

Towards a Comprehensive
Agent-Oriented Software

Engineering Methodology

Dissertation

vorgelegt dem Fachbereich Wirtschaftswissenschaften,
der Universität Duisburg-Essen

(Campus Essen)

von Tawfig M. Abdelaziz, geboren in Benghazi-Libya

zur Erlangung des Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Gutachter:
Prof. Dr. Rainer Unland
Prof. Dr. Cherif Branki

 Tag der mündlichen Prüfung: 17.10.2008

 II

 III

ABSTRACT

Recently, agent systems have proven to be a powerful new approach for designing
and developing complex and distributed software systems. The agent area is one of
the most dynamic and exciting areas in computer science today, because of the agents
ability to impact the lives and work of all of us. Developing multi-agent systems for
complex and distributed systems entails a robust methodology to assist developers to
develop such systems in appropriate way. In the last ten years, many of agent oriented
methodologies have been proposed. Although, these methodologies are based on
strong basis they still suffer from a set of shortcomings and they still have the
problems of traditional distributed systems as well as the difficulties that arise from
flexibility requirements and sophisticated interactions. This thesis proposed a new
agent oriented software engineering methodology called: Multi-Agent System
Development (MASD) for development of multi-agent systems. The new
methodology is provided by a set of guidelines, methods, models, and techniques that
facilitate a systematic software development process. The thesis makes the following
contributions: The main contribution of this thesis is to build a new methodology for
the development of multi-agent systems. It is based upon the previous existing
methodologies. It is aimed to develop a complete life-cycle methodology for designing
and developing MASs. The new methodology is considered as an attempt to solve
some of the problems that existing methodologies suffer from. The new methodology
is established based on three fundamental aspects: concepts, models, and process.
These three aspects are considered as a foundation for building a solid methodology.
The concepts are all the necessary MAS concepts that should be available in order to
build the models of the new methodology in a correct manner. The models include
modeling techniques, modeling languages, a diagramming notation, and tools that can
be used to analysis and design the agent system. The process is a set of steps or phases
describe how the new methodology works in detail. The new methodology is built to
bridge the gap between design models and existing agent implementation languages. It
provides refined design models that can be directly implemented in an available
programming language or use a dedicated agent-oriented programming language
which provides constructs to implement the high-level design concepts such as Jadex,
JADE, JACK, etc. The MASD methodology also uses an important concept called
triggers and relies heavily on agent roles. The role concept is considered one of the
most important aspects that represent agent behaviour. The trigger concept is also
considered as an important aspect that represents agent reactivity. The new
methodology captures the social agent aspects by utilizing well-known techniques such
as use case maps, which enable developers to identify social aspects from the problem
specification. MASD methodology is developed based on the essential software
engineering issues such as preciseness, accessibility, expressiveness, domain
applicability, modularity, refinement, model derivation, traceability, and clear
definitions. The MASD methodology is provided by a plain and understandable
development process through the methodology phases. It captures the holistic view of
the system components, and commutative aspects, which should be recognized before
designing the methodology models. This is achieved by using well-known techniques
such as UCMs and UML UCDs.

 IV

The resulting methodology was obtained by performing several steps. First, a
review study “literature review” of different agent methodologies is carried out to
capture their strengths and weaknesses. This review study started with the conceptual
framework for MAS to discuss the common terms and concepts that are used in the
thesis. The aim is to establish the characteristics of agent-oriented methodologies, and
see how these characteristics are suited to develop multi-agent systems. Secondly, a
requirement for a novel methodology is presented. These requirements are discussed in
detail based on the three categories: concepts, models, and process. Thirdly, the new
mature methodology is developed based on existing methodologies. The MASD
methodology is composed of four phases: the system requirement phase, analysis phase,
design phase and implementation phase. The new methodology covers the whole life
cycle of agent system development, from requirement analysis, architecture design,
and detailed design to implementation. Fourthly, the methodology is illustrated by a
case study on an agent-based car rental system. Finally, a framework for evaluating
agent-oriented methodologies is performed. Four methodologies including MASD are
evaluated and compared by performing a feature analysis. This is carried out by
evaluating the strengths and weaknesses of each participating methodology using a
proposed evaluation framework called the Multi-agent System Analysis and Design
Framework (MASADF). The evaluation framework addresses several major aspects of
agent-oriented methodologies, such as: concepts, models and process.

 V

ACKNOWLEDGEMENT

First and foremost, I wish to express my deepest gratitude to my supervisor Prof.
Rainer Unland (University of Duisburg-Essen, Germany) for his valuable advice and
guidance of this work. He has helped me in shaping the research from day one, pushed
me to get through the inevitable research setbacks, and encouraged me to achieve to
the best of my ability. Without his support and encouragement, this dissertation would
not have happened. Special thanks and gratitude to Dr Mohammed Elammari
(University of Garyounis, Libya) for his genuine support, valuable advice and sincere
comments which helped me a lot to finish this study. I also want to express my thanks
and gratitude to Prof. Cherif Branki (University of West Scotland, UK) for reviewing
the thesis and for his valuable comments and criticism during the preparation of the
manuscript as well as for revising the English language of the manuscript. The
Institute for Computer Science and Business Information Systems (ICB), at the
University of Duisburg-Essen, Essen, provided support, including working
equipments and research space. I am very grateful to the authority of the University of
Duisburg-Essen. I would like to thank many people for their support, encouragement
and guidance during my years as a graduate student at Duisburg-Essen University

I also thank other persons such as Dr Faheem Bukhatwa (Griffith College

Dublin), Dr. Rafi Mansor, Dr Osman Khan (University of Garyounis, Libya), Dr.
Stefan Hanenberg (University of Duisburg-Essen, Germany) and Mr. Dawod Kseibat
(University of Bedfordshire, UK) for the valuable discussions and comments
regarding my research.

I also thank my committee members, whose comments were helpful in refining

the dissertation into its final form. Special thanks are due to the staff of the Institute
for Computer Science and Business Information Systems (ICB) at the University of
Duisburg-Essen, and particularly to Raed Issa, Dominik Stein, Frank Busher, Frau
Veronika Muntoni, Gottfried Merkel and Cristina Braun for their assistance.

My family has always been, and continues to be there for me at all times. Finally, I

am particularly grateful to my wife Amina El-tawil who has been incredibly
supportive, understanding, and encouraging as she has been through the entire
graduate experience with me.

 VI

 1

CONTENTS

ABSTRACT ...III
ACKNOWLEDGEMENT ..V
CONTENTS...1
TABLE OF FIGURES .. 6
TABLES... 8

PART ONE INTRODUCTION AND MOTIVATION.........................9
CHAPTER ONE INTRODUCTION... 10
CHAPTER TWO MOTIVATION AND OBJECTIVES...................................... 15

2.1 Introduction ... 15
2.2 Motivation .. 15
2.2.1 Problem Statement... 15
2.2.2 Towards a Mature Agent-Oriented Methodology... 17
2.3 Research Objectives .. 18
2.4 Contribution of the Thesis... 19
2.5 Chapter Summary.. 20

CHAPTER THREE LITERATURE REVIEW.. 21
3.1 Introduction ... 21
3.2 MAS Conceptual Framework .. 21
3.3 Agent Architectures .. 26
3.3.1 BDI Agent Architecture .. 26
3.3.2 Reactive Agent Architectures ... 26
3.3.3 Planning Agent Architecture .. 27
3.3.4 Knowledge-Based Agent Architectures .. 27
3.3.5 Deliberative Agent Architectures... 28
3.4 Agent-Oriented Methodologies... 28
3.4.1 Classification of Agent-Oriented Methodologies.. 30
3.4.1.1 Gaia Methodology... 31
3.4.1.2 HLIM Methodology.. 33
3.4.1.3 The PASSI Methodology.. 35
3.4.1.4 MaSE Methodology .. 37
3.4.1.5 MAS-CommonKADS Methodology ... 38
3.5 Agent Methodologies Discussion ... 40
3.5.1 Advantages of Agent Methodologies .. 40
3.5.2 Difficulties of Agent Methodologies ... 41
3.6 Agent Programming Languages .. 41
3.6.1 Standard Programming Languages .. 42
3.6.2 Logic-based Languages.. 42
3.6.3 Hybrid Approaches.. 42
3.7 Agent Development Platforms and Frameworks... 42
3.8 Chapter Summary.. 44

CHAPTER FOUR REQUIREMENTS FOR A COMPREHENSIVE AGENT-
BASED SOFTWARE ENGINEERING METHODOLOGY45

 2

4.1 Introduction ... 45
4.2 Requirements for a New Methodology.. 45
4.2.1 Requirements on the level of Concepts .. 45
4.2.2 Requirements on the level of Models.. 46
4.2.3 Requirements on the level of Process ... 46

PART TWO SOLUTION ...48
CHAPTER FIVE MULTI-AGENT SYSTEM DEVELOPMENT
METHODOLOGY...49

5.1 Introduction ... 49
5.2 Assumptions... 49
5.3 MASD Methodology... 50
5.3.1 System Requirements Phase ... 51
5.3.1.1 System Scenario Model... 51
5.3.1.2 Integrating UCMs and UCDs.. 52
5.3.1.3 Reservation Scenario Example.. 54
5.3.1.3.1 UCD of Reservation Scenario.. 54
5.3.1.3.2 UCMs of Reservation Scenario.. 57
5.3.2 Analysis Phase... 61
5.3.2.1 Agent Architecture Stage ... 62
5.3.2.1.1 Roles Model .. 62
5.3.2.1.1.1 Discovering Roles ... 63
5.3.2.1.1.2 Determining Responsibilities of the Roles.. 64
5.3.2.1.1.3 Specifying Activities of Each Responsibility... 64
5.3.2.1.2 Agent Model ... 65
5.3.2.1.2.1 Identifying Agents... 66
5.3.2.1.2.2 Refining Roles ... 67
5.3.2.1.2.3 Agent Beliefs Model ... 67
5.3.2.1.2.4 Agent Goals Model... 69
5.3.2.1.2.5 Agent Plans Model.. 71
5.3.2.1.2.5.1 Specifying Plans for each Goal .. 71
5.3.2.1.2.6 Agent Triggers Model... 73
5.3.2.2 MAS Architecture Stage ... 75
5.3.2.2.1 Agent Interaction Model... 75
5.3.2.2.2 Agent Relationship Model .. 77
5.3.2.2.3 Agent Services Model .. 79
5.3.3 Design Phase... 80
5.3.3.1 Agent Container Model.. 80
5.3.3.1.1 Beliefs... 80
5.3.3.1.2 Goals .. 81
5.3.3.1.3 Plans ... 82
5.3.3.1.4 Capabilities .. 83
5.3.3.1.5 Triggers .. 84
5.3.3.2 Inter-Agent Communication Model... 84
5.3.3.3 Directory Facilitator Model ... 86
5.3.3.3.1 Directory Facilitator Mechanism ... 86
5.3.4 Implementation Phase ... 86
5.4 Chapter Summary.. 88

CHAPTER SIX CASE STUDY: CAR RENTAL SYSTEM...................................90
6.1 Introduction ... 90

 3

6.2 Case Study: Car Rental System .. 90
6.3 System Requirement Phase .. 91
6.3.1 System Scenario Model.. 91
6.3.1.1 UCDs for Car Rentals System... 91
6.3.1.2 UCMs for the Car Rental System.. 96
6.3.1.2.1 Reservation Scenario ... 96
6.3.1.2.2 Car Pickup Scenario... 100
6.3.1.2.3 Car Return Scenario... 102
6.3.1.2.4 Rental Extension Scenario .. 105
6.3.1.2.5 Car Service Scenario .. 106
6.4 Analysis Phase.. 107
6.4.1.1 Roles Model ... 108
6.4.1.1.1 Discovering Roles .. 108
6.4.1.1.2 Roles of the Car Rental System.. 108
6.4.1.2 The Agent Model .. 110
6.4.1.2.1 Identifying Agents for Car Rental System.. 110
6.4.1.2.2 Refining Roles... 111
6.4.1.2.2.1 Refined Roles for Customer Agent .. 111
6.4.1.3 Beliefs Model ... 112
6.4.1.3.1 Beliefs of Customer Agent ... 112
6.4.1.3.2 Beliefs of Car Rental Clerk Agent.. 114
6.4.1.4 Goals Model... 114
6.4.1.4.1 Identifying Agent Goals .. 114
6.4.1.4.2 Goals for Customer Agent ... 115
6.4.1.4.2.1 Plans for Request Reservation Goal .. 116
6.4.1.4.3 Goals for Car Rental Clerk Agent ... 118
6.4.1.4.3.1 Plans for Make Reservation Goal... 118
6.4.1.5 Triggers model ... 120
6.4.1.5.1 Triggers Model of Customer Agent .. 120
6.4.2 MAS Architecture Stage .. 122
6.4.2.1 Agents Interaction Model .. 122
6.4.2.2 Agents Relationships Model .. 123
6.4.2.3 Agents Services Model ... 124
6.5 Design Phase.. 125
6.5.1 Customer Agent Container ... 125
6.5.1.1 Customer Agent Beliefs ... 125
6.5.1.2 Customer Agent Goals ... 127
6.5.1.3 Plans Request Reservation Goal ... 128
6.5.1.4 Capabilities ... 129
6.5.1.5 Triggers ... 130
6.5.2 Inter-Agent Communication Model.. 130
6.5.3 Directory Facilitator Model .. 133
6.6 Implementation Phase .. 134
6.6.1 Implementing the Case Study with Jadex ... 134
6.6.1.1 Starting an Agent... 134
6.6.1.1.1 Defining Beliefs in the ADF .. 134
6.6.1.1.2 Defining Goals in the ADF.. 135
6.6.1.1.3 Defining Plans in the ADF... 137
6.6.1.2 Agent Capabilities ... 138
6.6.1.2.1 Creating a Capability.. 139
6.6.1.3 Events ... 139

 4

6.6.1.4 Agent Services Publication .. 140
6.7 Chapter Summary.. 141

PART THREE EVALUATION AND CONCLUSION142
CHAPTER SEVEN A FRAMEWORK FOR THE EVALUATION OF AGENT
ORIENTED METHODOLOGIES .. 143

7.1 Introduction ... 143
7.2 The Evaluation Framework ... 143
7.2.1 Models Related Criteria ... 144
7.2.2 Process Related Criteria... 147
7.2.3 Supportive Feature Criteria... 147
7.3 Evaluation Results ... 148
7.3.1 Models Related Criteria ... 148
7.3.1.1 Agent concepts .. 148
7.3.1.2 Agent Attributes .. 149
7.3.1.3 Ease of Use and Ease to Learn.. 150
7.3.1.4 Visualization Ability .. 150
7.3.1.5 Expressiveness... 151
7.3.1.6 Consistency .. 151
7.3.1.7 Traceability and Model Derivation.. 152
7.3.1.8 Refinement... 152
7.3.1.9 Ability to Model Agent Interactions.. 152
7.3.2 Process Related Criteria... 153
7.3.2.1 Development lifecycle .. 153
7.3.2.2 Coverage of the lifecycle .. 153
7.3.2.3 Development Prospective .. 154
7.3.2.4 Domain Applicability.. 154
7.3.3 Supportive Feature Criteria... 154
7.3.3.1 Software and Methodological Support.. 154
7.3.3.2 Open Systems Support ... 155
7.3.3.3 Robustness Support .. 155
7.3.3.4 Mobility Support ... 155
7.4 Discussion .. 155
7.5 Chapter Summary.. 156

CHAPTER EIGHT CONCLUSION .. 157
8.1 MASD Advantages.. 157
8.2 MASD Deficiencies... 158
8.3 Discussion .. 158
8.4 Conclusion.. 160
8.5 Future Work... 160

APPENDIXES.. 162
APPENDIX A: USE CASE MAPS ... 163

A.1 Use case Maps (UCMs).. 163
A.1.1 Where are UCMs Useful?... 163
A.2 UCMs by Example ... 165

APPENDIX B: UML USE CASE DIAGRAMS... 168
B.1 UML Use-Case Diagrams (UCDs)... 168
B.1.1 Use Case.. 168

 5

B.1.2 Actor.. 169
B.1.3 Association Relationships... 169
B.1.4 System Boundary Boxes ... 170
B.1.5 Useful Remarks .. 171
B.2 UCDs by Example.. 171

APPENDIX C: UML ACTIVITY DIAGRAMS... 173
C.1 Activity Diagrams ... 173
C.2 Activity Diagrams by Example ... 174

APPENDIX D: FIPA-ACL... 176
D.1 FIPA-ACL... 176
D.1.1 FIPA Communicative Acts Library ... 176
D.1.2 FIPA Interaction Protocols Library ... 178
D.1.3 Messages in FIPA ACL.. 180
D.1.3.1 Message structure... 180

APPENDIX E: JADEX FRAMEWORK.. 183
E.1 Jadex ... 183
E.2 Features .. 183
E.2.1 Java Based... 183
E.2.2 FIPA Compliant .. 184
E.2.3 Goal-Oriented Agents .. 184
E.2.4 Framework.. 185
E.2.5 Development Tools .. 186

REFERENCES...187

 6

TABLE OF FIGURES
Figure 3.1 Classification of Agent-Oriented Methodologies [Alonso 2004] 30
Figure 3.2 Gaia Methodology Models 32
Figure 3.3 HLIM Methodology Models 34
Figure 3.4 Models and phases of the PASSI methodology 36
Figure 3.5 MaSE models and phases [DeLoach 2004] 37
Figure 3.6 Models and Phases of the MAScommonKADS Methodology 38

Figure 5.1 MASD Methodology .. 50
Figure 5.2 The gap between the functional requirements and the design [Amyot 2001].53
Figure 5.3 Use Case Diagram notations. .. 55
Figure 5.4 Use Case Diagrams for car rental system .. 55
Figure 5.5 Use Case Maps Notations.. 57
Figure 5.6 Use Case Map for Reservation Scenario.. 58
Figure 5.7 Plug-Ins for Request Reservation Stub.. 58
Figure 5.8 Plug-In for Verify Car Rentals Regulations... 59
Figure 5.9 Plug-In for the Check Customer Demands Stub ... 60
Figure 5.10 Plug-Ins for Cancel Reservation Request Stub... 61
Figure 5.11 Extracting Roles from UCMs and UML Use Cases .. 63
Figure 5.12 Examples of Component-Role Relations.. 64
Figure 5.13 Assigning Roles to Agents ... 66
Figure 5.14 Assigning Renter role to Customer agent, Rentier role to Car Rental Clerk

and Manager Agents and Director Role to Car rental Manager Agent...................... 66
Figure 5.15 Mapping of Agent’s Roles to Goals and Plans ... 70
Figure 5.16 Notation of Interaction Diagrams.. 76
Figure 5.17 Mapping from UCMS Scenarios to Interaction Diagrams 77
Figure 5.18 Dependency Relationship Symbols .. 78
Figure 5.19 Dependency Diagram between Customer Agent and Reservation Agent ... 79
Figure 5.20 The Correspondence between Interaction Diagrams and FIPA Protocols . 85

Figure 6.1 Use Case Diagrams for Car Rental System... 92
Figure 6.2 Use Case Map for Reservation Scenario... 97
Figure 6.3 Plug-Ins for Request Reservation Stub ... 97
Figure 6.4 Plug-In for Verify Car Rentals Regulations.. 98
Figure 6.5 Plug-In for the Check Customer Demands Stub .. 99
Figure 6.6 Plug-Ins for Cancel Reservation Request Stub .. 100
Figure 6.7 Car Pickup Scenario ... 100
Figure 6.8 Plug-ins for Pay Rental Stub... 101
Figure 6.9 Plug-Ins for Pay by Loyalty Points Stub... 102
Figure 6.10 UCM for Car Return Scenario ... 103
Figure 6.11 Plug-Ins for the Terminate Transaction Stub .. 103
Figure 6.12 Plug-In for Add Loyalty Points Stub .. 104
Figure 6.13 UCM for Rental Extension Scenario... 105
Figure 6.14 Plug-Ins for Request to Extend Rental Stub.. 105
Figure 6.15 Plug-ins for Manage Extension Stub... 106
Figure 6.16 UCM Car Service Scenarios.. 107
Figure 6.17 Assigning Renter Role to Customer Agent, Rentier Role to Car Rental Clerk

and Manager Agents and Director Role to Car Rental Manager Agent. 111

 7

Figure 6.18 Interaction Diagrams between Customer Agent and Car Rental Clerk Agent
.. 123

Figure 6.19 Dependency Diagram between Customer Agent and Car Rental Clerk Agent
.. 124

Figure 6.20 The Correspondence Between Interaction Diagrams and FIPA Protocols 131

Figure A.1 UCM Scenario for Money Withdrawal ... 165
Figure A.2 UCM Scenario for Money Withdrawal with Stubs.. 166
Figure A.3 Fingerprint Plug-In for the Validate Stub... 166
Figure A.4 Password Plug-In for the Validate Stub.. 167

Figure B.1 Use Case Diagrams Notations... 168
Figure B.2 Includes Relationship.. 170
Figure B.3 Generalization Relationship ... 170
Figure B.4 Extends Relationship .. 170
Figure B.5 ATM System Use Case Diagram... 171

Figure C.1 Notation of Activity Diagrams .. 174
Figure C.2 Withdraw Money from a Bank Account through an ATM Activity Diagram

.. 175

Figure D. 1 FTPA ACL Message Structure .. 176
Figure D.2 FIPA Request Interaction Protocol ... 178
Figure D. 3 FIPA Request Interaction Protocol .. 179

Figure E.1 FIPA Agent Management ... 184
Figure E.2 FIPA Agent Management. .. 185

 8

TABLES
Table 5.1 Role Attributes .. 64
Table 5.2 Renter Role for Customer Component... 65
Table 5.3 General Structure of the Agent Beliefs Model... 68
Table 5.4 Beliefs Model for Customer Agent .. 68
Table 5.5 General Structure of the Agent Goals Model .. 70
Table 5.6 Goals Model for Customer Agent ... 71
Table 5.7 General Structure of the Agent Plans Model ... 72
Table 5.8 Reserve Car Online Plan for the Customer Agent .. 73
Table 5.9 General Structure of Agent Triggers Model... 74
Table 5.10 Customer Agent Triggers Model.. 74
Table 5.11 Performatives for Agent Conversation Language ... 76
Table 5.12 Agent Services Model .. 79
Table 5.13 Revised agent beliefs model.. 81
Table 5.14 Revised agent goals model .. 82
Table 5.15 Reserve Car Online Plan with Plan Type Field.. 83

Table 6.1 Renter Role for Customer Component... 109
Table 6.2 Rentier Role for Car Rental Clerk Component.. 110
Table 6.3 Refined Renter Role for Customer Agent .. 112
Table 6.4 Customer Agent Beliefs... 113
Table 6.5 Car Rental Clerk Agent Beliefs... 114
Table 6.6 Goals for customer agent .. 115
Table 6.7 Reserve by Phone Call Plan .. 116
Table 6 8 Reserve by E-mail Plan.. 117
Table 6.9 Reserve Car Online Plan ... 117
Table 6.10 Goals for Car Rental Agent .. 118
Table 6.11 Request Information Plan ... 119
Table 6.12 Verify Car Rental Regulations Plan ... 119
Table 6.13 Check Customer Demands Plan .. 120
Table 6.14 Triggers of Customer Agent ... 121
Table 6.15 Triggers of the Car Rental Clerk Agent .. 122
Table 6.16 Agent Services Model .. 125
Table 6.17 Beliefs of a Customer Agent... 127
Table 6. 18 Revised Customer Agent Goals .. 128
Table 6.19 Revised Reserve Car Online Plan .. 128
Table 6. 20 Plan Types .. 129
Table 6.21 Common Goal Attributes (BDI flags) .. 136

Table 7.1 Evaluation by Models Related Criteria. ... 153
Table 7.2 Evaluation by Process Related Criteria ... 154
Table 7.3 Evaluation by Supportive Related Criteria.. 155

Table A.1 Basic Use-Case Maps (UCMs) symbols ... 164

Table D.1 Table D.1 FIPA Communicative Acts... 177
Table D.2 FIPA ACL Message Parameters .. 181

 9

PART ONE
INTRODUCTION AND MOTIVATION

Part one of this thesis identifies and defines the problem to be solved in this
research. This part consists of four parts. The first is an introduction, which
summarizes the thesis. The introduction enables the reader to gain a better
understanding of the problem and provides a general view of the research work. It
explains to the reader what the thesis is about and, more importantly, to justify why
our research work is significant. This step is described in chapter 1.

The second part provides the motivation and the research objectives. The problem

that motivated the research for this thesis is outlined and defined. An appreciation to
the problem is presented and the new contribution is put into context. This step is
described in chapter 2.

The third part lays out a detailed study of previous and current research. It brings

the reader up to date with the latest research and development in the area. It also
provides an understanding and knowledge of the present and most recent work. This
step is described in chapter 3.

The last part closes by stating the requirement of the new solution, which is

identified at the end of the detailed study. This step is described in chapter 4.

 10

CHAPTER ONE
INTRODUCTION

Agent systems have created recently a great interest as a powerful new approach

for designing and developing complex and distributed software systems. Agents have
the ability to greatly affect the work of all of us and, consequently, it is one of the
most dynamic and exciting areas in computer science today. One of the most
important characteristics of these systems is the inherent ability of agents to succeed
in distributed complex domains such as the Internet. Agents also have the ability to
communicate with other agents using an agent communication language.

An agent is concisely defined as: a persistent computer system capable of flexible

autonomous actions in a dynamic environment.

There are many application domains where agent technologies play an important

role:
• Interoperability among information systems, where agents carry out dynamic

searches for relevant information in non-local domains. Agents perform the
dynamic searches on behalf of their users or on behalf of other agents. This
includes retrieving, analyzing, manipulating, and integrating information
available from multiple information sources.

• Electronic commerce, where agent systems support the automation of
information gathering activities and sales transactions on the Internet.

• Grid computing, where agent systems enable the efficient use of resources of
high-performance computing infrastructure in science, engineering, medical,
and commercial applications.

• Bioinformatics and computational biology, where intelligent agents may
support the coherent exploitation of the data revolution occurring in biology.

In addition, agent systems have been a source of technologies to a number of

research areas, both theoretical and applied. These include distributed planning and
decision-making, automated action mechanisms, communication languages,
coordination mechanisms, ontologies and information agents, negotiation, and
learning mechanisms. Moreover, agent technologies have drawn from, and contributed
to, a diverse range of academic disciplines, in humanities, sciences, and social sciences.
They also play a role in other application domains such as: monitoring and control,
resource management, space, military and manufacturing application.

Multi-Agent Systems (MASs) aim to provide principles for the construction of

complex distributed systems involving multiple agents and mechanisms for the
coordination of independent agents’ behaviors. A group of agents may work
cooperatively in order to solve complex problems, which is the principle advantage of
agent systems. There are many motivations for using a group of agents as a
collaborative problem-solving system. They can solve problems too large for an
individual agent. They can also provide the modularity of individual agents that are
specialized to perform particular tasks. Multi-agent systems are concerned with the
coordinated behavior of a collection of agents to achieve system-level goals.

 11

Building multi-agent applications for such complex and distributed systems is not an
easy task [Edmunson, Botterbusch, and Bigelow 1992]. Indeed, the development of
industrial-strength applications requires the availability of software engineering
methodologies. However, developing such complex and distributed software systems
without a methodology is analogous to cooking without a recipe. Software engineers are
unable to produce complex and high-quality applications in an ad-hoc fashion.
Methodologies are the means provided by software engineering to facilitate the process
of developing software and, as a result, to increase the quality of software products.

These methodologies typically consist of a set of methods, models, and techniques

that facilitate a systematic software development process. Currently, the multi-agent
system design research focuses on developing the design of full-lifecycle
methodologies. Such methodologies should be able to create a multi-agent system
starting with the initial specification, system requirements, and finally producing an
implementation code. These methodologies should assist developers to analyze,
design, and implement the agent systems.

These methodologies are different from each other in many respects such as

concepts, models, software development phases, covered phases, and the supported
multi-agent system properties. There are essentially three trends of classification of the
agent-oriented methodologies according to the discipline on which they are based
[Alonso 2004; Henderson-Sellers and Giorgini 2005]. The first is an agent-based
classification, which dictates that agent-oriented methodologies are developed
independently of the other traditional methodology approaches. The second
classification is object-oriented based, which involves taking an existing OO
methodology and extend it to support agent concepts. The last is knowledge
engineering-based, which considers knowledge to be the single most important factor
in organizational success of multi-agent systems.

Recently, many agent-oriented methodologies have been proposed such as: MaSE

[DeLoach 2004], Prometheus [Padgham and Winikoff 2003], Tropos [Bresciani et al.
2002-2003], ODAC [Gervais 2003], Gaia [Wooldridge 2000; Zambonelli, Jennings, and
Wooldridge 2003], HLIM [Elammari and Lalonde 1999], MAS-CommonKADS [Iglesias,
Garrijo, Gonzalez and Velasco 1999] etc. There has been a lot of work, which involves
suggestions in developing agent-oriented methodologies to cover broader software
engineering lifecycle activities. These emerging methodologies attempt to exploit the key
ideas behind agents at various stages of the software development lifecycle. In spite of
that, the available methodologies still have the problems of traditional distributed and
concurrent systems [Wood and DeLoach 2001]. This is in addition to the difficulties that
arise from flexibility requirements and sophisticated interactions. Up to now, no well-
established methodology exists as a development process for the construction of agent-
oriented applications. Luck et al. [2003] state that there are two main technical difficulties
associated with the extensive use of multi-agent systems. Firstly, there is no standard
methodology that enables designers to clearly structure and construct applications as
MASs. Secondly, there are no robust, broad-spectrum industrial toolkits that are flexible
enough to specify and implement the characteristics of the agents involved. Furthermore,
they suffer several limitations and shortcomings, which we will explain in detail in
chapter 2.

We believe that the area of agent-oriented methodologies is growing rapidly and that
the time has come to begin drawing together the work from various research groups with

 12

the aim of developing the next generation of agent-oriented software engineering
methodologies.

The main objective of this thesis is to develop a new agent-oriented methodology for

multi-agent systems development. This methodology is considered as an organized set of
guidelines that illustrate how the system agents work, cooperate, and interact with each
other and with the environment that they reside within. Our approach provides a core
methodology and integrates additional features into it, which are incorporated from
different methodologies. In fact, we have not developing the new methodology from
scratch, but we have decided to exploit existing methodologies and reuse existing
technologies. We assume this methodology to be an attempt towards being
comprehensive through the unification of existing methodologies by combining their
strong points as well as avoiding their limitations. Our approach proposes some
suggestions to form a unified methodology based on the most recognized
methodologies. These suggestions, as we believe, may contribute a step towards
developing the next generation of agent-oriented methodologies.

The new methodology is composed of four main phases; system requirements phase,

analysis phase, design phase, and implementation phase. Chapter 5 presents a more
detailed discussion of each of the four phases. The car rental system is used as a case
study to describe the process of the new methodology (MASD methodology). To
simplify this process, we will not describe the scenarios of the whole system. We describe
only the reservation scenario as an example. The car rental system is described fully by a
case study in chapter 6.

The following presents an overview of the rest of the thesis chapters categorized by

the main three parts of the thesis (Part one – Introduction and Motivation, Part two
– Solution and Part three – Evaluation and Conclusion).

Part one – Introduction and Motivation

Chapter 2 introduces the motivation and main objectives of the thesis. This
chapter presents the rationale behind the development of a new multi-agent system
development methodology. It presents the problem statement of this research, which
defines the difficulties of the agent-oriented methodologies and provides a detailed
discussion of the limitations and shortcomings of existing methodologies. It then
presents the research objectives. We conclude this chapter by stating the major
contributions of our research work.

Chapter 3 introduces the state of the art of the agent systems and agent-oriented

methodologies. The chapter gives an overview of the concepts, rationales, hypotheses,
goals and modern agents. It introduces the following:

• An overview of the rapidly evolving area of software agents from the point of
view of other approaches or disciplines such as Artificial Intelligence (AI) and
Software Engineering (SE).

• A historical background of agent systems.
• The terms and concepts concerned with MASs and intelligent software agents,

varying from the weak notion of agency as proposed by Wooldridge [1995], to
the strong notion of agency involved in defining agents as intentional systems
[Wooldridge 2002].

 13

• An overview of the agent architectures. It describes five agent architectural styles
and the components they are constructed from.

• The definition of multi-agent systems. It describes two types of multi-agent
systems: Closed and open multi-agent systems.

• The introduction of some of the existing agent-oriented methodologies and
the classification of the methodologies according to the approach on which
they are based.

• Discussion of some available agent-oriented methodologies for the
development of multi-agent systems. At least one methodology of each
approach is described. This chapter also points out their strengths and
limitations.

• Discussion of the strengths of agent-oriented methodologies as well as the
difficulties that they faced.

• An overview of the agent programming languages and agent development
frameworks.

Chapter 4 presents the requirements for a novel methodology. These

requirements are classified into three types of categories as follows: concepts, models
(modeling techniques) and processes.

Part two – Solution

Chapter 5 introduces the new proposed methodology for multi-agent system
development. The chapter starts with the assumptions (limitations) of the new
methodology and then provides a detailed description for each phase of the proposed
methodology as well as its models. The new methodology is called the Multi-Agent
System Development (MASD) methodology. This methodology is composed of
several phases such as system requirement, analysis, design, and implementation
phases. This chapter uses the case study (reservation scenario of car rental system) to
explain the process of MASD methodology. All phases of the methodology are
demonstrated using this case study.

This chapter also describes the system requirement phase of the MASD

methodology. It explains the complete detailed process of describing multi-agent
systems through the case study. This phase describes the system scenario as a high-
level design using well-known techniques through the system scenario model. Such
techniques are called Use Case Maps (UCMs) and UML Use Case Diagrams (UCDs).
The system scenario model provides high-level visual representations of the system
and it is used for generating more detailed visual descriptions. In addition, it captures
the behavior of a system as it appears from the point of view of an outside user.

Chapter 5 also discusses the analysis phase. The analysis phase is considered the

most important process of the methodology. It explains how the agents and their roles
within the system are captured. It also states how the analysis phase uses the system
requirements phase (by deploying the system scenario model that is constructed by
Use Case Maps and UML Use Cases) to develop agent and MAS concepts and their
components. The analysis phase is composed of two main parts: agent architecture
and MAS architecture. Each part is composed of a set of models. The agent
architecture part describes the agent’s internal structure aspects which represents the
roles model, agent model, beliefs model, goals model, plans model and triggers model.

 14

The MAS architecture part describes the MAS structure aspects, which include
interactions model, agent relationships model and agent services model.

The design phase is also introduced in Chapter 5. This phase describes the process

of mapping from the design to the implementation. It captures the concepts that have
been developed in the analysis process and illustrates how these concepts are
transferred into design specifications to be ready for implementation. This is done by
identifying how to handle agent’s roles, beliefs, goals and plans, as well as stating how
to compose the agent capabilities into reusable agent modules. This chapter also
discuses some information exchange aspects which relate to the intra- and inter-agent
level and agent services.

Chapter 5 finally presents the implementation/construction phase. This phase is

considered as the point in the development process when the system actually starts to
construct the solution and the start of the program code writing. It creates a set of
modules that have a complete set of design specifications showing how the agent
system and its components should be structured and represented. The implementation
process explains how the design models are handled by an agent platform called Jadex.
It also presents the implementation code as Jadex proposed.

Chapter 6 introduces a complete case study for car rental systems. This case study

starts by capturing the system requirements of the car rental system and ends with the
implementation code. The case study has been implemented by the Jadex agent
framework.

Part three – Evaluation and Conclusion

Chapter 7 introduces the evaluation framework for some well-known existing

agent-oriented methodologies and compares them with the new MASD methodology.
The framework provides several criteria, which were assumed after studying the
common features. The study looks at common features among different
methodologies used in building agents and how agent behavior is captured. The
framework criteria support a number of important factors upon which the analysis
and design of agents systems depend. These criteria are stated as follows: Models
related criteria, process related criteria and supportive related criteria. Each criterion
consists of several factors.

Chapter 8 presents the research contribution, deficiencies, discussion and

conclusion of the thesis, and future work.

 15

CHAPTER TWO
MOTIVATION AND OBJECTIVES

2.1 Introduction
This chapter discusses the motivation behind the development of a novel Multi-

Agent System Development (MASD) methodology, ready to use, complete and highly
expressive. This chapter discusses the motivations in the form of limitations and
shortcomings, which existing methodologies face. It also presents the main research
objectives. It then concludes by providing the major contributions of our research.

2.2 Motivation
Many agent-oriented methodologies and modeling languages have been proposed

such as: Gaia [Wooldridge 2000; Zambonelli, Jennings, and Wooldridge 2003], MaSE
[DeLoach 2004], MESSAGE [Caire 2001], Tropos [Bresciani 2003], HLIM [Elammari
1999], Prometheus [Padgham 2003], and AUML [Bauer and Odell 2005] etc. These
methodologies are established to develop multi-agent systems with support tools that
allow developers to create complex agent applications. They are built and specifically
tailored to the characteristics of agents. However, they are still considered incomplete
and suffer all the problems of traditional distributed and concurrent systems [Dastani
2004; Sabas 2002]. In addition, several limitations arise from the flexibility
requirements and sophisticated interactions. Many evaluation frameworks and
comparisons of the existing agent-oriented methodologies have been proposed such
as [Abdelaziz, Elammari and Unland 2007; Bobkowska 2005; Sudeikat et al. 2004;
Dastani et al. 2004; Silva et al. 2004; Sturm and Shehory 2003; Cernuzzi and Rossi
2002]. Most of them agree on the fact that despite the majority of the methodologies
are developed based on strong foundations, they suffer from a number of limitations.
These limitations are stated in detail in the following section.

2.2.1 Problem Statement
This section discusses the problem statement in the form of limitations and

shortcomings that existing agent oriented methodologies suffer from. The detailed
discussion of such problems is out of the scope of this thesis, consequently, no
detailed discussion of such problems will be provided here. Though, a brief discussion
will be provided. The discussion will not be limited to problems of a single particular
methodology. Instead, it will address problems that relate to one methodology or
relate to a number of methodologies. The following is a discussion of problems found
during this research work:

1) None of the existing agent-oriented methodologies has itself established as a

standard nor have they been commonly accepted [Luck et al 2003]. As long as
there are no standard definitions of an agent, agent architecture, or an agent
language, we could think that the existing methodologies will only be used by
individual researchers to program their agent-based application using their own
agent language, architectures, and theories. The lack of standard agent
architectures and agent programming languages is actually the main problem to

 16

define models and put them into operation, or providing a useful “standard”
code generation. Since there is no standard agent architecture, the design of the
agents needs to be customized to each agent architecture. Nevertheless, the
analysis models are independent of the agent architectures. They describe what
the agent-based system has to do, but not how this is done [Iglesias, Garrijo and
Gonzalez 1999]. Moreover, there is no agreement on how existing methodologies
identify and characterize some of the important agent aspects, such as the goals,
beliefs, plans, or roles that the agents play in the system and interactions
[d’Inverno 2004; Dastani 2004]. The existence of such an agreement would
contribute the agent standardization.

2) Most of the research that examined and compared properties of agent-oriented
methodologies suggested that none were completely suitable for industrial
development of multi-agent systems [Tran and Low 2005; Luck et al 2003].

3) Most of the concepts used by the agent-oriented methodologies, like roles,
responsibilities, beliefs, goals, plans, and tasks do not have formal semantics or
explicit formal properties. This is an important issue when these concepts are
applied, as implementation constructs need to have exact semantics [Dastani
2004].

4) Most of the existing methodologies suffer from a gap between the design models
and the existing implementation languages [Sudeikat 2004]. It is difficult for a
programmer to map the developed complex design models onto an
implementation. To close this gap, a methodology should either provide refined
design models that can be directly implemented in an available programming
language or use a dedicated agent-oriented programming language which
provides constructs to implement the high-level design concepts.

5) Most of the existing methodologies do not include an implementation phase.
Methodologies that include an implementation phase as an essential phase of its
methodology, such as the Tropos methodology, provide an explicit
implementation language. This implementation language however does not
explain how to implement reasoning about beliefs, goals, plans and reasoning
of communication [Dastani 2004]. This leads to difficulties using the
methodology. The implementation phase should describe in detail how the belief,
goals, plans, and interactions are to be implemented using a specific agent
programming language.

6) One important characteristic of agent behaviour is that the agent may play one or
several roles in the system. A few of the existing methodologies support role
concept. None of them takes into account that an agent may play more than one
role in a system [Silva 2004]. This aspect gives the agent more flexibility and the
ability to complete the work mandated. The agent can benefit from combining
the goals and plans for the roles played by the agent and the latter can be
exploited to carry out its work in the system.

7) Most of the object-oriented methodologies consider agents to be complex
objects, which are not accepted by many their researchers as agents have a higher
level of abstraction than objects. They also fail to properly capture the
autonomous behavior of agents, interactions between agents, and organizational
structures [Bush 2001]. Furthermore, complex objects cannot offer the same
properties as agents do. As a result, such methodologies generally do not provide
techniques to model the intelligent behaviour of agents [Jennings & Wooldridge
1999].

8) Most of the methodologies do not take into account the environment features.
Just a few of them tried to analyze the environment, its entities, and their

 17

interactions [Dastani 2004]. In the analysis, the methodologies studied do not
consider the environmental embedding of a system. The structure of the
organization in which a system will be embedded, has a large influence on the
type of organizational structure of the system, at least when it interacts with more
than one person.

9) Most existing methodologies are based on a strong agent-oriented basis.
However, they do not support essential software engineering issues such as
preciseness, accessibility, expressiveness, refinement, model derivation,
traceability, clear definitions, and modularity. This has an adverse effect on
industry acceptability and the adoption of agent technology [Dam 2003].

10) Confusion and ambiguity in the analysis and design phases. This is due to the
absence of the holistic view of the system components, logic, cognitive and
commutative aspects which should be recognized before designing the
methodology models.

11) Some of the existing methodologies contain several misconceptions when
introducing and defining the concepts and in building analysis and design
concepts. This is due to the disagreement regarding agent concepts and
terminology. There is in fact an extensive disagreement on the approaches that
each methodology is based on. Some methodologies work on the basis of AI
approaches, others work on the basis of software engineering approaches, while
others use both [Sturm 2003; Dam 2003].

12) Many of the methodologies are incomplete. Some of the methodologies propose
only the analysis and design phases, while some propose specification, analysis,
and design but they do not mention anything about the tools that support the
methodology. Consequently, it is too difficult to find a complete methodology
[Sabas 2002].

13) Incomplete formality. Despite, a number of approaches for formally specifying
agent system concepts have been developed such as that by Shoham [1997],
Goodwin [1995], Wooldridge [1992] and Luck [1997]. Until now, there was no
complete formalism for MAS concepts, which were capable to clearly describe,
specify and define them in an accurate manner. They were also unable to
represent the important aspects of an agent-based system such as agent beliefs,
goals, actions, and interactions. This is due to the lack of agreement amongst
existing methodologies as mentioned in point 11 [Luck 2004].

14) Open systems are not supported by the most existing methodologies. None of
the methodologies allow for the dynamic addition or removal of agents, or their
characteristics [Dastani 2004]. Except Gaia methodology, Gaia is extended (called
Gaia hereafter) for the analysis and design of open multi-agent systems
[Zambonelli, Jennings, and Wooldridge 2003].

All of the above combined provide us with a motivation to come up with a novel

approach towards a comprehensive agent oriented software engineering methodology for
multi-agent systems development. This novel methodology is an attempt to overcome
most of the limitations stated above.

2.2.2 Towards a Mature Agent-Oriented Methodology
We will provide a new approach towards a comprehensive agent oriented software

engineering methodology. The new approach is based on the exploitation of existing
methodologies and reusing existing methodologies. This is done through the unification
of existing methodologies by combining their strong points as well as avoiding their
limitations and weaknesses. We consider such effort is similar in spirit to the one that

 18

gave birth to Unified Modeling Language (UML). However, their approach was to build
a core methodology and to integrate additional features into it from different
methodologies. The integration is performed on an application-by-application basis. Our
approach is different in that we endeavor to make some preliminary suggestions to form
a unified methodology based on the most well known agent-oriented methodologies.
These suggestions, we believe, will contribute a further step towards developing the
“next generation” of agent-oriented methodologies. Such a methodology should support
in sufficient depth all the following factors:

1. Concepts

a) Internal properties: autonomy, mental attitudes, pro-activeness,
reactivity.

b) Social properties: methods of cooperation, teamwork, services,
dependencies, agents’ relationships, communication modes,
protocols, and communication language.

2. Models
a) Usability criteria: clarity and understandability, adequacy and

expressiveness, and ease of use.
b) The level of effectiveness and quality of models.
c) Technical criteria: unambiguity, consistency, traceability, refinement,

and reusability.
3. Process

a) Full life-cycle coverage, iterative development which allows both top-
down and bottom-up design approaches

b) Ability to represent agent behavior, agent interactions.
c) Visualization of the system.
d) Sufficiently detailed process steps with definitions, examples,

guidelines, and heuristics.
e) Supporting various development contexts such as reuse, prototype,

and reengineering.
f) Technical criteria: a wide range of domain applicability, support for

the design of scalable and distributed applications.

2.3 Research Objectives
The objective of this thesis is to produce a new ready-to-use, highly expressive and a

full-lifecycle methodology for developing multi-agent systems. This goal was supported
by research examining the different ways that agents have been used in the creation of
software systems. The research focused on design and analysis abstractions, looking at
the system lifecycles, and creating design processes. The result of this research was the
construction of a methodology for creating software systems based on multiple software
agents. The limitations exhibited by the various agent-oriented methodologies led to the
development of a new MASD Methodology.

The new methodology entails a comparison and evaluation framework between the

existing agent methodologies and the new methodology. The framework identifies the
strengths and weaknesses that will help the development and improvement of the new
generation of agent-oriented methodologies. The need for such a methodology was the
most significant motivation driving the development of the proposed methodology.

 19

2.4 Contribution of the Thesis
The main contribution of this thesis is to build a new methodology for the

development of multi-agent systems. This methodology is expected to be a solid and
reliable guide in building and developing such systems.

The MASD methodology is based upon other research including the previous

existing methodologies. It aims to develop a complete life-cycle methodology for
designing and developing MASs. In addition, MASD is considered as an attempt to
solve some of the problems that was mentioned precisely. We state the solution as
follows:

The MASD methodology was established based on three fundamental aspects:

concepts, models, and process. These three aspects are considered as a foundation for
building a solid methodology. The concepts are all the necessary MAS concepts that
should be available in order to build the models of the new methodology in a correct
manner. The models include modeling techniques, modeling languages, a diagramming
notation, and tools that can be used to analysis and design the agent system. The
process is a set of steps or phases describe how the new methodology works in detail.

In addition, the MASD methodology bridges the gap between the design models

and the existing implementation languages. It provides refined design models that can
be directly implemented in an available programming language or use a dedicated
agent-oriented programming language which provides constructs to implement the
high-level design concepts such as Jadex, JADE, JACK, etc. In addition, it helps
developers to map the developed complex design models into implementation
constructs.

Furthermore, the MASD methodology proposes an important concept called

triggers and relies heavily on agent roles. The role concept is considered one of the
most important aspects that represent the agent behaviour. Therefore, MASD assumes
each agent can play one or more roles in the system. The trigger concept is also
considered as an important aspect that represents the agent reactivity. Furthermore,
MASD considers the social agent aspects. This is by utilizing well-known techniques
such as use case maps, which enable developers to identify social aspects from the
problem specification. Therefore, MASD assumes the agent society architecture
should be derived from the problem specification that will lead to the best-suited
architecture.

Moreover, MASD methodology is developed based on the essential software

engineering issues such as preciseness, accessibility, expressiveness, domain
applicability, modularity, refinement, model derivation, traceability, and clear
definitions.

In addition, the MASD methodology provides a plain and understandable

development process through the methodology phases. It captures the holistic view of
the system components, and commutative aspects, which should be recognized before
designing the methodology models. This is by using well-known techniques such as
UCMs and UML UCDs.

 20

2.5 Chapter Summary
In this chapter, we discussed the motivation behind the development of a novel

multi-agent system development methodology and the various limitations illustrated by
the various existing methodologies in the area. The chapter concluded with the research
objectives and the major contributions of our research work in this area.

 21

CHAPTER THREE
LITERATURE REVIEW

3.1 Introduction
The aim of chapter 3 is to provide an overview of the rapidly evolving area of

multi-agent systems (MASs) and its related methodologies. This leads to a discussion
of what makes an agent-oriented methodology that can be used to build a MAS. The
chapter stars with discussing the common terms and concepts that is used in the
thesis. In this chapter, literature concerning agent systems and agent-oriented
methodologies is reviewed in detail. The aim is to establish the characteristics of
agent-oriented methodologies, and see how these characteristics are suited to develop
multi-agent systems. The current research of agent-oriented methodologies is
examined giving a clearer picture of their application domain, advantages and
limitations.

3.2 MAS Conceptual Framework
Before introducing the chapter 3, we have to define the common terms and

concepts that are used in this thesis, enabling the reader to understand the next parts
of the thesis. The concepts underlying multi-agent systems and the associated agent
terminology are not universally agreed upon [d’Inverno and Luck 2004; Dastani et al.
2004]. However, there is adequate agreement to make it valuable for us to summarize
the commonly agreed upon terms in this chapter in order to clarify them for the later
chapters. This conceptual framework introduces the MAS concepts that the new
methodology relies on.

