Effekte von Zielqualität und Zielspezifität auf selbstreguliert-entdeckendes Lernen durch Experimentieren

Dissertation
Zur Erlangung des Doktorgrades Dr. phil.
im Fach Psychologie
von Dipl.-Psych. Josef Künsting
Geboren in Marsberg

Universität Duisburg-Essen, Campus Essen
Fachbereich Bildungswissenschaften

Essen, 13.07.2007
Tag der Disputation: 15.11.2007

1. Gutachter: Prof. Dr. Detlev Leutner (Universität Duisburg-Essen)
2. Gutachter: Prof. Dr. Roland Brünken (Universität des Saarlandes)
Promotionsausschussvorsitzende: Prof. Dr. Gisela Steins (Universität Duisburg-Essen)
Danksagung

Inhaltsverzeichnis

1 Einführung .. 4

2 Lernen als selbstreguliert-entdeckender Prozess .. 7
 2.1 Lernen als aktive Konstruktion von Wissen ... 8
 2.2 Selbstreguliert-entdeckendes Lernen .. 10
 2.2.1 Wissensarten ... 11
 2.2.2 Entdeckendes Lernen .. 12
 2.2.3 Selbstreguliertes Lernen .. 19
 2.2.4 Selbstreguliert-entdeckendes Lernen durch Experimentieren 25
 2.3 Weitere Einflussfaktoren des selbstreguliert-entdeckenden Lernens 27
 2.3.1 Intelligenz und selbstreguliert-entdeckendes Lernen 27
 2.3.2 Vorwissen und selbstreguliert-entdeckendes Lernen 30
 2.3.3 Motivation und selbstreguliert-entdeckendes Lernen 34
 2.4 Zielorientierungen und selbstreguliert-entdeckendes Lernen 36
 2.4.1 Zielorientierung als Konstrukt .. 37
 2.4.2 Zielorientierungen innerhalb selbstreguliert-entdeckenden Lernens 39
 2.5 Zusammenfassung .. 42

3 Instruktion durch externale Zielvorgaben .. 44
 3.1 Das Zielkonzept .. 45
 3.2 Psychologische Konzeptionen externaler Zielvorgaben 46
 3.2.1 Zielspezifität ... 47
 3.2.2 Zielqualität ... 54
 3.3 Bedingungen für die Übernahme externaler Zielvorgaben 63
 3.4 Cognitive load und externe Zielvorgaben ... 65
 3.4.1 Das Arbeitsgedächtnis ... 65
 3.4.2 Die cognitive load-Theorie ... 67
 3.4.3 Cognitive load und Zielspezifität ... 69
 3.5 Zusammenfassung .. 71

4 Forschungsanliegen dieser Arbeit .. 73
 4.1 Ziele der korrelativen Studie .. 74
 4.2 Ziele der experimentellen Studie ... 76

5 Die korrelative Studie ... 81
 5.1 Präzisierung der Fragestellungen und Hypothesen 82
 5.2 Methode ... 83
 5.2.1 Aufbau und Funktion der Experimentierumgebung 83
5.2.2 Stichprobe .. 85
5.2.3 Instrumente .. 85
5.2.4 Vorgehen ... 90
5.3 Ergebnisse ... 92
5.3.1 Evaluation der Experimentierumgebung .. 92
5.3.2 Strategienutzung als Prädiktor für Lernerfolg .. 94
5.3.3 Vorwissen als Moderator ... 97
5.3.4 Weitere Analysen... 101
5.4 Diskussion der korrelativen Studie .. 102
5.4.1 Zur Evaluation der Experimentierumgebung ... 102
5.4.2 Zur Rolle der Strategienutzung als Prädiktor ... 103
5.4.3 Zur Rolle des Vorwissens als Moderator ... 104
5.3.1 Evaluation der Experimentierumgebung .. 92
5.3.2 Strategienutzung als Prädiktor für Lernerfolg .. 94
5.3.3 Vorwissen als Moderator ... 97
5.3.4 Weitere Analysen... 101
5.4 Diskussion der korrelativen Studie .. 102
5.4.1 Zur Evaluation der Experimentierumgebung ... 102
5.4.2 Zur Rolle der Strategienutzung als Prädiktor ... 103
5.4.3 Zur Rolle des Vorwissens als Moderator ... 104
6 Die experimentelle Studie .. 105
6.1 Präzisierung der Fragestellungen und Hypothesen.. 106
6.1.1 Zielqualität und Zielspezifität .. 106
6.1.2 Problemlöseziele ... 107
6.1.3 Lernziele .. 108
6.1.4 Internale Lernzielorientierung und externale Zielvorgaben 108
6.2 Methode ... 110
6.2.1 Stichprobe .. 110
6.2.2 Konstruktion der externalen Zielvorgaben ... 111
6.2.3 Design der Untersuchung .. 113
6.2.4 Versuchsdurchführung und Testreihenfolge .. 113
6.2.5 Instrumente .. 116
6.2.6 Korrelative Zusammenhänge ... 127
6.3 Ergebnisse ... 129
6.3.1 Zielqualität und Zielspezifität .. 136
6.3.2 Problemlöseziele ... 139
6.3.3 Lernziele .. 141
6.3.4 Internale Lernzielorientierung und externale Zielvorgaben 143
6.3.5 Weitere Analysen zu den Fragestellungen .. 144
6.4 Diskussion der experimentellen Studie .. 149
6.4.1 Adaptierte und entwickelte Instrumente ... 149
6.4.2 Zu den Befunden der experimentellen Fragestellungen 151
7 Zusammenfassende Diskussion der Arbeit .. 160
7.1 Zusammenfassender Überblick ... 160
7.2 Theoretische Implikationen und Perspektiven .. 163
1 Einführung

Eine solide naturwissenschaftliche Bildung besitzt in unserer Gesellschaft auch außerhalb von Wissenschaft und Technik eine hohe Bedeutung: Für einen verantwortungsbewussten Umgang mit Gesellschaft und Umwelt, für die Bewältigung alltäglicher, beruflicher und berufsübergreifender Anforderungen des permanenten Technologiewandels.

Zusammenfassend intendiert die vorliegende Arbeit, die Effekte unterschiedlicher Zielvorgaben zum einen auf den Erfolg beim selbstständigen Lernen in Experimentiersituationen (de Jong & van Joolingen, 1998; de Jong, van Joolingen, Veermans & van der Meij, 2005; Klahr & Dunbar, 1988; Veenman & Elshout, 1999) zu untersuchen. Zum anderen werden die Belastung des Arbeitsgedächtnisses (Baddeley,

In Kapitel 4 wird aus dem theoretischen Hintergrund und dem Stand der bisherigen Forschung das Forschungsanliegen für die korrelative und die experimentelle Studie der vorliegenden Arbeit abgeleitet.

Kapitel 7 dient der Zusammenfassenden Diskussion der Befunde zu den zwei Studien der vorliegenden Arbeit, was theoretische sowie praktische Implikationen und Perspektiven einschließt.

2 Lernen als selbstreguliert-entdeckender Prozess

Ausblick auf Kapitel 2. In Kapitel 2.1 erfolgt zunächst ein Überblick über Theorien, die das Lernen als vom Lerner aktiv und eigenständig mitgestalteten Prozess betrachten. Anschließend wird unter Kapitel 2.2, nach der Darstellung der wichtigsten in Lernprozessen erwerbbaren Wissensarten, das entdeckende Lernen im Allgemeinen mit einer Überleitung zum entdeckenden Lernen durch Experimentieren behandelt. In Kapitel 2.2.3 wird erst das selbstregulierte Lernen im Allgemeinen vorgestellt. Schließlich werden in Kapitel 2.2.4 die jeweils für die vorliegende Arbeit zentralen Aspekte des entdeckenden Lernens durch Experimentieren und die des selbstregulierten Lernens zum Begriff des selbstreguliert-entdeckenden Lernens durch Experimentieren zusammengeführt.
2.1 Lernen als aktive Konstruktion von Wissen

Auch die Art der instruktionalen Gestaltung einer offenen Lernumgebung beeinflusst in vielfältiger Weise den Lernerfolg (z.B. Brünken, Plass & Leutner, 2003; Burns &

2.2 Selbstreguliert-entdeckendes Lernen

Im Folgenden wird über die Unterscheidung von Wissensarten (Kapitel 2.2.1) und die Darstellung allgemeiner Prinzipien des entdeckenden Lernens (Kapitel 2.2.2) zunächst auf das entdeckende Lernen durch Experimentieren (Abschnitt 2.2.2.1) hingearbeitet.
2.2.1 Wissensarten

Tabelle 1: Taxonomie von Wissensformen in Anlehnung an Süß (1996)

<table>
<thead>
<tr>
<th></th>
<th>Sachwissen</th>
<th>Handlungswissen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deklaratives Wissen</td>
<td>I. Zeigt sich z.B. darin, Fakten, Konzepte, Sachverhalte, Zustände, Prozesse oder Zusammenhänge beschreiben zu können.</td>
<td>II. Zeigt sich z.B. darin, zielführende Handlungsanleitungen oder Prozeduren in bzw. für Situationen angeben zu können.</td>
</tr>
<tr>
<td>Prozedurales Wissen</td>
<td>III. Zeigt sich z.B. darin, Zustände, Prozesse, Sachverhalte oder Muster als wesentliche Merkmale von Situationen erkennen zu können.</td>
<td>IV. Zeigt sich z.B. darin, zielführende Handlungen, Prozeduren oder Techniken in Situationen durchführen zu können.</td>
</tr>
</tbody>
</table>

Computerbasierte Lernumgebungen, die sowohl die Durchführung von simulierten Handlungsprozessen als auch die Aufnahme von inhaltlichen Informationen über Zusammenhänge zwischen Variablen erlauben, dürften prinzipiell sowohl den Erwerb von deklarativen als auch den von prozeduralem Sach- beziehungsweise Handlungswissen ermöglichen. Textbasiertes Lernen sollte sich weniger für den Erwerb
prozeduralen Sach- und Handlungswissens eignen, da dieses sich in der Fähigkeit äußert, Handlungen und Prozeduren erkennen beziehungsweise durchführen zu können.

2.2.2 Entdeckendes Lernen

Nach Ausubel et al. (1980/81) ist das wesentlichste Merkmal entdeckenden Lernens „…die Tatsache, dass der Hauptinhalt dessen, was gelernt werden soll, nicht gegeben ist, sondern vom Schüler entdeckt werden muss…“ (S.47). Die Autoren ordnen den Lernprozess sowohl auf dem Kontinuum vom mechanischen zum sinnvollen als auch auf dem vom rezeptiven zum entdeckenden Lernen ein, was zu einer Kombination dieser

<table>
<thead>
<tr>
<th></th>
<th>mechanisch</th>
<th>sinnvoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>rezeptiv</td>
<td>I. Wortwörtlich gelernte Information wird nicht mit Vorwissen verknüpft.</td>
<td>II. Inhaltlich gelernte Information wird mit Vorwissen verknüpft.</td>
</tr>
<tr>
<td>entdeckend</td>
<td>III. Selbst entdeckte Sachverhalte werden wortwörtlich gelernt und nicht mit Vorwissen verknüpft.</td>
<td>IV. Selbst entdeckte Sachverhalte werden inhaltlich gelernt und mit Vorwissen verknüpft.</td>
</tr>
</tbody>
</table>

2.2.2.1 Entdeckendes Lernen durch Experimentieren

naturwissenschaftlicher Fragestellungen stehen wissenschaftliche Vorgehensweisen im Vordergrund, die zu einem erfolgreichen Erwerb neuer Informationen führen.

Im Experimenteraum (bei Simon und Lea: instance space) kann nach Operatoren gesucht werden, mit denen sich die Gültigkeit zuvor generierter Hypothesen oder vermuteter Regeln testen lässt. Auf der Durchführungsebene können dann unabhängigen Variablen Ausprägungen zugewiesen werden, um ihren Einfluss auf die Ausprägung abhängiger Variablen beobachten zu können. Beispielsweise könnte die Gültigkeit der oben aufgeführten Regel in einem entsprechenden experimentellen Setting überprüft werden, indem ein bestimmter Körper in einem ersten Experiment in eine Flüssigkeit gegeben wird, deren Dichte kleiner ist als die des Körpers. In einem zweiten Experiment kann der Körper in eine Flüssigkeit gegeben werden, deren Dichte größer ist als die des Körpers. Durch das Hineinwerfen eines Körpers in eine Flüssigkeit wird eine neue Information in Form des Verhaltens des Körpers sichtbar (Schwimmen bzw. Sinken), was Aufschluss über die Richtigkeit der zuvor aufgestellten Hypothese gibt.

2.2.2.2 Strategien des entdeckenden Lernens durch Experimentieren

Im Folgenden werden Strategien des Identifizierens von Informationen beschrieben, die beim entdeckenden Lernen durch Experimentieren relevant sind: Die isolierende Variablenkontrolle, die Variation von Extremwerten und die systematische Ordnung von Experimenten. Die für das entdeckende Lernen durch Experimentieren ebenfalls wichtigen Strategien der Integration von Informationen werden insbesondere in der Forschung zum selbstregulierten Lernen untersucht und in der vorliegenden Arbeit unter Kapitel 2.2.3 behandelt.

Isolierende Variablenkontrolle. Als Experimentierstrategie des Identifizierens in naturwissenschaftlichen Domänen gilt beispielsweise die isolierende Variablenkontrolle (IVK; vgl. z.B. Chen & Klahr, 1999: CVS - Control of Variables Strategy; vgl. auch Tschirgi, 1980). Diese Strategie beinhaltet das Identifizieren und Selektieren von Informationen (ein Merkmal des entdeckenden Lernens; Bruner, 1961), indem bei einem Experiment immer nur die Ausprägung einer unabhängigen Variable verändert wird. Alle anderen unabhängigen Variablen werden konstant gehalten beziehungsweise in ihrer Ausprägung eliminiert, so dass eine potenzielle Veränderung in der abhängigen Variable eindeutig auf die einzige variierte unabhängige Variable zurückgeführt werden kann. Soll beispielsweise für eine bestimmte chemische Substanz (unabhängige Variable) festgestellt werden, ob und wie sie eine bestimmte Flüssigkeit (abhängige Variable) verfärbt, darf sie nicht gleichzeitig mit anderen chemischen Substanzen (weitere unabhängige Variablen) in die Flüssigkeit gegeben werden. Ansonsten ließe sich eine potenzielle Farbveränderung der Flüssigkeit nicht eindeutig allein auf die aktuell interessierende Substanz zurückführen. Als kognitive Lernstrategie ist die isolierende Variablenkontrolle auch beim Lernen in Schülerexperimenten geeignet, um im Sinne des Bildens und Testens von Hypothesen Zusammenhänge zwischen unabhängigen und abhängigen Variablen systematisch zu untersuchen. Ihr positiver Einfluss auf den Lernerfolg konnte in empirischen Studien sowohl unter realen Experimentierbedingungen (z.B. Chen & Klahr, 1999) als auch in computerbasierten Lernumgebungen mit
interaktiven Simulationen vielfach gezeigt werden (Leutner, Klieme, Meyer & Wirth, 2005; Kröner, 2001; Künsting et al., im Druck; Vollmeyer & Rheinberg, 1998).

IVK-between ist das Variieren der Ausprägung genau einer unabhängigen Variable zwischen zwei aufeinander folgenden Experimenten, während alle anderen

\(^1\) Unter der Durchführung eines Experiments wird in der vorliegenden Arbeit genau eine Beobachtung verstanden: Einer oder mehreren unabhängigen Variablen werden bestimmte Ausprägungen oder Werte zugewiesen, um deren potenziellen Einfluss auf abhängige Variablen beobachten zu können.

Extremwertevariation. Eingebettet in die Strategie der isolierenden Variablenkontrolle kann die Strategie der Extremwertevariation (vgl. Wirth, 2004; Wirth & Leutner, 2006) die Deutlichkeit in produzierten Ergebnissen erhöhen. Um wie im obigen Beispiel den Einfluss der Länge einer Metall-Spiralfeder auf ihre Ausdehnung isoliert und extremvariiert zu überprüfen, müsste in einem ersten Experiment die kürzeste und im Folgeexperiment die längste Spiralfeder, aber weiterhin mit identischer Breite und identischem Durchmesser des Spiraldrahtes ausgewählt werden. Außerhalb isolierender Variablenkontrolle (within und between) ist die Extremwertevariation weniger systematisch, da bei einer Variation von mehr als einer unabhängigen Variable pro Zeitpunkt auch ein stärker ausgeprägtes Ergebnis nicht mehr eindeutig auf die Wirkung einer unabhängigen Variable zurückgeführt werden kann.

beugen aber instruktionale Hilfestellungen fehlgeleiteten und ineffizienten Lernprozessen vor.

Für das Hypothesentesten durch Experimentieren kommt insbesondere der Experimentierstrategie der isolierenden Variablenkontrolle (IVK) als systematische Vorgehensweise für die Identifizierung von Informationen gerade in naturwissenschaftlichen Domänen eine zentrale Rolle zu. Nachhaltiger Wissenserwerb findet jedoch nur dann statt, wenn identifizierte Informationen auch integriert werden.

2.2.3 Selbstreguliertes Lernen

Vor der Zusammenführung des Forschungsansatzes des entdeckenden Lernens durch Experimentieren mit dem des selbstregulierten Lernens in Kapitel 2.2.4, wird der prinzipielle Ansatz des selbstregulierten Lernens mit seinen Strategien eingeführt.

Pintrich (2000; vgl. auch Friedrich & Mandl, 1997; Schreiber, 1998) bezieht in seine Definition des selbstregulierten Lernens zusätzlich mit ein, dass selbstreguliertes Lernen auch durch die jeweilige Lernumgebung geleitet und eingeschränkt wird: „…a general working definition of self-regulated learning is that it is an active, constructive process whereby learners set goals for their learning and then attempt to monitor, regulate, and control their cognition, motivation, and behaviour, guided and constrained by their goals and the contextual features in the environment“ (S. 453).

2.2.3.1 Strategien des selbstregulierten Lernens

wenigstens eine zusätzliche akzessorische Eigenschaft aufweisen. Als akzessorische Eigenschaften kommen in Frage, dass sie intentional, bewusst, spontan, kontrolliert, kapazitätsbelastend und/oder selektiv sind“ (S. 61).

Schließlich wird unter konditionalem Metawissen die Kenntnis darüber verstanden, unter welchen Bedingungen und warum welche kognitive Strategie angewandt werden kann.

2.2.4 Selbstreguliert-entdeckendes Lernen durch Experimentieren

Gemeinsam ist den Forschungsansätzen zum selbstregulierten Lernen und zum entdeckenden Lernen durch Experimentieren die selbstständige und aktiv konstruiierende Erschließung neuen Wissens. Die meisten Forschungsansätze zum selbstregulierten Lernen beziehen sich auf die Regulation von Lernprozessen beim Lernen mit Texten und fokussieren dementsprechend textbasierte Lernstrategien (vgl. z.B. Artelt, 2000; Baumert, Heyn & Köller, 1992; Baumert & Köller, 1996; Friedrich & Mandl, 1997; Leutner & Leopold, 2006; Lonka, Lindblom-Ylänne & Maury, 1994; Schlagmüller & Schneider, 1999; Wild & Schiefele, 1994).

Dem Prinzip des selbstregulierten Lernens kann jedoch eine lernformübergreifende Gültigkeit zugeschrieben werden, da beispielsweise metakognitive Strategien, wie die Planung eines Lernprozesses, bei jeglichem Lernen eine Rolle spielen. Bei konkreten kognitiven Strategien hingegen gibt es qualitative Unterschiede in Abhängigkeit davon, ob sie für das Textlernen oder für das experimentierende Lernen geeignet sind (vgl. Abschnitte 2.2.2.2 und 2.2.3.1).

Basierend auf diesen Überlegungen, dass entdeckendes Lernen durch Experimentieren untrennbar mit selbstreguliertem Lernen verwoben ist, werden im
Rahmen der vorliegenden Arbeit beide Konzepte zum Begriff des *selbstreguliert-entdeckenden Lernens* kombiniert.

2.3 Weitere Einflussfaktoren des selbstreguliert-entdeckenden Lernens

2.3.1 Intelligenz und selbstreguliert-entdeckendes Lernen

Strategienutzung) am ehesten bei einem ausgeglichenen Verhältnis zwischen Vorwissen und Aufgabenkomplexität zu erwarten (siehe auch Leutner, 2002).

2.3.2 Vorwissen und selbstreguliert-entdeckendes Lernen

Bei der Informationsverarbeitung im Arbeitsgedächtnis (Baddeley, 1986) sind Probanden mit hohem Vorwissen im Vorteil, weil sie neue Informationen in bereits bestehende Wissenseinheiten oder chunks einordnen können. Da das Arbeitsgedächtnis nur eine beschränkte Menge von Informationen simultan aufrechterhalten kann (Miller, 1956; Baddeley, 1986), ist die verarbeitbare Informationsmenge umso größer, je mehr einzelne Informationen zu jeweils sinnvollen Einheiten zusammengefasst sind. Zur Speicherung von Informationen im Langzeitgedächtnis trägt ein hohes Vorwissen durch die Möglichkeit der Integration neuer Informationen in bereits vorhandene Schemata bei, was den neuen Informationen zugleich Sinn zuweist. Schließlich werden der Abruf und die Nutzung von Informationen aus dem Langzeitgedächtnis durch die Integration in eine reichhaltige Vorwissensbasis gefördert: Hierdurch entstehen assoziative Verknüpfungen
mit semantisch benachbarten Wissenselementen, was die Anzahl der Bahnungen für den Abruf von Informationen vergrößert. Zudem ist bei hohem Vorwissen eher als bei geringem Vorwissen zu erwarten, dass es Wissen um Anwendungsbedingungen enthält, was den anforderungsadaptiven Abruf konditionalen Wissens begünstigt.

Schließlich ist eine einschränkende Bedingung, dass der Einfluss von Vorwissen auf das Lernen im Verlauf eines Wissenserwerbsprozesses sinkt. In dem Maße, in dem vorhandene Wissensstrukturen um neue ergänzt werden, neigen Lerner dazu, diese neuen Wissensstrukturen für den weiteren Wissenserwerb aktiv zu halten. Es kann ein allmählicher Übergang vom Vorwissen als anfängliche Integrationsbasis zu aktuell neu erworbenem Wissen als weitere Integrationsbasis für folgende Wissenserwerbsprozesse angenommen werden (Süß et al., 1993).

2.3.3 Motivation und selbstreguliert-entdeckendes Lernen

Motivation kann sowohl quantitativ als auch qualitativ differenziert werden. Ein Lerner kann beispielsweise eine starke oder schwache Aufgaben- oder Lernmotivation besitzen, welche als Intensität der Absicht oder des Wunsches zu verstehen ist, eine Aufgabe zu bearbeiten beziehungsweise etwas zu lernen. Neben der Einteilung in Intensitätsgrade der Motivation sind unterschiedliche Orientierungen oder Arten der Motivation

Fazit. Motivation ist eine zentrale Komponente in Lernprozessen. Ihr Ausmaß bezeichnet die Intensität der Absicht oder des Wunsches, etwas zu lernen oder eine Aufgabe zu bearbeiten. Intrinsisch motivierte Lerner führen Lernhandlungen um ihrer selbst willen durch, während extrinsisch motivierte Lerner die Konsequenzen von Lernhandlungen anstreben. Es ist zu erwarten, dass ein minimales Ausmaß an Motivation notwendig ist, damit Lernprozesse aktiv vom Lerner initiiert werden und erfolgreich sind (vgl. auch Deci & Ryan, 2000). Obwohl bei intrinsischer Motivation aus eigenem Interesse für den Inhalt gelernt wird, zeigt die Befundlage nur moderate Zusammenhänge zwischen Maßen intrinsischer Motivation und schulischen Lernleistungen, was auch für Maße des Interesses gilt. Dabei beeinflusst die Leistung das Interesse tendenziell stärker als umgekehrt. Die aktuelle Motivation, die entsteht, wenn die stabilere Motivstruktur einer Person mit spezifischen Anregungsinhalten einer Lernsituation übereinstimmt, sollte einen direkten Einfluss auf Lern- und Leistungsverhalten ausüben.

2.4 Zielorientierungen und selbstreguliert-entdeckendes Lernen

1999; Garcia & Pintrich, 1994) prüfte in seiner Arbeit die Rolle dreier unterschiedlicher motivationaler Überzeugungen (motivational beliefs) für das selbstregulierte Lernen. Dabei unterschied er (1) Selbstwirksamkeitsüberzeugungen (die aufgabenspezifische Erfolgserwartung; self-efficacy beliefs), (2) Aufgabenwert-Überzeugungen (die Überzeugung hinsichtlich der Wichtigkeit der Aufgabe und hinsichtlich des Interesses für sie; task value beliefs) und Zielorientierungen (das Streben nach Lernzuwachs vs. das Streben nach sozialen Leistungsvergleichen; goal orientations). In den regressionsanalytischen Ergebnissen der Studie zeigte sich, dass die drei genannten motivationalen Überzeugungen sowohl die selbstregulierte Wissenserwerbsleistung als auch die selbstberichtete Nutzung kognitiver und metakognitiver Strategien signifikant vorhersagen können (z.B. $\beta = .48$ für Lernzielorientierung als Prädiktor für die Nutzung von Elaborationsstrategien).

2.4.1 Zielorientierung als Konstrukt

2.4.2 Zielorientierungen innerhalb selbstreguliert-entdeckenden Lernens

regressionsanalytisch, dass sowohl eine von Schülern wahrgenommene Lernzielstruktur des Schulunterrichts (mastery structure) als auch die schülerseitige Lernzielorientierung (mastery orientation) die selbst berichtete Nutzung kognitiver und metakognitiver Strategien statistisch signifikant vorhersagte (mastery structure: \(\beta = .22 \) für kognitive und \(\beta = .16 \) für metakognitive Strategien, \(p < .01 \); mastery orientation: jeweils \(\beta = .47 \) für kognitive und metakognitive Strategien, \(p < .01 \)). Für eine wahrgenommene Leistungszielstruktur des Unterrichts (performance structure) und Leistungszielorientierung der Schüler (performance orientation) war diese Vorhersage jedoch nicht bedeutsam (vgl. Archer, 1994; Elliot & McGregor, 2001).

1. Motivationale Komponente (siehe Abbildung 1). Es wird davon ausgegangen, dass diese Komponente zu Beginn eines Lernprozesses die Wahrnehmung und die Einschätzung der Merkmale von Aufgaben beeinflusst, woraufhin die Person bestimmte
Ziele für die Aufgabe wählt (vgl. Pintrich, 1999; Schreiber, 1998; Winne & Hadwin, 1998). Die Zielorientierung, das Selbstkonzept, die Selbstwirksamkeitsüberzeugung, das Interesse und die aktuelle Motivation einer Person bestimmen die Ziele, die sie sich bei konkreten Aufgaben setzt, was wiederum die Art der Herangehensweise an Aufgaben beeinflusst und somit selbstregulierte Lernprozesse ausrichtet (Boekaerts, 1999; vgl. Meece, 1994; Winne & Hadwin, 1998).

Fazit. Selbstreguliertes Lernen ist ein zyklischer Prozess, in dem motivationale, metakognitive und kognitive Komponenten gegenseitig aufeinander einwirken. Dabei richtet die internale Zielorientierung einer Person das selbstregulierte Lernen aus, da sie die Ziele prägt, die sich eine Person bei der Auseinandersetzung mit einer Aufgabe setzt. Lernzielorientierte Personen setzen für nachhaltige Lernprozesse vorteilhaftere metakognitive und kognitive Strategien ein als leistungszielorientierte Personen.

2.5 Zusammenfassung

Entdeckendes Lernen ist ein Prozess, in dem Lernende aktiv und reflektierend deklaratives beziehungsweise prozedurales Sach- und Handlungswissen konstruieren...
können, wobei sinnvoll-entdeckend erworbenes Wissen am ehesten die Voraussetzungen für längerfristige Verfügbarkeit und flexible Anwendbarkeit erfüllt. Frühere Forschungsansätze zum entdeckenden Lernen schenken dem selbstregulativen Aspekt von Lernprozessen wenig Beachtung. Aktuellere Ansätze zum entdeckenden Lernen durch Experimentieren (scientific discovery learning) integrieren die Selbstregulation hingegen als festen Bestandteil in Prozesse des entdeckenden Lernens durch Experimentieren.

Der selbstregulative Akt beim selbstreguliert-entdeckenden Lernen durch Experimentieren besteht im Kern darin, dass ein Lerner neu erzeugte Informationen für den weiteren Verlauf des Lernens berücksichtigt: Auf der Basis neuer Informationen können neue Schlussfolgerungen gezogen, bestehende Hypothesen falsifiziert oder bestätigt und gegebenenfalls entsprechende Folgeexperimente durchgeführt werden.

3 Instruktion durch externale Zielvorgaben

Im vorangegangenen Kapitel wurden innerhalb der Person liegende Faktoren behandelt, die das selbstreguliert-entdeckende Lernen durch Experimentieren beeinflussen. Das folgende Kapitel behandelt für diese Lernform relevante Faktoren, die in der Lernumwelt der Person liegen. Zu solchen Faktoren zählen externe (von außen vorgegebene) Zielvorgaben als instruktionale Maßnahmen. Die Prüfung der Wirkung von externalen
Zielvorgaben auf den Erfolg beim selbstreguliert-entdeckenden Lernen durch Experimentieren ist ein zentrales Anliegen der vorliegenden Arbeit.

3.1 Das Zielkonzept

3.2 Psychologische Konzeptionen externaler Zielvorgaben

zentrale psychologische Konzeptionen von Zielvorgaben gegeben, bevor konkreter auf bisherige instruktionspsychologische Studien zu Zielvorgaben eingegangen wird. Der Schwerpunkt liegt in der Ausarbeitung der Dimensionen *Zielspezifität* und *Zielqualität*.

3.2.1 Zielspezifität

3.2.1.1 Organisationspsychologische Konzeptionen von Zielvorgaben

Die genannten Untersuchungen sind jedoch sowohl theoretisch als auch empirisch auf organisationspsychologische Belange zugeschnitten: Von bestimmten Zielvorgaben sollen langfristige Effekte auf die Motivation, die Leistung und das Engagement (commitment) erwachsener Mitarbeiter eines Unternehmens ausgehen. Eine psychologisch durchdachte Mitarbeiterführung, wozu auch geeignete und situationsangepasste Zielvorgaben zählen, intendiert letztlich unternehmerische Erfolge und materielle Ergebnisse (z.B. Verbesserung der Auftragslage und Gewinnspanne).

3.2.1.2 Instruktionspsychologische Konzeptionen von Zielvorgaben

 Anders als organisationspsychologische Studien zeigen in struktionspsychologisch ausgerichtete Forschungsarbeiten zur Zielspezifität die Überlegenheit unspezifischer (allgemein und vage formulierte) Zielvorgaben gegenüber spezifischen (konkret und präzise formulierte) Zielvorgaben⁶, was als Zielspezifitätseffekt bezeichnet wird (z.B. Ayres, 1993; Brunstein & Krems, 2005; Burns & Vollmeyer, 2002; Geddes & Stevenson, 1997; Mawer & Sweller, 1982; Miller, Lehman & Koedinger, 1999; Owen & Sweller, 1985; Sweller, 1988, 1994; Sweller et al., 1983; Trumpower et al., 2004; Vollmeyer et al., 1996; Vollmeyer, Burns & Rheinberg, 2000).

Die Überlegenheit unspezifischer Ziele drückt sich in diesen Arbeiten überwiegend darin aus, dass die Probanden unter dieser Bedingung näher an anschließend gesetzte Problemlöseziele herankamen, weniger Fehler machten, teilweise kürzere Bearbeitungszeiten aufwiesen und mehr deklarativ-konzeptuelles Wissen erwarben (z.B. häufiger benennen konnten, welche Variablen in welcher Wirkungsrichtung und in welcher Intensität zusammenhängen). Zusätzlich konnte bei der Vorgabe unspezifischer Ziele erworbenes Wissen in oberflächlich veränderten, aber strukturell ähnlichen Aufgaben besser angewendet werden als bei der Vorgabe spezifischer Ziele.

Bevor die scheinbar widersprüchlichen Befundmuster organisationspsychologischer und instruktionspsychologischer Studien voreilig dazu verleiten, sie als sich gegenseitig abschwächen zu betrachten, muss die unterschiedliche Intention der Studien berücksichtigt werden. Im Gegensatz zu organisationspsychologischen Studien (siehe

Im Folgenden soll eine beispielhafte Auswahl von Studien aus der bestehenden instruktionspsychologischen Forschung zur Zielspezifität eine Einsicht darin geben, wie und bei welchen Aufgabenarten spezifische und unspezifische Zielvorgaben bislang definiert, operationalisiert und eingesetzt wurden. Dadurch sollen Unterschiede zwischen diesen zwei Zielarten insbesondere hinsichtlich ihrer wesentlichen Merkmale und ihrer Wirkung auf lernerfolgsrelevanten Variablen herausgestellt werden.

Der Zielspezifitätseffekt wurde auch in komplexen computersimulierten Systemen untersucht, die das in Abschnitt 2.2.2.1 dargestellte Zwei-Räume-Modell zugrunde

Fazit. Instruktionspsychologische Studien zur Zielspezifität zeigen, dass external vorgegebene unspezifische Ziele lernförderlicher sind und anschließend zu besseren

3.2.2 Zielqualität

Nachdem in Kapitel 3.2.1 die Dimension *Zielspezifität* (spezifische vs. unspezifische Ziele) behandelt wurde, intendiert das hier vorliegende Kapitel die Einführung der

Tabelle 3: Taxonomie von Beispielen für Zielvorgaben aus vier bisherigen Studien

<table>
<thead>
<tr>
<th>Spezifische Ziele</th>
<th>Unspezifische Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Berechne den Wert für den Winkel X!“ (Sweller, 1994)</td>
<td>„Lerne das Verhalten von Clegg zu kontrollieren!“ (Geddes & Stevenson, 1997)</td>
</tr>
<tr>
<td>„Bestimme die Seitenlänge X im Dreieck“ (Sweller, 1988)</td>
<td>„Bestimme so viele Seitenlängen der Dreiecke wie du kannst!“ (Sweller, 1988)</td>
</tr>
<tr>
<td>„Wie weit ist das Auto gefahren?“ (Sweller et al., 1983)</td>
<td>„Berechne die Werte so vieler Variablen, wie du kannst!“ (Sweller et al., 1983)</td>
</tr>
<tr>
<td>„Bringe Clegg dazu, sich freundlich zu verhalten!“ (Geddes & Stevenson, 1997)</td>
<td></td>
</tr>
</tbody>
</table>

In der vorliegenden Arbeit wird das Prinzip, durch die Aufforderung einer Zielvorgabe einen situationalen Zustand herzustellen, als eine problemlösezielorientierte
Herangehensweise an eine Aufgabe verstanden. Deshalb wird eine solche Zielvorgabe in der vorliegenden Arbeit als **Problemlöseziel** bezeichnet. Hingegen wird das Prinzip, durch die Aufforderung einer Zielvorgabe etwas herauszufinden oder zu lernen, als eine **lernzielorientierte** Herangehensweise aufgefasst. Eine solche Zielvorgabe wird in der vorliegenden Arbeit als **Lernziel** bezeichnet. In den zwei nächsten Abschnitten werden die prinzipiellen Eigenschaften von Problemlösezielen und Lernzielen sowie ihre jeweiligen Definitionen ausgearbeitet. Anschließend werden in Abschnitt 3.2.2.3 die Dimensionen Zielqualität (Problemlöseziele vs. Lernziele) und Zielspezifität (spezifische vs. unspezifische Ziele) gegenübergestellt und zu vier verschiedenen Zielarten kombiniert.

3.2.2.1 External gesetzte Problemlöseziele

7 Die vorliegende Arbeit verwendet den Begriff „Aufgabenbearbeitung“ ebenfalls in Zusammenhängen, in denen nicht oder nicht nur die routinierte Anwendung hinreichenden Wissens vorliegt. Wenn die auf dieser Seite aufgeführte spezifische Bedeutung von Aufgabenbearbeitung gemeint ist, so wird dies expliziert.
aktuellen situationalen Zustand, der vom Zielzustand noch mehr oder weniger weit entfernt ist, als auch aus sämtlichen potenziellen situationalen Zuständen, die durch einen oder mehrere Operatoren hergestellt werden können. Operatoren werden als Handlungen verstanden, die sich in definierten Zuständen einsetzen lassen, und die eine definierte Wirkung auf einen solchen Zustand ausüben, indem sie diesen in einen bestimmten neuen Zustand überführen. Das Suchen nach einem bislang unbekannten Operator oder nach einer Sequenz von Operatoren, mit der sich ein aktueller Zustand in den Zielzustand transformieren lässt, macht den Prozess des Problemlösens aus.

3.2.2.2 External gesetzte Lernziele

Lehrziele. In der vorliegenden Arbeit werden Lern- und Lehrziele terminologisch differenziert. Nach behavioristischer Tradition definiert ein Lehrziel den Inhalt (Stimuluskomponente) und das Verhalten (Reaktionskomponente), so dass klar wird, was Lernende durch die Auseinandersetzung mit dem Inhalt wissen oder tun können sollen (Gagné, 1965; Mager, 1969). Solche Lehrziele addressieren Lehrende und teilen ihnen mit, welche spezifischen Anforderungen Lernende erfüllen müssen, um einen Soll-

auch die zur Integration von Informationen (siehe Abschnitte 2.2.2.2 und 2.2.3.1; vgl. Wirth, 2004).

Abbildung 2: Das Lernziel als Produkt eines Lehrziels, angelehnt an Klauer (1987)

3.2.2.3 Kombination von Zielspezifität und Zielqualität

Ein spezifisches Lernziel fokussiert explizit das nachhaltige Erlernen eines einzelnen, konkret und präzise definierten Zusammenhangs. Unspezifische Lernziele haben dagegen einen übergreifenden Charakter, so dass sie keine konkreten Beziehungen zwischen bestimmten Parametern, sondern das nachhaltige Erlernen möglichst vieler, nicht explizierter Zusammenhänge fordern.

Fazit. In der Lehr-Lern-Forschung wurde bisher nicht explizit zwischen Lernzielen und Problemlösezielen unterschieden. Angesichts der Annahme, dass Problemlöseziele dazu auffordern, situative Zustände oder Ergebnisse zu erreichen (Zustandsveränderung außerhalb der Person), und ein Lernziel dazu auffordert, nachhaltig Wissen zu erwerben (Zustandsveränderung innerhalb der Person), erweist sich diese Unterscheidung jedoch als notwendig. Lernziele sollten aufgrund ihres lernzielorientierten Aufforderungscharakters den Erfolg selbstreguliert-entdeckender Lernprozesse stärker positiv beeinflussen als Problemlöseziele, für deren Erreichung nachhaltiges Lernen nicht zwingend notwendig ist. Lernziele werden in der vorliegenden Arbeit jedoch nicht nur von Problemlösezielen abgegrenzt, sondern gleichfalls von Lehrzielen. Während Lehrziele für Lehrende definieren, was Lernende wissen oder können sollen, definieren Lernziele für Lernende als Produkt eines Lehrziels auf instruktionaler Ebene, was sie lernen sollen. Von außen gesetzte Lernziele verstehen sich als direkte und lernerbezogene Aufforderung zu lernen, was mit größerer Wahrscheinlichkeit zu effizienten Prozessen selbstreguliert-entdeckenden Lernens führen sollte als von außen gesetzte Problemlöseziele.

