
UNIVERSITÄT DUISBURG-ESSEN

FAKULTÄT INGENIEURWISSENSCHAFTEN

ABTEILUNG INFORMATIK

FACHGEBIET VERTEILTE SYSTEME

Diplomarbeit

Design and prototypical development of a mecha-

nism for delay-minimization of interacting partic-

ipants of a distributed virtual environment

Matthias Helling

Matrikelnummer: 2216126

November 30, 2009

Betreuer:

Prof. Dr.-Ing. Torben Weis

Dipl.-Inform. Sebastian Schuster

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 3

2 Fundamentals 5

2.1 Massively Multi-player Virtual Environments 5

2.1.1 World Type . 6

2.1.2 Chunked Worlds . 7

2.1.3 Seamless Worlds . 7

2.1.4 Object Management . 8

2.1.5 Instances . 10

2.1.6 Synchronization . 11

2.2 Peer-To-Peer Networks . 12

2.3 peers@play Architecture . 16

2.3.1 Gears4Net . 17

2.3.2 Secure Network Abstraction Layer 18

2.3.3 Bootstrapping . 19

2.3.4 Overlay . 20

2.3.5 Storage . 21

2.3.6 WSPL . 22

3 Design 25

3.1 Overlay . 25

3.1.1 Structure . 26

3.1.2 Integration . 27

3.1.3 Routing . 27

3.2 Storage . 28

3.3 Proximity Management . 30

3.3.1 Requirements . 30

iii

Contents

3.3.2 Solution Approach . 31

3.3.3 World Partitioning . 32

3.3.4 Far Region and AOI . 32

3.3.5 Adjacency Region . 34

3.3.6 Frontier Discovery . 35

3.3.7 Summary . 36

4 Implementation 37

4.1 Overlay . 38

4.2 Storage . 42

4.3 Proximity Management . 45

4.3.1 Key Methods . 48

5 Evaluation 53

5.1 Theoretical Analysis . 53

5.2 Measurements . 57

5.3 Evaluation Results . 64

6 Summary 67

6.1 Conclusion . 67

6.2 Future Work . 68

Bibliography 71

Eidesstattliche Erklärung vii

iv

1 Introduction

With the advent of computer games, related to the increasing computational power

of personal computers, game developers always strived for better graphical capabil-

ities, more realistic physical calculations and more beliavable artificial intelligence

to enhance the immersion of their attainable audience. Over the decades, computer

games emerged from easily developed text-based games into three-dimensional vir-

tual worlds requiring the workforce of hundreds of designers and programmers. At

the same time, networking capabilities such as bandwidth and speed increased

drastically. The combination of the advances both in computational power and

networking capabilities have been used by game developers to create a completely

new genre of computer games: the massively multiplayer online games, or MMOG.

Games like Ultima Online, Everquest and World of Warcraft have had a

tremendous success in the gaming industry. Unlike single-player games, the game

is played via a network and by hundreds or thousands of players in parallel. Most

importantly, players remain in the same virtual world, are able to collaborate to

solve difficult tasks or fight against each other. The architecture of such games

nowadays comprise of servers processing all tasks. They have to guarantee au-

thenticity of players and consistency of the game world, as well as exchanging

data between players. These tasks are time and bandwidth consuming, so that

powerful machines with broadband internet connections are required. This shows,

that operating a modern MMOG is an expensive venture with high risks.

To get rid of as many expenditures as possible, the peers@play project uses peer-

to-peer techniques to source the load out of the server to the individual players’

computers, the so-called clients. Furthermore, all clients need to build and main-

tain a common network, in which nodes are called peers. Peers in this network are

not interconnected completely. Instead, they are ordered after a certain structure.

This so-called overlay enables the peers to communicate with each other and is

part of the peers@play project architecture.

1

1 Introduction

The peers@play project is a cooperation of the universities of Duisburg-Essen,

Mannheim and Hannover. It deals with massive multi-player virtual environments

(MMVEs), which are solely based upon peer-to-peer techniques and architectures.

The creation of such an MMVE consists of several tasks, of that one is the topic

of this diploma thesis.

Following, the motivation and the task of this thesis will be presented.

1.1 Motivation

Massive multi-player virtual environments became very popular recently. Most

current systems of this kind are relying upon a client/server architecture. In

MMVEs, many players use the service at the same time, posing a hard-to-fulfil re-

quirement to the operators of these systems. Servers for these games need to have

a high availability and need to provide fast access times to thousands of players.

Therefore, servers are computationally powerful and thus have high acquisition

costs. Moreover, they need permanent maintenance and monitoring, making run-

ning costs worth mentioning as well. The motivation of the peers@play project

lies in the strive to reduce acquisition and maintenance costs for operators using

peer-to-peer techniques and nevertheless to provide a secure and reliable service

with maximal availability for virtually any number of users.

In MMVEs, clients need information on other players that are nearby, including

their position and the actions they perform. This is required to enable the visual-

ization of changes in the game world. Moreover, it is crucial that this visualization

is possible without high latencies. When other players in the surrounding perform

an action, the player has to be able to react on them instantly. Assume a player

A attacks another player B with its sword. Player B wants to be able to react by

raising its shield or evading. This might not be possible, if the delay for the action

message is too high. The server will have evaluated the action before player B

even realizes the attack.

In client/server architectures, the detection of these players is simple, because the

server holds a global view of the game world. To obtain a list of other players in the

vicinity, the client only needs to query the server. Moreover, the server monitors all

actions performed by players, so that they are forwarded to each interested client.

This process is called proximity management. Additionally, the server validates all

2

1.2 Problem Definition

actions to guarantee consistency and prevent cheating. The delay in client/server

architectures usually is negligible, because the server is equipped with a maximum

of available bandwidth and each client has a direct connection to it.

In peer-to-peer systems peers are distributed among the game world. Furthermore,

each peer is only responsible for a share of the game world. Therefore, proximity

management is more complex. Most importantly, peer-to-peer architectures are

exposed to a higher average delay than client/server architectures: peers have a

limited bandwidth that is not a quarter as good as that of servers.

1.2 Problem Definition

The task of this diploma thesis is to design, implement and evaluate a delay-

minimization algorithm for proximity management. This system is called Prox-

imity Manager and is a part of the world state propagation layer. It is divided

into two phases: the initialization and the maintenance. In the initialization, a

peer needs to detect all other peers that are close to itself. Then, connections to a

subset of these peers need to be established. This helps to minimize the delay.

To guarantee fluent animations of other players and therewith a high immersion,

the delay for action messages needs to be minimal. This is guaranteed by the

maintenance phase. However, minimizing the delay is not a trivial task, because

players move around the game world. In effect, the vicinity of players change

frequently. Furthermore, the proximity manager needs to handle churn1 to avoid

inconsistencies.

For message exchange, the proximity manager requires a logical network to be able

to address each peer in the network: the overlay. Ideally, peer-to-peer systems

consist of a high number of participants, each having equal rights in the network.

To allow an arbitrary number of peers to participate, it is important that the

overlay is scalable. This means, that peers are structured in a way, so that they

can address each other without having to connect to each other. This is done

by routing. Messages are forwarded by a subset of peers until they reach their

destination. The implementation for such an overlay also a task of this thesis.

1The churn is the process of joining and leaving of peers over time.

3

1 Introduction

Besides the overlay, the proximity manager depends on a persistent storage. To

provide load distribution, each peer only holds a share of the total storage. Fur-

thermore, the storage requires to be fault-tolerant: it may not loose data in case

of peer failures. The design and implementation of a storage system is part of this

thesis, as well.

4

2 Fundamentals

This chapter introduces fundamentals required for the understanding of this thesis.

It begins with giving important facts about common techniques used in massively

multi-player virtual environments. Afterwards, peer-to-peer systems are detailed,

including a presentation of the peers@play framework and its layers.

2.1 Massively Multi-player Virtual Environments

The latest trend in computer games and social networking is directed towards

virtual worlds thousands of participants can interact in through networks. These

virtual worlds are called massively multi-player virtual environments. There exist

different types of MMVEs, dependent on the target audience and the intentions

of the developers.

On one hand, there are massively multi-player online games. They target the

broadest possible audience to increase the margin. The gaming experience offered

by these games is different to usual single-player games; they allow players to

collaborate or compete with a high amount of other players. This is realized by

the use of the Internet. They can be sub-classified into different genres, two of it

being the MMORPG and the MMOFPS.

The first one offers a combination of a role playing game (RPG) and a massively

multi-player environment. The player slips into the role of an avatar living in the

virtual world. Avatars can be customized in their appearance and their proficiency.

This can e.g. be the style they fight or the weapons and magical spells they are

proficient with. Commonly, these properties are associated with a key concept of

role playing games: avatar classes. An avatar class is usually chosen on avatar

creation and the choice has a deep impact on the gaming experience. The avatar

can be trained and advanced in its level and proficiency during the game. The

5

2 Fundamentals

most successful member of this genre is World of Warcraft [1]. Because of

its success, the game is used as a comparator throughout this thesis. In World

of Warcraft, the player can choose between ten avatar classes. The Warrior is

a melee class with high strength and stamina. The Mage is a range fighter,

attacking its opponents with magical spells. World of Warcraft uses a pay-to-play

payment model, meaning that active players are required to pay a fee for each

month of playtime. On the other hand, some games are free-to-play except for the

starter game-box required to obtain an account. The game Guild Wars [2] is a

popular representative of this payment model.

The second genre commonly offers fast-paced fighting in a first-person style. The

game type is similar to common first person shooters played via networks. How-

ever, in an MMOFPS, it is likely that a lot more players are involved. Note,

that this genre is not as successful as its counterpart described above. One of its

representatives is the game Planetside [3].

On the other hand, there exist other purposes for using MMVEs. One is the

creation of a so-called metaverse. This can be thought of as a parallel society in

which users can interact using their avatars. Second Life [4] represents this kind

of virtual environments. In Second Life, it is possible to buy plots of land and

build own houses or other architectural structures upon it. Virtual game money

can be bought with real money. Second life is even used by a number of companies

to represent themselves.

The following sections contain fundamental technical information required for de-

veloping MMVEs.

2.1.1 World Type

Game worlds of MMVEs can be of arbitrary size. The game world is partitioned

into so-called countries. These countries differ in properties like climate, vegetation

and population. This type of game world can be observed in World of Warcraft.

It is possible to move freely across country frontiers without loading times. Such a

game world is called a seamless world. On the other hand, there exist games that

disallow unimpeded travelling across countries. Such worlds are called chunked or

zoned [5] worlds.

6

2.1 Massively Multi-player Virtual Environments

(a)
Chun-
ked
World

(b)
Seam-
less
world

Figure 2.1: Comparison of chunked and seamless worlds.

The efficient management of objects in these game worlds is crucial and will be

explained in the two following sections.

2.1.2 Chunked Worlds

Using a chunked world means partitioning the complete world into isolated chunks

equal to the countries. Furthermore, direct transition between chunks is disal-

lowed. There is no direct geographical relation between chunks and the only way

to move to another across each other is by using designated objects, such as a

portal. Additionally, direct interaction is only possible with objects and players

that reside in the same chunk. Figure 2.1(a) shows this relation in an example

with three chunks. The red connections between the chunks visualize a linkage and

possible transition path. With chunked worlds it is possible to assign each chunk

a server. Servers only hold a share of the game world. Therefore, this approach

scales very well and is easy to develop. Furthermore, servers are independent of

each other, so that no synchronization is required. Concluding, the chunked worlds

approach is very efficient and easy to develop. However, it comes with a major

drawback: a loss of immersion. The transition between chunks comes along with

a break of visual flow, cause by loading screens. This diminishes the illusion of

being in a huge, coherent game world.

