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1) Introduction: Understanding as the deciphering of social and
" " epistemological signs

;f'The notion of understanding a mathematical concept or problem plays an important

“role in any educational consideration of school mathematics, be it in research investi-

;gatmns be it in practical cumcular constructions for the teaching of mathematlcs To

: ake poss:ble to support and to i lmprove mathematical understanding seems to be

““one of the central objectives of any theoretucal or practlcal endeavor in the didactics
of mathematm

There is a lot of reflection about how to understand understanding, how to classify
different types and degrees of understanding (Pirie, 1988; Pirie & Kieren, 1989;
S_chroeder 1987; Skemp, 1976), how to conceptually defme understandlng {(Maier,
1988; Sierpinska, 1990a, 1990b; Vollrath 1993) and many models descnbing ideal
aind everyday processes of understanding mathematics have been developed
Herscovics & Bergeron 1983; Hiebert & Carpenter, 1992) Our first step in ap-
proachmg the puzzling concept of mathematical understanding is to list & number of
emlngly contradictory attnbutes whlch are assocxated with this notion

e Understandmg is conceived of as an expandlng process, gradually i |mprovmg the
mprehenslon of a concept or probiém step by step and there is never an absolute
rstandi ing; on the other side, when being confronted with a new, unsolved prob-
) that seems to be totally Incomprehensuble sometlmes there is a sudden and
complete understanding without any further doubt,



* Understanding requires to relate the new knowledge to the knowledge already
known, to integrate the unknown into the known; but on the other hand, understand-
ing a.new mathematical concept often requires to comprehend it in itself, without any
formal reduction to concepls already understood.

* Every fruitful process of understanding is based on the active treatment and negoti-
ation of the leaming subject; on the other hand, the understanding of fundamental
mathematical ideas, concepts and theorems cannot be reinvented completely by ev-
ery student and has to be passively accepted by him.

* Understanding is an individual and personal quality of the leaming subject in every
mathematical learning process; on the other hand, the understanding of abstract and
(general mathematical ideas often needs the social support and stablllzatlon

How these seemingly contradictory statements about the conception of understand-
ing can be better explained or even solved? The central perspective which will be
taken in the following Is on problems of understanding school mathematics in the
course of everyday teaching and leaming processes; this is an important framing,
because student's leaming in school always is embedded in social and content de-
pendent situations, subjecting the processes of understanding to specific conditions
and intentions. In some way one could argue that the school environment is respon-
sible for the described contradictions of understanding, because there is traditionally
the combination of individual and common apprehension on the social side, and the
construction of all new knowledge on the basis of the old knowledge on the content
side.

The kemel of the problem of understanding school mathematics could be specified

as follows: The students have to decipher signs and symbols! There are two different
types of signs and symbols: mathematical signs and symbols (ciphers, letters, vari-
ables, graphics, diagrams, visualizations, etc.), and social signs and symbols (during
the classroom interaction: hidden hints, remarks, reinforcements, confirmations, re-
jections, etc. made by the teacher, and comments and remarks of similar types made
by other students). Being able to correctly decipher all signs of these two types wouid
guarantee understanding. But the deciphering of the social and epistemological signs
and symbols in classroom discourse is not an easy one, it is not a simple translation
according to fixed umversal rules and dictionaries. Both types of signs are intentional,

they are referring to somethmg other, and what they refer to may even change during
the discourse or underlying a decisive shift of meaning.
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For example, when introducing negative numbers with the idea of the debt mode!
wherein an amount of debt is represented by a number of red counters (the black
counters represent the positive numbers), the mathematical signs (red and black
counters) are used with some kind of concrete reference; for more elaboraied opera- .
tions in this model the "rule of compensation® is needed, which represents the zero
by a number of pairs of red and black counters. On the observable surface, the same
sort of signs is used here, i.e. red and black counters with concrete reference. But in’
fact, simply the combination of the same number of red and black counters has dras-
tically changed its referential function; even if traditional school mathematics’
pretends that these are still concrete objects and also are methodically used this
way, from an epistemological perspective they have become true mathematical
symbols. A concrete zero would have been represented by *nothing®, by no black or -
red counter; this kind of representing the zero by a (unlimited) number of pairs,
expresses a relation representing the zero, that is a true symbol. The concretely
chosen combination of pairs js not the zero (as 5 red counters are the minus 5), but
it represents symbolically the zero. (cf. Steinbring, 1993a). The mathematical sign of
counters has totally changed its intentional reference.

And also the social signs given by the teacher during a classroom discourse, have no
fixed and direct meaning but have to be deciphered relative to the specific context. -
The introduction of the "impossible event® during a course in elementary probability, -
for instance, may produce different referential interpretations for the students than
those aimed at by the teacher. Whereas the students always have in mind some kind
of concrete impossibility, the teacher tries to develop the idea of the mathematical
impossible event, compared with the other elementary events of a sample space.
And all his remarks and hints (social signs) he is giving in the interaction have a
twofold referential meaning. The teacher, for example, asks: "How would we describe
this with an adjective?", provoking the answer of a student: ®...the uncertain event."
And again the teacher: "The uncertain one? We shall simply say: the impossible
event. And now my question: What kind of a subset is this, if | speak of an impossible
event?” But for the students, this impossibility remains real and concrete, they an--

swer-directly: “That won't work at alli* All the teacher's remarks remain open for dif-

ferent intentional references, they cannot be made strictly unambiguous. (cf. Stein-
bring, 1991a). This means, the adequate deciphering of social and epistemological
signs in a mathematical discourse remains a very difficult task. :
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The openness of the intentional references of epistemological and soclal signs and

symbols in interacétive mathematical processes is at the heart of the problems with_

the concept of urfderstanding mathematics. This openness is responsible for the
contradictory statements made about understariding. Because tinding the "correct*
intentional references for social and epistemological signs, always depends on indi-
vidual and common insights, on pefsonal activity and some passivity, on constructing
completely new relations and using already known referential interpretations of math-
ematical concepts, and may provide complete, sudden understanding of a problem

and at the same time give an idea of how to come to even more and more deeper '

understanding.

