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Introduction

We search for examples of families of Calabi-Yau manifolds with dense set of complex
multiplication fibers and for examples of families of curves with dense set of complex
multiplication fibers.

By string theoretical considerations, one is interested in Calabi-Yau manifolds, since
Calabi-Yau 3-manifolds provide conformal field theories (CET). One is especially inter-
ested in Calabi-Yau 3-manifolds with complex multiplication, since such a manifold has
many symmetries and mirror pairs of Calabi-Yau 3-manifolds with complex multiplica-
tion yield rational conformal field theories (RCFT) (see [18]). Moreover S. Gukov and
C. Vafa [18] ask for the existence of infinitely many Calabi-Yau manifolds with complex
multiplication of fixed dimension n.

For a Calabi-Yau manifold X of dimension n with n < 3, the condition of complex
multiplication is equivalent to the property that for all & the Hodge group of H*(X,C)
is commutative. We will call any family of Calabi-Yau n-manifolds, which has a dense
set of fibers satisfying the latter property with respect to the Hodge groups, a CMCY
family of m-manifolds. The author uses this condition for technical reasons and hopes
that such a CMCY family of n-manifolds in an arbitrary dimension may be interesting
for its mathematical beauty, too. Here we will give some examples of CMCY families of
3-manifolds and explain how to construct CMCY families of n-manifolds in an arbitrarily
high dimension.

Starting with a family of cyclic covers of P! with a dense set of CM fibers, E. Viehweg
and K. Zuo [46] have constructed a CMCY family of 3-manifolds. This construction of
E. Viehweg and K. Zuo [46] is given by a tower of cyclic coverings, which will be explained
in Section 7.3. In Chapter 8 we will give a modified version of a Viehweg-Zuo tower for
one of our new examples.

Hence we are interested in the examples of families of curves with a dense set of C M
fibers by our search for CMCY families of n-manifolds. But there is an other motivation
given by an open question in the theory of curves, too. In [10] R. Coleman formulated
the following conjecture:

Conjecture 1. Fix an integer g > 4. Then there are only finitely many complex algebraic
curves C' of genus g such that Jac(C) is of CM type.

Let P, denote the configuration space of n + 3 points in P'. One can endow these
n + 3 points in P! with local monodromy data and use these data for the construction of
a family C — P, of cyclic covers onto P! (see Construction 3.2.1).

The action of PGLy(C) on P! yields a quotient M,, = P,,/PGLy(C). By fixing 3 points
on P!, the quotient M,, can also be considered as a subspace of P,,.

Remark 2. In [25] J. de Jong and R. Noot gave counterexamples for g =4 and g = 6 to
the conjecture above. In [46] E. Viehweg and K. Zuo gave an additional counterexample
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for g = 6. The counterexamples are given by families C — P, of cyclic covers of P' with
infinitely many CM fibers. Here we will find additional families C — P, of cyclic genus
5 and genus 7 covers of P* with dense sets of complex multiplication fibers, too.

All new examples C — P, of the preceding remark have a variation V' of Hodge
structures similar to the examples of J. de Jong and R. Noot [25], and of E. Viehweg
and K. Zuo [46], which we call pure (1,n) — VHS. Let Hg(V) denote the generic Hodge
group of V and let K denote an arbitrary maximal compact subgroup of Hg*(V)(R). In
Section 4.4 we prove that a pure (1,n) —V HS induces an open (multivalued) period map
to the symmetric domain associated with Hg?!(V)(R)/K, which yields the dense sets of
complex multiplication fibers. We obtain the following result in Chapter 6:

Theorem 3. There are exactly 19 families C — P, of cyclic covers of P*, which have a
pure (1,n) — VHS (including all known and new examples).

We will use the fact that the monodromy group Mon’(V) is a subgroup of the derived
group Hg®" (V) and we will study Mon’(V). Let ¢ be a generator of the Galois group
of C — P, and C(1) be the centralizer of ¢ in the symplectic group with respect to the
intersection pairing on an arbitrary fiber of C. In Chapter 4 we obtain the result, which
will be useful for our study of Hg?" (V) and Mon®(V):

Lemma 4. The monodromy group Mon’(V) and the derived Hodge group Hg™ (V) are
contained in C(1).

Unfortunely we will not be able to determine Mon®()) for all families C — P, of cyclic
covers onto P'. But we obtain for example the following results in Chapter 5:

Proposition 5. Let C — P, be a family of cyclic covers of degree m onto P'. Then one
has:

1. If the degree m is a prime number > 3, the algebraic groups C°(¢), Mon"(V) and
Heg (V) coincide.

2. If C — Pogyo is a family of hyperelliptic curves, one obtains

Mon’(V) = Hg(V) = Spg(29).

3. In the case of a family of covers onto P! with 4 branch points, we need a pure

(1,1) = VHS to obtain an open period map to the symmetric domain associated
with Hg*'(V)(R)/K.

By our new examples of Viehweg-Zuo towers, we will only obtain CMCY families
of 2-manifolds. C. Voisin [48] has described a method to obtain Calabi-Yau 3-manifolds
by using involutions on K3 surfaces. C. Borcea [8] has independently arrived at a more
general version of the latter method, which allows to construct Calabi-Yau manifolds in
arbitrary dimension. By using this method, we obtain in Section 7.2:

Proposition 6. Fori = 1,2 assume that C%) — V; is a CMCY family of ng-manifolds en-
dowed with the V;-involution v; such that for all p € V; the ramification locus (R;), ofC]gl) —
Cz(f)/u consists of smooth disjoint hypersurfaces. In addition assume that V; has a dense set
of points p € V; such that for all k the Hodge groups Hg(H* (Cz(f), Q)) and Hg(H*((R;),, Q))
are commutative. By blowing up the singular locus of CV) x C® /{(11,12)), one obtains a
CMCY family of ny + no-manifolds over Vi x Vy endowed with an involution satisfying
the same assumptions as 11 and L.



Remark 7. By the preceding proposition, one can apply the construction of C. Borcea
and C. Voisin for families to obtain an infinite tower of CMCY families of n-manifolds,
which we call a Borcea-Voisin tower.

Example 8. The family C — M given by
P? > V(y} — z1(21 — 20) (21 — A10)20) — A € M4

has a pure (1,1)—V HS. Hence by the construction of Viehweg and Zuo [46], one concludes
that the family Co given by

]Pjs > V(yg + yil — l’l(.fl — xo)(l’l — )\Io)l’o) e Ml (1)

1s a CMCY family of 2-manifolds.

This family has many My-automorphisms. The quotients by some of these automor-
phisms yield new examples of CMCY families of 2-manifolds. Moreover there are some
inwvolutions on Co, which make this family and its quotient families of K3-surfaces suitable
for the construction of a Borcea-Voisin tower (see Section 7.4 for the construction of Cs,

and for the automorphism group and the quotient families of Co see Section 9.3, Section
9.4 and Section 9.5).

Example 9. The family C — M3 given by
P(2,1,1) 3 V(y? — z1(21 — 0) (21 — azo)(zy — bxo) (w1 — cxo)z0) — A € M,

has a pure (1,3)—V HS. The desingularisation ]f”(?, 2,1,1) of the weighted projective space
P(2,2,1,1) is given by blowing up the singular locus. By a modification of the construction
of Viehweg and Zuo, the family W given by

P(2,2,1,1) 3 V(13 + 15 — o1 (w1 — 20) (21 — azo) (w1 — bao) (w1 — cxo)zo) — A € M3 (2)

1s a CMCY family of 2-manifolds. The family YW has a degree 3 quotient, which yields
a CMCY family of 2-manifolds. Moreover it has an involution, which makes it and its
degree 3 quotient suitable for the construction of a Borcea-Voisin tower (see Chapter 8
for the construction of W and Section 9.1 for its degree 3 quotient).

By using the preceding example, we will obtain (see Section 9.2 for the construction
and Section 10.3 for the maximality):

Theorem 10. Let ay, denote a generator of the Galois group of a degree 3 cover Fg —
PL. The family W has an Ms-automorphism o of order 3 such that the quotient VW x
Fs3/{(c/, ar,)) has a desingularisation, which is a CMCY family Q — M3 of 3-manifolds.
Moreover the family Q is maximal.

By using the V. V. Nikulins classification of involutions on K3 surfaces [42] and the
construction of C. Voisin [48], we obtain in Chapter 11:

Theorem 11. For each integer 1 < r < 11 there exists a mazimal holomorphic CMCY
family of algebraic 3-manifolds with Hodge number h*' = r.
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The first three chapters explain well-known facts and yield an introduction of the
notations. Chapter 1 is an introduction to Hodge Theory with a special view towards
complex multiplication. We consider cyclic covers of P! in Chapter 2. Moreover Chapter
3 introduces everything that we need to describe families of cyclic covers of P! and their
variations of Hodge structures.

In Chapter 4 we consider the Galois group action of a cyclic cover onto P! and we
state first results for the generic Hodge group of a family C — P,. Moreover we will
give a sufficient criterion for the existence of a dense set of C'M fibers given by the pure
(1,n) — VHS. In Chapter 5 we compute Mon’(V), which provides many information
about Hg(V). We will see that Mon®(V) coincides with C9°"(1) in infinitely many cases.
In Chapter 6 we classify the examples of families of cyclic covers onto P! providing a pure
(1,n) —VHS.

The basic methods of the construction of C'M C'Y -families in higher dimension will be
explained in Chapter 7. We introduce the Borcea-Voisin tower and the Viehweg-Zuo tower
and realize that only a small number of families of cyclic covers of P! are suitable to start
the construction of a Viehweg-Zuo tower. In Chapter 8 we will give a modified version
of the method of E. Viehweg and K. Zuo to construct the CMCY family of 2-manifolds
given by (2). We consider the automorphism groups of our examples given by (1) and
(2) in Chapter 9. This yields the further quotients of the families given by (1) and (2),
which are CMCY families of 2-manifolds. We will see that these quotients are endowed
with involutions, which make them suitable for the construction of a Borcea-Voisin tower.
Moreover we will construct the family O of Theorem 10 in Chapter 9. The next chapter is
devoted to the length of the Yukawa couplings of our examples families (motivated by the
question of rigidity) and the Hodge numbers of their fibers. We finish this chapter with
an outlook onto the possibilities to construct CMCY families of 3-manifolds by quotients
of higher order. In Chapter 11 we use directly the mirror construction of C. Voisin to
obtain maximal holomorphic CMCY families of 2-manifolds, which are suitable for the
construction of a holomorphic Borcea-Voisin tower.
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Chapter 1

An introduction to Hodge structures
and Shimura varieties

In this chapter we recall the general facts about Hodge structures and Shimura varieties,
which are needed in the sequel.

1.1 The basic definitions

Definition 1.1.1. Let R be a Ring such that Z C R C R. An R-Hodge structure is given
by an R-module V' and a decomposition

VarC= v

P,qEZL

such that Vpr4e = V2P,
Now let S := Resc/rGy, c be the Deligne torus given by the Weil restriction of G, c.

Proposition 1.1.2. Let V' be an R-vector space. Fach real Hodge structure on V' defines

by
2Pl = P F1PY

for all a?9 € VP9 an action of S on VQC such that one has an R-algebraic homomorphism
h :S — GL(V). Moreover by the eigenspace decomposition of Vi with respect to the
characters of S, any representation given by an algebraic homomorphism h : S — GL(V)
corresponds to a real Hodge structure on V.

Proof. (see [13], 1.1.1" ) O
From now on let V' be a Q-vector space and let

h:S— GL(VR)

I'Note that P. Deligne writes
z-oPl=z"PZz790P1 instead of z-aP? = 2PZlaP?

in [13]. But this is only a matter of the chosen conventions.
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be the algebraic homomorphism corresponding to a Hodge structure on V. Note that S
is given by Spec(R[z,y,t]/(t(x? + y*) = 1)) and S! is the algebraic subgroup given by
Spec(R[z, y]/(z* + y* = 1)). This yields

S'R)={z€C:22=1} CcC".
We consider the exact sequence

id z—z/Z

0 — R*— C*—5 SYR) — 0,
which can be obtained by an exact sequence
0= Gmr —S—5"—=0 (1.1)
of R-algebraic groups.

Remark 1.1.3. The homomorphism given by h o w is called weight homomorphism.

There exists a k € Z such that V?? = 0 for all p + ¢ # k, if and only if h o w is given by

r — r*. A Hodge structure is of weight k, if h o w is given by r — rF.

Remark 1.1.4. By Proposition 1.1.2, any (real) Hodge structure on Vg of weight k
determines a unique morphism h; : S' — GL(Vg) given by

St S GL(Va).

Since S = G, g - S*, one can reconstruct h from h|s: and the weight homomorphism. By
using Proposition 1.1.2 again, one can easily see that there is a correspondence between
Hodge structures of weight k on Vi and representations hy : S — GL(V&) given by

5P = PFaaP
for all a?? € VP4 which must satisfy p + ¢ = k for all VP4 £ 0.

Example 1.1.5. An integral Hodge structure of weight k is given by

HY(X,C)= H"X,Z)® C = @ H"(X) with H"(X)= H'(X,Q%)
ptg=r

for any compact Kéahler manifold X.

Definition 1.1.6. A polarized R-Hodge structure of weight k is given by an R-Hodge
structure of weight £ on an R-module V' and a bilinear form @ : V x V — R, which is
symmetric, if k is even, alternating otherwise, and whose extension on V ®pg C satisfies:

1. The Hodge decomposition is orthogonal for the Hermitian form *Q(-,~).

2. For all & € VP2\ {0} one has

k(k—1)
2

iPI(—1) Q(a, @) > 0.

12



Example 1.1.7. Let X be a compact Kéhler manifold. Recall that for k& < dim(X) the
primitive cohomology H*(X,R)yim is the kernel of the Lefschetz operator H*(X,R) —
H*=k+2(X R) given by

a— A"TFHW) A,

where n := dim(X), w denotes the chosen Kéhler form and o € H*(X,R). By
(@0) = [ @) nans,
X

one obtains a polarization on H*(X,Z)um and hencefore a polarized integral Hodge
structure on H*(X, Z) prim, if [w] € H*(X,Z) (see [49], 7.1.2)2.

Definition 1.1.8. Let Q € K C R be a field and V be a K-vector space. The Hodge
group Hgy (V. h) of a K Hodge structure (V, h) is the smallest K-algebraic subgroup G
of GL(V') such that

h(Sl) cG X i R.

The Mumford-Tate group MTg(V, h) of a K Hodge structure (V,h) is the smallest K-
algebraic subgroup G of GL(V') such that

For simplicity we will write Hg(V, k) instead of Hgg(V,h) and MT(V, h) instead of
MTq(V, ).

Definition 1.1.9. Let F' be a number field. A compact Kahler manifold X of dimension
n has complex multiplication (C'M) over F, if the Hodge group of the F' Hodge structure
on H"(X, F) is a torus. We say that X has complex multiplication, if it has complex
multiplication over Q.

There is another concept of complex multiplication: An Abelian variety A is of CM
type, if it is isogenous to a fiberproduct of simple Abelian varieties X; (i = 1,...,n) such
that there are fields K; C End(X;) ®7 Q, which satisfy

[K;: Q] > 2-dim(X;).
Remark 1.1.10. If the Abelian variety A is of C'M type, the fields K; are C'M fields
(i.e. a totally imaginary quadratic extension of a totally real number field) and satisfy
[K; : Q] =2-dim(X;).
Proof. (see [29], Theorem 3.1 and Lemma 3.2.) O

Lemma 1.1.11. An Abelian variety A is of CM type, if and only if Hg(H'(A,Q)) is a
torus algebraic group.

Proof. (see [38]) O
Since the Hodge structures on H'(C, Q) and H'(Jac(C),Q) are isomorphic, the rela-
tion of our two concepts of complex multiplication is obvious:

Proposition 1.1.12. A curve C' has complex multiplication, if and only if Jac(C') is of
CM type.

2There is a more general definition of a polarized Hodge structure (see [13], 1.1.10). But here we will
mainly consider Hodge structures given by the primitive cohomology on a Kéahler manifold. Moreover
we obtain H™(X,R)prim = H™(X,R), if X is a curve or if X is a Calabi-Yau 3-manifold. Hence in these
two cases of our main interest H" (X, Rpyim) is independent by the chosen Kéhler form. Moreover by its
definition, the corresponding polarization is independent of the Kéahler form, if ¥ = n. Thus in these two
cases the integral polarized Hodge structure depends only on the isomorphism class of X.
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1.2 Jacobians, Polarizations and Riemann’s Theorem

Let X be a Kahler manifold. Consider the following exact sequence:
0—-Z—0x—0% —0
This yields the complex torus
Pic’(X) = H (X, Ox)/H (X, Z),

which isomorphic to the Jacobian Jac(C'), if X is a curve C. The theory of Abelian
varieties, their Hodge structures and their parameterizing spaces contains several features,
which we will need in the sequel.

1.2.1. On the homology H,(C,Z) of a curve C one can define an intersection pairing. It
is compatible with the polarization onH*(C,Z) by a canonical monomorphism o, which
assigns to each v € H,(C,Z) the a € H'(C,C), which has the property that

forr-

for all 3 € H'(C,C). Thus the homology group H;(C,Z) is the dual of
Hl (Ca Z) = U(Hl (Ca Z))S

By integration over C-valued paths in H;(C,C) := H,(C,Z) ®z C, the C-valued ho-
mology H;(C,C) is a canonical dual of H'(C,C). On H;(C,C) the dual Hodge structure
of weight —1 is given by the Hodge filtration

0c H*'(C) c Hi(C,C) such that H*'(C) = H*'(C)* and H "°(C) = H°(C)*
with H=4%(C) = H,(C,C)/H%~(C). Moreover one has
ooh_1(z) =hi(z) oo forall ze S'(R),
where h_; and h; denote the corresponding embeddings
h_y:S'— GL(Hy(C,R)) and hy:S'— GL(H'(C,R)).

Thus the Hodge groups of these Hodge structures on H,(C,Z) and H'(C,Z) are isomor-
phic. Hence for a study of the Hodge structure on H'(C,Z), it is sufficient to consider
the corresponding dual Hodge structure on Hy(C,Z).

Next we consider polarizations on Abelian varieties:

Remark 1.2.2. Let A = W/L be a complex g-dimensional torus. There is a canonical
isomorphism between H?(A,Z) and Z-valued alternating forms on L = H,(A,Z). More-
over for an alternating integral form F on L, there is a line bundle £ on A with ¢'(£) = E,
if and only if E(i-,i-) = E(-,-). By

H(u,v) = E(iu,v) +iE(u,v),

3Note that Jac(C) is defined by the quotient of H%(w¢)* by the period lattice induced by integration
over paths in H1(C,Z). Thus the statement that H*(C,Z) = o(H1(C,Z)) is equivalent to the well-known
fact that Pic’(C) = Jac(C).

14



we get the corresponding Hermitian form H from F and conversely, given H we obtain
E by E = SH. (See[6], Proposition 2.1.6 and Lemma 2.1.7)

A polarization on an Abelian variety is given by a line bundle £, whose Hermitian
form H, which corresponds to its first Chern class F, is positive definite. The alternating
form E of the polarization can be given by the matrix

0 D,
-D, 0

with respect to a symplectic basis of L, where D, = diag(dy,...,d,) with d;|d;+1 (see
6], 3.§1). The matrix D, depends on the polarization, and it is called the type of the
polarization. The polarization E on A is principal, if D, = E,.

A positive definite Hermitian form H on W, which has the property that SH is an
integral alternating form on L, satisfies that SH (i-,4-) = SH(-,-) resp., is a polarization.
Since the Chern class of a line bundle £ is a polarization, if and only if £ is ample (see
(6], Proposition 4.5.2.), H yields an ample line bundle. By the Theorem of Chow, A is
algebraic in this case. Moreover if A is an Abelian variety, there is a positive definite
Hermitian form H on W such that SH is integral on L (see [40], §1, too).

Now let V' denote a Q-vector space of dimension 2¢g, () be a rational alternating bilinear
form on V', and J be a complex structure on Vg (i.e. an automorphism J with J? = —id).

Remark 1.2.3. It is a well-known fact that there is a correspondence between Hodge
structures h on V of type (1,0),(0,1) and complex structures J on Vg via h(i) = J.

Lemma 1.2.4. The complex structure J on Vg corresponds to a polarized Hodge structure
(V. h, Q) of type (1,0),(0,1), if and only if it satisfies

for all v € Vg.

Proof. Let the complex structure J on Vg be given by a polarized Hodge structure of type
(1,0),(0,1) on V. Any 9,w € Vi can be given by

V=047 and W =w+w
for some v,w € H*, where H%? and H%! are totally isotropic with respect to (). Hence:
Q(Jv, Jw) = Q(iv, —iw) + Q(—iv,iw) = Q(v,w) + Q(v,w) = Q(v, W)
Since the Hermitian form given by ¢Q(v, v) is positive definite on H'° one concludes:
Q(J0,0) = Qiv —iv,v + v) = Q(iv, V) + Q(—iv,v) = 2iQ(v,v) > 0 (1.2)
Conversely assume that Q(J-,-) > 0 and Q(-,-) = Q(J+,J-). Thus one has
Qv,v) = Q(Jv, Jv) = Q(iv,iv) = —Q(v,v)

resp., Q(v,v) = Q(Jv, Jv) = Q(—iv,—iv) = —Q(v,v)

for all v € HYY := Eig(J,i) resp., for all v € H*' := Eig(J, —i). Hence HC resp., H"!
is isotropic with respect to ). The same calculation as in (1.2) implies that iQ(-,~) is
positive definite on ' and negative definite on H%!. Hence one gets a polarized Hodge
structure of type (1,0), (0,1) by Remark 1.2.3. O]
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By the preceding lemma and an easy calculation using that z = a+ib € S'(R) implies
a® + b* = 1,* we obtain:

Proposition 1.2.5. A polarized Hodge structure of type (1,0),(0,1) on V (where Q de-
notes the polarization) induces a faithful symplectic representation

B S' = Sp(Ve, Q).
Corollary 1.2.6. Let (V,h,Q) be a polarized Hodge structure of type (1,0),(0,1). Then
Hg(V,h) C Sp(V,Q), and MT(V,h) C GSp(V, Q).

Theorem 1.2.7 (Riemann). There is a correspondence between polarized Abelian va-
rieties of dimension g and polarized Hodge structures (L,h, Q) of type (1,0),(0,1) on a
torsion-free lattice L of rank 2g.

Proof. Let (L, h, Q) be a polarized Hodge structure on a torsion-free lattice L of rank 2g.
By
LR —L®C— H,

one has an isomorphism f of R-vector spaces. The complex structure of the Hodge
structure turns Lg into a C-vector space. One has f(Av) = Af(v). By f, @ may be
considered as (real) alternating form on H%!. But it satisfies Q(iv,v) < 0 for all v € H%!.
Hence let £ = —@Q. Lemma 1.2.4 implies that E(i-,i-) = E(-,-) and E(iv,v) > 0 for all
v € H%'. Thus the corresponding Hermitian form is positive definite (see Remark 1.2.2)
and we have a polarization on the complex torus H%!/L and hencefore an Abelian variety.

Conversely take a polarized Abelian variety (A, E), where A = W/L. Let QQ := —F.

By J = —i, one has similar to Lemma 1.2.4 a complex structure corresponding to a
polarized Hodge structure of type (1,0), (0,1) on L. Thus we have obviously obtained the
desired correspondence. O

Since a polarized rational Hodge structure can be considered as polarized integral
Hodge structure with respect to a fixed lattice, if the polarization on this lattice is integral,
one concludes by Lemma 1.2.4 and Theorem 1.2.7:

Corollary 1.2.8. There is a bijection between the sets of polarized Abelian varieties A =
W/L and complex structures on L @ R satisfying

Q(‘]a J) = Q(? ) and Q(‘]U>U> >0
for all v € L @ R with respect to an integral alternating form @ on L.
Remark 1.2.9. The Jacobian Jac(C') of a curve C' is isomorphic to

Pic’(C) = H*'(C)/H"(C, 7).

4Let v,w € Vig. The calculation is given by:
Q(zv, zw) = a*Q(v,w) + b*Q(v, w) + ab(Q(Jv,w) + Q(v, Jw)) =

= Q(v,w) + ab(Q(Jv,w) + Q(Jv, J(Jw))) = Q(v,w) + ab(Q(Jv,w) + Q(Jv, —w)) = Q(v,w)
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As in the proof of Riemann’s Theorem, the polarization of the integral Hodge structure
on HY(C,Z) can be identified with a polarization on Jac(C'). Since the corresponding
intersection form on H,(C,Z) can be given by the matrix

0 E,
—E, 0

with respect to a fixed symplectic basis (follows by [6], Chapter 11, §1 for example), one
concludes that this polarization on Jac(C) is principal.®

Remark 1.2.10. Two curves are isomorphic, if their Jacobians are isomorphic as princi-
pally polarized Abelian varieties (see [6], Torelli’s Theorem 11.1.7).

1.3 Shimura data and Siegel’s upper half plane

From now on let (L, h, Q) be a polarized integral Hodge structure of type (1,0), (0,1) on
a torsion-free lattice L of rank 2¢g and V := L ® Q. For simplicity we assume that @) is

given by
_ 0 K
Jo = ( _E, 0 ) (1.3)

with respect to a symplectic basis of L.
Now we construct Siegel’s upper half plane b, (at present as homogeneous space):

Construction 1.3.1. An embedding h : S' — Sp(V,Q)r obtained by a polarized in-
tegral Hodge structure (L, h, Q) of type (1,0),(0,1) corresponds via h(i) to a positive
complex structure (i.e. a complex structure J such that Q(Jv,v) > 0) J € Sp(V, Q)g for
all v € Vg. By conjugation, Sp(V,Q)r acts transitively on the positive complex struc-
tures J € Sp(V,Q)r (see [32], page 67°) and hencefore it acts transitively on the set of
polarized integral Hodge structures (L, h, Q) of type (1,0),(0,1). Let K be the subgroup
of Sp(V,Q)(R), which leaves a fixed h(S!) stable by conjugation. Then Corollary 1.2.8
allows to identify the set of points of the homogeneous space b, := Sp(V, Q)(R)/K with
the set of principally polarized Abelian varieties of dimension g with symplectic basis.

We want to endow h, with the structure of a Hermitian symmetric domain. But first
let us recall some needed facts about groups:

Definition 1.3.2. A Lie algebra g is simple, if dim(g) > 1 and g contains no non-trivial
ideals. A connected Lie group G is simple, if its Lie algebra is simple.

Remark 1.3.3. Let G be an algebraic group. The quotient G® is the image of the adjoint
representation of G on its Lie algebra g. It is a well-known fact that G has the following
algebraic subgroups:

°Following [6], Chapter 11 the principal polarization is ¢;(©), where the Theta divisor © is obtained
as the image of the Abel-Jacobi map C9~1 — Jac(C) via (p1,...,pg—1) = Oc(p1+...+pg—1—(9—1)po)
for an arbitrary py € C.

6 A positive complex structure in the sense of our notation is a negative complex structure in the sense
of the notation of [32], and vice versa (Here J is negative, if Q(Jv,v) > 0 for all v € Vg.). But via
J < —J we have a correspondence between negative and positive complex structures commuting with
the actions of Sp(V, Q)gr on positive and negative complex structures.

17



The derived group G of G is the subgroup of G generated by its commutators. By
Z(@G), we denote the center of G. The Radical R(G) is the maximal connected normal
solvable subgroup of G. Its unipotent radical R, (G) is given by

R,(G) :={g € R(G)|g is unipotent}.

Definition 1.3.4. Let G be an algebraic group. The group G is a reductive, if R,(G) =
{e}, and semisimple, if R(G) = {e}.

Proposition 1.3.5. Let G be a connected algebraic group. It is reductive, if and only if
it is the almost direct product of a torus and a semisimple group. These groups can be
given by Z(G) and G,

Proof. (see [43], Chapter I. §3 for the first statement and [9] IV. 14.2 for the second
statement) O

Remark 1.3.6. It is a well-known fact that the Lie algebras of an R-algebraic group G
and the Lie group G(R) coincide. Moreover G is semisimple, if and only if its Lie algebra
g is a direct sum of simple Lie algebras.

Remark 1.3.7. 1. Let G be a reductive Q-algebraic group with largest commutative
quotient T'. One has the obvious exact sequences:

1 -G 5G>T —1

1-2(G) —G—GY—1
1— Z(G*) - Z(G) =T — 1

2. The exact sequences induce a natural isogeny G4 — G with kernel Z(G9r) (see
[12], 1.1.)

Lemma 1.3.8. If G is a semisimple connected Lie group with trivial center, then it is
1somorphic to a direct product of simple adjoint groups.

Proof. By the assumptions and [23], IT. Corollary 5.2, G coincides with its adjoint group
G™ =~ G/Z(G). Since the Lie algebra g of G is the direct sum of simple Lie algebras,
g is the Lie algebra of a certain direct product of simple groups, too. Without loss of
generality one can assume that these simple Lie groups have trivial centers. Recall that
the adjoint group depends only on the Lie algebra. Thus this product of simple groups is
isomorphic to its adjoint, which is the adjoint of G coinciding with G. ]

Let g be a complex Lie algebra. By R < C, g can be considered as a real Lie algebra
g® with complex structure J given by the scalar multiplication with 7. A real form of g®
is a subalgebra gg of g® such that

g% = go @ Jgo.

A real form is called compact, if its (real) adjoint group is a compact Lie group.

Now let g be a semisimple real Lie algebra. Any involution ¢ on g endows g with a
decomposition into two eigenspaces t = Eig(¢, 1) and p = Eig(¢, —1). The involution ¢ is
called a Cartan involution, if u := t+ip is a compact real form of the complexified semisim-
ple Lie algebra gc. An involutive algebraic automorphism 7 on a connected R-algebraic
group G is a Cartan involution on G, if the (real) Lie subgroup of G(C) corresponding to
u := t + ip is compact, where again t = Eig(7, 1),p = Eig(i, —1) C Lie(G).
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Proposition 1.3.9. A connected R-algebraic group is reductive, if and only if it has a
Cartan involution. Any two Cartan involutions are conjugate by an inner automorphism.

Proof. (See [43], I. 4.3) O

Example 1.3.10. The group Spr(V, Q) = Spr(2g) is reductive. The inner automorphism
of Spg(2g) given by Jy (see (1.3)) is a Cartan involution (see [23], VIII. Exercise B.2).

Since Sp(V, Q) is defined for the alternating form ) given by the matrix Jy, one can
easily calculate that Jy satisfies that Q(Jov,v) > 0 for all v € V. Hence by Construction
1.3.1, the complex structure J; corresponds to a point of h,. Moreover one can easily see
that the Cartan involution of Jy fixes exactly its isotropy subgroup K with respect to the
action of Sp(V, Q)(R) on b,. Since all points of b, correspond to complex structures con-
jugate to Jy, the corresponding involutions, which are conjugate by inner automorphisms,
are the Cartan involutions fixing the respective isotropy subgroups.

Definition 1.3.11. Let M be a C* manifold. A Riemannian structure on M is a sym-
metric tensor field @ of type (0, 2), which yields a positive definite non-degenerate bilinear
form on T,(M) for all p € M.

Definition 1.3.12. Let M be a connected C* manifold with an almost complex structure
J. A Riemannian structure g on M is a Hermitian structure, if g(J-, J-) = g(-, ).

Definition 1.3.13. Let D be a connected complex manifold with a Hermitian structure.
It is a Hermitian symmetric space, if each point is an isolated fixed point of an involutive
holomorphic isometry on D. Let Hol(D, g) denote the Lie group of holomorphic isometries.

Moreover let Hol(D, g)* be a non-compact semisimple Lie group endowed with an
involution ¢, which induces by its differential a Cartan involution on Lie(Hol(D, g)), and
K, C Hol(D, g)* be the subgroup, on which ¢ acts as id. The Hermitian symmetric space
D is a Hermitian symmetric domain, if the isotropy group K of one point p € D satisfies
KfrCKCK,.

Definition 1.3.14. A bounded symmetric domain D is an open, bounded, connected
submanifold D of CV, which has the property that each p € D is an isolated fixed point
of an involutive holomorphic diffeomorphism onto itself.

Theorem 1.3.15. Fach bounded symmetric domain D can be equipped with a unique
Hermitian metric (called Bergman metric), which turns D into a Hermitian symmetric
domain. Conversely each Hermitian symmetric domain has a holomorphic diffeomorphism
onto a bounded symmetric domain.

Proof. The correspondence between Hermitian symmetric domains and bounded symmet-
ric domains is given by [23]|, Theorem VIII, 7.1. The uniqueness of the Bergman metric
follows from the fact that each holomorphic diffeomorphism between bounded symmetric
domains is an isometry with respect to the Bergman metric (see [23], Proposition VIII,
3.5.). 0

Definition 1.3.16. A Shimura datum (G, h) is given by a reductive Q-algebraic group
GG and a conjugacy class of homomorphisms h : S — Gy of algebraic groups satisfying:

1. The inner automorphism of (ad o k)(i) on G2 is a Cartan involution.

2. The adjoint group G does not have any direct Q-factor H such the Cartan invo-
lution of (1) is trivial on Hg.
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3. The representation (ad o h)(S) on Lie(G)c corresponds to a Hodge structure of the
type (1,—1) & (0,0) & (—1,1).

Example 1.3.17. The connected algebraic group GSpg(2g) is the almost direct product
of its central torus G,, g and its simple derived group Spg(2g). Hence it is reductive. By
Construction 1.3.1 and Example 1.3.10, we have a conjugacy class of complex structures,
which corresponds to a conjugacy class of homomorphisms h : S — GSpg(2g) satisfying
the condition (1) of a Shimura datum. The adjoint group GSpy,(Q)*! = Sp,,(Q)*! has
only one direct simple factor on which the Cartan involution above is not trivial. Hence
condition (2) of the Shimura datum is satisfied. Since the center of GSpg(2g) is given
by G,,r (see [32], page 66), the kernel of the adjoint representation on Lie(GSpg(29))
of any A(S) in the conjugacy class is given by G,, g. Since h(a + ib) = aFEy, + bJ, each
g € GSp,,(R) commutes with J, if and only if it commutes with each element of S(R).
Hence on the complexified eigenspace (po)c with eigenvalue —1 with respect to the Cartan
involution, S acts by the characters z/z and z/z. This corresponds to a Hodge structure
of the type (1,—1) & (0,0) & (—1,1) on Lie(GSpg(2¢g)). Hence condition (3) is satisfied
and the conjugacy class of hy : S — GSpg(2g) with ho(i) = Jy is a Shimura datum.

Remark 1.3.18. Let (G, h) be a Shimura datum. Since G* = G/Z(G) and K is the
centralizer of h(S), one has G(R)™/(K(R) N G(R)") = G*(R)/adg(K (R)).

The Cartan involution int(ad o h)(7) fixes exactly adg(K). By [43], I, Corollary 4.5,
the subgroups of a connected R-algebraic reductive group on which a Cartan involution
acts as id are maximal compact. Hence adg (K (R)) is a maximal compact subgroup.

Remark 1.3.19. Let (L, h, Q) be a polarized integral Hodge structure of type (1,0), (0,1)
with corresponding complex structure J € Spy,(R), where @ is given by (1.3). The Cartan
involution corresponding to J leaves Hg(L, h)r C Spg(2g) stable. Hence by [43] Theorem
I. 4.2, the group Hg(L, h)g has a Cartan involution and Hg(L, h) is reductive.

Next we need to recall the definition of a variation of Hodge structures (VHS):

Definition 1.3.20. Let D be a complex manifold and R be a ring such that Z C R C R.
A variation V of R-Hodge structures of weight k& over D is given by a local system Vg
of R-modules of finite rank and a filtration F* of Vp, by holomorphic subbundles such
that:

1. Griffiths transversality condition holds.
2. (Vryp, Fy) is an R-Hodge structure of weight k for all p € D.

The variation V of Hodge structures is polarized, if there is a flat (i.e. locally constant)
bilinear form @ on Vg such that (Vg,, F5, Q,) is a polarized R-Hodge structure of weight
k for all p € D.

Theorem 1.3.21. Let h : S — G be a Shimura datum, t € N and K denote the centralizer
of h(S). Then each connected component DT of D = G(R)/K(R) has a unique structure
of a Hermitian symmetric domain. These domains are isomorphic, where the connected
component of the group of holomorphic isometries is given by the quotient of G*(R) by
its direct compact factors. Each representation p : Gg — GLg(t) yields a holomorphic
variation (R*, po h)nep of Hodge structures on D.

Proof. (See [13], 2.1.1.) O
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Remark 1.3.22. The Lie group GSp,,(R) has two connected components. One com-
ponent consists of matrices with positive determinant and the other consists of matrices
with negative determinant. Hence the corresponding homogeneous space D parametrizing
the elements of the conjugacy class has two connected components. Since GSp,,(R)™ is
a product of Spy,(R) and G,,(R)*, where G,,(R)* is contained in the stabilizers of all
points, the corresponding connected homogeneous space may be identified with b, such
that the preceding Theorem endows b, with the structure of a Hermitian symmetric do-
main. By the natural representation of GSpg(2¢g) on R*, b, is endowed with the natural
holomorphic variation of Hodge structures of type (1,0), (0, 1).

1.4 The construction of Shimura varieties

In the preceding section we have seen that a Shimura datum yields a bounded symmetric
domain. This is the first step of the construction of a Shimura variety. For completeness
we sketch the construction of a Shimura variety in this section. But later we will only need
to use the language of Shimura data and their associated bounded symmetric domains.

Definition 1.4.1. Let G be a Q-algebraic group. An arithmetic subgroup I' of G(Q) is
a group, which is commensurable with G(Z).

A subgroup I' of a connected Lie group H is arithmetic, if there is a (Q-algebraic group
G, an arithmetic subgroup I'y of G(Q) and a surjective homomorphism 7 : G(R)* — H
of Lie groups with compact kernel such that n(I'y) =T

The second step of the construction of a Shimura variety is given by the following
theorem:

Theorem 1.4.2 (of Baily and Borel). Let D be a bounded symmetric domain, and
[ be an arithmetic subgroup of Hol(D)". Then the quotient T\D can be endowed with a
structure of a complex quasi-projective variety. This structure is unique, if I' is torsion-
free.

Proof. (see [13], 2.1.2. (or [4] for the construction of the structure of a complex variety))
O]

Next one needs the ring of finite adeles”, which is given by

A =Qez]]z,
p

where p runs over all prime numbers. Hence A/ is the subring of []Q, consisting of the
(a,) such that a, € Z, for almost all a,. Now let (G, h) be a Shimura datum, which gives
the bounded symmetric domain D' by a connected component of the conjugacy class D
of h and K be a compact open subgroup of G(AY).

Definition 1.4.3. Let G be a Q-algebraic group. A principal congruence subgroup of
G(Q) is

I'(n) :={g € G(Z)|g = E, mod n}
for some n € N. A congruence subgroup of G(Q) is a subgroup I' containing I'(n) such
that [I": I'(n)] < oo for some n € N.

“One reason for the introduction of adele rings is given by the fact that one wants to have canonical
models of Shimura varieties over number fields in number theory. We do not use this here, but we write
it down for completeness
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Lemma 1.4.4. Let K be a compact open subgroup of G(AY). Then T := K NG(Q) is a
congruence subgroup of G(Q).

