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AbstratAbstrat
The ever-inreasing omplexity of tehnial proesses requires a higher performane, safety andreliability. For this reason, fault detetion and isolation (FDI), whih onsists of residual generationand residual evaluation, has reeived more attention in the last years. Most tehnial proessesare represented by a nonlinear system; however it is possible to apply FDI tehniques only for afew lasses of nonlinear systems.In the last years, the idea of using an aggregation of loal models (multiple-models), as a means toapture the global dynami harateristis of nonlinear systems, has been suessfully integrated inthe �eld of FDI. These multiple-models have been used as an alternative for dealing with nonlinearsystems. An advantage of using multiple-models for FDI is that the theory for linear systems anbe used for nonlinear systems.This thesis mainly fouses on the design of robust FDI shemes for nonlinear systems usingmultiple-model approahes. The onsidered approahes are (i) the Takagi-Sugeno (TS) fuzzy model(ii) linear systems with polytopi unertainty.Three robust FDI shemes based on TS fuzzy models are presented. The �rst sheme generalizesthe linear unknown input observer to a lass of nonlinear systems desribed by TS fuzzy models.The objetive of this sheme is to deouple the unknown inputs for residual generation. The se-ond sheme handles nonlinear systems a�eted by stohasti disturbanes; this sheme minimizesthe expeted steady state estimation error using linear matrix inequality (LMI) tehniques. Thelast one simultaneously enhanes the robustness to unknown inputs without sari�ing the faultdetetion sensitivity.For linear systems with polytopi unertainty, a robust fault detetion �lter is designed onsideringa referene model. The residuals an be evaluated with a threshold based on this �lter.The e�etiveness of eah proposed robust FDI sheme is demonstrated with the help of fourappliation examples.
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1. IntrodutionChapter 1IntrodutionTehnial proesses have beome more and more omplex. For this reason, an inreasing level ofautomation is required.Consequently, it is desired to have higher performane, availability, reliability and seurity in theseproesses. In order to ful�ll these desired requirements, it is neessary to avoid malfuntions, whihare normally aused by a fault in one of the proess omponents.To better understand seurity of proesses, it is neessary to know the onept of �faults�. Afault in a proess is de�ned as an unpermitted deviation of a least one harateristi property orparameter of the system from the standard ondition [42℄. Faults an be deteted and also isolatedwith the implementation of fault detetion and isolation (FDI) approahes.However, most tehnial proesses are often represented as nonlinear systems due to their om-plexity, whih leads to di�ulties when FDI tehniques are applied to the proess. For this reason,only a few lasses of nonlinear systems are onsidered in the literature of FDI [3, 4, 14, 16, 46℄.Instead of using the nonlinear system for FDI, some simpli�ations and assumptions of a quanti-tative mathematial model are onsidered. Commonly, these refer to the redution of the dynamiorder and/or the linearization of the proess behavior.One of the most popular means to linearize a nonlinear system is Taylor series approximation[9, 56℄. One the linear model is obtained, it is possible to apply FDI approahes for linear systems[17, 18, 22, 26, 80℄.Linearized systems only work properly around the operating point where the nonlinear systemwas linearized. For this reason, onventional analytial linear models are not aurate enough toahieve an e�etive FDI. For these reasons, onsidering multiple-models are gaining more attentionin the �eld of FDI [40, 61℄.Multiple-model approahes, as its name says, use multiple linear models to approximate the be-havior of the nonlinear system. They provide a mathematial framework to analyze a omplexnonlinear system using a set of simple models (generally linear or a�ne models) valid in di�erentstate spae regions of the nonlinear system.In this thesis, two multiple model approahes have been onsidered in order to onstrut a residualgenerator based on linear FDI theories. The �rst approah is an approximation of nonlinear sys-tems, by means of the Takagi-Sugeno fuzzy model, the seond approah onsiders linear systemswith unertainty of the polytopi type.A Takagi-Sugeno (TS) fuzzy model uses multiple linearized models to approximate the behaviorof nonlinear systems. These models are desribed by fuzzy IF-THEN rules whih represent loallinear input-output relations of a nonlinear system.The main feature of a TS fuzzy model is that the loal dynamis of eah fuzzy impliation (rule)is represented by a linear model. The overall fuzzy model of the system is ahieved by a fuzzy1



1.1 State of the art�blending� of the linear models.On the other hand, linear systems with polytopi unertainties are basially onstituted by twoparts, the �rst part is given by the linearization of the nonlinear system around an operating pointand the seond part is onstituted by the polytopi unertainty of the system.1.1 State of the artIn this setion the development of fault detetion and isolation (FDI) and the related methodsin the past few years for TS fuzzy models and linear systems with polytopi unertainty areintrodued.FDI based Takagi-Sugeno fuzzy modelThe topi of TS fuzzy observer for nonlinear systems has reeived more attention in reent yearsbeause of its ability to estimate nonlinear systems using multiple-models [24, 74, 76℄. They arevery useful in the pratie beause it is possible to reah an estimation of the states despite thenonlinearities. This is beause eah model onsidered in the TS fuzzy model is a linear model, sothat one an apply theory for linear systems.In [76℄ the �rst work in the literature for TS fuzzy observers was reported. The TS fuzzy observeris developed by means of parallel distributed ompensation (PDC) into a losed loop ontrol.The implementation of a TS fuzzy ontroller together with a TS fuzzy observer, guarantees notonly the stability of the fuzzy ontrol system in the sense of Lyapunov, but also guarantees theonvergene of the state estimation error to zero. Both designs for the TS fuzzy ontroller andobserver are made together in an augmented system using an LMI algorithm.Nonlinear systems a�eted by stohasti noise have been handled using the Extended KalmanFilter (EKF) based on fuzzy systems [70, 85℄. This approah provides an e�ient solution to theoptimization of fuzzy membership funtion for both inputs and outputs of the fuzzy ontroller.The use of Kalman �lters for TS fuzzy systems is a relatively new approah [71℄. Here, it is shownhow to approximate the time-varying Kalman �lter with a time-varying linear ombination ofsteady state Kalman �lters (for eah linearized system is onstruted a Kalman �lter). The useof the TS Kalman �lter gives an insigni�ant loss in estimation performane (in relation to thetime-varying Kalman �lter).In [23, 49℄, a robust fault detetion �lter for TS fuzzy model is proposed. The purpose of the�lter is to generate a residual as robust as possible to disturbanes and at the same time assensitive as possible to the presene of faults. The design proedure is provided in terms of LMIs.The performane index orresponding to fault sensitivity is onsidered onstant and only theperformane index orresponding to the disturbane attenuation is minimized.FDI for linear systems with polytopi unertaintyA topi that has gained tremendous attention in the �eld of FDI for multiple-models is the residualgeneration for linear systems with polytopi unertainty [10, 11, 51, 52℄. The prinipal idea hereis to design a fault detetion �lter robust to disturbanes onsidering the presene of polytopi2



1. Introdutionunertainty.An improvement that has been made in FDI for linear systems with polytopi unertainties is theinorporation of a referene model in the omputation of the fault detetion �lter [32, 52, 86℄.The referene model is derived without onsidering the existene of polytopi unertainty in thesystem. The purpose of the fault detetion �lter with polytopi unertainty is the approximationof the solution given by the referene model.1.2 Motivation and objetive of the workIt is a well-known fat that most tehnial proesses exhibit a nonlinear behavior, and that onlyfew lasses of nonlinear systems an be treated with FDI approahes. In order to implement anFDI approah, it is required the design of a residual generator, whih ompares the measuredoutput of the system against an estimated output given by an observer. For this purpose thedesign of a residual generator for the nonlinear system is not easy even if the mathematial modelis known [28, 29, 30, 31℄.For the design of the residual generator, the most adopted solution is to use a linearization ofthe nonlinear system. Unfortunately sometimes the linear model does not give good results forFDI, beause the observer used in the FDI an not estimate the behavior of the nonlinear systemorretly. Moreover, the generated residual di�ers from zero or takes too muh time to onvergeto zero even if faults and disturbanes are not a�eting the system. This behavior indiates thatthe linear system utilized to onstrut the residual generator does not approximate the nonlinearsystem orretly.In the last few years, the idea of using an aggregation of loal models (multiple-models), as ameans to apture the global dynami harateristis of nonlinear systems, has been suessfullyinorporated in the �eld of FDI. These multiple-models are used as an alternative for dealing withnonlinear systems and applied in FDI generating the multiple-model approahes.One of these multiple-model approahes is the TS fuzzy model, whih approximates nonlinearsystems. In this approah, loal linear systems are used to represent the loal dynamis in di�erentstate spae regions.The appliation of this TS fuzzy model has given a good solution to some problems in nonlinearsystems and at the same time allows the use of FDI theories for linear systems to representnonlinear systems.An advantage of TS fuzzy models over a simple linear system is that a TS fuzzy model an workaround multiple operating points, i.e. the TS fuzzy model operates on a state spae region.Another multiple-model approah is residual generation for linear systems with polytopi uner-tainty. In this approah, the FDI works in a better way, beause the polytopi unertainty isonsidered in the design of the residual generator. Therefore a better onvergene of the residualto zero in the absene of faults and disturbane is assured.Both of these multiple-model approahes improve the performane of a residual generator for anonlinear system, the �rst one onsiders multiple linearization, i.e. around a region and the seond3



1.3 Organization of the workone onsiders the polytopi unertainty enpliity in the system. Objetive of the workIn this thesis, the TS fuzzy model is obtained from the approximation of the nonlinear modelwith a set of linear models. The polytopi unertainty is assumed known and omes from thelinearization in Taylor Series of the nonlinear equations.The main objetive of this thesis is to inorporate the TS fuzzy model for its use with linearFDI approahes. The prinipal objetive is to make the residual generator as robust as possibleto disturbanes (ould be deterministi or stohasti) and as sensitive as possible to the faults.Therefore, the disturbanes are minimized and the detetion of faults in an early stage is inreased.Three di�erent shemes are introdued for TS fuzzy models:
∙ Unknown input observers for linear systems are generalized for a lass of nonlinear systemsdesribed by TS fuzzy models.
∙ Nonlinear systems a�eted by stohasti disturbanes are onsidered to design a TS fuzzyobserver. This sheme minimizes the expeted steady state estimation error using LMI teh-niques.
∙ A robust fault detetion observer is extended for its use with TS fuzzy models based on it-erative LMI shemes. This sheme simultaneously enhanes the robustness against unknowninputs without sari�ing the fault detetion sensitivity.An FDI approah for linear systems with polytopi unertainty from [17, 66℄ is applied to theaileron positioning system. Both multiple-model approahes aim for a better FDI for nonlinearsystems.1.3 Organization of the workChapter 2 addresses onepts referring to the fuzzy logi and fuzzy models, whih are onsideredessential to understand the remainder of the work onerning TS fuzzy models.The de�nition of TS fuzzy observer and stability onditions are given. Finally, some oneptsonerning to fault detetion and isolation are brie�y de�ned.Chapter 3 handles the unknown input observer (UIO) for TS fuzzy systems, the UIO for linearsystems from [17℄ is generalized for a lass of nonlinear systems desribed by TS fuzzy models.The UIO for TS fuzzy systemsis proposed.The objetive of this observer is to deouple the unknown inputs and to estimate the states, onthe basis of the derivative of the output. A robust sensor fault isolation sheme [12℄ based on theTS fuzzy UIO is presented in order to detet and isolate faults.Chapter 4 onsiders the disrete TS fuzzy model with stohasti disturbanes in order to designa residual generator. The objetive of this sheme is to minimize the expeted value of the steadystate estimation error with the use of LMI tehniques.Chapter 5 presents a robust fault detetion observer for TS fuzzy models. The objetive of thisobserver is to �nd a trade-o� between maximizing the e�et of faults and minimizing the e�et4



1. Introdutionof disturbanes known as robust fault detetion (RFD). For the RFD with TS fuzzy model twoiterative LMI shemes for linear systems, taken from [79℄ and [81℄ are used.Chapter 6 uses theory of FDI for linear systems with polytopi unertainty from [17, 66℄ to designa fault detetion �lter, whih is robust to disturbanes and is sensible to faults and a threshold isdesigned to evaluate the generated residual.This approah onsists of three steps. First is the alulation of a referene model, follow thedesign of the FDF using the referene model to build an extended system. Finally, the obtainedgain matrix from the previous step is used to alulate a threshold.Chapter 7 onludes the results obtained from this thesis and the idea of future work is outlined.Appendix A gives the formulas for signal norm omputation, Shur omplement, the relax sta-bility ondition for TS fuzzy models and the onept of LMI and onvex optimization tehniques(COT), whih onstitute the prinipal tools in the solution of the proposed optimization problemsfor both multiple-model approahes.Appendix B shows the numerial values for the variables used in the appliation examples.
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2. TS fuzzy model and FDI ConeptsChapter 2TS fuzzy model and FDI ConeptsIn this hapter, basi onepts regarding to Takagi-Sugeno (TS) fuzzy models and fault detetionand isolation (FDI) are reviewed. It inludes the desription of a TS fuzzy model, the stability anal-ysis of a TS fuzzy observer, the de�nition of linear matrix inequalities (LMI), onvex optimizationtehniques (COT) and de�nitions on the �eld of fault detetion and isolation.2.1 Takagi-Sugeno fuzzy modelA Takagi-Sugeno (TS) fuzzy model is a fuzzy rule-based model approah suitable to approximatea large lass of nonlinear dynami systems [73℄. Fig. 2.1 illustrates the model-based TS fuzzyobserver used in this thesis.

Parallel distributed
compensation (PDC)

Physical model

TS fuzzy observer

Fuzzy model
(Takagi-Sugeno fuzzy model)

Identification using
input-output data

Nonlinear system

Fig. 2.1: Model-based TS fuzzy observer designTo design a TS fuzzy observer, a TS fuzzy model whih approximates the nonlinear system isneeded. Therefore the onstrution of a TS fuzzy model represents an important and basi proe-dure in this approah.In general, there are two approahes for the onstrution of TS fuzzy models:1. Identi�ation (fuzzy modeling) using input-output data2. Derivation from given nonlinear equations. 7



2.1 Takagi-Sugeno fuzzy modelThe identi�ation approah is mainly onstituted by two parts: struture identi�ation and pa-rameter identi�ation [39, 72℄. This approah is suitable for plants that are very omplex or toodi�ult to be represented by analytial and/or physial models.On the other hand, nonlinear dynami models an be obtained by, e.g. the Lagrange method andthe Euler-Newton method. In suh ases, the seond approah, whih derives a TS fuzzy modelfrom given nonlinear dynami models is more appropriate [77℄.In this thesis, the seond approah is onsidered in order to generate a TS fuzzy model, whihapproximates the behavior of the nonlinear system. In the TS fuzzy model, loal dynamis indi�erent state spae regions are represented by loal linear systems [55, 57℄.Unlike onventional modeling whih uses a single model to desribe the global behavior of anonlinear system, fuzzy modelling is essentially a multiple-model approah, in whih simple sub-models (linear models) are ombined to approximate the global behavior of the nonlinear system.The TS fuzzy model proposed by Takagi and Sugeno in [73℄ is desribed by fuzzy IF-THEN rules,where loal linear models are used to represent the dynami behavior in di�erent state spaeregions [77℄, i.e. the nonlinear trajetories are linearized over di�erent state spae regions.A fuzzy IF-THEN rule represents a loal relation input-output of the nonlinear system in a statespae region. The set of linear models are used to alulate the overall model of the system by�blending� these linear models through fuzzy membership funtions.The TS fuzzy model makes possible the use of FDI theory for linear systems to obtain a TS fuzzyresidual generator. Beause of its better approximation of the behavior of a nonlinear system, theTS fuzzy model an be seen as a good alternative for an e�ient residual generation.The design of TS fuzzy models based on given nonlinear equations onsiders a lass of nonlinearsystems desribed by
ẋ(t) = f(x(t)) + g(x(t))u(t) (2.1a)
y(t) = ℎ(x(t)) (2.1b)where x(t) ∈ ℝ

n is the state vetor, u(t) ∈ ℝ
ku is the input vetor and y(t) ∈ ℝ

m is the outputvetor and f(x(t)), g(x(t)) and ℎ(x(t)) are funtions of x(t).For eah state spae region there is a fuzzy IF-THEN rule desribing the dynamis of the systemin that region as followsModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) +Diu(t)

(2.2)where i = 1, . . . , r and r is the number of fuzzy IF-THEN rules,Mij are fuzzy sets, z1(t), . . . zp(t)are premise variables, x(t) ∈ ℝ
n is the state vetor, u(t) ∈ ℝ

ku and y(t) ∈ ℝ
m are the input andoutput vetors respetively. Matries Ai,Bi, Ci andDi are known system matries with appropriatedimension.The premise variables an be funtions of the measured state variables, inputs of the system andpossibly on some varying parameter (whih does not depend on the states).8



2. TS fuzzy model and FDI ConeptsThe truth value of the proposition �z1(t) is Mi1 and . . . and zp(t) is Mip� in the anteedent partis alulated by
Mi1(z1(t)) ∧ . . . ∧ Mip(zp(t))where the symbol �∧� stands for a t-norm (usually min-operator or produt), and �zp(t) is Mip� isthe grade of membership of zp(t) inMip. All fuzzy sets are assoiated with a membership funtion.The hoie of premise variables leads to di�erent lasses of models [1℄. The following example ofa nonlinear system is onsidered in order to explain this point

ẋ1(t) = x1(t)x
2
2(t) (2.3a)

ẋ2(t) = x1(t)− x2(t) (2.3b)The nonlinear system in eq. (2.3) an be represented in the following two forms
ẋ(t) =

[

0 x1(t)x2(t)

1 −1

]

x(t) or ẋ(t) =

[

x22(t) 0

1 −1

]

x(t) (2.4)As an be seen in eq. (2.4), the premise variable an be de�ned as z(t) = x1(t)x2(t) and also anbe de�ned as z(t) = x22(t), therefore, there are two possible models. The linearized models arevalid on a state spae region and are alulated using the maximum and minimum value of thesepremise variables.A membership funtion takes values between 0 and 1 , i.e. Mip(zp(t)) ∈ [0, 1]. The value 0 meansthat zp(t) is not a member of the fuzzy set and the value 1 means that zp(t) is fully a member ofthe fuzzy set [73, 83℄.The entire fuzzy model of the plant in eq. (2.2) is obtained with a fuzzy �blending� of all ruleonsequents, where eah onsequent part ontains a loally valid linear model. For a given pair(x(t), u(t)), the �nal outputs of the TS fuzzy model are inferred as follows:
ẋ(t) =

r
∑

i=1

wi(z(t))
[

Aix(t) +Biu(t)
]

r
∑

i=1

wi(z(t))

(2.5a)
y(t) =

r
∑

i=1

wi(z(t))
[

Cix(t) +Diu(t)
]

r
∑

i=1

wi(z(t))

(2.5b)where
z(t) = [z1(t) z2(t) . . . zp(t)]

wi(z(t)) =

p
∏

j=1

Mij(zj(t))

ℎi(z(t)) =
wi(z(t))
r
∑

i=1

wi(z(t)) 9



2.2 Takagi-Sugeno fuzzy observerfor all t. The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . Sine
⎧



⎨



⎩

r
∑

i=1

wi(z(t)) > 0

wi(z(t)) ≥ 0

for i = 1, 2, ..., r, ∀t. (2.6)the weighting funtions ℎi(z(t)) satisfy the following onstraints
⎧



⎨



⎩

r
∑

i=1

ℎi(z(t)) = 1

ℎi(z(t)) ≥ 0

for i = 1, 2, ..., r, ∀t. (2.7)Based on these onstraints, one an also write eq. (2.8) instead of eq. (2.5)
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t)
] (2.8a)

y(t) =

r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t)
] (2.8b)The overall struture of a TS fuzzy model an be seen in �g. 2.2.
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Fig. 2.2: Overall struture of a TS fuzzy model2.2 Takagi-Sugeno fuzzy observerFor a nonlinear dynami system approximated by a TS fuzzy model, a TS fuzzy observer an bedesigned in order to estimate the system state vetor [6, 24, 47, 74, 76℄.In the design of a TS fuzzy observer, it is assumed that the TS fuzzy model is loally observable,i.e. all pairs (Ai, Ci) are observable.10



2. TS fuzzy model and FDI ConeptsUsing the same idea as in the TS fuzzy model, a TS fuzzy observer utilizes a number of loallinear time-invariant (LTI) observers. Eah loal observer is assoiated with eah fuzzy IF-THENrule given below:Observer rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t) +Diu(t)

(2.9)The onept of parallel distributed ompensation (PDC) is used for the design of TS fuzzy ob-servers [75, 82℄. The idea is to design an observer for eah rule of the fuzzy model. The onept ofPDC is illustrated in �g. 2.3.TS fuzzy models share the same fuzzy sets with the TS fuzzy observer, i.e. both use the samemembership funtions Mij and the same weighting funtions ℎi(z(t)).
Rule 1 Rule 1

TS fuzzy model TS fuzzy observer

Rule 2 Rule 2

Rule r Rule r

Linear observer design techniqueFig. 2.3: PDC designThe overall state estimation is inferred as a weighted sum of individual loal observers:
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))
]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
] (2.10)where Li is the observer gain matrix for eah observer in the orresponding fuzzy IF-THEN rule.Remark 2.1 In the subsequent part of this thesis, the notation S > 0 means that S is a positivede�nite matrix, S > T means that S−T > 0 and W = 0 means that W is a zero matrix, i.e. itselements are all zero. 11