3.3 Bedingungen für die Übernahme externer Zielvorgaben

Im Rahmen der vorliegenden Arbeit wird davon ausgegangen, dass der Grad der Übernahme eines external vorgegebenen Ziels von seinem Übereinstimmungsgrad mit

8 Eine bezogen auf einen bestimmten Inhaltsbereich intrinsisch motivierte und lernzielorientierte Person würde zwar auch ohne externe Lernzielvorgabe zu Lernhandlungen tendieren, jedoch soll eine Lernzielvorgabe eine Person dazu auffordern, das zu lernen, was dem einem Lernziel übergeordneten Lehrziel entspricht.

Eine hohe aufgabenspezifische Selbstwirksamkeitsüberzeugung ist generell als förderliche Bedingung für die Übernahme external gesetzter Ziele (Lern- und Problemlöseziele) zu sehen, während die Ausprägung des akademischen Selbstkonzepts eigener Begabung nur bei leistungszielorientierten Personen die Übernahme eines Ziels beeinflussen sollte.
3.4 Cognitive load und externale Zielvorgaben

3.4.1 Das Arbeitsgedächtnis

Das Subsystem der phonologischen Schleife (articulatory loop) ist experimentell am besten belegt und wird als passiver, temporärer Speicher beschrieben, der sprachbasierte Informationen kodiert (Baddeley, Gathercole & Papagno, 1998; Gathercole & Baddeley, 1993). Baddeley differenziert die phonologische Schleife weiter aus, indem er das Adjektiv artikulatorisch benutzt, wenn er die Sprachproduktion meint.

Episodischer Puffer (episodic buffer). Der episodische Puffer (Baddeley, 2000a, 2002 vgl. Pearson, 2006; Abbildung 4) ist ein multimodales Speichersystem mit begrenzter Kapazität, das visuell-räumliche und phonologische Informationen aus den zwei slave systems temporär speichert und mit Informationen aus dem LZG kombiniert, was durch die zentrale Exekutive koordiniert wird (Baddeley, 2002; vgl. auch Logie, 1995).
3.4.2 Die cognitive load-Theorie

Abbildung 4: Das Modell des Arbeitsgedächtnisses, angelehnt an Baddeley (2002)
Ein Schema organisiert Elemente gemäß ihrer Interaktivität zu größeren Sinneseinheiten. Erst muss das Wissen über schemakonstituierende Elemente und ihre Reziprozität konsolidiert, also (möglichst störungsfrei) in das Langzeitgedächtnis gelangt sein, bevor es erfolgreich in neuen Lernsituationen angewendet werden kann.

Extraneous load ist nach Sweller die kognitive Belastung, die durch instruktionale Bedingungen einer Aufgabe auferlegt werden und ergibt sich aus der grafischen, textuellen oder strukturellen Gestaltungsart einer Aufgabe (Aufgabendesign). Damit ist der extraneous load einer Aufgabe instrukional veränderbar, ohne dass der intrinsic load und die Aufgabe selbst verändert werden müssen. Beispielsweise ist der extraneous load reduzierbar, indem gedruckte Wörter in die Nähe korrespondierender Teile einer Grafik platziert werden, was die Multimedia-Forschung als räumlichen Kontiguitätseffekt bezeichnet (spatial contiguity effect; Mayer, 2001; Mayer & Moreno, 2003). Auf extraneous load basierte kognitive Aktivitäten tragen nur indirekt oder gar nicht zum Wissenserwerb bei. Sie können das Lernen aber behindern, indem sie die Kapazität des Arbeitsgedächtnisses belegen, die sonst für Lernprozesse genutzt werden könnte.

Abbildung 5: Beispiel für die verbleibende kognitive Kapazität für den germane load in Abhängigkeit vom Vorwissen (bei angenommener Konstanz des extraneous load)

3.4.3 Cognitive load und Zielspezifität

In Anlehnung an die Arbeiten von Halford et al. (1986), Mayberry et al. (1986), Owen und Sweller (1985), Sweller (1988, 1994) sowie Sweller et al. (1983) kann davon

Dual-task-Belastung. Spezifische Problemlöseziele führen (anders als unspezifische Problemlöseziele) nach Sweller (1988, 1994) zusätzlich zu einer dual-task-Bedingung: Es überwiegen kognitive Aktivitäten des ProblemlöSENS (primary task), so dass relativ wenig Kapazität des Arbeitsgedächtnisses für lernprozessrelevante kognitive Aktivitäten (secondary task) verbleibt. Allerdings drängt sich der Gedanke auf, dass eine solche

3.5 Zusammenfassung

Die bisherige Forschung zur Wirkung von externalen Zielvorgaben auf Problemlöse- und Lernprozesse unterschied hauptsächlich zwischen spezifischen und unspezifischen Zielen. Organisationspsychologische Studien finden bei unspezifischen Zielvorgaben höhere Leistungen als bei spezifischen Zielvorgaben. Sie untersuchen aber meist berufsrelevante Leistungen in der Zielerreichung selbst als abhängige Variable. Instruktionspsychologische Studien des pädagogisch-psychologischen Kontexts zeigen...

Es wird davon ausgegangen, dass die Übernahme external gesetzter Ziele durch eine Person durch eine kongruente internale Zielorientierung und eine hohe aktuelle Motivation der Person begünstigt wird. Beispielsweise sollte der Übernahmegrad external gesetzter Lernziele umso höher sein, je lernzielorientierter Personen sind und je höher ihre aktuelle Motivation bezogen auf jeweils gesetzte Lernziele ist.

Die Unterschiede im Lern- und Problemlöseerfolg, die sich in Abhängigkeit vom Spezifitätsgrad external gesetzter Problemlöseziele gezeigt haben, wurden insbesondere in den Arbeiten von Sweller und Mitarbeitern auf die Belastung des Arbeitsgedächtnisses (cognitive load) zurückgeführt. Sweller interpretiert die größere Lern- und
Problemlöseleistung nach der Vorgabe unspezifischer Problemlöseziele im Vergleich zu spezifischen Problemlösezielen so, dass spezifische Problemlöseziele die Tendenz zur Anwendung der Mittel-Ziel-Analyse als Problemlösestrategie auslösen. Der Einsatz dieser Strategie ist nicht effizient für das Lernen, sondern in erster Linie für die Lösung von Problemen und erlegt zusätzlich einen hohen *cognitive load* auf. Unspezifische Problemlöseziele lösen nach Sweller hingegen die Fokussierung der Aufmerksamkeit auf lernrelevante Aspekte einer Aufgabe aus.

Lernförderliche Bedingungen in eine Lernumgebung zu implementieren, heißt einerseits den *extraneous cognitive load* durch instruktionale Gestaltungsprinzipien der Aufgabe in Maßen gering zu halten (z.B. redundantes Material entfernen) und andererseits die Investition der kognitiven Ressourcen Lernender in den lernförderlichen *germane cognitive load* zu erhöhen (z.B. durch geeignete Lernziele).

4 Forschungsanliegen dieser Arbeit

Um selbstreguliert-entdeckendes Lernen durch Experimentieren in Abhängigkeit von externen Zielvorgaben verwirklichen und an einer ausreichenden Anzahl von Probanden ökonomisch untersuchen zu können, wurde zunächst eine computerbasierte Experimentierumgebung gemäß dem SDDS-Ansatz (Klahr & Dunbar, 1988; Abschnitt 2.2.2.1) entwickelt und evaluiert. Mit Blick auf das oben genannte Defizit gerade bei Schülerexperimenten besitzt diese interaktive Experimentierumgebung einen curricular validen physikalischen Inhaltsbereich: „Auftrieb in Flüssigkeiten“. Mit der Entwicklung computersimulierter Experimentierumgebungen (z.B. Alessi & Trollip, 1985; Chen & Zhang, 2006; de Jong & van Joolingen, 1998; Leutner, 1990; van Joolingen & de Jong, 1997) wurden Instrumente geschaffen, mit denen selbstreguliert-entdeckendes Lernen

10 Die Lernumgebung der vorliegenden Arbeit wird als „Experimentierumgebung“ bezeichnet, da dieser Begriff zum einen das selbstreguliert-entdeckende Lernen durch Experimentieren besser repräsentiert. Zum anderen wird davon ausgegangen, dass unter spezifischen Problemlösezielen nicht zwangsläufig Lernen erfolgt, so dass der Begriff Experimentierumgebung neutraler ist.

4.1 Ziele der korrelativen Studie

Das erste Ziel dieser Arbeit ist somit eine Evaluation der computerbasierten Experimentierumgebung und weiterer Instrumente innerhalb einer korrelativen Studie.

Isolierende Variablenkontrolle als eigenständiger Prädiktor für den Lernerfolg unter Kontrolle weiterer lernerfolgsrelevanter Variablen. Die Strategienutzung bezieht sich auf die insbesondere beim experimentierenden Lernen in physikalischen Domänen relevante between-Variante der isolierenden Variablenkontrolle (IVK-between, siehe Abschnitt 2.2.2.2), welche bislang nahezu ausschließlich in Interventionsstudien mit realen Experimentierkontexten untersucht wurde (Künsting et al., im Druck). Zudem wurden in diesen Studien Faktoren, die potenziell einen Einfluss auf die Wirksamkeit der IVK-between-Strategienutzung auf den Lernerfolg haben können (wie z.B. Intelligenz, Motivation, metakognitives Strategiewissen oder domänenspezifisches Vorwissen) nicht hinreichend berücksichtigt (z.B. Chen & Klahr, 1999). Entsprechende Ergebnisse, wie sie im Hinblick auf die IVK-within-Variante berichtet werden (z.B. Kröner, 2001), lassen sich nicht ohne weiteres auf die IVK-between-Variante übertragen, da man von deutlichen Unterschieden zwischen diesen Varianten ausgehen muss (Abschnitt 2.2.2.2; Künsting et al., im Druck; Wirth et al., 2005). Es besteht daher die Frage, inwieweit die IVK-between-Strategienutzung beim selbstreguliert-entdeckenden Lernen durch Experimentieren den Lernerfolg vorhersagt, wenn zusätzlich weitere Prädiktoren als Kontrollvariablen in das Prädiktionsmodell aufgenommen werden.

Der Einfluss von Vorwissen auf die Effekte der Strategienutzung auf den Lernerfolg. Bei der Nutzung von Lernstrategien beim selbstreguliert-entdeckenden Lernen in einem realen Experimentiersetting oder in einer computerbasierten Experimentierumgebung, die einen realen Inhaltsbereich simuliert, können domänenspezifische Vorwissenseffekte nicht ausgeschlossen werden (z.B. Süß, 1996). Ein ausreichend hohes Vorwissen ist die Basis für das Aufstellen von Hypothesen (vgl. Klahr & Dunbar, 1988; Schunn & Anderson, 1999), die durch strategische Experimente überprüft werden können, was die Nutzbarkeit von Strategien und ihren Einfluss auf den Lernerfolg begünstigt (Kapitel 2.3.2; vgl. Baumert & Köller, 1996; Künsting et al., im Druck; Schraagen, 1993).

11 Im Folgenden steht der Begriff Strategienutzung immer für die Nutzungshäufigkeit der between-Variante der Strategie der isolierenden Variablenkontrolle. Ist von einer anderen Strategie die Rede, so wird dies kenntlich gemacht.
Darum besteht das dritte Ziel der korrelativen Studie in der Überprüfung der Annahme, dass der Zusammenhang zwischen Strategienutzung und Erfolg des selbstreguliert-entdeckenden Lernens durch Experimentieren bedeutsam durch Vorwissen moderiert wird (Künsting et al., im Druck).

4.2 Ziele der experimentellen Studie

Danach zu unterscheiden, ob eine Zielvorgabe Problemlösen oder Lernen intendiert, sollte basierend auf den obigen Überlegungen eine größere Rolle für den Lernerfolg spielen als danach zu unterscheiden, ob eine Zielvorgabe spezifisch oder unspezifisch ist. Da sowohl spezifische als auch unspezifische Lernziele explizit zum Lernen auffordern, sollten sie unabhängig vom Spezifitätsgrad zusammen einen größeren Lernerfolg bewirken als spezifische und unspezifische Problemlöseziele zusammen, die beide explizit zum Problemlösen auffordern. Dies wird in der vorliegenden Untersuchung als Zielqualitätseffekt bezeichnet.

Das erste und zentrale Ziel der experimentellen Studie ist demnach zum einen, die beiden Dimensionen Zielspezifität und Zielqualität hinsichtlich ihrer Rolle für den Erfolg von selbstreguliert-entdeckenden Lernprozessen zu vergleichen. Zum anderen wird überprüft, ob Lernziele einen größeren Lernerfolg bewirken als Problemlöseziele.

Weil sowohl spezifische als auch unspezifische Lernziele explizit zum Lernen auffordern, sollten sie beide zu einer vergleichbaren Häufigkeit der Strategienutzung führen. Daher sollte die Zielspezifität für die Strategienutzung nur bei Problemlösezielen eine Rolle spielen, nicht aber bei Lernzielen. Zusammen sollten Lernziele immer noch
eine häufigere Strategienutzung bewirken als spezifische und unspezifische Problemlöseziele zusammen, die beide explizit zum Problemlösen auffordern.

Entsprechend beinhaltet das zweite Ziel der experimentellen Studie zum einen, die beiden Dimensionen Zielspezifität und Zielqualität hinsichtlich ihrer Rolle für den cognitive load zu vergleichen und zu prüfen, ob Problemlöse- und Lernziele einen vergleichbar hohen cognitive load bewirken. Zum anderen sollen die Dimensionen Zielspezifität und Zielqualität hinsichtlich ihrer Rolle für die Strategienutzung verglichen werden. Eine offene Frage hierbei ist, ob Lernziele eine häufigere Strategienutzung bewirken als Problemlöseziele.

Das dritte Ziel der experimentellen Studie ist der Versuch, den Zielspezifitätseffekt bei Problemlösezielen zu replizieren, was vor dem Hintergrund bisheriger Arbeiten erwartet wird (siehe Kapitel 3.2.1). In dieser Studie wird hauptsächlich der deklarativ-konzeptuelle Wissenszuwachs als Lernerfolg fokussiert, da dieser in bisherigen Arbeiten zum Zielspezifitätseffekt oft zugunsten von Problemlöseleistungen vernachlässigt wurde (vgl. z.B. Trumpower et al., 2004).

Als \textit{viertes Ziel} der experimentellen Studie wird deshalb überprüft, ob unspezifische Problemlöseziele neben einem höheren Lernerfolg auch einen geringeren - empirisch gemessenen - \textit{cognitive load} bewirken.

Zielsozialität ist hiernach nur indirekt relevant für das Lernen, da sowohl spezifische als auch unspezifische Problemlöseziele zum Problemlösen und nicht zum Lernen auffordern. Der geringe Spezifitätsgrad unspezifischer Problemlöseziele führt danach nicht selbst unmittelbar zum Lernen, sondern schafft durch den größeren Freiraum Bedingungen für eine lernzielenorientierte Herangehensweise und somit auch für die Nutzung von Lernstrategien. Deshalb sollten unspezifische Problemlöseziele verglichen mit spezifischen Problemlösezielen neben einem höheren Lernerfolg und einem geringeren cognitive load ebenfalls eine häufigere Nutzung der beim selbstreguliert-entdeckenden Lernen relevanten Lernstrategie der isolierenden Variablenkontrolle bewirken (Abschnitt 3.2.1.2; vgl. Vollmeyer et al., 1996). In den bisherigen Studien zu den Effekten der Zielspezifität wurden diese drei Konstrukte jedoch nicht gemeinsam berücksichtigt und der cognitive load nicht empirisch gemessen.

Daher intendiert die experimentelle Studie fünfzehn zu prüfen, ob unspezifische Problemlöseziele neben einem höheren Lernerfolg und einem geringeren cognitive load auch eine häufigere Strategienutzung bewirken als spezifische Problemlöseziele.

Der Einfluss des Spezifitätsgrades von Lernzielen auf den Lernerfolg, den cognitive load und die Strategienutzung. Der nur lernerfolgsbezogene Zielspezifitätseffekt sollte bei Problemlösezielen beobachtbar sein, nicht aber bei Lernzielen. Sowohl spezifische als auch unspezifische Lernziele (vgl. Abschnitt 3.2.2.2) fordern explizit zum Lernen auf und sollten deshalb beide nicht die Anwendung der kognitiv belastenden Problemlösestrategie der Mittel-Ziel-Analyse auslösen. Somit sollten sie auch keine bedeutsamen Unterschiede bezogen auf den Lernerfolg, den cognitive load und die Häufigkeit der (Lern)Strategienutzung bewirken.

Demnach besteht das sechste Ziel der experimentellen Studie in dem Vergleich spezifischer mit unspezifischen Lernzielen hinsichtlich des Lernerfolgs, des cognitive load und der Häufigkeit der Strategienutzung.

Das siebte Ziel der experimentellen Studie besteht darin zu untersuchen, inwieweit das Ausmaß an internaler Lernzielorientierung das Ausmaß an Lernförderlichkeit externaler Zielvorgaben beeinflusst. Dabei wird im Wesentlichen geprüft, ob das Ausmaß an Lernzielorientierung die Effekte externaler Zielvorgaben auf den Lernerfolg moderiert.

5 Die korrelative Studie

Ausblick auf Kapitel 5. Zunächst werden in Anlehnung an die in Kapitel 4.1 hergeleiteten Ziele und Annahmen die konkreten Fragestellungen und Hypothesen der korrelativen Studie in Kapitel 5.1 präzisiert.

Ein erstes Anliegen der korrelativen Studie ist die Evaluation der computerbasierten Experimentierumgebung (vgl. Kapitel 4.1). Dazu werden im Methodenteil zunächst ihr Aufbau und ihre Funktion beschrieben (Kapitel 5.2.1), um unter Kapitel 5.2.2 die
Stichprobe zu beschreiben. Auf die Entwicklung beziehungsweise auf die Auswahl der für die Korrelationsstudie notwendigen Instrumente wird unter Kapitel 5.2.3 eingegangen, wobei für die selbst entwickelten Instrumente die Gütekennwerte auch auf Itemebene angegeben werden. Das Vorgehen der Datenerhebung wird in Kapitel 5.2.4 beschrieben.

Kapitel 5.3 präsentiert die Ergebnisse der Korrelationsstudie, die sich in der Reihenfolge an die Darstellung der Fragestellungen und Hypothesen unter Kapitel 5.1 anlehnen. Anschließend werden in Kapitel 5.3.2 die Ergebnisse zur Prädiktionskraft der Strategienutzung unter Kontrolle weiterer lernerfolgsrelevanter Variablen und zur Rolle des Vorwissens als Moderator berichtet (in der Reihenfolge der im folgenden Kapitel formulierten Fragestellungen und Hypothesen). Kapitel 5.3.4 zeigt schulform- und geschlechtsspezifische Unterschiede und in Kapitel 5.4 werden die Befunde der korrelativen Studie in der Reihenfolge der Fragestellungen diskutiert.

5.1 Präzisierung der Fragestellungen und Hypothesen

Zunächst wird der Frage nachgegangen, ob die entwickelte Experimentierumgebung das selbstreguliert-entdeckende Lernen durch Experimentieren ausreichend fördert. Zudem werden die entwickelten Instrumente zur Erfassung des deklarativ-konzeptuellen Wissens, der Wissensanwendung und der Nutzung der Strategie der isolierenden Variablenkontrolle auf ihre Konstruktvalidität hin geprüft.

1. Ist die computerbasierte Experimentierumgebung ausreichend lernwirksam?

Hypothese 1a: Die Experimentierumgebung ermöglicht einen statistisch signifikanten Lernerfolg.

Hypothese 1b: Die Maße für den deklarativ-konzeptuellen Wissenserwerb, die Wissensanwendung und die Strategienutzung hängen sowohl untereinander als auch mit der Intelligenz substanziell positiv zusammen.

Zusätzlich wird geprüft, ob sich mit Hilfe der vorliegenden Experimentierumgebung überhaupt bedeutsame Effekte der Nutzung der Strategie der isolierenden Variablenkontrolle auf den Lernerfolg zeigen lassen. Dabei ist insbesondere von Interesse, ob die Strategienutzung neben Intelligenz, Motivation und metakognitivem Strategiewissen den Lernerfolg eigenständig vorhersagen kann.

2. Erweist sich die Strategienutzung unter jeweiliger Kontrolle von Intelligenz, Motivation und metakognitivem Strategiewissen als eigenständiger Prädiktor für Lernerfolg beim selbstreguliert-entdeckenden Lernen durch Experimentieren?

Hypothese 2: Unabhängig davon, ob die Intelligenz, die Motivation oder das metakognitive Strategiewissen kontrolliert werden, sagt die Strategienutzung den deklarativ-konzeptuellen Wissenszuwachs und die Wissensanwendungsleistung
substanziell vorher (siehe Kapitel 4.1; vgl. Artelt et al., 2001; Boekaerts, 1996; Chen & Klahr, 1999; Kröner et al., 2005; Künsting et al., im Druck).

Schließlich ist die Rolle des Vorwissens als zwischen Strategienutzung und Lernerfolg vermittelnde Variable zu überprüfen, da vor dem Hintergrund bisheriger Arbeiten erwartet werden kann, dass ein hohes Vorwissen die Nutzbarkeit von Strategien entscheidend begünstigt (vgl. Kapitel 2.3.2).

3. Beeinflusst das Ausmaß des Vorwissens die lernerfolgsbezogene Nutzbarkeit der Strategie der isolierenden Variablenkontrolle?

Hypothese 3: Die Strategienutzung sollte bei hohem Vorwissen ein besserer Prädiktor für den Lernerfolg beim selbstreguliert-entdeckenden Lernen sein als bei geringem Vorwissen (siehe Kapitel 4.1; Baumert & Köller, 1996; Klahr & Dunbar, 1988; Künsting et al., im Druck; Schraagen, 1993).

5.2 Methode

5.2.1 Aufbau und Funktion der Experimentierumgebung

namens „Dr. Senkwürfel“, die Hilfe bei der Erledigung von Aufträgen in ihrem Labor zur Erforschung von Materialien für den Lastschiffbau benötigt, über direkte wörtliche Rede den Umgang mit dem Labor und dessen Modulen. Die Funktion und der Umgang mit dem Notizblock werden durch eine interaktive Übung mit Alltagsbeispielen eingeführt.

Das simulierte Labor als *Experimenteraum* (siehe Abbildung 6) umfasst ein „Regal“ mit zwölf sich im Masse-Volumen-Verhältnis unterscheidenden Körpern, die sich als Würfel, Rechteck oder Kreiszylinder wählen lassen, aber keine konkrete Materialbezeichnung besitzen. Unterhalb dieses Körperregals befinden sich zwei nebeneinanderstehende Gefässe, die beide die Wassertiefe in fünf Schritten (0, 10, 20, 30 und 40 cm) anzeigen, sich aber hinsichtlich der Flüssigkeitsdichte ihres Wassers unterscheiden. Per „drag-and-drop“-Funktion kann ein Körper aus dem Regal mit der Computermaus in einen der Tanks gezogen werden. Sobald sich ein Körper im Wasser befindet, werden insgesamt vier unterschiedliche auf ihn wirkende Kräfte angezeigt: Direkt im transparent dargestellten Körper wird die Größe der nach oben wirken den Auftriebskraft (F_A) als roter und die Größe der nach unten wirkenden Gewichtskraft (F_G) als schwarzer Kraftpfeil angezeigt. An der Spitze eines jeweiligen Kraftpeiles ist zusätzlich der numerische Betrag für die Größe einer Kraft sichtbar. Direkt am rechten Gefäßrand erscheinen die von oben auf den Körper wirkende Kraft F_o und die von unten auf den Körper wirkende Kraft F_u als blaue Kraftpfeile. Auch diese Kraftpfeile haben numerische Betragsanzeigen und entwickeln sich mit dem Sinken beziehungsweise Steigen eines Körpers im Wasser. Mit dem Anklicken einer Schaltfläche unterhalb der zwei Gefässe kann ein Körper jeweils in das Regal zurückbefördert werden.

Der grafische Notizblock als *Hypothesenraum* (siehe Abbildung 6) enthält in Form von miteinander verknüpfbaren Begriffsbezeichnungen *alle* im Experimenteraum vorfind- beziehungsweise explorierbaren Variablen. Generell sind in der Experimentierumgebung die Masse (m), das Volumen (V) und die Flüssigkeitsdichte (ρ_{FL}) reine unabhängige Variablen, da sie nur aus einer bestehenden Auswahl in verschiedenen Ausprägungen gewählt werden können und sich nicht in Abhängigkeit von anderen Variablen verändern lassen. Das Gleiche gilt für die Form und die Eintauchtiefe eines Körpers in ein Gefäß, welche jedoch einflusslose Distraktoren sind. Hingegen können die Dichte (ρ_K) eines Körpers, seine Auftriebskraft (F_A), seine Gewichtskraft (F_G) sowie die Kräfte F_o und F_u sowohl unabhängige als auch abhängige Variablen sein. Die drei möglichen Verhaltensweisen eines Körpers „Sinken“, „Schweben“ und „Steigen“ sind dagegen drei Stufen einer reinen abhängigen Variable. Hypothesen über Relationen zwischen diesen Variablen können im Notizblock grafisch fixiert werden. Dazu werden die Begriffe, welche die Variablen im Labor repräsentieren, durch einfache Beziehungssymbole miteinander zu Relationen verknüpft, beispielsweise für die Hypothese, dass ein Körper im Wasser steigt, wenn seine Auftriebskraft (F_A) größer ist als seine Gewichtskraft (F_G).
5.2.2 Stichprobe

An der Evaluationssudie nahmen 436 Schüler (48.1% männlich; 51.9% weiblich) der Klassen 8-10 der drei Schulformen Hauptschule (22.0%), Realschule (47.5%) und Gymnasium (30.5%) in Nordrhein-Westfalen mit einem Durchschnittsalter von $M = 15.1$ (SD = 0.93) Jahren teil. Es gingen nur Klassen ohne bisherigen Unterricht zum Inhaltsbereich „Auftrieb in Flüssigkeiten“ aus insgesamt neun Schulen ein.

5.2.3 Instrumente

5.2.3.1 Entwickelte Instrumente

Deklarativ-konzeptuelle Wissenstests. Um das deklarativ-konzeptuelle Vorwissen zum Inhaltsbereich „Auftrieb in Flüssigkeiten“ zu erfassen, wurde ein papier-bleistift-basierter multiple choice-Test mit 25 Items eines dreistufigen Antwortformats entwickelt („weiß nicht“, „richtig“, „falsch“; Prätest, siehe Anhang 1). Die Testitems repräsentieren alle in

Tabelle 4: Itemkennwerte für die 20 Items der reliablen Prätestversion

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
<th>Itemnummer im Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT Prä 1</td>
<td>.33</td>
<td>.47</td>
<td>.29</td>
<td>2 A</td>
</tr>
<tr>
<td>WT Prä 2</td>
<td>.83</td>
<td>.37</td>
<td>.22</td>
<td>4</td>
</tr>
<tr>
<td>WT Prä 3</td>
<td>.43</td>
<td>.50</td>
<td>.32</td>
<td>6 A</td>
</tr>
<tr>
<td>WT Prä 4</td>
<td>.48</td>
<td>.50</td>
<td>.34</td>
<td>7</td>
</tr>
<tr>
<td>WT Prä 5</td>
<td>.57</td>
<td>.50</td>
<td>.29</td>
<td>8 A</td>
</tr>
<tr>
<td>WT Prä 6</td>
<td>.32</td>
<td>.47</td>
<td>.34</td>
<td>9 A</td>
</tr>
<tr>
<td>WT Prä 7</td>
<td>.54</td>
<td>.50</td>
<td>.27</td>
<td>10 A</td>
</tr>
<tr>
<td>WT Prä 8</td>
<td>.37</td>
<td>.48</td>
<td>.45</td>
<td>11 A</td>
</tr>
<tr>
<td>WT Prä 9</td>
<td>.70</td>
<td>.46</td>
<td>.35</td>
<td>12</td>
</tr>
<tr>
<td>WT Prä 10</td>
<td>.28</td>
<td>.45</td>
<td>.34</td>
<td>13 A</td>
</tr>
<tr>
<td>WT Prä 11</td>
<td>.51</td>
<td>.50</td>
<td>.32</td>
<td>14 A</td>
</tr>
<tr>
<td>WT Prä 12</td>
<td>.63</td>
<td>.48</td>
<td>.25</td>
<td>15 A</td>
</tr>
<tr>
<td>WT Prä 13</td>
<td>.62</td>
<td>.49</td>
<td>.32</td>
<td>16 A</td>
</tr>
<tr>
<td>WT Prä 14</td>
<td>.45</td>
<td>.50</td>
<td>.40</td>
<td>17 A</td>
</tr>
<tr>
<td>WT Prä 15</td>
<td>.38</td>
<td>.49</td>
<td>.28</td>
<td>18</td>
</tr>
<tr>
<td>WT Prä 16</td>
<td>.60</td>
<td>.49</td>
<td>.34</td>
<td>19 A</td>
</tr>
<tr>
<td>WT Prä 17</td>
<td>.46</td>
<td>.50</td>
<td>.33</td>
<td>21 A</td>
</tr>
<tr>
<td>WT Prä 18</td>
<td>.25</td>
<td>.43</td>
<td>.28</td>
<td>22 A</td>
</tr>
<tr>
<td>WT Prä 19</td>
<td>.36</td>
<td>.48</td>
<td>.22</td>
<td>24</td>
</tr>
<tr>
<td>WT Prä 20</td>
<td>.30</td>
<td>.46</td>
<td>.29</td>
<td>25</td>
</tr>
</tbody>
</table>

__Anmerkungen:__ WT = Wissenstest (Prätest); A = Ankeritem; M = Mittelwert; SD = Standardabweichung.

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
<th>Itemnummer im Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT Post 1</td>
<td>.54</td>
<td>.50</td>
<td>.32</td>
<td>2 A</td>
</tr>
<tr>
<td>WT Post 2</td>
<td>.47</td>
<td>.50</td>
<td>.42</td>
<td>3 A</td>
</tr>
<tr>
<td>WT Post 3</td>
<td>.72</td>
<td>.45</td>
<td>.35</td>
<td>4 A</td>
</tr>
<tr>
<td>WT Post 4</td>
<td>.64</td>
<td>.48</td>
<td>.24</td>
<td>5 A</td>
</tr>
<tr>
<td>WT Post 5</td>
<td>.50</td>
<td>.50</td>
<td>.20</td>
<td>6 A</td>
</tr>
<tr>
<td>WT Post 6</td>
<td>.40</td>
<td>.49</td>
<td>.19</td>
<td>8</td>
</tr>
<tr>
<td>WT Post 7</td>
<td>.60</td>
<td>.49</td>
<td>.37</td>
<td>9 A</td>
</tr>
<tr>
<td>WT Post 8</td>
<td>.55</td>
<td>.50</td>
<td>.38</td>
<td>10 A</td>
</tr>
<tr>
<td>WT Post 9</td>
<td>.31</td>
<td>.46</td>
<td>.37</td>
<td>11 A</td>
</tr>
<tr>
<td>WT Post 10</td>
<td>.22</td>
<td>.42</td>
<td>.20</td>
<td>12</td>
</tr>
<tr>
<td>WT Post 11</td>
<td>.58</td>
<td>.49</td>
<td>.21</td>
<td>13 A</td>
</tr>
<tr>
<td>WT Post 12</td>
<td>.61</td>
<td>.49</td>
<td>.38</td>
<td>14 A</td>
</tr>
<tr>
<td>WT Post 13</td>
<td>.44</td>
<td>.50</td>
<td>.27</td>
<td>16 A</td>
</tr>
<tr>
<td>WT Post 14</td>
<td>.73</td>
<td>.45</td>
<td>.21</td>
<td>17 A</td>
</tr>
<tr>
<td>WT Post 15</td>
<td>.54</td>
<td>.50</td>
<td>.30</td>
<td>20</td>
</tr>
<tr>
<td>WT Post 16</td>
<td>.53</td>
<td>.50</td>
<td>.31</td>
<td>21 A</td>
</tr>
<tr>
<td>WT Post 17</td>
<td>.50</td>
<td>.50</td>
<td>.28</td>
<td>22 A</td>
</tr>
<tr>
<td>WT Post 18</td>
<td>.27</td>
<td>.44</td>
<td>.26</td>
<td>24</td>
</tr>
</tbody>
</table>

Anmerkungen: WT = Wissenstest (Posttest); A = Ankeritem; $M =$ Mittelwert; $SD =$ Standardabweichung.

Die mittlere Nutzungshäufigkeit der IVK-between-Strategie innerhalb der 20-minütigen Explorationsphase fiel eher gering aus ($M = .32$, $SD = .18$). Dabei führten die Probanden im Schnitt $M = 45.04$ Experimente durch ($SD = 28.03$). Bei durchschnittlich $M = 16.74$ Experimentepaaren ($SD = 16.94$) wurde die IVK-between-Strategie eingesetzt.

Anmerkungen: WAT = Wissensanwendungstest; $M =$ Mittelwert; $SD =$ Standardabweichung.
5.2.3.2 Zusätzlich eingesetzte Instrumente

Intelligenz. Kognitive Fähigkeiten wurden als Kontrollvariable durch die Skala „Figurale Analogien“ aus dem Kognitive Fähigkeiten-Test (KFT; Heller, Gaedicke & Weinländer, 1985) erhoben \((M = .60, \ SD = .21, \ Cronbachs \ \alpha = .84; \ vgl. \ Tabelle \ 7, \ S. \ 90)\). Analogiaaufgaben zählen zu den klassischen Itemformen zur Erfassung induktiver Denkprozesse (vgl. Klauer, 2001; Pellegrino & Glaser, 1980), die wiederum als zentrale Komponente der Intelligenz (z.B. Klauer, 2001; Undheim & Gustafsson, 1987) und des selbstreguliert-entdeckenden Lernens durch Experimentieren (vgl. Holland et al., 1986) gelten. Auch laden die Subskalen „Figurale Analogien“ am höchsten auf dem g-Faktor der allgemeinen Intelligenz (Heller & Perleth, 2000). Eine weitere Skala des KFT wurde aus testökonomischen Gründen nicht verwendet. Zudem sind die Anforderungen der vorliegenden Experimentierumgebung zu einem Großteil ohnehin visuell-räumlicher Art.

Aktuelle Motivation. Ein papier-bleistift-basierter Fragebogen zur aktuellen Motivation (FAM) in Anlehnung an Rheinberg et al. (2001) diente zur Erfassung des motivationalen Zustands. Die für die vorliegende Erhebung zusammengestellte Skala (Anhang 9) ist reliabel (Cronbachs \ \alpha = .87) und weist eine moderate Ausprägung der aktuellen Motivation für die untersuchten Probanden aus \((M = .45, \ SD = .21; \ vgl. \ Tabelle \ 7, \ S. \ 90)\).

Interesse. Zusätzlich zur aktuellen Motivation wurde das Interesse am Unterrichtsfach Physik (Anhang 11) angelehnt an Baumert, Roeder, Sang und Schmitz.
(1986) papier-bleistift-basiert gemessen (Cronbachs $\alpha = .91$, $M = .46$, $SD = .26$; vgl. Tabelle 7).

Metakognitives Strategiewissen. Um den Einfluss der Strategienutzung auf den Lernerfolg zu kontrollieren, wurde ein papier-bleistift-basierter Test zum metakognitiven Strategiewissen (vgl. Paris et al., 1983) im Bereich Experimentieren (Thillmann et al., 2006; in Anlehnung an Schlagmüller & Schneider, 1999) eingesetzt (Anhang 10; Cronbachs $\alpha = .76$, $M = .59$, $SD = .18$; vgl. Tabelle 7). In dem Test sollen unterschiedlich strategische Handlungsalternativen für spezifische experimentell zu bearbeitende Aufgabenstellungen (z.B. „Du hast die Aufgabe herauszufinden, ob sich die Raumtemperatur verändert, wenn die Kühlschranktür offen stehen bleibt.“) anhand von Schulnoten beurteilt werden.

Tabelle 7: Deskriptive Statistiken und Reliabilitäten (N = 436, korrelative Studie)

<table>
<thead>
<tr>
<th>Deklarativ-konzeptuelles Wissen (Prätest)</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
<th>Cronbachs α</th>
<th>Anzahl Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deklarativ-konzeptuelles Wissen (Posttest)</td>
<td>.50</td>
<td>.20</td>
<td>.01</td>
<td>.71</td>
<td>25</td>
</tr>
<tr>
<td>Wissensanwendung</td>
<td>.47</td>
<td>.28</td>
<td>.02</td>
<td>.81</td>
<td>15</td>
</tr>
<tr>
<td>Strategienutzung</td>
<td>.32</td>
<td>.18</td>
<td>.01</td>
<td>.80</td>
<td>3*</td>
</tr>
<tr>
<td>Intelligenz (KFT)</td>
<td>.60</td>
<td>.21</td>
<td>.01</td>
<td>.84</td>
<td>25</td>
</tr>
<tr>
<td>Metakognitives Strategiewissen</td>
<td>.59</td>
<td>.18</td>
<td>.01</td>
<td>.76</td>
<td>30</td>
</tr>
<tr>
<td>Interesse</td>
<td>.46</td>
<td>.26</td>
<td>.01</td>
<td>.91</td>
<td>6</td>
</tr>
<tr>
<td>Aktuelle Motivation (FAM)</td>
<td>.45</td>
<td>.21</td>
<td>.01</td>
<td>.87</td>
<td>9</td>
</tr>
</tbody>
</table>

5.2.4 Vorgehen

Kontrollvariable durch die Skala „Figurale Analogien“ aus dem achtmillütigen Kognitive Fähigkeiten-Test (KFT; Heller et al., 1985) erhoben. Nach fünfminütiger Pause kam der Prätest zum deklarativ-konzeptuellen Vorwissen über den Inhaltsbereich „Auftrieb in Flüssigkeiten“ zum Einsatz (siehe Abschnitt 5.2.3.1).

Hieran schlossen sich die Erhebung demografischer Daten, des Interesses am Unterrichtsfach Physik (ca. fünf Minuten; Baumert et al., 1986) und des metakognitiven Strategiewissens zum Umgang mit Texten an (ca. 15 Minuten; Schlagmüller & Schneider, 1999), wobei letzteres nicht Gegenstand der vorliegenden Arbeit ist.

Abbildung 8: Skizze für den Ablauf der Datenerhebung an den zwei Testtagen
Am zweiten Testtag begannen die Schüler mit einem 20-minütigen computerbasierten Trainingsprogramm für den Umgang mit der Experimentierumgebung (vgl. Kapitel 5.2.1). Nach diesem Training (siehe Kapitel 6.2.4) füllten die Schüler den ca. zweiminütigen papier-bleistift-basierten Fragebogen zur aktuellen Motivation aus (FAM; Rheinberg et al., 2001), bevor sie mit der 20-minütigen computerbasierten Explorationsphase begannen. Für diese Explorationsphase bekamen alle Probanden von der fiktiven Figur „Dr. Senkwürfel“ (vgl. Kapitel 5.2.1) ein unspezifisches Lernziel gesetzt: „Finde so viel wie möglich über das Sinken, Schweben und Steigen von Körpern im Wasser heraus und berichte mir anschließend!“. Im Anschluss an diese Explorationsphase bearbeiteten die Schüler zur Erfassung des erworbenen deklarativ-konzeptionellen Wissens über den Inhaltsbereich „Auftrieb in Flüssigkeiten“ den etwa 15- minütigen Posttest (Anhang 2; vgl. Abschnitt 5.2.3.1). Zum Schluss gelangten die Schüler automatisch zu dem etwa zehnminütigen computerbasierten Wissensanwendungstest (vgl. Abschnitt 5.2.3.1).