Proof. (see [32], Proposition 4.1) O
The Shimura variety Shi (G, h) is given by the double quotient
Shic(G, h) == GQQ\D x G(AN)/K = GQ\(D x (G(A)/K)).
Proposition 1.4.5. Let K be a compact open subgroup of G(AY), C' := G(Q)\G(AY)/K,
and Ty = gK g NG(Q)" for some [g] € C. Then one has
Shi (G, h) = | | Tig\D™.
lg]eC

Proof. (see [32], Lemma 5.13) O

Hence the preceding proposition and the Theorem of Baily and Borel endow Shy (G, h)
with the structure of an algebraic variety. By [32], Proposition 3.2, the surjection G — G4
maps a congruence subgroup of G onto an arithmetic subgroup of G®. Now we consider
compact open subgroups with the property that the resulting arithmetic subgroups on
G*(R) = Hol(D*, g) = Hol(D") are torsion-free. Recall that the structure of a complex
quasi-projective variety on the quotient of a bounded symmetric domain by a torsion-free
arithmetic group is unique. If K’ C K, we have a natural morphism

Shyr (G, h) — Shy (G, h). (1.4)

By the projective limit running over all compact open K C G(A) proving a torsion-free
arithmetic group on G%(R), which is given via (1.4), we obtain the Shimura variety®

Sh(G, h) = lim Shx (G, h).

1.5 Shimura varieties of Hodge type

Now we know how to construct a Shimura variety. Hence next we construct the Shimura
varieties resp., Shimura data, which we will need.

Definition 1.5.1. A Shimura datum (G, h) is of Hodge type, if there is an embedding
p : G = GSpy, g such that one has the Shimura datum of Example 1.3.17 by

S < G &5 GSpyy g

A Shimura variety SH is of Hodge type, if it is obtained by a Shimura datum (G, h) of
Hodge type.

From now on we will write K, if mean the algebraic subgroup of Gr given by the
centralizer of h(S) resp., h(S1). Moreover for simplicity we will write K instead of K (R)
by an abuse of notation. In the respective situation the respective meaning will be clear.

8Some authors denote only Sh(G, h) as Shimura variety.
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Construction 1.5.2. Let (V, h, Q) be a polarized Q-Hodge structure of type (1,0), (0, 1).
The conjugacy class of the representation i : S — GSp,, g is the Shimura datum of Exam-
ple 1.3.17. Hence the adjoint representation of S on Lie(MT(V, h))c C Lie(GSp(V, E))c
induces a Hodge structure of the same type (or of the type (0,0)). Moreover the same
arguments imply that the inner automorphism corresponding to (ad o h)(4) is a Cartan
involution on MT&Y(V, ). Hence MT(V, h) is reductive. Thus it remains to show that
MT(V, k)™ does not have any non-trivial direct Q-factor H on which the Cartan involu-
tion is trivial:

Let H be a simple direct Q-factor of MT(V, h)® with trivial Cartan involution. We
have a surjection

s MT(V, h) 25 MT(V, h)* 25 H,

which is obviously a homomorphism of Q-algebraic groups. Hence the kernel K of s is
a Q-algebraic group. The complex structure .J, which satisfies that ad(J) is the Cartan
involution, satisfies that all elements of the adjoint group Hg commute with ad(.J). Hence
J is contained in K. Thus Lie(H)c is contained in the Lie sub-algebra of Liec(MT(V, h))
on which S acts by the character 1. Hence one has h(S) C Kg, which implies K =
MT(V, h) resp., H = {e}.

Hence we obtain a Shimura datum h : S — MT(V, h)gr of Hodge type.

Lemma 1.5.3.
Hg(V,h) = (MT(V,h) N SL(V))"

Proof. By the natural multiplication, we have a morphism
m : Hg(V, h) x G,, 0 — MT(V, h)

with finite kernel. The Zariski closure Z of m(Hg(V, h) X G, o) in MT(V, h) is an algebraic
subgroup of MT(V, k). Moreover one has that h(S) C Zg C MTg(V,h). Hence Z =
MT(V, h).

Since all homomorphisms f : G — G’ of algebraic groups over algebraically closed
fields satisfy f(G) = f(G) (see [1], Satz 2.1.8), we have the equality

Hg@(V, h) . Gm@ = Z@ = MT@(V, h).

Now let M € MT(V,h)(Q) N SL(V)(Q). It is given by a product N - M; with N €

Gn(Q) and M, € Hg(V,h)(Q). Since Hg(V,h)(Q) C SL(V)(Q), one concludes N €

Gm(Q) NSL(V)(Q) = 1, (Q), where dim V' = n. If and only if N € Hg(V, h)(Q), one has

M € Hg(V, h)(Q). Hence by the fact that p,(Q) is finite, one obtains the statement. [

Remark 1.5.4. For a polarized Hodge structure of weight 1 of a curve of genus g, we

have a natural embedding Hg(V, k) C Spg(2g). Since 1124(Q) is not a subgroup of Spy,(Q)
for g > 1 and for g = 1 one has uy C h(S'), we obtain the equality

Hg(V,h) = MT(V, h) N SL(V)
only in the case of a genus one curve.

Remark 1.5.5. Now assume that (V) h,Q) is a polarized Q-Hodge structure of type
(1,0),(0,1). Since MT(V, h) is reductive and MT(V,h)4 is semisimple in this case,
one concludes by Lemma 1.5.3 that MT(V,h)% = Hg(V,h)4". Thus one has that
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MT(V,h)*(R) = Hg(V,h)*(R). Hence by the preceding construction Hg(V, h)*4(R)
is the identity component of the holomorphic isometry group of a Hermitian symmet-
ric domain. The isotropy group of a point is given by a maximal compact subgroup of
Hg(V, h)*(R) fixed by the Cartan involution on Hg(V, h)a of the corresponding complex
structure J € Hg(V,h)(R). Hence one can consider h|g1 : ST — Hg(V, h)g as Shimura
datum, too.

Now we construct the holomorphic family of Jacobians over Hg(V,h)(R)/K corre-
sponding to the VH.S induced by the embedding Hg(V, k) — Spg(2g), where (V, h) is of
type (1,0),(0,1).”

Construction 1.5.6. Let (L, h, Q) be a polarized Z-Hodge structure of type (1,0), (0, 1)
with V' := Lg as before and {vy,...,v,, w1, ..., w,} be a symplectic basis of L with respect
to Q. For example it may be given on L := H*(C,Z), where C'is a curve of genus g. One
has that Hg(V, k) C Sp(V, Q). Let K C Hg(V, h)(R)™" be the centralizer of h(S*(R)). Thus
Hg(V, h)(R)"/K is a Hermitian symmetric domain as we have seen. Consider the linearly
independent set B = {[w1],...,[w,]} C H*', which generates the real subvector space W.
Now W is obviously generated by {[Jw:],...,[Jw,]}. The principal polarization H of
the Abelian variety A = H%!/L is given by the corresponding alternating form F = —Q
as in the proof of Theorem 1.2.7. Since E vanishes on W, the principal polarization H
given by H = E(i.,.) +iF(.,.) vanishes on the complex vector space W NiW, too. Hence
W NiW = 0. Thus the fact that Spang(v, Jv) is mapped to Spanc([v]) implies that B is
a C-basis of H%'. Hence the period matrix of the corresponding Abelian variety may be
given by (Z, E,), where the columns of Z are given by the [v;] in their coordinates with
respect to B.

Thus the embedding H'Y — V¢ is given by the matrix (—E,, Z*)". Since we have a
holomorphic variation of Hodge structures, this matrix varies holomorphically. Thus the
period matrices of the corresponding Abelian varieties vary holomorphically, too. Hence
the corresponding action of L on H*! x Hg(V,h)(R)/K is holomorphic and we obtain a
holomorphic family of Abelian varieties over Hg(V, h)(R)/K.

Now recall that our main interest is not the theory of Shimura varieties, but families
with a dense set of C'M points defined below:

Definition 1.5.7. Let D be a complex manifold and V be a holomorphic variation of
rational Hodge structures. A point p € D is a C'M point with respect to V, if V, has a
commutative Hodge group.

Let X — D be a holomorphic family of complex manifolds. A point p € D is a CM
point with respect to X, if &, is a C'M fiber resp., X, has a complex multiplication.

Now we give criteria for dense sets of CM points, which imply that the family of
Abelian varieties over Hg(V, h)(R)/K of Construction 1.5.6 has a dense set of CM fibers:

Lemma 1.5.8. Let (G, h) denote a Shimura datum. If the connected component G(R)/K
contains a CM point with respect to a VHS induced by some closed embedding G —
GL(W) for some Q-vector space W, then the set of CM points of the same type with
respect to the same VHS is dense in D.

9This construction and the rest of this section are similar to [39], §1 with some technical differences.
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Proof. We have two cases. Assume that G is a Q-algebraic torus. In this case G(R)/K
consists of one point. The fact that we have a closed embedding G — GL(W) implies
that the Hodge group of the Hodge structure over this point is a subtorus of the torus G.

In the other case G is not a Q-algebraic torus. By the assumptions, we have a CM
point in G(R)/K with respect to the VHS induced by some closed embedding G —
GL(W). This implies that G contains a Q-algebraic torus 7" such that the conjugacy
class of h : S — Gy contains an element, which factors through Tg. By our preceding
construction, the stabilizer of the CM point [so]x € G(R)/K is given by soKs;'. Thus
one can replace K by soKs;'. In this case the fact that the VHS is unduced by an
embedding G — GL(W) implies that the Hodge group of the Hodge structure over
le] is a subtorus of 7. Hence [e] is a C'M point with respect to this VHS, and any
s € G(Q) C G(R) has the property that it is mapped to a C'M point, too. By the Real
Approximation Theorem, G(Q) lies dense in the manifold G(R) for all connected affine
Q-algebraic groups G. Since the quotient map is continuous, the set of C'M points in
G(R)/K is dense. O

Theorem 1.5.9. Let (G, h) denote a Shimura datum. The set of CM points with respect
to the VHS induced by some closed embedding G — GL(W) for some Q-vector space W
is dense in G(R)/K.

Proof. By the preceding lemma, we have only to show that there exists one C'M point
on G(R)/K. By the closed embedding G — GL(WW), each Q-algebraic torus of G can
be identified with a Q-algebraic torus of GL(W). Thus the existence of a C'M point is
equivalent to the statement that thereisa h : S — Gy in this V HS, which factors through
a (Q-algebraic torus of G.

Now let T be a maximal (Q-algebraic) torus of G. The centralizers of the maximal
tori (resp., the Cartan subgroups) of a reductive group are the maximal tori (see [9], IV.
13.17.). The torus Tk is contained in a maximal torus T, of Gg, which has the property
that each point of T}, is contained in the centralizer of T resp., in the centralizer of T
Thus the torus Tk is in fact maximal in Gg.

The Cartan subgroups, i.e. the centralizers of the maximal tori, which are the maximal
tori in our case, are conjugate (see [9], IV. 12.1.). The stabilizer of the point given by h
in Gg/K is the centralizer K of h(S). The center of K, which is a torus contained in a
maximal torus 77, contains obviously A(S) resp., we have a maximal torus 7} containing
h(S), where T; C K. Thus by the fact that T} is conjugate to Tg by some element s
and our preceding construction, the Hodge group of spo K € G(R)/K is a subtorus of T
Hence sqo K is a C'M point. O
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Chapter 2

Cyclic covers of the projective line

2.1 Description of a cyclic cover of the projective line

Let us first repeat some known facts about Galois covers of P!,

Definition 2.1.1. Let 77, T5, and S be topological spaces resp., complex manifolds resp.,
algebraic varieties. The coverings f; : 77 — S and f5 : T5 — S, which are morphisms in
the respective category, are called equivalent, if there is an isomorphism ¢ : T} — 715 in
the respective category such that f; = fyog.

Proposition 2.1.2. Let G be a finite group, and S := {ay,...,a,} C A C PL. There is
a correspondence between the following objects:

1. The isomorphism classes of Galois extensions of C(PY) = C(x) with Galois group
G and branch points contained in S.

2. The equivalence classes of (non-ramified) Galois coverings f : R — P\ S of topo-
logical spaces with deck transformation group isomorphic to G.

3. The normal subgroups in the fundamental group mi(P'\ S) with quotient isomorphic

to G.
Proof. (see [50], Theorem 5.14) O

Remark 2.1.3. We will need to understand the correspondence of the preceding Proposi-
tion. The correspondence between (1) and (2) is given by the facts that a Galois covering
f: R — P'\ 'S (of topological spaces) yields a covering f : R — P! of compact Riemann
surfaces, and any morphism of compact Riemann surfaces corresponds to an embedding
of their function fields.

The correspondence between (2) and (3) is given by the path lifting properties of
coverings of Hausdorff spaces. Take b € R. Let p = f(b), and v € m(P*\ S,p), and
f*(7(0)) = b. Then f*(y(1)) = g- b for some g € G = Deck(R/(P'\ P)). This induces
a homomorphism ®;, : 7 (P*\ S,p) — G and hencefore a kernel of this homomorphism,
which is a normal subgroup.

Remark 2.1.4. Let f : R — P! be a Galois covering with branch points a4, ..., a,.
One can choose 7i,...,7, € 7 (P! \ P) such that each 7y is given by a loop running
counterclockwise ”around” exactly one a,. Hence one has that

Vo =V Yl
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and we conclude that
Dy (1) = Pp(1) " - Pp(n1)

From now on we consider only irreducible cyclic covers of P!. An irreducible cyclic
cover can be given by a prime ideal

(y™ — (x —a)™ ... (x —an)™) C Clz,y].

First this ideal defines only an affine curve in A2, which has singularities, if there are some
d; > 1. But there exists a unique smooth projective curve birationally equivalent to this
affine curve. By the natural projection onto the x-axis, one obtains a cyclic cover of the
birationally equivalent projective smooth curve onto P!.

Remark 2.1.5. Let us consider the cover given by

dy dn

m coo (= apn)™,

y" = (z—w)
and fix a kg € {1,...n}. By an automorphism of P!, one can put aj, onto 0. Let
ko = % € Q, and D a small disc centered in 0, which does not contain any other ay
with k # ky. Take any point p € dD and remove the line [0, p]. The topological space
D\ [0, p] is simply connected. Hence one can define root functions z — z** on this space.

These functions on D \ [0, p| are given by:

27Titdk0

14
ZHko = | z|#*0 exp( +2mi—) (with £=0,1,...,m—1 and z = |z|exp(2mit))
m
Since the cover is given by y™ = x%o resp., y = 2% over a small disc around 0, we may
lift a closed path around 0 to some path with starting point (z, z#%0) and ending point
(2, 2™k k0 ).,

Definition 2.1.6. Let e*™* and dj, be given by Remark 2.1.5. Then e*™#* is the local
monodromy datum of dy,.

Lemma 2.1.7. Assume that dy,...,d, < m. Let the (non-singular projective) curve C
be given by

Yy = (x—a)™ .. (x—a,).

Then the Galois group G is Z/(m), and the covering C — P! is given by the kernel of the

homomorphism given by v, — dp € Z/(m). If and only if m does not divide »_, dy, the
k=1
point oo s a branch point and

700—>—de mod m.
k=1

Proof. The last statement of the lemma follows by the preceding rest of the lemma and
the Remark 2.1.4.

The Galois group and Z/(m) are obviously isomorphic. Let us remove the ramification
points of C'. Then we obtain a Riemann surface R. Now take a small loop v, around p,
which starts and ends in p € P'. Now take a point b € R with f(b) = p. The definition of
R and Remark 2.1.5 imply that the lifting f*(7%) of the path ~; starting in b ends in the
point dj. - b. Hence the statement follows from Proposition 2.1.2 resp., Remark 2.1.3. [
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Let d € Z and 1 < m € N. The residue class of d in Z/(m) is denoted by [d],,.

Remark 2.1.8. Let G = Z/(m), and [d],, € Z/(m)*. We consider the kernels of the
monodromy representations of the covers locally given by

ym:(x—al)dl-...~(:r—an)d"

and

)[ddl}m )[ddn]m'

y" = (r—a R

By the preceding lemma, these kernels coincide. Hence we conclude that both covers are
equivalent.

2.2 The local system corresponding to a cyclic cover

Now let us assume that our cover 7 : C' — P! is given by

dy dn

m coo (= ay)™,

y" = (r —a)
where m divides d; + ... + d,, and oo is not a branch point. Moreover let

S:=A{a1,...,a,}.

Definition 2.2.1. Let X be a complex algebraic manifold, £ an invertible sheaf on X

and
D= Z by Dy,

a normal crossing divisor on X such that £ = O(D) and b, < m for each k. Then by £
and D, one can construct a cyclic cover of degree m onto X (see [16], §3). The number
by is called the branch index of Dj with respect to this cyclic cover.

Example 2.2.2. In the case of

n

- 1
X=P', D= ;dkak, L= OPI(E > dy),

k=1
the cyclic cover of the preceding definition is given by

dy dn

Yy =(rx—a)" ... (x—ay)
Next we describe the local system 7, (C)|p1\s and its monodromy.

Lemma 2.2.3. Let V be a C-vector space of dimension n, and X be an arcwise connected
and locally simply connected topological space with x € X. Then the monodromy repre-
sentation provides a bijection between the set of isomorphism classes of local systems of
stalk V' and the set of representations

m (X, z) — GL,(C),
modulo the action of Autc (V) by conjugation.

Proof. (see [49], Remark 15.12) O
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Since GL;(C) = C* is commutative, we can conclude:

Corollary 2.2.4. The monodromy yields a bijection between the set of isomorphism
classes of rank one local systems on P'\ S and the set of representations

m (P S) — GL,(C).

The Galois group of our covering curve is isomorphic to Z/(m) and generated by a
map 1, which is given by (z,y) — (z,e*™my) with respect to the above affine curve
contained in A%, which is birationally equivalent to the covering curve. Hence a character
x of this group is determined by x(1) with x(¥) € {e*™w|j = 0,1,...,m — 1}. Thus
the character group is isomorphic Z/(m) and we identify the character, which maps v to
™ with j € Z/(m).!

Let D be an arbitrary disc contained in P!\ S. The preimage of D is given by the
disjoint union of discs D, with r =0,1,...,m — 1 such that ¥(D,) = Dy.4q),,. The vector
space m,Cc|pi\s(D) has the basis {v;|j =0,1,...,m — 1}, where

2mwj(m—1) 2mj
vir=(e m ,...,em 1),

and the r-th. coordinate denotes the value of the corresponding section of 7—*(D) on D,.
By the push-forward action, each v; is an eigenvector with respect to the character given
by j. Since D is arbitrary, one can glue the local eigenspaces, and obtain an eigenspace

decomposition
m—1

'/T*CC‘]}DI\S = @Lj
j=0
into rank 1 local systems, where IL; is the eigenspace with respect to the character given
by j € Z/(m). Hence the monodromy representation p : 7 (P! \ S) — GL,,(C) has the
corresponding decomposition

m—1
pP= (p07p17 cee 7pm—1) : Trl(‘)() - H GL1<C)’
1=0

where

pj: m(P'\ S) — GLi(C)

is the monodromy representation of L; for all j =0,1,...,m — 1.
Let us recall that our cyclic cover C' is given by
)

y" = (v —a))™ ... (z —ap)™,

where 0o is not a branch point. Now let z € P!\ S, and = € D, where D is a sufficiently
small open disc as above. Take a counterclockwise loop 7y, around ay with v,(0) = (1) =
x and cover the loop with a finite number of (sufficiently) small discs. The continuation of
5 on the unification of these discs leads to a multi-section. By Remark 2.1.5, the possible
liftings 7" of the 1 ths with starting point 7" (0) = y,, wh

gs 7, ~ of the loop v, are paths with starting point v, ’(0) = y,, where y, € D, and

ending point fy,gr)(l) = Yldy+r],m- Lhis implies that the monodromy representation of L;

2mjdy,
maps vy, to e m . Hence we conclude:

!These two identifications with Z/(m) are obviously not canonical, but useful for the description of
m.Cc|p1\s by using our explicit equation for w: C' — P! as we will see a little bit later.
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Theorem 2.2.5. Let the cyclic cover m : C — P, which is not branched over oo, be given
by

Yy = (x—a)™ ... (z—a,)™. (2.1)
Then the local system m,Clpi\g is given by the monodromy representation

2mijdy,
Y = {(%5)j=01...m—1 — (€™ Tj)j=01..m—1}

Remark 2.2.6. One can consider , (Q(e2™ ))|p\ g, too. Since a generator ¢ of Gal(C; P*)
satisfies 9™ = 1, the minimal polynomial of its action on T, (Q(ezm%))\ﬂp\ g decomposes

into linear factors contained in Q(e2™m )[z]. Hence the eigenspace decomposition is defined
over Q(e2™m ).
Each local system L of C-vector spaces on any topological space X has a dual local
system LY given by the sheafification of the presheaf
U — Home(L, C).

Proposition 2.2.7. One has
Furthermore the monodromy representation pvy of LY is given by piy (Vs) = p; (7s) for
all s € §.
Proof. (see [15], Proposition 2) O

Hence by the respective monodromy representations, we obtain for all j = 1,... , m—1:
Corollary 2.2.8.

L;/ - ]Lm—j

Let r|m. We consider the C-algebra endomorphism ®, of Clz,y] given by © — x and
y — y". The (non-singular) curve C' is birationally equivalent to the affine variety given
by Spec(Clz,y]/I), where

I=W"—(z—a)®... (z—a,)™).

By ®,., we obtain the prime ideal
M) = (yr —(z—a)b ... (x—a,)™).

r

Let C.. be the irreducible projective non-singular curve birationally equivalent to the affine
variety given by Spec(C|z,y]/®, 1 (1)).

Remark 2.2.9. By the equation above, we have a cover m, : C, — P! of degree 2. The
homomorphism @, induces a cover ¢, : C' — C, of degree r such that

7T:7Tro¢7"~

Proposition 2.2.10.

m_y
(WT)*CCJ]P&\S = @ Lr~j C W*CC|]P’1\S-
j=0
Proof. Let mg := ™. By Theorem 2.2.5, the monodromy representation of the local

system (m,).Cc, [p1\{ay,....an} 15 given by
2mijdy, 2mijrdy
T — {(z))j=00.,m 1 = (€770 @) 0. mo1 = (67 ™ @)j—01..,m1}
By the respective monodromy representations of the local systems L;, this yields the
statement. 0
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2.3 The cohomology of a cover

In this section we discuss some known facts about the eigenspace decomposition of the
Hodge structure of a curve C' with respect to a cyclic cover 7 : ¢ — P!. The main
reference for this section is given by §3 of the book [16] of H. Esnault and E. Viehweg.
Section 2 of the essay [14] of P. Deligne and G. D. Mostow contains additional information
about our case.

Let m: C' — P! be given by

ym:(x—al)dl-...~(x—an)d"

such that oo is not a branch point,

‘ dit .t dy R
S=A{a,...,a,}, D=dya;+...+dya, and L) .= Opl(j% — ;[% - d)).
Moreover let the generator i of the Galois group of 7 be given by (z,y) — (z, e>™my)

with respect to the explicit equation above, which yields .
We fix some new notation: Let [¢], := g — [g] for all ¢ € Q. Moreover we define

S, = {a € Sllinas # 0},

Proposition 2.3.1. The sheaves m.(O) and m.(w) have a decomposition into eigenspaces
with respect to the Galois group representation, which are given by the sheaves L9 and

wj = wp1 (log DY) ® LD with DY) = Z a
CLES]'

1

for 3 =0,1,...,m — 1 such that ¥ acts via pull-back by the character e on LU
resp., wj.

Proof. The eigenspace decomposition of 7.(Q) follows by [16], Corollary 3.11. Moreover
[16], Lemma 3.16, d) yields the decomposition of m,(w) into the claimed sheaves. Since
LD is an eigenspace with respect to the Galois group representation, w; is an eigenspace
of the same eigenvalue. O

Remark 2.3.2. One has obviously h°(wy) = 0. By [16], 2.3, ¢), one concludes that

wp1 (logDY)) = wp1 (DY)

for y=1,...,m — 1. Hence for j =1,...,m — 1 we obtain
dy+ ... +d K
. .aq n—+3
h0(w;) = BY(Opi (=2 + deg(DV)) — j e +;[E-dk]))

=1+ 81+ > (=jpa+ [ua) = =1+ > _ (1= [juah)-

a€sS; acs;
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But here we want to determine our eigenspaces on m,(w¢) with respect to the push-
forward action. Thus we put w?) := Wim—j],» and we obtain

B (C) = B0 = KO @img,) = =14 (U= [(m = j)ua) = =1+ 3 [imal.

aESj (ZGS]‘

Moreover let H ](-) (C) denote the vector space of antiholomorphic 1-forms on C' with
respect to the corresponding character of the Galois group action. Since the push-forward
action of the Galois group respects the alternating form of the polarization of the Hodge
structure on H'(C,Z), one concludes that H[OT;LI_J.]M(C) is the dual of H;’O(C). Thus:
Proposition 2.3.3. We have the eigenspace decomposition

m—1
H'(C,C) = @D H(C,C) with H;°(C)e H}(C) = H,}(C,C).
j=1
Moreover by h?’l(C ) = h[lyffj]m(C ) and the preceding calculations, one concludes:

Proposition 2.3.4. We have

hy°(C) = Z[j,us]l —1, and hj"*(C) = Z(l — [jpsh) — 1.

SES]' SES]'
The preceding two propositions imply:

Corollary 2.3.5.

2.4 Cyclic covers with complex multiplication

Let us now search for examples of covers of P! with complex multiplication. The family
given by
P? > V(y™ — x1(z1 — 20) (21 — a120) - . . (21 — Apm_370))

— (a1, am-3) € (A" \ {0,11)" 7\ {a; = a;]i # j}

has obviously a fiber isomorphic to the Fermat curve F,,, which is given by V (y" +2™+1)
and has complex multiplication (see [19] and [27]). For another family with a fiber with
complex multiplication, we must work a little bit.

Lemma 2.4.1. If (V, hy) and (W, hy) are two Q-Hodge structures of weight k, then
Hg(V & W, hy @ he) C Hg(V, hy) x Hg(W, he) C GL(V) x GL(W) C GL(V @& W),
and the projections
Hg(V & W) — Hg(V), and Hg(V @ W) — Hg(W)
are surjective.

Proof. (see [46], Lemma 8.1) O
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Lemma 2.4.2. Let V C W be a rational sub-Hodge structure of a polarized Hodge struc-
ture W. Then we have a direct sum decomposition

W=VeaeV,
where V' is also a rational sub-Hodge structure of W.
Proof. (see [49], Lemma 7.26) O

Lemma 2.4.3. A curve C, which is covered by the Fermat curve F,, given by V(2™ +
y™ + 2™) C P? for some 1 < m € N, has complex multiplication.

Proof. A covering F,, — C yields an injective vector space homomorphism
HY(C,Q) — H'(F,,,Q),

which extends to an embedding of Hodge structures (see [49], 7.3.2 for more details). This
embedding induces a direct sum decomposition into two rational sub-Hodge structures of

H'(F,,,Q) (see Lemma 2.4.2). Hence by Lemma 2.4.1 and the fact that F,, has complex
multiplication, one obtains the statement. [

Theorem 2.4.4. Let 0 < dy,d < m, and & denote a primitive k-th. root of unity for all
k € N. Then the curve C, which is given by

n—2

y" =t H(f - 5:}2)(2

i=1
is covered by the Fermat curve F(,,_2), given by V(y=2m 4 g(=2m 1 1) and has complex
multiplication.

Proof. Let C' be the curve, which is given by

n—2
y" =t H(x - ;—Q)d’
i=1
and ¢ : A2 — A? be the morphism, which is given by y — yz® and z — z™. By
a little abuse of notation, we denote by C' N A? the singular affine curve given by the
equation above, which is birationally equivalent to C. The corresponding homomorphism
¢* : Clx,y] — Cl[z,y| sends the ideal, which defines C'N A?, to the ideal generated by

n—2

ymxm-dl _ xm-dl H(gjm . ;_Q)d‘
=1

This is contained in the ideal generated by

n—2

A | (G A (2.2)

i=1

Let mg := and dy := It is obvious that

d
(m d)’ ged(m,d)

n—2 ged(m,d)—1 n—2

y" - H(xm - Z—Q)d - H (ymo - ;cd(m,d) H(xm - :1—2)%)'

i=1 §=0 i=1
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Now we take the curve C7, which is given by

n—2

y" = H(l’m - féd)do-

i=1

By the definitions of my and dy, and Remark 2.1.8, the curve (] is given by

yme = H(l,m - ;—2)7

too. Hence this curve irreducible, and ¢ induces a cover C; — C resp., ¢* induces a
C-algebra homomorphism C[C' N A2 — C[C; NA?]. By 2 — z and y — ¢ 0, we get
a cover of the Fermat curve F(,_s), given by V (y"=2m 4 z(*=2m 4 1) onto C;. Now we
use the composition of these covers F(,_),, — C; and C; — C, and Lemma 2.4.3. This
yields the statement. O
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Chapter 3

Some preliminaries for families of
cyclic covers

3.1 The theoretical foundations

We want to study the variations of Hodge structures (V HS) of the families of cyclic covers
onto P!, which will be constructed in the next section. Hence let us first make some general
observations about the relation between their monodromy groups and Hodge groups resp.,
Mumford-Tate groups, which will be needed for the calculation (of the derived group) of
the generic Hodge group defined below.

Proposition 3.1.1. Let F' be a totally real number field, W be a complex connected
algebraic manifold, A — W be a family of Abelian varieties and V be its polarized variation
of F-Hodge structures of weight 1 on W. Then there is a countable union W' C W of
subvarieties such that all MT(V,) coincide (up to conjugation by integral matrices) for all
(closed) p € W\ W'. Moreover one has MT(V,) C MT(V,) for all (closed) p' € W' and
peW\W'.

Proof. (see [34], Subsection 1.2) O

The preceding Proposition motivates the definition of the generic Mumford-Tate group
of a polarized variation V of Z-Hodge structures of weight £ on a non-singular connected
algebraic variety W given by MT(V) = MT(V,) for all (closed) p € W\ W',

Since the image of the embedding SL(Vg,) — GL(Vg,,) is independent with respect to
the chosen coordinates on Vg ,, Lemma 1.5.3 allows us to define the generic Hodge group
Hg(V) := (MT(V) NSL(V))® such that Hg(V) = Hg(V,) for all (closed) p € W\ W'.

Definition 3.1.2. Let Q C K C Rbeafield and V = (Vk, F*, Q) be a polarized variation
of K Hodge structures on a connected complex manifold D. Then MonY% (), denotes
the connected component of identity of the Zariski closure of the monodromy group in
GL((Vk),) for some p € D. For simplicity we write Mon®(V), instead of Mong,(V),,

Theorem 3.1.3. Keep the assumptions and notations of Proposition 3.1.1. One has that
Mon%(V),, is a subgroup of MT™(V,) for allp € W\ W'. Moreover for a variation of Q
Hodge structures one has that Mon®(V), is a normal subgroup of MTY*(V,) and

Mon"(V), = MT*"(V,)
for allp e W\ W', if Vo has a CM point.
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Proof. (see [35], Theorem 1.4 for the statement about the variations of Q Hodge structures
and [34], Properties 7.14 for the statement about the variations of F' Hodge structures) [

Corollary 3.1.4. Keep the assumptions of Theorem 3.1.3. Then the group MonO(V) 1S
semistmple.

Proof. The Lie subalgebra Lie(Mong(V)z) of Lie(MTE"(V)z) is an ideal. Hence the al-
gebra Lie(Mong)(V)g) consists of the direct sum of simple subalgebras of Lie(MTg™ (V)g).
Thus Mong(V)gr and hence Mon’(V) is semisimple. O

3.2 Families of covers of the projective line

Let S be some C-scheme. Recall that the covers ¢; : Vi — Pk and ¢y : Vo — Pi are
equivalent, if there is a S-isomorphism j : Vi — V5 such that ¢ = ¢y 0 5.

In this section we construct a family of cyclic covers onto P! such that all equivalence
classes of covers with a fixed number of branch points with fixed branch indeces are
represented by some of its fibers. For us it is sufficient to start with a space, which is
not a moduli scheme, but whose closed points "hit” all equivalence classes of covers of P!
with Galois group G = (Z/m,+) and a fixed number of branch points with fixed branch
indeces.

We can start with the space

(P > Py = (P \ {2 = i # 5},

which parameterizes the injective maps ¢ : N — P! where N := {sy,...,5,:3}. Thus
a point g € P, corresponds to an injective map ¢, : N — PL.} One can consider P, as
configuration space of n + 3 ordered points, too.

We endow the points s, € N with some local monodromy data oy, = e*™* where

n+3

ukeQ, 0<pr <1 and ZMkGN.
k=1

Now we construct a family of covers of P! by these local monodromy data:

Construction 3.2.1. Let m be the smallest integer such that mu, € Nfork=1,...,n+
3, and Dy, C Pp, := P! x P, be the prime divisor given by

Dk = {(ak, A1y ev oy Qfy o .. ,CLnJrg)}.
Let D be the divisor
n+3 n+3
D= mupDy ~mDy with Dy:= (> _m)- ({0} x Py).
k=1 k=1

By the sheaf £ := Op, (Do) and the divisor D, we obtain an irreducible cyclic cover C
of degree m onto Pp, as in [16], §3 (where irreducible means that the covering variety is

'The set N is some arbitrary finite set, where the set S of the preceding chapter is a concrete set
S C P! given by S = ¢,(N) for some q € P,.
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irreducible). By 7 : C — P! x P, "% P, this cyclic cover yields a family of irreducible
cyclic covers of degree m onto P!.

Suppose that r divides m. By taking the quotient of the subgroup of order r of the
Galois group of the cyclic cover C — P! x P,, one gets a family 7, : C, — P, of cyclic
covers of degree ™ onto PL. Let ¢, : C — C, denote the quotient map. One has

7T:7Tro¢7"~

Remark 3.2.2. Without loss of generality one may assume that ¢ := (aq,...,a,43) € P,
is contained in A"3 too. Thus the fiber C, is given by the equation

y" = (x—a)™ .- (2 — apys)™t

with dy = mu,. By Remark 2.1.5, the local monodromy datum «y describes the lifting of
a path 7y, around a;, € P12 One checks easily that each equivalence class of cyclic covers
of degree m with n+ 3 branch points and fixed branch indexes dy, . .., d, 3 is represented
by some fibers of C. Moreover for C' = C, the quotient C, of Remark 2.2.9 is given by the
fiber (C,),.

A family of smooth algebraic curves over C determines a proper submersion 7 : X — Y
in the category of differentiable manifolds (follows by [49], Proposition 9.5). By the
Ehresmann theorem, we obtain that over any contractible submanifold W of Y the family
is diffeomorphic to Xy x W, where X is the fiber of some point 0 € W. This fact has
some consequences for the monodromy representation of its variation of integral Hodge
structures.

It is a well-known fact that R'7,(Z) is the sheaf associated to the presheaf

V — H' (77 (V), Zlz—v)) (V V€ Top(Py)).
Moreover we have
H'Y(Xo,Z) = H'(Xw,Z) = (R'7.(Z))(W)

for some contractible W C P, with 0 € W, which implies that R'7.(Z) is a local system
(see [49], 9.2.1).

By using these facts, one can easily ensure that the monodromy group of the VHS of
a family of curves can be calculated over any arbitrary field Q C K C C:

Lemma 3.2.3. Let K be a field with char(K) = 0. Moreover let 7 : X — Y be a
holomorphic family of curves. Then we obtain

R'7.(K) = R'7.(Z) @z K.

Proof. By [22], III, Proposition 8.1, the sheaf R'7,(K) is given by the sheafification of
the presheaf
Vo B (V). K] ) (F V€ Top(Y).

Hence by the description of the cohomology of a compact manifold by Cech complexes
(see [49], 7.1.1), this presheaf is given by

V= H' (77 V), Z|,~0n) @2 K (Y V € Top(Y)).

By the fact that a local section of Z or K on a connected component of V resp., 771(V)
is constant, one does not need to differ between the locally constant sheaves given by Z
resp., K on X or Y for the computation of R'7,(K). Hence by using [22], ITI, Proposition
8.1 for R'7,(Z), one obtains the desired identification. O

2This circumstance explains the term “local monodromy datum”.
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By the fact that the integral cohomology of a curve does not have torsion, one con-
cludes:

Corollary 3.2.4. Keep the assumptions of Lemma 3.2.3. Then the monodromy represen-
tations of R'7.(Z) and R'1.(K) coincide.

Remark 3.2.5. Recall the we have an eigenspace decomposition of
H'(Co,C) = H'(Co,Z) ® C

with respect to the Galois group action. By H'(Cy,C) = (R'7,.(C))(W) for some con-
tractible W C P,, with 0 € W, we obtain an eigenspace decomposition of (R'm,(C))(W).
Since we have this decomposition over all contractible W C P,, we can glue these
eigenspaces, which yields a decomposition of the whole sheaf R'7,(C) into eigenspaces
with respect to the Galois group action.

Recall that we have an identification between the characters of the Galois group of some
fiber and the elements j € Z/(m). This identification allows a compatible identification
between the characters of the Galois group of the family and the elements j € Z/(m).
Let £; denote the eigenspace of R'T,(C) with respect to the character j.

Remark 3.2.6. Let 0 € P,. We have a monodromy action pc by diffeomorphisms on
the fiber Cy, which is induced by the glueing diffeomorphisms of the locally constant
family of manifolds given by C. Since these glueing differeomorphisms induce the glueing
homomorphisms of R'7,(Z) in the obvious natural way, the monodromy representation p
of R'm,(Z) is given by

p(7)(n) = (pc(7))«(n) (v n e H'(Co,Z)).

Remark 3.2.7. Since each glueing diffeomorphism of the locally constant family of man-
ifolds corresponding to C respects intersection form, Remark 3.2.6 implies that the mon-
odromy group of R'm,(C) respects the polarization of the Hodge structures. Assume
that H}(C;,C) = (L;), satisfies that H;’O(Cq) = ny and H?’I(Cq)g. This means that
the variation of integral polarized Hodge structure endows (L), with an Hermitian form
with signature (ny,ny). Hence the monodromy group of this eigenspace is contained in
U(ni,ng). In this sense we say that £; is of type (nq,ns).

3.3 The homology and the monodromy representa-
tion

In this section we study the monodromy representation of 7 (P,) on the dual of R'r,(C)
given by the complex homology. This will yield corresponding statements for the mon-
odromy representation of R'r,(C).

In the case of the configuration space P,, of n+ 3 points, we make a difference between
these different points. One says that the points are ”colored” by different ”colors”. More-
over one can identify its fundamental group with the subgroup of the braid group on n+3
strands in P!, which is given by the braids leaving the strands invariant (see [20], Chapter
I. 3.). This subgroup of the braid group is called the colored braid group. An element of
this group is for example given by the Dehn twist Tk, 5, with 1 < ky < ks < n + 3. The
Dehn twist T}, r, is given by leaving ay, "run” counterclockwise around ay, .
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Now we consider a fiber C' = C, of C. Recall that C' is a cyclic cover of P! described
in Chapter 2.

