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Nomenclature

Nomenclature

Aileron positioning system

Scalar  Units Meaning

A, [ m? | Piston area

Ca [ N/m | Aerodynamic force coefficient
Cy [ m3/Pa | Hydraulic capacity

C, [ m?/s ] Flowrate gain

dyin | N-s/m | Lineal damping factor

) [°] Command input

A, [ Pa | Pressure difference

gy [ -] Damping factor

fo [ N-s/m | Viscose friction

Fr, [ kN | External air loads

Umaa [ A] Maximal input current

Iy [ A] Input current

k, [ A/m | Controller gain

Esy [ m/A | Servovalve gain

M, | N-m | Aerodynamic hinge moment
my [ kg | Piston mass

PPy [ Pa | Pressure in chambers A and B
Ds [ Pa | Supply pressure

Dy | Pa | Tank pressure

Dy | Pa | System pressure

Th [ m | Reduced moment arm

Wy [ Hz | Cut-off frequency

Tg [ m ] Desired piston position

Tonax [ m | Maximal extension movement
Tonin [ m | Maximal retraction movement
T, [ m ] Piston position

T, [ m/s | Piston velocity

Tprn [ m/s | Maximal piston velocity

Ysv [ m | Servovalve position

Ymaz [ m | Maximal spool movement

Usv [ m/s ] Servovalve velocity

Ymaz [ m/s | Maximal servovalve velocity

)



Nomenclature

Vehicle lateral dynamic model

Scalar  Units

Meaning

Cy | N/rad | Front tire cornering stiffness
Con [ N/rad | Rear tire cornering stiffness
ir [-] Steering transmission ratio
I, [ kg -m? | Moment of inertia (z-Axis)
ly [ m ] Distance from the vehicle CG to the front axle
Ly [ m ] Distance from the vehicle CG to the rear axle
Ky, [-] Roll coefficient
m [ kg | Total mass
mg [ kg | Rolling sprung mass
MNR [ kg | Non-rolling unsprung mass
r [ rad/s | Vehicle yaw rate
Uref [ m/s ] Vehicle longitude velocity
B [ rad | Vehicle side slip angle
o7 [ rad | Vehicle steering angle
ay [ m/s? ] Lateral acceleration
Abbreviations
Acronym Meaning
APS Aileron positioning system
FDF Fault detection filter
FDI Fault detection and isolation
LMI Linear matrix inequality
REF Residual evaluation function
RFD Robust fault detection
TS Takagi-Sugeno
TSFO Takagi-Sugeno fuzzy observer
TSFUIO Takagi-Sugeno fuzzy unknown input observer
UIO Unknown input observer

T



Abstract

Abstract

The ever-increasing complexity of technical processes requires a higher performance, safety and
reliability. For this reason, fault detection and isolation (FDI), which consists of residual generation
and residual evaluation, has received more attention in the last years. Most technical processes
are represented by a nonlinear system; however it is possible to apply FDI techniques only for a
few classes of nonlinear systems.

In the last years, the idea of using an aggregation of local models (multiple-models), as a means to
capture the global dynamic characteristics of nonlinear systems, has been successfully integrated in
the field of FDI. These multiple-models have been used as an alternative for dealing with nonlinear
systems. An advantage of using multiple-models for FDI is that the theory for linear systems can
be used for nonlinear systems.

This thesis mainly focuses on the design of robust FDI schemes for nonlinear systems using
multiple-model approaches. The considered approaches are (i) the Takagi-Sugeno (TS) fuzzy model
(ii) linear systems with polytopic uncertainty.

Three robust FDI schemes based on TS fuzzy models are presented. The first scheme generalizes
the linear unknown input observer to a class of nonlinear systems described by TS fuzzy models.
The objective of this scheme is to decouple the unknown inputs for residual generation. The sec-
ond scheme handles nonlinear systems affected by stochastic disturbances; this scheme minimizes
the expected steady state estimation error using linear matrix inequality (LMI) techniques. The
last one simultaneously enhances the robustness to unknown inputs without sacrificing the fault
detection sensitivity.

For linear systems with polytopic uncertainty, a robust fault detection filter is designed considering
a reference model. The residuals can be evaluated with a threshold based on this filter.

The effectiveness of each proposed robust FDI scheme is demonstrated with the help of four
application examples.







1. Introduction

Chapter 1
Introduction

Technical processes have become more and more complex. For this reason, an increasing level of
automation is required.

Consequently, it is desired to have higher performance, availability, reliability and security in these
processes. In order to fulfill these desired requirements, it is necessary to avoid malfunctions, which
are normally caused by a fault in one of the process components.

To better understand security of processes, it is necessary to know the concept of “faults”. A
fault in a process is defined as an unpermitted deviation of a least one characteristic property or
parameter of the system from the standard condition [42|. Faults can be detected and also isolated
with the implementation of fault detection and isolation (FDI) approaches.

However, most technical processes are often represented as nonlinear systems due to their com-
plexity, which leads to difficulties when FDI techniques are applied to the process. For this reason,
only a few classes of nonlinear systems are considered in the literature of FDI [3, 4, 14, 16, 46].

Instead of using the nonlinear system for FDI, some simplifications and assumptions of a quanti-
tative mathematical model are considered. Commonly, these refer to the reduction of the dynamic
order and/or the linearization of the process behavior.

One of the most popular means to linearize a nonlinear system is Taylor series approximation
[9, 56]. Once the linear model is obtained, it is possible to apply FDI approaches for linear systems
[17, 18, 22, 26, 80)|.

Linearized systems only work properly around the operating point where the nonlinear system
was linearized. For this reason, conventional analytical linear models are not accurate enough to

achieve an effective FDI. For these reasons, considering multiple-models are gaining more attention
in the field of FDI [40, 61].

Multiple-model approaches, as its name says, use multiple linear models to approximate the be-
havior of the nonlinear system. They provide a mathematical framework to analyze a complex
nonlinear system using a set of simple models (generally linear or affine models) valid in different
state space regions of the nonlinear system.

In this thesis, two multiple model approaches have been considered in order to construct a residual
generator based on linear FDI theories. The first approach is an approximation of nonlinear sys-
tems, by means of the Takagi-Sugeno fuzzy model, the second approach considers linear systems
with uncertainty of the polytopic type.

A Takagi-Sugeno (TS) fuzzy model uses multiple linearized models to approximate the behavior
of nonlinear systems. These models are described by fuzzy IF-THEN rules which represent local
linear input-output relations of a nonlinear system.

The main feature of a TS fuzzy model is that the local dynamics of each fuzzy implication (rule)
is represented by a linear model. The overall fuzzy model of the system is achieved by a fuzzy




1.1 State of the art

“blending” of the linear models.

On the other hand, linear systems with polytopic uncertainties are basically constituted by two
parts, the first part is given by the linearization of the nonlinear system around an operating point
and the second part is constituted by the polytopic uncertainty of the system.

1.1 State of the art

In this section the development of fault detection and isolation (FDI) and the related methods
in the past few years for TS fuzzy models and linear systems with polytopic uncertainty are
introduced.

FDI based Takagi-Sugeno fuzzy model

The topic of TS fuzzy observer for nonlinear systems has received more attention in recent years
because of its ability to estimate nonlinear systems using multiple-models |24, 74, 76]. They are
very useful in the practice because it is possible to reach an estimation of the states despite the
nonlinearities. This is because each model considered in the TS fuzzy model is a linear model, so
that one can apply theory for linear systems.

In [76] the first work in the literature for TS fuzzy observers was reported. The TS fuzzy observer
is developed by means of parallel distributed compensation (PDC) into a closed loop control.
The implementation of a TS fuzzy controller together with a TS fuzzy observer, guarantees not
only the stability of the fuzzy control system in the sense of Lyapunov, but also guarantees the
convergence of the state estimation error to zero. Both designs for the TS fuzzy controller and
observer are made together in an augmented system using an LMI algorithm.

Nonlinear systems affected by stochastic noise have been handled using the Extended Kalman
Filter (EKF) based on fuzzy systems [70, 85]. This approach provides an efficient solution to the
optimization of fuzzy membership function for both inputs and outputs of the fuzzy controller.

The use of Kalman filters for TS fuzzy systems is a relatively new approach |71]. Here, it is shown
how to approximate the time-varying Kalman filter with a time-varying linear combination of
steady state Kalman filters (for each linearized system is constructed a Kalman filter). The use
of the TS Kalman filter gives an insignificant loss in estimation performance (in relation to the
time-varying Kalman filter).

In [23, 49|, a robust fault detection filter for TS fuzzy model is proposed. The purpose of the
filter is to generate a residual as robust as possible to disturbances and at the same time as
sensitive as possible to the presence of faults. The design procedure is provided in terms of LMIs.
The performance index corresponding to fault sensitivity is considered constant and only the
performance index corresponding to the disturbance attenuation is minimized.

FDI for linear systems with polytopic uncertainty

A topic that has gained tremendous attention in the field of FDI for multiple-models is the residual
generation for linear systems with polytopic uncertainty [10, 11, 51, 52|. The principal idea here
is to design a fault detection filter robust to disturbances considering the presence of polytopic
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uncertainty.

An improvement that has been made in FDI for linear systems with polytopic uncertainties is the
incorporation of a reference model in the computation of the fault detection filter [32, 52, 86].

The reference model is derived without considering the existence of polytopic uncertainty in the
system. The purpose of the fault detection filter with polytopic uncertainty is the approximation
of the solution given by the reference model.

1.2 Motivation and objective of the work

It is a well-known fact that most technical processes exhibit a nonlinear behavior, and that only
few classes of nonlinear systems can be treated with FDI approaches. In order to implement an
FDI approach, it is required the design of a residual generator, which compares the measured
output of the system against an estimated output given by an observer. For this purpose the
design of a residual generator for the nonlinear system is not easy even if the mathematical model
is known |28, 29, 30, 31].

For the design of the residual generator, the most adopted solution is to use a linearization of
the nonlinear system. Unfortunately sometimes the linear model does not give good results for
FDI, because the observer used in the FDI can not estimate the behavior of the nonlinear system
correctly. Moreover, the generated residual differs from zero or takes too much time to converge
to zero even if faults and disturbances are not affecting the system. This behavior indicates that
the linear system utilized to construct the residual generator does not approximate the nonlinear
system correctly.

In the last few years, the idea of using an aggregation of local models (multiple-models), as a
means to capture the global dynamic characteristics of nonlinear systems, has been successfully
incorporated in the field of FDI. These multiple-models are used as an alternative for dealing with
nonlinear systems and applied in FDI generating the multiple-model approaches.

One of these multiple-model approaches is the TS fuzzy model, which approximates nonlinear
systems. In this approach, local linear systems are used to represent the local dynamics in different
state space regions.

The application of this TS fuzzy model has given a good solution to some problems in nonlinear
systems and at the same time allows the use of FDI theories for linear systems to represent
nonlinear systems.

An advantage of TS fuzzy models over a simple linear system is that a TS fuzzy model can work
around multiple operating points, i.e. the TS fuzzy model operates on a state space region.

Another multiple-model approach is residual generation for linear systems with polytopic uncer-
tainty. In this approach, the FDI works in a better way, because the polytopic uncertainty is
considered in the design of the residual generator. Therefore a better convergence of the residual
to zero in the absence of faults and disturbance is assured.

Both of these multiple-model approaches improve the performance of a residual generator for a
nonlinear system, the first one considers multiple linearization, i.e. around a region and the second
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one considers the polytopic uncertainty enplicity in the system. Objective of the work

In this thesis, the TS fuzzy model is obtained from the approximation of the nonlinear model
with a set of linear models. The polytopic uncertainty is assumed known and comes from the
linearization in Taylor Series of the nonlinear equations.

The main objective of this thesis is to incorporate the TS fuzzy model for its use with linear
FDI approaches. The principal objective is to make the residual generator as robust as possible
to disturbances (could be deterministic or stochastic) and as sensitive as possible to the faults.
Therefore, the disturbances are minimized and the detection of faults in an early stage is increased.

Three different schemes are introduced for TS fuzzy models:

e Unknown input observers for linear systems are generalized for a class of nonlinear systems
described by TS fuzzy models.

e Nonlinear systems affected by stochastic disturbances are considered to design a TS fuzzy
observer. This scheme minimizes the expected steady state estimation error using LMI tech-
niques.

e A robust fault detection observer is extended for its use with TS fuzzy models based on it-
erative LMI schemes. This scheme simultaneously enhances the robustness against unknown
inputs without sacrificing the fault detection sensitivity.

An FDI approach for linear systems with polytopic uncertainty from [17, 66] is applied to the
aileron positioning system. Both multiple-model approaches aim for a better FDI for nonlinear
systems.

1.3 Organization of the work

Chapter 2 addresses concepts referring to the fuzzy logic and fuzzy models, which are considered
essential to understand the remainder of the work concerning TS fuzzy models.

The definition of TS fuzzy observer and stability conditions are given. Finally, some concepts
concerning to fault detection and isolation are briefly defined.

Chapter 3 handles the unknown input observer (UIO) for TS fuzzy systems, the UIO for linear
systems from [17] is generalized for a class of nonlinear systems described by TS fuzzy models.
The UIO for TS fuzzy systemsis proposed.

The objective of this observer is to decouple the unknown inputs and to estimate the states, on
the basis of the derivative of the output. A robust sensor fault isolation scheme [12| based on the
TS fuzzy UIO is presented in order to detect and isolate faults.

Chapter 4 considers the discrete TS fuzzy model with stochastic disturbances in order to design
a residual generator. The objective of this scheme is to minimize the expected value of the steady
state estimation error with the use of LMI techniques.

Chapter 5 presents a robust fault detection observer for TS fuzzy models. The objective of this
observer is to find a trade-off between maximizing the effect of faults and minimizing the effect
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of disturbances known as robust fault detection (RFD). For the RFD with TS fuzzy model two
iterative LMI schemes for linear systems, taken from [79] and [81] are used.

Chapter 6 uses theory of FDI for linear systems with polytopic uncertainty from [17, 66| to design
a fault detection filter, which is robust to disturbances and is sensible to faults and a threshold is
designed to evaluate the generated residual.

This approach consists of three steps. First is the calculation of a reference model, follow the
design of the FDF using the reference model to build an extended system. Finally, the obtained
gain matrix from the previous step is used to calculate a threshold.

Chapter 7 concludes the results obtained from this thesis and the idea of future work is outlined.

Appendix A gives the formulas for signal norm computation, Schur complement, the relax sta-
bility condition for TS fuzzy models and the concept of LMI and convex optimization techniques
(COT), which constitute the principal tools in the solution of the proposed optimization problems
for both multiple-model approaches.

Appendix B shows the numerical values for the variables used in the application examples.
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Chapter 2
TS fuzzy model and FDI Concepts

In this chapter, basic concepts regarding to Takagi-Sugeno (TS) fuzzy models and fault detection
and isolation (FDI) are reviewed. It includes the description of a TS fuzzy model, the stability anal-
ysis of a TS fuzzy observer, the definition of linear matrix inequalities (LMI), convex optimization
techniques (COT) and definitions on the field of fault detection and isolation.

2.1 Takagi-Sugeno fuzzy model

A Takagi-Sugeno (TS) fuzzy model is a fuzzy rule-based model approach suitable to approximate
a large class of nonlinear dynamic systems [73]. Fig. 2.1 illustrates the model-based TS fuzzy
observer used in this thesis.

Nonlinear system

)
~——

“N
LV

Identification using
input-output data

Physical model J

-

Fuzzy model
(Takagi-Sugeno fuzzy model)

/

~—

Parallel distributed
compensation (PDC)

[ TS fuzzy observer J

Fig. 2.1: Model-based TS fuzzy observer design

To design a TS fuzzy observer, a TS fuzzy model which approximates the nonlinear system is
needed. Therefore the construction of a TS fuzzy model represents an important and basic proce-
dure in this approach.

In general, there are two approaches for the construction of TS fuzzy models:

1. Identification (fuzzy modeling) using input-output data

2. Derivation from given nonlinear equations.




2.1 Takagi-Sugeno fuzzy model

The identification approach is mainly constituted by two parts: structure identification and pa-
rameter identification [39, 72|. This approach is suitable for plants that are very complex or too
difficult to be represented by analytical and/or physical models.

On the other hand, nonlinear dynamic models can be obtained by, e.g. the Lagrange method and
the Fuler-Newton method. In such cases, the second approach, which derives a TS fuzzy model
from given nonlinear dynamic models is more appropriate [77].

In this thesis, the second approach is considered in order to generate a TS fuzzy model, which
approximates the behavior of the nonlinear system. In the TS fuzzy model, local dynamics in
different state space regions are represented by local linear systems [55, 57].

Unlike conventional modeling which uses a single model to describe the global behavior of a
nonlinear system, fuzzy modelling is essentially a multiple-model approach, in which simple sub-
models (linear models) are combined to approximate the global behavior of the nonlinear system.

The TS fuzzy model proposed by Takagi and Sugeno in [73| is described by fuzzy IF-THEN rules,
where local linear models are used to represent the dynamic behavior in different state space
regions [77], i.e. the nonlinear trajectories are linearized over different state space regions.

A fuzzy TF-THEN rule represents a local relation input-output of the nonlinear system in a state
space region. The set of linear models are used to calculate the overall model of the system by
“blending” these linear models through fuzzy membership functions.

The TS fuzzy model makes possible the use of FDI theory for linear systems to obtain a TS fuzzy
residual generator. Because of its better approximation of the behavior of a nonlinear system, the
TS fuzzy model can be seen as a good alternative for an efficient residual generation.

The design of TS fuzzy models based on given nonlinear equations considers a class of nonlinear
systems described by

#(t) = f(x(®)) + g(z(t))u(t) (2.1a)

y(t) = h(xz(t)) (2.1b)
where z(t) € R" is the state vector, u(t) € R¥* is the input vector and y(t) € R™ is the output
vector and f(x(t)),g(z(t)) and h(x(t)) are functions of x(t).

For each state space region there is a fuzzy IF-THEN rule describing the dynamics of the system
in that region as follows

Model rule 3

IF 2 (t) is M;; and ... and z,(t) is M,
t(t) = ; ; 2.2

ey [ 0= Aalt) + Bu) (2.9
y(t) = Ciz(t) + D;u(t)

where ¢ = 1, ... ,r and r is the number of fuzzy [F-THEN rules, M;; are fuzzy sets, 2 (t), ... z,(¢)

are premise variables, z(t) € R" is the state vector, u(t) € R¥* and y(t) € R™ are the input and

output vectors respectively. Matrices A;, B;, C; and D; are known system matrices with appropriate

dimension.

The premise variables can be functions of the measured state variables, inputs of the system and
possibly on some varying parameter (which does not depend on the states).




2. TS fuzzy model and FDI Concepts

The truth value of the proposition “z;(¢) is M;; and ... and z,(t) is M;,” in the antecedent part
is calculated by

Mir(21(8)) Ao A Miy(z(2))

where the symbol “A” stands for a t-norm (usually min-operator or product), and “z,(t) is M,,” is
the grade of membership of z,(t) in M;,. All fuzzy sets are associated with a membership function.

The choice of premise variables leads to different classes of models [1]. The following example of
a nonlinear system is considered in order to explain this point

Z1(t) = x,(t)ri(t) (2.3a)
To(t) = x1(t) — 2o(t) (2.3b)

The nonlinear system in eq. (2.3) can be represented in the following two forms

x’(t):[o ‘”1@)“”2@)} ot) o y‘c(t):[x%(t) O]x(t) (2.4)

1 -1 1 -1

As can be seen in eq. (2.4), the premise variable can be defined as z(t) = x;(t)z2(t) and also can
be defined as z(t) = z3(t), therefore, there are two possible models. The linearized models are
valid on a state space region and are calculated using the maximum and minimum value of these
premise variables.

A membership function takes values between 0 and 1, i.e. M;,(2,(t)) € [0,1]. The value 0 means
that z,(¢) is not a member of the fuzzy set and the value 1 means that z,(¢) is fully a member of
the fuzzy set [73, 83].

