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Abstract 

 

 

This work is devoted to high order harmonic generation (HOHG) on steep plasma density 

gradients during the interaction of relativistic femtosecond laser pulses with solid density 

plasma. A qualitative change to the specular reflected HOHG mechanism has been 

observed when the intensity of the p-polarized excitation pulse increases beyond the 

relativistic threshold. It has been experimentally verified that harmonic generation takes 

place in the case of the s-polarized relativistic excitation beam. A wave mixing 

experiment has been carried out. The behaviour of HOHG efficiency as a function of the 

scale length is measured. The results of the first three experiments have been explained 

with the help of the “oscillating mirror” model and the “resonance” mechanism of HOHG 

which are presented in the first chapter. The recorded dependence of HOHG efficiency on 

the scale length is qualitatively in good agreement with the predictions of the particle in 

cell (PIC) simulations.  
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Chapter 0 Introduction 
 

 

High order harmonic generation (HOHG) in gases is a promising source of the coherent 

vacuum ultra violet (VUV) and soft X-rays radiation with the wavelength λ down to the nm 

region [6]. Thus, using the radiation source based on HOHG, the corresponding high spatial 

resolution can be reached. 

In a number of publications HOHG on solid targets is predicted to be a promising tool for 

attosecond pulse generation [1-3], providing access to temporal resolution down to  

10
-18
 s. Moreover, zeptosecond pulses with a pulse length in the order of the Bohr radius and 

an intensity of 10
19
 W/cm² can be produced according to the theoretical predictions reported 

in [4,5].  

The goal of HOHG based radiation sources is that both high temporal and spatial resolutions 

can be achieved simultaneously by generation of short x-ray pulses. It is not difficult to 

imagine the large field of applications in science, medicine and industry for this kind of 

radiation source.  

 

Impressive progress in laser technology over the last 30 years has played a significant role. 

The Chirped Pulse Amplification (CPA) technology developed in 1998 made it possible to 

reach laser intensities in the order of I ≈1019 W/cm² [8]. Nowadays, Table Top Terawatt (T³) 

laser systems can be built even in small labs [9]. The Ti:Sa T³ laser system generates radiation 

in the near infrared range λ ≈ 800 nm. This radiation can be converted to short wave length 

radiation by HOHG. 

 

Depending on the radiation intensity, a number of laser-matter interaction regions with 

qualitatively different physics can be distinguished. To define the first intensity region, the 

electric field strength of the radiation is compared with the electric field inside the atoms. In 

the case of hydrogen this field is in the order of 10
9
 V/cm which corresponds to the laser 

intensity of about 10
16
 W/cm². The interaction of laser light with an intensity much weaker (at 

least three orders of magnitude) than 10
16
 W/cm² with matter can be described in the frame of 

the perturbation theory. In experiments with laser light intensities comparable to 10
16
 W/cm², 
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the perturbation theory is not valid. With these intensities harmonics up to the 300
th
 order are 

observed in noble gases [6].  

 

To define the next intensity region it is convenient to introduce the normalized vector 

potential 

 

 
mc

eA
a = ,  (0.1) 

 

which is equivalent to the normalized electron quiver momentum Posc of  a single electron in 

the electromagnetic wave 

 

 
mc

p
a osc= ,  (0.2) 

 

where A is the vector potential of the laser beam. e, m and c denote the electron charge, the 

electron mass and the speed of light, respectively.  

The relativistic intensity region is defined by the condition: a >1. In the case a ≈ 1 the  

electron velocity in the laser field is comparable to the speed of light. Thus, the relativistic 

effects have to be taken into account. To the a = 1 corresponding irradiance is  

Iλ² ≈ 1.37 × 1018 Wcm-²µm², where I is the laser intensity and λ is the wavelength.  

The way to reach the relativistic laser intensities (10
19
 W/cm²) is to concentrate the pulse 

energy (in the order of 1 J) very strongly in all dimensions. This means that the beam has to 

be focused in a few wavelength spot and the pulse itself should consist of a few optical cycles.  

For further consideration of the laser-plasma interaction it is important to distinguish between 

“overdense” and “underdense” plasma. Plasma is classified depending on the plasma 

frequency ωp. This frequency is related to the electron density of the plasma n as follows.  

 

 
m

ne4 2

p

π
=ω   (0.3) 
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Using the relation (0.3) one can define the critical plasma density nc, corresponding to the 

given laser frequency ω. 

 

 
2c
e4

m
n

π

ω
=

2

  (0.4) 

 

The plasma is called overdense if ω < ωp   (or n > nc) and underdense in the opposite case. In 

contrast to the underdense plasma - vacuum boundary, the surface of overdense plasma has a 

high reflection coeficient.  

 

This work deals with coherent HOHG on solid targets. Because of the relativistic incident 

laser pulse intensity (a ≈ 1) the thin layer of material on the target surface is already 

completely ionized before the maximum of a pulse reaches the target. Thus, the pulse itself 

interacts with highly ionized overdense plasma. HOHG experiments are done in reflection 

geometry (figure 0.I)  

 

 

  

Figure 0.I Scheme of HOHG experiments in reflection geometry 

 

The physics of the laser-plasma interaction strongly depends on the scale length L
1
. This 

parameter is the characteristic length which describes how “fast” the electron density drops on 

the plasma - vacuum boundary. In the experiments discussed in this work the laser plasma 

                                                 
1
  The definition of the scale length L is given in chapter 1. 
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interaction time is short enough to assume the steep plasma density gradient towards vacuum 

L << λ. 

 

During the last three decades significant results have been achieved in this field. First of all 

numerous experiments on HOHG have been demonstrated [10, 13, 14, 16, 17, 19, 20, 28]. In 

the same time the “oscillating mirror” model and the “resonant” mechanism which provide 

the basic understanding of HOHG in two different regimes (the relativistic and non-

relativistic regimes, respectively) have been developed [10-14, 18, 21-26, 29]. Moreover with 

the introduction of the particle in cell (PIC) simulation code the detailed modelling of HOHG 

on a computer has been made possible [3, 10, 23, 24, 27]. Excellent quantitative agreement 

between experimental results, PIC predictions and the “oscillating mirror” model has been 

achieved [10]. 

 

HOHG from solid targets was observed for the first time with nanosecond pulses of a CO2 

laser in 1981 [28]. 

The generation of relativistic high order harmonics during the interaction of a  

p- and s-polarized, 2.5 ps laser pulse at 1053 nm with a solid target was experimentally 

verified for intensities up to 10
19
 Wcm

-2
 (a ≈ 2.5) [17]. High order harmonics up to the 75th 

order (14.0 nm) were observed. However, because of the long pulse duration and insufficient 

contrast the laser pulses interacted with already diluted plasma. Thus, the generated 

harmonics were not collimated. 

Supported by PIC simulations and using the 90 fs FWHM pulses with a peak intensity of 

I≈10
18
 W/cm² (a<1), HOHG up to the plasma frequency were experimentally confirmed. But 

because of relatively moderate pulse intensity, the attempt to see HOHG with frequencies 

higher than plasma frequency was not successful [10]. 

Further experiments on HOHG were presented by A. Tarasevitch et al. [20]. Short laser pulses 

of 35 fs. and 120 fs. FWHM, with a peak intensity of 10
18
 W cm

-2
 were used to demonstrate 

the collimated harmonics. Harmonics up to the 45
th
 order were detected. A rapid decrease in 

the conversion efficiency with the increasing plasma scale length was observed. 

The scale length dependence of HOHG efficiency was experimentally investigated [19]. The 

same dependence was considered with the help of the PIC simulation and the double pulse 

experiments with much higher resolution, in the range 0.04 < L/λ < 0.4 [10]. Due to the non-
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relativistic pulse intensity in latter experiment only part of the PIC predicted HOHG 

efficiency behaviour could be experimentally verified. Namely the plateau for 0 < L/λ < 0.1 

and dramatic decrease of harmonic efficiency with increasing scale length (L/λ ≈ 0.15) was 

observed. In contrast, the subsequent increase of HOHG efficiency in the region  

0.1 < L/λ < 0.35 predicted by the PIC simulation was not verified by the experiment. 

Similarly, HOHG with the s-polarized incident pulse could not be observed [10]. 

 

Considering the previous experimental results, in particular discrepancies between the 

analytical models and numerical PIC simulations on the one hand and the experimental results 

on the other, the necessity for additional experiments is obvious. As mentioned above the 

moderate intensity of the laser is the main reason for these partly unsuccessful experimental 

efforts to verify the results of the numerical calculations. Now, relativistic laser pulses with 

the desired “pulse quality”
1
 are available, allowing the theoretical predictions mentioned 

above to be experimentally verified. Keeping this in mind, the aims of this experimental work 

are: 

 

• to confirm experimentally the transition to the relativistic regime of HOHG in the case 

of the p-polarized laser pulse, 

• to observe HOHG in the case of the relativistic s-polarized incident beam, and 

• to verify the scale length dependence of HOHG efficiency theoretically predicted in 

[10]. 

 

This work consists of three parts. 

The first chapter describes the theory of HOHG. The main concepts of the “oscillating mirror” 

model as well as of the PIC simulation are presented in this chapter. Further, the numerical 

PIC investigations of HOHG in the non-relativistic regime and the corresponding mechanism 

are discussed. The numerical (PIC) consideration of the scale length dependence of HOHG 

efficiency concludes the first chapter. The purpose of this chapter is to explain the basic 

processes taking place on the surface of the overdense plasma interacting with an intensive 

laser pulse. 

 

                                                 
1
 The notion “pulse quality” is explained in chapter 2. 
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The second chapter describes the 10 Hz. T³ laser system at the “Institut für Experimentelle 

Physik” (IEP) at the University of Duisburg-Essen. At the beginning of this chapter the T³ 

laser setup at the IEP is briefly described. Further, the pulses delivered by the laser system are 

characterised, and the possibility of second harmonic generation (SHG) is considered more 

closely. The discussion of the adaptive optics system as a part of the T³ laser concludes this 

chapter. 

 

In the third chapter, the experimental setup, as well as the experiments themselves, together 

with the experimental results are presented. After a short description of the experimental 

setup, the experiments concerning HOHG mechanisms in the regimes below and above the 

relativistic threshold are presented. Further, the experiment providing strong evidence of 

HOHG during the interaction of the relativistic s-polarized laser pulse with a overdense 

plasma is discussed. This is followed by a description of the wave mixing experiment. The 

measured scale length dependence of HOHG efficiency is presented at the end of the third 

chapter. 

 

Some of the experimental results are already published [16]. 
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Chapter 1  Theory of HOHG 

 

The interaction of a laser with overdense plasma, including collective electron motion, 

resulting in HOHG can be described by the detailed numerical “particle in cell” (PIC) 

simulation. In the PIC simulation, the plasma is modelled by the charged “macroparticles”, 

which are the groups of electrons or ions. For a given incident electromagnetic field the 

equations of motion of the macroparticles combined with the Maxwell equations are 

numerically integrated. 

 

In contrast to the PIC simulations, the “oscillating mirror” model provides an analytical 

description of HOHG. In the relativistic regime (a > 1) the predictions of the “oscillating 

mirror” model are in good agreement with the PIC results.   

 

In the non-relativistic regime the “resonant” mechanism of HOHG explains the main 

observed features of the generated harmonics. Nevertheless the PIC simulations remain the 

main theoretical tool for providing a quantitative description of HOHG in the non-relativistic 

regime (a < 1). 

 

In this chapter the theoretical description of HOHG is considered.  

In the first section of this chapter the “oscillating mirror” model of HOHG is discussed. The 

second section deals with the numerical consideration of HOHG.  
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1.1      Oscillating mirror model of HOHG 

 

 

The analytic description of HOHG while interaction of the relativistic laser pulses with the 

overdense plasma is provided by the “oscillating mirror” model, a detailed consideration of 

which can be found in [10 - 13, 21-23, 29,]. This approximation consists of two steps. The 

first step is to replace the collective electron motion by the motion of the layer with the 

critical density which has a high reflection coefficient. In the second step the light reflected 

from this oscillating boundary is calculated. In this section, only the phase modulation of the 

electromagnetic radiation reflected by the oscillating mirror is taken into account
1
. For further 

discussion it is useful to consider the special case of the mirror oscillation itself being driven 

by laser pulses with relativistic intensity. Thus, in this case two incident electromagnetic 

waves are involved: the “pump” to make the mirror oscillate, and the “probe” to be reflected 

on it (figure 1.I). 

 

 

 

Figure 1.I Schematic picture of the incident pump Epump and probe Eprob beams on the plasma 

vacuum boundary. The generated harmonics are assumed to propagate in the direction of the 

reflected beam Erefl. 

                                                 
1
 HOHG by the nonlinear oscillating electrons, as well as the influence of the relativistic effects such as velocity 

dependent mass are not considered here. These effects are discussed in [11, 12, 30 ]. 
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To get an idea on collective electron motion in the field of a linearly polarized, plane 

electromagnetic wave with the frequency ωd and the angle of incidence ϕ (figure 1.I), it is 

useful to consider the motion of a single electron under the same conditions. 

During one cycle of the field, the electron performs a famous “figure-eight” motion [12, 22, 

31] see figure 1.II 

 

 

 

Figure 1.II “Figure-eight” orbit of a free electron in a linearly polarized plane electromagnetic 

wave. Figure is taken from [12]. 

 

The transverse component of the motion (parallel to the polarization vector, or to the electric 

field E) is oscillating with the frequency of the driving electromagnetic field ωd, whereas the 

longitudinal one (in the direction of the wave vector k) with 2ωd. Note, that in the non-

relativistic case (a < 1) the longitudinal component is small compared with the transverse one. 

Assuming that the collective motion of the electrons near the surface with the critical density 

is qualitatively similar to that of the single electron, the following conclusions concerning the 

frequency of the oscillating mirror can be made. Since the electron motion parallel to the 

critical density surface does not contribute to the oscillation of the mirror, only the electron 

motion which is normal to it is of interest. 

In the case of s-polarized light only the longitudinal component of the “figure-eight” 

trajectory has a non vanishing projection on the surface normal, see figure 1.III b. 
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Consequently the mirror will oscillate with the same frequency as the longitudinal component 

of the “figure-eight” trajectory, namely ωm=2ωd (Figure 1.IV right). 