2.1.3 Seamless Worlds

The strive towards realism and immersion is ubiquitous. However, this conflicts

with performance and management overhead. One possibility to reach this goal is

7

2 Fundamentals

using a seamless world. When providing a seamless world, there exist no loading

times for transitions across country frontiers. Despite creating a seamless world,

the world is partitioned into zones. This allows for efficient object management

and detection through range queries. See figure 2.1(b) for an illustration for a

seamless world with zones.

Discerning from the chunked world representation, smooth transitions are possible

across zones. Seamless worlds can be operated using more than a single server

equally to the chunked world approach. Therefore, each zone is processed by a

dedicated server. However, for a consistent view at zone frontiers these servers need

to be synchronized. As an example, players situated on one side of the frontier

want to perceive actions performed behind the frontier as well. If they are not able

to see behind frontiers, the world type would degenerate to a chunked world. To

enable this, servers have a common threshold area in which they permanently need

to synchronize the game state. For more information on distribution a seamless

world over a number of servers, see [5].

2.1.4 Object Management

Objects exist in every type of game world. Naturally, the number of objects in-

creases with the world or chunk size. And with an increasing number of objects,

the object management has to be more efficient. This is emphasized by the fre-

quency in which objects need to be detected and manipulated. The area inside

which objects need to be detected is called the area of interest, or AOI in short.

In games, players have a limited viewing range that is mathematically expressed

by the AOI. This is particularly important to increase the performance; it is e.g.

impracticable to render every object of the world. To decrease the amount of ob-

jects rendered, the AOI is used to identify objects that are close to the avatar. In

our case, the area of interest is represented by a two-dimensional sphere.

This section outlines a technique to manage an arbitrary amount of objects on an

arbitrarily sized world.

8

2.1 Massively Multi-player Virtual Environments

1 function DetectObjects(Sphere aoi)

2 {

3 // get a list of intersecting grid squares

4 List <GridSquare > squares = GetIntersectingSquares(aoi);

5

6 // gather all objects from these squares if they are inside the aoi

7 List <Object > objs = new List <Object >();

8 foreach (GridSquare square in squares)

9 {

10 // loop through all objects

11 foreach (Object obj in square.GetObjects ())

12 {

13 // check intersection

14 if (aoi.Intersects(obj))

15 {

16 // add to list

17 objs.Add(obj);

18 }

19 }

20 }

21

22 // return the detected objects

23 return objs;

24 }

Listing 2.1: Object detection using a geographic grid

There exist two types of objects: doodads and dynamic entities. Doodads are

immutable and static objects that are tied to a fixed position. An example for

doodads are houses. All movable or animated objects such as player avatars or non-

player avatars are dynamic entities. A common task for the object management of

game worlds is a region query; the detection of objects in the area of interest. To

handle these queries efficiently, a geographic grid [6] is used. The grid is used as an

overlay on the game world. Its cells represent the zones. A game object registers

itself into the zones that surrounds his current position. Listing 2.1 shows how to

detect a list of objects in the area of interest in pseudo-code. Figure 2.2 illustrates

an example for this procedure. Note, that dynamic entities need to unregister

themselves from zones they leave.

For optimal performance, it is important to choose an appropriate zone size. If

the zones are chosen too small, too many zones need to be traversed for detecting

potentially visible objects. On the other hand, if the zones are too big, there are

too many objects in each zone. This causes too many intersection calculations.

Note, that the geographic grid presented in this section is used in the implemen-

9

2 Fundamentals

B C
A

E

D

F

G

X

area of interest

X

DetectObjects(aoi) =
A, B, C, D, E, F

Figure 2.2: Example: Object detection using a geographic grid

tation for this thesis. It provides an efficient avatar detection by storing avatars

into the object list of the zone they are situated in.

2.1.5 Instances

Instances are copies of a part of the game world accessed by a portal. Players

can enter them alone or in groups without interference of other players. This way,

complete campaigns can be played similar to single player games. This technique

is used by the majority of MMORPGs, where instances mostly cover dungeons

like caves and strongholds. In World of Warcraft, there exist instances for up

to 40 players. However, the usual number of players is five to ten.

Instancing is not only used for dungeons, but also for countries such as in Guild

Wars. In Guild Wars, the country is accessed by up to five players, similar

to the dungeons in World of Warcraft. Only towns and cities are open to

some extent: players are distributed among so-called channels. Each of these

channels tolerates a maximum number of players. Whenever the number of player

exceeds the maximum, a new channel can be created dynamically. The game Aion:

The Tower of Eternity [7] uses channelling throughout the game world. This

10

2.1 Massively Multi-player Virtual Environments

protects the game environment from becoming too crowded commonly perceived

as irritating.

Furthermore, channelling is compatible to both chunked and seamless worlds.

When combining channelling with chunked worlds, each chunk consists of a number

of channels. The chunks are accessible by portals; entering a chunk will automat-

ically join the player into the least crowded channel. Seamless worlds can profit

from channelling as well. However, the complete game world is represented by

each channel.

co
py

copycopy

Figure 2.3: Instancing of dungeons

2.1.6 Synchronization

Every time a player performs an action, the following procedure has to be passed

through: first, the client informs the server about the performed action. Aided by

a rule set provided by the game operator, the server validates this action. Assume,

that a player maliciously teleports its avatar to a distant place. If teleportation

is not intended by the developers, the game rules will prohibit this action and

the server will deny it. Another example for an invalid action would e.g. be

an irregular increase of running speed. Especially in player versus player (PVP)

11

2 Fundamentals

environments, such behaviour would lead to an unfair advantage. This is called

cheating. If the performed action has been valid, the server distributes an action

message to a set of players. This set consists of all players that are inside the area

of interest. Action messages arrive at interested players with a delay. This delay is

introduced by the 2-hop delay to the server and by the validation of actions. As a

result, the perception of actions is delayed. Furthermore, the validation of actions

takes some time, additionally increasing the delay. Unfortunately, this delay is

noticeable by the players.

There exists a practical approach for hiding general latencies in networking games.

The key is to only send incremental updates and interpolate in between. As a nice

side-effect, this decreases the bandwidth consumption required by the game. As-

sume, that a player moves along a direction vector v1. At some time t2 the player

changes course. This induces the game client to issue an update to the server,

solely with the information of the current position and the new direction vector

v2. In between these update messages, the position of the avatar is interpolated.

This method of positional interpolation is called dead reckoning [8]. One crucial

assumption required for this technique is, that the speed and the direction between

update messages is constant. However, in most MMORPGs the speed is constant

by default and can only be changed by an additional action, e.g. sprint. These

actions are sent to the server anyway, so that this technique is perfectly well appli-

cable to online games. It can furthermore be used to decrease the irritating delay

of the game client in that actions become visible after they have been validated

by the server. By assuming the validity and interpolating positions, a fair player

will not sense any latency between his physical action and the visualization. Note,

that dead reckoning cannot hide the 2-hop delay introduced by the server.

The process of dead reckoning is illustrated in figure 2.4. It shows four time-

steps with their associated positions and direction vectors. The player changes his

course on every shown time-step. This would lead to a total of three messages sent

regardless of the elapsed time.

2.2 Peer-To-Peer Networks

A network consists of an arbitrary number of interconnected computers and enables

communication between them. In many cases, such networks are driven by two

12

2.2 Peer-To-Peer Networks

t1

t2

t3

t4

interpolated

v2

v3

v1

Messages:
M1 = { P(t1), v1 }
M2 = { P(t2), v2 }
M3 = { P(t3), v3 }

Figure 2.4: Dead reckoning in network games

types of participants: servers and clients. A server is responsible for providing

services to other participants of a network. Web-servers for instance, provide

access to a subset of web-pages, that are hosted on it. To serve high numbers of

clients, a server requires to be computationally powerful and to be equipped with

high available network bandwidth. These properties are limited and expensive.

On the other hand, clients consume these services. They are not liable to provide

any service to any other participant of the network. This network composition is

called a client/server architecture. In this architecture, every client relies on the

server. If the server fails, all clients requiring services from it cannot be served: a

server is a single point of failure.

As an alternative of using a client/server architecture, it is possible to omit servers

in a network. Instead, all clients are liable to provide required services. This

network composition is called a peer-to-peer architecture. Clients in such networks

are called peers and have have equal responsibilities and privileges. Furthermore,

peers are not expected to remain in the network eternally. They may join and leave

it at their will any time. This behaviour is referred to as churn. Because there is no

server in this architecture, it does not have a single point of failure. If one peer fails,

other peers take over its work. Furthermore, peer-to-peer architectures enable the

minimisation of acquisition and maintenance costs for network operators. Figure

2.2 illustrates the two different architectures.

However, peer-to-peer systems have well-known drawbacks. Connection establish-

ment, e.g. turns out to be difficult in some cases. To defend themselves from

13

2 Fundamentals

Se
rv
er

Clients

Clients

Clients

Peers

Figure 2.5: Architecture comparison of client/server and peer-to-peer.

intruders and malware, peers are usually situated behind a firewall. Many fire-

walls disallow a connection establishment request from outside, so peers behind

strong firewalls are not accessible. For information on how to trick specific firewall

types, see section 2.3.2. Furthermore, peer-to-peer networks lack of a well-known

entry point. On start-up, a method is required to find already integrated peers.

This method is called bootstrapping.

Common tasks of a network are data lookup, the addressing of peers and data

exchange. The approach for addressing depends on the chosen network type. There

exist two types of peer-to-peer networks: structured and unstructured networks.

In unstructured networks, all participants are arranged without using a certain

scheme; they are just mounted into the network at an arbitrary place. Therefore,

the only way to address peers is by flooding. When flooding, a peer sends a

message to all its connections. This message comprises of the payload and an

integer value called time-to-live. Upon receipt of a flooding message, each node

decrements this value. If it is greater than zero afterwards, the flooding continues

recursively. For applications like MMVEs however, this approach is not applicable,

because it consumes a lot of bandwidth. Structured peer-to-peer systems offer a

more efficient alternative for addressing. They arrange peers after a strict ordering.

Each peer is assigned a unique identifier used to define the order. This arrangement

allows for logarithmic routing complexity: a message sent to a peer of the system

will require up to log(n) hops, where n is the number of peers of the network.

Structured peer-to-peer systems are more complex than unstructured ones. They

14

2.2 Peer-To-Peer Networks

need a lot of computations for joining, leaving and maintenance. However, this

cost is amortized by the logarithmic routing complexity. Peer-to-peer networks are

also called overlays. In the following, we refer to overlays as structured networks.

For more information on overlays, see section 2.3.4.

The majority of networking applications need a shared, persistent storage. In

client/server architectures, this storage is provided by the server. In peer-to-peer

architectures, it needs to be distributed equally among all nodes. The storage

builds upon the overlay and shares a key-space with it. The most popular dis-

tributed storage systems all fall under the category of distributed hash-tables or

DHTs. For more information on storage systems, see 2.3.5.

15

2 Fundamentals

2.3 peers@play Architecture

The peers@play framework consists of layers of software, each accessing only neigh-

bouring layers via interfaces. This enables the operator to exchange layer imple-

mentations dynamically.

P2P Overlay (Chord, Full-Mesh, ...) and Bootstrapping (IRC, ...)

Storage (DHT, ...)

User Management (Logging and Accounting)

World State Propagation Layer

Consistency Management and Anti-Cheating Layer

Presentation (Application and 3D Client)

Link Manager

Figure 2.6: peers@play layer architecture

Figure 2.6 illustrates the layer architecture used in the peers@play network. The

light-grey layer color indicates which layers are covered by this thesis. On the

bottom of the architecture resides the Link Manager. Its task is to establish and

maintain connections required by the upper layers. The current implementation

of such a service is called Secure Network Abstraction Layer or SNAL and

will be outlined in section 2.3.2. The next layer consists of the P2P Overlay

and the Bootstrapping, explained in sections 2.3.4 and 2.3.3, respectively. The

Storage is sitting on top of the overlay and provides a persistent database. Further

information on the storage is given in section 2.3.5. The User Management sits

on top of the storage and the overlay. Note, that there exists no implementation of

this layer in the current version of the project. Therefore, we always assume that

user credentials are valid. The WSPL uses the user management, the storage

16

2.3 peers@play Architecture

and the overlay. It will be detailed in section 2.3.6. The two topmost layers

Presentation and Consistency Management are not completely implemented

as well and will thus not be discussed in this thesis.