The entire fuzzy model of the plant in eq. (2.2) is obtained with a fuzzy “blending” of all rule
consequents, where each consequent part contains a locally valid linear model. For a given pair
(x(t), u(t)), the final outputs of the TS fuzzy model are inferred as follows:

i wi(=(8) [z () + Bru(t)|

i (t) . (2.5a)
Zwi(Z(t))
>~ wil=(1)|Cia(t) + Diu(®)|
y(t) = = (2.5b)
> wila(0)
where
2(t) = [a1(t) 22(t) ... 2(t)]




2.2 Takagi-Sugeno fuzzy observer

for all ¢. The term M;;(z;(t)) is the grade of membership of z;(¢) in M;;. Since
>0 :
{ fori=1,2,...,r, Vi (2.6)
(z(t

the weighting functions h;(z(t)) satisfy the following constraints

}@

hi(z(t)) =1
{ fori=1,2,...,r, VL. (2.7)

i Z

Based on these constraints, one can also write eq. (2.8) instead of eq. (2.5)

Zh [ (t) + Byul(t )] (2.8a)

Zh )| Cia(t) + Diu(d)] (2.8b)

The overall structure of a TS fuzzy model can be seen in fig. 2.2.

u(t) y(®)

Fig. 2.2: Overall structure of a TS fuzzy model

2.2 Takagi-Sugeno fuzzy observer

For a nonlinear dynamic system approximated by a TS fuzzy model, a TS fuzzy observer can be
designed in order to estimate the system state vector [6, 24, 47, 74, 76].

In the design of a TS fuzzy observer, it is assumed that the TS fuzzy model is locally observable,
i.e. all pairs (A;, C;) are observable.

10



2. TS fuzzy model and FDI Concepts

Using the same idea as in the TS fuzzy model, a TS fuzzy observer utilizes a number of local
linear time-invariant (LTT) observers. Each local observer is associated with each fuzzy IF-THEN
rule given below:

Observer rule 2

IF 2(t)is M;; and ... and z,(t) is M,,
B(t) = Aid(t) + Byult) + Li(y(t) — (1)) (2.9)
gt) = Cii(t) + Diu(?)

THEN {

The concept of parallel distributed compensation (PDC) is used for the design of TS fuzzy ob-
servers [75, 82]. The idea is to design an observer for each rule of the fuzzy model. The concept of
PDC is illustrated in fig. 2.3.

TS fuzzy models share the same fuzzy sets with the TS fuzzy observer, i.e. both use the same
membership functions M;; and the same weighting functions h;(z(t)).

/ TS fuzzy model TS fuzzy observer

Rule 1
Rule 2

[ Ruler }\\ i
K [ Linear observer design technique] /

Fig. 2.3: PDC design

The overall state estimation is inferred as a weighted sum of individual local observers:

w(t) = Y hi(=(1) [ A (t) + Biu(t) + Liy(t) — 9(t)) ]

9 = DOm(0)| Cilt) + D) | (2.10)

where L; is the observer gain matrix for each observer in the corresponding fuzzy IF-THEN rule.

Remark 2.1 In the subsequent part of this thesis, the notation S > 0 means that S is a positive
definite matriz, S > T means that S — T > 0 and W = 0 means that W is a zero matriz, i.e. its
elements are all zero.

11



2.2 Takagi-Sugeno fuzzy observer

r r
The following notation can also be used: Z, Z, which means
i< i

3
g Qij = Q12 T a13 + ag3
i<j
3
E Q;j <= Q12+ a13 + a2 + ag3 + az; + ase
i#£]

2.2.1 Stability analysis for TS fuzzy observers

For the stability analysis, TS fuzzy observers are required to satisfy the following requirement:

lim (z(t) — #(t)) = 0 (2.11)

t—o00

where Z(t) denotes the state vector estimated by a TS fuzzy observer. The condition in eq. (2.11)
guarantees that the state estimation error e(t) between the state vector x(¢) and the estimated
state vector z(t) (estimated by the TS fuzzy observer) converges to zero as time approaches its
steady state.

In order to analyze the convergence of the TS fuzzy observer, the state estimation error is defined
as e(t) = x(t) — z(t) and its dynamics is given by

e(t) = a(t) — &(t) (2.12)

By straight substitution, the dynamics of the state estimation error is given as

e(t) = Z hi(2(t)) [[Azﬁ(t) + Bu(t)] — [Ai(t) + Byu(t) + Li(y(t) — Q(t))ﬂ
= D" hu(e(e) [Awlt) = Ad(®) - Li(u(t) ~ (1) |

= 3T B (=(0) [Ai((t) — () — Ly (() - 3(0) ]

DY BACONNCON A0
= DD hilz(®)hy(=(t) Aye(t) (2.13)

where
Aij = Az — L,Cj

Note that eq. (2.13) can also be written as follows

6(t) = DT R Auelt) + 237 3 i)y (=(0) (w) (1) (2.14)

i=1 i<j

12



2. TS fuzzy model and FDI Concepts

The stability of the dynamic eq. (2.14) can be proved by the Theorem 2.1.

Theorem 2.1 [6, 74, 77]: The equilibrium of the system described by eq. (2.14) is asymptotically
stable if there exists a common positive definite matriz P for i =1,...,r such that

ATP+PA; < 0 (2.15)
A+ AN\T A+ A
( U; ﬂ) PJFP(%) < 0 i<j (2.16)

Proof: Consider a candidate of Lyapunov function V(e(t)) = e (t)Pe(t), where P > 0. Then,

Vie(t)) = e (t)Pe(t) + e (t) Pé(t)
_ (Z h2(2()) Ay + 2 Z Z hal (1)) (%)) Pe(t)

=1 i<y
r A+ A
P R2(2(t)) Ay + 2 hi(z(t))h; (2(t (M> e(t
(Z (2(t)) 2; (2(t))h;(=()) 5 (t)
= Z h2(z (t) [ALP + PAy] e(t)

A+ AN\T A+ A,

; . T g A g T A
+2;;hl(z(t))h](z(t))e (t) ( : ) P+P( : ) e(t)

Q.E.D.
The fuzzy observer design problem is to determine matrices L; (¢ = 1,...,r) which satisfy the

conditions of Theorem 2.1 with a common positive definite matrix P.

With the same strategy as in [8], it is possible to transform the conditions given by eq. (2.15)-(2.16)
in LMIs and obtain directly the gain matrices L; for the TS fuzzy observer.

For this purpose, let us substitute A;; in eq. (2.15) and A;; and Aj; in eq. (2.16), which results in
ATP+ PA,—CI'LIP—-PL,C; < 0
AlP+PA;+ AJP+ PA; —C]L/P— PL,C; —C/LyP— PL,C; < 0 i<]j
Defining N; = PL; and N; = PL; for P > 0, after substituting /V; and N; in the above matrix
inequalities, it results in
ATP+ PA;, — CI'N] — N;C; < 0
ATP+PA;+ AJP+ PA; —C/N/ = N,C; —CIN] —N;,C; < 0 i<}

These LMI conditions, allow us to define a TS fuzzy observer design problem as

Problem 2.1 TS fuzzy observer design: Find P >0 and N; (i =1, ..., r) satisfying

ATP+ PA; — CI'N] — N;C; < 0 (2.17a)
ATP+ PA + ATP+ PA; —C/N] — N,C; = CIN] = N;,C; < 0 i<j (2.17b)

13



2.3 Fault Detection and Isolation (FDI)

The above conditions are LMIs with respect to variables P and N;. A positive definite matrix P
and matrices V; satisfying these LMIs can be found. In contrast, if this is not possible, then the
feasibility problem is rendered as infeasible.

This feasibility problem can be solved efficiently using mathematical tools, e.g. MATLAB. The
observer gain matrices L; can be obtained as

Li — PilNi

In this sense, the stability analysis of TS fuzzy observers is reduced to a problem of finding a
common matrix P.

Remark 2.2 If the number of rules “r” is large, it might be difficult to find a common matriz P
satisfying the conditions of theorem 2.1. In such cases relaxed stability conditions for the theorem
2.1, found in Appendixz A.3, can be applied.

2.3 Fault Detection and Isolation (FDI)

The objective of fault detection and isolation is to detect faults appearing in the system as early
as possible, so that the failure of the whole system can be avoided.

The most important concepts in the field of FDI are fault and disturbance. Both represent
a deviation of the process state from the required operating condition, but they are basically
different.

Fault is defined as an unpermitted deviation of a least one characteristic property or parameter of
the system from the standard condition [42|, which results in an undesired behavior of the nominal
system.

A fault can affect the system in an wunfavorable (e.g. by reduced efficiency due to increasing
friction losses) or in a dangerous (e.g. by danger of explosion in chemical reactors due to increasing
temperature) way.

The detectable effect of the fault can manifest itself by constant off-sets, exceeding a range of
values, modifying scaling factors or modifying dynamic behavior.

Disturbance is a tolerable (maybe inevitable) discrepancy from the ideal operating state, and
can not have as a consequence an undesired behavior of the nominal system.

A disturbance represents therefore no potential danger, but describes “the completely normal”
deviation of the real process from the ideal case. Disturbances are, e.g. inevitable friction and
absorption losses, measuring and discretization noise.

The use of process models for fault detection in real systems incorporates another source of
disturbance signal: the modeling noise due to the inevitable discrepancy between the process
and the model.

However, it is desired not to detect these effects but to reduce them. Only if a disturbance changes
into a fault (e.g. if the friction losses exceed a certain limit value “normal” friction), then the
detection should take place.

14



2. TS fuzzy model and FDI Concepts

As described in [27, 28], faults can be divided in: actuator, component and sensor faults. This
classification is needed in order to be able to differentiate the arising faults according to the place
of its occurrence, as depicted in fig. 2.4.

actuator component sensor
faults faults faults

Process
components

Process A . A A

H H H

unknown inputs
(parameter variations, disturbances, noise)

Sensors

Fig. 2.4: Definition of faults in the plant of the process

An actuator fault is a fault that appears in an actuator of the process, e.g. defect in gears and
aging effects. The faults that appear in the sensors are identified as sensor fault, e.g. scaling
errors and contact failures.

Component faults produce critical parameter changes in the process itself, e.g. leakages and
loose parts.

Actuator, component and sensor faults are additive faults because are unknown extra inputs acting
on the system [35| while there exist also multiplicative faults which imply changes of some plant
parameters.

In order to know if a fault is affecting the system, a compared signal between measured and
estimated one known as residual signal is required.

Residuals are designed to be equal or to converge to zero in the fault-free case and diverge sig-
nificantly from zero when fault occurs in the system. Therefore, the residual signals represent the
effect of faults in the system.

Most model-based FDI approaches incorporate two sequential steps in order to achieve FDI. They
are residual generation and residual evaluation [46, 58|.

1. Residual generation: In this stage, the data taken (measured) from the actual process, which
reflects the faults, are compared with the corresponding reference values of the fault-free (nominal)
case.

The residual generation process can be interpreted as the evaluation of redundancy.
r(t) = y(t) —9(t) (2.18)

In order to detect and isolate faults, system redundancy is necessary. Redundancy is the relation
among the measured variables. The system redundancy in FDI can be divided in two classes, i.e.
physical and analytical redundancy:
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2.3 Fault Detection and Isolation (FDI)

e Physical redundancy: The process variables are measured by multiple (redundant) sensors.
This approach is effective only for the detection of sensor failures, because any malfunction
in the actuators or in the process itself will affect all the sensors simultaneously.

e Analytical redundancy are the procedures of using model information to generate additional
signals, which are compared with the original measured signals. Analytical redundancy can
be used to avoid the repetition of hardware in the alternative approach known as physical
redundancy [58|.

Observer-based fault diagnosis is an example of analytical redundancy based-approach.

2. Residual evaluation: In this stage, the processing of the residual signal by threshold selection
is performed. This threshold is utilized together with a residual evaluation function and it allows
to establish a limit. This limit is the maximal value of the evaluated residual for the free-fault
case.

The design of the threshold plays a very important role in the residual evaluation and it must be
robust against disturbances affecting the system.

In the FDI approaches, signal norms (Appendix A.1) are used to evaluate the residual signal
[21, 63]. In the signal norms, the size (in the sense of a norm) of the residual signal is calculated
on-line and then compared with a given threshold.

The decision logic for the threshold is as follows:

|l (t)|| < threshold = no alarm, (fault-free)

2.1
lr(¢)|| > threshold = alarm, (a fault is detected) (2.19)

where || - || stands for the norm of the residual signal.

Model-based FDI approaches are based on a mathematical model and as explained before, a precise
and accurate model of a real system is not always possible to obtain.

This is due to different causes, e.g. disturbances, different noise effects and uncertain or time-
varying system parameters.

FDI approaches that can be able to handle these kind of disturbances, are referred as robust FDI
approaches.

The robustness problem in FDI is defined as the maximization of the detectability and isolability
of faults together with the minimization of the effect of uncertainty and disturbance on the FDI
procedure.

The optimization problems can be achieved using sensitivity theory, as long as due care has been
paid to the robustness of the global system operation.

FDI using analytical redundancy (model-based) methods is currently a subject of extensive re-
search [59]. The model-based FDI process is depicted in fig. 2.5.
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2. TS fuzzy model and FDI Concepts

Faults Faults Faults

Inputs Plant Outputs

y(t)

- .
| Residual |,
generation
——

Residual

V.V
Residual
evaluation

Fault Decision

Fig. 2.5: Model-based FDI process

False alarms are another important concept in the FDI field. It is defined as a misinterpretation of
the system, where a change in some variable is considered as a fault. False alarms can be activated
by a large model uncertainty, by high detection sensitivity, particularly within the dynamic range,
or by disturbances.

The sensitivity to faults and avoidance of false alarms due to disturbances leads to the optimization
problem in the design of fault diagnosis systems. Since a robust FDI scheme is desired, the principal
objective is to increase the robustness to unknown inputs and simultaneously to enhance the
sensitivity to faults [19].

The next step is to evaluate the generated residual and to compare it with a threshold. The
selection of the threshold plays an important role in FDI.
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3. Unknown input observer for TS fuzzy models

Chapter 3

Unknown input observer for TS fuzzy
models

An unknown input observer (UIO) is a robust observer which can tolerate a degree of model
uncertainty and hence increase the reliability of fault diagnosis [2, 12, 13, 69]. In this approach, the
model-reality mismatch is represented by the so-called unknown input and hence the state estimate
and, consequently, the output estimate are obtained by taking into account model uncertainty.

Unfortunately, the existing nonlinear extensions of the UIO as in [13, 60| require a relatively
complex design procedure, even for simple laboratory systems [88]. Moreover, they are usually
limited to a very restricted class of nonlinear systems.

On the other hand, it is well known that UIO-based solution works well for linear systems only
when there is no large mismatch between the linearized model around the current state estimate
and the nonlinear behavior of the system.

The use of a linear UIO allows the robust estimation of the states even if the system has unknown
inputs (disturbances). The design of UIO for linear systems is well established but only works
around the operating point were the nonlinear system was linearized.

TS fuzzy models consider a state space region and not only an operating point and they allow the
use of linear theories, therefore they are used to make an extension of the UIO approach developed
in [17] for its use with TS fuzzy models.

3.1 UIO approach for linear systems

One of the most important tasks in model-based fault diagnosis techniques is the generation of
robust residuals. Disturbance decoupling approaches are a good option to generate these robust
residuals. In these approaches, uncertain factors in system modeling are considered to affect the
linear system via an unknown input (or disturbance) [12]. Despite the fact that the unknown input
vector is unknown, its distribution matrix is assumed known.

Considering the information given by the distribution matrix, the unknown input (disturbance)
can be decoupled from the residual. The decoupling of the unknown inputs can be achieved using
unknown input observers (UIO). It also decouples state estimation error from disturbances.

For the design of UIOs a class of linear systems is considered. The system uncertainty can be
summarized as an additive unknown disturbance term in the dynamic equation

©(t) = Ax(t) + Bu(t) + E4d(t) (3.1a)
y(t) = Cux(t) (3.1b)

where z(t) € R" is the state vector, u(t) € R* is the known input vector, d(t) € R* is the
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3.1 UIO approach for linear systems

unknown input (or disturbance) vector and y(¢) € R™ is the measurement or output vector. A,
B, E; and C are known system matrices with appropriate dimensions.

Remark:

There is no loss of generality in assuming that the unknown input distribution matrix F,; should
be full column rank. When this is not the case, the following rank decomposition can be applied
to the matrix Ej,

Equd(t) = Eq, Eg,d(t) (3.2)

where Ey, is a full column rank matrix and Ey,d(t) can now be considered as a new unknown
input vector (for a proof refer to [12], page 301).

Definition 3.1 (Unknown Input Observer (UIO) [12]) An observer designed for the system
described by eq. (3.1) is considered as an unknown input observer, if its state estimation error
vector e(t) approaches to zero asymptotically, despite of the presence of the unknown input (dis-
turbance) in the system.

One can also interpret the UIO as a Luenberger type observer that delivers a state estimation Z(¢)
independent of the unknown input (disturbance) d(t) in the sense that :

lim (z(t) — 2(t)) =0 for all u(t), d(t), xo (3.3)

t—00
With the use of the state estimate &(t), it is possible to construct a residual signal as follows:

r(t) = y(t) — Cz(t) (3.4)

3.1.1 UIO design

For the design of the UIO [15, 17], the derivative of the output signal y(¢) is given by

y(t) = Ci(t)
y(t) = C(Az(t) + Bul(t) + Equd(t)) (3.5)

From eq. (3.5), the term C'E4d(t) is taken to the left
CEq(t) = y(t) — CAx(t) — CBu(t) (3.6)

Assume that
rank(CEy) = rank(Eq) = ky (3.7)

and that C'E, is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix [68] (C'Ey)™
of the product CE,

(CE)*" = [(CE)TCE,] " (CE)T,  (CE,)* € Rfx™ (3.8)
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3. Unknown input observer for TS fuzzy models

Multiplying both sides of eq. (3.6) by the Moore-Penrose pseudoinverse matrix results in

(CE))"CEd(t) = (CEa)*[i(t) — CAx(t) — CBu(t)]
d(t) = (CE.)*[(t) — CAx(t) — CBu(t)] (3.9)

the unknown input (disturbance) vector is obtained from the eq. (3.9). Therefore, using the output

vector derivative ¢(t), the estimation of the state vector z(¢) and the input vector u(t), the unknown
input vector d(t) can be constructed by

d(t) = (CEy)™ (y(t) — CAi(t) — CBu(t)) (3.10)

Considering the estimate of the unknown input vector a?(t), it is possible to construct a full order
state observer, on the assumption that y(¢) is available. The observer is given as follows:

Z(t) = Ai(t) + Bu(t) + Eqd(t) + L (y(t) — Ci(t)) (3.11)
substituting d(t) from eq. (3.10) in eq. (3.11) results in
:%(t) = Az(t) + Bu(t) + E4(CEy)* (y(t) — CAz(t) — CBu(t)) + L (y(t) — Cz(t))
i(t) = (A - LC - HceCA)i<t) + (B - HceCB)u<t) + Hcey<t> + Ly<t> (312)
where

H.. = Ey(CEy)* (3.13)

The state estimation error e(t) = x(t) — Z(t) is governed by the equation:

e(t) = i(t)—a(t)

e(t) = Aw(t) + Bu(t) + Egd(t) — Ai(t) — Bu(t) — Eqd(t) — L (y(t) — 4(1))

et) = (A—LOVe(t) + Ey (d(t) - Li(t))

t) = (A—LC — HoCA)elt) (3.14)

In case that there exists an observer gain matrix L, such that matrix (A — LC — H.CA) is
stabilizable, then the observer in eq. (3.12) fulfills eq. (3.3).

