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Abstra
tAbstra
t
The ever-in
reasing 
omplexity of te
hni
al pro
esses requires a higher performan
e, safety andreliability. For this reason, fault dete
tion and isolation (FDI), whi
h 
onsists of residual generationand residual evaluation, has re
eived more attention in the last years. Most te
hni
al pro
essesare represented by a nonlinear system; however it is possible to apply FDI te
hniques only for afew 
lasses of nonlinear systems.In the last years, the idea of using an aggregation of lo
al models (multiple-models), as a means to
apture the global dynami
 
hara
teristi
s of nonlinear systems, has been su

essfully integrated inthe �eld of FDI. These multiple-models have been used as an alternative for dealing with nonlinearsystems. An advantage of using multiple-models for FDI is that the theory for linear systems 
anbe used for nonlinear systems.This thesis mainly fo
uses on the design of robust FDI s
hemes for nonlinear systems usingmultiple-model approa
hes. The 
onsidered approa
hes are (i) the Takagi-Sugeno (TS) fuzzy model(ii) linear systems with polytopi
 un
ertainty.Three robust FDI s
hemes based on TS fuzzy models are presented. The �rst s
heme generalizesthe linear unknown input observer to a 
lass of nonlinear systems des
ribed by TS fuzzy models.The obje
tive of this s
heme is to de
ouple the unknown inputs for residual generation. The se
-ond s
heme handles nonlinear systems a�e
ted by sto
hasti
 disturban
es; this s
heme minimizesthe expe
ted steady state estimation error using linear matrix inequality (LMI) te
hniques. Thelast one simultaneously enhan
es the robustness to unknown inputs without sa
ri�
ing the faultdete
tion sensitivity.For linear systems with polytopi
 un
ertainty, a robust fault dete
tion �lter is designed 
onsideringa referen
e model. The residuals 
an be evaluated with a threshold based on this �lter.The e�e
tiveness of ea
h proposed robust FDI s
heme is demonstrated with the help of fourappli
ation examples.

xiii





1. Introdu
tionChapter 1Introdu
tionTe
hni
al pro
esses have be
ome more and more 
omplex. For this reason, an in
reasing level ofautomation is required.Consequently, it is desired to have higher performan
e, availability, reliability and se
urity in thesepro
esses. In order to ful�ll these desired requirements, it is ne
essary to avoid malfun
tions, whi
hare normally 
aused by a fault in one of the pro
ess 
omponents.To better understand se
urity of pro
esses, it is ne
essary to know the 
on
ept of �faults�. Afault in a pro
ess is de�ned as an unpermitted deviation of a least one 
hara
teristi
 property orparameter of the system from the standard 
ondition [42℄. Faults 
an be dete
ted and also isolatedwith the implementation of fault dete
tion and isolation (FDI) approa
hes.However, most te
hni
al pro
esses are often represented as nonlinear systems due to their 
om-plexity, whi
h leads to di�
ulties when FDI te
hniques are applied to the pro
ess. For this reason,only a few 
lasses of nonlinear systems are 
onsidered in the literature of FDI [3, 4, 14, 16, 46℄.Instead of using the nonlinear system for FDI, some simpli�
ations and assumptions of a quanti-tative mathemati
al model are 
onsidered. Commonly, these refer to the redu
tion of the dynami
order and/or the linearization of the pro
ess behavior.One of the most popular means to linearize a nonlinear system is Taylor series approximation[9, 56℄. On
e the linear model is obtained, it is possible to apply FDI approa
hes for linear systems[17, 18, 22, 26, 80℄.Linearized systems only work properly around the operating point where the nonlinear systemwas linearized. For this reason, 
onventional analyti
al linear models are not a

urate enough toa
hieve an e�e
tive FDI. For these reasons, 
onsidering multiple-models are gaining more attentionin the �eld of FDI [40, 61℄.Multiple-model approa
hes, as its name says, use multiple linear models to approximate the be-havior of the nonlinear system. They provide a mathemati
al framework to analyze a 
omplexnonlinear system using a set of simple models (generally linear or a�ne models) valid in di�erentstate spa
e regions of the nonlinear system.In this thesis, two multiple model approa
hes have been 
onsidered in order to 
onstru
t a residualgenerator based on linear FDI theories. The �rst approa
h is an approximation of nonlinear sys-tems, by means of the Takagi-Sugeno fuzzy model, the se
ond approa
h 
onsiders linear systemswith un
ertainty of the polytopi
 type.A Takagi-Sugeno (TS) fuzzy model uses multiple linearized models to approximate the behaviorof nonlinear systems. These models are des
ribed by fuzzy IF-THEN rules whi
h represent lo
allinear input-output relations of a nonlinear system.The main feature of a TS fuzzy model is that the lo
al dynami
s of ea
h fuzzy impli
ation (rule)is represented by a linear model. The overall fuzzy model of the system is a
hieved by a fuzzy1



1.1 State of the art�blending� of the linear models.On the other hand, linear systems with polytopi
 un
ertainties are basi
ally 
onstituted by twoparts, the �rst part is given by the linearization of the nonlinear system around an operating pointand the se
ond part is 
onstituted by the polytopi
 un
ertainty of the system.1.1 State of the artIn this se
tion the development of fault dete
tion and isolation (FDI) and the related methodsin the past few years for TS fuzzy models and linear systems with polytopi
 un
ertainty areintrodu
ed.FDI based Takagi-Sugeno fuzzy modelThe topi
 of TS fuzzy observer for nonlinear systems has re
eived more attention in re
ent yearsbe
ause of its ability to estimate nonlinear systems using multiple-models [24, 74, 76℄. They arevery useful in the pra
ti
e be
ause it is possible to rea
h an estimation of the states despite thenonlinearities. This is be
ause ea
h model 
onsidered in the TS fuzzy model is a linear model, sothat one 
an apply theory for linear systems.In [76℄ the �rst work in the literature for TS fuzzy observers was reported. The TS fuzzy observeris developed by means of parallel distributed 
ompensation (PDC) into a 
losed loop 
ontrol.The implementation of a TS fuzzy 
ontroller together with a TS fuzzy observer, guarantees notonly the stability of the fuzzy 
ontrol system in the sense of Lyapunov, but also guarantees the
onvergen
e of the state estimation error to zero. Both designs for the TS fuzzy 
ontroller andobserver are made together in an augmented system using an LMI algorithm.Nonlinear systems a�e
ted by sto
hasti
 noise have been handled using the Extended KalmanFilter (EKF) based on fuzzy systems [70, 85℄. This approa
h provides an e�
ient solution to theoptimization of fuzzy membership fun
tion for both inputs and outputs of the fuzzy 
ontroller.The use of Kalman �lters for TS fuzzy systems is a relatively new approa
h [71℄. Here, it is shownhow to approximate the time-varying Kalman �lter with a time-varying linear 
ombination ofsteady state Kalman �lters (for ea
h linearized system is 
onstru
ted a Kalman �lter). The useof the TS Kalman �lter gives an insigni�
ant loss in estimation performan
e (in relation to thetime-varying Kalman �lter).In [23, 49℄, a robust fault dete
tion �lter for TS fuzzy model is proposed. The purpose of the�lter is to generate a residual as robust as possible to disturban
es and at the same time assensitive as possible to the presen
e of faults. The design pro
edure is provided in terms of LMIs.The performan
e index 
orresponding to fault sensitivity is 
onsidered 
onstant and only theperforman
e index 
orresponding to the disturban
e attenuation is minimized.FDI for linear systems with polytopi
 un
ertaintyA topi
 that has gained tremendous attention in the �eld of FDI for multiple-models is the residualgeneration for linear systems with polytopi
 un
ertainty [10, 11, 51, 52℄. The prin
ipal idea hereis to design a fault dete
tion �lter robust to disturban
es 
onsidering the presen
e of polytopi
2



1. Introdu
tionun
ertainty.An improvement that has been made in FDI for linear systems with polytopi
 un
ertainties is thein
orporation of a referen
e model in the 
omputation of the fault dete
tion �lter [32, 52, 86℄.The referen
e model is derived without 
onsidering the existen
e of polytopi
 un
ertainty in thesystem. The purpose of the fault dete
tion �lter with polytopi
 un
ertainty is the approximationof the solution given by the referen
e model.1.2 Motivation and obje
tive of the workIt is a well-known fa
t that most te
hni
al pro
esses exhibit a nonlinear behavior, and that onlyfew 
lasses of nonlinear systems 
an be treated with FDI approa
hes. In order to implement anFDI approa
h, it is required the design of a residual generator, whi
h 
ompares the measuredoutput of the system against an estimated output given by an observer. For this purpose thedesign of a residual generator for the nonlinear system is not easy even if the mathemati
al modelis known [28, 29, 30, 31℄.For the design of the residual generator, the most adopted solution is to use a linearization ofthe nonlinear system. Unfortunately sometimes the linear model does not give good results forFDI, be
ause the observer used in the FDI 
an not estimate the behavior of the nonlinear system
orre
tly. Moreover, the generated residual di�ers from zero or takes too mu
h time to 
onvergeto zero even if faults and disturban
es are not a�e
ting the system. This behavior indi
ates thatthe linear system utilized to 
onstru
t the residual generator does not approximate the nonlinearsystem 
orre
tly.In the last few years, the idea of using an aggregation of lo
al models (multiple-models), as ameans to 
apture the global dynami
 
hara
teristi
s of nonlinear systems, has been su

essfullyin
orporated in the �eld of FDI. These multiple-models are used as an alternative for dealing withnonlinear systems and applied in FDI generating the multiple-model approa
hes.One of these multiple-model approa
hes is the TS fuzzy model, whi
h approximates nonlinearsystems. In this approa
h, lo
al linear systems are used to represent the lo
al dynami
s in di�erentstate spa
e regions.The appli
ation of this TS fuzzy model has given a good solution to some problems in nonlinearsystems and at the same time allows the use of FDI theories for linear systems to representnonlinear systems.An advantage of TS fuzzy models over a simple linear system is that a TS fuzzy model 
an workaround multiple operating points, i.e. the TS fuzzy model operates on a state spa
e region.Another multiple-model approa
h is residual generation for linear systems with polytopi
 un
er-tainty. In this approa
h, the FDI works in a better way, be
ause the polytopi
 un
ertainty is
onsidered in the design of the residual generator. Therefore a better 
onvergen
e of the residualto zero in the absen
e of faults and disturban
e is assured.Both of these multiple-model approa
hes improve the performan
e of a residual generator for anonlinear system, the �rst one 
onsiders multiple linearization, i.e. around a region and the se
ond3



1.3 Organization of the workone 
onsiders the polytopi
 un
ertainty enpli
ity in the system. Obje
tive of the workIn this thesis, the TS fuzzy model is obtained from the approximation of the nonlinear modelwith a set of linear models. The polytopi
 un
ertainty is assumed known and 
omes from thelinearization in Taylor Series of the nonlinear equations.The main obje
tive of this thesis is to in
orporate the TS fuzzy model for its use with linearFDI approa
hes. The prin
ipal obje
tive is to make the residual generator as robust as possibleto disturban
es (
ould be deterministi
 or sto
hasti
) and as sensitive as possible to the faults.Therefore, the disturban
es are minimized and the dete
tion of faults in an early stage is in
reased.Three di�erent s
hemes are introdu
ed for TS fuzzy models:
∙ Unknown input observers for linear systems are generalized for a 
lass of nonlinear systemsdes
ribed by TS fuzzy models.
∙ Nonlinear systems a�e
ted by sto
hasti
 disturban
es are 
onsidered to design a TS fuzzyobserver. This s
heme minimizes the expe
ted steady state estimation error using LMI te
h-niques.
∙ A robust fault dete
tion observer is extended for its use with TS fuzzy models based on it-erative LMI s
hemes. This s
heme simultaneously enhan
es the robustness against unknowninputs without sa
ri�
ing the fault dete
tion sensitivity.An FDI approa
h for linear systems with polytopi
 un
ertainty from [17, 66℄ is applied to theaileron positioning system. Both multiple-model approa
hes aim for a better FDI for nonlinearsystems.1.3 Organization of the workChapter 2 addresses 
on
epts referring to the fuzzy logi
 and fuzzy models, whi
h are 
onsideredessential to understand the remainder of the work 
on
erning TS fuzzy models.The de�nition of TS fuzzy observer and stability 
onditions are given. Finally, some 
on
epts
on
erning to fault dete
tion and isolation are brie�y de�ned.Chapter 3 handles the unknown input observer (UIO) for TS fuzzy systems, the UIO for linearsystems from [17℄ is generalized for a 
lass of nonlinear systems des
ribed by TS fuzzy models.The UIO for TS fuzzy systemsis proposed.The obje
tive of this observer is to de
ouple the unknown inputs and to estimate the states, onthe basis of the derivative of the output. A robust sensor fault isolation s
heme [12℄ based on theTS fuzzy UIO is presented in order to dete
t and isolate faults.Chapter 4 
onsiders the dis
rete TS fuzzy model with sto
hasti
 disturban
es in order to designa residual generator. The obje
tive of this s
heme is to minimize the expe
ted value of the steadystate estimation error with the use of LMI te
hniques.Chapter 5 presents a robust fault dete
tion observer for TS fuzzy models. The obje
tive of thisobserver is to �nd a trade-o� between maximizing the e�e
t of faults and minimizing the e�e
t4



1. Introdu
tionof disturban
es known as robust fault dete
tion (RFD). For the RFD with TS fuzzy model twoiterative LMI s
hemes for linear systems, taken from [79℄ and [81℄ are used.Chapter 6 uses theory of FDI for linear systems with polytopi
 un
ertainty from [17, 66℄ to designa fault dete
tion �lter, whi
h is robust to disturban
es and is sensible to faults and a threshold isdesigned to evaluate the generated residual.This approa
h 
onsists of three steps. First is the 
al
ulation of a referen
e model, follow thedesign of the FDF using the referen
e model to build an extended system. Finally, the obtainedgain matrix from the previous step is used to 
al
ulate a threshold.Chapter 7 
on
ludes the results obtained from this thesis and the idea of future work is outlined.Appendix A gives the formulas for signal norm 
omputation, S
hur 
omplement, the relax sta-bility 
ondition for TS fuzzy models and the 
on
ept of LMI and 
onvex optimization te
hniques(COT), whi
h 
onstitute the prin
ipal tools in the solution of the proposed optimization problemsfor both multiple-model approa
hes.Appendix B shows the numeri
al values for the variables used in the appli
ation examples.

5





2. TS fuzzy model and FDI Con
eptsChapter 2TS fuzzy model and FDI Con
eptsIn this 
hapter, basi
 
on
epts regarding to Takagi-Sugeno (TS) fuzzy models and fault dete
tionand isolation (FDI) are reviewed. It in
ludes the des
ription of a TS fuzzy model, the stability anal-ysis of a TS fuzzy observer, the de�nition of linear matrix inequalities (LMI), 
onvex optimizationte
hniques (COT) and de�nitions on the �eld of fault dete
tion and isolation.2.1 Takagi-Sugeno fuzzy modelA Takagi-Sugeno (TS) fuzzy model is a fuzzy rule-based model approa
h suitable to approximatea large 
lass of nonlinear dynami
 systems [73℄. Fig. 2.1 illustrates the model-based TS fuzzyobserver used in this thesis.

Parallel distributed
compensation (PDC)

Physical model

TS fuzzy observer

Fuzzy model
(Takagi-Sugeno fuzzy model)

Identification using
input-output data

Nonlinear system

Fig. 2.1: Model-based TS fuzzy observer designTo design a TS fuzzy observer, a TS fuzzy model whi
h approximates the nonlinear system isneeded. Therefore the 
onstru
tion of a TS fuzzy model represents an important and basi
 pro
e-dure in this approa
h.In general, there are two approa
hes for the 
onstru
tion of TS fuzzy models:1. Identi�
ation (fuzzy modeling) using input-output data2. Derivation from given nonlinear equations. 7



2.1 Takagi-Sugeno fuzzy modelThe identi�
ation approa
h is mainly 
onstituted by two parts: stru
ture identi�
ation and pa-rameter identi�
ation [39, 72℄. This approa
h is suitable for plants that are very 
omplex or toodi�
ult to be represented by analyti
al and/or physi
al models.On the other hand, nonlinear dynami
 models 
an be obtained by, e.g. the Lagrange method andthe Euler-Newton method. In su
h 
ases, the se
ond approa
h, whi
h derives a TS fuzzy modelfrom given nonlinear dynami
 models is more appropriate [77℄.In this thesis, the se
ond approa
h is 
onsidered in order to generate a TS fuzzy model, whi
happroximates the behavior of the nonlinear system. In the TS fuzzy model, lo
al dynami
s indi�erent state spa
e regions are represented by lo
al linear systems [55, 57℄.Unlike 
onventional modeling whi
h uses a single model to des
ribe the global behavior of anonlinear system, fuzzy modelling is essentially a multiple-model approa
h, in whi
h simple sub-models (linear models) are 
ombined to approximate the global behavior of the nonlinear system.The TS fuzzy model proposed by Takagi and Sugeno in [73℄ is des
ribed by fuzzy IF-THEN rules,where lo
al linear models are used to represent the dynami
 behavior in di�erent state spa
eregions [77℄, i.e. the nonlinear traje
tories are linearized over di�erent state spa
e regions.A fuzzy IF-THEN rule represents a lo
al relation input-output of the nonlinear system in a statespa
e region. The set of linear models are used to 
al
ulate the overall model of the system by�blending� these linear models through fuzzy membership fun
tions.The TS fuzzy model makes possible the use of FDI theory for linear systems to obtain a TS fuzzyresidual generator. Be
ause of its better approximation of the behavior of a nonlinear system, theTS fuzzy model 
an be seen as a good alternative for an e�
ient residual generation.The design of TS fuzzy models based on given nonlinear equations 
onsiders a 
lass of nonlinearsystems des
ribed by
ẋ(t) = f(x(t)) + g(x(t))u(t) (2.1a)
y(t) = ℎ(x(t)) (2.1b)where x(t) ∈ ℝ

n is the state ve
tor, u(t) ∈ ℝ
ku is the input ve
tor and y(t) ∈ ℝ

m is the outputve
tor and f(x(t)), g(x(t)) and ℎ(x(t)) are fun
tions of x(t).For ea
h state spa
e region there is a fuzzy IF-THEN rule des
ribing the dynami
s of the systemin that region as followsModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)

(2.2)where i = 1, . . . , r and r is the number of fuzzy IF-THEN rules,Mij are fuzzy sets, z1(t), . . . zp(t)are premise variables, x(t) ∈ ℝ
n is the state ve
tor, u(t) ∈ ℝ

ku and y(t) ∈ ℝ
m are the input andoutput ve
tors respe
tively. Matri
es Ai,Bi, Ci andDi are known system matri
es with appropriatedimension.The premise variables 
an be fun
tions of the measured state variables, inputs of the system andpossibly on some varying parameter (whi
h does not depend on the states).8



2. TS fuzzy model and FDI Con
eptsThe truth value of the proposition �z1(t) is Mi1 and . . . and zp(t) is Mip� in the ante
edent partis 
al
ulated by
Mi1(z1(t)) ∧ . . . ∧ Mip(zp(t))where the symbol �∧� stands for a t-norm (usually min-operator or produ
t), and �zp(t) is Mip� isthe grade of membership of zp(t) inMip. All fuzzy sets are asso
iated with a membership fun
tion.The 
hoi
e of premise variables leads to di�erent 
lasses of models [1℄. The following example ofa nonlinear system is 
onsidered in order to explain this point

ẋ1(t) = x1(t)x
2
2(t) (2.3a)

ẋ2(t) = x1(t)− x2(t) (2.3b)The nonlinear system in eq. (2.3) 
an be represented in the following two forms
ẋ(t) =

[

0 x1(t)x2(t)

1 −1

]

x(t) or ẋ(t) =

[

x22(t) 0

1 −1

]

x(t) (2.4)As 
an be seen in eq. (2.4), the premise variable 
an be de�ned as z(t) = x1(t)x2(t) and also 
anbe de�ned as z(t) = x22(t), therefore, there are two possible models. The linearized models arevalid on a state spa
e region and are 
al
ulated using the maximum and minimum value of thesepremise variables.A membership fun
tion takes values between 0 and 1 , i.e. Mip(zp(t)) ∈ [0, 1]. The value 0 meansthat zp(t) is not a member of the fuzzy set and the value 1 means that zp(t) is fully a member ofthe fuzzy set [73, 83℄.The entire fuzzy model of the plant in eq. (2.2) is obtained with a fuzzy �blending� of all rule
onsequents, where ea
h 
onsequent part 
ontains a lo
ally valid linear model. For a given pair(x(t), u(t)), the �nal outputs of the TS fuzzy model are inferred as follows:
ẋ(t) =

r
∑

i=1

wi(z(t))
[

Aix(t) +Biu(t)
]

r
∑

i=1

wi(z(t))

(2.5a)
y(t) =

r
∑

i=1

wi(z(t))
[

Cix(t) +Diu(t)
]

r
∑

i=1

wi(z(t))

(2.5b)where
z(t) = [z1(t) z2(t) . . . zp(t)]

wi(z(t)) =

p
∏

j=1

Mij(zj(t))

ℎi(z(t)) =
wi(z(t))
r
∑

i=1

wi(z(t)) 9



2.2 Takagi-Sugeno fuzzy observerfor all t. The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . Sin
e
⎧



⎨



⎩

r
∑

i=1

wi(z(t)) > 0

wi(z(t)) ≥ 0

for i = 1, 2, ..., r, ∀t. (2.6)the weighting fun
tions ℎi(z(t)) satisfy the following 
onstraints
⎧



⎨



⎩

r
∑

i=1

ℎi(z(t)) = 1

ℎi(z(t)) ≥ 0

for i = 1, 2, ..., r, ∀t. (2.7)Based on these 
onstraints, one 
an also write eq. (2.8) instead of eq. (2.5)
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t)
] (2.8a)

y(t) =

r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t)
] (2.8b)The overall stru
ture of a TS fuzzy model 
an be seen in �g. 2.2.

u(t) y(t)

x(t)

A1

A2

Ar

h (z(t)1

h (z(t)2

h (z(t)r

C1

C2

Cr

h (z(t)1

h (z(t)2

h (z(t)r

B1

B2

Br

h (z(t)1

h (z(t)2

h (z(t)r

h (z(t)rDr

h (z(t)1

h (z(t)2

D1

D2

x(t)

S

S

S

S

+
+

+

+

Fig. 2.2: Overall stru
ture of a TS fuzzy model2.2 Takagi-Sugeno fuzzy observerFor a nonlinear dynami
 system approximated by a TS fuzzy model, a TS fuzzy observer 
an bedesigned in order to estimate the system state ve
tor [6, 24, 47, 74, 76℄.In the design of a TS fuzzy observer, it is assumed that the TS fuzzy model is lo
ally observable,i.e. all pairs (Ai, Ci) are observable.10



