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Abstract

A generalization of the Albanese variety to the case of a singular
projective variety X over an algebraically closed field k is given in
[ESV], where H. Esnault, V. Srinivas and E. Viehweg constructed a
universal regular quotient of the Chow group CHg(X )gego of O-cycles
of degree 0 modulo rational equivalence. This is a smooth connected
commutative algebraic group, universal for rational maps from X to
smooth commutative algebraic groups which factor through a homo-
morphism of groups CHy(X)qego — G(k). Suppose now that in
addition k is of characteristic 0. Interpreting this algebraic group as a
generalized 1-motive in the sense of Laumon [L|, we may ask for the
dual 1-motive. The intention of these notes was to describe the functor
which is represented by the dual 1-motive. This forms the main result
of this work.

The notion of dual 1-motive allows to treat the problem in a more
general way: We consider certain categories of rational maps from
a projective variety to commutative algebraic groups (the category
of rational maps factoring through CHg(X )dego is a special case). A
necessary and sufficient condition for the existence of an object of such
a category satisfying the universal mapping property is given, as well
as a construction of these universal objects via their dual 1-motives. In
particular, this provides an independent proof of the existence and an
explicit construction of the universal regular quotient for algebraically
closed base field of characteristic 0.
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0 Introduction

For a projective variety X over an algebraically closed field k£ a generalized
Albanese variety Alb (X)) is constructed by Esnault, Srinivas and Viehweg
in |[ESV| as a universal regular quotient of the Chow-group CHy(X)gego 0f
0-cycles of degree 0 modulo rational equivalence. It is a smooth connected
commutative algebraic group, not in general an abelian variety, if X is sin-
gular. Therefore it cannot be dualized in the same way as an abelian variety.

Laumon built up in [L] a duality theory of generalized 1-motives in char-
acteristic 0, which are homomorphisms [F — G| from a formal group F to an
algebraic group G; and Alb (X)) can be interpreted as a generalized 1-motive
by setting F = 0 and G = Alb(X). Our subject is the functor which is
represented by the dual 1-motive, in the situation where the base field k is
algebraically closed and of characteristic 0.

Section 1 provides some basic facts about generalized 1-motives, which
are used in the rest of the paper. If G is an algebraic group which is an
extension of an abelian variety A by a linear group L, then the dual 1-
motive of [0 — G] is given by [LY — AY], where LY = Hom i, (L, Gy,) is
the Cartier-dual of L and A = Pic’, is the dual abelian variety.

Section 2 is devoted to the functor of relative divisors: For a fixed
variety Y this functor assigns to an affine scheme 7' a family of divisors on
Y, parametrized by 7'. The functor of relative Cartier divisors Divy admits
a natural transformation cl to the Picard functor Pic,-, which maps a relative
divisor to its class. Then

0 . 1-1p; 0
Divy :=cl " Picy

is the functor of families of Cartier divisors whose associated line bundles
are algebraically equivalent to the trivial bundle. If 7 : ¥ — X is a finite
morphism of varieties, there is a natural transformation, the push-forward
T+, between the functors of relative Weil divisors WDivy and WDivy. Thus
we can define the functor

WDivy, v := ker (ﬂ'* : WDiv, — WDiVX>

of Weil divisors on Y vanishing relative to X. Furthermore we introduce a
functor IDiv, of formal infinitesimal divisors, which generalizes infinitesimal
deformations of the zero divisor. For Cartier divisors there exist non-trivial
infinitesimal deformations, while this is not true for Weil divisors, since prime
Weil divisors are always reduced. IDivy also admits a push-forward =, for
finite morphisms of degree 1, and we set

IDivy, y := ker (7?* : IDivy, — IDiVX)
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To a covariant functor F' : Alg/k — Ab from the category of finitely
generated k-algebras to the category of abelian groups we associate its reduced
functor Red(F) : Alg/k — Ab by setting

Red(F)(R) := F(Ryed)

where R,.q = R/Nil(R) is the reduced algebra of R, and we associate its
infinitesimal functor Inf(F') : Alg/k — Ab by setting

Inf(F)(R) := ker (F(Raut) — F(k))

where R, = k + Nil(R) is the local Artinian k-algebra of R. For example a
formal group, considered as a functor on Alg/k, is the direct product of its
reduced and its infinitesimal functor.

We obtain a transformation of functors weil : Red(Divy, ) — WDiv,,,
which assigns to a relative Cartier divisor its associated Weil divisor (the
restriction of weil to Red(DivY) is denoted by weil®), and a natural transfor-
mation fml : Inf(Divy ) — IDivy.

Section 3 states the universal factorization problem with respect to a
category Mr of rational maps from a normal projective variety Y to con-
nected commutative algebraic groups:

Definition 0.1 A rational map (u:Y — U) € Mr is called universal for
Mr if for all objects (¢ : Y — G) € Mr there is a unique homomorphism of
algebraic groups h : U — G and a constant g € G(k) such that ¢ = hou+g.

We give a necessary and sufficient condition for the existence of a universal
object for a category of rational maps Mr which contains the category Mry
of morphisms from Y to abelian varieties and satisfies a certain stability
condition (). We observe that a rational map ¢ : Y — G, where G is
an extension of an abelian variety by a linear group L, induces a natural
tranformation LY — Div\.. If F is a subfunctor of Div). which is a formal
group, denote by Mr# the category of rational maps for which the image of
this induced transformation lies in F. Then it holds

Theorem 0.2 For a category Mr containing Mrg and satisfying (), there
erists a universal object Albyg (Y') if and only if there is a formal group
F C DivY such that Mr is equivalent to Mrx.

The universal object Albz (Y) of Mrx is an extension of the classical Al-
banese Alb (Y), which is the universal object of Mr,, by the linear group
FV, the Cartier-dual of . The dual 1-motive of [0 — Albz (Y)] is hence
given by [f — Picoy], the homomorphism induced by the natural transfor-
mation cl : Div). — Pic..



The universal regular quotient Alb (X)) of a (singular) projective variety X
is by definition the universal object for the category Mr“HoX)aeso of rational
maps factoring through rational equivalence. More precisely, the objects of
MrCHo(Xaes0 gre rational maps ¢ : X — (G whose associated map on pairs
of k-rational points (here Z ranges over the irreducible components of X)

Py | 2k x 2(k) — Gk)

ZeCp(X)
(p,q) +— ¢(p) —¢lq)

factors through a homomorphism of groups CHy(X)gego — G(k). Such a
rational map is regular on the regular locus of X and may also be considered
as a rational map from X to G, where X — X is the normalization of
X. In particular, if X is nonsingular the universal regular quotient coincides
with the classical Albanese. MrHo(aeso contains Mr, and satisfies (¢);

therefore we have reduced the problem to find the subfuntor of Div% which
CHO(X)degO.

is represented by a formal group F with Mrz equivalent to Mr
Section 4 answers the question for the formal group F which charac-
terizes the category MrCHo(X)aeso - Ag this subfunctor of @% measures the

difference between X and X , a natural candidate is given by the direct

product mg? Ix of a reduced and an infinitesimal functor, which are given

respectively by

Red (@%/)J = (Weilo) - WDivg, «
. 1 1
Inf (@%/)J = (fmlo) ID1V)~(/X

The verification of the equivalence of Mr“Ho(X)ao and Mrp;,, 0 is done
=X/X

using local symbols.

This gives an independent proof (alternative to the ones in [ESV]) as well
as an explicit construction of the universal regular quotient for algebraically
closed base field of characteristic 0. Furthermore from the construction fol-
lows the functoriality of the universal regular quotient: Given a morphism
o : V. — X of projective varieties with the property that no irreducible
component of o(V) is contained in the singular locus X, of X, and (V) is
a local complete intersection in a neighbourhood of o (V') N Xy, Then o in-
duces a homomorphism Alb (o) : Alb (V) — Alb (X) between the universal
regular quotients of V' and X respectively.



In the last two sections we look at the same setting from a different point
of view, which allows to compute certain examples and provides a link to the
results of [ESV]. Sections 5 and 6 are not necessary for the main result.

Section 5 treats the case that X is a curve C. This is an example
where an explicit computation of the universal regular quotient and its dual
is within easy reach: On a curve a 0-cycle is a divisor and thus CHy(C')geg0 is
canonically isomorphic to Pic’ C' and the universal regular quotient Alb (C)
is just CHo(C)aego- Therefore we dualize Pic’ C' in the sense of 1-motives
and show that the result coincides with the description given in the previous
section: We inspect the extension

0 — L — Pic®C — Pic®C — 0

where C' is the normalization of C', L = (Gy,)" x (G,)", and ask what gives
rise to the Gy,- and G,-parts. We introduce a curve C’ lying between C' and
C, which is homeomorphic to C' but has only ordinary multiple points as
singularities. This allows to treat the G- and G,-parts separately:

We obtain extensions

0 — T — Pic®C’ — Pic®C — 0

and

0 —V— Pic’C — Pic’C"' — 0
where T 2 (G,,)" is a torus and V 22 (G,)" is a vectorial group. Then TV = Z!
is the étale part and V¥ = (@;) the infinitesimal part of the formal group

LV, the Cartier-dual of the linear group L. We show that LY represents
Div? .

Section 6 generalizes this result to the case that the projective variety X
is of higher dimension. The universal regular quotient Alb (X) is character-
ized by the property of being the largest algebraic group which is generated
by a rational map from X factoring through CHo(X)gego. This is equiva-
lent to the condition that Alb (X)) is the largest algebraic group which is
a quotient of Alb (C') for general Cartier curves C' in X. Then by duality

the largest linear subgroup OL of Alb (X) is the largest formal group in m%
c/c
is mg? Jx More generally, if ¢ : Y — G is a rational map to an algebraic

which is a subgroup of Div for general Cartier curves C' in X; and this

group, then for ¢ to have a certain property it is necessary and sufficient
that the resriction |, to a subvariety has this property for all elements V'
of a family of subvarieties of Y satisfying certain conditions. This is shown
for the properties of being an object of the category Mrr, where F C Div).
is a formal group, and of generating an algebraic group G.
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At the end we discuss an example which illustrates some pathological
properties of the universal regular quotient: While the classical Albanese
of smooth projective varieties is compatible with products, for the univer-
sal regular quotient of singular projective varieties X; it is possible that
dim Alb (JTX;) > >_dim Alb (X;). Moreover, if X is a smooth projective
variety of dimension d and £ a very ample line bundle on X, then for a
complete intersection C' of d — 1 general divisors in the linear system |L|
the Gysin map Alb (C) — Alb (X) will be surjective. This is not true in
general if X is singular (but a sufficiently high power of £ will again have
this property). We look how these phenomena fit into our picture.

The main result is summarized in the following

Theorem 0.3 Let X be a projective variety over an algebraically closed field
k of characteristic 0, and X — X 1its normalization. Then the universal
reqular quotient Alb (X) exists and its dual (in the sense of 1-motives) rep-

resents the functor
0

Divy . — Pic %

=2X/X

i.e. the natural transformation of functors which assigns to a relative divisor

the class of its associated line bundle. @% s represented by an abelian
0

X)X by a formal group.

variety and Div

The universal regular quotient for semi-abelian varieties, i.e. the universal
object for rational maps to semi-abelian varieties factoring through rational
equivalence (which is a quotient of our universal regular quotient), is a clas-
sical 1-motive in the sense of Deligne [D2]| Définition (10.1.2). The question
for the dual 1-motive of this object was already answered by Barbieri-Viale
and Srinivas in [BS].

The first two sections being purely technical, it is possible (and recom-
mended) to start reading at Section 3 and pick up definitions and facts from
the preceding sections as necessary.

Acknowledgement. I am very grateful to the whole research group
Esnault /Viehweg for the helpful discussions. Especially I would like to thank
my advisors Héléne Esnault and Eckart Viehweg for their support and care,
and for the interesting subject of my thesis, which fascinated me from the
first moment.



0.1 Terminology

k is a fixed algebraically closed field of characteristic 0. Schemes are always
locally Noetherian. A variety is a reduced scheme of finite type over k, not
necessarily irreducibel. A curve is a variety of dimension 1. Algebraic groups
and formal groups are always commutative and over k. We write G, for
Gar = Speck[t] and Gy, for Gy, = Speck [t,¢t7]. The letter L stands for a
linear algebraic group which is either G, or G,,.

If Y is a scheme, then y € Y means that y is a point in the Zariski
topological space of Y. The set of irreducible components of Y is denoted
by Cp(Y), the set of connected components by CCp(Y').

If Ais a ring, then K4 denotes the total quotient ring of A. If YV is a
scheme, then Iy denotes the sheaf of total quotient rings of Oy. The group
of units of a ring R is denoted by R*.

If o : Y — X is a morphism of schemes, then o% : Oy — Oy denotes
the associated homomorphism of structure sheaves. If h : A — B is a
homomorphism of rings, then hA' : Spec B — Spec A denotes the associated
morphism of affine schemes.

We think of Ext' (4, B) as the space of extensions of A by B and therefore
denote it by Ext (A, B). When speaking of a divisor D as an element of
Pic’ X, the class [D] € Pic’ X is meant.

The dual of an object O in its respective category is denoted by 0V,
whereas O is the completion of O. For example, if V is a k-vector space,
then V'V = Homy (V, k) is the dual k-vector space; if G is a linear algebraic
group or a formal group, then G = Hom 41 (G, Gy, ) is the Cartier-dual; if
A is an abelian variety, then A" = Pic’ A is the dual abelian variety, whereas
A = Spf O, is the completion of A w.r.t. 04.



1 1-Motives

The aim of this section is to summarize some foundational material about
generalized 1-motives (following |L| Sections 4 and 5), as far as it is necessary
for the purpose of these notes.

Throughout the whole work the base field k is algebraically closed and of
characteristic 0.

1.1 Algebraic Groups and Formal Groups

At the beginning let me recall some basic facts about algebraic groups and
the notion of a formal group.

1.1.1 Algebraic Groups

Definition 1.1 An algebraic group (or group-scheme) is a commutative
group-object in the category of separated schemes of finite type over k.

Proposition 1.2 If char (k) = 0, an algebraic group is always smooth and
equi-dimensional.

Proof. [M] Chapter III, No. 11, p. 101. m

Theorem 1.3 (Chevalley) A smooth connected algebraic group G admits
a canonical decomposition

0—L—G—A—0
where L is a linear algebraic group and A is an abelian variety.

Proof. [SGA3| Exposé VI, and [S| Chapter III, No. 7, Proposition 11.
n

Theorem 1.4 A linear algebraic group L splits canonically into a direct
product of a torus T and a unipotent group U:

L=TxU
If char (k) = 0 a unipotent group is vectorial, i.e.
U =V := Spec (Sym V")

where V' is a finite dimensional k-vector space and V'V the dual k-vector space.
A torus is a direct product of multiplicative groups and a vectorial group the
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direct product of additive groups, i.e. there are natural numbers t,v > 0 such
that

T = (Gu)
Vo2 (G.)°
Proof. [SGA3| Exposé XVII, 7.2.1 and [S] Chapter III, No. 7, Proposi-

tion 12. =

In order to classify extensions 0 — L — G — A — 0 of an algebraic
group A by a linear group L we can consider each extension G as a princi-
pal fibre bundle over the base A of fibre-type L. A principal L-fibre bundle
over A is determined uniquely by a set of local sections {s, : U, — G}
where {U,} is an open cover of A, since these sections give rise to local
trivializations {®,, : U, x L — G} and corresponding transition functions
{U,s:U,NUz — L}. This gives a homomorphism into the space of iso-
morphism classes of such transition functions:

Ext (A, L) — H' (A, L4)

where L, is the sheaf of germs of regular maps from A to L. If A is an
abelian variety, this map is injective (see [S] Chapter VII, No. 15, Theorem
5). A principal L-bundle G coming from an extension of algebraic groups
is always translation-invariant, i.e. G = t;G, where ¢, : © —— z + a is the
translation by a € A. This implies that one local section s : U — G yields
via translation a family of local sections {s, : t,U — G} ,.,. Therefore one
can recover the structure of an extension G by finding one local section.
Since a linear group L in characteristic 0 is the direct product of multi-
plicative and additive groups, i.e. L2 (G)" x (G,)", and therefore

Ext (A, L) = Ext (4, (Gw) x (G,)")
Ext (A, G)" x Ext (A,G,)"

12

one can find a direct sum of G- and G,-bundles over A, which describe G.

1.1.2 Formal Groups

Definition 1.5 A formal group G is a commutative group-object in the cat-
egory of formal affine schemes over k.

Proposition 1.6 If char (k) =0, a formal group G is always formal smooth
and equi-dimensional, i.e. there is a natural number d > 0 such that

Og,o = k HSEl, e ,SL’dH

11



Proof. [L| Section 4, (4.2). m
Theorem 1.7 A formal group G admits a canonical decomposition
G = Gé X Ging
where Gy 1s €tale over k and Gy, 1s the component of the identity.

Proof. [L] (4.2.1) and [Fo] Chapter I, 6.6 and §7. =

Definition 1.8 A formal group G is called étale if its infinitesimal part Gi,¢
is trivial, i.e. G = Gg;.
A formal group G is called infinitesimal if its étale part Ge is trivial, i.e.

g - ginf-

Theorem 1.9 An étale formal group G admits a canonical decomposition

tor lib
ét

0 — G&" — G — G — 0

where GI* is the largest sub-group-scheme whose underlying k-scheme is finite

and étale, and GYP (k) is a free abelian group of finite rank.
Proof. |L] (4.2.1) and [Fo| Chapter I, 6.6 and §7. m

Theorem 1.10 Ifchar (k) = 0, the Lie-functor gives an equivalence between
the following categories:

{infinitesimal formal groups/k} «— {Lie-algebras/k}
Proof. [SGA3]| VIIg, 3.3.2. m

Corollary 1.11 If char (k) = 0, for an infinitesimal formal group Gi.s there
is a finite dimensional k-vector space V', namely V = Lie (Giu), such that

Gint = Spf (Sy/m?\/).

1.1.3 Sheaves of Abelian Groups

The category of algebraic groups and the category of formal groups can be
considered as full subcategories of the category of sheaves of abelian groups:

12



Definition 1.12 Let
Ab category of abelian groups

Alg/k  category of finitely generated k-algebras

Aff/k  category of affine k-schemes

Sch/k  category of k-schemes
FSch/k category of affine formal k-schemes

Set/k  category of sheaves of sets over Aff/k

Ab/k  category of sheaves of abelian groups over Aff/k
Ga/k  category of algebraic groups over k

Gf/k  category of formal groups over k

Aff/k is anti-equivalent to Alg/k. Let Aff/k and Alg/k be equipped with
the topology fppf. Interpreting a k-scheme X as a sheaf over Aff/k given by

S +— X (S) = Moryg (S5, X)

or equivalently
R +— X (R) = Mory, (Spec R, X)

makes Sch/k to a full subcategory of Set/k and Ga/k to a full subcategory
of Ab/k.

In the same manner FSch/k becomes a full subcategory of Set/k and
Gf/k a full subcategory of Ab/k: An affine formal k-scheme ) = Spf A,
where A is a complete topological k-algebra, is viewed as the sheaf over
Aff/k given by

R +— Y (R) = Spf A(R) = Homy_ag,cont (A, R)

which assigns to a finitely generated k-algebra R with discrete topology the
set of continuous homomorphisms of k-algebras from A to R.

Then the kernel and cokernel of a homomorphism in Ga/k or Gf /k coin-
cide with the ones in Ab/k, and an exact sequence 0 - K — G — C — 0
in Ab/k, where K and C' are objects of Ga/k or Gf /k, implies that G is also
an object of Ga/k or Gf /k respectively.

1.2 Structure of a 1-Motive

In the following by a 1-motive always a generalized 1-motive in the sense of
Laumon [L] Définition (5.1.1) is meant:

Definition 1.13 A 1-motive is a complex concentrated in degrees —1 and 0
in the category of sheaves of abelian groups of the form M = [F — G, where
F s a torsion-free formal group over k and G a connected algebraic group
over k.

13



Taking into account that each connected algebraic group G admits a canon-
ical decomposition, i.e. is an extension of an abelian variety A by a linear
group L, one can assign to each 1-motive [F — G| a diagram

0 L G A 0

1.3 Cartier-Dual

Let G be an algebraic or a formal group and let Hom 4, (G, Gy ) be the
sheaf of abelian groups over Aff/k associated to the functor

S +— Homyg, (G (5), Gy, (S))

which assigns to an affine k-scheme S the set of group homomorphisms
Homy, (G (5),Gn (5)). If G is a linear algebraic group (formal group), this
functor is represented by a formal group (linear algebraic group):

Definition 1.14 If L is a linear algebraic group, the formal group which
represents the sheaf Hom 4, (L, Gy) is called the Cartier-dual of L and is
denoted by L".

If F is a formal group, the linear algebraic group which represents the
sheaf Hom 4, ), (F,Gn) is called the Cartier-dual of F and is denoted by F.

Let L be a linear algebraic group with affine algebra A, and let H be the
dual k-vector space of A. A topology on H is obtained from the requirement
that A is identified with the set of continuous k-linear maps from H to k:
A = Homy, cont (H, k). In the following H®H denotes the completion of H@H
w.r.t. the topology on H (see [SGA3] Vg, 0.3).

The group-structure my : L x L. — L is given by a cogroup-structure
Ay : A— A® A. The dualization of k-vector spaces translates A, into
an algebra-structure my : H&H — H and the algebra-structure my
A® A — A into a coalgebra-structure Ay : H — H®H, which gives rise
to a group-structure mx : F x F — F on the formal scheme F = Spf H.

Let 7, : L — Spec k be the structural morphism of L and o, : Spec k —
L the section of 7, which gives the neutral element of L. Then o, corre-
sponds to the augmentaion ¢4 : A — k, and 7 to a section 4 : k — A
of €4. Dualization of k-vector spaces translates 74 into an augmentation
€y H — k and €4 into a section 1y : K — H of €. Then 7y, corre-
sponds to the structural morphism 7z : F — Speck and ey to a section
or : Spec k — F, which yields the neutral element of F.

14



Moreover the inversion morphism ¢ : L — L on L corresponds to the
antipode map Sy : A — A, which dualizes to an antipode Sy : H — H
giving the inversion ir : F — F.

In this way F = Spf H becomes a formal group, and it holds 7 = LY and
L=F".

The Cartier-duality is an anti-equivalence between the category of linear
algebraic groups and the category of formal goups. The functors L — LV
and F —— FV are quasi-inverse to each other. (see [SGA3| VIIg, 2.2.2)

Since every linear algebraic group L is the direct product of a torus and
a unipotent group, L = T x V, the Cartier-dual LV is the direct product
of their Cartier-duals, LY = TV x VV, which leads to treat the two cases
separately.