In the case of p-polarized light both components of the electron motion have non vanishing 

projection on the surface normal, see figure 1.III a. Thus, the electron boundary is driven at 

frequencies ωd and 2ωd (Figure 1.IV left). Because of the non-relativistic case (a = 0.2) 

presented in figure 1.VI (left) the longitudinal component of the electron motion is negligible. 

Thus only the plasma density oscillations with the frequency ωd can be observed. 

 

    

 

Figure 1.III Directions of the electric and magnetic fields and the “figure-eight” orbit of an 

electron:  a) for the p-polarized light, b) for the s-polarized light. The dashed arrows indicate 

the propagation direction of the incident and the reflected light. Figure is taken from [13]. 

 

 

Figure 1.IV PIC calculated temporal development of the electron density. The plasma 

oscillations are excited with the p-polarized (left) and the s-polarized (right) beams. PIC 

parameters are: n/nc = 18.6, L/λ = 0, angle of incidence Θ = 45°, a = 0.2 left and a = 0.5 right. 

The critical density layer is shown by the black line. The x axis is normal to the plasma 

surface, Time t is normalized by the optical period of the laser τ. Figure is taken from [10]. 



 1 Theory of HOHG 

 

 

 20 

The equation of motion provides more detailed insight into the electron movement close to 

the plasma-vacuum boundary which is driven by the total electric and magnetic fields of the 

incident and reflected waves. 

 

 empl
c

e
ee

dt

)d(m
FFHvEE

v
+=×−−−=

γ
 (1.1) 

 

Here v is the electron velocity, γ = (1 - v²/c² )-1/2 is the Lorentz factor, El is the longitudinal 

electric field and Fp=-e El is the Coulomb force between the electrons and the ions. In the 

non-relativistic limit the absolute value of this force is Fp = umωp². Here u is the electron 

excursion from the equilibrium position. Assuming ωd << ωp, the equation of motion (1.1) 

reduces to the equation of a driven harmonic oscillator 
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which has a well-known solution u (ωd) 
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The resulting normalized oscillation amplitudes of the reflecting surface are: 
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in the case of p-polarized incident beam, and 
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for the s-polarization where ϕ is the angle of incidence. 
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Here the coordinate system is defined in a way, that x-direction is normal to the plasma 

surface (see figure 1.I) and the wave vector kd of the pump beam is given by 

 

 kd=(kdcosϕ,kdsinϕ, 0) (1.6) 

 

To simplify the calculation in this section, the surface deformation u(t, y) in the x direction is 

assumed to be harmonic and is given by: 

 

 ))sin
c

y
t((sinuy)u(t, m0 ϕ−ω=  (1.7) 

 

The equation (1.7) takes into account a variation of the electromagnetic force parallel to the 

surface, which causes surface deviation in the form of a travelling wave in the y direction. 

 

Having described the mirror oscillation, the reflection on it will be considered more closely. 

For the incident probe plane electromagnetic wave the geometry shown in figure 1.V is 

chosen. 

 

 

 

 

 

Figure 1.V Schematic picture of the incident probe light Einc on the plasma vacuum boundary. 

The reflected radiation Erefl propagates away from the plasma. Figure is taken from [13]. 
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In this case, the electric field Einc(t,x,y) of the incident p-polarized wave is given by 

 

 )) sinΘ
c

y
cosΘ
c

x
(tiexp(Ey)x,(t,E 0inc −−ω−=  (1.8) 

 

The origin of the harmonics can be explained using two simplifying assumptions. First, the 

reflected beam can be described as a plane wave propagating in the specular direction. 

Second, the surface is totally reflective.  

The electric field of the reflected wave can be obtained under the condition that the total 

electric field vanishes on the reflecting surface: 

 

 E’inc(t,u(t,y),y)+E’ref(t,u(t,y),y)=0 (1.9) 

 

This condition is valid in the frame moving with the mirror. The same condition transformed 

in the laboratory frame can be written in a form [21] 
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Note that the amplitude of the reflected beam is dependent on the velocity of the reflecting 

mirror v(t). Thus, the resulting electric field of the reflected wave is  
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Using the Jacobi expansion (1.12)  
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the expression for the reflected electric field Eref can be written as follows: 
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Here Jh(χ) is the Bessel function of the h
th
 order,  
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From the equation (1.13) it is clear, that the electric field of the reflected beam is a  

superposition of the copropagating plane waves with the frequencies ω+hωm. h is an integer.  

The polarization of the reflected beam remains the same as that of the probe electromagnetic 

wave. 

In the special case, when one incident beam drives the mirror oscillations and is 

simultaneously reflected on it the following is valid: 

 

 Θ=ϕ,  

 harmonics propagate in the specular direction, 

 ωm =ω in the case of p-polarized wave and 

 ωm =2ω in the case of s-polarized wave. 

 

 

 

It should be mentioned that oscillating surface charges, even without any probe beam, emit 

the p-polarized radiation at the multiple of the mirror oscillation frequency ωm, [11, 12, 23].  
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Now we will consider the case when the wave vectors of the pump and probe beams are not 

parallel. In this case the generated harmonics are scattered on the travelling wave which is 

produced by the pump pulse on the plasma surface [29]. According to the calculation shown 

in [29] the diffraction angle αh of the h
th
 harmonic is given by the “rainbow equation” 

 

 ϕsin
1

sin
1

1
sin

ω

ω
ω

ω

ω

ω
+

+Θ
+

=α
m

m

m n

h

hh . (1.16) 

 

 

According to the angular distribution (1.16) the direction of high order harmonics (h → ± ∞) 

approaches the specular direction of the pump beam. 

 

 ϕ− →α
±∞→hh  (1.17) 

 

The positive (h>0) harmonics are scattered in the angular range between the angles of the 

reflected pump and probe beams, as shown in figure 1.VI. Moreover, the condition 

0 ≤ | sinαh |  ≤ 1 leads to the so-called shadowed orders. The shadowed orders are the orders h 

which do not appear. The interval of the shadowed orders is limited as follows: 
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One calculated example of the harmonic angular distribution of the probe reflected radiation 

is shown in figure 1.VI. The pump beam with λ=800 nm and intensity in the order of  

3.5 10
18
 W/cm² is incident on the plasma surface at an angle of ϕ = π/8. The probe beam is 

taken at λ=260 nm with an intensity of 3.5 1014 W/cm² and the angle of incidence Θ=π/4. The 

law of reflection is still valid for the reflection of the probe beam |α0| = Θ. 
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Figure 1.VI Calculated angular distribution of the generated high order harmonics. The 

parameters of the incident beams are: pump beam λ = 800 nm, I = 3.5 1018 W/cm², ϕ = π/8; 

probe beam λ = 260, I = 3.5 1014 W/cm², Θ = π/4. Figure is taken from [29]. 

 

 

The main features of HOHG in the relativistic regime can be summarized as follows.  

In the relativistic regime HOHG described by the “oscillating mirror” model dominates. 

HOHG in this regime is based on the relativistic Doppler effect. In this regime HOHG occurs 

in cases of the s- and p-polarized excitation beams. The harmonics are generated in the region 

close to the plasma layer with the critical electron density. The spectrum of the generated high 

order harmonics is not limited by the plasma frequency ωp. The propagation direction of the 

high order harmonics approaches the specular direction of the pump beam. 
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1.2 Numerical consideration of HOHG 

 

 

This section is dedicated to the numerical treatment of HOHG. 

At the beginning the main ideas and concepts of the PIC simulation are presented. Then 

HOHG in the non-relativistic regime is discussed. Finally, the scale length dependence of 

HOHG is considered more closely. 

 

 

1.2.1 PIC simulations 

 

Particle in Cell code (PIC) is a very powerful and direct numerical tool for researching and 

modelling laser-plasma interaction [23, 27].  In the PIC simulation collective behaviour of 

charged plasma particles is represented by a large number of charged “macroparticles” which 

obey the equations of motion. Macroparticles consist of a fixed number (100 – 1000) of 

electrons or ions.  

 

In the numerical calculation the physical quantities such as charge or the strength of the 

electric field are calculated on the discrete greed positions in space xi. The exact positions of 

the macroparticles xj, in general, are different from the greed points positions. Thus, two sets 

of points in space have to be distinguished: the position of the space greed points xi and the 

exact position of the macroparticles xj. 

 

The basic cycle of the PIC algorithm consists of four steps (figure 1.VII). 
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Figure 1.VII Principal scheme of the basic PIC algorithm. xj, vj are the space coordinates and 

the velocities of the macroparticles, respectively. xi is the position of the space greed points. 

 

 

In the first step, the charge ρ(xj) and current j(xj) densities caused by the macroparticles are 

interpolated to the discrete i
th
 grid positions xi in space. 

 

In the next step the total electric E(xi) and magnetic B(xi) fields on the space grid are obtained 

by superimposing the fields of the incident electromagnetic wave and that generated by the 

macroparticles. The latter is calculated with the help of the Maxwell equations, using charge 

and current densities calculated in the first step. 

 

Further, the fields are interpolated from the discrete space grid positions xi to the 

macroparticles positions xj. 

 

In the last step the equations of motion are integrated to obtain the new positions xj and 

velocities vj of the macroparticles after small time interval ∆t.  

 

The time interval should be kept short enough to resolve the highest frequency of interest. 
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All physical effects on the scale smaller than the size of the space grid are neglected. Since a 

large number of electrons or ions are considered as a single macroparticle, only the collective 

behaviour of plasma is taken into account. The finite space resolution ∆x and the demand for 

the numerical stability of the algorithm define the condition on the thermal velocity vth of the 

macroparticles at the beginning 

  

 vth / ωp > ∆x (1.19) 

 

The expression on the l.h.s. of (1.19) is known as the Debye length (λD = vth / ωp). Debye 

length is the distance over which the electric field of an individual charge is shielded out by 

the response of the surrounding charges. 

A significant reduction of the calculation time can be achieved using the symmetry properties 

of the problem. In the case of laser-plasma interaction at normal incidence the 6-dimensional 

(3 velocity and 3 spatial dimensions) problem in the phase space can be reduced to the 4-

dimensional one, with 3 velocity and 1 spatial dimension. The more general situation of an 

arbitrary incidence angle can be reduced to the normal incidence using the Lorenz 

transformation [10, 11, 22, 23].  

All PIC-simulation results used in this work were obtained by A. Tarasevitch and  

C. Dietrich exploiting the 4-dimensional PIC-code LPIC [10, 16,].  

The geometry shown in figure 1.VIII was used in the PIC simulations.  

 

 

 

Figure 1.VIII Geometry of the PIC simulation box with one spatial dimension. The leaser 

pulse propagates from the left towards the plasma. The plasma density profile is plotted in 

red. Figure is taken from [10].  
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In the simulation box (figure 1.VIII) which consists of a large number of cells the laser pulse 

propagates from the left towards already existing plasma. The plasma density profile (in 

figure 1.VIII red) includes homogeneous and inhomogeneous regions. The inhomogeneous 

region of the plasma is described by the exponential function  

 

 )
L

x
exp(nn max= , (1.20) 

 

and is characterized by the scale length L. Here nmax denotes the maximal plasma density. The 

exponential density profile represents the self-consistent solution of the isothermal expansion 

of the plasma in vacuum [33]. The scale length parameter L can be written as: 
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∂
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The homogeneous layer of the plasma should be chosen thick enough to ensure that the 

excitation radiation does not penetrate through the plasma. 

 

In general, considering the numerous HOHG publications based on, or using PIC calculations, 

and in particular the number of PIC results presented in this work, the importance of the PIC 

simulation in this field of physics does not need to be emphasized additionally. 
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1.2.2     Non-relativistic regime of HOHG 

 

HOHG in the non-relativistic regime (a<1) by reflection of the p-polarized laser beam from an 

overdense plasma has been observed for more than 30 years [34-38]. The “oscillating mirror” 

model which provides good quantitative results in the relativistic regime
1
 [10, 12, 23] can not 

explain HOHG in the non-relativistic case without additional assumption on the mirror 

oscillation and plasma density. In the non-relativistic regime the oscillations amplitude of the 

reflecting surface in the case of dense plasmas (n/nc > 10) is negligible. Thus, the “oscillating 

mirror” model predicts no, or only weak HOHG [23, 25]. However, the experimental results 

and PIC simulations in this regime reveal strong HOHG in the case of the p-polarized 

excitation pulse. The detected and PIC predicted high order harmonics in this regime 

experience a cut off at the plasma frequency ωp [10, 16, 37]. There is no evidence yet of 

HOHG in the case of excitation with the non-relativistic s-polarized pulse [23, 10].  

 

In the year 1982 B. Bezerrides proposed the model of HOHG which is based on the non-

relativistic electron fluid model [26]. He assumed the step-like plasma density profile, and 

calculated the analytical solution for the oscillation amplitude and the acceleration of the 

electron fluid element oscillating around the plasma boundary. In the next step the emitted 

radiation is calculated with the help of the Lamor formula. The spectrum of the calculated 

radiation reproduces nicely the typical properties of the spectra measured in HOHG 

experiments. The quantitative predictions are in a good agreement with the experimental 

results in the case of the low plasma density (n / nc ≈ 5). In dense plasmas (n / nc > 50) the 

scale length (L > 0) has to be taken in to account.  

Analysing the results of the PIC calculations C. Dietrich generalized the Bezerrides model to 

the case of the limited scale length and proposed the “resonant” mechanism
2
 of HOHG [10]. 

The “resonant” mechanism of HOHG consists of two processes. In the first process the 

plasma electron density oscillations with the corresponding local plasma frequencies ωloc are 

                                                 
1
 The transition from the non-relativistic to the relativistic regime of the HOHG depends not only on the 

normalized vector potential a, but also on the electron density n and the scale length L. The scale length 

dependence is considered in the sections 1.2.3 and 3.4. The condition a > 1 is only a rough estimation for this 

transition. 
2
 In his thesis C. Dietrich refered to this mechanism as „Verstärkte Emission“. 
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resonantly excited. In the second process these plasma density oscillations generate high order 

harmonic radiation.  

For the illustration of the “resonant” mechanism of HOHG the flat plasma surface with  

L << λ and ω < ωp irradiated by the non-relativistic p-polarized laser light at the incidence 

angle Θ =45° is considered (figure 0.I). In the electric field of the incident electro-magnetic 

wave the electrons of the interacting plasma are periodically accelerated with the optical 

frequency of the laser ω. The movement of the relatively heavy ions, in comparison with the 

movement of the electrons is negligible. Thus, the ions can be considered here as a static 

positive background. The numerically calculated temporal development of the normalized 

electron density n is shown in figure 1.IX. The x axis is normal to the plasma surface and 

points in the direction of the high plasma densities. The time t is normalized by the optical 

period of the incident wave τ.  

