Technology 

This section is devoted to a brief introduction to metal processing and automation technology, so 
that readers, who are not familiar with rolling processes, will understand the problems addressed 
and the methods applied. Steel processes are a wide class of industrially important processes, 
which mainly include iron-making, steel-making, casting, hot and cold rolling and coating. Im-
proving the control performance of steel processes is of substantial industrial interest. Enhanced 
control of the strip-quality attributes leads to significant reductions in material consumption, 
greater production rates for existing equipment, improvement in product quality, elimination of 
product rejects and reduced energy consumption. Steel processes have many characteristics that 
challenge the development and application of advanced control and monitoring methods: 
• Metal processing plants are very complex, consisting of mechanical, electrical and hydraulic 

components, sensors, software and hardware, and control systems, which are non-linear and 
multivariable in nature.  
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• Metal processing plants are usually subject to a wide range of dynamic disturbances, parame-
ter variations and constraints, i.e., actuator saturations, inequality constraints, couplings, etc.. 

• Most of metal processes (particularly in rolling mills) have fast dynamics (with small time 
constants) and dominant time delays, as many quality parameters can only be measured some 
distance away from the plant. Moreover, the time delay is usually varying (as function of the 
strip velocity) during the dynamic phases (acceleration and deceleration). 

15.1.1 Steel Processing Route and Control Objectives 

Steel plates, coils and sheets destined for end customer (e.g. automotive industry) undergo many 
processes before final delivery; see Figure 15.1. A typical route starts from raw materials to slab 
includes cooking, sintering, ironmaking in blast furnaces, steelmaking and casting. From a slab 
to a coil, there is then pre-heating, multiple passes on a roughing mill, processing through a hot 
strip (tandem) mill, coiling, cooling and a sequence of repeated passes of uncoiling, cold reduc-
tion, recoiling and cooling, followed by hot-dip galvanising (or coating). At some points between 
the cold mill passes, the coil may be annealed and then cooled again. In all cases, the basic prin-
ciples of the rolling operation are similar. There may be also finishing processes such as slitting 
or tension levelling, anodising or painting, before the coil is prepared for shipment to the cus-
tomer.  

 
 

 
Figure 15.1. Typical metal (steel) processing routes for production of heavy plates, hot strips and cold 
sheets. 

 
In a typical single-stand reversing strip mill (Figure 15.2), the strip is paid off a coiler at one 

side of the stand, reduced in thickness as it passes between the work rolls (WRs), supported 
between a pair of larger diameter backup rolls (BRs) and re-coiled by a coiler at the other side of 
the stand. A main-drive train provides rotation of the work rolls with desired speed and rolling 
torque. Roll gap adjustment mechanisms provide setting of the required gap between WRs and 
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may also allow the elevation of the pass line to be adjusted. The mill housing is designed to con-
tain the mill stand components and to withstand the rolling load. In the next pass, the roll gap is 
reduced and the process is repeated in the reverse direction. This sequence continues until the 
strip is of the desired final thickness.  

Traditionally, however, the major portion of rolled steel strip is produced on large tandem 
rolling mills, where the strip is put through a series of rolling stands, typically 5–7 stands in hot 
rolling and 4 or 5 stands in cold rolling. In cold tandem mills, steel strip is reduced from 2–6 mm 
thickness to 0.4–3 mm in a single pass. In each of the stands, the steel is exposed to a roll force 
of 10–20 MN. Because steel undergoes a high degree of work hardening during cold rolling, 
most of the total reduction takes place at the first stands. The maximum speed of the strip is 250–
300 m/min at the first stand and, owing to reduction, 1200–1250 m/min at the last stand. Besides 
the conventional 4-high mill configuration, modern 6-high mills, Z-high mills and 20-high mills 
(for production of stainless steel) are available; see Roberts (1978) and Ginzburg (1989) for 
more detailed descriptions of rolling mills.  

 
 

  
Figure 15.2. Four-high mill stand: inside view (left) and schematic arrangement (right). 

15.1.2 Control Objectives 

From the point view of the customer, there are two major issues associated with the rolling of 
flat metal, these being the metallurgical properties and the dimensional characteristics of the 
strip. The metallurgical properties are principally concerned with strength and ductility of the 
material and are influenced by the heat and deformation caused by the rolling process and at a 
later stage by annealing in galvanising plants (Section 15.3.3). The most relevant dimensional 
requirements (i.e., strip gauge/thickness, profile, shape/flatness and surface finish) will be intro-
duced in this section; see Figure 15.3. 
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Figure 15.3. Sketch to illustrate dimensional strip quality features. 

 
The main dimensional requirement of most rolled products is the final thickness. As the strip 

is essentially a two-dimensional product: thickness variations may occur in the longitudinal di-
rection (or MD: machine direction, at the centreline), which is commonly referred to as the strip 
thickness (or strip gauge); thickness variation occurring in the transverse direction (or CD: cross-
direction) is known as the thickness profile. This is usually expressed in terms of its “crown”, 
i.e., the difference in thickness between the centre and positions in the region of strip edges, 
commonly at some arbitrary distance, e.g. 40mm, from the actual strip edge. In practice, it is 
known that strip-thickness profile is substantially created during the hot rolling operation, i.e., in 
the earlier stands of a hot-strip mill. It is then believed that the relative profile will remain about 
the same as the overall thickness of the cold-rolled strip is reduced, except for narrow regions 
near the strip edges.  

Strip shape (or online flatness) is the next, most important quality issue in the rolling of flat 
products. The term strip shape is used rather ambiguous in the sense that it may refer to the 
cross-sectional geometry of the strip or to the ability of the strip to remain flat on a horizontal 
planar surface for subsequent processing. Usually, the emphasis is upon the second meaning of 
shape. This is important as the strip, which buckles, is non-uniform and difficult to process, and 
thus may be responsible for equipment damage or the need for additional (expensive) processing. 
In addiction, it may not be appealing – from an aesthetic viewpoint – when such product reaches 
the market place. As a consequence, over the last decades, the measurement, control and investi-
gation of the problem of the strip shape have become a crucial area of research in rolling. 
Though considerable progress has been made in improving the shape of the rolled strip, there 
remain areas of uncertainty in the modelling and mechanisms, which generate it (Jelali et al., 
2001). The exceedingly complex interactions, which determine the resultant strip shape, have 
made significant progress in this area difficult. 

The cause of strip shape will be explained and defined with the aid of Figure 15.4. When the 
strip is reduced in thickness, a corresponding length increase results, provided the width remains 
constant (volume conservation), which is almost the case for cold rolling. Shape problems occur 
when the reduction of the strip is not uniform across the width of the strip. Now, the strip is slit 
into numerous longitudinal ribbons, each of the length li (see Figure 15.4). The difference be-
tween the stress value for the ith ribbon and a basic stress value (which may be the lowest stress 
value, the mean stress value or the stress value in the strip centre), Δσi, corresponds to a differ-
ence in elastic strain Δli/l0, according to Hook’s law: 
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0 s

Δ ( ) Δ ( )i il x x
l E

σ
= − . (15.1) 

It is important to note that Equation 15.1 is only valid as long as no major (manifest) shape 
defects occur. Generally, shape is expressed in terms of the so-called flatness index I-units (IU), 
i.e., 

5 5

0 s

Δ Δ: 10 [IU] or 10 [IU]l
l E

σΩ Ω= × = − × . (15.2) 

For a steel strip with an elastic modulus Es = 210000 N/mm2, 1 IU corresponds to a stress differ-
ence of 2.1 N/mm2 or a length variation of 10 µm/m.  

 
 

 
Figure 15.4. Correlation between strip-length differences and longitudinal stresses for an uneven sheet 
sample a) with center buckles; b) length differences after division into ribbons; c) longitudinal stresses on 
tension; d) principal of radial force measurement based on deflector roll (Keck and Neuschütz, 1980). 

 
In the rolling of strip, poor shape of the rolled strip principally results from a mismatch be-

tween the loaded roll-gap geometry and the cross-sectional profile of the strip. Major causes of 
such incompatibility may be a non-uniform incoming strip profile (e.g., with ridges), non-
uniform crowning of the rolls, non-uniform lubrication across the width of the strip in the roll 
bite, or non-uniform metallurgical properties, such as striations of coarse-grained material, which 
exhibits a different resistance to deformation than the bulk of the work piece. A number of non-
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uniform stress patterns may appear in the longitudinal and transverse directions and give rise to 
shape defects, such as centre buckles, edge waves, quarter buckles, etc.; refer to Roberts (1978) 
for description of shape defects.  

The term strip flatness (or offline flatness) is known as a measure of the ability of the strip to 
lay flat when placed on a level surface with no externally applied loads (tension). Flatness is 
related to shape in that the transverse variation in stress may result in a buckled strip, when the 
tension applied during rolling is removed. From the definitions given above, flatness seems to be 
the quality parameter that is of real interest to the end customer. However, flatness cannot be 
directly measured online during the rolling operation as tension is always applied. Hence, it is 
common practice to measure the shape (or online flatness) using a shapemeter (usually a flatness 
measuring roll), as an indicator for flatness and to use the shape signal for online flatness control 
systems. Thus, the terms shape and flatness are very often used synonymously (particularly in 
the German speaking region). A shapemeter measures the radial forces (locally) exerted on the 
strip portions by using sensors placed on the perimeter of the flatness roll. The radial forces are 
then transformed into tension-stress values (Figure 15.4d). Details on flatness measurement can 
be found, e.g., by Keck and Neuschütz (1980) and Mücke and Gorgels(2007).  

15.1.3 Mill Automation 

The field of metal processing provides challenges in the application of process control, enterprise 
optimisation and system integration. Figure 15.5 shows the main functional levels (including 
relative time scales) in the metal processing automation hierarchy, where various monitoring, 
control and optimisation activities are employed:  
• Level 1. Basic Automation. This level includes all equipment and systems for measurement 

and dynamic control. The control systems are usually divided into basic (actuator) controls 
(such as position/force controls, drive controls, cooling spray controls) and technological 
controls (such as gauge controls, temperature controls and profile and shape/flatness con-
trols). Sometimes, the drive system controls and dedicated hardware systems and measuring 
devices are isolated as Level 0 (not shown in the figure).  

• Level 2. Process Automation. This level consists of the rolling scheduling and setup sys-
tems (incl. mathematical models, rolling strategies, optimisation and adaptation), diagnostic 
functions as well as the human-machine interfaces (HMI), which are usually located in an 
enclosed pulpit. Level 2 functions play a critical role by ensuring the process is operating 
safely and satisfies mill constraints and throughput targets. 

• Level 3. Production Planning and Management. It includes order processing, production 
scheduling, sequencing and optimisation, maintenance scheduling, as well as historical data 
collection and quality management. Production rates of all intermediate and final products 
are planned and coordinated based on equipment constraints, storage capacity, sales projec-
tions and the operation of other plants, sometimes on an enterprise-wide basis.  
The relative position of each block in Figure 15.5 is intended to be conceptual because there 

can be overlap in the functions carried out, and often several levels may utilise the same comput-
ing platform. In Figure 15.6, a typical automation configuration, partly adopted from Lackinger 
et al. (2002), for cold tandem mills is illustrated. 

In metal rolling, the (nominal) schedule calculation produces a set of nominal values (called 
rolling schedule) for gauges and tensions, bending forces and mill speed (for each pass or stand). 
The setup calculation of the references (set-points) for stand speeds, roll-gap positions and shape 
control actuators (bending forces, shifting positions, cooling sprays) ensures achieving the speci-
fied schedule(s). These set-point calculations are usually performed before the strip enters the 
mill, hence, the term pre-setting is also widely used in steel industry. An accurate pre-setting 
firstly reduces the initial work required by the (online) control systems and secondly results in a 
higher percentage of the strip meeting the quality targets. Gauge, profile and shape controls are 
activated as soon as corresponding reliable measurements are available. 
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Figure 15.5. Typical hierarchy of rolling mill automation. 

 
 

 
Figure 15.6. Typical automation structure for a tandem cold mill (Lackinger et al., 2002). 
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15.1.4 Overview of Metal Processing Control Systems 

This section presents a brief review of the state of the art in the process automation and control 
of metal processing, especially in rolling mills; see Figure 15.7. Control loops in metal process-
ing plants are usually classified into the two following categories: 
1. Main/Primary/Technological Loops. Loops that directly control the product-quality attrib-

utes. Their performance improvement causes the reduction in product variability, which can 
be directly translated into profitability.  

2. Auxiliary/Secondary/Basic Loops: Subordinated loops that do not directly control the prod-
uct quality, but can indirectly affect the product variability.  
In this chapter, emphasis is placed on technological control systems. The role of basic control 

systems should, however, not be underrated, as they build a prerequisite for optimal operation of 
the higher technological control systems.  
 
 

 
Figure 15.7. Main controllers in rolling mills (Jelali, 2006b). 

15.1.4.1 Basic (Actuator) Controls 

Actuators are the second vital element in that they provide the capability to influence the product 
quality parameters. The performance of technological control systems substantially depends on 
response of the underlying actuator-control systems. These usually consist of feedback control 
loops that regulate process variables such as pressures, positions, forces and speeds.  

Drive Control Systems 

There are two principal types of main-drive motors, which are used in rolling mill stands: (i) DC 
(direct current) motors and (ii) AC (alternating current) motors. Traditionally, DC drives are 
used, which provide reverse rotation of the rolls in a wide range of the roll-speed control. How-
ever, due to remarkable advances in the progress of semiconductor, microprocessor and control 
technology, the adoption of AC drive to main motor of strip mills has been accepted recently.  



 15.1 Introduction to the Metal Processing Technology 329 
 

Hydraulic Roll-gap Adjustment Systems 

The performance of gauge control substantially depends on the response of the roll-gap-control 
device. Older rolling mills have mechanical screw-down systems. Since the 1970s, hydraulic 
roll-adjustment systems became standard, as they provide much faster and more accurate opera-
tion than screw systems. Position and force control (typical sampling time = 2 ms) of the hydrau-
lic systems is commonly implemented at every modern mill. 

Profile and Shape Actuators 

It should be remembered that poor shape basically results from a mismatch of the cross-sectional 
profile of the strip and the loaded roll gap. Thus, automatic shape-control systems attempt to 
modify the loaded roll-gap geometry by activating the actuator systems installed on the mill to 
influence the degree of compatibility between the strip profile and the roll-bite geometry. The 
most common actuators are (see Figure 15.8 and Figure 15.9, where the actuators are indicated 
by numbers between parenthesises): 
• Roll Tilting (4-high, 6-high). Differential adjustment of the hydraulic roll-adjustment sys-

tems can serve to correct the mainly-linear asymmetric components of profile and shape er-
rors. This operation is known as tilting (or skewing) and means that the actuator in each side 
of the mill is moved by the same amount but in opposite direction.  

• Roll Bending (4-high, 6-high, Z-high). The application of positive or negative bending 
between the work-roll chocks enables the roll-gap profile to be modified dynamically. Work-
roll bending is the fundamental and – without any doubt – the most available actuator for 
controlling profile and flatness in rolling mills. In modern six-high mills and Z-high mills, in-
termediate-roll bending is also commonly used. 

• Roll Side Shifting (4-high, 6-high, Z-high, 20-high). By moving the WRs sideways, the 
foundation between the WR and BR can be changed leading to reducing the natural crown 
due to roll deflection, and thus to an enhancement of the work-roll bending effect. The resul-
tant crown achieved is dependent on the form of the ground camber on the rolls. The most 
known form is the continuously variable crown (abbreviated as CVC), which is not strictly 
dynamic. On cluster mills, shifting is realised by (relatively slow) axial displacement of the 
first intermediate (taper) rolls; see Figure 15.9. 

• Roll Cooling (4-high, 6-high). The work-roll thermal camber can be influenced by control-
ling the amount of cooling being sprayed onto them. A series of spray nozzles fitted onto a 
spray bar can be individually controlled with valves to allow differential cooling of the work 
rolls. Spray cooling can control local flatness defects, but is a relatively slow actuator.  

• Backing-shaft Bending (20-high). In 20-high rolling mills, so-called crown eccentrics, 
equipped with crown adjustment cylinders (Figure 15.9) in equidistant positions over their 
barrel length, are used as backup rolls. They specifically adjust the roll contour by raising or 
lowering the position of the saddles. These in turn affect (locally) the roll-bite geometry so 
that strip of closest flatness tolerances can be produced. Note that there are many other con-
figurations of cluster mills; see Sendzimir (1993). Usually, 20-high mills are used for rolling 
hard metal, such as stainless steel, to produce extremely thin sheet metal with small-diameter 
WRs. 
Many other actuator systems, such as roll-crossing mechanisms, hydraulically-inflated 

backup rolls and the dynamic shape roll (DSR), have been developed and installed on dispersed 
mills, mainly in Japan. Note that most of actuators mentioned are hydraulic servo-systems. 
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Figure 15.8. Arrangement of typical profile and flatness actuators for 4-high rolling mills (1: tilting; 2: 
work roll bending; 3: work roll shifting; 4: roll cooling).  

 
 

 
Figure 15.9. Typical arrangement of 20-high mills from side (left) and front view (right).  

15.1.5 Technological Control Systems 

Since the 1960s, the computer control systems have been installed in rolling mills. Nowadays, 
the control area covers all stages of metal processing. Control systems are widely applied in the 
whole steel-processing route, ranging from treating the raw materials to producing the final 
products. In the rolling area, the most important technological controls and their subordinated 
basic controls are summarised in Figure 15.7. The automation technology of steel processes has 
matured; however, the development of advanced control systems in this area is still active. The 
reason is that the demand to improve quality (dimensional accuracy, mechanical and surface 
properties) has become increasingly severe. Moreover, the market need for high tensile and ultra-
thin gauge in hot rolling and for high and highest strength materials in cold rolling, inducing 
problems, which can only be solved by enhanced control systems.  
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Gauge Control 

Gauge (and tension) control is perhaps the most active area in rolling-mill control in the last 
decades. The purpose of gauge control for a rolling mill is to maintain the specified strip thick-
ness despite a large number of disturbances, such as variations of the strip hardness, the entry 
strip thickness and tension (typical sampling time = 10 ms). 

Since the strip gauge cannot be measured directly at the exit of the roll gap, it has to be esti-
mated using any kind of observer. Common gauge control strategies are feedback (or monitor) 
control, gaugemeter control, feedforward control and mass-flow control, or combinations of 
these. Smith-predictor control has also been proposed for gauge control (Jelali et al., 1998). 
Overviews of current practice in gauge (and tension) control as well as related problems for 
rolling mills are provided by Ginzburg (1989), Rigler et al. (1996), Rath (2000) and Bilkhu 
(2001).  

Profile and Flatness Control 

Thickness profile and flatness are two of the key quality attributes in strip rolling. Ever since the 
first on-line measurement of shape was recorded using a shapemeter in the early 1960’s, shape 
control systems have been developed and refined to meet the high standards of product flatness 
required by the end users (typical sampling time = 100 ms). With market demands driving the 
rolled products to thinner gauges, which are more prone to flatness defects, the understanding 
and control of the profile and flatness become anymore crucial. A great deal of effort has gone 
into improving the shape of rolled strips for the various rolling mill types. In addition to feed-
back control (known as monitor control), it is common to use a feedforward controller to com-
pensate for variations in the rolling force by symmetric adjustment to the roll bending force. The 
state of art and trends of flatness control are described by Jelali et al. (2001) and Gorgels et al. 
(2003).  

15.2 Practical Aspects of Performance Assessment in Metal 
Processing 

There are some special issues that have to be considered when assessing the performance of 
control systems in metal processing. Some of these are discussed in this section.  

15.2.1 Online vs. Batch-wise Evaluation  

Metal rolling is a batch process, where time between two coils or passes is in the range of min-
utes. Therefore, control performance evaluation is usually carried out offline after completing the 
batches. In our experience, there are, however, some situations, in which the analysis should be 
done online by moving-window or recursive calculation of the performance index (Section 
2.4.2). In this way, abrupt performance degradation, for instance, induced by specific oscillations 
could be detected and an alert can be given to the operator who may initiate countermeasures, 
such as speed changes, during the rolling of the same coil. This situation has been observed at 
temper rolling mills, where the rolling of just one coil takes up to 10 minutes, corresponding to a 
strip length of up to 15 km and more. Therefore, a lot of things can happen and there is enough 
time to take action during a batch in such cases. Figure 15.10 illustrates an example of such a 
situation, where the control error (thickness deviation) shows intermittent oscillation and how the 
mill operator changes the speed to avoid the oscillation. This clearly indicates the need for CPM, 
i.e., oscillation detection and performance-index calculation, to be implemented online. Since a 
sampling time of 10 ms is usual for thickness control, an online implementation is challenging.  
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Figure 15.10. Data from a temper mill indicating the need for online control performance monitoring. 

15.2.2 Oscillation Diagnosis  

Oscillations may be a very drastic form of plant performance degradation in rolling mills. Oscil-
lation-related problems in this area are similar to those in other industries in that oscillations are 
caused either by aggressive controller tuning, the presence of non-linearities, e.g., static friction, 
dead-zone, hysteresis, or disturbances. Some aspects, however, do differ: oscillation-free signals, 
e.g., strip thickness, do not exist due to the large number of mechanical components present in a 
rolling mill and due to many defects induced by the strip surface and geometry variations, 
mainly determined by the upstream processing stages.  

Thus, the primary aim of vibration/condition monitoring and diagnosis in rolling mills is to 
detect the source of oscillation, such as deformed rolls, roll eccentricity, faults in incoming strip, 
bearing defects, etc. and then compensate for some of them or keep their amplitudes as small as 
possible rather than fully avoiding them. A major task when diagnosing the causes of periodic 
strip-quality faults is the identification of components, process signals and incoming strip de-
fects, that can be characterised by “defect” frequencies, proportional to the rolling speed. Chatter 
marks on the strip are perhaps the most known defects produced in rolling. For thorough discus-
sions of this topic, the reader should consult Markworth et al. (2003) and Polzer et al. (2003). 

15.2.3 Time-based vs. Length-based Assessment 

In rolling mills, the speed is not constant (acceleration, deceleration); see Figure 15.11. This 
means that strip-length samples are not equally distant in time. This could motivate to carry out 
performance evaluation in a length-based setting rather than in a time-based setting. This would 
also avoid the need to estimate any time delay, as the distance from actuator to sensor is constant 
in the length-based scenario. Indeed, this is a simple and straightforward approach to calculate 
the performance indices for the whole rolling phase, including acceleration and deceleration. 
Note, however, that data are usually gathered in a time-based setting and transformed into a 
length-based setting using the strip speed.  