1.3.1 Cartier-Dual of a Torus

Theorem 1.15 The Cartier-dual of a torus T = (Gy,)" is a lattice of the
same rank:
r]I*V ] Zt

Conversely, the Cartier-dual of a lattice A = 7! is a torus of the same rank:

A = (G,,)

Proof. Every morphism of k-schemes from G, to G,, preserving the
multiplicative group-structure is of the form  — 2*, X\ € Z. Therefore

Homup/t (G, G) 2 Z

and HomAb/k (T, Gm) = HomAb/k ((Gm)t , Gm) = HomAb/k (Gm, Gm)t >~ 7t
Conversely, a homomorphism x € Hom 4 /1, (Z, Gy,) is determined uniquely
by x (1) € Gy, since Z = (1) is a cyclic group. Hence

HOHlAb/k (Z, Gm) = Gm
and Hom /1, (A, Gyy) = Homy i, (2!, Gy) = Homup /i (Z,Grn)' 2 (Gyn)'. ®

Proposition 1.16 A lattice A = 7! is an étale formal group with affine
algebra [, ka, where ky = k. The topology on [],c, ka is induced by the
decreasing sequence of ideals Iy D Iy D Is D ... with

I, = {(CA>>\GA = H ka

AEA

cx =0 for |A| < u}
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where |\ :== S"1_ |li| for A= (li,...,l;) € Z' = A. The k-algebra structure
on [ [ ea ka is given by componentwise multiplication and

The group structure

AxA | A
(h,v) — pn+v

corresponds to the cogroup structure

[k & <H lﬁ> ® <H lﬁ>

AEA AeA AeA
Zc)\e)\ — ZC,HV 6,ﬂ§>€u
A v
1 forv=p
where e, = (5uu)yeA, O = { 0 forv+#pu

Proof. Set F = Spf ([T ¢, kr). I claim that the k-valued points of F
can be identified with A, and the group structure on F coincides with the
one of A. Indeed, according to the k-algebra structure of [[,., k» it holds

f(k> = Homk—Alg,cont (H k)\, k)
AEA
= {pry| A €A}
~ A

where pry : [],cakn — &, (ca)aca — ¢ is the projection to the A™-
component. The group structure on F (k) induced by +#

Homk_Alg (H k?)\, k?) X HOIIlk_Alg (H k?)\, k?) — HOHlk_Alg (H k?)\, k?)
AEA AEA AEA
(p.¥) — (p®Y)o+*

. . . + . .
coincides with A x A — A, as one easily verifies. =
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Lemma 1.17 Let A = 7! be a lattice. Let R be a finitely generated k-algebra
with decomposition
D ke

ZeCCp(R)

where CCp (R) is the set of connected components of Spec R and Z = Spec Ry.
Then the R-valued points of A are
D Ak

ZeCCp(R)

Proof. Proposition 1.16 yields A (R) = Homy_alg cont (HAGA k,\,R). In
the proof of 1.16 we have seen that for € Homy.alg cont (HAGA k,\,RZ)
there is a 1 € A such that (k «— Rz) o h = pr,, hence h(k}) C Rj. For
A # pitisey-e, =0, where {ex},., is the standard basis of J], ., ka.
Therefore h(ey) - h(e,) = h(ey -e,) = 0, and since h(e,) is a unit, it fol-
lows that hl;, = 0 for all A\ # p. A homomorphism of k-algebras h ful-
fills ho ([Tyen kr <— k) = (Rz «— k), hence hly, = idy,, i.e. h = pr,.

Thus Homk—Alg,cont (H)\EA k’)\, RZ) = Homk—Alg,cont (HAEA kA7 k) for Spec RZ
connected. With this we obtain

A (R) = Homk—Alg,cont <H ]{Z)\, R)

AEA

= HOmk Alg,cont H k>" @ RZ

AeA  ZeCCp(R

= @ Homk Alg,cont (H kf)\, RZ)

ZeCCp(R AEA

= @ Homk Alg,cont (H ]{Z)\, )
ZeCCp(R AEA

= @ A (k)
ZeCCp(R)

Lemma 1.18 Let T = [[G,, be a torus. Then for each finitely generated
k-algebra R the R-valued points of T are

:HR*

Gum (R) = R*

In particular

17



Proof. A homomorphism A : k [u,u™!] — R is uniquely determined by
the value h (u), and well defined if and only if i (u) € R*, since h(u™!) =
h(u)~". Thus

Gm (R) = Homy_ayg (k: [u,u’l] ,R) =R
The statement follows now by additivity:

T(R) = Mor <Spec R, H Gm>
= H Mor (Spec R, Gy,)
= [IGa(®
— H R*

1.3.2 Cartier-Dual of a Vectorial Group

Theorem 1.19 (Cartier) Let V' be a finite dimensional k-vector space.

The Cartier-dual of the vectorial group V = Spec (Sym V) associated to
V' is the completion w.r.t. 0 of the vectorial group associated to the dual
k-vector space V'V :

VY — Spf <W>

Conversely, the Cartier-dual of the infinitesimal formal group V = Spf (W)

with Lie-algebra V'V is the vectorial group associated to the dual k-vector space
V:
VY = Spec (Sym V)

In other words: If {x1,...,x,} is a basis of V, {t1,...,t,} its dual basis
and V = Speck [t1,...,t,], then the formal group V¥ = Splk|[[z1,...,x,]]
represents the functor Hom 4, (V, Gy) and conversely.

Proof. We claim that the formal group Spf <W) represents the sheaf
Hom 4 1 (V, G):
Using Lemmata 1.18, 1.21 and 1.20 we obtain
Hom g, 5 (V,Gn) () = Homg (V(R),Gun (R))
= Homg, (V ®; R, R")
= VV Rk Homgr (R, R*)
VY @ Nil (R)
— Spf (Sym V) (R)

18



for each finitely generated k-algebra R.
The converse direction follows from the fact that the functors V — VV
and V —— V" are quasi-inverse to each other, as mentioned above.! m

Lemma 1.20 LetV be a finite dimensional k-vector space, V = Spec (Sym V')

and V = Spf (Sy/In\V\/). Then for each finitely generated k-algebra R the R-
valued points are

V(R) = VerR
V(R) = V @ Nil(R)

In particular
G.(R) = R
G.(R) = Nil(R)

Proof. A homomorphism of k-algebras h : Sym V¥ — Ror h : Sy/m?v —
R is uniquely determined by restriction to VV. Let m C Sy/m\Vv be the
maximal ideal generated by V. According to Lemma 1.22, h : Sy/m?V —
R is well defined and continuous (w.r.t. the m-adic topology on Sy/m?v
and the discrete topology on R) if and only if there is an integer n > 0
such that m"™ C ker (k). As V'V is finite dimensional, this is equivalent to the
condition that h (t) € R is nilpotent for all ¢ € V. Therefore the assignment
h —— h|yv gives isomorphisms of abelian groups

Homy s (Sym VY, R) — Homy (VY R)
ot ALy cont (sy/m\VV, R) . Homy, (VY,Nil (R))

Then
V(R) = Homyay (SymV", R)
= Homy (VY,R)
= V ®k R
and
v <R> = Homk—Alg,cont (Sy/m\vv, R)
= Homy (VY,Nil(R))
= V& Nil(R)
| |

! An analogue simple direct computation is not possible, as here it comes into the game
that Hom 4/, (V, Gw) is the sheafification of the functor R — Homyg, (V (R),Gm (R)).
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Lemma 1.21 Let R be a finitely generated k-Algebra. There is an isomor-
phism of abelian groups

Hom,, (R, R*) = Nil(R)

Proof. Every homomorphism which translates the additive group struc-
ture of R into the multiplicative one of R* has to be of the form r — exp (nr)
for a certain n € R. This map is well defined if and only if n is nilpotent.
The assignment

Nil(R) — Hom,, (R, R")

n — exp(n- )
gives the required isomorphism of abelian groups. =

Lemma 1.22 Let A be a topological group, G a group endowed with discrete
topology and h : A — G a homomorphism of groups. Then the following
conditions are equivalent:
(i) h is continuous
(i) ker (h) is open
(tt5)) U 204 open s.t. U C ker (h)

Proof. A basis for the discrete topology on G is given by the one-sets
{9}, g € G. In the topological group A the open sets are generated by the
open neighbourhoods of 04 via translation.

(i)==(ii) {Og} is open in G and ker (h) = h=' {0g} is open in A for h
continuous.

(ii)==(iii) Take U = ker (h).

(iii) =>(ii) ker (h) = U,exer(ny @ + U is open.

(i))=(@i) h' {g} = a+ker (h), where a € h™' {g}, is open for all ¢ € G.

1.4 Dual of a 1-Motive

The dual of an abelian variety A is given by AY = Pic’ A. Unfortunately,
there is no equivalent duality theory for algebraic groups in general. Instead,
we dualize 1-motives; and a connected algebraic group G can be considered
as a special case of a 1-motive by setting the formal group F = 0, i.e. we
assign to G the 1-motive [0 — G].

Theorem 1.23 Let L be a linear algebraic group and A an abelian variety.
There is a bijection

Ext (A, L) ~ Hom (LY, AY)

where AV is the dual abelian variety.
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Proof. Since L = T x V and LY = TY x V¥ we have Ext (A, L) =
Ext (A, T) x Ext (A, V) and Hom (LY, AY) = Hom (T, A") x Hom (VV, A).
Therefore it is enough to consider the two cases L = T and L = V, which
will be done in Lemma 1.24 and Lemma 1.25 respectively. m

Lemma 1.24 Let T = (G,,)" be a torus and A an abelian variety. There is
a bijection
Ext (A, T) ~ Hom (T", AY)

Proof. We construct a bijection ® : Ext (A4, T) — Hom (T, AY). Given
an extension G of A by T, then let & (G) : TY — A" be the map which
assigns to x € TV = Homy. ¢, (T, G,,) the push-out x.G € Ext (A, G,,) =
Pic® A = AV of G via x:

0 T G A 0

|

0—Gp—x:G—=A—0

Conversely, consider the following map ¥ : Hom (TY, AY) — Ext (A, T):
Given ¢ : TV — AY, and a basis x1,...,x: € TV = Z', then let ¥ (¢) =
¢ (X1) Xa ... xa¢(xs) € Ext (4, ((Gm)t) be the extension obtained by tak-
ing the fibre-product of the G,,-bundles ¢ (y;) € AY = Ext(A,G,,) and
pushing out this extension [, ¢ (x;) € Ext (A, (Gy)") via the isomorphism
(Gm)" == T corresponding to the basis (x1,...,x:) of TV:

0—>(Gm)t—>HA¢(X¢)—>A—>O

]

0 T (o) A 0

Then ® and ¥ are inverse to each other, in fact they are isomorphisms of
abelian groups. m

Lemma 1.25 Let V = Spec (Sym VV) = (G,)" be a vectorial algebraic group
and A an abelian variety. There is a bijection

Ext (A,V) ~ Hom (VY, AY)

Proof. By Theorem 1.19 VV is the completion of a vectorial group, hence
every homomorphism ¢ : V¥ — AY factors through the completion of A
w.r.t. O4v, an infinitesimal formal group. Since k is of characteristic 0, the
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category of infinitesimal formal groups over k is equivalent to the category
of Lie-algebras over k (see Theorem 1.10). This implies a bijection 2

Hom 4,5, (VV, A") ~ Homy, (Lie VY, Lie A")
Therefore it is sufficient to construct a bijection
® : Ext (A, V) — Hom (Lie VY, Lie A")

An element ¥ € Lie VY = VY = Homy, (V, k) induces canonically a homomor-
phism of algebraic groups V — G, corresponding to the homomorphism of
k-algebras k [t] — Sym V"V, ¢t — 9. The map Ext (A, G,) — H!' (4,0,)
considered at the end of Subsubsection 1.1.1 is an isomorphism (see [S] Chap-
ter VII, No. 17, Theorem 7). But H! (4, O,) is the tangent-space at 04v of
AY (see [M] Chapter III, No. 13, Corollary 3, p. 130), which is Lie A.

Given an extension G of A by V, then let ® (G) : LieVY — Lie AY
be the map which assigns to ¥ € LieVY = Hom 4/ (V,Ga,) the push-out
.G € Ext (A4,G,) = H' (4,0,4) = Lie A of G via 9:

0 A\ G A 0

o

O—)Ga—>19*G—>A—>0

On the other hand consider the following map ¥ : Hom (Lie V¥ Lie AY) —
Ext (A,V): Given ¢ : LieVY — Lie A", and a basis ¢,...,9, € LieV¥ =
V'V, then let ¥ (¢) = ¢ (91)X4...x40 (V,) € Ext (A, (G,)") be the extension
obtained by taking the fibre-product of the G,-bundles ¢ (¢;) € Lie AY =
Ext (A,G,) and pushing out this extension [[, ¢ (¢;) € Ext (4, (G,)") via
the isomorphism (G,)" — V given by the cobasis to the basis (1, ...,1,)
of Lie VV:
0—(Ga) —=I[40 (W) —A—>0

]
0 \% V(o) A 0

Then & and V¥ are inverse to each other, in fact they are isomorphisms of
abelian groups. =

2For those who wish to avoid the study of [SGA3| VIIg, 3.3.2 an ad hoc argument for
Hom 45/, (WA/, A) = Homy (Lie WA/, Lie A) is given in Appendix 1.4.1, p. 26.
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Remark 1.26 An other description of the bijection Ext (A, L) ~ Hom (LY, AY)
1s the following:
Given an extension G of an abelian variety A by a linear group L

0—L—G—A—0

Applying the functor Hom /i (_, G) yields a long ezact sequence

0 — Hom (A, G,,) — Hom (G, G,,) — Hom (L, G,,) —
— Ext (4, Gn) — Ext (G, G,,) — Ext (L, Gy)

Now Hom (A, G,,,) = 0 since A is complete and Gy, is affine; Ext (L, Gy,) =
0 since L = (Gp)' x (G,)" and Bxt (Gn,Gn) = 0, BExt(G,,Gy) = 0;
Hom (L, G,,) = LY is the Cartier-dual of L and Ext (A, G,,) = Pic’ A = AY
is the dual abelian variety. Hence we obtain a homomorphism LY — AY
with kernel Hom (G, G,,) and cokernel Ext (G, Gy,).

A consequence of Theorem 1.23 is the following construction, which is
fundamental for the notion of a dual 1-motive:

Let M = [}"#G] be a 1-motive, and 0 — L — G — A — 0 the
canonical extension of an abelian variety A by a linear group L belonging to
G. By Theorem 1.23 the composition i : F — G — A defines an extension
0 — FY — GF — AV — 0 and the extension G defines a homomorphism
of sheaves of abelian groups i : LY — AY. Then the next theorem says
that ¢ factorizes through G* and hence gives rise to a dual 1-motive MV =

[LV N G“] .

Theorem 1.27 Let F be a formal group, L a linear group, A an abelian
variety, G € Ext (A, L) and p € Hom g, (F, A). Let G* € Ext (A, FY) be
the extension induced by the homomorphism p and p© € Hom 4y (LY, AY)
the homomorphism induced by the extension G. There is a bijection

Homy (F,G) ~ Homyuv (LY, G?)

Proof. (Taken from [L] Proposition (5.2.2).) Let E be the extension of
F by L obtained by pulling back the extension G of A by L via p:

0 L E F 0

| b

0 L G A 0
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Let E?, be the extension of LY by F" obtained by pulling back the extension
G of AY by FV via pC:

0 FY E¢, LY 0
|
0 FY G* AY 0

Then giving homomorphisms p : F — G over A
and % : LYV — G* over AV

uC

f’

NN~

is equivalent to splittings of E' and E7, respectively. Now the exact sequences

Gr

0—L—F—F—0

and
O—)f\/—>Eé—>Lv—>O

are obtained one from the other by applying the functor Hom 4, 4 (_, Gw) -
Therefore one sequence is split-exact if and only if the other is. m

Definition 1.28 The dual I-motive of M = [.7-" L G] with G € Ext (A, L)
is the 1-motive MY = |LV i G“] corresponding to | under the bijection
of Theorem 1.27.
In terms of diagrams: Given a 1-motive

F

lu

0 L G A 0

then the dual 1-motive looks like

L\/
5
0—>FY —GF— A —0

Corollary 1.29 The double dual MV of a 1-motive M is canonically iso-
morphic to M.
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1.4.1 Appendix: Hom (@, A) = Hom (Lie i\f, Lie A)

Lemma 1.30 Let ¢ : H — G be a homomorphism of infinitesimal formal
groups. Then ¢ is an isomorphism if and only if Lie ¢ is an isomorphism.

Proof. Let (A,m) and (B,9) be complete local rings such that G =
Spf A and ‘H = Spf B. Since o# (m”) C 9" the map »* : A — B induces
a map [¢*] : m/m? — 9M/M% But LieG = Homy, (m/m? k) and Lie H =
Homy, (91/9% k), hence Lie ¢ : Lie’ H — Lie @ is just the dual k-linear map
of [go#]:

Liep = [go#]v ; (ﬂﬁ/SﬁZ)v — (m/mQ)v
A2 J[mY/m”™! and B = [[90 /9! are generated by m/m? and 91/9M?
respectively, thus we have:
@ iso <= 7 iso — [cp#} iso <= Liey iso
u

Definition 1.31 Let GG be an algebraic group or a formal group. Then define
the associated vectorial group LLie G of the Lie-algebra Lie G to be

Lie G = Spec (Sym (Lie G)")
and the associated infinitesimal formal group Lie G of LieG to be
Lie G = Spf (Sym (Lie G)v)

Theorem 1.32 Let A be an abelian variety. There is one and only one
homomorphism (the exponential map)

n: LieAd — A
with Lle’l] = idLieA-'
—~ kle
Lie A(k[e]) —222~ A(K[e])
|,
Lie A Lie A

n induces an isomorphism
n: Lied =5 A
where A = Spf @A,O is the completion of A w.r.t. 04.
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Proof. Since O, , is the only k-valued point of Lie A, we have Lie A (Ryea) =
{O]]:i\e A} for each finitely generated k-algebra R, where R,.q = R/Nil(R)

is the reduced ring. Therefore the morphism 7 : Lied — A, if it ex-
ists, is uniquely determined by its induced group-homomorphisms 7 (Ray) :

Lie A (Rart) — A (Ray) on the R,.-valued points, where R, = k [Nil (R)]
is a local Artinian ring. Using

A =Pic” AY c PicAY = H' (AY, 0%)

hence
A(Rai) C PicAY (Rax)
= H1 (AvyozvxSpecRan)
= H'(AY, 04 Nil(R)]")
and

Lie A (Ru) = Homk_Algm( ym (Lie A)", k [Nil (R)])

= Homy ((Lie A)",Nil (R))
= Lie A®; Nil(R)
H! (A, O4v) @ Nil (R)
H! (AY, O4v @i Nil(R))

construct n by

—~ Rart
Lie A (Rart) i ) A (Rart)

H!(AY, O4v @4 Nil (R) ) —>H'(AY, 1+ O4v & Nil(R))

(Zfomn)a'—> (Zuzo % > fann)u)a

It is known from calculus that this map is the only one which translates the
additive group-structure into a multiplicative one while lifting the identity
on Lie A.

Since Sym (Lie A)" is complete, the canonical homomorphism Q4 —

—

04, gives a factorization

— #
Sym (Lie A)" ~— 040 LieA— A
O A
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By Lemma 1.30 7 is an isomorphism for Lie = idp; 4 is an isomorphism. m

Lemma 1.33 Let V 2 (G,)" be a vectorial algebraic group and A an abelian
variety. There is a bijection

Hom 4/, <§\/, A) =~ Homy, (Lie i\/, Lie A)

Proof. A homomorphism ¢ : V — A of abelian sheaves factorizes
through the completion A of A w.r.t. 04, hence

HomAb/k (i}, A) = Homk_gf (i}, A\)
Theorem 1.32 says that A= Liec A as formal groups:
Homk_gf (i}, 11) = Homk_gf <§7, I[/AI\GA)

— A\
= Homy pialg <Sym (Lie A)v, Sym <Lie V) )

~\ V
©# : Sym (Lie A)Y — Sym <Lie V) is already determined by restriction to

(Lie A)". Since ¢ : V — LieA preserves the additive group-structures, it
~\ V
has to be linear, i.e. the image ¢# (Lie A)" lies in (Lie V) :

— A\ AV
Homy, pialg (Sym (Lie A)V, Sym (Lie V) ) ~ Homy <(Lie A)V, (Lie V) )
= Homy (Lie @', Lie A)

which yields the assertion. m
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2 Relative Divisors

Subject of this section is the functor of families of divisors on a scheme Y
over an algebraically closed field k of characteristic 0.

2.1 Reduced and Infinitesimal Functor

First we introduce some notions on functors from the category of finitely
generated k-algebras Alg/k to the category of abelian groups Ab, which
make it easier to deal with them.

Definition 2.1 Let Fctr (Alg/k, Ab) be the category of covariant functors
F : Alg/k — Ab, whose morphisms are given by natural transformations
between functors in Fectr (Alg/k, Ab).

Obviously we have

Proposition 2.2 For a finitely generated k-algebra R let R.eq = R/ Nil (R)
be its reduced algebra. Then the assignment F' —— Red (F'), where

Red (F) (R) := F (Ryeq)
defines a covariant functor
Red : Fectr (Alg/k, Ab) — Fctr (Alg/k, Ab)

Proof. Let h : R — S be a homomorphism of finitely generated k-
algebras. Since h (Nil (R)) C Nil (.S) there is an induced homomorphism of
reduced k-algebras hyeq : Riea — Srea- Then for each F' € Fctr (Alg/k, Ab)
the homomorphism Red (F') (h) : Red (F) (R) — Red (F') (S) is given by
F (hyea) : F (Rrea) — F (Srea)- Thus Red (F') € Fetr (Alg/k, Ab).

Assume 7 : F' — ( is a natural transformation between functors in
Fctr (Alg/k, Ab). Then for every homomorphism of finitely generated k-
algebras h : R — S the following diagram commutes:

7—(Rred)

F(Rred) G(Rred)
F(hred)l lG(hred)
T Rred
F(Sred) ( ) G(Sred)

Then Red (7) : Red (F') — Red (G) defined by Red (7) (R) = 7 (Ryea) for
each R € Alg/k is a natural transformation of functors, i.e. Red maps
7 € Hom (F, G) to Red (1) € Hom (Red (F'),Red (G)). =
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Remark 2.3 By the same argument, Red is a covariant functor
Red : Fctr ((Alg/k)” , Ab) — Fctr ((Alg/k)°" , Ab)

on the category of contravariant functors from the category of finitely gener-
ated k-algebras to the category of abelian groups.

Notation 2.4 Let R be a finitely generated k-algebra and I ; R a proper
ideal. Then k[I| denotes the subring of R whose underlying k-vector space
1s k @ I endowed with the ring-structure induced by the ring-structure of
ROkodlI.

Proposition 2.5 For a finitely generated k-algebra R let R, = k [Nil (R)]
and p : Rayy — k, Nil(R) > n —— 0 be the restriction. Then the assign-
ment F' —— Inf (F'), where

Inf (F) (R) := ker (F (p) : F (Roy) — F (k))
defines a covariant functor
Inf : Fctr (Alg/k, Ab) — Fctr (Alg/k, Ab)

Proof. A homomorphism of k-algebras h : R — S yields a commutative
diagram
R rt —> ]{j
hart H

art > k?

