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A METHOD OF GENERATING INTEGRAL RELATIONS BY
THE SIMULTANEOUS SEPARABILITY OF GENERALIZED
SCHRODINGER EQUATIONS*

DIETER SCHMIDT+ anp GERHARD WOLFT

Abstract. One of the most important methods in the theory of special functions of mathematical physics
is that-of generating integral relations for these functions by the simultaneous separability of the 3-
dimensional wave equation in different orthogonal coordinate systems. In the present paper it will be shown
that a consequent application of this principle of simultaneous separability to more general partial differential
equations and higher dimensions yields various types of integral relations for the solutions of 2 wide class of
ordinary differential equations which especially contains all second-order equations of Fuchsian type.

. Introduction. Let D be a domain (nonvoid open connected set) in the k-dimen-
- sional complex vector space C*withNsk=2andletp = (p.): D> C* and gq: D> Cbe
analytic functions. In this paper we consider the generalized Schrodinger equation

. Aw = Aw+p(x) - grad w +q(x)w=0,

where A denotes the Laplace operator; grad, the gradient and p(x)’ the transpose of
p(x).

In § 1 we introduce several orthogonal curvilinear coordinate systems, namely
-ellipsoidal, sphero-conal and special forms of spherical and rectangular coordinates.
We give the representations of the operator A in terms of these coordinates, which
directly imply sufficient conditions for separability. The most interesting result of § 1 is
that the “‘special’’ Schrodinger operator A with coefficients

Pe(x)=ax,+ B/ X, =1,k

® q)=v- élxi+8+ él (ec/x2),

where a, B., v, 6, £, are complex parameters, separates simultaneously in all four

coordinate systems specified above and that its separation yields a wide class-of ordinary

" differential equations especially containing all second-order equations of Fuchsian type
and some of their confluent forms.

Since the results of § 1 can be readily verified, we have merely stated the facts and
omitted all the proofs. The proofs are essentially the same as in the 3-dimensional case
andcan be carried out by direct computation or, more elegantly, by the use of Lie theory
([12], (18], [5], [10]). It also can be shown that the sufficient conditions for separability
and simultaneous separability stated in § 1 are necessary, too.

_ In the first part of § 2 we establish a general principle to obtain (k — 1)-linear
integral relations for the solutions of k ordinary linear differential equations occurring
with the separation of a k-dimensional partial differential operator and which are thus
linked by k—1 separation parameters. Such theorems, in a more or less abstract
formulation, are well known in multiparameter eigenvalue theory ([1], [2], [16]). We

- have restricted ourselves to a special formulation which enables us to meet the various
situations of § 1. Furthermore, we have restricted our formulation of the integral
relations only to proper integrals, since, in this paper, we particularly want-to point out
the more formal aspects of the method. The corresponding relations with improper
integrals can be obtained in the same way.

* Received by the editors September 27, 1977, and in revised form March 14, 1978.
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. 824 DIETER SCHMIDT AND GERHARD WOLF

~ In the second part of §2 the most important applications of the above.st_ated
principle to different situations of § 1 are discussed. Of course, one can always apply the
above stated principle whenever our general Schrodinger operator separates in one

*"coordinate system; however, then there is the problem of finding suitable solutions of

" the partial differential equation which can serve as kernels. In the case of our spécial :
- Schrddinger operator this problem can be solved due to its simultaneous separability.
-Separation in one coordinate system yields product solutions in terms of these variables,
. ‘which then may serve as nontrivial kernels for integral relations obtainéd by separation
- in another coordinate system. This method yields various types of integral relations for
the solutions of the special ordinary differential equations (14), (22.1), (22.2), (29.1),
, (29 2),.and (34). Only the most interesting cases, especially those which lead to new
“types of integral relations, are discussed here.
- Explicit examples and applications of our integral relations, espec1ally with regard
to spec1a1 functions of mathematical physics, will be treated in a later paper.
The present paper was stimulated by a series of papers.of Leitner and Meixner [7],

‘ [8} 19 as well as by the papers of Erd4lyi [4] and Sleeman [15].