Consider the eigenspace LL;, which can be extended from a local system on P\ S to a
local system on P'\ S; with S; = {ay,...,an,+3}. For simplicity one may without loss of
generality assume that a,,,3 = 0o and a; € R such that ay < agyy forallk=1,... n;.
Here we assume that ¢y is the oriented path from a; to agy, given by the straight line.

Construction 3.3.1. Let ¢ be a path on P!. Assume without loss of generality that
¢((0,1)) is contained in a simply connected open subset U of P!\ S. Otherwise we
decompose ( into such paths. It has m liftings ¢(9,... (™Y to C such that ((?)) =
¢{=1n) By the tensorproduct of C with the free Abelian group generated by the paths
on C, one obtains the vector space of C-valued paths on C'. Now let ¢ € C and take the
linear combination of C-valued paths on C' given by

j(m—1)

é - CC(O) +.o.t CQQW'L%C(T) + ...+ 6627”] m <(m_1).

By the assumptions, one verifies easily that w(é )= 62”%6 . Moreover by the local sections
given by ¢, ..., ce*m, . .. ,062”"]@{1) on the corresponding sheets over U containing the
different ((¥((0, 1)), one obtains a corresponding section & € IL;(U). In this sense we have

a Lj-valued path ¢ - ¢ on P'.

Remark 3.3.2. Consider the (oriented) path d;. Let e, be a non-zero local section of L;
defined over an open set containing 6((0,1)). The L;-valued path ey, - Jj, yields an element
lex - O] of the homology group of H;(C,C), which is represented by the corresponding
linear combination of paths in C' lying over J;. It has the character j with respect to the
Galois group representation. Let H;(C,C); denote the corresponding eigenspace.

Definition 3.3.3. A partition of S; into some disjoint sets SOuU...usH = S; is stable
with respect to the local monodromy data ju, of ILj, if

akES(1> akES(l)

Theorem 3.3.4. Assume that S; = {a; : ¢ = 1,...,n; + 3} has the stable partition
{ay, ... a1}, {ae, . ., an;43} for some 1 <€ <nj+ 1. Then the eigenspace Hi(C,C);
of the complex homology group of C has a basis given by

B:{[ekék]:kzl,...,f}u{[ekék]:l{::€+2,...,nj+2}.

Proof. By [30], Lemma 4.5, one has that {[exd] : k = 1,...,n;4+1} is a basis of H;(C,C);.
Hencefore {[e;dx] : kK =1,...,n; + 2} is linearly dependent.

One can compute a non-trivial linear combination, which yields 0, in the following
way: Choose a non-zero section of IL; over

nj+2

U=P\(J ).

This yields a linear combination of the sheets over U, on which v acts by j. By the
boundary operator 0, one gets the desired non-trivial linear combination of L;-valued
paths, which is equal to 0. Now let «, denote the local monodromy datum of IL; around
ap € Sjforallk =1,...,n;+3. By the local monodromy data, one can easily compute this
linear combination. This computation yields that {d1,...,0¢}U{d¢t2, ..., 0n; 42} is linearly
independent, if and only if {a1,...,as1}, {as2, ..., an;43} is a stable partition. O
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Let oy, denote the local monodromy datum of L; around a, € S; forallk =1,... ,n,;+
3. One has up to a certain normalization of the basis vectors [ei6y],...[e10,,41] the
following description of the monodromy representation:

The Dehn twist T} g1 leaves obviously d, invariant for all |k — ¢| > 1. Moreover by
following a path representing 7} 41, one sees that the monodromy action of T} 41 on
H,(C,C); (induced by push-forward) is given by

[ek—10k—1] — [ex—10k—1] + (1 — agr1)[exdr],

[ek(sk} - @kak+1[€k5k]
and  [epy10641] — [€rg10k41) + (1 — ag)[erdr].

Hence the monodromy representation is given by:

Proposition 3.3.5. The monodromy representation of Tyer1 on Hi(C,C); is given with
respect to the basis {[ex0x]|k = 1,...n; + 1} of H1(C,C); by the matriz with the entries:

1 : a=b and a#/{

a2 oa=b=/
Mypir(a,b) =< a(l—app) @ a=0 and b=(—-1
l—a, @ a=40 and b=/(+1

0 : elsewhere

Remark 3.3.6. The monodromy representation of Proposition 3.3.5 corresponds to an
eigenspace in the local system given by the direct image of the complex homology. By
integration over C-valued paths, this eigenspace is the dual local system of £,,_;. By the
cup-product, £; is the dual of £,,_;, too. Hence Proposition 3.3.5 yields the monodromy
representation of £;.
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Chapter 4

The Galois group decomposition of
the Hodge structure

In this chapter we make some general observations of the VHS of C — P, and its generic
Hodge group. Moreover we will give an upper bound for the Hodge group and a sufficient
criterion for dense sets of complex multiplication fibers.

4.1 The Galois group representation on the first co-
homology

Let m: C' — P! be a cyclic cover of degree m. The elements of Gal(r) act as Z-module
automorphisms on H'(C,Z). This induces a faithful representation

p': Gal(r) — GL(H'(C,Q)). (4.1)

By the Galois group representation of a cyclic cover of degree m, we have the following
eigenspace decomposition:

m—1

H'(C,Q) ®Q(¢) = H'(C,Q(8)) = @ H}(C.Q(&))

=1

Recall that 7 : C — P! is given by some fibers of a family 7 : C — P,. The monodromy
representation of R'7,(C) has a decomposition into subrepresentations on the different
eigenspaces. In general there is not a Q(¢) structure on H'(C,Q), which turns H*(C, Q)
into a Q(&)-vector space. But in this section we will see that H'(C,Q) has a direct
sum decomposition into sub-vector spaces with different Q(¢") structures, where r|m.
Moreover we will see that the monodromy representation respects the different Q(&")
structures, which we will study.

Let ¢ denote a generator of Gal(m) as in Chapter 2. The characteristic polynomial of
p*(¢)) decomposes into the product of the minimal polynomials of the different ", where
r|m and £ is a m-th. primitive root of unity. By [28], Satz 12.3.1., we have a decomposition
of H*(C, Q) into subvector spaces N*(C,, Q) ! such that the Q-vector space automorphism

'Tn the next section we will see that there is a correspondence between the covers C, and the subvector
spaces N'(C,,Q), which justifies this notation.
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P (V)| n1c, @) is (up to conjugation) given by a matrix

M 0
0 M
where M is the k x k matrix given by
0 0 0 —po
1 0 0 —DP1
M=10 1 —Pp2 ;
0 ... 0 1 —prq

where ¥ + pp_12¥~1 + ...+ p12 + po is the minimal polynomial of £”. We call a Q-vector
space with such an automorphism of the form diag(M,..., M) a Q(£")-structure. By
£" - v := g(v), this defines a scalar multiplication of Q(¢"), which turns N'(C,, Q) into a
Q(&")-vector space. We obtain:

Proposition 4.1.1. The direct sum decomposition
H'(C,Q) = N'(C..Q)
rlm
is a direct sum of Q(E") structures on H'(C, Q).

Next we consider the trace map

tr: H}(C,Q(§) — H'(C,Q) given by v — Y 7,
7EGal(Q(£);Q)

which will be one of our main tools in this chapter. By the Galois group action, the vector
space N'(C;, Q(£")) decomposes into eigenspaces Hj (C,Q(£"))) such that

H;(C,Q(8)) = H; (C,Q(£7)) ®g(er) QE)-
Lemma 4.1.2. Let rlm and r = ged(j, m). Then tr|H]1(C’Q(5r)) is a monomorphism.

Proof. Let f € H}(C,Q(¢")) \ {0}. We need some Galois theory. By the fact that Q(£")
is a Galois extension of Q, the group I', := Aut(Q(&); Q(¢")) is a normal subgroup of
(Z/(m))* =T := Gal(Q(&); Q), which is the kernel of the epimorphism I' — Gal(Q(£"); Q)
given by v — 7|g(r) for all v € Gal(Q(§); Q). Hence we obtain that

w(f)= >, af= D, MDD = D, Al

Y€Gal(Q(£);Q) [Ver/Ty  ~€lr Y€Gal(Q(£7);Q)
Since 1) is acts by an integral matrix, one has v o1 = 1 o~ for all v € I'. This implies
that

VEN) = f) = (vod)(f) =v(v]). (4.2)
Thus v(f) € H .(C,Q(&)), where jy € (Z/(m))* corresponds to 7. By the fact that we

JoJ
have a direct sum of eigenspaces, we conclude that

w(f)= >, AILIf#0.

7€Gal(Q(£7);Q)
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Now we consider the restriction of the trace map to

R:=PHNC,Q()).

rlm

Proposition 4.1.3. The trace map tr|gr : R — H*(C,Q) is an isomorphism of Q-vector
spaces.

Proof. Let

v::ZUTER

rlm

with v, € H}(C,Q(£7)). By the proof of the preceding lemma, we know that

)= Y e @ HICQE).

Y€Gal(Q(£7);Q) JE@/ ()

These &" with j € (Z/(™))* are exactly the ®-th. primitive roots of unity. Thus they
are the elements with order ”* in the multiplicative group generated by . Hence by the
fact that we have a direct sum of eigenspaces, we conclude that tr(v) = 0 implies that
tr(v,) = 0 for all » with r|m. By the preceding lemma, this implies that v, = 0 for all r
with r|m and hencefore v = 0. Hence the map tr| is injective, and we have only to verify

that dimg(R) = dimg(H'(C,Q)):

dimg R =) _ dimg (H;(C,Q(€))) - [Q(€"): QJ

rlm

= Z dimqe) (H, (C,Q(&))) - #{primitive ™ th. roots of unity}
T

rlm

-1

dimge)(H; (C, Q(€))) = dimgqe) (H'(C, Q(¢))) = dimg(H'(C, Q)

1

3

J

]

Remark 4.1.4. We know that the monodromy representation fixes H*(C,Q) and each
H;}(C,Q(¢&)) invariant. By the fact that

Nl(CM @) = N1<CT7 @(6)) N Hl(ca Q)7
we conclude that the monodromy representation fixes N*(C,,Q)), too.

Proposition 4.1.5. The monodromy representation p on N*(C,, Q) is given by

71Mw

plw) = By )
’7ka

where M, denotes the image of w in the monodromy of H(C,Q(¢7)), and {v1,..., %} =
Gal(Q(¢7); Q).
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Proof. Since p() leaves the eigenspaces invariant, it acts by diag(Mj, . .., My), where each
M, with 1 < ¢ < k describes the action of p(w) on vH}(C,Q(¢")). Let j, € (Z/(%2))*
and 7 correspond. The description of the M, ..., M, follows from the facts that each
p(w) commutes with each v € Gal(Q(£"); Q), and that vH,(C,Q(¢")) = H;; (C,Q(¢7))
(see (4.2)) for all v € Gal(Q(¢"); Q). O

Now let N, denote the restriction of p(w) on N'(C,,Q) and v € N'(C,,Q) given by
v = tr(w) for some w € H}(C,Q(£")). By the preceding proposition, we have:

No(v) = No([Q(€; Q€D ) ’Yw)z[@(5);@(5’")]2%Mw(%(w))

v€Gal(Q(£7);Q)

The trace map H}(C,Q(£7)) — N'(C,,Q) is an isomorphism of Q(&")-vector spaces with
respect to the Q(£") structure on N'(C,, Q). Thus one has:

Proposition 4.1.6. The monodromy representation on N*(C,, Q) is a representation on
a Q(&")-vector space given by the Q(E") structure, which coincides up to the trace map
with the monodromy representation on H!(C,Q(£7)).

We will need a decomposition of H1(C, R) into a direct sum of certain sub-vector spaces
fixed by the Galois group representation. This decomposition is defined over Q(&/)* =
Q(¢7) NR and given by the sub-vector spaces

RV(j) = (H;(C,Q(¢)) & H,, ;(C,Q(&))) N H(C,Q(&) ).
Since the monodromy representation fixes
H;(C,Q(¢)), H,_;(C,Q(¢)) and H'(C,Q(&")"),
it fixes RV (j), too.

Remark 4.1.7. One has that tr : H}(C,Q(¢7)) — N'(C},Q) coincides with the compo-
sition

H}(C,Q(&)) 5 RV(j) = NY(C;, Q).

Hence the latter trace map RV (j) = N*(C;, Q) induces a Q(&/)*-structure on N(C;, Q),
which is compatible with the Q(&7)-structure via Q(&7)™ — Q(&7). Thus by the preceding
results about the monodromy representation on N*(C}, Q), the monodromy representation
on N'(C;,Q) is a Q(&7)*-vector space representation with respect to the Q(&7)*-structure.

Remark 4.1.8. In the case of H%(C,Q(fg) one gets that Q(¢7) = Q(—1) = Q. In

other terms: The monodromy group on H 1% (C,Q(¢2) is the monodromy group on the

rational vector space N*(C'm, Q).
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4.2 Quotients of covers and Hodge group decompo-
sition

In this section we consider our quotient families m, : C, — P,, of covers, and their Hodge
groups. Moreover we will explain the notation N'(C,,Q) and show that the decomposi-
tion of H'(C,Q) into these Q(£") structures is a decomposition into rational sub-Hodge
structures. Recall that C, is given by a quotient of the subgroup of order r of the Galois
group of C (see Construction 3.2.1).

Let C' and C). denote a fiber of C and the corresponding fiber of C,. over the same point.
The natural cover ¢, : C' — C, induces an embedding of Hodge structures, which gives
a direct sum decomposition of H*(C,Q) into two rational sub-Hodge structures (see [49],
7.3.2. and [49], Lemma 7.26).

The Hodge structure on H'(C,, Q) is the sub-Hodge structure of H'(C,Q) fixed by
Gal(¢,). Hence the eigenspaces of H'(C,,C) with respect to the Galois group m, can
be identified with the eigenspaces of H'(C,C), on which Gal(¢,) acts trivial. Thus one
obtains

m—1
H'(C,,C) = @Hl (C,C) — P H}(C,C)=H(C,C).
=1

Recall that every eigenspace Lj of R'm,(C) is a local system. We consider the eigenspace
(L))c, of R'(m,).(C) with the character j and the eigenspace L;, of R'm.(C). Proposition
2.2.10 tells us that the local monodromy data of (L,)¢, and L,; coincide. By Proposi-
tion 3.3.5, these monodromy data determine the dual monodromy representations of the
eigenspaces of the dual V HS given by the homology. Thus we obtain:

Proposition 4.2.1. The local systems (L;)c, and L;, coincide.
The following statements will explain the notation “N'(C,,Q)”. One has that
N'(C,Q®eC= EP H}(C,C).
JE(@/ )

Since each H} (C,C) C N*(C,,C) has a decomposition into

H;°(C,) @ H]'(C,), where H}(C,,C) = H)_,(C,,C) C N'(C,,C),

J

each N'(C,,Q) is a rational sub-Hodge structure of H'(C, Q). Moreover each N*(C,, Q)
is the maximal sub-Hodge structure of H'(C,,Q), which is orthogonal (with respect to
the polarization) to each sub-Hodge structure of H'(C,, Q) given by a quotient H'(C,, Q)
with » <7 < m, r|r’ and r'|m. By using Lemma 2.4.1, we have the result:

Proposition 4.2.2. We have a decomposition

=P e,

rlm

into rational Hodge structures and a natural embedding

Hg(C) — [ [He(N'(C,, Q)

rlm
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such that the natural projections
Hg(C) — Hg(N'(C;, Q)
are surjective for all r.

Remark 4.2.3. Note that the preceding section yields a corresponding statement about
the Zariski closures of the monodromy group of R'7,(Q) and the restricted representations
monodromy representations on the different N'(C,, Q). These two facts will play a very
important role.

4.3 Upper bounds for the Mumford-Tate groups of
the direct summands

The different N'(C,,Q) on the fibers induce a decomposition of R'm,(Q) into a direct
sum of local systems N'(C,,Q). Now we consider the induced variations V. of rational
Hodge structures on the local systems N (C,, Q). Let Q, denote the alternating form on
N'(C,,Q) obtained by the restriction of the intersection form @ of the curve C'. One has
that each element of p(m(P,)) commutes with the Galois group. The same holds true for
the image of the homomorphism

h:S— GSp(H'(C,R),Q)

corresponding to the Hodge structure of an arbitrary fiber. Since the Galois group respects
the intersection form, its representation on N'(C,, Q) is contained in Sp(N*(C,,Q), Q,).
Let C,.(1)) denote the centralizer of the Galois group in Sp(N'(C,,Q),@,) and GC,. (%))
denote the centralizer of the Galois group in GSp(N!(C,,Q),Q,). One concludes:

Proposition 4.3.1. The centralizer GC,.(¢) contains the generic Mumford-Tate group
MT(V,). Moreover the centralizer C,.(1)) contains the generic Hodge group Hg(V,) and
Mon®(V,).

We write

C) =[] ).

rlm

Remark 4.3.2. If r # 7, the preceding proposition yields some information. In the
case r = 7 the elements of the Galois group act as the multiplication with 1 or —1 on
N'(C=,Q). Since id resp., —id is contained in the center of Sp(N'(Cm,Q),Qm), this
proposition does not give any new information in this case.

Now let us assume that r # 3. We describe C,.(¢) by its R-valued points. Let &
be a Z-th. primitive root of unity such that H;(C,C) ¢ N*(C,,C), v € H;(C,C) and
M € C(¢)(R). Then one gets

Y M(v) = M(dpv) = M(v) = & M(v).
Thus M leaves each H;}(C,C) invariant.
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For our description of C(¢)) we introduce the trace map
tr : GL(H;(C,C)) — GL(RV(j)r)
given by
GL(H;(C,C)) > N — N x N € GL(H;(C,C)) x GL(H,,_;(C,C)), (4.3)
where N denotes the matrix, which satisfies that No = Nv for all v € H;(C,C). Recall
that we have a fixed complex structure. Thus one checks easily that N x N leaves RV (j)r

invariant. Hence we consider it as a real matrix.
For the Hermitian form H(-,-) := ¢E(-,~) and v,w € H;(C,C) one obtains

H(v,w) =iE(v,w) = iE(Mv, Mw) = iE(Mv, Mw) = H(Mv, Mw).

Thus the matrix M|gy(;), is contained in tr(U(H,(C, C), H’H}n_j(QC))'
Assume conversely that M € GL(N'(C,,C)) satisfies that

M‘%V(J')R € tr(U(H]l (Ca (C)a H‘H;(C,C)))

for each ™-th. primitive root of unity £7. Since M leaves all eigenspaces H;(C,C)) C
N(C,,C) invariant, M commutes with the Galois group representation on N'(C,,R).
Now let N € GL(H}(C,C)) be the matrix with tr(N) = M|gy(j),. One has that
iE(v,w) = iE(Nv, Nw) < E(v,w) = E(Nv, Nw)
for all v,w € Hj(C,C). By the fact that E is an alternating form, one gets
E(v,w) = E(Nv, Nw),

too. Since each element of RV (j)c can be given by vy +05 and wy +ws with vy, ve, wy, wy €
H;(C,C), one concludes that

E(Ul + @2, wi + wg) = E(Ul, 1112) + E(@g, wl) = E(N’Ul, NUJQ) + E(NUQ, Nwl)
= E(M'Ul, M’u_)g) —+ E(M’UQ, M’U}l) = E(M(’Ul + '1_12), M(w1 + U_Jg))
Thus M is contained in the symplectic group. Altogether we conclude:
Theorem 4.3.3. If r # %, the group C,(¥)(R) is isomorphic to the direct product of

the Lie groups given by the R-valued points of unitary groups over the spaces RV(j)r C
NY(C,,R) induced by the trace maps and the unitary groups U(H}(C, C), H’H}(C,(C))'

Recall the definition of the type (a,b) of an eigenspace £; in Remark 3.2.5. If there is
an eigenspace of N'(C,., C) of type (a,b) with a > 0 and b > 0, we call N'(C,, Q) general.
Otherwise we call it special. Now assume that N'(C,, Q) is special. In this case h(S) is
contained in the center of GC,.(1))r, and h(S') is contained in the center of C,(1))g. Thus
one concludes:

Remark 4.3.4. Assume that N*(C,, Q) is special. Then the center Z(GC,(v))) of GC,.(1))
contains MT(V,). Moreover the center Z(C..(¢))) of C,.(¢) contains Hg(V,).

Remark 4.3.5. One has that C,.(¢)g consists of U(s)* for some s,t € Ny, if N'(C,, Q) is
special. Thus in this case the monodromy group is a discrete sub-group of the compact
group U(s). Hence it is finite and Mon®(),) is trivial in this case.
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4.4 A criterion for complex multiplication

In this short section we find a sufficient condition for the existence of a dense set of C'M
fibers of a family of cyclic covers. By technical reasons, we do not consider the family
C — P,, but a family over the space M,,, which can be considered as the quotient

M, = P,/PGLy(C).

But one has an embedding ¢4, : M, — Py, too. Its image is the subspace of P,, which
parameterizes the maps ¢ : N — P! satisfying ¢(a) = 0, ¢(b) = 1 and ¢(c) = oo for some
fixed a,b,c € N (compare to [14], 3.7).

Remark 4.4.1. One can move 3 arbitrary branch points of a fiber of C — P, to 0, 1
and co. Hence one has that all fibers of the geometric points of P, occur as fibers of
the restricted family Cyq, — M, too. Hence the generic Hodge groups and the generic
Mumford-Tate groups of the both families coincide.

4.4.2. Each curve C' with g(C) > 1 has at most 84(g — 1) automorphisms (see [22], I'V.
Exercise 2.5). Thus C can have only finitely many cyclic covers onto P! with different
Galois groups. Moreover, there is an automorphism « of P!, if the Galois groups of
the covers of C,, and C,, can be conjugate by an isomorphism ¢ such that the following
diagram commutes:

Cpl - sz

| i

P! P!
Thus C occurs only as finitely many fibers of Cpy,,, if g(C) > 2.

Recall that we have defined the type of an eigenspace £; in Remark 3.2.5.

Definition 4.4.3. Let C — P, be a family of cyclic covers onto P! and C denote an
arbitrary fiber. The family C has a pure (1,n) — VHS, if it has only one eigenspace L, of
type (1,n) such that £,,_; is of type (n, 1) with respect to the Galois group representation,
and all other eigenspaces are of type (a,0) or of type (0,b) for some a,b € Ny.

Theorem 4.4.4. Let Crq, — M, be a family of cyclic covers onto P and C be a fiber
with g(C) > 2 as before. Assume that C has a pure (1,n) — VHS. Then the family
Cm,, — M, has a dense set of complex multiplication fibers.

Proof. We have to show that over an arbitrary open simply connected subset W of M,,(C)
there are infinitely many C'M points of the VHS of Cpq,. Let g9 € W and L; be the
eigenspace of type (1,7n). We have a trivialization

R'm (C)lw = H'(Cyy, C) x W such that Lj|y = Hj(Cyy,C) x W.

Let g € W and @Y € H;’O(Cq) \ {0}. By the holomorphic VHS of the family, one obtains
a holomorphic ”fractional period” map

p: W —P(H!(Cy,C)) via q— [w)].

q

By the assumptions, the integral Hodge structure depends uniquely on the class [wéj )] €

P(H}(Cqy, C)). Since for each fiber there are only finitely many isomorphic fibers (see
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4.4.2) and two curves have isomorphic polarized integral Hodge structures, if and only
if they are isomorphic, the fibers of p have the dimension 0. Thus [41], Chapter VII,
Proposition 4 and the fact that dim W = dim P(H;(C,,, C)) tell us that p is open.

The natural embedding C'(¢)) — GL(H'(C,,,C)) induces a holomorphic variation of
Hodge structures over the bounded symmetric domain associated with C'(¢)(R)/K. This
V H S depends uniquely on the fractional V HS on the eigenspace H; (Cq,, C) of type (1,n).
Hencefore this V HS yields a holomorphic injection ¢ : C(¢))(R)/K — P(H(Cqy, C)).

Note that C'(¢)(R)/K parameterizes the integral Hodge structures of type (1,0), (0, 1)
on H'(C,,, C), whose Hodge group is contained in C'(1/). Hence altogether the map ¢~ op,
which assigns to each fiber C, its integral Hodge structure, is open. Since the set of C'M
points on C(¢)(R)/K is dense (see Theorem 1.5.9), this yields the desired statement. [
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Chapter 5

The computation of the Hodge group

In this chapter we try to compute the derived group of the generic Hodge group of a
family C — P,. For infinitely many examples we will not be able to do this. But we will
get many information and in infinitely many examples we will obtain

MT (V) = Hg'™" (V) = Mon’(V) = C*(¢)).

Recall that P, is the configuration space of n + 3 points and M,, = P,,/PGLy(C).
Finally we will see that a family C — M/ induces an open period map

p: M;(C) - MT*(V)/K,

if and only if it has a pure (1,1) — VHS.

5.1 The monodromy group of an eigenspace

Let j € {1,...,m—1}. Then we have an eigenspace £; in the variation of Hodge structures
of a family C — P,, of cyclic degree m covers onto P!. There are p,q € Ny such that the
eigenspace H} (C,C) of an arbitrary fiber C is of type (p, q), where (p, q) is the signature
of the restricted polarization of the latter eigenspace. The type of £; is given by the type
of H}(C,C). The embedding R — C allows to consider H;}(C,C) as R-vector space. Let
Mono(ﬁj) denote the identity component of the Zariski closure of the monodromy group
of £; in GLg(H}(C,C)).
We show in this section:

Theorem 5.1.1. Let L; be of type (p,q) with p,q > 1. Moreover assume that j # % or
p=q=1. Then
Mon’(£;) = SU(p, q).

If p=0or ¢ = 0, the statement of the preceding theorem does not hold true in general
as one can conclude by Remark 4.3.5.

We give a proof of Theorem 5.1.1 by induction over the integer given by p + ¢.

By the following lemma, we start the proof of Theorem 5.1.1:

Lemma 5.1.2. If L; is of type (1,1), its monodromy group contains infinitely many
elements.
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Proof. There are two cases: In the first case there are some local monodromy data a; and
ay of the eigenspace L; in (7,)+(Cc)|p1\s, for the fiber C':= C, of some arbitrary ¢ € P,
such that ayay = 1. In this case the Dehn twist 77 o yields a unipotent triangular matrix
(follows by Proposition 3.3.5) and we are done.

Otherwise each Dehn twist T}, provides a semisimple matrix, where its eigenvalues
are given by 1 and a m-th. root of unity. Note that the matrices induced by the Dehn
twists 712 and T53 do not commute. In the considered case {a1,as}, {as, as} is a stable
partition. Hence one can choose the basis B = {[e171], [e33]} of H{(C,C). By the fact
that these two cycles do not intersect each other, this basis is orthogonal with respect
to the Hermitian form induced by the intersection form. Hence by normalization, this
basis is orthonormal with respect to the Hermitian form such that the Hermitian form is
without loss of generality given by diag(1, —1) with respect to B. The matrix induced by
Ty is given by diag({, 1) with respect to B, where £ is a m-th. root of unity. Since the
matrix A of T3 3 with respect to B does not commute with diag(&, 1), it is not a diagonal
matrix. Now we compute the commutator

K = A-diag(¢,1) - A7 - diag(€, 1).

One can replace A by a non-diagonal matrix in SU(1,1) and the matrix diag(£, 1) by
diag(e,€) € SU(1,1), where e* = £, for the computation of K. By [43], page 59, one has
a description of the matrices in SU(1, 1)(R) such that

b . _ a —b . aa — e 2bb ab — e%ab
K= ( a ) diag(c, ©) ( —b a ) diag(e, e) = ( ab — e 2ab aa — e*bb ) '

Hence B _ _
tr(K) — 2 = 2aa — 2R(e*)bb — 2 = 2aa — 2R(e*)bb — aa + bb — 1
> (aa — |R(e2)|bb) + (bb — |R(e)|bb) — 1 > ad@ — |R(e*)|bb— 1 > 0.

S Q

If the eigenvalues of K would be roots of unity (if it is not unipotent), one would have
|tr(K)| < 2. Hence by the fact that ¢r(K) > 2, one concludes that K is unipotent or has
eigenvalues v with |v| # 1. In both cases K has infinite order. O

For the proof of Theorem 5.1.1 we need to recall some facts about complex simple Lie
algebras. The complex simple Lie algebra sl,,(C) will be very important:

Remark 5.1.3. The Lie algebra sl,,(C) is given by
sl,(C) ={M € M,»,(C) : tr(M) = 0}.

The Cartan subalgebra of sl,(C) is given by

h = {diag(ai,...,a,) : Zai = 0}.
i=1
Each root space is given by the matrices (a; ;), which have exactly one entry a;, ;, # 0 for
a fixed pair (g, jo) with ig # jo.

We want to show a statement about unitary groups, and not about special linear
groups. The fact, which makes s[,,(C) interesting for us, is given by the following remark:
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Remark 5.1.4. We can obviously embed su, ,(R) into sl,.,(C), since SU(p, ¢)(R) is a
Lie subgroup of SL,,(C). Moreover isu, ,(R) is a subvector space of sl,,,(C) (considered
as real vector space). One has that

sl (C) = su,4(R) @ isuy,4(R) = s0,14(C).
(see [17], page 433)

Moreover we need to compare the monodromy group of £; with the monodromy groups
of some of its restrictions over certain subspaces of P,,.

Remark 5.1.5. Consider some embedding ¢4, : M,, < P,. By the holomorphic diffeo-
morphism

PGLy(C) X ta,e(Mn)(C) 3 M x g — M(q) € Pn(C),
we have that
PGLQ(C) X Mn = Pn and Wl(PGLQ(C)) X 7T1(Mn) = 7T1(7)n),
where 7 (PGL2(C)) = Z/(2) (compare [14], 3.7).

For technical reasons, we need to introduce an additional subspace of P,:

Pl = {q € P,|og(ar) = 0o}

Let G denote the group of triangular matrices given by

Gr={(§ | ) eMa©la 00

P(an+3)

We have obviously an embedding ¢, 4. : M,, — Pn such that we get a holomorphic

diffeomorphism
Gr X tape(Mp)(C)> M x q— M(q) € Planis)(C).
Hence we have that
Gr x M,, =2 Pa+3) and 7 (Gp) x m(M,,) =2 my(PLan+3)),

where m (Gr) 2 Z/(2).
The space P,(@a””) has a natural interpretation as configuration space of n + 2 points
on R2. Its fundamental group is the colored braid group on n + 2 strands in R2.

Lemma 5.1.6. The fundamental group of the configuration space of n + 2 points on R?
is generated by the Dehn twists Ty, p, with 1 < ky < ky <n + 2.

Proof. (see [20], Chapter I. 4) O

5.1.7. By the preceding results, the monodromy groups of L;, (£;)m, and (£;)_(a,.s are

Pn,
commensurable. Hencefore their R-Zariski closures have the same connected component

of identity. Thus we do not need to distinguish between them and we will call them simply

Mon’(L;).
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Again assume that £; is of type (1,1). By Lemma 5.1.6, the monodromy group
pi(m (P{4))) of (L) pen is generated by the matrices p;(Ty) for k, € € {1,2,3}. For each
Dehn twist T one can choose a suitable numbering of the branch points such that 7" = 77 .
Hence by Proposition 3.3.5, one concludes that the generators of the monodromy group
are contained in the group given by

(M € GLy(C)|det(M)™ = 1}.

Since Mon®(L£;) is contained in U(1, 1), one concludes that Mon"(£;) C SU(1, 1). Thus the
complexification of the Lie algebra of Mon"(L;) is contained in sl;(C). Note that the real
Zariski closure Mon”(RV(j)g) is isomorphic to Mon”(£;) and Mon®(RV(5)g) is a quotient
of the semisimple group Mong(V,). Thus by the kernel, which is semisimple, we have an
exact sequence of algebraic groups. This yields an exact sequence of semisimple Lie
algebras such that Mon’(£;) must be semisimple. One has that Mong(£;) € SU¢(1, 1).
Since su; 1(C) = sly(C) is the smallest semisimple non-trivial complex Lie algebra (see
[17], §14.1, Step 3) and Mon®(L;) is infinite by Lemma 5.1.2, one concludes:

Proposition 5.1.8. If £; is of type (1,1), then Mon®(L;) = SU(1,1).

Recall that we want to give a proof of Theorem 5.1.1 by induction. The following
construction explains our method to compare the monodromy groups of eigenspaces of
different type, which we will need for the induction:

Construction 5.1.9 (Collision of points). Let L; be an eigenspace in the cohomology
of a fiber C' = C, with the local monodromy data oy on aj. Now let

b:={an;42,an,43} and P ={{ai},...,{an;41}, b}

be a stable partition of N = {a1,...,a,,43}. Let ¢p : P — P! be some embedding and
the local system L(P); on P!\ ¢p(P) have the local monodromy data

O = g, 5 Qa4 and otherwise oy, = g, .

By Construction 3.2.1, these monodromy data allow the construction of a family of cyclic
covers

m(P) : C(P) — Pp,-1.

The higher direct image sheaf R'7(P).(C) has an eigenspace with respect to the character
given by 1, which we denote by £(P);.! By the description of the respective monodromy

representations in Proposition 3.3.5, we can identify the monodromy group of (L(P);))
nj —1

(ang) generated by the Dehn twists

with the subgroup of the monodromy group of (£j)P

Ta’k17ak]2 with kfl, kfz S n; + 1.

Remark 5.1.10. The local system L£(P); is in general not the j-th. eigenspace of a
family of irreducible covers of degree m obtained by a collision of two branch points of a
family of irreducible covers of degree m. The problem is given by the irreducibility of the
resulting family obtained by collision. Take for example the family C — P, with generic

fibers given by

yt=(r—a))(r —ax)(x —az)?®- ... (zr —as)’.

!This definition may seem to be a little bit odd. But it is motivated by some reasons, which should
become clearer by Remark 5.1.10.
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By the collision of a; and as, one does not obtain an irreducible family of degree 4 covers.
But the resulting local system L£(P); is the eigenspace with respect to the character 1 on
the higher direct image sheaf of the family C(P) — P; with generic fibers given by

v =(z—a) ... (x—ay).

Now let £; be of type (p, ¢) with p, ¢ > 0. By the collision of two points and Proposition
2.3.4, one gets an eigenspace of type (p,q — 1) or of type (p — 1,q), if there is a suitable
corresponding stable partition. A little bit later we will see that this construction yields
an induction step such that the statement of Theorem 5.1.1 for local systems of type
(p,qg—1) (if p,¢g—1>1) and of type (p — 1,¢q) (if p— 1,¢ > 1) implies the statement of
Theorem 5.1.1 for local systems of type (p, q).

For the application of the step of induction we will need a pair of stable partitions such
that the resulting two eigenspaces satisfy the assumptions of Theorem 5.1.1. Moreover
one can assume that for each fiber S; contains at least 5 different points. Otherwise £; is
of type (1,1) or unitary. By the following technical lemma, we start to show that there
exists a suitable pair of stable partitions, if the assumptions of Theorem 5.1.1 are satisfied
and if .S; contains at least 5 points:

Lemma 5.1.11. Assume that j # 5. Then there is an a, € S; with juy # %

Proof. Assume that all a; € S; satisfy p, = % and j # %. One has that C, (with
r = ged(m, j)) is a family of irreducible cyclic covers onto P! of degree ™ > 2 given by
f1, - - -5 ot in the sense of Construction 3.2.1. By the assumption that all a;, € S; satisfy
e = %, each branch point has the same branch index 3, which divides the degree .
Since we assume that j # %, one concludes that the branch indeces given by > are not

1. Thus C, is not a family of irreducible cyclic covers. Contradiction! O]
Next we show that a u # % yields two stable partitions:

Lemma 5.1.12. Assume that S; contains at least 5 different points such that there is an
ap € S; with py, # % Then there are some pairwise different pun, fi, fis, fte € S; such that

pn+ i 71, and ps + e 7 1.

Proof. Assume that each pair h,i" € {1,...,n+ 3} with h # ¢’ satisfies uy + py = 1. This
implies that p, = py = % for each pair h,4'. But this contradicts the assumptions of this
lemma. Hence by the assumptions, there must be a pair (h,d') such that pj, + py # 1.

Now consider S := S;\ {an, a;}. Let us assume that each pair ay,ay € S} with s’ # '
satisfies py + pp = 1. Since [S}| > 3, one concludes that py = py = 1. Since pj, = 3
or Ly = % would contradict the assumptions in this case, one concludes that pup, i # %
Hence put i := s, s := 4, t := t/, and we are done in this case.

If there are ay,ay € S} with 8" # ' and py + ppy # 1, we put i == 4, s := s, t := 1,
and we are done.

0

By Lemma 5.1.11 and Lemma 5.1.12, one concludes immediately:

Corollary 5.1.13. Assume that S; contains at least 5 different points and j # 5. Then
there are some pairwise different pup, i, fs, iy € S; such that

pn + g # 1, and ps + pp # 1
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Remark 5.1.14. The condition that

pn +pi 71, and ps + pe # 1

implies that
1 1 1 1
(Mh#§ or Mﬁé? and (Ms?éi or Mt#ﬁ)-
Hencefore the resulting eigenspace obtained by the collision of a;, and a; resp., as and a,
satisfies that there is a local monodromy datum py # % Hence the resulting eigenspace
is not a middle part L= of the VHS of the family obtained by the respective collision
of two points. One must only ensure that the resulting eigenspaces are not of type (a,0)

resp., (0,b) in order to satisfy the assumptions of Theorem 5.1.1 in this case.

5.1.15. Assume that £; is of type (1,n) with n > 1. By Proposition 2.3.4, one calculates
that

in this case. One can choose the indeces such that

1 < oo < fpgse

Hence one has
p1+ ps < plo iy < ps A+ s

By the fact that

1
(2 + pa) + (13 + p5) <2 and po + pag < 5((#2 + pa) + (1 + p5)),
one has
pa + p3 < po + pg < 1

Since the local systems with respect to the corresponding stable partitions of the collision
of a; and a3 resp., the collision of ay and a4 are of type (1,n — 1) as one can calculate by
Proposition 2.3.4, one can apply the induction hypothesis for these partitions.

Now let £; be of type (n,1). Then the monodromy representation of £; is the complex
conjugate of the monodromy representation of L£,,_;, which is of type (1,n) in this case.
Hence first the induction step yields the statement for all £; of type (1,n). Then we have
the statement for all £; of type (n,1), too.

Assume that £; is of type (p, ¢) with p, ¢ > 2 and satisfies the assumptions of Theorem
5.1.1. By Corollary 5.1.13, one has a pair of stable partitions. Remark 5.1.14 and the
fact that p,q > 2 imply that the corresponding eigenspaces satisfy the assumptions of
Theorem 5.1.1, too.