 

 

Figure 1.IX Temporal development of the normalized electron density. The time t is 

normalized by the optical period τ. The plasma average position of the layer with the critical 

density is shown by the dashed line. The PIC parameters are: nmax/nc = 45.56, L/λ = 0.04, 

 a = 0.3, angle of incidence Θ = 45°, p-polarized excitation pulse. Graph is taken from [10]. 
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The occurred oscillation amplitude of the layer with the critical density δx/λ ≈ 0.04 is 

comparable to the scale length parameter L/λ = 0.04. This oscillation causes the strong 

periodical compression and dilatation of the inhomogeneous plasma density region. This 

happens each period of the incident electromagnetic wave.  The compression results in the 

generation of the strong positive longitudinal electric field Ex. Half a period later the plasma 

dilates resulting in the generation of the negative longitudinal electric field. The electrostatic 

fields at the different time points τ, together with the normalized electron density n/nc are 

plotted in figure1.X. The time τ is normalized by the optical period of the laser field τ0. The 

electric fields are normalised by the quantity Er = mωce-1.  

 

 

Figure 1.X PIC calculated electrostatic fields Ex/Er (red) at the time τ/τo=11.7 and 

τ/τo=12.2. The x-axis is normal on the plasma surface and points in the plasma direction. The 

parameters are: nmax/nc =45.56, L/λ=0.04, a=0.3, p-polarized excitation pulse, angle of 

incidence Θ=45°. The electron density profile n(x)/nc is plotted in black. Figure is taken from 

[10]. 

 

The periodic electrostatic field excites the plasma oscillation in each point of the 

inhomogeneous plasma at the corresponding local plasma frequency ωploc. In particular, the 
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resonant plasma oscillations at the multiple of the laser frequency are efficiently excited 

(hω = ωh,ploc), where the constant “h” is a positive integer number. 

The generation mechanism of harmonic radiation by the plasma oscillations in the 

inhomogeneous plasma region can be considered as a temporal reversal of the “resonance 

absorption” [39 - 41]. It can be shown, that in the case of inhomogeneous plasma (∇n≠0), 

under certain conditions, the transverse electromagnetic and longitudinal electrostatic waves 

couple to each other (see [41] and Appendix A1). In the density layer with the satisfied  

resonance ωh = ωh,ploc and phase matching kh = kh,ploc conditions it provides an efficient way 

of converting a localized electrostatic (plasma) wave into the electromagnetic one with the 

optical frequency ωh, i.e. the generation of the h
th
 harmonic. kh and kh,ploc are the wave vectors 

of the h
th
 harmonic and the local plasma wave, respectively.  

Thus according to the “resonant” mechanism of HOHG the incident electromagnetic wave 

compresses and dilates periodically the plasma with the frequency ω. This compression 

results in the longitudinal electric field which excites the plasma oscillations throughout the 

density profile. In particular the plasma oscillations with the local plasma frequency being in 

resonance with the optical wave hω = ωh,ploc are strongly excited.  The plasma waves in turn 

generate the high order harmonic with the corresponding frequency ωh = ωh,ploc. 

 

The same mechanism
1
 was described by F. Quéré et al. [25] from a different point of view.  

 

In conclusion of this section the important features of the discussed (non-relativistic) regime 

of HOHG are summarized. HOHG described by the “resonant” mechanism dominates in the 

non-relativistic regime. The origin of HOHG can be associated with the nonlinear plasma 

density motion and the current enhancement at the local plasma frequency. In contrast to the 

relativistic regime, harmonics are generated in the plasma layers with n > nc. Detailed 

numerical investigations reveal that each high order harmonic (h
th
) is generated in a layer with 

the corresponding local plasma frequency ωh,ploc = ωh [10, 25]. Because of ωloc ≤ ωp, the 

frequencies of the generated harmonics are limited by the plasma frequency ωh ≤ ωp. Further, 

according to the PIC calculation and the mechanism discussed above, no HOHG in the non-

relativistic regime occurs in the case of the s-polarized excitation beam [10, 25]. 

                                                 
1
 F. Quéré referred to it as the coherent wake emission (CWE) mechanism. 
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1.2.3 Scale length dependence of HOHG 

 

 

The dependence of HOHG on the normalized scale length L/λ was extensively investigated 

experimentally and with the help of PIC simulations [10, 16]. In these works the set of PIC 

parameters is matched to the real experimental conditions, making a direct comparison of the 

PIC results with the experimental data possible
1
. Further consideration of HOHG dependence 

on the scale length in the case of the p-polarized excitation pulse is based on references [10 

and 16]. 

In this work the exponential electron density profile on the vacuum plasma boundary is 

assumed, see (1.20). In the plasma interaction with the intense (a =0.3), p-polarized laser light 

two scale length regions with qualitatively different mechanisms of HOHG can be 

distinguished.  

 

HOHG in the cases of three different scale lengths: column a) L=0, column b) L=0.02 and 

column c) L=0.2   is illustrated by the results of the PIC simulation (figure 1.XI). The upper 

and middle panels show the spatial distribution of the electron density oscillations and of their 

Fourier spectra, respectively. The lower panel depicts the corresponding harmonic spectra. 

The red circles (bottom right graph) represent the spectrum calculated with the help of the 

“oscillating mirror” mode for the s / λ = 0.06. The plasma density increases from zero up to 

the solid density for x / λ ≥ 0. The dashed lines mark the position of the layer with critical 

electron density (middle graphs) and of the plasma frequency (bottom graphs), respectively.  

 

 

 

 

 

 

 

 

 

                                                 
1
  The electron density used in PIC calculations in [10] is: n/nc=45.56,  and in [16] is  n/nc=49, 
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Figure 1.XI Electron density (top), spectra of the electron density (middle), and harmonic 

spectra (bottom). PIC parameters are: a = 0.3, n/nc = 49, p-polarized excitation beam. The red 

circles (bottom right graph) represent the spectrum calculated for a harmonically oscillating 

mirror with s/λ=0.06. The dashed lines indicate the critical surface (middle graphs) and ωp 

(bottom graphs). White dotted lines represent the local plasma frequency ωploc(x). Figure is 

published in [16]. 
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The results of the numerical investigations of HOHG dependence on the scale length can be 

summarized as follows. 

 

L = 0 

 

In the limit of L → 0, the electron density profile can be described by a step function. The 

modulation of the plasma surface is quite weak because the restoring forces in the high 

density plasma are exceedingly strong (figure 1.XI, left column, upper graph). Thus, the 

“oscillating” mirror mechanism is inefficient. 

There are also no plasma layers with the local critical density corresponding to the harmonics 

of the incident wave. Thus, the “resonant” mechanism of HOHG does not work. In this case 

HOHG is inefficient (figure 1.XI, left column, bottom graph). The harmonic sources are 

centered in the plane x = 0 (figure 1. XI, left column, middle graph) 

 

0 ≤ L/λ ≤ 0.09: 

 

For this scale length region the oscillation of the surface electrons is strongly anharmonic 

(figure 1.XI, middle column, upper graph). The amplitude of the oscillation s0 is comparable 

to the scale length L. Further, the sources of the different harmonic frequencies are located at 

layers with the corresponding local plasma densities (figure 1.XI, middle column, middle 

graph). The spectrum of the harmonics exhibits the typical for the non-relativistic regime of 

HOHG cut-off at the plasma frequency ωp (figure 1.XI, middle column, bottom graph). Thus, 

in this scale length region HOHG in the non-relativistic regime dominates. In this case it is 

also useful to compare the scale length with the penetration depth of the laser wave in the 

plasma which is defined by the skin depth δ. 
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The normalized skin depth is consequently: 
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The normalized skin depth (δ/λ = 0.023) in this region is comparable with the scale length L. 

Here the plasma density is assumed to be n/nc = 49 and consequently ω/ωp = 1/7. 

 

 L/λ  ≈  0.9 

 

At this intermediate scale length only weak harmonics are generated. The efficiency of 

HOHG drops by orders of magnitude (figure 1.XII). Here HOHG in the non-relativistic 

regime is suppressed because the light can not penetrate deep enough into the plasma. 

 

0.09 ≤ L/λ ≤ 0.35 

 

In the last investigated scale length region the electron density modulation appears to be 

nearly harmonic. Remarkable is the relatively large oscillation amplitude of ca. 6% of the 

laser wavelength (figure 1.XI, right column, upper graph). The locations of harmonics 

generation are now centered around the plasma layer with the critical density (figure 1.XI, 

right column, middle graph). The PIC calculated spectrum is very similar to the spectrum 

provided by the “oscillating mirror” model (figure 1.XI, right column, bottom graph).  Thus, 

in this scale length region the relativistic regime of HOHG dominates. 

 

The calculated scale length dependence of the fourth and fifth harmonics efficiency are shown 

in the graph 1.XII. For L/λ < 0.8 the “resonance” mechanism of HOHG dominates. The 

efficiency grows slowly with L. This mechanism is suppressed around L/l ≈ 0.09, because the 

light can no longer penetrate deep enough into the plasma. As a result, the harmonic 

efficiency drops and reaches a minimum. With a further increase of L, the relativistic 

mechanism comes into play and dominates for L/λ > 0.1, being only weakly dependent on the 

scale length. 
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Figure 1.XII PIC calculated dependence of the fourth and fifth harmonic on the normalized 

scale length. Parameters are: n/nc=45.56, a=0.3 and the angle of incidence is 45°.Figure is 

taken from [10]. 

 

 

In this section two scale length regions with qualitatively different mechanisms of HOHG for 

the used set of parameters are identified.  

In the first scale length region (0 ≤ L/λ ≤ 0.09) the “resonant” (non-relativistic) mechanism of 

HOHG dominates. In the second scale length region (0.09 ≤ L/λ ≤ 0.35) the “oscillating 

mirror” (relativistic) mechanism of HOHG dominates. In the intermediate scale length 

position (L/λ  ≈ 0.1) HOHG is suppressed. 
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Chapter 2           T³ laser system at the IEP 

 

 

 

At the beginning of this chapter the 10 Hz Table Top Terawatt (T
3
) laser system at the 

“Institut für Experimentelle Physik” (IEP) at the University of Duisburg-Essen is briefly 

described. After that the pulses delivered by the laser system are characterized. Further, the 

possibility of the second harmonic pulse generation is considered more closely. Then, the 

measurements of the laser stability are presented. Finally the adaptive optics system is 

discussed in more detail. 

 

 

 

2.1    Overview and characterisation of the T³ Laser 

 

The Ti:Sa 10 Hz multi terawatt laser at the IEP is a typical chirped pulse amplification system 

(CPA) [8, 9] schematically shown in figure 2.I. The main idea behind the CPA laser system is 

to increase the pulse duration before the amplification in order to decrease the peak intensity 

in the amplifier. The pulse duration is increased by a device called a “stretcher” which adds 

the controlled, positive dispersion to the laser pulse. The “chirped” pulse is then amplified by 

the amplification system. After amplification the pulse duration is decreased nearly to the 

initial duration by another device, called a “compressor” which adds the negative dispersion 

to the pulse. In an ideal case the dispersion introduced by the “compressor” compensates the 

dispersion added to the pulse by the “stretcher” and amplifier. The advantage of the CPA laser 

system is the relatively small peak intensity in the amplifier. It allows the pulse distortions 

caused by the nonlinear effects in the amplifier to be minimized and prevents damage to the 

optical components in the amplifying system. 
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Figure 2.I The principle scheme of the 10 Hz T³ laser system at the IEP.  

 

dt  pulse duration (FWHM) 

Ep average pulse energy 

P average CW power 

PC Pockels cell 

TP Thin film polarisator 
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The main components of the laser system are shown in figure 2.I.  

The hard Kerr-lens mode locked Ti:Sa oscillator (see Appendix A2) is the core of the laser. It 

produces a train of pulses with the repetition rate of 80 MHz. The average power of the 

oscillator is approximately 400 mW. The spectral bandwidth of a generated radiation is 21 nm 

FWHM, which is centred at 800 nm (see figure 2.II). The bandwidth limited duration of the 

pulse is estimated to be 45 fs FWHM. A detailed estimation of the bandwidth limited pulse 

duration can be found in appendix A3. The measured pulse duration of 46 fs FWHM is close 

to the bandwidth limited pulse duration. The contrast of the pulses is better than 10
-8
 at 1 ps 

before the pulse maximum (figure 2.III). The notion “contrast” is explained in section 2.2. 

The pulse “quality” of the whole laser system is not better than that of the pulses generated by 

the oscillator. This means that the shortest pulse duration as well as the highest contrast of the 

T³ laser system are already defined by the oscillator pulses.  
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Figure 2.II Spectrum of the pulses generated by the oscillator. 
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Figure 2.III The second order autocorrelation function of the pulses generated by the 

oscillator 

  

Two artificial peaks appearing in the autocorrelation function (figure 2.III) at ca. 1.1 ps before 

and after the main pulse are reflections from the surfaces of the nonlinear crystal, which is 

used in the autocorrelator. The autocorrelators of the second and third orders are briefly 

described in appendix A4.   

 

Before amplifying the pulses are extended in the stretcher up to the duration of ca. 200 ps.  

The stretcher is a device which adds the controlled positive phase dispersion to the pulse. As a 

result the blue components of the pulse spectrum are delayed with respect to the red 

components. The principle schemes and the short description of the stretcher and the 

compressor can be found in appendix A5. 

For further amplification, the single pulses with a repetition rate of 10Hz are selected from the 

initial pulse train by an optical switch which consists of Pockels cell and thin film 

polarisators. This device also prevents the amplified pulses from propagating back to the 

oscillator.  

The amplifier of the T³ laser system consists of two multipass amplification stages separated 

by an additional optical switch. In both stages the Ti:Sa crystals are used as active media. 
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In the first amplification stage the pulses are amplified from ca. 0.6 nJ to 0.5 mJ and the 

resulting gain is of the order G ≈106. In the second amplification stage pulses are amplified up 

to 250 mJ (the gain is G ≈103). The resulting gain of the whole amplifier is G ≈109. 