‘ In [7], [8]; [9] Leitner and Meixner made an approach to a unifying concept for
. generating integral relations for the special functions of mathernatical physics by
studying the simultaneous separability of the 3-dimensional Schrédinger equation (1)
- with p-= 0. This concept was carried on in the thesis of Turner [17], which was initiated
by Leitner. Their investigations were restricted to those pairs of coordinate systems
‘which share a common coordmate to be separated out. Hence their integral relatnons
were linear.
In earlier papers Lambe and Ward [6] and Erdélyi [4] obtained linear mtegral
- relations and equations for Heun polynomials and Heun functions by the simultaneous
separability of the 3-dimensional special Schrodinger equation (1) where ¢ =0 and p is
given in (2) with & = 0 in terms of sphero-conal and spherical coordinates, which share
- the common coordinate r. Later on, Sleeman [15] obtained quadratic integral relations
- and equations for the solutions of the Heun equation by the simultaneous separability
-of the same Schrodinger equation in terms of ellipsoidal and spherical coordinates.

" 1. Separability of Schrodinger equatlons in k-dimensional orthogonal coordinate

- systems.
1.1. General orthogonal coordinates. Let G be a domain in the k- dxmensxonal'
complex vector space C* with Nok =2 and : :

C 2 G2 =(2)=x=¢(z)=(e(z))eC"
be an analytic transformation. We call ¢ “orthogonal” if

£ 3¢ e ' '
- * 6 ’. £ 17 e tl k ’
(3) _ xgl 3z, 9z, oo * 8p p, o . }

_ where §,, denotes the Kronecker symbol and the g, are analytic functions satisfying

@ e@#0 ¢Gi p=l-k
If w:D~C is an analytic function with domain D<C* and W = wog, our
Schrédinger operator A in terms of the new variable z = (z,, - - -, z;) becomes
o . ] . .
: : _ Aw =AW :=. gl-g—[ ]+(qo¢) w
e

_9 1 ag, 1 dg. W
' w ( Z it gp__. _g_+¢K) W,
. Bz,c 2 o=18p azk 8« az". .az"

oF K
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where

5.1) =23

p=1 02,

‘(pp°¢), K=1,"',k.

On the other hand, the p, are expressible in terms of the ¢.. The orthogonality relation.
(3) directly yields :

1

' : k1 | 3.
5.2 KO = —_— . s =1,"',k.
( ») P @ nglgp oz, 7~
1.2. Ellipsoidal coordinates. Let a=(a;," -, ar)e C* be a fixed vector with

Qe # 4, (#p). Ellipsoidal coordinates & = (&1, - - - , &), which are related to rectan-
gular coordinates x = (x1,* "+, x) by
k Xi

z

-1 fp"a,(

(6) :1’ P=1y"',_k,

can be introduced by

C>Gat—x=d(8)=(de(&)eC”

where G C-(C\{a;, .+, ai))* is a domain and the ¢, are analytic functions with .
. k- —a,. .
) (€)Y =(Ec—as) - 11 (é‘-’———), k=1, k
i p=1‘Ap — 4y
pPFEK

At each point £ € G with &, # &, (p # o), ¢ satisfies the orthogonality relations (3) with

. k
® g®)=if€;a)” - 11 (6=,
where
k
©® , 6 6= gl (t=&).
vWe now introduce the determinant
SRR i
_(10) . P(§)=det f.l E'k =1§agp§k(§o—£p?
1 e 1

and assume for the following

G c{£: Pu(¢)# 0}

Furthermore, let £ denote the (k — 1)-dimensional vector (€, - s bty Ecrrr 775 6
Then by (5) the representation of our Schrddinger operator A inellipsoidal coordinates
becomes :

L1k 1 5 .
A= Y (DT Pealé) Aw

(11) Pk(‘f)';=1
. k ..a -
(L e edag e

A=t a) |25
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_ v'vhe-re. ' : e
Cary pi=y 2 29 ¢" o 2 9) oy SRR

o p=1 fx_.ap

‘and 4, are any functions with

ay god=—r

o Kz i B
If @ and ¢/f,c depend only on the variable fK, then A may be wrltten m the form
: : , ke—2
oy A=Pk1(é) det| 3 "
‘ ’ _ §1 BERY
1 LI S

where A is an ordmary dlﬁerentlal operator with respect to £, which just means that
CPe(®)- A is separable ([13], [12]). We say: “A separates in ellipsoidal coordmates”
ESpec1ally, if p and q have the form (2), we obtain from (11 1)
: . k B
(13 1) R Ge=a+ ¥ —F—
. - B p=1 fk