For the data shown in Figure 15.11, the Harris index values have been calculated in both sce-
narios, i.e., time-based and length-based settings, for the stationary phase and for the whole roll-
ing phase but excluding head and tail ends. The results are given in Table 15.1. As expected, 
when the speed is constant, both evaluation modes give the same value for the Harris index. 
When the data of dynamic phases are included in the length-based assessment, the index value 
indicates consistent performance for the whole coil.  

When the strip speed, and thus the time delay, is not accurately known, an estimate of the 
time delay is necessary and may be determined by applying one of the many time-delay estima-
tion methods (Björklund, 2003), usually requiring special experimentation with the process. 
Otherwise, the prediction horizon method suggested by Thornhill et al. (1999) is recommended; 
see Section 3.3.   
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Figure 15.11. Typical traces of coil data considered. 

 
 

Table 15.1. Harris index values for different evaluation scenarios. 

 Stationary phase Whole rolling phase 
Time-based setting 0.74 - 
Length-based setting 0.74 0.77 

 

15.2.4 User-specified Indices  

Although the minimum variance benchmark should be the standard one against which the per-
formance of other controllers may be compared, it is well known that it has some drawbacks, 
such as the assumption of unlimited control action and controller order. This often results in a 
pessimistic benchmark: in the case, where the minimum variance index signals poor perform-
ance, further investigations are warranted. The job can be carried out by considering more realis-
tic performance methods in terms of user-specified benchmarks, such as specifications in terms 
of close-loop dynamics, or assessment values extracted from historical data during a time period, 
when the control system was satisfactory running from the viewpoint of control/maintenance 
engineers. Such criteria are called baselines, historical data benchmarks, or reference data set 
benchmarks (Chapter 3).  

The performance of gauge control is usually measured by the cumulative strip length per-
centage, e.g., 95.4% or two standard deviations, lying within a prescribed thickness tolerance, 
typically around 1% of the target thickness.  

For evaluating the flatness control performance, the average of all maximum values of flat-
ness error is often used as performance criterion: 
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= ∑ … , (15.3) 

where N is the number of data samples over the strip length and nw the number of discrete points 
over the strip width.  

Moreover, it is useful to determine the percentage of time the controller is in AUTO mode, 
also known as time-on-control, and the ratio of time in saturation to the total time period consid-
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ered for each coil. The time-in-saturation may give hints about poor performance due to inade-
quate actuator sizing rather than poor controller tuning. 

15.3 Industrial Cases Studies and Developed Monitoring Tools 

The majority of applications of CPM found are related to regulatory (basic) control loops. No big 
attention is paid to the performance assessment of the more important technological control 
systems. In our experience, companies are only interested in the monitoring and tuning of those 
control loops, which have a significant impact on economic factors such as production rate, 
product quality, energy and material consumption and plant availability, or maintenance costs. 
Suitable methods are therefore required to assess the more important technological control loops, 
whose performance can directly be related to the economical factors mentioned. This thesis 
demonstrates the effect of control performance assessment and control tuning on technological 
performance and revenue optimisation in metal processing.  

 

 
Figure 15.12. MATLAB offline environment for performance assessment. 

 
Some of the control performance monitoring methods presented in the previous chapters have 

been successfully applied to the following processes: 
• Thickness and flatness control of a tandem mill. 
• Temperature control of an annealing plant in a hot-dip galvanising line. 
• Zinc-layer-thickness control in a hot-dip galvanising line. 
• Temperature control in the run-out table in a hot strip mill. 
• Thickness and flatness control at a two-stand temper rolling mill. 
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• Thickness control at a Sendzimir mill.  
A MATLAB offline tool for testing and comparing different CPM methods has been devel-

oped, as shown in Figure 15.12. In this section, we present and discuss the results of the first 
three industrial cases studies. 

15.3.1 Gauge Control in Cold Tandem Mills 

The main objective of this study is to assess the current performance of the strip thickness con-
trol system in a tandem cold rolling mill (TCM), identify their primary source of variation and 
analyse the benefit of implementing FFC. The TCM, where the strip is reduced in thickness 
typically from 3 mm (at the entry of the first stand) to 0.8 mm (at the exit of the fourth stand), 
consists of four rolling stands. The mill is equipped with different measurements systems as 
depicted in Figure 15.13.  

 
 

 
Figure 15.13. Structure of the control system in the considered cold rolling mill (FBC: feedback control; 
MFC: mass flow control; FFC: feedforward control; HGC: hydraulic gap control; TGC: tension by gap 
control; MSC: motor speed control; AFC: automatic flatness control). 

 
The control objective is to keep the thickness deviation (Δh1) at the exit of the first stand as 

small as possible despite a large number of disturbances, such as variations of the strip hardness, 
the entry strip thickness and tension. The control strategy implemented consists of the combina-
tion of feedback control (known as monitor control), mass flow control and feedforward control. 
The manipulating variable is the position (S) of the (controlled) hydraulic capsule. The thickness 
feedback control uses the actual thickness deviation measured by the thickness gauge at the exit 
of the first stand. Based on the two strip-speed-measuring devices (for v0 and v1) and the thick-
ness gauge (h0) at the entry side of the first stand, the mass flow equation (law of volume conser-
vation) allows for the calculation of an estimation of the strip exit thickness in the moment when 
the considered strip element is under deformation in the roll gap. The thickness estimate is the 
core of the mass flow control, which allows faster reaction to thickness deviations with by-
passing of the varying time delay between the roll gap and the exit gauge. The thickness feed-
forward control is used to compensate for the strip thickness deviation (Δh0) measured at the 
entry of the first stand. The purpose of the thickness feedback control at the last stand is to cor-
rect for remaining thickness deviations (Δh4) mainly resulting from disturbances at the stands 2 
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to 4. In the following, we concentrate on the evaluation of the key thickness control at the first 
stand of the mill.  

15.3.1.1 Data Pre-processing 

After acquisition of suitable data sets, pre-processing is needed to verify the appropriate sam-
pling time, eliminate bad data and outliers, to mean-centre the data, etc. The closed-loop data 
used for thickness control monitoring were available at 0.050s sampling rate, with a length N 
varying between 1200 and 7300 (typically N = 3000) depending on the strip length. The discrete 
time delay varies between 5 and 16. Only the steady-state operation phases, where the rolling 
speed, and thus the time delay, is constant, are considered for the first assessment.  

15.3.1.2 Performance Evaluation in Terms of Minimum Variance Benchmark 

The performance analysis has been performed coil-wise for the steady-state phase (with constant 
rolling speed), and bar charts for the performance indices have been generated. Figure 15.14 
illustrates the individual minimum variance indices and the oscillation indices (Forsman and 
Stattin, 1999) for a representative product mix of 140 coils (corresponding to approximately one-
day production).  
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Figure 15.14. Results of performance assessment of the thickness control at the first stand. 

 
It can be concluded that the thickness control delivers good (η ≥ 0.6) to optimal (η ≥ 0.8) 

performance, and significant improvement is possible for only a few coils. Since the delay in 
disturbance path is longer than the output delay, the contribution of FF to of the total variance 
vanishes for all coils, indicating that a FFC tuning alone cannot affect the control performance. 
In this case study, AR(MA) modelling was sufficient; we did not found any advantage in apply-
ing subspace model identification for calculating (MVC) control performance indices. 

The data of a typical coil (no. 88) with very good control performance is shown in Figure 
15.15. The minimum variance index is close to unity. The analysis of variance in Table 15.2 
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reveals that the disturbance is only responsible for 3% of the total variance. The control perform-
ance is thus close to optimal (i.e., MVC) and no actions are suggested.  

 
 

Table 15.2. Variance analysis table for coil no. 88. 

Disturbance MV FB FF FB+FF Total 

ε 39.7 
(93%) 

1.7 
(4%) — — 41.4 

(97%) 

w = Δh0 0 — 0 1.3 
(3%) 

1.3 
(3%) 

Total 39.7 
(93%) 

3.0 
(7%) 

42.7 
(100%) 
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Figure 15.15. Measured variables for coil no. 88 showing good thickness control performance. 

 
The values of the oscillation index for coils no. 4, 21, 122 and 126 indicate distinct oscillative 

pattern in the output signals. For instance, based on the data in Figure 15.16 and the variance 
analysis results in Table 15.3, the measured thickness of coil no. 21 clearly contains an oscilla-
tion due to the presence of a disturbance coming from the entry strip thickness. This also ex-
plains the low minimum variance index value. Since only the variance contribution for FB+FF 
(31%) is large, one can expect a FBC tuning (for disturbance rejection) to be able to sufficiently 
reduce the variance (i.e., 2

FB+FF,wσ ) for these coils.  
 

Table 15.3. Variance analysis table for coil no. 21. 

Disturbance MV FB FF FB+FF Total 

ε 41.7 
(44%) 

24.0 
(25%) — — 65.7 

(69%) 

w = Δh0 0 — 0 29.1 
(31%) 

29.1 
(31%) 

Total 41.7 
(44%) 

53.1 
(56%) 

94.8 
(100%) 
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As the material gets harder and harder, from stand 1 to stand 4, the controller will have more 

and more problems to remove, e.g., incoming disturbances. This can best be seen in Figure 
15.16, i.e., the lowest subplot, showing that the incoming thickness deviations propagate till the 
final thickness at the exit of stand 4. This behaviour is reflected in the Harris index, as shown in 
Figure 15.17: the index values are significantly lower than those given in Figure 15.14. This 
observation applies also for the case of rolling in single-stand reversing mills, where the material 
becomes harder from pass to pass. This also implies that controller tuning should take into ac-
count this behaviour, i.e., using gain scheduling as function of hardness.  
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Figure 15.16. Measured variables for coil no. 21 showing bad thickness control performance due to the 
presence of an oscillation coming from the entry strip thickness (d ≡ Δh0). 

 
After revamping of the automation system on the considered mill, the performance of the 

gauge control was evaluated again. Figure 15.18 illustrates the Harris index for 80 coils, showing 
that the control performance is now good to optimal for all coils. There are also no significant 
oscillations in the loop. This assessment study was carried out after commissioning of the con-
troller, and it reveals that the tuning is very well, as expected from a “fresh” revamping measure. 
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Figure 15.17. Results of performance assessment of the thickness control at the last stand. 
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Figure 15.18. Results of performance assessment of the thickness control at the first stand after revamping. 

15.3.2 Flatness Control in Cold Tandem Mills 

The control objective in this study is to maintain the strip flatness deviation (ΔΩ), at the exit of 
the mill at a minimum despite a large number of disturbances, such as non-uniform incoming 
strip profile, non-uniform crowning of the rolls, non-uniform lubrication across the width of the 
strip in the roll bite, or non-uniform metallurgical properties.  

Shape measurement is performed by measuring a differential tension (or equivalently length) 
profile across the strip width at some (ns) discrete points (in this case ns = 32) using a shapemeter 
(or flatness roll). The output of the system is therefore a profile represented in vector form, 
whose dimension depends on the strip width, thus flatness control is a multi-input multi-output 
problem. In order to reduce the dimension of the MIMO system (and thus reduce its condition 
number), it is transformed into a parameterised form using basis-function expansions. Among a 
large number of different, but related, basis-function expansions proposed to analyse cross-
directional control systems in the metal industries (Duncan et al., 1998; Ringwood, 2000), the 
Gram polynomials are best suited to approximate the flatness (distribution), as the shapemeter 
installed on the exit of the mill under consideration is equipped with equidistant sensors. The 
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polynomial coefficients ci represent then the actually controlled variables. The reference flatness 
(distribution) is usually non-zero (i.e., the target flatness is not necessarily perfectly flat strip). Its 
form is determined by the alloy and the requirements of the subsequent processes of the strip.  

The available mechanical actuators are tilting (or skewing) (St ≡ u2) and work-roll bending 
(Fb ≡ u1). Tilting is used to control the linear part of the polynomial approximation, i.e., c1 ≡ y2. 
Bending serves as the manipulating variable for the quadratic part, i.e., c2 ≡ u1. The segmented 
cooling sprays are used to correct residual errors comprising all higher-order defects (ui≥3). A 
three-loop internal model control scheme (Figure 15.19) is implemented for flatness control 
since it provides an excellent trade-off between control system performance and robustness to 
modelling errors and process changes.  Since the influence of the mechanical actuators on the 
strip flatness varies with the product properties, the internal model gains are schedule dependent, 
i.e., functions of the strip width and thickness. More details about the design, implementation 
and industrial results of this flatness control system can be found by Jelali et al. (2008). 

15.3.2.1 Data Provision 

The closed-loop data used for flatness control monitoring were available at 0.1s sampling rate, 
with a length varying between 900 and 4400 (typically N = 2000). The discrete time delay varies 
between 1 and 3. Due to the limited space, only the results for the u2/y2 (bending/c2) loop are 
described. The results presented are based on data taken after the revamping of the automation 
system, incl. installation and commissioning of the new flatness controller by Jelali et al. (2007); 
see also Wolff et al. (2006). The old flatness control has seldom been used in automatic mode 
due to its poor performance; this was easy to see without systematic control performance analy-
sis. Moreover, only compressed data were available, which are not suitable for performance 
assessment.   

 

 
Figure 15.19. Structure of the strip-flatness controller. 
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15.3.2.2 Assessment results 

Figure 15.20 shows the individual minimum variance indices and the user-specified indices for 
45 coils. It can be concluded that the flatness control delivers good to optimal performance. The 
data of a typical coil with optimal control performance, i.e., η = 0.92, is shown in Figure 15.21. 
Even for the coils no. 17, 18 and 43–45, the control performance can be considered to be satis-
factory, as the values of the user-specified criterion Kflatness (Equation 15.3) signal very good strip 
flatness. These coils are relatively thick (h4 > 1.4mm) so that they are non-critical with respect to 
flatness. The values of the oscillation index lie in between 0.04 and 0.2, indicating no oscillation 
problems. Therefore, no actions are suggested. 
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Figure 15.20. Results of performance assessment of the flatness control for the u2/y2 (bending/c2) loop. 

 
Figure 15.21. Measured variables for coil no. 4 showing good flatness control performance. 
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15.3.3 Temperature Control in Annealing Lines 

Continuous annealing processes are highly efficient heat treatment processes after cold rolling in 
steel works. It aims to produce steel strips of high tensile strength and high formability. Continu-
ous annealing is also required in continuous hot-dip galvanising before zinc coating. Such lines 
produce high-quality galvanised sheet for the automotive industry. Figure 15.22 shows the gal-
vanising line considered. The material for annealing is a cold strip coil, which is on pay-off reel 
at the entry side of the line. The head of the coil is then pulled out and welded with the tail of 
preceding coil. Then the strip runs through the galvanising process (incl. annealing). On the 
delivery side, the strip is cut into a product by a shear machine and coiled again by a tension reel. 
 
 

 
Figure 15.22. Layout of the hot-dip galvanising line, where the temperature control system is installed. 

15.3.3.1 Control System Description and Analysis Strategy 

The challenges of the performance assessment of this controller are: 
• The annealing process considered consists of the heating, the soaking (annealing and retain-

ing) and the fast cooling. Strip temperature is measured with a radiation pyrometer and con-
trolled at the exit of each furnace. Temperature must be controlled within defined ranges 
from heat pattern; see Figure 15.23. The heat patterns are determined according to the com-
position and product grade of the strip.  

• The overall control structure of the temperature controller of the annealing furnace is very 
complex, as shown in Figure 15.24. It consists of several temperature controllers for each 
furnace and a coordination level, which provides the reference temperature for each tempera-
ture controller. Each temperature controller itself consists of several sub-controllers. Sub-
controllers are used to manipulate the air flow and the natural gas flow within each furnace. 
Strip temperature shows some complicated characteristics because of slow dynamics, time 
delay, thermal interactions between the strip and hearth rolls which support the strip and 
setup changes, i.e., changes of strip thickness, strip width, or reference temperature.  

• The performance of this control system has large effect on the production rate, the strip qual-
ity in terms of mechanical properties (tensile strength, yield strength, elongation to fracture) 
and the stability of operation in the whole galvanising line.  
 
Taking a look at the temperature control system for the annealing furnace in Figure 15.25, we 

can see that it mainly consists of the upper (strip) temperature controller (TC3001) subordinated 
by split-range control that adjusts the reference furnace temperatures in the furnace zones. In the 
lower level, combustion controllers control the zone temperatures by adjusting air/gas flows. The 
other temperature control systems for the different furnaces have similar structures.  
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A top-down assessment strategy was chosen to analyse the performance of the control sys-

tems. In this study, the results of the evaluation of the upper temperature controllers are pre-
sented. The lower level controller were not analysed because the upper controllers (after re-
tuning some components) showed satisfactory performance, so that there was not enough incen-
tive to continue the performance analysis.    

 
 

 
Figure 15.23. Reference temperature trajectory to be ensured by the control system. 

 
 

 
Figure 15.24. Structure of the temperature control system in the annealing line.  
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Figure 15.25. Structure of the temperature control system in the annealing furnace.  

15.3.3.2 Data Processing and Assessment Procedure 

The evaluation procedure applied for the assessment of the performance of the temperature con-
trol system consists of following steps. 

Step 1. Determination of the appropriate sampling time  
The measured data were collected with a sample time of 2 ms. To achieve an impulse response, 
which vanishes after 30 to 40 samples, as shown in Figure 15.26, the data has been down-
sampled to a sample time of about 40s.  
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Figure 15.26. Typical impulse response indicating good control performance.  

Step 2. Merging data files 
For computing the performance index, data files containing at least 1200 samples are necessary. 
Due to the down sampling, the data files of each strip are reduced to about 90 samples. There-
fore, data files of a whole production day have been merged together to a single data file as 
shown in Figure 15.27. 
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Figure 15.27. Temperature control error for one-day production.  

Step 3. Determination of the prediction horizon b  
For computing the extended performance index, it was necessary to determine the appropriate 
prediction horizon. Values for the time delay were not always available for this application. 
Therefore, an approach based on historical data was applied here: a data file of one-day produc-
tion is selected, where the performance index is high in comparison to other production days. 
The trend of the extended performance index vs. the prediction horizon b is computed, as exem-
plarily shown in Figure 15.28 for the pre-heating furnace.  
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Figure 15.28. Extended horizon performance index of the strip temperature controller of the pre-heating 
furnace as function of the prediction horizon.  
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An estimate of the prediction horizon can be read from the intersection of the two tangents 

drawn at the initial point and the settling point of the curve. In this case, the estimated prediction 
horizon equals 3 und is kept constant for computing the extended performance index of the pre-
heating furnace. This procedure has been applied for all other controllers analysed. Another 
choice could fall on the region where the control-performance index does not vary, i.e., b = 7 in 
this example. This value may be, however, too optimistic.  

Step 4. Computation of the extended performance index  
The extended horizon index is calculated based on AR modelling with higher order, n = 30. The 
results are discussed in what follows. 

15.3.3.3 Assessment Results 

The aforementioned procedure has been applied2 to the temperature controller for pre-heating, 
annealing, fast cooling and tuyère snout. The assessment results are shown in Figure 15.29. It 
can be clearly seen that the performance of the pre-heating controller varies too much from day 
to day. The same is observed for the fast cooling controller performance. The performance of the 
tuyère snout controller is quite good, with a few exceptions. By far worst performance is 
achieved by the annealing controller. Because of these findings, an emphasis was then placed on 
the further study of the temperature control for the annealing furnace.  
 
 

 
Figure 15.29. Extended performance index (EPI) values for the different temperature controllers for pre-
heating (TC2001), annealing (TC3000), fast cooling (TC5000) and tuyère snout (TC7001). 

                                                           
2
 The main analysis work was undertaken by Andreas Wolff. 
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15.3.3.4 Diagnosis and Retuning of the Annealing Temperature Controller  

A closer examination of the temperature traces revealed that the strip temperature reference is 
not always reached and the maximum furnace temperature of 950°C is often exceeded in the last 
zones; see Figure 15.30. This figure also shows that the heating power produced by the feedfor-
ward controller (yR) in the first zones is very low. The controller is not fast enough to adjust the 
needed heating power. In the last zones, however, enough heating power is generated. These 
findings have been considered as the main weakness of the control system at time.  
 
 

  
Figure 15.30. Temperature overrun and heating power of the feedforward controller. 

 
Therefore, a re-distribution of the heating power produced by the feedforward controller has 

been performed. The feedforward controller consists of the following equation: 

, ,TC3000 ,TC2001 1 2 3 TC3000 ( )R i r r Au T K K K Rθ θ θ= − + + . (15.4) 

Details are given by Müller (2005). Relevant for variations of the feedforward controller is the 
difference between the reference temperature of the annealing furnace (θr,TC3000) and the refer-
ence temperature of the preheating furnace (θr,TC2001). For small values of this difference, the part 
of the feedforward controller reduces a lot. When an offset in the difference between the refer-
ence temperatures is integrated, we get the modified feedforward control law 

, ,TC3000 ,TC2001 1 2 3 TC3000 [15 0.85( )]R i r r Au T K K K Rθ θ θ= + − + + . (15.5) 

This should generate a higher heating power in the first zones without modifying the heating 
power in the last zones. 

15.3.3.5 Improvement Analysis and Benefits 

The modified feedforward controller has been implemented and tested on-site. The control per-
formance was then analysed again. The performance results before and after re-tuning are shown 
in Figure 15.31. It is clearly observed that the re-adjustment of the heating power generated not 
only better control performance, but also significant reduction of the frequency of maximum 
furnace temperature violations (Figure 15.32). More specifically, the mean performance index is 
increased from 0.26 to 0.70 and the frequency of maximum temperature violations is decreased 
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from 7.0 to 0.5%. To exemplarily compare controller errors before and after re-tuning, Figure 
15.33 is provided. The figure indicates the substantial variance decrease after re-tuning.  

Note that the exact date of introducing the modification has not been communicated to the 
analysis team, to test the capability of the CPM tool to flag performance changes. Therefore, the 
performance analysis was also used to recover the time point of the release of modified control 
system. This predicted time point was in good agreement with the real one.  

 
 

 
Figure 15.31. Control performance index values before and after the modification. 