2. TS fuzzy model and FDI Con
eptsUsing the same idea as in the TS fuzzy model, a TS fuzzy observer utilizes a number of lo
allinear time-invariant (LTI) observers. Ea
h lo
al observer is asso
iated with ea
h fuzzy IF-THENrule given below:Observer rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t) +Diu(t)

(2.9)The 
on
ept of parallel distributed 
ompensation (PDC) is used for the design of TS fuzzy ob-servers [75, 82℄. The idea is to design an observer for ea
h rule of the fuzzy model. The 
on
ept ofPDC is illustrated in �g. 2.3.TS fuzzy models share the same fuzzy sets with the TS fuzzy observer, i.e. both use the samemembership fun
tions Mij and the same weighting fun
tions ℎi(z(t)).
Rule 1 Rule 1

TS fuzzy model TS fuzzy observer

Rule 2 Rule 2

Rule r Rule r

Linear observer design techniqueFig. 2.3: PDC designThe overall state estimation is inferred as a weighted sum of individual lo
al observers:
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))
]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
] (2.10)where Li is the observer gain matrix for ea
h observer in the 
orresponding fuzzy IF-THEN rule.Remark 2.1 In the subsequent part of this thesis, the notation S > 0 means that S is a positivede�nite matrix, S > T means that S−T > 0 and W = 0 means that W is a zero matrix, i.e. itselements are all zero. 11



2.2 Takagi-Sugeno fuzzy observerThe following notation 
an also be used: r
∑

i<j

, r
∑

i ∕=j

, whi
h means
3
∑

i<j

aij ⇐⇒ a12 + a13 + a23

3
∑

i ∕=j

aij ⇐⇒ a12 + a13 + a21 + a23 + a31 + a322.2.1 Stability analysis for TS fuzzy observersFor the stability analysis, TS fuzzy observers are required to satisfy the following requirement:
lim
t→∞

(x(t)− x̂(t)) = 0 (2.11)where x̂(t) denotes the state ve
tor estimated by a TS fuzzy observer. The 
ondition in eq. (2.11)guarantees that the state estimation error e(t) between the state ve
tor x(t) and the estimatedstate ve
tor x̂(t) (estimated by the TS fuzzy observer) 
onverges to zero as time approa
hes itssteady state.In order to analyze the 
onvergen
e of the TS fuzzy observer, the state estimation error is de�nedas e(t) = x(t)− x̂(t) and its dynami
s is given by
ė(t) = ẋ(t)− ˙̂x(t) (2.12)By straight substitution, the dynami
s of the state estimation error is given as

ė(t) =

r
∑

i=1

ℎi(z(t))
[

[

Aix(t) +Biu(t)
]

−
[

Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))
]

]

=
r
∑

i=1

ℎi(z(t))
[

Aix(t)− Aix̂(t)− Li

(

y(t)− ŷ(t)
)

]

=

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

Ai

(

x(t)− x̂(t)
)

− LiCj

(

x(t)− x̂(t)
)

]

=
r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

Ai − LiCj

]

e(t)

=

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))Aije(t) (2.13)where
Aij = Ai − LiCjNote that eq. (2.13) 
an also be written as follows

ė(t) =
r
∑

i=1

ℎ2i (z(t))Aiie(t) + 2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

e(t) (2.14)12



2. TS fuzzy model and FDI Con
eptsThe stability of the dynami
 eq. (2.14) 
an be proved by the Theorem 2.1.Theorem 2.1 [6, 74, 77℄: The equilibrium of the system des
ribed by eq. (2.14) is asymptoti
allystable if there exists a 
ommon positive de�nite matrix P for i = 1, ..., r su
h that
AT

iiP + PAii < 0 (2.15)
(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

≤ 0 i < j (2.16)Proof: Consider a 
andidate of Lyapunov fun
tion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t)

= eT (t)

(

r
∑

i=1

ℎ2i (z(t))Aii + 2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

)T

Pe(t)

+eT (t)P

(

r
∑

i=1

ℎ2i (z(t))Aii + 2

r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

)

e(t)

=
r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii

]

e(t)

+2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))e
T (t)

[

(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

]

e(t)

Q.E.D.The fuzzy observer design problem is to determine matri
es Li (i = 1, . . . , r) whi
h satisfy the
onditions of Theorem 2.1 with a 
ommon positive de�nite matrix P .With the same strategy as in [8℄, it is possible to transform the 
onditions given by eq. (2.15)-(2.16)in LMIs and obtain dire
tly the gain matri
es Li for the TS fuzzy observer.For this purpose, let us substitute Aii in eq. (2.15) and Aij and Aji in eq. (2.16), whi
h results in
AT

i P + PAi − CT
i L

T
i P − PLiCi < 0

AT
i P + PAi + AT

j P + PAj − CT
j L

T
i P − PLiCj − CT

i L
T
j P − PLjCi ≤ 0 i < jDe�ning Ni = PLi and Nj = PLj for P > 0, after substituting Ni and Nj in the above matrixinequalities, it results in

AT
i P + PAi − CT

i N
T
i −NiCi < 0

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi ≤ 0 i < jThese LMI 
onditions, allow us to de�ne a TS fuzzy observer design problem asProblem 2.1 TS fuzzy observer design: Find P > 0 and Ni (i = 1, . . . , r) satisfying

AT
i P + PAi − CT

i N
T
i −NiCi < 0 (2.17a)

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi ≤ 0 i < j (2.17b)13



2.3 Fault Dete
tion and Isolation (FDI)The above 
onditions are LMIs with respe
t to variables P and Ni. A positive de�nite matrix Pand matri
es Ni satisfying these LMIs 
an be found. In 
ontrast, if this is not possible, then thefeasibility problem is rendered as infeasible.This feasibility problem 
an be solved e�
iently using mathemati
al tools, e.g. MATLAB. Theobserver gain matri
es Li 
an be obtained as
Li = P−1NiIn this sense, the stability analysis of TS fuzzy observers is redu
ed to a problem of �nding a
ommon matrix P .Remark 2.2 If the number of rules �r� is large, it might be di�
ult to �nd a 
ommon matrix Psatisfying the 
onditions of theorem 2.1. In su
h 
ases relaxed stability 
onditions for the theorem2.1, found in Appendix A.3, 
an be applied.2.3 Fault Dete
tion and Isolation (FDI)The obje
tive of fault dete
tion and isolation is to dete
t faults appearing in the system as earlyas possible, so that the failure of the whole system 
an be avoided.The most important 
on
epts in the �eld of FDI are fault and disturban
e. Both representa deviation of the pro
ess state from the required operating 
ondition, but they are basi
allydi�erent.Fault is de�ned as an unpermitted deviation of a least one 
hara
teristi
 property or parameter ofthe system from the standard 
ondition [42℄, whi
h results in an undesired behavior of the nominalsystem.A fault 
an a�e
t the system in an unfavorable (e.g. by redu
ed e�
ien
y due to in
reasingfri
tion losses) or in a dangerous (e.g. by danger of explosion in 
hemi
al rea
tors due to in
reasingtemperature) way.The dete
table e�e
t of the fault 
an manifest itself by 
onstant o�-sets, ex
eeding a range ofvalues, modifying s
aling fa
tors or modifying dynami
 behavior.Disturban
e is a tolerable (maybe inevitable) dis
repan
y from the ideal operating state, and
an not have as a 
onsequen
e an undesired behavior of the nominal system.A disturban
e represents therefore no potential danger, but des
ribes �the 
ompletely normal�deviation of the real pro
ess from the ideal 
ase. Disturban
es are, e.g. inevitable fri
tion andabsorption losses, measuring and dis
retization noise.The use of pro
ess models for fault dete
tion in real systems in
orporates another sour
e ofdisturban
e signal: the modeling noise due to the inevitable dis
repan
y between the pro
essand the model.However, it is desired not to dete
t these e�e
ts but to redu
e them. Only if a disturban
e 
hangesinto a fault (e.g. if the fri
tion losses ex
eed a 
ertain limit value �normal� fri
tion), then thedete
tion should take pla
e.14



2. TS fuzzy model and FDI Con
eptsAs des
ribed in [27, 28℄, faults 
an be divided in: a
tuator, 
omponent and sensor faults. This
lassi�
ation is needed in order to be able to di�erentiate the arising faults a

ording to the pla
eof its o

urren
e, as depi
ted in �g. 2.4.
Sensors

Process

actuator
faults

component
faults

sensor
faults

Input
u(t)

Output
y(t)

unknown inputs
(parameter variations, disturbances, noise)

Process
components

Actuators

Fig. 2.4: De�nition of faults in the plant of the pro
essAn a
tuator fault is a fault that appears in an a
tuator of the pro
ess, e.g. defe
t in gears andaging e�e
ts. The faults that appear in the sensors are identi�ed as sensor fault, e.g. s
alingerrors and 
onta
t failures.Component faults produ
e 
riti
al parameter 
hanges in the pro
ess itself, e.g. leakages andloose parts.A
tuator, 
omponent and sensor faults are additive faults be
ause are unknown extra inputs a
tingon the system [35℄ while there exist also multipli
ative faults whi
h imply 
hanges of some plantparameters.In order to know if a fault is a�e
ting the system, a 
ompared signal between measured andestimated one known as residual signal is required.Residuals are designed to be equal or to 
onverge to zero in the fault-free 
ase and diverge sig-ni�
antly from zero when fault o

urs in the system. Therefore, the residual signals represent thee�e
t of faults in the system.Most model-based FDI approa
hes in
orporate two sequential steps in order to a
hieve FDI. Theyare residual generation and residual evaluation [46, 58℄.1. Residual generation: In this stage, the data taken (measured) from the a
tual pro
ess, whi
hre�e
ts the faults, are 
ompared with the 
orresponding referen
e values of the fault-free (nominal)
ase.The residual generation pro
ess 
an be interpreted as the evaluation of redundan
y.
r(t) = y(t)− ŷ(t) (2.18)In order to dete
t and isolate faults, system redundan
y is ne
essary. Redundan
y is the relationamong the measured variables. The system redundan
y in FDI 
an be divided in two 
lasses, i.e.physi
al and analyti
al redundan
y : 15



2.3 Fault Dete
tion and Isolation (FDI)
∙ Physi
al redundan
y : The pro
ess variables are measured by multiple (redundant) sensors.This approa
h is e�e
tive only for the dete
tion of sensor failures, be
ause any malfun
tionin the a
tuators or in the pro
ess itself will a�e
t all the sensors simultaneously.
∙ Analyti
al redundan
y are the pro
edures of using model information to generate additionalsignals, whi
h are 
ompared with the original measured signals. Analyti
al redundan
y 
anbe used to avoid the repetition of hardware in the alternative approa
h known as physi
alredundan
y [58℄.Observer-based fault diagnosis is an example of analyti
al redundan
y based-approa
h.2. Residual evaluation: In this stage, the pro
essing of the residual signal by threshold sele
tionis performed. This threshold is utilized together with a residual evaluation fun
tion and it allowsto establish a limit. This limit is the maximal value of the evaluated residual for the free-fault
ase.The design of the threshold plays a very important role in the residual evaluation and it must berobust against disturban
es a�e
ting the system.In the FDI approa
hes, signal norms (Appendix A.1) are used to evaluate the residual signal[21, 63℄. In the signal norms, the size (in the sense of a norm) of the residual signal is 
al
ulatedon-line and then 
ompared with a given threshold.The de
ision logi
 for the threshold is as follows:

∥r(t)∥ ≤ threshold ⇒ no alarm, (fault-free)
∥r(t)∥ > threshold ⇒ alarm, (a fault is dete
ted) (2.19)where ∥ ⋅ ∥ stands for the norm of the residual signal.Model-based FDI approa
hes are based on a mathemati
al model and as explained before, a pre
iseand a

urate model of a real system is not always possible to obtain.This is due to di�erent 
auses, e.g. disturban
es, di�erent noise e�e
ts and un
ertain or time-varying system parameters.FDI approa
hes that 
an be able to handle these kind of disturban
es, are referred as robust FDIapproa
hes.The robustness problem in FDI is de�ned as the maximization of the dete
tability and isolabilityof faults together with the minimization of the e�e
t of un
ertainty and disturban
e on the FDIpro
edure.The optimization problems 
an be a
hieved using sensitivity theory, as long as due 
are has beenpaid to the robustness of the global system operation.FDI using analyti
al redundan
y (model-based) methods is 
urrently a subje
t of extensive re-sear
h [59℄. The model-based FDI pro
ess is depi
ted in �g. 2.5.16



2. TS fuzzy model and FDI Con
epts
Actuators

Residual
generation

Plant
dynamics

Residual
evaluation

Sensors
Inputs Outputs

Faults Faults

Residual

Fault Decision

u(t) y(t)

Faults

Fig. 2.5: Model-based FDI pro
essFalse alarms are another important 
on
ept in the FDI �eld. It is de�ned as a misinterpretation ofthe system, where a 
hange in some variable is 
onsidered as a fault. False alarms 
an be a
tivatedby a large model un
ertainty, by high dete
tion sensitivity, parti
ularly within the dynami
 range,or by disturban
es.The sensitivity to faults and avoidan
e of false alarms due to disturban
es leads to the optimizationproblem in the design of fault diagnosis systems. Sin
e a robust FDI s
heme is desired, the prin
ipalobje
tive is to in
rease the robustness to unknown inputs and simultaneously to enhan
e thesensitivity to faults [19℄.The next step is to evaluate the generated residual and to 
ompare it with a threshold. Thesele
tion of the threshold plays an important role in FDI.
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3. Unknown input observer for TS fuzzy modelsChapter 3Unknown input observer for TS fuzzymodelsAn unknown input observer (UIO) is a robust observer whi
h 
an tolerate a degree of modelun
ertainty and hen
e in
rease the reliability of fault diagnosis [2, 12, 13, 69℄. In this approa
h, themodel-reality mismat
h is represented by the so-
alled unknown input and hen
e the state estimateand, 
onsequently, the output estimate are obtained by taking into a

ount model un
ertainty.Unfortunately, the existing nonlinear extensions of the UIO as in [13, 60℄ require a relatively
omplex design pro
edure, even for simple laboratory systems [88℄. Moreover, they are usuallylimited to a very restri
ted 
lass of nonlinear systems.On the other hand, it is well known that UIO-based solution works well for linear systems onlywhen there is no large mismat
h between the linearized model around the 
urrent state estimateand the nonlinear behavior of the system.The use of a linear UIO allows the robust estimation of the states even if the system has unknowninputs (disturban
es). The design of UIO for linear systems is well established but only worksaround the operating point were the nonlinear system was linearized.TS fuzzy models 
onsider a state spa
e region and not only an operating point and they allow theuse of linear theories, therefore they are used to make an extension of the UIO approa
h developedin [17℄ for its use with TS fuzzy models.3.1 UIO approa
h for linear systemsOne of the most important tasks in model-based fault diagnosis te
hniques is the generation ofrobust residuals. Disturban
e de
oupling approa
hes are a good option to generate these robustresiduals. In these approa
hes, un
ertain fa
tors in system modeling are 
onsidered to a�e
t thelinear system via an unknown input (or disturban
e) [12℄. Despite the fa
t that the unknown inputve
tor is unknown, its distribution matrix is assumed known.Considering the information given by the distribution matrix, the unknown input (disturban
e)
an be de
oupled from the residual. The de
oupling of the unknown inputs 
an be a
hieved usingunknown input observers (UIO). It also de
ouples state estimation error from disturban
es.For the design of UIOs a 
lass of linear systems is 
onsidered. The system un
ertainty 
an besummarized as an additive unknown disturban
e term in the dynami
 equation
ẋ(t) = Ax(t) +Bu(t) + Edd(t) (3.1a)
y(t) = Cx(t) (3.1b)where x(t) ∈ ℝ

n is the state ve
tor, u(t) ∈ ℝ
ku is the known input ve
tor, d(t) ∈ ℝ

kd is the19



3.1 UIO approa
h for linear systemsunknown input (or disturban
e) ve
tor and y(t) ∈ ℝ
m is the measurement or output ve
tor. A,

B, Ed and C are known system matri
es with appropriate dimensions.Remark:There is no loss of generality in assuming that the unknown input distribution matrix Ed shouldbe full 
olumn rank. When this is not the 
ase, the following rank de
omposition 
an be appliedto the matrix Ed

Edd(t) = Ed1Ed2d(t) (3.2)where Ed1 is a full 
olumn rank matrix and Ed2d(t) 
an now be 
onsidered as a new unknowninput ve
tor (for a proof refer to [12℄, page 301).De�nition 3.1 (Unknown Input Observer (UIO) [12℄) An observer designed for the systemdes
ribed by eq. (3.1) is 
onsidered as an unknown input observer, if its state estimation errorve
tor e(t) approa
hes to zero asymptoti
ally, despite of the presen
e of the unknown input (dis-turban
e) in the system.One 
an also interpret the UIO as a Luenberger type observer that delivers a state estimation x̂(t)independent of the unknown input (disturban
e) d(t) in the sense that :
lim
t→∞

(

x(t)− x̂(t)
)

= 0 for all u(t), d(t), x0 (3.3)With the use of the state estimate x̂(t), it is possible to 
onstru
t a residual signal as follows:
r(t) = y(t)− Cx̂(t) (3.4)3.1.1 UIO designFor the design of the UIO [15, 17℄, the derivative of the output signal y(t) is given by

ẏ(t) = Cẋ(t)

ẏ(t) = C
(

Ax(t) +Bu(t) + Edd(t)
) (3.5)From eq. (3.5), the term CEdd(t) is taken to the left

CEdd(t) = ẏ(t)− CAx(t)− CBu(t) (3.6)Assume that
rank(CEd) = rank(Ed) = kd (3.7)and that CEd is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix [68℄ (CEd)

+of the produ
t CEd

(CEd)
+ =

[

(CEd)
TCEd

]−1
(CEd)

T , (CEd)
+ ∈ ℝ

kd×m (3.8)20



3. Unknown input observer for TS fuzzy modelsMultiplying both sides of eq. (3.6) by the Moore-Penrose pseudoinverse matrix results in
(CEd)

+CEdd(t) = (CEd)
+
[

ẏ(t)− CAx(t)− CBu(t)
]

d(t) = (CEd)
+
[

ẏ(t)− CAx(t)− CBu(t)
] (3.9)the unknown input (disturban
e) ve
tor is obtained from the eq. (3.9). Therefore, using the outputve
tor derivative ẏ(t), the estimation of the state ve
tor x̂(t) and the input ve
tor u(t), the unknowninput ve
tor d̂(t) 
an be 
onstru
ted by

d̂(t) = (CEd)
+
(

ẏ(t)− CAx̂(t)− CBu(t)
) (3.10)Considering the estimate of the unknown input ve
tor d̂(t), it is possible to 
onstru
t a full orderstate observer, on the assumption that ẏ(t) is available. The observer is given as follows:

˙̂x(t) = Ax̂(t) +Bu(t) + Edd̂(t) + L (y(t)− Cx̂(t)) (3.11)substituting d̂(t) from eq. (3.10) in eq. (3.11) results in
˙̂x(t) = Ax̂(t) +Bu(t) + Ed(CEd)

+
(

ẏ(t)− CAx̂(t)− CBu(t)
)

+ L (y(t)− Cx̂(t))

˙̂x(t) = (A− LC −HceCA)x̂(t) + (B −HceCB)u(t) +Hceẏ(t) + Ly(t) (3.12)where
Hce = Ed(CEd)

+ (3.13)The state estimation error e(t) = x(t)− x̂(t) is governed by the equation:
ė(t) = ẋ(t)− ˙̂x(t)

ė(t) = Ax(t) +Bu(t) + Edd(t)− Ax̂(t)−Bu(t)− Edd̂(t)− L (y(t)− ŷ(t))

ė(t) = (A− LC)e(t) + Ed

(

d(t)− d̂(t)
)

ė(t) = (A− LC −HceCA) e(t) (3.14)In 
ase that there exists an observer gain matrix L, su
h that matrix (A− LC −HceCA) isstabilizable, then the observer in eq. (3.12) ful�lls eq. (3.3).The observer in eq. (3.12) requires the knowledge of ẏ(t), this fa
t may 
ause some problems inon-line implementation. To get over this di�
ulty, it is ne
essary to implement a modi�
ation.Therefore a new state ve
tor  (t) is introdu
ed
 (t) = x̂(t)−Hcey(t) (3.15)21



3.1 UIO approa
h for linear systemsthen, it turns out that the derivative of eq. (3.15) is
 ̇(t) = ˙̂x(t)−Hceẏ(t)

 ̇(t) = ˙̂x(t)−HceCẋ(t)

 ̇(t) = (A− LC −HceCA) x̂(t) + (B −HceCB)u(t) + Ly(t)

 ̇(t) = (TA− LC) (t) + TBu(t) +
(

(TA− LC)Hce + L
)

y(t) (3.16)
x̂(t) =  (t) +Hcey(t) (3.17)where

T = In×n −HceC (3.18)It is 
lear that for all d(t), u(t) and xo
lim
t→∞

(Tx(t)−  (t)) = 0, lim
t→∞

(x(t)− x̂(t)) = 0 (3.19)Setting G = TA− LC and H = TB allows to express the eq. (3.16) as
 ̇(t) = G (t) +Hu(t) + (GHce + L) y(t) (3.20)The system 
omposed by eq. (3.17) and eq. (3.20) is an unknown input observer of the Luenbergertype, and by substituting x̂(t) from eq. (3.17) in eq. (3.4) gives
r(t) = y(t)− Cx̂(t)

r(t) = y(t)− C
(

 (t) +Hcey(t)
)

r(t) = (Im×m − CHce)y(t)− C (t) (3.21)a residual ve
tor r(t) free of unknown inputs d(t) is obtained. It 
an be noti
ed that the essen
e ofthe UIO approa
h is the re
onstru
tion of the unknown input d(t), whi
h requires the 
onditiongiven in eq. (3.7).The stability of observer in eq. (3.12) or equivalently in eq. (3.16) is ensured, if the pair (C, TA)is observable or at least dete
table. In summary, the following theorem is obtained:
Theorem 3.1 [17℄: Given the system model in eq. (3.1) and supposeCondition I. rank(CEd) = rank(Ed) = kdCondition II. the pair (C, TA) is dete
table, where