If we choose

: k
(132) e ='7§£+(6—’Y ) Z ap) gtlj . + Z — H (ap arr)’
: . . p=1 p=1 gx ap o=1
X a#p .
“also (11.2) is satisfied. Therefore, our special Schrodinger operator separates in
ellipsoidal coordinates. Now, using well-known facts on separated solutions of separ-
able operators, we can establish the followmg
, PROPOSITION 1. For k=1, -+, k let v.: G.~>C be analytic with domain G.c
C\ay, - - ak} such that G < X,c 1 G«. Furthermore, let w:D->C be analyttc with
- domain D < C*, such that (G D. Fmally, let w#0 and

(wo )= I1 0ue)

Then w is a solution of our special Schridinger equation

iff there exist separation constants (Ao, * + * , Ak 2)6 ckt such that the v, (K 1, -+, k),
are solutions of the ordinary dzﬁ‘erentzal equation’

.p'gl(z—ao) [o743(a 5 L2E), ]

1Z2—a
(14) o ’

p=12 ~8p o=1 =0
o'#p.‘ .

17k e, K ;k ' .
+2( 2 Il (a,—a,)+yz*+8'2 +z Apz) -0

where 6’%6—y : Z:=, a,.
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The differential equation (14) has the only singular points ay, - -+, ax and . The
finite points a,. are regular singular points with characteristic exponents u}(, v2 deter-
mined by _ _ .

5.1 vetva=31-Bc), v vi=ie. k=1, k

If & = y = 6 =0, the point c is also a regular singular point and the differential equation

is the most general second-order equation of Fuchsian type with k + 1 singularities [14,
_p. 136]. The characteristic exponents v&, v’ of the point o are then determined by

1 X 1
(15.2) : V§O+V¢2,o=§- Y (1+B.)—1, VeoVm =Z)\k_2.
: k=1
The remaining k —2 separation constants Ag, * -+, Ax—3 are the so-calléd ‘“‘accessory

parameters’’.
We would mention that in the case k =2 and @ = ¢, = 0 equation.(14)is a confluent

~ form of the Heun equation [6]. Thus, special cases are the Mathieu equation as well as

t_he' spheroidal wave equation. In the case k =3 and a = y = 8 = &, =0, (14) is the Heun

. equation ([4], [15]).

1.3, Sphero-conal coordinates. As in the case of ellipsoidal coordinates let a =

' »A(al, -+, ap)eC* be a vector with a.#a, (k#p). Sphero-conal coordinates { =
(¢4, - -, &), which are related to rectangular coordinates x = (x1, -+, xx) by -
. B o » K " l: . xi
i (16) £1= Z X s 2.. -————:0’ pzz,'.'vk,
i k=1 ‘ k=1 {p ~

. can be introduced by

(18)

C oG x=¢()= (b))l

where G < (C\{0}) x{C\{a, - - -, ak})k_1 is a domain and the ¢, are analytic functions
with

,(17) B ¢k({)2=z1 Kﬁl<§p+lﬁa‘()' ﬁ (é’p :) k=1, -,k

p=1 ap —aK p=x+1 \Ap—

Usmg the notations of (9) we find that ¢ satisfies the orthogonallty relations (3) with

gl(l) Z o

' k
gx(:)=——3f(:x;a)*‘-;x- @) <=2k

p#x

at each point ¢ of a region G <{{: P- 1(?)# 0}.
Now by (5) the representation of our Schrddinger operator A in terms of
sphero-conal coordinates becomes