Innerhalb der 20-minütigen Explorationsphase wurde die Nutzung der Strategie der isolierenden Variablenkontrolle (IVK) des Typs IVK-between (Abschnitt 2.2.2.2) als eine zentrale Strategie des selbstreguliert-entdeckenden Lernens durch Experimentieren prozessbasiert erfasst. Die Nutzung des Typs IVK-within ist in der vorliegenden Experimentierumgebung weder intendiert noch möglich (das Volumen (V) oder die Masse (m) eines Körpers lassen sich z.B. nicht in ihrer Ausprägung eliminieren).

5.3 Ergebnisse

Die Ergebnisse der korrelativen Studie werden in Kapitel 5.3.2 in der Reihenfolge der Hypothesen berichtet. Sowohl in der korrelativen als auch in der experimentellen Studie wurden alle nummerischen Kennwerte auf zwei Dezimalstellen gerundet. Eine Ausnahme bilden die Signifikanzniveaus, die zugunsten der Genauigkeit dreistellig angegeben werden (z.B. $p = .026$ oder $p < .001$). Nur Signifikanzniveaus ab $p < .05$ werden als statistisch bedeutsam betrachtet.

5.3.1 Evaluation der Experimentierumgebung

Hypothese 1a: Die Experimentierumgebung ermöglicht einen statistisch signifikanten Lernerfolg. Die entwickelte Experimentierumgebung ist ausreichend lernwirksam, um Bedingungen des selbstreguliert-entdeckenden Lernens durch Experimentieren untersuchen zu können. Der Mittelwert des Posttests ist zwar nur geringfügig höher als der des Prätests (Tabelle 7), was jedoch nicht als geringer Zugewinn an Wissen im Zuge der Explorationsphase zu deuten ist, da es sich um zwei Tests handelt, die neben den Ankeritems noch weitere Items umfassten, die in der jeweils anderen Testversion nicht enthalten waren. Werden nur die Ankeritems als Skalen verglichen, zeigt die
Gesamtstichprobe einen statistisch signifikanten Zugewinn an Wissen als einfache Punktwert-Differenz zwischen Post- und Prätest ($\Delta = 1.35$, $t_{(405)} = 8.59$, $p < .001$, $d = .43$). Werden aus der Gesamtstichprobe per Mediansplit Probanden mit hohem deklarativ-konzeptuellen Vorwissen mit jenen eines geringen deklarativ-konzeptuellen Vorwissens verglichen, zeigt sich für erstgenannte kein bedeutsamer Zugewinn an Wissen ($N = 222$, $\Delta = .01$, $t_{(221)} = 1.01$, $p = .301$), während Probanden mit geringem Vorwissen mit hoher praktischer Bedeutsamkeit dazulernten ($N = 184$, $\Delta = .18$, $t_{(183)} = 12.19$, $p < .001$, $d = 1.15$).

Hypothese 1b: Die Maße für den deklarativ-konzeptuellen Wissenserwerb, die Wissensanwendung und die Strategienutzung hängen sowohl untereinander als auch mit der Intelligenz substantiell positiv zusammen. Die Korrelationen (Pearson) aus Tabelle 8 liefern erste Hinweise auf die Konstrukvalidität der entwickelten Instrumente: Beispielsweise korrelieren die IVK-between-Strategienutzung sowie die Leistung im Wissensanwendungstest und im deklarativ-konzeptuellen Posttest bedeutsam mit der Intelligenz ($r = .29$, $r = 45$, $r = .39$; $p < .001$). Schüler, die im deklarativ-konzeptuellen Posttest gut abschnitt, zeigen auch im Wissensanwendungstest gute Leistungen ($r = .45$, $p < .001$). Die Variable „Wissenszuwachs“ in Tabelle 8 wurde als das Residuum des deklarativ-konzeptuellen Posttests aus Einfachregressionen mit deklarativ-konzeptuellem Vorwissen als Prädiktor im Sinne eines residualen Lerngewinns berechnet. In der gesamten vorliegenden Arbeit ist immer dieser vorwissensbereinigte deklarativ-konzeptuelle Wissenszuwachs gemeint, wenn von Wissenszuwachs die Rede ist. Ist die einfache, nicht vorwissensbereinigte Prä-Posttestdifferenz gemeint, so wird dies kenntlich gemacht. Der Wissenszuwachs korreliert zwar gering, aber ebenfalls statistisch signifikant mit der Leistung im Wissensanwendungstest, mit der Strategienutzung und mit der Intelligenz ($r = .25$, $r = .24$, $r = .25$; $p < .001$).

Tabelle 8: Interkorrelationen aller Variablen der korrelativen Studie (N = 436)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D.-k. Wissen (Prätest)</td>
<td>0.53**</td>
<td>0.00†</td>
<td>0.42**</td>
<td>0.23**</td>
<td>0.35**</td>
<td>0.23**</td>
<td>0.17**</td>
<td>0.14**</td>
</tr>
<tr>
<td>2. D.-k. Wissen (Posttest)</td>
<td>0.53**</td>
<td>0.85**</td>
<td>0.45**</td>
<td>0.31**</td>
<td>0.39**</td>
<td>0.27**</td>
<td>0.18**</td>
<td>0.22**</td>
</tr>
<tr>
<td>3. Wissenszuwachs</td>
<td>0.00†</td>
<td>0.85**</td>
<td>0.25**</td>
<td>0.24**</td>
<td>0.25**</td>
<td>0.18**</td>
<td>0.11**</td>
<td>0.17**</td>
</tr>
<tr>
<td>4. Wissensanwendung</td>
<td>0.42**</td>
<td>0.45**</td>
<td>0.25**</td>
<td>0.38**</td>
<td>0.45**</td>
<td>0.25**</td>
<td>0.11**</td>
<td>0.17**</td>
</tr>
<tr>
<td>5. IVK-between-Nutzung</td>
<td>0.23**</td>
<td>0.31**</td>
<td>0.24**</td>
<td>0.38**</td>
<td>0.25**</td>
<td>0.31**</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>6. Intelligenz (KFT)</td>
<td>0.35**</td>
<td>0.39**</td>
<td>0.25**</td>
<td>0.45**</td>
<td>0.29**</td>
<td>0.18**</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>7. Metakogn. Strategiewissen</td>
<td>0.23**</td>
<td>0.27**</td>
<td>0.18**</td>
<td>0.31**</td>
<td>0.17**</td>
<td>0.28**</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>8. Interesse</td>
<td>0.17**</td>
<td>0.18**</td>
<td>0.11**</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>9. Motivation (FAM)</td>
<td>0.14**</td>
<td>0.22**</td>
<td>0.17**</td>
<td>0.17**</td>
<td>0.17**</td>
<td>0.12**</td>
<td>0.21**</td>
<td>0.21**</td>
</tr>
</tbody>
</table>

*p < .05; **p < .01; Anmerkungen: D.-k. Wissen = Deklarativ-konzeptuelles Wissen; †Der Wissenszuwachs ist der residuale Lerngewinn, in dem keine Varianz des Vorwissens mehr enthalten ist.
5.3.2 Strategienutzung als Prädiktor für Lernerfolg

Hypothese 2: Unabhängig davon, ob die Intelligenz, die Motivation oder das metakognitive Strategiewissen kontrolliert werden, sagt die Strategienutzung den deklarativ-konzeptuellen Wissenszuwachs und die Wissensanwendungsleistung substanzeller vorher (vgl. Kapitel 5.1).

Aufgrund unvermeidbarer technischer Probleme während der Datenerhebung liegen nicht für alle Probanden vollständige Logfiles (S. 88) vor. Dadurch fehlen für ein Teil der Probanden beispielsweise die computerbasierten Maße für die Strategienutzung und die Wissensanwendung. In allen Strukturanalysen wurden ausschließlich Personen mit vollständigen Datensätzen ohne fehlende Werte einbezogen. Diese Teilstichprobe enthielt 286 Schüler (50.7% männlich, 49.3% weiblich; Hauptschule = 20.6%, Realschule = 49.3%, Gymnasium = 30.1%; Durchschnittsalter M = 15.1 Jahre, SD = .91).
Weitere Variablen wurden jeweils in ein Strukturgleichungsmodell einbezogen, da die Stichprobe der vorliegenden Studie für den gleichzeitigen Einbezug aller Variablen in ein Modell nicht groß genug ist (insbesondere mit Blick auf die zu bildenden Subgruppen für die Moderatoranalyse in Kapitel 5.3.3). In der Literatur zur Parameterschätzung in Strukturgleichungsmodellen wird ein Stichprobenumfang von minimal $N \geq 100$, besser $N \geq 200$ generell vorausgesetzt, jedoch wächst der erforderliche Stichprobenumfang mit der Anzahl der zu schätzenden Parameter. Empfohlen wird beispielsweise ein Umfang von mindestens $N \geq 5 \times q$; als zuverlässiger gilt $N \geq 10 \times q$, wobei q die Anzahl zu schätzender Parameter ist (Bentler, 1985; Bentler & Wu, 1995; Loehlin, 1987). Insbesondere für die Durchführung inferenzstatistischer Verfahren (z.B. χ^2-basierte Tests) wird ein noch größerer Stichprobenumfang nahegelegt: $N \geq 1,5 \times p (p + 1)$, wobei p die Anzahl manifest er Variablen eines Modells ist (Jöreskog & Sörbom, 1989a, 1993).

Parcelbildung für die Messmodelle. Da die Itemanzahl für die latenten Variablen zu hoch war für eine akzeptable Modellkomplexität, wurden sie durch parcels repräsentiert. Die hinsichtlich der Itemanzahl gleich großen parcels wurden jeweils so gebildet, dass sie sich in Mittelwerten und Standardabweichungen der Items so weit wie möglich gleichen. Dabei resultierten für die Intelligenz, für die aktuelle Motivation und für das metakognitive Strategiewissen als exogene latente Variablen jeweils zwei parcels. Als parcels für die exogene latente Variable der Strategienutzung wurden die drei zeitunabhängigen Messungen des IVK-between-Anteils verwendet (siehe S. 88). Für die endogene latente Variable Wissenszuwachs wurde wie folgt verfahren: Zunächst wurden für den Prätest zur Erfassung des deklarativen-konzeptuellen Vorwissens zwei gleich große parcels gebildet, die sich in den Mittelwerten und Standardabweichungen der Items so weit wie möglich gleichen. Dasselbe wurde für den Posttest zur Erfassung des erworbenen deklarativen-konzeptuellen Wissens gemacht. Dann wurden die Residuen für die zwei parcels des deklarativen-konzeptuellen Posttests jeweils aus Einfachregressionen mit den zwei parcels des deklarativen-konzeptuellen Prätests als jeweiligen Prädiktor im Sinne eines residualen Lerngewinns pro parcel berechnet (vgl. auch Kapitel 5.3.1). Für die endogene latente Variable der Wissensanwendung wurde nach dem gleichen Muster verfahren, wie für den Wissenszuwachs, so dass auch die zwei parcels für die Leistung im Wissensanwendungstest jeweils um den Einfluss des deklarativen-konzeptuellen Vorwissens bereinigt wurden (siehe Anhang 3 für eine vollständige Darstellung von Mess- und Strukturmodell am Beispiel des Modells unter Einbezug der Intelligenz).

In einer ersten Analyse wurde zunächst nur die Strategienutzung als unabhängige Variable einbezogen. In diesem Modell (Abbildung 9a) sagt die Strategienutzung sowohl den deklarativen-konzeptuellen Wissenszuwachs ($\beta = .37, p < .001$) als auch die (für die Strukturanalysen ebenfalls vorwissensbereinigte) Leistung im Wissensanwendungstest
\((\beta = .32, \ p < .001)\) bedeutsam vorher. Das Modell weist eine gute Anpassung an die empirischen Daten auf \((\chi^2_{(11)} = 11.08, \ p = .440; \ TLI = 1.00; \ RMSEA = .01; \ CFI = 1.00)\).

In den Strukturmodellen aus Abbildung 9b bis 9c wurde die Strategienutzung vereinheitlichend als exogene Variable definiert, so dass statt jeweils gerichteter Pfade von den Kontrollvariablen auf die Strategieinutzung, jeweils latente Korrelationen zwischen Kontrollvariablen und Strategienutzung zugelassen wurden. Zwar ist beispielsweise die Annahme plausibel, dass Intelligenz die Strategienutzung eher beeinflusst als umgekehrt. Jedoch ist die jeweilige Prädiktion der Strategienutzung durch die Kontrollvariablen nicht Bestandteil der vorliegenden Fragestellung.

Einbezug der Intelligenz. Auch unter Einbezug der Intelligenz in das Modell (Abbildung 9b) fällt die Prädiktion des deklarativ-konzeptuellen Wissenszuwachses und der Leistung im Wissensanwendungstest durch die Strategienutzung erwartungskonform signifikant aus \((\beta = .26, \ \beta = .24, \ p = .002)\), was die Annahme eines eigenständigen Beitrags der Strategienutzung zur Vorhersage des Lernerfolgs zusätzlich zur Intelligenz bestätigt. Neben der latenten Korrelation der Strategienutzung mit Intelligenz \((r = .32, \ p < .001)\) sind auch die Pfade von der Intelligenz auf die zwei Variablen des Lernerfolgs mit vergleichbaren Beträgen statistisch bedeutsam (Wissenszuwachs: \(\beta = .32, \ p < .001\); Wissensanwendung: \(\beta = .26, \ p = .001\)). Die schwächste, aber ebenfalls signifikante Vorhersage in diesem Modell ist die der Wissensanwendung durch den deklarativ-konzeptuellen Wissenszuwachs \((\beta = .21, \ p = .044)\). Die Modellgüte ist sehr zufriedenstellend \((\chi^2_{(21)} = 17.78, \ p = .663; \ TLI = 1.01; \ RMSEA = .01; \ CFI = 1.00)\).

Einbezug der aktuellen Motivation. Die Strategienutzung sagt den Wissenszuwachs und die Wissensanwendung ebenfalls signifikant vorher (Abbildung 9c), wenn in dem Strukturgleichungsmodell die Motivation kontrolliert wird \((\beta = .35, \ p < .001, \text{bzw. } \beta = .28, \ p = .001)\). Die latente Korrelation der Strategienutzung mit Motivation fällt dagegen schwach aus \((r = .19, \ p = .007)\), und die Pfade von der Motivation auf die zwei Variablen des Lernerfolgs sind nicht statistisch bedeutsam. Auch dieses Modell repräsentiert die empirischen Daten gut \((\chi^2_{(21)} = 20.12, \ p = .514; \ TLI = 1.00; \ RMSEA = .00; \ CFI = 1.00)\).

Einbezug des metakognitiven Strategiewissens. Schließlich ist die Strategienutzung auch unter Kontrolle des metakognitiven Strategiewissens ein bedeutsamer Prädiktor für den Lernerfolg (Wissenszuwachs: \(\beta = .31, \ p < .001\); Wissensanwendung: \(\beta = .31, \ p < .001\)). Ansonsten ähnelt die Ergebnisstruktur dieses Modells weitgehend der Struktur des Modells mit Motivation als Kontrollvariable, mit ebenfalls hoher Modellgüte \((\chi^2_{(29)} = 30.87, \ p = .371; \ TLI = 1.00; \ RMSEA = .02; \ CFI = 1.00; \text{Abbildung 9d)}\). In allen Modellen sagt der deklarativ-konzeptuelle Wissenszuwachs die Leistung im nachfolgenden Wissensanwendungstest signifikant vorher \((.35 \geq \beta \geq .21; \ p < .001 \text{ bis } p = .044)\).
5.3.3 Vorwissen als Moderator

Hypothese 3: Die Strategienutzung sollte bei hohem Vorwissen ein besserer Prädiktor für den Lernerfolg beim selbstregulierten Lernen sein als bei geringem Vorwissen (siehe Kapitel 4.1; Baumert & Köller, 1996; Klahr & Dunbar, 1988; Künsting et al., im Druck; Schraagen, 1993). Um einen potenziellen Moderatoreffekt des deklarativ-
konzeptuellen Vorwissens auf die Wirksamkeit des IVK-between-Einsatzes auf den Lernerfolg untersuchen zu können, wurde die Stichprobe anhand des Vorwissens in zwei Subgruppen geteilt. Die Bildung der Subgruppen erfolgte anhand der Aufsplittung am Mittelwert\(^\text{12}\) des deklarativ-konzeptuellen Prättests. Probanden mit hohem Vorwissen zeigten eine signifikant häufigere Strategienutzung als Probanden mit geringem Vorwissen (hohes Vorwissen: \(N = 134, M = .35, SD = .16\); geringes Vorwissen: \(N = 152, M = .30, SD = .18\); \(t(284) = -2.86, p = .005, d = .31\)).

Die a priori angenommenen Unterschiede zwischen den zwei Gruppen wurden via simultaner Gruppenanalyse auf Signifikanz geprüft. Dabei wird die Annahme eines invarianten Modells (die Gruppen gleichen sich in allen Koeffizienten des Modells) mit der Annahme eines spezifischen Modells (die Gruppen unterscheiden sich in einem, mehreren oder in allen Koeffizienten des Modells) verglichen (Arbuckle & Wothke, 1999). Ob die Anpassungsgüte des einen Modells statistisch signifikant besser als die des anderen ist, kann auf Basis der \(\chi^2\)-Wert-Differenz der Modelle getestet werden, die selbst \(\chi^2\)-verteilt ist (Arbuckle & Wothke, 1999). Dabei entsprechen die Freiheitsgrade dieser Differenz der Freiheitsgrade der zu vergleichenden Modelle. Zusätzlich kann für den Modellvergleich das Akaike information criterion (AIC; Akaike, 1987) herangezogen werden, das (wie TLI und RMSEA) im Vergleich zum \(\chi^2\)-Wert weniger stichprobenabhängig ist. Ein geringerer AIC bedeutet eine höhere Modellgüte.

\(^{12}\) Ein Mediansplit in dieser Stichprobe hätte bedingt durch Rangbindungen eine größere Abweichung der Probandenzahl in den nach Vorwissen gebildeten Gruppen erzeugt als die Aufsplittung am Mittelwert.
Im Ergebnis ist das vollständig spezifische Modell (Freigabe aller Koeffizienten; $\chi^2_{(42)} = 39.48, p = .582; TLI = 1.01; RMSEA = .00; CFI = 1.00$) dem invarianter Modell ($\chi^2_{(48)} = 52.55, p = .302; TLI = .99; RMSEA = .02; CFI = .99$) überlegen ($\Delta \chi^2/\Delta df = 2.18, p < .025; AIC_{\text{invariant}} = 172.55 > AIC_{\text{spezifisch}} = 171.48$). Die beiden nach Vorwissen gebildeten Gruppen unterscheiden sich demnach in der Gesamtbetrachtung des Modells signifikant voneinander. Insbesondere das spezifische Modell, in dem nur der Pfad von der Strategienutzung zum Wissenszuwachs freigegeben wird ($\chi^2_{(47)} = 47.06, p = .470; TLI = 1.00; RMSEA < .01; CFI = 1.00$), führt zur signifikanten Unterscheidung zwischen den Gruppen ($\Delta \chi^2/\Delta df = 5.48, p < .025; AIC_{\text{invariant}} = 172.55 > AIC_{\text{spezifisch}} = 169.06$). Dieser bedeutsame Unterschied bleibt erhalten, wenn zusätzlich der Pfad von der Strategienutzung zur Leistung im Wissensanwendungstest sowie die latente Korrelation zwischen Strategienutzung und Intelligenz freigegeben werden ($\Delta \chi^2/\Delta df = 3.23, p < .025; AIC_{\text{invariant}} = 172.55 > AIC_{\text{spezifisch}} = 168.85$). Jedoch führt die alleinige Freigabe des Pfades von der Strategienutzung zur Wissensanwendung zu keinem signifikanten Gruppenunterschied ($\Delta \chi^2/\Delta df = 1.18, p > .050; AIC_{\text{invariant}} = 172.55 < AIC_{\text{spezifisch}} = 173.36$).

Abbildung 10: Modelle unter Kontrolle der Intelligenz für hohes und geringes Vorwissen

Wissenszuwachs jeweils deutlich stärker als bei geringem Vorwissen (bei Einbezug der Motivation: $\beta = .51$, $p < .001$ vs. $\beta = .23$, $p = .054$; bei Einbezug des metakognitiven Strategiewissens: $\beta = .46$, $p < .001$ vs. $\beta = .20$, $p = .087$). In beiden Modellen ist der Pfad von der Strategienutzung zur Wissensanwendung wieder nur bei geringem Vorwissen bedeutsam ($\beta = .31$ bzw. $\beta = .32$; $p = .002$; siehe Abbildungen 11 und 12).

Den besten Modell-Fit zeigt jeweils das spezifische Modell, in dem die Unterschiedlichkeit zwischen den zwei Gruppen nur im Pfad von der Strategienutzung zum Wissenszuwachs angenommen wird (Modell mit Motivation als Kontrollvariable: $\chi^2(63) = 62.59$, $p = .491$; TLI = 1.01; RMSEA = .00; CFI = 1.00; Modell mit metakognitivem Strategiewissen als Kontrollvariable: $\chi^2(47) = 42.78$, $p = .649$; TLI = 1.00; RMSEA = .00; CFI = 1.00). Im χ^2-Differenz-Test sind diese zwei Modelle dem jeweils invarianten Modell (Modell mit Motivation als Kontrollvariable: $\chi^2(64) = 67.61$, $p = .358$; TLI = 1.00; RMSEA = .01; CFI = 1.00; Modell mit metakognitivem Strategiewissen als Kontrollvariable: $\chi^2(48) = 46.78$, $p = .515$; TLI = .99; RMSEA = .01; CFI = .99) statistisch bedeutsam überlegen (Modell mit Motivation: $\Delta \chi^2/\Delta df = 5.02$, $p < .025$; AIC_invariant = 167.27 > AIC_spezifisch = 165.53; Modell mit metakognitivem Strategiewissen: $\Delta \chi^2/\Delta df = 4.00$, $p < .050$; AIC_invariant = 199.61 > AIC_spezifisch = 196.59). Die alleinige Freigabe des Pfades von der Strategienutzung zur Wissensanwendung macht hingegen wieder keinen signifikanten Unterschied zwischen den Gruppen aus (Modell mit Motivation: $\Delta \chi^2/\Delta df = 1.12$, $p > .050$; AIC_invariant = 167.27 < AIC_spezifisch = 168.15; Modell mit metakognitivem Strategiewissen: $\Delta \chi^2/\Delta df = .06$, $p > .050$; AIC_invariant = 199.61 < AIC_spezifisch = 201.05).

Abbildung 11: Modelle unter Kontrolle der Motivation für hohes und geringes Vorwissen
Abbildung 12: Modelle unter Kontrolle des metakognitiven Strategiewissens für hohes und geringes Vorwissen

5.3.4 Weitere Analysen

Geschlechtseffekte. T-Tests zeigen statistisch bedeutsame geschlechtsspezifische Unterschiede nur für das deklarativ-konzeptuelle Vorwissen und für das Interesse am Unterrichtsfach Physik jeweils zugunsten der Jungen ($t_{(422)} = 2.79$, $p = .005$, $d = .27$ bzw. $t_{(422)} = 5.95$, $p < .001$, $d = .58$), aber nicht für den Wissenszuwachs ($t_{(422)} = 2.79$, $p = .080$).
Tabelle 9: Überblick über die schulformspezifischen ANOVA-Kontrasteffekte

<table>
<thead>
<tr>
<th>Kontrast</th>
<th>Abhängige Variable</th>
<th>GY M (SD)</th>
<th>RS M (SD)</th>
<th>HS M (SD)</th>
<th>(\Delta M)</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Cohen's d</th>
</tr>
</thead>
<tbody>
<tr>
<td>GY vs. RS</td>
<td>Vorwissen</td>
<td>.52 (.28)</td>
<td>.43 (.20)</td>
<td>.09</td>
<td>4.01</td>
<td>426</td>
<td>.001</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wissenszuwachs</td>
<td>.31 (.93)</td>
<td>-.08 (1.08)</td>
<td>.39</td>
<td>3.46</td>
<td>405</td>
<td>.001</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wissensanwendung</td>
<td>.64 (.26)</td>
<td>.42 (.26)</td>
<td>+.29 (.74)</td>
<td>4.34</td>
<td>405</td>
<td>.001</td>
<td>.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategienutzung</td>
<td>.70 (.19)</td>
<td>.56 (.18)</td>
<td>-.39 (.25)</td>
<td>5.10</td>
<td>423</td>
<td>.001</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intelligenz</td>
<td>.70 (.19)</td>
<td>.50 (.23)</td>
<td>.20</td>
<td>7.35</td>
<td>423</td>
<td>.001</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metakog. Stratwiss.</td>
<td>.66 (.20)</td>
<td>.58 (.17)</td>
<td>.09</td>
<td>3.93</td>
<td>420</td>
<td>.001</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategienutzung</td>
<td>.37 (.14)</td>
<td>.29 (.18)</td>
<td>.12</td>
<td>3.02</td>
<td>307</td>
<td>.001</td>
<td>.57</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen: GY = Gymnasium; RS = Realschule; HS = Hauptschule; M = Mittelwert; SD = Standardabweichung; \(\Delta M \) = Differenz der jeweils verglichenen Gruppenmittelwerte; df = Freiheitsgrade; p = Signifikanzniveau. Alle Mittelwerte sind auf den Wertebereich zwischen 0 und 1 normiert.

5.4 Diskussion der korrelativen Studie

Überblick. Die an den Aufbau des Ergebnisteils angelehnte Diskussion behandelt in Kapitel 5.4.1 zunächst die Befunde zur Frage, ob sich die entwickelte Experimentierumgebung und die zusätzlich konstruierten Instrumente für eine zuverlässige Diagnose des Lernerfolgs und der Strategienutzung beim selbstreguliert-entdeckenden Lernen eignen. Anschließend wird in Kapitel 5.4.2 die Vorhersage des Erfolgs selbstreguliert-entdeckenden Lernens durch die Strategienutzung unter Kontrolle von Intelligenz, Motivation und metakognitivem Strategiewissen diskutiert. In Kapitel 5.4.3 wird das Vorwissen als Moderator für diese Zusammenhänge näher betrachtet.

5.4.1 Zur Evaluation der Experimentierumgebung

In der vorgestellten empirischen Studie wurde eine computerbasierte Experimentierumgebung mit einem curricular validen physikalischen Inhaltsbereich entwickelt und evaluiert. Die Befunde dieses ersten Teils der korrelativen Studie zeigen, dass die entwickelte Experimentierumgebung sich für die Erfassung des Lernerfolgs und der Strategienutzung beim selbstreguliert-entdeckenden Lernen durch Experimentieren eignet. Die generelle Lernwirksamkeit der Experimentierumgebung konnte nachgewiesen werden: Im Gesamten zeigten die 436 Probanden einen statistisch signifikanten und moderat praktisch bedeutsamen Zugewinn an Wissen (\(d = .43 \)). Dabei haben Probanden mit hohem Vorwissen kaum dazugelernt (\(p = .301 \)), während Probanden mit geringem Vorwissen einen substanziellen Zugewinn an Wissen mit hoher praktischer Bedeutsamkeit verzeichneten (\(p < .001, \ d = 1.15 \)). Die Häufigkeit der
Strategienutzung, der deklarativ-konzeptuelle Wissenszuwachs und die Leistung im Wissensanwendungstest korrelieren statistisch bedeutsam sowohl untereinander als auch jeweils mit der Intelligenz, was ein erster Hinweis auf die Konstruktvalidität des Maßes für die Strategienutzung, der deklarativ-konzeptuellen Wissenstests und des Wissensanwendungstests ist.

5.4.2 Zur Rolle der Strategienutzung als Prädiktor

5.4.3 Zur Rolle des Vorwissens als Moderator

Im Vergleich zu Probanden mit geringem Vorwissen fielen die Pfade von der Nutzung der Strategie der isolierenden Variablenkontrolle auf den deklarativ-konzeptuellen Wissenszuwachs bei Probanden mit hohem Vorwissen durchweg deutlich stärker aus. Dies steht damit im Einklang, dass bei Probanden mit hohem Vorwissen der Anteil strategischer Experimente an allen durchgeführten Experimenten bedeutsam größer ist als bei Probanden mit geringem Vorwissen (vgl. Kapitel 5.3.3). Diese Ergebnisse stützen die Annahme des domänenspezifischen Vorwissens als bedeutsamer Moderator, und zwar unabhängig davon, ob Intelligenz, Motivation oder metakognitives Strategiewissen als zusätzliche Prädiktoren zugelassen werden. Wie erwartet, kann offenbar ein hohes domänenspezifisches Vorwissen die Nutzung der IVK-between-Strategie und das Ziehen der richtigen Schlussfolgerungen daraus begünstigen (vgl. Kapitel 2.3.2; vgl. auch Baumert & Köller, 1996; Künsting et al., im Druck; Schraagen, 1993).

Diese moderierende Funktion des Vorwissens wird in der vorliegenden Arbeit allerdings geringfügig eingeschränkt, da die Differenz der β-Koeffizienten zwischen den beiden Vorwissensgruppen je nach Lernerfolgsvariable (Wissenszuwachs vs. Wissensanwendung) ein unterschiedliches Vorzeichen trägt (siehe Kapitel 5.3.3). Jedoch führte die alleinige Freigabe des Pfades von der Strategienutzung zur Leistung im Wissensanwendungstest zu keiner signifikanten Unterscheidung zwischen den Gruppen, die alleinige Freigabe des Pfades von der Strategienutzung zum Wissenszuwachs hingegen schon. Dennoch, wie lässt sich diese zumindest tendenzielle Gegensätzlichkeit erklären? Die Probanden mit hohem Vorwissen verfügten auch nach der Explorationsphase noch über deutlich mehr deklarativ-konzeptuelles Wissen (M = .59, SD = .18) als Probanden mit wenig Vorwissen (M = .42, SD = .17; t(284) = -7.12, p < .001, d = .93). Somit konnten sie bei der Wissensanwendung auf eine größere Wissensbasis zurückgreifen als Probanden mit wenig (Vor-)Wissen. Für Probanden, die mit vergleichsweise wenig Wissen die Problemlöseaufgaben des Wissensanwendungstests bearbeiteten, wird sich neben der eigentlichen Anforderung, verfügbares Wissen zielgerichtet anzuwenden, noch zusätzlich das Problem gestellt haben, sich fehlendes Wissen aneignen zu müssen. Hierbei scheint die Fähigkeit, die Strategie der isolierenden Variablenkontrolle einsetzen zu können, lernförderlich zu sein und damit gerade bei Probanden mit wenig (Vor-)Wissen die erfolgreiche Bewältigung des Wissensanwendungstests zu unterstützen.

Zusammenfassend ist die Entwicklung und Evaluation einer computerbasierten Experimentierumgebung gelungen, die zum einen ausreichend lernwirksam ist, um mit ihrer Hilfe die Effekte instruktionaler Bedingungen, wie unterschiedliche Zielvorgaben, untersuchen zu können. Zum anderen wurde die Entwicklung und Evaluierung
konstruktvalider und hinreichend messgenauer Instrumente zur Erfassung des deklarativ-konzeptuellen Wissenszuwachses, der Wissensanwendungsleistung und der Nutzungshäufigkeit der Strategie der isolierenden Variablenkontrolle dokumentiert. Auch die Vermutung, dass die Strategienutzung ein substanzieller Prädiktor für den deklarativ-konzeptuellen Wissenszuwachs ist (vgl. Abschnitt 2.2.2.2) und dieser Zusammenhang bedeutsam durch das Vorwissen moderiert wird, konnte bestätigt werden (Kapitel 2.3.2).

Hinsichtlich des deklarativ-konzeptuellen Vorwissens, des deklarativ-konzeptuellen Wissenszuwachses, der Leistung im Wissensanwendungstest, der Intelligenz, des metakognitiven Strategiewissens und der Häufigkeit der Strategienutzung zeigte sich in der Gesamtstichprobe ein klarer Leistungsvorsprung für die Gymnasiasten gegenüber Haupt- und Realschülern. Allerdings sollte dieser Befund vorsichtig interpretiert werden, da die drei Schulformen unterschiedlich stark in der Stichprobe (N = 436) vertreten sind, so dass die Repräsentativität der Substichproben für die jeweilige Schulform unterschiedlich hoch ist (22% Hauptschüler, 47.5% Realschüler, 30.5% Gymnasiasten).

Eine erste praktische Implikation der korrelativen Studie findet sich in der zusammenfassenden Diskussion der vorliegenden Arbeit in Kapitel 7.3.

6 Die experimentelle Studie

Die in Kapitel 4.2 hergeleiteten Ziele und Annahmen der experimentellen Studie werden in Kapitel 6.1 zu konkreten Fragestellungen und Hypothesen präzisiert. Daran gliedert sich mit Kapitel 6.2 der Methodenteil an, in dem in Kapitel 6.2.1 die Stichprobe beschrieben wird. In Kapitel 6.2.2 werden die für die Hauptstudie entwickelten Experimentalbedingungen in Form der vier Arten externaler Zielvorgaben vorgestellt. Mit Kapitel 6.2.3 schließt sich das Untersuchungsdesign und mit Kapitel 6.2.4 die Versuchsdurchführung an. Alle eingesetzten Instrumente, insbesondere die eigene Entwicklung und Evaluation der notwendigen Erhebungsinstrumente werden in Kapitel 6.2.5 beschrieben. Als Hinweis auf die Konstruktvalidität der entwickelten Instrumente werden in Kapitel 6.2.6 entsprechende korrelative Zusammenhänge berichtet.

Schließlich folgen mit Kapitel 6.3 die experimentellen Ergebnisse in der Reihenfolge der Fragestellungen und Hypothesen aus Kapitel 6.1. Ebenfalls in dieser Reihenfolge werden die Befunde der vorliegenden Studie schließlich in Kapitel 6.4 diskutiert.
6.1 Präzisierung der Fragestellungen und Hypothesen

Im Folgenden werden die in Kapitel 4.2 hergeleiteten Forschungsfragen, Annahmen und Ziele in konkrete Fragestellungen und Hypothesen präzisiert: In Kapitel 6.1.1 geschieht dies für den Vergleich von Zielqualität und Zielspezifität, in Kapitel 6.1.2 nur für Problemlöseziele, in Kapitel 6.1.3 nur Lernziele betreffend und in Kapitel 6.1.4 hinsichtlich internaler Zielorientierungen.

6.1.1 Zielqualität und Zielspezifität

Erstens stellt sich die Frage, ob die Dimension Zielqualität relevanter für den Erfolg selbstreguliert-entdeckenden Lernens durch Experimentieren ist als die Dimension Zielspezifität. Da sowohl spezifische als auch unspezifische Lernziele explizit zum Lernen auffordern, sollten sie unabhängig vom Spezifitätsgrad einen größeren Lernerfolg bewirken als spezifische und unspezifische Problemlöseziele, die beide explizit zum Problemlösen auffordern (Zielqualitätseffekt).

Die Freiheitsgrade unspezifischer Problemlöseziele ermöglichen zwar ebenfalls eine lernzielorientierte Herangehensweise, aber letztlich fordern auch sie zum Problemlösen auf, so dass nur bei einer ausreichend hohen Lernzielorientierung eine Nutzung dieses Freiraumes für Lernprozesse zu erwarten ist. Jedoch ist auch bei geringer Lernzielorientierung zu erwarten, dass sowohl spezifische als auch unspezifische Lernziele, die beide zum Lernen, statt zum Problemlösen auffordern, eher Lernprozesse bewirken als unspezifische Problemlöseziele (vgl. Kapitel 4.2). Die Zielspezifität sollte nur bei Problemlösezielen, nicht aber bei Lernzielen eine Rolle spielen, und Lernziele sollten insgesamt lernförderlicher sein als Problemlöseziele. Deshalb wird erwartet, dass sich qualitative Unterschiede zwischen Zielvorgaben (vgl. Kapitel 3.2.2) stärker auf den Lernerfolg auswirken als Unterschiede in der Zielspezifität.

1. Ist die Zielqualität (Problemlöseziele vs. Lernziele) relevanter für den Lernerfolg als die Zielspezifität (spezifische vs. unspezifische Ziele)?
 Hypothese 1a: Lernziele bewirken einen signifikant höheren Lernerfolg als Problemlöseziele.
 Hypothese 1b: Unspezifische Ziele bewirken keinen signifikant höheren Lernerfolg als spezifische Ziele.

Zweitens gilt es die Frage zu beantworten, ob Lernziele und Problemlöseziele bedeutsame Unterschiede im _cognitive load_ und in der Häufigkeit der Strategienutzung bewirken. Da die kognitiv belastende Mittel-Ziel-Analyse gemäß Sweller (1988, 1994) kaum oder nicht bei unspezifischen Problemlösezielen angewendet wird (Kapitel 3.4.3), sollten sich letztere im _cognitive load_ nicht substantiell von Lernzielen unterscheiden. Insbesondere bei einer Kongruenz zwischen internaler (Problemlöse-)Zielorientierung...

2. Spielt die Zielqualität (Problemlöseziele vs. Lernziele) nicht nur für den Lernerfolg, sondern ebenfalls für den cognitive load und die Strategienutzung eine Rolle?

Hypothese 2a: Problemlöseziele bewirken keinen signifikant höheren cognitive load als Lernziele.

Hypothese 2b: Lernziele bewirken eine häufigere Strategienutzung als Problemlöseziele.

6.1.2 Problemlöseziele

Drittens sollte sich der Effekt, dass unspezifische Problemlöseziele zu mehr Lernerfolg führen als spezifische Problemlöseziele (Kapitel 4.2; Sweller, 1988, 1994), auch in dieser Untersuchung zeigen.

3. Lässt sich der Zielspezifitätseffekt (z.B. Sweller, 1988, 1994) für Problemlöseziele in der vorliegenden Studie replizieren?

Hypothese 3: Unspezifische Problemlöseziele bewirken einen signifikant höheren Lernerfolg als spezifische Problemlöseziele.

Viertens gilt es zu klären, ob sich die noch nicht hinreichend empirisch belegte Tendenz unspezifischer Problemlöseziele, einen geringeren cognitive load aufzuerlegen als spezifische Problemlöseziele (z.B. Ayres, 1993; Sweller, 1988, 1994; Trumpower et al., 2004), in dieser Arbeit nachweisen lässt (siehe Kapitel 4.2).

4. Belastet die Bearbeitung unspezifischer Problemlöseziele das Arbeitsgedächtnis geringer als die Bearbeitung spezifischer Problemlöseziele?