The observer in eq. (3.12) requires the knowledge of y(t), this fact may cause some problems in
on-line implementation. To get over this difficulty, it is necessary to implement a modification.
Therefore a new state vector v (t) is introduced

U(t) = 2(t) — Heey(?) (3.15)
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3.1 UIO approach for linear systems

then, it turns out that the derivative of eq. (3.15) is

v(t) = 2(t) - Hey(?)
O(t) = a(t) — H.Ci(t)
¥(t) = (A—LC — H,CA)i(t)+ (B — H..CB)u(t) + Ly(t)
W(t) (TA— LC)(t) + TBu(t) + (TA— LC) Hee + L)y(t) (3.16)
(t) = ¥(t)+ Heey(?) (3.17)
where
T=1,.,— H.C (3.18)

It is clear that for all d(t), u(t) and z,

lim (Tz(t) — () =0,  lim (2(t) — &(t)) = 0 (3.19)

t—o00 t—o00

Setting G = TA — LC and H = T B allows to express the eq. (3.16) as

U(t) = Gap(t) + Hu(t) + (GH,. + L) y(t) (3.20)

The system composed by eq. (3.17) and eq. (3.20) is an unknown input observer of the Luenberger
type, and by substituting Z(¢) from eq. (3.17) in eq. (3.4) gives

r(t) = y(t) - Ci(t)
r(t) = y(t) — C(L(t) + Heey(t))
r(t) = (Imxm — CHee)y(t) — C(t) (3.21)

a residual vector r(t) free of unknown inputs d(t) is obtained. It can be noticed that the essence of
the UIO approach is the reconstruction of the unknown input d(¢), which requires the condition
given in eq. (3.7).

The stability of observer in eq. (3.12) or equivalently in eq. (3.16) is ensured, if the pair (C, T A)
is observable or at least detectable. In summary, the following theorem is obtained:

Theorem 3.1 [17]: Given the system model in eq. (3.1) and suppose
Condition I. rank(CEy) = rank(Ey) = kq
Condition II. the pair (C, T A) is detectable, where

T = Inxn— HceC
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3. Unknown input observer for TS fuzzy models

then there exists an UIO in the sense of eq. (3.3).

Remark 3.1 It can be demonstrated that condition I and II are also necessary conditions for the
existence of an UIQ. It is interesting to notice that matriz T is singular. This can be readily seen
by observing the fact

TE;=FE;— E4H..CE; =0

Based on the linear approach for unknown input observers (UIO), it is introduced the extension
of the UIO for its use with TS fuzzy models.

3.2 TS fuzzy UIO

The objective of the proposed UIO for TS fuzzy systems is the same as the one for UIOs in linear
systems, i.e. it delivers a state estimate 2(¢) independent of the unknown input d(t).

lim (z(t) —z(t)) =0 for all u(t), d(t), zo (3.22)

t—o00

In order to construct an UIO for TS fuzzy systems (TS fuzzy UIO) a class of nonlinear systems
is considered. The unknown inputs (disturbance) can be summarized as an additive term in the
dynamic equation described by

@(t) = f(z(t) +g(@(t))u(t) + Eqd(t) (3.23a)
y(t) = Cuz(t) (3.23b)
where the distribution matrix for unknown inputs E; and the output matrix C' do not depend on

the state vector z(t), in other words, they are linear (constant) matrices. A TS fuzzy model that
approximates the behavior of the nonlinear system given by eq. (3.23) is obtained as

(t) = i hi(2(t)) [A,w(t) + Biu(t) + Eqd(t) (3.24a)
y(t) = gx(t) (3.24b)

where z(t) € R" is the state vector, u(t) € R* is the known input vector, d(t) € R* is the
unknown input (disturbance) vector and y(t) € R™ is the measurement or output vector. A;, B;,
E; and C are known system matrices with appropriate dimensions.

To this TS fuzzy model corresponds the following fuzzy IF-THEN rules
Model rule 3

IF Zl(t) is Mil and ... and Zp(t) is Mip

THEN { () = Ajx(t) + Biu(t) + Eqd(t) (3.25)
y(t) = Cux(t)
With the use of the state estimate #(t), it is possible to construct a residual signal as follows:
r(t) = y(t) — Cz(t) (3.26)
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3.2 TS fuzzy UIO

3.2.1 Design of the TS fuzzy UIO

For the design of the TS fuzzy UIO, the derivative of the output signal y(t) is given by

yt) = Ci(t)
yt) = C (Z hi(2(t)) [Ai(t) + Byu(t) + Edd(t)]> (3.27)

From eq. (3.27), the term C'E4d(t) is taken to the left

T

CEq.d(t) = y(t) — Z hi(=(t)) [CAix(t) + CBiu(t)} (3.28)
Assume that
rank(CEq) = rank(Eq) = kq (3.29)

and that C'E, is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix (C'Ey)" of
the product CE,

(CE.)*" = [(CE)TCEJ " (CE)T,  (CE,)* € RFx™ (3.30)

Multiplying both sides of eq. (3.28) by the Moore-Penrose pseudoinverse matrix results in

d(t) = (CE»* ( Z ha [CA () + CBZ-u(t)D (3.31)

the unknown input (disturbance) vector is obtained from the eq. (3.31). Therefore, using the
output vector derivative y( ), the estimation of the state vector Z(t) and the input vector wu(t),
the unknown input vector d( ) can be constructed as

d(t) = (CEy)* ( Zh [ (t)+CBZ-u(t)]> (3.32)

Considering the estimate of the unknown input vector cZ(t), it is possible to construct a full order
TS fuzzy observer, on the assumption that ¢(¢) is available. The TS fuzzy observer is given by the
following equation

Z ha [ (t) + Bou(t) + Ead(t) + Li(y(t) — C’i(t))} (3.33)

with its correspondent fuzzy [F-THEN rules
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3. Unknown input observer for TS fuzzy models

Observer rule 2

IF 2 (t) is M;; and ... and z,(t) is M,,
2(t) = Aid(t) + Byu(t) + Eqd(t) + Li(y(t) — (1)) (3.34)

HHER { i) = Cilt)

substituting d(t) from eq. (3.32) in eq. (3.33) results in

T

A (t) + Buu(t) + Eo(CEq)* (y‘(t) =S b)) [CAG(1) + cBiu<t>]> + Li (y(t) — Ci(t))

i=1

T

B(t) = Y hi(z(1)

i=1

B(1) = 3 hal=(1)) [Aigz(t) + Byu(t) + Ea(CEL) T (§(t) — CAii(t) — CByu(t)) + Li (y(t) — c:e(t))}
H) = 3 k() (A = LiC — HeeCA)i () + (Bs — HeCBoJu(t) + Heei(1) + Liy(t)] (3.35)

i=1

where

H.. = E,(CE)* (3.36)

The state estimation error e(t) = x(t) — &(t) is governed by the equation

e(t) = Z hi(=(t)) [Aﬂ(t) + Biu(t) + Ead(t) — Aid(t) — Buu(t) — Egd(t) — Li (y(t) — @(t))]

e(t) = D hi(a(t)|Ai - LiC — HuOAe(t)

In case that there exists observer gain matrices L;, such that each matrix (4; — L,C — H..C A;)
is stabilizable, then e(t) will approach zero asymptotically, i.e. the condition given by eq. (3.22)
is fulfilled. This means that the TS fuzzy observer in eq. (3.35) is an unknown input observer for
the system in eq. (3.24) according to definition 3.1.

The TS fuzzy observer in eq. (3.35) requires the knowledge of y(t), this fact may cause some
problems in on-line implementation. To get over this difficulty, it is necessary to implement a
modification. Therefore a new state vector is introduced

U(t) = 2(t) — Heey(t) (3.37)
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3.2 TS fuzzy UIO

then, it turns out that the derivative of eq. (3.37) is
V() = @(t) - Heey(t)

B(t) = Y hi(=(0) :A@-w) + Biu(t) — Hee (C Az (t) + CByu(t)) + Li (y(t) — Cc%(t))]
B = D hG0)[(A — LiC — HC A () + (B — HeeCBy) u(t) + Liy(1)]

WO = D hGO)[(TA = L) a(t) + TBu(®) + Liy(0)|

i=1

b)) = i) [(TAi = LC) (8(1) + Heey(t) + TBuu(t) + Liy(t)]
i=1 )

bt) = D hila(0) [(TAi = LC) (1) + TBult) + (TA = LiC) Hee + L)y(t)]  (338)
i=1 )

z(t) = ¥(t) + Heey(?) (3.39)

where
T = Iixn — HeeC (3.40)
It is clear that for all d(¢), u(¢) and z,
lim (T'z(t) —(t)) =0, lim (x(t) —2(t)) =0 (3.41)
t—o00 t—00

and furthermore, setting G; = TA; — L;C' and H; = T B; allows to express eq. (3.38) as

() = D ha(2() | Gab(0) + Hoult) + (Gifee + L) y(1) (3.42)

The system constituted by eq. (3.38)-(3.39) is an unknown input observer of the Luenberger type
for TS fuzzy systems, and by substituting &(¢) from eq. (3.39) in eq. (3.26) gives

r(t) = y(t) - Ca(t)
r(t) = y(t) — C(L(t) + Heey(t))
r(t) = (Imxm — CHee)y(t) — CY(1) (3.43)

a residual vector free of unknown inputs d(t) is obtained. The stability of the TS fuzzy observer
in eq. (3.35) or equivalently in eq. (3.38) is ensured, if all pairs (C, T'A;) are observable or at least
detectable. In summary, the following theorem is obtained:

Theorem 3.2 Given the system model in eq. (3.24) and suppose
Condition 1. rank(CEy) = rank(Ey) = kq
Condition 2. all pairs (C,TA;) are detectable, where

T=1,4,— H.C

then there exists a TS fuzzy UIO in the sense of eq. (3.22).
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3. Unknown input observer for TS fuzzy models

3.2.2 Computation of observer gain matrices

To compute the observer gain matrices L;, it is required to realize the convergence analysis of the
TS fuzzy UIO. The state estimation error dynamics is given by

et) = a(t) —z(t)
e(t) = D hi(a()|Ai - LiC — HuOAe(t)

e(t) = Zhi(z(t))[TAi—LiC]e(t) (3.44)

The stability of the dynamic eq. (3.44) can be proved by the Theorem 3.3.

Theorem 3.3 [77]: The equilibrium of the system described by eq. (3.44) is asymptotically stable
if there exists a common positive definite matriz P for i = 1,...,r such that

ATP + PA; <0 (3.45)
where A; = TA; — L;C.

Proof: Consider a candidate of Lyapunov function V' (e(t)) = e’ (t)Pe(t), where P > 0. Then,

Vie(t)) = éT(t)Pe(t) + " (t)Pé(t) < 0
= (1) (Z hi(z(t))Ai> Pe(t) + e (t)P (Z hi(z(t))AZ) e(t) <0

i=1

= Zh t) (ATP 4 PA;)e(t) <0

_ Zh {(TA LC) P+P<TA,~—LiC>]e(t)<O
Q.E.D.

With the same strategy as in [8], it is possible to transform the conditions given by eq. (3.45) in
linear matrix inequalities (LMIs) and use these LMIs to obtain the gain matrices L; for the TS
fuzzy UIO if and only if there exist a positive definite matrix P.

For this purpose, substitute A; in eq. (3.45)
(TA; — LiC)'P+ P(TA; — LiC) < 0
ATTTP + PTA, — CTLIP — PL,C <0

Define N; = PL; so that for P > 0 results L; = P~!N;, after substituting this in the above matrix
inequality follows that
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3.2 TS fuzzy UIO

AFTTP 4 PTA, — CTNI' — N,C <0

The use of these LMI conditions allow us to define a stable TS fuzzy UIO design problem as
follows:

Problem 3.1 TS fuzzy UIO design: Find P >0 and N; (i =1, ..., r) satisfying
ATTTP + PTA; — CTN] — N;C <0 (3.46)

Applying the relaxed stability conditions (given in the Appendix A.3) to the above TS fuzzy UIO
design problem results in:

Problem 3.2 TS fuzzy UIO design using relaxed stability conditions: Find P >0, Q >0
and N; (i=1, ..., r) satisfying
ATT'P + PTA;, — C'NI — N,C + (s —1)Q <0 (3.47)

where 1 < s <r and
N; = PL;

The above conditions are LMIs with respect to variables P, () and N;. It can be found a posi-
tive definite matrix P, a positive semidefinite matrix ) and a matrix N; satisfying the LMIs or
determine that no such P, () and N; exist. The observer gain matrices L; can be obtained as

Li = PilNi

The design problem given by eq. (3.47) is solved efficiently using mathematical tools as for example
MATLAB. Following the procedure given in 3.2.1 is made an algorithm for the design of the TS
fuzzy UIO as follows

Algorithm 3.1 Takagi-Sugeno fuzzy UIO based residual generation

Step 1. Check the rank condition for Eq and CEy, if rank(CEy) = rank(Eq) = kq is satisfied then
go to the next step, otherwise it is not possible to find a TS fuzzy UIO for such system
(STOP).

Step 2. Compute matrices (CEq)", Hee and T according to eq. (3.30), (3.36) and (3.40) respec-
tively.

Step 3. Check the observability: If each pair (C,TA;) is observable, then a TS fuzzy UIO exists
and matrices L; can be computed using LMI techniques.

Step 4. Find gain matrices L; using eq. (3.47) that ensures the stability of each matriz (T A;— L;C').

Step 5. Construct residual generator following eq. (3.38) and eq. (3.43).
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3. Unknown input observer for TS fuzzy models

3.3 Robust sensor fault isolation schemes based on
TS fuzzy UIO

The main task of robust fault detection is to generate a residual signal which is robust to unknown
inputs (disturbance). To detect a particular fault, the residual has to be sensitive to this fault. A
TS fuzzy system with possible sensor fault can be described by

#(t) = Y hal=(0) [Al-x(t) + Bu(t) + Eyd(t) (3.48)
y(t) = Czx(t) + fo(t) (3.48Db)

where fi(t) € R™ denotes the presence of sensor faults. To generate a robust (in the sense of
unknown input decoupling) residual, a TS fuzzy UIO described by eq. (3.35) is required. As
described before, when the state estimation is available, the residual can be generated as:

r(t) = y(t) - Ca(t)
r(t) = (Lnxm — CHe)y(t) — C(t) (3.49)

When this TS fuzzy UIO based residual generator is applied to the system described in eq. (3.48),
the residual and the state estimation error e(t) result as

r(t) = Ce(t) + fs(t) (3.50)

The residual has to be made sensitive to fs(¢) in order to detect sensor faults. This is generally
possible, since the sensor fault vector f,(¢) has a direct effect on the residual signal r(t).

The fault isolation problem has as main task the localization of the fault, i.e. to determine in
which sensor the fault has occurred. One approach that facilitates fault isolation is to design a
structured residual set. Each residual in the set is designed to be insensitive to a certain fault and
sensitive to all other faults.

To design robust sensor fault isolation schemes, all actuators are assumed to be fault-free and the
system equations can be expressed as

i) = 3 h(=(0)) [Aix(t) + Buu(t) + Eqd(t) (3.51a)
y*(t) = 5kx(t) + R (3.51b)
ye(t) = Cra(t) + fs.(t) fork=1,...,m (3.51c)
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3.3 Robust sensor fault isolation schemes based on TS fuzzy UIO

where C), € R™" is the ky, row of the matrix C, C* € R(™~1*" ig obtained from the matrix C
by deleting ky, row Cy, yx(t) is the ky, component of y(¢) and y*(t) € R™"! is obtained from the
vector y(t) by deleting ky, component yy(t).

Based on this description, m TS fuzzy UIO based residual generators can be constructed as

B(1) = D hilz(0) [A@ (1) + Buut) + Ead(t) + LE (1) — C*a (1))

= Z hi(z(t)) [Aifc(t) + Byu(t) + Eqg(C*Eg) ™ (9% (t) — CF Az (t) — C¥Biu(t)) + LF (y*(t) - Cki(t))}

= hi=(t)) [Aigz(t) + Byu(t) + HE (3°(t) — C*Aiii(t) — C¥Buu(t)) + LF (y*(t) — ckgz(t))} (3.52)

i=1

where

HE = E)(C*Ey) T (3.53)

As mentioned before, a modification is needed to avoid problems due to on-line computation of
the TS fuzzy UIO based residual generators. For this reason a new state vector is introduced

V() = @(t) — Haoy (1) (3.54)
whose derivative is given as

W) = 2(t) — He g™ (1)

BE@) = D hala(0) [Asi(t) + Bau(t) - HE (CR A () + C*Byu(t)) + LE (4*(1) - C*3(t)) |
=1
Rt = Z hi(2(1)) ( ) Jol erCkAi) #(t) + (Bl- - erCkBi> ult) + Lfyk(t)}
i=1
G () = ihi(z(t)) (THA; = LECH) &) + T Bou(t) + LEy (1)
i=1
G0 = Y h0)[(T54; - LECH) (6*(0) + HEGH®) + T*Bualt) + Liy(0)
=1
G = Z ha(=(t)) -<TkAi - Lfck) R () + T*Byu(t) + <(T’“Ai - Lfck) HE + Lf) yk(t)] (3.55)
i(t) = ;’:(t) + HEYH (1) (3.56)
where
TF = Lxn — HECP (3.57)

and furthermore, setting G¥ = T*A; — LEC* and HF = T*B; allows to express the eq. (3.55) as

Z ha [G’w (t) + Hru(t) + (GFHE, + LF) yk(t)} (3.58)
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3. Unknown input observer for TS fuzzy models

The system constituted by eq. (3.55)-(3.56) is an unknown input observer of the Luenberger type
for TS fuzzy models, and by setting

) = yt(t) - Cha)
rf(t) = yt(t) - CM () + Hey'(t))
() = Tmn-nyx-n — CTHL )Y (1) — CP (1) (3.59)

Each residual generator is driven by all inputs and all outputs except one output. When all
actuators are fault-free and a fault occurs in the ky, sensor, the residual will satisfy the following
isolation logic

{||7"l()||< SEI for1=1,... . k—Lk+1,....m (3.60)
|7 () > Tspy

where T, (k=1,...,m) are isolation thresholds. A robust and TS fuzzy UIO based sensor fault
isolation scheme is shown in fig. 3.1.

/ u(t) Nonlinear y(t) \

y'(t)

hi(z(t))

Fault
r'(t) | detection
: and
N - isolation
y logic

Y

TS fuzzy y'(t) N
\ UlO m (C— r'(t) /

Fig. 3.1: A robust sensor fault isolation scheme

3.4 An application example

A nonlinear system is used to implement the TS fuzzy UIO based residual generator, the nonlinear
system is described by

[21(1)] —x1(t) + z1 ()23 (t) 1 1

ia(t)| = |—za(t) + B+ za(t)z}(t) | + |0.1] u(t) + | —2.5] d(t)
| 23(t) ] i xo(t) — x3(t) 0.2 0.1
[y1(1)] [21(1) fs (1)

()| = |2200)] + | [a(t)

Ly3(t) ] [73(t) fss (1)
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3.4 An application example

it is considered that z;(t) € [—1,1] and z(t) € [—1,1]. The above system can be written in the

following form:

-1 T (t)z3(t) 0 1 1
i(t) = | (3+xa(t))2i(t) —1 0 | 2(t)+ [0.1| u(t)+ | —2.5] d(t)
0 1 ~1 0.2 0.1

0 0
1 0 z(t)+ fs(t)
01

<
—~
~
SN—
Il
O O =

where 21 (¢)23(t) and (3 + z2(t))x}(t) are nonlinear terms. For the nonlinear terms are defined
z1(t) = 21(1)23(t) and 25(t) = (3 + 22(t))2%(t) as premise variables. Substituting z(t) and z5(t)
in the above system results in

[ —1 z(t) O 1 1
o(t) = |20 =1 0 |xt)+ [0.1] u(t)+ |—2.5] d(1)
0 1 -1 0.2 0.1
[1 0 0
y(t) = |0 1 0fx(t)+ fu(t)
00 1

Next, calculate the minimum and maximum values of z;(¢) and z3(t), these are obtained as:

max 2 () =1 max 2(t) =4
21(t),22(t) z1(t),22(t)

min 2z (¢) =—1 min 2(t) =0
z1(t),22(?) a1(t),x2(t)

from the maximum and minimum values, z;(¢) and z3(¢) can be represented by
Zl<t) = .T1<t>37§<t> = FH(Zl(t)) -1+ F12(21(t)) -—1

where:

Fr(si(0) + Fo(n(t) =1 and  Fy(2(t)) + Fal(a(t) = 1

The membership functions can be calculated as follows

Fu(a(t) = % Fia(21()) = %Zl(t)
Fa(=(t)) = Zint) Foy(2(t)) = 4_T22(t)
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3. Unknown input observer for TS fuzzy models

The membership functions are named “Positive”, “Negative”, “Big” and “Small”, respectively. Then,
the nonlinear system is approximated by the following fuzzy IF-THEN rules

Model rule 1

IF 2 (t) is “Positive” and z5(t) is “Big”
o(t) = Ayx(t) + Biu(t) + Eqd(t)

HHER {y@>= Calt) + £.(1)

Model rule 2

IF 2(¢) is “Positive” and zo(t) is “Small”
(t) = Asx(t) + Bau(t) + Eqd(t)

HHER {yu>: Cr(t) + fu(t)

Model rule 3

IF 2 (t) is “Negative” and zy(t) is “Big”
@(t) = Asx(t) + Bsu(t) + Eqd(t)

HHER {yu>: Carlt) + fu(t)

Model rule 4

IF 2(¢) is “Negative” and z,(t) is “Small”
(t) = Agx(t) + Bau(t) + Eqd(t)
THEN
{ y(t) = Cua(t) + (1)

Here
-1 1 0 -1 1 0 -1 -1 0 -1 -1 0
Ai=14 -1 0|,A=]0 -1 0|,A3=14 -1 0f,A=0 -1 0
0 1 -1 0 1 -1 0 1 -1 0 1 -1
1 1 1 00
Bl727374 = O]_ 5 Ed - —25 5 C = O ]. O
0.2 0.1 001

The defuzzification (that gives the TS fuzzy model) is carried out as

i) = 3 h=(t) [Al-x(t) + Buu(t) + Eyd(t)

y(t) = Ca(t) + fs(1)

where
hi(2(t)) = Fu(z1(t)) x Fa(z(1))
ha(2(1)) = Ful(zi(t)) x Faa(22(1))
hs(2(1)) = Fia(z21(t)) x Fa(22(?))
ha(2(t)) = Fia(z21(t)) X Faa(22(1))
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3.4 An application example

Following the steps given in Algorithm 3.1, the rank of CFE,; and E; are compared

rank(CEy) = rank(Ey) =1

The above condition is satisfied, and hence matrices (C'Ey)*, H.. and T using eq. (3.30), (3.36)
and (3.40) respectively are computed.