A:Aﬁ(a-z)k-l(f»* 2: (1) Pe- z(Z)Am_

k=2
2

(19) A1—4zl {2+2<k+¢1) -l i

a8’ k

—4f<§x,a)[agx AL et w2k
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where . :
19 =) b (@) o= Z- e (e d’)_ k=2, k
L - o=1 : p=1 fx . :
" and ¢, are any functions with ‘
: . . - . . , \].\,K/ Do
(19.2) q-° ¢'=l//1+(§1 y Pk-'l({)) ! Z (-1) 'IPk—-z( £) e
If ¢ and «/zk depend only on the varrable Cir then A may be wrltten in the form
A, A, PR _Ak
| o PR RSO AR
(20) CA=——3-det| 0 A
| Pea(@) b T
0 1 1

‘ where A isan ordinary dlﬁerentral operator with respect to £,. Therefore Py 1({ )y A.-
is separable and we say: “‘A separates in sphero-conal coordinates”.
Inthe case of our special Schrodmger operator with: coeﬂi cients p.and g of the form

N ~(2) we obtain from (19.1)

k
t B

p=1 Zk_ap’

il
=
M
N
&

Ly pr=eli+B, o

where 3 ZZ:=1 B,. If we choose

k

21.2 : = +5, K =
( ) L/ 7{1 e = R 1{K a,,., :
o#p

H (ap aa)’ K=2,.._'7k’

(19. 2) also- is satisfied. Thus, our specral Schrodmger operator also separates in

sphero-conal coordinates. Hence, we can estabhsh the following '

: ProPOSITION 2, Let ve: G -C (K =1,:--, k) be analytic wzth domams G,
C\{0} and G.cC\ay, -, a} (k= k) such that GCXK 1 G.. Further, let

w: D » C be analytic with domam D c C such that ¢(G)< D. Finally, let w#0 and o

(w6)X0)= 1T 5.5

Then w is a solution of our special Schrédinger equation
| CAw=0,

iff there exiSt separation constants (Ao, -, AK'_z)'E C*, such that v is a solution of
: N ' . 1 N , 1 Ar—a\
(2.1) ez (e +B) +Z('yz+6+—z—-—.v=0

where 8 = Z:=1 B, and the v, (k = 2. Ny , k) are solutions-of

H (z— a,,)[v"+1(§ 1+Bp>u’]

- (22.2)

p=1 2 p=1Z "4y
1/ & k2N '
+2 D+ 2 A2 =0,
4(pzlz —a, GI:[ (@, = a_ ) pgo )P

a#p
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. The differential equation (22.1) has the only smgmarmes 0 and 0. The point O isa
+ regular singular point with characteristic exponents wl, wi determined by

. 1
(23) ni+M=1—-2- ‘;1(1+BK), uiuf.=z)\k_z-

If a =y =8=0, the point © is also a regular singular point and (22.1) is an Euler
equation. Equation (22.1) can always be integrated by confluent hypergeometric
functions. .

- The differential equation (22.2) is the general second-order equation of Fuchsian
type already obtained in (14) inthe case @ =y =8 =0.

- 1.4. Spherical and rectangular coordinates. Since we want the ordinary differential
equations obtained by separation to be in an appropriate “normal form™, we use in this

_paper an algebraic form of spherical coordinates n = (171, " * * » M) whxch are related to
rectangular coordinates x = (x1, - -+, Xx) by
. . . k 2 V 4 2
. Xy e X
- (24). m=Y xl ——1+Z-”———‘3=0, k=2, k.
=1 T N — 1

These can be introduced by
' k
Ct=G = X Goan—x=dm)=(d(n)eC’,
k=1 .

where G, < C\{0}, G.cC\0,1} (k=2,- - -, k) are domains and thc: ¢, are analytic
- functions with : ' .

dr1(ny¥=n1-n2

(25) ¢’x(77)2=7)1"nx+1' Hz(l—‘np), 2=xk=k-1,
; o=

¢k("7)2: e Elz (1 — 1)

From (5) we find, tﬁat our general Schrodinger operator A in terms of spherical
coordinates has the form '

1 k—1l \—1 -
A=At ¥ o (T me-D) A
M1 k=2 p=2
2

. a
“(26) - Ay=4m n2+2(k+€01)_n‘+$1,

J ? 141 k+1l-« >d]
= —1)| St — A+ @, F, k=2, k
A, =4 1)[817; Z(m 1 Py b

where

: ¢1=§§1¢p'(bp°¢),
(26.1) ?