Hypothese 4: Unspezifische Problemlöseziele erlegen einen signifikant geringeren cognitive load auf als spezifische Problemlöseziele.
Fünftens liegt noch keine experimentelle Studie vor, innerhalb der alle drei lernförderlichen Aspekte unspezifischer Problemlöseziele gemeinsam nachgewiesen wurden: Es gilt noch die Frage zu beantworten, ob sich unspezifische Problemlöseziele im Vergleich zu spezifischen Problemlösezielen zugleich auf den Lernerfolg, auf den cognitive load und auf die beim selbstreguliert-entdeckenden Lernen relevante Nutzung der Lernstrategie der isolierenden Variablenkontrolle vorteilhaft auswirken (vgl. Abschnitt 3.2.1.2; Burns, Vollmeyer & Holyoak, 1996).

5. Bewirken unspezifische Problemlöseziele verglichen mit spezifischen Problemlösezielen eine häufigere Strategienutzung?
Hypothese 5: Unspezifische Problemlöseziele bewirken eine signifikant häufigere Nutzung der Strategie der isolierenden Variablenkontrolle als spezifische Problemlöseziele.

6.1.3 Lernziele

6. Sind die Effekte der Zielspezifität auf den Lernerfolg, auf den cognitive load und auf die Häufigkeit der Strategienutzung auf den Vergleich von spezifischen mit unspezifischen Problemlösezielen beschränkt, oder zeigen sie sich ebenfalls beim Vergleich von spezifischen mit unspezifischen Lernzielen?
Hypothese 6a: Unspezifische Lernziele bewirken keinen signifikant höheren Lernerfolg als spezifische Lernziele.
Hypothese 6b: Unspezifische Lernziele bewirken keinen signifikant geringeren cognitive load als spezifische Lernziele.
Hypothese 6c: Unspezifische Lernziele bewirken keine signifikant häufigere Nutzung der Strategie der isolierenden Variablenkontrolle als spezifische Lernziele.

6.1.4 Internale Lernzielorientierung und externe Zielvorgaben

Siebtens ist zusätzlich offen, inwieweit das Ausmaß an internaler Lernzielorientierung als motivationale Variable die Effekte der externalen Zielvorgaben auf den Lernerfolg beeinflussen kann (Kapitel 4.2). Externe Lernzielvorgaben könnten beispielsweise an Lernförderlichkeit zumindest graduell gewinnen/einbüßen, wenn ihnen eine hohe/geringe
internale Lernzielorientierung gegenübersteht, weil in einem solchen Fall die
Wahrscheinlichkeit für die Übernahme eines externalen Lernziels erhöht/verringert sein
sollte (vgl. Kapitel 3.3). Kann ein external gesetztes Lernziel nur dann seine potenzielle
lernförderliche Wirkung voll entfalten, wenn es von einer Person auch hinreichend
ubernommen wird (vgl. Abschnitt 3.2.2.2 und Kapitel 3.3), so sollte es sich bei einer
hohen internalen Lernzielorientierung lernförderlicher auswirken als bei einer geringen.
Damit ist einerseits nicht auszuschließen, dass sich externe Lernziele nur unter der
Voraussetzung einer hinreichend hohen internalen Lernzielorientierung bedeutsam
lernförderlicher auswirken als externe Problemlöseziele. Andererseits ist denkbar, dass
Lernziele, bedingt durch ihre explizite Aufforderung zum Lernen, auch von weniger hoch
lernzielorientierten Probanden erreicht werden (z.B. wenn leistungsmotivierte Personen
das Erreichen eines Lernziels als Leistungsindikator betrachten).

Die als geringer angenommene Lernförderlichkeit externaler Problemlöseziele
könnte durch eine hohe internale Lernzielorientierung tendenziell verbessert werden, da
eine hohe Lernzielorientierung der motivationalen Neigung entspricht, etwas dazulernen
tu wollen. Jedoch sollte der cognitive load unter externen Problemlösezielen auch bei
einer hohen internalen Lernzielorientierung zu einem bestimmten Ausmaß durch
Problemlöseprozesse gebunden werden. Es wird beispielsweise nicht angenommen,
dass eine hohe Lernzielorientierung die als wenig lernförderlich angenommenen Effekte
externaler spezifischer Problemlöseziele wesentlich kompensieren kann, weil letztere
stringent zum Problemlösen auffordern und wenig Freiraum zum Lernen lassen (vgl.
Kapitel 4.2).

Insgesamt scheint die Annahme einer zwar geringfügigen, aber zumindest statistisch
bedeutsamen Moderatorfunktion der Lernzielorientierung für den Einfluss der Dimension
Zielqualität (externe Lern- vs. Problemlöseziele) auf den Lernerfolg gerechtfertigt. Es
wird jedoch davon ausgegangen, dass die direktiven externen Zielvorgaben einen
größeren Einfluss auf den Lernerfolg haben als das Ausmaß an internaler
Lernzielorientierung. Zudem wird das Ausmaß an Lernzielorientierung nicht
zielqualitätsübergreifend die lernerfolgsbezogene Wirkung der Zielspezifität (externe
spezifische vs. unspezifische Ziele) beeinflussen, weil sich die Spezifität nur bei
Problemlösezielen bedeutsam auf den Lernerfolg auswirken sollte, nicht aber bei
Lernzielen (vgl. Kapitel 4.2).

7. Können die Effekte externaler Zielvorgaben auf den Lernerfolg durch das Ausmaß an
internaler Lernzielorientierung bedeutsam verstärkt respektive abgeschwächt werden?
Hypothese 7a: Die Effekte der Zielqualität auf den Lernerfolg werden durch das Ausmaß an
internaler Lernzielorientierung zwar geringfügig, aber statistisch signifikant moderiert.
Hypothese 7b: Die Effekte der Zielspezifität auf den Lernerfolg werden durch das
Ausmaß an internaler Lernzielorientierung nicht statistisch signifikant moderiert.
6.2 Methode

6.2.1 Stichprobe

Die Stichprobe der experimentellen Studie besteht aus 233 Gymnasiasten (Durchschnittsalter \(M = 14.5 \) Jahre, \(SD = .77 \); 48.5% weiblich; 51.5% männlich) der Klassenstufen 8 (33.2%), 9 (58.4%) und 10 (8.4%) aus fünf Gymnasien in Nordrhein-Westfalen. Es gingen nur Klassen ohne bisherigen Unterricht zum Inhaltsbereich „Auftrieb in Flüssigkeiten“ ein. Als Voraussetzung für das messbare Niederschlagen der Effekte externaler Zielvorgaben auf den Erfolg des selbstreguliert-entdeckenden Lernens beim Experimentieren wird in der vorliegenden Arbeit ein ausreichendes Maß an metakognitivem Strategiewissen und der Fähigkeit zur Strategienutzung angenommen. Da sich in der korrelativen Studie gezeigt hat, dass Haupt- und Realschüler im Vergleich zu Gymnasiasten bedeutsam schwächer im metakognitiven Strategiewissen und in der Strategienutzung abschneiden (siehe Kapitel 5.3.4), wurden in die Stichprobe der experimentellen Studie nur Gymnasiasten einbezogen. Auch könnten verbale Kompetenzunterschiede zwischen den Schulformen (vgl. Prenzel et al., 2004) die Effekte externaler Zielvorgaben auf das selbstreguliert-entdeckende Lernen abschwächen. Etwaige Gruppenunterschiede könnten beispielsweise trotz randomisierter Zuweisung zu Experimentalbedingungen ausbleiben, wenn zu viele Schüler aufgrund verbaler Defizite während der Lernphase nicht so von lernförderlichen externen Zielvorgaben profitieren können, dass es sich im anschließenden Wissenstest messbar niederschlägt. Durch diese Beschränkung auf Gymnasiasten steht in der vorliegenden Untersuchung die interne Validität gegenüber der externen Validität im Vordergrund, was für die Ergebnisse natürlich schulförmübergreifende Aussagen ausschließt. Zusätzlich ist die Stichprobe in Abhängigkeit vom Forschungsdesign aufgrund bundeslandspezifischer Beschränkung (auf Nordrhein-Westfalen), schulförmübergreifender Beschränkung (auf Gymnasien), schulspezifischer Beschränkung (auf fünf Schulen) und
schulklassenspezifischer Beschränkung (auf die Klassen 8-913) keine reine Zufallsstichprobe, sondern eine Clusterstichprobe (vgl. Sibbersn & Baumert, 2001).

6.2.2 Konstruktion der externalen Zielvorgaben

Der Inhaltsbereich der für die experimentelle Studie vorliegenden Experimentierumgebung kann durch 14 explorierbare Relationen zwischen Variablen (siehe Anhang 5) vollständig repräsentiert werden (z.B. eine Relation zwischen Auftriebskraft (F\textsubscript{A}) und Gewichtskraft (F\textsubscript{G}): Ein Körper befindet sich im Wasser. Wenn seine Auftriebskraft (F\textsubscript{A}) größer ist als seine Gewichtskraft (F\textsubscript{G}), dann steigt er).

In diesem Zusammenhang wurde das Modul für die Formveränderung von Körpern für die vorliegende Untersuchung entfernt, da die Form eines Körpers mit keiner anderen Variablen in der Experimentierumgebung zusammenhängt: Beispielsweise macht die situationale Formulierung des spezifischen Problemlöseziels „Wirf in ein Gefäß: Einen Körper mit der Form, bei der seine Auftriebskraft (F\textsubscript{A}) am größten ist!“ keinen Sinn, weil die Form eines Körpers (als Distraktor in der korrelativen Studie) keinen Einfluss auf seine Auftriebskraft (F\textsubscript{A}) hat. Durch die Herausnahme des Moduls der Formveränderung sind nicht mehr 360 Zustände im Experimenteraum möglich, sondern nur noch 120.

Beider Konstruktion der insgesamt vier Zielarten (siehe Anhang 4) wurden zum einen Expertenurteile herangezogen und eine Pilotstudie hinsichtlich der Schülerverständlichkeit durchgeführt. Zum anderen wurden alle vier Arten von Zielvorgaben theoriegeleitet konstruiert, wobei insbesondere eine saubere Trennung der Zielmerkmale Berücksichtigung fand. So unterscheiden sich spezifische und unspezifische Problemlöseziele nur im Spezifitätsgrad voneinander, was analog auch für

13 Zehnte Klassen ließen sich kaum erheben, da hier der Inhaltsbereich „Auftrieb in Flüssigkeiten“ zumeist bereits unterrichtet wurde. Der geringe Anteil von nur 8.4% Zehntklässlern in dieser Stichprobe, der zudem aus einer einzigen untersuchten zehnten Klasse stammt, erlaubt keine repräsentative Aussage über die zehnte Jahrgangsstufe der fünf untersuchten Gymnasien.

3. **Spezifische Lernziele.** Analog zu den 14 spezifischen Problemlösezielen wurde auch unter dieser Zielbedingung jede der 14 Relationen durch ein spezifisches Lernziel repräsentiert. Zum Beispiel: „Finde heraus, wie das Steigen eines Körpers mit dem Verhältnis zwischen seiner Auftriebskraft (F_A) und seiner Gewichtskraft (F_G) zusammenhängt und merke es dir!“ Statt, wie bei einem spezifischen Problemlöseziel, eine Relation anzusprechen, indem ein entsprechender situationaler Zustand hergestellt werden soll, wird hier explizit dazu aufgefordert, etwas über die Relation zu lernen (vgl. Abschnitt 3.2.2.2).

4. **Unspezifische Lernziele.** Analog zu den drei unspezifischen Problemlösezielen wurden drei unspezifische Lernziele konstruiert, die wie spezifische Lernziele
explizit zum Lernen aufforderten, ohne spezifisch jede einzelne Relation anzusprechen. Zum Beispiel: „Finde so viel wie möglich darüber heraus, womit es zusammenhängt, dass manche Körper im Wasser steigen und merke es dir!“

6.2.3 Design der Untersuchung

Durch die Kombination von Zielqualität und Zielspezifität als Faktoren ergeben sich die vier unterschiedlichen externalen Zielvorgaben als 2×2-Design (Tabelle 10). In jedem Quadranten der Tabelle 10 ist ein Beispiel für eine entsprechende Zielvorgabe aufgeführt. Bei der innerhalb von Schulklassen randomisierten Zuweisung der Schüler zu den vier Zielbedingungen entstanden vier ähnlich große Experimentalgruppen (EG; $56 \leq N \leq 61$).

Tabelle 10: Kombination von Zielqualität und Zielspezifität als 2×2-Design

<table>
<thead>
<tr>
<th>Zielqualität</th>
<th>Lernziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problemlöseziele</td>
<td>EG1 ($N = 61$; 14 Ziele)</td>
</tr>
<tr>
<td></td>
<td>„Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen Auftriebskraft (F_A) und Gewichtskraft (F_G), bei dem er steigt!“</td>
</tr>
<tr>
<td></td>
<td>EG3 ($N = 59$; 14 Ziele)</td>
</tr>
<tr>
<td></td>
<td>„Finde heraus, wie das Steigen eines Körpers mit dem Verhältnis zwischen seiner Auftriebskraft (F_A) und seiner Gewichtskraft (F_G) zusammenhängt und merke es dir!“</td>
</tr>
<tr>
<td>Zielspezifität</td>
<td>EG2 ($N = 57$; 3 Ziele)</td>
</tr>
<tr>
<td></td>
<td>„Lasse neun Körper DIREKT NACHEINANDER in nur einem der zwei Gefäße steigen!“</td>
</tr>
<tr>
<td></td>
<td>EG4 ($N = 56$; 3 Ziele)</td>
</tr>
<tr>
<td></td>
<td>„Finde so viel wie möglich darüber heraus, womit es zusammenhängt, dass manche Körper im Wasser steigen und merke es dir!“</td>
</tr>
</tbody>
</table>

Anmerkungen: EG = Experimentalgruppe

6.2.4 Versuchsdurchführung und Testreihenfolge

Organisatorisches. Organisatorisch wurde die experimentelle Studie analog zur korrelativen Studie durchgeführt (siehe dazu Kapitel 5.2.4).

Danach wurde ein Testheft zur Erfassung von Zielorientierungen, demografischen Daten und des Interesses am Unterrichtsfach Physik (ca. 10 Minuten; Anhänge 5 bzw. 11) vorgelegt, um anschließend mit der achtmütigen KFT-Skala der figuralen Analogien fortzufahren. Die Instruktionen aller Instrumente wurden mündlich begleitet.

An die folgende zweiminütige Bearbeitung des Fragebogens zur aktuellen Motivation (FAM; siehe Anhang 9) schloss sich die 20-minütige Explorationsphase an, in der die Zielvorgaben als Textfenster eingeblendet wurden. Die maximale Einblenddauer lag für die jeweils 14 spezifischen Problemlöse- und Lernzielvorgaben im Durchschnitt bei 86 Sekunden pro Zielvorgabe. Die drei unspezifischen Problemlöse- und Lernzielvorgaben wurden jeweils 400 Sekunden eingeblendet (wobei es nur leichte Abweichungen gab, je nach vermuteter Schwierigkeit; für die genauen Zeitangaben pro Zielvorgabe siehe Anhang 4a-d). Nach Verstreichen der maximalen Einblenddauer wurde automatisch das nächste Ziel eingeblendet, um eine Mindestbearbeitungszeit pro Zielvorgabe und Schüler zu gewährleisten. Für die spezifischen und unspezifischen Problemlöseziele wurde eine Zielerreichungskontrolle in das Computerprogramm implementiert, damit bei Erreichen eines Ziels automatisch ein neues Ziel eingeblendet werden kann. Im Falle eines vorzeitigen Erreichens aller Problemlöseziele vor dem Verstreichen der 20-
minütigen Explorationsphase wurden jeweils der Zielart entsprechende weitere Zielvorgaben eingeblendet, die keine neuen Relationen enthielten, sondern bereits gesehene in geänderter Formulierung. Um ein Mindestmaß an lernerseitiger Autonomie in der Progression der Zielvorgaben zu gewährleisten, gab es bei den spezifischen Problemlösezielen zusätzlich nach durchschnittlich 55 Sekunden und bei den unspezifischen Problemlösezielen nach durchschnittlich 280 Sekunden ab dem Erscheinen eines Ziels die Möglichkeit, auf die Schaltfläche „Auftrag nicht erfüllt – trotzdem weiter!“ zu klicken.

Für die spezifischen und unspezifischen Lernziele konnte keine Zielerreichungskontrolle implementiert werden, da sich durch das Programm nur erreichte situationale Zustände (die bei den Problemlösezielen gefordert waren) registrieren lassen, aber nicht, ob ein Schüler etwas über einen Zusammenhang herausgefunden hat (was bei den Lernzielen gefordert war). Deshalb gab es für die Progression in den zwei Lernzielbedingungen die zwei Schaltflächen „Erledigt!“ und „Auftrag nicht erfüllt – trotzdem weiter!“, durch die neue Ziele eingeblendet wurden. Diese Schaltflächen konnten analog zu den Problemlösezielen bei den spezifischen Lernzielen nach durchschnittlich 55 Sekunden und bei den unspezifischen Lernzielen nach durchschnittlich 280 Sekunden ab ihrem Erscheinen angeklickt werden.

Anhang 14 präsentiert getrennt für die vier Experimentalgruppen (Kapitel 6.2.3) deskriptive Mittelwerte, Standardabweichungen und -fehler der mit den Instrumenten gemessenen abhängigen Variablen (Wissenszuwachs, Wissen zum Posttestzeitpunkt, Wissensanwendung, cognitive load, Strategienutzung und insgesamt von den Schülern in der Experimentierumgebung durchgeführte Experimente).
6.2.5 Instrumente

Neben der optimierten Fassung der Experimentierumgebung (Abbildung 14) wurden für die vorliegende experimentelle Studie die vier Arten externaler Zielvorgaben als experimentelle Bedingungen (Tabelle 10) sowie zwei Fragebögen neu entwickelt (zur Erfassung von Zielorientierungen bzw. des cognitive load). Die deklarativ-konzeptuellen Wissenstests der korrelativen Studie (Abschnitt 5.2.3.1) wurden optimiert und konzeptuell an die externalen Zielvorgaben angepasst. Zusammen mit dem Fragebogen zur aktuellen Motivation (FAM; Rheinberg et al., 2001) wurden sie in die computerbasierte Experimentierumgebung implementiert. Der computerbasierte Wissensanwendungstest (Abschnitt 5.2.3.1) wurde funktional, grafisch und hinsichtlich zweier Aufgaben optimiert (Abschnitt 6.2.5.3, Abbildung 16). Die Ermittlung statistischer Kennwerte der entwickelten Instrumente und korrelativer Zusammenhänge zwischen den mittels dieser Instrumente erfassten Konstrukten dienen der Evaluation der Instrumente. Sie basieren auf der in Kapitel 6.2.1 beschriebenen Stichprobe.
6.2.5.1 Fragebogen für internale Zielorientierungen

Der insgesamt aus 26 Items bestehende Fragebogen (Anhang 6) lässt sich in vier unterschiedliche Skalen aufteilen: Für die Skala Problemlösezielorientierung als neues

Kennwerte. Die Kennwerte für die zwei neu entwickelten Skalen Lernziel- und Problemlösezielorientierung sind sowohl auf Itemebene (Mittelwerte: \(M \geq .69 \); Standardabweichungen: \(SD \geq .33 \); korrigierte Trennschärfen: \(r_{it} \geq .35 \); Tabelle 11) als auch auf Skalenebene zufriedenstellend (Problemlösezielorientierung: \(M = .46 \), \(SD = .16 \), Reliabilität als Cronbachs \(\alpha = .80 \); Lernzielorientierung: \(M = .58 \), \(SD = .17 \), Cronbachs \(\alpha = .81 \); vgl. Anmerkungen unter Tabelle 11).

Tabelle 11: Item-Kennwerte der zwei Skalen Lernziel- und Problemlösezielorientierung

<table>
<thead>
<tr>
<th>Skala Lernzielorientierung*</th>
<th>Skala Problemlösezielorientierung*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item (FB-Nr.)</td>
<td>M</td>
</tr>
<tr>
<td>LZO.1 (FB1)</td>
<td>.63</td>
</tr>
<tr>
<td>LZO.2 (FB2)</td>
<td>.54</td>
</tr>
<tr>
<td>LZO.3 (FB5)</td>
<td>.65</td>
</tr>
<tr>
<td>LZO.4 (FB9)</td>
<td>.69</td>
</tr>
<tr>
<td>LZO.5 (FB11)</td>
<td>.59</td>
</tr>
<tr>
<td>LZO.6 (FB12)</td>
<td>.51</td>
</tr>
<tr>
<td>LZO.7 (FB14)</td>
<td>.58</td>
</tr>
<tr>
<td>LZO.8 (FB18)</td>
<td>.55</td>
</tr>
<tr>
<td>LZO.9 (FB21)</td>
<td>.59</td>
</tr>
</tbody>
</table>

Anmerkungen: LZO = Lernzielorientierung; FB-Nr. = Nummer des Items im Fragebogen; PZO = Problemlösezielorientierung; \(M \) = Mittelwert; \(SD \) = Standardabweichung. Alle Angaben sind auf den Wertebereich 0-1 normiert. * Diese beiden einzelnen Skalen wurden in eine Gesamtskala transformiert (siehe folgende Seite) und werden daher nicht mehr separat in den Tabellen 17 und 18 auf S. 127 und 128 aufgeführt.
Hinweise auf Konstrukтивität der Skalen. Eine hohe Problemlösezielorientierung geht erwartungsgemäß tendenziell mit einer eher geringen Posttestleistung \((r = - .19, p = .004)\) und einem geringen Wissenszuwachs \((r = -.22, p = .001)\) einher und zeigt einen erwarteten hoch negativen Zusammenhang mit einer hohen Lernzielorientierung \((r = -.62, p < .001)\). Es wurde eine tendenzielle Konstruktneigung der Problemlösezielorientierung zu den beiden Polen der Leistungszielorientierung angenommen (Annäherungs-Leistungszielorientierung und Vermeidungs-Leistungszielorientierung; Elliot und Harakiewicz, 1996; Elliot, 1999) angenommen: Die Tendenz bei einer Problemlösezielorientierung, bei der Bearbeitung von Aufgaben oder Problemen die Lösung als Ergebnis außerhalb der Person anzustreben, kann auch als extern sichtbares Leistungskriterium betrachtet werden. Die Korrelationen zwischen diesen Konstrukten unterstützen die Annahme: Die Skalen Annäherungs-Leistungszielorientierung und Vermeidungs-Leistungszielorientierung korrelieren mit \(r = .22 (p = .001)\) beziehungsweise \(r = .34 (p < .001)\) signifikant positiv mit der Skala der Problemlösezielorientierung und unbedeutend beziehungsweise schwach negativ mit der Skala der Lernzielorientierung \((r = .01, p = .895; r = - .16, p = .014); vgl. Kapitel 2.4.1\).

Zudem ging die Skala Lernzielorientierung als motivationale Variable erwartungsgemäß mit einer hohen aktuellen Motivation \((r = .32, p < .001)\) und einem hohen Interesse \((r = .32, p < .001)\) einher. Eine hohe Problemlösezielorientierung hingegen weist sogar eine schwach negative Beziehung zum Interesse auf \((r = - .19, p = .005)\).

Gesamtskala für das Ausmaß an Lernzielorientierung. Um für weitere Analysen der vorliegenden Arbeit eine Gesamtskala für das Ausmaß an Lernzielorientierung zu erzeugen, wurden die zwei separaten Skalen Problemlöseziel- und Lernzielorientierung \((r = - .62, p < .001)\) vereinfachend zusammengefasst: Die Items der Skala Problemlösezielorientierung wurden so invertiert, dass eine hohe Itemausprägung einer hohen Lernzielorientierung entspricht. Die Kennwerte dieser Gesamtskala sind ebenfalls auf Item- und Skalenbasis zufriedenstellend. Itemebene: .67 ≥ M ≥ .35; .30 ≥ SD ≥ .23; .66 ≥ r_{fit} ≥ .31 (Tabelle 12, S. 120). Skalenbasis: \(M = .46, SD = .16, \text{Cronbachs } \alpha = .80\) (Tabelle 17, S. 127). Die Korrelation dieser Gesamtskala für das Ausmaß an Lernzielorientierung mit Annäherungs-Leistungszielorientierung ist ebenfalls unbedeutend \((r = - .09, p = .175)\) und mit der Vermeidungs-Leistungszielorientierung signifikant negativ \((r = -.28, p < .001)\). Eine hohe Lernzielorientierung (Gesamtskala) ging als motivationale Variable tendenziell mit hoher aktueller Motivation und hohem Interesse einher \((r = .24, r = -.28; p < .001)\).

Insgesamt ist dieses erwartete, wenn auch relativ schache Korrelationsmuster, ein erster Hinweis auf die Konstruktvalidität des im Zuge dieser Arbeit entwickelten Fragebogens für Zielorientierungen. Für die Gesamtskala der Lernzielorientierung wurde in einer Strukturgleichungsanalyse die Anpassung dieser Modellannahme an die empirischen
Daten geprüft (vgl. Kapitel 5.3.2), wozu im Sinne einer Reduktion der Modellkomplexität die Items der Gesamtskala gemäß ihrer Mittelwerte und Standardabweichungen zu vier ähnlichen parcels zusammengefasst wurden (vgl. S. 95). Die Gesamtskala repräsentiert als ein Faktor die empirische Datenstruktur akzeptabel ($\chi^2(2) = 4.07, p = .131; TLI = .97; RMSEA = .06; CFI = .99; Abbildung 15$).

Abbildung 15: Ladungen der Itemparcels auf die Gesamtskala für Lernzielorientierung

Tabelle 12: Item-Kennwerte für die Gesamtskala Lernzielorientierung

<table>
<thead>
<tr>
<th>Item</th>
<th>Ursprüngliche Skala</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LZO.1_GS</td>
<td>LZO</td>
<td>.63</td>
<td>.27</td>
<td>.31</td>
</tr>
<tr>
<td>LZO.2_GS</td>
<td>LZO</td>
<td>.54</td>
<td>.24</td>
<td>.47</td>
</tr>
<tr>
<td>LZO.3_GS</td>
<td>LZO</td>
<td>.67</td>
<td>.27</td>
<td>.44</td>
</tr>
<tr>
<td>LZO.4_GS</td>
<td>LZO</td>
<td>.65</td>
<td>.26</td>
<td>.44</td>
</tr>
<tr>
<td>LZO.5_GS</td>
<td>LZO</td>
<td>.59</td>
<td>.28</td>
<td>.56</td>
</tr>
<tr>
<td>LZO.6_GS</td>
<td>LZO</td>
<td>.35</td>
<td>.28</td>
<td>.49</td>
</tr>
<tr>
<td>LZO.7_GS</td>
<td>LZO</td>
<td>.69</td>
<td>.27</td>
<td>.63</td>
</tr>
<tr>
<td>LZO.8_GS</td>
<td>LZO</td>
<td>.56</td>
<td>.25</td>
<td>.47</td>
</tr>
<tr>
<td>LZO.9_GS</td>
<td>LZO</td>
<td>.59</td>
<td>.25</td>
<td>.51</td>
</tr>
<tr>
<td>LZO.10_GS</td>
<td>PZO</td>
<td>.50</td>
<td>.30</td>
<td>.53</td>
</tr>
<tr>
<td>LZO.11_GS</td>
<td>PZO</td>
<td>.58</td>
<td>.29</td>
<td>.49</td>
</tr>
<tr>
<td>LZO.12_GS</td>
<td>PZO</td>
<td>.45</td>
<td>.24</td>
<td>.34</td>
</tr>
<tr>
<td>LZO.13_GS</td>
<td>PZO</td>
<td>.62</td>
<td>.25</td>
<td>.66</td>
</tr>
<tr>
<td>LZO.14_GS</td>
<td>PZO</td>
<td>.58</td>
<td>.25</td>
<td>.46</td>
</tr>
<tr>
<td>LZO.15_GS</td>
<td>PZO</td>
<td>.59</td>
<td>.26</td>
<td>.61</td>
</tr>
<tr>
<td>LZO.16_GS</td>
<td>PZO</td>
<td>.57</td>
<td>.23</td>
<td>.49</td>
</tr>
<tr>
<td>LZO.17_GS</td>
<td>PZO</td>
<td>.58</td>
<td>.26</td>
<td>.57</td>
</tr>
</tbody>
</table>

Anmerkungen: LZO = Lernzielorientierung; GS = Gesamtskala. Alle Angaben sind auf den Wertebereich 0-1 normiert. FB-Nr. = Nummer des Items im Fragebogen; LZO = Lernzielorientierung; PZO = Problemlösezielorientierung (für die Gesamtskala invertiert)

6.2.5.2 Konstruktion des Fragebogens zur Messung des cognitive loads

(assessment factors). Faktoren für die „Ursache“ des cognitive load umfassen Personen- und Aufgabenmerkmale sowie deren Interaktion. Als Maß für die Beurteilung gilt die aufgabenspezifische Anforderung an kognitionsspezifische Kapazitäten (mental load), welche durch kontrollierte und automatische Prozesse (Schneider & Shiffrin, 1977) zu einer tatsächlich vom Lerner investierten kognitiven Kapazität führt (mental effort), die als „Essenz“ für die Mesung des cognitive load gilt. Die Aufgabenleistung (performance) führen Paas und Mitarbeiter als dritten Beurteilungsfaktor für den cognitive load auf.

Methoden wie analytische Einschätzungen aufgabenspezifischer Anforderungen durch Expertenratings, die Bestimmung korrekter Aufgabenantworten als Reflektion des cognitive load (primary task technique; Yeung, Yin & Sweller, 1997; Baddeley, 1986) und psychophysiologische Techniken (Herz-, Hirn-, oder Pupillenaktivitätsmessungen; Paas & Van Merrienboer, 1994b) haben sich aufgrund geringer Validität oder zu hohem Implementationsaufwand für größere Stichproben bis heute nur selten durchgesetzt. Bei der dual-task-Methode (dual task-technique oder secondary task-technique; Baddeley et al., 2001; Brünken et al., 2003, 2004; Brünken, Steinbacher, Plass & Leutner, 2002) wird in einer computerbasierten Lernumgebung die Reaktionszeit gemessen, die eine Person benötigt, um während einer primär zu bearbeitenden Aufgabe (primary task) auf ein in unregelmäßigen Zeitabständen erscheinendes Signal einer secondary task (monitoring-Aufgabe) zu reagieren (vgl. Verwey & Veltman, 1996), was nach Brünken et al. (2003) als objektive und direkte Messung des cognitive load gilt.

Messung des cognitive load in der vorliegenden Arbeit. Zum einen aus den oben genannten Gründen, zum anderen aus zeitlichen und testökonomischen Gründen wurde statt einer dual-task-Methode ein subjektives Fragebogenverfahren (Anhang 7) entwickelt. Neben der Ökonomie besteht ein weiterer Vorteil dieser Messmethode in der Möglichkeit, unterschiedliche Anforderungsarten einer Aufgabe durch bestimmte Itemformulierungen thematisieren zu können. Für die Untersuchung der Fragestellung, wie sich die unterschiedlichen externen Zielvorgaben in der verwendeten Experimentierumgebung auf den cognitive load auswirken, wurden sowohl zielvorgabenspezifische als auch für die Experimentierumgebung spezifische Anforderungen des Arbeitsgedächtnisses (Kapitel 3.4.1) bei der Itemkonstruktion berücksichtigt. Beispielsweise sollten spezifische Problemlöseziele nach Sweller über die Tendenz zur Anwendung der Mittel-Ziel-Analyse insbesondere simultane Anforderungen beinhalten (Kapitel 3.4.3). Die Experimentierumgebung der vorliegenden Arbeit stellt sowohl räumlich-visuelle als auch einfache arithmetische Anforderungen, da in ihr Zusammenhänge zwischen Parametern sowohl visuell-räumlich als auch nummerisch erfassbar sind (Kapitel 5.2.1).

Das für die vorliegende Arbeit entwickelte Instrument besteht aus zwei eigenen, sechs an die Konzeptionen von Braarud (2001), Hart und Staveland (1988) sowie Tsang
und Velazquez (1996) und drei an Paas (1993) angelehnte14 Items im siebenstufigen Likertskalenformat. Die Kennwerte sind auf Itemebene (Mittelwerte: $0.64 \geq M \geq 0.38$; Standardabweichungen: $0.36 \geq SD \geq 0.24$; korrigierte Trennschärfen: $0.65 \geq r_{lt} \geq 0.50$; siehe Tabelle 13) und auf Skalenebene ($M = 0.52$, $SD = 0.20$, Cronbachs $\alpha = 0.88$; Tabelle 17, S. 127) zufriedenstellend, so dass kein Item ausgeschlossen werden musste.

Tabelle 13: Item-Kennwerte für die cognitive load-Skala

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL.1</td>
<td>0.58</td>
<td>0.29</td>
<td>0.53</td>
</tr>
<tr>
<td>CL.2</td>
<td>0.58</td>
<td>0.30</td>
<td>0.65</td>
</tr>
<tr>
<td>CL.3</td>
<td>0.55</td>
<td>0.31</td>
<td>0.60</td>
</tr>
<tr>
<td>CL.4</td>
<td>0.64</td>
<td>0.27</td>
<td>0.58</td>
</tr>
<tr>
<td>CL.5</td>
<td>0.38</td>
<td>0.36</td>
<td>0.52</td>
</tr>
<tr>
<td>CL.6</td>
<td>0.49</td>
<td>0.24</td>
<td>0.65</td>
</tr>
<tr>
<td>CL.7</td>
<td>0.64</td>
<td>0.30</td>
<td>0.61</td>
</tr>
<tr>
<td>CL.8</td>
<td>0.54</td>
<td>0.32</td>
<td>0.65</td>
</tr>
<tr>
<td>CL.9</td>
<td>0.41</td>
<td>0.29</td>
<td>0.57</td>
</tr>
<tr>
<td>CL.10</td>
<td>0.49</td>
<td>0.28</td>
<td>0.62</td>
</tr>
<tr>
<td>CL.11</td>
<td>0.38</td>
<td>0.33</td>
<td>0.50</td>
</tr>
</tbody>
</table>

6.2.5.3 Wissenstests

Declarativ-konzeptuelle Wissenstests. Für die vorliegende Studie wurden die deklarativ-konzeptuellen Wissenstests zum Inhaltsbereich „Auftrieb in Flüssigkeiten“ aus der korrelativen Studie (Kapitel 5) an die Relationen (Anhang 5) adaptiert, die durch die externalen Zielvorgaben (Anhang 4a-d) repräsentiert werden. Prä- und Posttestversion wurden in der experimentellen Studie identisch gehalten und unter Beibehaltung des multiple choice-Formats in den Computer implementiert (siehe Anhang 8b).

Eine Reliabilitätsanalyse hinsichtlich interner Konsistenz (Cronbachs Alpha) führte zu zwei weiterhin identischen Versionen, in denen jeweils dieselben 13 von 17 Items verblieben (Items 1-6 und Items 11-17). Dabei erweisen sich für die Prätestversion die Kennwerte auf Itemebene als eher schwach bis moderat, wobei zum Beispiel mehr Items mit hoher als mit geringer Lösungswahrscheinlichkeit vorliegen (Mittelwerte: $0.89 \geq M \geq 0.27$; Standardabweichungen: $0.50 \geq SD \geq 0.31$; korrigierte Trennschärfen: $0.39 \geq r_{lt} \geq 0.11$; Tabelle 14). Die Kennwerte auf Skalenebene zeigen ein relativ hohes Vorwissen, aber

14 Für die sprachliche Adaption der angelehnten Items wurde das *backtranslation*-Verfahren durchgeführt (Van de Vijver & Hambleton, 1996).
auch eine noch akzeptable Reliabilität ($M = .63$, $SD = .17$, Cronbachs α = .60; Tabelle 17, S. 127). Für die Posttestversion zeigt sich eine Verbesserung der Kennwerte sowohl auf Itemebene (Mittelwerte: $0.83 \geq M \geq 0.25$; Standardabweichungen: $0.50 \geq SD \geq 0.38$; korrigierte Trennschärfen: $0.56 \geq r_t \geq 0.23$; Tabelle 15) als auch auf Skalenebene ($M = 0.62$, $SD = 0.23$, Cronbachs α = 0.76; siehe Tabelle 17, S. 127).

Tabelle 14: Item-Kennwerte für den Wissens-Prätest (experimentelle Studie)

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
<th>Itemnummer im Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT Prä1</td>
<td>.79</td>
<td>.41</td>
<td>.29</td>
<td>1</td>
</tr>
<tr>
<td>WT Prä2</td>
<td>.78</td>
<td>.42</td>
<td>.31</td>
<td>2</td>
</tr>
<tr>
<td>WT Prä3</td>
<td>.69</td>
<td>.46</td>
<td>.34</td>
<td>3</td>
</tr>
<tr>
<td>WT Prä4</td>
<td>.82</td>
<td>.38</td>
<td>.20</td>
<td>4</td>
</tr>
<tr>
<td>WT Prä5</td>
<td>.35</td>
<td>.48</td>
<td>.20</td>
<td>5</td>
</tr>
<tr>
<td>WT Prä6</td>
<td>.29</td>
<td>.46</td>
<td>.14</td>
<td>6</td>
</tr>
<tr>
<td>WT Prä7</td>
<td>.27</td>
<td>.45</td>
<td>.17</td>
<td>11</td>
</tr>
<tr>
<td>WT Prä8</td>
<td>.44</td>
<td>.50</td>
<td>.27</td>
<td>12</td>
</tr>
<tr>
<td>WT Prä9</td>
<td>.82</td>
<td>.38</td>
<td>.28</td>
<td>13</td>
</tr>
<tr>
<td>WT Prä10</td>
<td>.89</td>
<td>.31</td>
<td>.29</td>
<td>14</td>
</tr>
<tr>
<td>WT Prä11</td>
<td>.41</td>
<td>.49</td>
<td>.11</td>
<td>15</td>
</tr>
<tr>
<td>WT Prä12</td>
<td>.89</td>
<td>.32</td>
<td>.33</td>
<td>16</td>
</tr>
<tr>
<td>WT Prä13</td>
<td>.78</td>
<td>.42</td>
<td>.39</td>
<td>17</td>
</tr>
</tbody>
</table>

Anmerkungen: WT = Wissenstest (Version Prätest). Alle Angaben sind au den Wertebereich 0-1 normiert.

Tabelle 15: Item-Kennwerte für den Wissens-Posttest (experimentelle Studie)

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
<th>Itemnummer im Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT Post1</td>
<td>.75</td>
<td>.43</td>
<td>.43</td>
<td>1</td>
</tr>
<tr>
<td>WT Post2</td>
<td>.77</td>
<td>.42</td>
<td>.32</td>
<td>2</td>
</tr>
<tr>
<td>WT Post3</td>
<td>.68</td>
<td>.47</td>
<td>.37</td>
<td>3</td>
</tr>
<tr>
<td>WT Post4</td>
<td>.74</td>
<td>.44</td>
<td>.40</td>
<td>4</td>
</tr>
<tr>
<td>WT Post5</td>
<td>.56</td>
<td>.50</td>
<td>.26</td>
<td>5</td>
</tr>
<tr>
<td>WT Post6</td>
<td>.40</td>
<td>.49</td>
<td>.29</td>
<td>6</td>
</tr>
<tr>
<td>WT Post7</td>
<td>.25</td>
<td>.44</td>
<td>.23</td>
<td>11</td>
</tr>
<tr>
<td>WT Post8</td>
<td>.46</td>
<td>.50</td>
<td>.47</td>
<td>12</td>
</tr>
<tr>
<td>WT Post9</td>
<td>.66</td>
<td>.48</td>
<td>.56</td>
<td>13</td>
</tr>
<tr>
<td>WT Post10</td>
<td>.77</td>
<td>.42</td>
<td>.49</td>
<td>14</td>
</tr>
<tr>
<td>WT Post11</td>
<td>.53</td>
<td>.50</td>
<td>.42</td>
<td>15</td>
</tr>
<tr>
<td>WT Post12</td>
<td>.83</td>
<td>.38</td>
<td>.38</td>
<td>16</td>
</tr>
<tr>
<td>WT Post13</td>
<td>.71</td>
<td>.46</td>
<td>.44</td>
<td>17</td>
</tr>
</tbody>
</table>

Anmerkungen: WT = Wissenstest (Version Posttest). Alle Angaben sind auf den Wertebereich 0-1 normiert.