In the following we will relate our notion of mathematical understanding to concep-
tions discussed in the educational literature; in some way the foliowing two positions
which emphasize the linking of the learning subject with the mathematical content re-
flect aspects important for our formation of the concept of understanding. The first
definition points to:the external and corresponding internal representation of mathe-
matical knowledge: "A mathematical idea or procedure or fact is understood if it-is
part of an intemal network. More specifically, the mathematics is understood if its
mental representation is part of a network of representations. The degree of under-
standing is determined by the number and the strength of the connections. A mathe-
matical idea, procedure or fact is understood thoroughly if it is linked to existing net-
works with stronger or more numerous connections.” (Hiebert & Carpenter, 19892, p.
67). The second description tries to relate epistemological constraints of mathemati-
cal knowledge to the active role of the learner: "It is proposed to conceive of under-
standing as an act (of grasping the meaning) and not as a process or way of know-

ing. ... Relations between the notions of understanding and epistemological obstacle _

are found; it is argued that understanding as an act and the act of overcoming an
obstacle can be regarded as complementary images of the same mental reality.”
(Sierpinska, 1990a, p. 24).

The first definition claims the Integration of the new mathematical knowledge into ex-
isting networks of mental representations; the second description interprets under-
standing as an “act of overcoming an epistemological obstacle®, an "act of grasping
the new meaning” and in this way poinis to the limits of integrating the new knowl-
edge into existing networks of representations. From our perspective of understand-
ing as the deciphering of social and epistemological signs referring to a variable in-
tentional context of reference, some modifications have to be considered with regard

26

to the presented conceptions of understanding. The signs do not only refer to fixed

elements in the networks of representation, but also to relations to be constructed in
the referential fields (this makes the network of representations and the process of
integration more complicated, and even may lead to radical changes and reconstruc-
tion of networks of representations which this forces the true symbol function of the
signs (cf. Steinbring, 1993b)). The active construction of meaning and of overcoming
an epistemological obstacle is necessarily embedded in a social frame of conven-
tions, generalizations, rules, methodological procedures and socially accumulated
and accepted knowledge, being at everybody's disposal.

For analyzing mathematical understanding in interactive processes we propose to
expand the perspective of investigation with regard to the following two dimensions:

social aspects <—> epistemological aspects

participating persons; _
Students' understanding <—> teacher’s understanding
(of mathematics and (of students' understanding
of teacher's intentions) - of mathematics).

In this way, conceiving of mathematical understanding as the deciphering of social
and epistemological signs and symbols necessarily leads to a reciprocal process of
understandirig between teachers and students, everyone interactively trying to deci-
pher social and epistemoiogical signs communicated by other persons.

g;z'gz:g“g social/ -4 epistemo-

symbols conventional fogical -
Teacher

Student

The next section deals with the relationship between social/conventional and the
epistemological constraints of the mathematical knowledge, and the section which
follows will analyze this problem of understanding the development of mathematical

- knowledge embedded in classroom interaction. The investigation is based on specific

examples of understanding mathematical knowledge and on exemplary cases of

' classroom-episodes. . : :
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at Kind ‘of rela'uonshnp is this? Is

ita raductnon, an equilibrium; & dependency‘? And what kind ‘'of epxstemologlcal con-

straints and social conventions are involved in this ‘relationship?

In a first example we will analyze the understanding of writteh symbols with the help
of procedures describing the correct mathematical operations. In most cases, the un-
derstanding of decimal fractions is explained by describing the correct algorithms for
the elementary mathiématical operations of addition, subtraction, multiplication and
division. For this description one may find the use of the

rule of shifting the point: The multiplication (division) of a decimal fraction by 10, 100,
1000, ... is done by shifting the point one, two, three, ... places to the right (left).

This rule describes the transformation of the decimal fractions into natural numbers.
It is used to "define®* the mathematical operations, for instance, addition and
mutltiplication of decimal fractions:

"Ru)e of addition and subtraction:
Example:
2743 + 385 = 6593 -
-1000 -1000 T:1000

2743 + 3850 = 6593

Both terms of the sum are multiplied by such a power of 10 (here 1000) which gives
natural numbers, which can be added. Afterwards, the entargement is undone by di-
vision by 1000. Also the law of distributivity is used.

Rule of multiplication:

Example: .
345 . 23

[}

7,935

-100 10 T:1000

346 . 23 = 7935

The theorem is used: If a factor is multiplied, the result also is multiplied accordingly.*

(Postel, 1991, p. 19).
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- This way of introducing the arithmetical operations for the decimal fractions clearly
shows that, first, the decimal fractions are transformed into-natural numbers, in this
domain the known arithmetical operations are performed, and afterwards the result is
re transformed to a decimal fraction, which is declared as the result of the new oper-
ation. Sure, the rule of shifting the point, should contain the new conceptual knowl-
edge of decimal fractions, but in most cases this rule (or a similar version) is made
conceptually vain by taking it as a technical device for counting the correct place of
the point by reading this off from the surface of the written symbols.

g" This kind of explaining the decimal fraction-by technically explaining the arithmetical
[ rules also is inherent in the usual manner of lining up the two decimal fractions by
- putting the points in a line and then doing the already known operation. “Suppose the
students have represented the procedure in such a way that they have connected
the mechanics of aligning digits with the combining of quantities measured with same
unit (ones, tens, hundreds, and so on). When these students encounter addition and
subtraction with decimal fractions, they ars in a good position to connect the fre-
quently taught procedure —tine up the decimal points — with combining quantities
measured with.the same unit. If they build the connection, the addition and subtrac-
tion procedure becomes part of the existing network, the network becomes enviched,
and adding and subtracting decimals is understood.” (Hiebert & Carpenter, 1992, p-
69). e o ' T

This reductive explanation of the arithmetical operations of decimal fractions with the
help of the known algorithms of written procedures for the arithmstical operations
displays two important aspects:

First; the new concept of decimal fractions is not used itself, but it is transformed mto
natural numbers students already are able to operate with.

Second, the rule of transforming decimal fractions into natural numbers, which
should conceptually regulate the use of the new sign of point (and in this way clarify
an important conceptual aspect of the decimal fraction) is devaluated to a
meaningless counting scheme.