The topic “software agents” has become one of the most striking topics in

computer science research. The term “Software agent” leads to a wide argument of
what a software agent is, and of how it could be clearly distinguished from a program.

Examining the question, “What is a software agent?” raises many arguments about

what a software agent is, and what the difference between a software agent and
computer program is. Researchers have proposed many definitions for the concept of
a software agent. Each of them introduced his/her definition according to their point
of view. Some of them concentrated on artificial intelligence approaches, others
concentrated on software engineering approaches. We concentrate on the definitions
that are well known and most accepted by agent researchers such as M. Wooldridge
and N. Jennings etc.

A general definition of a software agent is that it is a computer program that

exhibits the characteristics of an agency or a software agency. According to
Krupansky's Foundations of Software Agent Technology the software agent is defined
as: “A software agent (or autonomous agent or intelligent agent) is a computer program which works
toward goals (as opposed to discrete tasks) in a dynamic environment (where change is the norm) on
behalf of another entity (human or computational), possibly over an extended period of time, without

 22

continuous direct supervision or control, and exhibits a significant degree of flexibility and even
creativity in how it seeks to transform goals into action tasks.” [Krupansky 2008]

Here we present another software agent definition, which clearly distinguishes a

software agent from any other program. Wooldridge and Jennings [1995] proposed
two notions of agency; a weak notion and a strong one. A weak notion of agency “is
that of hardware or more frequently software-based computer system that provides the following
properties:

1. Autonomy: is when agents operate without the direct intervention of humans or others, and have
some kind of control over their actions and internal state;

2. Social ability: is the ability of agents to interact with other agents (and possibly humans) via
some kind of agent-communication language;

3. Reactivity: The ability of agents to perceive their environment and respond in a timely fashion to
changes that occur in it. Here, the agent environment may be the physical world, a user via a
graphical user interface, a collection of other agents, the Internet, or perhaps all of these
combined.

4. Pro-activeness: is when agents do not simply act in response to their environment, but they are
also able to exhibit a goal-directed behaviour by taking the initiative.”

A strong notion of agency is also widespread in artificial intelligence. In addition

to the weak notion, the strong notion also uses mental components such as belief,
desire, intention, and knowledge and so on. This definition illustrates autonomy of an
agent, sensing and acting on a finite environment that an agent is a part of
[Wooldridge 2002].

Many agent definitions are proposed by software agents research Maes [1995],

Russel [1995], Riecken [1994], and Wooldridge and Jennings [1995]. Most of these
definitions were based on certain situations, certain conceptions, or to solve certain
problems according to a researcher’s point of view. As an attempt to cover most of
the existing agent definition patterns, we conclude the following agent definition and
its related concepts to be the foundation for the new methodology. These definitions
are stated as follows:

Agent: A persistent computer system that carries out some set of tasks on behalf
of a user or a computer system and is capable of:

1. Functioning with some degree of autonomy (autonomy means the agent ability to
work with minimum intervention by the real user. The autonomous agents have
control over their tasks and resources and will take part in cooperative activities
only if they chose to do so).

2. Interacting with others (humans or agents) via specific agent communication
language.

3. Perceiving its environment through sensors, acting on the environment, and
reacting to the changes of the environment through effectors.

4. Employing its knowledge to make decisions.
5. Cooperating with others (humans and agents) either by negotiation or

coordination to achieve common goals.
6. Realizing its goals by performing suitable roles and following suitable plans.
7. Gaining knowledge from experience to store the successful plans.
8. Being adaptable with the environment changes by responding in a timely fashion.
9. Having initiative (self starting).

 23

Agent role: A set of actions and activities that are assigned to, or expected of an
agent to be able to perform in the system. In other words, a role represents an agent
behavior that is recognized, providing a means of identifying and placing an agent in a
system. The distinction between an agent and a role is that an agent model describes
characteristics that are inherent to an agent, whereas a role describes characteristics
that an agent takes on. For each agent there is at least one role that should be
performed in the system. For each role, there is at least one responsibility that should
be performed by this role. For each responsibility, there exists a trigger, which is
possibly triggering an action that belongs to the agent capabilities. Responsibilities of
a role represent the main activities or tasks that the role performs in order to realize
the objectives in the system.

Agent knowledge: What each agent knows about the environment state, but also

what each agent knows about other agents. Agent knowledge represents the
informational state of the agent about the environment including itself and other
agents. It includes agent beliefs and goals.

Agent beliefs: Facts that are believed to be true about the working environment.

An agent’s beliefs are knowledge, which constitutes a description of the world. An
agent’s beliefs may be taken to explicitly represent the agent’s working environment or
even about the agent itself or other agents. Using the term belief rather than
knowledge recognizes that what an agent believes may not necessarily be true and in
fact may even change in the future.

Agent goals: Goal is defined as an end state, something to be achieved. It

describes, “What is to be done”. It is the destination itself and not a recipe for how to
reach that destination. Agent goals are informational states of what it is planned to be
achieved. The goals represent a mechanism, which leads the agent to achieve its tasks
in an orderly and smooth way. In order to describe the goal the following two
questions need to be answered. When are goals initiated or started? When are goals
considered satisfied? The goal is started or initiated when its precondition(s) is
satisfied. The goal is considered satisfied if and only if at least one of its plans is
satisfied then its postcondition(s) is satisfied. These pre- and postconditions are
considered the beliefs of the agent. The agent goals are classified into two types of
goals long-term and short-term goals. Long-term goals are ones that the agent will
achieve over a longer period. Long-term goals often are the most meaningful and
important goals. One problem, however, is that the achievement of these goals is
usually far in the future. Therefore, the agents should stay focused and maintain a
positive attitude towards reaching these goals. Short-term goals are ones that the
agent will achieve in the near future. Long-term goals can be decomposed to
hierarchical sub-short-term goals. Short-term goals will move the agent along towards
its long-term goals. Identifying the following short-term goals will help the agent to
create a clear picture of where it is going.

Plans: An agent’s view of the way a modeled agent will achieve its goals. A plan is

an organized set of tasks the agent will do to achieve its goals. Each plan is composed
of a set of tasks. These tasks will implement the plan and complete the required work.

Task: “An atomic piece of work to be done”. It identifies how things are to be done

and is clearly seen as an atomic work unit. A Task represents the miniature action that
is performed by the agent, which cannot be decomposed into sub-actions.

 24

Agent decision: An agent is capable to decide what actions to perform based on

its plans, knowledge, and beliefs. An agent decides to perform actions that will change
the environment situation, and by doing so, the agent’s goals are committed to be
satisfied.

Reactive agent: An agent that reacts to incoming events perceived in the

environment. A reactive agent answers to an event by a pre-defined action.

Proactive agent: agents do not simply act in response to their environment; they

are able to exhibit goal-directed behaviour by taking the initiative. An agent generates
goals, tries to achieve them, and does not depend on events occurring in the
environment.

Environment: A set of components that describe all the features of the system

and its behavior. These components affect each other. These components are stated
as follows: the agents that act on this environment, the events that happen in the
environment, the interactions that could take place between the agents, and the
dependencies between agents in the system. In fact, the environment constitutes the
MASs.

Events: Actions that happens at a given place and time. The action uniquely

identifies the event. Location is the place where the event happens. Time is that time
when the event happens. They are all perceived and afterwards processed by agents
and may launch or trigger plans or goals that should be selected to achieve. An agent
may react to events that change its knowledge. Events may change the agent’s
knowledge because its perception of the environment has changed. A triggering event
defines which events may lead to the execution of a particular plan in order to achieve
a particular goal.

Triggers: Represent incoming information from the environment to the agent.

The agent reacts according to this information in terms of actions. An agent perceives
its environment through sensors that describe triggering information. This triggering
information could be events or agent belief changes about the state of the
environment. These events or agent belief changes trigger the agent to do actions that
may update the agent’s knowledge, known as beliefs and goals.

Agent interactions: The way in which agents exchange information. This

exchange amounts to a message passing from one agent to many agents or humans.
Interaction enables agents to negotiate and coordinate in achieving their tasks or
common goals. These interactions are managed by communication acts (messages)
and organized by communication protocols.

Message: A unit of information or data that is transmitted from one agent to

another. A message can be defined as any information sent as an agent, which
interacts with another.

Protocol: A sequence of rules, which guide the interaction that take place between

several agents. These rules determine the format and transmission of messages
exchanged between agents. These rules define what messages are possible for any
particular interaction state. The set of possible messages is finite.

 25

Agent services: A service is a task that an agent is potentially willing to perform

on behalf of other agents. A set of services is associated with each agent. For each
service that may be performed by an agent, it is necessary to specify its properties such
as name, cost, etc. An agent possesses skills (services), which the agent can offer to
other agents.

Agents’ relationships: Denotes the degree of influence agents have over each

other. They allow us to construct management hierarchies (i.e. who is the boss of
who). For example, an agent dependency relationship is a relationship between two
agents, a dependee, and a dependant. The dependant agent depends on another agent
(the dependee) to do or provide something (dependum) in order that the dependant
may achieve some goal.

Multi-Agent System (MAS): A system composed of several agents, capable of

reaching goals that are difficult to achieve by an individual agent system. A multi-agent
system is a system showing the following characteristics [Jennings 1998]:

• Each agent has incomplete capabilities to solve a problem.
• There is no global system control.
• Data is decentralized.
• Computation is asynchronous.

When several agents interact, they may form a multi-agent system.

Characteristically such agents will not have all data or all methods available to achieve
an objective and thus will have to collaborate with other agents. In addition, there may
be little or no global control and thus such systems are sometimes referred to as
“swarm systems”. As with distributed agents, data is decentralized and execution is
asynchronous. MASs evolved from Distributed Artificial Intelligence (DAI),
Distributed Problem Solving (DPS), and Parallel Artificial Intelligence (PAI), thus
inheriting all characteristics from DAI and Artificial Intelligence (AI). Generally,
multi-agent systems can show plainly self-organization and complex behaviors.

There are two types of agent systems: Closed multi-agent systems and open multi-

agent systems.

Closed multi-agent systems: based on static design with components and

functions, which are required to be known in advance. In such systems, there is a
common language for communication between agents. Each agent is developed as an
expert in a particular area has the ability to solve problems, skills, and knowledge. For
example, MAS is organization built to contain a group of agents who represent
different departments within the organization. Each of these agents has different skills
and roles.

Open multi-agent systems: Often do not have static design beforehand there are

only independent agents inside the system. Agents would not necessarily know the
experience of other agents or services they offer. Therefore, it is requested that there
should be a mechanism to identify agents. Agents may be uncooperative, malicious
and unreliable in open systems. An example of open systems is the e-commerce
market where it is not necessary for agents representing clients to look for providers
in order to obtain services or products they need. This is often done through mediator

 26

agents and brokers specially designed for this purpose and who are working as a
directory.

3.3 Agent Architectures
Maes proposes agent architecture as “a particular methodology for building agents.

It specifies how the agent can be decomposed into the construction of a set of
component modules and how these modules should be made to interact” [Maes 1991].
Agent architectures present a higher level of abstraction for building and viewing
agent systems. A numeral of existing agent architectures were reviewed, decomposed
using object-oriented techniques, and then classified based on their components,
connectors, and overall structural pattern. Five agent architectural styles were found
using this approach: Belief Desire Intention (BDI), reactive, planning, knowledge-
based, and deliberative. The following sections review the most common types of
agent architectures and the components they are constructed from.

3.3.1 BDI Agent Architecture
The BDI architecture is one of the most well-known and studied software agents’

architectures [Georgeff, Pell, Pollack, Tambe, and Wooldridge 1998]. This architecture
consists of four basic components: beliefs, desires, intentions, and plans. In this
architecture, the agent’s beliefs represent information that the agent has about the
world, which in many cases may be incomplete or incorrect [d'Inverno, Kinny, Luck
and Wooldridge 1997]. The content of these beliefs can be anything from knowledge
about the agent’s environment to general facts an agent must know in order to act
rationally. The desires of an agent are a set of long-term goals, where a goal is typically
a description of a desired state of the environment. An agent’s goals simply represent
some desired end state. These goals may be defined by a user or may be adopted by
the agent. New goals may be adopted by an agent due to an internal state change in
the agent, an external change of the environment, or because of a request from
another agent. State changes may cause goals or plans to be triggered or new
information to be inferred that may cause the generation of a new goal. Requests for
information or services from other agents may cause an agent to adopt a goal that it
currently does not possess. An agent’s desires provide it with motivations to act.
When an agent chooses to act on a specific desire that desire becomes an intention of
the agent. The agent will then try to achieve these intentions until it believes the
intention is satisfied or the intention is no longer achievable [d'Inverno, Kinny, Luck,
and Wooldridge 1997]. The intentions of an agent provide a commitment to perform a
plan. Although not mentioned in the acronym, plans play a significant role in this
architecture. A plan is a representation outlining a course of action that, when
executed, allows an agent to achieve a goal or desire.

3.3.2 Reactive Agent Architectures
Perhaps the simplest among the most widely used agent architectures are reactive

architectures. Wooldridge and Jennings [1995] describe a reactive architecture as an
architecture that does not have a central world model and does not use complex
reasoning. Unlike knowledge-based agents that have an internal symbolic model from
which to work, reactive agents act by stimulus-response to environmental states. The

 27

agent perceives an environmental change and reacts accordingly. Reactive agents can
also react to messages from other agents.

Although reactive agents are basic and can only perform simplistic tasks, they do

form a building block from which other, more complex agents can be built. By adding
a knowledge base to a simple reactive agent, the agent becomes capable of making
decisions that take into account previously encountered state information. By adding
goals and a planning mechanism, we can create a rather complex goal directed agent.
Although complex patterns of behavior can be developed using reactive agents, their
primary goals usually consist of being robust and having a fast response time. Most
agent architectures contain a reactive component of some kind. However, they are not
actually truly reactive agents. Majority of reactive architectures can be modeled using a
basic “IF-THEN” rule structure.

3.3.3 Planning Agent Architecture
A number of researchers present different definitions for planning, but all result in

the same essential facts. Planning is the process of formulating a list of actions in
order to achieve a specified goal [Pollack 1992]. In artificial intelligence, a planner uses
knowledge about the actions it may perform and their consequences. It uses this as
well as knowledge about the environment, to formulate a list of acceptable state
transforming operators that can transform the agent from an initial state into a goal
state. As seen in BDI, planning architectures are usually embedded in other agent
architectures to determine the actions that an agent will perform. Within a given agent
architecture, plans may be either synthesized dynamically or predefined in advance and
placed in a plan library. In general, plans come in two types; total order and partial
order. Total order plans simply consist of a list of steps that an agent must follow to
accomplish a set goal. These steps have a definite order that must be followed for the
goal to be achieved. Partial ordered plans may have some steps ordered while the
order of other steps is arbitrary and inconsequential to reaching the goal. At one more
level of abstraction, plans can be fully or partially instantiated. The steps of a plan are
generally operators containing parameters that need to be defined to a set value in
order for the operator to function. A fully instantiated plan is one in which all of these
parameters are defined to a set value. Russell and Norvig [1995] state that a plan is a
formally defined data structure that contains the following components:

• A set of plan steps. Each step is one of the operators of the problem.
• A set of step ordering constraints.
• A set of variable binding constraints.
• A set of causal links to record the purpose(s) of steps in the plan

3.3.4 Knowledge-Based Agent Architectures
Even though the BDI architecture has a knowledge base, a large number of

architectures that exist are built around a centralized knowledge store. In general,
these are referred to as knowledge-based or expert systems. Knowledge-based systems
use data structures consisting of explicitly represented problem-solving information.
This knowledge can be viewed as a set of facts about the world. Three aspects of
knowledge-based systems, which make them powerful, are:

1. They can accept new tasks in the form of explicitly described goals.

 28

2. They can achieve competence quickly by being told or learning new knowledge
about the environment.

3. They can adapt to changes in the environment by updating the relevant
knowledge. [Russell and Norvig 1995]

In general, knowledge-based systems represent knowledge using a formal

declarative language. The use of declarative language allows knowledge to be added or
deleted from the knowledge base quickly and easily without affecting the rest of the
system. Using a declarative language such as first-order logic also allows new
information to be derived from the current knowledge stored in the system using
inference mechanisms. An inference mechanism can perform two actions. First, given
a knowledge base, it can generate new sentences that are necessarily true, given that
the old sentences are true. Second, given a knowledge base and a sentence, it can
determine whether the sentence was generated by the knowledge base or not [Russell
and Norvig 1995]. The relation just described between sentences is called entailment
and is used a great deal in knowledge-based systems.

3.3.5 Deliberative Agent Architectures
The deliberative agent architecture contains an explicitly represented, symbolic

model of the world. Decisions (for example about what actions are to be performed)
are made via logical reasoning, based on pattern matching and symbolic manipulation
[Genesereth and Nilsson 1987]. In order to build an agent in this way, there are at
least two important problems that need to be solved:

1. The transduction problem: that of translating the real world into an accurate,
adequate symbolic description, in time for that description to be useful.

2. The representation/reasoning problem: that of how to symbolically represent
information about complex real-world entities and processes, and how to get
agents to reason with this information in time for the results to be useful.

3.4 Agent-Oriented Methodologies
In order to be able to perform a comprehensive literature review for the agent-

oriented methodologies, “what the meaning of the methodology is” needs to be
precisely defined before starting this discussion. A good methodology should provide
the models for defining the elements of the multi-agent environment (agents, objects
and interactions). A good methodology should also provide the design guidelines for
identifying these elements, their components and the relationships between them. Any
good methodology aims to provide a set of guidelines that covers the whole lifecycle
of the system development. The guidelines should cover both the technical as well as
the management aspects.

Agent systems have been increasingly recognized as the next important software

engineering approach. Methodologies are the means provided by software engineering
to facilitate the process of developing software and, as a result, to increase the quality
of software products. By definition, a software engineering methodology is:

“A collection of procedures, techniques, tools and documentation aids which will help the systems

developers in their efforts to implement a new information system. A methodology will consist of
phases, themselves consisting of sub-phases, which will guide the systems developers in their choice of

 29

techniques that might be appropriate at each stage of the project and also help them plan, manage,
control and evaluate information system projects” [Avison and Fitzgerald 2003].

It is also important for a methodology to provide notations and modeling

techniques, which allow the developers to model the target system and its
environment. Notations are a technical system of symbols used to represent elements
within a system. A modeling technique is a set of models that depict a system at
different levels of abstraction and the different aspects of the system. Furthermore, an
agent methodology should support software engineering issues such as: preciseness,
accessibility, expressiveness, modularity, domain applicability, and scalability.
Preciseness makes sure that the semantics of modeling techniques of the
methodology are unambiguous in order to avoid misinterpretation of the developed
models by those who use it. Accessibility is the understandability of the modeling
techniques for both experts and novices. Expressiveness is the ability of the
methodology to express the system as whole. It represents the following aspects of the
system: structure; encapsulated knowledge; ontology; data flow; control flow;
concurrent activities; resource constraints (e.g., time, CPU and memory); the physical
architecture; agents’ mobility; interaction with external systems; and the user interface
definitions. Modularity is the ability to express the methodology in stages. That is,
when new specification requirements are added, there is no need to modify pervious
parts, and these may be used as a part of the new specification. Domain
Applicability is the suitability of the methodology for a particular application domain
(e.g. real-time, information systems). Scalability is the ability of the methodology or
subsets thereof, to be used to handle various application sizes.

In addition to the methodology, there are also tools that support the use of such

methodologies. For example, diagramming editors help developers draw symbols and
models, which are described in the methodology. The Rational Unified Process (RUP)
is a good example of a software engineering methodology [Kruchten 2000]. It uses the
notation described in the Unified Modeling Language (UML) [Booch 1998] and its
typical tool support is called “Rational Rose”.

A robust methodology needs to contain sufficient abstractions to entirely model

and support agents and MASs. Therefore, software engineers should use agent-
oriented concepts to describe the methodology. In turn, this can be used to build
agent-oriented systems and MASs. Arguably, simple extensions of object-oriented
methodologies to represent agent concepts are highly restricted by object concepts.
Thus, an agent-oriented methodology needs to concentrate on an organized society of
agents playing roles within an environment. This society of agents is interacting
according to protocols determined by agents within the system.

There are a large number of agent-oriented methodologies available [Henderson-

Sellers 2005]. Several efforts were directed to studying most of these existing
methodologies at a more detailed level [Arazy and Woo 2002; Castro et al. 2003; Dam
and Winikoff 2002-2003; Juan, Sterling and Winikoff 2002; Sabas, Delisle and Badri
2002; Sturm and Shehory 2003 etc.]. A detailed discussion of existing methodologies is
given in section 3.4.1 where related research is examined.

 30

3.4.1 Classification of Agent-Oriented Methodologies
Agent-oriented methodologies have several roots. They are classified according to

the approach or discipline upon which they are based. A common property of these
methodologies is that they are developed based on the approach of extending existing
methodologies to include the relevant aspects of agents. They are broadly classified
into three categories: agent-based methodologies, object oriented-based
methodologies and their extensions, and knowledge engineering-based methodologies
[Alonso 2004; Henderson-Sellers and Giorgini 2005]. Figure 3.1 illustrates the
classifications of agent-oriented methodologies.

Agent oriented
methodologies

Agent-based
methodologies

Object Oriented
methodologies

Knowledge
Engineering-based

methodologies

Gaia [2003]
Prometheus [2003]

Tropos [2003]
SODA [2001]
Styx [2001]
HLIM [1999]

Cassiopeia [1995]

ODAC [2003]
PASSI [2002]
MaSE [2004]

MASSIVE [2001]
DESIRE [1997]

AAII [1996]
AOMEM [1996]
AOAD [1996]
MASB [1994]

MAS-CommonKADS [1999]
CoMoMAS [1997]

Figure 3.1 Classification of Agent-Oriented Methodologies [Alonso 2004]

Agent-based methodologies: There are several methodologies that belong to

this category such as: Gaia [Wooldridge 2000; Zambonelli, Jennings, and Wooldridge
2003], HLIM [Elammari and Lalonde 1999], Tropos [Brescian 2003], Prometheus
[Padgham and Winikoff 2003], SODA [Omicini 2001], Styx [Bush 2001], and
Cassiopeia [Collinot 1995]. The developers of such methodologies urge that the agent
concept should be established without dependency on other traditional
methodologies, such as object-oriented methodologies. The main reason is the
inherent differences between the two entities; agents, and objects. This is because
agents have a higher level of abstraction than objects. Object-oriented approaches
cannot offer the same properties as agents do. They also fail to properly capture the
autonomous behavior of agents, interactions between agents, and organizational
structures [Bush 2001]. In fact, the notions of autonomy, flexibility, and pro-
activeness can hardly be found in traditional object-oriented approaches [Odell 2002].
As a result, object-oriented methodologies generally do not provide techniques to
model the intelligent behaviour of agents [Jennings & Wooldridge 1999]. Therefore,
there need to be software engineering methodologies, which are specially tailored to
the development of agent-based systems.

Object oriented-based methodologies (Extensions of object-oriented

methodologies): The agent-oriented methodologies which belong to this category
either extend existing object-oriented methodologies or adapt them to the aim of
agent-oriented software engineering. The examples of such methodologies are: ODAC
[Gervais 2003], MaSE [DeLoach 2004], MASSIVE [Lind 2001], DESIRE [Brazier

 31

1997], AAII [Kinny, Georgeff, and Rao 1996], AOMEM [Kendall 1996], AOAD
[Burmeister 1996] and MASB [Moulin 1994]. Some researchers present several reasons
for following this approach. Firstly, the agent-oriented methodologies, which extend
the object-oriented approach, can benefit from the similarities between agents and
objects. Secondly, they can capitalize on the popularity and maturity of object-oriented
methodologies. In fact, there is a high chance that they can be learnt and accepted
more easily. Finally, several techniques such as use cases and class responsibilities card
(CRC), which are used for object identification can be used for agents with a similar
purpose (i.e. agent identification) [Iglesias, Garrijo and Gonzalez 1999].

Knowledge Engineering-based methodologies (Extensions of Knowledge

Engineering (KE) techniques): There are, however, some aspects of agents that are
not addressed in object-oriented methodologies. For instance, object-oriented
methodologies do not define techniques for modeling the mental states of agents. In
addition, the social relationship between agents can hardly be captured using object-
oriented methodologies. These are the arguments for adapting KE methodologies for
agent-oriented software engineering. They are suitable for modeling agent knowledge
because the process of capturing knowledge is addressed by many KE methodologies
[Iglesias, Garrijo, and Gonzalez 1999]. Additionally, existing techniques and models in
KE such as ontology libraries, and problem solving method libraries can be reused in
agent-oriented methodologies. Examples of such methodologies are: MAS-
CommonKADS [Iglesias, Garrijo, Gonzalez and Velasco 1999] and CoMoMAS
[Glaser 1997]

Agent-oriented methodologies should assist the developer in making decisions

about the aspects of the analysis, design, and implementation of the agent systems.
Some methodologies focus on inter-agent aspects, while others focus on intra-agent
aspects. Finally, some methodologies explicitly deal with the environment while others
do not. These methodologies differ from each other in many respects. They differ on
the software development phases they capture in analysis, design, and implementation
phases. In addition, they differ in their premises, covered phases, models, concepts,
and the supported multi-agent system properties.

Among these starting points, five dedicated agent-oriented software

methodologies were chosen and further reviewed. The selected methodologies are
Gaia [Wooldridge 2000; Zambonelli, Jennings, and Wooldridge 2003], HLIM
[Elammari and Lalonde 1999], PASSI [Burrafato 2002], MaSE [DeLoach 2004], and
MAS-CommonKADS [Iglesias, Garrijo, Gonzalez and Velasco 1999]. These
methodologies were chosen because they are based on different approaches. This
selection was done in order to choose from all disciplines. From within the same
approach the more commonly known methodologies were selected. The existing
approaches are outlined in figure 3.1.

3.4.1.1 Gaia Methodology
The Gaia methodology [Wooldridge 2000; Zambonelli, Jennings, and Wooldridge

2003] was developed by Wooldridge et al. for the analysis and design of agent systems
and was extended to support open multi-agent system in 2003 by Zambonelli et al.
Gaia is a general methodology that supports both levels of micro and macro
development of agent systems. The micro level relates to the agent structure while the

 32

macro level relates to the agent society and organizational structure. Gaia includes an
analysis and design phase but does not explicitly support an implementation phase.

Gaia starts with the analysis phase as is given in figure 3.2. It aims to collect and

organize the specification which is the basis for the design of the computational
organization. It then continues with the design phase, which aims to define the
system’s organizational structure. The definition is in terms of the system’s topology
and control system in order to identify the agent model and the service model. Gaia
consists of two main phases: the analysis phase and design phase.

The analysis phase is the set of requirements that are identified. It aims to

understanding the system and its structure. It includes: the environmental model,
preliminary role model, preliminary interaction model, and organizational rules model.

Subdivide system into
 Sub-organization

Preliminary
Role Model

Organizational
Rules

Preliminary
Interaction Model

Organizational
Structure

Catalogue of
Organizational

Patterns

Interaction
ModelRole Model

Agent Model Services Model

Analysis
Phase

Design
 Phase

Environmental
Model

Figure 3.2 Gaia Methodology Models

The environmental model aims to make the characteristics of the environment

explicit in which the multi-agent system will be engaged.

The preliminary role model specifies the key roles in the system and describes

them in terms of permissions and responsibilities.

The preliminary interaction model captures the dependencies and relations be-

tween roles by means of protocol definitions. Gaia is only concerned with the society
level; it does not capture the internal aspects of agent design.

The organizational rules model captures the basic functionalities required by the

organization, as well as the basic interactions and roles.

 33

The design phase includes: organizational structure, agent model, role model,
interaction model, and service model.

The organizational structure captures the catalogue’s organizational patterns and

involves considering: (i) the organizational efficiency, (ii) the real-world organization
(if any) in which the MAS is situated, and (iii) the need to enforce the organizational
rules.

The role and interaction models are the completion of the preliminary role, and

interaction model. This is based upon the adopted organizational structure and
involves separating, whenever possible, the organizational-independent aspects
(detected from the analysis phase) from the organizational-dependent ones (derived
from the adoption of a specific organizational structure). This separation promotes a
design-for-change perspective by separating the structure of the system (derived from
a contingent choice) from its goals (derived from a general characterization).

The agent model is concerned with identifying the agent classes that will make up

the system and the agent types that will be instantiated from these classes.

The service model is concerned with identifying the services associated with a

role. It identifies the main services intended as coherent blocks of activity in which
agents will engage. These services are required to realize the agent’s roles, and their
properties.

Despite that the Gaia methodology was developed based on strong software

engineering approaches [Henderson-Sellers 2005], the Gaia developer’s state some
limitations as follows:

• The methodology does not directly deal with particular modeling techniques. It
proposes, but does not commit to, specific techniques for modeling (e.g., roles,
environment, and interactions).

• It does not directly deal with implementation issues.
• It does not explicitly deal with the activities of requirements capturing and

modeling, and especially with early requirements engineering.

3.4.1.2 HLIM Methodology
The HLIM methodology was developed in 1999 by M. Elammari and W. Lalonde

and allows the development of agent-based systems to form user requirements. The
methodology models the external and internal behavior of agents. It also provides a
means for both the visualization of the behavior of systems’ agents and the definition
of how the behavior is achieved. The methodology provides a systematic approach for
generating system definitions from high-level designs, which can be implemented. The
methodology captures effectively the complexity of agent systems, agents’ internal
structure, relationships, conversations, and commitments.

Figure 3.3 shows the model of the HLIM methodology. The HILM methodology

consists of two phases: the discovery phase and the definition phase.

 34

High-level Model

Internal agent Model

Agent Relationship Model
• Dependency
• Jurisdictional relationships

Conversational Model

Contract Model

Agent Logic

Definition
Phase

Discovery
Phase

Figure 3.3 HLIM Methodology Models

The discovery phase includes the high-level model. The discovery phase is an

exploratory phase that leads to the high-level model definition. The agents are
discovered and their high-level behaviour is identified.

The high-level model identifies agents and their high-level behaviour. It gives a

high-level view of the system and is considered as a point of commencement for
providing the details of other models. It is constructed by tracing application scenarios
that describe functional behaviour, discovering agents and behaviour patterns along
the way. This model includes three major sources of information: Documentation
defining operational aspects of the model such as preconditions and postconditions of
scenarios, the responsibilities of agents, and the behaviour of the system at the level of
collaborating agents achieving a specific system purpose.

The definition phase produces intermediate models that facilitate the

implementation of agent systems. The high-level model, supplemented by other
information, is used to generate these models. These models express the full
functional behaviour of an agent system by identifying aspects of agents such as goals,
beliefs, plans, jurisdictional and dependency relationships, contracts, and
conversations. It includes the internal agent model, the relationship model, the
conversational model, and the contract model.

The internal agent model describes the agents in the system in terms of their

internal structure and behaviour. It is derived directly from the high-level model. This
model describes the internal structure of the agents discovered in the high-level
model. It also captures agent aspects such as goals, plans and beliefs.

The agent relationship model describes inter-agent dependencies and

jurisdictional relationships. The relationship diagrams are derived from the

 35

coordination expressed in the high-level model and from responsibilities and
preconditions. Coordination is captured in the high-level model by path segments that
connect two agents. Analysis of responsibilities and preconditions may lead to the
discovery of dependencies. The inter-agent dependencies are represented by the
dependency diagram, which explains how an agent provides a service to another agent
that requires that service. The jurisdictional relationships are represented by the
jurisdictional diagram, which describes the organization of agents in terms of their
authority status. It relates superior and subordinate agents.

The conversational model represents the interaction between agents. The

purpose of the conversational model is to identify what messages are being exchanged
in order for the agents to cooperate and negotiate with each other. The conversational
model is derived from the agent relationship model and the internal agent model. The
conversational model identifies what messages are being exchanged in the agent
relationship model in order to fulfill the dependencies and detect the jurisdictional
relationships.

The contract model defines a structure that captures commitments between

agents. It specifies obligations and authorizations between the different agents about
the services provided to each other. Contracts can be created when agents are
instantiated or during execution, as and when they are needed. This model defines the
expectations of how agents can fulfill the dependencies defined by the dependency
model. The model also defines the expectations of agents when they play the roles
defined by the jurisdictional model. Conversations are used as guidelines for
discovering those expectations.

3.4.1.3 The PASSI Methodology
The PASSI methodology is an object oriented-based methodology. It was

developed in 2002 by Cossentino and Potts. PASSI is composed of five models that
address different design concerns and twelve steps in the process of building a model.

PASSI uses UML as the modeling language because it is widely accepted both in

the academic and industrial worlds. Its extension mechanisms facilitate the customized
representation of agent-oriented designs without requiring a completely new language.
Extension mechanisms here refer to constraints, tagged values and stereotypes. The
models and phases of PASSI are (see figure 3.4):

System requirements model is an anthropomorphic model of the system

requirements in terms of agency and purpose. Developing this model involves four
steps:

1. Domain Description: is a functional description of the system composed of a
hierarchical series of use case diagrams. Scenarios of the detailed use case
diagrams are then explained using sequence diagrams.

2. Agent Identification: The separation of responsibility into agents, represented as
stereotypical UML packages. In this step, one or more use cases are grouped into
stereotyped packages to form agent identification diagram.

3. Role Identification: The use of sequence diagrams to explore each agent's
responsibilities through role-specific scenarios.

4. Task Specification: Specification through activity diagrams of the capabilities of
each agent.

 36

Figure 3.4 Models and phases of the PASSI methodology

Agent society model is a model of the social interactions and dependencies

among the agents involved in the solution. Developing this model involves three steps
in addition to a part of the previous model:

1. Role Identification. See the System Requirements Model.
2. Ontology Description: The use of class diagrams and Object Constraint Language

(OCL) constraints to describe the knowledge ascribed to individual agents and the
pragmatics of their interactions.

3. Role Description: The use of class diagrams to show distinct roles played by
agents, the tasks involved that the roles involve, communication capabilities and
inter-agent dependencies.

4. Protocol Description: The use of sequence diagrams to specify the grammar of
each pragmatic communication protocol in terms of speech-act performatives like
in the AUML approach [Odell 2001].

Agent implementation model is a model of the solution architecture in terms of

classes and methods, the development of which involves the following steps:
1. Agent Structure Definition: The use of conventional class diagrams to describe

the structure of solution agent classes.
2. Agent Behaviour Description: The use of activity diagrams or state charts to

describe the behaviour of individual agents.

Code model is a model of the solution at the code level requiring the following
steps to produce:

1. Code Reuse Library: A library of class and activity diagrams with an associated
reusable code.

2. Code Completion Baseline: The source code of the target system.

Deployment model is a model of the distribution of the parts of the system
across hardware processing units and their migration between processing units. It
involves one step:

 37

1. Deployment Configuration: The use of deployment diagrams to describe the
allocation of agents to the available processing units and any constraints on
migration and mobility.

Testing: the testing process has been subdivided into two different steps:
1. The (single) agent test is devoted to verifying its behaviour concerning the original

requirements of the system solved by the specific agent.
2. The society test is used for the validation of the correct interaction of the agents,

in order to verify that they concur in solving problems that need cooperation.

3.4.1.4 MaSE Methodology
The Multi-agent Systems Engineering (MaSE) [DeLoach 2004] methodology is

considered as an object oriented-based approach. It provides a complete-lifecycle
methodology to assist system developers to design and develop a multi-agent system.
It describes the process, which leads a system developer from an initial system
specification to system implementation. This process consists of seven steps, divided
into two phases. Figure 3.5 illustrates the process of MaSE methodology.

Use cases

Requirements

Goal Hierarchy

Sequence
Diagrams

RolesConcurrent Tasks

Agent Classes

Conversation

Agent Architecture

Deployment
Diagrams

Capturing
Goals

Applying Use
Cases

Refining
Roles

Creating Agent
Classes

Constructing
Conversations

Assembling
Agent Classes

System
Design

A
na

ly
si

s
D

es
ig

n

Figure 3.5 MaSE models and phases [DeLoach 2004]

The MaSE analysis phase is composed of three smaller process steps. The first
step is capturing goals, which guides the developers to identify goals and then
structure and represent them as a goal hierarchy. The second step, applying use
cases, involves extracting main scenarios from the initial system context or copying
them from it if they exist. These use cases are also used to build a set of sequence
diagrams (similar to UML sequence diagrams). The final step is refining roles where a
role model and a concurrent task model are constructed. The role model describes

 38

the roles in the system. It also depicts the goals, which those roles are responsible for,
the tasks that each role performs to achieve its goals, and the communication path
between the roles. Tasks are then graphically represented in fine-grained detail as a
series of finite machine automata in the concurrent task model.

The MaSE design phase, the first step of the design phase is creating agent

classes. The result of this step is an agent class diagram, which describes the entire
multi-agent system. The agent class diagram shows agents and the roles they play.
Links between agents show conversations and are labeled with the conversation name.
The details of the conversations are described in the second step of the design phase
constructing conversations using communication class diagrams. These
conversations are represented by a finite state machine. The third step of the design
phase is assembling agent classes. During this step, we need to define the agent
architecture and the components that build up the architecture. In terms of agent
architecture, MaSE does not dictate any particular implementation platform. The
fourth and final step of the design phase is system design. It involves building a
deployment diagram that specifies the locations of agents within a system.

MaSE has an extensive tool support in the form of agentTool [DeLoach 2004].

The latest version of agentTool implements all seven steps of MaSE and provides
automated support for transforming analysis models into design constructs.

3.4.1.5 MAS-CommonKADS Methodology
MAS-CommonKADS is one of the methodologies that are based on the

knowledge engineering-based approach. This methodology [Iglesias, Garrijo,
Gonzalez and Velasco 1999] is considered an extension of the CommonKADS
methodology [Glaser 1997], as techniques from object-oriented methodologies
(OOSE, OMT) and from protocol engineering were added for describing the agent
protocols. It consists of three main phases: conceptualization, analysis, and design.
These phases comprise of seven models that cover the main aspects in the
development of multi-agent systems. Figure 3.6 illustrates the models of the
MAScommonKADS methodology.

Organization
model

Task
model

Agent
model

Knowledge
model

Communication
model

Design
model

Context

Concept

Artifact

Figure 3.6 Models and Phases of the MAScommonKADS Methodology

 39

The methodology starts with a conceptualization phase, which is an informal
phase for collecting the user requirements and obtaining a first description of the
system from the user’s point of view. The use cases technique is used and the
interactions of these use cases are then formalized with MSC (Message Sequence
Charts).

The analysis and design phases define models as described below. For each

model, the methodology defines the system components (constituents “entities to be
modeled”) and the relationships between these components. The methodology defines
a textual template for describing every constituent and a set of activities for building
every model. This is based on the development state of every constituent (empty,
identified, described, or validated). These activities facilitate the management of the
project.

The following models represent the extension of CommonKADS:

Agent model: The agent model specifies the characteristics of an agent including

reasoning capabilities, skills (sensors/effectors), services, goals, etc. The agent model
plays the role of a reference point for the other models. An agent is defined as any
entity (human or software) capable of carrying out an activity. The identification of
agents is based on the use cases diagrams generated in the conceptualization. Such
identification could be augmented in the task model.

Task model: Describes the tasks (goals) that the agents can carry out. UML

Activity diagrams are used to represent the activity flows and the textual template to
describe the task (name, short description, input and output ingredients, task
structure, etc).

Expertise model: Describes the knowledge needed by the agents to carry out the

tasks. The knowledge structure follows the KADS approach. It distinguishes domain,
task, inference and problem solving knowledge. Several instances of this model are
developed for modeling the inferences on the domain, on the agent itself and on the
rest of the agents.

Coordination model: Describes the conversations between agents. That is agents’

interactions, protocols and required capabilities. The coordination model provides two
milestones. The first milestone is concerned with identifying the conversations and the
interactions. The second milestone is concerned with improving these conversations
with more flexible protocols such as negotiation, identification of groups, and coali-
tions. The interactions are modeled using the formal description techniques MSC
(Message Sequence Charts) and SDL (Specification and Description Language).

Organization model: Describes the organization in which the MASs are going to

be introduced and the organization of the agent society. It illustrates the static or
structural relationships between the agents. This model also describes the agent
hierarchy, the relationship between the agents and their environment, and the agent
society structure. A graphical notation based on OMT is used to express these
relationships, adding a special symbol in order to distinguish between agents and
objects.

 40

Communication model: Several agents can be involved in a task. This model
helps with modeling the communicative transactions between systems involved. These
are often human-to-system and system-to-human communications.

Design model: The design model includes the design of relevant aspects of the

agent network, selecting the most suitable agent architecture and the agent
development platform. The design model assembles the agent, task, expertise,
coordination, organization and the communication models. This assembled collection,
is subdivided by the design model to generate three sub-models:

• Application design: composition or decomposition of the agents of the analysis,
according to pragmatic criteria and selection of the most suitable agent
architecture for each agent.

• Architecture design: designing of the relevant aspects of the agent network: required
network and knowledge.

• Platform design: selects the agent development platform for each agent architecture.

3.5 Agent Methodologies Discussion
The weakness and limitations of these methodologies were already discussed in

chapter 2 “Motivation and contribution”. As mentioned previously in section 3.4.1,
these methodologies are classified according to the different approaches as agent-
based, object oriented-based, and knowledge engineering-based. A number of these
methodologies have been recommended for agent-oriented development. Yet, it is not
easy to select a specific one in order to employ it or even to evaluate them. This is
because they usually differ in their premises, covered phases, models, concepts and the
supported multi-agent system properties. Therefore, a detailed discussion will be
presented about their advantages, and difficulties.

3.5.1 Advantages of Agent Methodologies
Some of the existing agent-oriented methodologies are based on strong disciplined

foundations; they possess some advantages as follows:
1) Some methodologies take into account the idea of a society of agents or the idea

of an organization that provides a coherent conceptual infrastructure for analysis
and design of multi-agent systems.

2) Some methodologies support both levels (micro and macro levels) to construct
and develop agent systems.

3) A few methodologies support models derivation, where some models can be
derived directly from others.

4) Some methodologies that are considered as an extension of the software
engineering approach provide a solid base for the development of multi-agents
systems.

5) Some methodologies use well-known techniques such as UML, which is
particularly interesting. These techniques facilitate comprehension and
communication between the various agents involved during software
development [Sabas, Delisle and Badri 2002].

6) Some methodologies explicitly provide the cooperation between agents and the
concepts used to describe the type of control. Some others are less clearly
specified.

 41

7) Some of these methodologies include an early requirements analysis phase, which
assists the developers to understand an application by studying its organizational
setting.

8) Some methodologies are becoming close to a complete methodology for multi-
agent systems. They treat most development phases, and they treat both inter-
agent and intra-agent perspectives.

9) The methodologies that constitute an extension of knowledge-based methods
provide models that take into account the agents' internal states much better.

10) Some methodologies provide relatively elaborated support for reusable models,
which is a valuable aspect for any methodology.

3.5.2 Difficulties of Agent Methodologies
The existing agent-oriented methodologies suffer from some difficulties which are

the main reasons for a number of limitations emerge. Those difficulties prevent agent-
oriented methodologies from being utilized and practiced in a wide manner. These
difficulties are:

1) There is no existing agreement or accord on agent theory. Up until this point in
time, no agent-oriented standards have been established and accepted as
standard. No agent-oriented methodology will be able to spread unless the agent
model is standardized. This standardization is refers to what characteristics define
an agent, what types of architecture are available for agents, what agent organiza-
tions are possible, and what types of interactions there are between agents, etc.

2) None of these methodologies are used and none are exploited in a wide manner.
3) All research that examined and compared properties of these methodologies has

suggested that none of them are completely suitable for industrial development
of MAS.

4) There is no systematic approach to identify the components of MAS. Most
current methodologies require the designers and developers to identify all agents
of the system. Therefore, a designer experience is very important and is essential
for producing a quality MAS. Designers should be trained beforehand to have
the necessary skills for such projects.

5) Although, there are new languages for programming agent behavior, there are no
adequate development tools for representing agent structure. Languages tend to
focus mainly on particular agent architecture.

6) Selecting a suitable methodology to be followed for MAS development processes
is not an easy task. Therefore, a precise methodology needs to be presented to
guide the team of developers towards the achievement of objectives.

7) Comparing methodologies is often difficult. This difficulty arises from the fact
that it is not easy to evaluate them because they usually differ in their premises,
covered phases, models, concepts and the supported multi-agent system
properties.

8) There is no agreement on what a methodology is and on what it should consist
of.

3.6 Agent Programming Languages
The MAS literature provides a large number of different proposals for agent-

oriented languages. These range from standard programming languages, to logic-based
languages, and various hybrid approaches. A number of languages exist for developing

 42

agents and multi-agent systems. It is impossible to explain these languages in-depth; as
a result we give only a few examples.

3.6.1 Standard Programming Languages
Many agent systems are probably programmed in C/C++ and Java. In addition to

these standard-programming languages, numerous prototype languages for
implementing agent-based systems have been proposed to enable programmers to
realize agent concepts in a better manner. There is no doubt that Java is the most used
programming language for developing agents and multi-agent systems. Its advantages
remain in large libraries of functions covering several domains like concurrency and
security. Moreover, it is easy to insert new functions in Java. Even though Java is an
oriented-programming language, it is interesting for developing agents and multi-agent
systems.

3.6.2 Logic-based Languages
We first address the class of logic-based languages that are partially characterized

by their strong formal nature, normally based on logic. Amongst the most well-known
languages following the agent-oriented paradigm are AGENT-0 [Shoham 1993],
Concurrent MetateM [Fisher 1995], AgentSpeak (L) [Rao 1996], 3APL [Hindriks, de
Boer, van der Hoek and Meyer 1999], FLUX [Thielscher 2005], Minerva ([Leite 2003]
and [Leite, Alferes and Pereira 2002]), Dali [Costantini and Tocchio 2002] and ResPect
[Omicini and Denti 2001].

3.6.3 Hybrid Approaches
A variety of well-known agent languages combine features of standard and logic-

based languages. In this section, we discuss agent-programming languages, which are
logic-based. At the same time, some specific constructs allowing for the use of code
implemented in some standard programming languages are provided, such as 3APL
[Hindriks, de Boer, van der Hoek and Meyer 1999], Jason [Bordini Hübner et al. 2005],
IMPACT [Subrahmanian et al. 2000], Go! [Clark and McCabe 2004] and AF-APL
[Shoham 1993].

3.7 Agent Development Platforms and Frameworks
A lot of platforms and frameworks are available that support the process of agent-

oriented software development. Most of them include some underlying platforms
which implement the semantics of the agent programming language. Most of them are
built by and integrated into Java. However, some frameworks exist that are not so
strongly tied to a particular programming language. Instead, these frameworks are
more concerned with providing support for aspects such as agent communication and
coordination. Examples of such platforms and frameworks are TuCSoN [Omicini and
Zambonelli 1999], ZEUS [ZEUS 1999], JADE [JADE 1999], Jadex [Braubach,
Pokahr, and Lamersdorf 2004], LEAP [LEAP 2000], AgenTool [AgenTool 2000],
JATLite [JATLite 2000], FIPA-OS [FIPA-OS 2000], MADKIT [MADKIT 1999],
JACK [Busetta, Ronnquist, Hodgson and Lucas 1999], DESIRE [Brazier, Jonker, and
Treur 1998] and Intelligent Agent Factory [2000]. In this section, we focus on such
frameworks, having chosen TuCSoN, JADE, Jadex, and DESIRE as illustrative
examples.

 43

DESIRE (DEsign and Specification of Interacting REasoning components) is a

compositional development framework for MAS. It is based on a notion of
compositional architecture, and developed by Treur et al. [Brazier, Jonker, and Treur,
1998]. In this framework agent design is established upon the following main aspects:
process composition, knowledge composition, and relations between knowledge and
process composition. In this component-based agent approach, an agent’s complex
reasoning process is developed as an interaction between the components
representing the sub-processes of the overall reasoning process [Brazier, Jonker, and
Treur, 1998]. The reasoning process is structured as a number of reasoning
components that interact with each other. Components may or may not be comprised
of other components. Components that are not further decomposed are called
primitive components. The function of the overall agent system is based on the
functionality of these primitive components plus the composition relation that
coordinates their interaction. Specification of a composition relation may involve, for
example, the possibilities of information exchange among components and the control
structure that activates the components. The DESIRE approach has been used for
applications such as load balancing of electricity distribution and diagnostic systems.
Further information and documentation of the tools supporting the development and
implementation of multi-agent systems based on DESIRE is available at [Brazier,
Dunin-Keplicz, Jennings and Treur 1997].

JADE (Java Agent DEvelopment Framework) is a Java framework for the

development of distributed multi-agent applications. It represents an agent
middleware providing a set of available and easy-to-use services and several graphical
tools for debugging and testing. One of the major goals of the platform is to support
interoperability by strictly adhering to the FIPA specifications concerning the platform
architecture in addition to the communication infrastructure. Furthermore, JADE is
flexible and can be adapted to be used on devices with limited resources such as PDAs
and mobile phones. JADE has been widely used over the last years by many academic
and industrial organizations ranging from tutorials for teaching support in agent-
related University courses to Industrial prototyping [Bordini, Dastani, Dix, and El-
Fallah 2005]. As an example, Whitestein has used JADE to construct an agent-based
system for decision-making support in organ transplant centres [Calisti, Funk,
Biellman, and Bugnon, 2004]. The JADE platform is open source software and can be
obtained at [JADE 1999].