T = In×n −HceC22



3. Unknown input observer for TS fuzzy modelsthen there exists an UIO in the sense of eq. (3.3).Remark 3.1 It 
an be demonstrated that 
ondition I and II are also ne
essary 
onditions for theexisten
e of an UIO. It is interesting to noti
e that matrix T is singular. This 
an be readily seenby observing the fa
t
TEd = Ed − EdHceCEd = 0Based on the linear approa
h for unknown input observers (UIO), it is introdu
ed the extensionof the UIO for its use with TS fuzzy models.3.2 TS fuzzy UIOThe obje
tive of the proposed UIO for TS fuzzy systems is the same as the one for UIOs in linearsystems, i.e. it delivers a state estimate x̂(t) independent of the unknown input d(t).

lim
t→∞

(x(t)− x̂(t)) = 0 for all u(t), d(t), x0 (3.22)In order to 
onstru
t an UIO for TS fuzzy systems (TS fuzzy UIO) a 
lass of nonlinear systemsis 
onsidered. The unknown inputs (disturban
e) 
an be summarized as an additive term in thedynami
 equation des
ribed by
ẋ(t) = f(x(t)) + g(x(t))u(t) + Edd(t) (3.23a)
y(t) = Cx(t) (3.23b)where the distribution matrix for unknown inputs Ed and the output matrix C do not depend onthe state ve
tor x(t), in other words, they are linear (
onstant) matri
es. A TS fuzzy model thatapproximates the behavior of the nonlinear system given by eq. (3.23) is obtained as

ẋ(t) =
r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.24a)

y(t) = Cx(t) (3.24b)where x(t) ∈ ℝ
n is the state ve
tor, u(t) ∈ ℝ

ku is the known input ve
tor, d(t) ∈ ℝ
kd is theunknown input (disturban
e) ve
tor and y(t) ∈ ℝ

m is the measurement or output ve
tor. Ai, Bi,
Ed and C are known system matri
es with appropriate dimensions.To this TS fuzzy model 
orresponds the following fuzzy IF-THEN rulesModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t) + Edd(t)

y(t) = Cx(t)

(3.25)With the use of the state estimate x̂(t), it is possible to 
onstru
t a residual signal as follows:
r(t) = y(t)− Cx̂(t) (3.26)23



3.2 TS fuzzy UIO3.2.1 Design of the TS fuzzy UIOFor the design of the TS fuzzy UIO, the derivative of the output signal y(t) is given by
ẏ(t) = Cẋ(t)

ẏ(t) = C

(

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
]

) (3.27)From eq. (3.27), the term CEdd(t) is taken to the left
CEdd(t) = ẏ(t)−

r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
] (3.28)Assume that

rank(CEd) = rank(Ed) = kd (3.29)and that CEd is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix (CEd)
+ ofthe produ
t CEd

(CEd)
+ =

[

(CEd)
TCEd

]−1
(CEd)

T , (CEd)
+ ∈ ℝ

kd×m (3.30)Multiplying both sides of eq. (3.28) by the Moore-Penrose pseudoinverse matrix results in
(CEd)

+CEdd(t) = (CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
]

)

d(t) = (CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
]

) (3.31)the unknown input (disturban
e) ve
tor is obtained from the eq. (3.31). Therefore, using theoutput ve
tor derivative ẏ(t), the estimation of the state ve
tor x̂(t) and the input ve
tor u(t),the unknown input ve
tor d̂(t) 
an be 
onstru
ted as
d̂(t) = (CEd)

+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix̂(t) + CBiu(t)
]

) (3.32)Considering the estimate of the unknown input ve
tor d̂(t), it is possible to 
onstru
t a full orderTS fuzzy observer, on the assumption that ẏ(t) is available. The TS fuzzy observer is given by thefollowing equation
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Edd̂(t) + Li

(

y(t)− Cx̂(t)
)

] (3.33)with its 
orrespondent fuzzy IF-THEN rules24



3. Unknown input observer for TS fuzzy modelsObserver rule iIF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Edd̂(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

(3.34)
substituting d̂(t) from eq. (3.32) in eq. (3.33) results in
˙̂x(t) =

r
∑

i=1

ℎi(z(t))

[

Aix̂(t) +Biu(t) + Ed(CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t)) [CAix̂(t) + CBiu(t)]

)

+ Li (y(t)− Cx̂(t))

]

˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Ed(CEd)
+
(

ẏ(t)− CAix̂(t)− CBiu(t)
)

+ Li (y(t)− Cx̂(t))
]

˙̂x(t) =
r
∑

i=1

ℎi(z(t))
[

(Ai − LiC −HceCAi)x̂(t) + (Bi −HceCBi)u(t) +Hceẏ(t) + Liy(t)
] (3.35)

where
Hce = Ed(CEd)

+ (3.36)The state estimation error e(t) = x(t)− x̂(t) is governed by the equation
ė(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)− Aix̂(t)− Biu(t)−Edd̂(t)− Li (y(t)− ŷ(t))
]

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Ai − LiC −HceCAi

]

e(t)

In 
ase that there exists observer gain matri
es Li, su
h that ea
h matrix (Ai − LiC −HceCAi)is stabilizable, then e(t) will approa
h zero asymptoti
ally, i.e. the 
ondition given by eq. (3.22)is ful�lled. This means that the TS fuzzy observer in eq. (3.35) is an unknown input observer forthe system in eq. (3.24) a

ording to de�nition 3.1.The TS fuzzy observer in eq. (3.35) requires the knowledge of ẏ(t), this fa
t may 
ause someproblems in on-line implementation. To get over this di�
ulty, it is ne
essary to implement amodi�
ation. Therefore a new state ve
tor is introdu
ed
 (t) = x̂(t)−Hcey(t) (3.37)25



3.2 TS fuzzy UIOthen, it turns out that the derivative of eq. (3.37) is
 ̇(t) = ˙̂x(t)−Hceẏ(t)

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t)−Hce

(

CAix̂(t) + CBiu(t)
)

+ Li (y(t)− Cx̂(t))
]

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

(Ai − LiC −HceCAi) x̂(t) + (Bi −HceCBi)u(t) + Liy(t)
]

 ̇(t) =
r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) x̂(t) + TBiu(t) + Liy(t)
]

 ̇(t) =
r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) ( (t) +Hcey(t)) + TBiu(t) + Liy(t)
]

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) (t) + TBiu(t) + ((TAi − LiC)Hce + Li) y(t)
] (3.38)

x̂(t) =  (t) +Hcey(t) (3.39)where
T = In×n −HceC (3.40)It is 
lear that for all d(t), u(t) and xo

lim
t→∞

(Tx(t)−  (t)) = 0, lim
t→∞

(x(t)− x̂(t)) = 0 (3.41)and furthermore, setting Gi = TAi − LiC and Hi = TBi allows to express eq. (3.38) as
 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

Gi (t) +Hiu(t) + (GiHce + Li) y(t)
] (3.42)The system 
onstituted by eq. (3.38)-(3.39) is an unknown input observer of the Luenberger typefor TS fuzzy systems, and by substituting x̂(t) from eq. (3.39) in eq. (3.26) gives

r(t) = y(t)− Cx̂(t)

r(t) = y(t)− C
(

 (t) +Hcey(t)
)

r(t) = (Im×m − CHce)y(t)− C (t) (3.43)a residual ve
tor free of unknown inputs d(t) is obtained. The stability of the TS fuzzy observerin eq. (3.35) or equivalently in eq. (3.38) is ensured, if all pairs (C, TAi) are observable or at leastdete
table. In summary, the following theorem is obtained:Theorem 3.2 Given the system model in eq. (3.24) and supposeCondition 1. rank(CEd) = rank(Ed) = kdCondition 2. all pairs (C, TAi) are dete
table, where
T = In×n −HceCthen there exists a TS fuzzy UIO in the sense of eq. (3.22).26



3. Unknown input observer for TS fuzzy models3.2.2 Computation of observer gain matri
esTo 
ompute the observer gain matri
es Li, it is required to realize the 
onvergen
e analysis of theTS fuzzy UIO. The state estimation error dynami
s is given by
ė(t) = ẋ(t)− ˙̂x(t)

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Ai − LiC −HceCAi

]

e(t)

ė(t) =
r
∑

i=1

ℎi(z(t))
[

TAi − LiC
]

e(t) (3.44)The stability of the dynami
 eq. (3.44) 
an be proved by the Theorem 3.3.Theorem 3.3 [77℄: The equilibrium of the system des
ribed by eq. (3.44) is asymptoti
ally stableif there exists a 
ommon positive de�nite matrix P for i = 1, ..., r su
h that
ĀT

i P + PĀi < 0 (3.45)where Āi = TAi − LiC.Proof: Consider a 
andidate of Lyapunov fun
tion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t) < 0

= eT (t)

(

r
∑

i=1

ℎi(z(t))Āi

)T

Pe(t) + eT (t)P

(

r
∑

i=1

ℎi(z(t))Āi

)

e(t) < 0

=

r
∑

i=1

ℎi(z(t))e
T (t)

(

ĀT
i P + PĀi

)

e(t) < 0

=
r
∑

i=1

ℎi(z(t))e
T (t)

[

(

TAi − LiC
)T

P + P
(

TAi − LiC
)

]

e(t) < 0

Q.E.D.With the same strategy as in [8℄, it is possible to transform the 
onditions given by eq. (3.45) inlinear matrix inequalities (LMIs) and use these LMIs to obtain the gain matri
es Li for the TSfuzzy UIO if and only if there exist a positive de�nite matrix P .For this purpose, substitute Āi in eq. (3.45)
(TAi − LiC)

TP + P (TAi − LiC) < 0

AT
i T

TP + PTAi − CTLT
i P − PLiC < 0De�ne Ni = PLi so that for P > 0 results Li = P−1Ni, after substituting this in the above matrixinequality follows that 27



3.2 TS fuzzy UIO
AT

i T
TP + PTAi − CTNT

i −NiC < 0The use of these LMI 
onditions allow us to de�ne a stable TS fuzzy UIO design problem asfollows:Problem 3.1 TS fuzzy UIO design: Find P > 0 and Ni (i = 1, . . . , r) satisfying
AT

i T
TP + PTAi − CTNT

i −NiC < 0 (3.46)Applying the relaxed stability 
onditions (given in the Appendix A.3) to the above TS fuzzy UIOdesign problem results in:Problem 3.2 TS fuzzy UIO design using relaxed stability 
onditions: Find P > 0, Q ≥ 0and Ni (i = 1, . . . , r) satisfying
AT

i T
TP + PTAi − CTNT

i −NiC + (s− 1)Q < 0 (3.47)where 1 < s ≤ r and
Ni = PLiThe above 
onditions are LMIs with respe
t to variables P , Q and Ni. It 
an be found a posi-tive de�nite matrix P , a positive semide�nite matrix Q and a matrix Ni satisfying the LMIs ordetermine that no su
h P , Q and Ni exist. The observer gain matri
es Li 
an be obtained as

Li = P−1NiThe design problem given by eq. (3.47) is solved e�
iently using mathemati
al tools as for exampleMATLAB. Following the pro
edure given in 3.2.1 is made an algorithm for the design of the TSfuzzy UIO as followsAlgorithm 3.1 Takagi-Sugeno fuzzy UIO based residual generationStep 1. Che
k the rank 
ondition for Ed and CEd, if rank(CEd) = rank(Ed) = kd is satis�ed thengo to the next step, otherwise it is not possible to �nd a TS fuzzy UIO for su
h system(STOP).Step 2. Compute matri
es (CEd)
+, Hce and T a

ording to eq. (3.30), (3.36) and (3.40) respe
-tively.Step 3. Che
k the observability: If ea
h pair (C, TAi) is observable, then a TS fuzzy UIO existsand matri
es Li 
an be 
omputed using LMI te
hniques.Step 4. Find gain matri
es Li using eq. (3.47) that ensures the stability of ea
h matrix (TAi−LiC).Step 5. Constru
t residual generator following eq. (3.38) and eq. (3.43).28



3. Unknown input observer for TS fuzzy models3.3 Robust sensor fault isolation s
hemes based onTS fuzzy UIOThe main task of robust fault dete
tion is to generate a residual signal whi
h is robust to unknowninputs (disturban
e). To dete
t a parti
ular fault, the residual has to be sensitive to this fault. ATS fuzzy system with possible sensor fault 
an be des
ribed by
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.48a)

y(t) = Cx(t) + fs(t) (3.48b)where fs(t) ∈ ℝ
m denotes the presen
e of sensor faults. To generate a robust (in the sense ofunknown input de
oupling) residual, a TS fuzzy UIO des
ribed by eq. (3.35) is required. Asdes
ribed before, when the state estimation is available, the residual 
an be generated as:

r(t) = y(t)− Cx̂(t)

r(t) = (Im×m − CHce)y(t)− C (t) (3.49)When this TS fuzzy UIO based residual generator is applied to the system des
ribed in eq. (3.48),the residual and the state estimation error e(t) result as
ė(t) =

r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) e(t)− Lifs(t)−Hceḟs(t)
]

r(t) = Ce(t) + fs(t) (3.50)The residual has to be made sensitive to fs(t) in order to dete
t sensor faults. This is generallypossible, sin
e the sensor fault ve
tor fs(t) has a dire
t e�e
t on the residual signal r(t).The fault isolation problem has as main task the lo
alization of the fault, i.e. to determine inwhi
h sensor the fault has o

urred. One approa
h that fa
ilitates fault isolation is to design astru
tured residual set. Ea
h residual in the set is designed to be insensitive to a 
ertain fault andsensitive to all other faults.To design robust sensor fault isolation s
hemes, all a
tuators are assumed to be fault-free and thesystem equations 
an be expressed as
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.51a)

yk(t) = Ckx(t) + fk
s (t) (3.51b)

yk(t) = Ckx(t) + fsk(t) for k = 1, . . . , m (3.51
)29



3.3 Robust sensor fault isolation s
hemes based on TS fuzzy UIOwhere Ck ∈ ℝ
1×n is the ktℎ row of the matrix C, Ck ∈ ℝ

(m−1)×n is obtained from the matrix Cby deleting ktℎ row Ck, yk(t) is the ktℎ 
omponent of y(t) and yk(t) ∈ ℝ
m−1 is obtained from theve
tor y(t) by deleting ktℎ 
omponent yk(t).Based on this des
ription, m TS fuzzy UIO based residual generators 
an be 
onstru
ted as

˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Edd̂(t) + Lk
i

(

yk(t)− Ckx̂(t)
)

]

=

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Ed(C
kEd)

+
(

ẏk(t)− CkAix̂(t)− CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)

]

=

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) +Hk
ce

(

ẏk(t)− CkAix̂(t)− CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)

] (3.52)where
Hk

ce = Ed(C
kEd)

+ (3.53)As mentioned before, a modi�
ation is needed to avoid problems due to on-line 
omputation ofthe TS fuzzy UIO based residual generators. For this reason a new state ve
tor is introdu
ed
 k(t) = x̂(t)−Hk

cey
k(t) (3.54)whose derivative is given as

 ̇k(t) = ˙̂x(t)−Hk
ceẏ

k(t)

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t)−Hk
ce

(

CkAix̂(t) + CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[(

Ai − Lk
iC

k −Hk
ceC

kAi

)

x̂(t) +
(

Bi −Hk
ceC

kBi

)

u(t) + Lk
i y

k(t)
]

 ̇k(t) =
r
∑

i=1

ℎi(z(t))
[(

T kAi − Lk
iC

k
)

x̂(t) + T kBiu(t) + Lk
i y

k(t)
]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[(

T kAi − Lk
iC

k
)(

 k(t) +Hk
cey

k(t)
)

+ T kBiu(t) + Lk
i y

k(t)
]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))

[

(

T kAi − Lk
iC

k
)

 k(t) + T kBiu(t) +
((

T kAi − Lk
iC

k
)

Hk
ce + Lk

i

)

yk(t)

](3.55)
x̂(t) =  k(t) +Hk

cey
k(t) (3.56)where

T k = In×n −Hk
ceC

k (3.57)and furthermore, setting Gk
i = T kAi − Lk

iC
k and Hk

i = T kBi allows to express the eq. (3.55) as
 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[

Gk
i 

k(t) +Hk
i u(t) +

(

Gk
iH

k
ce + Lk

i

)

yk(t)
] (3.58)30



3. Unknown input observer for TS fuzzy modelsThe system 
onstituted by eq. (3.55)-(3.56) is an unknown input observer of the Luenberger typefor TS fuzzy models, and by setting
rk(t) = yk(t)− Ckx̂(t)

rk(t) = yk(t)− Ck
(

 k(t) +Hk
cey

k(t)
)

rk(t) = (I(m−1)×(m−1) − CkHk
ce)y

k(t)− Ck k(t) (3.59)Ea
h residual generator is driven by all inputs and all outputs ex
ept one output. When alla
tuators are fault-free and a fault o

urs in the ktℎ sensor, the residual will satisfy the followingisolation logi

{

∥rk(t)∥ < T k
SFI

∥rl(t)∥ ≥ T l
SF I

for l = 1, . . . , k − 1, k + 1, . . . , m (3.60)where T k
SFI (k = 1, . . . , m) are isolation thresholds. A robust and TS fuzzy UIO based sensor faultisolation s
heme is shown in �g. 3.1.
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Fig. 3.1: A robust sensor fault isolation s
heme3.4 An appli
ation exampleA nonlinear system is used to implement the TS fuzzy UIO based residual generator, the nonlinearsystem is des
ribed by
⎡

⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎦ =

⎡

⎣

−x1(t) + x1(t)x
3
2(t)

−x2(t) +
(

3 + x2(t)
)

x31(t)

x2(t)− x3(t)

⎤

⎦+

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

⎡

⎣

y1(t)

y2(t)

y3(t)

⎤

⎦ =

⎡

⎣

x1(t)

x2(t)

x3(t)

⎤

⎦+

⎡

⎣

fs1(t)

fs2(t)

fs3(t)

⎤

⎦ 31



3.4 An appli
ation exampleit is 
onsidered that x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. The above system 
an be written in thefollowing form:
ẋ(t) =

⎡

⎣

−1 x1(t)x
2
2(t) 0

(

3 + x2(t)
)

x21(t) −1 0

0 1 −1

⎤

⎦ x(t) +

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

y(t) =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ x(t) + fs(t)where x1(t)x22(t) and (3 + x2(t)
)

x21(t) are nonlinear terms. For the nonlinear terms are de�ned
z1(t) = x1(t)x

2
2(t) and z2(t) = (3 + x2(t)

)

x21(t) as premise variables. Substituting z1(t) and z2(t)in the above system results in
ẋ(t) =

⎡

⎣

−1 z1(t) 0

z2(t) −1 0

0 1 −1

⎤

⎦ x(t) +

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

y(t) =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ x(t) + fs(t)Next, 
al
ulate the minimum and maximum values of z1(t) and z2(t), these are obtained as:
max

z1(t),z2(t)
z1(t) = 1 max

x1(t),x2(t)
z2(t) = 4

min
z1(t),z2(t)

z1(t) = −1 min
x1(t),x2(t)

z2(t) = 0from the maximum and minimum values, z1(t) and z2(t) 
an be represented by
z1(t) = x1(t)x

2
2(t) = F11(z1(t)) ⋅ 1 + F12(z1(t)) ⋅ −1

z2(t) =
(

3 + x2(t)
)

x21(t) = F21(z2(t)) ⋅ 4 + F22(z2(t)) ⋅ 0where:
F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1The membership fun
tions 
an be 
al
ulated as follows

F11(z1(t)) =
z1(t) + 1

2
F12(z1(t)) =

1− z1(t)

2

F21(z2(t)) =
z2(t)

4
F22(z2(t)) =

4− z2(t)

432



3. Unknown input observer for TS fuzzy modelsThe membership fun
tions are named �Positive�, �Negative�, �Big� and �Small�, respe
tively. Then,the nonlinear system is approximated by the following fuzzy IF-THEN rulesModel rule 1 IF z1(t) is �Positive� and z2(t) is �Big�THEN {

ẋ(t) = A1x(t) +B1u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 2 IF z1(t) is �Positive� and z2(t) is �Small�THEN {

ẋ(t) = A2x(t) +B2u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 3 IF z1(t) is �Negative� and z2(t) is �Big�THEN {

ẋ(t) = A3x(t) +B3u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 4 IF z1(t) is �Negative� and z2(t) is �Small�THEN {

ẋ(t) = A4x(t) +B4u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Here
A1 =

⎡

⎣

−1 1 0

4 −1 0

0 1 −1

⎤

⎦ , A2 =

⎡

⎣

−1 1 0

0 −1 0

0 1 −1

⎤

⎦ , A3 =

⎡

⎣

−1 −1 0

4 −1 0

0 1 −1

⎤

⎦ , A4 =

⎡

⎣

−1 −1 0

0 −1 0

0 1 −1

⎤

⎦

B1,2,3,4 =

⎡

⎣

1

0.1

0.2

⎤

⎦ , Ed =

⎡

⎣

1

−2.5

0.1

⎤

⎦ , C =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦The defuzzi�
ation (that gives the TS fuzzy model) is 
arried out as
ẋ(t) =

4
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
]

y(t) = Cx(t) + fs(t)where
ℎ1(z(t)) = F11(z1(t)) × F21(z2(t))

ℎ2(z(t)) = F11(z1(t)) × F22(z2(t))

ℎ3(z(t)) = F12(z1(t)) × F21(z2(t))

ℎ4(z(t)) = F12(z1(t)) × F22(z2(t)) 33



3.4 An appli
ation exampleFollowing the steps given in Algorithm 3.1, the rank of CEd and Ed are 
ompared
rank(CEd) = rank(Ed) = 1The above 
ondition is satis�ed, and hen
e matri
es (CEd)

+, Hce and T using eq. (3.30), (3.36)and (3.40) respe
tively are 
omputed.
(CEd)

+ =
[

0.1377 −0.3443 0.0138
]

, Hce =

⎡

⎣

0.1378 −0.3443 0.0138

−0.3443 0.8608 −0.0344

0.0138 −0.0344 0.0014

⎤

⎦ ,

T =

⎡

⎣

0.8622 0.3443 −0.0138

0.3443 0.1391 0.0344

−0.0138 0.0344 0.9986

⎤

⎦The following gain matri
es Li are obtained using eq. (3.47) with the relaxed stability 
onditions.
L1 =

⎡

⎣

2.015 0.358 0.082

0.358 1.739 0.458

0.082 0.458 0.501

⎤

⎦ , L2 =

⎡

⎣

0.638 0.079 0.014

0.079 1.739 0.458

0.014 0.458 0.501

⎤

⎦

L3 =

⎡

⎣

2.015 −0.504 0.082

−0.504 1.051 0.472

0.082 0.472 0.501

⎤

⎦ , L4 =

⎡

⎣

0.638 −0.782 0.014

−0.782 1.051 0.471

0.014 0.472 0.501

⎤

⎦Simulation resultsThe TS fuzzy UIO (TSFUIO) based residual generator is 
ompared against a TS fuzzy observer(TSFO) in normal operation (without a�e
tation of disturban
es or faults). Their respe
tive resid-uals are shown in �g. 3.3 and in �g. 3.2.