Wissensanwendungs- und transfertest. Der aus 15 Problemlöseaufgaben (Anhang 12) bestehende computerbasierte Wissensanwendungstest aus der korrelativen Studie wurde, funktional und grafisch optimiert, auch in der experimentellen Studie eingesetzt (Abbildung 16), um die Fähigkeit zu überprüfen, erworbenes Wissen für das Herstellen situationaler Zustände zu nutzen. Da den ersten fünf Problemlöseaufgaben eine Art „Eisbrecherfunktion“ zukam und sie einfache Handlungsaufforderungen zur Bedienung der Module des simulierten Labors beinhalteten, wurden sie aus weiteren Analysen ausgeschlossen. Die Kennwerte für diese reduzierte Skala sind auf Item- und Skalenebene zufriedenstellend (Tabelle 16, S. 126; Tabelle 17, S. 127).
Tabelle 16: Item-Kennwerte für den Wissensanwendungstest (experimentelle Studie)

<table>
<thead>
<tr>
<th>Item</th>
<th>M</th>
<th>SD</th>
<th>Korrigierte Trennschärfe</th>
<th>Itemnummer im Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAT 1</td>
<td>.79</td>
<td>.41</td>
<td>.44</td>
<td>6</td>
</tr>
<tr>
<td>WAT 2</td>
<td>.70</td>
<td>.46</td>
<td>.50</td>
<td>7</td>
</tr>
<tr>
<td>WAT 3</td>
<td>.80</td>
<td>.40</td>
<td>.45</td>
<td>8</td>
</tr>
<tr>
<td>WAT 4</td>
<td>.34</td>
<td>.48</td>
<td>.48</td>
<td>9</td>
</tr>
<tr>
<td>WAT 5</td>
<td>.29</td>
<td>.46</td>
<td>.45</td>
<td>10</td>
</tr>
<tr>
<td>WAT 6</td>
<td>.59</td>
<td>.49</td>
<td>.62</td>
<td>11</td>
</tr>
<tr>
<td>WAT 7</td>
<td>.53</td>
<td>.50</td>
<td>.58</td>
<td>12</td>
</tr>
<tr>
<td>WAT 8</td>
<td>.24</td>
<td>.43</td>
<td>.51</td>
<td>13</td>
</tr>
<tr>
<td>WAT 9</td>
<td>.26</td>
<td>.44</td>
<td>.55</td>
<td>14</td>
</tr>
<tr>
<td>WAT 10</td>
<td>.38</td>
<td>.49</td>
<td>.45</td>
<td>15</td>
</tr>
</tbody>
</table>

Anmerkungen: WAT = Wissensanwendungstest. Alle Angaben sind auf den Wertebereich 0-1 normiert.

Abbildung 16: Screenshot des optimierten Wissensanwendungstests der experimentellen Studie.

6.2.5.4 Weitere eingesetzte Instrumente

IVK-between-Strategienutzung. Die relative Nutzungshäufigkeit der Strategie der isolierenden Variablenkontrolle (Typ: IVK-between) wurde in der experimentellen Studie genauso operationalisiert und gemessen wie in der korrelativen Studie: Als Anteil gemäß IVK-between durchgeführter Experimentepaare an allen durchgeführten Experimenten (vgl. Abschnitt 5.2.3.1). Es wurden wieder drei zeitunabhängige Messungen des IVK-
between-Anteils durchgeführt, auf deren Basis die Reliabilität als interne Konsistenz bestimmt werden konnte. Über die gesamte Stichprobe hinweg zeigt sich eine geringe Nutzungshäufigkeit für diese Experimentierstrategie \((M = .24, SD = .10; \text{Tabelle 17})\).

Intelligenz, Motivation, demografische Daten und Interesse. Alle drei Konstrukte wurden mit denselben Instrumenten erhoben, die auch schon in der Evaluationsstudie verwendet wurden. Dabei wurde der vormals papier-bleistift-basierte Fragebogen zur aktuellen Motivation (FAM; Rheinberg et al., 2001) in die computerbasierte Experimentierumgebung implementiert, während die Skala „Figurale Analogien“ aus dem Kognitive Fähigkeiten-Test (KFT; Heller et al., 1985), die demografischen Daten und das Interesse am Unterrichtsfach Physik (Baumert et al., 1986) weiterhin papier-bleistift-basiert erfasst wurden. Die Skalenkennwerte der drei Konstrukte, Intelligenz, Motivation und Interesse sind zufriedenstellend (Tabelle 17). Der hohe Mittelwert für die Intelligenz \((M = .75)\) deutet auf einen Deckeneffekt und somit auf eine hohe Testintelligenz der Gesamtstichprobe hinsichtlich der eingesetzten Skala hin.

Tabelle 17: Mittelwerte, Standardabweichungen und Reliabilitäten der Skalen

<table>
<thead>
<tr>
<th>Skala</th>
<th>(M)</th>
<th>(SD)</th>
<th>(SE)</th>
<th>Cronbachs α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deklarativ-konzeptuelles Wissen (Prüfung)</td>
<td>.63</td>
<td>.17</td>
<td>.01</td>
<td>.60</td>
</tr>
<tr>
<td>Deklarativ-konzeptuelles Wissen (Prüfung)</td>
<td>.62</td>
<td>.23</td>
<td>.02</td>
<td>.76</td>
</tr>
<tr>
<td>Wissensanwendung</td>
<td>.49</td>
<td>.28</td>
<td>.02</td>
<td>.87</td>
</tr>
<tr>
<td>IVK-Strategienutzung</td>
<td>.24</td>
<td>.10</td>
<td>.01</td>
<td>.60</td>
</tr>
<tr>
<td>Intelligenz (KFT)</td>
<td>.75</td>
<td>.15</td>
<td>.01</td>
<td>.71</td>
</tr>
<tr>
<td>Cognitive load</td>
<td>.52</td>
<td>.20</td>
<td>.01</td>
<td>.88</td>
</tr>
<tr>
<td>Interesse an Unterrichtsfach Physik</td>
<td>.46</td>
<td>.26</td>
<td>.02</td>
<td>.90</td>
</tr>
<tr>
<td>Motivation (FAM)</td>
<td>.54</td>
<td>.23</td>
<td>.01</td>
<td>.88</td>
</tr>
<tr>
<td>Gesamtskala Lernaufgabenorientierung*</td>
<td>.57</td>
<td>.15</td>
<td>.01</td>
<td>.87</td>
</tr>
<tr>
<td>Annäherungs-Leistungsaufgabenorientierung</td>
<td>.52</td>
<td>.23</td>
<td>.02</td>
<td>.74</td>
</tr>
<tr>
<td>Vermeidungs-Leistungsaufgabenorientierung</td>
<td>.42</td>
<td>.21</td>
<td>.01</td>
<td>.68</td>
</tr>
</tbody>
</table>

*Anmerkungen: \(M\) = Mittelwert; \(SD\) = Standardabweichung; \(SE\) = Standardfehler. Alle Angaben sind auf den Wertebereich 0-1 normiert. * vgl. S.118 und S. 119.*

6.2.6 Korrelative Zusammenhänge

Die korrelative Struktur (Pearson-Korrelationen) der erhobenen Variablen (siehe Tabelle 18) ist weitgehend erwartungsgemäß und liefert erste Hinweise auf die Konstruktvalidität der entwickelten Instrumente. Der Zusammenhang zwischen deklarativ-konzeptuellem Vorwissen und deklarativ-konzeptuellem Wissen zum Posttestzeitpunkt ist bedeutsam \((r = .43, p < .001)\) und sowohl Schüler, die mit hohem deklarativ-konzeptuellem Wissen in die Untersuchung eingingen, als auch solche mit hohem Wissen zum Posttestzeitpunkt zeigten im Wissensanwendungstest eine tendenziell gute Leistung \((r = .37, r = .34; p < .001)\). Einem hohen deklarativ-konzeptuellem Wissen im Posttest und einer hohen Leistung im Wissensanwendungstest ging tendenziell eine häufige Strategienutzung
voraus \((r = .29, \ p < .001; \ r = .20; \ p = .018)\), sowie auch der vorwissensbereinigte Wissenszuwachs\(^{15}\) höher war, wenn die Strategie der isolierenden Variablenkontrolle häufiger genutzt wurde \((r = .24, \ p = .005)\). Je geringer die Schüler ihren cognitive load unmittelbar nach der Explorationsphase einschätzten, desto mehr Experimente insgesamt (systematische und unsystematische) haben sie tendenziell vorher in der Explorationsphase durchgeführt \((r = -.20, \ p = .019)\) und desto höher war ihre abschließende Leistung im Wissensanwendungstest \((r = -.28, \ p = .001)\). Das Ausmaß deklarativ-konzeptuellen Vorwissens hängt zwar erwartungsgemäß signifikant negativ, aber nur sehr schwach mit dem Ausmaß an später investiertem cognitive load zusammen \((r = -.14, \ p = .037)\). Ein einfaches Strukturmodell, in dem nur der Pfad vom Vorwissen auf den cognitive load definiert wird, zeigt mit hoher Modellgüte \((\chi^2(4) = 1.57, \ p = .822; \ TLI = 1.04; \ RMSEA = .00; \ CFI = 1.00)\) eine statistisch bedeutsam negative, aber schwache Prädiktion des cognitive load durch das Vorwissen \((\beta = -.21, \ p = .010)\). Das Ausmaß an Lernzielorientierung (Abschnitt 6.2.5.1) korreliert signifikant mit dem Wissenszuwuchs \((r = .20, \ p = .002)\), nicht jedoch mit Vorwissen \((r = .00)\).

**Tabelle 18: Korrelationsmatrix aller Variablen in der Gesamtstichprobe (N = 233)*

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
<th>11.</th>
<th>12.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D.-k. Wissen Prätest</td>
<td></td>
</tr>
<tr>
<td>2. D.-k. Wissen Posttest</td>
<td>.43**</td>
<td></td>
</tr>
<tr>
<td>3. Wissenszuwachs (res.)</td>
<td>-.01</td>
<td>.90**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Wissensanwendung</td>
<td>.37**</td>
<td>.34**</td>
<td>.19*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Strategienutzung</td>
<td>.18*</td>
<td>.29**</td>
<td>.24**</td>
<td>.20*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Anzahl aller Experimente</td>
<td>-.05</td>
<td>-.08</td>
<td>-.07</td>
<td>.07</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Cognitive load</td>
<td>-.14*</td>
<td>-.13</td>
<td>-.08</td>
<td>-.28**</td>
<td>-.17*</td>
<td>-.20*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Lernzielorientierung (ges.)</td>
<td>.00</td>
<td>.18**</td>
<td>.20**</td>
<td>.06</td>
<td>-.07</td>
<td>.12</td>
<td>-.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Annäher. Leist.zorient.</td>
<td>-.06</td>
<td>-.03</td>
<td>.00</td>
<td>-.08</td>
<td>.03</td>
<td>.15</td>
<td>-.07</td>
<td>-.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Vermeid. Leist.zorient.</td>
<td>-.19*</td>
<td>-.21**</td>
<td>-.13*</td>
<td>-.11</td>
<td>.03</td>
<td>-.06</td>
<td>.07</td>
<td>-.28**</td>
<td>.28**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Intelligenz</td>
<td>.26**</td>
<td>.34**</td>
<td>.24**</td>
<td>.20*</td>
<td>.09</td>
<td>-.01</td>
<td>-.18**</td>
<td>-.01</td>
<td>-.04</td>
<td>-.15</td>
<td></td>
</tr>
<tr>
<td>12. Motivation</td>
<td>.25**</td>
<td>.29**</td>
<td>.19**</td>
<td>.33**</td>
<td>.18*</td>
<td>-.04</td>
<td>.03</td>
<td>.24**</td>
<td>-.01</td>
<td>-.19**</td>
<td>.02</td>
</tr>
<tr>
<td>13. Interesse</td>
<td>.05</td>
<td>.11</td>
<td>.11</td>
<td>.23**</td>
<td>.03</td>
<td>-.03</td>
<td>-.10</td>
<td>.28**</td>
<td>.09</td>
<td>-.12</td>
<td>.04</td>
</tr>
</tbody>
</table>

*p < .05; **p < .01

\(^{15}\) Der Wissenszuwachs ist auch in dieser Studie der regressionsanalytisch ermittelte vorwissensbereinigte deklarativ-konzeptuelle Wissenszuwachs im Sinne eines residualen Lernerfolgs. Dieser residuale Lernerfolg ist im weiteren Verlauf der vorliegenden Arbeit stets auch dann gemeint, wenn lediglich der Begriff Wissenszuwachs verwendet wird. Wenn hingegen von Wissenszuwachs im Sinne der einfachen, nicht vorwissensbereinigten Differenz zwischen Prä- und Posttest die Rede ist, so wird dies kenntlich gemacht.
Schüler mit höherer Testintelligenz in der Subskala figurale Analogien aus dem KFT, die
induktives Denken erfordert, gingen mit etwas mehr deklarativ-konzeptuellem Vorwissen
in die Untersuchung ein \((r = .26, p < .001) \), wiesen zum Posttestzeitpunkt mehr
deklarativ-konzeptuelles Wissen auf \((r = .34, p < .001) \), verzeichneten einen höheren
deklarativ-konzeptuellen Wissenszuwachs \((r = .24, p < .001) \) und wendeten
abschließend dieses Wissen tendenziell besser an \((r = .20, p = .016) \).

Eine Strukturgleichungsanalyse diente schließlich zum einen zur Überprüfung, ob
auch in der Stichprobe der vorliegenden experimentellen Studie die Strategienutzung
den Wissenszuwachs und die Leistung im Wissensanwendungstest bedeutsam
vorschätzt. Zum anderen war von Interesse, ob das Ausmaß der Lernzielorientierung
neben der Nutzung der Lernstrategie der isolierenden Variablenkontrolle den Lernerfolg
signifikant vorhersagen kann. Dabei wurden in das Strukturmodell (Abbildung 17) keine
weiteren Variablen einbezogen, um ein vertretbares Verhältnis von Parameteranzahl und
Stichprobengröße einzuhalten (vgl. Kapitel 5.3.2; beispielsweise liegen für die exogene
Variable Lernzielorientierung 233 Fälle, aber für die endogene Variable der
Wissensanwendung nur 143 Fälle vor; siehe die Anmerkungen zu Tabelle 18). Abbildung
17 zeigt, dass sich die Nutzung der Strategie der isolierenden Variablenkontrolle auch in
der vorliegenden Stichprobe als bedeutsamer Prädiktor für den deklarativ-konzeptuellen
Wissenszuwachs beim selbstreguliert-entdeckenden Lernen durch Experimentieren
erweist \((\beta = .46, p < .001) \). Einer guten Leistung im abschließenden
Wissensanwendungstest gehen jedoch nur tendenziell eine häufige Strategienutzung
und ein hoher Wissenszuwachs voraus \((\beta = .22, p = .105; \beta = .18, p = .148) \). Das
Ausmaß an Lernzielorientierung sagt den Wissenszuwachs signifikant vorher \((\beta = .25,
p = .005) \), aber nicht die Wissensanwendung \((\beta = .02, p = .829) \).

Abbildung 17: Strategienutzung und Lernzielorientierung als Prädikten für Lernerfolg

6.3 Ergebnisse

Im Folgenden werden die Ergebnisse der statistischen Analysen zu den Fragestellungen
1-7 zuerst als allgemeiner Überblick berichtet. Vorab wurden die Homogenität der vier
Experimentalgruppen in den Eingangsvariablen sowie Geschlechtseffekte überprüft.
Anschließend werden in den Kapiteln 6.3.1 bis 6.3.4 die Befunde zu den konkreten Hypothesen präsentiert.

Homogenität in den Eingangsvariablen. Eine einfaktorielle Varianzanalyse mit den vier Arten von Zielvorgaben als Faktorstufen zeigt mit einem nicht signifikanten Haupteffekt, dass sich die vier Experimentalgruppen (Kapitel 6.2.3) nicht bedeutsam in den Eingangsvariablen Vorwissen, Lernzielorientierung, Interesse, Motivation und Intelligenz unterscheiden ($F_{(3, 229)} = 1.80$ bis $F_{(3, 227)} = .19; .147 \leq p \leq .904$).\(^{16}\)

Geschlechtseffekte. T-Tests zeigen, dass keine statistisch bedeutsamen geschlechtspezifischen Unterschiede für sämtliche Variablen (Eingangs- und abhängige Variablen) vorliegen ($t_{(229)} = 1.78$ bis $t_{(141)} < .001; .068 \leq p \leq 1.00$).

\(^{16}\) Ein Überblick über deskriptive Mittelwerte und Standardabweichungen der vier Experimentalbedingungen hinsichtlich der abhängigen Variablen findet sich in Anhang 14.
Zielspezifität noch aufklären kann, wenn die Kovariaten deklarativ-konzeptuelles Vorwissen, Intelligenz, aktuelle Motivation und Interesse bereits ihren Teil belegt haben.

Eine Poweranalyse (Erdfelder, Faul & Buchner, 1996) zeigt, dass das 2 x 2-Design der vorliegenden Studie mit einem N von 22917 Probanden und einem Alpha-Niveau von 5% Effekte ab einer als bedeutsam anzusehenden Größe von $\eta^2 = .05$ (bzw. $d = .48$; $f^2 = .057$) mit 95%iger Wahrscheinlichkeit (Power von $1 - \beta = .95$) aufdecken kann. Somit können mit diesem Design in der Stichprobe fundene Effekte, die statistisch nicht signifikant sind, mit einer Irrtumswahrscheinlichkeit von $\beta = .05$ als unbedeutend gelten.

Die Faktoren Zielqualität, Zielspezifität, deren Interaktion, die Interaktionen von Zielqualität und Lernzielorientierung sowie die von Zielspezifität und Lernzielorientierung erklären keine bedeutsamen Unterschiede in der Wissensanwendung als abhängige Lernerfolgsvariable ($F(1,129) = 1.62$ bis $F(1,129) < .01$; $.206 \leq p \leq .987$; vgl. Abbildung 21, S. 142). Von den Kovariaten erklären nur das Vorwissen und die aktuelle Motivation signifikante Unterschiede in der Wissensanwendung ($F(1,129) = 22.68, p < .001, \eta^2 = .15$ bzw. $F(1,129) = 11.89, p = .001, \eta^2 = .08$). Wie nach den statistisch nicht bedeutsamen Haupeffekten der 2 x 2-faktoriellen ANCOVA für die Wissensanwendung zu erwarten war, resultiert für diese abhängige Variable auch bei keinem Einzelgruppenvergleich ein signifikanter Kontrasteffekt ($.184 \leq p \leq .942$). Deshalb wird die Wissensanwendung als Lernerfolgsvariable im gesamten Ergebnisteil nicht weiter aufgegriffen.

Im Folgenden werden die Ergebnisse der 2 x 2-faktoriellen ANCOVA aus Tabelle 19 (S. 135) als Überblick für jede der drei verbleibenden abhängigen Variablen berichtet, bevor die Resultate zur Überprüfung der konkreten Hypothesen präsentiert werden. Deklarativ-konzeptueller Wissenszuwachs. Beim Vergleich der Faktoren Zielqualität und Zielspezifität hinsichtlich der abhängigen Variable Wissenszuwachs zeigt die 2 x 2-

17 Anders als in der Gesamtstichprobe (N = 233; siehe Kapitel 6.2.1) liegt das N für die 2 x 2-faktorielle ANCOVA bei N = 229, da vier Personen nicht alle Testinstrumente für die Kovariaten bearbeitet haben.
ANCOVA (Tabelle 19, S. 135) nur für Zielqualität einen signifikanten Haupeffekt ($F_{(1, 219)} = 4.50, p = .018, \eta^2 = .02$), nicht aber für Zielspezifität ($F_{(1, 219)} = 3.01, p = .084, \eta^2 = .01$). Die Interaktion der zwei Faktoren erklärt nur einen tendenziellen, aber einseitig signifikanten Anteil der Unterschiede im Wissenszuwachs ($F_{(1, 219)} = 3.03, p = .042, \eta^2 = .01$; siehe Abbildung 18). Die Interaktionseffekte von Zielqualität und Lernzielorientierung sowie von Zielspezifität und Lernzielorientierung auf den Wissenszuwachs sind nicht statistisch signifikant ($F_{(1, 219)} = .28, p = .597; F_{(1, 219)} = .12, p = .733$). Von den Kovariaten erklären die Intelligenz, die aktuelle Motivation und die zuletzt in das Modell aufgenommene Lernzielorientierung einen signifikanten Varianzanteil im Wissenszuwachs ($p < .001, \eta^2 = .07; p = .003, \eta^2 = .04; p = .009, \eta^2 = .03$).

Eine für den Wissenszuwachs zusätzlich vorgenommene Kommunalitätenanalyse zeigt, dass 57% der insgesamt durch alle vier Kovariaten am Wissenszuwachs erklärten Varianz nur auf die drei Kovariaten Intelligenz, aktuelle Motivation und Interesse (unter Auspartialisierung der Lernzielorientierung) zurückgehen. Der spezifische Anteil der durch alle vier Kovariaten aufgeklärten Varianz im Wissenszuwachs, der allein auf die Lernzielorientierung zurückgeht (unter Auspartialisierung der drei anderen Kovariaten), beträgt 20%, der durch alle vier Kovariaten gemeinsam erklärte Anteil beträgt 23%.

Wie Tabelle 20 (S. 136) ausweist, zeigen sich bei den Einzelgruppenvergleichen für den Wissenszuwachs bedeutsame Unterschiede zwischen spezifischen und unspezifischen Problemlösezielen ($p = .005, d = .48$), zwischen spezifischen Problemlöse- und Lernzielen ($p = .005, d = .57$) sowie zwischen spezifischen Problemlösezielen und unspezifischen Lernzielen ($p = .010, d = .53$).

Abbildung 18: Einseitig signifikanter Interaktionseffekt von Zielqualität und Zielspezifität auf den Wissenszuwachs
Cognitive load. In der 2 x 2-ANCOVA wurde hinsichtlich der abhängigen Variable cognitive load nur für den Faktor Zielspezifität ein signifikanter Haupteffekt ermittelt ($F_{(1, 212)} = 25.70, p < .001, \eta^2 = .11$), nicht jedoch für den Faktor Zielqualität ($F_{(1, 212)} = 1.10, p = .296$; siehe Tabelle 19, S. 135). Auch die Interaktionen von Zielqualität und Zielspezifität, von Zielqualität und Lernzielorientierung sowie von Zielspezifität und Lernzielorientierung erklären keine bedeutsamen Unterschiede im cognitive load ($1.68 \geq F_{(1, 212)} \geq .05; .196 \leq p \leq .832$; siehe Abbildung 19). Von den Kovariaten erklären nur die Intelligenz und das deklarativ-konzeptuelle Vorwissen einen statistisch bedeutsamen, aber geringen Varianzanteil im cognitive load ($p = .017, \eta^2 = .03; p = .027, \eta^2 = .02$).

Wie aus Tabelle 20 (S. 136) hervorgeht, zeigen sich bei den Einzelgruppenvergleichen für den cognitive load bedeutsame Unterschiede zwischen spezifischen und unspezifischen Problemlösezielen ($p = .003, d = .53$), zwischen spezifischen Problemlösezielen und unspezifischen Lernzielen ($p = .003, d = .58$), zwischen unspezifischen Problemlösezielen und spezifischen Lernzielen ($p < .001, d = .79$) sowie zwischen spezifischen und unspezifischen Lernzielen ($p < .001, d = .85$).

Abbildung 19: Nicht signifikanter Interaktionseffekt von Zielqualität und Zielspezifität auf den cognitive load
Strategienutzung. Hinsichtlich der Strategienutzung als abhängige Variable resultiert aus der ANCOVA nur für den Faktor Zielspezifität ein signifikanter Haupteffekt ($F_{(1, 133)} = 8.43, p = .004, \eta^2 = .06$), nicht hingegen für den Faktor Zielqualität ($F_{(1, 133)} = .44, p = .204$; siehe Tabelle 19, S. 135). Der Interaktionseffekt von Zielqualität und Zielspezifität auf die Strategienutzung ist bedeutsam ($F_{(1, 133)} = 7.23, p = .008, \eta^2 = .05$; siehe Abbildung 20), wohingegen die Interaktionen von Zielqualität und Lernzielorientierung sowie von Zielspezifität und Lernzielorientierung keine bedeutsamen Unterschiede in der Strategienutzung erklären ($F_{(1, 133)} = .02, p = .887; F_{(1, 133)} = .84, p = .361$). Von den Kovariaten erklärt nur das deklarativ-konzeptuelle Vorwissen einen statistisch bedeutsamen Varianzanteil in der Strategienutzung ($p = .021, \eta^2 = .04$).

Wie Tabelle 20 (S. 136) zeigt, ergeben sich bei den Einzelgruppenvergleichen für die Strategienutzung bedeutsame Unterschiede zwischen spezifischen und unspezifischen Problemlösezielen ($p < .001, d = .90$), zwischen unspezifischen Problemlösezielen und spezifischen Lernzielen ($p = .009, d = .60$) sowie zwischen unspezifischen Problemlöse- und Lernzielen ($p = .013, d = .50$).

Abbildung 20: Signifikanter disordinaler Interaktionseffekt von Zielqualität und Zielspezifität auf die Strategienutzung
Tabelle 19: 2 x 2-ANCOVA zu den Fragestellungen 1 und 2

Modell 1: Abhängige Variable: Wissenszuwachs*

<table>
<thead>
<tr>
<th>Kovariate/Interaktion</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles (\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligenz (Kovariate 1)</td>
<td>13.28</td>
<td>1</td>
<td>13.28</td>
<td>15.14</td>
<td><.001</td>
<td>.07</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 2)</td>
<td>8.16</td>
<td>1</td>
<td>8.16</td>
<td>9.31</td>
<td>.003</td>
<td>.04</td>
</tr>
<tr>
<td>Interesse (Kovariate 3)</td>
<td>.34</td>
<td>1</td>
<td>.34</td>
<td>.39</td>
<td>.534</td>
<td><.01</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 4)</td>
<td>6.06</td>
<td>1</td>
<td>6.06</td>
<td>6.92</td>
<td>.009</td>
<td>.03</td>
</tr>
<tr>
<td>Zielqualität (Faktor 1)</td>
<td>3.93</td>
<td>1</td>
<td>3.93</td>
<td>4.50</td>
<td>.018</td>
<td>.02</td>
</tr>
<tr>
<td>Zielspezifität (Faktor 2)</td>
<td>2.64</td>
<td>1</td>
<td>2.64</td>
<td>3.01</td>
<td>.084</td>
<td>.01</td>
</tr>
<tr>
<td>Zielqualität * Zielspezifität</td>
<td>2.70</td>
<td>1</td>
<td>2.66</td>
<td>3.03</td>
<td>.042</td>
<td>.01</td>
</tr>
<tr>
<td>Zielqualität * Lernzielorientierung</td>
<td>.25</td>
<td>1</td>
<td>.25</td>
<td>.28</td>
<td>.597</td>
<td><.01</td>
</tr>
<tr>
<td>Zielspezifität * Lernzielorientierung</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>.12</td>
<td>.733</td>
<td><.01</td>
</tr>
<tr>
<td>Fehler</td>
<td>192.00</td>
<td>219</td>
<td>.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>229.44</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .16 (Korrigiertes R-Quadrat = .13)

Modell 2: Abhängige Variable: Cognitive load

<table>
<thead>
<tr>
<th>Kovariate/Interaktion</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles (\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>.17</td>
<td>1</td>
<td>.174</td>
<td>4.97</td>
<td>.027</td>
<td>.02</td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td>.20</td>
<td>1</td>
<td>.20</td>
<td>5.74</td>
<td>.017</td>
<td>.03</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>.03</td>
<td>1</td>
<td>.03</td>
<td>.79</td>
<td>.374</td>
<td><.01</td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td>.12</td>
<td>1</td>
<td>.12</td>
<td>3.29</td>
<td>.071</td>
<td>.02</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>2.83</td>
<td>.094</td>
<td>.01</td>
</tr>
<tr>
<td>Zielqualität (Faktor 1)</td>
<td>.04</td>
<td>1</td>
<td>.04</td>
<td>1.10</td>
<td>.296</td>
<td>.01</td>
</tr>
<tr>
<td>Zielspezifität (Faktor 2)</td>
<td>.90</td>
<td>1</td>
<td>.90</td>
<td>25.70</td>
<td><.001</td>
<td>.11</td>
</tr>
<tr>
<td>Zielqualität * Zielspezifität</td>
<td>.06</td>
<td>1</td>
<td>.06</td>
<td>1.68</td>
<td>.196</td>
<td>.01</td>
</tr>
<tr>
<td>Zielqualität * Lernzielorientierung</td>
<td><.01</td>
<td>1</td>
<td><.01</td>
<td>.05</td>
<td>.832</td>
<td><.01</td>
</tr>
<tr>
<td>Zielspezifität * Lernzielorientierung</td>
<td>.03</td>
<td>1</td>
<td>.03</td>
<td>.74</td>
<td>.391</td>
<td><.01</td>
</tr>
<tr>
<td>Fehler</td>
<td>7.42</td>
<td>212</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>69.52</td>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .18 (Korrigiertes R-Quadrat = .14)

Modell 3: Abhängige Variable: Strategienutzung

<table>
<thead>
<tr>
<th>Kovariate/Interaktion</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles (\eta^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>.05</td>
<td>1</td>
<td>.05</td>
<td>5.46</td>
<td>.021</td>
<td>.04</td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td><.01</td>
<td>1</td>
<td><.01</td>
<td>.09</td>
<td>.767</td>
<td><.01</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>.03</td>
<td>1</td>
<td>.03</td>
<td>3.25</td>
<td>.074</td>
<td>.02</td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td><.01</td>
<td>1</td>
<td><.01</td>
<td>.13</td>
<td>.722</td>
<td><.01</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>.02</td>
<td>1</td>
<td>.02</td>
<td>2.20</td>
<td>.143</td>
<td>.02</td>
</tr>
<tr>
<td>Zielqualität (Faktor 1)</td>
<td><.01</td>
<td>1</td>
<td><.01</td>
<td>.44</td>
<td>.204</td>
<td><.01</td>
</tr>
<tr>
<td>Zielspezifität (Faktor 2)</td>
<td>.07</td>
<td>1</td>
<td>.08</td>
<td>8.43</td>
<td>.004</td>
<td>.06</td>
</tr>
<tr>
<td>Zielqualität * Zielspezifität</td>
<td><.01</td>
<td>1</td>
<td>.07</td>
<td>7.23</td>
<td>.008</td>
<td>.05</td>
</tr>
<tr>
<td>Zielqualität * Lernzielorientierung</td>
<td><.01</td>
<td>1</td>
<td><.01</td>
<td>.02</td>
<td>.887</td>
<td><.01</td>
</tr>
<tr>
<td>Zielspezifität * Lernzielorientierung</td>
<td><.01</td>
<td>1</td>
<td>.01</td>
<td>.84</td>
<td>.361</td>
<td><.01</td>
</tr>
<tr>
<td>Fehler</td>
<td>1.30</td>
<td>133</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>9.71</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .17 (Korrigiertes R-Quadrat = .11)

Anmerkungen: Die Kovariate Vorwissen wurde bei der abhängigen Variable Wissenszuwachs nicht berücksichtigt, da letztere bereits vorwissensbereinigt ist; SS = sum of square (Quadratsumme); df = Freiheitsgrade; MS = mean square (mittleres Abweichungsquadrat); p = Signifikanz.* Einseitige Signifikanztestung, da hierfür gerichtete Hypothesen vorlagen.
Tabelle 20: Alle ANCOVA-Kontraste im Überblick

<table>
<thead>
<tr>
<th>Kontrast</th>
<th>Abhängige Variable</th>
<th>M_1 *</th>
<th>M_2 *</th>
<th>Kontrast-</th>
<th>p</th>
<th>Cohen's d</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG1 vs. EG2</td>
<td>Wissenszuwachs</td>
<td></td>
<td></td>
<td>$EG1 = -0.37$</td>
<td></td>
<td>$EG2 = 0.08$</td>
</tr>
<tr>
<td>EG1 vs. EG3</td>
<td></td>
<td>$EG1 = -0.37$</td>
<td>$EG3 = 0.16$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG4</td>
<td></td>
<td>$EG1 = -0.37$</td>
<td>$EG4 = 0.12$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG3</td>
<td></td>
<td>$EG2 = 0.08$</td>
<td>$EG3 = 0.16$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG4</td>
<td></td>
<td>$EG2 = 0.08$</td>
<td>$EG4 = 0.12$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG3 vs. EG4</td>
<td></td>
<td>$EG3 = 0.16$</td>
<td>$EG4 = 0.12$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG2</td>
<td>Cognitive load</td>
<td>$EG1 = 0.56$</td>
<td>$EG2 = 0.46$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG3</td>
<td></td>
<td>$EG1 = 0.56$</td>
<td>$EG3 = 0.61$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG4</td>
<td></td>
<td>$EG1 = 0.56$</td>
<td>$EG4 = 0.45$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG3</td>
<td></td>
<td>$EG2 = 0.46$</td>
<td>$EG3 = 0.61$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG4</td>
<td></td>
<td>$EG2 = 0.46$</td>
<td>$EG4 = 0.45$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG3 vs. EG4</td>
<td></td>
<td>$EG3 = 0.61$</td>
<td>$EG4 = 0.45$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG2</td>
<td>Strategienutzung</td>
<td>$EG1 = 0.20$</td>
<td>$EG2 = 0.29$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG3</td>
<td></td>
<td>$EG1 = 0.20$</td>
<td>$EG3 = 0.23$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG1 vs. EG4</td>
<td></td>
<td>$EG1 = 0.20$</td>
<td>$EG4 = 0.24$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG3</td>
<td></td>
<td>$EG2 = 0.29$</td>
<td>$EG3 = 0.23$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG2 vs. EG4</td>
<td></td>
<td>$EG2 = 0.29$</td>
<td>$EG4 = 0.24$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG3 vs. EG4</td>
<td></td>
<td>$EG3 = 0.23$</td>
<td>$EG4 = 0.24$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen: EG1 = Spezifische Problemlöseziele; EG2 = Unspezifische Problemlöseziele; EG3 = Spezifische Lernziele; EG4 = Unspezifische Lernziele; M = Mittelwert (estimated means der ANCOVA); p = Signifikanzniveau; Hypothesenrelevante Kontraste sind kursiv. * Für die Berechnung der Effektgrößen (Cohen’s d) wurde bei jedem ANCOVA-Modell die Wurzel aus dem mittleren Abweichungsquadrat des Fehlers (MS error) verwendet; *Einseitige Signifikanztestung (gerichtete Hypothesen).

In den folgenden Kapiteln 6.3.1 bis 6.3.4 werden die Ergebnisse der oben berichteten 2 x 2-faktoriellen ANCOVA zu den konkreten Hypothesen der Fragestellungen 1-7 aus Kapitel 4.2 in der gleichen Reihenfolge präsentiert. Zunächst erfolgt der Vergleich der Faktoren Zielqualität (Problemlöse- vs. Lernziele) und Zielspezifität (spezifische vs. unspezifische Ziele) hinsichtlich ihres Einflusses auf die abhängigen Variablen Lernerfolg, cognitive load und Strategienutzung beim selbstregulierten Lernen durch Experimentieren. Schließlich wird auf die Ergebnisse zum Einfluss der internalen Lernzielorientierung auf die lernerfolgsbezogenen Effekte externer Zielvorgaben eingegangen. Abschließend werden in Kapitel 6.3.5 Befunde zur Varianzaufklärung durch die Zielspezifität im Lernerfolg, im cognitive load und in der Strategienutzung nur bei Problemlösezielen respektive nur bei Lernzielen vorgestellt.

6.3.1 Zielqualität und Zielspezifität

1. Ist die Zielqualität (Problemlöseziele vs. Lernziele) relevanter für den Lernerfolg als die Zielspezifität (spezifische vs. unspezifische Ziele)?

Hypothese 1a: Lernziele bewirken einen signifikant höheren Lernerfolg als Problemlöseziele. Ein signifikanter Haupeffekt der 2 x 2-ANCOVA für den Faktor
Zielqualität bestätigt die Annahme, dass Lernziele zu einem bedeutsam höheren deklarativ-konzeptuellen Wissenszuwachs führen als Problemlöseziele ($F_{1, 219} = 4.50$, $p = .018$, $\eta^2 = .02$; siehe Tabelle 19, S. 135).

Hypothese 1b: Unspezifische Ziele bewirken keinen signifikant höheren Lernerfolg als spezifische Ziele. Der nicht signifikante Haupeffekt für den Faktor Zielspezifität auf den Wissenszuwachs zeigt, dass unspezifische Ziele, wie erwartet, nicht zielqualitätsübergreifend bedeutsam mehr Lernerfolg bewirkten als spezifische Ziele ($F_{1, 219} = 3.01$, $p = .084$, $\eta^2 = .01$; siehe Tabelle 19, S. 135). Gemäß der Poweranalyse für das vorliegende Design (siehe S. 131) ist dieser nicht signifikante Effekt als tatsächlich unbedeutend einzuschätzen.

Interaktion in Bezug auf Wissenszuwachs. Der Interaktionseffekt der Faktoren Zielspezifität und Zielqualität auf den Wissenszuwachs ist einseitig signifikant, weist aber eine geringe Effektstärke auf ($F_{1, 219} = 3.03$, $p = .042$, $\eta^2 = .01$; siehe Tabelle 19, S. 135 und Abbildung 18, S. 132). Er veranschaulicht jedoch, dass, wie zuvor angenommen, die Zielspezifität nur bei Problemlösezielen eine Rolle für den deklarativ-konzeptuellen Wissenszuwachs spielt, nicht aber bei Lernzielen (vgl. Kapitel 4.2 sowie die Hypothesen 3 und 6a in den Kapiteln 6.3.2 bzw. 6.3.3).