 

 
Figure 15.32. Violations of maximum temperature before and after the modification. 
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The changes, resulting from the outcomes of the performance analysis, led to improved uni-

formity of thermal profile, and thus to decreased energy consumption and material processing 
rate. Analysis of the natural gas consumption during the year before the controller modification 
and the year after that showed that a reduction of around 90 k€/a has been achieved.  
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Figure 15.33. Typical temperature deviations from set point for periods before and after re-tuning the 
annealing controller.  

15.3.3.6 Control Performance Monitoring Tools 

Control performance monitoring tools have been developed and tailored for all these applica-
tions. For instance, the temperature-control monitoring tool is illustrated in Figure 15.34. After 
selecting the data sets, the user starts the evaluation to get the overall performance index of the 
complete temperature control.  

Additionally, the tools provide the user with the performance index, the standard deviation 
and the mean control error for each part of the annealing line, i.e., the pre-heating furnace, the 
annealing furnace, the fast cooling and the tuyère snout. Moreover, an assessment comment is 
shown, which explains the results of the performance index. In-depth analysis of data and control 
performance in terms of impulse response, control error (Figure 15.35), temperature limit viola-
tions (Figure 15.36), etc. can also be carried out by the control engineers by selecting the corre-
sponding popup menus. 

The control performance monitoring tools3 are implemented in MATLAB. A special MAT-
LAB compiler translates these source codes in a C++-Code, which is integrated in LabVIEW. 
LabVIEW offers options for fine and practical user-interface and for embedding C-routines. 
Also, Oracle data can be imported from a central database (ZQDB), where all measured data are 
stored (see Figure 15.37).  

The CPM tools are implemented in a Stand-alone PC, but integrated into the automation in-
frastructure of the customer, and analysis can be carried out on demand. Work is running to get a 
system analysing automatically or in batch mode. 

 
 
                                                           

3
 The tools described in this section were mainly created by Martina Thormann.  
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Figure 15.34. Control-performance-monitoring tool for temperature control. 

 
 

 
Figure 15.35. Further analysis of the temperature control performance. 
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Figure 15.36. Statistics of the temperature-limit violations of the temperature control. 

 
 

 
Figure 15.37. Workflow of the tools implementation. 

15.3.3.7 Comprehensive CPM Realisation and Integration Concept 

The basic concept for the realisation of the framework proposed above is shown in Figure 15.38. 
It is based on the exploitation of the information transfer via intranet/internet technology and 
data exchange media available at the plants. The following information paths are intended for 
implementation: 
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• Full excess to the databases for selecting data required for control-performance monitoring 
and setup supervision. 

• Alerts are sent to the operator, when serious performance problems are detected, with plausi-
ble action suggestions. The algorithms implemented should calculate performance indices re-
peatedly over time and comparing them to alert limits. Each alert limit can be decided from 
statistical characteristics of the index or by some other criteria.  

• An email with detailed evaluation results. Reports include the individual performance 
indices of all related control loops, current controller settings, a summary of loops, whose 
performance significantly changed since the last observations, a ranking of the controllers re-
garding performance, information about model prediction quality behind the benchmark, etc. 
can be provided. When the automatic communication of alerts is established by e-mail, the 
plant engineers will not need to access periodically the system to see if some alert has been 
created, because the system will automatically warning them. Of course, engineers can still 
access to the server from their personal computers placed at their offices and visualise the 
current status of performances (on demand) without the need for going personally to the con-
trollers.  

• The production manager is provided with only global information/indication about the 
control system including setup status. Information can be given in form of performance indi-
ces of the loops, the percentage of time they are working on or frequency of constraint attain-
ing. Also quality indicators related to the performance of the control system should be pro-
vided.  

• Internet-information transfer could be possibly sent to an external partner such as BFI 
for the purpose of fast troubleshooting.  

• Based on the results and indices of the control-performance monitoring procedures, an 
automatic tuning of some controllers could be implemented. This topic is however still open 
and thus planned within a forthcoming project.  

 
 

 
Figure 15.38. Concept of control system performance supervision based on Intra-net/Internet technology. 
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An overview about the advantages and drawbacks of possible actions within the above 

framework is shown in Table 15.4. Each of these measures should be extensively discussed with 
the plant personnel prior to its implementation. In practice, only a few parameters will be ac-
cepted to automatically changed by the tuning and supervision systems. At least, a mechanism 
has to be implemented to enable the operator or the technician to check the new settings and 
decide whether they are released, i.e., down-loaded to the control system.  

 
 

Table 15.4. Overview of possible actions to be implemented. 

Possible actions Advantages  Drawbacks 

Alert to mill operator (online 
adjustments) 

Process continuity. 
Controllability.  

Control system still to be opti-
mised.  

Sending online email to process 
control technician (offline ad-
justments)  

Process continuity. 
Control system (quasi-)  
optimised. Controllability. 

Delayed parameter tuning.  

Direct intervention on process 
control system (online adjust-
ments)  

Prompt reaction and adaptation. 
 

Dangerous / need of compli-
cated rules to avoid process 
instabilities.  

 

15.4 Summary and Conclusions 

It has been shown how control performance monitoring (CPM) algorithms perform well in the 
environment of metal processing. Special aspects when applying the techniques in this industrial 
area have been presented. This includes online vs. batch-wise performance evaluation, time-
based vs. length-based assessment and oscillation diagnosis. 

Control performance monitoring tools for calculating performance indices has been devel-
oped and successfully applied to the performance evaluation of the main technological control-
lers in a tandem cold rolling mill: a strip thickness controller consisting of feedback plus feed-
forward control components and a flatness controller designed according to the internal model 
control approach. The results indicate that tuning the feedback thickness controller is suggested 
to better handle entry thickness disturbances for specific coils. After revamping, the controller 
shows best performance. The performance of the flatness controller after revamping is found to 
be optimal, thus no actions are needed.  

Moreover, a complex temperature control system in an annealing plant has been evaluated 
and re-tuned, leading to an increase in performance of the controller and to a significant reduc-
tion of energy consumption for the customer. CPM tools have been tailored to this application 
and implemented in the infrastructure of the mill, to work in a semi-automatic mode at time.  

 
 



 
 



16 Conclusions and Future Research Challenges 

Control loops are the most important components in automation systems. Product quality, opera-
tion safety, material and energy consumption, and thus the financial performance, are directly or 
indirectly linked to the performance of control systems. To achieve, restore and sustain top per-
formance of control loops is thus a vital interest for any company. Since process control systems 
are very complex, usually comprising different hierarchy levels, it is hopeless to maintain them 
on regular basis by plant personal. This is also the main reason why a large portion of industrial 
control loops has significant performance problems, as found out by audits carried out regularly 
since the 1990s. All these factors have contributed to the growing of the control performance 
monitoring (CPM) technology and applications in the last decade. CPM provides a framework 
for automatically and systematically assessing the performance of control loops, detecting and 
diagnosing root-causes of poor performance, as well as suggesting measures to improve control 
performance or avoid performance degradation. At this point, it is stressed that any CPM tech-
nique should be non-invasive to be accepted in industrial practice. That is, the analysis should 
always be carried out based on only routine operating data with limited or no additional process 
knowledge and without the need for any experimentation with the plant, not even in closed loop. 

Since the key research by Harris (1989), the control community has developed numerous 
methods that focus on the performance assessment of control loops. At the centre of these ap-
proaches is the concept of minimum variance benchmarking and different modifications or ex-
tensions, which have attracted much attention. Meanwhile, there is a large number of techniques 
for basic and advanced performance assessment, detection and diagnosis of different sources of 
poor performance (bad controller tuning, process non-linearities, oscillations, etc.). Usually, 
emphasis is placed on single techniques to detect special performance problems or plant faults.  

This is the first monograph that deals with the complete CPM technology, from controller as-
sessment (minimum-variance-control-based and advanced methods), over detection and diagno-
sis of control loop problems (process non-linearities, oscillations, actuator faults), to the im-
provement of control performance (maintenance, re-design of loop components, automatic con-
troller re-tuning). It provides a contribution towards the development and application of com-
pletely self-contained and automatic methodologies in the field. Moreover, within this work, 
many CPM tools have been developed that goes far beyond available CPM packages. Industrial 
data from a large number of control loops in different industrial fields (building, chemicals, min-
ing, mineral and metal processing) have been used to demonstrate the presented strategies and 
methods. Systematic procedures for automatic and continuous control performance monitoring, 
maintenance and optimisation have been recommended, combining different control perform-
ance metrics and assessment, diagnosis and improvement methods. The main objective is to 
sustain top control performance during the whole life cycle of the control system, despite differ-
ent and changing operational conditions.  

At an early stage of a CPM task, fundamental decisions have to be taken and first-pass meth-
ods applied. First, the performance metric of interest has to selected, depending on the applica-
tion at hand. It should be decided whether the stochastic performance, the deterministic perform-
ance, or both is the key aim of the control system to be evaluated. Very related to the selection of 
performance type is the right choice of the suitable performance benchmark against which the 
controller will be assessed. This requires some a prior knowledge about the process and its envi-
ronment. In the process industry, stochastic performance is almost the main objective, as it is 
directly related to economical performance. Then first data analysis using some basic statistical 
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techniques gives a first impression of how well the control system is performing. It is essential to 
have as much information about the installed controller, its structure and parameterisation as 
possible, although this information is not completely needed for the performance assessment task 
itself. Methods and strategies presented in this thesis can be summarised as follows.  

Assessment Based on Minimum Variance Principles 

Performance assessment based on minimum variance control remains the standard method for 
evaluating controllers. Besides batch calculation, the performance index can also be computed 
recursively, enabling the use of control charts for online monitoring of changes in controller 
performance. The following advantages of MV benchmarking contributed to its popularity and 
usage in the majority of CPM applications: 
• Metrics based on MVC are the main criteria used in stochastic performance assessment, pro-

viding a direct relationship between the variance of key variables and product quality or en-
ergy/material consumption, which are correlated with financial benefits.  

• MV benchmarking is easy to apply and implement, and remains valuable as an absolute 
bound on performance against which real controllers can be compared. Performance monitor-
ing should always include at least a look at the Harris index, as a first pass-assessment layer 
to bring obvious problems to immediate attention. 

• Considering the MVC lower bound in setting performance targets will ensure that overly 
optimistic and conservative performance targets are avoided. MVC information can also be 
beneficial in incentive studies. 
However, one should be aware about some serious drawbacks: 

• A well functioning loop in the process industry has frequently variance well above the mini-
mum variance. Also industrial controllers (usually of the PID-type) do not have always a 
chance to match MVC.  

• Even though, MV control action can lead to highly undesirable, aggressive control and poor 
robustness.  
Principally, MVC-based assessment is useful irrespective of the type of controller installed at 

the plant. However, tailored versions of MV assessment, such as those for feedback-plus-
feedforward control and cascade control, can also be applied when the controller structure is 
known. Both control strategies are of widespread use in the process industry. The analysis of 
variance for feedback-plus-feedforward control helps quantify how much the performance of the 
control loop can be improved by re-tuning the feedforward component, or introducing such a 
component if not yet implemented. For cascade control, it was shown that multivariate perform-
ance analysis should be generally applied, since univariate analysis may yield over-estimated 
loop performance, thus giving misleading conclusions. Also, tuning cascade control should al-
ways be driven towards maximising the Harris index (calculated using multivariable analysis) of 
the primary loop, when the variance is the main point. 

User-specified Benchmarking 

Although user-specified performance assessment may be useful in many situations, its main 
dilemma is that the specifications are arbitrary in some way, and it is not always clear how such 
specifications affect the closed-loop dynamics, e.g., in terms of performance optimisation and 
robustness. For each specification type (settling time, decay ratio, overshoot, desired variance, or 
even reference model, etc.), there is usually an infinite number of possibilities that can be con-
sidered, but no general guidelines exist on which option is the best to get performance closest to 
optimal control. Often, the decision will remain up to an experienced user or control engineer.  

Of particular interest remains the extended horizon approach, which is useful to apply when 
no information is available about the time delay. Historical benchmarking can also be attractive 
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due to its simplicity, but must be considered with care, because the subjective definition of the 
benchmark values.  

Advanced Control Performance Assessment 

Advanced methodologies for controller performance assessment include benchmarks, such as 
GMVC, LQG and MPC. The main feature of these important methods is to minimise a weighted 
sum of the set-point error and the control effort, and thus avoid excessive control action that can 
result from minimum variance control. For the assessment purpose, a performance curve is con-
structed by plotting the variance of the process variable against that of the (differenced) input 
over a range of values of the move suppression parameter. Such a trade-off curve is particularly 
valuable when assessing the performance model-predictive controllers. A formal procedure was 
described, which utilises routine operating data to update the plant and disturbance models for 
MPC. Although not universally applicable, the method provides a useful way to determine when 
it becomes worthwhile to invest in re-identification of the plant dynamics and re-commissioning 
of MPC. Moreover, LQG benchmarking (with its performance curve) remains the standard 
against which other controllers should be compared, when the penalisation of control effort is 
important.   

Despite these nice features, there are enough reasons for not using advanced benchmarking 
techniques, including their complexity, the requirement of a full system model and the not trivial 
task of the selection of proper design parameters. Nevertheless, advanced assessment methods 
increasingly gain much attention in the last few years due to the introduction of advanced control 
in many process industries.  

Different methods were compared in terms of parameters/data requirements and benefits. It 
can be concluded that, usually, calculating more sophisticated and realistic benchmarks requires 
more prior knowledge and data, and is computationally expensive. On the other hand, using his-
torical benchmarks (which do not require model identification) is the easiest approach, but must 
be taken with care, as it is too subjective and may be misleading. 

Deterministic Controller Assessment 

Three deterministic methods for performance assessment have been presented, discussed and 
compared in this text. The first technique assesses the performance of PI controllers from closed-
loop response data for a set-point step change. For this purpose, two dimensionless performance 
indices, the normalised settling time and the normalised integral of the absolute value of the error 
are used. The methodology identifies poorly performing control loops, such as those that are 
oscillatory or excessively sluggish. This technique also provides insight concerning the perform-
ance-robustness trade-off inherent in the IMC tuning method and analytical relationships be-
tween the dimensionless performance indices, the gain margin and the phase margin. To work 
properly, it is necessary for the method to have accurate estimates the apparent time delay, the 
settling time and the overshoot from step response. Methods for this purpose have been pre-
sented with the conclusion that it is recommended to identify the parameters from fitting a 
FOPTD or SOPTD model to the step response to avoid problems with noisy signals. 

The idle index is an apparently simple indicator for sluggish control. It evaluates controller 
action due to significant, step-wise load disturbances with a focus on the transient behaviour of 
the control loop. However, in practical situations, where the signals are noisy and show different 
behaviour (steady-state, transients), the idle index completely fails. Therefore, careful pre-
processing of the data, such as steady-state detection, filtering and signal quantisation can be 
necessary. A set of techniques have been described to perform these tasks. Despite these pre-
treatment measures, the existence of distinct load step disturbances is still decisive for the capa-
bility of detecting sluggish loops using the idle index. Moreover, an oscillation detection tech-
nique is needed to be combined with the idle index method to get the right indication.  
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The idle index method can be improved by considering additional indices, namely, the area 

index and the output index. This combination provides an efficient way to assess the tuning of PI 
controllers with respect to load disturbance rejection performance. It has been shown that the idle 
index, the area index and the output index give valuable indication on how PI controller parame-
ters, i.e., proportional gain and integral time, have to be modified to achieve better performance. 
Note that the same practical issues to be considered for the computation of the idle index are also 
relevant for the calculation of the area index. The method is particularly sensitive to noise, thus 
pre-filtering is essential.  

From the comparative study presented, we concluded that the control objective, including the 
expected type of disturbances, of the loop must guide the selection of the right assessment 
method. In other words, when assessing a controller with the different methods, one can directly 
see for what purpose the control loop has really been tuned. Also, different tunings for the same 
objective can be compared to pick up the best one during controller commissioning. 

Minimum Variance Assessment of Multivariable Control Systems 

MVC benchmarking in the multivariable case has been shown to be much more involved than in 
the univariate case, as it normally requires the knowledge or estimation of the interactor matrix. 
Although many methods for its factorisation or estimation exist, this task remains very difficult 
to handle and needs a complete process model or at least its first Markov parameters. Therefore, 
estimating a lower bound and an upper bound of the minimum achievable variance was recom-
mended instead of the minimum variance itself. Both indices are easily computable and can be 
found from routine operating data and require only the knowledge of the time delays between 
each pair of system inputs and outputs. This represents a much weaker assumption than requiring 
complete process information or needing for the highly undesirable external excitation of the 
process to estimate the interaction matrix. 

Selection of Key Factors and Parameters in Assessment Algorithms 

Different key factors affecting the reliability of the performance assessment results have been 
discussed in this thesis. Suggestions were given for selecting the right options and parameters. It 
has been stressed that while data scaling, detrending and eliminating of outliers are recom-
mended, the use of archived data should be strictly avoided. This is because smoothing or com-
pression commonly used in data historians affect the performance index, leading to wrong as-
sessment statements, usually the over-estimation of the control performance. Recommendations 
were given for selecting a proper sampling time and data length (N) for assessments exercises. 
Particularly, the data length affects the accuracy of the calculated indices and should lie between 
1000 and 2000 (whenever possible). Increasing N may increase the assessment accuracy, but also 
increases the computational load. Using a lower N is not advisable, as it usually leads to a 
broader confidence interval for the performance index.  

From the variety of models and techniques, which can be used as basis for performance as-
sessment, AR modelling remains the standard approach, since the associated model estimation is 
simple and fast by using LS methods. However, there are some situations where other methods 
such as PEM may be more useful. For instance, it has been concluded that oscillating signals are 
a potential problem when evaluating the Harris index based on AR modelling, i.e., the perform-
ance may be over-estimated. The best way is, therefore, to detect oscillations prior to the compu-
tation of the index. If this is not possible or desirable, ARMA or PEM modelling should be used. 
The only practical reason found for using subspace identification in calculating the MV and 
GMV benchmark indices is its fast computation compared to PEM. Moreover, this method 
seems to have more merits when carrying out more advanced assessment such as LGQ or MPC 
benchmarking.  

The knowledge of the time delay is essential to estimating the MV and GMV benchmark in-
dices (and similar ones). It is a real problem and not practical to use routine operating data for 
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such assessments without first having knowledge of the loop delay or trying to estimate it from 
the data. For the latter task, however, the data must contain clear changes in the control vari-
ables, or experimentation with the process in terms of changes in the set point or the addition of a 
dither signal should be possible. Otherwise an estimation of the time delay will be unreliable. As 
suggested by Thornhill et al. (1999), the prediction horizon approach can be used to obtain a 
reasonable estimate of a suitable time delay for use in performance assessment. Note that when 
any other value for the time delay than the real one is used, the calculated index cannot be inter-
preted as MV/GMV benchmark, but should be regarded as a kind of user-defined performance 
index.  

The last critical issue discussed in this chapter is the proper selection of the model orders. 
Different simple rules have been described, which all ensure reliable results. Following these 
suggestions, the danger of under- or over-estimating the performance index should be mini-
mised. The experience suggests that n ≈ 20 + τ are adequate for most cases to achieve the bal-
ance between assessment accuracy and computational load. However, there is no absolute gen-
eral answer to how large the model order should be, as it depends on the plant-noise model and 
weighting functions (for GMV).  

In practical applications, it is always well spent time to investigate different combinations of 
data lengths and model orders of defined ranges until the variations in the calculated perform-
ance indices are small to achieve accurate assessment results. Of course, this will be only possi-
ble, when a few control loops are analysed; otherwise, the job would take much more time than 
can be invested in practice.  

Detection of Oscillating Control Loops 

The detection of oscillations in control loops can be regarded as a largely solved problem. Many 
methods exist for this purpose; some of them have been reviewed in this chapter. Emphasis was 
placed on discussing possible problems that can occur when the techniques are applied to real-
world data. These can be noisy, subject to abrupt changes, and may contain slowly varying 
trends and different superposed oscillations, i.e., with different frequencies. Particularly, the 
latter problem is still a challenge for automatic detection, without human interaction. Moreover, 
the detection of plant-wide oscillations and finding their sources and propagation routes is an 
active research topic.  

Detection of Loop Non-linearities 

The very common problem of oscillating control loops can result from process non-linearities 
often present in sensors and actuators. Two non-linearity testing methods have been studied that 
help detect the root cause of such problems. The bicoherence technique based on higher-order 
statistics defines two indices, the non-Gaussianity index (NGI) and the non-linearity index 
(NLI), to determine whether a time series could plausibly be the output of a linear system driven 
by Gaussian white noise, or whether its properties could only be explained as the output of a 
non-linear system. The surrogates testing method is based on the relative predictability of test 
data and surrogate data and also provides a non-linearity index that can be calculated from given 
routine operating data. The key issues to be addressed when applying both methods to real-world 
data from different industrial control loops have been discussed. It was pointed out that the bico-
herence method is sensitive to non-stationary trends and abrupt changes. The surrogates method 
should be applied with extreme care concerning end-matching of the data.  

Both techniques are useful to diagnose the root cause of limit cycles not only in single control 
loops, but also in whole plants that usually contains a large number loops. The root cause of a 
limit cycle is to be found in the part of the plant where the non-linearity index is largest. The 
methods presented have been examined and compared on two data sets from industrial plants 
showing unit-wide oscillations. The results revealed that both techniques do not always agree 
about the root cause location and it seems that surrogates testing is more reliable.  
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So far data-based non-linearity detection and diagnosis provide quantitative and rapid infor-

mation about the source of non-linearity induced limit cycles in processing units. However, proc-
ess understanding and know-how and/or active testing are still needed in the final stage of per-
formance monitoring to confirm the root cause and explain the interaction routes or mechanisms 
of propagation. 

Diagnosis of Stiction-related Actuator Problems 

The main problems that can occur in actuators have been described with focus on the analysis of 
stiction in control valves. The most important stiction detection techniques have been reviewed, 
including their assumptions, strengths and weaknesses. These are essential when applying any 
method to real-world data. The cross-correlation technique is simple and easy to implement, but 
may have problems with phase shift induced by controller tuning and is limited to self-regulating 
processes. Curve fitting is powerful technique to detect stiction are available in different ver-
sions. These methods rely on the signal pattern characterising stiction, which, however, may 
appear also for other control loop faults. Non-linearity detection followed by ellipse fitting has 
also been proven to be very efficient in detecting stiction, but the complexity of this technique 
and the difficulty of automatically selecting proper filter boundaries are clear weaknesses of the 
method. Therefore, we recommend to apply more than one technique to have redundancy.  