0.1378 —0.3443  0.0138
(CE))* =[0.1377 —0.3443 0.0138],  H, = |—0.3443 0.8608 —0.0344 |,
0.0138 —0.0344 0.0014
0.8622 0.3443 —0.0138
T=| 03443 0.1391 0.0344

—0.0138 0.0344 0.9986

The following gain matrices L; are obtained using eq. (3.47) with the relaxed stability conditions.

[2.015 0.358 0.082 [0.638 0.079 0.014
Ly = 10.358 1.739 0.458], Ly = 10.079 1.739 0.458

10.082 0.458 0.501 10.014 0.458 0.501

[ 2.015 —0.504 0.082 [ 0.638 —0.782 0.014
Ly = |—-0.504 1.0561 0472|, L,= |—-0.782 1.061 0471

| 0.082  0.472 0.501 | 0.014  0.472 0.501

Simulation results
The TS fuzzy UIO (TSFUIO) based residual generator is compared against a TS fuzzy observer
(TSFO) in normal operation (without affectation of disturbances or faults). Their respective resid-

uals are shown in fig. 3.3 and in fig. 3.2.

~11
2x 10 2x 10
O// —— e
. 4
B . .
’
’ —_ (t
. -2F e 1O — —r ()
p— e e er (t) p— 1
% : 2 o - er)
< ' G S 2
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3 4 3 r,®
7} ' 7}
2 ‘ 2
_6 1 _6
)
1
1
1
—_Qu —_
8. 8
-10 . L -10 . .
0 5 10 15 0 5 10 15

Time [s] Time [s]

Fig. 3.2: Residuals for TSFO Fig. 3.3: Residuals for TSFUIO

It can be noticed that both observers converge to zero at ¢t ~ 12 s. The use of the relaxed stability
conditions (s = 3) in the design of both observers allows to improve the convergence as can be

seen in the following residuals:
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Fig. 3.4: Residuals for relaxed TSFO Fig. 3.5: Residuals for relaxed TSFUIO
The unknown input (disturbance) signal
d(t) = 0.3 cos (2t)e % (3.61)

is applied to the system.
In fig. 3.6 and fig. 3.7 the residuals for both observers are shown, when the disturbance affects the

system.
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Fig. 3.6: Residuals for TSFO with disturbance  Fig. 3.7: Residuals for TSFUIO with disturbance

As can be seen in fig. 3.6, the TS fuzzy observer is clearly affected by the unknown input while
the TS fuzzy UIO is decoupled from the unknown input as shown in fig. 3.7.

The procedure described in the subsection 3.3 is applied to build three TS fuzzy UIO based residual
generator. Each observer is insensitive to one sensor fault but sensitive to the another two.

The rank condition rank(C*E,) = rank(Ey) for k = 1,2,3 is satisfied. All three observers fulfill

this condition.
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The sensitivity and insensitivity of the observers to the faults is shown in the tab. 3.1

TS fuzzy UIO ‘ Insensitive to ‘ Sensitive to ‘

1 f31 fSQ and f33
2 f82 f51 and f83
3 fsg f51 and f82

Tab. 3.1: Robust sensor fault isolation scheme

TS fuzzy UIO 1: The dynamic equation for the first TS fuzzy UIO is

4

Gt = D hala(8) |GHN ) + Hlu(t) + (GHHL + L) ' (1)

i=1

and the parameter matrices (C'Ey)™, H. and T are computed using eq. (3.30), (3.36) and (3.40)
respectively

—0.3994  0.0159 1 0.3994 —0.0159
(C'Ey)*t = [-0.3994 0.0159], HL = | 0.9984 —0.0399|, 7" = |0 0.0016 0.0399
~0.0399  0.0016 0 0.0399 0.9984

The following gain matrices L} are obtained using eq. (3.47) with the relaxed stability conditions

(s =2):
[—9.555 20.774 [—7.962 36.887]
L'=]1.044 2001 |, Li=|1048 2010,
| _0.931 2.183 | _0.665 4.575 |
[—24.651 21.298 [—16.73 37.158]
Lb=| 1.047 4534 |, Li=1]1049 3273
| 23206 2.179 | _1.887 4574

The residual is generated by

ri(t) = (I — CTH ) y'(t) — C(t)

TS fuzzy UIO 2: The dynamic equation for the second TS fuzzy UIO is

4

G20 = D7 h=(0) | G220 + HEu(t) + (GEHE + L) (1)

i=1
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3. Unknown input observer for TS fuzzy models

and the parameter matrices (C?FE,;)", H2 and T* are computed using eq. (3.30), (3.36) and (3.40)
respectively

0.9901  0.0990 0.0099 0 —0.0990
(C?E.)*T =10.9901 0.0990] , HZ = |—2.4752 —0.2475| , T% = | 24752 1 0.2475
0.0990  0.0099 —0.0990 0 0.9901

The following gain matrices L? are obtained using eq. (3.47) with the relaxed stability conditions
(s =2):

[ 1.025  —0.233] [ 1.012  0.019
L?= |—1558 29.896 |, L2= |—5.972 29.855|,
|—0.294  3.740 | |—0.419 3.753
1111 —1.332] [ 1.057  —0.261
L2=|-4.956 71.827|, L3=|-10.719 71.65
|—0.677 9.927 | | —1.211  9.981

The residual is generated by

r¥(t) = (I — C*Hg) y*(t) — C**(t)

TS fuzzy UIO 3: The dynamic equation for the third TS fuzzy UIO is

4

) = D hi(2() | G0 () + Hiu(t) + (GIHE + L) o (1)

i=1

and the parameter matrices (C®E,) ", H2, and T? are computed using eq. (3.30), (3.36) and (3.40)
respectively

0.1379  —0.3448 0.8620 0.3448 0
(C3Eg)*t = [0.1379 —0.3448], H? = |—0.3448 0.8620 |, 7%= | 0.3448 0.1379 0
0.0138  —0.0345 ~0.0138 0.0345 1

The following gain matrices L3 are obtained using eq. (3.47) with the relaxed stability conditions
(s =4):

[2.517 —0.197] [1.138  —0.748
L3= 10921 2207 |, L3= (0920 2207 |,
0.152 0.952 10.014  0.952

(2517 —1.102] [ 1.138  —1.399
L3= 10102 1517 |, L3=|-0.152 1.517
0.152  0.979 | | 0.014 0979
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3.4 An application example

The residual is generated by
ri(t) = (I — C°Hg,) y°(t) — Co° (1)

In order to show the robust sensor fault isolation schemes based on TS fuzzy UIO, the following

sensor fault signal is applied to the system

—0.08 5<t <10
J) = { 0  elsewhere. (3.62)

the correspondent simulation is shown in fig. 3.8.
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Fig. 3.8: Fault for sensor 1,2 and 3

The same sensor fault is applied to all the three sensors. In fig. 3.9 the three evaluated residuals

without the sensor fault are shown.
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Fig. 3.9: Evaluated residuals Fig. 3.10: Isolation of the fault in sensor 1

Fig. 3.10 shows that the fault in sensor 1 does not affect the residual 1 but affect the another two
residuals, therefore this fault can be isolated.
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3. Unknown input observer for TS fuzzy models
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Fig. 3.11: Isolation of the fault in sensor 2
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Fig. 3.12: Isolation of the fault in sensor 3

It can be seen in fig. 3.11 that the fault in sensor 2 does not affect the residual 2 but affects
the another two residuals, therefore this fault can be isolated, too. The same result is shown in
fig. 3.12 where the fault on sensor 3 can also be isolated.

The proposed unknown input observer for a class of nonlinear systems (described by the TS fuzzy
model) makes possible to decouple the unknown input from teh residual signal. The robust sensor

fault isolation scheme allows to isolate sensor faults using the TS fuzzy UIO theory.
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4. Attenuating stochastic disturbances based on TS fuzzy models

Chapter 4

Attenuating stochastic disturbances based
on TS fuzzy models

This chapter considers the discrete TS fuzzy model with stochastic noise (disturbance) in order to
design a residual generator. An LMI optimization approach is proposed to minimize the expected
value of the steady state estimation error, knowing the stochastic features of the noises.

4.1 Discrete TS fuzzy model

Consider the following discrete TS fuzzy model with influence of stochastic noise and faults. The
model is represented by fuzzy IF-THEN rules

Model rule 2

IF Zl(k’) is Mil and ... and Zp(k?) is Mip

{ x(k+1)= Ax(k)+ Bu(k) + Ey,w(k) + Ey, f(k) (4.1)
THEN

y(k) = Ciz(k) + Diu(k) + Fo,w(k) +v(k) + Fy, f (k)
where ¢ = 1, ...,r,  is the number of IF-THEN rules, M;; are fuzzy sets, z1(k), ... ,z,(k) are the

premise variables, z(k) € R" is the state vector, u(k) € R* is the input vector, y(k) € R™ is the
output vector, w(k) € R is the system noise vector, v(k) € R is the measurement noise vector
and f(k) € R* is the fault vector. Matrices A;, B, E.,, Ey,, C;, D;, F,,, and F}, are known system
matrices with appropriate dimension.

The defuzzified output of the discrete TS fuzzy model in eq. (4.1) is represented as

ek +1) = Y h((k) [A,w(k) + Bu(k) + Egw(k) + Ej, f(k)] (4.22)
y(k) = D ha(k)) [Cua(h) + Doulk) + Fuw(k) +v(k) + Frf(k)|  (4.2D)

The above system description provides

Ewi = BZ and Fw' = l)Z

k3

for the influence of the system noise. It is assumed that noise signals w(k) and v(k) are uncorre-
lated, zero-mean, and Gaussian white noise vectors, i.e. its mean vector are

Elwk)=0 and  Ev(k)]=0
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4.1 Discrete TS fuzzy model

where FE[-| denotes the expectation and consequently, the covariance matrices for w(k) and v(k)
are defined as

E [w(k)w
E [v(k)v

~

~—~

=~

—_
|

Y, 2w = diag(c
Y, Xy =diag(o

o )
w,1? ") T w ke

2
v,l""’o-v,kv)

N

—

=~

| I
|

The above assumptions on stochastic features of the noise are all reasonable from a practical point
of view [25].

4.1.1 System reformulation

To get a more general description of the discrete TS fuzzy model described in eq. (4.1), the noise
vector n(k) is introduced

n(k) = [w(k)} (4.3)

Thus, the fuzzy IF-THEN rules in eq. (4.1) can be written into
Model rule ¢

IF 2 (k) is M;; and ... and z,(k) is M,,
r(k+1) = Ajx(k)+ Biu(k) + E,n(k) + Ey, f(k) (4.4)

THEN { y(k) = Cix(k) + Diu(k) + E,n(k) + Fy, f(k)

where n(k) € R* is the vector of stochastic noise and matrices E,, and F,, are known system
matrices with appropriate dimensions.

The defuzzified output of the discrete TS fuzzy model in eq. (4.4) is inferred as

2(k+1) Z ha( [ (k) + Bau(k) + E,n(k) + Ey, f(k)} (4.52)
Z hi(2(k)) [ Cia(k) + Dyu(h) + Fn,n(k) + Fy, £ (k)] (4.5b)

where
E, =[E, 0  F,=IF, I (4.6)

Moreover, declaring

w(k) =Y hi(z(k)Egn(k) (k) =) hi(2(k)) Fn(k) (4.7)

i=1 i=1

allow us to obtain the standard system description

2(k+1) Zh [ (k) + Buu(k) + w(k) +Efif(k)] (4.8a)

Z hi(=(k)) [Cia (k) + Diau(h) + (k) + F £ (k)] (4.8b)
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4. Attenuating stochastic disturbances based on TS fuzzy models

mostly used in the literature. The covariances matrices can be defined as

E [w(k)a” (k)] = ZZh (k) En, 2o By,

i=1 j=1
E[o(k)o" (k)] = ZZh (k) Fo, S FL
i=1 j=1
where Y, means
Yo = lz(;w ;U] =diag(o, .., 0y Oyt 0y, ) (4.9)

and the cross covariance matrices are given by

E[w(k)d" (k)] = ZZh (k) En, 2, F)L

11]1

E [o(k)a” (k)] = ZZh (k) Fo, SnEy,

4.2 Proposed approach for the TS fuzzy observer

Because of the stochastic noise, the state estimates given by a TS fuzzy observer are no longer
accurate. Therefore, a TS fuzzy observer is proposed. The objective of the observer is to minimize
the expected value of the steady state estimation error, knowing the stochastic features of the
noises.

A TS fuzzy observer is constructed to estimate the states and is given by the following fuzzy
[F-THEN rules

Observer rule 2

IF 2 (k) is M;; and ... and z,(k) is M,,
2(k+1) = Aiz(k) + Bu(k) + Li(y(k) — §(k)) (4.10)

THEN { 9(k) = Ciz(k) + Dyu(k)

The defuzzified output of the TS fuzzy observer in eq. (4.10) is represented as

T

Bk+1) = D7 hi(e(k) [ Ad(k) + Buu(k) + Li(y(k) — (k)] (4.11a)
9k) = D7 ha(=(k)) |G (k) + Diuh)] (4.11D)

Based on the state equations (4.8a) and (4.11a), the state estimation error e(k) is defined by

e(k) = x(k) — & (k) (4.12)
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4.2 Proposed approach for the TS fuzzy observer

and has to be minimized in order to find the best estimation of x(k). In order to analyze the
convergence of the TS fuzzy observer, the dynamics of the state estimation error without the
presence of faults is considered.

e(k+1) = z(k+1)—2(k+1)

= D> D h D[ (A~ LiCy)e(h) + (k) — Lio(h)
= D07 hala(k)hy (k) | Ayelk) + 0 (k) — Lo k)] (113)
where
Aij - Az - LZC]

Using the description of the noise vectors, especially the assumption that they are zero-mean, the
following equation is given for the value of expectation

e(k +1)] Z Z ha( 2(k)) Ay E [e(k)] (4.14)

i=1 j=1

The error covariance matrix can be defined based on eq. (4.13) as

Pk+1)=E [e(k+1) T(k+1)]
P(k+1) Z Z Z Zh F)) (2 (k) ho(2(F)) (AUE [e(k)e” (k)] AL+ AyE [e(k)a” (k)] -
i=1 j=11=1 o=1

AiE [e(k)o" (k)] L + E [w(k)e" (k)] A;) + E [@(k)w” (k)] — E [w(k)o” (k)] L] -

LiE [v(k)e (k)] A;l — LE [o(k)yw" (k)] + L;E [v(k)v" (k)] L]T> (4.15)

Under the assumption that the current error is independent of the current noise, it is provided

Ee®a™(1)] = (B [a@me®)]) =0
E [e(k)o" (k)] (E[@(k:)eT(k:)D —0

Due to the fact, that the current error is independent of the current noise, the eq. (4.15) can be
reduced to

P(k+1) Z Z Z Z hi( k)i (2 (k) o (2(k)) (AijE e(k)eT (k)] AT+

i=1 j=11=1 o=1

E [w(k)w” (k)] — E [w(k)o" (k)] LT — LE [o(k)w” (k)] + L;E [0(k)v" (k)] LT>
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4. Attenuating stochastic disturbances based on TS fuzzy models

substituting P(k) = E [e(k)e” (k)] and the correspondent values for the covariance matrices in
the above equation results in

PO+ 1) =30 5757 S Al (b)) () () (=(4) (AijP<k>A£+

i=1 j=1 |=1 o=1

n;*~o

EnEnEgj — EniEnF,z;LT LiFn, SnE} + LiFy, 5 FTLT)

- Z Z Z Z hi k))hi(z(k))ho(2(K)) (Aijp(k)AloT + En,, EnEanO)

i=1 j=1 I=1 o=1

where

E,, = E,, —

7

LiF,,

Assuming that P(k + 1)=P(k), the following equation is obtained for the steady state

ZZZZh (k) k(= (k;))ho(z(k))<AijPAl§—P+EmjanmTo> =0 (4.16)

i=1 j=1 [=1 o=1
It is clear that
AijPAJS —P+E, 2B, =0 (4.17)

has the form of a discrete algebraic Riccati equation (DARE). It is known from |7, 87|, that the
DARE in eq. (4.17) is solvable for a common matrix P > 0 if and only if 3P > 0 such that

APA —P+E, Y,E <0 (4.18)
In 20, 62] the relationship between the solution of a discrete algebraic Riccati equation and its

associated LMI can be found. The following lemma from [62] is used to prove that the DARE in
eq. (4.17) which is equivalent to the eq. (4.18).

Lemma 4.1 Given the discrete algebraic Riccati equation
ATPA—-P+Q— (C+B"PAY(R+B"PB) ' (C+ B"PA)=0 (4.19)
with R > 0, PT = P, and let
Q(P)=A"PA—P+Q— (C+ B"PAY(R+ B'PB)'(C+ B'PA) (4.20)

Assume that there exists P = PT such that Q(P) > 0. Then if (A, B) is stabilizable, there exists
a minimal solution P_ > 0 to the Riccati eq. (4.19). Moreover,

P_ < P, VP such that Q(P) >0 (4.21)

and A— B(R+ BT"P_B)™Y(C + BT P_A) is stable.
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4.2 Proposed approach for the TS fuzzy observer

In order to minimize the expected value of the steady state estimation error e(k) [64], the following
LMI optimization problem is formulated

min ¢r(P), subject to P >0
(4.22)
Ay;PAT = P+ E, S,B <0

Considering that all pairs (A;, C;) are detectable and hence (A7, CT) are stabilizable, it follows
from Lemma 4.1 that the minimal solution of eq. (4.17) is indeed the minimal solution of eq. (4.22).