Ronis leitet dazu letztlich die folgende Formel ab:

$$RSA_{A-B} = (-\frac{1}{2}) \times (m_2) + (+ \frac{1}{2}) \times (m_3)$$

RSA_{A-B} = relative Größe zweier zu vergleichender Haupeffekte A und B
$-\frac{1}{2}$ und $+ \frac{1}{2}$ = die Kontrastgewichte
m_2 und m_3 = beispielhaft für die jeweilige Faktorstufe mit dem größeren Mittelwert

Für diesen Interaktionseffekt wurde zwar keine _explizite_ Hypothese aufgestellt, aber sein Muster entspricht den gerichteten Hypothesen 3 und 6a in den Kapiteln 6.3.3 bzw. 6.3.2.
Schließlich wird ein empirischer F-Wert ermittelt, der Auskunft darüber gibt, ob der Unterschied zwischen den zwei Haupteffekten A und B bedeutsam ist, oder nicht:

\[
F = \frac{\left(\sum c_i m_j \right)^2}{MS_{S/AB} \left(\sum c_i^2 / n_i \right)}
\]

\[
F = \text{ empirisch zu ermittelnder F-Wert}
\]
\[
c_i = \text{ Kontrastgewicht für Bedingung } i
\]
\[
m_j = \text{ Mittelwert der Bedingung } j
\]
\[
n_i = \text{ Anzahl der Versuchspersonen unter Bedingung } j
\]
\[
MS_{S/AB} = \text{ Mittleres Quadrat des Interaktionseffektes beider zu vergleichender Faktoren}\)

Im konkreten Fall der vorliegenden Studie resultiert folgender F-Wert:

\[
F = \frac{\left((-\frac{1}{2} \times .16) + (+\frac{1}{2} \times .08) \right)^2}{2.66 \times \left((-\frac{1}{2^2} / 58) + (+\frac{1}{2^2} / 56) \right)}
\]
\[
F = 0.07
\]

wobei:

\[
.16 = \text{ estimated mean der EG3 aus der 2 x 2-ANCOVA (spezifische Lernziele, N = 58)}
\]
\[
.08 = \text{ estimated mean der EG2 aus der 2 x 2-ANCOVA (unspezifische Problemlöseziele, N = 56)}
\]

Der errechnete F-Wert ist auf dem Alpha-Niveau von .05 nicht statistisch signifikant (\(F_{\text{emp}} = .07 < F_{\text{Tafel}} = 3.84\)). Somit ist der Faktor Zielqualität in der vorliegenden Arbeit nur tendenziell, aber nicht bedeutsam relevanter für den deklarativ-konzeptuellen Wissenszuwachs, verglichen mit dem Faktor Zielspezifität: Der Unterschied zwischen den Effektausmaßen der zwei Faktoren ist nicht substanziell.

2. Spielt die Zielqualität (Problemlöseziele vs. Lernziele) nicht nur für den Lernerfolg, sondern ebenfalls für den cognitive load und die Strategienutzung eine Rolle?

Hypothese 2a: Problemlöseziele bewirken keinen signifikant höheren cognitive load als Lernziele. Hinsichtlich des cognitive load als abhängige Variable zeigt sich

\[\text{Persönliche Mitteilung durch Ronis am 04.07.2007.}\]
erwartungsgemäß kein signifikanter Unterschied zwischen Problemlöse- und Lernzielen
\((F_{1, 212}) = 1.10, \ p = .296, \ \eta^2 = .01; \) Tabelle 19, S. 135).

\textit{Hypothese 2b: Lernziele bewirken eine häufigere Strategienutzung als Problemlöseziele.} Lernziele führten nicht wie angenommen zu einer häufigeren Strategienutzung als Problemlöseziele \((F_{1, 133}) = .44, \ p = .204, \ \eta^2 < .01; \) siehe Tabelle 19, S. 135).

Die Poweranalyse auf Seite 131 zeigt, dass die zu den Hypothesen 2a und 2b erhaltenen Effekte (beide sogar kleiner als \(\eta^2 = .01 \)) als unbedeutend anzusehen sind.

\textit{Interaktion in Bezug auf Wissenszuwachs.} Der Interaktionseffekt von Zielspezifität und Zielqualität auf den Wissenszuwachs ist einseitig signifikant und spricht dafür, dass erwartungsgemäß die Zielspezifität nur bei Problemlösezielen, nicht aber bei Lernzielen relevant für den Wissenszuwachs ist \((F_{1, 219}) = 3.03, \ p = .042, \ \eta^2 = .01; \) siehe Abbildung 18, S. 132).

\textit{Interaktion in Bezug auf cognitive load respektive Strategienutzung.} Während für die abhängige Variable \textit{cognitive load} kein bedeutsamer Interaktionseffekt für die Faktoren Zielspezifität und Zielqualität resultiert \((F_{1, 212}) = 1.68, \ p = .196, \ \eta^2 = .01; \) siehe Abbildung 19, S. 133), interagieren diese Faktoren bedeutsam bezogen auf die Strategienutzung \((F_{1, 133}) = 7.23, \ p = .008, \ \eta^2 = .05). \) Das bedeutet, dass unspezifische Ziele nur bei Problemlösezielen eine häufigere Strategienutzung bewirkten als spezifische Ziele, nicht aber bei Lernzielen (siehe Abbildung 20, S. 134).

Die Zielspezifität spielt offenbar zielqualitätsübergreifend eine Rolle für den \textit{cognitive load} und die Strategienutzung: Unspezifische Ziele bewirkten insgesamt einen deutlich geringeren \textit{cognitive load} als spezifische Ziele \((F_{1, 212}) = 25.70, \ p < .001, \ \eta^2 = .11 \) und eine häufigere Strategienutzung als diese \((F_{1, 133}) = 8.43, \ p = .004, \ \eta^2 = .06; \) siehe Tabelle 19, S. 135).

Zusammenfassend wurden die Hypothesen 1a, 1b und 2a bestätigt: Lernziele führen insgesamt zu höherem Lernerfolg als Problemlöseziele, so dass die Zielqualität sich als relevant für den deklarativ-konzeptuellen Wissenszuwachs herausstellt. Für die Zielspezifität ergab sich erwartungskonform kein statistisch signifikanter Haupeffekt für den Wissenszuwachs, jedoch unterscheiden sich die Effekte der beiden Faktoren Zielqualität und Zielspezifität nicht bedeutsam voneinander. Wider Erwarten bewirkten Lernziele keine häufigere Strategienutzung als Problemlöseziele.

\section*{6.3.2 Problemlöseziele}

Für die Beantwortung der Fragestellungen 3-6 (Kapitel 6.3.2 und Kapitel 6.3.3) wurden kovarianzanalytische Kontrasttests durchgeführt (siehe Tabelle 20, S. 136).
6.3.2.1 Problemlöseziele und Lernerfolg

3. Lässt sich der Zielspezifitätseffekt (z.B. Sweller, 1988, 1994) für Problemlöseziele in der vorliegenden Studie replizieren?

6.3.2.2 Problemlöseziele und cognitive load

4. Belastet die Bearbeitung unspezifischer Problemlöseziele das Arbeitsgedächtnis geringer als die Bearbeitung spezifischer Problemlöseziele?

6.3.2.3 Problemlöseziele und Strategienutzung

5. Bewirken unspezifische Problemlöseziele verglichen mit spezifischen Problemlösezielen eine häufigere Strategienutzung?

Hypothese 5: Unspezifische Problemlöseziele bewirken eine signifikant häufigere Nutzung der Strategie der isolierenden Variablenkontrolle als spezifische Problemlöseziele. Der Kontrasteffekt hinsichtlich der Strategienutzung als abhängige Variable bestätigt, dass Probanden unter der Bedingung unspezifischer Problemlöseziele bedeutsam häufiger die Strategie der isolierenden Variablenkontrolle nutzten als Probanden mit spezifischen Problemlösezielen (spezifische Problemlöseziele: N = 35, M = .20; unspezifische Problemlöseziele: N = 33, M = .29; p <

6.3.3 Lernziele

6. Sind die Effekte der Zielspezifität auf den Lernerfolg, auf den cognitive load und auf die Häufigkeit der Strategienutzung auf den Vergleich von spezifischen mit unspezifischen Problemlösezielen beschränkt, oder zeigen sie sich ebenfalls beim Vergleich von spezifischen mit unspezifischen Lernzielen?

Hypothese 6a: Unspezifische Lernziele bewirken keinen signifikant höheren Lernerfolg als spezifische Lernziele. Wie erwartet, spielte der Spezifitätsgrad bei Lernzielen keine Rolle für den Wissenszuwachs: Der Kontrasteffekt zwischen den beiden Lernzielgruppen ist nicht signifikant (spezifische Lernziele: $N = 57$, $M = .16$; unspezifische Lernziele: $N = 56$, $M = .12$; $p = .847$, $d = .04$; siehe Tabelle 20, S. 136).

Hypothese 6b: Unspezifische Lernziele bewirken keinen signifikant geringeren cognitive load als spezifische Lernziele. Die Hypothese 6b konnte sich im statistischen Vergleich der Effekte spezifischer und unspezifischer Lernziele auf den cognitive load nicht behaupten: Der Spezifitätsgrad beeinflusste den cognitive load in der Explorationsphase offenbar nicht nur bei Problemlösezielen, sondern auch bei Lernzielen. Mit relativ hoher praktischer Bedeutsamkeit schätzten Probanden unter spezifischen Lernzielen ($N = 56$, $M = .61$) ihre investierte kognitive Kapazität bedeutsam höher ein als Probanden unter unspezifischen Lernzielen ($N = 54$, $M = .45$; $p < .001$, $d = .85$; siehe Tabelle 20, S. 136). Dementsprechend liegt, wie bereits berichtet, keine Interaktion für die Faktoren Zielspezifität und Zielqualität in Bezug auf cognitive load vor ($F_{(1, 212)} = 1.68$, $p = .196$; siehe Tabelle 19, S. 135; Abbildung 19, S. 133).

Hypothese 6c: Unspezifische Lernziele bewirken keine signifikant häufigere Nutzung der Strategie der isolierenden Variablenkontrolle als spezifische Lernziele. Die Überprüfung der Hypothese 6c ergab ein erwartungskonformes Resultat, indem die Zielspezifität bei Lernzielen keinen signifikanten Unterschied in der Nutzungshäufigkeit der Strategie der isolierenden Variablenkontrolle bewirkte (Kontrasteffekt: Spezifische
Lernziele: $N = 36, M = .23$; unspezifische Lernziele: $N = 41, M = .24; p = .790, d = .10$; siehe Tabelle 20, S. 136).

Die nicht signifikanten Kontrasteffekte zu den Hypothesen 6a und 6c können (bei äußerst geringen Effektstärken von $d = .04$ und $d = .10$) als tatsächlich nicht bedeutsam betrachtet werden (vgl. S.131).

Abbildung 21 illustriert abschließend zu den Fragestellungen 1-6 eine überblicksartige Zusammenschau für die Mittelwerte aller vier Zielarten hinsichtlich der abhängigen Variablen Wissenszuwachs, Wissensanwendung, cognitive load und Strategienutzung.

![Abbildung 21: Mittelwerte aller abhängigen Variablen für alle vier Zielarten](image-url)
6.3.4 Internale Lernzielorientierung und externe Zielvorgaben

7. Können die Effekte externaler Zielvorgaben auf den Lernerfolg durch das Ausmaß an internaler Lernzielorientierung bedeutsam verstärkt respektive abgeschwächt werden?

Hypothese 7b: Die Effekte der Zielspezifität auf den Lernerfolg werden durch das Ausmaß an internaler Lernzielorientierung nicht statistisch signifikant moderiert. Erwartungsgemäß moderiert das Ausmaß an Lernzielorientierung die lernerfolgsbezogenen Effekte der Zielspezifität nicht: Der Interaktionseffekt der Faktoren Zielspezifität und Lernzielorientierung auf den Wissenszuwachs ist nicht bedeutsam (\(F(1, 219) = .12, p = .733, \eta^2 < .01 \); siehe Tabelle 19, S. 135).

Die beiden Interaktionseffekte zu den Hypothesen 7a und 7b sind als tatsächlich nicht bedeutsam einzuschätzen (vgl. S. 131).

Diese Ergebnisse sprechen für eine relativ hohe Robustheit der in der experimentellen Studie dargebotenen externalen Zielvorgaben gegenüber internalen Zielorientierungen.

Wird die Gesamtstichprobe per Mediansplit nur in Probanden mit hoher versus Probanden mit geringer Lernzielorientierung eingeteilt, unterscheiden sich diese zwei Gruppen einseitig getestet signifikant voneinander im vorwissensbereinigten Wissenszuwachs (hohe Lernzielorientierung: \(N = 117, M = .12, SD = 1.01 \); geringe Lernzielorientierung: \(N = 114, M = -.12, SD = .97 \); \(t(229) = 1.86, p = .033 \)), wenn auch mit einer geringen praktischen Bedeutsamkeit von \(d = .25 \). Auch T-Tests für die einfache Differenz zwischen Prä- und Posttest für das deklarativ-konzeptuelle Wissen sprechen dafür, dass ein hohes Ausmaß an internaler Lernzielorientierung bei Probanden mit externen Lernzielen und geringem Vorwissen den Wissenserwerb zumindest tendenziell gefördert hat: Werden nur solche Probanden mit externalen Lernzielen (EG3+EG4) betrachtet, die zudem eine hohe Lernzielorientierung und ein geringes

20 Bei diesen T-Tests meint der Zugewinn an deklarativ-konzeptuellem Wissen nicht den vorwissensbereinigten Wissenszuwachs als Variable (siehe Kapitel 5.3.1), sondern die einfache Differenz zwischen Prä- und Posttest.
Vorwissen aufwiesen (Einteilung jeweils per Mediansplit), zeigt sich ein signifikanter Zugewinn an deklarativ-konzeptuellem Wissen mit gut mittelstarkem Effekt (N = 31, Δ M = .10, t(30) = 2.30, p = .027, d = .57). Hingegen resultiert für solche Probanden mit externalen Lernzielen (EG3+EG4), die sich zudem durch eine *geringe Lernzielorientierung* und ein geringes Vorwissen ausweisen, kein bedeutsamer Zugewinn an deklarativ-konzeptuellem Wissen (N = 26, Δ M = .08, t(25) = 1.50, p = .145). Diejenigen Probanden mit Problemlösezielen (EG1+EG2), die eine hohe Lernzielorientierung und ein geringes Vorwissen zeigten, gewannen nicht nennenswert an Wissen hinzu (N = 24, Δ M = .04, t(23) = 1.13, p = .270). Dies trifft erst recht auf solche Probanden mit Problemlösezielen (EG1+EG2) und einem geringen Vorwissen zu, für die statt einer hohen, eine geringe Lernzielorientierung gemessen wurde (N = 33, Δ M = .01, t(32) = .24, p = .815).

Zusammenfassend konnte zur Fragestellung 7 nur die Hypothese 7b, dass die lernerfolgsbezogenen Effekte der Zielspezifität nicht statistisch bedeutsam vom Ausmaß der Lernzielorientierung moderiert werden, bestätigt werden. Für Hypothese 7a fand sich jedoch kein Beleg: Das Ausmaß an internaler Lernzielorientierung hatte keine moderierende Funktion für die Effekte von Zielqualität auf den Lernerfolg.

6.3.5 Weitere Analysen zu den Fragestellungen

In diesem Kapitel werden in Abschnitt 6.3.5.1 über die bereits berichteten Ergebnisse der experimentellen Studie hinaus Varianzanteile berichtet, die *nur bei Problemlösezielen* durch den Faktor Zielspezifität und die Kovariaten im Wissenszuwachs, im *cognitive load* und in der Strategienutzung aufgeklärt werden. Hierfür wurde eine einfaktorielle Kovarianzanalyse nur für diese Substichprobe (EG1+EG2) durchgeführt, mit der Zielspezifität als Faktor (spezifische vs. unspezifische Problemlöseziele) und den Kovariaten Vorwissen, Intelligenz, aktuelle Motivation, Interesse und Lernzielorientierung
in dieser Reihenfolge. Bei den Kovariaten wird insbesondere die Lernzielorientierung betrachtet. In Abschnitt 6.3.5.2 erfolgt dies analog nur für Lernziele.

6.3.5.1 Varianzaufklärung durch Zielspezifität und Kovariaten bei Problemlösezielen

Wie Tabelle 21 (S. 146) ausweist, klärt der Faktor Zielspezifität in jedem Modell an den jeweiligen abhängigen Variablen den höchsten Varianzanteil auf ($0.24 \geq \eta^2 \geq 0.06; p < .001$ bis $p = .011$). Die aktuelle Motivation sagt mit drittplatzerter Position als Kovariate nur am Wissenszuwachs (Modell 1) einen bedeutsamen Varianzanteil vorher ($p = .017, \eta^2 = .05$). Das Interesse am Unterrichtsfach Physik klärt nur im cognitive load einen signifikanten Teil an interpersonalen Unterschieden auf ($p = .016, \eta^2 = .05$). Die letztplatzierte Kovariate Lernzielorientierung erklärt keinen signifikanten Varianzanteil im Wissenszuwachs ($p = .055, \eta^2 = .03$; Lernzielorientierung als Kovariate an erster Stelle: $p = .017, \eta^2 = .05$), und auch nicht im cognitive load ($p = .096, \eta^2 = .03$).

Über eine Kommunalitätenanalyse nur bei Problemlösezielen wurde ermittelt, wie viel spezifische Varianz der Prädiktoren Lernzielorientierung allein an der abhängigen Variable des Wissenszuwachses im Verhältnis zu den restlichen drei Kovariaten aufklärt. Im Ergebnis gehen 45% der insgesamt durch alle vier Kovariaten am Wissenszuwachs erklärt Varianz nur auf die drei Kovariaten Intelligenz, aktuelle Motivation und Interesse unter Auspartialisierung der Lernzielorientierung zurück. Der spezifische Anteil an dieser durch alle vier Kovariaten aufgeklärten Varianz am Wissenszuwachs, der nur auf die Lernzielorientierung zurückgeht (unter Auspartialisierung der drei anderen Kovariaten), beträgt 27%, der durch alle vier Kovariaten gemeinsam erklärte Anteil liegt bei 28%.
Tabelle 21: Varianzaufklärung zu den Fragestellungen 3 bis 5 (Nur Problemlöseziele)

Modell 1: Abhängige Variable: Wissenszuwachs*

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligenz (Kovariate 1)</td>
<td>2.78</td>
<td>1</td>
<td>2.78</td>
<td>3.97</td>
<td>.049</td>
<td>.04</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 2)</td>
<td>4.14</td>
<td>1</td>
<td>4.14</td>
<td>5.92</td>
<td>.017</td>
<td>.05</td>
</tr>
<tr>
<td>Interesse (Kovariate 3)</td>
<td>.16</td>
<td>1</td>
<td>.16</td>
<td>.23</td>
<td>.636</td>
<td><.01</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 4)</td>
<td>2.64</td>
<td>1</td>
<td>2.64</td>
<td>3.78</td>
<td>.055</td>
<td>.03</td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>4.98</td>
<td>1</td>
<td>4.98</td>
<td>7.12</td>
<td>.009</td>
<td>.06</td>
</tr>
<tr>
<td>Fehler</td>
<td>76.220</td>
<td>109</td>
<td>.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>93.426</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .16 (Korrigiertes R-Quadrat = .12)

Modell 2: Abhängige Variable: Cognitive load

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>.05</td>
<td>1</td>
<td>.05</td>
<td>1.23</td>
<td>.271</td>
<td>.01</td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td>.08</td>
<td>1</td>
<td>.08</td>
<td>1.96</td>
<td>.165</td>
<td>.02</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>.07</td>
<td>1</td>
<td>.07</td>
<td>1.64</td>
<td>.204</td>
<td>.02</td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td>.21</td>
<td>1</td>
<td>.24</td>
<td>5.23</td>
<td>.016</td>
<td>.05</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>.11</td>
<td>1</td>
<td>.11</td>
<td>2.83</td>
<td>.096</td>
<td>.03</td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>.27</td>
<td>1</td>
<td>.27</td>
<td>6.76</td>
<td>.011</td>
<td>.06</td>
</tr>
<tr>
<td>Fehler</td>
<td>4.19</td>
<td>105</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>33.59</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .16 (Korrigiertes R-Quadrat = .12)

Modell 3: Abhängige Variable: Strategienutzung

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partielles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>< .01</td>
<td>1</td>
<td><.01</td>
<td>.987</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td>< .01</td>
<td>1</td>
<td><.01</td>
<td>.546</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>< .01</td>
<td>1</td>
<td><.01</td>
<td>.957</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td>.02</td>
<td>1</td>
<td>.02</td>
<td>2.34</td>
<td>.131</td>
<td>.04</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>< .00</td>
<td>1</td>
<td><.01</td>
<td>.787</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>.13</td>
<td>1</td>
<td>.13</td>
<td>18.89</td>
<td><.001</td>
<td>.24</td>
</tr>
<tr>
<td>Fehler</td>
<td>.405</td>
<td>61</td>
<td><.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>4.47</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .26 (Korrigiertes R-Quadrat = .19)

Anmerkungen: *Die Kovariate Vorwissen wurde bei der abhängigen Variable Wissenszuwachs nicht berücksichtigt, da letztere bereits vorwissensbereinigt ist; SS = sum of square (Quadratsumme); df = Freiheitsgrade; MS = mean square (mittleres Abweichungsquadrat); p = Signifikanz.

Zusammenfassend erklärte die Zielspezifität als Faktor bei Problemlösezielen (spezifische vs. unspezifische Problemlöseziele) in den abhängigen Variablen Wissenszuwachs (7%), cognitive load (6%) und Strategienutzung (24%) den höchsten Varianzanteil, verglichen mit den Kovariaten.
6.3.5.2 Varianzaufklärung durch Zielspezifität und Kovariaten bei Lernzielen

Auch für den Vergleich von spezifischen mit unspezifischen Lernzielen wurde analog zu Abschnitt 6.3.5.1 (vgl. Tabelle 21) herausgestellt, wie viel Varianz der jeweils abhängigen Variablen vom Faktor Zielspezifität nur bei Lernzielen (EG1+EG2; spezifische vs. unspezifische Lernziele) neben den Kontrollvariablen aufgeklärt werden kann (siehe Tabelle 22, S. 148).

Die Zielspezifität als Faktor klärt erwartungsgemäß keine Varianz in den abhängigen Variablen Wissenszuwachs und Häufigkeit in der Strategienutzung auf (Modelle 1 und 3), was die Annahme, dass die Zielspezifität bei Lernzielen keine lemerfolgsbezogene Rolle spielt, untermauert. Die Zielspezifität erklärt jedoch nicht nur bei Problemlösezielen, sondern auch bei Lernzielen einen substanziellen Varianzanteil im \textit{cognitive load} (p < .001, $\eta^2 = .17$). Das deklarativ-konzeptuelle Vorwissen als Kovariate erklärt, anders als bei Problemlösezielen, bei Lernzielen sowohl im \textit{cognitive load} als auch in der Strategienutzung einen signifikanten Varianzanteil (p = .031, $\eta^2 = .04$; p = .005, $\eta^2 = .11$). Korrelationen nur in der Substichprobe der Probanden mit Lernzielen (EG3+EG4) zeigen, dass ein hohes Vorwissen mit einer häufigen Strategienutzung (N = 76, r = .32, p = .006; vgl. Kapitel 5), tendenziell mit einem eher geringeren \textit{cognitive load} in der Explorationsphase (N = 110, r = -.19, p = .046) und mit einem höheren Wissen zum Posttest-Zeitpunkt (N = 113, r = .31, p = .001) einhergeht.

Auf die Intelligenz sind statistisch signifikante Unterschiede in der abhängigen Variable Wissenszuwachs (p < .001, $\eta^2 = .10$) zurückzuführen. Das Ausmaß an Lernzielorientierung erklärt unter Vorgabe von externalen Lernzielen mit 4% keinen bedeutsamen Varianzanteil im Wissenszuwachs (p = .051, $\eta^2 = .04$). Die aktuelle Motivation erklärt nur in der Strategienutzung (p = .027, $\eta^2 = .07$) und das Interesse in keiner abhängigen Variable einen bedeutsamen Varianzanteil auf.

Eine wiederum durchgeführte Kommunalitätenanalyse \textit{nur bei Lernzielen} zeigt, dass 61,3% der insgesamt durch alle vier Kovariaten am Wissenszuwachs erklärten Varianz nur auf die drei Kovariaten Intelligenz, aktuelle Motivation und Interesse unter Auspartialisierung der Lernzielorientierung zurückgehen. Der spezifische Anteil an dieser durch alle vier Kovariaten aufgeklärten Varianz am Wissenszuwachs, der nur auf die Lernzielorientierung zurückgeht (unter Auspartialisierung der drei anderen Kovariaten), beträgt hier 22,4%, der durch alle vier Kovariaten gemeinsam erklärte Anteil beträgt 16,3%.
Tabelle 22: Varianzaufklärung zu Fragestellung 6 (Nur Lernziele)

Modell 1: Abhängige Variable: Wissenszuwachs

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partialles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligenz (Kovariate 1)</td>
<td>12.30</td>
<td>1</td>
<td>12.30</td>
<td>11.58</td>
<td><.001</td>
<td>.10</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 2)</td>
<td>2.50</td>
<td>1</td>
<td>2.50</td>
<td>2.35</td>
<td>.128</td>
<td>.02</td>
</tr>
<tr>
<td>Interesse (Kovariate 3)</td>
<td>.33</td>
<td>1</td>
<td>.33</td>
<td>.31</td>
<td>.581</td>
<td><.01</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 4)</td>
<td>4.16</td>
<td>1</td>
<td>.31</td>
<td>3.91</td>
<td>.051</td>
<td>.04</td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>< .01</td>
<td>1</td>
<td>3.91</td>
<td>< .01</td>
<td>.947</td>
<td>.00</td>
</tr>
<tr>
<td>Fehler</td>
<td>114.76</td>
<td>108</td>
<td><.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>136.01</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .16 (Korrigiertes R-Quadrat = .12)

Modell 2: Abhängige Variable: Cognitive load

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partialles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>.14</td>
<td>1</td>
<td>.144</td>
<td>4.79</td>
<td>.031</td>
<td>.04</td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>3.29</td>
<td>.073</td>
<td>.03</td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>< .01</td>
<td>1 <.01</td>
<td>.04</td>
<td>.841</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td>.00</td>
<td>1 <.01</td>
<td>.06</td>
<td>.800</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>< .01</td>
<td>1 <.01</td>
<td>.01</td>
<td>.920</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>.63</td>
<td>1</td>
<td>.625</td>
<td>20.76</td>
<td><.001</td>
<td>.17</td>
</tr>
<tr>
<td>Fehler</td>
<td>3.13</td>
<td>104</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>35.93</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .16 (Korrigiertes R-Quadrat = .12)

Modell 3: Abhängige Variable: Strategienutzung

<table>
<thead>
<tr>
<th>Kovariate</th>
<th>SS (Typ 1)</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
<th>Partialles η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwissen (Kovariate 1)</td>
<td>.10</td>
<td>1</td>
<td>.102</td>
<td>8.42</td>
<td>.005</td>
<td>.11</td>
</tr>
<tr>
<td>Intelligenz (Kovariate 2)</td>
<td>< .01</td>
<td>1 <.01</td>
<td>.21</td>
<td>.648</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Aktuelle Motivation (Kovariate 3)</td>
<td>.06</td>
<td>1</td>
<td>.06</td>
<td>5.13</td>
<td>.027</td>
<td>.07</td>
</tr>
<tr>
<td>Interesse (Kovariate 4)</td>
<td>.01</td>
<td>1</td>
<td>.01</td>
<td>.38</td>
<td>.540</td>
<td>.01</td>
</tr>
<tr>
<td>Lernzielorientierung (Kovariate 5)</td>
<td>.02</td>
<td>1</td>
<td>.02</td>
<td>1.62</td>
<td>.208</td>
<td>.02</td>
</tr>
<tr>
<td>Zielspezifität (Faktor)</td>
<td>< .01</td>
<td>1 <.01</td>
<td>.04</td>
<td>.834</td>
<td><.01</td>
<td></td>
</tr>
<tr>
<td>Fehler</td>
<td>.83</td>
<td>69</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>5.24</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Quadrat = .26 (Korrigiertes R-Quadrat = .19)

Anmerkungen: Die Kovariate Vorwissen wurde bei der abhängigen Variable Wissenszuwachs nicht berücksichtigt, da letztere bereits vorwissensbereinigt ist; SS = **sum of square** (Quadratsumme); df = Freiheitsgrade; MS = **mean square** (mittleres Abweichungsquadrat); p = Signifikanz.

Bei Lernzielen erklärte die Zielspezifität (spezifische vs. unspezifische Lernziele) als Faktor hingegen nur in der abhängigen Variablen **cognitive load** überhaupt einen bedeutsamen, aber auch den größten Varianzanteil (17%). Das Ausmaß an Lernzielorientierung erklärt in dieser Substichprobe als letztplatzierte Kovariate 4% der Varianz im Wissenszuwachs.
6.4 Diskussion der experimentellen Studie

6.4.1 Adaptierte und entwickelte Instrumente

Computerbasiertes Maß für die Strategienutzung. Im Vergleich zur korrelativen Studie ist die Reliabilität des computerbasierten Maßes für die Strategienutzung in der experimentellen Studie geringer, aber noch akzeptabel (Cronbachs $\alpha = .80$ vs. Cronbachs $\alpha = .60$). Eine hohe Strategienutzung ging auch in der experimentellen Studie
statistisch bedeutsam mit einem hohen deklarativ-konzeptionellen Wissen zum Posttestzeitpunkt, einer hohen Leistung im Wissensanwendungstest und mit einem hohen Wissenszuwachs einher ($r = .29, p < .001; r = .20, p = .018; r = .24, p = .005$). Das in Kapitel 6.2.6 dargestellte Strukturmodell (Abbildung 17) umfasst statt aller erhobenen Variablen nur die Strategienutzung und die Lernzielorientierung als Prädiktoren sowie den Wissenszuwachs und die Leistung bei der Wissensanwendung als abhängige Variablen, da sonst die der Stichprobengröße angemessene Modellkomplexität überschritten worden wäre (vgl. Kapitel 5.3.2). Das Modell spiegelt zum einen wider, dass das bereits für die korrelative Studie entwickelte Maß für die Erfassung der Strategienutzung (Abschnitte 5.2.3.1 und 6.2.5.4, vgl. Künning et al., im Druck) auch als an die experimentelle Studie adaptierte Version den Wissenszuwachs bedeutsam vorhersagen kann ($\beta = .46, p < .001$). Zum anderen erweist sich in demselben Strukturmodell auch das für die experimentelle Studie entwickelte Fragebogenmaß zur Erfassung des Ausmaßes an Lernzielorientierung als schwacher, aber statistisch signifikanter Prädiktor für den Wissenszuwachs ($\beta = .25, p = .005$). Beide exogenen Variablen leisten in diesem Modell einen eigenständigen Beitrag zur Vorhersage des Wissenszuwachses, jedoch ist ihre latente Korrelation untereinander nicht signifikant.

Internale Lernzielorientierung. Der Fragebogen zeigt für alle vier **separaten** Skalen eine akzeptable Reliabilität ($\alpha \geq$ Cronbachs $\alpha \geq .68$). Die bedeutsam negative Korrelation zwischen Lernziel- und Problemlösezielorientierung als separate Skalen ($r = -.62, p < .001$) stützt die Annahme zweier entgegengesetzter Pole einer Dimension. Die vermutete tendenzielle Konstruktneigung der Problemlösezielorientierung zu den beiden Polen der Leistungszielorientierung (Annäherungs-Leistungszielorientierung und Vermeidungs-Leistungszielorientierung; Elliot, 1999; Elliot und Harakiewicz, 1996; vgl. Kapitel 6.2.6) wurde ebenfalls bestätigt. Diese beiden Skalen der Leistungszielorientierung hängen jeweils positiv mit der Skala Problemlösezielorientierung zusammen ($r = .22, p = .001; r = .34, p < .001$), die ihrerseits den deklarativ-konzeptionellen Wissenszuwachs erwartungskonform nicht begünstigte ($r = -.22, p = .001$).

Aus ökonomischen Gründen wurde die Problemlösezielorientierungsskala invertiert und mit der Lernzielorientierungsskala zu einer **Gesamtskala zur Erfassung des Ausmaßes an Lernzielorientierung** zusammengefasst (Cronbachs $\alpha = .87$). Der Zusammenhang dieser Gesamtskala mit Annäherungs-Leistungszielorientierung ist unbedeutend ($r = -.09, p = .175$) und mit der Vermeidungs-Leistungszielorientierung sogar signifikant negativ ($r = -.28, p < .001$). Eine hohe Lernzielorientierung ging als motivationale Variable erwartungsgemäß tendenziell mit hoher aktueller Motivation ($r = .24, p < .001$) und hohem Interesse ($r = .28, p < .001$) einher. Die Korrelation des Ausmaßes an Lernzielorientierung mit dem Wissenszuwachs ist schwach, aber statistisch bedeutsam ($r = .20, p = .002$).

Zusammenfassend dient dieses erwartete, wenn auch nicht sehr starke Korrelationsmuster als erster Hinweis auf die Konstruktvalidität des im Zuge dieser Arbeit entwickelten Fragebogens für Zielorientierungen.

Aus diesen Tendenzen lassen sich jedoch keine eindeutigen Schlussfolgerungen ziehen, so dass es bei Interpretationen bleiben muss: Der cognitive load wurde als von externalen Zielvorgaben abhängige Variable gemessen, und ein hohes Maß an selbst eingeschätztem cognitive load kann sowohl eine hohe wahrgenommene Aufgabenkomplexität (intrinsic load) als auch eine hohe Lerninvestition (germane load) indizieren (vgl. z.B. Paas et al., 2004).

6.4.2 Zu den Befunden der experimentellen Fragestellungen

6.4.2.1 Zum Vergleich von Zielqualität und Zielspezifität

Lernerfolg - Zielqualität und Lernerfolg. Eine wesentliche Frage, die durch die experimentelle Studie der vorliegenden Arbeit beantwortet werden sollte, war, ob die
Zielqualität (Lern- vs. Problemlöseziele) für den Lernerfolg eine größere Rolle spielt als die Zielspezifität (spezifische vs. unspezifische Ziele). Dabei wurde zunächst die Hypothese überprüft, ob Lernziele insgesamt lernförderlicher sind als Problemlöseziele. Der Haupeffekt der 2 x 2-faktoriellen ANCOVA für den Faktor Zielqualität bestätigte diese Hypothese: Lernziele führten zu einem statistisch bedeutsam höheren deklarativ-konzeptuellen Wissenszuwachs als Problemlöseziele. Der neben den Kovariaten durch den Faktor erklärte Varianzanteil im Wissenszuwachs ist zwar schwach, aber statistisch bedeutsam ($p = .018$, $\eta^2 = .02$). Für die Leistung im Wissensanwendungstest zeigt sich jedoch kein signifikanter Unterschied. In Kapitel 7.2. werden die in dieser Arbeit generell ausgebildeten Gruppenunterschiede hinsichtlich der Wissensanwendung eingehend als inkonsistente Befunde diskutiert.

Zielspezifität und Lernerfolg. Ebenfalls resultiert aus der experimentellen Studie erwartungsgemäß ein nicht signifikanter Haupeffekt der 2 x 2-faktoriellen ANCOVA für den Faktor Zielspezifität: Spezifische und unspezifische Ziele führten zu keinem bedeutsamen Unterschied im deklarativ-konzeptuellen Wissenszuwachs ($p = .084$, $\eta^2 = .01$). Der Interaktionseffekt der Faktoren Zielspezifität und Zielqualität auf den Wissenszuwachs als Lernerfolg ist schwach, aber einseitig signifikant ($p = .042$, $\eta^2 = .01$). Dieser Interaktionseffekt veranschaulicht, dass unspezifische Ziele erwartungsgemäß nur bei Problemlösezielen zu einem bedeutsam höheren Lernerfolg führten als spezifische Ziele, während die Spezifität bei Lernzielen keine Rolle für den Lernerfolg spielte (Tabellen 19 und 20, S. 135 bzw. S. 136; Abbildung 18, S. 132).

Vergleich der Haupeffekte von Zielspezifität und Zielqualität. Zwar wurde erwartungsgemäß nur für den Faktor Zielqualität ein signifikanter Haupeffekt auf den Wissenszuwachs gefunden, nicht aber für den Faktor Zielspezifität. Jedoch ergab die Prüfung auf eine bedeutsame Unterschiedlichkeit der Effektstärken (Ronis, 1981) kein signifikantes Ergebnis: Die Zielqualität ist nicht *bedeutsam* relevanter für den Wissenszuwachs als die Zielspezifität (siehe Kapitel 6.3.1). Ein Grund dafür wird sein, dass sich die Zielspezifität zwar nicht bei Lernzielen, aber bei Problemlösezielen als substanziell relevant für den Wissenszuwachs erwies (siehe Kapitel 4.2, 6.3.2 und 6.3.3).

Cognitive load - Zielqualität und cognitive load. Die Annahme, dass Problemlöseziele keinen signifikant höheren cognitive load auferlegen als Lernziele, stellte sich als zutreffend heraus. Der Mittelwert für den cognitive load fällt bei Lernzielen mit $M = .53$ ($SD = .19$) zwar nur unwesentlich, aber sogar leicht höher als bei Problemlösezielen aus ($M = .51$; $SD = .21$). Da Lernziele aber insgesamt zu einem signifikant höheren deklarativ-konzeptuellen Wissenszuwachs führten als Problemlöseziele, legt das die Vermutung nahe, dass Lernziele zwar eine mindestens genauso hohe kognitive Belastung auslösen können wie Problemlöseziele. Jedoch scheint die cognitive

Zielspezifität und cognitive load. Anders als die Zielqualität erwies sich die Rolle der Zielspezifität insgesamt als bedeutsam für den *cognitive load* und erklärte einen statistisch bedeutsamen Varianzanteil in dieser abhängigen Variable (*p* < .001, η² = .11). Die *metakognitiven* Anforderungen der Selbstregulation von Lernprozessen sollten eigentlich bei unspezifischen Zielvorgaben höher sein als bei spezifischen Zielvorgaben: Unspezifische Zielvorgaben, die offen lassen, welcher konkrete Teil der Experimentierumgebung mit welcher Relation sinnvoll zu explorieren ist, strukturieren die Experimentierumgebung weitaus weniger vor als spezifische Zielvorgaben, die jede lernerfolgsrelevante Relation konkret präsentieren. Unspezifische Ziele bewirkten in der vorliegenden Untersuchung insgesamt jedoch einen geringeren *cognitive load* als spezifische Ziele. Zwar sind die unspezifischen Ziele dieser Arbeit jeweils komplexer, da das Erreichen eines unspezifischen Ziels die Exploration von mehr Variablen erfordert als das Erreichen eines spezifischen Ziels. Jedoch könnte die größere Anzahl an im Arbeitsgedächtnis zu verarbeitenden (auch zu lesenden) spezifischen Zielvorgaben (14) in Vergleich zu unspezifischen Zielvorgaben (3) dazu beigetragen haben, dass spezifische Ziele insgesamt einen höheren *cognitive load* auferlegten als unspezifische Ziele.

Zielspezifität und Strategienutzung. Unspezifische Ziele belasteten nicht nur das Arbeitsgedächtnis bedeutsam geringer, sondern bewirkten zudem eine bedeutsam häufigere Strategienutzung als spezifische Ziele. Entsprechend erklärt die Zielspezifität einen bedeutsamen Varianzanteil in der Strategienutzung ($\eta^2 = .06$).