Let F' € Fctr (Alg/k, Ab). The functoriality of I’ implies the commutativity
of

ker F(pn) —— F(Rut) 2% F ()
NN
F(ps)

ker F(ps) — F(Sar) —= F'(k)

The left column gives the required homomorphism
Inf (F) (h) : Inf (F) (R) — Inf (F) (S)

Hence Inf (F') is an object of Fctr (Alg/k, Ab).
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If € Hom (F,G), i.e. 7:F — G is a natural transformation of func-
tors in Fctr (Alg/k, Ab), then for each R € Alg/k from the commutative
diagram

F(pr
ker F(pr) —— F(Rur) =% P (k)
l T(Rart)l 7(k)
G(pr)
ker G(pr) —= G(Ra) — G (k)
we obtain the homomorphism
Inf (7) (R) : Inf (F') (R) — Inf (G) (R)

and Inf (7) is a natural transformation, since for each h: R — S

ker F(pg) F(Ra) F(k)
\ker G(pr) ‘ \?;(Rart) H \G(k)
| |
ker F(ps) F(Sart) F(k)
\ker G(ps) \G(Sart) \G(kr)

commutes. Thus Inf (7) € Hom (Inf (F'), Inf (G)) is a morphism in the cate-
gory Fctr (Alg/k,Ab). m

Definition 2.6 A functor F' : Alg/k — Ab is called reduced if F =
Red (F'). Assume that F' is covariant, then F is called infinitesimal if F' =
Inf (F).

Definition 2.7 A functor ' € Fctr (Alg/k, Ab) is called banal if F is
isomorphic to Red (F') x Inf (F).

Example 2.8 Let F be a formal group. Then F is banal by Theorem 1.7,
where Fg = Red (F) and Fipe = Inf (F).

Definition 2.9 A functor F' : Alg/k — Ab is called locally constant if
F(Rz) = F (k) for all finitely generated k-algebras Ry with Spec Ry con-
nected, more generally

ZeCCp(R)
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for each finitely generated k-algebra R with decomposition R = @ZECCp(R) R,
where CCp (R) denotes the set of connected components of Spec R.

Remark 2.10 A locally constant functor is always reduced.

Example 2.11 The étale part Fs of a formal group F is locally constant,
since Fg 1s discrete. For a torsion-free étale formal group this was shown in
Lemma 1.17.

Definition 2.12 Let F be a functor Fctr (Alg/k, Ab). Define the Lie func-
tor
Lie : Fctr (Alg/k, Ab) — Ab

of F' by
Lie (F) = Inf (F) (k[¢])

Definition 2.13 A functor F' € Fctr (Alg/k, Ab) is called plain if
Inf (F') € Fetr (Alg/k, Vs/k)

i.e. Inf (F) is a functor into the category Vs/k of k-vector spaces, and if
for every finitely generated k-algebra R there is an isomorphism of k-vector

spaces
Inf (F) (R) 2 Lie (F) @ Nil (R)

Example 2.14 If char (k) = 0, then each formal group F is plain by Corol-
lary 1.11 and Lemma 1.20.

Notation 2.15 If P is a plain functor in Fctr (Alg/k, Ab), then pe P
means that either p € P (k) or p € Lie (P).

Lemma 2.16 Let B, P € Fctr (Alg/k, Ab) be plain functors fulfilling the
identity F (@, Rz) = @, F (Rz) for F = B,P. Assume furthermore
that B is banal and Red (B) locally constant. Then each pair (a,l) of a
homomorphism of abelian groups a : B (k) — F (k) and a k-linear map
[ : Lie(B) — Lie(P) determines a natural transformation 7 : B — P
with 7 (k) = a and Lie (1) = [.

Proof. We construct a natural transformation 7 : B — P with the
desired property by giving homomorphisms 7 (R) : B(R) — P(R), R €
Alg/k.

Since B(@, Rz) = @, B(Rz) and P(D, Rz) = D, P (Rz), the ho-
momorphism 7 (65, Rz) is given by the tuple of homomorphisms 7 (Ry) :
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B(Rz) — P (Ryz). Therefore we can reduce to k-algebras R where Spec R
is connected. In this case
B(R) = Red(B)(R) x Inf (B) (R)
= B (k) x Inf (B) (R)
since Red (B) is locally constant. On the other hand ¢, : & — R in-
duces P (1) : P(k) — P(R) and tp,, : k[Nil(R)] = R.: — R induces

P (igr,,) : P(Rat) — P (R); and Inf (P)(R) C P (Ray). Therefore the
homomorphism 7 (R) : B (R) — P (R) is determined by

7 (k) x Inf () (R) : B (k) x Inf (B) (R) — P (k) x Inf (P) (R)

Then for 7 to be a natural transformation it is sufficient that for each homo-
morphism of k-algebras h: R — S the following diagram commutes:

Inf(7)(R)

Inf(B)(R) Inf(P)(R)
Inf(B)(h)J/ llnf(P)(h)
Inf(B)(S) —=2D _ 1nf(P)(S)

h: R — S induces a k-linear map Nil (h) : Nil (R) — Nil (S). We have

Inf(P)(R) —~> Lie(P) ® Nil(R)
Inf(P)(h)l lidLie( p) @ Nil(h)

Inf(P)(S) —— Lie(P) ® Nil(5)
and the same is true for B instead of P, i.e.

Inf (B) (h) = idpeqr ® Nil (h)
Inf (P) (h) = idLie(F) (029 Nil (h)

Then the required equality
Inf (P) (h) o Inf (1) (R) = Inf (1) (S) o Inf (B) (h)
is fulfilled if it holds
Inf (7) (R) = Lie (7) ® idnir)
for each finitely generated k-algebra R.
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Thus if a : B(k) — P (k) is a homomorphism of abelian groups and
[ : Lie (B) — Lie (P) is a k-linear map, we obtain a natural transformation
7 : B — P by setting

T(R) = (P(tx)0a)Xx (P (LRus ) © (l ® idNﬂ(R))) :
B (k) x (Lie (B) ®, Nil(R)) = B(R) — P (R)

for each finitely generated k-algebra R with Spec R connected. m

Example 2.17 A formal group F satisfies the assumptions on B in Lemma
2.16 by Examples 2.8, 2.11 and 2.14.
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2.2 Relative Cartier Divisors

Let Y be a scheme over k (an algebraically closed field of characteristic 0).

2.2.1 Functor of Relative Cartier Divisors

A Cartier divisor on a k-scheme X is by definition a global section of the
sheaf K%/ O%, where Kx is the sheaf of total quotient rings on X, and the
star * denotes the unit groups.

Div (X) =T (X, K%/ O%)
is the group of Cartier divisors.

Notation 2.18 If R is a finitely generated k-algebra, the scheme Y xSpec R
s often denoted by Y @ R.

Definition 2.19 Let R — A be a homomorphism of finitely generated k-

algebras. For p € Spec R let P(p) be the union of the minimal prime ideals
over pA in A. The set

f ¢ P(p) Vpé€ SpecR

is a multiplicative system in A. Then the localization of A at Sa/r

Sa/r = {fGA

f not a zero divisor }

KA/R = S;}RA

is called the total quotient ring of A relative to R.
Let X — T be a scheme over T. The sheaf Kx/r associated to the presheaf
formed by the rings

-1
Koxw)/(=-10r)w) = SOx(U)/(T*OT)(U) Ox (U)

for open U C X, is called the sheaf of total quotient rings of X relative to
T.

Remark 2.20 Notice that in the case A = B ®;, R over R, where B is an
integral domain, we have P(p) = pA = B & p.

Correspondingly for X =Y x;. Spec R the sheaf Kygr/r s the localization
of Oygr at functions which do not vanish on subsets of the form Z x {p},
p € Spec R and Z € Cp(Y') an irreducible component of Y.
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Proposition 2.21 For a finitely generated k-algebra R let
Divy (R) =T (Y ® R, K?@R/R/ O;@)R)
Then the assignment R — Divy (R) defines a covariant functor
Div, : Alg/k — Ab
from the category of finitely generated k-algebras to the category of abelian
groups.

Proof. For a homomorphism h : R — S of finitely generated k-algebras
the homomorphism idy ®h : Oy ®, R — Oy ®; S extends by localization to
Kyer/r — Kygs/s and hence induces a homomorphism of abelian groups

( Y®R/R/ OY®R) — T (’C;(@S/s/ (’)Y@S) which is the required homo-
morphism Divy (h) : Divy (R) — Divy (S5). =

Remark 2.22 For each finitely generated k-algebra R we have

Cartier divisors D on'Y X Spec R
Divy (R) = < which define Cartier divisors D, on'Y x {p}
Vp € Spec R

and for a homomorphism h : R — S in Alg/k the induced homomorphism
Divy (h) : Divy (R) — Divy (S) in Ab is the pull-back of Cartier divisors
on Y X Spec R to those on'Y X, SpecS.

Proposition 2.23 Let R be a finitely generated k-algebra, R... = k[Nil (R)]
the corresponding local Artinian ring. Then

@y (Rart) = Div (Y X Rart)
Inf (Divy ) (R) = Lie(Divy ) ®; Nil (R)
i.e. Divy € Fetr (Alg/k, Ab) is a plain functor (see Definition 2.13).
Ezplicitely
Divy (k) = T'(Y,Ky/Oy)
Lie (hy) =T (Y, ’Cy/ Oy)
Proof. R, = k[Nil(R)] is a local Artinian ring with only prime ideal

Nil (R) € Spec Rayt, and it consists of zero divisors only. Therefore K
KY or,,, and this implies the first equation:

Divy (Rar) = T (KVsruru/ Overa)

=T (IC;'Q@Rart/ O*Y®Rart)
= Div (Y %) Rart)
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In particular for R = k it holds Div, (k) =T (K3 / O%).
We have Ky o, = Ky [Nil(R)]" = K} + Ky ®; Nil (R) and hence an
exact sequence

1+ Ky @ Nil(R)  Kygp,, Ky
— - —_— 2 —
1+ Oy ®; Nil (R) Oy or... Oy

1+ Ky @ Nil (R) , Ky @ Nil (R )_&@ Nil (R)
1+ Oy @ Nil(R) ~ Oy @, Nil(R) ~ Oy F

where the first isomorphism is given by exp~!. Applying the global section
functor I' (Y, ) yields

'l — Nil | —="art I
0= (oy ® 1(R>)H <0;>®Rm — oy

Here Divy (Ru) =T (K} or../ Oy or.., ) and Divy (k) = T (K3 / O%), there-
fore

Inf (Divy) (R) =T (Ky/ Oy) @i Nil (R)
In particular for R = kle], as Nil (k[¢]) = ek = k we have
Lie (Divy) = Inf (Divy ) (k[e]) = T (Ky/ Oy)

and hence
Inf (Divy ) (R) = Lie (Divy) ®; Nil (R)
n
Definition 2.24 If D € Divy (k), then Supp (D) denotes the locus of zeroes
and poles of local sections (f,), € I' (K5 / O3) representing D.

If 6 € Lie (Divy ), then Supp (0) denotes the locus of poles of local sections
(9a), € T'(Ky/ Oy) representing 6.

Proposition 2.25 Let 7 : Y — X be a morphism of k-schemes with the
property that @ : Ox — Oy maps non zero divisors to non zero divisors.
Then  induces a natural transformation of functors, the pull-back

7 : Divy — Divy

Proof. For each finitely generated k-algebra R the transformation 7* (R) :
Divy (R) — Divy (R) is the homomorphism T (7@@1«2/3/ O}®R> —

r ( Y®R/R/ (’)Y®R) induced by 7" ® idp : Ox ® R — Oy @4, R.
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Let h : R — S be a homomorphism of k-algebras and let h' : Spec S —
Spec R, ¢ — h™(q) be the corresponding morphism of affine schemes. Then

(7* ®idg) o (idy ®h) = 7% @ h = (idy ®h) o (7* @ idR)
and this implies a commutative diagram

(WXidTR)*

Divy(R) Divy (R)
(idx th)*l e l(idy Xm)*
Divy($) ) pivy (s)

2.2.2 Picard Functor

The isomorphism classes of line bundles on a k-scheme X form a group
Pic (X), the (absolute) Picard group of X, which is given by

Pic (X) = H! (X, 0%)

Definition 2.26 The (relative) Picard functor of a k-scheme Y from the
category of schemes over k to the category of abelian groups

Pic, : Sch/k — Ab

1s defined by
Picy (T') = Pic (Y x4 T)/ Pic(T)

for each k-scheme T
Stmultanously we consider Picy as a functor from the category of finitely
generated k-algebras to the category of abelian groups

Pic, : Alg/k — Ab
using the notation
Picy (R) = Pic (Y x; Spec R)/ Pic (Spec R)
for each finitely generated k-algebra R.
Remark 2.27 For each k-scheme T' we have
Picy (T) = {Line bundles L on' Y x, T}/ ~r
where the equivalence relation ~7 is defined by

L~r M <= 3line bundle B on T s.t. LM = prh B

37



Proposition 2.28 Let R be a finitely generated k-algebra, R... = k [Nil (R)].
Then

EY (Rart) = Pic (Y®Rart)
Inf (Picy) (R) — Lie (Pic,) @ Nil (R)

i.e. Pic, € Fetr (Alg/k, Ab) is a plain functor (see Definition 2.13).
Ezxplicitely

Pic, (k) = H'(Y,0})
Lie(Pic,) — H'(Y.0y)

Proof. Spec R, consists only of the point Nil (R), hence every sheaf on
Spec R, is flasque, which implies Pic (Spec R,.;) = H! (R? ) = 0. Therefore

art

Picy (Rart) = Pic (Y ® Rut) = H' (O} 4p..,)- In particular for R = k it holds
Pic, (k) = Pic(¥) = I (Of).

Furthermore we have O} . = Oy [Nil(R)]" = O} 4+ Oy ®;, Nil (R) and
hence an exact sequence

1 —1+0y @ Nil(R) — Oygp,, — Oy — 1
Now exp~! gives an isomorphism
1+ Oy ®; Nil (R) = Oy ®; Nil (R)

Taking into account that in the corresponding long exact cohomology se-
quence H° (O3 5. ) — H° (O}) is surjective yields

0 — H' (Oy @ Nil(R)) — H' (O} gp,,,) — H' (OF)
Here Picy (Ra) = H' (O3 g, ) and Picy (k) = H' (O3), therefore
Inf (Picy ) (R) = H' (Oy) @ Nil (R)
In particular for R = kle], as Nil (k[¢]) = ek = k we have
Lie (Picy) = Inf (Picy) (k[e]) = H' (Oy)

and hence
Inf (Picy ) (R) = Lie (Picy ) ®; Nil (R)

Theorem 2.29 If Y s a reduced connected projective k-scheme, then the

Picard functor Picy s represented by a k-group-scheme Picy, which is called
the Picard scheme of Y.
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Proof. |[FGA| No. 232, Theorem 2 or [BLR| Section 8.2, Theorem 2 or
|K] Theorem 4.8, Theorem 4.18.1. =

“Picy represents the functor Pic,”” means that Picy coincides with the
functor of points of Picy, i.e. for each k-scheme T it holds

Picy (T') = Mor (T, Picy)

Inserting Picy for T' gives the universal line bundle class P € Pic, (Picy)
corresponding to idpi.,, € Mor (Picy, Picy ), which is called the Poincaré
bundle. P has the following universal property: Given any k-scheme 7" and
any line bundle class £ € Picy (T), there exists a unique k-morphism 7 :
T — Picy such that

L = (idy xn)" P

n is called the classifying morphism for L.

Remark 2.30 If Picy represents Picy, then of course for the geometric
points of Picy it holds

Picy (K) = Pic (Y ® K)

since Pic (Spec K) = 0, hence Picy (K) = Pic(Y ® K) and on the other
hand Picy (K) = Mor (Spec K, Picy) = Picy (K).
The universal line bundle P € Picy (Picy) has the property that

73|yX{p} = p € Picy

for each p € Picy. The classifying morphism n : T — Picy for a line bundle
L onY x,. T maps
n:t+— Llyxq € Picy

for eacht €T.
Definition 2.31 Let M, N be line bundles on Y. Then M 1is said to be
algebraically equivalent to N, M ~ N, if there exists a connected k-scheme

C, aline bundle L on'Y x;, C and closed points p,q € C such that Ly« =
M and ﬁ‘yX{q} = N.

Lemma 2.32 Suppose that Picy is represented by a scheme Picy. Let L be
a line bundle on Y. Then L s algebraically equivalent to the trivial bundle
on'Y if and only if L lies in the connected component of the identity of Picy :

L~QOy <= L cPic)
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Proof. (=) L algebraically equivalent to Oy means by definition that
there is a connected k-scheme C' and a line bundle £ on Y x; C such that
for certain points 0,p € C' we have L]y (o = Oy, L|yxgpy = L. Let 1 be
the classifying morphism for £, i.e. [£] = (idy xn)" P. Since C is connected
7 (C) is connected, and since 7 (0) = Oy € Pic) we have 1 (C) C Picy..
Hence L = n(p) € Pic}..

(<=) Let L € Pic).. Since Oy is the neutral element in Pic}., the restric-
tion to Y x, Pic) of any representative on Y x;, Picy of the universal line
bundle P € Picy (Picy) gives a line bundle P’ on Y x, Pic). fulfilling: Pic},
is connected, P'|y (0,1 = Oy, P'lyxqzy = L. =

Proposition 2.33 Let Y be a k-scheme. Then the assignment for each k-
scheme T

T+— with L|y«( algebraically equivalent to Oy

Line bundles L on'Y x;,; T
/ NT
VteT

where
L~y M <= 3linebundle BonT st. LM ' =pri B
defines a contravariant functor
Pic). : Sch/k — Ab
and a covariant functor
Pic). : Alg/k — Ab

where we set Picy (R) := Pic). (Spec R) for each finitely generated k-algebra
R.

Suppose Picy is represented by a k-scheme Picy. Then PicY. is represented
by the component of the identity Pic)..

Proof. Let ¢ : S — T be a morphism of k-schemes. Then the required
homomorphism of abelian groups Pic}. (¢) : Pic} (T') — Pic}. () is induced
by the pull-back of line bundles from Y x, T to those on Y x;, S:

Let £ be a line bundle on Y x; 7. Then for each s € S we have
(idy x¥)* Llyx(s} = Llyx{u(s)} and this is algebraically equivalent to Oy
if Llyxqy is for each t € T. Furthermore if prg : Y x; S — S and
pry @ Y X, T — T are the projections, we have pr; o (idy xt) = ¢ o prg.
Hence for a line bundle B on T the pull-back (idy x)* pr. B = pri¢*B is
the pull-back of a line bundle ¢*B on S. Therefore Pic) () is well defined.
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Now assume that Pic,- is represented by Picy. Let £ be a line bundle on
Y x, T with L]y« ~ Oy for each t € T. By Lemma 2.32 we have Ly €
Pic). and by Remark 2.30 this implies that the classifying morphism 7 : T —
Picy for £ factorizes through Pic,. Therefore we have Pic} = Mor (_, Pic},),
i.e. Pic). is represented by Pic).. m

Theorem 2.34 Let Y be a projective and integral k-scheme. Then Pic) is
represented by a quasi-projective k-group-scheme Picoy. If Y s also normal,
then Picy is projective.

Proof. Follows directly from Theorem 2.29, Proposition 2.33 and [K],
Theorem 5.4. m

Corollary 2.35 Let Y be a normal projective variety over k. Then Pic) is
represented by an abelian variety Pic..

Proof. A normal projective variety Y over k is the disjoint union of its
irreducible components, Y = ]_[Zecp(y) Z, by |[Mm| Chapter 3, §9, Remark
p.64. Applying Theorem 2.34 to each irreducible component Z of Y yields
that Pic). is represented by Pic) = HZecp(Y) Pic, and this is a projective
k-group-scheme. As char(k) = 0, a projective k-group-scheme is an abelian
variety. m

2.2.3 Transformation Div,, — Pic,

Let Y be a k-scheme and R be a finitely generated k-algebra. Consider the
exact sequence Seq (R):

1 — Oygr — Kygr — ’C;(@R/ Oveor — 1
In the corresponding long exact sequence H® Seq (R):
— 0 (Kygr) — B (Kyor/ Over) — H' (Oygr) — H' (Kygr) —

the connecting homomorphism ¢° (R) : H (K} o/ Oy or) — H' (O3enr)
gives a natural transformation Div (Y ® R) — Pic (Y ® R). Composition
with the injection Div, (R) — Div (Y ® R) and the projection Pic (Y ® R) —
Pic, (R) yields a natural transformation

cl : Divy, — Picy

Since Divy and Pic, are plain functors (see Propositions 2.23 and 2.28), the
induced transformation

Inf (cl) : Inf (Divy ) — Inf (Pic, )
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fulfills
Inf (cl) (R) = Lie (cl) ® Nil (R) : Lie (Div, ) ® Nil (R) — Lie (Pic, ) ® Nil (R)

where Lie (Divy) = H° (Ky/Oy), Lie (Picy) = H!' (Oy) (see Propositions
2.23 and 2.28) and Lie (cl) coincides with Lie (6°) in the sequence Lie (H® Seq).
We obtain

Proposition 2.36 There are natural transformations

cl: Divy — Picy
Inf (cl) : Inf (Divy,,) — Inf (Pic, )

for each finitely generated k-algebra R given by

cl(R): Divy (R) — Picy (R)
D +~—— O(D) mod Pic(SpecR)

and
Inf (cl) (R) = Lie(cl) ® Nil (R)

where

Lie (cl) : Lie (Divy) — Lie (Picy)
1s just the connecting homomorphism

H° (Ky/Oy) — H'(Oy)

in the long exact cohomology sequence of

0 — 0y — Ky — Ky/Oy — 0

Definition 2.37 Let
DivY) : Alg/k — Ab

be the sub-functor of Divy defined by
Div). (R) = cI™* (Pic}. (R))
for each finitely generated k-algebra R.

Remark 2.38 Let R be a finitely generated k-algebra and D € Divy (R).
From the definition of Pic). it follows that D € Divy (R) if and only if D, =
Divy (p,) (D) € Divy. (k(p)) for all p € Spec R, where p, : R — k(p), i.e. if
and only if O (D,) € PicY. (k(p)) for all p € Spec R.
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2.2.4 Deformations of a Divisor

Let R be a finitely generated k-algebra, R, = k [Nil (R)] the corresponding
local Artinian ring.

The inclusion Y — Y X}, Spec R, corresponding to the augmentation
Oy ® Ray = Oy [Nil (R)] — Oy, Nil (R) 3 n —— 0 gives via pull-back the
following map of Cartier divisors:

Definition 2.39 The restriction from Y ® R.: to Y is the homomorphism

resy (Rart) = mY (/)) : my (Rart) — my (k)
D +— DQ

induced by p : Ryyy — k, Nil(R) 2 n+—— 0.

Likewise the projection Y X, Spec R,y — Y corresponding to Oy —
Oy ® Ra, [ — f ® 1 yields a map of Cartier divisors:

Definition 2.40 The constant extension from Y to Y ® R.+ is the homo-
morphism

consty (Rart) = my (1/) : my (k) — my (Rart)
D — Dconst

nduced by ¢ - k — Rayx.
Now we can make precise the title of this subsubsection:

Definition 2.41 A deformation of a Cartier divisor D on Y along R, is a
Cartier divisor D on Y ® R, whose restriction to Y is D, i.e. Dy = D.

If D is an effective divisor on Y, a deformation D of D is called an
effective deformation if D is an effective divisor on' Y ® R..