Although the user management is not implemented yet, a user can login into a

distinct world by passing an arbitrary user-name / password combination and the

identifier for the desired world, the world-name. By allowing disjoint worlds, it is

possible to operate an arbitrary number of virtual environments using the same

framework, in parallel.

Throughout the peers@play project, an asynchronous programming model is in-

corporated. This programming model is aided by the use of a message passing

framework called gears4net. The upcoming section will screen its usage to pro-

vide an abstract understanding of the algorithms in chapter 4.

2.3.1 Gears4Net

The gears4net software resembles a message passing API, using a special syntax for

wait conditions. Systems using gears4net implement a protocol. A protocol uses

a scheduler processing all passed messages and consists of handlers responsible

for the execution of routines associated with the retrieval of a message. Wait

conditions are expressed using the C# yield-operator. The yield operator stems

from the iterator programming concept. A simple usage of an iterator is the for-

each-loop. To enable the for-each traversal over a data structure, the definition has

to supply the iterator interface. Algorithm 1 shows some simplified, but common

statements to clarify the usage of this API.

Algorithm 1 Simplified examples of gears4net wait conditions

1: yield return Receive<T>();
2: yield return Timeout(1000);
3: yield return Interval(1000, method);
4: otherProtocol.BroadcastMessage(new T(’MyMessage’));

Statement 1 waits for the receiving of a message of type T. The second one waits

for 1000 milliseconds until it is able to continue. The third statement regularly calls

method in an interval of 1000 milliseconds. Using these statements, it is possible

to drastically simplify the program code. Furthermore, while some methods are

17

2 Fundamentals

waiting for input or time-outs, other methods can be processed. Without gears4net

several threads run in parallel, rendering the communication and synchronization

of these very difficult. In gears4net, the scheduler is run in a single thread, so that

synchronization is not needed. The communication between different and inside

protocols is done by message passing (see statement 4 as an example on how to

pass messages to another protocol). For detailed information on the gears4net

message passing API, see [9].

2.3.2 Secure Network Abstraction Layer

The peers@play network contains a layer that handles networking tasks such as

connection establishment and maintenance: the secure network abstraction

layer or SNAL. Using the SNAL and the so-called SNAL-addresses, upper

layers can establish and close connections. Connecting two peers can be difficult

depending on their firewalls and NAT-boxes. Firewalls control the data transfer

between clients and drop potentially malicious or unwanted packets for security

reasons. Network Address Translation (NAT), is a technique to map IP/port-

combinations to clients of the local network. This way, more than one client can

access the Internet via one external IP. For each connection, the external port is

assigned to an internal IP/port-combination. There exist NAT-boxes that provide

a high security, like symmetric firewalls. The downside of these firewalls is that

connection establishment from outside the local network is very difficult, if not

impossible. The SNAL provides a NAT traversal mechanism, that uses three

techniques to establish a connection: reversal, hole punching and relaying. Each

technique can be used in a specific situation. Let A and B be peers, where A

wants to establish a connection to B.

Situation 1.

Let B be situated behind a symmetric firewall. A does either use no firewall,

or a firewall that is easy to bypass. In this situation, it is possible to apply the

reversal technique by using the overlay. Therefore, A routes a message to B with

a connection request. Then, B can establish a connection to A.

Situation 2.

If both peers A and B are behind a symmetric firewall, the only chance to connect

is to try hole punching. This punches a hole in the clients firewall to find a port

that maps to the peers client.

18

2.3 peers@play Architecture

Situation 3.

If connection establishment failed using reversal and/or hole punching, relaying is

the only possibility left: Therefore, no connection is directly established between

A and B. Instead, a third peer to that both A and B are connected to is used for

data transaction: the traffic is relayed on it. This way, each peer in the overlay is

able to communicate with each other.

For more information on the SNAL and its techniques, refer to [9]

2.3.3 Bootstrapping

The bootstrapping service aids in the joining process of peers. Without it, there

would be no way to find a running network from scratch; peer-to-peer systems

commonly do not provide a well known entry point.

The following requirements need to be met by such a bootstrapping service:

• Availability: A single server like those used in most online games such as

World of Warcraft is a single point of failure. If they suffer from failure,

the whole service will be unavailable until it is recovered. We require the

bootstrapper to be available at any time without downtimes. Therefore, the

traditional server approach cannot be used. Instead, we need a decentralized

service to provide fail-safety.

• Scalability and Efficiency: The bootstrapper must work with any amount

of participants. Because we want our peer-to-peer network to be scalable, the

bootstrapper needs to provide scalability as well. Additionally, it requires to

be efficient: the computational and bandwidth load may not exceed a small

slice for integrated peers to leave enough power for application purposes.

• Robustness: The bootstrapper must be robust enough to avoid failures

for both peers and the service itself. It may not be disturbed by external

interference or security appliances like firewalls.

Within the scope of the peers@play project, a bootstrapper fulfilling these re-

quirements has been presented in [10]. It is the entry point of all peer-to-peer

applications in the peers@play framework. It utilizes an arbitrary IRC network,

19

2 Fundamentals

known to have a high availability. Because there exist a huge amount of IRC net-

works in the Internet nowadays, providers can utilize these and don’t need to run

an own network. It is worth mentioning, that the bootstrapper does only impose

a minimal load on the IRC network. Otherwise, the risk of being banned would

be too high.

The bootstrapper works the following way: integrated nodes intercept an IRC

channel created for their world. Every-time a peer wants to join the network, it

joins this channel before-hands. Once inside, it requests information on how to

join the overlay by sending a query message into this channel. Interceptors are

then replying with a list of online nodes in turn. To obtain scalability, a maximum

of Cbt interceptors are servicing at the same time.

A major disadvantage of the IRC bootstrapper is that of a lack of security. Because

the software uses public IRC networks, malicious peers can easily disturb the

bootstrapping process. It is thereby, e.g. possible to create a parallel, malicious

network. Security issues have not yet been covered by the authors.

2.3.4 Overlay

Peer-to-peer networks are built on top of the Internet. They enable applications to

route messages to logical addresses instead of IP addresses. This logical network is

called Overlay. Overlay networks consist of an arbitrary number of nodes. These

nodes have an overlay address associated with their physical address. A common

task for overlays is routing, where messages are forwarded by a subset of nodes

until they reach their destination. Overlays have the following requirements:

• Scalability: The overlay is a logical network that strives for scalability to

allow an arbitrary number of nodes to participate. Therefore, each node may

only be responsible for the maintenance of a fraction of the network. This

includes established connections; establishing a connection to each node of

the overlay creates a full-mesh. To avoid too many connections, the majority

of overlays provide a logarithmic amount of connections.

• Self-Organisation: The overlay is responsible for organising itself automat-

ically. No manual interaction should be required to maintain the network.

20

2.3 peers@play Architecture

• Fault-Tolerance: The overlay must be able to cope with node failures

and the churn to remain consistent. The routing procedure must operate

correctly under all circumstances.

To obtain scalability, modern overlays arrange nodes in a key space. Each node

only connects to a subset of other nodes. The routing is achieved by converging

at the destination key. The majority of overlays provide a routing complexity

of O(logn), where n is the total number of nodes in the network. Examples for

popular overlays are Chord [11] and CAN [12].

2.3.5 Storage

Applications like MMVEs using peer-to-peer techniques require some kind of stor-

age accessible to every peer. In client/server applications, this storage is provided

by the server, where the server reflects a single point of truth. Every data set is

only managed at a single place to avoid inconsistencies. Each client that wants to

retrieve data sets does so by querying the server for it. In peer-to-peer applica-

tions, there is no server and hence there exists no single point of truth, incurring

the possibility of inconsistencies. The common storage design for peer-to-peer sys-

tems is a hash-table1, whereas all data sets are stored in a distributed manner

to allow load balancing. Therewith, each peer of the network only holds a share

of the entire data. This data structure is called a distributed hash-table, or

DHT.

Basing on the overlay, it is possible to implement a DHT, that provides access to

the functions store, retrieve and remove. However, there exist several requirements

that an implementation has to fulfil:

• Scalability: To allow access to an arbitrary number of nodes at the same

time, the storage implementation needs to be scalable. This means, that the

implementation may not exceed linear complexity.

• Self-Organisation: Nodes in the network should not be required to man-

ually interact or configure the DHT for the joining and maintenance.

• Load-Balancing: The entire data set needs to be distributed equally among

all nodes of the network.

1Hash-tables are containers that enable to associate an object value using a unique key.

21

2 Fundamentals

• Fault-Tolerance: The DHT must remain consistent regardless of errors or

node failures.

• Robustness: The DHT must be robust enough to work correctly, even if

several nodes try to interfere.

Fault-tolerance is very important to prevent data-loss. Often, this is achieved by

replication: each data set is held by more than a single node at a time. Every-time

a data set is updated or removed, each replicator (i.e. the node, that holds a copy

of the data set) will be informed by the original owner. There exists a simple

rule for the probability of data loss: assuming that the data is replicated on k

nodes, then a maximum of k nodes may leave at the same time without a loss of

data, because there is still one node left holding the data (the owner plus all repli-

cators make up a total amount of k + 1 redundant local storages). Hence, with

more replicators, data loss becomes less probable and therewith fault-tolerance

increases. Of course, each replicator comes with an overhead both in CPU-usage

and in bandwidth consumption. Particularly big data sets consume a lot of band-

width, aggravated by the number of replicators. Apparently, there is a trade-off

between fault-tolerance and efficiency.

The majority of peer-to-peer storage solutions are included in the routing soft-

ware. For example Chord and CAN have a storage integrated already. However,

the peers@play framework separates them into disjoint layers.

2.3.6 WSPL

The overlay and the storage provide functionality to build MMVEs using peer-

to-peer techniques. For MMVEs it is crucial to obtain the position of a node in

the game world. It is, for instance, required to detect the nodes that need to

be rendered to the screen. Furthermore, nearby nodes need to have a consistent

view of the game state. Therefore, a high update rate is required with a minimal

delay. Update messages e.g. contain current position information about a node.

Furthermore, MMVEs need a way to geographically index static and dynamic

entities in the game world and dynamic objects, such as non-player characters

need to be controlled by nodes.

22

2.3 peers@play Architecture

In the peers@play project, the world state propagation layer is responsible for this

task. For convenience, it separates the behaviour into two tasks: proximity man-

agement and entity management. Proximity management refers to reducing

the bandwidth consumption of the network in total and the delay between geo-

graphically close peers in the virtual world. Besides its effect on the consistency,

the delay potentially introduces lagging motions of avatars. Further information

about the proximity management is given in section 3.3.

The second task of the WSPL is the entity management. In an MMVE, there exist

objects and non-player characters (NPCs) (sometimes called agents). Examples

for objects are doodads and objects that can be picked up by players like weapons,

ammo or health kits. Both the objects and the NPCs are situated at a specific place

of the game world. The entity management provides an interface for discovering,

changing and maintaining these objects in the world. The computation of NPCs

needs to be distributed among all nodes in an efficient manner as well. Note

however, that the entity management is not part of this thesis.

23

2 Fundamentals

24

3 Design

This chapter gives detailed information about the design of the implemented lay-

ers: the Overlay, the Storage and most importantly the Proximity Manage-

ment.

3.1 Overlay

Structured peer-to-peer systems need a way to address every integrated peer for

communication: the overlay. An overlay of a peer-to-peer network arranges par-

ticipants in a way, so that they are uniquely addressable. Often, this is done by

sorting them into a ring, as in Chord [11] and Pastry [13].

The peers@play project did not offer an overlay at the beginning of this thesis.