The above matrix inequality can be expressed in the following equivalent form

P 0] |AT
— P+ [A; En,) {0 E] EJT <0 (4.23)

According to the Schur complement, the eq. (4.23) is rearranged in the following matrix inequality

P Ay  E,,
ET 0 -x-

Substituting A;; and E,,; in the above matrix inequality results in

—P A — LC; E, — LiF,,
AT T[T —p 0 <0
B~ FL" 0 i

Both sides of the above matrix inequality are multiplied by block diagonal matrix { Pt I I },
and results in

P00 —P Ay — LGy En —LF, | [P 0 0]
0 I 0||Af-crLr —p 0 0 I 0]=
0 o 1) |ET-FTL"T 0 -z Lo o 1
—1 P'A; — PT'L,C; P'E, — PTULF, | [P0 0]
AT —crrr —p! 0 0 I 0]=
ET—F,L" 0 ~z,! [0 0 1]
—p! P'A; — PT'LC; PTUE,, — PTULE,
AP - CTLI P —p! 0 <0
B P~ —F,TL,TP 0 ~z,!

Let X = P! and N; = X L;. Thus, the following LMI is obtained:

~-X XA;— NC; XE,, — N;F,,
ATX — CTNF ~-X 0 <0
ETX — F,TN," 0 e
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4. Attenuating stochastic disturbances based on TS fuzzy models

Substituting E,, = [E,, 0] and F,, = [F,, ] in the above LMI results in

~-X XA;— NC; XE,, —N;F,, —N,
AT'X — CTNF ~-X 0 0|,
EJSX — F,N," 0 —x,! 0 |
—NT 0 0 —x,

Therefore, the above LMI represents the optimization problem from eq. (4.22) as follows

max tr(X), subject to X >0

-X XA, — NC; XE, — N;F,, —N;
ATX — CTNT -X 0 0
i i < 0 4.24
ETX—EINT 0 _y o | SO @29
—NT 0 0 ~-x !
[ XA, — NiCi+] [XE,, — N;E, + |
—4X ‘A KA ] wsy 3 ’LUJ —NZ _ N
{XAj — N;C; ] {XEW N,F, ] J
ATX — CTN-T+}
i g -X 0 0
T T nrT
{ AjX =GN, < 0 (4.25)
ETX -FTNT4 .
wy wJ (3 0 _2 O
Ew{X A\ w
—N{ =N} 0 0 —x, 1
Vi < j

where
L= XN, and pP=XxX""!

It is clear, that in the formulation of eq. (4.24)-(4.25), the maximization of matrix X implies the
minimization of matrix P in eq. (4.22).

4.2.1 Residual Evaluation

To evaluate the generated residual and based on [21, 48|, the use of LMIs is the widely adopted ap-
proaches to calculate the threshold value .J;, > 0 and based on this, the following logic relationship
for fault detection is used:

lr(E)|lev < Juy = no alarm, fault-free
|lr(E)llev > Jin = alarm, a fault is detected

where the so-called residual evaluation ||7(k)||2,n is determined by:

I (k)llzv = | D 7T (R)r(k) (4.26)
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4.3 An application example

N a is discrete-time window. Since an evaluation of the signal over the whole time range is
impractical, it is desired that the fault will be detected as easy as possible. Based on eq. (4.13), it
follows

[ (B)ll2.n = llrn () + 7 (F)ll2.x (4.27)

where 7,(k) and r¢(k) are defined as:

(k)
ry(k)

r (k) =0 (4.28)
r(k)ln=0 (4.29)

Moreover, the fault-free case residual evaluation function is

[r(B)ll2.v < lralley < i (4.30)

where Jy, , = sup,,cp, ||7nll2,n. Therefore, the threshold Jy, is chosen as Jy, = Ji . Where Jy, is
constant and can be evaluated off-line.

To demonstrate the effectiveness of the proposed approach to minimize the expected value of the
steady state estimation error, the approach is applied to the vehicle lateral dynamic model.

4.3 An application example

The vehicle lateral dynamic model, which is represented by the so-called bicycle model [41, 54], it
is a linear parameter varying (LPV) system and it is approximated using the TS fuzzy model.

The continuous state space representation for the vehicle lateral dynamic model is given by

!

CaH +C¢’)¢V K lHCaH_lVCl CaV

B(t)- o - MUy R MUy 2 - Kd)R —1 B(t) MUy Kd)R *

L‘»(t) - zHCaHjva;V _l%,é’;erl%{CaH r(t) * lvé;v (OL(2) + s, (1))
- L z Izvref 2

ay(t)] _ [t lCenvCur] rgpy) G| 1 0] [, (1)

ki | o S G R T R o P N PN

where v,y is the varying parameter, 27 (t) = [37(t) rT(t)}T, u(t) = 65(t), w(t) = ng, (t), v1(t) =

ay r r

T
[nT (1) nT(t)] and y”(t) = [al (t) rT(t)}T. Using the numerical values from Appendix B, this
system can be written as follows:

. __144.034 58.8926 -1 52.802 52.802 0 0
|:l'1(t):| — Uref Ure{70981 |:l'1(t):| + Uref U/(t)+ Uref n(t)
(1) 20.859  —18L | o (r)] T |40.939 40.939 0 0
() —152.756 24831 ()] | [56 56 1 0
— Te t t
{yz(t)} 0 ] T Lo 0% g g 1) "W
T
where n?(t) = [ngL(t) n? (t) nz(t)] .
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4. Attenuating stochastic disturbances based on TS fuzzy models

In tab. 4.1 the typical sensor noise data for the vehicle lateral dynamic model are listed.

Sensor | Standard variation o ‘ Unit ‘
ns, o5, =3.5x1073 [rad]
Na, 0a, = 0.2 [m/s?]
ny Opn, =3.5x 1073 [rad/s]

Tab. 4.1: Typical sensor noise of vehicle lateral dynamic model

To obtain the TS fuzzy model, it is necessary to define two premise variables (each premise variable
represent in this case a varying parameter). The premise variables are defined as follows:

1 1
A= - al =

Matrices A(z(t)), B(z(t)), E,(z(t)) and C(z(t)) are expressed as follows:
[—144.034z(t) 58.8962(t) — 1 ~ [58.802z(1)
A1) = { 29.859 —170.98121(75)] ((t))_{ 40.939 ]
58.8022,(t) 0 0] {—152.756 62.46321(75)}

40939 0 0 Cla(t)) = 0 1

B0) = |

The computation of the minimum and maximum values of z(t) and z5(t) for v,..; € [5,55] m/s

are
max 2 (t) =2 =0.2 max z(t) = 2y =0.04
Uref Uref
min 2 (t) =2, =0.0182  min z(l) =2 =33 x 107"
VUref Uref

from the maximum and minimum values, z;(t) and z3(t) can be represented by
Zg(t) = F21<22<t)) -0.04 + F22<Z2<t)) - 3.3 X 1074

where:

FH(Zl(t)) + Flg(Zl(t)) =1 and FQl(ZQ(t)) + FQQ(ZQ(t)) =1

the membership functions are calculated as follows

21 (1) — 0.0182 0.2 — 2 (1)
PuGa) == gqgg—  Felal) = Tgggg

2(t) — 3.3 x 107* 0.04 — 29(1)
Fn(2a(t)) = =5 3567 Faa(a(t)) = =5 Ga567
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4.3 An application example

Each subsystem is discretized using 10 milliseconds as sample time, in order to have the TS fuzzy
model in its discrete form. The vehicle lateral dynamic model is represented by the following

discrete fuzzy IF-THEN rules:

Model rule 1

Model rule 2

Model rule 3

Model rule 4

Here

IF Zl(k?) is F11 and 22(]{3) is Fgl
THEN {

IF Zl(k?) is F11 and 22(]{3) is F22
THEN {

IF Zl(k?) is F12 and 22(]{3) is Fgl
THEN {

IF Zl(k?) is F12 and 22(]{3) is F22

THEN { z(k+1)= Ayx(k)+ Byu(k) + E, n(
y(k) = Cyz(k) + Dyu(k) + F, n(
[0.7512  0.0099 [0.0941]
- > Bl = ) En1 =
0.2181 0.7118 103598
[0.7486  —0.0072 [0.0901]
= ) BQ = ) Eng =
0.2178  0.7093 10.3594
[0.9761  0.0132 [0.0122]
= ) B3 = ) Eng =
10.2904 0.9714 10.4048|
~ [0.9727 —0.0095 B _ [0.0075] P
~10.2900  0.9680 |7 T [0.4043) 7 ™M
—152.76 12.49 —152.76
01,2—[ 0 1 ],03,4—[ 0

56 5 1 0
D172,374 = |: :| s Fn172,374 - |:0 0 1

0

0.04

Z@::1L2185><10‘5,21,::{ 0

z(k+1)= Ayx(k)+ Biu(k) + E, n(
y(k) = Ciz(k) + Diu(k) + F, n(k)

zv(k+1)= Aszx(k)+ Bsu(k) + En n(
y(k) = Csz(k) + Dsu(k) + F, n(

0

k)

z(k+1)= Ayx(k)+ Bau(k) + E, n(k)
y(k) = Cha(k) + Dou(k) + F, n(k)

k)

k)

k)

k)

[0.0941
0.3598

[0.0901
0.3594

[0.0122
10.4048

[0.0075

|

10.4043

1.13
1

1.2185 x 10—5]

O O OO O o o o

oo O o O o O O
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4. Attenuating stochastic disturbances based on TS fuzzy models

The defuzzification (that give the discrete TS fuzzy model) is carried out as

4

wk+1) = Y hi(=(k) [ vz (k) + Bru(k) + Enn(k) ]

y(k) = D hi(z(k)| Ciak) + Du(k) + Fun(k) |

where
hi(2(k)) = Fu(zi(k)) x Fai(z2(k))
ha(z(k)) Fii(21(k)) X Faa(z2(k))
hs(2(k)) Fia(z1(k)) x Fa(22(k))
ha(2(k)) = Fia(21(k)) x Far(22(k))

4.3.1 Simulation Results

The proposed approach to minimize the expected value of the steady state estimation error is
applied to the vehicle lateral dynamic model, where eq. (4.24)-(4.25) are used to make the mini-
mization of the expected value of the steady state estimation error for each output separately.

The following longitude velocity profile is considered for the v, s(k)

60

501

401

VoK) [MVs]
8 8

10

0 10 20 30 40 50
Time [s]

Fig. 4.1: Longitude velocity profile
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4.3 An application example

4.3.1.1 Lateral acceleration output

The gain matrices obtained for the lateral acceleration a,(k) output are:

;. _ [~0.00001 ~ [—0.00096 ~ [—0.00194 ~ [-0.00170
Y1 0.00243 | 72 | 000288 |0 P | —0.00321] 7 T | —0.00215]

An offset of 5 m/s? is considered as a sensor fault that appears from 48 to 50 s.

16

14+ 1
12+ 1

y

ay(k) [m/s?]

Estimated a_(k) [m/s?]

0 10 20 30 40 50 0 10 20 30 40 50
Time [s] Time [s]

Fig. 4.2: Lateral acceleration output Fig. 4.3: Estimated lateral acceleration
It can be seen in fig. 4.3 that the estimated lateral acceleration a,(k) attenuates the effect of the

stochastic noise. Using Ly norm as evaluation function and a residual evaluation window of 20 s.
for the lateral acceleration output, the obtained threshold value (.Jy,) is 1.608.

10

8F —lIr()I
-J

th

3+ detected at 48 s.

Evaluated residual signal [m/s?]
a1

0 10 20 30 40 50
Time [s]

Fig. 4.4: Evaluated residual for the lateral acceleration sensor

In fig. 4.4, the evaluated residual has exceeded the threshold value at ¢ = 48 s. Therefore, the
sensor fault can be detected.
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4. Attenuating stochastic disturbances based on TS fuzzy models

4.3.1.2 Yaw rate output

The gain matrices obtained for the yaw rate (k) output are:

~ [0.02435 ~ [0.02304 ~ [0.06409 ~ [0.05863
T 10.12236] 7 7% |0.11732| 7 77 0341730 % T |0.34753]

An offset of 10 °/s (0.1745 rad/s) is considered as a sensor fault that appears from 44 to 46 s.

04 0.4
0.35- 035"
0.3} _ 03
0
0.25¢ -('% 0.25-
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Fig. 4.5: Yaw rate output Fig. 4.6: Estimated yaw rate

As can be appreciated in fig. 4.6, the estimated yaw rate r(k) attenuates the effect of the stochastic
noise. Using Ly norm as evaluation function and a residual evaluation window of 20 s. for the yaw
rate output, the obtained threshold value (Jy,) is 0.027.
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Fig. 4.7: Evaluated residual for the yaw rate sensor

It can be seen, that the evaluated residual has exceeded the threshold value at ¢t = 44 s. Therefore,
the sensor fault can be detected.
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4.3 An application example

A scheme to minimize the expected value of the steady state estimation error for a class of nonlinear
systems described by the TS fuzzy model has been presented. The minimization is made using
LMT techniques for the solution of the problem.

The proposed scheme is applied to the vehicle lateral dynamic model. The simulation results for
the estimated lateral acceleration a,(k) and the estimated yaw rate (k) show that the effect of
stochastic noise is attenuated, and the applied faults can be easily detected.
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5. Fault detection observer for TS fuzzy systems

Chapter 5

Fault detection observer for TS fuzzy
systems

Robustness is the most fundamental problem in model-based fault detection. Based on this prob-
lem, the study of a robust fault detection problem, which aims at enhancing the robustness to
disturbances without sacrificing the fault detection sensitivity has received attention in recent
years [19, 79, 81|.

In this chapter, the robust fault detection observer using iterative linear matrix inequality (LMI)
algorithms [79, 81] is generalized for a class of nonlinear systems described by the TS fuzzy model.

These iterative LMI algorithms are implemented to design a robust TS fuzzy fault detection
observer (FDO). The objective of the FDO is to find a trade-off between maximizing the effect
of faults in order to increase the sensitivity to faults and minimizing the effect of disturbances in
order to enhance the robustness to disturbances.

In this design, two performance indexes need to be found, one of them is used to minimize the
effect of disturbances (7,) and the another one is used to maximize the effect of faults (~,). Both
of them have a dependence on each other, in which, a gain ratio is established, it is given by =, /7,.

Consider the following TS fuzzy model with influence of disturbances and faults and the model is
represented by fuzzy IF-THEN rules

Model rule 3

IF Zl(t) is Mil and ... and Zp(t) is Mip

{ B(t) = Aw(t) + Buult) + Fad(t) + Ey (1) (5.1)
THEN

y(t) = Ciz(t) + Diu(t) + Fad(t) + Fy (1)

where ¢ = 1, ... ,r and r is the number of fuzzy [F-THEN rules, M;; are fuzzy sets, 2 (t), ... z,(¢)

are premise variables, x(t) € R" is the state vector, u(t) € R¥* and y(t) € R™ are the input and
output vectors respectively, d(t) € R¥ is the disturbance vector and f(t) € R*/ is the fault vector.
Matrices A;, B;, Eq, Ef, C;, D;, Fy and Fy are known system matrices with appropriate dimension.

The defuzzified output of the TS fuzzy model in eq. (5.1) is represented as

(1) = hi(=(1) [Aix(t) + Byu(t) + Eqd(t) + Ey f(t)} (5.2a)
y(t) = D~ ha(=()) | Con(t) + Deult) + Fud(t) + Fy 1 (1)] (5.2b)

For this TS fuzzy model, there is a TS fuzzy observer given by fuzzy IF-THEN rules

55



5.1 Disturbance attenuation for TS fuzzy observer

Observer rule 2

IF 2 (t) is M;; and ... and z,(t) is M,,

) = Ai(t) + But) + Li(y(t) — (1)) (5.3)
HHER {w): Gy (t) + Dyu(t)

The defuzzified output of the TS fuzzy observer eq. (5.3) is represented as

T

i(t) = Z hi(2(1)) [Am?(t) + Biu(t) + Li (y(t) — @(t))] (5.4a)
9 = D hla(0)|Ciat) + D) (5.4b)

Define the state estimation error as e(t) = x(t) — &(t) and the residual vector as r(t) = y(t) — y(t),
then it follows from eq. (5.2)-(5.4) that

T

t) = D hi(a(0) | Aselt) + Bad(t) + Erf () = L ((t) — (1) (5.50)
r(t) = Y h=0)[Cielt) + Fad(®) + Fr (1) (5.5b)

The following sections show the design of a TS fuzzy observer for the disturbance attenuation
problem and for the fault sensitivity problem. Then the TS fault detection observer is formulated.
The objective of this FDO is to solve both optimization problems at the same time.

5.1 Disturbance attenuation for TS fuzzy observer

The effect of disturbances can be minimized by disturbance rejection with a TS fuzzy observer.
For this purpose, the continuous TS fuzzy model given by eq. (5.2) without the effect of faults
f(t) is considered

B(t) = Zh [ )+Bu<)+Edd<t)} (5.6a)

y(t) = Zh )] Cia(t) + Du(t) + Fad(t)] (5.6b)

where d(t) is the disturbance, the effect of disturbances on the residual signal need to be minimized.
A TS fuzzy observer is given by

i) = Zh )[4 (0) + Baut) + Ly (1) - 5(0))]

i) = Zh )| Cia(t) + Diu()]
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5. Fault detection observer for TS fuzzy systems

The disturbance rejection can be realized by minimizing v, subject to

|7a(t)])2
sup ol <y (5.7)
ldlazo 12 =

Suppose there exists a candidate quadratic Lyapunov function V;(e(t)) = €T (t)Pe(t), P > 0, and
v, > 0 such that, for all ¢,

Vi(e(t)) +rq ()ra(t) —v7d" (t)d(t) <0 (5.8)

for eq. (5.6a) and eq. (5.6b). The dynamics of the state estimation error is defined as follows

) = zzh $ ()| (A = LCy)e(t) + (Ea— LiFa)d(t)] (5.9)
ra(t) = Zh [ (t) + Fyd(t )] (5.10)

By integrating eq. (5.7) from 0 to T, it is obtained
T .
/ (Vale(®)) + i (tra(t) = 42" (1)d(@) ) de < 0 (5.11)
0

It is assumed that the initial condition for the state estimation error e(0) is 0, then eq. (5.12) is
obtained after the integration of eq. (5.11)

V) + [ (@t =2 @dto)) e < 0 (5.12)
Since Vi(e(T')) > 0, this implies
IOl _
. ="

Therefore the Lo gain of the TS fuzzy model is less than ~,. Considering the eq. (5.8), a LMI
condition is derived from this equation

T (t)Pe(t) + €' (t)Pé(t) + ry (t)ra(t) —72d" (H)d(t) <0 (5.13)

For the following part, z(t), e(t) and d(t) are expressed as z, e and d respectively.
¢’ Pe + eTPe + rd rq— 72de

_Zzh [TAT+dTEd]Pe+ZZh TP[AUeJrEdd]

=1 j=1 =1 j=1

+3°5 hi)hy (=) [(eTc} +d"FF) (Cje + Fdd)] —y2d"d (5.14)
i=1 jfl

== EYP+FIC; 21+ FFF |
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5.2 Fault sensitivity for TS fuzzy observer

where

Aij = Az — LZCJ and Edi = Ed — Lle

The following matrix inequality is obtained from eq. (5.14)

S i)y (2) [ ALP + PAy + CTC| S hi(2)|PEy, + CTFy
i=1 j=1 i=1

S hi(z) [E}{ P+ ET C,} —~2T + FI'F,
=1

<0 (5.15)

The matrix inequality given by eq. (5.15) can be rewritten as

SO hal2)hy ()

i=1 j=1

%(A};P + AL P+ PA;j; + PAj + CTCy + CJTCi) %(PEd”, + PEq, + CI'Fy, + CjTFdi)
L(ET, P+ EJ P+ FIC;+ FIC:) 2+ FTFy

Therefore, from the above inequality

V(BT P+ E] P+ FLC;+ FIC:) —7} + F{ Fy

The disturbance rejection can be achieved by solving the following optimization problem:

Problem 5.1 The observer gain matrices L; that minimize v, in eq. (5.7) can be obtained by
solving the following minimization problem based on LMIs

minimaize 712 subject to P > 0 and

ALP + PA; +CIC; PE,; +CT'Fy

= <0 5.17
EjP+FjC; =7+ FjF, (817
AGP + AjiP 4+ PAy + PAy + CTCy + C7Cy PE, + PEq, + CTFa + CTFa| _ (5.18)
EjP+Ej P+ F[C;+ F]C —27%] + 2F] F, -
1<