Now we must only prove and explain the step of induction:

One has without loss of generality the stable partitions

Pl = {{a’l}’ R {anJrl}v {an+2> an+3}}7 and P2 = {{alv a2}7 {a3}7 SR {an+3}}'

Here we assume without loss of generality that a; € R and a, < ajy1 such that J is the
oriented path from a; to ap,1 given by the straight line.
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Let ¢ € P,. We consider the monodromy representation with respect to the basis B
of (£;), given by
B = {[6161]7 sy [enén]a [6n+26n+2]}-

One has obviously that Mon"(£;(P,)) leaves ([e1dy],...,[en0,]) invariant and fixes all
vectors in ([e,120,42]). Now let U; be a small open neighborhood of the identity in
Mon’(L;(P;))(R) such that the ”inverse”

log : Uy — Lie(Mon"(L;(P)))

of the exponential map is defined on U;. By Remark 5.1.4 and the induction hypothesis,
log(Uy) generates a Lie algebra, whose complexification L; is with respect to B given by
the matrices

i1 ... Qin 0
1,1 A1,
, Where N := :
Qp1 .. Qpn 0
0 ... 0 0 nt .- Gnn

is an arbitrary n X n matrix with tr(N) = 0. Note that Mon’(L;(P)) fixes all vectors
in ([e101]) and leaves ([e3ds], ..., [ent20n,]) invariant. Hence in a similar way log(Us)
(e € Uy C Mon"(L;(P,))(R)) generates a Lie algebra. Its complexification Ly is given by

the matrices
0 v
0O N J°

where N is again an arbitrary n x n matrix with tr(/N) = 0 and

v=(v1,...,0)

is a vector depending on N. It is easy to see that Ly and Ly generate s, (C).
Since Mon"(L;) is contained in SU(p, q) and su, ,®C = sl,,.1(C), the group Mon’(L;)
is isomorphic to SU(p, q).

5.2 The Hodge group of a general direct summand

The VHS of a family C — P, has a decomposition into rational subvariations V), of
Hodge structures, which where introduced in Section 4.3. Recall that V, is general, if
its monodromy group is infinite. Otherwise we call it special. Let r # %, V), be general
and £; C V, in this section. Moreover recall that Mong(),), denotes the connected
component of identity of the Zariski closure of the monodromy group in GL(((V:)r),)
for some ¢ € P,. Since Mong(V,),, and Mon%(V,),, are conjugated, we write Mong (V)
instead of Mong(V),), for simplicity.

Remark 5.2.1. The group Mong(V,) does not need to be equal to Mon®(V,) xgR. But it
satisfies Mong, (V,) € Mon’(V,) xgR. Hence Mon$,(V,) yields a lower bound for Mon®(V),.).
Thus one obtains C4*(y)) = Mon"(V,), if C9°"(¢))g = Mon%(V,).

By the preceding section, we know that Mon%(V,) — Mon’(L;) can be considered as
the projection onto some SU(a,b), if £; is of type (a,b) with a,b > 0. Otherwise one can
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use induction with the corresponding stable partitions again. We only consider the start
of induction:

Assume that S; = 4. hence one has without loss of generality C, — P;. By our
assumptions, there is an eigenspace £;, in N*(C,,C) of type (1,1), whose monodromy
group is infinite. Since the monodromy group of £; is conjugated to the monodromy of
L, by some v € Gal(Q(&7); Q), it is infinite, too. One concludes similarly to the preceding
section that Mon’(L;) = SU(2) (since suy(C) = sl,(C) by [17], page 433, too). The rest
of the proof is an induction analogue to the induction of the preceding section.

By the preceding considerations, one has:

Proposition 5.2.2. Assume that V, is general. Then the image of the natural projection
Mong (V,) — GL(RV(j)r) is given by the special unitary group induced by the trace map
and the special unitary group SU(H;(C,C), H\H;(C’@) described in Section 4.3.

Moreover we know that Mong(V,) is contained in C4*(3))g, which is given by a direct
product of certain groups SU(a, b). Either Mon®(V,) = C%(¢)) or it is given by a proper
subgroup. We want to examine the conditions of the case Mon®(V,) # C9(3)). This will
yield information and some criteria for the structure of Mon®(V,).

First let us make a simple, but very useful observation:

Remark 5.2.3. Let G&, . . ., G¢ be connected simple Lie groupsand N C Gy X...xGy =: G
be a normal connected subgroup. One has that Lie(G) is a direct sum of the simple ideals
Lie(Gh), ..., Lie(Gy), which implies that each ideal is a sum of certain Lie(G;) (see [23],
IT. Corollary 6.3). Since the normal connected subgroups of G and the ideals of Lie(G)
correspond (follows by [17], Proposition 8.41 and [17], Exercise 9.2), one obtains that

N=G; x...x Gy x{e} x...x{e}
for some ty <t with respect to a suitable numbering.

The decomposition of the rational Hodge structure N'(C,, Q) into the Q(¢")"-Hodge
structures RV(j) yields a decomposition of the variation V, of rational Hodge structures
into the variations RV (j) of Q(£")"-Hodge structures.

By technical reasons, we consider the semisimple adjoint group Mona!(V,) instead
of Mon(V,) first. By Remark 5.2.3, one concludes that Mon2'()),) is isomorphic to the
direct product of Mon®(RV(j)r) and the kernel K; of the natural projection Mon%'(V,) —
Mon®(RV(j)r). Moreover one has:

Lemma 5.2.4. Let Gy, ...,G; be simple adjoint Lie groups and G be a semisimple sub-
group of G1 X ... x Gy such that each natural projection

GGy x...x G 5 G,
is surjective. One has G # Gy X ... X Gy, if and only if there are some jy,72 € {1,...,t}
with j1 # ja such that G contains a simple subgroup G’ isomorphically mapped onto Gj,

and G, by the natural projections.

Proof. The "if” part is easy to see. The "only if” part follows by induction. ]
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Note that we have a natural embedding

Moni'(V,) =[]  Mon™(RV(j)w).

JEL) i<

Thus the preceding lemma and our assumption that Mon®(V,) # C9(+)) imply that there
is a direct simple factor of Mon'(V,), which isomorphically mapped onto Mon®(RV(j;)r)
and Mon™(RV(jy)r) for some j; and j, with j, # j; and m — j;. By Remark 5.2.3,
Mon2!(V,) is a direct product of the kernel of the both projections and this direct simple
factor.

Thus the natural projections onto Mon® (RV(j;)r) and Mon®(RV(j2)r) yield an iso-
morphism

™ Mon®™ (RV(j1)r) — Mon®™ (RV(45)r).

Moreover one concludes that the image Mon® (RV (4, j2)r) of the projection
Mong' (V) = Mon*(RV(j1)r) x Mon“*(RV(j2)r)
is given by the graph of a?d.
5.2.5. For the image Mon"(RV(ji, j2)r) of the projection
Mon (V) — Mon”(RV(ji1)z) x Mon"(RV(js)r)
this implies that the natural projections
p1 s Mon®(RV (41, j2)r) — Mon’(RV(j1)r)

and
pa : Mon?(RV(ji1, jo)r) — Mon"(RV(jia)r)

are isogenies. Since
Mon"(RV(j1)r)(C) = Mon"(RV(j2)r)(C) = SLa+s(C),

where (a,b) is the type of £;,, and the Lie group SL,4(C) is simply connected (see [17],
Proposition 23.1), the induced isogenies of Lie groups of C-valued points are isomorphisms.
Hence the isogenies p; and py are isomorphisms.

Hence our assumption implies the existence of an isomorphism

a : Mon’(RV(j1)r) — Mon’(RV(ja)r),

which satisfies that Mon®(RV(ji, j2)r) is given by Graph(a).

5.3 A criterion for the reaching of the upper bound

In this section we give a necessary criterion for the existence of an isomorphism «. This
yields a sufficient condition that Mon®(V,) reaches the upper bound C%(¢)). In addition
we will see that Mon"(V) = Mon’(V)) reaches the upper bound, if the degree m of the
covers given by the fibers of C — P, is a prime number > 2.2

2For m = 2 we will later see that Mon”()) reaches the upper bound as well.
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We say that a Dehn twist T is semisimple (with respect to V), if the monodromy
representation p; of one (and hence of all) £; C V, yields a semisimple matrix p;(T).
By the trace map (see (4.3)), we can identify Mon®(RV(j)r) and Mon*!(£;). Thus
Mon?(RV(j1, j2)r) is equal to Graph(a), if and only if one has a corresponding isomor-
phism o : Mon®(£;) — Mon®!(L,) such that Mon®!(L;, @ L;,) is given by Graph(a®®).
By an abuse of notation, we will write « instead of o from now on.

First let us formulate a sufficient criterion for the non-existence of « in the case C — Py:

Proposition 5.3.1. Let V, be general and L;,, L;, C V, be of type (a,b), where a+b = 2.
Then there does not exist an isomorphism o : Mon® (L) — Mon®(Ly) such that Pp;, =
ao Pp; , if there is a semisimple Dehn twist T' such that the non-trivial eigenvalue zy of
pj,(T') is not contained in {z1, 7z}, where z; denotes the non-trivial eigenvalue of pj, (T).

Proof. Assume that Mon®!(£;) and Mon®!(L,) are isomorphic and T satisfies the as-
sumptions of this proposition. Thus p;, (T') generates a finite commutative subgroup F'T
of Mon®!(L;,), which is contained in a maximal torus G of Mon®(£;,). Our assumption
that a + b = 2 implies that Mon®(L£;,) = Mon®!(L;,) is isomorphic to PU(1,1) or PU(2).
Note that the maximal tori of reductive groups are conjugate and in the case of PU(1,1)
resp., PU(2) the R-valued points of G(R) can (up to conjugation) be given by the diago-
nal matrices in PU(1,1) resp., PU(2). Thus one checks easily that G is unique and that
the Lie group G(R) is isomorphic to S'(R). Hence one can identify FT(R) with some
(€5) € S1(R). Now let 1 # ¢ € (£°) satisfy the property that there is a closed interval on
SY(R) with end points 1 and ¢, which does not contain any other element of (£%). Hence
there is a closed interval I on T with ending points [diag(1,1)] and [diag({,1)] € FT,
which does not contain any other element of F'T.

Now assume such an isomorphism « exists. Note that we have an identification
a(@)(R) = SY(R), too. But our assumptions imply that

a(diag(¢, 1)) ¢ {diag(¢, 1), diag(¢,1)}.

Hence by our identification o(G)(R) = S'(R), one obtains that

o(¢) ¢ {¢. ¢}

Thus o(I) C a(G)(R) is not a connected interval, which does not contain any other
element of (£°) except of 1 and «(¢). But @ must be a homeomorphism on the R-valued
points. Contradiction! O

By the preceding proposition, we can use certain semisimple Dehn twists for the study
of the generic Hodge group. Hence we make some observations about the orders and the
existence of semisimple Dehn twists:

Lemma 5.3.2. Let j # % and v|™*, where

1#wv, r:=ged(m,j) and 1,2 # .
rv

Then there exists a Dehn twist T € w1 (P,,) such that p;(T) € Mon(L;) is semisimple and
[{p;(T'))] does not divide v.
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Proof. One can replace C by C, and choose a suitable collection of local monodromy data
for C such that j = 1. By an isomorphism (£) = Z/(m), the non-trivial eigenvalues of
the semisimple Dehn twists T}, x, correspond to some elements [by, x,] € Z/(m), where
bk ko = di, + di, and dj, and dj, denote the branch indeces of ay, and a,.

Assume that each semisimple Dehn twist satisfies that its order divides some v with
v|m. This implies that =*|by, x, for all by, x,. Hence for all K = 1,...,n + 3 one has that
o divides

2dy, = (di, + di,) + (dg + diy) — (diy + diy) = by + by — bky k-

Since there does not exist any integer N # 1, which divides each dj, one has that
divides 2. This implies that = =1 or =t = 2.

m
v

O

For the formulation of our criterion in the higher dimensional case we need the follow-
ing lemma:

Lemma 5.3.3. Let ¢ € P,. Assume that we have a stable partition

P = {{al}v {a2}7 {a3}7 {a47 s ’a”j+3}}

with respect to the local monodromy data of (L;), such that we can define the eigenspace
L;(P) over Py with b = {ay,...,an,43} as in Construction 5.1.9. Then the monodromy
group p;(P)(m(P1)) of L;(P) has a subgroup of finite index generated by p;(T12) and
pi(T23)-

Proof. The stability of the partition ensures that a, = g, ... ;43 # 1. It is a well-
known fact that m;(M;(C)) is generated by the two loops around 0 and 1, where we
identify A\ {0,1} = M;. By the embedding M; — P; given by

a1 =0, ag=1, a4, = o0,

we can identify the generators of m(M;(C)) with the Dehn twists 775 and T53. The
statement follows from the fact that the monodromy group of £;(P)|r, has finite index
in the monodromy group of L;(P). O

Proposition 5.3.4. Let L;,,L;, C (V1)c with j1 # jo2 and j1 # m — jo. Assume that we
have a stable partition

P = {{a1},{as}, {as}, {as, ..., anis}}

such that the monodromy group of L;,(P) or L;,(P) is infinite. Let Mon®(L;,(P)) and
Mon’(L;,(P)) be not isomorphic or Ty, be a semisimple Dehn twist with k,¢ € {1,2,3}
such that the non-trivial eigenvalue zo of pj,(Tye) is not contained in {z1, 21}, where z
denotes the non-trivial eigenvalue of p;, (Tye). Then

Mon’(RV(j1, j2)r) = Mon?(RV(j1)r) x Mon®(RV(j2)r).

Proof. By Lemma 5.3.3 and the fact that the monodromy group of £;|, has finite index
in the monodromy group of £;, one concludes that the group generated by p;, (7 2) and
pj, (Ta3) resp., p;,(112) and pj,(T53) has finite index in the monodromy representation of
L;, (P) resp., L;,(P). Hencefore an isomorphism

a : Mon’(RV(j1)r) — Mon’(RV(jo)r)
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yields an isomorphism
a(P) : Mon’(L;, (P)) — Mon"(L,,(P)).
Thus one only needs to apply Proposition 5.3.1. O

Now let us first define the condition for the reaching of the upper bound and then
write down the obvious theorem:

Definition 5.3.5. Assume that one has for each £, ,L;, C V, with j; # js,m — j, and
Mong (L;,) = Mong(L;,) a stable partition

P = {{al}v {a2}7 {a3}7 {a47 s ’a”j+3}}

(with respect to a suitable enumeration) such that the monodromy group of Lj (P) or
L;,(P) is infinite and one of the following conditions is satisfied:

1. Mon’(L;,(P)) and Mon’(L;,(P)) are not isomorphic.

2. There is a semisimple Dehn twist 7}, with k, ¢ € {1,2,3} such that the non-trivial
eigenvalue 2, of pj, (T} ) is not contained in {z1, Z; }, where z; denotes the non-trivial
eigenvalue of pj, (Tj0).

We call V, very general in this case.
A direct summand V), is exceptional, if it is general, but not very general.

By Proposition 5.3.4, one concludes:
Theorem 5.3.6. If V, is very general, Mon®(V,) reaches the upper bound C(1)).

Theorem 5.3.7. If the degree m of the covers given by the fibers of C — P, is a prime
number m > 2, Mon®(V) = Mon(V;) reaches the upper bound.

Proof. By the preceding theorem, we have only to show that Mon"(V) = Mon();) is very
general. Note that Lemma 5.3.2 implies that there is a semisimple Dehn twist for m > 2.

Assume that we are in the case of a family C — Py, and that j; # jo,m — js. Since
Z/(m) is a field in our case, one has that each semisimple Dehn twist satisfies that the
non-trivial eigenvalue of p;,(7') is not contained in {21,z }, where z; denotes the non-
trivial eigenvalue of pj;, (7). Thus in this case the statement follows from Proposition
5.3.1.

Otherwise we have to find a stable partition P as in Proposition 5.3.4. One has
without loss of generality the semisimple Dehn twist 77 ». Moreover assume without loss
of generality that dy + do = m — 1. One has two cases: Either there is some a3 such that

P = {{a1}7 {a2}7 {a3}7 {a47 e ’a”+3}}

is the desired stable partition or one has that
d3=...=dy3=1.

Since in the case m = 3 there is nothing to show, one can otherwise assume that m > 3
and take the stable partition

P = {{a3}, {a4}, {a5}, {al, ag, g, . - - ,an+3}}.
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5.4 The exceptional cases

At this time the author does not see a possibility to calculate the monodromy group of
the V HS of an arbitrary family C — P,,. Hencefore we consider mainly a family C — P;.

5.4.1. Let p;, and pj, denote the monodromy representations of £, , £;, C V,. Proposition
3.3.5 yields a description of p;, (T') and pj,(T") for some Dehn twist 7. By this description,
the entries of the matrices p;, (7)) and p;,(T) differ by some v € Gal(Q(£"); Q). By its
action on ({") = Z/(™), each v can be identified with some [v] € (Z/(**))" such that
[%v]g = []72]% Omne has a subgroup Hi(v) of (£") consisting of roots of unity fixed by
v and a subgroup Ha(7) of ({") consisting of roots of unity, on which v acts by complex
conjugation. Since j; # jo,m — jo, one has that v is neither given by the complex
conjugation nor by the identity. Thus Hi(7) resp., Ha(7) is given by {1} or some proper
subgroup of (€7) generated by ™) resp., €720, where 1 # ¢,(7) and 1 # t5(y) divide

For the rest of this section we consider only families C — P; of degree m with an
exceptional part V,.. Assume without loss of generality that V) is exceptional and j; = 1.
Let ~ correspond to v. For simplicity we write ¢; and ¢y instead of ¢;(y) and (), and
H, and H, instead of Hi(vy) and Ha(7y).

Lemma 5.4.2. Let C — Py be a family of degree m covers such that V, is exceptional.
Then one is without loss of generality in one of the following cases:

1. (Complex case) t1|dy + da, t1|da+d3 and ty|dy 4 ds3, where t; does not divide d; + ds.
2. (Separated case) t| = 2 and 2 divides dy + da, dy + ds and dy + ds.

Proof. 1f V; is exceptional, then d; +ds, ds+ds and dy +d3 are divided by ¢; or 5. Assume
that t1 (resp., to) divides dy 4+ da, ds + d3 and d; 4+ d3. Hence one has t; = 2 (resp., to = 2)
as in the proof of Lemma 5.3.2. Otherwise one has only to choose a suitable enumeration
such that one is in the complex case. O]

Remark 5.4.3. It can occur that one is in the complex case and the separated case with
respect to the same eigenspaces (up to complex conjugation). Consider the family C — P;
of degree 12 covers given by

di =5, dy=1, dy=11, dy="T.

Let v = 5. Then one has t; = 3 and ¢, = 2 such that 3|d; + da, 3|dy + d3 and 2|d; + ds.

Now let v = 7. In this case one has t; = 2 and 2 divides d; + ds, dy + d3 and d; + d3. By

5.4.10, we will see that there is an isomorphism « : Mon?(RV(1))g — Mon®(RV(5)).
On the other hand consider the family C — P; of degree 12 covers given by

dy =11, dy=1, d3=11, dy = 1.
Again by the same arguments, we are in the complex case and the separated case at the

same time. But in this case the existence of a suitable isomororphism o : Mon?(RV(1))g —
Mon?(RV(5))g is not known to the author at this time.
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5.4.4. Assume that the direct summand V) is separated with respect to [v],, € (Z/(m))*
for a family C — P; of degree m covers. One has [v2] = [2] in each separated case. This
implies that [2][v — 1] = [0]. Hencefore one has [v] = [ +1] € (Z/(m))* in each separated
case. Hence v € (Z/(m))* is an involution. The fact that [v] =[5 +1] € (Z/(m))* implies
that % + 1 is odd. Hence 4 divides m. In the separated case r; = 2 divides each dj, + dy.
Thus V; is separated, if and only if 4|m and each dj, is odd.

Hencefore there are infinitely many cases of families C — P; such that V) is separated.
At this time the author can not give an isomorphism a : Mon®!(£;) — Monad(ﬁ%ﬂ) for
each separated example.

By the preceding point we have classified and described all examples C — P; such
that V; is separated. Hence we consider only the case of a family C — P; such that V; is
complex for the rest of this section.

Lemma 5.4.5. Assume that V; is complex. Then one has:

E:zlcm(tl,tg):{?,} . m s odd

5 oom 1S even

Proof. It m is odd, H; N Hy = {1} = {¢™}. If m is even, H; N Hy = {1, -1} = (£¢%).
Lemma 5.4.6. Assume that Vy is complex. Then one has that tity = m or tity = 5 -
Moreover one has that tity = m, if m is odd, and tity = %, if 2|m, but 4 does not divide
m.

]

Proof. If m is odd, one has ¢ = lcm(t;,t2) = m. Hence one has tithg = m for g =
ged(ty, t2) and t; = gt,. Hence |H;| = t, and |Hs| = t}. If g > 2, there is a semisimple
Dehn twist, whose order does not divide #|t}, (follows from Lemma 5.3.2). But this can
not occur by our assumption that V; is complex. Hence g = 1, since g = 2 is not possible
for m odd.

If m is even, one has ¢ = lem(t;,t;) = 5. Hence one has t\thg = % for g := ged (1, t2)
and t; = gt,. If g > 2, there is a semisimple Dehn twist, whose order does not divide t/t.
Hence one has g =1 or g = 2. Thus #1t3 = m or ¢l = 3.

Now assume that 2|m, but 4 does not divide m. Then one has that % = lem(ty,t3) is
odd. Hence one can not have that g = 2 in this case. Thus g =1 and t1to = 2 O]

5
Example 5.4.7. In the case 4|m both t1t = m and t1ty = % can occur. Let m = 24 and
take v = 5 for the corresponding automorphism of Q(¢). In this case one has t; = 6 and
ty = 4 such that ¢t = 24 = m.

Now let m = 24 and take v = 7. In this case one has t; = 4 and ¢ = 3 such that
tltg =12 = %

Proposition 5.4.8. Assumey € Gal(Q(§); Q) yields an example of a complex case. Then
v 18 an involution.

Proof. Let [v] € Z/(m)* correspond to . One has that t,t, = m or t;t; = . Since one
has that [vt1],, = [t1]m and [vts], = —[ta]m, one gets that

(v—1)t; € (m) and (v+ 1)ty € (m).

This implies that £5|(v — 1) and #;[(v+1) or (if t1t, = %) that 2¢5|(v — 1) and 2¢;|(v +1).
Hence in each case one obtains that

v —1=(v—1w+1) e (m).
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Theorem 5.4.9. Let C — Py be a family of degree m covers. Then Vi is complex, if and
only if the fibers of C have the branch indeces dy, . .., ds with 2m = dy + ...+ d4 such that

[vdo)pm = [di + da + d3]m, [vdi]m = [ds]m, [vds]m = [—di]m

or
m

m m
[vd)m = [di + dy + d3 + E]ma [vdy]m = [—ds + E]ma [vds)m = [—di + E]m

for some v with [v*],, =[], and (V] & {[1m, [m — 1m}

Proof. The condition 2m = d; + ... + d4 ensures that V) is not special.
By an abuse of notation, each integer z denotes the residue class [z],, in this proof.
Assume that V; is complex. Hence by Lemma 5.4.2, one has that

21)d2 = U((dl —I—dg)—(dl +d3)+(d2+d3)) = (d1 +d2)+(d1 +d3)+(d2+d3) = 2(d1 +d2+d3),

2Ud1 = U((dl + d2) + (dl + d3) — (dz + d3>) = (dl + d2) — (dl + d3) — (dQ + dg)) = —2d3,
21)d3 = U(—(dl —+ dQ) + (d1 + dg) + (dg + dg)) = —(dl + dg) — (d1 + d3> + (dg + dg)) = —2d1

Hence one has two cases:

Ud2:d1+d2+d3 or Udg :d1+d2+d3+%
In the first case (resp., the second case) the fact that v(d; + dy) = dy + ds implies that
vdy = —ds (resp., vdy = —ds + '§). Moreover in the first case (resp., the second case) the
fact that v(ds + d3) = dy + ds implies that vds = —d, (resp., vdz = —d; + ). Hence we
have obtained the claimed equations.
Assume conversely that the family C — P; satisfies one of the two systems of equations
of this theorem. Then one can easily calculate that V; is complex. O]

5.4.10. Let C — P; be a family of degree m covers. Assume that di, ds, d3 satisfy the
first system of equations of Theorem 5.4.9 with respect to some v with [v?] = [1],,, which
satisfies that [v],,, & {[1]m, [m — 1]n}. Moreover let j € (Z/(m))* such that £; C V; with
monodromy representation p;. Now we calculate that Mon%(§)+(]/1) does not reach the
upper bound C{*(g)g(e)+ in this case.

Let a; =0, a3 = 1 and a4 = co. The fundamental group of the corresponding copy of
M is generated by 7172 and T 3. One obtains that

é“jd1+jd2 l_fjﬁh 1 0
Pj(TLZ):( 0 1 0 Pi(Tes) =\ gt _ giorits gidorids | -

Let v, € Gal(Q(£); Q) denote the automorphism corresponding to [v]. The monodromy
representation of L;, is given by

é’jlerde 1— gfjds 1 0
piv(T2) = ( 0 1 ) , pin(Tas) = ( giditjdatids _ gidatida  gidatids ) :

One calculates easily that

1 — é’jdl fjdz _ gjd2+jd3 gjdz _ £jd2+jd3 _ éfjd1+jd2 + £jd1+jd2+jd3

1 — s giditidatids _ gdatids  giditidatids _ gida+ids _ gidi+ide | gdz
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Hence there is a 2z € Q() such that vy|<p;(1y.2),0,(125)> coincides with |, (11 ,).p;(10.5)>>

where « is given by
a b . a zb
c d zle d )

Thus by Lemma 5.2.4, the group Mon(%(g)Jr(Vl) does not attain its upper bound in this
case. In addition one calculates easily that « is given by

a b N a b Vz=l 0
— .
c d 0 21 ¢ d 0 V=
Thus the monodromy representations of £; and L;, coincide up to conjugation such that
L; and L;, are isomorphic for each j € (Z/(m))*.

Corollary 5.4.11. There are infinitely many families C — Py such that Vy is complex
and Mon%(§)+(V1) does not reach its upper bound.

Proof. Let p,q € N such that ged(p,q) = 1 with p,q ¢ {1,2} and m := pg. Hence
Z/(m) =7Z/(p) x Z/(q). Let v < m correspond to (1,—1) € Z/(p) x Z/(q). Thus we get
[v%] = [1],, and [v],, & {[1]m, [m — 1], }. One has that

dlzv, dgzl, dgzm—l

satisfies the first system of equations of Theorem 5.4.9, which quaranties by 5.4.10 that
Mon&(g)Jr(Vl) does not reach its upper bound. Since there are infinitely many possible
choices for p, ¢ € N such that ged(p, q) = 1 with p, ¢ ¢ {1,2}, one obtains infinitely many
families C — P; such that V; is exceptional. O

5.5 The Hodge group of a universal family of hyper-
elliptic curves

If the middle part Vm is of type (1,1), one obtains MonO(V%) = Spg(2), since Spg(2) =
SU(1,1), and Mon%(V%) = SU(1,1) as one has by Theorem 5.1.1.

By Proposition 3.3.5, each Dehn twist Ty 441 yields a unipotent subgroup of MonO(V%)
isomorphic to G,. Its corresponding subvector space of the Lie algebra is generated by

-1 : a=/¢ and b=/¢-1
Agppi1(a,b) = 1 @ a=/¢ and b=/(+1
0 : elsewhere

Now we consider the middle part of type (2,2). Hence we are in the case of the genus
2 curves. For ¢ = 1,...,4 the matrices A1 generate a 4 dimensional vector space.
Moreover by [A;;+1, Ait1,i12) for i = 1,2, 3, we get the 3 additional linearly independent
matrices

1010 0 0 00 00 0 0
0 100 0 -1 0 1 0 0 0 0
o000 | =10 10| ™ oo —1o0
0 000 0 0 00 0 -1 0 1



By
(A3, [Asa, Ausl] resp., [[Ai2, Assl], Asal,

we obtain the two further linearly independent matrices

0 0 0 0 0 -1 0 1
0 0 —1 0 0 0 00
o0 0 of ™ 1o 1 00
10 1 0 0 0 00

Thus the Lie algebra has at least dimension 9. Moreover one checks easily that
00 -1

0
0
[[Al,Qy A2,3]7 [A3,47 A4,5]] = 0
0

o O O
_ o O
o O O

is a tenth linearly independent matrix. Thus the well-known fact that Spg(4) has dimen-
sion 10 implies:

Proposition 5.5.1. If Vm is of type (2,2), then Mon?(Vm) = Sp(Vm, Qy,, ).
2 2 2 2

Note that the quotient of Sp,(R) by its maximal compact subgroup is Siegel’s upper
half plane ho, which has dimension 3. Since M3 has dimension 3, one concludes for the
restricted family Cy, — M3 of genus 2 curves:

Corollary 5.5.2. The family Cp, — M3 of genus 2 curves has a dense set of CM fibers.

Proof. One has (similarly to the proof of Theorem 4.4.4) that the holomorphic period map
p : M3 — bs has fibers of dimension 0. Since dim(hs) = dim(M3) = 3, one concludes
that p is open. Hence the statement follows from the fact that b, has a dense set of CM
points. ]

We will use Proposition 5.5.1 and the calculations, which yield this proposition, to
show the following theorem by induction:

Theorem 5.5.3. If Vm is of type (g, 9), then MonO(V%) = Sp(V%,QV%).
Corollary 5.5.4.
Hg(Vm) = Sp(Vm, QV%) and MT(Vm) = GSp(Vm, Qv%)
It is a well-known fact that dim(Spg(2g)) = 2¢® + ¢.°> Hence one gets
dim(Spg(2g + 1)) =2(g+ 1> + g+ 1 = (29> + 9) + (49 + 3).

We will show by induction that for each g € N the matrices A,y generate a Lie
algebra, which has at least the same dimension as sp,,(Q). This yields Theorem 5.5.3.
Since we have shown the statement for g = 1,2, we will only give the induction step:

Recall that we have defined L;-valued paths [e;d;] in Section 3.3. We consider a
middle part of type (g + 1,9 + 1) with respect to the basis B = {[e1d1], ..., [eag+2024+2]}-
The Dehn twists Ty 41 for £ = 1,...,2g yield the monodromy group G of a middle part
of type (g,g). Hencefore by the induction hypothesis, they yield a group isomorphic to

Sp2g Q).

#Otherwise one has a description of spy,(C) in [17], page 239. By this description, one can easily
determine its dimension.
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Remark 5.5.5. One has the obvious embedding of G — GL(N'(C'm,Q)) with respect
to the basis 81 = {[61(51], cey [62g§29], [629+2(52g+2], [629+3529+3]} such that

A
Gy A— 1 0 | € GL(VY(C=,Q)).
0 1

Moreover this embedding of G into GL(N'(C'm, Q)) is given by

A w
Gi>A— 1 0 | € GL(N'(C=,Q)),
01
with respect to the basis B, where v' = (vy,. .., vy,) is a vector depending on A.

Since we consider the embedding with respect to the latter basis, we want to under-
stand v, which is possible, if we understand the base change between the bases of the
preceding remark.

Lemma 5.5.6. Let C — P! be a hyperelliptic curve of genus g + 1. One has (up to a

suitable normalization)
g+1

Z[€2i+152i+1] =0.

=0

Proof. Let ¢ € Hy(C,C) be a nontrivial linear combination of the closures of the sheets
of P!\ S, on which 1 acts via push-forward by the character 1 € Z/(2). One has that
O( represents a linear combination of [e1d1],. .., [eag41024+3] € H1(C, C)y, which is equal
to zero. Recall that over 6; U ... U 09443 the glueing of these sheets depends on the
local monodromy data determined by the branch indeces of the branch points a;. Since
each a; has the local monodromy datum —1, this linear combination is (up to a suitable
normalization of [e101], ..., [e25+1024+3]) given by

g+1

Z[€2i+152i+1] = 0.

i=0
[l

5.5.7. By the preceding lemma, the matrices of base change between the bases B and B;
are given by

1 -1 1 -1
MB(id) = 1 =L and M2B(@Gd) = L -1
5 (id) ) 0 5, (id) Lo
0 —1 0 1
1 0 -1 0
such that
A v A
10 | =Mg(d) 1 0 |- Mg (id)
0 1 01



Thus one calculates easily that vy = 0, if a;; = 1 and a;; = 0 for 2 < j < 2¢ and
A = (a; ;). The exponential map exp is a diffeomorphism on a neighborhood of 0. Hence

by the definition

2 m3

m
exp(m):1+m+7+7+...,

one concludes that each (m; ;) € Lie(G;) satisfies that my 9,11 = 0, if m;; = 0 for all
j =1,...,2¢g, which will play a very important role later. Otherwise exp would yield a
matrix Wlth a1 =1, a;; =0 for 2 < j <2g and v; # 0 as one can calculate by the fact
that each (mw) € Lze(Gl) satisfies that m; ; = 0 for i > 2g.

Lemma 5.5.8. Let ig < 29 and jy < 2? be mtegers such that 19 — ]0 > 0. In the Lie
algebra Lie(Gy) one finds an element (z\7°)) with xzéoj’f)o # 0 and z; ZOJO) =0, if i > 1
orj <joore=1.

Proof. Let kg := ig — jo > 0. We show the statement by induction over ky. Each pair
(i0, jo) With ig — jo = ko = 1 is given by (ig, 79 — 1). By Ai.ip+1, such an element is given
for each (ig,i9 — 1).

Now let (ig,jo) be a pair with kg := ip — jo > 1 and assume that the statement is
satisfied for kg — 1,...,1 > 0. Hence one has (:EE?’JOH)), Ajis1o+2 € Lie(Gy). By
i, i0,j0+1
(237 = [(@57), Ajrrora)

one obtains the desired element of Lie(G), since one has the entry

(i0,90) __ ,.(i0,jo+1)
Tiggo = Tiggort " (Ajot1gor2)jo+140 7 0.
O
Moreover the Dehn twists Top—1.9p, - .., Tog42,24+3 generate a group Go isomorphic to

the monodromy group of a middle part of type (2,2), which has dimension 10. One can
easily compare the matrices of Lie(Gy) with the above explicitely given matrices of a
middle part of type (2,2): “The restriction of the matrices of Lie(Gq) to the lower right
corner looks like the matrices of the Lie algebra of the monodromy group of a middle part
of type (2,2).”

Since the vectors

A2971,2g7 A29,2g+1 and [A2971,2g7A2g,29+1]

are contained in Lie(Gy) N Lie(Gs), both Lie algebras yield together a 2¢*> + g + 7-
dimensional vector space of matrices (z;;), whose entries z; ; vanish for j < 2g — 3 and
1 > 2¢g. Hence by using
[Azy1g42, (277)] and [[Azy 12942, Asgaazgea], 257

for jo < 2g — 3, one has 49 — 6 additional linearly independent vectors. Thus we have
altogether (2¢° + g) + (4g + 1) linearly independent vectors. Hence 2 remaining linearly
independent vectors are to find. Since x(lo’] ) =0 fori= 1, in the constructed vector space
of matrices (m; ;) the coordinate my 9,11 depends uniquely on the vectors in Lie(G7) such
that m 9941 = 0,if my; =0 forall j =1,...,2g as we have seen in 5.5.7. Let

Lie(Gh) 3 (4iy) = [Ar2, [A23, |- - [Azg-1.29, Azg2g11] - ]]-
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One checks easily that
Y1,29+1 7 0.
Now the matrix
(i) = [(Wig); [Azgi12g+2, Azgr2.2g+3]]

satisfies ) 5,11 # 0, yi; = 0 for 4,5 < 2g and y; 5., = 0. Thus we have found a new
vector not contained in the vector space, which we have constructed by Lie(Gy), Lie(G>)
and some Lie brackets at the present.

Note that all matrices (z; ;), which we have found, satisfy z1 9,42 = 0. But

(2i5) = [(Yij); Azgr1,2942]

satisfies 21 9442 7 0. Hencefore we are done.

5.6 The complete generic Hodge group

By this section, we finish our calculation (of the derived group) of the generic Hodge
group and obtain the final result:

Theorem 5.6.1. One has
Mon’(V) = [ [ Mon®(V,)

rlm

in the following cases:
1. The degree m of the covers given by the fibers of C — P, is odd.
2. P, ="P1 and 6 does not divide m.
Corollary 5.6.2. Assume that C — P, satisfies one of the following conditions:
1. The degree m of the covers given by the fibers of C — P, is odd.
2. P, ="P1 and 6 does not divide m.

Then one has
MT%*"(V) = Hg®" (V) 2 [ [ Mon’(V,).

rlm

By Theorem 2.4.4, one has a C'M-fiber, if the fibers of C — P,, have n 4+ 1 branch
points with the same branch index d. Thus by the fact that this implies the equality of
Mon’(V) and MT%"(V) (see Theorem 3.1.3), one concludes:

Corollary 5.6.3. Let the fibers of C — P, have n+ 1 branch points with the same branch
indezx d and C — P, satisfy one of the following conditions:

1. The degree m of the covers given by the fibers of C — P, is odd.
2. P, ="P1 and 6 does not divide m.

Then
MT (V) = Hg"" (V) = [ [ Mon’(V,).

rlm
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Since C9'(g) is an upper bound for Hg®"(V,), one concludes finally:
Corollary 5.6.4. Assume that C — P, satisfies one of the following conditions:

1. The degree m of the covers given by the fibers of C — P, is odd.

2. P, =Py and 6 does not divide m.

If all V), except of the middle part are very general or special, one has

MT (V) = Hg™" (V) = Mon’(V) = [ [ Mon"(V,).

rlm

Recall that we search for families C — P, with dense set of complex multiplication
fibers. One obtains dense set of complex multiplication fibers, if one has an open (multi-

valued) period map
p: My (C) = MT(V)(R)/K

given by the VHS. Hence for our applications we need to know MT*(V) and the
dimension of MT (V)(R)/K, but not MT(V) itself. Let us first prove Theorem 5.6.1.
After this proof we will see that the (multivalued) period map of a family C — M; onto
MT"(V)(R)/K is open, if and only if one has a (1,1) — VHS.

For the proof of Theorem 5.6.1 we use the same methods as before. One has that
Mon®?(V) is the direct product of the kernel of the natural projection

D1 Monad(V) — Monad(Vn)

and an adjoint semisimple group G,, isomorphic to Mon®!(V,,). Moreover one has that
Mon*!(V) = H Mon*(V,),
rim

if and only if each G,, is contained in the kernels of the natural projections onto all
Mon™(V,,) with ry # ry.
We give a proof of Theorem 5.6.1 by contradiction. Thus we assume that

Mong, (V) # H Mon(V,). This implies Mon&!(V) # H Mon&*(V,).

rlm rlm

Hence some G, is not contained in the kernel of the projection onto Mon®!(V,,) for
some 19 # 11. Since all simple direct factors of G, resp., G, project isomorphically onto
some Mon®(L;,) resp., Mon®!(L},), one gets an isomorphism

a : Mon™ (‘Cji) - Monad(‘cjé)’

which respects the respective projective monodromy representations. But by the following
proposition, the isomorphism « can not exist, if the assumptions of Theorem 5.6.1 are
satisfied. This yields the proof of Theorem 5.6.1.

Proposition 5.6.5. Assume that r1 := ged(m, j1) # 1o := ged(m, jo). Moreover assume
that one of the following cases holds true:

1. m s odd.
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2. P, =Py and 6 does not divide m.

Then an isomorphism
o : Mon™(L;,) — Mon*(L;,),

which respects the respective projective monodromy representations, can not exist.

Proof. Assume without loss of generality that r; < r5. This implies % > % There are
two cases: Either 2r; # ry or 2ry = 7rs.