When using the technique of lining up the numbers, the counting of the correct posi-
- tion of the point is even superfluous for addition and subiraction, thus really suggest-
ing that decimal fractions are some kind of natural numbers and not something con-
ceptually new. This kind of understanding decimal fractions as natural numbers is
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known from analyzing students errors. A widely used implicit idea of decimal
fractions is the undé:st,an_ding thét«thg,pp_int separates the given number with a point
into two natural numbers -(cf.. Wellenreuther & Zech, 1990). For instance, the
following types of transformations-and.arithmetical-operations could be observed
according to this peéspsctive:

1.25h —> 85 minutes

5.3+242—>745

18.27:9—23

02-04—>08
This way of understanding and of manipulating decimal fractions is in pnnclp!e justi-
fied on the same basis of conventional rules as described before:
Eirst, the decimal fractions are transformed into natural numbers for performing the
required operations.,
Second, the rule of transforming dacimal fractions into natural numbers is a meaning-
less scheme: there is one natural numberleft and one right to the point.

The analysis shows_that both ways of operating with decimal fractions, i.e. the stu- - .

dents' procedure and the "official” one, are justified on the same grounds; when re-
ducing the conCept of decimal fractions to natural numbers and their operations and
at the same time intending to make the rule of transformation as simple as possible
(an intention which necessarily leads to an evacuation of conceptual relations which

at the beginning have been contained in the meaning of the rule) then there is no-

possibility to explain why the students’ rule is incorrect. The correctness of rules to be
used and applied reduces to external social conventions only, it is the teacher who
decides which rule is correct.

This first example of introducing decimal numbers makes clear, that understanding a
new mathematical concept cannot be done by reducing it completely to concepts al-
ready known. When trying to enhance understanding by describing the operational
rules in such a reductive process, then there is the great danger of changing fotally
the status of the rules from mathematical operations referring to conceptual aspects
into formalized conventional recipes. Understanding is not the total integration into

the existing network of representations, but for the concept of decimal fractions it is -

the other way around: Decimal fraction symbols have not to be deciphered as natural

number symbols, but they the natural number symbols have to be re-considered as a-

kind of decimal fraction symbois (cf. Steinbring, 1989, 1991b, 1992)..
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In a second example we will analyze the understanding of written symbols and math-
ematical concepts with the help of introducing referential objects for providing math-
ematical meaning for the new symbols. Similar to the understanding of decimals, the
introduction of fractions often is done by transforming the new symbols into natural
numbers and performing the elementary arithmetical operations in this number do-
main. For example, the following operation with fractions 4/5 : 2/y5is explained
according to the recipe: "Fractions are divided by multiplying with the reciprocal value
of the second fraction. Fractions are multiplied by muttiplying the denominators and
muitiplying the numerators.” In this way one simply gets arithmetical operations
already known: ‘415 and 52 leading to the result: 8910 or 6. This kind of procedural
reduction of the new symbols to known symbols has been explained in the example
before. Now the focus is on the construction of referential meaning for the new
symbols.

TR e

Consider the following problem from a textbook for 6th-grade students:

1 ] 1 i
Ir e and cal
by measurement! F
Control by a caleulation!
Example: ' u
4 2
g5 =8 —_—
2. 4
15 5
l |
2.1 7.1 3.3 3.1 8 3 8 4
Aze_ P 97F VT 97 N §E

This problem deals with the division of fractions and tries to use a graphic diagram to
mediate in a direct way the meaning of fraction division. This contrast between for-
mula and graphic diagram is suitable to clarify some epistemological aspects be-
tween sign and object (or referent) in school mathematics. On the one side, there are
mathematical signs connected by some operational symbols, functioning as a little
system: ‘On the other side, there is a geometrical reference context, intended to fur-
nish the understanding of the signs and operations. The diagram should support the
process of constructing a meaning for the formula. The relational structures in the
geometrical diagram and the formula are the important aspects and not the signs it-
self.
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ng to the formula? Is it possible to deduce
0 conceive of the elements
e meaning of division?

Consequently, the intended expla-
I A certaln type of fractions
seems to be presupposed mdrcatmg a frrst reciprocal mterp!ay between diagram and
fonnula There are more indrcatrons for thls Interpla il In this, representation. a vari-
able comprehensnon of 1 or the unit |s necessary ‘The blg rectangle with the 15
squares once is the umt used to visualise the proportlons of 4/5 and 2115 as four rect-
anglés (with 3 squares each) and as a rectangle of 2 squares respectwely The com-
position of three squares to a rectangle represents a new unit or 1. When mterpretmg
the operation 4/ : 2115 6, the epistemological meaning of the result "6" changes ac-
cording to the changes of the unit. How is the 6 represented in the diagram? it cannot
be the sextuple of the original rectangle, hence no pure empirical element.

The 6 could mean: In 415 there are 6 times 2/15 or there are 6 pairs of two squares in
415. Or, interpreting 45 as 12115 as implicitly suggested in the diagram itself, the op-
eration modifies to: 12115 : 2/45 = 6. But this is nothing else than the operation: 12:2 =
6, because the denominator can be taken as a kind of "variable,” that is, the 15 could
also be 20, or 27, and so forth. In this division, in principle, the half is caléulated, a
division by 2 is made.

The analysis shows changing interpretations of the unit: First, the unit is represented
by the big rectangle of 15 squares, then one single square also represents the unit.
The epistemological reason. is that a fraction like2/15 is not simply and exclusively
the relation of the two concrete numbers 12 and 15, but a single representative of a
ot of such relations: 4/, 8/10, 16/29, 20125, ... What is defined as the unit in the dia-
gram is partly arbitrary and made by some convention, and, furthermore, the.con-
straints of the geometrical diagram and of the given numerical sign structure deter-
mine partly the choice of the unit. For instance, for this arithmetical problem, it would
not be an adequate choice to take the rectangle of 5 x 7 squares as the unit; wheras
a rectangle of 6 x 10 squares, ‘or subdivision of the squares into quarters, would be
valid.
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ave denominators that are

The intentional variability implicit in the numerical structure of a fraction is partly de-
stroyed in the geometrical diagram used to represent the fraction; this variability has
‘1o be restored in the diagram by means of flexibly changing the unit. The concrete
single diagram, with its parameters once chosen, has to be concelved of as a "gen-
eral® diagram.