Jadex [Braubach, Pokahr, and Lamersdorf 2004] is a software framework for the

construction of goal-oriented agents following the belief-desire-intention (BDI)
model. The framework is realized as a rational agent layer that sits on top of a
middleware agent infrastructure such as JADE. It supports agent development with
well-established technologies such as Java and XML. The Jadex reasoning engine
addresses traditional limitations of BDI systems by introducing new concepts, such as
explicit goals and goal deliberation mechanisms (see, e.g., [Braubach, Pokahr, Moldt,
and Lamersdorf 2005]. This makes results from goal-oriented analysis and design
methods (e.g., KAOS and Tropos) more easily transferable to the implementation
phase. Jadex has been used to build applications in different domains such as
simulation, scheduling, and mobile computing. It has also been successfully used in
several software engineering courses at the University of Hamburg. The Jadex system,
developed at the Distributed Systems and Information Systems group at the
University of Hamburg, is freely available under the LGPL license and can be

 44

downloaded from [Braubach, Pokahr, and Lamersdorf 2004]. Besides the framework
and additional development tools, the distribution contains an introductory tutorial, a
user guide, and several illustrative example applications with source code.

TuCSoN (Tuple Centre Spread over the Network) is a coordination framework

for multi-agent system based on a model and a related infrastructure, which provides
general-purpose, programmable services to support agent communication and
coordination [Omicini and Zambonelli 1999]. The model is based on tuple centres
which are runtime programmable abstractions whose coordinating behavior can be
dynamically specified with a logic-based language called ReSpecT [Omicin and Denti
2000]. Tuple centres are coordination tools, which reside in the agent cooperative
working environment, shared and used collectively by the agents to support their
coordination. The TuCSoN technology is open source software and completely based
on Java. It is comprised of: a runtime platform to be installed on hosts to turn them
into nodes of the infrastructure; a set of libraries (APIs) to enable agents access to the
services; and a set of tools mostly to support the runtime inspection and control
(monitoring, debugging) of tuple centres’ state and coordinating behavior. At the heart
of the TuCSoN technology is the tuProlog technology, a Prolog engine fully integrated
with the Java environment, available also as a standalone library and environment.
Currently, TuCSoN is used as one of the reference platforms for building agent-based
systems in academic projects and thesis developed at the Engineering Faculties in
Cesena and Bologna.

3.8 Chapter Summary
In this chapter, the literature concerning agents, agent architectures, multi-agent

systems, agent-oriented methodologies, and agent development programming
languages and platforms was reviewed. The field of agent-oriented methodologies was
examined with the aim of establishing the characteristics of agent-based systems. An
analysis of agent-oriented methodologies that gives a clearer picture of their
application domain was presented including the advantages and difficulties they
present.

 45

CHAPTER FOUR
REQUIREMENTS FOR A COMPREHENSIVE
AGENT-BASED SOFTWARE ENGINEERING

METHODOLOGY

4.1 Introduction
This chapter describes the requirements for a new agent-based software

engineering methodology. These requirements are discussed based on the following
three categories: concepts, models, and process.

4.2 Requirements for a New Methodology
A number of methodologies were studied in detail and their characteristics were

analyzed. We identified many advantages and disadvantages of different aspects of the
methodologies under study. Based on these findings, we compiled the following list of
requirements that, in our view, the work involved in this research needed to address.
These requirements are classified into three types of categories that new methodology
should comply with: concepts, modeling techniques, and processes.

4.2.1 Requirements on the level of Concepts
1) The new methodology should be based on robust concepts of agent system and

MAS. Therefore, it should have a complete conceptual agent and MAS structure.

2) The methodology should rely on a plain, specific conceptual framework, which is
responsible for specifying and linking the concepts during the different construction
stages. This conceptual framework is considered as a foundation in the different
phases of construction.

3) The methodology should also deal with the agent concept as a high-level abstraction,
capable for modeling complex systems.

4) The new methodology should close the gap between the design models of the
methodologies and the existing implementation languages.

5) The methodology should take into account the idea of a society of agents or the idea
of an organization. Therefore, the methodology should use explicit organizational
aspects like role, responsibilities, permissions, goals, plans, and tasks.

6) The new methodology should be able to model the mental aspects of agents such as
beliefs, goals, and plans. Such aspects play a crucial role in determining how rational
agents will act.

7) The methodology should be able to support existing agent architectures in order to
specify how the agent can be decomposed into a set of component modules and how
these modules should be made to interact.

 46

8) The methodology should provide concepts which are used to specify and represent
changes in the environment, e.g. events, incidents, etc. Therefore, it should include a
trigger concept for agents to represent its autonomy and reactiveness characteristics.

4.2.2 Requirements on the level of Models
1) The methodology should use modeling languages that are widely accepted both in

the academic as well as in the industrial world.

2) The methodology should utilize well-known techniques for requirement gathering
and agent communication in order to link them to domain analysis and design
models.

3) The design models in the new methodology should be easy to implement. This
means that this methodology should have no complexity and it should have design
constructs that can be mapped onto instructions of an available programming
language.

4) The methodology should provide support for some essential software engineering
issues that will have a substantial effect on its acceptability for industry and, thus on
the adoption of the agent technology. Examples are: preciseness, accessibility,
expressiveness, domain applicability, modularity, refinement, model derivation,
traceability, and clear definitions.

5) The methodology should provide models to represent both the visualization of the
agents' behavior and the definition of how this behavior is achieved.

6) The methodology and its models should be able to capture effectively the complexity
of agent systems, agents’ internal structure, relationships, conversations, and
commitments. In addition, it should properly capture the behavior of agents,
interactions between agents, and organizational structures.

7) The methodology should support models derivation, where some models can be
derived directly from others. It should allow extracting a model from another with
ease.

8) The methodology should define general analysis, and design models that can
systematically perform an agent identification process.

9) The new methodology should have models that are easy to use (with understandable
notations), easy to construct, easy to apply, easy to represent, and easy to trace
through.

10) The methodology should have models with a notation capable of expressing models
of both static aspects of the system and dynamic aspects.

11) The methodology should have models that do not contradict each other.

4.2.3 Requirements on the level of Process
1) The methodology process should have the attributes of simplicity, and ease of use as

well as traceability.

2) This methodology should cover in sufficient depth all the following aspects: a full
lifecycle process; a comprehensive set of concepts and models; a full set of
techniques such as rules, guidelines, and a modeling language.

 47

3) The methodology should have a reliable systematic approach that proves a milestone
for Software Development Life Cycle (SDLC). It should be able to create a multi-
agent system starting with the initial specification, system requirements and then
producing a set of implementation codes.

4) The methodology process should include an early system requirements phase which
provides a clear understanding and description of how the whole system works.

5) The methodology process should enable designers to clearly structure and construct
the application as MAS.

6) The methodology should contain robust and general tools that are flexible enough to
specify and implement the characteristics of the agents involved.

7) The methodology should be complete and cover the entire area from analysis to
implementation rather than address different properties of software agents and
methodological aspects.

8) The methodology should provide facilities to allow an agent to be capable to satisfy
its needs, make use of its interests, and take control of its beliefs.

9) The methodology should have implementation constructs that have exact semantics.

10) The methodology process should provide an implementation language with
explanations of how to implement the reasoning of beliefs, reasoning of goals and
plans, and reasoning of communication.

11) The methodology process should provide mechanisms to specify and represent
agents' responses to changes in the environment.

12) The methodology should support describing an agent's self-control features.

13) The methodology should be able to support goal-modeling techniques, which
capture the agents' goals. It should permit to model plans and their tasks, which
describe how an agent achieves goals.

14) The methodology process should provide the agent’s ability to cooperate with other
agents.

15) The methodology should allow for agents modeled in the methodology to be able to
store information about their environment and their internal states as well as the
actions they may carry out.

16) The methodology should support modeling dependencies between agents. In
addition, should allow agents modeled in the methodology to depend on each other
to achieve goals.

17) The methodology should support both asynchronous and synchronous
communication modes between agents.

18) The methodology should have a way of representing the communication protocols.

19) The methodology should support easy illustrating and testing.

48

PART TWO
SOLUTION

The second part of this research work starts by discussing the entire process of the
new methodology in detail. The process of the new methodology is described step by
step in order to explain how the structure of the new methodology works to build agent
systems. This is described in chapter 5.

This part also describes the complete detailed process of developing multi-agent
systems by using a case study of the car rental system. This case study is used to prove
the methodology. This described in chapter 6.

49

CHAPTER FIVE
MULTI-AGENT SYSTEM DEVELOPMENT

METHODOLOGY

5.1 Introduction
This chapter presents in detail the new Multi-Agent System Development (MASD)

methodology. The chapter starts with the assumptions of the new methodology. It
then states the methodology construction necessities and then describes the phases of
the proposed methodology. The MASD methodology consists of four phases: the
system requirement phase, analysis phase, design phase and implementation phase.
Each phase is described in detail.

5.2 Assumptions
Before describing the development process of the new methodology, we provide a

few limitations or restrictions in order to define the scope of the new MASD
methodology.

The first restriction that the current version of the MASD methodology is

designed to work for cross-boundary systems (semi-open systems) where the agent
society itself is closed (i.e. the types and behaviours of agents defined in the system are
determined beforehand) but external agents may interact with members of the society
via the defined and used protocols (e.g., FIPA).

The second restriction is that the current version of MASD methodology is

focused on small and medium sized systems. We assume up to fifteen agents. This
number is not a hard limit, but simply no verification is done for larger systems. A
large number of agents may lead to complex inter-agent communications

The third restriction is that our MASD methodology is based on the BDI agent

architecture, which is used to design agents for the development process. Moreover,
this methodology follows the traditional top-down approach that starts by identifying
the system requirements and ends up by implementing the system.

The fourth restriction is that there is no requirement for agent mobility. A mobile

agent is one that can move between computers hosting the MAS. One method of
accomplishing this mobility is for the agent to start a new version of itself at another
site, send it the state information from the old version, then terminate, and delete the
old version. This creates a new copy of the agent that continues where the old one left
off. This produces several problems for the rest of the system such as updating all
other agents with the new location of the mobile agent. In addition, what happens if
an agent transfer goes wrong and there are multiple or no copies of an agent? The
inclusion of mobile agents may add more complexity to the methodology, however
does not add much to its functionality. Most of the benefits of mobile agents can be
designed into a system by simply using multiple agents.

50

The fifth restriction is that MASD does not consider dynamic systems where
agents can be created and destroyed during execution. This would lead to many of the
problems as with mobile agents. An agent can be added to a system through a process
such as registration, which is a user-initiated event, but cannot be added and deleted
continuously during ordinary operation.

The sixth restriction is that the MASD methodology does not support any models,

which can be used to assess whether a multi-agent approach is suitable. MASD
assumed that the system is already suitable to be developed as MAS.

The final restriction is that inter-agent conversations are assumed to be one-to-

one, only as opposed to multicast. This assumption was made after an investigation of
conversation representation, and acceptance of a graphical dual-state table
representation. Substituting a series of point-to-point messages will fulfill a
requirement for a multicast message.

5.3 MASD Methodology
MASD methodology is developed as a reliable systematic approach that proves a

milestone for Software Development Life Cycle (SDLC). Figure 5.1 illustrates the
process of MASD Methodology. The proposed methodology covers the most
important characteristics of multi-agent systems. The new methodology deals with the
agent concept as a high-level abstraction capable of modeling a complex system.

Roles model

2. Discovering roles

Agent model

6. Refining roles

3. Determining role
responsibilities

4. Specifying activities of each
responsibility

7. Agent Beliefs Model5. Identifying
Agents

Analysis
phase

8. Agent Goals Model

9. Agent Plans Model

10. Agent Triggers Model

11. Agent Interaction
Model

12. Agent Relationships
Model

13. Agent Services
Model

14. Inter-communication
Model 15. Directory Facilitator Model 16. Agent Container

Model

System
Requirements

phase

 System Scenario Model

Design
phase

MAS Architecture stage

17. Agent Programming
Implementation

phase

1. Identifying UCDs and UCMs scenarios

Agent Architecture stage

Figure 5.1 MASD Methodology process

In addition, it includes well-known techniques for requirement gathering and

customer communication and links them to domain analysis and design models such
as UCMs [Buhr 1998], UML Use Case Diagrams [UML Use case diagrams], Activity

51

diagrams [UML Specification 1997], FIPA-ACL [FIPA], etc. Furthermore, it supports
simplicity and ease of use as well as traceability.

The MASD methodology is composed of four main phases; the system

requirements phase, the analysis phase, the design phase, and the implementation
phase. The next sections present a more discussion of each of the four phases. A car
rental system [EU-Rent] is used to describe the process of MASD methodology. In
this chapter, we use only the reservation scenario as an example. The full system
scenario will be described in detail later by a case study in chapter 6.

5.3.1 System Requirements Phase
The system requirements phase describes all the details of a system scenario as a

high-level design through system scenario model. The system scenario model uses
well-known techniques such as Use-Cases Diagrams (UCDs) and Use Case Maps
(UCMs) [Buhr 1998] to describe the whole system scenario. Such techniques assist to
discover the system components such as agents, objects, roles, resources etc. and their
high-level behaviour. The system requirements phase produces a model called the
system scenario model.

5.3.1.1 System Scenario Model
This model is used as a starting point for generating more detailed visual

descriptions. It describes the whole system scenario in terms of what a system does,
but it does not specify how it does it. The model captures the components that the
system is composed of and the tasks that have to be performed by each component
within the system. Then, it illustrates how these components interact with each other
and with the external environment. In addition, it captures the behavior of a system as
it appears from the point of view of the outside user. To construct this model, some
specific, well-known techniques have been used such as Use-Case Diagrams (UCDs)
and Use Case Maps (UCMs). These techniques are assembled together in order to
understand and obtain a complete system requirement as far as possible.

In the system scenario model, UCDs are exploited to describe the behavior of the

system from the user's point of view. It is through this notation that the roles in the
system can be recognized. Recognition of roles within a system is very helpful during
the analysis and design phases as well as for understanding the system’s requirements.
More detail explanations about UCMs are found in Appendix B.

Also, in the system scenario model, UCMs are used as a precise structured

notation. UCMs describe system scenario in terms of causal relationships between
responsibilities. They also emphasize the most relevant, interesting and critical
functionalities of the system. They describe the general behavior of the system in the
form of scenarios without referring to any implementation details. More detailed
explanations about UCMs are found in Appendix A. UCMs include adequate
information in a summarized form. It has two advantages:

• It enables developers to understand and conceptualize the behaviour of the

system as a whole.
• It gives an explicit concept overview about how the system operates as a

whole.

52

5.3.1.2 Integrating UCMs and UCDs
At the system requirements phase, the system scenario model is developed by

constructing the UCDs as well as UCMs. Before starting to build this model, it is
necessary to explain why these techniques were chosen and what is the importance of
integrating them together in this model.

There are several alternative techniques used to capture user requirements, such as

IEEE standard Software Requirements Specification (SRS) STD 830-1998, UML-
UCDs and UCMs etc. We have chosen UML-UCDs and UCMs techniques to describe
the system requirements phase because these techniques are comparatively more
appropriate than others for agent-based systems [Unland, Abdelaziz and Elammari
2004]. Moreover, their components can be easily transferred or mapped to agent
concepts and models. In addition, they have the following important advantages
[Amyot1 2001] and [Amyot2 2001]:

• Advantages in the description of interactive systems.
• Advantages in the description of the dynamic behaviour.
• Advantages in the description of aspects of the system’s behaviour in the form

of simple and clear scenarios.
• The ability to handle complex distributed systems and the ability to describe

them in a high-level view in a flexible and concise manner, without referring to
the details of implementation.

• The ability to bridge the gap between requirements and design.

It is also worth pointing out the main reasons behind integrating these diagrams

together and the advantages of their presence together in a system requirement phase.

The first reason is that UML-UCDs are integrated with UCMs in order to provide

a powerful concept for visualizing how the system works as a whole. UCDs and
UCMs together provide a good description for common communication between
project members. UCDs explain preconditions, postconditions, and critical scenarios.
UCMs provide a visual notation for those use cases and a means of extending them
into high-level design [Rys 2005].

The second reason is that a number of agent-oriented methodologies utilize UCMs

and UCDs techniques in the system requirements description phase. Two
methodologies that use UCMs are HLIM [Elammari and Lalonde 1999] and Styx
[Bush 2001]. Methodologies that use UCDs are AUML [Odell 2001], MaSE [DeLoach
2004] and PASSI [Cossentino and Potts 2002]. Most of these methodologies still
suffer from the problem of incompleteness of the system requirements description
phase. Such methodologies fail in some extent to obtain a sufficient description of the
requirements [Amyot2 2001]. That is because there is a conceptual gap existing
between the functional requirements (UCDs) and their realization in terms of
behavioral diagrams (the design) [Rys 2005] and [Amyot1 2001].

Figure 5.2 illustrates the existing mentioned gap between the functional

requirements and the design. UCMs are a scenario-based software engineering
technique most useful at the early stages of software development. UCMs represent a
complementary part to bridge the gap between requirements and design by combining
behavior and structure in one view and by flexibly allocating scenario responsibilities

53

to architectural components. Requirements and use-cases usually present a view that
describes the system according to its external behavior. UML behavioral diagrams
provide a view that describes the internal behavior in a detailed way. UCMs can
provide a traceable progression from functional requirements to detailed views based
on components and interactions, while at the same time combining behavior and
structure in an explicit and visual way.

UML structural

diagrams
Present classes, objects,

components,

and processing

elements, as well as

their relationships.

Although they may

be used to imply

behavior (by

indicating

associations), they do

not describe actual
behavior.

UML behavioral diag.

Describe behavior in a way

that is detailed and focused

on states, components, and
interactions (glass-box).

Provide a framework for
making detailed design

decisions to be expressed
with more appropriate UML

views.

Use Case Maps
Project gray-box visual
descriptions of system-

level behavior directly
onto structures of

abstract components.

Requirements
(Informal) descriptions of

functionalities,
and (textual) use cases (often

black-box).

Provide a visual
representation of use cases

in terms of causes,
responsibilities and effects

along paths.

Visually combine
behaviour with

structure at
the system level

Figure 5.2 The gap between the functional requirements and the design [Amyot1 2001]

The third reason is that these techniques are considered complementary to each

other. UCDs are part of the UML tools in describing interactions between the user
and the system. They play a large role during the system's building stages. In addition,
they assist in understanding the requirements. Moreover, UCMs visually combine
behavior with structure at the system level. UCMs are used as a visual notation for
describing causal relationships between responsibilities of one or more use cases in
UCDs in terms of sequences of responsibilities along paths. The notation is applicable
to use case capturing and elicitation, use case validation, as well as high-level
architectural design and test case generation [Buhr and Casselman 1996].

Furthermore, UCMs can be transferred and can be mapped to other architectures

consisting of different types of components, such as MSCs [Bordeleau 1997], FSM
[Bordeleau 1999], and SDL [Sales 2000]. They also support the development of
complex structured scenarios on a high-level of abstraction, in addition to their
integration with each other. They also have the ability to identify and describe changes
of system behavior during run-time. It describes in an organized and specific manner
the structures of system scenario through sub-diagrams, developed and drawn through
symbols called stubs.

In fact, this is the motivation that encouraged us to integrate these techniques in

one model called the system scenario model in the system requirements description
phase. Thus it is possible to benefit from the advantages of each technique
individually as well as to obtain a comprehensive and complete description of the
system requirements. Furthermore, the integration of these diagrams provides a high

54

level of full understanding and comprehensive description of all the desired system
requirements.

The system scenario model consists of two steps. The first step is to develop the

use case diagrams. The second is to construct the use case maps. This model is
realized by the following four points:

• The use of UCDs, which in turn describe interactions that take place between the
user and the system. It describes the behavior of the system from the user's point
of view. It also assists in understanding the requirements.

• The use of UCMs diagrams to provide a high-level view that describes the
general behavior of the system as a whole in the form of a scenario without
referring to any details regarding the implementation of the system. UCMs
provide precise structural symbols, which contain enough information in a
concise form to enable individuals to understand, conceive, and visualize the
behavior of the system and to form a clear idea about how the entire system
works.

• The use of UCMs as a visual notation to describe causal relationships between
responsibilities of one or more use cases in UCDs in terms of sequences of
responsibilities along paths.

• The use of UCMs assists to capture and elicit use cases and validate them.

5.3.1.3 Reservation Scenario Example
Before starting to describe the system scenario model, we have to introduce a brief

description of the reservation scenario. Most rentals are by advance reservation. The
rental period and the car group are specified at the time of reservation. Reservation
can be achieved online by filling web application, or can be achieved by sending an e-
mail, or by a phone call.

5.3.1.3.1 UCD of Reservation Scenario
In this section, a detailed example will be provided which will perform the

construction of UCDs for reservation scenario of the EU-Rent a car Rental Company.
Each use case in the reservation scenario will be described with a diagram as well as
describing and clarifying its components. Initially, use case diagrams of the dialogues
for the reservation scenario will be created as in figure 5.4. It will be followed by a
description of each use case separately.

In order to develop UCDs for a reservation scenario, we should capture the

following system components: the actors involved in the reservation scenario and the
use cases performed by those actors. Figure 5.3 shows use case diagram notations.

In each use case, we should perform the following tasks:

1. Identify the description of use case.
2. Identify the actor that performs the use case.
3. Identify the goal of the use case.
4. Identify preconditions and postconditions of each use case.
5. Identify triggering events of the use case.
6. Identify extensions and alternatives to the use case.

55

Use case 2

Use case 4

Use case 3

Use case 1

Actor3

Actor 1

Actor 2

Actor 4

System

Figure 5.3 Use Case Diagram notations

The following UCD describes the reservation scenario. In this scenario, there are

two actors: The customer actor and the car rental clerk actor. Each actor represents a
role that a user system plays within the system. Actors can be a human or an
automated system. A use case is made up of a set of scenarios. Each scenario is a
sequence of steps that encompasses an interaction between a user and a system. The
customer actor requests the car rental clerk actor to perform an action, such as reserve
a car or cancel a reservation. The clerk actor performs actions such as replying to
customer requests and so on. Figure 5.4 illustrates a UCD for a reservation scenario.

Car Rental system

Cancel

Reserve

Customer

Car rental clerk

<<Includes>>

«uses»

Handle reservation

Reply to customer requests

Reject reservation

Request reservation

Request cancel reservation

<<Includes>>

<<Includes>>

Figure 5.4 Use Case Diagrams for car rental system

We used the semi colon symbol “;” in preconditions, postconditions and triggering
events to represent the “or” operator. We used the comma symbol to “,” in
preconditions, postconditions and triggering events to represent the “and” operator.

Use case Request reservation

Use case name: Request reservation
Description: The customer requests the car rental clerk for reservation
Actors: Customer
Goal: To request car rental reservation
Precondition: Customer requested reservation
Postcondition: Request rejected; Request accepted
Triggering event: A customer requests a reservation
Extensions:
Alternatives:

56

Use case Request cancel reservation
Use case name: Request cancels reservation
Description: The customer requests the car rental clerk for canceling reservation
Actors: Customer
Goal: To request cancel reservation
Precondition: Customer has reservation and requested cancellation
Postcondition: Request rejected; Request accepted
Triggering event: a customer requests cancel reservation
Extensions:
Alternatives:

Use case Reply to customer requests
Use case name: Reply to customer requests
Description: The Car rental clerk replies to customer requests
Actors: Car rental clerk
Goal: To provide services to the customer
Precondition: Customer requests a specific service
Postcondition: The customer replied to
Triggering event: A customer requests a reservation; customer requests a cancellation;

customer requests extending the rentals.
Extensions:
Alternatives:

Use case Handle reservation
Use case name: Handle reservation
Description: The car rental clerk handles the reservation that takes place
Actors: Car rental clerk
Goal: To achieve the reservation process
Precondition: The reservation requested by the customer; the cancellation requested by the customer
Postcondition: The reservation request dealt with
Triggering event: The customer requests reservation
Extensions: Allocate car for customer, Reserve, Cancel, or Reject reservation
Alternatives:

Use case Reserve

Use case name: Reserve
Description: The car rental clerk reserves a car of a specific category for a specific customer
Actors: Car rental clerk
Goal: To reserve a specific car
Precondition: Customer requested a reservation
Postcondition: A new reservation exists; specific car is reserved for the customer
Triggering event: The customer requests the clerk to reserve a car for him/her.
Extensions: - Check blacklist, verify rules and check customer demands
Alternatives:

Use-case Cancel

Use case name: Cancel
Description: The car rental clerk cancels a reservation that already exists
Actors: Car rental clerk
Goal: To prevent the picking up of a car for which a reservation was made
Precondition: The reservation exists
Postcondition: The reservation is marked as cancelled; no car will be picked up for this reservation
Triggering event: A customer requests the clerk to cancel a reservation
Extensions:
Alternatives:

Use case Reject reservation
Use case name: Reject reservation

 Description: The car rental clerk rejects the reservation
Actors: Car rental clerk
Goal: To prevent rentals which are against car rental rules

57

Precondition: The customer request is made; the customer does not fit the car rental rules
Postcondition: The reservation is rejected
Triggering event: Reservation rules not satisfied
Extensions:
Alternatives:

5.3.1.3.2 UCMs of Reservation Scenario
In this model, use case maps for reservation scenarios of the car rental system are

described. This section describes how UCMs can be used to represent and describe
the reservation scenario of the car rental system. UCMs are applied to capture the
behavior of the system as high-level description and explain how UCMs describe the
reservation scenario in visual views. The following scenarios represent interactions
between some components in the system. By tracing application scenarios, the high-
level view of the system is derived. These scenarios describe functional behavior as
UCM paths within the system. This discovers system roles, responsibilities, and plug-
ins along the way. UCMs perform the most important steps:

1. Identify scenarios and major components involved in the system.
2. Identify roles for each component.
3. Identify preconditions and postconditions for each scenario.
4. Identify responsibilities and constraints for each component in a scenario.
5. Identify sub scenarios and replace them with stubs.
6. Identify components collaborations for the major tasks.

In order to develop UCMs for reservation scenario we have to introduce UCMs

notations, which are described briefly in figure 5.5. UCMs are described in more detail
in Appendix A.

End points

Components
Dynamic

Stub

Start points

Paths

Components could be agent or object or
actor.

Responsibilities
Stubs

Figure 5.5 Use Case Maps Notations

The reservation scenario will be performed between two components of the

system called: customer and car rental clerk. Figure 5.6 shows the use case map for the
reservation scenario.

58

Request
reservation

a b

c

Refuse
reservation

Customer Car rental clerk

Preconditions :
* Customer wants to rent a car.
* Reservation is already done
and customer wants to cancel
reservation.

Request
rejected &
customer
informed

Customer wants
to rent a car.

Postconditions:
* Reservation request accepted and car allocated to
customer.
* Reservation request rejected.
* Reservation canceled.

Request
Information

Provide info.
Verify Car rentals

regulations

Check
customer
demands

d

e
f

Confirm
reservation

cancel
Reservation

canceled

Cancel reservation
request

Reservation is already
done and customer wants
to cancel reservation

Reservation request
accepted and car

allocated to customer

Notify

Notify

Notify

Figure 5.6 Use Case Map for Reservation Scenario

The customer component represents the customer in the application environment,

and the car rental clerk represents the employee of the car rental company. The
preconditions for the reservation scenario are:

• A customer wants to rent a car.
• A reservation is already done and the customer wants to cancel the reservation.

When the first precondition is satisfied the scenario starts with the request reservation

stub, which hides the detailed information of the request reservation process. The request
reservation can be achieved in several ways. For example, it can be done by a phone
call, or by filling a web form, or by an Email. Therefore, the request reservation stub is
represented as a dynamic stub. Figure 5.7 illustrates the plug-ins for the request
reservation dynamic stub. After all responsibilities for the request reservation process are
performed, the path leads to the car rental clerk component. In this component there
is a responsibility called request information, which requests the customer to provide
his/her personal information such as address, phone, personal ID, driving license etc.
The path leads to the customer component where there is a responsibility called provide
info, which provides a confirmation that the customer has filled in the application form
for the rental transaction.

Phone call plugin

Send Email plugin

Call

Send

Fill web form plugin

Fill web form

Customer decided to
reserve by phone

Customer decided
to reserve by Email

Customer decided to
reserve car online

Figure 5.7 Plug-Ins for Request Reservation Stub

59

After the previous responsibilities are performed, the path leads to the static stub
verify car rentals regulations which hides the detailed information of the verify car rentals
regulations process. This stub should be achieved in one specific mode.

Figure 5.8 illustrates the plug-in for the verify car rentals regulations. In this plug-in the

car rental clerk checks whether the customer meets the rental rules of the car rental
company.

Check
Blacklist

Cust. in
Blacklist

found

Check
Simultaneous
reservations

Verify
rules

Rules not
Ok

a

c

b
Customer
passed car

rental
regulations

Customer
does not pass

car rental
regulations

Customer
requested
reservation

Figure 5.8 Plug-In for Verify Car Rentals Regulations

These regulations are represented by the following tasks or responsibilities (verify rules,
check blacklist and check simultaneous reservations) that should be performed by the clerk of
the car rentals company. The path starts with the verify rules responsibility which
verifies the rules of the car rentals company such as customer age, validity of drivers
license etc. Then the path leads to an or-fork immediately after the verify rules
responsibility, which indicates alternative scenario paths.

One path leads to the end point “c” which means the reservation request is rejected,

e.g. because the customer does not have a valid drivers license. The other path leads
to the next responsibility check blacklist. The check blacklist responsibility checks
whether the customer belongs to the customers blacklist or not. In the same situation,
the path leads to an or-fork, which immediately indicates alternative scenario paths.
One path leads to the end point “c” which means the reservation request is rejected,
since the customer is included in the blacklist. The other path confirms that the
customer is not included in the blacklist, leading to the last responsibility check
simultaneous reservations. It checks whether the customer has reservation for more than
one car at a time. A customer may have multiple future reservations, but may have
only one car at any time. After the check simultaneous reservations responsibility is checked
the path leads immediately to an or-fork, which indicates alternative scenario paths.
One path leads to the end point “c” which means the reservation request is rejected,
since the customer already has another car, which according to the car rentals rules is
not allowed. The other path leads to the end point “b” which confirms that customer
passed the car rentals regulations and he/she is allowed to reserve a car.

The verify car rentals regulations stub has two outgoing ports. If the customer passed

the car rentals regulations, port “b” will be followed, which means that the customer
is allowed to reserve a car. Otherwise, port “c” is followed, which means that the
customer reservation request is rejected. The path that comes from port “b” leads to
the check customer demands stub, which hides the detailed information of the check
customer demands process. This stub checks whether the customer demands are available
or not.

60

Figure 5.9 illustrates the plug-ins for the check customer demands stub. In this plug-in,

the car rental clerk checks the customer’s demands.

Negotiation Car rental clerkCustomer

Check availability of
customer demands

Propose
another car

assess
accept

e

available

Not available
e

f

d

Not
accept

Check Cust.
Demands in other

branches

available

Not
available

Verfy
Customer

demands does
not available &

reservation
rejected

Customer
demands
available

Preconditions :
* Customer passed car rental regulations

Customer
demands
available

Postconditions :
* Customer demands not available & reservation rejected
* Customer demands available

Figure 5.9 Plug-In for the Check Customer Demands Stub

This plug-in is represented by the following tasks or responsibilities: check

availability of customer demands, check customer demands in other branches,
propose another car, assess, and verify. The path is started with the responsibility check
availability of customer demands which checks whether the customer’s demands are
available in this branch or not.

After that, check availability of customer demands responsibility invoked, the path leads

to an or-fork, which indicates alternative scenario paths. One path labeled available
leads to the end point “e” which means the customer demands are available. The
other path (labeled Not Available) leads to the responsibility check customer demands in
other branches. This responsibility finds out whether the customer demands are available
in other branches or not.

After check customer demands in other branches responsibility is checked, the path

immediately leads to an or-fork, which indicates alternative scenario paths. One path
labeled available leads to the end point “e” which means the customer’s demands are
available in some other branch. The other path (labeled not available) leads to
responsibility propose which proposes to the customer another car from the same
group. The path after that leads to the responsibility assess, which confirms that the
customer estimates the proposal. Then the path leads to an or-fork. One path labeled
accept that leads to the end point “e”.

That is an indication that the customer accepts the proposal. The other path
(labeled not accepted) leads to the responsibility verify which verifies that the customer
has responded. If the customer asks for another offer the path leads to the
responsibility propose again. Otherwise, the path leads to the end point “f” which
means that the customer demands were not available and the customer reservation is
rejected.

61

The check customer demands stub should be returned back to the reservation scenario
either by the “e” or “f” port. The path that comes from port “e” leads to the
responsibility confirm reservation and then leads to the end point reservation request accepted
and car allocated to customer. The path that comes from the port “f” leads to the
responsibility refuse reservation and then the path leads to the end point request rejected
and customer informed.

When the second precondition of the reservation scenario is satisfied; the scenario

starts with the cancel reservation request stub, which hides the detailed information of the
cancel reservation request process. The cancel reservation request stub can be achieved in
several ways. For example, it can be done through a phone call, by filling a web form,
or by an Email. Figure 5.10 illustrates the plug-ins for the cancel reservation request stub.
After all responsibilities for the cancel reservation request process are performed, the path
leads to the car rental clerk component where there is a responsibility called cancel,
which cancels the reservation that is already done by the customer. Then the path
leads to a responsibility confirm which confirms that the reservation is canceled. Then
the path leads to the customer component where there is a responsibility called receive
confirmation, which indicates that the confirmation for cancellation is received by the
customer. Then the path leads to the end point reservation canceled.

At the end of this phase, the general behavior of the system as a whole is described

in a high-level view using UCMs scenarios. The interactions that take place between
the customer and the car rental system are described and the system requirements are
understood using UCDs and UCMs. UCMs and UCDs describe the system without
referring to any details regarding the implementation of the system. They provide a
clear idea about how the entire system works.

Phone call plugin

Send Email plugin

Call

Send

Fill web form plugin

Fill web form

Customer decided to
cancel reservation by

phone

Customer decided to
cancel reservation by

Email

Customer decided to
cancel reservation

online

Figure 5.10 Plug-Ins for Cancel Reservation Request Stub

5.3.2 Analysis Phase
The objective of the analysis phase is to transform the system requirements into a

representation of the system that can be forwarded to the design phase. The analysis
phase is considered to be the most important process of the methodology. This phase
starts with analyzing the system requirements phase; it utilizes the system scenario
model that is constructed by UML use-cases and use-case maps. This system scenario
model is considered as a base to produce the models of the analysis phase. The
analysis phase is concerned with the description of the agent architecture as well as the
MAS architecture. It is divided into two stages. The first stage describes the agent
architecture. The second stage describes the MAS architecture. Figure 5.1 illustrates
both architectures. The next sections provide a detailed description of both
architectures. The agent architecture stage describes the internal structure (roles,

62

beliefs, goals, plans and triggers) of agents in the system. In contrast, the MAS
architecture stage describes the relationships between agents, the conversations and
exchanged messages and agent services. This description of the MAS architecture is
important in order to facilitate two main functions:

1. To enable negotiation and cooperation between agents.
2. To establish commitments and agreements that the agents should adhere to in

order to provide the services to other agents in the system.

5.3.2.1 Agent Architecture Stage
The agent architecture stage describes the following models:
• Roles model: Discovers the roles that agents play or perform in the system,

determines responsibilities for each role and specifies activities for each
responsibility.

• Agent model: Identifies agents in the system and assigns roles to them. Refines
the roles to fit agent capabilities.

• Beliefs model: identifies agent beliefs.
• Goals model: Identifies agent’s goals.
• Plans model: Specifies plans for each goal.
• Triggers model: Identifies the triggers that each agent should be aware of as

being events that take place in the system.

The MASD methodology requires the development of all models of the agent
architecture stage. They are always developed even if the proposed agent system is just
as a single agent.

5.3.2.1.1 Roles Model
The agent role represents an agent behavior that is recognized, providing a means

of identifying and placing an agent in a system. Role modeling is appropriate for agent
systems [Kendall 1998] because of the following reasons:

• Roles and role models provide a new abstraction that can unify diverse aspects of
a system. Software agents, objects, processes, organizations, and people can play
roles, and this is especially important in applications that encompass all these
types of entities, such as information and process management.

• Role models are patterns that should be documented and shared.
• Role model synergy integrates roles and may be valuable for agent design.
• Role model dynamics can be employed to model mobility, adaptive behavior,

context switching, and other aspects of agent systems.

Furthermore, the roles model presents the agent system as an organization by

considering it as a set of roles that work together. Each role has its own
responsibilities. These roles improve and systematize the agent functionality and
emphasize social or interactive behavior. The agent can perform more than one role in
the system and more than one agent can perform the role. The roles as encapsulated
units can be transferred easily from one agent to another when there is a need.

The roles model is the first task in the analysis phase. In this model, the roles that

an agent plays in the system are discovered. It includes the following three detailed

63

steps: discovering roles, determining role responsibilities, and specifying activities for
each responsibility.

5.3.2.1.1.1 Discovering Roles
This step is responsible for identifying the main roles that are found in the system.

In order to be able to capture those roles, UCMs and UML use cases scenarios are to
be exploited. In the system scenario model, the UCM components that are involved in
the system are identified. These components could be agents, objects, or actors. Roles
are discovered by analyzing path segments that cross UCM components in the system
scenario model. Figure 5.11 illustrates how the roles are extracted from UCMs and
UCDs, which have been constructed during the system requirements phase.

This process is performed by passing through all responsibilities and all stubs in all

UCM scenarios for each component in the system separately. Roles are also
discovered by tracing use cases in UCDs. It is possible then to define the
responsibilities and tasks that identify the role or roles which are played by every
component of the system (at this moment, only roles are considered and agents are
identified later on).

r1

r3

s1

Role

Use case 1

C1

r2

Component

UML use cases

Use Case
Maps

The
responsibilities,

stubs and UML use
cases identify the

role that
component C1

plays in the system

Use case 2

Use case 3

Use case 4

Actor C1

Figure 5.11 Extracting Roles from UCMs and UML Use Cases

Figure 5.12 shows some examples to illustrate how the roles are assigned to UCM

components. Components are listed in one row and the roles are listed in a second
row. Each role can be associated with one or more components. Each component can
be associated with one or more roles.

Customer Car rental Clerk

Renter RentierRoles

Components

64

HelpDesk Caller Answerer

Helper Caller Answerer

Components

Roles
Figure 5.12 Examples of Component-Role Relations

5.3.2.1.1.2 Determining Responsibilities of the Roles
Once roles have been identified then the next step is to determine the duties and

responsibilities of each role separately. This process starts by tracing scenarios of use
case diagrams that have been developed during the system requirements phase,
Identifying each actor individually and determine all its use-cases, then transferring
them directly (one-to-one) to responsibilities in the role that it plays in the system.
The scenario paths of the UCMs are then traversed and all the responsibilities and
stubs are individually defined and transferred directly to responsibilities and functions
that are carried out by the role. This process is an attempt that most of responsibilities
and functions of each role are fully, clearly and accurately captured.

5.3.2.1.1.3 Specifying Activities of Each Responsibility
Once the responsibilities and functions of each role are individually identified,

then the following step will identify all the activities undertaken by each
responsibility. This will in fact, represent the functions of the proposed role to be
implemented in the system.

The important attributes of the roles model are: role name, role description,

responsibilities, permissions, perceptions, obligations and constraints. The role
name states the name of the role. The role description is a textual explanation of the
function of the role. Responsibilities are the activities that the role is responsible to
perform. Obligations are requirements that should be available to enable the role to
start its functionality and carry out its responsibilities and activities. Permissions are
the authorities related to numbers and types of resources that will be exploited by
agents in the system. Constraints are restrictions and boundaries that the role must
not violate through executing its tasks. Table 5.1 shows the attributes of the role
model. Obligations, permissions, and constraints can be captured from UCM
scenarios by the system developers.

Role name: Role 1
Role description: Textual description
Responsibilities & its
Activities:

Responsibility 1
 Activity 1.
 Activity 2. …

Obligations: Obl1, Obl2, … , Obl n
Permissions: Perm1, Perm2, … , Perm n
Constrains: Const1, Const2, … , Const n

Table 5.1 Role Attributes

Developers systematically apply phrase heuristics to classify the statements as
permissions, obligations, or constraints. Heuristics include modality (can, may, must),
condition key words (if, unless, except) and English conjunctions (and, or, not).
Developers must document their interpretation (e.g., “may” indicates a permission)

65

and assign logical meanings to each conjunction. Due to logical disjunctions, each
sentence may have multiple obligations, permissions, and constraints.

Role name: Renter
Role description: Renter who pays rent to use a car that is owned by the car

rental company.
Responsibilities & its
Activities:

Res.1 Request reservation
Act.1 Reserve car by a phone call
Act.2 Reserve car by an E-mail
Act.3 Reserve car by the Internet

Res.2 Cancel reservation request
Act.1 Cancel reservation by a phone call
Act.2 Cancel reservation by an Email
Act.3 Cancel reservation by the Internet

Res.3 Notify real customer.
Act.1 Notify customer for canceled reservations
Act.2 Notify customer for rejected reservations
Act.3 Notify customer for confirmed reservations

Obligations: The renter should pass rental regulations
Permissions: Null
Constraints: The renter should not have more than one reservation at

the same time

Table 5.2 Renter role for customer component

Once all responsibilities and stubs (request reservation, cancel reservation request,

etc.) that the component customer performs have been recognized, then it is quite
possible to define and specify the role played by the customer component. Here, it is
obvious that it plays a renter role. Table 5.2 illustrates the renter role that the
customer component will play in the reservation scenario. In the same situation, the
car rental clerk component plays the rentier role. For simplicity, we will describe the
renter role in the reservation scenario only. Chapter 6 describes in detail all the roles
in the system.

5.3.2.1.2 Agent Model
The agent model describes the internal structure of agents within the system and

how these agents employ its internal structure to perform its tasks. In the MASD
methodology, the building process of the agent model is based on BDI agent
architectures [Georgeff, Pell, Pollack, Tambe, and Wooldridge 1998]. The BDI
architecture is used to determine the actions that an agent performs. Each agent
possesses one goal or more, which it desires to realize. In addition, an agent has
beliefs that it depends on to achieve its goals. It is assumed that agents have a library
of goals available to them, each goal containing a set of predefined plans. Each plan
contains a set of predefined tasks. Tasks are not necessarily atomic; they could be a
single task or a sequence of tasks that form a plan. The term plan is used to achieve a
specified goal. Each plan has a set of preconditions and postconditions associated
with it. In order for the tasks of that plan to be executable, the preconditions for that
plan must be satisfied. These preconditions and postconditions could be considered as
the agent’s beliefs that it needs to hold in order for it to be able to select the
appropriate plan to achieve the goal. Once the plan has been executed, its
postconditions are applied. Executing a plan can cause changes to the state of the
environment. Agents also have triggers. These triggers assist them to determine the
appropriate goal or plan to be selected. The behavior of the agent is determined solely

66

by its concrete beliefs, goals, and plans. The agent model describes in detail the
following steps: Identifying agents, refining roles, beliefs model, goals model, plans
model, and triggers model.

5.3.2.1.2.1 Identifying Agents
In this section, the agent identification step is performed to extract those agents

that are assumed to exist within the system. These agents are identified using use case
maps that have been developed during the system requirements phase. Agents are
identified by analyzing UCM components. A component can be identified as an agent
or several components that can be combined to constitute one agent. Hence, several
roles are combined into one agent.

Fig. 5.13 shows how the roles are assigned to agents. Each agent should be able to

fully and logically carry out the specified role or roles assigned to it. Otherwise, the
developer must select the most appropriate agent for the role.

Role

Agent

Agent 1 Agent 2 Agent n……...

Role 1 Role 2 Role nRole 3

Agents

Roles

Figure 5.13 Assigning Roles to Agents

In the car rental system the customer and car rental clerk components are assigned

respectively to a customer agent and a car rental clerk agent. The car rental manager
agent represents the branch manager of the car rental company. This agent can play
two roles in the system. The first and main role is a director role. The second role is
rentier role. It can play the role of rentier when there is a need for that e.g. when many
customers crowd the car rental clerk agent at the same time. Fig. 5.14 shows how
more than one the role is assigned to one agent.

Customer
agent

Car rental
clerk agent

Car rental
manager agent

Renter

Agents

Roles Rentier Director
Figure 5.14 Assigning Renter role to Customer agent, Rentier role to Car Rental Clerk and Manager Agents

and Director Role to Car rental Manager Agent

67

5.3.2.1.2.2 Refining Roles
The refining roles step is merely used to revise the roles that the agent plays within

the system. The refinement process consists of two steps. The first step is to match
the roles that are captured in the roles model with agents that play these roles
according to the agent's capabilities. The role’s responsibilities are classified based on
who is responsible for performing them. The second step is to separate, or isolate
those responsibilities that are to be carried out by real persons from those
responsibilities that are to be carried out by agents on their behalf.

The refining roles process keeps the responsibilities that are to be carried out by

the agent within the roles model. The responsibilities that are to be carried out by real
users are stated as preconditions. These preconditions are translated into beliefs.
Agents use these beliefs to keep track of whether the real person performs those
responsibilities or not. Agents should be able to sense the environment to check
whether these beliefs are changed or not. In other words, an agent may wait for a
signal (e.g. a message) that confirms that a task performed by the real user has been
completed. This refinement process assists developers to build a clear design that is
free from confusion and a responsibility overlap.

5.3.2.1.2.3 Agent Beliefs Model
The agent knowledge is considered one of the most important aspects of the agent

system. It stores relevant facts about the agent and its environment. Agent knowledge
may be taken to explicitly represent the agent’s beliefs about its environment or even
about itself or about other agents. The following sub-sections show how the agent
beliefs are identified. The beliefs model in the MASD methodology is carried out via
the system scenario model and the roles model.

The agent beliefs are identified either by the preconditions or by postconditions of

the agent’s plans and goals, or by the obligations, permissions, and constraints that
were obtained in the roles model. Furthermore, the beliefs can be obtained by tracing
the UCM scenarios. The stubs and responsibilities are considered as bases of beliefs
that are used to trace whether these stubs and responsibilities are achieved by the
agent or not. In addition, the beliefs store information about the internal state of
agents. Agent beliefs are classified into two types: constant belief, these beliefs are set
beliefs and not allowed to change, and variable beliefs, the values of these beliefs can
change many times. Beliefs can be assigned initial values or their values are computed
using some kind of expressions or deduced by inference rules. According to Parsons
[1998] it is reasonable to assume that the values of the beliefs are obtained in several
ways:

1) Initial beliefs (basic facts which represent the agent's initial beliefs).
2) Beliefs deduced from previous beliefs by deductive inference rules.
3) Beliefs obtained as answers to questions put to the environment by the agent.
4) Beliefs perceived by a sensor (facts that the agent perceives in its environment).
5) Beliefs communicated by external agents (messages received from other agents).

Also MASD classified the purposes of the beliefs as the following: Storage belief,

when the belief is stored and the agent can use it during its lifecycle; maintain belief,
when the agent must keep the belief at a certain value e.g. when the agent must keep
the temperature constantly at 20 degrees; and achieve belief, the agent stores a

68

required value of the belief and during its lifecycle tries more than one time to check
the value of the belief and run plans if the value is not the required value. The agent
may not be able to change an achieve belief to a required value but it must keep the
value of a maintained belief true at all times. These classifications and its purposes
assist the developers to identify the mechanism of how the beliefs are stored and
exploited. Accordingly, the agents will be able to reason about the beliefs to select the
appropriate actions.

Table 5.3 illustrates the structure of the agent beliefs model. A notification must

be made about the beliefs that are captured from obligations, permissions, and
constraints of the role. These beliefs are considered as initial beliefs. Therefore, they
do not belong to any goals or plans.

Belief Type Purpose
Agent Id Constant Storage
Bel1 Variable Maintain
Bel2 Variable Achieve

Table 5.3 General Structure of the agent beliefs model

The agent beliefs model deals with only some types of beliefs that were mentioned

previously. The focus is on those perceived by sensors, those placed as initial beliefs,
and those obtained as an answer to questions put to the environment by the agent.
The beliefs that are communicated by other agents as the messages received from
other agents, are treated as communication messages covered in the agent interaction
model. Due to the fact that agents within the system could possess many beliefs, we
will provide the beliefs model for the customer agent only for simplicity. Table 5.4
describes the beliefs model for the customer agent.