k

1 .
‘Px:—n_"(bx'—l'(px—l ¢p’(pp°¢)v "<—___2"“!k7 ’

p=
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“If @, and ¥ depend only on the varlable nK, then Ais separable and may be written -

in the form ,
(A A A Ay
Loy 0
o ‘ N1 : '
. -~ o 1
27 . A =det. — 1
o n2-1 .
, : i
0 o

--where Ak is an-ordinary differential opetator with respect 107y

in sphencal coordinates”’.

0

1]

We say: “ A separates
y par

In the case of our special Schrodmger operator thh coefficients p and q of the form -

L (2) we obtain from (26 1)

: 8
<P1-=m71+ﬁ, P = Z" _10 K

77«'

(28.1)

where 8 = Z:f:l B,. If we choose

Ex~1

(282)  dh=ymi+8, ==

k-

—

@sk=k-2), f=

Ek

M- Ne—1

(26.2) also is satisﬁéd. Thus, our special Schfédihger operator separates in spherical

coordinates and we can establish
, PROPOSITION 3. Let v,: G- C (k=1,-
: a’omam D = C* such that ¢(G)C D. Further let w#0.and.

(W°¢)(n)“ H vx(m

L Then wisa solutzon of our special Schrodmger equatwn
Aw =0,

: vzﬁ there extst separatton constants (Ao, " - -, Ak_z)e ck1

@9.1) zv"+—(az +(k +g.))-,,r+%( '
W”h B= Z -1 3;» and fhe Ve (k =2, -+, k) are solutions of
: " 1+Bx 1 Z:=x-(1+Bp)
: z(z 1)[1; +2( + P
29.2)

1

4\’ 2z z—1

‘where A_; = g,.

s kYyand w: D= C be analytzc wzthv

such that v, is a solutions of -

Ak'_z)u =0
z

v

T Ep— Ai —K .
+_‘(__—£—"1“+ kot +Ak_K)U—‘O
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The dlﬁerentlal equation (29.1) is identical with equation (22.1) and thus can
always be integrated by confluent hypergeometric functions.

The differential equations (29.2) are of Fuchsian type with the 3 singular points 0,
1, and o and thus can always be integrated by hypergeometric functions. By use of

the Riemann P-notation, equations (29. 2) may be symbolized by

. 0 1 0
(.30‘) ’ P{vea IJ-.l( —p«i_l zZ7, K=2,,k,
: v 2

2
V-1 M —.I“K 1

where the vl v2 are determined by (15. 1) and the Mm wl by

. (30.1) “K+I‘LK=1—E Z (1+Bp)9 /J-K '“'K:Z/\k—l—m K=19".'sk_1’
. o p=x . .

and

" {30.2) _ o wh=vk, p=1,2.

~Finally, we give a simple transformation of rectangular coordinates, such that the
corresponding ordinary: differential equatxons obtained by separatxon are also in an

_appropriate form.

: Let @ = (64, - 0k) € >< «~1 G« with domains G, = C\{0} be related to rectangular
,‘coordmates x= (x,, <, X )=¢(8) by
.(31) : xZ=0,, k=1-,k
. Our general Schrodinger operator in terms of the variable @ then becomes
. e
k=1
A.=4 (Do B))
A =460 (b= )35
o where the ¢, are any functions with
) . ) . Kk
(32.1) - 1°¢= L the
If ¢, and ¢, depend enly on 6., then A is separable and may be written in the form
A A A o Ay A
, -1 1 0 0 0
(33) : A=det| 0 -1 1 : :
0 0 e 1 1

where A, is an ordinary differential operator with respect to 6.
In the case of our special Schrodinger operator we have

(33.1) o ¢K-(pko¢)=a0'(+ﬂm K=1,"',k,

and with

"(33‘-’2.) . ‘ l!l;( = y0.+ 8. +¢./b., k=1, k,
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where ZK 16 =8, condltion (32.1)is satisfied. Thus, our specxal Schrddinger operator
separates in the coordinates ¢ = (@, - - 6L) and we can establish