The composition of the two maps above gives rise to a transformation
from divisors to deformations of the zero divisor:

Proposition 2.42 Let
Divy" : Art/k — Ab

be the restriction of Divy to the category of local Artinian k-algebras.
There is a natural transformation

infy : Divy"* — Inf (Div{")
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given by
infy = id — consty oresy

i.e. for each local Artinian k-algebra R

ian (Rart) : @?/rt (Rart) — Inf (M‘?frt) (Rart)

const

Proof. Straightforward. m

Proposition 2.43 Let D be an effective Cartier divisor on Y. Then the
assignment

R... — {effective deformations of D along R}
defines a covariant functor
Def§"), : Art/k — Set
from the category of local Artinian k-algebras to the category of sets.

Proof. D_ef‘ifD is a subfunctor of the composition of Div¥"® with the
forgetful functor Ab — Set. It is well defined since for each homomorphism
h : R.t — S of local Artinian rings the following diagram commutes

%

hence the functoriality of Divy"® implies a commutative diagram

S art

Div¥t(h
DIV (Ru) — o Div® (S)
reSy(RaX\ mt)
Divy" (k)

i.e. Div¥"(h) maps effective deformations of D along R, to those along
Sart- u

As Divy is a plain functor (see Definition 2.13), it is sufficient to consider
only deformations along k[¢]. Therefore in the following by a deformation
always a deformation along k|¢] is meant.
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Definition 2.44 Let D be an effective Cartier divisor on'Y. Then let
Defy (D) = Deff), (k[])
be the set of effective deformations of D (along k[e]).

Proposition 2.45 Let D be an effective Cartier divisor on Y .
Then infy (k[e]) : Divy (k[e]) — Lie (Divy) induces a bijection

Defy (D) ~T (Y, Oy (D)/ Oy)

This gives Defy (D) the structure of a k-vector space. In particular,
infy (Defy (D)) C Lie (Divy ) is a k-linear subspace which is of finite dimen-
siom, if Y s projective.

Proof. The restriction of the homomorphism infy (k[¢]) to the subset
Defy (D) of the group Divy (k[¢]) is the map (of sets)

Defy (D) — Lie(Divy) — T'(Ky/Oy)
Foteae — (L+ek) — (%),

where fo, go € Oy (U,) for some affine open covering (U,), of Y, as (fo + €9a),,
defines an effctive divisor on Y[e] =Y X, Spec k[¢], and (f,,),, necessarily de-
fines D. Therefore we see that the image consists of sections which have poles
at most along D C Y, i.e. infy (Defy (D)) =T (Oy (D)/Oy) If D,DI €
Defy (D) are two effective deformations of D which have the same image
under infy (k[e]), then D —D’ € ker (infy (k[¢])). Since (D)o = (D)o = D we
have D — D' € Lie (Divy ). But infy (k[¢]) is injective on Lie (Div, ), hence
D =TD'. Thus Defy (D) — I' (Oy(D)/Oy) is also injective. m

Definition 2.46 Let D be an effective Cartier divisor on'Y. Then let
IIlfy7D = infy (Defy (D))

be the k-linear subspace of Lie (Divy ) given by the image of the effective
deformations of D.
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2.3 Relative Weil divisors

Let Y be a scheme over k (an algebraically closed field of characteristic 0).

2.3.1 Functor of Relative Weil Divisors

A prime cycle on a k-scheme X is a closed reduced and irreducible subscheme.
A cycle is a formal linear combination with integral coefficients of prime
cycles. A prime divisor is a prime cycle of codimension 1. A Weil divisor is
a cycle of codimension 1.

WDiv (X) = Z' (X)

is the group of Weil divisors.

The push-forward of cycles is defined as follows (cf. [F| 1.4):
Let 7 : Y — X be a proper morphism of k-schemes. Let V' be a prime cycle
on Y and W = (V) the image in X. Set

[ Ky :Kwy] if dmW =dimV
deg(V/W) = { 0 if dmW <dimV

The push-forward of V' under 7 is defined to be
.V =deg(V/W) W
The push-forward of arbitrary cycles is then given by linear extension.

Definition 2.47 The category Alghf/k 1s defined to be the category whose
objects are finitely generated k-algebras and whose morphisms are given by

those homomorphisms of k-algebras h : A — B such that B is a finite
A-module.

Proposition 2.48 For a finitely generated k-algebra R let

Weil divisors W on 'Y Xj Spec R
WDivy (R) =< s.t. W, is a Weil divisor on'Y x {p}
Vp € Spec R

where W, = W Xgpec g Spec k(p) is the fibre over p € Spec R.
Then the assignment R —— WDiv, (R) defines a contravariant functor

WDiv, : Alg™/k — Ab

from the category of finitely generated k-algebras with finite homomorphisms
to the category of abelian groups.
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Proof. For a finite homomorphism h : R — S of finitely generated k-
algebras with corresponding morphism A : Spec S — Spec R, ¢ — h~1(q)
of affine schemes the required homomorphism WDiv, (h) : WDiv, (S) —
WDivy (R) of abelian groups is obtained from the push-forward of cycles
(idy xh?) : WDiv (Y x; Spec S) — WDiv (Y x4 Spec R):

Let W be a Weil divisor on Y x; Spec S. Since S'is a finite R-module, for
each p € Spec R there are only finitely many ¢ € Spec S with h=1(¢q) = p. We
have ((idy xAT), W)p =D h-1(g)=p VVy and this is a Weil divisor on Y x {p}
if W, is one on Y x {¢} for each ¢ € SpecS. =

Remark 2.49 As prime divisors are always reduced, WDivy is a reduced
functor (see Definition 2.6).

Proposition 2.50 Let 7 : Y — X be a finite morphism of k-schemes.
Then 7 induces a natural transformation of functors, the push-forward

T : WDivy — WDivy

which is given by the push-forward of cycles (as defined at the beginning of
this Subsubsection 2.3.1).

Proof. For each finitely generated k-algebra R the transformation 7, (R) :
WDiv, (R) — WDiv , (R) is given by the push-forward of cycles (7? X id%)
WDiv (Y Xy, Spec R) — WDiv (X xj Spec R). This is well defined since for
W € WDiv (Y x; Spec R) and for each p € Spec R we have ((7‘(‘ X id%) W) =
m.W,, and this is a Weil divisor on X x {p} if W, is one on Y x {p}. C

Let h : R — S be a finite homomorphism of k-algebras, h' : Spec S —
Spec R the corresponding morphism of affine schemes. The functoriality of Z*

with respect to the push-forward yields ¢, x. = (¢x), for any two morphisms
v and Y, therefore

(mxidy) (idy xhl), = (m x hT), = (idx xh'), (v x ids),

which gives the commutativity of the diagram

WDi (nxid;)* .

ivy (S) WDiv y (5)

(idy XhT)*l y l(idx xhi)
WDiv, (R) (ridi). WDiv y (R)
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Proposition 2.51 There is a transformation of functors
weil : Red (Divy ) — WDivy,

If Y is normal, then weil (R) : Red (Divy ) (R) — WDiv, (R) is injective
for all R € Alg/k.

Proof. Let R be a finitely generated k-algebra. Then the transformation
weil (R) : Divy (Ryea) — WDiv (R) associates to a Cartier divisor D on
Y Xj, Spec Ryeq the following Weil divisor on Y xj Spec R (cf. |F| 2.1):

weilD) = ) ordy(D) V

codim V=1

where the sum runs over all prime Weil divisors V in Y X, Spec R, and ordy, is
the order function on K, s ee v/ OF x,spec & defined by V (see [F] 1.2). Note
that the definition of Divy implies that weil(D) does not have any vertical
component. Thus the transformation is well defined.

For the second assertion we observe that on a normal scheme Y the Cartier
divisors are identified with the locally principal Weil divisors (see [H| Chapter
IT, Remark 6.11.2), i.e. the transformation weil(k) : Divy (k) — WDiv, (k)
is injective. Now for an arbitrary finitely generated k-algebra R consider the
diagram
weil(R)

my(Rred) MX<R)

| |

[T, Divy (k(p)) 120 1T WDiv o (k(p))

where the products in the bottom line range over all points p € Max R =
Spec R (k) in the maximal Spectrum of R. The map in the left column is the
product of the homomorphisms obtained from the residue maps R,.q — k(p)
by functoriality of Divy, and the map in the right column is the product of
the maps W —— W, = W Xgpec g Spec k(p). Then the diagram commutes
by construction of the fibre-product (see [H| Chapter II, Theorem 3.3). The
vertical arrows are injective and the arrow in the bottom line is also by the
observation above. Hence so is the arrow in the top line. m

Definition 2.52 The restriction of weil : Red (Divy ) — WDiv,
to Red (@%) 1s denoted by

weil” : Red (MQ/) — WDivy
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2.3.2 Vanishing Weil Divisors

Definition 2.53 A finite morphism 7w :Y — X of k-schemes is said to be
of degree 1, if for each irreducible component V of Y with generic point vy
the degree of the field extension is [k(~yv) : k(m(yv))] = 1, and there is exactly
one irreducible component of Y lying above each irreducible component W of
X, i.e. the generic fibres have cardinality # 7 *(&w) = 1, where &y is the
generic point of W.

Remark 2.54 A finite morphism 7 : Y — X of degree 1 is characterized
by the following property: The normalization v : X — X of X factors
uniquely through ™ : Y — X, w.e. there exists a unique p: X — Y such
that the following diagram commutes:

5(’_“>Y_7T>X

Proposition 2.55 Let 7 : Y — X be a finite morphism of k-schemes.
Then
WDivy v = ker (7. : WDivy — WDivy)

defines a contravariant functor
WDivy y : Alg"/k — Ab

from the category of finitely generated k-algebras with finite homomorphisms
to the category of abelian groups, which is called the functor of vanishing Weil
divisors on Y relative to X.

Proof. WDiv,, y is a subfunctor of WDiv,. It is well defined since
T« : WDivy, — WDivy is a natural transformation. m

Proposition 2.56 Letw: Y — X be a finite morphism of k-schemes of de-
gree 1 (see Definition 2.53). Then WDivy x is locally constant (see Definition
2.9) and becomes also a covariant functor

WDivy y : Alg/k — Ab

from the category of finitely generated k-algebras to the category of abelian
groups. Moreover, WDivy, v s represented by a lattice A =7
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Proof. A finite morphism of degree 1 is birational, i.e. there is an open
dense subscheme U C Y such that 7|y : U — 7 (U) is an isomorphism. Set
S =Y \U. Then for each W € WDivy, (k) it holds Supp (W) C S. The
number of irreducible components of S is finite, in particular there are only
finitely many irreducible components of codimension 1 in Y, i.e. there are
only finitely many prime divisors supported on S. Therefore WDivy/ y (k) is
a subgroup of a free abelian group of finite rank, hence also free abelian of
finite rank.

Let R be a finitely generated k-algebra with Spec R connected, let WW =
E—&" € WDivy, x (R), where £, £" € WDivy, (R) are effective divisors. There
is a dense open subscheme @) C Spec R such that W, € WDivy, ¢ (k(p)) for
all p € Q). Let P C @Q be the open subscheme where &5 — (@) is flat. The
Hilbert functor Hilb,  is represented by a scheme Hilby. Let H C Y x; Hilby
be the universal closed subscheme. By the universal property of (Hilby, H)
there is a unique morphism 7 : P — Hilby such that &p = (idy xn)" H.
Then 1 maps 1 : p — &, € Hilby (k(p)). For each closed point p € P
we have W, € WDivy,x (k), thus 7 is a continuous map from a connected
space to a discrete set, hence 7 is constant. Since the prime divisors of
E C Y X, Spec R are irreducible closed subschemes, we see that P = Spec R.
Applying the same argument to £’ yields: The map p — W, is a constant
map Spec R — WDivy, (k). Hence WDivy x is locally constant of finite
rank, i.e. it is represented by a lattice.

A locally constant functor always admits the trivial pull-back

WDivy,y (h) : WDivy,y (R) — WDivy,x (5)
W xi Spec R —— W x;, Spec S

for each homomorphism of finitely generated k-algebras h : R — S with
Spec R connected. Decomposing an affine scheme into its connected com-
ponents yields the pull-back for arbitrary homomorphisms, which makes
WDivy y a covariant functor. m

Proposition 2.57 Let 7 : Y — X be a finite morphism of k-schemes of
degree 1 (see Definition 2.53). Then

mwx = weil ™! WDivy, x

defines a covariant functor
EDivy y : Alg/k — Ab

and a contravariant functor

EDivy, x : Alg™/k — Ab
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Moreover, EDivy/X is locally constant (see Definition 2.9) and represented
by a lattice.

Proof. As WDivy, y is covariant, weil : Red (Divy ) — WDiv,, y be-

comes a natural transformation of covariant functors. Thus EDivy/X is a
well defined covariant functor. Moreover, WDivy  is locally constant, hence

my/ y is also. Therefore Divy is compatible with the push-forward, which
implies that My/ « 1s also contravariant. Finally weil(k) (MY/ x (k) is
a subgroup of the free abelian group WDivy (k) of finite rank, hence also
free abelian of finite rank. Thus EDiv,, y is represented by a lattice. m

Proposition 2.58 Let 7 : Y — X be a finite morphism of k-schemes of
degree 1 (see Definition 2.53). Then

moy/x = (Weﬂo)_l WDivy, x
defines a covariant functor
EDivy,y : Alg/k — Ab
and a contravariant functor
EDivy,y : Alg"/k — Ab
Moreover, @%X is locally constant (see Definition 2.9) and represented
by a lattice.

Proof. Analogue to the proof of Proposition 2.57. =

2.4 Formal Divisors

Let Y be a scheme over k (an algebraically closed field of characteristic 0).

2.4.1 Functor of Formal Infinitesimal Divisors

The functor of relative Cartier divisors Div, admits a pull-back, but not a
push-forward of relative Cartier divisors. Supposed Y is a normal scheme,
the reduced part Red (Divy ) of Divy can be identified with the subfunctor
of WDiv, consisting of locally principal relative Weil divisors, and there is
a push-forward for this functor.

Therefore we are looking for a concept of infinitesimal divisors IDivy
which admits a push-forward and contains Inf (Div,) as a subfunctor under
certain assumptions on the scheme Y.
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Proposition 2.59 Let (A, m) be a Noetherian complete local ring with residue
field k = A/m of characteristic 0. Then A contains a system of representa-
tives of k which is a field.

Proof. [Se| Chapter II, §4, Proposition 6. m

Notation 2.60 If (A, m) is a Noetherian complete local ring with residue
field k = A/m of characteristic 0. Then we identify the system of represen-
tatives of k in A with k.

If moreover R is a k-algebra and M a complete A-module, then we consider
M as a k-vector space and write

Mp=MR,.R

where M®,.R is the completion of M ®,. R w.r.t. the m-topology on M and
the discrete topology on r (see [SGA3] VIlg, 0.5).

Proposition 2.61 Define the set of formal Lie divisors on Y by

LDiv (Y) = @ Homk(n),cont (T/ﬁnv E7])

ht () =1

where the direct sum runs over all generic points n of height 1 in'Y, where
m, is the mazimal ideal of the completion O, of the local ring Oy, at n. Let

7y k(1) denotes
the direct sum of all residue-fields at generic points 11 € Spec 6ym of height

Oy,, — Oy, be the normalization of Oy, then &, =

1 lying over n. Endowe (’3,7 with the m,-adic topology, so that m,, carries the
induced topology, while €, carries the discrete topology. Homy ) cont denotes
the k(n)-vector space of continuous k(n)-linear maps. For a finitely generated
k-algebra R let

IDiv, (R) = LDiv (Y) ®; Nil (R)

Then the assignment R — IDivy (R) defines a covariant functor
[Divy : Alg/k — Ab

Moreover, IDivy is infinitesimal (see Definition 2.6) and plain (see Definition
2.13).

Proof. LDiv (Y) is well defined by Proposition 2.59 and Notation 2.60.
The rest is immediate from the definitions. m
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Proposition 2.62 Let 7 : Y — X be a finite morphism of k-schemes of
degree 1 (see Definition 2.53). Then w induces a natural transformation of
functors, the push-forward

7, IDivy — IDivy

induced by the homomorphism of formal Lie divisors

@ Homk(n),cont ({ﬁY,T]a EY,r]) B @ Homk(w(n)),cont (t/ﬁX,ﬂ(n)a EX,7r(17))

ht(n)=1 ht(n)=1
Sy Y hort
ht(n)=1 ht n=1

Proof. The homomorphism of structure sheaves 7% : Ox — Oy associ-
ated to 7 induces local homomorphisms of local rings ﬂ# 1 Oxn(m) — Oy,

i.e. W# (mx,ﬂ(n)) C my,,, for each n € Y. Denote by W# : @X,ﬂ(n) — (51/777
the composition of the induced homomorphism of complete modules w.r.t.
ﬁlxﬂr(n) with the natural homomorphism from the completion of Oy, w.r.t.
Mx ~(; to the completion w.r.t. my,. The homomorphism k(m(n)) — k(n)
induced by 77 is a field extension and hence each k(n)-linear homomorphism
is in particular k(w(n))-linear. Since 7 : Y — X is finite of degree 1, the
normalization X — X of X factors through Y, i.e. X — Y is the nor-
malization of Y. This yields a canonical inclusion 8y, C €x r(,. Thus the
transformation
Lie (m,) : LDiv (Y) — LDiv (X)

is obtained from the homomorphisms

Homy(p) cont (Mym, By) —  HOomp(e(n).cont (Mx,n(n)s Exon())

h +— hoﬂ'#

As both functors are infinitesimal and plain, this extends canonically to a
natural transformation. m

Proposition 2.63 Let Y be a normal k-scheme. Then there is a natural
transformation of functors

fml : Inf (Divy ) — IDiv,

with fml (R) : Inf (Divy ) (R) — IDivy (R) injective for all R € Alg/k.
If in addition Y = C is a curve, then this transformation is an isomorphism
of functors.
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Proof. Both functors in question are infinitesimal and plain, therefore it
suffices to show Lie (Divy ) < LDiv (Y), i.e. to give an injective homomor-
phism

r (ICy/ Oy) — @ Homk(n),cont (ﬁnu k(ﬁ))

ht(n)=1

We construct this homomorphism via factorization, i.e. give homomorphisms

r (/Cy/@y) — @ (Ky/OY)n — @ Homk(n),cont (fﬁnv k(ﬁ))

ht(n)=1 ht(n)=1

Consider the natural linear map

F'(Ky/Oy) — €D (Kv/Oy),

ht(n)=1

6— > W,

ht(n)=1

This map is injective, since every non-zero § € I' (Ky/Oy) determines a
non-zero effective divisor by the locus of poles of its local sections. Thus
if [6], = 0 € (Ky/Oy), for all generic points 7 of codimension 1, then ¢
has support only in codimension > 2 and is therefore zero. Moreover, as
Y is normal, for each generic point 7 of height 1 the local ring Oy, is a
discrete valuation ring. Hence if ¢, is a local parameter of the maximal ideal
m,, C Oy, it holds

O, = k(n) [[t,)] Wy = t, - k(n) [[t]

and

(Ky/0v), =] 0,/ 0,

v>0

According to Lemma 2.64 below we have an isomorphism of k(n)-vector
spaces

U t;y 677/ (/I)\Vl L Homk(n),cont (fﬁm k(ﬁ))

v>0

f — Res, (f-d_)

where [ € t;”@n is a representative of f and Res, : Qp, — k(n) is the
residue at n and d : 6,7 — Qén the universal derivation. Then Res, (f dg)

is independent of the choice of the representative of f in ty ”(5,7 for all g € m,,.
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Now assume that Y = (' is a curve. Then every prime ideal of height
1 is maximal and two distinct prime ideals are coprime. Using the Chinese
remainder theorem one shows that the map

L'(Ke/Oc) = P (Ke/Oc),

peC(k)

is an isomorphism. As shown above,

P (Ke/0c), = P Homycon (i, k)

peC(k) peC(k)

is an isomorphism. This yields the second assertion. m

Lemma 2.64 Let (A, m) be a complete local ring, endowed with the m-adic
topology, k = A/m its residue field, endowed with the discrete topology, and
K = Q(A) the quotient field of A. Let | € Hom, (m, k) be a k-linear map.
Then the following conditions are equivalent:
(i) 1 is continuous
(i) ker (1) is open
(iii) ker (1) D m” for some v >0
(iv) 1€ Hom, (m/m”, k) for somev >0
If furthermore A is a discrete valuation ring and k of characteristic 0, this
18 equivalent to
(v) 1=Res(f-d_):g— Res(f-dg) for some fetVA/A, v>0
where t is a local parameter of m, Res : Qg — K the residue
and d : A — €y, the universal deriwation

Proof. (i)<=-(ii)<=(iii) is an application of Lemma 1.22 to the m-adic
situation.

(ili)<=>(iv) Hom, (m/m", k) = ker ( Hom, (m, k) — Hom, (m", k) )

(iv)<=(v) If (A, m) is a complete discrete valuation ring,  of character-
istic 0 and ¢ a local parameter of m, then A = k[[t]] and K = k((t)). Let &
denote the algebraic closure of x. Then the residue over % is given by

Res: Qg — K
Z a, " dt — a_3

V>3>—00

and this is independent of the choice of the local parameter ¢ (see [S] Chapter
I1, No. 7, Proposition 5). This implies that the image of k. lies in x.

d: A — Qu and Res : Qk/, — ~ are both s-linear maps. Since
Res (w) = 0 for all w € Q4/., the expression Res(f dg) is well defined for
gem/m"and f et A/A.
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The pairing ¢ A/Ax m/m"™' — k. (f,g) — Res(fdg) isa
perfect pairing, hence ¢ A/A — Hom, (m/m"™! k), f+— Res(fd_)
is an isomorphism. m

2.4.2 Vanishing Formal Infinitesimal Divisors

Proposition 2.65 Let 7 : Y — X be a finite morphism of k-schemes of
degree 1 (see Definition 2.53). Then

IDivy x = ker (w* . IDivy — IDiVX)

defines a plain infinitesimal covariant functor
IDivy y : Alg/k — Ab

from the category of finitely generated k-algebras to the category of abelian
groups, which is called the functor of vanishing formal infinitesimal divisors
on Y relative to X.

Proof. IDivy y is a subfunctor of IDivy, which is infinitesimal by Propo-
sition 2.61. It is well defined since 7, : IDivy, — IDivy is a natural trans-
formation by Proposition 2.62, and both functors are plain by Proposition
2.61, hence IDivy, y is also. m

Proposition 2.66 LetY be a normal k-scheme and w1 Y — X be a finite
morphism of k-schemes of degree 1 (see Definition 2.53). Then

IDivY ¢ = ker <Inf (Divy) 24 IDiv, = IDiVX)

defines a plain infinitesimal covariant functor
IDivy, x : Alg/k — Ab

from the category of finitely generated k-algebras to the category of abelian
groups.