2.2 Takagi-Sugeno fuzzy observerThe following notation an also be used: r
∑

i<j

, r
∑

i ∕=j

, whih means
3
∑

i<j

aij ⇐⇒ a12 + a13 + a23

3
∑

i ∕=j

aij ⇐⇒ a12 + a13 + a21 + a23 + a31 + a322.2.1 Stability analysis for TS fuzzy observersFor the stability analysis, TS fuzzy observers are required to satisfy the following requirement:
lim
t→∞

(x(t)− x̂(t)) = 0 (2.11)where x̂(t) denotes the state vetor estimated by a TS fuzzy observer. The ondition in eq. (2.11)guarantees that the state estimation error e(t) between the state vetor x(t) and the estimatedstate vetor x̂(t) (estimated by the TS fuzzy observer) onverges to zero as time approahes itssteady state.In order to analyze the onvergene of the TS fuzzy observer, the state estimation error is de�nedas e(t) = x(t)− x̂(t) and its dynamis is given by
ė(t) = ẋ(t)− ˙̂x(t) (2.12)By straight substitution, the dynamis of the state estimation error is given as

ė(t) =

r
∑

i=1

ℎi(z(t))
[

[

Aix(t) +Biu(t)
]

−
[

Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))
]

]

=
r
∑

i=1

ℎi(z(t))
[

Aix(t)− Aix̂(t)− Li

(

y(t)− ŷ(t)
)

]

=

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

Ai

(

x(t)− x̂(t)
)

− LiCj

(

x(t)− x̂(t)
)

]

=
r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

Ai − LiCj

]

e(t)

=

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))Aije(t) (2.13)where
Aij = Ai − LiCjNote that eq. (2.13) an also be written as follows

ė(t) =
r
∑

i=1

ℎ2i (z(t))Aiie(t) + 2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

e(t) (2.14)12



2. TS fuzzy model and FDI ConeptsThe stability of the dynami eq. (2.14) an be proved by the Theorem 2.1.Theorem 2.1 [6, 74, 77℄: The equilibrium of the system desribed by eq. (2.14) is asymptotiallystable if there exists a ommon positive de�nite matrix P for i = 1, ..., r suh that
AT

iiP + PAii < 0 (2.15)
(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

≤ 0 i < j (2.16)Proof: Consider a andidate of Lyapunov funtion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t)

= eT (t)

(

r
∑

i=1

ℎ2i (z(t))Aii + 2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

)T

Pe(t)

+eT (t)P

(

r
∑

i=1

ℎ2i (z(t))Aii + 2

r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))

(

Aij + Aji

2

)

)

e(t)

=
r
∑

i=1

ℎ2i (z(t))e
T (t)

[

AT
iiP + PAii

]

e(t)

+2
r
∑

i=1

∑

i<j

ℎi(z(t))ℎj(z(t))e
T (t)

[

(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

]

e(t)

Q.E.D.The fuzzy observer design problem is to determine matries Li (i = 1, . . . , r) whih satisfy theonditions of Theorem 2.1 with a ommon positive de�nite matrix P .With the same strategy as in [8℄, it is possible to transform the onditions given by eq. (2.15)-(2.16)in LMIs and obtain diretly the gain matries Li for the TS fuzzy observer.For this purpose, let us substitute Aii in eq. (2.15) and Aij and Aji in eq. (2.16), whih results in
AT

i P + PAi − CT
i L

T
i P − PLiCi < 0

AT
i P + PAi + AT

j P + PAj − CT
j L

T
i P − PLiCj − CT

i L
T
j P − PLjCi ≤ 0 i < jDe�ning Ni = PLi and Nj = PLj for P > 0, after substituting Ni and Nj in the above matrixinequalities, it results in

AT
i P + PAi − CT

i N
T
i −NiCi < 0

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi ≤ 0 i < jThese LMI onditions, allow us to de�ne a TS fuzzy observer design problem asProblem 2.1 TS fuzzy observer design: Find P > 0 and Ni (i = 1, . . . , r) satisfying

AT
i P + PAi − CT

i N
T
i −NiCi < 0 (2.17a)

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi ≤ 0 i < j (2.17b)13



2.3 Fault Detetion and Isolation (FDI)The above onditions are LMIs with respet to variables P and Ni. A positive de�nite matrix Pand matries Ni satisfying these LMIs an be found. In ontrast, if this is not possible, then thefeasibility problem is rendered as infeasible.This feasibility problem an be solved e�iently using mathematial tools, e.g. MATLAB. Theobserver gain matries Li an be obtained as
Li = P−1NiIn this sense, the stability analysis of TS fuzzy observers is redued to a problem of �nding aommon matrix P .Remark 2.2 If the number of rules �r� is large, it might be di�ult to �nd a ommon matrix Psatisfying the onditions of theorem 2.1. In suh ases relaxed stability onditions for the theorem2.1, found in Appendix A.3, an be applied.2.3 Fault Detetion and Isolation (FDI)The objetive of fault detetion and isolation is to detet faults appearing in the system as earlyas possible, so that the failure of the whole system an be avoided.The most important onepts in the �eld of FDI are fault and disturbane. Both representa deviation of the proess state from the required operating ondition, but they are basiallydi�erent.Fault is de�ned as an unpermitted deviation of a least one harateristi property or parameter ofthe system from the standard ondition [42℄, whih results in an undesired behavior of the nominalsystem.A fault an a�et the system in an unfavorable (e.g. by redued e�ieny due to inreasingfrition losses) or in a dangerous (e.g. by danger of explosion in hemial reators due to inreasingtemperature) way.The detetable e�et of the fault an manifest itself by onstant o�-sets, exeeding a range ofvalues, modifying saling fators or modifying dynami behavior.Disturbane is a tolerable (maybe inevitable) disrepany from the ideal operating state, andan not have as a onsequene an undesired behavior of the nominal system.A disturbane represents therefore no potential danger, but desribes �the ompletely normal�deviation of the real proess from the ideal ase. Disturbanes are, e.g. inevitable frition andabsorption losses, measuring and disretization noise.The use of proess models for fault detetion in real systems inorporates another soure ofdisturbane signal: the modeling noise due to the inevitable disrepany between the proessand the model.However, it is desired not to detet these e�ets but to redue them. Only if a disturbane hangesinto a fault (e.g. if the frition losses exeed a ertain limit value �normal� frition), then thedetetion should take plae.14



2. TS fuzzy model and FDI ConeptsAs desribed in [27, 28℄, faults an be divided in: atuator, omponent and sensor faults. Thislassi�ation is needed in order to be able to di�erentiate the arising faults aording to the plaeof its ourrene, as depited in �g. 2.4.
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component
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u(t)
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y(t)
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(parameter variations, disturbances, noise)

Process
components

Actuators

Fig. 2.4: De�nition of faults in the plant of the proessAn atuator fault is a fault that appears in an atuator of the proess, e.g. defet in gears andaging e�ets. The faults that appear in the sensors are identi�ed as sensor fault, e.g. salingerrors and ontat failures.Component faults produe ritial parameter hanges in the proess itself, e.g. leakages andloose parts.Atuator, omponent and sensor faults are additive faults beause are unknown extra inputs atingon the system [35℄ while there exist also multipliative faults whih imply hanges of some plantparameters.In order to know if a fault is a�eting the system, a ompared signal between measured andestimated one known as residual signal is required.Residuals are designed to be equal or to onverge to zero in the fault-free ase and diverge sig-ni�antly from zero when fault ours in the system. Therefore, the residual signals represent thee�et of faults in the system.Most model-based FDI approahes inorporate two sequential steps in order to ahieve FDI. Theyare residual generation and residual evaluation [46, 58℄.1. Residual generation: In this stage, the data taken (measured) from the atual proess, whihre�ets the faults, are ompared with the orresponding referene values of the fault-free (nominal)ase.The residual generation proess an be interpreted as the evaluation of redundany.
r(t) = y(t)− ŷ(t) (2.18)In order to detet and isolate faults, system redundany is neessary. Redundany is the relationamong the measured variables. The system redundany in FDI an be divided in two lasses, i.e.physial and analytial redundany : 15



2.3 Fault Detetion and Isolation (FDI)
∙ Physial redundany : The proess variables are measured by multiple (redundant) sensors.This approah is e�etive only for the detetion of sensor failures, beause any malfuntionin the atuators or in the proess itself will a�et all the sensors simultaneously.
∙ Analytial redundany are the proedures of using model information to generate additionalsignals, whih are ompared with the original measured signals. Analytial redundany anbe used to avoid the repetition of hardware in the alternative approah known as physialredundany [58℄.Observer-based fault diagnosis is an example of analytial redundany based-approah.2. Residual evaluation: In this stage, the proessing of the residual signal by threshold seletionis performed. This threshold is utilized together with a residual evaluation funtion and it allowsto establish a limit. This limit is the maximal value of the evaluated residual for the free-faultase.The design of the threshold plays a very important role in the residual evaluation and it must berobust against disturbanes a�eting the system.In the FDI approahes, signal norms (Appendix A.1) are used to evaluate the residual signal[21, 63℄. In the signal norms, the size (in the sense of a norm) of the residual signal is alulatedon-line and then ompared with a given threshold.The deision logi for the threshold is as follows:

∥r(t)∥ ≤ threshold ⇒ no alarm, (fault-free)
∥r(t)∥ > threshold ⇒ alarm, (a fault is deteted) (2.19)where ∥ ⋅ ∥ stands for the norm of the residual signal.Model-based FDI approahes are based on a mathematial model and as explained before, a preiseand aurate model of a real system is not always possible to obtain.This is due to di�erent auses, e.g. disturbanes, di�erent noise e�ets and unertain or time-varying system parameters.FDI approahes that an be able to handle these kind of disturbanes, are referred as robust FDIapproahes.The robustness problem in FDI is de�ned as the maximization of the detetability and isolabilityof faults together with the minimization of the e�et of unertainty and disturbane on the FDIproedure.The optimization problems an be ahieved using sensitivity theory, as long as due are has beenpaid to the robustness of the global system operation.FDI using analytial redundany (model-based) methods is urrently a subjet of extensive re-searh [59℄. The model-based FDI proess is depited in �g. 2.5.16



2. TS fuzzy model and FDI Conepts
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Fig. 2.5: Model-based FDI proessFalse alarms are another important onept in the FDI �eld. It is de�ned as a misinterpretation ofthe system, where a hange in some variable is onsidered as a fault. False alarms an be ativatedby a large model unertainty, by high detetion sensitivity, partiularly within the dynami range,or by disturbanes.The sensitivity to faults and avoidane of false alarms due to disturbanes leads to the optimizationproblem in the design of fault diagnosis systems. Sine a robust FDI sheme is desired, the prinipalobjetive is to inrease the robustness to unknown inputs and simultaneously to enhane thesensitivity to faults [19℄.The next step is to evaluate the generated residual and to ompare it with a threshold. Theseletion of the threshold plays an important role in FDI.

17





3. Unknown input observer for TS fuzzy modelsChapter 3Unknown input observer for TS fuzzymodelsAn unknown input observer (UIO) is a robust observer whih an tolerate a degree of modelunertainty and hene inrease the reliability of fault diagnosis [2, 12, 13, 69℄. In this approah, themodel-reality mismath is represented by the so-alled unknown input and hene the state estimateand, onsequently, the output estimate are obtained by taking into aount model unertainty.Unfortunately, the existing nonlinear extensions of the UIO as in [13, 60℄ require a relativelyomplex design proedure, even for simple laboratory systems [88℄. Moreover, they are usuallylimited to a very restrited lass of nonlinear systems.On the other hand, it is well known that UIO-based solution works well for linear systems onlywhen there is no large mismath between the linearized model around the urrent state estimateand the nonlinear behavior of the system.The use of a linear UIO allows the robust estimation of the states even if the system has unknowninputs (disturbanes). The design of UIO for linear systems is well established but only worksaround the operating point were the nonlinear system was linearized.TS fuzzy models onsider a state spae region and not only an operating point and they allow theuse of linear theories, therefore they are used to make an extension of the UIO approah developedin [17℄ for its use with TS fuzzy models.3.1 UIO approah for linear systemsOne of the most important tasks in model-based fault diagnosis tehniques is the generation ofrobust residuals. Disturbane deoupling approahes are a good option to generate these robustresiduals. In these approahes, unertain fators in system modeling are onsidered to a�et thelinear system via an unknown input (or disturbane) [12℄. Despite the fat that the unknown inputvetor is unknown, its distribution matrix is assumed known.Considering the information given by the distribution matrix, the unknown input (disturbane)an be deoupled from the residual. The deoupling of the unknown inputs an be ahieved usingunknown input observers (UIO). It also deouples state estimation error from disturbanes.For the design of UIOs a lass of linear systems is onsidered. The system unertainty an besummarized as an additive unknown disturbane term in the dynami equation
ẋ(t) = Ax(t) +Bu(t) + Edd(t) (3.1a)
y(t) = Cx(t) (3.1b)where x(t) ∈ ℝ

n is the state vetor, u(t) ∈ ℝ
ku is the known input vetor, d(t) ∈ ℝ

kd is the19



3.1 UIO approah for linear systemsunknown input (or disturbane) vetor and y(t) ∈ ℝ
m is the measurement or output vetor. A,

B, Ed and C are known system matries with appropriate dimensions.Remark:There is no loss of generality in assuming that the unknown input distribution matrix Ed shouldbe full olumn rank. When this is not the ase, the following rank deomposition an be appliedto the matrix Ed

Edd(t) = Ed1Ed2d(t) (3.2)where Ed1 is a full olumn rank matrix and Ed2d(t) an now be onsidered as a new unknowninput vetor (for a proof refer to [12℄, page 301).De�nition 3.1 (Unknown Input Observer (UIO) [12℄) An observer designed for the systemdesribed by eq. (3.1) is onsidered as an unknown input observer, if its state estimation errorvetor e(t) approahes to zero asymptotially, despite of the presene of the unknown input (dis-turbane) in the system.One an also interpret the UIO as a Luenberger type observer that delivers a state estimation x̂(t)independent of the unknown input (disturbane) d(t) in the sense that :
lim
t→∞

(

x(t)− x̂(t)
)

= 0 for all u(t), d(t), x0 (3.3)With the use of the state estimate x̂(t), it is possible to onstrut a residual signal as follows:
r(t) = y(t)− Cx̂(t) (3.4)3.1.1 UIO designFor the design of the UIO [15, 17℄, the derivative of the output signal y(t) is given by

ẏ(t) = Cẋ(t)

ẏ(t) = C
(

Ax(t) +Bu(t) + Edd(t)
) (3.5)From eq. (3.5), the term CEdd(t) is taken to the left

CEdd(t) = ẏ(t)− CAx(t)− CBu(t) (3.6)Assume that
rank(CEd) = rank(Ed) = kd (3.7)and that CEd is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix [68℄ (CEd)

+of the produt CEd

(CEd)
+ =

[

(CEd)
TCEd

]−1
(CEd)

T , (CEd)
+ ∈ ℝ

kd×m (3.8)20



3. Unknown input observer for TS fuzzy modelsMultiplying both sides of eq. (3.6) by the Moore-Penrose pseudoinverse matrix results in
(CEd)

+CEdd(t) = (CEd)
+
[

ẏ(t)− CAx(t)− CBu(t)
]

d(t) = (CEd)
+
[

ẏ(t)− CAx(t)− CBu(t)
] (3.9)the unknown input (disturbane) vetor is obtained from the eq. (3.9). Therefore, using the outputvetor derivative ẏ(t), the estimation of the state vetor x̂(t) and the input vetor u(t), the unknowninput vetor d̂(t) an be onstruted by

d̂(t) = (CEd)
+
(

ẏ(t)− CAx̂(t)− CBu(t)
) (3.10)Considering the estimate of the unknown input vetor d̂(t), it is possible to onstrut a full orderstate observer, on the assumption that ẏ(t) is available. The observer is given as follows:

˙̂x(t) = Ax̂(t) +Bu(t) + Edd̂(t) + L (y(t)− Cx̂(t)) (3.11)substituting d̂(t) from eq. (3.10) in eq. (3.11) results in
˙̂x(t) = Ax̂(t) +Bu(t) + Ed(CEd)

+
(

ẏ(t)− CAx̂(t)− CBu(t)
)

+ L (y(t)− Cx̂(t))

˙̂x(t) = (A− LC −HceCA)x̂(t) + (B −HceCB)u(t) +Hceẏ(t) + Ly(t) (3.12)where
Hce = Ed(CEd)

+ (3.13)The state estimation error e(t) = x(t)− x̂(t) is governed by the equation:
ė(t) = ẋ(t)− ˙̂x(t)

ė(t) = Ax(t) +Bu(t) + Edd(t)− Ax̂(t)−Bu(t)− Edd̂(t)− L (y(t)− ŷ(t))

ė(t) = (A− LC)e(t) + Ed

(

d(t)− d̂(t)
)

ė(t) = (A− LC −HceCA) e(t) (3.14)In ase that there exists an observer gain matrix L, suh that matrix (A− LC −HceCA) isstabilizable, then the observer in eq. (3.12) ful�lls eq. (3.3).The observer in eq. (3.12) requires the knowledge of ẏ(t), this fat may ause some problems inon-line implementation. To get over this di�ulty, it is neessary to implement a modi�ation.Therefore a new state vetor  (t) is introdued
 (t) = x̂(t)−Hcey(t) (3.15)21



3.1 UIO approah for linear systemsthen, it turns out that the derivative of eq. (3.15) is
 ̇(t) = ˙̂x(t)−Hceẏ(t)

 ̇(t) = ˙̂x(t)−HceCẋ(t)

 ̇(t) = (A− LC −HceCA) x̂(t) + (B −HceCB)u(t) + Ly(t)

 ̇(t) = (TA− LC) (t) + TBu(t) +
(

(TA− LC)Hce + L
)

y(t) (3.16)
x̂(t) =  (t) +Hcey(t) (3.17)where

T = In×n −HceC (3.18)It is lear that for all d(t), u(t) and xo
lim
t→∞

(Tx(t)−  (t)) = 0, lim
t→∞

(x(t)− x̂(t)) = 0 (3.19)Setting G = TA− LC and H = TB allows to express the eq. (3.16) as
 ̇(t) = G (t) +Hu(t) + (GHce + L) y(t) (3.20)The system omposed by eq. (3.17) and eq. (3.20) is an unknown input observer of the Luenbergertype, and by substituting x̂(t) from eq. (3.17) in eq. (3.4) gives
r(t) = y(t)− Cx̂(t)

r(t) = y(t)− C
(

 (t) +Hcey(t)
)

r(t) = (Im×m − CHce)y(t)− C (t) (3.21)a residual vetor r(t) free of unknown inputs d(t) is obtained. It an be notied that the essene ofthe UIO approah is the reonstrution of the unknown input d(t), whih requires the onditiongiven in eq. (3.7).The stability of observer in eq. (3.12) or equivalently in eq. (3.16) is ensured, if the pair (C, TA)is observable or at least detetable. In summary, the following theorem is obtained:
Theorem 3.1 [17℄: Given the system model in eq. (3.1) and supposeCondition I. rank(CEd) = rank(Ed) = kdCondition II. the pair (C, TA) is detetable, where

T = In×n −HceC22



3. Unknown input observer for TS fuzzy modelsthen there exists an UIO in the sense of eq. (3.3).Remark 3.1 It an be demonstrated that ondition I and II are also neessary onditions for theexistene of an UIO. It is interesting to notie that matrix T is singular. This an be readily seenby observing the fat
TEd = Ed − EdHceCEd = 0Based on the linear approah for unknown input observers (UIO), it is introdued the extensionof the UIO for its use with TS fuzzy models.3.2 TS fuzzy UIOThe objetive of the proposed UIO for TS fuzzy systems is the same as the one for UIOs in linearsystems, i.e. it delivers a state estimate x̂(t) independent of the unknown input d(t).

lim
t→∞

(x(t)− x̂(t)) = 0 for all u(t), d(t), x0 (3.22)In order to onstrut an UIO for TS fuzzy systems (TS fuzzy UIO) a lass of nonlinear systemsis onsidered. The unknown inputs (disturbane) an be summarized as an additive term in thedynami equation desribed by
ẋ(t) = f(x(t)) + g(x(t))u(t) + Edd(t) (3.23a)
y(t) = Cx(t) (3.23b)where the distribution matrix for unknown inputs Ed and the output matrix C do not depend onthe state vetor x(t), in other words, they are linear (onstant) matries. A TS fuzzy model thatapproximates the behavior of the nonlinear system given by eq. (3.23) is obtained as

ẋ(t) =
r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.24a)

y(t) = Cx(t) (3.24b)where x(t) ∈ ℝ
n is the state vetor, u(t) ∈ ℝ

ku is the known input vetor, d(t) ∈ ℝ
kd is theunknown input (disturbane) vetor and y(t) ∈ ℝ

m is the measurement or output vetor. Ai, Bi,
Ed and C are known system matries with appropriate dimensions.To this TS fuzzy model orresponds the following fuzzy IF-THEN rulesModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t) + Edd(t)

y(t) = Cx(t)

(3.25)With the use of the state estimate x̂(t), it is possible to onstrut a residual signal as follows:
r(t) = y(t)− Cx̂(t) (3.26)23



3.2 TS fuzzy UIO3.2.1 Design of the TS fuzzy UIOFor the design of the TS fuzzy UIO, the derivative of the output signal y(t) is given by
ẏ(t) = Cẋ(t)

ẏ(t) = C

(

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
]