PROPOSITION 4. Let v.: G.~»C (x ", k) and w: D> C be analytic with .
domam D < C* such that QS(G)C D, Further, let w#0 and

w2 8)0)= 11 0.(0,)

Then w is a solution of our special Schrédinger equation
Aw 0,

| k ST
iff there exist separation constants (A1, -+, Ax)e C* with Yu=1 e =& such: that for
k=1, k U.is a solution of ‘

-,‘(34)- zv"+£(az+(l+[3,¢))v’+%<yz +)(K+§—K)v =0,

The differential equations (34) are of the same type as equatlon 22.1y and thus can
always be integrated by confluent hypergeometric functions. Obviously, the indices »L,
v2 of the regular singular point 0 of the kth equatlon (34) are determined by (15.1).

2. Integral relations.
2.1. A general principle of generatmg integral relations. Let G, CC (K =
1, -, k) be domains and :

35 Feo Do Qe €a: Ge>C,  k=1,--+k; p=0,--+, k-2,

be analytic functions. We then define second-order ordmary differential operators Ay
© (with respect to z, € G..) by :

(36) A, = r":v’/:_'_pkul +Gb, k=1, k,

and with these the second order partial differential operator A (with respect to
z-(zl, zk)eG X -1 G.) by .

Al e Ak . )
G A=det|cf? k= Y (1) TV d (@A
: . . - =1

0 o
Ci *-- Cx

Since A is separable we can estabhsh the following theorem.
THEOREM 2.1. Let
(i) w:G= X «=1 G« > C be an analytic solutzon of

CAw =0,

(ii) fork=1,-++ k=1, v G.~>C be an analytic solution of
' k-2 .. .
AU, +( y )«pcﬂ)v;( =0,
=0

‘where (Ao, -+, Aig_2)e C*1: .
@) fork =1,--+, k-1, we: G.>C be an analytic function with

(W) = Pec * wi;
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(iv) fore =1,-+-,k—1,6, beapathin G.., such that

ow- ,
' [wl('rk'( 'UK_W'U,()} .:O.
0z, €

*

L Tﬁe-n vi: G > C, defined by

. : . X k-1
vz ) = J e L di(&w(z)- Hl (we(z v (z)) dzy -+~ dz—y,
. ) . 1 k—1 _K= .
- " is an analytic solution of ‘ ' ~

k-2 ' ‘

Akvk +( Z ADCZ> Vi = 0.

p=0 _

" Proof. We consider
' ; k-2
u—L.u'=A.u +( ¥ )Lac‘:) u.
o=0 .

" Condition (iii) implies that w, - L. is formally éelf-adjoint

: ' 3 du ow
wew, Liu—u-w. Lw= [w,(-r,(-<w- —u - )J
] x . az,( 6zK

Since ‘L.v, =0 by (i), we get

a ow
W v+ Lw= [w,(-rk-(vk- —vL-w)]
02,

2w
and therefore by (iv)
J‘ w.(2.) v (z.) (Lw)z)dz, =0
S

" identically with respect to £. On multiplying this by

k-1

dK : H (wp ) vﬁ)a
p=1
p#EK

ihteg‘fat-ing (k —2)-times and changing the order of integration, we find
@ [ T @) Qe dn - daes=0

) €, e P p=1 )
fork =1,---,k—1. On the other hand, (37) and (i) imply

5 1 L)) = (Aw)2) =0,

On multiplying this by l—[:: (wyv,), integrating (k —1) times and using (*) for k=

1, -,k —1,weseethat (*)also holds for k = k. Hence, by definition of v, and by use of
-the fact that differentiation may be carried out under the integral sign we ﬁnally obtain
Lkuk =0.