Proof. Note that Inf (woy) = Inf ( Divy). All functors are plain by
Propositions 2.23 and 2.61, and all transformations are natural by Proposi-
tions 2.62 and 2.63. =

Proposition 2.67 In the situation of Proposition 2.66, if moreover Y and
X are projective k-schemes, then IDivg//X 15 represented by an infinitesimal
formal group.
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Proof. In characteristic 0 infinitesimal formal groups are precisely plain
infinitesimal functors in Fctr (Alg/k, Ab) whose Lie-algebra is finite dimen-
sional, according to Corollary 1.11 Lemma 1.20. Then by Proposition 2.66
it remains to show that Lie (IDiV?// X) is finite dimensional:

Since a finite morphism of degree 1 is birational, the set S of generic
points € Y of height 1 fulfilling an inequality of local rings (Oy,,, my,,) #
(OX,W(n),mXJ(n)) is finite. For each n € Y of height 1 it holds

Hom () cont. (Wx.x(m)» k(1)) = Homg(y) cont. (Wx2() Orrimy k() k(1)
Denoting (‘?‘Xﬂ(n))k(n) = Mx () Dk(x(n) %(7), by Lemma 2.68 below for each

ny+1

n € S there is an integer n,, > 0 such that (my,,)
also into account Lemma 2.64 we obtain

ker (LDiv (Y') — LDiv (X))

C (ﬁx,ﬂ(n))k(n). Taking

= ker @ Homk(n),cont ({ﬁY,na EY,n) B @ Homk(g),cont ({ﬁx,g, EX,{)
he()=1 he(€)=1

= @ ker (Homk(n),cont (‘/ﬁYma k(n)) - Homk(n)vcont (({ﬁXJ(n))k(n) ’ k?(?’/)) )

nes

= @Homk(n) (aYm/(aXﬁ(”))k(n) ,k(n))

nes

c @ Homy, ({ﬁY,n / (y,)" " ,k‘(n))

nes

~ Pt,"0,/0,

nes

where t, is a local parameter of my,,. Now

IDivoy/X = ker <Inf (MOY) ol IDiv, IDivX), therefore

Lie (IDiv), ) = Lie(fml)1(ker(LDiv(Y)—>LDiv(X)))

C  Lie (fml)~" <@ t;""@n/@n>

nes

s (oy (z nE> / oy>

where F), is the prime divisor associated to the generic point 1, and for
any effective Weil divisor E we denote by Oy (E) the Oy-submodule of Ky
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consisting of those rational functions which have poles at most along E. Since
Y is projective, F( Oy (Znes nnEn) / Oy> is finite dimensional over k, thus

Lie (IDiv?//X) is finite dimensional over k. =

Lemma 2.68 Let (A,my4) and (B,mpg) be Noetherian local rings of dimen-
sion 1, with residue fields ka = A/my and kg = B/mp. Let h : A — B
be a finite local homomorphism of degree 1 of local rings. Denote by my
and mp the maximal ideals of the completions A and B w.r.t. m, and mp
respectively. Then there is an integer n > 0 such that (mp)" C ({ﬁA)kB'

Proof. As h: A — B is finite of degree 1, B is lying between A and its
normalization A: We have monomorphisms of rings A — B — ,Z[’ inducing
local homomorphisms of local rings A — B — Ag for all maximal primes
m € Spec A. Let Cp(A) be the set of irreducibel components of Spec A.
Each Z € Cp (A) corresponds to a minimal prime ¢ € Spec A and the local
integral domain Ay := A/( is the affine algebra of Z. Then

A= P 4,

Z€eCp(4)

where A 7 1s the normalization of A,. The normalization A — Aof Ais then
the composition of A — @, Az, a— >, [a]c, and @, A, — D, Az,
given by the normalizations of the components A; — Ay

Thus we may assume that A is a local integral domain and it is sufficient
to show the assertion for its normalization A — A, i.e. we suppose B = A.
As B is a discrete valuation ring, its completion is given by the formal power
series ring B = kpl[[t]] and the quotient field of its completion is the field of

formal Laurant series Q (§ = kp((t)), where ¢ is a local parameter of mp.

Since Q (A) = Q(B), it holds {t" | v € Z} C Q(A) C Q <A\) Hence

Q(4) =Q(B)=kn((®)
kp
Therefore there are coprime integers p,q > 0 with 7,17 € m4
(since otherwise (A)k C kpl[[t"]] for a certain r > 0,
B

and Q (kg[[t"]]) = ks((t")) G kp((t)), a contradiction).
Then by Lemma 2.69 below there exists an integer n > 0,
namely n = (¢ — 1) p, such that

(fp)" = " kplll] © (1) (A) € (Ra)y,

kp
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Lemma 2.69 Let p,q € N be coprime positive integers. Then there is an
integer | € N such that

<p7 Q>20 > NZl
where (p,q)-o = {np+mq|n,m € N} and N>, :={n € N|n>1[}.

Proof. Let p € Z/qZ be the residue class of p in Z/qZ. Since p and g
are coprime, the order of p in Z/qZ is ord (p) = q. Hence p generates Z/qZ:

(p) =Z/qZ

Then for each 7 € Z/qZ there is a n € {0,...,q — 1} such that r = np
mod ¢. But this means that for all » > (¢ — 1) p there are n,m € N such
that r =np+mq. =

2.5 The Functor mg,/X

The idea about moy/ v is to define a functor which admits a natural trans-
formation to the Picard functor Pic). and measures the difference between
the schemes Y and X, where 7 : Y — X is a finite morphism of degree 1,
for example the normalization of X. A natural choice is therefore the largest
subfunctor of m?, which lies in the kernel of the push-forward ..

Proposition 2.70 Let Y be a normal k-scheme, and let 7 : Y — X be a
finite morphism of k-schemes of degree 1 (see Definition 2.53). Then there
s a covariant functor

Divyy : Alg/k — Ab

from the category of finitely generated k-algebras to the category of abelian
groups, defined by the following conditions:
(a) m?,/x is a banal functor (see Definition 2.7), i.e.

Divy, y = Red (Divy, ) x Inf (Divy, y)
(b) the reduced part of woy/x is given by

Red (Div),y) = ker (Red (Div)) % WDiv, = WDiVX)

and the infinitesimal part of &9,/ < by

Inf (Div, ) = ker (Inf (Div}) % IDiv, - IDiv, )
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Proof. The assertion follows from Proposition 2.58 and Proposition 2.66.
|

Proposition 2.71 In the situation of Proposition 2.70 above, if furthermore
Y and X are projective, then moy/ « 15 represented by a formal group.

Proof. By Proposition 2.58 the reduced part Red (ﬂoy/ ) is represented
by a torsion-free étale formal group, and by Proposition 2.67 the infinitesimal
part Inf (@(}/x) is represented by an infinitesimal formal group. Thus
Divy,y = Red (Divy,x) x Inf (Divy,y) is represented by a formal group.
]
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3 Universal Factorization Problem

Let X be a projective variety over k, an algebraically closed field of charac-
teristic 0. The universal factorization problem may be outlined as follows:
one is looking for a “universal object” U and a rational map v : X — U
such that for every rational map ¢ : X — G to an algebraic group G there
is a unique homomorphism % : Y — G and a constant g € G(k) such that
p=hou+g.

The universal object U, if it exists, is not in general an algebraic group.
But if we restrict our attention to rational maps fulfilling certain extra con-
ditions, we may find an algebraic group solving the universal factorization
problem for those rational maps. In this section a criterion for a category Mr
of rational maps from X to algebraic groups is worked out, in which situation
one can find an algebraic group Albyg, (X) satisfying the universal mapping
property for this category, and in this case a construction of Albyg, (X) is
given. The way of procedure was inspired by Serre’s exposé [S3].

3.1 Categories of Rational Maps to Algebraic Groups

Let Y be a normal projective variety over k (an algebraically closed field
of characteristic 0). Algebraic groups are always assumed to be connected,
unless stated otherwise.

Notation 3.1 IL stands for one of the groups Gy, or G,.

Lemma 3.2 Let P be a principal L-bundle over Y. Then a local section o :
U CY — P determines uniquely an element divy, (o) e Divy- (see Notation
2.15, Divy is a plain functor), which is a divisor on Y, if L = Gy, or a
deformation of a divisor on'Y, if L = G,.

ko ifL =Gy '
k] L =G, let A : L — GI (V) be the repre-

1id liffﬂ]i;%: . Let E = P xpy V be
the associated vector-bundle to P of fibre-type V. Denote by s € I' (U, E)
P if L =Gy

l+ep fL=G,

There is an effective divisor H, supported on Y \ U, with canonical global
section h € ' (Y, O (H)), such that hs € T'(U, E(H)) extends to a global
section of £ (H) = E®O (H). Given local trivializations ®, : E (H) |y, —
Oy, ® V, the local sections @, (hs) € T'(U,, Oy ®; V) yield an effective
divisor on Y, if V =k, and on Y [¢] = Y X, Speck[e], if V = k[¢], called

Proof. For V = {

sentation of L. given by [ —

the image of o under the map P — F, p+——
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the divisor of zeros V (hs) of hs. Thus V (hs) determines an effective divisor
D € Divy (k) on Y, if L = Gy, or a deformation H € Divy (k[g]) of H, if

. D—-H if L =Gy .
L = G,. Then define divy, (0) = { H—Hu. ifL=G,’ where Hnq 1S
the constant extension of H to a divisor on Y[e] (see Definition 2.40). One
checks that divy, (o) is independent of the choice of H. m

Let ¢ : Y — G be a rational map to an algebraic group G with canonical
decomposition 0 — L — G % A — 0. Since a rational map to an abelian va-
riety is defined at every normal point (see [GM] Chapter I, Theorem (1.17)),
the composition ¥ - G -2 A extends to a morphism % : Y — A. Let
Gy = G x4 Y be the fibre-product of G and Y over A. The graph-morphism
oy :UCY — Gx4Y, yr— (p(y),y) of v is a section of the L-bundle
Gy over Y. Then for each Ae LY (see Notation 2.15, where we consider L
as a plain functor on Alg/k) the composition of ¢y with the push-out of Gy
via A gives a section py, : U C Y — A\, Gy of the L-bundle \.Gy over Y:

L A L——]
MGy Gy G
A A /”

[ [ P
Loy a oy 7’ p
| | 7P
| b7
| %
Y A

Lemma 3.2 says that the section ¢y ) determines a unique divisor or deforma-
o [(Ky/0;) HL=Gy

tion divy, (pya) € { r ’C;[e} O;[e] fL=G, - Now the bundle \.Gy
comes from an extension of algebraic groups, i.e. it is the push-out of an
translation-invariant bundle, hence it is a line-bundle algebraically equiva-
lent to the trivial bundle, if L. = G,,, or a deformation of the trivial bundle,
if L = G,. Therefore divy, (¢y.) is a divisor in Divy. (k), if A\ € L (k), or a
deformation of the zero divisor, i.e. an element of Lie (Divy,), if A € Lie (L).
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Proposition 3.3 Let G € Ext (A, L) be an algebraic group and ¢ : Y — G
a rational map. Then p induces a natural transformation of functors LY —
Divy..

Proof. The construction above yields a homomorphism of abelian groups
LY (k) — Div) (k), A — divg,, (¢y,) and a k-linear map Lie (L) —
Lie (Divy ), A — divg, (¢y,x). Then the assertion follows from Lemma 2.16
and Example 2.17. =

Definition 3.4 A category Mr of rational maps from Y to algebraic groups
s defined as follows: The objects of Mr are rational maps ¢ : Y — G,
where G is an algebraic group. The morphisms of Mr between two objects
p:Y — Gand:Y — H are given by the set of those homomorphisms
of algebraic groups x : G, — H,, where G, = (imy) and Hy = (im) are
the subgroups of G and H generated by Y wvia ¢ and v respectively, such that
X 0@ =1, i.e. the following diagram commutes:

2

Remark 3.5 Definition 3.4 above implies that if Mr is a category of rational
maps from Y to algebraic groups, any object v 1 Y — G is isomorphic to
¢ Y — (imyp), i.e. we may always replace G by the subgroup generated
by Y wvia . Then a morphism x between two objects ¢ : Y — G and
VY — H, if it exists, s uniquely determined by the condition x o @ = ).
Therefore two categories Mr and Mr' of rational maps from Y to algebraic
groups are equivalent if every object of Mr is isomorphic to an object of Mr':

Gy

Hy

Mr ~ Mr’ — ObMr = ObMr’

Definition 3.6 Let F be a subfunctor of Div). which is a formal group.
Then Mrx denotes the category of those rational maps ¢ : Y — G from'Y
to algebraic groups for which the image of the natural transformation LV —
DivY). (see Proposition 8.3) lies in F, i.e. which induce a homomorphism of
formal groups LY — F, where 0 — L — G — A — 0 is the canonical
decomposition of G.

In the following examples let G always be an algebraic group with canon-
ical decomposition 0 - L — G — A — 0.

63



Example 3.7 The category Mry associated to the trivial formal group 0 is
the category of morphisms from'Y to abelian varieties:
Let ¢ : Y — G be rational map to an algebraic group G, without loss of
generality ¢ generates G. Then the following conditions are equivalent:
(i) The section vy to the L-bundle Gy overY induces only a
transformation to the zero-subgroup of Div).
(i) @y extends to a global section
(i1i) Gy is the trivial L-bundle over Y
(iv) G is the trivial L-bundle over A
(v) There exists a splitting o : A — G
(vi) @:Y — G is isomorphic to the composition Y —» G — A
(as objects in Mrg)
and a rational map from Y to an abelian variety A extends to a morphism
Y — A.

Example 3.8 Let D be an effective divisor on Y, and let Fp be the for-
mal group whose étale part is given by divisors in DivY (k) whith support in
Supp (D) and whose infinitesimal part is trivial. Then Mrg, is the cate-
gory of rational maps from Y to semi-abelian varieties (i.e. extensions of an
abelian variety by a torus) which are regular away from D:

For a rational map ¢ :' Y — G the induced sections @y determine
divisors in DivY. (k) supported on Supp (D) for all Xe LV if and only if L is
a torus, i.e. it consists of several copies of G, only, and ¢ is reqular on

Y\ Supp (D).

Example 3.9 Let Y = C be a smooth projective curve, 0 = > .n;p; with
pi € C, n; > 1, an effective divisor on C, 9~ = ). (n, — 1) p; and let v, be
the valuation attached to the point p € C. Let F, be the formal group defined

by
Fo (k) = {Z Lipi | Y b= o} Lie (F,) = Infe o

(see Definition 2.46), i.e. the étale part of Fy consists of divisors of degree 0
supported on Supp (0), while the infinitesimal part of Fy is given by the image
of effective deformations of 0~ in Lie (Div,,) (see Subsubsection 2.2.4). Then
Mrg, is the category of those rational maps ¢ : Y — G such that for all

f € K¢ it holds:

(1= f)>m ¥i = p(div(f)) =0

By constructing a singular curve defined by the modulus 0 (see [S] Chapter
IV, No. 4), this turns out to be a special case of the next Example 3.10.
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Example 3.10 Let X be a singular projective variety and Y = X , where
m: X — X s the normalization. A rational map ¢ : X — G which is
reqular on the reqular locus X,og of X can also be considered as a rational map
from'Y to GG. The functor m%/x (see Proposition 2.58) is a formal group
and Mr@%/x is the category of morphisms ¢ : X, — G which factor
through a homomorphism of groups CHo(X)aego — G(k), see Definition
4.17 (cf. [ESV] Definition 1.14 for the notion of regular homomorphism ).
This is the subject of Section 4.

3.2 Universal Objects

Let Y be a normal projective variety over k (an algebraically closed field of
characteristic 0).

3.2.1 Existence and Construction

Definition 3.11 Let Mr be a category of rational maps from 'Y to algebraic
groups. Then (u:Y — U) € Mr is called a universal object for Mr if it
has the universal mapping property in Mr:

V(p:Y — G) € Mr 3! homomorphism of algebraic groups
h:U — G and a constant g € G(k) such that p =hou-+g

¢—g a
N

U

For the category Mrg of morphisms from Y to abelian varieties (see Example
3.7) there exists a universal object, the Albanese mapping to the Albanese
variety, denoted by alb : Y — Alb (Y)). This is a classical result (see [La],
[Ms], [S2]).

In the following we consider categories Mr of rational maps from Y to
algebraic groups satisfying the following condition:

(&) (p:Y — G) € Mr with G € Ext (A, L) if and only if
Ve LY the induced rational map (¢, : Y — A\.G) € Mr

Y

Theorem 3.12 Let Mr be a category of rational maps from Y to algebraic
groups which contains Mrq and satisfies (). Then there exists a universal
object (u:Y — U) € Mr for Mr if and only if there is a formal group
F which is a subfunctor of DivY such that Mr is equivalent to the category

Mr £ of rational maps which induce a homomorphism of formal groups to F
(see Definition 3.6).
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Proof. (<=) Assume that Mr is equivalent to Mrx, where F is a formal
group in Div).. The first step is the construction of an algebraic group I and
a rational map u : Y — U. In a second step the universality of u : Y — U
for Mr £ has to be shown.

Step 1: Construction of u : Y — U
Y is a normal projective variety over k, thus the functor Pic}. is represented
by an abelian variety Pic)- (see Corollary 2.35). The natural transformation
Div). — Pic) induces a 1-motive M = [f — Picoy]. Let MV be the dual
1-motive of M. The formal group in degree —1 of MV is the Cartier-dual
of the largest linear subgroup of Pic), and this is zero, since an abelian
variety does not contain any non-trivial linear subgroup. Then define i/ to
be the algebraic group in degree 0 of MV, i.e. [0 — U] is the dual 1-motive
of [F — Pic}]. The canonical decomposition 0 — £ — U — A — 0 is
the extension of (Picoy)v by FV induced by the homomorphism F — Pic?/
(see Theorem 1.23), where £ = F" is the Cartier-dual of 7 and A = (Picg]/)v
is the dual abelian variety of Pic)., which is Alb (V).

As L is a linear algebraic group, there is a canonical splitting £ = T x V
of £ into the direct product of a torus T of rank ¢ and a vectorial group V of
dimension v (see Theorem 1.4). The homomorphism F — Pic}. is uniquely
determined by the values on a basis {2 of the finite free Z-module

F (k) = L7 (k) = T"(k) = Homg, (T(k), G (k)) = Homyy /i (T, Gin)
and on a basis © of the finite dimensional k-vector space
Lie (F) = Lie (£") = Lie (V") = Homy, (Lie(V), k) = Hom /1, (V, G,)
By duality, such a choice of basises corresponds to a decomposition
L5 (Gh)' x (G,
and induces a decomposition

Ext (A, £) — Ext(A,Gn)" x Ext (A, G,)"

Therefore the rational map u : Y — U is uniquely determined by the
following rational maps to push-outs of U

Uy Y — wld w € )
uy 1Y — U Y e O
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whenever (2 is a basis of F (k) and © a basis of Lie (F). We have isomor-
phisms

Ext (A, G,) ~ Pic% (k) = Pic) (k)
P — Pr=Px4,Y

and

Ext (A,G,) ~ Lie (Pic%) — Lie (Pic})

T TYITX_AY

From the proof of Lemma 1.24 follows that (w.{), is just the image of w €
F (k) € Div) (k) under the homomorphism F — Pic!., which is the divisor-
class [w] € Pic) (k). Likewise from the proof of Lemma 1.25 follows that
(9.U)y is the image of ¥ € Lie (F) C Lie (Div}-) under the homomorphism
F — PicY,, which is the class of deformation [J] € Lie (Pic?,). Then define
the rational map u : Y — U by the condition that for all w € ) the section

Uy, Y —= U — wly = W]
corresponds to the divisor w € Div), (k), and for all ¥ € © the section
Uy, - Y LZ/{ — 79*2/{1/ = [19]

corresponds to the deformation 9 € Lie (m?,), in the sense of Lemma 3.2,
i.e.

divg,, (uyw) =w Yw € Q

diV((;Ta (uYﬂg) =19 Vi € ©

This determines u up to translation by a constant.

Step 2: Universality of u : Y — U
Given a rational map ¢ : Y — G to an algebraic group G with canonical
decomposition 0 — L — G % A — 0 inducing a homomorphism of formal
groups [V : LY — F, A — divy, (¢y,») for Ae LY (see Proposition 3.3). Let
[ : L — L be the dual homomorphism of linear groups. The composition
Y % G -4 A extends to a morphism from Y to an abelian variety. Trans-

lating ¢ by a constant g € G(k), if necessary, we may hence assume that
p o o factors through A = Alb (Y):

pop
Y
k\

Alb(Y

A
)
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It remains to show that the following diagram commutes:

l

L L L
h
41/1 /7GA ///?G
/ // //
/ // ///
A e 0
. =
//////
L=”
Y= A A A
i.e. the task is to show that
(a) GAZZ*U
(b) pa=hou

where G4 = G x 4 A is the fibre-product of G and A over Aand p4:Y —
G 4 is the unique map obtained from (¢, alb) : Y — G x A by the universal
property of the fibre-product GG 4, and where A is the homomorphism obtained
by the amalgamated sum

L L
L,
u—>Z/{HﬁL

as by definition of the push-out .U/ =U 11, L.
For this purpose, by additivity of extensions, it is enough to show that for

all e LV it holds
(@) MGa=1Y(\)U

(b") PAN = Uv(N)

where [V(A) = Aol and [Y(\), = (Aol), = Ad.. Using the isomorphism
PicYy — Pic) this is equivalent to showing that for all Ae L" it holds

(@%) MGy =1Y(\).Uy
(b”) oy = uy, vy

By construction of u : Y — U we have for all Ae L":

divy, (uy,veny) = 1Y(A) = dive (¢va)
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and hence

MUy = [V (V)]
= [divy (pyn)] = MGy

i.e. py, is isomorphic to uy;v(y) as objects in Mrz and A\, Gy = V(). Uy .

(=) Assume that v : Y — U is universal for Mr. Let 0 — £ —
U — A — 0 be the canonical decomposition of U, and let F be the image
of the induced transformation £Y — Div).. For Ae LY the uniqueness of
the homomorphism h, : U4 — AU fulfilling u) = h) o u implies that the
rational maps u, : Y — AU are non-isomorphic to each other for distinct
Ae LY. Hence divy, (uy,y) # divy, (uyy) for A # XN e LY. Therefore LY — F
is injective, hence an isomorphism.

Let ¢ : Y — G be an object of Mr and 0 - L — G — A — 0 be
the canonical decomposition of G. Translating ¢ by a constant g € G(k),
if necessary, we may assume that ¢ : Y — G factorizes through a unique
homomorphism i : i/ — G. The restriction of h to £ gives a homomorphism
of linear groups [ : £L — L. Then the dual homomorphism [V : LY — F
yields a factorization of LY — Div}. through F. Thus Mr is a subcategory
of Mrz. Now the property ({) guarantees that Mr contains all rational
maps which induce a transformation to F, hence Mr is equivalent to Mr r.
]

Notation 3.13 The universal object for a category Mr of rational maps
fromY to algebraic groups, if it exists, is denoted by albyg, 1 Y — Alby, (V).
If F is a formal group in DivY)., then the universal object for Mrx is also
denoted by albr : Y — Albx (V).

For F = 0 the universal object for Mrq is usually simply denoted by alb :
Y — Alb (V).

Remark 3.14 In the proof of Theorem 3.12 we have seen that Albgz (Y)
is an extension of the abelian variety Alb (Y) by the linear group F", and
the rational map (albg : Y — Albz (Y')) € Mrz corresponds to the identity
FLF

More precisely, [0 — Albz (Y')] is the dual 1-motive of [F — Picy/].