5.2 Fault sensitivity for TS fuzzy observer

Fault sensitivity can be achieved using a TS fuzzy observer in order to maximize the effect of
faults in the residual signal r(¢). The continuous TS fuzzy model given by eq. (5.2) without the
effect of disturbances d(t) is considered

B1) = D hl=() [Aix(t) + Bu(t) + E; f(t)] (5.19a)
u(t) = D hi(0)[Cialt) + Dault) + Fyf ()] (5.19D)
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5. Fault detection observer for TS fuzzy systems

where f(t) is the fault, the effect of faults on the residual signal need to be maximized. A TS fuzzy
observer is given by

i(t) = Zh [ )+Bu()+Li(y<t>—@(t))]

g<t>=2h 0)|Cia(t) + Diu(d)]

The fault sensitivity can be realized by maximizing v, subject to

it 77 ()l
Irllz20 || f(t)]]2

>, (5.20)

Suppose there exists a candidate quadratic Lyapunov function Va(e(t)) = e (t)Qe(t), Q > 0, and
v, > 0 such that, for all ¢

Va(e(t)) = rf ()re(t) + 2 f1 (D) () <0 (5.21)

for eq. (5.19a) and eq. (5.19b). The dynamics of the state estimation error is defined as follows

o) = 30 hC)h )| (A — LCelt) + (By — LiEY)f(1)] (5.22)

iljl

rpt) = Zh 0)|Cielt) + Fyf(1)] (5.23)
By integrating eq. (5.21) from 0 to 7', it is obtained
| (ate®) = om0 + 27w ) ) < o (5.21)

It is assumed that the initial condition for the state estimation error e(0) is 0, then eq. (5.25) is
obtained after the integration of eq. (5.24)

Ve + [ (=00 + 2 @50t < 0 (5.25)
Since Va(e(T')) > 0, this implies
Il
Foln ="

Therefore the £, gain of the TS fuzzy model is more than ~,. Considering the eq. (5.20), a LMI
condition is derived from this equation

¢ (t)Qe(t) + e (DQE(t) — ry(t)rp(t) + 7 f (1) () <0 (5.26)
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5.2 Fault sensitivity for TS fuzzy observer

For the following part, z(t), e(t) and f(t) are expressed as z, e and f respectively.
¢T Qe + eTQé — rTrf + ’yffo

_Zzh [TAT+fTEf}Qe+ZZh [AUB‘FEf,f]

i= 1] 1 i=1 j=1
=1 j=1
G ALQ + QA — CTC; QEy, — CT'Fy
=SS meme [ o) T | <o
P e EYQ-FFC; 2 FFF (IS

where

Aij = Az — LZC] and Efi = Ef — LZFf
The following matrix inequality is obtained from eq. (5.27)

>N hil2)hi ()| ATQ + QA — CTCy| Y hil2)|QEy, — CTFy
i=lj=1 i=1 <0 (5.28)

> hi(:)|ERQ - Ff G V21— FTFy

The matrix inequality given by eq. (5.28) can be rewritten as

o Y3 memG[A5Q+ad, ~cfe] Yne[er, -

D> hi(2)hi(z) | / <0

i=1 j=1 Z hi(2) {E;‘ZQ — F}‘FCZ} 7221 — F}‘FFf

Therefore, from the above inequality

L(ALQ+ ATQ+ QA + QAy — CTC; — CTCy)  4(QEy, + QEy, — CTFy — CTFy)
Y(BIQ+ EfQ - FIC; - FTCy) 22— FTFy

The fault sensitivity can be achieved by solving the following optimization problem:

Problem 5.2 The observer gain matrices L; that mazimize o in eq. (5.20) can be obtained by
solving the following maximization problem based on LMIs

mazximaize 722 subject to Q@ > 0 and

- <0 5.29

BLQ-FfC. 2 F]F (5:29)

ATQ+ ATQ + QAU + QA]Z q.TCj - CfCi QB +QEy, — CIFy —CTFy| _ (5.30)
i< j
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5. Fault detection observer for TS fuzzy systems

5.3 Robust TS fault detection observer

The TS fault detection observer aims to solve the disturbance attenuation and the fault sensitivity
problem at the same time, i.e. it is necessary to solve both optimization problems simultaneously.

They can be solved using iterative LMI schemes. In the following part is shown the generalization
of two iterative LMI schemes for linear systems for its use with TS fuzzy models. The first one is
taken from [79] and the second one from [81].

5.3.1 Iterative LMI scheme 1

For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observer
gain matrices L; such that

1. The state estimation error in eq. (5.5a) is asymptotically stable.

2. The fault detection “disturbance-signal” gain ratio

J=2
V2
is made small where v, > 0, 75 > 0 and
Ira(®)ll2 <, lld(8)]]2 (5.31)
75 ()ll2 > 7, Lf ()] (5.32)

where d(t) and f(t) are non-zero.

A solution scheme that leads to LMIs is that, by setting () = P in the fault sensitivity problem
5.2 given by eq. (5.29)-(5.30), the following optimization problem can be obtained

Problem 5.3 For given v; > 0, v2 > 0 and Fy of full column rank, state estimation error in
eq. (5.5a) is asymptotically stable and satisfies

Irallz _ > Jldll2

[FPREALL 53
if P> 0 and N; exists such that LMIs

ATP 4+ PA,— CTNT — N,C; + C'C; PE,— N;F,+ CTF,
{ ETP — FINT + FIC, 21+ rrE | <Y (5:34)
[A?P + Pf@' — CiNi_ szz - CiTCi PE; —2 NiFfT— CZ-TFf_ <0 (5.35)

ETP - FINI - FI'C, V21 — FTFy

[A;fP + PA; — CTNF — N,C; + CF Cfr] [PEd — N;Fy+ CIFy+]

ATP + PA; — CINT — N;C; + CT'C; —N,;Fy+ CI'Fy 0 (5.36)

T T N T T -
—F/N/ + F[C; !
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5.3 Robust TS fault detection observer

[AZTP + PA; — CJ.TNiT - N;,C; — CiTC’jJr} [PEf — N;Fy — CiTFf—i—
A]TP + PA; — CZ-TN].T — N;C; — CJ-TCi —N;Fy — CJ.TFf -0 (5.37)
ETP — FINT — FTC<+} N '
! U ;e 2v2 —2FTF
T AT T s s
hold, where N; = PL; and N;j = PL; and gain matrices are obtained as L; = P~IN;.

Based on this optimization problem, it is possible to construct an iterative LMI algorithm to
obtain a TS fault detection observer, given in the following schematic form.

Algorithm 5.1 Given system matrices A;, B;, Eq, Ey, C;, D;, Fy, Fy and let 1y > 0 and ps >0
be sufficiently small adjustable parameters. Set k = 0.

Step 1. Choose a sufficiently large v, and let v, = 0 and solve LMIs in eq. (5.34)-(5.37) to find
a feasible solution for P and N; where N; = PL;. Compute L; = P~'N; and store it as

Lo,. If Lo, cannot be found , then this algorithm does not give a feasible solution to the
problem. STOP.

Step 2. (Main iterative steps)

(a) Put k =k + 1 with

Y= > | Falls 7=+ e < | F

Find a feasible solution for P and N; for LMIs in eq. (5.34)-(5.37). Store L;, = P™'N;
and Jy = 7y, /7,. Repeat step 2(a). If a feasible solution can not be found, then L;, =
L;, ..

(b) If the performance v, /v, is less than some desired level, then a desired observer gain

L; = L;, is found. STOP.

LMIs in eq. (5.84) and eq. (5.36) are always feasible for sufficiently large v, > || Eq||. Furthermore,
the feasibility problems in step 2 are always solvable provided that step 1 is feasible and py and po
are sufficiently small.

5.3.2 TIterative LMI scheme 2

For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observer
gain matrices L; such that

1. The state estimation error in eq. (5.5a) is asymptotically stable.

2. The fault detection “disturbance-signal” gain ratio

_%
V2

Ji
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5. Fault detection observer for TS fuzzy systems

is made small where v, > 0, 75 > 0 and

lra()llz <7 [ld(@)]]2
¢ (®)ll2 > 7. £ @)l

where d(t) and f(t) are non-zero.

A solution scheme that leads to LMIs is that, the solution of both optimization problems allows

to obtain the following optimization problem

Problem 5.4 For given v; > 0, 72 > 0 and Fy of full column rank, state estimation error in

eq. (5.5a) is asymptotically stable and satisfies

[[7all2
I7¢1l2

if P>0, Q>0 and L; exists such that LMIs

EY'P—F]LIP+ FIC;

EfQ—-FfL{Q—-F[C;

[[ATP 4 PA; — CTLTP — PLiC; + CTCj+
ATP+ PA;j—CI'LTP - PL;C; + C] C;

ETP—FILTP+FICi+
—F]L7P+ F]C;

[[A7Q + QA — CTLTQ - QLC; — CLCy+
ATQ +QA; — CTLTQ - QL;C; — CT¢;

EfQ—F/LTQ—F[Ci+
—FILTQ - F{Cj

hold.

ATQ + QA; — CTLTQ — QL,C; — CTC; QE; — QLiFy — CTFy]

7 ldll
% 112

AP+ pPA, —CI'LTP - PL,C; + CI'C; PE;— PL;Fy+ CI'Fy

0
—*I+ FT'Fy -
<0
VeI — Ff Fy -
PE;— PLiFy+ CTFy+]]
—PLjF;+ ClF,
<o
—2v2 + 2F ] Fy
—QLjFy — Cl Fy
<0

T
27 — 2F[ Fy

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

Based on this optimization problem, it is possible to construct an iterative LMI algorithm to

obtain a TS fault detection observer, given in the following schematic form.

Algorithm 5.2 Given system matrices A;, B;, FEq, Ey, C;, D;, Fy, Fy and let iy >0 and pg > 0
be sufficiently small adjustable parameters. Set k =0, 1 = 0 and m € Z* to control the number of

computational loops.
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5.4 Design of the threshold

Step 1. Choose a sufficiently large v, =  and solve LMIs in eq. (5.41) and eq. (5.43) to find a
feasible solution for P and N; where N; = PL;. Compute L; = P~'N; and let v, = ¢ and

Y2 = 0.
Step 2. (Main iterative steps)

(a) Substitute L; into eq. (5.41)-(5.44) and find a feasible solution set of variables P, Q.
(b) Put k=Fk-+1. With P, Q) obtained in step 2(a) and with

Yo=% = > [l 7. = 4 pe < [[Fyl
find a feasible solution L; for LMIs in eq. (5.41)-(5.44). Store L;, = L; and Ji, = 7, /7,.
Repeat step 2(b). If a feasible solution can not be found, then L; = L;__,.

(c) If the performance v, /v, is less than some desired level, then a desired observer gain

L; =L, is found. STOP.

Step 3. Set l =1+ 1. If | <m, repeat step 2, else STOP (the feasible solution can not be found).

Step 1 is always feasible for sufficiently large v, > || Ey||. Furthermore, for given P and Q, matriz
inequalities in eq. (5.41)-(5.44) become LMIs and a feasible solution L; can always be obtained
provided that puy and ps are sufficiently small. Therefore, the feasibility problems in step 2 can
always provide a local improvement through each iteration.

5.4 Design of the threshold

After designing the TS fuzzy FDO, the remaining important task for robust fault diagnosis is
the evaluation of the generated residual. One of the widely adopted approaches is to choose a
threshold J;;, > 0 and, based on this, use the following logical relationship for fault detection

|7(t)||2 < Js = no faults

0.45
I (E) |2, > S = with faults = alarm (5.45)

where the residual evaluation function (REF) ||r()||2, is determined by

1F ()]s = Ut rT(t)r(t)dt} % RP— (5.46)

t1

T € (t1,1ts] is the finite-time window. Note that the length of the time window is finite, (i.e. 7
instead of co) because it does not make sense to detect faults over the whole time range. It is
assumed that the faults could be detected, if occurred, over the finite time interval.

By selecting eq. (5.46) as the residual evaluation function results in

()2 = lIra(t) + 75 ()2
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5. Fault detection observer for TS fuzzy systems

where 74(t) and r¢(t) are defined as

ra(t) = r(t)|s@)=0 77(t) = r(t)]aw=o

Furthermore, the fault-free case residual evaluation function is defined as

lr@)ll2r < llra®)llzr < Jina

where

Jina = sup ||[1a(t)||2,r
de Lo

The threshold is selected as Jy, = Jy, 4 and Jy, 4 is constant and can be evaluated off-line.

5.5 An application example

A nonlinear system [77| is used to implement the TS fault detection observer, the nonlinear system
is described by

0] = L ] o] s [55)a+ [] o
o] = L) + o] e+ [ 2] 70

it is considered that x1(t) € [—1, 1] and z5(t) € [—1, 1]. The above system can be written as

0 = Lo it ™ [ [ [

v = [o 1] =0+ 03 a0+ | 2] s

where 21 (¢)23(t) and (3 + z2(t))x}(t) are nonlinear terms. For the nonlinear terms are defined
z1(t) = a1()23(t) and zo(t) = (3 + x2(t))2%(¢) as premise variables. It follows

i) = {‘1 Zl_(ﬂ mw{ﬂ u(t)+[_0;4} d(t)+[ﬂ (1)

2(t)
v = [o 1=+ 03 a0+ | 2] s

Next, calculate the minimum and maximum values of z(t) and 2(¢):
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5.5 An application example

max z(t) =27 (t) =1 max 2o(t) = 27 (t) =4
e, a) =) =1 max () =)
min 2z (t) = 2z, (t) = —1 min  z.(t) = 25 (t) =0
21 (t),22(t) 1< ) 1 ( ) 21(t),2(t) 2( ) 2 ( )

From the maximum and minimum values of z;(¢) and 25(t)

a(t) = wi(t)z3(t) = Fu(z(t) - 1+ Fia(a(t) - —1
2(t) = (3+2(1)at(t) = Fau(2(1)) - 4 4 Fa(2(1)) - 0

where

Fu(zl(t)) + Fm(zl(t)) =1 and Fgl(ZQ(t)) + FQQ(ZQ(t)) =1

The membership functions can be calculated as:

Fula() = 25 Rt = -2
Fgl(ZQ(t)) = ZQit) FQQ(ZQ(t)) = 4_T22(t)

The membership functions are named “Positive”, “Negative”, “Big” and “Small”, respectively. Then,
the nonlinear system is approximated by the following TS fuzzy model:

Model rule 1

IF 2 (t) is “Positive” and zy(t) is “Big”
(t) = Ayx(t) + Biu(t) + Eqd(t) + Ef f(1)

THEN { y(t) = Cix(t) + Fud(t) + Frf(t)

Model rule 2

IF 2 (t) is “Positive” and z5(t) is “Small”
(t) = Asx(t) + Bou(t) + Eqd(t) + Ef f(1)

THEN { y(t) = Cox(t) + Fud(t) + Frf(t)

Model rule 3

IF 2 (t) is “Negative” and zy(t) is “Big”
i(t) = Asz(t) + Bsu(t) + Eqd(t) + Ef f (1)

HHERN {y(t)z Caz(t) + Fad(t) + Fy f(t)

Model rule 4

IF 2 (t) is “Negative” and z5(t) is “Small”
(t) = Asx(t) + Bau(t) + Eqd(t) + Ef f(1)

THEN { y(t) = Cux(t) + Fud(t) + Frf(t)
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5. Fault detection observer for TS fuzzy systems

Here

1 0 0.2 2
SN O I )

The defuzzification (that give the TS fuzzy model) is carried out as

4

i) = Y ha=(0) [Al-x(t) + Byu(t) + Eid(t) + E; f(t)}
u(t) = 3 h0)[Crlt) + Fad(®) + Fyf (1)
where
hi(2(t)) = Fu(zi(t)) x Fa(2(t))
ha(z(t)) Fii(21(t)) X Fag(2a(t))
hs(2(t)) Fia(21(1)) x Far(22(1))
ha(2(t)) = Fua(21(t)) X Faa(2(1))

For the above example, the TS fault detection observer is applied. The system was simulated with
a disturbance

d(t) = 0.3 cos (2t)e " (5.47)

and an actuator fault f(¢) such that

(5.48)

—0.08 5<t<10
1) = { 0  elsewhere.

In fig. 5.1 and fig. 5.2 are shown the simulated disturbance and the actuator fault respectively.

67



5.5 An application example
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Fig. 5.1: Disturbance signal Fig. 5.2: Actuator fault signal

5.5.1 Iterative LMI scheme 1

A numerical simulation for the iterative algorithm 1 was carried out using LMI tools from MAT-
LAB 7.0, where v, = 0.762 and v, = 2.183 so that J = ~, /v, = 0.349 was achieved. The following
gain matrices L; were obtained

L = [—635.96 —839.05] L — [—623.87 —842.51]
2501.8  3289.3 24544 3302.9

Ly = [—658.4 —963.62} = {—696.3 —918.3]
2590.1 3778.3 2738.5 3600.2

Fig. 5.3 shows a residual signal designed with a TS fuzzy observer that aims only to make the
disturbance attenuation and, a residual signal design with a TS fuzzy observer, that realizes the

fault sensitivity is shown in fig. 5.4.
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Fig. 5.3: Disturbance attenuation
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5. Fault detection observer for TS fuzzy systems

As can be seen from fig. 5.3, in the presence of faults and disturbances in the system, the TS fuzzy
observer can not detect the fault. In the case for a TS fuzzy observer that aims to achieve only
teh fault sensitivity, the effect of disturbances is difficult to differenciate from the fault in fig. 5.4.

The residual signal generated with a TS fuzzy fault detection observer for iterative LMI scheme 1
is shown in fig. 5.5

0.15

—r,®
- rz(t) U

0.1

0.05y

Residuals [ ]

0 5 10 15 20
Time [s]

Fig. 5.5: TS fault detection observer for the iterative LMI scheme 1
In fig. 5.5 a desirable fault detection behavior is achieved, i.e. despite the influence of an unknown

input, it is much easier to detect faults in comparison with the separated objectives in fig. 5.3 and
fig. 5.4. And for the design of the threshold was obtained Jy,, = 0.1088

0.5

—— REF with fault
0.451 - REF without fault |

- - -th

°
»
T

0.351

o
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o
()

Residual evaluation [ ]
o o
= N
(&1 (&)

o
=

0.05

0 5 10 15 20
Time [s]

Fig. 5.6: Residual evaluation for the iterative LMI scheme 1

Using the threshold for the evaluated residual allows to detect the fault in fig. 5.6 at 5 s.
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5.5 An application example

5.5.2 Iterative LMI scheme 2

A numerical simulation for the iterative algorithm 2 was carried out using LMI tools from MAT-
LAB 7.0, where , = 0.671 and , = 1.595 so that J = v, /v, = 0.4207 was achieved. The following
gain matrices L; were obtained

L= { 1.8993 —0.3783} L= { 2.1667 —0.6479}
—2.8515  8.1397 —5.6639  9.9531
 [85931  —5.2915 [ 1.5492  —0.8554

o {—22.547 22.68 ] T {—8.6154 11.789]

The residual signal for iterative LMI scheme 2 is shown in fig. 5.7

0.6 T T T
—n® —— REF with faults
r () . REF without faults
-- -0 o |
th

Residuals [ ]
Residual evaluation[ ]

-0.25 : ‘ ‘ 01 ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20

Time [s] Time [s]
Fig. 5.7: TS fault detection observer for the iterative Fiig. 5.8: Residual evaluation for the iterative LMI
LMI scheme 2 scheme 2

In fig. 5.7 a desirable fault detection behavior is achieved, i.e. despite the influence of an unknown
input, it is easier to detect faults. For the design of the threshold was obtained J;,, = 0.1145. The
fault in fig. 5.8 can be detected at 5 s.
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6. Fault diagnosis for systems with polytopic uncertainties

Chapter 6

Fault diagnosis for systems with polytopic
uncertainties

A nonlinear system can be represented by a linearization around some operating points, in this
form, a linear model for the nonlinear system is obtained. Through this linearization, part of the
dynamic of the nonlinear system is not considered due to assumptions that are necessary to make
in order to linearize the nonlinear system.