Interaktionseffekt von Zielspezifität und Zielqualität auf die Strategienutzung. Die 2 x 2-faktorielle ANCOVA zeigt eine bedeutsame Interaktion der Faktoren Zielqualität und Zielspezifität bezogen auf die Strategienutzung ($\eta^2 = .008$): Bei spezifischen Zielen (spezifische Lern- und Problemlöseziele) wurde die isolierende Variablenkontrolle unter spezifischen Lernzielen nur tendenziell häufiger genutzt als unter spezifischen Problemlösezielen, während es bei unspezifischen Zielen (unspezifische Lern- und Problemlöseziele) deutlicher ausgeprägt umgekehrt war (kovarianzanalytischer Einfachkontrast: $d = .50$). Dass jedoch unspezifische Lernziele trotzdem einen tendenziell höheren deklarativen-konzeptuellen Lernerfolg bewirkten als unspezifische Problemlöseziele, verweist wieder auf den Aspekt der Nutzungsqualität (siehe S. 153).

Probanden mit spezifischen Problemlösezielen hatten wenig Spielraum, um sich eigene Lernziele zur Exploration von Zusammenhängen zu setzen. Stattdessen wurden sie durch konkrete Aufforderungen dazu angehalten, spezifische situationale Zustände herzustellen, was möglicherweise verstärkt zum Einsatz des Versuch-Irrtum-Vorgehens und der Problemlösestrategie der Mittel-Ziel-Analyse geführt hat.

Probanden mit spezifischen Lernzielen wurden hingegen jeweils explizit dazu aufgefordert, einen konkret formulierten Zusammenhang herauszufinden. Ein hinreichendes Verständnis einer solchen Zielvorgabe vorausgesetzt, wird dies den Komplexitätsspielraum der Experimentierumgebung und somit die Anzahl strategisch sinnvoll explorierbarer Variablen eingegrenzt haben, was wiederum konkrete lernrelevante Hypothesen angeboten respektive deren Bildung erleichtert haben könnte.

Zusammenfassend konnte ein Zielqualitätseffekt nur für den deklarativ-konzeptuellen Wissenszuwachs nachgewiesen werden.
6.4.2.2 Zielspezifität nur bei Problemlösezielen

Interessant ist, dass die Lernzielorientierung und der cognitive load in der Gruppe unspezifischer Problemlöseziele bedeutsam negativ korrelieren ($r = -.36, p = .007$), in der Gruppe spezifischer Problemlöseziele hingegen um Null ($r = .01, p = .948$). Der auch im zweiseitigen Test signifikante Unterschied zwischen diesen Korrelationskoefizienten ($Z = 2.02, p = .017$) spricht dafür, dass eine hohe internale Lernzielorientierung (als dispositionales Personenmerkmal am Anfang der Untersuchung gemessen) nur bei Probanden mit unspezifischen Problemlösezielen zu einer geringeren kognitiven Belastung in der Explorationsphase führte (als situatives Personenmerkmal nach der Explorationsphase gemessen). Dies könnte zum einen damit zusammenhängen, dass unspezifische Problemlöseziele, anders als spezifische Problemlöseziele, aufgrund ihrer Freiheitsgrade eine Entfaltung der Lernzielorientierung durch die Person ermöglichen. Eine hohe internale Lernzielorientierung sollte das Setzen eigener Lernziele unter externalen unspezifischen Problemlösezielen begünstigen, was umso weniger
wahrscheinlich zum Einsatz der kognitiv belastenden Mittel-Ziel-Analyse führen sollte (die sich prinziell auch bei unspezifischen Problemlösezielen einsetzen ließe). Spezifische Problemlöseziele hingegen lassen das Setzen eigener Lernziele aufgrund ihrer stringenten Aufforderung zum konkreten Problemlösen kaum zu, so dass die durch eine hohe Lernzielorientierung bedingte Begünstigung des Setzens eigener Lernziele nicht zum Tragen kommt. Somit wäre die Wahrscheinlichkeit des Einsatzes der kognitiv belastenden Mittel-Ziel-Analyse bei spezifischen Problemlösezielen weitgehend unabhängig vom Ausmaß der Lernzielorientierung, was erklären könnte, dass in dieser Gruppe der cognitive load nicht mit der Lernzielorientierung korreliert.

Spezifität von Problemlösezielen und Strategienutzung. In dieser Arbeit gelang der empirische Nachweis nicht nur dafür, dass unspezifische Problemlöseziele einen höheren deklarativ-konzeptuellen Wissenszuwachs und einen geringeren (unter Zielvorgaben erstmals empirisch gemessenen) cognitive load bewirken als spezifische Problemlöseziele: Ebenfalls lösten unspezifische Problemlöseziele im Vergleich zu spezifischen Problemlösezielen eine substanziell höhere Nutzungshäufigkeit der Lernstrategie der isolierenden Variablenkontrolle aus (\(d = .90\)). Dieser empirische Beleg schließt eine Forschungslücke, da ein Zielspezifitätseffekt bisher nur hinsichtlich des Lernerfolgs nachgewiesen worden ist, nicht jedoch zusammen mit den lernerfolgsrelevanten abhängigen Variablen cognitive load und Strategienutzung innerhalb einer Studie. In der vorliegenden Arbeit erklärt die Zielspezifität bei Problemlösezielen (spezifische vs. unspezifische Problemlöseziele) in allen drei abhängigen Variablen einen bedeutsamen Varianzanteil (\(\eta^2 \geq .06; p < .001\) bis \(p = .011\); siehe Abschnitt 6.3.5.1).

mit Strategienutzung als Kovariate; \(F_{(1, 60)} = 3.34, \ p = .069 \). Dies spricht einerseits dafür, dass Probanden mit unspezifischen Problemlösezielen die isolierende Variablenkontrolle zwar bedeutsam häufiger, aber nur tendenziell gewinnbringender für den Wissenserwerb nutzten als jene mit spezifischen Problemlösezielen. Andererseits verweist der Befund, dass unspezifische Problemlöseziele einen bedeutsam höheren Wissenszuwachs bewirkten als spezifische Problemlöseziele, wieder auf den Aspekt der Nutzungsqualität von (auch anderen) Lernstrategien (vgl. Leutner & Leopold, 2002a, 2003, 2006; vgl. Abschnitt 6.4.2.1).

6.4.2.3 Zielspezifität bei Lernzielen

Spezifität von Lernzielen und Lernerfolg. Erwartungsgemäß ließ sich der Zielspezifitätseffekt nicht bei Lernzielen beobachten. Das nicht signifikante Ergebnis im Kontrasttest bestätigt die Hypothese, dass die Spezifität von Zielvorgaben bei Lernzielen für den deklarativ-konzeptuellen Wissenszuwachs nicht relevant ist. Anders als spezifische Problemlöseziele, die wenig Spielraum für Lernprozesse bieten, weil sie konkrete Handlungsaufforderungen zum Lösen von Problemen beinhalten (siehe Abschnitt 6.4.2.2), enthalten spezifische Lernziele konkrete Handlungsaufforderungen zum **Lernen**. Somit war kein signifikanter Unterschied im Wissenszuwachs im Vergleich zu unspezifischen Lernzielen zu erwarten: Sowohl spezifische als auch unspezifische Lernziele fordern zum Lernen auf, und Probanden mit spezifischen Lernzielen schnitten in der Stichprobe sogar leicht (aber nicht signifikant) besser ab als Probanden mit unspezifischen Lernzielen.

6.4.2.4 Zum Einfluss der internalen Lernzielorientierung

Für das Ausmaß an Lernzielorientierung konnte weder ein statistisch signikanter Interaktionseffekt mit dem Faktor Zielqualität, noch mit dem Faktor Zielspezifität auf den Lernerfolg gezeigt werden. Somit fungierte die Lernzielorientierung weder als Moderator für die lernerfolgsbezogenen Effekte der Zielqualität, noch (erwartungsgemäß) für die der Zielspezifität. Die in der 2 x 2-faktoriellen ANCOVA (Kapitel 6.3) als Kovariate zuletzt positionierte Lernzielorientierung erklärt einen entsprechend kleinen, aber statistisch signifikanten Anteil der Varianz im Wissenszuwachs ($p = .009, \eta^2 = .03$; Tabelle 19, S. 135). Auch ist das Ausmaß an internaler Lernzielorientierung ein schwacher, aber statistisch bedeutsamer Prädiktor für den Wissenszuwachs ($\beta = .25, p = .005$; Abbildung 17, S. 129). Zudem wiesen beispielsweise Probanden mit einer hohen Lernzielorientierung einen signifikant größeren deklarativ-konzeptuellen (vorwissensbereinigten) Wissenszuwachs auf als Probanden mit einer geringen Lernzielorientierung, allerdings mit geringer praktischer Bedeutsamkeit ($t_{(229)} = 1.86, p = .033, d = .25$). Werden nur Probanden mit Lernzielen, geringem Vorwissen und hoher...

Insgesamt fällt das Ausmaß an internaler Lernzielorientierung hinter der Rolle von externalen Zielvorgaben für den deklarativ-konzeptuellen Lernerfolg beim selbstreguliert-entdeckenden Lernen durch Experimentieren erkennbar zurück.

7 Zusammenfassende Diskussion der Arbeit

7.1 Zusammenfassender Überblick

In der folgenden zusammenfassenden Diskussion werden die wichtigsten Befunde der Arbeit überblicksartig zusammengefasst, wobei neben den Befunden der korrelativen Studie insbesondere die Dimensionen Zielqualität und Zielspezifität hinsichtlich ihrer Auswirkungen auf Lernerfolg, cognitive load und Strategienutzung beim selbstreguliert-entdeckenden Lernen durch Experimentieren berücksichtigt werden. Die Arbeit schließt mit den Kapiteln 7.2 und 7.3 ab, in denen theoretische und praktische Implikationen aus beiden durchgeführten Studien dargelegt werden. Hierbei werden auch inkonsistente Befunde dieser Arbeit diskutiert sowie Perspektiven für zukünftige Forschungsarbeiten und für den praktischen Nutzen im naturwissenschaftlichen Schulterricht aufgezeigt.

In der korrelativen Studie der vorliegenden Arbeit wurde zunächst die Entwicklung und Evaluation einer curricular validen computerbasierten Experimentierumgebung vorgestellt. Diese korrelative Studie diente zum einen der Überprüfung, ob sich die Experimentierumgebung als Erhebungsinstrument für die darauffolgende experimentelle Studie eignet. Es konnte gezeigt werden, dass diese Experimentierumgebung ausreichend lernwirksam ist, um einen signifikanten deklarativ-konzeptuellen Wissenszuwachs beim selbstreguliert-entdeckenden Lernen durch Experimentieren (Kapitel 2.2.4) messen zu können. Hierzu, sowie zur Erfassung der Strategienutzung und der Leistung bei der Wissensanwendung, haben sich zusätzlich entwickelte Instrumente als reliabel erwiesen. Dabei konnte belegt werden, dass die durch ein reliables computerbasiertes Maß erfasste between-Variante der Strategie der isolierenden Variablenkontrolle (siehe Abschnitt 2.2.2.2; vgl. Künsting et al., im Druck) ein

Zum anderen intendierte die korrelative Studie die Überprüfung der Rolle des Vorwissens als Moderator für die Vorhersage des deklarativ-konzeptuellen Wissenszuwachses durch die Strategienutzung (Kapitel 2.3.2; vgl. Baumert & Köller, 1996; Klahr & Dunbar, 1988; vgl. Künsting et al., im Druck; Schraagen, 1993). Eine entsprechende Moderatoranalyse konnte diese Annahme belegen und zeigen, dass auch unter jeweiliger Kontrolle weiterer lernerfolgsrelevanter Variablen Probanden mit hohem Vorwissen die Strategie der isolierenden Variablenkontrolle bedeutsam effizienter für den deklarativ-konzeptuellen Wissenszuwachs genutzt haben als Probanden mit geringem Vorwissen.

Die in der korrelativen Studie erfolgreich evaluierte Experimentierumgebung sowie das unter Kontrolle weiterer lernerfolgsrelevanter Variablen überprüfte prädiktive Potenzial der Strategienutzung diente im Wesentlichen einer soliden Basis für die Durchführung der experimentellen Studie.

Ein zentrales Ziel der experimentellen Studie bestand in dem experimentellen Vergleich vier unterschiedlicher Arten von Zielvorgaben (Kapitel 6.2.2 und 6.2.3) hinsichtlich ihrer Effekte auf den Lernerfolg, den cognitive load und die Strategienutzung beim selbstreguliert-entdeckenden Lernen durch Experimentieren. Dabei wurden spezifische und unspezifische Problemlöseziele spezifischen und unspezifischen Lernzielen gegenübergestellt. Bei allen kovarianzanalytischen Vergleichen wurden Vorwissen, Intelligenz, aktuelle Motivation, Interesse und Lernzieorientierung (Kapitel 2.3 bzw. 2.4) als Kontrollvariablen berücksichtigt.

Eine wesentliche Forschungslücke schließt die vorliegende Arbeit mit der Bestätigung der zuvor aufgestellten Hypothese, dass die explizite Aufforderung zum Lernen (Zusammenhänge herauszufinden und sich zu merken) das selbstreguliert-entdeckende Lernen durch Experimentieren (Kapitel 2.2.4) stärker fördert als die explizite Aufforderung Probleme zu lösen (situationale Zustände herzustellen): Spezifische und unspezifische Lernzielvorgaben (Abschnitt 3.2.2.2) hinterlassen einen signifikant höheren deklarativ-konzeptuellen Lernerfolg beim selbstreguliert-entdeckenden Lernen durch Experimentieren als spezifische und unspezifische Problemlösezielvorgaben (Abschnitt 3.2.2.1). Spezifische Zielvorgaben (spezifische Lern- und Problemlöseziele) bewirkten dagegen keinen bedeutsam unterschiedlichen deklarativ-konzeptuellen Wissenszuwachs im Vergleich zu unspezifischen Zielvorgaben (unspezifische Lern- und Problemlöseziele). Erwartungsgemäß beeinflusste die Zielspezifität in dieser Arbeit nur bei Problemlösezielen den deklarativ-konzeptuellen Wissenszuwachs bedeutsam, während spezifische und unspezifische Lernziele zu

Dieses Ergebnis bedeutet nicht, dass die Zielqualität (zwischen Problemlösezielen und Lernzielen zu unterscheiden, Kapitel 3.2.2) für den deklarativen-konzeptuellen Wissenszuwachs beim selbstopriguliert-entdeckenden Lernen durch Experimentieren bedeutsam relevanter ist als die Zielspezifität (zwischen spezifischen und unspezifischen Zielen zu unterscheiden, Kapitel 3.2.1): Zwar ist der lernerfolgsbezogene Zielqualitätseffekt in der Stichprobe insgesamt erwartungsgemäß stärker als der lernerfolgsbezogene Zielspezifitätseffekt. Diese beiden Effekte unterscheiden sich jedoch nicht statistisch signifikant voneinander (Kapitel 6.3.1), was in Abschnitt 6.4.2.1 bereits diskutiert wurde.

Hypothesenkonform erlegten Lernziele und Problemlöseziele einen vergleichbar hohen cognitive load (vgl. Kapitel 3.4) beim selbstopriguliert-entdeckenden Lernen durch Experimentieren auf. Offenbar können Lern- und Problemlöseprozesse in Experimentiersituationen die Kapazität des Arbeitsgedächtnisses (Kapitel 3.4.1) zwar auf unterschiedliche Weise (germane vs. extraneous bzw. intrinsic load), aber in vergleichbar hoher Gesamtintensität beanspruchen.

Der Zielspezifitätseffekt (Kapitel 3.2.1; siehe z.B. Burns & Vollmeyer, 2002; Sweller, 1988, 1994; Trumpower et al., 2004) bei Problemlösezielen wurde in der vorliegenden Arbeit repliziert und erweitert: Unspezifische Problemlöseziele bewirkten, verglichen mit spezifischen Problemlösezielen, einen bedeutsam höheren deklarativ-konzeptuellen Lernerfolg, einen signifikant geringeren *cognitive load* und eine substanziell häufigere Nutzung der isolierenden Variablenkontrolle. Diese Befunde schließen ebenfalls eine Forschungslücke, da sie als empirischer Nachweis *innerhalb einer Studie* in der bisherigen Literatur nicht vorzufinden sind.

Für das Ausmaß an *internaler Lernzielorientierung* (Kapitel 2.4.1) wurde zusammenfassend nur eine tendenzielle Lernförderlichkeit festgestellt (siehe Kapitel 6.3.4). Die Effekte der externen Zielvorgaben auf den Lernerfolg erwiesen sich insgesamt als relativ robust gegenüber dem Ausmaß an internaler Lernzielorientierung. Die lernförderlichen Effekte externaler Lernziele wurden beispielsweise nur leicht durch eine gleichzeitig hohe internale Lernzielorientierung verstärkt.

7.2 Theoretische Implikationen und Perspektiven

Korrelative Studie. Mit der korrelativen Studie leistet die vorliegende Arbeit einen wichtigen Forschungsbeitrag zum strategischen Experimentieren in naturwissenschaftlichen Domänen. Es konnte erstmals auch mit einer computerbasierten Experimentierumgebung eine substantielle Vorhersage des Lernerfolgs beim selbstreguliert-entdeckenden Lernen durch die *between*-Variante der Lernstrategie der isolierenden Variablenkontrolle gezeigt werden, was den Stellenwert dieser Lernstrategie

Experimentelle Studie. Mit der experimentellen Studie trägt die vorliegende Arbeit zu neuen Erkenntnissen in der instruktionspsychologischen Forschung zur Wirkung externaler Zielvorgaben auf den Lernerfolg, den *cognitive load* und die Strategienutzung beim selbstregulierten-entdeckenden Lernen durch Experimentieren bei. Der Forschungsbeitrag dieser Studie besteht zum einen in dem wesentlichen empirischen Befund, dass das Setzen von Lernzielen den deklarativ-konzeptuellen Wissenszuwachs beim selbstregulierten-entdeckenden Lernen durch Experimentieren stärker fördert als das Setzen externer gesetzter Problemlöseziele, bei vergleichbar hohem *cognitive load*.

Schließlich impliziert die Replikation und erstmalige empirische Erweiterung des Zielspezifitätseffekts innerhalb einer Studie, dass das Setzen unspezifischer im Vergleich zu spezifischen Problemlösezielen gleichzeitig einen höheren Lernerfolg, einen geringeren *cognitive load* und eine häufigere Strategienutzung bewirkt.

Eine hohe Lernzielorientierung begünstigte insgesamt den deklarativ-konzeptuellen Wissenszuwachs unter externalen Zielvorgaben nur tendenziell. – Um motivationale Bedingungen für die Übernahme externer gesetzter Zielvorgaben umfassender zu kontrollieren, empfiehlt sich für zukünftige Studien, die aufgabenbezogene Selbstwirksamkeitsüberzeugung (Boekaerts, 1999; Bong & Skaalvik, 2003; Pintrich, 1999) ebenfalls zu berücksichtigen. Eine hohe Selbstwirksamkeitsüberzeugung sollte

et al., 2003) erscheint dafür jedoch ungeeignet, da die Latenzen nicht qualitativ, sondern quantitativ differenzieren.

In der vorliegenden Studie war eine Staffelung der experimentellen Untersuchung in mehrere Experimente aus zeitökonomischen Gründen nicht möglich. Nach einzelnen Fragestellungen getrennte Untersuchungen an größeren Stichproben mit jeweils weniger Testinstrumenten und einer funktional optimierten Experimentierumgebung sollten durch die Fokussierung einzelner Fragestellungen die Eindeutigkeit der jeweiligen Effekte in Art und Stärke erhöhen. Möglicherweise haben die vielen Informationen, die die Schüler innerhalb von 90 Minuten verarbeiten mussten, zu Beeinträchtigungen kognitiver Prozesse geführt, was den insgesamt schwachen Wissenszuwachs und seine schwachen positiven Zusammenhänge mit der internalen Lernzielorientierung erklären könnte. Auch Fehlkonzepte (Vosniadou, 1994b) und inkonsistentes Vorwissen (Pazzani, 1991) können zum insgesamt geringen deklarativ-konzeptionellen Wissenszuwachs der Gesamtstichprobe beigetragen haben, da sie den Wissenserwerb behindern können (vgl. Kapitel 2.3.2).

Eine Studie, in der neben der Anzahl papier-bleistift-basierter Instrumente die Komplexität der Experimentierumgebung hinsichtlich ihrer Module, Relationen und Zielvorgaben reduziert ist, kann hierüber Aufschluss geben. Da sich die Datenerhebung der vorliegenden Arbeit auf eine 20-minütige Momentaufnahme von Lern- und Problemlöseprozessen beim Experimentieren beschränken musste, konnten ebenfalls keine Entwicklungsprozesse beobachtet werden. Um in diesem relativ kurzen Zeitfenster zukünftig den Lernerfolg insgesamt zu verstärken, empfiehlt sich neben einer Optimierung der Wissenstests (z.B. mehr Antwortalternativen und dafür eine Beschränkung auf weniger Relationen) auch eine vorgeschaltete kurze Übungseinheit zum strategischen Experimentieren anhand von Alltagsbeispielen.

7.3 **Praktische Implikationen und Perspektiven**

Zusätzlich entwickelte Instrumente. Zusätzlich zu den Instrumenten zur Erfassung des deklarativ-konzeptuellen Wissens und der Wissensanwendung zum Inhaltsbereich Auftrieb in Flüssigkeiten wurde zum einen ein reliabler Fragebogen zur Messung innerer Zielorientierungen entwickelt, für den erste Hinweise auf Konstruktvalidität vorliegen. Zum anderen wurde ein ebenfalls reliabler Fragebogen zur Messung des cognitive load entwickelt, dessen Items mit Blick auf unterschiedliche cognitive Anforderungsarten der verwendeten Experimentierumgebung konstruiert wurden. Mit diesem Fragebogen können zuverlässig von externalen Zielvorgaben abhängige Unterschiede im cognitive load gemessen werden. Als erster diskreter Hinweis auf Konstruktvalidität der cognitive load-Skala kann ihr geringer, aber statistisch bedeutsam negativer Zusammenhang mit Intelligenz gelten (\(r = -0.18, p = 0.006 \)), der dafür spricht, dass (test-)intelligentere Probanden zumindest tendenziell weniger mentale Anstrengung zu investieren brauchten als weniger (test-)intelligentere.

Die in dieser Studie verwendeten Zielvorgaben wurden allerdings für den Zweck der experimentellen Forschung konstruiert und unterscheiden sich nur in den Merkmalen, welche die jeweilige Zielart definieren (siehe Kapitel 6.2.2). Hierdurch wurde sichergestellt, dass Unterschiede im Lernerfolg nur auf die für eine Zielart charakteristischen Merkmale zurückzuführen sind. Für einen didaktisch einträglicheren Einsatz dieser Zielvorgaben besteht die Notwendigkeit ihrer vorherigen didaktischen Aufbereitung. Beispielsweise kann durch eine graduelle Aufhebung der
Formulierungskonstanz bei spezifischen Lernzielen die Verständlichkeit erhöht werden: Eine individuell an jede zu erlernende Relation beziehungsweise Relationsart (siehe Anhang 5) didaktisch angepasste Formulierung sollte die Eindeutigkeit der Aufforderung, was genau gelernt werden soll, erhöhen. Da diese Arbeit ebenfalls zeigt, dass eine hohe interne Lernzielorientierung den höheren Lernerfolg externer Zielvorgaben zumindest tendenziell zusätzlich unterstützt, empfiehlt sich die Motivierung von Schülern hinsichtlich einer lernzielorientierten Haltung gegenüber Lerngegenständen.

Durch eine didaktische Aufbereitung der Lernziele und der Experimentierumgebung insgesamt sollte eine Trainingsumgebung zum selbstreguliert-entdeckenden Lernen durch Experimentieren für den curricular validen physikalischen Inhaltsbereich „Auftrieb in Flüssigkeiten“ konzipierbar sein, die sich in der Schulpraxis ökonomisch in ganzen Schulklassen einsetzen lässt. Eine solche computerbasierte Trainingsumgebung versteht sich als Ergänzung zum konventionellen naturwissenschaftlichen Unterricht.
8 Literatur

9 Verzeichnisse

9.1 Tabellenverzeichnis

Tabelle 1: Taxonomie von Wissensformen in Anlehnung an Süß (1996) 11
Tabelle 3: Taxonomie von Beispielen für Zielvorgaben aus vier bisherigen Studien 55
Tabelle 4: Itemkennwerte für die 20 Items der reliablen Prüfversion 86
Tabelle 5: Itemkennwerte für die 18 Items der reliablen Posttestversion 87
Tabelle 6: Itemkennwerte für den Wissensanwendungstest (korrelative Studie) 88
Tabelle 7: Deskriptive Statistiken und Reliabilitäten (N = 436, korrelative Studie) 90
Tabelle 8: Interkorrelationen aller Variablen der korrelativen Studie (N = 436) 93
Tabelle 9: Überblick über die schulformspezifischen ANOVA-Kontrasteffekte 102
Tabelle 10: Kombination von Zielqualität und Zielspezifität als 2 x 2-Design 113
Tabelle 11: Itemkennwerte der zwei Skalen Lernziel- und Problemlösezielorientierung .. 118
Tabelle 12: Itemkennwerte für die Gesamtskala Lernzielorientierung 120
Tabelle 13: Item-Kennwerte für die cognitive load-Skala .. 123
Tabelle 14: Item-Kennwerte für den Wissens-Prüftest (experimentelle Studie) 124
Tabelle 15: Item-Kennwerte für den Wissens-Posttest (experimentelle Studie) 124
Tabelle 16: Item-Kennwerte für den Wissensanwendungstest (experimentelle Studie) 126
Tabelle 17: Mittelwerte, Standardabweichungen und Reliabilitäten der Skalen 127
Tabelle 18: Korrelationsmatrix aller Variablen in der Gesamtstichprobe (N = 233) ... 128
Tabelle 19: 2 x 2-ANCOVA zu den Fragestellungen 1 und 2 135
Tabelle 20: Alle ANCOVA-Kontraste im Überblick ... 136
Tabelle 21: Varianzaufklärung zu den Fragestellungen 3 bis 5 (Nur Problemlöseziele) 146
Tabelle 22: Varianzaufklärung zu Fragestellung 6 (Nur Lernziele) 148
9.2 Abbildungsverzeichnis

Abbildung 1: Drei-Komponenten-Modell des selbstregulierten Lernens in Anlehnung an Boekaerts (1999) ... 42
Abbildung 2: Das Lernziel als Produkt eines Lehrziels, angelehnt an Klauer (1987) 61
Abbildung 3: Problemlöseziele und Lernziele nach Spezifitätsgrad variiert 63
Abbildung 4: Das Modell des Arbeitsgedächtnisses, angelehnt an Baddeley (2002) 67
Abbildung 5: Beispiel für die verbleibende kognitive Kapazität für den *germane load* in Abhängigkeit vom Vorwissen (bei angenommener Konstanz des *extraneous load*) ... 69
Abbildung 6: Screenshot der Experimentierumgebung aus der korrelativen Studie 85
Abbildung 7: Screenshot des Wissensanwendungs tests aus der korrelativen Studie 89
Abbildung 8: Skizze für den Ablauf der Datenerhebung an den zwei Testtagen 91
Abbildung 9a-d: Strukturgleichungsmodelle für die Vorhersage von Wissenszuwachs durch Strategienutzung ... 97
Abbildung 10: Modelle unter Kontrolle der Intelligenz für hohes und geringes Vorwissen .. 99
Abbildung 11: Modelle unter Kontrolle der Motivation für hohes und geringes Vorwissen .. 100
Abbildung 12: Modelle unter Kontrolle des metakognitiven Strategiewissens für hohes und geringes Vorwissen .. 101
Abbildung 13: Skizze für den Ablauf der Datenerhebung der experimentellen Studie . 116
Abbildung 14: Screenshot der computerbasierten Experimentierumgebung (Explorationsphase mit Darbietung der Zielvorgaben) in der experimentellen Studie ... 117
Abbildung 15: Ladungen der Itemparcels auf die *Gesamtskala* für Lernzielorientierung .. 120
Abbildung 16: Screenshot des optimierten Wissensanwendungs tests der experimentellen Studie .. 126
Abbildung 17: Strategienutzung und Lernzielorientierung als Prädiktoren für den Lernerfolg .. 129
Abbildung 18: Einseitig signifikanter Interaktionseffekt von Zielqualität und Zielspezifität auf den Wissenszuwachs ... 132
Abbildung 19: Nicht signifikanter Interaktionseffekt von Zielqualität und Zielspezifität auf den *cognitive load* .. 133
Abbildung 20: Signifikanter disordinaler Interaktionseffekt von Zielqualität und Zielspezifität auf die Strategienutzung ... 134
Abbildung 21: Mittelwerte aller abhängigen Variablen für alle vier Zielarten 142
10 Anhänge

Anhang 1: Der papier-bleistiftbasierte deklarativ-konzeptuelle Vorwissenstest (Prätest) aus der korrelativen Studie.

Hallo liebe Schülerin, hallo lieber Schüler,

im Folgenden findest du einige Aussagen zum Thema „Auftrieb in Flüssigkeiten“. Kreuze an, ob die Aussagen stimmen („richtig“), nicht stimmen („falsch“) oder ob du es nicht weißt („weiß nicht“).
Mache nur dann bei jeder Aussage ein Kreuz für „richtig“ oder „falsch“, wenn du dir sicher bist. Wenn du nicht sicher bist, kreuze „weiß nicht“ an! Es können auch mehrere Aussagen hintereinander falsch oder richtig sein.

Nun kann’s auch schon losgehen. Viel Spaß!

Aussagenblock 1: Kreuze an, welche Aussagen richtig oder falsch sind!

* Kurze Information: Wenn sich ein Körper im Wasser befindet, dann wirken zwei Kräfte auf ihn ein: Eine auf die obere Grundfläche des Körpers (F₀), die andere auf die untere Grundfläche des Körpers (Fᵤ):

<table>
<thead>
<tr>
<th>weiß nicht</th>
<th>richtig</th>
<th>falsch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Die Kraft auf die untere Grundfläche des Körpers (Kraft Fᵤ) ist immer größer als die Kraft auf die obere Grundfläche des Körpers (Kraft F₀).

2. Die Auftriebskraft (Fₐ) eines Körpers entspricht dem Unterschied zwischen der Kraft unterhalb des Körpers (Kraft Fᵤ) und der Kraft oberhalb des Körpers (Kraft F₀).

4. Kieselsteine gehen im Wasser nur deshalb unter, weil sie so klein sind.

5. Ein Pfisterstein sinkt, aber ein Buchenholz-Brett schwimmt im Wasser.
6. Die Masse (m) eines Körpers ist das Gleiche wie seine Gewichtskraft (F_G).

7. Auf einen Körper im Wasser wirken nur nach oben gerichtete Kräfte, aber keine nach unten gerichtete Kräfte.

8. Der Begriff „Dichte“ (\(\rho_K \)) eines Körpers bedeutet, dass die einzelnen Teilchen dieses Körpers in einem bestimmten Abstand zueinander angeordnet sind.

9. Wenn die Gewichtskraft (F_G) eines Körpers im Wasser kleiner als seine Auftriebskraft (F_A) ist, dann sinkt er.
 Begründe hier ganz kurz deine Entscheidung:

10. Die Dichte (\(\rho_{FL} \)) des Wassers beeinflusst die Auftriebskraft (F_A) eines Körpers in diesem Wasser.

Aussagenblock 2: Kreuze an, welche Aussagen richtig oder falsch sind!

11. Die Gewichtskraft (F_G) eines Körpers verstärkt die Auftriebskraft (F_A) dieses Körpers im Wasser.

12. Das Volumen (V) eines Körpers meint sein räumliches Ausmaß und kann zum Beispiel in „cm³“ ausgedrückt werden.

 Begründe hier ganz kurz deine Entscheidung:
14. Ein Körper, dessen Dichte (ρ_K) genauso hoch ist, wie die von Wasser (ρ_{FL}), schwebt im Wasser.

15. Es hängt auch vom Unterschied zwischen der Dichte (ρ_K) eines Körpers und der Dichte (ρ_{FL}) des Wassers ab, ob er darin sinkt, schwebt oder steigt.

16. Je kleiner die Masse (m) eines Körpers ist, desto größer ist seine Gewichtskraft (F_G).

17. Der Unterschied zwischen der Gewichtskraft (F_G) und der Auftriebskraft (F_A) eines Körpers im Wasser beeinflusst nicht, ob er sinkt oder steigt.

18. Von 2 Körpern mit dem gleichen Volumen (V) sinkt der mit der größeren Dichte (ρ_K) im Wasser schneller als der mit der kleineren Dichte (ρ_K).

Begründe hier ganz kurz deine Entscheidung:

Aussagenblock 3: Kreuze an, welche Aussagen richtig oder falsch sind!

19. Die Auftriebskraft (F_A) eines Körpers im Wasser wirkt sich in Richtung Wasseroberfläche aus.

20. Die Masse (m) eines Körpers ist je nach Standort immer unterschiedlich.

21. Die Auftriebskraft (F_A) eines Körpers im Wasser bleibt gleich groß, während er steigt oder sinkt. Die Auftriebskraft (F_A) ist aber im Salzwasser größer als im Süßwasser.
22. Das Volumen (V) eines Körpers hat keinen Einfluss auf seine Auftriebskraft (FA) im Wasser.
Begründe hier ganz kurz deine Entscheidung:

23. Wenn die Gewichtskraft (FG) und die Auftriebskraft (FA) eines Körpers im Wasser gleich groß sind, dann sind auch die Dichte (ρFL) des Wassers und die Dichte (ρK) des Körpers gleich groß.

24. Die Gewichtskraft (FG) eines Körpers wirkt sich sowohl nach unten als auch nach oben aus.

25. Wenn ein Körper im Wasser einer Dichte von ρFL = 1,2g/cm³ schwebt, dann muss er selbst auch eine Dichte von ρ = 1,2g/cm³ haben.

Vielen Dank für deine Mitarbeit!
Hallo liebe Schülerin, hallo lieber Schüler,

im Folgenden findest du einige Aussagen zum Thema „Auftrieb in Flüssigkeiten“. Kreuze an, ob die Aussagen stimmen („richtig“), nicht stimmen („falsch“) oder ob du es nicht weißt („weiß nicht“).

Mache nur dann bei jeder Aussage ein Kreuz für „richtig“ oder „falsch“, wenn du dir sicher bist. Wenn du nicht sicher bist, kreuze „weiß nicht“ an! Es können auch mehrere Aussagen hintereinander falsch oder richtig sein.

Nun kann’s auch schon losgehen. Viel Spaß!

Aussagenblock 1: Kreuze an, welche Aussagen richtig oder falsch sind!

*Kurze Information:
Wenn sich ein Körper im Wasser befindet, dann wirken zwei Kräfte auf ihn ein: Eine auf die obere Grundfläche des Körpers (F₀) die andere auf die untere Grundfläche des Körpers (Fᵤ):

weiß nicht richtig falsch

1. Die Kraft auf die untere Grundfläche des Körpers (Kraft Fᵤ) ist immer größer als die Kraft auf die obere Grundfläche des Körpers (Kraft F₀).

2. Die Auftriebskraft (Fₐ) eines Körpers entspricht dem Unterschied zwischen der Kraft unterhalb des Körpers (Kraft Fᵤ) und der Kraft oberhalb des Körpers (Kraft F₀).

3. Das Volumen (V) eines Körpers hat keinen Einfluss auf seine Auftriebskraft (Fₐ) im Wasser.

Begründe hier ganz kurz deine Entscheidung:

4. Die Auftriebskraft (Fₐ) eines Körpers im Wasser wirkt sich in Richtung Wasseroberfläche aus.
5. Der Begriff „Dichte“ \((\rho_K) \) eines Körpers bedeutet, dass die einzelnen Teilchen dieses Körpers in einem bestimmten Abstand zueinander angeordnet sind.

6. Die Masse (m) eines Körpers ist das Gleiche wie seine Gewichtskraft \((F_G) \).

7. Die Masse (m) eines Körpers ist je nach Standort immer unterschiedlich.

8. Wenn ein Würfel ein Volumen von \(V = 1200\text{cm}^3 \) und eine Masse von \(m = 1000\text{g} \) hat, dann geht er im Süßwasser unter.

9. Die Dichte \((\rho_{FL}) \) des Wassers beeinflusst die Auftriebskraft \((F_A) \) eines Körpers in diesem Wasser.

Aussagenblock 2: Kreuze an, welche Aussagen richtig oder falsch sind!

<table>
<thead>
<tr>
<th></th>
<th>nicht</th>
<th>richtig</th>
<th>falsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Der Unterschied zwischen der Gewichtskraft ((F_G)) und der Auftriebskraft ((F_A)) eines Körpers im Wasser beeinflusst nicht, ob er sinkt oder steigt.</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>11. Ein Körper schwimmt im Salzwasser besser als im Süßwasser, weil die Gewichtskraft ((F_G)) des Körpers im Salzwasser größer ist. Begründe hier ganz kurz deine Entscheidung:</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>12. Ein Körper mit einer Dichte von (\rho_K = 0,9\text{g/cm}^3) schwebt im Salzwasser einer Dichte von (\rho_{FL} = 1,25 \text{g/cm}^3).</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>13. Ein Körper, dessen Dichte ((\rho_K)) genauso hoch ist, wie die von Wasser ((\rho_{FL})), schwebt im Wasser.</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>
14. Die Auftriebskraft (F_A) eines Körpers im Wasser bleibt gleich groß, während er steigt oder sinkt. Die Auftriebskraft (F_A) ist aber im Salzwasser größer als im Süßwasser.

15. Von 2 Körpern mit gleichem Volumen (V) weist der Körper mit der größeren Dichte (ρ_K) auch die größere Masse (m) auf.

16. Wenn die Gewichtskraft (F_G) eines Körpers im Wasser kleiner als seine Auftriebskraft (F_A) ist, dann sinkt er. *Begründe hier ganz kurz deine Entscheidung:*

17. Es hängt auch vom Unterschied zwischen der Dichte (ρ_K) eines Körpers und der Dichte (ρ_{FL}) des Wassers ab, ob er darin sinkt, schwebt oder steigt.

18. Ein Körper mit einer Gewichtskraft (F_G) von 10N hat ein Volumen (V) von 500cm³, eine Masse (m) von 1000g und eine Auftriebskraft (F_A) von 10N, wenn er im Wasser einer Dichte von $\rho_{FL} = 2g/cm^3$ schwebt.

19. Wenn ein Körper im Salzwasser einer Dichte von $\rho_{FL} = 1,3g/cm^3$ schwebt, dann hat er eine Masse von $m = 500g$ und ein Volumen von $V = 500cm^3$. *Begründe hier ganz kurz deine Entscheidung:*

21. Je kleiner die Masse (m) eines Körpers ist, desto größer ist seine Gewichtskraft (F_G).

22. Die Gewichtskraft (F_G) eines Körpers verstärkt die Auftriebskraft (F_A) dieses Körpers im Wasser.

23. Ein Körper mit einer Dichte von ρ_K = 1,3g/cm³ sinkt im Salzwasser einer Dichte von ρ_F = 1,025g/cm³, weil die Dichte des Körpers größer als die des Wassers ist.