Example 3.15 As mentioned above, the universal object alb : Y — Alb (V)
for Mry from Example 8.7 is the classical Albanese mapping and Alb (Y') the
classical Albanese variety of a normal projective variety Y .

Example 3.16 The universal object albg, : Y — Albg, (Y) for Mrg,
from Ezample 3.8 is the generalized Albanese of Serre (see [S3]).
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Example 3.17 The universal object albyr, : C — Albg (Y) for Mryg,
from Example 3.9 is Rosenlicht’s generalized Jacobian J, to the modulus

0 (see [S]).

Example 3.18 The univeral object albp,o @ Xiee — Albp;o ()?)
=X/x ==X/x

from Ezxample 3.10 is the universal regular quotient of the Chow-group of
points CHo(X )aego (see [ESV]). In the following we will simply denote it by
Alb (X). This is consistent, as in the case that X is normal it coincides with
the classical Albanese variety.

Remark 3.19 Also the generalized Albanese of Serre (see Example 3.16)
and the generalized Jacobian (see Example 3.17) can be interpreted as special
cases of the universal reqular quotient (see Example 8.18) by constructing an
appropriate singular variety X.

3.2.2 Functoriality

The Question is wether a morphism of normal projective varieties induces a
homomorphism of algebraic groups between universal objects.

Proposition 3.20 Leto : V — Y be a morphism of normal projective vari-
eties. Let Vr and Yr be categories of rational maps from V' andY respectively
to algebraic groups, and suppose there exist universal objects Albvy (V) and
Alby,(Y) for Vr and Yr respectively. The universal property of Albyy (V)
yields:

If the composition albyr oo : V. — Alby,(Y) is an object of Vr, then o
induces a homomorphism of algebraic groups

AIbE(0) = Albyp (V) — Alby;(Y)

More precisely, in this case we have a commutative diagram:

% Z Y
albvrl lalbyr
Yr o
Albys (V) 2% Ao (v)

Theorem 3.12 allows to give a more explicit description. But first we need
some notation:

Definition 3.21 Let F be a subfunctor of Divy which is a formal group.
The support of F C Divy. is defined to be

Supp (F) = | Supp (D)

DeF
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where Supp (D) is the support of a Cartier divisor on'Y or of a deformation
of the zero divisor (see Definition 2.24).

Supp (F) is a closed subscheme of codimension 1 in Y, since F (k) and Lie (F)
are both finitely generated.

Definition 3.22 Let 0 : V — Y be a morphism of varieties. Then V 1is
called decident to a subset S C Y, if for no wrreducible component Z of V
the image o(Z) is contained in S.

Definition 3.23 For a morphism o :' V — Y of varieties define Decy y, to
be the plain subfunctor of Div, consisting of families of Cartier divisors to
which V' is decident, i.e. V' decident to Supp (D) for all D e Decyy,.

Proposition 3.24 Let 0 : V — Y be a morphism of varieties. Then the
pull-back of Cartier divisors o* induces a natural transformation of functors

_ -V : Decy — Divy,

Proof. It suffices to mention that on the subgroups Decy. . (k) C K5,/ O3
and Lie (Decy./) C Ky /Oy the pull-backs o* (k) : Decyy, (k) — K/ Oy
and Lie (6*) : Lie (Decy.y,) — Ky / Oy are defined and extend to a natural
transformation of functors Decy ,, — Div;,. =

Using this notation we obtain

Proposition 3.25 Let 0 : V — Y be a morphism of normal projective
varieties. Let F C hoy be a formal group with V decident (see Definition
3.22) to Supp(F).

For each formal group G C DivY, satisfying G D F-V, the pull-back of relative
Cartier diwvisors and of line bundles induces a transformation of 1-motives

G F
Lo|e— | !
Pic}, Pic).

Remembering the construction of the universal objects (see Remark 3.14),
dualization of 1-motives translates Proposition 3.25 into the following refor-
mulation of Proposition 3.20:
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Proposition 3.26 Let 0 : V — Y be a morphism of normal projective
varieties. Let F C Divy. be a formal group with V decident (see Definition
3.22) to Supp(F). Then o induces a homomorphism of algebraic groups

AIbZ (o) : Albg(V) — Albx(Y)

for each formal group G C m?/ satisfying G O F - V. More precisely, we
obtain a commutative diagram:

1% = Y
albg l \Lalb}-
AlbZ (o)

Albg(V) Albx(Y)
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4 Rational Maps Factoring through CHy(X)geg0

Throughout this section let X be a projective variety over k (an algebraically
closed field of characteristic 0), = : ¥ — X its normalization, and let
U C Y be an open dense subset of Y where 7 is an isomorphism. U is
identified with its image in X, and we suppose U C X,,,. We consider
the category MrCHo(Xaeso of morphisms ¢ : U — G from U to algebraic
groups G factoring through CHg(X)gego (see Definition 4.17). The image of
such a homomorphism being a connected algebraic subgroup of G (see [ESV]|
Lemma 1.15), it is no restriction to assume the algebraic group G to be
connected.

The goal of this section is to show that the category Mr“Ho
equivalent to the category 1\/[1'&0Y » of rational maps which induce a trans-

(X)deg 0 iS

formation of formal groups to m% « (see Proposition 2.70).

4.1 Chow Group of Points

In this subsection the Chow group CHg(X)geg0 0f O-cycles of degree 0 modulo
rational equivalence is presented, quite similar as in [LW], see also [ESV],
[BiS].
Definition 4.1 A Cartier curve in X, relative to U, is a curve C C X
satisfying

(a) C is pure of dimension 1

(b) no component of C is contained in X \ U

(c) ifpe C\U, then the ideal of C in Ox,

1s generated by a reqular sequence

Definition 4.2 Let C be a Cartier curve in X relative to U, Cp (C) the set
of irreducible components of C' and vz the generic points of Z € Cp (C). Let
Oc.o be the semilocal ring on C at © = (C\U)U{vz|Z € Cp(C)}. There
18 a natural map on unit groups

Jov: Ohe — P Ky
ZeCp(C)
Then define
K (C, U)* = imﬁc’,U

Definition 4.3 Let C be a Cartier curve in X relative to U andv : C —s C
its normalization. For f € K(C,U)" and p € C let

ord, (f) = Y vy (f)

p—p
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where f:: vt f € K& and vg is the discrete valuation attached to the point

p € C above p € C (see [F] Example A.3.1).
Define the divisor of f to be

div (f)e =Y _ord, (f) [p]

peC
Definition 4.4 Let Zo (U) be the group of 0-cycles on U, set

C is a Cartier curve in X relative to U
ERO(X,U):{(C,f)' (mdeK(C’ U)* }

and let Ry (X, U) be the subgroup of Zo (U) generated by the elements div (f).
with (C, f) € Ro (X, U). Then define

CHo(X) =Zo (U) /Ro (X,U)

Let CHo(X )aego be the subgroup of CHo(X) of cycles ¢ with deg(|lw =0 for
all irreducible components W € Cp (U) of U.

Remark 4.5 The definition of CHo(X) and CHo(X )gego s independent of
the choice of the dense open subscheme U C X,ey (see [ESV] Corollary 1.4).

Remark 4.6 Note that by our terminology a curve is always reduced, in
particular a Cartier curve. In the literature, e.g. [ESV], [LW], a slightly
different definition of Cartier curve seems to be common, which allows non-
reduced Cartier curves. Actually this does not change the groups CHo(X)
and CHo(X)dego, see [ESV] Lemma 1.3 for more explanation.

4.2 Local Symbols

The description of rational maps factoring through CH(X)geg0 requires the
notion of a local symbol as in [S].

Let C' be a smooth projective curve. The composition law of an unspeci-
fied algebraic group G is written additively in this subsection.

Definition 4.7 For an effective divisor @ = Y n,p on C and a rational
function f € K¢ define

f=1 modd = v,(L—f)>mn, Vp € Supp (9)

where v, is the valution attached to the point p € C.
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Let ¢ : ¢ — G be a rational map from C' to an algebraic group G
which is regular away from a finite subset S. The morphism ¢ : C'\ § — G
extends to a homomorphism from the group of 0-cycles Zo (C'\ S) to G by

setting ¥ (> l.c) :=> l.¢ (c) force C\ S, . € Z, l. =0 p.p.

Definition 4.8 An effective divisor 0 on C' is said to be a modulus for v if
Y (div (f)) =0 for all f € K¢ with f =1 mod 0.

Theorem 4.9 Let i) : C — G be a rational map from C' to an algebraic
group G and S the finite subset of C' where Y is not reqular. Then v has a
modulus supported on S.

This theorem is proven in [S| Chapter III, §2, using the following concept:

Definition 4.10 Let 0 be an effective divisor supported on S C C and ) :
C — G a rational function from C' to an algebraic group G, reqular away
from S. A local symbol associated to v and 0 is a function

(V,_) KexC—G

which assigns to f € K and p € C' an element (1, f)p € G, satisfying the
following conditions:

(a) (. fg),= @, [),+.9),
(b) (@, ). = ve(f) P(c) ifce C\S
(¢c) (Y,f),=0 ifs€Sand f=1 modd ats

(d) Xpec W, f), =0

Proposition 4.11 The rational map 1 has a modulus 0 if and only if there
exists a local symbol associated to i and 0, and this symbol is then unique.

Proof. [S| Chapter III, No. 1, Proposition 1. =

Theorem 4.9 in combination with Proposition 4.11 states for each rational
map 1 : C' — G the existence of a modulus 0 for ¢ and of a unique local
symbol (¢, ) associated to ¢ and 0.

Let 9 =Y n,pand e = . m,p be effective divisors, we define
¢e>0 e my > n, VpeC

From the definitions it is clear that if 0 is a modulus for ¢ then e is also
for all ¢ > 0. Likewise a local symbol (¢, ) associated to ¢» and 0 is also
associated to 1) and e for all ¢ > . -
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Suppose we are given two moduli 0 and 0’ for ¢, and hence two local
symbols (¢, ) and (¢, )" associated to d and 0’ respectively. Then both
local symbols are also associated to ¢ := 0 + 0’. The uniqueness of the local
symbol associated to ) and e implies that (¢, ) and (¢, )" coincide. It
is therefore morally justified to speak about the local symbol associated to 1
(without mentioning a modulus).

Corollary 4.12 For each rational map ¢ : C — G from C' to an algebraic
group G there exists a unique associated local symbol (v, _) : KixC — G.
If 0 is a modulus for 1 supported on S, then this local symbol is given by

(W, ), = velf) ¥(c) Vee O\ S
W, ), = =Y velfo) ¥(c) Vse S
c¢S

where fs € KCf is a rational function with f; =1 mod 0 at z for all z € S\ s
and f/fs=1 mod 0 at s.

The above formula is shown in [S] Chapter III, No. 1, in the proof of
Propostion 1.

Example 4.13 In the case that G is the multiplicative group G,,, a rational
map ¢ : C — Gy, can be identified with a rational function in Ko, and S
is the set of zeroes and poles of 1, i.e. S = Supp (div (¢0)). Then the local
symbol associated to 1 is given by

_
.1y = ()™ 4

(see [S] Chapter III, No. 4, Proposition 6)

(p) with m = v, (f) ,n =v, (¢)

Example 4.14 In the case that G s the additive group G,, a rational map
Y C — G, can be identified with a rational function in Ko, and S is the
set of poles of 1. Then the local symbol associated to v is given by

(¥, f), = Resp (¥ df/[)
(see [S| Chapter III, No. 8, Proposition 5)

Proposition 4.15 Let p, v : C' — G be two rational maps from C to an
algebraic group G, with associated local symbols (¢, ) and (¢, ) . Then
the local symbol (¢ 4+, ) associated to the rational map ¢ +1 : C — G,
c— @ (c) + v (c) is given by

e+, f)y = (@, f)y + (. f),
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Proof. Let 9, be a modulus for ¢ and 9, one for ¢). Then both maps
¢, ¥ and the map ¢ + 1 have 0, := 0, + 0y as a modulus and both local
symbols (¢, ) and (¢, ) are associated to 9,.,. Now the formula in
Corollary 4.12 and the distributive law imply the assertion. m

Lemma 4.16 Let v : C' — G, be a rational map from C to an alge-
braic group G which is an L-bundle over an algebraic variety A, i.e. G €
Ext (A, L), where L is a linear group. Let p € C be a point, U > p a neigh-
bourhood and ® : U x L —— Gy, (u,l) — ¢ (u) + 1 a local trivialization
of the induced L-bundle Go = G x4 C over C, i.e. ¢ : U — G¢ a local
section. Moreover let [y : C — L, c— 1 (c) — ¢ (c) be the rational map
W considered in the local trivialization ®. Then for each rational function
J € Og,, which is a unit at p, it holds

@, ), = ([Wle 1),

Proof. Proposition 4.15 yields

(W, /), = W=0,1),
= (¢7f)p_(¢7f)p

¢ is regular at p, therefore we have (¢, f), = v, (f) ¢ (s) =0, since f € O,
and hence v, (f) =0. m
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4.3 The Category MrCHo(X)aso

Definition 4.17 MrHoXawo is the category of rational maps from X to al-
gebraic groups defined as follows: The objects of MrEHo(Xaeso gre morphisms
v : U — G whose associated map on pairs

Q™ U Zx7Z — G
ZeCp(U)
(p,q) — w(p) —w(q)

applied to k-rational points of X, factors through a homomorphism of groups
CHO(X)degO — G(k}) 3

We refer to the objects of MrSHo@aeso g rational maps from X to alge-
braic groups factoring through rational equivalence or factoring through
CHO(X)degO-

Theorem 4.18 The category MrHoXaeso of morphisms from U to alge-
braic groups factoring through CH (X )aego @S equivalent to the category Mr@g
of rational maps from Y to algebraic groups which induce a transformation
of formal groups to @%/X (see Proposition 2.70).

Proof. First notice that a rational map from Y to an algebraic group
which induces a transformation to Div), /x 1s necessarily regular on U, since all
D em%/ + have support only on Y\ U. Then according to Definition 4.4 and
Definition 3.6 the task is to show that for a morphism ¢ : U — G from U
to an algebraic group GG with canonical decomposition 0 - L. — G — A — 0
the following conditions are equivalent:

() o (div(f)e) =0 v(C, ) € R (X, V)

(ii) divy (eya)e M%/X VeLY
where ¢y, is the induced section of the L-bundle .Gy over Y introduced in
Subsection 3.1. The principal L-bundle G is a direct sum of L-bundles \.G
over A, e LY; let ¢y : U — \.G be the induced morphims. Then condition
(i) is equivalent to

(') ea(div(f)e) =0 ALY, ¥(C. f) € P (X, )
Hence it comes down to show that for all Ae LY the following conditions are
equivalent:

() ealdiv(f)e) =0 V(C, f) € Ro(X,U)

(i) dive (@y,») €Divy x
This is content of Lemma 4.19. m

3A category of rational maps to algebraic groups is defined already by its objects,
according to Remark 3.5.
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Lemma 4.19 Let ¢y : U — Gy be a morphism from U to a L-bundle
G over an abelian variety A, i.e. G, € Ext(A,L). Then the following
conditions are equivalent:

(i) x(div(f)e) =0 V(C, f) € Ro (X, V)

(ZZ) Ty (diV]L ((,Oy)\)) =0

(iii) dive (py) € Divy)

Proof. (i)<=-(ii) Let C be a Cartier curve in X relative to U, and let

v : C — C be its normalization. In the case L = G,, Lemma 4.20 and
in the case L = G, Lemma 4.21 asserts that the following conditions are
equivalent:

(1) eale (div(f)) =0 VfeK(C,CnU)

() v (ive(ale) =0 i
We have divy, (pa]¢) = divy (pya) - C, where - C': Decy, 5 — Divg is the
pull-back of Cartier divisors from Y to C (see Definition 3.23, Proposition
3.24). Then condition (i) is equivalent to

i) (ve), (div]L (pya) - C’) =0 V Cartier curves C relative to U

The equivalence of (i) and (ii) is shown in Lemma 4.23 for L = G,, and in
Lemma 4.27 for L = G,.

(ii)<=>(iii) This is just the definition of Divy, x (see Proposition 2.70),
taking into account that divy, (¢y.) € Divy. by Proposition 3.3. =

Lemma 4.20 Let C be a projective curve and v : C — C its normalization.
Let ) : C — G, be rational map from C to a Gy,-bundle G, over an abelian
variety A, i.e. G, € Ext(A,Gn). Suppose that ¢ is regular on a dense
open subset Uc C Cleg, which we identify with its preimage in C. Then the
following conditions are equivalent:

(i) P (div(f))=0 VfeK(C.Uo)

(it) (fov)(divg, (¥)) =0 VfeK(C,Ue)

(ii) v (dive,, (¥)) =0

Proof. (i)<=(ii) We show that for all f € K(C,U¢)" it holds
U (div (f)) = (f o v) (divg, (¥))

Let f € K(C,Ug)*. Write fi=vtf=Ffov. Set S:=C \ Uc. For each
se€Slet & :Us x Gy, — G, be a local trivializtion of the induced Gy,-

bundle over C in a neighbourhood U, > s. Notice that v, (V) 1=, <[w]¢p)

is independent of the local trivialization. Since f € K (C,Us)" we have
f € O, for all s € S and hence div (f) NS = &. Then using Lemma 4.22,
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the defining properties of a local symbol from Definition 4.10, the explicit
description from Example 4.13 of local symbols for rational maps to G, and
Lemma 4.16 we obtain

(v = Wo)(div(F))
— T[v@=?)

c¢S

i)

= f(dive, (¥))

(ii)<=(iii) The implication (iii)==-(ii) is clear. For the converse direction
first observe that the support of divg_ (1) lies necessarily in C \ Ug, since 1 is
regular on Ug. For each s € C'\Ug there is a rational function f, € K(C, Ug)”
such that f(s) =t € Gy \ {1} and f(2) = 1 for all z € C'\ (Uc U {s})
by the approximation theorem. Then (fsov) (divg, (¢)) = 0 if and only
if v, (divg,, (¢) [-1(s)) = 0, where divg,, (¢) |,-1(s) is the part of divg,, (¥)
which has support on v~ 1(s). As this is true for all s € C'\ Ug, it shows the
implication (ii)==-(iii). m
Lemma 4.21 Let C be a projective curve and v : C — C its normalization.
Let ¢ : C — G, be rational map from C to a G,-bundle G, over an abelian
variety A, i.e. G, € Ext(A,G,). Suppose that 1 is reqular on a dense
open subset Uc C Cleg, which we identify with its preimage in C. Then the
following conditions are equivalent:

(i) ¥ (div(f) =0 VfEeK(CU)
(i) Res, (1 dg) =0 Vg € Ocug), Vg€ C
(1ii) v. (divg, (¢)) =0

Proof. (i)«=(ii) Let f € K(C,Ug)". Write f' := v¥f = fow.
Set S := C \ Us. For each s € S let &, : U; x G, — G, be a local
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trivializtion of the induced G,-bundle over C in a neighbourhood Uy > s.
Notice that for each w € Qs which is regular at ¢ € C the expression
Res, (¢ w) := Res, ([w]% w) is independent of the local trivialization. Then

using Lemma 4.22, the defining properties of a local symbol from Definition
4.10, the explicit description from Example 4.13 of local symbols for rational
maps to G, and Lemma 4.16 we obtain

U (div(f)) = (Wov)(div(f))
= Zvc(f/) ¢(C)

cgS

= > (@, f),

c¢S

= =) (@),

seS

= > (W, 1),

seS

= =) Res, (¥ df'/f)

ses

Now df/f = dlog f and log : 1 + m¢, — M, is an isomorphism, further-
more it holds im (i, ~ Qg ) =im (Oc, —5 0, ).
Then for each s € S, each g € 60,1/(3) and each effective divisor ¢ supported
on S there is a rational function f, € K(C,U¢)" such that dlog f! = dg’
mod ¢ at s and f. =1 mod e at z for all z € S\ s, by the approximation
theorem. Choosing e = ) _om. z large enough, i.e. m, larger than the pole
order of ¢ at z, yields that Res, (¢ df./f}) =0 for all z € S\ s, as df./f!
has a zero of order > m, — 1 at z € S\ s. Hence ¢ (div(f;)) = 0 if and
only if Res, (¢ df./f.) = Res, (v dg’) = 0. Thus ¢ (div (f),) = 0 for all
f € K(C,Up)" if and only if Res, (¢ dg’) = 0 for all g € Oc ), s € S. Tt
remains to remark that Res. (¢ dh) = 0 for all h € (’356 D @C,V(c), c € Ug,
since ¢ and dh are both regular at c. ’ R
(ii)<=(iii) Let ¢ € C. Then Res,(¢»dg’) = 0 for all g € Oc ()
is equivalent to the condition that the image [divg, (¢)], of divg, (¢) in

Homy(g),cont <1?15’q,k:(q)> vanishes on ¢, (,), by construction (see proof of

Proposition 2.63), which says 0 = [divg, (w)]qoﬁ# € Homy(g) cont (Mcyu(q): £(q)).

This is true for all ¢ € C if and only if v, (divg, (v)) = 0 by definition of the
push-forward for formal infinitesimal divisors (see Proposition 2.62). m
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Lemma 4.22 Let C be a Cartier curve in X relative to U and v : C — C
its normalization. If ¢ : C NU — G is a morphism from C NU to an
algebraic group G, then for each f € K(C,C NU)" it holds

¥ (div(f)e) = (ov) (div (fov)a)
Proof. By Definition 4.3 we have

Y (div(f)e) = Y ord, (f) ¥(p)

peC

= D> > w(fov) v
peC p—p

= Y (o) (Wor) (B)
peC

= (woy)(div(foy)é)

Lemma 4.23 For a curve C in X let vo : C — C be its normalization.
Then

ker (7, o weily) = ﬂ (_ . C’) 1 ker ((VC)* o WGﬂé)
c
where C ranges over all Cartier curves in X relative to U,

.C: Decy 5 — Divg is the pull-back of Cartier divisors from'Y to C
(see Deﬁmtwn 3.23, Proposition 3.24), and weily : Div, (k) — WDiv,, (k)
for Z =Y, C is the transformation from Cartier divisors to Weil divisors
(see Proposition 2.51)

Proof. The lemma asserts that for D € Div, (k) the following conditions
are equivalent:
(j)  me (weily (D)) =0
() (ve). (weily (D-C)) =
for all Cartier curves C' in X relative to U
As 7 is an isomorphism on U, we may assume Supp (D) C Y \ U.

Let C' be a Cartier curve in X relative to U. Since 7|¢, is of degree 1
(see Definition 2.53), the normalization v : C' — C factors uniquely through
7ley @ Cy — C, where Cy = 71C is the preimage of C in Y. Let
I C' — Cy be the unique map satisfying v = 7|, op. Let 1y : Cy — Y
be the embedding of C'y into Y.
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At first we are going to show v, (Weilé (D : 6’)) = C N, (weily (D)):
We have v, <Wei15 (D : 5)) = (m|ey ), p (weilgz(p*iy D)), and

fis (weils (p*e3 D)) = deg (5’/6&) weile, (13 D) = weile,. (D - Cy), see proof
of [F] Proposition 2.3 (c).

If C' is a complete intersection Cartier curve, Lemma 4.26 with Remark
4.25 yields (7|, ), (weilgy, (D - Cy)) = C N m, (weily (D)).