The use of polytopic uncertainty allows to use the unmodeled dynamic into the linear model.
That means, the design of the residual generator will contain more information about the nonlinear
system thanks to the polytopic uncertainty and therefore the performance of the residual generator
will be improved.

6.1 Problem formulation

Linear systems that consider polytopic uncertainties are normally described by the following state
space representation:

B(t) = (A+AA)(t) + (B + AB)u(t) + (Eq+ AE)d(t) + E;f(1)
y(t) = (C+ AC)x(t) + (D + AD)u(t) + (Fy + AFy)d(t) + Fy f(1) (6.1)

where polytopic uncertainties are defined as:

AA AB AE, _i 5[4 B Fa
AC AD AF;) &[G Dy Fy

l
S hi=1820i=1..,L
i=1

and z(t) € R" is the state vector, u(t) € R is the input vector, d(t) € R¥ is the disturbance
vector, f(t) € R¥ is the fault vector and y(t) € R™ is the measurement or output vector. A, B,
Eq, E¢, C, D, Fy,Fy and the matrices for the polytopic uncertainty are known system matrices
with appropriate dimensions.

The dynamic of a residual generator using FDF theory, and for systems with polytopic uncertain-
ties can be described by:

T I v S e o8 S NPV M PR LS PR

r(t) = V ([AC C] [""”e((?)} + ADu(t) + (Fq + AFy)d(t) + Fy f(t))
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6.1 Problem formulation

where the matrix L is called the observer gain matrix, and the matrix V' is a post-filter. In order to
compute matrices L and V, it is used a reference residual model together with the above dynamic
equation.

A reference residual model is an ideal solution for robust FDI under the assumption that no
disturbance or model uncertainty are present on the system [17, 32, 52, 86|. In such a form, that
an augmented system is obtained, where the dynamic of the reference model together with the
dynamic of the FDF is considered.

6.1.1 Reference residual model

The reference model is made under the assumption that there is no model uncertainty apart from
disturbances affecting the system. The basic idea behind such a reference model is the trade-off
between the robustness and fault detectability. The unified solution in [17], due to its optimal
trade-off, is adopted as reference model.

Consider the following linear system, which has no affectation of polytopic uncertainty and is
described by

(t) = Ax(t)+ Bu(t) + E4d(t) + Ef f(t) (6.2a)
y(t) = Cx(t) + Du(t) + Fud(t) + Fp f(1) (6.2h)

A FDF in its state space representation form is given by

#(t) = A#(t) + Bult) + Lo (y(t) — §(1)) (6.3a)
y(t) = Cz(t) + Du(t) (6.3b)
r(t) = Vouly(t) —9(t)) (6.3¢)

The dynamics of the FDF in the frequency domain is described by

M) = Nuls)d(s) + Ny()1(s) (6.4)
Nd<8) = V;)pt (Fd + C(S[ —A -+ LoptC)il<Ed — Lopth)> (65)
Nis) = Vi ((Ff L O(ST — At LoyC) N (Ey — Lopth>) (6.6)

The main objective is to find an observer gain matrix L, and matrix V,, such that the FDF is
stable and the robustness of r(s) against d(s) and the sensitivity of r(s) against f(s) are enhanced
at the same time. The unified solution is given by the following theorem from [17, 20|

Theorem 6.1 (the unified solution): Given the system described by eq. (6.2a)-(6.2b) and suppose
that the following assumptions are fulfilled

Al. The pair (C, A) is detectable;

A2. The matriz Fy has full row rank with F;F] =1;
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6. Fault diagnosis for systems with polytopic uncertainties

A—jwl E
AS. rank l d]w Fj =n-+m,
then, the unified solution
Lo = (EaF{ +YC)FF{)™ Vo = (FaF) 2 (6.7)

with Y > 0 as the stabilizing solution to the following Riccati equation

AY + YAT + E,E] — (E.F] +YCT) (FyF]) ™ (FuE] +CY) =0 (6.8)
delivers an optimal FDF in the sense of Yw, o;(Ny(jw)),i=1,--- ks

(B o
GACICL) N (69)
b T(5) ‘
with
i(5) = Vo Fy 4 CO6T = A+ LpC) By — Loy )

The reference residual model, obtained from the unified solution [17], is shown below:

iref (t) = Arefxref(t) + Efreff(t) + Edrefd(t)
Tref(t) = Crefxref (t) + Ffreff(t) + Fdrefd(t) (6]‘0)

where
Aref =A- Loptcu Efref = Ef - Lopth7 Edref =k — Lopth

C(ref = ‘/optcu Ffref = V;)pthu Fdref = ‘/opth-
6.1.2 Design of the augmented system

The augmented system given in eq. (6.11) includes the dynamics of the FDF for systems with
polytopic uncertainties, and the dynamics of the reference residual model.

Bolt) = (Ag+ AA)T(t) + (B, + AE,,)d(t)

Tref(t) —1(t) = (Co+ AC,)z,(t) + (Fo, + AF,,)d(t) (6.11)
with
0 u(t) Aves 0 0
wot) = | at) [ AW =|dB)|, AW=| 0 A 0 |, Co=|C 0 -VC]|
| e(t) £(t) 0 0 A—LC
_O Edref Ef'ref
E, = |B By By |, Fy=|0 Fu., —VFi Fy, - VF]
0 E4—LF; Ej—LF;
I 0 0 0 ;
AA, = Zﬁzfl@', A; =10 A; 0, AC, = Zﬁi@, C,=— {0 VC; 0]
=1 0 AZ — LCZ‘ 0 1=1
! [0 0 0 ;
AE,, = Z/BiEi7 E; = B; Ey, 0|, AF,, = Zﬂiph F; = [_VDi —VE; 0
=1 Bz — LDZ Edi — LF}[Z 0 =1
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6.1 Problem formulation

The residual generator design is formulated as

Find matrices L, V such that v > 0 is minimized, where ~ is given by
/ (Tref (1) — () (rpep(t) — r(t))dt < 72/ d*(t)d(t)dt (6.12)
0 0

The optimization problem given by eq. (6.12) as

i bject t
min 1 subject to

(Ao + A))T'P+ P(Ag+ A;) P(E,; +E;) (Co+Cy)T
(Eo; + E))TP I (Fo, + F)T| <0 (6.13)
(Cy +Cy) (Fo; + F) —~I

For some P > 0. In order to solve the optimization problem given by eq. (6.13), let

Pll P12 0
P=|Py Pp 0| >0 L=P;Y (6.14)
0 0 Py

then the eq. (6.13) becomes a LMI regarding to matrices P > 0, V and Y, as described by

Ni= N/ = [Njlrxr <0, i=1,...,1 (6.15)
where

A o 1" [Py P Pu Pl A 0 0

N11 _ ref 11 12 + 11 12 ref ’ N12 _ . -
0 A+ A Py1 Py Py1 Py 0 A+ A Az P33 — Cz Y

Nis = Py P 0 Ny = Py P Eq,.; Nps = P Pio| | Ey,.,

|Po1 Pl |B+ B Py1 Py| |Eq+ Ey, Py Poo Ey

C o
Nig = _C?‘f/T ; Nog = ATPs3 — CTYT 4 P33 A —YC, Np3 = Py3B; =Y D;

KA

Noy = P33(Eq + Eg,) — Y (Fyq + Fy,), Nos = PsgEf — Y Fy, Nog = —CTVT
N33 = —I, N3y =0, N35 =0, N3g = —DIVT Nyy=—I, Nj5=0
Nug = Fj  — (Fa+ Fy)"VT, Nss = =4I, Nsg = F{  —Ff VT, Ngg = —I

Based on this result, the optimal design of residual generators for systems with polytopic uncer-
tainties can be achieved using the following algorithm

Algorithm 6.1 [17]: LMI solution of eq. (6.12)
Step 1. Form a matriz N; = [Njx]rx7 <0, i =1,...,1

Step 2. Given v >0, find P> 0, Y andV so that
N; < 0.

Step 3. Decrease v and repeat step 2 until the tolerance value for the LMI algorithm is reached.
Step 4. Set L according to eq. (6.14).
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6. Fault diagnosis for systems with polytopic uncertainties

6.2 Threshold computation

Once the residual generator is obtained, the next task is to design a threshold in order to evaluate
the residual signal. For this purpose, consider the linear system with polytopic uncertainties,
disturbances and faults described by

i,(t) = (A +AA)2 () + (B, + AE,)d, () + By, f(t) (6.16a)
r(t) = (Cr+ AC,)z,(t) + (F, + AF)d,(t) + F,, f(t) (6.16b)
where
EO () A 0 B
w() = [e(t) () = [d(t) Ar=10 Ao 9T [O C}
B 0 Bi—LE) T | Bi—Lry] T 0 Ff By = Ey
l A0 !
AAT = ;/BZATH Ari = Az _ LCZ 0 ) ACT‘ - ;/8107‘17 Cri - |:Cz 0:|
Bz‘ Ed.

7

l
B; — LD; Eg, — LFy, " Z Biris Fr, i Ld;

l
AE, = Z/BiEn-a Eri =
i=1 i=1

where the matrix L is the one obtained by solving the optimization problem in eq. (6.13).

Theorem 6.2 [17] Given system in eq. (6.16) considering the polytopic uncertainties and vy > 0,
and suppose that x,.(0) = 0, then

(@)l < lldr (Bl (6.17)
if there exists P > 0 so thatVi=1,...,1,

(A + A)"P+ P(A, + Ay) P(Ep, +Er) (Cr+Cp)T

(Er, + E.)TP —~I (Fo,+F.)T| <0 (6.18)
(Cr + Cn) (Frd + Fn) -1
setting the matrix P as
P 0
P = >0 6.19
o (6.19)
yields
eq. (6.18) <= N; = N} = [Njr]sx5 <0, i = 1,....1 (6.20)
with

Ni = (AT + AP+ P (A+A;), Nio=Al'P,— CI'LTP,, Ni3 =P (B+ B,))
Ny =P (Eg+ Ey,), Nis=CL, Nog=ATPy, —CTLTPy + PyA — P,LC

Naog = PoB; — P,LD;, Noy = Po(Eq+ Ey,) — PaL(Fy + Fy,), Nos =CT

Nsz = —I, N3y =0, N35 = D], Nyy = —vI, Nys = F| + F, Ns5 = —~I

75



6.3 Application to the aileron positioning system

Suppose that d,.(t) is bounded by and in the sense of ||d,.(t)||, < dy2 + da2. The root mean square
(RMS) value of the residual r is defined by

1/2

r@lons = (5 [ Ireiear) (6:21)

|7(t)||rass calculates the average energy of r over the time interval (¢,¢+ 7). The RMS of a signal
is related to its L5 norm. In fact, it holds

1
()| rus < ﬁllr(t)lb (6.22)
Define
Jth,RMS = sup ”T(t)”RMS (623)
fault— free

as the threshold, then the detection logic becomes

lr)lems < Jinrms = no alarm, fault-free

|lr(t)llrmvs > Jin s = alarm, a fault is detected

Based on the Theorem 6.2 as well as the relation between the £, norm and the RMS eq. (6.22),
the following algorithm can be formulated:

Algorithm 6.2 [17]: Computation of Juy, ras2 for systems with polytopic uncertainties

Step 1. Solve the optimization problem
min vy subject to eq. (6.18).
for P >0 and set v* = arg(min )

*(04,2+0u
Step 2. Set Ju ryvs2 = MM*\/TM

6.3 Application to the aileron positioning system

The mathematical model of a civil aircraft primary flight control actuation system (Aileron posi-
tioning system) has been often discussed [5, 53, 78| as challenge to design FDI strategies.

6.3.1 Nonlinear model of the APS

The actuation system in an active-standby configuration behaves no linear [65]. Its dynamics is
represented in the block diagram of the fig. 6.1.
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6. Fault diagnosis for systems with polytopic uncertainties

F

Pas i €
___________ 1 l I
1 .
! l —»X
Xg —» Servovalve Vv P Piston ?
! QA,B X

Fig. 6.1: Block diagram of the actuation system

6.3.1.1 Electrohydraulic Servovalve

The modeled servovalve is formed by two stages, to transform the electric input signal in a hy-
draulic output signal. The first stage transforms the current i, received from the ACE into a
spool displacement y,, and its mathematical model is represented by a second order differential
equation

ysv + 25svwsvysv + wﬁ;ysv - ksvwﬁ;isv (624)

with d,, as damping coefficient, w,, as natural frequency and k,, as the servovalve gain and s,
and g, are the servovalve spool velocity and acceleration respectively.

The second stage is formed by a spool-sleeve assembly (fig. 6.2) with ideal zero-lapped control
edges which, with the aid of the supply pressure p., the tank pressure p,., the direction of the
spool movement ¥, and the pressures generated in the piston p, and p,, generate the flow rates
Q4 and @) which move the piston.

o st|ysv| V |ps _pA|Sign(ps _pA) for Ysv > 0
Q1= 0 (6.25)

for y,, <0

_ st‘ysv| V |pA _pT|Sign(pA - pT) for Yso < 0
Q2 = i (6.26)

for ys, >0

o st|ysv| V |ps _pB|Sign(ps _pB) for Ysv > 0
Q@3 = 0 (6.27)

for yg, <0

o st|ysv| V |pB _pT|Sign(pB _pT) for Ysv < 0
Qq = 0 (6.28)

for s, >0

with By, as the servovalve orifice constant. The system pressure p, = p, — p,.

2
st = O[Dﬂ'd\/j (629)
1%

where ap is the flow rate coefficient, md is the control edge length and p is the density of the
hydraulic fluid.
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6.3 Application to the aileron positioning system
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Fig. 6.2: Servovalve spool-sleeve assembly

0,

The flows Q4 and ), going to the cylinder chambers A and B fig. 6.2, are calculated by:

RQa=Q1— Q2 (6.30)
Qp = Q1 — Qs (6.31)
The sign function is described by:
—1 fore <0
sign(e) = 0 fore=0 (6.32)
0 fore>0

6.3.1.2 Cylinder dynamics

The pressure in the chamber of the cylinders in the active mode depends on the applied volume
flow Q4 and (Qp, on the external loads and on the movement in the piston. The movement of the
piston in standby mode have effect through the volume flow of the damping force.

The generation of the pressure in the active cylinder, without consider the internal leaks, is de-
scribed in the following continuity equations:

. Qa — Ap:bp
= F 6.33
Pa Vo+ | ApTmin | +Ap2, ( )
AT, —
p,=E vy = Qp (6.34)

Vo+ | Apimas | —Apz,

where FE is the oil bulk modulus, Vp is the dead volume of the cylinder, Q4 and Q5 are the flow
rates in the control edges, 4, is the piston speed, x, is the piston position and Ap is the piston
area, p, and p, are the pressure generated in the chambers A and B.

Vy A v,
2\ 2
. \
Joll |\ e
! \ | —> X,
x)r‘u'n (‘) xr‘nux

Fig. 6.3: Cylinder
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6. Fault diagnosis for systems with polytopic uncertainties

Under consideration of rigid fixation [36, 45], the Newton movement equation of the piston is given
by eq. (6.35).

myiy = Ap(p, —pp) — Fy — Fa— F, (6.35)

with m, as the piston mass, F; are the friction forces, F; the force of the effect reflected in the
active actuator caused by the parallel actuator in damping mode and F, represents the external
forces affecting the control surface.

The friction forces F'y can be modeled according to the Stribeck-curve [43]. The curve is described
by the superposition of three friction parts, static friction (f.), dynamic friction (f4) and viscose
friction (f,), shown in fig. 6.4.

f f A F
)‘Cp ).CP' ).CP'
a) Viscose b) Dynamic c) Static d) Superposition
Friction Friction Friction
Fig. 6.4: Types of friction
The following equation is obtained from the friction combination
Fy = fasign(i,) + fee ™l sign(i,) + fo, (6.36)

The dynamic friction (f;) depends on the sign of the piston velocity. The viscose friction (f,)
depends on the piston velocity. The static friction (f.) depends on the sign of the piston velocity
and will be constructed with growing piston velocity with the decrement 7.

At rest (i, = 0), only the static friction affects the system. For low ,, this friction is reduced
with the diminution of 757. The total friction for low velocities will be dominated by the dynamic
friction. As the velocity increases, the friction will be proportional to the viscose friction. For the
generation of the system only the viscose friction will be considered [37].

With the assumption of the incompressibility of the fluid used in the actuation system [45], the
influence of the standby actuator can be modeled by a quadratic damping equation:

3 3
Fa(ip) = duty | @ |= Cg#i’p |y |= CQZQ x'gsign(:i’p) (6.37)
q** D q*“*D

where C, is the flow coefficient of the standby actuator and Ap is the cross section of the damping
valve. The value of the turbulent damping d; is given by the manufacturer system description.
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6.3 Application to the aileron positioning system

6.3.2 Linearization of the APS

In this subsection the linearization of the nonlinear model for the aileron positioning system is
considered. In order to make the linearization is considered that, for the servovalve, it is only
necessary to linearize the mechanic to hydraulic transformation of energy in the servovalve.

Qow=0Qa1=0Qp = stysv\/% (Py — Apsign(ys) (6.38)

The Taylor’s series expansion for the flow @)y, is described below.

0Q sy IQ sy
st = st + =
(ysvop 7Apop ) 8ySU 8Ap

: (ysv - ysvop) + : (Ap - Apop) + NLtermS (ysv7 Ap) (639)

Apop ysvop

The piston centered position, i.e. hydraulic null, is chosen as operating point (op), so that zq =
Ysvgy = Ap,, = 0. Neglecting the nonlinear terms of eq. (6.39), the linearized flow equation is
presented below.

stlm = nysv + CpAp (640)

where C,, is the flow rate gain and C), is the pressure gain, A, = ps — pp. The values of (), and
C, are described below:

ast Pv
c, = = Bso\| = 6.41
Y 8ysv Apop 2 ( )
aQSU
= = 6.42
v (642)

Assuming that both cylinder chambers have the same volumes V4 = Vg = V around the piston
initial condition =y and that |A,%me:| = |ApZmin|, then they have the same hydraulic capacities
Cy, given by:

|A xmaa:| + VD V

Cu

Applying the Bernoulli’s continuity equation, it is possible to obtain Ap = pa — pp by subtracting
eq. (6.33) and eq. (6.34), and substituting eq. (6.43), so that:

L1
4, =& [QQSUM - 2Ap5c,,} (6.44)

Substituting eq. (6.40) into eq. (6.44), the linearized equation for the pressure difference is obtained
as:
20, 24,

A, =y, — =L 4
4 CHySU Cpr (6 5)

According to the Newton’s movement equation for the piston position

myi, = AyA, — F. — F, — F, (6.46)
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6. Fault diagnosis for systems with polytopic uncertainties

In order to make it linear, it is necessary to linearize the terms F,, F¢, and F),. I}, is set to zero
if the parallel actuator is in active mode. From F,, given in eq. (6.36), only the viscose friction f,
is considered [37|. It is now represented as a linear function, so that:

F,. = futp (6.47)

The quadratic law function, shown in eq. (6.37), can be linearized [38] by:
E

Plin

= dyiimanty = dinity (6.48)

The complete system is represented by the following linearized differential equations

. . 2 . 2 .
Ysv = —WeYsv — 25svwsvysv + ksvwsvlsv
P 20 2A, -
Ap - aysv - axp
o— ﬁ _ Ca _ (f’U+dl'Ln) y
Tp = o, Ay my TP m, TP

6.3.3 Model Uncertainties for the APS

When a nonlinear system is linearized, some information is lost through it. This lack of information
can be represented as uncertainties in the system. For the aileron positioning system two main
uncertainties can be considered. The first uncertainty appears in the linearization of the standby
actuator which is represented by a quadratic damping equation.

Fy = dt|¢p|ip (6-49)

According to [38], the quadratic damping equation can be linearized by

Fdlm = dti‘mami‘p = dlini‘p (650)
The linear and nonlinear response of the damping actuator are shown in fig. 6.5.