Because the proximity manager requires one, a simple overlay is implemented:

the full-mesh overlay. Naturally, a full-mesh is not scalable. However, the imple-

mentation of a scalable, sophisticated overlay such as Chord is beyond the scope

of this thesis. This full-mesh overlay can then be used for simulation purposes

and comparisons. To be able to swap the overlay for a scalable one, the full-

mesh overlay implements the overlay interface declared by the peers@play project.

The key methods of this interface comprise of the methods Optimize and Send.

The optimize method can be used to optimize a connection for either bandwidth

throughput or the delay. The send method forwards a message to an arbitrary

node of the network.

This section shows how this simple overlay is structured first, then it gives an

introspection of the bootstrapping phase and the routing procedure.

25

3 Design

0x00

0x20

0xA0

0xE0

0x60

0x10

Figure 3.1: Full-Mesh Overlay: Structure

3.1.1 Structure

The structure of the full-mesh overlay resembles that of Chord. This means,

that the nodes are arranged on a circle. Their IDs are elements of a warped,

one-dimensional key space. They are calculated using the SHA-1 algorithm [14]

that returns a 160-bit number. The ID of a node in the full-mesh overlay is called

OverlayID in the following. Figure 3.1 illustrates this structure. The blue lines

between nodes show their connection.

Despite the full-mesh, this structure has been chosen to enable efficient key space

responsibility and homogeneous distribution of nodes. Each node has special neigh-

bours: the predecessor and the successor. The predecessor is its immediate neigh-

bour with a lower OverlayID. Symmetrically, the successor is the immediate neigh-

26

3.1 Overlay

bour with a higher OverlayID. The overlay does not need constructs like routing

or finger tables. This simplifies the design to a large extend.

3.1.2 Integration

The overlay integration consists of two phases. In the first phase, the bootstrapper

is used to find nodes, that are already integrated in the overlay. In peers@play, the

IRC-Bootstrapper is used for this task. See section 2.3.3 for more information on

how this bootstrapper works. There are two possible outcomes of the bootstrapper.

If the desired world has been empty before, it returns an empty list. Otherwise, the

list contains already integrated nodes. The overlay then connects to all conveyed

nodes. To each connected node an integration request message is sent. Upon

receipt of such a message, an integrated node replies with the list of all nodes of

the network. This list is then used to re-establish the full-mesh.

3.1.3 Routing

Every node is responsible for the key space between itself and its predecessor. This

segment is called the responsibility interval. Because of the full-mesh, the routing

can always be achieved in a single hop. The destination is calculated the following

way: Given a destination key k, the message is sent to the node with the closest

ID to k. Because routing is only processed forward in the ring, the calculation of

the distance is dependent on the order. If k > n, it can be calculated using k− n.

If k < n, it is equal to 2160 − n + k. If k = n, the node itself is the destination

and no messages need to be sent. To send a message, the overlay compares the

distance of the ID of each connected peer to k. The node with the closest distance

is then chosen as destination.

27

3 Design

3.2 Storage

Basing on the overlay, a storage system has to be implemented to provide a per-

sistent database. In this thesis, a distributed hash-table is implemented. This im-

plementation uses the overlay described above and is therefore called Full-Mesh

DHT.

The peers@play project offers an interface for DHTs, which is incorporated by

the Full-Mesh DHT. Distributed hash-tables commonly comprise of the methods

Store, Retrieve and Remove. Their functions are self-explanatory. The storage

uses the responsibility interval given by the overlay to decide the owner of a data

set. This allows for efficient and simple algorithms: messages that are sent to an

arbitrary address K will reach the node responsible for K. The data key can be

used as address for DHT operations. The responsible node will be found using the

responsibility interval. It will afterwards acknowledge the result of an operation.

When more than a single node wants to store data under the key K at the same

time, lost updates can occur. If node A and B both store under the same key in

parallel, one of the stores is overwritten. This depends on the order their messages

arrive at the responsible node. If for instance the store message of node A arrives

first, the store is processed and a success message is sent back to A. Afterwards,

the store message of B is processed, overwriting the data stored by A. To prevent

lost updates, the Full-Mesh DHT incorporates a version control system. Each

data set has an associated real version, which needs to be conveyed for store and

retrieve operations. Furthermore, each node has a local version of recently used

data sets. The local version is included in each operation message. When storing,

the local version is compared to the real version. If they are equal, the store can

be performed. Otherwise, it is likely that the store overwrites previous changes.

Therefore, the store is denied. Afterwards, the changes on the data have to be

performed again on the current data. When retrieving, the local version is used to

detect whether a node already has the data up-to-date. If so, it is not sent back

again to save bandwidth.

To gain protection against data loss, replication is incorporated in the storage. A

fixed number of nodes, called replicators, will therefore hold an inactive copy of

each data set. These replicators are the immediate successors of the responsible

node. The number of replicators is defined at compile-time. The more replicators

28

3.2 Storage

0x00

0x20

0x10

re
pl

ic
at

or
s

 owner

Sample Data

Figure 3.2: Full-Mesh DHT: Replication

there are, the higher is the fault-tolerance. On node failures, the data set can be

reconstructed using the replicators. In practice, this procedure is very simple. The

successor of the failed node will be responsible for its data. Because it already holds

a copy of all this data, this process only involves a local copy from the replication to

the responsible data pool. Figure 3.2 illustrates the replication using the full-mesh

overlay.

29

3 Design

3.3 Proximity Management

This section begins with a requirements analysis and continues with detailing the

design decisions considered for the implementation.

3.3.1 Requirements

The requirements analysis helps to find a proper software architecture. The fol-

lowing requirements have been analysed in thesis:

• Delay-Minimization: The proximity manager must provide an infrastruc-

ture that allows minimal exposure of delay to update messages. These update

messages need to be sent to all neighbouring nodes1 in a timely manner. This

shall reduce noticeable delay and lagging artefacts to a maximal extent and

thus expose a maximal immersion to the players.

• Minimal Bandwidth Footprint: The proximity manager must be efficient

in terms of bandwidth consumption. Regarding that hundreds of players

might be nearby at the same time, it may never exceed common internet

connection capabilities.

• Self-Organization: The proximity manager must function without manual

configuration or interaction at runtime. This contains both the initialization

process and the maintenance.

• Locality-Awareness: To reduce the total amount of connections, the prox-

imity manager must be locality aware. In practice, this means that the man-

ager only connects to other nodes in the immediate surrounding in the game

world.

• Scalability: Scalability is very important in the majority of applications.

This enables access to an arbitrary number of users. Therefore, the proximity

manager shall be scalable in terms of required connections and bandwidth.

1The term neighbouring nodes refers to spatial coherence of players in the virtual game world.

30

3.3 Proximity Management

3.3.2 Solution Approach

This section describes the chosen approach for the implemented proximity man-

ager. The storage layer delivers a persistent storage that can be used to aid in this

task. Furthermore, the peer-to-peer overlay is used for message transmission.

The implemented proximity manager subdivides the task into three smaller ones.

First of all, each node has a position associated to the game world. Additionally, it

possesses a bounding circle. This bounding circle comprises of the nodes’ position

and a radius. This circle resembles the area of interest of a node. The area

of interest is used to localize other nodes. With its help, the proximity manager

knows which nodes are potentially visible. Because they are visible, it is important

to provide high update rates and a minimal delay. Other nodes, that are inside of

a nodes’ area of interest are called near nodes. Further information on the AOI is

given in section 3.3.4.

The detection of near nodes does however not suffice to provide consistency at all

times. Due to constant movement of nodes, the set of near nodes is expected to

change constantly, as well. To detect nodes that are about to enter the AOI, a

second threshold area is declared: the far region. The peers@play projects aims at

operating seamless world MMVEs. Therefore, the world is partitioned into zones

of a fixed size and position. The far region complies exactly one of these zones.

Consult section 3.3.4 for further information on the far region.

Still, both presented regions do not suffice. The third one is called the adjacency

region and comprises of all surrounding zones in the eight-neighbour topology.

The adjacency region is used to keep track of nodes in the hinterland. This is

of importance, because of the constant movement. Assume, that a nodes AOI

scratches the frontier to a neighbouring zone. Although we know both the nodes

inside the AOI and the nodes inside our zone, popping2 might occur. Further-

more, if the AOI overlaps with the frontier, it is possible that nodes behind it

ought to be seen. This phenomenon is handled by the adjacency region and the

HandleFrontierDiscovery method. The adjacency region is described in section

3.3.5.

When a node wants to join the world, it first retrieves information about its avatar

from the storage. This includes the current position of the avatar. Using this

2Popping means that something previously unseen pops into being without a smooth gradient.
This usually is perceived as irritating.

31

3 Design

position, its far zone can be calculated. Afterwards, the node connects to all

nodes inside this zone. Following, it connects to a fixed number of nodes of its

adjacent zones.

The following sections further describe the world partitioning and the accosted

regions and their discovery in detail. The chapter ends with a summary on the

covered design issues.

3.3.3 World Partitioning

The discovery of nodes in a given area of the game world can be done using the

storage layer. The game world is supposed to be seamless. Therefore, the game

world is partitioned into zones. Each zone is then represented by a single entry in

the storage. Figure 3.3 illustrates this process with a sample game world consisting

of 16 zones. This entry consists of the zone coordinates and a list of potentially

contained nodes. When a node joins a zone, it writes its overlay-address into this

list. Upon leaving the zone, it unregisters itself in turn. Due to node failures

and delays, we cannot be sure whether each entry of this list is valid. As a result

of a failure, a node is not able to unregister himself from the list. To invalidate

such failed nodes, the current time-stamp is added to the list upon registration.

After fetching the list from the storage, each node cleans up the list by removing

old entries. On the downside, this means at the same time, that each peer needs

to refresh its entry regularly. This kind of data structure is called a soft-state.

The time after which an entry expires is determined by the parameter Texpiry.

Furthermore, nodes refresh their entries with an interval of Trefresh. The concrete

values for these parameters have to be chosen wisely. In exert, the longer an entry

is valid, the longer invalid entries remain in the list. On the other hand, if it expires

too quick, the refresh rate is higher, exposing a higher load on the network.

3.3.4 Far Region and AOI

The partitioning of the seamless world into zones allows for efficient node discovery.

Furthermore, the zone a node resides in is its far region at the same time. Unlike

the area of interest however, the zones have a fixed position. Inside the far region

the nodes are fully-meshed. Because the area of interest lies inside the far region

32

3.3 Proximity Management

Zone 0 / 0

Zone 3 / 3

width / height

0 / 0

zone_1_1

+ List<NodeEntry> Nodes
+ int Xmin
+ int Ymin

DHT

Figure 3.3: Geographic grid and its storage entries

to a certain extent, nodes that are inside the AOI are fully-meshed as well. This

reduces the delay with the cost of additional connections.

When a node moves towards a zone frontier, the area of interest potentially overlaps

with other zones. This means, that the node needs to detect nodes that are inside

its area of interest, without being in the same zone. Figure 3.4 illustrates this

problem. On the left, the AOI lies completely inside. In the right image, it

overlaps with other zones. How to detect the two indicated nodes is explained in

section 3.3.6.

To accommodate the required bandwidth, message exchange between nodes is

dependent on the region they lie in. Nodes that lie inside the area of interest are

potentially visible, requiring a high update rate using the interval TAOI . Nodes

outside the AOI are not visible, so that a lower interval suffices: TAOI > TZone.

In the course of time, nodes join and leave the area of interest and the zone.

Whenever a node leaves the AOI, it is handed-off to either the far region or the

adjacency region. Likewise, a node that leaves the far region is handed-off to the

adjacency region described in the next section.