A systematic oscillation diagnosis procedure has been proposed, combining the some oscilla-
tion and non-linearity detection techniques, as well as additional tests for check valve stiction. 

Complete Oscillation Diagnosis Based on Hammerstein Modelling 

A novel procedure for quantifying valve stiction in control loops based on two-stage identifica-
tion has been presented. The proposed approach uses PV and OP signals to estimate the parame-
ters of a Hammerstein system, consisting of a connection of a two-parameter stiction model and 
a linear low-order process model. A pattern search or genetic algorithm subordinated by a leas-
squares estimator was proposed for the parameter identification. This particularly yields a quanti-
fication of the stiction, i.e., estimating the parameters dead-band plus stick band (S) and slip 
jump (J), thus enabling one to estimate time trends of the valve position (MV). Needless to say 
that the method can also be applied in the case of one-parameter stiction models.  

The results on different processes under a range of conditions –low-order/high-order, self-
regulating/integrating, different controller settings and measurement noise, different stiction 
levels– show that the proposed optimisation can provide stiction-model parameter estimates 
accurately and reliably. The stiction quantification technique has been successfully demonstrated 
on two simulation case studies and on many data sets from different industrial control loops. The 
relatively high CPU time required for the identification process is not critical, as the analysis is 
performed offline. Also, this work is inexpensive compared to the savings in experimentation 
with the process or in down time costs when invasive methods for stiction quantification would 
be applied. A faster algorithm for time delay estimation and a more efficient implementation of 
the algorithms, e.g., as C-code, should significantly accelerate the computation. 

The stiction estimation method has been also extended to a complete oscillation diagnosis 
approach, which allows the determination of the cause(s) of oscillating loop behaviour. This 
could be stiction in the control valve, poorly tuned controller, or the presence an external pertur-
bation. The unique feature of the technique is that its can also detect multiple loop faults when 
present. The diagnosis approach can be extended easily to other non-linear valve problems, or to 
non-linear final elements to detect if they work properly. 

Monitoring Strategies and Procedures 

Measures for improving performance of control loops have been mentioned, and an integrated 
framework for performance monitoring and optimisation proposed. Important paradigms and 
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strategies for monitoring the performance of complex process-control systems were introduced. 
It has been pointed out that a top-down strategy for CPM should be preferred because of the 
direct relationship between the performance of upper loops and economical factors. However, 
under certain circumstances, the bottom-up strategy has its strengths, particularly when basic 
control loops are guessed to perform poorly. The impact of improved loop performance on fi-
nancial performance has been briefly addressed. We also proposed a comprehensive controller 
performance assessment procedure combining different methods described throughout the previ-
ous chapters. The main aim is to have a systematic and thus efficient way for loop performance 
assessment avoiding relying on a single performance measure or a single assessment method, 
which may be misleading. It is also fundamental to recognise the key differences between per-
formance assessment of PID controllers and MPC controllers. Although the assessment of MPC 
systems is much more difficult, it can give valuable hints on how to attain top performance, 
particularly in the case of multivariable systems with time delay and constraints. 

Controller Auto-Tuning Based on Control Performance Monitoring 

New techniques for automatic generation of controller settings based on the continuous assess-
ment of the control loops using normal operating data have been provided. Four categories of 
CPM-based re-tuning methods have been presented and their properties discussed. Numerous 
illustrative examples showed the relative efficiency of the techniques.  

It can be concluded that parameter optimisation based on complete knowledge of process 
models is the most involved tuning technique and should not be the first choice in practice, 
unless accurate models are available. If set-point changes occur during normal process operation, 
parameter optimisation based on routine and set-point response data can be effective. If step-
wise/abrupt changing load disturbances act on the process, iterative tuning based on load distur-
bance changes may be useful, provided the changes can be detected properly. 

Therefore, iterative tuning based on impulse response assessment is the best suited strategy in 
practice, as it is completely non-invasive and necessitates a minimum of process knowledge. The 
approach mimics the way of solving model-based optimisation problems. Starting from the Har-
ris index value computed from routine data under the installed controller, the controller settings 
are cautiously updated and applied on the process, new data are used to recalculate the Harris 
index, until the optimal controller settings, which maximise the performance index, are attained. 
Impulse-response features and pattern-recognition have been introduced, to automate the itera-
tive controller assessment and tuning. There is no need for the injection of any input or reference 
dither signals, as is typically the case for closed-loop identification or for assessment methods 
based on such experiments. There is also need for any performing recycling experiments as is the 
case in iterative feedback control. Some guidelines have been given how to select the step size 
for updating the controller settings.    

Industrial CPM Technology and Applications 

A comprehensive review of the current status in industrial applications of CPM has been given. 
The survey reveals a remarkable number of application case studies to date, with a solid founda-
tion in refining, petrochemical, chemical sectors and pulp & paper plants. However, only a few 
applications appeared in other industrial sectors.  

Analysis of the implementations according to the kind of assessment methods used shows 
that, whereas MV benchmarking and oscillation detection has found wide application, advanced 
benchmarking methods are still relatively seldom applied, but increasingly found interest in the 
last few years.  

The field of CPM has matured to the point where several commercial algorithms and/or ven-
dor services/products are available for control performance auditing or monitoring. However, 
only a small portion of the methods presented in this thesis can be found in these packages. 



362  16. Conclusions and Future Research Challenges 
 

Performance Monitoring of Metal Processing Control Systems 

It has been shown how CPM algorithms perform well in the environment of metal processing. 
Special aspects when applying the techniques in this industrial area have been presented. This 
includes online vs. batch-wise performance evaluation, time-based vs. length-based assessment 
and oscillation diagnosis. 

Control performance monitoring tools for calculating performance indices has been devel-
oped and successfully applied to the performance evaluation of the main technological control-
lers in a tandem cold rolling mill: a strip thickness controller consisting of feedback plus feed-
forward control components, and a flatness controller designed according to the internal model 
control approach. The results indicate that tuning the feedback thickness controller is suggested 
to better handle entry thickness disturbances for specific coils. After revamping, the controller 
shows best performance. The performance of the flatness controller after revamping is found to 
be optimal, thus no actions are needed.  

Moreover, a complex temperature control system in an annealing plant has been evaluated 
and re-tuned, leading to an increase in performance of the controller and to a significant reduc-
tion of energy consumption for the customer. CPM tools have been tailored to this application 
and implemented in the infrastructure of the mill, to work in a semi-automatic mode at time. 

 
Despite the advances in the CPM area presented in this thesis, the technology continues to 

grow primarily due to industrial interest in obtaining and sustaining top performance from the 
installed control systems. Also, there are many open questions and areas for further consideration 
in future works; a few topics are given next:  
• Application of Automatic Controller Assessment and Re-tuning Methods. These tech-

niques presented in Chapter 13 still have to be demonstrated in practical case studies, before 
they can be implemented in automatic CPM tools and integrated into automation systems. In 
practice, only a few parameters will be accepted to automatically be changed by the tuning 
and supervision systems. At least, a mechanism has to be implemented to enable the operator 
or the technician to check the new settings and decide whether they are released, i.e., down-
loaded to the control system. 

• Comparison of the Techniques. Many methods for detection and diagnosis of oscillations in 
control loops have been described and demonstrated on real applications. However, an ex-
haustive comparison of these methods is still missing and should reveal the best techniques to 
be used. A forthcoming book by Jelali and Huang (2009) will contain such a comparative 
study.  

• Assessment of Time-variant Systems. The analysis of data and performance results of many 
case studies indicate that some processes have varying parameters, thus operated at different 
operating point, some others are affected by time varying or abrupt changing disturbance dy-
namics. This could motivate the development and application of assessment algorithm that 
take these factors into account. Of particular interest are techniques that can be applied for 
assessing the performance of control loops with varying time delays, often found in metal 
processing.  

Methods for the assessment of processes with abrupt changes of disturbances were pro-
posed by Huang (1999). Assessment techniques for time-variant processes are provided by 
Huang (2002), Olaleye et al (2004) and Xu and Huang (2006). A method for assessing the 
performance of control loops subject to random load disturbances was presented by Salsbury 
(2005).  

• Assessment of Non-linear Systems. Normally, it is assumed that the process can be ap-
proximated well by a linear model at least around the current operating point. This is appro-
priate for regulatory control, but may be not the best option for process outputs showing large 
amplitude (or frequency) changes. A useful but difficult research direction is to develop per-
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formance assessment methods for non-linear systems. First approaches towards using non-
linear benchmarks are found by Majecki and Grimble (2004) and Grimble (2006b).  

• Use of Artificial Intelligence Techniques. The application of artificial intelligence methods, 
such as neural networks and data-mining methods for CPM may be beneficial for the analysis 
and diagnosis of non-linear systems. This issue should also be researched. A first approach to 
exploit pattern recognition techniques, specifically neural networks, for controller re-tuning 
has been proposed in Chapter 13.  

• Actuator Fault Diagnosis. In this thesis, main emphasis was placed on detecting stiction as a 
special, but very common control valve fault. Other faults, such as under-/oversizing, faulty 
diaphragm, packing leakage, hysteresis and dead band, may require suitable techniques to be 
developed within future work. Also, methods for the detection of such problems in other ac-
tuators, such hydraulic cylinders, should be researched.  

• Sensor Fault Diagnosis. Faulty sensors are often responsible for control performance degra-
dation and should be detected by suitable techniques. Particularly, it is sometimes difficult to 
distinguish between actuator and sensor faults, as demonstrated by the SE Asia Data set in 
Section 9.5.1. This topic is also a candidate for future research.  

• Fault-tolerant Control. The loop monitoring and optimisation approach outlined in Figure 
12.1 may lead to the conclusion that the complete control loop has to be reconfigured. This 
means that the controller has to be adapted to the faulty situation so that the overall control 
system continues to reach its gaol. This task can be solved within the framework of fault-
tolerant control. First approaches for this challenging topic can be found by Steffen (2005) 
and Blanke et al. (2006).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





A Basic Signal Processing and Statistics 

This section contains a brief introduction to basic statistics. Comprehensive descriptions can be 
found in many standard books, e.g., Papoulis (1984), Oppenheim and Schafer (1989). All the 
results presented here are for discrete-time signals, because we are interested in digital signal 
processing applications and the data we work with are assumed to be sampled. Note that the 
statistical characteristics given in this section can be expressed in terms of ωk, fk or simply k, all 
related by ωk = 2pfk = 2pk/N, where N is the length (period) of the considered signal.  

A.1 Ergodicity 

Real signals are almost noisy, i.e., the source signal of interest is superposed by a stochastic 
(random) phenomenon, called noise. The estimation of the statistical properties of stochastic 
signals given below depends upon the ergodic assumption: (we hope that) the expectation over 
all realisations (or observations) of a stochastic process can be calculated as the time average of 
one realisation of the process. Thus, ergodicity implies that one realisation of the stochastic 
process contains all information about the statistical properties as k → ∞ . An ergodic process is 
stationary in the strict sense, i.e., all its statistical properties are time-independent. A signal is 
said to be stationary in the wide sense if its first two moments (i.e., the mean and the variance) 
are time-independent.  

A.2 Expectation and Variance 

The expected value or mean of a discrete random variable or (stationary) stochastic process (in 
practice a set of data) can be estimated by [mean] 
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N k
E x k x x k

N→∞ =
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where E{⋅} denotes the ensemble expectation operator. The estimation of the expected value is 
often written as x  for shortness and in order to explicitly express the experimental determina-
tion of the mean from a data set of finite length N.  

The variance of a random variable is the mean squared deviation from its arithmetic mean 
[var]: 
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It is often easier to think in terms of the standard deviation σx [std], i.e., the square root of the 
variance. 

A.3 Correlation and Covariance 

Both, correlation and covariance, measure the similarity between two random variables or sto-
chastic processes. The auto-correlation function describes the internal coherence of the variable 
(i.e., between the variable itself and its time-shifted version). It can be estimated as 
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Φxx(τ) is a symmetric function about τ = 0, i.e., Φxx(−τ)  = Φxx(τ); hence Φxx(τ) is zero-phase 
function, which means that all phase information about x(k) is lost. 

The dependence of two random variables x(k) and y(k) are expressed by the cross-correlation 
function [xcorr]  
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Note that Φxy(τ) is not a symmetric function about τ = 0, but that Φyx(−τ) = Φxy(τ). Correlation 
between two variables is (low) high if the variables are closely (weakly) related. Two variables 
are called uncorrelated if  

{ } { }( )xy E x E y x yΦ τ = = . (A.5) 

The covariance functions are defined by [xcov] 
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Obviously, if the means are equal to zero, correlation and covariance are identical. The special 
case follows from comparing Equations A.2 and A.6: 

2(0)xx xC σ= . (A.8) 
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is called correlation coefficient [corrcoef]. 
The so-called covariance matrix frequently used in the context of parameter estimation is de-

fined for a vector x of n random variables as [cov]: 
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Strictly speaking, the main diagonal entries of this matrix contain variances. Therefore, the ma-
trix is sometimes referred to as the variance-covariance matrix.  

A covariance vector is obtained as the covariance of a vector x of n random variables and a 
scalar random variable y: 
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Correspondingly to these covariance matrices and vectors, correlation matrices and vectors can 
also be defined in a straightforward manner. 

A.4 Discrete Fourier Transform 

The relation between time domain and frequency domain measures forms the foundations of 
much of modern signal processing The discrete Fourier Transform the (DFT) provides a means 
for transforming from time to frequency domain and vice versa. This is useful because signal 
properties do not always manifest themselves in the signal waveform and transforming to the 
frequency domain can expose periodicities in the measured signal and can aid understanding of 
the processes which produced the signal.  

DFT is used for periodic, discrete-time or digital signals. The DFT for a signal x(k) with pe-
riod N is  
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The inverse transform (IDFT) is 
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These equations say that the (complex) coefficients X(k) represent the periodic discrete-time x(k). 
Note that *( ) ( )X k X k− = , where ’*’ denotes complex conjugate. 

To represent the time signal, X(k) needs to be computed for N values of k, and for each of 
these values N multiplications and (N − 1) additions must be performed. Therefore, computing 
the DFT requires N(2N − 1) arithmetic operations, i.e., it has a computational complexity of 
Ο(N2) (order of N2). However, specially if N is a power of 2, many of the DFT calculations are 
redundant. By carefully re-arranging the order of multiplications and additions, the computa-
tional complexity can be reduced to O(N log2(N)). The resulting algorithm is called fast Fourier 
transform (FFT) [fft, ifft]. The difference between O(N2) and O(N log2(N)) can be sub-
stantial: If N = 1024 and log2(1024) = 10, the computational complexity of the FFT is only 1% 
of that of a DFT. 

As noted above the DFT and IDFT are defined for periodic time signals. We may, however, 
be interested in a digital representation of the spectrum of non-periodic discrete-time signals. For 
time-limited signals, i.e., for signals that differ from zero only for 0 ≤ k < N, we found that the 
DFT results in samples of the DTFT. For non-periodic, infinite (or long) time signals we have to 
restrict the calculation of the DFT to a number of N samples, meaning that we may only use a 
number of L ≤ N signal samples. The procedure to pick only a limited number of samples from a 
possibly infinitely long signal is called windowing [window]. Various windowing methods, e.g., 
rectangular window, triangula (Barlett) window, Hamming window, Kaiser window and Cheby-
shev window, and their effects are well-documented in the literature; see Oppenheim and Schafer 
(1989).  
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A.5 Power Spectrum and Coherence Function 

The power spectrum (or power spectral density: PSD) is formally defined as the FT of the auto-
correlation sequence (known as the Wiener–Khintchine theorem) [psd] 
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where f denotes the frequency. An equivalent definition is given by 
*( ) E{ ( ) ( )}xxS f X f X f= . (A.15) 

A sufficient, but not necessary, condition for the existence of the PSD is that the auto-
correlation be absolutely summable. The PSD is real-valued and non-negative, i.e., Sxx ≥ 0; if 
x(k) is real-valued, then the PSD is also symmetric, i.e., Sxx(f) = Sxx(−f).  

Similarly, the cross-power spectrum is defined by [csd] 
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An indication about the power and phase coherence between two signals x(k) and y(k) at a given 
frequency can be gained by computing the coherence function (or index or coefficient)   
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From the Schwartz inequality, it follows that 0 ≤ Cxy(f) ≤ 1. Usually, the squared coherence is 
used instead [cohere]: 
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Thorough discussion of the properties of PSD can be found by Marple (1987).  



B Higher-order Statistics 

The first- and second-order statistics (e.g., mean, variance, autocorrelation, power spectrum) 
introduced above are only sufficient for describing linear and Gaussian processes. In practice, 
many situations occur, where linearity and Gaussianity do not hold, e.g., when the process ex-
hibits non-linear behaviour. To conveniently study these systems, higher-order statistics (HOS) 
are needed. Particularly, HOS enable us to extract information due to deviations of signals from 
Gaussianity to recover their true phase character and to detect and quantify non-linearities in 
time series.  

In this section, the definitions, properties and computation of HOS, i.e., moments, cumulants 
and their corresponding higher-order spectra (polyspectra) are introduced. Emphasis of the dis-
cussion is placed on 2nd- and 3rd-statistics and their respective Fourier transforms: power spec-
trum and bispectrum. The application of the bispectrum for non-linearity detection is introduced 
in Section 9.2. The presentation is mainly adopted from Nikias and Mendel (1993), Nikias and 
Petropulu (1993) and Fackrell (1996).   

B.1 Moments and Cumulants 

Given a set of n real random variables {x1, x2, ..., xn}, their joints moments of order 
r = k1 + k2 + … + kn are expressed as 
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where  
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is their joint characteristic function (the moment generating function).  
Similarly, the coefficients in the Taylor expansion of the cumulant generating function, also 

known as the second characteristic function 
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are the cumulants of oder r: 
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Thus, moments and cumulants are related to each other. The general relationship is given by 

1 2

1
1 2Cum( , , , ) ( 1) ( 1)! E{ } E{ } E{ }

p

p
n i i i

i s i s i s
x x x p x x x−

∈ ∈ ∈

= − −∑ ∏ ∏ ∏… , (B.5) 

where the summation extends over all partitions (s1, s2, ..., sp), p = 1, 2, ..., n, of the set of inte-
gers (1, 2, ..., n). See Nikias and Petropulu (1993) for more details and examples. As cumulants 
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posses certain properties, which lend themselves well to the development of new HOS tech-
niques, most HOS methods are developed in terms of cumulants and not moments.   

Perhaps the most important of these properties are those concerning Gaussian processes: a 
Gaussian process is completely characterised by its mean and variance only. Moreover, the first-
order cumulant of a Gaussian process is equal to the mean, the second-order cumulant to the 
variance, and all higher-order cumulants are identically zero. This property suggests that meas-
urement noise, which is often assumed to be Gaussian, disappears at third and higher orders. 
This raises the possibility that if the process of interest is non-Gaussian, then its properties will 
„shine through“ the noise in the higher-order domains (Fackrell, 1996). This remains one of the 
key motivations for research in HOS methods. The reader is referred to Nikias and Petropulu 
(1993) for detailed description of the properties of cumulants. 

Consider now a real stationary random process x(k) whose moments up to order n exist. 
Then,  

{ }1 1 1 1Mom{ ( ), ( ), , ( )} E ( ) ( ) ( )n nx k x k x k x k x k x kτ τ τ τ− −+ + = + +…  (B.6) 

will depend only on the time differences τi ∀i. The nth-order moment mnx of x(k) is written as 

{ }1 E ( )xm x k= , (B.7) 

{ }2 ( ) E ( ) ( )xm x k x kτ τ= + , (B.8) 

{ }3 1 2 1 2( , ) E ( ) ( ) ( )xm x k x k x kτ τ τ τ= + + , (B.9) 

{ }4 1 2 3 1 2 3( , , ) E ( ) ( ) ( ) ( )xm x k x k x k x kτ τ τ τ τ τ= + + + , (B.10) 
 (B.11) 

{ }1 2 1 1 2 1( , , , ) E ( ) ( ) ( ) ( )nx n nm x k x k x k x kτ τ τ τ τ τ− −= + + +… . (B.12) 

Similarly, the nth-order cumulants of a real stationary random process are expressed in the 
form [cumest]  

1 2 1 1 1( , , , ) : Cum{ ( ), ( ), , ( )}nx n nc x k x k x kτ τ τ τ τ− −= + +… … . (B.13) 

Combining Equations B.5, B.12 and B.13, the relationships between moment and cumulant se-
quences can be obtained.  

The second-, third- and fourth-order cumulants of are 

1 1x xc m= , (B.14) 
2

2 2 1( ) ( )x x xc m mτ τ= − , (B.15) 
3

3 1 2 3 1 2 1 2 1 2 2 2 2 1 1( , ) ( , ) [ ( ) ( ) ( )] 2x x x x x x xc m m m m m mτ τ τ τ τ τ τ τ= − + + − + , (B.16) 
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 (B.17) 

The zero-lag cumulants have special names: 

{ }2 2
2 2E ( ) (0) (variance)x x xx k cγ σ= = = , (B.18) 

{ }3
3 3E ( ) (0,0) (skewness)x xx k cγ = = , (B.19) 

{ }4
4 4E ( ) (0,0,0) (kurtosis)x xx k cγ = = . (B.20) 
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These equations give the variance (as a measure of the spread of the PDF), the skewness (as a 
measure of asymmetry) and kurtosis (as a measure of sharpness of peak or „flatness“) measures 
in terms of cumulant lags. The normalised quantities 3

3 2/x xγ σ  and 4
4 2/x xγ σ  (both shift and scale 

invariant) are also defined. If x(k) is symmetric distributed, its skewness is necessarily zero (but 
not vice versa). If x(k) is Gaussian distributed, its kurtosis is necessarily zero (but not vice versa). 

With zero-mean assumption, the second- and third-order cumulants are the same as the sec-
ond- and third-order moments respectively. Thus, for the simplification of estimates, if the proc-
ess has nonzero mean, the mean should be subtracted from it first. However, to generate the 
fourth-order cumulant, knowledge of the fourth-order and second-order moments is needed. In 
practice, because of unique linear property of the second characteristic function working with 
cumulants instead of moments is more common and preferable in the case of stochastic signals.  