If m is odd, one has 3 # g := ged(;2, 7). Hence by Lemma 5.3.2, one finds a Dehn
twist 7" such that Pp;, (T) is semisimple and the order of Ppj, (T') does not divide g. One
has that Pp,,(T) is either unipotent or semisimple. If Pp,;,(T) is semisimple, its order
divides ;2. But the order of Pp;, (T') does not divide 7. If Pp;,(T) is unipotent, its order
infinite. But Pp;, (7)) has finite order. However Pp; (T') and Pp;,(T) do not have the
same order. Hence such an isomorphism a : Mon®!(L;,) — Mon*!(L;,), which respects
the respective projective monodromy representations, can not exist in this case.

Now assume that we are in the case of a family C — P;, where 6 does not divide
m. There is a Dehn twist 7" such that Pp; (') is semisimple. If Pp; (1) and Pp,,(T)
do not have the same order, one can argue as above. Otherwise all semisimple Dehn
twists have the same order. Hence one must have 2r; = ry. The nontrivial eigenvalue
of p;,(T) is given by the square of the nontrivial eigenvalue & of p;, (T'). Note that the
corresponding maximal tori are isomorphic to S, where S{ 2 G, c. Thus its character
group is isomorphic to Z. Hence the induced map of the corresponding maximal tori can
be an isomorphism, only if one has €2 = ¢! = £. In this case & would be a primitive
cubic root of unity, which implies that 3 divides m. Since we have that 2r; = ry, 6 would
divide m. But by the assumptions, this is not possible. O

Remark 5.6.6. If 2r; = ry, there are many additional cases, in which « can not exist.

These obvious cases are given, if for a Dehn twist T the order of the semisimple matrix
m

pry(T') does not divide g, if p,, (T') is semisimple and p;,(T) is unipotent or if £;, and

L;, are of type (a1, b;) and (ag, by) such that

(al,bl) 7é (ag,bg) and (al,bl) # (bg,@g).

But in the case of the family C — P; of degree 6 covers given by the local monodromy
data
dy=dy=1, d3=dy=5

nothing of them holds true with respect to £; and Ls.

Now let us finish this chapter and state the final result about the period map:

Theorem 5.6.7. In the case of a family C — M the period map
p: My(C) — MTY (V)(R)/K
is open, if and only if one has a pure (1,1) — VHS.

Proof. As we have seen in the proof Theorem 4.4.4, the period map is open, if one has a
pure (1,1) = VHS.

For the other direction assume that the period map is open and there are up to complex
conjugation at least two different eigenspaces, which are not unitary.
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Lemma 5.6.8. Assume that we have a family Cpyy — My. Only if all V, except for
exactly one V,, are special, the period map

p: My(C) — MTY(V)(R)/K
can be open.

Proof. Assume that r; and ry divide m such that r; # ro and V,, and V,, are not special.
If 2ry # ry or if there is a Dehn twist, whose finite order with respect to V,, does not
divide % = %, the same arguments as in the proof of Proposition 5.6.5 imply that

dim(MT (V)(R)/K) > 1 = dim(M,).

Hencefore the period map can not be open.

Otherwise assume without loss of generality that 1 = 1 and all semisimple Dehn
twists have an order dividing . This implies that all dj, are odd and the degree m is
even. Hence MonO(V%) is isomorphic to Spg(2), where its monodromy representation

sends all Dehn twists to unipotent matrices. Thus dim(MT"(V)(R)/K) > 1. O

By Lemma 5.6.8, these two eigenspaces, which are not unitary, must be contained in
the same V,,, which must be exceptional. Hence assume without loss of generality that
V,, = V1.

In the separated case, the fact that all dj are odd (compare to 5.4.4) implies that
Mon]%(V%) = Spg(2). Hence by Lemma 5.6.8, we have a contradiction.

In the complex case Lemma 5.4.2 implies without loss of generality that

tildy + da, tildy +ds, ti|dy +dy, ti]ds + dy.

This implies that t; divides each dj or that ¢; does not divide any dj. Thus ¢; does not
divide any dy. Hence Cx is a family of covers with 4 branch points, where ,otm(Tl,g) and
1 1

ptﬂ(Tg,g) are unitary. Hence Vm has an infinite monodromy group resp., it is not special.
1 1
Thus by Lemma 5.6.8, we have a contradiction. O]
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Chapter 6

Examples of families with dense sets
of complex multiplication fibers

6.1 The necessary condition SINT

By Theorem 4.4.4, one has a sufficient criterion for a dense set of C'M fibers of a family
Cm, — M,. This criterion is satisfied, if C has a pure (1,n) — VHS (i.e. its VHS
contains one eigenspace of type (1,n), a complex conjugate eigenspace of type (n,1) and
otherwise only eigenspaces of the type (a,0) and (0,b) for some a,b € Ny).

Remark 6.1.1. Assume that the family C — P, of cyclic covers of degree m has a pure
(1,n)-VHS and that £;, is the eigenspace of type (1,n). Let jo ¢ (Z/(m))*. Then we
have 1 < rg := ged(jo, m). By Section 4.2, the family C,, has a pure (1,n)-VHS, too.

Definition 6.1.2. A pure (1,n) — VHS is primitive, if jo € (Z/(m))*. Otherwise it is a
derived pure (1,n) — VHS with the associated primitive pure (1,n) — VHS induced by
Cr,, where C,, is given by the preceding remark.

Hence first we search for families with a primitive pure (1,n) — VHS. Later we will
look for families with a derived pure (1,n) — VHS. It is helpful to have a necessary
condition to find the families with a primitive pure (1,n) — VHS. In [14] P. Deligne and
G. D. Mostow have formulated the following integral condition INT"

Definition 6.1.3. A local system on P!\ S of monodromy (c)ses with oy = exp(2mijs)
and pus € Q for all s € S satisfies the condition INT, if:

1. 0<pus<1lforall sesS.

2. We have for all s,t € S: (1 — s — ;)" is an integer, if s # ¢ and ps + e < 1.

3. ) s =2.

One can identify the local monodromy data, which yield the family C — P,, by Con-
struction 3.2.1, with the local monodromy data of the eigenspace L; of some fiber C, for an
arbitrary ¢ € P,,. Hence one can formulate the condition INT for the local monodromy

data of the family. For the latter data we give a corresponding stronger integral condition
SINT:

Definition 6.1.4. A family C — P, of cyclic covers onto P! given by the local monodromy
data given by u; € Q around s, € N satisfies SINT, if we have:
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1. pigy + piey = Lot (1 — g, — pg,) "' € Z for all sy, sy, € N with sy, # sp,.

2. > s =2.

Remark 6.1.5. The reader checks easily that for a family C — P, the conditions INT
and SINT are equivalent. Moreover by the list on [14], page 86, each family C — P,
with n > 2, which satisfies INT', satisfies SINT, too.

At the present the author can not explain this fact. We use SINT instead of INT,
since this yields a stronger and hencefore a more helpful condition.

By the following theorem, we have our helpful necessary condition for families C, which
have a primitive pure (1,n) — VHS:

Theorem 6.1.6. If the family C — P, has a primitive pure (1,n) — VHS, 1its local
monodromy data can be given rational numbers satisfying SINT.

For the proof of Theorem 6.1.6 we first reduce the situation to the case of a family
C — P of covers with only 4 branch points. That means we will consider a pair of branch
points of a fiber of C — P,, where C has a primitive pure (1,n) — VHS, as a pair of
branch points with the same branch indeces of a fiber of a family C(P) — Py, which has
a primitive pure (1,1) — VHS. The following lemma will make it possible in almost all
cases:

Lemma 6.1.7. Assume that C is given by local monodromy data on at least 5 points,

where one does not have iz = ... = liyi13 = % Then there exists a stable partition P with
{a1},{as} € P such that |P| =4."

Proof. One can without loss of generality assume that p; + ps < 1. Otherwise we take
the local monodromy data of £, 1.

Now assume that such a stable partition P with {a;}, {as} € P does not exist. Hence
one must have py + ps + pp = 1 for all 3 < k < n + 3. Otherwise one obtains the stable
partition

P ={{a},{az}, {ar}, {as, ..., ak_1,ak41,...,an13}}
Thus one must have
M= Mg = = M3
Since

P = {{al}a {aQ}a {ai’n a4}7 {(l5, ce ’a’"j+3}}

is not a stable partition by our assumption, too, one has

1
21 = pug + png = 1. Hence p=3-

]

6.1.8. The family of irreducible cyclic covers of P! given by the local monodromy data,

1

1
Hl_,UZ_Za M3—M4—,U5—§

1Since the assumptions of this lemma are sufficient, we do not restrict to the interesting case of a
family with a primitive pure (1,n) — VHS.
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has a primitive pure (1,2)—V HS. Moreover it is easy to calculate that this family satisfies
SINT.

But this is the only example of a family C — P,, with a primitive pure (1,n) — VHS
with n > 1, which does not satisfy the assumptions of Lemma 6.1.7: It is very easy to
see that this is the only degree 4 example with a primitive pure (1,n) — VHS for n > 1,
which contradicts the assumptions of Lemma 6.1.7. If m > 4, £3 must be unitary. But
in this case the condition that

1
n+3>4 and [3/13]1 =...= [3,un+3]1 = 5

and Proposition 2.3.4 imply that

W02 (S Bul) ~ 1= (3 5) ~ 10

k>3 k>3
and
PN = S0 Bl —1= (35 —1>0.
k>3 k>3
Thus L3 is not unitary.
6.1.9. Assume that C — P, has a primitive pure (1,n) — VHS. Hence £; is without loss
of generality the eigenspace of type (1,n). For our application of Lemma 6.1.7 we must
check that the collision of Lemma 6.1.7 resp., its corresponding stable partition yields a
family C(P) — Py, which has a primitive pure (1,1) — VHS. The family C(P) is given
by N = P with the local monodromy data
Qfap,ary = Q- om0y (VY {ag,...,a} € P)

as in Construction 3.2.1. The fibers of C(P) have the degree m/, where m' divides m. For
j=1,...,m'—1and ¢ € My, the eigenspace L;(P) in the Hodge structure of C(P), with
the character j is given by the local monodromy data

Gy, Dpehy, Dws+ .o+ dpeh, Dl + oo+ Jlnga)i
If the eigenspace £; in the VHS of C is of type (0, a), Proposition 2.3.4 implies that its
local monodromy data satisfy
Upali + -+ [ipngs]r = 1.

Hence one has that

Gual + e + Gps + -+ g + s + -+ Jtngsh = 1,

too. Thus by Proposition 2.3.4, L;(P) is of type (0, d’).
If £; is of type (a,0), L,,—; is of type (0,a). The dual eigenspace L;(P)" of L;(P) is
given by

[(m—=g)uly, [((m=g)pelr, [(m—=g)ps+...+(m—=7)pxl, [(m—j)prri+. . +(m—7)pns)r-

The same arguments as above tell us that L;(P)" is of type (0,a’). Thus L;(P) is of type
(a',0).

The restricted family Cpyy, (P) — M; of cyclic covers with 4 different branch points has
a non-trivial variation of Hodge structures. This follows from the fact that each fiber of
Cm, — M, is isomorphic to only finitely many other fibers (compare to 4.4.2). Hencefore
the eigenspaces L;(P) and L,,_1(P) are of type (1,1). In addition one concludes that
m' =2 orm =m.
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Now we are without loss of generality in the case of a family C — P; with a primitive
pure (1,1) — VHS. For the proof of Theorem 6.1.6 we need the following lemma:

Lemma 6.1.10. Let C and C’ be curves and v : Jac(C) — Jac(C”) be an isomorphism of
principally polarized Abelian varieties. Then there exists a unique isomorphism f : C' —
C" such that

700, = a4 0 f

for each p € C, where oy, and oy denote the respective Abel-Jacobi maps.

Proof. By [31], Theorem 12.1, for each p € C and p’ € C’ there is a unique isomorphism
f:C — C" and a unique ¢ € Jac(C") such that

tyoa,+c=ayof.

Since (yoa,)(p) =0 € Jac(C’) and (ayy o f)(p) = [f(p) — p'] € Jac(C’), one has ¢ = 0 for
P = fp) O

By the next proposition, we will apply Lemma 6.1.10 for our proof of Theorem 6.1.6:

Proposition 6.1.11. Let q1,q2 € P, and C — P, be a family of cyclic covers. Assume
there is an isomorphism between the polarized integral Hodge structures of the fibers Cy,
and C,,, which respects the eigenspace decompositions of H'(C,,,C) and H'(C,,,C). Then
there is an isomorphism ¢ : Cp, — Cp, and an isomorphism « : P! — P! such that the
following diagram commutes:

Cpl - sz

| i

P! - P!

Proof. Let ~ be an isomorphism of polarized Hodge structures respecting the eigenspace
decompositions of H'(C,,C) and H'(C,,C). Then there exists a suitable pair (¢1,19) of
generators of the Galois groups of C,, and C,, such that

Yo <¢1)* = (¢2)* o7.

For simplicity we write ¢ instead of ¢, and 5.

By the exponential exact sequence, an isomorphism v : H'(C,,,Z) — H*(C,,,Z) of
polarized Hodge structures commuting with the action of 1 on these integral Hodge
structures induces an isomorphism 7 : Jac(C,, ) — Jac(C,,) commuting with ¢,. In other
terms one has

Y o =109

for the Jacobians.
By Lemma 6.1.10, one obtains a unique isomorphism C,, = Cp, such that

Loy =1 ou.

Thus one obtains the desired automorphism «. O]
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6.1.12. Now assume that C — P, has a primitive pure (1,n) — VHS. Moreover one
can without loss of generality assume that £; is the eigenspace of type (1,n). Choose
S1,89 € N.

If gy + pe = 1, there remains nothing to prove with respect to these two points for
Theorem 6.1.6.

Otherwise we let the branch points collide as in Lemma 6.1.7, if we are not in the only
exceptional case, which satisfies SINT as we have seen in 6.1.8. Thus we can restrict to
the case C — P;. Assume that all 4 branch points of a fiber of C — P; have pairwise
different branch indeces. Hencefore there will not be an isomorphism « as in Proposition
6.1.11 for different fibers. Hence Proposition 6.1.11 implies that the fractional period map
according to L]z, is injective. Now choose the embedding M; — P! corresponding to

p1=0, p3=1, py=o0.

By [30], Section 4, one can identify the fractional period map concerning £; with some
multivalued map, which is called Schwarz map. The Schwarz map is the composition of
the multivalued map studied by P. Deligne and G. D. Mostow in [14], which is defined by
some integrals, with the natural map C"**\ {0} — P2. By [14], 9.6 and the preceding
description of the fractional period map, there exists a sufficiently small neighborhood U
of 0 € P\ M, such that the fractional period map concerning £; is (up to a biholomorphic
map) given by x — x!7#17#2 on U \ {0}. Hence the injectivity of the period map implies
that (1 — py — pp)~* € Z. This yields SINT.

6.1.13. Now we have the problem that we can not directly apply Proposition 6.1.11 as
before, if we assume that there are 4 branch points, where exactly two of them have the
same branch index: Let p; and p; have the same branch index and p3 run around po,
where

p1=0, pp=1, ps=oc.
The automorphism x — 27 interchanges 0 and co and leaves a basis of neighborhoods

of 1 € P\ M, invariant. We have obviously the same problem, if we let p; run around
ps. But for all other pairs kq, ko € {1,2,3,4} with k; # ks and the coordinates

1

klzoa k3:17 k4:OO7

Proposition 6.1.11 implies that the multivalued period map is injective on U \ {0}, where
U is a sufficiently small neighborhood of 0 € P!\ M;. Thus k; and k, satisfy the integral
condition
1 - My — My = 0 or (1 — Mk _,qu)—l € Z.

Hence one must ensure that the remaining pairs satisfy this latter condition, in order to
show that STNT is satisfied:

Let us change the enumeration and assume that p; = pus. By Proposition 6.1.11, we
can have

1 2
1—M1—M2=Z or 1—u1—uzzz or 1—p—p2=0

for some odd ¢ € Z. Note that 1 — p; — po = —(1 — pug — pa), if g1 + ... + g = 2. Hence
we only have to exclude the second case (1 — p; — p2) = %. First assume that m is odd.
In this case m — 2d; is odd and the second case can not occur. Hence assume that m is
even and let m = 2°r, where r = k - £ is odd. If the second case holds true, one has

2%kl —2d, 2

_ = s—1 _ — 9s — s—1 -
s = e YT M di =2k e d =2 k(- 2),
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If s > 2, one has that d; = dy is even. Since Cy must have a trivial V H.S, one has without
loss of generality that ds = 2°7'k¢. Since we have

2m:d1—|—...+d4,

which is even, where d;, ds, d3 are even, too, d, must be even. But in this case the cover
is not irreducible. Hence we must have s = 1. Since C, must have a trivial V HS, one has
without loss of generality d3 = k¢. Since we have

2m:d1+...—|—d4,

which is even, where d;, ds, d3 are odd, one must have that ds is odd, too. But in this
case Cy is the family of elliptic curves and we do not have a primitive pure (1,1) =V HS.
Hencefore the second case is excluded.

Remark 6.1.14. If we have 4 branch points and more than exactly two of them have the
same branch index, one can have the additional simple cases

M1 = 2 = 3 OI [y = [2, [3 = [4.

For these very simple cases one can directly calculate all occurring examples of families
C — P with a primitive pure (1,1)—V HS. Then one can verify by their local monodromy
data that Theorem 6.1.6 holds true in these cases as we will do now.

Remark 6.1.15. One must without loss of generality have
dy < dy resp., di=dy=d3s<ds or di=dy<ds=d4

in the simple cases, if m > 2. Otherwise we would obtain

d1=d2=d3=d4=%,

which implies that C is not irreducible, if m > 2.

Lemma 6.1.16. Assume that the family C — Py with the branch indeces dy = dy = d3 #
dy has a primitive pure (1,1) — VHS. Then the degree m is odd and satisfies m < 9.
Moreover one has without loss of generality that diy = ds + d3 = 1.

Proof. By the assumptions we have that 2m = 3d; +d,. Hence g = ged(m, d;) = 1 divides
dy, too, which implies by the irreducibility of the fibers of C that g = 1. Thus if m is
even, we have that d; = dy = d3 and d4 are odd. But then C% would be the family of
elliptic curves such that L= is of type (1,1). Contradiction! Hence m must be odd.

It remains to show that m < 9. Since ged(m,d;) = 1, the fibers are without loss of
generality given by

y"=z(x—1)(x —A)

such that L= is of type (1,1) as one can calculate by Proposition 2.3.4. By Proposition
2.3.4, one can calculate the type of £ m=3 by its local monodromy data, too. For this local
system one gets that
m — m —3)(m —
m—3 m—3 [(m—3)(m—3) m—3 (m—3)(m-—23)

:3W+(m—3) om 2m I= ~ |

3
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Now let us assume that 9 < m. Since m must be odd, we obtain

m—3 (m —3)(m — 3)

_m—3_m—6 9 m—3 m—7_

3 - = - — 9.
S it 2m I 2 SER 2 2

This result and Proposition 2.3.4 imply that ﬁmT—ii is of type (1, 1) in this case, too. Hence
we do not have a pure (1,1) = VHS, if 9 < m. ]

Remark 6.1.17. In the case of the preceding lemma one obtains all examples of families
C — Py with a primitive pure (1,1) — VHS by m = 5,7,9, which satisfy SINT as one
can calculate easily, too.

Remark 6.1.18. If we are in the second simple case d; = dy # d3 = d4, one obtains
d1+d3:d2+d4:m.

By the fact that d; # d3, one concludes that p, pg # % Hence the local monodromy data
of Ly satisfy [2u;]1 # 0 for all i = 1,...,4. Moreover one has

2pm]1 + [2ps]s = [2p2]1 + 2p4]1 = 1.

Hence L, is of type (1,1) and C can have a primitive (1,1) — VHS, only if m = 3. Thus
the only possible case is given by

1 2
p=p2 =g and M3 =pa =3,

which satisfies SINT as one can easily verify.

6.2 The application of SINT for the more compli-
cated cases

In the preceding section we have seen that SINT is a necessary condition for families
C — P, with a primitive pure (1,n) — VHS. In addition we have given all examples of
families C — P; with a primitive pure (1,1) — VHS, which do not satisfy that at most
two branch points have the same branch index. Here we calculate all examples of families
C — Py with a primitive pure (1,1) — V HS, which satisfy that at most two branch points
have the same branch index.

By technical reasons, we will sometimes assume m > 4. Note that the only possible
case of a family C — P; of degree 3 covers with a pure (1,1) — VHS is given by Remark
6.1.18, where the only possible case of degree 2 covers is given by the elliptic curves. Thus
this assumption does not provide any restriction for the more complicated cases.

Note that in the case of a family C — P, the condition SINT is equivalent to INT.

Remark 6.2.1. By [14], 14.3, one can describe all families of covers C — P;, whose local
monodromy data satisfy I/NT, such that there is not any pair ki, ke € {1,2,3,4} with
ki # ko satisfying pug, + pr, = 1, in the following way: Let (p, ¢,r) € N® with %—i— % +% <1
and 1 < p < g <r < oo. Then in the case of 4 branch points these solutions of INT for
covers can be given by:

_1(1 1+1) 1<1 1+1 1)
MI_Q D q 'I", M2_2 D q ’f"
1 1 1 1 1 1 1 1

po= (4o T
P q T T



We have that
1 1 1
prtpe=1—— p+pus=1—— pot+pu=1--.
p q r

Thus p ,q, and r divide the degree m of the cover. This fact and the equations, which use
p, ¢, and r for the definition of the different p;, imply that we have

m = lem(p,q,7) or m =2-lem(p,q,r).

If we are in the case of a family with a primitive pure (1,1) — V HS such that all local
monodromy data satisfy px, + pg, # 1 and at most two branch points have the same
index, we are in the case of Remark 6.2.1 with the additional condition p < r. Hence let
us first consider this case. Later we will consider families with at most two branch points
with the same branch index and some g, + g, = 1, which is the last remaining subcase.

Now let ¢ :=lem(p, g, 7).

Lemma 6.2.2. Let C — Py be given by p,q,r as in Remark 6.2.1, where p < r, and have
a primitive pure (1,1) — VHS. Then one has

1 1 1

p q T

Proof. Since p|¢ resp., p|m, we have the family C,, which must have a trivial VHS. This
implies that there is a d;, with |d;,, which implies that ﬁldio. Since

<%:£i€i£i€orm%:£igiéi£
poq p g T

one concludes that §|(§ + £). From the fact that ﬁ > g and ﬁ > £ one obtains

0
=-+

Lot !
p qg T

1 1
. Hence — = -4+ —.
p q T

]

Lemma 6.2.3. Let C — Py be a family with a primitive pure (1,1) — VHS, which is
gwen by p,q,r as in Remark 6.2.1, where p < r. Then the family C and the eigenspace
L, are given by the local monodromy data

11 11 1 1 N 1
/‘Ll_2 qa /'L2_2 7"’ /’L3_27 :u4_2 p
Proof. By Lemma 6.2.2, we have
1 1
p q T

This equation and Remark 6.2.1, this imply that C and IL; have the local monodromy

data
B 1 1 _1+1
H1 = ) /1’2_2 ) :U’3_27 /1’4—2 p
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Remark 6.2.4. Let C — P; is a family of covers of degree m > 4 with a primitive
pure (1,1) — VHS satisfying the assumptions of Lemma 6.2.3. Moreover assume that
3 ¢ (Z/(m))*. Hence the assumption that C — P; has primitive pure (1,1)—V HS implies
that the family C3 must have a trivial V HS. Thus all fibers of C3 must be isomorphic.
Hence they are ramified over at most 3 points. By Lemma 6.2.3, one concludes that

1 3 1 3 1 3

02[5—5]1, 0:[5—;]1 or 0:[5""5]1‘

Since puy = % + % < 1, one concludes that 2 < p < ¢ < r. Thus one has
p=6, ¢g=6 or r==~0.

Hence one can determine all examples of families C — P; with a primitive pure (1,1) —
VHS in this case as we will do now:

6.2.5. Keep the assumptions of Remark 6.2.4. In the case p = 6 one has that [3u4]; = 0.
One can have ¢ = 7,8,9,10,11, 12, where ¢ = 12 implies that

1
6 p’

which leads to a family with a primitive pure (1,1) — VHS. Now we verify that ¢ =
7,8,9,10,11 do not lead to a family with a primitive pure (1,1) — VHS: One must have
that L5 is unitary. It has the local monodromy data

1 d [1 n 5] 1
= — 1 = |— — = —.
Ha =g and =1y Tgh =3
Hence one must have that
1 S B [1 5]
6 = H1 = 5 p 1,

which is satisfied for ¢ = 10, 11, but not for ¢ = 7,8,9. For ¢ = 10 we have that

1
_p q 15

1 1
r

This leads to a family given by the local monodromy data

4 13 1 2

10 M2 = M3 =5, Ha=73-

1= 30 2 3

One calculates easily that the eigenspace L7 in the V HS of this family is given by

4 1 1 2

g, M2 = Hm3 = =, M4:§-

1 = %> 5

Hence this family has not a pure (1,1) — VHS.

For ¢ = 11 we have that
1 1 )

p q 66

Hence the equation of Lemma 6.2.2 can not be satisfied in this case.
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6.2.6. Keep the assumptions of Remark 6.2.4. Moreover assume that ¢ = 6. In this case
we can have p = 3,4, 5, where p = 3 implies

S| =

1 1
p 3 q
which yields an example of a family with a primitive (1,1) =V HS. For p =4 resp.,,p=>5
Lemma 6.2.2 and Lemma 6.2.3 yield a family of covers given by the local monodromy
data

1 5) 1 3
M1:§7 MQ:E M3:§> /MIZ
resp.,
1 14 1 7
f1=g Ty BTy My

Hence one can easily verify that L5 is an eigenspace of type (1,1) in both cases. Thus
p = 4,5 do not lead to a primitive pure (1,1) — VHS.

6.2.7. Keep the assumptions of Remark 6.2.4. Moreover assume that » = 6. In this case

Lemma 6.2.2 implies that

1.2 1

> 2

p_r 3
Hence one has p = 2 or p = 3, where p = 2 would imply that us = 1, and p = 3 yields
the same example of a family with a primitive pure (1,1) — VHS as in 6.2.6.

Now we have considered the subcase given by 3 ¢ (Z/(m))*. We start the consideration
of the subcase given by 3 € (Z/(m))* by the following lemma:

Lemma 6.2.8. Let C — Py be a family with a primitive pure (1,1)—V HS, which satisfies
that each g, + pk, 7 1. Then one has m > 4.

Proof. We know that one must have m > 4 in the considered case. Thus we must only
exclude m = 4. Since for a family C of degree 4 covers with a primitive pure (1,1) =V HS
the family C; must have a trivial V HS, one has without loss of generally d; = 2. By
the assumption that each py, + pr, 7# 1, one concludes that dy, ds, d3 are not equal to 2.
Hence dy, dy, d3 are odd. But this contradicts our assumptions, which imply that we have
the even sum

2m2d1+...+d4.
[l

Remark 6.2.9. Keep the assumption of Lemma 6.2.3. If m > 4, the eigenspace L3 is not
of type (1,1). Assume that 3 is a unit in Z/(m). Thus Lemma 6.2.8 implies for the local
monodromy data of Lz that > u; =3 or > p; = 1. Recall that us = % Hence > p; =3
implies that

1
M1, p2y g > 5
By Lemma 6.2.3, one concludes that
3 3 d 3 3
=——— an =—-——.
=57 F2=9 %
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By Lemma 6.2.2, this implies that

3 .3 3
M:3—M—Hrﬂm=3——+a—§+

3 1 3
5 =4S4+ =—C+=

1
2 2 p q 2 p

3
T

in this case. This implies that p,q,r < 6.
In the case Y p; = 1 one gets pu, fa, prg < % By Lemma 6.2.2 and Lemma 6.2.3, this

implies that
13 13 J 1 n 3
=3 q Ho=g = e =7y P

such that p < 6 and ¢,r > 6.

Remark 6.2.10. The case p,q,r < 6 does not yield any example of a family with a
primitive pure (1,1) — V HS, since no triple (p, q,7) € N® with 2 < p < ¢ <7 < 6 satisfies
both

1 1 1 1 1 1

—-——-—=—-and - +-+-<1

p qg T p q T
as one can check by calculation for each example.

6.2.11. Assume that we are in the case p < 6 and ¢, > 6. Since % + % = %, one has

}—17 < 2% such that 6 < ¢ < 2p and 3 < p < 6. Hence one has two cases: p =4 or p = 5.
Thus by using that % — % = %, one calculates that only the examples given by

p=4, q=r=8 and p=5, ¢g=r=10
have a primitive pure (1,1) — VHS in this case.

Now we consider the last remaining case of a family C — P; with a primitive pure
(1,1) = VHS. In this case there are at most 2 branch indeces equal and one has some

Py + iy = 1.

Lemma 6.2.12. Let C — Py a family of cyclic covers. If there are ki, ky € {1,2,3,4}
such that di, + di, = m with dy < dy < d3 < dy4, then one has

di +dy =m and dy+ds =m.
Proof. (quite easy to see) ]

Remark 6.2.13. By the preceding lemma, we have that d, +d4 = dy+ds = m, if there are
ki, ke € {1,2,3,4} such that di, + dy, = m with d; < dy < ds < dy. Hence if d; +d3 =m
resp., d3 = d4, one gets dy = dy, too. But this contradicts the assumption that at most 2
branch indexes are equal. Hence by SINT, one gets

1 1
M1+M2:1_5<17 M1+M3:1—5<17 po+ ps =1

with p,q € N and p < ¢. Hence one obtains similarly to Remark 6.2.1 with % + é < 1:

),

11
(1 =+=
I+ o+2)

|

1!
1

)7 M4 =
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Lemma 6.2.14. Assume that the local monodromy data of Remark 6.2.13 yield a family
of degree m > 4 with a primitive pure (1,1) — VHS. Then one has p = q and m is even.

Proof. In the case of Remark 6.2.13 the eigenspace Ly is given by the local monodromy

data
1 1 1 1 1 1 1 1

p=l-— == pa=[l= =+l pa=[— - =+
p q p q p q p q

Thus in this case Ly is of type (1,1), if and only if p < ¢. Hence one can obtain a
primitive pure (1,1) — VHS, only if p = ¢. Now p = ¢ implies that pus = uz = 0 for the
local monodromy data of L. Hence the family of covers has an even degree. O]

Proposition 6.2.15. Assume that the local monodromy data of Remark 6.2.13 yield a
family of degree m > 4 with a primitive pure (1,1) — VHS. Then p = q < 6.

Proof. By the preceding lemma, the assumptions imply that p = ¢q. Hence by Remark
6.2.13, we have:

p—2 _p+2

1
-2 = = [Is = — 6.1
H1 % M2 = [3 9 Ha % (6.1)
If p > 6, then L3 has the local monodromy given by
_p—6 1 _p+6
M1 = 2p7 N2—M3—27 Mg = 2p
Hence Proposition 2.3.4 implies that L3 is of type (1, 1) in this case. [

Lemma 6.2.16. Assume that the local monodromy data of Remark 6.2.13 yield a family
of degree m > 4 with a primitive pure (1,1) — VHS. Then p must be even.

Proof. Assume that p is odd. Since ged(p — 2,2p) = 1 in this case, one gets a family of
degree 2p with branch indeces

dy=p—2, dy=d3=p, dy=p+2.

Thus all branch indeces are odd, and C, is a family of elliptic curves such that £, is of
type (1,1). Contradiction! ]

Remark 6.2.17. Keep the assumptions of the preceding lemma. Since one must have
w1 > 0, the preceding proposition and (6.1) imply that

3<p<6.
Since p = ¢ must be even, one can only have p =4 and p = 6.

1. For p = 4 one obtains the example of a family with a primitive pure (1,1) — VHS
given by
1 1 3
M1—4, M2—M3—2, M4—4-
2. If p = 6 one has the example of a family with a primitive pure (1,1) — VHS given
by

1 1 2
M1—37 Mz—us—Q, M4—3~
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6.3 The complete lists of examples

In this section we give the complete lists of examples of families C — P,, with primitive
(1, n)-variations or derived pure (1, n)-variations of Hodge structures.

By our preceding calculations, we get the following complete list of families of covers
C — P; with a primitive pure (1,1) — VHS, where "ref’” denotes the number of the
preceding remark, lemma, proposition or point yielding the respective example:

’ number H degree \ branch points with branch index \ genus \ ref ‘
1 2 1111 1 (known)
2 3 1221 2 6.1.18
3 4 1223 2 6.2.17,(1)
4 5 1333 4 6.1.17
5 6 1443 3 6.2.6,6.2.7
6 6 2334 2 6.2.17,(2)
7 7 2444 6 6.1.17
8 8 2554 5 6.2.11
9 9 3555 7 6.1.17
10 10 3665 6 6.2.11
11 12 4776 7 6.2.5

We will later see that each derived pure (1,n)—V HS is in fact a derived pure (1,1)—V HS.
In the next section we will verify that we get the following complete list of families of
covers C — Py with a derived pure (1,1) — VHS, where N,, means the number of C,, in
the preceding list, which has the corresponding primitive pure (1,1) — VHS:

’ degree ‘ branch points with branch index ‘ genus ‘ To ‘ Ny, ‘

4 1111 3 211
6 1113 4 31 1
6 1221 4 2|1 2

Note that any family C — P,, with a primitive pure (1,n) — V HS satisfies SINT, which
implies INT'. Hence by consulting the list of [14] on page 86, which contains all examples
satisfying INT for n > 2, (and the calculation of the types of the eigenspaces of the
corresponding covers), we have the following complete list of families of covers with a
primitive pure (1,n) — VHS for n > 1:

’ degree \ branch points with branch index \ genus ‘

3 21111 3
4 22211 3
5 22222 6
6 33322 4
3 111111 4

In [10] R. Coleman formulated the following conjecture:

Conjecture 6.3.1. Fiz an integer g > 4. Then there are only finitely many complex
algebraic curves C of genus g such that Jac(C') is of CM type.
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Remark 6.3.2. J. de Jong and R. Noot [25] resp., E. Viehweg and K. Zuo [46] have given
counterexamples of families with infinitely many C'M fibers for g = 4,6. In our lists here
we have counterexamples for g = 5, 7.

J. de Jong and R. Noot resp., E. Viehweg and K. Zuo needed to show first the existence
of one fiber with C'M for the proofs that their examples of families have infinitely many
CM fibers. In the proof of Theorem 4.4.4, which implies that the examples of this section
have dense set of complex multiplication fibers, we did not need to show the existence of
one C'M fiber first.

But by the fact that our examples C — M,, with a dense set of C'M fibers satisfy that
n + 1 branch points have the same branch index, Theorem 2.4.4 yields the C'M-type of
one C'M fiber and hencefore by Lemma 1.5.8, the C'M-type of a dense set of C'M fibers.

6.4 The derived variations of Hodge structures

In this section we determine the families of cyclic covers with a derived pure (1,n) -V HS
and verify that the list of examples in the preceding section is complete.

Remark 6.4.1. Assume that the family C of degree dm covers has a derived pure (1,n)—
VHS induced by Cy4. Let

d=pi"-...-p"

be the decomposition of d into its prime factors. Then there exists a family of covers of
degree pym with a derived pure (1,n) — V HS. Hence there are two cases to consider first:
d is a prime number and divides m, or d is a prime number and does not divide m.

Lemma 6.4.2. Let p be a prime number. Assume that d is a prime number such that
ged(d,p) = 1. Then a family C of covers of degree p - d with a derived pure (1,n) — VHS
induced by Cq can not exist, if all Dehn twists yield semisimple matrices with respect to
the monodromy representation of Ly.

Proof. Since C, must have a trivial V H .S, there exists a dy such that d divides d;. Moreover
there is a d; such that d does not divide d;. Hence ged(d, d; 4+ d2) = 1. By the fact that
Cq has the property that its local monodromy data satisfy p; + ps # 1, one concludes
that ged(p,di + da) = 1, too. Hence [dy + do]g4p is a unit in Z/(dp). Thus there exists
a dy € (Z/(dp))* such that dy[dy + dso]s, = 1. One obtains that the sum of the integers
of {1,...,p — 1} representing [dody]g, and [doda]a, is given by dm + 1. By Proposition
2.3.4, one concludes that Ly, is not of type (0,n + 1). Moreover the fact that the local
monodromy data of L4, satisfy

dp+1 <dp—1

p1+ 2 = Y LS s M4t fipgz <N
dp dp
tells us that
H1+ ..o+ pgs <n—+2.
Hence one concludes by Proposition 2.3.4 that L4, is not of type (n + 1,0), too. O

Lemma 6.4.3. Let m = 2'p, where p # 2 is a prime number and t > 1. Assume that d
is a prime number such that gcd(d,m) = 1. Then a family C of degree m - d covers with
a derived pure (1,n) — VHS, which is induced by Cq4, can not exist.
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Proof. Since C, must have a trivial VHS, one has d; = ... = d,, = 2" 'dp. By the fact
that C, must have a trivial VHS, we obtain that 2'd divides n different branch indeces.
Since there must be at least two different branch indeces, which are not divided by d, d,, 12
and d,,3 are not divided by d. By the fact that d; = ... = d,, = 2" !dp is not divided by
2td, one must have n = 1 and that 2'd divides dy. Moreover the facts that

dy+...+dy € (m)=(2'pd) and 2|dy

imply without loss of generality that 2 does not divide d3. We have two cases: Either p|d;
or this does not hold true. In the first case one has that 2, p and d do not divide dy + d5.
Hence dy + ds is a unit, and again we use the argument that there is a dy € (Z/(dm))*
such that [dodg -+ dodg] =1.

In the other case d3 yields a unit of Z/(dm). Hence we have without loss of generality
d3 = 1. Thus g := ged(dm, d; + d3) € {1,2}. If g = 1, we are done again. Otherwise we
must have t = 1, if g = 2. Hence

[(pd — 2)(ds + ds)]am = pd + pd — 2 = dm — 2

such that L£,4_o is neither of type (0,n + 1) nor of type (n + 1,0), since the fact that 2'd
divides dy implies that [(pd — 2)da]am # [1]dm- O

Lemma 6.4.4. Let p be a prime number and m = p' with t > 2. Assume that d is a
prime number such that ged(d,p) = 1. Then there can not be a family C of degree m - d
covers with a derived pure (1,n) — VHS, which is induced by Cy.

Proof. Since C, must have a trivial VHS, one concludes without loss of generality that
dp'~! divides dy, .. .,d,. Since d and p divide

dp' = dy + ...+ dyys,

too, p resp., d does not divide at least two different elements of {d,11, d,12, d,13}. Hence
there is an element of {d,, 11, dy 42, dyy3}, Which is not divided by both d and p. Without
loss of generality d,,; is a unit in Z/(2'd). Hence one has without loss of generality

[dl + dnJrl]dm = [1]dm O

There are only few remaining examples, which do not satisfy the assumptions of the
preceding lemmas. One of these examples is considered in the following lemma:

Lemma 6.4.5. Let d # 3 be a prime number. There can not be a family of covers of
degree 3d with a derived pure (1,2) — VHS induced by Cq given by the local monodromy

data
1 2

3 Ty

Proof. Let ged(d,3) = 1 and C be a family of degree 3d with a derived pure (1,2) =V HS.
Since C3 should have a trivial VHS, one has with a new enumeration d|d, and d|ds.
Moreover one has without loss of generality that d3 and d4 are not divided by d. Hence d
divides neither dy + d3 nor ds 4+ ds. Moreover the local monodromy data of Cy tell us that
3 does not divide dy + ds or dy + dy. Hence without loss of generality d; + ds is a unit in
Z/(3d) such there is a dy € (Z/(3d))* with the property that [dod; + dods]sa = 1, which
implies that L, is of type (1,2) or of type (2,1). O
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The reader checks easily that all examples of families with a primitive pure (1,n) —
V HS satisfy with two exceptions the assumptions of one of the preceding lemmas. These
two exceptions yield examples of families with a derived pure (1,n) — V HS as we will see
NOw.