Belief Type Purpose
Agent-Id Constant Storage
Customer wants to rent a car Variable Storage
Customer decides to reserve by phone Variable Storage
Customer decides to reserve by E-mail Variable Storage
Customer decides to reserve car online Variable Storage
Reservation confirmed Variable Storage
Reservation rejected Variable Storage
Customer wants to cancel a reservation Variable Storage
Customer decides cancel a reservation by phone Variable Storage
Customer decides cancel a reservation by E-mail Variable Storage
Customer decides cancel a reservation online Variable Storage
Cancellation confirmed Variable Storage
Reservation already done and car allocated to the
customer

Variable Storage

Cancel reservation is already requested by
customer

Variable Storage

The renter should fit to rental regulations Variable Storage
The renter should not have more than one
reservation at the same time

Variable Maintain

Table 5.4 Beliefs Model for Customer Agent

69

5.3.2.1.2.4 Agent Goals Model
The goal represents a specific target state that the agent is trying to achieve. In a

goal-oriented design, goals are considered explicitly as states to be achieved.
Therefore, goals also define reasons to execute agent actions. When actions fail, it can
be checked if the target state is already achieved, if not, it would be useful to retry the
failed action or try out another set of actions to achieve the target state.

 The agents’ internal structure in the MASD methodology is based on the BDI

architecture [Bratman 1987-1999; Rao and Georgeff 1991; Cohen and Levesque 1990;
Kinny, Georgeff, and Rao 1996]. The MASD methodology assumes that the concept
of goals in relation to agents has a very strong relation with the BDI architecture. The
goals represent the desires and intentions that the agent possesses. The definition of
the relationship that links goals with the desires and intentions is formulated as being
a similarity or matching relationship. Intentions are considered and are defined as
being goals that possess previously prepared plans to be executed. Desires are defined
as goals with no plans for future execution.

In this model, goals are identified for each agent in the system. These goals

represent a mechanism, which leads the agent to perform its actions in an orderly and
smooth way. The MASD methodology supports two types of goals (long-term and
short-term) in the form of goals and sub-goals. The MASD methodology deals with
short-term goals as the goals of the agent, which will be achieved during system
runtime. This type of goal is obtained through the methodology process by capturing
the agent goals from roles model. More details are available in the agent goals model
in the analysis phase. The MASD methodology deals with long-term goals as the
strategic goals of the system. This kind of goal cannot be obtained through the
methodology process like the short-term goals. They should, however, be deduced by
the designer in order to identify the sub-goals (short-range goals) and then determine
the conditions of use.

The goals model specifies how to obtain the goals of the agent through the role or

roles that it will play within the system. In order to identify the goals of the agent, we
have to convert each responsibility of a given role to a specific goal. Therefore, it can
be stated that each responsibility within a specific role is considered a goal for the
agent who plays the role. Moreover, each activity within a specific responsibility is the
foundation for one plan of the goal. Figure 5.15 shows the mapping relationship
between the roles and the goals of agents. The transformation relationship from the
role responsibilities to the goals is a direct one-to-one relation. Through this step, it is
possible to obtain the goals for each agent within the system.

In the agent goals model, the goals that the agent desires to achieve are identified.

Each goal and its priorities will be identified. Each goal will be initiated according to
its preconditions and a specific priority. The plans, which are prepared by the agent to
satisfy the desired goal, will also be identified. This model also contains preconditions
and post conditions to initiate the process of achieving goals that the agent desires to
realize.

70

Composed
of

Agent 1 Agent 2 …….. Agent n

 Agent society

Has

Plays

Consists of

Task1

Task2

Task n

…
…

.
.

Tasks

Plans

Goal
1

Goal
2

…
…

..

Goals

Goal n

Role
1 Role 2 …….. Role n

Roles

Resp.1

Resp.2

Resp.n

…
…

..

Plan1

Plan 2

Plan n

…
…

..
Plans

…
…

..

Activities

Activity 1

Activity n

Activity 2

1 to 1
Mapping

includes

1 to 1
mapping contains

Composed
of

Agents

Figure 5.15 Mapping of Roles to Agent’s Goals and Plans

Every goal of an agent is composed of a set of attributes that make up its

structure. The first field is the goal title or the goal name. The second field is the
priority, which specifies the goal precedence from the execution point of view in
cases where there is a need to execute the agent’s goals based upon a priority. The
priorities are classified as follows: High, above normal, normal, below normal and low. The
third field are preconditions. The preconditions are the conditions that must be
satisfied in order to consider this goal. The fourth field are the postconditions.
Postconditions are the conditions that are to be satisfied when the goal is fully
achieved. They are considered as an indication showing that the goal has been fully
accomplished. Finally, the fifth field are the plans through which goals can be
achieved. Table 5.5 shows the general structure of the agent goals model.

Goal Priority Preconditions Postconditions Plans
Goal 1 High Precondition 1

Precondition 2
….
Precondition n

Postcondition 1,
Postcondition 2,
….
Postcondition n.

• Plan 1
• Plan 2
• ….
• Plan n

Goal 2 Normal Precondition 1
Precondition 2
….
Precondition n

Postcondition 1
Postcondition 2
….
Postcondition n

• Plan 1
• Plan 2
• ….
• Plan n

Table 5.5 General Structure of the Agent Goals Model

In the following example, the goals of the customer agent are identified. Table 5.6

illustrates the goals model of the customer agent. That is followed by defining the
plans by which each of the goals will be achieved:

71

Goal Priority Preconditions Postconditions Plans
Request
reservation

High • Customer wants
to rent a car

• Reservation
confirmed.

• Reservation
rejected.

• Reserve car by phone
call

• Reserve car by E-mail
• Reserve car online

Cancel
reservation
request

Normal • Customer wants
to cancel
reservation

• Cancellation
confirmed

• Cancel reservation by
phone call.

• Cancel reservation by
Email.

• Cancel reservation
online

Notify real
customer

High • Real customer
must be
notified

• Real customer
notified

• Notify customer for
canceled reservations

• Notify customer for
rejected reservations

• Notify customer for
confirmed reservations

Table 5.6 Goals Model for Customer Agent

5.3.2.1.2.5 Agent Plans Model
After the goals of the agents we are identified by the previous step, it is time to

describe the plans that should be followed by an agent in order to achieve its goal.
Since each agent has a goal or set of goals that it wants or wishes to achieve, a plan or
a set of plans for each individual goal must exist. Such a plan needs to be adhered to
and followed in order for it to be achieved or performed. Each of those plans consists
of a set of tasks to be executed.

5.3.2.1.2.5.1 Specifying Plans for each Goal
Plans are a deliberately prepared means through which agents achieve their goals.

A plan is not just a sequence of basic actions, but it may also include sub-goals. Other
plans are executed to achieve the sub-goals of a plan thereby forming a hierarchy of
plans. The agent keeps track of the actions and sub-goals carried out by a plan to
determine and handle plan failures.

Plans are specified by matching and transforming the activities that belong to the

responsibilities within the roles. Each plan consists of a set of tasks. These tasks
implement the plan and they will complete the required work. Completion and
implementation of these tasks is considered the as success of the plan. A given goal is
considered to be accomplished if at least one plan related to it was implemented. Plans
may be executed in a sequential manner, according to the priority of each plan, or in
parallel manner.

In the plans model the plans that should be followed or that have to be selected by

an agent during achieving a specific goal are recognized. In other words, every goal
has to be achieved through one specific plan or more. Plans are adopted by agents
and, once adopted, constrain an agent’s behavior and act as intentions. The plans
model consists of six parts: a plan name, preconditions, postconditions, successful
internal actions, failed internal actions and a plan body. Optional preconditions

72

define the preconditions of the plan, i.e., what must be believed by the agent for a
plan to be executable. Postconditions are conditions that must be true for the plan
when it completes. Successful internal actions are the actions that are performed if
the plan succeeds. Failed internal actions are the actions that are performed if the
plan fails. Finally, the plan body defines a tree representing a kind of flow-graph of
actions to perform. UML activity diagrams [UML Specification 1997] are used to
represent the plan body. Activity diagrams are used to model the workflow of the
process of the internal operation of the agent system. Activity diagrams illustrate the
dynamic nature of the agent system by modeling the flow of control from one activity
to another. More details about activity diagrams are described in appendix C.

Executing a plan successfully involves traversing the activity diagram from the

start node to the end node. Activity diagrams show the dynamic nature of the system,
which is emphasized by the representation of the flow of control between the tasks in
the plan. No doubt, that being able to represent these tasks in clear and detailed
manner will help developers and programmers in representing and implementing them
easily and with more flexibility. Table 5.7 shows the general structure of the agent
plans model.

Plan-name: Plan name
Preconditions: Cond1, Cond2, …CondN
Postconditions: Cond1, Cond2, …CondN
Successful internal actions Action1, Action 2, … Action N
Failed internal actions Action 1, Action 2, …. Action N
Plan body

Task 1

Task 2

No

Yes

Alternative
flows

Activity

Decision
(branch)

Concurre
nt flows

Start
state

End state

Task 3

Table 5.7 General Structure of the Agent Plans Model

The plans for the request reservation goal are constructed. Activity diagrams are

used to represent such plans. The following example explains only the reserve car online
plan of the reservation request goal. All plans for the reservation request goal are
described in detail in chapter 6. Table 5.8 illustrates reserve car online plan for the customer
agent and the tasks that should be performed in this plan. Each activity of the activity
diagram represents a task in the plan.

73

Plan-name: Reserve cars online
Preconditions: Customer decides to reserve a car online
Postconditions: Reservation confirmed
Successful internal actions Inform the real customer to pick up the car
Failed internal actions Try with another car rental company
Plan body

G e t c a r R e n ta l w e b s ite

R e a d c a r R e n ta l r u le s

V e r ify r u le s

C lo s e c a r R e n ta l w e b s ite

[N o t a c c e p te d]

[A c c e p te d]

F il l in re s e rv a t io n
a p p lic a t io n fo r m

A p p ro v e
a p p lic a t io n

Table 5.8 Reserve Car Online Plan for the Customer Agent

5.3.2.1.2.6 Agent Triggers Model
This model identifies and captures triggers that occur during system runtime. The

idea of the trigger concept is somewhat similar to the ECA rule (event, condition and
action) [Dittrich, Gatziu and Geppert 1995]. Triggers are the events and the changes
in the beliefs. All events and the change of beliefs that are expected to occur within
the system are identified. This model helps designers and developers to identify these
events and select the appropriate reaction for such triggers. Triggers can be caused by
information coming from the environment, which has an effect on the behavior of
agents. According to that information, the agent performs certain actions as a
reaction.

Triggers are obtained by capturing and analyzing the beliefs of each agent that

could be changed during runtime. Triggers are also obtained by capturing and
identifying the expected events that will occur in the system during runtime. The
selection of triggers that prompts a goal or a specific plan is then followed by
transferring them into triggers that motivate the agent to perform some given
reactions.

The triggers model consists of four attributes: The trigger name, trigger type,

trigger activator and the actions. Each trigger is identified by a unique trigger name.
The trigger type can be either an event or a change of belief. The trigger activator
represents the entity that is responsible for causing such trigger. This entity can be an
agent, an object, or a particular resource within the system. Actions are either goals to
be achieved or plans to be executed. Therefore, actions are labeled accordingly. For

74

each agent, a trigger model is developed which identifies the triggers that are of
interest to it. Table 5.9 describes the general structure of the agent triggers model.

Trigger
name

Trigger type
Trigger

activator Actions

trigger1 change of belief |event agent1 • action1 (goal | plan).

trigger2 change of belief |event agent2 • action2 (goal | plan).

trigger3 change of belief |event Real person • action3 (goal | plan).

Table 5.9 General Structure of Agent Triggers Model

The following example describes the triggers model for the customer agent. By

looking at the beliefs model of a particular customer agent and the reservation
scenario in UCMs that was built during the system requirements phase, it is found that
the scenario begins with belief (precondition) such as “a customer wants to rent a car”. In
fact, this belief is possible to be true or false. If this belief becomes true, this means
the real customer wants to rent a car and this means that the beliefs of the agent have
changed. This consequently means that the agent will react based upon the change in
its beliefs. This is considered a trigger that motivates the agent to perform a certain
action (to start to execute a specific plan or to start to achieve a specific goal such as
“request reservation” goal) as a reaction. The following table shows a list of the triggers
that might occur in the reservation scenario during system runtime. Table 5.10
illustrates the customer agent triggers model.

Trigger
name

Trigger
type

Trigger
activator Actions

Customer wants to rent a car Change of
belief

Real
customer • Request reservation (Goal).

Customer decides to reserve by a
phone

Change of
belief

Real
customer • Reserve by a phone (plan).

Customer decides to reserve by an E-
mail

Change of
belief

Real
customer • Reserve by an E-mail (plan).

Customer decides to reserve online Change of
belief

Real
customer • Reserve Online (plan).

Reservation confirmed Event Car rental
clerk agent

• Notify real customer to pickup
the car (plan).

Reservation rejected Event Car rental
clerk agent

• Notify real customer about a
rejected reservation (plan).

Reservation canceled Event Car rental
clerk agent

• Notify real customer about a
canceled reservation (plan).

Customer wants to cancel a
reservation

Change of
belief

Real
customer

• Cancel a reservation request
(Goal).

Customer wants to cancel a
reservation by a phone

Change of
belief

Real
customer

• Cancel a reservation by phone
(plan).

Customer wants to cancel a
reservation by an E-mail

Change of
belief

Real
customer

• Cancel a reservation by an e-mail
(plan).

Customer wants to cancel a
reservation online

Change of
belief

Real
customer

• Cancel a reservation Online
(plan).

Cancellation confirmed Change of
belief

Car rental
clerk agent • Inform a real customer (plan).

Table 5.10 Customer Agent Triggers Model

75

5.3.2.2 MAS Architecture Stage
The MAS architecture stage is concerned with constructing the multi-agent system.

It starts with building the interaction model, which is concerned with capturing all the
interaction between the agents in the system. This is followed by constructing the
agent relationships model, which is concerned with capturing the relationships
between agents in the system. Finally, the agent services model is constructed. This
model is concerned with exhibiting the services that each agent should propose to
other agents in the system. It facilitates the access to services that are offered by each
agent. In addition, it organizes the cooperation between agents in the system. The
MAS architecture stage should present the following:

1) Identify the interactions between agents in the system by using UCMs scenarios.
These interactions explain the process in which agents exchange information
with each other (as well as with their environment).

2) Capture the relationships between agents in the system in order to assist agents to
identify dependencies between them.

3) Capture the services that each agent should provide in the system.

5.3.2.2.1 Agent Interaction Model
The agent interaction model specifies all interactions between agents in the system.

The agent interaction model explains the process in which agents exchange
information with each other and with their environment. It describes the agents'
conversations as a set of high-level interactions and as an initial step for
communicating between agents. A more detailed description of these interactions
through interaction protocols will be fully specified at the design phase. To construct such
communication among agents, a common language has to be developed. This model is
considered as an initial model in the analysis phase to represent interactions between
agents in a high-level view. In the design phase, the FIPA-ACL is used to represent
interactions in more detail.

The agent interaction model is represented by a notation called interaction

diagrams. This notation is suggested by the MASD methodology to describe such
interactions. The main function of interaction diagrams is to transform the use case
maps scenarios that are developed in the system scenario model into communication
messages between the agents. These communications should be comprehensible by
the system’s agents. Therefore, a simple agent conversation language is developed
based on the speech act theory by Tsohatzidis [1994] to help agents understand each
other. This speech act theory consists of a communicative act called performative which
means purposeful actions performed during conversations between the
communicators. For example, the request performative means that the sender requests the
receiver to execute some action/actions. On the other hand, the receiver can
recognize which type of response is expected from the contents of the conversation.
Table 5.11 illustrates each performative and its description that are used in the agent
conversation language.

76

Performative Description
Request The sender requests the receiver to execute some actions.
Query The sender asks the receiver about some information the

sender does not know.
Inform The sender gives the receiver some information the sender

knows.
Provide The sender provides the receiver with information already

requested by the receiver.
Call for proposal
(cfp)

The sender calls for proposals of executing some actions.

Propose The sender proposes to execute specific actions under
some preconditions.

accept-proposal The sender accepts the proposal to execute some actions
presented in advance.

reject-proposal The sender rejects the proposal presented in advance.
Agree The sender agrees to execute some actions.
Reject The sender rejects to execute some actions because the

sender cannot execute them.
Failure The sender notifies that it tried to execute some actions

but the execution has failed for some reason.
not-understood The sender notifies the receiver that it cannot understand

the message the sender received.

Table 5.11 Performatives for Agent Conversation Language

Interaction diagrams are developed from the system scenario model by capturing

the lines that connect agents (components) in the use case maps diagram and transfer
them into conversations (communication acts) between the agents.

The interaction diagram consists of the following notations: The black circle refers

to the starting point of the interaction. The path indicates the flow of events in the
interaction. The arrow indicates the direction of the flow. The title indicates the
performative or the event being exchanged. The symbol “X” indicates the end of the
interaction. The agent life bar indicates the life of the agent in the interaction. Figure
5.16 shows the notation of interaction diagrams.

Figure 5.17 illustrates the mapping from UCMS scenarios to interaction diagrams

and shows how interaction diagrams are derived from UCMs scenarios. It describes
the request of the customer agent to the car rental clerk agent, which then requests
more detailed information about the customer. The customer agent replies to the car
rental clerk agent who checks the rules of the car rental company and then replies
either by acceptance or by rejection

Start of
interaction

End of
interaction

[Title]

Flow
Direction

Notation of Interaction diagrams

Agent life bar
Figure 5.16 Notation of Interaction Diagrams

77

Request accepted
and car allocated to

customer
Car rental clerk

agent
Customer

Agent

[reject]

[Request for reservation]

[agree]

Reservation
request

a b

c

Refuse
reservation

Customer Car rental clerk

Request rejected &
customer informed

Customer
wants to rent
a car.

Reservation Scenario

Information
request

Provide info.
Check Car rentals

regulations

Check
customer
demands

d

e
f

Confirm
reservation

cancelReservation
canceled

Cancel reservation
request

Reservation is already
done and customer
wants to cancel
reservation

[Request for Information]

[provide information]

Figure 5.17 Mapping from UCMS Scenarios to Interaction Diagrams

Agent interaction diagrams give only a partial picture of the system behavior. In

order to have a precisely defined system it is necessary to progress from interaction
diagrams to interaction protocols. Interaction protocols define precisely which
interaction sequences are valid within the system.

5.3.2.2.2 Agent Relationship Model
The agent relationships model describes relationships between the agents. It helps

the agents to make the necessary decisions when cooperation between agents takes
place. It also establishes an official framework of duties and responsibilities. The agent
relationships model consists of a set of system components (agents, objects, resources,
etc.) that are connected together to satisfy and pursue a common goal. In this model,
the dependencies, and authorities between the system components are described as
well as the constraints and restrictions that the system must not violate. The model
assists in organizing the coordination between the system agents. This coordination is
achieved through a set of commitments realized by formal agreements and contracts
that guarantee rights for both parties. The complete set of these commitments
comprises a contract. Each commitment is directed from one agent giving this
commitment towards its contracting partner, who receives this commitment. In
addition, this model helps to identify the proper communication protocols that will be
chosen for the conversation between agents in the design phase.

The concept of dependency relationships was inspired from Elammari et al.

[1999], and Yu [1995; 1994] for capturing several types of constraints and
relationships that are frequently encountered in business processes. Agents’
dependency relationships are represented as diagram, where each square represents an

78

agent, and each link between two agents represents the relationship. The link between
two agents indicates that one agent (dependant) depends on the other (dependee) to
do something in order that the dependant may achieve some goal. The depending
agent is called the dependant, and the agent who is depended upon is called the
dependee. The dependency relationship object is called the dependum. Examples of
dependencies are goals to be achieved and tasks to be performed. Three types of agent
dependency relationships are identified: goal, task, and resource dependency. These
relationships can be established either by runtime negotiation or advanced
commitment. The model distinguishes among the types of restrictions based on the
type of the required relationship between dependant and dependee dependencies. Fig.
5.18 illustrates the symbols that are used for agent dependency relationships. An arrow
represents dependency that is going from a dependee agent to a dependent agent.

Dependee

Resource

Goal

Task

agent A agent B

Dependency
relationships

Dependant

Negotiated
relationship

Dependee

Resource

Goal

Task

agent A agent B

Dependency
relationships

Dependant

Negotiated
relationship

Committed
relationship

Figure 5.18 Dependency Relationship Symbols

Task dependency represents a relationship in which an agent requires a specific

task to be performed. Goal dependency represents the relationship in which an agent
is dependent on another agent to achieve a specific goal. Resource dependency
represents the relationship in which an agent is dependent on a supplying agent to
provide it with a specific resource. A resource can be physical or informational. These
three types of dependencies can be either a negotiated or a committed relationship.
Negotiated relationships represent a relationship where an inter-agent negotiation is
required to fulfill the dependency. Committed relationships indicate that an agent is
obligated to provide a service to fulfill the dependency.

Fig. 5.19 shows dependencies between the customer agent and the car rental clerk

agent. The customer agent dependencies are stated first, and then the reservation
agent dependencies. The customer agent depends on the car rental clerk agent to
handle reservation requests. This dependency is classified as “goal dependency”
because the customer agent depends on the reservation agent to achieve a specific
goal. This goal is called “request reservation”. It also depends on the car rental clerk
agent to achieve the canceling reservation goal when the customer wishes to cancel
the reservation, or to provide him/her with his/her list reservation information. The
car rental clerk agent depends on the customer agent to provide him with the personal
information.

79

Car rental clerk
agentCustomer agent

Request reservation

Canceling reservation

Personal
information

 list
reservation

Figure 5.19 Dependency Diagram between Customer Agent and Reservation Agent

5.3.2.2.3 Agent Services Model
The agent services model provides a standard mean of interoperation between

agents in the system. This model is intended to provide a common description of
agent services. The model is also intended to define the location of the agent services
within a multi-agent system. This guides the agent community to find those services
easily. A service is provided by an agent and is used by another agent. Agent services
are captured by means of the messages exchanged between requester agents and
provider agents. The main goal of the agent services model is to facilitate access to
services that are offered by each agent. Moreover, it organizes the cooperation
between agents through constructing formal agreements. An agreement maintains the
agents’ rights by providing them the ability to obtain those services in time.

This model is composed of the following five parts: Service, agent, expiry date,

time of availability, and cost. The service represents the service title. The agent
represents the agent offering the service. The expiry date represents the end date of
the service. The time of availability is the time that the service should be available to
be exploited by other agents. The cost represents the service cost. The agent service
model is derived from the use case diagrams that were developed in the system
scenario model. Agent services can be derived directly from use case diagrams where
each use case can be identified as service. In addition, agent services can be identified
as a set of use cases that are compounded into one service. Table 5.12 illustrates the
agents’ services model including the car rental clerk agent services.

Service Agent Expiry

date
Time of availability Cost

Reply to customer
inquiries

Car rental clerk
agent

Open always Free

Handle reservation
request

Car rental clerk
agent

Open 8:00 am to 8:00 pm Free

Handle rental Car rental clerk
agent

Open 8:00 am to 8:00 pm Free

Handle car service Car rental clerk
agent

Open 8:00 am to 4:00 pm Free

Table 5.12 Agent Services Model

Providing agent services allows agents to search for a certain service that it

requires in order to complete its goals or tasks. This model may be updated at runtime
by new agents with their services or by new services for agents that already exist.

80

5.3.3 Design Phase
The design phase introduces the detailed representation of the models developed

in the analysis phases and transforms them into design constructs. These design
constructs are useful for actually implementing the new multi-agent system. The
models that were developed in the analysis phase are revised according to the
specification of implementation. The main objective of the design phase is to capture
the agent structural design and system design specifications. The design phase has
three steps:

1. Creating an agent container.
2. Defining an inter-agent communications.
3. Creating a directory facilitator.

The design phase deals with the concepts that have been developed in the analysis

phase and illustrate how these concepts can be designed by identifying how to handle
agent’s beliefs, goals, and plans, as well as state how to compose the agent capabilities
into reusable agent modules. In addition, it specifies the inter-communication among
agents and how these agents cooperate in order to realize a common goal. A Directory
Facilitator (DF) mechanism is also described.

5.3.3.1 Agent Container Model
The first step of the design phase is to construct the agent container, which can be

seen as a type specification for a class of instantiated agents. An agent container
represents agent behaviour, which can be modularized and decomposed into role
specifications that are used by an agent. The core part of the agent specification is to
define beliefs, goals, plans and capabilities of the agent and place them in the
appropriate agent part.

The agent behavior is defined by a container that represents agent roles and its

conversations. The agent container simply contains all the important aspects that are
needed by the agent to start working. The agent container is composed of several
components (beliefs, goals, plans, and triggers) where each is represented by a certain
model. Each model and its programming aspects will be designed in order to fit with
the Jadex framework.

5.3.3.1.1 Beliefs
The first part of the agent container are the agent beliefs. The beliefs are

considered as “agent beliefbase” which represents the agent knowledge about the
environment or the world in which the agent works. The beliefbase is the container of
the facts known by the agent. The agent's beliefbase can be considered as simple data-
storage, responsible for creating new beliefs, belief sets, or removing old ones. This
beliefbase is shared among all agents’ plans. The beliefs are classified into two types:
Beliefs that allow the storage of exactly one fact and beliefs that allow the storage of a
related set of facts.

More details are added to the beliefs during the design stage. A new field called

class is added to indicate that the type and the possible values are: Integer, string or
boolean. The initial value for the field depends on the type of belief. The category
field was also added which refers to “F” for the beliefs that store exactly one fact and
refers to “S” for the belief that store set of facts. These additional fields assist the

81

designers to specify the way in which these beliefs are implemented correctly. Table
5.13 provides a detailed description of all the additions of customer agents done
during the analysis stage.

Belief Type Purpose Class

Initial
value

Category

Agent _Id Constant Storage String Customer
agent F

Customer wants to rent a car Variable Storage Boolean True F
Customer decides to reserve by
phone Variable Storage Boolean True F

Customer decides to reserve by
E-mail Variable Storage Boolean True F

Customer decides to reserve car
online Variable Storage Boolean True F

Reservation confirmed Variable Storage Boolean True F
Reservation rejected Variable Storage Boolean True F
Customer wants to cancel
reservation Variable Storage Boolean True F

Customer decides cancel
reservation by phone Variable Storage Boolean True F

Customer decides cancel
reservation by E-mail Variable Storage Boolean True F

Customer decides cancel
reservation online Variable Storage Boolean True F

Cancellation confirmed Variable Storage Boolean True F
Reservation already done and
car allocated to the customer Variable Storage Boolean True F

Cancel reservation is already
requested by customer Variable Storage Boolean True F

The renter should fit to rental
regulations Variable Storage Boolean True F

The renter should not have
more than one reservation at
the same time

Variable Maintain Boolean True F

Table 5.13 Revised agent beliefs model

5.3.3.1.2 Goals
The second component in the agent container are agent goals. The goals that we

developed during the analysis stage are classified into four types of goals: perform,
achieve, query, and maintain goal types. Perform goal is a type of goal where some
action is required to be performed. The results of the goal depend on specific actions.
Naturally, when no actions could be performed, the goal has failed. Otherwise, when
one or more plans have been executed the goal is successful. Achieve goal is a goal
where an agent wants to achieve a certain state (target state) of affairs. This target state
is represented by a target condition. When an agent gets a new achieve goal (e.g. no
waste at given location) that shall be pursued, the agent starts activities for achieving
the target state. When the target state is reached then the goal has been achieved.
Otherwise, for a yet unachieved goal, plans are selected for execution. Whenever
during the plan execution phase, the target condition is reached, then all running plans
of that goal can be aborted. Query goal is used to enquire information about a
specified issue. Therefore, the goal is used to retrieve a result for a query and does not
necessarily cause the agent to engage in actions. When the agent has sufficient
knowledge to answer the query the result is obtained instantly and the goal succeeds.
Otherwise, applicable plans will try to gather the needed information. Maintain goal
is the goal that has to keep a specific desired state (its maintain condition) satisfied all
the time. When the condition is not satisfied any longer, plans are invoked to re-

82

establish the given state. The maintain goal stays idle until the maintained condition is
violated. An example for a maintain goal is to keep the temperature of a nuclear
reactor below some specified limit. When this limit is exceeded, the agent has to act
and normalize the state.

Based on this classification, we added a type field to the goal model as shown in

the following goal model. Table 5.14 provides a detailed description of the added type
field of the agent goals model that was obtained in the analysis phase.

Goal Type Priority Preconditions Postconditions Plans

Request
reservation

Achieve
goal

High • Customer
wants to rent
a car

• Reservation
confirmed

• Reservation
rejected

• Reserve car by phone
call

• Reserve car by E-mail
• Reserve car online

Cancel
reservation
request

Achieve
goal

Normal • Customer
wants to
cancel
reservation

• cancellation
confirmed

• Cancel reservation by
phone call

• Cancel reservation by
Email

• Cancel reservation
online

Notify real
customer

Achieve
goal

Normal • Real
customer
must be
notified

• Real customer
must be
notified

• Notify customer for
cancelled reservations

• Notify customer for
rejected reservations

• Notify customer for
confirmed reservations

Table 5.14 Revised agent goals model

5.3.3.1.3 Plans
In this section, we refine the plans that have been developed in the analysis phase

in order to meet the design specifications. The plans are classified into two types. The
first type is called the service plan; a plan that has service nature. An instance of the
plan is usually running and waits for service requests. It represents a simple way to
react on service requests in a sequential manner without the need to synchronize
different plan instances for the same plan. Therefore, a service plan can organize its
tasks in a queue for later processing, even when it is busy working. The second type is
called the passive plan. This type can be found in all other procedural reasoning
systems. Usually, the passive plan is only run when it has a task to achieve. For this
kind of plan, triggering events and goals should be specified to let the agent know
what kinds of events the plan can handle (as represented in the agent triggers model).
When an agent receives an event, the candidate plan(s) should be selected and
instantiated for execution. We add a field called type to the plan, which identifies the
type of the plan. This field helps developers to decide the suitable mechanism for plan
implementation. Table 5.15 shows the same table that was shown in the analysis phase
plus an additional field called type.

Plan-name: Reserve cars online
Type: Passive plan
Preconditions: Customer decides to reserve car online
Postconditions: Reservation confirmed
Successful internal actions Inform the real customer to pickup the car
Failed internal actions Try with another car rental company

83

Plan body

G et car R enta l w ebsite

R ead car R ental ru les

Verify ru les

C lose car R enta l w ebsite

[N ot accepted]

[Accepted]

F ill in reservation
app lica tion form

Approve
app lica tion

Table 5.15 Reserve car online plan with Plan Type Field

5.3.3.1.4 Capabilities
In many situations, goals, beliefs and plans become a common part of a specific

task. The agent may need to achieve more than one goal, use more than one belief,
and plan to perform a certain task in the system. Capabilities are simply a group of
goals, beliefs and plans grouped together in a package in order to be used when they
are needed to do a certain task in the system. These capabilities are captured from the
identified beliefs, goals and plans that are required by the agent capability to
implement a specific task. The agent capability is derived from the roles model that
has been developed in the analysis phase. The following structure shows how the
reservation capability is structured.

Reservation capability:

Begin // Reservation capability,

Beliefs:
Customer wants to rent a car,
Reservation confirmed,
Reservation rejected.
Customer wants to cancel reservation
Cancellation confirmed.

Goals:
 Begin // goals

Request reservation goal

Plans:
 Reserve by phone call,

 Reserve by E-mail,
Reserve car online,

Cancel reservation request goal.

84

Plans:
Cancel reservation online.
Cancel reservation by phone call,
Cancel reservation by Email,

 End // goals

End // Reservation capability

5.3.3.1.5 Triggers
In the design phase, triggers that were developed in the analysis phase are handled

as conditions that trigger plans or goals. For example, the goal to keep a reactor
temperature below a certain level is a goal that is triggered whenever the temperature
exceeds the normal operating level. At runtime, plans are instantiated to handle events
and to achieve goals. Activation triggers of the plan/goal are used to specify if a
plan/goal should be instantiated when a certain event occurs. Plans are declared by
specifying how to instantiate them from their class. For passive plans to be
instantiated on demand, a trigger has to be stated. The trigger can be omitted in the
case of a plan to be executed, when the agent starts (initial plan).

5.3.3.2 Inter-Agent Communication Model
This model describes in detail possible interactions between agents. To establish

communication between agents, agreed on and accepted protocols have to be
deployed. The most established standard is the FIPA Agent communication language
[FIPA-ACL]. More details about it are stated in appendix D. It describes the
conversations between agents in more detail than the agent interaction model.

This model is derived by transforming the interaction diagrams that were

developed in the agent interaction model in the analysis phase into conversation
messages according to FIPA protocol patterns. The flow of interaction diagrams is
transferred into messages according to the FIPA ACL protocols. The interaction
diagrams are classified according to FIPA ACL protocols that the agents should
follow to realize successful conversations. Determining the proper protocol for each
interaction diagram is considered as the bases in the process of selecting the proper
message between agents. Figure 5.20 illustrates how an interaction diagram is
transferred into messages according to FIPA ACL protocols.

The exchanged messages between the agents are considered as a FIPA ACL
message. A FIPA ACL message is composed of a set of one or more message
parameters. The parameters are needed for an effective agent communication and will
vary according to the situation. The only parameter that is mandatory in all ACL
messages is the performative. However, usually ACL messages will also contain a
sender, a receiver and content parameters.

85

Car rental
clerk Agent

Custom er
Agent

[re ject]

[request for reservation]

[agree]

[request for Information]

[provide inform ation] Interaction diagram

FIPA request
protocol

Figure 5.20 The Correspondence between Interaction Diagrams and FIPA Protocols

The contents expression of a message can be handled by the FIPA content

language. It includes several sub-languages such as: FIPA-SL Semantic Language
which is composed of first order logic and modal operators for mental terms and
uncertainty; FIPA-CCL Content Constraint Language which describes the knowledge
in terms of a Constraint Satisfaction Problem and FIPA-KIF Knowledge Interchange
Format which is essentially first order logic supported by some second order
constructs. Using this content language each agent should be able to understand the
content of the message and be able to manage its own knowledge (knowledge base)
based on a specific ontology (domain specific) to identify the meaning of the message.
The following example represents a sample of the messages that are exchanged
between the customer agent and the car rental clerk agent with some parameters:

In the following example, the customer agent requests the car rental clerk agent to
reserve a car.

(request
 :sender (agent-identifier :Customer_agent)
 :receiver (agent-identifier :Car_rental_clerk_ agent)
 :content
 "Reserve group B car for rent"
 : reply-with reserve-car
 :language sl
 :ontology e-Rent
 :protocol fipa-request interaction)

In the following message the car rental clerk agent answers the customer agent that it
agrees to the request.

(agree
 :sender (agent-identifier :Car_rental_clerk_ agent)

86

 :receiver (agent-identifier :Customer_agent)
 :content
 "((action (agent-identifier :Car_rental_clerk_ agent)
 (agree)"
 :protocol fipa-agree
 :language fipa-sl)

5.3.3.3 Directory Facilitator Model
The final step of the design phase is building the Directory Facilitator (DF) model.

This model is an extension of the agent services model, which was developed in the
analysis phase. The DF model serves as the “yellow pages” to the system agents. The
DF allows agents to publish one or more services they provide so that other agents
can find and successively use it. Agents may register their services with the DF or
query it to find out what services are offered by which agents. An agent is responsible
to provide information related to service e.g. service type, service name etc.
Furthermore, an agent can also deregister or modify its service details. Any agent can
interact with a DF to make its services public and to identify agents that provide a
particular service through the yellow pages. In addition, agents can ask (search)
the DF looking for agents, which provide the services they desire. The DF should
provide the agents in the system with the following functions: register, deregister,
modify and search.

5.3.3.3.1 Directory Facilitator Mechanism
Every agent that wishes to advertise its services to other agents should find DF

and request the registration of its agent description. There is no intended future
commitment or obligation on the part of the registering agent implied in the act of
registering. For example, an agent can refuse a request for a service, which is
advertised through a DF. Additionally, the DF cannot guarantee the validity or
accuracy of the information that has been registered with it; neither can it control the
life cycle of any agent. The service description must be supplied containing values for
all of the mandatory parameters of the description (as we have shown in the service
agent model). It may also supply optional and private parameters that an agent
developer might want to include in the directory.

An agent may search in order to request information from a DF. The DF does not

guarantee the validity of the information provided in response to a search request,
since the DF does not place any restrictions on the information that can be registered
with it. However, the DF may restrict access to information in its directory and will
verify all access permissions for agents, which attempt to inform it of agent state
changes.

5.3.4 Implementation Phase
The implementation phase is the point in the development process when we

actually start to develop the program code. During the implementation phase, the
system is built according to specifications from previous phases. Previous phases
provided models that can be transferred into an implementation. The produced
models have a set of design specifications showing how the agent system and its
components should be structured and organized. The design specifications are used to
develop the implementation phase. There are several agent frameworks and platforms

87

proposed to develop multi-agent systems. MASD supports some of them such as
JADE [1999], JACK [Busetta et al. 1999], MADKIT [1999], Jason [Bordini et al.
2005], and Jadex [Braubach et al. 2004] as a tool for the development process. We
recommend the Jadex platform because it is Java based, has a FIPA compliant agent
environment, and allows developing goal-oriented agents following the BDI model.
More details about the Jadex framework are stated in appendix E. We can show how
Jadex handles the design models. The customer agent is used as an example to show
how agents are implemented in Jadex. This section describes in brief how the
customer agent is implemented. More implementation details will be described in
chapter 6.

Due to matter of time and scope, we will not discuss how to set up the Jadex

environment as it can be done in a few simple steps. Starting up an agent begins with
the creation of the agent. The agent is created according to the agent container that
was developed in the design phase. Each agent container represents an Agent
Definition File (ADF) in Jadex.

Firstly, we create a new agent definition file (ADF) called customer.agent.xml. In

this file, all important agent startup properties are defined in a way that complies with
the Jadex schema specification. The first attribute of the agent is its type name, which
must be the same as the file name (similar to Java class files). In this case, it is set to
Customer. Additionally one can specify a package attribute, which has a similar
meaning as in Java programs and serves for grouping purposes only (the package
name will need to be altered with respect to the actually used directory structure). All
plans and other Java classes from the agent's package are automatically known and
need not to be imported via an import tag. The following XML code describes in brief
the customer ADF.

<!-- CustomerAgent -->

<agent xmlns="http://jadex.sourceforge.net/jadex"
 xmlns:xsi="http://www.w3.org/20 01/XMLSchema-instance"
 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.96.xsd"
name="Customer"
package="jadex.tutorial">
<beliefs>

<belief name="agent_Id" class="String">
 <fact>"customer1"</fact>
</belief>
<belief name="customer_wants_to_rent_a_car" class="Boolean">
 <fact>"true"</fact>
</belief>
<belief name="customer_decide_to_reserve_car_by_phone" class="Boolean">
 <fact>"true"</fact>
</belief>
<belief name="customer_decide_to_reserve_car_by_email" class="Boolean">
 <fact>"false"</fact>
</belief>
<belief name="customer_decide_to_reserve_car_online" class="Boolean">
 <fact>"false"</fact>
</belief>
<belief name=" Reservation confirmed" class="Boolean">
 <fact>"false"</fact>
</belief>

</beliefs>
<goals>

<achievegoal name="request_reservation ">
 <creationcondition>

 $beliefbase.Customer_wants_to_rent_a_car.
 </creationcondition>
 <unique/>
 <deliberation>

88

 <inhibits ref="cancel_reservation_request "/>
 </deliberation>
<targetcondition>
 $beliefbase.reservation_confirmed || $beliefbase.reservation_rejected
</targetcondition>

</achievegoal>
<achievegoal name="cancel_reservation_request">
 <creationcondition>
 $beliefbase.customer_wants_to_cancel_reservation.
 </creationcondition>
 <unique/>
</achievegoal>

</goals>

<plans>

<plan name="reserve_car_by_phone_call">
<body> new reserve_car_by_phone_callPlan() </body>
<trigger>
 <condition>
 $beliefbase.customer_decide_to_reserve_car_by_phone
 </condition>
</trigger>
<contextcondition>
 $beliefbase.!reservation_confirmed || $beliefbase.!reservation_rejected)
</contextcondition>
</plan>

<plan name="reserve_car_by_email">
<body> new reserve_car_by_emailPlan() </body>
<trigger>
 <condition>
 $beliefbase. customer_decide_to_reserve_car_by_email
 </condition>
</trigger>
<contextcondition>
 $beliefbase.!reservation_confirmed || $beliefbase.!reservation_rejected)
</contextcondition>
</plan>

<plan name="reserve_car_online">
<body> new reserve_car_onlinePlan() </body>
<trigger>
 <condition>
 $beliefbase.customer_decide_to_reserve_car_online
 </condition>
</trigger>
<contextcondition>
 $beliefbase.!reservation_confirmed ||$beliefbase.!reservation_rejected)
</contextcondition>
</plan>

</plans>

</agent>

5.4 Chapter Summary
In this chapter, the Multi-Agent System Development (MASD) methodology was

detailed and the methodology construction necessities were stated. The phases of the
proposed methodology were described and the system requirement phase was built.
UCMs and UCDs were used as a notation to build the system requirements phase.
The system functionality was partitioned into transactions meaningful to users and
developers of a system. The analysis phase was constructed and the system
requirements were transferred into a representation of the agent system that can be
forwarded to the design phase. A set of essential models was developed. Some of
these models represent the agent architecture stage such as agent model, roles model,
goals model, plans model, beliefs model and triggers model. The other models
represent a MAS architecture such as the interaction model, agent relationships model

89

and agent services model. These models were then used in the design phase. The
design phase was a discussion of how to design agents and agent's roles, plans, beliefs,
and goals, as well as the agent capabilities. The chapter also described how to specify
the inter-communication among agents and described the Directory Facilitator (DF),
as well as its mechanism and function. Finally, the implementation phase was
discussed. This phase was the development process to construct the solution and
writing program code. The design specification was captured to build the
implementation step and the Jadex platform was used as a tool to implement the agent
system. In the next chapter, we will illustrate our methodology using a complete case
study.

90

CHAPTER SIX
CASE STUDY: CAR RENTAL SYSTEM

6.1 Introduction
The chapter describes the entire detailed process of developing multi-agent

systems using a case study of the car rental system. This case study is used to prove
the methodology. In this chapter, we provide a detailed description of how the car
rental system works which represents the case study to test and evaluate the new
methodology.

6.2 Case Study: Car Rental System
The case study “car rental system” has been chosen because it is simple and

straightforward. It can be used to illustrate the types of reflective reasoning required
by agents involved in a distributed collaborative environment. It entails a distributed
design process, where several participants need to interact with each other. It
encompasses and highlights a number of underlying and interconnected agent
concepts.

In an example scenario, EU-Rent is a car rental company owned by the EU-

Corporation [EU-Rent]. It is one of three businesses. The other two businesses are
hotels and an airline. Each has its own business and IT system, but with a shared
customer base. Many of the car rental customers also fly with EU-Fly and stay at EU-
Stay hotels. This case study was developed by Model Systems, Ltd., along with several
other organizations, and has been used by other organizations [Hay and Healy 2000].

EU-Rent is a car rental company with branches in several countries. It provides

typical car rental services:

• Different types of cars are offered, which are organized into groups. All cars that
are in one group are charged at the same rate.

• Cars may be rented through reservations made in advance or by “walk-in”
customers on the day of rental.

• Cars are picked up from EU-Rent branches at the start of a rental, and may be
returned to the same or a different branch.

• Customers may join the EU-Rent loyalty club, and accumulate points that they
can use to pay for rentals.

• EU-Rent from time to time offers discounts and free upgrades subject to
conditions.

EU-Rent records “bad experiences” with customers such as speeding fines or
damage to the car during rental and may refuse subsequent rental reservations from
such customers. In this phase, we deal with a part of EU-Rent’s behaviour, triggered
by the following kinds of event:

1. Accepting new reservations for new and existing customers.
2. Assigning cars to the day’s rental agreements.
3. Selection of the best discount that the rental agreement qualifies for.

91

4. Handling reservations where the requesting customer has had “bad experiences”.
5. Transfer of the ownership of a car when a car is returned to a branch different

from the pick-up branch.
The case study is considered to be applied with both UCMs and UCDs.

6.3 System Requirement Phase
In this phase, UML Use-Case Diagrams (UCDs) and Use-Case Maps (UCMs) are

used to describe the car rental system requirements in high-level visual
representations. The system requirement phase concentrates on constructing the
system scenario model for the car rental agent system. Two techniques are specifically
used: UML use-case diagrams and use case maps. More details about these techniques
are described in appendixes A and B.

6.3.1 System Scenario Model
The main task of the system requirement phase is the construction of the system

scenario model. The scenarios of the car rental system are established. This system is
considered as a small-distributed system. The system scenario model is composed of
two steps: developing UCDs for the car rental system, and developing UCMs for the
car rental system.

6.3.1.1 UCDs for Car Rentals System
In this section, a detailed example will be provided which performs the

construction of UCDs scenarios of the EU-Rent a car rental system. Each use case in
the system scenario will be described with a diagram as well as describing and
clarifying its components. Initially, use case diagrams of the dialogues for the car
rental system scenario will be created as in figure 6.1. It will be followed by a
description of each use case separately.

In the UCDs, we should capture the following system components:

1. The actors involved in the system.
2. The use cases performed by actors.
3. In each use case, we should perform the following tasks:
4. Identifying the description of use case.
5. Identifying pre-conditions and post-conditions of each use case.
6. Identifying the goal of the use case.
7. Identifying the actor that performs the use case.
8. Identifying triggering events of the use case.
9. Identifying extensions and alternatives of the use case.

The car rental system includes three actors: Customer actor, car rental clerk actor

and car clerk actor. The duties of these actors are described as use cases. Figure 6.1
illustrates the UCM for the car rental system. The numbers of actors in the car rental
system can be more than three. Manager and cashier actors can be added to the
system. However, in order to make the case study simple and easy to understand, we
selected the most important ones to represent the system.