‘We have formulated Theorem 2.1 only for proper integrals. If we deal with
improper integrals—one knows that these play the more important role in appli-
_ cations—we have to take care that all repeated improper integrals, which occur in the
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definition of vy and also in (*), converge locally uniformly with respect to the remaining
variables and are independent of the order of integration.
A special case of Theorem 2.1 should be pointed out, since it yields a reduction

principle. »
TueoReM 2.2. Let k =3 and let the assumptions (i) and. (iii) of Theorem 2.1 be

given. Further, let

- Then we can choose

d, (5)'=' - d(D), k=2 ks
A= Ao+ hacs ' ‘
and
A, . Ak _
_qet| 2 . ﬁz (—1Y2d(3)- Aw.
c‘z’ Ll K |
N’ow, let: . : : : |
@)y w:G =X ,’f=2 G, - C be an analytic solution of
| R A =0;
@iV fork = ,k—1,8, beapathin GK, such that

aw -
[w,pr,;( : -vk—w-uLH =0
m&ZK . (O

and &, be any path in Gl..
Thenw: G->C, defined by -

' w(z) =v1(z1)" W(Z) ' :
~satisfies (1) and (1v) of Theorem 2. 1 and vi: Gr »C, deﬁned in Theorem 2 1, becomes =

oe(zi)=y J‘

€z

- J;_,: dk( Z ) ’ W(Z) ) 1;[2 (w'K(zK)UK(ZK))'d_ZZ c :dZ;f_17

 where

y= L 2 on(z)on(er) 2.
1 .
We notice that in the case of ¢ w, - v1#0o0necan élwaysﬁﬁd apath ¢, in Gy
) such that y#0. ‘ :

2 2. Integral relations for special functmns Letay, - -, a; bedifferent pointsin C
and vl vi k=1, ,k),a v, 8 and A, (p 0, -, k— 2)be complex parameters Let

’ k
8 5 Y: Zp 1 aP .
Our aim is to get integral relations for the solutlons of the differential equation -

1

. , . 2 _
I (z—a)- [v"'+( + Z ~—5—-V—)L]
. a=1 ap :
(38) .
' H (a,— au)+zzk+—-z"_l+,2 Apz">u=0,
p=12— a‘J 4 4 p=0 ]
rr#p . .
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by applying the methods of § 2.1 to the situations of §§ 1.2 and 1.3 where (38) occurs in
‘connection with the separation of the special Schrodmger operator in ellxpso:dal and
sphero-conal coordinates.

Askernels for the integral relations we shall use the product solutlons of the special
Sehrbdinger equation in terms of spherical and rectangular coordinates to be found by
Propositions. 3 and 4.

. 2.2.1. Kernels in terms of spherical coordinates. Let s ui=1,--+,k—1)be
. -complex parameters with :

"(39)- '1~ui—ui=2(1—v;—u§), k=1,--+, k-1

| The kernels in terms of spherical coordinates to be found by Proposition 3 are then of
the form

L ; 1 1 k
@y V(m)=RMmi) K@), K@= EZKK(TIK),

where R is a solution of

v _ . 5
PRI BY - SCHJE ) RN C A AL ) P
and

o 1 el
. (402) : N KKEP V,lc_l /.L,l( ——-y,,l(ﬁl Z>, k=2, .k,

2 2 2
Vie—1 Mo« “Hk—1

.Wlth[.Lk—Vk(p 1, 2)
The solutions of (40.1) may be written in terms of conﬂuent hypergeometric
“functions. We have to distinguish 3 cases. Let -

R i=(@’-4y)? S=6-a 2(1—vp—vp)

p=1

&

o Then ,on-é- easily finds [3, vol. I}, that the solutions of (40.1) are given by the following.

- Case 1. a#0.

-~

(40.1.1) R(z)=exp (%(&—q)z) -z 1; 1(-5—.—

1 RN 12 &)
ol —wdiyl+ul—ud-22),
2% 2( My~ 1) _yl p13 =52

Case 2. ¢ =0,6 = —7>#0.