 

After amplification the pulses are compressed nearly to the original pulse duration. The 

condition required for the best possible recompression is the undisturbed spectrum during the 

stretching, amplification and recompression of the pulses, i.e. no modulation of the spectral 

amplitude should occur. The spectrum immediately after the oscillator and that of the 

amplified and recompressed pulses are compared in figure 2.IV   
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Figure 2.IV Spectra of the pulses immediately after the oscillator (green curve) compared 

with that after the recompression (red curve). 

 

No modulations appear in the measured spectrum after compression (figure 2.IV red curve). 

Moreover, figure 2.IV reveals the narrowing of the spectrum after the amplification. 

Consequently, the bandwidth limited pulse is longer. In this particular case the bandwidth 

limited pulse duration is changed from 45 fs FWHM before amplification to 47 fs FWHM 

after compression.  

In the stretcher and compressor of the laser system the gratings are used as dispersive 

elements. With the help of the grating based stretcher and compressor, it is possible to tune 

independently the dispersions of the second and third orders. Thus in the ideal case these 
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devices are adjusted in such a way that the dispersions of the second and third orders vanish 

[45]. 

The 10 Hz laser system at the IEP is equipped with two compressors. Depending on the pulse 

energy one or another compressor is used. With the help of a beam splitter, both compressors 

can be used simultaneously to provide two pulses with independently tuneable pulse duration. 

The first compressor is designed for pulses with moderate intensities. The second compressor 

is placed in a vacuum chamber to prevent the gratings from being burned and to avoid self- 

modulation in the air at high peak intensities. Due to the limited efficiency of the diffraction 

gratings, approx. 70% of the energy passes through the compressors. 

 

After the vacuum compressor an adaptive mirror is installed to improve the wave front 

distortions of the laser beam. It allows us to produce nearly diffraction limited focus. The 

adaptive optic at the IEP is discussed at the end of the second chapter (section 2.5).  
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2.2     Characterization of the 800 nm pulse 

 

Not only the energy and the pulse duration but also the “quality” of the laser pulses is 

essential for HOHG experiments on solid targets.  

Because of the dispersion of the fourth and higher orders the stretched and amplified pulses 

can not be recompressed exactly to the original shape or duration. As mentioned in section 

2.1, the conditions for the best possible pulse recompression are the undisturbed spectral 

amplitude and vanishing dispersions of the second and third orders. In real lasers some 

radiation appears a few ps. before and after the pulse maximum, the so-called “wings” of the 

pulse. The intensity of that radiation is characterised by the contrast. The contrast is the 

intensity at some fixed time normalized by the peak intensity of the pulse, usually 1ps before 

the pulse maximum. The contrast can be measured by recording the autocorrelation function. 

In our case according to the measured autocorrelation function of the third order, the contrast 

is approx. 10
-7
, see figure 2.V. The small peak at 2 ps in front of the main pulse is caused by 

the reflection on the surfaces of the nonlinear crystal in the correlator. The working principle 

of the autocorrelator of the third order is given in appendix A4. 
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Figure 2.V Autocorrelation function of the third order of the amplified pulse. 
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Besides the spectral amplitude modulation and the dispersion there are two additional effects 

resulting in the appearance of the “wings”. The first effect is the limited transmission 

coefficient of the optical switches which are mentioned in section 2.1. Part of the radiation 

penetrates even through the “closed” optical switch. The resulting intensity level of this 

radiation, immediately after the optical switch, is measured to be in the order of 10
-7
 [46]. 

This radiation is not amplified, because it does not overlap temporally with the pump pulses. 

This means that the intensity of this radiation normalized by the intensity of the amplified 

pulses is of the order 10
-15
. 

Another possible reason for the appearance of the “wings” is the amplified spontaneous 

emission (ASE) [47]. The estimated level of the ASE normalized by the peak intensity of the 

laser system at the IEP is 10
-9
 [46]. Thus, both effects are negligible. 

 

The spectrum of the amplified pulse is presented in figure 2.VI. The bandwidth of the 

spectrum shown in figure 2.VI is 20 nm FWHM. The corresponding calculated band width 

limited pulse duration of 47 fs FWHM is very close to the measured pulse duration of 50 fs 

FWHM. 
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Figure 2.VI Measured spectrum of the amplified pulse 

 

 



 2 T³ laser system at the IEP 

 

 

 47 

 

In conclusion of this section the main pulse parameters are summarized: 

 

Middle wavelength:   800nm 

Spectral bandwidth: 20 nm FWHM 

Pulse duration: 50 fs FWHM 

Pulse energy (max.): 200 mJ 

Contrast at 1 ps: 10
-7
 

Polarization: linear, horizontal. 

Beam diameter: 25 mm FWHM 
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2.3 Generation and characteristics of second 

 harmonic pulses 

 

 

In this section the conversion of the laser pulse to the second harmonic (SH) is discussed. The 

discussion starts with the motivation of the SH pulse generation. Further, the normalized 

vector potential of the SH pulse is estimated. The measured spectrum of the SH pulse is 

presented and the corresponding bandwidth limited pulse duration is compared with the 

duration of the numerically calculated SH pulse. In conclusion of this section the main SH 

pulse properties are summarized. 

 

For the laser-plasma interaction experiments discussed in the third chapter, the normalized 

vector potential and the “quality” of the laser pulses are of crucial importance. As was shown 

in the previous section, the contrast of the pulses provided by the 10 Hz Ti:Sa laser is ca. 10
-7
. 

On the target surface the intensities of 10
19
 W/cm

2
 are expected. Since the ionization 

threshold for most of the solids is in the order of 10
12
 W/cm

2
, the matter could be ionized long 

before the pulse maximum arrives. In this case the laser pulse itself could interact with 

already dilute plasma instead of a solid matter. The conversion to the second harmonic can 

mend the pulse quality [48]. 

Using the relation: 

 

 Ι2ω ∝ Ιω
2
 (2.1)  

 

it is easy to estimate the contrast of the second harmonic (SH) pulse in an ideal case to be  

(10
-7
)² = 10

-14
. Here Iω and I2ω are the intensities of the fundamental and of the SH beams, 

respectively. Thus, the roughly estimated intensity of the SH radiation at 1 ps before the pulse 

maximum (I2ω < 10
19-14

 = 10
5
 W/cm²) is insufficient for the formation of the plasma. In this 

case the interaction of the laser pulse with the diluted plasma instead of the solid matter can 

be excluded. However, it should be mentioned here that the relation 2.1 is based on a number 

of simplifying assumptions, which are not valid in the case of ultra short pulses (USP) at 

relativistic intensities. 
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The theory of the second harmonic generation (SHG) as a part of the three wave interaction 

process is well developed and understood. It can be found in standard books on non-linear 

optics [31, 49]. Analytical solutions exist for the plane monochromatic waves in the case of 

low intensity and conversion efficiency. For USP with a spectral bandwidth of several tens of 

nm, 20 nm in our case, and an energy conversion efficiency of 10% to 50% these solutions are 

not valid. Moreover, the peak intensity of the pulses is extremely high. Thus not only the 

influence of the second order nonlinear susceptibility χ(2) but also of the third order 

susceptibility χ(3) has to be taken into account. The χ(3)  nonlinearity gives rise to self-phase 

modulation. The combined action of the susceptibilities of the second and third order causes 

the cross-phase modulation. Besides, the group velocity mismatch between the fundamental 

and the SH pulses, can not be neglected in the case of the fs pulse conversion to the SH. The 

influence of these effects on the USP SH generation is discussed in [49, 53 - 57]. The 

corresponding coupled differential equations can be found in [55]. 

 

For the estimation of the normalized vector potential “a” of the SH pulse the modified relation 

(0.1) is helpful. 

 

 122 Iλa −= b  (2.2) 

 

Here b ≈ 1.37 10
18
 W cm

-
² µm² is a constant [10].  

To evaluate the intensity on the r.h.s. of the relation (2.2) the energy conversion efficiency 

and the pulse duration have to be figured out. The measured energy conversion efficiency as a 

function of the pump pulse energy is presented in figure 2.VII. 
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Figure 2.VII Measured energy conversion efficiency of the 50 fs pulses at 800 nm to the SH 

in the 0.8 mm KDP crystal. 

 

According to figure 2.VII, approx. 10% of energy conversion efficiency of the 200 mJ laser 

pulse to the SH can be assumed (E2ω = 20 mJ). 

 

The envelope of the SH pulses which are generated in the 0.8 mm thick KDP crystal is 

calculated numerically with the help of the code provided by the SNLO [58] using the 

following parameters: 

 

Angle of incidence Θc   45°, 

Group velocity of the fundamental pulse v 0 c / 1,526, 

Group velocity of the SH pulse v 2 c / 1,550, 

Refractive index  n 1,502, 

Effective susceptibility  deff  0.28 (pm/V), 

 

The fundamental pulse is assumed to be Gaussian with a duration of 50 fs FWHM. 
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The result of numerical integration is shown in figure 2.VIII. The corresponding pulse 

duration ∆t is 45fs FWHM. 
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Figure 2.VIII SH pulse shape provided by the numerical integration with the help of the 

SNLO code [58]. The Interaction parameters are: incidence angle Θc=45°, group velocity of 

the fundamental and SH pulses v 0 = c/1.526 and v 2 = c/1.550, refractive index n=1.502, 

effective susceptibility deff = 0.28 (pm/V). The fundamental pulse is assumed to be Gaussian 

with a 50 fs FWHM. 

 

 

The measured spectrum of the SH pulse is shown in figure 2.IX. The bandwidth limited SH 

pulse duration corresponding to this spectrum (45fs FWHM) is equal to the numerically 

calculated one. 

 

Using this data (λ=0.4µm, E2ω=20 mJ, ∆t = 45 fs) the normalized vector potential of the 

focused SH radiation on the target surface can be estimated according to the relation 2.2  

(a² = E2ωλ² / 2∆tAb ) to be a ≈ 2. For this estimation half of the pulse energy is assumed to be 

focused in a spot (A = πd²/4) with the diameter d = 0.9 µm, which is the FWHM of the 
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intensity distribution
1
 in the focal plane. The estimated normalized vector potential is well 

within the relativistic range. 
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Figure 2.IX Measured spectrum of the SH pulse 

 

In conclusion of this section the main parameters of the SH pulses are summarized: 

 

Middle wavelength:   400nm 

Spectral bandwidth: 5,2 nm FWHM 

Pulse duration: 45 fs FWHM 

Pulse energy (max): 20 mJ 

Polarization: linear. 

 

                                                 
1
 The calculated intensity distribution in the focal plane is given in figure 3.IV. 
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2.4 Stability of the laser system 

 

 

To achieve reliable and reproducible experimental results the properties of each laser pulse 

has to be precisely controlled. Thus stability is the essential feature of the laser system. Since 

the experiments on HOHG usually run for 10 hours and longer, the long term stability of the 

laser system plays an important role. On the other hand the pulse-to-pulse stability is 

important for single pulse experiments. Two types of laser stability are of crucial importance 

for the experiments described in the third section: a) pointing stability and b) energy stability. 

The experimental results presented in this section were achieved by  

U. Shymanovich [7] using the “air” compressor of the laser system. 

 

a) Pointing stability describes the angular shift of the laser beam during some fixed time t. 

This kind of stability is important for experiments which require focusing of the pulses onto a 

target. The angular shift of the laser beam can result in a misalignment of the experimental 

setup. To investigate the pointing stability the laser beam was focused with the help of a lens 

(focal length is 1m). The position of the focal spot (“centre of gravity”) was recorded for each 

laser pulse with the help of a charge coupled device (CCD) placed in the focal plane of the 

lens. The measured positions of the focal spots for a sequence of 500 laser pulses are shown 

in figure 2.X. 

The measured pulse-to-pulse pointing instability of the laser pulses is ca. 35 microradian 

(RMS). This value is comparable to the divergence of the laser radiation (for λ = 800 nm and 

for the diameter of the beam D = 2.5 cm FWHM the divergence of the radiation is  

λ/D =  32 microradian). 

 

Further, the angular drift of the laser beam on a long time scale was measured. Figure 2.XI 

shows the position of the focused laser beam during a period of 2.5 hours. The measured 

positions were averaged over 500 pulses. 
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 Figure 2.X Pulse-to-pulse pointing stability of the laser system. 
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Figure 2.XI Angular shift of the laser beam over 2.5 hours horizontally (green curve) and 

vertically (red curve) 

 

Figure 2.XI reveals an excellent long time scale pointing stability (less than 100 microrad) of 

the 10 Hz. T³ laser system at the IEP. 
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b) The pulse energy stability is an important characteristic of the laser system. Long scale 

temporal dependencies of the fundamental and the SH laser pulse energies (averaged over 500 

pulses) are shown in figure 2.XII.  
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Figure 2.XII Energy instability of the laser system over 5 hours: left fundamental pulse; right 

SH pulse. 

 

Figure 2.XII reveals the fundamental and the SH pulse energies being stable during hours of 

continuous operation of the laser system within ~3% and ~10%, respectively. The standard 

deviations of the fundamental (800 nm) and the second harmonic (400 nm) signals for a 

sequence of 500 laser pulses were ~2.5 % and ~7 %, respectively. 

The standard deviation of the SH is more than twice larger than that of the fundamental 

pulses. Since SHG is a non-linear process in which the intensity of the SH is proportional to 

the square of the fundamental beam intensity, the small changes in the intensity of the 

fundamental beam should lead to approximately twice larger changes in the SH beam 

intensity. The reasons for the relatively high instability of the SH pulses could be the pulse-to-

pulse variations of the pulse duration and/or fluctuations of the beam profile. 

 

The stability of the laser system is mostly influenced by the changes in the environment 

temperature. The measurements presented here were done for typical temperature drifts of 

approx. one degree.  

The measurements described in this section avouch that the laser system can be used for 

experiments requiring high accuracy standards. 
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2.5 Adaptive optics 

 

Using the T³ laser system described in this chapter, diffraction limited focus is the condition 

required for the realisation of experiments at relativistic laser intensities. 

As reported in section 2.3, the fundamental pulse is converted to the SH in order to provide 

the pulse with the desired contrast. The SH is generated with the help of a thin (0.8 mm) KDP 

disk with the diameter of 5 cm. It is very difficult to produce the KDP platelet with such 

dimensions and the required optical surface quality. Insufficient KDP surface quality results 

in the disturbed (not flat) wave front of the generated SH pulse. In their turn, the wave front 

aberrations make it impossible to reach the diffraction limited focal spot size. Some of the 

well-known wave front aberrations and their mathematical representation can be found in 

appendix A6. The adaptive optics system makes it possible to improve a disturbed wave front. 