Th|s shows that the meaning of the new symbois cannot be directly provided by the
grven referential context in its customary perception. When starung with visual.repre-
sentations of units and parts for displaying the idea of fractions as a means to dis-
tribute something, there is then a sudden shift in this relation between the symbols
and their referential context when dealing with the division of fractions which cannot
; be explained within the pre-given frame of empirical things and their concrete distri-
F bution. The symbol system: 4/5 : 2/15 does not simply show a greater complexity, but
E’ also changes drastically its referential relationship: the old network of representatrons
has changed in a way that now new relations in this network have to be constructed.

The diagram no longer displays objects (rectangles of different shapes) but relations
between objects {the relation 4/5 or the *unit” - relation in all possrbte combmations of
geometrical objects).

Understandmg new mathematical symbols, being able to decipher epistemological
and social signs requires the construction of a relation between the knowledge al-
ready known and the new concept (the symbol with its new meaning).

a priori mathematical
Imowledge

new mathematical
knowledge:

s symbols with : :
_referential
r,_/" contexts

Thls relation between the new and the old knowledge cannot be a complete
reduction of the new symbols and their operations to the old symbols and -their
operatrons With the intention to base the understanding exclusively .on the
procedural links between the new and old symbols, there is the danger of converting
mathematical rules to meaningless conventional recipes. And when relating the new
concepts to the referential objects already used for the known concepts, there also is
8 ‘danger of simplifying the meaning of the new concepts by making the symbols

33



names for objects (cf Stembrmg, 1988) The new mathematical concept has to be
conceived of as a new proper symbol wnth a changed referential context: The new
intentional references of the symbol which still have to be deciphered forces the
transformation and’ change of the old referential context. This perspective to look
from the new concepts towards the old concepts is only possible if there is an
interplay between: the epistemological and socsal / conventional aspects of
mathematical knowledge

3) Classroom Interaction and understanding

When trying to investigate processes of understanding mathematics in everyday
classroom settings at once it becomes obvious that every person's inclination to un-
derstand always means to discover the intentional meaning of the epistemological
and of the social, conventionalized signs and that he/she has to relate them in some
way. Thus, for students it is important to figure out the teacher's intentions with re-

gard to the school mathematical knowledge, and also the teacher has to become

clear about the intentions students follow in processes of understanding mathemat-
ics. And this reciprocal way of understanding the infentions of the partners for being
able to understand the new mathematical knowledge relies on the intricate relation
between the “a priori mathematical knowledge® and the "new mathematical knowl-
edge” (in its twofold dimensions), as well as for students as for the teacher.

The following analysis of two short classroom episodes will demonstrate in more de-
tail the dependencies between epistemological and social/conventional aspects of
the knowledge in question and how the students® intention to understand relates to
the understanding the mathematics teacher has of the students’ understanding. The
first example concentrates on how the students are pushed to follow the a priori un-
derstanding of the teacher which leads to an acceptance of the conventionalized as-
pects of the knowledge without really understanding the epistemological point of the
concept dealt with. The focus of the second exampie is on how a student under-
stands an epistemological relation of the new mathematical knowledge which is not
accepted by the mathematics teacher because she strictly adheres to her fixed a pri-
ori mathematical knowledge.

During the first episode dealing with the topic "What Is relative frequency?* (see ap-
pendix 1), the teacher tries to recall the concept of relative frequency. She starts with

the question: "What do we understand by relative frequency, Markus?* (1). Already -
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the way of formulating "what do we understand ...* indicates that there was some ac-
cepted, conventionalized form of noting the concept of relative frequency. The first
student, Markus, collects nearly all the necessary elements, i.e. "the number of cases
‘observed”, "the number of trials”, and he points out in a way of joking that these ele-
ments have to be combined.

_Then the student Klaus proceeds‘in another direction, saying “Relative frequency
means for example often, it is, hem, a medium value." (6). The teacher rejects his

for combining the elements already identified: " ... the trials are divided with the
cases observed, | think, or Amultipli'ed.' (8,10). This Is strongly approved by the
teacher with the statement: *Markus did already say it quite correct, just the decisive
word did miss..." (11). This now clarifies the accepted frame for the students to han-~
die the question: The way of searching the needed pieces of a puzzle is expected,
the two pieces "the number of cases observed" and "the number of trials" are already
found, another decisive piece (the mathematical combination of the two other) is stilf
. missing. The very quick pfoposals “*Subtract* and “Take it minus" provoke a severe
- refutation by the teacher: *That's incredible!" (15), leading to an aitemative approach
by asking for the way of how this is written down.

_The phase (17 - 42) opened by the question: *..." you should ask how you will write it
--down?" (17) introduces the context of fraction and fractional calculus into the discus-
sion. Unlike she expected, the key words "fraction” and "fractional calculus" (24,26) .
evoke students' contributions. as °...subtracted in the fractional calculus.” {31),
*...one as denominator and the other as numerator, ..."(35,36), "To calculate a
fraction!" (37), and "To reduce to the common denominator.” (42). The teacher
simply intended to boint to the link between fraction and division, a seemingly simple
transfer which only could be made toward the end of this phase in a funnel like _
pattem (Bauersfeld, 1978)._

The teacher's question: "... what kind of calculation is it then, if you write a fraction?"
(38,39) forces the "correct” answer: "Dividing". The last piece of puzzle is found, now
it remains to combine all three in the right way (phase 43 — 48). The first offer made
by the teacher: "... relative frequency is ... the number of cases divided by ....?
(43,44) does not use the detaited vocabulary and consequently the answer of a stu-

dent does not fit: " ... the number of cases cbsarved.” (45). At last the correct formu-
Jlation is initiated by the repeated complete teacher question: “No, the cases
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proposal, and the student Frank goes on with the old idea, trying some possibilities . -



observed divideii by’ .2 Ahal* (46) Fmally, relahve frequency is also formulated
with means of fractional calculus AT

The earlier COditied'officialv understénding'bf the concept of telative frequency is rep-

resented in the statement: "Relative frequency is the numbsér of cases observed di-
vided by the number of trials.” This verbal descripﬂon often is v:sualized asa fraction

in the following manner:

: number of cases observed
relative frequency = —— number of trials -

This representatlon in form of a fraction simply should express the operation of divi-
sion, no further relations to fractional calculus are implied. The teacher starts the rep-
etition of the concept of relative frequency with this accepted "definition” of the con-
cept; this seems to represent her a priori mathematical knowledge what has to be re-
constructed.