92

Car Rental system

Check carPrepare car

Handover

Calculate price
Reject rental

Prepare rental contract

Handle car services

pay

Extend rental

Handle rental

Cancel

Reserve

Pickup

Customer

Car rental clerk

Car clerk

Car clerk

«uses»

Handle reservation

Reply to customer requests

Reject reservation

Allocate car for customer

Request reservation

Request rental extension

Request cancel reservation

<<uses>>

<<Includes>>

<<Includes>>

<<Includes>>

<<Includes>>

<<Includes>>

<<In clu de s> >

<<Includes>>

<<Includes>>

<<
ex

te
nd

s>
>

<<extends>> <<extends>>

Figure 6.1 Use Case Diagrams for Car Rental System

Use case Request reservation

Use case name: Request reservation
Description: The customer requests the car rental clerk for reservation
Actors: Customer
Goal: To request car rental reservation
Precondition: Customer requested reservation
Postcondition: Request rejected; Request accepted
Triggering event: A customer requests a reservation
Extensions:
Alternatives:

Use case Request rental extension
Use case name: Request rental extension
Description: The customer requests the car rental clerk for rental extension
Actors: Customer
Goal: To request car rental extension
Precondition: Customer wants to extend rental
Postcondition: Request rejected; Request accepted

93

Triggering event: A customer requests rental extension
Extensions:
Alternatives:

Use case Request cancel reservation
Use case name: Request cancels reservation
Description: The customer requests the car rental clerk for canceling reservation
Actors: Customer
Goal: To request cancel reservation
Precondition: Customer has reservation and requested cancellation
Postcondition: Request rejected; Request accepted
Triggering event: a customer requests cancel reservation
Extensions:
Alternatives:

Use case Pay
Use case name: Pay
Description: The customer pays charge of the rental by credit card or cash
Actors: Customer
Goal: To enable customer to pickup the car
Precondition: The reservation extension of the rental or extra charge to be paid is present or exists
Postcondition: The rental charge is paid; the rental charge is not paid
Triggering event: Customer wants to pickup a car, or extends the rental.
Extensions:
Alternatives:

Use case Pickup

Use case name: Pickup a car
Description: The customer wants to pickup the car that already he/she has reserved
Actors: Customer
Goal: To enable customer use the car
Precondition: The reservation of the rental to be paid is present or exists and the payment is done
Postcondition: The car picked up by the customer
Triggering event: customer wants to pickup a car
Extensions:
Alternatives:

Use case Return
Use case name: Return
Description: The customer wants to return a car for a car rental
Actors: Customer
Goal: To return a car for a car rental and in order to prevent that; a customer must pay extra charge for

late return
Precondition: Current reservation exists and a car has already been picked up by customer or (car has

been delivered to the customer)
Postcondition: A car is returned back to a car rental company
Triggering event: A customer requests a return on the end day of the rental
Extensions:
Alternatives:

Use case Reply to customer requests

Use case name: Reply to customer requests
Description: The Car rental clerk replies to customer requests
Actors: Car rental clerk
Goal: To provide services to the customer
Precondition: Customer requests a specific service
Postcondition: The customer replied to
Triggering event: A customer requests a reservation; customer requests a cancellation;

customer requests extending the rentals.
Extensions:
Alternatives:

94

Use case Handle reservation

Use case name: Handle reservation
Description: The car rental clerk handles the reservation that takes place
Actors: Car rental clerk
Goal: To achieve the reservation process
Precondition: The reservation requested by the customer; the cancellation requested by the customer
Postcondition: The reservation request dealt with
Triggering event: The customer requests reservation.
Extensions: Allocate car for customer, reserve, cancel, or eject reservation
Alternatives:

Use case Reserve

Use case name: Reserve
Description: the car rental clerk reserves a car of a specific category for specific customer
Actors: Car rental clerk
Goal: To reserve a specific car for the customer
Precondition: Customer requested reservation
Postcondition: A new reservation exists; specific car is reserved for the customer
Triggering event: The customer requests the clerk to reserve a car for him/her
Extensions: check blacklist, verify rules and check customer demands
Alternatives:

Use case Cancel

Use case name: Cancel
Description: The car rental clerk cancels a reservation that already exists
Actors: Car rental clerk
Goal: To prevent the picking up of a car for which a reservation was made
Precondition: The reservation exists
Postcondition: The reservation is marked as cancelled; no car will be picked up for this reservation.
Triggering event: A customer requests the clerk to cancel a reservation
Extensions:
Alternatives:

Use case Reject reservation
Use case name: Reject reservation
Description: The car rental clerk rejects the reservation
Actors: Car rental clerk
Goal: To prevent the rentals which against car rental rules
Precondition: The customer request is made or the customer does not fit to the car rental rules
Postcondition: The reservation is rejected
Triggering event: Car rental rules not satisfied
Extensions:
Alternatives:

Use case Handle rental
Use case name: Handle rental
Description: The car rental clerk handles the rental that takes place
Actors: Car rental clerk
Goal: To achieve the rental transaction
Precondition: The rental to be handled is present
Postcondition: The rental transaction is achieved
Triggering event: The customer ready to pay the rental
Extensions: Create rental contract, reject rental, and calculate price
Alternatives:

Use case Extend rental

Use case name: Extend rental
Description: The car rental clerk extends a rental that is already in effect
Actors: Car rental clerk
Goal: To prevent the situation where a car must be returned back to the rental company
Precondition: The rental to be extended does exist

95

Postcondition: The rental is marked as extended; the car will be returned back on extended date
Triggering event: A customer requests the car rental clerk to extend a rental
Extensions:
Alternatives:

Use case prepare rental contract

Use case name: Prepare rental contract
Description: The car rental clerk prepares contract for the reservation that has already been done
Actors: Car rental clerk
Goal: To preserve assets of car rental company
Precondition: The reservation to be contracted exists
Postcondition: The contract is marked as confirmed and accomplished
Triggering event: A customer confirms and decides to rent a car
Extensions:
Alternatives:

Use case Calculate price

Use case name: Calculate price
Description: The car rental clerk calculates the total price of the rental
Actors: Car rental clerk
Goal: To provide a customer with the total price
Precondition: The existence of the rental for which the total price is to be calculated
Postcondition: The total price of the rental is calculated
Triggering event: A customer confirms and decides to rent a car
Extensions: Handover
Alternatives:

Use case Handover

Use case name: Handover
Description: The car clerk delivers the car to customers
Actors: Car clerk
Goal: To check the car whether it is already has damage or not
Precondition: The customer asks to pickup the car
Postcondition: The car delivered to customer
Triggering event: A customer is ready to pickup the car
Extensions: Check car, prepare
Alternatives:

Use case Check car

Use case name: Check car
Description: The car clerk checks the car when it comes back to the garage
Actors: Car clerk
Goal: To know whether the car has any damage or not
Precondition: The car to be checked is present
Postcondition: The car is checked and ready for rent
Triggering event: The customer has returned the car back to the company garage and it is already

in
Extensions:
Alternatives:

Use case Prepare car

Use-case name: Prepare car
Description: The car clerk prepares the car to be ready for rental
Actors: Car clerk
Goal: To satisfy customer demands
Precondition: A customer requests the car rental clerk to pickup a car
Postcondition: The car is prepared and ready to be picked up by the customer
Triggering event: The car comes back to the garage
Extensions:
Alternatives:

Use case Reject rental

96

Use case name: Reject rental
Description: The car rental clerk rejects the rental
Actors: Car rental clerk
Goal: To prevent the picking up of a car that has been reserved
Precondition: The customer is not able or is refusing to pay the rental
Postcondition: The rental is rejected; no car will be picked up for this reservation
Triggering event: A rental payment is failed
Extensions: -
Alternatives:

Use case Handle car service

Use case name: Handel car service
Description: The car rental clerk manages car service
Actors: Car rental clerk
Goal: To ensure that the cars are ready for rent
Precondition: The service date for the car is due
Postcondition: The car is serviced and ready for rent
Triggering event: A car needs to be serviced
Extensions:
Alternatives:

6.3.1.2 UCMs for the Car Rental System
The next step of the system scenario model is developing UCMs for the car rental

system. In this step, use case maps of the car rental system are described. UCMs are
applied in order to capture the behavior of the car rental system in high level
description and explain how UCMs describe the system scenario in visual views.
UCMs discover car rental system roles, and responsibilities along the way. In this step,
we should perform the following important tasks:

1. Identify scenarios and major components involved in the car rental system.
2. Identify roles for each component.
3. Identify preconditions and postconditions for each scenario.
4. Identify responsibilities and constraints for each component in a scenario.
5. Identify sub scenarios and replace them with stubs.
6. Identify components collaborations for the major tasks.

The car rental system is decomposed into the sub-scenarios as follows:

reservation scenario, car pickup scenario, car return scenario, rental extension scenario
and car service scenario. Each scenario is described in detail.

6.3.1.2.1 Reservation Scenario
The reservation scenario will be performed between two components of the

system called: customer and car rental clerk. Figure 6.2 shows the use case map for the
reservation scenario.

The customer component represents the customer in the application environment,

and the car rental clerk represents the employee of the car rental company. The
preconditions for the reservation scenario are:

• A customer wants to rent a car.
• A reservation is already done and the customer wants to cancel the

reservation.

97

Request
reservation

a b

c

Refuse
reservation

Customer Car rental clerk

Preconditions :
* Customer wants to rent a car.
* Reservation is already done
and customer wants to cancel
reservation.

Request
rejected &
customer
informed

Customer wants
to rent a car.

Postconditions:
* Reservation request accepted and car allocated to
customer.
* Reservation request rejected.
* Reservation canceled.

Request
Information

Provide info.
Verify Car rentals

regulations

Check
customer
demands

d

e
f

Confirm
reservation

cancel
Reservation

canceled

Cancel reservation
request

Reservation is already
done and customer wants
to cancel reservation

Reservation request
accepted and car

allocated to customer

Notify

Notify

Notify

Figure 6.2 Use Case Map for Reservation Scenario

When the first precondition is satisfied the scenario starts with the Request
reservation stub, which hides the detailed information of the request reservation process.
The request reservation can be achieved in several ways. For example, it can be done
by a phone call, or by filling a web form, or by an Email. Therefore, the request
reservation stub is represented as a dynamic stub. Figure 6.3 illustrates the plug-ins for
the request reservation dynamic stub. After all responsibilities for the request reservation
process are performed, the path leads to the car rental clerk component. In this
component there is a responsibility called request information, which requests the
customer to provide his/her personal information such as address, phone, personal
ID, driving license etc. The path leads to the customer component where there is a
responsibility called provide info, which provides a confirmation that the customer has
filled in the application form for the rental transaction.

Phone call plugin

Send Email plugin

Call

Send

Fill web form plugin

Fill web form

Customer decided to
reserve by phone

Customer decided
to reserve by Email

Customer decided to
reserve car online

Figure 6.3 Plug-Ins for Request Reservation Stub

After the previous responsibilities are performed, the path leads to the static stub
verify car rentals regulations which hides the detailed information of the verify car rentals
regulations process. This stub should be achieved in one specific mode.

Figure 6.4 illustrates the plug-in for the verify car rentals regulations. In this plug-in the

car rental clerk checks whether the customer meets the rental rules of the car rentals
company. These regulations are represented by the following tasks or responsibilities
(verify rules, check blacklist and check simultaneous reservations) that should be performed by
the clerk of the car rentals company. The path starts with the verify rules responsibility

98

which verifies the rules of the car rentals company such as customer age, validity of
drivers license etc. Then the path leads to an or-fork immediately after the verify rules
responsibility, which indicates alternative scenario paths.

Check
Blacklist

Cust. in
Blacklist

found

Check
Simultaneous
reservations

Verify
rules

Rules not
Ok

a

c

b
Customer
passed car

rental
regulations

Customer
does not pass

car rental
regulations

Customer
requested
reservation

Figure 6.4 Plug-In for Verify Car Rentals Regulations

One path leads to the end point “c” which means the reservation request is rejected,
e.g. because the customer does not have a valid drivers license. The other path leads
to the next responsibility check blacklist. The check blacklist responsibility checks
whether the customer belongs to the customers blacklist or not. In the same situation
the path leads to an or-fork immediately, which indicates alternative scenario paths.
One path leads to the end point “c” which means the reservation request is rejected,
since the customer is included in the blacklist. The other path confirms that the
customer is not included in the blacklist, leading to the last responsibility check
simultaneous reservations. It checks whether the customer has reservation for more than
one car at a time. A customer may have multiple future reservations, but may have
only one car at any time. After the check simultaneous reservations responsibility is checked
the path leads immediately to an or-fork, which indicates alternative scenario paths.
One path leads to the end point “c” which means the reservation request is rejected,
since the customer already has another car, which according to the car rentals rules is
not allowed. The other path leads to the end point “b” which confirms that customer
passed the car rentals regulations and he/she is allowed to reserve a car.

The verify car rentals regulations stub has two outgoing ports. If the customer passed

the car rentals regulations, port “b” will be followed, which means that the customer
is allowed to reserve a car. Otherwise, port “c” is followed, which means that the
customer reservation request is rejected. The path that comes from port “b” leads to
the check customer demands stub, which hides the detailed information of the check
customer demands process. This stub checks whether the customer demands are available
or not.

Figure 6.5 illustrates the plug-ins for the check customer demands stub. In this plug-in,

the car rental clerk checks the customer’s demands. This plug-in is represented by the
following tasks or responsibilities: check availability of customer demands, check
customer demands in other branches, propose another car, assess, and verify. The
path is started with the responsibility check availability of customer demands which checks
whether the customer’s demands are available in this branch or not.

99

Negotiation Car rental clerkCustomer

Check availability of
customer demands

Propose
another car

assess
accept

e

available

Not available
e

f

d

Not
accept

Check Cust.
Demands in other

branches

available

Not
available

Verfy
Customer

demands does
not available &

reservation
rejected

Customer
demands
available

Preconditions :
* Customer passed car rental regulations

Customer
demands
available

Postconditions :
* Customer demands not available & reservation rejected
* Customer demands available

Figure 6.5 Plug-In for the Check Customer Demands Stub

After that, check availability of customer demands responsibility invoked, the path leads
to an or-fork, which indicates alternative scenario paths. One path labeled available
leads to the end point “e” which means the customer demands are available. The
other path (labeled Not Available) leads to the responsibility check customer demands in
other branches. This responsibility finds out whether the customer demands are available
in other branches or not.

After check customer demands in other branches responsibility is checked, the path

immediately leads to an or-fork, which indicates alternative scenario paths. One path
labeled available leads to the end point “e” which means the customer demands are
available in some other branch. The other path (labeled not available) leads to
responsibility propose which proposes to the customer another car from the same
group. The path after that leads to the responsibility assess, which confirms that the
customer estimates the proposal. Then the path leads to an or-fork. One path labeled
accept, leads to the end point “e”.

That is an indication that the customer accepts the proposal. The other path
(labeled not accepted) leads to the responsibility verify which verifies that the customer
has responded. If the customer asks for another offer the path leads to the
responsibility propose again. Otherwise, the path leads to the end point “f” which
means that the customer demands were not available and the customer reservation is
rejected.

The check customer demands stub should be returned back to the reservation scenario

either by the “e” or “f” port. The path that comes from port “e” leads to the
responsibility confirm reservation and then leads to the end point reservation request accepted
and car allocated to customer. The path that comes from the port “f” leads to the
responsibility refuse reservation and then the path leads to the end point request rejected
and customer informed.

When the second precondition of the reservation scenario is satisfied; the scenario
starts with the cancel reservation request stub, which hides the detailed information of the
cancel reservation request process. The cancel reservation request stub can be achieved in

100

several ways. For example, it can be done through a phone call, by filling a web form,
or by an Email. Figure 6.6 illustrates the plug-ins for the cancel reservation request stub.
After all responsibilities for the cancel reservation request process are performed, the path
leads to the car rental clerk component where there is a responsibility called cancel,
which cancels the reservation that is already done by the customer. Then the path
leads to a responsibility confirm which confirms that the reservation is canceled. Then
the path leads to the customer component where there is a responsibility called receive
confirmation, which indicates that the confirmation for cancellation is received by the
customer. Then the path leads to the end point reservation canceled.

Phone call plugin

Send Email plugin

Call

Send

Fill web form plugin

Fill web form

Customer decided to
cancel reservation by

phone

Customer decided to
cancel reservation by

Email

Customer decided to
cancel reservation

online

Figure 6.6 Plug-Ins for Cancel Reservation Request Stub

6.3.1.2.2 Car Pickup Scenario
The car pickup scenario will be performed between the customer and car rental

clerk components of the system. Figure 6.7 shows the pickup scenario of UCMs. The
precondition for the pickup scenario is that reservation already done and car allocated to the
customer. The scenario starts with responsibility request to pickup car stub, which indicates
that the customer wants to pick up the car based upon his/her reservation.

Customer Car rental clerk

Check reservation

Exist

Request payment

Not Exist

Pay
rental

Cancel
reservation

a

b
c

Reservation
canceled and rental

rejected

Confirm rental

Car received by
customer

Notify real
customer

Inform customer

Reservation does
not exist and rental

rejected

Sign contract

Postcondition:
* Reservation does not exist and rental rejected.
* Reservation canceled and rental rejected.
* Car received by customer

Precondition:
* Reservation request accepted and car
allocated to customer

Provide contract

Reservation
request

accepted and
car allocated to

customer

Request to
pickup a car

Confirm
payment

Provide car

Figure 6.7 Car Pickup Scenario

101

The path goes to the car rental clerk component and leads to the responsibility
check reservation in which a check is made whether the customer has a reservation or
not. Then the path leads to an or-fork immediately, which indicates alternative
scenario paths. One path labeled not exist leads to the responsibility inform customer,
which informs the customer that he/she has no reservation. The path subsequently
leads to the end point reservation does not exist and reservation request rejected, which is
considered as a post-condition of this scenario. The path labeled exist leads to
responsibility provide contract, which is responsible for providing the contract to be
signed by the customer. Then, the path goes to the customer component and leads to
responsibility sign contract, which is a commitment by the customer to sign the contract.
The path then goes to the car renal component to the responsibility request payment,
where the path goes to the customer component and leads to the pay stub, which hides
the detailed information of the payment process. This stub shows the payment
process details. Figure 6.8 illustrates the plug-ins for the pay rental stub

a b
Fee not

paid

Payment canceled

Customer

c

Customer

Pay by loyalty
points

OK

Not OK

a

b
Rent paid

Payment by loyalty club points

Rent not paid

Customer

Pay by
CC OK

Not

OK

a

b
Rent paid

c

Rent not paid

c

Customer
Pay by
cash

OK

Not OK

a

b
Rent paid

 Payment by cash

Rent not paid

Payment by Credit card

* CC : Credit card

Cancel
 request

Figure 6.8 Plug-ins for Pay Rental Stub

The pay stub has two outgoing ports. If the customer has not paid the rentals fees,

then port b will be followed, which means that the customer does not pay the fee. This
path leads to responsibility cancel reservation. It then leads to the end point reservation
cancelled and rental rejected which is considered as a post condition of this scenario.
Otherwise, port c is followed, which means that the customer has paid the rentals fees.
The path that comes from port “c” leads to the responsibility confirm payment. After
that, the path leads to the responsibilities confirm rental and provide car, which is a
commitment by the company to provide the car to the customer. Subsequently, the
path leads to the responsibility notify real customer at customer component to pickup the
car. It then goes to the end point Car received by customer, which is considered a post-
condition of this scenario.

Figure 6.9 illustrates the plug-in of this pay by loyalty points stub. This plug-in starts

when the precondition Customer used loyalty points for payment is satisfied. The path starts

102

with the responsibility Deliver membership that confirms that the customer has delivered
his/her loyalty club membership. Then the path goes to the car rentals clerk and leads
to the responsibility Check customer membership which checks whether the customer has
loyalty club membership or not. Then the path immediately leads to an or-fork, which
indicates alternative scenario paths.

One path labeled No leads to the responsibility payment request, which informs the

customer that he/she has to pay in cash or use a credit card. The path then leads to
the end point Loyalty points not enough and payment requested which is considered as
postcondition of this plug-in.

Check cust
membership

No

Yes

Payment request

Check
points

Loyalty points not
enough and payment

requested

Deliver
membership

Fees paid by loyalty
points & rentals

confirmed

Has points

Points not
enough

Customer Rental company branch

Debit
pointsa

b

c

Postconditions:
* Loyalty points not enough and payment requested.
* Fees paid by loyalty points & rentals confirmed

Preconditions:
* Customer used loyalty points for payment

Figure 6.9 Plug-Ins for Pay by Loyalty Points Stub

The other path leads to the responsibility check points which checks whether the

customer has enough points to be able to pay by loyalty points or not. Then the path
immediately leads to an or-fork, which indicates alternative scenario paths. One path
labeled points not enough leads to the responsibility payment request, which informs the
customer that he/she has to pay in cash or by use a credit card.

The path then leads to the end point Loyalty points not enough and payment requested

which is considered as post-condition of this scenario. The other path labeled has
points leads to the responsibility debit points which debit points from the account of the
customer loyalty club. The path then leads to the end point fee paid by loyalty points and
rentals confirmed which is considered as post-condition of this plug-in.

6.3.1.2.3 Car Return Scenario
The car return scenario will be performed between the customer and the rental

company clerk components of the system. Figure 6.10 shows the car return scenario
of UCMs. The preconditions for the rentals scenario are that customer wants to return a
car and car is damaged.

This scenario starts either with the precondition customer wants to return a car or with

the precondition car is damaged. When the precondition car is damaged is satisfied then
the scenario starts with responsibility inform car rental, which informs the Car Rentals
Company that the car is damaged. Then the path goes to the car rental clerk
component and leads to responsibility receive a car. When the precondition customer
wants to return a car is satisfied then the scenario starts with the responsibility return car,
which confirms that the customer has returned the car to company garage.

103

After that, the path goes to the clerk component and leads to the responsibility
receive car where it indicates that the rental company clerk has received the car. The
path then leads to terminate transaction stub which hides the detailed information of the
terminate transaction process. This stub should be achieved in only one specific way.
Therefore, the terminate transaction stub is represented as a static stub.

Customer Car rental clerk

Customer wants to
return a car Return car

Transaction closed

Receive
car

Terminate
transaction

ab

c

Case
transferred to

court

Preconditions:
* Customer wants to return a car.
* Car is damaged

Car is damaged

Inform Car
Rental

Postconditions:
* Transaction closed
* Case transferred to court

Figure 6.10 UCM for Car Return Scenario

Figure 6.11 illustrates the plug-in for the terminate transaction stub. This plug-in

starts with check return date responsibility. This responsibility checks whether the car
has been returned on time or not. Then the path immediately leads to an or-fork after
the check return date responsibility, which indicates alternative scenario paths. One path
labeled on time indicates whether the car was returned on time and the path then leads
to responsibility check car condition.

b

Check
return date

On time

Late

Calculate
lateness

verify cust.
replication

Check car
condition Car ok

Car
damaged

Estimate
damage

Check extra
payment

 Request extra
payment Extra fees

needed

No extra fees
needed

Reply

Transfer case
to court

Fee paid
Fee not

paid

c

Update car.
records

Check car service

Update
blacklist

a

Customer

Add
loyalty
points

x

y

Update car.
records

Postconditions:
* Transaction closed
* Case transferred to court

Preconditions:
Car received by car rental clerk

Case transferred
to court Transaction closed

Car received by
car rental clerk

Figure 6.11 Plug-Ins for the Terminate Transaction Stub

104

The other path labeled late indicates that the car was delayed beyond the proper
time of arrival which leads to the responsibility calculate lateness. This calculates the cost
of how late the car was as an extra payment. The path then leads to the responsibility
check car condition. The responsibility check car condition verifies whether the returned car
was damaged or not. The path then immediately leads to an or-fork, which indicates
alternative scenario paths. One path labeled car damaged leads to two successive
responsibilities estimate damage and update blacklist. The estimate damage responsibility is
concerned with estimating the car damage. The update blacklist responsibility is
concerned with updating the blacklist by adding this customer to the list. The path
then leads to an or-joint that leads to the responsibility check extra payment.

The other path labeled car ok leads to the add loyalty points stub which hides the

detailed information of the add loyalty points process. Figure 6.12 illustrates the plug-in
of the add loyalty points stub.

Check cust.
membership

Add points to cust.
account

no

Yes

x y

Figure 6.12 Plug-In for Add Loyalty Points Stub

The add loyalty points plug-in starts with the check customer membership responsibility

which is responsible for checking the customer membership of the loyalty club. Then
the path leads to an or-fork immediately after the check customer membership
responsibility, which indicates alternative scenario paths. One path is labeled no which
indicates that the customer is not a member of the loyalty club and the path then leads
to the end point “y”. The other path is labeled yes, which means the customer is a
member of loyalty club and then the path then leads to the responsibility add points to
customer account which adds points to the customer account of the loyalty club. After
that, the path leads to the end point “y”. The path leads to or-joint which leads to the
responsibility check extra payment.

The responsibility check extra payment in the terminate transaction plug-in checks

whether the customer should pay an extra fee or not. The path leads to an or-fork
immediately, which indicates two alternative scenario paths. One path labeled no extra
fee needed leads to responsibility check car services which checks whether the car needs
service or not. Then the path leads to the end point “b”.

The other path labeled extra fees needed leads to the responsibility extra payment

request. In the case of a delayed car return, or the car is damaged, an extra payment
request responsibility requests the customer to pay an extra fee. The path then goes to
the customer component and leads to the responsibility reply, which confirms that the
customer has replied to the car rental company. The path goes back to the car rental
clerk component and leads to the responsibility verify customer replication that verifies
whether the customer has paid the extra fee or not. Then the path immediately leads
to an or-fork, which indicates alternative scenario paths.

The path labeled fee paid leads to the responsibility update car records. The other path

labeled fee not paid leads to the responsibility transfer case to court. This means that the
case is transferred to the court because of the customer’s lack of payment of the extra

105

fee. After the responsibility transfer case to court has been performed, the path then
immediately leads to an and-fork, which has two simultaneous scenario paths. One
path leads to the end point “c”. The other path leads to responsibility update car records.

The terminate transaction stub leads to two ports “b” and “c”. The path that

comes from port “b” indicates that the transaction is closed. The path that comes
from port “c” indicates that the transaction has been transferred to court.

6.3.1.2.4 Rental Extension Scenario
The Rental extension scenario will be performed between the customer and the

car rental clerk components of the system. Figure 6.13 shows UCMs of the rental
extension scenario.

Request to extend
rental

Customer
decided to

extend rental

Rental extension
rejected and

customer notified

Customer Car rental clerk

Update
Rental extension

confirmed and
customer notified

Preconditions:
* Customer decided to extend rental

Postconditions:
* Rental extension confirmed

and customer notified.
* Rental extension rejected and

customer notified.

Notify

Manage extension

a b

c

Reject
extension

Figure 6.13 UCM for Rental Extension Scenario

The precondition for the rental extension scenario is that the customer decided to

extend rental. The scenario starts with the request to extend rental stub, which hides the
detailed information of the request to extend rental process.

The request to extend rental can be achieved in several ways. For example, it can be
done through a phone call, or by filling a web form, or by an Email. Figure 6.14
illustrates the plug-ins for the request to extend rental stub. After the request to extend rental
stub is performed, the path goes to the car rental component and leads to the manage
extension stub. This in turn hides the detailed information of the manage extension
process.

Phone call plugin

Call

Send

Fill web form

Send email plugin

Fill web form plugin

Customer decided to
extend rental by phone

Customer decided to
extend rental by Email

Customer decided to
extend rental online

Figure 6.14 Plug-Ins for Request to Extend Rental Stub

Figure 6.15 shows the plug-in of the manage extension stub. This plug-in starts with

the start point “a” where the path leads to the check service date which checks whether

106

the service date of the car is due. After the responsibility check service date has been
performed, the path immediately leads to an or-fork, which indicates two alternative
paths.

One path is labeled no service required which means the car does not need a service.

The customer is allowed to extend his/her rental and the path leads to the end point
“b”. The other path labeled service required immediately leads to the responsibility
propose another car then the path moves to the customer component and leads to the
responsibility reply which means that the customer provides a reply for the proposed
car. The path then moves back to the clerk component and leads to responsibility
verify, which verifies whether the proposal is accepted or not. The path then leads to
an or-fork immediately, which indicates two alternative paths. One path labeled
proposal not accepted leads to the end point “c” which means the rental extension is not
accepted and the car should be given back to the car rental. The other path labeled
proposal accepted leads to the end point “b” which means the rental extension is
accepted.

No service required

Service
Required

Check car
service date

Customer

Car rental clerk

Reply
Propose

another car Proposal
accepted

Proposal not
accepted

b
Verify

a

c

Customer requested
rental extension

Figure 6.15 Plug-ins for Manage Extension Stub

The manage extension stub should return to the reservation scenario by either port

“c” or “b”. The path that comes from port “c” leads to the end point rental extension
rejected and customer notified. The path that comes from port “b” leads to the
responsibility update, which means that the clerk updates the car rental database with
the extension. This is followed by the path leading to the responsibility notify, which
notifies the customer that the extension has been confirmed. The path then leads to
the end point rental extension confirmed and customer notified.

6.3.1.2.5 Car Service Scenario
The car service scenario will be performed between a car rental clerk and the

service clerk components of the system. Figure 6.16 shows UCMs for car service
scenario.

Once the precondition service plan required for the car service scenario is satisfied,

the scenario starts with the request service reservation responsibility, which requests a
service reservation for a specific car from the service clerk in the service depot. The
path moves to the service clerk component and leads to the responsibility reserve date,
which reserves a date for a car service. Then the path returns to the car rental clerk
and leads to the responsibility accept which means that car rental clerk has accepted the
date. After the responsibility accept has been done the path leads to an and-fork

107

immediately, which splits into two simultaneous paths. One path leads to the end
point service date allocated for car, which is considered as a postcondition for this
scenario. The other path leads to the timer point, which waits until the confirmation
report comes from the computer component indicating that the car should be taken to
the service depot. Subsequently, the path leads to the responsibility handover the car,
which means that the car has been taken to service depot. The path moves to the
service clerk component and leads to the responsibility perform service, which means the
service clerk is performing the service. When this responsibility is completed, the path
then leads to the end point service performed and the car is ready. This is considered
as post-condition of this scenario.

Car rental clerk Service clerk

Request
service

reservation
Reserve

date

Accept

service plan
reqiured

Service date
allocated for car

hand over
car

Perform
service Service

performed
and car is

ready

Computer

Report
service date

Preconditions:
* service plan required

Postconditions:
* service date allocated for car.
* service performed and car is
ready.

Figure 6.16 UCM Car Service Scenarios

6.4 Analysis Phase
The objective of the analysis phase is to transform the car rental system

requirements into a representation of the system that can be forwarded to the design
phase.

This phase starts with analyzing the car rental system requirements. It utilizes the

system scenario model that is constructed by use case maps and UML use cases. This
model is considered as a foundation to produce the models of the analysis phase. The
analysis process involves two main stages: agent architecture and MAS architecture.
6.4.1 Agent Architecture Stage
The agent architecture stage is concerned with the following steps:

1) Constructing both models: a roles model and an agent model consecutively.
2) Identifying system agents and assign roles to them.
3) Refining the roles.
4) Identifying agent goals and specifying the plans for each goal.
5) Model triggers: At the end of agent architecture stage the triggers model is

constructed.

108

6.4.1.1 Roles Model
The roles model is the first model of the analysis phase. It describes how the roles that
will be played in the car rental system are discovered.

6.4.1.1.1 Discovering Roles
In this step, we want to determine what roles are played by each component in the

proposed car rental system. It will be necessary to trace the existing paths in all system
scenario associated with the customer component and car rental clerk component. It
will also be necessary to identify all UCM responsibilities and stubs, which in turn, will
help to obtain the responsibilities of the role. This, consequentially, will make it
possible to determine the role of each component in the system.

By looking at the customer component of the reservation scenario, and tracing the

paths inside it, we observe the customer performing the reservation request stub. In this
stub, the customer requests the reservation of a car from the car rental clerk. Then we
may need to trace out the sub-scenarios for each stub in order to find out more
information that may help to identify and define the required role. This matter takes
place especially when the name of the stub not sufficiently accurate to specify the role.

Also, when we are looking at the customer component in the car pickup scenario in

figure 6.7, it becomes clear that the customer component performs several operations
such as request to pickup a car, pay rental, cancel reservation, and sign rental contract.
When we look at the customer component in the car return scenario in figure 6.10, it
turns out that the customer also performs a responsibility called return car. This
responsibly includes returning a car to the company's garage. The customer
component also performs another responsibility called reply, which is the response of
the customer to fees payment in case the company requests other expenses. In
addition, when looking at the rental extension scenario, we discovered that the customer
performs several operations too. These operations include rental extension request where
the customer requests to extend the rental of a car he/she already has. The operations
the customer performs also include the reply responsibility, which represents the
customer’s response to accept or reject an offer proposed by the company. The offer
will consist of an alternative car to be given to the customer in the case that the car
that the customer has at the time, must be returned back to the company for the
purpose of maintenance. Once all responsibilities and stubs that the component
customer performs have been recognized, it is quite possible to define and specify the
role played by the component customer. There are two roles that are played in the car
rental system: renter and rentier.

6.4.1.1.2 Roles of the Car Rental System
The roles model exhibits all the roles that will be performed by the customer and

the car rental clerk components. This model includes responsibilities for each role and
the activities for each responsibility. Table 6.1 illustrates the renter role for the
customer component. How to build these models have been addressed in detail in
Chapter 5.

109

Role name: Renter
Role description: Renter who pays rent to use a car that is owned by the car rental

company.
Responsibilities & its
Activities:

Res 1. Request reservation.
Act1. Reserve car by a phone call.
Act2. Reserve car by e-mail.
Act4. Reserve car by the Internet.

Res 2. Cancel reservation request.
Act1. Cancel reservation by a phone call.
Act2. Cancel reservation by e-mail.
Act3. Cancel reservation by the Internet.

Res 3. Request to pickup a car.
Act1. Request to pickup a car.

Res 4. Sign contract.
Act1. Read and Sign the rental contract.
Act2. Pay rental.
Act3. Pay rentals by cash.
Act4. Pay rentals by a credit card.
Act5. Pay rentals by loyalty club points.

Res 5. Pay extra charge
Act1. Pay for damage costs by cash.
Act2. Pay for damage costs by credit card.
Act3. Pay for late return by cash.
Act4. Pay for late return by credit card

Res 6. Notify real customer
Act1. Notify customer for picking up a car
Act2. Remind customer about return date
Act3. Notify customer for canceled reservations
Act4. Notify customer for rejected reservations
Act5. Notify customer for confirmed reservations

Res 7. Return car
Act1. Return car to the company garage

Res 8. Extend Rental
Act1. Request for extending rentals
Act2. Receive confirmation for car rentals
Act3. Negotiate car rentals proposals
Act4. Notify customer for rejecting extending rentals
Act5. Notify customer for accepting extending rentals

Obligations:

• Renter should pay insurance for each car rental
• Contact car Rental Company in urgent cases
• Renter should not leave the car when the car is damaged until

the car rentals company receives it
• The renter should pass rental regulations

Permissions: • Servicing the car in Urgent cases
• Authorize another driver for a car

Constrains: • The renter must have a valid driver’s license
• The car must be insured
• The renter should not visit the countries that the insurance

does not cover
• The car should only be driven by the renter
• The driver must be over 25
• The renter should not have more than one reservation at the

same time

Table 6.1 Renter Role for Customer Component

Table 6.2 illustrates the rentier role for the car rental clerk component.

110

Role name: Rentier
Role description: Rentier who is renting cars to customers.

Responsibilities &
its Activities:

Res 1. Make reservation.
Act1. Request information.
Act2. Verify car rentals' regulations
Act3. Check Customer's demands
Act4. Confirm reservation.
Act5. Reject reservation

Res 2. Cancel reservation
Act 1. Cancel a reservation.

Res 3. Handle cars service.
Act1. Book an appointment for a car service.
Act2. Receive a car service date.

Res 4. Allocate cars to customers.
Act1. Allocate a car to a customer.
Act2. Allocate a car to a customer from another branch.
Act3. Allocate a car to a customer from another car rentals
company.

Res 5. Reply customer requests.
Act1. Reply to a customer's reservation request.
Act2. Reply to a customer's cancellation request.
Act3. Negotiate with a customer.

Res 6. Handle rental transaction.
Act1. Prepare the rentals contract.
Act2. Obtain insurance for a car to be rented.
Act3. Confirm payment.
Act4. Terminate a rental transaction.

Res 7. Handle extension.
Act1. Manage a rentals extension.

Obligations:

• The rentier should satisfy customers' demands.
• The rentier should apply car rental rules.
• The rentier must be keep cars papers and documents valid.
• A car should be insured before given to renter.
• Local taxes must be collected on the rental charge.
• The rental would not exceed the mileage more than 10% over the

normal mileage for the service.

Permissions: • A car scheduled for service may be used.
• A car may have to be rented from a competitor.

Constrains: • Rented cars must meet local legal requirements.

Table 6.2 Rentier Role for Car Rental Clerk Component

6.4.1.2 The Agent Model
The agent model is the second model of analysis phase. It is composed of the

following detailed steps:

6.4.1.2.1 Identifying Agents for Car Rental System
In this step, every component of UCMs is converted into a particular agent. Each

agent is selected based on the role that it will play within the system. The car rental
system may include several agents such as a manager agent, a service agent, a car rental
clerk agent, a customer agent etc. We are therefore not going to discuss all of them.
Two agents were chosen to be explored due to the large amount of communication
between them. They are the customer agent and the car rental clerk agent.

111

In the car rental system, the customer and car rental clerk components are
assigned respectively to customer agent and car rental clerk agent. The car rental
manager agent represents the branch manager of the car rental company. This agent
can play two roles in the system. The first and main role is the director role. The
second role is the rentier role. It can play the role of a rentier when there is a
considerable need e.g. when many customers crowd the car rental clerk agent at the
same time. Fig. 6.17 shows how more than one the role is assigned to one agent.

Customer
agent

Car rental
clerk agent

Car rental
manager agent

Renter

Agents

Roles Rentier Director
Figure 6.17 Assigning Renter Role to Customer Agent, Rentier Role to Car Rental Clerk and Manager

Agents and Director Role to Car Rental Manager Agent.

In the car rental agent system, the role renter is allocated to the customer agent

and the role rentier is allocated to the car rental clerk agent. These agents should be
able to perform those roles in proper manner.

6.4.1.2.2 Refining Roles
The refining roles step is merely for revising the roles that the agent plays within

the system. The refinement process consists of two steps. The first step is to match
the roles that are captured in the roles model with agents that play these roles
according to the agent's capabilities. The role responsibilities are classified based on
who is responsible for performing them. The second step is to separate, or isolate
those responsibilities that are to be carried out by real persons from those
responsibilities that are to be carried out by agents on their behalf.

The refining roles process concentrates the responsibilities that are to be carried

out by the agent. The responsibilities that are to be carried out by real users are stated
as preconditions. Agents use these preconditions to keep track of whether the real
person performs those responsibilities. These beliefs could be preconditions for other
responsibilities. Agents should be able to sense the environment to check whether
these beliefs are changed or not. In other words, an agent may wait for a signal (e.g. a
message) that confirms that a task performed by the user has been completed.

6.4.1.2.2.1 Refined Roles for Customer Agent
In this example, we illustrate only how the renter role is refined. There is no need

to refine the rentier role, because the car rental agent can perform all responsibilities
that belong to this role. Therefore, the role will remain as it is. Table 6.3 illustrates the
refined renter role for the customer agent. In this model, the responsibility sign
contract is removed and stated as the precondition the contract is signed. This
precondition is used to keep track of whether the real customer signs the contract or
not. This condition should be satisfied in order for the customer agent proceeds rental
process.

112

Role name: Renter
Role description: Renter who pays rent to use a car that is owned by the car rental

company.
Responsibilities &
its Activities:

Res.1 Request reservation.
Act 1. Reserve car by phone call.
Act 2. Reserve car by e-mail.
Act 3. Reserve car by Internet.

Res 2. Cancel reservation request.
Act 1. Cancel reservation by phone call.
Act 2. Cancel reservation by Email.
Act 3. Cancel reservation by Internet.

Res 3. Request to pickup a car.
Act 1. Request to pickup a car.

Res 4. Pay rental.
Act 1. Pay rentals by cash.
Act 2. Pay rentals by credit card.
Act 3. Pay rentals by loyalty club points.

Res 5. Pay extra charge.
Act 1. Pay for damage costs by cash.
Act 2. Pay for damage costs by credit card.
Act 3. Pay for late return by cash.
Act 4. Pay for late return by credit card.

Res 6. Notify real customer.
Act 1. Notify customer for picking up a car.
Act 2. Remind customer about return date.
Act 3. Notify customer for cancelled reservations.
Act 4. Notify customer for rejected reservations.
Act 5. Notify customer for confirmed reservations.

Res 7. Extend Rental.
Act 1. Request for extending rentals.
Act 2. Reply to car rentals proposals.
Act 3. Notify customer extension rejected.
Act 4. Notify customer extension confirmed.

Obligations:

• Renter should pay insurance for each car rental
• Contact car Rental Company in urgent cases
• Renter should not leave the car when the car is damaged until

the car rentals company receives it
• The renter should pass rental regulations

Permissions: • Servicing the car in Urgent cases
• Authorize another driver for a car

Constrains: • The renter must have a valid driver’s license
• The car must be insured
• The renter should not visit the countries that the insurance

does not cover
• The car should only be driven by the renter
• The driver must be over 25
• The renter should not have more than one reservation at the

same time

Table 6.3 Refined Renter Role for Customer Agent

6.4.1.3 Beliefs Model
In this model, we describe the beliefs of the customer agent. The following section

shows how the customer agent’s beliefs are captured.

6.4.1.3.1 Beliefs of Customer Agent
The identification of customer agent beliefs is performed by tracing the path

segments of UCM scenarios for the customer component and capturing all pre-

113

conditions and postconditions. This is followed by the transfer of those pre- and
postconditions into beliefs according to a specific goal or a specific plan or both.
Furthermore, all obligations, permission, and constraints of the renter role for
customer agents are transferred into beliefs. Table 6.4 depicts the beliefs of the
customer agent.

Belief Type Purpose
Agent Id Constant Storage
Customer wants to rent a car Variable Storage
Customer decided to reserve by phone Variable Storage
Customer decided to reserve by e-mail Variable Storage
Customer decided to reserve car online Variable Storage
Reservation confirmed Variable Storage
Reservation rejected Variable Storage
Customer wants to cancel reservation Variable Storage
Customer decided to cancel reservation by phone Variable Storage
Customer decided to cancel reservation by e-mail Variable Storage
Customer decided to cancel reservation online Variable Storage
Cancellation confirmed Variable Storage
Payment requested by car Rentals Company Variable Storage
Customer decided to pay rental cash Variable Storage
Customer decided to pay rental by credit card Variable Storage
Customer decided to pay rental by loyalty club points Variable Storage
Rental fee paid Variable Storage
Rental fee not paid Variable Storage
Car is damaged Variable Storage
Car returned late Variable Storage
Customer decided to pay extra charge cash. Variable Storage
Customer decided to pay extra charge by credit card Variable Storage
Fee paid Variable Storage
Fee not paid and transaction transferred to court Variable Storage
Real customer must be notified Variable Achieve
Reservation already done and car allocated to the customer Variable Storage
The car received by customer Variable Storage
Cancel reservation is already requested by customer Variable Storage
Reservation Request is already done by customer Variable Storage
Customer notified Variable Storage
Customer confirmed Variable Storage
Customer decided to extend rentals Variable Storage
Another offer proposed by car rental clerk agent Variable Storage
Rental extension has already requested Variable Storage
Customer notified Variable Storage
Customer should pay insurance for each car rentals Variable Storage
Contact car Rentals Company in urgent cases Variable Storage
Customer should not leave the car when the car damaged
until the car rentals receive it

Variable Storage

Customer could service the car in Urgent cases. Variable Storage
Customer could authorize another driver for a car in argent
cases.

Variable Storage

The renter must have a valid driver’s license Variable Maintain
The car must be insured Variable Maintain
The renter should not visit the countries that the insurance
not covered

Variable Storage

The car should be driven by renter only Variable Storage
The driver must be over 25 Variable Maintain
The contract is signed Variable Storage
The car is received Variable Storage

Table 6.4 Customer Agent Beliefs

114

6.4.1.3.2 Beliefs of Car Rental Clerk Agent
A notification must be made about the beliefs that are captured from obligations,

permissions, and constraints of the role. These beliefs are considered as initial beliefs
for both agents (customer and car rental clerk). Therefore, they do not belong to any
goals or plans.

Belief Type Purpose
Agent Id Constant Storage
Customer requested reservation Variable Storage
Customer passed car rental regulation Variable Storage
Customer does not pass car rental regulation Variable Storage
Customer demands are available Variable Storage
Customer demands are not available and reservation rejected Variable Storage
Car received by customer Variable Storage
Customer used loyalty points for payment Variable Storage
Rental fee is paid Variable Storage
Rental fee is not paid Variable Storage
Rental transaction closed Variable Storage
Case transferred to court Variable Storage
Customer requested rental extension Variable Storage
Rental extension confirmed Variable Storage
Rental extension rejected Variable Storage
Service plan required Variable Storage
Service date allocated for car Variable Storage
Service is performed and car is ready Variable Storage
The rentier should satisfy customers' demands. Variable Achieve
The rentier should apply car rental rules. Variable Maintain
The rentier must be keep cars papers and documents valid. Variable Maintain
A car should be insured before given to renter. Variable Maintain
Local taxes must be collected on the rental charge. Variable Maintain
The rental would not exceed the mileage more than 10%
over the normal mileage for the service

Variable Maintain

A car scheduled for service may be used Variable Storage
A car may have to be rented from a competitor Variable Storage
Rented cars must meet local legal requirements Variable Maintain

6.4.1.4 Goals Model
In this model, we describe the goals of the customer agent. The following section

show how the customer agent goals are identified.

6.4.1.4.1 Identifying Agent Goals
In this section, we describe how to obtain the goals of the customer agent through

the renter role. In order to identify the goals of the customer agent and car rental agent,
we have to convert all responsibilities for every role into specific goals respectively. In
addition, we have to convert the activities for each goal into plans. In the following
example, the goals of the customer agent and car rental agent are identified. This is
followed by defining the plans for each goal to be achieved.

Table 6.5 Car Rental Clerk Agent Beliefs

115

6.4.1.4.2 Goals for Customer Agent

Goal Priority Preconditions Postconditions Plans
Request
reservation

High • Customer wants
to rent a car

• Reservation
confirmed.

• Reservation
rejected.

• Reserve car by phone
call

• Reserve car by e-mail
• Reserve car online

Cancel
reservation
request

Normal • Customer
wants to cancel
reservation

• Cancellation
confirmed

• Cancel reservation by
phone call.

• Cancel reservation by
Email.

• Cancel reservation
online

Pay the rental Above
normal

• Payment
requested by
car rental
company

• Fee paid
• Fee not paid

• Pay rentals by cash
• Pay rentals by credit

card
• Pay rentals by loyalty

club points

Pay extra
charge

High • Car is damaged
• Car returned late

• Fee paid
• Fee not paid and

transaction
transferred to
judgment

• Pay for damage costs by
cash

• Pay for damage costs by
credit card

• Pay for late return by
cash

• Pay for late return by
credit card

Notify real
customer

Normal • Real customer
must be
notified

• Customer
notified

• Notify customer for
picking up a car

• Remind customer about
return date

• Notify customer for
canceled reservations

• Notify customer for
rejected reservations

• Notify customer for
confirmed reservations

Extend the
Rental

Normal • Customer
decided to
extend rental

• Extension
rentals
confirmed

• Extension
rentals rejected

• Request to extend
rentals

• Reply to car rentals
proposals

• Notify customer
extension rejected

• Notify customer
extension confirmed

Table 6.6 Goals for customer agent

After identifying the goals of the customer agent and car rental agent in the

previous step, describing the plans that the roles will use in order to achieve the
agents' goals in the car rental system follows. Each agent has a set of goals and each
goal may have several plans. Since the number of these plans will be large, we will
describe only one goal and its plans as an example to illustrate how the plans are
constructed. Due to the fact that there are a large number of plans for each agent, we
will introduce in the following example only plans for one goal of each agent in the

116

system. We have chosen to develop plans that belong to the request reservation goal
for the customer agent as well as plans that belong to the make reservation goal for
the car rental clerk agent.

6.4.1.4.2.1 Plans for Request Reservation Goal
In this section, plans for the request reservation goal are constructed. Activity

diagrams are used as an effective technique to represent such plans. The first plan of
the request reservation goal is reserve by phone call. Table 6.7 illustrates the reserve by phone
call plan and the tasks that should be performed in this plan. Each action of the
activity diagram represents a task in the plan.

Plan-name: Reserve by phone call
Preconditions: Customer decided to reserve by phone
Postconditions: Reservation confirmed | Reservation rejected
Successful internal actions: Inform the real customer to pickup the car
Failed internal actions: Try with another car rental company
Plan body

Find phone no. of car
Rental company

Dial

Forward call
Verify reaction

Accept terms

Hangup

[Fail to connect]

[connected]

[No answer]

[Busy]

Store reservation
data

Request for reservation

Customer agent Real user

Table 6. 7 Reserve by Phone Call Plan

Table 6.8 illustrates the reserve by e-mail plan, which explains how the customer agent

requests a reservation by sending an e-mail.

Plan-name: Reserve by e-mail
Preconditions: Customer decide to reserve e-mail
Postconditions: Reservation confirmed | Reservation rejected
Successful internal actions: Inform the real customer to pickup the car
Failed internal actions: Try with another car rental company

117

Plan body

Find E-mail for Car Rentals

Receive E-mail

Send E-mail to reserve car

Receive Email

Verify answer

Confirm [Not accepted]

[Accepted]

[Available][Not available]

Check reservation
availability

Reject Accept

Reply

Customer agent Car rental clerk agent

Table 6 8Reserve by E-mail Plan

Table 6.9 illustrates the reserve car online plan, which explains how the customer agent

requests a reservation on line.

Plan-name: Reserve cars online
Require reconditions: Customer decide to reserve car online
Postcondition: Reservation confirmed | Reservation rejected
Successful internal actions Inform the real customer to pickup the car
Failed internal actions Try with another car rental company
Plan body

Get car Rental website

Read car Rental rules

Verify rules

Close car Rental website

[Not accepted]

[Accepted]

Fill in reservation
application form

Approve
application

Table 6.9 Reserve Car Online Plan

118

6.4.1.4.3 Goals for Car Rental Clerk Agent

Goal Priority Preconditions Postconditions Plans
Make
reservation

High • Reservation
requested by
customer

• Reservation
request accepted

• Reservation
request rejected

• Request information.
• Verify car rental

regulations
Check Customer's
demands.

Cancel
reservation

High • Reservation
cancelled by
customer

• Reservation
cancelled

• Cancel reservation

Allocate
cars to
customers

Normal • Reservation
request
accepted

• Car allocated to
customer.

• Allocate a car to a
customer.

• Allocate a car to a
customer from another
branch.

• Allocate a car to a
customer from another
car rentals company.

Reply
customer
requests

Normal • Customer
requested
service

• Customer pleased • Reply to a customer's
reservation request.

• Reply to a customer's
cancellation request.

• Negotiate with a
customer

Handle
rental
transaction

High • Reservation
existed

• Transaction
terminated

• Transaction
transferred to
court

• Prepare the rentals
contract.

• Obtain insurance for a
car to be rented.

• Confirm payment.
• Terminate a rental

transaction.
Handle
extension

Normal • Rental extension
requested by
customer

• Rental extension
confirmed

• Rental extension
rejected

• Manage a rentals
extension.

Handle cars
service

Normal • Cars requires
service

• Cars are serviced • Book an appointment
for a car service.

• Receive a car service
date.

Table 6.10 Goals for Car Rental Agent

6.4.1.4.3.1 Plans for Make Reservation Goal
In this section, the plans of the make reservation goal for the car rental clerk agent

are constructed. The first plan of the make reservation goal is request information. Table
6.11 illustrates the request information plan and the tasks that should be performed in
this plan. Each activity of the activity diagram represents a task in the plan.

Plan-name: Request information
Preconditions: Reservation requested by Customer
Postconditions: Customer information provided
Successful internal actions: Verify car rental regulations
Failed internal actions: Reject reservation request

119

Plan body

Request infromation

Receive infromation

Provide information

Car rental clerk
agent

Customer agent

Table 6.11 Request Information Plan

Table 6.12 illustrates the verify car rental regulations plan, which explains how the car

rental clerk agent verifies whether the customer passed car rental regulations, or not.