4

4% 10
ol —Nonlinear ,/',
---Linear .’
=3
0
©
L
210
4

915 -01_ 005 0 005 01 015
X, Piston velocity [m/s]

Fig. 6.5: Damping response
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6.3 Application to the aileron positioning system

It can be seen that the linear and nonlinear response coincide only in the origin and in its extremes,
which means that between this points there is an uncertainty. The second uncertainty comes from
the nonlinear equation for the flow Q,,

A
st(ysva Ap) - nysv\/l - (Fp‘%gn(ysv)) (651)

The linearization of the flow rate depends on the operating points used by the linearization.

st(ysva Ap)lin = nysv + C1pAp = Uy¥Ysv (652)

However for the purpose of linearization, an operating point is chosen. The linearization will touch
the nonlinear response only in the point where it is linearized. For this work an operating point
of A, =0 is chosen. It means that the linearization will touch the nonlinear function only at the

beginning and from there it will be linearized as a straight horizontal line. This can seen in the
fig. 6.6.

Load Flow Rate (9)

0 0.5 1 1.5 2
Pressure leferenceﬁp % 10’

Fig. 6.6: Flow rate

The uncertainties presented above affect the system matrix A and consequently the uncertainty
matrix Ay is defined as:

00 0 00
0 %5 0 00

Ag=10 0 0 00 (6.53)
0 0 2% 00
00 0 00
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6. Fault diagnosis for systems with polytopic uncertainties

This kind of uncertainties are of the polytopic type because they are denoted by a convex set that
depends of different operating points.

AA 00 LA 00
[0 oo]zz@[o 00}725@:1752‘20 (6.54)
i=1 1

For the polytopic uncertainties were chosen 5 operating points. The corresponding values for A
and A, in each operating point are shown in tab. 6.1.

i] A Ay
1| —14227 | 0.09794
2 | —78533 | 0.05084
3| —128614 | 0.02524
4| —185418 | 0.00714
5 | —229773 | 0.00074

Tab. 6.1: Polytopic uncertainties

The state space representation of the linearized model is given by

Giso —200Wsp 0 ,wsg 0 0 Vsv ksyw o 0 0 O k/‘svwsi 0 O
iy 0 —Ltd g fe e |y, 0 —-L 00 0 0 0
i 24, 2C
4y 0 -ZE T 00 Ay 0 0 00 0 00
Tp 0 1 0 0 0 Tp 0 0 0 0 0 0 0
Ysv
i
n 000 1 07]|™| o10],[010
= Sv d
{yg} [00001y+001+0 1|/
AP
Tp

where y,, and ys, are the servovalve velocity and position respectively, A, the pressure difference,
%, the piston velocity, and z, the piston position. There are two sensors available, one sensor
measures the piston position x,, and the other one measures the pressure difference A,. The input
u(t) is constituted by a current 7,,, which changes according to a command input. A variable and
unknown but bounded disturbance d(t) affect the system all the time. The fault vector f(¢) = [f%
fgp fi]T is formed by additive faults that can occur in the actuator f4, or in each of the available
sensors, f,, and fa,.

The matrices for the linear mathematical model of the aileron positioning system are calculated
with the numerical values given in appendix B and they are
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6.3 Application to the aileron positioning system

[ —884.7 0 —3.06 x 105 0 0 -
0 —36244 0 12.19 x 1074-26.28 33973
0
A 1 0 0 0 0 B=| o
0—3.29 x 1010 4.96 x 102 0 0 0
0 1 0 0 0 L 0
i (33973 00 ] .
0 00
00100 01 0
Er= 000’0:00010]’d_[001’
0 00
0 00]

6.3.4 Simulation results

0
—0.143

, Ba= 0
0

0
o]0t 0]
7710 0 1

o O O o O

o O O O O

Solving the algorithm 6.1 give us the solution of the Riccati equation eq. (6.8). The values of L,

and V,,, are

0 0
—6.79 x 107 0
0 0
66889  —2.03 x 107
| —2.03 x 1076 0

) ‘/opt

1o 3]

(6.55)

The matrices for the solution of the optimization problem given in the step 2 of Algorithm 6.1

are

1.0932
v 093

and v = 1000.

B 9.
=262 x 107

[3.78 x 106
62 x 105 —95.114
L6 | L= 23058
' 5.57 x 10!
| 24.676

113.09
—0.154
5.47 x 1073
1.68 x 107
199.98

(6.56)

In order to show the performance improvement of the residual generator with polytopic uncer-

tainties, this residual generator is compared against a residual generator without the polytopic

uncertainty.

First, the residuals for the pressure difference A, sensor are shown. Fig. 6.7 shows the residual

signal without considering the polytopic uncertainty and fig. 6.8 shows the residual generator

considering the polytopic uncertainty.
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6. Fault diagnosis for systems with polytopic uncertainties

05X 10 05X 10
0 0 |
-0.5 -0.5 T/
-1F -1
T =
Q, -15¢ a,-15
S o e
3 3
O 25+ 8 -25
[v4 o
_37 _3,
-3.51 -3.5
-4 -4+
45 ‘ ‘ ‘ ‘ ‘ ‘ 45 ‘ ‘ ‘ ‘ ‘ ‘
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [s] Time [s]
Fig. 6.7:r, without polytopic uncertainties Fig. 6.8: 7, with polytopic uncertainties

The residuals for the piston position z, sensor are shown below, fig. 6.9 shows the residual signal
without considering the polytopic uncertainty and fig. 6.10 shows the residual generator consid-
ering the polytopic uncertainty.

x10~ x 10

Residual [m]
Residual [m]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time [s] Time [s]
Fig. 6.9: r, without polytopic uncertainties Fig. 6.10: r, with polytopic uncertainties

It can be seen that the residual signals, which considers polytopic uncertainties deliver a smaller
transient in comparison to the one that does not consider the polytopic uncertainty.

Threshold design

The observer gain matrix L (from eq. (6.56)) is used for the computation of the threshold. It is
assumed that d,2 is 0.225 because the disturbance is unknown but bounded and the evaluation
window (T) is 5 s. The computed values that solves the Algorithm 6.2 are:

v =09

and for the step 2

J 0.9 (0.225 + 6,.2)
th,RMS2 —
T Vb
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6.3 Application to the aileron positioning system

The value of ¢, is calculated on-line, because it depends on the characteristics of the input. In

fig. 6.11 both the RMS value of the residual and the corresponding threshold are shown, where
an actuator fault f4 occurred at ¢t = 3 s.

1.2+
— "l
1F ==y s 2
i
= 0.8+
S
=]
2 0.6t
[hd
0.4r detected at 3.88 s.
0.2
0 ‘
0 1 2 3 4 5

Time [s]
Fig. 6.11: Evaluated residual for the actuator fault

As can be seen, the RMS value of the evaluated residual surpasses the corresponding threshold at
t = 3.85 s. Thus, the actuator fault f, is detected.

Fig. 6.12 shows the RMS evaluation of the residual signal and the corresponding threshold, where
a fault in A, sensor occurred at ¢t = 3 s.

0.25

—IIrll
0.2r -

RMS

th,RMS,2

L 0.15}
detected at 3 s.

Residual [
o
[

0.05F

Time [s]

Fig. 6.12: Evaluated residual for fault in A, sensor

It can be seen that the computed threshold contains the disturbances but allows the detection of
the sensor fault fo, at t =3 s.
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6. Fault diagnosis for systems with polytopic uncertainties

Fig. 6.13 shows the RMS evaluation of the residual signal and the corresponding threshold, where
a fault in z,, sensor occurred at t = 3 s.

0.8

o
3

—IIrll

B "Jrh.RMS.z

RMS

o
[=2)
T

Residual [-]
o o
N

o
w
:

detected at 3.8 s.

Time [s]

Fig. 6.13: Evaluated residual for fault in z, sensor

As can be seen, the RMS value of the evaluated residual surpasses the corresponding threshold at
t = 3.8 5. Thus, the sensor fault f, is detected.
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Chapter 7
Conclusions and future work

Two multiple-model approaches have been studied in this thesis in order to give a better perfor-
mance in fault detection and isolation for nonlinear systems. Multiple-model approaches have an
advantage over linear approaches. They incorporate more information about the nonlinear system
in comparison to one linearization. The first approach of this scheme is the TS fuzzy model and
the second is the linear system with polytopic uncertainties.

In chapter 3, the unknown input observer for TS fuzzy systems (TS fuzzy UIO) for a class of
nonlinear systems is presented. This observer is an extension from the linear case studied in [17].
A robust sensor fault isolation scheme [12]| based on the TS fuzzy UIO is also considered.

An example is used to demonstrate the functionality of the developed TS fuzzy UIO. The goal
of this observer is to decouple unknown inputs from the nonlinear system. The simulation results
show that the unknown inputs are decoupled from the system by delivering a residual signal free
of unknown inputs. Moreover, the robust fault sensor isolation scheme makes possible to isolate
the sensor faults appearing in the system.

Chapter 4 considers the discrete version of the TS fuzzy model with the influence of stochastic
noise in order to design a residual generator. The design of the residual generator is made using a
LMTI optimization approach, in order to minimize the expected value of the steady state estimation
error and the effect of the noise is reduced in the residual signal.

To demonstrate the effectiveness of this approach, the vehicle lateral dynamic model is considered,
and the results show that the stochastic disturbance is indeed reduced. Therefore, the proposed
approach attenuates the effect of the stochastic disturbance and increases teh detection rate of
faults.

In chapter 5 the robust fault detection observer for TS fuzzy systems has been applied. In this
design two performance indexes were found. The first one is used to minimize the effect of dis-
turbances and the another one to maximize the effect of faults. Both optimization problems are
solved simultaneously using iterative LMI.

Both performance indexes have a dependence on each other, in which, a gain ratio is established.
The gain ratio is the division of the performance index for disturbances between the performance
index for faults.

Two schemes are proposed in order to solve the problem of robust fault detection. The first scheme
consider that both optimization objectives are considered to have the same stability matrix in
the sense of Lyapunov. In contrast, stability matrix of each optimization objective is considered
individually for the second scheme. Simulation results of the proposed schemes have shown that
a desirable fault detection behavior is obtained. Moreover, it is much effective to detect the fault
despite the influence of the unknown inputs.

Chapter 6 presents the use of polytopic uncertainty for the design of a residual generator and its
correspondent threshold. In this approach, the design of the residual generator will contain more
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information about the nonlinear system in the form of the polytopic uncertainty and therefore the
performance of the residual generator will be improved. A reference model is considered in order
to construct an augmented system, where the generated residual is compared with a reference
residual.

This approach has been applied to the aileron positioning system, and simulation results shown
that this fault detection scheme improves the generated residual signals, by reducing the transient
magnitude compared with one without polytopic uncertainty.

Future work

Problems related with varying matrices C' and E; (they depend on the states) in the TS fuzzy
UIO should be studied in the future work. This will allow to implement also robust actuator
fault isolation schemes for the TS fuzzy UIO. Another topic for further research is an integrated
solution for nonlinear systems represented by TS fuzzy model, which are affected by deterministic
and stochastic disturbances.

Another point is to consider stability in the sense of Lyapunov for each linear system in TS fuzzy
model instead of the common Lyapunov stability. One of the approaches that considers this topic
is the Lyapunov function described by fuzzy IF-THEN rules.

Each TS fuzzy rule has fuzzy sets in the antecedent part and quadratic Lyapunov functions in the
consequent part. A generic rule for the Lyapunov function can be written as follows:

Rule ¢ for the Lyapunov function

IF 2 (t) is M;; and ... and z,(t) is M, -
THEN V (z(t)) = 27 (t) Pa(t) (7.1)

This can be expressed as
T

V(w(t) = Y hi(z(t))a" (8) P (t) (7.2)
i=1
This approach has been done recently in some FDI approaches for TS fuzzy systems but only in the
discrete case, the extension to continuous cases can be considered. Actually, the continuous version
for this fuzzy Lyapunov function implies the derivative of the membership function and this is not
straightforward to obtain. This option could be a good alternative because the conservatism for
TS fuzzy models can be reduced.

The topic for residual generation in linear systems with polytopic uncertainty is very interesting.
It can be also extended to other fault detection and isolation problems, considering the reference
model proposed by [17].
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Appendix A

Mathematical tools

A.1 Norms for continuous and discrete systems

Norms for continuous and discrete systems are shown in the table given below

‘ System type ‘
‘ Norm H Continuous ‘ Discrete ‘
Ly > / |ri(t)] dt > <Z |n-<k:>|>
i=1 Y0 i=1 \k=0
- 12 - 1/2
L, ( / rT(t)r(t)dt) <Z rT(k)r(k:)>
0 k=0
Lo sup max |r;(t)] max |7 (k)|
T—oo v
LT 1/2 | 1/2
Lrms (— / rT(t)r(t)dt) = T (k)ri(k)
T J, N &=

Tab. A.1: Norms for continuous and discrete systems

A.2 Schur complement

The Schur complement of a block of a matrix within a larger matrix is defined as follows [87].
Suppose that A;; € R™ > ™ Ay € R™MX™ ) Ay € R™*™M | Agg € R™*™ and Ags is nonsingular.

Let
Aqy Aﬂ
A= Al
[Am Ago (A1)

so that A € Rm+n2)x(m+n2) Then A has the following decomposition:
A11 A12 _ I A12A521 A 0 I 0 (A 2)
A21 A22 0 I 0 A22 A2_21A21 I ’
with A = A;; — A12A2_21A21, and A is nonsingular if and only if A is nonsingular. Dually, if A;; is
nonsingular, then
|:A11 A12:| o |: I 0:| All 0
Ay Ag An A 1

I AAp,
0 A

o (A.3)
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with A = Agy — A21A1_11A12, and A is nonsingular if and only if A is nonsingular. The matrix

~

A(A) is called the Schur complement [84] of Agy(A;;) in A.

A.3 Relaxed stability analysis for TS fuzzy ob-
server

As has been shown in subsection 2.2.1, the stability analysis of a TS fuzzy observer is reduced
to a problem of finding a common P. If the number of rules (r) is large, it might be difficult to
find a common P satisfying the conditions of Theorem 2.1. This subsection presents new stability
conditions from |74, 77| by relaxing the conditions of Theorem 2.1.

Theorem A.1 contains the relaxed stability conditions. But first, the following lemmas are needed
to prove Theorem A.1.

Lemma A.1

T

S — 5 3 Y 2l hyo(0) 2 0

where

Proof. It holds since

>one) - Tilgg%i(z(t))hj(z(t)) > 0
= LSS hem ) 2 o0
: ] Q.E.D.

Lemma A.2 If the number of rules r that fire for all t is less than or equal to s, where 1 < s <r,
then

S0 - 5 Y 20y (x(1) 2 0

i=1 i<j

where

Theorem A.1 [7/]: Assume that the number of rules r that fire for all t is less than or equal
to s, where 1 < s < r. The equilibrium of the continuous fuzzy system described by eq. (2.14) is

92



A. Mathematical tools

globally asymptotically stable if there exist a common positive definite matrix P and a common
positive semidefinite matriz () such that

A+ A\ T Ay + Aji
(%) p_,_p(%)_Q <0 i<y (A5)

for all i and j with the exception of the pairs (i,7) so that h;(2(t))h;(2(t)) =0, for allt and s > 1
Proof: Consider a candidate of Lyapunov function V(e(t)) = e” (t)Pe(t), where P > 0. Then,

V(e(t)) = éTPe(t) + e (t)Pé(t)

= 23 ety ()T () (A = L) P+ P (A = LCy) et

= Z h2(z ) [ALP + PAy] e(t)
D3 Z o GO | () pp (A A gy
From eq. (A.5) and Corollary A.2, it follows
Vie(t)) < Zh2 [ATP+ PA”] +Zl ;jm(z(t))hj(z(t))eT(t)Qe(t)
< St [ AP+ PG ) + 5= ) RGO 00ty
- Z h2(z [ AZP+ PA; + (s — 1)Q Je(?)
O.E.D.

if eq. (A.4) holds, then V(e(t)) < 0 at e(t) # 0. Then, from the relaxed stability conditions of
Theorem A.1, the design problem to determine the gain matrices L; can be defined as follows

Find P>0,Q >0and N; (i =1, 2, ..., r) satisfying

ATP + PA, — CI'NF = NG+ (s —1)Q < 0
ATP+ PA;+ ATP+ PA; — CIN/ — NiC; — CI'N] = N;C; —2Q < 0 Vi<j
where

The above conditions are LMI with respect to variables P, () and N;. It can be find a positive

definite matrix P, a semi positive definite matrix () and a matrix N; satisfying the LMI’s or
determine that no such P, () and N; exist.
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A.4 LMI and convex optimization techniques

Linear matrix inequalities (LMI) and convex optimization techniques (COT) are basic tools uti-
lized not only for stability analysis of Takagi-Sugeno fuzzy systems but also for the computation
of gain matrices and other performance indexes for Takagi-Sugeno fuzzy observers.

A.4.1 Convex optimization techniques

Many important problems for fault detection and isolation theory can lately be solved numerically
by reformulating them as convex optimization problems with a linear objective function and LMI
constraints [8].

LMIs are an important class of convex constraints. For their solution, the so-called interior-point
methods are applied. Nowadays, there are software toolboxes available to solve numerically many
FDI problems such as LMI Lab for MATLAB [33, 34].

The main strength of LMI formulations is the ability to combine diverse design constraints or
objectives in a numerically tractable manner.

A.4.2 Linear Matrix Inequalities

A linear matrix inequality has the form

m
Alp) = Ao+ piAi <0 (A.6)
i=1
where
® p=[p1,p2, ..., Dm] is a vector of m variables or parameters, called also decision or optimiza-
tion variables.
o A, = AT e R™" for i =0,1,...,m are given constant symmetric matrices.

e the inequality “< 0” in eq. (A.6) means that A(p) is a “negative definite matrix”. That is,
uTA(p)u < 0 for all non-zero real vectors u. Because all eigenvalues of a real symmetric
matrix are real, the eq. (A.6) is equivalent to say that all eigenvalues A\(A(p)) are negative.
Equivalently, the maximal eigenvalue \,,q..(A(p)) < 0 [67].

e its solution set, called the feasibility set, is a convex subset of R™, and

e finding a solution p to eq. (A.6), if any exists, is a convex optimization problem.

Convexity has an important consequence: despite the fact that eq. (A.6) has no analytical solution
in general, it can be solved numerically with guarantees of finding a solution when one exists. If
no solution can be found, the corresponding optimization problem is referred as infeasible [44].
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A.4.3 Standard LMI-problems

Some standard problems with respect to solving LMI-constraints in order to solve the optimization
problems in this work are listed below [44].

1. Finding a solution p to the LMI system

A(p) <0 (A7)

is called the feasibility problem. Given the LMI in eq. (A.7), the corresponding feasibility
problem is to find p/*** such that A(p’***) < 0 or to determine that the problem is infeasible.

2. Minimizing a convex objective under LMI constraints is also a convex problem. In particular,
the linear objective minimization problem:
minimize ¢’ p over p subject to A(p) < 0.
plays an important role in the LMI-based design.

These LMI problems allow us to determine whether the problem is either infeasible or to
obtain a feasible solution with the corresponding optimal objective values having prescribed
accuracy.

In this thesis, all LMI-related computations have been solved using the MATLAB LMI Lab [50].
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Appendix B

System parameters

Aileron positioning system

Scalar  Value Units
A, 8.54 x 1072 [m?]
¢ 90 x 10° [N/m
o 78.3 x 10° [N/m]
Frae 170.7 x 103 [N]
Dy 205 x 10° [Pal
Dy 5 x 10° [Pal
Dy 200 x 10° [Pal]
Tpan 0.038 [m]
, [~ Tppaes Tpma] 1]
Vehicle lateral dynamic model
Scalar  Value Units
C,, 103600 [ N/rad |
Court 179000 | N/rad |
g 9.81 [ m/s? ]
ir 18 [ -]
I, 3870 [ kg -m? |
Iy 1.52931 [m ]
In 1.53069 [ m |
Ky, 0.9429 -]
m 1850 [ kg |
MNR 220 [ kg |
mp 1630 [ kg |
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