24. Die Auftriebskraft (F_A) eines Körpers im Wasser ist das Gleiche wie die Kraft (F_U), welche auf die untere Grundfläche des Körpers wirkt.
 Begründe hier ganz kurz deine Entscheidung:

25. Wenn die Gewichtskraft (F_G) und die Auftriebskraft (F_A) eines Körpers im Wasser gleich groß sind, dann sind auch die Dichte (ρ_F) des Wassers und die Dichte (ρ_K) des Körpers gleich groß.

Vielen Dank für deine Mitarbeit!
Anhang 3: Mess- und Strukturmodell aus der korrelativen Studie für die Vorhersage von Wissenszuwachs und Wissensanwendung an dem Beispiel des Modells mit Einbezug der Intelligenz als Kontrollvariable (siehe Kapitel 5.3.2).

N = 286

$\chi^2(21) = 17.78; \ p = .663$

RMSEA = .00

TLI = 1.01

CFI = 1.00

$p < .001$; **$p < .01$; *$p < .05$

Anmerkungen:
- IVK 1, IVK 2, IVK 3 = die drei parcels für die Strategienutzung (isolierende Variablenkontrolle).
- WZ. RES. 1, WZ. RES. 2 = die zwei residualen parcels für den Wissenszuwachs.
- WA. RES. 1, WA. RES. 2 = die zwei residualen parcels für die Wissensanwendung.
- KFT 1, KFT 2 = die zwei parcels für die Intelligenz (kognitive Fähigkeiten-Test).
- e1 bis e11 = die Residuen der parcels.
Anhang 4 a-d: Auflistung der vier Arten externaler Zielvorgaben in der Darbietungsreihe der Untersuchung (experimentelle Studie)

a.) Spezifische Problemlöseziele

1. Wirf in ein Gefäß: Einen der drei größten Körper mit der Masse \((m) \), bei der die Dichte \((\rho_K) \) des Körpers am größten ist! (80 Sek.)
2. Wirf in ein Gefäß: Einen Körper mit der Masse \((m) \), bei der die Gewichtskraft \((F_G) \) des Körpers am größten ist! (80 Sek.)
3. Wirf in ein Gefäß: Einen Körper mit dem Volumen \((V) \), bei dem die Auftriebskraft \((F_A) \) des Körpers am größten ist! (80 Sek.)
4. Wirf in ein Gefäß: Den der vier leichtesten Körnern mit dem Volumen \((V) \), bei der Dichte \((\rho_K) \) des Körpers am kleinsten ist! (80 Sek.)
5. Wirf in ein Gefäß: Einen Körper in die Flüssigkeit mit der Dichte \((\rho_{FL}) \), bei der die Kräfte \(F_O \) und \(F_U \) des Körpers am größten sind! (85 Sek.)
6. Wirf in ein Gefäß: Einen Körper in die Flüssigkeit mit der Dichte \((\rho_{FL}) \), bei der die Auftriebskraft \((F_A) \) des Körpers am größten ist! (85 Sek.)
7. Wirf in ein Gefäß: Einen Körper mit der Auftriebskraft \((F_A) \), bei der der Unterschied zwischen den Kräften \(F_O \) und \(F_U \) des Körpers am kleinste ist! (85 Sek.)
8. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen Masse \((m) \) und Volumen \((V) \), bei dem die Dichte \((\rho_K) \) des Körpers am größten ist! (90 Sek.)
9. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen Auftriebskraft \((F_A) \) und Gewichtskraft \((F_G) \), bei dem er sinkt! (89 Sek.)
10. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen Auftriebskraft \((F_A) \) und Gewichtskraft \((F_G) \), bei dem er steigt! (89 Sek.)
11. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen Auftriebskraft \((F_A) \) und Gewichtskraft \((F_G) \), bei dem er schwebt! (90 Sek.)
12. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen seiner Dichte \((\rho_K) \) und Dichte der Flüssigkeit \((\rho_{FL}) \), bei dem er sinkt! (89 Sek.)
13. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen seiner Dichte \((\rho_K) \) und Dichte der Flüssigkeit \((\rho_{FL}) \), bei dem er steigt! (89 Sek.)
14. Wirf in ein Gefäß: Einen Körper mit dem Verhältnis zwischen seiner Dichte \((\rho_K) \) und Dichte der Flüssigkeit \((\rho_{FL}) \), bei dem er schwebt! (89 Sek.)
b.) Unspezifische Problemlöseziele

1. Lasse drei Körper DIREKT NACHEINANDER in nur einem der zwei Gefäße schweben! (373 Sek.)
2. Lasse fünf Körper DIREKT NACHEINANDER in nur einem der zwei Gefäße sinken! (376 Sek.)
3. Lasse neun Körper DIREKT NACHEINANDER in nur einen der zwei Gefäße steigen! (451 Sek.)

c.) Spezifische Lernziele

1. Finde für die drei größten Körper heraus, wie ihre Masse \((m) \) mit ihrer Dichte \((ρ_K) \) zusammenhängt und merke es dir! (80 Sek.)
2. Finde heraus, wie die Masse \((m) \) eines Körpers mit seiner Gewichtskraft \((F_G) \) zusammenhängt und merke es dir! (80 Sek.)
3. Finde heraus, wie das Volumen \((V) \) eines Körpers mit seiner Auftriebskraft \((F_A) \) zusammenhängt und merke es dir! (80 Sek.)
4. Finde für die drei leichtesten Körper heraus, wie ihr Volumen \((V) \) mit ihrer Dichte \((ρ_K) \) zusammenhängt und merke es dir! (80 Sek.)
5. Finde heraus, wie die Kräfte \(F_o \) und \(F_u \) eines Körpers mit der Dichte der Flüssigkeit \((ρ_{FL}) \) zusammenhängen und merke es dir! (85 Sek.)
6. Finde heraus, wie die Auftriebskraft \((F_A) \) eines Körpers mit der Dichte der Flüssigkeit \((ρ_{FL}) \) zusammenhängt und merke es dir! (85 Sek.)
7. Finde heraus, wie die Auftriebskraft \((F_A) \) eines Körpers mit dem Unterschied zwischen seinen Kräften \(F_o \) und \(F_u \) zusammenhängt und merke es dir! (85 Sek.)
8. Finde heraus, wie die Dichte \((ρ_K) \) eines Körpers mit seiner Masse \((m) \) und seinem Volumen \((V) \) zusammenhängt und merke es dir! (90 Sek.)
9. Finde heraus, wie das Sinken eines Körpers mit dem Verhältnis zwischen seiner Auftriebskraft \((F_A) \) und seiner Gewichtskraft \((F_G) \) zusammenhängt und merke es dir! (89 Sek.)
10. Finde heraus, wie das Steigen eines Körpers mit dem Verhältnis zwischen seiner Auftriebskraft \((F_A) \) und seiner Gewichtskraft \((F_G) \) zusammenhängt und merke es dir! (89 Sek.)
11. Finde heraus, wie das Schweben eines Körpers mit dem Verhältnis zwischen seiner Auftriebskraft \((F_A) \) und seiner Gewichtskraft \((F_G) \) zusammenhängt und merke es dir! (90 Sek.)
12. Finde heraus, wie das Sinken eines Körpers mit dem Verhältnis zwischen seiner Dichte (ρ_K) und der Dichte der Flüssigkeit (ρ_{FL}) zusammenhängt und merke es dir! (89 Sek.)

13. Finde heraus, wie das Steigen eines Körpers mit dem Verhältnis zwischen seiner Dichte (ρ_K) und der Dichte der Flüssigkeit (ρ_{FL}) zusammenhängt und merke es dir! (89 Sek.)

14. Finde heraus, wie das Schweben eines Körpers mit dem Verhältnis zwischen seiner Dichte (ρ_K) und der Flüssigkeitsdichte (ρ_{FL}) zusammenhängt und merke es dir! (89 Sek.)

d.) Unspezifische Lernziele

1. Finde so viel wie möglich darüber heraus, womit es zusammenhängt, dass manche Körper im Wasser sinken und merke es dir! (373 Sek.)

2. Finde so viel wie möglich darüber heraus, womit es zusammenhängt, dass manche Körper im Wasser schweben und merke es dir! (373 Sek.)

3. Finde so viel wie möglich darüber heraus, womit es zusammenhängt, dass manche Körper im Wasser steigen und merke es dir! (451 Sek.)

1. \(\text{Masse (m) eines Körpers} \rightarrow \text{Dichte eines Körpers (}\rho_K) \)

2. \(\text{Masse (m) eines Körpers} \rightarrow \text{Gewichtskraft (}\text{F}_G\text{) eines Körpers} \)

3. \(\text{Volumen (V) eines Körpers} \rightarrow \text{Auftriebskraft (}\text{F}_A\text{) eines Körpers} \)

4. \(\text{Volumen (V) eines Körpers} \rightarrow \text{Dichte eines Körpers (}\rho_K) \)

5. \(\text{Kräfte } \text{F}_0 \text{ und } \text{F}_U \text{ eines Körpers} \rightarrow \text{Dichte der Flüssigkeit (}\rho_{FL}) \)

6. \(\text{Auftriebskraft (}\text{F}_A\text{) eines Körpers} \rightarrow \text{Dichte der Flüssigkeit (}\rho_{FL}) \)

7. \(\text{Kraft } \text{F}_U \text{ eines Körpers} \rightarrow \text{Kraft } \text{F}_0 \text{ eines Körpers} \rightarrow \text{Auftriebskraft (}\text{F}_A\text{) eines Körpers} \)

8. \(\text{Masse (m) eines Körpers} \rightarrow \text{Volumen (V) eines Körpers} \rightarrow \text{Dichte eines Körpers (}\rho_K) \)

9. \(\text{Auftriebskraft (}\text{F}_A\text{) eines Körpers} \rightarrow \text{Gewichtskraft (}\text{F}_G\text{) eines Körpers} \rightarrow \text{Sinken des Körpers} \)
10. Auftriebskraft (F_A) eines Körpers $>$ Gewichtskraft (F_G) eines Körpers

Steigen des Körpers

11. Auftriebskraft (F_A) eines Körpers $=$ Gewichtskraft (F_G) eines Körpers

Schweben des Körpers

12. Dichte eines Körpers (ρ_K) $>$ Dichte der Flüssigkeit (ρ_{FL})

Sinken des Körpers

13. Dichte eines Körpers (ρ_K) $<$ Dichte der Flüssigkeit (ρ_{FL})

Steigen des Körpers

14. Dichte eines Körpers (ρ_K) $=$ Dichte der Flüssigkeit (ρ_{FL})

Schweben des Körpers

Anmerkungen: Bedeutungen der relationalen Symbole

- Gleichgerichtete Beziehung (z.B. Wenn das Volumen (V) eines Körpers größer wird, dann wird auch seine Auftriebskraft (F_A) größer).
- Entgegengesetzte Beziehung (z.B. Wenn das Volumen (V) eines Körpers größer wird, dann wird seine Dichte (ρ_K) kleiner).
- „Genauso groß wie“ \rightarrow „Größer als“ \leftarrow „Kleiner als“
Anhang 6: Der Fragebogen zur Erfassung der internalen Zielorientierungen (experimentelle Studie)

Hallo liebe Schülerin, hallo lieber Schüler,

auf Seite 1 und 2 findest du Aussagen dazu, welche Ziele man bei der Bearbeitung oder Auswahl von Aufgaben haben kann – Dazu zwei gleichwertige Beispiele:

1. Einerseits kann man das Ziel haben, die Lösung von Aufgaben herbeizuführen. Dann will man das gewünschte Ergebnis von Aufgaben erreichen.

Welche Ziele hast du, wenn du Aufgaben bearbeitest oder auswählst?
Mache dazu bei jeder Aussage immer nur ein Kreuz für das, was am ehesten auf dich zutrifft. Alle folgenden Aussagen sind gleichwertig und deine Daten bleiben anonym.

Viel Spaß! 😊

1. Ich suche oft nach Gelegenheiten, um mein Wissen und meine Fertigkeiten zu erweitern.

2. Meine Fertigkeiten und mein Wissen bei Aufgaben zu erweitern zählt für mich mehr als die eigentliche Lösung.

3. Das zügige Lösen von Aufgaben ist mir wichtiger als alles zu verstehen und mir zu merken.

5. Etwas über den Lösungsweg von Aufgaben zu lernen ist mir wichtiger als die Lösung zügig herbeizuführen.

6. Aufgaben gehe ich an, um sie zu lösen und nicht, um neue Kenntnisse zu gewinnen.

Dieses Item wurde als einziges ausgeschlossen.

9. Alles zu verstehen und zu behalten ist mir bei Aufgaben wichtiger als sie zügig zu lösen. □ ☐ ☐ ☐

11. Bei Aufgaben konzentriere ich mich darauf, etwas über den Lösungsweg zu lernen und nicht auf das gewünschte Ergebnis. □ ☐ ☐ ☐

15. Mir machen Aufgaben Spaß, bei denen es in erster Linie darauf ankommt, das Ergebnis zu erreichen. □ ☐ ☐ ☐

17. Ich versuche herauszufinden, was ich tun muss, um anderen meine Fähigkeiten zu zeigen. □ ☐ ☐ ☐

18. Etwas über Aufgaben zu lernen ist mir wichtiger als der Nutzen durch ihre Lösung. □ ☐ ☐ ☐

23. Ich bin beunruhigt, wenn sich bei einer Aufgabe zeigen könnte, dass meine Fähigkeiten nicht ausreichen.

24. Bei neuen Aufgaben zählt für mich die erfolgreiche Lösung mehr als etwas Neues zu erfahren.

Zuordnung der Items zu den vier Skalen:
1. Lernzielorientierung: Items 1, 2, 5, 9, 11, 12, 14, 18, 21
2. Problemlösezielorientierung: Items 3, 4, 6, 8, 10, 15, 16, 22, 24
3. Annäherungs-Leistungszielorientierung: Items 7, 17, 20, 26
4. Vermeidungs-Leistungszielorientierung: Items 13, 19, 23, 25
Anhang 7: Der Fragebogen zur Erfassung des cognitive load (experimentelle Studie)

Liebe Schülerin, lieber Schüler,

vielen Dank, dass du in den letzten 20 Minuten die Aufträge von Dr. Senkwürfel ausgeführt hast!

Bei den folgenden Fragen sollst du einschätzen, wie beanspruchend oder anstrengend die Aufträge waren, die für dich eingeblendet wurden. Mache pro Frage immer nur ein Kreuz für das, was am ehesten auf dich zutrifft.

1. In die Lösung oder Bearbeitung der vorangegangenen Aufträge investierte ich:

 - 1: geringe Anstrengung
 - 2: hohe Anstrengung

2. Die vorangegangenen Aufträge fand ich:

 - 1: einfach
 - 7: schwer

3. Wie einfach oder schwer waren die vorangegangenen Aufträge zu verstehen?

 - 1: einfach
 - 7: schwer

4. Wie stark haben die Aufträge deine unmittelbar-gründliche Aufmerksamkeit erfordert?

 - 1: kaum
 - 7: sehr stark

5. Wie stark haben die Aufträge bei dir Zeitdruck verursacht?

 - 1: kaum
 - 7: sehr stark

6. Wie stark haben die Aufträge bei dir gleichzeitige Anforderungen verursacht?

 - 1: kaum
 - 7: sehr stark

7. Wie stark musstest du dich auf die Aufträge konzentrieren?

 - 1: kaum
 - 7: sehr stark
8. Wie stark musstest du dich anstrengen, um die Texte der Aufträge zu verstehen?

1 2 3 4 5 6 7

kaum sehr stark

9. In welchem Ausmaß musstest du rechnen, um die Aufträge zu erfüllen?

1 2 3 4 5 6 7

kaum sehr stark

10. In welchem Ausmaß musstest du einzelne Schritte erinnern, um die Aufträge zu erfüllen?

1 2 3 4 5 6 7

kaum sehr stark

11. Wie stark musstest du dich anstrengen, um die Bilder im Labor zu verstehen?

1 2 3 4 5 6 7

kaum sehr stark

😊 Vielen Dank bis hierhin 😊
Anhang 8a: Schülerinstruktion und Itemauflistung des deklarativ-konzeptuellen Wissenstests (Prä- und Post, experimentelle Studie) in Darbietungsreihenfolge. Für jedes Item gab es drei Antwortalternativen, zum Beispiel für Item 1:

Die Dichte \(p_K \) wird ☐ größer ☐ kleiner ☐ gleich bleiben.

Hallo liebe Schülerin, hallo lieber Schüler,

im Folgenden geht es um das Thema „Auftrieb in Flüssigkeiten“. Dieses Thema handelt von den Eigenschaften eines Körpers (z.B. eines Würfels), der sich in einer Flüssigkeit befindet.

- Wenn sich ein Körper in einer Flüssigkeit befindet, dann wirken vier Kräfte auf ihn:

1. Die Kraft \(F_A \): Sie heißt Auftriebskraft und drückt den Körper nach oben.
2. Die Kraft \(F_G \): Sie heißt Gewichtskraft und drückt den Körper nach unten.
3. Die Kraft \(F_F \): Sie drückt von oben auf die obere Grundfläche des Körpers.
4. Die Kraft \(F_U \): Sie drückt von unten auf die untere Grundfläche des Körpers.

1. Wie verändert sich die Dichte \(p_K \) des Körpers, wenn man nur seine Masse \(m \) vergrößert?
2. Wie verändert sich die Dichte \(p_K \) des Körpers, wenn man nur sein Volumen \(V \) vergrößert?
3. Wie verändert sich die Dichte \(p_K \) des Körpers, wenn man seine Masse \(m \) verkleinert und sein Volumen \(V \) vergrößert?
4. Wie verändert sich die Gewichtskraft \(F_G \) des Körpers, wenn man nur seine Masse \(m \) vergrößert?
5. Wie verändert sich die Auftriebskraft \(F_A \) des Körpers, wenn man nur die Dichte \(p_{FL} \) der Flüssigkeit vergrößert?
6. Wie verändert sich die Auftriebskraft \((F_A)\) des Körpers, während er sinkt?
7. Wie verändert sich die Auftriebskraft \((F_A)\) des Körpers, wenn man nur den Unterschied zwischen seinen Kräften \(F_U\) und \(F_O\) vergrößert?
8. Wie verändern sich die Kräfte \(F_O\) und \(F_U\) des Körpers, wenn man nur sein Volumen \((V)\) verkleinert?
9. Wie verändern sich die Kräfte \(F_O\) und \(F_U\) des Körpers, wenn man nur die Dichte \((p_{FL})\) der Flüssigkeit vergrößert?
10. Wie groß ist die Kraft \(F_U\) des Körpers im Vergleich zu seiner Kraft \(F_O\)?
11. Wie groß ist die Auftriebskraft \((F_A)\) des Körpers im Vergleich zum Unterschied zwischen seinen Kräften \(F_O\) und \(F_U\)?
12. Wie groß ist die Auftriebskraft \((F_A)\) des Körpers im Vergleich zu seiner Gewichtskraft \((F_G)\), wenn seine Dichte \((p_K)\) und die Dichte der Flüssigkeit \((p_{FL})\) gleich groß sind?
13. Wie verhält sich der Körper, wenn seine Auftriebskraft \((F_A)\) größer ist als seine Gewichtskraft \((F_G)\)?
14. Wie verhält sich der Körper, wenn seine Auftriebskraft \((F_A)\) gleich groß ist wie seine Gewichtskraft \((F_G)\)?
15. Wie verhält sich der Körper, wenn die Dichte \((p_K)\) des Körpers kleiner ist als die Dichte \((p_{FL})\) der Flüssigkeit?
16.Wie verhält sich ein Körper mit der Dichte \((p_K) = 1 \text{ g/cm}^3\) in einer Flüssigkeit mit der Dichte \((p_{FL}) = 3 \text{ g/cm}^3\)?
17. Wie verhält sich der Körper, wenn die Dichte \((p_K)\) des Körpers gleich groß ist wie die Dichte \((p_{FL})\) der Flüssigkeit?
Anhang 8b: Screenshots der Seiten 1 und 2 des computerimplementierten deklarativ-konzeptionellen Wissenstests (experimentelle Studie, Prä- und Postversion identisch)

<table>
<thead>
<tr>
<th>Auftriebsversuch</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie verändert sich die Dichte (ρ) des Körpers, wenn man nur seine Masse (m) vergrößert? Die Dichte (ρ) wird...</td>
<td>größer</td>
<td>kleiner</td>
<td>gleich bleiben.</td>
</tr>
<tr>
<td>Wie verändert sich die Dichte (ρ) des Körpers, wenn man nur sein Volumen (V) vergrößert? Die Dichte (ρ) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändert sich die Dichte (ρ) des Körpers, wenn man seine Masse (m) verkleinert und sein Volumen (V) vergrößert? Die Dichte (ρ) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändert sich die Gewichtskraft (F_G) des Körpers, wenn man nur seine Masse (m) vergrößert? Die Gewichtskraft (F_G) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändert sich die Auftriebskraft (F_A) des Körpers, wenn man nur die Dichte (ρ_L) der Flüssigkeit vergrößert? Die Auftriebskraft (F_A) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändert sich die Auftriebskraft (F_A) des Körpers, während er sinkt? Die Auftriebskraft (F_A) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändert sich die Auftriebskraft (F_A) des Körpers, wenn man nur den Unterschied zwischen seinen Kräften F_o und F_u vergrößert? Die Auftriebskraft (F_A) wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändern sich die Kräfte F_o und F_u des Körpers, wenn man nur sein Volumen (V) verkleinert? Die Kräfte F_o und F_u werden...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verändern sich die Kräfte F_o und F_u des Körpers, wenn man nur die Dichte (ρ_L) der Flüssigkeit vergrößert? Die Kräfte F_o und F_u werden...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie groß ist die Kraft F_o des Körpers im Vergleich zu seiner ursprünglichen Kraft F_o? Die Kraft F_o ist...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie groß ist die Auftriebskraft (F_A) des Körpers im Vergleich zum Unterschied zwischen seinen Kräften F_o und F_u? Die Auftriebskraft (F_A) ist...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie groß ist die Auftriebskraft (F_A) des Körpers im Vergleich zu seiner Gewichtskraft (F_G), wenn seine Dichte (ρ_L) und die Dichte (ρ_L) der Flüssigkeit (ρ_L) gleich groß sind? Die Auftriebskraft (F_A) ist...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verhält sich der Körper, wenn seine Auftriebskraft (F_A) größer ist als seine Gewichtskraft (F_G)? Der Körper wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verhält sich der Körper, wenn seine Auftriebskraft (F_A) gleich groß ist wie seine Gewichtskraft (F_G)? Der Körper wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verhält sich der Körper, wenn die Dichte (ρ_L) des Körpers kleiner ist als die Dichte (ρ_L) der Flüssigkeit? Der Körper wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verhält sich der Körper mit der Dichte (ρ_L) = 1 g/cm³ in einer Flüssigkeit mit der Dichte (ρ_L) = 3 g/cm³? Der Körper wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wie verhält sich der Körper, wenn die Dichte (ρ_L) des Körpers gleich groß ist wie die Dichte (ρ_L) der Flüssigkeit? Der Körper wird...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zurück</td>
<td>Voreinst.</td>
<td>Fertig</td>
<td></td>
</tr>
</tbody>
</table>
Anhang 9: Die FAM-Skala (Rheinberg et al., 2001; in beiden vorliegenden Studien verwandt, hier als computerimplementierte Seite der experimentellen Studie).

<table>
<thead>
<tr>
<th>deutsch</th>
<th>trifft zu</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>trifft nicht zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach dem Lesen der Instruktion erscheint mir die Aufgabe sehr interessant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich mag solche Rätsel und Knobelteile.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bei der Aufgabe mag ich es, vorzugehen wie ein Wissenschaftler, der Zusammenhänge entdeckt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Aufgabe ist eine rechtige Herausforderung für mich.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich bin sehr gespannt darauf, wie gut ich hier abschneiden werde.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ich bin fest entschlossen, mich bei dieser Aufgabe voll anzustrengen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bei Aufgaben wie dieser brauche ich keine Belohnung, sie machen mir auch so viel Spaß.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wenn ich die Aufgabe schaffe, werde ich schon ein wenig stolz auf meine Tüchtigkeit sein.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eine solche Aufgabe würde ich auch in meiner Freizeit bearbeiten.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anhang 10: Test für metakognitives Strategiewissen (korrelative Studie).

MStrat NW

Kreuze bitte für jede Antwort eine Schulnote an.

Du hast die Aufgabe herauszufinden, ob sich die Raumtemperatur verändert, wenn die Kühlschranktür offen bleibt.

Dir fallen folgende Vorgehensweisen ein, um die Frage zu beantworten. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

1. Ich vergleiche die Temperatur innerhalb des Kühlschranks mit der Temperatur außerhalb des Kühlschranks.
 - 1 2 3 4 5 6
 - □ □ □ □ □ □

2. Ich messe die Raumtemperatur bei offen stehender Kühlschranktür.
 - □ □ □ □ □ □

3. Ich messe die Raumtemperatur vor und nach dem Öffnen der Kühlschranktür.
 - □ □ □ □ □ □

4. Ich messe die Raumtemperatur mehrmals vor dem Öffnen und mehrmals nach dem Öffnen der Kühlschranktür.
 - □ □ □ □ □ □

5. Ich messe die Raumtemperatur erst dann, wenn Fenster und Zimmertür geschlossen sind.
 - □ □ □ □ □ □
N Die Klasse hat aus einer Reihe von Experimenten eine Regel abgeleitet, wie der Durchmesser eines Drahtes mit der Stromstärke zusammenhängt. Was kannst du tun, um dir die Formel möglichst gut zu merken?

Dir fallen folgende Vorgehensweisen ein. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

a) Ich schreibe auf, was in den einzelnen Experimenten herauskam. □ □ □ □ □ □

b) Ich sage mir möglichst oft die Regel auf, bis ich sie auswendig weiß. □ □ □ □ □ □

c) Ich mache eine Zeichnung, um mir den Zusammenhang zu verdeutlichen. □ □ □ □ □ □

d) Ich versuche, eine Erklärung für diesen Zusammenhang zu finden. □ □ □ □ □ □

A Du möchtest herausfinden, von welchen Faktoren es abhängt, ob ein Körper im Wasser sinkt, schwebt oder schwimmt.

Dir fallen folgende Vorgehensweisen ein, um die Frage zu beantworten. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

a) Ich mache eine Zeichnung mit allen möglichen Einflussfaktoren. □ □ □ □ □ □

b) Ich überprüfe die einzelnen Faktoren Schritt für Schritt. □ □ □ □ □ □

c) Ich versuche, mir die Wirkung der Einflussfaktoren zu erklären. □ □ □ □ □ □

d) Ich halte die Ergebnisse meiner Experimente in einer Tabelle fest. □ □ □ □ □ □

e) Ich schreibe einen Merksatz auf, in dem alle Einflussfaktoren enthalten sind. □ □ □ □ □ □

f) Ich stelle zuerst einige Vermutungen auf, die ich dann nacheinander überprüfe. □ □ □ □ □ □
Aus einer Reihe von Experimenten wurde eine Formel abgeleitet, wie die Stromstärke, die Spannung und der Widerstand zusammenhängen. Was kannst du tun, um dir die Formel möglichst gut zu merken?

Dir fallen folgende Vorgehensweisen ein. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

a) Ich mache eine Zeichnung, um mir die Zusammenhänge zu verdeutlichen. □ □ □ □ □ □

b) Ich lerne die Formel durch Aufsagen oder Abschreiben einfach auswendig. □ □ □ □ □ □

c) Ich schaue mir die Ergebnisse vor der nächsten Unterrichtsstunde noch mal an. □ □ □ □ □ □

d) Ich erkläre einem Mitschüler oder meinen Eltern, was die Formel bedeutet. □ □ □ □ □ □

e) Ich formuliere einen Merksatz, den ich als Eselsbrücke nutze. □ □ □ □ □ □

Du hast die Vermutung, dass man mit breiten Fahrradreifen mehr Kraft beim Fahren aufwenden muss als mit schmalen Reifen.

Dir fallen folgende Vorgehensweisen ein, um die Frage zu beantworten. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

a) Ich fahre mit zwei unterschiedlichen Rädern, einem Mountainbike und einem Rennrad und vergleiche anschließend, welche Fahrt anstrengender war. □ □ □ □ □ □

b) Ich befrage Fahrradfahrer mit breiten und mit schmalen Reifen, wie schwer es ist, auf ihrem Rad zu fahren. □ □ □ □ □ □

c) Ich montiere an meinem Fahrrad einmal breite und einmal schmale Reifen, fahre mit beiden gleich schnell auf der gleichen Strecke und messe die benötigte Kraft. □ □ □ □ □ □

d) Ich messe bei zwei unterschiedlichen Reifenbreiten die Kraft, die man für eine Radumdrehung benötigt. □ □ □ □ □ □

e) Ich befrage Fahrradhändler, bei welchen Rädern man mehr Kraft aufwenden muss. □ □ □ □ □ □
Ihr habt in Kleingruppen unterschiedliche Experimente zum gleichen Thema durchgeführt. Du sollst jetzt dem Rest der Klasse möglichst gut erklären, was ihr gemacht habt.

Dir fallen folgende Vorgehensweisen ein. Bewerte die Vorgehensweisen mit Noten von 1 bis 6:

- **a)** Ich beschreibe diejenigen Ergebnisse ausführlich, die am wichtigsten sind.

- **b)** Ich beschreibe alle Experimente, die wir gemacht haben und welche Vermutungen wir daraus gezogen haben.

- **c)** Ich beschreibe, wer was genau in unserer Gruppe gemacht hat.

- **d)** Ich beschreibe, welche Vermutungen wir hatten und mit welchen Experimenten wir sie überprüft haben.

- **e)** Ich wähle eines der Experimente aus und beschreibe dieses sehr ausführlich.

Gib’ nun bitte einem der Testleiter Bescheid, dass du mit dem ersten Teil fertig bist.

Dann wird für dich das Programm am Computer gestartet.
Anhang 11: Erfassung demografischer Daten und des Interesses am Schulfach Physik (in Anlehnung an Baumert et al.,1986; in beiden vorliegenden Studien verwendet).

Auf diesem Blatt sollst du zunächst unter Punkt 1 Angaben zu deiner Person machen. Unter Punkt 2 findest du sechs Aussagen, mit denen wir dein Interesse am Physikunterricht erfragen möchten. Mache pro Aussage immer nur ein Kreuz für das, was am ehesten auf dich zutrifft. Alle Daten werden anonym behandelt.

1. Angaben zu deiner Person:

Wie alt bist du?

Kreuze hier dein Geschlecht an:

Mädchen:

Junge:

Trage hier deine letzte Zeugnisnote für die folgenden Fächer ein:

Physik:

Mathematik:

Deutsch:

Englisch:

2. Angaben zu deinem Interesse am Physikunterricht:

<table>
<thead>
<tr>
<th>1. Mir liegt viel daran, in Physik viel zu wissen.</th>
<th>Trifft völlig zu</th>
<th>Trifft eher zu</th>
<th>Trifft eher nicht zu</th>
<th>Trifft gar nicht zu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Es ist für mich persönlich wichtig, das in Physik Gelernte zu behalten.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ich freue mich auf den Physikunterricht.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Physik gehört für mich zu den wichtigen Fächern.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Mein Interesse am Fach Physik ist hoch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vielen Dank bis hierhin ☺
Anhang 12: Die 15 Problemlöseaufgaben, die im computerbasierten Wissensanwendungstest als Textfenster eingeblendet wurden (in beiden vorliegenden Studien verwendet).

1. Wirf den einzelnen größten Bleikörper ins Wasser mit der jetzigen Flüssigkeitsdichte!
2. Hefte den kleinsten Blei- und den größten Styroporkörper mit Hilfe der Heftmaschine zusammen!
3. Stelle die Flüssigkeitsdichte des Wassers auf 1,2 g/cm³ ein!
4. Bestimme die Dichte des größten Styroporkörpers mit Hilfe des Dichtescanners und schreibe sie in die Messtabelle!
5. Bestimme die Auftriebskraft des kleinsten Bleikörpers im Wasser mit der jetzigen Flüssigkeitsdichte und schreibe sie in die Messtabelle!
6. Wirf den einzelnen Körper mit der kleinste Gewichtskraft (F_G) ins Wasser mit der jetzigen Flüssigkeitsdichte (\rho_{FL})!
7. Wirf den einzelnen Körper mit der größten Dichte (\rho_K) bei einem Volumen von V = 500cm³ ins Wasser mit der jetzigen Flüssigkeitsdichte (\rho_{FL})!
8. Wirf den einzelnen Hartgummikörper mit der größten Auftriebskraft (F_A) ins Wasser mit der jetzigen Flüssigkeitsdichte (\rho_{FL})!
9. Wirf den kleinsten einzelnen Styroporkörper ins Wasser mit der Flüssigkeitsdichte (\rho_{FL}), bei der die Auftriebskraft (F_A) dieses Körpers am größten ist!
10. Wirf den Körperturm, bei dem der Unterschied zwischen den Kräften F_o und F_u am größten ist ins Wasser mit der jetzigen Flüssigkeitsdichte (\rho_{FL})!
11. Wirf den kleinsten Hartgummikörper in das Wasser mit der Flüssigkeitsdichte (\rho_{FL}), bei der möglichst viele andere Körper auch steigen würden!
12. Bringe einen Körper mit dem Volumen von V = 500cm³ zum schweben!
13. Bringe einen Körperturm aus drei Körpern irgendwie zum schweben! Bringe ein und denselben Körperturm direkt nacheinander einmal zum Sinken und einmal zum Steigen!
14. Bringe ein und denselben Körperturm direkt nacheinander einmal zum Sinken und einmal zum Steigen!
15. Bringe einen Bleikörper irgendwie zum steigen!
Anhang 13: Einführungsblatt für grundlegende Begriffe (experimentelle Studie).

Liebe Schülerin, lieber Schüler,
dieses Blatt könnt ihr auf eurem Platz liegen lassen und bei Bedarf nachschauen.

1. **Beispiel für das Prinzip der Dichte (ρ_K)**

<table>
<thead>
<tr>
<th>Würfel 1:</th>
<th>Würfel 2:</th>
<th>Würfel 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse (m) = 1000g</td>
<td>Masse (m) = 500g</td>
<td>Masse (m) = 500g</td>
</tr>
<tr>
<td>Volumen (V) = 1000</td>
<td>Volumen (V) = 1000</td>
<td>Volumen (V) = 250</td>
</tr>
</tbody>
</table>

![Würfel 1](image1.png)
Dichte (ρ_K) = 1 g/cm³

![Würfel 2](image2.png)
Dichte (ρ_K) = 0,5 g/cm³

![Würfel 3](image3.png)
Dichte (ρ_K) = 2 g/cm³

Würfel 1 und Würfel 3 haben eine größere Dichte (ρ_K) als Würfel 2, weil sie mehr Masse (m) pro Volumen (V) haben. Von Würfel 2 zu Würfel 3 nimmt nur das Volumen (V) ab, die Masse (m) aber nicht. Also hat Würfel 2 eine kleinere Dichte (ρ_K) als Würfel 3.

2. **Verhältnis**

Beispiel: Das Verhältnis zwischen 2 unterschiedlichen Pfeilgrößen - Ein Verhältnis zu bestimmen kann bedeuten, dass man etwas miteinander vergleicht.

Wenn man die 2 Pfeile miteinander vergleicht, dann kann man zum Beispiel das Verhältnis zwischen ihren Pfeilgrößen bestimmen:

Der rote Pfeil ist im Verhältnis zum schwarzen Pfeil größer.

3. **Sinken, Schweben, Steigen**

Wenn Körper im Wasser sind, können sie sinken, schweben oder steigen.

- **Sinken bedeutet:** Ein Körper sinkt im Wasser zu Boden.
- **Schweben bedeutet:** Ein Körper bleibt auf der Stelle (sinkt nicht und steigt nicht).
- **Steigen bedeutet:** Ein Körper steigt im Wasser nach oben.
Anhang 14: Deskriptive Mittelwerte und Standardabweichungen für alle abhängigen Variablen der 2 x 2-ANCOVA der experimentellen Studie. Es handelt sich hier nicht um die kovarianzanalytisch ermittelten estimated means, die in Kapitel 6.3 (z.B. Tabelle 20) zugrundegelegt wurden. Dadurch sind vereinzelt unwesentliche Abweichungen möglich. Bis auf die abhängige Variable „Insgesamt durchgeführte Experimente“ sind alle Werte auf den Wertebereich zwischen 0 und 1 normiert.

<table>
<thead>
<tr>
<th>Wissenszuwachs (vorwissensbereinigt)</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>61</td>
<td>-.37</td>
<td>.82</td>
<td>.11</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>57</td>
<td>.09</td>
<td>.92</td>
<td>.12</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>57</td>
<td>.17</td>
<td>1.07</td>
<td>.14</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>56</td>
<td>.12</td>
<td>1.12</td>
<td>.15</td>
</tr>
<tr>
<td>Total</td>
<td>231</td>
<td>-.001</td>
<td>1.00</td>
<td>.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deklarativ-konzeptuelles Posttestwissen</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>61</td>
<td>.55</td>
<td>.21</td>
<td>.03</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>57</td>
<td>.64</td>
<td>.23</td>
<td>.03</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>59</td>
<td>.65</td>
<td>.25</td>
<td>.03</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>56</td>
<td>.65</td>
<td>.23</td>
<td>.03</td>
</tr>
<tr>
<td>Total</td>
<td>233</td>
<td>.62</td>
<td>.23</td>
<td>.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wissensanwendungstest</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>35</td>
<td>.49</td>
<td>.25</td>
<td>.04</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>33</td>
<td>.48</td>
<td>.32</td>
<td>.06</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>35</td>
<td>.46</td>
<td>.27</td>
<td>.05</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>40</td>
<td>.53</td>
<td>.30</td>
<td>.05</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>.49</td>
<td>.28</td>
<td>.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cognitive load</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>59</td>
<td>.55</td>
<td>.20</td>
<td>.03</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>56</td>
<td>.46</td>
<td>.22</td>
<td>.03</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>56</td>
<td>.61</td>
<td>.17</td>
<td>.02</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>54</td>
<td>.46</td>
<td>.19</td>
<td>.03</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>.52</td>
<td>.20</td>
<td>.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strategienutzung (IVK)</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>36</td>
<td>.20</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>34</td>
<td>.29</td>
<td>.07</td>
<td>.01</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>36</td>
<td>.23</td>
<td>.12</td>
<td>.02</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>41</td>
<td>.24</td>
<td>.12</td>
<td>.02</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>.24</td>
<td>.10</td>
<td>.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insgesamt durchgeführte Experimente</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezifische Problemlöseziele</td>
<td>36</td>
<td>.62</td>
<td>.43</td>
<td>7.18</td>
</tr>
<tr>
<td>Unspezifische Problemlöseziele</td>
<td>34</td>
<td>.80</td>
<td>.36</td>
<td>6.20</td>
</tr>
<tr>
<td>Spezifische Lernziele</td>
<td>36</td>
<td>.52</td>
<td>.37</td>
<td>6.13</td>
</tr>
<tr>
<td>Unspezifische Lernziele</td>
<td>41</td>
<td>.62</td>
<td>.44</td>
<td>6.93</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>.64</td>
<td>.41</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Anmerkungen: M = Mittelwert (deskriptiv); SD = Standardabweichung; SE = Standardfehler