6.4.6. Now we consider the case of the elliptic curves. Let d be a prime number with
ged(d,2) = 1 and C be a family of degree d - 2 covers with a derived pure (1,1) — VHS
induced by C4. Thus dy,...,ds must be odd. Without loss of generality we have dy = d,
since Co must have a trivial VHS. Since d3 = d would imply that L; is of type (1, 1), one
has that dy,dy,ds € (Z/(2d))*. We have two cases. Either d; = dy or this does not hold
true. In the first case we put d; = dy = d — 2. One has

2d < dy+dy+dy < 2-2d

such that LL; is of type (1,1), if 4 < d. Thus one can have d = 3. In this case one has a
family of degree 6 covers, where d, = 3. Hence one must have
1 1
M1=M2=/~L3=6, M4=§-
In the second case, one puts d3 = d — 2. This implies that ds + dy = 2d — 2. Since
dy # dg, one can not have d; = dy = 1 such that L, is of type (1, 1) in this case.

6.4.7. Now we consider the case number 2 in the list of examples with a primitive pure
(1,1)—VHS. Let d be a prime number with ged(d, 3) = 1 and C be a family of degree d-3
covers with a derived pure (1,1) —V HS induced by C;. Assume without loss of generality
that d divides d; and d; + ...+ dy = 3d. We have 2 cases: Either d divides d», d3 or dy, or
d does not divide ds, d3 and dy. In the first case one has without loss of generality that
d divides dy. Since d divides d; and dy + ... + d4 = 3d, one concludes that d; = dy = d.
This implies that £, is of type (1,1) such that d = 2. In addition one concludes that

di=dy =2, dy=dy=1.

In the second case one has that 3 does not divide d(d; +d;) for exactly one k € {2,3,4},
which follows by the branch indeces in the case number 2. Hence 3 does not divide d; + dj.
Moreover d does not divide dy + dy, too. Hence dy + d, € (Z/(3d))*.

Proposition 6.4.8. Let d be a prime number, which divides m and C be a family of
covers of degree md. Assume a Dehn twist yields a semisimple matriz of maximal order
m with respect to the monodromy representation of Ly. Then C can not have a derived
pure (1,n) — VHS induced by Cy.

Proof. Assume without loss of generality that ps(7} 2) yields a matrix of order m. In this
case [d(dy + ds)] € Z/(dm) has the order m. Hence the fact that d divides m implies that

Remark 6.4.9. One can easily check that the assumptions of the preceding proposition
are satisfied for all examples of families with a primitive pure (1,n) — VHS except of the
case of elliptic curves. In this case we have in fact an example of a family of degree 4
covers with a derived pure (1,1) — VHS. Without loss of generality we have

di+...+dy=4.
Hence the only possibility is given by



6.4.10. In the case of the elliptic curves we have families of degree 6 and degree 4 covers
with a derived pure (1,1) — VHS. Hence one must check that there is not a family of
degree 8, 12 or 18 covers with derived pure (1,1) — V HS in this case.

First we check that there is not a family C of degree 8 covers with a derived pure
(1,1) — VHS. Otherwise one has such a family C of degree 8 covers such that Cy is the
family of degree 4 covers with a derived pure (1,1) — VHS. This implies that each d
satisfies [dg]s = [1]4 or each dj satisfies [dy]s = [3]s. Moreover one has without loss of
generality that dy +...4d, = 8. Hence it is not possible that each dj, satisfies [dy]s = [3]4.
Thus the only possibility is (up to the numbering) given by

di=dy=ds =1, dy=5

But in this case L3 is of type (1,1). Thus there can not exist a family of degree 8 covers
with a derived pure (1,1) — VHS.

There can not be a family of degree 12 covers with a derived pure (1,1) — VHS
induced by Cs. Otherwise one has that C3 the example of degree 4 covers with a derived
pure (1,1) — VHS. Thus one concludes that

[d1]4 = ...= [d4]4 = [1]4 or [d1]4 = ...= [d4]4 = [3]4

Since one has without loss of generality that dy + ...+ d4s = 12, the only possibilities are
given by
d1:d2:5, d3:d4:1 and d1:9, d2:d3:d421.

In the first case L5 is of type (1,1) and in the second case Ls is of type (1,1).

There can not be a family of degree 18 covers with a derived (1,1) — VHS induced
by Cy. Otherwise one has that Cs is the example of degree 6 covers with a derived pure
(1,1) — VHS induced by the elliptic curves. Thus one concludes that

[dl]g =...= [dg](; = [1]6 and [d4]6 = [3]6
[dile = ... = [ds]s = [5]s and [du]s = [3]s.

Since one has without loss of generality that d; + ...+ dy = 18, the only possibilities are
given by:
dy =13, dy=ds=1, dy=3

dy=dy =7, dy=1, dy=23
dy =7, dy=dy=1, dy=09
dy=dy=dy=1, dy=15
di=dy=d3 =5, dy=3.

One has that Lj is of type (1,1) in case 1, £y is of type (1, 1) in case 2, L5 is of type (1, 1)
in case 3, L7 is of type (1,1) in case 4 and L, is of type (1,1) in case 5.

6.4.11. It remains to show that there can not exist a degree 12 cover with a derived
(1,1) — VHS induced by the degree 3 cover given by

dy=dy=1, dy=dy=2.
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Otherwise one has such a family C of degree 12 covers such that C, is the family of degree
6 covers with a derived pure (1,1) — VHS by the degree 3 example above. Thus one
concludes that

[di]6 = [da]6 = [2]¢ and [ds]s = [ds]s = [1]6

or

[di]6 = [do]6 = [4]6 and [ds]s = [da]s = [5]6
Since one has without loss of generality that d; + ...+ d4s = 12, the only possibilities are
given by
d1:8, d2:2, d3:d4:1 and d1:d2:2, d3:7, d4:1

One has that L5 is of type (1,1) in the first case and one has that L3 is of type (1,1) in
the second case.
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Chapter 7

The construction of Calabi-Yau
manifolds with complex
multiplication

7.1 The basic construction and complex multiplica-
tion

Now we have finished our considerations on Hodge structures of cyclic covers of P'. We
start with the second part, which is devoted to the construction of families of Calabi-Yau
manifolds with dense set of complex multiplication fibers.

In the works of C. Borcea [7], [8], of E. Viehweg and K. Zuo [46] and of C. Voisin
[48] the methods to obtain higher dimensional Calabi-Yau manifolds contain one common
basic construction. In this section we describe this construction and explain how it yields
complex multiplication. For this construction we need Kummer coverings. Let A — B be
a principal divisor with (f) = A — B for some f € C(X). The Kummer covering given by

C(X)( *{/%) is nothing but the normalization of X in C(X)(y/f).

Let Vi and V5 be irreducible complex algebraic manifolds and A resp., B be a bundle of
irreducible algebraic manifolds with universal fiber A resp., B over V] resp., V5. Moreover
let Z resp., X be a cyclic Galois cover of A resp., a cyclic Galois cover of B of degree m over
Vi resp., Vo ramified over a smooth divisor. We assume that the irreducible components
of these ramification divisors intersect each fiber of Z resp., ¥ transversally in smooth
subvarieties of codimension 1. Thus we assume that Z and X are given by Kummer
coverings of the kind

Di+ ...+ Dy

c<w>—c<x><"\/ P!

where Dy, ..., Dy are (reduced) smooth prime divisors, which do not intersect each other.

Example 7.1.1. By a cyclic degree 2 cover S — R of surfaces (or in general algebraic
varieties), one has an involution on S. Let us assume that the surface S is a smooth K3
surface. Moreover assume that there exists an involution ¢ on S, which acts via pull-back
by —1 on I'(wg). It has the property that it fixes at most a divisor D, whose support
consists of smooth curves, which do not intersect each other (see [48], 1.1.). Moreover by
48], 1.1., to give an involution ¢ on S, which acts by —1 on I'(wg), is the same as to give
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a cyclic degree 2 cover S — R of smooth surfaces. In this case R is rational, if and only
it D #£0.

We consider the following commutative diagram, which yields the basic construction:

i

Zx % V' T = AxB

1, 1,

~ N

Zxy— y - T

Vi x Vs (7.1)

First we explain the upper line of this diagram: The cyclic covers Z and ¥ can locally be
described by equations of the type

over any open affine set A of A resp., B, where f; is the (reduced) equation of D; in A.
The Galois transformations are given by

(y, w1, ...,7;) 5 (e%ﬁ%y,xl, Cey )
for some k € Z/(m). Hence we have a natural identification between Z/(m) and the
Galois groups given by [k],, — gr. By the describtion of the covers above in terms of
Kummer coverings, this identification is independent of the chosen open affine subset.
Now ~ is the quotient by

G:={((1,1) c G :=GalZ;A) x Gal(2;B),

and « is the quotient by G'/G. The morphism ( is given by the blowing up of the fiber
product of the supports of the branch divisors of Z and . Moreover 4 is the blowing up
along the singular points of ), which is given by the intersection locus of the ramification
divisors, and 3 is the blowing up with respect to the corresponding inverse image ideal
sheaf. Hence & and 4 are the unique cyclic covers obtained by the universal property of
the blowing up (compare to [22], II. Corollary 7.15). By the construction of «, one can
easily check that & is not ramified over the exceptional divisor. Hence the branch locus
of & is smooth. This implies that ) is smooth, too. The ramification locus of 7 is given
by the smooth exceptional divisor of 3, since G leaves the generators of the inverse image
ideal sheaf invariant as one can see by the following remark:

Remark 7.1.2. Now we describe Z x Y. A neighborhood of the preimage point p € Z x X
of a singular point can be identified with an open neighborhood of 0 € C? x B, where B is
a ball of suitable dimension and the Galois group acts via (21, 22) — (e 1, e m z3) with
respect to the coordinates on C2. Due to [5], ITI. Proposition 5.3, each singular point of
Y’ has an analytic neighborhood isomorphic to V(2™ = y™ '2) x B. Hence locally we

have the product of a cover of surfaces with B. One should have B in mind. But for the

description of Z x 3, it is sufficient to consider only covers of surfaces. The inverse image
ideal sheaf with respect to this cover is generated by {7 ‘x} :i = 0,1,...,m}. By the
Veronese embedding for relative projective manifolds, one can easily identify the blowing
up with respect to this ideal with the blowing up with respect to the ideal generated by
{z1,xo}. But this is the blowing up of the origin resp., the preimage point of the singular

point. Hence in the general situation Z x ¥ is given by the blowing up of the reduced
preimage 7~ 1(S), where S is the singular locus of ).
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Now we have described the basic construction. Next we see that this construction
yields complex multiplication. We use following fact:

Proposition 7.1.3. For alla € A, and b € B, we have the following tensor product of
rational Hodge structures on the fibers:

H"(Z; x %,Q) = € H"(2:,Q) @ H'(%;,Q)

a+b=n
such that
H(Zx %)= D H'(Z:) @ H' (%)
p+p'=r9+q'=s
Proof. (follows from [49], Theorem 11.38) O

We want to construct higher dimensional varieties with complex multiplication. The
first main tool is:

Proposition 7.1.4. Let hy and hy be rational polarized Hodge structures. Then hs =
h1 ® hy is of CM type, if and only if hy and hy are of CM type.

Proof. (see [7], Proposition 1.2) O

By the fact that )’ is not smooth, but the blowing up 37 is smooth, 5/ will be our
candidate for a family of Calabi-Yau manifolds with dense set of complex multiplication
fibers. Hence we must consider the behavior of the Hodge structures under blowing up:

Lemma 7.1.5. Let X be an algebraic manifold of dimension n and X be the blowing up
X with respect to some submanifold Z € X of codimension 2. Then Hg(H*(X,Z)) is
commutative, if and only if He(H*(X,Z)) and Hg(H*%(Z,Z)) are commutative, too.

Proof. By [49], Theorem 7.31, we have an isomorphism
HY(X,7)® H"*(Z,7) = H*(X,Z)
of Hodge structures, where H*~2(Z,7Z) is shifted by (1, 1) in bi-degree. Since
He(H*(X,2)) = Hg(H*(X,Z) & H*2(2,)) € Hg(H*(X,Z)) x Hg(H* %(2,))
such that the natural projections
Hg(H*(X,Z)) — Hg(HH(X,Z)) and Hg(H*(X,Z)) — Hg(H**(2,2))
are surjective (compare to [46], Lemma 8.1), we obtain the result. O

Corollary 7.1.6. Let X be a smooth surface and X be the blowing up of some point
p € X. Then X has complex multiplication, if and only if X has complex multiplication,
too. Moreover we obtain that

Hg(H*(X,Z)) = Hg(H*(X,Z)).

Now we want to consider the behavior of the fibers. Hence for simplicity we assume
now that V3 = V5 = Spec(C) in diagram (7.1). By the fact that ) has the Hodge

o~

structure given by the Hodge sub-structure of Z x ¥ invariant under the Galois group,
one concludes:
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Theorem 7.1.7. If for all k the groups Hg(H*(Z,Q)), Hg(H"(X,Q)) and Hg(H*(Z;,Q))
are commutative,* then Hg(H*(Y,Q)) is commutative for all k, too.

Remark 7.1.8. At first sight the condition that for all k the groups Hg(H*(Z,Q)),
Hg(H*(2,Q)) and Hg(H*(Z;,Q)) have to be commutative may seem to be a little bit
restrictive. But by the Hodge diamond of a Calabi-Yau n-manifold with n < 3 or the
Hodge diamond of a Calabi-Yau n-manifold given by a projective hypersurface, one sees
that the condition that all its Hodge groups are commutative is equivalent to the condition
that it has complex multiplication. Moreover we will need this condition for an inductive
construction of families of Calabi-Yau manifolds with dense set of complex multiplication
fibers in arbitrary high dimension in the next section.

7.2 The Borcea-Voisin tower

Recall that we want to construct families of Calabi-Yau manifolds with a dense set of C M
fibers. Hence let us now define Calabi-Yau manifolds:

Definition 7.2.1. A Calabi-Yau manifold X of dimension n is a compact Kahler manifold
of dimension n such that T'(Q%) =0 for all i =1,...,n — 1 and wx = Ox.

By the construction of the preceding section, which we will use, we need more and we
get more than only complex multiplication. Hence let us define, which we will get:

Definition 7.2.2. A CMCY family X — B of n-manifolds is a (smooth) family of
Calabi-Yau manifolds of dimension n, which has a dense set of fibers &}, satisfying the
property that Hg(H*(X,,Q)) is commutative for all k.

In this section the degree m of all cyclic covers, which will occur, is equal to 2. We apply
the construction of a Calabi-Yau manifold with an involution by two Calabi-Yau manifolds
with involutions by C. Borcea [8]. This yields an iterative construction of CMCY families
with involutions in arbitrary high dimension by CMCY families in lower dimension.?

Construction 7.2.3. Let Z2; — M be a CMCY family of n-manifolds covering the A
bundle A with ramification locus R;, which satisfies the assumptions for Z in diagram
(7.1). Moreover let 3; be a CMCY family 3; — MO of n;i-manifolds covering the B;
bundle B; over M with ramification locus R, which satisfies the assumptions for ¥ in
diagram (7.1), for all 1 <i € N.

Let us assume that there is a dense subset of points m® € M® resp., p € M, which
have the property that each Hg(H*((%;),,@,Q)) and each Hg(Hk(szi),Q)) resp., each
Hg(H*((Z1),,Q)) and each Hg(H*((R;),,Q)) is commutative.

We define an iterative tower of covers

Z VO .= Mx MP x ... x MO

given by .
Zi - yia

1One needs in fact the condition that each Hg(H*(Z;,Q)) is commutative. The argument is similar
to the argument in the proof of Proposition 10.3.2.

2The construction of C. Borcea is repeated in Proposition 7.2.5. By C. Voisin [48], the same construc-
tion was used to construct Calabi-Yau 3-manifolds by K3-surfaces with involutions and elliptic curves.
This is the reason that our construction here is called ”Borcea-Voisin tower”.
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where Y; is obtained from Y in the diagram (7.1) with 1, = VD 1, = MO 2 =%,
and Z = Z;_; for all 7« € N. Let us call such a construction Borcea-Voisin tower.

The assumption that we have ramification in codimension 1 on the fibers of a family of
Calabi-Yau manifolds leads to the important property that the corresponding involutions
act by —1 on the global sections of their canonical sheaves, as we see by the following
Lemma:

Lemma 7.2.4. Let C' be a Calabi- Yau manifold and v be an involution on it. Assume
that the points fized by v are given by a non-trivial (reduced) effective smooth divisor D.
Then v acts by —1 on H°(C,wc).

Proof. By our assumptions, the induced natural cyclic cover vy : C' — C'/¢ is ramified over
a smooth non-trivial divisor D such that C/¢ is smooth. Hence one has a cyclic cover
of manifolds and one can apply the Hurwitz formula (compare [5], I. 16). Since C has
a trivial canonical divisor, the Hurwitz formula implies that Oc(—D) = v*(w¢y,). This
implies that wcy, does not contain any global section. Since w¢/, yields the eigenspace for
the character 1 of v.(wc) (see [16], §3), the character of the action of ¢ on H(C,w¢) is
not given by 1. Thus it is given by —1. O]

Proposition 7.2.5. Assume that v, : C; — My and 5 : Cy — My are cyclic covers of
degree 2 with the involutions t1 and vy and ramification divisors Dy C Cy and Dy C Cy,
which consist of disjoint smooth hypersurfaces. Moreover assume that Cy and Cs are

Calabi-Yau manifolds of dimension ny and ny. Let Cy x Cy denote the blowing up of

Cy x Cy with respect to Dy X Dy. Then by the involution on Cy x Cy given by (i1,t2), one
obtains a cyclic cover v : Cy; x Cy — C such that C' is a Calabi- Yau manifold.

Proof. We assume that each C; is a Calabi-Yau manifold such that h*°(C;) = 0 for all
t=1,...,n; — 1. By the assumption that one has the ramification divisors D; and D,
and Lemma 7.2.4, the corresponding involution of each v; acts by —1 on each w¢,. Thus
one concludes that A7/(C)=0forall j =1,...,(n; +ny) — 1.

The canonical divisor K e of C x (Y is given by the exceptional divisor E of the

blowing up C; x Cy — Cy x (. Moreover the ramification divisor R of v coincides with
E. Hence by the Hurwitz formula ([5], I1.16), we have

(R) =0 =7 (we) ® Og, (R).

Osza, e Kaza) = woara, G

Thus one concludes that v*(we) = O.

Since ¢; and ¢y act by the character —1, the involution (¢q,¢2) on C’T;/CQ leaves the
global sections of w coc, invariant. Now recall that 7. (w WEsa, ) consists of a direct sum of
invertible sheaves, which are the eigenspaces with respect to the characters of the Galois
group action. By [16], §3, the eigenspace for the character 1 is given by we. Thus we
has a non-trivial global section. Hence the canonical divisor of C' satisfies (up to linear
equivalence) Ko > 0. Thus by the fact that v*(we) = O, we have the desired result

Ko ~ 0. O
Altogether one has the following result:

Theorem 7.2.6. Each family Z; — M x M® x ... x M@ obtained by the Borcea-Voisin
tower is a CMCY family of n + nos + ... + n;-manifolds.
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Proof. The statement that each (Z;), is a Calabi-Yau manifold follows fiberwise by in-
duction. By the assumptions, we have the result for n = 1. First by induction, one can
show that the ramification loci are given by smooth divisors. By using this fact and the
induction hypothesis, one can apply Lemma 7.2.4 such that each involution acts by the
character —1 on each I'(w). Hence the assumptions of Proposition 7.2.5 are satisfied,
which provides the induction step.

Next we want to show the statement about the commutativity of all Hodge groups over
a dense subset of the basis. Due to the situation described in diagram (7.1) the connected
components of the ramification locus (Rit1)yxm+n Of (Zit1)puma+n over p x m(th) ¢
V@ x MEFD are given by the connected components of (Z;), x RS;?I) and by the
connected components of (R;), X (X;41);, where (R;), is the ramification locus of (Z;),.

Hence it is sufficient to use an inductive argument and to show the following Claim: [J

Claim 7.2.7. Assume that for all k the Hodge group Hg(H*((Z;),,7Z)) is commuta-
tive and each connected component Z of the ramification locus (R;), satisfies that each

Hg(H*(Z,7)) is commutative. In addition we assume that for all k the Hodge group
(i4+1)
(1)

isfies that each Hg(H"(Zi11,Z)) is commutative. Then for all k each connected compo-
nent Z of (Rit1)pume+ salisfies that each Hg(H*(Z, 7)) is commutative and for all k
HE(H*((Zi41) prmt+n . L)) is commutative.

Hg(H* (X 1),,41), Z)) is commutative and each connected component Z;, of R sat-

Proof. By the assumptions of this claim and the description of R;,; above, one obtains ob-
viously that the connected components Z of (Rit1)pxme+n satisfy that each He(H*(Z,Z))
is commutative. Then one must simply use Theorem 7.1.7 and one obtains that each
Hg(H*(Zi11) pxme+v, Z)) is commutative, too. O

7.3 The Viehweg-Zuo tower

By the Borcea-Voisin tower, one can construct CMCY families of manifolds in arbitrary
high dimension. But one needs CMCY families of manifolds (in low dimension) with a
suitable involution, which can be used to be Z; or some ¥;. One way to obtain some
suitable CMCY families of n-manifolds (in low dimension) is given by the Viehweg-Zuo
tower, which we introduce now.

E. Viehweg and K. Zuo [46] have constructed a tower of projective algebraic manifolds
starting with a family F of cyclic covers of P! given by

P? 3> V(yd + 21 (21 — 20) (21 — axo) (21 — Bro)mo) — (0, ) € Mo,

which has a dense set of C'M fibers. This is one example of a family of cyclic covers,
which has a primitive pure (1,2) — VHS as one can easily verify by using Proposition
2.3.4. Since each of these covers given by the fibers of the family can be embedded into
P2, the fibers of F; are the branch loci of the fibers of a family JF» of cyclic covers onto P?
of degree 5. Moreover the fibers of F,, which can be embedded into P3, are the branch
loci of the fibers of a family F3 of cyclic covers onto P2, which can be embedded into P*.
The family F3 is given by

P> V(Y5 +y5 + ) + a1 (21 — 20) (21 — axo) (@1 — Bro)mo) — (0, ) € M.

Thus the fibers of F3 are Calabi-Yau 3-manifolds. By an inductive argument, this latter
family has a dense set of C'M points on the basis given by the dense set of the C' M points
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of the family of curves we have started with (see [46]). Since only the Hodge group of the
Hodge structure on H3(X, Q) of a projective hypersurface X C P* can be non-trivial, the
family F3 is a CMCY family of 3-manifolds.

Example 7.3.1. We consider the CMCY family F;
Pt 3 V(yg + ?Jg + yi’ + 21 (21 — 20) (21 — o) (21 — Bo)T0) — (0, B) € My

constructed by E. Viehweg and K. Zuo. On each fiber (F3), the involution ¢ given by

L(ys Y2ty w1 wo) = (Y21 Y3 Y1t T To)

leaves the smooth divisor D, given by the equation y3 = vy, invariant. Moreover one has
that D, = (F3),. Therefore there is a dense set of points p € My, which have the property
that for all k the Hodge groups of H*(D,, Q) and H*((F3),, Q) are commutative. Hence
one can use F3 to be Z; or some Y; for the construction of a Borcea-Voisin tower of
CMCY families of n-manifolds.

Example 7.3.2. Let F; denote the Fermat curve of degree d > 2. The curve F; has
complex multiplication (see [27] and [19]). By the construction of E. Viehweg and K. Zuo
in [46], one concludes that the Calabi-Yau manifold Hy given by

s
—_

V(Y zf) e Pt

7

Il
=)

has complex multiplication. Since Hj is a projective hypersurface, this implies that Hy
has only commutative Hodge groups. We have the involution ¢, given by

(Tgq: .o i@y i) — (Tg1 .. ;T2 T & X7)
on Hy. If d is even, one has the additional involution ¢, given by
(g1 i@y i) = (Tg1 : o2 X1 1 —X).

The involution ¢, resp., , (if it is given on Hy) fixes the points of a smooth divisor on Hy,
which is isomorphic to

d—2
V(Y xf) ep
=0

Therefore by the same arguments as in Example 7.3.1, one can use H; to be Z; or some
¥; with M = Spec(C), resp., M® = Spec(C) for the construction of a Borcea-Voisin
tower of CMCY families of n-manifolds.

We want to start the construction of a Viehweg-Zuo tower (of projective hypersurfaces
as in [46] or the construction of a modified version) with a family of cyclic covers C — M,
of P! with a dense set of CM fibers. For the smoothness of the higher dimensional fibers
of the resulting families, we will need the assumption that the fibers of C are given by

V(™ +a(ex—1)(z—a)...(x—a,)) € A? (7.2)

where m divides n 4 3 such that all branch indeces coincide.
By our preceding results, we have only the following examples of families of cyclic
covers onto P! with a dense set of C'M fibers, which satisfy this assumption:
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’ degree m \ number of ramification points of the fibers ‘

2 4
2 6
3 6
4 4
) )

Remark 7.3.3. The case with m = 2 and 4 ramification points is the case of elliptic
curves, which has been considered by C. Borcea in [7]. The case with m = 5 yields the
example by E. Viehweg and K. Zuo in [46].

The case with m = 3 is one of the examples of a family of covers onto P! with a
dense set of CM fibers by J. de Jong and R. Noot [25]. We must a bit work to give a
suitable modified construction of a Viehweg-Zuo tower for this example. The next chapter
is devoted to this modified construction of a Viehweg-Zuo tower.

In the case of the family C — M3 of genus 2 curves the author does not see a possibility
for the construction of a Viehweg-Zuo tower.?

The case with m = 4 yields the Shimura- and Teichmiiller curve of M. Méller [33],
which provides the example of the next section.

7.4 A new example

Here we see that the Shimura- and Teichmiiller curve of M. Moller yields an example of a
Viehweg-Zuo tower. Moreover we will see that the resulting C M CY family of 2-manifolds
is endowed with some involutions, which make it suitable for the construction of a Borcea-
Voisin tower. In addition we try to decide, which involutions provide isomorphic quotients
resp., isomorphic CMCY families by the construction of a Borcea-Voisin tower.

Proposition 7.4.1. The family Co — My given by
P° > V(yg + y% + .2131(331 - xo)($1 — )\xo)xo) — e M,
1s a CMCY family of 2-manifolds.

Proof. Tt is well-known that a hypersurface of P? of degree 4 is a K 3-surface.
By [46], Notation 2.2, and Corollary 8.5, we have that \g is a C'M-point of Cs, if Ag is
a C'M-point of the family C; — M, given by

P2 3 V(y + 21 (z1 — x0) (21 — Amo) ) — A € M;.

Note that C; has in fact a dense set of C' M fibers, since it has a derived pure (1,1)—V HS
as we have seen. Since only the Hodge group of the Hodge structure on H?*(X,Q) can
be non-trivial for a K3-surface X (follows by definition resp., by the Hodge diamond of
a K3-surface), the family Cy is a CMCY family of 2-manifolds. O

As we will see, this family has some involutions, which make it suitable for the con-
struction of a Borcea-Voisin tower. The following lemma is obvious:

30ne natural choice for an embedding of the fibers of the family of genus 2 curves is given by the
weighted projective space P(3,1,1). But the canonical divisor of the desingularization of P(3,1,1) does
not allow a natural construction of a Viehweg-Zuo tower as in the case of P(2,1, 1), which we will see in
the next chapter for the degree 3 case.
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Lemma 7.4.2. Quer the basis M the family Co has three involutions given by
(Yo yr i xy i mg) = (Y2 Y12 T1 2 X)), to(Ye Y1 Ty x0) = (Y2 : —Y1: Ty To),

t3(y2 1 Y11 o) = (—y2 : —y1 : X1 5 Xp),
which constitute with the identity map a subgroup of the Mi-automorphism group of Csy
1somorphic to the Kleinsche Vierergruppe.

Remark 7.4.3. Over M there are at least the 4 following additional involutions on Cs:
ta(y2 g1yt wo) = (Y1 2 Y2t @1 2 x0), t5(Ye i yr i xo) = (Gy1 : —iye Ty Tp),

te(Yo iyt 1 i) = (—y1: —Yo : T Xo), Lr(Yo:yr Xy mg) = (—iyp @ QYo Tyt Xp)

Theorem 7.4.4. By the involutions 1y and 14, the family Co can be used to be Z; or some
Yl for the construction of a Borcea-Voisin tower of CMCY families of n-manifolds.

Proof. The divisor of the fiber (C3)y, which is fixed by ¢; resp., ¢4 is given by ys = 0 resp.,
y2 = y1. Hence both divisors smooth and isomorphic to the fiber (C;), given by

P2 > V(yf + 131(.7}1 — Io)(l’l — /\IO)J?O) — A S Ml.

We use the same arguments as in the proof of Proposition 7.4.1: If (C;), has complex
multiplication, then (Cy), and the divisor fixed by ¢; resp., ¢4 have complex multiplication,
too. Hence by the fact that C; has a dense set of complex multiplication fibers, C and ¢;
resp., Co and ¢4 satisfy the assumptions of Construction 7.2.3. O

Remark 7.4.5. By the fact that
lg = Lg O L1 O Ly,

the involution ¢o is suitable for the construction of a Borcea-Voisin tower, too. But
according to the construction of C. Voisin [48], this implies that ¢ yields a CMCY
family of 3-manifolds over M; x My, which is isomorphic to the corresponding family
obtained by ¢;.

Let o denote the M;-automorphism of Cy given by

(y2 :y1 221 ) — (1Yo = Y1 © @1 & Xp).
One calculates easily that

L5:a0L4oa_1, L6:Oz20L4OOé_2, L7:a_10L4ooz.
Hence one has that Ca/ty,...,Co/t7 resp., the resulting CMCY families of 3-manifolds
obtained by the method of C. Voisin [48] are isomorphic as M;-schemes resp., as M X M-
schemes.
Since

lg = l1lg,

the involution ¢3 acts by id on each I'(w,),) such that it can not be used for the con-
struction of a Borcea-Voisin tower.

Remark 7.4.6. The author does not see a way to conjugate ¢; into ¢4. Moreover we will
see that the fibers of the resulting CMCY families of 3-manifolds constructed with ¢,
and ¢4 according to C. Voisin [48] have the same Hodge numbers. This means that the
question for isomorphisms between these two families remains open.
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Chapter 8

The degree 3 case

8.1 Prelude

We construct a surface R' by a desingularization of the weighted projective space P(2,1,1)
during this section. Our modified construction of a Viehweg-Zuo tower starts with the
family C of curves with a dense set of C'M fibers given by

R' 3 V(y* = 21(21 — 20) (21 — axo) (21 — Bag) (21 — Y20)70) — (00, B,7) € M3.  (8.1)

We use such a weighted projective space, since the degree of these covers onto P! does
not coincide with the sum of branch indeces. In this section we construct a rational 3-
manifold R? with a natural projection onto R'. For each fiber C, this projection induces a
cyclic degree 3 cover of a Calabi-Yau hypersurface of R? onto R' ramified over C,. We will
later see that these Calabi-Yau hypersurfaces of R? yield a CMCY family of 2-manifolds
suitable for the construction of a Borcea-Voisin tower.

Recall that the usual projective space P™ is given by Proj(Clz,, ..., 21, 20]), where each
z; (with j = 0,...,n) has the weight 1. Our weighted projective space Q™ is given by
Proj(Clyn, - .., Y1, 1, o)), where each y; (with j = 1,...,n) has the weight 2, and z( and
x1 have the weight 1.

First we investigate and describe the projective space Q™. The following well-known
Lemma will be very useful here:

Lemma 8.1.1. (Veronese embedding) Let R be a graded ring. Then we have
Proj(R) = Proj(R%).

Proposition 8.1.2. The weighted projective space Q™ is isomorphic to the irreducible
singular hypersurface in P"*2 given by the equation z1z3 = z5. The singular locus of Q"
is given by V (21, 29, 23).

Proof. By the Veronese embedding, we have
Q" = Proj(klag, o1, #1, Y15 - - - Yn)).
Hencefore we obtain a closed embedding of Q™ into P"*? given by
T2 21, TeTL — 2, T2 23, YL = 24y -ees Yn — Znis.
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We have that Q™ \ V(x2) is isomorphic to A"™!. Hence dim(Q") = n + 1, which implies
that its projective cone, which is contained in A"3, has the dimension n + 2. By [22], L
Proposition 1.13, each irreducible component of dimension n + 2 of this cone is given by
an ideal generated by one irreducible polynomial. The corresponding polynomial of the
unique irreducible component of Q™ is

f(21, 22, 23) = 21723 — 237

since each point p € Q" C P"*?2 satisfies f(p) = 0 and f is irreducible. The last statement
about the singular locus follows from calculating the partial derivatives of f. O]

Let ay,...,as, € C, and m € N\ {1}. Then C(,) C Q" is the subvariety, which is
given by the homogeneous polynomial

yff + ... —i—yi” + (Il — al.l‘o) R (ml — agmxo).
It is a very easy exercise to check that this polynomial is irreducible.

Proposition 8.1.3. There exists a homogenous polynomial G € C|zy, 22, 23] of degree m
such that C(,y C P"2 is given by the ideal generated by h and f, where

h=z"s+...2]" +G.
Proof. We can obviously choose a polynomial GG such that
G (23, 2071, 75) = (T1 — a120) - . . (T1 — A2mT0).
Now let h = 2z, s + ... 2" + G, and
¢:Clz, ..., znes) — Clag, Toxy, T3, Y1, - - -, Yn)

be the homomorphism associated to the closed embedding Q™ < P"*2, which has the
kernel (f). We obtain

¢(h) = y;” + ...+ y{” + (IEl — all'o) c. (1‘1 — agml‘o).

Hence C(,y C P"*? is given by the prime ideal

¢ (Z(Cwy)) = (h, f).

Proposition 8.1.4. The singular locus of Cyy is given by Cy NV (21, 22, 23).

Proof. On Q™ \ V(zo) = Spec(Clz1,¥1,...,yn]) the hypersurface C(, is given by the
equation
O:y;n‘i“f’yin—'—(l'l—al)(xl—agm)

By the partial derivatives of the polynomial on the right hand, one can easily check that
there are no singularities of C,) in this affine subset. The same arguments give the same
statement for Q™ \ V(x1). Hence all singularities of C, are contained in V' = V' (21, 29, 23).
For all P € C,) NV, the Jacobian matrix of C(,) at P does not have the maximal rank
2, where this is obtained by explicit calculation of the partial derivatives of f and h. [
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8.1.5. The variety Q™ has a natural interpretation as degree 2 cover onto the variety
given by {zo = 0} ramified over {z; = 2o = 0} and {23 = 23 = 0}. Hence by blowing up
V' = V(z1, 23, 23), the proper transform R" := Q~’{} is the natural degree 2 cover onto the
proper transform of {z; = 0} ramified over the disjoint proper transforms of {z; = zo = 0}
and {zy = z3 = 0}. Thus R" is non-singular.

Note that the general construction of the blowing up yields a natural embedding of
an open subset of R" into A""2 x P2, Hence the Jacobian matrix at each point of R"
has the maximal rank 3 with respect to this local embedding. The Jacobian matrix of
the proper transform C,, of Cny 1s given by adding the line of the partial derivatives of
h to the Jacobian matrix of R™. Without loss of generality we are on the open subset
{yhn = 1}. On the exceptional divisor F the polynomial G vanishes. Thus all points of
C, N E satisfy

Yp +...+yy +1=0.

Hence for each p € C,, N E there is a partial derivative dh/dy;(P) # 0. Since all partial
derivatives of the equations defining R" with respect to y; vanish, the Jacobian matrix of
C,, has the maximal rank 4 at each point on the exceptional divisor. Thus C,, is smooth.

Remark 8.1.6. Note that Q' has a natural interpretation as projective closure of the
affine cone of a rational curve of degree 2 in P2. By [22], V. Example 2.11.4, one has that
R', which is the blowing up of the unique singular point given by the vertex of the cone,
is a rational ruled surface isomorphic to P(Op: + Op1(2)), where the exceptional divisor
has the self-intersection number —2.

By [22], I1. Proposition 8.20, one has for n > 1:
WQr\V (21,20,23) — W]I""+2\V(z1722,Z3) ® I(Qn \ V(zla 292, 23)) & OQ"\V(Zl,ZQ,Zp,)

= OQ”\V(ZLZQ,Z?))(_(R + 1)V(Z4))

By [3], Theorem 2.7 and the fact that the self-intersection number of the exceptional
divisor is —2, the pull-back of the canonical divisor of Q' with respect to the blowing up
morphism is the canonical divisor of R'. Note that the canonical divisor of Q! yields the
canonical divisor of Q' \ {s}, where s denotes the singular point. Thus:

Corollary 8.1.7. The canonical divisor of R' is given by —2V (24).

The following lemma describes the construction of this section. One has the following
commutative diagram of closed embeddings:

Clo) e Cn) Clnt1)
QO o QL Qn+1
IP)Q . Pn+2 Pn+3

The ideal sheaf of each blowing up C,, — Crny and R" — Q" is generated by 21, 29, 23.
Moreover this ideal sheaf is obviously the inverse image ideal sheaf of the ideal sheaf gen-
erated by 21, 29, z3 with respect to all embeddings. Hence we obtain by [22], II. Corollary
7.15 for V := V(z1, 29, 23):
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Lemma 8.1.8. We have the commutative diagram

éo e én Cn+1
RO N R" Rn—H
]‘P)%/ o ]@7‘1/-&-2 Ew‘b/-i—?)

of closed embeddings.
Remark 8.1.9. Note that Cg) = Cy, Cj1y = €y and Q° = R".

Theorem 8.1.10. The canonical divisor of R™ is given by —(n + 1)V (z4) for n > 1.

Proof. By Corollary 8.1.7, we have the statement for n = 1.

We use induction for higher n. Let E, denote exceptional divisor of the blowing up
R™ — @Q". The open subset R" \ E, is isomorphic to Q" \ V(z1, 22, 23). We know that
—(n+ 1)V (2) is the canonical divisor of Q" \ V (21, 2, 23). Hence we conclude that

Kpgnii = —(n+2)V(z4) + 2E 11

for some z € Z. We have that R" ~ V(z4) in CI(R"™!). By the induction hypothesis, we
have

such that z = 0 and —(n + 2)V(z4) is the canonical divisor of R"*1. O
Since we want to construct a family of Calabi-Yau manifolds, we note:
Theorem 8.1.11. The hypersurface C,_; C R™ ' is a Calabi- Yau manifold.