Her fcrmuiation.;saying "What do we understand by relative frequency ...7" (1) is a
signal pointing to the fact, that there is nothing completely new to be discovered, but

something already inti roduced and codified. Nevertheless, the student Klaus presents -

somethmg very open, which could lead to an epistemological and conceptual consid-
eration of this concept. But the teacher strictly refutes this orientation, and she ad-
heres to the course already taken, i.e. searching for the matchind pieces of the con-
ventionalized definition. The two main ingredients are already detected, and the
teacher signals that only “the decisive word" still misses. This sign can cnly be partly
interpreted by the students: they know to be on the right track, and they have to ook
for a mathematical aperation, but which one?

This becomes a meaningless guessing game, and the teacher giveé another signal
demandihg the students to remember how the relative frequency is wiitten down.
This produces the framing of a fraction, evoking all sorts of descriptions connected
with fractions and fractional calculus. The signal *fraction® and “fractional calculus®

the students misleads in some way, and they are not able to simply. decipher the .

analogy of the fraction bar with the operation of division, the.teacher is aiming at.
This is only possnble after some discussion and with a further direct signal: "... what
kind of calculatlon is it then, if you write a fraction?" (38, 39). And also in. the end of
this epnsode, the teacher feels forced fo make her signal. very explicit for.getting the
correct expected answers
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-The signals given by the teacher in the course of this episode, intend to orientate the
students towards the conventional agreed “definition® of the concept of relative fre-
quency. This intention is understood very quickly by most students, and the rejection
of Klaus' proposal perhaps leading away from this orientation reinforces the under-
standing of this intention. The more the accepted answers are restricted to the so-
cial/conventional side, the more the students are deprived of some epistemological
means of justification. They are only able to make proposals to be approved or re-
jected by the teacher. The epistemological helplessness of the students becomes
obvious when the signal "fraction” is understood too extensively instead of simply
reading off the operation of division from the fraction bar.

The a priori knowledge of the teacher dominates the course of this episode: first she
starts with her fixed understanding of the concept of relative frequency as it already
has-been “defined” in the class as a special fraction; second she presupposes that
her students already had armived at a similar "definition” as she herself. In this way,
the process of understanding simply reduced to something of re-finding a conven-
tionalized description for a concept already given. And all the signals the students
are giving during this discussion are simply judged by the teacher according to how
they ensured to reach as directly as possible the goal aimed at. The restriction of the
interaction on the social/conventional level makes the understanding of a piece of
mathematical knowledge which is already judged as definitely given and fixed a priori
a process of negotiating the right words, names and rules, and its validity in most
cases only can be delivered by the teacher's authority (cf. Steinbring, 1991a).

During the second episode coping with "The area formula for the trapezoid® (see ap-
‘pendix 2), the students are asked to explore in two different ways a new area for-
‘mula; They already have some experiences, because they have in a similar way dis-
ussed the formula for the parallelogram. With her first long statement (1-8) the
acher gives some introducing hints and she signals positively and negatively how
the two expected ways of geometrical construction and argumentation might
nction. For the first solution, she indicates to enlarge the trapezoid and to construct -
‘a parallelogram. With reference to the fabrication of the area formula for the
arallelogram done the day before, she explicitly points to the way of how to cut off
‘angles-and adding them on other sides for bringing about the second solution; here,
she emphasizes, it is not possible to cut off a whole angle, as in the case of the
érallelpgram. but one has still to try to construct a rectangle.
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‘ on;.now; the discussion of a possnble

| «v..._make parallel to, to this
ngle.and.on the other side a tri-

5

According to her hints given at the beginning, the teacher refuses this proposal, be-
cause she understands, a whole angle, i.e. the big triangle should be-cut off, which is
not possible as she believes: "... the problem is, that one only knows the whole basis
line g4 and not only this little piece there. That's totally unknown. Well, when you re-
ally have concrete lengths, you could draw and measure it. But in general | can't do
it. How should | then say, g, minus some small piece, but how long is this little piece
at all? Hence, that does not work!" (17 - 21). By looking at only one triangle to be cut
off from the trapezoid, the first impression is that one cannot arrive at a formula, be-
cause one cannot determine explicitly the basis line of this triangle. (This approach
could lead to a solution, if also the other triangle on the left side is cut off, then the
basis lines of both triangles together would be g4 - g, which would be sufficient to
know for deducing a formula for the trapezoid.)

The student is not impressed by the teacher's argument, he takes up again his idea,
which seems to be different from the idea turned: down by the teacher. "Yes, if we
now, ehm the longer side .... well, take g, minus g, ... .. and then, ehm, then one
has, there would be a remainder; let's say g, would be 5, hence 8 minus 5, giving 3
and then, if one would push now g, backwards, in a way giving a right angle, then
something would remain there on the right side ... * (23, 26-20). The teacher wants
not to follow his idea, but the student continues: ... | do mean something else, there
you take 5 times h, then, what is left here, there remains 3 centimeters, that is a
slope, yes, then, ehm, you also fake the slope ... ... ... the remainder is 3 times the
height then, divided by two ..." (32-34, 35). The teacher interjects: ™... | really have
understood this, ..." (35), when the student devslops his line of argumentation, but

she did not understand the student's idea, but intends to explain, that she has.under--
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stood really the apparent incormrectness of his proposal; with her last contribution the
teacher begins to present what she thinks is a correct second solution (37-40).