) (3.27)From eq. (3.27), the term CEdd(t) is taken to the left
CEdd(t) = ẏ(t)−

r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
] (3.28)Assume that

rank(CEd) = rank(Ed) = kd (3.29)and that CEd is left invertible, i.e. there exists a Moore-Penrose pseudoinverse matrix (CEd)
+ ofthe produt CEd

(CEd)
+ =

[

(CEd)
TCEd

]−1
(CEd)

T , (CEd)
+ ∈ ℝ

kd×m (3.30)Multiplying both sides of eq. (3.28) by the Moore-Penrose pseudoinverse matrix results in
(CEd)

+CEdd(t) = (CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
]

)

d(t) = (CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix(t) + CBiu(t)
]

) (3.31)the unknown input (disturbane) vetor is obtained from the eq. (3.31). Therefore, using theoutput vetor derivative ẏ(t), the estimation of the state vetor x̂(t) and the input vetor u(t),the unknown input vetor d̂(t) an be onstruted as
d̂(t) = (CEd)

+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t))
[

CAix̂(t) + CBiu(t)
]

) (3.32)Considering the estimate of the unknown input vetor d̂(t), it is possible to onstrut a full orderTS fuzzy observer, on the assumption that ẏ(t) is available. The TS fuzzy observer is given by thefollowing equation
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Edd̂(t) + Li

(

y(t)− Cx̂(t)
)

] (3.33)with its orrespondent fuzzy IF-THEN rules24



3. Unknown input observer for TS fuzzy modelsObserver rule iIF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Edd̂(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

(3.34)
substituting d̂(t) from eq. (3.32) in eq. (3.33) results in
˙̂x(t) =

r
∑

i=1

ℎi(z(t))

[

Aix̂(t) +Biu(t) + Ed(CEd)
+

(

ẏ(t)−
r
∑

i=1

ℎi(z(t)) [CAix̂(t) + CBiu(t)]

)

+ Li (y(t)− Cx̂(t))

]

˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Ed(CEd)
+
(

ẏ(t)− CAix̂(t)− CBiu(t)
)

+ Li (y(t)− Cx̂(t))
]

˙̂x(t) =
r
∑

i=1

ℎi(z(t))
[

(Ai − LiC −HceCAi)x̂(t) + (Bi −HceCBi)u(t) +Hceẏ(t) + Liy(t)
] (3.35)

where
Hce = Ed(CEd)

+ (3.36)The state estimation error e(t) = x(t)− x̂(t) is governed by the equation
ė(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)− Aix̂(t)− Biu(t)−Edd̂(t)− Li (y(t)− ŷ(t))
]

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Ai − LiC −HceCAi

]

e(t)

In ase that there exists observer gain matries Li, suh that eah matrix (Ai − LiC −HceCAi)is stabilizable, then e(t) will approah zero asymptotially, i.e. the ondition given by eq. (3.22)is ful�lled. This means that the TS fuzzy observer in eq. (3.35) is an unknown input observer forthe system in eq. (3.24) aording to de�nition 3.1.The TS fuzzy observer in eq. (3.35) requires the knowledge of ẏ(t), this fat may ause someproblems in on-line implementation. To get over this di�ulty, it is neessary to implement amodi�ation. Therefore a new state vetor is introdued
 (t) = x̂(t)−Hcey(t) (3.37)25



3.2 TS fuzzy UIOthen, it turns out that the derivative of eq. (3.37) is
 ̇(t) = ˙̂x(t)−Hceẏ(t)

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t)−Hce

(

CAix̂(t) + CBiu(t)
)

+ Li (y(t)− Cx̂(t))
]

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

(Ai − LiC −HceCAi) x̂(t) + (Bi −HceCBi)u(t) + Liy(t)
]

 ̇(t) =
r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) x̂(t) + TBiu(t) + Liy(t)
]

 ̇(t) =
r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) ( (t) +Hcey(t)) + TBiu(t) + Liy(t)
]

 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) (t) + TBiu(t) + ((TAi − LiC)Hce + Li) y(t)
] (3.38)

x̂(t) =  (t) +Hcey(t) (3.39)where
T = In×n −HceC (3.40)It is lear that for all d(t), u(t) and xo

lim
t→∞

(Tx(t)−  (t)) = 0, lim
t→∞

(x(t)− x̂(t)) = 0 (3.41)and furthermore, setting Gi = TAi − LiC and Hi = TBi allows to express eq. (3.38) as
 ̇(t) =

r
∑

i=1

ℎi(z(t))
[

Gi (t) +Hiu(t) + (GiHce + Li) y(t)
] (3.42)The system onstituted by eq. (3.38)-(3.39) is an unknown input observer of the Luenberger typefor TS fuzzy systems, and by substituting x̂(t) from eq. (3.39) in eq. (3.26) gives

r(t) = y(t)− Cx̂(t)

r(t) = y(t)− C
(

 (t) +Hcey(t)
)

r(t) = (Im×m − CHce)y(t)− C (t) (3.43)a residual vetor free of unknown inputs d(t) is obtained. The stability of the TS fuzzy observerin eq. (3.35) or equivalently in eq. (3.38) is ensured, if all pairs (C, TAi) are observable or at leastdetetable. In summary, the following theorem is obtained:Theorem 3.2 Given the system model in eq. (3.24) and supposeCondition 1. rank(CEd) = rank(Ed) = kdCondition 2. all pairs (C, TAi) are detetable, where
T = In×n −HceCthen there exists a TS fuzzy UIO in the sense of eq. (3.22).26



3. Unknown input observer for TS fuzzy models3.2.2 Computation of observer gain matriesTo ompute the observer gain matries Li, it is required to realize the onvergene analysis of theTS fuzzy UIO. The state estimation error dynamis is given by
ė(t) = ẋ(t)− ˙̂x(t)

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Ai − LiC −HceCAi

]

e(t)

ė(t) =
r
∑

i=1

ℎi(z(t))
[

TAi − LiC
]

e(t) (3.44)The stability of the dynami eq. (3.44) an be proved by the Theorem 3.3.Theorem 3.3 [77℄: The equilibrium of the system desribed by eq. (3.44) is asymptotially stableif there exists a ommon positive de�nite matrix P for i = 1, ..., r suh that
ĀT

i P + PĀi < 0 (3.45)where Āi = TAi − LiC.Proof: Consider a andidate of Lyapunov funtion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėT (t)Pe(t) + eT (t)P ė(t) < 0

= eT (t)

(

r
∑

i=1

ℎi(z(t))Āi

)T

Pe(t) + eT (t)P

(

r
∑

i=1

ℎi(z(t))Āi

)

e(t) < 0

=

r
∑

i=1

ℎi(z(t))e
T (t)

(

ĀT
i P + PĀi

)

e(t) < 0

=
r
∑

i=1

ℎi(z(t))e
T (t)

[

(

TAi − LiC
)T

P + P
(

TAi − LiC
)

]

e(t) < 0

Q.E.D.With the same strategy as in [8℄, it is possible to transform the onditions given by eq. (3.45) inlinear matrix inequalities (LMIs) and use these LMIs to obtain the gain matries Li for the TSfuzzy UIO if and only if there exist a positive de�nite matrix P .For this purpose, substitute Āi in eq. (3.45)
(TAi − LiC)

TP + P (TAi − LiC) < 0

AT
i T

TP + PTAi − CTLT
i P − PLiC < 0De�ne Ni = PLi so that for P > 0 results Li = P−1Ni, after substituting this in the above matrixinequality follows that 27



3.2 TS fuzzy UIO
AT

i T
TP + PTAi − CTNT

i −NiC < 0The use of these LMI onditions allow us to de�ne a stable TS fuzzy UIO design problem asfollows:Problem 3.1 TS fuzzy UIO design: Find P > 0 and Ni (i = 1, . . . , r) satisfying
AT

i T
TP + PTAi − CTNT

i −NiC < 0 (3.46)Applying the relaxed stability onditions (given in the Appendix A.3) to the above TS fuzzy UIOdesign problem results in:Problem 3.2 TS fuzzy UIO design using relaxed stability onditions: Find P > 0, Q ≥ 0and Ni (i = 1, . . . , r) satisfying
AT

i T
TP + PTAi − CTNT

i −NiC + (s− 1)Q < 0 (3.47)where 1 < s ≤ r and
Ni = PLiThe above onditions are LMIs with respet to variables P , Q and Ni. It an be found a posi-tive de�nite matrix P , a positive semide�nite matrix Q and a matrix Ni satisfying the LMIs ordetermine that no suh P , Q and Ni exist. The observer gain matries Li an be obtained as

Li = P−1NiThe design problem given by eq. (3.47) is solved e�iently using mathematial tools as for exampleMATLAB. Following the proedure given in 3.2.1 is made an algorithm for the design of the TSfuzzy UIO as followsAlgorithm 3.1 Takagi-Sugeno fuzzy UIO based residual generationStep 1. Chek the rank ondition for Ed and CEd, if rank(CEd) = rank(Ed) = kd is satis�ed thengo to the next step, otherwise it is not possible to �nd a TS fuzzy UIO for suh system(STOP).Step 2. Compute matries (CEd)
+, Hce and T aording to eq. (3.30), (3.36) and (3.40) respe-tively.Step 3. Chek the observability: If eah pair (C, TAi) is observable, then a TS fuzzy UIO existsand matries Li an be omputed using LMI tehniques.Step 4. Find gain matries Li using eq. (3.47) that ensures the stability of eah matrix (TAi−LiC).Step 5. Construt residual generator following eq. (3.38) and eq. (3.43).28



3. Unknown input observer for TS fuzzy models3.3 Robust sensor fault isolation shemes based onTS fuzzy UIOThe main task of robust fault detetion is to generate a residual signal whih is robust to unknowninputs (disturbane). To detet a partiular fault, the residual has to be sensitive to this fault. ATS fuzzy system with possible sensor fault an be desribed by
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.48a)

y(t) = Cx(t) + fs(t) (3.48b)where fs(t) ∈ ℝ
m denotes the presene of sensor faults. To generate a robust (in the sense ofunknown input deoupling) residual, a TS fuzzy UIO desribed by eq. (3.35) is required. Asdesribed before, when the state estimation is available, the residual an be generated as:

r(t) = y(t)− Cx̂(t)

r(t) = (Im×m − CHce)y(t)− C (t) (3.49)When this TS fuzzy UIO based residual generator is applied to the system desribed in eq. (3.48),the residual and the state estimation error e(t) result as
ė(t) =

r
∑

i=1

ℎi(z(t))
[

(TAi − LiC) e(t)− Lifs(t)−Hceḟs(t)
]

r(t) = Ce(t) + fs(t) (3.50)The residual has to be made sensitive to fs(t) in order to detet sensor faults. This is generallypossible, sine the sensor fault vetor fs(t) has a diret e�et on the residual signal r(t).The fault isolation problem has as main task the loalization of the fault, i.e. to determine inwhih sensor the fault has ourred. One approah that failitates fault isolation is to design astrutured residual set. Eah residual in the set is designed to be insensitive to a ertain fault andsensitive to all other faults.To design robust sensor fault isolation shemes, all atuators are assumed to be fault-free and thesystem equations an be expressed as
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
] (3.51a)

yk(t) = Ckx(t) + fk
s (t) (3.51b)

yk(t) = Ckx(t) + fsk(t) for k = 1, . . . , m (3.51)29



3.3 Robust sensor fault isolation shemes based on TS fuzzy UIOwhere Ck ∈ ℝ
1×n is the ktℎ row of the matrix C, Ck ∈ ℝ

(m−1)×n is obtained from the matrix Cby deleting ktℎ row Ck, yk(t) is the ktℎ omponent of y(t) and yk(t) ∈ ℝ
m−1 is obtained from thevetor y(t) by deleting ktℎ omponent yk(t).Based on this desription, m TS fuzzy UIO based residual generators an be onstruted as

˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Edd̂(t) + Lk
i

(

yk(t)− Ckx̂(t)
)

]

=

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Ed(C
kEd)

+
(

ẏk(t)− CkAix̂(t)− CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)

]

=

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) +Hk
ce

(

ẏk(t)− CkAix̂(t)− CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)

] (3.52)where
Hk

ce = Ed(C
kEd)

+ (3.53)As mentioned before, a modi�ation is needed to avoid problems due to on-line omputation ofthe TS fuzzy UIO based residual generators. For this reason a new state vetor is introdued
 k(t) = x̂(t)−Hk

cey
k(t) (3.54)whose derivative is given as

 ̇k(t) = ˙̂x(t)−Hk
ceẏ

k(t)

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t)−Hk
ce

(

CkAix̂(t) + CkBiu(t)
)

+ Lk
i

(

yk(t)− Ckx̂(t)
)]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[(

Ai − Lk
iC

k −Hk
ceC

kAi

)

x̂(t) +
(

Bi −Hk
ceC

kBi

)

u(t) + Lk
i y

k(t)
]

 ̇k(t) =
r
∑

i=1

ℎi(z(t))
[(

T kAi − Lk
iC

k
)

x̂(t) + T kBiu(t) + Lk
i y

k(t)
]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[(

T kAi − Lk
iC

k
)(

 k(t) +Hk
cey

k(t)
)

+ T kBiu(t) + Lk
i y

k(t)
]

 ̇k(t) =

r
∑

i=1

ℎi(z(t))

[

(

T kAi − Lk
iC

k
)

 k(t) + T kBiu(t) +
((

T kAi − Lk
iC

k
)

Hk
ce + Lk

i

)

yk(t)

](3.55)
x̂(t) =  k(t) +Hk

cey
k(t) (3.56)where

T k = In×n −Hk
ceC

k (3.57)and furthermore, setting Gk
i = T kAi − Lk

iC
k and Hk

i = T kBi allows to express the eq. (3.55) as
 ̇k(t) =

r
∑

i=1

ℎi(z(t))
[

Gk
i 

k(t) +Hk
i u(t) +

(

Gk
iH

k
ce + Lk

i

)

yk(t)
] (3.58)30



3. Unknown input observer for TS fuzzy modelsThe system onstituted by eq. (3.55)-(3.56) is an unknown input observer of the Luenberger typefor TS fuzzy models, and by setting
rk(t) = yk(t)− Ckx̂(t)

rk(t) = yk(t)− Ck
(

 k(t) +Hk
cey

k(t)
)

rk(t) = (I(m−1)×(m−1) − CkHk
ce)y

k(t)− Ck k(t) (3.59)Eah residual generator is driven by all inputs and all outputs exept one output. When allatuators are fault-free and a fault ours in the ktℎ sensor, the residual will satisfy the followingisolation logi
{

∥rk(t)∥ < T k
SFI

∥rl(t)∥ ≥ T l
SF I

for l = 1, . . . , k − 1, k + 1, . . . , m (3.60)where T k
SFI (k = 1, . . . , m) are isolation thresholds. A robust and TS fuzzy UIO based sensor faultisolation sheme is shown in �g. 3.1.
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Fig. 3.1: A robust sensor fault isolation sheme3.4 An appliation exampleA nonlinear system is used to implement the TS fuzzy UIO based residual generator, the nonlinearsystem is desribed by
⎡

⎣

ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤

⎦ =

⎡

⎣

−x1(t) + x1(t)x
3
2(t)

−x2(t) +
(

3 + x2(t)
)

x31(t)

x2(t)− x3(t)

⎤

⎦+

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

⎡

⎣

y1(t)

y2(t)

y3(t)

⎤

⎦ =

⎡

⎣

x1(t)

x2(t)

x3(t)

⎤

⎦+

⎡

⎣

fs1(t)

fs2(t)

fs3(t)

⎤

⎦ 31



3.4 An appliation exampleit is onsidered that x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. The above system an be written in thefollowing form:
ẋ(t) =

⎡

⎣

−1 x1(t)x
2
2(t) 0

(

3 + x2(t)
)

x21(t) −1 0

0 1 −1

⎤

⎦ x(t) +

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

y(t) =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ x(t) + fs(t)where x1(t)x22(t) and (3 + x2(t)
)

x21(t) are nonlinear terms. For the nonlinear terms are de�ned
z1(t) = x1(t)x

2
2(t) and z2(t) = (3 + x2(t)

)

x21(t) as premise variables. Substituting z1(t) and z2(t)in the above system results in
ẋ(t) =

⎡

⎣

−1 z1(t) 0

z2(t) −1 0

0 1 −1

⎤

⎦ x(t) +

⎡

⎣

1

0.1

0.2

⎤

⎦ u(t) +

⎡

⎣

1

−2.5

0.1

⎤

⎦ d(t)

y(t) =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦ x(t) + fs(t)Next, alulate the minimum and maximum values of z1(t) and z2(t), these are obtained as:
max

z1(t),z2(t)
z1(t) = 1 max

x1(t),x2(t)
z2(t) = 4

min
z1(t),z2(t)

z1(t) = −1 min
x1(t),x2(t)

z2(t) = 0from the maximum and minimum values, z1(t) and z2(t) an be represented by
z1(t) = x1(t)x

2
2(t) = F11(z1(t)) ⋅ 1 + F12(z1(t)) ⋅ −1

z2(t) =
(

3 + x2(t)
)

x21(t) = F21(z2(t)) ⋅ 4 + F22(z2(t)) ⋅ 0where:
F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1The membership funtions an be alulated as follows

F11(z1(t)) =
z1(t) + 1

2
F12(z1(t)) =

1− z1(t)

2

F21(z2(t)) =
z2(t)

4
F22(z2(t)) =

4− z2(t)

432



3. Unknown input observer for TS fuzzy modelsThe membership funtions are named �Positive�, �Negative�, �Big� and �Small�, respetively. Then,the nonlinear system is approximated by the following fuzzy IF-THEN rulesModel rule 1 IF z1(t) is �Positive� and z2(t) is �Big�THEN {

ẋ(t) = A1x(t) +B1u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 2 IF z1(t) is �Positive� and z2(t) is �Small�THEN {

ẋ(t) = A2x(t) +B2u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 3 IF z1(t) is �Negative� and z2(t) is �Big�THEN {

ẋ(t) = A3x(t) +B3u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Model rule 4 IF z1(t) is �Negative� and z2(t) is �Small�THEN {

ẋ(t) = A4x(t) +B4u(t) + Edd(t)

y(t) = Cx(t) + fs(t)Here
A1 =

⎡

⎣

−1 1 0

4 −1 0

0 1 −1

⎤

⎦ , A2 =

⎡

⎣

−1 1 0

0 −1 0

0 1 −1

⎤

⎦ , A3 =

⎡

⎣

−1 −1 0

4 −1 0

0 1 −1

⎤

⎦ , A4 =

⎡

⎣

−1 −1 0

0 −1 0

0 1 −1

⎤

⎦

B1,2,3,4 =

⎡

⎣

1

0.1

0.2

⎤

⎦ , Ed =

⎡

⎣

1

−2.5

0.1

⎤

⎦ , C =

⎡

⎣

1 0 0

0 1 0

0 0 1

⎤

⎦The defuzzi�ation (that gives the TS fuzzy model) is arried out as
ẋ(t) =

4
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t)
]

y(t) = Cx(t) + fs(t)where
ℎ1(z(t)) = F11(z1(t)) × F21(z2(t))

ℎ2(z(t)) = F11(z1(t)) × F22(z2(t))

ℎ3(z(t)) = F12(z1(t)) × F21(z2(t))

ℎ4(z(t)) = F12(z1(t)) × F22(z2(t)) 33



3.4 An appliation exampleFollowing the steps given in Algorithm 3.1, the rank of CEd and Ed are ompared
rank(CEd) = rank(Ed) = 1The above ondition is satis�ed, and hene matries (CEd)

+, Hce and T using eq. (3.30), (3.36)and (3.40) respetively are omputed.
(CEd)

+ =
[

0.1377 −0.3443 0.0138
]

, Hce =

⎡

⎣

0.1378 −0.3443 0.0138

−0.3443 0.8608 −0.0344

0.0138 −0.0344 0.0014

⎤

⎦ ,

T =

⎡

⎣

0.8622 0.3443 −0.0138

0.3443 0.1391 0.0344

−0.0138 0.0344 0.9986

⎤

⎦The following gain matries Li are obtained using eq. (3.47) with the relaxed stability onditions.
L1 =

⎡

⎣

2.015 0.358 0.082

0.358 1.739 0.458

0.082 0.458 0.501

⎤

⎦ , L2 =

⎡

⎣

0.638 0.079 0.014

0.079 1.739 0.458

0.014 0.458 0.501

⎤

⎦

L3 =

⎡

⎣

2.015 −0.504 0.082

−0.504 1.051 0.472

0.082 0.472 0.501

⎤

⎦ , L4 =

⎡

⎣

0.638 −0.782 0.014

−0.782 1.051 0.471

0.014 0.472 0.501

⎤

⎦Simulation resultsThe TS fuzzy UIO (TSFUIO) based residual generator is ompared against a TS fuzzy observer(TSFO) in normal operation (without a�etation of disturbanes or faults). Their respetive resid-uals are shown in �g. 3.3 and in �g. 3.2.
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Fig. 3.2: Residuals for TSFO 0 5 10 15
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Fig. 3.3: Residuals for TSFUIOIt an be notied that both observers onverge to zero at t ≈ 12 s. The use of the relaxed stabilityonditions (s = 3) in the design of both observers allows to improve the onvergene as an beseen in the following residuals:34