We use the commercial adaptive optics system (delivered by the firm Night N (opt) Ltd) 

which consists of the Shack-Hartmann wave front sensor, bimorph deformable mirror and 

control unit. This system works in a loop regime. The cycle of the loop consists of three basic 

steps. First, the wave front aberrations are detected with the help of the wave front sensor. 

Then, the necessary deformations of the adaptive mirror are calculated in order to compensate 

the measured wave front aberrations. Finally, the curvature of the adaptive mirror is adjusted.  

In the Shack-Hartmann sensor an array of lenses is used for the detection of the wave front. 

The positions of the particular focal spots depend on the wave front curvature, see figure 

2.XIII. These positions are detected with the help of a CCD camera.  

 

 

Figure 2.XIII Working principal of the Shack-Hartmann wave front sensor 
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Comparing the positions of the focal spots with that of the reference beam which is assumed 

to be with the flat wave front it is possible to calculate the wave front of the measured beam. 

 

Our deformable mirror consists of a glass substrate with a dielectric mirror coated on it, two 

piezo discs and 32 electrodes glued on them, see figure XIV. Putting high voltage on the 

electrodes the desired deformation of the mirror can be produced.  

 

 

     

    

 

Figure 2.XIV Left: schematic structure of bimorph deformable mirror at the IEP. Right: 

electrode scheme of the deformable mirror. 

  

Additionally, some specifications of the adaptive optics system at the IEP are listed below: 

 

Wave front sensor: 

 

Optical band width (nm) 400 - 1000 

Beam diameter (mm)  20 – 64 

Lens array  40X40 

Max. repetition rate(Hz)  30  

 

Deformable Mirror: 

 

Number of electrodes  32 

Max repetition rate (kHz)  3.8 

Max. reflectivity at 780nm (%)  99.9 

Optical band width (nm)  720 -840 

Aperture (mm)  50 

 

 

Usually the adaptive optic system works in the following scheme, see figure 2.XV (A). After 

reflection from the deformable mirror the laser beam is split into two parts. One part 

illuminates the wave front sensor. Another part is used for the experiments.  
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For our setup a different scheme of the adaptive optic system was proposed by A. Tarasevitch, 

see figure 2.XV (B). After reflection from the deformable mirror the laser beam is converted 

to the SH in a KDP crystal. Further, the fundamental beam is blocked. The SH beam is split 

into two parts. The wave front sensor is illuminated by the first part of the SH beam. Another 

part of the SH beam is used for the experiments.  

 

 

 

Figure 2.XV Scheme of the usual adaptive optics setup (A) and the scheme of the adaptive 

optics setup which is used in the experiments (B). 

 

To check our scheme of the adaptive optics setup one additional experiment is performed. The 

experimental setup is illustrated in figure 2.XVI. After reflection from the deformable mirror 

the fundamental pulse is converted to the SH one in the 1.2 mm thick KDP crystal. In this 

experiment the SH pulse duration is not important. Thus the thicker KDP crystal is used to 

achieve the higher conversion efficiency. Two dielectric mirrors M1 and M2 (figure 2.XVI) 

with the reflectivity R800=2% for the fundamental and R400=100% for the SH beam separate 

the SH beam from the fundamental one. Further, the SH beam is divided into two beams by 

an uncoated suprasil wedge. The transmitted part of the SH beam is focused with the help of a 
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lens (focal length 5 m) on the CCD. The reflected part of the SH beam is analyzed in the wave 

front sensor.  

 

 

 

Figure 2.XVI Scheme of the experimental setup. Figure is taken from [59]. 

 

The measured intensity distributions in the focal plane of the lens in cases without and with 

the wave front correction are presented in figure 2.XVII. 

 

            

 

Figure 2.XVII Intensity distribution in the focal plane of a lens (focal length is 5 m) at  

400 nm without the adaptive optic system (left) and with the adaptive optics system (right).  
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In contrast to the irregular intensity distribution in the focal plane of the lens measured 

without adaptive optics (figure 2.XVII left), the improved one is nearly round (figure 2.XVII 

right). The diameter FWHM of the improved focal spot is 1.5 times the diffraction limited 

one. Since the energy of the corrected beam is concentrated on a much smaller focal spot an 

intensity increase by the factor of approx. 210 is observed. 

  

With the help of this system the diffraction limited focus is nearly achieved. The result of this 

experiment proves the ability of the adaptive optics system using our scheme to improve the 

disturbed wave front.  

 

The adaptive optics system at the IEP is discussed in more detail by A. Wloka [59].
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Chapter 3 HOHG experiments  

 

 

At the beginning of this chapter the experimental setup is described. Then the experiments on 

HOHG with laser intensities below and above the relativistic threshold (a = 1) are presented. 

The “wave mixing” experiment is discussed further. Finally, the experiment concerning the 

scale length influence on HOHG efficiency is considered. 

 

 

 

 

 

 

3.1  Experimental Setup 

 

 

For the experiments discussed in this chapter, laser pulses with relativistic intensities are 

required. To avoid the beam distortions due to nonlinear effects in the air, the vacuum 

compressor of our laser system described in section 2.1 is used. For the same reason the 

experimental setup itself as well as all optical elements between the compressor and the 

experimental setup are installed in vacuum chambers. Thus, on our optical table three vacuum 

chambers are placed: the compressor chamber, the adaptive optics chamber and the 

experimental chamber, which are connected to each other with vacuum pipes (figure 3.I).  

This section is divided in two parts. Firstly, the setup of the adaptive optics chamber is 

presented and discussed. Secondly the setup of the experimental chamber is described in 

detail.  
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Figure 3.I Vacuum chambers installed on the optical table: on the right is the compressor 

chamber, in the middle is the adaptive optics chamber and on the left is the experimental 

chamber. 

 

Adaptive optics chamber: 

After the vacuum compressor the fundamental laser pulses reach the “adaptive optics” 

chamber (see figure 3.II) where the deformable mirror is installed. Also, in this chamber the 

second harmonic (SH) beam is generated and the desired polarisations of the fundamental and 

the SH pulses are prepared.  

In the adaptive optics chamber the laser pulses which are characterized in section 2.2 are 

reflected by the deformable mirror. After reflection from the deformable and the dielectric 

mirrors (figure 3.II M1, M2, M3) the fundamental beam (figure 3.II red line) is converted to 

the SH (figure 3.II blue line) in the 0.8 mm thick KDP crystal.  Further, the SH beam is 

reflected by the “beam splitter” towards the experimental chamber.  



 3 HOHG Experiments  

 

 

 63 

 

 

 

Figure 3.II Scheme of the adaptive optics chamber. The fundamental beam is denoted by the 

red lines, the SH beam is denoted by the blue lines. M1-M5 are the dielectric mirrors. 

 

 

The “beam splitter” is a 3 mm thick suprasil dielectric mirror with a reflectivity of R800=2% 

for the fundamental and R400=100% for the SH beam. The rear surface of the “beam splitter” 

is anti reflex coated for the fundamental frequency. The fundamental beam penetrates through 

the “beam splitter” and is directed to the experimental chamber by the dielectric mirrors M4 

and M5. 

We used the type I collinear SH generation, i.e. the ordinary fundamental beam is converted 

to the extraordinary SH one. Thus, the polarization of the generated SH pulses is 

perpendicular to the polarization of the fundamental pulses. The beam reaching the adaptive 

optics chamber is horizontally polarized. This means that in this configuration of the adaptive 

optics chamber, the horizontally polarized fundamental and the vertically polarized SH beams 

leave the adaptive optics chamber. If in HOHG experiment the horizontally polarized SH 
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pulse is desired, the mirror M1 has to be replaced by the “four mirrors polarisation flipper” in 

order to rotate the initially horizontal polarisation of the fundamental beam to the vertical one. 

In this case the horizontally polarized SH and the vertically polarized fundamental beams are 

directed to the experimental chamber. The “four mirrors polarisation flipper” is described in 

appendix A7. Further, if in HOHG experiment two beams, fundamental and SH, have to have 

the same polarisation, the mirror M5 should be replaced by one additional polarisation flipper 

to rotate the polarisation of the fundamental beam without changing the polarization of the SH 

beam. In this way it is possible to choose the polarisation of two beams, fundamental and SH, 

independently from each other. 

 

Experimental chamber: 

In the experimental chamber the SH (figure 3.III blue line) pulse propagates through the 

optical delay line (figure 3.III mirrors M2 and M3) to adjust the relative arrival time of the 

fundamental and the SH pulses on the target surface, see figure 3.III. Then both beams are 

focused with the help of the parabolic mirror on the target surface. 

Before focusing the beams are reflected from the dielectric mirrors M5 and M6. These mirrors 

are fixed in front of the parabolic mirror on the linear translation stage. This makes it possible 

to shift the beams in a horizontal plane without changing the direction of their propagation. 

Since the parabolic mirror collects the parallel beams in a focal spot, in the case of parallel 

beam displacement the focal spot is still be fixed in space. The parallel shift of the beam 

results in the variation of the incidence angle on the target surface. Consequently, the 

direction of the generated high order harmonic also changes. In this way it is possible to scan 

with the generated radiation over the spectrometer and record the angular characteristics of 

the high order harmonics (figure 3.III). The angular resolution of this scan is ca. 2°. 

Part of the second harmonic radiation penetrates though the dielectric mirror M5 and is used 

to illuminate the wave front sensor of the adaptive optics system (figure 3.III).  

In the experiments both beams are focused with the help of the 101.6 mm in diameter, 

aluminium coated parabolic mirror. The 90° off axis parabolic mirror with an effective focal 

length of 101.6 mm is delivered by the firm “Janos Technology”.  
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Figure 3.III Experimental chamber. Upper image: principle scheme; bottom image: 

photograph. Red lines denote the fundamental beams. Blue lines denote the SH beams. Green 

lines and arrow are the generated high order harmonic radiation. 
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The diffraction limited focal spot can be estimated using the relation: 

 

 
π

λ
≈

2ln2

D

f
d  (3.1) 

 

Here d is the FWHM size of the focal spot. D is the FWHM of the incident beam. f is the 

effective focal length of the parabolic mirror. In the case of the SH radiation (λ = 400 nm, f ≈ 

76 mm and D ≈ 15 mm) the estimated FWHM diameter of the diffraction limited focal spot is 

ca. 0.9 µm. The derivation of the relation (3.1) can be found in appendix A8. 

 

Moreover, the calculation of the SH intensity distribution in the focal plane of the parabolic 

mirror is confirmed numerically with the help of “Matlab” routine, see appendix A8. The 

obtained intensity distribution in the focal plane is illustrated in figure 3.IV, left. The 

calculated diameter of the diffraction limited focal spot is 0.9 µm FWHM. The measured 

diameter of the focal spot is relatively close to the diffraction limited one, 1.3 µm FWHM 

(figure 3.IV right). 

 

  

             

 

 

Figure 3.IV Intensity distribution of the SH beam in the focal plane of the parabolic mirror. 

Left is the calculated intensity distribution. Right is the measured intensity distribution. 

 



 3 HOHG Experiments  

 

 

 67 

The reasons for the measured focal spot diameter being approx. 1.4 times the diffraction 

limited one are most probably the wave front aberrations caused by the mirror M5 and the 

parabolic mirror (figure 3.III) which are not improved by the adaptive optics system.  

 

In the experiments the radiation was focused on the target surface. The target holder is 

designed to move in the target surface plane, to provide a fresh target surface for each laser 

pulse. The transverse deviations of the target movement are unacceptably large.  Thus, the 

absolute position of the target surface was permanently observed with the help of a special 

“target stability monitoring” system (figure 3.V). The deviations down to 0.4 µm could be 

resolved and compensated by moving the target holder in the opposite direction. Thus, the 

position of the target surface was stabilized within the wave length of the used radiation  

(λSH = 0,4 µm). 

 

 

 

Figure 3.V Scheme of the “target stability monitoring” system. 

 

To monitor the absolute position of the target surface the HeNe beam was focused with the 

help of an objective (figure 3.V). The focused radiation was reflected back from the front 

surface of the target and focused again by the same objective on the CCD chip. The intensity 

distribution on the CCD chip is very sensitive to the distance variation between the objective 

and the reflecting target surface. To fix the absolute target position, the reference image was 

recorded. By comparing the current image with the reference, and moving the target holder 

the target surface could be placed in the original position. 
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The spectra of the radiation generated on the target surface, were analyzed with the help of a 

spectrometer. The spectrometer consists of a toroidal grating and a back-side-illuminated 

CCD-camera (figure 3.VI). The spectrometer is protected from the scattered fundamental and 

SH radiations by an aluminium filter. Moreover, it is protected from the reflected SH beam by 

the arrangement of a disc and an aperture. The disc is placed in front of the parabolic mirror in 

a way that the image of it covers the aperture which is installed in front of the spectrometer, 

see figure 3.VI.  

 

 

 

Figure 3.VI Scheme of the spectrometer setup 

 

 

We use the commercial toroidal grating produced by Jobin Yvon. The spectrometer works in 

the range from 100 nm down to 10 nm. The back-side-illuminated CCD which is used in the 

experiments is manufactured by “Priston instruments”, model: 1024TKB. Before being used, 

the spectrometer was calibrated with the help of a hollow cathode lamp and argon as working 

gas. The lamp itself, as well as the calibration procedure is presented in [14, 61-64].  
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In the experiments described in this chapter polystyrene (C8H8) is used as a solid target 

material. The electron density of the completely ionized polystyrene (ne=3.2 10²³ cm
-3
) and 

the relation ne/nc=48, which corresponds to the SH are calculated. For the obtained plasma 

frequency (ωp=3.25 10
16 
s
-1
) the corresponding light wavelength is 58 nm. The advantage of 

using the density target material like polystyrene (1 g/cm³) is the substantial reduction in the 

calculation time for the corresponding PIC simulations making the direct comparison of the 

experimental and PIC results accessible. 
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3.2    HOHG below and above the relativistic threshold 

 

 

 

In the experiment described in this section HOHG during the interaction of the relativistic and 

the non-relativistic laser pulses with the overcritical plasma is investigated. As discussed in 

the theoretical part there are two different mechanisms of HOHG in the cases of laser 

intensity above (a>1) and below (a<1) the relativistic threshold.  