Note, that the full-mesh inside the far region renders the approach as a whole as

33

3 Design

Figure 3.4: AOI moves with the player

not scalable. Because scalability is required, it is worthwhile to consider further

possibilities for the connectivity inside the far region. A reduction of connections

however, arises the problem of an increasing average delay. A possible solution

for this problem might be the use of a k-degree network [15]. In a k-degree net-

work, every node holds a minimum of s and a maximum of k connections, with

k/geq2s + 1. The higher k is chosen, the higher is the resilience of such a net-

work against partition. On the downside, it needs to be balanced. Therefore, the

implementation of k-degree network is beyond the scope of this thesis.

3.3.5 Adjacency Region

Besides the area of interest and the far region a third region is created: the ad-

jacency region. The adjacency region consists of all surrounding zones of a node;

because the eight-neighbour topology is chosen, the adjacency region consists of a

maximum of eight zones. To each of these zones, a number of connections is es-

tablished. The parameter for this number is Cfar and can be adjusted to a desired

value. In practice, this parameter is chosen as 2 <= Cfar <= 4.

The connections established in the adjacency region have a twofold purpose: first,

the transition into neighbouring zones is simplified and thus more efficient. There-

34

3.3 Proximity Management

fore, a third interval Tadj is used, after which the connected adjacent nodes are

informed about position updates. Secondly, they are used to detect margin-nodes

that lie inside the area of interest. Note, that we cannot guarantee that each node

has connections to each neighbouring zone. This effect is introduced by the con-

nection limit, but does not pose a problem for the frontier discovery described in

the next section.

3.3.6 Frontier Discovery

The frontier discovery detects nodes that are inside the AOI, but outside the far

region. This occurs when a node moves towards the zone frontier, so that the

AOI sphere overlaps with it. In the worst case, the AOI overlaps with a total

of three neighbouring zones. To detect nodes that lie in the intersection of the

neighbouring zone and the AOI, the adjacency connections are used. Therefore,

a frontier discovery request is sent to all connected nodes of the target zone.

This message contains the own position. Upon receipt of such a message, a node

searches for all other nodes contained in its zone, that lie within the requesters

area of interest. This procedure is executed regularly by each node that is near a

zone frontier.

The described frontier discovery mechanism works despite of lacking connections

to an intersecting zone. Figure 3.5(a) shows such a situation, where node A does

not have any connection to the left neighbouring zone. All nodes except for A

remain inert while A moves to the frontier in question as shown in figure 3.5(b).

Both nodes A and B regularly execute the frontier discovery procedure, if their

area of interest overlaps with at least one neighbouring zone. In this case however,

A has no chance of detecting B. Instead, B detects A in his next frontier discovery,

because he has connections to the zone in which A resides. This mechanism only

works if at least one of the nodes has a connection to the adjacent zone. However,

this is always true. Two neighbouring zones z1 and z2 have m and n number of

contained nodes, respectively. If m > n, then there exist nodes in z1 without a

connection to z2. Therefore, when a new node enters z2 it is always possible to

connect to a node in z1.

35

3 Design

Zone 1 / 1

Zone 4 / 4

xmax / ymax

0 / 0

A

B

Zone 1 / 1

Zone 4 / 4

xmax / ymax

0 / 0

AB

Figure 3.5: Discovery problems near frontiers.

3.3.7 Summary

The presented approach subdivides the world into equally sized zones. Nodes are

registered for reference in the zone they lie in and establish a full-mesh inside

their zone. The interval at which update messages are sent to connected nodes

is dependent on the distance, categorized into three groups: the AOI, the far

region and the adjacency region. Furthermore, the intervals are dependent on the

maximal running speed of avatars. The area of interest is relative to the node

position. The far region matches the bounding box of the current zone and the

adjacency region consists of the neighbouring zones. Once a node approaches the

zone frontier, the frontier discovery is processed regularly.

The presented approach is expected to meet most requirements stated in sec-

tion 3.3.1. One exception to this is the scalability requirement. Nodes that are

situated in the same zone are building a full-mesh, being not scalable. The delay-

minimization is guaranteed by connecting to each node in the vicinity. It is ex-

pected, that minimal bandwidth is required to operate the system. This is ac-

commodated by reducing the frequency in that messages are sent depending on

the distance. The proposed approach organizes itself by the use of the storage

layer. No manual interaction is required to operate the system. It keeps track of

all nodes in a zone by managing a soft-state list. The last requirement, locality-

awareness, is fulfilled by nature. Nodes are never supposed to connect to distant

nodes. The concrete distance is dependent on two factors: the size of the zones

and the diameter of the area of interest.

36

4 Implementation

This chapter gives detailed information on the implementation developed for the

thesis. In the first part of this chapter, the architecture is described in detail and

interfaces for the usage of each layer are introduced. The second part consists of a

detailed introspection into the key algorithms of the proximity management layer

as a crucial preparation for the theoretical analysis section of the following chapter

5.

The implementation has been developed using C# and Visual Studio 2008. The

peers@play project completely relies on asynchronous programming using the

gears4net message passing API. Therefore, no threading related code can be

found throughout the project. Nevertheless, modern multi-core CPUs are sup-

ported, because each gears4net protocol runs in its own thread. The project only

allows the usage of interfaces for inter-layer communication. This enables the in-

dependent exchange of a single layer. Furthermore, the project incorporates its

own coding conventions:

Classes and methods are beginning with capital letters and method names are

chosen to be imperative. Properties are beginning with capital letters as well

and represent the only way to publicly present variable values. Variables are

beginning with small letters and must be private.

In the peers@play project, messages that are to be sent over the network are

assembled stack-wise. The message initiator creates an instance of the ByteStack

class, that allocates a byte array with a default size of 256. Every layer pushes

its required information onto the stack. The LinkManager can then send the

used bytes over the network. This procedure was employed for high performance

serialization. The C# serialization classes present an alternative. However, they

serialize data with a very high memory overhead, because they are general-purpose.

Therefore, a specialized serialization method has been chosen.

37

4 Implementation

Figure 4.1: Interface: IP2POverlay

The following sections are structured this way: After presenting the layer interface,

the class diagrams are visualized and the key procedures are detailed.

4.1 Overlay

The overlay features a preparatory task for this thesis and therefore will only

be outlined briefly. Figure 4.1 shows the interface chosen for overlays in the

peers@play project.

For unified resource disposal, it inherits the IDisposable interface. The properties

Bootstrapper and P2PLinkManager give upper layers access to the instanti-

ated bootstrapper and the link manager, respectively. The property LocalAd-

dress gives reading access to the Overlay-address, whereas State expresses the

state the overlay is in at an instant of time, e.g. whether its still bootstrapping or

running.

The methods BeginStart and BeginStop initiate the bootstrapping and stop the

execution of the overlay, respectively. Their names stem from the asynchronous

38

4.1 Overlay

Figure 4.2: Class: FullMeshOverlay

programming model used throughout the project. Because the task has not been

finished after the methods return, an asynchronous callback is used1. It is called

upon finished joining or leaving, respectively. The method Send handles message

sending to other nodes of the network, whereas the MessageReceived-event no-

tifies registered classes of a message receipt. The Optimize method can be used

to optimize a connection to another node. This optimization can either be delay-

minimization or maximization of available bandwidth.

The methods Send and Optimize take an overlay address of a peer as parameter.

This overlay address differs between overlay implementations. In the case of Chord,

this overlay address would contain nothing else than the Chord-ID.

The implementation of an overlay used for this thesis is the previously-motivated

FullMeshOverlay. Note, that this class does not directly inherit from IP2POverlay,

but from an additional, abstract class called P2POverlay. This abstract class

contains standard procedures for overlays to decrease code duplication: initializa-

tion and clean-up routines are defined centrally, while they call abstract methods,

that are to be implemented by the FullMeshOverlay.

1A callback is a method or function, that is potentially called from another thread. Callbacks
enable asynchronous notification when more than a single thread is utilized.

39

4 Implementation

Figure 4.2 contains the class definition in question. Note, that this figure only

shows important members to avoid bloating and that inherited members are not

shown as well. For information on the structure and the organization of the

FullMeshOverlay, see section 3.1.

Listing 4.1 shows pseudo-code of the joining procedure into the overlay. This

method is called after the node is successfully integrated in the overlay and the

storage. The description of methods can be found as in-line comments.

Listing 4.2 shows the procedure that is used for routing.

1 function JoinOverlay ()

2 {

3 // start the bootstrapper

4 Bootstrapper.BeginGetPeers ();

5

6 // wait for the bootstrapping result

7 yield return Receive <BootstrappingInfoMessage >();

8

9 // get node list from the result

10 List <Node > nodes = lastMessage.Nodes;

11 if (nodes.Empty())

12 {

13 // node alone! join succeeded.

14 }

15 else

16 {

17 // traverse all found bootstrapping nodes

18 foreach (Node node in nodes)

19 {

20 // connect to the node

21 ConnectTo(node);

22

23 // request the entry into the network

24 RequestEntry(node);

25 }

26

27 // wait for any reply

28 yield return Receive <AcceptEntry >();

29

30 // connect to each supplied nodes

31 ConnectToAll(lastMessage.Nodes);

32

33 // notify each node , that we ’re in

34 NotifyAllNodes ();

35 }

36 }

Listing 4.1: FullMeshOverlay Joining Procedure

40

4.1 Overlay

1 function RouteMessage(OverlayMessage msg)

2 {

3 // get the peer that is responsible for the key

4 LinkAddress responsible = null;

5 if (GetResponsibleLink(msg.Destination , out responsible))

6 {

7 // localnode is responsible for this message!

8 InvokeMessageReceived(msg);

9 }

10 else

11 {

12 // responsible node found , continue routing

13 SendMessage(responsible , msg);

14 }

15 }

Listing 4.2: FullMeshOverlay Routing Procedure

The method GetResponsibleLink calculates which connected node is nearest

to the destination. In a fully-meshed overlay, however, the destination node is

directly found, so that only one hop is necessary. The return value is a boolean

indicating whether oneself is the receiver of the message.

41

4 Implementation

Figure 4.3: Interface: IStorage

4.2 Storage

The storage system bases upon the overlay. To function correctly, it requires some

additional information from the overlay. For example, it needs to be able to query

its neighbours in the network. In the Full-Mesh DHT, as well as in Chord, the

neighbours are the nodes with the minimal distance in the key space.

Figure 4.3 shows the IStorage interface. The three methods Store, Retrieve

and Remove resemble the typical DHT operations. Because of the asynchronous

programming model used in the project, they do not block until the result is

available. They rather return immediately and invoke a callback when finished.

To be able to distinguish an arbitrary number of operations, these methods return

a Guid2.

The class FullMeshDHT is partly illustrated in figure 4.4(a).

In addition to the interface methods required, there exist several groups of message

handlers. The processing of DHT queries is done by local and remote handlers.

The local handler is executed by the initiator, whereas the remote handler is

executed by the owner of the queried data set. Furthermore, for these handlers,

there exist pre-integration variations. These are used instead, before the node is

completely integrated into the network. They forward possible mislead messages

to their original destination, the nodes’ successor. This is required, because of the

detachment of overlay and storage. When the overlay integration succeeded, the

2A Guid is a globally unique identifier. It is provided by the C# framework.

42

4.2 Storage

(a)
FullMeshDHT

(b)
DataSet

Figure 4.4: Classes: FullMeshDHT and DataSet

node is not yet integrated into the storage.

The data stored in the DHT is stored using the DataSet class, illustrated in figure

4.4(b).

This class stores both a binary and a de-serialized copy of the object itself. Ad-

ditionally, each data is version-controlled. To update a dataset, it is required to

know its current version. The store is rejected by the responsible node if a dep-

recated version number was submitted. This simple trick eradicates the chance of

lost updates.

The method AppendToByteStack appends the serialized data including the

version and the key onto a given ByteStack and by the use of IncrementObject,

the version number is incremented. The DataSet class is used in all DHT queries.

For retrieve and remove operations, only a small fraction of the class is sent,

43

4 Implementation

because the payload is irrelevant. It is only relevant for store operations. These

small fractions are also called headers. Headers are cached locally to increase

efficiency and reduce the memory consumption.

