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Abstract. The eigenvalue problem for the Rabi and E ® £ Jahn-Teller Hamiltonians in
Bargmann’s Hilbert space is a system of two first-order differential equations for the two-
component wavefunctions for which entire solutions are sought. The concept of the generalized
potential has been introduced in a previous paper together with a particular example. Here
we treat a simpler potential N(z) which satisfies a second-order ordinary differential equation
closely related to the differential equation of the confluent Heun functions. The component
wavefunctions are linear in the potential and its first derivative. The coefficients of N(z) and
dN(z)/dz are functions of z and the physical parameters which are identical in all eigenstates.
The relation to the previous example is fully discussed.

1. Introduction A

The analytical theory of the Rabi and the E ® & Jahn-Teller system was prompted by two
algebraic discoveries: the Longuet Higgins et al (1958) recurrence relations can be solved
exactly for the fictitious value j = —1/2 of the orbital angular momentum and the detuning
§ = —1/4 (Judd 1977) and for arbitrary angular momenta and detunings for isolated values
of the interaction constant ¥ between bosons and fermions (Judd 1979). The latter solutions
are known as Juddian isolated exact solutions.

In Bargmann (1961, 1962), his theory on a Hilbert space of analytical functions leads
to a system of two ordinary differential equations for the component wavefunctions in the
complex domain. The differential equations have two regular singular points. The first is
at z = 0 with the exponents 0, —j — 1. The second singular point is at z = k2 with the
exponents 0, v (where v is Judds (1977, 1979) baseline parameter). Finally, there is an
irregular singularity at infinity.

The Juddian isolated exact solutions are now easily classified: an isolated exact solution
is obtained for integer v and for those values of the interaction constant « for which the
second singularity becomes apparent. It is no surprise that the component wavefunctions
are terminating series of functions whose differential equations have singularities at infinity
and z = 0, only with singular properties which are compatible with those of the component
wavefunctions (Reik ez al 1982, 1987).

In this paper, we consider the general case where the second singularity is real and we
adopt the following strategy: we construct a differential equation for a function N(z) whose
main ingredient is a confluent Heun operator which has the same real singularities as the
differential equations for the component wavefunctions, i.e. z = 0 (exponents 0, —j — 1),
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z = 1% (exponents 0, v + 1) and an irregular singularity at infinity. Furthermore, there is
a term providing an additional singularity which is apparent for all values of the physical
parameters. (The position of the apparent singularity depends on v.) By a suitable choice
of the additional term, N(z) becomes a generalized potential in the following sense: both
component wavefunctions which solve the original equations in Bargmann’s Hilbert space
are linear forms in N(z) and its first derivative dN(z)/dz.

The paper is organized as follows. In section 2, we collect some material from our
previous publications: we give the differential equations for the component wavefunctions
in Bargmann’s Hilbert space (z-domain) and in the r-domain (which is related to the Laplace
transform) and introduce the concept of the generalized potential. The equations in the r-
domain are particularly easy to work with and we solve them in section 3. In section 4
and 5, we give the theory in the z-domain. Section 6 deals with a different choice of the
generalized potential and the relation between the potentials. In section 7, we summarize
the results and discuss their relation to work by O’Brien (1964) and Ham (1987) and some
practical and mathematical aspects of the theory.

2. The equations for the component wavefunctions. The generalized potential

In this section, we study first a canonically transformed version of the standard E ® ¢
Jahn-Teller Hamiltonian in terms of the configuration coordinates and momenta (O’Brien
1964, Englman 1972 and, more recently, Eiermann and Wagner 1992). This version clearly
shows the close relation with the Rabi system. The transformed Hamiltonian

H =alaq) +af ac) + 14 (1/24 28)0, + 2l(a) +af))ow + (@) + ad))oo)]
@.1)

describes two boson modes (+) and (—) interacting with a two-level system. The level
separation is 1+ 44. The angular momentum

J =al, a4 — al o) + 3o, (2.2)
is a constant of motion with the eigenfunction
¥)i412 = lad, Vo @lyal DIOID) + [, VY f@lyal oY) (23)

for j =0,1,2,.... Here, 0] 1) = | 1), 67| ) = —| |}, |0} is the vacuum state for both
bosons a(4)[0) = a)|0) = 0 and @(af,yal’ ), f(af,,ai,) are power series in the product
of the creation operators starting with power zero. Furthermore

JN)jr2 = (G + 12D ja,2. 2.4)