0 5 10 15
−10

−8

−6

−4

−2

0

2
x 10

−11

Time [s]

R
es

id
ua

ls
 [ 

]

 

 

r
1
(t)

r
2
(t)

r
3
(t)

Fig. 3.2: Residuals for TSFO 0 5 10 15
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Fig. 3.3: Residuals for TSFUIOIt 
an be noti
ed that both observers 
onverge to zero at t ≈ 12 s. The use of the relaxed stability
onditions (s = 3) in the design of both observers allows to improve the 
onvergen
e as 
an beseen in the following residuals:34



3. Unknown input observer for TS fuzzy models
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Fig. 3.4: Residuals for relaxed TSFO 0 5 10 15
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Fig. 3.5: Residuals for relaxed TSFUIOThe unknown input (disturban
e) signal
d(t) = 0.3 cos (2t)e−0.2t (3.61)is applied to the system.In �g. 3.6 and �g. 3.7 the residuals for both observers are shown, when the disturban
e a�e
ts thesystem.
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Fig. 3.6: Residuals for TSFO with disturban
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Fig. 3.7: Residuals for TSFUIO with disturban
eAs 
an be seen in �g. 3.6, the TS fuzzy observer is 
learly a�e
ted by the unknown input whilethe TS fuzzy UIO is de
oupled from the unknown input as shown in �g. 3.7.The pro
edure des
ribed in the subse
tion 3.3 is applied to build three TS fuzzy UIO based residualgenerator. Ea
h observer is insensitive to one sensor fault but sensitive to the another two.The rank 
ondition rank(CkEd) = rank(Ed) for k = 1, 2, 3 is satis�ed. All three observers ful�llthis 
ondition. 35



3.4 An appli
ation exampleThe sensitivity and insensitivity of the observers to the faults is shown in the tab. 3.1TS fuzzy UIO Insensitive to Sensitive to1 fs1 fs2 and fs32 fs2 fs1 and fs33 fs3 fs1 and fs2Tab. 3.1: Robust sensor fault isolation s
hemeTS fuzzy UIO 1: The dynami
 equation for the �rst TS fuzzy UIO is
 ̇1(t) =

4
∑

i=1

ℎi(z(t))
[

G1
i 

1(t) +H1
i u(t) +

(

G1
iH

1
ce + L1

i

)

y1(t)
]and the parameter matri
es (C1Ed)

+, H1
ce and T 1 are 
omputed using eq. (3.30), (3.36) and (3.40)respe
tively

(C1Ed)
+ =

[

−0.3994 0.0159
]

, H1
ce =

⎡

⎣

−0.3994 0.0159

0.9984 −0.0399

−0.0399 0.0016

⎤

⎦ , T 1 =

⎡

⎣

1 0.3994 −0.0159

0 0.0016 0.0399

0 0.0399 0.9984

⎤

⎦The following gain matri
es L1
i are obtained using eq. (3.47) with the relaxed stability 
onditions(s = 2):

L1
1 =

⎡

⎣

−9.555 20.774

1.044 2.091

−0.931 2.183

⎤

⎦ , L1
2 =

⎡

⎣

−7.962 36.887

1.048 2.010

−0.665 4.575

⎤

⎦ ,

L1
3 =

⎡

⎣

−24.651 21.298

1.047 4.534

−3.296 2.179

⎤

⎦ , L1
4 =

⎡

⎣

−16.73 37.158

1.049 3.273

−1.887 4.574

⎤

⎦The residual is generated by
r1(t) =

(

I − C1H1
ce

)

y1(t)− C1 1(t)TS fuzzy UIO 2: The dynami
 equation for the se
ond TS fuzzy UIO is
 ̇2(t) =

4
∑

i=1

ℎi(z(t))
[

G2
i 

2(t) +H2
i u(t) +

(

G2
iH

2
ce + L2

i

)

y2(t)
]36



3. Unknown input observer for TS fuzzy modelsand the parameter matri
es (C2Ed)
+, H2

ce and T 2 are 
omputed using eq. (3.30), (3.36) and (3.40)respe
tively
(C2Ed)

+ =
[

0.9901 0.0990
]

, H2
ce =

⎡

⎣

0.9901 0.0990

−2.4752 −0.2475

0.0990 0.0099

⎤

⎦ , T 2 =

⎡

⎣

0.0099 0 −0.0990

2.4752 1 0.2475

−0.0990 0 0.9901

⎤

⎦The following gain matri
es L2
i are obtained using eq. (3.47) with the relaxed stability 
onditions(s = 2):

L2
1 =

⎡

⎣

1.025 −0.233

−1.558 29.896

−0.294 3.740

⎤

⎦ , L2
2 =

⎡

⎣

1.012 0.019

−5.972 29.855

−0.419 3.753

⎤

⎦ ,

L2
3 =

⎡

⎣

1.111 −1.332

−4.956 71.827

−0.677 9.927

⎤

⎦ , L2
4 =

⎡

⎣

1.057 −0.261

−10.719 71.65

−1.211 9.981

⎤

⎦The residual is generated by
r2(t) =

(

I − C2H2
ce

)

y2(t)− C2 2(t)TS fuzzy UIO 3: The dynami
 equation for the third TS fuzzy UIO is
 ̇3(t) =

4
∑

i=1

ℎi(z(t))
[

G3
i 

3(t) +H3
i u(t) +

(

G3
iH

3
ce + L3

i

)

y3(t)
]and the parameter matri
es (C3Ed)

+, H3
ce and T 3 are 
omputed using eq. (3.30), (3.36) and (3.40)respe
tively

(C3Ed)
+ =

[

0.1379 −0.3448
]

, H3
ce =

⎡

⎣

0.1379 −0.3448

−0.3448 0.8620

0.0138 −0.0345

⎤

⎦ , T 3 =

⎡

⎣

0.8620 0.3448 0

0.3448 0.1379 0

−0.0138 0.0345 1

⎤

⎦The following gain matri
es L3
i are obtained using eq. (3.47) with the relaxed stability 
onditions(s = 4):

L3
1 =

⎡

⎣

2.517 −0.197

0.921 2.207

0.152 0.952

⎤

⎦ , L3
2 =

⎡

⎣

1.138 −0.748

0.920 2.207

0.014 0.952

⎤

⎦ ,

L3
3 =

⎡

⎣

2.517 −1.102

0.102 1.517

0.152 0.979

⎤

⎦ , L3
4 =

⎡

⎣

1.138 −1.399

−0.152 1.517

0.014 0.979

⎤

⎦ 37



3.4 An appli
ation exampleThe residual is generated by
r3(t) =

(

I − C3H3
ce

)

y3(t)− C3 3(t)In order to show the robust sensor fault isolation s
hemes based on TS fuzzy UIO, the followingsensor fault signal is applied to the system
f(t) =

{

−0.08 5 ≤ t ≤ 10

0 elsewhere. (3.62)the 
orrespondent simulation is shown in �g. 3.8.
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Fig. 3.8: Fault for sensor 1,2 and 3The same sensor fault is applied to all the three sensors. In �g. 3.9 the three evaluated residualswithout the sensor fault are shown.
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Fig. 3.9: Evaluated residuals
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Fig. 3.10: Isolation of the fault in sensor 1Fig. 3.10 shows that the fault in sensor 1 does not a�e
t the residual 1 but a�e
t the another tworesiduals, therefore this fault 
an be isolated.38



3. Unknown input observer for TS fuzzy models
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Fig. 3.11: Isolation of the fault in sensor 2
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Fig. 3.12: Isolation of the fault in sensor 3It 
an be seen in �g. 3.11 that the fault in sensor 2 does not a�e
t the residual 2 but a�e
tsthe another two residuals, therefore this fault 
an be isolated, too. The same result is shown in�g. 3.12 where the fault on sensor 3 
an also be isolated.The proposed unknown input observer for a 
lass of nonlinear systems (des
ribed by the TS fuzzymodel) makes possible to de
ouple the unknown input from teh residual signal. The robust sensorfault isolation s
heme allows to isolate sensor faults using the TS fuzzy UIO theory.
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4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelsChapter 4Attenuating sto
hasti
 disturban
es basedon TS fuzzy modelsThis 
hapter 
onsiders the dis
rete TS fuzzy model with sto
hasti
 noise (disturban
e) in order todesign a residual generator. An LMI optimization approa
h is proposed to minimize the expe
tedvalue of the steady state estimation error, knowing the sto
hasti
 features of the noises.4.1 Dis
rete TS fuzzy modelConsider the following dis
rete TS fuzzy model with in�uen
e of sto
hasti
 noise and faults. Themodel is represented by fuzzy IF-THEN rulesModel rule iIF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x(k + 1) = Aix(k) +Biu(k) + Ewi
w(k) + Efif(k)

y(k) = Cix(k) +Diu(k) + Fwi
w(k) + v(k) + Ffif(k)

(4.1)where i = 1, ..., r, r is the number of IF-THEN rules, Mij are fuzzy sets, z1(k), . . . , zp(k) are thepremise variables, x(k) ∈ ℝ
n is the state ve
tor, u(k) ∈ ℝ

ku is the input ve
tor, y(k) ∈ ℝ
m is theoutput ve
tor, w(k) ∈ ℝ

kw is the system noise ve
tor, v(k) ∈ ℝ
kv is the measurement noise ve
torand f(k) ∈ ℝ

kf is the fault ve
tor. Matri
es Ai, Bi, Ewi
, Efi , Ci, Di, Fwi

and Ffi are known systemmatri
es with appropriate dimension.The defuzzi�ed output of the dis
rete TS fuzzy model in eq. (4.1) is represented as
x(k + 1) =

r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Ewi
w(k) + Efif(k)

] (4.2a)
y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + Fwi
w(k) + v(k) + Ffif(k)

] (4.2b)The above system des
ription provides
Ewi

= Bi and Fwi
= Difor the in�uen
e of the system noise. It is assumed that noise signals w(k) and v(k) are un
orre-lated, zero-mean, and Gaussian white noise ve
tors, i.e. its mean ve
tor are

E [w(k)] = 0 and E [v(k)] = 0 41



4.1 Dis
rete TS fuzzy modelwhere E[⋅] denotes the expe
tation and 
onsequently, the 
ovarian
e matri
es for w(k) and v(k)are de�ned as
E
[

w(k)wT (k)
]

= �w, �w = diag(�
w,1
, . . . , �

w,kw
)2

E
[

v(k)vT (k)
]

= �v, �v = diag(�
v,1
, . . . , �

v,kv
)2The above assumptions on sto
hasti
 features of the noise are all reasonable from a pra
ti
al pointof view [25℄.4.1.1 System reformulationTo get a more general des
ription of the dis
rete TS fuzzy model des
ribed in eq. (4.1), the noiseve
tor n(k) is introdu
ed

n(k) =

[

w(k)

v(k)

] (4.3)Thus, the fuzzy IF-THEN rules in eq. (4.1) 
an be written intoModel rule i IF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x(k + 1) = Aix(k) +Biu(k) + Eni
n(k) + Efif(k)

y(k) = Cix(k) +Diu(k) + Fni
n(k) + Ffif(k)

(4.4)where n(k) ∈ ℝ
kn is the ve
tor of sto
hasti
 noise and matri
es Eni

and Fni
are known systemmatri
es with appropriate dimensions.The defuzzi�ed output of the dis
rete TS fuzzy model in eq. (4.4) is inferred as

x(k + 1) =
r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Eni
n(k) + Efif(k)

] (4.5a)
y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + Fni
n(k) + Ffif(k)

] (4.5b)where
Eni

=
[

Ewi
0
]

Fni
=
[

Fwi
I
] (4.6)Moreover, de
laring

w̄(k) =

r
∑

i=1

ℎi(z(k))Eni
n(k) v̄(k) =

r
∑

i=1

ℎi(z(k))Fni
n(k) (4.7)allow us to obtain the standard system des
ription

x(k + 1) =
r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + w̄(k) + Efif(k)
] (4.8a)

y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + v̄(k) + Ffif(k)
] (4.8b)42



4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelsmostly used in the literature. The 
ovarian
es matri
es 
an be de�ned as
E
[

w̄(k)w̄T (k)
]

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Eni
�nE

T
nj

E
[

v̄(k)v̄T (k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Fni
�nF

T
njwhere �n means

�n =

[

�w 0

0 �v

]

= diag(�
w,1
, . . . , �

w,kw
, �

v,1
, . . . , �

v,kv
)2 (4.9)and the 
ross 
ovarian
e matri
es are given by

E
[

w̄(k)v̄T (k)
]

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Eni
�nF

T
nj

E
[

v̄(k)w̄T (k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Fni
�nE

T
nj4.2 Proposed approa
h for the TS fuzzy observerBe
ause of the sto
hasti
 noise, the state estimates given by a TS fuzzy observer are no longera

urate. Therefore, a TS fuzzy observer is proposed. The obje
tive of the observer is to minimizethe expe
ted value of the steady state estimation error, knowing the sto
hasti
 features of thenoises.A TS fuzzy observer is 
onstru
ted to estimate the states and is given by the following fuzzyIF-THEN rulesObserver rule iIF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x̂(k + 1) = Aix̂(k) +Biu(k) + Li(y(k)− ŷ(k))

ŷ(k) = Cix̂(k) +Diu(k)

(4.10)The defuzzi�ed output of the TS fuzzy observer in eq. (4.10) is represented as
x̂(k + 1) =

r
∑

i=1

ℎi(z(k))
[

Aix̂(k) +Biu(k) + Li

(

y(k)− ŷ(k)
)

] (4.11a)
ŷ(k) =

r
∑

i=1

ℎi(z(k))
[

Cix̂(k) +Diu(k)
] (4.11b)Based on the state equations (4.8a) and (4.11a), the state estimation error e(k) is de�ned by

e(k) = x(k)− x̂(k) (4.12)43



4.2 Proposed approa
h for the TS fuzzy observerand has to be minimized in order to �nd the best estimation of x(k). In order to analyze the
onvergen
e of the TS fuzzy observer, the dynami
s of the state estimation error without thepresen
e of faults is 
onsidered.
e(k + 1) = x(k + 1)− x̂(k + 1)

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))
[

(Ai − LiCj)e(k) + w̄(k)− Liv̄(k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))
[

Aije(k) + w̄(k)− Liv̄(k)
] (4.13)where

Aij = Ai − LiCjUsing the des
ription of the noise ve
tors, espe
ially the assumption that they are zero-mean, thefollowing equation is given for the value of expe
tation
E [e(k + 1)] =

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))AijE [e(k)] (4.14)The error 
ovarian
e matrix 
an be de�ned based on eq. (4.13) as
P (k + 1)=E

[

e(k + 1)eT (k + 1)
]

P (k + 1)=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijE
[

e(k)eT (k)
]

A T
lo +AijE

[

e(k)w̄T (k)
]

−

AijE
[

e(k)v̄T (k)
]

LT
l + E

[

w̄(k)eT (k)
]

A T
ij +E

[

w̄(k)w̄T (k)
]

− E
[

w̄(k)v̄T (k)
]

LT
i −

LiE
[

v̄(k)eT (k)
]

A T
jl − LiE

[

v̄(k)w̄T (k)
]

+ LiE
[

v̄(k)v̄T (k)
]

LT
j

) (4.15)Under the assumption that the 
urrent error is independent of the 
urrent noise, it is provided
E
[

e(k)w̄T (k)
]

=
(

E
[

w̄(k)eT (k)
]

)T

= 0

E
[

e(k)v̄T (k)
]

=
(

E
[

v̄(k)eT (k)
]

)T

= 0Due to the fa
t, that the 
urrent error is independent of the 
urrent noise, the eq. (4.15) 
an beredu
ed to
P (k + 1)=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijE
[

e(k)eT (k)
]

A T
lo +

E
[

w̄(k)w̄T (k)
]

− E
[

w̄(k)v̄T (k)
]

LT
i − LiE

[

v̄(k)w̄T (k)
]

+ LiE
[

v̄(k)v̄T (k)
]

LT
j

)

44



4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelssubstituting P (k) = E
[

e(k)eT (k)
] and the 
orrespondent values for the 
ovarian
e matri
es inthe above equation results in

P (k + 1)=
r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijP (k)A
T
lo +

Eni
�nE

T
nj

− Eni
�nF

T
nj
LT
l − LiFnj

�nE
T
nl

+ LiFnj
�nF

T
nl
LT
o

)

=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijP (k)A
T
lo + Enij

�nE
T

nlo

)where
Enij

= Eni
− LiFnjAssuming that P (k + 1)=P (k), the following equation is obtained for the steady state

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijPA
T
lo − P + Enij

�nE
T

nlo

)

= 0 (4.16)It is 
lear that
AijPA

T
lo − P + Enij

�nE
T

nlo
= 0 (4.17)has the form of a dis
rete algebrai
 Ri

ati equation (DARE). It is known from [7, 87℄, that theDARE in eq. (4.17) is solvable for a 
ommon matrix P ≥ 0 if and only if ∃P ≥ 0 su
h that

AijPA
T
lo − P + Enij

�nE
T

nlo
≤ 0 (4.18)In [20, 62℄ the relationship between the solution of a dis
rete algebrai
 Ri

ati equation and itsasso
iated LMI 
an be found. The following lemma from [62℄ is used to prove that the DARE ineq. (4.17) whi
h is equivalent to the eq. (4.18).Lemma 4.1 Given the dis
rete algebrai
 Ri

ati equation

ATPA− P +Q− (C +BTPA)T (R +BTPB)−1(C +BTPA) = 0 (4.19)with R > 0, P T = P , and let
Q(P ) = ATPA− P +Q− (C +BTPA)T (R +BTPB)−1(C +BTPA) (4.20)Assume that there exists P = P T su
h that Q(P ) ≥ 0. Then if (A,B) is stabilizable, there existsa minimal solution P− ≥ 0 to the Ri

ati eq. (4.19). Moreover,

P− ≤ P, ∀P su
h that Q(P ) ≥ 0 (4.21)and A− B(R +BTP−B)−1(C +BTP−A) is stable. 45



4.2 Proposed approa
h for the TS fuzzy observerIn order to minimize the expe
ted value of the steady state estimation error e(k) [64℄, the followingLMI optimization problem is formulated
min tr(P ), subje
t to P ≥ 0

AijPA
T
lo − P + Enij

�nE
T

nlo
≤ 0

(4.22)Considering that all pairs (Ai, Ci) are dete
table and hen
e (AT
i , C

T
i ) are stabilizable, it followsfrom Lemma 4.1 that the minimal solution of eq. (4.17) is indeed the minimal solution of eq. (4.22).The above matrix inequality 
an be expressed in the following equivalent form

− P +
[

Aij Enij

]

[

P 0

0 �n

]

[

A T
ij

E T
nij

]

≤ 0 (4.23)A

ording to the S
hur 
omplement, the eq. (4.23) is rearranged in the following matrix inequality
⎡

⎢

⎣

−P Aij Enij

A T
ij −P−1 0

E T
nij

0 −� −1
n

⎤

⎥

⎦
≤ 0Substituting Aij and Enij

in the above matrix inequality results in
⎡

⎢

⎣

−P Ai − LiCj Eni
− LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦
≤ 0Both sides of the above matrix inequality are multiplied by blo
k diagonal matrix { P−1, I, I

},and results in
⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦

⎡

⎢

⎣

−P Ai − LiCj Eni
− LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦

⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦ =

⎡

⎢

⎣

−I P−1Ai − P−1LiCj P−1Eni
− P−1LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦

⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦ =

⎡

⎢

⎣

−P−1 P−1Ai − P−1LiCj P−1Eni
− P−1LiFnj

AT
i P

−1 − CT
j L

T
i P

−1 −P−1 0

E T
ni
P−1 − F T

nj
L T
i P

−1 0 −� −1
n

⎤

⎥

⎦
≤ 0Let X = P−1 and Ni = XLi. Thus, the following LMI is obtained:

⎡

⎢

⎣

−X XAi −NiCj XEni
−NiFnj

AT
i X − CT

j N
T
i −X 0

E T
ni
X − F T

nj
N T

i 0 −� −1
n

⎤

⎥

⎦
≤ 046



4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelsSubstituting Eni
=
[

Ewi
0
] and Fni

=
[

Fwi
I
] in the above LMI results in

⎡

⎢

⎢

⎢

⎣

−X XAi −NiCj XEwi
−NiFwj

−Ni

AT
i X − CT

j N
T
i −X 0 0

E T
wi
X − F T

wj
N T

i 0 −� −1
w 0

−NT
i 0 0 −� −1

v

⎤

⎥

⎥

⎥

⎦

≤ 0Therefore, the above LMI represents the optimization problem from eq. (4.22) as follows
max tr(X), subje
t to X ≥ 0

⎡

⎢

⎢

⎢

⎣

−X XAi −NiCi XEwi
−NiFwi

−Ni

AT
i X − CT

i N
T
i −X 0 0

E T
wi
X − F T

wi
N T

i 0 −� −1
w 0

−NT
i 0 0 −� −1

v

⎤

⎥

⎥

⎥

⎦

≤ 0 (4.24)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−4X

[

XAi −NiCj+

XAj −NjCi

] [

XEwi
−NiFwj

+

XEwj
−NjFwi

]

−Ni −Nj

[

AT
i X − CT

j N
T
i +

AT
j X − CT

i N
T
j

]

−X 0 0
[

E T
wi
X − F T

wj
N T

i +

E T
wj
X − F T

wi
N T

j

]

0 −� −1
w 0

−NT
i −NT

j 0 0 −� −1
v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (4.25)
∀i < jwhere

Li = X−1Ni and P = X−1It is 
lear, that in the formulation of eq. (4.24)-(4.25), the maximization of matrix X implies theminimization of matrix P in eq. (4.22).4.2.1 Residual EvaluationTo evaluate the generated residual and based on [21, 48℄, the use of LMIs is the widely adopted ap-proa
hes to 
al
ulate the threshold value Jtℎ > 0 and based on this, the following logi
 relationshipfor fault dete
tion is used:
∥r(k)∥2,N ≤ Jtℎ ⇒ no alarm, fault-free
∥r(k)∥2,N > Jtℎ ⇒ alarm, a fault is dete
tedwhere the so-
alled residual evaluation ∥r(k)∥2,N is determined by:

∥r(k)∥2,N =

√

√

√

⎷

N
∑

k=0

rT (k)r(k) (4.26)47



4.3 An appli
ation example
N a is dis
rete-time window. Sin
e an evaluation of the signal over the whole time range isimpra
ti
al, it is desired that the fault will be dete
ted as easy as possible. Based on eq. (4.13), itfollows