Proof. By Theorem 8.1.10, —mY:/(z4) is the canonical divisor of R™!. Hence [22], II.
Proposition 8.20 and C,,_1 ~ mV/(z4) imply that
wém—l = Oém—l'

By the fact that h9? is a birational invariant of non-singular projective varieties (see [22],
page 190), and R™! is birationally equivalent to P™, we obtain that h4°(R™ ') = 0 for
all 1 < ¢ < m. By Hodge symmetry and Serre duality, we obtain that h4(R™1 O) = 0
for all 1 < ¢ <m and hq(Rm_l,w) =0 for all 0 < ¢ <m — 1. Since the canonical divisor
of R™! is linearly equivalent to —C,,_1, we obtain the exact sequence

0— WRpm—-1 — ORmfl — Oé — 0.

m—1

This implies that hi(C,,_y,0) = 0 for 1 <i < m — 1 = dim(C,,_;). Hence C,,_; is a
Calabi-Yau manifold. O

8.1.12. The projection P**2\ {(1:0:...:0)} — P"*! given by
(Znaz oo 21) = (Znao o1 21)
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induces a cyclic cover C(,,41) — Q" of degree m ramified over C(,). The Galois group is
generated by

(Znas : Zna2 .. 21) = (E2nas t Zngo o0 21),

where ¢ is a primitive m-th. root of unity.
Recall the commutative diagram of Lemma 8.1.8. Let A* be given by {24 = 1} C P4
and A3 be given by {z4 = 1} C P3. Then the projection above yields a morphism

f:A* x P? — A3 x P2 (8.2)

Since the blowing up yields natural embeddings of open subsets of Cy and R! into the
varieties of (8.2), f induces a rational map C, — R'. Now this rational map Cy — R!
is again a cyclic cover of degree m with the Galois group as above (on the open locus of
definition). On the complements of the exceptional divisors it coincides with the cyclic
cover C(py — Q' above. Hence by glueing, one has a cyclic cover Cy — R! ramified over

C(l)

8.2 A modified version of the method of Viehweg and
Zuo

The following construction is a modified version of the construction in [46], Section 5.
That means here we show that Cy has CM, if Cy has CM. In the next section we will
use the construction of the preceding section to define a family of K 3-surfaces. In this
section we give the argument that this family of K3-surfaces will be a CMCY family of
2-manifolds.

For our application, it is sufficient to consider the situation fiberwise and to work
with P'-bundles over P! resp., with rational ruled surfaces. Let 7, : P, — P! denote the
rational ruled surface given by P(Op: @ Op:(n)) and o denote a non-trivial global section
of Op1(6), which has the six different zero points represented by a point ¢ € Mjs. The
sections F,, Ey and Ey of P(O & O(6)) are induced by

id®oo:0—-000(6), da0: 0 — 0 0O(6)

and 0@ id: O(6) - O ® O(6)

resp., by the corresponding surjections onto the cokernels of these embeddings as described
in [22], II. Proposition 7.12.

Remark 8.2.1. The divisors E, and Ej intersect each other transversally over the 6 zero
points of o. Recall that Pic(Pg) has a basis given by a fiber and an arbitrary section.
Hence by the fact that E, and Ey do not intersect F.,, one concludes that they are
linearly equivalent with self-intersection number 6. Since F, is a section, it intersects
each fiber transversally. Thus one has that E,, ~ Ey — (Ey.FEo)F, where F' denotes a
fiber. Hencefore one concludes

Eoo.Eny = Ene.(Ey — (Eo.Ey)F) = —(Eo.E,) = —6.

Next we establish a morphism p : Py — Pg over P1. By [22], II. Proposition 7.12.,
this is the same as to give a surjection 75(O & O(6)) — L, where L is an invertible sheaf
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on P,. By the composition
3
(0 @ 0(6)) = m3(0) © m0(6) — @ m0(2i) = Sym*(w5(O © O(6))) — Ok,(3),
i=0

where the last morphism is induced by the natural surjection 75(O & O(2)) — Op,(1)
(see [22], II. Proposition 7.11), we obtain a morphism u* of sheaves. This morphism pu*
is not a surjection onto Op,(3), but onto its image £ C Op,(3). Locally over Al C P! all
rational ruled surfaces are given by Proj(C[z])[y1, y2], where = has the weight 0. Hence
we have locally that 73(O @ O(6)) = Oe; & Oey. Over Al the morphism p* is given by

3 3
€1 — Y1,€2 — Yy

such that the sheaf £ = im(u*) C Op,(3) is invertible. Thus the morphism p : Py — Pg
corresponding to p* is locally given by the ring homomorphism

(Cla))[yr, y2] = (ClaD[yr,92] via y1 — 7 and yo — 5.
Construction 8.2.2. One has a commutative diagram

’ Nl

r
V' P P! x P!
1) 02 o6
~ 7 ~ n ~
Y [Py Pg
14 P2 P6
T H
P P
y %/ p*Eq 2 3/ Ecot6-F 6
3-(L*EQ)red Eq
™ 2 6
Pl id Pl id Pl

of morphisms between normal varieties with:
(a) 0, 02, dg, p, p2 and pg are birational.
(b) 7 is a family of curves, m, and 7y are P!-bundles.

(c) All the horizontal arrows (except for the ones in the bottom line) are Kummer
coverings of degree 3.

Proof. One must only explain d and pg. Recall that E, is a section of P(O @ O(6)),
which intersects Fj transversally in exactly 6 points. The morphism pg is the blowing up
of the six intersection points of EyN E,. The preimage of the six points given by ¢ € M3
with respect to mg o pg consists of the exceptional divisor Dy and the proper transform
D of the preimage of these six points with respect to pg given by 6 rational curves with
self-intersection number —1. The morphism &g is obtained by blowing down Ds. O

Remark 8.2.3. The section o has the zero divisor given by some ¢ € P3;. Hence one
obtains p*(E,) = C,, where C — P53 denotes the family of cyclic covers onto P! with a
pure (1,3) — VHS of degree 3. Since 7 is the unique cyclic degree 3 covering of Py = R!
ramified over p*(E,) = C,, the surface ) is isomorphic to some K3-surface C, of the
preceding section.
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Recall that F,, denotes the Fermat curve of degree n.
Proposition 8.2.4. The surface Y is birationally equivalent to C, x F3/{(1,1)).!
Proof. Let E, denote the proper transform of the section E, with respect to pg. Then /i

is the Kummer covering given by
JEw+6-F
Eo+ Dy’

where D; denotes the exceptional divisor of ps. Thus the morphism g’ is the Kummer
covering

o[ (36)eBoe +6- (06),F  ,|PL x {0} +6- (P x P)
(56) EO + (56) Dl Pl x {0} + A x P! ’
where A is the divisor of the 6 different points in P! given by ¢ € Ms and P € P! is the

point with the fiber F'. Since Ey + FE, is a normal crossing divisor, E, neither meets Ej
nor D, where D, is the proper transform of 7(A). Therefore (d),E, neither meets

(65).Fo = P' x {0} nor (8).Ba = P x {00}

Hence one can choose coordinates in P! such that (), E, = P! x {1}.
By the definition of 7, we obtain that 7 is given by

i/péu*(Ea) _ i/ﬂ*(Ea)
P31 (Eo) *(Ey)’

i (P x {1))
(Pt x {0})°

By the fact that the last function is the third root of the pullback of a function on P! x P!

with respect to i/, it is possible to reverse the order of the field extensions corresponding to

7" and ' such that the resulting varieties obtained by Kummer coverings are birationally

equivalent. Hence we have the composition of 3 : P! x P! — P! x P! given by

and 7’ is given by

s Pt x {1}
Pl x {0}
with
5/ 01 (P1 x {o0}) +6- (P x )
BBt x {0}) + (A xP)
which yields the covering variety isomorphic to Fs x C,/((1,1)). O

Hence Cy = Y is birationally equivalent to the algebraic manifold Y in the diagram
(7.1) with Z = C(y) and ¥ = Fs. Therefore by Corollary 7.1.6, we obtain:

Corollary 8.2.5. If the curve u*(E,) has complex multiplication, then the K3-surface Y
has only commutative Hodge groups.

!Similarly to [46], Construction 5.2, we show that )’ is birationally equivalent to C, x F3/((1,1)).
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8.3 The resulting family and its involutions

8.3.1. Let us summarize the things we have done. By using the Veronese embedding, the
weighted projective space Q? = P¢(2,2,1,1) is given by V(z123 = 22) C P*. Moreover
there exists a homogeneous polynomial G 4, 4,.44) € Cl21, 22, 23] of degree 3 such that

Gl (@2, 1) = a(a — D — ar)(@ - az)(x — ay)

for each (a1, as,a3) € Ms. Let W — Q% x M3 2 M be the family with the fibers given
by W, = V(2123 — 23, 22+ 2z} +G,) for all ¢ € M3. Moreover let W — R* x M3 — M,
be the smooth family obtained by the proper transform of W with respect to the blowing
up of V' (21, 22, 2z3) X M3. Since the family C — M3 given by

R'> V(y3 —x1(x1 — o) (1 — a1x0) (21 — asxo)(x1 — azwo)wo) — (ag, as, az) € Msy

has dense set of complex multiplication fibers, Corollary 8.2.5 implies that Wis a CMCY
family of 2-manifolds.

Next we will find and study involutions on W over M3 satisfying the assumptions for
the construction of a Borcea-Voisin tower.

Remark 8.3.2. We have the involutions on W over M3 given by

7(1)(7:5 tzgi 232yt 2) = (24025 230 290 21),

7(2)(25 czy izt a) = (Ezy i 2 23 2t 2),

7(3)(25 gty ae i) = (6224 €25zt 7)),
where ¢ is a fixed primitive cubic root of unity. For simplicity we write v instead of (),
too. Since the ideal sheaf of V(z1, 29, 23) N W coincides with its inverse image ideal sheaf

with respect to (for all i = 1,2, 3), each 7@ induces an involution on W over the basis
M3 denoted by v, too.

Remark 8.3.3. We have the M3-automorphism « of W given by
K(zs:z4:23:20:21) = (§25: 24 1 23 29 @ 21) with

KNzt 2ga:23:20:21) = (%25 124 231 290 21)
such that by the same argument as in Remark 8.3.2, we obtain an automorphism of W
over M3 denoted by &, too. On W and hencefore on ¥V one has

7(2):/{0701{1 and 7(3)211_1070’@'

Hence these involutions act by the same character on the global differential forms of the
fibers of W, and all quotients W/y® are isomorphic. Therefore it is sufficient to consider
the quotient by 7.

Proposition 8.3.4. On each fiber of W the involution ~ fixes exactly the points on the
divisor given by V (z4 = z5) and one exceptional line over one singular point of the corre-
sponding fiber of W.
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Proof. Let ¢ € M3 and let S denote the singular locus of W,,. On W, \ S the points fixed
by « are given by the divisor V(z4 = z5). Now let us consider the exceptional divisors
of the blowing up, which turns W into the family W of smooth K3-surfaces. There are
exactly 3 points of S given by z; = 25 = 23 = 0 and z} + 2z = 0. The involution v fixes
(1:—=1:0:0:0) and interchanges the other two singular points. Since the generators of
the ideal of the blowing up are invariant under -, one concludes that each point on the
exceptional line over (1: —1:0:0:0) is fixed by 7. O

Since the divisor on W, given by V(z4 = z5) is isomorphic to C, and the projective
line providing the fixed exceptional divisor has C'M, one has by Corollary 8.2.5:

Theorem 8.3.5. By the involution v, the family VW can be used to be some Z; or ¥; in
the construction of a Borcea-Voisin tower.
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Chapter 9

Other examples and variations

In this chapter we consider the automorphism groups of our examples of CMC'Y families.
We want to find some new examples of CMCY families of n-manifolds by quotients by
cyclic subgroups of these automorphism groups. By using [16], Lemma 3.16, d), one can
easily determine the character of the action of these cyclic groups on the global sections
of the canonical sheaves of the fibers. In this chapter we state this character with respect
to the pull-back action.

9.1 The degree 3 case

Let £ denote a fixed primitive cubic root of unity. In 8.3.1 we have constructed the CMCY
family W — M3 given by

R*:=1P¢(2,2,1,1) 3 V(ys + 43 + 21 (x1 — 1) (21 — aro) (21 — agwo) (21 — aszo)wo)

— (a1, az,a3) € Ms.

First we introduce an Mj3-automorphism group Gj of the family W. The elements g € G5
can be uniquely written as a product g = abc with a € (a), b € (5) and ¢ € (v), where:

azsizg:23:29:21) = (E25: 240 231 221 21),

Blzs i za:23:20:21) = (25: 8240 23 221 21),
V(zs: 2423200 21) = (241 251 23 291 21)
The group Gj3 contains exactly 18 elements. The action of 3 on the global sections of the

canonical sheaves of the fibers induces a surjection of G3 onto the multiplicative group of
the 6-th. roots of unity. Its kernel is the cyclic group of order 3 generated by a3!.

Remark 9.1.1. Since a5~ ! is an Ms-automorphism, one obtains the quotient family
W/{aB™ 1)y — Ms. One checks easily that a8~ leaves exactly the sections given by
25 = 24 = 0 invariant. Let ¢ € Mjs. The fiber W/{afB71)), of W/{a™ ') has quotient
singularities of the type Ass (see [5], III. Proposition 5.3). We blow up the sections
of fixed points on W and call the resulting exceptional divisor F;. On each connected
component of E; one has two disjoint sections of fixed points again. But on a fiber the
quotient map sends any fixed point onto a singularity of the type Az;.! Hence let us blow

IFor this description consider the corresponding action of the cyclic group on an analytic open neigh-
borhood of a fixed point.
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up these latter sections of fixed points with exceptional divisor Ey. The canonical divisor
of the resulting fibers W, is given by

Ky, = (E1)q + 2(By),,

where quotient map ¢ induced by a3~! has ramification on E,. Thus by the Hurwitz
formula, one calculates that ¢*(w,) = O((E}),). Note that the irreducible components
of the exceptional curve (E;), have selfintersection-number —1. Since (E,), is the ex-
ceptional divisor of the blowing up of two points of each irreducible component of (E}),,
each irreducible component of (El)q has selfintersection-number —3. By the fact that
the quotient map ¢ : W, — (W/{af™")), is not ramified over ¢((E}),), the irreducible
components of ¢((E}),) have selfintersection-number —1.

From now on let X := W/{af™").

Proposition 9.1.2. One can blow down p(Ey) such that the blowing down morphism
¢: X — Y yields a CMCY family Y — Ms of 2-manifolds.

Proof. By the construction of the projective family, one has an invertible relatively very
ample sheaf A := Ox(D) on X. Let P denote some connected component of o(E}).
Note that ¢(E,) consists of different copies of Pépec( ) With Spec(R) = P, such that each
invertible sheaf on P is uniquely determined by its degree. Thus the intersection number
pp = Dy P, is independent of ¢ € P,,. As in the proof of the Castelnuovo Theorem in

[22], V. Theorem 5.7 the invertible sheaf

L:=A( > ppP)

PCy(En)

yields the blowing down morphism on the fibers. Since this P,-morphism is globally
defined, one obtains a global blowing down morphism f such that the resulting family
Y = f(X) is smooth.

By the fact that a3 acts by the character 1 on I'(wy,), one concludes easily that
Y — Mgj is a family of K3 surfaces. Since W has a dense set of C'M fibers, one concludes
that X = W/(af) and Y have dense sets of C'M fibers, too. O

By the blowing down of (), we get the following situation:

- ~ ]
Ey U By ©(Ey U Ey) ¢ o (k)
S
w mod{a3?) Bl(¢(E1))

Proposition 9.1.3. The Ms-automorphism ~v of W yields an involution on Y, which
makes it suitable for the construction of a Borcea-Voisin tower.

Proof. One has the following commutative diagram:




Thus 7 yields an involution on X = W/(a~"). By the fact that y(E;) = Ey, it induces an
involution on the complement of the sections of ) obtained by blowing down (p(f?l). Since
these sections have codimension 2, the involution extends to a holomorphic involution on
Y (by Hartogs’ Extension Theorem [49], Theorem 1.25). By the fact that v acts by —1
on I'(wy, ), the same holds true for &, and ).

Let C — M3 denote the family of degree 3 covers with a pure (1,3) — VHS. We have
seen that W, has CM, if C, has CM. Hencefore H"(Y,, Q) has a commutative Hodge
group for all %, if C;, has C'M. Thus the following point describes the ramification divisor
of 7, on )V, and ensures that there is a dense set of C'M fibers ), such that the ramification
divisor of 7, has C'M, too. m

9.1.4. Now we describe the divisor of points of ), fixed by v for some ¢ € Mj. Each
point of YV, \ (¢ o p(E>)) can be given by the image [p| of a point p € W, with respect
to the quotient map according to (@5~'). One has that a point [p] € Y, \ (¢ o ©(Fs))
is fixed by v, if and only if v(p) € (a3?) - p. These points p € W, are exactly given by
(af?) - V(ya = y1) and the exceptional divisor of W, — W,

By the fact that (af3?) - V(yo» = yi1) interchanges all 3 irreducible components of
(af?) -V (y2 = 1) and all 3 irreducible components of the exceptional divisor of W — W,
one obtains a divisor of fixed points on ), given by C, and one copy of P'. Since 7 is
given by (1 : 11) — (1 : 4) on By and o is given by (3 : 1) — (42 : £41) on Er, 7
interchanges each two irreducible components of F,, which intersect the same irreducible
component of ;. Thus the ramification divisor of Y — Y /7 given by a family of rational
curves and C, where C denotes the example of a family of degree 3 covers with a pure
(1,3) = VHS.

9.2 Calabi-Yau 3-manifolds obtained by quotients of
degree 3

We have seen that the family W of K3-surfaces given by
R? = @C(Z, 2,1,1) 3 ‘7(3/:23 + y? +x1(z1 — 1) (21 — a120) (21 — a20) (21 — azzo)7o)

— (a1, ag,a3) € Ms

has a dense set of fibers W, such that H k(Wq, Q) has a commutative Hodge group for all
k.

Recall that the canonical divisor of R' = P(O @ O(2)) is given by —2V(z;). Now
we consider the up to isomorphisms unique cyclic cover of degree 3 given by W, — R!
ramified over C;, whose Galois group is generated by a. Moreover consider the cyclic
degree 3 cover F3 — P!, where F3 = V(z® + y* + 23) C P? denotes the Fermat curve of
degree 3 and ag, given by

(xry:2)=(v:y:&),
is a generator of the Galois group, which acts by the character £ on I'(wp,).

Let X be a singular variety of dimension n such that each irreducible component of
its singular locus S has at least the codimension 2. Then we call X a singular Calabi-Yau
n-manifold, if R%(X \ S, Q’;}\S) =0forall k=1,...,n—1and wx\g = Ox\g. With the
notation of diagram (7.1) one gets:
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Proposition 9.2.1. The quotient of W xF3 by ((1,2)) yields a family of singular Calabi-
Yau 3-manifolds with a dense set of CM fibers.

Proof. Note that the VHS of the family W xF3/((1,2)) is the sub-V HS fixed by ((1,2)).2
Since F3 has complex multiplication, a C'M fiber of W yields a corresponding C'M fiber
of W x F3/((1,2)).

Let ¢ denote the quotient map

QOZWX]F3—>WXIF3/<(1,2)>

and S denote the singular locus of W x F3/((1,2)). Over each point, which lies not in
the singular locus given by 3 copies of C, one does not have ramification. Hence by the
Hurwitz formula, ¢*(wovxr,/(1,2)))\s) is given by the structure sheaf. Since ((1,2)) acts
on I'(wyxr,) by the character 1, the sheaf WowxFs/((1,2))\s has global sections. Hence

WwxFs /(120N = O/ ((12))\8-

In addition the reader checks easily that ((1,2)) does not act by the character 1 on a
non-trivial sub-vector space of H*(W x F3) or H**(W x F3). Thus W x F3/((1,2)) is a
family of singular Calabi-Yau 3-manifolds. O

9.2.2. Now consider a fiber (W x F3/((1,2))), of W x F3/((1,2)) and its singularities
in the complex analytic setting. For the construction of the blowing up of a complex
submanifold we refer to [49], 3.3.3. As in [49], 3.3.3 described, one constructs first the
blowing up over open sets. The global blowing up is given by glueing the local blowing
ups. Here were consider the situation on sufficiently small complex open submanifolds.

The Mg-automorphism « acts on y» by {. On each fiber W, the curve C, defines the
ramification locus of W, — R?, which is fixed by a. A local parameter pe, on C, yields a
local parameter on W, fixed by a.. By z, one has a local parameter for the neighborhoods
of the ramification points of F3. On a small open subset, which intersects the ramification
locus of

pq - (W x Fs)g — (W x F3/((1,2)))q,

one has the three local parameters given by y2, pe, and z. By the action of ((1,2)) on
these three local parameters, the singularities W x F3/((1,2)) are locally given by the
product of the 1-ball B; with a surface, which has a singularity of the type As» (with the
notation in [5], ITI. Subsection 5). Let us blow up the family of fixed curves on W x Fj
with respect to ((1,2)) and let E; denote the exceptional divisor. On each connected
component of E; one has two disjoint families of fixed curves with respect to the action of
((1,2)) again. Again this follows from the consideration of the action of ((1,2)) on local
parameters of a small open subset. On a fiber the quotient map sends any neighborhood
of a point on these latter curves onto the product of the 1-ball B; with a surface with a
singularity of the type As;. Hence let us blow up these latter two families of curves with

exceptional divisor Ey. The canonical divisor of the resulting fibers (W x F3), is given by

= (El)q + 2(E2)q7

(WX]Fg)q

2For a short introduction to such orbifolds and their Hodge theory see [11], Appendix A.3.
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where quotient map ¢ by ((1,2)) is ramified over E,. Thus by the Hurwitz formula, one
calculates that p*(w,) = O((Ey),).?

On the other hand af acts by the character £2 on I'(wyy,) for all ¢ € M3. Moreover
we have a Galois cover F3 — P! of degree 3 with a generator ag, given by

(@:y:2)=(z:y:&2),

which acts by the character £ on y(wr,). Hence oy := (a3, a,) leaves I'(wyy, xr, ) invariant.
The automorphism ay fixes a finite number of points on W, x Fs given by

{25 = 24 = 0} x {z = 0},

and « fixes in addition the points on the curves given by the fiber product of {z = 0}
with the exceptional divisor of the blowing up W, — W,. The latter statement about the
exceptional divisor of W, — W, follows from the fact that a3 fixes the generators of the
corresponding ideal sheaf of the blowing up and the singular points of W, given by

(1:=1:0:0:0), (1:=¢:0:0:0) and (1:—¢*:0:0:0).

9.2.3. Now we determine the action of a3 on the local parameters, whose zero-loci are
given by the exceptional divisor Eyy, of W, — W,. The action of a3 on W, C P* is given
by
(25 12412320 21) — (€25 : €24 0 231 291 21) TESD.,
(25:24:23:20:21) — (25 : 241 E 123 0 € e 1 E702)).
By using the explicit equations for W, in 8.3.1, one can very easily calculate that a3 acts
by €71 on these local parameters.*

Hence the singularities of W, x F3/(as), which result by the exceptional divisor of
W, — Wy, are locally given by the product of B, with a singularity of the type As .

Now we construct a desingularisation of W x F3/(as), which is a CMCY family of 3-
manifolds. Let Ejy, denote the exceptional divisor of W — W. We start with the blowing
up of the family of rational curves given by the fiberproduct of Eyy, with the points on 3
fixed by ap,. This yields the exceptional divisor E¢ consisting of 9 rational ruled surfaces.
By the same arguments as in 9.2.2, each connected component of F¢ contains two families

of rational curves of fixed points. The blowing up W x [F3 of these latter families has a
quotient

R =W x IF5 / (6%}
with quotient map given by ¢ such that on the complement of the isolated sections fixed

by ¢ 3
P w, = O((Ec)qy)-

3The author has searched for an opportunity of a smooth blowing down similar to Proposition 9.1.2.
He considered a fiber W,, which is a family of curves given by

Wq—>R2 — P

But here we do not blow up sections of W, x F5 — P!. Hence here one can not formulate a relative
version of the Castelnuovo Theorem as in Proposition 9.1.2.

4The singular locus of W, is contained in W, N {z5 = 1}. Thus one can calculate the desingularization
with the usual equations z;t; = z;t; for ¢, = 1,2,3. On {¢; = 1} the zero locus of the local parameter z;
yields the exceptional divisor. The local parameter fixed by a8 can be given by t /t; or t3/t;.
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9.2.4. Recall that R! is a rational ruled surface, where the exceptional divisor Ep: of the
blowing up R' — Q' is a section of R' — P! (see Remark 8.1.6). A fiber W, can be
considered as a family

WQLRI—JEM

of curves, where f is constructed in 8.1.12. By 8.3.1 and the projection R? — R!, the
morphism f extends to a morphism f : W — R! x M3 such that the exceptional divisor
Eyy of the blowing up W — W is send to the exceptional divisor Egiya, = Egt X M;
of the blowing up R! x M3 — Q' x M3. The following commutative diagram describes
the situation:

Ey w W

fl fJ/ fi
Eri x Msj R' x M Ql x Ms
P! x Ms i P! x M

9.2.5. Thus
g:WLRlngﬁPlng

is a family of curves, which has 3 distinguished sections given by the exceptional divisor
Ew of W — W. Moreover by the description of f: W, — R! as degree 3 cover, one can
easily see that the fibers of g are given by the Fermat curve of degree 3 or consist of 3
smooth rational curves intersecting each other in exactly one point, which does not lie on
(Ew)q. Over P\ {oo} x M3 and P\ {0} x M3 one can embed the restricted family into
some copy of P4, ..

Hencefore we obtain the family

W x Fy — P! x M,

of surfaces, which has sections given by the fiberproduct of the exceptional divisors of
W — W with the points fixed by agp,, which do not meet any singular point of a fiber.
In addition ay is a P! x Ms-automorphism of this family. Hence by the same arguments
as in the proof of Proposition 9.1.2, we can blow down ¢(E¢) over (P'\ {o0}) x Mj and
(P'\ {0}) x Ms. By glueing, we obtain the family Q. Note that the singular fibers of
W xF3 — P! x M3 are given by 3 copies of P! x F5. Hence by the restriction of the sheaf,

which yields the blowing down morphism, to the corresponding copies of P! x Fs/{as),
one obtains smooth blowing down morphisms on these copies.

Construction 9.2.6. But O has 18 sections of singular points given by the 18 isolated

sections fixed by as on W x F3. Recall that these sections are given by
{z5 = 24 = 0} x {z = 0}.

Let O — Q denote the blowing up of the singular sections of Q and

WXF3—>WXF3
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denote the blowing up of these 18 sections. By the same arguments as in Remark 7.1.2,
we obtain the following commutative diagram:

i

Note that @ is a cyclic cover on the complement of E. Thus by the Hurwitz formula and
the fact that ay acts by the character 1 on I'(ww,xr,) for each ¢ € Ms, one concludes
that Q is a family of Calabi-Yau 3-manifolds.

Proposition 9.2.7. The family Q — Mz is a CMCY family of 3-manifolds.

Proof. Note that on each fiber we blow up some points and several copies of P!, which
have C'M. Hence by Theorem 7.1.7, we must only apply the facts that F5 has C'M and
W has a dense set of fibers W, such that Hg(H*(W,,Q)) is commutative for all k. O

9.3 The degree 4 case
Consider the CMCY family C; — M of 2-manifolds given by
P? 3 V(ys + i + 21(x1 — x0) (21 — Azg)mo) — A € My

of Section 7.4. In this section we construct quotients of Cy by cyclic subgroups of its
group of Mj-automorphisms, which will be suitable to obtain new CMCY families of
2-manifolds. In the next section we will see that these new examples are endowed with
involutions, which make them suitable for the construction of the Borcea-Voisin tower.
Hence by the Hurwitz formula and some other obvious reasons, one has:

Claim 9.3.1. Let C be a K3 surface and o be an involution on C', which admits a finite
set S of fixed points on C'. Then the quotient é/&, where C' denotes the blowing up of C
with respect to the subvariety given by S, is a K3 surface, too. Moreover C’/a has com-
plex multiplication resp., only commutative Hodge groups, if C' has complex multiplication
resp., only commutative Hodge groups.

Now we introduce a group G, of M;-automorphisms of the CMCY family C; — M.
The elements g € G4 can be uniquely written as a product g = abc with a € («), b € (),
and ¢ € (14), where:

@(y2 B iUo) (lyz Y1 - 1'0)7 ﬁ(?b Y1 - fBo) = (92 DAYy T $o),

L4(yz AR $0) = (yl Y2 2 $o)

Therefore the group G4 contains exactly 32 elements. The action of G4 on the global
sections of the canonical sheaves of the fibers induces a surjection of G, onto the multi-
plicative group of the 4-th. roots of unity.

Its kernel K4 is a normal subgroup of order 8. It contains the following automorphisms
of order 4:

Oy2 i1 1 xo) = (—y1 : Y2t 1 2 o), €(y2:y1 iy o) = (1Yo 1 —iyp @ X1 : Tg),
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Ny :y1 221 o) = (iyg :iya @y : Xp)
One has that
13=0"=¢e=n"=(af)*
Moreover one checks easily that K, is isomorphic to the quarternion group and has the
generators 0, € and 7. Thus one has

Ky/(s) = (Z/2)*. (9.1)
One can easily calculate that

a(da! = (n).
By the fact that K, has 2 residue classes with respect to () resp., (€) resp., (n), one
concludes that (0) resp., (€) resp., (n) is a normal subgroup of K. Since [a]k, generates
G4/K4 and

afe)a™ = (e),
(€) is a normal subgroup of Gy.

9.3.2. Recall that ¢35 denotes the involution given by

63(92 Y1 X 950) = (—yz S A 1’0)'

Let C,) be the CMCY family of 2-manifolds given by the quotient Cs /{t3), where Cy
denotes the blowing up of Cy with respect to the 8 sections fixed by ¢3. Four sections fixed
by t3 are given by (1: ¢ :0:0), where ¢ runs through the primitive 8-th. roots of unity.
The other 4 sections are given by

(0:0:0:1), (0:0:1:1), (0:0:X:1) and (0:0:1:0).

Since the generators a, § and ¢4 of Gy leave the ideal sheaf corresponding to these 8
sections invariant, all automorphisms of G4 induce automorphisms on Cs. Note that
commutes with each 7 € (G4. For each 7 € (4 one finds open affine subsets invariant
under (7,¢3). On these affine sets the global sections of the structure sheaf invariant
under (7, 13) are contained in O, where 7 leaves O3} invariant. Hencefore 7 induces an
automorphism on Cy,,). One checks easily that J,  and € yield involutions on C,, leaving
only finitely many sections fixed. Thus by using Claim 9.3.1, these involutions yield the
CMCY families of 2-manifolds

C<5> = Ca((;mfl = C(m and C<E>.

9.4 Involutions on the quotients of the degree 4 ex-
ample

In Section 7.4 we introduced several M-involutions ¢1,...,t; of Co. We have seen that
t3 acts by the character 1 on the global sections of the canonical sheaves of the fibers.
Moreover tq, L9, L4, ..., t7 act by the character —1 on the global sections of the canonical
sheaves of the fibers. Here we show that each for each ¢ = 1,2,4,...,7 the involution ¢;
induces Mj-involutions on the quotient families of 9.3.2, which make them suitable for
the construction of a Borcea-Voisin tower,

We fix some new notation: Let C5 be an arbitrary fiber of Cy, p € (5, where p is
not fixed by ¢3, and F; denote the curve of fixed points on C5 with respect to ¢; for all
1=1,2,4,...,7.
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9.4.1. The involutions ¢; and ¢p induce the same involution on C,. One has that
ti([Plugy) = [Plsy, if and only if p € Fy U F,. The involution ¢3 induces an involution
on the curve F; and on the curve F;. Each of the covers induced by these involutions has
4 ramification points. Hence by the Hurwitz formula, ¢; induces an involution on Cy,),
which has a divisor of fixed points containing two families of elliptic curves. By [48], 1.1,
the ramification divisor of our involution on a fiber of C(,,) has at most one irreducible
component of genus g > 0 or consists of two elliptic curves. Thus it consists of two elliptic
curves. It is quite easy to check that by this involution ¢;, the family C,,) is suitable for
the construction of a Borcea-Voisin tower.

9.4.2. The involutions ¢4 and i induce the same involution on C,. One has that
ta([Plisy) = [Plesy, if and only if p € Fy U Fy. The involution ¢3 induces an involution
on the curve Fy and on the curve Fg. Each of the covers induced by these involutions
have 4 ramification points. Hence by the same arguments as in 9.4.1, the involution ¢4
induces an involution on C,,), which has a divisor of fixed points consisting of two families
of elliptic curves. It is quite easy to check that by this involution ¢;, the family C, is
suitable for the construction of a Borcea-Voisin tower.

Since awga™! = 15 and arza' = 13, the involutions ¢5 and ¢7 induce up isomorphisms
the same involution as ¢4 and 15 on C,).

Recall the M;-automorphisms

5(y2 YY1 Ty 350) = (—yl Y2 1T 91?0): e(y2 YY1t 3370) = (in DY Xy 550)
of Cy of order 4.

Remark 9.4.3. Now we consider the quotient families C(5 and C( in 9.3.2. One checks
easily that § and e act as involutions on the 4 sections given by (1 : ¢ : 0 : 0), where ¢
runs through the primitive 8-th. roots of unity, and leave the sections given by

(0:0:0:1), (0:0:1:1), (0:0:A:1), (0:0:1:0)

invariant.

Moreover there does not exist a point p € Cy such that §(p) = 5(p) or e(p) = t3(p).
This follows from the facts that 13 = 6% = €2 and 6%(p) = §(p) resp., €2(p) = €(p) would
imply that 0 resp., € is not bijective.

Hencefore either p is contained in one of the 8 sections fixed by ¢3 or (0) - p and (¢) - p
contain 4 different elements. For our notation we will assume that p is not fixed by ¢3 as
above.

9.4.4. The involutions ¢; and 5 commute with e. Thus the same holds true with respect
to the involutions on C,) induced by ¢1, 1o and e. Hence one concludes that ¢; and ¢y
induce an involution an Cy. Since ¢; and iy induce the same involution on C,), the
involutions ¢; and ¢ induce the same involution on Cy.

A point [p] on the fiber Ciq of Cyy is fixed by ¢y, if ¢1(p) = €'(p) for i = 0,...,3. This
is exactly satisfied on F; and F5 for ¢ = 0 or ¢ = 2. The automorphism ¢ yields a quotient
of F} resp., Fy of degree 4 fully ramified over 4 points. Hence by the Hurwitz formula,
Fi/(€) and Fy/(€) are rational curves.

By the definitions of ¢; and €, one checks easily that their actions coincide on the
exceptional divisor on C, over the four sections given by V(y2,91). Moreover by the
definitions of ¢; and ¢, one checks easily that for each primitive 8-th. root ¢ of unity

11(1:¢:0:0)=¢(1:¢:0:0)=(1:—-C:0:0).
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Both M-automorphisms fix the local parameters z; and x».

Thus altogether the involution ¢; induces an involution on C, which has a divisor of
fixed points consisting of 8 disjoint families of rational curves. It is quite easy to check
that C is suitable for the construction of a Borcea-Voisin tower by this involution.

9.4.5. The involutions ¢4, ..., t; do not commute with e. But one has e;; = ;€ for all
i=4,...,7. Hence ¢; (i = 4,...,7) induces an involution on C,). Since t5 = €4, 16 = €21y
and v; = €314, these involutions induce the same involution on Cey-

A point [p] € C is invariant under vy, if ¢4(p) = €'(p) for i = 0,...,3. One has that
ta(p) = (p) on Fy, 1u(p) = €*(p) on Fr, 14(p) = €2(p) on Fy and 14(p) = €3(p) on F5. Note
that €(Fy) = Fg, e(Fg) = Fy, €2(Fy) = Fy and €2(Fs) = Fg. Moreover one has €(F5) = Fr,
e(Fy) = Fy, €2(F5) = F5 and €*(F5) = F5. The automorphism €? = 3 yields a quotient
of Fy, Fy, Fg resp., F; of degree 2 ramified over 4 points, where Fj and Fg resp., F5 and
F are mapped onto the same quotient by €. Hence by the Hurwitz formula, the quotient
consists of two families of elliptic curves.

By [48], 1.1, the ramification divisor of our involution on C has at most one irre-
ducible component of genus g > 0 or consists of two elliptic curves. Thus ¢4 induces
an involution on C, which has a divisor of fixed points consisting of 2 families of el-
liptic curves. It is quite easy to check that this involution makes C suitable for the
construction of a Borcea-Voisin tower.

9.4.6. The involutions ¢4, and s do not commute with 4. But one has duy = 140° and
dig = 150°. Moreover one has

11 =001, tg=20%01, and iy =05 01,.

Hence 1, t9, t4 and 15 induce the same involution on Cs-~.
A point [p] € Cis) is invariant under t4, if 14(p) = 0°(p). This occurs, if and only if

pEF1UF2UF4UF6.

Note that 6(Fy) = Fg and §(F;) = F,. Moreover § yields a degree 4 quotient of Fy U Fg,
and a degree 4 quotient of F} U F,. Thus the divisor of fixed points contains two families
of elliptic curves.

By the same arguments as in 9.4.5, the involution ¢4 induces an involution on C),
which has a divisor of fixed points consisting of 2 families of elliptic curves and makes Cs
suitable for the construction of a Borcea-Voisin tower.

9.4.7. The involution ¢; commutes with §. One has that p = u5(p), if p € Fj and
62(p) = 15(p), if p € Fr. Note that § acts as degree 4 automorphism on Fj resp., F;. Each
of the corresponding quotient maps is fully ramified over 4 points. By the same arguments
as in 9.4.4, the M-automorphisms ¢5 and  act in the same way on the exceptional divisor
of Cy. Thus t5 induces an involution on Cs, which fixes a divisor consisting of 8 families of
rational curves. Moreover it is quite easy to check that this involution makes Cy suitable
for the construction of a Borcea-Voisin tower.

1 1

9.4.8. Since arya™" = 11 and ada™ = 1, one concludes that the involution induced by
t1 on Cyy coincides up to an isomorphism with the involution induced by ¢; on Cg.

Since arsa™! = 15 and ada~! = 7, one concludes that the involution induced by ¢g on
C(y coincides up to an isomorphism with the involution induced by ¢5 on Cis).
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9.5 The extended automorphism group of the degree
4 example

The group G4 of Mi-automorphisms of Cy does not contain all Mj-automorphisms of
Cy. In this section we give an additional group E; of Mj-automorphisms such that Gy
and E, generate an extended M;-automorphism group G,. Moreover we will make some
remarks about G4 and E,.

We obtain due to [24], Proposition 9 and the notations of [24], Section 2:

Proposition 9.5.1. The family Cy has a group E4 of My-automorphisms consisting of
16 different automorphisms given by (af)” with v =0,...,3 and:

ac(ye tyr w1 1 x0) = (Cya i Cyr - w1 — Amp 11 — 20), (= (1—N)?

1 1

Be(y2 g1 :a1:20) = (SY2 1 Sy1 1 21 — Tp 1o — ), ¢'=(1- X)Q

V(Y2 t Y1t @1 To) = (KY2 @ Ky1 © Axg : 1), kY= \?