B.2 Polyspectra and Coherence Functions 

The generalisation of the power spectrum to higher orders forms the family of polyspectra. They 
are usually defined in terms of nth-order cumulants as their (n − 1)-dimensional Fourier trans-
forms 

1 1

1 2 1

1 2 1 1 1 2 2 1 1

( , , , )

( , , , ) exp[ 2π( + + + )] .
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c j f f f
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τ τ τ τ τ τ
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−

+∞ +∞

− − −
=−∞ =−∞

= −∑ ∑

…

… …
 (B.21) 

This is simply a generalisation of the Wiener–Khintchine relation. Nevertheless, again in prac-
tice they can be equivalently estimated by statistical averaging of the Fourier amplitudes whose 
sum frequency vanishes.  

Also, cross-cumulants and cross-cumulant spectra may be defined: 

1 2 1 2 1 1 2 1 1( , , , ) : Cum( ( ), ( ), , ( ))
nx x x n n nc x k x k x kτ τ τ τ τ− −= + +… … … , (B.22) 
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For instance, the 3rd-order cross-cumulant [cum3x] and the corresponding spectrum are given 
by 

1 2 1 2( , ) Cum{ ( ), ( ), ( )}xyzc x k y k z kτ τ τ τ= + +  (B.24) 

{ }1 2E ( ( ) )( ( ) )( ( ) )x y zx k m y k m z k mτ τ= − + − + − , (B.25) 

where mx = E{x(k)}, my = E{y(k)} and mz = E{z(k)};  

1 2

1 2 1 2 1 1 2 2( , ) ( , ) exp[ 2π( + )]xyz xyzS f f c j f f
τ τ

τ τ τ τ
+∞ +∞

=−∞ =−∞

= −∑ ∑ . (B.26) 

Special cases of Equation B.21 are the power spectrum (n = 2), the bispectrum (n = 3) and the 
trispectrum (n = 4). Only PSD is real, the others are complex. Besides, one of the most useful 
functions used for the detection and characterization of non-linearity in time series is the coher-
ence function. The bispectrum (or bispectral density) and the trispectrum (or trispectral density) 
can be expressed as 

*
3 ( , ) E{ ( ) ( ) ( )} E{ ( ) ( ) ( ( ))}xS k l X k X l X k l X k X l X k l= + = − + , (B.27) 
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*
4 ( , , ) E{ ( ) ( ) ( ) ( )}xS k l m X k X l X m X k l m= + + , (B.28) 

respectively, where k, l and m denote discrete frequencies. These equations show that bispectrum 
and trispectrum are complex quantities having both magnitude and phase. Focus of this work is 
on the 3rd-order polyspectrum, i.e., the bispectrum. The interested reader should consult else-
where for matters concerning trispectral analysis, e.g., Dalle-Molle (1992), Collis (1996) and 
Collis et al. (1998). 

The bispectrum satisfies the following symmetry relations: 
*

3 3 3( , ) ( , ) ( , )x x xS k l S l k S k l= = − − , (B.29) 

3 3 3( , ) ( , ) ( , )x x xS k l S k l l S k k l= − − = − − . (B.30) 

It can be plotted against two independent frequency variables, k and l in a three-dimensional (3D) 
plot. Just as the discrete power spectrum has a point of symmetry at the folding frequency, the 
discrete bispectrum also has 12 regions of symmetries in the (k, l)-plane (Rosenblatt and Van 
Ness, 1965; Nikias and Petropulu, 1993). However, symmetry operations reduce the non-
redundant region of the bispectrum (bicohenrence and skewness) to a triangular region, called 
the principal domain: 0 ≤ k ≤ l, k + l ≤ fs/2 (fs is the sampling frequency). The principal domain 
can be further divided into two regions known as the inner triangle and the outer triangle; see 
Figure B.1. Each point in such a plot represents the bispectral content of the signal at the bifre-
quency, (k, l). In fact, the bispectrum at point (S3x(k, l), k, l) measures the interaction between 
frequencies k and l. This interaction between frequencies can be related to the non-linearities 
present in the signal generating systems (Fackrell, 1996) and therein lies the core of its useful-
ness in the detection and diagnosis of non-linearities. 
 

 
Figure B.1. Principal domain (PD) of the discrete bispectrum showing the inner triangle (IT) and the outer 
triangle (OT)  

B.3 Estimating the Bispectrum from Data 

In practice, higher-order spectra have to be estimated from a finite set of (sampled) measure-
ments. Two of the most popular conventional approaches are the direct and indirect methods, 
which may be seen as direct approximation of the definitions of higher-order spectra. Whereas 
these approximations are straightforward, often the required computations may be expensive 
despite the use of FFT algorithms. These methods and their extensions for estimating higher-
order spectra are well-documented in Nikias and Petropulu (1993) [bispeci]. Both have simi-
lar computational requirements and give similar results (Elgar and Sebert, 1989; Fackrell et al., 
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1996). In the following, only the direct method for the estimation of the bispectrum [bispecd] 
is described.  

Let {xi(k), k = 0, 1, 2, ..., N − 1} be the available set of measured data for bispectrum estima-
tion. The estimation procedures consists of the following steps (Nikias and Mendel, 1993): 
1. Divide the finite data set of length N is into K (possibly overlapping) segments of M samples 

each, i.e., N ≥ KM. Detrend (i.e., substract the mean value of each segment) and appropriately 
window1 the data to provide some control over the effects of spectral leakage. If necessary, 
delete the last data points or add zeros to obtain a convenient length M = 2n for FFT.  

2. Generate the FFT coefficients for each data segment: 
2π1

0

1( ) ( )
kM j l

M
i i

l
X k x l e

M

− −

=

= ∑ . (B.31) 

3. Form the raw spectral estimates based on the FFT coefficients 
*

2 ,
ˆ ( ) ( ) ( )x i i iS k X k X k= , (B.32) 

*
3 ,

ˆ ( ) ( ) ( ) ( )x i i i iS k X k X l X k l= + . (B.33) 

4. Compute the segment-averaged estimate of the power spectrum and the bispectrum of the 
given data set from the average over K pieces.  

2 2 ,
1

1ˆ ˆ( ) ( )
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x x i
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S k S k
K =

= ∑ , (B.34) 

3 3 ,
1

1ˆ ˆ( , ) ( , )
K

x x i
i

S k l S k l
K =

= ∑ , (B.35) 

respectively. 

B.4 Skewness and Squared Bicoherence Functions 

The properties of the spectral estimate in Equation B.35 will now be discussed. According to 
Fackrell (1996), one has to distinguish between the properties for stochastic signals, M1, (Brill-
inger and Rosenblatt, 1967; Huber et al., 1971; Hinich, 1982) and those for mixtures of determi-
nistic and stochastic signals, M2, (Elgar and Guza, 1988; Chandran and Elgar, 1991).  

A common measure of bispectral estimate (for M1 signals) is the so-called skewness function 
(Hinich, 1982): 

3

2 2 2

E{ ( , )}
( , ) :

E{ ( )}E{ ( )}E{ ( )}
x

x x x

S k lskew k l
S k S l S k l
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 (B.36) 

2
2 3

2 2 2

|E{ ( , )} |( , ) :
E{ ( )}E{ ( )}E{ ( )}

x

x x x

S k lskew k l
S k S l S k l

⇒ =
+

. (B.37) 

If the denominator of Equation B.37 was known exactly, then the estimate of the skewness func-
tion given by 

                                                           
1 Hamming windows were found to give some of the best results for phase-coupling detec-

tion (Fackrell et al., 1996). 
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2
2 3

2 2 2

ˆ| ( , ) |
( , )

( ) ( ) ( )
x

x x x

S k lskew k l
S k S l S k l

=
+

 (B.38) 

would have a flat variance. However, in practice, the power spectral terms are not known and 
they too have to be estimated from the data using Equation B.34. Thus, skew2(k, l) in Equation 
B.37 is estimated using  

2
2 3

2 2 2

ˆ| ( , ) |( , ) ˆ ˆ ˆ( ) ( ) ( )
x

x x x

S k lskew k l
S k S l S k l

=
+

. (B.39) 

Fortunately, the power spectra estimates 2
ˆ

xS  generally have lower variance than the bispectra 

estimates 3
ˆ

xS , and in practice, in the cases where it can be checked, Equation B.39 often turns 
out to be very close to Equation B.38. The skewness function, which resembles the coherence 
function (Equation A.18) not only by name, may be regarded as the normalised polyspectrum of 
third-order. It is also a complex quantity with real and imaginary parts. It is well known in the 
HOS literature that the bicoherence is a complex normal variable, i.e., both the estimates of real 
and imaginary parts of the bicoherence are normally distributed (Hinich, 1982) and asymptoti-
cally independent, i.e., the estimate at a particular bifrequency is independent of the estimates of 
its neighbouring bifrequencies (Fackrell, 1996). Note that the skewness generally can assume 
values larger than unity. 

The normalised bispectrum (skewness function) can be generalised to an nth-order coherence 
function (Nikias and Petropulu, 1993) 
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. (B.40) 

This becomes useful in studying the phase response of non-Gaussian linear processes, i.e., proc-
esses whose spectra are modelled by the same linear filter. The magnitude of the an nth-order 
coherence function, |Pnx(k1, k2, ..., kn−1)|, is called coherence index (Nikias and Petropulu, 1993). 
This is very useful in detecting and characterisation of non-linearities in time series and in dis-
criminating linear processes from non-linear ones. In fact, a signal is said to be linear non-
Gaussian process of order n if the  coherence index is constant over all frequencies; otherwise, 
the signal is said to be non-linear process (Nikias and Mendel, 1993).    

It has been shown that the bispectral estimates are asymptotically unbiased and the variance 
of the estimator depends on the 2nd-order spectral properties (Hinich, 1982; Nikias, 1988). This 
poses a serious problem (which does not occur with power-spectrum estimates) that the variance 
of the estimate will be dependent on the signal energy, i.e., higher at a bifrequency where the 
signal energy is high, and lower where the energy is low.  

Instead of the skewness function and to avoid the undesired property of the variance of the 
bispectrum estimate, an alternative normalisation is often used for bispectral characterisation of 
M2 signals (Kim and Powers, 1979; Elgar and Sebert, 1989):   
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This can be estimated by 
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This normalised bispectrum, which is known as the squared bicoherence, bicoherence spectrum, 
or quadratic correlation coefficient, does not have the same approximately flat variance that the 
skewness function has. However, it does have the useful property that it is bounded between zero 
and unity, i.e., 

20 ( , ) 1bic k l≤ ≤  (B.43) 

a property, which skew2(k, l) does not share. This can be shown using the Schwartz inequality 
which may be expressed as 

2 2 2
1 2 1 2|E{ } | E{| | }E{| | }z z z z≤ , (B.44) 

where z1 = X(k)X(l) and z2 = X(k + l). In fact, in practice skew2(k, l) and bic2(k, l) do usually take 
very similar values, a fact which has led to some confusion between them in the literature. Care 
should be taken, as the terms skewness and bicoherence have been used interchangeably in the 
HOS literature. In practice, there is often little to choose between the two measures because both 
have the same numerator and because of the relative statistical stability of their denominators in 
comparison with their numerators. Furthermore, Kim and Powers (1979) have shown that the 
variance of the bispectrum can be be expressed as 

2
3 2 2 2

1ˆvar{ ( , )} ( ) ( ) ( )[1 ( , )]x x x xS k l S k S l S k l bic k l
K

≈ + − . (B.45) 

That is, when the waves at k, l and k + l are non-linearly coupled (bic ≈ 1, quadratically coher-
ent), the variance approaches zero, and when the oscillations are statistically independent 
(bic ≈ 0, quadratically incoherent), the variance is proportional to the product of power at each 
spectral component.  

When considering a discrete ergodic stationary time series, x(k), which can be represented  by 
1

0
( ) ( ) ( )
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i
x k h i e k i

−

=

= −∑ , (B.46) 

where e(k) is a sequence of independent identically distributed random variables with 
E{e(k)} = 0, 2 2E{ ( )}e e kσ = , 3

3 E{ ( )}e kμ = , it can be shown that  

2
2 3

6( , ) const. ,
e

bic k l k lμ
σ

= = ∀ . (B.47) 

Note that the term „bicoherence spectrum“, as defined in Equation B.42, has recently been 
critized by Hinich and Wolinsky (2004) to be misleading, since it is really a skewness spectrum 
and the normalisation depends on the frame length and on the magnitude of the trispectrum. An 
alternative statistical normalisation has been presented by Hinich and Wolinsky (2004) that pro-
vides a measure of quadratic coupling for stationary random non-linear processes with finite 
dependence.  

Besides the skewness function and the squared bicoherence discussed so far, other methods 
for normalising the bispectrum have been proposed by Kravtchenko-Berojnoi (1994), Lyons et 
al. (1995), Thyssen et al. (1995), Collis et al. (1998) and Hinich and Wolinsky (2004). See 
Fackrell et al. (1995a) and Fackrell (1996) for a comparison. Note that the word normalisation is 
used in a very liberal sense here, since some of the measures, notably skew2(k, l), can exceed 
unity. 

Some important properties of normalised bispectra are given as follows (Fackrell, 1996): 
• The theoretical bispectrum of a Gaussian signal is identically zero. 
• The theoretical bispectrum of a linearly filtered Gaussian signal is identically zero. 
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• The theoretical bicoherence of a Gaussian signal is zero. 
• The theoretical bispectrum of a non-Gaussian signal is „blind“ to additive Gaussian noise. 

This theoretical „blindness“ to Gaussian noise has been the prime motivation to much of the 
exploitative HOS research to date. 

• The theoretical bicoherence of a signal conforming to either the M1 or M2 models is in gen-
eral not „blind“ to Gaussian noise. 

• If a signal is filtered by a linear filter, then, provided that the filter has no zeros on the unit 
circle, the magnitude of the normalised bispectrum is unchanged. 

• The theoretical skewness function of linearly filtered non-Gaussian independent identically 
distributed signals is flat. 

• If a signal is filtered by a linear phase filter, then its biphase information is unchanged. 
• The theoretical skewness function of a non-Gaussian M1 signal, which has been passed 

through a nonlinear filter, may not be flat. 
• The theoretical bicoherence of a harmonic M2 signal peaks if the signal phases φ1, φ2 and φ3 

at frequencies f1, f2 and f3 = f1 + f2 respectively have the relation φ3 = φ1 + φ2. This sort of 
phase relation is known as quadratic phase coupling (QPC) and it is an indicator of non-linear 
signal generation mechanisms. 

Note that applying the bicoherence to real and noisy data results in many spurious bispectral 
peaks in the (k, l)-plane due to noise. Extracting the “true” peaks, i.e., those reflecting coupled 
oscillations, is not straightforward. This problem is also encountered when analysing a system 
using the coherence function. In the latter case, a threshold of 0.5 is typically used to discern 
peaks, which represent coupled oscillations from spurious peaks caused by noise. This threshold 
is arbitrary and its value has been criticized (Toledo, 2002). To discriminate real bispectral peaks 
from spurious ones, the approach suggested by Haubrich (1965) can be used. The principle of 
this method is to consider the question of a bispectral peak being a real one within the framework 
of statistical hypothesis testing. The null hypothesis in this case is that the analysed signal is a 
Gaussian random process. We can reject or accept this hypothesis, depending on the value of the 
bicoherence. Determining the threshold using this approach provides an objective and quantita-
tive method to differentiate real from spurious peaks. However, the statistical properties of the 
bicoherence, under the assumption of the null hypothesis, must be known. Therefore, the focus 
should be on the statistical properties of the bicoherence of Gaussian stochastic processes. See 
Haubrich (1965) and Toledo (2002) for more details.  



C Control Loops from Different Industries 

Table C.1. Information about control loops analysed; some of them are evaluated throughout the book. 

Loop 
Name 

Industrial Field Control Loop  Ts [s] Comments and known/possible 
Problems  

BAS1 Buildings Temperature control  1 No oscillation 
BAS2 Buildings Temperature control  1 No oscillation 
BAS3 Buildings Temperature control  3 Intermittent oscillation 
BAS4 Buildings Pressure control  3 Intermittent oscillation 
BAS5 Buildings Pressure control  1 OP not available 
BAS6 Buildings Temperature control 1 Stiction and tight tuning 
BAS7 Buildings Temperature control  1 Stiction 
BAS8 Buildings Temperature control  60 No oscillation 
CHEM1 Chemicals Flow control  1 Stiction 
CHEM2 Chemicals Flow control  1 Stiction 
CHEM3 Chemicals Temperature control  30 Quantisation 
CHEM4 Chemicals Level control  1 Tuning problem 
CHEM5 Chemicals Flow control  1 Stiction 
CHEM6 Chemicals Flow control  1 Stiction 
CHEM7 Chemicals Pressure control  1 Open loop data; stiction 
CHEM8 Chemicals Pressure control  1 Open loop data; stiction 
CHEM9 Chemicals Pressure control  1 Stiction 
CHEM10 Chemicals Pressure control  1 Stiction 
CHEM11 Chemicals Flow control  1 Stiction 
CHEM12 Chemicals Flow control  1 Stiction 
CHEM13 Chemicals Analyser control  20 Faulty steam sensor; no stiction 
CHEM14 Chemicals Flow control  20 Faulty steam sensor; no stiction 
CHEM15 Chemicals Pressure control  20 Interaction (likely); no stiction 
CHEM16 Chemicals Pressure control  20 Interaction (likely); no stiction 
CHEM17 Chemicals Temperature control  20 Faulty steam sensor; no stiction.  

The OP of CHEM17 is the set point 
to CHEM14. 

CHEM18 Chemicals Flow control 12 Stiction (likely) 
CHEM19 Chemicals Flow control 12 Stiction (likely) 
CHEM20 Chemicals Flow control 12 Stiction (likely) 
CHEM21 Chemicals Flow control 12 Disturbance (likely) 
CHEM22 Chemicals Flow control 12 Stiction (likely) 
CHEM23 Chemicals Flow control 12 Stiction (likely) 
CHEM24 Chemicals Flow control 12 Stiction likely 
CHEM25 Chemicals Pressure control  12 Possible margin stability 
CHEM26 Chemicals Level control  12 Stiction (likely) 
CHEM27 Chemicals Level control  12 Disturbance (likely) 
CHEM28 Chemicals Temperature control  12 Stiction (likely) 
CHEM29 Chemicals Flow control 60  
CHEM30 Chemicals Flow control 15 No stiction 
CHEM31 Chemicals Flow control 15  
CHEM32 Chemicals Flow control 10 Stiction (likely) 
CHEM33 Chemicals Flow control 12 Disturbance (likely) 
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CHEM34 Chemicals Flow control 10 Disturbance (likely) 
CHEM35 Chemicals Flow control 10 Stiction (likely) 
CHEM36 Chemicals Level control 12 Disturbance (likely) 
CHEM37 Chemicals Level control 12 Disturbance (likely) 
CHEM38 Chemicals Pressure control 10 Disturbance (likely) 
CHEM39 Chemicals Pressure control 60 Disturbance (likely) 
CHEM40 Chemicals Temperature control 60 No clear oscillation  

(according to power spectrum) 
CHEM41 Chemicals Temperature control 60 OP saturation, as assessed by  

Matsuo et al. (2004). 
CHEM42 Chemicals Temperature control 60  
CHEM43 Chemicals Temperature control 60  
CHEM44 Chemicals Temperature control 60 Too few cycles; no clear oscillation; 

OP saturation. 
CHEM45 Chemicals Pressure control 60 No clear oscillation  

(according to power spectrum) 
CHEM46 Chemicals Pressure control 60 No clear oscillation  

(according to power spectrum) 
CHEM47 Chemicals Pressure control 60 No clear oscillation  

(according to power spectrum) 
CHEM48 Chemicals Pressure control 60 No clear oscillation  

(according to power spectrum) 
CHEM49 Chemicals Pressure control 60  
CHEM50 Chemicals Level control 60  
CHEM51 Chemicals Level control 60  
CHEM52 Chemicals Level control 60 No clear oscillation  

(according to power spectrum) 
CHEM53 Chemicals Level control 60 No clear oscillation 
CHEM54 Chemicals Level control 60 No clear oscillation 
CHEM55 Chemicals Level control 60  
CHEM56 Chemicals Flow control 60 No clear oscillation  

(according to power spectrum) 
CHEM57 Chemicals Flow control 60  
CHEM58 Chemicals Flow control 60 No clear oscillation  

(according to power spectrum) 
CHEM59 Chemicals Flow control 60 No clear oscillation  

(according to power spectrum) 
CHEM60 Chemicals Flow control 60  
CHEM61 Chemicals Flow control 60 No clear oscillation  

(according to power spectrum) 
CHEM62 Chemicals Flow control 60 No clear oscillation  

(according to power spectrum) 
CHEM63 Chemicals Flow control 60  
CHEM64 Chemicals Gas flow control 60  
PAP1 Pulp & Papers Flow control  1 Stiction 
PAP2 Pulp & Papers Flow control  1 Stiction 
PAP3 Pulp & Papers Level control  1 Stiction 
PAP4 Pulp & Papers Concentration control  1 Dead zone and tight tuning 
PAP5 Pulp & Papers Concentration control   0.2 Stiction 
PAP6 Pulp & Papers Level control  1 No stiction 
PAP7 Pulp & Papers Flow control  0.2 External disturbance 
PAP8 Pulp & Papers Level control  5 No stiction 
PAP9 Pulp & Papers Temperature control   5 No stiction 
PAP10 Pulp & Papers Level control  5  
PAP11 Pulp & Papers Level control  15  
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PAP12 Pulp & Papers Level control  15 Stiction 
PAP13 Pulp & Papers Level control  15 Stiction 
POW1 Power Plants Level control  5 Stiction 
POW2 Power Plants Level control  5 Stiction 
POW3 Power Plants Level control  5 Stiction 
POW4 Power Plants Level control  5 Stiction 
POW5 Power Plants Level control  5 Stiction 
MIN1 Mining  Temperature control  60 Stiction 
MET1 Metals Thickness control  0.05 External disturbance (likely) 
MET2 Metals Thickness control  0.05 External disturbance (likely) 
MET3 Metals Thickness control  0.05 No oscillation 
 





References 

Agarwal N, Huang B, Tamayo EC (2007a) Assessing MPC performance. Part 1: Probabilistic approach for 
constraint analysis. Ind Eng Chem Res 46:8101–8111. 

Agarwal N, Huang B, Tamayo EC (2007b) Assessing MPC performance. Part 2: Bayesian approach for 
constraint tuning. Ind Eng Chem Res 46:8112–8119. 