∥r(k)∥2,N = ∥rn(k) + rf(k)∥2,N (4.27)where rn(k) and rf(k) are de�ned as:
rn(k) = r(k)∣f=0 (4.28)
rf (k) = r(k)∣n=0 (4.29)Moreover, the fault-free 
ase residual evaluation fun
tion is

∥r(k)∥2,N ≤ ∥rn∥2,N ≤ Jtℎ,n (4.30)where Jtℎ,n = supn∈L2
∥rn∥2,N . Therefore, the threshold Jtℎ is 
hosen as Jtℎ = Jtℎ,n. Where Jtℎ is
onstant and 
an be evaluated o�-line.To demonstrate the e�e
tiveness of the proposed approa
h to minimize the expe
ted value of thesteady state estimation error, the approa
h is applied to the vehi
le lateral dynami
 model.4.3 An appli
ation exampleThe vehi
le lateral dynami
 model, whi
h is represented by the so-
alled bi
y
le model [41, 54℄, itis a linear parameter varying (LPV) system and it is approximated using the TS fuzzy model.The 
ontinuous state spa
e representation for the vehi
le lateral dynami
 model is given by

[

�̇(t)

ṙ(t)

]

=

⎡

⎣

−C�H+C
′

�V

mvref
K�R

lHC�H−lV C
′

�V

mvref 2 K�R
− 1

lHC�H−lV C
′

�V

Iz
− l2

V
C

′

�V
+l2

H
C�H

Izvref

⎤

⎦

[

�(t)

r(t)

]

+

⎡

⎣

C
′

�V

mvref
K�R

lV C
′

�V

Iz

⎤

⎦ (�∗L(t) + n�L(t))

[

ay(t)

r(t)

]

=

[

−C�H+C
′

�V

m

lHC�H−lV C
′

�V

mvref

0 1

]

[

�(t)

r(t)

]

+

[

C
′

�V

m

0

]

(�∗L(t) + n�L(t)) +

[

1 0

0 1

] [

nay(t)

nr(t)

]

where vref is the varying parameter, xT (t) = [�T (t) rT (t)
]T , u(t) = �∗L(t), w(t) = n�L(t), vT (t) =

[

nT
ay (t) nT

r (t)
]T and yT (t) = [aTr (t) rT (t)

]T . Using the numeri
al values from Appendix B, thissystem 
an be written as follows:
[

ẋ1(t)

ẋ2(t)

]

=

[

−144.034
vref

58.896
vref 2 − 1

29.859 −170.981
vref

]

[

x1(t)

x2(t)

]

+

[

52.802
vref

40.939

]

u(t) +

[

52.802
vref

0 0

40.939 0 0

]

n(t)

[

y1(t)

y2(t)

]

=

[

−152.756 62.463
vref

0 1

]

[

x1(t)

x2(t)

]

+

[

56

0

]

u(t) +

[

56 1 0

0 0 1

]

n(t)where nT (t) =
[

nT
�L
(t) nT

ay(t) nT
r (t)

]T .48



4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelsIn tab. 4.1 the typi
al sensor noise data for the vehi
le lateral dynami
 model are listed.Sensor Standard variation � Unit
n�L ��L = 3.5× 10−3 [rad]

nay �ay = 0.2 [m/s2]

nr �nr = 3.5× 10−3 [rad/s]Tab. 4.1: Typi
al sensor noise of vehi
le lateral dynami
 modelTo obtain the TS fuzzy model, it is ne
essary to de�ne two premise variables (ea
h premise variablerepresent in this 
ase a varying parameter). The premise variables are de�ned as follows:
z1(t) =

1

vref
z2(t) =

1

vref 2Matri
es A(z(t)), B(z(t)), En(z(t)) and C(z(t)) are expressed as follows:
A(z(t)) =

[

−144.034z1(t) 58.896z2(t)− 1

29.859 −170.981z1(t)

]

B(z(t)) =

[

58.802z1(t)

40.939

]

En(z(t)) =

[

58.802z1(t) 0 0

40.939 0 0

]

C(z(t)) =

[

−152.756 62.463z1(t)

0 1

]The 
omputation of the minimum and maximum values of z1(t) and z2(t) for vref ∈ [5, 55] m/sare
max
vref

z1(t) = z+1 = 0.2 max
vref 2

z2(t) = z+2 = 0.04

min
vref

z1(t) = z−1 = 0.0182 min
vref 2

z2(t) = z−2 = 3.3× 10−4from the maximum and minimum values, z1(t) and z2(t) 
an be represented by
z1(t) = F11(z1(t)) ⋅ 0.2 + F12(z1(t)) ⋅ 0.0182
z2(t) = F21(z2(t)) ⋅ 0.04 + F22(z2(t)) ⋅ 3.3× 10−4where:

F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1the membership fun
tions are 
al
ulated as follows
F11(z1(t)) =

z1(t)− 0.0182

0.1818
F12(z1(t)) =

0.2− z1(t)

0.1818

F21(z2(t)) =
z2(t)− 3.3× 10−4

0.03967
F22(z2(t)) =

0.04− z2(t)

0.03967 49



4.3 An appli
ation exampleEa
h subsystem is dis
retized using 10 millise
onds as sample time, in order to have the TS fuzzymodel in its dis
rete form. The vehi
le lateral dynami
 model is represented by the followingdis
rete fuzzy IF-THEN rules:Model rule 1 IF z1(k) is F11 and z2(k) is F21THEN {

x(k + 1) = A1x(k) +B1u(k) + En
1
n(k)

y(k) = C1x(k) +D1u(k) + Fn
1
n(k)Model rule 2 IF z1(k) is F11 and z2(k) is F22THEN {

x(k + 1) = A2x(k) +B2u(k) + En
2
n(k)

y(k) = C2x(k) +D2u(k) + Fn
2
n(k)Model rule 3 IF z1(k) is F12 and z2(k) is F21THEN {

x(k + 1) = A3x(k) +B3u(k) + En
3
n(k)

y(k) = C3x(k) +D3u(k) + Fn
3
n(k)Model rule 4 IF z1(k) is F12 and z2(k) is F22THEN {

x(k + 1) = A4x(k) +B4u(k) + En
4
n(k)

y(k) = C4x(k) +D4u(k) + Fn
4
n(k)Here

A1 =

[

0.7512 0.0099

0.2181 0.7118

]

, B1 =

[

0.0941

0.3598

]

, En1
=

[

0.0941 0 0

0.3598 0 0

]

A2 =

[

0.7486 −0.0072

0.2178 0.7093

]

, B2 =

[

0.0901

0.3594

]

, En2
=

[

0.0901 0 0

0.3594 0 0

]

A3 =

[

0.9761 0.0132

0.2904 0.9714

]

, B3 =

[

0.0122

0.4048

]

, En3
=

[

0.0122 0 0

0.4048 0 0

]

A4 =

[

0.9727 −0.0095

0.2900 0.9680

]

, B4 =

[

0.0075

0.4043

]

, En4
=

[

0.0075 0 0

0.4043 0 0

]

C1,2 =

[

−152.76 12.49

0 1

]

, C3,4 =

[

−152.76 1.13

0 1

]

D1,2,3,4 =

[

56

0

]

, Fn1,2,3,4
=

[

56 1 0

0 0 1

]

�w = 1.2185× 10−5, �v =

[

0.04 0

0 1.2185× 10−5

]
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4. Attenuating sto
hasti
 disturban
es based on TS fuzzy modelsThe defuzzi�
ation (that give the dis
rete TS fuzzy model) is 
arried out as
x(k + 1) =

4
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Eni
n(k)

]

y(k) =

4
∑

i=1

ℎi(z(k))
[

Cix(k) +Du(k) + Fnn(k)
]where

ℎ1(z(k)) = F11(z1(k))× F21(z2(k))

ℎ2(z(k)) = F11(z1(k))× F22(z2(k))

ℎ3(z(k)) = F12(z1(k))× F21(z2(k))

ℎ4(z(k)) = F12(z1(k))× F22(z2(k))4.3.1 Simulation ResultsThe proposed approa
h to minimize the expe
ted value of the steady state estimation error isapplied to the vehi
le lateral dynami
 model, where eq. (4.24)-(4.25) are used to make the mini-mization of the expe
ted value of the steady state estimation error for ea
h output separately.The following longitude velo
ity pro�le is 
onsidered for the vref(k)
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Fig. 4.1: Longitude velo
ity pro�le
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4.3 An appli
ation example4.3.1.1 Lateral a

eleration outputThe gain matri
es obtained for the lateral a

eleration ay(k) output are:
L1 =

[

−0.00091

0.00243

]

, L2 =

[

−0.00096

0.00288

]

, L3 =

[

−0.00194

−0.00321

]

, L4 =

[

−0.00170

−0.00215

]

.An o�set of 5 m/s2 is 
onsidered as a sensor fault that appears from 48 to 50 s.
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Fig. 4.2: Lateral a

eleration output 0 10 20 30 40 50
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Fig. 4.3: Estimated lateral a

elerationIt 
an be seen in �g. 4.3 that the estimated lateral a

eleration ay(k) attenuates the e�e
t of thesto
hasti
 noise. Using L2 norm as evaluation fun
tion and a residual evaluation window of 20 s.for the lateral a

eleration output, the obtained threshold value (Jtℎ) is 1.608.
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Fig. 4.4: Evaluated residual for the lateral a

eleration sensorIn �g. 4.4, the evaluated residual has ex
eeded the threshold value at t = 48 s. Therefore, thesensor fault 
an be dete
ted.52



4. Attenuating sto
hasti
 disturban
es based on TS fuzzy models4.3.1.2 Yaw rate outputThe gain matri
es obtained for the yaw rate r(k) output are:
L5 =

[

0.02435

0.12236

]

, L6 =

[

0.02304

0.11732

]

, L7 =

[

0.06409

0.34173

]

, L8 =

[

0.05863

0.34753

]

.An o�set of 10 ∘/s (0.1745 rad/s) is 
onsidered as a sensor fault that appears from 44 to 46 s.
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Fig. 4.5: Yaw rate output 0 10 20 30 40 50
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Fig. 4.6: Estimated yaw rateAs 
an be appre
iated in �g. 4.6, the estimated yaw rate r(k) attenuates the e�e
t of the sto
hasti
noise. Using L2 norm as evaluation fun
tion and a residual evaluation window of 20 s. for the yawrate output, the obtained threshold value (Jtℎ) is 0.027.
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Fig. 4.7: Evaluated residual for the yaw rate sensorIt 
an be seen, that the evaluated residual has ex
eeded the threshold value at t = 44 s. Therefore,the sensor fault 
an be dete
ted. 53



4.3 An appli
ation exampleA s
heme to minimize the expe
ted value of the steady state estimation error for a 
lass of nonlinearsystems des
ribed by the TS fuzzy model has been presented. The minimization is made usingLMI te
hniques for the solution of the problem.The proposed s
heme is applied to the vehi
le lateral dynami
 model. The simulation results forthe estimated lateral a

eleration ay(k) and the estimated yaw rate r(k) show that the e�e
t ofsto
hasti
 noise is attenuated, and the applied faults 
an be easily dete
ted.
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5. Fault dete
tion observer for TS fuzzy systemsChapter 5Fault dete
tion observer for TS fuzzysystemsRobustness is the most fundamental problem in model-based fault dete
tion. Based on this prob-lem, the study of a robust fault dete
tion problem, whi
h aims at enhan
ing the robustness todisturban
es without sa
ri�
ing the fault dete
tion sensitivity has re
eived attention in re
entyears [19, 79, 81℄.In this 
hapter, the robust fault dete
tion observer using iterative linear matrix inequality (LMI)algorithms [79, 81℄ is generalized for a 
lass of nonlinear systems des
ribed by the TS fuzzy model.These iterative LMI algorithms are implemented to design a robust TS fuzzy fault dete
tionobserver (FDO). The obje
tive of the FDO is to �nd a trade-o� between maximizing the e�e
tof faults in order to in
rease the sensitivity to faults and minimizing the e�e
t of disturban
es inorder to enhan
e the robustness to disturban
es.In this design, two performan
e indexes need to be found, one of them is used to minimize thee�e
t of disturban
es (

1
) and the another one is used to maximize the e�e
t of faults (


2
). Bothof them have a dependen
e on ea
h other, in whi
h, a gain ratio is established, it is given by 


1
/


2
.Consider the following TS fuzzy model with in�uen
e of disturban
es and faults and the model isrepresented by fuzzy IF-THEN rulesModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t) + Edd(t) + Eff(t)

y(t) = Cix(t) +Diu(t) + Fdd(t) + Fff(t)

(5.1)where i = 1, . . . , r and r is the number of fuzzy IF-THEN rules,Mij are fuzzy sets, z1(t), . . . zp(t)are premise variables, x(t) ∈ ℝ
n is the state ve
tor, u(t) ∈ ℝ

ku and y(t) ∈ ℝ
m are the input andoutput ve
tors respe
tively, d(t) ∈ ℝ

kd is the disturban
e ve
tor and f(t) ∈ ℝ
kf is the fault ve
tor.Matri
es Ai, Bi, Ed, Ef , Ci, Di, Fd and Ff are known system matri
es with appropriate dimension.The defuzzi�ed output of the TS fuzzy model in eq. (5.1) is represented as

ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t) + Eff(t)
] (5.2a)

y(t) =
r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fdd(t) + Fff(t)
] (5.2b)For this TS fuzzy model, there is a TS fuzzy observer given by fuzzy IF-THEN rules 55



5.1 Disturban
e attenuation for TS fuzzy observerObserver rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t) +Diu(t)

(5.3)The defuzzi�ed output of the TS fuzzy observer eq. (5.3) is represented as
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li (y(t)− ŷ(t))
] (5.4a)

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
] (5.4b)De�ne the state estimation error as e(t) = x(t)− x̂(t) and the residual ve
tor as r(t) = y(t)− ŷ(t),then it follows from eq. (5.2)-(5.4) that

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Aie(t) + Edd(t) + Eff(t)− Li (y(t)− ŷ(t))
] (5.5a)

r(t) =
r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fdd(t) + Fff(t)
] (5.5b)The following se
tions show the design of a TS fuzzy observer for the disturban
e attenuationproblem and for the fault sensitivity problem. Then the TS fault dete
tion observer is formulated.The obje
tive of this FDO is to solve both optimization problems at the same time.5.1 Disturban
e attenuation for TS fuzzy observerThe e�e
t of disturban
es 
an be minimized by disturban
e reje
tion with a TS fuzzy observer.For this purpose, the 
ontinuous TS fuzzy model given by eq. (5.2) without the e�e
t of faults

f(t) is 
onsidered
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) + Biu(t) + Edd(t)
] (5.6a)

y(t) =
r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fdd(t)
] (5.6b)where d(t) is the disturban
e, the e�e
t of disturban
es on the residual signal need to be minimized.A TS fuzzy observer is given by

˙̂x(t) =
r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li

(

y(t)− ŷ(t)
)

]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
]56



5. Fault dete
tion observer for TS fuzzy systemsThe disturban
e reje
tion 
an be realized by minimizing 

1
subje
t to

sup
∥d(t)∥2 ∕=0

∥rd(t)∥2
∥d(t)∥2

≤ 
1 (5.7)Suppose there exists a 
andidate quadrati
 Lyapunov fun
tion V1(e(t)) = eT (t)Pe(t), P > 0, and



1
> 0 su
h that, for all t,

V̇1(e(t)) + rTd (t)rd(t)− 
2
1
dT (t)d(t) ≤ 0 (5.8)for eq. (5.6a) and eq. (5.6b). The dynami
s of the state estimation error is de�ned as follows

ė(t) =

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

(

Ai − LiCj

)

e(t) +
(

Ed − LiFd

)

d(t)
] (5.9)

rd(t) =
r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fdd(t)
] (5.10)By integrating eq. (5.7) from 0 to T , it is obtained

∫ T

0

(

V̇1(e(t)) + rTd (t)rd(t)− 
2
1
dT (t)d(t)

)

dt ≤ 0 (5.11)It is assumed that the initial 
ondition for the state estimation error e(0) is 0, then eq. (5.12) isobtained after the integration of eq. (5.11)
V1(e(T )) +

∫ T

0

(

rTd (t)rd(t)− 
2
1
dT (t)d(t)

)

dt ≤ 0 (5.12)Sin
e V1(e(T )) ≥ 0, this implies
∥rd(t)∥2
∥d(t)∥2

≤ 

1Therefore the ℒ2 gain of the TS fuzzy model is less than 


1
. Considering the eq. (5.8), a LMI
ondition is derived from this equation

ėT (t)Pe(t) + eT (t)P ė(t) + rTd (t)rd(t)− 
2
1
dT (t)d(t) ≤ 0 (5.13)For the following part, z(t), e(t) and d(t) are expressed as z, e and d respe
tively.

ėTPe+ eTP ė+ rTd rd − 
2
1
dT d

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT ĀT
ij + dT ĒT

di

]

Pe+
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)e
TP
[

Āije+ Ēdid
]

+

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

(

eTCT
i + dTF T

d

)(

Cje+ Fdd
)

]

− 
2
1
dTd

=

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT dT
]

⎡

⎣

ĀT
ijP + PĀij + CT

i Cj PĒdi + CT
i Fd

ĒT
di
P + F T

d Ci −
2
1
I + F T

d Fd

⎤

⎦

[

e

d

]

≤ 0

(5.14)
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5.2 Fault sensitivity for TS fuzzy observerwhere
Āij = Ai − LiCj and Ēdi = Ed − LiFdThe following matrix inequality is obtained from eq. (5.14)

⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijP + PĀij + CT

i Cj

]

r
∑

i=1

ℎi(z)
[

PĒdi + CT
i Fd

]

r
∑

i=1

ℎi(z)
[

ĒT
diP + F T

d Ci

]

−
2
1
I + F T

d Fd

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.15)The matrix inequality given by eq. (5.15) 
an be rewritten as
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)

⎡

⎣

1

2

(

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci

)

1

2

(

PĒdij
+ PĒdji

+ CT
i Fdj

+ CT
j Fdi

)

1

2

(

ĒT
dij
P + ĒT

dji
P + FT

di
Cj + FT

dj
Ci

)

−
2
1
+ FT

d Fd

⎤

⎦ ≤ 0Therefore, from the above inequality
⎡

⎣

1

2

(

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci

)

1

2

(

PĒdij
+ PĒdji

+ CT
i Fdj

+ CT
j Fdi

)

1

2

(

ĒT
dij
P + ĒT

dji
P + FT

di
Cj + FT

dj
Ci

)

−
2
1
+ FT

d Fd

⎤

⎦ ≤ 0 (5.16)The disturban
e reje
tion 
an be a
hieved by solving the following optimization problem:Problem 5.1 The observer gain matri
es Li that minimize 
1 in eq. (5.7) 
an be obtained bysolving the following minimization problem based on LMIs
minimize 
2

1
subject to P > 0 and

[

ĀT
iiP + PĀii + CT

i Ci PĒdi + CT
i Fd

ĒT
di
P + F T

d Ci −
2
1
I + F T

d Fd

]

< 0 (5.17)
[

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci PĒdi + PĒdj + CT
i Fd + CT

j Fd

ĒT
di
P + ĒT

dj
P + F T

d Cj + F T
d Ci −2
2

1
I + 2F T

d Fd

]

≤ 0 (5.18)
i < j

5.2 Fault sensitivity for TS fuzzy observerFault sensitivity 
an be a
hieved using a TS fuzzy observer in order to maximize the e�e
t offaults in the residual signal r(t). The 
ontinuous TS fuzzy model given by eq. (5.2) without thee�e
t of disturban
es d(t) is 
onsidered
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Eff(t)
] (5.19a)

y(t) =

r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fff(t)
] (5.19b)58



5. Fault dete
tion observer for TS fuzzy systemswhere f(t) is the fault, the e�e
t of faults on the residual signal need to be maximized. A TS fuzzyobserver is given by
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li

(

y(t)− ŷ(t)
)

]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
]The fault sensitivity 
an be realized by maximizing 


2
subje
t to

inf
∥f(t)∥2 ∕=0

∥rf(t)∥2
∥f(t)∥2

≥ 

2

(5.20)Suppose there exists a 
andidate quadrati
 Lyapunov fun
tion V2(e(t)) = eT (t)Qe(t), Q > 0, and



2
> 0 su
h that, for all t

V̇2(e(t))− rTf (t)rf(t) + 
2
2
fT (t)f(t) ≤ 0 (5.21)for eq. (5.19a) and eq. (5.19b). The dynami
s of the state estimation error is de�ned as follows

ė(t) =
r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

(

Ai − LiCj

)

e(t) +
(

Ef − LiFf

)

f(t)
] (5.22)

rf(t) =

r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fff(t)
] (5.23)By integrating eq. (5.21) from 0 to T , it is obtained

∫ T

0

(

V̇2(e(t))− rTf (t)rf (t) + 
2
2
fT (t)f(t)

)

dt ≤ 0 (5.24)It is assumed that the initial 
ondition for the state estimation error e(0) is 0, then eq. (5.25) isobtained after the integration of eq. (5.24)
V2(e(T )) +

∫ T

0

(

−rTf (t)rf(t) + 
2
2
fT (t)f(t)

)

dt ≤ 0 (5.25)Sin
e V2(e(T )) ≥ 0, this implies
∥rf(t)∥2
∥f(t)∥2

≥ 

2Therefore the ℒ2 gain of the TS fuzzy model is more than 


2
. Considering the eq. (5.20), a LMI
ondition is derived from this equation

ėT (t)Qe(t) + eT (t)Qė(t)− rTf (t)rf (t) + 
2
2
fT (t)f(t) ≤ 0 (5.26)59



5.2 Fault sensitivity for TS fuzzy observerFor the following part, z(t), e(t) and f(t) are expressed as z, e and f respe
tively.
ėTQe+ eTQė− rTf rf + 
2

2
fT f

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT ĀT
ij + fT ĒT

fi

]

Qe+
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)e
TQ
[

Āije+ Ēfif
]

−
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

(

eTCT
i + fTF T

f

)(

Cje+ Fff
)

]

+ 
2
2
fTf

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT fT
]

⎡

⎣

ĀT
ijQ+QĀij − CT

i Cj QĒfi − CT
i Ff

ĒT
fi
Q− F T

f Ci 
2
2
I − F T

f Ff

⎤

⎦

[

e

f

]

≤ 0

(5.27)
where

Āij = Ai − LiCj and Ēfi = Ef − LiFfThe following matrix inequality is obtained from eq. (5.27)
⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijQ+QĀij − CT

i Cj

]

r
∑

i=1

ℎi(z)
[

QĒfi − CT
i Ff

]

r
∑

i=1

ℎi(z)
[

ĒT
fiQ− F T

f Ci

]