Equations (2.3) and (2.4) still make sense for negative integer j provided that the power
series for ¢ and f begin with the powers —j and —j ~ 1, respectively.
' In the eigenvalue problem

H|Y)jt12 = M)z = 0+ 1/2 = 2D)|¥) 4172 (2.5)

- we introduce Judd’s baseline parameter v (Judd 1979) instead of A as the new eigenvalue.
Furthermore, we apply Bargmann’s method (Bargmann 1961, 1962, Schweber 1967), i.e.
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we map the creation operators onto two complex variables § and 5 by a?_‘i_) — &, a?'_) -7
which entails a4y — 9/0£, a) — 8/8n. The Hamiltonian, the angular momentum and

the eigenfunctions are given by

>

H = £3/38 + nd/dn+ 14 (1/2 + 28)0; + 2k[(3/9& + mowy + (3/0n+E)o]  (2.6)
J =£3/0k —nd/on+(1/)o, [ 2.7
W)j+12 = E/P@ID) +E F@DIL) (2.8)

where z = £ - 5. In order to calculate the component wavefunctions ¢(z) and f(z) we insert
(2.6) and (2.8) into (2.5) and collect the spin-up and spin-down components. We obtain the
following system of ordinary first-order differential equations for ¢(z) and f(z)

24¢(z)/dz — (v/2 — j/2—1/2 =8 — k) (2) +k[zdf(2)/dz + (( + 1+ 2)f(2)] =0
(2.9)

and
k[dp(z)/dz + @ ()] + zdf(D)/dz — (v/2—j/2—1/2+6 — k) f(z) =0. (2.10)

The system (2.9) and (2.10) has two regular singular points at z = 0 and z = «2 and an
irregular singular point at infinity. The exponents at the singular point z = 0 are 0 and
—j—1 and the difference between the exponents is integer. For j > 0, we have 0 > —j—1.
Therefore, the solution with the exponent —j — 1 contains logarithmic terms. On the other
hand, the solution ¢(z), f(z), as a power series of positive powers (including zero), is
regular at the origin. Conversely, for negative integers j, we have —j — 1 > 0 and the
solution with the exponent O is irregular. Equations (2.9) and (2.10) allow for the regular
expansions in the vicinity of the origin which we had already anticipated. The regular
singular point z = «2 has the exponents 0 and v and since v is, in general, non-integer, the
solution with the exponent 0 is regular at z = «2. The requirement that the expansions of
the regular solutions ¢(z), f(z) at the origin have an infinite radius of convergence, i.e. that
¢(z) and f(z) are entire functions, selects the eigenvalues v and, hence, the eigenvalues A
of the Hamiltonian. (In this case, £/¢ (& - 1), £/+! f(& - n) are entire in £ and n which is
the original form of Bargmann’s quantization.)
We turn now to the Rabi Hamiltonian

H =a%a+1/2+ (1/2+28)0, + V2x(a* + a)(o@) + o). .11)
With the Bargmann mapping a* — &, a — d/d&, the Hamiltonian takes the form

H = Ed/dE + 1/2 + (1/2 + 28)0;, + V2k(§ +d/dE) (o) + 0—y).  (2.12)
The eigenfunctions of (2.12) for a definite parity are given by

1Y) = ¢(z, )| + (1/VDEF 2, H)I4). (2.13)

Here, z = £2/2 and the component wavefunctions ¢(z,48) and f(z, 8) satisfy (2.9) and
(2.10) for j = —1/2.
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The eigenfunctions with the opposite parity have the form

W) = (1/VDEf 2, ~6 — 1/2)I1) + (2, =6 — 1/2)| }) (2.14)

and the component wavefunctions ¢(z, —8 — 1/2) and f(z, —6 — 1/2) satisfy (2.9) and
(2.10) for j = —1/2 and & replaced by —4& — 1/2.

The eigenvalues A or v in (2.5) are selected by the requirement that the component
wavefunctions ¢(z, 8), f(z,6) and ¢(z, —8 — 1/2), f(z,—8 — 1/2) are entire functions
of &. Therefore the eigenvalue problems of the E ® & Jahn—Teller and Rabi Hamiltonians
are mathematically identical (save for different values of the angular-momentum quantum
number j). :

The importance of the fictitious case j = —1/2 as the limiting case in the E ® ¢
Jahn-Teller system was first observed by Judd (1977) when analysing the structure of the
Longuet-Higgins et al (1958) recurrence relation. An ingenious perturbation scheme based
on this observation, in which the deviation of the angular momentum from the fictitious value
is used as the expansion parameter, has been devised by Barentzen (1979) and Barentzen
et al (1981). Neither Judd nor Barentzen noticed the intimate relationship between the
Jahn-Teller and Rabi systems since they restricted themselves to the detuning § = —1/4.
In this case, the Rabi system reduces to the displaced harmonic oscillator where the states
with positive and negative parity are degenerate.