3. Unknown input observer for TS fuzzy models
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Fig. 3.4: Residuals for relaxed TSFO 0 5 10 15
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Fig. 3.5: Residuals for relaxed TSFUIOThe unknown input (disturbane) signal
d(t) = 0.3 cos (2t)e−0.2t (3.61)is applied to the system.In �g. 3.6 and �g. 3.7 the residuals for both observers are shown, when the disturbane a�ets thesystem.
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Fig. 3.6: Residuals for TSFO with disturbane 0 5 10 15
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Fig. 3.7: Residuals for TSFUIO with disturbaneAs an be seen in �g. 3.6, the TS fuzzy observer is learly a�eted by the unknown input whilethe TS fuzzy UIO is deoupled from the unknown input as shown in �g. 3.7.The proedure desribed in the subsetion 3.3 is applied to build three TS fuzzy UIO based residualgenerator. Eah observer is insensitive to one sensor fault but sensitive to the another two.The rank ondition rank(CkEd) = rank(Ed) for k = 1, 2, 3 is satis�ed. All three observers ful�llthis ondition. 35



3.4 An appliation exampleThe sensitivity and insensitivity of the observers to the faults is shown in the tab. 3.1TS fuzzy UIO Insensitive to Sensitive to1 fs1 fs2 and fs32 fs2 fs1 and fs33 fs3 fs1 and fs2Tab. 3.1: Robust sensor fault isolation shemeTS fuzzy UIO 1: The dynami equation for the �rst TS fuzzy UIO is
 ̇1(t) =

4
∑

i=1

ℎi(z(t))
[

G1
i 

1(t) +H1
i u(t) +

(

G1
iH

1
ce + L1

i

)

y1(t)
]and the parameter matries (C1Ed)

+, H1
ce and T 1 are omputed using eq. (3.30), (3.36) and (3.40)respetively

(C1Ed)
+ =

[

−0.3994 0.0159
]

, H1
ce =

⎡

⎣

−0.3994 0.0159

0.9984 −0.0399

−0.0399 0.0016

⎤

⎦ , T 1 =

⎡

⎣

1 0.3994 −0.0159

0 0.0016 0.0399

0 0.0399 0.9984

⎤

⎦The following gain matries L1
i are obtained using eq. (3.47) with the relaxed stability onditions(s = 2):

L1
1 =

⎡

⎣

−9.555 20.774

1.044 2.091

−0.931 2.183

⎤

⎦ , L1
2 =

⎡

⎣

−7.962 36.887

1.048 2.010

−0.665 4.575

⎤

⎦ ,

L1
3 =

⎡

⎣

−24.651 21.298

1.047 4.534

−3.296 2.179

⎤

⎦ , L1
4 =

⎡

⎣

−16.73 37.158

1.049 3.273

−1.887 4.574

⎤

⎦The residual is generated by
r1(t) =

(

I − C1H1
ce

)

y1(t)− C1 1(t)TS fuzzy UIO 2: The dynami equation for the seond TS fuzzy UIO is
 ̇2(t) =

4
∑

i=1

ℎi(z(t))
[

G2
i 

2(t) +H2
i u(t) +

(

G2
iH

2
ce + L2

i

)

y2(t)
]36



3. Unknown input observer for TS fuzzy modelsand the parameter matries (C2Ed)
+, H2

ce and T 2 are omputed using eq. (3.30), (3.36) and (3.40)respetively
(C2Ed)

+ =
[

0.9901 0.0990
]

, H2
ce =

⎡

⎣

0.9901 0.0990

−2.4752 −0.2475

0.0990 0.0099

⎤

⎦ , T 2 =

⎡

⎣

0.0099 0 −0.0990

2.4752 1 0.2475

−0.0990 0 0.9901

⎤

⎦The following gain matries L2
i are obtained using eq. (3.47) with the relaxed stability onditions(s = 2):

L2
1 =

⎡

⎣

1.025 −0.233

−1.558 29.896

−0.294 3.740

⎤

⎦ , L2
2 =

⎡

⎣

1.012 0.019

−5.972 29.855

−0.419 3.753

⎤

⎦ ,

L2
3 =

⎡

⎣

1.111 −1.332

−4.956 71.827

−0.677 9.927

⎤

⎦ , L2
4 =

⎡

⎣

1.057 −0.261

−10.719 71.65

−1.211 9.981

⎤

⎦The residual is generated by
r2(t) =

(

I − C2H2
ce

)

y2(t)− C2 2(t)TS fuzzy UIO 3: The dynami equation for the third TS fuzzy UIO is
 ̇3(t) =

4
∑

i=1

ℎi(z(t))
[

G3
i 

3(t) +H3
i u(t) +

(

G3
iH

3
ce + L3

i

)

y3(t)
]and the parameter matries (C3Ed)

+, H3
ce and T 3 are omputed using eq. (3.30), (3.36) and (3.40)respetively

(C3Ed)
+ =

[

0.1379 −0.3448
]

, H3
ce =

⎡

⎣

0.1379 −0.3448

−0.3448 0.8620

0.0138 −0.0345

⎤

⎦ , T 3 =

⎡

⎣

0.8620 0.3448 0

0.3448 0.1379 0

−0.0138 0.0345 1

⎤

⎦The following gain matries L3
i are obtained using eq. (3.47) with the relaxed stability onditions(s = 4):

L3
1 =

⎡

⎣

2.517 −0.197

0.921 2.207

0.152 0.952

⎤

⎦ , L3
2 =

⎡

⎣

1.138 −0.748

0.920 2.207

0.014 0.952

⎤

⎦ ,

L3
3 =

⎡

⎣

2.517 −1.102

0.102 1.517

0.152 0.979

⎤

⎦ , L3
4 =

⎡

⎣

1.138 −1.399

−0.152 1.517

0.014 0.979

⎤

⎦ 37



3.4 An appliation exampleThe residual is generated by
r3(t) =

(

I − C3H3
ce

)

y3(t)− C3 3(t)In order to show the robust sensor fault isolation shemes based on TS fuzzy UIO, the followingsensor fault signal is applied to the system
f(t) =

{

−0.08 5 ≤ t ≤ 10

0 elsewhere. (3.62)the orrespondent simulation is shown in �g. 3.8.
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Fig. 3.8: Fault for sensor 1,2 and 3The same sensor fault is applied to all the three sensors. In �g. 3.9 the three evaluated residualswithout the sensor fault are shown.
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Fig. 3.9: Evaluated residuals
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Fig. 3.10: Isolation of the fault in sensor 1Fig. 3.10 shows that the fault in sensor 1 does not a�et the residual 1 but a�et the another tworesiduals, therefore this fault an be isolated.38



3. Unknown input observer for TS fuzzy models
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Fig. 3.11: Isolation of the fault in sensor 2
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Fig. 3.12: Isolation of the fault in sensor 3It an be seen in �g. 3.11 that the fault in sensor 2 does not a�et the residual 2 but a�etsthe another two residuals, therefore this fault an be isolated, too. The same result is shown in�g. 3.12 where the fault on sensor 3 an also be isolated.The proposed unknown input observer for a lass of nonlinear systems (desribed by the TS fuzzymodel) makes possible to deouple the unknown input from teh residual signal. The robust sensorfault isolation sheme allows to isolate sensor faults using the TS fuzzy UIO theory.
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4. Attenuating stohasti disturbanes based on TS fuzzy modelsChapter 4Attenuating stohasti disturbanes basedon TS fuzzy modelsThis hapter onsiders the disrete TS fuzzy model with stohasti noise (disturbane) in order todesign a residual generator. An LMI optimization approah is proposed to minimize the expetedvalue of the steady state estimation error, knowing the stohasti features of the noises.4.1 Disrete TS fuzzy modelConsider the following disrete TS fuzzy model with in�uene of stohasti noise and faults. Themodel is represented by fuzzy IF-THEN rulesModel rule iIF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x(k + 1) = Aix(k) +Biu(k) + Ewi
w(k) + Efif(k)

y(k) = Cix(k) +Diu(k) + Fwi
w(k) + v(k) + Ffif(k)

(4.1)where i = 1, ..., r, r is the number of IF-THEN rules, Mij are fuzzy sets, z1(k), . . . , zp(k) are thepremise variables, x(k) ∈ ℝ
n is the state vetor, u(k) ∈ ℝ

ku is the input vetor, y(k) ∈ ℝ
m is theoutput vetor, w(k) ∈ ℝ

kw is the system noise vetor, v(k) ∈ ℝ
kv is the measurement noise vetorand f(k) ∈ ℝ

kf is the fault vetor. Matries Ai, Bi, Ewi
, Efi , Ci, Di, Fwi

and Ffi are known systemmatries with appropriate dimension.The defuzzi�ed output of the disrete TS fuzzy model in eq. (4.1) is represented as
x(k + 1) =

r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Ewi
w(k) + Efif(k)

] (4.2a)
y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + Fwi
w(k) + v(k) + Ffif(k)

] (4.2b)The above system desription provides
Ewi

= Bi and Fwi
= Difor the in�uene of the system noise. It is assumed that noise signals w(k) and v(k) are unorre-lated, zero-mean, and Gaussian white noise vetors, i.e. its mean vetor are

E [w(k)] = 0 and E [v(k)] = 0 41



4.1 Disrete TS fuzzy modelwhere E[⋅] denotes the expetation and onsequently, the ovariane matries for w(k) and v(k)are de�ned as
E
[

w(k)wT (k)
]

= �w, �w = diag(�
w,1
, . . . , �

w,kw
)2

E
[

v(k)vT (k)
]

= �v, �v = diag(�
v,1
, . . . , �

v,kv
)2The above assumptions on stohasti features of the noise are all reasonable from a pratial pointof view [25℄.4.1.1 System reformulationTo get a more general desription of the disrete TS fuzzy model desribed in eq. (4.1), the noisevetor n(k) is introdued

n(k) =

[

w(k)

v(k)

] (4.3)Thus, the fuzzy IF-THEN rules in eq. (4.1) an be written intoModel rule i IF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x(k + 1) = Aix(k) +Biu(k) + Eni
n(k) + Efif(k)

y(k) = Cix(k) +Diu(k) + Fni
n(k) + Ffif(k)

(4.4)where n(k) ∈ ℝ
kn is the vetor of stohasti noise and matries Eni

and Fni
are known systemmatries with appropriate dimensions.The defuzzi�ed output of the disrete TS fuzzy model in eq. (4.4) is inferred as

x(k + 1) =
r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Eni
n(k) + Efif(k)

] (4.5a)
y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + Fni
n(k) + Ffif(k)

] (4.5b)where
Eni

=
[

Ewi
0
]

Fni
=
[

Fwi
I
] (4.6)Moreover, delaring

w̄(k) =

r
∑

i=1

ℎi(z(k))Eni
n(k) v̄(k) =

r
∑

i=1

ℎi(z(k))Fni
n(k) (4.7)allow us to obtain the standard system desription

x(k + 1) =
r
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + w̄(k) + Efif(k)
] (4.8a)

y(k) =

r
∑

i=1

ℎi(z(k))
[

Cix(k) +Diu(k) + v̄(k) + Ffif(k)
] (4.8b)42



4. Attenuating stohasti disturbanes based on TS fuzzy modelsmostly used in the literature. The ovarianes matries an be de�ned as
E
[

w̄(k)w̄T (k)
]

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Eni
�nE

T
nj

E
[

v̄(k)v̄T (k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Fni
�nF

T
njwhere �n means

�n =

[

�w 0

0 �v

]

= diag(�
w,1
, . . . , �

w,kw
, �

v,1
, . . . , �

v,kv
)2 (4.9)and the ross ovariane matries are given by

E
[

w̄(k)v̄T (k)
]

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Eni
�nF

T
nj

E
[

v̄(k)w̄T (k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))Fni
�nE

T
nj4.2 Proposed approah for the TS fuzzy observerBeause of the stohasti noise, the state estimates given by a TS fuzzy observer are no longeraurate. Therefore, a TS fuzzy observer is proposed. The objetive of the observer is to minimizethe expeted value of the steady state estimation error, knowing the stohasti features of thenoises.A TS fuzzy observer is onstruted to estimate the states and is given by the following fuzzyIF-THEN rulesObserver rule iIF z1(k) is Mi1 and . . . and zp(k) is MipTHEN {

x̂(k + 1) = Aix̂(k) +Biu(k) + Li(y(k)− ŷ(k))

ŷ(k) = Cix̂(k) +Diu(k)

(4.10)The defuzzi�ed output of the TS fuzzy observer in eq. (4.10) is represented as
x̂(k + 1) =

r
∑

i=1

ℎi(z(k))
[

Aix̂(k) +Biu(k) + Li

(

y(k)− ŷ(k)
)

] (4.11a)
ŷ(k) =

r
∑

i=1

ℎi(z(k))
[

Cix̂(k) +Diu(k)
] (4.11b)Based on the state equations (4.8a) and (4.11a), the state estimation error e(k) is de�ned by

e(k) = x(k)− x̂(k) (4.12)43



4.2 Proposed approah for the TS fuzzy observerand has to be minimized in order to �nd the best estimation of x(k). In order to analyze theonvergene of the TS fuzzy observer, the dynamis of the state estimation error without thepresene of faults is onsidered.
e(k + 1) = x(k + 1)− x̂(k + 1)

=

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))
[

(Ai − LiCj)e(k) + w̄(k)− Liv̄(k)
]

=
r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))
[

Aije(k) + w̄(k)− Liv̄(k)
] (4.13)where

Aij = Ai − LiCjUsing the desription of the noise vetors, espeially the assumption that they are zero-mean, thefollowing equation is given for the value of expetation
E [e(k + 1)] =

r
∑

i=1

r
∑

j=1

ℎi(z(k))ℎj(z(k))AijE [e(k)] (4.14)The error ovariane matrix an be de�ned based on eq. (4.13) as
P (k + 1)=E

[

e(k + 1)eT (k + 1)
]

P (k + 1)=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijE
[

e(k)eT (k)
]

A T
lo +AijE

[

e(k)w̄T (k)
]

−

AijE
[

e(k)v̄T (k)
]

LT
l + E

[

w̄(k)eT (k)
]

A T
ij +E

[

w̄(k)w̄T (k)
]

− E
[

w̄(k)v̄T (k)
]

LT
i −

LiE
[

v̄(k)eT (k)
]

A T
jl − LiE

[

v̄(k)w̄T (k)
]

+ LiE
[

v̄(k)v̄T (k)
]

LT
j

) (4.15)Under the assumption that the urrent error is independent of the urrent noise, it is provided
E
[

e(k)w̄T (k)
]

=
(

E
[

w̄(k)eT (k)
]

)T

= 0

E
[

e(k)v̄T (k)
]

=
(

E
[

v̄(k)eT (k)
]

)T

= 0Due to the fat, that the urrent error is independent of the urrent noise, the eq. (4.15) an beredued to
P (k + 1)=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijE
[

e(k)eT (k)
]

A T
lo +

E
[

w̄(k)w̄T (k)
]

− E
[

w̄(k)v̄T (k)
]

LT
i − LiE

[

v̄(k)w̄T (k)
]

+ LiE
[

v̄(k)v̄T (k)
]

LT
j

)

44



4. Attenuating stohasti disturbanes based on TS fuzzy modelssubstituting P (k) = E
[

e(k)eT (k)
] and the orrespondent values for the ovariane matries inthe above equation results in

P (k + 1)=
r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijP (k)A
T
lo +

Eni
�nE

T
nj

− Eni
�nF

T
nj
LT
l − LiFnj

�nE
T
nl

+ LiFnj
�nF

T
nl
LT
o

)

=

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijP (k)A
T
lo + Enij

�nE
T

nlo

)where
Enij

= Eni
− LiFnjAssuming that P (k + 1)=P (k), the following equation is obtained for the steady state

r
∑

i=1

r
∑

j=1

r
∑

l=1

r
∑

o=1

ℎi(z(k))ℎj(z(k))ℎl(z(k))ℎo(z(k))

(

AijPA
T
lo − P + Enij

�nE
T

nlo

)

= 0 (4.16)It is lear that
AijPA

T
lo − P + Enij

�nE
T

nlo
= 0 (4.17)has the form of a disrete algebrai Riati equation (DARE). It is known from [7, 87℄, that theDARE in eq. (4.17) is solvable for a ommon matrix P ≥ 0 if and only if ∃P ≥ 0 suh that

AijPA
T
lo − P + Enij

�nE
T

nlo
≤ 0 (4.18)In [20, 62℄ the relationship between the solution of a disrete algebrai Riati equation and itsassoiated LMI an be found. The following lemma from [62℄ is used to prove that the DARE ineq. (4.17) whih is equivalent to the eq. (4.18).Lemma 4.1 Given the disrete algebrai Riati equation

ATPA− P +Q− (C +BTPA)T (R +BTPB)−1(C +BTPA) = 0 (4.19)with R > 0, P T = P , and let
Q(P ) = ATPA− P +Q− (C +BTPA)T (R +BTPB)−1(C +BTPA) (4.20)Assume that there exists P = P T suh that Q(P ) ≥ 0. Then if (A,B) is stabilizable, there existsa minimal solution P− ≥ 0 to the Riati eq. (4.19). Moreover,

P− ≤ P, ∀P suh that Q(P ) ≥ 0 (4.21)and A− B(R +BTP−B)−1(C +BTP−A) is stable. 45



4.2 Proposed approah for the TS fuzzy observerIn order to minimize the expeted value of the steady state estimation error e(k) [64℄, the followingLMI optimization problem is formulated
min tr(P ), subjet to P ≥ 0

AijPA
T
lo − P + Enij

�nE
T

nlo
≤ 0

(4.22)Considering that all pairs (Ai, Ci) are detetable and hene (AT
i , C

T
i ) are stabilizable, it followsfrom Lemma 4.1 that the minimal solution of eq. (4.17) is indeed the minimal solution of eq. (4.22).The above matrix inequality an be expressed in the following equivalent form

− P +
[

Aij Enij

]

[

P 0

0 �n

]

[

A T
ij

E T
nij

]

≤ 0 (4.23)Aording to the Shur omplement, the eq. (4.23) is rearranged in the following matrix inequality
⎡

⎢

⎣

−P Aij Enij

A T
ij −P−1 0

E T
nij

0 −� −1
n

⎤

⎥

⎦
≤ 0Substituting Aij and Enij

in the above matrix inequality results in
⎡

⎢

⎣

−P Ai − LiCj Eni
− LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦
≤ 0Both sides of the above matrix inequality are multiplied by blok diagonal matrix { P−1, I, I

},and results in
⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦

⎡

⎢

⎣

−P Ai − LiCj Eni
− LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦

⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦ =

⎡

⎢

⎣

−I P−1Ai − P−1LiCj P−1Eni
− P−1LiFnj

AT
i − CT

j L
T
i −P−1 0

E T
ni

− F T
nj
L T
i 0 −� −1

n

⎤

⎥

⎦

⎡

⎣

P−1 0 0

0 I 0

0 0 I

⎤

⎦ =

⎡

⎢

⎣

−P−1 P−1Ai − P−1LiCj P−1Eni
− P−1LiFnj

AT
i P

−1 − CT
j L

T
i P

−1 −P−1 0

E T
ni
P−1 − F T

nj
L T
i P

−1 0 −� −1
n

⎤

⎥

⎦
≤ 0Let X = P−1 and Ni = XLi. Thus, the following LMI is obtained:

⎡

⎢

⎣

−X XAi −NiCj XEni
−NiFnj

AT
i X − CT

j N
T
i −X 0

E T
ni
X − F T

nj
N T

i 0 −� −1
n

⎤

⎥

⎦
≤ 046



4. Attenuating stohasti disturbanes based on TS fuzzy modelsSubstituting Eni
=
[

Ewi
0
] and Fni

=
[

Fwi
I
] in the above LMI results in

⎡

⎢

⎢

⎢

⎣

−X XAi −NiCj XEwi
−NiFwj

−Ni

AT
i X − CT

j N
T
i −X 0 0

E T
wi
X − F T

wj
N T

i 0 −� −1
w 0

−NT
i 0 0 −� −1

v

⎤

⎥

⎥

⎥

⎦

≤ 0Therefore, the above LMI represents the optimization problem from eq. (4.22) as follows
max tr(X), subjet to X ≥ 0

⎡

⎢

⎢

⎢

⎣

−X XAi −NiCi XEwi
−NiFwi

−Ni

AT
i X − CT

i N
T
i −X 0 0

E T
wi
X − F T

wi
N T

i 0 −� −1
w 0

−NT
i 0 0 −� −1

v

⎤

⎥

⎥

⎥

⎦

≤ 0 (4.24)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−4X

[

XAi −NiCj+

XAj −NjCi

] [

XEwi
−NiFwj

+

XEwj
−NjFwi

]

−Ni −Nj

[

AT
i X − CT

j N
T
i +

AT
j X − CT

i N
T
j

]

−X 0 0
[

E T
wi
X − F T

wj
N T

i +

E T
wj
X − F T

wi
N T

j

]

0 −� −1
w 0

−NT
i −NT

j 0 0 −� −1
v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (4.25)
∀i < jwhere

Li = X−1Ni and P = X−1It is lear, that in the formulation of eq. (4.24)-(4.25), the maximization of matrix X implies theminimization of matrix P in eq. (4.22).4.2.1 Residual EvaluationTo evaluate the generated residual and based on [21, 48℄, the use of LMIs is the widely adopted ap-proahes to alulate the threshold value Jtℎ > 0 and based on this, the following logi relationshipfor fault detetion is used:
∥r(k)∥2,N ≤ Jtℎ ⇒ no alarm, fault-free
∥r(k)∥2,N > Jtℎ ⇒ alarm, a fault is detetedwhere the so-alled residual evaluation ∥r(k)∥2,N is determined by:

∥r(k)∥2,N =

√

√

√

⎷

N
∑

k=0

rT (k)r(k) (4.26)47



4.3 An appliation example
N a is disrete-time window. Sine an evaluation of the signal over the whole time range isimpratial, it is desired that the fault will be deteted as easy as possible. Based on eq. (4.13), itfollows

∥r(k)∥2,N = ∥rn(k) + rf(k)∥2,N (4.27)where rn(k) and rf(k) are de�ned as:
rn(k) = r(k)∣f=0 (4.28)
rf (k) = r(k)∣n=0 (4.29)Moreover, the fault-free ase residual evaluation funtion is

∥r(k)∥2,N ≤ ∥rn∥2,N ≤ Jtℎ,n (4.30)where Jtℎ,n = supn∈L2
∥rn∥2,N . Therefore, the threshold Jtℎ is hosen as Jtℎ = Jtℎ,n. Where Jtℎ isonstant and an be evaluated o�-line.To demonstrate the e�etiveness of the proposed approah to minimize the expeted value of thesteady state estimation error, the approah is applied to the vehile lateral dynami model.4.3 An appliation exampleThe vehile lateral dynami model, whih is represented by the so-alled biyle model [41, 54℄, itis a linear parameter varying (LPV) system and it is approximated using the TS fuzzy model.The ontinuous state spae representation for the vehile lateral dynami model is given by

[

�̇(t)

ṙ(t)

]

=

⎡

⎣

−C�H+C
′

�V

mvref
K�R

lHC�H−lV C
′

�V

mvref 2 K�R
− 1

lHC�H−lV C
′

�V

Iz
− l2

V
C

′

�V
+l2

H
C�H

Izvref

⎤

⎦

[

�(t)

r(t)

]

+

⎡

⎣

C
′

�V

mvref
K�R

lV C
′

�V

Iz

⎤

⎦ (�∗L(t) + n�L(t))

[

ay(t)

r(t)

]

=

[

−C�H+C
′

�V

m

lHC�H−lV C
′

�V

mvref

0 1

]

[

�(t)

r(t)

]

+

[

C
′

�V

m

0

]

(�∗L(t) + n�L(t)) +

[

1 0

0 1

] [

nay(t)

nr(t)

]

where vref is the varying parameter, xT (t) = [�T (t) rT (t)
]T , u(t) = �∗L(t), w(t) = n�L(t), vT (t) =

[

nT
ay (t) nT

r (t)
]T and yT (t) = [aTr (t) rT (t)

]T . Using the numerial values from Appendix B, thissystem an be written as follows:
[

ẋ1(t)

ẋ2(t)

]

=

[

−144.034
vref

58.896
vref 2 − 1

29.859 −170.981
vref

]

[

x1(t)

x2(t)

]

+

[

52.802
vref

40.939

]

u(t) +

[

52.802
vref

0 0

40.939 0 0

]

n(t)

[

y1(t)

y2(t)

]

=

[

−152.756 62.463
vref

0 1

]

[

x1(t)

x2(t)

]

+

[

56

0

]

u(t) +

[

56 1 0

0 0 1

]

n(t)where nT (t) =
[

nT
�L
(t) nT

ay(t) nT
r (t)

]T .48



4. Attenuating stohasti disturbanes based on TS fuzzy modelsIn tab. 4.1 the typial sensor noise data for the vehile lateral dynami model are listed.Sensor Standard variation � Unit
n�L ��L = 3.5× 10−3 [rad]

nay �ay = 0.2 [m/s2]

nr �nr = 3.5× 10−3 [rad/s]Tab. 4.1: Typial sensor noise of vehile lateral dynami modelTo obtain the TS fuzzy model, it is neessary to de�ne two premise variables (eah premise variablerepresent in this ase a varying parameter). The premise variables are de�ned as follows:
z1(t) =

1

vref
z2(t) =

1

vref 2Matries A(z(t)), B(z(t)), En(z(t)) and C(z(t)) are expressed as follows:
A(z(t)) =

[

−144.034z1(t) 58.896z2(t)− 1

29.859 −170.981z1(t)

]

B(z(t)) =

[

58.802z1(t)

40.939

]

En(z(t)) =

[

58.802z1(t) 0 0

40.939 0 0

]

C(z(t)) =

[

−152.756 62.463z1(t)

0 1

]The omputation of the minimum and maximum values of z1(t) and z2(t) for vref ∈ [5, 55] m/sare
max
vref

z1(t) = z+1 = 0.2 max
vref 2

z2(t) = z+2 = 0.04

min
vref

z1(t) = z−1 = 0.0182 min
vref 2

z2(t) = z−2 = 3.3× 10−4from the maximum and minimum values, z1(t) and z2(t) an be represented by
z1(t) = F11(z1(t)) ⋅ 0.2 + F12(z1(t)) ⋅ 0.0182
z2(t) = F21(z2(t)) ⋅ 0.04 + F22(z2(t)) ⋅ 3.3× 10−4where:

F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1the membership funtions are alulated as follows
F11(z1(t)) =

z1(t)− 0.0182

0.1818
F12(z1(t)) =

0.2− z1(t)

0.1818

F21(z2(t)) =
z2(t)− 3.3× 10−4

0.03967
F22(z2(t)) =

0.04− z2(t)

0.03967 49



4.3 An appliation exampleEah subsystem is disretized using 10 milliseonds as sample time, in order to have the TS fuzzymodel in its disrete form. The vehile lateral dynami model is represented by the followingdisrete fuzzy IF-THEN rules:Model rule 1 IF z1(k) is F11 and z2(k) is F21THEN {

x(k + 1) = A1x(k) +B1u(k) + En
1
n(k)

y(k) = C1x(k) +D1u(k) + Fn
1
n(k)Model rule 2 IF z1(k) is F11 and z2(k) is F22THEN {

x(k + 1) = A2x(k) +B2u(k) + En
2
n(k)

y(k) = C2x(k) +D2u(k) + Fn
2
n(k)Model rule 3 IF z1(k) is F12 and z2(k) is F21THEN {

x(k + 1) = A3x(k) +B3u(k) + En
3
n(k)

y(k) = C3x(k) +D3u(k) + Fn
3
n(k)Model rule 4 IF z1(k) is F12 and z2(k) is F22THEN {

x(k + 1) = A4x(k) +B4u(k) + En
4
n(k)

y(k) = C4x(k) +D4u(k) + Fn
4
n(k)Here

A1 =

[

0.7512 0.0099

0.2181 0.7118

]

, B1 =

[

0.0941

0.3598

]

, En1
=

[

0.0941 0 0

0.3598 0 0

]

A2 =

[

0.7486 −0.0072

0.2178 0.7093

]

, B2 =

[

0.0901

0.3594

]

, En2
=

[

0.0901 0 0

0.3594 0 0

]

A3 =

[

0.9761 0.0132

0.2904 0.9714

]

, B3 =

[

0.0122

0.4048

]

, En3
=

[

0.0122 0 0

0.4048 0 0

]

A4 =

[

0.9727 −0.0095

0.2900 0.9680

]

, B4 =

[

0.0075

0.4043

]

, En4
=

[

0.0075 0 0

0.4043 0 0

]

C1,2 =

[

−152.76 12.49

0 1

]

, C3,4 =

[

−152.76 1.13

0 1

]

D1,2,3,4 =

[

56

0

]

, Fn1,2,3,4
=

[

56 1 0

0 0 1

]

�w = 1.2185× 10−5, �v =

[

0.04 0

0 1.2185× 10−5

]
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4. Attenuating stohasti disturbanes based on TS fuzzy modelsThe defuzzi�ation (that give the disrete TS fuzzy model) is arried out as
x(k + 1) =

4
∑

i=1

ℎi(z(k))
[

Aix(k) +Biu(k) + Eni
n(k)

]

y(k) =

4
∑

i=1

ℎi(z(k))
[

Cix(k) +Du(k) + Fnn(k)
]where

ℎ1(z(k)) = F11(z1(k))× F21(z2(k))

ℎ2(z(k)) = F11(z1(k))× F22(z2(k))

ℎ3(z(k)) = F12(z1(k))× F21(z2(k))

ℎ4(z(k)) = F12(z1(k))× F22(z2(k))4.3.1 Simulation ResultsThe proposed approah to minimize the expeted value of the steady state estimation error isapplied to the vehile lateral dynami model, where eq. (4.24)-(4.25) are used to make the mini-mization of the expeted value of the steady state estimation error for eah output separately.The following longitude veloity pro�le is onsidered for the vref(k)
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Fig. 4.1: Longitude veloity pro�le
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4.3 An appliation example4.3.1.1 Lateral aeleration outputThe gain matries obtained for the lateral aeleration ay(k) output are:
L1 =

[

−0.00091

0.00243

]

, L2 =

[

−0.00096

0.00288

]

, L3 =

[

−0.00194

−0.00321

]

, L4 =

[

−0.00170

−0.00215

]

.An o�set of 5 m/s2 is onsidered as a sensor fault that appears from 48 to 50 s.

0 10 20 30 40 50
−2

0

2

4

6

8

10

12

14

16

Time [s]

a y(k
) 

[m
/s

²]
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Fig. 4.3: Estimated lateral aelerationIt an be seen in �g. 4.3 that the estimated lateral aeleration ay(k) attenuates the e�et of thestohasti noise. Using L2 norm as evaluation funtion and a residual evaluation window of 20 s.for the lateral aeleration output, the obtained threshold value (Jtℎ) is 1.608.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

Time [s]

E
va

lu
at

ed
 r

es
id

ua
l s

ig
na

l [
m

/s
²]

 

 

||r(k)||
J

th

detected at 48 s.

Fig. 4.4: Evaluated residual for the lateral aeleration sensorIn �g. 4.4, the evaluated residual has exeeded the threshold value at t = 48 s. Therefore, thesensor fault an be deteted.52



4. Attenuating stohasti disturbanes based on TS fuzzy models4.3.1.2 Yaw rate outputThe gain matries obtained for the yaw rate r(k) output are:
L5 =

[

0.02435

0.12236

]

, L6 =

[

0.02304

0.11732

]

, L7 =

[

0.06409

0.34173

]

, L8 =

[

0.05863

0.34753

]

.An o�set of 10 ∘/s (0.1745 rad/s) is onsidered as a sensor fault that appears from 44 to 46 s.
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Fig. 4.5: Yaw rate output 0 10 20 30 40 50
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Fig. 4.6: Estimated yaw rateAs an be appreiated in �g. 4.6, the estimated yaw rate r(k) attenuates the e�et of the stohastinoise. Using L2 norm as evaluation funtion and a residual evaluation window of 20 s. for the yawrate output, the obtained threshold value (Jtℎ) is 0.027.
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Fig. 4.7: Evaluated residual for the yaw rate sensorIt an be seen, that the evaluated residual has exeeded the threshold value at t = 44 s. Therefore,the sensor fault an be deteted. 53



4.3 An appliation exampleA sheme to minimize the expeted value of the steady state estimation error for a lass of nonlinearsystems desribed by the TS fuzzy model has been presented. The minimization is made usingLMI tehniques for the solution of the problem.The proposed sheme is applied to the vehile lateral dynami model. The simulation results forthe estimated lateral aeleration ay(k) and the estimated yaw rate r(k) show that the e�et ofstohasti noise is attenuated, and the applied faults an be easily deteted.
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5. Fault detetion observer for TS fuzzy systemsChapter 5Fault detetion observer for TS fuzzysystemsRobustness is the most fundamental problem in model-based fault detetion. Based on this prob-lem, the study of a robust fault detetion problem, whih aims at enhaning the robustness todisturbanes without sari�ing the fault detetion sensitivity has reeived attention in reentyears [19, 79, 81℄.In this hapter, the robust fault detetion observer using iterative linear matrix inequality (LMI)algorithms [79, 81℄ is generalized for a lass of nonlinear systems desribed by the TS fuzzy model.These iterative LMI algorithms are implemented to design a robust TS fuzzy fault detetionobserver (FDO). The objetive of the FDO is to �nd a trade-o� between maximizing the e�etof faults in order to inrease the sensitivity to faults and minimizing the e�et of disturbanes inorder to enhane the robustness to disturbanes.In this design, two performane indexes need to be found, one of them is used to minimize thee�et of disturbanes (
1
) and the another one is used to maximize the e�et of faults (

2
). Bothof them have a dependene on eah other, in whih, a gain ratio is established, it is given by 

1
/

2
.Consider the following TS fuzzy model with in�uene of disturbanes and faults and the model isrepresented by fuzzy IF-THEN rulesModel rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

ẋ(t) = Aix(t) +Biu(t) + Edd(t) + Eff(t)

y(t) = Cix(t) +Diu(t) + Fdd(t) + Fff(t)

(5.1)where i = 1, . . . , r and r is the number of fuzzy IF-THEN rules,Mij are fuzzy sets, z1(t), . . . zp(t)are premise variables, x(t) ∈ ℝ
n is the state vetor, u(t) ∈ ℝ

ku and y(t) ∈ ℝ
m are the input andoutput vetors respetively, d(t) ∈ ℝ

kd is the disturbane vetor and f(t) ∈ ℝ
kf is the fault vetor.Matries Ai, Bi, Ed, Ef , Ci, Di, Fd and Ff are known system matries with appropriate dimension.The defuzzi�ed output of the TS fuzzy model in eq. (5.1) is represented as

ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t) + Eff(t)
] (5.2a)

y(t) =
r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fdd(t) + Fff(t)
] (5.2b)For this TS fuzzy model, there is a TS fuzzy observer given by fuzzy IF-THEN rules 55



5.1 Disturbane attenuation for TS fuzzy observerObserver rule i IF z1(t) is Mi1 and . . . and zp(t) is MipTHEN {

˙̂x(t) = Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t) +Diu(t)

(5.3)The defuzzi�ed output of the TS fuzzy observer eq. (5.3) is represented as
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li (y(t)− ŷ(t))
] (5.4a)

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
] (5.4b)De�ne the state estimation error as e(t) = x(t)− x̂(t) and the residual vetor as r(t) = y(t)− ŷ(t),then it follows from eq. (5.2)-(5.4) that

ė(t) =

r
∑

i=1

ℎi(z(t))
[

Aie(t) + Edd(t) + Eff(t)− Li (y(t)− ŷ(t))
] (5.5a)

r(t) =
r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fdd(t) + Fff(t)
] (5.5b)The following setions show the design of a TS fuzzy observer for the disturbane attenuationproblem and for the fault sensitivity problem. Then the TS fault detetion observer is formulated.The objetive of this FDO is to solve both optimization problems at the same time.5.1 Disturbane attenuation for TS fuzzy observerThe e�et of disturbanes an be minimized by disturbane rejetion with a TS fuzzy observer.For this purpose, the ontinuous TS fuzzy model given by eq. (5.2) without the e�et of faults

f(t) is onsidered
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) + Biu(t) + Edd(t)
] (5.6a)

y(t) =
r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fdd(t)
] (5.6b)where d(t) is the disturbane, the e�et of disturbanes on the residual signal need to be minimized.A TS fuzzy observer is given by

˙̂x(t) =
r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li

(

y(t)− ŷ(t)
)

]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
]56



5. Fault detetion observer for TS fuzzy systemsThe disturbane rejetion an be realized by minimizing 
1
subjet to

sup
∥d(t)∥2 ∕=0

∥rd(t)∥2
∥d(t)∥2

≤ 1 (5.7)Suppose there exists a andidate quadrati Lyapunov funtion V1(e(t)) = eT (t)Pe(t), P > 0, and


1
> 0 suh that, for all t,

V̇1(e(t)) + rTd (t)rd(t)− 2
1
dT (t)d(t) ≤ 0 (5.8)for eq. (5.6a) and eq. (5.6b). The dynamis of the state estimation error is de�ned as follows

ė(t) =

r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

(

Ai − LiCj

)

e(t) +
(

Ed − LiFd

)

d(t)
] (5.9)

rd(t) =
r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fdd(t)
] (5.10)By integrating eq. (5.7) from 0 to T , it is obtained

∫ T

0

(

V̇1(e(t)) + rTd (t)rd(t)− 2
1
dT (t)d(t)

)

dt ≤ 0 (5.11)It is assumed that the initial ondition for the state estimation error e(0) is 0, then eq. (5.12) isobtained after the integration of eq. (5.11)
V1(e(T )) +

∫ T

0

(

rTd (t)rd(t)− 2
1
dT (t)d(t)

)

dt ≤ 0 (5.12)Sine V1(e(T )) ≥ 0, this implies
∥rd(t)∥2
∥d(t)∥2

≤ 
1Therefore the ℒ2 gain of the TS fuzzy model is less than 

1
. Considering the eq. (5.8), a LMIondition is derived from this equation

ėT (t)Pe(t) + eT (t)P ė(t) + rTd (t)rd(t)− 2
1
dT (t)d(t) ≤ 0 (5.13)For the following part, z(t), e(t) and d(t) are expressed as z, e and d respetively.

ėTPe+ eTP ė+ rTd rd − 2
1
dT d

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT ĀT
ij + dT ĒT

di

]

Pe+
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)e
TP
[

Āije+ Ēdid
]

+

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

(

eTCT
i + dTF T

d

)(

Cje+ Fdd
)

]

− 2
1
dTd

=

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT dT
]

⎡

⎣

ĀT
ijP + PĀij + CT

i Cj PĒdi + CT
i Fd

ĒT
di
P + F T

d Ci −2
1
I + F T

d Fd

⎤

⎦

[

e

d

]

≤ 0

(5.14)
57



5.2 Fault sensitivity for TS fuzzy observerwhere
Āij = Ai − LiCj and Ēdi = Ed − LiFdThe following matrix inequality is obtained from eq. (5.14)

⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijP + PĀij + CT

i Cj

]

r
∑

i=1

ℎi(z)
[

PĒdi + CT
i Fd

]

r
∑

i=1

ℎi(z)
[

ĒT
diP + F T

d Ci

]

−2
1
I + F T

d Fd

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.15)The matrix inequality given by eq. (5.15) an be rewritten as
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)

⎡

⎣

1

2

(

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci

)

1

2

(

PĒdij
+ PĒdji

+ CT
i Fdj

+ CT
j Fdi

)

1

2

(

ĒT
dij
P + ĒT

dji
P + FT

di
Cj + FT

dj
Ci

)

−2
1
+ FT

d Fd

⎤

⎦ ≤ 0Therefore, from the above inequality
⎡

⎣

1

2

(

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci

)

1

2

(

PĒdij
+ PĒdji

+ CT
i Fdj

+ CT
j Fdi

)

1

2

(

ĒT
dij
P + ĒT

dji
P + FT

di
Cj + FT

dj
Ci

)

−2
1
+ FT

d Fd

⎤

⎦ ≤ 0 (5.16)The disturbane rejetion an be ahieved by solving the following optimization problem:Problem 5.1 The observer gain matries Li that minimize 1 in eq. (5.7) an be obtained bysolving the following minimization problem based on LMIs
minimize 2

1
subject to P > 0 and

[

ĀT
iiP + PĀii + CT

i Ci PĒdi + CT
i Fd

ĒT
di
P + F T

d Ci −2
1
I + F T

d Fd

]

< 0 (5.17)
[

ĀT
ijP + ĀT

jiP + PĀij + PĀji + CT
i Cj + CT

j Ci PĒdi + PĒdj + CT
i Fd + CT

j Fd

ĒT
di
P + ĒT

dj
P + F T

d Cj + F T
d Ci −22

1
I + 2F T

d Fd

]

≤ 0 (5.18)
i < j

5.2 Fault sensitivity for TS fuzzy observerFault sensitivity an be ahieved using a TS fuzzy observer in order to maximize the e�et offaults in the residual signal r(t). The ontinuous TS fuzzy model given by eq. (5.2) without thee�et of disturbanes d(t) is onsidered
ẋ(t) =

r
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Eff(t)
] (5.19a)

y(t) =

r
∑

i=1

ℎi(z(t))
[

Cix(t) +Diu(t) + Fff(t)
] (5.19b)58



5. Fault detetion observer for TS fuzzy systemswhere f(t) is the fault, the e�et of faults on the residual signal need to be maximized. A TS fuzzyobserver is given by
˙̂x(t) =

r
∑

i=1

ℎi(z(t))
[

Aix̂(t) +Biu(t) + Li

(

y(t)− ŷ(t)
)

]

ŷ(t) =

r
∑

i=1

ℎi(z(t))
[

Cix̂(t) +Diu(t)
]The fault sensitivity an be realized by maximizing 

2
subjet to

inf
∥f(t)∥2 ∕=0

∥rf(t)∥2
∥f(t)∥2

≥ 
2

(5.20)Suppose there exists a andidate quadrati Lyapunov funtion V2(e(t)) = eT (t)Qe(t), Q > 0, and


2
> 0 suh that, for all t

V̇2(e(t))− rTf (t)rf(t) + 2
2
fT (t)f(t) ≤ 0 (5.21)for eq. (5.19a) and eq. (5.19b). The dynamis of the state estimation error is de�ned as follows

ė(t) =
r
∑

i=1

r
∑

j=1

ℎi(z(t))ℎj(z(t))
[

(

Ai − LiCj

)

e(t) +
(

Ef − LiFf

)

f(t)
] (5.22)

rf(t) =

r
∑

i=1

ℎi(z(t))
[

Cie(t) + Fff(t)
] (5.23)By integrating eq. (5.21) from 0 to T , it is obtained

∫ T

0

(

V̇2(e(t))− rTf (t)rf (t) + 2
2
fT (t)f(t)

)

dt ≤ 0 (5.24)It is assumed that the initial ondition for the state estimation error e(0) is 0, then eq. (5.25) isobtained after the integration of eq. (5.24)
V2(e(T )) +