2
2
I − F T

f Ff

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.28)The matrix inequality given by eq. (5.28) 
an be rewritten as
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)

⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijQ+QĀij − CT

i Cj

]

r
∑

i=1

ℎi(z)
[

QĒfi − CT
i Ff

]

r
∑

i=1

ℎi(z)
[

ĒT
fi
Q− FT

f Ci

]


2
2
I − FT

f Ff

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0Therefore, from the above inequality
⎡

⎣

1

2

(

ĀT
ijQ+ ĀT

jiQ+QĀij +QĀji − CT
i Cj − CT

j Ci

)

1

2

(

QĒfi +QĒfj − CT
i Ff − CT

j Ff

)

1

2

(

ĒT
fi
Q+ ĒT

fj
Q− FT

f Cj − FT
f Ci

)


2
2
− FT

f Ff

⎤

⎦ ≤ 0The fault sensitivity 
an be a
hieved by solving the following optimization problem:Problem 5.2 The observer gain matri
es Li that maximize 
2 in eq. (5.20) 
an be obtained bysolving the following maximization problem based on LMIs
maximize 
2

2
subject to Q > 0 and

[

ĀT
iiQ +QĀii − CT

i Ci QĒfii − CT
i Ff

ĒT
fii
Q− F T

f Ci 
2
2
I − F T

f Ff

]

< 0 (5.29)
[

ĀT
ijQ + ĀT

jiQ +QĀij +QĀji − CT
i Cj − CT

j Ci QĒfi +QĒfj − CT
i Ff − CT

j Ff

ĒT
fi
Q+ ĒT

fj
Q− F T

f Cj − F T
f Ci 2
2

2
I − 2F T

f Ff

]

≤ 0 (5.30)
i < j
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5. Fault dete
tion observer for TS fuzzy systems5.3 Robust TS fault dete
tion observerThe TS fault dete
tion observer aims to solve the disturban
e attenuation and the fault sensitivityproblem at the same time, i.e. it is ne
essary to solve both optimization problems simultaneously.They 
an be solved using iterative LMI s
hemes. In the following part is shown the generalizationof two iterative LMI s
hemes for linear systems for its use with TS fuzzy models. The �rst one istaken from [79℄ and the se
ond one from [81℄.5.3.1 Iterative LMI s
heme 1For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observergain matri
es Li su
h that1. The state estimation error in eq. (5.5a) is asymptoti
ally stable.2. The fault dete
tion �disturban
e-signal� gain ratio
J1 =



1



2is made small where 
1 > 0, 
2 > 0 and

∥rd(t)∥2 < 

1
∥d(t)∥2 (5.31)

∥rf(t)∥2 > 

2
∥f(t)∥2 (5.32)where d(t) and f(t) are non-zero.A solution s
heme that leads to LMIs is that, by setting Q = P in the fault sensitivity problem5.2 given by eq. (5.29)-(5.30), the following optimization problem 
an be obtainedProblem 5.3 For given 
1 > 0, 
2 > 0 and Ff of full 
olumn rank, state estimation error ineq. (5.5a) is asymptoti
ally stable and satis�es

∥rd∥2
∥rf∥2

<



1



2

∥d∥2
∥f∥2

(5.33)if P > 0 and Ni exists su
h that LMIs
[

AT
i P + PAi − CT

i N
T
i −NiCi + CT

i Ci PEd −NiFd + CT
i Fd

ET
d P − F T

d N
T
i + F T

d Ci −
2
1
I + F T

d Fd

]

< 0 (5.34)
[

AT
i P + PAi − CT

i N
T
i −NiCi − CT

i Ci PEf −NiFf − CT
i Ff

ET
f P − F T

f N
T
i − F T

f Ci 
2
2
I − F T

f Ff

]

< 0 (5.35)
⎡

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j N
T
i −NiCj + CT

i Cj+

AT
j P + PAj − CT

i N
T
j −NjCi + CT

j Ci

] [

PEd −NiFd + CT
i Fd+

−NjFd + CT
j Fd

]

[

ET
d P − F T

d N
T
i + F T

d Ci+

−F T
d N

T
j + F T

d Cj

]

−2
2
1
+ 2F T

d Fd

⎤

⎥

⎥

⎥

⎦

≤ 0 (5.36)
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5.3 Robust TS fault dete
tion observer
⎡

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j N
T
i −NiCj − CT

i Cj+

AT
j P + PAj − CT

i N
T
j −NjCi − CT

j Ci

] [

PEf −NiFf − CT
i Ff+

−NjFf − CT
j Ff

]

[

ET
f P − F T

f N
T
i − F T

f Ci+

−F T
f N

T
j − F T

f Cj

]

2
2
2
− 2F T

f Ff

⎤

⎥

⎥

⎥

⎦

≤ 0 (5.37)hold, where Ni = PLi and Nj = PLj and gain matri
es are obtained as Li = P−1Ni.Based on this optimization problem, it is possible to 
onstru
t an iterative LMI algorithm toobtain a TS fault dete
tion observer, given in the following s
hemati
 form.Algorithm 5.1 Given system matri
es Ai, Bi, Ed, Ef , Ci, Di, Fd, Ff and let �1 ≥ 0 and �2 ≥ 0be su�
iently small adjustable parameters. Set k = 0.Step 1. Choose a su�
iently large 

1
and let 


2
= 0 and solve LMIs in eq. (5.34)-(5.37) to �nda feasible solution for P and Ni where Ni = PLi. Compute Li = P−1Ni and store it as

L0i . If L0i 
annot be found , then this algorithm does not give a feasible solution to theproblem. STOP.Step 2. (Main iterative steps)(a) Put k = k + 1 with



1
:= 


1
− �1 > ∥Fd∥, 
2

:= 

2
+ �2 < ∥Ff∥Find a feasible solution for P and Ni for LMIs in eq. (5.34)-(5.37). Store Lik = P−1Niand Jk = 


1
/


2
. Repeat step 2(a). If a feasible solution 
an not be found, then Lik =

Lik−1
.(b) If the performan
e 


1
/


2
is less than some desired level, then a desired observer gain

Li = Lik is found. STOP.LMIs in eq. (5.34) and eq. (5.36) are always feasible for su�
iently large 
1 > ∥Ed∥. Furthermore,the feasibility problems in step 2 are always solvable provided that step 1 is feasible and �1 and �2are su�
iently small.5.3.2 Iterative LMI s
heme 2For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observergain matri
es Li su
h that1. The state estimation error in eq. (5.5a) is asymptoti
ally stable.2. The fault dete
tion �disturban
e-signal� gain ratio
J1 =



1
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5. Fault dete
tion observer for TS fuzzy systemsis made small where 
1 > 0, 
2 > 0 and
∥rd(t)∥2 < 


1
∥d(t)∥2 (5.38)

∥rf(t)∥2 > 

2
∥f(t)∥2 (5.39)where d(t) and f(t) are non-zero.A solution s
heme that leads to LMIs is that, the solution of both optimization problems allowsto obtain the following optimization problemProblem 5.4 For given 
1 > 0, 
2 > 0 and Ff of full 
olumn rank, state estimation error ineq. (5.5a) is asymptoti
ally stable and satis�es

∥rd∥2
∥rf∥2

<



1



2

∥d∥2
∥f∥2

(5.40)if P > 0, Q > 0 and Li exists su
h that LMIs
[

AT
i P + PAi − CT

i L
T
i P − PLiCi +CT

i Ci PEd − PLiFd + CT
i Fd

ET
d P − F T

d L
T
i P + F T

d Ci −
2
1
I + F T

d Fd

]

≤ 0 (5.41)
[

AT
i Q+QAi −CT

i L
T
i Q−QLiCi − CT

i Ci QEf −QLiFf − CT
i Ff

ET
f Q− F T

f L
T
i Q− F T

f Ci 
2
2
I − F T

f Ff

]

≤ 0 (5.42)
⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j L
T
i P − PLiCj + CT

i Cj+

AT
j P + PAj − CT

i L
T
j P − PLjCi +CT

j Ci

] [

PEd − PLiFd + CT
i Fd+

−PLjFd + CT
j Fd

]

[

ET
d P − F T

d L
T
i P + F T

d Ci+

−F T
d L

T
j P + F T

d Cj

]

−2
2
1
+ 2F T

d Fd

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.43)
⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

AT
i Q+QAi − CT

j L
T
i Q−QLiCj − CT

i Cj+

AT
j Q+QAj − CT

i L
T
j Q−QLjCi − CT

j Ci

] [

QEf −QLiFf − CT
i Ff+

−QLjFf − CT
j Ff

]

[

ET
f Q− F T

f L
T
i Q− F T

f Ci+

−F T
f L

T
j Q− F T

f Cj

]

2
2
2
− 2F T

f Ff

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.44)
hold.Based on this optimization problem, it is possible to 
onstru
t an iterative LMI algorithm toobtain a TS fault dete
tion observer, given in the following s
hemati
 form.Algorithm 5.2 Given system matri
es Ai, Bi, Ed, Ef , Ci, Di, Fd, Ff and let �1 ≥ 0 and �2 ≥ 0be su�
iently small adjustable parameters. Set k = 0, l = 0 and m ∈ Z+ to 
ontrol the number of
omputational loops. 63



5.4 Design of the thresholdStep 1. Choose a su�
iently large 

1
= � and solve LMIs in eq. (5.41) and eq. (5.43) to �nd afeasible solution for P and Ni where Ni = PLi. Compute Li = P−1Ni and let 
1 = � and


2 = 0.Step 2. (Main iterative steps)(a) Substitute Li into eq. (5.41)-(5.44) and �nd a feasible solution set of variables P , Q.(b) Put k = k + 1. With P , Q obtained in step 2(a) and with



1
:= 


1
− �1 > ∥Fd∥, 
2

:= 

2
+ �2 < ∥Ff∥�nd a feasible solution Li for LMIs in eq. (5.41)-(5.44). Store Lik = Li and Jk = 


1
/


2
.Repeat step 2(b). If a feasible solution 
an not be found, then Lik = Lik−1

.(
) If the performan
e 

1
/


2
is less than some desired level, then a desired observer gain

Li = Lik is found. STOP.Step 3. Set l = l + 1. If l < m, repeat step 2, else STOP (the feasible solution 
an not be found).Step 1 is always feasible for su�
iently large 
1 > ∥Ed∥. Furthermore, for given P and Q, matrixinequalities in eq. (5.41)-(5.44) be
ome LMIs and a feasible solution Li 
an always be obtainedprovided that �1 and �2 are su�
iently small. Therefore, the feasibility problems in step 2 
analways provide a lo
al improvement through ea
h iteration.5.4 Design of the thresholdAfter designing the TS fuzzy FDO, the remaining important task for robust fault diagnosis isthe evaluation of the generated residual. One of the widely adopted approa
hes is to 
hoose athreshold Jtℎ > 0 and, based on this, use the following logi
al relationship for fault dete
tion
∥r(t)∥2,� ≤ Jtℎ ⇒ no faults
∥r(t)∥2,� > Jtℎ ⇒ with faults ⇒ alarm

(5.45)where the residual evaluation fun
tion (REF) ∥r(t)∥2,� is determined by
∥r(t)∥2,� =

[
∫ t2

t1

rT (t)r(t)dt

]

1

2

, � = t2 − t1 (5.46)
� ∈ (t1, t2] is the �nite-time window. Note that the length of the time window is �nite, (i.e. �instead of ∞) be
ause it does not make sense to dete
t faults over the whole time range. It isassumed that the faults 
ould be dete
ted, if o

urred, over the �nite time interval.By sele
ting eq. (5.46) as the residual evaluation fun
tion results in

∥r(t)∥2,� = ∥rd(t) + rf (t)∥2,�64



5. Fault dete
tion observer for TS fuzzy systemswhere rd(t) and rf(t) are de�ned as
rd(t) = r(t)∣f(t)=0 rf(t) = r(t)∣d(t)=0Furthermore, the fault-free 
ase residual evaluation fun
tion is de�ned as

∥r(t)∥2,� ≤ ∥rd(t)∥2,� ≤ Jtℎ,dwhere
Jtℎ,d = sup

d∈L2

∥rd(t)∥2,�The threshold is sele
ted as Jtℎ = Jtℎ,d and Jtℎ,d is 
onstant and 
an be evaluated o�-line.5.5 An appli
ation exampleA nonlinear system [77℄ is used to implement the TS fault dete
tion observer, the nonlinear systemis des
ribed by
[

ẋ1(t)

ẋ2(t)

]

=

[

−x1(t) + x1(t)x
3
2(t)

−x2(t) +
(

3 + x2(t)
)

x31(t)

]

+

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

[

y1(t)

y2(t)

]

=

[

x1(t)

x2(t)

]

+

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)it is 
onsidered that x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. The above system 
an be written as
ẋ(t) =

[

−1 x1(t)x
2
2(t)

(

3 + x2(t)
)

x21(t) −1

]

x(t) +

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

y(t) =

[

1 0

0 1

]

x(t) +

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)where x1(t)x22(t) and (3 + x2(t)
)

x21(t) are nonlinear terms. For the nonlinear terms are de�ned
z1(t) = x1(t)x

2
2(t) and z2(t) = (3 + x2(t)

)

x21(t) as premise variables. It follows
ẋ(t) =

[

−1 z1(t)

z2(t) −1

]

x(t) +

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

y(t) =

[

1 0

0 1

]

x(t) +

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)Next, 
al
ulate the minimum and maximum values of z1(t) and z2(t): 65



5.5 An appli
ation example
max

z1(t),z2(t)
z1(t) = z+1 (t) = 1 max

x1(t),x2(t)
z2(t) = z+2 (t) = 4

min
z1(t),z2(t)

z1(t) = z−1 (t) = −1 min
x1(t),x2(t)

z2(t) = z−2 (t) = 0From the maximum and minimum values of z1(t) and z2(t)
z1(t) = x1(t)x

2
2(t) = F11(z1(t)) ⋅ 1 + F12(z1(t)) ⋅ −1

z2(t) =
(

3 + x2(t)
)

x21(t) = F21(z2(t)) ⋅ 4 + F22(z2(t)) ⋅ 0where
F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1The membership fun
tions 
an be 
al
ulated as:

F11(z1(t)) =
z1(t) + 1

2
F12(z1(t)) =

1− z1(t)

2

F21(z2(t)) =
z2(t)

4
F22(z2(t)) =

4− z2(t)

4The membership fun
tions are named �Positive�, �Negative�, �Big� and �Small�, respe
tively. Then,the nonlinear system is approximated by the following TS fuzzy model:Model rule 1 IF z1(t) is �Positive� and z2(t) is �Big�THEN {

ẋ(t) = A1x(t) +B1u(t) + Edd(t) + Eff(t)

y(t) = C1x(t) + Fdd(t) + Fff(t)Model rule 2 IF z1(t) is �Positive� and z2(t) is �Small�THEN {

ẋ(t) = A2x(t) +B2u(t) + Edd(t) + Eff(t)

y(t) = C2x(t) + Fdd(t) + Fff(t)Model rule 3 IF z1(t) is �Negative� and z2(t) is �Big�THEN {

ẋ(t) = A3x(t) +B3u(t) + Edd(t) + Eff(t)

y(t) = C3x(t) + Fdd(t) + Fff(t)Model rule 4 IF z1(t) is �Negative� and z2(t) is �Small�THEN {

ẋ(t) = A4x(t) +B4u(t) + Edd(t) + Eff(t)

y(t) = C4x(t) + Fdd(t) + Fff(t)66



5. Fault dete
tion observer for TS fuzzy systemsHere
A1 =

[

−1 1

4 −1

]

, A2 =

[

−1 1

0 −1

]

, A3 =

[

−1 −1

4 −1

]

, A4 =

[

−1 −1

0 −1

]

B1,2,3,4 =

[

1

0.01

]

, Ed =

[

1

−2.5

]

, Ef =

[

4

4

]

C1,2,3,4 =

[

1 0

0 1

]

, Fd =

[

0.2

0.4

]

, Ff =

[

2

−1

]

The defuzzi�
ation (that give the TS fuzzy model) is 
arried out as
ẋ(t) =

4
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t) + Eff(t)
]

y(t) =

4
∑

i=1

ℎi(z(t))
[

Cix(t) + Fdd(t) + Fff(t)
]where

ℎ1(z(t)) = F11(z1(t))× F21(z2(t))

ℎ2(z(t)) = F11(z1(t))× F22(z2(t))

ℎ3(z(t)) = F12(z1(t))× F21(z2(t))

ℎ4(z(t)) = F12(z1(t))× F22(z2(t))For the above example, the TS fault dete
tion observer is applied. The system was simulated witha disturban
e
d(t) = 0.3 cos (2t)e−0.2t (5.47)and an a
tuator fault f(t) su
h that

f(t) =

{

−0.08 5 ≤ t ≤ 10

0 elsewhere. (5.48)In �g. 5.1 and �g. 5.2 are shown the simulated disturban
e and the a
tuator fault respe
tively.67



5.5 An appli
ation example
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Fig. 5.2: A
tuator fault signal5.5.1 Iterative LMI s
heme 1A numeri
al simulation for the iterative algorithm 1 was 
arried out using LMI tools from MAT-LAB 7.0, where 

1
= 0.762 and 


2
= 2.183 so that J = 


1
/


2
= 0.349 was a
hieved. The followinggain matri
es Li were obtained

L1 =

[

−635.96 −839.05

2501.8 3289.3

]

L2 =

[

−623.87 −842.51

2454.4 3302.9

]

L3 =

[

−658.4 −963.62

2590.1 3778.3

]

L4 =

[

−696.3 −918.3

2738.5 3600.2

]Fig. 5.3 shows a residual signal designed with a TS fuzzy observer that aims only to make thedisturban
e attenuation and, a residual signal design with a TS fuzzy observer, that realizes thefault sensitivity is shown in �g. 5.4.
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Fig. 5.4: Fault sensitivity68



5. Fault dete
tion observer for TS fuzzy systemsAs 
an be seen from �g. 5.3, in the presen
e of faults and disturban
es in the system, the TS fuzzyobserver 
an not dete
t the fault. In the 
ase for a TS fuzzy observer that aims to a
hieve onlyteh fault sensitivity, the e�e
t of disturban
es is di�
ult to di�eren
iate from the fault in �g. 5.4.The residual signal generated with a TS fuzzy fault dete
tion observer for iterative LMI s
heme 1is shown in �g. 5.5
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Fig. 5.5: TS fault dete
tion observer for the iterative LMI s
heme 1In �g. 5.5 a desirable fault dete
tion behavior is a
hieved, i.e. despite the in�uen
e of an unknowninput, it is mu
h easier to dete
t faults in 
omparison with the separated obje
tives in �g. 5.3 and�g. 5.4. And for the design of the threshold was obtained Jtℎd
= 0.1088
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Fig. 5.6: Residual evaluation for the iterative LMI s
heme 1Using the threshold for the evaluated residual allows to dete
t the fault in �g. 5.6 at 5 s.
69



5.5 An appli
ation example5.5.2 Iterative LMI s
heme 2A numeri
al simulation for the iterative algorithm 2 was 
arried out using LMI tools from MAT-LAB 7.0, where 

1
= 0.671 and 


2
= 1.595 so that J = 


1
/


2
= 0.4207 was a
hieved. The followinggain matri
es Li were obtained

L1 =

[

1.8993 −0.3783

−2.8515 8.1397

]

L2 =

[

2.1667 −0.6479

−5.6639 9.9531

]

L3 =

[

8.5931 −5.2915

−22.547 22.68

]

L4 =

[

1.5492 −0.8554

−8.6154 11.789

]The residual signal for iterative LMI s
heme 2 is shown in �g. 5.7
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Fig. 5.7: TS fault dete
tion observer for the iterativeLMI s
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Fig. 5.8: Residual evaluation for the iterative LMIs
heme 2In �g. 5.7 a desirable fault dete
tion behavior is a
hieved, i.e. despite the in�uen
e of an unknowninput, it is easier to dete
t faults. For the design of the threshold was obtained Jtℎd
= 0.1145. Thefault in �g. 5.8 
an be dete
ted at 5 s.