Having dealt with the physics of (2.9) and (2.10), we proceed to the solution of the
equations. We Laplace transform (2.9) and (2.10) and denote the Laplace transforms of
the component wavefunctions by ¢(p), f(p). Since the Laplace transforms of d¢(z)/dz,
df(z)/dz depend on ¢(z = 0) and f(z = 0), we have to distinguish between the cases
Jj 20 and j < 0; we restrict ourselves to the latter case. We obtain

— pdp(p)/dp — (v/2 - j/2+1/2 =8 — kD)p(p) + k(=[p + 11df (p)/dp + jf(P)) =0

(2.15)
and
k(p+De(p) — pdf(p)/dp — (v/2 = j/2+1/2+8 — kP f(p) = 0. (2.16)
We introduce two new dependent variables instead of ¢(p) and f(p)
¢(p) = p’~! exp(c?/p)X1(c*/p) 2.17)
f(p) = p’ exp(e®/ p)X2(<*/p) (2.18)

and eliminate the independent variable p in favour of r = x2/p. We get the following
system of first-order differential equations in the r-domain:

rdX;(r)/dr — (/24 j/2 —1/2 -8 — k% = )Xy () + k(K2 +7) dX,(r)/dr
+Kk(@?—j+r)Xa(r)=0 (2.19)

and

k(1 +r/kHX () +r dXo(r)/dr — (v/2+j/2+1/2+6 — k2 =) Xy(r) = 0. (2.20)

We also use the linear combination (2.19) — £(2.20) =0

CrdXy(r)/dr — (v/2+j/2=1/2—8) X1 (r)+K3 dXa(r) /dr +(v/2— j 2+ 1/2+8)k Xa(r) = 0

2.21)
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instead of (2.19). The system of equation in the r-domain has two irregular singular points
at r = 0 and at infinity; however, solutions in power series are admitted (Ince 1956, p 417)

Xi(r) =) X"r i=1,2 (2.22)
n=0
which, for the eigenvalues v, are entire functions. The inversion of the Laplace transform
gives the eigensolutions of (2.9) and (2.10).

There are two methods of solution for (2.20) and (2.21). The first method treats (2.20)
and (2.21) on the same footing. The power series (2.22) are inserted and the recurrence
relations for the coefficients X™ are solved simultaneously. The eigensolutions together
with the eigenvalues v are picked out either by matrix truncation (O’Brien 1971, O’Brien
and Pooler 1979, O’Brien and Evangelou 1980, review by Pooler 1984) or by a continued
fraction procedure (Swain 1972, 1973, Reik et al 1982, Risken 1984).

The second strategy was invented by Reik (1993) and, henceforth, this paper is referred
to as [I]. The method is modelled on the potential theory and treats (2.20) and (2.21)
on a different footing: an ansatz is made for the components X1(r), X2(r) of a complex
two-dimensional vector field in terms of a scalar field X (r), the generalized potential.

X1(r) = [a + (B + tr)d/dr + (—v&® — Dk3r) & /dr1X (r) (2.23)
and
Xo(r) = [y + (x + pr)d/dr + (vr +9r?) &?/dr1X (r). (2.24)

Since X;(r), X»(r) are entire functions in the eigenstates, X(r) is also entire. The
coefficients «, 8, ¢, ¥, X, 4, v, V are adjustable. We insert (2.23) and (2.24) into (2.21).
The resulting second-order differential equation is satisfied by any entire function X(r),
provided we dispose of the coefficients (see Reik (1993) (hereafter referred to as [I]),
equations (4.11)<(4.16)). Insertion of (2.23) and (2.24) [I; (4.11)~(4.16)] into (2.20) gives
a third-order differential equation by which X (r) is actually determined. The ansatz (2.23)
and (2.24) has the advantage that, once X (r) is entire, each term on the right-hand side is
manifestly entire.