 

In the non-relativistic case the laser-plasma interaction can be qualitatively described by the 

“resonant” mechanism of HOHG. According to the “resonant” mechanism of HOHG, the 

harmonic spectra generated by the p-polarized excitation pulse are cut off at the plasma 

frequency ωp. The interaction of the s-polarized pulse with the overdense plasma does not 

generate any high order harmonics.  

 

In the case of relativistic laser-plasma interaction, the HOHG mechanism described by the 

“oscillating mirror” model dominates. In this regime the high order harmonics frequencies in 

the case of the p-polarized excitation pulse are not limited by the plasma frequency ωp. 

Additionally, in contrast to the non-relativistic regime the high order harmonics can be 

generated by the s-polarized pulse interacting with the overdense plasma.   

 

The aim of this experiment is to observe the theoretically predicted transition of HOHG from 

the non-relativistic to the relativistic regime. The presentation of the experimental results is 

divided in two parts. In the first part HOHG in the case of the p-polarized excitation pulse is 

considered. In the second part the experiments with the s-polarized excitation pulse are 

presented. The experimental results are summarized in conclusion of this section. 

 

In the first part of this experiment the p-polarized beam at 400 nm and approx. 50° incidence 

angle is focused on the polystyrene target. Pulses with tuneable energy up to 20 mJ and pulse 

duration of 45fs FWHM are used. The highest achieved peak intensities are in the order of  

1.5 10
19
 W/cm², the corresponding normalised vector potential “a” is 1.3.  
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Two measured spectra of the high order harmonics and transmission of the aluminium filter 

are shown in figure 3.VII. In both cases the harmonics were generated with  

p-polarised excitation pulses at peak intensities of 1.5 10
19
 W/cm

3
 (dashed, red line) and 

 5 10
18
W/cm³ (solid, green line). The corresponding vector potentials are a=1.3 and a=0.8, 

respectively. 
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Figure 3.VII Measured spectra of the generated harmonics above (a=1.3 red curve) and below 

(a=0.8 green curve) the relativistic threshold. The dashed black line denotes the transmission 

of the aluminium filter. 

 

 

Spectra shown in figure 3.VII confirm the theoretical predictions discussed in chapter 2. In 

the non-relativistic regime (a=0.8) described by the “resonance” mechanism of HOHG the 

spectrum of the generated radiation cuts off at the plasma frequency ωp. The plasma 

frequency corresponds to the optical wavelength 58 nm which is very close to the 7
th
 

harmonic (57 nm). In contrast, in the case of the relativistic beam intensity (a=1.3) the 

harmonics frequencies are not limited by the plasma frequency, as is predicted by the 

“oscillating mirror” model. Thus, the observation of harmonics with frequencies higher than 

the plasma frequency is strong evidence of the laser-plasma interaction in the relativistic 

regime. 
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Further, the measured energy conversion efficiencies are compared with the results of the PIC 

simulation, see figure 3.VIII. Following PIC simulation parameters were used: L/λ=0.2 and 

normalized vector potentials a=0.3 and a=0.7. The solid line represents the calculated 

harmonic efficiency. The filled circles correspond to the measured energy conversion 

efficiency. The dashed line marks the plasma frequency.  

 

 

 

 

 

 

Figure 3.VIII PIC simulated harmonic spectrum (solid lines) compared with the experimental 

data (circles). Dashed line marks the plasma frequency. PIC parameters are: L/λ=0.2, n/nc=49, 

angle of incidence is 45° and a=0.3, a= 0.7 for the upper and bottom panels, respectively. The 

data presented in this figure are already published in [16]. 

 

In this experiment not only qualitative, but also excellent quantitative agreement of the 

experimental data with the PIC simulations results was achieved. 
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Additionally, the angular dependence of the harmonics intensity is measured to study the 

collimation properties of the generated radiation. The angular dependencies of the 6
th
 and 7

th
 

harmonics intensities are measured (figure 3.IX).  
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Figure 3.IX Measured angular intensity dependence of the 6
th
 and 7

th
 harmonics 

 

 

Assuming HOHG efficiency dependence on the incidence angle to be negligible over that 

angular range, the following can be concluded. The harmonics are emitted in a cone with the 

angle of ca. 5 degrees (FWHM), which is significantly smaller than the cone angle of the 

incident beam approx. 11 degrees (FWHM). The emitted radiation is well collimated and thus 

it is coherent. 
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In the second part of this experiment the s-polarized beam at 400 nm and ca. 50° incidence 

angle is focused on the target surface. Pulses with an energy of 20 mJ and pulse duration of 

45fs FWHM are used. The highest achieved peak intensity is in the order of  

1.5 10
19
 W/cm², the corresponding normalised vector potential “a” is 1.3. 

 

The measured spectrum of the generated radiation is presented in figure 3.X.  
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Figure 3.X Harmonic spectrum integrated over 40 pulses generated by the s-polarised pump 

beam. 

 

Harmonics with efficiency of approximately 10
-10
 in the relativistic regime (a=1.3) are 

detected.  The presented spectrum is integrated over 40 pulses. To best of our knowledge it is 

the first experimental verification of HOHG in reflection geometry from solid targets with  

s-polarized excitation pulses. In the non-relativistic regime no harmonics are detected.  

As discussed in the theoretical part concerning the “oscillating mirror” model, in the case of 

the s-polarized pump beam the reflecting surface oscillations are driven by the magnetic field. 

Thus, the detected harmonics are clear evidence of the relativistic interaction where v × Β 

force plays a significant role. 
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The efficiency of HOHG excited by the p-polarized pulse is much higher than that in the case 

of the s-polarized excitation pulse. Thus, for the discussion of HOHG during the interaction of 

the s-polarized excitation pulse with the solid targets it is essential to estimate the pulse 

polarization in the focus. The problem is that even the pure vertically (s-) polarized beam, 

through collimation with the short focus off axis parabolic mirror, can produce significant 

fraction of the horizontally (p-) polarized radiation in the focus.  

There are two possible reasons for the appearance of the horizontally polarized 

electromagnetic wave in the focus. The first one is of pure geometrical origin, the second is 

based on the phase shift of the reflected beam described by the Fresnell formulas. 

The polarization of the radiation in focus is measured in the following way, see figure 3.XI.   

 

 

 

 

 

Figure 3.XI Geometry used to measure the fraction of the horizontally polarized radiation in 

the focus of the parabolic mirror 

 

The vertically polarized beam is focused with the same parabolic mirror as used in the 

experiments. The focus is imaged with the help of one objective on the CCD. To ensure the 

pure vertical polarization of the incident beam one (first) polarisator is installed in front of the 

parabolic mirror. One additional (second) polarisator is placed shortly before the focus. In the 

first step the maximal intensity detected by the CCD in the case of the horizontally polarized 
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radiation transmitted through the second polarizer is recorded. In the second step the same 

measurement is repeated but with the rotated second polarizer in such a way that only 

vertically polarized radiation is transmitted.  The maximal intensity measured in the first step 

was 10
-3
 fraction of the intensity measured in the second step, i.e. the fraction of the p-

polarized radiation in the focus of the s-polarized beam is 10
-3
. 

 

Returning to HOHG experiment with the s-polarized pump beam, the intensity of the  

s-polarized beam is of the order 10
19
 W/cm³. This means that in the focus the intensity of the 

p-polarized fraction of the radiation is approx. 10
16
 W/cm³. Although we believe it, the 

conclusion that the harmonics are generated by the s-polarized excitation pulse has to be 

verified. Nevertheless, the appearance of HOHG in the case of the s-polarized excitation beam 

is additional evidence of the laser-plasma interaction in the relativistic regime. 

 

In conclusion the experimental results presented in this section are summarized. 

 

In the first part of this experiment the spectra of the high order harmonics in the cases of 

intensive (a=0.8 and a=1.3) p-polarized excitation pulses are measured (Figure 3.VII).  In 

contrast to the case a=0.8, the spectrum generated at a=1.3 experiences no cut off at the 

plasma frequency ωp. The observation of harmonics with frequencies higher than the plasma 

frequency is strong evidence of laser-plasma interaction in the relativistic regime. 

The efficiency of the measured HOHG is in excellent agreement with the results of the PIC 

calculation, see figure 3.VIII.  

The measured high order harmonics are well collimated (figure 3.IX). Thus, in this 

experiment the generation of coherent high order harmonics is observed. 

 

In the second part of this experiment HOHG in the case of excitation with an intensive 

(a=1.3) s-polarized pulse is verified. To our knowledge, it is the first observation of HOHG in 

reflection geometry from solid targets with s-polarized excitation pulses. The appearance of 

HOHG in the case of the s-polarized excitation beam is clear evidence of laser-plasma 

interaction in the relativistic regime. 

 

Some experimental data, shown in this section are published in [16]. 
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3.3     Two pulse mixing experiment 

 

 

 

In this section the results of the pulse mixing experiment are described. The three wave 

mixing process is well understood and can be found in standard books on non-linear optics 

[49]. The goal of this experiment is to verify the new wave mixing mechanism. In this 

experiment the wave mixing occurred as a result of interaction of the laser pulses with an 

overdense plasma surface in the relativistic regime. The laser plasma interaction in the 

relativistic regime can be described by the “oscillating mirror” model, see section 1.2. In this 

section the discussion on the two pulse mixing experiment is based on the “oscillating mirror” 

model of HOHG. 

 

In numerous reported experiments concerning HOHG in reflection geometry, only one pulse 

is used [12, 13, 19,20]. From the point of view of the oscillating mirror model, this means that 

one pulse is used to drive the oscillating mirror and at the same time is reflected on it. The 

idea is to use an intensive SH pulse to make the mirror oscillate and to reflect a relatively 

weak fundamental pulse on it. Thus, in the pulse mixing experiment two pulses are used: the 

relatively weak probe pulse at 800 nm (fundamental) and the intensive pump pulse at 400 nm 

(SH). With the help of the optical delay line, the pulses were temporarily overlapped. Both 

beams were focused with one parabolic mirror onto the surface of the polystyrene target. The 

angles of incidence were ca. 50° and 70° for the SH and the fundamental beams, respectively. 

The peak intensities of the p-polarized SH and the p-, or s-polarized fundamental pulses were 

1.5 10
19
 W/cm

2
 and 10

17
W/cm

2
, respectively. The harmonics spectra generated in the pulse 

mixing experiment are illustrated in figure 3.XII. The spectra shown in the left graph are 

generated by the p-polarized SH and fundamental pulses. The case of the p-polarized SH 

pulse and the s-polarized fundamental pulse is presented in the right graph. The spectra 

generated with the pump and the probe beams simultaneously are shown by the red curves.  

The green curves represent the spectra produced by the pump (SH) pulse alone. In the case of 

the excitation with the single probe (fundamental) pulse, no high order harmonics could be 

detected. 
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Figure 3.XII Harmonics spectra produced in two pulse mixing experiment. Left graph: the 

pump and the probe pulses are p-polarized; Right graph: the pump pulse (SH) is p-polarized; 

the probe pulse (fundamental) is s-polarised. The spectra produced by the both pulses 

simultaneously (red curve) are compared with the spectra generated by the SH pulse (green 

curve).  

 

The appearance of the 13
th
 harmonic (in respect to the 800 nm beam) in the case of two 

interacting pulses is clear evidence of the modulation of the probe beam by the oscillating 

plasma mirror.  

According to the oscillating mirror model, the frequencies of the mixed harmonics are the 

sum of the probe beam frequency and the multiples of the mirror oscillation frequency.  

 

 ωmix = ωprobe + h ωmirror (3.2) 

 

In this experiment the mirror oscillation is excited by a p-polarized SH pulse. Thus, the mirror 

oscillates with the optical frequency of the SH (ωmirror = 2ω0). The fundamental beam is 

reflected on the oscillating mirror (ωprobe= ω0). In this case the total expected harmonics 

spectrum consists of multiples of SH frequencies (even harmonics) generated by the SH pulse 

alone, as well as that shifted by the fundamental frequency (odd harmonics) generated by the 

SH and fundamental pulse together. 

 

Moreover, the intensity of the odd (13
th
) harmonic is comparable to the intensity of the even 

harmonics, although the intensity of the probe (fundamental) pulse is two orders of magnitude 

smaller than the intensity of the pump (SH) pulse. 
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Further, the angular spread of the generated harmonics is considered.  

The direction of harmonic propagation can be obtained from the momentum conservation 

condition 

 

 k(2h+1)ω= hk2ω + kω  (3.3) 

 

where k(2h+1)ω, kω and k2ω represent the wave vectors of the (2h+1)
th
 harmonic, the 

fundamental and the SH beams, respectively. Additionally the direction of the generated 

harmonic can be calculated using the relation (1.16) discussed in section1.1.  

 

The angle between the 13
th
 harmonic propagation direction and the reflected SH beam 

direction is calculated using the formula (1.16) to be approx. 1.2°. The even harmonics are 

assumed to propagate in the specular direction of the SH beam. 

The measured angular distributions of the 12
th
 and the 13

th
 harmonics are depicted in figure 

3.XIII.  
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Figure 3.XIII Measured angular intensity dependence of the 12
th
 and 13

th
 harmonics. 
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The 12
th
 and the 13

th
 harmonics shown in figure (3.XIII) are shifted in respect to each other 

by an angle smaller than 2 degrees. The theoretically estimated angle of 1.2 is well within the 

measurement error. The angular resolution is 2°. 

Further, the 13
th
 harmonic is emitted in a cone with an angle of ca. 5° FWHM. That angle is 

smaller than the cone angles of incident beams, 11° FWHM in the case of the SH and 8° in 

the case of the fundamental pulse. Thus, the produced 13
th
 harmonic is well collimated, and 

consequently the emitted radiation is coherent. 

 

According to the picture of the “oscillating mirror” model, the (mixed) 13
th
 harmonic should 

be the result of the simultaneous interaction of the SH and the fundamental pulses with the 

overdense plasma. To verify this statement the intensity of 13
th
 harmonic is recorded as a 

function of the delay time between the incident pulses (figure 3.XIV).  
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Figure 3.XIV Intensity of the 13
th
 harmonic as a function of the delay time between the 

incident pulses. Left graph: pump and probe pulses are p-polarized; Right graph: p-polarized 

pump and s-polarized probe pulses. 