44

4.3 Proximity Management

4.3 Proximity Management

The proximity management consists of two projects. The first one is the core

component called ProximityManager. The second one is a GUI for testing and

evaluation.

This section will first show some helper classes used by the proximity manager.

Then it will outline the provided interface for upper layers followed by implemen-

tation details on the core component and its key methods.

The interface of the proximity manager is relatively small. In this first version

only one method exists: Move. Each time a player moves around the game world,

this method needs to be called. For further ideas on how to improve the usability

of the layer, refer to section 6.2.

Figure 4.5: Class: Node

The class Node is used to internally represent a node. Figure 4.5 illustrates it.

Nodes are distinguished by their OverlayAddress in the property ID. Addition-

ally, they have an associated position represented by a vector. By the use of the

position, its area of interest, its far region and its adjacency region can be calcu-

lated. To save bandwidth it is convenient to omit the three regions, because they

can be calculated using the position.

For simulation purposes, the proximity manager uses an intermediary class called

Communicator for network access. This additional layer can be operated in

two modes: local and online. When operating locally, only instances inside the

same process can communicate with each other without the use of a peer-to-

peer network. This brings a crucial performance increase for simulation and bug-

hunting. The online mode uses the underlying storage and overlay to send messages

45

4 Implementation

and database access. This mode is used for distributed testing using a number

of different computers. In addition to the mode switching, the communicator

can collect statistical data, such as the amount of messages sent in total or the

bandwidth consumption of a peer. This data is then send to an evaluation server

if desired.

Figure 4.6: Class: Communicator

Figure 4.6 contains its class diagram. The variable database contains the local

implementation of the storage, whereas the dht variable is of type IStorage and

contains the online variant. The connection to the evaluation server is processed

by the evalConn object, which is a gears4net protocol built using TCP.

The class contains the core methods of the overlay and storage interface to pass

through the requests depending on the mode. The methods Register and Un-

register are used for local mode where each node has to register itself with the

same communicator.

The most important class, however, is the ProximityManager itself. It holds

46

4.3 Proximity Management

Figure 4.7: Class: ProximityManager

47

4 Implementation

information about all known nodes of the network and manages their updates

and positions and uses the Communicator class described previously to process

networking tasks. Most importantly, however, the class tracks the movement of

nodes in the vicinity in the method HandleNodeUpdateMessage. Depending

on their current distance, their update interval is adjusted. This is done by pushing

the nodes into the different zones. The updates are then sent by the three methods

HandleNearUpdate, HandleZoneUpdate and HandleAdjacencyUpdate.

When a node oversteps the frontier of its current zone, a zone transition event is

fired. This is handled by HandleZoneTransitionEvent.

Currently, the only interface to upper layers is the Move method. By calling the

move method, one can signalize the proximity manager that the avatar shall move

by a certain offset in space. Using the move instruction, the proximity manager

can maintain the AOI and near regions and eventually transition the node to

an adjacent zone. The HandleMoveMessage-method will be detailed in the

following section.

4.3.1 Key Methods

This section elaborates on key methods used in the proximity manager, namely

HandleBootstrapping, HandleMoveMessage, HandleZoneTransitionEvent

and HandleFrontierDiscovery. Beginning with the bootstrapping, this section

first outlines the application of a method, followed by pseudo-code and its descrip-

tion.

HandleBootstrapping.

The life-cycle of a peer-to-peer application begins with bootstrapping, where a new

peer strives towards the integration into the network. In analogy, the proximity

manager needs to bootstrap as well. The procedure begins with retrieving the

data for the desired avatar from the storage. Afterwards, the zone in which the

avatar is situated is calculated. Then, all nodes lying in this zone are detected.

Afterwards, the full-mesh is established inside the far region. Listing 4.3 contains

pseudo-code for this method. All operations are described as comments.

48

4.3 Proximity Management

1 function HandleBootstrapping ()

2 {

3 // retrieve avatar information (position , ...)

4 Avatar localAvatar = RetrieveAvatarInformation ();

5

6 // calculate the zone the avatar is situated in

7 int xZone = (int)(localAvatar.Position.X / Settings.UnitsPerRegionX)

- 1;

8 int yZone = (int)(localAvatar.Position.y / Settings.UnitsPerRegionY)

- 1;

9

10 // retrieve the zone object from the DHT

11 Zone localZone = GetZoneObject(xZone , yZone);

12

13 // start the zone bootstrapping

14 HandleZoneBootstrapping(localZone);

15

16 // bootstrap adjacent zones

17 HandleAdjacencyBootstrapping ();

18

19 // bootstrap the area of interest

20 HandleNearBootstrapping ();

21 }

22

23 function HandleZoneBootstrapping(Zone localZone)

24 {

25 // get a list of potential nodes of the current zone

26 List <Node > ZoneNodes = localZone.Nodes;

27

28 // try to get a reliable list of nodes by consulting

29 // potential nodes

30 while(! ZoneNodes.Empty())

31 {

32 // get one node and connect to it

33 Node n = ZoneNodes.Pop();

34 communicator.Connect(n);

35

36 // request further information by sending a ZoneQuery

37 communicator.Send(new ZoneQuery ());

38

39 // wait for reply

40 yield return Receive <ZoneQueryResult >();

41

42 // if the reply is positive , stop the loop

43 if (ZoneQueryResult.Success)

44 break;

45 }

46

47 // establish a full mesh

48 ConnectToAll(ZoneQueryResult.Nodes);

49

50 // inform everybody of our joining

51 SendToAll(ZoneQueryResults.Nodes , new ZoneJoinNotification ());

52 }

53

49

4 Implementation

54 function HandleAdjacencyBootstrapping ()

55 {

56 // for each adjacent zone

57 for (uint y = 0; y < 3; y++)

58 {

59 for (uint x = 0; x < 3; x++)

60 {

61 // if the zone is valid (i.e. not beyond the world boundaries

62 // and not equal to the near zone)

63 if (Zone[x, y] != null && !(x == 1 && y == 1))

64 {

65 // and if we still need connections in this zone

66 if (Zone[x, y]. Connection < Settings.

AdjacentZoneConnectionsMin)

67 {

68 // then connect to some nodes

69 communicator.Connect(GetZoneNodes(Zone[x, y]));

70 }

71 }

72 }

73 }

74

75 // inform everybody of the established adjacency connection

76 SendToAll(AdjacencyNodes , new ZoneAdjacencyNotification ());

77 }

78

79 function HandleNearBootstrapping ()

80 {

81 // nothing to do here; the zone bootstrapping

82 // does all necessary steps

83 }

Listing 4.3: The HandleBootstrapping implementation

HandleMoveMessage.

An input by the user potentially initiates the movement of the avatar. Therefore,

the game can instruct the proximity manager to move the avatar around in the

game world. Listing 4.4 shows the procedure triggered in the event of such a move

instruction.

50

4.3 Proximity Management

1 function HandleMoveMessage(MoveMessage msg)

2 {

3 // update the avatar position

4 localAvatar.Position += msg.Delta;

5

6 // calculate the zone in that the avatar resides after the movement

7 int localX = Math.Max(Math.Min((int)(localAvatar.Position.X /

Settings.UnitsPerRegionX)));

8 int localY = Math.Max(Math.Min((int)(localAvatar.Position.Y /

Settings.UnitsPerRegionY)));

9

10 // check whether the avatar transitioned to another zone

11 if (localX != localZone.X || localY != localZone.Y)

12 {

13 // if it has , initiate a transition event

14 InitiateTransitionEvent(localX , localY);

15 }

16 }

Listing 4.4: The HandleMoveMessage implementation

HandleZoneTransitionEvent.

Line 14 in listing 4.4 initiates a zone transition event. This event is processed by

the method HandleZoneTransitionEvent shown in listing 4.5.

1 function HandleZoneTransitionEvent(ZoneTransitionEvent msg)

2 {

3 // clean up the old zone information (i.e. remove own adress from

4 // the node list)

5 CleanUpZoneList(msg.OldZone);

6

7 // add own address to the new zones ’ node list

8 UpdateZoneList(msg.NewZone);

9

10 // recalculate the distance to each known node and move them

11 // into the correct region handler:

12 // - previous zone nodes are moved to the adjacency region

13 // - adjacent nodes inside the new zone are moved to the far region

14 UpdateKnownNodes ();

15

16 // connect to all nodes in the new zone corresponding to the DHT

17 // entry of that zone

18 ConnectToAll(msg.NewZone.Nodes);

19

20 // call the adjacency bootstrapping again to re-establish adjacency

21 // connections for each adjacent zone

22 HandleAdjacencyBootstrapping ();

23 }

Listing 4.5: The HandleZoneTransitionEvent implementation

51

4 Implementation

HandleFrontierDiscovery.

Once a node approaches zone frontiers, it is crucial to find the nodes that are

beyond the frontiers and nevertheless inside the area of interest. Therefore, the

HandleFrontierDiscovery method shown in listing 4.6 is called regularly.

1 function HandleFrontierDiscovery ()

2 {

3 // for each near and adjacency node

4 foreach (Node node in nearNodes or adjacentNodes)

5 {

6 // if the nodes ’ area of interest intersects the own zone

7 if (node.OverlapsFrontiers ())

8 {

9 // send node a message containing all nodes in his vicinity

10 // we know of

11 communicator.Send(node , new ZoneFrontierDiscoveryMessage ());

12 }

13 }

14 }

Listing 4.6: The HandleFrontierDiscovery implementation

52

5 Evaluation

The second part of the thesis is a comprehensive evaluation of the developed

proximity management layer implementation. Note, that other layers that are

described throughout this thesis are not evaluated on their own. They might,

however influence the evaluation to some extent.

An evaluation for the bootstrapper can be found in [10], whereas an evaluation for

the Full-Mesh Overlay does not make sense by its nature, because it fails to meet

the scalability requirement.

This chapter is structured the following way. First, the algorithms will be the-

oretically analysed for their complexity. Afterwards, the proximity management

is simulated to verify the theoretical results. At the end, a conclusion will be

presented with major advantages and drawbacks of the approach in question.

5.1 Theoretical Analysis

The first approach analysed is routing update messages using an overlay. This

shows the bandwidth consumption for the task by using common overlays. The

results are then compared with the bandwidth consumption of the proximity man-

agement. Because the full-mesh overlay implemented for this thesis only requires

a single hop for routing, this analysis uses the complexity of common overlays.

In Chord for instance, routing involves a worst case of O(logn) nodes for each

message, where n is the total number of peers in the overlay.

The bandwidth capabilities of common internet connections can be used for com-

parisons. It is crucial, that the bandwidth consumption of the application does

not exceed these capabilities. A list of common internet connections is shown in

table 5.1. These numbers are taken from an offer of the Deutsche Telekom [16].

53

5 Evaluation

type download in kb/s upload in kb/s
DSL 2.000 256 24
DSL 6.000 752 72
DSL 16.000 2.000 128

Table 5.1: Bandwidth capabilities of common internet connections

For this analysis, we assume that update messages are only sent to nodes in the area

of interest. Furthermore, other messages like maintenance messages of the overlay

are not included in the analysis. The number of nodes in the area of interest

is denoted with caoi. The total number of nodes is denoted with n. Updates

are sent every 50ms. Each update message has a size of 30 bytes only for the

proximity manager. When using a network connection for communication, the

underlying layers add their information and increase the size to a total of 118

bytes. Concluding, each second 20 ∗ 1181 bytes will be sent to each near node.

When using the overlay to route the message, a single update message will be sent

over up to log(n) other nodes in the worst case. This sums up to an amount of

messages sent by each node each second of caoi ∗ log(n) ∗ 20. To obtain the total

amount of messages throughout the network each second, this value is multiplied

by the total number of nodes. Table 5.1 enumerates the total amount of messages

per second and the associated upload2 bandwidth consumption per second. The

number of nodes caoi in the area of interest is constantly equal to 10 for each node.