Plan-name: Verify car rental regulations
Preconditions: Customer requested reservation
Postconditions: Customer passed car rental regulations |

Customer does not pass car rental regulations
Successful internal actions: Check customer demands
Failed internal actions: Reject reservation
Plan body

Verify car rental rules

Check blacklist

Check simultaneous
reservation

[rules ok]

[Found]

Car rental clerk agent

[Rules not ok]

[Customer is not in
blacklist]

[Not found]

[Customer in
blacklist]

Table 6.12 Verify Car Rental Regulations Plan

Table 6.13 illustrates the Check customer demands plan, which explains how the car

rental clerk agent checks whether the customer demands are available, or not.

Plan-name: Check customer demands
Require reconditions: Customer passed car rental regulations
Postcondition: Reservation confirmed | Reservation rejected
Successful internal actions Confirm reservation
Failed internal actions Reject reservation

120

Plan body

Check availability of
customer demands

Check availability of customer
demands in other branches

Propose another car

Verify
response

[demands available]

[Accept]

[Not accept]

Asses proposal

Car rental clerk agent Customer agent

[demands not available]

[demands available]
[demands not

available]

Reply

[Reject]

[Accept]

Table 6.13 Check Customer Demands Plan

6.4.1.5 Triggers model
In this model, we describe the triggers of the customer agent as well as car rental

clerk agent. The following section shows how agent triggers are captured.

6.4.1.5.1 Triggers Model of Customer Agent
Through this model, all triggers for the customer agent in the system will be

identified. Moreover, this model determines the customer agent’s goals and plans that
each trigger affects.

Looking at the beliefs model of a particular customer agent and the reservation

scenario in UCMs that was built during the system requirements phase, it was found
that the scenario begins with precondition (belief) such as “a customer wants to rent a
car”. In fact, it is possible for this belief to be a true of false belief. If this belief
becomes true, this means the real customer wants to rent a car; and this means that
the beliefs of the agent have changed. This consequently means that the agent will
react based upon the change in its beliefs. This is considered a trigger that motivates
the agent to perform a certain action as a reaction such as request reservation from the
car rental clerk agent. The following table shows a list of the triggers that might occur
in all scenarios between the customer agent and car rental clerk agent during system
runtime.

The postcondition reservation canceled is not considered as a trigger because it was

not a precondition for another scenario. It was therefore ignored. However, looking at
to the postcondition request rejected and customer informed, it is found that it is considered
as a trigger because it was a precondition to another scenario, which is for this agent
to try to request another reservation from another car rental company. The table 6.14
presents the agent triggers model for the systems' agents.

121

Trigger-name
Trigger
type

Trigger activator
Actions by beneficiary
agent

Customer wants to rent a car Change of
belief Real customer • Request reservation (Goal).

Customer decides to reserve by a phone Change of
belief Real customer • Reserve by a phone (plan).

Customer decides to reserve by an e-mail Change of
belief Real customer • Reserve by an e-mail (plan).

Customer decides to reserve online Change of
belief Real customer • Reserve Online (plan).

Reservation confirmed Event Car rental clerk agent • Notify real customer to
pickup the car (plan).

Reservation rejected Event Car rental clerk agent • Notify real customer about
a rejected reservation (plan).

Reservation cancelled Event Car rental clerk agent
• Notify real customer about

a cancelled reservation
(plan).

Customer wants to cancel a reservation Change of
belief Real customer • Cancel a reservation

request (Goal).

Customer wants to cancel a reservation
by a phone

Change of
belief Real customer • Cancel a reservation by

phone (plan).

Customer wants to cancel a reservation
by an e-mail

Change of
belief Real customer • Cancel a reservation by an

e-mail (plan).
Customer wants to cancel a reservation
online

Change of
belief Real customer • Cancel a reservation Online

(plan).

Cancellation confirmed Change of
belief Car rental clerk agent • Inform a real customer

(plan).

Payment requested by the Car Rentals. Change of
belief Car rental clerk agent • Pay the rental (Goal).

Customer decides to pay rentals in cash Change of
belief Car rental clerk agent • Pay rentals in cash (plan).

Customer decides to pay rentals by a
credit card.

Change of
belief Car rental clerk agent • Pay rentals by a credit card

(plan).
Customer decides to pay rentals by
loyalty club points

Change of
belief Car rental clerk agent • Pay rentals by loyalty club

points (plan).

Car is damaged Event Real Customer • Inform the Car Renal
Company (plan).

Real customer should be notified Change of
belief Car rental clerk agent • Notify real customer (goal).

Reservation is done and car is allocated
to customer

Change of
belief Car rental clerk agent • Notify real customer to

pickup a car (plan).

Car is received by real customer Event Real customer • Remind customer about
return date (plan).

Customer decided to extend rentals Change of
belief Real customer

• Extend the rental (goal).
• Request to extend rentals

(plan).

Table 6.14 Triggers of Customer Agent

By the same situation, the triggers for the car rental clerk agent are identified.

Table 6.15 illustrates the triggers for the car rental clerk agent.

Trigger name
Trigger
type

Trigger activator Actions by beneficiary agent

Customer requested reservation Change of
belief Customer agent • Make reservation (goal)

Customer passed car rental
regulation

Change of
belief Customer agent • Check Customer's demands

(plan)

122

Customer does not pass car rental
regulation

Change of
belief Customer agent • Reject reservation (plan)

Customer demands are available Change of
belief Customer agent • Confirm reservation (plan)

Customer demands are not
available

Change of
belief Customer agent • Reject reservation (plan)

Rental fee is paid Change of
belief Customer agent • Achieve a rental transaction

(goal).

Rental fee is not paid Change of
belief Customer agent • Cancel a reservation (plan).

Cancel reservation is requested by
customer Event Customer agent • Cancel a reservation (goal).

Rental extension requested Event Customer agent • Handle extension (goal)
• Manage an extension (plan).

Rental extension rejected Change of
belief Car rental clerk agent

• Notify a customer agent
(plan)

• Propose another car (plan).

Rental extension confirmed Change of
belief Car rental clerk agent

• Notify a customer agent
(plan).

• Update a car rental database
(plan)

Table 6.15 Triggers of the Car Rental Clerk Agent

6.4.2 MAS Architecture Stage
In the agent architecture stage, we described the internal structure (roles, beliefs,

goals, plans and triggers) of agents in the system. The next stage of the analysis phase
is the MAS architecture stage. The MAS architecture stage describes how the whole
multi-agent system is concerned. The MAS architecture stage will perform the
following tasks:

1) Identify the interactions between agents in the car rental system through the
agent interaction model.

2) Identify the relationships between agents in the car rental system through the
agent relationship model.

3) Identify the services that each agent should perform in the system through the
agent services model.

6.4.2.1 Agents Interaction Model
This model describes all the interactions that take place between the customer

agent and the car rental clerk agent. Figure 5.17 in chapter described the interaction
between customer agent and car rental clerk agent and how the interactions diagram
are derived from UCMs. The customer requests the agent to reserve a particular car.
This request is sent to the car rental clerk agent which requests more detailed
information about the customer. The customer agent replies to the car rental clerk
agent; who checks the rules of the car rental company and then replies to the
customer agent by either acceptance or rejection.

By the same situation, the interactions diagrams for the other UCM scenarios are

identified. Figure 6.18 shows the interactions for cancel reservation, car pickup, and
rental extension scenarios.

The figure 6.18 describes the interaction diagrams for all UCM scenarios that take

place between the customer agent and the car rental clerk agent in the same figure.
The reason is to prevent the interference that could happen between the paths in
more than one scenario at the same UCM. Therefore, it is preferred to draw each

123

scenario separately as is in the figure 6.18. The previous diagram shows all interactions
between the customer agent and the car rental clerk agent.

Car renal clerk
Agent

Customer
Agent

[request for cancel reservation]

[agree]

[reject -proposal]

[propose another car]

[accept-proposal]

Interaction for reservation
scenario when Car renal

clerk agent proposes
another car for customer

instead of the car that
already he reserved.

Interaction for cancel
reservation scenario.

[request for sign contract]

[inquire for reservation]

[agree]

[request for payment]

[agree] Interaction for car pickup
scenario

[reject]

[inform customer agent]

[propose another car]

[inquire for extension]

[agree]

[agree]

Interaction for rental
extension scenario

[reject]

[inform confirmation]

[reject]

Figure 6.18 Interaction Diagrams between Customer Agent and Car Rental Clerk Agent

6.4.2.2 Agents Relationships Model
This model describes the relationships between the customer agent and the car

rental agent. These relationships are represented in a dependency diagram. A
dependency diagram is captured from UCMs. Each path’s segment connecting two
agents generates a dependency in the dependency diagram. Figure 6.19 shows
dependencies between the customer agent and the car rental clerk agent. Firstly, the

124

customer agent’s dependencies are stated, then the car rental clerk agent’s
dependencies. The customer agent depends on the car rental clerk agent of the car
rental company to handle reservation requests. This dependency is classified as “goal
dependency” because the customer agent depends on the car rental clerk agent to
achieve a specific goal. This goal is called requesting reservation. It also depends on the
car rental clerk agent to achieve the canceling reservation goal when the customer
wishes to cancel the reservation, or to provide him/her with his/her list reservation
information, or to extend his/her rental.

Car rental clerk
agentCustomer agent

Requesting reservation

Canceling reservation

Personal
information

 list
reservation

Extending reservation

Paying rental charge

Signing
contract

Offering another
car

Figure 6.19 Dependency Diagram between Customer Agent and Car Rental Clerk Agent

6.4.2.3 Agents Services Model
This model is used as a directory that assists the system's agents to recognize what

services are offered by each agent in the system. In addition, it provides more detailed
information about such services, such as service description, service expiry date, time
of availability, and cost. The agent services model is derived from the use case
diagrams that were developed in the system scenario model. Each use case could be
considered as a service that the agent offers. Table 6.16 illustrates the agent services
model for the car rental clerk agent of the car rental company.

125

Agent Service Expire

Date
Time Cost

Car rental
clerk agent

Reply to a customer
inquiries

Open None-stop Free

Car rental
clerk agent

Handel a reservation
request

Open 8:00 am to 4:00 pm Free

Car rental
clerk agent

Handle rental Open 8:00 am to 4:00 pm Free

Car rental
clerk agent

Handel a car service Open 8:00 am to 2:00 pm Free

Table 6.16 Agent Services Model

6.5 Design Phase
The design phase consists of three tasks. The first task is to construct the agent

container for each agent in the system. The agent container represents agent
behaviour, which can be modularized, and decomposed into roles specifications that
are used by agents. The core part of the agent specification is to define beliefs, goals,
plans, capabilities and triggers of the agent and place them in the appropriate agent
part.

The second task is building the agent inter-communication model by means of

FIPA-ACL protocols. These protocols describe the conversations between the
customer agent and the car rental clerk agent in more details than the developed
interaction model in the analysis phase.

The final task is designing the Directory Facilitator (DF) model for the car rental

clerk agent services model that was developed in the analysis phase. The DF model
serves as the “yellow pages” directory for the system agents.

6.5.1 Customer Agent Container
The customer agent container contains all the important characteristics needed by

the agent to start working. It includes all the models developed in the analysis phase
that are related to customer agent behaviors. The customer agent container is divided
into different components where each are represented in a certain model. Each model
and its programming aspects will be defined in order to fit the agent platform (Jadex
platform as example).

6.5.1.1 Customer Agent Beliefs
The first part of the customer agent container is the customer agent beliefs. The

customer beliefs model is revised and modified in order to fit the design
specifications. Some important details were added during the design stage. A new field
“class” was added to contain Integer, String or Boolean. The initial value for that field
depends on the type of belief. In addition, the “category” field was added which refers
to “f” for the beliefs that store exactly one fact; or refers to “s” for the belief that
stores a set of facts. Table 6.17 provides a detailed description of all the additions of a
customer agent that was setup during the analysis stage.

126

Belief Type Purpose Class
Initial
Value

Cat.

Agent Id Constant Storage String Customer F
Customer wants to rent a car Variable Storage Boolean True F
Customer decided to reserve by phone Variable Storage Boolean True F
Customer decided to reserve by e-mail Variable Storage Boolean False F
Customer decided to reserve car online Variable Storage Boolean False F
Reservation confirmed Variable Storage Boolean False F
Reservation rejected Variable Storage Boolean False F
Customer wants to cancel
reservation

Variable Storage Boolean False F

Customer decided to cancel reservation
by phone

Variable Storage Boolean False F

Customer decided to cancel reservation
by e-mail

Variable Storage Boolean False F

Customer decided to cancel reservation
online

Variable Storage Boolean False F

Cancellation confirmed Variable Storage Boolean False F
Payment requested by car Rentals
Company

Variable Storage Boolean False S

Customer decided to pay rental cash Variable Storage Boolean False F
Customer decided to pay rental by
credit card

Variable Storage Boolean False F

Customer decided to pay rental by
loyalty club points

Variable Storage Boolean False F

Rental fee paid Variable Storage Boolean False F
Rental fee not paid Variable Storage Boolean False F
Car is damaged Variable Storage Boolean False F
Car returned late Variable Storage Boolean False F
Customer decided to pay extra charge
cash.

Variable Storage Boolean False F

Customer decided to pay extra charge
by credit card

Variable Storage Boolean False F

Fee paid Variable Storage Boolean False F
Fee not paid and transaction
transferred to court

Variable Storage Boolean False F

Real customer must be notified Variable Achieve Boolean False F
Reservation already done and car
allocated to the customer

Variable Storage Boolean False F

The car received by customer Variable Storage Boolean False F
Cancel reservation is already
requested by customer

Variable Storage Boolean False F

Reservation Request is already done
by customer

Variable Storage Boolean False F

Customer notified Variable Storage Boolean False F
Customer confirmed Variable Storage Boolean False F
Customer decided to extend rentals Variable Storage Boolean False F
Another offer proposed by car rental
clerk agent

Variable Storage Boolean False F

Rental extension has already
requested

Variable Storage Boolean False S

Customer notified Variable Storage Boolean False F
Customer should pay insurance for
each car rentals

Variable Storage Boolean True F

Contact car Rentals Company in
urgent cases

Variable Storage Boolean True F

Customer should not leave the car
when the car damaged until the car
rentals receive it

Variable Storage
Boolean True

F

Customer could service the car in
Urgent cases.

Variable Storage Boolean True F

Customer could authorize another
driver for a car in argent cases.

Variable Storage Boolean True F

The renter must have a valid driver’s
license

Variable Maintain Boolean True F

127

The car must be insured Variable Maintain Boolean True F
The renter should not visit the
countries that the insurance not
covered

Variable Storage
Boolean True

F

The car should be driven by renter
only

Variable Storage Boolean True F

The driver must be over 25 Variable Maintain Boolean True F
The contract is signed Variable Storage Boolean True F
The car is received Variable Storage Boolean True F

Table 6.17 Beliefs of a Customer Agent

6.5.1.2 Customer Agent Goals
The goals of the customer agent that was developed during the analysis stage are

revised and modified in order to fit the design specification. Some important details
were added during the design stage. A new field “type” was added to classify the agent
goals that were developed in the analysis phase according to the proposed types from
Jadex. In order to classify these goals a type filed is added to the goal model as shown
in table 6.18.

Goal Type Priority Preconditions Postconditions Plans
Request
reservati
on

Achieve
goal

High • Customer wants
to rent a car

• Reservation
confirmed.

• Reservation
rejected.

• Reserve car by
phone call

• Reserve car by e-
mail

• Reserve car online
Cancel
reservati
on
request

Achieve
goal

Normal • Customer
wants to cancel
reservation

• Cancellation
confirmed

• Cancel reservation
by phone call.

• Cancel reservation
by Email.

• Cancel reservation
online

Notify
real
customer

Perform
goal

High • Real customer
must be
notified

• Customer
notified

• Notify customer
for picking up a
car

• Remind customer
about return date

• Notify customer
for cancelled
reservations

• Notify customer
for rejected
reservations

• Notify customer
for confirmed
reservations

Pay the
rental

Achieve
goal

Above
normal

• Payment
requested by
car rental
company

• Fee paid
• Fee not paid

• Pay rentals by cash
• Pay rentals by

credit card
• Pay rentals by

loyalty club points

128

Pay extra
charge

Achieve
goal

High • Car is damaged
• Car returned late

• Fee paid
• Fee not paid and

transaction
transferred to
judgment

• Pay for damage
costs by cash

• Pay for damage
costs by credit
card

• Pay for late return
by cash

• Pay for late return
by credit card

Extend
the
Rental

Achieve
goal

Normal • Customer
decided to
extend rental

• Extension
rentals
confirmed

• Extension
rentals rejected

• Request to extend
rentals

• Reply to car
rentals proposals

• Notify customer
extension rejected

• Notify customer
extension
confirmed

Table 6.18 Revised Customer Agent Goals

6.5.1.3 Plans Request Reservation Goal
In this section, the plans, which have been developed during the analysis phase,

are revised by adding a new field called type. This field is added to fit the plan structure
of the Jadex framework. The following tables illustrate the plans of the request
reservation goal for the customer agent with the new field type.

Plan-name: Reserve car online
Type: Passive plan
Preconditions: Customer decide to reserve car online
Postconditions: Reservation confirmed
Successful internal actions Inform the real customer to pickup the car
Failed internal actions Try with another car rental company
Plan body

G et car R enta l w ebsite

R ead car R ental ru les

Verify ru les

C lose car R enta l w ebsite

[N ot accepted]

[Accepted]

F ill in reservation
app lica tion form

Approve
app lica tion

Table 6.19 Revised Reserve Car Online Plan

129

By the same situations, all the plans that were developed in the analysis phase were
revised by adding the type field. Table 6.20 shows the type of each plan.

Goal Plan Type:
Request reservation Reserve cars online Passive plan
Request reservation Reserve by phone call Passive plan
Request reservation Reserve by e-mail Passive plan
Make reservation Request information Passive plan
Make reservation Verify car rental regulations Passive plan
Make reservation Check customer demands Passive plan

Table 6.20 Plan Types

6.5.1.4 Capabilities
The capabilities are a group of goals, beliefs, and plans grouped together in a

package in order to be used when they are needed to do a certain task in the system.
For example, the customer agent can possess the reservation capability, which points
out what the customer agent can do to request and cancel the reservation. The
following structure shows the details of the reservation capability:

Reservation capability:
Begin // Reservation capability,

Beliefs:
Customer wants to rent a car,
Reservation confirmed,
Reservation rejected.
Customer wants to cancel reservation
Cancellation confirmed.

Goals:
 Begin // goals

Request reservation goal
Plans:

 Reserve by phone call,
 Reserve by e-mail,

Reserve car online,

Cancel reservation request goal
Plans:

Cancel reservation online.
Cancel reservation by phone call,
Cancel reservation by Email,

 End // goals
End // Reservation capability

In the same way, the car rental clerk agent can possess several capabilities. For example,
the car rental clerk agent can possess the manage reservation capability which points out
what the car rental clerk agent can do to manage the reservation process.

Manage reservation capability:

Begin // Manage reservation capability,

Beliefs:

Reservation requested by customer

130

Customer requested reservation
Customer passed car rental regulation
Customer does not pass car rental regulation
Customer demands are available
Customer demands are not available and reservation rejected
Reservation request accepted
Reservation request rejected
Reservation cancelled by customer
Reservation cancelled

Goals:

 Begin // goals

Make reservation goal

Plans:
 Request information

Verify car rental regulations
Check Customer's demands

Cancel reservation goal.

Plans:
Cancel reservation.

 End // goals

End // Manage reservation capability

6.5.1.5 Triggers
This section describes the triggers that have been developed in the analysis phase

handled by the Jadex platform. The triggers that developed in the analysis phase are
considered as conditions that trigger plans or goals when some beliefs change or
events occur, and beliefs that are stored as expressions and evaluated dynamically on
demand.

6.5.2 Inter-Agent Communication Model
In this section of the design phase, the inter-agent communication model is

described. It is a detailed model that shows and describes all conversations between
agents in the system using a standard agent communication language, such as FIPA
Agent Communication Language ACL [FIPA ACL].

Due to the large number of conversation messages between the agents in the

system, we will describe the conversations that will take place between the customer
agent and the car rental agent only. The interaction diagrams that were developed in
the analysis phase are used to describe the conversation messages according to the
FIPA-ACL protocol patterns. This model is derived by transforming the interaction
diagrams between the customer agent and car rental agent into conversation messages
according to FIPA protocol patterns. Figure 6.20 illustrates how the interaction
diagram is transferred into a FIPA request protocol.

131

Reservation
Agent

Customer
Agent

[reject]

[request for reservation]

[agree]

[request for Information]

[provide information] Interaction diagram

FIPA request
protocol

Figure 6.20 The Correspondence Between Interaction Diagrams and FIPA Protocols

The following examples describe the message's forms, which will be sent from the

customer agent to the car rental clerk agent and visa versa.

i. Customer agent requests the car rental clerk agent to reserve a car.
(request
 :sender (agent-identifier :Customer_agent)
 :receiver (agent-identifier :Car_rental_clerk_ agent)
 :content
 "Reserve group B car for rent"
 :reply-with reserve-car
 :language fipa-sl
 :ontology Car_rental
 :protocol fipa-request interaction)

ii. Car rental clerk agent answers that it agrees to the request but it requests extra

information.

(agree
 :sender (agent-identifier :Car_rental_clerk_ agent)
 :receiver (agent-identifier :Customer_agent)

132

 :content
 "((action (agent-identifier :Car_rental_clerk_ agent)
 (agree)"
 :protocol fipa-agree
 :language fipa-sl)

iii. Car rental clerk agent requests the customer agent to provide it with extra

information.

(request
 :sender (agent-identifier :Car_rental_clerk_ agent)
 :receiver (agent-identifier :Customer_agent)
 :content
 Extra information needed"
 :language fipa-sl
 :ontology E-rent
 :protocol fipa-request interaction)

iv. The customer agent informs the car rental clerk agent that the extra information is

provided.

(inform
 :sender (agent-identifier :Customer_agent)
 :receiver (set (agent-identifier :Car_rental_clerk_ agent))
 :content
 "Extra information provided"
 :language fipa-sl)

v. The car rental clerk agent informs the customer agent that the reservation is

confirmed.
(Confirm
 :sender (agent-identifier :Car_rental_clerk_ agent)
 :receiver (set (agent-identifier :Customer_agent))
 :content
 "Reservation confirmed"
 :in-reply-to reserve-car
 :language fipa-sl)

vi. The car rental clerk agent informs the customer agent that the reservation request is

rejected.
(refuse
 :sender (agent-identifier :Car_rental_clerk_ agent)
 :receiver (agent-identifier :Customer_agent)
 :content
 (reserve-car)
 (customer in blacklist)"
 :in-reply-to reserve-car
:language fipa-sl)

vii. Customer agent requests car rental clerk agent to cancel reservation.
(request
 :sender (agent-identifier :Customer_agent)
 :receiver (agent-identifier :Car_rental_clerk_ agent)
 :content
 "Cancel reservation"
 : reply-with reserve-car
 :language fipa-sl
 :ontology E-rent
 :protocol fipa-request interaction)

133

viii. Car rental clerk agent answers, the cancellation request is accepted.

(agree
 :sender (agent-identifier :Car_rental_clerk_ agent)
 :receiver (agent-identifier :Customer_agent)
 :content
 "((action (agent-identifier :Car_rental_clerk_ agent)
 (agree)"
 :protocol fipa-agree
 :language fipa-sl)

ix. Agent car rental clerk asks the customer to submit its proposal for selecting another

car.
 (propose
:sender (agent-identifier :Car_rental_clerk_ agent)
:receiver (set (agent-identifier :Customer_agent))
:content

"((action (agent-identifier :Car_rental_clerk_ agent)
(Propose another group B car for rent))"

:ontology E-rent)
:in-reply-to reserve-car
:language fipa-sl)

x. Agent customer informs the car rental clerk that it accepts an offer from the car

rental clerk to select another car.

(accept-proposal
:sender (agent-identifier :Customer_agent)
:receiver (set (agent-identifier : Car_rental_clerk_ agent))
:in-reply-to (propose another group B car for rent)
:content
"((action (agent-identifier : Car_rental_clerk_ agent)
(propose another group B car for rent))
:language FIPA-SL)

xi. Agent customer informs the car rental clerk that it rejects an offer from the car
rental clerk agent to select another car.

(reject-proposal
:sender (agent-identifier : Customer_agent)
:receiver (set (agent-identifier : Car_rental_clerk_ agent))
:content
((action (agent-identifier : Car_rental_clerk_ agent)
(propose another group B car for rent))
:in-reply-to (propose another group B car for rent))

By the same situation, we can describe all the conversation messages that will take

place in the system.

6.5.3 Directory Facilitator Model
The DF is a centralized registry of entries, which associate service descriptions to

agents. The DF is used for adding an entry or searching for services. The DF must be able
to perform the following functions: service registration, service deregistration, service
modification, and search for services. The DF will be constructed according to the Jadex
framework. Jadex considers a Directory Facilitator as an agent that is specified by FIPA
Agent Management Specification [FIPA].

134

6.6 Implementation Phase
The implementation (or construction) phase is the point in the development

process when the solution is actually constructed.

6.6.1 Implementing the Case Study with Jadex
In this section, we discuss the implementation process of the case study “Car

Rentals Company” using the Jadex framework. In this implementation process, we
explain how the design models are handled by Jadex. We then present the
implementation code as Jadex proposed. Most of the design models are ready to be
employed by Jadex. In the implementation phase, we will describe only how the
customer agent is implemented. Due to a mater of time constraints, we will not
discuss the car rental clerk agent.

6.6.1.1 Starting an Agent
Due to matter of time and we will not discuss how to set up the Jadex

environment because it is out of the scope of this work. Starting up an agent begins
with the creating an agent. The agent is created according to the agent container that
was developed in the design phase. Each agent container represents an agent
definition file in Jadex.

Firstly, the creation a new agent definition file (ADF) called Customer.agent.xml.

was established. In this file, all important agent startup properties are defined in a way
that complies with the Jadex schema specification. The first attribute of the agent is its
type name, which must be the same as the file name (similar to Java class files). In this
case, it is set to Customer. Additionally one can specify a package attribute, which has
a similar meaning as in Java programs and serves for grouping purposes only (the
package name will need to be altered with respect to the actually used directory
structure). All plans and other Java classes from the agent's package are automatically
known and need not to be imported via an import tag. The following XML code
describes the details of the customer ADF.

 <!-- CustomerAgent -->
 <agent xmlns="http://jadex.sourceforge.net/jadex"
 xmlns:xsi="http://www.w3.org/20 01/XMLSchema-instance"
 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.96.xsd"
 name="Customer"
 package="carrental.app">
 </agent>

6.6.1.1.1 Defining Beliefs in the ADF
Beliefs stand for the agent's knowledge about its environment and itself. These

beliefs can be any Java objects. According to Jadex, beliefs that were constructed
during the design phase are classified into to types of beliefs as follows: a belief that
represents one fact or a set of beliefs, which represents a set of facts. The customer
agent beliefs are stored in a beliefbase. This beliefbase is the container for all the facts
known by the customer agent. The customer agent’s beliefs are defined in the ADF
and are accessed and modified from plans. To define a single valued belief or a multi-
valued belief set in the ADF, the developer has to use the corresponding <belief> or

135

<beliefset> tags and has to provide a name and a class. The name is used to refer to
the fact(s) contained in the belief. The class specifies the (super) class of the fact
objects that can be stored in the belief. The default fact(s) of a belief may be supplied
in enclosed <fact> tags. The following XML code shows an example for different
types of beliefs that are represented and defined in ADF.

<agent>
<beliefs>

<belief name=" name " class="Boolean">
 <fact>"John"</fact>
</belief>
<belief name="my_location" class="Location">
<fact>new Location("Hamburg")</fact>
</belief>
<beliefset name="my_friends" class="String">
<fact>"Alex"</fact>
<fact>"Blandi"</fact>
<fact>"Charlie"</fact>
</beliefset>
<beliefset name="my_opponents" class="String">
<facts>Database.getOpponents()</facts>
</beliefset>

</beliefs>
</agent>

The beliefs of the customer agent can be implemented as the following XML code:

< ! -- CustomerAgent -->
 <agent xmlns="http://jadex.sourceforge.net/jadex"
 xmlns:xsi="http://www.w3.org/20 01/XMLSchema-instance"
 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.96.xsd"
 name="Customer"
 package="jadex.tutorial">
 <beliefs>

<belief name="agent_Id" class="String">
 <fact>"Customer"</fact>
</belief>
<belief name="Customer wants to rent a car" class="Boolean">
 <fact>"True"</fact>
</belief>
<belief name="Customer decided to reserve by phone" class="Boolean">
 <fact>"True"</fact>
</belief>
<belief name="Customer decided to reserve by e-mail" class="Boolean">
 <fact>"False"</fact>
</belief>
<belief name=" Customer decided to reserve car online" class="Boolean">
 <fact>"False"</fact>
</belief>
<belief name=" Reservation confirmed" class="Boolean">
 <fact>"True"</fact>
</belief>

</beliefs>
</agent>

6.6.1.1.2 Defining Goals in the ADF
Now we discuss how the goals of the customer agent can be constructed step-by-

step. The following XML code shows how the customer agent goals are represented
by Jadex. Let us start with the most important goal of the customer agent. This goal is
classified as an achieve goal. The goal is named request_reservation. It is created whenever
the precondition is satisfied (see creation condition in the following XML code).

<achievegoal name="request_reservation ">
 <creationcondition>
 $beliefbase.Customer_wants_to_rent_a_car.
 </creationcondition>

136

 <unique/>
 <deliberation>
 <inhibits ref="Cancel reservation request "/>
 </deliberation>
</achievegoal>

The goal is <unique/> meaning that the customer agent will not pursue two goals

to reserve car at the same time. Moreover, the <deliberation> settings specify that the
request reservation goal is more important than the cancel_reservation_request goal.

In this section we will discuss another kind of goal: the perform goal. In the

example of the customer agent the goal notify_real_customer is classified as a perform
goal. You can see that the perform goal notify_real_customer refines some BDI flags (see
table 6.21) to achieve the desired behaviour. By allowing the goal to redo activities
(retry=“true”), it is assured that the agent does not conclude to knock off that goal after
having performed one notification, but instead notifies the real customer as long as
the reservation request is active as described in the context condition. Even when the
customer agent only knows of one notification plan, it will reuse this plan and perform
the notifications until the goal succeeded.

<performgoal name="notify_real_customer" retry="true" exclude="when_succeeded">
 <contextcondition>
 !$beliefbase.reservation_request_rejected &&
 !$beliefbase. reservation_request_canceled
 </contextcondition>
</performgoal>

 Name Default Possible Values
retry true { true, false}

retry true { true, false}

retrydelay 0 positive long value

recur false { true, false} (for maintain goals only)

recurdelay 0 positive long value (for maintain goals only)

exclude "when_tried" { "when_tried", "when_succeeded", "when_failed",
"never"}

posttoall false { true, false}

randomselection false { true, false}

Table 6.21 Common Goal Attributes (BDI flags)

In the following XML code, we present the agent definition file ADF with some

goals of the customer agent. We are not going to set all the goals; all we need is to
show the developer how goals are constructed. The goals are captured from the goals
model and their preconditions can be captured from the triggers model.

 <!-- CustomerAgent -->
 <agent xmlns="http://jadex.sourceforge.net/jadex"
 xmlns:xsi="http://www.w3.org/20 01/XMLSchema-instance"
 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.96.xsd"
 name="Customer"
 package="jadex.tutorial">
 <beliefs>

<belief name="agent_Id" class="String">
 <fact>"Customer"</fact>

137

</belief>
<belief name="customer_wants_to_rent_a_car" class="Boolean">
 <fact>"true"</fact>
</belief>
<belief name="customer_decided_to_reserve_car_by_phone" class="Boolean">
 <fact>"true"</fact>
</belief>
<belief name="customer_decided_to_reserve_car_by_email" class="Boolean">
 <fact>"false"</fact>
</belief>
<belief name="customer_decided_to_reserve_car_online" class="Boolean">
 <fact>"false"</fact>
</belief>
<belief name=" Reservation confirmed" class="Boolean">
 <fact>"true"</fact>
</belief>
</beliefs>

<goals>
<achievegoal name="request_reservation">

 <creationcondition>
 $beliefbase.Customer_wants_to_rent_a_car.

 </creationcondition>
 <unique/>
 <deliberation>

 <inhibits ref="cancel_reservation_request "/>
 </deliberation>

<targetcondition>
$beliefbase.reservation_confirmed ||
$beliefbase.reservation_rejected

 </targetcondition>
</achievegoal>
<achievegoal name="cancel_reservation_request">

<creationcondition>
 $beliefbase.customer_wants_to_cancel_reservation.
 </creationcondition>
 <unique/>

</achievegoal>
<achievegoal name="pay_rental ">

 <creationcondition>
 $beliefbase. Payment_requested_by_ car_cental_company.
 </creationcondition>
 <unique/>

</achievegoal>
<performgoal name="notify_real_customer" retry="true" exclude="never">

 <contextcondition>
 !$beliefbase.reservation_request_rejected &&
 !$beliefbase. reservation_request_canceled

 </contextcondition>
 </performgoal>

 </goals>
</agent>

6.6.1.1.3 Defining Plans in the ADF
Plans represent actions that the agent can perform. Depending on the current

situation, plans are selected in response to occurring events or goals. The selection of
plans is done automatically by the system. In Jadex, plans are composed of two parts:
A plan head and a corresponding plan body. The plan head is declared in ADF
whereas the plan body is realized by a concrete Java class. Therefore, the plan head
defines the circumstances under which the plan body is instantiated and executed.

For each plan head, several attributes and contained elements can be defined as in

the following XML code. The first attribute that has to be provided is the name of the
plan. The second is the priority of a plan, which describes its preference in
comparison to other plans. Therefore, it is used to determine which candidate plan
will be chosen for a certain event occurrence, favoring higher priority plans (random
selection, if activated, applies only to plans of equal priority). Per default, all applicable
plans have a default priority of 0 and are selected in order of appearance (or randomly
when the corresponding BDI flag is set).

138

Now we explain how the plans of the customer agent can be constructed in ADF.

The following XML code shows how the customer agent plans are represented by
Jadex. The developer should classify the plans into either service or passive.
Therefore, in this example we consider the plans as being passive plans. Let us start
with the plans that are related with the goal request reservation of the customer agent.
These plans are (reserve car by phone call, reserve car by e-mail, and reserve car
online). The plans are captured from the goals and the triggering conditions are
captured from the triggers model.

<plans>
 <plan name="reserve_car_by_phone_call">
 <body> new reserve_car_by_phone_callPlan() </body>
 <trigger>
 <condition>
 $beliefbase.customer_decided_to_reserve_car_by_phone
 </condition>
 </trigger>
 <contextcondition>
 $beliefbase.!reservation_confirmed || $beliefbase.!reservation_rejected

</contextcondition>
 </plan>
 <plan name="reserve_car_by_email">
 <body> new reserve_car_by_emailPlan() </body>
 <trigger>
 <condition>
 $beliefbase. customer_decided_to_reserve_car_by_email
 </condition>
 </trigger>
 <contextcondition>
 $beliefbase.!reservation_confirmed || $beliefbase.!reservation_rejected

</contextcondition>
 </plan>
 <plan name="reserve_car_online">
 <body> new reserve_car_onlinePlan() </body>
 <trigger>
 <condition>
 $beliefbase. customer_decided_to_reserve_car_online
 </condition>
 </trigger>
 <contextcondition>

$beliefbase.!reservation_confirmed ||$beliefbase.!reservation_rejected
</contextcondition>

 </plan>
</plans>

The plans are not applicable only for the event or belief change. The pre-

conditions and context conditions can be used. The precondition is evaluated before a
plan is instantiated and when it is not fulfilled, this plan is excluded from the list of
applicable plans. In contrast, the context condition is evaluated during the execution
of a plan and whenever it is violated, the plan execution is aborted. Both conditions
can be specified in the corresponding tags supplying some boolean Jadex expression.
The previous XML code shows how to execute a "reserve_car_by_phone_call" plan.
The customer agent is continue executing the plan as long as the agent believes that
the reservation is still not confirmed nor rejected. The context conditions in Jadex
represent the postconditions of the plan.

6.6.1.2 Agent Capabilities
Different agents often need to use the same or similar functionalities that

incorporate more than just a plan behavior. Often a set beliefs and goals are part of a
common functionality of one agent. The capability allows for packaging a subset of

139

beliefs, plans and goals into an agent module and reuses this module wherever needed.
The capability structure of an agent forms a tree. A superordinated (parent) capability
may contain an arbitrary number of sub-capabilities.

6.6.1.2.1 Creating a Capability
Create a new file manage_reservation.capability.xml with the following XML

code. The definitions of imports, plans, beliefs, events related with this capability are
all placed into this file.

<!-- Manage reservation capability -->
 <capability xmlns="http://jadex.sourceforge.net/jadex"
 xmlns:xsi="http://www.w3.org/2 0 01/XMLSchema-instance"
 xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.96.xsd"
 name="Manage_reservation_capability"
 package=" carrental.app ">

 <plans> ... </plans>
 <Beliefs> ... </Beliefs>
 <events> ... </events>

 </capability>

Modify the agent ADF (Car_rental_clerk.agent.xml) by removing all plan and belief
definitions. Instead insert a new section for using the new capability.

<capabilities>
<capability name="manage_reservation"> file=" Manage_reservation" </capability>

</capabilities>

Note that here the type name is employed, but absolute and relative paths to (the
model name of) the XML file can also be used.

6.6.1.3 Events
Jadex is an event-based system, that is, nothing happens inside a Jadex agent

unless it is triggered by some event. For example, the request_information plan of the car
rental clerk agent is triggered when a reservation request message arrives. However,
Jadex agents are not purely reactive, because Jadex not only supports external events
(e.g., messages), but also different types of internal events. For example, the adoption
of a new goal will generate a goal event, leading to plans being executed to achieve the
goal. Three types of events are supported in Jadex: Goal events, internal events and
message events. More details are present in the Jadex web page. We will present an
example how event messages are handled with in the ADF. The following XML code
illustrates some event messages related to the car rental clerk agent.

 // the following events for car rental clerk agent

<events>
<messageevent name="request_reservation" direction="receive" type="fipa">
 <parameter name="performative" class="String" direction="fixed">
 <value>SFipa.REQUEST</value>
 </parameter>
 <parameter name="content" class="String" direction="fixed">
 <value>" Reserve group B car for rent "</value>
 </parameter>
 </messageevent>
</events>

 // the following events for customer agent

<events>
<messageevent name="agree" direction="receive" type="fipa">
 <parameter name="performative" class="String" direction="fixed">

140

 <value>SFipa.AGREE</value>
 </parameter>
 <parameter name="content" class="String" direction="fixed">
 <value>"More information are needed"</value>
 </parameter>
 </messageevent>
</events>

6.6.1.4 Agent Services Publication
We make the services of our car rental clerk agent publicly available by registering

its service description at the Directory Facilitator (DF). Include the DF capability in
the ADF to be used:

<capabilities>
 <capability name="dfcap" file="jadex.planlib.DF"/>
 <capability name="manage_reservation" file="Manage_reservation"/>
</capabilities>

Create a reference for the df_keep_registered goal to make it locally available:

<goals>
 <maintaingoalref name="df_keep_registered">
 <concrete ref="dfcap.df_keep_registered"/>
 </maintaingoalref>
</goals>

Create a configurations section with one configuration. In this configuration, an

initial goal for the DF registration should be provided. The agent description that is
used for the registration is provided as initial value of the “description” parameter of
the df_keep_registered goal:

<configurations>

 <configuration name="default">
 <goals>
 <initialgoal ref="df_keep_registered">
 <parameter ref="description">
 <value>
 SFipa.createAgentDescription(null,
 SFipa.createServiceDescription("service_reservation",
 " Reply to a customer inquiries ", "EU-Rent"))
 </value>
 </parameter>
 <parameter ref="leasetime">
 <value>non-stop</value>
 </parameter>
 </initialgoal>
 </goals>
 </configuration>
</configurations>

Note that when you want to register the agent at a remote DF you only need to

slightly modify your initial goal description by adding parameter values for the DF
agent identifier and address. Using DF allows our scenario to become a real multi-
agent system. The real customer wishes to reserve a car for rent and sends its requests
via the message center to the customer agent. The customer agent searches for the
agent who offers a reservation service at the DF and subsequently sends a reservation
request to the car rental clerk agent.

141

6.7 Chapter Summary
In this chapter, the entire detailed process of developing multi-agent systems using

a case study of the car rental system was discussed. Detailed descriptions of how the
car rental system works, which represent the case study to test and evaluate the new
methodology, was developed.

142

PART THREE
EVALUATION AND CONCLUSION

The third part of this thesis provides an evaluation of some agent-oriented

methodologies with the new developed methodology and then summarizes the
conclusions.

Firstly, the MASD methodology and a few existing agent methodologies are

evaluated using the MASADF evaluation framework. This is followed by a
comparison of the results. This step is described in chapter 7. Secondly, chapter 8
presents the thesis contribution and deficiencies. The conclusion of the thesis and
future work is then presented.

143

CHAPTER SEVEN
A FRAMEWORK FOR THE EVALUATION OF

AGENT ORIENTED METHODOLOGIES

7.1 Introduction
This chapter presents a framework for evaluating agent-oriented methodologies.

Four methodologies are evaluated and compared by performing a feature analysis.
This is carried out by evaluating the strengths and weaknesses of each participating
methodology using an evaluation framework called the Multi-agent System Analysis
and Design Framework (MASADF). This evaluation framework addresses several
major aspects of an agent-oriented methodology, such as: concepts, Models and
process. This chapter is organized as follows: section 7.2 describes the evaluation
framework MASADF; section 7.3 describes the evaluation results according to the
MASADF evaluation framework; and finally, section 7.4 concludes this chapter. The
framework should help developers pursuing system development and it also helps
developers of agent oriented methodologies to evaluate and improve their
methodologies.

7.2 The Evaluation Framework
As was mentioned in chapter 3, many agent-oriented methodologies have been

proposed. Even though existing methodologies are based on a strong agent-oriented
basis, they need support for essential software engineering issues such as accessibility
and expressiveness. This has an adverse effect on industry acceptability and adoption
of the agent technology. Therefore, the consequences expected by the agent paradigm
cannot yet be fully achieved. Moreover, comparing and selecting agent-oriented
methodologies is difficult as they usually address different properties of software
agents and methodological aspects. As a result, a comparison framework for the
evaluation of those methodologies is needed in order to show their advantages and
disadvantages. This framework is an important factor in their improvement and
development. This framework sets up on existing work that compares object-oriented
(OO) methodologies [Berard 1995; Bobkowska 2005; Prasse 1998; Rumbaugh 1996;
Hong 1993] and AOSE methodologies [Henderson-Sellers and Giorgini 2005; Sabas,
Delisle and Badri 2002; Cernuzzi and Rossi 2002; O'Malley 2001; Sturm and Shehory
2003]. By including a range of issues that have been identified as important by a range
of authors, we avoid a biased comparison. The assessment of each methodology was
done by postgraduate students who developed their own designs for the same
application using different methodologies and collected comments from each other
while they developed their application designs. The aim was to avoid any particular
bias by having a range of viewpoints. However, we have customized these criteria to
the domain of MAS development. One element of originality in our framework is the
use and adaptation of concepts from object-oriented software engineering to the
development of MAS methodologies.

The motivation behind this framework is that existing methodologies fail to

represent industrial development of MASs. Evaluating methodologies' strengths and
weaknesses plays an important role in improving them and in developing a new
generation of methodologies.

144

Our study of the different agent methodologies [Cernuzzi and Rossi 2002; Dam

and Winikoff 2002-2003; Juan, Pierce and Sterling 2002; Sabas, Delisle and Badri
2002; Shehory and Sturm, Dori and Shehory 2003; Silva 2004; Sudeikat et al. 2004]
indicated that the process of evaluating the methodologies and of making comparisons
between them is not an easy task. It requires a large amount of relevant detail in order
for the evaluation and comparison to be meaningful, correct, and accurate. An
evaluation framework was created and named MASADF. The framework consists of
several criteria, which were deduced after detailed studies were carried out. The study
looked at common features among the different methodologies in building an agent
and how the agent behavior is captured. The MASADF criteria consist of a number of
important factors upon which the analysis and design of agents systems depend. These
criteria are stated as follows: Models related criteria, process related criteria and
supportive related criteria. Each criterion consists of several factors.

7.2.1 Models Related Criteria
Models are a representation that enables capturing the essence of a problem or

design in such a way that the translation or mapping from that model to another form
can be done without loss of detail. One of the most basic factors that affect the
evaluation of a methodology is the group of models of which it consists of, and
depends upon. It also includes the level of understanding of those models and the
ease with which they can be described, imagined, and visualized for a proposed
system. Moreover, the level of complexity will have a big effect on its acceptance and
success in research and application. Is it simple or complex to understand? Is the
number of models, which make up the methodology so large that the
interrelationships between them become too complex?

Whenever the number of models is large, the methodology is more complex in its

applicability, learning, and proficiency. The large number of models is also time
consuming. In addition, many of the models may lead to some repetition. On the
other hand, the lack of models may cause weaknesses in the description of the system,
and may lead to the absence of some important essentials to describe the system.

As for the factor “relationships between the models”, this has a direct impact on

the ability how these models can be derived. If there is a relationship between the
concepts that comprise agents, then it is necessary that there is a relationship between
the models that represent these concepts. The absence of such a relationship between
models designates a lack of proper distribution of those concepts on the models. This
may cause other concepts to emerge that may not be related to the original concepts.
This factor “relationships between the models” is also concerned with the level of
derivation of models from other models. In other words, is there a clear relationship,
which connects or relates between the different models? Is it possible to extract some
of the models from others with relative ease? Alternatively, do gaps and splits exist
between those models to the extent that it becomes difficult to connect or follow up?
This factor is also concerned with how models meet the requirements of the
methodology phases. Factors that effect models can be summarized as follows:

1. Agent Concepts: this factor is concerned with determining whether the evaluated

methodology adheres to agent and multi-agent system concepts. The agent and
multi-agent concepts cover the operational and structural aspects. Operational
aspects are defined as those that affect the behaviour of an agent and the multi-agent

145

system. Structural aspects are defined as those that describe the building blocks of an
agent and the multi-agent system. Agent-oriented concepts are very important for
agent-oriented methodologies in general and for agent-oriented modelling languages
in particular. The operational concepts are stated as follows:

Autonomy: The agent’s ability to make its own decisions on which action it should
perform with minimum intervention of humans or other agents. Does the
methodology support describing an agent's self-control features? Does the
methodology support modelling a decision-making mechanism of agents regardless
of the environment?

Reactiveness: The agent’s ability to respond in a timely manner to changes in the
environment in which it resides. Does the methodology provide mechanisms to
represent changes in the environment, e.g. events, incidents, etc.? Does the
methodology provide mechanisms to specify and represent agents’ responses to
changes in the environment?

Pro-activeness: The agent’s ability to pursue its own goals over time. Does the
methodology provide a goal modelling technique, capturing the system's goals and
the agents’ goals? Does the methodology provide plans and/or a tasks model, which
describe how goals are achieved by an agent?

Sociality: The agent’s ability to cooperate with others (humans and agents). How is
cooperation supported by the methodology? What cooperation modes are supported
by the methodology?

Adaptability: The agent’s ability to be situated in an environment. Is an agent able to
perceive the environment via its sensors and to initiate actions to affect it?

Mental notions (such as beliefs, goals, and plans): Does the methodology support modelling
mental notions of agents? For agents modelled in the methodology; are they able to
store information about their environment and their internal states as well as the
actions they may carry out?

Relationship: This represents the dependency relationships between the agents. Does
the methodology support modelling dependencies between agents? For agents
modelled in the methodology do they depend on each other to achieve goals?

Communication: Interactions between agents are mainly achieved via communication.
What communication modes are supported by the methodology? Is it synchronous
or asynchronous?

2. Agent Attributes: This factor is concerned with the description of the internal

structure and the parts that make up the agent. The important attributes are defined
and must be approved as a base to enable an agent to be independent and yet capable
to adapt to and interact with the surrounding environment. An agent must also be
capable to satisfy its need, make use of its interests and control its beliefs.

3. Ease of Use and Ease to Learn: It is important for models of the methodology to

be easy to use and easy to learn. Does the model contain notations that are well
known and easy to learn by both experts and novice developers? Are they easy to

146

apply? Is it easy to represent the models provided by the methodology? This factor
measures the ease and the simplicity of understanding the system to be created in its
entirety. Simplicity refers to the ease of use. It is important for a methodology not
only to be understandable to the users but also to be easy to use. The first step
towards using a methodology is to learn the notation. Hence, it is desirable that the
notation be easy to learn by both experts and novice users (Rumbaugh 1996). In
addition, the easier the users can remember the notation, the quicker they are able to
learn to use it. Therefore, the notation should be as simple as possible. Is it easy to
draw and write by hand the notation provided by the methodology? Are the diagrams
produced using the methodology clear? Are the techniques used to understand and
describe the system behaviour clear?

4. Visualization Ability: Since developers usually draw models by hand during the

process of reviewing designs, it is essential for the notation to be easy to be written
by hand. It is also important that the diagrams produced by the methodology should
be easy to read. Does the notation contain symbols that are familiar to users and easy
for them to remember?