 

 

The graphs in figure 3.XIV confirm that the 13
th
 harmonic is generated only during the 

simultaneous interaction of the incident pump and probe pulses with the plasma, in the way it 

was predicted by the “oscillating mirror” model.  
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In conclusion of this section the experimental results of the pulse mixing experiment are 

summarized. Firstly, the results of the “wave mixing” experiment are in a good qualitative 

agreement with the “oscillating mirror” model.  

The spectra presented in this section reveal the appearance of the odd harmonics generated 

only in the case of the simultaneous interaction of the probe and pump pulses with the 

overdense plasma.  

Secondly, the measured intensity dependence of the odd harmonics on the delay time between 

the pump and probe pulses confirm the necessity of the simultaneous interaction of the both 

pulses for the generation of the mixed harmonics. 

The measured angular distribution of the mixed harmonic reveals the collimation of the 

radiation within the cone of 5° FWHM, and consequently confirms the coherence of it.  

Moreover the intensity of the mixed (odd) harmonics is comparable to the intensity of the 

even harmonics, although the intensity of the probe pulse is 2 orders of magnitude smaller 

than the intensity of the pump pulse. 

Finally, the data recorded in this experiment are qualitatively independent on the polarisation 

of the probe beam. 
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3.4    Measurement of HOHG efficiency as a function of 

the scale length L 

 

 

 

In this experiment the scale length dependence of HOHG efficiency is investigated. For this 

purpose the p-polarized fundamental and SH pulses were focused on the target surface. The 

angles of incidence were approx. 50° and 70° for the SH and the fundamental beams, 

respectively. The peak intensities of the SH and fundamental pulses were 1.5 10
19
 W/cm

2
 and 

10
16
 W/cm

2
, respectively. The fundamental pulse was used as an artificial prepulse to produce 

the plasma. Thus, the plasma generated by the fundamental pulse expanded to scale length L 

before the delayed SH pulse interacted with it. The estimated electron temperature in the 

plasma generated by the intensive (10
17
W/cm²) pulse is in the order of Te=1.6 10

-16
 J  

(Te= 10
3
 eV) [60]. According to the isotherm model of the plasma expansion in vacuum 

(described in [33]) the expansion velocity of the plasma (vth = δL/δt) is 

 

 MTZ eth /v ⋅= . (3.4) 

 

The equation 3.4 evaluated for the polystyrene (C8H8), assuming complete ionization, yields 

the expansion velocity vth= 0.088 λ/ps (λ = 400nm). Z and M are the charge number and the 

mass of the polystyrene molecule. Thus, the delay time ∆t corresponding to the plasma scale 

length L can be obtained according to L = vth ∆t. 

 

The energy of the harmonic pulses as a function of the time delay between the pulses is 

recorded, i.e. the efficiency of HOHG is measured as a function of the scale length L (figure 

3.XV). 
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Figure 3.XV Measured energy dependence of the 6
th
 and the 14

th
 harmonics on the 

normalized scale length L (λ = 400 nm).  

 

Qualitatively the measured dependence of HOHG efficiency on the scale length is in good 

agreement with the calculated one, figures 1.XII and 3.XV.  

 

According to the PIC calculation presented in chapter 1.4 two regions with qualitatively 

different mechanisms of HOHG can be distinguished: 

 

In the first region (0<L/λ<0.1) the high order harmonics are generated in a non-relativistic 

regime. The corresponding laser plasma interaction can be described by the “resonant” 

mechanism of HOHG. In this scale length region the plasma restoring force is very strong. 

Thus the origin of the high order harmonics can be attributed to the strongly nonlinear motion 

of the plasma electrons (nonlinear currents). 

 

In the second region (0.1<L/λ<0.5) the high order harmonics are generated in a relativistic 

regime. HOHG in this case can be described by the “oscillating mirror” model. In this scale 

length region the plasma restoring force in the tail of the expanded plasma is significantly 

weaker compared with the restoring force in the first region, resulting in the electron 
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excursion being comparable to the wavelength λ. The generation of the high order harmonics 

in this case can be contributed to the relativistic retardation effects.  

 

In conclusion of this section the result of this experiment is shortly interpreted. 

In the previous measurements only in the first scale length region of the generation of the high 

order harmonics could be experimentally verified [10]. In contrast to the earlier experiments 

in this experiment HOHG in both PIC predicted regions was observed. The appearance of 

significant HOHG efficiency in the second region is an additional proof of the relativistic 

laser-plasma interaction regime in these experiments.  

 

The experimental data, shown in this section are published in [16]. 
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4    Conclusion 

 

 

In the interaction experiments of laser pulses with an overdense plasma surface the generation 

of coherent high order harmonics in the relativistic regime has been verified.  

 

In particular, the observation of harmonics generation with optical frequencies higher than the 

plasma frequency ωp is strong evidence of laser plasma interaction in the relativistic regime 

(section 3.2). Moreover, the experimentally proved generation of high order harmonics in the 

case of s-polarized excitation pulses is clear evidence of the relativistic HOHG regime 

(section 3.2).  Finally the experimentally verified appearance of HOHG in the second scale 

length region is additional strong evidence of the relativistic laser-plasma interaction regime 

in these experiments (section 3.4). 

 

Additionally, the relativistic pulse mixing mechanism has been observed (section 3.3). The 

results of the pulse mixing experiment open up additional options and ways of generating the 

single attosecond pulses. 

 

In general the presented experimental results are in good agreement with the predictions of 

the PIC simulations and the “oscillating mirror” model. 
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Appendix A1 
 

 

Wave coupling (resonance absorption) 

 

It can be shown that in the case of inhomogeneous plasma (∇n≠0), under certain 

conditions, the transverse electromagnetic and longitudinal electrostatic waves couple with 

each other. In the layer with the critical density ω = ωp it provides an efficient way of 

converting an electromagnetic wave into a localized electrostatic one. The consideration of 

the resonance absorption in this section is based on [41]. 

 

At the beginning some simplifying assumptions are made: 

1) A one-dimensional, static ion density profile is assumed. 

2) The electromagnetic wave incident on the plasma is quasi-monochromatic, and its 

amplitude is constant. 

3) Absorption of light is taken into account by introducing a damping constant. 

 

The light-plasma interaction is described by the Maxwell equations  
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combined with the equation of motion and continuity equation for the electrons 
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Here E(x, t) and B (x, t) are magnetic- and electric fields strength. Z and N are the ion 

charge number and the ion-density, respectively. The electron-ion collision frequency and 

the electron velocity are denoted by ν and v. The first term on the r. h. s. of (A1.1e) 

represents the pressure force, where u=(kbTe/m)
1/2
 is the mean thermal velocity. kb is the 

Boltzmann constant and Te is the electron temperature. In the equation of motion (A1.1e) 

for the electrons 

 

(I) the Lorenz force   e n (E + v/c × B),  

(II) the pressure gradient force  -∇p, and  

(III) the damping force   –m n ν v  

 

are taken into account. Detailed derivation of (A1.1e) can be found in [49]. The electron 

acceleration is given by the total time derivative of the velocity: 

 

 vvvv )(
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=x  (A1.2) 

 

The relation between the electron pressure p and the density n is given by the isothermal 

equation of state for the one-dimensional electron gas [50]: 

 

 p=nkbTe (A1.3) 

 

The sources driving the electric and magnetic fields are represented by the term on the 

r.h.s. of (A1.1a) (the electric charge density) and the first term on the r.h.s. of (A1.1d) (the 

current density). Note, that the system of equations (A1.1) is nonlinear because of the 

product terms in the last three equations. These nonlinearities make it difficult to solve the 

set of coupled differential equations (A1.1) analytically. Further approximations have to be 

made. 
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If the charge density and the current density induced by the applied external fields are 

small in some sense, the response of the plasma may be obtained from perturbation 

treatment. In this case the electronic density and the velocity can be written in the form of a 

perturbation expansion: 

 

 

 n=n
(0)
+n

(1)
+n

(3)
+ … (A1.4a) 
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+v
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+ … (A1.4b) 

 

Here, n
(0)
 and v

(0)
 are the unperturbed values. The charge neutrality requires n

(0)
=ZN, and 

v
(0)
=0 for a static ion distribution. The successive approximations can be calculated in the 

usual way by inserting (A.1.4) into (A1.1). 

Let us now assume a periodic perturbation proportional to exp(-iωt), caused by the optical 

wave incident on the plasma. Inserting (A1.4) into (A1.1) and keeping terms up to the first 

order we obtain: 
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Subscripts denote the Fourier components, i.e. E1=E(ω) etc., and superscripts the order of 

the perturbation. Using (A1.5a) to substitute n1
(1)
 in (A1.5e) and taking into account the 

plasma frequency ωp definition 
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and the expansion of the current J 
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the first order current density can be written as follows 
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Further, equations (A1.5c), (A1.5d) and (A1.8) can be combined to obtain the following 

equation for the electric field E1. 
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Here the Drude dielectric function ε1 = ε(ω) 
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is introduced. The plasmas support both transverse electromagnetic and longitudinal quasi-

electrostatic waves [73]. E1 can be decomposed into two different components 

 

 
l

1
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where E1
t
 is the transverse, electromagnetic part with ∇ E1

t
 = 0 and ∇ × E1

t
 ≠ 0. And E1

l
 is 

the longitudinal, “electrostatic” part with ∇ E1
l
 ≠ 0 and ∇ × E1

l
 = 0. Inserting the (A1.11) 

into (A1.9) and applying ∇ and ∇ × on the equation (A1.9) two coupled equations for the 

transverse and the longitudinal fields can be obtained. 
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Here the condition ν << ω is assumed. Thus, ε1 ≈1-ωp
2/ω² and the factor ω/(ω+iν) in front 

of the ∇-operator in (A1.12b) is neglected. Since the quantities ∇× E1
t
 and ∇⋅E1

l
 are 

essentially magnetic field and electric charge density, the equations (A1.12a) and (A1.12b) 

can be considered as the wave equation of electromagnetic and charge density (plasma or 

Langmuir) waves. 

 In a homogeneous medium (∇ε1 = 0) the equations (A1.12) are not coupled. In the 

inhomogeneous medium (∇ε1 ≠ 0) the electron plasma and electromagnetic waves are 

coupled. Thus, the inhomogeneous plasma with plasma waves will emit electromagnetic 

radiation, and vice versa. This process is efficient only if the resonance condition ω=ωp is 

satisfied. The transfer of energy from electromagnetic waves to the plasma waves is called 

resonant absorption. Some times it is also called linear conversion [51, 52]. 

Let us assume a flat plasma surface and the plasma electron density gradient normal to it. 

There is an important difference between the incident s- and p-polarized radiations 

interacting with the plasma. In the case of s-polarized light the polarisation vector of the 

radiation is parallel to the surface, thus in equation (A1.12b) E1⋅∇ε1= 0, and consequently 

no wave coupling occurs. For the p-polarization E1⋅∇ε1≠ 0, thus the p-polarized wave 

excites the electron plasma oscillation as discussed above. 
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Appendix A2  

 

Hard Kerr-lens mode locked laser oscillator 

An optical oscillator (optical cavity or optical resonator) is an arrangement of mirrors that 

forms a standing wave cavity resonator for the light waves, surrounding the gain medium 

(the active medium). The scheme of the Ti:Sa hard Kerr lens mode locked oscillator is 

shown in figure A2.I. In this case the resonator consists of two flat mirrors to reflect the 

radiation back, and two spherical mirrors to focus it in the gain medium (Ti:Sa crystal).  

 

 

 

 

 

 

Figure A2.I Scheme of the Ti:Sa hard Kerr lens mode locked oscillator 

 

The light confined in the resonator is reflected multiple times from the mirrors, and due to 

the interference, only certain patterns and frequencies of the radiation are sustained by the 

resonator. The others are suppressed by destructive interference. In general, the radiation 

patterns which are reproduced on every round-trip of the light through the resonator are the 

most stable and are the “eigenmodes”, known as the modes, of the resonator. 

Resonator modes can be divided into two types: longitudinal modes, which differ in 

frequency from each other; and transverse modes, which may differ in both frequency and 

the transverse intensity pattern of the light. In the basic or fundamental transverse mode of 

resonator the beam has a Gaussian intensity profile. 

 

Further, to discuss the hard Kerr-lens mode locked laser oscillator the Kerr effect has to be 

explained. The Kerr effect is the basis for the Kerr-lens modelocking. It was discovered in 



 Appendixes 

 

 

 97 

1875 by John Kerr, a Scottish physicist. The Kerr effect or the quadratic electro-optic 

effect is a change in the refractive index of a material in response to an electric field.  The 

induced index change is proportional to the square of the electric field. The optical Kerr 

effect (or AC Kerr effect) is the case in which the refrective index of material is changed 

because of the electric field of the light itself. This causes a variation in the index of 

refraction which is proportional to the local intensity of the light. The refractive index 

variation is responsible for the nonlinear optical effects such as self focusing and self-

phase modulation.  

Because of the Gaussian intensity distribution in a fundamental transverse mode of the 

resonator, the refractive index changes in the Ti:Sa crystal across the beam profile. The 

refractive index experienced by the beam is greater in the centre of the beam than at the 

edge. Therefore a rod of an active Kerr medium works like a lens for the high intensity 

light. This results in self-focusing and in extreme cases leads to material destruction.  

 

In the laser cavity, because of their high peak intensity (and Kerr effect) the short laser 

pulses will be generated with a different intensity profile as  continuous waves (cw). The 

oscillator could be made to favor the pulse over the cw regime (or mode). Such oscillators 

are called “mode-locked” oscillators. There are two types of mode locking. 

In hard mode locked resonators the cw mode is simply cut by the aperture, or slit (figure 

A2.I, A2.II on the r.h.s). Thus the losses in the cw mode is higher than that in the pulse 

mode. In soft mode locked resonators the overlap between the pumped region of the gain 

medium and the beam in the pulse mode is better than the overlap between the pumped 

region and the beam in the cw mode, resulting in the higher gain of the pulse mode. 

 

The shortest pulse length of the resonator is limited by the dispersion in the active medium. 

In order to reach the shortest pulse length, the dispersion of the second order is minimized 

with the help of a two prisms compressor (figure A2.I).  

 

In the oscillator at the IEP the Ti:Sa crystal is “pumped” by the second harmonic Nd:YAG 

cw laser at λ=532 nm (figure A2.I green line). 