∫ T

0

(

−rTf (t)rf(t) + 2
2
fT (t)f(t)

)

dt ≤ 0 (5.25)Sine V2(e(T )) ≥ 0, this implies
∥rf(t)∥2
∥f(t)∥2

≥ 
2Therefore the ℒ2 gain of the TS fuzzy model is more than 

2
. Considering the eq. (5.20), a LMIondition is derived from this equation

ėT (t)Qe(t) + eT (t)Qė(t)− rTf (t)rf (t) + 2
2
fT (t)f(t) ≤ 0 (5.26)59



5.2 Fault sensitivity for TS fuzzy observerFor the following part, z(t), e(t) and f(t) are expressed as z, e and f respetively.
ėTQe+ eTQė− rTf rf + 2

2
fT f

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT ĀT
ij + fT ĒT

fi

]

Qe+
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)e
TQ
[

Āije+ Ēfif
]

−
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

(

eTCT
i + fTF T

f

)(

Cje+ Fff
)

]

+ 2
2
fTf

=
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

eT fT
]

⎡

⎣

ĀT
ijQ+QĀij − CT

i Cj QĒfi − CT
i Ff

ĒT
fi
Q− F T

f Ci 2
2
I − F T

f Ff

⎤

⎦

[

e

f

]

≤ 0

(5.27)
where

Āij = Ai − LiCj and Ēfi = Ef − LiFfThe following matrix inequality is obtained from eq. (5.27)
⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijQ+QĀij − CT

i Cj

]

r
∑

i=1

ℎi(z)
[

QĒfi − CT
i Ff

]

r
∑

i=1

ℎi(z)
[

ĒT
fiQ− F T

f Ci

]

2
2
I − F T

f Ff

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.28)The matrix inequality given by eq. (5.28) an be rewritten as
r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)

⎡

⎢

⎢

⎢

⎢

⎣

r
∑

i=1

r
∑

j=1

ℎi(z)ℎj(z)
[

ĀT
ijQ+QĀij − CT

i Cj

]

r
∑

i=1

ℎi(z)
[

QĒfi − CT
i Ff

]

r
∑

i=1

ℎi(z)
[

ĒT
fi
Q− FT

f Ci

]

2
2
I − FT

f Ff

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0Therefore, from the above inequality
⎡

⎣

1

2

(

ĀT
ijQ+ ĀT

jiQ+QĀij +QĀji − CT
i Cj − CT

j Ci

)

1

2

(

QĒfi +QĒfj − CT
i Ff − CT

j Ff

)

1

2

(

ĒT
fi
Q+ ĒT

fj
Q− FT

f Cj − FT
f Ci

)

2
2
− FT

f Ff

⎤

⎦ ≤ 0The fault sensitivity an be ahieved by solving the following optimization problem:Problem 5.2 The observer gain matries Li that maximize 2 in eq. (5.20) an be obtained bysolving the following maximization problem based on LMIs
maximize 2

2
subject to Q > 0 and

[

ĀT
iiQ +QĀii − CT

i Ci QĒfii − CT
i Ff

ĒT
fii
Q− F T

f Ci 2
2
I − F T

f Ff

]

< 0 (5.29)
[

ĀT
ijQ + ĀT

jiQ +QĀij +QĀji − CT
i Cj − CT

j Ci QĒfi +QĒfj − CT
i Ff − CT

j Ff

ĒT
fi
Q+ ĒT

fj
Q− F T

f Cj − F T
f Ci 22

2
I − 2F T

f Ff

]

≤ 0 (5.30)
i < j
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5. Fault detetion observer for TS fuzzy systems5.3 Robust TS fault detetion observerThe TS fault detetion observer aims to solve the disturbane attenuation and the fault sensitivityproblem at the same time, i.e. it is neessary to solve both optimization problems simultaneously.They an be solved using iterative LMI shemes. In the following part is shown the generalizationof two iterative LMI shemes for linear systems for its use with TS fuzzy models. The �rst one istaken from [79℄ and the seond one from [81℄.5.3.1 Iterative LMI sheme 1For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observergain matries Li suh that1. The state estimation error in eq. (5.5a) is asymptotially stable.2. The fault detetion �disturbane-signal� gain ratio
J1 =


1


2is made small where 1 > 0, 2 > 0 and

∥rd(t)∥2 < 
1
∥d(t)∥2 (5.31)

∥rf(t)∥2 > 
2
∥f(t)∥2 (5.32)where d(t) and f(t) are non-zero.A solution sheme that leads to LMIs is that, by setting Q = P in the fault sensitivity problem5.2 given by eq. (5.29)-(5.30), the following optimization problem an be obtainedProblem 5.3 For given 1 > 0, 2 > 0 and Ff of full olumn rank, state estimation error ineq. (5.5a) is asymptotially stable and satis�es

∥rd∥2
∥rf∥2

<


1


2

∥d∥2
∥f∥2

(5.33)if P > 0 and Ni exists suh that LMIs
[

AT
i P + PAi − CT

i N
T
i −NiCi + CT

i Ci PEd −NiFd + CT
i Fd

ET
d P − F T

d N
T
i + F T

d Ci −2
1
I + F T

d Fd

]

< 0 (5.34)
[

AT
i P + PAi − CT

i N
T
i −NiCi − CT

i Ci PEf −NiFf − CT
i Ff

ET
f P − F T

f N
T
i − F T

f Ci 2
2
I − F T

f Ff

]

< 0 (5.35)
⎡

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j N
T
i −NiCj + CT

i Cj+

AT
j P + PAj − CT

i N
T
j −NjCi + CT

j Ci

] [

PEd −NiFd + CT
i Fd+

−NjFd + CT
j Fd

]

[

ET
d P − F T

d N
T
i + F T

d Ci+

−F T
d N

T
j + F T

d Cj

]

−22
1
+ 2F T

d Fd

⎤

⎥

⎥

⎥

⎦

≤ 0 (5.36)
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5.3 Robust TS fault detetion observer
⎡

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j N
T
i −NiCj − CT

i Cj+

AT
j P + PAj − CT

i N
T
j −NjCi − CT

j Ci

] [

PEf −NiFf − CT
i Ff+

−NjFf − CT
j Ff

]

[

ET
f P − F T

f N
T
i − F T

f Ci+

−F T
f N

T
j − F T

f Cj

]

22
2
− 2F T

f Ff

⎤

⎥

⎥

⎥

⎦

≤ 0 (5.37)hold, where Ni = PLi and Nj = PLj and gain matries are obtained as Li = P−1Ni.Based on this optimization problem, it is possible to onstrut an iterative LMI algorithm toobtain a TS fault detetion observer, given in the following shemati form.Algorithm 5.1 Given system matries Ai, Bi, Ed, Ef , Ci, Di, Fd, Ff and let �1 ≥ 0 and �2 ≥ 0be su�iently small adjustable parameters. Set k = 0.Step 1. Choose a su�iently large 
1
and let 

2
= 0 and solve LMIs in eq. (5.34)-(5.37) to �nda feasible solution for P and Ni where Ni = PLi. Compute Li = P−1Ni and store it as

L0i . If L0i annot be found , then this algorithm does not give a feasible solution to theproblem. STOP.Step 2. (Main iterative steps)(a) Put k = k + 1 with


1
:= 

1
− �1 > ∥Fd∥, 2

:= 
2
+ �2 < ∥Ff∥Find a feasible solution for P and Ni for LMIs in eq. (5.34)-(5.37). Store Lik = P−1Niand Jk = 

1
/

2
. Repeat step 2(a). If a feasible solution an not be found, then Lik =

Lik−1
.(b) If the performane 

1
/

2
is less than some desired level, then a desired observer gain

Li = Lik is found. STOP.LMIs in eq. (5.34) and eq. (5.36) are always feasible for su�iently large 1 > ∥Ed∥. Furthermore,the feasibility problems in step 2 are always solvable provided that step 1 is feasible and �1 and �2are su�iently small.5.3.2 Iterative LMI sheme 2For the TS fuzzy model in eq. (5.2) with the TS fuzzy observer in eq. (5.4), determine observergain matries Li suh that1. The state estimation error in eq. (5.5a) is asymptotially stable.2. The fault detetion �disturbane-signal� gain ratio
J1 =


1
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5. Fault detetion observer for TS fuzzy systemsis made small where 1 > 0, 2 > 0 and
∥rd(t)∥2 < 

1
∥d(t)∥2 (5.38)

∥rf(t)∥2 > 
2
∥f(t)∥2 (5.39)where d(t) and f(t) are non-zero.A solution sheme that leads to LMIs is that, the solution of both optimization problems allowsto obtain the following optimization problemProblem 5.4 For given 1 > 0, 2 > 0 and Ff of full olumn rank, state estimation error ineq. (5.5a) is asymptotially stable and satis�es

∥rd∥2
∥rf∥2

<


1


2

∥d∥2
∥f∥2

(5.40)if P > 0, Q > 0 and Li exists suh that LMIs
[

AT
i P + PAi − CT

i L
T
i P − PLiCi +CT

i Ci PEd − PLiFd + CT
i Fd

ET
d P − F T

d L
T
i P + F T

d Ci −2
1
I + F T

d Fd

]

≤ 0 (5.41)
[

AT
i Q+QAi −CT

i L
T
i Q−QLiCi − CT

i Ci QEf −QLiFf − CT
i Ff

ET
f Q− F T

f L
T
i Q− F T

f Ci 2
2
I − F T

f Ff

]

≤ 0 (5.42)
⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

AT
i P + PAi − CT

j L
T
i P − PLiCj + CT

i Cj+

AT
j P + PAj − CT

i L
T
j P − PLjCi +CT

j Ci

] [

PEd − PLiFd + CT
i Fd+

−PLjFd + CT
j Fd

]

[

ET
d P − F T

d L
T
i P + F T

d Ci+

−F T
d L

T
j P + F T

d Cj

]

−22
1
+ 2F T

d Fd

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.43)
⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

AT
i Q+QAi − CT

j L
T
i Q−QLiCj − CT

i Cj+

AT
j Q+QAj − CT

i L
T
j Q−QLjCi − CT

j Ci

] [

QEf −QLiFf − CT
i Ff+

−QLjFf − CT
j Ff

]

[

ET
f Q− F T

f L
T
i Q− F T

f Ci+

−F T
f L

T
j Q− F T

f Cj

]

22
2
− 2F T

f Ff

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ 0 (5.44)
hold.Based on this optimization problem, it is possible to onstrut an iterative LMI algorithm toobtain a TS fault detetion observer, given in the following shemati form.Algorithm 5.2 Given system matries Ai, Bi, Ed, Ef , Ci, Di, Fd, Ff and let �1 ≥ 0 and �2 ≥ 0be su�iently small adjustable parameters. Set k = 0, l = 0 and m ∈ Z+ to ontrol the number ofomputational loops. 63



5.4 Design of the thresholdStep 1. Choose a su�iently large 
1
= � and solve LMIs in eq. (5.41) and eq. (5.43) to �nd afeasible solution for P and Ni where Ni = PLi. Compute Li = P−1Ni and let 1 = � and

2 = 0.Step 2. (Main iterative steps)(a) Substitute Li into eq. (5.41)-(5.44) and �nd a feasible solution set of variables P , Q.(b) Put k = k + 1. With P , Q obtained in step 2(a) and with


1
:= 

1
− �1 > ∥Fd∥, 2

:= 
2
+ �2 < ∥Ff∥�nd a feasible solution Li for LMIs in eq. (5.41)-(5.44). Store Lik = Li and Jk = 

1
/

2
.Repeat step 2(b). If a feasible solution an not be found, then Lik = Lik−1

.() If the performane 
1
/

2
is less than some desired level, then a desired observer gain

Li = Lik is found. STOP.Step 3. Set l = l + 1. If l < m, repeat step 2, else STOP (the feasible solution an not be found).Step 1 is always feasible for su�iently large 1 > ∥Ed∥. Furthermore, for given P and Q, matrixinequalities in eq. (5.41)-(5.44) beome LMIs and a feasible solution Li an always be obtainedprovided that �1 and �2 are su�iently small. Therefore, the feasibility problems in step 2 analways provide a loal improvement through eah iteration.5.4 Design of the thresholdAfter designing the TS fuzzy FDO, the remaining important task for robust fault diagnosis isthe evaluation of the generated residual. One of the widely adopted approahes is to hoose athreshold Jtℎ > 0 and, based on this, use the following logial relationship for fault detetion
∥r(t)∥2,� ≤ Jtℎ ⇒ no faults
∥r(t)∥2,� > Jtℎ ⇒ with faults ⇒ alarm

(5.45)where the residual evaluation funtion (REF) ∥r(t)∥2,� is determined by
∥r(t)∥2,� =

[
∫ t2

t1

rT (t)r(t)dt

]

1

2

, � = t2 − t1 (5.46)
� ∈ (t1, t2] is the �nite-time window. Note that the length of the time window is �nite, (i.e. �instead of ∞) beause it does not make sense to detet faults over the whole time range. It isassumed that the faults ould be deteted, if ourred, over the �nite time interval.By seleting eq. (5.46) as the residual evaluation funtion results in

∥r(t)∥2,� = ∥rd(t) + rf (t)∥2,�64



5. Fault detetion observer for TS fuzzy systemswhere rd(t) and rf(t) are de�ned as
rd(t) = r(t)∣f(t)=0 rf(t) = r(t)∣d(t)=0Furthermore, the fault-free ase residual evaluation funtion is de�ned as

∥r(t)∥2,� ≤ ∥rd(t)∥2,� ≤ Jtℎ,dwhere
Jtℎ,d = sup

d∈L2

∥rd(t)∥2,�The threshold is seleted as Jtℎ = Jtℎ,d and Jtℎ,d is onstant and an be evaluated o�-line.5.5 An appliation exampleA nonlinear system [77℄ is used to implement the TS fault detetion observer, the nonlinear systemis desribed by
[

ẋ1(t)

ẋ2(t)

]

=

[

−x1(t) + x1(t)x
3
2(t)

−x2(t) +
(

3 + x2(t)
)

x31(t)

]

+

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

[

y1(t)

y2(t)

]

=

[

x1(t)

x2(t)

]

+

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)it is onsidered that x1(t) ∈ [−1, 1] and x2(t) ∈ [−1, 1]. The above system an be written as
ẋ(t) =

[

−1 x1(t)x
2
2(t)

(

3 + x2(t)
)

x21(t) −1

]

x(t) +

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

y(t) =

[

1 0

0 1

]

x(t) +

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)where x1(t)x22(t) and (3 + x2(t)
)

x21(t) are nonlinear terms. For the nonlinear terms are de�ned
z1(t) = x1(t)x

2
2(t) and z2(t) = (3 + x2(t)

)

x21(t) as premise variables. It follows
ẋ(t) =

[

−1 z1(t)

z2(t) −1

]

x(t) +

[

1

0.1

]

u(t) +

[

0.8

−2.4

]

d(t) +

[

4

4

]

f(t)

y(t) =

[

1 0

0 1

]

x(t) +

[

0.2

0.4

]

d(t) +

[

2

−1

]

f(t)Next, alulate the minimum and maximum values of z1(t) and z2(t): 65



5.5 An appliation example
max

z1(t),z2(t)
z1(t) = z+1 (t) = 1 max

x1(t),x2(t)
z2(t) = z+2 (t) = 4

min
z1(t),z2(t)

z1(t) = z−1 (t) = −1 min
x1(t),x2(t)

z2(t) = z−2 (t) = 0From the maximum and minimum values of z1(t) and z2(t)
z1(t) = x1(t)x

2
2(t) = F11(z1(t)) ⋅ 1 + F12(z1(t)) ⋅ −1

z2(t) =
(

3 + x2(t)
)

x21(t) = F21(z2(t)) ⋅ 4 + F22(z2(t)) ⋅ 0where
F11(z1(t)) + F12(z1(t)) = 1 and F21(z2(t)) + F22(z2(t)) = 1The membership funtions an be alulated as:

F11(z1(t)) =
z1(t) + 1

2
F12(z1(t)) =

1− z1(t)

2

F21(z2(t)) =
z2(t)

4
F22(z2(t)) =

4− z2(t)

4The membership funtions are named �Positive�, �Negative�, �Big� and �Small�, respetively. Then,the nonlinear system is approximated by the following TS fuzzy model:Model rule 1 IF z1(t) is �Positive� and z2(t) is �Big�THEN {

ẋ(t) = A1x(t) +B1u(t) + Edd(t) + Eff(t)

y(t) = C1x(t) + Fdd(t) + Fff(t)Model rule 2 IF z1(t) is �Positive� and z2(t) is �Small�THEN {

ẋ(t) = A2x(t) +B2u(t) + Edd(t) + Eff(t)

y(t) = C2x(t) + Fdd(t) + Fff(t)Model rule 3 IF z1(t) is �Negative� and z2(t) is �Big�THEN {

ẋ(t) = A3x(t) +B3u(t) + Edd(t) + Eff(t)

y(t) = C3x(t) + Fdd(t) + Fff(t)Model rule 4 IF z1(t) is �Negative� and z2(t) is �Small�THEN {

ẋ(t) = A4x(t) +B4u(t) + Edd(t) + Eff(t)

y(t) = C4x(t) + Fdd(t) + Fff(t)66



5. Fault detetion observer for TS fuzzy systemsHere
A1 =

[

−1 1

4 −1

]

, A2 =

[

−1 1

0 −1

]

, A3 =

[

−1 −1

4 −1

]

, A4 =

[

−1 −1

0 −1

]

B1,2,3,4 =

[

1

0.01

]

, Ed =

[

1

−2.5

]

, Ef =

[

4

4

]

C1,2,3,4 =

[

1 0

0 1

]

, Fd =

[

0.2

0.4

]

, Ff =

[

2

−1

]

The defuzzi�ation (that give the TS fuzzy model) is arried out as
ẋ(t) =

4
∑

i=1

ℎi(z(t))
[

Aix(t) +Biu(t) + Edd(t) + Eff(t)
]

y(t) =

4
∑

i=1

ℎi(z(t))
[

Cix(t) + Fdd(t) + Fff(t)
]where

ℎ1(z(t)) = F11(z1(t))× F21(z2(t))

ℎ2(z(t)) = F11(z1(t))× F22(z2(t))

ℎ3(z(t)) = F12(z1(t))× F21(z2(t))

ℎ4(z(t)) = F12(z1(t))× F22(z2(t))For the above example, the TS fault detetion observer is applied. The system was simulated witha disturbane
d(t) = 0.3 cos (2t)e−0.2t (5.47)and an atuator fault f(t) suh that

f(t) =

{

−0.08 5 ≤ t ≤ 10

0 elsewhere. (5.48)In �g. 5.1 and �g. 5.2 are shown the simulated disturbane and the atuator fault respetively.67



5.5 An appliation example
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Fig. 5.2: Atuator fault signal5.5.1 Iterative LMI sheme 1A numerial simulation for the iterative algorithm 1 was arried out using LMI tools from MAT-LAB 7.0, where 
1
= 0.762 and 

2
= 2.183 so that J = 

1
/

2
= 0.349 was ahieved. The followinggain matries Li were obtained

L1 =

[

−635.96 −839.05

2501.8 3289.3

]

L2 =

[

−623.87 −842.51

2454.4 3302.9

]

L3 =

[

−658.4 −963.62

2590.1 3778.3

]

L4 =

[

−696.3 −918.3

2738.5 3600.2

]Fig. 5.3 shows a residual signal designed with a TS fuzzy observer that aims only to make thedisturbane attenuation and, a residual signal design with a TS fuzzy observer, that realizes thefault sensitivity is shown in �g. 5.4.
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Fig. 5.4: Fault sensitivity68



5. Fault detetion observer for TS fuzzy systemsAs an be seen from �g. 5.3, in the presene of faults and disturbanes in the system, the TS fuzzyobserver an not detet the fault. In the ase for a TS fuzzy observer that aims to ahieve onlyteh fault sensitivity, the e�et of disturbanes is di�ult to di�ereniate from the fault in �g. 5.4.The residual signal generated with a TS fuzzy fault detetion observer for iterative LMI sheme 1is shown in �g. 5.5
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Fig. 5.5: TS fault detetion observer for the iterative LMI sheme 1In �g. 5.5 a desirable fault detetion behavior is ahieved, i.e. despite the in�uene of an unknowninput, it is muh easier to detet faults in omparison with the separated objetives in �g. 5.3 and�g. 5.4. And for the design of the threshold was obtained Jtℎd
= 0.1088
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Fig. 5.6: Residual evaluation for the iterative LMI sheme 1Using the threshold for the evaluated residual allows to detet the fault in �g. 5.6 at 5 s.
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5.5 An appliation example5.5.2 Iterative LMI sheme 2A numerial simulation for the iterative algorithm 2 was arried out using LMI tools from MAT-LAB 7.0, where 
1
= 0.671 and 

2
= 1.595 so that J = 

1
/

2
= 0.4207 was ahieved. The followinggain matries Li were obtained

L1 =

[

1.8993 −0.3783

−2.8515 8.1397

]

L2 =

[

2.1667 −0.6479

−5.6639 9.9531

]

L3 =

[

8.5931 −5.2915

−22.547 22.68

]