70



6. Fault diagnosis for systems with polytopi
 un
ertaintiesChapter 6Fault diagnosis for systems with polytopi
un
ertaintiesA nonlinear system 
an be represented by a linearization around some operating points, in thisform, a linear model for the nonlinear system is obtained. Through this linearization, part of thedynami
 of the nonlinear system is not 
onsidered due to assumptions that are ne
essary to makein order to linearize the nonlinear system.The use of polytopi
 un
ertainty allows to use the unmodeled dynami
 into the linear model.That means, the design of the residual generator will 
ontain more information about the nonlinearsystem thanks to the polytopi
 un
ertainty and therefore the performan
e of the residual generatorwill be improved.6.1 Problem formulationLinear systems that 
onsider polytopi
 un
ertainties are normally des
ribed by the following statespa
e representation:
ẋ(t) = (A+�A)x(t) + (B +�B)u(t) + (Ed +�Ed)d(t) + Eff(t)

y(t) = (C +�C)x(t) + (D +�D)u(t) + (Fd +�Fd)d(t) + Fff(t) (6.1)where polytopi
 un
ertainties are de�ned as:
[

�A �B �Ed

�C �D �Fd

]

=
l
∑

i=1

�i

[

Ai Bi Edi

Ci Di Fdi

]

l
∑

i=1

�i = 1, �i ≥ 0, i = 1, . . . , l.and x(t) ∈ ℝ
n is the state ve
tor, u(t) ∈ ℝ

ku is the input ve
tor, d(t) ∈ ℝ
kd is the disturban
eve
tor, f(t) ∈ ℝ

kf is the fault ve
tor and y(t) ∈ ℝ
m is the measurement or output ve
tor. A, B,

Ed, Ef , C, D, Fd,Ff and the matri
es for the polytopi
 un
ertainty are known system matri
eswith appropriate dimensions.The dynami
 of a residual generator using FDF theory, and for systems with polytopi
 un
ertain-ties 
an be des
ribed by:
[

ẋ(t)

ė(t)

]

=

[

A+�A 0

�A− L�C A− LC

][

x(t)

e(t)

]

+

[

B +�B

�B − L�D

]

u(t)+

[

Ed +�Ed

(Ed +�Ed)− L(Fd +�Fd)

]

d(t)+

[

Ef

Ef − LFf

]

f(t)

r(t) = V

(

[

�C C
]

[

x(t)

e(t)

]

+�Du(t) + (Fd +�Fd)d(t) + Fff(t)

)

71



6.1 Problem formulationwhere the matrix L is 
alled the observer gain matrix, and the matrix V is a post-�lter. In order to
ompute matri
es L and V , it is used a referen
e residual model together with the above dynami
equation.A referen
e residual model is an ideal solution for robust FDI under the assumption that nodisturban
e or model un
ertainty are present on the system [17, 32, 52, 86℄. In su
h a form, thatan augmented system is obtained, where the dynami
 of the referen
e model together with thedynami
 of the FDF is 
onsidered.6.1.1 Referen
e residual modelThe referen
e model is made under the assumption that there is no model un
ertainty apart fromdisturban
es a�e
ting the system. The basi
 idea behind su
h a referen
e model is the trade-o�between the robustness and fault dete
tability. The uni�ed solution in [17℄, due to its optimaltrade-o�, is adopted as referen
e model.Consider the following linear system, whi
h has no a�e
tation of polytopi
 un
ertainty and isdes
ribed by
ẋ(t) = Ax(t) +Bu(t) + Edd(t) + Eff(t) (6.2a)
y(t) = Cx(t) +Du(t) + Fdd(t) + Fff(t) (6.2b)A FDF in its state spa
e representation form is given by
˙̂x(t) = Ax̂(t) +Bu(t) + Lopt(y(t)− ŷ(t)) (6.3a)
ŷ(t) = Cx̂(t) +Du(t) (6.3b)
r(t) = Vopt(y(t)− ŷ(t)) (6.3
)The dynami
s of the FDF in the frequen
y domain is des
ribed by

r(s) = N̂d(s)d(s) + N̂f(s)f(s) (6.4)
N̂d(s) = Vopt

(

Fd + C(sI −A + LoptC)
−1(Ed − LoptFd)

) (6.5)
N̂f (s) = Vopt

(

(Ff + C(sI −A+ LoptC)
−1(Ef − LoptFf )

) (6.6)The main obje
tive is to �nd an observer gain matrix Lopt and matrix Vopt su
h that the FDF isstable and the robustness of r(s) against d(s) and the sensitivity of r(s) against f(s) are enhan
edat the same time. The uni�ed solution is given by the following theorem from [17, 20℄Theorem 6.1 (the uni�ed solution): Given the system des
ribed by eq. (6.2a)-(6.2b) and supposethat the following assumptions are ful�lledA1. The pair (C,A) is dete
table;A2. The matrix Fd has full row rank with FdF
T
d = I;72



6. Fault diagnosis for systems with polytopi
 un
ertaintiesA3. rank [A− jwI Ed

C Fd

]

= n+m,then, the uni�ed solution
Lopt = (EdF

T
d + Y CT )(FdF

T
d )

−1, Vopt = (FdF
T
d )

− 1

2 (6.7)with Y ≥ 0 as the stabilizing solution to the following Ri

ati equation
AY + Y AT + EdE

T
d −

(

EdF
T
d + Y CT

)

(FdF
T
d )

−1
(

FdE
T
d + CY

)

= 0 (6.8)delivers an optimal FDF in the sense of ∀w, �i(N̂f (jw)), i = 1, ⋅ ⋅ ⋅ , kf

sup
Lopt,Vopt

�i(N̂f (jw))

∥N̂d(s)∥∞
= �i(N̂f,opt(jw)) (6.9)with

N̂f,opt(s) = Vopt

(

Ff + C(sI −A + LoptC)
−1(Ef − LoptFf )

)The referen
e residual model, obtained from the uni�ed solution [17℄, is shown below:
ẋref (t) = Arefxref(t) + Efreff(t) + Edrefd(t)

rref(t) = Crefxref (t) + Ffreff(t) + Fdrefd(t) (6.10)where
Aref = A− LoptC, Efref = Ef − LoptFf , Edref = Ed − LoptFd

Cref = VoptC, Ffref = VoptFf , Fdref = VoptFd.6.1.2 Design of the augmented systemThe augmented system given in eq. (6.11) in
ludes the dynami
s of the FDF for systems withpolytopi
 un
ertainties, and the dynami
s of the referen
e residual model.
ẋo(t) = (Ao +�Ao)xo(t) + (Eod +�Eod)d̄(t)

rref(t)− r(t) = (Co +�Co)xo(t) + (Fod +�Fod)d̄(t) (6.11)with
xo(t) =

⎡

⎢

⎣

xref(t)

x(t)

e(t)

⎤

⎥

⎦
, d̄(t) =

⎡

⎢

⎣

u(t)

d(t)

f(t)

⎤

⎥

⎦
, Ao =

⎡

⎢

⎣

Aref 0 0

0 A 0

0 0 A− LC

⎤

⎥

⎦
, Co =

[

Cref 0 −V C
]

Eod̄ =

⎡

⎢

⎣

0 Edref Efref

B Ed Ef

0 Ed − LFd Ef − LFf

⎤

⎥

⎦
, Fod̄ =

[

0 Fdref − V Fd Ffref − V Ff

]

�Ao =

l
∑

i=1

�iĀi, Āi =

⎡

⎢

⎣

0 0 0

0 Ai 0

0 Ai − LCi 0

⎤

⎥

⎦
, �Co =

l
∑

i=1

�iC̄i, C̄i = −
[

0 V Ci 0
]

�Eod =

l
∑

i=1

�iĒi, Ēi =

⎡

⎢

⎣

0 0 0

Bi Edi 0

Bi − LDi Edi − LFdi 0

⎤

⎥

⎦
, �Fod =

l
∑

i=1

�iF̄i, F̄i =
[

−V Di −V Fdi 0
]
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6.1 Problem formulationThe residual generator design is formulated asFind matri
es L, V su
h that 
 > 0 is minimized, where 
 is given by
∫ ∞

0

(rref(t)− r(t))T (rref(t)− r(t))dt < 
2
∫ ∞

0

d̄T (t)d̄(t)dt (6.12)The optimization problem given by eq. (6.12) as
min
L,V


 subje
t to
⎡

⎢

⎣

(Ao + Āi)
TP + P (Ao + Āi) P (Eod̄ + Ēi) (Co + C̄i)

T

(Eod̄ + Ēi)
TP −
I (Fod̄ + F̄i)

T

(Co + C̄i) (Fod̄ + F̄i) −
I

⎤

⎥

⎦
< 0 (6.13)For some P > 0. In order to solve the optimization problem given by eq. (6.13), let

P =

⎡

⎣

P11 P12 0

P21 P22 0

0 0 P33

⎤

⎦ > 0, L = P−1
33 Y (6.14)then the eq. (6.13) be
omes a LMI regarding to matri
es P > 0, V and Y , as des
ribed by

Ni = NT
i = [Njk]7×7 < 0, i = 1, ..., l (6.15)where

N11 =

[

Aref 0

0 A+Ai

]T [

P11 P12

P21 P22

]

+

[

P11 P12

P21 P22

][

Aref 0

0 A+Ai

]

, N12 =

[

0

AT
i P33 − CT

i Y
T

]

N13 =

[

P11 P12

P21 P22

][

0

B +Bi

]

, N14 =

[

P11 P12

P21 P22

][

Edref

Ed + Edi

]

, N15 =

[

P11 P12

P21 P22

][

Efref

Ef

]

N16 =

[

CT
ref

−CT
i V

T

]

, N22 = ATP33 − CTY T + P33A− Y C, N23 = P33Bi − Y Di

N24 = P33(Ed + Edi)− Y (Fd + Fdi), N25 = P33Ef − Y Ff , N26 = −CTV T

N33 = −
I, N34 = 0, N35 = 0, N36 = −DT
i V

T , N44 = −
I, N45 = 0

N46 = F T
dref

− (Fd + Fdi)
TV T , N55 = −
I, N56 = F T

fref
− F T

f V
T , N66 = −
IBased on this result, the optimal design of residual generators for systems with polytopi
 un
er-tainties 
an be a
hieved using the following algorithmAlgorithm 6.1 [17℄: LMI solution of eq. (6.12)Step 1. Form a matrix Ni = [Njk]7×7 < 0, i = 1, ..., lStep 2. Given 
 > 0, �nd P > 0 , Y and V so that

Ni < 0.Step 3. De
rease 
 and repeat step 2 until the toleran
e value for the LMI algorithm is rea
hed.Step 4. Set L a

ording to eq. (6.14).74



6. Fault diagnosis for systems with polytopi
 un
ertainties6.2 Threshold 
omputationOn
e the residual generator is obtained, the next task is to design a threshold in order to evaluatethe residual signal. For this purpose, 
onsider the linear system with polytopi
 un
ertainties,disturban
es and faults des
ribed by
ẋr(t) = (Ar +�Ar)xr(t) + (Erd +�Er)dr(t) + Erff(t) (6.16a)
r(t) = (Cr +�Cr)xr(t) + (Frd +�Fr)dr(t) + Frff(t) (6.16b)where

xr(t) =

[

x(t)

e(t)

]

, dr(t) =

[

u(t)

d(t)

]

, Ar =

[

A 0

0 A− LC

]

, Cr =
[

0 C
]

Erd =

[

B Ed

0 Ed − LFd

]

, Erf =

[

Ef

Ef − LFf

]

, Frd =
[

0 Fd

]

, Frf = Ff

�Ar =

l
∑

i=1

�iAri , Ari =

[

Ai 0

Ai − LCi 0

]

, �Cr =

l
∑

i=1

�iCri , Cri =
[

Ci 0
]

�Er =

l
∑

i=1

�iEri , Eri =

[

Bi Edi

Bi − LDi Edi − LFdi

]

, �Fr =

l
∑

i=1

�iFri , Fri =
[

Di Fdi

]where the matrix L is the one obtained by solving the optimization problem in eq. (6.13).Theorem 6.2 [17℄ Given system in eq. (6.16) 
onsidering the polytopi
 un
ertainties and 
 > 0,and suppose that xr(0) = 0, then
∥r(t)∥2 < 
 ∥dr(t)∥2 (6.17)if there exists P > 0 so that ∀i = 1, . . . , l,

⎡

⎢

⎣

(Ar +Ari)
TP + P (Ar +Ari) P (Erd + Eri) (Cr + Cri)

T

(Erd + Eri)
TP −
I (Frd + Fri)

T

(Cr + Cri) (Frd + Fri) −
I

⎤

⎥

⎦
< 0 (6.18)setting the matrix P as

P =

[

P1 0

0 P2

]

> 0 (6.19)yields
eq. (6.18) ⇐⇒ Ni = NT

i = [Njk]5×5 < 0, i = 1, ..., l (6.20)with
N11 =

(

AT +AT
i

)

P1 + P1 (A+Ai) , N12 = AT
i P2 − CT

i L
TP2, N13 = P1 (B +Bi)

N14 = P1 (Ed + Edi) , N15 = CT
i , N22 = ATP2 −CTLTP2 + P2A− P2LC

N23 = P2Bi − P2LDi, N24 = P2(Ed + Edi)− P2L(Fd + Fdi), N25 = CT

N33 = −
I, N34 = 0, N35 = DT
i , N44 = −
I, N45 = F T

d + F T
di
, N55 = −
I 75



6.3 Appli
ation to the aileron positioning systemSuppose that dr(t) is bounded by and in the sense of ∥dr(t)∥2 ≤ �u,2 + �d,2. The root mean square(RMS) value of the residual r is de�ned by
∥r(t)∥RMS =

(

1

T

∫ t+T

t

∥r(�)∥2d�
)1/2 (6.21)

∥r(t)∥RMS 
al
ulates the average energy of r over the time interval (t, t+ �). The RMS of a signalis related to its ℒ2 norm. In fa
t, it holds
∥r(t)∥RMS ≤ 1√

T
∥r(t)∥2 (6.22)De�ne

Jtℎ,RMS = sup
fault−free

∥r(t)∥RMS (6.23)as the threshold, then the dete
tion logi
 be
omes
∥r(t)∥RMS ≤ Jtℎ,RMS ⇒ no alarm, fault-free
∥r(t)∥RMS > Jtℎ,RMS ⇒ alarm, a fault is dete
tedBased on the Theorem 6.2 as well as the relation between the ℒ2 norm and the RMS eq. (6.22),the following algorithm 
an be formulated:Algorithm 6.2 [17℄: Computation of Jtℎ,RMS,2 for systems with polytopi
 un
ertaintiesStep 1. Solve the optimization problemmin 
 subje
t to eq. (6.18).for P > 0 and set 
∗ = arg(min 
)Step 2. Set Jtℎ,RMS,2 =


∗(�d,2+�u,2)√
T6.3 Appli
ation to the aileron positioning systemThe mathemati
al model of a 
ivil air
raft primary �ight 
ontrol a
tuation system (Aileron posi-tioning system) has been often dis
ussed [5, 53, 78℄ as 
hallenge to design FDI strategies.6.3.1 Nonlinear model of the APSThe a
tuation system in an a
tive-standby 
on�guration behaves no linear [65℄. Its dynami
s isrepresented in the blo
k diagram of the �g. 6.1.76



6. Fault diagnosis for systems with polytopi
 un
ertainties
+_ kp Servovalve Piston

xp

ysvisv

Controller

xd

QA,B

xp

pA,B
Fe

Fig. 6.1: Blo
k diagram of the a
tuation system6.3.1.1 Ele
trohydrauli
 ServovalveThe modeled servovalve is formed by two stages, to transform the ele
tri
 input signal in a hy-drauli
 output signal. The �rst stage transforms the 
urrent isv re
eived from the ACE into aspool displa
ement ysv and its mathemati
al model is represented by a se
ond order di�erentialequation
ÿsv + 2�sv!svẏsv + ! 2

svysv = ksv!
2
svisv (6.24)with �sv as damping 
oe�
ient, !sv as natural frequen
y and ksv as the servovalve gain and ẏsvand ÿsv are the servovalve spool velo
ity and a

eleration respe
tively.The se
ond stage is formed by a spool-sleeve assembly (�g. 6.2) with ideal zero-lapped 
ontroledges whi
h, with the aid of the supply pressure p

S
, the tank pressure p

T
, the dire
tion of thespool movement ysv and the pressures generated in the piston p

A
and p

B
, generate the �ow rates

QA and QB whi
h move the piston.
Q1 =

{

Bsv∣ysv∣
√

∣p
S
− p

A
∣sign(p

S
− p

A
) for ysv > 0

0 for ysv ≤ 0
(6.25)

Q2 =

{

Bsv∣ysv∣
√

∣p
A
− p

T
∣sign(p

A
− p

T
) for ysv < 0

0 for ysv ≥ 0
(6.26)

Q3 =

{

Bsv∣ysv∣
√

∣p
S
− p

B
∣sign(p

S
− p

B
) for ysv > 0

0 for ysv ≤ 0
(6.27)

Q4 =

{

Bsv∣ysv∣
√

∣p
B
− p

T
∣sign(p

B
− p

T
) for ysv < 0

0 for ysv ≥ 0
(6.28)with Bsv as the servovalve ori�
e 
onstant. The system pressure p

P
= p

S
− p

T
.

Bsv = �D�d√2

�
(6.29)where �D is the �ow rate 
oe�
ient, �d is the 
ontrol edge length and � is the density of thehydrauli
 �uid. 77
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p
S

Q
A
, p

A

y
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p
T

Q
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Q
1 Q

4
Q

3

QB , p
B

Fig. 6.2: Servovalve spool-sleeve assemblyThe �ows QA and QB, going to the 
ylinder 
hambers A and B �g. 6.2, are 
al
ulated by:
QA = Q1 −Q2, (6.30)
QB = Q4 −Q3. (6.31)The sign fun
tion is des
ribed by:

sign(") =

⎧

⎨

⎩

−1 for " < 0

0 for " = 0

0 for " > 0

(6.32)6.3.1.2 Cylinder dynami
sThe pressure in the 
hamber of the 
ylinders in the a
tive mode depends on the applied volume�ow QA and QB, on the external loads and on the movement in the piston. The movement of thepiston in standby mode have e�e
t through the volume �ow of the damping for
e.The generation of the pressure in the a
tive 
ylinder, without 
onsider the internal leaks, is de-s
ribed in the following 
ontinuity equations:
ṗ
A
= E

QA − Apẋp
VD+ ∣ Apxmin ∣ +Apxp

(6.33)
ṗ
B
= E

Apẋp −QB

VD+ ∣ Apxmax ∣ −Apxp
(6.34)where E is the oil bulk modulus, VD is the dead volume of the 
ylinder, QA and QB are the �owrates in the 
ontrol edges, ẋp is the piston speed, xp is the piston position and AP is the pistonarea, p

A
and p

B
are the pressure generated in the 
hambers A and B.

Ap
V

2
D

V

2
D

xmin
xmax0

xp

mpFig. 6.3: Cylinder78



6. Fault diagnosis for systems with polytopi
 un
ertaintiesUnder 
onsideration of rigid �xation [36, 45℄, the Newton movement equation of the piston is givenby eq. (6.35).
mpẍp = Ap(pA

− p
B
)− Ff − Fd − Fa (6.35)with mp as the piston mass, Ff are the fri
tion for
es, Fd the for
e of the e�e
t re�e
ted in thea
tive a
tuator 
aused by the parallel a
tuator in damping mode and Fe represents the externalfor
es a�e
ting the 
ontrol surfa
e.The fri
tion for
es Ff 
an be modeled a

ording to the Stribe
k-
urve [43℄. The 
urve is des
ribedby the superposition of three fri
tion parts, stati
 fri
tion (fe), dynami
 fri
tion (fd) and vis
osefri
tion (fv), shown in �g. 6.4.

f
v

f
d

f
e F

f

a) Viscose
Friction

b) Dynamic
Friction

c) Static

Friction
d) Superposition

xp xp xp xp

Fig. 6.4: Types of fri
tionThe following equation is obtained from the fri
tion 
ombination
Ff = fdsign(ẋp) + fee

−�H ∣ẋp∣sign(ẋp) + fvẋp (6.36)The dynami
 fri
tion (fd) depends on the sign of the piston velo
ity. The vis
ose fri
tion (fv)depends on the piston velo
ity. The stati
 fri
tion (fe) depends on the sign of the piston velo
ityand will be 
onstru
ted with growing piston velo
ity with the de
rement �H .At rest (ẋp = 0), only the stati
 fri
tion a�e
ts the system. For low ẋp, this fri
tion is redu
edwith the diminution of �H . The total fri
tion for low velo
ities will be dominated by the dynami
fri
tion. As the velo
ity in
reases, the fri
tion will be proportional to the vis
ose fri
tion. For thegeneration of the system only the vis
ose fri
tion will be 
onsidered [37℄.With the assumption of the in
ompressibility of the �uid used in the a
tuation system [45℄, thein�uen
e of the standby a
tuator 
an be modeled by a quadrati
 damping equation:
Fd(ẋp) = dtẋp ∣ ẋp ∣=

A3
p

C2
qA

2
D

ẋp ∣ ẋp ∣=
A3

p

C2
qA

2
D

ẋ2psign(ẋp) (6.37)where Cq is the �ow 
oe�
ient of the standby a
tuator and AD is the 
ross se
tion of the dampingvalve. The value of the turbulent damping dt is given by the manufa
turer system des
ription.79



6.3 Appli
ation to the aileron positioning system6.3.2 Linearization of the APSIn this subse
tion the linearization of the nonlinear model for the aileron positioning system is
onsidered. In order to make the linearization is 
onsidered that, for the servovalve, it is onlyne
essary to linearize the me
hani
 to hydrauli
 transformation of energy in the servovalve.
Qsv = QA = QB = Bsvysv

√

1

2
(Pv −�psign(ysv) (6.38)The Taylor's series expansion for the �ow Qsv is des
ribed below.

Qsv = Qsv

∣

∣

∣

(ysvop ,�pop)
+
∂Qsv

∂ysv

∣

∣

∣

∣

�pop

⋅
(

ysv − ysvop
)

+
∂Qsv

∂�p

∣

∣

∣

∣

ysvop

⋅
(

�p −�pop

)

+NLterms (ysv,�p) (6.39)The piston 
entered position, i.e. hydrauli
 null, is 
hosen as operating point (op), so that x0 =

ysvop = �pop = 0. Negle
ting the nonlinear terms of eq. (6.39), the linearized �ow equation ispresented below.
Qsvlin = Cyysv + Cp�p (6.40)where Cy is the �ow rate gain and Cp is the pressure gain, �p = pA − pB. The values of Cy, and

Cp are des
ribed below:
Cy =

∂Qsv

∂ysv

∣

∣

∣

∣

�pop

= Bsv

√

pV
2

(6.41)
Cp =

∂Qsv

∂�p

∣

∣

∣

∣

ysvop

= 0 (6.42)Assuming that both 
ylinder 
hambers have the same volumes VA = VB = V around the pistoninitial 
ondition x0 and that ∣Apxmax∣ = ∣Apxmin∣, then they have the same hydrauli
 
apa
ities
CH , given by:

CH =
∣Apxmax∣+ VD

E
=
V

E
(6.43)Applying the Bernoulli's 
ontinuity equation, it is possible to obtain �̇p = ṗA− ṗB by subtra
tingeq. (6.33) and eq. (6.34), and substituting eq. (6.43), so that:

�̇p =
1

CH

[

2Qsvlin − 2Apẋp

] (6.44)Substituting eq. (6.40) into eq. (6.44), the linearized equation for the pressure di�eren
e is obtainedas:
�̇p =

2Cy

CH
ysv −

2Ap

CH
ẋp (6.45)A

ording to the Newton's movement equation for the piston position

mpẍp = Ap�p − Fr − Fe − Fp (6.46)80



6. Fault diagnosis for systems with polytopi
 un
ertaintiesIn order to make it linear, it is ne
essary to linearize the terms Fr, Fe, and Fp. Fplin is set to zeroif the parallel a
tuator is in a
tive mode. From Fr, given in eq. (6.36), only the vis
ose fri
tion fvis 
onsidered [37℄. It is now represented as a linear fun
tion, so that:
Frlin = fvẋp (6.47)The quadrati
 law fun
tion, shown in eq. (6.37), 
an be linearized [38℄ by:

Fplin = dtẋmaxẋp = dlinẋp (6.48)The 
omplete system is represented by the following linearized di�erential equations
ÿsv = −! 2

svysv − 2�sv!svẏsv + ksv!
2

svisv

�̇p =
2Cy

CH
ysv − 2Ap

CH
ẋp

ẍp =
Ap

mp
�p − ca

mp
xp − (fv+dlin)

mp
ẋp6.3.3 Model Un
ertainties for the APSWhen a nonlinear system is linearized, some information is lost through it. This la
k of information
an be represented as un
ertainties in the system. For the aileron positioning system two mainun
ertainties 
an be 
onsidered. The �rst un
ertainty appears in the linearization of the standbya
tuator whi
h is represented by a quadrati
 damping equation.