We do, however, feel that (2.23) and (2.24) is not the most basic ansatz (in particular,
when we look into the consequences in the z-domain [I; sections 5-7]). A theory which is
modelled on the potential theory should allow for vector components X;(r), X2(r) which
are of first order in the generalized potential and, as a consequence, for a second-order
differential equation for the potential. We have found a new ansatz which satisfies these
requirements. In the next three sections we shall use this ansatz for the solution of (2.20)
and (2.21) in the r-domain and (2.9) and (2.10) in the z-domain.

3. Solution in the r-domain

In this section, we solve the differential equations (2.20) and (2.21) with the new ansatz
for the components X;(r), X»(r) of a two-dimensional complex vector field in terms of a
potential field M(r)

X1(r) = —k>(r — o) ' [dM(r)/dr — (p/ro) M (r)] (3.1
and

Xa(r) = (r —ro)”'[r dM(r)/dr — pM(r)]. (32



6912 H G Reik and G Wolf

The parameters rg, p will presently be determined as functions of «, j, § and the eigenvalue
v. Since the entire solutions X;(r), X»(r) of (2.20) and (2.21) are sought, M(r) must be
entire and, in addition, the function ro dM (r)/dr — pM (r) must have a simple zero at r = ro.
Equation (3.1) can be rewritten as

rXy(r) + € Xao(r) = k> (p/ro) M (r) (3.3)
and
roX1(r) + K3 X2(r) = k3 dM(r)/dr. 3.4)

In (2.21), we express r dX;(r)/dr+«> dX,(r)/dr by (3.3) and the component wavefunctions
X1(r), X2(r) by (3.1) and (3.2). We obtain a differential equation of first order for M(r)

2@/2+j/2+1/2=8—p)+rk*p/ro+v/2— j/2+1/2 4+ 8)]dM(r)/dr
— Pl /ro)(v/2+ j/2+ 1/2 ~ 8) + v/2 = j/2+ 1/2 4+ 8]M(r) = 0.

3.5)
This equation is satisfied by all entire functions M (r), provided we put
p=v/24+j/2+1/2-4 (3.6)
and
ro=—k2(/2+ j/2+1/2-8)/(v/2— j/24+1/2+6) 3.7

in all eigenstates. We shall, however, continue to use p and ry in subsequent equations as
abbreviations for the right-hand side of (3.6) and (3.7).

Next we derive the equation by which M(r) and the eigenvalue v are actually
determined. We insert (3.1) and (3.2) into (2.20) and obtain a second-order differential
equation for the potential M(r). Define a special double-confluent Heun operator
[DCH]J; 41,041 (Schmidt and Wolf 1994)

[DCHIj 41,041 = r2d2/dr? + (—&* — [j + v + LIr + r%)(d/dr)
+WR2+jR2+12=8W@/2+j2+3/2+8) — k2@ +1) —r@v+1).

(3.8)
Then we have
SM(r) = (r — ro)[DCH]j 41,041 M (r) — rolr dM(r)/dr — pM(r)] = 0 (3.9a)
= (r — ro{[DCH)j 41,41 M (r) — rodM(r)/dr} — rolrodM(r)/dr — pM(r)] = 0.
(3.9b)

The differential equation (3.94,b) has irregular singularities at r = 0 and at infinity which
are due to the double-confluent Heun operator in the first term of (3.9a,b) and an apparent
singularity at » = ro with the exponents O and 2 from the second term (Ince 1956, p 406).
The solution with the exponent 0 does not contain logarithmic terms. Therefore, both
partners of the fundamental system in the vicinity of 7o are analytical functions. As a
- consequence, it is seen that the function ro dM(r)/dr + pM has a simple zero at r = ry as
required. In the vicinity of the origin, the physical solution is a power series which, for the
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eigenvalues v, defines an entire function. The comparison of (3.94,b) and (3.1) and (3.2)
shows that the component wavefunctions X;(r), Xa(r) can also be written as

Xy(r) = (1/ro)IDCH]j 41,04 M(r) (3.10)

roX1(r) = —«>((1/70)[DCH]j 41,01 M (r) — dM (r) /dr) (3.11a)
and

rX1(r) = —(k*/r0) (DCHj 11,041 M (r) — pM(r)). (3.11b)

To check the consistency of (3.10), (3.11) and (3.1), (3.2), insert (3.10), (3.11), (3.6) and
(3.7) into (2.21). Then, equations (3.9a,b) are reobtained. If (3.10), (3.11), (3.6) and (3.7)
are inserted into (2.20), we get a differential equation of third order

TM(r) = (ror(d/dr) + ror —rolv/2+ j/2+3/2+ 6] — kHSM(@) =0 (3.12)

which is satisfied by all solutions of the second-order differential equations (3.9a,b)
SM(r) = 0 (Ince 1956, p 127).