It holds . (weily (D)) = 0 if and only if C' N m, (weily (D)) = 0 for all
complete intersection Cartier curves C' in X relative to U, since X can be
covered by such curves. For any Cartier curve C' in X relative to U the
support of D - Cy lies in Cy \ U by assumption on D, and by condition (c)
of Definition 4.1 each point of 7 (Supp (D - Cy)) has a neighbourhood in C'
which is a complete intersection curve. Hence it suffices to consider complete
intersection Cartier curves. This gives the equivalence of (j) and (jj). m

Definition 4.24 (c¢f. [F] Definition 2.3) For a Cartier divisor D on'Y and
a prime cycle V decident to Supp (D) (see Definition 3.22) define the inter-
section of D with V' to be the following Weil divisor on V :

DNV =weily(D - V)

where _ -V : Decy, — Divy, is the pull-back of Cartier dwvisors from 'Y to
V' (see Definition 3.23, Proposition 3.24).

For an arbitrary cycle Z with decomposition Z =Y nyV in prime cycles V
decident to Supp (D) set

DNZ=> nyweily(D-V)

If C = Dy-...-D. s a complete intersection of Cartier divisors and Z a
cycle with C' and Z decident to each other, then form inductively

CNZ=Dyn(DyN...(D.NZ))

Remark 4.25 If W is a Weil divisor in'Y and C' a complete intersection of
Cartier divisors on'Y decident to W, then C N'W s a Weil divisor on C.
Furthermore, for a complete intersection C in'Y the following diagram is

commutative:
weily

Div(Y) WDiv(Y)
e on
\ . \
Div(C) —2¢  WDiv(C)

where the vertical arrows are defined for those divisors to which C' is decident.
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Lemma 4.26 Let C' be a curve in X which is a complete intersection of
Cartier divisors, and let Cy = 7 C be its preimage in Y. If W is a Weil
divisor in 'Y with C' decident to W (see Definition 3.22), then

(mley ), (Cy NW) =CNmW

Proof. By induction we may assume that C is a Cartier divisor. The
diagram of morphisms

Y —X

induces a diagram of homomorphisms

WDiv(Y) WDiv(X)
Cyn_ : : cn_
Y (7ley), J
WDiv(Cy) WDiv(C)

where the vertical arrows are defined for those Weil divisors to which Cy or
C respectively is decident. This diagram commutes by projection formula
for divisors, see |F| Proposition 2.3 (c) (although the statement there is only
asserted for classes of cycles, the proof is done for cycles). This yields the
assertion. m

Lemma 4.27 For a curve C in X let vo : C — C be its normalization.
Then

ker (7, o fmly) = ﬂ (_ . C’) ' ker ((VC)* o fm15>
c
where C' ranges over all Cartier curves in X relative to U,

O Decy 5 — Divg is the pull-back of Cartier divisors from'Y to C
(see Deﬁmtwn 3.28, Proposition 3.24), and fmly : Lie (Div,) — LDiv (Z)
for Z =Y, C is the transformation from deformations of the zero divisor to
formal Lie divisors (see Propositions 2.61, 2.63)

Proof. For each Cartier curve C' in X relative to U the normalization
veo : C — C factors uniquely through 7le, 1 Cy — C, where Cy = 771C
is the preimage of C'in Y. Let u¢ : C' — Cy be the unique map satisfying
vo = m|ey o ue. When a fixed curve C' is considered, we will sometimes omit
the subscript “C”.

Since 7 is an isomorphism on U, both sides of the equation in the state-
ment are contained in Lie (Divy )y, = {0 € Lie (Divy) | Supp (§) C Y \ U}.
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By definition of the push-forward for infinitesimal divisors (see Proposition
2.62) we have to show that for ¢ € Lie (Divy )y, and for all generic points
71 of height 1 the following conditions are equivalent;:

(G) [0], € Homy(y),cons (My,y, k(1)) vanishes on My ()

) [5 : 6’] € Homyg(g),cont (ﬁaq, k(q)) vanishes on Mc,,(y)
q

for all Cartier curves C' in X relative to U and all ¢ € ualEn
where F, is the irreducibel codimension 1 subscheme with generic point 7.
As Supp (§) € Y\ U, it suffices to consider n € Y \ U, hence we may assume
that Cy is decident to F,, i.e. ug'E, consists of a finite number of closed
points in C.
This problem is local in X, therefore the structure sheaves Oy, Ox, O¢ are
thought of as affine rings. 7(n) generates a dense subset of Mx () as k(7 (n))-

vector space, i.e. Mx r(;) = SPay (x()) (im (w(n) — mX,W(n))). Likewise the
prime ideal of v/(q) in Spec O¢ generates a dense subset of Mc () as k(v(q))-
vector space, for a Cartier curve C' in X relative to U and ¢ € u'E, C C.

As [0], is k((n))-linear, [5 : 6’} is k(v(g))-linear and both are continuous,
q

it suffices to show the equivalence of the following conditions:
(") [0], vanishes on 7(n) € Spec Ox

(i) [5 . 5] vanishes on v(q)c := v(q)/ Zc € Spec O¢
for all g]artier curves C' in X relative to U and all ¢ € u;'E,
where Z is the ideal sheaf of C. If ¢ € u;'E,, then v(q)/Zc € Spec Oc
is an associated prime of (w(n) +Z¢)/Zc in Oc = Ox/Zc. Localization at
v(g)c on Cyields me ) = ((7(n) +Zc)/ Zc), .-
Let h € 7m(n) be an arbitrary element and let h € (7(n) + Z¢)/ Zc be its

residue class, where C'is a Cartier curve in X relative to U. If [§], h = f €
k(n) is the image of h € m(n) under the homomorphism [], , then for each

q € p~'E, which is not a pole of f the image of h € v(q)/Zc under the

homomorphism [5 . 6’} is given by [(5 . 5] h = f(u(q) € k(ulq)) = k(q),
q

see also Lemma 4.28.

From this the implication (j’)=-(jj’) is clear. For the converse direction
suppose [0], does not vanish on (), i.e. there is a h € m(n) such that
0 # [0],h = f € k(n). Then there exists p € E, with f(p) # 0,00, i..
f € Og,p \ mg,,, and a Cartier curve C' in X relative to U such that

p€CyNE,. As [5 - 5} T = f(p) # 0 for q € u5'(p), it follows that [5 - 5}
q

does not vanish on v(q)/Zc. =

q

q
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Lemma 4.28 Let C be a curve in X and v : C — C its normalization.
Let u : C — Cy be the unique factorization of v through Cy = 7 'C,
i.e. v = T|o, op. Let n be a generic point of height 1 in Y with Cy
decident (see Definition 3.22) to its associated codimension 1 subscheme E,,.
Let Z¢: be the ideal of C in an affine neighbourhood of C N7 (E,) in X. For
q € v'(CNw(E,)) and 6 € Lie(Divy) with Cy decident to Supp(d) we
have a commutative diagram

5"1
m(n) C mXW o k(n)

-
-
-
-
PN

OEn 1(q)

[6-C] l

w(m+Zc - mcy —q> k(q)

Ic
Proof. Follows immediately from the construction of the homomor-

phiSHlS [5]77 S Homk(n),cont (t/ﬁY,T]? k’(ﬁ)) and [5 ' 5] € Homk(q),cont (t/ﬁévqa k(Q))
q
in the proof of Proposition 2.63. =

4.4 Universal Regular Quotient

The results obtained up to now provide the necessary foundations for a de-
scription of the universal regular quotient and its dual, which was the initial
intention of this work.

4.4.1 Existence and Construction

The universal regular quotient Alb (X) of a (singular) projective variety X
is by definition the universal object for the category MrCHo(Xaeso of mor-
phisms from U C X, factoring through CHy(X )gego (see Definition 4.17).
In Theorem 4.18 we have seen that this category is equivalent to the cate-
gory Mr@g ” of rational maps from the normalization Y of X to algebraic

groups which induce a transformation to the formal group @%/X. Now
Theorem 3.12 implies the existence of a universal object Alb@%/X(Y) for
this category, which was constructed (see Remark 3.14) as the dual 1-motive
of [m?,/x — Pic)]. As Alb(X) = Alb&g/X(Y), this gives the existence
and an explicit construction of the universal regular quotient, as well as a
description of its dual. The proof of Theorem 0.3 is thus complete.
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4.4.2 Functoriality

The question coming up now in a natural way is the functoriality of the
universal regular quotient, i.e. we would like to know wether a morphism
o 'V — X of projective varieties induces a homomorphism of algebraic
groups Alb (V) — Alb (X).

As the functoriality of the universal objects Albz(Y'), where Y is normal
and F C Div) is a formal group, has already been treated in Subsubsection
3.2.2, we will reduce the problem to this case. Therefore it obliges to show
under which assumptions the following conditions hold:

(o) A morphism of projective varieties o : V' — X induces
a morphism o : V — X of their normalizations
(8) The pull-back of relative Cartier divisors maps
m()]?/X - m%/v
For this purpose we introduce the following notion, analogue to Definition
4.1 (keeping the notation fixed at the beginning of this Section 4):

Definition 4.29 A Cartier morphism to X, relative to U, is a morphism
o :V — X of projective varieties satisfying
(a) V is equi-dimensional
(b) V is decident to X \ U (see Definition 3.22)
(¢c) ifye€a(V)\U is a generic point of (V) \ U,
then the ideal of (V') in Ox , is generated by a regular sequence

Proposition 4.30 Let 0 : V — X be a Cartier morphism relative to U.
Then the pull-back of relative Cartier divisors and of line bundles induces a
transformation of 1-motives

-0 -0
Divy, Divg
! — !
Pict Pic)

Proof. It suffices to verify the conditions («) and ((3) mentioned at the
beginning of this Subsubsection 4.4.2.

As o(V) is decident to X \ U by condition (b) of Definition 4.29, the
base change V X x X = Vg — V of X — Xisa morphism of degree

1 (see Definition 2.53), hence the normalization V' — V factors through
Vi — V.
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We obtain a commutative diagram

NN

Vi —X

|

V——X

The morphism V —s X induces a pull-back of families of line bundles

P1c~ — PlC and a pull-back of relative Cartier divisors Div% Divg  — m%,

Div} ). Lemmata 4.26 and 4.28 hold for

V — X instead of C' — X, as one sees from the proofs Therefore the
image of Div% Divg under pull- back -V lies actually in DIVV v This gives a
commutative diagram of natural transformatlons of functors

since V' is decident to Supp (Dw

. 0
Divy \ ~—— DWX/X

L

- 0 -0
P10‘~/ - P1c)~(

Dualization of 1-motives yields the functoriality of the universal regular
quotient:

Proposition 4.31 Let 0 : V — X be a Cartier morphism relative to U.
Then o induces a homomorphism of algebraic groups

Alb(a) : Alb (V) — Alb (Y)

More precisely, we obtain a commutative diagram:

1% Z Y
albl lalb
Alb (V) 222 Al (v)
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5 Case of Curves

Let C' be a projective curve. The fact that zero cycles equal divisors on
C yields an identification of the universal regular quotient Alb (C') with the
component of the identity Pic’ C of the Picard scheme. This offers a different
point of view, independent of the previous considerations, which provides a
useful tool for the explicit computation of examples.

After introducing an intermediate curve C’ between C and its normal-
ization C we describe the algebraic group Pic® C' as an extension of the
abelian variety Pic’ C by a linear group L. Then we dualize the 1-motive
[O — Pic? C}, taking into account that Pic® C is the universal regular quo-
tient Alb (C'). The methods of Subsections 5.1 and 5.2 are taken from [BLR].

5.1 Normalization C and
Largest Homeomorphic Curve C’

This section provides the construction of a curve C’ lying between C' and its
normalization C'

5_0>C/_”>C
\/

which is homeomorphic to C' and has only ordinary multiple points as sin-
gularities.

Notation 5.1
O :=0¢ O = p,Oc O = .05

Definition 5.2 A point p of a curve C' s called an ordinary multiple point,
if it marks a transversal crossing of smooth formal local branches.
More precisely, p € C' is an ordinary m-ple point if

Ocy Z k[t tml] | D (tit))

i#]

Since C' is reduced, the smooth locus is dense in C, hence the singular
locus S is finite. The curve C” is obtained from C by identifying the points
p; € C lying over p € S. A local description of C’ is the following: Choose
an affine neighbourhood U = Spec A of p € S with UN S\ {p} = &. Let

U= SpecA be the inverse image of U. Then the amalgamated sum U’ of
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[1p:i — U and [1p: — pis (by definition) the open subset of C’ lying over
Ucc.
U / A
[7\ / ' Z\

/
L1 pi [Tk (i
Gluing the affine schemes U’ = Spec A’ gives C".

By construction the map p : ¢’ — C is a bijection, and since the
normalization 7 : C' — (' is closed, it is a homeomorphism. Moreover, the
following diagram obtained from the fibre-product above (using k(p’) = k(p)
and the Chinese remainder theorem)

S
7

k(p)
)

0 m, Al k(p)——=0

.

0—=IImy, —A——I1k{B:) —=0

implies that the singularities p’ of C’ are transversal crossings of smooth
formal local branches.

5.2 Pic’ C' as Extension of Pic’ C' by a Linear Group L

Let ¢ : Y — X be a morphism of projective curves, which is an isomorphism
on a dense open subset U C Y. Let Q® be the cokernel of the induced
homomorphism 0% — ¢.05, then Q* = [[..« (0}, /0%, ), and Q" is
supported only in finitely many points, since QF =0 Va € ¢ (U). In the
corresponding long exact sequence of cohomology-groups

1 —H(0%) — H*(0y) — H*(Q") — H' (0%) — H' (0}) — H' (Q)

we have H' (Q*) = 1 (since Q* is affine), H! (O;,) = PicY and H! (O%) =

Pic X. If imH° (Q*) = ker (H' (O%) — H' (0% )) is connected, then it lies

in the connected component of zero in Pic X. Therefore in this case we obtain

a short exact sequence of algebraic groups, referred to as Pic® Seq (Y — X)) :
1 — imH°(Q*) — Pic’ X — Pic’Y — 1

For a smooth connected algebraic group G there is a unique linear sub-
group L such that G/L =: A is an abelian variety (see Theorem 1.3 of
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Chevalley) and L is the direct product of a torus and a unipotent group
(see Theorem 1.4). If we set X = C' and Y = C (the normalization of
('), then Pic’ C is a smooth connected algebraic group, Pic” C is an abelian
variety and im H° (Q*) is linear, as we will see in the following. Using the
intermediate curve C’, we can treat the torus part and the unipotent part
separately.

5.2.1 Pic’ (" as Extension of Pic’C by T = (G,,)'

As mentioned in Section 5.1 the largest homeomorphic curve C’ has at most
ordinary multiple points as singularities, thus we can apply the following

Theorem 5.3 Let C' be a connected curve which has only ordinary multiple
points as singularities. Let C' be the normalization of C'. Then Pic® C" is an
extension of the abelian variety Pic® C by a torus T:

] —T—Pic®C" — Pic®C — 1

T = (Gw)' is a torus of rank t = 1 — # Cp(C') + >, 1 (m — 1)#S,,, where
Cp(C") is the set of irreducible components of C' and S,, is the set of m-ple
points (see Definition 5.2).

Proof. We specify the considerations at the beginning of this Subsection
5.2 to the case X = C" and Y = C. Let S be the singular locus of C" and

Cp (5) the set of components of C. The long exact sequence has the form

1 — ki — H k*Z—>HTp—>PicC'—> H PicZ — 1
zeCp(C) peS ZeCp(X)

where k¥, = H° (C', 0F), k3 = H° (Z,0%), and as each p € S is an ordinary
multiple point (see Definition 5.2), we have

T, = (9)/©)
(@2 k) *
(ke t]] /50 (061
= Hk(Q)*/k(p)*

q9—p

(k)™

Il
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For Q" = [],cs <<5p)*/ ((9;,)*) = [l Tp then im H® (Q*) is given by the

torus

T = coker H k}—>HTp

7eCp(0) pes
HpES Tp

Hzecn@) k2 / e
] (k*>t

Since this is connected we obtain the exact sequence Pic’ Seq (5 — C’),

where T = im H® (Q*) and Pic’ C = Hzecp(é) Pic’Z. =

5.2.2 Pic’C as Extension of Pic’C’ by V = (G,)"

According to the previous subsection we have reduced the problem to describe
Pic’ C as an extension of Pic’ C’. This is described in the following

Theorem 5.4 Let C be a projective curve, let C' be the largest homeomor-
phic curve between C and its normalization C. Then Pic® C is an extension
of Pic® C" by a vectorial group V:

1—V —PicC —PicC" — 1

with V = Spec (Sym (0'/0)") = (G,)", where (O'/O)" is the dual k-vector
space of O'/O and v = dim; O’/ O.

Proof. We specify the considerations of the beginning of this Subsection
5.2 to the case X = C' and Y = C". Since p : C" — (' is a homeomorphism,
we have H° ((O0')*) = HY (O*). Therefore the short exact sequence becomes

1 — HO (Q*) _ Hl (O*) _ Hl ((O/)*) 1

Moreover, ¢’ homeomorphic to C' implies that O'/O = J/Z for certain
proper ideals J C O" and Z C O, thus the module O’ /O carries the structure
of a ring. The exponential map gives an isomorphism of vector spaces

00 (0) )0

O'/O and (O')"/ O* are supported only on the singular locus of C, hence are
skyscraper sheaves. In particular, O'/O = H° (C,0’/O) and (O")"/O* =
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HY (C, Q*) are finite dimensional since C' is projective. Taking into account
the connectedness of the vectorial group V associated to the k-vector space
O'/0 yields the exact sequence Pic’ Seq (C’ — C), where im H° (Q*) = V.
[ ]

Definition 5.5 Let A — B be a ring homomorphism. We refer to an
element B of the factor module B/A as nilpotent if there is a representative
b€ B of 8 and an integer n > 0 such that b¥ € A for all v > n.

The set of nilpotent elements of B/A is denoted by Nil (B/A).

Lemma 5.6 Let ¢ : Y — X be a finite morphism of projective curves.
Then ¢ is a homeomorphism if and only if ¢.Oy [ Ox is nilpotent.

Proof. Since a finite morphism is a closed map, ¢ is a homeomorphism
if and only if it is bijective.

Assume ¢ is bijective. Then ¢ is of degree 1, hence ¢ is an isomorphism
on a dense open subscheme. Thus the cokernel Q of Ox — .0y is a
skyscraper sheaf, i.e. S := Supp (Q) is finite and H° (Q) = @, ¢ Q. is finite

dimensional. For each z € S then Q, = Oy, / Ox,, =M/ my , is isomorphic
mu/mu+1

v2>0 mX’xﬂﬁJl”/mX’xﬂﬁJl”“ ’

over k, there is an integer n > 0 such that

mv mqul
D /

Mx o N gﬁy/ Mx o N Mr+1

As this is finite dimensional

as k-vector space to €

=0

v>n

ie. M" C my,. Hence ¢ is bijective if and only if Oy, /Ox,, is nilpotent
for every z € X.
On the other hand, suppose for x € X there are several points y;, ..., ys €

¢! (z) lying over . Then Q, D [, k (yl)/k (x) is never nilpotent. m

Conclusion 5.7 The factor-module O'/O is isomorphic to the submodule
Nil ((5/(’)) of nilpotent elements in the factor-module 6/(’)

5.2.3 Pic’C as Extension of Pic’ C by L=TxV

The main theorem of this section is now a consequence of Subsubsections
5.2.1 and 5.2.2:

Theorem 5.8 (Main) Pic’ C is an extension of the abelian variety Pic® C
by a linear group L =T x V

1l — L —Pic"C — Pic’C — 1

where T 2 (Gy,)' is a torus and V =2 (G,)" is a vectorial group.
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Proof. According to Theorems 5.3 and 5.4 we have a diagram

1

\Y%

11— L—>Pic°C —=Pic’C —=1

1—T—=Pic’ ' —=Pic’C —= 1

1

where L is the fibre-product of T and Pic® C' over Pic’ C’. Since L is an
extension of T by V and Ext (T, V) = 0 in characteristc 0, we have L = T xV.
u

5.3 Dual 1-Motive of the Universal Regular Quotient

The algebraic group Pic’ C' is universal for the category MrCHo(@aeso of ra-
tional maps to algebraic groups ¢ : C' — G factoring through CH(C')gego0
(see Definition 4.17 ). This is tautological since Pic® C' 2 CHg(C)qeq0 (see [LW]
Proposition 1.4). The task of this subsection is to show that Pic’ C coincides
with the universal algebraic group AlbDiV% o (C) for the category of rational

maps from C' to algebraic groups which induce a transformation to @% o
5.3.1 Cartier-Dual of T

The results of Subsubsection 1.3.1, especially Theorem 1.15, are used in the
following

Proposition 5.9 The Cartier-dual of T = ker <Pic0 " 7 Pic? 5) from
Proposition 5.3 is the étale formal group TV given by

TV (k) = WDiv® (5/0’)

where WDiv (5/0’) = ker (WDiv(é) 2 WDiv(C”)) is the kernel of the
push-forward of Weil divisors, and

WDiv" (5/0’) — Div’ (5) N WDiv (5/0’)
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is the subset of WDiv (5/0’) formed by divisors of degree 0.

Proof. Forq € C we may write the Cartier-dual of the free abelian group
Zq C Div <C> as k(q)*, the pairing is given by

Zq X k(q)* — k"
(Ag,t) —s t

Let S C C’ be the singular locus. As o|,-1¢y,, is an isomorphism on Cf,,, we
have _
WDiv (C/C") = T] WDiv (o'p/p)
peS

with

WDiv (0~ 'p/p) = ker (H Zq = Zp)

q—p

Then WDiv (¢ !p/p) is the Cartier-dual of
coker (k‘(p)* — H k(Q)*> = H k(Q>*/ k(p) =T,
q—p q—p
Notice that the pairing
WDiv (a_lp/p) xT, — k"
(QZ_qja [tlu"'utmp]k*) L tzt;l

is well defined. Hence WDiv (6’ /C’ ) is the Cartier-dual of [ ¢ T,. Finally,
denoting by Cp (6’) the set of components of 6’, then

Div’ (5) N WDiv (5/0’) — ker | WDiv (5/0) R )
zeCp(C)

which is the Cartier-dual of

coker H ky, — H']I'p =T

2eCp(0) pes
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5.3.2 Cartier-Dual of V
We are going to use the results of Subsubsection 1.3.2, especially Theorem

1.19, in the following

Proposition 5.10 The Cartier-dual of V = ker (Pic0 - pic C’) from
Proposition 5.4 is the infinitesimal formal group VV defined by

Lie VY = LDiv° (C"/C)

where LDiv® (C'/C) = ker (LDiVO (C") 2= LDiv’ (C’)) is the kernel of the

push-forward of formal Lie divisors for curves, defined as
LDiv’ (C) = @D Homycont (ficy, k)

peC(k)

Proof. Let S C C be the singular locus on C'. On a curve each generic
point 71 of height 1 is a closed point, hence k(n) = k.