L4 =

[

1.5492 −0.8554

−8.6154 11.789

]The residual signal for iterative LMI sheme 2 is shown in �g. 5.7
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Fig. 5.7: TS fault detetion observer for the iterativeLMI sheme 2 0 5 10 15 20
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Fig. 5.8: Residual evaluation for the iterative LMIsheme 2In �g. 5.7 a desirable fault detetion behavior is ahieved, i.e. despite the in�uene of an unknowninput, it is easier to detet faults. For the design of the threshold was obtained Jtℎd
= 0.1145. Thefault in �g. 5.8 an be deteted at 5 s.
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6. Fault diagnosis for systems with polytopi unertaintiesChapter 6Fault diagnosis for systems with polytopiunertaintiesA nonlinear system an be represented by a linearization around some operating points, in thisform, a linear model for the nonlinear system is obtained. Through this linearization, part of thedynami of the nonlinear system is not onsidered due to assumptions that are neessary to makein order to linearize the nonlinear system.The use of polytopi unertainty allows to use the unmodeled dynami into the linear model.That means, the design of the residual generator will ontain more information about the nonlinearsystem thanks to the polytopi unertainty and therefore the performane of the residual generatorwill be improved.6.1 Problem formulationLinear systems that onsider polytopi unertainties are normally desribed by the following statespae representation:
ẋ(t) = (A+�A)x(t) + (B +�B)u(t) + (Ed +�Ed)d(t) + Eff(t)

y(t) = (C +�C)x(t) + (D +�D)u(t) + (Fd +�Fd)d(t) + Fff(t) (6.1)where polytopi unertainties are de�ned as:
[

�A �B �Ed

�C �D �Fd

]

=
l
∑

i=1

�i

[

Ai Bi Edi

Ci Di Fdi

]

l
∑

i=1

�i = 1, �i ≥ 0, i = 1, . . . , l.and x(t) ∈ ℝ
n is the state vetor, u(t) ∈ ℝ

ku is the input vetor, d(t) ∈ ℝ
kd is the disturbanevetor, f(t) ∈ ℝ

kf is the fault vetor and y(t) ∈ ℝ
m is the measurement or output vetor. A, B,

Ed, Ef , C, D, Fd,Ff and the matries for the polytopi unertainty are known system matrieswith appropriate dimensions.The dynami of a residual generator using FDF theory, and for systems with polytopi unertain-ties an be desribed by:
[

ẋ(t)

ė(t)

]

=

[

A+�A 0

�A− L�C A− LC

][

x(t)

e(t)

]

+

[

B +�B

�B − L�D

]

u(t)+

[

Ed +�Ed

(Ed +�Ed)− L(Fd +�Fd)

]

d(t)+

[

Ef

Ef − LFf

]

f(t)

r(t) = V

(

[

�C C
]

[

x(t)

e(t)

]

+�Du(t) + (Fd +�Fd)d(t) + Fff(t)

)
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6.1 Problem formulationwhere the matrix L is alled the observer gain matrix, and the matrix V is a post-�lter. In order toompute matries L and V , it is used a referene residual model together with the above dynamiequation.A referene residual model is an ideal solution for robust FDI under the assumption that nodisturbane or model unertainty are present on the system [17, 32, 52, 86℄. In suh a form, thatan augmented system is obtained, where the dynami of the referene model together with thedynami of the FDF is onsidered.6.1.1 Referene residual modelThe referene model is made under the assumption that there is no model unertainty apart fromdisturbanes a�eting the system. The basi idea behind suh a referene model is the trade-o�between the robustness and fault detetability. The uni�ed solution in [17℄, due to its optimaltrade-o�, is adopted as referene model.Consider the following linear system, whih has no a�etation of polytopi unertainty and isdesribed by
ẋ(t) = Ax(t) +Bu(t) + Edd(t) + Eff(t) (6.2a)
y(t) = Cx(t) +Du(t) + Fdd(t) + Fff(t) (6.2b)A FDF in its state spae representation form is given by
˙̂x(t) = Ax̂(t) +Bu(t) + Lopt(y(t)− ŷ(t)) (6.3a)
ŷ(t) = Cx̂(t) +Du(t) (6.3b)
r(t) = Vopt(y(t)− ŷ(t)) (6.3)The dynamis of the FDF in the frequeny domain is desribed by

r(s) = N̂d(s)d(s) + N̂f(s)f(s) (6.4)
N̂d(s) = Vopt

(

Fd + C(sI −A + LoptC)
−1(Ed − LoptFd)

) (6.5)
N̂f (s) = Vopt

(

(Ff + C(sI −A+ LoptC)
−1(Ef − LoptFf )

) (6.6)The main objetive is to �nd an observer gain matrix Lopt and matrix Vopt suh that the FDF isstable and the robustness of r(s) against d(s) and the sensitivity of r(s) against f(s) are enhanedat the same time. The uni�ed solution is given by the following theorem from [17, 20℄Theorem 6.1 (the uni�ed solution): Given the system desribed by eq. (6.2a)-(6.2b) and supposethat the following assumptions are ful�lledA1. The pair (C,A) is detetable;A2. The matrix Fd has full row rank with FdF
T
d = I;72



6. Fault diagnosis for systems with polytopi unertaintiesA3. rank [A− jwI Ed

C Fd

]

= n+m,then, the uni�ed solution
Lopt = (EdF

T
d + Y CT )(FdF

T
d )

−1, Vopt = (FdF
T
d )

− 1

2 (6.7)with Y ≥ 0 as the stabilizing solution to the following Riati equation
AY + Y AT + EdE

T
d −

(

EdF
T
d + Y CT

)

(FdF
T
d )

−1
(

FdE
T
d + CY

)

= 0 (6.8)delivers an optimal FDF in the sense of ∀w, �i(N̂f (jw)), i = 1, ⋅ ⋅ ⋅ , kf

sup
Lopt,Vopt

�i(N̂f (jw))

∥N̂d(s)∥∞
= �i(N̂f,opt(jw)) (6.9)with

N̂f,opt(s) = Vopt

(

Ff + C(sI −A + LoptC)
−1(Ef − LoptFf )

)The referene residual model, obtained from the uni�ed solution [17℄, is shown below:
ẋref (t) = Arefxref(t) + Efreff(t) + Edrefd(t)

rref(t) = Crefxref (t) + Ffreff(t) + Fdrefd(t) (6.10)where
Aref = A− LoptC, Efref = Ef − LoptFf , Edref = Ed − LoptFd

Cref = VoptC, Ffref = VoptFf , Fdref = VoptFd.6.1.2 Design of the augmented systemThe augmented system given in eq. (6.11) inludes the dynamis of the FDF for systems withpolytopi unertainties, and the dynamis of the referene residual model.
ẋo(t) = (Ao +�Ao)xo(t) + (Eod +�Eod)d̄(t)

rref(t)− r(t) = (Co +�Co)xo(t) + (Fod +�Fod)d̄(t) (6.11)with
xo(t) =

⎡

⎢

⎣

xref(t)

x(t)

e(t)

⎤

⎥

⎦
, d̄(t) =

⎡

⎢

⎣

u(t)

d(t)

f(t)

⎤

⎥

⎦
, Ao =

⎡

⎢

⎣

Aref 0 0

0 A 0

0 0 A− LC

⎤

⎥

⎦
, Co =

[

Cref 0 −V C
]

Eod̄ =

⎡

⎢

⎣

0 Edref Efref

B Ed Ef

0 Ed − LFd Ef − LFf

⎤

⎥

⎦
, Fod̄ =

[

0 Fdref − V Fd Ffref − V Ff

]

�Ao =

l
∑

i=1

�iĀi, Āi =

⎡

⎢

⎣

0 0 0

0 Ai 0

0 Ai − LCi 0

⎤

⎥

⎦
, �Co =

l
∑

i=1

�iC̄i, C̄i = −
[

0 V Ci 0
]

�Eod =

l
∑

i=1

�iĒi, Ēi =

⎡

⎢

⎣

0 0 0

Bi Edi 0

Bi − LDi Edi − LFdi 0

⎤

⎥

⎦
, �Fod =

l
∑

i=1

�iF̄i, F̄i =
[

−V Di −V Fdi 0
]
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6.1 Problem formulationThe residual generator design is formulated asFind matries L, V suh that  > 0 is minimized, where  is given by
∫ ∞

0

(rref(t)− r(t))T (rref(t)− r(t))dt < 2
∫ ∞

0

d̄T (t)d̄(t)dt (6.12)The optimization problem given by eq. (6.12) as
min
L,V

 subjet to
⎡

⎢

⎣

(Ao + Āi)
TP + P (Ao + Āi) P (Eod̄ + Ēi) (Co + C̄i)

T

(Eod̄ + Ēi)
TP −I (Fod̄ + F̄i)

T

(Co + C̄i) (Fod̄ + F̄i) −I

⎤

⎥

⎦
< 0 (6.13)For some P > 0. In order to solve the optimization problem given by eq. (6.13), let

P =

⎡

⎣

P11 P12 0

P21 P22 0

0 0 P33

⎤

⎦ > 0, L = P−1
33 Y (6.14)then the eq. (6.13) beomes a LMI regarding to matries P > 0, V and Y , as desribed by

Ni = NT
i = [Njk]7×7 < 0, i = 1, ..., l (6.15)where

N11 =

[

Aref 0

0 A+Ai

]T [

P11 P12

P21 P22

]

+

[

P11 P12

P21 P22

][

Aref 0

0 A+Ai

]

, N12 =

[

0

AT
i P33 − CT

i Y
T

]

N13 =

[

P11 P12

P21 P22

][

0

B +Bi

]

, N14 =

[

P11 P12

P21 P22

][

Edref

Ed + Edi

]

, N15 =

[

P11 P12

P21 P22

][

Efref

Ef

]

N16 =

[

CT
ref

−CT
i V

T

]

, N22 = ATP33 − CTY T + P33A− Y C, N23 = P33Bi − Y Di

N24 = P33(Ed + Edi)− Y (Fd + Fdi), N25 = P33Ef − Y Ff , N26 = −CTV T

N33 = −I, N34 = 0, N35 = 0, N36 = −DT
i V

T , N44 = −I, N45 = 0

N46 = F T
dref

− (Fd + Fdi)
TV T , N55 = −I, N56 = F T

fref
− F T

f V
T , N66 = −IBased on this result, the optimal design of residual generators for systems with polytopi uner-tainties an be ahieved using the following algorithmAlgorithm 6.1 [17℄: LMI solution of eq. (6.12)Step 1. Form a matrix Ni = [Njk]7×7 < 0, i = 1, ..., lStep 2. Given  > 0, �nd P > 0 , Y and V so that

Ni < 0.Step 3. Derease  and repeat step 2 until the tolerane value for the LMI algorithm is reahed.Step 4. Set L aording to eq. (6.14).74



6. Fault diagnosis for systems with polytopi unertainties6.2 Threshold omputationOne the residual generator is obtained, the next task is to design a threshold in order to evaluatethe residual signal. For this purpose, onsider the linear system with polytopi unertainties,disturbanes and faults desribed by
ẋr(t) = (Ar +�Ar)xr(t) + (Erd +�Er)dr(t) + Erff(t) (6.16a)
r(t) = (Cr +�Cr)xr(t) + (Frd +�Fr)dr(t) + Frff(t) (6.16b)where

xr(t) =

[

x(t)

e(t)

]

, dr(t) =

[

u(t)

d(t)

]

, Ar =

[

A 0

0 A− LC

]

, Cr =
[

0 C
]

Erd =

[

B Ed

0 Ed − LFd

]

, Erf =

[

Ef

Ef − LFf

]

, Frd =
[

0 Fd

]

, Frf = Ff

�Ar =

l
∑

i=1

�iAri , Ari =

[

Ai 0

Ai − LCi 0

]

, �Cr =

l
∑

i=1

�iCri , Cri =
[

Ci 0
]

�Er =

l
∑

i=1

�iEri , Eri =

[

Bi Edi

Bi − LDi Edi − LFdi

]

, �Fr =

l
∑

i=1

�iFri , Fri =
[

Di Fdi

]where the matrix L is the one obtained by solving the optimization problem in eq. (6.13).Theorem 6.2 [17℄ Given system in eq. (6.16) onsidering the polytopi unertainties and  > 0,and suppose that xr(0) = 0, then
∥r(t)∥2 <  ∥dr(t)∥2 (6.17)if there exists P > 0 so that ∀i = 1, . . . , l,

⎡

⎢

⎣

(Ar +Ari)
TP + P (Ar +Ari) P (Erd + Eri) (Cr + Cri)

T

(Erd + Eri)
TP −I (Frd + Fri)

T

(Cr + Cri) (Frd + Fri) −I

⎤

⎥

⎦
< 0 (6.18)setting the matrix P as

P =

[

P1 0

0 P2

]

> 0 (6.19)yields
eq. (6.18) ⇐⇒ Ni = NT

i = [Njk]5×5 < 0, i = 1, ..., l (6.20)with
N11 =

(

AT +AT
i

)

P1 + P1 (A+Ai) , N12 = AT
i P2 − CT

i L
TP2, N13 = P1 (B +Bi)

N14 = P1 (Ed + Edi) , N15 = CT
i , N22 = ATP2 −CTLTP2 + P2A− P2LC

N23 = P2Bi − P2LDi, N24 = P2(Ed + Edi)− P2L(Fd + Fdi), N25 = CT

N33 = −I, N34 = 0, N35 = DT
i , N44 = −I, N45 = F T

d + F T
di
, N55 = −I 75



6.3 Appliation to the aileron positioning systemSuppose that dr(t) is bounded by and in the sense of ∥dr(t)∥2 ≤ �u,2 + �d,2. The root mean square(RMS) value of the residual r is de�ned by
∥r(t)∥RMS =

(

1

T

∫ t+T

t

∥r(�)∥2d�
)1/2 (6.21)

∥r(t)∥RMS alulates the average energy of r over the time interval (t, t+ �). The RMS of a signalis related to its ℒ2 norm. In fat, it holds
∥r(t)∥RMS ≤ 1√

T
∥r(t)∥2 (6.22)De�ne

Jtℎ,RMS = sup
fault−free

∥r(t)∥RMS (6.23)as the threshold, then the detetion logi beomes
∥r(t)∥RMS ≤ Jtℎ,RMS ⇒ no alarm, fault-free
∥r(t)∥RMS > Jtℎ,RMS ⇒ alarm, a fault is detetedBased on the Theorem 6.2 as well as the relation between the ℒ2 norm and the RMS eq. (6.22),the following algorithm an be formulated:Algorithm 6.2 [17℄: Computation of Jtℎ,RMS,2 for systems with polytopi unertaintiesStep 1. Solve the optimization problemmin  subjet to eq. (6.18).for P > 0 and set ∗ = arg(min )Step 2. Set Jtℎ,RMS,2 =

∗(�d,2+�u,2)√
T6.3 Appliation to the aileron positioning systemThe mathematial model of a ivil airraft primary �ight ontrol atuation system (Aileron posi-tioning system) has been often disussed [5, 53, 78℄ as hallenge to design FDI strategies.6.3.1 Nonlinear model of the APSThe atuation system in an ative-standby on�guration behaves no linear [65℄. Its dynamis isrepresented in the blok diagram of the �g. 6.1.76



6. Fault diagnosis for systems with polytopi unertainties
+_ kp Servovalve Piston

xp

ysvisv

Controller

xd

QA,B

xp

pA,B
Fe

Fig. 6.1: Blok diagram of the atuation system6.3.1.1 Eletrohydrauli ServovalveThe modeled servovalve is formed by two stages, to transform the eletri input signal in a hy-drauli output signal. The �rst stage transforms the urrent isv reeived from the ACE into aspool displaement ysv and its mathematial model is represented by a seond order di�erentialequation
ÿsv + 2�sv!svẏsv + ! 2

svysv = ksv!
2
svisv (6.24)with �sv as damping oe�ient, !sv as natural frequeny and ksv as the servovalve gain and ẏsvand ÿsv are the servovalve spool veloity and aeleration respetively.The seond stage is formed by a spool-sleeve assembly (�g. 6.2) with ideal zero-lapped ontroledges whih, with the aid of the supply pressure p

S
, the tank pressure p

T
, the diretion of thespool movement ysv and the pressures generated in the piston p

A
and p

B
, generate the �ow rates

QA and QB whih move the piston.
Q1 =

{

Bsv∣ysv∣
√

∣p
S
− p

A
∣sign(p

S
− p

A
) for ysv > 0

0 for ysv ≤ 0
(6.25)

Q2 =

{

Bsv∣ysv∣
√

∣p
A
− p

T
∣sign(p

A
− p

T
) for ysv < 0

0 for ysv ≥ 0
(6.26)

Q3 =

{

Bsv∣ysv∣
√

∣p
S
− p

B
∣sign(p

S
− p

B
) for ysv > 0

0 for ysv ≤ 0
(6.27)

Q4 =

{

Bsv∣ysv∣
√

∣p
B
− p

T
∣sign(p

B
− p

T
) for ysv < 0

0 for ysv ≥ 0
(6.28)with Bsv as the servovalve ori�e onstant. The system pressure p

P
= p

S
− p

T
.

Bsv = �D�d√2

�
(6.29)where �D is the �ow rate oe�ient, �d is the ontrol edge length and � is the density of thehydrauli �uid. 77



6.3 Appliation to the aileron positioning system
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Fig. 6.2: Servovalve spool-sleeve assemblyThe �ows QA and QB, going to the ylinder hambers A and B �g. 6.2, are alulated by:
QA = Q1 −Q2, (6.30)
QB = Q4 −Q3. (6.31)The sign funtion is desribed by:

sign(") =

⎧

⎨

⎩

−1 for " < 0

0 for " = 0

0 for " > 0

(6.32)6.3.1.2 Cylinder dynamisThe pressure in the hamber of the ylinders in the ative mode depends on the applied volume�ow QA and QB, on the external loads and on the movement in the piston. The movement of thepiston in standby mode have e�et through the volume �ow of the damping fore.The generation of the pressure in the ative ylinder, without onsider the internal leaks, is de-sribed in the following ontinuity equations:
ṗ
A
= E

QA − Apẋp
VD+ ∣ Apxmin ∣ +Apxp

(6.33)
ṗ
B
= E

Apẋp −QB

VD+ ∣ Apxmax ∣ −Apxp
(6.34)where E is the oil bulk modulus, VD is the dead volume of the ylinder, QA and QB are the �owrates in the ontrol edges, ẋp is the piston speed, xp is the piston position and AP is the pistonarea, p

A
and p

B
are the pressure generated in the hambers A and B.
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xmax0
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mpFig. 6.3: Cylinder78



6. Fault diagnosis for systems with polytopi unertaintiesUnder onsideration of rigid �xation [36, 45℄, the Newton movement equation of the piston is givenby eq. (6.35).
mpẍp = Ap(pA

− p
B
)− Ff − Fd − Fa (6.35)with mp as the piston mass, Ff are the frition fores, Fd the fore of the e�et re�eted in theative atuator aused by the parallel atuator in damping mode and Fe represents the externalfores a�eting the ontrol surfae.The frition fores Ff an be modeled aording to the Stribek-urve [43℄. The urve is desribedby the superposition of three frition parts, stati frition (fe), dynami frition (fd) and visosefrition (fv), shown in �g. 6.4.

f
v

f
d

f
e F

f

a) Viscose
Friction

b) Dynamic
Friction

c) Static

Friction
d) Superposition

xp xp xp xp

Fig. 6.4: Types of fritionThe following equation is obtained from the frition ombination
Ff = fdsign(ẋp) + fee

−�H ∣ẋp∣sign(ẋp) + fvẋp (6.36)The dynami frition (fd) depends on the sign of the piston veloity. The visose frition (fv)depends on the piston veloity. The stati frition (fe) depends on the sign of the piston veloityand will be onstruted with growing piston veloity with the derement �H .At rest (ẋp = 0), only the stati frition a�ets the system. For low ẋp, this frition is reduedwith the diminution of �H . The total frition for low veloities will be dominated by the dynamifrition. As the veloity inreases, the frition will be proportional to the visose frition. For thegeneration of the system only the visose frition will be onsidered [37℄.With the assumption of the inompressibility of the �uid used in the atuation system [45℄, thein�uene of the standby atuator an be modeled by a quadrati damping equation:
Fd(ẋp) = dtẋp ∣ ẋp ∣=

A3
p

C2
qA

2
D

ẋp ∣ ẋp ∣=
A3

p

C2
qA

2
D

ẋ2psign(ẋp) (6.37)where Cq is the �ow oe�ient of the standby atuator and AD is the ross setion of the dampingvalve. The value of the turbulent damping dt is given by the manufaturer system desription.79



6.3 Appliation to the aileron positioning system6.3.2 Linearization of the APSIn this subsetion the linearization of the nonlinear model for the aileron positioning system isonsidered. In order to make the linearization is onsidered that, for the servovalve, it is onlyneessary to linearize the mehani to hydrauli transformation of energy in the servovalve.
Qsv = QA = QB = Bsvysv

√

1

2
(Pv −�psign(ysv) (6.38)The Taylor's series expansion for the �ow Qsv is desribed below.