We can, of course, also start by considering (3.10) and (3.11) as an ansatz for the
component wavefunctions in terms of an entire potential where p and ry are adjustable
parameters. Insertion of (3.10) and (3.11) into (2.20) and (2.21) gives a differential equation
of second order and a differential equation of third order for M(r). These differential
equations do not contradict each other if we dispose of p and rp by (3.6) and (3.7). Under
these conditions, equations (3.9a,b) and (3.12) are reobtained.

Having dealt with the component wavefunctions X;(r), X2(r) and the potential M(r)
in the r-domain, we now turn to the solutions ¢(z) and xf(z) of equations (2.9) and (2.10)
in the z-domain.

4, The component wavefunctions in the z-domain. First point of view

Once we have found the entire solutions M(r) of (3.94,b) and the eigenvalues v in the
eigenstates of the Hamiltonian, we also know the component wavefunctions «f(z) and
¢(z) in the z-domain. We calculate the potential N(z) whose Laplace transform N(p) is
related to M (r) by

N(p) = &*p’ exp(c®/ p)M (> / p). (CRY)
Furthermore, define a special confluent Heun operator [CH] (Slavyanov 1994)

[CH] = z(z — k%)(d?/dz?) + [(j + 2)(z — «?) — (v + 1)z](d/dz)
— k=D + /2= /2= (1248 -k w+1). 4.2)

Then the component wavefunctions xf(z) and ¢(z) are given by
kf (2) = (1/K°ro)[CHIN (2) 4.3)
$(2) = —(1/*ro){[CHIN (2) — (v/2 + j/2 + 1/2 — )N (2)} 4.4
and

f(2) + ¢(2) = (1/’ro)(w/2+ j/2+1/2 = 5N (2). @4.5)



6914 H G Reik and G Wolf

To prove (4.3), we Laplace transform the equation
kf (p) = (1/k’ro}{p* (@ /dp?) + [k®p* + p(—j + v+ 3) + k*1(d/dp)
—jtv+l+e*+A-jpIN(D) (4.6)
where
A=w2-j/2-1/24+8?-k*Ww+1) “.7n

and insert (4.1) and (2.18). Finally, we replace p by «2/r and obtain (3.10) which proves
(4.3). Equation (4.4) is proved using the same technique.

In this section, we have obtained the solution of (2.9) and (2.10) in the z-domain using
results from the r-domain. In the next section, we derive the same results without reference
to the r-domain.

5. Solution in the z-domain. Second point of view

In this section, we give a direct calculation for the two components ¢ (z) and «f(z) of the
complex vector field in terms of the potential N(z). We find, by the same method as in
section 3,

#(2) = (p/k*r0)(z — 20) 2 dN(2)/dz + (2 + j + 1)N(2)] 6.1
and
kf(2) = (p/k’r0)(z — 20) [~z dAN(2)/dz + (/2 = j/2 — 1/2 — § — k)N (2)]. (5-2)
The functions in the square brackets of (5.1) and (5.2) must have simple zeros at z = z.
This requirement entails

20=-0/2—j/2=1/2+8+k>=k2—p (5.3)
and, hence,

kf(2) + ¢(z) = (p/K*ro)N(2) 54
in accordance with (4.5). All functions ¢(z) and «f(z), defined by (5.1) and (5.2), solve
(2.9). We insert (5.1) and (5.2) into (2.10), multiply the equation by (z — z)? and get a
second-order differential equation for N(z)
UN(z) = (z — 20)[CHIN(z) + plz dN(z)/dz — (v/2 — j/2— 1/2— 8 —k*)N(z)] (5.50)

= (z — zoM[CHIN(z) — oN(2)} + p[zdN(2)/dz + (z+ j+DN@)]=0 (5.5b)

with the [CH] defined as in (4.2). The differential equation (5.5a,b) has regular singularities
at z = 0 (exponents 0, —j — 1) and z = k2 (exponents 0, v+ 1) and an irregular singularity
at infinity. The exponents of the potential N(z) close to the regular singular points are
in agreement with the exponents of the component wavefunctions «f(z) and ¢(z). On
account of the second term in (5.54,b), there is an apparent singularity at z = zo with the
exponents 0, 2. The solution with the exponent 0 does not contain logarithmic terms (Ince
1956, p 406). Therefore, all solutions of (5.5a,b) are holomorphic in the vicinity of zo.
Furthermore, (5.5a,b), (5.1) and (5.2) show that the component wavefunctions can also be
written as