Agrawal P, Lakshminarayanan S (2003) Tuning proportional–integral–derivative controllers using 
achievable performance indices. Ind Eng Chem Res 42:5576–5582. 

Ahsan Q, Grosvenor RI, Prickett PW (2004) Distributed control loop performance monitoring architecture. 
Proc Control 2004, University of Bath, UK. ID-054. 

Alevisakis G, Seborg DE (1973) An extension of the Smith predictor method to multi-variable systems 
containing time delays. Int J Contr 17:541–555. 

Allgöwer F, Zheng A (eds) (2000) Nonlinear Model Predictive Control. Birkhäuser. 
Åkesson IN (2003) Plant loop auditing in practice. VDI-Berichte 1756 (Proc GMA-Kongress: Automation 

und Information in Wirtschaft und Gesellschaft, Baden-Baden, Germany), pp 927–934. 
Anderson BDO, Moore JB (1991) Optimal Control: Linear Quadratic Methods. Prentice-Hall. 
Armstrong-Hélouvry B, Dupont P, De Wit CC (1994) A survey of models, analysis tools and compensation 

methods for the control of machine with friction. Automatica 30:1083–1138. 
Åström KJ (1979) Introduction to Stochastic Control. Academic Press. 
Åström KJ (1991) Assessment of achievable performance of simple feedback loops. Internat J Adapt 

Control Signal Process 5:3–19. 
Åström KJ, Hägglund T (1988) Automatic Tuning of PID Controllers. ISA. 
Åström KJ, Hägglund T (1995b) PID Controllers: Theory, Design and Tuning. Instrument Society of 

America. 
Åström KJ, Hägglund T (2006) Advanced PID Control. ISA. 
Åström KJ, Hägglund T, Hang CC, Ho WK (1993) Automatic tuning and adaptation for PID controllers. 

Contr Eng Pract 1:699–714. 
Åström KJ, Wittenmark P (1995) Adaptive Control. Addison-Wesley. 
Åström KJ, Wittenmark P (1997) Computer Controlled Systems: Theory and Design. Prentice Hall. 
AUTOCHECK (2003) Enhancement of Product Quality and Production System Reliability by Continuous 

Performance Assessment of Automation Systems. Research Project No. RFS-CR-03045, European 
Community, Research Fund for Coal and Steel, 2003–2007.   

Badmus O, Banks D, Vishnubhotla A, Huang B, and Shah SL (1998) Performance assessment: a requisite 
for maintaining your APC assets. Proc IEEE Workshop Dynamic Modeling and Control Applications for 
Industry, pp 54–58. 

Bai E-W (2002) Identification of linear systems with hard input nonlinearities of known structures. 
Automatica 38:853–860.  

Barnard JP, Aldrich C, Gerber M (2001) Identification of dynamic process systems with surrogate data 
methods. AIChE J 47:2064–2075. 

Basseville M (1988) Detecting changes in signals and systems − a survey. Automatica 24:309–326. 
Bender M (2003) Auswahl, Implementierung und Test von Algorithmen zur Bewertung der Güte von 

Reglern. Diploma Thesis, BFI/University of Cologne, Germany. 
Bergh LG, MacGregor JF (1987) Constrained minimum variance controllers: internal model control 

structure and robustness properties. Ind Eng Chem Res 26:1558–1564. 
Bezergianni S, Georgakis C (2003) Evaluation of controller performance-use of models derived by 

subspace identification. Internat J Adapt Control Signal Process 17:527–552. 
Bialkowski WL (1993) Dreams vs. reality: a view from both sides of the gap. Pulp & Paper Canada 94:19–

27. 



382 References 

 

Bilkhu TM (2001) Dynamic control of tension, thickness and flatness for a tandem cold mill. AISE Steel 
Technology 78:49–54. 

Bittanti S, Colaneri P, Mongiovi M (1994) The spectral interactor matrix for the singular Riccati equation. 
In Proc IEEE Confer Decision Control, Orlando, USA, vol 3, pp 2165–2169. 

Björklund S (2003) A Survey and Comparison of Time Delay Estimation Methods in Linear Systems. PhD 
Thesis, Lund Institute of Technology, Sweden. 

Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2006) Diagnosis and Fault-Tolerant Control. Springer. 
Bode CA, Ko BS, Edgar TF (2004) Run-to-run control and performance monitoring of overlay in 

semiconductor manufacturing. Contr Eng Pract 12:893–900. 
Bonavita N, Bovero JC, Martini R (2004) Control loops: performance and diagnostics. In Proc ANIPLA 

Confer, Milano, Italy. 
Boudreau MJ, McMillan GK (2006) New Directions in Bioprocess Modeling and Control. ISA. 
Box GEP, Jenkins GM (1970) Time Series Analysis: Forcasting and Control. Holden-Day. 
Box GEP, MacGregor J (1974) The analysis of closed-loop dynamic stochastic systems. Technometrics 

18:371–380. 
Box GEP, Jenkins GM, Reinsel GC (1994) Time Series Analysis: Forcasting and Control. Prentice Hall. 
Boyd S, Barratt C (1991) Linear Control Design. Prentice Hall. 
Brillinger D, Rosenblatt M (1967) Asymptotic theory of estimates of k-th order spectra. In: Harris B (ed) 

Spectral Analysis of Time Signals, John Wiley & Sons, pp 153–188. 
Brisk ML (2004) Process control: potential benefits and wasted opportunities. In Proc Asian Control 

Confer, Melbourne, Australia, pp 10–16. 
Calvet J, Arkun Y (1988) Feedforward and feedback linearization of nonlinear systems and its 

implementation using internal model control (IMC). Ind Eng Chem Res 27:1822–1831. 
Camacho EF, Bordons C (1999) Model Predictive Control. Springer. 
Cao S, Rhinehart RR (1995) An efficient method for on-line identification of steady state. J Proc Control 

5:363–374. 
Casdagli MC, Iasemidis LD, Sackellares JC, Roper SN, Gilmore RL, Savit RS (1996) Characterizing 

nonlinearity in invasive EEG recordings from temporal lobe epilepsy. Physica D 99:381–399. 
Chan KS, Lakshminarayanan S, Rangaiah GP (2005) Tuning PID controllers for maximum stochastic 

regulatory performance: methods and experimental verification. Ind Eng Chem Res 44:7787–7799. 
Chandran V, Elgar SL (1991) Mean and variance of estimates of the bispectrum of a harmonic random 

process an analysis including leakage effects. IEEE Trans Signal Processing 39:2640–2651. 
Chien IL, Fruehauf (1990) Consider IMC tuning to improve controller performance. Chem Eng Progress 

86:33–41. 
Choudhury MAAS, Shah SL, Thornhill NF (2004) Diagnosis of poor control-loop performance using 

higher-order statistics. Automatica 40:1719–1728. 
Choudhury MAAS, Kariwala V, Shah SL, Douke H, Takada H, Thornhill NF (2005) A simple test to 

confirm control valve stiction. Proc IFAC World Congress, Praha.  
Choudhury MAAS, Thornhill NF, Shah SL, Shook DS (2006) Automatic detection and quantification of 

stiction in control valves. Contr Eng Pract 14:1395–1412. 
Choudhury MAAS, Thornhill NF, Shah SL (2005) Modelling valve stiction. Contr Eng Pract 13:641–658. 
Clarke DW, Mohtadi C, Tuffs PS (1987a) Generalized predictive control. Part I: the basic algorithm. 

Automatica 23:137–148. 
Clarke DW, Mohtadi C, Tuffs PS (1987b) Generalized predictive control. Part II: extensions and 

interpretations. Automatica 23:149–160. 
Collis WB (1996) Higher Order Spectra and their Application to Nonlinear Mechanical Systems. PhD 

Thesis, University of Southampton.  
Collis WB, White PR, Hammond JK (1998) Higher-order spectra: the bispectrum and trispectrum. 

Mechanical Systems and Signal Processing 12:375–394. 
Cutler CR, Ramaker BL (1980) Dynamic matrix control – a computer control algorithm. In Proc Joint 

Automatic Control Confer, San Francisco, USA. 
Dalle-Molle JW (1992) Higher-order Spectral Analysis and the Trispectrum. PhD Thesis, The University 

of Texas at Austin.  



 References 383 

 

Davies L, Gather U (1993) The identification of multiple outliers. J Amer Statistical Association 88:782–
792. 

Clegg A (2002) Benchmarking as an Aid to Identifying Under-performing Control Loops. <www.isc-
ltd.com/benchmark/learning_centre/aclegg.html>.  

Desborough L, Harris T (1992) Performance assessment measures for univariate feedback control. Can J 
Chem Eng 70:1186–1197.  

Desborough L, Harris T (1993) Performance assessment measures for univariate feedforward/ feedback 
control. Can J Chem Eng 71:605–616.  

Desborough L, Miller R (2002) Increasing customer value of industrial control performance monitoring – 
Honeywell’s experience. AIChE Symposium Series No 326, Vol 98, pp 153–186. 

DeVries W, Wu S (1978) Evaluation of process control effectiveness and diagnosis of variation in paper 
basis weight via multivariate time-series analysis. IEEE Trans Automat Control 23:702–708. 

Dittmar R, Bebar M, Reinig G (2003) Control Loop Performance Monitoring: Motivation, Methoden, 
Anwendungswünsche. atp – Automatisierungstechnische Praxis 45:94–103. 

Driankov D, Hellendorn H, Reinfrank M (1993) An Introduction into Fuzzy Control. Springer. 
Dumont GA, Kammer L, Allison BJ, Ettaleb L, Roche AA (2002) Control performance monitoring: new 

developments and practical issues. Proc IFAC World Congress, Barcelona, Spain. 
Duncan SR, Allwood JM, Garimella SS (1998) The analysis and design of spatial control systems in strip 

metal rolling. IEEE Trans Contr Syst Technol 6:220–232. 
Economou CG, Morari M, Palsson BO (1986) Internal model control. 5. Extension to nonlinear systems. 

Ind Eng Chem Process Des Dev 25:403–411. 
Economou CG, Morari M (1986) Internal model control. 6. Multiloop design. Ind Eng Chem Process Des 

Dev 25:411–419. 
Elgar S, Guza RT (1988) Statistics of bicoherence. IEEE Trans Acoustics Speech and Signal Processing 

36:1667–1668. 
Elgar S, Sebert G (1989) Statistics of bicoherence and biphase. J Geophysical Research C94:10993–10998. 
Elnaggar A, Dumont GA, Elshafei A-L (1991) Delay estimation using variable regression. In Proc 

American Control Confer, Boston, USA, pp 2812–2817. 
Ender D (1993) Process control performance: not as good as you think. Control Engineering 40:180–190. 
EnTech (1998) EnTech control valve dynamic specification. Version 3.0. 
EPSRC (2002): Optimising Petrochemical and Process Plant Output Using New Performance Assessment 

and Benchmarking Tools. EPSRC grant GR/R65800/01, 2002–2005. <www.icc.strath.ac.uk/bench 
mark.htm>.  

Eriksson P, Isaksson AJ (1994) Some aspects of control loop performance monitoring. In Proc IEEE 
Confer Control Applications, Glasgow, Scotland, pp 1029–1034. 

Ettaleb L (1999) Control Loop Performance Assessment and Oscillation Detection. PhD Thesis, University 
of British Columbia, Canada. 

Ettaleb L, Davies MS, Dumont GA, Kwok E (1996) Monitoring oscillations in a multiloop system. In Proc 
IEEE Internat Confer Control Applications, Dearborn, USA, pp 859–863. 

Fackrell JWA (1996) Bispectral Analysis of Speech Signals. PhD Thesis, University of Edinburgh, UK. 
Fackrell JWA, McLaughlin S, White PR (1995a) Bicoherence estimation using the direct methods. Part 1: 

theoretical conisderations. Applied Sig Process 3:155–168. 
Fackrell JWA, McLaughlin S, White PR (1995b) Bicoherence estimation using the direct methods. Part 2: 

practical conisderations. Applied Sig Process 3:186–199. 
Farenzena M, Trierweiler JO (2006) Variability matrix: a new tool to improve the plant performance. Proc 

IFAC ADCHEM, Gramado, Brazil, pp 893–898. 
Favoreel W, Moor BD, van Overschee P (1999) Model-free subspace-based LQG-design. In Proc Amer 

Control Confer, San Diego, pp 3372–3376. 
Favoreel W, Moor BD, Van Overschee P (2000) Subspace state space system identification for industrial 

processes. J Process Control 10:149–155. 
Fisher-Rosemount (1999) Control valve handbook. Fisher Controls International Inc., USA. 



384 References 

 

Foley MW, Buckley PA, Huang B, Vishnubhotla A (1999) Application of control loop performance 
assessment to an industrial acid leaching process. In: Hodouin D, Bazin C, Desbiens A (eds) Control 
and Optimization in Minerals, Metals and Materials Processing, METSOC, pp 3–16. 

Forsman K (1998) Performance monitoring of sensors, controllers and actuators with applications to paper 
making. Proc Control Systems, Porvoo, Finland, pp 275–281. 

Forsman K, Stattin A (1999) A new criterion for detecting oscillations in control loops. In Proc Europ 
Control Confer, Karlsruhe, Germany. 

Frank PM (1974) Entwurf von Regelkreisen mit vorgeschriebenem Verhalten. G. Braun Verlag. 
Fu Y, Dumont GA (1993) Optimum Laguerre time scale and its on-line estimation. IEEE Trans Automat 

Control 38:934–938. 
Gao J, Patwardhan RS, Akamatsu K, Hashimoto Y, Emoto G, Shah SL, Huang B (2003) Performance 

evaluation of two industrial MPC controllers. Contr Eng Pract 11:1371–1387. 
García CE, Morari M (1982) Internal model control. 1. A unifying review and some new results. Ind Eng 

Chem Process Des Dev 21:308–323. 
García CE, Morari M (1985) Internal model control. 2. Design procedure for multivariable systems. Ind 

Eng Chem Process Des Dev 24:472–484. 
García CE, Morari M (1985) Internal model control. 3. Multivariable control law computation and tuning 

guidelines. Ind Eng Chem Process Des Dev 24: 484–494. 
García CE, Prett DM, Morari M (1989) Model predictive control: theory and practice—a survey. 

Automatica 25:335–348. 
George Buckbee PE (2008) The 6 most common PID configuration errors: how to find and fix them. 

<www.expertune.com/articles/WPPIDConfigErrors.pdf>. 
Gerry JP (2002) Process monitoring and loop prioritization can reap big payback and benefit process plants. 

Proc ISA, Chicago, USA.  
Gerry J, Ruel M. (2001) How to measure and combat valve stiction online. Instrumentation, Systems and 

Automation Society. Houston, TX, USA. <www.expertune.com/articles/ isa2001/StictionMR.htm>. 
Giannakis G, Tstatsanis M (1994) Time-domain tests for gaussianity and time-reversibility. IEEE Trans 

Signal Proc 42:3460–3472. 
Ginzburg WB (1989) Steel-Rolling Technology: Theory and Practice. Marcel Dekker. 
Glattfelder AH, Schaufelberger W (2003) Control Systems with Input and Output Constraints. Springer. 
Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley. 
Goodwin GC, Graebe SF, Salgado ME (2001) Control System Design. Prentice Hall. 
Goodwin GC, Sin K (1984) Adaptive Filtering, Prediction and Control. Prentice Hall. 
Gorgels F, Jelali M, Lathe R, Mücke G, Müller U, Ungerer W, Wolff A (2003) State of the art and future 

trends in metal processing control. In Proc METEC Congress (Europ Rolling Confer), Düsseldorf, 
Germany, pp 393–402. 

Goradia DB, Lakshminarayanan S, Rangaiah GP (2005) Attainment of PI achievable performance for linear 
SISO process with deadtime by iterative tuning. Can J Chem Eng 83:723–736. 

Grimble MJ (2000) Restricted-structure LQG optimal control for continuous-time systems. IEE Proc-D: 
Control Theory Appl 147:185–195. 

Grimble MJ (2002a) Controller performance benchmarking and tuning using generalised minimum 
variance control. Automatica 38:2111–2119. 

Grimble MJ (2002b) Restricted structure controller tuning and performance assessment. IEE Proc-D: 
Control Theory Appl 149:8–16. 

Grimble MJ (2003) Restricted structure control loop performance assessment for PID controllers and state-
space systems. Asian J Control 5:39–57. 

Grimble MJ (2006a) Robust Industrial Control Systems. John Wiley & Sons. 
Grimble MJ (2006b) Design of generalized minimum variance controllers for nonlinear systems. Intern J 

Control, Automation, and Systems 4:281–292.  
Grimble MJ, Johnson MA (1988): Optimal Control and Stochastic Estimation, Volume 1 and 2. John Wiley 

& Sons.  
Grimble MJ, Majecki P (2004) Weighting Selection for Controller Benchmarking and Tuning. Tech Report 

ICC/219/Dec 2004, University of Strathclyde, Glasgow. 



 References 385 

 

Grimble MJ, Majecki P (2005) New Ideas in Performance Assessment and Benchmarking of Nonlinear 
Systems. <www.isc-ltd.com/benchmark/workshop/NGMV.pdf>. 

Grimble MJ, Uduehi D (2001) Process control loop benchmarking and revenue optimization. In Proc Amer 
Control Confer, Arlington, USA. 

Gunnarsson S, Wahlberg B (1991) Some asymptotic results in recursive identification using Laguerre 
models. Internat J Adapt Control Signal Process 5:313–333. 

Haarsma G, Nikolaou M (2000) Multivariate Controller Performance Monitoring: Lessons from an 
Application to Snack Food Process. <www.chee.uh.edu/faculty/nikolaou/FryerMonitoring.pdf>. 

Haber R, Keviczky L (1999) Nonlinear System Identification — Input-Output Modelling Approach, vol 2. 
Kluwer. 

Hägglund T (1995) A control-loop performance monitor. Contr Eng Pract 3:1543–1551. 
Hägglund T (1999) Automatic detection of sluggish control loops. Contr Eng Pract 7:1505–1511. 
Hägglund T (2002) Industrial applications of automatic performance monitoring tools. Proc IFAC World 

Congress, Barcelona, Spain. 
Hägglund T (2005) Industrial implementation of on-line performance monitoring tools. Contr Eng Pract 

13:1383–1390. 
Hägglund T, Åström KJ (2000) Supervision of adaptive control algorithms. Automatica 36:1171–1180. 
Harris TJ (1985) A comparative study of model based control strategies. In Proc Amer Control Confer, 

Boston, USA. 
Harris TJ (1989) Assessment of closed loop performance. Can J Chem Eng 67:856–861. 
Harris TJ (2004), Statistical properties of quadratic-type performance indices. J Proc Control 14:899–914. 
Harris T, Seppala CT (2001) Recent developments in performance monitoring and assessment techniques. 

In Proc Chemical Process Control Confer, Tuscon, USA.  
Harris T, Seppala CT, Desborough LD (1999) A review of performance monitoring and assessment 

techniques for univariate and multivariate control systems. J Proc Control 9:1–17. 
Harris T, Boudreau F, MacGregor JF (1996a) Performance assessment using of multivariable feedback 

controllers. Automatica 32:1505–1518. 
Harris T, Seppala CT, Jofriet PJ, Surgenor BW (1996b) Plant-wide feedback control performance 

assessment using an expert-system framework. Contr Eng Pract 4:1297–1303. 
Haubrich RA (1965) Earth noise, 5 to 500 millicycles per second. J Geophys Res 70:1415– 1427. 
He X, Asada H (1993) A new method for identifying orders of input-output models for nonlinear dynamical 

systems. In Proc American Control Confer, San Francisco, USA, pp 2520–2523. 
He QP, Wang J, Pottmann M, Qin SJ (2007), A curve fitting method for detecting valve stiction in 

oscillating control loops, Ind. Eng. Chem. Res. 46:4549–4560. 
Hegger R, Kantz H, Schreiber T (2004) TISEAN2.1 Surrogates Manual, Periodicity Artefacts. <www. 

mpipks-dresden.mpg.de/~tisean/TISEAN_2.l>. 
Henson MA, Seborg E (1991) An internal model control strategy for nonlinear systems. AIChE J 37:1065–

1081. 
Hinich MJ (1982) Testing for Gaussianity and linearity of a stationary time series. J Time Ser Anal 3:169–

176. 
Hinich MJ, Wolinsky M (2004) Normalizing Bispectra. <www.gov.utexas.edu/hinich/files/Statistics/ 

Normbispec.pdf>.  
Hjalmarsson H, Gevers M, de Bruyne F (1996) For model-based control design, closed-loop identification 

gives better performance. Automatica 32:1659–1673. 
Hjalmarsson H, Gevers M, Gunnarsson S, Lequin O (1998) Iterative feedback tuning. IEEE Control 

Systems 18:26–41. 
Holland J (1975) Adaptation in Natural and Artificial Systems. The University of Michigan Press. 
Hoo KA, Piovoso MJ, Schnelle PD, Rowan DA (2003) Process and controller performance monitoring: 

overview with industrial applications. Internat J Adapt Control Signal Process 17:635–662. 
Horch A (1999) A simple method for detection of stiction in control valves. Contr Eng Pract 7:1221–1231. 
Horch A (2000) Condition Monitoring of Control Loops. PhD Thesis, Royal Institute of Technology, 

Stockholm, Sweden. 



386 References 

 

Horch A, Isaksson AJ (1998) A method for detection of stiction in control valves. In Proc IFAC Workshop 
on On-line Fault Detection and Supervision in Chemical Process Industry, Lyon, France. 

Horch A, Isaksson AJ (1999) A modified index for control performance assessment. J Proc Control 9:475–
483. 

Horch A, Stattin A (2002) A complete practical implementation of a method for step response performance 
assessment. Proc Control Systems, Stockholm, Sweden, pp 348–352. 

Horch A (2007) Benchmarking control loops with oscillations and stiction. In: Ordys AW, Uduehi D, 
Johnson M.A. (eds) Process Control Performance Assessment, Springer, pp 227–257. 

Horton EC, Foley MW, Kwok KE (2003) Performance assessment of level controllers. Internat J Adapt 
Control Signal Process 17:663–684. 

Howard R, Cooper DJ (2008) Performance assessment of non-self-regulating controllers in a cogeneration 
power plant. Applied Energy. Submitted paper.  