was not shown in this way by the student, he simply expressed his idea verbally. One
change the student makes is to substitute the variables g, and g, by concrete num-
bers, but still he is able to use these numbers for developing in principle a correct
universal formula. The student has transformed the trapezoid to a rectangle together
with a triangle in the following way:

9
5

h

8 g

By what he has called * ... if one would push now g, backwards ..." the student con-
structs a rectangle and a rectangular triangle allowingfor the calculation of the whole
area. And then he determines the areas of both surfaces: 5-h for the rectangle and
Zhyy ‘as the area for the triangle. If the teacher could accept this, a retransiation of
the concrete values 5, 3, and 8 into the corresponding variables could be made _
giving a general formula for the area of the trapezoid:

‘(91'92)"‘._ 2-go-h+{gy-go)h _ (9;+g,)h
2 - 2 - 2

A=g, -h+
Thisis a perfect solution, but unfortunately not in the scope of the teacher, and she is
not able or not willing to really uncover the student's argumentation. She has a fixed
a priori geometrical construction in mind for the second solution which prevents her -
understanding of the student’s solution. In her last contribution the teacher exﬁlains
‘her expectation. The students should have drawn the medium line, just in agreement
with.the earlier given hint, not to cut off a whole angle but only parts for constructmg
: m4 this way a rectangle:

' en developing thiis construction of the medium fine, same problems might arise as
assified generally unsolvable by the teacher, i.e. to detérmine the length of the ba- -
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in égénecaﬂy determined as

it episode, both on the side
to the episode discussed be-
rio| knbwledge about the admit-
ted geometncal C ‘the a a fc formula for the two
solutions sought for At the begmmng, the'teacher informs in some way the students
about her intentions and her a priori ideas of the mathematical problem And the first
solution is presented just as the teacher expected: the students constructed the right
parallelogram with area twice as big as that of the trapezoid, thus developing the cor-
rect formula. All thé signals the teacher has given before, could be deciphered by the
students in the expected way.

fore, also the teacher here

When discussing the second solution, this frame of trying to correctly decipher the
signals given before and keeping to the further hints, rejections and reinforcementis
of the teacher changes One student seems to be very sure about his solution, and
he stays presenting it despite serious counter remarks made by the teacher, even
criticizing the mathematicél correctness and the impossibility of the. proposed
solution. First, the teacher's reactions intend to signal that the student, as others too,
is pursuing a false direction: "... yes, ehm, some others also made this p_n:oposal, v
(15), and: “*Hence, that does not work!" (21), or later: "... pay aftention, ..." (30). But
because the student is not sensible to the teacher's hints, the teacher now directly re-
jects the student's:proposal: “... | really have understood this, ..." {35) expressing in

this way the student should definitely stop now presenting his terrible argumentation. ’

At last, the teacher introduces her correct mathematical deduction of the second so-
lution with a loud and distinct “... nol!".

Never, the student-is willing to quit his argumentation and to enter the intended frame
of discussion trying to uncover the a priori fixed geometrical construction the teacher
has in mind. No remark of the teacher hinders the student to finish his
argumentation, which aiways is in conflict with the solution the teacher is aiming at.
The discussion of the first solutlon develops accordlng to the expected context, the
students refer fo the teacher's ideas and try to match their own contributions to the

social conventions and expectations. Now. there is a rupture of this former implicit:
agreement, one student presents a complete new and unforeseen solution; the
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: fi_gal-,cqmplete'drawing with the .

iteacher is unable to decipher really the students proposal and at the same time this
is prevented by the fact that she always has in mind her own a priori idea, she wants
to push forward and she uses to reject the student's proposal. - -

uring this short episode analyzed, the teacher is not able to mave the interaction
into the planned frame, nor to reduce the mathematical discussion solely on the so-
_cial/conventional level; the student violates in some sense the conventions of how to
proceed in classroom discussion when developing new knowledge in agreement with
the teacher's expectations, requirements and her definition of the accepted context
and manners of justifying new knowledge {mostly in a way of reducing it to the
teacher's implicit or explicit ideas and demands).

The persistent attitude of the student, based on his conviction to have a ,
mathematical solution which is always put into conflict-with the teacher's expectation,
is a main reason that here the process of understanding focuses-on epistemological
aspects of the new knowledge. A really changed perspective from the new
knowledge (i.e. the area formula developed in the student's argumentation) is
possible toward the a priori knowledge giving new insights for the oid knowledge. But
“the teacher remains unaware of this, she is not able to really understand that this
'student has made an advanced mathematical understanding of the area formuila for
';Wthe trapezoid and has not simply discovered the already existing solution of the . -
‘teacher by reducing all his ideas and proposals to this ready made old knowledge, by
~entering the question-answer game between students and teacher on the social/
‘conventional level.

 ”4) The necessary equilibrium between social and epistemological aspects in
= " interactive processes of understanding — Consequences 7

e-hayve started our reflection about the problem of understanding mathematics in

ial and epistemological signs and symbois. An important aspect inherent in this idea
s the fact, that signs and symbols posses &an intentionality, i.e. they are referring to

s well as in social/ communicative regard. The intentionality -of signs and symbols .-

plays an openness which at the same time cannot be arbitrary but has to be
d by eplstemologlcal constraints and by social conventions. -
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nteractive processes with the description that understanding is the deciphering of so- ..

ing-else which has to be detected and to be constructed, in epistemological -



tance; the variables x, y and a,
thodically ‘desired by the teacher);
sctly the implicit communicative signals
ur two short epiade). In this way
i ‘atthe same time is a process of
mutually framing hte tionality of thi signsand _;ﬁbo‘lsivyhich are communicated
{cf. Baue‘rsfeld,*_1983; 1988; Voigt; 1984¢ "»1-9&5_)-. Thé'»feedback one gets on the re-_
mérks made, configurates in some instances the Intentionality of signs and symbols
under discussion. :

During classroom interaction when trying to organize the understanding of new
mathematicél khoWIedge, not only the reciprocal framing and interpreting of signs
and symbols can be observed, this interactive negotiation also is based on a discur-
sive frame structuring and legitimizing the process of understanding and what are ac-

cepted forms of understanding. Thus, understanding a mathematical concept or »

problem in classroom teaching, is not simply a direct, right determination nf the inten-
tionality of the mathematical symbols in question, but what could be the right and ad-
equate interpretation also depends on the social and conventional rules and patterns
of what is an accepted understanding, which in this way can be reproduced and
communicated, that is an understanding which could also be understood ny the other
pariners of‘the social environment (cf. Maier & Voigt, 1989; Voigt, 1984b).