«f(z) = (1/k’ro)[CHIN (z) (5.6)
and
_ $(2) = —(1/k*ro)(ICHIN () — pN(z)) (5.7
in accordance with (4.3) and (4.4).
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6. Comparison with the previous treatment

We come back to the theory given in [I] and to equatiogs (2.23) and (2.24) for the component
wavefunctions X;(r), X»(r) in terms of the potential X (). If care is taken of [I; (4.11)-
(4.16)), these equations can be written as

Xi(r) = —>[(v + Vro)p?/r§ — (2vp/ro + V(o — 2) + Vpr/ro} d/dr

+ W +Vr)d¥/dr X (r) = L1 X (r) (6.1)
and
Xo(r) = [(v+Vro)p(p — 1) /ro + {—vp + [vo/ro + 2V(p — D)Ir}d/dr

+ (r +9r}) &?/dr )X (r) = Lo X (r) 6.2)

with p and rg given by (3.6) and (3.7).
Now we can factorize the operators L, and L,

Ly = —k>(r —ro)"'[d/dr — p/rolL,
(6.3)
Ly = (r —ro)~'[r d/dr — p]L,
with
Ly = (r —ro)[(v+Vr)d/dr —vp/ro — (v +7Vr)/(r —ro) —V(p — 1] (6.4)

The proof is by inspection. L; depends linearly on (v, v). The component wavefunctions
in (3.1), (3.2) and (6.1), (6.2) are the same. The comparison yields the relation between
M(r) and X (r)

M(r)=L;X(r) (6.5)

where only X depends on (v, V).

Next we rederive the results of [I] in the z-domain. In order to shorten the calculations,
we restrict ourselves to the case v = 0 for the rest of this section. The Laplace transform
of the potential D(z) corresponding to X (r) is given by [I; (5.7b)]

D(p) = *p 2 exp(®/ p)X (c*/ p). (6.6)

We insert (6.6) into (6.5) and use (6.4) for v = 0. The resulting equation for M(x2/p) is
put into (4.1). We get

N(p) = W{lrop® - k*p*1d/dp + [—k* + pk’(ro — p + j — 2) + p*ro(p — j + DI}D(p)
6.7)
and, after inversion,
N(z) = HD(z)
=V{—«* +k*[ro — p+ jld/dz (6.8)
+[rolp — j — 2) + k2] d*/dz® — roz ¢° /d°2} D(2).
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Insertion of (6.8) into (4.5) gives

kf @) + () = 1/°r)(v/2 + j/2+1/2=HN@)
= (1/k’ro)pN (z)

= @p/Kro){—k* + K2[ro — p + j1d/dz ©9)
+[ro(p — j = 2) + k2]1d*/dz® — roz ¢°/d2°}D(z)
in agreement with [I; (5.10)(v = 0)]. Equations (5.1), (5.2) and (6.8) show that
¢(z) = K, D(z) l ) (6.10a)
Ky =0(p/k’ro)(z —20) '@ d/dz + 2+ j+ DH (6.10b)
and
kf(z) = K2D(z) (6.11a)
Ko = W(p/K*ro)(z — 20) " (~zd/dz +v/2 — j/2 ~ 1/2 = § —kH)H | (6.11b)

where the operators K, K, are already factorized. Multiplying out the right-hand sides of
(6.10b) and (6.11b), we obtain
Ky =Vk{—(p/ro+ 1) +[~p(p — j+ 1) +2(j + D2 d/dz
+[G+ D = j =2+ (p/ro + 2k~ d*/dz?
+[p —2j — 4wz & /dz® — k2% B d fdzt + kB2 — 20) 71 Q
(6.10c)

Ky =Vi{1+2[p — j — Lk~2d/dz + [p(p — 1) + (G + D(J +2 — 2p) — 2c?z~* d?/dz?
—20p — j — 22z ~0 @3 /d23 + etz d*dzY) — k(2 — 20)7'Q
(6.11¢)

where Q is defined by [I; (6.1a), (6.2), (6.3)] and QD(z) = O since ¢(z) and kf(z) are
holomorphic in the vicinity of z = zo. By insertion of (6.10¢) and (6.11c) into (6.10a) and
(6.11a), equations [I; (5.8), (5.9)] are reproduced.