LDiv’ (C"/C) = ker (LDiv’ (C") — LDiv’ (C))
= ker (@ Homk,cont ({ﬁC’,p’a k) B @ Homk,cont (t/ﬁC,pa k))
p'eC’ peC

= @ ker <H0mk,cont (fﬁC’,o—l(p)u k) — Homk,cont (fﬁC,ZH k) )

peS

= @Homk (mc’ﬁo'*l(p)/mcap’ k)

peS
This is the dual k-vector space of
LieV = 0'/O

- bo/o

peES

= @ Mero-1() / Meyp

peS
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5.3.3 Cartier-Dual of L
Proposition 5.11 The Cartier-dual of L = ker <PicOC ™, Pic” 5) from

Proposition 5.8 is a formal group LV representing the functor @0@/0-

Proof. m% is the direct product of the functors

/C

Red (Div},.) = Red (Divk) N WDivg

(see Definition 2.37 and Proposition 2.55) and

Inf (Div} ) = Divg

(see Proposition 2.65), this follows from the definition (see Proposition 2.70)
and the fact that on a smooth curve Cartier divisors equal Weil divisors, as
well as the fact that for curves Inf (Divy ) and IDiv, are isomorphic functors
(see Proposition 2.63).

. 0
As Red (Divl,
defined by its k-valued points. C' — C factors through C’, thus WDiv (6’ / C’) =
ker <WDiv(5) — WDiv (C") — WDiv (C)) But €’ is homeomorphic to
C, hence WDiv (C’/C) = 0. Therefore (@% ﬂWDiv5/0> (k) = Div" (6’) N

WDiv (5/6”) Then Proposition 5.9 implies that Red (@%/C> =TV, i.e.

is locally constant (see Proposition 2.58), it is already

is the Cartier-dual of T = ker (Pico ' — Pic? 6’)

Inf <M% /C) = IDiV(j/C is plain infinitesimal (see Proposition 2.65),

hence it is uniquely determined by its Lie-functor. Using C—C' — Cwe
have LDiv (5/0) — ker (LDiv(é) . LDiv(C") — LDiV(C)). By con-
struction of C’ (see Subsection 5.1) for all j € C the maps of maximal ideals

—_~ —_—
m/ (5 —— My are surjective, thus Homy, cont (mﬁ, k;) — Homy, cont (m; ) k;)

are injective and hence LDiv (5/0’) — 0. The image of LDiv(C) under o,
is contained in LDiv’(C"). Therefore Lie (IDivé/C) = LDiv’ (C'/C). From
Proposition 5.10 it follows now that Inf (M% /c) = VY, i.e. is the Cartier-
dual of V = ker (Pic’ ¢ — Pic” ).

Finally Div, . = Red (DivZ,,) x Inf (Div% ) is the Cartier-dual of

L=TxV. m
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5.3.4 The map pic’ : Croy — Pic’ C

The Cartier divisors on C' which correspond to a Weil divisor are given by
the Weil divisors which are supported on the regular locus Cie:

Div (C) N WDiv (C) & WDiv (Cheg)

Fixing a base point gz € Z,¢ for each irreducible component Z of C, we can
define the map pic, :

Crog — DIV’ (C) —  Pic?(C)
Zregap — b—4qz — O(p_QZ)

Viewing Ceg as an open subset of C, the morphism pic% : Ciey — PicC
gives a section
(picd) = : Creg € C Pic’ C)
p1cC)C. reg C C'— (Pic )C
of the principal L-bundle (Pico C) 5= Pic’ C X pic0 & C over C.
The structure of a translation-invariant principal L-bundle is defined by

one local section (see end of Subsubsection 1.1.1). According to Proposition
5.12 below, Pic” C' is determined by the section (picg,) -

Proposition 5.12 Let Y be a smooth projective variety, L a commutative
linear group. Let Pfb (Y, L) denote the set of principal L-bundles over Y.
Then the map

Ptb (Alb(Y),L) — Pib(Y,L)
P — Py =PXapy)Y
s a bijection.

Proof. Since char (k) = 0 there is a decomposition L = (G,,)" x (G,)".
Principal L-bundles on a variety X correspond to vector-bundles whose tran-
sition functions are given by diagonal matrices, i.e. which are direct sums of
line-bundles and deformations of the trivial bundle. Hence it holds additivity:

Ptb (X, (Gw)' X (G,)") = Pfb (X, Gy)" x Pfb (X, G,)"
Therefore it is sufficient to show Pfb(Alb(Y),L) ~ Pfb(Y,L) for L =

Gm,G,. Using Pfb (X, G,,) = Picy (k) and Pfb(X,G,) = Lie(Picy) the
assertion follows from the isomorphism Picapy) ~ Picy. =
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5.3.5 Dual 1-Motive of Pic’ C'

It is clear from construction that for all \e LY = m% e the section (picoc) oA

defines the divisor or deformation A, i.e.

divy, ((picg)a/\) =A

(see Proposition 3.3). Therefore, according to Theorem 3.12 and Remark
3.14, Pic’ C coincides with the universal object Albp; .o ) (C) for the category
—Cc/C

of rational maps ¢ : C' — G which induce a homomorphism of formal groups
MY — m% 10 if M is the linear group in the canonical decomposition of
the algebraic group G. Again using Remark 3.14 we obtain

Theorem 5.13 The dual 1-motive of the universal reqular quotient Alb (C') =
Pic’ C' of a projective curve C' is given by the natural transformation of func-
tors
.0 -0
M@/C — PlCé

which assigns to a relative divisor D € @% e (R) the class of its associated

line bundle O (D) mod Pic (Spec R) for each finitely generated k-algebra R.
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6 Higher Dimension

Let X be a projective variety. In this section we derive a description of the
universal regular quotient Alb (X) and the dual 1-motive of [0 — Alb (X)]
from the one for curves. This is a classical way of procedure, which is applied
often in works on related topics, for example in order to show the bounded-
ness of the dimension of the classical Albanese in |La| and of the universal
regular quotient in [ESV]. Implicitly we used a similar way of thinking in the
proof of the equivalence of Mrco(X)aezo anq Mrp;0 « (see Lemma 4.19).

Therefore for many questions arising in this context it is important to study
the relation between a rational map ¢ : X — G and the induced rational

maps {¢|v : V — G} o on a family T of subvarieties V' of X, in particular
the relation between Alb (X) and {Alb (V)},, ..

6.1 Reducing to Subvarieties

Let Y be a normal projective variety of dimension d, and let F be a subfunc-
tor of Divy which is a formal group.

Let V be a subvariety of Y. Remember that V is called decident to a sub-
set S C Y, if no irreducible component of V' is contained in S (see Definition
3.22). Decyy, is the plain subfunctor of Div,- consisting of families of Cartier
divisors to which V' is decident, i.e. V' decident to Supp (D) for all D € Decy
(see Definition 3.23). _ -V : Decy,, — Divy, is the pull-back of relative
Cartier divisors from Y to V' (see Definition 3.24).

Remark 6.1 Let § € Lie (Divy.) = I'(Ky/ Oy) be a deformation of the zero
divisor in Y. Then 0 determines an effective divisor by the poles of its local
sections. Hence for each generic point n of height 1 in'Y, with associated
discrete valuation v,, the expression v,(0) is well defined and v, (0) < 0. Thus
we obtain a homomorphism v, : Lie (MQ/) — 7.

Proposition 6.2 Let C' = DN ...N Dy_q be a curve in Y, which is an
intersection of ample divisors and decident to Supp (F). Let S be the set of
generic points of Supp(F) and Siye the corresponding set for Supp(Fing)- If
is a generic point of height 1 in'Y', denote by E, the associated prime divisor.
Then (_ - C) |z : F — Divy, is injective if

(a) C intersects E, in general points Vnes

(b) #(CNE,)-#vy(LieF) > dimyim (Lie F — (Ky/Oy),)

Vn € Siut

where Lie F C I'(Ky/ Oy) — (Ky/ Oy),, 6 — [0}, is the localization at
the height 1 point 7.
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Proof. As an ample divisor intersects each closed subscheme of codimen-
sion 1 and D; restricted to DyN...ND;_; is again ample forall: = 2,... d—1,
it follows by induction that C'N Supp (D) # @ for all D e F. If C intersects
Supp(D) in general points for each D € F(k), then (_ - C)|ru) : F(k) —
Div,, (k) is injective.

For the infinitesimal part of 7 now consider the following diagram:

F(ICy/ Oy) DO Lie F = r (Kc/ Oc)

3 ]

@nES (’CY/ Oy)n D im (Lle‘/f) - @qec KC/ Ocaq

For each n € Siy choose a local parameter ¢, of my,. Since C' is decident
to B, and if C intersects F, in general points, we may assume that each
q € CNE, is aregular closed point of C'. Then the image t, € O¢ of t,, € Oy
is a local parameter of m¢,. Choosing representatives in Ko/ O¢, for each
q € C, we may consider Lie F - C' as a k-linear subspace of the k-vector space

G D D +u
NESint ¢€CNEy vV, (Lie F)
Then the map

im(Lief—>(le/(’)y)n> — @ @ k-t

q€CNEy vevy, (Lie F)

ftro— > fla)ty

qgeCNEy,
is injective if C' intersects I, in general points and

dimy im (Lie]—" — (Ky/Oy)n> <#(CNE,)) - #v,(LieF). m

Lemma 6.3 Let G be an algebraic group and ¢ : Y — G be a rational
map. Then the following conditions are equivalent:

(i) »€Mrg
(11) For every subvariety V of Y decident to Supp (F) it holds
¢ly € Mrzy

(iii) There exists a family T of subvarieties of Y decident to Supp (F)
such that  (a) Y \UycrV is of codimension > 2 in 'Y
(b) ¢ly € Mrry forallVeT

Proof. (i)=(ii)==-(iii) is evident.
(iii)==(i) Let L be the largest linear subgroup of G. By Definition 3.6 of
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Mr £ it comes down to show that for all A € LY (jj) implies (j) with respect
to the following conditions:

() dive (pya) e F

(i) dive, ((w\v)m) eF-V VYV erT

This follows from the fact that an element D e Div). is uniquely determined
on a subset whose complement is of codimension > 2 in Y, and this applies
to (Jy e V by condition (iii)(a). m

Definition 6.4 For an ample line bundle L on Y and an integer c with
1<e<dimY write

IL]°=P H(Y,L)) x...x P (H*(Y,L)) (c copies)

For a subset S of Y denote by |L|g the open subscheme of |L|° defined by
c-tuples of divisors Dy, ..., D, € |L| such that V = (;_, D; is decident to S.
By abuse of notation we write V € |L| instead of (D1,...,D.) € |L]|".

Definition 6.5 If ¢ : V. — G is a rational map from a variety V to an
algebraic group G, then we say (V, ) generates G if ¢ (V) generates G as a

group.

Lemma 6.6 Let G be an algebraic group and ¢ : Y — G be a rational
map, which satisfies the equivalent conditions of Lemma 6.3. Let L be a very
ample line bundle on Y, and let ¢ be an integer with 1 < ¢ < dimY — 1.
Then the following conditions are equivalent:
(i) (Y,¢) generates G
(1) There exists an integer N > 1 and a dense open subscheme
T C },CN‘C such that (V,plv) generates G for all V € T

Proof. (ii)=(i) is evident since Y D V for all V € T.
(i)==(ii) It suffices to prove this assertion for the case that ¢ = dimY —1, i.e.
T is a family of curves. Indeed, if the lemma is shown for curves, replacing
Y by a subvariety V' we can apply the implication (ii)==(i) to each element
V of a family of subvarieties of Y.

For each C € |£|*" we have a commutative diagram

Y — Alb£(Y)

\G
-

C—— Alby:c(0>
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The task is to show that Albz.c (C) — Albz (Y) is surjective. By duality
for 1-motives this is equivalent to the statement that 7 — F - C and
Pic’ Y — Pic® C are injective homomorphisms.

For sufficiently large N the open subscheme T C ‘EN ‘dil consisting of
those C', such that the homomorphism - C : F — moc is injective, is
dense in ‘EN ‘dil. This follows from Proposition 6.2.

Y and C are projective varieties over a field, therefore the groups Pic(Y)
and Pic(C) may be identified with the groups CaCl(Y) and CaCl(C) of
Cartier divisors modulo linear equivalence on Y and C respectively, by a
result of Nakai (see [H] Chapter II, Remark 16.14.1). As C'is the intersection
of ample divisors, the intersection product [D] - C in CaCl(C') will be zero if
and only if [D] is zero in CaCl(Y’). The injectivity on closed points implies
the injectivity of the morphism of varieties Pic’Y — Pic’C. m

6.2 Universal Regular Quotient and its Dual 1-Motive

The universal regular quotient Alb (X) is the universal object for the category
MrCHoXaeso of rational maps from X to algebraic groups factoring through
CHo(X )aego (see Definition 4.17). The existence and a description of the
universal regular quotient is now done by reduction to curves, as the case of
curves has already been treated in Section 5.

The following theorem was already proven in Subsubsection 4.4.1, and
accordingly the proof of it is a summary of arguments given in Section 4, but
without involving local symbols, instead basing on the alternative description
for curves from Section 5. I repeat it because we are looking at it now from
a different point of view.

Theorem 6.7 Let X be a projective variety, and m : X — X its normal-
ization. Then the universal reqular quotient Alb (X) of X ezists and is given

by the universal object Albp;,0 ()?) for the category Mrp, 0, i.e. it is
==X/X =X/X

dual to the 1-motive
0

Divy . — Pic %

XX
Proof. Identifying the regular locus X,., with its preimage in X , the
category MrCHo(Xaes0 can be considered as a category of rational maps from
X to algebraic groups. We are going to show the assertion by analysing the
behaviour of such a rational map ¢ on curves.
Let ¢ : X — G be a rational map to an algebraic group GG. Then the
following conditions are equivalent:
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(i) ¢ factors through CHo(X )aego
(ii) ¢|r-1c factors through CHy(C')dego
for all Cartier curves C' in X relative to X,
ie. pe MrHoXaego if and only if vle € MrHo(@deso for all Cartier curves
C in X relative to X,e. This follows from the fact that the relations in
CHo(X )qego are defined by Cartier curves (see Definition 4.4).
Let L be the largest linear subgroup of G. Let C' be a Cartier curve in

X relative to X,e, and v : ¢ — (' its normalization. Then from Section
5 we know that the categories MrCHo(@acso 3nd MrDiv% o are equivalent,

i.e. ¢|c factors through CHy(C)gego if and only if ¢|c induces a transfor-

mation LV — m% o In order to prove the equivalence of the categories

Mr“HoXaeso and Mrp,0 it remains to show the equivalence of the follow-
==X/x

ing conditions:
(j) ¢ induces a transformation ZV;( LY — @%/X
0

(i) ¥|c induces a transformation VLY — Divs .

vle,C
for all Cartier curves C' in X relative to X,cg

Now 1Y, ~(A\) =1¥ _()\) - C for each Cartier curve C' and each Ae LY, where
A ene »,X

_-C'is the pull-back of relative Cartier divisors from X toC (see Proposition
3.24); and Mgz /x and @% Jo are defined as kernel of the push-forward m,
and v, respectively (see Proposition 2.70). Therefore the equivalence of (j)
and (jj) follows from Lemma 4.23 and Lemma 4.27.

The equivalence of Mr®HoX)aeo apq Mrp;,, 0  implies the existence of
=X/x

the universal regular quotient by Theorem 3.12, as Alb (X) = AlbDdi/ <XJ )
— X/X

The rest of the statement follows from the explicit construction of the uni-
versal objects Albx (Y), see Remark 3.14. =
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6.3 Example: X =1, xI'3

We conclude this section with the discussion of an example that was the
subject of the diploma of Alexander Schwarzhaupt [Sch]. It illustrates some
pathological properties: The universal regular quotient is not in general com-
patible with products, in this example we obtain dim (Alb Ty x Fg)) >
dim (Alb (T,) x Alb (I's) ). Moreover, given a very ample line bundle £ on
the surface X =T', xI'3 and a curve Cy € ‘EN ‘ in general position, we work
out a necessary and a sufficient condition on the integer N for the surjectivity
of the Gysin map Alb (Cy) — Alb (X).

6.3.1 The Curve I',
Let T',, C P} be the projective curve defined by
Fa . X2a+1 _ Y2z2a—1 =0

where X : Y : Z are homogeneous coordinates of Pi and a > 1 is an integer.
The singularities of this curve are cusps at 0 :=[0:0: 1] and oo :=[0: 1: 0].
The normalization I', of T',, is the projective line:

r,=P,
Then Alb (fa> — Alb (P!) = 0. Since Alb (I') is an extension of Alb (fa)

V
by the linear group Lr, = (M% T ) , we obtain

Alb(T,) = Ly, = (Divg )V

—To/Ta

Moreover, T, is homeomorphic to P}, i.e. the normalization T, is given by

the largest homeomorphic curve I"/. Then @% T is an infinitesimal formal

group (see Proposition 5.10), and we have
Lie (mga /Fa) — Homy, (Lr, (k), k)
The k-valued points of Ly, are given by (see Theorem 5.4)
Lr,(k) = Of /Or,
= (0r,/0r.), @ (O, /Or.),
The dimensions are computed in [Sch| Proposition 1.5 as

dimy, (Ofa/(’)pa)o =
dimy, (Ofa/(’)pa)m = 2a(a—1)
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hence
dim Alb (I,) = dimLie (Dive )

= dlmk Ofa/OFa
= a2a—1)

Furthermore for ¢ € {0,000} C I, it holds

#o, (Lie (Div) . )) = # (u(Or,) \v(Or,))
= dimy (Ofa/(’)pa)q

A basis of Lie <@% ) is given by

Or, = {tZ v E v, (Lie <mlg“a/u)) ,q= O,oo}

where ¢, is a local parameter of mg .

/Ta

6.3.2 The Surface I', xI's

Let X be the product of the cuspidal curves I',, I'3 from Subsubsection 6.3.1:
X =T, xTI;g
where o, 3 > 1 are integers. The singular locus of X is
Xsing = (0 x Tg) U (00 x T'g) U (Ty x 0) U (T X 00)

The normalization X of X is given by

X =T, xTy=PLxP}

Then Alb <)? ) = Alb (P}) x Alb (P}) = 0. Thus the universal regular quo-

V
tient Alb (X)) coincides with the linear group Lx = (M} y X) :

ATb (X) = Ly = (Div}, )

and Div} ., is an infinitesimal formal group (see Theorem 1.19).

/

If Or, is a basis of Lie (@% T ) for . = «, 3, then

Oroxr, = {Vr, @ Ur, | (Ur,, Ur,) € ((Or, U{1}) x (Or, U{1}H) \ {(1, 1)} }

106



is a basis of Lie (DIV Thus the dimension of Alb (X) is

X/X)
dim Alb (', x ')

= (dimAlb(I',) + 1) (dimAlb (I's) +1) — 1

= (dlmk Lie (Dwra/ra> + 1) . (d1rmC Lie (DlvF /F5> + 1) —1

= (@Ra—-1)+1)-(B2-1)+1)—1

-0 . . .
The support of Divy . is the preimage of Xgig:

/X

Supp (D1v~ ) = (0 x fﬁ) U (0o x fg) U(Ta x 0) U (Ty x 00)

=X/X

We obtain a basis of im (Lie (DIVX/X> — (IC;(/ O)?)PQXq>
for ¢ € {0,00} C ' by

@uw:{mb®§

€ (Or, U{l}), v ey, (Lie (DIVFB/F5>> }
Now v, (Lle (Dwrﬁ/r )) = Ur, xq <Lie <D1VX/X)>, therefore

dimy, im <L16 (DIVX/X> — (’C)?/ Oi)r ><q>
= (d1mk Lie <D1VF /FQ) ) # Ur.xq (Lle <D1VX/X))

and analoguesly for p x I'g, p € {0,00} C T..

6.3.3 The Gysin map Alb(Cy) — Alb ([, x I's)

Consider the divisor

K I
=> pixTg+ > Taxg
i=1 j=1

The normalization of D*! is isomorphic to the disjoint union of k + [ copies
of PL. Therefore the Pic’ group of the normalization is trivial. Then by
Theorem 5.8, using the explicit formulas of Theorems 5.3 and 5.4

Pic? DF =T x ¥V
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where T 2 (G,)" is a torus of rank

t = 1—#Cp (D) + #5S,
= 1—(k+0)+k-I
(k—1)-(I-1)

and V = (G,)" is a vectorial group of dimension

vo= k‘dlmk Ofﬁ/@[‘ﬁ—Fldlmk Ofxa/O[‘a
= k-B26—-1)+1 -a2a—-1)

For general p; € T, and ¢; € I's the divisor D?*1:26+1 js very ample (see [Sch]
Lemma 3.2). Set £ = O (D?***1:29+1) and let Ciy € |£L"| be in general posi-
tion. Then the dimension of the vectorial part V¢, of Pic’ Cy = Alb (Cy)
is

dim Ve, = N(a(2a—1)(28+ 1) + 828 — 1)(2a + 1))

The map Alb (Cy) — Alb ([, x I'g) cannot be surjective for dim Ve, <
dim Alb (I'y, x I'g), i.e. the simple comparison of dimensions yields:

Proposition 6.8 The Gysin map Alb (Cx) — Alb(I'y x I'g) is not sur-
jective for

(a2a—1)+1)-(B(28-1)+1)—1
aa—1)26+1)+ 528 -1)(2a+ 1)
In the case o = (3, this expression simplifies to

a2a—1)+2
220+ 1)

N <

N <

The homomorphism of vectorial groups V¢, — Vx = Alb (X) is dual to the

homomorphism of Lie algebras _ - Cy : Lie (@% / X) — Lie (@%N / sz)’
and the surjectivity of the first homomorphism is equivalent to the injectiv-
ity of the latter one. The estimation of Proposition 6.8 yields a necessary
condition for surjectivity of the Gysin map, i.e. a bound for N from below.
But by inspection of the map - Cy as in the proof of Proposition 6.2 one
sees that this is not the greatest lower bound.

The criterion of Proposition 6.2 gives a sufficient condition for the surjec-

tivity of the Gysin map:
#(Cn N (Ta % 0)) - 0 g(Lie Divg, )

> dimy, im (LieDiv0~ — (Kx/ @x)paxq>

=LX/X
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where ¢ € {0,00} C fg, and analoguesly for p x fg with p € {0,00} C L.
By the formula for dimyim (Liem%/x — (IC;(/ O);)Faxq) at the end of
Subsubsection 6.3.2, this is equivalent to

# <6’N N (Cy % q)) > dimy, Lie <m%a/u) +1

Then since _
4 (CN A (Ta X q)) — N(2a +1)

we obtain

Proposition 6.9 The Gysin map Alb (Cy) — Alb (T, x I's) is surjective

if
N>a(2a—1)+1

- 20+ 1
and likewise for 3 instead of a.

In [ESV] Variant 6.4 the following sufficient condition for surjectivity of the
Gysin map is given:

dimy, im (H° (X, £Y) — H° (Z,L"|7)) > 2dim Le,, + # Cp (X) + 2

for all Z € Cp(X), where L, is the largest linear subgroup of Pic’ Cy for
Cy € ‘,CN‘ in general position. For X =T', x I's it holds Cp (X) = {X}
and Pic’ Cy = L¢,, = V¢,,. Alexander Schwarzhaupt showed in his diploma
[Sch] that in our example and for a = (3 this condition leads to the estimation

3a(2a—1)—1
200+ 1

N > 2 +1
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