Accordingly, the understanding of mathematical knowledge is a reciprocal relation-.

ship of understanding the new mathematical knowledge in its own right (i.e. integrat-

ing the old knowledge structure into the future, new knowledge structure (as in the

example of the negative numbers)), and at the same time of organizing and formula-
ing this understanding of new knowledge in the frame of the conventional, legitimized

and accepted patterns of social knowledge justification' (or of demonstrating the ne-

cessity of modifying the social, conventional framework). The student has to ‘under-

stand the new mathematics and at the same time he has to be able to exn{ess his_.'
mathematical understanding in the setting of the conventional social patterns,ldgz_-._ 5
scriptions and metaphors. And both requirements have to be fulfilled until lt can be )

*verified” that the sfudent really has understood.

This socially conventionalized discursive frame of understanding is indispensablé;
but it cannot be conceived of as a fixed organizational scheme according to whlqn'
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understanding mathematics could be correctly defined or even be deduced. It de-
scribes, for instance, what are legitimate patterns of mathematical argumentation,

rigour is needed, whether an example is sufficient as a general argument, ete. In this
modifications occurring in the course of fy rther mathematical development,

- The reciprocal,relationship between directly Understanding the new mathematical
knowledge and organizing it in a socially conventionalized discursive frame of un-
derstanding is based on an equilibrium between social and epistemological aspects
of mathematical knowledge. Certain intentions of mathematical signs and symbols
have to be agreed upon socially, generalizations of mathematical concepts growing
in the course of knowledge development have to be socially sanctioned, and the re-
lational structure of this enlarging new knowledge has to be controlled epistemologi-
caily. Epistemological changes and reorganizations of mathematical knowledge can
only be performed if they are in agreement with the socially conventionalized

epistemnological character of mathematics in a way that their modifications and
changes are subject to evolving new epistemological constraints.

nizing it in a socially conventionalized discursive frame of understanding, to some ex-
tend, is destroyed in everyday mathematics teaching. The discursive pattern be-

comes an interactively constituted methodical ceremonial for generating common un-

derstanding of schoolmathematical knowledge. The essence of this methodical cer-

emonial is to coliect the necessary elements (i.e. descriptions and operational signs)

for the knowledge under discussion and to combine them for getting the expected

methgdical metaphor for the mathematical knowledge (cf. Steinbring, 1991¢). In our.
first episode, this was the concept of relative frequency, described by the statement

elative frequency is the number of cases observed divided by the number of tri-
als.”, written down in the shape of a fraction: . _

- number of cases observed
relative frequency = = imber of tials

methodical metaphors of a parallelogram {made- of two trapezoids) and a-rectangle

elements, to combine them and to reconstruct what the teacher already knows.
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what are accepted forms of proof, what are accepted analogies, what degree of .

way the conventionalized discursive frame of understanding is open to change and

patterns of argumentation and understanding, which themselves depend on the _

The equilibrium between understanding the new mathematical knowledge and orga- .

For the second episode, the teacher expected the construction of the geometrical

developing the area formula; the students are expected to collect all necessary



The main reason for the dominance of this Tethodical ceremonial is the central ob-
jective of mathematics teaching {6 ke mattiematical understanding (directly) pos-
sible, and this simultaneously requires that the'teacher already has understood. On
the basis of his understanding, i:6; his fixed & prior knowledge, the teacher now or-
ganizes the methodical course of his teaching, which, in many cases during everyday
teacher-student-interaction, causes the total replacement of epistemological aspects
of knowladge by conventionalized communicative strategies. Because the teacher al-
ready-understood the problem and integrated all knowledge elements Into a network
of representation, for the students only remain the correct discovering of these ele-
ments, a search which is guided and made easy by the teacher's social signs and
hints indicating for the students whether they are on the right track and how far they
are still away from the goal. '

A dilemma arises for real interactive processes of mathematical understanding: the
more and better the teacher already has understood the new mathematical knowl-
edge in question (and, of courss, the teacher has the strong obligation to understand

all the mathematics before}, the greater the danger, that the organizing of processes '

of understanding in mathematics teaching degenerates to the described methodical
ceremonial for generating common understanding of schoolmathematical knowledge,
which in its essence means a prevention of true mathematical understanding. The
first episode shows the degeneration of the concept of relative frequency (indeed
some kind of medium value) to a written (and spoken) form of fraction (numerator
and denominator): The epistemological relation of this mathematical concept is in no
way operationally modeled. And Iri the"second episode, the teacher cannot under-

stand (i.e. integrate into her a priori knowledge) the epistemological reflections tha'

student is developing for finding the area formula.

A re-establishment of the squilibrium between understanding the new mathematical
knowledge and organizing it in a socially conventionalized discursive frame of un-
derstanding is only possible in everyday mathematics interaction, when the teacher
becomes aware that he/she himselffherself has to really understand something in
this process, and that not everything is already understood before. In most cases,
this understanding the teacher has to construct concerns the problems students have

when actually going through an interactive process of _understa_nqing, and even the .

understanding of new mathematical knowledge might be required by the teacher,

100. In the first episode, the consideration of the stddentfs remar_k:"‘l'j\,el:aﬂye_‘, :
frequency means for example offen, it is, hem, a medium value.” (6) could have led’
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to a better mathematical understanding of the concept than the formal translation into
the form of a fraction, but this was impossible because of the definite a priori
knowledge, the‘teacher strongly relied on.