7. Summary and discussion

The results of this paper can be summarized as follows. The eigenvalue problem of the Rabi
and the E ® £ Jahn-Teller Hamiltonian amounts to finding the entire solutions X;(r), X2(r)
of (2.20) and (2.21) together with the eigenvalues A. The solutions to the problem are
accomplished in two steps.

(i) Consider the subspace of entire functions M(r) for which the expression
ro(dM(r)/dr) — pM(r) with p and ry defined by (3.6) and (3.7) has a simple zero at
r = ry. All functions in this subspace are called potentials. By (3.1) and (3.2), each
potential generates a vector field with the components X;(r), X»(r) which satisfy (2.21).
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(ii) Equation (3.94,b) selects those potentials whose associated vector fields X;(r), X2(r)
also satisfy (2.20). The eigenvalues v are also determined. The procedure in the r-domain
and in the z-domain exactly parallel each other. The theory given in [I] is also incorporated.

We are now going to discuss the results but, for conciseness, we restrict ourselves to the
r-domain. Equations (3.1) and (3.2) give the complete interdependence of the components
X1(r), X2(r) if the wavefunctions are in all eigenstates. A relation between the component
wavefunctions in the domain of the configuration coordinates has been found by O’Brien
(1964) on plausible and intuitive grounds. Ham (1987) showed that this relation is a
consequence of Berry’s geometrical phase. (See also Chancey and O’Brien (1988) for an
application to a different Jahn—Teller system.) We would like to look into this problem using
the complete information which is now at our disposal and transforming our equations to
the configuration coordinate domain. This program will be carried out in a forthcoming
paper and might give a more detailed understanding of the work by O’Brien and Ham.

In this paper, we have argued that the potential M (r) is more fundamental than X (r).
However, the recurrence relations for X (r) with v = 0 are easier to solve than for M (r):
the physical solutions of [I; (4.18), (4.19)] and of (3.94,b) are power series

X@r) = »)~! Z D,r" (7.1)
n=0
and
M@r)=)_ M,r" (1.2
n=0

and from (6.5) (v = 0), we have
M, = (*)79[(n — 1 = p)Dp—y — ro(n + 1 — p)D,]. (7.3)
Insertion of (7.1) in [I; (4.18), (4.19)] gives a three-term recurrence relation

Dy i1k} (n+1)@n+314E) = Dyln(n—j—v)+(v/2+j/2—1/2—8) (v /2+j [2+1/2+48) ~k* v]
X@nr+11+%)—Dpyn—v—-1Dn+m) =0 (7.4)
and
E=-v(p~-1) (1.5)
while the recurrence relation for M, is four term

Myktro(n+ 1) — Mylron(n — j — v —2) + ro(n — p) +ro(v/2+ j/2+1/2 = §)

X (/24 j/2+3/2+ 8) — roic®(v + 1) + k*n]

+Mpal-ron —v =)+ (n—D(n—j—v—-3)+©/2+j/2+1/2-9)

X W2+ j/2+3/2+8) — k2 +1)]— My2(n—v—3)=0. (7.6)
It is therefore expedient to solve (7.4) for the eigenvalue and for D, and calculate M, by
(7.3). For integer v, the recurrence relations allow for polynomial solutions of M(r) and
X (r) which upon insertion into (3.1), (3.2) and (2.23), (2.24) give the Juddian isolated exact
solutions for the component wavefunction (Judd 1979). In the general case, we have for the

. coefficients of the physical solutions the limit behaviour lim My41/M, = lim Dpy/Dp =
-1
-n"",
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[DCH];,yM(r) =0 M) = Z M',,’r" X))

n=0
with the recurrence relation

M1 @ +1) = Myln(n — j —v) + @/2+ j/2=1/2 = )(v/2+ j/2+ 1/2+ 8) — k%]
~Myi(r—v~1)=0 (18

also allows for polynomial solutions for integer v (see also Schmidt and Wolf 1994,
section 3). Furthermore, for the entire solutions of (7.7), in the general case, we have
lim My /M, ~ —n~1, We, therefore, believe that virtually the whole body of results for
the double-confluent Heun equation, as given by Schmidt and Wolf (1994), can be taken
over to the more general equations (3.9a) and (3.9b) with only minor quantitative changes.
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