5. Expressiveness: This factor measures whether the models of the methodology

represent all the necessary aspects of a system in a clear and natural way. How well
can each model express the concepts (e.g. is each model capable of capturing the
concept at a great level of detail, or from different angles)? Is the notation capable of
expressing models of both static aspects of the system and dynamic aspects? Static
aspects are those that represent relationships such as aggregation, specialization,
structure of the system, and the knowledge encapsulated within the system. Dynamic
aspects describe the processing, agent interaction, stage changes, timing, and data
control flow within the system.

6. Consistency: Models should not contradict each other. Does the methodology

provide guidelines and techniques for consistency checking both within and between
models?

7. Traceability and Model Derivation: This represents the relationships between

models and between models and the requirements of the system. Traceability
requires that it has to be easy for the designers to understand and trace through the
models. This may increase the users' understanding of the system. Is there a clear and
easily recognizable path from early analysis to implementation via different modelling
activities?

8. Refinement: This is a way of developing a design as it allows the developers to

improve design artifacts at different points in the development process. Therefore, it
is worthwhile that a methodology should provide mechanisms to support refinement.
Is the modelling language integrated into the development process? Can a model be
built incrementally? For instance, the designers can start from the most abstract level
to subsequent levels of detail. Is there a seamless transformation from one level of
abstraction to another without causing the loss of semantics?

9. Ability to model Agent Interactions: Agents in multi-agent systems need to

communicate in order to plan and coordinate the work that needs to be carried out.
This factor is concerned with the ability of the methodology to model and represent

147

the communication between agents in the system. It is also concerned with defining
the techniques and the protocols used in performing such communication.

7.2.2 Process Related Criteria
In this section, aspects related to the development process of MASs (how they are

built) will be evaluated. This section looks at the applicability of the methodology, the
stages provided for its development process, and the development approach followed by
the methodology. In particular, to achieve this evaluation the following aspects must be
considered:

1. Development lifecycle: What development lifecycle describes the methodology

best? Software engineering approaches propose two types of methodology
development: lifecycle models (such as waterfall) and iterative.

2. Coverage of the lifecycle: What phases of the lifecycle are covered by the

methodology? The ideal methodology must cover six important stages, which are:
system requirements, analysis, architectural design, detailed design, implementation
and testing.

3. Development perspective: What development perspective is supported (i.e. top-

down, bottom-up, or hybrid)?

4. Application domain: Is the methodology applicable to a specific or multiple

application domains?

7.2.3 Supportive Feature Criteria
Supportive feature criteria evaluate a variety of high-level, supplementary features of

the methodology. These features include the availability of software and methodological
support, dynamic structure support, and open systems support.

1. Software and methodological support: This factor measures the maturity of a

methodology and can play an important role in determining the quality of it. There
are two ways to measure the maturity of a methodology:
• What are available resources supporting the methodology? For example,

conference papers, journal papers, text book, tutorial notes, consulting services,
training services, etc.

• Is the methodology supported by tools? For example, supporting tools can be
tools for building models, project management, rapid prototyping, reverse
engineering, automatic testing, and diagram editors, code generators and design
consistency checkers.

2. Open systems support: This factor tries to evaluate if the methodology is intended

for open systems or not, (i.e. it allows the dynamic addition or removal of agents, or
their characteristics, while the MAS is running).

3. Robustness support: Does the methodology provide support for robustness (e.g.

the methodology provides techniques to analyze system performance for all
configurations, or provides techniques to detect/recover from failures)?

148

4. Mobility support: Does the methodology cater for the use/integration of mobile
agents in MASs (e.g. Does the methodology allow the developer to model
which/when/how agents should be mobile)?

7.3 Evaluation Results
This section presents results of a detailed evaluation of a number of

methodologies and makes a comparison thereafter. The evaluation is performed using
the proposed criteria mentioned above. A comparison is presented of the following
four methodologies: Gaia, MaSE, HLIM and our approach MASD. The results are
discussed below. The assessments for criteria are summarized in tables 7.1, 7.2 and 7.3
whereas those for “narrative” criteria are discussed in detail in text. It is also noted
that the discussion of the results is structured in terms of criteria presented in section
7.2.

7.3.1 Models Related Criteria

7.3.1.1 Agent concepts
Autonomy: according to our evaluation, the four methodologies recognize its
importance. The level of support for autonomy in all of them overall is “good” (ranging
from medium to high). This is reflected by the fact that all the four methodologies
provide various supports for describing agents' self-control features. For instance,
functionalities and tasks are encapsulated within an agent. In addition, roles model in
Gaia, concurrent task diagrams in MaSE, goals model in HLIM or goals model and roles
model in MASD allow the decision-making mechanism of agents to be modelled
regardless of the environment and other entities. That mechanism is based upon the
agents' goals and their roles within the system. Each agent playing a role has its own
autonomy of decision and its behaviours are not fully controllable or predictable, but
are regulated by its responsibilities into the organization [Yu 2002]. Since Gaia, MaSE
and MASD strongly support role definition, they also support autonomy. Despite the
fact that HLIM does not support any type of roles, it nevertheless provides some degree
of autonomy by supporting goals and plans definitions.

Reactiveness: in terms of support for reactiveness, the evaluation is slightly different.
Gaia and MASD support reactivity concept. Gaia supports some degree of reactiveness
through the liveness properties within the role's responsibilities. However, this does not
specify the occurrence of events and the role’s reaction to these events. MASD strongly
supports reactivity through the triggers concept or model, which motivates the agent to
reacting to events that occur during runtime according to these triggers. In MaSE and
HLIM the reactivity concept is not expressed explicitly. That is, there is no explicit
connection between the event and the action taken.

Pro-activeness: in terms of support for proactiveness, the assessment is varying. In
Gaia, the proactiveness is expressed by the liveness properties within the role’s
responsibilities. In MaSE, the proactiveness is expressed by the role’s tasks. These tasks
are modelled using finite state automation. MASD and HLIM support proactivity
through pursuing goals. Goals are important to agent-based systems because agents are
autonomous and proactive. Agents achieve goals on behalf of users through their
autonomous and proactive behaviour.

149

Sociality: in GAIA, sociability is expressed through the acquaintance model in which
the agent types’ interactions are depicted. Further, its sociality is expressed using the
organizational structure and roles. In MaSE and HLIM, social aspects (except for
communication and conversations) are not mentioned. MASD supports some degree of
sociality by providing the interactions between these agents as well as the roles that are to
be performed by the agents. This provides agents with the ability to interact with each
others and humans through the interaction model, which describes the interaction
mechanisms.

Adaptability: in terms of support for adaptability, the assessment is also varying. Gaia,
MaSE and HLIM do not support adaptability. MASD supports some degree of
adaptability through the triggers model, which gives the agent the ability to perceive the
environment and to initiate actions to affect it.

Mental attitudes: Gaia does not support the use of mental attitudes (such as beliefs,
desires, and intentions). MaSE provides weaker support for capturing an agent's mental
attitudes. MaSE provides goal diagrams but it does not have a representation of the
agent's beliefs. HLIM and MASD certainly provide better support than MaSE for
capturing an agent's mental attitude. They also have goal diagrams and they have a
representation of the agent's beliefs. MASD represents the agent knowledge of the world
as beliefs. In MASD, desires are represented as goals without plans. Intensions are
represented as goals with predefined plans.

Relationship: Gaia and MaSE do not support any type of relationships between the
agents. HLIM and MASD support the relationships by providing the dependency
relationship diagram, which helps the agents to make the necessary decisions when
cooperation between these agents takes place.

Communication: Gaia supports communication by its own interaction protocols. In
terms of support for communication, MaSE is probably best with its protocol analyzer.
HLIM supports communication between agents through its own protocols. This is
despite the fact that protocols are not clearly supported by HLIM. MASD supports
communication by the inter-agent communication model. MASD supports FIPA-ACL
protocols.

7.3.1.2 Agent Attributes
The Gaia methodology generally differs from all other methodologies. More

specifically, it differs from the above-mentioned methodologies in the internal
structure of the agent. The Gaia methodology depends on the “Role” during the
analysis phase as a base for the agent. During the design phase, roles are replaced with
agents. It can be stated that the internal structure of the agent in the Gaia
methodology is somehow strong. The strength is due to the fact that every agent plays
a specific role and is independent in making decisions. On the other hand, the agent
behavior is not fully controlled but it can be controlled through responsibilities inside
the organization.

In MaSE, the agent’s internal structure is formed through the step of assembling

agent classes during the design phase. Designers have the freedom of choice in whether
they wish to use an architecture that they developed, or to use a predefined and available
architecture such as Belief-Desire-Intention (BDI), reactive, planning, knowledge-base,

150

and user-defined agent architecture. This makes the methodology flexible and able to be
utilized with different architectures.

In the HLIM methodology, the agent’s internal structure is represented and

described by a number of properties like goals, plans, and beliefs. It does not support
the BDI architecture.

The internal structure of the agent in MASD is described very comprehensively.

MASD methodology strongly supports the BDI architecture. Where the attributes that
enable the agent to be able to adapt and interact with its environment are supported
such as agent roles, goals, plans, beliefs, triggers and dependencies, etc.

7.3.1.3 Ease of Use and Ease to Learn
With respect to the ease of use, the Gaia methodology is found to be good in this

respect in some models only. For example, clear one-to-one mappings and direct
relationships were found between some models. The transfer method between the
roles diagram and the agents diagram is also clear and straightforward. However, some
models had no relationships between them. Some models and charts that Gaia uses
are relatively good and some are insufficient. For example, the role model is clear and
can easily be understood. While the interactions model is weak and does not carry out
the task it is supposed to do well when compared with other methodologies.

The MaSE methodology is largely complex in organizing and ordering the

diagrams and charts based on the methodology. The concurrent task diagram is
derived from a number of charts: pyramid goal chart, sequential chart and role chart.
This method may cause some confusion and ambiguity to the analyst. In comparison
with the other methodologies, Gaia, HLIM and MASD have easier, more flexible and
more direct ways in deriving models. MaSE also supports one-to-one mappings
between some models such as the goals model to the roles model and from the roles
model to the agent class model.

The HLIM methodology is reasonably good with respect to the ease of

understanding and visualizing the system’s models. It uses easy to understand
technologies like the use case maps to describe an agent’s behavior in a system. There
is also no complexity in the models. They can be easily and flexibly extracted from one
another. Relations can also be directly recognized. On the other hand, with respect to
the coverage of all relevant phases, it lacks the detailed design phase. Thus, there
exists a gap between the design and implementation phase.

The MASD models and charts are relatively good and sufficient. For example, the

system scenario model is clear and easy to understand. Concerning the ease of use,
MASD models are easy to use as well as easy to learn. They contain notations and
techniques (such as UCMS, UCDs, UML Activity diagrams, FIPA-ACL) that are well
known to developers and easy to learn to construct and apply them and it is easy to
represent them.

7.3.1.4 Visualization Ability
In Gaia understanding and visualizing the system requirements is not included

explicitly. Gaia lacks the existence of an initial, and a primary phase, which is the initial
requirements phase. Description techniques for describing the whole system behavior

151

are not supported. It lacks techniques and tools like the High Level Message Sequence
Charts or the Use-Case Maps, which are known for high-level visual display of system
descriptions. The system description comes in the form of diagrams or notations that
help to understand the systems.

In the MaSE methodology, understanding and visualizing the system requirements

is included in the second stage of the analysis phase. The Use-Case is used which
contains summaries of the main message exchanges in the initial flow of the system.
To a certain extent, this method is not sufficient in describing the system behavior.
The reason is that Use Cases are only used in the requirements analysis phase in order
to help the customer to understand the system structures from his point of view
alone.

In the HLIM methodology, understanding and visualizing the system requirements

is actually included in its discovery phase. It is represented in the high-level model,
which uses the Use-case maps notation. It recognizes the agents from other
components in the system and their high-level behavior. HLIM provides a high view
of the system and provides a starting point to develop other model details in the
system.

In the MASD methodology, understanding and visualizing the system

requirements is represented by using some well-known techniques such UCMs and
UCDs. These techniques are very simple and intuitive. They have the ability to
visualize the complex system requirements as scenarios in one model. With regard to
the visualization ability, the existence of an initial and a primary phase, which is the
initial system requirements phase, helps the developers capturing a high level view of
the whole system. Understanding and visualizing the system is contained in the system
requirement phase where UCMs and UCDs are used. UCMs recognize the agents
from other components in the system and their high level behavior. It provides a
high-level view of the system and provides a starting point to develop other model
details in the system. UCDs help the customer to understand the system structures
from the user's point of view.

7.3.1.5 Expressiveness
In terms of support of expressiveness, the number of static and dynamic aspects is

a good indicator of this criterion. Gaia, MaSE and MASD are capable of expressing
models of both static aspects and dynamic aspects of the system. Gaia supports the
dynamic aspects of the system and handles protocols well by providing an interaction
model with its own interaction conversation protocols. MaSE supports dynamic aspects
by providing a communication class diagram through a finite state machine. MASD
supports dynamic aspects by providing Interaction diagrams and FIPA-ACL protocols.
HLIM clearly does not support dynamic aspects and protocols.

7.3.1.6 Consistency
In terms of consistency checking, the level of support differs from one

methodology to another. It is well supported in MaSE whereas is not supported in Gaia,
HLIM and MASD. This result seems to be related to the tool support integrated with the
methodology. AgentTool (developed by MaSE) provides a strong support for model and
design consistency checking. The remaining three methodologies do not have any tool at
all (Gaia, HLIM and MASD).

152

7.3.1.7 Traceability and Model Derivation
Gaia does not explicitly support traceability and model derivation, however MaSE,

HLIM and MASD support this feature. There are clear links between models provided
by them. For instance, goals, roles, agents, and tasks are all linked together. This
strong connection improves the ability to track dependencies between different
models. Such connections allow developers to (automatically or manually) derive
design models (e.g. an agent's internal architecture) from analysis constructs. MASD is
good in this respect. The models are traceable and can be derived easily from each
others, and they have the ability of mapping or transferring from one model or
diagram to another. Most of the models in MASD are derived from the system
scenario model.

7.3.1.8 Refinement
Refinement is generally well supported by all four methodologies. This reflects the

fact that the modeling language of all four methodologies is integrated into their
development process. The process in fact consists of iterative activities. Developers are
free to move between phases to add more detail in a constructed model. Another
indication of refinement supported by the four methodologies is the seamless
transformation from one level of abstractions (e.g. goals, roles) to another (e.g. agents,
tasks) without causing loss of semantics.

7.3.1.9 Ability to Model Agent Interactions
Collaboration protocols between agents in the Gaia methodology are insufficient

and require more development and improvement. Gaia only supports one-to-one
interactions between agents. It does not support simultaneous interactions between
multiple agents.

The MaSE methodology describes conversations between agents through finite

state machines. It is possible through this to achieve a dynamic level of message
exchange between agents in a system. These finite state machines lead to an algebraic
description of conversations. Official mathematical proofs can be formulated from
this algebraic description to describe and proof the interaction between agents in a
system. For this reason, this method is considered successful and acceptable in
describing the interaction between agents.

HLIM does not support a detailed design phase. It describes conversations

between agents through a conversation model, which is extracted from the agent
relationship model and the internal agent model. This means that this model defines
all messages between agents in the system. The messages implement dependency
relationships as recognized in the agent relationship model. However, the messages
are defined on a high general level, not in detail. The detailed interactions are an
important outcome of the detailed design phase. Hence, this methodology lacks a
detailed design phase in which the detailed interaction protocols can be specified.

MASD describes the interaction between agents through the interaction model.

These interactions are sufficient because they are based on FIPA-ACL protocols,
which are considered as standard.

153

The results of the evaluation of the four methodologies with respect to model
related criteria are shown in table 7.1. Each column in the table represents a particular
methodology. The first column lists the factors. Each methodology column represents
the supporting state of that factor. The assessment scale has four possible answers as
follows: “high”, “medium”, “low”, and “none”. These answers indicate the level of
support of the methodology for a particular factor.

Criterion
Gaia

Methodology
MaSE

Methodology
HLIM

Methodology
MASD

Methodology

Concept
Autonomy High High Medium High
Reactivity Medium Low Low High
Proactivity Low High Low Medium
Sociality High Low Low Medium

Adaptability None None None Low
Mental notions None Low High High
Relationships None None High High

Communication Medium High Medium High
Agent attributes Medium High Medium High
Easy to use and Easy to
learn

Medium High High High

Visualization ability Medium High High High
Expressiveness Medium High Low High
Consistency None Medium None None
Traceability and model
derivation

Low High High High

Refinement High High High High
Ability to model agent
interactions

Medium High Medium High

Table 7.1 Evaluation by Models Related Criteria.

7.3.2 Process Related Criteria

7.3.2.1 Development lifecycle
With respect to the development lifecycle factor, all four methodologies are

considered as iterative across every phase. All of these methodologies support the model
refinement process, which in fact consists of iterative activities. These iterative activities
allow developers to move between phases to add more details in a constructed model.

7.3.2.2 Coverage of the lifecycle
To a certain extent, all methodologies are acceptable at varying levels when it

comes to the important factor of the life cycle. For example, the methodologies Gaia,
MaSE and HLIM cover the fundamental phases like the analysis and design phases,
but Gaia and HLIM lack a detailed description of the implementation. The HLIM
methodology needs improvement and development in the detailed design model.
None of the methodologies supports the testing phases. The MASD methodology
covers all phases in the software development lifecycle (except testing phase). The
testing phase is not supported by MASD.

154

7.3.2.3 Development Prospective
With respect to the development prospective factor, all four methodologies are a

top-down approach.

7.3.2.4 Domain Applicability
With regard to the development domain applicability, all four methodologies are

considered independent. They can be applied in any application domain.

The results of the evaluation of the methodologies with respect to process related
criteria are shown in table 7.2. Each methodology column represents the supporting
state of that factor. The assessment scale has different possible answers as follows:
“iterative” or “waterfall” for the development lifecycle criterion, “yes” and “no” for
the coverage of the lifecycle criterion, “top-down” or “bottom-up” for the
development prospective criterion and “independent” or another specific application
name for the domain applicability. These answers indicate the support that the
methodology provides for a particular factor.

Criterion
Gaia

Methodology
MaSE

Methodology
HLIM

Methodology
MASD

Methodology

Development
Life cycle

Iterative Iterative Iterative Iterative

Coverage of
Life cycle

System Requirement No Yes Yes Yes
Analysis Yes Yes Yes Yes

Architectural design Yes Yes Yes Yes
Detailed design No Yes No Yes
Implementation No No No Yes

Testability No No No No
Development
prospective

Top-down Top-down Top-down Top-down

Domain applicability Independent Independent Independent Independent

Table 7.2 Evaluation by Process Related Criteria

7.3.3 Supportive Feature Criteria
The supportive related criteria consist of a number of important factors as follows:

7.3.3.1 Software and Methodological Support
Regarding the availability of resources supporting the methodologies, Gaia, MaSE

and HLIM are covered by conference papers, journal papers or technical reports. MASD
is the newest methodology and therefore is not yet available. None of the four
methodologies are published as textbooks. The availability of tool support also varies.
MaSE is well supported with AgentTool (MaSE). According to the authors of MaSE,
AgentTool can be used as a diagram editor, a design consistency checker, code generator
and automatic tester. They also revealed that AgentTool has been downloaded and used
by many people in academia as well as industry and government. Gaia, HLIM and
MASD do not provide any support tools.

155

7.3.3.2 Open Systems Support
Regarding the open systems support criterion this issue is, in our point of view, not

explicitly addressed in the MaSE, HLIM and MASD methodologies. More specifically,
they do not deal with the introduction of new components or modules in an existing
system. Gaia supports open systems development by providing the appropriate
organizational abstractions that are central to the analysis and design of open multi-agent
systems. MASD is intended to work for cross-boundary systems (semi-open systems)
where the agent system itself is closed (i.e. the types and behaviours of agents defined in
the system are determined in advance). The external agents may interact with the system
agents through predefined established protocols (e.g., FIPA).

7.3.3.3 Robustness Support
Concerning the robustness support, none of the four methodologies address this

factor. More specifically, they do not provide any techniques to deal with analyzing the
system performance. Furthermore, none of the methodologies supports techniques to
recover the agent system from failures.

7.3.3.4 Mobility Support
Regarding the mobility support criterion, in our opinion, this issue is not explicitly

addressed in any of the methodologies. None of the four methodologies mention
mobility issues.

The results of the evaluation of the four methodologies with respect to support

related criteria are shown in table 7.3. Each methodology column represents the
supporting state of that factor. The assessment scale has two possible answers “yes”
and “no”. These answers indicate the support of the methodology for a particular
factor.

Criterion
Gaia

Methodology
MaSE

Methodology
HLIM

Methodology
MASD

Methodology

Software and
methodological
support

No Yes
(AgentTool) No No

Open systems
support

Yes No No semi-open

Robustness support No No No No
Mobility support No No No No

Table 7.3 Evaluation by Supportive Related Criteria

7.4 Discussion
In the previous sections, our evaluation analysis of the four selected agent-oriented

methodologies has been looked at. The methodologies are currently, in our view,
among the most commonly known agent-oriented methodologies. Their strengths and
weaknesses have been assessed based on a feature-based evaluation. In addition,
similarities and distinguishing differences with respect to their techniques and models
were also examined.

156

Overall, each of the four methodologies provides reasonable support for the models
related criteria and process criteria. Most of the methodologies partially address the
supportive related criteria. MaSE supports the software and methodological support
factor. Gaia supports the open systems factor. MASD supports only semi-open systems.
These methodologies are also regarded by their developers and the students as clearly
agent-oriented. However, there are several characteristics of agent-based systems that are
not addressed or sufficiently addressed in most of the methodologies. For instance, none
of the four methodologies provide explicit support for agent adaptability, testability,
open systems, robustness and agent mobility. Methodologies that are most complete in
terms of their support for models related criteria are Gaia, MaSE and MASD. The
methodologies that are support some factors for process related criteria are Gaia, MaSE
and MASD.

As can be seen from the previous evaluation, a relatively complete and

comprehensive agent-oriented software engineering methodology should include the
following aspects: concepts, models, and processes. In addition, it should at least
cover the most important development phases such as: the requirements, analysis,
design, and implementation phases. The models and techniques used in these phases
can be formed to unify those used in existing agent-oriented methodologies that were
examined in this research.

7.5 Chapter Summary
This chapter presented a comparison between three well-known methodologies

and the MASD methodology with respect to the construction and development of
agent systems. The chapter also discussed the foundational concepts for these
methodologies. The MASADF criteria were used to evaluate the methodologies
concerned with the building and development of agents systems.

157

CHAPTER EIGHT
CONCLUSION

This chapter provides the conclusions of this thesis. Some things worked as
planned and some did not. In general, the MASD methodology has a larger scope and
correspondingly less depth than anticipated. This chapter is composed of four sections as
follows: Contributions, deficiencies, conclusion and future work.

8.1 MASD Advantages
Developing and constructing a complete methodology is not an easy task. The

MASD methodology is developed as a step towards a comprehensive version. MASD
is constructed based on a well-defined, structured set of aspects that an agent-oriented
methodology should include. These aspects are: the entire set of guidelines and
activities, a full lifecycle process, a comprehensive set of concepts, modeling
techniques, and process.

The new proposed MASD methodology should help to improve the MAS

development process. The proposed methodology is to be distinguished from existing
methodologies in several aspects:

1) The MASD methodology is based on correct concepts where the concepts were
selected and chosen to be a solid foundation for the building of the new
methodology.

2) The MASD methodology supports several important features such as: flexibility,
consistency, simplicity, and ease of use as well as traceability. This is in contrast
to the difficulty of understanding and implementing existing methodologies,
resulting in a lack of success.

3) The proposed methodology covers the fundamental phases as a full software
development lifecycle for building systems. The operations starts at the system
requirements phase and extends to the implementation phase. Most of the
existing methodologies suffer from the problem of incompleteness.

4) The proposed methodology covers the most important characteristics of multi-
agent systems. It deals with the agent concept as a high-level abstraction capable
of modeling the complex system.

5) The new methodology incorporates well-known techniques for requirement
gathering and customer communication. It goes further by linking them to the
domain analysis and design models. It also supports high-level designs and
describes the functional requirement of the system from an external perspective.

6) The new methodology supports agent organizational aspects. An agent
organization is a group of agents working together to achieve a common
purpose. It consists of roles that characterize agents. By utilizing these roles, the
methodology allows developers to work at different levels of abstraction. Agent
behaviour can be specified at both the level of roles and at the level of role
characteristics.

7) The methodology proposes a new concept called the “trigger concept” which is
considered as one of the most important characteristics that represent the agent

158

autonomy and reactivity. The existence of the trigger concept plays an important
role in determining a larger part of the behaviour of the agent.

8) The new methodology presents a clear understanding of MASs and how to build
them without referring to implementation detail. It sets the distinctive
characteristics of a MAS as a system that has its own structure and composition.

8.2 MASD Deficiencies
Several phases of MASD describe mapping from one model to another. In each

case, the transformation is accompanied by guidelines for the designer to consider
when performing the transformation. Nearly every transformation can be enhanced by
the addition of a systematic procedure that details how the transformation must take
place. Additionally, the transformations of roles to goals and plans and roles to agent
would benefit from a similar process that was focused more on a series of rules than
on guidelines. Furthermore, MASD does not provide verification and validation
techniques in an application design and, especially, in its implementation phase. Also,
MASD does not provide testing phase and it does not provide any tools to support
the methodology process.

8.3 Discussion
In this section, we discuss the deficiencies and limitations of existing agent oriented

methodologies which we have addressed and solved in this dissertation and those that
are not solved as well. The addressed problems are stated first followed by a discussion.

No standard has evolved: Developing and establishing agent standards is not an easy
task, because the standardisation process shifts the debate from longer term research
issues to the ability to practice commercial agent systems. Therefore, MASD does not
propose any standard definitions, nor agent architecture or any aspects related to agent
languages which can be considered as a standard.
Industrial development suitability: Although, MASD is still new, it is difficult to
assess whether it is suitable for industry or not. However, we assure it will be suitable for
industrial development of multi-agent systems and it will be accepted in the industrial
domain. That is because of its simplicity, easy to learn and its completion of stages of
systems development.
Neediness for formal semantics: Despite the MASD methodology is developed based
on concepts chosen in precise manner to cover most of the existing agent definition
patterns, MASD does not have any formal semantics.
Existing gap between design and implementation: The MASD methodology
bridges the gap between design and implementation. This is achieved by providing
refined design models such as an agent container in the design phase. They can be
directly transferred into implementation constructs in an available programming
language. It provides constructs to directly implement high-level design concepts.
Alternatively, a dedicated agent-oriented programming language such as Jadex, JADE,
JACK, etc. can be used.
Implementation phase inclusion: The MASD methodology provides an explicit
implementation phase and is considered as an essential phase of its process. Most of the
existing methodologies do not include an implementation phase. The Jadex framework is
used as a programming environment to implement the agent system. Jadex describe in
detail how the beliefs, goals, plans, and interactions are implemented, as well as it

159

explains how to implement reasoning about beliefs, goals, plans and reasoning of
communication.
Support of multiple Roles: One of the most important aspects of the MASD
methodology is that it considers the role concept as a one of the main concepts that the
methodology relies on. MASD assumes agents can play one or more roles at a time. This
is achieved by providing the roles model in the analysis phase which describes the roles
that the agent will play in the system.
Agent-oriented approaches: According to the agent methodology classification
discussed in section 3.4.1 in chapter 3, The MASD methodology is considered to be an
agent based methodology. Therefore, the agent (and its internal components) developed
by the MASD methodology is built from scratch as an individual entity without
dependence on any other traditional methodologies, such as object-oriented
methodologies.
Environment features inclusion: The MASD methodology takes into account the
environment issues by providing the MAS architecture stage in the analysis phase. This
stage describes how to identify relationships and interactions between the entities
(agents) that inhabit the environment (MAS), the conversations and exchanged messages
and the services that are offered by the agents in the system.
Software engineering issues: the MASD methodology is established based on essential
software engineering issues such as preciseness, accessibility, expressiveness, domain
applicability, modularity, refinement, model derivation, traceability, and clear definitions.
The preciseness issue is represented in MASD by providing well known modelling
techniques such as UML UCDs, UCMs, and UML activity diagrams which have clear
semantics. The accessibility issue is represented by modelling techniques that are easy to
understand and easy to learn such as UCMs and UML UCDs. With respect to the
expressiveness issue, the MASD methodology addresses this issue by providing a clear
step by step development process. This process describes the whole structure of the
system. In addition, MASD supports dynamic aspects by providing interaction diagrams
and FIPA-ACL protocols. With regards to domain applicability MASD is independent
and it can be applied to any application domain. The MASD methodology addresses the
modularity issue by providing organized phases for the MAS development process.
Refinement is generally supported by MASD. MASD uses iterative activities which are
integrated into its development process. MASD supports both model derivation as well
as traceability issues. There are clear links between models provided by MASD. For
instance, roles, agents, goals, and plans are all linked together. The MASD models are
traceable and can be derived easily from each other, and they provide a mapping from
one model or diagram to another. Most of the models in MASD are derived from the
system scenario model. MASD is bases on clear definitions.
Misconceptions: MASD is established based on precise accepted MAS definitions.
These definitions are chosen from the literature to cover most of the existing agent
definition patterns.
Incompleteness: MASD is considered as a complete development process. It provides a
full lifecycle development process for MAS. This process starts with the initial
specification, system requirements, and finally producing implementation code.
Incomplete formality: MASD methodology does not address any formalism of MAS
concepts.
Open systems: MASD methodology is not intended to work with open systems. But
it is designed to work for cross-boundary systems (semi-open systems) where the
agent society itself is closed (i.e. the types and behaviours of agents defined in the
system are determined a priori) but external agents may interact with members of the
society via defined and common protocols (e.g., FIPA).

160

8.4 Conclusion
As agent-oriented approaches represent an emerging paradigm in software

engineering, there has been a strong demand to apply the agent paradigm in large and
complex industrial applications and across different domains. In doing so, the
availability of agent-oriented methodologies that support the software engineers in
developing agent-based systems is very important. In recent years, there have been an
increasing number of methodologies developed for agent-oriented software
engineering. However, none of them are mature and complete enough to fully support
the industrial needs for agent-based system development.

For all those reasons, it is useful to commence gathering together the work of

existing agent-oriented methodologies with the aim of developing a future
methodology that is mature and complete. Thus, this research is focused on
developing a comprehensive design methodology to assist a multi-agent system
designer through the entire software development lifecycle, beginning from the system
requirement phase and proceeding in a structured manner towards a working code.

There are few principal strengths of the methodology developed through this

research work. First, it is based on three important aspects: concepts, models, and
process, and it is focused toward the specific capabilities of multi-agent systems. At
the commencement of research, MASD methodology combined several techniques
and concepts into a single, simple, traceable, and structured methodology. These
concepts and techniques are represented through a set of models. Most of these
models used within the methodology have therefore been already justified and
validated within the domain of agents and multi-agent systems. MASD provides an
extensive guidance for the process of developing the design and for communicating
the design within a work group. It was very clear that the existence of this
methodology provides a great assistance in thinking about and deciding on design
issues, as well as conveying design decisions.

The MASD methodology has captured all the requirements of the system in a

proper way by combining well known techniques (UCMs and UCDs) into one
extensive model called system scenario model. Moreover, MASD has introduced MAS
concepts through conceptual framework where the concepts are determined, and
selected. This conceptual framework has been used to introduce the MAS concepts
that the new methodology relies on. MASD methodology has proposed the use of the
trigger concept which has allowed the representation of agent reactivity. Finally,
MASD has proven its ability to support organizational aspects by utilizing the role
concept which provides the work at different levels of abstraction.

8.5 Future Work
This section lists several topics that are not addressed in this thesis. Each topic

would clearly benefit from further investigation and, hopefully, would make the
MASD methodology stronger. Candidate topics for future investigation are:

• How to utilize the methodology with special domains such as web-based

application, real time systems, etc? ;
• How to perform testing for the resulting agent system software?, and

161

• How to deal with issues related to agent project management, such as: metrics,
estimation, schedule, risk and quality?

• How to deal with the agent mobility?

162

APPENDIXES

163

APPENDIX A: USE CASE MAPS

1.

A.1 Use case Maps (UCMs)
 This appendix presents an introduction to use case maps. It concentrates on

explaining what UCMs are, and why the technique is needed. A UCM is a high level
visual view. It helps individuals to visualize, think about, and explain the overall
behavior of a whole system. It also guides the development for the design of high-
level architectures and detailed scenarios from requirements [Buhr 1998]. UCMs
identify agents and their high-level behaviour.

 The UCM technique is growing in popularity. Whether causal scenarios,

architectural entities, or behaviour patterns, they help to understand and describe the
behaviour of complex and dynamic systems.

 The phrase, causal paths cutting across organizational structures, sums up the

fundamental meaning of a UCM. This idea produces a lightweight notation that
comprises all the foregoing complexity issues in an incorporated and controllable
method. The notation allows an easy visualization of the casual paths, which thread
through the system, avoiding the intricate details. The casual paths, or behavior
structures, symbolize large-scale elements of emergent behavior. Network transactions
are an example of the unparalleled architectural entities that cut across these systems
and are independent and above the level of details as they can be realized in a
different, detailed way.

A.1.1 Where are UCMs Useful?
 UCMs are designed to be useful for requirement specification, design, evolution,

adaptation, maintenance, and testing. UCMs have been used in the following fields:

• Requirements engineering and design of:
o Multimedia systems
o Real-time systems
o Agent systems
o Object-oriented systems
o Distributed systems
o Telecommunication systems

• Initial phases of development and documentation of standards
• Discovery and evasion of unwanted feature interactions
• Implementation analysis and forecasting
• Assessment of architectural alternatives
• Functional assessments
• Recognition of race conditions
• Production of message sequence charts and official specifications
• Reverse-engineering of diverse systems

164

 Details are not the focal point of UCMs. Scenarios are described in terms of
casual relationships between responsibilities. UCMs highlight the most interesting,
critical and relevant functions of the system and portray complex systems at a high
level of abstraction. The complex system requirements are captured as UCM scenarios
integrate into a single model with stubs and plug-ins. Table A.1 shows basic UCMs
symbols of the type that are used through out this thesis.”

UCM
Notation

Notation Explanation

Start End
point point

 Path

Path: Represents flow of events in a system; path connects start points,
stubs, responsibilities, forks, and end points of UCM. The start-point
represents preconditions. The end-point represents post-conditions.

 Do something

Responsibility point: Represents the functions to be accomplished by the
system at that point of the path.

 Or Fork: An OR fork means the path proceeds in only one out of two or

more directions.

Or Join: it means two or more paths merged it in one single path.

And Fork: it means that a single path is distributed at the same time into
many concurrent paths.

And Join: it means that several concurrent Paths merged at the same time
into a single path.

Static stub: contains one plug-in (Sub UCM) as task to be achieved by the
system, Used as decomposition of complex maps.

 Dynamic stub: May contain several plug-ins, whose selection can be
determined at run-time according to selection policy (often described with
preconditions). It is also possible to select multiple plug-ins at once
(sequentially or parallel).

 a

b

Wait point: Path a waits for an event from path b.

Component representing roles in the system.

Table A.1 Basic Use-Case Maps (UCMs) symbols

Use case maps are used for the following reasons:

• Intuitiveness: can be understood easily by humans.
• Multiple scenarios and the interactions amongst them can be shown in one

diagram.
• Ability to map the scenarios into different architectures or (formal) models
• Gives visual representation of scenarios
• Simplicity: They are simple and very easy to draw and do not need tools.

165

A.2 UCMs by Example
 UCMs are considered as precise structural entities. They have within adequate

information in a highly condensed form to enable persons to visualize system
behavior. It provides a high level view of causal sequences in the system as a whole, in
the form of paths. The causal sequences are called scenarios. Generally, UCMs may
have many paths [Elammari and Lalonde 1999]. For the purpose of simplicity, figure
A.1 UCM scenarios for money withdrawal shows an example of just one such path.
This simple example represents “Money withdrawal using an Automatic Teller
Machine (ATM)”. The scenario starts with a triggering event or a pre-condition (filled
circle labeled Customer wants to withdraw money) and ends with one or more
resulting events or post-conditions (bar labeled logon rejected, withdraw rejected, slip
printed and money withdrawn).

ATM interface

Start
point

Custome
r

Accoun
t

Printe
r

Validate
Ch
k

Debi
t

Prin
t

Notif
y

Dispense
r

Provid
e

Mone
ywithdraw
n

No
tenoug

hmone
y

Responsibilitypoin
t

Genera
l

Componen
t

Basic pat
h

End
point

Sli
pprinte
d

And-Fork

Enter PW

Enter amount
Customer wants

toWithdraw money

Logo
nrejecte
d

Withdra
wrejecte
d

Insert card Ask PW

Or-Fork

Or-Join

ok

not

Figure A.1 UCM Scenario for Money Withdrawal

 The path starts with a filled circle, which is the point where the stimuli occurs,
causing movement to start progressing along the path until the end point of a path is
reached. Paths trace causal sequences between start and end points. The causal
sequences connect stubs and responsibilities, indicated by named points along paths
([Enter PW], [Validate], [Enter amount], [Chk], [Debit], [Print], [Notify] and [Provide]).
Responsibilities are tasks or functions to be performed, or events to occur.

 In this example, the activities can be allocated to abstract components (Customer,

ATM interface, Account, Printer and Dispenser), which could be seen as objects, agents,
processes, databases, or even roles or persons. UCM Paths may cross many
components and components may have many paths crossing them [Elammari and
Lalonde 1999].

 If UCMs become too complex to be represented as a single map, it can then be

broken down using a simplification of responsibilities called stubs. Stubs link to sub-
maps, which are called “plug-ins”. These may be located along paths like
responsibilities. Stubs are more general than stubs in three ways:

• Stubs identify the existence of sub UCMs.
• Stubs may span multiple paths (not shown).
• A stub can be static or dynamic.

166

 Figure A.2 shows a UCM scenario for money withdrawal with stubs. Static stubs

contain only one plug-in and enable hierarchical decomposition of complex maps.
Dynamic stubs are usually notated with a dashed outline to differentiate them from
static stubs. Dynamic stubs may symbolize numerous plug-ins whose selection can be
determined at run-time. Such a selection is chosen using a selection policy, which
often has described preconditions. Multiple selections of plug-ins can be done at once,
either sequentially or in parallel.

a

b

Custome
r

Accoun
t

Printe
r

Validate Ch
k

Debi
t

Prin
t

Notif
y

Dispense
r

Provid
e

Mone
ywithdraw
n

No
tenoug

hmone
y

Sli
pprinte
dEnter PW

ATM interface
Enter amount

Customer wants
toWithdraw money

Logo
nrejecte
d

Withdra
wrejecte
d

Insert card Ask PW

Figure A.2 UCM Scenario for Money Withdrawal with Stubs

 A plug-in may involve supplementary system components not shown in the main

UCM. Responsibilities and end points can have post-conditions attached, while start
points may have pre-conditions. In figure A.3 the validate responsibility was
substituted with a dynamic stub labeled validate. The validate stub has two outgoing
ports a and b. Port a means authentication was accepted and port b means
authentication was denied. There are two plug-ins connected to the validate stub:
password and fingerprint.

Fingerprint DB

W ait for
Fingerprint

Check O K

Not O K

Scanner

a

b

Figure A.3 Fingerprint Plug-In for the Validate Stub

 Figure A.3 shows the details of the fingerprint plug-in. The fingerprint plug-in
describes the behavior when the validation is performed by fingerprint. The plug-in
starts with wait for fingerprint, which waits until the customer enters his/her fingerprint
and then the path proceeds to the check task. It is followed by an or-fork in the path.
If the entered fingerprint was found to match the stored fingerprint then the path

167

labeled ok is followed to the end point a. Otherwise, the path labeled not ok is followed
to the end point b.

Customer

Input PW

Wait for
PW

Check
PW PW OK

PW Not OK

Password DB

OR-Fork

a

b
Withdraw card

Figure A.4 Password Plug-In for the Validate Stub

 The other plug-in is the password plug-in. This plug-in is utilized when the
customer enters a password as an alternative for a fingerprint. In figure A.4 the
password plug-in begins with wait for PW, which waits for the client to enter a
password and then the check PW task is performed. The path forks into three paths
after the check PW responsibility. The first fork (labeled PW OK) is ensued when the
entered password matches the customer’s stored password. The second fork (labeled
PW not OK) is followed when the entered password is inaccurate. The third fork is
followed if the client is permitted to retry the password after it is found to be wrong.

168

APPENDIX B: UML USE CASE DIAGRAMS

B.1 UML Use-Case Diagrams (UCDs)
 UML use case diagrams are one of the most suitable diagrams that capture the

functional requirement of the system as a whole from an external perspective. UCDs
are important for visualizing, specifying, and documenting the behavior of the system.
They make systems more understandable by presenting an outside view of how the
system is used in context.

Actor

Use case

System

Association

System
boundaries

Figure B.1 Use Case Diagrams Notations

 UCDs are also important for testing executable systems through forward

engineering and for comprehending executable systems through reverse engineering.
UCDs specify desired behaviour but they do not exhibit how that behaviour will be
carried out. UCDs allow for the specification of high level user goals that the system
must perform. Such goals are not necessarily events or tasks, but can be a broader
obligatory functionality of the system. There is no standard template for documenting
detailed use cases. There are a number of competing schemes, and individuals are
encouraged to use templates that work for them or the project they are on.

 UCDs commonly contain the core sections of a use case as shown in figure B.1:
1. A use case is drawn as a horizontal ellipse.
2. Actors are drawn as stick figures.
3. Association relationships between actors and use cases are indicated in use case

diagrams by solid lines.
4. System boundary boxes (optional).
5. Packages (optional).

B.1.1 Use Case
 Use cases are described a set of sequences, in which the actors (objects out with

the system) and key abstractions (within the system) are represented as interactions in
a sequence. These system-level functions (behaviors) are used to construct, specify,
document and visualize the projected behavior of the system throughout requirements

169

capture and analysis. A use case is consists of a set of scenarios. Each of these is a
sequence of steps that comprise of an interaction between the system and a user. Use
cases assemble scenarios that accomplish specific goals of the user. For example, a
user can state how an ATM system should act by affirming in use cases how users
interact with the system. The client does not need to know anything about the
workings of the ATM at all. This allows the user (as an end user and domain expert)
communicate with the developers (who build systems that satisfy the requirements)
without having to worry about the details.

 Use cases represent the operative prerequisites of the system as a whole. For

example, one main use case of a bank is to administer loans. A use case includes the
interaction of the system and actors. An actor symbolizes a consistent set of roles that
clients of use cases play when interacting with these use cases. Actors can be human
beings or they can be mechanical systems. In modeling a bank, for example,
administering a loan involves, along with other things, the interaction involving a
customer and a loan officer.

B.1.2 Actor
 UCDs allow a designer to graphically illustrate the actors within an UCD and the

UCD itself. An actor is a role that a user performs in the system. It is essential here to
differentiate between an actor (acknowledged also as a role) and a user.

 Throughout the course of his/her/its occupation (as an actor bay be another

system), a user may perform several different roles e.g. a manager, a salesperson, a
support person, or a web store system. The same person may be a manager and at the
same time perform the role of a salesperson. A designer is concerned more with the
roles that are played, rather than the individuals.

 An actor symbolizes a consistent set of roles that users of use cases perform

when interacting with these use cases. An actor normally symbolizes a role that a
hardware divide, a human, or still a different system, plays with a system. An example
of this is someone who works in a bank may be a loan officer. If he/she also has an
account at the bank, then the individual also plays the role of a customer. An actor,
therefore, can symbolize an individual interacting with the system in a particular way.
Actors are not actually a part of the system, although they will be used in models, as
they live out with the system.

B.1.3 Association Relationships
 On a UCD, associations are illustrated between actors and use cases to

demonstrate that an actor performs a use case. A use case can be preformed by many
actors and an actor may perform many use cases. Use cases can also be connected or
associated to one other with three different links (includes, generalization and extends):

i. Includes

Figure B.2 shows the use of includes link. Both online purchase and invoice purchase
include the scenarios classified by purchase valuation. In general, includes link is used
to evade repetition of scenarios in multiple use-cases.

170

Purchase valuation

Invoice purchase

Online purchase

<<Include>>

<<Include>>

Figure B.2 Includes Relationship

ii. Generalization
When a use case depicts an alternative on another use case, a generalization link
is used. In figure B.3, the use case limit exceeded illustrates a circumstance in
which the usual scenario of online purchase is not executed.

Limit Exceeded
Online purchase

Figure B.3 Generalization Relationship

Use cases that simplify another use case should only denote an alternative, even
outstanding, scenario to the use case being simplified. The general objective of
the use cases should be identical.

iii. Extends
The extends arrow is illustrated from the use case X to the use case Y to point
out that the process X is a unusual case behavior of the same type as the more
general process Y. In situations where the system has a quantity of use cases
(processes) that all have some mutual subtasks, this sort of link would be used.
Each one, on the other hand, has different properties that prevent the designer
from combining them all together in the same use case. In some cases, the
variation on the behavior may need to be portrayed in a controlled form. In
figure B.4, search, at the name extension point, is said to have been extended by
the search by name point.

Search by Name Search by Email

<<Extend>><<Extend>>

Search
 Name
Email

Figure B.4 Extends Relationship

B.1.4 System Boundary Boxes
 A rectangle can be illustrated around the use-cases and it is called the system

boundary box. The scope of the system is specified by the system boundary box.
Within the box, functionality that is in scope is represented and anything outside the
box is not.

171

B.1.5 Useful Remarks
 A simple use case model is the most important factor to keep in mind. It is often

easier to ascertain the actors of the system and then flush out the use cases that they
execute. UCDs can be either very simple, or very complex. Simpler diagrams are
nevertheless easier to comprehend and are can portray the tasks of the system better.

 Use cases can be broken down into new sub-use case diagrams. The use case

online purchase may, for example, need additional specification as one move into the
design. In each use case, sub-diagrams can be made in order to aim clarification and
understanding of the tasks involved. A simple use case design aids a user’s aims and
expectations of the system.

B.2 UCDs by Example
 Figure B. exhibits the ATM use case diagram. Functional requirements should be

taken into consideration by the developer.

Verification
Deposit

Make Transaction Withdrwal

Transfer

Customer

Functional Requirements

The ATM system shall perform customer
verification before allowing the customer to
make a transaction.

The ATM system shall allow the customer to
make deposits, withdrawals and transfers.

Figure B.5 ATM System Use Case Diagram

Use-case name: Verification
Description:

• Customer inserts card into the ATM.
• System searches stolen card file for a record of this card.
• System gets customer account record from customer accounts file
• System displays customer verification window.
• System asks for PIN.
• Customer enters PIN.
• System displays customer service window.

Actor: Customer
Goal: To verify whether the card is stolen or not.
Preconditions:

172

• System is displaying waiting for customer window.
Postconditions:

• If any alternative course of action is taken, system displays waiting for customer
window.

Triggering event: the card is inserted into ATM.
Extension: None.
Alternatives:

• If card is stolen, system retains card and notifies police.
• If card account number does not match that of any customer account record,

system returns card.
• If customer account status is “on-hold”, system retains card.
• If customer takes to long to respond, system times out and system returns card.
• If customer fails to enter the correct PIN in three attempts, system returns card.

Use-case name: Make Transaction
Description:

• System waits for user to select transaction type.
• While transaction type does not equal quit.
• If transaction type is deposit, customer performs deposit use case.
• If transaction type is withdrawal, customer performs withdrawal use case.
• If transaction type is transfer, customer performs transfer use case.
• System returns card.
• System displays waiting for customer window.

Actor: Customer
Goal: To accomplish transactions.
Preconditions:

• Customer has performed verification use case - customer service window is being
displayed.

Postconditions:
• None

Triggering event: the pin number is entered.
Extension: None.
Alternatives: Deposit, Withdrawal, and Transfer,

• None

173

APPENDIX C: UML ACTIVITY DIAGRAMS

C.1 Activity Diagrams
 An activity diagram shows in a basic form a straightforward and intuitive visual

of what happens in a workflow, whether there are substitute paths through the
workflow, and what activities can be done together.

 The Unified Modeling Language (UML) defines activity diagrams. These

diagrams are a consequence of various systems that aimed to visually demonstrate
workflows. Much of the basis for the definition of the activity diagram notation is
found in [Martin and Odell 1996].

 The workflow of the interior operation of the agent system can be modeled by
activity diagrams. By reproducing the flow of control from activity to activity, they
show the dynamic nature of a system. Activity diagrams replicate the actions to
perform and in what sequence the agent/object will execute them. Each activity
encloses an action expression that denotes the action to perform. An activity
symbolizes an operation on some class in the system that causes a change in the status
of the system. In many ways, UML activity diagrams are the object-oriented
counterparts of data flow diagrams (DFDs) and flow charts in planned development.

Basic activity diagram notation:

• Start state: The filled-in circle is the root of the diagram. An initial node is not
necessary although it does make it significantly easier to read the diagram.

• End state: The filled circle with a border is the ending point. An activity diagram
can have zero or more activity final nodes.

• Activity: The rounded rectangles symbolize activities that occur. It represents
execution of an atomic action, which represents the performance of a step within
the workflow. An activity may be physical, such as Inspect Forms, or electronic,
such as Display Create Student Screen.