The second episode clearly shows, that there really is somethiffg - even mathemati- '
cally- the teacher has to understand, what she did not know before, but this is an
understanding she rgfused because of the obvious differences to her a priori knowl-
edge on which she wanted to base her teaching process methodically. indeed, the
argumentation of the student is not easy to understand and it is not only the
collection of already existing elements and its operational combination. It is the
actual, developmental construction of mathematical relations using simultaneously
some social conventions. The central idea of understanding for the student is the
variable changement of the trapezoid to a geometrical surface fulfilling different .
requirements: Keeping the area unchanged and producing'geometrical figures of
which the area formulae are already known. At the same time the student uses a
convention, widely accepted by students, namely taking concrete numbers instead “
of variables, but using them without any further restriction. A real mathematical
convention, whose acceptability might be ,negotiated.

The analysis of the student's process of understanding shows the interrelation of so-
cial, conventional and epistemological constraints to be developed and related for
~really producing understanding, i.e. for grasping actively the new meaning. Here, the
_rtveacher herself really could get much new understanding, instead of trying to force
“the student to enter her fixed methodical frame of understanding. In this way, the
: ‘vtveacher trying to understand the student's process of understanding cbuld then sup-
port the integration of this kind of understanding into the conventional, Iegitimized“
and accepted patterns of social knowledge justification for the other studénts. This
would aliow to question and to modify the social conventions of codifying the
.understanding of schoolmathematical knowledge according to new,.unforeseen
- gpistemologicat insights. :
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S.: If you take that, the number of the, the cases observed, yes, and the number
of trials, hem, well, if you then, one as denominator and the other as
numerator, hem, | don't know what you mean.

S.: To calculate a fraction!
i T Either to write as a fraction, or what kind of calculation is it then, if you write a
with the number of trials; well yo _vavll jlntg one pot, and stir it up. fraction?
Hahaha, good appetlte! ' S.: Dividing.
Klaus? AU T.: Yes, that's what | think too. Ok., yes. Nobody doesn't know it any more?!
Relative frequency-means for example often, it is, hem, a medium value. S.: To reduce to the common denominator.
Yes, what....? Then it's better to say nothmgl T.. Well, relative frequency is, and Markus has said it correctly, the number of
Relative frequency, Frank? - cases divided by ...?
Hem, relative frequency does mean, when the trials are dwuded with the 8.: ... the number of cases observed.
cases observed, | think, or multiplied. T.. No, the cases observed divided by ...? Ahal Or, if you formulate it as Ulii

Markus did already say it quite correct, just the decisive word did miss,
.. but now you do know it, Markus?
Subtract.
Take it minus.
That's incredible! Silvia?
In a chance experiment, the number of cases observed, when you
Hern, Markus, you should ask how you will write it down?
Oh yes, OK., well, relative frequency is, when you, the number of trials with
the number of cases observed, well, if you then ..
But how you write it down? How do you write it down’?
Come on, write it on the blackboard!
Shortly writing down.
Thank you, Ulli.
Whiting as a fraction.
Aha, as a fraction, so, what Is it then, what kind of calculus?
Fractional calculus.
Well, a complete sentence, Markus!
Hem, well relative frequency is ...
Let it aside.
.. the number of, hem, the number of cases observed with the number of
tnals, yes, subtracted in the fractional calculus.
Subtracted in the fractional calculus!i! Markus, that's incredible!
Ulli, formulate it reasonably!

said, the cases observed as numerator and the number of trials as ...?
S.: Denominator.
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_npa_dps.z_ ranscriptz gradea 'The area formula for the trapezoid®

Some propernes of the trapezoid”are discussed in the class and compared with the _
parallelogram and the rectangle The students have been asked by the teacher to
explore the area formula of the trapezond in partner work. She gives the following
hints.:

T.: The problem is o find a formula for the area ... there are two possibilities to
come to a formula for the area ... you can, eh, enlarge this trapezoid ... eh ..
but one can aiso draw it in some other way, or extend it, that one gets a
parallelogram afterwards ... the other possibility is, that you indeed try, as we
have done it yesterday with the parallelogram, that somehow one divides it,
cutting off angles and adding them on the other side, so that one gets a

rectangle at the end ... No, not a whole angle, that does not work ... only paris! .

You should try it in your groups!

Subsequent to the group work of the students, the proposals for the solutions are
discussed. The first proposal totally is in accordance with the expectations of the
teacher. Some students have turned up side down a copy of the trapezoid and havi
put it along side to the old trapezoid, having now a parallelogram from what they

know the area formula; they use it correctly for developing the area formula of the

9.+, -h
2

trapezoid getting in this way: A= . In the following the second proposal

for getting the formula is discussed.

T.. ... OK,, the second possibility, even if | would like to stop teaching here ..
Ehm, the second possibility ... .

8.: .. could one not, this line here, the height ...

S.: ... could you please speak a bit louder ... )

S ... make parallel to, to this other line, and then one would have
such a quadrangle and on the other side a triangle ...

T.. ..yes, ehm, some others also made this proposal, .... only the problem is if |
would draw a line of height here, yes, and this triangle is cut off there, with ali
these proposals and possibilities the problem is, that one only knows the

50

whole basis line g4 and not only this littte piece there. That's totally unknown.
Well, when you really have concrete lengths, you could draw and measure it.
But in general I can't do it. Hoe should | then say, gq minus some small piece,
but how long is this little piece at all? Hence, that does not work! ... Hem, |
would like to have another possibility ... Jochen!

S.: Yes, if we now, ehm the longer side .... well, take g, minus g,

T.. ..aha...

S.: .. and then, ehm, then one has, there would be a remainder; let's say g, would
be 5, hence 8 minus 5, giving 3 and then, if one would push now [+ 29
backwards, in a way giving a right angle, then something would remain there
on the right side ...

T.: ... pay attention, now you are again coming up with pushing backwards 92
later we will deal with it ...

S.. ... 1 do mean something else, there you take 5 times h, then, what is left here,
there remains 3 centimeters, that is a slope, yes, then, ehm, you also take the
slope ... B

T.: ... 1really have understood this, ...

S.. ... the remainder is 3 times the height then, divided by two ...

T.: ... nolt A second possibility, ehm, one tries to construct a rectangle, and | have
seen how some of you have used the drawing triangle and they have moved it
in this way ... and at this one point ..... | will draw here, in this trapezoid
something like a medium line .... but first of ail one has fo get this idea, OK!
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