Fd = dt∣ẋp∣ẋp (6.49)A

ording to [38℄, the quadrati
 damping equation 
an be linearized by
Fdlin = dtẋmaxẋp = dlinẋp (6.50)The linear and nonlinear response of the damping a
tuator are shown in �g. 6.5.
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6.3 Appli
ation to the aileron positioning systemIt 
an be seen that the linear and nonlinear response 
oin
ide only in the origin and in its extremes,whi
h means that between this points there is an un
ertainty. The se
ond un
ertainty 
omes fromthe nonlinear equation for the �ow Qsv

Qsv(ysv, �p) = Cyysv

√

1−
(

�p

Pv
sign(ysv)

) (6.51)The linearization of the �ow rate depends on the operating points used by the linearization.
Qsv(ysv, �p)lin = Cyysv + Cp�p = Cyysv (6.52)However for the purpose of linearization, an operating point is 
hosen. The linearization will tou
hthe nonlinear response only in the point where it is linearized. For this work an operating pointof �p = 0 is 
hosen. It means that the linearization will tou
h the nonlinear fun
tion only at thebeginning and from there it will be linearized as a straight horizontal line. This 
an seen in the�g. 6.6.
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Fig. 6.6: Flow rateThe un
ertainties presented above a�e
t the system matrix A and 
onsequently the un
ertaintymatrix �A is de�ned as:
�A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0

0
�1i

mp
0 0 0

0 0 0 0 0

0 0
�2i

CH
0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.53)
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6. Fault diagnosis for systems with polytopi
 un
ertaintiesThis kind of un
ertainties are of the polytopi
 type be
ause they are denoted by a 
onvex set thatdepends of di�erent operating points.
[

�A 0 0

0 0 0

]

=

l
∑

i=1

�i

[

Ai 0 0

0 0 0

]

,

l
∑

i=1

�i = 1, �i ≥ 0 (6.54)
For the polytopi
 un
ertainties were 
hosen 5 operating points. The 
orresponding values for �1and �2 in ea
h operating point are shown in tab. 6.1.i �1 �2

1 −14227 0.09794

2 −78533 0.05084

3 −128614 0.02524

4 −185418 0.00714

5 −229773 0.00074Tab. 6.1: Polytopi
 un
ertaintiesThe state spa
e representation of the linearized model is given by
⎡

⎢

⎢

⎢

⎢

⎢

⎣

ÿsv
ẍp
ẏsv
�̇p

ẋp

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2�sv!sv 0 −! 2
sv 0 0

0 − fv+dlin

mp
0

Ap

mp
− ca

mp

1 0 0 0 0

0 − 2Ap

CH

2Cy

CH
0 0

0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẏsv
ẋp
ysv
�p

xp

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ksv!
2

sv

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

isv+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

− 1

mp
0 0

0 0 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

d+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ksv!
2

sv 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

f

[

y1
y2

]

=

[

0 0 0 1 0

0 0 0 0 1

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẏsv
ẋp
ysv
�p

xp

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

[

0 1 0

0 0 1

]

d+

[

0 1 0

0 0 1

]

f

where ẏsv and ysv are the servovalve velo
ity and position respe
tively, �p the pressure di�eren
e,
ẋp the piston velo
ity, and xp the piston position. There are two sensors available, one sensormeasures the piston position xp, and the other one measures the pressure di�eren
e �p. The input
u(t) is 
onstituted by a 
urrent isv, whi
h 
hanges a

ording to a 
ommand input. A variable andunknown but bounded disturban
e d(t) a�e
t the system all the time. The fault ve
tor f(t) = [fT

A

fT
�p

fT
xp
℄T is formed by additive faults that 
an o

ur in the a
tuator fA, or in ea
h of the availablesensors, fxp

and f�p
.The matri
es for the linear mathemati
al model of the aileron positioning system are 
al
ulatedwith the numeri
al values given in appendix B and they are 83



6.3 Appli
ation to the aileron positioning system
A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−884.7 0 −3.06 × 105 0 0

0 −36244 0 12.19 × 10−4−26.28

1 0 0 0 0

0 −3.29× 1010 4.96 × 1012 0 0

0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

33973

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Ed =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

−0.143 0 0

0 0 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Ef =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

33973 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, C =

[

0 0 1 0 0

0 0 0 1 0

]

, Fd =

[

0 1 0

0 0 1

]

, Ff =

[

0 1 0

0 0 1

]

6.3.4 Simulation resultsSolving the algoritℎm 6.1 give us the solution of the Ri

ati equation eq. (6.8). The values of Loptand Vopt are
Lopt =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

−6.79× 10−2 0

0 0

66889 −2.03× 10−6

−2.03× 10−6 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Vopt =

[

1 0

0 1

] (6.55)
The matri
es for the solution of the optimization problem given in the step 2 of Algoritℎm 6.1are

V =

[

1.0932 −2.62× 10−5

−2.62 × 10−5 1.1672

]

, L=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3.78× 106 113.09

−95.114 −0.154

230.58 5.47× 10−3

5.57× 1011 1.68× 107

24.676 199.98

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6.56)
and 
 = 1000.In order to show the performan
e improvement of the residual generator with polytopi
 un
er-tainties, this residual generator is 
ompared against a residual generator without the polytopi
un
ertainty.First, the residuals for the pressure di�eren
e �p sensor are shown. Fig. 6.7 shows the residualsignal without 
onsidering the polytopi
 un
ertainty and �g. 6.8 shows the residual generator
onsidering the polytopi
 un
ertainty.84
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ertainties
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Fig. 6.7: r
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without polytopi
 un
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Fig. 6.8: r
�p

with polytopi
 un
ertaintiesThe residuals for the piston position xp sensor are shown below, �g. 6.9 shows the residual signalwithout 
onsidering the polytopi
 un
ertainty and �g. 6.10 shows the residual generator 
onsid-ering the polytopi
 un
ertainty.
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Fig. 6.9: r
xp
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Fig. 6.10: r
xp

with polytopi
 un
ertaintiesIt 
an be seen that the residual signals, whi
h 
onsiders polytopi
 un
ertainties deliver a smallertransient in 
omparison to the one that does not 
onsider the polytopi
 un
ertainty.Threshold designThe observer gain matrix L (from eq. (6.56)) is used for the 
omputation of the threshold. It isassumed that �d,2 is 0.225 be
ause the disturban
e is unknown but bounded and the evaluationwindow (T) is 5 s. The 
omputed values that solves the Algoritℎm 6.2 are:

∗ = 0.9and for the step 2

Jtℎ,RMS,2 =
0.9 (0.225 + �u,2)√
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6.3 Appli
ation to the aileron positioning systemThe value of �u,2 is 
al
ulated on-line, be
ause it depends on the 
hara
teristi
s of the input. In�g. 6.11 both the RMS value of the residual and the 
orresponding threshold are shown, wherean a
tuator fault fA o

urred at t = 3 s.
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Fig. 6.11: Evaluated residual for the a
tuator faultAs 
an be seen, the RMS value of the evaluated residual surpasses the 
orresponding threshold at
t = 3.85 s. Thus, the a
tuator fault fA is dete
ted.Fig. 6.12 shows the RMS evaluation of the residual signal and the 
orresponding threshold, wherea fault in �p sensor o

urred at t = 3 s.
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Fig. 6.12: Evaluated residual for fault in �p sensorIt 
an be seen that the 
omputed threshold 
ontains the disturban
es but allows the dete
tion ofthe sensor fault f�p
at t = 3 s.
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6. Fault diagnosis for systems with polytopi
 un
ertaintiesFig. 6.13 shows the RMS evaluation of the residual signal and the 
orresponding threshold, wherea fault in xp sensor o

urred at t = 3 s.
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Fig. 6.13: Evaluated residual for fault in xp sensorAs 
an be seen, the RMS value of the evaluated residual surpasses the 
orresponding threshold at
t = 3.8 s. Thus, the sensor fault fxp

is dete
ted.
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7. Con
lusions and future workChapter 7Con
lusions and future workTwo multiple-model approa
hes have been studied in this thesis in order to give a better perfor-man
e in fault dete
tion and isolation for nonlinear systems. Multiple-model approa
hes have anadvantage over linear approa
hes. They in
orporate more information about the nonlinear systemin 
omparison to one linearization. The �rst approa
h of this s
heme is the TS fuzzy model andthe se
ond is the linear system with polytopi
 un
ertainties.In 
hapter 3, the unknown input observer for TS fuzzy systems (TS fuzzy UIO) for a 
lass ofnonlinear systems is presented. This observer is an extension from the linear 
ase studied in [17℄.A robust sensor fault isolation s
heme [12℄ based on the TS fuzzy UIO is also 
onsidered.An example is used to demonstrate the fun
tionality of the developed TS fuzzy UIO. The goalof this observer is to de
ouple unknown inputs from the nonlinear system. The simulation resultsshow that the unknown inputs are de
oupled from the system by delivering a residual signal freeof unknown inputs. Moreover, the robust fault sensor isolation s
heme makes possible to isolatethe sensor faults appearing in the system.Chapter 4 
onsiders the dis
rete version of the TS fuzzy model with the in�uen
e of sto
hasti
noise in order to design a residual generator. The design of the residual generator is made using aLMI optimization approa
h, in order to minimize the expe
ted value of the steady state estimationerror and the e�e
t of the noise is redu
ed in the residual signal.To demonstrate the e�e
tiveness of this approa
h, the vehi
le lateral dynami
 model is 
onsidered,and the results show that the sto
hasti
 disturban
e is indeed redu
ed. Therefore, the proposedapproa
h attenuates the e�e
t of the sto
hasti
 disturban
e and in
reases teh dete
tion rate offaults.In 
hapter 5 the robust fault dete
tion observer for TS fuzzy systems has been applied. In thisdesign two performan
e indexes were found. The �rst one is used to minimize the e�e
t of dis-turban
es and the another one to maximize the e�e
t of faults. Both optimization problems aresolved simultaneously using iterative LMI.Both performan
e indexes have a dependen
e on ea
h other, in whi
h, a gain ratio is established.The gain ratio is the division of the performan
e index for disturban
es between the performan
eindex for faults.Two s
hemes are proposed in order to solve the problem of robust fault dete
tion. The �rst s
heme
onsider that both optimization obje
tives are 
onsidered to have the same stability matrix inthe sense of Lyapunov. In 
ontrast, stability matrix of ea
h optimization obje
tive is 
onsideredindividually for the se
ond s
heme. Simulation results of the proposed s
hemes have shown thata desirable fault dete
tion behavior is obtained. Moreover, it is mu
h e�e
tive to dete
t the faultdespite the in�uen
e of the unknown inputs.Chapter 6 presents the use of polytopi
 un
ertainty for the design of a residual generator and its
orrespondent threshold. In this approa
h, the design of the residual generator will 
ontain more89



7. Con
lusions and future workinformation about the nonlinear system in the form of the polytopi
 un
ertainty and therefore theperforman
e of the residual generator will be improved. A referen
e model is 
onsidered in orderto 
onstru
t an augmented system, where the generated residual is 
ompared with a referen
eresidual.This approa
h has been applied to the aileron positioning system, and simulation results shownthat this fault dete
tion s
heme improves the generated residual signals, by redu
ing the transientmagnitude 
ompared with one without polytopi
 un
ertainty.Future workProblems related with varying matri
es C and Ed (they depend on the states) in the TS fuzzyUIO should be studied in the future work. This will allow to implement also robust a
tuatorfault isolation s
hemes for the TS fuzzy UIO. Another topi
 for further resear
h is an integratedsolution for nonlinear systems represented by TS fuzzy model, whi
h are a�e
ted by deterministi
and sto
hasti
 disturban
es.Another point is to 
onsider stability in the sense of Lyapunov for ea
h linear system in TS fuzzymodel instead of the 
ommon Lyapunov stability. One of the approa
hes that 
onsiders this topi
is the Lyapunov fun
tion des
ribed by fuzzy IF-THEN rules.Ea
h TS fuzzy rule has fuzzy sets in the ante
edent part and quadrati
 Lyapunov fun
tions in the
onsequent part. A generi
 rule for the Lyapunov fun
tion 
an be written as follows:Rule i for the Lyapunov fun
tionIF z1(t) is Mi1 and . . . and zp(t) is MipTHEN V (x(t)) = xT (t)Pix(t)
(7.1)This 
an be expressed as

V (x(t)) =

r
∑

i=1

ℎi(z(t))x
T (t)Pix(t) (7.2)This approa
h has been done re
ently in some FDI approa
hes for TS fuzzy systems but only in thedis
rete 
ase, the extension to 
ontinuous 
ases 
an be 
onsidered. A
tually, the 
ontinuous versionfor this fuzzy Lyapunov fun
tion implies the derivative of the membership fun
tion and this is notstraightforward to obtain. This option 
ould be a good alternative be
ause the 
onservatism forTS fuzzy models 
an be redu
ed.The topi
 for residual generation in linear systems with polytopi
 un
ertainty is very interesting.It 
an be also extended to other fault dete
tion and isolation problems, 
onsidering the referen
emodel proposed by [17℄.
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A. Mathemati
al toolsAppendix AMathemati
al toolsA.1 Norms for 
ontinuous and dis
rete systemsNorms for 
ontinuous and dis
rete systems are shown in the table given belowSystem typeNorm Continuous Dis
rete
ℒ1

n
∑

i=1

∫ ∞

0

∣ri(t)∣ dt
n
∑

i=1

( ∞
∑

k=0

∣ri(k)∣
)

ℒ2

(
∫ ∞

0

rT (t)r(t)dt

)1/2
( ∞
∑

k=0

rT (k)r(k)

)1/2

ℒ∞ sup
T→∞

max
i

∣ri(t)∣ max
i

∣ri(k)∣

ℒRMS

(

1

T

∫ T

0

rT (t)r(t)dt

)1/2
(

1

N

N
∑

i=1

ri
T (k)ri(k)

)1/2

Tab. A.1: Norms for 
ontinuous and dis
rete systemsA.2 S
hur 
omplementThe S
hur 
omplement of a blo
k of a matrix within a larger matrix is de�ned as follows [87℄.Suppose that A11 ∈ ℛn1×n1, A12 ∈ ℛn1×n2 , A21 ∈ ℛn2×n1, A22 ∈ ℛn2×n2 and A22 is nonsingular.Let
A =

[

A11 A12

A21 A22

] (A.1)so that A ∈ ℛ(n1+n2)×(n1+n2). Then A has the following de
omposition:
[

A11 A12

A21 A22

]

=

[

I A12A
−1
22

0 I

] [

� 0

0 A22

] [

I 0

A−1
22 A21 I

] (A.2)with � = A11 −A12A
−1
22 A21, and A is nonsingular if and only if � is nonsingular. Dually, if A11 isnonsingular, then
[

A11 A12

A21 A22

]

=

[

I 0

A21A
−1
11 I

]

[

A11 0

0 �̂

]

[

I A−1
11 A12

0 I

] (A.3)91



A.3 Relaxed stability analysis for TS fuzzy observerwith �̂ = A22 − A21A
−1
11 A12, and A is nonsingular if and only if �̂ is nonsingular. The matrix

�(�̂) is 
alled the S
hur 
omplement [84℄ of A22(A11) in A.A.3 Relaxed stability analysis for TS fuzzy ob-serverAs has been shown in subse
tion 2.2.1, the stability analysis of a TS fuzzy observer is redu
edto a problem of �nding a 
ommon P . If the number of rules (r) is large, it might be di�
ult to�nd a 
ommon P satisfying the 
onditions of Theorem 2.1. This subse
tion presents new stability
onditions from [74, 77℄ by relaxing the 
onditions of Theorem 2.1.Theorem A.1 
ontains the relaxed stability 
onditions. But �rst, the following lemmas are neededto prove Theorem A.1.Lemma A.1
r
∑

i=1

ℎ2i (z(t))−
1

r − 1

r
∑

i=j

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0where
r
∑

i=1

ℎi(z(t)) = 1 and ℎi(z(t)) ≥ 0 ∀ iProof. It holds sin
e
r
∑

i=1

ℎ2i (z(t)) − 1

r − 1

r
∑

i=j

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0

=
1

r − 1

r
∑

i=1

∑

i<j

{

ℎi(z(t))− ℎj(z(t))
}2

≥ 0

Q.E.D.Lemma A.2 If the number of rules r that �re for all t is less than or equal to s, where 1 < s ≤ r,then
r
∑

i=1

ℎ2i (z(t))−
1

s− 1

r
∑

i=1

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0where
r
∑

i=1

ℎi(z(t)) = 1 and ℎi(z(t)) ≥ 0 ∀ iTheorem A.1 [74℄: Assume that the number of rules r that �re for all t is less than or equalto s, where 1 < s ≤ r. The equilibrium of the 
ontinuous fuzzy system des
ribed by eq. (2.14) is92



A. Mathemati
al toolsglobally asymptoti
ally stable if there exist a 
ommon positive de�nite matrix P and a 
ommonpositive semide�nite matrix Q su
h that
AT

iiP + PAii + (s− 1)Q < 0 (A.4)
(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

−Q ≤ 0 i < j (A.5)for all i and j with the ex
eption of the pairs (i, j) so that ℎi(z(t))ℎj(z(t)) = 0, for all t and s > 1.Proof : Consider a 
andidate of Lyapunov fun
tion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėTPe(t) + eT (t)P ė(t)

=

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))e
T (t)

[

(Ai − LiCj)
T P + P (Ai − LiCj)

]

e(t)

=
r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii

]

e(t)

+

r
∑

i=1

∑

i<j

2ℎi(z(t))ℎj(z(t))e
T (t)

[

(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

]

e(t)From eq. (A.5) and Corollary A.2, it follows
V̇ (e(t)) ≤

r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii

]

e(t)+

r
∑

i=1

∑

i<j

2ℎi(z(t))ℎj(z(t))e
T (t)Qe(t)

≤
r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii

]

e(t) + (s− 1)
r
∑

i=1

ℎ2i (z(t))e
T (t)Qe(t)

=

r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii + (s− 1)Q

]

e(t)

Q.E.D.if eq. (A.4) holds, then V̇ (e(t)) < 0 at e(t) ∕= 0. Then, from the relaxed stability 
onditions ofTheorem A.1, the design problem to determine the gain matri
es Li 
an be de�ned as followsFind P > 0 , Q ≥ 0 and Ni (i = 1, 2, . . . , r) satisfying
AT

i P + PAi − CT
i N

T
i −NiCi + (s− 1)Q < 0

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi − 2Q ≤ 0 ∀ i < jwhere

Ni = PLi and Nj = PLjThe above 
onditions are LMI with respe
t to variables P , Q and Ni. It 
an be �nd a positivede�nite matrix P , a semi positive de�nite matrix Q and a matrix Ni satisfying the LMI's ordetermine that no su
h P , Q and Ni exist. 93



A.4 LMI and 
onvex optimization te
hniquesA.4 LMI and 
onvex optimization te
hniquesLinear matrix inequalities (LMI) and 
onvex optimization te
hniques (COT) are basi
 tools uti-lized not only for stability analysis of Takagi-Sugeno fuzzy systems but also for the 
omputationof gain matri
es and other performan
e indexes for Takagi-Sugeno fuzzy observers.A.4.1 Convex optimization te
hniquesMany important problems for fault dete
tion and isolation theory 
an lately be solved numeri
allyby reformulating them as 
onvex optimization problems with a linear obje
tive fun
tion and LMI
onstraints [8℄.LMIs are an important 
lass of 
onvex 
onstraints. For their solution, the so-
alled interior-pointmethods are applied. Nowadays, there are software toolboxes available to solve numeri
ally manyFDI problems su
h as LMI Lab for MATLAB [33, 34℄.The main strength of LMI formulations is the ability to 
ombine diverse design 
onstraints orobje
tives in a numeri
ally tra
table manner.A.4.2 Linear Matrix InequalitiesA linear matrix inequality has the form
A(p) = A0 +

m
∑

i=1

piAi < 0 (A.6)where
∙ p = [p1, p2, . . . , pm] is a ve
tor of m variables or parameters, 
alled also de
ision or optimiza-tion variables.
∙ Ai = AT

i ∈ ℝ
n×n for i = 0, 1, . . . , m are given 
onstant symmetri
 matri
es.

∙ the inequality �< 0� in eq. (A.6) means that A(p) is a �negative de�nite matrix�. That is,
uTA(p)u < 0 for all non-zero real ve
tors u. Be
ause all eigenvalues of a real symmetri
matrix are real, the eq. (A.6) is equivalent to say that all eigenvalues �(A(p)) are negative.Equivalently, the maximal eigenvalue �max(A(p)) < 0 [67℄.

∙ its solution set, 
alled the feasibility set, is a 
onvex subset of ℝm, and
∙ �nding a solution p to eq. (A.6), if any exists, is a 
onvex optimization problem.Convexity has an important 
onsequen
e: despite the fa
t that eq. (A.6) has no analyti
al solutionin general, it 
an be solved numeri
ally with guarantees of �nding a solution when one exists. Ifno solution 
an be found, the 
orresponding optimization problem is referred as infeasible [44℄.94



A. Mathemati
al toolsA.4.3 Standard LMI-problemsSome standard problems with respe
t to solving LMI-
onstraints in order to solve the optimizationproblems in this work are listed below [44℄.1. Finding a solution p to the LMI system
A(p) < 0 (A.7)is 
alled the feasibility problem. Given the LMI in eq. (A.7), the 
orresponding feasibilityproblem is to �nd pfeas su
h that A(pfeas) < 0 or to determine that the problem is infeasible.2. Minimizing a 
onvex obje
tive under LMI 
onstraints is also a 
onvex problem. In parti
ular,the linear obje
tive minimization problem:minimize cTp over p subje
t to A(p) < 0.plays an important role in the LMI-based design.These LMI problems allow us to determine whether the problem is either infeasible or toobtain a feasible solution with the 
orresponding optimal obje
tive values having pres
ribeda

ura
y.In this thesis, all LMI-related 
omputations have been solved using the MATLAB LMI Lab [50℄.
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B. System parametersAppendix BSystem parametersAileron positioning systemS
alar Value Units
Ap 8.54× 10−3 [m2]

c1 90× 106 [N/m]

c2 78.3× 106 [N/m]

Fmax 170.7× 103 [N ]

p
S

205× 105 [Pa]

p
T

5× 105 [Pa]

p
V

200× 105 [Pa]

xpmax
0.038 [m]

xr [−xpmax
, xpmax

] [m]

Vehi
le lateral dynami
 modelS
alar Value Units
C

′

�V
103600 [ N/rad ℄

C�H 179000 [ N/rad ℄
g 9.81 [ m/s2 ℄
iL 18 [ - ℄
Iz 3870 [ kg ⋅m2 ℄
lV 1.52931 [ m ℄
lH 1.53069 [ m ℄
K�R

0.9429 [ - ℄
m 1850 [ kg ℄
mNR 220 [ kg ℄
mR 1630 [ kg ℄
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