The involutions of Ey are given by (aB)”, a¢, Bc and v, forv=2,*=1-\, ¢*=1— %
and k% = X. The group E4 has a subgroup isomorphic to the quarternion group given by
(aB)”, a¢, B and v, forv=0,2, (*=—1+ X, > = -1+ 1 and * = —\.

One can ask for the character of the action of the involutions of E4 on I'(w(c,),) for each
q € M and the possibilities to use these involutions for the construction of Borcea-Voisin
towers. For example one has:

Example 9.5.2. One checks easily that v 5 resp., 7_ 5 fixes the family curves on C,
given by
T = \/XZE() resp., rp; = —\/XZL’().

This family of curves is isomorphic to the constant family with universal fiber given by
the Fermat curve [ of degree 4, which has the genus 3. Thus it acts by the character —1
on I'(w(c,),) for each ¢ € M;. Since F4 has complex multiplication, v s and v_ 5 make
C, suitable for the construction of a Borcea-Voisin tower.

The following claim implies that v 5 and v_, /5 yield isomorphic families by the Borcea-
Voisin tower:

Claim 9.5.3. One can conjugate v 55 and v_ /5 in Ey.

Proof. There exists some g of order 4 contained in the quarternion subgroup of E, such
that

via = (af)g and v_5 = (aB)’g = (aB)(aB)’g = (aB)g™".
It is a well-known fact that there is a g contained in the quarternion group such that
g '=g20g0gy".
Since (af3) is contained in the center of E4, one obtains the result. ]

Finally the question for isomorphy between Cs/t; and Cs/t4 resp., the corresponding
CMCY families of 3-manifolds constructed by the method of C. Voisin [48] remains open,
since we have:
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Remark 9.5.4. By the description of E4 in Proposition 9.5.1, one checks easily that the
generators a, 3,14 of G, commute with each element of Es. Hence each element of Gy,
which is the group generated by G4 and E4, can be written as k7 with k € 4 and 7 € Gy.
Thus for each o € G4 one obtains

(k1) to(kT) =7 torT. (9.2)

Hence the fa(zt that ¢; and ¢4 are not conjugate in G4 implies that ¢; and ¢4 are not
conjugate in (4. B
Moreover (9.2) implies that «y s is not conjugate to ¢; or ¢4 in Gy.

Remark 9.5.5. One may search for additional involutions in G4 and try to determine the
character of the actions of all involutions on I'(wc,),) for each ¢ € M;. In addition one
can try to determine the involutions, which are suitable for the construction of a Borcea-
Voisin tower and try to repeat the construction of the preceding section for arbitrary
induced involutions on suitable quotients by cyclic subgroups of G.

9.6 The automorphism group of the degree 5 exam-
ple by Viehweg and Zuo

We consider the CMCY family F3
P> V(yg + ?Jg + yi’ + 1‘1@1 - 370)(% - OZIO)(% - 5950)%) - (0475) € M,

of 3-manifolds constructed by E. Viehweg and K. Zuo. Let £ denote a fixed primitive 5-th.
root of unity. We introduce an Ms-automorphism group Gy of the family F3 — M. The
elements g € G5 can be uniquely written as a product g = abed with a € {(«), b € (),
c € (v) and d € S3, where:

ays Yoty = (ys 1 y2 1 y1 1 21 1 X)),

x1 )
Bys:ya iy @1t @o) = (yYs: §Ya : Y1 1 @1 1 To),
Y(ys :y2 ty1 w1 i xo) = (ys 1 Y2 Eyr Tyt x0),
d(y3 “Y2 1Yt xo) = (yd(3) “Yde) C Yda) ¢ 1 950)
Therefore the group G5 contains exactly 5-5-5-6 = 750 elements. The action of G5 on
the global sections of the canonical sheaves of the fibers induces a surjection of G5 onto
the multiplicative group of the 10-th. roots of unity.’
Its kernel K5 is a normal subgroup of order 75. It contains the subgroup (a3, By~1)

of automorphisms of order 5. Moreover it contains the cyclic group of order 3 given by
the permutations of As. Therefore all elements of K5 are determined.

9.6.1. Let us consider all cyclic groups (g) C K5 with g = abc # e as above. If a = e or
b=eorc=e, (g) is given by (a7, (By~1) or (ay™!). These groups are conjugate by
(1,2),(1,3),(2,3) € Ss.

Now consider the cyclic group (g) C K5 with ¢ = abc and a, b, ¢ # e. One has that (g)
contains an element o/3°y*~% with b = 1,2, 3. Hence by e € S or (2, 3) € S, it is conjugate

®Note that S3 is generated by the involutions given by the cycles (1,2) and (2, 3), which act by the
character —1 on the global sections of the canonical sheaves of the fibers.
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to (af73) or (af%y?). By the cycle (1,3) € Ss, these both groups are conjugate. By the
fact that (a373) leaves only finitely many points invariant on each fiber, but (a3~1) leaves
a curve invariant on each fiber, both groups can not be conjugate.

Hencefore we have two conjugacy classes of cyclic subgroups (g) C K5 with g = abc # e
represented by (a371) and (af~?).

Claim 9.6.2. Any automorphism 7 € Ky, which is not given by
T(ys Y2y s 1 wo) = (E%s 1 €y - €77ty sy - o)
for some s,t € Z, satisfies 73 = id.
Proof. If T satisfies the assumptions of the Claim, then 7 or 7! is given by
(Y3 : Y2 41 1 @1 o) — (E5y1 1 Elyz - 95 byy g 2 ) (9.3)

for some s,t € Z. Hence assume without loss of generality that 7 is given by (9.3) and
verify the statement by calculation:

THys 1 y2 iy i@y xo) =Ty Elys €y s @y 1 o)

=7(E Yo &My 1 E0y3 r two) = (Y Yot Y1t T Tp)
Il

For each 7 as in (9.3) one can easily calculate that a=*37 " o 7 0 a*3°*" is given by
(ys:y2 iy i@t mo) — (Y11 Y3 Y2 i 1t To).
Therefore all cyclic subgroups of K5 are up to conjugation determined. Hence:

Proposition 9.6.3. The family F3 has up to isomorphisms the following quotient families
of Calabi-Yau orbifolds with dense sets of CM fibers:

Fs/laBh), Fs/{aBy®), F3/((1,2,3))

Proof. The existence of dense sets of C'M fibers follows, since the VHS of a quotient
family of F3 is a sub-VHS of F3. n
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Chapter 10

Examples of CMCY families of
3-manifolds and their invariants

10.1 The length of the Yukawa coupling

First let us construct the Yukawa coupling. A little bit later in this short section we will
give a motivation to consider it and describe how to calculate its length for our examples
of CMCY families of 3-manifolds.

Construction 10.1.1. Assume that U is a quasi projective variety and V is a complex
polarized variation of Hodge structures of weight n on U. It is a well-known fact that
there exists a suitable finite cover of U such that the pullback of V has local unipotent
monodromy. We replace U by this finite cover. There exists a smooth projective com-
pactification Y of U such that S := Y \ U is a normal crossing divisor. Then one can
construct the Deligne extension H of V ®c Op (i. e., the unique extension such that
the GauB-Manin connection yields the structure of a logarithmic Higgs bundle (F,6) on
the associated graded bundle and the real components of eigenvalues of the residues are
contained in [0,1)). The graduation gives a decomposition of F' into locally free sheaves
EP™7P and the GauB-Manin connection induces an Oy-linear morphism

EPrP  probnertl @ O (logS),
called Higgs field. The Yukawa coupling 6; (for i < n) is defined by the composition

On_1,1 On—22

0, : EM° % prellg L (logS) o' B22 @ Sym?QL (logS) 7 .

0”&}” i ® SymiQ;(logS).

Definition 10.1.2. Let f : V — U be a family with fibers of dimension n as in Con-
struction 10.1.1. The length ((f) of the Yukawa coupling is given by

¢(f) = min{i > 1;6; = 0} — 1.

We say that the Yukawa coupling has mazimal length, if ((f) = n.
The family f: V — U is rigid, if there does not exist a non-trivial deformation of f
over a nonsingular quasi-projective curve 7.

The following proposition yields our motivation to consider the length of the Yukawa
coupling:

129



Proposition 10.1.3. If the Yukawa coupling has maximal length, the family is rigid.
Proof. (see [44], Section 8) O

The statements of the following lemma, which allow the computation of length of the
Yukawa couplings of our examples of CMCY families of 3-manifolds by their construction,
are well-known:

Lemma 10.1.4. For two wvariations of Hodge structures V and W on a holomorphic
manifold one has

CV@W) =((V) + (W) and (V& W) =max{((V),((W)}.

10.2 Examples obtained by degree 2 quotients

Let Z; — M be one of the examples of a CMCY family of 2-manifolds, which we
have constructed in the preceding chapters, with a suitable involution ¢ such that it
satisfies the assumptions for Z; in the construction of a Borcea-Voisin tower. Here we list
all examples of CMCY families Z; of 3-manifolds obtained by the Borcea-Voisin tower
starting with such a family Z; and ¥, given by the family £ — M of elliptic curves
endowed with its natural involution. By the definition of Calabi-Yau manifolds, Serre
duality and Hodge symmetry, all Hodge numbers of the fibers of the resulting CMCY
family Z, of 3-manifolds are determined by h'! and h?*!.

Claim 10.2.1. Keep the assumptions above. Let (Z,), — (21),/t be ramified over N
curves with genus gy, ..., gy for allp € M. Then the fibers of Zy have the Hodge numbers

W' =114 5N — N' and h*' =11+ 5N — N, where N'=> g,
Proof. (see [48], Corollaire 1.8) O
Hence for our examples of CMCY families of 3-manifolds obtained by using the

Borcea-Voisin tower and C'MCY families of 2-manifolds with suitable involutions, we
have the following table:

| family Z, | basis M | involution ¢ | N | N’ [ h¥' | h*! | (| reference |
Cy My L1 113 13 | 25 |2 7.4.4
Cy My L4 113 13 | 25 |2 7.4.4
Cy My | vy~ | 13 | 13| 2 |2 952
Com M, 0 512 19|10 2] 941
Clua M, I 512 19|10 2] 942
Cro M, 0 810 50| 3 2] 944
Co M, L > 12 10|10 2| 945
Coo M n=u | 22| 19|19 2| 946
4% M ¥ 2 | 4 17 | 29 | 2 || 8.3.4,8.3.5
Y M; v 2[4 | 17 [ 20 |2 913,914
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10.3 The Example obtained by a degree 3 quotient
and its maximality

In this section we determine the Hodge numbers of the CMCY family O of 3-manifolds
obtained by Proposition 9.2.7.

Remark 10.3.1. In the case of the CMCY family of Proposition 9.2.7 one has ( = 1 for
the length of the Yukawa coupling as one concludes by its construction and using Lemma
10.1.4.

Let X be a complex manifold and v an automorphism of X of order m. Then
H*(X,C), denotes the eigenspace of H¥(X,C), on which v acts via pullback by the
character 2™ . For the calculation of the Hodge numbers of this family we will need the
following proposition:

Proposition 10.3.2. Let X be a Kahler manifold of dimension 3. Moreover let ¢ be
an automorphism of X fixing a finite set of some isolated points Zy and a finite set Z,
of disjoint curves such that ©™ = id for some m € N. Then one has the following
etgenspaces:

HQ(XZ1UZWZ)O = HQ(Xv Z)O D HO(ZDZ) D HO(207Z)7
H3(XZ1UZ07Z>0 = H3<X7 Z)O ® H1<ZDZ)

Proof. Let Y be a Kahler manifold and Z be a submanifold of codimension 7. Then the
Hodge structure of the blowing up Y, along Z is given by

r—2
HNY.Z) & @ HY7(2,2) = H (Y2, 2),
=0

where H*=%~2(Z, 7) shifted by (i + 1,4 + 1) in bi-degree (see [49], Théoréme 7.31).
Thus one has:

H2(X21U207Z) = H2(X7 Z) @ H()(ZlaZ) D H0(207Z)7
H3(XZIUZO7Z) = Hs(Xa Z) D HI(ZDZ)

Hence it remains to show that H°(Zy,7Z), H(Zy,Z) and H'(Z,,Z) are invariant as sub-
Hodge structures by ¢. Hencefore one considers the proof of [49], Théoréme 7.31. These
sub-Hodge structures are given by the image of j. o (7|z,uz) (H*(Z1 U Zy,Z)) and j, o
(7| 2,0z, ) (HY(Z,U Zy, 7)), where j denotes the embedding of the exceptional divisor E of
the blowing up morphism 7 : X 7.0z, — X.! One has the following commutative diagram:

XZ1UZO leLJZO
{ d
E - E

71U Zo L Z,U Z,

In general one has @:;gj* o ht o (m|z,uz,)* instead of j. o (7|z,uz,)* for i = 0,...,7 — 2 in [49],
Théoréme 7.31, where h denotes the cup-product with ¢;(Og(1)) and the sheaf Og(1) of the projective
bundle E is described in [49], Subsection 3.3.2. But here the weight of the Hodge structures is to small
for ¢ > 0.
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Since ¢ acts as the identity on Z; U Zj, the same holds true for the Hodge structures
on Z; U Zy. Hence by the commutative diagram, the same holds true for the sub-Hodge
structures on X given by j. o (7|z,uz,)" O

Proposition 10.3.3. For all ¢ € M3 the action of the cyclic group (o) on W yields an
eigenspace decomposition of H**(W,) of the dimensions

RY YW, )o = 14, A W,)1 =3, A (W,). = 3.

Proof. Let W — W be the blowing up of the six sections fixed by aff. By the same
arguments as in the proof of the preceding proposition, each fiber W, has the Hodge

numbers
h*? =1, n't=26, K" =1.

Let M := W,/{af). Now we consider the quotient morphism ¢ : W, — M. By the
Hurwitz formula, one concludes that

¢ (Ky) = —2E — E®),

where E' is the exceptional divisor of W, — W, given by three —2 curves and E®)
is the exceptional divisor of W, — W,. From [49], Proposition 21.14, we have that
3- K3 = (¢*(Ky))? Since

(0" (Ka))? = (—2E — E®)? =4.(-6) —6 = —30
and ¢;(M)? = K%, (see [22], Appendix A, Example 4.1.2), one obtains
a(M)? = K3, = —10.

By the Noether formula (compare to [22], Appendix A, Example 4.1.2 and [49], Remarque
23.6), one has

(Ow) :1—12(01(M)2+62(M)) with ea(M) — 2 = by(M)

in our case. From the fact that x(Oy;) = 1, one calculates that
AL (W, )0 = ba(M) = 20.

By the fact that the blowing up morphism Wq — W, has an exceptional divisor consisting
of 6 rational curves, we conclude similar to Proposition 10.3.2 that

A (W, )0 = B (W, )0 — 6 = 20 — 6 = 14.
Since the K3 surface W, has the Hodge number
RYYW,) =20 and RMH(OW,) = b (W,).,

one concludes that
hM(Wq)l = h1’1<Wq)2 = 3.
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Proposition 10.3.4. For all ¢ € M3 one has
rt1(Q,) = 51.

Proof. Since
RO OW,)o = P (F3)o = BV (F3)o = 1, b1(W,) =0

and Proposition 10.3.3 tells us that
Y W,)o = 14,

one concludes that A (W, x F3)o = 15. Note that s fixes 6-3 = 18 points. Moreover we
have an additional exceptional divisor consisting of 3 - 3 - 3 = 27 rational ruled surfaces.
In the construction of Q we blow down 9 of these families of ruled surfaces. Hence by
Proposition 10.3.2,

Q) =15+ 18 + 27 — 9 = 51.

]

Recall that af acts by the character ™5 on the global sections of wyy, for all ¢ € P,
and oy, acts by the character 2™ on the global sections of wr,. Hence one obtains

WO (F3)1 = B (F3)e = h*°(Wy)2 = h? (W) = 1

and
hYO(F3)y = RO (F3), = h2°(W,)1 = h%*(W),), = 0.

Note that by (W,) = bs(W,) = 0, A% (W,)o = 14 and h'*(W,)1 = M (W,)s = 3. Thus
2
HYW, x F3,C)o = @ H*W,,C), ® H'(F3,C)z_y,-

=0

Hence one concludes that
H* (W, x B3, C)o = (H*'(Wy)2 ® H"' (W,)2) ® H"(F3)y
S(HY Wy @ H*?(W,)1) © H”'(F3),.
This implies that
H*' (W, x F3)g = H"'(W,)s ® H"*(F3); such that h*'(W, x F3)y = 3.

Hence by Proposition 10.3.2 and the fact that b;(P') = 0, one concludes easily:

Proposition 10.3.5. For all ¢ € M3 one has
hl’Q(Qq) = h2’1<Qq) =3.

Next we show that Q is a maximal family of Calabi-Yau manifolds. First let us define
maximality. For this definition recall:

Proposition 10.3.6. Each Calabi-Yau manifold X has a local universal deformation
X — B, where
dim(B) = h**(X).
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Proof. (see [49], 10.3.2) O

Definition 10.3.7. A family F — Y of Calabi-Yau manifolds is maximal in 0 € Y, if the
universal property of the local universal deformation X — B of F; yields a surjection of
a neighborhood of 0 onto B. The family 7 — Y is maximal, if it is maximal in all 0 € Y.

Remark 10.3.8. If the family 7 — Y of Calabi-Yau manifolds is maximal in some 0 € Y,
its restriction to the complement of a closed analytic subvariety of Y is maximal.

Remark 10.3.9. Since W, is birationally equivalent to F5 x C,/((1,1)) (see Proposition
8.2.4), one has

H*°(W,) = H(F3); @ H°(C,)o,

where C denotes the family of degree 3 covers with a pure (1,3) — VHS. Thus by our
former notation with respect to the push forward action, the VHS of VW depends uniquely
on the fractional V HS of the eigenspace £, of the VHS of C.

In Section 9.2 we have seen that Q is birationally equivalent to a quotient of W x Fj3.
It differs by some blowing up morphism with respect to some families of rational curves
and some isolated sections. Thus by similar arguments, the VHS of Q depends on the
VHS of W. Hence the VHS of Q depends uniquely on the fractional VHS of £;. Thus
the period map of Q can be considered as a multivalued map to the ball Bs.

The preceding remark tells us the period map of the family @ — Mj is locally
injective. Hence by the Torelli theorem for Calabi-Yau manifolds, one concludes:

Theorem 10.3.10. The family Q@ — Ms is maximal.

10.4 Outlook onto quotients by cyclic groups of high
order

Recall that we used K3 surfaces S and elliptic curves E with cyclic degree m covers S — R
and £ — P! to construct Calabi-Yau 3-manifolds by a quotient, where m = 2,3. In this
chapter we give an outlook on the possibilities to use of cyclic groups of higher order for
the construction of Calabi-Yau 3-manifolds by an elliptic curve and a K 3-surface.

First the following Lemma shows that there are only finitely many elliptic curves with
an action of a cyclic group with order m > 2, which could be suitable:

Lemma 10.4.1. Let E be an elliptic curve, and f : E — P! be a cyclic cover. Then one
obtains

m:=deg(f) =2, 3, 4 or 6.

For each m > 2 there is at most only one elliptic curve having a cyclic cover f : E — P!
of degree m.>

2The well-educated reader knows the automorphism group of the abelian variety given by one elliptic
curve. But the quotient map by a cyclic subgroup of this automorphism group is fully ramified at the
zero-point. There may be cyclic covers, which are not fully ramified over all branch points. Hence for
the proof of this lemma, it is not sufficient to know the automorphism group of this Abelian variety.
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Proof. We use Proposition 2.3.4 and Corollary 2.3.5. Let f : £ — P! be be a cyclic
cover of degree m > 2. Moreover if f has n branch points, then LL; is of type (p, q) with
p+ q=mn—2. Thus there must be at least 2 branch points. If there are 2 branch points,
we are in the case of the cover P — P! given by x — ™. Since L, is of type (p, q¢) with
p+q=n—2, C can be an elliptic curve for m > 2, only if n = 3.

For n = 3 and m > 2 we have that L; is of type (p,q) with p + ¢ = 1. Without loss
of generality we assume that p = 0 and ¢ = 1. Hence by Proposition 2.3.4, one concludes
that

p1+ p2 + p3 = 1.

If m = 3, one has only the case of the Fermat curve of degree 3 given by

1
M1 = H2 = H3 = 3
If m > 3, Ly must be of type (0,0), which implies without loss of generality that p; = %
Hence for m = 4 we have only the case of the cover given by

1

/i1:2, Ho = U3 =

1

1

If m > 4, Ly and Ly must be of type (0,0), which implies without loss of generality that
W = % and g = % Hence we obtain the only additional case given by the degree 6 cover
with the local monodromy data

1 1 1
M1—27 N2—37 /~L3—6-

]

Let S be a K3-surface, E be an elliptic curve and the cyclic groups (ys) and (yg) of
order m > 1 acting on S and F with the loci Fs and Fg of fixed points such that ¢ and
~vE act by —1 on the global sections of the respective canonical sheaves. The aim is the
construction of a Calabi-Yau 3-manifold by a desingularisation of S x E/((vs,7g)). The
following proposition tells us that there are singularities on S x E/{(vs,vg)), if m > 2:

Proposition 10.4.2. Let m > 2. Then vs must fiz some points.

Proof. If g does not fix any point, one concludes by the Hurwitz formula that piw = O.
Thus the quotient has a canonical sheaf w with w®™ = O for m > 2. Moreover it has the
Betti number b; = 0. In addition it must be a minimal model, since a rational —1 curve
would (up to linear equivalence) be in the support of the canonical divisor K and forbid
any torsion of K. But by the Enriques-Kodaira classification (compare to [5], VI), such
a minimal model does not exist. O

Remark 10.4.3. The branch points of the degree 4 resp., the degree 6 cover £ — P!
have different branch indeces. Hence for the degree 4 and degree 6 case this yields some
problems to find a desingularisation of

Sx E/{(vs,78)),

which is a Calabi-Yau manifold.
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Chapter 11

Maximal families of CMCY type

In this chapter we use the classification of involutions on K3 surfaces by V. V. Nikulin
[42]. We will see that certain involutions on the integral cohomology of K3 surfaces yield a
possibility to construct CMCY families of 3-manifolds with maximal variations of Hodge
structures. For each n € N with n < 11 we will obtain a holomorphic maximal CMCY
family over a basis of dimension n.

11.1 Facts about involutions and quotients of K3-
surfaces

In this section we collect some known facts about K3 surfaces and their involutions, which
we will need in the sequel.

11.1.1. The integral cohomology H?(S,Z) is a lattice of rank 22. We have the cup-
product (-,-) on H*(S,Z). Let L := (H*(S,Z), (,-)). It is a well-known fact that one has
the orthogonal direct sum decomposition

L= (—Es)®(—Es)®HO H® H,

where — Ejg consists of Z% endowed with a certain negative definite integral bilinear form
and H denotes the hyperbolic plane, i. e. H = (Z?% (-,-)), where (-,-) is given by the

matrix
01
10
(see [5], VIIL. 1 and also [5], I. Examples 2.7 for details).

Remark 11.1.2. Let S be a K3-surface and L = H?(S,Z), where L is endowed with an
involution ¢. Assume that ¢ corresponds to an involution on S, which acts by the character
—1 on I'(wg). Then the involution induces a degree 2 cover v : S — R onto a smooth
surface R. Moreover the divisor of fixed points, which yields the ramification divisor of
v, consists of a disjoint union of smooth curves or it is the zero-divisor. Moreover ¢ yields
integral sub-Hodge structures H*(S,Z)o and H?(S,Z); of H*(S,Z) such that ¢ acts by
(—=1)" on H*(S,Z);. Since ¢ acts by —1 on I'(wg) and

H*(R,Q) = H*(S,Q)o,

one has that

H*(S), H"*(S) c H*(S,C);.
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Moreover the intersection form has the signature (2,r) on H*(S,Z); (compare to [48], §1
and [48], 2.1).

Remark 11.1.3. Let
D ={[w] € ]P’(H2(S, C))l(w,w) =0, (w,w) > 0}.

By the Torelli theorem, each marked K3 surface (5, ¢s/) endowed with an involution,
which yields the the same involution ¢ on his cohomology lattice, yields a unique one
dimensional vector space H*Y(S") C H%(S,C); corresponding to some p € D.

11.2 The associated Shimura datum of D

The Hodge structure of a K3 surface S with a cyclic degree 2 cover onto a rational
surface resp., Enriques surface R has a decomposition into two rational Hodge structures
H?(S,Q); and H?(S,Q)o. We consider H?(S,Q)1, since the variation of Hodge structures
given by H?(S,Q), is trivial.

The Hodge decomposition of H%(S,C) is orthogonal with respect to the Hermitian
form (-,). Hencefore the corresponding embedding

h:S'— SL(H?*(S,R);)

factors trough the special orthogonal group SO(H?(S,R);) with respect to the symmetric
form given by the cup product pairing, where SO(H?(S,R);) is isomorphic to SO(2, r)g.

Let w € wg \ {0},

1 7
= - Xy e -
Rw = 2(w+w), Sw : 2(w w)

and {vy,...v,} be a basis of H"(X,R);. One has the basis
{Rw, Sw,vy,...,v,.}

of H'(X,R); such that the intersection form is without loss of generality given by the
matrix diag(1,1,—1,...,—1) with respect to this basis. The subgroup, whose elements
are invariant under

g = h(i)gh(i™),
is given by S(O(2) x O(r)), where

h(i) = h(i 1) = diag(—1, —1,1,...,1).

Since h?(i) = h(—1) = diag(1,...,1), the action of 7 is an involution. This implies that
one has a decomposition of so,,(R) into 2 eigenspaces with respect to the eigenvalues 1
and —1. Hence h(\/i) yields a complex structure on the eigenspace with eigenvalue —1.
The eigenspace for the eigenvalue 1 is given by the Lie algebra of S(O(2) x O(r)). Thus
we have a decomposition

502,7“(@) =bi®hoDh-

such that S! acts by the characters z/z, 1 and z/z on the respective complex sub-vector
spaces.
We continue our consideration of the involution ¢ given by

u(g) = h(i)gh™(i).
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The matrices M; € SO(2,7)(C) with M; = 1(M,) satisfy that

M, = diag(—1,—-1,1,...,1) - M, - diag(—1,—1,1,...,1)

=diag(1,1,—1,...,—1) - M; - diag(1,1,—1,...,—1).
Since SO(2,7)(C) is given by the matrices M satisfying
M'-diag(1,1,-1,...,—1) - M = diag(1,1,—-1,...,—1)
& M~ =diag(1,1,-1,...,—1)- M" - diag(1,1,—1,...,—1),

each matrix M, satisfies
Mt = M

Thus M; is contained in the compact group SU(2 + r), and one concludes:

Proposition 11.2.1. Our morphism
h:S"— SO(H?*(S,R))r
yields a Shimura datum.

Remark 11.2.2. Note that the simple Lie group SO(2,7)(R) consists of two connected
components (see [17], Exercise 7.2). Since the Lie group SO(2+7)(C) = SO(H?*(S,R);)(C)
is connected (see [23], IX. Lemma 4.2), the algebraic group SO(H?(S,R);) is connected,
too. Recall that all Cartan involutions of the simple algebraic group SO(H?(S,R);) are
conjugate. The action of S* on H?(S,R); is given by its action on (Rw, Sw) and S* fixes
all vectors of H!(S,R);. This implies that all morphisms

h:S"— SO(H?*(S,R),),

which yield the Hodge structure of a K3 surface, satisfy that their images h(S!) are
conjugate. The definition of the Hodge structure on H?(S,R); implies that the R-valued
points of the kernel of h are given by {1, —1} € S'(R). Let ts1 : S* — S* be the involution
given by x — x~1. For each morphism A, in the conjugacy class of h, there exists exactly
one other morphism hy with hy(S') = hy(S!) and kernel given by {1, —1} € S'(R), which
is given by hy = hj o tg1. The conjugation by diag(—1,1,—1,1,...,1) yields an inner
automorphism ¢ of SO(H?(S,R);) such that hy = @ ohy. Thus each Hodge structure of a
K3 surface obtained by some p € D is obtained by some element of the conjugacy class of
our morphism £ : ST — SO(H?(S,R);). Moreover note that the holomorphic VHS over
the bounded symmetric domain associated with SO(H?(S,R);)(R)* /K, which is induced
by the natural embedding SO(H?(S,Q);) — GL(H?*(S,Q);), is uniquely determined by
the variation of the subbundle of rank 1 given by H?°. Since

r = dim(D) = dim(SO(H?*(S,R);)(R)/K),

this VHS yields a biholomorphic map from the bounded symmetric domain associated
with SO(H?(S,R);)(R)*/K) onto D*.

The preceding remark and Theorem 1.5.9 imply:

Theorem 11.2.3. There is a dense set of CM points on D with respect to the VHS on
D obtained by Remark 11.2.2.
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11.3 The examples

First we construct a holomorphic family of marked K 3-surfaces with a global involution
over its basis:

Construction 11.3.1. There exists a universal family v : X — B of marked analytic
K3-surfaces, whose basis is not Hausdorff (see [5], VIII. 12). Let ¢ denote the global
marking of the family X — B. We consider an involution ¢ on a marked K3 surface
(S, ¢), which acts by —1 on H*°(S). This involution yields an involutive isometry ¢ on
the lattice L. Thus the involution ¢ endows X — B with a new marking ¢ o ¢. By the
universal property of the universal family, this new marking yields an involution of the
family:

tx

X X
B—2 -

Let A : B — B x B denote the diagonal embedding. We define
B, = Graph(tp) NA(B) C B x B.

Note that each point b € B, has an analytic neighborhood U C B such that Xy — U
is given by the Kuranishi family and yields an injective period map for U. Thus on
U x U the diagonal A(U) and Graph(tp|y) are closed analytic submanifolds. Hence B,
has the structure of an analytic variety, which is not necessarily Hausdorff, and can have
singularities. The composition A o u allows to consider A(B) as basis of the universal
family of the marked K3 surfaces. By the restricted family Xp — B,, we obtain a
holomorpic family with a global involution over the basis B,. For simplicity we write
X, — B, instead of X, — B,.

Remark 11.3.2. The fibers of X, — B, have by the involution ¢ a cyclic covering onto a
projective surface (compare to [48], 2.1). Thus the fibers of X, — B, are algebraic.

Proposition 11.3.3. Assume that for all b € B, the involution vy, on X}, has a locus of
fized points consisting of rational curves. Then the holomorphic family X, — B, is due to
its global involution suitable for the construction of a holomorphic Borcea-Voisin tower.

Proof. Let by € B, and U C B, be a small open neighborhood of by. The eigenspace
decomposition with respect to ¢ yields a variation of Hodge structures on the eigenspace
with respect to —1. The corresponding period map yields an open injection of U into D.
By the fact that D has a dense set of C'M points, the family X, — B, has a dense set of
CM fibers. Since the locus of fixed points with respect to ¢, consists of rational curves,
this locus of fixed points has complex multiplication, too. Hence X, — B, can be used for
the construction of a holomorphic Borcea-Voisin tower. [

Assume that X, — B, satisfies the assumptions of Proposition 11.3.3. Then let X, —
B, x M denote the family obtained by the holomorphic Borcea-Voisin tower from X, — B,
and £ — M, denote the family of elliptic curves.

Definition 11.3.4. A family F — Y of Calabi-Yau manifolds is maximal in 0 € Y, if the
universal property of the local universal deformation X — B of F; yields a surjection of
a neighborhood of 0 onto B. The family F — Y is maximal, if it is maximal in all 0 € Y.
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Theorem 11.3.5. The family X, is maximal.

Proof. By the following lemma, we start to prove Theorem 11.3.5:

Lemma 11.3.6.
HS((%L)qu) = HQ((XL)pv @)1 & H1(5q7@)

Proof. Due to Proposition 10.3.2 and the fact that the exceptional divisors consist of
some rational curves, one only needs to determine H?((X,), x &,,Q)o. Since b1((X,),) =
b3((X,),) =0 and H'(E,,Q) = H*(&,,Q)1, we are done. O

By using the preceding lemma, we prove the following proposition.

Proposition 11.3.7. One has that dim(B, x By) and h*'((X,)yx,) coincide.
Proof. By Proposition 11.3.6,

H3((%L)qu) = HQ((XL)W Q1 ® Hl’o(gcn Qe HQ((XL)I,, Q1 ® HO’I(gqa Q).

Hencefore
R (X )pxg) = PUH((X)p, Q)1 - hH(Eg, Q) + W (X)), Q)1 - 271 (€, Q)

= hl’l((XL)p:@)l + h2’0((XL)p, Q) = hl’l((XL)pa Q) + 1.

Recall that DT is the bounded symmetric domain obtained by SO(2,7)"(R), where r =
R ((X,),, R)y. By [23], IX. Table II, D has the complex dimension r.! Since the period
map p: B, — D of X, — B, is locally bijective, one concludes

RYY((X,),, Q) = r = dim(D) = dim(B,),
which yields the result. O
By the following proposition, we finish the proof of Theorem 11.3.5: O]

Proposition 11.3.8. The period map yields a multivalued map from My x B, to the
period domain, which is locally injective.

Proof. Let B be a small open subset of M; x B, and let z;,2o € B. Note tha the
period map p on M; x B, yields different image points p(z1) and p(z5), if the classes of
H3((X,)s,) and H*°((X,),,) in P(H3*((X,).,,C)) do not coincide. The respective period
maps on B, and M; are locally injective and depend only on wg, and wy,),. Since

H*((X)pxq) C HY((X)pxg) = HA (X)), Q)1 @ H'(E,,Q)

is given by H*((X,),) ® H'°(&,), the period map concerning X, is locally injective,
too. [

It remains to classify the possible involutions ¢ on L, which provide our families X, —
B, with a global involution.

Remark 11.3.9. The involutions on L, which yield involutions on certain K3 surfaces,
are characterized by the triples of the following integers (compare to [42]):

1By [23], IX. Table I, D has the dimension 2r as real manifold.
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e The integer ¢ is the rank of the sublattice Pic(S), of the Picard lattice of an arbitrary
fiber S of &, which is invariant under the global involution.

e By the intersection pairing, one obtains a homomorphism Pic(S)y — Pic(S)y. The
integer a is given by (Z/(2))* = Pic(S)y /Pic(S)o.

e By the morphism Pic(S)y — Pic(S)y, the intersection form on Pic(S)y yields a
quardratic form ¢ on Pic(S)y with values in Q. The integer § is 0, if ¢ has only

values in Z and 1 otherwise.

For a fixed triple (¢,a,d) we write X445 — B,as) instead of X, — B, and X q4)
instead of X,.

Remark 11.3.10. The ramification locus of the fibers with respect to the involution on
X — Bias is given by two elliptic curves, if (¢,a,0) = (10,8,0), is empty, if (¢,a,9) =
(10,10,0), and otherwise given by Cn» + E1 + ...+ Ey_1, where Cy/ is a curve of genus
1 1
N 25(22—t—a), and Nzé(t—a)—l—l.
(compare to [42])
Hencefore the triples

(t,a,0) = (10,10,0) and (¢,a,0) with t+a =22

yield the examples of families X(; 45 — B1,q5 with global involutions over the basis,
whose locus of fixed points consists at most of families of rational curves. Hence by Propo-
sition 11.3.3, these triples yield maximal holomorphic CMCY families of 3-manifolds.

11.3.11. By [42], Figure 2, one gets the following complete list of holomorphic maximal
CMCY families X 45 — Ba,s X My of 3-manifolds obtained by this method. By
Claim 10.2.1, we obtain the Hodge numbers h'! and h*! of the fibers of X1 4.4).

[t [a SN[ A"
1010/ 0] 0 | 11| 11
11111 1| 16 | 10
2101 2 21 9
1309 1] 3 26 3
48 1] 4| 31 7
5|7 1] 5 36| 6
16616 41| 5
175 |1 7 | 46 | 4
1541 8| 51| 3
15|40 8| 5 3
1903 1] 9 56| 2
20 2 |1 10 61 | 1

Remark 11.3.12. In [7] there is a construction of Calabi-Yau manifolds of dimension 3
with CM by using 3 elliptic curves with involutions. This construction yields a CMCY
family of 3-manifolds over M; x M; x M;. The fibers have the Hodge numbers h!'! = 51
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and h*! = 3. By similar arguments as in Theorem 11.3.5, this family is maximal. The
associated period domain is given by B; x By x B;.

As we have seen in Section 10.3, the family Q@ — Mj is a maximal CMCY family
of 3-manifolds, whose fibers have the same Hodge numbers h''' = 51 and h*! = 3. The
associated period domain is given by Bg

Moreover by Theorem 11.3.5 and the preceding point, we have two additional holomor-
phic maximal CMCY families of 3-manifolds, whose fibers have the same Hodge numbers
h'!' = 51 and h*! = 3. The associated period domain is given by B; x D, where D denotes
the bounded domain given by SO(2,2)(R)/K

Hence there exist 4 maximal CMCY families of 3-manifolds, whose fibers have the
Hodge numbers h''! = 51 and h*! = 3. One can easily check that the example of [7]
has a Yukawa coupling of length 3, where the Yukawa coupling of the family Q@ — Mj
constructed in Section 9.2 has the length 1. Hence there are not any open sets of the
respective bases, which allow a local identification of these two families.

By using the involutions on elliptic curves, one gets a local identification between
E X E/((Le,te)) — My x My, which yields the example of [7], with one of our examples
Xt,a,5) — Bitas) With t = 18 and a = 4. This implies a local identification between the
resulting CMCY families of 3-manifolds obtained by the Borcea-Voisin tower.

Remark 11.3.13. It would be interesting to consider the following question: Is the
maximal CMCY family X(10,10,0) its own mirror family?

Let S denote a K3 surface with an involution, which acts by —1 on I'(wg). In [48]
the triples (¢, a,d), which yield our families X(; 4.5y — B(,q,6) satisfying the assumptions of
Proposition 11.3.3, do not satisfy the assumptions of the technical Lemma [48], Lemme
2.5. This Lemma guarantees the existence of a hyperbolic plane H C H?(S,Z);, which
is needed for the mirror construction in [48]. Hence these triples (¢,a,d) do not satisfy
the assumptions of the Mirror Theorem [48], Théoreme 2.17. But by [11], Lemma 4.4.4,
there is a hyperbolic plane H C H?(S,Z); for these triples, too.

In her construction of a Calabi-Yau 3-manifold ([48], Lemme 1.3) C. Voisin assumes
that the involution on the K3 surface is not given by the triple (10, 10,0), since it is
easy to see that the resulting 3-manifold is not simply connected in this case. But by
Proposition 7.2.5 the resulting 3-manifold satisfies our definition of a Calabi-Yau manifold
(Definition 7.2.1) in this case, too.

The mirror of a fiber of X(19,10,0) must have the same Hodge numbers hbt = p2t = 11.
By Claim 10.2.1, this implies for an involution on a K3 surface:

5N — N' =5N'— N =0

Hence one calculates easily that N = N’ = 0. Thus by V. V. Nikulins [42] classification
of involutions on K3 surfaces, the Voisin-Borcea Mirror (in the notation of [11]) of a fiber
of X(10,10,0) should be obtained by the triple (10,10,0), too. Hence the author has the
impression that one can consider the maximal CMCY family X(19,10,0) of 3-manifolds as
its own mirror family, but one must check the details.
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