The material of this section is based on [69]. 

A photograph of the oscillator which is installed at the IEP can be seen in figure A2.II 
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Figure A2.II Ti:Sa hard Kerr lens mode locked oscillator at the IEP 
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Appendix A3  

 

 

Estimation of the bandwidth limited pulse duration 

In the case of bandwidth-limited pulses (also known as Fourier-transform-limited pulses, 

or more commonly, transform-limited pulses) the Fourier transformation is the well known 

relation between the pulse shapes in the time and frequency domains. The Fourier 

transformation of a Gaussian function is a Gaussian function. Thus, assuming the Gaussian 

pulse intensity envelope in the time domain 
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one gets 
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where b is a positive constant. The following relations are valid in the frequency domain: 
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and 

 

 )b²exp()(I
~
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Using relations (A3.1) and (A3.4) the FWHM values in the time (∆t) and frequency (∆ω) 

domains can be calculated. First, the FWHM value in the time domain (see figure A3.I left) 

is figured out.  
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Figure A3.I Gaussian intensity distribution in the time domain (left) and in the frequency 

domain (right). In these graphs the constant b = 1s
²
. 

 

Starting from  
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and the formula 

 

 )2ln(b4²t =∆  (A3.7) 

 

can be obtained. Analogously in the frequency domain (figure A3.I right), starting from 
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the relations 
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can be obtained. The product of the FWHM values in time (∆t) and frequency (∆ω) 

domains is constant. 
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here 2πν = ω. Thus, using the relation above it is easy to estimate the pulse duration 

FWHM of the bandwidth-limited pulse to the corresponding Gaussian spectrum. The same 

relation can be written in terms of the wavelength instead of the frequency using the 

following estimation. In the case of the middle wave length being much larger than the 

spectral bandwidth λ >> ∆λ: 
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where λ1, λ1 and ω1, ω2 are the wavelengths and frequencies corresponding to the half of 

the peak intensity in the Gaussian spectral intensity distribution of the pulse (Figure A3.II).  
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Figure A3.II Wavelengths λ1, λ1 and frequencies ω1, ω2 corresponding to the half of the 

peak intensity in the Gaussian spectral intensity distribution. 

 

In case of the fundamental pulses (λ=800nm) the product  

 

∆λ∆t = 938 nm fs, 

 

in case of the SH pulse (λ=400nm) this product is four times smaller.  

 

∆λ∆t = 234.5 nm fs. 
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Appendix A4  

 

Autocorrelators 

The main idea behind the autocorrelator is to scan the pulse with itself. Thus in the 

autocorrelator of the second order the pulse is divided into two equal pulses with the help 

of a beam splitter (see the figure A4.I).  Further, two pulses are focused in a nonlinear 

crystal (for instance KDP). The intensity of the generated non-collinear second harmonic, 

which is proportional to the product of the electric fields of the incident beams, is recorded 

as a function of the delay time between the two focused pulses.  

 

 

 

Figure A4.I Scheme of the autocorrelator of the second order 

 

The autocorrelator of the third order works in a similar way to the autocorrelator of the 

second order. But one of the pulses is converted to the second harmonic (SH) before 

focusing in the nonlinear crystal, see figure A4.II. Since the polarisation of the generated 

SH pulse is perpendicular to the polarisation of the fundamental pulse, one λ/2 platelet is 

installed in order to provide both pulses with the same polarisation.  In this case the 

intensity of the non-collinear harmonic of the third order is measured as a function of the 

delay time between the focused SH and the fundamental pulses. 
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Figure A4.II Scheme of the autocorrelator of the third order 

 



 Appendixes 

 

 

 105 

 

Appendix A5 

 

Stretcher and compressor of the T³ laser 

There are several ways to construct compressors and stretchers. A typical Ti:Sa-based 

chirped-pulse amplifier requires the pulses to be stretched to several hundred picoseconds. 

This means that the different wavelength components must experience about 10 cm 

difference in a path length. The most practical way to achieve this is to use grating-based 

stretchers and compressors.  

Stretchers and compressors are characterized by their dispersion. With negative dispersion, 

light with higher frequencies (shorter wavelengths) takes less time to travel through the 

device than light with lower frequencies (longer wavelengths). With positive dispersion, it 

is the other way around. In a CPA, the dispersions of the stretcher and compressor should 

cancel out. For practical reasons, the stretcher is usually designed with positive dispersion 

and the compressor with negative dispersion. 

Each component in the whole chain from the oscillator to the output of the compressor 

contributes to the dispersion.  

Figure A5.I A) shows the simplest grating configuration, where long-wavelength 

components pass a larger distance than the short-wavelength components (negative 

dispersion). Often, in this arrangement only two gratings and an extra mirror (or retro 

reflector), placed at the position marked by the vertical line in figure A5.I A) are used, see 

figures A5.I B and A5.III. In this way the beam hits each grating twice instead of once. 

This setup is normally used as a compressor, since it does not involve components that 

could lead to unwanted side-effects when dealing with high-intensity pulses. The 

dispersion can be tuned easily by changing the incidence angle on the gratings and the 

distance between the gratings (figure A5.I B). 

Figure A5.II A) shows a more complicated grating configuration that involves focusing 

elements, here depicted as lenses. The lenses are placed at a distance 2f from each other 

(they act as a 1:1 telescope), and at a distance L from the gratings. If L < f the setup acts as 

a positive-dispersion stretcher and if L > f, it is a negative-dispersion stretcher. The case  

L = f is used in the pulse shaper. With the additional mirror placed at the position marked 

by the vertical black line (figure A5.II A) it is possible to use two instead of four gratings 

(figure A5.II B). Further simplification can be achieved by installing one more mirror in 
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the focus of the first lens and replacing the lenses by a spherical mirror (figures A5.II C 

and A5.IV).  

 

This setup requires the beam diameter to be very small compared with the length of the 

telescope; otherwise undesirable aberrations will be introduced. For this reason, it is 

normally used as a stretcher before the amplification stage, since the low-intensity pulses 

can be collimated to a beam with a small diameter. 

The material in this section is based on [69]. 

 

 

 

 

 

 

 

 

 

Figure A5.I Working principle of compressor 
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Figure A5.II Working principle of stretcher 
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Figure A5.III Compressor of the T³ laser system at the IEP 

 

 

 

 

 

Figure A5.IV Stretcher of the T³ laser system at IEP 



 Appendixes 

 

 

 109 

 

Appendix A6  

 

Wave front aberrations 

The flat or aberrations-free wave front of the beam is a necessary condition for diffraction 

limited focusing. 

An arbitrary wave front can be represented with the help of a series of Zernike 

polynomials. The Zernike series representation of a wave front is extremely convenient, 

instructive, and a helpful aid in the analysis of perturbed wave fronts. In particular, the 

Zernike series representation is useful for providing explicit expressions for the well-

known low-order wave front aberrations such as coma, astigmatism, defocus, and so on. 

This turns out to be an appealing way of converting the often large and inscrutable wave 

front expressions into tidy, intuitively understandable results. In general, the m =  ±1 terms 

correspond to coma, and the m = ±2 terms correspond to astigmatism. Zernike circle 

polynomials represent a complete orthogonal set over the interior of the unit circle. Hence 

an arbitrary function W(ρ,Θ), where radius ρ is restricted to the range 0 < ρ < 1, may be 

completely represented by an infinite series of Zernike polynomials. 

See Murison [68] for a discussion, including determination of the coefficients and  

examples. See also Born and Wolf [65] and Zernike [66] for more information on Zernike 

polynomials. 

 Some of the wave front aberrations and the corresponding Zernike polynomials 

representation Zn
m
 (ρ,Θ) are listed in figure A6.I and illustrated in figure A6.II. ρ and Θ 

denote the radius and the angle in the polar coordinates, respectively. 
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Figure A6.I List of Zernike polynomials. Table is taken from [67] 
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Figure A6.II Illustration of the Zernike polynomials and corresponding wave front 

aberrations. Figure is taken from [67]. 
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Appendix A7 

 

Four mirror polarizations flipper 

The “four mirrors polarization flipper” is an arrangement of four mirrors which flips the 

polarization of the incident beam from horizontal to vertical and vice versa. 

For the illustration of the “four mirror polarizations flipper” let us consider the horizontally 

polarized (in the X direction) beam which propagates in the Y direction (figure A7.I). After 

reflection from the first mirror (M1) this beam propagates down (in the negative Z 

direction), the polarization is still in the X direction. Further, the Mirror M2 reflects the 

considered beam in the X direction. Now the polarization is vertical (in the Z direction). 

The third (M3) mirror reflects the beam up (in the Z direction) and the polarization is 

turned to the X direction. After the last reflection (on the mirror M4) the beam is vertically 

polarized (in the Z direction) and propagates in the X direction. The polarization flipper at 

the IEP is presented in figure A7.II. 

In the case of a vertically polarized incident beam it works analogously. 

 

          

 

Figure A7.I Scheme of the “four mirror polarisation flipper” 
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Figure A7.II Four mirror polarisation flipper installed in the adaptive optics chamber at the 

IEP 

 



 Appendixes 

 

 

 114 

Appendix A8 

 

Calculation of the diffraction limited focal spot of the parabolic mirror 

Assuming the Gaussian beam profile, the electric field dependence on the radius r is given 

by relation 

2

2r

0eE)r(E σ
−

=  . (A8.1) 

 

σ is a positive constant. The corresponding intensity dependence is  

 

2

2r2

0eI)r(I σ
−

=  (A8.2) 

 

Using the relation (A8.2) the FWHM diameter R can be defined, 

 

2

2)2/R(2

00 eII
2

1
σ

−

=  (A8.3) 

 

and consequently the relation between R and σ  

 

R2ln2 =σ  (A8.4) 

 

is obtained. According to the references [70-72] for the Gaussian beam the dependence 

(A8.5) is valid. 
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πσ
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z is the distance from the position with the smallest beam “diameter” (σ(0) = σ0) along the 

symmetry axis (z-axis) of the beam. In the case of z >> σ0
2
/λ the (A8.5) can be written as: 
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Using (A8.4) the relation (A8.6) can be expressed in terms of the FWHM values R. 

 

π

λ
=

2ln2

R

z
)z(R

0

 (A8.7) 

 

To use the dependence (A8.7) for the calculation of the diffraction limited focal spot, the 

distance z has to be replaced by the focal length (f = z). The values R(f) and R0 can be 

interpreted as the intensity FWHM of the beams before focusing and in the focal plane, 

respectively. 

 

 

For the numerical calculation of the intensity distribution in the focal plane of the ideal 

parabolic mirror, the geometry illustrated in figure A8.I is used. The incident beam which 

is assumed to be with the flat wave front and the Gaussian beam profile propagates in the 

negative “Z” direction, towards the parabolic mirror. The incident beam is divided into a 

large number of “sub beams” with the corresponding intensity (black vertical lines). Each 

point on the parabolic mirror which is illuminated by a sub beam is assumed to be an 

origin of the spherical wave according to the Huygens – Fresnel principle. To obtain the 

electric field E in each point of the focal plane, the contributions of all spherical waves are 

summed up. Note, here the phase of the individual wave plays a key role. The intensity in 

each point is calculated using the relation I= |E|².  

 

 

 

 

Figure A8.I Geometry used in the calculation of the intensity distribution in the focal plane 

of the parabolic mirror.  
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In the “Matlab” routine the following parameters are used: 

 

Beam aperture   50 mm 

Beam width (intensity FWHM)  15 mm 

Wave length   400 nm 

Number of sub beams  30 x 30 

Incident beam position X (effective focal length) 76 mm 

Observed area in the focal plane  6x6 µm² 

Number of points in the plane  150x150 

Parameter of the parabolic mirror  1/203.2 mm
-1
 

 

In conclusion of Appendix A8 the “Matlab” code is presented: 

 

 
clear all; 

 

% General parameters 

lambda=4.0e-4;                      % in mm Wavelength 

K=2*pi/lambda; 

a=1/203.2;                             % in 1/mm parameter of the parabolic mirror 

 

% Incident beam parameters 

b_apertur=50;                       % in mm beam aperture in mm 

I_FWHM=15;                      % in mm (intensity) width FWHM of beam profile 

N_beams=30;                       % # of sub beams 

x_middle=76;                       % in mm the X coordinate of the middle of the beam 

 

% Focal plane parameters 

 

interval=0.006;                     % in mm length and width of the observed area in the focal plane 

XB=0;                                  % in mm position of the middle of the focal plane 

YB=0; 

ZB=50.8; 

N_points=150;                       % # of points in the interval 

 

 

Gauss_w=I_FWHM/sqrt(2*log(2));     %in mm Width of the incident beam (electric field) 

Gauss_a=1; 

 

dr=b_apertur/N_beams; 

db=interval/N_points; 

 

xb=XB; 

 

for m=1:N_points 

    yb=YB-interval/2+m*db; 

     

    m 

     

    for n=1:N_points 

        zb=ZB-interval/2+n*db; 

        feld(m,n)=0; 

         

        for i=1:N_beams 

             

             

            for k=1:N_beams 
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                x=x_middle-b_apertur/2+k*dr; 

                 

                y=-b_apertur/2+i*dr; 

                 

                P(i,k)=a*(x^2+y^2); 

 

                G(i,k)=Gauss_a*exp( -((x-x_middle)^2 + y^2) / Gauss_w^2);               % electric field! 

                                

                opt_weg=sqrt((x-xb)^2+(y-yb)^2+(P(i,k)-zb)^2);                                   % optical path 

                 

                Phase_ges(m,n)=K*(opt_weg-P(i,k));                 

                 

                feld(m,n)=feld(m,n)+(G(i,k)/opt_weg)*exp(-j*Phase_ges(m,n)); 

                 

                intensity(m,n)=feld(m,n)*conj(feld(m,n)); 

             end 

        end 

    end 

end 

 

I_max=max(intensity); 

Imax2=max(I_max) 

intensity=intensity/Imax2; 

 

 

 

figure; 

surfl(-(interval-db)*500:db*1000:+(interval-db)*500,-(interval-db)*500:db*1000:+(interval-

db)*500,intensity); 

axis([-interval*500 interval*500 -interval*500 interval*500 0 1]); 

xlabel('z in µm'); 

ylabel('y in µm'); 

zlabel('Intensity'); 

%colorbar; 

%grid off; 

%axis off; 

shading interp; 

colormap copper; 

 

 

 

 