Qsv = Qsv

∣

∣

∣

(ysvop ,�pop)
+
∂Qsv

∂ysv

∣

∣

∣

∣

�pop

⋅
(

ysv − ysvop
)

+
∂Qsv

∂�p

∣

∣

∣

∣

ysvop

⋅
(

�p −�pop

)

+NLterms (ysv,�p) (6.39)The piston entered position, i.e. hydrauli null, is hosen as operating point (op), so that x0 =

ysvop = �pop = 0. Negleting the nonlinear terms of eq. (6.39), the linearized �ow equation ispresented below.
Qsvlin = Cyysv + Cp�p (6.40)where Cy is the �ow rate gain and Cp is the pressure gain, �p = pA − pB. The values of Cy, and

Cp are desribed below:
Cy =

∂Qsv

∂ysv

∣

∣

∣

∣

�pop

= Bsv

√

pV
2

(6.41)
Cp =

∂Qsv

∂�p

∣

∣

∣

∣

ysvop

= 0 (6.42)Assuming that both ylinder hambers have the same volumes VA = VB = V around the pistoninitial ondition x0 and that ∣Apxmax∣ = ∣Apxmin∣, then they have the same hydrauli apaities
CH , given by:

CH =
∣Apxmax∣+ VD

E
=
V

E
(6.43)Applying the Bernoulli's ontinuity equation, it is possible to obtain �̇p = ṗA− ṗB by subtratingeq. (6.33) and eq. (6.34), and substituting eq. (6.43), so that:

�̇p =
1

CH

[

2Qsvlin − 2Apẋp

] (6.44)Substituting eq. (6.40) into eq. (6.44), the linearized equation for the pressure di�erene is obtainedas:
�̇p =

2Cy

CH
ysv −

2Ap

CH
ẋp (6.45)Aording to the Newton's movement equation for the piston position

mpẍp = Ap�p − Fr − Fe − Fp (6.46)80



6. Fault diagnosis for systems with polytopi unertaintiesIn order to make it linear, it is neessary to linearize the terms Fr, Fe, and Fp. Fplin is set to zeroif the parallel atuator is in ative mode. From Fr, given in eq. (6.36), only the visose frition fvis onsidered [37℄. It is now represented as a linear funtion, so that:
Frlin = fvẋp (6.47)The quadrati law funtion, shown in eq. (6.37), an be linearized [38℄ by:

Fplin = dtẋmaxẋp = dlinẋp (6.48)The omplete system is represented by the following linearized di�erential equations
ÿsv = −! 2

svysv − 2�sv!svẏsv + ksv!
2

svisv

�̇p =
2Cy

CH
ysv − 2Ap

CH
ẋp

ẍp =
Ap

mp
�p − ca

mp
xp − (fv+dlin)

mp
ẋp6.3.3 Model Unertainties for the APSWhen a nonlinear system is linearized, some information is lost through it. This lak of informationan be represented as unertainties in the system. For the aileron positioning system two mainunertainties an be onsidered. The �rst unertainty appears in the linearization of the standbyatuator whih is represented by a quadrati damping equation.

Fd = dt∣ẋp∣ẋp (6.49)Aording to [38℄, the quadrati damping equation an be linearized by
Fdlin = dtẋmaxẋp = dlinẋp (6.50)The linear and nonlinear response of the damping atuator are shown in �g. 6.5.
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6.3 Appliation to the aileron positioning systemIt an be seen that the linear and nonlinear response oinide only in the origin and in its extremes,whih means that between this points there is an unertainty. The seond unertainty omes fromthe nonlinear equation for the �ow Qsv

Qsv(ysv, �p) = Cyysv

√

1−
(

�p

Pv
sign(ysv)

) (6.51)The linearization of the �ow rate depends on the operating points used by the linearization.
Qsv(ysv, �p)lin = Cyysv + Cp�p = Cyysv (6.52)However for the purpose of linearization, an operating point is hosen. The linearization will touhthe nonlinear response only in the point where it is linearized. For this work an operating pointof �p = 0 is hosen. It means that the linearization will touh the nonlinear funtion only at thebeginning and from there it will be linearized as a straight horizontal line. This an seen in the�g. 6.6.
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Fig. 6.6: Flow rateThe unertainties presented above a�et the system matrix A and onsequently the unertaintymatrix �A is de�ned as:
�A =

⎡
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(6.53)
82



6. Fault diagnosis for systems with polytopi unertaintiesThis kind of unertainties are of the polytopi type beause they are denoted by a onvex set thatdepends of di�erent operating points.
[

�A 0 0

0 0 0

]

=

l
∑

i=1

�i

[

Ai 0 0

0 0 0

]

,

l
∑

i=1

�i = 1, �i ≥ 0 (6.54)
For the polytopi unertainties were hosen 5 operating points. The orresponding values for �1and �2 in eah operating point are shown in tab. 6.1.i �1 �2

1 −14227 0.09794

2 −78533 0.05084

3 −128614 0.02524

4 −185418 0.00714

5 −229773 0.00074Tab. 6.1: Polytopi unertaintiesThe state spae representation of the linearized model is given by
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ẍp
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f

where ẏsv and ysv are the servovalve veloity and position respetively, �p the pressure di�erene,
ẋp the piston veloity, and xp the piston position. There are two sensors available, one sensormeasures the piston position xp, and the other one measures the pressure di�erene �p. The input
u(t) is onstituted by a urrent isv, whih hanges aording to a ommand input. A variable andunknown but bounded disturbane d(t) a�et the system all the time. The fault vetor f(t) = [fT

A

fT
�p

fT
xp
℄T is formed by additive faults that an our in the atuator fA, or in eah of the availablesensors, fxp

and f�p
.The matries for the linear mathematial model of the aileron positioning system are alulatedwith the numerial values given in appendix B and they are 83



6.3 Appliation to the aileron positioning system
A =
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6.3.4 Simulation resultsSolving the algoritℎm 6.1 give us the solution of the Riati equation eq. (6.8). The values of Loptand Vopt are
Lopt =
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0 0
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] (6.55)
The matries for the solution of the optimization problem given in the step 2 of Algoritℎm 6.1are

V =

[
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−2.62 × 10−5 1.1672

]

, L=
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(6.56)
and  = 1000.In order to show the performane improvement of the residual generator with polytopi uner-tainties, this residual generator is ompared against a residual generator without the polytopiunertainty.First, the residuals for the pressure di�erene �p sensor are shown. Fig. 6.7 shows the residualsignal without onsidering the polytopi unertainty and �g. 6.8 shows the residual generatoronsidering the polytopi unertainty.84



6. Fault diagnosis for systems with polytopi unertainties
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�p

with polytopi unertaintiesThe residuals for the piston position xp sensor are shown below, �g. 6.9 shows the residual signalwithout onsidering the polytopi unertainty and �g. 6.10 shows the residual generator onsid-ering the polytopi unertainty.
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with polytopi unertaintiesIt an be seen that the residual signals, whih onsiders polytopi unertainties deliver a smallertransient in omparison to the one that does not onsider the polytopi unertainty.Threshold designThe observer gain matrix L (from eq. (6.56)) is used for the omputation of the threshold. It isassumed that �d,2 is 0.225 beause the disturbane is unknown but bounded and the evaluationwindow (T) is 5 s. The omputed values that solves the Algoritℎm 6.2 are:
∗ = 0.9and for the step 2

Jtℎ,RMS,2 =
0.9 (0.225 + �u,2)√

5 85



6.3 Appliation to the aileron positioning systemThe value of �u,2 is alulated on-line, beause it depends on the harateristis of the input. In�g. 6.11 both the RMS value of the residual and the orresponding threshold are shown, wherean atuator fault fA ourred at t = 3 s.
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Fig. 6.11: Evaluated residual for the atuator faultAs an be seen, the RMS value of the evaluated residual surpasses the orresponding threshold at
t = 3.85 s. Thus, the atuator fault fA is deteted.Fig. 6.12 shows the RMS evaluation of the residual signal and the orresponding threshold, wherea fault in �p sensor ourred at t = 3 s.
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Fig. 6.12: Evaluated residual for fault in �p sensorIt an be seen that the omputed threshold ontains the disturbanes but allows the detetion ofthe sensor fault f�p
at t = 3 s.
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6. Fault diagnosis for systems with polytopi unertaintiesFig. 6.13 shows the RMS evaluation of the residual signal and the orresponding threshold, wherea fault in xp sensor ourred at t = 3 s.
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Fig. 6.13: Evaluated residual for fault in xp sensorAs an be seen, the RMS value of the evaluated residual surpasses the orresponding threshold at
t = 3.8 s. Thus, the sensor fault fxp

is deteted.

87





7. Conlusions and future workChapter 7Conlusions and future workTwo multiple-model approahes have been studied in this thesis in order to give a better perfor-mane in fault detetion and isolation for nonlinear systems. Multiple-model approahes have anadvantage over linear approahes. They inorporate more information about the nonlinear systemin omparison to one linearization. The �rst approah of this sheme is the TS fuzzy model andthe seond is the linear system with polytopi unertainties.In hapter 3, the unknown input observer for TS fuzzy systems (TS fuzzy UIO) for a lass ofnonlinear systems is presented. This observer is an extension from the linear ase studied in [17℄.A robust sensor fault isolation sheme [12℄ based on the TS fuzzy UIO is also onsidered.An example is used to demonstrate the funtionality of the developed TS fuzzy UIO. The goalof this observer is to deouple unknown inputs from the nonlinear system. The simulation resultsshow that the unknown inputs are deoupled from the system by delivering a residual signal freeof unknown inputs. Moreover, the robust fault sensor isolation sheme makes possible to isolatethe sensor faults appearing in the system.Chapter 4 onsiders the disrete version of the TS fuzzy model with the in�uene of stohastinoise in order to design a residual generator. The design of the residual generator is made using aLMI optimization approah, in order to minimize the expeted value of the steady state estimationerror and the e�et of the noise is redued in the residual signal.To demonstrate the e�etiveness of this approah, the vehile lateral dynami model is onsidered,and the results show that the stohasti disturbane is indeed redued. Therefore, the proposedapproah attenuates the e�et of the stohasti disturbane and inreases teh detetion rate offaults.In hapter 5 the robust fault detetion observer for TS fuzzy systems has been applied. In thisdesign two performane indexes were found. The �rst one is used to minimize the e�et of dis-turbanes and the another one to maximize the e�et of faults. Both optimization problems aresolved simultaneously using iterative LMI.Both performane indexes have a dependene on eah other, in whih, a gain ratio is established.The gain ratio is the division of the performane index for disturbanes between the performaneindex for faults.Two shemes are proposed in order to solve the problem of robust fault detetion. The �rst shemeonsider that both optimization objetives are onsidered to have the same stability matrix inthe sense of Lyapunov. In ontrast, stability matrix of eah optimization objetive is onsideredindividually for the seond sheme. Simulation results of the proposed shemes have shown thata desirable fault detetion behavior is obtained. Moreover, it is muh e�etive to detet the faultdespite the in�uene of the unknown inputs.Chapter 6 presents the use of polytopi unertainty for the design of a residual generator and itsorrespondent threshold. In this approah, the design of the residual generator will ontain more89



7. Conlusions and future workinformation about the nonlinear system in the form of the polytopi unertainty and therefore theperformane of the residual generator will be improved. A referene model is onsidered in orderto onstrut an augmented system, where the generated residual is ompared with a refereneresidual.This approah has been applied to the aileron positioning system, and simulation results shownthat this fault detetion sheme improves the generated residual signals, by reduing the transientmagnitude ompared with one without polytopi unertainty.Future workProblems related with varying matries C and Ed (they depend on the states) in the TS fuzzyUIO should be studied in the future work. This will allow to implement also robust atuatorfault isolation shemes for the TS fuzzy UIO. Another topi for further researh is an integratedsolution for nonlinear systems represented by TS fuzzy model, whih are a�eted by deterministiand stohasti disturbanes.Another point is to onsider stability in the sense of Lyapunov for eah linear system in TS fuzzymodel instead of the ommon Lyapunov stability. One of the approahes that onsiders this topiis the Lyapunov funtion desribed by fuzzy IF-THEN rules.Eah TS fuzzy rule has fuzzy sets in the anteedent part and quadrati Lyapunov funtions in theonsequent part. A generi rule for the Lyapunov funtion an be written as follows:Rule i for the Lyapunov funtionIF z1(t) is Mi1 and . . . and zp(t) is MipTHEN V (x(t)) = xT (t)Pix(t)
(7.1)This an be expressed as

V (x(t)) =

r
∑

i=1

ℎi(z(t))x
T (t)Pix(t) (7.2)This approah has been done reently in some FDI approahes for TS fuzzy systems but only in thedisrete ase, the extension to ontinuous ases an be onsidered. Atually, the ontinuous versionfor this fuzzy Lyapunov funtion implies the derivative of the membership funtion and this is notstraightforward to obtain. This option ould be a good alternative beause the onservatism forTS fuzzy models an be redued.The topi for residual generation in linear systems with polytopi unertainty is very interesting.It an be also extended to other fault detetion and isolation problems, onsidering the referenemodel proposed by [17℄.
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A. Mathematial toolsAppendix AMathematial toolsA.1 Norms for ontinuous and disrete systemsNorms for ontinuous and disrete systems are shown in the table given belowSystem typeNorm Continuous Disrete
ℒ1

n
∑

i=1

∫ ∞

0

∣ri(t)∣ dt
n
∑

i=1

( ∞
∑

k=0

∣ri(k)∣
)

ℒ2

(
∫ ∞

0

rT (t)r(t)dt

)1/2
( ∞
∑

k=0

rT (k)r(k)

)1/2

ℒ∞ sup
T→∞

max
i

∣ri(t)∣ max
i

∣ri(k)∣

ℒRMS

(

1

T

∫ T

0

rT (t)r(t)dt

)1/2
(

1

N

N
∑

i=1

ri
T (k)ri(k)

)1/2

Tab. A.1: Norms for ontinuous and disrete systemsA.2 Shur omplementThe Shur omplement of a blok of a matrix within a larger matrix is de�ned as follows [87℄.Suppose that A11 ∈ ℛn1×n1, A12 ∈ ℛn1×n2 , A21 ∈ ℛn2×n1, A22 ∈ ℛn2×n2 and A22 is nonsingular.Let
A =

[

A11 A12

A21 A22

] (A.1)so that A ∈ ℛ(n1+n2)×(n1+n2). Then A has the following deomposition:
[

A11 A12

A21 A22

]

=

[

I A12A
−1
22

0 I

] [

� 0

0 A22

] [

I 0

A−1
22 A21 I

] (A.2)with � = A11 −A12A
−1
22 A21, and A is nonsingular if and only if � is nonsingular. Dually, if A11 isnonsingular, then
[

A11 A12

A21 A22

]

=

[

I 0

A21A
−1
11 I

]

[

A11 0

0 �̂

]

[

I A−1
11 A12

0 I

] (A.3)91



A.3 Relaxed stability analysis for TS fuzzy observerwith �̂ = A22 − A21A
−1
11 A12, and A is nonsingular if and only if �̂ is nonsingular. The matrix

�(�̂) is alled the Shur omplement [84℄ of A22(A11) in A.A.3 Relaxed stability analysis for TS fuzzy ob-serverAs has been shown in subsetion 2.2.1, the stability analysis of a TS fuzzy observer is reduedto a problem of �nding a ommon P . If the number of rules (r) is large, it might be di�ult to�nd a ommon P satisfying the onditions of Theorem 2.1. This subsetion presents new stabilityonditions from [74, 77℄ by relaxing the onditions of Theorem 2.1.Theorem A.1 ontains the relaxed stability onditions. But �rst, the following lemmas are neededto prove Theorem A.1.Lemma A.1
r
∑

i=1

ℎ2i (z(t))−
1

r − 1

r
∑

i=j

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0where
r
∑

i=1

ℎi(z(t)) = 1 and ℎi(z(t)) ≥ 0 ∀ iProof. It holds sine
r
∑

i=1

ℎ2i (z(t)) − 1

r − 1

r
∑

i=j

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0

=
1

r − 1

r
∑

i=1

∑

i<j

{

ℎi(z(t))− ℎj(z(t))
}2
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Q.E.D.Lemma A.2 If the number of rules r that �re for all t is less than or equal to s, where 1 < s ≤ r,then
r
∑

i=1

ℎ2i (z(t))−
1

s− 1

r
∑

i=1

∑

i<j

2ℎi(z(t))ℎj(z(t)) ≥ 0where
r
∑

i=1

ℎi(z(t)) = 1 and ℎi(z(t)) ≥ 0 ∀ iTheorem A.1 [74℄: Assume that the number of rules r that �re for all t is less than or equalto s, where 1 < s ≤ r. The equilibrium of the ontinuous fuzzy system desribed by eq. (2.14) is92



A. Mathematial toolsglobally asymptotially stable if there exist a ommon positive de�nite matrix P and a ommonpositive semide�nite matrix Q suh that
AT

iiP + PAii + (s− 1)Q < 0 (A.4)
(

Aij + Aji

2

)T

P + P

(

Aij + Aji

2

)

−Q ≤ 0 i < j (A.5)for all i and j with the exeption of the pairs (i, j) so that ℎi(z(t))ℎj(z(t)) = 0, for all t and s > 1.Proof : Consider a andidate of Lyapunov funtion V (e(t)) = eT (t)Pe(t), where P > 0. Then,
V̇ (e(t)) = ėTPe(t) + eT (t)P ė(t)

=

r
∑

i=1

r
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e(t)From eq. (A.5) and Corollary A.2, it follows
V̇ (e(t)) ≤
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Q.E.D.if eq. (A.4) holds, then V̇ (e(t)) < 0 at e(t) ∕= 0. Then, from the relaxed stability onditions ofTheorem A.1, the design problem to determine the gain matries Li an be de�ned as followsFind P > 0 , Q ≥ 0 and Ni (i = 1, 2, . . . , r) satisfying
AT

i P + PAi − CT
i N

T
i −NiCi + (s− 1)Q < 0

AT
i P + PAi + AT

j P + PAj − CT
j N

T
i −NiCj − CT

i N
T
j −NjCi − 2Q ≤ 0 ∀ i < jwhere

Ni = PLi and Nj = PLjThe above onditions are LMI with respet to variables P , Q and Ni. It an be �nd a positivede�nite matrix P , a semi positive de�nite matrix Q and a matrix Ni satisfying the LMI's ordetermine that no suh P , Q and Ni exist. 93



A.4 LMI and onvex optimization tehniquesA.4 LMI and onvex optimization tehniquesLinear matrix inequalities (LMI) and onvex optimization tehniques (COT) are basi tools uti-lized not only for stability analysis of Takagi-Sugeno fuzzy systems but also for the omputationof gain matries and other performane indexes for Takagi-Sugeno fuzzy observers.A.4.1 Convex optimization tehniquesMany important problems for fault detetion and isolation theory an lately be solved numeriallyby reformulating them as onvex optimization problems with a linear objetive funtion and LMIonstraints [8℄.LMIs are an important lass of onvex onstraints. For their solution, the so-alled interior-pointmethods are applied. Nowadays, there are software toolboxes available to solve numerially manyFDI problems suh as LMI Lab for MATLAB [33, 34℄.The main strength of LMI formulations is the ability to ombine diverse design onstraints orobjetives in a numerially tratable manner.A.4.2 Linear Matrix InequalitiesA linear matrix inequality has the form
A(p) = A0 +

m
∑

i=1

piAi < 0 (A.6)where
∙ p = [p1, p2, . . . , pm] is a vetor of m variables or parameters, alled also deision or optimiza-tion variables.
∙ Ai = AT

i ∈ ℝ
n×n for i = 0, 1, . . . , m are given onstant symmetri matries.

∙ the inequality �< 0� in eq. (A.6) means that A(p) is a �negative de�nite matrix�. That is,
uTA(p)u < 0 for all non-zero real vetors u. Beause all eigenvalues of a real symmetrimatrix are real, the eq. (A.6) is equivalent to say that all eigenvalues �(A(p)) are negative.Equivalently, the maximal eigenvalue �max(A(p)) < 0 [67℄.

∙ its solution set, alled the feasibility set, is a onvex subset of ℝm, and
∙ �nding a solution p to eq. (A.6), if any exists, is a onvex optimization problem.Convexity has an important onsequene: despite the fat that eq. (A.6) has no analytial solutionin general, it an be solved numerially with guarantees of �nding a solution when one exists. Ifno solution an be found, the orresponding optimization problem is referred as infeasible [44℄.94



A. Mathematial toolsA.4.3 Standard LMI-problemsSome standard problems with respet to solving LMI-onstraints in order to solve the optimizationproblems in this work are listed below [44℄.1. Finding a solution p to the LMI system
A(p) < 0 (A.7)is alled the feasibility problem. Given the LMI in eq. (A.7), the orresponding feasibilityproblem is to �nd pfeas suh that A(pfeas) < 0 or to determine that the problem is infeasible.2. Minimizing a onvex objetive under LMI onstraints is also a onvex problem. In partiular,the linear objetive minimization problem:minimize cTp over p subjet to A(p) < 0.plays an important role in the LMI-based design.These LMI problems allow us to determine whether the problem is either infeasible or toobtain a feasible solution with the orresponding optimal objetive values having presribedauray.In this thesis, all LMI-related omputations have been solved using the MATLAB LMI Lab [50℄.
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B. System parametersAppendix BSystem parametersAileron positioning systemSalar Value Units
Ap 8.54× 10−3 [m2]

c1 90× 106 [N/m]

c2 78.3× 106 [N/m]

Fmax 170.7× 103 [N ]

p
S

205× 105 [Pa]

p
T

5× 105 [Pa]

p
V

200× 105 [Pa]

xpmax
0.038 [m]

xr [−xpmax
, xpmax

] [m]

Vehile lateral dynami modelSalar Value Units
C

′

�V
103600 [ N/rad ℄

C�H 179000 [ N/rad ℄
g 9.81 [ m/s2 ℄
iL 18 [ - ℄
Iz 3870 [ kg ⋅m2 ℄
lV 1.52931 [ m ℄
lH 1.53069 [ m ℄
K�R

0.9429 [ - ℄
m 1850 [ kg ℄
mNR 220 [ kg ℄
mR 1630 [ kg ℄
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