Huang B (1999) Performance assessment of processes with abrupt changes of disturbances. Can J Chem 
Eng 77:1044–1054. 

Huang B (2002) Minimum variance control and performance assessment of time variant processes. J 
Process Control 12:707–719. 

Huang B (2003) A pragmatic approach towards assessment of control loop performance. Internat J Adapt 
Control Signal Process 17:489–608. 

Huang B, Shah SL (1997) Practical issues in multivariable feedback control performance assessment. Proc 
IFAC ADCHEM, Banff, Canada, pp 429–434. 

Huang B, Shah SL (1998) Practical issues in multivariable feedback control performance assessment. J 
Process Control 8:421–430. 

Huang B, Kadali R (2008) Dynamic Modelling, Predictive Control and Performance Monitoring. Springer. 
Huang B, Shah SL (1999) Performance Assessment of Control Loops. Springer. 
Huang B, Ding SX, Qin J (2005a) Closed-loop subspace identification: an orthogonal projection approach. 

J Proc Control 15: 53–66.  
Huang B, Ding SX, Thornhill N (2005b) Practical solutions to multivariable feedback control performance 

assessment problem: reduced a priori knowledge of interactor matrices. J Proc Control 15:573–583. 
Huang B, Ding SX, Thornhill N (2006) Alternative solutions to multi-variate control performance 

assessment problems. J Proc Control 16:457–471. 
Huang B, Shah SL, Kwok EK (1997a) Good, bad or optimal? performance assessment of multivariable 

processes. Automatica 33:1175–1183. 
Huang B, Shah SL, Kwok EK, Zurcher J (1997b) Performance assessment of multivariate control loops on 

a paper-machine headbox. Can J Chem Eng 75:134–142. 
Huang B, Shah SL, Fujii H (1997c) The unitary interactor matrix and its estimation from closed-loop data. 

J Proc Control 7:195–207. 
Huang B, Shah SL, Badmus L, Vishnubhotla A (1999) Control Performance Assessment: An Enterprise 

Asset Management Solution. <www.matrikon.com/download/ products/lit/processdoctor_pa_eam.pdf>. 
Huang B, Shah SL, Miller R (2000) Feedforward plus feedback controller performance assessment of 

MIMO systems. IEEE Trans Contr Syst Technol 8:580–587. 
Huang CT, Chou CJ (1994) Estimation of the underdamped second-order parameters from the system 

transient. Ind Eng Chem Process Des Dev 33:174–176.  
Huber PJ, Kleiner B, Gasser T, Dummeruth G (1971) Statistical methods for investigating phase relations 

in stationary stochastic processes. IEEE Trans Audio and Electroacoustics  19:78–86. 
Hugo AJ (1999) Process controller performance monitoring and assessment. >www.controlartsinc.com/ 

Support/Articles/PerformanceAssessment.PDF>.   
Hugo AJ (2001) Process controller loop performance assessment. Hydrocarbon Processing April:85–90. 
Hugo AJ (2006) Performance assessment of single-loop industrial controllers. J Proc Control 16:785–794. 
Hur N, Nam K, Won S (2000) A two-degrees-of-freedom current control scheme for deadtime 

compensation. IEEE Trans Automat Control 47:557–564.  
Ingimundarson A (2002) Performance monitoring of PI controllers using a synthetic gradient of a quadratic 

cost function. Proc IFAC World Congress, Barcelona, Spain. 



 References 387 

 

Ingimundarson A (2003) Dead-time Compensation and Performance Monitoring in Process Control. PhD 
Thesis, Lund Institute of Technology, Sweden. 

Ingimundarson A, Hägglund T (2005) Closed-loop performance monitoring using loop tuning. J Process 
Control 15:127–133. 

ISA Subcommittee SP75.05 (1979) Process Instrumentation Terminology. Technical Report ANSI/ISA-
S51.1-1979, Instrument Society of America. 

Isaksson AJ (1996) PID controller performance assessment. In Proc Confer Control Systems, Halifax, 
Canada, pp 163–1169. 

Isaksson AJ (1997) A Comparison of Some Approaches to Time-delay Estimation. PhD Thesis, Royal 
Institute of Technology, Stockholm, Sweden. 

Isaksson AJ, Horch A, Dumont GA (2000) Event-triggered dead-time estimation - comparison of methods. 
In Proc Confer Control Systems, Halifax, Canada, pp 171–178. 

Isermann R (1971) Required accuracy of mathematical models of linear time invariant controlled elements. 
Automatica 7:333–341. 

Isermann R (1992) Identifikation dynamischer Systeme I+II. Springer. 
Jämsa-Jounela S-L, Poikonen R, Halmevaara K (2002) Evaluation of level control performance. In Proc 

IFAC World Congress, Barcelona, Spain. 
Jämsa-Jounela S-L, Poikonen R, Vantaski N, Rantala A (2003) Evaluation of control performance: 

methods, monitoring tool, and applications in a flotation plant. Minerals Eng 16:1069–1074. 
Jain M, Lakshminarayanan S (2005) A filter-based approach for performance assessment and enhancement 

of SISO control systems. Ind Eng Chem Res 44:8260–8276. 
Jelali M (2005a) Instandhaltung und Optimierung stahlverarbeitender Prozesse durch Einsatz von 

Performance Monitoring Systemen. GMA-FA6.22 Aussprachetag 07./08.04.2005 „Anlagenoptimierung 
durch Performance Monitoring und Alarm Management“, Düsseldorf.  

Jelali M (2005b) Regelkreisüberwachung in der Metallindustrie: Anforderungen, Stand der Technik und 
Anwendungen. VDI-Berichte Nr. 1883, pp 429–439 (GMA-Kongress: Automation als interdisziplinäre 
Herausforderung, 2005, Baden-Baden).   

Jelali M (2006a) Regelkreisüberwachung in der Metallindustrie Teil 1: Klassifikation und Be-schreibung 
der Methoden. at – Automatisierungstechnik 54:36–46. 

Jelali M (2006b) Regelkreisüberwachung in der Metallindustrie Teil 2: Anwendungskonzept und Fallstudie. 
at – Automatisierungstechnik 54:93–99. 

Jelali M (2006c) An overview of control performance assessment technology and industrial applications. 
Contr Eng Pract 14:441–466. 

Jelali M (2006d) Performance assessment of control systems in rolling mills – Application to strip thickness 
and flatness control. J Process Control 17:805–816. 

Jelali M (2007a): Automatisches Reglertuning basierend auf Methoden des Control Performance 
Monitoring. at – Automatisierungstechnik 55:10–19.  

Jelali M (2007b) Performance assessment of control systems in rolling mills – Application to strip thickness 
and flatness control. J Process Control 17:805–816. 

Jelali M (2008) Estimation of valve stiction in control loops using separable least-squares and global search 
algorithms. J Process Control 18:632–642.  

Jelali M, Huang B (eds) (2009) Detection and Diagnosis of Stiction in Control Loops: State of the Art and 
Advanced Methods. Springer. 

Jelali M, Kroll A (2003) Hydraulic Servo-Systems: Modelling, Identification and Control. Springer. 
Jelali M, Sonnenschein D, Wolff A, Kothe H, Mintken M (2006) New high performance flatness control 

system for tandem cold mills. Millennium Steel 2007:177–179.  
Jelali M, Müller U, Wolff A, Ungerer (2001a): Einsatz moderner Regelkonzepte zur besseren Nutzung 

anlagentechnischer Potentiale. Stahl und Eisen 122(8):35–39. 
Jelali M, Müller U, Wolff A, Ungerer (2001b): Advanced control strategies in rolling mills. Metallurgical 

Plant and Technology (MPT) International 3:54–58. 
Jelali M, Müller U, Wolff A, Ungerer W (2001c): Advanced control strategies for rolling mills. MPT 

International 3:54–57. 



388 References 

 

Jelali M, Wolff A, Sonnenschein D (2008) Internal Model Control zur Regelung der Bandplanheit in 
Kaltwalzwerken. at – Automatisierungstechnik. Accepted Contribution.  

Jelali M, Müller U, Wolff A, Ungerer W, Fackert R (2002) New system for strip flatness control during hot 
rolling. Steel Millennium, p 174–178. 

Jelali M, Totz O, Börgens R (1998) A new dynamic simulator and an open CACSD environment for rolling 
mills. Preprints IFAC Symp Automation in Mining, Mineral and Metal Processing, Cologne, Germany, 
p. 205–209.  

Jiang H, Choudhury MAAS, Shah SL (2007) Detection and diagnosis of plant-wide oscillations from 
industrial data using the spectral envelope method. J Process Control. 17:143–155. 

Jofriet P, Seppala C, Harvey M, Surgenor B, Harris T (1995) An expert system for control loop 
performance analysis. Proc Annual Meeting, Technical Section, Canadian Pulp and Paper Association, 
pp B41–49. 

Johansson R (1993) System Modelling and Identification. Prentice Hall. 
Johnson MA, Sanchez A (2003) Process control loop tuning and monitoring using LQG optimality with 

applications in wastewater treatment plant. In Proc IEEE Confer Control Applications, Montreal, 
Canada, pp 922–926.  

Julien RH, Foley MW, Cluett WR (2004) Performance assessment using a model predictive control 
benchmark. J Process Control 14:441–456. 

Kadali R, Huang B (2002a) Estimation of the dynamic matrix and noise model for model predictive control 
using closed-loop data. Ind Eng Chem Res 41:842–852. 

Kadali R, Huang B (2002b) Controller performance analysis with LQG benchmark obtained under closed 
loop conditions. ISA Transactions 41:521–537. 

Kadali R, Huang B (2004) Multivariable controller performance assessment without interactor matrix – a 
subspace approach. Proc IFAC ADCHEM, Hong Kong, pp 591–596. 

Kaiser G (1994) A Friendly Guide to Wavelets. Birkhäuser. 
Kammer LC, Bitmead RR, Barlett PL (1996) Signal-based testing of LQ-optimality of controllers. In Proc 

IEEE Confer Decision Control, Kobe, Japan, pp 3620–3624. 
Kano M, Maruta H, Kugemoto H, Shimizu K (2004) Practical model and detection algorithm for valve 

stiction. In Proc IFAC Symp DYCOPS, Boston, USA. 
Kantz H, Schreiber T Nonlinear Time Series Analysis. Cambridge Univ Press. 
Kaplan DT (1997) Nonlinearity and nonstationarity: the use of surrogate data in interpreting fluctuations. 

In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A (eds) Frontiers of Blood Pressure and 
Heart Rate Analysis, IOS Press.  

Kaplan DT, Glass L (1995) Understanding Nonlinear Dynamics. Springer.  
Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamical systems. J Dyn Syst 

Meas Contr 10:100–103. 
Kavuri SN, Venkatasubramanian V (1994): Neural network decomposition strategies for large-scale fault 

diagnosis. Int J Control 59:767–792. 
Keck R, Neuschütz E (1980) German system brings accuracy to flatness measurement. Iron and Steel 

International 53:215–220. 
Kendra S, Çinar A (1997) Controller performance assessment by frequency domain techniques. J Proc 

Control 7:181–194. 
Kim YC, Powers EJ (1979) Digital bispectral analysis and its applications to nonlinear wave interactions. 

IEEE Trans Plasma Science PS-7:120–131. 
Kinney T (2003) Performance monitor raises service factor of MPC. Proc ISA, Houston, USA.  
Ko B-S, Edgar TF (1998) Assessment of achievable PI control performance for linear processes with dead 

time. In Proc Amer Control Confer, Philadelphia, USA. 
Ko B-S, Edgar TF (2000) Performance assessment of cascade control loops. AIChE J 46:281– 291. 
Ko B-S, Edgar TF (2001a) Performance assessment of constrained model predictive control systems. 

AIChE J 47:1363–1371. 
Ko B-S, Edgar TF (2001b) Performance assessment of multivariable feedback control systems. Automatica 

37:899–905. 



 References 389 

 

Ko B-S, Edgar TF (2004) PID control performance assessment: the single-loop case. AIChE J 50:1211–
1218. 

Ko H-C, Park YS, Vishnubhotla A, Mitchell W (2004) Locating the cause of poor control performance, and 
obtaining operational excellence at one of the world's largest refiners. In Proc NPRA Decision Support 
Confer, San Antoio, USA. 

Kouvaritakis B, Cannon M (eds) (2001) Nonlinear Predictive Control: Theory and Practice. The Institute 
of Electrical Engineers. 

Kozub DJ (1996) Controller performance monitoring and diagnosis: experiences and challenges. In Proc 
Chemical Process Control Confer, Lake Tahoe, USA, pp 83–96. 

Kozub DJ (2002) Controller performance monitoring and diagnosis. Industrial perspective. Proc IFAC 
World Congress, Barcelona, Spain. 

Kozub DJ, Garcia C (1993) Monitoring and diagnosis of automated controllers in the chemical process 
industries. Proc AIChE, St. Louis, USA. 

Kravtchenko-Berejnoi V (1994) Polyspectral Analysis and Turbulent Processes in the Space Plasmas. PhD 
Thesis, Laboratoire de Physique et Chimie de l'environment, University of Orléans, France. 

Krishnaswamy PR, Mary Chan BE, Rangaiah GP (1987) Closed-loop tuning of process control systems. 
Chem Eng Sci 42:2173–2182. 

Kuehl P, Horch A (2005) Detection of sluggish control loops–experiences and improvements. Contr Eng 
Pract 13:1019–1025. 

Kucera V (1979) Discrete Linear Control: The Polynomial Equations Approach. John Wiley & Sons. 
Kwakernaak H, Sivan R (1972) Linear Optimal Control Systems. John Wiley & Sons. 
Kwakernaak H, Sebek R (2000) Ploynomial Toolbox. <www.polyx.com>. 
Landau ID, Lozano R, M’Saad M (1998) Adaptive Control. Springer. 
Lackinger C, Nettelbeck H-J, Oemkes H (2002) Die neue Tandemstraße von ThyssenKrupp Stahl im 

Kaltwalzwerk Beeckerwerth. Stahl und Eisen 122(2):25–32. 
Lee TH, Wang QG, Tan KK (1996) A robust smith-predictor controller for uncertain delay systems. AIChE 

J 42:1033–1173. 
Leva A, Cox C, Ruano A (2001) Hands-on PID autotuning: a guide to better utilisation. IFAC Technical 

Brief. <www.ifac-control.org>.  
Lewis RB, Torczon V (1999) Pattern search algorithms for bound constrained minimization. SIAM J 

Optimization 9:1082–1099. 
Lewis RB, Torczon V (2000) Pattern search methods for linearly constrained minimization. SIAM J 

Optimization 10:917–941. 
Li Q, Whiteley JR, Rhinehart RR (2003) A relative performance monitor for process controllers. Internat J 

Adapt Control Signal Process 17:685–708. 
Litrico X, Georges D (1999) Robust continuous-time and discrete-time flow control of a dam–river system. 

(II) Controller design. Appl Math Modelling 23:829–846. 
Liu H, Shah S, Jiang W (2004) On-line outlier detection and data cleaning. Computers and Chemical 

Engineering 28:1635–1647. 
Ljung L (1993) Perspectives on the process of identification. In Proc IFAC World Congress, Sydney, 

Australia, Vol. 5, pp 197–205.  
Ljung L (1999) System Identification: Theory for the User. Prentice Hall. 
Ljung L, Söderström T (1987) Theory and Practice of Recursive Identification. MIT Press. 
Lütkepohl H (1991) Introduction to Multiple Time Series Analysis. Springer. 
Lunze J (2007) Automatisierungstechnik. Oldenbourg. 
Lunze J (2008) Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung. Springer. 
Lynch C, Dumont GA (1996) Control loop performance monitoring. IEEE Trans Contr Syst Technol 

18:151–192. 
Lyons AR, Newton TJ, Goddard NJ, Parsons AT (1995) Can passive sonar signals be classified on the basis 

of their higher-order statistics ?. In Proc IEE Colloquium on Higher Order Statistics in Signal 
Processing „Are they of any use ?“, London, pp 6/1–6/6. 

MacGregor JF (1977) Discrete stochastic control with input constraints. IEE Proc Control Theory Appl 
124:732–734. 



390 References 

 

Maciejowski JM (2001) Predictive Control with Constraints. Prentice Hall. 
Majecki P, Grimble MJ (2004a) Controller performance design and assessment using nonlinear generalized 

minimum variance benchmark: scalar case. Proc Control 2004, University of Bath, UK. ID-232. 
Majecki P, Grimble MJ (2004b) GMV and restricted-structure GMV controller performance assessment – 

multivariable case. In Proc Amer Control Confer, Boston, USA, vol 1, pp 697–702. 
Manum H (2006) Analysis of techniques for automatic detection and quantification of stiction in control 

loops. Diploma Thesis, Norwegian University of Science and Technology.  
Manum H, Scali C (2006) Closed Loop Performance Monitoring: Automatic Diagnosis of Valve Stiction by 

means of a Technique based on Shape Analysis Formalism. In Proc Internat Congress on 
Methodologies for Emerging Technologies in Autoamtion (ANIPLA), Rome, Italy.  

Markworth M, Polzer J, Ungerer W (2003) Höhere Qualität von Walzprodukten durch komplexe 
Überwachung. In Proc VDI- Schwingungstagung „Schwingungsüberwachung und –diagnose von 
Maschinen und Anlagen“, Magdeburg, Germany.  

Marple SL (1987) Digital Spectral Analysis. Prentice-Hall. 
Marshall JE, Gorecki H, Walton K, Korytowski A (1981) Time-delay Systems: Stability and Performance 

Criteria with Applications. Ellis Horwood. 
Matsuo T, Tadakuma I, Thornhill NF (2004) Diagnosis of a unit-wide disturbance caused by saturation in 

manipulated variable. Proc IEEE Advanced Process Control Applications for Industry Workshop, 
Vancouver, Canada. 

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability 
and optimality. Automatica 26:789–814. 

McNabb CA, Qin SJ (2003) Projection based MIMO control performance monitoring: I—covariance 
monitoring in state space. J Process Control 13:739–757. 

McNabb CA, Qin SJ (2005) Projection based MIMO control performance monitoring: II––measured 
disturbances and setpoint changes. J Process Control 15:89–102. 

McMillan GK (1995) Improve control valve response. Chemical Engineering Progress: Measurement and 
Control, 77–84.  

Miao T, Seborg DE (1999) Automatic detection of excessively oscillatory feedback control loops. In Proc 
IEEE Confer Control Applications, Kohala Coast-Island, USA. 

Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs. Springer. 
Miller RM, Timmons CF, Desborough LD (1998) CITGO's experience with controller performance 

monitoring. In Proc NPRA Computer Confer, San Antonio, USA. 
Molle JD, Hinich M (1995) Trispectral analysis of stationary time series. J Acoustical Soc America 

97:2963–2978. 
Montgomery DC, Runger GC (1992) Applied Statistics and Probability for Engineers. John Wiley & Sons. 
Morari M, Zafiriou E (1989) Robust Process Control. Prentice Hall. 
Moudgalya KM (2007) Digital Control. John Wiley & Sons. 
Moudgalya KM, Shah SL (2004) A polynomial based first course in digital control. Proc IEEE Intern Symp 

Computer Aided Control Systems Design, Taipei, Taiwan, pp 190–195.  
Müller T. (2005) Regelung Glühofen VZA1. Internal Report, EKO Stahl. 
National Instruments Corporation (2004) LabVIEWTM System Identification Toolkit User Manual.  
Nelles O (2001) Nonlinear System Identification: From Classical Approaches to Neural Networks and 

Fuzzy Models. Springer. 
Nikias CL (1988) ARMA bispectrum approach to nonminimum phase system identication. IEEE Trans 

Acoustics Speech and Signal Processing 4:513–525. 
Nikias CL, Mendel JM (1993) Signal processing with higher-order spectra. IEEE Signal Processing 

Magazine, 10:10–37. 
Nikias CL, Petropulu AP (1993) Higher-Order Spectra Analysis: A Non-linear Signal Processing 

Framework. Prentice Hall. 
O’Dwyer A (1996) The estimation and compensation of processes with time delays. PhD Thesis, Dublin 

City University, Scotland. 
O’Dwyer A (2003) Handbook of PI and PID Controller Tuning Rules. Imperial College Press. 



 References 391 

 

Ogawa S (1998) A data analysis and graphical representation system for control loop performance 
assessment. In Proc TAPPI Process Control Confer, Vancouver, Canada. 

Olaleye F, Huang B, Tamayo E (2004a) Performance assessment of control loops with time varying 
disturbance dynamics. J Process Control 14:867–877. 

Olaleye F, Huang B, Tamayo E (2004b) Feedforward and feedback controller performance assessment of 
linear time-variant processes. Ind Eng Chem Res 43: 589–596. 

Olaleye F, Huang B, Tamayo E (2004c) Industrial applications of feedback controller performance 
assessment of time-variant processes. Ind Eng Chem Res 43: 597–607. 

Olsson H (1996) Control Systems with Friction. PhD Thesis, Lund Institute of Technology, Sweden.  
Oppenheim AV, Schafer RW (1989) Discrete-time Signal Processing. Prentice-Hall. 
Ordys WA, Hangstrup ME, Grimble MJ (2000): Dynamic algorithm for linear quadratic Gaussian 

predictive control. Int J Appl Math Comput Sci 10:227–244. 
Ordys AW, Uduehi D, Johnson MA (eds) (2007) Process Control Performance Assessment: From Theory 

to Implementation. Springer.  
Owen J, Read D, Blekkenhorst H, Roche AA (1996) A mill prototype for automatic monitoring of control 

loop performance. Proc Control Systems, Halifax, Canada, pp 171–178. 
PAM (2001) Performance Assessment and BenchMarking of Controls. Research Project No. IST-2000-

29239, European Community, FP5, 2001–2004. <www.isc-ltd.com/benchmark>.  
Panteley E, Ortega R, Gäfvert M (1998) An adaptive friction compensator for global tracking in robot 

manipulators. Systems & Control Letters 33:307–313. 
Palmor ZJ (1996) Time-delay compensation – Smith predictor and its modifications. In: Levine S (ed) The 

Control Handbook, CRC Press, pp 224–237.  
Palmor ZJ, Halevi Y (1983) On the design and properties of multivariable dead time compensators. 