This means, that each node sends updates to 10 other nodes.

number of messages bandwidth bandwidth average bandwidth
nodes n per second in total kb/s in total in Mb/s per node in kb/s
10 2.000 230,5 0,23 23,1
100 40.000 4609,4 4,5 46,1
1.000 600.000 69140,6 67,52 69,1
10.000 8.000.000 921875,0 900,27 92,2
100.000 100.000.000 11523437,5 11253,36 115,2

Table 5.2: Upload bandwidth consumption with constant number of near nodes
and without proximity manager (caoi = 10)

1The factor 20 is the frequency in which update messages are sent. It is calculated by 1000ms÷
50ms = 20.

2Upload and download bandwidth consumption are always identical. However, the available
upload bandwidth usually is much lower than the download bandwidth. Therefore, we only
regard the upload in the following.

54

5.1 Theoretical Analysis

The third and fourth column represent the total bandwidth consumption through-

out the network. The last column represents the average bandwidth consumption

for a single node. This value increases logarithmically with the number of nodes,

which is acceptable. However, they quickly exceed the common upload bandwidth

capabilities as shown in table 5.1. Therefore, this approach is unacceptable. More-

over, the delay is expected to increase by the required amount of hops as well. And

these results are only for the benign case, in that the number of near nodes remains

constant.

Going a step further, the performance for an increasing number of near nodes is

analysed. Note, that the total number of nodes is equal to the number of near

nodes in this scenario. This represents the worst-case, because all nodes see each

other. Table 5.1 illustrates this. For convenience, the fourth and last column

values are now displayed in megabytes per second.

number of messages bandwidth average bandwidth
near nodes caoi per second in total in Mb/s per node in Mb/s
10 2.000 0,23 0,02
100 400.000 45,01 0,45
1.000 60.000.000 6.752,01 6,75
10.000 8.000.000.000 900.268,55 90,03
100.000 1.000.000.000.000 112.533.569,34 1125,34

Table 5.3: Upload bandwidth consumption with increasing number of near nodes
without proximity manager (n = caoi)

The table shows that an increase of near nodes has a huge impact on the maximum

total bandwidth. In fact, it increases quadratically by O(n2). The average band-

width per node only increases quasi-linearly by O(n ∗ log(n)) and quickly exceeds

the megabyte level. However, the number of visible nodes is restricted in a game,

since the rendering of avatars is expensive. Therefore, it is improbable to have

more than some hundreds of near nodes.

The same analysis follows for the proximity manager. This enables to compare

the naive approach with the solution proposed in chapter 3.3. Again, each near

node is sent an update every 50ms. In contrast to the routing approach, the

proximity manager establishes direct connections to near nodes. This eliminates

the requirement for routing. Without routing, the total amount of messages sent

55

5 Evaluation

each second is calculated by caoi∗n∗20. The first scenario with a constant number

of near nodes is illustrated in table 5.1.

number of messages bandwidth average bandwidth
nodes n per second in total in Mb/s per node kb/s
10 2.000 0,23 23,05
100 20.000 2,25 23,05
1.000 200.000 22,51 23,05
10.000 2.000.000 225,07 23,05
100.000 20.000.000 2.250,67 23,05

Table 5.4: Upload bandwidth consumption with constant number of near nodes
using the proximity manager (caoi = 10)

In this scenario, the average bandwidth per node is constant. This indicates, that

an increase of nodes of the network does not have a direct impact on it. But still,

it comes close to the physical restriction of the slowest internet connection. A hint

on how to leverage this is given in chapter 6.2.

The second scenario consists of increasing the number of near nodes with the

results shown in table 5.1. Again, this represents the worst case: the total number

of nodes is equal to the number of near nodes.

number of messages bandwidth average bandwidth
near nodes caoi per second in total in Mb/s per node in Mb/s
10 2.000 0,23 0,02
100 200.000 22,51 0,23
1.000 20.000.000 2250,67 2,25
10.000 2.000.000.000 225067,14 22,5
100.000 200.000.000.000 22506713,87 225,1

Table 5.5: Upload bandwidth consumption with increasing number of near nodes
using the proximity manager

The numbers show, that the average bandwidth per node increases linearly with

the number of near nodes. Figure 5.1 illustrates a comparison between the com-

plexities of both approaches, the naive routing approach and the proximity man-

ager approach. It is visible, that the routing approach exposes a quasilinear in-

crease of required bandwidth, while the proximity manager exposes a linear in-

56

5.2 Measurements

crease. Despite the lower increase however, the proximity manager requires a lot

more connections than the routing approach.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Ba
nd

w
id

th
 in

 k
b/

s

Number of Nodes

Comparison of theoretical analysis results

Avg. Bandwidth with Proximity Manager

Avg. Bandwidth with routing

Figure 5.1: Comparison of theoretical analysis results

5.2 Measurements

This section shows the results of undertaken performance measurements of the

proximity manager. A custom built simulator aided the process of measuring and

is shown in figure 5.2.

Using this tool, it is possible to simulate the proximity manager with certain

conditions. It is possible to manually position the nodes and to measure the

performance in this situation. We call a certain positioning of nodes a scenario.

For the evaluation, the world is partitioned into 16 seamlessly linked zones. The

simulator allows to assign a random movement to each node. Additionally, one

can group nodes together, so that they move together. This is used to approximate

the common grouping behaviour of MMORPG players. Each proximity manager

instance sends local evaluation results to an evaluation server. The server stores

the average results into a file with comma separated values. These files are then

57

5 Evaluation

Figure 5.2: The proximity management simulator

imported into an arbitrary calculation tool and can then be transformed into

diagrams. Note, that for performance reasons the simulation is running slower

than in the real world. The simulation time is advanced every 200ms. In practice,

it is reasonable to advance the time every 50ms. This means, that the bandwidth

consumption needs to be multiplied by four to retrieve comparable results. The

connection between nodes is indicated by a line. Nodes that are in the area of

interest share a continuous, dark-red line. Nodes situated in the same zone share

a dashed, light-red line. Connections between nodes of adjacent zones are shown

in grey.

In the following, different scenarios are presented and evaluated, concluding with

highlighting the most important perceptions gained during evaluation. These sce-

narios are simulated without the use of a real network and will thus only show the

behaviour and complexity of the proximity manager itself. The bandwidth value

will always refer to the right vertical axis. Its unit is given in average bytes per

second. The number of nodes and the average number of connections will refer to

the left vertical axis. The time is given in seconds.

58

5.2 Measurements

Scenario 1:

The first scenario presented is fairly simple: each zone is assigned a single im-

mutable node in the center. Hence, each node has got an empty area of interest

and exactly one connection to each adjacent zone. In theory, the required band-

width should be very low in this scenario with a maximal number of connections

of 8. Figure 5.3 shows the distribution of nodes in the simulator. Besides, figure

5.4 illustrates the results for this scenario.

Figure 5.3: Scenario 1: Node distribution

The figure shows that the average bandwidth per node is not proportional to

the number of nodes in an homogeneously distributed world. The bandwidth

consumption never exceeds the capabilities of common internet connections. The

average number of connections increases with the number of nodes; each time a

node joins, it will establish one connection to each of its adjacent zones.

Scenario 2a:

The second scenario is split up into two versions a and b. Both versions consist of

20 nodes. They are joined in four groups of five nodes each and are situated nearby.

In version a, the four groups are placed into adjacent zones at the center of the

59

5 Evaluation

0

10

20

30

40

50

60

0

2

4

6

8

10

12

14

16

18

1 21 41 61 81 101 121 141 161 181 201

Ba
nd

w
id

th

A
m

ou
nt

Time

Scenario 1: Equally distributed nodes

Nodes
Avg. Connections
Avg. Bandwidth

Figure 5.4: Scenario 1: Evaluation results

world. Figure 5.5 illustrates this distribution. This results in five near connections

for each node and an additional maximum of nine adjacent connections. The

results are shown in figure 5.6.

Compared to the first scenario, the bandwidth consumption is higher. Each group

of five nodes exchanges updates highly frequent. The average bandwidth per node

for the real-world application is approximately 730 bytes per second, which is still

acceptable for common internet connections. The number of connections does not

reach the theoretical maximum of 14.

Scenario 2b:

Version b of scenario 2 distributes the groups in different manner; two are posi-

tioned at the left world boundary and the other ones at the right world boundary.

This is shown in figure 5.7 with the results following in figure 5.8.

Despite the fact, that the two left groups do not connect to the two right groups,

the bandwidth is more or less equal to version a. This shows, that adjacent

connections incur only little bandwidth overhead. The geographical independence

can be seen in the value of average connections: it is always lower to the value

in version a. In essence, this means that crowds of nodes do not communicate to

each other as long as their distance is high enough. This distance is dependent on

the relation of the area of interest to the zone sizes.

60

5.2 Measurements

Figure 5.5: Scenario 2a: Node distribution

0

200

400

600

800

1000

1200

1400

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381

Ba
nd

w
id

th

A
m

ou
nt

Time

Scenario 2a: Groups in adjacent zones

Nodes

Avg. Connections

Avg. Bandwidth

Figure 5.6: Scenario 2a: Evaluation results

61

5 Evaluation

Figure 5.7: Scenario 2b: Node distribution

0

100

200

300

400

500

600

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Ba
nd

w
id

th

A
m

ou
nt

Time

Scenario 2b: Distant groups
Nodes

Avg. Connections

Avg. Bandwidth

Figure 5.8: Scenario 2b: Evaluation results

62

5.2 Measurements

Scenario 3:

The third scenario resembles a worst case: 20 nodes are positioned directly besides

each other. This yields a theoretical number of connections of 19 and a high band-

width. The motivation for this scenario is simple: many MMORPGs incorporate

the concept of capital cities. Cities are usually not instanced and therefore all

players inside the city are visible. For the proximity manager this means, that

many players are in the area of interest, increasing the bandwidth consumption.

Figure 5.9 shows the dense distribution for this scenario and figure 5.10 illustrates

the results.

Figure 5.9: Scenario 3: Node distribution

As expected, the number of connections is at its maximum. Additionally, the

bandwidth consumption is distinctly higher than in the previous scenarios. Al-

though the bandwidth consumption is still in the capability bounds, such crowds

are problematic in this approach, because population numbers of cities in modern

MMORGPs easily exceed hundreds of players.

63

5 Evaluation

0

500

1000

1500

2000

2500

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201 221 241 261

Ba
nd

w
id

th

A
m

ou
nt

Time

Scenario 3: All nodes nearby

Nodes

Avg. Connections

Avg. Bandwidth

Figure 5.10: Scenario 3: Evaluation results

Scenario 4:

The last scenario simulates groups with movement. Therefore, five different ran-

domly positioned groups consisting of five nodes each are introduced. After they

are all logged in, the movement commences. This scenario has been designed to

resemble the common behaviour of players in a MMORPG. Again, the two figures

5.11 and 5.12 illustrate the distribution and results.

The results show, that the approach renders itself as useful in such situations. Of

course, in real games there exist a lot more than five groups. As a result it can be

stated that this approach works well in games with a limited amount of groups in

a single surrounding area.

5.3 Evaluation Results

In the previous two section the evaluation of the proximity management was dis-

cussed. This section will combine the results and present the major advantages

and drawbacks.

64

5.3 Evaluation Results

Figure 5.11: Scenario 4: Node distribution

0

200

400

600

800

1000

1200

0

5

10

15

20

25

30

1 51 101 151 201 251 301 351 401 451 501 551 601 651

Ba
nd

w
id

th

A
m

ou
nt

Time

Scenario 4: Five groups randomly movingNodes

Avg. Connections

Avg. Bandwidth

Figure 5.12: Scenario 4: Evaluation results

65

5 Evaluation

The theoretical analysis proved that the bandwidth consumption in the presented

approach is lower compared to the naive routing approach. The measurements

indicate, that the chosen approach is well applicable to environments with a limited

number of nodes in the ultimate surrounding. High numbers of near nodes raise

high connection numbers and high bandwidth consumption. The amount of sent

messages increases with the number of near nodes.