• Transitions/flow: The arrows on the diagram that show what activity follows
another. This type of transition can be referred to as a completion transition. It
differs from a transition in that it does not require an explicit trigger event; it is
triggered by the completion of the activity that the activity represents.

• Fork: A black bar with one flow going into it and several leaving it. This denotes
the beginning of a parallel activity.

• Join: A black bar with several flows entering it and one leaving it. All flows going
into the join must reach it before processing may continue. This denotes the end
of parallel processing.

• Decision/Branch: A diamond with one flow entering and several leaving. It
allows showing alternative flows within the workflow. The flows leaving include
guard conditions.

• Guard condition: Text such as [Incorrect Form] on a flow. Once the activity has
been completed, it controls which transition of a set of alternative transitions the
flow follows.

174

• Merge: A diamond with several flows entering and one leaving. The implication
is that one or more incoming flows must reach this point before processing can
continues, based on any of guards on the outgoing flow.

• Partition: Is organized into three partitions, also called swim lanes, indicating
who/what is performing the activities (the Applicant, Registrar, or System).

• Flow final. The circle with the X through it . This indicates that the process
stops at this point.

• Note. A standard UML note to indicate that the merges do not require all three
flows to arrive before processing can continue.

Figure C.1 shows the activity diagram with explanations of its symbols.

[Yes]

[No]

Alternative
flows

Activity

Decision (branch)

Guard condition

Synchronization
Bar (Fork)

Synchronization
Bar (Join)

Transition

Concurrent
flows

Start state

End state

Figure C.1 Notation of Activity Diagrams

C.2 Activity Diagrams by Example
An activity diagram is fundamentally a complex flowchart. Activity diagrams

and statechart diagrams are associated. While a statechart diagram concentrates on an
object undertaking a process (or on a process as an object), an activity diagram
concentrates on the flow of activities concerned in a single process. The activity diagram
demonstrates how those activities are reliant on one another. The example process
“Withdraw money from a bank account through an ATM” has been used.

There are 3 classes of the activity concerned: the customer, the ATM, and the
bank. The process starts at the black start circle at and ends at the concentric
white/black stop circles at the bottom. The activities are rounded rectangles.

175

Activity diagrams can be separated into object swimlanes that decide which
object/agent is responsible for which activity. A separate transition comes out of each
activity, linking it to the next activity.

Figure C.2 shows the “Withdraw money from a bank account through an ATM”
example of the activity diagram with explanations of its symbols.

Figure C.2 Withdraw Money from a Bank Account through an ATM Activity Diagram

176

APPENDIX D: FIPA-ACL

D.1 FIPA-ACL
The Foundation for Intelligent Physical Agents (FIPA, www.fipa.org) began work in

1999 on a course of agent standards in which the centerpiece is an ACL. FIPA-ACL
(Agent Communication Language) is a language that permits agent-to-agent
communication with messages (communicative acts). Communicative acts indicate that
an agent performs an action, called communicative acts. These communicative acts send
messages, which are encoded. FIPA-ACL involves itself with inter-agent communication
through message transferring.

• FIPA-ACL comprises three libraries as follows:

o FIPA Communicative Act Library (CAL)
o FIPA Content Language Library (CLL)
o FIPA Interaction Protocol Library (IPL)

• The FIPA-ACL message structure is “filled” with concepts from the above

libraries.

FIPA ACL

OntologyFIPA CALFIPA IPLFIPA CCL

FIPA ACL message
Figure D. 1 FTPA ACL Message Structure

D.1.1 FIPA Communicative Acts Library
 The FIPA Communicative Acts Library is a broad catalogue of Communicative

Acts that can be applicable to any domain. Communicative acts (CAs) are the
fundamental blocks of a dialogue involving two agents. A communicative act is
independent of the content and is executed by just transferring a message from one
agent to another. The denotation of the communicative acts refers to mental attitude
beliefs, uncertainty, and intention.

There are two categories of communicative acts:

1) Primitive: Those atomic actions that are not created by more than one
communicative act.

2) Composed: Those actions created by more than one communicative act, and they
can be as follows:

i) Making one object of another (query-if act: “I request you to inform me
whether it is raining”)

177

ii) Using the composition operator “;” to sequence actions. (a;b means action a
followed by action b)

iii) Using the composition operator “|” to perform a particular kind of
communicative act called macro action where a set of possible disjunctive
actions (a|b means a or b but not both) is available.

The following table D.1 describes the FIPA communicative acts briefly. For more
information about FIPA Communicative Act Library, refer to FIPA-ACL
communicative acts specification [XC00037H.pdf].

FIPA ACL Communicative Acts

Performative Description
accept-proposal sender accepts proposal made by other agent

agree sender agrees to carry out requested action

cancel Follows request; indicates intention behind request is not
valid any more

cfp call for proposals; initiates negotiation between agents;
content-parameter contains action (desired to be done by
some other agent) (e.g.: "sell me car") and condition
(e.g.: "price < 1000$")

confirm confirm truth of content (recipient was unsure)

disconfirm confirm falsity of content (recipient was unsure)

failure attempt to do requested action failed
inform together with request most important performative;

basic mechanism for communicating information; sender
wants recipient to believe info; sender believes info itself

inform-if informs other agent about truth of statement (in its
content parameter) if it is true; typically content of
request message (thus asking the receiver to inform
me if statement is true)

inform-ref informs other agent about value of expression (in its
content parameter); typically content of request
message (thus asking the receiver to give me value of
expression)

not-understood sender indicates that it recognized that an action was
performed by other agent but it did not understood why it
was performed. (-> error handling mechanism)

propagate request to propagate a message to specified agents

propose make proposal
proxy same as propagate but with proxy functionality

query-if direct query for the truth of a statement

query-ref direct query for the value of an expression

refuse reject request

reject-proposal sender does not accept proposal
request issue request for an action

request-when issue request to do action if and when a
statement is true

request-whenever issue request to do action if and whenever a
statement is true

subscribe sender asks to be notified when statement changes

Table D. 1 Table D.1 FIPA Communicative Acts

178

D.1.2 FIPA Interaction Protocols Library
 Protocols are patterns in which conversations between agents often fall into. A

designer can make an agent complex enough, in order that the protocols arise
impulsively from themselves, or the designer can state beforehand the protocol that
the agents are going to pursue. A straightforward model of a protocol is given by the
FIPA-request interaction protocol. This protocol permits one agent to request another
to execute some action, and the receiving agent to execute the action or to reply saying
that it cannot achieve it. The agents should follow these protocols in order to achieve
successful conversations.

FIPA Request Interaction Protocol
 The FIPA Request Interaction Protocol (IP) permits one agent to demand

another to execute an action. This protocol is illustrated in Figure D.2, which is
founded on extensions to UML 1.x. [Odell 2001]. This protocol is recognized by the
token FIPA-request as the value of the protocol parameter of the ACL message.

Figure D.2 FIPA Request Interaction Protocol

Explanation of the Protocol Flow
 The participant administers the request and makes a decision whether to consent

or decline the request. If decision is declined, then “refused” becomes true and the
participant communicates a refuse. Otherwise, “agreed” then becomes true.

 The participant communicates an agree if conditions signify that an explicit

agreement is necessary (that is, “notification necessary” is true). The agree may be
discretional depending on situations, for example, if the requested action is very rapid
and can happen before a time denoted in the reply-by parameter. As soon as the
request has been agreed upon, then the participant must convey either:

179

• A failure if it fails in its attempt to fill the request,
• An inform-done if it successfully completes the request and only wishes to

indicate that it is done, or,
• An inform-result if it wishes to indicate both that it is done and notify the

initiator of the results.

 Any communication using this interaction protocol is recognized by a

internationally unique, non-null conversation-ID parameter, which is assigned by the
initiator. All of the ACL messages must be labeled with this conversation identifier by
agents concerned in the interaction. This enables each agent to administer its
communication strategies and activities. It allows, for example, an agent to pinpoint
individual conversations and to rationalize across historical records of conversations.

Exceptions to Protocol Flow
 The receiver of a communication can notify the sender that it did not

comprehend what was communicated at any point in the IP by returning a not-
understood message. As such, Figure D.3 does not portray a not-understood
communication as it can occur at any stage in the IP. The communication of a not-
understood within an interaction protocol may terminate the complete IP and
termination of the interaction may mean that any obligations made during the
interaction are null and void.

 At any point in the IP, the initiator of the IP may withdraw the interaction

protocol by initiating the meta-protocol depicted in Figure D.3. The conversation-ID
parameter of the cancel interaction is the same as the conversation-ID parameter of
the interaction that the initiator aims to withdraw. The semantics of cancel should
generally be understood as denoting that the initiator is no longer concerned about
continuing the interaction and that it should be terminated in a method suitable to
both the initiator and the participant. The participant either notifies the initiator that
the interaction is complete using an inform-done or indicates the breakdown of the
cancellation using a failure.

Figure D. 3 FIPA Request Interaction Protocol

This IP is a pattern for a simple interaction form. It is necessary to embellish on this
pattern in order to identify all cases that might happen in an genuine agent interaction.
Real-world matters such as the effects of cancelling actions, asynchrony, irregular or
unexpected IP termination, nested IPs, and the like, are explicitly not tackled here.

180

D.1.3 Messages in FIPA ACL
 It is not essential for an agent to execute every type of a message but there are

some negligible necessities for an agent to be ACL compliant:

1. Agents are able to send and understand “not-understood” messages.
2. ACL messages must be correctly implemented according to the semantic

definition.
3. ACL communicative acts must be correctly implemented according to their

definitions.
4. New communicative acts should not mean the same as other pre-defined

standard acts.

 Agents must be able to appropriately generate a syntactically well-formed
message in the carrying form that relates to the message they want to dispatch.

D.1.3.1 Message structure
 A FIPA ACL-message consists of a set of one or more message parameters. The

parameters are required for a successful agent communication and will differ
according to the circumstances. The performative is the only parameter that is
compulsory in all ACL messages. It is anticipated that most ACL messages will also
contain a sender, a receiver and a content parameters. An agent can reply with the
suitable not-understood message if it does not recognize or is not capable to
administer one or more of the parameters or parameter.

 When the value can be presumed by the context of the conversation, some

parameters of the message may be deleted. However, FIPA does not identify any
means to deal with such conditions, therefore the implementations that omit some
message parameters are not assured to function with each other. The full set of FIPA
ACL message parameters are clarified and is shown in Table D.2.

Parameter Category of Parameters
performative Denotes the type of the communicative act of the ACL message

sender Denotes the identity of the sender of the message, that is, the name of
the agent of the communicative act.

receiver Denotes the identity of the intended recipients of the message.

reply-to This parameter indicates that subsequent messages in this conversation
thread are to be directed to the agent named in the reply-to parameter,
instead of to the agent named in the sender parameter.

content Denotes the content of the message; equivalently denotes the object of
the action. The meaning of the content of any ACL message is
intended to be interpreted by the receiver of the message. This is
particularly relevant for instance when referring to referential
expressions, whose interpretation might be different for the sender and
the receiver.

language Denotes the language in which the content parameter is expressed

encoding Denotes the specific encoding of the content language expression

ontology Denotes the ontology(s) used to give a meaning to the symbols in the
content expression.

protocol Denotes the interaction protocol that the sending agent is employing
with this ACL message

181

conversation-id Introduces an expression (a conversation identifier) which is used to
identify the ongoing sequence of communicative acts that together
form a conversation.

reply-with Introduces an expression that will be used by the responding agent to
identify this message.

in-reply-to Denotes an expression that references an earlier action to which this
message is a reply.

reply-by Denotes a time and/or date expression which indicates the latest time
by which the sending agent would like to receive a reply.

Table D.2 FIPA ACL Message Parameters

The following examples show some FIPA messages with some parameters:

1. Agent i requests j to open a file.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "open \"db.txt\" for input"
 :language vb)

2. Agent i informs j that it accepts an offer from j to stream a given multimedia
title to channel 19 when the customer is ready. Agent i will inform j of this fact
when appropriate.

(accept-proposal
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :in-reply-to bid089
 :content
 ((action (agent-identifier :name j)
 (stream-content movie1234 19))
 (B (agent-identifier :name j)
 (ready customer78)))
 :language FIPA-SL)

3. Agent i (a job-shop scheduler) requests j (a robot) to deliver a box to a certain
location. J answers that it agrees to the request but it has low priority.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19))))
 :protocol fipa-request
 :language FIPA-SL
 :reply-with order567)

182

(agree
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19)))
 (priority order567 low))
 :in-reply-to order567
 :protocol fipa-request
 :language FIPA-SL)

4. Agent i confirms to agent j that it is, in fact, true that it is snowing today.

(confirm
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "weather (today, snowing)"
:language Prolog)

More details can be found at
http://www.fipa.org/specs/fipa00037/XC00037H.html

183

APPENDIX E: JADEX FRAMEWORK

E.1 Jadex

 Based on the concept of agents with mental states, intelligent agents are a

modeling example. The Jadex reasoning engine follows the Belief Desire Intention
(BDI) model. It assists easy intelligent agent production with sound software
engineering fundamentals. It allows for programming intelligent software agents in
XML and Java and can be installed on different varieties of middleware such as JADE.

 Several different constituent elements have to be built in order to allow the

creation of intelligent agents. It is essential to supply an agent architecture that takes
into account agent-internal, agent society and artificial intelligence (AI) theories. It is a
asset of agent research that fascinating research results in various isolated areas are
present, but that these outcomes are not incorporated into super ordinated
architectures. As a result, until now no standards can address the creation of
intelligent agents in all features.

 The Jadex project assists these properties with an open research map that

summarizes the research areas of concern and the actual work in development in these
areas. Everyone is invited to contribute his/her ideas and practical improvements as in
the spirit of an open-source project.

E.2 Features
 The following sections highlight some of the present characteristics of Jadex. In

summary, Jadex is a Java based, allows the development of goal-oriented agents
following the BDI model, and is a FIPA compliant agent environment. Jadex offers a
framework and a set of improvement tools to simplify the construction and testing of
agents.

E.2.1 Java Based
 Without forgoing the expressional ability of the agent paradigm, the Jadex

project aims to make the growth of agent-based systems as easy as possible. To
promote a smooth conversion from traditional distributed systems to the development
of (multi-) agent systems, ingrained object-oriented concepts and technologies should
be utilized wherever possible. It is feasible to create agent systems without having to
study a new programming language by using Jadex. It is designed to assist the
implementation of agents in the extensive Java programming language, therefore
permitting the reuse of a immense amount of on hand tools and libraries.

184

E.2.2 FIPA Compliant
 The opportune availability of standards to assure interoperability between

growing products is one of the main success factors of a new technology. In order to
assist the interoperability of independently developed (multi-) agent systems, the
Foundation for Intelligent Physical Agents (FIPA) issued a set of specifications, which
are generally called “the FIPA standard”. As shown in figure E.1, the FIPA standard
indicates an agent platform architecture, which classifies services such as agent
management and a directory facilitator. This architecture allows agents to correspond
using a common agent communication language.

Figure E.1 FIPA Agent Management

 Jadex is based on the JADE Agent Framework, an open source development by
the Telecom Italia Lab, in order to attain FIPA-compliancy. JADE offer the platform
architecture and the central services and message transport mechanisms as
commanded by the FIPA specifications. Further benefits of using JADE occur from
its stability, characteristics such as agent deployment and debugging tools, and its
considerable and active user base. Figure E.1 shows FIPA agent management.

E.2.3 Goal-Oriented Agents
 The agent notion is regarded as a significant software development paradigm and

is highly suited to address the complexity of today’s significant software systems. It
permits the presentation of a system as being organized of autonomous cooperating
entities, which act in a rational manner and chase their own goals. The internal state
and determination process of agents is consequently modeled in an instinctive
approach following the concept of mental attitudes. Goal orientation means that,
instead of directly demanding the agents to execute certain actions, the developer can
classify goals that are conceptual for the agents, in this manner supplying a certain
amount of flexibility on how to accomplish the goals.

185

 The BDI Model, based on the mental attitudes belief, desire, and intention, was

first presented as a philosophical model for modeling reasonable (human) agents, but
was later taken on and changed into an implementation model for software agents,
which was the foundation on the notion of beliefs, goals, and plans. This model is
integrated into JADE agents by Jadex, through introducing beliefs, goals, and plans as
unparalleled objects that can be produced and influenced inside the agent. Agents
have beliefs in Jadex, which can be any sort of Java object and are accumulate in a
belief base. Goals are implicit or explicit explanations of states to be realized. To
accomplish its goals the agent carries out plans, which have procedural formula coded
in Java.

Figure E.2 FIPA Agent Management.

E.2.4 Framework
 The Jadex framework is composed of API, an execution model, and predefined

reusable generic functionality. The API offers admission to the Jadex theories when
programming plans. Plans are plain Java classes, developing a specific abstract class,
which provides practical technique e.g. for transferring messages, transmitting sub
goals or waiting for events. By using the API of the belief base, plans are able to read
and change the beliefs of the agent. A special feature of Jadex is that in addition to
recovering saved facts, an intuitive OQL-like query language allows a formulation of
arbitrary complex expressions using the objects enclosed in the belief base.

 In addition to the plans coded in Java, the developer supplies an XML based
Agent Definition File (ADF), which identifies the initial beliefs, goals, and plans of an

186

agent. The Jadex runtime engine interprets this file to instantiate an agent model, and
performs the agent by keeping track of its goals while constantly selecting and
executing plan steps, founded on internal events and messages from other agents.
Jadex is provided with some predefined functionality e.g. to admission a directory
facilitator service. The functionality, coded in unconnected plans, is written in reusable
agent modules called capabilities, portrayed in a format similar to the ADF, and can be
effortlessly plugged into existing agents.

E.2.5 Development Tools
 Obtainable tool support is a significant quality aspect of any development

environment. Jadex is built on top of JADE and there are, as a result, many readily
available tools that can be used with Jadex. This is not only true for the tools included
in JADE, such as the Sniffer or the DummyAgent, but also regards third party tools
like the beangenerator plug-in for the ontology design tool Protégé.

 Alternatively, the new concepts presented by Jadex have to be supported as well.

Therefore, tools have been created to aid the developer to deal with these features e.g.
related to the BDI model. The BDI Viewer tool allows the presentation of the internal
state of a Jadex agent, that is, its current beliefs, goals, and plans (see picture). The
Jadex Introspector is comparable to the JADE Introspector, allowing observing and
manipulation of the execution of an agent, by observing and influencing how
incoming events are handled. For debugging reasons, the Introspector also allows to
put an agent into single-step mode (shown in the screenshot). As well as the Jadex
specific tools, a Logger Agent is provided, which allows the compilation and
presentation of log messages from JADE and Jadex agents, following the Java
Logging API.

187

REFERENCES

Abdelaziz, T., Elammari, M. and Unland, R., “A Framework for the Evaluation of Agent-
oriented Methodologies”, In: 4th International Conference on Innovations in Information
Technology. Dubai, UAE, 2007.

Adams, F. and Campbell, K., “Modality and Abstract Concepts”, Behavioral and Brain
Sciences, Pages 22, 610, 1999.

AgenTool, 2000. : In http://www.cis.ksu.edu/~sdeloach/ai/agentool.htm.

Agtivity. :In http://www.agtivity.com.

Alonso, F., Frutos, S., Martínez, L., and Montes, C., “SONIA: A Methodology for Natural
Agent Development”, ESAW, 2004.

Amyot, D., “About Use Case Maps”, 2006. : In http://www.usecasemaps.org/aboutu-
cms.shtml.

Amyot, D., “Use Case Maps and UML for Complex Software-Driven Systems”, Technical
Report, 1999. : In http://www.usecasemaps.org.

Amyot1, D. and Mussbacher, G., “Bridging the Requirements/Design Gap in Dynamic Systems
with Use Case Maps (UCMs)”, ICSE 2001,Pages 743-744, Toronto, Canada, 2001.

Amyot2, D. and Mussbacher, G., “Use Case Maps Bridging The Gap Between Requirements
And Design”, RE'01, Toronto, Canada, 2001.

Amyot, D. and Mussbacher, G., “On the Extension of UML with Use case Maps Concepts”,
UML 2000 - The Unified Modeling Language. Advancing the Standard. Third
International Conference, York, UK, 2000.

Arazy, O. and Woo, C., “Analysis and design of agent-oriented information systems”, The
Knowledge Engineering Review, 17(2), 2002.

Arenas, A. E. García-Ojeda, J. C. and Pérez-Alcázar, J. J., “On Combining Organisational
Modelling and Graphical Languages for the Development of Multiagent Systems”, Integrated
Computer-Aided Engineering, 11 (2) Pages 151-163 Hojjat Adeli (Eds), IOS Press, 2004.

Armstrong, D., “A Materialist Theory of Mind”, London: Routledge, 1968.

Avison, D. E. and Fitzgerald, G., “Where now for development methodologies?”, Communicatio-
ns of the ACM 46 (1) Pages 79-82., 2003.

Avison, D. and Fitzgerald, G., “Information Systems Development: Methodologies, Techniques and
Tools”, McGraw-Hill, New York, 2nd edition, 1995.

Ayer, A.J., “Logical Positivism”, New York: The Free Press. 1959.

188

Barsalou, L., “Perceptual Symbol Systems”, Behavioral and Brain Sciences, 22, Pages 577-
609, 1999.

Bauer, B. and Odell, J., “UML 2.0 and agents: how to build agent-based systems with the new
UML standard”, Journal of Engineering Applications of Artificial Intelligence Vol. 18,
Issue 2, 2005.

Belina, F., Hofgrefe, D. and Sarma, A., “SDL with Applications from Protocol Specification”,
Prentice Hall Int., Hertfordshire, UK, 1991.

Berard E.V., “A comparison of object-oriented methodologies”, Technical report, Object agency
Inc., 1995.

Bobkowska, A. E., “Framework for methodologies of visual modeling language evaluation”,
Proceedings of the symposia on Metainformatics, ACM Press 2005.

Booch, G., Rumbaugh, J. and Jacobson, I., “The Unified Modeling Language User Guide”,
Addison Wesley, 1998.

Bordeleau, F. and Buhr, R.J.A., “The UCM-ROOM Design Method: from Use Case Mapsto
Communicating State Machines”, In: Conference on the Engineering of Computer-Based
Systems, Monterey, USA, 1997.

Bordeleau, F., “A Systematic and Traceable Progression from Scenario Models to Communicating
Hierarchical Finite State Machines”, Ph.D. thesis, SCS, Carleton University, Ottawa, Canada,
1999.

Bordini, R. H., Dastani, M., Dix, J. and El Fallah Seghrouchni A., editors, “Multi-Agent
Programming: Languages, Platforms and Applications”, Number 15 in Multiagent Systems,
Artificial Societies, and Simulated Organizations. Springer, 2005.

Bordini, R. H., Hubner, J. F., et al, “Jason: A Java-based agentSpeak interpreter used with saci
for multi-agent distribution over the net”, manual, first release edition, 2004. : In http://jason.-
sourceforge.net/.

Bordini, R. H., Hübner, J. F., et al. “Jason”, manual, release 0.7 edition, Aug. 2005. : In
http://jason.sf.net/.

Bratman, M.E., “Intentions, Plans, and Practical Reason”, Harvard University Press,
Cambridge, 1987-1999.

Braubach, L., Pokahr, A. and Lamersdorf W., “Jadex: A Short Overview”, in: Main
Conference Net.ObjectDays, Erfurt, Germany, 2004.

Braubach, L., Pokahr, A., Moldt, D. and Lamersdorf W., “Goal representation for BDI agent
systems”, In R. Bordini, M. Dastani, J. Dix . and A. El Fallah Seghrouchni, editors,
Programming Multi-Agent Systems, second Int. Workshop (ProMAS’04), vol. 3346 of
LNAI, Pages 44–65. Springer Verlag, 2005.

Brazier, F., Jonker, C. and Treur, J., “Principles of compositional multi-agent system development”,

189

In Proceedings of Conference on Information Technology and Knowledge Systems,
Pages 347–360. Austrian Computer Society, 1998.

Brazier, F. M. T., Dunin-Keplicz, B., Jennings, N. and Treur, I., “Desire: Modeling Multi-
Agent Systems in a Compositional Formal Framework”, Int. Journal of Cooperative
Information Systems, Vol. 6. Special Issue on Formal Methods in Cooperative
Information Systems: Multi-agent Systems, 1997.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A., “Troops: An
agent-oriented software development methodology”, Technical Report DIT-02-0015, University of
Trento, Department of Information and Communication Technology, 2002.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A., “Tropos: an agent-
oriented software development methodology”, J. Autonomous and Multi-Agents (in press), 2003.

Buhr, R.J.A., “Use Case Maps as Architectural Entities for Complex Systems”, IEEE
Transactions on Software Engineering. Vol. 24, No. 12, Pages 1131-1155, 1998.

Buhr, R.J.A. and Casselman, R.S., “Use Case Maps for Object-Oriented Systems”, Prentice-
Hall, USA, 1995.

Burmeister, B., “Models and Methodology for Agent-Oriented Analysis and Design”, In Working
Notes of the KI'96 Workshop on Agent-Oriented Programming and Distributed
Systems, Saarbrilcken, Germany, 1996.

Burrafato, P. and Cossentino, M., “Designing a multi-agent solution for a bookstore with
the PASSI methodology”, AOIS@CAiSE, 2002.

Busetta, P., Rönnquist, R., Hodgson, A. and Lucas, A., “JACK Intelligent Agents
Componenets for Intelligent Agents in Java”, updated from AgentLink Newsletter,
http://www.agent-software.com.au/, 1999.

Bush, G., Cranefield, S. and Purvis, M., “The Styx Agent Methodology”, The Information
Science Discussion Paper Series, Number 2001/02, University of Otago, New Zealand,
2001.

Cabri, G., Ferrari, L. and Leonardo, L., “Rethinking agent roles: extending the role definition in
the BRAIN framework”, Systems, Man and Cybernetics, IEEE International Conference
on Vol. 6, Pages: 5455 - 5460, vol.6, 10-13 Oct. 2004.

Caire, G., Leal, F., Chainho, P., Evans, R., Garrijo F., Gomez, J., Pavon J., Kearney, P.,
Stark, J. and Massonet, P., “Agent oriented analysis using MESSAGE/UML”. In Second
International Workshop on Agent-Oriented Software Engineering (AOSE-2001), Pages
101-108, 2001.

Caire, G., Leal, F., Chainho, P., Evans, R., Jorge, F. G., Pavon, J., G., Kearney, P., Stark,
J. and Massonet, P., “Methodology for agent-oriented software engineering”, Technical
Information Final version, European Institute for Research and Strategic Studies in
Telecommunications (EURESCOM), 2001.

190

Calisti, M., Funk, P., Biellman, S. and Bugnon, T., “A multi-agent system for organ transplant
management”, In A. Moreno and J. Nealon, editors, Applications of Software Agent
Technology in the HealthCare Domain, Pages 199–212. Birkhäuser Verlag, 2004.

Castro, J., Candida, R., Castor, A. and Mylopoulos, J., “Requirements Traceability in Agent
Oriented Software Engineering”, Book chapter In Software Engineering for Large-Scale
Multi-Agent Systems: Research Issues and Practical Applications, LNCS 2603, Springer
Verlag. 2003.

Castro, J., Kolp, M. and Mylopoulos, J., “Towards requirements-driven information systems
engineering”, the TROPOS project. Information Systems, 27: Pages 365-389, 2002.

Cernuzzi, L. and Rossi, G. “On the evaluation of agent oriented modeling methods”, In
Proceedings of Agent Oriented Methodology Workshop, Seattle, 2002.

Castro, J., Kolp, M. and Mylopoulos, J., “A requirements-driven development methodology”, In
Proceedings of the 13th International Conference on Advanced Information Systems
Engineering (CAiSE'01), Interlaken, Switzerland, 2001.

Clark, K. and McCabe, F., “Go! A multiparadigm programming language for implementing multi-
threaded agents”, Annals of Mathematics and Artificial Intelligence, 41(2–4): Pages 171–
206, 2004.

Cohen, P.R. and Levesque H.J., “Intention is choice with commitment” ,Artificial Intelligence,
1990.

Collinot, A., Carle, P. and Zeghal, K., “Cassiopeia: A Method for Designing Computational
Organizations”, Proc. of the First Int. Workshop on Decentralized Intelligent Multi-Agent
Systems. Krakow, Poland, Pages 124-131,1995.

Costantini, S. and Tocchio, A., “A logic programming language for multi-agent systems”, In
Proceedings of the 8th European Conference on Logics in Artificial Intelligence
(JELIA’02), vol. 2424 of LNAI, Pages 1–13, Springer, 2002.

Constantine, L. and Lockwood, L., “Structure and style in use cases for user interface design,
Object modeling and user interface design: designing interactive systems”, Addison-Wesley Longman
Publishing Co., Inc., Boston, 2001.

Cossentino, M. and Potts, C., “PASSI: A process for specifying and implementing multi-agent
systems using UML”, (2002). : In http://www.cc.gatech.edu/classes/AY2002/cs6300_f-
all/ICSE.pdf.

Dam, K. H. and Winikoff, M., “Comparing Agent-Oriented Methodologies”, the International
Bi -Conference Workshop on Agent-Oriented Information Systems (AOIS), 2003.

Dam, K. H., and Winikoff, M., “Survey on Agent-Oriented Methodologies”, 2002. : In
http://yallara.cs.rmit.edu.au/~kdam/Questionnaire/Questionnaire.html.

Dastani M., Hulstijn, J., Dignum, F. and Meyer, J., “Issues in Multi-agent System

191

Development”, AAMAS, 922-929, 2004.

Dastani M., “AgentLink-III Technical Forum Group, Programming Multi-agent System,
PROMAS”, Report, 2004.

D’Inverno, M. and Luck, M., “Understanding agent systems”, agent landscape, Pages 3, 2004.
: In http://www.springer.com/978-3-540-40700-3.

D'Inverno, M., Kinny, D., Luck, M. and Wooldridge, M., “A Formal Specification of
dMARS”, Tech. Rep. 72, Australian Artificial Intelligence Institute, Melbourne, Australia,
1997.

DeLoach, S. A., “The MaSE Methodology”, In Methodologies and Software Engineering
for Agent System, The Agent-Oriented Software Engineering Handbook Series: Multi-
agent Systems, Artificial Societies, and Simulated Organizations, Vol. 11. Bergenti,
Federico; Gleizes, Marie-Pierre; Zambonelli, Franco (Eds.) Kluwer Academic Publishing
(available via Springer), 2004.

DeLoach, S. A., Wood, M. F. and Sparkman, C. H., “Multi-agent systems engineering”,
International Journal of Software Engineering and Knowledge Engineering, 11(3): Pages
231-258, 2001.

Dittrich K. R., Gatziu S., Geppert A., “The Active Database Management System Manifesto A
Rulebase of ADBMS Features”, Lecture Notes in Computer Science 985 ISBN 3-540-
60365-4, Springer, pages 3-20, 1995.

Edmunson, S. A., Botterbusch, R. D. and Bigelow, T. A., “Application of System Modeling to
the Development of Complex Systems”, In Proceedings of the Digital Avionics Systems
Conference, IEEE/AIAA 11th Vol, Issue, 5-8 : Pages 138 - 142, 1992.

Elammari, M. and Lalonde, W., “An Agent-Oriented Methodology: High-Level and Intermediate
Models”, HLIM, Proceedings of AOIS-1999, Heidelberg 1999.

Eric S. K. Y. and Cysneiros, L., “Agent-Oriented Methodologies - Towards A Challenge
Exemplar”, Proceedings of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems AOIS@CAiSE, Toronto, Ontario, Canada, 2002.

EU-Rent, EU-Corporation. : In http://www.businessrulesgroup.org/egsbrg.shtml.

FIPA.: In http://www.fipa.org/.

FIPA ACL. : In http://www.fipa.org/repository/aclspecs.html.

FIPA-OS. : In http://jmvidal.ece.sc.edu/talks/fipa-os/.

Fisher, M., “Representing and executing agent-based systems”, In Wooldridge, M. and Jennings,
N. editors, Intelligent Agents, Lecture Notes in Artificial in Artificial Intelligence,
Springer-Verlag, Vol. 890, Pages 307-323., Berlin, 1995.

Franklin, S. and Gasser, A., “Is it an Agent, or just a Program?: A Taxonomy for Autonomous

192

Agents”, Proc. of ATAL, 1996.

Genesereth, M. R. and Nilsson, N., “Logical Foundations of Artificial Intelligence”, Morgan
Kaufmann Publishers: San Mateo, CA., 1987.

Gervais, M., “ODAC: An Agent-Oriented Methodology Based on ODP”, Journal of
Autonomous Agents and Multi-Agent Systems, Vol. 7(3), Pages 199-228, 2003.

Giunchiglia, F., Mylopoulos, J. and Perini, A., “The Tropos software development methodology:
Processes, Models and Diagrams”. In Third International Workshop on Agent-Oriented
Software Engineering, 2002.

Glaser, N., “The CoMoMAS Methodology and Environment for Multi-Agent System Development”,
In Multi-Agent Systems - Methodologies and Applications, LNAI 1286. Springer-Verlag,
Pages 1-16, Berlin,1997.

Georgeff, M. P., Pell, B., Pollack, M. E., Tambe, M. and Wooldridge M., “The DBI belief-
desire-intention model of agency”, In Jörg P. Möuller, Munindar P. Singh, and Anand S. Rao,
editors, ATAL, vol. 1555 of Lecture Notes in Computer Science, Pages 1–10. Springer,
1998.

Goodwin, R., “Formalizing Properties of Agents”, Journal of Logic and Computation, 5(6):
Pages 763-781, 1995.

Graham, I., Henderson-Sellers, B., Younessi, H., “The OPEN Process Specification”,
Addison-Wesley, 1997.

Hay D. and Healy K. A., “Defining Business Rules - What Are They Really?”, Final Report,
revision 1.3, 2000. : In http://businessrulesgroup.org/first_paper/br01c0.htm.

Henderson-Sellers, B. and Giorgini, P., “Agent-oriented Methodologies”, Idea Group, 2005.

Hindriks, K.V., de Boer, F.S., van der Hoek W., and Meyer, J. J., “Agent programming in
3APL”, Autonomous Agents and Multi-Agent Systems, 2(4): 357 401, 1999.

Hong, S., Van den Goor, G. and Brinkkemper, S., “A formal approach to the comparison of
object-oriented analysis and design methodologies”, In The Twenty-Sixth Annual Hawaii
International conference on System Sciences, Pages 689-699, Hawaii, 1993.

Huber M. J., “JAM: A BDI-theoretic Mobile Agent Architecture”, In AgentLink News, Issue
5, pages 2-5, 2000.

IBM agent. : In http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm.

Iglesias C., Garrijo, M. and Gonzalez, J., “A survey of agent-oriented methodologies”, In
proceedings of the 5th International Workshop on Intelligent Agents V: Agent Theories,
Architectures, and Languages (ATAL-98), vol. 1555, Springer-Verlag, Pages 317-330,
Heidelberg, Germany, 1999.

Iglesias, C.A., Garrijo, M., Gonzalez, J.C. and Velasco, J. R., “Analysis and Design of Multi-
agent Systems using MAS-CommonKADS”, In Intelligent Agents IV: Agent Theories,

193

Architectures, and Languages (ATAL97), LNAI 1365. Springer-Verlag, Pages 313-326,
Berlin,1999.

Iivari, J., Hirschheim, R. and Klein, H., “Beyond Methodologies: Keeping up with Information
Systems Development Approaches through Dynamic Classification”, HICSS, 1999.

Intelligent Agent Factory, 2000. : In http://www.bitpix.com.

JADE. Java Agent Development Framework, 1999. : In http://jade.cselt.it.

JATLite, 2000. : In http://java.stanford.edu/java agent/html/.

Jayaratna, N., “Understanding and evaluating methodologies, NISAD: A systematic framework”,
Maidenhead, UK: McGraw-Hill, 1994.

Jennings, N.R., Sycara, K. and Wooldridge, M., “A Roadmap of Agent Research and
Development”, In: Autonomous Agents and Multi-Agent Systems Journal, Jennings,
Kluwer Academic, Vol. 1, Issue 1, Pages 7-38, Publishers, Boston, 1998.

Jennings, N. R. and Wooldridge, M., “Agent-Oriented Software Engineering”, in proceedings
of the 9th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World: Multi-Agent System Engineering (MAAMAW-99), vol. 1647, Springer-Verlag:
Heidelberg, Germany, 1999.

Juan, T., Pierce, A. and Sterling, L., “Roadmap: Extending the gaia methodology for complex open
systems”, In Proceedings of the 1st ACM Joint Conference on Autonomous Agents and
Multi-Agent Systems (Bologna, Italy), ACM, New York, Pages 3–10, 2002.

Juan, T., Sterling, L. and Winikoff, M., “Assembling Agent-Oriented Software Engineering
Methodologies from Features”, in the Proceedings of the Third International Workshop on
Agent-Oriented Software Engineering, at AAMAS’02, Bologna, Italy, 2002.

Kendall E., “Agent Roles and Role Models: New Abstractions for Multi-agent System Analysis and
Design”, Proceedings of the International Workshop on Intelligent Agents in Information
and Process Management, Bremen, Germany, 1998.

Kendall, E. A., Malkoun, M. T. and Jiang, C. H., “A Methodology for Developing Agent Based
Systems”, In Distributed Artificial Intelligence Architecture and Modeling, LNAI 1087.
Springer-Verlag, Pages 85-99, Germany,1996.

Kinny, D., Georgeff, M. and Rao, A., “A methodology and modelling technique for systems of
BDI agents”, In Proceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, LNAI Vol. 1038, Springer-Verlag, Pages
56-71, Berlin, 1996.

Kruchten, P., “The Rational Unified Process: An Introduction”, Addison-Wesley Pub Co, 2nd
edition, 2000.

Krupansky, J. W., “Foundations of Software Agent Technology”, Agtivity: Advancing the
Science of Software Agent Technology, http://www.agtivity.com. 2008.

194

LEAP, 2000. : In http://leap.crm-paris.com/.

Leite, J. A., “Evolving Knowledge Bases”, vol. 81 of Frontiers in Artificial Intelligence and
Applications. IOS Press, 2003.

Leite, J. A., Alferes, J. J. and Pereira, L. M., “MINERVA- a dynamic logic programming agent
architecture”, Intelligent Agents VIII Agent Theories, Architectures, and Languages, vol.
2333 of LNAI, Pages 141– 157. Springer, 2002.

Lind, I., “Iterative Software Engineering for Multiagent Systems: The MASSIVE method”, LNCS-
1994. Springer-Verlag, 2001.

Luck, M., McBurney, P. and Preist, C., “Agent Technology: Enabling Next Generation
Computing (A Roadmap for Agent Based Computing)”, AgentLink, 2003.

Luck, M., McBurney, P., Shehory, O. and Willmott, S., “Agent Technology: Computing as
Interaction (A Roadmap for Agent Based Computing)”, AgentLink, 2005.

Maes, P., “Artificial Life Meets Entertainment: Lifelike Autonomous Agents”, Commun. ACM
38(11): Pages 108-114, 1995.

Maes, P., “ The Agent Network Architecture”, SIGART Bulletin, 2(4): Pages 115-120, 1991.

Luck, M., Griffiths, N. and d’Inverno M., “From agent theory to agent construction: A case
study”, In J. P. Muller, M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III
LNAI Vol. 1193, Springer-Verlag, Pages 49-64, Berlin, Germany, 1997.

MADKIT., “Multi-Agent Development KIT”, 1999. : In http://www.madkit.org/.

Morrow C., “Misconceptions Scientists Often Have about the National Science Education
Standards”, White paper available from the Space Science Institute, 2000.

Moulin, B. and Cloutier, L., “Collaborative Work Based on Multi-Agent Architectures: A
Methodological Perspective”, InSoft Computing: Fuzzy Logic, Neural Networks and
Distributed Artificial Intelligence. Prentice-Hall, N.J., Pages 261-296, USA 1994.

Mylopoulos, J., Kolp, J. and Castro, J., “UML for agent-oriented software development: the Tropos
proposal”, in «UML»2001 – The Unified Modeling Language, LNCS Vol. 2185, Springer-
Verlag, Pages 422-441, 2001.

Odell J., “Objects and agents compared”, Journal of Object Technology, 1(1): Pages 41-53,
2002.

Odell, J., et-al., “Agent UML”, 2001. : In http://www.auml.org/.

Odell, J., Parunak, H., Fleischer, V. and Breuckner, S., “Modeling Agents and their
Environment”, Agent-Oriented Software Engineering (AOSE) III, Springer, Berlin, 2002.

Odell, J., Van Dyke P.H. and Bauer, B., “Representing Agent Interaction Protocols in UML”, In,

195

Agent-Oriented Software Engineering, Springer, Pages 121-140, Berlin, 2001.

Odell, J., Parunak, H.V.D. and Bauer, B. “Extending UML for Agents”,In Proceedings of
the Agent-Oriented Information Systems Workshop (AOIS) at the 17th National
Conference on Artificial Intelligence, Pages 3-17, Austin, Texas, 2000.

O'Malley, S. A. and DeLoach, S. A., “Determining when to use an agent-oriented software
engineering”, In Proceedings of the Second International Workshop On Agent-Oriented
Software Engineering (AOSE-2001), Pages 188-205, Montreal, 2001.

Omicini, A., “SODA: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems”, in agent-Oriented Software Engineering, LNAI 1957, Springer-Verlag.
Pages 185-194, Berlin, 2001.

Omicini, A. and Denti, E., “From tuple spaces to tuple centres”, Science of Computer
Programming, 41(3): Pages 277–294, 2001.

Omicin, A. and Denti, E., “Formal ReSpecT”, Electronic Notes in Theoretical Computer
Science, 48, Pages 179–196, 2001.

Omicini, A. and Zambonelli, F., “Coordination for Internet application development”, Int. J. of
AutonomousAgents and Multi-Agent Systems, 2(3). Pages 251–269, 1999.

Padgham, L. and Winikoff, M., “Prometheus: A Methodology for Developing Intelligent
Agents”, In Agent-Oriented Software Engineering III, LNCS 2585, Springer-Verlag,
Pages 174-185, Berlin, 2003.

Padgham, L. and Winikoff, M., “Prometheus: A pragmatic methodology for engineering intelligent
agents”, In Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, Pages 97-108, Seattle, 2002.

Parsons, S. and Giorgini, P., “On using degrees of belief in BDI agents”, International
Conference on Information Processing and Management of Uncertainty in Knowledge
Based Systems, Paris, 1998.

Prasse, M., “Evaluation of object-oriented modelling languages: A comparison between OML and
UML”, In Martin Schader and Axel Korthaus, editors, The Unified Modeling Language
– Technical Aspects and Applications, Physica-Verlag, Pages 58-75, Heidelberg, 1998.

Pollack, M., “The Use of Plans”, Artificial Intelligence, Pages 43-68, 1992.

Rao, A.A. and Georgeff M.P., “Modeling rational agents within a BDI-architecture”, In Allen, J.,
Fikes, R. and Sandewall, E., editors. Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann
Publishers, San Mateo, Ca, 1991.

Rao, A.S., “AgentSpeak (L): BDI agents speak out in a logical computable language”, In
Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-96), Lecture Notes in Artificial Intelligence Vol. 1038,
Springer-Verlag, Pages 42-55, 1996.

196

Rao, A. S. and Georgeff, M. P., “BDI Agents: From Theory to Practice”, In Proc. 1st Int.
Conf. on Multi-Agent Systems (ICMAS'95), San Francisco, CA, Pages 312–319, 1995.

Riecken, D., “An architecture of integrated agents”, Communications of the ACM, 37(7),
Pages 107–116, 1994.

Rumbaugh, J., “Notation notes: Principles for choosing notation”, Journal of Object-Oriented
Programming (JOOP), 8(10) Pages 11-14, 1996.

Russell, S. and Norvig, P., “Artificial Intelligence: A Modern Approach”, Prentice-Hall, 1995.

Rys, A., Jedrzejek, C. and Figaj, A., “Use Case Maps as an Extension of UML for System
Integration and Verification”, At the 19th European Conference on Object Oriented
Programming (ECOOP 2005) Glasgow, UK ACE, 2005.

Sabas, A., Delisle, S. and Badri, M., “A Comparative Analysis of Multiagent System Development
Methodologies, Towards a Unified Approach”, AT2AI-3, Vienna, Austria (EU), 2002.

Sales, I. and Probert, R., “From High-Level Behaviour to High-Level Design: Use Case Maps to
Specification and Description Language”, Submitted to SBRC'2000, 18th Brazilian Symposium
on Computer Networks, Belo Horizonte, Brazil, 2000.

Shehory, O. and Sturm, A., “Evaluation of modeling techniques for agent-based systems”, In Jorg
P. Miiller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents, Pages 624-631, ACM Press,
2001.

Shoham, Y., “Agent-oriented programming”, Artificial Intelligence, 60(1), Pages 51-92, 1993.

Schreiber, G., Akkermans, H., Anjewierden, A., Hoog, R. d., Shadbolt, N. R. and
Wielinga, B., “Knowledge Engineering and Management: The CommonKADS Methodology”, the
MIT Press, Massachusetts, 2000.

Shoham, Y., “An Overview of Agent-Oriented Programming”, Software Agents, Bradshaw,
AAAI Press, Menlo Park, CA, USA, 1997.

Silva, C., Tedesco, P., Castro, J. and Pinto, R., “Comparing Agent Orient-d Methodologies Using
the NFR Approach”, 3rd International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS), 2004.

Sirbu, M. and Tygar, J.D., “NetBill: An Internet Commerce System Optimized for Network-
Delivered Services”, IEEE Personal Communications COMPCON, Pages 20-25, 1995.

Sturm, A. and Shehory, O., “A Framework for Evaluating Agent-Oriented Methodologies”,
Workshop on Agent-Oriented Information System (AOIS), Melbourne, Australia, AOIS,
2003.

Sturm, A., Dori, D. and Shehory, O., “Single-Model Method for Specifying Multi-Agent
Systems”, The Second International Joint Conference on Autonomous Agents and Multi-
Agent Systems, Melbourne, Australia, 2003.

197

Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Özcan, F. and Ross, R.,
“Heterogenous Active Agents”, MIT-Press, 2000.

Sudeikat, J., Braubach, L., Pokahr, A. and Lamersdorf, W., “Evaluation of Agent - Oriented
Software Methodologies - Examination of the Gap Between Modeling and Platform”, Agent-
Oriented Software Engineering V, Fifth Int. Workshop AOSE, Springer Verlag, 2004.

Taylor, Kujawski A. and Kowalski P., “Naive Psychological Science: The Prevalence, Strength, and
Sources of Misconceptions”, The Psychological Record Vol. 54, Pages 15-25, 2004.

Thielscher, M., “FLUX: A logic programming method for reasoning agents”, Theory and Practice
of Logic Programming, 2005.

Tsohatzidis, S. L., “Foundations of Speech Act Theory: Philosophical and Linguistic Perspectives”,
London, Routledge, 1994.

Tran, Q.-N.N. and Low, G.C., “Comparison of ten agent-oriented methodologies”, In
Agent-Oriented Methodologies, eds. B. Henderson-Sellers and P. Giorgini, Pages 341-
367, Idea Group Publishing, Hershey, USA, 2005.

UML Specification v. 1.1 (OMG document ad/97-08-11), 1997.

UML Use case diagrams. : In http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UM-
L_tutorial/use_case.htm.

Wood, B., Pethia, R., Gold, L. R. and Firth, R., “A guide to the assessment of software
development methods”, Technical Report 88-TR-8, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, PA, 1988.

Wood, M. F. and DeLoach, S. A., “An Overview of the Multi-agent Systems Engineering Meth-
odology”, In Agent-Oriented Software Engineering, LNAI 1957, Springer-Verlag, Pages
207-222, Berlin, 2001.

Wooldridge, M., “The Logical Modelling of Computational Multi-Agent Systems”, PhD thesis,
Department of Computation, UMIST, Manchester, UK, 1992.

Wooldridge, M. J., “Introduction to Multi-agent Systems”, John Wiley and Sons, 2002.

Wooldridge, M. and Jennings, N., “Intelligent agents: Theory and practice”, The Knowledge
Engineering Review, 10(2), 1995.

Wooldridge, M. J., Jennings, N. R. and Kinny, D., “The Gaia methodology for agent-oriented
analysis and design”, Autonomous Agents and Multi-Agent Systems, 3(3), Pages 285-312,
2000.

Yu, E. “Agent-Oriented Modelling: Software Versus World”, In Proceedings of the AOSE-
2001, LNAI, 2222. Springer-Verlag, Pages 206-225, 2002.

Yu, E., “Modelling Strategic Relationships for Process Reengineering”, Ph.D. thesis, Department
of Computer Science, University of Toronto, Canada, 1995.

198

Yu, E. and Mylopoulos, J., “Understanding 'Why' in Software Process Modeling, Analysis, and
Design”, InProc. of the 16th IEEE International Conference on Software Engineering, Pages
159-168, Sorrento, Italy, 1994.

Zambonelli, F., Jennings, N. R. and Wooldridge, M., “Developing multi-agent systems: The
Gaia methodology”, ACM Transactions on Software Engineering and Methodology, 12(3),
Pages 317-370, 2003.

ZEUS, 1999 http://www.labs.bt.com/projects/agents/zeus/index.htm.