(40.1.2) R(z)=exp (—jaz)- z* -exp (rz'"?) . -
CFGFel —ud; 142 -2t —272'%)

Case 3. ¢ =6=0.

s

_(4_0.1.3) R(z)=exp (—iaz)" (c.z“}+czz“%), c1,c2€C,
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where 1%1(a; ¢; z) denotes any solution of the confluent hypergeometric equation
- zu"+(c~z)u'—au=0.
Obviously, the K, (x = 2, -+, k)are given by : .
Ko(z)=2"" - (1-2)"
(40.2:1) T2t 1(Vi 1 +ﬂ~.1< M.lc 1 Vi1 +u,£ . /J«i 1; 1+vig ‘Vi 13 Z)

wnth ue=vi (p=1,2), where 2%1(a, b; ¢; z) denotes any solution of the: hyper-

. geometric dlﬁerentlal equation

z(1- z)u"+(c (a+b+1)z)u —abu =0.

» 2.2.2. Kernels in terms of rectangular coordmates Let Te (K ——1 ,‘k) be
cornplex parameters with.

“@ - o ﬁmszo

where § is given by (41). The kernels in terms of rectangular coordmates to be found by

" Proposition 4 are then of the form

(43) E W)= I1 W.(.)

where W, is a solution of - _

- " 9_ 12 ' Z a(1 - Vll< —Vi)_'ri Vllcpi) —n .
(43.1) zv +<2z+(1 Vi VK)>U .+<4z+ — + P v=0.

In the same way asin § 2.2.1 for (40.1) one finds that the W, are given by the followmg
Case 1. a #0.

WK(Z)=exp (i—(& —a-)z) gtk

@3.1.1) . - , L
. W(—2+1(1+v )‘1+V1—V2'_g2)
ll. a 2 K Vi) K !F! 2 .

Case 2. @ =0.
W (z)=exp (‘—%z) 2%
(43.1.2) exp(rzd)  FG vl -0 14251 202 —2rz'%),  1.#0,
' a 1 V2 -
Wk(z)=exp<—z ) (clz"*+czz ), c1;6€C, 7 =0,

~where & is given by (41) and g 1(a ¢; z) denotes any solutlon of the confluent
hypergeometric equation.
2.2.3. Two types of integral relations. Let G, < C\{al, , ak}'(K =1, -, k),be
domains and ' ’

@4y w(z)= exp( )H(z a,) e

Application of Theorem 2.1 in connection with § 1.2 then yields the next theorem.
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THEOREM 2 3 Letk=2.
(1) Letw:X & =1 G« ~>C denote either the function V in-(40) or the funcnon Wm
* (43) in terms of elltpsazdal coordinates.
(i) Letve: G ~»C(k=1, , k—1) be solutions of (38).
(iit) Letfork =1,---,k— 1, (SK be a path in G, such that

' [w(zx). ﬁ (Zk—ap)-(%(Z)UK(ZK)-DL(ZK)W(Z')>]@;=

: zdenttcally with respect to 5.
‘Then vi: G ~>C deﬁned by

. k-1 '
vk_(zk)_=J. cee J P i(2) w(z)- [=I1 (w(z vz ))dzr - dzi—1.

1 Cr—1

K is.an analytic solution of (38).

Special cases of integral relations of this type are for k =2 the well-known (linear)
integral relations for Mathieu and spheroidal wave functions ({11], [3, vol. III}), and for
k =3 the (quadratic) integral relations for Heun functions found by Sleeman [15]. It
should be noted that there is a mistake in [15]: the operator in (4.2) of [15] and

therefore the following kernels have to depend also on & and e.
" Application of Theorems 2.1 and 2.2 in connection with §1.3 ylelds the following
~"theorem.
THEOREM 2. 4 Letkz3 anda=y=6=0.

(i) Letw: X ¥ «~2 G~ C denote the function K in (40) with wipi=Acointerms. -

of sphero-conal coordinates.

(ii) Letv.: G, —->C (K =2, ,k—1) be solutions of (38).

(m) Let for k=2, ,k—1,&, be apathin G, such that

[w(zx) fl - (2
1.«

ideri-tically with respectto 'z .
Then vi : Gy < C defined by

- 1k | k=2
3 Uk(;k)=J‘L J Peo(z) w(Z) I=12 (@(z vz ) dza - - - dzic—

2 S

)—v (z»w(z))] 0

_isan analyttc solution of (38).
Special cases of integral relations of this type for k=3 are the (linear) integral
~ ‘relations for Heun functions found by Erdélyi [4] and Lambe and Ward [6].
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