Unfortunately, the evaluation did not give any hint about the desired delay-

minimization. It is obvious, that the delay between two connected nodes is at

a certain minimum. There may be other paths through the network with lower

delays. However, they are hard to detect. Therefore, the delay-minimization is

guaranteed by connecting to nearby nodes. To these nodes a high update rate

with a minimal delay is required.

Although the best performance is achieved in environments with limited players,

the approach is applicable for some existing games. Modern MMORPGs incor-

porate group systems for up to six players. Additionally, games like World of

Warcraft use instancing to enable an arbitrary number of groups to play the same

dungeon. This means, that the number of nodes in these dungeons is limited

anyway. Other games use instancing even for the open world. A popular represen-

tative of this is Guild Wars. Additionally, it uses channelling in cities and other

assembly places (where channels are called districts). In Guild Wars, there exists

a player maximum of 100 in each district. Upon exceeding this number, a new

district is generated. Table 5.1 states, that 100 nodes incur an upload bandwidth

consumption of 0, 23 megabytes per second per node (including overlay overhead).

This value exceeds the capabilities of common internet connections. To prevent

this, the number of nodes or the number of connections can be restricted. For

the latter case, one strategy can be a backward trade-off: paying the cost of an

increased delay to reduce the required bandwidth. In some cases, this would work

well. In cities, for example, fighting is often disallowed and for transactions like

trading and chatting, the delay is usually not equally crucial.

66

6 Summary

This chapter concludes the thesis and shows possible enhancements to incorporate

in the future.

6.1 Conclusion

In this diploma thesis, a technique for managing connections in a peer-to-peer

based massively multi-player online game is described. Its main remit is the min-

imization of delay without a substantial increase of bandwidth consumption and

required connections. To yield the best results concerning these requirements the

approach uses geographical coherence. This is well suited, because the guarantee

for a minimal delay only needs to apply to players that are visible, i.e. are situ-

ated nearby in the game world. The approach is subdivided into three areas of

responsibility: the area of interest, the far region and the adjacency region. These

regions are used to categorize nodes. Dependent on the region to that a node is

assigned, the frequency for sending update messages is determined.

The evaluation shows, that the presented technique is applicable only for some ap-

plications of MMOs. The area of application can still be increased by some means

of improvement, outlined in section 6.2. In general, it became clear that the prox-

imity manager works best for environments with a limited amount of nodes in the

vicinity. For large, open worlds where a high number of nodes are expected, the

full-mesh inside the area of interest does not work, because it does not scale. A

high number of visible nodes is generally not scalable. Assume that hundreds of

players need to be rendered by a graphics card. This would degenerate the frame

rate to a minimum, if not to zero.

As a conclusion, the proximity manager proposed in this thesis works for some

scenarios and applications concerning online games. However, there is still need

to improve the performance and scalability of the presented technique.

67

6 Summary

6.2 Future Work

This section gives information on how to overcome some of the drawbacks of the

presented proximity management. The evaluation showed, that improvements are

required for bandwidth consumption and number of connections. Unfortunately,

these requirements are contradictory. A decrease of connections usually means an

increase of overall required bandwidth and vice versa. Nevertheless, there exist

several methods for further improvements.

Dead reckoning.

The most important improvement that needs to be undertaken in the future is

the incorporation of dead reckoning. For an explanation of this technique, refer

to section 2.1.6. Currently, each single position update is distributed among all

nodes requiring this information. This constitutes the worst case, which can be

reached by using dead reckoning as well. However, the bandwidth consumption

is expected to be a lot lower. Assume, that a player changes its direction each

second. This would engender exactly one message per second to each near node

in contrast to the 20 messages required by the current approach. Note, that dead

reckoning is only sensible for nodes inside the area of interest.

Gradient frequency adaption.

Assuming two nodes of the same zone, the implementation has exactly two possible

frequencies after which node updates are transferred. Instead, it is possible to use

gradient values for the frequency. The gradient is equal to the distance metric of

two nodes. In practice that means, that the lower the distance, the higher the

frequency will be.

Avoiding the zone full-mesh.

The performance of the implementation can be improved by getting rid of the

full-mesh of the nodes residing in a zone. Unfortunately, this comes with a cost:

the delay is expected to increase, because messages may require more than a single

hop to reach its destination. However, in games that allow hundreds of players to

be at the same place, a scalable approach is required. One possible approach is the

use of a k-degree network. Refer to section 3.3.4 for an explanation of this network

type. Besides the increase of delay, a further drawback is that of maintenance. A

k-degree network needs to be balanced such that each node meets the consistency

requirement. Nevertheless, this technique is very well suited, because the variable

68

6.2 Future Work

k gives full control on how many connections are established. Thus, the higher k

is, the lower is the delay.

Storage modifications.

The storage used for this thesis is a commonplace DHT. Unfortunately, game

applications have different requirements towards the storage compared to usual

peer-to-peer applications. An example is soft-state handling. The proximity man-

ager uses a soft-state list to detect zone nodes. To refresh the own entry in this

soft-state, the complete list has to be fetched from the storage and is afterwards

written back to it. This incurs a fairly high bandwidth consumption. It would

therefore be convenient to have a storage system, that provides functionality for

such purposes. In the best case, to refresh an entry, the node only sends its ID to

the responsible node. Upon receipt, the responsible node updates the time-stamp

in the local list.

69

6 Summary

70

Bibliography

[1] Activision/Blizzard Entertainment. World of Warcraft. published in the

WWW at http://www.worldofwarcraft.com, November 2004 (visited in Nov.

2009).

[2] ArenaNet & NCSoft. Guild Wars. published in the WWW at

http://www.guildwars.com, April 2005 (visited in Nov. 2009).

[3] Sony Entertainment. Planetside. published in the WWW at

http://planetside.station.sony.com, May 2003 (visited in Nov. 2009).

[4] Philipp Rosedale. Second Life. published in the WWW at

http://www.secondlife.com, 2003 (visited in Nov. 2009).

[5] Tom-Christian Bjørlo Johannessen Frode Voll Aasen. Hybrid Peer-to-Peer

Solution for MMORPGs. Master’s thesis, Norwegian University of Science

and Technology, 2009.

[6] Roger Smith. Geographic Grid Registration, volume 6 of Game Programming

Gems, chapter Chapter 1, pages 39 – 47. Charles River Media, 2006.

[7] NCSoft. Aion: The Tower of Eternity. published in the WWW at

http://www.aiononline.com, September 2009 (visited in Nov. 2009).

[8] Jesse Aronson. Dead Reckoning: Latency Hiding

for Networked Games. published in the WWW at

http://www.gamasutra.com/view/feature/3230/dead reckoning latency

hiding for .php, September 1997 (visited in Nov. 2009).

[9] Arno Wacker, Gregor Schiele, Sebastian Holzapfel, and Torben Weis. A nat

traversal mechanism for peer-to-peer networks. In The Eight International

Conference on Peer-to-Peer Computing (P2P’08), Aachen, Germany, Septem-

ber 8th-11th 2008. IEEE.

71

Bibliography

[10] Mirko Knoll, Matthias Helling, Sebastian Holzapfel, Arno Wacker, and Torben

Weis. Bootstrapping Peer-to-Peer Systems Using IRC. In Infrastructures for

Collaborative Enterprises, 2009, 2009.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for internet applica-

tions. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications, pages

149–160, San Diego, CA, USA, 2001. ACM Press.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. In Proceedings of the 2001

Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM), pages 161–172, San Diego, CA,

USA, 2001. ACM Press.

[13] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed ob-

ject loaction for routing for large-scale peer-to-peer systems. In Proceedings

IFIP/ACM Middleware 2001, November 2001. Heidelberg, Germany.

[14] RFC 3174: US Secure Hash Algorithm 1 (SHA1). published in the WWW,

November 2009.

[15] Arno Rüdiger Wacker. Key Distribution Schemes for Resource-Constrained

Devices in Wireless Sensor Networks. PhD thesis, Institut für Parallele und

Verteilte Systeme (IPVS) der Universität Stuttgart, 2007.

[16] Deutsche Telekom. Komplettpakete zum telefonieren und surfen. published

in the WWW, November 2009.

72

List of Figures

2.1 Comparison of chunked and seamless worlds. 7

2.2 Example: Object detection using a geographic grid 10

2.3 Instancing of dungeons . 11

2.4 Dead reckoning in network games 13

2.5 Architecture comparison of client/server and peer-to-peer. 14

2.6 peers@play layer architecture . 16

3.1 Full-Mesh Overlay: Structure . 26

3.2 Full-Mesh DHT: Replication . 29

3.3 Geographic grid and its storage entries 33

3.4 AOI moves with the player . 34

3.5 Discovery problems near frontiers. 36

4.1 Interface: IP2POverlay . 38

4.2 Class: FullMeshOverlay . 39

4.3 Interface: IStorage . 42

4.4 Classes: FullMeshDHT and DataSet 43

4.5 Class: Node . 45

4.6 Class: Communicator . 46

4.7 Class: ProximityManager . 47

5.1 Comparison of theoretical analysis results 57

5.2 The proximity management simulator 58

5.3 Scenario 1: Node distribution . 59

5.4 Scenario 1: Evaluation results . 60

5.5 Scenario 2a: Node distribution . 61

5.6 Scenario 2a: Evaluation results . 61

5.7 Scenario 2b: Node distribution . 62

5.8 Scenario 2b: Evaluation results . 62

5.9 Scenario 3: Node distribution . 63

73

List of Figures

5.10 Scenario 3: Evaluation results . 64

5.11 Scenario 4: Node distribution . 65

5.12 Scenario 4: Evaluation results . 65

74

List of Tables

5.1 Bandwidth capabilities of common internet connections 54

5.2 Upload bandwidth consumption with constant number of near nodes

and without proximity manager (caoi = 10) 54

5.3 Upload bandwidth consumption with increasing number of near

nodes without proximity manager (n = caoi) 55

5.4 Upload bandwidth consumption with constant number of near nodes

using the proximity manager (caoi = 10) 56

5.5 Upload bandwidth consumption with increasing number of near

nodes using the proximity manager 56

75

List of Tables

vi

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter ausschließlicher

Verwendung der angegebenen Literatur und Hilfsmittel erstellt zu haben.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungs-

behörde vorgelegt und auch nicht veröffentlicht.

Duisburg, November 30, 2009

Unterschrift

vii

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition

	2 Fundamentals
	2.1 Massively Multi-player Virtual Environments
	2.1.1 World Type
	2.1.2 Chunked Worlds
	2.1.3 Seamless Worlds
	2.1.4 Object Management
	2.1.5 Instances
	2.1.6 Synchronization

	2.2 Peer-To-Peer Networks
	2.3 peers@play Architecture
	2.3.1 Gears4Net
	2.3.2 Secure Network Abstraction Layer
	2.3.3 Bootstrapping
	2.3.4 Overlay
	2.3.5 Storage
	2.3.6 WSPL

	3 Design
	3.1 Overlay
	3.1.1 Structure
	3.1.2 Integration
	3.1.3 Routing

	3.2 Storage
	3.3 Proximity Management
	3.3.1 Requirements
	3.3.2 Solution Approach
	3.3.3 World Partitioning
	3.3.4 Far Region and AOI
	3.3.5 Adjacency Region
	3.3.6 Frontier Discovery
	3.3.7 Summary

	4 Implementation
	4.1 Overlay
	4.2 Storage
	4.3 Proximity Management
	4.3.1 Key Methods

	5 Evaluation
	5.1 Theoretical Analysis
	5.2 Measurements
	5.3 Evaluation Results

	6 Summary
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Eidesstattliche Erklärung