Automatica 19:255–264. 
Paluš M (1995) Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 

80:186–205.  
Paplinski A, Rogozinski M (1990) Right nilpotent interactor matrix and its application to multivariable 

stochastic control. In Proc Amer Control Confer, San Diego, USA, vol 1, pp 494–495.  
Papoulis A (1984) Probability, Random Variables and Stochastic Processes. McGraw Hill. 
Patwardhan RS (1999) Studies in Synthesis and Analysis of Model Predictive Controllers. PhD Thesis, 

University of Alberta, Canada. 
Patwardhan RS, Shah S, Emoto G, Fujii H (1998) Performance analysis of model-based predictive 

controllers: an industrial study. Proc AIChE, Miami, USA. 
Patwardhan RS, Shah SL (2002) Issues in performance diagnostics of model-based controllers. J Proc 

Control 12:413–427. 
Paulonis MA, Cox JW (2003) A practical approach for large-scale controller performance assessment, 

diagnosis, and improvement. J Proc Control 13:155–168. 
Peng Y, Kinnaert M (1992) Explicit solution to the singular lq regulation problem. IEEE Trans Automat 

Control 37:633–636. 
Perarson RK (2002) Outliers in process modeling and identification. IEEE Trans Control Systems 

Technology 10:55–63. 
Perrier M, Roche AA (1992) Towards mill-wide evaluation of control loop performance. Proc Control 

Systems, Whistler, Canada, pp 205–209. 
Piipponen J (1996) Controlling processes withnonideal valves: Tuning of loops and selection of valves. In 

Preprints of Control Systems, Halifax, Nova Scotia, Canada, pp 179–186. 
Polzer J, Markworth M, Ungerer W (2003) New developments in monitoring & diagnosis for rolling mills. 

In Proc METEC Congress (Europ Rolling Confer), Düsseldorf, Germany, pp. 81–90. 
Press WH, Flannery BP, Teukolsky SA, Vetterling W.T. (1986) Numerical Recipes. Cambridge University 

Press. 
Qin SJ (1998) Control performance monitoring – a review and assessment. Comput Chem Eng 23:173–186. 
Qin SJ (2006) An overview of subspace identification. Comput Chem Eng 30:1502–1513. 
Qin SJ, Badgwell TA (1997) An overview of industrial model predictive control technology. In: Kantor JC, 

García CE, Carnaham B (eds) Int Confer Chemical Process Control, AIChE Symposium Series 93, pp 
232–256. 



392 References 

 

Qin SJ, Badgwell TA (2003): A survey of industrial model predictive control technology. Contr Eng Pract 
11:733–764. 

Qin SJ, Ljung L, Wang J (2002) Subspace identification methods using parsimonious model formulation. 
Proc AIChE, Indianapolis, USA. 

Rakar A, Zorzut S, Jovan V (2004) Assessment of production performance by means of KPI. Proc Control 
2004, University of Bath, UK. ID-073. 

Rangaiah GP, Krishnaswamy PR (1994) Estimating second-order plus dead time model parameters. Ind 
Eng Chem Res 33:1867–1871. 

Rangaiah GP, Krishnaswamy PR (1996) Estimating second-order dead time parameters from underdamped 
process transients. Chem Eng Sci 51:1149–1155. 

Rath G (2000) Model Based Thickness Control of the Cold Strip Process. Diss., University of Leoben, 
Austria. 

Ratjen H (2006) Entwicklung und Untersuchung von Verfahren zur Bewertung der Regelgüte bei 
Regelkreisen für MIMO-Systeme. Internal Tech Report University of Cologne/Germany, Subcontractor 
of BFI within the EU Project AUTOCHECK. 

Ratjen H, Jelali M (2006): Performance monitoring for feedback and feedforward control with application 
to strip thickness control. In: Proc Research and Education in Mechatronics, KTH, Stockholm, Sweden. 

Rawlings JB, Muske KR (1993) The stability of constrained receding horizon control. IEEE Trans Automat 
Control 38:1512–1516. 

Rengaswany R, Venkatasubramanian V (1995) A syntactic pattern-recognition approach for process 
monitoring and fault diagnosis. Engng Applic Artif lntell 8:35–51.  

Richalet J, Rault A, Testud JL, Papon J (1978) Model predictive heuristic control: applications to an 
industrial process. Automatica 14:413–428. 

Rigler GW, Aberl HR, Staufer W, Aistleitner K, Weinberger KH (1996) Improved rolling mill automation 
by means of advanced control techniques and dynamic simulation. IEEE Trans Industry Appl 32:599–
607. 

Rhinehart R (1995) A watchdog for controller performance monitoring. In Proc Amer Control Confer, 
Seattle, USA, pp 2239–2240. 

Rhodes C, Morari M (1997) The false nearest neighbors algorithm: an overview. Comput Chem Eng 
21:S1149–S1154. 

Ringwood JV (2000) Shape control systems for Sendzimir steel mills. IEEE Trans Contr Syst Technol 
8:70–86. 

Rivera DE, Morari M, Skogestad S (1986) Internal model control. 4. PID controller design. Ind Eng Chem 
Process Des Dev 25:252–265.  

Roberts WL (1978) Cold Rolling of Steel. Marcel Dekker.  
Rogozinski M, Paplinski A, Gibbard M (1987) An algorithm for calculation of nilpotent interactor matrix 

for linear multivariable systems. IEEE Trans Automat Control 32:234–237.  
Rosenblatt M, Van Ness JW (1965) Estimation of the bispectrum. Ann Math Stat 65:420–436. 
Rossi R, Scali C (2005) A comparison of techniques for automatic detection of stiction: simulation and 

application to industrial data. J Process Control 15:505–514. 
Rousseeuw PJ, Leroy, AM (1987). Robust Regression and Outlier Detection. John Wiley & Sons. 
Ruel M (2000) Stiction: the hidden menace. Control Magazine, November 2000.  
Ruel M (2002) Learn how to assess and improve control loop performance. Proc ISA, Chicago, USA.  
Ruel M (2003) The conductor directs this orchestra. .Intech, November, 20–22.  
Rugh WJ (1991) Analytical framework for gain scheduling. IEEE Contr Syst Mag 11:79–84. 
Ruscio DD (1997) A method for identification of combined deterministic stochastic systems. In: Aoki M, 

Hevenner A (eds) Applications of Computer Aided Time Series Modeling, Springer, pp 181–235. 
Salsbury TI (2005) A practical method for assessing the performance of control loops subject to random 

load changes. J Process Control 15:393–405. 
Salsbury TI (2006) Control performance assessment for building automation systems. IFAC Workshop on 

Energy Saving Control in Plants and Buildings, Bulgaria.  
Schäfer J, Çinar A (2002) Multivariable MPC performance assessment, monitoring and diagnosis. Proc 

IFAC World Congress, Barcelona, Spain. 



 References 393 

 

Seborg DE, Edgar TF, Mellichamp DA (2004) Process Dynamics and Control. John Wiley & Sons. 
Seborg J, Viberg M (1997) Separable non-linear least-squares minimization – possible improvements for 

neural fitting. In: Proc IEEE Workshop on Neural Nets for Sig Pro 7:345–354. 
Sendzimir M (1993) Shape Control in Cluster Mills. <www.sendzimir.com>.  
Seppala CT, Harris TJ, Bacon DW (2002) Time series methods for dynamic analysis of multiple controlled 

variables. J Process Control 12:257–276. 
Shah SL, Mohtadi C, Clarke D (1987) Multivariable adaptive control without a priori knowledge of the 

delay matrix. Systems & Control Letters 9:295–306. 
Shah SL, Patwardhan R, Huang B (2001) Multivariate controller performance analysis: methods, 

applications and challenges. In Proc Chemical Process Control Confer, Tucson, USA, pp 187–219.  
Shah SL, Mitchell W, Shook D (2005) Challenges in the detection, diagnosis and visualization of controller 

performance data. IEE Seminar on Control Loop Assessment and Diagnosis, University College 
London, UK.  

Shamma JS, Athans M (1990) Analysis of gain-scheduled control of nonlinear plants. IEEE Trans on 
Automat Control 35:898–907. 

Shamma JS, Athans M (1992) Gain scheduling: potential hazards and possible remedies. IEEE Contr Syst 
Mag 12:101–107. 

Shinskey FG (1990) How good are our controllers in absolute performance and robustness?. Measurement 
and Control 23:114–121. 

Shinskey FG (1996) Process-Control Systems: Application, Design, and Tuning. McGraw Hill. 
Shunta JP (1995) Achieving World Class Manufacturing Through Process Control. Prentice-Hall. 
Small M, Tse CK (2002) Applying the method of surrogate data to cyclic ti9me series. Physica D 164:187–

201.  
Smith OJM (1957) Closed control of loops with dead time. Chem Eng Progress 53:217–219. 
Singhal A, Salsbury TI (2005) A simple method for detecting valve stiction in oscillating control loops. J 

Process Control 15:371–382. 
Sjöberg J (1995) Non-linear System Identification with Neural Networks. Diss, Linköping University. 
Skogestad S, Postlethwaite I (1996) Multivariable Feedback Control: Analysis and Design. John Wiley & 

Sons. 
Söderström T, Stoica P (1989) System Identification. Prentice Hall. 
T. Söderström, Gustavsson I, Ljung L (1975) Identifiability conditions for linear systems operating in 

closed-loop. Int J Control 21:243–255. 
Soeterboeck R (1992) Predictive Control: A Unified Approach. Prentice Hall. 
SOFTDETECT (2004) Intelligent Soft-sensor Technology and Automatic Model-based Diagnosis for 

Improved Quality, Control and Maintenance of Mill Production Lines. Research Project No. RFS-CR-
04017, European Community, Research Fund for Coal and Steel, 2004–2007.   

Spencer MA, Elliot RM (1997/98) Improving instrumentation and control systems performance. Petroleum 
Technology Quarterly, Winter 1997/98, pp 93–97.  

Srinivasan R, Rengaswany R, Miller R (2005) Control loop performance assessment. 1. A qualitative 
approach for stiction diagnosis. Ind Eng Chem Res 44:6708–6718. 

Srinivasan R, Rengaswany R, Narasimhan S, Miller R (2005) Control loop performance assessment. 2. 
Hammerstein model approach for stiction diagnosis. Ind Eng Chem Res 44:6719–6728. 

Stam CJ, Pijn JPM, Pritchard WS (1998) Reliable detection of nonlinearity in experimental time series with 
strong periodic components. Physica D 112:361–380.  

Stanfelj N, Marlin TE, MacGregor JF (1993) Monitoring and diagnosis of process control performance: the 
single-loop case. Ind Eng Chem Res 67:856–861. 

Steffen T (2005) Control Reconfiguration of Dynamical Systems. Springer. 
Steinkogler A (1996) Erweiterung des Smith-Prädiktors zur Störgrößenerkennung. atp – Automatisierungs-

technische Praxis 38:64–67. 
Stenman A, Gustafsson F, Forsman K (2003) A segmentation-based method for detection of stiction in 

control valves. Internat J Adapt Control Signal Process 17:625–634. 
Strejc V (1959) Approximation aperiodischer Übertragungscharakteristiken. Regelungstechnik 7:124–128. 



394 References 

 

Stribeck R (1902) Die wesentlichen Eigenschaften der Gleit- und Rollenlager. Z Ver Dtsch Ing 
XXXXVI:1341–1348. 

Subba Rao TS, Gabr MM (1980) A test for linearity and stationarity of time series. J Time Ser Anal 1:145–
158. 

Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement 
error in time series. Nature 344:734–741. 

Sunan H, Kiong TK, Heng LT (2002) Applied Predictive Control. Springer. 
Swanda A, Seborg DE (1997) Evaluating the performance of PID-type feedback control loops using 

normalized settling time. Proc IFAC ADCHEM, Banff, Canada, pp 301–306. 
Swanda A, Seborg DE (1999) Controller performance assessment based on setpoint response data. In Proc 

Amer Control Confer, San Diego, USA, pp 3863–3867. 
Taiwo O (1993) Comparison of four methods of on-line identification and controller tuning. IEE Proc-D: 

Control Theory Appl 140:323–327. 
Tan KK, Lee TH, Ferdous R (1999) New approach for design and automatic tuning of the Smith predictor 

control. Ind Eng Chem Res 38:3438–3445. 
Teo TM, Lakshminarayanan S, Rangaiah GP (2005) Performance assessment of cascade control systems. J 

Institution of Engineers, Singapore 45(6):27–38. 
Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer B, Farmer JD (1992) Testing for nonlinearity in 

time-series-The method of surrogate data. Physica D 58:77–94. 
Thornhill NF (2005) Finding the source of nonlinearity in a process with plant-wide oscillation. IEEE Trans 

Contr Syst Technol 13:434–443. 
Thornhill NF (2007) Locating the source of a disturbance. In: Ordys AW, Uduehi D, Johnson M.A. (eds) 

Process Control Performance Assessment, Springer, pp 199–225. 
Thornhill NF, Hägglund T (1997) Detection and diagnosis of oscillation in control loops. Contr Eng Pract 

5:1343–1354. 
Thornhill NF, Horch A (2006) Advances and new directions in plant-wide controller performance 

assessment. In Proc IFAC Symp ADCHEM, Gramado, Brazil, pp. 29–36. 
Thornhill NF, Oettinger M, Fedenczuk MS (1999) Refinery-wide control loop performance assessment. J 

Proc Cont 9:109–124. 
Thornhill NF, Choudhury MAAS, Shah SL (2004) The impact of compression on data driven process 

analyses. J Process Control 14:389–398. 
Thornhill NF, Shah SL, Huang B (2001) Detection of distributed oscillations and root-cause diagnosis. 

Proc CHEMFAS, Chejudo Island, Korea, pp 167–172. 
Thornhill NF, Shah SL, Huang B, Vishnubholta A (2002) Spectral principal component analysis of 

dynamic process data. Contr Eng Pract 10:833–846. 
Thornhill NF, Cox J, Paulonis M (2003a) Diagnosis of plant-wide oscillation through data-driven analysis 

and process understanding. Contr Eng Pract 11:1481–1490. 
Thornhill NF, Huang B, Shah SL (2003b) Controller performance assessment in set point tracking and 

regulatory control. Internat J Adapt Control Signal Process 17:709–727. 
Thornhill NF, Huang B, Zhang H (2003c) Detection of multiple oscillations in control loops. J Proc Cont 

13:91–100. 
Thyssen J, Nielsen H, Hansen SD (1995) Nonlinearities in speech. In Proc IEEE Workshop Nonlinear 

Signal Image Processing, Halkidiki, Greece, pp 662–665. 
Timmer J, Schwarz U, Voss HU, Wardinski I, Belloni t, Hasinger G, van der Klis M, Kurths J (2000) 

Linear and nonlinear time series analysis of the black hole candidate Cygnus X-l. Phys Rev E 61:1342–
1352. 

Toledo E (2002) Linear and Nonlinear Characteristics of the Human ECG as Markers for Cardiovascular 
Functioning. PhD Thesis, Tel Aviv University. 

Torres BS, de Carvalho FB, de Oliveira Fonseca M, Filho CS (2006) Performance assessment of control 
loops – cases studies. Proc IFAC ADCHEM, Gramado, Brasil. 

Tsiligiannis C, Svoronos S (1989) Dynamic interactors in multivariable process control. Chem Eng Sci 
44:2041–2047.  



 References 395 

 

Tugnait JK (1987) Identification of linear stochastic systems via second- and fourth-order cumulant 
matching. IEEE Trans Information Theory 33:393–407. 

Tyler M, Morari M (1995) Performance assessment for unstable and nonminimum-phase systems. 
Preprints IFAC Workshop On-line Fault Detection Supervision Chemical Process Industries, Newcastle 
upon Tyne, UK. 

Tyler M, Morari M (1996) Performance monitoring of control systems using likelihood methods. 
Automatica 32:1145–1162. 

Uduehi D, Ordys A, Grimble MJ, Majecki P, Xia H (2007a) Controller benchmarking procedures – data-
driven methods. In: Ordys AW, Uduehi D, Johnson M.A. (eds) Process Control Performance 
Assessment, Springer, pp 81–126. 

Uduehi D, Ordys A, Grimble MJ, Majecki P, Xia H (2007b) Controller benchmarking procedures – model-
based methods. In: Ordys AW, Uduehi D, Johnson M.A. (eds) Process Control Performance 
Assessment, Springer, pp 127–168. 

Uduehi D, Ordys A, Xia H, Bennauer M, Zimmer G, Corsi S (2007c) Controller benchmarking algorithms: 
some technical issues. In: Ordys AW, Uduehi D, Johnson M.A. (eds) Process Control Performance 
Assessment, Springer, pp 259–294. 

Van den Hof PMJ (1997) Closed-loop issues in system identification. Preprints IFAC Symp System 
Identification, Fukura, Japan, pp 1651–1664. 

Van Overschee P, De Moor B (1996) Subspace Identification of Linear Systems: Theory, Implementation, 
Applications. Kluwer. 

Van den Hof PMJ, Schrama RJP (1995) Identification and control – closed-loop issues. Automatica 
31:1751–1770. 

Van den Hof PMJ, Heuberger PSC, Bokor J (1995) System identification with generalized orthonormal 
basis functions. Automatica 31:1821–1834. 

Vatanski N, Jämsä-Jounela S-L, Rantala A, Harju T (2005) Control loop performance measures in the 
evaluation of process economics. In: Proc IFCA World Congress, Prague. 

Vaught R, Tippet J (2001) Control performance monitoring: shaman or saviour. Pulp & Paper Canada 
102:26–29. 

Venkatasubramanian V, Vaidyanathan R, Yamamoto Y (1 990): Process fault detection and diagnosis using 
neural networks – I. Steady-state processes. Computers Chem Engng 14:699–712. 

Venkataramanan G, Shukla V, Saini R, Rhinehart RR (1997) An automated on-line monitor of control 
system performance. In Proc Amer Control Confer, Albuquerque, New Mexico, USA, pp 1355– 1359. 

Vishnubhotla A, Shah SL, Huang B (1997) Feedback and feedforward performance analysis of the shell 
industrial closed-loop data set. Proc IFAC ADCHEM, Banff, Canada, pp 295–300. 

Visioli A (2005) Assessment of tuning of PI controllers for self-regulating processes. Proc IFAC World 
Congress, 2005, Prag. 

Visioli A (2006) Practical PID Control. Springer. 
Wahlberg B (1991) System identification using Laguerre models. IEEE Trans Automat Control 36:551–

562. 
Wahlberg B (1994) System identification using Kautz models. IEEE Trans Automat Control 39:1276–1282. 
Wahlberg B, Hannan EJ (1993) Parametric signal modelling using Laguerre filters. The Annals of Applied 

Probability 3:476–496. 
Wallén A (1997) Valve diagnosis and automatic tuning. In Proc Amer Control Confer, Albuquerque, New 

Mexico, USA, pp 2930–2934. 
Wang J, Qin SJ (2002) A new subspace identification approach based on principal component analysis. J 

Process Control 12:841–855. 
Wang L, Cluett WR (2000) From Plant Data to Process Control. Taylor & Francis. 
Watanabe K, Ito M (1981) A process-model control for linear systems with delay. IEEE Trans Automatic 

Control 26:1261–1269.  
Wolff A, Jelali M, Sonnenschein D, Kothe H, Mintken M (2006) New flatness control system at the tandem 

cold mill of EKO Stahl. In Internat ATS Steelmaking Confer, Paris, pp 58–59. 
Wolovich W, Falb P (1976) Invariants and canonical forms under dynamic compensation. SIAM J Control 

14:996–1008. 



396 References 

 

Xia C, Howell J (2003) Loop status monitoring and fault localization. J Process Control 13:679–691. 
Xia C, Howell J (2005) Isolating multiple sources of plant-wide oscillations via independent component 

analysis. Contr Eng Pract 13:1027–1035. 
Xia C, Howell J, Zheng J (2005) Commissioning-stage poor performance of control loops in process plants. 

In Proc IEEE Confer Control Applications, Toronto, Canada, pp 1461–1466. 
Xia H, Majecki P, Ordys A, Grimble MJ (2003) Controller benchmarking based on economic benefits. In 

Proc Europ Control Confer, Cambridge, UK, pp 2393–2398.  
Xia H, Majecki P, Ordys A, Grimble MJ (2006) Performance assessment of MIMO systems based on I/O 

delay information. J Proc Control 16:373–383. 
Xu F, Huang B (2006) Performance monitoring of SISO control loops subject to LTV disturbance 

dynamics: An improved LTI benchmark. J Proc Control 16:1–17. 
Xu F, Huang B, Akande S (2007) Performance assessment of model predictive control for variability and 

constraint tuning. Ind Eng Chem Res 46:1208–1219. 
Xu F, Huang B, Tamayo EC (2006) Assessment of economic performance of model predictive control 

through variance/constraint tuning. Proc IFAC ADCHEM, Gramado, Brazil, pp 899–904. 
Yamashita Y (2006) An automatic method for detection of valve stiction in process control loops. Contr 

Eng Pract 14:503–510. 
Youla DC, Bongiorno JJ, Jabr HA (1976a) Modern Wiener–Hopf design of optimal controllers – Part I: the 

single—input—output case. IEEE Trans Automat Control 21:3–13.  
Youla DC, Bongiorno JJ, Jabr HA (1976b) Modern Wiener–Hopf design of optimal controllers – Part II: 

the multivariable case. IEEE Trans Automat Control 21:319–338.  
Yuan J (1999) Testing linearity for stationary time series using the sample interquartile range. J Time Ser 

Anal 21:713–722. 
Yuwana M, Seborg DE (1982) A new method for online controller tuning. AIChE J 28:434–440. 
Zang X, Howell J (2004) Comparison of methods to identify the root cause of plant-wide oscillations. In 

Proc IEEE Confer Control Applications, Taipei, Taiwan, pp 695–700. 
Zervos CC, Dumont GA (1988) Deterministic adaptive control based on Laguerre series representation. Int 

J Contr 48:2333–2359. 
Zhang Y, Henson MA (1999) A performance measure for constrained model predictive controllers. In Proc 

Europ Control Confer, Karlsruhe, Germany. 
Zhao T, Virvalo T (1995) Development of fuzzy state controller and its application to a hydraulic position 

servo. Fuzzy Sets Syst 70:213–221. 
Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768. 
Ziegler JG, Nichols NB (1943) Process lags in automatic control circuits. Trans ASME 65:433–444. 
Zhang Y, Henson MA (1999) A performance measure for constrained model predictive controllers. In Proc 

Europ Control Confer, Karlsruhe, Germany. 
 
 
 




